
..:ED 152 321

AUTHOR
TITLE

INSTITUTION

SPONS AGENCY

i /-

EDRS PReCE
DESCRIPTORS

PUB DATE
GRANT
NOTE

, 4

ABSTRACT /

1The goal of the present project was to identify the1 ..,

types of knoeledgdk necessary and useful for competent
'troubleshooting/debugging and to examine how new approaches to formal
instruction sight influence the attainment of competence by mtudents.
The research focused on'the role of gbieral strategies in
troubleshooting/ftbugging, and how they sight be represented and
taught explicitly anddirectly in order to avoid the cost and other
drawbaCks of learning indirectly by observation and practice. Related

'work on troubleshooting/debugging was examined, and in conjunction
'with a logical analysis, contributed to .a chatackerizatign of .

troubleshooting /debugging problems that eaphasizts.their gen-erality
across a nuaber of technical fieldd and informal contexts. Farther
data gathered from students learning computer programeing.suggest.
that expert debuggers do not necessarily have superior general
strategies; rather,' their expertise derives frca specific and
sometimes idiosyncratic knowledge acquired thrteugh experience. An
attespt O. obtain a rigorous characperization of the differences and
defects iz the debugging strategy of students by applying a'
model- oriented data analysis method was unsuccessfulo Another study.
was conducted' to determine the effects of presenting a tutorial text,
which. describes a few general heuristics designed to correct strategy
deficits; results.indicated a virginal increase in the appa ent use

ki
of some of the heuristics by those who studied the text collared to a
group who did not. The several methodological limitations an .

problems encountered suggest that, if the causes cf differences inabilibip-are to be specified in detail, and if tht effetts of direct
probler-solving instruction aretio.be assessed, then it will be
necessary to perfect model-based'dataLanalysis aethods.
(Author/DIG)

***********************,******4*******************4********************
* Reproductions supplied by EDRS. are the-best that can. be lade , *
*

' from tWoriginal,document. *
**********e*****"***

. *

Documm BESiiD

IR 005 863

Wescourt, Keith T.; Beaphitre-Linda
Representing and Teaching Knowledge for
Troubleshooting/Debugging: Technical Report No.
292.
Stanford-tniv Calif. Inst. for Sathesatical Studies
in Social Science
Advanced, Research Projects Agency (DOD), Washington,
D.C.; Office of Naval Research, Washington, D.C.
Perbonnel and'Training Branch.
Feb 78

100014-77-C-0124
150p..

MF-$0.83 HC-$4.35 Plui Postage.
Artificial Int%l,ligeuce; *Computer Programs; *Concept
Teaching; *Informatica,Preocessing; *Irstru6tional
Design; Models; *whin* Solving; Programers; t

,-..Proposing Problems; Skill Development

s-4
Y I DI MINS NT Of NEAT TNrJ gDUG A T Prm L wit 1. F A * I

1NATIONAL iNSTITL/Te Of
. 14.N E bI.ICA VON i

REPRESENaING AND TEACHING '1,2f7+ rla;(1' FOR

I

clq TooS DOCWAENT MAS BEEN NEpap-
0Lic10 Ex&CTLY Al IIECUYEO greOL.
T.4(E *SON OR OAC.ANtzT.0.. on.G 4.
AtiNG *1 KliTTTS Or TqW(>0 OPIITtCykS
STATE° 00 NOT DoEcES5.Airoor REitE..
SENT ot tsCIA4 cet.oatAL ItStu,E of
COVC4T.6,0 'OS T.D.(T.CkCY

TRXR=H001-00./M.F.30GOG

LLJ Kett T. Wescourt

Linda

Csntraot Ns. 00014-77-0-0124, effect:We November, :, 1976.
Expiration Late: -./ctsber(31, :977.
Amount cf Contrac.:: 964E3.
Principal Investigator, Keith T. Wescourt, (415)
Csn.r,-Pctsr: Trtitute Mat"-cmat4cal Studies in

toe Social Sciences
Stanford ;Iniyersity
Stanford, CA- 9L3O5

Spsns,.:red by:

Office of Naval

Contract Authority IS . NR 154-394
Scientific Officers: Dr. Marshall Farr and

D.r. Henry Helff

and

Advanced Research Project Agency
ARPA Order I. 3339
Program Code No. 61101E

The views and conclusions contained in thii documen are those of the,
authors and should not be _interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Research
Projects Agency, the Office of Naval Research, or, the U,S. Government.

Approved for public release; distribption unlimited. Reprodnestion in
whole or itt part is permitted for any purpcse of the United-States
Government. "4.

1

1'

SE CutP TY CLASSIFICATION OF 71415 PAGE (Whon Date Entered)
.

REPORT DOCUMENTATION PAGE
.

. READ DiSTRUCTIONS
BEFORE COMPLETING FORM

1 REPORT NJWEIER 2 GOVT ACCESSION No.

1

3 RECIPIENT'S CATALOG NUMBER

4 '''''''-E 'grid S,....britl.,

,

Representing and Teaching Knowlede for
Troubleshcoting/Debugging .

S TYPE soF REPORT tr PERiOD COVERED

Final Technical Report
.

Nov. 1, 1976-Oct. 31, .3.7T7A
6 PEKFoRmING ORO REPORT NUWEER

Tecnnical Report No. 292
7 Au TKOR,l, .

1

Keith T. Wescsurt and Linda F.,..,,phill
. .

'

e CONTRACT OR GRANT NUMBER(!)

R00 01L-77-C-012.

..
,

/4 PERFORwNOORGANI2ATIN NAM! AND ADDRESS

institute for Matamatical Studies in the
Social Sciences, Stanford University,
Stanford, California 943,05 I'

,,,,,

i0 PROGRAM ELEWEN; PROJECT, TASK
AREA 6

6110IE
wORK otter NostlIERS .

RR .2 -C 6;5 DL2-06-01 ,

NR 154-390.
COM T ROLL +ND OirCE NAME AND ADDRESS.
PerSCnrel & Training Research P. rams
Office of Naval Research 'Code 45-8)
Arling-ton VA 22217 k

12 REPORT DATE
.

February 1, 197;"
13 NURSER Or PAGES 1 les
.11.i.-

.

it adcwoR,..,., AGENCY NAME 6 AOORESSIII di Ibitent tram Contratlint °Wm

*

15 SECURITY CLASS_ (ol elti report)

Un'ClaSSifiel

1$4, DECLASSiFICATION/00vNORADIKG
S4NECIJLE ..

16 a' ST 14. 8,,',01 S'' A T'Ess EN - lot Ofto fetporil .,- -.

Ar.preved eor p _' -c release; distrltution unlimited '

.

17 D.STRBuTION STATEMENT (01 a e libittlKi aritersd In Mock 20, II elf /seam boa Noporf)

.
5... .

.

.
'111 SuPPLEMENTARY NOT

. '')

A

IS KEY WORDS (Dontinutt on toreros lids Itime*ciary a14 Identity by black nusiber) !,' el

problem solving, debugging, trcubleshooting, reasoning, instruction, complex
learning, computer programming, artificial intelligence (AI), k4owledge
representations,'-heuristics

.

.

20 ABSTRACT (tont/nag at toreros ado it notatoway Reid teNetilty by bierl llusbbor)

As society's dependence on tecnnology increases, the -need forccepatent
technicians who can maintain and rapair complex systems increases as well. .

Present meth9ds of teaching troubleshooting/debugging remain primitive and
expensive, relying on students to discover effective and efficient problem-
solving methods by observation and practice in relatively unstructured ^

snvironments. The goal of the present project was to identify the types of

knovledge,necessary and useful for competent troUbleshoot4ng/debugging and

DD I JAN "AN 73 1473 EDITION Or 1 NOV 111 IS OSSOLETE
SIN 0102 LF 0144801

SECURITY CLAESIFICATR)H OF THIS PACE (P% DM. IIHIsre40

1 (« 1 +'c-, ID tt, 01 I 3 4* '(1 0 (714 VD 0 ID
(0 I. 1-4, 11 ... (1 41. 1

: Ili II(l'' : 04; 117 " :

4) ID 41 ; 1 ; 3 iv 1 4,1)) :t,' X 11.. 14,, ;.-, !, 11), :I); i!i, -.: g ,.1 II/ c+

4 .13 o 4 r

$11) 'Si w Pc1 co o o p.1 .4 (-) :) Li 1 (4) r) I "0 (1, Oka 1: 4 ... p a'
,+ 11. .-.1 4,0 41
:" s: Inl ina,..: ::. r,s,

itl :1 fi' il 14ti Cr 4 4
! I I .;

ID (1,1
,..4.1. 1),. 11,411P 1:7 I 4 01)

4,4 Lir it' jrl (,6. ID 'h. '44 1
4 .

II 4 ir 0
'141 444-1 44; 0. (A

0

.4

.

0
0 0 I . 4b of ;4
(1) Or o 1 ID t) (A 0 0 0 ii: _,, , , l 4A 0 e

,(phr.,.t...4- 'ti (D
.,., (D 0 4

I"
'''''' 4r, -1'" 2"):" ".: ... <4.i 'I

0 I ..;

4 , 04 4 1

0 4

In ' 1r

4/ 0

In

;' P :1 I (I) l)

4.41 4 1 : 3

0 , CD r.:
04000 III .4 () 11

(11

1,.

it () 0) I 1 , 4 ,1 t1. 0

ID 8
4i I

(II (4 y

i 1 (-D 40 (111 .4131 4°D
r+

:4 ,i,;; '1,,'.
t.

., , . lil 8, tit: 4,: I .:' tID
4,1,

Cl ' (4,4 ID 1

ti
,4 ;3 4, t e4 1,1, :+1.1 o'' r t .i: 1 .,: '1D, r-T''' 'II m (.)

iD 11 t,) 11, i'.:. '''' " ri
, , fp o 1

1)1 '11 1',:11'

tl 1

; ir.

I') 01 , I,

IV

:1
, ti 11 1)
. 041 (,) 1'. tr, 1,1 :1 11 VI () .T1 1, et, re (). Li

4 41' Ci

ID

4, tr.; to I (A
o i a.

47Q

:1') .4 : 141.' 441.1 141 114 IX] .11: IVII: 14.11" C'(1.1 (?) r
Tel 1,

lit oi

I

'4(.1: ; : '''(1. : r; i- .1 : - , (r 4,!. 0 ;3 1 , I ti ;1

,

, 0 si () 4..). .0

, 41) 41' N... :4' :,1 4)) 4 4 t.
0 c0 0 }11 (;

Co 8 t1

144
V c0 l'-'4 0 (1;4o 0 I 0 li. iii,. 1.i (') " `,..t. 13 ' ... 1. 1. ... I" '1 1; (-.1.* 1 '''''' it 1

CD To
(.: 0- :1 0 OP) 41 0 11 i n 0. p 4..i)
o) I

I ID 4) t

:f
4-1 0 , (-

I t 4

41 a.
n .

. .4

t. , '''
.. , ,

1.

:,', :D,, il .) /,'" 11 " 11
' .,4 , . ,.--t4... 4.. 44.

.1 ...

it 4..., ../., ...1 471 Si ID t n, 41. (..1, III,.: :1 ft1 (41

ID V.. 1

it) I

1

11111 1.. In 01 1: ID 0 0 ..74

a, . ID 01
I . Si; 11 4. ID, 4,1;. . .1, 1-1 In

1) ':'
- iD 0 a t . 1 1.44,1 al 0 0 . 4D ;;

1 (b
t ,i. 1

I'D

4 10

}. :`,.

(4'1, (14 ,...

0 (11
C0 II, 4 1 :1
:1 fr . 1 ..).1 11 1F1 ill 4). 4.,i I 01 10. a p 11.1 4411 iy:. ''- : ;(1::33 ': . 4 r. 8 41. ,I .1

'Si_ ID
ii

.)

4-... I 44

4-4. .

if 0 4 CI() lt I/
1 .4 t1'

41,Ii4 .14 :ii, ;II ...1 141,1 154 11 4 !' ID It'll /1111' 'UlP'. " 6' 111; P. 4,7: 410 o , t tv ID 01 ID ..1'
I 1. 117/*

..1:. I- , I
1 Ft, (II a. Sir .4 0 0, ;N. + '41 r t, t,

(n. ,,

- 0 :1 .1 I.' MI 1.1
4,, ID

4, (11 1. I
Ut

4,14 411).1 04
(4

4:1
4+ 41 4) 0 '41 4-4 0 6 ,f.v.1 ...,_(...; 4., ./ (1, I i, cn!,) 11, n; I). 0 . 6 , -. 4 41'

1 ' ICI 1,,:: 1,;(1. L.,1 10 kV I ' "III IA 0 41 44 t-I 41 40 .0
4 " w
14; Si; - il,

:Si
1:-- . t'71). Tn ID

N Pbl (4 iil () w 4 I 4 , 1' S. 4.1..4 4-.46 4.1" 4.../4
g D :, ,t, I ' ,,, ,-., It, , 4.,

t,- ,r,- '(1 /./;, 4 4)
1 ti CD 1,-.. 41

lb o 6
I.: 3 1.. 1 1.. 0 "1;1' ''t/ l' II:, 'TO: (41; In I ,.1 I) I.D, P. 1 p.,1 14 . 1 4 ' 1,I .." (III: 1(1 'ID) :.: " ,4

It. . . (t. 11 tit; (14 (C :1 4 4 OKI I ' il, °
11,1 1' ,t ij,

t, (. 4) CO
1.1) 0 0 ID (I) X 0) ,d)ti 44;.. 0 1,f,.). ki

OK) , 4 a, .. ,. I.
40: .1.,/, .44,1 400) so. (4) 4). .:14,

(Si'-
I'

1 1 .,
1,44o a, -II Ii ,1I, :.... ...1 41' 0 ID .1

4 411. 4) 4 c 0 4-4 1- :1
I 0
1 44) 06 m

,I-3

cl 1-.....1 () c, 4 . cl, 0 i'D , (I a' 41
(. 4 11-. In '4,1 ri!

'41 (1-; I t' () I:, 4'

4 , ,,,, (,) p-4. 4 t ?' 0 1.114. 4 4.1.. .14-,4,,

(r1 (II

ri 4c-t tri ig. (471 ID 113 I I' ID ° :1
('''-e ii''' i.:.: .1".....titi. : "J''' Pi '''' '. 1"4.1 '"

0 . it, r 4, ID 4 0 it '1 11 1/. ID
1.11, 4. 411 4 4) 1 4 t" 4 -".

,i,,I, (rin, '4:: 4;

6 (n 0) g locg :1: t:-!- P. 11 4-1 :.t`i ;-.1 ''' 1. '--
1. 1, 6 (il) :1 2 1 ; ... t ; . : i

.4,, . . , it. ...
to, 0 In t-, 1 to i
(n 1 .1 (4 ri I ' -.4 13. (1: 4). (n Sik 4) 1.), 1 ' I . 1..tn 41 c+ ID

.2
1... .., I (11 41, 11 144

/1. (I ' . -4 111 flr, 01
0 :04 ,;41 41:1. 411 I'Il 41 t 4- (A

:1 04

, 4 .1 11. Si t 4 '",.. I- ' 41. ID '11 1.1 0, a. a) 0 0, `....:
14 I,)1.

4)' . 0 111 .4-4' 11 (I
04 01 :1 I '

2 .0
Do .1.

C5 D. ti,. 4'4' (n
04 (-4 .

111 4 4 44)

r Pur
KT in itil ,i(D-,

4 'il;
t; if.; ii' ,t); :I di; iis,
4.. it) 0

. g ki 1,1' lb rt I..
0 4.. :',"

to ... It,
...; --x, t-- - to (V Tr 4)3 ii o ID ;3 11. at

:1 4) tIkt (1, tx,
(Si in ar (Si' t1 t

(t n
i ' s; 0

i*. it. it) P44 o :,
.1 co lox (I) i

10041 111 Cy: (.4* I,* (Si c

4 0 4-4) 0
O 4 4 0 I

ID p Pr1 . - 1.14 01)
CO (RI

4 4)

115

;/4 It'ln .1. I.Y1 D
0 $.1 11 tr, r..,

1i) , 1 ' .. 'JO 13. 13, 13. 6' ,1 1t1' 1t,' 1t1

. .
,,,,), 4,, 1 4 41. L. I %. ILI' ' I Ft IA i,(:4,,,

Ito IA PIP_I Itlo VA r,' 4? I 0,

03 . ID 4 4 CI ri
4.1. 11 I-. II 4/ ,, 4. ;.: (1) 0 0 (! cr o F; ti I-)

5- "c- i; li
,ft

C1 In
(I: H 21--. IV c-,P 0 '1. It '1

.,(1) 1..14)01 ;11
01(1 44 ;pl.

Sr

tro IA 4/ I ; 0) ((ton

'S r 1'(11 1--1'- g 1'8 14 (`-', 'i 11o ...
;/..6 ,ti

.b ,t .
../ (A 11 0

I 4, :VI
((11)

CA '0 t 41, (I) 44 (1 0 In.. f 1 1,1 ,i'

.,, .1. R. 4 .D .., II If r+)

4 * 1.1K1 ..

, 4

I4.14' lIton . (-44% :1 .r, t a, (

. ,1

D.

s. .r. 4-4 :1 4,. r+

1111/) 41,3 .1: .1.:)''.,.14 1)4 (41,:, .ct
...t.a) CI!: vilD 0 ti i -

0 tA U1
In 4/ 4.:

0 1

1 4:,: , sa,
ID (4' 1t1 41

IA Ili

01 1 ' :1
t 4
4 4).

os.)
to; "1 0,} 44/ P

,,,
4, :, w .: , (Si , 4 1

m t . rn tr) tl to 8 f4i 4.4 .;./.4.. ,-.,
......

.4 114. 01 U, tl g lb .,..4.1 41 ..

1-4 41 t - cr

LI m :-1

s ,..4 w
li iq 4 + ciG

'I Irl 't..1 t i a: o
v0 tr.

1-Pir 44
E.

1

1

1741)) '111.; 15.11s: 'II 11.' P. 4.1' ..., '(*(14 I n

li 12'1' I Id ill- 0 4 +
t) 4-1 C11: ti ,, 4 0

4-1 kt4 , II 1 ..
'Ci

lb

trt

444 (6
404. 1. I I.

/ 0, ft01

4 ;47....4): :11Ce. .3: 1:11:. :(,)

b..,1 i

AI 0 ID X ;3 a. II .4 [4
0 ID 0 Pi API

15)
(Sit. ii1 41' trio (i,..) 4.1'41.

1

t'
a 0 il) 14$0 1--* 4- I.. Lao 1> 4.1 IA Tv In -3 (1 ty 1, (-1. To 13 ,II.- t Cl /- c". (Si o 4... 4,,, ...-..

ip 1:11)0 41 0 ..- :1 0 ;1n)- .3. ,- ..:. . g R ro: i-,3+ R i.--. Fg...1 III, IA '411 I'. IIg , 4 4.; ii ".: lo /I 0 4,9 4) 41'
0 ci.....4...

'''Si
11):, r 0 zilp 4A, .,-11 .11.41 Fo et

4; k 1-1144 441 41'0) T-1 . 11 / ' (Si ri F;- 1,1,1.t 1."-.' o 1t. to t. I I 8. (f . t
1 1 I"

. 4
1 4t :1
; I" 41. 1 (ill (,(14 '4144 I

(D

I)' 0 II '4 3, 0 4,101 4). A

, w
-) 0 ti r - 0) 4;1 p!, 0 Ir.,. I 0 11 A e4 4 o 4 i 4 I, 0 i0 '

14'11'
'

iTr,.41, 4 (TD/ il ()1 1/4 F, '') ID 41.g .(!)1. 4, " 5-
. 01

4,

...T.4: 0) -1. p (1) 11) tt IA 0 0, tt-i , II INI., ID i) 0 4-" (1 to (To

0. CA ti
P. 1
fp F-

Cl

et (D 0 0
_R ,,, 4-' g Si

Sr
:4

ti

if) e Cl (4-.1.- t) o- 1-, b ,...i.,. i
. ',J.. 1(1

t ''

t-il 014 I), (F (Si 14 w
C)

t IT 4-1. * to 'VI I .

LA .., r, 4E o a. 41 -4" S.
Si

li) .4(4.144 In

0 4

.4 tp
I rt, nr, 1- Iii 1bl (...,:it Ili, 17.,. ,iri. iirl I, lb 411 :-1.1L' fiD: 7+ (:"'" 5. ".11 '`If .114 W

1

(Si

II); 1;:)1 ill) 1 /.. 41)

O I 41 i,,) i 6. 1;' 1-i K, 11 .1.1 '.1. 1,-')

II
0 (I tc)

t-o, :10

g 5. Cl o Cl in, o or or 4-4

r. iill 411 ii: '42 441. " ID' n. tu
4 41" .4 I ..,- C 4. LI 01

c4i n 1/4.,1 141 0 (-4 tr r
ID 4-4 4-_- IA $D (1) lo

`-.1 g 01 'ti 0) .-- 4,f 4 .. In
4....) TD

(Si () (D

lir) 41: ii Sr:4. 0 4, -i. T n .. : CO I:: Li;
4

it: 4 0 ,... P-1 13 1,_ 0 4'1.4 ID 0
(1 L1 0 0 () 41) 4 a,

4- lan CD q F 41. no 4, .1, 4-4 43. 44i h., ,-, 41 I.: 'Ir. I..;). c I t, ilf, (A
ri.

o p icn4' (4 00 44. -; 017" !.1) -) 11 4 1 'Si',
4 4

I.,. 4-4 ri; .1
ir:i I? .1'. a) 91), r ,.., b, I'D 41 46 I t, 11

46 ktql(i t . 1 r1 11In 1 14 (H) r4 ."; *41 " 11 g ou L'.

(

(.4()

ti ; ; :g 8 I-P
4=, m (n 1 FI:4,4' i 4-.. F.. 41.1' '0..41i

n, . X (Si tt, /1' k .. ,..,. ,_ ..., til *I g 8 ilk' 0,
i) ,t-1

,..,
ht N ,...t.:,' r ;.`' (.!.. ().1..... ri w 0 ,.., 1.". tt, 0 ,.. 4, t, 44 0 et

0/ Pic 0 t.li 11 III
IA ;;I 1: 4.; I 10) t -1 4-i 0 I.±,(4 11

Ou4 Zi 474) to; ID 1 -t pi) 1.1) cf
4-4 I RI; 4-1 I g 4D Al";1.1..... 4-"

1 0 4/
PI 414

1 .
S.

II)
01 .

4 [r; 4i
01 si 1 -

I
t-'; 4 ' 41 'a g

,.p,..
I N.

1

Surary

As society's dependence on technology increases, the need for
competent technicians who can maintain and repair complex systems
increaSes_as wellt. Present methods of leaching
troubleshooting /debugging remain primitive and expensive, relying on
students to discover effective and efficient problem-solving methods by
observation and practice, in relatively unstructured environments. The

41111tgoal of the present project was to identify the types of kndwledge
necessary and useful for competent troubleshooting/debugging _.and to,
examine how new approaches to formal instruction might influence the
attainment of competence by students. In particplar, the research
focused on tne role of general strategies in troubleshooting/debugging
and now they might be represented and taught-explicitly and directly in
order to avoid tne cost and other dra;ibacks of learning indirectly by
observatior and practice.

Related work on troubleshootingtdebuggirig was examined and in
conjunet.1on with a logical analysis contributed to a characterization
trouolesnooting/debugging problems and problem-Solvin% processes that
emphasizes tneir generality Cross a number of technical fields- ansi
infor=a1 contexts. The analysis also suggests that debugging is a'

t. fundamental aspect of almost all learning and problem solving. One
result of tne analysis was the formulation of an information-processing
mode: of a general troubleshooting/debugging strategy, which describes
tne types of reasoning processes needed, some of the factors governing

olt

selection of alternative processes in solving a problem, and an explicit
control strategy.

Extensive examination of a corpus of data from students Learning
computer programming was undertaken, and some further limited debugging
data were collected from both experienced and inexperienced programmers.
These data are consistent with a hypothesis that expert debuggers do not
necessarily nave superior general strategies., but instead that their
expertise derives from specific and sometimes idiosyncratic knowledge
acquired through experience. Inexperienced.pregrAr-ers lack this
knowledge, but in addition some of them have a defective general
strategy as well. In an attempt-to obtain a rigorous characterization
of the differences and defects in the debugging strategy of thp-
programming students, an effort was made to apply a model-oriented sdata
analysis method reported in the literature. However, the method was
unsuccessful for the data available and may have more basic limitations.
As a consequence only informal coRclusions about the defective
strategies used by:eqme inexperienced debmggers could be developed: (1)
they are deficient in program testing aril/so fail to find bugs; 12) they
do not-collect or use available data aboui the effects of a bug to
constrain their reasoning; (3) they have a low'threshold for attempting
minor and sometimes irrational repairs; and (4) they do not backtrack
well4ro unsuccessful repair attempts. '

A small-scale study was conducted to determine the effects of
presenting a tutorial text. which explicitly describes a few, general

heuristics designed to correct these strategy deficits. to novice
programmers. The data indicate a morainal increase kn the appai-ent use
of some of the heuristics the prozrammerwho studied the text
compared to a group wno did not. In addition -co rpments elicited from
the students were generally favorable to presentlysproblem-solving
strategies explititly. as,they were in the tutorial. However. the
success'of the groups in solving debugging test Problems did not differ.
There were several methodological limitations and problems encountered
in the study which further confound ehe results. sore general
metnodologLcal issues for studies designed to investigate instruct nn in .

troublesaboting/debugging also became apparent. One of the most
importanV. is analysis of complex problem-solving data: if the causes or
differences in ability are to be specified in detail and if the effects
of direct problem-solving ihstruction are to be .assessed, then it will
o-e necessary to perfect model-based data analysis methods.

'1;)

*id

4.

4

r

Institute

a

1.16 'rt..cre=;.s.; nCrPriZa-2 F-cf?.

TROUBLESHOWINV75.MING

Keftirpn

Yebraary .,97E,

I

f :r Mathematical ..,tudies in the ocial Sciences
Stanford University
Stanford, California

Acknowledgements'

U

We wish to recognize the participation of Diana !gly, Alex
Strong, Mary Dageforde. Roger Cole, and Marian Beard, all of who
contributed to tnfs research in several roles. We thank Drs.*Marshall
Farr and Henri Halff, Personnel El Training Research Programs(Office of
Naval Research, and Dr. Harry O'Neil, Jr., Program Manager, Cybernetics
Tecnnology Office, Defense Advanced Research Projects Agency, for their
support and encouragement throughout the project. ,

This research was sponsored by O'er Contract !00014 -77-C -0124.
Contract Authority No. NR 1)4 -394.

V

I. Introductten

P.

The incriasin dependence of our society on technology is a

phenomenon. Complex:systems continue to perform new functions and

become nore sophisticated. For example, consider their role in modern

commercial aviation. There are of course the modern jet aircraft

incorporating dozens of electrical. elec$tclinic. and mechaniCal syseems.

but tnere are also the networks of radar and communtation systems for

contrcl:ing air traffic and the computerized scheduling and reservation

systems for coordinating flights and access to them by passengers and
4

cargo. it is difficult to imagine how the demands our society no

places on commercial aviation could be isfied without these complex

systems. Such sYstems nav become equally indispensible throughout our

society.

system.

Error or failure is always a threat when relying on a complex

The result might merely be inconvanisnce, as it would if an

airline's reservation system lost track of a passenger's reservation.

fur, it could be disaster, if. for example. an aircraft's radar failed in

flignt rider conditions. of poor visibility. Preventive maintenance #4

repair complex systems is therefore an important concern. One '

response to the problem have been efforts to develop better types of

technical data for both routine maintenance and repair procedures to
4

accompany complex systems (Potter & Thomas, 1976 . A second,

complementary response.,one with Which this report is concerned. is to

provide better training for the people responsible for testing and

repairing complex systems.

If a (ystem does not operate as it should either during testing

9

I 4

or during actual, use-- if the oil pressure warning light comes on in an

airc.raft, if grOund radar incorrectly indicates the position:of

aircraft, or if *_he reservation system,allows two passengers on the same

flight "to be assigned to seat lUA--, then a hdMan technician anus*_ be

summoned to solve the problem of locating and correcting the cause of

tne failure. This type of problem solving is riefe'rred to in different

contexts e4 troublesnomting or debugging. The objective of "good-

troyolesnootingidebugging is to locate and correct the cause of failures
4

efficiently, witnout undue cost of materials and time. An electronics

technician does not want to replace several components in a circuit if

ne nas reason to believe that only one of then is *faulted and that he

can Identlfy and replace just that one in a reasonable amount of time.

'Similarly, a computer programmer faced with a program tnat generates

Incorrect results wants to make a relatively limited correction, one

tnat does not entail recoding parts of the program that perforl their

'function adequately.

Expert troubleshooters, those technicians (or technical

consuitants).who make difficult repair problems seem easy and

-

impossible- ones only difficult, have always been highly valued and are

often Tegarded as artists, since th41.r expertise is.so poorly

understood. Demand for their services can only grow as complex

technology spreads. However, advancing technologies have introduced

4
features such as built-in test systems, modular system organization, and

miniat risatiori that 'make efficient troubleshooting of routine types of

failures in even the most complex systems possible for technicians with

2
A

more limited skill. Unfortunately,'many newly trained technicians have

difficulty even with routine problems' and become competent only after 4

14

they have had considerable field experience. Thus, maintenance costs

are hign and, in settings where there is a high -rate of personnel

turnover, there tends4to be a chronic shortage of competent technicians.

The research described in-this report investigated the bases for

competence and expertise in troubleshooting, as seen in the context of

computer program debugging. The goal was to identify the types of

knowledge necessary and useful for competent debugging arid to determine

whether new approaches to formal instruction might facilctata the

attainment of competent debugging ability by new programmers.

Troubleshooting/debugging as a general aspect of problem soliiing

Situations that pose a problem of locating and correcting the

cause of a frailure are not limited. to electronics, mechanics, and

computer programming and do not necessarily incltde complex technology.

In some contexts, the parallels are straightforward enough to have,

extended the common usage of the terms" "troubleshooting' and

`deougging". Management consultants are often called troubleshooters.

ing tne methods of operations research, they locate causes of

inefficiency in an organization.(corporations, agencies, etc.) and

suggest corrections to its structure or procedures. The scope of these

repairs is constrained by cost much as are those a technician can make

in order to bring adeyide up to specifications.

Less obviously, the behavior of a teacher tutoring .a single

student shares features with that of a troubleshooter. In tutoring. the

teacher asks questions evaluates the student's responses, and provides

explanations in a continuing dialog .(Figure 1). The purpose of some of

his questions is to elicit answers that identify specific inaccuracies

'

1 T: Do yoUthink it'laihs,muah in Oregon?
.

(Case selection: Oregon is-a paradigm case of-a first order
causal model of rainfall.
Diagnosis: ask for a prediction ablt 'particular case.)

2 No

(S's predictfon' f5 wrong)
._i

3 T: Why do 'you think it doesn t rain much in Oregon?

(Diagnosis: ask for&ny factors!)
.-

.

.

4 5: I'm not exactly sure - just, hypothegizing - it. seems to Methat
the surrounding states have rather dry climate, but I really don't
know anything about, the geography of,Oregon., ' ,

(S's error' is due to a proximity inference; S has no
knowled* of relevant factors) .

5j T: It does'' in fact, rain a lot in Ocegon. Can you guess what
catises the raifl there? /1\

.4(\
(Correction; inform stuaent.
Diagnosis: ask for prior factors!)

6 Si Well, let me see - I have a feeling that there is a mountain
range nearby and the, ocean i.e. Pacific, I tbinkprobably borders

if Oregon, somewhat?

(S names "2 factors," but does, not mention their relationship
to rainfall.)

7 T: Yes the Pacific borders Oregon w do you think Ft is involved
in the -12eaVy raihfallfrthere? 0

(Diagnosis: T selects prior factor; holds other factor;
Rile: ask for intermediate factors.)

8 S: I haven't ieally 'got any idea -.well not quite true; I would
only be guessing. Does the air (moist air) from the ocean somehow get
blown over Oregon- and encounter a blogrk of some.solt which causes it
to rise 'and codl?

2--

(S is missing three steps that are-in T's-model: 1. why the
air is moist, 2. why it is blown over Oregon,,, 3. why
cooling results .in rain)

Figure 1. Ann:.tated dialog between a'aumr.tutor and student.
From Stevens and Collins, 1977.

12

e

it

4
le

or oazissions in the student's knowled e.. Once these errors are

detected; the tutor may provide explanations which he believes will,4

correct them. '41ternatively, as. in the Socratic tutoring method, he may

ask further questions designed to prompt t6e--student to reason about

other knowledge he hasnd thereby to correct himself., (See Collins,

1976, for an.arialysis of Socratic tutoring.) The tutor is thus debugging

thestddeilt's syitem%of knowledge (Stevens and Collins; 1977).

. . .

TroubleshootIngidebuggineprdbfems also occur in a

range of everyday contexts. Most cotimonlyitpeople ar with balky

cars or household appliances, and attempt some limited troubleshooting

to avoid the expense and inconvenience of calling.a repairman or at
414

%least to enable them to give him a good description of the problem-if

forced to call him. People also engage, in informal debugging i'fb(\

'developing instructions'. For instance, if someone 'gets lost following

directions you gave them forgetting to year house, then you engage itf

debugging when you determine which step of your instructions were wrong

.or were executed incorrectly. If the 'instructions are lengthy, then it

can be effort to check them stepbystep from the beginning against a

mental image of a'map or of'the route you intended. Thus, to be more

efficient, you might consider the locatnn from which your friend'called

`you when he found himself lost and its proximity to points along the

intended route. The analysis serves to limit the section_of your

instructions y
ro

-eed to examine for the errorALThis type ofj-pasoning

behavior resembles that of a computer programmer,irhO uses the.

characteristida of a ifrogram's erroneous output= to suggest where he

should start tracing program code. Other informal situations that

l'tegnire debugginglike problem solving range.from developing a new
4

13

OW-

(Figure 3 continued)

DEBUG -4 cEDIAGNosEi EREpAIRD*

DIAGNOSE -> CASE I TRACE 'arrive)*

1.

TRACE -> [SELF-DOC*] + RUN*

SELF-DOC -> ADD-PAUSE 1 ADD-PRINT 1 ADD-TRACE

ASK -> "print definition' 1 'printvalue")'print filen

REPAIR -> (RUN I EDIT 1 SOLVE)*

ADD-PAUSE -> ADD

ADD-PRINT -> ADD

ADD-TRACE -> ADD

EDIT -> ADD 1 DELETE 1 CHANGE

RUN -> 'run statement of code' + 'response' [DEBUG]

ADD -> 'add statement of code' + 'response" + [DEBUG]

DELETE -> 'dQlet -e statement of code' +,'itsponse + [DEBUG]

CHANGE . -> 'change statement of code' + "response' +[DilitiG]

"29
21

a

13

like learnineto,ride a biCycle: you watch someone else and then,climb

on and try yourself. When you fall, you "try to figUre out why', and

perhaps receive advice from a proficient bicyclist, such as "iook at.the

horizon, not the front wheel!" High motivation is required to learn

troubleshooting/debugging in this ways since the frustrations one

'encounters arw psychological analogies to skinned elbow:Er:and knees. The

instructor's method of facilitating the process is largely- empirical; he

tries to identify the examples and exercises that result in better

student performance on test exercises.

,94-

The i%irect approach to teaching troubleshooting/debugging does

work satisfactorily for some students: after all, it iscthe way inwhich

existing competent troubleshdoters acquired their skill.' Other students

having "fallen of the bicycle" more times than they can bear (or the

educational system will allow) become drop-outs. In general however,

the indirect_ method is'leas successful for teaching problem solving in

'. technical, than in other subjects The factor involved is the cost of* o

resources required to generate examples And to allow'students to work on

exercises. In mathematics or subjects based on mathematics, most

problems can be solved with paper-and-pencil and the osl'yi demands are on

the instructor's imagination and energy and the.student's time.

Troubleshooting problems (and also design problems in engineering)

require relources like, equipment and space, which are Scarce commodities
,

in most educational settings. Since the cost of,these resources varies 1

directly with the.amount 2f time used and number of errors wade by

students, there is an inherent pressure to limit student experience to a

minimal number of simple, and less than realisticolprobrems. The

limitations are .most critical for students-having difficulty, .who fail

t.

to' have experiences sufficient for learning the required knowledge and

so either dropout or, fail. Even better students, however, may not get

enough experience Co-become pufficiently competent by'the time they

finish formlinstrantion. Thus, new must.

typically undergo a period of on-the7job training, which is expensive

-both becadSe their produativity is low and because it requires, the

involvement of experienced-technicians.

A more direct approach to teaching troubleshooting/debugging

One apps: h to g, formal instruction in

troubleshooting/debugging is to reduce the costs of thd indirect method

associated with providingeamples to students and with operating and.

supervising student problem-solving laboratories (Finch, 1971).

However, there is an' pparent paradox in the indirect method that could

indicate a need for a substantially different approach to instruction,

for some students. The paradox is that the learning by example and

trial-and-error experience required by the indirect method*may actually

presuppose the very probrem:solving strategies the student is attempting

to learn,(recall the analogy of ettoring'as "debugging the student").

In effect, learning by the indirect approach requires the student to

debug his strategy for how to cebig.,

Since people do leain to debug by-Observation and practice, no

real paradox exists., Aptly, sbghisticated strategies must evolve by

boOtstrapping from a primltive learning mechanism, which we is

effective, though thanthan optimal, for Inductive learning' in simple

-
1
For scientific profesiionals, the latte

education involve research experience tb'at servAs a
developing problem- solving skills.

8

ars of grAduate
lar function for

contexts. Siudenta in technical disciplines brink to the classroom

debugging strategies.Of varying effectiveness Which they have induced by

monitoring their attemptsto solve the types of informal everyday

'troublesftting/debUgging problems we rentioned earlier. Some of them

-may alreadih}ave -eff tilig general strategies and only haye to learn how
. .

to apply them fn-a new problem domain.. The indirect methpd works for

them because their debugging strategies help them to learn efficiently

from their experiences; they are proficient at, debugging their own
t

knowledge. However, those students with 4:effective and indfficient

initiii strategies encounter a bootstrapping problem because efficient

learning by tnductiOn presupposes some of the same strategies as

debtigging. Therefore; another approach to instruction in

troubleshooting/debugging, which would be most advantageous to students

of lower initial ability, is to try tb teach more directly and
.4 expJ4 itiy the'gdneral strategies that students' develop'When they

understand exampled -..and try to solve mblems themselves. Such

instruction could help itudenta £ acquire an effective strategy for
$,

troubleshooting/debugging more rapidly and improve their general
4

capability to learn by the indirect method to troubleshoot in a

particular domain.
4.4,

The are two aspects to developing an alternative, more direct

40proach for teaching troubleshooting/debugging. First, the strategies

that students learn by observing competent.problem solvers and by' t

solving practice probleMS must be identified and articulated;(1. e.f

represented). .Second, a suitable peiagogy must beltotmulated. These

SOLe
goals are not -necessarily independent, since pedagogical decisions can _

V'
-

depend oh the way the knowledge is'tepresented and conversely, choices

;
4among alternative representations can depend on features of preferred or

available teaching,metbods.

In the remaining sections of this report, we wiy.discuss the

z

2-4

ideas' of others and ourselves about the' nature of the

troubleshooting/debugging process. We will describp our obiervations of

computer programFdebugging behavior which bear uponthese conceptionif

and which also suggest the knowledge deficits that cause some
--

inexperienced programmers to have difficsaty with even simple debugging.

problems. We will conclude by presenting the results of astudy

designed tdinvestigate whether such deficits might be corrected by

direct instruction. A
O

10 . 18

O

fr

II. Understanding the troubleshooting/debugging process

Difficulties in studying troubleshooting/debugging

a
One reason that troubleshooting/debugging (and ottrer types of

complex profile solving) are_taught indirectly is that it is difficult

Co gather the data needed to develop an empirically-based understanding
4

9f the problem-solving kocess. There are problems of observing a range

of episodes and of the 'observer not interfering with the

troubleshooter's behavior. 'Simple problems nay be solved in minutes

during a single "sitting","-while complex problerA may be solved over

days or even weeks (e.g., the debugging problems faced by system

programmers on large computer systems). Thus, it is much more difficult

to observe theSolutions to problems at the more difficult, end of the4

spectrum. In any episode, there is the problem of observing the

troubleshooter without causing him to depart from his normal procedures.

A general limitation in studying troubleshooting episodes is

that.much of the troubleshooter's time is spent in periods of thinking,

during which there is nor overt behavior to observe. Typically, it is

difficult to infer what t'he problem solver is Chinking from the behavior

I
ooserved prior and subsequent to these quiet..neriods. Post hoc reports

(e.g.,"Terl me how you solved that problem") tend to be edited and

incomplete, appearfng as idealized accounts which frequently conflict

with observed behavioral data. More general self-reports ("Tell me how '

you troUbleshoot") may also be contradictory and incomplete. Therliis a'
4

truism that being an expert at doing something does not necessarily

itply being able to intr9spec; on how one'does it.

19

.w t.
.

1
, .

Tioubleshooting/debuggin to be, an activity for which is. not easy
, .

for most experts to deicribel their reasoning in either particular or

general-teri. Thelfictitikus dialog in Figure 2 caricatures ihls

Inabiliy.

, I There has also been a difficulty in analyzing d organizing the7,

behavioral data and self-reports that'can be obtained. Prior to the

.devtLopment of information-proceiiing and cybernetics there was no

adequate formalism for describing processes-- i.e., to represent

procedural knowledge-= and thus for interpreting an-d integratin sets of

observations in order to develop and, test hypotheses relating

knowledge used.by troubleshooters solvers and-differences in

leshooring episodes. While natural language has been used to

Egtrilient propositional knowiedge from the earliest times, it is a Poor

medium for expressing complex procedural knowledge. To convince

yourself of this consider the typical comprehensibility of the assebbly

and operating instructions for various devices. Usually', one remains-r

uncertain of his understanding until the device works (i.e., the

instructions are Understandable only if you already know the process).

One apparent weakness of natural langyage for describing proiesses is

its awkwardness and ambiguity foi expressing complex conditional

relationships betwein events. More generally, i6 natural language much

of The knowledge being transmitted by the sender is implicit and must be

inferred by the receiver. The demands for decoding the implicit

knowledge Jiy be more severe for procedural than for propositional

knowledge. (Try to generate a sufficient description of how to drive a

e/
car that you can' feel confident will be understood without questions by-

.,

soieone who has never driven one.) The limitations of natur4 language

12,

'20

J

$

t

4,

0 "How did you know the trouble .was
in the ,Switch?"

E. ("Because it worked intermittently
s.lwhen I jiggled the switch.

0 .'"Well-- coulanif it jiggle the e.

tI

0. "How do' yo1.1 + +know@' all that ?"

fE "It's 41-obv-iousQ. "

E

"Well then, why didn't I see it."

"You ,have to h some familiarity.

"Then iVes ++note obvious: is

Figure 2. Fictional dialog between an expert' troubleshooter {EY and
an observer (0) caricaturing the expert's difficulty 'in
articulating the source of his expertise. Pr= Zen and_.
the Ait ,of Motorcycle Maintenance, p. 135 -(Pixsig zir).

1

I

213

mar be partly responsible for the difficulties that problem- solders seem

to have introspecting: besidesqihtir difficulties in realizing how they

troubleshoot, they may not be able to articulate what they are aware of.

ThUk understanding of the troubleshooting/debugging process has

been hampered Jsoth by difficulties in makingdpomplete, valid.

observations and in systematically

obtained.

Nnformation-processing models

.44.1ver the past twenty years researchera.i,itinfo on-processing

psychology concerned with understanding intelligeat human behavAor and

interpreting the data that can be

44-

-those in artificial intelligence (Al) interested In developing

"intelligent" computer systems have developed new formalisms for

-representing knowledge. Semantic networks Ouillian, 1969; uds,

1975), production systems (Newell, 1975), proceduial networks (Brown,

Burton, Hausmann, Goldstein, Huggins; 6 Hiller, 1977y5gCerdoti,:1975).

logical calculi (Nilsson, 1-971), and process grammars (Hiller 6

1 Goldstein, 1976e; Woods 19711) -are the new "languages" used to represent

the declarative and procedural knowledge underlying

in a range of tasks. :Riese formalisms have enabled

intelligent behavior

the development of

sufficient ("strong ") computational models ,for certain yell- structured

problem domains, such as logical prooE, games, and plizles. There are

now computer,programs 'that cagosolve such problems as sell or better

than most human problem solvers. Strong computational models have also
C>

been used to simulate huian
problem-solving behavior,cincluding iti

1 r.
variability and errors, in an analysis-bpssmthesisaproach to

interpreting behavioral and introspective data'(Newell & Simon, 1972).

14 22

Beyond their application in automateb problem solvers, the

knowledge 'repreientations that have been developed provide a framework

for analyzing Observations and for articulating partial model of less

veil understood types of problem salving like troubleshooAng/debtigging.

That is, even if pit is not yet possible tot write a general program to

troubleshoot faults in circuits or one to debug other programs, it may

be possible represent the top-level organization such a program would

need and some of its more specific data-structures and procedures. Such

"weak" models are a basis for directing attention to aspects of the

process-that are noeyet understood and-their logical relationships to

those that are and for interpreting new data in order to expand our

understanding.

P '
Over the pest several pars, psychologisti and computer

scientists working the the field Of'Al at MIT have conducted research on

information-processing models of proeramming and debugging. As a

consequence of their work they have come to adopt a view that debugging

is a fundamehtal aspect of most, if not all, c4plexLhuman learning and

oblem solving (Goldstein, 1975; Miller & Goldstein(1976a; Papert,

1971; Ruth, 1974; Sussman, 1973). The position is based on their

informal' analyses of human programming behavior and on their attempts to

develop "intelligent" programs for writing programs and for solving

other types of problehs. People learning to program and even.

experienced programmers designing programs knowingly code and attAupt to

execute programs that are inadequate. They may be unsure about the

effects of a particular contruct or ofthe-interactiori of familiar

constructs in combination. When the-program fails, by reasoning from

the way it failed they can modify it to'function.correctly. As a simple

example, a statistical program may invoiVe printing a table with a

complicated format that depends on the parameters. of the data to-beI
analyzed. The programmer writing, the program may Ilve difficulty

calculating the format parameters-needed to align the headings and

. entries in the table. He may therefore proCeed by estimating the'format

and, then executing the program. The-errors he observes enable him to

modify his original estimates to produce a correct format.

This notion ofthe generality of debugging goes beyond.our
.

earlier comments about .the range of situatlions in which debugging-like

behavior is required; it says more strongly that problem solvers

consciously. create debugging problems for themselves as part Of a,

general planning strategy. :Debeggfng
c
is seen ana natural complement to

design in the process of planning and implementink a program. Either'.:

because it is more efficient or because human information-processing

capabilities (e.g., im "working memory") limit the complexity of the

design process, programmers implement programs with 1p expectation that

they will have to debug them-- i.e., debugging is not necessarily an

afterthought forced on programmere.

,.c.

There is an
4
alternative view of debugging that it is a

regrettable outcome of poor design and that programmers can and should

strive to eliminate all debugging through rigorous dWsign.e This4

position is popular among advocates of "structured programming" (Dahl,.

Dijkstra, Es Hoare, 1972). ,We disagree with this vitilpoint.

rigorous .nitial top-down program design is certainly desirable, it is

unbeakistic!zo demand and expect flawless design, for complex, innovative

programs. Our own informal observations of skillgul professional

programmers indicate that despite conscientious efforts at top-down

16

24

design, they inevitably start implementing and test.ingjnograms befoie

the'design is complete. Ieseems that there,are too many complex

inter relationships in most prograts and that they can be understood and

implemented more easily by debugging than by abatfimt logical analysls.

From the programmer's perspective, there is a strategic tradeoff between

the 'costs of destgn and debugging such that it is most efficient to

integrate the two so as to minimize the the maXimum complexity at any

point.

From their studies of programming, the researchers -sat MIT, have

generalized the constructive role of debugging in learning and problem

solving using the following logic. A computer program is a

representation of a plan, a sequence of legal" operations id -an

environment that when executed will accomplish a goal (i.e., solve a

problem). For example, a sorting program is a plan for accomplishing

the goal of arranging a list of values in a desired order from an

arbitrary initial order. However, writing and executing a program is

only one way of expressing-and following a plan. Plans were developed

omatexecuted by people to solve problemi long before. computers existed

and have been'embodied as mechanical and electromechanical. systems.

-Programs are just a general way of representing plans. That is.why

.

=programs dm be used totsimulate some of the behavibr of people and of

median cal and electronic systems.

Plans then, like programs, may also firs[124-foiaulatec with

some ignorance of whethdr partVular actions will be effqctive. If

ex ution of the-plan proves it Inadequate and'if the pIawis xo be used

again", then the informatiom obtained-frokthe failure can be applied to

modify the plan.' However, even if the plan was fo'r a unique'problem and
.

.

AL

will never be used again, debugging the plan is useful. In designing

new plans, parts of old plans for somewhat related problems may be used

and so a "library" of correct plans can help the problem solver.

Furthermore, one can -se that there must be "plans kor planning"--
,

general strategies foralaking design and debugging decisions in pladhing
111

solutions toparticular problems (e.g., whether to synthesize part. of a

design or borrow it from a design in one's plan library). ?fan failures
4

provide feedback that can be used to debug not only th'e tialtynian, but

also the strategy used to design it in the first place.

Sussman (1973) developed many of these ideas about planning and'

debugging in the course of formulating a computational model called

HACKER, a program that solves problems in the paradigmatic

"blocks-world" domain. 1Given a. problem o rearranging some of the

blocks on a table,HACKER in its naive starting state designs a solution

of simple actions_(pick up, put on). sepending on the problem; its

initial solution may succeed or fail (where failure is defined by ao'tion

sequences that are redundant or impOssible in the blocks world). In

case of failure, HAiKER works to debug the plan (not'always

successfully). It also stores information about correct plans and about

bugs that it-can use in designing solutions forsubsequent problems.
2

Hark Miller and Ira Goldstein at MIT Miller & Goldstein, 1976a)

have attempte4 r6 formaliie the relationship between design and

debugging in problem solving using what they call plaring gram*,
V

which are representations of design and debugging strategies. Employing

both context-freegrammars and augmented transition nettoirks (jTN)

.
,

4
..2

Seg Sacerdoti (1975) for an alternativg view that correct plans
can be implemented in incremental stages of design and executi n.without '

.debugging.,

. 18

26

(Woods, 1970), they have written systems of rules that.,describe the

process of creatingtand executing LOGO grajics programs (Figure 3).
.

.

'hey have proposed that pltnning- gramma -fs can serve two functions:

(1), intepreting and comparing the behavior of different programmer's and

(2) developing "ihtellig(vt" syetems for assisting programmers in

designing and debugging .their programs. They.have explored the second

use in their SPADE systenf (Miller & Goldstein, 1916b), which records a

vrogrammer'sdplanning decisions with respect to a planning grammar. The

record,is used to advise the programmer of confliCts and omissions in

the structure of the program and of his options any point in the

planning process (Figure 4).

A general characterization of troubleshooting/debugging-problems

Our examination of research on troubleshooting/debugging has led

us to formulate a characterization of troubleshooting and debugging

general to -a range of problem domains.

We define troubreahootingfdebugging as a type of problem solving

focused on either an abstrace.plan or a procedural system. A procedural
C

system is a physical entity that embodies a plan and can execute it.to

accomplish its goal. A characteristic of plans and procedural system

-is that they can be represented as hierarchies of functional subpart

each subpart having a specific role in achievement of the overall4.

For instance,'a plan for building a table includes subplots for

obtaining a design, obtaining materials, assembling the wood and

hardware, and finishing the assembled table _Each Of these subplans

consists of smaller subplans. The plan for obtaining materials might

includg:subplans for borrowing a track, sel ing a ltiMber supplier,

4.

.1%

P1: SOLVE' -> PLAN + (DEBUG]

P2: PLAN -> IDERTIFY 1 DECOMPOSE 1 REFORMULATE

P3:'-/DEfiTIFT -) PRIMITIVE 1 DEFINED

P4: DEFINED -> USE-CODE. kGET-FILE

P5: DECOMPOSE -> CONJUNCTION 1 REPETITION'

P6: CONJUNCTION -> LINEAR 1 NONLINEAR.

P7: LINEAR -> SET _j SEQ

F8: 'SEQ .-> [SETUP] + <MAINSTEr4+AINTERFACED* + [CLEANUP]

P9: SET -> (STEW

PIO: SETUP -> STEP
s

P11:' MAINSTEP -> STEP

P120.YINTERFACE .-> STEP

PIS: CLEANUP -) STEP

P14: STEP. -> ADD 1 SOLVE

P15.: REPETITION -> ROUND 1 RECURSION

P16: ROUND -> ITER-PLAN 1 TAIL-RECUR

P17: ing-PLAN -> 'repeat -step" + 'SEQ

P18:'3AIL-RECUR -> STOP-STEP + SEQ + REC -STEP

pf9: Rfit-STEP -> 'recursive program call*

P20: 4TOP-STEP -> 'stop program tall'

Figure 3. Hiner and Goldstein's (1976b) content -free grammars'
for planning and debugging progiams. 41-

20

28

I

L

-

0.

6

(Figure 3 continued)*
Mipb

DEBUG -4 [DIAGNOSE] + [REPAIR] >2

DIAGNOSE -> (AST I TRACE 1 merror'>*.

TRACE -> [SELF-DOC*] + RUN*

SELF-DOC -> ADD -PAUSE 1 ADD-PRINT 1 ADD-TRACE

ASK -> 'print definition' 1 '.print value' ['print Meg ...

REPAIR -> (RUN 1 EDIT 1 SOLVE >2

ADD-PAUSE -> ADD

ADD-PRINT -> ADD

ADD-TRACE -> ADD
sIO

EDIT -> ADD 1 DELETE j CHANGE

RUN -> 'run statement of code' + 'response' [DEBUG]

ADD -> 'add statement of code' + "response' + [DEBUG)

)DELETE -> "delete Statement of code' +, response' + [DEBUG]

d
CHANGE -> 'change statement of Code' + "response + [DEBUG]

'29
21

SPADE-0 Scenario (part a)

The prelimina4i ver ilon of SPADE is little more than a bookkeeper for the
user's subgoals.. It is:cdrr'ently_being implemented by assigning an interpretive
procedure to each gramnatigalprivative.

la, What is the nave of your.top level procedure?
lb: >WW k ,

/An. Rule for WW is: SOLVE--> PLAN +IDEBUD].

Rule for WW-I is: PLAN -> IDENTIFY DECOMPOSE [REFORMULATE.
What neW?,

Zb. >DECOMPOSE

3a.-, Rule for WW-4fis LINEAR -> SEQUENTIAL j SET.
What now?'

3b. >SEQUENTIAL

4a. Rule forWW-5 is: SEQ -> [SETUP] + (NMW+ [INTERFACE]>* + [CLEANUP]
Do you Wish to include the optional constituent SETUP?

4b. >No
- .

5a. How man4occurreficis of (MAIN + NIERFACEI>lo you want?

, , ,.

5b. >3

6a. Do you wish to include the optional constituent CLEANUP?

6b. >LATER

LATER'is a command un

terminate this path, buf
conAnctive goals; nadir

records the informatio

clod by SPADE. It means that the usermants to
hat t mast berecopmexced later. SPADE keeps track of
ng th'e user of the pending gaol List if asked. item it
qired to return to, and eventually compere, the

aPPLivatiO4 of the;SEQ.rule. It can then go.on to other goats.

S

Figure 4. Dial with pisSgrararerli assistant based on the grammar
shqwn in Figure I;:-.171mzi44Iler and Goldstein: 1976b.

A

f

22

30

4

(Figure it continued)

SPADE-0 Scenario1nart b)

7a. Your pending, goals are ... and WELL. .What NOW?
7b. >POLE

SPADE applies the SOLVE rule recursively.

8a. Rule for. POLE Is: SOLVE -> PLAN + [DEBUG]

Rtile for.POLE-1 is: IDENTIFY j DECOMPOSE REFORMULATE.
What now?

8b. >IDENTIFY

9a. Rule for POLE-2 is: IDENTIFY -> PRIMITAVE I DEFINED..
What now?

9b. >PRIMITIVE
t

10a. Rule for POLE-3 is: PRIMIT1VE,7> VECTOR ',ROTATION I PENSTATE
What now?

'Ob. >VECTOR .

>FORWARD 100

lla. POLE Completed. Pending goals re: ROOF, WELL, and tai -17 (CLEANUP of
WW).- What now? -'

Ilb. >WELL ,/
4.1

*

iZa. Rule-for WELL-1 Cs: PLAN -> IDENTIFY t DECOMPOSE REFORMULATE.
What now? -

)?b. >DECOMPOSE r.
Here we have substituted agrammiarihich contains rates for conjunction but not
repetition. This. allows us to illustrate the menner,in which SPADE avoids

interrogating the user when no actual decision is required.

34. Rule for WELL-4 is: rkCOnPOSE -> CONJUNCTION.

(Forced.)

Rule for. WELL -5 is: CONJUNCTION -> LINEAR I NONLINEAR
What now?

4

CS

23

selecting a 'hardware supplier, anegetiedulingothe trip to make the.

purc'hases. As another example, an electronic power supply consists of

/ ArgAsubcircuits such as amplifiers, voleage erTer,lators, etc. In turn, each

of subc rcuit consists of more basic subcircuits, and so on anti' the

leyel1of primitive components-- tra4istors, resistors, diddes, wires,

,etc. Similarly, a computer prograb will typically have subprograms for

input, output, initialization, sorting, etc.')
A

A ferre_of such functionally defined hierarchies is that the

subparts"at each level are independent in that each is a -black box"

from the viewpoint ,of the others; it doe 't.mattet now each does .what

it dOes, as long as it fulfills its Tale in attaining the overall goal.

For instance, in assembling the table, the details of rhe-subOlaa by

wrath the materials were obtained are irrelevant as long as the

materials are all there wnen,theassembly subplan is executed.

Similarly, structdrally ddrierent functionally equivalent voltage

regulator circuitis can be interchanged in a power supply and differ4at

sorting algorithms can be interchanged in a program .3,

The subparts at each level of the functOrnal hierarchy have a

teleological structure. In tab siuplest$ linear structure, the action

of each subpart depends directly on that e other subpart and

affects directly one otter subpart. Of ciurse, the action if a-subpart

can indirectly affect all'ithe subparts subsequent to it, in the'0

3
The relationship between subparts at level of the hierarchy,

can be more compAcated than this, since it is possible for the- to be
functibnally discrete, but still share physical structure. For example,
two subprograms for input and output may share ("call") a
type-conversiorl subprogram at a lower level. This overlap is incidental
in that shared structure can be replaced.by,redundant copies,

. iwortant in that a defect in the shared structure may affect
function ("rail suyerordinate parts.

\

24
32 ,

2

.

interfaces and feedback,paths between subparts. When a subpart, contail

teleologieucture. More complicated struc ures bave multiple

-.0a fault,' then its action will be(incorrect for at least some of4e

possible actions of immediately prior subparts. Its faulty actions may

inhibit. subsequent sub:"ts from operating and terminate the

opera-don of th5entire plan/system4c nay propagate through them-and

distort the actions of the plan/systems.

Troublshcoting/debugging involves reasoning about the actions

of the plan/system and its teleological structure at each level of its

functional hierarchy in order to localize the fault to a minimum number .

ubparts (ideally one) at that level. The actions and structure of
4

the suspect subpa;t() are then used to localize the -fault at the next

ier(rchy, and so on until the cost ofer level of the functio

repairing a subpart(s) is less than the cost of further localization.'

-Expected cost plays several roles in debugging, It not only

detWmines the level at which repair is AttemOted, bt.4also/perves to
kAC-.

order. logically equivalent debugging actions. Cost depends on how the .

structure of the plan/system affects measurements of the actionsf and -

tthe to. repair a particulai subpart. It also is deterlained from

the debugger's idibsyn6ratic experiences. For example, jf a car idles
. ,

evenly, an experienced mechanic may jar the.carburetor in case a piece

of dirt is, lodged in one of the email internal passages before he has

done any tests on the ignition tiMini, spark plugs, or

chcipression which might logically determine that the problem is actually

.a
in thi carburetor. His attempted repair in this case is inexpensive

lenOugh to allow testing of a hypothesis /veloped by indu
1.1 ("uneven

idle has in past' experience been -associated with dirt in the

3

.1

carburetor") rather than by deduction ("the observations-that have been

made logically determine Oat the problem must be.in the carburetor").

As arrillust,ion of how cost thresholds enter into reasoning

of debugging, consider a simple horse troubleshooting problem. Suppose

you wake up during the night and decide to go to, the kitchenfor a

snack. When you move the switch on your beside lamp to -the "ON"

position, the lamp fails to light. Given that you''are motivated to

discover the cause of the failure and, if possible, effect a repair

what would constitute-an effective and efficient tack. If there have

been previous pi-oblems with the lap that you have traced -to an

intermittent short in its switch, you might operate the switch several

time.s in an attempt to "unshort" it temporarily. That.is, you night

identify the symptom and immediately recognize a possible cause that

,
your experience suggests may be more likely -than other possible causes

and that has arc inexpensive (if temporary} repair. If you.1-Lad no such

mason for suspectin the switch, then you must reason, about the circuit

(procedu4I system} that contains the lamp. The lamp circuit has a

simple linear teleolaiy consisting of the external powet supply to the

house, a fuse or circuit breaker,,theiwall outlet, the lamp plug and

cord, die lamp switch, the light bulb, and several intervening sections

of wiring. The light bulb will not light (the initial symptom you

observed), if there is a fault in any of the components prior to it.

One aspect of an effective general troubleshooting/debugging

strategy is to make observation's that, gliftn the structure of the
411,

system, are 'ogically sufficient to exclude or Include subparts from a

location hypothesis; which is simply a description of whete_the fault

could possibly be located in the system. lbeactions*of any,subpart in

26 _34

a linear teleological structure can serve to-refine the hypothesis in

one of two ways. If the actions are normal at point A, then the fault

must be in a subpart subsequent to that point; if the actions are

abnormal at A, then the fault must be in a prior subpart% Thus, if all

"subparts can be observed with equal cost and if the debugger has ao

special knowledge relating the observations he can make to the

likelihood of possible faults (e.g., the lamp switch has an intermlt,ent

short, bulbs fail 5 tines as often as fuses, etc), then an optimal

strategy is to make observations that will repeatedly halve pn scope of
'-

the location hypothesis until the fault is isolated to a siefigle subpart;, \ ,.

.

this minimizesthe expected number' of observations, that are required to

localize to a single subpart. Thus,.in our example, because the wall

outlet is near the middle of the lamp'circuit,the first observation

would be to see if the lamp is plugged in and, 4 so, whether another

electrical device connected to the same outlet operatei correctly:

Suppose'that the lamp proves to be plugged in and furthermore

that an electric clock is plugged in.af the same wall outlet so that you

can easil (without gttting out of bed) observe.whether it is still

operating. If it is, then the fault can not be in the house power

supply, the case, or any of the Connecting wires prior to the wall

.outlet. If the clock is not working, then the fault is in one'of those

subsystems (barring two independent failures in the lamp and clock).

Let's assume the Clock also is not working. Breaks in hiise.wiriag are

ordinarily uncommon, and so it is most likely that either the power

supply, has failed or the fuse has blown. Since the fuse box is in the

basement, it is "costly" to check, relative to looking out your window

to see if the street lights are still working: If those lighte are off,

3527

C

then the power has failed.. If they are on, then you can replace the

fuse;)If that doesn't solve the problem, then get your snack, go back

to sleep, and call an electrician in the morning, because the problem is

in the internal wiring of the house.P

This is an efficient way to isolate the fault, though given

slight changes in the situation other solutions might become better.

For instance, if your bed is next to a window, thg the easiest

observation to start with (betntg,aooking at your clock) might be to

look out at the street lights. Of course, if they are on, then you know

only that the power supply is intact --only one subsystem has been

eliminated compared to the three or four eliminated by checking-the

clock whether it is working or not,.The strategy for making

observations seems general in itself, but inthis episode requires

knowledge of the lamp circuit and is affected by idiosyncratic knowledge

and by-parameters of the situation that determine the costs of making

(observations and
ir
repairS. '-

/ /

Representing a'aterategy for troubleshooting /debugging
-`7

In order to understand more precise dhow different types of

knowledge are used in troubleshopting2debug ng, we developed arf

infa46ationtprocessing'model for a general debuggibg strategy, like the

one illustrated in the above example. The model is-general in the sense

that it is intended to descrt5e the overall sttucture of successful.

debugging episodes by differenflidividuals foi different prob.1468 in a

range of subject domains. Variations in the.seructure of any episode

are due to characteristics of
domains and problems 'and differenCeS in

the domain- specific knowledge of individuals. _The model identifies.-the

28

1.

points at which theie factors produce variktimna in problem-solving

behavior. It is a very "weak" model in that is far from a sufficient

computational model of troubleshoOting/debugging.in any domain.
"to

Hover, it is intended to be a logically sufficient description of a

top-level organizational structure for a strong model. Our model draws

loon prior research on debugging mentioned earlier, particulatly the

planning grammars of Miller and Goldstein (1976a, b)

The model is a representation of proceduril knowledge and we

have chosen to express it here as a type of procedural network (Figure

5). We considered, but dismissed, the possibility of using a preduction

system formalism to represent the model. The primary factor in this

decision.-was that production systems hide the control structure of a

procedure by distributing it across the individual productions., A

second factor was that production systems incorporate semantic tests at

every point.in the control structure-- they presuppose that all

procedures are invoked conditionally-- while we found that we wanted to

identify both condititnal and unconditional calling relationshipsy/ The

procedural network overcomes both of these difficuj.ties., First,

explicitly represents the overall control structure of the model.

Second, by annotating the connections between procedures,,conditional

and unconditional flow of control are conveniently distinguished. An

ATN formalism also has'a natural way of distinguishing conditiorial and

unconditional paths of control. but we found it somewhat less heuristic

for communicating' the entire top-down structure of :the model. We want

to emphasize that the model could have been represented as a production

system, but with rg of ciency and comprehensibility.

The.notation n'Figure.5 requires some explanation. Each node

29 37

MAKEBEST
OBSERVATION

MODIFY ACTION
DESCRIPTION

L

RECOGNIZE
BUG .

4
Figure 5. Procedural netvdik for.tbe structure of

a general strategy for troublespootibedebugging.

DEBUG'

a-
2 3

MODWY
LOCAT ION

HYPOTHESIS

rCom...rINMIBMIIIMIM

-30

8

V t.

inthe'procedurS1 network is the name of a procedilte defined by its

function. An arrow from one node to another indicates that the

procedure at the tail calls, or passes con 1 down to, the procedure at

the head. If a node has more. than one arrow emanating from it, the

calls from it are alwai made in the order denoted by the i;ategers,

labeling the arrows. Snlid,arrows represent unconditional calls, while

dashed arrows are calls made only if some semantic tests are first'

satisfied. Each dashed arrow is labeled with'a letter.' Table 1

summarizes the semantic tests foi each of these labeled dashed arrows in

Figure 5 and kists the global register's and data structures used by the

model.
4

In tracing floW of control in the network, the following

convention is in force: when a procedure finishes (when all its

subordinate proced res finish) it passes control back up'to the

superordinate procedure that called it; that superordinate procedure,

then calls its next subordinate procedure,(if any).

Since a general strategy for tropbleshooting/debugging is a plan

for solving problems, its representation as a procedural network can be

viewed in the same way as the plans and procedural systems the strategy

can be applied to. That is, the levels of the network are levels of the

strategy's functional hierarchy. The hierarchy 'is incomplete in that it

does not extend down to the primitive procedures needed tosolve

problems in any specific domAin. The telegogical structure of the

hierarchy is complex (not linear) and la represented in part by'the

ordering on arrows emanating down from a node. A second part' of the

MII
4
Since' much of the communication amon4kprocedur,a is by global

structures, the recursive procedure calls in 'Mg netwaik in most cases
do not increase the memory demands of the model beyond those that would.
be imposed by iterative calls.

V

31

9

cTele

StE4arY of Global.Data Structures and Registers'

and of Procedure Invocation Semantics of

. the Troubleshooting/Debugging ?Model

Illustrated in Figure 5.

Data structures and registers

ACTION-DESUIPAION : list of propositions describing fine relation between
observed and normal plan/system actions.

LOCATIOff-HYPOTHESIS: description 'of parts oSllan/system where a fault
may possibly exists

ERROR?
: TRUE if no error has been detected or if a repair

had been rivieand not yet tested; FAI4E otherwise.

DELTA -I uniaimionsional value that is a function of the
changes in the ACTICN-DESCRIPTIGN over timp.

* ,

0

: threshold value to which DELTA -I is compared to
judge thetexbected payoff of determining further-
observations,

threshold that deteTrines minimum payoff of
observations made. .

threshold that determines maximum cost of_repairs
made.

Procedure invocation semantics

arc label (frOm Figure 5)

a: --JJ"ERROB? = TRUE .*

-b: there exists at least one observation with an expected payoff
greater than 0.

c: if NAKE-BBST-0261ERVATIT was called.
d: 'if :ERROR? FALSE and DELTA-I
e: if the cosirtfpgmairing the parts denoted. by the total

LOCATIM- is less than R.
f: if the cost of repairing the partAssUmed to'haVe been

recognized qs the location of the ain't is less than, .

32 4Q

*

"....1

'WO

teleological structure is implicit in the semantic tests. for conditional

procedurarcalls. The.tests Involve global registers and datat
, .

structures thettere accessed and modified by procedurla throughout the
.gocar

network. Thus, the invocation of colapUtional procedures and, in fact,

the-actions of both con4itional'and
unconditional procedures-depends-not

only on the actions of the calling proceduri but on any proCeddres-that
is. iv

have previously modifie the registers and data structures. We make.

7--.T.19point to emphasize that while the procedures contained in a -general'
troubleshootinWebugging strategy may seem obvious, the relationships

between them are not and'may therefore cause the greatest difficulty in

understanding and inducing how to apply the strategy by observing it in

action.

? We will now Proceed-to elaborate the Model, describing the
r

callihg semantics and function of- each procedure and indicatiug the

7differeat types of knowledge required and how they become available to
0

the problem'solver.

TEST. rivery time a plan is executed or a system isectiveted

it'is implicitly beihg ested. For instance, whenever you switch on a

ra,

P
rt

light, you are testifivit and,the ciuit of which it is a part. If the

,light failsixo-go on, then debugging is initiated. More clearly, a*

techniAen engaged in routine maintenance codaciously tests a system to.

see It he can gather data which maypedse him to reject the hypothesis
),

that the system is fully operational. Thus, the top-level proce4re in
*

the model Is TEST. The model is.alWeys started at TEST% At the point

.a register ERROR? is FALSE,'indicaeing an assumption that there i no
.

. .

error in the system being tested. This is also reflected by the initial

value'ot,a data structure
AcTIO1pOESCRIPTigH which is NULL. TEST is:% - . . V'_=.-

also calleck
%

by REPAIR.
.5.

33 41

TEST invokes CHARACTERIZE unconditionally. It subsequently

calls DEBUG only if ERROR? is TRUE upon retufn froth C CTERIZE.

CHARACTiRIZE. The function of CHARACTERIZE is to:collect data

that allot? modification ottheACTI0N4DESCRIPTIOli. If itadds a clause

- -

to the'ACTION-DESCRIPTION that describelp-a diectepancy between observed

and,normal actions, then it sets ERROR? to TRUE if it was previously

2
.

FALSE. This corresponds to detecting a bug, during testing.

CHARACTERIZE does its work via three subprocedures,

DETERMINE -OBSERVATIONS, MAKE-BEST-OBSERVATION, and ,

MODIFY - ACTION- DESCRIPTION. The call to MAKE-BEST-OBSERVATION is

conditional on whether there is a potential ob)ervation whose payoff

function of As cost and expected information r) exceeds a minimum

threshold, which we will denote O. This means th an observation is

'-not made if it is toe expensLve or if it is not expected to alter the

ACTipN-DESCRyTION significantly. The initial value of 0 is set 14 TEST,

and depends on the expected coat of a subsequent system failure if a bug.

is not detected and repaired. CHARACTERIZE also may call itself

conditionally, if ERROR? is PAL and,a register DELTA-I, which reflects.

the rate of information change in the ACTiON-DESCRIPTION is above a

threshold I: This means that when CHARACTERIZE' s called by TEST,

'etther initially or after a repair, observations will'be.made aslong as

the ACTION-DESCRIPTION changes by the addition of propoiitions asserting

that observed actidns are normjor by the'deletion of prOpositions

asserting discr ncies noted,preliously between observed and normal

actions. In general, this implies thdt characterization during testing

continues until there aq no more potential obbervetions whose payoff

exceeds O. Ttius, testing does not necessarily continue until the

34 ,

2

debugger is logically certain'the system is error free, but only until,

his confidence leads him to believe that furtber observations have a

higher cost than failure to detect a possible errorlould have.

DETERMINE-OBSERVATIONS. The first procedUre called by

CHARACTERIZE is DETERMINE-OBSERVATIONS,
which identified'a set of

potential observations.' The observations are aetermined with respectto)

the current LOCATION-HYPOTHESIS, a data structure describing a .3t,

subhierarchy of the.planisystem
Which is initialized to the entire

hierarchy and modified subsequently by the procedure

MODIFY-LOCATION-HYPOTHESIS by deduction involving the

ACTION-DES dkIPTION. The LOCATION-HYPOTHESIS represents the part of the -

plan/system to Which a detected bug has been logically isolated or

conversely may be viewed as tie part of the plan/system which is not

known to be bug-fte4-gIVen any prior observatiohs. Each observation
. ,4=

identifiedtby DETERMINE-bBSERVATIbNg has-a potential effect on the

ACTION-DESCRIPTION Ohich can further reduce the extent of the

plan/system denoted by the LOCATION-HYPOTHESIS.

Observations may be experimental,
involving manipulations of

plan /systems parameters (if any). For example, they may requite an

electronics technician to change the external control settings of a

device,pr a programmer to alter the

domains,like management consulting

observations must be "naturalistic.'

the

data input to a, program. In some

, no experiments are possible and

DETERMINE-OBSERVATIONS accesses the debugger's knowledge of the

planisystees,functional hierarchy and its teleological structure in

order to identify points where informative observations can be made. In

some contexts (e.g., electronics troubleshoo
ting), there' ay be external

sources of that information (technical data). Otherwise the hierarchy

\Itust tfe built up from the lowest level using knowledge about pfimitive

subparts andthe laws that ascribe their interrelationships. Knowledge

about higher -order subparts derived in this way-may be stored in memory

in a "library" which may allow the debugger to recognize that subpart if

it appears in subseqtent episodes.

s MAKE -BEST -0B5ERVATION. MAKE-BEST-OBSERVATION is second

procedure called by
4
CHARACTERIZE. As doted in the discussion of

soor CHARACTERIZE, its call is pionditionalllon therebeing at least one

potential observation with an expected payoff exceeding 0.

orMAKE-BEST-OBSERVATION performs Vie observation with the highest payoff

as determined from its cost and its potential'for affecting the

'ACTION-DESCRIPTION. An observation expected to-return a large amount

information may be passed ov* for a less productive one if the latter's

coat is much lower.,

MAKErBEST-OBSERVATION accgises the debugger's knowledge of how

to make observations (e.g.,. use of measurement- equipment) and of their
.

expected cost.- Most knowledge of these' costs is probably acqdired

through experience and' may be

knowledge used to

stored in the sate library,as the

14her- order subparts. TS4 library tay-A

also contain ale knowledi# of- likely outcomes of observationvused to

estimate 'the effect of an Aservation on the ACTION-DESCRIPTION. This
:1PP

latter knowledgesuppl nis...e information about the Oessible outcomes
.

deducedd from knowledge ,of" the functional hierarchy of.the plan/system.

MODIFY -AcTioq -DESCRFTTON. This procedure modifies the

- ACTION-DEkRIPTIOtkaccordingto'he observed actions and is called only

if MAKE-BEST-05SeRVATI vas called. The modification involves adding a

p
36 44

proposition to the description noting either a normal action or a

discrepancy from aAnormal action. In testing subsequent to a repair, it

may also involve deleting or modifying a proposition already in the

description. .Generation of the propoiAtion requires access to knowledge

for deducing the normaltactions of subparts and strustures of subparts.

DEBUG. DEBUG is the controlling procedure once an error has

been detected. It is calledby.TEST if CHARACTERIZE' ias returned with

ERROR? equal'to TRUE. It calls the procedures RECOGNIZE-BUG,

MODIFY- LOCATION- HYPOTHESIS, REPAIR, ClU,TERIZE, and itself. The call

to REPAIR is conditional. Further details about DEBUG will be given

following the description of its subprocedures.

RECOGNIZE-BUG. RECOGNIZE BUG is a powerful procedure in that it

can radically atter the overall strategy of logically localizing a bug

at progressively lower levels of a plan/system's functional hierarchy.

Ic accesses the ACTION-DESCRIPTION and matches it against a knowledge

library of bugs and associated ACTION-DESCRIPTIONS
encountered in past

episodes with identical or similar plan /systems (idiosyncratic
a

experiential knowledge). If a sufficient match is obtained to a known

bug and the cost of repairing that bug is is less than a threshold R,

then RECOGNIZE-BUG immediately calls REPAIR. If the cost of t6g-fepa

is too high to be attempted at that time (R increases as 'a function of

the number of tines DEBUG has been called), then the old

LOCATION-HYPOTHESIS'is saved and a new LOCATION-HYPOTHESIS is set to be

(? the level of the hierarchy at which 'the.. subpart containing the

recognized bug is defined. This has, the effect of focusing subsequent

characterization on a 'tsuspect" subpart. For example, when a mechanic

first examines a car with an uneven idlet- the ACTION-DESCRIPTION is

37 45

"uneven dle" and the initial LaATION-HYPOTHESIS Includes the entire

ignition and fuel systems. If he has knowledge that "uneven Ldle".i

frequently dui to dirt in a carburetor passage, and is familidE with the
, 4,

-trick" of ja ng the dirt loose by striking the cirbaretor on the

outside, then he Bay, immediately try, that repair. If he is not familiar

with that inexpensive repair (or if he is and it doesn't seem tm work)

and is not yet ready to disassemble the carbUretor or use a chemical

cleaner, then he can set the LOCATION-HYPOTHESIS to be "fuel system

that he can make further observations which will indicate whether or not

there is sore problem in the carburetor. If the problem is 14ically

localized to the carburetor, then an appropriate repair will be aide

with the savin3s4of not having made unneceAsary observations to exclude

the ignition system. However, if one of these observations on the fuel

system should mike the LOCATION - HYPOTHESIS logically inconsistent with

the ACTION-DESCRIPTION (as detected by MODIFY-LOCATION-HYPOTHESIS), then

the previous LOCATION-HYP0THESIS must be restored and modified. Thus,

foi example, if furthen observations prove conclusively that there is no

fault in the carburetor; then the LOCATION-HYPOTHESIS containing the

ignition system and entire fuel system is rEttored'and the

problen'- solving process continued from that point.
.

MODIFY-LOCATION-HYPOTHESIS. This procedure accesses the

and using knowledge of the plan/system's teliolo

deduces whether any of the subparts in the LOCATION-HYPOTHESIS logically

can be excluded as candiptes for containing the bug. Thi. is

'illus ted by our earlier example of troubleshooting when your bedside

lamp fails to light. Initially the LOCATION-HYPOTHESIS includes all the

elements of the circuit. When the observation is made that the electric

38 .4 6

clock is still working, the7ACTION-DESCRIPTION becomes "light

inoperable, Orrent available at wall outlet."

MODIF/-1,0CATION-HYPOTHESIS deduces from this that-the fault cannot be in

the external power supply, the fuse, or the intermediate wiring and

modifies the LOCATION- HYPOTHESIS accordingly.

When the LOCATION-HYPOTHESIS is reduced to a.sinkle subpart at a

level of the functional hierarchy, it is reset to contain the subparts

in the level immediately below that subpart. For instance, in

_troubleshooting a circuit, ...11 the LOCATION-4YPOTHESIS is reduced to

"voltage regulator ", it is

corising the immediate s

t to the level of the hierarchy
I

is of the voltage regulator. Thus, the

bug is localised to progressively simpler (and structurally smaller)

partsof the plan/system.

As noted in the discussion of RECOGNIZE-BUG, if

MODIFY-LOCATION-HYPOTHESIS should deduce tbft the ACTION-DESCRIPTION is

inconsistent wiph a bug anywhere in the parts of the plan /system denoted

by the LOCATION-HYPOTHESIS, the6 a prior call to RECOGNIZE-BUG produced

a false recognition and the LOCATION-HYPOTHESIS prior to that call is

restored.

REPAIR. If the cost of repairing (replacing or modifying) the

subpart(s) dented by the LOCATION-HYPOTHESIS is less than the repair

cost threshold R, ,then DEBUG calls REPAIR. REPAIR accesses the

debugger's knowledge how the subpa.t(s) are deliFied and implomented to

function as intended. For an electronics technician this may be

something as basic as bow a transistor is supposed to be connected and

for a programmer how to write a format statement. On the Other band, a

programmer-may rewrite an entire sort .-ng procedure if be determines that

there is a bug in the existing one and bel lies it is 'sore efficient to

rewrite than to try to localize the bu4 f they. REPAIR also accesses

knowledge about specialized "tools",11.ke ldering irons or computer

file editors needed to accomplish repai n different dosains.

REPAIR sets ERROR? to FALSE nd calls TEST. If the'repair

corrects the fault then that TEST will eventually call'STOP,

terminating the problem-solving process. If the repair is incorrect,

the 'call to TEST will eventually invoke DEBUG again.

-Continuing DEBUG. If the cost of calling REPAIR exceeds R, then

DEBUG calls CHARACTERIZE and then itself. Upon the return from

CHARACTERIZE, the ACTION-DESCRIPTION will have been updated if an

observation was made. If one was not, then 'DEBUG modifiet both R and O.

It increases R, so that there Is a chance that REPAIR can becalled even
4

though the LOCATION-HYPOTHESIS cannot change because the

DESCRIPTION-HYPOTHESIS is not modified. It decreases 0, so that if

REPAIR still cannot be called there is a chance that an observation will

be made on the next call to CHARACTERIZE. Thus, when the process gets

stymied, it frees. itself either by making more expensive repairs than
. .

usual or by making observations that are more expensive or less

infotive than usual.

Further conents on the model. The strategy lie have outlined

here is a competence rather than a performancemodel. Deficienzies in.

any of the knowledge required =ay cause it to fail. In ;articular, the

knowledge of each level of the plan/system's functional hieiarchy and

its teleological structure is crucial for modifying the

ACTION-DESCRIPTION And the LOCATION- HYPOTHESIS. Note that it is not

necessary to know the hierarchy from top-to-bottom but instead only down

sas

to the level at which one is willing to pay for a repair. Thus, in

working on a circuit one may understand (from technical data) the

functioning of the voltage regulator with respect to other subbircuita

at that leve of analysis, but not understand the internal structure of

11the voltag regulator. The available knowledge is sufficient for

localizing a fault to the voltage regulator and this may be adequate if

one is witIling to replace that entire subcircuit (knowing that only one

primitive component may have failed).

Tht only explicit error recovery mechanism in the model is for

false recognitions by g£COGNIZE-BUG that cause an inappropriate jump to

a lower level of the hierarchy. The model backtracks from these errors

by saving and restoring earlier copies of the LOCATION-HYTTHESIS.

Thus, these errors increase costs, but will not directly lead the

process to complete failure'in the way other knowledge deficiencies may.

Explaining the expertise of expert debuggers.

Given that a general strategy and different types of

domain-specific knowledge underlie troubleshooting/debugging behavior in

the ways suggested by our model, we can ask'about the contribution each

makes to expert performance. Is the expert an expert because h

(develops a superior general strategy and adheres to it religiously? kir,

does his expertise stem more from his extensive knowledge of the problem

domain, including the fundamental declarative knowledge, specialized

procedures for making observations and repairs, and idiosyncratic

libraries of information about important recurring high-level subsystems

and about the bugs, frequently associated with observed patterns'of

aymptoms? The intrapections of the, expert in the dialog in Figure 2

41

are consistent with, 5S-tatter explanation. He:attributes his easy and

efficient solution of a problem to his "familiarity" with the fact that

an observedsymptom is (almost) always associatid with a particular

. fault, although he cannot articulate how he was able to access that:

fact.

In terps of our model for a debugging strategy, the expert in -.

the dialog chieved a solution by calling his RECOGNIZE-BUG procedure,

bypassing some of the progressive top-down locatization and

characterization which slowly converge on a faultiby deductive

reasoning. He supplenentdd his deduction with identification.

Localization by identification is also e.xemplified.by the mechanicWho

first jars the carburetor to attempt to remedy gn uneven idle. -These

examples illustrate how by using a library, of knowledge acquired through

experience, the expert can choose to focus at alow level of

plan/systeg.:a functional hierarchy without deducing the location of the

bug from observations made at higher levels. However, since the

information in the library may sometimes be applied in inappropriate

contexts (false matches to ACTION -- DESCRIPTIONS),, the expert,must

backtrack and integrate observations made at several levels in the

system much more f/requently than required when localization is strictly

`fop -down and degUCtive.. Failures in backtracking can redid efficiency

by causing the expert relying on identification to make redundant

observations.

This explanation of debugging expertise seems to be consistent

with data we collected from five programmers with different degrees of

experience.
5
They ranged from one with a masters degree-in computer

When we say "programmer" we do not necessarily mean an
individual who was trained-and works specifically as a programmer. For

42

50

`
science and several years of advanced programming experience to a total

novice who had no formal instruction in programming and only a few weeks

of self-instruction. Within this range were students and professionals

with trim oneo several years of instruction and practical programming

experience.

We asked these programmers to debug a short BASIC program andto

write a commentary on -their reasoning_as they worked. They had access

to a BASIC interpreter fot running and modifying, the -bugged program.

,

They were provided with the program description, listing, and sample

input-output shown in Figure 6. It is a sorting program designed to

interact with a user at a terminal. It accepts numbers one at a time,

('
acknowledging each by printing "BON APPETIT", until the user.types A

zero signifying the end of the list. The list sorted in ascending order

is then printed. The program was written by a member of the research

team and is deliberately obscure so that it would riot be completely

trivial to experienced programmers despite. its brevity. A more elegant

solution is possible using fewer variables and less complicated

parameters fpr FOR..NEXT loops. However, the program shown is correct

except for a single character. Line 100 should be X = C +I instead

of X = C - 3 + 1. Note that such an error could be the result of a

simple reading or typing error in entering the program, rather than a

design error. However, it is not the type of error that can be detected

by the parser or runtime system of a programming environment; it is a

logical error that causes the program to produce inc t rect results when

it is executed, as can be seen in Figure 6. In fact, the effects of the

our purposes a programmer is anyone'who writes programs incident to
job or (his activities a student).

4

51

Description
This program inputs numbers (up to 100 numbers),

sorts each number into ascending order as it is input,
and.)prints the ordered inputs when a key value lof zero is Input.

t10 DIM N(100)
20 C = 1

30 INPUT NE)
4Q IF N(C) = 0 THEN 180
50 FOR / = 1 TO C
60 IF we) NEI) THEN 140.
80 D = I

190 FOR J = D TO C,
100X=C-Ji- 2

1

110 NEX * 1) = NEX)
120 NEXT J'
130 NEI) = NEC + 1)
140 wtxr I
150 PRINT "RON APPETIT!
160 C C + 1
170 COTO 30
180 FOR G = 1 TO C 7
190 PRINT NE0)
200 NEXT 0
210 END

Sample input/output:
*RUN
EXECUTION OF YOUR PROGRAM

.77
BON APPETIT

:15
BON APPETIT

:34
BON APPETIT

:10
BON APPETIT.

;88
BON APPETIT

:0

10
1*
0
77
88

EXECUTION COMPLETED AT LINE 210

Figure 6. Debugging problem given to five programmers of vary/6g
experience.

44

52

bug depends on the input and if the user enters a list in perfect

reverse order (e.g., 81, 54, 33, 12*), then the program correctly sorts

it. A complete ACTION- DESCRIPTION of the bugged pr6grdoat its top

level is that if an incoming axmber belongs at the beginning or the end

Nof the existing list it is appended correctly, but if it needs tohe

inserted between two previous values, it is lost and replaced by a zeto.

All of the five programmers who participated wereable to debug.

the program, although the amount of time they required varied from less,

than an hour for the most expert to several days (a few hours each day)

for the novice. Also, they varied in' how much of the program -code they

modified in order to eliminate the bug. Figureija, 7b, and 7c are

segments of the written commentaries generated by the expert, an

intermediate programmer, and the novice,.respeCtively. The concepts the

.0,
expert uses to describe the program reflect his specialized knowledge of

sorting algorithms, which he usea to identify functiOnal subsegments of

the program. 'He immediate tried to identify bugs at a low level of '

program structure -- in storbge-allocation and in incrmmenting counter

variables. Although he examined the sample output at an early point he

does not articulate an ACTION-DESCRIPTION. The structure of the episode

reflects repeated attempts to use specialized knowledge to predict-and

search for likely types-of bugs: as emphasis on recognition as opposed, ,

to localization. His repair, not shown in the commentary, was to

rewrite the nested sorting loops'in a more. straightforward form,

eliminating the unnecessary variables. Thus, he made a judgement that

it'wbuld be more efficient to substituts a block-of code, than totry to
4

isolate thebug furl er and then make a iore.minfmal modificatpn.

,Figure 7b is the commentary of a programMer with several rears

45 53

.JJ
Bead description.

heck DIM statement.

Look at output.

Bon appetit?

o points to next empty voni

When input = 0, then 13,01
Found on 160.-

Sort takes plade between

Get' to 8o if Fic < NI'
1.

. The J loop leo) is suppos4d to move sll Of the entries between Ni4.1 and N_
up one. 1' .. 4-;

-

It does some sort of inversion. I think this is unnecessary, and als,kthe variables

t N(1) to-N(0-1) or stop. Look for C

1140. If N
c

> all of the Nits' nothing is done.

. 1 : 1 100 X . . I s m going to try it out on the termindl.

Attached is the program I typed in, before I tried to ran it. (Nate that it
differs from so bled notes. I didn't look at the notes while I vas typing
it in.)

I trked sorting the numbelt

1110

9, 4, 6, 1, 7, 13

and it voriced.

Figure 7a. Debugging comme mazy on orting program by a formally
trained, highly experien progr,mer.

46

54

p

/

.1"

772-)
Think about what It should do. Visualize number coming in and,finding its
way to the top of list.

Note that 0 is in.the wrong-place and 34 is missing -- Intact; 0 is in the
34 place. 4

34 is the 3rd input (check first to see if it's first or last -- no).
Now go to program.

Since 0 was wrong,. check the branch,to 130 . Don't see anything wierithere --
output loop loots ac. tau,.

Look at sort loop (50-10 I guess), which skips if current (new input). is geg.,
Inner loop looks complicat act, bizarre. Have to puzile it through --
purpose is to shove every to insert ,new guy. knew that bdcause it's
a loop (should have known it anyway).

:

r 7
:100 puzzling next-one in the list. Push it one lower dowii. Looks bad i-
N(x+1) --N(x) will lOse the pre iralte of-N(x4-1)'.4 (hypothesis) : Test with :
given inputs by 'tracing Not working -- I'm not. getting
anything pushed anywhere .154is moving higher instead

-cf the 77. Try again.

4 -

Note: D IS ynnecessary since i*abisn'tichange inside the J loop
be destroy if 9;i_sgpv:or J = I to C. Think ,about that: is this
reasonable -- ye 31 a place where tt ,current input is lower
element, so:I have to change everybody from here on up. So J I

I wouldn't
strategy
than this

fine.
Etrt I immedidtely get N(3) 15 which is dumb. (Think about idle r RCP thinks

C-J+1 gives .2 or if 0, then array efror would have occurreso must be 2.)

°P.
Seems that N(2) = 77 N(3) = 15 which is backwards.. Keep going C changes-

" to3 but shOuld have zapped the 15 in N(3)., NO -- missed 130 whip stuffs
15 back into 1! Seems that I get' 2, 1(2)- compares. NO: OK, becade ii(c.) is
no longer tie current

'4

Looks like I jt lost the 77 but that's Ira-Possible, so have to try again
. with 34 input.:

Strategy makes sense .--.put new one up.highl move the others up one at
a time. N(gets the 341 so N 3) is .available for 77 to move Vg:lue of
X should bet to mFatP that mov X -4- C-J1. is 3.

'NO. The firat time was wrong. Back up.to 90, again with I = 2 (i.e.., comparing
1,41.34 'with 777.

g
0. Figursr 7b. 'Excerpt from debugging cccmaentexy on sorting progtia

by prog.rammer of intermediate experience.'

55

NO, wait a second, I guess it's O.K. for it to print Oi it should
just.' print'it first. Maybe that's where the problem is. Even,
though I still haven't figured out how the program is supposed
to work, I'll check out'the parts that 'deal with switching fro%
the ordering-proeedure itself to printing the final output, and
see" what 1.. can ,find.

Of course! Zero(i. s going,..to'be the value entered, so
it will have the Aghest numbered subscript and get printed. last.
That's certainly one of the.grohlrlems with thi'S program, although
.it may 'not be the only one. I'11.have to figdre out how the
whole thing is supposed to work. But I have:a hunch that if
line 40 ("IF N(C)=0 THEN 180")gets moved down between lines 160
and 17.0 (the end of the main subscript-reassigning loop) then

, the prograk will work the iaay it should. his move should assign
0 the .owest subscript before telling th .machine to print out,
assuming the rest of the prograh was wr ten correctly. Let me
check that, Out'...

.------a. .., .

14 .C,-.C+1
_:°' --2

--so that how the subscript
. ' gets increment,

(Bigak--overnight)
- a et

-* I just realizpd that although,0 was ,initially assigned the
highest subscript think), it-was not_printed.last when
numbers were printed_ out in subscript order (]sines 180 to 2).
'This means th%t the subscripts of some of the other numbers,
(namely /7-an4 88)-were higher than the subscript for 0 by the
tame the printin4 was done,' I'm gpingsto try to run through
the program mentally, feeding-in'the numbers'used in the run
shown here, to see what this prograM is'doing.

r

when you get to INPUT 34/
N(1)=15 N(2)=77

N(1) no ionger-has a value4N(2) =15 g.(3)=77.0-3-4 is lost here .

'N (2) nb).onger has 'a value-W(1)=15 N(4)777.
% .

,

4ithough I still don't giasp it completely, the,strategy
of this program seems to be.to.reorder the!subscript's--,ef the
input numbers by comparing eachinew number ope at a tirie with
eaolldf the numbers which ,have_already b typed iii and:

aN
. 1

--If the newtnumber N(C) is less than the nuMbeirAieis being
compared to, li(I), this itcrement-theubscript of each of the
numbers that re greater than or e to N(I) pd *ve'the new
number-the old subscript of N(I).711F

,

0 --=If the new number N(C) is greater than the old,number N(I) to 4.

which it is being*ompared, leave the subscripts alone and
compare (C) w4th the next-old number. -i- .

.

Fi re 7c. Excerpt from debugging ,ccamentary on sorting program
novice programmer. ,

48
5Q,

4

of practical experience, but little formal instruction"' There is more

evidence of a general debugging strategy and less use of specific

knowledge about sorting than in the commentary in Figure 7a. Before

looking*.at the structure of the program, the programmer tries to

describe the bdg's symptoms in the program aatput-- to develop an

initial, top-level ACTION-DESCRIPTION. 'The observation "that 0 is in

the wrong place" (she incorrectly assumes that the 0 in the output is

the 0 the used typed to end his input) leads her to locate and

characterize the segment of the program d ned to ssop.the input cycle

1,0' when a 0 is typed by the user (she sets CATION-HYPOTHESIS to that

segment). When she (mentally) tests that segment and/observes no

evidegce of a bug, she focuses on tie nested loops that sort the array.
#

(resets the LOCATION- HYPOTHESIS to the top-revel)) Her reasoning in 4
using the zero in ,the output. represents a.callfrom t!UG to

RECOGNIZE-BUG in which an incorrect ACTION- DESCRIPTION was matched to

information in a library of bugs and their manifestations.

The programmer's experience allows her to 4udge that some of the

code in the sorting lobp is '.bizarre", and thus'a likely location of the

bug. She characterizes that code by mentally tracing execution and

observing how an ac (as opposed to abstract) set of numbers are

moved within the array. She has some difficuity'in generating an ,

ACTION-DESCRIPTION from her observations and therefort tries to apply

some knowledge she does have about'sorting.4hen she decides that line

110, Na + 1) = N(X), looks suspicious (another call to RECOGNIZE-BUG).

In some sorting algorithms, such a transfer of- values might lose_the

`- contents of an array location, but in this case the line is correct.'

(One of the other intermediate
programmers also'suspected this line

p,
49 57

.1

AN,

-r

a

110

Thus, shehas to backtrack'from this attempted identification of the

t.
error and resumes her characterization of f segment of the nlited loops.

,

Eventually, she did identify and repair the bug. Like the expert, she

tried to"use speOific experiential knowledge to shortcut a top-down

analysis via identification, but did not have the knowledgeResded to

succeed on that basis. (She might have solved,t.heltroblem more quickly,

but unlike the-more expert programmer. chose to Vitalize the bug within

the soting loops rather than rewrite themcomPletely.)
. t

Figure 7c is one of six pages of commentary generated by.thq,

novice programmer (who later displayed better than average prOgratming

skills for his degree of"expefience). He worked -an the programin four

84arate sessions and eventually did debug it. -His commentary reveals\

how his afamiliaritl with the fundamentals of the BASIC prograting
4r

language and of program organization made it an effort for him to

perceive the program at 'a high level. He begins by.spending

,

considerable effort characterizing the code line -by -line with no good

idea of that he is looking for, since he fails to generate an
iL

ACTION-bESCRIFTION beforehand. In facts he did not report looking at
A

the, input-output data before the second session. 'Prior to his

successful solution he attelalpted selieral"irratiOnal" minor repairs

based 6 his.misunderstanding Of single lines of code and their function

in the program. Like the most expert programmer. he searched for bugs

by examining the, code, but Unlike rhe,expert he had no basis for making

rational predictions for what the bug might be.

- In general, theseadata are consisteht with the view thatathe

Opert debugger is an expert-- that he solves problems with minimal

expense-- because he has a,great deal of experiential knowledge that

50

allows him frequently to follow cost- saving alternative pathways wit
At

a general debuggingstrategy, as represented in our model by the

procedure RECOGNIZE-BUG. It is not seem necessary to postulate that he

has a general strategy superior to thatof somewhat less skilled

. debuggers in order to explain his expertise. Instead, he simply seems

better able to exploit'the benefits of an identification substrategy

which even novices try to use.

-Weaknesses in the debugging of inexperienced programmers

The commentary in Figure 7c shows that an inexperienced

programmer can have considerable difficulty with a debugging problem

because of the effort required to understand how the program is supposed

- -
to accomplish its intended' function. -Of course, programmers most often

encounter their debugging problems in programs which they themselves

designed and implemented, and thus can understand. However as we noted

earlier, programmers sometimes knowingly implement and run programs that

are incorrect, finding it more efficient to develop correct code by

debugging, than to derive the correct code initially by logical

analysis. In these cases, problems in debugging can arise because of

difficulties in knowing how'to design code for repairs, rather than in

locating the bug. Sometimes, presumed understanding of some code can

actually impede programmers' debugging of their own programs. If they

-11ir
write code they are certain is'correct an manage ,to insert a bug in it,-

then (1) that code is the last place they will look for the bug, despite

observations that might indicate that it is a likely location and (2)

when they do look at the code, may miss the bug, bemause they see
I

what they intended the code to do and not what it actually does. Thus,

51 59

a programmer debugging his own program tay lose sore objectivity:, Male

one debugging another's program may have fundamental problems

understanding how the program is supposed to work- There are sore

programmers in real contexts who are faced with the problems of

debugging programs written by someone else: for example, consultants and

members of teams working together on a large project. They lose the

advantage a designer's knowledge-of his program, but by the same token

ate less prone to "blindness." They may face situationawhere they have

difficulties debugging a program because they don't have the knowledge

needed to understana it, rather than because they have inadequate

debugging strategies. In other troillxreshooting/debugging domains. like

electronics and mechanics, technicians routinely face problems with

devices unfamiliar to then. In these situations, they must turn to

technical data for the devices or be able to.synthesizs the device's

structure from the bottom up, if they are to effect a repair.

We have proposed that expert debuggers have general, top-down

debugging strategiesk but that their expeFtise is defined by their

mental libraries of domain- and problem-specific knowledge gained

through. their experiences. Inexperiencea programmers obviously lack

comprehensive libraries. But is this the sole source of their

difficulties, or are their general debugging strategies also deficient

so that they do not make the most effective use of the specific

'.knowledge they do have. 'This is an important question from the

viewpoint of instruction, Since it would be more feasible to_try_to

teach a well-defined keneral strategy, than a large, ill-defined corpus

of specific knowledge. The commentary of the novice programmer

debugging on the sorting program does seem to reflect a strategy less

52 60

efficient than those we found in the commentaries of more.experienced

programmers who also had difficulties with the problem. However, the

knowledge required just to understand that program was so far beyond the

experience of the novice-that it could have been the case that he had a

good strategy available but had trouble executing it

10 an attempt to determine whether inexperienced programmers

nave difficulties debugging b ause they'lack an effective general

debugging strategy, we PrarRined Orogramming data collected from students

learning to program. -The data originated from three groups who had

,
participated in the BASIC Instructional Progiam (RIP) 1975, a CAI system

for teaching introductory BASIC programming to people with no prior

domputer experiane. In all there were data from 100 college students,

who wrote on the order of 40 short BASIC programs each during-10-15.

nours of terminal time in BIP. The original use of the data had been in

evaluating BIP's effectiveness for teaching program-ling and in examining

the- way students used sane of BIP's subsystems for wrjting and debugging

their programs.

The.data are quite comprehensive records .of students'

interactions at the terminal, which we will call chrotiologies here. The

information contained in the chronologies for the three different groups

varies somewhat, since analyses of the earlier versions had suggested

improvements in format and Content.. For instance, the first and second.-

groups of chronologies do not directly indicate the order in which lihes

of code were entered by student; the code was recorded.on the chronology

when the student listed or ran his program and it was possible to

determine small changes in the code by comparing successive listfngs.

In the third group of chronologies, each time the student- typed a line

5361
e.

c
of code'it was written to the chronology and, in addition, when he

listed and ran the program, the order in which the lines had been

entered was stored with the listing. Since we fouad this information to

be useful, our analyses focused primarily on the third group of

chronologies.

Figure 8 is an excerpt from-s chronolo n general,

chronologies record the sequence of BIP commands and lines of prokram

code typed by students when they worked on their programs. The commands

include:

LIST lists the student's program
RUN executes the program
DEMO executes a model solution stored for the task the

student is working
HINT prints a hint stored for the task
TRACE executes the student's program and prints for each

line the values of any variables that changed,
FLOW executes the program one line at a time, showing

now variables change, and using the CRT to indipate
4k the flow of control graphically

MORE executes the program and the co4e1 solution on
test values andcompares their output iq order to
judge whether the student's program is correct

Lines of code entered are denoted by the keyword LINE, or SYNTAX ERROR

if the student typed an incorrect line that could b detected by the

parser. Each entry in chronology includes the time at which the

command was typed. by the student. It does not always include the exact

response of HIP to that command. For example, while LIST does put the

program listing on the chronology, HINT only puts the hint number, not

the text' of the hint.

The chronology data constitute an indirect window onto students'

reasoning as they designed and debugged their programs. For example, if
R

student ran a DEMO after partially coding his program, it might be

62

run

flow

list

line

demo

5/9/77 10.16:51
same program
output- TYPE IN TWO D NUMBERS. THE LOWER ONE FIRST.
input:.1
input: 5
output THESE ARE 7 NUMBERS' BETWEEN THEM.
corepleted at line 42

5/9/77 10:17-17

output: TYPE IN TWO TODD NUMBERS, THE LOWER ONE FIRST.
input:, 21
input- 23
output: THERE ARE 25 NUMBERS BETWEEN THEM.
aborted at line 42.

5/9/77 10:19:D9
same program

5/9/77 10: 19:42
41 PRINT "THERE ARE ,C," NUMBERS BETWEEN THEM"

5/9/77 10:19:47 -

ordr prog'ram listing
30 01 C=0
19 10 PRINT "TYPE IN TWO ODD-NUnSERS, THE LOWER ONE FIRST.'!
2 15 INPUT L,H
3 20 IF'L=H OR L>H THEN'i00
7 26 IF L/2 0.5C>INT(L/2) THEN 150
20 27 IF H/2-0 5C>INT(H/2) THEN 155
9 30 FOR I=L TO H STEP 2
10 35 C= C+1
11 40 NEXT I
31. 41 PRINT "THERE ARE ".C;" NUMBERS BETWEEN THEM"
27 42 STOP
29 100 IF L>H THEN 110
13 101 PRINT "YOU TYPED IN THE SAME NUMBER TWICE, TRY AGAIN

WITH
14 102 PRINT DIFFERENT NUMBERS."
18 103 GOTO 15
16 110 PRINT "YOU SHOULD TYPE THE LOWER NUMBER FIRST, TRY /

AGAIN."
17
25
23
24
26
28

input 21
input: 23

111 GOTO 15
150 PRINT "THE LOW NUMBER WAS NOT ODD, TRY 'AGAIN. "
15 G01`0 15
155 PRINT "THE HIGHER NUMBER WAS NOT ODD. TRY AGAIN
156 GOTD 15
999 END

Figure 8. Excerpt from a SIP chroiology. .1-ne student vas debugging
a program at this point.

55

63

(Figure 8 Continued)

h tie

5/9/77 10:21:03
41 PRINT "THERE ARE "iC," NUMBERS BETWEEN ";1_ ;" AND ";H

111

5/9/77 10:21:08
order program listing
1 01 C=0
2 . 10 PRINT "TYPE IN TWO ODD NUMBERS, THE LOWER ONE FIRST.'3 15 INPUT LAH
4 20 IE L=H OR L>H THEN 100
5 26 IF L/2-r0.5<>INT(L/2) THEN 150
6 27 IF H/2-0.5<INT(H/2) THEN 155
7 30 FOR I=L TO H STEP 2
8 35 C= .6+1
OV 40. NEXT- I
23 41 PRINT "THERE APE ",C;' NUMBERS BETWEEN ".1_ ;" AND ";H11 42 STOP
12 100 IF L>H THEN 110
13 101 PRINT "YOU TYPED IN THE SAME NUMBER TWICE, TRY-AGAIN

WITH14 102 PRINT "DIFFERENT NUMBERS "
. . 15 103 COTO 15

-16 110 PRINT "YOU SHOULD TYPE.THE LOWER NUMBER FIRST, Allg
AGAIN."17 111 GOTO 15

18 150 PRINT "THE.LOWER NUMBER -WA'S NOT ODD, TRY AGAIN."19 151 GOTO 15
20 155. PRINT "THE HIGHER NUMBER WAS NOT ODD, TRY AGAIN.21 156 GOTO 15
22 999 END

output- TYPE IN TWO ODD NUMBERS, THE LOWER ONE FIRST.
input. 21 4.

input. 23
output THERE ARE 2 NUMBERS BETWEEN 21 AND 23
Completed atline 42

5/9/77 10 21 32
same program

5/9/77 10 21'45
0J'C--2

56

64

I
that he has become confused about the problem or la.ternatinly that he

is designing and implementing the program in sections and is ready to

examine the requirements of a new section. Looking past the DEMO in the

chronoldgy, if the student changes code he had already entered, we would

opt fob the first interpretation,; A he enterde some new code, we would

choo e the second. Tracing through a chronology and trying to

re onstruct what the student's strategy vas resembles the task of an

rchaeologist working to infer the values and motivations of a society

-from physical artifacts. 6

Our initial examination of the chronologies was directed at

identifying debugging episoded%involving logicar bogs. These are brigs`
.

that .et the program execute but cause it to produce incorrect output

(e.g., GOTO an incorrect line numar), as opposed to those that are

syntactic or context-free andare detected by BIP's parser or runtipe

system (e.g., GOTO a non-existent line number). Further, we looked for

episodes where it seemed that the student considered the program to be

completed at the time'he detected the bug, as opposed to.episodes where :

the debugging seemed to be integrated into design-- i.e.. where the

student was trying to diicover'how some unfamiliar programiing construct

worked. These distinctions had to be inferred by looking at how the

program was coded and by how readily the student seemed to change the
t

program. One sure clue that a student thought a program was complete

was his calling BIP's solution checker with the MORE command. Since BIP

requires that a student RUN hifvprogram before MORE will be executed,

typing MORE implies the student had RU} his program and thought it was

correct.

6
It has the same potential pitfall that the researcher's own

world view restricts the interpretations he might see.

57

65

Most of BIP's programming tasks involve Interactive programs

that process input from a "user." stn programs where flow of control was

conditional on User input, we found many isodes where the student ran

his program with inputs that did not cause a bug to4manifest itself and

a
then typed MORE. In most'cases, the:Inputs used by thg solution checker

did detect the bug, although sometimes the solution checker incorrectly

accepted a student grogram with a bug in it. Thus.'it became evident

early in our examination of the chronologies that many students did not

recognize the need to test programs across conditions that would

exercise the different branches of conditional control structures.

Our original plan wasito analyze the debugging episodes we foUhd

.by,paising then with context-free debugging grammar similar to that

found in Miller and Goldstein's (1976b) (Figure 3) planning/debugging

grammar for LOGO prograMming. Ong feature of the contereegrammar

fulp is that a particular higher-order node (left-hand side of rule)

may be expanded ilipterms of alternative lower-order nodes (right-hand

side). One of our goals after parsing the episodes was to examine

alternative expansions of a higher-order node to determine what

semantics of the context determined the choice among alternatives. Thus

if there were a rule

repair :- replace-code 1 modify-code

0

(the "I" is read as "or") we would be looking for features of a context

that predicted whenta bug was repaired by replacing old code and when it

was repaired by som minimal editing of existing code. By determining

the semantics; a more ioverful ATH grammar Olen could be developed for

describing the episodes. Once the general grammar describing the

debugging strategies was formulated, our plan was to characterize the

e* 58 66

differences between students in terms of alternative subsets of the

general grammar. they employed and, in particular, to see if the poorer

debuggers Cr: those with degenerate versions of the debugging grammar.

The effort to derive a grammar encountered problems immediately..

At the lowest level, where we were trying to identify rules mapping onto

the chronology keywords (RUN, LIST, DEMO, LINE, etc) and the iiming

information, we found an unexpected degree of variability bath within

and between students. For instance, by examining several episodes we

might derive

test-repair := <long latency> I

RUN latency> + test-repair

(the "+" is read as "audathen")48 a general rule of the grammar.

However, in some other episodes we would then observe students changing

a line of code, listing the program, and thenchanging that line again

without ever having RUN the program to test the first repair. We soon

realized that because the programs were on the average short (a maximum

of about 30 lines) that student.might have been testing the programs by

looking at a listing and mentally tracing its execution rather than

running it. We could have added this alternative to the rule for

test-repair, except that LIST t <long- latency> occurrdd in other rules

as well. In fact, LIST following-a repair was a common "cliche" in

'students'. behavior; evidently each time they changed some cede, many

students listed the program and looked 'at it briefly, simply to verify,

that BIP had inserted the code as they intended. Although, the time1

-spent for such a visual check is less on the average than that spent

mentally executing a program, the observed times overlapped enough to

make use-of the time data to distinguish these- cases unreliable. In

59

f

other contexts, LIST often did not occur when it was expected; we

hypothesize that for shorter programs,'an earlier listing could still

have been on the CRT after a few intervening events. Ihus,aLIST was not

a reliable indicator of when the student had been examining the progra

and when it did occur even examination of the surrounding context was

insufficient to detetImine the type of thinking the student was engaged'

'in. It soon became clear that even the lowest level rules in the

' debugging grammar would be complicated by alternative and optional

r2 patterns of key1ords, and that the same patterns would be included in

several rules. In most episodes, the only way to piece together what a

student's strategy had been was to integrate semantic clues. from

01r6ughoUt the epistidei and even that'involVed making sometimes tenuous

inferences.' We found therefore that it does not seen possible to derive

reasonableidebugging grammars, of the type proposed by Miller and

GoldsLeini for describing a range of oksodei-in the SIP student

chronologies.
4

/Even though we were unsuccessful at describing the debugging

strategies rA different SIP students in terms of a unifying

information-processing model, the episodes we examined were very

informative wiql respect to identifying weaknesses in the debugging.of

these` inexperienced pro:yammers. As we mentioned, there were frequent

failures to test programs thofoughly when they were first curl. This

failure generalized to testing after repairs as well. Although there

were am"unus cases, in most instances the subsequent context made it

clear that RUNs we judged we should have fOund, were not being replaced

by mental execution of the program. As a result of 'inadequate testing,

students failed to detect bugs in their prog$rams. Not surprisingly, we

6068

11.

1

, .

'&180 observed Ellst even when students did detect bugs by runhing their

prograrq, they didtnot rerun the program with varYing'inputs, whicl!by
, .

.-., exercising. different parts of the prOgram's control structure would

kft

produce output useful for localizingIthe the_pro4am containing

tlie bug (i.e., they did)3§;, CHARACTERIZE}...

we

is

_ Ode of the most striking failures to test and Characteriee that,
4 4 -

"4146_ y ;foundmoin the chronologies involved tilt program shown in Figure 9..
one student's attempted solution to BIP's task CALCULATOR; whicb,

specifies littnteractive prpg

user; (2) getting a nud. erical

- -*primary arithmetic operations

,

ram fair (1} getting

code catfesponAng

two numbers from the

to one of.- thISP four

/), and (j) printing to the

terminal the result of applying the specified operation to the two

.s numbers. The student's program has a fundamental fldw-of7control

bug(s), which resufts io execution,"falling through" the code fdr
, 6

computing and printing the results (lines 80 to 150). Thus, for

examPlee if the user typed 'a "1" to specify adation,.the program1

branches correctly to line 120 to 14thelddition, but incorrectly

multiplicgtion, and division.continues on to do subtrac

Similarly, for subtractionpe
.

aswell.r011y for diviiion, the

does the ea,lciilator compute

correct ttA program", t

*be STOP/or GOTO 199,- must be
-

multi cation and division are compirted,-

branch in the control 'structure.

a 'print:only what it is suppbsed to. Tri

ot, 1245, 135, and 145, allof'which should

inserted. .The student who wrote the

program failed to, debug it; in fact, he pileCto detect thebug at al)..

although he'called the SOlution"checker and had it reject the program

six separate times!

,

The major cause of the stu&nt's difficulty was that ,every time..

61. :6'

Y

a.

a

41

10 PRAT "THIS IS.A CALCULATOR!!
20 PRINT "TYPE 1 TO ADD, 2 TO SUBTRACT, 3 TO MULTIPLY, AND 4 Ta DIVIDE"
20 INPUT C
40 PRINT "NOW CHOOSE A, NUMBER".
50 INPUT X.
60 PRINT "NOW4CHOOSE ANOTHEOCUOBER"
70 INPUT
80 IF C = 1 THEN 120
90 IF C = 2 THEN 130
100 = 3 THEN 140
110 IF C = 4 THEN 160 "'
120-eRINf "THE SUM IS ";.

130 PRINT "THE DIFFERgNet IS X -- Y 4

140 PRINT "THE ORODUCT IS -, X * Y
150 PRINT "THE QUOTLENT IS "i X / Y.
199 END

Figoze,-9.- student's solution to BlPts.task CAIMPIATOR. The program
has a recurring flow-of-control bug, which the student
failed to detect because of inalielputtetesting.

Q

62

70

.1

4

he typedAtJN to test his specified as the operation

code. Not once did he test it with another operator. Since, 4" for

division is the only case in which the program works Correctly. he never

saw the bug manifest itself in the output. In between running the

program and calling the solution checker, 4e found that he used LIST and

spent long periods befOre his next RUN. Assuming that he looked at the

listing during these periods and because three similar lines were

missing., we can conclude that he did not understand how to design

0-.
conditional control structures and hednot simply made a careless error.

However, if he had RUN the program just once with a code other than "4",

the erroneous output could haye served to help him understand the defect

in his design. -

We found many other examples of inadequate testing and

.characterization. In fact, there was eviden0 that even-rwhen they ran

the program and it produced incorrect output, some students did not

realize that there was a bug in the program. In these cases, the

students called the solution checker immediately following, their RUN, of

the program, suggesting either that they had not analyzed the output or
0

that they did not understand what the program they wrote was supposed to

do.
7
Based on independent observations we made, we believe that In many

.

eases the students did not analyze the output. A member of the research

team spent about:20 hours observing (and assisting) course consultants

and students discussing problems for the introductory ALGOL programming

Thede students piabably hive a higher aptitude fOr

average than the BIP studengs and work on programming

class -at Stanford.

programming on the

,illiM
The solution checker at that time did not attempt to tell the

student what it had found wrong, so that it was nOt called as way to
obtain information. .

44

,

-t

tasks more complex than those in'the HP curriculum.- They usual came

to the Consultants -when they had trouble.debugging their prdgr In a

large number of cases, students, had not looked at their tpu

than to note that program did not work. Instead-, they d bed

their debugging as going through the program line-by-line looking for a

mistake, even though they had not thought about what was wrong. For

errors trapped by the ALGOL runtime system (e.g., illegal memory

reference) their debugging was even more irrational, since they did not

attend to system diagnostics which could have identified the type of

statement containing their error or, in some cases, the actual line

containing it. Thus, the generaldebuggingstrategy of'the ALGOL

students we observed was.-deficient in testing and characterization in

much the same way as that inferred from the chrodologies of the BIP

students.

Another type of poor debugging strategy we observed in the

chiOnologies involved students making a series of several minor,

sometimes completely non-functional, modifications to their programs in

a very short period of time. Most'often, this behavior was seen in the

same-episodes where there was no attempt to characterize the bug by

running the program with veiling inputs. A related failure was that
r.

attempted repairs that did-not correct a bug were not undone at once and

evidently were forgotten. As a...result, "almostcorrect" programs

sometimes were rendered less correct during debugging as the student

compounded the original bug with others resulting from the ineffective

repairs.

In order to substantiate some of the inferences we had drawn

from the chro ogles?. we collected"written debuggirmecommentaries from

64 72

oh.

inexperienced programmers working on staged debugging problems. The

procedure was similar to that under which the,commentaries were obtained

fromyfogrammers debugging the sorting program. Four students who had

completed 10 houis in the RIP course about one-half year earlier

participated in the study. EaCh worked to debug a series of programs

within the RIP programming inVironment. The programs themselves were

selected from the chronologies and involved different types of bugs:

computation, assignment, flow-of-control. This meant that the students

were debugging programs written by other inexperienced programmers as

solutions to problems they had themselves attempted in RIP.

The students were instructed to maintain a written record of

their thoughts as they tried to debug the programs. In particular, they

were, told that whenever- they decided to take an action-- LIST or RUN the

program, or make a repair-- they should record their reasoning. RIP

chronologies were saved for the debugging sessions and in addition the

sessions were condutfed an hardcopy terminals, instead of CRTs, so that.

exact typescripti of the interactions could be obtained. For each

debugging problem, the staetta were given a listing ol the program and

'a description of what is was supposed to do, but were given no sample

input-output data. A copy of the grogram was.preloaded into their '

-
. program space in RIP, so thae they themselves did not have to type it in

in order to rub or manipulate it. They had at most an hour to work on

each problem.

Ip daseribing the results offthis study, two general

observations must Tirst be'noted. 'ha subjects had not done any

programming since the time they finished BIP and their behavior, and the

commentaries indicate they had forgotten feetuies of the BASIC language

65

and, of how to use BIP. Therefore, much of their effort, especially on

the, first few problems, was spent using the BIP manual and trying to

relearn fundamentals. Second, the subjects had trouble maintaining an

ongoing commentary. They would work on the problem for a while and

afterward write, rather than write as they were thinking. The-observer

provided constant prompts to remind them to write and they were

encouraged to write and not to concern themselves with working quickly.

&Nonetheless, the aommentaries are fragfentary records at best and are

more retrospective accounts of what the subjects were thinking than they

are real-time records.

The commentaries substantiate and elaborate our observations on

the inadequate debugging strategies we saw in the earlier chronologies.

Again, the most salient deficits were ip testing and characterization,

in obtaining and using information from a bugged program's input-output

relationships. From the commentaries we could determine that when

students listed and examined a program, they were not substituting

mental execution for an actual computer run,7but were scanning
-

individual Tines of code for errors. Noss; since the subjects were

debugging programs written by someone else, it is not necessarily a bad a

strategy to list and examine the b4iggedprogram in a'global Uay in order

to determine its overall organization. However, there were several

g

cases in which subjects reported looking at lines of code for errors,

when they had not yet run the program and seen how the error manifested

_

itself, as illustiied by the following excerpt:

I've done this program before,, so I feel confident
that be able to find the bug. After one reading
I've no idea what the problem is. I just looked at
the two input statements, they look OIL i just looked
at the 50 statement. Nothing looks wrong there. I'll
run the program to see if there's a problet. ,

66
.74

t,

I just. read the output on miles per gallon. Thought:
I've got it! The machine divides before it subtracts.
I'll try putting in parentheses around E-B to see if
it will subtract first.

This subject recognized the. program and thought he comld find the bug

just by looking at it. He examines the, program listing line-by-line

without- success. Then he runs the program.; sees the nature of the

error, and'is immediately able to locate the bug.

The commentaries 'indicate the mechanism for the quick and

apparently unmotivated repairs we had seen students sake in the

chronologies. Como-eider the following excerpt:

This equal's business ih 160 to 230 is confusing
stuff. Seems to me thiq're 4ouble assigning
things. H and L are being given two values.
I think maybe 160 and 170 can be deleted.-
Try and see.

The subject, without having run the program, examined the code and saw

something that looked "confusing." Consequently, without any sound

'reason for doing so, she deletes two lines. This compounded the bug-id

the problem, so, that when she tested the program (for the first time)-

after the repair and it worked incorrectly, she had to go back and uriao

the repair and run the program again in order to see the manifestation

of the original bug.

One of the subjects did seen to have an effective top-down

strategy with elements similar to that of our troublesbootingidebugging

model. However, even ha had difficulty because his CHARACTERIZE

procedure was not well developed. 'Figure 10a is a complete commentary.

from this subject for the bugged program shown in-figure 10b. He reads

the program first, but only to identify its structure. He then runs the

program, but happens tachoose inputs for which the piogran works

+""...\

53.F

This progren looks scary because it's so long. I'm going to try to analysethis program in groups that were delineated in the abstract. That is: (1) checkto see if input is eofrect; (2) count the odd numbers; (3) print the odd numbers.StAement 30 I don't ,..4iPrstand. I'll look it up when dome reading. As Iread down, I see a lot of symbols I don't understand.' That's very discoreging.I'll' ran and see yhat happens. (1)

ale program worked very ni ly. I asked B--3erviastgs happening. Be saidto try more possibilities, so 11 try more disparate numbers. (2)
.

I found a problem. When Iinput some numbers it doeset.work. I'll tryto see if the re's a certain spread that is the lire between vorking and notworking. (3) I'll try distances of 2, 4, etc.

I found that any distance past-21 i.e., numbers, doesn't.vork.I'll trace and hope I

some
somethtrg. f have very little idea of hat I'm lootingTor. I just know some loop goes wrong because the machine paid that's probablythe problem.

Trace sent it into an infinite loop. I'll look at the numbers for a :tileand see if I can figure anythtng out of that. Well, P stayed the same, n keptchPnerig. I'll look at the'program to see what they mean. I just noticed-thatat 190 Pnd 200, Y and t are inverted eappared to lines. 160 and 270. I'll trychanging them beok and see vbat happens When I runt. (5)

Tbat didn't work so I'll then back and go into the manual lookingup symbols: < >

Couldn't-solve by 1315.

Figure 10a. Debugging cer...-Ipotery of an inexperienced programmer
attempting to debug the program shown in Figure 10b.

76

Tt-lz.. user inputs two unequal odd numbers (the program checks 'to make sure
this is tht. case and asks the, user to try again if a mistake has

Sean made). Odd numbers between his two numbers. inclusive, are counted,For example. there are 3 odd numbers between 5 and 9 -- they are
':- 7, and 9 Finally the number of odd numbers between the user's two
furil::ers is prilted.

01/01/77 00: 00: 01-
2.7

IC PRINT "TYPE AN ODD NUMBER*
20 INPUT
CO IF.X/2 <> INT(X/2) THEN 60
40 PAINT "THAT IS NOT AN ODD NUMBER. TRY.AGAINt*
50
sp
70
SO
7:J

100
110
i20
1.ao

140
150
160
170
190
190
200
210
220
230
240
230
260

' 999

GOTO 20
PRINT "TYPE ANOTHER ODD NUMBER
INPUT Y
IF Y/2 <> INT(Y/2) THEN 110
PRLNT "THAT IS NOT AN ODD NUMBER. TRY AGAIN.*
GOTO 70
IF X C>,Y THEN 150 .

PRINT -YOUR TWO 1'&JMBERS ARE EQUAL.
PRINT "USING TWO ODD NUMBERS WHICH
vOTO 20
IF X < Y THEN 170
H = X
L =
GOTO 210
H = Y
L = X
N = 1

P = E + 2
N = N + 1
IF P = H THEN 26Q
GOTO 220
PRINT "THERE, ARE n; N; ODD

4

END

(`
TRY AGAIN, THIS TIME"
ARE NOT *EGUAL..*

NUMBERS BETWEEN *;

10b. 141ged scanticn to BP's 4
debingging by inexperienced

Line-220 which should.be P
210 nust be P L an-ortir.c.

t 69

1

Ls AND 111

ODDCOUNTI used to study

programmers. Ti bug is in '

=p + 2. In Addition, tine
215 must bd N = 1.

7

14 I

correctly and-becomes "stuck." Only a prompt from the observer induces

him to try other inputs and thereby detectthe bug. He arrives at a-

correct ACTION DESCRIPTION that the program works correctly only if the

pair of numbers are consecutive. He does not debug the progral within

the time allowed, but this can be attributed his forgetting some of the

BASIC language constructs needed to understand the function of parts of

tne proAam.

The effective strategy of the sate subject can be seen in the

following excerpt in which he was debugging the program shown in

Figure 9. !joie nis careful initial cnuacterization and testing

following repairs, and haw be resists jumping to conclusions until he

has examined tne program's output.

I just read SID (the program). I just thought the
problem may be there's a problem with end or stop
statements. 1-I1 run the program to have a look at
it. My suspicion seemed correct. The calsulatoz-
outputs all\funcTions, sot-I've,got to find a way to
limit the calculator to its assigned function. I'll
look in the glossary to find the right word. I

couldn't find anything so I'll try GO TO statements
after each function. They'll say: GO TO...end. I

Jast typed a 125_GO TO 199 statetent. I'll now run
the addition and see if it stops. Pt worked. I was
pretty confident it would. Now;I'll add these expressions
to the other functions. 1 made a mistake in typing,
so I'll look up Ole CTL button for offing a line.
found. it, CTL X. Now, I'll run again, checking
all the functions.. It worked. I want to try TRACE
now, just to make sure I understand it..

Our observations of debugging by inexperiencedprOgrammers'

support the hypothesis that some of them have difficulties not only

'because they are not well-versed in'programming fundamentals and lack

libraries of specific experiential knowledge, but because they have

inadequate general debugging sttategies. In lOrticular, the are

deficient ip,running a program to obtain information. that can be used to

e

7 78

IS*

40 deduce logically where a bug is located. In addixion, they make repairs

without good reasons and lose track of repairs they have attempted,

thereby confounding their problem:

'7 9
71

.t

III. Teaching Troubleshooting/Debugging

Improving instruction in complex problemsolving.

In the introduction, we described the indirect method by which

croubleshootingaebugging and other types of complex problemsolving are

currently taught. We mentioned two problems with this method. First,

in domains where prablem solving requires specialized facilities, such

as electronic troubleshooting, costs limit the range and number of

examples and exercises. students may experience during fcrmal

instruction. Thus, students of average or above average aptitude may

not have experienc,e'sufficient for then to acquire problemsolving

competence. Second, students with lower aptitudes may have fundamental

difficulties learning by.tbe indirect method even when a relatively

broad range of experiences can be prOvided. 4401111taara

One solution to the first problem,"and perhaps the second, is to

elaborate on the indirect approach'in ways that can increase student

exposure to problemsolving experiences and add structureltothese

experiences by providing more and better feedback to bin. A landmark

example of this'type of solution is the SOPHIE system developed over a

period of several years by kowp, Burton, and their colleagueS1.(Brown &

-Burton, 1975; Brown, Rubenstein, and Burton, 1976), whith provilies

instruction in electronic troubleshooting. Through the use of computer

simulation and other ALtechniques, SOPHIE creates an enriched

environment in which students may acquire both a general troubleshooting

strategy and domainspecific knowledge for understanding interactions

between parts ofcircuits. SOPHIE does have its limitations-- most

No.

notably, that all ip; exercises and monitorift capabilities are limited

to a single circuit-- bdt these are overshadowed by the advances it

represents in teaching by the indirect method.

SOPHIE. The basic SOPHIE system is an interactive

computer-based dubleshooting laboratory built around a simulation of a .

non-trivial power supply circuit. All studjnt activities require only

the simulated circuit and no teal circuits or teat equipment. In

various operating modes, components in the simulated circuit can be

faulted as specified by a human instructor, by the student, or randomly

by SOPHIE itself. The student makes measurements on the faulted circuit

simply by requesting them; they are determined by the simulation.

Similarly, he specifies repairs by requesting SOPHIE o.replace a

component?' These interactions are facilitated by SOPHIE's limited, but

very habitable, natural language front-end, which relieves the student

of learning a special language for Communicating with the system.

'In a basic opeiational mode, SOPHIE allows an individgars£U4Ant
.

t,o troubleshoot-an unknown,fault or investigate the effects of a fault

he himself has specified, much as he might in a normal circuit

laboratory. However, it eliminates many of the peripheral problems

involved in setting up and using real circuits and test equipment.

Beyond this, SOPHIE constantly performs two powerful monitoring

functions as the student works with the faulted circuit. First, before

performing a measurement requested by the student, it determines whether

the requested value is redundant-- i.e., whether it can be deduced
1F

-Plogically from the measurements that have already,been'ma4e-- and, if

so; refuses to make the, measurement. . In this way, SOPHIE alerts the

student that he has some misunderstanding of'the struciure'and teleology
4,

8
.73

a.

of tithe circuit. Second, when the student asks that a part be replaced,

SOPHIE'determines whether that part being faulted is consistent with the *

measurements that have been made. This is accomplished by faulting that

component in a copy of the simulated circuit, making- the measurements

the student had made, and comparing them with the values obtained from

the version of the circuit the student is Working with. "If the

specified repair is inconsistent, the student is told so. Again, this

alerts the student to problems in his reasoning and understanding of the

circuit.

In a second, more recently developed operating mode, SOPHIE

provides the student-with "realtime" examples of expert troubleshooting

involving the power supply circuit. SOPHIE's "articulate expert" is

programmed as blocks of humanrauthored text that are accessed

dynamically in examples involving different faults. Each episode,` begins

by the student selecting a fault he,would like the Expert to find. The
.1

faults are specified with respect to their location withinthe circuit's

toplevel functional organization. A "demon", another entity within

SOPHIE, inserts the fault in the circuit. The Expert proceeds with a

commentary on-isolating the faoipt 'which exemplifieU an optfigl topdown

strategy similar to that in'the troubleshooting/debugging model we

described in the previous section of this report (Figure 11).

i Rather than directly:make measurements on the circuit at each

step ip the localization process, the Expert asks the student to tell.

him the qualitative value of the measuri he wants to make (e.g., Is the

voltage at-point A high, Ibw, or normal?). 'Thus, 4e student must

understand theeffects of the fault he chooses (a device fOr motivating

the student to understand the circuit). The students answer is checke

74

82

' 0

'

.1-

I

How does the OUTPUT VOLTAGE compare with a working
circuit?

DICK: LOW"

l' I

EXPERT:
.

Every functional blo k bas a failure 5ide - which
could chuse the utput to be low tunder these
conditiont, so I need some more information:I.

Y Is the OterPuT vOLTiGE essentially zero?
4 . -

DICK: XES
4

EXPERT:
-AH GOOD! That is important information `fore we
because I `don't suspect the Vref now. If the Vref
were .dead, that is, had no output whatsoever, then
the output voltage would still be around one a
bne Nat- volts.: It would have this magnitude
because the voltagi IiMiter cannot even begin to
function until its input, vo14gge riser ire' the

junction voltage drop of itsdllinp transistor."
And, of course, if Vref had any voltage output
greter,"' than_ zero, the output voltage would be
Still greater, Having, eliminated the yref,-, I now
wonder about, the CL, YL; and OPP., Any
one Of thest, could cause- the output VoStage!to be
zero ao I am going to narrow the seapph.

The &pint knows 6f
j'hutta in every block

which cause.tow output,
the 0724 sylptom so far.

The Expert asks far a more
refined, alth6ugfi'etill
-04Zitative prediction
about the output.

An instance of teZeolo-
cal knowledge, at a

levet: failures .

in Vref cannot make the
output opselpiaik zero.
This is a somewhat
lurprising fact whic4 the
stvident mayilisnt to verify

expertmentalty in the
SOME tab.

ti

How doeS the VOLTAGE AT NI
Circuit"?

compare with working
.y,

r -

tAliZugh thistest is
aimed-priimarily,,atonZy,
tf' k, it 21 nonethe-

sinine because
` the licit of the blocks

cannot function unless

this block is 'working.'

. Flgqe excerptexcerpt of an -inter'ecti9n with'Si5PHIE.'s
f.,

artioulate-e.xpertl"
Brour Rubenstein, sand Barton, ',,,

14

75

4

. .

by the demon, who "invisibly" 'runs the.-simullted circuit to get the
- a

Ictpal quantitative value. If the students answer-is wrong the demon

interrupts and tell the .stu4erk...gnd the Eipert. The Expert follows a

strategy ofthoosing measurements that enable him to reduce

progressively the part of the circuit's functional'toillanization that

remains to be considered._After obtaining each glialitative measure from

ti

the seent, he explains hos.n.t enabled him to ded6ce that the fault

could not be in Certain subcircuits. The'Expert never describes this

local nation strategy in general terms; instele, the student is left.to

*4.

induce1the general principles from the specific'examNes of,reasoning.

13rown, Rubenstein, and,Button (1976) report a'study which
44

they evaluated the reactions of a small group of second-yper electroniCs
c

vstudents from a technical school to the SOPHIE system. Each.subjett

interacted withPSOPHIE in several modes, including the two we have .

e

described here.8 In questionnaires and interviews:the students in

Ogr
general indicated that SOPHIE was superior to their n9rmal experiences

in a circuit laboratory. They believed that the
AL

-trougreshoottpg.activity did teach them knowledge that would be useful

OW
in troubleshooting other types of circuits. Their criticism was that

,

.

when they weret tIgtl
\ abou.about their attemptedreduRant mea suremdnts

v
or

.----. -

"

, *
illogical repai-rs, they_could 'dot always understand why they were wrong 4, t

.
. .7- .

and couldvptain no bri:ther help trom§10PHIE.
A

The interaction with the Expert was also rated favorably, but'
,

1 .

not as highly as the other conditions and,yith ere variability among

. 8 .0
Other'tondlitiona. included & competitive troubleshooting game

between two:- person teams, and an exercise in which the studerit had to
specify a fault Which s.,¢en inserted in the circuit would cause another
targee'cemponent-to fail as well.

< I.

ea

i4
76 84

1

students. Stdd ts who liked this conditioti.i-eported that they believed'

that by obsery hg-the Expert they had learned a general problemsolving

- strategy, of tope decomposition and testittg'thatthey could apply 10,

a-range of problem solving. contexts.. The students who rated the
.

. condition poorly tended to be those of lower aptitude who had trouble in

individual debugging and in answering the Expert's questions. They said
C

they found the expert too glib and were frustr d by not-being able to

quistion him. They had trouble just folio

specific problem, let alone being able

strategy.

s commentary on a

the underlying_general

The results can in general be taken to, indicate that the

capabilities of the SOPHIE system, can improve learning of both

amainspecific knowledge and general strategies within the indirect

method of leaning by.example and exercise. However these benefits__

accrue primarily fdrstedents of normal or higher than-normal aptitude,

and are diminished or lost on those of lower aptitude.
4

The Why system. The Why system (Coillnd,.1976; Stevens 6
11..`

Collins;-1977) is another CAI system that maybe viewed as man enriched

context for !;'-bing pr)plemsolving by the iddirecebethod. The stated
-,..

teach domainspecific dedlarative knowledge

the stuaent.in a natural language dialog

-

purpose of the system is to

abOut geography by engaging

with a simulated Socratic tutor (Figu re, 12r Howiver, as we noted in

the introduction,, tutoring can readily be'viewed as debugging of the

student's knowledge system.' A tutor's behavior therefore exemplifea

4. the application of a debugging strategywhich the student pay inchAe

and subsequently, use to debug himsblf. An interesttni4,Teature,of Why i

that, unlikejt SWIE's articulate expert ;the Why tutor generat,em his

r

77

8 5

rt

DO YOU THINK THE AMAZON JUNGLE HAS HEAVY RAINFALL OR LITTLE RAtALL?
(Rule 1: Ask for a prediction about a particular, case)

HEAVY gAINFALL

hHY DOES THE AMAZON
prior causes)

.

JUNGLE-HAVE HEAVY RAINFALL? (Rule 2: Ask for

BECAUSE ITS NEAR THE ATLANTIC

YESITHEiABAWN JUNGLE TS NEAR 'THE EQUATORIAL ATLANTIC. 'TOW DOES
THAT AFFECT ThE RAINFALL' IN THE AMAZON JUNGLE? (Rule 3:.Ask for
i.ntermediate causes)

THE WATER IN 'CURRENT IS WARM

(section omitted)

hhAT HAPPENS AFTER THE hOISTURE FILLED AIR RAACHES THE LAND? (Rule
4: Ask for subsequent causes)

I DON'T KNOW

DO YOU (iHINK THE ANDES MOUNTAIN RANGE HAS ANY EFFECT ON THE RAINFALL
IN THE AMAZON JUNGLE? (Rule 5: suggest a factor and ask 4 it is a
cause)

YES

HQv? (Rule Ask fOr intermediate causes)

,*THE PREVAILING iiIND NITS THE ANDES AND THE AIR COOLS*

'1.10w DOES THE FACT 't'HAT PkE'IAILING' WiND41TS'THE ANDES, ,LEAD TO ?LIR
COOLING? (Rule 3 main)

.
section omitted)

4

-DO YOU THINKTHAT ANY PLACE WITH MOUNTAINS Wi' HEAVY
6: form a general rule fOran insufficient cause)

*e'*YES*, .

RAINFALL? (Rule

/'

SOUTHERN CALIFORNIA 'HAS MOUNTAINS. WHY DOESN'T SOUTHERN CALIFORNIA
HAVE HEAVY 'RAINFALL? (Rule' 7: Pick a counterexample for an
insufficient cause, and Rule 2: Ask for prior causes), e

, q'

`Figure A2. Notated excerpt of edialogultlatte Why system. From
Stevens and CovHng, 1577.

78

86

questions And comments dynamically using an explicitly represented

.process model of is general tutoring strategy (i.e.,,onethat is

`independent of the content of the subject being aught.). The models4

expressed as e.-production system of about two dozen rules (Figure D3),

'which were derived by analyzing dialogs.

.

tutors. While this model underlies the

articulated directly to the student and

between students and humin'
4

tutor's behavior, it is not

is actually communicated more

indirectly than the strategy underlying SOPHIE'S expert's "canned"

explanations.,
k

More direct methods for teaching strategies. A second approach

to-4eaching complex problem-solving, which night help those students who

have the most difffltiy learning by the indirectVproach, is to

provide explicit descriptions of the procedures for solvkhg.probleMi

that Can serve as` prescriptions for the studeht. As noted in the

introduction, an impediment to this approachspreviously,has been the

lack of a 'suitaba.lahguage for conceiving and talking about problems

and problem-solving rocesses. The development in AI and

infor4tioh7processi g psychologyof fortmlisms for represent

knowledge has caused researchers concerned with learning and. instruction
s. .

topexamltte Ow:need and.potkiial for more direct and explicit,.

ro/ d ,J

-- 'S.:0-

instruct ion ir le-solving.', ', .

--
. ./1/' .

. Why do we mot attempt to teach'somebasic
cognitive skills such as how -to organize one's
knowledge, how xo learn, how to solve,problems, how
co correct errors in understanding:, these strike us
as basic components which ought to be(taught tlong
with the content waiter.

Norman, Gentner, and Stevens,' 1976,4o 104.
/ ' ,.

f

RUL 2: Ask for any factors77
If 1) i student asserts that a case'hAs a-particular

value,on the dependent variable,

then 2) ask the st-udpnt why,

.EXAMPLE:
0, ,.%.

' . .

if a student says they grow rice in China', ask why.

REASON FOR USE:

TKis deterthines what'causal factors or chains the
4

student knows about.

RULE Ask for intervdiate factors

If 1) the student gives as an explanation a factor that

is not an immeaiate cause in thi citsal chain,

then 2) ask for the intermediate steps.

.EXAMPLE:

If theIty4-ent mentions monsoons in China, as a reason

for rice rowing,,ask "Why do monsoons make it possible

to grow rice in China?"

REASON FOR USE:.

This insures that the

44.

student understands the -steps:,

irt.the causal chain, for example that rice needs

to be-flooded.'

41

RLE 4: Ask 'for prior factors

If 1) the student giyes as an\xplanatidn a

f4Ctoriion. causal chain where there are

.also rior factors,

them 2) Ask the student for the pl.ic.i.factors.
.1

. .

Figure 13. Several the production rules lised in the Why system

4
as a computational model of a tutoring strategy.

bStevens and Collins; 1977.
,

e

8

information-processing analysts succeed
in identifying .the processes underlying problem
solution, these processes--at least some of then--
can be directly taught, and that individuals will
then be able to apply them to solving relatively
large classes of problems. ... ways can be found
to Take. individuals more conscious of the. role of
environmental cue's in problem solving.and to teach
strategies of feature scanning and analysis.

Resnick, 19/6, pp. 79-80.

Papert (1971) at HITPhas played a prominent role in articulating

the position that by teaching general problem-solving strategies more
Pt

directly, students can become better learners. KIS argument is that

learning to do things is facilitated by giving the learner a procedural

.

representation of his task and having hip debug his'attemptid execution

of that procedure. Papert feel that this methodology applies to/asks

as drverse as computational mathemaqcs and juggling. Such of his work

nas involved teaching computational mathematics (primarily gedbetp) to
A

children by teaching them to write programs in the LOGO language. The

students learn tne mathematics -by discovery (i.e., inductively), 'but

they re taught strategi for desigh and debugging explicitly. The

strat gies,however, Are not present0 in coto. Instead, iWe method

4
adopted is to present themin parts as separate heuristics in reaction

- _...

4. .,to events that tranipire-as the student designs and oeobgs hfs,prpgrams.. ,

'

'Ir Tnthis context, a h uristic ±ay be defined as a rule'-of- thumb,
4

a piece of a larger procedu e that e;ables a correct ipr more efficient

soluttorpundera set of conditions. The effectIvenessof riming a

..'!"

heuristic-depends bott.on being able to iden'rify the ontexcs where-it
aN,

applies or is more effective than other heuristic6 and ion access to

other knowledgeyeeded to 'execute it 'Heuristics may embody either
4

q

p

0

general or domain-specific procedural knowled The following are both

heuristics for troubleshooting; howe/er, the first is limited to a very,

specific context while tne second is part of, the

presented in the'previous secCion of the-teport.

If the .cat is idling unevenly, the first
thing to do is to strike the body of the
carburetor 'with several crisp fbut.
non-damaging) blows.

If you nave dacidedto make an observation
of the system's behavior, choose tht J

observation'tnat has the potential to
eliminate the greatest part of the system
as a V6sible fault location whether the
observation proves to be normal or abnolmal.

general strategy we

0

In Papert's reseatcn studies, sne student's problem solving is

continually moinitored by an inst ructor. When the student has dif
d.

or uses less tnan optimal strate gies for designing and debpgging hi
a

4

, prtigYams,'the fEst-ructcrr tnterfuptt and-3-eacribes an apPriclUre--
(

neuristic to him. The -heuristics ire explicit, but couched in infdcza
A .

speech. For example, if.a program intenbled to draw some figure fails
4

. i
because the student's design does apt akd into account anlinteraction

between two procedures, he might be told "look carefully at.the position

and orientation of the pen between,the procedures that draw the parts of

the figure that are incorrect.' There are several comments-to be made

about this method. Clearly, it is not, a cost - effective approach to

large-scale instruction; however, Papert has been concerned with gaining
fle.

initial acceptance for its principles with the idea that implementation

?

problems can be resolved subse ntly. Second, although the students
(,

leara an explicit formalism (LOCO for representing procedural

knowledge, the heuristic th emselves are exprOsed in natural

FinalLy, the interrelations' anong,the ind ividual heuristic
e

t
82 90

--

I

thin an .

4
4

. 4

b

/

encompassing design and debugging strategy are no[explicitly described

to- he student.
'

Carr and Goldstein (1977) at.MIT have described a computer-b!ased

system called WUSOR-11 that refines Papert's sethod of reactive teaching

1
of heuristics and exemplifies how it can be made more- cost - effective by

automating. the monitoring of tire student. WUSOR-IX is built .4tompd a

game called Wumpus, a versioo of Theseus

reauirea a. fundamental deductive probe

and the Minotaur; Which

wing strategy. for_ optimal

play. The player is ;Th.cetksomewhasp.T in a haze of caves, zold the' names

of the neighboring caves, and warped

tnose caves, altnough the

He tnen selects a cave to

if certaidanger's are present in

exact location of the danger is not specified.
A

move to. 4Ca goal is to find aiid slay the
,

J Wuzpus by shooting an arrbw into the Cave where it is lurking pefore jt

The reasonidg involved As rly silFpN for example, if a
slays him.

Wave as a

safe; then

warning and all but one of its neighors are known to be
A

tne danger is in the remaining neighbor. 'Note tnat this type

e:f reasAning resembles that required, in troubleshooting/debugging

The optimal strategy fOrlocal.ize a 'fault given a set of observations.

"selecting a move is to determine the-safest'neighbor as deducedlfrom

:.:story of warnings.

WUSOR-II incorporates An expert monitoring procedure. Because

the problem is well-structured, it was possible to impleent-a

computational model.for playing the optimal strategy. The moni ar Ames
.

,...
. .

thismodel to evaluate the student's Dave.)WUSOR-II incorporates a
)

,

-sophisticated.pedagogical strategy to determine when it is appropriate

for the monitor to interrupt play and describe a hebristic that

11
generates'a better move than the student had just selected. One of the/la

83 91

principles is to interrupt only when
a

--to make moves that could be improved on by a particular haciatic; that/

the student

I

s.consisfently failed

is, do not interrupt if the student fails Lro use a heuristic once When

it is appropriate, when you have seen him use appropriately before. a

Anotheriprinciple is,based on a representation of,the iuterrelalionships
c t

among the heuristics wW.ch Carr add Goldstiin calra 'syllabus: A

'heuristic is nqk mentioned unless the heuristics prior to it (e.g., use

of double evidence tepends on use of single evidence) in the ,syllabus
,

4are inferred to be-learned from the moves the student has made. The

teacning tnod itself'(Figure 14) consists ,of,artieulating the faulty

47,

logic of the student's move, the detailed logic for generating e better

move, and finally aseneral description of the heuristic used to

generate tnat-move.

tquR-II is a noteworthyorthy dlaboration on Papert's method for
.

\ explicitly piehenting problem-solving heuristics. However, its,

capabilities are highly dependent on_the simplicity of -,the problem

domain in whish the heuristics are taught.. The heuristics themselves

are part of a genval, deductive prohAkm-solving strategy that is

applicable, in many problem slomains,,including troubleshooting/debugging.

An unanswered question is whether students _010 leA-n geoeral heuristics
.

in such a, "toy" domaip can.in fact transfer them to a "real-world"

domain and incorporate them in more comprehensi,vestrategies. A factor

that might affect6heir success is whether they have in related the

heuristics eine), have had described to tfiem separately across different

problem-solving episodes into an overall strategy.

The alternative to teaching heuristics reactively one- by-one is

to introduce them to the student according to a prior plan so that they

tr/
,

AV

..

1

r

-Ira, it ,isn't necessary to take suclarge with pits.

Cave 4 =nit be next to a pit because ye felt a draft there. Hence. one of

\,`caves' 15 2 and 14 contains a pit. but rye have rarely visited cave 6 This
means that one -of.:-canes 2 and 14 contains a pit.

Likewise cove 15 crust, be nett to a pit becau.se ire fe.lta draft there.4
11ence, one of canes 0, 4 and 14 contains a pit. but we haw safely Visited

care 4. This means that one of caves; 0 and 14 contatts a/pit.

This is multiple evidence of a pit in cane 14 which glances, it probable tbae
cane 14 contains a pit. It is less likely that cane 0contains a pit., irenee.

Ira, we might pant to explore cote 0 instead.

.1
'-0.the WUSOR-II -systtm irmstrating, an ettempet

+, ttlAt ttle user a neuriztic for applying multiple.
erfaence in deiuction. Frvm Carr 4d Goldstein, 2.977.

4

93

-11

are available to hiM whenever he is ready.to use them.- George Polya's

book, "How to Solve It" (1957) is most often cited as the first attempt

to teach a problem-rsolving strategy directly by a text. A mathematician

and teacher, he had Observed basic similarities in the methods used by

expet,t-probAem solvers to solve mathematical proof problems. If these

methods could be described, he conclude& they coat be taught to

years it would take -them tostudents, thereby saving the students the

discover theopethods on their oi. Indeed, he felt some students never

discovered these principles simply by working on exercises ,by

themselves. Figure summarizes the four stages of Polya'S strategy

and the heuiistics applicable at each stage.- Polya's.work though it'is

now rIcdgnized as a precursor to infor*tion-prolessing analyses of
0

oroblem solving, has never had an impact ,onepractical 4nstruction in

mathetatics (Schoenfeld, 1977a).--'The difficulty-seems to be that people

reading tne text tty understand the strategy and heuristics,)but, then

faced with a particular problemlohave difficulty determiding the
.

particular heuristic that "unlocks" that problem; that ds, while Polya's
//

descriptions are perhaps accurate, ate way in which they are presented

4
in his book does npt enable most readers iosadopt them as prescriptions.

Wayne Wickelgren, an information-processing psychologist, has
t

authored a more recent book, "How to Solve Problems" (1974), Wich is

similar to Polya's, but incol-porates information-processing formalisms

for describing aroblet structures and problem - solving processes and-a,

presentation intended to teach the reader hoto recognize when

particulaierategies and -heuristics are applicable. Wickelgren also

does not restrict himself to mathematics prob4ems.'but addresses a more

°general taxonomy of problem types. The Problem-solving methods-he

86'
94

Fair.
You have to understand

. the problem.

Second.

Find the connection between
data and the unknown.

You May be obliged
to consider auxiliary problems

U ataismatdiate connection
cannot be found.

You should obtain eventually.-
' a plan of the aolutitar

UNDERSTANDING VIE PROBIL1
What is the unknown? What are the data? What is the condition?
Is it possible to satisfy the condition) Is the condition sufficient to
determine the unknown? Or is it insufficient? Or tedtutdant) Or
contradictory?
I5raW a figure. Introduce suitable notation.
Separate..the rarioui ?armor the condition. Can you wr4e therm dawn?

-

DEVISING A FLAN

Have you seen it before? Or have you seen the same problem in a
slightly /different form?
Do you know a related problem? Do you know a theorem that could
be uieful4
Look at the unknown! And try to think of a fanw.liar problem haring

=the same or a similar unknown.
Here it a problem relatect to yours and solved before. Could yoti use it?
Could you use its result? Could you use its method? Should yo'u intro-
duce some'auxiliary element in order to make its use possible?

.Could you restate the problem? Could you restate it still differently?
Co back to definitions.

If you cannot solve the proposed problem try to sot* first some related
-problem. Could you imagine a more accessible related problem? A
more general problem.? A more special problem? Adan4ogous problem? ,
Could you solve a part of the problem? K.ecp-only a part of the condi-.
don, drop the other parr; haw Earls the urs then determined.
bow can it vary? Could you derive some ng useful from the data?
Could you think of other data appropriate to determine the unknown?'
Could you change the' unknown or the data. or'both U necessary. so
that the new unknovin and the new data are nearer to each other?
Did you we all the data? Did you use the whale condition? dare you
taken into account all essential notions involved in the problem?

CARRYING OUT THE PLAN
nix& Carryins, out your plan the solution. cheek each step. Can you see

co7.77, out your plan. clearly t the step is correct? Can you prove that it is correct?

routth.
Examine the solution obtained.

LOOKINg BACK
Can you check the result? Cats you check the argument?
Carr you derive the rank diaererstly9 Can you see it at a glance?
Can you use the resuTar the method. for soingsther pritern?

Pigure 15. Folya's heurizttcs probleri solving. Fran PclyI, 1957.

4,

g5

r.

e- :-c.

considers include drawing inferences, classificatory trial and error,

using an evaluation function to choose an action -(hill

defining subgoals, deriving a
,.

contradiction, workinbackwards,from the
_ -1(ei

g,
..

goal, and recognizing the relations between.problems. His approach is

to deacribe in'general terms, -using formsl,representations

exist, a problem tise and the applicable prOblemr-solving Method andthen

give a serieof examples which illustrate that method. The examples.

are most often puzzles-Or mathematical problems that require,a minimal

oackground. Tne solution to each example is presented in steps 4. the

reader is instructed to attempt the solution according to the matt+ he

has just studied before he reads each step. The text for each step.

describes a heuristic tobe applied at that point, allowing the reader

to assess the heuristic he used or to continue on if-he is stuck.
;.

-Wickelgren presents as comprehensive catalogue of prOblem types

and methods as one could hope forAiven the present understanding of

problem salving. Two comments about the learnability of this

information can be made. First, it is exemplified largely with toy

prob em"s, a feature necessitated by the.fact that the book iiptended

fbr a general audience and not as a text for student entering a specific

,

discipline. Second, although each method is described very thorou ghly,

they are not explicitly interrelated. :rinds, it still could be difficult.

to 4etermine which method applies when a problem is' dted outside-

the 'context of a chapter describing' applicable j°thod.

Alan Schoenfeld, a mathematics ins ructo-has described in.an
*

unpublished repOrt.S1977a) a method for teaching problea-solving

.

heuristics for mathematical-proof that builds upon the work or Folya.and

Wickelgren and that he has evaluated in `a real instructional

" 96
4:

. I'

.

m44.

* .

He states that for a'student,to use a hedristic he must not only-,
i.. .

understand the procedure it 'specifies, but also .understand the subject

'
. ,

-
. o-

in which he is DO use.it'and recognize the situations In which it can V*
r .

.used: The iniovaaon in Schoenfeld's metb
i

qd is the explicit -..
.

' , //
,

- - , ...
.

,

arftculatioh of he calis-a managerial, strategy, a prescriptive ..

4.

.141

'model of the relationships between individual heuristics. The

minagerlalstrategy is yfught to the student' aka device. for monitoring

his p gress t 'hrough the solution to a problem andithereby focusrak his

nr,

attent on op the subset of tt h r st cs he knows thke maybe elevapet

at each point. Figures 16 and 17 are the heuristics and-6anagerial'

strate Schoenfeld used in a small course he taught.' His tentative
, fi. . :

1,
.

conclusion based on an informal study of the solutiams generated by
,. , .

students on examination problems was'that the students did develop.4

better ability' to select appropriate proof methods relative to students
. .

.

;.-

in standard courses of' thathematics instruction. '

Schoeni]1d, in a second unpub lished r4fort 1977b. describes

another small,' but more form l study evaluating his method for teaching

heitristios,`this time for calculus problems involving indefinite

integration. Fewer heurfstics/nd amore limited managerial strategy

are involved for this domain. Schoenfeld developed a brief text
4

describing these and tilusttating their application.. The text waft'givn

to half of a calculus cfais lour days prior to an eXaminati The

40
examination involved nine problems' seven of Which could be solved by

the methods 'covered in actibenfeld's text. The-students who received .the

text outscored those who did not on six of the seven problems, while the

two groups 'did got differ on the othft two pFobeis. Furthermore, the

* -

astudents were asked to record the time they spent studying for the

-89

7

NIP

ANALYSIS'

1) DRAW A DIAGRAM if at all possible.

2Y EXAMIME SPECIAL CASES:

a) Choose special values to-exec;lify the problem and get a

`feel* for it.

b) Examine limiting cases to explore_the range of possibilities.

c) Set any integer.paremeters equal to 1, 2, 3,..., in sequence,

and Tools for an inductive pattern.

.3 TRY TO SIPPLIFITHE PROBLEM by

a) exploiting symmetry, or

b) 'Without Loss of Generality' arguments (including scaling)

EXPLORATION

I) CONSIDER ESSENTIALLY EQUIVALENT PROBLEMS:

a) Replacing conditioneby equivalent ones.

b) Re-Combining the elements of the problem in different ways:

c) Introduce auxiliary elements.,

d) Re-formulate the problem by

i) change of perspective or notation

if) considering argumeht by contradiCiion or contraposit ve

iiiVIssuming you have a solution, anddetermining its
properties

2) CONSIDER SLIGHTLY MODIFIED PROBLEMS:

a) Choose subgoali (obtain partial fulfillment of the conditions)

b)' Relax a condition and then try to re-impose it.

c) Decompose the domain of the problem and work on it case by
case.

Figure 16. Schcenfeldfs heuristics for7eolving mathemati01
proof problems. From .Schoenfeld, 19778.

lot

90

s.

(Figure 16 (xilltinued)

EXPLORATION (continued)

3 CONSIDER BROADLY iDDIFIff) PROBLEMS:

a) Construct an analogous problem with'fewer variables.

b) Hold all but one variable fixed to determine that variable's'
impact.

c) Try to exploit any related problem which have similar

1) form

11) 'givens'

iii) conclusions.

Rerefter ithl dealing with easier related problems, you shOuld

try to exploit both the RESULT and the METHOD OF SOLUTION on the

given problem.

VERIFYING YOUR SOLUTION

I) DOES YOUR SOLUTION PASS THESE SPECIFIC TESTS:-

a) Does it use all the pertinent data?

b) 'Does it conform to reasonable estimates or predictiZurst

c) -Does it withstand tests of symmetry, dimension 4nal;sis,,or
scaling?

DOES IT PASS 1pfSE GENERAL TESTS?

4 can it be obtained differently?

13) Can it be substantiated by special cases?

c) Can it be reduced to iinown'results?

d) Can it be used to generate sorething you know? .

ti

'91 99

I

4

SCHEMATIC OUTVNE OF THE PROBLEM-SOLVING STRATEGY

Given Problec

AMLYSI S

Unclerstandipg the Statement
Simplifying The Problem
Reformulating the Problem

lseful FOrmulation;
Access to Principles

and Mechanism
,

DESIG.

Minor.

Difficulties

Bore s. able
Related Pi.obl

or,

new. Inforostion

Structuring the Argument
Hierarchical Deezmposi :
global to ?pecifie

Scheqatic Solution

IIVLE1EHTATI

Step-by-Step Execution
Local Verification

Tentative Solution

VERIFICATI

. Specific-Tests
General Tests

Verified Solution

/Of fficul

EXPLORATION

Essentially Equivalentits Problems
SliOrtly Modified
Problems

Broadly Modified'
Problems"^r

Figure 17. Schematic representation df Schoenfeld's managerial
strategy for mathematical problem solving. Fro& .
Schoenfeld, 1977a.

91a
100

4
examination and those who studied with the text spent less time on the

average.

Schoenfeld's results, though based on a limited sample, do ..

suggest that heuFistics can be taught Urectly to advantage, provided

they are taught to the context of the dbmaSo in which they will be used.
-,

0

subsequently- and they are explicitly interrelated within a 1lVser

1

strat.:dy that predicates when each is applicable. In.th next section,

we present a study that investigated whethera direct presentation 61

heuristics can be used to teach inexperienced prpgrammers how to debug.
I

-

101
:192

IV. Directly teaching debugging heuristics: an experimental, study

Rationale

IA examining chronologies. of debugging behavior we found that

the difficulties of inexperienced programmers are due as much to their

lack.of a rational general strategy as to their unfamiliarity with the

declarative and procedural knowledge needed to understand programs and

to opAate in a specific programming environment. In this section, we

dilcugs an experiment we conducted, in which weattempted to teach

directly to inexperiedced programmers a fewlbeuristics that are part of

a useful (though possibly cons4rvative) debugging strategy. The
qta

Aperiment was intended more to be an exploration of methodology, than a

definitive test of whether it is. worthwhHe to teach representations of

procedural knowledge directly. At the outset, gbitations on our access

to subjects over an extended period precluded any attempt to teach'a

complete debugging strategy, or even to teach part of a strategy

A
thoroughly in a natural instructional situation Instead, a brief

tutorial text was developed to presena few relevant heuristics and

subjects/studied it only briefly in an experimental setting prior to

attempting a few test problems. Thus, we-knew that whatever tide results

of the instructional treatient, the adequacy of the pedagmgy used to

communicate the heuristids'could be questiAmed. slionet less, for a

first attempt to teach debugging heuristics tt was, ot unreasonable to

test a minimal instructional'method. Possibly/the results would

indicate that mere identification of general debugging heuristics is

,

sufficient to 4odify.tye:behaViorp inexperienced programmers (61., if
.

they already "knew" the heuristics, but. needed an eternal cue to make

them mare'readily accessible when needed). In this case; the costs 'of

develciping",more substantial, but unneceramv, instructional methodology

could be avoided. 9

The overall plan of the experiment was to compare the-behavior

"of two groups of inexperienced programmers on debugging problems, ape of

thi groups studying and referring to the tutorial and the other

4e
receiving only same unassisted practice in debugging. Data analysis was

r.

to be exploratory, with a goal of identifying measures that could

indicateithe role of the debugging heuristics in subjects' problem

solving.

Debugging tutorial

The debuggig tutorial we created presents light "guidelines"

that are part of a general debugging strategy. Following the guidelines

will not always lead to the most,eificient debUgging Nit for an,

inexperienced programmer without much specific debugging knowledge they
A,/

will tend to reduce 'false starts and to Delp determine a course of.

action when he is "stuck." The guidelines can be seen as elements o

three encompassing heuristics for (1) testing a'program sufficiently to

detect errors, q2) generating a thorough characterizatiOn of an error's
.

9
Schoenfeld's reaulta-on,teaching heuristics for maihematical.-

proof problems (described in4he prviions section) became svailable,only
after the experiment describet here was underway. In any case, there is -.
a basic difference betweewfienristics for proof and integration piob
and those for debugging. ,An the proof problems, asingle applicable',
heuristic must beeselected; the subject's main problem is recognizing,
the features of a oblin that'make a specific heuristic applicable. J.11 .

debugging, the us O

tPT

Vseveral heurtstics must be coordinated at severalT
points in everylp oblem; the main problem in debugging,is.remegberibg.tct
LISA all of the heuchitics. Of course, id VOth cases the heuristics -aunt

,be used appropriately.
.

.1- .
,

. .

k

AP

.

manifestation, and (3) backtradking.from unsuccessful, repairs. A

summary of the guidelines from the tutorial is shown in Figure 18. The

number next to eacp guideline indicates which of the three heuristics it
.

is part of. The heuristics were decomposed into separate guidelines to

facilitate tOeir comprehension. The guidelines are shown in Figure 18

in the order in which the tutorial introduces them. This order reflects
L.,

that in which the guidelines are applicable'¢urin each iteration (or-
,

recursion) of the general debugging strategy that was described th

Section II.

I
The eight guidelines were formulated to correct the most

frequently observed strortcomings we had previously identified in the

debugging behavior of inexperienced programmers. Ali of these

guidelines, except perhaps for those concerned withybacktracking, have,

straightforward mappings onto other troubleshooting situations, like

electronic and mechanical maintenance and repair. For example, varying

'a program's inputs is analogous to varying the inputs. and external

conorols of electroac and mechanical devices.

The tutorial (Appendix A) is a rather miniinal piece of pedagogy.

In a linear narrative mode, it introduces each guideline, giving a

rationale for its use and a specific debugging scenario that illustrates

41/

its successful application. The examples are intended to demonstrate

when it is appropriate to apply the guidelines: having .problem solving

heuristics'available is of little'use-if one does'not know the

circumstances under which they should, be applied. The exImPle programs

were taken with, slight modification from the programming chronologies We

had examined earlier. The narrative for the examples was developed in-

part from the written commentaries we had collected from the

"104

A

r

TESTING THE PROGRAM

I

.(i) TEST THE PR4GRAM WITH ALL POSSIBLE TYPES OF INPUT FOR WHICH
IT IS DESIGNED

.

(i) . TEST THE PROGRAM WITH THEOEkTBEME VALUES THAT THE
INPUT CAN HAVE

. \ t,

' CHARACTERIZING THLIERROR

(2, CHARACTERIZE THE WAY THE ERROR(S). SHOWS UP IN TERMS OF THE
INPUT AND OUTPUT 4, .

(2) EVEN If' A-PROGRAM IS SHORT AND TO TRACE BY HAND, YOU
SHOULD FIRST RUN THE PROGRAM_ (OR MESSAGES, AS WELL AS
A CkARACTERIZATION'OF THE ERROR IN TERMS OF INPUT AND OUTPUT,
CAN BE VERY, HELPFUL IN FINDING AN ERROR)

(2) SOMETIMES A PROGRAM GIVELTAE CORRECT OUTPUT FOR SOME INPUTS
BUT NOT FOR OTHERS. WHEN THIS HAPPENS YOU. SHOULD EXAMINE THE
DIFFERENCEiS) BETWEEN THE INPUTS FOR WHICH THE PROGRAM WORMS
AND THE ONES FOR WHICH IT FAILS.

(1) AFTER A CHANGE; RETEST THE PROGRAM USING ALL POSSIBLE TYPES
OF INPUT FOR WHICH THE PROGRAM WAS DESIGNED.

(3) IF YOU MAKE ,A CHANGE TO A.PROGRAM,' AND IT STILL. GIVES THE
SAME ERRONEOUS OUTPUT; RESTORE THE PROGRAM TO ITS STATE
BEFOR THE CHANGE. 'YOU HAVEN'T FOUND THE ERROR(S) IN THE
PROGRA AND. YOU MAY HAVE` INTRODUCED A NEW ERROO.

.% .

(3) IF YOU ARE'A CHANGE TO APROGRAM, AND THE OUTPUT IS STILL
WRONG: iF- THE CHANGE CORRECTS ONE PART OF THE PROGRAM Je.g.,
one par of. the-output), THEN LEAVE THE CHANGE IN .THE PUOGRAM.

.

4
Figure'IB., List of "the debugging guidelines presented in the debugging

tutorial. Numbers in parentheses indicate grouping of
guidelines into three encompassing heuristics for testing,
characterizing, and backtracking. ,

.136

105

.1

inexperienced programmers:eho had tried to debug them. The commentaries

contained instances.of-both prOddctive and non-productive reasoning

useful for illustrating how the guidelines could help duringdebugging.
*

By using examples `with errors' and problem-solving introspection
. -N

actually produced by inexperienced programmers, we hoped to.creatq a

*
text consistent with the experience of subjects wp would employ. Other

than indentation and emphasis, the tutorial makes no Use of text

engineering techniques like hietarchicai-outlining or Systematic review

which might improve comprehension. In fact, the tutorial assumes a high
4

level of literacy and motivation. These were characteristics we

expected of the undergraduate who would participate.as subjects and we

p chose to make the 'text consistent 4th their aptitudes. We did create a

brief optnbook test.(Appendix B)yto ac&ompany the tutorial so that these

subjects could monitor their comprehension and determine their own.

review strategy.

Procedure

4.

b ects The,subjects were twelve paid volunteers ftom a group

of 21students who completed fifteen fours of curriculum in the BIP

course in the weekp priorto the experiment. at the time oihe
1

experiment, each subject hid written seven°l dozen shoit programs within

BIP, but had no other programming and debugging experience. The

subjects4were recruitedapproximattly halfway through their

participation

Pridr

Computtr'Prog

their scores,

in BIPe

to befiinning SIP-, each subject had been preteste4 with the

rammer Aptitude Battery (Felormo, 1964)-- On the basie:of

tie twelve subjects were divided into two "matched" groups

106
6

#'
\

:of six subjectS each.' This waa done in an attempt to control for

pie-existing differences that might interact wi'th,the experimental

instructional treatment.1046.

Experimental environment, All experimental sessions were

conducted in the same setting in which subjects had, werked with BIP.

All experimental test exercises were conducted using BIP's programming

facilities (of course, those facilities specific to the BIP,curriculum--

e.g., HINT-- were inoperative for the test exercises). Two;CRTk

terminals were available, allowing either one Or two subjects (always

from the same experimental conditionto be scheduled for experimental

sessions.

An experimenter was available through"ut the sessions to help

with Rrocedural problems .(e.g., loading exercises into the subject's

program space in BIP and recovering frdm system crashes) and to list

hardcopy of test programs for 'subjects upon their request.

Method., EachPsubject participated in three,sessions. Session 4

was the (different) tteatment/testing session- for the experimental

(TUTORIAL), and control (NO-TUTORIAL) groups. Sessions 2 and 3 were test.

sessions identical for both groups.

Session I fo'r the TUTORIAL subjects began with ext

introducing the general logic of troubleshooting /debugging (Appendix C).

The subject was then given the tutorial text Asenting the eight'

/

=4.111111.0111
10

Scores reflecting-ability after BIP would have been
preferable, but could not be used because time constraints-required that
each subject)ateginthe experiment as soon as he couipletedihts 15 hours.
in BIP. Thus, astigiment to tteatment groups had to §esmade while
subjects were still in BIP. Subjects did'take a programming posttest
after completing Bt and before:participating in the experiment.
Subsequent analysis see Results below) indicate that the two groups of
subjects differed markedly with respect to the posttestfscores.

S

1
,r

guidelines, to study for bne-half tiour.- After study, theopen-book 'quiz

was Bien and the subject reviewed the text as necessary to complete the
.

,

_
(1-

s 1
N. 1

quiz. The subject thewmayedto the terminal to work a debugging
,

,_
..

,,,, ,
problem. He was given (in his _program gPaCe) a program and,a written

description of its intended functi6. He was told thar.their was1 ,
}se

,

something wrong with the program and that his task was to change, it so.

,i

* \

0

that it worked according to the description, The ,instructions

0 ,emphasized that the necessary changes were minor and that hYwas,nor-to__,
el

.

uxite his own program to satisfy the description# A time limit of
. %. 4 -.

one-half hour was, imposed for this debugging exercise: .
..

The test progrhm was an\atypical solution to a task In the BIP

curriculum calked CHANGER. All of the subjects had worked on this task,

but'had used algorithms different from the one in the exercise. CHANGER
/

it supposed to askthe use\koka purchase price les than one dollar
=

and print the amount- of change and the' list of coins dtegdec to make that
41.

amouneorchange most efficiently. The bug in'the test exercise*

manifested itself as an incorrect list of coins whtaever two diqes were

required as part of the answer (Appen4ix.D).

Session I for the HO -TUTORIAL subjectsxbegan with a briefA
4

descriRtiOn of their task -. The dubject.th n-wss glyen one-half hour' to

work at the terminal on the first of two debugging exercises, Again;
,

the exercise involved a malfunctioning progtam; sr description ofits

intended function, and instructions to seek a minimal repair. The

prograirwas ond'of those used as an example 1.1% the tutorial to

illustrate the use Of thi-guidelinedlor detugging. It waschdten-as an

exercise for the HO-TUTORIAL group in order,eo minimize.differencsidin

knowledge about specific programs and bugs. The)second debugging.

kai

- A

": .

exercise, given'during the: second onef hour, of Session 1, was the

6HANURprogram given to the'TDTDBIAL idbects in the secondhalf of

their first session%

Testing in Sessions 2 and 3 was identical for both groups,
,

,. -

except that subjects in the'TUTDRIAL group, could refer lo the tutorial _

,

text as they pleased; The exercise.given vin Session 2 was-to write a
.

program DRILL (Appendi,& E). DRILL, a prdgram to provide

drill-and-practice in addition'and'aubtraction; was longe.
- .

more extensive control structure than.any program that
.

.

required to write in BIP. The necessary control structure was such that

the guideline$for program testing givenin the tutorial could

I

4

ilea§

444
e

ly he-expected.to facilitate its successful impIementatiiin, Twor
hours were allowed to Write the program. If a,subject completed the

ptogram,within one and 'one -half_hours, the experimenter tested it and._

-- informed the subject simply whether it did qedid not 'Satisfy. the
%

specifications. If it did not, the subject was allowed theemaining

time to complete (or debug) his program; This was done to provoke

Uiuggingin Cases where a. subject had not been able to detect a bug

his own progiam.

The exercise given in. Session 3 was to. debug (under instructions
' -

identical to those for the debug4iog exercises of Session 1) a peogtam
N 4

,

ARITH-CALL which had been written and "bugged" by one of the research

team (Appendix_E)% ARITIMUC was designed to ev4uate in Strict

left-to-rigorder strings'rCI epresenting numeric exuessions input by a
* 4 4

4 .

user. (IIP's dfalect of BASIC has no automatic type-codversion
.

meghaniam.YAgain, the program was longer and more complicated than

4
AOse -required-65g the BIP curriculdm or used in thi tutorial and

,
-C-

100109
.4a

ti

v.,

Session.. In particular; the algorithm almost cer tainly was unfamiliar
,# -

to all the subjectsand difficult for them to.trace mentally; although /
.

, .

no specialized background knowfedge is required-ta gain an understanding

of it. ARITH-CALC. and-its bug werg generated so that the tutorial .

ididelines for characterizing an error'in terms of input-output

relationships would be relevant foi efficient solution of the exercise.

The bug does' not manifest itself for every input and the discrepancy in

the output value varies as a functionof the arithmetic:operations and

their order in the input string. Subjects were given one and one-half

hours to complete tpe exercise.

.

In all sessions, data on each subject's programming and

debugging behavior was collected_automatically (aud.invisibly to

subjects) by-BIP's chronology facility. rn addition, subjects.in the
#

experimental group were given a written questionnaire at vIg. tonclusion

-0-of Session 3 designed to elicit their reactions to the tutoral-and the

--experiment (Appendix G).

C

Results

Otis efforts at erlibr stages of fhe research to.derive.

debugging grammars to describe-BIP chronology data had been

.

unsuccessful. Therefore, we did not'have available any comprehensive

mechanism for analyzingt,the chronolagies collectedin the experiment.in

order to describe differeftea between subjedts' strategies. The type of

' analysis we conducted was thus much more limited,than we desired. The

present expe-riment was conceened specificallY,wfthAI) whether the
.. ,..0

behavior of subjecti"in the TUTORIAL group would ref lect1 their attempted
...

use of the guideliiiis given -in the, tutorial tdkt and, (2) if so, the,
.

I01' no

I

extent to which the guidelines were in fact acquired from the text'
#_

rather than inferred from prior experience (as determided by comparison

with the NO TUTORIAL group). The chronologies were analyzed Ao 'assign
t

values to five relevant "measures" for each exercise.
.

CO adequacy of solution
(b) detection of bugs via program execution- '

(as,o0osed to mental analysis of the code)
(c) characterizationof bugs.via extended program execution

revealing input-output relationships
(d) extended testing of attempted program repairs
(e), backtracking from unsuccessful repairs.

The measures represent the success of the attempted solution add the

extent and success with which-the heutistics encompassing the guidelines

were applied.

Each measure,%fas assigned a value "+" meaning "done

successfully" oar "-" meaning `either "not successful" for .a or not

attempted" for b-e. Measures b-e could also be scored as "0" meaning

:attempted, but with unsuccessful results." For instance, a "0" value

would he assigned to leasure b if a subject ran'the program several.

times with different inputs, but failed to find inputs that caused the

bug to manifest itself. In addition, some measures could be scored "NA"

'meaming "not applicable"; for example, if the suhject neVjaftempted

repairs, no score could be assigned to measures- d and e on that

exercise.
A V e a

Determination of scores for measures b-e from the chronologies
.-

proved to be-a ratheecomplex.judgement process. There are na,singolar

events in the chronology for an exercise eqai determine unambiguously

the value's of-these four measures. For example, whether or not a

subject actually characiefized an error in tetms of the inpUt-ottput

O

. _ \

. relationships obtained bx,his execution of a program can be determined

only by exaMining his subsequent repairs and the other events leading up

. .

to them. in a sense,..the-scorer had to try 0 stipulatetthe reasoning

; - . .

underlying the subject's actions and see if it was consistent with a
.-,

.
. . Y

hypothesis that the error had been charatteTI.zed in t4us of
.....cio' . .- .

.

4R06 ihput=oUtput,rerationships. A further co lication is that an attempted
...

solution pay involve more than one debugging cycle,-or episode. In

these cases, scores foi.ithe matures were determined by judgement of the

/e.

predominant behavpr across the episodes.

o
In order to edice iaI bias in this subjective scoring

process, chronologies (which contain' repe ated information identifying

subjects) were scored primarily by a member of the research team not

familiar with the assignment of subjects to groups. However, no data

t.
was on the intra- and inter-judge reliability of scoring for the results'

to be presented.

1

kesults will be pre
i
seated here for the debugging exercises

.,-

t

CHANGER ,and ARITV-CALC attempted by both groups in theSeecond half of

Session 1 and in Session
-

3 respectively. , Behavior in the programming

exercise DRILL given in Session 2 proved impossible to core with any

degree of confidence because Of the great lariabili6, th which

subjects approachedtt; Some-subjectsi'in fact, never implemented

enough of the prOgrem to, execu te it and examine any_output. Others

p

, .

varying debugging behaviorin different episodes within the exercise,.

ced,executable piecereVa solution program, bur Showed ;widely'

Given these difficulties and the fact that.there were no diffrencesLin

140 the number of correct (or Alice; coredt solutions)-- measure a--

;*
bet4een the TUTORIAL and NO TUTORIAL groupit, it see _pointless to

score the chronologies for DRILL with respect to mikoures .

.103

11 2.

/.

lo

4

Tables 2a-An4.2h present the five scores on CHANGER and

ARITH-CALL and also the LIP pretest and posttest dcoresfor each subject

in the TUTORIAL and NO:-TUTORIAL groups, Most striking is'the poor

performance of subjeces*in both groups as indicated in coknon a. Three
;

members of the ToTORiAL group and two -members of the NO-TUTORIAL group

Solved neither of the probtems. In each group, exactly five exer4ses

were completed successfully. Thus,..le in structional treatment forthe

TUTORIALigroup does not seem to have impr their debugging ability as

. measured on two test exercises specifically fArmulated to be sensitive

to thatiinstructionl Unfortunately, however, even if there ydb an

effect of the treatment, it bay have been obliterated by a difference
4,

between the ability>of the groups at the time they began the experiment.

Recall that 4e groups were matched using the BIP pretest scores.

Inspection of the posttest scores, woillible to us only after some

'subjects had begot} the experiment, shows that a large difference ip

-
programming ability existed for the'two groups. By chance, the subjects

assigned'to'the NO-TUTORIAL group had become much better programmerS on

the average.
II"

Thus, if the tutorialdid improie debugging ability, the

only' effect may have .been to cancel the initial difference between the

experimehtal ana control groups.
12

'a:7:V
.w: i 4 -5---li G

., The small sample size precludes a meaningful statistical
evilluatinn of the difference; howe4er, in our experience, such a large
diff'dence in posttest scores does have practical significance and
correlates %fith subjective impressions of programming sophistication. r

12 ,

An attempt was M tade o obtain "difference" scores for iach,
subject in order to see'if the TUTORIAL group showed elarger '

improvement in debugging.abiaity relative to their ability before .

studying the tutorial. 'HIP chronologies for the final few BIP tasks
worked by each 'subject were examined. However, the vkriability.in these
chronologies resemblearthtt found in the transcripts for the
expetimintslDRILL exercise. Thus,.it was not possible to score the
pre-ekperimental debugging episodes witlianY confidence and thereby to
pbtain the desired difference adores.

S

BIP Test Scores
. for 1.1.1.1 AL Group

le 2a'

Debugging Yeasures

z

Bp
Subject pretest poe

316 116

317

3

Debugging)easures*
Task a b G `d.e

EA +

Arith-Cale
t

Changer + NA

AritE-Cale + + + +

322 131 231 Changer + +

itrith-Calc +

324 102- 111 c Changer

'-Arith-Calc

333 ' A 79

3140

4. I

0 NA NA

0

89. dhanger 0 NA" NA

Arith-Cale (.) + 0 0 +
iS*

Changer + + + NA

Arith-Calc + + NA 0

0

*Key: Measure definitions
a 'solved problen
b -detection of bugs via Kos= executio
c characterizatiim of hugs -via exte ed program execution
d extended testing of a: repairs
e backtracking fron u*uccess. repairs

Yeasure scores
+ successful Ai

not sitceefsful (aj or not attempted (b-e)
O . attempted, unsuccessfully (t-g,) d

ItA not applicable in solution context
1 --

105

4'

t

114

p

'N.

I

I

7

c

4

Table 2b

BIP Test Scores and Debugging 13easeres

for /10-71DOREAL Qroup

9.

a 'Me NIP
Subject q pretest posttest

DebuggingYaasuzes*abed
311 113

319

332 115

337 ac4

130

771 Changer es All ... 0

Arith-Calc - + Q 0 0

&15' Changer, + +- -

Arith-Cac + - 0 `+
.

237 Changer + + + riA

Arith-Calc

Changer

Arith7Calc

Changer

Arith-Calc

+ 0

NA

0 0

339 .
117. 242 Changer NA

Arith-Calc

_Azure definitions

a doived problem

b ,,detection of bugs via program execution
c characterization of bugs via extended program execution
d extended tpsting of attempted repairs
e backtracking from =successful repairs

Measure, scores

suede f41 we v
- not s (a) or not attempted (b-e)
0 attempted, unsunteesfUlly (b-e)

not .applicable in solution context

-106

115

e

*

e

The completion times for the correct solutions to the CHANGER

'and ARITHtCALCeiercises.were !lso examined to evaluate the hypothesis

4
'that the TITIORIAL.group-would debug more rapidly than the NC-TUTOR/AL

/

group. TheobserVed'mean completion tine, however, was shorter fill- the

NO- TUTORIAL' group, primarily because of Subject 339. As i dicated

his postitest's'ore in Table I, *is s ct was the most proficient

p eogrammer at the tine of the expieplient.(yd was also unusually '

.motivated, being one of the few students in 13IF who haegenerated his 1C

own programming exercises to4supplement BIB'S curriculud.) He correctly

debugged both CHANGER and ANITH-CAC in short order, characterizes,
a.

locating, and repairing the errors apparently in...analysieof the program

code with littlelatention to the,data provided by program execution.

Thus, the debulging exercises, h were difficult for the majority of

subjects, seem to have been too ea y o tax the ,ability, of Suilect 339.
117.

Consequently, the data do not indicate that the TUTORIAL group debugged.
e

core rapidly.

Returning to. the measures in Table 1 for apparent use of the

heuristics given in the tutorial, there is kiwginal evidence that ev

if the the TUTORIAL group did not solve more problems (or solve t en

more rspidy) than the NO-TUTORIAL group, they did attempt to pply the
,

.

I

e v.
guidelingi for testing And debdgging. The columns labeled b-e

correspond to the measures described earlier. Colbmn b indicates

whetter program execution was attempted and successfully caused error7
r

,I manifestations iefore the subject engaged inuother debugging activitie* . '

For TUTORIAL subjects, such detection was successful in every case,
(.

except ode where the program was executed several times, but the input,

used did not cause error manifestation. While N0 TUTORIAL subjects also

did so fre4mntly, in 3-cf.the 12 cases they did not.

107116

&

=Column c indicates'sharacterization of errots progihm
-(

executiqn sufficient to elaborate a description of,thd malfunction.

TUTORIAL ubjects attempted to do so in 11 of 12 Cases, although in 4 of

those cased the attempts were judged to be inadequate; the' corresponding

results for ,zhe NO TUTORIAL group are 6 of 12, with 2 inadequate

attempts.

'Columns d and e are the measures of repair testing and

backtracking from unsuccessful repairs."-. Both groups show equiv alent

evidence for such behaviors. s

Examining measures b'just for the exercises that were
,

.cotpleted succes ullyAmeasure a), it is interesting to note that for
,.

'1-1

the TUTORIAL group all of the guidelines were applied inieach of the

five cases. Far 'the HO-TUTORIAL group, in 3 of the 5 correct,solutions,

the behavior prescribed by one or more of the guidelines was not

obseryed. On'the whole, seems that the subjects who studied the

..14\ tutorial did try use the guidelines. however, the data Cram the

NOLTUTOR/AL group does suggest that a majority'of student programmers

withthe experience level of our subjects have already induc,ed most of

' thd guidelines (or similar heuristics). The differences-between the

group's are small and'allow no strong cenclusiond.

simply have served to amplify and organize parts

r /

The tutortsl text may

of a strategy already

known to the subjects who studied it. .

The written comments obtained.from the TUTORIAL subjects at .the

conclusion of Session 3 provide some help in determining the effects of

thi,text-es their behavior. ,Fieur'elA lists the more in6tmative-..

rema that subjects made to Items 4-7 shown in Appendix G. The

comments about ,the tutorial are positive for the most part. With the4-

-08117

M

-2.47

.1'

S.

Do you, rave arri.s.uggeitions (criticisms), in' general, regarding the manner
of presl-ntation of the guidelines?

324-- Should have been.more time to'study them.

mmi
WOUld it have been better if the guidc.lines had been given to you.before
you finiihed the BIP course?

316-- Perhaps better in the long run. Actually ended up doing tbe things.in
tibe guidelines as time went on. , Of course, having t} given to you
right awai:is less time consuming since you don't have to grope around
trying to decide what to do next.

317-- It =ay have helped, but n of the programs in the course were that
complicated that. it was ,necessary, and most if it was fairly obv(ous.

322-- Didmit tits:117 need it in BIP itself *except for complex p

32. -- Y.+, I could have studiedlthem at my leisure and really learned them
well.

C

-- Doesn't =like that much difference-- for B1P we didn't have so much
as to debug programs. It was pretty mrtch'follow the examples.

30-- Sot necessarily, these guideltries are pretty basic things to do and
self-discovery is probably as useful. 7

D y.0 think it would be useful to have BIP introduce this material as part.
of the course? .

315-- Yea.

317-- Yes, Its good to kn6w.

322-- Yes, before presentation of complex problems.

321.-- Yes.

333-- Yes, it does help a.bit and might relieve the frustration of not haviiig
a program work and not knowing how to go about finding what was wrong.

340-- Perhaps.

11=-Or elpa.

Other comments.
'

322-- The last 3 sessions made debuggi
more manageable.

seem a much more_prderl,y process p^

Figure -19. Replies of subjects in- the TUTORtAL group to questions
in the post-experimental interview (Appendix G).

109

1 8

exception of Subject 340, subjects thought that_the guidelihes were

valuable k owledge,'although.they were-not in agreement about how useful

,they chu d be for completing tasks in the BIP curriculum. Several of

the subjects recogtized that the guidelines are knowledge that they had

or would'have acquired indirectly through experience, but

.,
thought that

the idea of teaching such knowledge explicitly could be more efficient.

The debriefing data does point to the inadequacy of minimal

instruction, such as our tutorial for insuring that heuristics will be

learned and used by stilt:its who need them. The ratings given by

subjects on items 1 and 2 of the debriefing questionnaire suggest that

(1) they did not find the tutorial especially useful for the test

exercises they worked-in the experiment (five "3P's and one "2"),
p

' (2) they thought they

of,the time (four "3"

that the two "2'"s on

were f011owing the guidelines most, but not

's and two "2"'s). It is very interesting to note

item 2 came from Subjects 324 and 33344,;ho had the

and

all,'
1

lowest posttest,scores In the TUTORIAL gioup (Table 2a). This.again

suggests that'the students who had the most to gain from the guidelines

could notor would not use them consistently. These two subjects were

41w .. t

the only ones who reported referring back to the tutorial while they
s .

, worked,' and 324 was the subject who remarked that

time to learn the guidelines. The other TUTORIAL

know the guidelines, but failed either to use all

as they might have or to use them appropriately f

bison and'Oonclusions. CI

he del not have enough

subjects seemed to

of them as regularly

or the test exercises.

The reVults of tie experiMent serve to illutinete.Mthodoiogical

issues more.thaa.to answer the question of whether it is worthwhile to

Lzb

teach debugging heuristics directly. Both the chronology data and

subject's comments hint that TUTORIAL subjects recognized the value of

the guidelines and tried to use them, but provided no evidence that they

bec better at debugging prwams. The comments are most encouraging,

but s ould be weighed cautiously, since the conditions of the experiment

' may W I have prompted the subjects to tellus what they thought we

wanted to hear.

As noted earlier, we were-aware of some methodological problems

011
at the outset of the experiment, and our subselliuent experience has.

highlighted these and some other problems thatmust be solved before a

substantial evaluation of,paching troubleshooting/debugging strategies

directly cad be conducted.

One problem is developing a pedagogy for teaching heuristics--

for teaching procedural rather than declarative knowledge. Although we

could rationalize a first attempt involving minimal instruction, we

anticipated that the limited study of the tutorial, isolated from other

instructio n in programming, would be insufficient for precisely those

students who most needed to improve their debugging-- the students who

had as yet not induced a viable-strategy IT their own. It is to be

expected that meaningfullearningf complex knowledge requires

considerable time-relative to thselearning that takes place in

laboratory studies of learn ing. Qur Situation of having limited ac ess

to student's time is, of-course, the rule rather than the exceptiOn n a

basic'reseaTh setting. There is a "tatch-22" of sorts in effect: it is ,_,..
,

. .

difficult to persuade and possibly unethical to compel tuitionpaying

OW

students to participate in an Upvslidated,,innovative instructional

program, but one cannot provide the needed validation without testing a

sufficiently large and representative first group of .studentat

"120

It. is usually possible (as we did) to gain the_cooperatiomof a

small group of volunteers who*tend to.be either students having

difficulty and peeking any means to improve themselves or students who

are unusually bright hand motivated.' Thede individuals are not

representative of the student popuLtt101. Furthermore; small groups-of

volunteers .do not allow for statistical tests of,hypotheses Which are

needed to validate an instructional treatment.

In Bode cases, it is possible to gain access to a large student

population; for example, if the researcher or s9mpathetic colleagues

teach a course into which the new material can be integrated. However,

there are ethical issues that Burro

tuition-paying students in experimen

sponsored research programs rather t

initiative. If the_ effectiveness of

-then students` hould not be compelled

effectiveness is highly probable (and

d the covulsory participation of

al courses: that are extensions of

n prodt(C0 of ap instructor's

he instruction is very tentative,

d participate. If the

the experimen ng. conducted

only to collect supporting data), then holecan a control grcAlpthat

receives less than the best-instruction for their time and tuition be

justified?

A second methodological problem we encountered is to determine

test exercises that will be sensitive to differences that might result

from the nstructional,treatments. The volutions to debugging exercises
Alb

like those we used require general knowledge of a programming language

(e.g., usro and of a supporting computer

addition, idiosyncratic knowledge acquired

applicable to a solution.. Therefore, test

system (e.g., BIP). In

from prior debugging may.be

exercises intended to

indicate the role of general debugging heuristics can neither be too

=

elementary

familsiar),

,nor,too,advanced.' f they are toot elementary -(and hence

idiosyncratic knowledge may enableen immediate-solution

solely by recognitioh. If the exercises are too advanced, then the

student subject's limited competence with theAspguage and4Programming

*
system may prevent him fro, using heuristics successfully. .

.

11114- ..0,, 4
,rhea;Anothei ts4ted problem.is,khen, '4relative to instruction in a

.

programming language, to4ntroduce instruction on general debugging

heuristics and test'for.its'effects. If the instructioh on heuristics

and testing are too early, then students will not understand how to

apigy the heuristics_ and test exercises will be too'difficult for

heuristics to have an effect. If the instruction and testing are

delayed too long, then therd will be significant differinces between'

students' knowledge of the heuristics induced from their prior

'experience. In addition, test'exercises dificult enough to require use

of the heuristics (and not merely perti nt idiosyncratic experiential

knoyledge will be so complex hat analysis of subjects: behavior will,

be tide more troublesome. The appropriate time to introduee the

heuristic instruction is when the students have a minimally sufficient

background that allows them to understand and use the'heuristics, but

not torhave realized them spontaneot.isly. Discovering the features that

identify that poinrib time is the problem of course.

In our experiment, prehentation of the tutorial and testing of

I
it effecti were probably too Tate for the few general heuristics we

wanted st dents to learn. The behavior'of the NQ TUTORIAL group and the
.

comments of the TUTORIAL group indicate that many 'of theSubjects had

already inferred some a 'the heuristics included in the tutorial from

their fifteen ,hours of progrOming experience in BIP. ,For studen

c.

learning BASIC in BIP, presentation of the tutorial (or..other

instruction on debugging} probably, should commence from 7 to 10 .hours

iteo-the course. At that -gat, motI, studenta.have worked with-all the

major, constructs of BASIC and' are familiar with the facilitips of the.

BIP siatem, blit have workedkon only a few programs complex ehough for a

general strategy to be useful.

A mostlun4amental problem For studies of the effects of

teaching general debugging heuristics remains the anal4y is of

problem-solving data. In attempting tvaluate th role and effects of

general heuristics in debugging, one is in fact trying to charactetlze

not just the'result of the probletiraolving process, but the process -

itself. Iii analyzing the chronologies, for the test exercises in the

experiment, we found that simple tabulations of behaviors such as 1

listing or running a program are not reliable lendicators off tfie strategy

being applied by the subject. Only by examining the - structure and -

content of actions comprising target episodes werelweAle to judge

tt,

whether particular heuristics (were applied and their contribution to-
(

:>
.'' 1i6.4hultimate solutiodh. The role of content, or semantic the scoring 4

process irtually precludes automated chronology analysis.

In our experiment, the collection of "thinking aloud" protocols ;

_from subjects as they worked test exercises might .have provi a ata

that would have increased the reliability with which chronologies we e

scored. However, thtp' would have increased the already substantial cost

ordate analysis. For experiments with sample sizes great enough to

allowlatatIstical evaluation of measures abstracted from chronologies,

the cost of,coilecting and examining thinking- al'oud protocols would seem

prohibitive. 'Furthermore, for a large-scale udy integrated into a

, k

1423

(
, . . r-m"'N

real-life Instruoyiral system, the collection of thi' ing-:aloud
f 41) .

'protocols bread destiny the advantage of inobtr' ness ottaineeby the...Ok .6,

''invisible" recording of programming chroffologies.

.

Further sma,11-scale studies :tat described he re could

.Kovide a relatively, et+ormar and subjective, evaluation of materials and
'

4

methods foi teaching debugging knowledge in an explicit manner. The
.

main problems/remaining to be solved are how to determine sensitive test

materials and how to analyze complex problem-solving data

eiftprehensively and reliably. Although we were unsuccessful in our

c efforts, one goal that should lie pursued is the development of, process

models for describing debugging behavior in specific domains. Such

models could be employed to represent changes in an individual's

behavior as the result of in%truction, and to oontrast-the behavior of

individuals in different instinctional treatments.
0, .

f

As for a large - scale-, formal statistical, evaluation of whether

teaching debugging directly isworthwhil, there are additional.

problems. Since the constraints of academic research make it difficult

t

to gain access to a,large, representative btudent sample, instructional

developments should probsibly be evaluated outside the research

environient. Once an informally validated method for teaching debugging
Ift 4

,available, it shatid be integrated into a real instructional program.
, . ,

.

- -. .

' Because of the methodological and ethical difficulties of conducting
.

?"4 - .
-

,.
.* 4 .

multi -grogp staties in an actual educational setting, evaluation. of
t r aa, a II .

'student performance would best be Made relative to previous groups of-

-e students. Even if these problems- can he miereome, the data analysis

problem remains. It is unlikely that intensive methods suitable to 41.

small -scale studies (e.g., prpcess models) will be feasibleAfor large

115 124

a

op

1, 1=

*.

experiments. Thil will limit the analyses in larii7studies to gross

measures of.learni4g, such as total scores on in- class, examinations.

Our judgement for the present As that the state-of7the-art is still

remote from a defftiitive large-scale evaluation of how direct

instruction in debugging, or other complex problem-solving, will affect

the abilities of students.

125

116

l

,

References

Barr, Beard, M., 6,AtiCinson, R.C, The computer
1

as A tuthrl
.1

Laboratory: The Stanford -BIPaProject. International Journal of
Man-Machine Studiesr. 1976, 8, 567-596. .

Aroma, J.S, & Burton,.R.L. Multiple representations of knowledge for
tutoriAl reasoning. .In D,GBobrow.and A. Collins (Eds.),
Representation and ulderstanding: Studies in cognitive science.
New York: Academic Prei,

BFown, J.S.,,Burton,(R.k., Hausmann, C., Goldstein, Huggins, B., 6
Miller, M. Aspec'te-of a theory for automated student modelling.
BBB Report No. 3549,,Bolt Derane4 and Ntwinan, Inc., Cambridge,

May, 1977.

Brown,se.S., Rubensteini R., &Burton, R.R. Reactive learning
enviroament for c6mputet assisted electronics instruction. -BBN
ReporirNo.-3314, Bolt Beranek and Newman, Inc Cambridge, Mass.,
October,, 1976. .

Carr, B., & Goldstein,:I.P. Overlays: A theoryof modelling for
computer aided instruction. MIT AI Memo 405, Massachusetts
Institute of Technology, Artificial, Intelligence Laboratory,
Cambridge, Hass.,1February, 1977.

Collins, A.M. Proceeses in acquiring knowledge. In R.C. Anderson, R.J.
Spiro, & W.E.4Montague (Eds.), Schooling and the acquisition of
knowledge. Hilladale:N.J.: Lawrence Erlbaum Associates, 1977.

dahl, 0.J., aijkstra, E...V.:'&'Hoare, C.A.R. (Eds.); §tructur
programming.. 14ew Y Press, 1972..

41L
. ,

.Pinch, C.R. Troubleshootinciasiruction
.

in vocationaltechnic.al

.

education via dynamic simulation. Research Report, Del g. of
Vocational Education, The Pennsylvania State University Augpst,

N 1971.
1

..

r ,

Goldstein, I. Summary of MYCROFT: A system for understanding simple
picture programs.--Artificial 'Intelligedce, 1975. 6, 249-288.

Miller, .L., & Goldytein. I.X. Overview ofia linguistic theory of
design. AI MemP,383, Massachusetts Iastitutg of Technology,
Artificial Intelligence Laboratory, Cambridge, Hass., December, .

1976a.

Miller, M,L.,.&4Goldseein, I.P. SPARE: A grammar based editor for
planning an debugging programs, ,AI'Memo 386, Massachusetts
Institute of Technology, AFtificial'IntelIigence Laboratory, --
Ckmbridge, Mass., December, 1976b.

,

Newell; A. Productioh.syitemstawiels of control structures. In W.G.

',-- 1

417
126

t--

Chase (Ed.), Visual Information Processing. New York: Academic,
Press, 1975.

Newell, A. ET n,,X.A. Human problem solving. Englewood Cliffs,
N.J.: Pr ice-Hall, 197,,r

4.

Nilsson, N. Probim solving methods in artificial intelligence. New

4

York: McGraw-Hill, 1971.
k '

;
Norman, D.A., Gentner, D:R., and Stevens, A.L. Comments on learning

schemata and -memory representation. In D. Klahr (Ed.), Cognition
and instruction: Tenth annual Carnegie Symposium on
Hillsdale, N.J.: Erlbaum Associates, 1976.

4

Palormo, J.M. Computer Kogrammer aptitude battery. Chicago: SRA, 1964.

Papert, S.A. Teaching childzn thinking. AI Memo 247, Massachusetts
-=Institute of Technology, Artificial Intelligence Laboratory,
Cambridge, Mass., 1971.

J

Pirsig, R.M. Zen and the art of motorcycle maintenance. NeW York,
1'41' Bantam Books, 1974.

Polya, G. How to solve it. Garden City, N.Y.: Doubleday, 1957.
(Originally publishedin 1945.)

NtIO

--
Potter, N.R., 6 Thomas, D.L. Evaluation of three types of technical

data for troubleshooting: Results and project summary. Report
APHRLnTR-76-74(1), Air Force Human Repurces Laboratory, Brooks Air
Force Base, Texag,SeRtember, 1976.

Quillian, M.R. The teachable language comprehender: A alienation
prograa and a theory of language. Communications of the ,
Association for Computing Machinery, 1969, 12, 459-476.

'Resnick, L.B. Task analysts in instructional design: Some, cases from
mathematics. InTh. Klahr'(Ed.), Cognition and instruction: Tenth
annual Carnegie Symposium on cognition. Hillsdale, N.J.: Eilbaum
Associates, 1976.xr.

Ruth, G. Analysis,ofalgotitl;m implementations. MAC tR -130,

Massachusetts Institute of Technology, Cambridge, Mass., May, 1974. ',

Schoenfeld, A:H. Can heuristics be eadght7 Unpublished report, Group.
in Science and MaEhratics-Education, University of California,
Berkeley, Calif:, 1977a.

Schoenfeld, A.H. Presenting a strategy for indefinite integration.
Unpublished report, Group in Sciendetand Mathematics Education,_
University of California, Berkeley, Calif., '1977a.

Sacerdori,:E.D. -A structure for plans and,behavior. Technical Note
109, Artificial Intelligence,Center, Stanford Research Institute,
Menlo Park, Calif., August,., 1975

C

00Stevens, A.L., & Collins, A.M. 111230bal-structure of a Socratic tutot.
BBN Report No. 3518, Bolt Beranek and New6an, Inc., Cambridge,
Mass., Marth, 1977.

. '
Sussman, Q.J. A computational mode/ of skip acquisition. AI-TR-297;

Massa husetts Institute of Tedknology, Artificial Intelligence
Labo story, Cambridge, Mass., August, 1973.

yickelgren, W.A. Row to solve problems:. Elements of a theory of problems
and problem solving. San Francisco: Freemap,J974.

Woods, W.A. Transition network grammars for natural) language analysis.
Communications of the Association for Commutim Machinery, 1970,

AO,
31, 59i-606.

../

,

Woods, W.A..Wbat
N.,

's in a link: Foundations for semantic networks. In
D.C. Bobrow and A. Collins (Eds.) Representation and understanding:
Studies in cognitive.science. New York: Academic Press, 1975.

41,

4

.11

119.

I

4.

4

a

C

or,

......./.'Ampendix A: Tutorial Debugging, Text

F

TESTING THE! PROGRAM

After you have written a program, you need to test it to make sure
- there aie ni errors, or "bugs", in it. .Mafty programs are_designed
to .he run more than once. For example, sone progr are written
to compute payrolls and must be run at end of eery pay period;
other programs are written.totabulat
at the end of each grading period.

eats' grades and are run

Since the conditions -under which a program is run will not. he
EXACTLY tAe same each time the program it; run, it is important
to realize that just because a program works correctly for one
set bf conditions, you cannot assume that it will work correctly
under all other conditions.

For exarple, in some progra-mdifferent kinds of input cause different
parts ct the progran to be executed; thus to check a program you need
to run it using all 2ossible types of inpui for which the program was
desigded. You past test every possible pathway through the program.

TEST THE PROGRAM WITH ALL TYPES CIF INPUT FOR WHICH
IT IS D.r.IGNED.

The following program demonstrates how differMpt inputs cause different
parts of the" program to be executed.

10 X leINT(RND * 1001)

20 PRINT "I AM TRTNXING OF A NUMBER BETWEEN 0 AND 1000."'
30 L = 0
40 H = 0

50 PRTNT "WHAT DO YOU THINE-MY NUMBER IS? "
60 INPUT G
MILIF G = X THEN'230,
80 IF G.> X TEEN 160
90 IF,L = 1 TEEN 140
100 PRINT "TOO, LOW; GUESS AGAIN"
110 1.-= 1

120 H = 0
130 GOTO 60

140 PRINT 7IT'S STILL TOO LOW. 'GUESS AGAIN"
,150 GOTO 60

160 IF H = 1 THEN 2/0

1704RINT "TOO ETCH; GUESS AGAIN
180

190 L = 0
20Q GOTO 60

210 PRINT "YOU'RE STILL TOO HIGH SO GUESS AGAIN"
`41, 220 GOTO 60

230 PRINT "RIGHT! 147 NUMBER IS "
240 END

-49 12$
if I

*1(
1

--This program generates a "random integer (X) between 0 and 1000.
The user then tries to i4ess the number Cline-60, INPUT G).- If
the user guesses the number correctly (fete 70), then line 230
is executed, and the-program prints "RIGHT...". Otherwise, if
the user guesses a number that is, too high, then line 160 is
executed. If the preceding guess was also too high (which is the
case if H = 1), then line 210 is executed, "YOU'RE STILL TOO HIGH
SO GUESS AGAIN': is printed, eat line 220 causes a jump back to line 60.
Xf-the.preceding guess was not too high (if B is not 1), then line 170

executed and "TOO HIGH; GUESS AGAIN" is printed. AND SO ON.

Checking the "GUESS HY NUMBER" program requires that every possible
class of input be tested; i.e., an input (guess) that is lower than
the number generated (X), another consecutive input that is still
lwer- than X, an input that is higher than X, another consecutive ,
input that is still nigher than X, and an inPu that is equal to X.

TEST THE PROGRAM WITH THE EXTREME VALUES THAT THE INPUT
CA((HAVE.'

Initially, it is a good idea to test a program with the extreme
values that the input can have. It is Usually not' hard to think
bf the extreme types of input which your program nusthaidle,-and
this test may reveal errors in your program. In the "GUESS MY NUMBER"'
Rrograr, the two extreme input values (guesses) are "0" and "1000".

If, during, the testing of your program with different inputs, the
output is ever wrong, then there is something wrong in your program.
You must then try to characterize what is wrong.'

CHARACTERIZING THE ERROR

CHARACTERIZE THE WAY THE ERROR(S) SHOWS UP IN TERMS
-0F.THE INPUT:AND OUTPUT.

Before yo trytry to determine'which part o
_I

f the program is working
incorrectly. (unless it's immediately obvious), you should describi
what is wrong with the output. for example, in the last program,
if you input a guess of'D and the program prints '1100.HIGB", your
description would include the fact that the output is baCkwards for,
a too -low guess. If, in addition, the program said "TOO LOW" in
response to an input.of 1000, then you could characteriza the erroneous
behavior as being 'wrong f0 both too-low.and too -high guesses.
DeScribing.the "symptom" carefully is very helpful in leading,'you to
locate its-cause (the bug in ths, Srogram); lire process is similar to a
doctor asking questions about the exact location and nature of you.N6pain
before s/be begins to choose the appropriate treatrent

'1

121 .

130

Since the output. is the result -of following_ the steps of the program.
if you 'can characterize how the output varies from what it should be,
given a particular input, then that may indicate which part of the
program isn't doing what-it was intended to do. 'In order to
characterize the error(s) in a program, you should test it with
different types of input in order to see how different kinds of input
affect the output. For example, perhaps the output is correct
closer to. the correct answer for certain inputs than it is for other
inputs.' If so, then it is important to ask how the inputs that give
correct or "more correct" answers differ from the inputs that giVe
"less correct" answers.. If these-two inputs require different parts
of the program- to be run, then chat'could guide you to the part of thy
program that not workjng as it was intended.

SOMETIMES A PROGRAM GIVES THE CORRECT OUTPUT FOR SI:WE INPUTS
BUT ROT FOR OTHFRS. WHEN THIS HAPPENS YOU SHOULD EXAMINE THE

/-
DIFFERENCE (S) BETWEEN THE INPUTS FOR WHICH THE PROGRAM WORKS
AND THE ONES FOR WHICH IT FAILS. C

The following program wai written to give change to a customer
when the item being bought costs less than a dollar. The change can
he in half dollars, quarters, dimes,"niekels, and pennies. The prograrty
is designed to print the amount of,cha2ge in cepts and then give the
fewest possible coin in change.

10 PRINT "TYPE THE PRICE OF YOUR ITEM. IT SHOULD BE < $1.00"
20 INPUT X
30 LET C 100 - X- .

40 PRINT "YOUR CHANGE FROM $1 IS " ; C ; '"CENTS''
50 LET H 0

60 LET Q 0

70 LET 0 0

80 LET N 0
90 IF C< 50 THIN 120 44'

100 H H+1
110 C- C-50

120 IF C< 25 THEN 140
130 QQ+1
140 IF C<10 THEN 180

'150 D =Lail
160 C C-10
170 GOTO 140
180 IF C < 5 THEN 210
190 N N+1
200 C 'C -5 5 .

210 PRINT'"HERE IS YOUR CHANGE"
220 PRINT H ;" HALF DOLLARS"
230 PRINT Q ;" QUAkTERS"-'

PINT D ;" DIKES"
250 PRINT N ;"-NICKELS"
260 PRINT C ;" PENNIES"
270 END

The programmer might decide that a good first test for this program
would be the case in which one of each coin should be returned to the
customer (1 half dollar, 1 quarter, 1 dime, 1 nickel, and 1 penny, for
a total of 91 cents). So price of the item (the input number) must be '
9-cgnts.
Input: 9

IFOutput: YOUR CHANGE FROM $1 IS 91 CENTS ,

. HERE IS YOUR CHANGE
1 HALF DOLLARS
I QUARTERS
4 DIMES

0 NICKELS
I PENNIES r.

It is immediately apparent that, the wrong number of dimes and nickels,
has been returned. This might lead the programmer to test the program
with an input which should return a dime' and a nickel.

Input: 85

Output: YOUR CHANGE FROM SI IS.15 CENTS
HERE,IS YOUR CHANGE
0 HALF DOLLARS
0 QUARTERS(
1 DIMES

1 NICKELS
0 PENNIES

Joe
The output is corremt, so the problem certainly isn't with the dimes
and nickels alone. Before the program is run again. the first test,
the one with the incorrect outwit, should be regexamined. Evidence
about the nature of the erroraSight have been overlooked because of
the obvioesfy wrongrnumber of nickels and dimes in the output. The/
programmer might add, up the coins to see how much change in cents was
actually retsened 1.9,..$)e first test and find the total to be 116 cents
.rather than 91 cat*. The difference between these two sums is 25 cents,
and this might'suggest to the programmer that the error de related to

'the extra 25 cents. At this point the program should be examined for
an error related to the '25'cents'

calculations.' While,readg through
that part of the program, the pliogrammer should notice that mother line
is need e between 130 and 140 to subtract 25 frofa the total cents left
at thSmoe. point, or C. The absence of that line caused an extra,25 cents
in the output (since when a quarter was given in change, 25 cents was
not subtracted from the total cents still owed the customer). After
this change, the testing of the_pregram should bee continued.

AFTER A CHANGE, RETEST THE PROGRAM USING ALL POSSIELE
'TYPES OF INPUT FOR WHICH THE PROGRAM WAS DESIGNED.

123

132

4

After you'v4 characterized the wrong output, -located the:section
of code that you believe is responsible for the erroneous output, .
and changed that code to correct the error, the program must be
toted once again for all possible types of input. You must retest
your,program thoroughly for several reasons: for example, youjsay
have corrected the program so that it works for only one or two
additional types 9f input; or the program may not work.for some
inputs that were handled correctly before your change, i.e., your
change interacts with a portion of the program that was executing
correctly before the change and now makes'it give erroneous output.
The program must be retested with all types of input, even those
that were handled correctly_ before the change.

The following program, which demonstracesthe importance of retesting
after a change, asks the user to type i two numbers and tells him/her-
how many numbers lie between the two numbers (inclusive). For elample,
there are 3 numbers between 5 and 7, i.e., 5, 6, and 7.

10 PRINT "TYPE TWEE CUMBERS, AND I WILL TELL YOU H.C.4,/..MANY!"--
20 PRINT "NUMBERS ARE BETWEEN YOUR TWO NUMBERS (INCLUSIVE)."
30 INPUT X,Y
40 IF X < Y THEN 80
50 H = X
60 L = Y.

-70 GOTO 110
80H =Y

L = X
100 P ="L
110 N 1,

120 P = L 1

130 N =N+ 1
140 IF P < H THEN 120

150 PRINT "THERE ARE "ON; " NUMBERS BETWEEN "; L; " AND ";
199 END

The user types two nunberi, which are assigned to the variables
X and Y. The variablesH and L are used to hold the high and
low numbers, respectively. So, if X ifthigher than Y, its
value is assigned to H and the value of Y is assigned tp L; Lf
Y is higher than X, the Hand L assignments are made in the
opposite directioh. The variable P-is used to count from the low
number up to the high number, and N is.used tb keep track'of bow
many numbers are Ancountared along the way. Thus, if the user
types 5 and 6 as the 'X and Y input, L becomes 5, H becomes 6, P
counts from 5 to 6, and N ends up with 2.

When the program is.run, it gives the"corre'ct output only when thd.
two nvibers apt' adjacent to each other, e.g., "5" and "D', or
"6" d "5". The output is THERE ARE 2 NUMBERS BETWEEN 5AND 6"

,rArAny air of non*adjacegp numbers causes an error message to be printed,
ch says that the por ght be in an infinite loop. The -

ogrammer charatterizes the r as occurring when any two
'

n-adjacent numbers are given ae.input.

C

133
124

In the progratzabove, where 'only adjacent numbers X and Y (bOth.X < Y
and X > Y) give the correct output, the programmer might go Ehrough
the following reasoning process while looking for the error:
-AHA, P doesn't get get to L when X > Y, so line 70,should branch to
tide LOO.

(The programmer change's line 70 to GOTO 100, and runs the program
for X < Y and X > Y. S/He gets the same results as before, i.e.,
the program gives the correct output for a jacent'paire of numbers,
otherwise it seems the program is in an i thite loop.)
-Well, same error, perhaps line 10 is perfluous, since line 120
assigns a value to P, delete ine 100, undo the previous. change
so that line 70 is GOTO 110, and run the program again.
(The result of testing the program is the same as before: it works for
adjacent number pairs, but every other pairsiVes infinite loop message.)
-AHA, line 120 should be P = P.,+ 1, otherwiat P.,ts always reset to-

equal L, the lowest number, plus 1, and P can,diver7reach H unless
H is L+1! I'll change line* 120 and run the, -grogram again.
(The program gives the error message "Line 120 VARIABLE WITHOUT A KNOWN
VALUE--P" for both X < Y and.1X > Y.)
-Hmm. That's the first time I've golien that message. Why does P
suddenly not have a vatue? I knoW! P was L+Wand I changed it:to
P=.1171-1; so the line that I deleted, which set P equal to L, is necessary.
I'll put line 100, P =',L,back into the program and run it.
(/He tries several pairh of input, e.g., 5 and 6, 5 and 8, 4 and 9;
and they all work. U ortunately, cases in which X > X aren't tested.)
- Success! It finally works.

The program waslixed for one type of input; that isy for cases in
which X is less than , but two other types of inpUt were not tested,
X greater than Y and X, equal to Y. If exhaples of these two types
of input had been tested, the ern:in. message "Line 120 VARIABLE WITHOUT
A KNOWN VALUE--P" would have told the programper that P still Wasn't
being assigned. Further examination of the program would have shown
her/him that lino 70 should, indeed, branch to line 100, so that P gets
an initial value when X > Y and X = Y. Thus all types of input for
which a program is designed gust be retested after a change is bade.

6.

Sometimes you make a chahge to the program, and the output is still
%/tong. You have to make the choice between leaving the change in the
program or returning the program to its state before the change.

Take the program, for example, which tells the user how many numbers
.are between two input values.

125 34

O

s

10 PRINT "TYPE TWO NUMBERS, AND I WILL TELL YOU HOW MANY"
20 PRLNT "NUMBERS ARE BETWEEN YOUR TWO NUMBERS (INCLUSIVE)."
30 INPUT X,Y
40 IF X < Y THEN80
50 H X
60 L = Y
_70 GOTO 110
13p = Y
90 L = X
100 P = L
110 N = 1

120 P4= P 4 1
130 N = N 1

st
140 IF P < H THEN 120

_150 PRINT "THERE ARE "; N; " NUMBERS BETWEEN "; " AND "; H
199 END

Suppose that a beginning programmer is told that this program has
an error and is asked to find and correct it. S/he might nethave
these guidelines for finding an errof. Since the program is short,
a/he might decide to examine the code before;running the program.

. After doing this, the person might Say "This tequals business in fines
50 through 90 is confusing. Seems to me they.re double assigning
things. H and L are being given two values.. I think maybe 50 and 60
can be deleted. I'll try it."
After deleting lines 50 and 60, the program is run. For inputs
whets X (the first input) is less than Y (the second input), the
correct answer is giveb, and for all other inputs, the error message
"Line 120 VARIABLE WITHOUT A KNdWN VALUE--FP is printed.

Since th4 program has not been corrected by the,c nge, and even more
errors may have been idtroduCed into the fro the change should
be undone.and lines 50 and 60 restored to the-program.

The reason given for deleting lines 50 and 60, i.e., that H and L
are-each being..given two valuea, is true of course, but the person did
not examine the program carefully enough, because slhe did not-notice
that the values gived to H and L in lines 50 and 60 are used in
one pathway through the program; and the values given in lines 80
and 90 are used in .a paths.* through the program. Going
through the step by step execution -of a program (exactly as tile,
computer would) is a very valuable way to find errors. However,
after a superficial examinatiodof a program, deleting .s line
is probably a badiidea. The perion writing a program usually has a
reason for putting in each line, and beforeyou delete a line, yod,
should understand the intended purpose of that line.

The programmer should have run this. program before examining -the code.
The error .nessage would have given her /him the infOrmation Oat .F .

.was not being defined when either X > Y or X = Y. This information
points out which pathway,through the program Contains the error.

135,
- 126

O

THUS, EVERITKPROGRAM 1S'SHORT'XND EASY"TO TRACE BY HAR15:,.
YOU SHOULD FIRST RUN_THE PROGRAM. (ERROR MESSAGES.. AS kELL.
AS A CHARACTERIZATION 'OF THE ERROR IN TERMS OF INPUT AND
OUTPUT, CAN BE VERY HELPFUL IN FINDING AN ERROR.)

THEN

IF YOU MAKE A CHANGE TO A PROGRAM; AND IT STILL GIVES THE
SAKE ERRONEOUS OUTPUT." RETORE THE PROGRAM TO ITS STATE
BEFORE THE CHANGE. YOU HAVEN'T FOUND THE-ERRORS) IN THE I
PROGRAM, AND YOU'MAY HAVE INTRODUCED A NEW ERROR. ,

Sometimes, %Alert you'make a change to correct a program, the output
will still be wronkaLter the change, but you should leave the change
in the program. (Obviously, if you see any typographical errors that
you made while typing in the program, you should correct those.)

IF YOU MAKE A CHANGE TO A PROGRAM, AND THE OUTPUT IS STILL
WRONG: IF THE CHANGE, CORRECTS ONE PART OF THE PROGRAM (e.g.,
one part of the output), THEN LEAVE THE CHANGE IN'THE PROGRAM.

It may be the case that there is.more than one. error in tile program,
and you have found one but not all of the errors.' Take the following
program as an example.

10 PRINT""THIS PROGRAM TALLIES THE VO1ES OF '5 PEOPLE.'
20 PRINT "TO VOTE YES, TYPE 1; TO VOTE NO, TYPE O."
30 y - 0
40 N =13

50 FOR I,* 1 TO 5
60 PRINT "VOTE NUMBER ";I
70 INPUT V,

80 IF V = 1 THEN 100
90 N = N * 1
100 Y = Y + I

,110 NEXT I
120 IF Y <> N THEN 150
130 PRINT "TIE VOTE"
140 GOTO 190,
150 IF Y < N THEN 180
160 PRINT "THE NO VOTE WINS"
170,GOTO 190
180 PRINT "THE YES VOTE WINS"
190 END

This program tailies the YES
prints whether the 'YES's or
votes. He types I for aYES

411

and NO votes of 5 people, then
'NO's win. Tfte user inputs the 5
vote and 0 for a NO vote. '

211 3 6

f.

,St

" 6

The program is run. When all the votes are eitHIbr YES-or Nd, ten -'
"TIE VOTE" is-printed. When the number of YES votes input is eaters
than ille,number of NO votes,-"THE NO VOTE' WINS" 'is printed. When the
number of NO vOtekris'greater than the number of YES'' votes, "THE- NO
VOTE-WINS" is printed. 'This,program does the wrong think for three-
of egg four different kindsof:iniut!
A

Since the program gives the correct output hen the number of NO votes
exceeds the number of YES votes. i.e., -"THE NO VOTE WINS" (except In,
the extreme, case where all the votes are NO); the programmer might
check go see why line 180, "THE YES VOTE WINS ", is not printed When
it should Mt,. PS/Lie looktLat.-11ne 180 and the line, itself, looks all._
right. S/He looks though the program to find the line that goes toline , which is lime 150. S/Ife sees an error) In line 150 'tf Y,
tirh talliei the YES votes, is LESS THAN N, which tallies the NO votes-,
then line 180 is executed, which'prints "THE YES NOTE WINS". Lind 150
should'say "if Y'is GREATER THAN N then execute line 180". This change .

is made to the program, and it is run.

After thecorrectfon, when the YES'vote is greater than the NO 'vote,
"THE YES VOTE WINS" is printed; but when the NO vote is greater than
the YES Vote, "THE YES VOTE WINS" is printed. It_ seems like ,the same
wrong output as before the change, only switched around!-- (As before,,
when all

t
5 votes are either YES or NO, a' "TIE VOTE" is printed.)

The programmer must decide whegher .to leave the change or not, i.e.;
150 IF Y:>4N THEN 180; 180,PRINT "THE YES VOTE WINS". Since Y bellies .

''the YES votes, and N counts the NO votes, if Y > N, then "THE YES VOTE .
WINS" SHOULD be printed. The programmer decides to leave the change
and look for errors in other part4ofthe program.
In line 150 (which now 843 "IF Y > N...0."), if N isgreater than Y,
then line 160 is executed, which'prints "THE NO VOTE WINS",tsii_that
part,of the prograt is correct.

This-progrmm illustrates he-importance of testing the-progrmb-with
the extreme values that he input can have, in this case, 5 YES -vof
or S NO Oates. Wheneverlheinaut is 0111,YES votes or all NO votes. -
"TIE VOTE" Is printed ;(line .*130). The programmer looks for tHe
that mustpre-cedethe-exeeution of line 130. If. executed,'line 130 was executed
then Y N must have been equal in line 120. With an.odd number q-
votes, ;Els isn't possible. Because Y and N are'both.initialized to
(lines g10 and 40),,something must be wAg with the counting procedure.
The programmer exatInes'ehe FOR loop, Aim the votes are counted.
notices that'ff-the vote is NO, both-W-ftd Y ate incremented! So, that
shduld be a line 95 whiCh says "G0t0 110". The change is made:'The'
different possible types oftihput are reeested._ Success.

tit

.11

13
128

SUMMARY OF GUIDELINES

TEST G TH4 PROGRAM

TEST THE Mot:- WITH
IT IS DESIGNED..

TEST THE PROGRAM.WITH THE §XTREKLE-VALUES THAT THE
INPUT CAN HAVE.

SSIBLE TYPES OF INPIITFOR WHICH

CHARACTERIZING THE ERROR
4",

CHARACTERIZE THE WAY THE ERROR(S) SHOWS UP IN TEAS OF THE
INPUT AND OUTPUT.

EVEN IF A PROGRAM IS SHORT AND EASY TO TRACE BY HAND, YOU
SHOULD FIRST,RUN THE PROGRAM. (ERROR MESSAGES, AS WELL AS
A CHARACTERIZATION OF THE ERROR IN TERMS OF INPUT-AND OUTPUT,
CAN BE VERY HELPFUL IN FINDING AN ERROR.))

SOMETIMES A JROGRAM GIVES THE CORRECT OUTP SOME INPUTS
BUT NOT FOR OTHERS. WHEN THIS HAPPENS YOU D7EXAMINE THE
DIFFERENCE(S) BETWEEN THE INPUTS-FOR WHICH TH ROGRAM WORKS
AND THE ONES FOR WHICH IT FAILS.

AFTER A CHANGE, RETEST THE PROGRAM.USING-ALL POSSIBLE TYPES
4DF INPUT FOR WHICH THE PROGRAH WAS DESIGNED.

IF YOU MAKE A CHANGE TO A PROGRAM, AND IT STILL GIVES THE
SAME ERRONEOUS-OUTPUT, RESTORE THE PROGRAM TO ITS STATE
BEFORE THE CHANGE. YOU HAVEN'T. FOUND THE ERROR(S) IN THE
PROGRAM, AND YOU MAY:HAVE INTRODUCED ANEW EfROR.

IF YOU MAKE A CHANGE TO A PROGRAM, AND THE OUTPUT IS STILL
WRONG: IF THE CHANGE CORRECTS ONE PART OF THE PROGRAM (e.g.,
one part of the output), THEN LEAVE THE CHANGE IN THE PROGRAM.

1291-38

tl

6

NA,4E:

Appendix B. Study Quiz to Accompany Tutorial Text

OPEN BOOK QUIZ

1) After writing a program why should you test it with all'the
diffeYent types-of input that it was designed to handle?

2) Testing a program gives the followia-lesults:

*Input: 0 (number of days)
Expected Output 0 dollars and 0 cents
Output: 0 dollars and 0 cents-
Input: 1 (number of days)
Expected Output: 0 dollars and 1 cent
Output: 0 dollars.and 2 cent

Input: 3 (number of days)
Expected Output: 0 dollars and 7 cents
Output: 0 dollars and 14 cents

Input: 10 (number of lows)
Expected Output: 10 dollars and 23 cents
Output: 20 dollars and 46 cents

Characterize the error in this program.

I

3) If a program gives the correct output for some inputs but not
for others, you should (a, b, or c)

(a) Scratch'it and start over.
(b) Hope that a user will only use inputs-for which the program

gives the correct output.
(c) Examine the difference(s) between the inputs for whia.the program

works and the ones for which it fails.

Why?'

139 -

130

4) After making a chanke'to a-program why should you RETEST 'the
program with all tyPes'of input for which it ins designed?

5) If you make a changeto a program in order to correct it, and it
still gives theSAME erroneous output; you should (a or b)

fa) Leave the change in the program.
(h) Restore the program to its state before ttlerchange.

0""dr Why? +,

, %It

If you-are told that a program has an error in'it, and you are
asked ,to find and, correct that error, what. is the first thing yoti
should do*after reading theigkogram description? (a, b; or c)

\(a) gOhrough the step-by-stl, execution of the program by hand
(as the computer- would) ,iveorder-to find'the error.

(b) Run the program witfithe different types of input for which it
was designed in order to charac&ize the error.

'(c) Read over the program,-Aelete any suspicious looking lines, and
run the program.

e

.0r

Appendix C: Intrnduction to the Tutorial Text

INTRODUCTION

+,

This is as attempt tizgi4e you information that will help you to
find the errors in a'computer program-more easily. This information
will be presented in the form of piles which, apply to certain
situations, rules-of-thumb that have been formulated from the
experience of programmers who have spent many hours in searching
for errors, or !'bugs", in computer programs.

Once you know there is an error'in your program, the goal is to find
it with a minimal amount of time and effort. Since it is very
hard to formalize ALL the knowledge about finding bugs that an
texperiencgd programmer would have, the tules,presenred here will be
general rules that provide the best way ton about finding the error(s)
in a computer program most of the time. They provide a general frame ork,
and as you gain experience, you will be able 'to add exceptions to th se
rules. If you 'follow these ruled'', the process of finding the error
seem to take longer than it could; however, it is much more likely that
you will find the error or ALL of the errors in the program, and that
can save quite a bit of time in the long run. As you gain experience
the ?roceAs of finding the error may go faster.

These rules lead to the desired result (which is finding the error with
si'nimal amount of time and effort) .most of the tine. Everyone

employs this type of rule when trying to solve problems. When there
is more than one possible course of action to reach a goal, a person
thayweigh the positive and negative effects of each action under
consideration before sfhe makes a decision. For example, suppose you
are in a strange city, you need to get from where you are to a hotel in
another part'of the city, and a map of the city is all the information
you have to help you plan your route. In that situation (going from
one placeto another in a strange city), a general rule-of-thumb you
might have is to stay on main streets. If you have this rule, it is
because oCknOwledge you hive gained (e.g.,, from your -fin experience,
or from talking to friends, etc.), for example this knowledge could be:
(1) street signs are more visible on main streets
(2) if you get lost, it is easier to ask directions on a main street
(3) main,sireets are safer, if that' section of town is Itoknown to you
(4) a backstreet route may make crossing intersections more difficult.
Even if your general rule is to stay on main streets in a strange city,
you stay choose not to follow the rule in certain instances. Perhaps
the most important consideration is getting to place X as quickly as
Ossible, and you choose a backstreet route because it is shorter and
will allow you to miss the rush hour traffic on the mainstreets. The
circumstances qnder which you make a decision will vary (e.g., finding
the "best" route, where "bestu means one that fulfills certain
requirements such, as "requires least amount of time " .), and general rules
will not always give the best solution to a particular problem. If you
are a beginning programmer who is trying to find the errors in your
program, since you have no programming experience upon which to
formulate general rules for finding the error, being given these general

go,

should

$' .

rules ld save you both tindiaad
7
effort: After you have more

programming experience, you will be able to-add exceptions to these
r rules. '

142

4 ----

4

Appendix D. Test exercise CHANGER

This progran was.written to give change toys customer when the -item
.being bought-costs less than a dollar. The change can be in half
dollars, quarters, dimes, nickels, and pennies. The program should
prl4t both the anouft of change in cents and then the FEWEST possible
coins in change.

5/31/77 11:12:06
19

10 PRINT "TYPE THE PRICE OF YOUR Iral. .I.T.SHOULD BE < Sl"
20 PRINT " (TEE PRICE SHOULD BE LN CENTS:E.G., 25, 49.) "
30 INPUT X

-40- LET C = lao -

50 PRINT "YOUR CHANGE FROM S1 IS ; C ; " CENTS."
60 DATA 50, 'HALF-DOLLARS", 25, "WART-a5", LO, "DIME?"
70 DATA 5, l'NICK.U.S", 1, "PENNIES"
80 PRINT "WW? F, YOUR CHANGE"
90 N = 0
100 wran A '

110 READ DS
120 IF A = 1 THEN 180 ,

130 IF C < A THEN 160
140 N N + 1
150 C C - A
160 PRINT N; " ";DS
170 GOTO 90

180 PRINT C; " "; DS
199 EhT

143
134

46:

6.

C

Appendix E. Test Exercise DRILL

TASK DRTI.L

We want you to write a BASIC'program that presents simple

arithmetic problem.; -- your own conputei-assisted instruCtion-progrim

required program will be longdr and more complex than those you have

previously completed to SIP, but you probably worked with all the BASIC

statements you need. You will have at most.1 at 1/2 hours to work on

the task during a single sitting at the terminal. Do-your best to complete

a program that satisfies the specifications given below (use the DEMO to

see a fancy model program in operation), but you will be paid even if you'

can't do so in the allotted time. (Given the time constraint, one possible

approach is to design your program and then implement it in successive

stages, adding more advanced featurqs at each stage; however, you are free

to tackle the problem -in any manner you prefer.)

After 1 and 1/2 hours (or sooner, if you are confident your program

worked correctly), we will evamine your program and try it out. TI your

program isn't satisfactory, you will have at most another 1/2 hour to fix

4 -
it.

Te begin work, signon to BIP andttype the command TASK DRILL. BLIP

will 22t print the text of the problem, as i does normally: instead refer,

to the specifications given below in these instructions. During your work

you can use any BIP commands except the following: MODEL, mu, REP, DEMO

;RACE. Use RUN toArey out your program as many times as you like. Since

you can't use MORE, you will have to be the judge of whether your program

satisfies the specifications before,you are ready to have us look at it.

YodaEtuse the BIP manual. Run the DEMO as ofteees you Tike, but do not

135 144

ask for the MODEL; if !gauze the MODEL command, we cannot gay y for your

work. REP does'not work for this task, but PLOW does. 'Theie is paper for

you `to do any scratch work you want to: please number any.sheets you use

and turn them at the end of the session. Since the program you will

write will be too long to LIST on the terminal screen ,at one time, we have

set-up the teletypes in the rode to provide hardcopy of your program (you

may use the' LIST command, but the output will go off the top of the'

screen-- use the 'HOLD' key on the terminal to stop-and-start the output).

rTo obtain hai.dcopy, SAVE your prograd in BIP as a file and.then, at the

teletype, type (as requested) your student number and usage of the file you

SAVE'd. You may list your program on the teletype as.many tines as you

like:and write the listings,. but we want you to turn in ,the listipgs at

the end of the session.

sA

X45

Program specificsEions/6;TASK DRILL:

1) 'The user selects whether he wants-to do addition or
Subtraction problems.

2) The user selects whether he wants problems that
involve 1-digit integers (1-9) or 2-digit_integers (10-99,
not 1 -99). The integers used in each problem are randomly
generate&

if
_ .

3) The user specifies how many problems he will work,
with minimum'of.1 and a maximum of 10 problems.

4) Subtraction problems must'alvays have an answer
that is equal to or greater than 0 (no neOtive answers).

5) The answer to each problem is checked. and
appropriate feedbacll is printed.. Feedback on incorrect

-answers includes the correct answer.

6) When the user finishes the number ofproblems he
'specified, the program prints his score asnumber and
percent correct.

7) Assume that the user of the program is naive and
may type invalid responses, to any question:asked by the
program. The program Should not "blow up" in these cases.
In general, it should also provide clew questions and
Pripre.output suitable for naive users. 1Nry to write a
program you would want to show off to-another programmer.
%It does not have to have all the fancy features of the DEMO
program, but should satisfy the requirements listed here.

Appendix F. Test Exercise ABITN-(AL(

PROGRAM ARITR -CALC

/This program is supposed to act as a c- alculator for simple

arithmetic expressions e.g., 9*8, 43/5+11, 10-2*777) which have no

parentheses to orginize them. It is intended to `"perform_ the operations,ihi.

an expression in a left to right order; for example, 10+2*6 first adds,10

and 2 to get 12 and then multiplies 12 by 6 to get 72. !tote that this. is
0

different from the way BASIC evaluates such expressions (BIP. manual 11.12).

The program is intended to handle only "well-formed" input from the user

and is expected to behay.unpredictably if the input cantatas bad (
characters. The following are examples of expressions for which the

a

program is and is not expected to work.

SHOULDWORX FOR NOT EXPECTED TO WORK FOR
4*5 4 + 5 (no spaces allowed)'
334/667-23+8*3 4+(5*3) (no parentheses)
8/0 (givei error message) 4.5+13 (no decimals)

4A7+13 (illegal character)

The program is complex. The main difficulty is that-the expression

input by the user is a string, and strings in BASIC (and parts of strings) '

cannot be multiplied, added, etc. The string must therefore be analyzed to.

find the strings of digits it contains (ice., the nuibers in the

expression) and then these strIhgs of digits must be "translated"-into

numeric values that'can be manipulated with arithmetic operations. Part of

this work is -done by a aUbroutinein the-program.' BIP didn't give you any

work with subroutines (BIP Manual 11.22), and we daWt-expect you to

under d the one in this program. The way in which it is used is

exgl ned by the REH statements in the program. The error(s) in this _

ia
, al I'

program is(are) not in the subroutine or in the first lines of the program

which set la an array of values used la the subroutine. The error(s)

is(are) in the part of the program delimited by the REM statements

containing stars (asterisks). The program can be fixed With only minor

modifications (extensive re-writing is unnecessary).

_Totget the program into your program space, say GET ARITH-CALC

/after yglu signon to SIP. You may RUN, LIST, and TRACE the program as you

1-04*please, but do not use FLOW. Make any changes,you wish; iz any point,

you want_to get the original program back, then just say GET ARITH-CALC
,

again. -)

148

AppTndix d. Post-experimental guestionasire for TUTORIAL Kroup

QUESTIORNAIRE

NAME:

)4P

(1) Do you feel like the matervial you read during the first session
was useful to you in the subsequent tasks? (Circle the appropriate
number.)

Not Useful Extremely
At All Useful

1 2 3 . 4 5

(2) As you were testing and debugging programs during the sessions,
did you follow the guidelines presented in the material?
(Circle the appropriate number.)

4 Never Always,

1 2 3 4

Did you fiiid it difficult to remember the guidelined/
(Yes or No)

If.so, did you refer back to'the lesson?

(3) Was any part of the lesson difficult to understand, or unclear,
etc.?

If so, which part(s)?

(4) Do you have any suggestions (criticisms), 1-Al general', regarding
the manner'of presentapion of the guidelines?

Would it have been better if the guidelines had been given
to you before ,you finished the B1P course?, Please explain
your answer.

(6j1 Da you tb it would be useful to have BIP introduce this
- material part of the course? f

Would
.

(7 Would you like to make any Curther comments on the three
sessions you just completed or on the BIP course itself?

- ,

/ / ',-.. It

150'
141.

