~ L 4

3 he d * * d
.

pocuxerr rrsund
_ED 152 321 ' S IR 005 863

 AUTHOR ~ Wescourt, Reith T.; Hemphill, Linda A o
TITLE «  Representing and Teaching Knowledge for ) >
: . Troubleshooting/Debuggings Technical Report Ho.
) - . . 292. ¢ : * i
INSTITUTION Stanford Univ,, calif. Inst. for Mathesmatical Studies

) in social Sciences ‘ . :
.SPOES AGEECY ° advarced Research Projects Agency (DOD)}, Washington,
T D.C.; Office of Haval Research, Washington, D.C.

-

. ., ™ Personnel and Traiming Branch.
PUB DATE - T Peb 78 ~ o
GRANT ‘ ¥00014~T77-C-0124 -
XOTE - 1509.' * ‘. ]
. <8 7
EDRS PRJCE HP-$0.83 8c~34235 Plus Postage.
DESCRIPTORS artificial Intqlligence; *Copputer Programs; sConcept
_ " « | Teaching; sInformation Processing; *Imstrudtional
Design; Models; *ggolfem Solving; Programers;
Progmgming Problems; Skill Development
ABSTRACT -

/ .

(The goal of the present project vas to identify the
types of knovledgé necessary and useful for coapeteht

‘troubleshooting/debugging and to examine how new appsoaches to foramal
instruction might influence the attainment of competence by =tudents.
The research focused on'the role of general strategies in 52
troubleshooting/dgebugging, and hov they might ke represented and

e taught explicitly and directly in order to avoid the cost and other
drawbacks of learning indirectly by observation and practice. Related

" work on troubleshooting/debugging was examined, and in conjunction
‘'with a logical analysis, contributed to .a characterization of .
troubleshooting/debuggtng problems that emphasizes their generality
across 2 nusber of technical fields apd informal contexts, Purther

- data gathered from students learnihg computer prcgramming. suggest’
that expert debuggers do not necessarily have superior general
strategies; rather, their expertise derives froa specific and )
sometimes idiosyncratic knovledge agquired thro gh experience. An ‘.
attempt %o obtain a rigorous characterization of the differences and
defects in the debugging strategy of students by applying a’
rodel-oriented data analysis method was unsuccessful. Another study .

. vas conducted to detersine the effects of presenting a tutorial text
vhich,describes a few general heuristics designed to correct strategy
deficits; results.indicated a sarginal increase inm the appagent use
of gome of the heuristics by those who studied the text coni::ed to a
group vho did not. The several methodological lisitations an
problems encountered suggest that, if tht causes cf differences in
abilieg, are to be specified in detail, and if the effects of direct
problex-solving instruction are‘to. be assessed, then it will be
necesgary to perfect model-based’datacanalysis methoids.

.

{Author/DAG) .. . ~

:ttttttstqytttttttdtt:gttt;ttitsrttttt::ttttttttt?‘k&tt&tt:ttttttsttttt
* Reproductions supplied by EDRS are the -best that can.be nade.
s from th¥ original.docusent, ' *

“‘###‘tttpt“tt%t‘#‘#t‘tt*tt#ttﬁ!t*tt#‘##'f*#“#t‘##‘#*t‘#t#tt‘#t#““

] L . .= k3




-

2

<

¢ v=i . :
US DEPARTMENTOF HEALTH
a\J SOUCATION & wELFARS \
IAHMIIS"INY(O’
. M\ EOUCATION /7 . . .
Ty L 4 L) + -~ b )
N TH'S DOCUMENT HAS BEEW REPRO- FEPRESERTING AND TEACHING KNIWNLEDGE ¥OR ,
OUCED EXACTLY &S RECEIvED FROm ! et '
m THE DEQsonolonwnezu,roo.oa,cm. . . .
ATING AT BOINTSOF vIEW Of 0P ikiONS TROVBELESHOOTING/DEBIGING .
i $7ATED OO wOY MECESSARILY REBSRE. .
SEMYOF£iCiay AT .OMAL MYT T TE oF L»\ . .
Q EOUCATION POS T.ON OR POLCY . B
Ly ¥eith T. Wescourt
s .
Linde Hemphill
| LY
’ -
- coniraet Koo NO0L.-T7-C-0l2e, effectime Neovermber L, 6. .
¥ 4 , Zxriraticr Late: Tetoberd3l, 1977. . .
g s ~mount ©f Zonmtract: 296,658, .
) . . FPrircirel Inveztigstcr, Xeizh T, Wescourt, (L13) &97-.217.
Sirtractor: Institute for Mesthersticsl Studies in
f tne Scelal Sciences H
S Sternford University ) ){’ 4
- Sta;.ffom, Ca 3205
' Sponedred ty: i ) e
Uffice <f Rawval Regesrch
. Ccntract Autherity WN. KR 35L-3%% -
. Sclentific Officers: Dr. Marshell ?a:\n- and .
: . Dxr., Benry Helff -
- R_ ¥ .
R N -
fdvanced Researcnh Prclect Agency Y -
: £RPL Crder K¢, 3339 k -
Prougram Code Ke. 61.01E :
. . ' .
/
Fd N n
The views and conclusions contained in this documen'q are those of the.
authors and should not be interpreted as necessarily representing the
. « officdal policies, either expressed or impiied, of the Advanced Regearch e
. Projects Agency, the Office of Naval Research, or the U!S. Govermnment,
> ’ N

Approved for

Government.

.

£ vos £C3

.

——

-

ww
Fgc

A ruiToxt provided by ER

whole or i part is permitted for any

public release; distribution unlimited. Reproddgtion in

purpcse of the United States

»




[ - -
SECOURTY CLASSIFICATION OF THiS PAGE "When Date Entered; A

] REPORT DOCUMENTATION PAGE |« gppREADINSTRUCTIONS

' REPORT NUWBER 12 GOVY ACCESSION NOJ 3 RECIPIENT'S CATALOG HYWBER

g -
. 1

4 TiT_E ‘and Soblitle, . T $ TYPE OF REPORT & PERIOD COVERED | -

2 ) 1 . Final Technical Report 1

present and Tedching %ro; b . '

- ff{ . rg iedg r Rev, 1, 1976-%ct. 31, 1977,
Troublesnceting/ bugging. . & PERFORWING ORG REPORT NUMBER _

Tecnnical Repcrt Ko, 292

8 CONTRACT QR GRAKT NUMBERSS) -

-

-

7 AUTHOR/:,
b !

3 Keith T. Wescourt and Linde Herphili i ROO01L-TT7-C-Ci2L g

-
N

H DER’ORUWGORGAMZAT O NAME AWD ADORESS 10 ::gGl‘At'loElLKEHEHTz FR‘Q'JEE“C; TASK ’
. UNIT N

Irstitute fcr Mathematical Studies ir the " £110E v

Sceial Scie'"ces Sta..fcm Universit; o CRE LI ]

oo AN J’;{ RR OL2-0f; RR OL2-06-01

Stanfcrd, Celifsornie 91-? . FR 15--39. -

LiNG OFF.CE NAME AN_D ADORESS s 12 REPORT DATE

1 & Trairing Research Programs , | February &, 13757 i‘
? Naval Research 'Code L5Z) . '3 WUMBER OF PAGES |

n)‘ '{;‘. »;—r-—? \ x. L;
G AGENIY HAWE & ADDRESS//! difforent trom Controfling Ollice; 15 SECUMITY CLASS (sf tue report)

d s
Unclassified

1.

A; Y CONTROL
» Perscnre

Telice
S’

- b

«

~
-
~
-

L e

4 wowToR

[ RO SN

I . .
. 150, DECLASSIFICATION/ DOWNGRADING
SCHECULE .

» 6 DSTRIBLTION $TATEMENT ‘of this Report) . /

Arrreved Por public release; distrirution _1..1_ imited - .

*

. 17 DISTRIBUTION STATEMENT rof the'sbetrect entersd in Block 20, 11 Oifeeant trom Report) .

: ~

'8 SUPPLEMENTARY uo?i L .

: N
i1 KEY IORAD! (Continue on revecse slde II'nececsary and identily by Not;l' nusiber) ¢ A
rctlem sclving, debugging, troutleshcoting, reasoning, instructicn, complex
aming, computer prcgra....ing, artificial intelligence (AI), knowledge - o

‘ ) representaticns, heuristics -, .

P~ 'r

r 20 ABSTAACT (Continue on reverss side 1l necessery and (dentily by block mumber)

, ks scelety's dependence on tecnnoclogy increases, the. need for competent
techniciang who can maintair and repair complex systems lncreages as well. . .
Present methods -f teaching troubleshooting/debugging remain primitive and
expensive relying on students to discover effective and efficient problem-

] sclving methods by observatior and practice in relatively unstructured »
- %nvironmentsf ‘The goal of the present project was to idertify the types of SRR

knowledge necessary and useful for campetent troubleshooting/debugging and .

JAR 73
Q S/N 0102 LF 0146801
E lC . . SECURITY CLASSIFICATION OF THiS PAGE (When Dele Entored)
” - i . _

DD 'IORH 1473 EDITION OF | KOV 65 18 OBSOLETE

r * M
Full Toxt Provided by ERIC - . s
- z




[

L .
- hd ‘
. e :
- \
. - - ‘
- . . |
» . ~ »
4 . " -
. . _ﬁ. ] R @
T N ~ 1 u ) . ‘ w ' -
: “" @ ' R 8] -l 1 ' ; & P W
ﬁ w .T PR Y [ O " “n.“ s_— Mu G Mv.- mnw_ . e mm mwm m rm, @ : .ﬁw 3 ww.v MW M. o>
SaH To w..,,m.g i3 1 J o JoUDd Paade v O e o :W.H @
+ - . ] SN U
+ r,w 4 [S IS s B | J 4 ) n” . o .c. m m : M 5 W aw mm M rwﬁ: ﬂ .n wd 0 B4 L wd MSV | S
a L] HO Gumy g g ) a o T b o el o g e 13 el %o
ﬁwgm o 0 u.fma o & a oL _ p"a_.w Q,J.sﬁm E\lmz R At é.m&%k. .mnw
M : G4 1 g+ . - S P 3 o
A0 o 3 &1 K a o 5 px @ w0 ow : P.. W ¢ N § ) W e 4 Do 300
s Ju g o s 9 ' . LW w  wdond R 10 @ - O3
af e o . m— . 1 ] a B . > g p
g = CHBESY Y 3 v B s e R R R g 9 o
4 - o) L ~{ « it ’ i om gy £ % wd 5. %
Se¥ S g gt LS SUTENES VX EFe R TR S & L.. R " T TRUR I P Rl A
3 NPT .m ORI iy B b e i o - v S 1 ool 1) tX @ 1 w3 e 5 W oeo
E s B R B ‘o % Tos o al w Wl O Qoo 0l - 4 QOO D O b ¢ ¥
) et e ms.np, ' o p o .:,.wrri..:a 1O 9w ¥ MNP O
wawxam:uﬁz.4:a xgm%:y::rqxam.“a?uamxﬂz:mcmmm T3
e L g v % O @ 3o Ao " U v O @ o £ 83 @ .
LY Al P oaboal - oad ‘a m . 0 Q@ W P OO QP RO Mh - U T 1l 2 W) v 5
bS] @ Rk ) O o ! Ay ¢ I ) tl ~f 0 a8 O LI TN Lot Q 1,“ 1
.U m»..: Qs O M ? n_ aC ot o £, .:. ". ; (1~ o h T i e P i“ an. ; 3 - A3 mm p.“ mm I SR
oo g0 b 2 9 G0 d w o Jhon Lo B Hg-p pku IR LESESS ) .S .Mg..& 38 -
¢ . ek Ty LY g O P 13 et Al ‘ L £ ) ¢ T O e
TR EE N E- P - R B R RO G A
Ssm,r pﬂmi SRR > oy & q RS - R LSHABE w3
- O R $ K I I t.- (11} \ m\- . Yol e )Ja O t 3 ey ¥ l...u Et
) “s t LR I I S ™y ) TEEY W 4 + "
L A X oa e a oW . oS vl S VAR IS ‘4 &) )y 0 by
MuvoSdieqgod: el :;cnf.. e @ R NP ¢ Awldg
. - [AT S B TR I @ .:.: ! Y I TN, @ 4o . S Cr AN v -w
1 WO totd b 0 o O N CEET IS IS 1k e 0 a - [ (SIS TS I T VR o B " QA2 _.n
O oo + ¢ O ‘ O okl W o ¢ w ~{ o el B I
~t .u AU % £ AR ] @ b :“ ..m W.“ ﬁ". mm a b oo N «W m. - nym ._xw ) wm O wn A ' B M 1 Y] w... }
b aeTETLOAEAdS AR e;;:.ﬁ.c.:_j:frm.ﬁy o EEd g AR
QO o~ ' hd v a1 Sl e oo o N O~ Ky
. 1 o W d o @ m H S O e W @ o) QG s w.
(T HO L\ m_ u w y ¥ ¥ el o LD 0 Be ~ 2y o n& m LR i XA E I VI P I
Lo Do 1 wged mb oo RO S R i A BRI Y o ¢ e SR IE A
- o w al ke . B N Wt oy i [ O VIR S +") e
pedgeodd o A3 d oy AL IR L O G A ¢ O R MU S I 7 Loay S ] R 4
W 3 o~ c::c.r:;..:..fm. z&,:...oﬁe .e:*..v‘m_ :rx:wng:: :,t.rm“i o
wm H o my [TUNY m (%] J P ey S B % oed o) oord f [ '—w ﬂu Yoim ) 1 A N o ﬂ~ Do ow e . o~ b
LS IR RN (- R UL N g B 1 d.0w b M |4 QP 4o o
LS R TS I 'S PR & TS VLR Y H w .h N _ wy w b LUNR ST LR " o . R T I S S 0]
abhon & oo Q w, :m“ wd "x. ﬁ“ RSN ~ _“ w: . g e o .m“ .,Hﬁ o W ,Mn s e o
m ﬁm g o ] J.ﬂ .:,_ mmu;.m ,ﬂm .J .* w . - R. » Y a ' " :w w A3 J. t1 au m" b v mﬁ T T wd b S O M"
2 IR VI & IR “ N Pem W N WO Q) sl . LS I ST % S 4] W
e RTINS 19, D wd 1y 4« q ) o O a1 0 o O ay ¢ ‘ .
N wr W d c..mﬁ.m o mu.,x @ GHN S ,.....w:L..mrf.:.i;“r Ll A I S m.md.&l ..M,:mw,w
Se s e R I I R eSS - .’ .l i o
. P SETE0E @5 O, g o Bow ra: ae g TN e e R B O GO RIS Q
il © ounsges 90 g 30 W g S O m_ N SR N "t enas 4 oot o ola s
Q + LA 1. o L TR RS B SR ' VoD RTINS O W feq -
BB BE TIPSR T I Y ISR H we o LSO RS A Y oy e : SRR VI T L
g ' N . DA w0 Oy g )]
§ IR SR SO I IR Mg " wa o o . w. .a. ¥ AY O W. Q) :_v 18 o ..u TN I S o
£ ~i At L AR & RIS - Yool o Gy :ﬂ i 5 O Mt w @t ) ol o e '
§ me{;a;me. BN L ag e anda hﬁdaaw;awg:ﬁ%stmpv.mw
b I R e e Y TR B U [ R R BN 8 -y B Vo G oy O uep
w 5o &' Non NI ! Yot Be oy 0 ,: DI I R RPE & C o 4 fe
< AA Dol © ¢ M« [P 3] ﬁ ot —K».““ .,Q ;" .'" a ~ T A w. G0 0 O a Q . ".. M5 .-. ? N el
L) wﬁ n b ¢ bow ¢ o 3 @ 4> ke U pow £ ‘rw @ K O S8 q N .c M W w. oo > e
ol 30w oA e N4 = vwoua g bl 4 How ¢ M Ve w0 O A U TS o L
3| B O oo w ok Hoe m S a.. ff ; Y| .m O oA S AL LS B b m AR (NS ARSI T
* @ .h Mu %. 11l o« ﬁ s y 1 Al 4 - &. X L) Ot o e &g
1t e " 0 pm , cS al 4y XTI ¢ (I BRI my w0 - VU g ¢ T W
oF o ® o & o o I w € N w 4% R w K o by O W
QO O w0 N oo ... o G ot @ ;u@ ™ oy w. BTN R
% [SS P ,“ R .b“ RN m," w . w T LY w‘_ Z '™ ﬂ ,W r.% x ~b oY G . ag_ [H) pw_ . M ,._wi
- U N ‘ LS I ) ) ey QU )
Pl s B HERL cE b @ ol Y GU O @b dydw
«| O fod o @ o B I Lona gt oW Vo Lw oo ow
vl gt S I TR .w. bt :z g o h o el i yO @ E] o
< RN O a ,J Dy W. oW KU H.m ol PR TIR A L uow
al g & o ! . - G @ MR R Lot O £ U .
“ m nﬁwm wd RS UR Y o .w_“..u "H" MEY : . C [ITE I VRS 7 BT t] O .Wwv k3 n“ O w_u ~ @ o»
< S I YR B EENS o .l.fm b ' Ko 7 MO o
I KT e Q W ‘ Oo~t - .u . E ..,... Vow [T s o W@ e et g
v OO @D At ) w s Oy w. P EE YEOT N VR S M. 3t m. - [S T 1R TS
> 5 k4 " K “..w W o N P @ o 3 B _ Mo O Nt e
K @ P o kg ...m O N m 2 YRS Q) 2 ;_ LY G IR | .. ) ' O * m. B0t BSo @
« u «4. b .»" t bw 1” _.,“ ﬂ:. .. 4_ v;.. booa o T ~ ;_ ,m : .n»“ M” ”.“ ”H ,—m e L a e b C :. : ” CW e Al e er ]
g . : b . :
a w“ IR R oo a oo e E O Shiet O @ b YR !
[
-

SECUMTY CLASSIFICATION QF Twi§ PAGE When Dets Enteted:

f

Aruitoxt provided by Eic:

E\.



-»
—i -
v
»
.
A
4
»
.
- \)‘

ERIC

Aruitoxt provided by Eic:

Suc=mary
’

’

As society’'s dependence on technology 1ncrea8e8, the need for

- cocpetent technicians who can maintain and repair complex gystems
increases_ as vell. Present methods of Jedching
trsubleshootinb/debugging remaig prinitive and expensive, relying on
students to discover effective and efficient probleg-solving methods by )
observation ané pract‘ce.in relatively unstrucfured environments. The -

"goal of the present project was to identify the types of knovledge
aecessar) and useful for competent troubleshooting/debugging and to
exatine hov new approaches to formal instruction might influence the
attaincent of competence by students. In particylar, the research
focused on the role of general strategies in troubleshooting/debugging
and now they night be represented and taught” explicitly and directly in
orcer t:z avcid the cost and other drawbacks of legrning indirectly by
observ:twop and practice.

N -

Related work on troubleshooting7debugging was examined and in
conjupctyon vith a logical analysis contributed to a characterization of
troudblesnooting/debugging probless and problem-solving processes that
emphasizes tneir generality across a number of technical fields- and

. 1inforzal contexts. The analysis also suggests tkat debugging is a°

(.funda:gn:al aspect of alpost all learning and problerm solwing. One
Tesu.t of tne analysis was the forrulatton of an information-processing
mode.l of a general troublesncoting/débugging strategy, which describes
the types of reasoning processes needed, some of the factors governing
selection of alternative processes in solving a problem, and an explicit
contro. strategy. '

Extensive exanminatioa of a corpus of data from studeats Learning
computer progranniwg was undertaken, and some further limited debugging -
data were collected froc both experienced and inexperienced prograr=ers.
Tnese data are consistent with a hypothesis that expert debuggers do not
necessarily nave superfor general strategies, but instead thar their
expertise derives froo specific and sometimes idiosyncratic knowledge -

. acgquired tnrough experience. Inexperiencéd.pregraccers lack this
rnowiedge, but in addition some of therm have a defective general
strategy as well. In an attempt to oBtain a rigorous characterization
of the differences and defects in the debugging strategy of the
pfograaslng students, an effort was made to apply a model-oriented‘data
analysis method reported in the lfiterature. However. the method was
unsuccessful for the data available and may have more basic limitations.
As 3 consequence only inforcal cogclusions about the defective
strategles used by,sqme inexperienced dehpyggers could be developed: (1)
they are deficiept ia program testing aniﬂgo fail to find bugs; (2) they
do npt’ Qo‘lect or use available data about the effects of a bug to
constrain their reasoning; (3) they have a low threshold for attempting
ninor apd sometimeés irrational repairs; and (4) they do not backtrack
vell yfrom unsuccessful repair attempts. ° .

A small-gcale study was conducted to determine the effects of
presenting a tutori4l text, which explicitly describes a few general

N . :

' d ’ .

-~




O

ERIC

PAruntext provided oy enic i

2

®

.

.

P

heuristics designed to correct these strategy deficits. to novice

progranmmers,.

of sece of the heuristics

The data indicate a2 marpinal increase in the appafent use
7 the programserd who studied the text
compared €o a group wno did not. . In addition - comments elicited fronm

the students were generally favorable to presentlygproblem—~solving

strategies explititly. as .they were in the “tuterial.
success” of the groups in solving debugging test problems did not differ.
There were several methodological limitations and problems encountered

in the study which further confound the results.

However ., the

Yore general

metnodological issues for studies designed to igvestigate instruction in

troublesﬁﬁotzng/debugging alse becare epparent.
izportany' is analysis of corplex problec—~solving data: if the causes of
differences in ability are to be specified in detail and #f the effects
pf direct problem-sqglving.instruction are to beaassessea, then it will

One of the most

b€ necessary io perfect codel-based data analysis rethods.

S

7.

0}




——

-

O

ERIC

Aruitoxt provided by Eic:

. AF 4
>
'
. .
- ~ ”
4 ’ ~ l
) - n e —rn
FZPRESEFRTING ANT TEACEIRG ¥YXOWIEDEE FOR .
- s
—— - .y 1 - -
..n\).im ‘I*.C‘u.’..‘..'fﬁ ,,:'..33'}33%3 .
;
. .
td P
U" -
- ® = = - -
* &
Yelen T. Wesoourt ernd lirde Herthil:
. .
. . . LY
IS Y *
. -
. . . ¥ L
L3
’ 4 ' .
- - - ”~
. ‘ Pebruary :, 1377
LY
13 -
: - &2
L]
- * -
. .
.
) .
.
£
¥
) .

Institute for !éathez.atica.SSt\ﬁies in the Sceial Sciences

N ¢
< Stanford University ) 1 - :
Stanford, California ot
. L]
e - .
. * * i . . i N .
[ € ; . z
s - - r J
. ] 4 -
] . bt ,
. A~ . f L - : .
. R . ‘ . - K - r *x
b 7 . = tef
~7 ’ = =




O

ERIC

Aruitoxt provided by Eic:

i *

Acknowledgements’ - .o

*
- - v
. i
We wish to recognize the participation of Diana Egly, Alex

rong, Mary Dageforde. Roger Cole, and Marian Beard, all of who
ntributed to tnis research in several roles. We thank Drs.' Marghall
rr and Heor; Ealff, Personnel & Training Research Programgsy Pffice of
1aval Research, and Dr. Harry O'Neil, Jr., Progra= Manager, Cybernetics
lechnology Office, Defense Advanced Research Projects Agency, for their

support and encouragecent throughout the project. .

¥

w0 o
[T VR B

1

T&is research was spongsored by OKR Contract NOODl4-77-C-0124,

Contrace Authoril} Ro. NR 154~394,
L ]

% \—‘
«
. -~
,
. R
¥ lad *
- 4
.
.
.
. -
.
.
B
| -
- *
14
- *
3
B
-
.
s .
——
. .
.
€ ’
_ R




I, Introductgen - .
+ [
The incréassng dependence of our society on technology is a2
phenomenon. (onplex systems continue to perform new functions and
becoze ~ore sophisticated. For exampke, consider their role in modern v
. comzercial aviatiaon. There are of course the modern jet alrcrafe
¥ zﬁcorpora;ing dozens of electrical, elec;t&uic. and mechanical systenms.
. , , “}! \
But trere are also the netwotks of radar and communieation systenms for
. contrzlling air traffic and thé computerized scheduling and reservation
_ systeos Ior coordinating flights and access to theo by passengers and .

i
1s difficule to imagine how the demands our society now

carge. It

piaces on comzercial aviation cpuld be *isfied without these complex

[

— - 8ystems. Such systems nav hecome equally indispensible throughout our

~ . . ‘.
society. ' * .

- N .

Lrror or failure is always a threat when relying on a complex
sistea. Tne result might merely be inconvenieace, as it would if an

air.iine’s reservation system lost track of a passenger’s

- Iy
could be disaster, if., for exarple. an aircraft’s

nder eonditions of poor visibiliry.

. \
Preventive maintenance énd

reservation,
’ *

radar failed in

. ~

. repair cooplex systems is therefore an important concern. One

’

responsel to the problem have been efforts to develop better types of

technical data for both routine maintenance and repair procedures to
4

:accoapany complex systems (Potter & Thomas, 1976, A second,

complementary response. one with wh%ch this report is concerned, is to

. ’ i

. provide better tféining for the beople‘reépousihle for testing and
’ repairing complex systems. ’ - '
. ’ If a fystem does not operate as it should either during testing
L3 ‘-“. r -

ERIC : (- -~ g : -
o o e 7 . '




O

ERIC

Aruitoxt provided by Eic:

' 3 . . -

- 4
&
or during actual use-~ if the o1l pressure warning light comes on in an

aircraft, if ground radar incorrectly indicates the position 'of

i

aircraft, or if the reservation system allows two passengers on the same .

- - M v R * . »
flight to be as®igned to seat lUA=--, then a hupan techniciar must bhe
- - . i \ . *

N
summoned to solve the probler of locating and correcting the cause of
»

. .
tne failure. Tnis type of problem solving is referred to in different

contexts as troublespooting or debugping. The objective of “gnod”

-~
~
Q
-
(@)
e

esnooting/debugging is to locate and correct the cause of failures

efificiently, witnout undue cost of raterials and time. ﬁ? electronics

s
-

technictlan goes not want to replace several components in a circult if

ne nas reasin to beileve tgat only one of them is faulted and that he

can identily and replace just that one in a reasonable amount of time.

*Similarly, a computer progracmer faced with a program that generates .
incorrect results wants to make 2 relatively limited correction. one -
that does not entail recoding parts of the prograc that perforg their .

*
-+ - . e
‘function adequately. .

' *

-ﬁg Expert troubleshooters, those technicians (or technical .
N ]

. ei .
consvdtants) who make difficult repair problems seem easy and !
« * :
‘impossible”

ones only difficult, have zlways been highly valued apd are

often Tegarded as artists, sincg théir expertise is so poorly

€

understood. Demand for their services can only grow as complex
i N ¥

technology spreads. However, advancing technologies have introduced

.

features such as built-in test systems, modular systen organization, and
Y

miniaturization that make efficient troubleshooting'of routine types of
.

failures in even the most complex systems possible for technicians with

more limited skili. Unfortunately,'many mewly trained technicians have

difficulty even with routine problems and become competent only after .

‘ ’




O

ERIC *

P e
¥ .

-

-

they have had considerable field experience.

are hign and,

Thus, maintenance costs

in settings where there is ;)high-rate of personnel .

turnover, there tendséco be a chronic shortage of competent technicians. .

<

The research described im -this report 1nvestigated the bases for

0y ’ ~
competence and expertise in troubleshooting, as seen in the context of
p £ §

v

computer program debugging.

.

The goal was to identify the types of

knowledge necessary and useful for competent debugging amd to determine

A

whether new appreaches to formal instruction might facil}tatq the s
attainment of competent debugging ability by new programmers. .8 '
F S .

0y

Iroudlesnooting/debugging as a gemeral aspect of problem solfing

Situations that pose a problen of locating and correcting the °

cause of

a failure are not limited.to electronics, mechanics, and

cowputer programming and do not necessarily include complex technologv.

In some contexts, the parallels are straightforward enough to have

extended the common usage of the terms'"troubleshooting& and

'deouzéing”

Using the methods of operations research,

® L)

Management consultants are often called troubleshooters.

they locate causes of

1neff1ciency in an organization.(corporations, agencies, etc. ) and

suggest corrections to its structure 0r procedures.

in order to bring a-device up to specificatg?ns.

The scope of these

. -
LS

repairs is constrained by cost much as are those a technician can make

N -
] H

.

v v
Less obviously, the behavior of a teacher tutoring-a single .

student shares features with that of a troubleshooter.

In tutoring. the

teacher asks questions evaluates the student’s responsges, and provides

explanations in a continuing dialog «(Figure 1),

" The purpose of some of

his questions is to elicit answers that identify specific inactureciee ] '

[y

311




a’ \ ¢ \ . -
- . F
’ o
L 4 - s =~ . -
" - { ¢ - b . .. -
A ) / ) - ) , ~ M -
s ~ . L. 3 - |
1l 7T: Do you think it rains mué¢h in Oregon? d - ﬁ
T e oo ) - i .
(Case selectjion: Oregon is-a paradigm case of & first order - i
. causal model of rainfagll. ' . : '
. Diagnosis: ask for a prediction abo%t § “particular ocase.)
2 s: No . S Lo N ’
- (S°s predictidon’ i's wrong) L. !
’ . , ; ! ‘ ‘_‘ J “
3 T: Why do you think it doesn’t rain much in Oregaqn?
' - ‘ \ _ SR g
(Diagnosis: ask for* &ny factors!)
b - . . B £ - .’ — _ . -
4 S: 1I'm not exactly sure - just‘hypotheéizinq - it seems to me“that ’ .
. the surrounding states have rather dry climate, but I really don’t :
' know anything abogt.tpe geography of. Oregon. |, ' : oo
{8°s error is due to a proximity infe:ence;" S has no
. knowleddﬁ of relevant factors) - . *
B o
3 Tt It does" in fact rain a lot in Oqagon. Can you guess what
causes the raim theré? ° . </ . ' ' e
(Correction: inform sfﬁéent. , ( T
. T . Diagnosis: ask for prior factorsi) P :
o N - 7 -
6 S;- Well, let me sce - I have a feeling that there is a mountain
, range nearby and the ocean i.e. Pacific, I think-probably borders i
eOregon, somewhat? : p . N
‘ (S names ‘2 factors, but does_not mention their relationship - -

to rainfall.) oo

.
-

‘.7 T: Yes the Paéifiq borders Oregop how &o you think it is involved
in the Jeavy raihfall’there? : ' .

-

-] -
(}” * +
,

(Diagnosis: T selects prior fggtorf holds other factor;
Rule: ask for iptermediate factors.) .
U8 S: I haven't really got any idea -.well not gquite true; I would
only be guessing. Does the air (moist air) from th ocean somehow ge't . -
blown over Oregor and encounter a blqsﬁ of some sort which causes it
to rise and cod1? . g ) E
(s is missing three sté@s'thft are ‘in T°s ‘model: 1. why the
air is moist, 2. why it} is blown over Oregon, 3. why
cooling results .in rain) - oL . a
Figure 1. Annctated dialog between a’ humgn ‘tutor and student.
. . From Stevens and Collins, 1977. - ’ -

.
' 3 . * : . Io ’ - - -




< | S e ¢ L
... © or omissions in the student’s knowlegie.. Once these €rrors are .
2 . T , - v *

deteateq; the tutor may pr0vide explanations which he believes aiLl

R 'c°rrect them. ° Qlternatively, as in the Socratic tutoring method, he may

K4 {_ ‘d ‘
ask furthEr questions designed to prompt tﬁ"student to reason about v

other knowledge he has .and thereby to correct himsélf+« (See Collins,

_ 197e, for an analysis of Socratic tutoring. ) Ihe tutor is thus debug?iog

the studeqt s systemSof knowledge (Stevens and Collins, 1977). ! . a

rd L ]
. Troubleshootingldebugging=problems also ocfur ; s in a ’ »

i¥.

. range of everyday contexts. Most commonly,:people ar with balky

- H
cars or household appliances, and attempt some limited troubleshooting
. - . . 3 ' . € . %
' to avoid the expense and inconvenience of calling a repairman or at
' »

-

v least to enable zhem to give him a good description af the pgoblem‘if
. forced to call nim. People also engage in informal debugging f&\\
- developing instructions’. For instance, if someone gets lost following ’ ‘ .

i . directionsg you gave them for ‘getting to ygir house, then you engage id

-
-

debugging when you detg;mine which step of your instructions were wrong

-0r were executed incorrectly. If the instructions are lengthy, then it

B

can be efforrt to check thenm step—by-step from the beginning against a -

e

mental image of a map or of the route you intended. Thus, to be more
. . N .
efficient, you might consider the location from which your friend called

*%you when he found himself%lost and its proximity to points along the
- . intended route.’ The analysis serves to limit the section of your . = ¥
o
iastructions fﬁgﬁheed to exadine for the errorqq;This type of reasoning

behavior resembles that of a computer programmer, gho uses the . -

& A -5
characteristicds of a program’s erroneous output- to suggest where he y

*
+ " . .

shoul&Astéqt tracing program code. Other informal situations that
L 2 ' -
'xequire dehugéingjlike problem solving range. from deyeloping a new

% .




2 *

(Figure 3 continued ) & _
3 r
. )
g “
DEBUG ~§ S[DIAGNOSE] + [REPAIRDY" ‘ / .

DIAGNOSE -> <ASK { TRACE | "errpr™"
e T x x
TRACE  -> [SELF-DOC*] + RUN
SELF-DOC  -> ADD-PAUSE | ADD-PRINT | ADD-TRACE

ASK - => "print definition® | "pript value® |"print file*] ...

CHANGE . -> ®changa statement of code® + *response” '-r’[DﬁBUG}

REPAIR - CRUN | EDIT | SOLVED" 4
ADD-PAUSE -> ADD .

ADD-PRINT -5 ADD L C

ADD-TRACE -> ADD T i o

EDIT  -> ADD | DELETE | CHANGE- o - .
RUN ] ->.'run statement of code” + "response™ + [DEBUG] |
ADD => *add statémmt of code” + *response” + [{5£BUG].

{DELETE -> "delete statement of Cg(i?' * :r:e.';ponsa"-h [DEBUG]Y |

t;}r




*

~

‘encounters are psychological analogies to skinned elbows -and knees. The

. ’
.

T v

like learning to.ride a bicycle. you watch someone else and then,climb

e

on and try yourself. When you fall, you try to figure out why,.agd r !

g
perhaps receive advice from a proficient bicyclist, such as "Look at .the

R ‘

horizon, not the front _wheel!"™ High motivation is required to learn -

’

troubleshooting/debugging in this way, since the frustrations one

' ’

instructor’'s method of facilitating the process ‘is largely empirical; he’
p re

tries to idedtify the examples and exercises that result in better

student performance on test exercises. . '
: '@%‘ . 'd . .

The igpdirect approach to teaching i%oubleshooting/debugging does
work satisfactorlly for some students. after all, it is‘“the way inm which
existing competent troubleshooters acquired their skill. Other students

having "fallen of the bicycle" more times than they can bear (or the
- 4

educational system will allow) become drop-outs. In general however,
the indirect_ method 1s’ less successful for teathing problem solving in

technical, than in other subjects. The factor involved 1is the cost of -
. 0w

\

resources required to generate examples and to allow students to work on

exercises. In mathematiés or subjects based on mathematics, most

3
problems can be solved with paper-and-pencil and the °‘!13j ‘demands are on

the instructotr’s imagination and energy and the:student’s time.

£
.

Troubleshooting problems (and also design problems 1in efigineering) '

. -

require reéources like, equipment and space, dhich are ﬁcarce commodities .

- - - . « ¥
in most educational settings. Since the cost of,these regsources varies

1
#

directly with the .amount @f time used and number of errors made by
students, there is an inherent pressure to limit studeat experience to a

ninimal number of simple, and less than realistic,4problems. ’The

limitations are most criticsl for students—having,dif%icuity,.who fail .

’ » <
[

~! »
- L 15 A
B * 7 A .




v < v
. . . .
- ¢ .
.o <, ‘ - . - ~ .
M N - -
. . 5 . [4
i L -= 7— - hd
. , . L] .-
-~ . &, > -
% .
. « ) ‘J * s - :'\‘\ . " . . ' . . -
. N * <

to’ have experiences-sufficient for learniog the required knowledge and‘>
) ) /
* - - .

s0 either’drop:out or, fail. Even better students, however, may not get
enough e;periepce to-becone gofficiently coapetEnt~bx“toe troe they

finish formaés;nszrortion. Thus, new.trouhleshooters/debuggers mnst
typically oggsggo a period of on-theﬁgib training, which is expensive ™ : .
-both becadhe their produofivity is lowﬂand because it requires, the

involvement of experi‘ence&tect}nicians.1

A more direct appraach to teaching troubleshooting/debugging .

ng: formal instruction in ) ~Z

v . : ’ 2
troubleshooting/debugglng is to reducé the costs of the indirect metbod

associated with providing e*amples to students and with operating and .

(

supervising student problem-solving laboratories (Finch, 1971).

- ‘

However, there is an apparent paradox in the indirect method that could ’

indicate a need for a'spostantially different—approach to iostruction,

ol

Al

~

for some students. 7Theioaradox is that the learning by example‘'and - “
. , . - \

. trial-apd-error experience }equired by the indirect method ‘may actually

F

presuppose thelﬁery oroofem:soluing strategies the student is attempting

’

o

to learn, (recall the analogy of eﬁtortng‘as "debugging the student"Y.

In effect, learning by the indirect approach requires the student to 4

debug' his strateéy for how to debqg., N
. N - -

Since people do learn to deoug by observation and practice, no

real paradox exists. o afly, sdghisticated strategies must evolve Hy
» . E » s,

-

bootstrapping from a primltiye learpfhg mechanism, which we is

effective,’thoug} legs than optimal, for +inductive learning' in simple
.h * - :

- -
- -y -

1For scientific professionals, the lattepffears of graduane
education involve research experience tlyat serves a similar funccion for .
developing problem-solving skills, .

F

. _ 8, - -,




3

3 N

' expljeitly the general strategies that students develop when they

™
|

contexts. Sfudentg in technical disciplines bring to the classroom /
debugging strategies,$f varyinQQEEfectigeness vwhich they have induced by

monitoring their'attempts.to solve the types of informal everyday . .

TN 4 - e e

‘troublesﬁﬁbting/deb&gging problems we mentioned earlier. Some of them B .
-may alread? have eff tive general strategies and only haye to leatn how .

# &

to apply‘them infaxnew probIem domain. . The indirect metnpd works for . A

them because their debugging étrategiea help them to learn efficiently
. - P - - .
from their e£periences; they are proficient at, debugging their own
I o . . .

I3

Enowiedge. ﬁoweGer, those students with ideffective and inéfficient

initiai strategies encoonter a bootstrap%ing prooled.because egficient
¢ ) b

learning By indnction preéugposes some of the same strategfes as
L - » -

~ N . . v

-

debdgging. Therefore’, anothep'apﬁroach to instruction in A
troubleshooting/debugging, which would be most advantageous to students
} - : .

of lower imirfal ability, is to try to teach more directly and
/ %, - ¢ hd x

- ’

understand exampieéoand try to solve ptoblems themselveé} Such
instruction could help 5tudents UGKacquire an effective strategy for
troubleshooting/debugging wpre rapidly and improve their general

capability to learn by the inairect method to troubleshoot in a

. o* .
particular domain. . ’

v = - .

: The are %two aSpects to éeveloping an alternative, more direct

-
-

qﬁprOach for teaching troubleshootiag/debugging. First, the strategies ,/\\

that students learn by observing competent problem solvers and by’ rf .

‘

solving practice problems must he identified and articulated (i.e.,

£ N
represented). .Second, a guitable pedagogy must be ,gpr‘m_xlated. Thesg s
- - e . X
: e . ’
goals are not-necessarily independent, gince pedagogical decisions can
) » .
depend on the way the knowledge is represented and conversely, choices
- = .

= *
B -




-~

O

ERIC

Aruitoxt provided by Eic:

.

\J

: §§ LI
among alternative representations can depend on featlires of preferred or

available teachi?ggéétbods. -

x

t

3 o

s

In the remaining sections of this report, we wil

r or

ideas of others and ou:selves about the nature of the *

troubleshoocing/debugging process.

computer program debugging behavior which bear upon_these conceptions:

We will describg our obéeévatlonq‘of

E

&

¢

discuss the

‘e -
.

-

and which also suggest the knowledge deficits thdt,cause some

inexperienced programmers to have difficulty vith even simple debugging -
. : ;

—

o

problems. We wiil‘conclude by presenting the results of a’'study

s

designed to investigate whether such deficits might be dorrected by

direct instruction. #

-

s

/j’

<

<

=

-~




-0 1I. Understanding the troubleshooting/debugging process
. oo
. - . .
-
) ) Difficulties in studying troubleshooting/debugging —

D
Une reason that troubleshooting/debugging (and otirer types of
. cooplex prohl%E solving) a:é,taughz indirectly is that it is diff{cult - '

to gather the data needed to develop an empirically-based &nderstanding
- <

of the problem-solving process. There are ﬁroblens of observing a range

of episodes and of the observer not interfering with the

h *

troubleshooter’s behavior. "Sizple problems may be solved in minutes

during a single "sitting”, while complex problerhs may be solved over .
1 )
. days or “even weeks (e.g., the debugging problems faced by system .

-

prograncers oa large cocputer systems). Thus, it is =uch more difficule

to observe thé solutions to problems 2t the more difficult end of the ¥ i
-+ - “x -

/; specTrum. In any episode, there is the problem of observing the

7 . . . . . :
. troubleshooter without causing him to depart from his normal procedures. -

A4 generzl lipitation in studying E}oubleshooting episodes is .

*

- that,zuch of the troubleshooter’s time is spent in periods of thinking,
. . : ' A

el auring which there is no, overt behavior to observe. Iypically:/it is

- ¥

difficult to infer what the problen solver is thénking from the behavior
’ .
. 3 .
observed prior §nd subsequent to these quiet.periods. Post hoc reports ‘
(e.g.,"Tell me how you solved that probiea") tend to be edited and .

incomplete, appearing as idealized accounts which frequently conflict

with observed behavioral data. Hore general self-reports (“Tell me how °

3
>

you troublbshoot™) may also be contradictory and incomplete. Theri is a-

- - ‘ [

truisn that being an expert at doing something hoes_not necessarily - .

PO izply being able to intrpspect on how one‘dog; it.

O . . il > -

ERIC ’ R 19 e




'Y !‘ - - -
« ’ . Y A . _1
Troubleshooting/debugging tao be an activity for which ig.noE easy
for most expeqté,éo deéb%ibg their reasoning in either particular or .
- - 'v/'» . ) . , ] . - ,
general‘terms. The fictitiSus dialog in Figure 2 caricatures this 4 ’ i
: A-'iP e T ) .
* %nabiliry. e i %
"; ' There has also been a diffiguliy in andlyzing d organizing the . . %
behavioral data and self-reporis that -can be obtaiped. Reior to the .
L Lg ’ s -

.developnent of information-prqcei:ing and cybernetics there vas no
adequatg formalisp for describing processes—— i.e., to represent lk ,

proégdural knovledge-- and thus for ianterpreting and_integrating sets of

observations in order to develop and. test hypotheses relattng‘ he
knowledge used by troubleshooters solvers and differences in

. E?%?@ieshooring epiSodes. While natural language has been used to

=
¥ -

Egggesent propositional knowledge from the earliest rimes, it is a poor

medium for expressing complex procedural kno%ledge. To convince
yourseif of this consider the typical comprehensibility of the assembly ~

and operating instructibns for various devices. Usually’, one renains‘;'

uncertain of his.understanding until the device works ({.e., the

instructions are understandable only if you already know the procéss). f e

’ R

One apparent weakness of natural language for describing progesses is | .
- “ L] < - »
its awkwardness and acbiguity fof expressing complex conditional . -7
- ~ P . . ..
, relationships Betweén events. Hore generally, ifi natural language much
* ¢

of rhe knowledge being transaitted by thé sender is implicit and must be _*°
. (S -

inferred by the receiver. The deaands for decoding the iaplicit e

-

knowledge jﬁy be sore severe for procedural than for propositional et .
¥ . ;

knowledge. (Try to generate a syfficient descriptiou of how to drive a

Fd ~

-~ ;
car that you cam feel confident will be understood without questions by -

.

. * : -
someone who has never driven one.) The linitations of naturgi lahguage




m-

.

s

hJ]

Figure 2, Fictional dialog between an e
. en observer (0) caricaturirg

moa

y e

L

“How did you know tha trouble was
in the switch?”

//;Bécause it worked intermittently
Awhen I jiggled the suitch. *
K}

«""Well-- coulan’t 1t jyiggle the\—"_&girg?”

g, M

<

"How do'yol ++know@ all that?”

4 .
"It’s ++gbvaous@® ™

——

A

“dell then, why didn’t I see it "

-

* "You have to ha¥&e some familiarity. ®

"Then i%’s ++not@ obvigus,

(8

- the Art_gf. ¥otorcyele Kaintenance, p

Y

“ -

.

-

xpert’ troubleshooter {B) and

Y

is it?7" .

the expert's difficulty 4n
articulating the souree of hig expertise.

<

From Zen ang -

135-(Pirsig, 197%). -

wh




Vo
ma¥ be parsly responsible for the difficulties that problem-soIVers seen

to have introspecting. besidesqghﬁir difficulties in realizing how they

troubleshoot, they may not be able to articulafe what they are aware of.

\ -
Ihusi\understanding of the troubleshooting/debugging process has

Ng .
been hampered\both by difficulties in making gomplete, valid-

0

observations and in systematically interpreting tHe data that can be

obtained. ’ )

- . '

¥

b4
.‘qpver the past twenty years researchers id’iuforﬂazion-processinz
..i'

?%nformationfprocessing‘models el

Fod
4 C

psycnology concern;; with understanding intelligeg@ bumau behavior and
tho‘e in artificial intelligence (AI) interested in developing
“intelligent” computer systems have developed new formalisns for -
hrepresenting knowledge. Semantic networkS'iQuilliau, 1969; :ﬂ%?ds,
1975), production systems (Rewell, 1975), procedural networks (Brown,
Burton, Hausmann, Goldstein, Huggins, & Miller, 1977;-Sacerdoti, ‘1975),

logical calculi (Nilsson, 1971), and process grammars (Hillerg& N

- . .,
! Goldstein, 1976a; Woods 1970) .are the new "lenguages“ used to represent

the declarative and procedural knowledge underlying intelligent behavior

in a range of tasks. These formalises have enabled the development of’

£

sufficfent ("strong") computational models for certain well-structured

problem domains, such ag logical prooi, games, and puzzles. rﬁkré are ’

E

now computer,programs that cdgésolve such pfobleas as yell or beéter

- »

than most human problem solvers. Strong computational modeis have also

: bgen_used to siaulate huzan problem-solving behavior,. including its

o

variability and érrors, in an analysis-bywsynthesis _Jproach to

s

linterpreting behavioral and introspective data’(Newell & Simon, 1972).

- 0

Ed

14 22 - ¢

L]

L




- - . - *+ i

-

Beyond their applicﬁtion iq automatefl problem solyers, ‘the
knowledge Tepresentations that have Eeen developed provide a framework
for analyzing observations and for articulating partial mode%p of less

-

well understood types of problem solving like troublesbooé&ng/debugginz-

That is, even 1f.;t is not yet possible to' write a general prograa to

troubleshoot faults'im circuita or one to debug other programs, it aay

[y

be possible represent the top-level organization such a program would

.

need and some of its more specific data-structures and procedures. Sugh

“weak" models are a hasis for directing attention to aspects of the

-

process -that are.not‘yec understood and “their logical relationships to

<

. those that are and for intérﬁreting ne¥ data in order to expand our

s

-

dnéerstanding. .

[-3 »

. ‘
——

<

Over the past several yééis, psychologists and computer

i
scientists working the the field Jf Al at MIT have conducted regearch on,

information-processing models of prograaming and debugging. As a
consequence of tbeir work they have come to adopt a view that debugging

is a fundamehtal aspect of most, if not all, césplex;huaan learning and

oblen §blving (Coldstein, 1975; Miller & Goldsteiny 1976a; Papert,

‘i1971; Ruth, 1974; Sussman, 1973). The position is based on their
o=

informal ‘analyses of human grogramming behavior and on their attempts éB
develop "intelligént" programs for writing programs and for solving

other types of probleis. People learniugxﬁo program and even .

experienced programmers designidg pfograms khowinglz code and atté&pt to

.

~ execute programs that are inadequate.

They may be unsure about cke
effetts of a partic&lar contruct or of the- interaction of familiar

. constructs in combination. When the program fails, by reasoning from
i

fad

the way it failed they can modify 1: to function correctly.,

As a simple

-~

-

Yy

.
I3
v




programmers indicate that despite consclentious efforts at toP-dowu' . 7

example, a statistical program nay involve printing a table with a L L
complicated format that depends -on theﬁparaneters.of the data to be ~ -
! -, v R . ’

analyzed. The programm;r writing the program may héve'digficulty

calculaFing the format paramegers‘needed'to align the headings and

entries in'the table. He may therefore proceed by estimating the' format
and,thgn executing the program. The .errors he obgerves enable him to . -

modify'his original gstimates to produce a cofrect format. +

This notion of ‘the generality of debugging goes beyond our

earlier compents about .the range of situat®ons in which debugging-like

¥
oghavior is required; it says more strongly that problem solyers‘

consciouslx create debugging problens for themselves as part of a«

.

generel planning s;rategy. ‘Debugg§ng is seen as a natuyral complement to
gggﬁgg in the process of planning and implementing a program. Either " -
becaﬁée ié is more efficient or because human inéormation-processing
capabilities (e.g., in "working meno;y") limit the domplexity of th; '-:'; S
design process, programmers implement programs with %P eéxpectation that.

they will have to debug thea-~ {.,e., debugging is not necessarily an: B
afterthought forced on programmers. :
L
There {8 an alternative view of debugging that it is a

P

regrettable outcome of poor design and that programmers can and should i‘ -

- had -

strive to eliminate all debugging through rigorous design: This 0
A . .
positien is popular among advocates of “structured programming" (Pahl, ,

* »

Dijkstra, & Hoare, 1972). He disagree with this vitwpoint. Hhile T . .
rigorous gnicial top-down program design is certainly desirable, 1t is

unrealistic ¢o demand and expect flawless design, for complek, ianovative -

- .

programs. Our own inforaa;‘obsé}vatfons of skillful prgfessional

. = -

. i

- : 16 !

- 24




- R P
. . .
. - ¢ . -
. .

design, they inevitably start implementing and testing programs before

*
+

the' design is complete. It seems that there ars too many complex :

i
-

J interrelationsbips in most programs and that they can be understood and

- £, j . - .
implemented more easily by deBugging than by abstract logical analysis. .
I

»

From the programmer‘s perspective, there is a srrategio trédeoff between

the costs of design and debugging such that it is most efficient to
, lntegrate the two so as to minimize the the msxianm complexity at any

’ =
-~ - -

Roint.

H

, From their stydies of programming, the‘researcherS»gt MIT, have*"

generalized the constructive rode of debugging in learning and problem Y
8olving using the following logic. computer program is'a
representation of a plan, a sequence of legal operations it an

- -

environment that when executed will accomplish a goal (i.e., solve a
~

- -
»

WW

" problem). For example, a sorting program is a plan for accomplishing

the goal of arrgnging a list of values in a desired order from an
{ - . ,
arbitrary initial order. However, writing and executing a program is

only one way of expressing -and following a plan. Plans were developed

- .

tapd executed by people to solve problems long before computers existed

and have been’embodied as mechanical and electro-mechanical systems. ) -~

" Programs are just a general way of representing plans. Tha:‘is_uhy ¢

-

: " programs ¢an oe.used to 'Bimulate some of the behavibr of people and of

mechan cal and electronic systems.
_Pians then, dike programs, nmay also firsf bé-fo#mulated with fﬂ

A3

some fgnorance of whethér partféular actions will be effective. If .

C

. - -

; execution of the plan proves ic Inadequate and’ if the plan-is to be used

. again; ther the information obtained from the failure can be dpplied to

-

modify the plan. * However, even if the plan was for a unique ‘problem and ’ o




-

-

. will never be used again, debugging the plan is useful. In &esigping

new plans, parts of old plaos for somewhat velated proolems may be used
and so a "library of correct plaus can help the problem solver.
. .
. Forthermore, one can-§3b that there must be<ﬁolans for planning"—- ;
general strategies for,paking*design and debogging decisions in planﬁing

solutions to- particular problems (e.g., whether to sYnthesize part, of a

design or borrow it from a design in one’s plan librar%g Pf&n failures

Lt

- - 3T

- L4

provide feedback that can be used to debug not only tﬂb f&ulty 5125, but

also the strategy used to design it in the first place.
z .

Sussman (1973) developed many of these ideas about planaing and -

- -

debugging in the co&rse of formulating a Zoppucationalxaodel called

-

« . . .

HACKER, a program that solves problems in the paradigmatic o

“"blocks-world" domain.” “Given & problen ok rearranging some of the

blocks on a table, ‘HACKER in its naive starting state designs a solution

-

\ sequences that are redapdant or impossible in the blocks world). 1In
case of failure, HALKER works toldebug the plan (not‘alaays
successfully). .It also stores inSormation about carrect plans and about
bugs that it”can use in designing solutions for.subsequent problem‘.s.2

Hark Miller' and Ira Golostetn at HIT’éﬁfller & Goldstein, 1976a)

" bave attempted, (0 formaliZe the relationship between design and ﬁi
. i —~ w
: ' 1 1
. debugging 'in problem solving using what tﬁgg call planning grammars,iis

N : . ,
which are representations of design and debugging strategies. Employing

*

H - B ‘2
both context-free grammars ami augmented transition uegygrks (%?H)

*

.,
.o -

[
e

Y

<
1

See Sacerdoti (1975) for an alternative view that correct plans

can be implemented in incrementatf stages of design and execnti n. without
debugging. / :

of simple actions (pick up,ézgt\ozl;/,ﬁependiug on the pfoblem{ its
initial solution may succeed>or fail (where failure is defined by actien -

a




%

M

3 ~xa
v

" B '_: N .

/
l,’

A Y

» . *

: (Noods, '1970), they have written systems of rules that* describe the

process of creatinggand exeCUting EOGO graphics programs (Vigure 3).

’ yihey have proposed that pl%nning grammars can serve two functions:

-'Ql,

(l) 1nterptet1ng and comparing the behavior'of different programmers and

4‘

; f

designing and debugging their programs.

t

”

(2) developing "1ntelligl§t" sgﬁiems for assisting programmers in

They.have explored the seconqj

use in their SPADE systenf (hiller & Goldstein, 1976b), which records a

proérammer'siplanning‘decisions with respect to a'plahning grammar. The

fecord is used to advise the programmer of conflicts and omissions in

the stricture of the program and of his options any point in the
\

planning process (Eigure 4).
]

-

] -~

€

-

A general characterization of troubleshooting/debugging problems

x
£

Uur examination of research on tr0ubleshootlng/debugging has led

~ ’

X
us to formulate a characterization of troub eshoeting and debugging

T

general to-a range'pg problem domains.

-

-

A

t

We define troubleahoosingfdebugging ag a type of problem solving

Eocused on either an abstrace/plan or a p;ocedural system. A procedural

C .

system is a physical entity that émbodies a plan and can execute it.to -
e

.

accomplish its goal.

each subpart having a specific role in achievement of the overall.g

-

For instance,"a plan for building a table includes subplans for

-

-is that they can be represented as hierarchies of functional subparzi,

A characteristic of plans and procedural systems

I

]

obtaining a design, obtaintﬁg materials, assembling the‘wood and

hardWare, and finishing the assembled table.

con81sts of smaller subplans.

include:sobplans‘for borrowing a truck, se

[

3

.

. Each 6f these subplans

The plan for obtaining mate;ials might

lg:ing a-lumber supplier,

e




o . '
. " - .
) ‘; ~// 3 .
Pl: SOLVE' -> PLAN + [DEBVG] - oy
pz: PLAN -> IDENTIFY | DECONPOSE | REFORMULATE .
‘:' mmm -> PRINITIVE | DEFINED -
T Pa: nmman ~> USE-CODE, & GET-FILE .
’ P3: chonposa ' -> comuucrfon | REPETITION"
PG CONJUNCTION -> LINEAR | NONLINEAR, "
‘ P7: LINEAR - 8T | 5EQ L
ba: sk _=> LSETUP] + CHAINSTEF,+,[ INTERFACED™ + [CLEANUP]
Po: SET -> ¢sTEPY” *
y P10: SETUP -> STEP / i \
1 P1l: MAINSTEP  -> STEP | . ;
 PIBINTERFACE  -> STEP | - \c )
* P13: CLEANUP  -> STEP Vo
Pl4: STEP. -> ADD | SOLVE | ’ ;
. Pl Aaspzrmon _-> ROUND | RECURSION  , | .
P16: ROUND - => ITER-PLAN | TAIL;RECIJR o )
i . 917: IJTEé;i’LAN -> "r%;eat step” + SEQ A- . L
| h PIS: TAIL-RECR -> STOP-STEP + SEQ 4 REC-STEP .
- 3 ' P19 RQC-S‘IEP " =) *recursive pr;:gran call® - T
) . P20: STOP-STEP . =) "stop progran tall® T ' (

*
»

Figure 3. Miller and Goldstein's (1976b) content-fme grenmare
. . for planning and debugging programs.

1 4 ‘ ’ ’

h]




¢

2

*

o

(Figure 3 continued) . —_

DEBUG
DIAGNOSE
©w
TRACE
SELF-DOC
ASK
REPAIR
ADD-PAUSE
ADD-PRINT
ADD-TRACE
EDIT
RUN
ADD

DELETE

CHANGE

H o
’-’/ .
. . 4 L ]
R -

-3 $[DIAGNOSE] + [REPAIR]>
> CASK | TRACE | *errar™"
-> [SELF-DOC*] + RN

-> ADD-PAUSE | ADD-PRINT | ADD-TRACE ;

=> "print definition"® | *print value® |"print file*] ...

v
-> CRUN | EDIT | SoLve>® :

-> ADD .

-L - :’« L)

-3 ADD . . ‘

-> ADD ) o .

~> ADD | DELETE | CHANGE - . DR -

=> "run statément of code” + "response” + [DEBUG]
-2 "add statement ¢f code™ + *response® + [leBUG]
=> "dglete Qtateasnt of code" +_ 'l:e.';anSe' + [DEBUG]

P

-> "changs statemeht of code® + *response® :P’[B%BUG]

t,}r




.’
A .

7

-'t.m'sn is @ cogmand un

. " _SPADE-0 Scenario (‘part a) '

/

-
<

The pretiwinaﬁb version af SPADE ts little more tkan a bookkeeper for the

user's subgoals.- It is; c&rrcntly being implemented by assigning an interpretive
procedure ‘to each gramaf‘tgal prtnittve.
ﬁ'

la, What is tlea'nane o!_your.top level procedure?

- 5

1b. DWW
3
/Za Rule for W is: SOLVE- -> PLAN + [DEBUG]
Rule for WW-1 is: PLAN -> IDENTIFY | DECOMPOSE | REFORHULATE.
What now?, .
2b. >DECOMPOSE .. ° _ ‘ C ~

]

- e * o /
. .t

L

da- Rula for WH-4 is: LINEAR -) SEQUENTIRL J SET.
What now?" . .
3b. >SEQUENTIAL - o, ' i

4a. Rule for‘W-S is: SEQ -> [SETUP] + <MAIN + [INTERFACED* + [CLEAHUP]
Do you wi;h to include the optional constituent SETUP?
4b No -

L]

’
7 P P

5a. Hcm nanyg occurrences of (HAIH + [%HTERFACE}) do you waut? ‘
5b. >3

~

-
+

6a. Do you wish to include the optltmar constituent CLEARUP? -
6b. JLATER - . PR -
t

%
-

tood by SPADE. It means that the user mants to

terminate this path, bu that At must be recopmenced later.

SPADE keeps track of

confinctive goals, reminging the user of the perding goat list 1f asked.

records the informetio
application of the: SEQ rule.

Here it

quired to return to, and eventually complete, the
It can then go.on to other goals. —

Dialog with programmer’svassistant based on the

"

Figure 4, Zr gremmar
) shgwn in Figure 3¢ M{Iler and Goldstein, 1976b.
:( . [XY . - x
' » 4"

. A




2

Ny A

SPADE-0 Scenaria’(pért b)

*

7a. Your pending goa}.s are fj;x,{ -.. and WELL. - ¥What m
;" 7b. D>POLE

- '
r L 4
] . &

smo'e qpplies the SOLVE me recursti:ety T,

8a. Rule for POLE is: SOLVE -> PLAH + [DEBUG]
Rule for-POLE-1 is: IDERTIFY | DiCOHPOSE | REFURHULATE.

’ What now?
N 8b. >IDENTIFY

9a.
¥hat now? -
gb. >PRIHITIVE

: 10a.
y i What now?
10B. DVECTOR .

) -
>FORWARD 100

1la, POLE completed.
W) .-

11b. DHELL 7/

% e~

¥hat now?
i2h, >DECOHPOSE

o

-

s

7

Rule for POLE-2 is: IDENTIY -> PRINITWE | DEFINED.

-

g

. - -

Rule for POLE-3 is PRIHITIVE =) VECTUR | ROTATION | PENSTATE

=

Pending goals are: ROOF, WELL, and WW-17 (CLEAHUF of

What now? -

r

\

v

ro.

o IZa. Rule {or WELL-1 {s: PLA)i -> IDENTIFY { DEC@POSE F REFORH[H.&TE.

”

-

-

-

»

-

o

o

Here we have substituted a grmr vhick contains rules Jor comjanction but mot .
repetition. This allows us to illustrate the mamner im which SPADE avoﬂis - "
i{nterrogating the user wshen nro actﬁal decision is required. L
3}4. Rule for WELL-4 is: DECOMPOSE -> CONJUNCTION.
{(Forced.) : .
Rule for .WELL-5 {5: COXJUNCTION -> LINEAR | mm
Yhat now?




-

selecting a hardware supplier,5&n¢“§cﬁeduligg’the trip to make the,’ K “

purchases. As another example, an elect?onic power supply consists of . '\ .
) . Ak
subcircuite such as amplifiers, voltage, o ors, etc. In turn, each
. FPICTETS, volragerepmlators, Curn, .
"of subcdrcuit consists of more basic subcircuits, and so on dntil the
. . - e .
leyel’ of primitive components-- tradéistors, resistors, diodes, wires,--

-

s wetc. Similarly, a cowputer prograh will typically have subprograms for
. -
]

input, output, initialization, sorting, etc. ’] ) .

——

A fei:ure,of such functiomally ééfine§ bierarchies is that the - ’
subparts ‘at eaEh level are independent in that each is a "black box” -
froo the viewpoint{éf the gthers; it doesn’t -mattet now each does.what
it dégs, as long ;s it fulfills 1;5 rvle in atcaining the overall gaal. ’f"/// /

For instance, in assecbling the table, the detaiis of the -subplad by

- - »
. - .

which the materials vere obtained are irrelevant as, long as the

.

materials are all there wben,:hévasseé?ly subplan is executed. -, ’
éizilarig, structdrally d{?&erent hﬁt func;ionail; equivalent voltage

fé;ulator circuigs can be iQferchang;d in a power supply and differént ,’)
sorting algoritb:s‘qan be integchan%ed in a prograg.3k AR :

_ The subparts at esch level of the funct@Pfaal hierarchy have a o
[4 P .

: . - . )
\teleological structure. In the sigplest, linear strurturé, the action ! ) B

2 .
of each subpart depends directly on that of one other subpart and

affects directly one otjer subpart. Of £$&:se, the action bf a subpart ’

can indireétly affect éllsthe ﬁubp&riﬁ subsequent to it in the‘o ’

. a
* 19 * ‘ "

——i—

3

The relationship between subparts at a level of the hierarchy . oo
can be gore complicated than this, since it is possible for thes to be . .
functidnally discrete, bup stiil share physical structure. For example,
tvb'subprogrzas for input and output may share {("call™) a . :
type~conversion subprogram al a lower level. This overlap is_incidental
vin that shared structure can be replaced. by redundant copies,

igportant in that a defect {n the shared sfructure may affect

-

function of all seyerorﬁinate parts.

N ~

. ’ N
- 4 ) . . 24

-

. 532




$’| - - . .

/th— : ’ - | \' .

- o, -
(] te;eologi,c\ayéucture. Hore coz:plica:e& structures ‘have sultiplre

a ® N

interzaces and feedback)paths betveen subparts. When a subp&rt»contafkk‘

a fault, then its action will bq‘incorrect for at least some of _the o
1 - .

possible actions of i=mediately prior subparts. Its faulty actions may

iahibit. subsequent subp;}ts from Operating and 25;5 tersinate the . )

>

Opera‘ion of the eatire plan/systeadﬁ; may propagate through them and -

distort the actions of the pian!systea. > -

L . .
Troubleshcoting/debugging involves reasoning about the actions

- -

of the plan/systex and its teleological structure at each level of 1its

a

functional hierarchy in erder to localiée the fault to a minimur number .
of subparts (ideally ooe) at that Ievel. The actions 2nd structure of
the' suspect Subpart(s) are then used to localize the fault at the_péxt

lover level of the functional hiergrchy, and go on until the cost of

»

repairing a‘subpar:(s) is less than the cest of further localization.

,—

. . . . . =
+ - Expected cost plays several roles in debugging.. It not onf;

det¥roines the level at which repair is atteampted, But also perves to .

.—

order- logically equivalent debugging actions. Cost depends om how the .

: /
structure of the plan/system affects measuresents of the acticnsggf and . %

i;ne ability to repair a par:icular subpart. It s8lso is deterhined frua S -

the debugger’s idfbsynératic experiences. For exaeple, if a car iﬁies .

* 1 . E

unevenly, an experienced aechanic =ay jar the carburetor in case a piece

of dirt is lodged in one of the small internal passages before he has

=

done : any tests gn ;be ignition timing, spark plugs, or eng .
cb:pression which Eight logicaliy determine :hat the problewm is actﬁglly v

1o the carburetor. His attexpted repair in this case is inexpensive
13 . . ¥

enough to allow teg&:jg of a hypothesis developed by inducti ("uneven

idle has in past‘expeqigﬁce been sssocfated with dint in the . S

. ' -
- . L £ ' -

. . - ,.& ;3;; .o




\ - - . F . - -
’ x
carburetor”) rather than by deduction ("“thé observations that have been
. N ‘ . )
made uogically dete:uine ihat the problen must be, in the carburetor").
C
As an’illustration of how cost thresholds enter into reasoning

@f debugging, consider a simple home troubleshooting problen. Suppose

.

you wake up during the night and decide fo go to the kitchemfor a

snack. When you move the switch on your beside lamp to -the “OK" '

¢ 0

position, the lamp fails to light. Given that you are motivated to

&digcover the cause of the failure and, 1% Possible, effect a repair
what would constitute ‘an effective and efficient tack. If there have
been previous p??blems with the lagp thet you h&Qe tracig o an

internittent short in its switch, you might operate the switch several

tizes in an attempt to "unshort"” it temporarily. That.is, you night

—_— F

identify the symptom and irmediately recognize a possible cause that LN

your experience suggests may be more likely- than other possible causes
and that has ar inexpensive (if cemﬁorary) repair. 1f yo; ha%ino such “i*\\ -
réason for suspectin the switch, then you rust reason about the circuit

) 2

(proceduﬂLl systexm)|that contains the la:p The la=p cﬁrcuit has a

’ LT -

. siople linear teleol g5 consisting of the external powe? supply’ to the .

house, a fuse or circu%; breaker,‘che wall outlet, the lanp pIug and ’ :

cord, tée lasp switch, the light bulb, énd several intervening gections

3

of wiring. The lighé bulb will not light (the initial symptom you o -
observed), if there is a fault in any of the cdgyonents prior to.it.
One aBpect of an effective general troubleshootingfdebugging . * )

strategy is to make observations that, g&f&n the structure of the . )
-
system, are iogically‘sufficient to excludq or }nclude subparts from a

’ - v
+ L

location hypothesis, which is simply a description of where the fault :

e

could possibly be lpcated in the system. The actjons of any,subpart in_

, L 26 34 - , " ’
; - E L

4




e .

a linéar teleological structure can serve to-refine the hypothesis in

one of two ways. If the actions are normsl at point A, then the fault

nust be in‘a subpart subsequent to that point; if the actions are

*

abnormal at A, then the fault must be in a prior subpart, Thus, if all

»

‘subparts can be observed wtth equal cost and if the debugger has no

‘special knowledge relating the observations he can make to the

likelihood of possible faults (e.g., the lamp svitch has an intermitfent

.

short, bulbs fail 5 tiaes as often as fuses, etc), then an optimal

strategy 18 to nake observations that will repeatedly halve 7he scope of

) the location hypothesis unti1 the fault is iqglated to a sifigle subpart;

this miniaizes-the expected number of observations,that are required to

5 o

localize to a single subpart. Thus, .in our example, because the wall

-

12

¢ E)

outlet is near the niddle of the lamp ' circuit," the first observation

would be to see {f the lamp is plugged in and iﬁ 80, whethé¥ another

»

electrical device gonnected to the same outlet operates correctlys

v

1

¥

Suppose ‘that the lamp proves to be plugged in and furthermore
that an electric clock is plugged in at the same wall outlet so that you
can easily (without getting out of bed) observe.whether it 18 still
operating. If it is, then the fault can not be in the house power

supply, the fuse, or any of the{50nnecting wires prior to the wall

€
.

outlet. If the clock is not working, then the fault 1s in one’‘of those
e Y #

subsystems (barring two independent failures in the lamp and clock)

Let’s assume the clock also is not working. Breaks in house wiring are

(- —_—

!‘
ordinarily uncommon, and so it is most likely that either the power

supply has failed_or the ﬁuse has blown. Since the fuse box is in the
7 N . »
basement, it is "costly" to check,/;elative to looking out your window

to see if the street lights are still working. If those }ightf are off,

1
-~

]
-
'
ey

s
-
|

-

N




&;T"

¥

If they are on, then you can replace the

*

then get your snack, go back

then the power has failed..

- -

fuse. )If that doesn’t solve the problem,

to sleep, and call an electrfeian in the morging, decause the problen is

in the internal wiring of the house.) <. -
i - . [

This 15 an efficient way to jsolate the fault, though given
slight changes in the situation other solutions might become better.

For instance, if your bed is next to a window, thén the easiest
I4

observation éo start with (befb{g/looking at your clock) might be to

iook out at the street lights., Of course, if they are on, then you know

»

only that the power supply is intact--only one subsystem has been
f i & .
eliminated Eonpared to the three or four eliminated by checking the N
— b ~ X’
- 3 . [ ‘
clock whether 4t is working or not% .The strategy for making - T

&%

' observations seems geﬁeral in itself, but in this epigsode requires

-

- l 14
knowledge of the lamp circuit and is affected by idiosyncratic knowledge

and by parameters of the situation that determine the costs of making
. ™ [4
observatiens andfrepairh.*
*

« 7 ;/ t

.

Representfgg g'é??atégy for troubleshooting/dgbugginé
In order to understand more precisely how dif%erene types of
/knovledge are used in troubleshoqting'/debugin.g, we d’evelopeé ar
infoskation~processing model for a general deghggiﬁg strategy, like the
one iilugtrated in'the above examéle. }he modzl is general in the sense
that it is in{ended to descrtbe the overall sttucture of successful ,
debugging episodes by differeafgaividuals for different problems in a

Variatioqp in the,sttuccure of any episode -

- <

range of subject domains.

L ” - .
are due to characteristics of domains and problems ‘and differences in -

-

.The moéei identifies.she

b7

the domain-gpecifie knowledge of in&ividuals.

. . - .
fé .

o, ’ + 28 . <

- ’ 36$ 4 .‘




. Second; by annotating the connections between procedures, ,conditional

'system, but with tgmé ef%(iifnczégnd comprehensibility. e ’ ) el

L4
S et

LX)

points at which these factors produce vériqtiqﬁa in problem-solving .

— 4

behavior. It is a ver& "weak" model in that is far from a sufficient 7.

computational model of troubleshooting/debugging.in any donain. *
T

Hoqever, it is intended to be a logically sufficient description of a .

+ -

top-level organizational structure for a strong model. Our model draws
ypon prior research on debugging mentioned earlier, particulafly the <

planning grammars of Miller and Goldstein (19762, b) s

.

The model 1is a representation of procedural knowledge and we

have ¢hosen to express it here as a type of procedural network (Figure

<

5). We considered, but digmissed, the possibility of using a preduction
system formalism to represent the model. " The primary factor in this

decision:was that production systems hide the control structhire of a

procedure by distributing it across the individual productions. A 2

o - = e - - T e -

second factor was'that production systems incorporate senantic tests at

every point.in the control structure-- they presuppose that all

procedures are invoked conéitionally—- while we found that we wanted to
identify both conditi®nal and unconditional calling relationships,, The
procedural network overcomes both of these difficulties.a Pirst, it t

explicitly represents the overall control structure of the model. —
. i . — ,

—_—

and unconditional flow of control are conveniently distinguished. An
- 1' M - .
ATIN formalism also has'a natural way of distinguishing conditional and *

uncoaditional paths of control. but we found it somevhat less heuristic

< »

for conmunicating'the entire top~down structure of:fhe model. We want
= E -

to emphasize that the model could have been represented as a prodgliction . .,

-

The.nocation 'in*Figure's5 requires some explanation. Each node

. 3y o

. . =




1
START

-

DETERMINE- MAKE—-BEST-" MODIFY—ACTION—
OBSERVATIONS OBSERVATION DESCRIPTION
-
3..-T '

! TEST [

e,
LAY

DEBUG’ ~ |.
N . “~~\\~
I o 2 3 ‘~~§~~~
ODIFY ‘
. _ MODIFY— )
RECgG"‘ZE i LOCATION— | REPAIR -
. BUG HYPOTHESIS )
‘ - £ i ,
Flgure 5. Procédural netwofik for,the top-level structure of

L4
¢ by

a general strategy for troybleghootinig/debugging.




. be imposed by iterative calls.

&>
2

* *

@ -~ . . * » .
!

in’:he‘procedyrdl network is the name of a-procedﬁte defined by its

~

function. An arrow from one node to another indicates that the

. i M . . - -
procedure at the tail calls, or passes coatrol down to, the procedure at
- B Ld . C
the head. 1If a node has more. than one arrow emanating from it, the

calls from it are a;géif made in the order denoted by the iﬁtegers- .S
laBeling the arrows. Solid arrows represent unconditional calls, while

. . * . .

dashed arrows are calls made only if some gemantic tests are first’

satisfied. Each dashed arrow is labeled with'a letter. Table I - ’ o~

.
-

Summaril&Sytﬁe semantic tests for each of .these labeled dashed arrows in
Figure ijgnd ¥ists the global registers and data structures used by the

modal.a In tracing flow of control in the network, the following

convention is in force: when a procedurs finishes {when all {its
. . ’ ) .
subordinate procé)‘res finish) it passes control back up ‘to the

superordinate procedure that called it} that superordinate procedure,
= ( . . * i
then calls its next subordinmate procedure_ (if any).

Since a general strategy for tropubleshooting/debugging is a plan

+

for solving problems, its representation as a procedural network can be

viewed in the same way as the plans and procedural systems the strategy
t ]

s -

can be applied to. That is, the levels of.the network are levels of the ’

strategy’s functional hierarchy. The hierarchy 18 incomplate in that it I

doés not extend down to tHe primitive procedures needed to_solve

-

problens in any specific domdin. The teleslogical structure of the

Lo “ . . o
hierarchy is complex (not linear) and is represented in part by’ the

ordefing on arrows emanating down fromlatnoge. A second part: of tﬁe

N .
- - <

. H . Ve . L
4Since‘much of the communication amo procedures is by global - ..

structures, the recursive procedure calls in e netwotk in most cases
do nmot increase the memory demands of the model beyond those that would:

. -
v - -< 7

-

i ’- : 3% N €

5




~-

b = - -W ‘ . :
- 3",{ ) R
L § s - v
* v
; &) ) ‘2
A

©Table 1 ‘ *

Sumhary of Global Data Structures ang Registers *
' and of Procedure Invocation Semantics of
. tbe Troubleshooting/Debugging Model L.
T1lustrated in Figure 5.
. P ;

L . C

3 -

Data structures and registers

ACTIOR-DESCRIPTION : list of propositions describing. fhe relation between
; observed: and normal nlan/sys‘bem actions.

LOCATICH-HYPOTEESIS: description of parts oggglan/system vhere a fault
may possibly exist, el

ERROR? " . : TRE if no error has been detected or if a repair
bad been mede” and not yet tested; FALFE otberwise.

DELTA-T . : unidimensional value that is a function of the
changes in %be ACTICGH-DESCRIPTI(N over tim

T " : threshold v&.’t;ue to -rhich DELTA-I is ccmpa.red o
Judge thélexpected payoﬁ‘ of detemining further
observaticns. ,

0 : threshold that determines minimm payoff of ’

- - obsemtions made, .,
R : * threshold that def,emines maximmn cost of repaim
. © made.
- . -

®

Procedure invocation semantics

arc-lsbel (from Figure 5)

a: 1f ERROR? = TRUE - ' . .
‘b: there exists at leést qne okservation with an expected payoff-

_ greater than O. ) i
c: 1f MAE-FEST- OEERV!&IG? vas called,

-

-

d: 'ifERROR? ‘= FAISE and DEITA-I > L. ‘

e: 1if the cost of ring the parts denoted by the total
Locmcﬁ-xmmﬁiis less than R. -.

£: 1f the cost of repairing the partgzsm& to ‘have been
‘, recognized gs the location of the Tault is less than R.

IS ~




S—— T
-, 3 - ;
™
To. e ) . N

N - . — ¢
3 . -

€

teleological structure is implicit in the seneptiq tests. for conditionalt

procedural "calls. The. tests involve global registers and data’ ‘. -

Y [ 4

strictures that’are accessed and modified by procedur
- . '

s throughout tbe

He

p network. Thus, the invocation of copditional procedures _and, in fact,

the .actions of both conditional’ and uhconditioual procedurea “depends not °

: only on the actions of the callin

g procedure but on any procedures tﬁat
*"w

have previously modifiea’the—registers and data structures. We maké.
< ‘-

-\Eip;point to emphasize that while the procedures contained in a general ‘;
troubleshooting;debugging strategy may seem obvious, the relationships
— '

between then are not and may tberefore cause the greatest difficulty in )
(-4 i

understanding and inducing how to apply the strategy by observing it in

< - '
B E
- action- g ‘ .

A ~
- - l

Y We will now proceed to elaborai:e the deel describing the

]

calliﬁg ‘semantics and function of each procedure and indicating the

.‘\

N ‘diffeteﬁt types of knowledge required and how they become available tp

N - \ B
the problen’ solver. ~ ) . )
% * - 4

} ) . EEST. Every time a plan is executed or a system isxactivated,.

it is implicitly being/regfi:. For instance, whenever you switch/gn/a,—j<;,',

light, you are teating‘it and tbe cigpuit of which it is a part. 1f the ‘_

’

. light fails}to-go on, then’ debugging is initiated. More clearly, a“ )

techni@!an engaged in routine maintenance couﬁciously tests a system to-

2,
see i! he can gatber data which may cause him to reject the hypothesis
" that the 3ystem is fully operational. Thus, the top-level procedure in
» »
J '
the model is TEST. The model is.alﬁays started at TEST\ At tha?Lpoint, _

~

"a register ERROR? is FALSE, indicating &n assumption that there ib\ no

ég- error in the system being tested. This 1s also reflected by the initial

value’ of a ddta structure ACTION-DESCRIPT N which is HULL. TEST is

» -

~ N ~ /'
also called‘by REPAIR. * . .,

. ’ . -

33 41




Lf) ® , . - ¥ M

s

r
TEST invokes CHAR.ACTERIZE unconditionally. It subsequently * . ’
calls DEBUG only if ERROR? is TRUE ubon retut:n from CH%CTERIZE.

/ CHARACFERIZE. The function of CHARACTERIZE is to ,collect data

*

N that allov modification of the ACTION-DESCRIPTION. If it adds a clause

{ *

" to the’ AC‘IION-DESCRIPTION that describep ‘a discrepancy between observed

and ,normal actions, then it sets ERROR? to TRUE if it was previously _ .

Al
<

FALSE. This gorresponds to detecting a bug during testing. : o« r

CHARACTERIZE does its work via three subprocedures, -

i

DETERMINE-OBSERVAI’IONS MAKE-BEST-OBSERVATION and , -
HODIFY-ACTION-DESCRIPTION. The call to HAK.E-BEST-OBSERVATION‘ is oo

conditional on whether there is a potential ob3ervdation whose payoff }a

.

function of 1ts cost and expected information r - )j_exceeds a minioum
th

th‘reshold which we will denote 0. This means an observation is

-

s .
*- not made if it is too expensive or if it is not expected to alter the -
ACT&]N-DESC!?PTION significantly. The initial value; of 0 is get b; TEST . g

and depends on the expected cost of a subgsequent gystem failure if a bug
. >~ A
18 not detected and repaired. CHARACTERIZE also may call itself

% conditionally, if ERROR? is FALSE and. a register DELTA-I which reflects '
the rate of infonaatipn change in the ACTIOH-DESCRIPI‘IOH is above a -

threshold 1. This ‘means’ tha-t when CHARACTERIZQS called by TEST, .

v

“ejther initially or after a repair, observations will® be wade as-long as

the ACTION-DESCRIPTION changes by the addition of propositions asserting -

4

that observed actions are nomal’or by the deletion of prc;positions

— 4 & % ¢ <
. ¢
\ asgerting discre&ncies noted, pre¥iously between observed and normal
actions. 1In general, this im?’lies that characterization during testing

* ¥

continues until there arg mo more potential observatfons whose payoff g

v exceeds 0. Thus, testing does not nécesgarily continue until the




£

debugger is logicaiiy certain‘the gystem is egror-%ree, but only until, ’

his confidence leads him to believe that further observations have a S

.

higher cost than failure to detect a possible error/ﬁcul& have.

.
DETERMINE-OBSERVATIONS. The first procedire called by : 1

- *

, . \ : ' .
CHARACTERJZE is DETERMINE-OBSERVATIONS, which identifies a set of 4

potential observations. The observations are deternined with respect €34>

the current LOCATIOR-HYPOIHESIS a data structure describing a

kY
subhierarchy of the plan/systen vhich 1s initialized to the entire ] . '
hierarchy and modified subsequently by the procedure‘

HUDIFY-LOCAIION-HYPOTHESIS by deduction involving the b

ACTION-DESCRIPTION. The LOCATION-HYPOTHESIS represents the part of the -

plan/system to which a detected bug has been logicélly .isolated or - i

conversely mAy ‘be viewed as the part of the plan/system which is not .

known to be bug-free’gIVen any prior oBservations. Each observatioa

‘identifiedtby naraanma-osszasm:bné has-a potential effect on the )

-

ACTION-DESCRIPTION ¥hich can further reduce the extent of the ‘ *

plan/system dencted by the LOCATION-HYPOTHESIS,

- Observations may be experimental, involving manipulations of the

pian/systeﬁs parameters (if any). For example, they may require an .

electronics technician to change the external control gettings of a }

deviceipr 4 programmer to altér the data input to a, program. In‘eome

*

domains,  1ike manageeent consdlting, no experiments are possible and

. observations must be “naturalistic."

[ *

* PETERMINE-OBSERVATIONS accesses the debugger’s knowledge of the

Ed

Plan/system’s, functional hierarchy and its teleological atructure in

order to 4identify points where informative observations can be nade.
‘ v

some contexts (e.g., electronics troubleshodfing}, there may be=external

In




sources of that information (technical data). Othegeise the hierarchy

~Jmusgt be built up from the loeest level using knowledge about primitive . v .

subparts and the laws that dlscribe their interrelationships. Knowledge
, about higher-orde: subparts derived in this way -may be gtored in memory .
a "library" which may allow the debugger to recognize that subpért if

‘it appears in subseq&éat episodes. ‘ ‘ 7

" . HAKE-BEST-OBSERVATLON. MAKE-BEST~OBSERVATION is second

*»

procedure called by, CHARACTERIZE. As doted in the discussion of
/
- “CHARACTE&IZE, tts call is ;onditiongl‘;n fhere-being at least one

potential observation with an expected payoff exceeding O.

-

E 4
MAKE-~-BEST-OBSERVATION performs $he observation with the highest payoff *

A\ . . .;t '
ACTION-DESCRIPTION. An observation expected to return a large amount
\ *
1nformation may be passed ovg‘ for a less productive one if the latter's
\ - .-

cost is auch 1owene . ,

as determined ffomQ}té cost and its pdtential‘for affecting the izf

. HAKE-BEST-OBSERVATION accé%ses the debugger’s knowledge of how

to wzke observations (e.g.h uge qf measurement=equipment) and of their

“axpected cost.- Host_ kﬁowledge of these costs is probably acqiired X .
-~ 4 ’ -

th:ough experience and’may be’ stored in the sate 1ibrary as the

4]

knowledge used to rec izeyﬁ%§her-order subparts. Tﬁht library tay .
, also contain tﬁe knowledgé oﬁ likely outcomes of observationa used to <, \

»

estimate the eifect of an q‘eervacion on the ACTION-DESCRIPTIOH. This
latter knowledge supple&e::i;:nformation about the ﬁﬁbsible outcones
deduﬁfd from knowlédge of’ the functional hierarchy of the plan/systen. ] .

HODIFY-ACTION-DESCRiPTION. .This procedure modifies the h . .

ACTION-DESCRIPTIOQ;according to’ the observed actions and is called only .

if n@xz-zssr-oss;hwm 4as called. The modification involves adding a

o A . - 36 4 - o X




S ~ *

éroposition to the description noting either a normal action or a &
g 3. . - ) .
discrepancy from a,normal action. In testing subsequeqt to a repair, it

may also involve deléting or aoéifying a proposition alreadylin the . *
. description. Generation of the proposition requires access to kn&éledgg
for deducing the noraal‘actions of subparts and structures of éubparta.

. DEBUG. DEBUG is the controlling procedure once an error has

[

been detected. ‘It is called by TEST if CHARACTERIZE'has returned with

ERROR? equal ‘to TRUE, It calls the procedures RECOGNIZE-BUG,

-

MODTFY-LOCATION-HYPOTHESIS, REPAIR, éﬁgfﬁgrlezs; and itself. The call

to REPAIR is conditional. Further detail§ about DEBUG will be gffen =

following the description.of Its subprocedures.

RECOGNIZE-BUG. RECOGNIZE-BUG is a powerful procedure in that it

can radically alter the overall strategy of logically localizgng a bug

EY

at grogress{éely lower levels of a plan/system’s functional hierarchy.

It accesses the ACTION~DESCRIPTION and matches {t against a knowledge

library of bugs and associated Acriox-asscglbrlops eocountered in past

episodes Qith identical or similar plan/systems (idiosyncratic

experiential knowledge). Jf a sufficient match is obtained to a known

bug and the cost of repairing that bug is 1ig less ggan a threshold R, ;

then RECOGNIZE~-BUG irzediately calls REPAIR. If the Eﬁst of tﬁg’fepa%z/ *

is too high to be attempted at that time (R increases as a function .of
i " .

-

the number of times DEBUG baé been called), then the old

LéCAIIOE-HYPOTHESIS.is saved and a new LOCATIOR-HYPOTHESIS is set to be y

the level of the hierarchy at which %he?subpari containing the >

‘tecognized bug is defined. This has the effect of focusing subsequent

characterization on a "suspect” subpart. FPor example, when a aechanic

first exaaines a car uith an uneven idle,-the ACTION-DESCRIPTION 1is

—

- - *i

ST Y w g o ~




;" L o : :
"uneve;\sdle" and the initigl LOCATION-HYPOTHESIS {ncludes the entire _
4 .

ignition and fuel systems. If he has konowledge that “uneven idle™ is .
8 . ‘—“4 77: ¢ —,: :I: }
frequently due/to dirt in a carburetor passage, and is fanilisF with the _ 7

- = -
-

“trick” of jafring the dirt loose by striking the carbaretor on the
‘outside, then he may, immediately try that repair. Ef he 1s'not fanmiliar

with that inexpensive repair (or if he is angfit doesa’t seex t3 work) ’ -

<
and is not yet ready to disassecble the carburetor or use a chemical

clednes, then he can sef the LOCATION-HYPOTHESIS to be "fubl systea” so

that hé can cake further observations whieh will indicate vhether or not

) -

F
there is soze problez in the carburetor. If the problen is }6gically
\\"*\./j

localized to the .arburetor, then an appropriate repair will be =ade

with the savings. of not naving ‘made unnecegsary observagions to exclud; ‘o
:he igni:ion systen. Howevet, £ one of these observations on the fuel
systez ghould make the LOCATION-BYPOTHESIS logically inconmsistent with

the ACTIOK-DESCRIPTIDR }as detected by HODIFY-LOCATION-HYPOTHESIS), then
the previous LOCATIOR-HYPOTHESIS mugt be res;oféd and modified. Thus,

for example, if fur:her.observa:iong,prova conclusively that there 18 no

fault ia Lhe carbure:or, then the LOC&IIDR-HYPGTHESIS contdining the

ignition system and entire fuel system is réktored and tbe . -

problem-solving process continued from that point.

FODIFY~LOCAIIOR—EYPOIH_SIS‘ This procedure accesses the *

- —

H-DESCRIPTION amd using knovledge of the planlsystea 8 teleoloxy
deduces whether any of the subparts in the LOC&TIOE-K??GIEESIS logically
can be excluded as cand%ggtes for containi;g the bug. This is
‘illustrated by our_earlier example of troubleshooting when your be&side

lamp fails to light. Initially the LOCATION-BYPOTHESIS includes all the

elements of the circuit. When the observation is made that the electric




*
- -
.

- - . - " N ’
clock is still vorking, the"ACTION-DESCRIPTION becomes "light
inoperable, durrent available at wall ;utlet.“
[

. HEODIFY-LOCATION-HYPOTHESIS deduces from this that the fault cannot be in ) .
. - 5 . . ~

the external power supply, the fuse, or the intermediate wiring end ’
modifies the LOCAIIGE-&?PO;BESIS accordingly.

When the LOCATION-HYPOTHESIS is reduced to a.single subpart at a

L]

level of the functional hierarchy, it is reset to contain the subparts

in the level imsediately below that subpart. ?or instance, in

.troubleshooting a circuit, Af the LOC&IIO&-&YPOTBESIS is reduced to

voltage regulator”, it is reset to the level of the hiararchy

- . - [
cozprising ghe iz=ediate subphrts of the voltage regulator. Thus, the '

f
+ bug is lacalized to progressively simpler (and structurally s=aller)

. parts-of the plan/systen.

4s poted in the discussion of RECOGHIZE-BUG, if-
KODIFY-LOCATION-HYPOTHESIS should deduce that the ACTIOK-DESCRIPTION is
inconsistent wi;h a bug anywhere in the parts of the plan/system denoted
by the LOCATION-HYPOTHESIS, thef a prior call to RECOGNIZE-BUG produced

.

a false recognition and the LOCATION-HYPOTHESIS prior to that call {s -

restored.

’ BEPAIR. If the cost of repairing (replacing or modifying) the
subpart(s) dendred by the LOCATION-HYPOTHESIS is less than the repair

cost threshold R, then DEBUG calls REPAIR. REPAIR accesses the

3

debugger ‘s knowledge how the subpart(s) are deéigﬁed and implemented to

. function as intended. For an electronics technician this may be

|||‘|=,~u‘

koaetbing a8 basic as how 2 transistor is supposed to be connected and
; . :

- £ for a programmer how to write a format statement. On the other hand,

»
-

programmer-zay rewrite an entire sorting procedure {f he 6eterq§nes that
.,
- P - v

——

,M




in different domains.
REPAIR sets ERROR? to FALSE/nd calls TEST. 1If the 'repair

corrects the fault then that to TEST will eventually call “STOP,
. ‘ L]
terminating Q?e probleo-solving process. If the repair is incorrect, ’
' 4

rd
- the call to TEST will eventually invoke DEBUG again,

- Continuing DEBUG. If the cost of calling REPAIR exceeds R, then .

DEBUG .calls CEAR&QIERIZE;aud theﬁ’itsglf. Upon the return fro=m ‘
CHARACTERIZE, the ACTION-DESCRIPTION will have been updated if an ;
observation was.zade. If one wa; not, the?*DEBGG modifies both R and O.

It increases R, so that there is a ;hfnce that REPAIR can be-rcalled eyén

though the LOCATION-HYPOTHESIS cannot change because the

DESCRIPTION-HYPOTHESIS s not modified. It decreases‘O, so that if

REPAIR gtill cannot be called there is a chance that ano observation will

- .~ e e

be made on the next call to CBARACTERIZE. Thus, when the process gets

stymied, it frees. itself either by making more expensive repairs than -

usual or by making observations that are more expensive or less

info;éktive than usual. ’ - .

‘ Further comments on the model. The strategy we have outlined

here is a competence rather than a performance.model. Deficiencies in.
/
any of the knowledge required may cause it to fail. In pé}ticular, the
v knowledge of each level of the plan/system’s functional hietarchy and .

its teleological structure is crucial for wodifying the

LI 4

ACTION-DESCRIPTION and the LOCATIOH-HYPOTHESIS. Hote that it is nmot

necessary to know the hierarchy from top—to-bo£§oa but inscead only down

_ . . V4 R =




«
K

‘ .

to tb; level at which one is willing to pay for a repair. Thus, in

~

working on a circuit ome may understand (from technical data) the

.

functioning of the voltage regulator with respect to other subcircuits

.at that level of analysis, but not understand the internal structure of’
the volt;él’i;gulator. The avaflable knowledge.is suéficient for

localizing a fault to the voltage regulator and this =ay be adequate if

one is whliing to replace that entire subcircuit (knowing that only one

primitive Foaponent may have failed). )

The only éxplicit error recovery mechanism in the aodgl is for.

false recognitions by RECOGNIZE-BUG that cause an inappropriate jump ‘to

a lower level of the hierarchy. The zodel backtracks from these errors

by saving and restoring earlier copies of the LOCATION-HYPOTHESIS.

Thus, these errors increase costs, but will not directly lead the

process to complete failure in the way other knowledge deficiencies zay.
”~ n » 3

Explaining the expertise of expert debuggers.

Given that a genmeral strategy and different types of
doﬁain-specific knowledge underlie tr0ubleshooting/debdgging behavior in
the vays suggested by our model, we can ask'about the contribﬁtion each
;;kes to expert performance. Is the expert an expert because hé

‘develops a superior genéral strategy and adheres to it religiously? 4Qr,

does his expertise stem more from his extensive kdowledge of the problen

domain, including the fundamental declarative knowledge, specialized

procedures for making observations and repairs, and idfiosyncratic

libraries of information about important recurring high-level subsystems -

and about the bugs frequently associated with observed patterns of A

symp:ons? The intrd?pections of the, expert in the dialog in Pigure 2

3

- -

: 41, .
- g

2 =
b _— - .

[

m@f




- = -
.
5 z

M % . . -8

- . v <
’

.

are consistent wi;h'ﬁhe’tatter explanation. He attributes his easy'and

E2ENN

effiéient solution of a problem to his "familiarity" with the fact that . >

'. an obéerved_sympton is (almost) always associatéd with a particular

« faulg, élthough he cannot articulate how he‘uas able to actess that.

e

‘facto ) . "’4-
-: 1‘ -
ran ) In’;jﬁﬂs of our model for a debugging strategy, the expert in .-. - g
the diaiog-4chieved a solution by calling his RECOGNIZE-BUG procedure, °

bypassing some of the progressive :oé-down localization and

characterization which slowly converge on a faulziby deductive

reasoning. He supplementdd his deduction with identification.

Localization by identification is also exemplified.by the mechanic who

first jars the carburetor to attempt to remedy da uneven idle. These

"examples illustrate how by using a library, of knowledge acqéiged through

experience, the expert can choose to focus at a low level of
plan/systepls functional hierarchy without deducing the locativn of the

bug from observations’nade‘a: higner levels. Hcyever, since the -

information in the library may sometimes be applied in inappropriate
contexts (false matches to ACTION-DESCRIPTIONS), the exper;.,must
backtrack and integrate observations made at sevsral levéls in the
system much moée g;eggzﬁily than required when localization is strictly
4ibp—down and ded;;tive.. Failureg in backtrackiné can reducé efficiency

by causing the expert relying on identification to m;ke redundant ’{[f’

. observations. -

¥

This explanation of debugging expertise zeems to be consistent

b .

. with data we collected from five programmers with different degrees of
s
exper.ience.5 They ranged from one with a masters degree-in computer

.5 . )
- ) When we say "programmer' we do not necessarily mean an - -

. individual who was trained and works specifically as a programmer. For -

-~

Q . 2

ERIC- ~ -« 508 .




M.
. .

,
L .
-~ - » ’

. . L

science and séveral years of advanced programmiag experience to a total

novice who had no formal instruction in programming and only a few weeks

-
of self-instruction. Within this range were students and professionals

- .

with’;rdm one ‘to several years of instruction and practical programaing

.

experience. -

We asked these programmers to debug a short BASIC programs and to-

‘write a commentary on-their reasoning as they worked. They had access

i

to a BASIC interpreter fof running and ;odifying‘the‘bugged program. -
They vere provided with the program description, 1isting, and‘s;;;lé'
input-output shown in Figure 6.' it 15 a sorting progran designed to
interact with a user ?t a terminal. It accepts numbers ;ne at a time,
acknowledging each by printing- "BON APPETIT", until the user.typé: 4
zerohsignifying the end ;f the list. The list sorted in ascendi;g order

is then printed. The program was written by a member of the research

team and is deliberately obscure so that it would rot be completely

rtrivial to experienced progracmmers despite its brevity. A more elegant

solution is possible using fewer variables and less complicated
parameters for FOR..NEXT loops. However, the program shown is corre;;
except for a single character. Line 100 should be X = C = J + 1 instead
of X=C-J+ 1. Note that such an error could be the result of a
simble reading or typing error in entering :hé program, rather than a
design error. However, it is not the type of error that can be detected
by the parser or'r;ntime systenm of a programming e;vironaent; it is ;

logical error that causes the program to produce inc rrect results when

it is eiecuted, as can be seen in Figure 6. 1In fact, the effects of the
¥

our purposes a programmer is anyone 'who writes programs incident to his
job or (his accivities a student). P .

' - . -

- - 43 . -

N TR

LR




-

-~

~

*

Daescription
This program inputs numbers (up to 100 numhers).

sorts each number i1nto ascending crder as it is input:
andlprints the ordered inputs when a key value *of rero is 1input.
10 DIM N(100) ' !

20 C = 1

30 INPUT MN(g)

40 IF N(C) = O THEN 180

SO FOR ¥ = | F0O C

60 IF N(2) >= N(I) THEN 140 .

80 D = I , S
790 FOR J = D TO C. : ,
100 X = C - J + 1} : L.
110 N(X + 1) = N(X) : ; S
120 NEXT J° -«
130 N(I) = N(C + 1)
140 NEXT I ]
150 PRINT “BON APPETIT» : S
160 C = C + 1 )
170 €070 30 . . -
18O FOR @ = 1 TOC + 1 ) .
190 PRINT N(Q@} :
200 NEXT Q@

210 END //"‘ ’

Sample input/outpuff
*RUN . - .
EXECUTION OF YOUR PROGRAM

»

.77
BON APPETIT
1195
20N APPETIT :
134 ’ e
BON APPETIT ~
: 10 ~,,/
BON APPETIT . . ’
;B8 !
BEON APPETITY - :
10 = - -

10 ' : - )

1 ‘5 : . ‘ . .

0 _ /N”‘ : -
77 ‘ -

88 g

“ -

EXECUTIDN COMPLETED AT LIME 210

Figure 6. Debugging problem given to five programmers of varyirg
experience.

b -

Ly

22




14 . x a
* ) . * bug depends on the input and 15 the user enteri a list in perfect :
* " reverse order (e.g., 81, 54, 33, 12), then the program correctly sorts

. it. A ccaplete ACTION-DESCRIPTIOE of the bugged prGgrahﬂat its top
level is thatr if an incoming number belongs at the beginning or the end
of the existing ligt it is appemded correctly, but if it geeds to:be
ingerted between two previous values, it is lost and replaced by a zero.

All of ‘the five programmers who participated vere able to debug's’
the progras, although the amount of time they required varied from less -
than an hour for the most expert to scveral days (a few hours each day) ,
for the novice. Also, they ;aried in-how much of the prog}aa=code they.
podified in order to eliminate the bug. Figure§°7a, 7b, and 7caare
segments of the written commentaries generated by tie expert, an

. - intermediate programmer, and the novice,,respeétive1y1— The concepts the

- 4 t *

- . At
expert uses to degcribe the program reflect his specialized knowledge of

sorting algorithms, which he used to identify functional subsegsents of
—__4 L]

the program. " He immediate tried to identify bugs at a low level of *+

program structure -- in storage -allocation and in incrqgensing counter C e

L

variables. Although he examined the gample output at an early point, ‘he
does oot articulate an ACTIOH—DESCRIPIIOR. The structure of the episode

s reflects repeated attempts to use specialized knowledge to predict and

} gearch for likely types’ of bugs. an emphasis on recognition as opposed, , s Z7
—- ~ . !
. to localization. His repair, not shown in the commentary, was to
: o .
. . ,
rewrite the nested sorting loops ‘in a more straightforward form, . .

-
-

. eliminating the unnecessary variacles. Thus, he made a judgement that

it would be more efficient to substitute a block of code, than to-try to

€
igolate the“bug furérer and then make a more-minimal modificatjon.

. " . Figure 7b is the commentary of a programier with several years
B {e, ’

o 2, ' ’ ' 45 53 B .




Read description. ' - . ' . ,
Check DIM statement.

I;'ook at output.
.Bon appetit? ’

- ' = N

épofntetonezteizptywom' H. - . : s :
Wheninput_o theniSO‘
Poundonl60.—.

-«

Sort takes place between 50

t (1) to B(C-1) or stop. Logk for C + Ctl.

k0. If F, > all of the K, 's, nothing 1is done.

Gett0801fH <H

mheJloop(goklzo)issuppos

- - 3

tomoveanoftheentﬁ.esbetweenﬂilandﬁ ' )
up one. * + ,

It does some sort of inversion. I think this is unnecessary, and also the variables .
*D,X. Iamgoingtotzyitwtcntbeteminél . /

r
»

_Attached is the program I typed in, vefore T tried tc ran it. (Kote that it
‘differs from scy.bged notes, I didn't look at the notes while I was '@ping .
it in.) ‘7

I tnéea sortﬂzg the mumbeit
s i
9, ’* 6 1,7, 13 -

"

and it worked.

—

& Figure 7Ta. Debugging commenfary on gorting program by & formally
- . treined, highly expeneﬁ% programmer,
_ | A [y - '

i




. Think about what if should do. Visualize number coming in a.n&efinding its
‘ way to the top of list. ‘ '

thgtha’cOisinthewrongplacea.nﬁ%ismissing in fact, 0 is in the

3% place. .- ®

7 7 i . ’ - -

L. 34 is the 3rd input (check first to see if-it's first or last -- mo).
'x'f.Nowgotoprogra.m ‘ . ‘ o
¢ - Since 0 was wrong, check the branch to 130 . Don't see anything vierd:thezé -— (

output loop looks x. Vs - ’ o
Look at sort loop (50-140 I guess), which skips if cutrent (new input) :Ls geq.x ‘
: "4
Innrer logp looks complicat act, bizarre. Have to’ Imzile 11: through -~
purpose is to shove every to insert new guy I knew the.t be’c&uge it's

", a loop (should have knowp it anyway). ' ) .
/
2100 puzzling - next-ome in the list. ‘Push 1t one lover dowii. Looks bed -
. H(x+1) *R(x) vill 1dse the preg R valne of .K(x+1}.* (hypothesis): Test with .
™~ given inputs by ‘tracing ve ) g. Not working -- I'm not. getting _
_\ ¢ anything pushed anywhere exceolig e the 25"5.8 mo-d.ng higher instead 7
~¢f the T7. Tryagain. S -, ) )
@ ¥ ’ . -
Fote: D is unnecessary since i‘@d‘o?sn’t, change inside the J ldop -- I wouldn't
be destmﬁa 1f 90 sef@ for J = I to C. Think gbout that: s this strategy
reasomable -- yey;] a place where the current Input s lower than this . .
element so' I have to change everybody from here on up. So J’ I fine.

. Bt T imedidtely get H(3) < 15 which ig dumb. (Thimk about whet¥er ETP thinks
‘' X.= C-J+l gives. 2 or if O, then array ei‘rorwouidhave occurred; sonmstbea )

> Seems that N(2) =77 R(3) = 15 which is backwards. Keep going. C changes
v * to-3 but tigt should have zapped the 15 in N(3). Kb -- missed 130 whi®¥% stuffs
15 back jnto 1!! Seems that I get 2, H(2).compares. NO: (K becamfe K(G) :Ls
no longer the cpxrent i@ut. , ;
' Looks like I -just lost the 77 but that's impossible, so have to try again P
&3 . vith 34 input. ~ :
ad \./ +

“Stymie, - " : ) B e

_ Wait.. Strategy makes sense -~ put new one up.high, move the others up one at’
.+ atime. KN(WY gets the 34, so K(3) is available for T7 to move to. vVelue. of
. X‘should be to make that mo X - C-J’-ﬂ. is 3. . )

B ‘NO. The first time was wrong. Back up.to 90 again with I = 2 (i.e., comparing ~
s 3h with 7’(7_ : » -7 - *
R 4 ’ - : z
o L g Figun-:" 7b. 'Excezpt”from debﬁgging commentary on sorting progiam .
. < <+ by a programmer’ of intermediate experience.’ .
{ .. X 3 L. . o ".1;7 . ] Lo . . _ .

- <. .
“ B

' - %
- . - - s '




,E . * L . - L .‘
. S

-

N6, wait a second, I guess it's O.K. for it to print 0; it should
just print it first. Maybe that's where the problem is. Even
though I still haven't figured out how the program is supposed

to work, I'll check out'the parts that deal with switching from
the ordering -protedure itself to printing the final output, and
see  what I can €ind. T

%g;i - Of course! quﬁiié going to'be the 'last value entered, so
it will have the highést numbered subscript and get printed. last.
' That's certainly one of the-problems with this program, although
.it may 'not be the only orie. I'll .have to fi dre out how the
whole thing is supposed to work. But I have®a hunch that if
line 40 ("IF N(C)=0 THEN 180")gets moved down between lines 160
and 170 (the end of the main subscript-reagsigning loopj then
*°’, the prografi will work the way it should. | fhis move should assign
0 the Jowest subscript before telling thé .machine to print out,
.assuming the rest of the program was written correctly. Let me. '
check that out:.. - ) ’
| X SR _‘,/-\4’/ g _
~@§ 160 -C=C+1 ., - . ', -+ =~=-so that's how the subscript
R . ' gets incremented
- : ] ) . T
: ' (Bréak--overnight)

. < ~ 14

, L 4
i - 1 Jjust realized that although 0 was dnitially assigned the
highest subscript (I think), it -was Qotfprinted_last when tge
numbers were printed. out in subscrift order (Xines 180 to 200).
"This means -that the subscripts of same of the other numbers, 7
(namely 77'én2 88) ‘were higher than thé subscript for 0 by the
time the printindg was done,’ I'm going “to try to run th¥ough
" the program mentally, feeding- in the numbers-used in the xun
. shown here, to see what this program is”doing.

-

.

when you get to INPUT 34, .
' . ) ! N(l)=15 MN(2)=77 . .
N(l) no longer ‘has a valuesR(2)y=15 N{3)=77«34 is lost here .
‘N(2) ndb }onger has a valuesN(3)=15 N(4)=71 B :

Ajdthough I still don't grasp it complétely, the,strategy
of this program seems to be to reorder the!subscripts~of the
input numbers by comparing each, new number ope at a ti with

eackBdf the numbers wgich have already been\\zsif in and:
* Gl .

»

- —-If the newenumber N(C) is less than the numbarlit/is being ,
compared to, N(I}, this inhcrement’ thg subscript of each of the
numbers that#are greater than or eq\% to N(I) gnd ive the new
numbér - the old sugsqript of N(I). _ EP,

--1f the new number N(C) is greater than the old ,number N(I) to
which it is being{compared, leave the subscripts alone and
compa}r‘eZ(C) with the next-old number. N o .
Figure 7c, Excerpt from debugging commentary on sorting progrém
% " Yy & novice programmer, , - -
; — Y

. SR ; B
Q -( . 3 ' ‘ %i 56\ f " v ’




*

'

E §

[

«’A
J »
B

of practical experience, but little formal instruction.” There is more

- "

evidence of a general debugging strategy and less uge of specific

. -

k?owledge about sorting than in the commentary in Figure 7a. Before

H

lookinéiag the structure of the program, the programmer tries to -
'descriée‘th; big‘s symptoms in the program ostput-- to develop an
initial, fop-level ACTION-DESCRIPTION. ' The observation “"that 0 is in
the wrong place" (she incorrectly assumes that the 9 in the outpét is
the 0 the used typed to end his input) leads her to .locate ;:3
characterize the segment of the program d ned to sgop'the }nput cycle

when a 0 is typed by the user (she sets CATION-HYPOTHESIS to that

- ped .
- o

segment). Hhen she (mentally) tests tuac segment and’obgerves no’

-

evidegce of a bug, she foguses on the nested loops that sort the array.

(resets the LOCAIION-HYPOTHESIS to the top-Ievel):) Her reasoning in 4‘
using the zero in the output,;epresents a .call from EBQG to B

RECOGNIZE-BUG in which an incorrect ACTIOK-DESCRIPTION was matched to

informatién in a library of bugs and their manifestations.

’ .
The programmer’s experience allows her to judge that some of the

code in the sorting lodp is “bizarre", and thus a likely lbcacion of the
bug. She characterizes that code by mentally tracing execution and °
observing how an ac éf’(as opposed to abstract) set of numbers are

2 *

moved within the.array. She has some difficulty in generating an

.

ACTION-DESCRIPTIOH from her observations and thereforﬁ tries to apply
some knowledge she does have about sorting when she decides that line
110, N{X + 1) = N(X), looks guspicious (another aall td’RECOGRIZE-BUG).

In some sorting algorithms, such a transfer‘oﬁ-values might lose_the
. i .

“-conteits of an array location, but inm this casé the line is correct.:

,

(One of the ofher intermediate programmers also suspected this Iineb

-

¥

i T, YRl 49 {5»7

. v {
. I .




<

~
W
L)
.

-

Thus, she. has to backtrack from this attempted identification of the

error and resumes her characterization of ] segment of the neﬁted loops. — -

’

Eventually, she did identify and repair the bug. Like the expert, ahe ) SR

. Y -

tried to~use specific experiential knowledge to shortcut a top-down
analysis via identification, but did not have the knowledgeegegded to

3 succeed on,that basis. -(She might have solved,ehevytoblea more quickly, .

*
*

X
13
b

but unlike ‘the- more expert programmer. chose to localize the bug vithin - BRI

.

the sqgting loops rather ‘than rewrite them _completely. 5 ) '

+
*

~ Figure 7c is one of six pages of commentary generated by the |

v

novice programmer (who later displayed better than ayerage progratming

~-

skills for his degree of ‘experience). He vogieéfon the program.in four -
9 .

separate sessions and eventually did debug it. His commentary reveals\

’how his uafaeiliarit} with the fundaméntals of the BASIC prograéaing )

»
-~

language and of program organization made it an effort for hi- %o v

perceive the progranm at a high level. BHe begins by.spending

considerable effort characterizing the code line-by-line-with no good

idea of %hat he is looking for, since he fzils ro generate an f k/

ACTIOR-DZSCRIPTIOH beforefand: In fact, he did not report looking at g

P . .
. the.input-output data before the second session."Prior to his

v =

successful solution he attetpted several "i;rational" minor repairs

based én his. nisunderstanding of single lines of code and their Eunction

¥

in the program. Like the most expert prograemer he °earcbed for buga

» * -

by exaaining the code, bat Unlike the expert he had no basis for making
-\
- rational predictions for what the bug aight be. ' ’

- In general, these‘data are consistent with the view that’ the

L

=

expert debugger ig an expert-- that he aolves probleas with minimal ,j
i -
expenge—- because he has a great deal of experiential knowledge'tnat

3

T ! 3
* : . .

¢
~,

58 T~

- 50




1]
N Yy

I o ‘ ‘ X
allows him frequently to follow cost-saving al:ernative pathways v%vbiu//

v
K

A~
- /;—ggneral dgbugging’strategy, as represgented i; our_aodel by the ~) (/
’Gprocedure RECOGNIZE-BUG. It is not seenm necessary to postulate tha¢ he 4
has a general ;trqtegy superior to ;hat'of somewhat iess skilled
4 - debuggers in order to explain his expertise. Instead, ﬁe simply seexs
. betté: able to\gxploit‘the benefits of an idenfification substr?tegy

which even novices try to use.

*Heaknesses in the debugging of inexperienced programmers

The commentary in Figure 7c shows that an inexperienced

' prograuner can have coosiderabie difficulty with & deBugging problen

because of the effort required to understand how the program is supposed

-

to accosplish its intended function. -Of course, prograaaers most of:en

.

encounter their debugging problens in prograns which they themselves

-

designed and iapleménted, and ;hus can understand. However as we noted

*

earlier, programrers somerimes knowingly implement and run programs that

.

are incorredt, finding it more ;fficieni to develop correct csdé £§
debugging, than to derive the corfgct code initially by logica;
analysis. In these‘cases, problems in debugging can arise because ;f
difficulties in knowing how'to design code for repairs, rather thanm in
locating the bug. Sometimes, ;resuued understanding of some code can
actually impede programrers’ debugging of their own programg. If they

™ write code they are certain is’correct and manage .to insert a bug in it,

then (1) that code is the last place they will look for the bug, dekpite

observations that amight 1ndicate that it is a likely location. and (2) -

when they do look at the code, Yy may miss the bng,‘ because they gee
- o ~y
what they intended the code to do and not what it actually does. Thus, .o
[} - -

.

Q ‘ T ) . :- 51 59




)

PLd - =

a programmer debugging his own program may lose some objectivitya.shile

one debugging anotber 8 program may have fundaeental problems
understanding how the progranm ig supposed to work. There are some . -

prograsners in real contexts who are faced with the problems of
~ J - -
debugging programs written by someone else: for example, consultants and

cecbers of teams wérking together on a large projedt. They lose the -

- ~ €

advantage a designer’s knowledge- 6f his progran, but by the same token 5 '

are less prone to "blindness."” They may face situationseghere they have . -

.

difficulties debugging a pfogran because they don’t have the knowledge
needed to unéerstanc it, rather than because they have inadequate
debugging strategies. In other troﬁBIeghoot1ng/debugging déaains. like
electronics and mechanics, technicians routinely face problers with

devices unfamiliar to them. In these sizuations, they must tura to

’ . technical data for the devices or be able to.synthesize the device’s

structure fron the bottom up, if they are to effect a repair.

We have proposed that expert dgbuggers have genergl, top-down

' debugging scrategiesi but tha: their expertise is defined by :heii/ ’ .
mental libraries of domain- and problec~specific knowledge gained
;througb_their experiences. Inexperienced progracmers obviously lack

cozp}ehensive Iibrarieg. But is this the sole source of their

§1fficulcies, or are their general debugging strategies also deficient
so that they do not make the most effect{ye use ?f the specific
"-knowledge they do hgve.' This is ah i:?ort;nf question froz the
viewpoint of ipstruction, since it voﬁld be more feasible to _try_to - .
7 teach a well-defined jeneral strategy, than a large, ill-defined corpus
-

of gpecific knowledge. The coénentary of the novice programmer

‘debugging on the sorting program does seem to reflect a stpategy less

-~

o 52 60

»




—
z

efficient than those we found in‘the co=mentaries of aore-experienééd
;rograssers vho also had difficultié; wvith the problesn. However, the
knowledge required just to understand :hat program was so far beyond the
experience of the novice. that it could have been the case that he had a
good strategy available butvgad trouble exefuting it:
In an attecpt to determine whether inexperienced programmers
nave diff&culties debugging because they lack an effecfive general
f7/ debugging strategy, we exaaiqed hrogra==ing data collec;ed fron students
- learning to progréb. d%e @ata originated from-three groups who'had
participated i; the BASIC Instructional Prog%a; (3355 1975, a CAI systen
for teaching intryductory BASIC prograrming to people vith no prior
dozputer experience. in'afl tﬁére vere data fros 100 college students,
who wrote on the order of 40 short BASIC prograzs each during iD-li
- nours of terzinal :ide ia BIP. The original use of tbe data had been {n
evaluating BIP’s effectiveness for teaching prograrming and in exaainiﬁz
the way students used gome of BIP’s subsystems for writing and dedugging

their prograes. .

The data are quite comprehensive records .of students”

’

Ginteractions at the terminal, which we wi]l call'chroséiog;es here. The

information contained in the chromologies for the three differeat groups

‘/~\“' varies somewhat, since analyses of the earlier versions had -suggested

-

groups of chronologies do not directly indicate the order in which lines
¢

of code were entered by student; the code was recorded on the chronology’

vhen the student listed or ran his progras and it was possible to

determine small changes io the code by cozparing successive I1istings.

L 4

In the third group of chromologies, each tiae the student’ typed a line

Q . ‘ ) Ty 536;1, .

~ icprovements in format and Coatent. . For instance, the first and second .




i
Al
B

of code’ it was written to the chronology and, in addition, when he
listed and ran the program, the order in which the lines had been

~

entered was stored with the listing. Since we found this {nfofaqtion to

be useful, our analyses focused primarily on the third group of

H S
.

chronologies.

Figure 8 is an excerpt from-x chronology4//;n general, 7.

Aychronolog}es record the séquence of BIP commands and lines of progran

- S
code typed by students when they worked on their programs. The corcands
include:
L1sT - lists the student’s program
RER - executes the progran .
DEHO - executes a model solution gtored for the task the

student is working '
"HIKT - prints a hint stored for the task
TRACE - executes the student’s program and prints for each
line the values of any variables that changed - -

FLOW - executes the program one line at a tice, showing
g nov variables change, and using the CRT to indﬁﬁate
ﬂi ' the flow of control graphically -

MORE - executes the progran and the model solution on:
test values and. co=pares their output in order to
judge whether the student’s program is correct

-

4 .

Lines of céde entered are denoted by the keyword LINE, or SYKTAX ERROR
if the student typed an incorrect line that could bé detected by the

parser. Each entry in a chronplogy includes the time at which the

~ -
3

comrmand was typed. by the student. It does not always include the exact

-

response of BIP to that cormmand. For example, while LIST does put the

prograr listing on the chronology, HIKT only puts the hint nuab;r, not «

LY
l

the textx of the hint.

The chronology data constitute an indirect window ont¢ students’

reasoning as they designed and de&ugged‘cbeir prograns. For example, if

a student ran a DEBO.after partially coding his program, it might be

¥

* 62




Trun
5/9/77 10.16:51 . \) TN
same program
output: TYPE IN TWO D NUMBERS. THE LOWER ONE FIRST.
input: .t p ) ’ ) -

- ’ input: S -
output THERE ARE 7 NUHBERS'BET“EEN THEH
cogpleted at lzne 42 .

- Flow - J .
5/9/77 10:17-17 . . )
, - output: TYPE IN THO 'ODD NUMBERS, THE LOWER ONE FIRST.
input.. 21 -~ . .
input: 23
output: THERE ARE 25 NUMBERS BETWEEN THEM. . ) .
aborted at line 42, . {
list . °t .. : L .
5/9/77 10:19:09 C S .- - .
same program - ’
line ‘ i
5/9/77 10:19:42 . o
; 41 PRINT “"THERE ARE ¥,C," NUMBERS BETWEEN THEM"
- ~
d emo , ) A
. 5/9/77 10:19:47 - . .. .- S
ordEr program listing 8
30 0l C=0 - - -
19 10 PRINT “TYPE IN TWwO ODD- NUMBERS, THE LOWER ONE FIRST."
2 15 INPUT L. H 2 -
3 20 IF L=H OR L>H THEN 100 , , o
7 26 IF L/2-0. 5<>INT(L/2) THEN 150
20 27 IF H/2-0 S<OINT(H/2) THEN 155
9 30 FOR I=L TO H STEP 2 :
10 35 C= C+1 '
11 40 NEXT 1 .
31" ' 41 PRINT "THERE ARE ", C; " NUMBERS BETHEEN THEM* .
27 42 STOP .
29 100 IF L>H THEN 110
13 © 101 PRINT “YOU TYPED IN THE SAME NUMBER TWICE, TRY AGAIN
. . WITH
14 102 PRINT “DIFFERENT NUMBERS, * . :
18 103 ¢OTO 15 ‘
16 110 PRINT “YOU SHOULD TYPE THE LOWER NUMBER FIRST, TRY , .
- AGAIN. *
17 111 GOTO :
‘ 25 150 PRINT "TH: LOWER, NUMBER WAS NOT ODD, TRY -AGAIN. *
. . 23 154 GOYO 15 A
. 24 155 PRINT "THE HIGHER NUMBER WAS NOT ODD. TRY AGAIN "
: 2 156 GOTP 15 .
28 999 END .
z " ’
input 21 ’ .
ingut:. 23 ’ . . -

Figure 8. Excerpt frem a EIP chrgnology. .The student was &hnqging
& progren at this point.

55 .

[ EE N




(Figure 8 ¢ontimued)

lyne , oo . ) -
5/9/77 10:21:03 i ’ )
41 PRINT “THERE ARE “;C, "™ NUMBERS BETWEEN *“;L ;% AND "; H

i M - |

. . ‘

_ 5/9/77 10:21:08
: order  program listing )
1 01 ¢=0 - i
2., 10 PRINT "TYPE IN TWO ODD NUMBERS, THE LOWER ONE FIRST v
3 1S INPUT L.H
3 20 IE L=H OR L>H THEN 100 N
' S 7 26 IF L/2+0. 5<>INT(L/2) THEN 150 R .
6 27 1F H/2-0.5<3INT(H/2) THEN 155 7 - ‘
7 30 FOR I=L TO H STEP 2
8 35 C= C+1
, B/ 30, NEXT- I - . , - .- .
a3 41 PRINT "THERE ARE *,C;® NUMBERS BETWEEN ",L ;" AND "; H s
11 42 STOP - - - . )
12 100 IF L>H THEN 110
13 101 PRINT "YOU TYPED IN THE SAME NUMBER TWICE, TRY AGAIN
WITH »
- 13 102 PRINT "DIFFERENT NUMBERS *
.15 . 103 GOTO 15 :
16 110 PRINT "YOU SHOULD TYPE .THE LOWER NUMBER FIRST, 1‘; .
. ] AGAIN. »
17 111 GOTO 15
18 150 PRINT "THE-LOWER NUMBER WAS NOT ODD., TRY AGA:N »
, 19 151 €070 15
' 20 138 PRINT "THE HIGHER NUMBER WAS NOT ODD, TRY AGAIN. 7
21 156 €0TO 15
22 999 END
% »

output: TYPE IN TWO ODD NUMBERS. THE LOWER ONE FIRST,

tnput. 21 , ; . !
tnput. 23 ’ -
output THERE ARE 2 NUMBERS BETWEEN 21 AND 23

conpleted at"line 42

.v
PR ]

Py
M

$/9/77 10 21 32
same program

1yt
2/9/77 10 2145
01°¢C..-2




_ Fegonstruct what the student’s strategy was resembles the task of an

e ~ .
;4;haeologist working to infer the values and motivations of a seciety

"épisodes vhere it geemed that the student considered the programs to be

.correct.

. 65 . | B

- ',,__“/_' v
that he has become confused about the problem or i&ternatiygly that he
is designing and 1mpfementing the program in sections and is ready to

ggaainelthe requirements of 23 new section. Looking past the DEMO in the

chronoldgy, if the student changes code he had already entered, we would

-~

N

opt fof the first interpretation; ¥ he enteredl some new code, we would

chooge the second. Tracing through a chronology and trying to

v b

-~ , 1

from physical artifacts.® °

- -~
-

Our initial examination of the chronologies was directed at ] -
identifying debugging episodes involving logical bugs. These are b&ks‘; -
that Jet the program execute but cause it to produce incorrect output

(e.g., GOTO an incorrect line numbbr), as opposed to those that are

-
~

gyntactic or context-free and-are detected by BIP's parser or runtige

sisten (e.g., GOTO a non-existent line number). PFurther, we looked for

- ”

completed at the time'he detected the bug, as opposed to episodes where

1 B - - .
the debugging seemed tc be integrated into design— i.e.. where the

student was trying to didcover how gsome unfamiliar programmiing construct

—

t

worked. These distinctions had to be inferred by lagking at how the
program was ceded and by how readily the student seemed to change the
progran. One sure clue that ; studeﬁt thought a program was complete
was his calling BIP's soluticnzchecker Hith the MORE command. 'ance B1P
requires that a student RUN hiégprbgran before MORE will be executed,

typing MORE implies the student had RUN his program and thought it was -

-

. L]

. 6 It has the same potential pitfall that the researcher’s own
world view restricts the inte;pretations he might see.

=

57 -

-
— * -

-




.

.
.

Most of BIP’s programming tasks inyolve interactive ﬁrograms

that process input from a "user." In programs where flow of control was

conditional on user input, we found many §¥isode8 where the student ran

his program with inputs that did not cause a bug tosmanifest itself and
) . - -4 R

then typed MORE. In most’cases, the ‘inputs used by thé€ solution checker

did detect the bug, although sometimes the solution checker incorrectly

accepted a student program with a bug in it. Thus. it became evident
early in our e;amination‘of the c¢hronologies that many students did not

recognize the need to test programs across conditions that would
exercise the different branches of conditional control structures.
L]

Our original plan was to analyze the debugging\:ijsodes we found

_by’gafsing then -with context-free debugging grammar similar td that

found in Miller and Goldstein’s (1976b) (Pigure 3) planning/débugging
¢ ‘ . - .
grammar for LOGO prograsming. One feature of the context-free grammar

tulgs is that a partisu}ar higher—order node (left-hand side of rule)
nay be exp.anded iwterns of alternative lower-order nodes (right-hand
side). One of our goals after parsing the episodes was to examine
alternative expansions of a higher-order node to determine ;hat

semantics of the context determined the choice among alternatives. Thus

4

if there were a rule} .

repair := replace-code | modify-code
o+
(the "|" is read as "or") we would be looking for features of a context

that predicted whenge bug was repaired by replacing old code and when it
it -5

vas repaired by some minimal editing of existing code. By determining
the semantics, a moregowerful ATN grammar :he; could be deéveloped for

describing the episodes. Once the general grammar describing the

.

debugging strategies was formulated, our plan was to characterize the

’
z
"
A -
'
»

-

i

! | |
AT T .® 66 o

-
-

I

-

4

e




s ~ -

i

.

differences between students in terms of alternative subsets of the .

. general grammar. they employed and, in particular, to gee if the poorer
debuggers 6222 those vith degenerate versions of the debugging gramnar. '
The effort to derive a grammar encountered problems immediately.

i At the lowest leveL, where we vere trying to identify rules mapping onto

the chronology keywords (RUR, LIST, DEMO, LINE, etec) and the timing

‘ R information, we found an unexpected degree of variabilitj both within

-

and between students. For instance, by examining several episodes we

a7

a might derive . ) ) @

test-repair := R <long latency> | -
RUN + latency> + test-repair =~ /

=
-

(the “+" is read as "anﬁcthen“):éa a general ryle of the grammar.

However, in some other epjsodes we would then observe students changing d ¥

-
-

a line of code, listing the program, and then changing that iine again
without ever having RUN the program to test the first repair. 'He soon

realized that because the programs were on the average short (a maxipum

-

of about 30 lines) that student'aight have been testing the programs by

[
»

looking at a listing and aentally tracing its execution rather than

1
l|
W

*
- -

. running it. We could have added this alternative to the rule for . f.\

test-repair, exéept that LIST + <long-latency> occurréd in other rules
’ : ‘
as well. In fact, LIST following'a repair was a common "cliche" in . t-

LN

‘students’ behavior: evidently each time they changed some cade, many
* ’ l

atudents listed the program and looked at it briefly, simply Eo ve:ify . ’
) . that BIP had inserted the code as they intended. Although, the timed

—spent for such a visual check is less on the average than that spent
) .

mentally executing a program, the observed times overlapped enough to

*

‘ make uge .of the time data to distinguish these cases-unreliable, In -
- F1 1 ¥
- 3

O ) - & 59 b N

-

ERIC - | . 67




~7 _ Ve
other contexts, LIST often did not occur when it was expected; we - - y .
hypothesize that for ghorter programs, an earlier listing could still . .

— .

have been on the CRT after a few 1ntervening events. .Thusg, LIST was not

Lo

a reiiable indicator of when the student had been examining the progﬁﬁ§ —
and when it did occur even examination of the surrounding context was
“ingufficient to determine the type of thinking the student was engagee'

“in. It soon became clear that even the lowest level rules in the L

v debuggiué grammar would be complicated by alternative and optional
7

}"’ patterns of keywords, and that the same patterns would be included in

several rules. In most episodes, the only way to pfece together vhat a

., - U - :
student’s strategy had been was to integrate semantic clues, from »

or
-

thrdughout the episcde; and even that' involved making sometimes tenuous '

1nferencesj We found therefore that it does not seenm possible to derive

reasonabl% debugging grammars, of the type proposed by Miller and ’

Go;ds:ein} for describing a range of eﬁisodeé'ih the BIP student -
N / . 2 ’

chronglogies.

L]

ﬁven though we were ungsuccessful at describing the debugging
strategies of different BIP students in terms of a unifying \“\\\\\\\
inforaJtion-processing modél, the episodes we exaained were Very — ‘ - .
informative wig? respect to identifying weaknesses in the debugging of

these’' inexperienced pro&;anzers. As we mentioned, there were frequent
failures to test programs thoroughly when they were first fun. This

'y

failure generalized to testing after repairs as well. Although there

were aaﬁiguops cases, in most instances the subsequent context made it

*

clear that RUNs we judged we should have foéund, vere not being replaced _ -,

*
oo

"by mental execution of the program. As a result of inadequate testing, .

- students failed to detect bugs in their prog&hns.' Hot sufprisingly, wg'£

gy




“

\“ -:.. ‘ ’ . ’ [ - ’ - !
s also observed thét eveh when students did cfetect bugs by runhing their

v A

progran;, t:hey did. not rerun the prqgram with varying ‘inputs, whicq by -
-’

s exercising different parts of t~he program’s contrQl structure would

produce output useful for localizing the part f the program containing

the bug (i.e., they did PR CHARACTERIZEY... - . !

. One of the most stri*king fai.Lures to test and characteriZe thét;

2

we found%in the chronologies favolved th’e program shown in Figure 9. 'I;,

t

g is one student 8 ‘attemp-ted solutiog to BIP's task CALCULATOR which.

.

o specifies iﬂinteractive prpgram fet (1) getting two numhere fro:n the

*

. user, (2) getting a nuuierical code coﬁr‘esponding to .one of th? four el
- ’fprimary arithmetic operations (+, ~,~%, /), and (3) printing to the

. e -

terminal the result of applying the specified operation to the two - '

“~

numbers. The student S8 program has a fundament;al flow-of-control

1o

uug(s), which resufts in execution "falling through" the code for .

computing and printing the results (lines .80 to 150) Thus, for

. exampley if the user typed : “1" to specify add’ition, the program

branches correct’ly to line 120 to Q% the, a‘ddi-tion but incorrectly

. continues on to do subtract?m multiplic 1on, and division.
b.

Similarly, for subtraction, "the multi

cation and diviston are computed

g

- ds wellf.r Oniy for. division, the al branch in the control ‘structure, o

. does the éalcu'lator compute a ‘ptint‘;nly what it 1s suppbsed to. Tc: .

. T R e T :

) correct tf;é program, t line¥, 125,, 235 and 145, all of ‘which should -
.

- et

be STOPx‘or GOTO 199 must be inserted. I’he student who wrote the

-

. program failed to, gebug it' iﬂ fact he ;ailed, to detect the bug at all. <

although he called the sqution checker and had it reject the program
) : S . . )
six 8Separate timesl h - . Ve

s - . a
’

.‘ . ‘ T

The ‘major_ cauge of the stﬁu‘dent’s difficulty was t*hatlewer‘y time

2 *

C . ' ‘,é ';v N . ‘
RN .o .. A

639




o
L4
-

-

- 10 PRINT “THIS IS.A GCALCULATOR! . . ,
20 PRINT “"TYPE t TO ADD, 2 TO SUBTRACT. 3 TO MULTIPLY. AND 4 TQ DIVIDE®

20 INFUT C .
40 PRINT “NOW CHOOSE A NUMBER® . . : .
50 INPUT X. [/ )
60 PRINT “NOWsCHOOSE ANOTHER‘KbnsER"
. 70 INPUT Y )
80 IF C = 1 THEN 120 ~ ;
90 IF C = 2 THEN 130
100 IF=C = 3 THEN 140 - .
. 110 IF C = 4 THEN 150 " . : :
120-RRINT “THE SUM IS *; X '+
ﬂ 130 PRINT "THE DIFFERENCE IS "y ,X — Y s
140 PRINT “THE PRODUCT IS “, X'# Y <
' 150 PRINT “THE QUOTENT IS % X / Y . ) =

199 END,

‘s ;
Figmre 9. A student's solution to BIP‘s task CAICULATOR. The program -
. has & recurring flow-of-control bug, which the s’cudent
failed to detect because of inadequate test&ng

AR . - .
$ . b4

L0




M — . €
, ’ A - ;
he typed/RUN to test his programf‘ﬁe\gpecified_“4",as the operation ‘ <
code. Not once did he test it with another oper;%or. Since, 4" for - * -

division is the only case in which the program works éozrectly..he never

saw the bug manifest itself {n the output. 1In between running the ’ )

[ -

program and calling the solution checker, we found that he used LIST and’

spent ‘long periods before his next RUN. Assuming that he looked at the S ﬂ‘
- . %
listing duri;g these periods and because three similar lines were . . T
miSSiF&; we can conclude that he did not understand hdw to design -
conditisnal control struetutps and hed™not simply made a careless error. “
=, . = -
,dowever, if he had RUN the program just nnce with = code other than et ’ —

the erroneous output could have served to help him understan@ the defect - '
- o

in his design. ot . < . .

- -

We found many other examples of inadequate testing and

characterization. In fact, there was evidenge that even.when they rap ,

the program and it produced incorrect output, some studeats did not

," .

"realize that there was a bug in the program. In these cases, the

. _ R
students called the soluticn checker 1mmediately follewing their RUN,of . |
the program, suggesting either that they had not analyzed the output or

s ‘ '
that they did not understand what the prograﬂ they wrote was supposed to

—

do .7 Based on independent observations we made, we believe that in wmany = - .

{

E
cases the students did not analyze the output. A member of the research

Y

;éhm épent about- 20 hours observing (and assisting) course cansultants e

and students discussing probleas for the introductory ALGOL programming

class “at Stanford. Thesde students probably have a higher éptitude for _ -
¥
programming on the average than the BIP students and work on prngrasning

an

+ - = =
. . )

7 The solution checker at that time did not attempt to tell the -
student what it had found wrong. so that it was not called as way to
obtain 1nformation. . ' .
. = » ¥

. ‘ - -




tasks wore complex than those in the BIP curriculum. . They usuali§'came

to the(iensulthnts’when they had trouble.debugging their progr

large number of cases, students had not looked at their $Gtpu

‘than to note that gbe/érogram did not work. Instead3 they d

ZJ = . !
their debugging as golng through the program line-by-line looking for a —
mistake, even though they had not thought about what was wrong. For -

errors trapped by the ALGOL runtime systen (e.g., illegal memory

reference) their debugging was even more irrational, since they did not

~

e

attend to system diagnostics which could have identified the type of . * . c

statement containing their error or, in some cases, the actual line

—_— -

éontaining it. Thus, the general debugging stratégy of’ the ALGOL ’ :
students we observed was deficient in testing and characterization in ’ .
ouch the same way as that inferred fren the chronologies of the BIP

students.

S

Another type of poor debugging strategy we observed in the
. s ‘ »
chronologies involved students making a series of several mfnor,

sometimes comple:ely'non-functional, modificatiops to their programs in

~

L a very short period of time. Most often, this behavior was seen in the |,

’

same -episodes whaere there was no attempt to characterize the bug by '

*

running the program vith varying inputs. A related failure was that

- attempted repairs that did mot correct a bug were not undone at once and -

« -
- ' .

: evidently were for otten. As a-result, "almost correct” programs
. 8 { prog

-
-
-~ =

somEtimés,were rendered less correct during deb@gging as tﬁe‘student

. - *
- * +, ? *

compounded the original bug with others resulting from the ineffective
o 2

- . - L "1,- - N 4

repairs. o

et . .
In order to substantiste some of the inferences we had drawn : .

*

+from the chro logies, %e cellected written debuggiqg_coaneqtar}es from

e - ’ . ) 64 :722 - S -




L4

1

inexpérienced programmers working on stagéd debugging problems. The

. procedure was gimilar to that under which thé commentaries were obtained
- from programmers debugging th; sorting program. Four students who had
completed 10 hours in the BIP course ébout one:ﬁalf year earlier
participated in the siudy. Each worked to debug a2 series of programs
within the BIP programming énvironment. The programs themselves were
selected from the chronologies and involved different types of bugs:
computation, assignmeat, flow-of-control. This aeanE that the students
. ' were debugging prog;aas written by other inexperienced prograsaers as
solutions to problems they had themselves attempted in BIP.
The students were instructed to maintain a written record of '
- their thoughts as they tried to debug the progra=s In partic&lar, t;;y.

wvere told that whegever they decidéﬂ to take an action— LIST or RUN the

‘ _ progras, or make a repair-- they shouyld record their reasoning. BIP
- chronofogies were saved for the debugging sessions and in addition the

sessiops were éonduiféd‘bn hardcopy terminals, instead of CRIs, so that.
exact typescripts of the interactions could be obtained. For each

A —
debugging problem, the students were given a listiug of the program and

- sa desé%iption of what is was supposed to do, but were given no sample \

. input-output data. A.éopy of the program was. preloaded into their f"

x

o~

Y ‘
* program space in BIP, so that, they themselves did not have to type it in § o

in order to ruh or manipulate it. They had at most an hour to vork on
v each problem. ’ . ~ . __ ;

. In describing the results of,:kis'studylftvo general « 0

»

observations must ¥irst be ‘noted. ghe subjects had not done any . *
L3 - i

_programsing since the time they finished BIP and their behavior and the . .

. -

commentaries indicate they had forgotten features of the BASIC language

-




and, of how to use BIP. Therefore, much of their effort, especially on

the, first few problems, was spent using the BIP manual and trying to

;elearn fundamentals. Second, the subjeéts had trguble éaintaining an
oﬁgoing tommentary. Ihey would work on the probléa for a while and
afterwvard write, rather than write as they were thinking. The observer
provided constant proopts to resind then to write apd they weré

eﬁcouraged to write and not to concern themselves with working quitkly.

- ~ *

§h‘onetheless, the cozmentaries are fragfsestary records at best and are
-7 T

oore retrospective accounts of what the subjects were thinking than they

are real-tize records.

.

The coc—rentaries substantiate and elaborate our observations on
the inadequate debugging strategies we saw in the earlier chronologies.
. B 2
Again, the oost salient deficits were in testing aand characterization, . .

in obtaining and using inforzation from a bugged prograc’s input-eutput

-

relationships. Froz the co=sentaries we could determine that when

e

students listed and examined a program, they were not substifuting

meatal execution for an actual cocputer run, 'but were scanning
. p e s

-

individual Iinesrof code for errors. Rowgygincg the subjects wvere

rd

debugging progié:s written by someone else, it is not necessarily a bad

strategy to list and examine the baggeé.prqgraa in a" global %way in order

to deteraine its overall organizatioq; However, there were several ’
. - R -

cases in which subjects reported losking at lines of cede for errars,

"'I
when they had not yet run the program and seen how the error zmanifested

—_ .

. ’ifself, as illustrated by;the following excirpt: oL

W
g\
\
.

1
L

e g I"ve done this program before,: so 1 feel confident - . A
e that I°1] be able to find the bug. After one reading
o 1ve no idea what the problem is. 1 just looked at .
the two input statements, they look OK. I just looked
47f’ at the 50 statement.- Nothing looks wrong there. 1711
run the prograd to see if there’s a problea. . -

»
- -
F Y = * —

- ) 66 -




I just. read the output on miles per gallon. Thought

Ive got it! The machine divides before it subtracts.

1’11 try putting in parentheses around E-B to see if

it will subtract first. o !
\

This subject.recognized the. progran and thought he coodd find the bug
just by looking at it. He examines the program listing line-by-line

. A 3
withoul- success. Then he runs the program, sees the nature of the

-

error, and is ismediately able to locate the bug.
The commentaries indicate the mechanism for the quick and
apparently unaot{va:ed repairs we had seen students make in the

chronologies. Consider the following excerpt!
This equals business in 160 té 230 is ccnfusing
stuff. Seecs to me thBy’re double assigning
things. H and L are being given two values. .
I think zaybe 160 and 170 can be deleted.’
Iry and see,.

‘The subject, without having run the progras, exaained the code and san

souething that looked "confusing. Cansequently, without 3ny sound

feason for doing 80, she deletes two lines. This coepounded the bug - i

the problem, so, that when she rested the program (for the first time) -

-

after the repair and it worked incorrectly, she had to go back and undo

the repair and run the progréa again in o}der to see the manifestation™

re

-of the original bug. : .

One of the subjects dig seen to have an effective top~down

strategy with elements similar to that of our troublesbootingldebugg}ng

model. However, even ha had difficulty because his CHARACTERIZE

-

prpceduré was not well developed. ‘Figure I0a is a complete ;osnentary.

3 .
from this subject for the bugged program shown in ¥igure 10b. He reads
/’f’ “ . =
the program first, but only to identify 1its structure. Be then runs the

' prograz, but habpens,to-chcose inputs for wheich the progra=m works

*
&

. | . (6775, ) :




srr -

L]

This progre= locks scary because it's so long. I'm goirg to'tq to
this progrem in groups that were delinezted in the abstract. That is: (1) check
to see if input is cofrect; (2) count the odg mumbers; (3) print the odd mumbers.

Statement 30 I don't usderstand. I'11 lock it up vhen I'z done réeding. 4As I

read dovn, I see a lot of symbols I don't understand. That's very discoureging.
"I'11' run apd see wbat bappens. (1) )

Tpe prograz worked very mi ly. I asked Eoger whstfs bappening. He said
to try more possibilities, so Z'11 try rore disparate mmbers. (2) .
. Sy .
I fourd 2 proble=. Wnen I input scme mmbers 4t doese't work. I'11 try
Lo see if there's a certain spreed thet is the lipe between vorking and not
vorkirg. (3) I'11 try distances of 2, k, ete. LA
. - . ‘:‘_7 5 i
I fourd that any distance past 2, i.e., STEN muabers, dogsn't.work.
I'Ll trace ard hope I fird samething. 1T have very little idea of vhat I'n locking

Trace sent it into an infinite loop, I'llloaka{'thembersforavhﬂ.e
t anything cut of that, Well, P stayed the same, n kept c
'11 look at the” progrem to see what they rmen, I Just noticed .that N
atl%and?&D,Ya;ﬁ}tammeztedccapamdtoﬁne&J&anleO. I'N txy
charging them back end see what happens when T run, (5) \

8
LI
W
Lt s
0
b
»
g

That didn't wvork so I'1l tlﬁabackasdgointottemallm‘xing
up sycbols: < > IIFT. } - - .

.

Couldn’t solve by 1315. - '

»

*

Pigure 10a, E}am cozentary of en inexperienced pmgsz ) . o )
attespting to debug the program slgrm in Figure 10b.

3 . of
.




e
.

"_999 END P

\ |

usar inputs two unequal odd numbers (the program checks 4o make sure
¢ this is thh case and 3sks the, user to try again if 2 mistake has
2en made). 0Odd numbers betwsen his two numbers, inclusive, are counted.,
~or example, there are 3 odd numbers between 5 and § — they are
- 7s and 9 Finally £he number of odd numbwers tetwsen the user‘s two -
ars is pringted. - . ’

re
-]

ALECS

b

7
unb

s

01/51/77 60:00:01- . ‘ , o
27 , ’ ‘ ,

1T PRIMT "TYPE AN ODD NUMBER" e -

20 INPUT % . : o

30 IF, X/2 < INT(X/2) THEN &2 oL

40 PRINT “THAT IS NOT AN ODD NUMBER. TRY AGAIN: *

5@ GOTO 20 o

50 PRINT “TYPE ANOTHER ODD NUMBER™. P ,

70 INPUT Y . X . . " -

20 IF Y/2 <> INT(Y/2) THEN 110 -

70 PRINT "THAT IS rOT AN ODD NUMBER. TRY AGAIN. *

100 60TO 70 ,

110 IF X ¢>_.Y THEN 150 . . ~

i20 PRINT "YCOUR TWO NUMBERS ARE EQUAL. TRY ACAIN, THIS TIME® -

L20 PRINT "USING TWO ODD NUMBERS WHICH ARE NOT EGUAL. * .

140 $3T0 29 ) e ) L.

150 IF X < Y THEN 190 - . /
160 H = X )

170 L = 7. i ' _
180 G0TO 210 ' . . ;//
190 H -

200 L

210 N
220 P
220 M
240 IF P = H THEN 260 «

230 50TO 220 .

260 PRINT "THERE. ARE "; N; " 0ODD NUMBERS BETWEEN ™; L: ™ AND "; H ,

nnuunoa

+ o+
o)

A} i}

.
\\./
L 2 . - ¥

.Figure 10b. 'Bugged solutfen to HP's task (EDCOUNT, used to stuly -
’ dei;zg,gingbyizezpeneﬁwdpmgmrs.ﬁ‘ehzgisin‘

. Lipe-220 vhich should-be P =-P + 2. In addition, Line
‘o 2lﬂmstbeP=L&1ﬁ'Lir£2.}5=nstbdﬁ=l. '

- I;’ . .




‘because they are not well-versed in‘brograﬁﬁing fundamentals and lack

libraries of specific experiential knowledge, but because they have -

correctly and-becomes "stuck." Only a prompt from tég observer induces
hin to try other inputs and thereby detect-the bug. He'arrives at a
correct ACTION-DESCRIPTION that the program works correctly only if the

pair of numbers are consecutive. He doés not debug the prograq:within

the rime allowed, but this can be attributed his forgétéing some of the ~ o]
BASIC lénguage‘;odstructs needed to undersggnﬁ the function of parts_of .
the progﬁan. R \
JIhe effective strategy of the s;ag subject c;n be seen in the
following excerpt in which he wa¢ debugging the program shown in
Figure 9, Hpie nis careful initial cng{acterization and testing g -

—— > - &~
following repairs, and hdw he resists jurping to conclusions until he

LI

nas exanmined the prograc’s cutput. .
. . i

1 just read S1D (the prograc). I just thought the

problem may be there’s a problem with end or stop
statecents. ‘1”11 run the program to have a look at

fe. My Suspicion seeced correct. The calgula:o:'

- * -

- 4

outputs al ;unctions, sg-1've-got to find a way to - *
<~ limit the cflculator %o its assigned function. I°11 - :

look in the glossary to find the right word. I~ ’
» couldn’t find anything so 1°11 try GO TO statements

after each function. They’ll say: GU I0,..end. I

Jist typed a 125 G0 T0 199 staterfent. I°11 now run

the addition and see 1§ it stops. Pt worked. I was

pretty confident it would. Now; 171l add thess expressions
to the other funCtions. ] pade a mistake in typing, , 3
so 1°11 iook up the CIL button for r offing a line. 7
found it, I"11 CTL X. Now, I°1l run again, checking ’
all the functions.. It worked. I want to try TRACE -
now, just to make sure I understand it.. -

Our observations of debugging'by inexperienced prbgrazmers ” .

support the hypothesis that some of then have difficulties not only .. ! . C

. . -

iuad;quate general debugging strategies. In @mrticular, the are .

.

deficient {p running a program to obtain information, that can be used to

-

€
*

R ~ s
-t - 70 78 . [

¥ ‘ \




- «
L)) deduce logically where a bug is located. In addition, they make repairs ) ’
: without good reasons and lose track of repairs they have attempted,
thereby confounding their problen. . N o]
. N ’
~ } 2
‘ '
? -
0 ? ’ -
‘ . . ’ -
7 > ’
' . ' Lo
. . . .
3 < .
~ ‘ 4 N
4 . L
- ‘ X L.
. . % -,
. . g . .
- - i - : .
i v : - . . '
L ‘ .
. ' . .
et , Con
4 |- e - e
' . . * . . -,




11¥. Teaching Troubleshooting/Debugging

»

Y PR

-~

. . g" »
. . lmproving instruction in complex problem-soclving

.

In the introduction, we described the indirect method by whiéh‘

‘croubleshootinngebugginé and other types of complex problem-solving are

'

-

_cu}rently :aﬁght: He mentioned two problems with this method. First,
in domains where ;}obken sélving requires specialized facilities, such

as electronip troubieéhooting, costs limit the range and number of.
. , - .
exaoples and exercises: students may experience during fcrmal

-

instruction. Thus, students of average or above average aptitude may -
not have experiencg” sufficient for them to acquire problem~solving

coopetence. Second, students with lower aptitudes may have fundameqtal

v

difficulties %earning by, the indirgcc method even when a relativg}i
" broad range of experiences‘can be provided. e
One solution to the first problem, ‘and perhaps the second, ;S.té
elaborate on the indirect approach 'in wayé that can increase student

exposure to problem-solving experiences and add structure to these

experiences by providing more and better feedback to him. A landmark

€

. example of this’type of solution is the SOPHIE system developed over a

period of geveral years by Brown, Burton, and their colleagueéé(Brown &

»

- Burton, 1975} Brown, Rubenstein, and Burton, 1976), whiéh provides

S .
instruction in electronic troubleshooting. Through the use of computer

simulation and other AI. techniques, SOPHIE creates an enriched

N

enviromment in which students may acquire both a general troubleshooting

~
*

. strategy and domain-specific knowledge for understanding interactions

-

between payts of :circuits. SOPHIE does have its limitations-- most

* f 80 - o




— . .
thably, that all its e;gécises and monitoridy capabilities are limited
to a single circuit-- but these are oversbadoged by the advances it

. represents in teaching by the indirect method.

SOPHIE. The basic SOPHIE system 18 an interactive
computer-basged oubleshoo;ing laboratory built aro;nd a siaulacion.of a
non-trivial power supply circuit. All s}udgﬁt activities require only
the simulated circuit and no Yeal circuits or test equipaené. In
Yéfzbus operating modes, compoaents in the simulated circuif'can be
faulted as specified by a human instructor, by the student, or randoﬂly
by SQPHIE itself. The stuhent pakes _medsurements on the faulted cireuit
sioply by réquesting them; they are determined by the simulation.
Similarly, he 8pecifié8 repairs by requesting SOPBiE 0 replace a
component:, These interaciions are faciliiéted §y SOPHIE s 1limited, but
very habitable, natural language front—end, which relieves :Qe student

of learning a special language for communicating with the system.

‘.

" 7 ’In a basic opetational mode. SOPHIE allows an 1ndividdal sfudent -

to troubleshoot ‘an unknown fault or investigate the effects of a fault

he himself has specified, much as he might in a normal circuit

laboratory. However, it eliminatesg aany/of the peripheral problems

involved in setting up and using real circuifs angd test equipéenc.r

¢

Beyond this, SOPHIE constantly performs two powerful aonitoring

functions as the student works with the faulted circuit. Firsc, before

- ~

perforning a measurement requested by the studenc, it deteraines whether

the requested value is redundant— i.e., whether it can be deduced
' ¥
-blogically from the aeasurenencs that have already been made-~ and, if .

80, refuses to pake the aeasurenent.‘ In this way, SOPHIE alerts the

.

student thac he has some misunderstanding of'che struc%uré'aud teleology

~ / oo d

-

. %

o

-




. ' ,. '} , -
ofathe circuit. Second, when the student asks that a part be replaced, &

SOPHIE determines whether that part being faulted is consistent with the °*

~ . k3

' measurements that Bave been made. This is accomplished by faulting that
.. v . -
component in a copy of the simulated circuit, making the measurements ™ ’

the student had made, and comparing them wi}h the values obtained from

the version of the circuit the student is working with. “If the
specified repair is inconsistent, the student is told so. Agaln, this

alerts the student to problems in his reasoning and understanding of the

circuit. ) o .

« . -

-

"1n a second, more recently developed ope;atidg mode, SOPHIE

_ provides the student with "real-time" examples of expert troubleshooting
involving the power supply circuit. SOPHIE’s “articulate é}gert" is

programmed as blocks of human-authored text that are accesseéed

__ dynamically in exanpfes involving different faults. Each episodebegins ’

by the student selecting a fault he‘would like the Expert to find. The
- v X ~ i
faults are specified with respect to their location withidgthe circuit’s

[
* - -

tép-level functional organization. A "demcn"”, another entity within _ .

SOPHIE, inserts the fault in the circuit. The Expérfibroceeds with a

commentary on isolating the fault which exemplifieb_;n optiBdl top-down

strategy similar to that in-the troubleshooting/debugging model we
1 b ’

described in the previous section of this report (Figure 1l1). ' ) .

{#, Rather than éirectlx make measurements on the circuit at each

- *

step in the localizatjon prﬁcess, the Expert asks the student to tell.

. - - - ¢

him the qualitative value of the measurd he wants t&‘nake_(e‘S‘r 1s the

"

-
.

voltage at point A high, 1w, orxnormal?). ‘Tﬁgs, Eée student must

»

understand the'éffects of the fasult he chooses (a device for motivatiﬁg

the student to understand the circuwit), The students answer is checke ,

¥

' 74

82" . _ 3




. ’ » , ’ ¢ .
,‘,
. .‘_ CL . . e
* How does the OUTPUT %LTAGE compare with a working .
circuit? . <y ! . .
.o - . . - *
DICK: Low' " : . T

'y *

- 'S [

EXPERT: . ) -
Every functional blgi::as a failure 5éde - which ZThe Ezpert knows of
"could ‘chuse the dutput to be lowwnder these fwltsmevery block
condition‘, s0 I need some more information. which cause’low output,
- the only symptom 80 far.
« Is the OWTPUT VOLTAGE essentially zero?
U T ) s The Ezpert asks fgr a more

DICK: YES Pacl T , refined, although still

- - - .. qualitdtive prediction

EXPERT: . N . about the output. )
"AH GOOD! That is impprtant informétion ‘for 7 me .t .

because I don't suSpect the Vref now. If the Vref -

were -dead, that is,” had no output whatsoever, then An instance of teleolo- "

the output voltage would still be around one a L knouledge at a
- one hglf volts. ' It would have this magnitude level: fatlures .

" because the voltage limiter cannot even begin to in Vref comot mgke the
function until its input voltage ris‘?i/,aha\fe the output essentially zero.
w,Junction  voltage “ drop "of ~itseinput transistor.- This is a somewhat ° -
And, of course, if Vref had any voltage output &wprising fact vhich the
greaer:~ than_ zero, the output voltage would be stydént mybzt to verify
8t11) greater! Having, eliminived the Vref, I' now experimentally in the
"wonder ‘about, the CL, VL; 'DARL, ? and OPF.~ Any SOPAIE lab. ‘
~ one of these could cause- the output voltage/ to be
’ zero so I zam going to -narrow the seapeh, 4 ‘e

How doés the VOLTAGE a* N1 coppar{‘/aith a working ﬂ(lthaugk this test is '
éirculf” .. . -5 .v. Taimed primarily at auly .
s = , A ) . 0 "‘-0’ k, zttqnanathe-
. R r T ;T . - lesdleirable because '
~ et 'Y P . therestoftkeblocka ‘ ‘
— PR . ek *. ewvwot .fwzctwn wiless
. ' T . *®  this block 13‘8 ‘working.®
- . .“ R ;e N ‘ti" . (" .
. . R " . L _ ,

guﬁe ik, FExcerpt of an imer&ction with” SOPFEE' artiélate expem L

e é P _;n?..q Browt, Mbenstein @nd Burton, &.9{6. ", //‘ v

' 3 & . i , *

. .... . . Ty Tl " ‘ “ B ! . -

. . A v‘ é . . . (X3 i . " N . N . T, -
.‘ o L2 - ,”Q' s N - i £, ‘.)' . s - . * .




"

\)

.
. . r
- . .

- x v .}

* ‘ . - - ) R ]
by the demon, who "invisibly" ‘runs the simulated circuit to get thé? ' '+
- / . - a IS - ’ ¢
actpal quantinn{ive Value. If the student~s answer is wrong the demon « .
R Y
interrupts and telfg the studéh{/gpd the E§pert. The Expert follows a . ’

1 strategy df'choosing measurements that- enable him to reduce N

progressively the part of the circuit’s iunctional'ofganization that
remains to be considered. _After obtaining each qkaiicative measure from
the s{dent he explalns how"ﬁ.t enabled him to ded”ce £hat the fault -

could not be in certain subcircuits. The Expert never describes this

L
1]

local(éiiion strategy in general terms; insge%?, the efﬂdent is left to
~ - . A ~
induce,the general principles from the specific’examples of reasoning. !
8 e Y7o

Brown, Rubenstein, and Buftton (1976) report a:study %g which
@ - | ' PR
they evaluated the reactions of a small group of second-ygmr electronics
- . - . ‘cl
“students from a technical school to the SOPHIE.system. Each subject
B F . =

L . -

interacked with?SOPHIE in several modes, including the two we have .
% ¥ . .

-

L4 - ] -
{ described here‘8 In questionnaires and interviews, the students in

N4
general indicated that SOPHIE was superior to their ngrmal eXperiences

14 A ]

in a circuit laE oratolry. They believed that the individuaL

»

':roub eshooting.activity did "teach them knowledge that would be usefal

.

-
1n trogybleshooting other types of circuits. Their criticism was that

»

. ’ : . AP v ¥
when they were\gglg\about their attempted redumdant measureménts or

. —

- illogical repairs,.they could nob-a‘ways understand why they were wrong

and could&'?tain no fﬁ‘rcher help from.SOPHIE. : -~

"The interaction with the Expert was also rated fa;orebly, but'
. v. * " e ‘d‘- . .
not as highly as the other conditions and,yith Epre'variability among'
. ,?:."(r Y . e
[l ﬁ + g

. . ) - o .

8 Othgr COndttions included a competitive troubleshooting game . °
between two-person teams, and an exercise in which the studert had to
speciﬁe 4 fault which when inserted in the circuit would cause another
target”cemponent-to fail as well

»
* l- \ - - * . 7 ' ..

IEEERNE | Toed




L

[

r

- studentg., Stud

N
) individual debugging and 1in answering the Exbe;;/? questions. They said

P a L
-

rd

- -

. strategy of top-d decom-position and, testihg ‘that they could apply i.ég, . ‘

a Tange of problem—solving contexts.. The studeats who rated the o ’ o
' \ " ’ ‘.

.condition pdorly tended to be those of lower aptitude who had trouble in’

11

¢ . ¢ -
they found the expert too glib and were frustrafed by not'being able to

‘ ¢
qutstion him. They had trouble Juste forlou}m{

i,

specific problem, let alone being able in * the underlying general
. ! ®
strategy. /
3 " .
. The regults can in general be taken to, indicate that the ) ’

capabilities-of the SOPHIE system can merove learning of both

‘imain-specific knovledge and general étrategies within the indirect ’ -

method of leaning by example and exercise. Howeverjfthese benefitsg

- N kY - - - P

accoue primarily fér~students of normal or higher than nornal aptitude,

and are diminished or loSt on those of lower aptitude.
4
- s

The Why system. The Why system (Colliné,,1976; Stevens &

- e s e eraAaw, e

-

Coliins;- 1977) is another CAI system that may "be viewed as'ﬁn enriched "‘

context for q%;;hing p/}Blem—solving by the indirect’method. -The stated .

<

. . ,
purpose of the system is to teach domain~specific dedlarative knowledge .

¢ . » 3
about geography hy engaging the student .in 4 natural language dialog

L] ., -

with\a simulated Socratic tuCor (Figure 12’ Howéver, as we noted in . e

the introduction, tutoring can readily bevviewed as debugging of the -

. . i . )
student’s knowledge system.' A tutor's behavior therefore exémplif f¥s

4 1

the application of 2 debugging strategy, .which the student may induée

. and Subsequently use to debug himsbif. An interesting Teature of th is ﬁa‘y%;ffz

x .

* . . e

that, unlike’ SOPHIE ] articulate expert ;the Why tutor generateg his ° '

- a 14 [

>




S |

-

A

.' DO YOU THINK UTHE AMAZON JUNGLE HAS HEAVY RAINFALL OR LITTLB RAI "ALL?

PO & é g
- - - *
. »

~ —

(kule 1: Ask for a predicttion about a particular, case) ' . ) .

*HEAVY RAINFALL*

\ - . . . . . . ) . §,

wWHY DOES THE AMAZON JUNGLE- HAVE HEAVY RAINFALL? (Rule 2: &sk for -
prior causes) C . .
*BECAUSE IT'S NEAR THE ATLANTIC* a — ot )

. YES, THE,; AMAZON JUNGLE IS NEAR “THE EQUATORIAL ATLANTIC. ‘HOW DOES

THAT AFFECT ThHE RAINPALL  IN THE AMAZON JUNGLE? (Rule 3: Ask for -
_ intermediate causes) . ; g

*THE WATER IN CURRENT IS WARM* s
[ 4 . - oF . ‘
(section omitted) s . P

mHAT HAPPENS AFTEK THE MWOISTURE FILLED AIR RBACHES THE LAND? ~ (Rule
4: Ask for subsequent causes) )

i . >/_
- # N - /, ";‘
*1 DON'T KNOW* . o : ~

£

-

4

Do YOU 1Hi HK THE ANRDES HMOUNTALN RANGE HAS ANY EPFECT ON THE RAINFALL
1IN THE AMAZON JUNGLE? (Rule 5: Suggest a factor and ask if it is a
cause) s -

*YES* )
‘ J
HQwW? (Rule 3 Ask for intermediate causes) o ~

-
s '
'y

’lﬁE PREVAILIBG HIND BHITS TBE ANDES AND THE AIR COOLS*

- 0w DOES THE 'FACT THAT PRE‘JAILING WIND é’ITS ‘“THE ANDES, ,LEAD TO AIR . ~
COOLING? (Rule 3 agajn) - . . @ v, A
o . Isection omitted) o ' éhﬂgf/?f:
‘ ‘ ty.w g

‘DO YOU THINK THAT ANY PLACE WITH MOUNTAINS 5A& HEAVY RAINFALL? (Rule
6: Form a general rule for- -an 1nsufflc1ent cause) - - g .

%*YLS* - L ‘.‘ 9 . - . .-. "'

SCUTHERH CALIFOR&IA "HAS HOUNIAIES. WHY DOSSN ‘T SOUTHBRN CALIFQRNIA -
HAVE HEAVY " RAINFALL? (Rule’ 7: Pick a counter-example for an’
inSufficient cause, and Rule 2: Ask for'prior causes) . .
‘ . q ‘ ‘ . 4
‘Figure 12. Amotated excerpt of a dialog with the Why system. From
Stevens mxiColLUE 1977. .

78 - ’

) ‘ , | : | 86"

o -




questioni dnd comments dynamically using an explicitly represented .
_process model of 2 general tutoring strategy (i.e., One that is

‘independent of the content of the subBject being taught9 Ihe aodel is
(’-9 LXd
expressed as F production system of about two dozen rules (Figufe 13),

.

. which were derived by analyzing dialogs betéLen students and huaéb
H - " < ) ’
' tutors. While this model underlies the tutor’s behavior, it is not

articulated directly to the student and 18 actually communicated more

a 1] =
indirectly than the sttrategy underiying SOPHIE’S expert’s "canned” N
&6 >, . o ‘
uSxplanations._ . R '
. Hore direct methods for teaching strategies. A second approach -t

to- ;eaching cozplex problen-solving, Which mighe help those students who

have che most difffﬁZIriy learning by the 1ndirect'§Pproach is to

-

provzde explicit de5cr1ptions of the procedures for solving.problems .
’ ~ . .
) . ‘ Y /
,» " * that can serve as‘presgriptions for the student. As noted in the
\.‘ x , . , 2 . . ¥

introduction, an impediment to this approach'previously.hésfﬁeen the

&

. lack of 4 suitabl® lahguage for-conceivdng and talking about oroblems .
. N e . and proolem—solvingﬁﬁgocesses. The: development in Al and . ’
- \ ’ !
1nformatiob—processi g psychology'of forpalisms for represen;;kg
knowledge has cdused researchers concerned with learning and.instruction . «
-~ : . e
' ’f‘\b_*a co/reexaniLe thg;need gad poféarial for zore direct and explicit
.' s * M 7 u\: .. » ’ . N ) .
e e 1nstruction iy lea-solwin o Y 4P . “
> w . ° q‘} e l,l\d’ ——— . P . * . ;_ R
. * o . - . . ‘f" : N . “ " - ) .
: ' . , Why do wve mot attempt- to teach’soné’basic o o .
cognicive skills such as how- te organize one’s ! . '; .
" knowledge, how to learn, how tp solve problems, how < .
- A Y
. ] {0 correct errors in understanding: these strike us ‘i . .
: . as basic’ components which ought to be{taught 3long N
T : with the conteat matter. -
: Nozman, Gentner, and Stevens, 1976, p.’ 194. o

//N- - , , . A R . Ii . A ‘-'




. .
\ . - - ‘. . =

RUngZ: Ask for any factors i e
If 1) a studenf‘ésserts that a case 'has a particular-
“ value on the dependenx variable, . )

, then 2) ask the studgnt why

.EXAMPLE: oo ' L
',. > ' ’ - . o . ’ .'..
if a stgdent says they grow ri?e in Cbingé ask why:

REASON FOR USE: ~ B

- Y -

- hd

Thiis deterfiines what ‘causal factors or chains the

&

student knows about.

- 0%
RULE 3: Ask for intergediate fdctors ' oo

If 1) the student gives as an explanation a factor that

is not an immediate cause in the cigsal chain,

"“then 2) ask for the intgrs,diate steps.
. -
EXAHPtB 7 S
If the,st nt mentibns monsoons in China, as a reason
Vde L | - r
for rice rowing,,ask "why do monsoons make it possible

to grow rice in China?" ] ' *

REASON FOR USE: . T . ) ® g
This iasures thét';he student understands the steps "

it.the causal chain, for example that rfce needs

to be flooded. " - - _ "~

RYLE %: Ask "for prior factors : - - o r
If 1) tme studént gives as anxggplanation a -
~f§ctorhon,causal chain where thpre are ';
’ :f alsoXprior factors, . \\
then é; ask the student %or the pbio% factors. '
Figuré 13. Several of the production rulss ysed in the th systen N

as a cozputational podel’ of a “ﬁtOTi“g strategy Fra:
" Stevens mﬂ(xihzs 19n* -4



P - ’

-++.as information-processing analys£ succeed
'in identifying ofhe processes underlying proble=m
- . solution, these processes—-- at least some of them-- -
can be directly taught, and that individuals will
. then be abl® to apply them to solving reldtively
) large classes of problems. ... ways can be found
. to make-individuals more conscious of the. role of
e'xviron:en:al cues in problem solving and to teach
strategies of feature scanning and analysis.

Iz . : ‘ . -Resmick, 1976, pp. 79-80,

; . .~ . &
Papert (1971) at MIT "has played a prominent roie ig articulating

the positiom that by teaching general problen—-solvigg strategies more
. ” v . :

directly, students can become better learners. Bis argucent is that
learning to do things {s facilitated by giving the learner a procedural

. - . Y - z .
representation of his task and having hip debug his'at%e&ptéé execution

. } of that procedure. Papert feél that this zethodo}.ogy appues co,asks

e i
. - - — — -
.- R e g — —— —— e

as drverse as co:pucational ..atheaat;cs and Juggling. Much of hts work
- " nas mvplved teaching cozputational mathematics (primarily geo‘het‘ry) to”
- children by teachiag then to vrite p,mgr'a:r._s in the LOGO lanéuage. g‘ne
. stutients learn the r.athena.t;ics.‘ﬁy disco'rvé:y (i.e., inductively), but
A they gre taught strat.egi& for desigh and debugging exﬁlicitly. The
. s’t‘ra\tég{e_s,, however, are aot presentgd in toto. Instead, tHe rmethod
| ) f‘ adopted is to present theno: in parts g's separéte h;uristics in reaction »
s ; , . -*

-~ & | ro events that transpire-as the student designs and‘&e.b(ggs‘ his, pregrancs.
# 3 *‘

b4 » ~ - ) r ~—

.t

p “ ¢ In-this context, a ?uristic bay be defined 2§ a rule~of-thumb, -
- M ) ‘ . \J .
/ : a ptece of a larger procedure that e‘{ables a cor;'éct Pr more efficiént -
: ' sclucioqvunder a set of conditions. - The effec;iveness.of Aus_ing a

- . . -

» . * -
- - . heuriscic-aiepequ both won being able to idem.'i'fy yqnta;g where.it s 4
applies or is more effective thamr char heugfistic and ton dccess to
( _J
other knowledgveeded to 'e,xecuce it. 'Heuristics aay essbody either .
~ ) . A T :




-

ERIC

PR e povidca by envc IS

about this method. Clearly, it i§ not, a cost-effective Aapproach to

- - - i f
. v
s 4

P
¢ . -

-~

general or domain-specific procedural knowledégiz~?he following are both 7.

'
heuristics for troubleshooting; however, the first is liaQEed to a very.

v

I

specific contexﬁr while tne second 1is part of the general strategy wej?

‘presented in the previous section of the report.

 }
If the tar is idling unevenly, the first ,
‘thing to do 1s to strike the body of the
carburetor With several crisp f(but. - .
o aon-damaging) blows. . * TN

1f{ you nave decided®to make an obse;vation .

of the syster’s behavior, choose thé - . . . <

. observation tnat has the potential to =~ @
elizinate the greatest part of the systen L9
4s a Possible fault location whether the’ S .
observation proves to Me normal or abnotmal.
’ ”

.. z - . : .
In Papert’s resea®n studies, tne student’s probrem solving is 4

continually =doitored by an instructor. When the stydent has dif
! 3

°T uses less tnan optimal strategies for decigning and debugging hi
- :

a

progYans, 'the instructor fnterfupts and describes am applicible ~

v

neuristic to him. The ‘heuristics !re expliéit, but écuched in isfd{sal

- ) - = ]

speech. For exazple, 1f.a program interied to draw some figure fails ‘
‘ . - *

. . |
because. the student’s design does not tak® into account an Wnteraction

- * . .

between two procedures, he might be told "look carefully at.the position

. .
. -

and orientation of the pen between,the procedures that draw thé‘p&rts of

- . - .
the figure that are incorrectrJ There are several commenis-to be made 3 }

: N

1 . -

1 . * 4
,large-scale instruction; howaver, Papert has been concerned with gaining -

. - . .

initial &cceptance for its priéciples-with the idea that impiesentation'
Y 4 . , -

problfgs can be resolsea sggéggzently. Second, aithougﬂ the students !
t - 4 L] - ¥ > .

i

lea;nﬁan explicit formalisn (LOEO) for representing procedural

knowledge, the heuristics ‘themselves ‘are expréssed in n}tural lapguage. {

. »
.
.

' Finally, the interrelations among.-the individual heuristicg within an -

. - -




enccopassing design and debugging strategy are not explicitiy described

. b

to iif students . )
s . . ’
to . Carr and Goldstein ({\77) at.HIT have described a corputer-based L !

k syste: called WUSOR-II that refines ?apétt 8 method of reactive ceaqhing ;~////_ )
o - .
- of neutistics and exezglizies how_3it can be made ﬁore cost—effective by : *

, * \ T &
A auto:ating the conitoring of tke student. HﬂSOR-II is dbuilr 3rqupd a

gaze called Wurpus, a versioa of Theseus and the Hiaotaurf wvhich * ; v
/ . - N v )

. =, . -

requires a. funda:ental deductive ptob%sm- ving strateg} io' ptizmal

- - ‘. -

Lt - play. The plajet is piaced’sogevagrs in a Laze of caves &oid tbe;nases
. - " . -
of the neighboring caves, and warped if certaiﬁ dangers are present in -

those czves, altnough the exact location of the danger is not gpecified. 4

P ! - ! i . ‘ * A \‘\' ) 'l‘, 'g

He tnen selects a cave to sove Eo. "¥£s goal is to find aﬁB slay the , N

e ey e w nr —— -

wWuzpus by shooting an artbu into the ¢ave wvhere it is lurkiag Fefbre Jt !

slays hism. Tﬁe ressoring involved .is f rly sizplhp for exacple, tf a N\

- X :
| . . . . - AN
. .

teve nas 2 warning and zll But one of its neiz%?ors are known to be+

safe;- ;ﬁen tne danger is in the rezaining neighbor. “Note that this type

- .
., b cf reasdfiing resecbles tbat required, in tF;ubleshooting/debuggiag td.

o localize a Eault given 2 set of observations. The optimal sttategy for .
. .
i [ 24 E
“selecting a move is to deteraiue the safest neighbor as deduced\frOﬁ t
\ -

,azstory o of warnings. ' N . L

WUSOR-I1 iacorporates én expert aouitoting procedure. eiicause

the ptobleh is well-structuted it was possible to implepent 2

.

cocputational nodel.for playing the optimal stratery. The monilor uses s

. ) ‘w - h * 4 z
;1' > this‘model to evaluate the student’s move. %LSUSOR-II incorporates a- A/\,
»

-sophistic&&e&.peﬂagogi&al’Etrategy‘to determine when it is appropriate

-

fot the monitor to interrupt play and describe a heuristic that

~ * . * - -\

s, * generates ‘a better move than whe sttident had just selected. One of the .
- -’,‘ o g

.

. : ’ . - %
- . , - - ' 83 91 . . ] ] .
A ~ | :




e

‘
7
.
<
~

4 e N ¢ '
f . &= . . -
- %é o rm
— . . * -y -

P -
~ .

principies is to interrupt only wheh the student fas .consistently failed

v i

") +

-~ to Bake moves that could be improved on by a particular heﬂgis;ic, that

lS, do not 1nterrupt if the student fails to use a beuristic once when

' *

it is appropriate, when you bave seen him use appropriately before.

RN

Anotherxprinciple is,based on a representation of the interrele;iouships

R " among the heurlstics which Carr aid Goldstein calr’a szll

L]
’ .

heuristic is nqk mentioned unless the beﬁristics prior to it (e.g., use

-

of double evidence Azpeuds on use of single evidence) in the 5y11abus

P N\ . N

- [
—_—

teacning setnod itself” (Figure 14) consists of, articulating the faulty.

(%

logic of the student’s nove, 5he deta}led‘logic for generating & better

*

wove, and finally a general description of the heuristic used to ‘
generate tnat cove. \ ' .' ‘ T ‘i S
. HE§UK-II i; a no:e#orthy elaboratio; on Papert's method 6&
~ explicitly pfeeent;ng preblem~eolving heeristics. Hovever, i;s
capabilities are highly dependent on _the sieplicity of. the problen

domain in which Cne heuristics are taught.. The heuristics theaselves—»_

are part of a geuq;al, deductive prohﬁiz-solving strategy that is

-

P 4

applicahle in cany problem ﬂoaains,'includiug troubleshooting/debuagtng. -

An unanswered question is Hhether students who learn geueral heuristica

>
- »

in such a. toy domain can.in fact transfer tkem to a 'real-world“
_ - ) -
: domain and incorporate thea in more conprehens;ve-strate&ies. A factor

« - * . - 7
that might affect[their suecess {is whether they have 1ntJrrelated the

s, N 5_

[

heurtstics théy have had &escrivbd to tﬁeq_sep;rétely across different

3

problez-solving episodes into an everall strategy. f w g

L4
’

The alternative to teaching heuristics reactively one-by-one is

to introduce them to the stpdent according to a prior plan sg that they

¢ * o=
»

Q ‘. ‘ 7/ . B4 9.2 _ ] e "’.

| 2

. . . 'S . .
. are inferred to be learned from the moves the student has made. The v




.

-

X ]

v, . ! - ' N P - g 17 2 -
r Y s—
+ . '
’, ) ' - . .

~ - N ¢ . ’
B S . -
’. - - ; * ‘ i .
. . . { - - - o e
) ( o S ’ . .

e . i
- P Y ) A ) . N
Ira it isn't nece:.sary to tahe such large risks nith pits. . - . )

Cove 4 must 'be next to a pit because we felt g dra_ft there. chce. one of

coves: 15, 2 and 14 conkains a pit, but we have 3afely aisited cave QS This

-~

neans that one of-caves 2 and 14 coatains a pit. ’ 7 N

3 o

Likewise cave 15 must. pe nezt to a pit because i falt{v draft there.
4

-Henee, one of caves -0, 4 and 14 cantains a pit dut we bav) safely visited
P

-

cave 4. This means that one of caves 0 and 14 contab' a pit.

’

‘.,

This is mzltiple evidence of o pit in cave 12 aktck makes it proboble that

Cave 14 contains a pit. " It is less likely thot cave 0 cortatns a pit.. '&'enc‘e.

L2 *
-

Ira, ve might vant to explore cd‘e 0 tnstead. +

-

Flgire L. Dialig wdth the WUSOR-IT - ysté; illustrating an attepft
*e tRask tne uger a ':£ iriztie for afa_y'.ng t::ultiple

* * - = LY -
. . ’ g¢viderce in deduction. From Carr abg Golasteln, 1977.
7"‘\1 7 - *
4 . - . - - . ‘,—/
. Y " &
- € ‘ )

%




—

. .

. |

/\/ * ‘ - . f“ -
- »

are available to hin whenever he is ready.to use them.. George Polya's -

book, "HoQ to Solve'lt" (1957) is most often cited as the first é&tempt ’ -

“to teach a problem~solving strategy directly by a text. A mathematician

’

and teachér, he had bbserved basic similarities in the methods used by %

¢ .

éXpere-prohlem solvers to solve mathematical proof problems. If these

methods could be described, he concluded, they coull be taught to

E 3 L. -

students, thereby saving the students the yeéars it would take .them to

s

discover the‘pethods on their owq. Indeed, he felt some students never
discovered these principles simply by working on exercises by

b ’
théoselves. Figure 15 sucmarizes the four stages of Polya“s strategy _

and the heuristics applicable at each stage:” Polya's.worg théugh'i:‘is
» ' -

-

now rgcdgnized as a precurs&r to inforf@tion-pro‘essing analyses of
- -]
L]
.groblem solving, has never had an impact pn'practical-instruction in

- B
- - -

nathématics (Schoenfeld, 1977a). . The difficulty- seems to be that péoplé

reading tre text may understand the strategy and heuristics,’but, §hen -

—

faced with a gartfcular problem, have difficulty determiding the

f 4 g

particular Keuristic that "unlecks' that problem; that .is, while Polya’s
] * @

déscriptiohs are peihaps accurate, *he way -in which they are presented
O . ' '
o in his book does npt enable most readers toadopt thém as prescriptions. .+«

Hayne %ickelgreu, an 1nformétion-processing psychologist, has
\ .
¥ . / , .
authored a more;recent book, "How to Solve Pgoblems“ (1974), Which is

- -

similar %o Po}ya's, but incotporates information-ﬁroceséinz-formélisms . -

for describing problem st}uct&rbg and problep-soLving processes and-a

’

. . - .
presentation intended to teach the reader how to recognize when

- particuliiiéfka:egies‘and heuristics are applicable. Wickelgren alsq

does not restrict himself to mathematécs prob¥ems. but addresses a more °

-

G general taxonomy of problem €ypes. The broblem-solving methods *he

- - . ) : ~
L3 . . - . v - -
g 94 - :
H q o . . .




# J
. ’ . - ; 5 3 - ~ - -~
— ¢
: c ,  UNDERSTANDING THE PROBLEM ° .
' Fine, [VPet it the unknown? What are the datal What i the condition?
A Is it possible to satisfy the condition? Is the condition sufficient to
: . You bave to understand - Betermine the uoknown? Ot i it insubicient? Or tedundany) Op
. .the problem.  coneradictory? ‘ . . : )
) Diraw a fgure. Introduce suitsble motation.
4 < Sepa.nu:lhe varioud parts,of the condition. Can you write them down?
. - *
_ * . . DEVISING A PLAN . . .
1 ' Second. Haveyonmitbcloge?Orh:nyqusemthemptob!&nin:
- ) slighely different lorm? -
Find the connection between Do you know a related problem? Do you know a theorem that could
—the data and the :enkn?wn. be udeful2 .
o consider sl 2SO pok et the unknownt And try to think of 3 Eamiliar problem havisg
ifant lizuu?coi tion - ¢ sxme or a similar unknown. . . -
) annot be found, ~ Heére ira problem related to yours and solved befcre. Could you use 2
You should obrain eventually Could you use its result? Could you wse its method? Should you intro-
® a plan of the slution:  duce some auxiliazry element in order o wake its use possible?
) - =" .Could you restate the problem? Could you restate it still differently?
. . " 'Goback to definitions, | .
. ' \ € Y. 1
i i It you cannot solve the pro blem try. to solve first some related
P pro 3 .
. -problem. Could you imagine 2 more accessible related problem? A
L 3 more general problem? A more special problem? Af anajopnus problem?
Could you wlve a part of the problem? Kecp-ouly 2 part of the enndi- -
. - "on, drop the other part; how far'is the un then detenmined,
. : bow can it vary? Could you derive some ng useful from the dat?
. _ Could you think of other data appropriate to determine the unknowa? "
F - Could you change the’ unknown or the data, or’both il necsary, so
- that the new unknown and the new dat are nearer to each otherd ..
s . Did you use all the data? Did you uge the whale condition? Have you
+  taken into account all essential notions involved in the problem?
' . g CARRYING OUT THE PLAN
;,’nih‘d-“ Carrying, out your plan a!he solwtion, check ecch step. Can you see
Cerry out your plan,  dlearly x\z the step is corvect? Can you prove that it is correct?
- R ) + 4
' ) . . . ', LOOKING BACR
' . Fourth, “Can you check the result) Can you check the argument? * )
. . . Casr you derive the result dillcrently? Can yqu sce it at 2 glance?
i ’ e the soluclon obuained. Can you usc the tauT(:At the method, for some other prohlem? N , )

' . - . .

Figure 15. Polya's heuriztics fof problem solving. From Pelyd, 1957.




Y : ’
) the ‘context of a chapter describing applicah&e me;bod. ’ .z

. .
~ -
. LB

considers include drawing inferences, classificatory trial and error, ' L

using an evaluation function to cﬁoose an accion-(hill climbing); L eL. T "

defining Subgoals, aegéving a contradiction, workieﬁibackwardgjfrom the

— e

goal, and recognizing the relatiops betveen probledg. Hig approach is P v
to describe 1n general terms, using formal representations when these P
- y ,

exiss, a problen ty'; and the applicable prdblemrsolving ‘method and- then

give a series»of examples which illustra}e that method. The examples,

—_ . r
are most often puzzles Or mathematical problems that require_ a minimal .

- -

packground. Tne solution to fach eiameie is presemted in st;pa qp? the
reader is instructed to attempt the solution according to the math%d he
has just studied before hé reads each step. The text for each steph .

describes a heuristic to.be applied at that point, allowing the reader ]
. ' ’ _ ‘ X :
to assess the heuristic he ysed or to contidue on if-he is stuck. .- AR

- Wickelgren presents as comprehensive catalogue of problem types
. ]

and methods as qne could hope forggiven the present understanding of
preblem solvirng. Two comments about the learnability of this
information can be made. First, it is exemplified largely with toy

-

-

probllems, a feature necessitated by the: fact that the book is tended

' . - %
for a general audience and not as a %ext for student entering a specific )

discipline. Second, although each method is~ described very thorOughly,

* »

they are not explicitly‘interrelated Thus, 1t still could be difficult

to determine which method applies when a problenm 18 dted outsi&e

L

. ". *
Alan Schoenfeld, a mathematics ine tuctor, has described in, an T
- ~ N
i B
unpublisbed report (1977a) a method for teachinz problemrsolving ‘s

heuristics for mathematical proof chat builds upon the work of Polya-.and

I

L ad
Wickelgren and that he has evaluated in~ a real instructiOnal set?ing-

-




He'states that for a'student:to use a hedristic he Dust not only- - -

. . F
understand the procedure it specifiea, but also .understand the subject -

[4 A Y -

in which he is o use it and retognize the situations in which it can be

, L ’ ' . .
- . used/ The inhova:ion in Schoenfeld 8 methqd is the explicit - | .
" 5 , [ 3 / 4 T Tex ‘ »
N arE&culation of what he calisva aanagerial strategy, a prescriptive L

. @

model of the relationships between individual heuristics. The | :
. .

\<im£nageria1 strategy is }Jught to the student aaLa device.for zonitoring .

"y

his prpgress Ehrough the golutiod to a problen.and:thereby focusigglhis
.,
at::;t on op the subset of tQ’ hderistics he knows that may\be re&evad% '
N at each points Figures 16 and 17 are the heurisﬁlcs and—Eanagerial :? g
: Schoenfeld used in a smaIl coorse he taught.' His tentative ‘
’conclusion based on ap informal stud; of the solutiens generated by
students on examination problems was ‘that the students ciﬁ dzrelop'a . .

4

better ability to select appropriate proof methods relative to students
. . . . '/ . .
in standard courses of satlematics instruction. ° 3 :

Schoengild, in a second unpoplished report l927b Bescribes
_“another small but more formal study evaluating his method for teaching

heuristies, this time for calculus problems involving indefinite .
¢ integration. Fewer beurfsticslﬁnd a ‘more liaited sanagerial*strategy i’ -

3 -
are invoiveH for this domain. Schoenfeld developed 3 brief cext
describing thege and tilustrating their application. " The text was-given

to half of e calculus class four days prior to an exaainati The _‘ .

»
examination involved nine probleas, seven of ﬂhich codld be ‘solved by -

the aethods ‘covered in Schenfeld 8 text. - The“students who received .the - .

. e
text outscored those who did not on six of the seven problems, uhile the
[ A

two groups ‘did got differ on the othér twb probfgas. Furtheraore, the

-

sstudents were asked to record the ting they spent studying for the ) *

r e b




‘ ¥
l,. R ‘ ’ 3
- \ '-
ANALYSIS' d ' A ' '
1) DRAW A DIAGRMH if at a1l possible. . ~ I G

* . -

Z) EXAHINE SPECIAL CASES'

, 2) Choose spe¢ial va‘!ues to exerplify the problem ;nd gst 2
~ "feel” fgr it. : ) |

1., b) Examine 1imiting cases to explore the range of possibilities.

- ¢) Set any integer.parameters equal to 1, 2, 3,..., ‘ln sequence,
and Took for an fhductive pattern.
{ . * . : ’ 4

“.3) TRY TO SIKPLIFY THE PROSLEM by
&) exploiting symmetry, or ‘ o, v, -
b) “Without Loss of Generality" erguments (including scaling) ) '

k|
EXPLORATION

N
1) CONSIDER ESSENTIALLY EQUIVALENT PROBLEMS: - ' .

a) RZpiécfng conditions" by equiva!gnt ones, . o
b) Re-co:bining the elezents of the probles in different ways,

1 ¢) 1Introduce auxiliary e'leaents.' .

d) Re-formulate the problem by .o f -
1) change of perspective or notation - : . _—

11) considering argumeht by contradiction or con'traisos{t{ve‘ . -t

141} assuming you have a solution, and.determining its

#

properties . 4
2) CDRSIDER SLIGHTLY HODIFIED PF:OBLEHS' N

e)

Choose subgoals (obtain partial fu'lfiﬂaent of the condftiozts)

e

' b)" Relax a condition and then try to re-{mose it,
c) Dec@oﬁe the domain of the problea and work on it' case by ™

.| case, - ’
\ > L - ¢ e 4
Figure 16. Schoenfelds heuristics for—mlving mathematica.l : . 7
¢ proof problems. Froo. Schoenfeld, 1977a. L.
. . 2
. L 90 3




ALY

»

_EXPLORATION (continued) . -

"3)% COHSIDER BROADLY HODIFIED PRﬁELERS

\

o

A ]

a) Construct an ana‘loms problen tﬁth fmr variab'les, .
b) Hold a1l but one varjable fixed to datermine that variable’s’

{mact, - .
c) Try to exploit any reuted prob?ea shich have sieﬂar . 7
1) forn . < ?. '
‘ - v
11} “givens® . - * o
* . . " *
114) conclusions. . s

Remesber: nh?‘n &eaHng with easfer related probless, you shéuld
v try to exploit both the R..SULT and the KETHO-E! OF SOLUTIAN on the
) giVen probwa. ) >

vsvams YOUR SOLUTION I

1) DOES YOUR SOLUTION pm THESE SPECIFIC TESTS:.

a) Does it use all the _pertinent data?
b} “Does 1t conform to reasonable estirates or nredict?ﬁnsz

€) Does {t withstand tests of symmetry, dimension ‘analysis, .or
scaling? 3

.2) DOESITPRSSB'!ESEGERERALTESTS? ’

aJ Can it be obtained differently?
b) Gan it be substantiated by specm cases? | .
€) Can 1t be reduced to known'results? | -
d) Can 1t be used to generate soaeﬁxing you know? .

o .

. % : ¢

L4




tom

1 Specific-Tests

.

a

Given Probles

ARALYSIS

J—

Understandipg the Statesent
Sieplifying The Problem
. kReforzulating the Problem

Yseful Formulation;
kceess to Principles

N

H

More

hccessible
Related Pi-o Tem

. m Infomtfoa

A

-

and Hechanises -~ - , ,.
L, «  Hinor- .
ot ; Difficulties - i .
* DESICA ————e — EXPLQ’R&TIG{ g
Strueturing the Arguoent ' Hajor ’ Essentially Equivalent
Hierarchica Decosposition: [ Difficulties Proble=s = '
global to specific . ‘STightly Hodified

Tentative Solution

VERIFICATION

General Tests
T *ﬁ-*

* Yerified Solution

Problens

" | Broadiy Hodified:

i

Problezs
Schesatic Solutior: . ; ! ’
- ’ O . o
X YII-PLE%ERTATI(H ‘ -
Step-by~Step Execution . .
Local Yerification L -

Pigure 17.

Schematic representation of Schoenfeld 8 mana_geﬁ.al
strategy for mathematical problem solving Fran -
Schoenfeld, 19773.

. ., . .
) " ® = . .
] 1108 . . -
Al s
. . e -
~ . .
.




~

examination and those who studied #it@ the text spent less time on the
average. . W, - .

Schoenfeld 8 results, rhough based on a liaited saaple, do ..

H
’

suggest that heugiatics <ah be taught ﬁirectly to advantage, provided
- they are taught in the context of the dbsain ia vhich they will be used

4‘lsubeequent1y-aﬁd they are explicitly interrelated 9ith£n a 12§¢er

. ] -

»t ategy that predicatgs wvhen each is applicable. Iu‘thé’qut section,

we pfesent a study that investigated whether a direct ptesantatiqn of

heuristics can be used to teach inexpérienced prograczers how to debug.
. 4

v

B 1\_ i =
-
. .
7/
k3
“
.
2
—_—
[
— *
¥
-
»
/ *
. .
. -
.
.
. ; v .
-
- -
=
A Lo
£ .
. . I
. 5
T
[
* . —
- - =
- -
-
= v
~ * v
.
- 4 B
v y » M
4
L . . ‘
.
- =
A} %
-
- ~
&
-
- 5 - ™ {‘v

W e b
4

LS

“

-

"

i

1




IV, Difectly tgaching debugging heuristics: an experisen;aL SCudx

» L
. * ) ¢

+
” . . . .

Rationale o . . - _ !

»
-

In ‘exanining chronologies of debugging behavior we fo%?d that

the difficulties of inexperienced prograzzers are due as much to their

-

_ lack of a rational general strategy as to their unfaq;liarity with the

declarative and procedural knowiedge needed to understand ﬁrograas and

»

to op@?ase in a specifié prograrning énvi;pngent. In this section, we

di%cu5§ an experirent we conducted, in which we attempted to teach

directly td inmexperienced prograc=ers a few‘heuristics that are part of
- 3['
a usefu; f:hough possibly consgrvative) debugging strategy. The

- L 3
é&periaeut was intended more to be an exploration of methodology, than a

definitive‘test of whether it is-worthwhifle to teach representations of

= 3
procedural knowledge directly. At the outset, ltmitations on our access

to‘éhbjects over an extended Beriod precluded any attempt to teach“a

-

. . - g . >~
complete debuggiag strategy, or evén to teach part of a strategy

) 1
shoroughly in a natural instructional situation.‘ Instead, a brief

LI

tutoriil Cex; was developed to preseg&»a few relevant heuristics and t

subjeccs’studied it only briefly in an experigental setting prior to

attempting a few test probleus. Thus, we “knew tbat wvhatever tﬂg resultg

of the instructional trea:éent, the adeQUacy of the pedagygy used to

—_—
a

coamunicate the heurisb{és could be questianed. Nonetheless, for a

-

first atteapt to teach debugging heuristics ic was dot unreasongble to

test a minimal 1nstructional aethod. Possibly( tbe results would
1ndicate that mere idencificatinn of gener&f/debugging heuristics is

sufficienc to gadify tﬁb behaviorg}f 1nexperienced prograasers (\>g' if
i ¥ .

.




. e -
- had . P ’

- A . v
they already “knew" the heuristics, but.needed an external cue to make

them Eore'readiiy accessible when needed). In this case; the costs ﬁf

develéping more suﬁstantial, but unnecegsaii, instructional aetﬁbdology

could be avpfded.g - ' . : ’

The overall plan of the experiment was to compare the -behdvior -
of two g%gups'of inexperienced programmers on debugging probleéé, ope of -

the groups studying and referring to the tutorial and the other

hd z

receiving only some unassisted practice in debugging. Data analysis was — Va
to be exploratory, wfh a goal of tdentifying measures that could
. T . ‘ &
indicate thie Tole of the debugging heuristics in subjects’ problen
» ~ ) ) . i ’ - .
solving. : : ’ £

- A .-
o . _

-

Debugging tutorial ’

/

- The debuggglé tutorial we created presents ;ight “guiaelines“
v -
tpat are part of a genmeral debugging strategy. J}bllowing the guidelines . *

s ~

vill not alvays lead to the nost.efficient debugging but for an
‘ inexperienced programmer without much spec%fzc debugging knowledge they .
) v . -
will tend to reduce false starts and to help determine a course of’, -

- £
action when he is "stuck." The guidelines can be seen as. elements of

r [

three éncompassing heuristics for (1) testing a program sufficiently io‘

detect errors, ‘(2) generating a thorough characterization of an error’'s _°
. - y M . = ‘ . -

. ) * - .
. * 2 E 4 -
7 T ’
————

QSchoenféId's results-on teaching heuristics for maghematical.- )
proof problems (described in.the previous section) became available only - ..
after the experiment describgd here was undervay. In any case, there is .

a basic difference between heyristics for proof ‘and integration prob R

+ and those for debugging../in the proof problems, 4, single applicable” ]
heuristic mist be selected; the suhject’s maip problem is recognizing
the features of égprabgéE that ‘make a specific heuristic applicable. Jn ,

debugging, the us Gfikevetal heuristics must be coordinated at severalr
points in every|pxroblem; the main problem in dehugging‘is,resggberihgitq, o T
use all of the heurfstics. Of course, in both cases the heuristics.sust
be used appropristely. - ’ ' L L

¢ -
F ¥ % =
Ty ’5 ! - * Iy i: P .., ? - .
[ - FF = . 9& “ - ' =
/ . . _{?‘;x ixf 10 T L. g ,- t, 1]
- *
- .J‘» -

.
2w - L




- : N o

manifestation, and (3) backtrééking,fr&m unsuccessful repafrs. A

3
F3 '
. .

summary of the guidelines from the tutoyial is shown in Figure 18. The .

aucher next to eacﬁ guideline indicates which of the three heuristics it

N
* -

r is part of. Tke heuriscics vere decomposed into geparate guidélines to '

facilitate t§eir comprehension. The guidelines are-shown in Figure 18 . R

.

2 . in the order in which the futorgal introduces them. This order reflects '
/ -~ .
. - 5 .
that in which the guidelines are applicable'?prin} each iteration (or- oo

. Fal €
recursion) of the general debugging strategy that was described fn -

Sectien II. . > ° . ¢

.
. . ’ . .

. [ / j
The eight guidelines were formulated fo correct the most 7
frequently observed shertconings we had previéusly identified in the

debugging behavidr of inexperienced prograﬁmers. Al% of these - L.

. guidelines, except perhaps for those concerned with®backtracking,, have,
y ‘ *

. [
straightforvard nmappings onto other troubleshooting situations, like
. N . ?
electronic and mechanical maintenance and repair. For exacple, varying
Y,
‘a progran’s inputs is analogous to varying the inputs. and external

-

, coatrols of electroﬁi: and wechanical devices. ;M . 4

The tutorial (Appendix A) 18 a rather minimal piece of pedagogy.

) In a linear narracive mode, it introduces each gutdeline, giving a -
/ N % ¥

rationale for its use and a specific debugging scenario that illustrates . ~

o>

v

W

- *
\ its successful application. The examples are intended to demoamstrate

=h

- h »

. uhgn i€ is appropriate to apply the guidelines: having problen~solving

heuristicéiavailable is of little “use-if one does'mot know the

circumstances under which they should be applied. The example programs » ’

= -
- - ———

vere taken with slight modification from the programming chronologies we

had examined ‘earlier. The nafrative for the examplea was developed inm.

W

~

part from the written commentaries we had collected from the

¥ *

» . »> 7

ERIC | R {17 S = © s

;N -




i

.
P ’ , 3 s ‘ .
.1 v - o .
-
k"{ = ) -
» L, :]‘ ) ]
z IR
") |. - * " ’
TESTING THE PROGRAM o ,
(1) TEST THE PROGRAM WITH ALL POSSIBLE TYPES OF INPUT FOR WHICH
. . IT 1S DESIGNED
’ e ¢ .
(1) '+ TEST THE PROGRAM WITH THEEKTREME VALUES THAT THE
INPUT CAN HAVE - . lx\ Y

{

CHARACTERIZING THE 'ERROR

(23 CHARACTERIZE THE WAY THE ERROR(S) SHous UP IN TERMS OF THE
LNPUT AND OUTPUT . &

(2 EVEN I¥ A PROGRAM ‘IS SHORT AND E!l‘ TO TRACE BY HAND,  YOU
SHOULD FIRST RUN THE PROGRAM. OR MESSAGES, AS WELL AS )

A CHﬂRALTERIZATION OF THE ERROR IN TFERMS OF INPUT aND OUTPUT, <"

CAN BE VERY: HELPFUL IN FINDING AN ERROR ) . . . .

(2) . SOMETIMES A PROGRAH GIV:é TRE CORRECT CUTPUT FOR SOME INPUTS
BUT NOT FOR OTHERS. WHEN THIS HAPPENS YOU. SHOULD EXAMINE THE
DIFFERENCE+¢S) BETWEEN THE INPUTS FOR WHICH THE PRDGRAH WORKS
AND THE ONES FOR WHICH IT FAILS.
(1) AFTER A CHANGE, RETEST THE PRDGRAH ING ALL POSSIBLE TYPES ,
OF INPUT FOR WHICH THE PROGRAM WAS DESIGNED. -
(3 IF You HAKE.A CHANGE TO A .PROGRAM,' AND IT STILL. GIVES THE
SAME ERRONEQOUS OUTPUT, RESTORE THE. PROGRAM TO ITS SJATE - -~ -
BEFORE\ THE ®HANGE. ' YOU HAVEN‘T FOUND THE ERRBR(S) IN THE -
PROGRAR., ANL YOU MAY HAVE™ INTRODUCED A NEW ERROR.

(2) IF YOU |MAKE'A CHANGE TO A PROGRAM, AND THE OUTPUT IS STILL
’ WRONG: | IF THE CHANGE CORRECTS ONE PART OF THE PROGRAM (e g..,
one part of, the output), THEN LEAVE THE CHANGE IN THE PROGRAM.

i
">

-
Figure 18.. List of the debugging guidelines presen%ed in the debugging
tutorial. BKRumbers in parentheses indicate grouping of . -
guidelines into three encanpassing heuristics for testing,
charaeterizing, and backtracking. . ) ’

~




L 3 . -

inexperienced programmers aho han.tried to debug them. The commentaries .

contained instangos‘of-both productive and non-productive reasoning L.

useful for illustrating how the guidelines could hclp during-debugging.

By using exanples vith errors and problem-solving introspectibns

! -4

actually produced by inexagrienced programmers, we hoped to create a *

)

text‘consistent with the experience of subjectq we vould‘employ. Other .
than indentation- and emphasis, tbe tutorial makes ng nse.of text
engineering techniques like hierarchical outlining or eystematic review

which might improve coumprehetsion. 1In fact, the tutorial agsumes a high

* -~ .
level of litera¢y and motivation. These were characterigtics we -°

expected of the undergraduatgp who would participate ,as Qubjectsxand ve,

chose to make the text consistent w{th their aptitudes. We did create a

brief opembook test (Appendix B) o acoomﬁény the tyutorial so that these

subjects could monitor their comprehension and determine thoir own.

. 7
review strategy.
*

- - ’ ’ y )
- . L ]

Procedure ; . .

e . . %
} iiubjects. The ,subjects were twere paid voluntéers ffom a group

by
of ;g\atudents who completed fifteen hours of curriculum in the BIP

*

. 1
course in the weeks prior: to the experiment. . Thus, at the time of ‘the

: [3

2! , :
experimeqt, each subject had written severdl dozen short programs within
B1IP, but had no other progra;ning and debugging experience. The -

subjectqiyere recruited approximately halfway through their -
. partieipatton in BIP: ~ _ . :

Pridr to beginning BIP, each subject had been pretesteé with the
AP

Computet 'Programmer Aptitude Battery (Palormo, 1964). On the basis of

-

* ‘e *

their scores, the twelve suﬁjects were divided intg two "matched" groups

&

N

-

.,

-



.

. program gpace in BIP and recove}ing from system crashes) and_to 1ist

hardcopy of tesf programs for “subjects upon their request. - N

vas the (different) treatment/testing session for the experimental .

(TUTORIAL) and control (NO-IUIORfAL) groups. .Sessions 2 and 3 were test.

L
-
M
LS S ]
-

b .
. )
« . .
. B
- . -
.

.of gix subjects each.’ This was done in an attempt to control for

pse-existing differences that might interact with the experimental
doo - :

+ . - . hd

instructional treatment

B} .Experimental enviromment. A}l expériaenéal segsions were -~

conducted in the same setting in which subjects had'qprked wffh‘ﬁIP.

S v ’ =

All'experimeutal test exerciges were conducted using BIP's programming . .

facilitieg (of course, those facilities specific to the BIPrcurriculum--

e.g., HINT-- were inoperétive for the test exercises). Iwo;bRT\ .’

3

terminals were available; allowing either one or two subjects (always

from the same experimental conditiod*‘to be séheduled.for experéaental

sessions. . ’
An experimepter was available throughnut the sessions to help

with procedural problems ‘(e.g., loading exercises into the subject’s -
P P ¢

- E ]

“

e Y L]
*

‘ Method. Eachrsubject participated in three gessions. Session I
- ¥ . .

sessions identical for both gfoubé. ’ . N

L4

w4  Session 1 for the TUTORIAL subjects began with g-text

introducing the general logic of tédubleshooting/débq ging (Appendix C).

The subject was then given the tutofial text p?%gen;ing the eight -

s L. hd
-
. . » r

3 . =
=
Dt o ]

0 Scores reflecting ability dfter BIP would have been
preferable, but cotuld not be used because time constraints required that 'l
each subject begin ithe experiment as sqon as he compléted his 15 hours
in BIP. Thus, assighment to tfeatment groups had to hes made while
subjects were still|in BIP. Subjects did’ take a programming posttest
after, completing BIE and before: participating in the experiment.
Subsequent analysis &see Results below) indicate that the two groups of
subjects differed matrkedly with respect to the posttest ‘gcores. ‘

- N b

l . - a * R
i SN Ve 98 i i *

t - . &

o a Taw | -




L ‘ * " -~ o ~ - - > M .
guidehnes to study for one-half Hour. After study, the open-book quiz ~

’ . .-

was gi;ven and the subject reviewed khe text as necessary to complete the ' - .

<

1 ~ . AY 4 €
. quiz. The subject theu moved Yo the terminal to work a debugging - ! .

-‘

. bproblem. Be was .given (in his _program space) a program and a written ' .-t

-
. .

descript.ion of its intended functidn. He was tol& that‘their was . )

. -
v

something wrong with the progtam and that his task was to change it so

. -
> . .

that it worked according to the descr'iption,. The dnstructions’ = . - ' “
9
eu;phasized that the necesaar)( changes were minor and that he/was not- tq .

write his own program to satisfy the description.« A time Iimit of
$

A . H L3

one-half hour was, imposed for this debugging exercise. . .

The test program was an\atypical solution to a tagk in the BIP

*

curriculum cafled CHANGER. AIL of the subjects had worked on this -task s 7.

&

= but’ had used algorithms different from the one in t‘he exercise. CHAhGEa .
. . - . </ -

L ) . " 1

i% supposed to ask the usex \for_a purchase price less than one dollar .
¢ .

-

and print the amount of change and the list of coins ‘nee_d% to 'make that .
- ., - ‘
amouut‘ of® change most efficiently. The bug in' the test exercise’. - . d

h ) manifested itself as an incorrect list of coins whénever two dit;es were

) f : . .
required as part ‘of the answer (Appendix,D). . . -4 *

Session 1 for the NO-TUTORLAL subjects, began with a brief . - *

+

desctigtion of their tésk. The subject th{n was giJrEn one-half houf to -y
» Ol’f )

work at the terminal on the first aof two debugging exercises. Again, T

] t
s z .

the exercise involved a mslfv.mctioning progtam, - description of.its ~ -

' r L

intended function, and instructions to seek a ainimal repair. The - T T

-

p_togta?n"was oné” of those used as an examp{e in the tutorial to . )
: » i ~~ . -
illustrate the use of the” guidelines qor de%ugging, it was chodsen-as an ) N )

A

exercise fbr the NO-TUTORIAL group in order,to miniaize differences in . T-

knowledge about specific prograns and bugs. The second debugging -

il - - * * =

4 . : . - R -

— ’ gi A “‘. ,.I'; ‘ ~~.>
) N o8 et




. "‘- ~ . i .
exercise, given 'during the second one-ggaf hour of Session l was the
4

3 £
CHANGER program given to the TUTORIAL subjects in the second.. half of

their fitst sessiqns ’

. . - 4 k4

. —
Testing in Sessions 2 and 3 was identical for both groups,

s

except that subjects in the TUTORIAL group could refer go the tutorial .

text as they pleased. The exercise given .in Seesion 2 was'to write a

L ' v .

program DRILL (Appendis E). DRILL, a prdgram to provide o :/
/“" : ‘./

- ' LS

drill-and-practice in addition’ and~£ubtraction, was longe a

nore extensive control structure than any program that
. . p
required to write in BIP. The necessary control structure was such that

-
* 4 .

the guidelines for program testing given in the tutorial could ’

'Y
Py

Jects were -

%

rtasdngbly be expected to facilitate its successful implementation. Two
- &

hours werée "allowed to’ write the program. If a.subject completed the

E]

-~ informed the subject simply whether it did ¢f did not ’satisfy- the .

specifications.' 1f it did not, the subject was allowed the remaining

time to complete (or debug) his program. This was done to’ provoke

’

'débugging.in cases where a subject had not been able to detect a bug in -

' . - “ ’ : - ’ b
his own program. ~ _ ° ot
L d

The exercise giuen in, Session 3 was to, deﬁug (under instructions

id%ntical to those for the debugging exercises of Session 1) a progfam -
®. ot
ARITH-CALC which had been written and “bugged" by one “of the tesearch

-

teanm (Appendix E¥- ARITQ%EALC-was desigaed to eq‘&uate in étrict

left~to-right ovder stringscfepresenting numeric expfessions fnput by a

A

user. {BIP’ 8 _dfalect of BASIC has no automatic type-conversion '

. a

nechaniap.7ﬁAgain, the program was longer and more complicated than

€ ‘ ‘ y s > N i
. tilgse Tequired B¢ the BIP curriculd@ or used in thé tutorial and . o
- . L . ’ r.L-» 4 . Ead o= -
T . . k! . . ~ . : L
% ‘ . . . o .

SR Do 1001 g’ - P

1 O

progra:{{éithin one and ‘ong-half “hours, the experimenter tested it and. . <L ‘




. e -

Session l. 1In particular, the algorithm almost certainly was unfamiliar

- - .

“to all the subjects-and difficult for them to trace mentally, although® s

+  “no specialized baquround knowledge is required- to gain an understanding

~ of it. ARII&-CALC and'its bug verd generated so that ‘the tutorial -

gdidelines for characterizingcan error‘in terms of input-output o >
f 3 -
' relationships would be relevant for efficient solution of‘the exercise.
' ‘. . -~ . -

w

The bug does’ not manifest itself for every input dnd the discrepancy in
). the output value varies aa a function'of the arithmetic operations ‘and : .

/{ their order in the input string. Subjects were given one and one-half T 4 f

¢ .

hours to complete tpe exercise.

-
- e *

-~ - s T . i
' In all segsions, data op each subject’s programming ‘and
C

[ - . R ’

debugging behavior was collected automatically (andiinvisibly to . .

Y

subjects) by'BIP's chronology facility. In addition, subjects-in the
. experimental group were given a written questionnaire at the conclusion

%"rof Session 3 designed to elicit their reactions to the tutor‘isl and the

i qa

, ‘—~experiment (Appendix G). e - .
. s .

. L »

~
N
»

Besults . : *

=, .
- ~ A4

Out efforts at earlibr stages of the research to derive. .
debugging grammars to describe BIP chronolog§ data had been
unsuccessful. Therefore, we did not have available any comprehensive ———ﬁqg

mechanism for analyzin&;the chronoldgies collected in the experiment  in

'vé‘\ y * ta

order to describe differenéea between subjeﬁts stretegies. The type of
i
KO analysis We conducted was thus much more llmitedrthan we desired. The ‘
present expe{iment vas concgfned specifically Witbfil) whether the ' - ) y

behavior of subjecxs in the IUTORIAL group would refleqt their attempted :

o - | use of the guidelines given in theé tutorial text and, (2) if 80, thq




exten: to which the guidelines weré¢ in fact acquired from the ‘text = - -
¢ . -
rather than inferred frcn prior experience (as determided by comparigon '
- “ . *
with the NO-TUTORIAL group). The dhronologies were analyzed';o assign - .

- ~ ¢
.

values to five relevapt '’ Fmasures for each exercise.
(a) adequacy of solution . )
(b) detection of bugs via program execution - . ‘ i
(as’ opﬁosed to mental analysis of the ‘code)
. (c) characterization-of bugs.via extended program execution J
— revealing input-output relationships -
(d) extended testing of attempted program repairs
(e) backtracking from unsucéessful repairs

L

-

" The measures represent the success of the attdmpted solution arfd the

.- extent and success with which the heuristics ercompassing the guidelines B
were applied. ' '

‘ —

Each measure was assigned a value n mezning "done *

. ~

successfully" or "= meaning ‘either “not successful" for'g or not
. o )
attempteéd" for b-e. Measures b~e could also be scored as "0 meaning -

. attempted, but with unsuccessful results.” For instance, a "0" value - .

.

. J ,
would be assigned to Heasure b if a subject ran the program several .
times with different inputs, but failed to find inputs that caused the

bug to manifest itself. .In addition, some meéasures could be scored "HA"
Y . . .

‘meaning “not applicable”; for example, if the suhject nev"ez' ag—tespted

¢ £
repairs, no score gould be assigned to measures d and & on that
[3 L] . * < . *
- - ' - ,(v
exercise. . A
) 1 L O ) # N - -

Determination of scores for measures b-e from the chropologies ~ Coe
. -

p}ové& to be-a rather' complex,judgement process. There are no. singular

events in the chronology for an exercise that determine unambigycusly .
. JE

the yalueg of-these four measures. For example, whether or not a ' .
. ¢ - v . .

subjecE actually characterized an error in terms of the input-output
. « ¢ s .

®

- 7"?:}’ . - ;_‘S‘E‘



relationships obfafned by, his eiecntion of a program can be deténmined

only by examining his subsequent repairs and the other events leading up
to them. ’;n a sense,\the scorer had to try to 3imulate=fhe reasoning

-

underlying the subjec; 8 actiorns and see if 1: wag consistent with a

-
v

hypothesisg that the error had been charafte;ized in tefms of
[ . .

1nput-outpuq:relatﬁonsﬂips. A further comg}ieatiOn is that an attempted

) A,
solution may involve more tﬁhn one debugging cycle,“or episode. 1Im

these cases, scores fnf.the meatures were degermine¢ by judgement of the

predominant belpavior actoss the episodes. , ' .

. In order to edyce P ¢ ial bias in this subjective gcoring
R ¢ . . > .
process, chronologies ‘{which contair repeated information 1dentffying

subjects) were scored primarily. By a member of the research team not

familiar with the assignment of subjects to groups. However, ngo data

%, -
was on the intra- and inter-judge reliabifity of scoring for the results’

1
to be presented.

ReSults will be preaented here for the debugging exercises
M

CHANGER and ARITH-CALC atﬁemp'ed by both groéups in the\pecond half of

i‘

Ses&ign 1 and in'Segsion 3 respectively., Behavior in the programming
exe?cise DRILL given ip Session 2 p?nved inpossible to:icore with any

degree of confidence because of the great Varianilify th which

- -

guhjects app}oached ‘it. Some- subjects, in fact, never 1mplemented

enough of the program to execute it and examine any output. Others

T

pry‘éced. executabie piece?érfi‘a eolution progran, byt showed widelyt

'vérying debugging behavior .in different eplsodes within the exercise.

»
%

Given these dlfficullieé and the fact that. there were no diffe’rences(ﬁina

x

the number of correct (or Almost corgect solu:ione)- measure a--

- % -

between the TUTORIAL and HO-IUTORIAL groups, it see);ﬁ>pointless to

- A

* score the chronologies for DRILL with respect to weasures b-e. et

R LI . ;03 . 1, * . . ) "'.;

S < 1198 -

” .

w




»
.

Tables ia:and'Zh present the five scores on CHANGER and

. ARITH-CAiC and also the BIP pretest and nosttest gcores. for each subject
) .« . . . - L " ~
in the TUTORIAL and NO-TUFORIAL groups. Most striking is'the poor .

P

performance of subjectb'in bdth groups as indicated in column a. Three

nembets of the TUTORIAL group and two members of the RO-TUTORIAL grbup .
3

,K *
801ved neither of the probIems. In each group, e;actly five exerc#ses

‘were completed auccessfully. Ihus,'i?e instructional treatment for-the .
’ -

TUTORIAL, gtouf does not seem to have in£4gz§d theit debugging ability as 1

.

. measured on two test exetcises specifically fdrmulated to be sensitive

to that instruction, ‘Unf0ttunate1y, however, even if there w48 an
H ’ .- *

effect of the tteataent, it may have been oblitetateﬁ by a difference .
[ ’ . e

between the ability .of the groups at the'tiae they'began the experiment.

Recall that the groups were matched"nsing the BIP pretest scores.

L 4 ¢ hd
Inspection of the posttest scores, available to us only aftet some o

sub}ects had beguj the experiaent, shoys that a large difference in 3
ptogtamming aEility existed for the‘two groups. By chance, the subjects i -
assigned to the KO-TUIORIAL group had become much better progtamsers on
the aVetage. Ihus, if the tutorial-: did iﬁprove debugging ability, the

on1y~effect may have.been to cancel the imitial difference between the .

- .
-
* . .

experimental and control gtoups.12 s U o= v

tvﬁ@é S RN . e .

", The small sample size precludes a neaningful statistical P
. - evq!uatiqn of the difference; however, in our experience, guch a large //\\
difference in posttest scores does have practical significance and

correlates Jith subjéctive iapressions of programming sophistication;*{l
. 4 s -
12 An attempt was made to obtain "difference" scores for each,

subject in order to see’if thé TUTORIAL group showed a‘larger ° ‘ . ;
improvement in debugging ability relative to their ability before e -
studying the tutorial. BIP chronologies for the final few BIP tasks - A
worked by each subject were examined. However, the variability. in these
chronologies resemblesy that foimd in the transcripts for the . .
experimentel DRILL exercise. Thus,.it was not possible to score the .
pre-exXperimental debugging episodes with' any confidence and thereby to ) .
gbtain the desired difference scores. - = !

=

e s . o . e ) . ¥
‘, ) s - e - ‘ EPTB ”_.: } B H:F * ) . . ; -

& - - - - - - - .




51
g -
EIP
Subject pretest
316 116
317 129
32z 131 231 £Changer Y4 + +
, Arith-Cale + & ¥ %
32k 102 113  Changer = - 0 0. HA KA
. ) \4 "Aritﬁ-Calc - + 0 0 +
333 ¢ é 79 89' Changer - 4+ 0 HA NA
’ Afith-Cale o -  + af 0+
3L0 B ".181  Chenger + + + + FA
’ Arith-Calc - + + K&
";. , ] hd G -
*Key: Measure definitions
“6olyed problen
detection of bugs via piogram executio

charecterizatibn of bugs .via exte

o0 oM

3 Measure scores

ed progm execu‘bim

repairs }

=

Tora

success‘ﬁxl

not succegsfﬁl (a‘) or not attem;rted (b-e) ‘ .
. attempted, unsuccessfully (b-e )

not applicable in solution context

¥
: - 17

¥

\ ‘e

A L 114 ’

f =

N




B -

Table 2b

BIP Test Scores and Debugging Meestres

‘for RO-TUTORIAL Group

q. L- . f SN
] a‘ “EIP " BTP . < De}mgging‘ He:asuzes*
Sutject 't pretest postiest b c e:
3 13 i Chenger - - 0
Arith-Calc + Q 9]
3 ;_‘
313 % - Changer + o+ -
; Arith-Caic v - ‘4
K= 130 237 Changer + + + KA
Arith-Cale + +
e 1 .,
33 115 186 Chenger 4 - RA
Arith-Calc + o] ’-!-
7 . N !
337 10k 23 Changer - - 0
Arith-Calc + + + +
339 131. 2k2 Changer - RA

>

g Yetsure derinitions

a
b

d

i)

soIved problem . e

. detection of bugs via progran cutien o
c characterization of bugs via extended prograez executian -

extended testing of attempted repairs
babktracking froz unsuccessful repatrs

- .

Messure scores

succeglful L

not sful (a) or not attempted (b-e)

attempted, unsuctegsfully (b-e)
not .epplicable in solution eontext

£

-~

oW



. " ’ . R ) « /7 ~ -
N ' The coanletion tiaea for the correct solutions to the CHAhGER

‘and ARITH—EALC e:&en:ises» were ilso examined to evaluate thie hypothesis

W

. ‘that the TUIORIAL grOup ~would debug more rapidly than the EO-I'UIORIAL

€

group. The observed mean coapletion tize, however, was shorter for the

-

- RO-’IU’I:'G'R\IAL’ group, prisarily because of Subject 339. As iFdicated by

his posttest ‘store in Table 1, this B%CC was the most proficient - .

N "; ,progrmer at the time of the expepﬁent. (;4 was also unusually « « ) L
?

,zsotivated being or.-e of the few 'a/tudents in BIP who had® generate.d his
.7 -¢
own programming exercises tcr‘supplesent BIP s curriculzﬂ ) He correctly

F

debugged both CHANGER and ARITH-CALC {n short order, charactet’lzing, ‘

>

locating, and repairing the errors a:pparently byanalys_if of the program

’

code with ;ittle::.‘_atEention to the.data provided by program execution.

Thus, the de};ng:gi:’ng exercises, wirich were difficult for the majority of
subjects, seem to have been too;:ﬁsuax the ,a.bility of St,ject 33%
Comequently, the data do not indicate that the TU’I;OB.IAL group debnggedt .

. . / .
zore rapidly,

' Returning to. the a'éasures in Table I for appareat use of the - -

heuristics given in the tutorial, there is sarginal evidence that ev

guidelines for testing gnd debugging. I'ne columns labeled b—e

correspond to the eeasures described earlier. Cofumn b indicates

.- whether program execution was attempted and successfully caused error

¥ ‘ /

" manifestation gefor'e_the subject engaged in(other debugging activities. -
» . ¢ .
For TUIORIAL subjects, such detection was successful in évery case, LT
P - ¢

« except ome where the program was executed sevetai times, but the inputs

used did not cause error aanifestation. Hhile ﬁO-’fUTORIﬁL subjects also ) .

did so freq\sently, in 3-of .the 12 cases they di& not. ’ - / . T

.
%

o
R

- ~ =

e © T - : w116l -




ST — . , N .
. Column ¢ indicates'cbaracteriiation of'errorg'by"progrha N
.. . /' - executiqn sufficient to elaborate a description of, the salfunction. - !

’./" ; - .

1
TUIORIAL subjects attempted to do 8o in 1l of 12 - cases, altbougb in 4 of 1

those cases the attezpts dere judged to be inadeduate, the’ corresponding

7
L. =

: results for she kO-TUIORIAL group are 6 of 12 Hitb 2 inadequate ’ T
atteupts. - - ) }

‘€olumns d and e are the measures of repair testing and .

‘\\

¥
backtracking from umsuccessful repairs. Both groups show equivalent -
R ‘
: evidence for such behaviprs. , : 3 ’

—
- - A

uxaaining Deasures b-e;just for the exercises that were -

-

:p’eted succesﬁfully (peasure a), it is interesting to note that for
- the TUTORIAL group all of the guidelines were applied inyeach of the -
.. ’ five cases. For tbe EO-IUTORIAL group, in 3 of the 5 correct solutions, e

the bghauior prescribed by one or more of the guidelines wags not

X
—
~ [ - * .
ry 1 - =
T

observed. On the whole, s; seems that the subjects who studied the

\\5\ tutorial did try use the guidelines. However, the data from the :

+ . -

s

hO-IUTORIAL group does suggest that a aajority’of student programmers - :

L]

! with the experience level of our subjects have already induced most of ’ f‘§n
C tbé guidelines (or similar beuristics) The differences‘between the . o
groups are small and'nllov no%stgong csnclu;ioné. (ihz tutorial text may ;
,  simply have served to amplify and organize parts of a strategy already
. known to the subjects who studied it. ;‘

. The written comments obtained, from the TU?ORI&L subjects at.the °

' N
. co%#lusion of -Session 3 provide some help in determifiing the effects of

.
¥ e

tbé\text,sn their behavior. , Figure 19 lists the more infdxaative‘

P
=

re§§;k5 “that subjects =ade to items 4-7 shown in Appendi: G. Ihe ) ) .

// ~ ~ comments about the tutorial are positive for the most part. With the'

- % -
. L 4
= ’
¢ . N

- S S A . L

- »
s . . -




v .

.

Do you Bave any suggestions (criticisms), in geperal, rega.rding the manner
of presg¢ntation of the guidelines?

\\‘\“ Y
324-- Should have been.more time to’study them.

\/

..... -— ) /. ~

~ A

- . Y

Would 14 have 'Deen better if the guideline,s had been given to you before
o1 finished ths BIP course?

e 7 -

“.31€-- Perhaps better in the long ren, Actually ended wp doing the things in
the guidelines as time went on. , Of course, having them given to you
right away ds less time copsming since you don't bave to grope around
irying to decide wna* to do next. | 39

317-- It zzy bave helped, but none of the programs :Ln tbe course were that
: com_icntpa thet.1t vas pecessary, and mogt 1f it was fairly obvious.

iZ2-- Didn't 'f-enly need it in BIP itself ercep't for ccmplex prc:@g;g

32.-- ¥ds, I could heve studied; them et my leisure and really learned them
wel L :

[M .

N N < , - -
233-- Doesr't zake that much difference-- for EIP we didn't have so mich
© @8 to debug progrems. It was pretty mch follow the examples.

ZeDw= Hot nsecessafi-y, these guideldnes are pre‘ty basic things to do and

self-discovery is probably as useful, \
Dc f.fa think it would be useful to have BIP istroduee this materia.l ag part .
cf the course" .

.

315.- Yes, _ . &
31i7-- Yes, it's good %0 knbw. ’ ‘.
) g R )

ice-- Yes, before presentation of complex problems, )
~ 'ﬂ

32hen Yes. -

-

333-- Yes, 1t does help a blt and might relieve the fmstmtion of not ha\d.ng
& program work and not knowing how to go about finding what was wrong.

f

340-- Perhaps, T ‘ .

.
------- — . <«
. - i - -
- N
.
.

Other c?ments. i - ¢ -

S <18

/ .
32z-- The last 3 sessions made debuggi seem & much more orderly process, i.e.,
‘ more mansgeamble. -,
Figure "19. Replies of subjects in the TUTORLAL group to questions
in the post-experimental interview (Appendix G) P
o 109 .

¢

g

Y

*a
1




S -
>

exception of Subject 340, subjects thought that the guidelifnes were

=

valueble owledge, although- they were-not in agreement about how'useful
they couﬂd?be for completing tasks in the BIP curriculum. Several of .
7
the subjects recognized that the guidelines are knowledge that they had

—_—

or would ‘have acquired ipdirectly through experience, but thought that

-

thé idea of teaching such knowledge explicitly could be more efficien&

The debriefing data does point to the inadequacy of niniual

instruction, such as our tutorial, for insuring that heuristics will be =

~ learned and used by stuants who need them. The ratings given by

subjects on items 1 and 2 of the debriefing questionnaire suggest that
(l) they did uot £ind the tutorial especially useful for the test
exefcises they worked  in the experiment (five "3!''g and one "2") e

-2 . -

(2) they thought they were fﬁllowizg the guidelines most{\gut not all,z
of.the ciee (fnur "3"’s and two "2"23). It i very inter%stin% to nqte
that the two “2°"s on item 2 came from Subjects 324 and 335':é;§ had the e
lowest posttest, scores in the TUTORIAL group (Table Za) Ihis agein
“ suggests that the students who had the most to gafn from the guidelines

could not,or would not use them consistently. These two subjects were
A\

the only ones who reported referring back to the tutorial while they '

£ ¢ * -

worked, and 324 was the subject who remarked that he dfd not have enough

w

- time to learn the guidelines. The other TUTORIAL subjects seemed to

_know the gnidelines, but failed either to ugse all of them as’ regularly

as they might have or to use them appropriately for the test exercises.

’

, Digcussion and'Gonclusions. G ) L - . 755? _;' :5}};i

= »

The reéults of tﬁe,experiuent aerve ta flluninﬂte netﬁodclogical

issues noretthen to answer the question of whether it is worthwhile to

[} . » * . L
. 7 - - ' . .
’ - 7 '. A _ ‘ﬂ} ? f . )
- s -
J & A T
- . .. o K3 e - e

i1}




- L}
- * -

teach debugging heuristics directly. Both the chgonology data and .

subjéct's comments hint that TbTORLAL‘Bubjects recogntzed,the value of L

I'd

the guidelines and tried to use them, but provided no evidence that they
’ . ’ ¢ -
better at debugging programs. The comments are most encouraging,

may welll have prompted the subjects to tell -us what they thought we
—d - .

wanted to hear.

i _

As noted earlier, we were- aware of some methodological problems

. ) -
* at the outset”of the experiment, and our subseRuent experience has-
- L - . .

highlighted these and some other problems that.must be golved before a
s » -
substantial evaluition of. reaching troubleshooting/debugging strategies

directly can be conducted.

- G

One problem is developing a pedagogy for teaching heuristics--~

for teaching procedural rather than declarative knowledge. Although we .

could rationalize a first attempt involving minimal instruction, we ’
oo ’ v ’ s 0 ®
anticipated that the limited study of the tutorial, ieolgted from other

- . } ”
instructidn in programming, would §e insufficient for precisely those

e
students_who most peeded to improve their debugging— the students who

had as yet not induced a viable-strategy qe their own. It is to be

i

expected that meaningful_learning\ﬁf complex knowledge requires

1
A
¥

considerable time relative to the’learning that takes place in . ) .
A - .

laboratory studies of learhing. Qur gituation of Kaving limited ac ess

to student’s time is, of- courge, the rule rather than the exceptidén lin a

2" . ] ' - -
baeic‘reseaqgh setting. Zhere is a '"Catch-22" of sorts in effect: it is SN—

.

o

difficult to persuade and possibly unethical to compei“tq$tion~paying . -

.

etudentevto'participate in an hgvafidated,,innovative instructional

) » Program, but one cannot provide the needed validation without testing a .

sufficiently large and representative first §}pup_o£ students, . \

11 : .y A

i ] ,g! . 1 2 O . & 7 . \¥ s
_ F ‘/ - . . L . . - .

—~

v -

|&.




It, 18 usually possible (as we didd to gain the"cooperacion'of a -

+

small group of volunteers who tend to be either students having ’

- difficulty and peeking any means to improve themselves or students who
are unusually bright gnd motivated. Thege individuals are not » . ‘

.. . o R >
representative of the student populatégﬁ. Furthermore, small groups-of

volunteers do not allow for statistical tests 6f hypotheses which are

*

needed to validate an instructional tréatment. .
. - .« - «
In gonte cases, it is possible to gain acless to a large student

population; for example, if the researcher or s?ﬁpathetic colleaguEB

teach a course into which the new material can be integrated. However,

there are ethical issues that surro d the coigplsory particzpation of

. L

tuition-paying students in experimental couree& that are extensions of \**“’ﬁ

sponsored research programs rather thian pr?ddcgp of ag instructor 8

initiative. If the effectiveness of he instruction is very tentative, %

=¥

—then students ‘should not be compelled d participate. If the
effectiveness i8 highly probable (and the experinen ing conducted
only to collect supporting data), then how‘can a control groﬁp‘that

receives less than the best instruction for their time and tuition be . -

justified? . - . - ca. : )
- . . N i . H
- A second methodological problem we encountered is to determine

4
e <

test exercises that will be sensitive to differenees that might result )

(4 = . -
from th:iénstructionalLtreatments. The solutions to debugging exercises .

like those we nsed‘require general knowledge of a programming lagguage -

x
[

(e.g., BASIC) and of a suoporting,computer system (e.gs, BIP). 1In
addition, idiosyncratic knowledge ecquired from prior debugging may.be - ’ ’

applicable to a solucion‘ '£herefore, test exeréises intended to

-

indicate the role of general debugging heuristics can neither be too

- * - s - -

-




. . »

1
b

~

i

elementary nor ,roo. advanced. -If they are too efementary {and hence

. faniliar), idiosyncratic knowl\Bge nay enable\en inmediate solution . IS

solely by recognition. If the exercises are coo advanced then the ’ T

-

student Subject 8 limited competence witb the” language and programging -

) systen may prevent him frqg using heuriscics successfully ’ f. )
-

-

+ : v

- Another teigied problemeis'uhen,“ralative to idstruction in a
. s -

»

programming language, to ‘4ntroduce instruction on general debugging

heuristics and test for ‘its ‘effects. If the instructioh on heuristics

(4

and testing are too early, then students will mot understand how to

» *

apply the heuristics and test exercises will be too‘difficult for
heuristics to have an effect. If the‘instrucgion and testing are

delayed too long, then therd will be significant differences Setweenj T o

¥ -, A

students” knowledge of the heurietics induced from their prior

experience. In addition, test exercises di;ficult enough to require use

-

of the héuristics {and not merely pertipent idioeyncratic experiential e
knovledge) will be so complex &hat a nalysis of gubjects’ behavior wille

+ be ;ﬁde wore groublesone. The appropriate time to introduee the

L

- . -

heuristic instruction is when the students have a ainimally sufficient

background that allows thea to undezstand and use the heuristics, but . '
not to have realized them spontaneoﬁsly. Discoveriné.the features that --

identify that point ih time is the problem of course. ] ' -

’

In ocur experinent, prebéntation of the tutorial and testing of - -,

{ £
it effects were probably too late for tbe few general heuristics we ' )

wanted séﬁdents to learn. The behavior ‘of the SO-TUIORIAL group and the N

coanents of the TUTORIAL group indicate that many ‘of the‘iubjects had .

4] - -

alreedy inferred sog; o? the beuristics includld in the tutoriel from

their fifteen hours of programming experience in BIP. ‘For etndenis

7 " .u- ) - xu“ &
. 113 . ‘ - '




- , ) 13 , - ' wd 3 (
. , Y - '
J e
- ‘ N : ’ . . i b -t
,_:_/-;—'— . - " - ) . 4 i v ) ’ P ?
learning BASIC in BIP, presentation of the tutorial (o:.other .
) : ;" )

-instruction on debuggéhg) probably\shﬂuld commence from 7 to 10 hours R

..'.%'\\ id&o'the course. At that poInt, mos7 students have worked with-all the

-

major, constructs of BASIC and are familiar with tﬁe facilitigs of the
BIP system, but have worked®on only a few programs complex ehough for a
general strategy to be useful.

* A most ‘fundamental problem for studies of the effects of ~-
. B

’

teaching general debugging heuristics remains the analyfis of ‘ t

. .. £ - f -
problem-solving data. In attempting tf?ébaluate the“role and effects of

general heuristics in debugging, one‘is in fact trying to characterjze

not just the ‘result of the problei}solving process, but the process - :
A : :

itself. In” analyzing the chronologies. for the test exercises in the’

Fd

experiment; we found that simple tabulations of behaviors such as < S
. : )
listing or running a program are not reliable ;uﬂicators of the strategy ’

being applied by the subject. Only by examining the -8tructure and cC ' .
) cohtent of actions comprising Iarger episodes were We aﬁle to judge
whether particular heuristics were applied and their contribution to™

3

| ultimate solutions. The role of content or semanticébﬁih the scoring ’ 4

’

, process Birtually precludes automsted clironology analysis. <
In our experiment, the collection of "thinking aloud” protocols ; » i
- 4

from subjects as they worked test exercises might have proviﬁl"’ii"dataZ (K o

that would have increased the reliability with which chronologies wege .

- + \ @ .
scored. However,athis’would have increased the already substantial cost :

o C of data analysis. For experiments with samplezaizes great‘enough to o . -

allow statistical evaluation of measures abstracted from chronologies, . .

1) *

™
- the cost of coilecting and examining thtnking-aloud protocols would seem o
- LA 6

t .. prohibitive. Furthermoré; for a large-gsgale fgzdy integrated into a

» . —

r - B . . . T, ow ', ) .

! .« 'A . ) ) . 1423"‘l * ) é * ’ " "

- . SN . '
. - ) R . ) . ]

&




*

-

“

.

o

s

*

> .
. ) (_%“

real-life instruojt?nal system, the collection of thi) ing=aloud
J - .

t

t‘ !

} C
protocois would destyoy the advantage of inobtruBivéness obtained’'by the
o . K

“Tavisible" recording of prograﬁming chroﬂologfes. : o .

»

Further small-scale studies;%%ag lbat described nere could

-2

provide a relatively g %ormal and subjective evaluation of materials and

¥
.

methods for tedching debugging knowledge in an explicit mianner. The
main problems remaining to be solved are how to determine gsensitive test

materials and how to analyze complex problem-solving data
N

cdhprehensively and reliably. Although we wete unsuccessful in our,

¢

efforts, one goal that snou;d be pursued is the development of’process .

-

aondels for describing debugging behavior in specific domains. :Such 7

models could be.employed to represent changes in an individual’s ¢

behavior as the result of in%truction, and to contrast'the behavier of

Vi L -
individuals in different instructional treatments. .
A “.
As for a large-scale, formal statistical_evaluation of whether @

.

teaching debugging directly is worthwhile, there are additional

probLems. Since the constraints of academic research make it difficult

4
to gain access to a, large, representative ‘Student sample, instructional

*
.« ? -

developments,should probably be evaluated outside the research

i
environment. Onge an informaliy validated method for teaching debugging
i& available, it should be integrated into a real instructional progran.

@ecause of the methodological and ethical difficulties of conducting v

.‘;:’ LS

!

mu&ti-group stuﬁies in an dctual educational setting, evaluation of
L3 - -

student perforpance would best be made relative to previous groups of.

-

'students. Even if these problems:can be oyerecme, the data analysis

problen remains. It 1is unlikely that intensive methé6ds suitable to ‘

small-scale studies (e.g., prpcess models) will be feasiblq‘ior large

. »

’. B ¥




A vt provided oy e I

-

.
-

@ . - -

experiments._ This will limit the analyses in large studies to gross

9 - “

' *
rd - ({
measyres oE learning, such as total scores on 1n-class ,examinations.
1
Our judgement for the present ,is that the state~of~the-art 18 still .
. remote from a deftditive large-scale evaluation of how direct ‘ 7
c instruction in debugging, or other complex problea—solving, will affect
. s
the abilities of students. ‘ - ¢ .
. B £ . [ .
N ¢
- 13 ‘
¢ , ' ,.J‘-f
£ 7 _/M ) ’
4 .
. . F
i N " -
. . - f "‘ A3
~ ' . .
\ N
"
) - » . .. . j
- . . . ) '
N - J COOON




» : References '\ S AP LN

kS
7

: ' 2
Barr, A., Beard, M., & A:kinson, R.C.- The computer as 4 tutéri ‘7
laboratoxy. The Stanford. BIP-Project. International Journal of .
Man-Machine Studies,. 1976 8, 567-596. .

Brown, J.S. & Burton, R B. Miltiple representations of knovwledge for

" tutorial reasoning. .Is D.G.- Bobrow .and A. Collims (Eds.), .
Represéntation and understanding: Studies in cognitive science. ) '
Hew York: Academic Predf, 1975., _ , ’

+ »
'

Brown, J. S.,-Burton,{R,R., Hausmaun, C., Goldstein, I.,” Huggins, B., & i
Miller, M. Asgects of a theory for aitomated student modelling.

. ;éu Report No. 3549, “Polt Beraneg and Newwman, Inc., Caabridge, &
. 8s., May, 1977. .- : ~OT
— : ’ , . ™
Brown, 3 «Se, Rubenstein; R., & .Burton, R.R. Reactive learning .
- environment for cémputet assisted electronics.instruction. 'BBN ~ ~ —

Repor€ No.-3314, Bolt Beranek and Newman, Ing., Cambridge, Mass.,
October,, 1976.

1 ’ .

- -

. -Carr, B., & Goldstein, 'I.P. Overlays. A theory of modelling for
computer aided instruction. MIT AI Memo 406, Massachugetts '
- _ Institute of Iechnology, Artificial Intelligence Laboratory,
T Cambridge, Ha;s., ,February, 1977%. 3
3 - - -
Collins, A.H. Procegses in acquiring knowledge. In R.C. Anderson, R.J.
Sbiro, & W.E. Hontague (Eds. ), Schooling and the acquisition of
knowledge. Hilladale, H.J.: Lawtence Erlbaum Associates, 1977.

-

S Dahl 0.J., Dijkstra, E‘W., & Hpare, C.A.R. (Eds.); Structur
. programming. ‘aev York.fAcademic Press, 1972.. iL N
. Finch, C.R. Troubleshovting ‘instruction 1n vocational%technlcal
education via dynamic simulation. Research Report, Dept.
. Vocational Education, The Pennsylvania State University) Auggst, . .
= 1971. . ; ) * . "
. Goldsteiu, I. 3Summary of MYCROFT: A system for understanding simple
: p;q;?re ptograms.f*Arttficial Intelligeice, 1975. 6, 249-288.

.

»

P
e

Hiller, M.L., & Goldstein” I.P. Overview ofsa linguistic theory of

. design. , AT Memp 383, Massachusetts Inetitute of Technology,
Artif&cial Inaglligenee Laboratory, Cambridge, Hass., Decegbar, .
197680 %

- . = ‘s -
N » A

€ »
*  Miller, H,L.,.&.Goldscein, I.P. SPADE: A grammar based editor for
" planning and debugging programs. &I ‘Memo 386, Massachusetts
- Insfitute of Techdology, A;:ificial Intelligence Laboratory, — ) .
Caabnidge, Hass., December, 1976b. . ‘

NewelX, A. Productiop.systensi‘ﬁhﬁels of control structures. In W.G.




-+

v

—

‘Resnick, L.B.

Chase (Ed.), Visual Infornhtion Processing.

New York: Academic
_ Press, 1975. R

-

n,.H.A. Bumai problem solving. Englewood Cliffs, j P

ice-Hall, 197;.

ﬂewell, A. &
N.J.: Pr

Nilsson, N. Problkm solving methods in artificial intelligence. New -
York: McGraw-Hill, l97ls - o

Norman, D.A., Gentner, D.R., and Stevens, A.L. CgEEents on learning
- schemata and memory representation. In D. Klahr (Ed.), Cognition
and instruction. Tenth annual Carnegie Symposium on” cognition. J
Hillsdale, N.J.: Erlbaum Associates, 1976. . ‘ ] ;
Palormo; J. M. ngputer prpgrammer aptitude battery. Chicago: SRA, 1964.: N
7 .

Papert, S,A. Teaching childrn thinking. AI‘Heao 247, Hassachusetts -
——Institute of Techhology, Artificial Intetligence Laboratory,
Cambridge, Mass., 1971. ’

Pirsig; R.H. Zen and the art of motorcycle naintenance.
Bantam Books, 1974, S

New York, f

Polya, G. How to gsolve it. Garden City, N.Y.: Doubleday, 1957. .
(Originally published in 1945.) - . N

Potter, N. R., & Thomas, D.L. Evaluation of three types of technical
data for troubleshooting. Results and | project summary. Report
AFHRL~-TR~76-74(1), Air Porce Human Reqpurces Laboratory, Brooks Air
Force Base, Texas, September, 1976. :

-~

Quillian, H.,R. The teachable language comprehender: A simdlation 3
program and a theory of language. Communications of the - ‘e
Association for Conputing Hachinegy, l969 12 459476, . . iy

Task analysis in instructional design. Somsa, cases froé ’
mathematics. In"D. Klahr‘(Ed.), Cognition and instruction: Tenth
annual Carnegie xgggsi on cognition. Hillsdale, N.J.: Eribaum
Associates, 1976. - ;

et

Ruth, G. Analysis of- algoticﬁs implementations. MAC TR-130,  « .
Hassachusetts Ingtitute of Iechnology, Cashridge, Mass., May, 1974. °

- -

Schoenfeld, A‘H. Can heuristics be tayght? Unpublished report, Group,
in Science and Mathematics Education, University of California, . .
Berkeley, Calif., 1977a. c .

Schoenfeld, A.H. Presenting a ‘strategy for indefinite integration. .
Unpublished report, GrOUp in Sciencet and Mathematics Education,s; Lo |
University of California, Berkeley, Calif., '1977a. _' .

Sacerdoti, ‘Ee D.' A structure for plans and. behavior. ?echnicai Hote
103, Artificial Intelligence, Center, Stanford Research Institute,
Henlo Park, Calif., Augus;’ 1975r -

- . » . o4
—_ 4 N

] < ’ xlg‘ : i‘ . . o
. ',r . 127 .g‘ - ‘:, ; . .. oo

<




. . ’ . ¢

k4 = ."k
. %
53 . ) P
Stevens, A.L., & Collins, A.M. Th;;&],,s:ructure of a Socratic tutot. .
BBN Report No. 3518, Bolt Beramek and Neman, Inc., Cambridge,
Héws., Mareh, 1977. . . e ’
. . * .- - -
Sussman, G.J. A computational sodel of skfll acquisition. AI-TR-297/; .
’ Massaghusetts Institute of Technology, Artificial Intelligepce s
Laboyatory, Ca:.bridge, Hass., August, 1973.

. ®
X a
/

Vickeigren, W.A. How to solve probleas. Elezents of a theory of problens
\\ and problen solving. San :rancisco Freeman, 1974.
Woods, W.A. Transition network gracmars for natural Ianguage analysis.
Comrunications of the Association for Cogutini Kachinery, 1920,
-« 31, 59t-606. . ) . ..

Woods, W.A.. Wba}"s io a link: roundétions for sebéntic networks. In.

D.G. Bobrow and A. Collians (z.ds ) Representation and zmderstanding'
- Studies in cogaitive. science. New York: Acade=ic Press, 1975.

13 . I - /
L4 - = ! ’
- . el

’ - -

[
“ , ‘ 'Y . <
4 .
€ — .
C 3 . } ,
, ‘\ L)
[} . - ] . )
o LA -
. \ ) .




‘ . '/% ) ’ ’ o~ PR . * -
«\//”/éggendix A. Tutorial Debugging Fext ‘ ye
TESTING THE( 93629.&; ’ .

,After you bhave written a p:pgraa, you need to test it to make sure N
- there are ng errors, or “b » in it. .Hahy progrems are designed ) ‘ .
to be run more than oance. For exaa;le, s0Be Progr are written
' to compute payrolls and must be rum at end of pay period;
other prograzs are written:to.tabulate—ftudents” grades and are run
at the end of each grading period. ok

8 ¥ ~
t  Since the conditions.under vhich a program is run will not be .
EXACTLY the s3me each time the prograz i% run, it is i=mportant
to realize that just because a program works correctly for one
- set of conditions, you cannot assume that ir wiil work correctly
uhder all qther conditions. T ¥

For exacple, in some progtass different kiods of input cause different .

. « P2rts of the program to be executed: thus to check a prograz you need - -
to run it using all gossible types of input for which the program was
desigded. You zust test every possible pathsay :hraugh the p;ogras. N

TEST THE PROGRAH WITH ALL POSYIBLE TYPES OF IKPET FOR 33188
IT 15 DES ESIGEED. - - .

The following program demonstrates how different inpute cause differgnt
parts of ’ne pragraz to be executed.

10 X #IKNT(RKD * 1001)

. 20?&;&’?“1&5’&1&@50"55&&32&?’.&0&IGGD" e - - F
30L =0 e
40 8 = 0 ' . - C- -
50 PRINT "WHAT DO YOU THINK MY KUMBER IS7 " . J-’\/'_
" 60 INPUT G - o . e _
7Q IF G = X THEN'230 . ’ - L
80 IF G > X THEK 160 . \7 i o
90 IF.L = 1 THEK 140 . ] L
100 PRINT "TO0, LOW; GUESS ACEIN” ) 2 L ’
. 1o L-=1 T ‘ " '
1208 = 0 : /
130 GOTO 60
. 160 PRINT vzrsmmm 'GUESS AGAIN" & :
- 150 GOTO 60 ‘ i LY o
160 IF H = 1 THEN 216 T y @
170 -PRINT "TOO HIGH; GUESS AGAIR" , o= ) : -
180 H' = 1 - . .
190L =9 » ‘ : .
200 GOTO 60 ) . P P
.~ 210 PRIET "YOU'RE STILL TOO HIGH SO GUESS AGAIR" - . ‘ r]
e 220 GOTO 60 A
* zssm"ﬂmxgxsmazsﬂcx - ’ c T
. 240 E¥D <« . P R

- *

, 129 xze‘f e L ’ -




(4

‘/ B ’ . )
~ i .

z

-~ This program 'ganetatés a Tandon integer (X) f‘etweeﬁ 0 and 1000.

The user then tries to ghess the mumber (line’ 60, INPUT G). ~ If - ' '
the user guesses the number correctly (I#pe 70), then lfne 230 ' .

_ 1s executed, and the -prograa prints "RIGHT...". Otherwise, if
- the user guesses a number that 1is,too high, then line 160 is

executed. If the preceding guess was also too high (which is the c ‘

. case if H = 1), then line 210 is executed, "YOU’RE STILL TOO HIGH I “c

SO GUESS AGAIK" is printed, an® line 220 ciuses a jump back to line 60.
1f the preceding guess was not too high (if H is not 1), then Iine 170
“is exec(u'ted and "TO0 HIGH; GUESS AGAIN” is printed. AND SO ON.
R . . +

Checking the "GJESS MY RUMBER" program requires' that every possible - :
class of input be tested, i.e., an fnput (gyess) that is lower than
the guaber generated (X), another consecutive input that i{s still

er than X, an input that is higher than X, another consecutive
imput that is still nigher than X, and an input- that is equal to X.

TEST THE PROGRAX WITH THE EXTREME VALUES THAT THE INPUT

- CAK HAVE.” & ‘ .
. . : -

Initially, it i1s a2 good idea to test a program with the extrese . )
values that the fnput can have. It is ‘usually not hard to thiok .
of the extreme types of imput which your program must-hasdle,and -
this test may reveal errors in your program. In the "GUESS MY HUMBER'' ' .
pfograw, the two extreme input values (guesses) are "0" and "1000".

1f, during the testing of your prograz with different inputs, the . -
output is ever wrong, then there is something wrong in your progran. .
“You must then try to characterize what is wrong.

. - v &

- - P
- - . - - . .

( CHARACTERIZING THE ERROR ‘ <

CHARACTERIZE THE WAY THE ERROR(S) SHOWS UP IK TERMS
‘OF .THE IKPUT, AKD OUTPUT. ‘

Before you try to determine which part Gf the pragran is working ¢
iacortect;.‘y» (unless it’s immediately obvious), you should describe - . -
.vhat is wrong with the gutput. ¥For example, in the last progra=m, ’
if you input a guess of'D and the program prints “T0O _HIGB", your
description would include the fact that the output is backwards for_ .
a too-low guess. If, in additiom, the program said “T00 LOW" {n ‘-
response to aa input.of 1000, then you could characterize the erroneous )

behavior as being wromg for both too-low .and too-high guesses. i "
Describing.the “symptom" carefully is very helpful in leading you to
locate its -cause (the bug in thg program); ghe process is similar to a .
doctor asking questions about the exact location and nature of youg pain )

before s/he begins to choose the appropriate treatment.

3 -

- ! -

‘s




: /
Since the output. is the result -of followiug‘tgz}gteps of the program.
if you can characterize how the output varies from what it should be,
given a particular input, then that may indicate which part of the
progran isn’t doing what it was intended to do. ‘In oxder to

 characterize the error(s) in a program, you should test it with

‘different types of input in order to see how different kinds of input
affect the output. For example, perhaps the output is correct or
closer to.the correct answer for certain ioputs than it is for other
inputs. ' If so, then it is important to ask how the inputs that give
correct or "more correct" answers differ from the inputs that give
“less correct™ answers.. If these- two inputs require different parts
of -the program to be run, then that'could guide you to the part of th
progran that is not working as it was intended. 7

.

SOMETIMES A PROGRAM GIVES THE CORRECT OUTPUT FOR SOME INPUTS
BUT NOT FOR OTHERS. WHEN THIS HAPPENS YOU SHOULD EXAMINE THE
DIFFERENCE(S) BETWEEN THE INPUTS FOR WHICH THE PROGRAM WORKS
AND THE ONES FOR WHICH IT FAILS. \ ' C

The following program was written to give chadge t9 a customer -

when the iten being bought costs less than a dollar. The change can .
‘be in half dollars, quarters, dimes, nickels, and pennies. The prograz -
is designed to print the amount of change in cents and then give the
feqsst possible coin8 in change. ‘ -
10 PRINT "TYPE THE PRICE OF YOUR ITEM. IT SHOULD BE < $1.00"

20 IKPUT X ' > )

30 LET C = 100 - X~ L 1
40 PRINT "YOUR CHANGE FROM $1 IS " ; C 3 "GENIS”

50 LETH =0 . .

60 LET Q = 0 ’ .

70 LET D = 0 ; ) (XY

80 LET R = 0 ) J .
90 IF C< 50 THEN 120 % , ™~ :
100 8 = H+1 . .

110 C= C-50 ’ ’ o
120 IF €< 25 THEN 140 :

130 Q=g+l , { <

140 IF C<10 THEN 180 . . A ,
150 D =D+l . :

160 C = C-10 R 4 _

170 GOTIO 140 e
180 IF C < 5 THEN, 210 . ) iy .
190 H = N+l | ’ P S

200 C =C-5 ‘e 5 . C e o
210 PRINT "HERE IS YOUR CHARGE" ) .

220 PRINT H ;" HALF DOLLARS" i ’ '

230 PRIRT Q ;" QUARTERS" ™ - ] - *
240 PRINT D ;™ DIMES" - /
250 PRINT H ;* WICKELS"
260 PRINT C ;' PENNIES" . :
270 END ° ~ . -

-

it




%

-
* LS
-

4

L

The programmer might decide that & good first test for this program
would be the case in which one of each coin should be returned to the
customer (l half dollar, 1 quarter, 1 dime, 1 nickel, and | penny, for
a total of 91 cents). So price‘of the item (the input number) must be
9-ceats. T -
Input: 9 - -
Output: YOUR CHANGE FROM $1 IS 91 CENTS . .
. HERE 1S YOUR CHANGE -~ - v
1 HALF DOLLARS /// )
I QUARTERS . ) '
4 DIMES :
0 NICKELS
BIRTT v
1 PERKIES 5}%’ - v

— .

’ /

It is immediately appareat that the wrong number of dimes and nickels.
has been returned. This might lead the programmer to test the program
vith an input which should return a dime and a nickel.
Input: 85
Output: ¥YOUR CHANGE FROM SI IS.15 CENTS

HERE IS YOUR CHANGE

0 HALF DOLLARS

0 QUARTERS, L ’

1 DIMES ~. .
1 NICKELS . ‘ ~
0 PENNIES

<

The output is correct, so the problem certainly isn’t with the dimes
and nickels alone. Before the program is rum again. the first test,
the one with the incorrect output, should be re~examined. Evidence
about the nature of the e:rorﬂgzght have been overlotked because of
the obviqpsfy wrong number of nickels and dimes in the output. The
programmer might add.up the coins to see how much change in cents was
actually retyptned ig tbe first test and find the total to be 116 cents
.rather than 91 cends. The difference between these two sums ig 25 ceats,
and this might suggest to the programmer that the error 4s related to
sthe extra 25 cents. At this point the program sliould be examined for
an error related to tne “25'cents” calculations. - Hhile'readéﬁk through
that part of the program, the programmer should notice that S8other 1ime
is needad between 130 and 140 to subtract 25 frofs the total cents left
at that,point, or C. The absence of that line caused an extra,25 cents
in the output (since when a quarter was given in change, 25 cents was
not subtracted from the total cents still owed tHe customer). After
this change, the testing of the pregram should be continued.

L BTN

e R

AFTER A CHANGE, RETEST THE PROSRAM USING ALL POSSIALE
'TYPES OF INPUT FOR WHICE THE PROGRAM WAS DESIGNED.

P

A
s - p—
=

-~




N ; é‘ r?‘f’ -
. ’?;( < [y ""m
. e . v
G’ . —— :i -
. 5 - —
' i . &
[} . —
i:, —vé‘ . . -
/ . After you'vé characterized the wrong output, “located the _section .
j/ L of code that you believe is responsible for the erroneous output, . , <.
j}“’ 1 and changed that code to correct the error, the program must be \

tested once again for all possible types of input. You must retest

: your ,program thoroughly for several reasons; for example, you may -

“ have corrected the program so that it works for only one or two .
addigional types ¢of input; or the program may not work:for some . .
inputs that were handled correctly before your change, i.e., your - ‘
change interacts with a portion of the program that was executing /(;j
correctiy before the change and now makes ‘it give erroneous output. /

. The program must be retested with all types of input, even thosa

that were handled correctly before the change.

The following program, which demonstrages -the importance of retesting )
after a change, asks the user to type ik two numbers and tells him/her - -
how many numbers liz between the two numbers (inclusive). For example,

. . there are 3 numbers between 5 &and 7, i.e., 5, 6, and 7. .

10 PRINT "TYPE TWQ RUMBERS, &4ND I WILL TELL YOU HOW MANY'" ' .. .
. 20 PRINT "NUMBERS ARE BETWEEN YOUR TWO NUMBERS (INCLUSIVE)." - )
' 30 INPUT X,Y ’ . ' :
40 IF X < Y THEN 80 : . \
50 H = X ' -
60 L =Y. o < , » "
-70 GOTO 110 ) I . -
80 H = Y . . ‘ -
J90L =X ‘ 7 B )
100 P ='L
110 N = |
120P =L + 1
130N =N+ 1 .
140 IF P < H THEN 120
150 PRINT “THERE ARE ";%N; " NUMBERS BETWEEN "; L; "AND "3 H pd L
199 END - ’ r
- 4 . - .

6’- T & - - '

’
[3 i

- *

. The user types two numbers, which are assfgned to_ the variables .ot

- X and Y. The variables H and L are used to hold the high and

. ’ low numbers, respectively. So, if X iwmhighedr than ¥, its - . ’ )
value is assigned to H and the value of Y is asgigned to Lj; 4f : -
Y is higher than X, the Hand L assiguments are made in the -
opposite directioh. The variable P'is usged to count from the low
number up to the high number, and N is used to keep track'of how

. - many numbers are éncéuntéred élong the way. Thus, if the user

. . types 5 and 6 as the X and Y input, L becomes 5, H becomes 6, P .

. counts- from 5 to 6, and K ends up with 2. ) . - ‘ e

Ed - =

.‘l

. g When the program is:.run, it gfves the correct output only when the: -
“ . two npttbers ape’ adjacent to each other, e.g., "5 and "$§”, or . . T
| 6" ghd "5". The output 1s THERE ARE 2 NUMBERS BETWEEN 5.aWD 6, />' .
_aa,__rl____,_,_ﬁpA;%/zggr of nonvadjac numbers causes an error message to be printed, v 1

ch says that the piggr haight be in an infinite loop. The « - -
) © .., Hrogrammer charatterizés i::iintdfézé oceurring when any two - ’
n-ad jacent numbers are given as input. ‘ R
ﬁ":'..: . 14 . - * . ) - »

. { e - -1:323 ) .
) : e 126 ; N . -

- . - . R P »

la




» .~ . »

<>

In the ptogram-above, where only adjacent numbers X ‘and Y (bath.x <Y
and X > Y) give the correct output, the programmer might go through

the following reasoning process while looking for the error:- ) ' .
. -AHA, P doesn”t get set to L when X > Y, so line 70 ,8hiould bramch to ’
lide 100. °

(The programmer changes line 70 to GOTO 100, and runs the program

for X < Y and X > Y. S/He gets the same results as before, f.e.,

the program gives the correct output for adjacent pairs of numbets, )

otherwise it seems the program is in an i tnite loop.) v .

~Well, same errpr, perhaps line 100 is _sdperfluous, since line 120 o
asgigns a value to P, so~I1°11 delete line 100, undo the pteviou& change g

so that line 70 ifs GOTO 110, and run the program again. s
(The result of testing the program is the same as before: it works for . —
adjacent nunber pairs, but every other pait ives iafinite loop mesgsage.)
~AHA, line 120 should be P = P_+ 1, otherwise P ,18 always reset to-

equal L, the lowest number, plus 1, and P can,dévez reach H unless

H is L+1! 1°11 change line 120 and run the. program again. ,

(The program gives the error message "Line 120 VARIABLE WITHOUT A KNOWN

VALUE--P" for both X < Y andsX > Y.) . ¢ .
-Hmm. That’s the first time 1°ve gotten that message. Why does P X
suddenly not have a value? I know! P was L+l, ‘and I chgnged it to *

P=P+l; so the Iine thai I deleted, which set P equal to L, is necessary.
1°11 put line 100, P ='L, back inte the program and run it.
(§/He tries several pairb of input, e.g., 5 and 6, 5 and 8, 4 and 9;
and they all vork. U ;ortunately, cases in which X > X aren’t tested.) .
~Su¢cess! It finally works. . - -
The program was fixed /for one type of inpug{ that isy for cases in . .
which X 18 less than ¥; but two other types of input were not tésted, )
X greater than Y and X equal to Y. If ex&mples of these two types ©m
of input had been tested, the errgr message "Line 120 VARIABLE HITHOU;
A KNOWN VALUE--P" would have told the programper that P still wasn 't s h//'
being assigned. _ Further examination of the program would have shown
* her/him that line 70 should, indeed, branch to line 100, so that P gets .
an initial value when X > Y and X = Y. Thus all types of input for i
which a ptogram is designed tust be retested aftet a change is made.

- -
-

Sometimes you make a change to the progtam, and the output is still g
wrong. You have to make fhe choice betwéen leaving the change in the
ptogtaa or returning the progtam to its state before the change. ’ .
Take the program, for example, which tells the user how many numbers C
dre betwyeen two 1nput values. ;

1




“
* LY ind . . . »
.

3 ]

10 PRINT "TYPE TWO NUMBERS, AND I WILL TELL YOU HOW MANY" /
.. 20 PRINT "NUMBERS ARE BETWEEN YOUR IWO NUMBERS (INCLUSIVE)." =
e 30 INPUT X,Y .

40 IF X < Y THEN-80 . o A

50 H=X . ’ . : .

60 L =Y | - ' c . '

70 GOTO 110 - ' B U ‘

B0 H = ¥ . -

90 L = X P . : ‘ . : 5

. 100 P =L

. . 110 N = | .

- 120 Ps= P 4 | . , S
ol ) 130N =N # 1 ' ’ o
140 IF P < H THEN 120 ¥ . =
-150 PRINT "PHERE ARE "; N; " NUMBERS BETWEEN “; L; " AND "s H
199 END ’ :

I

~

. Suppose that a beginning programmer is told that this program has
an error ang is asked to find and correct it. S/he might not—have
-these guidelines for finding an errof. Since the program is short,
‘'s/he might decide to examine the code before running the program. v
- After doing this, the person might say "This équals business in lines
50 through 90 is confusing. Seems to me they’re double assigning
things. H and L are being given two values... I think maybe 50 4nd 60
can be deleted. 1711 try {t." ‘ .
After deleting lines 50 and 60, the program is rum. For inputs .
where X {the first input) is less than Y (the second input}, the
correct answer is giveh, and for all other inputs, the error message
"Line 120 VARIABLE WITHOUT A KNOWN VALUE--P" is printed.

Since thé program has not been corrected by the chanfe, and even more ~
errors may have been igtroduced into the pro s the change should -
be urdone .and lines 50 and 60 restored to the program.

The reason given for deleting lines 50 and 60, i.e., that H and L
are each being givea two value8, is true of cpurse, but the person did
not examine the program carefuily enough, because s/he did not-notice .
that the values given to H and L in lines 50 and 60. are used in
LA one pathway through the program; and the values given in lines 80
K and 90 are used in a differeng pathway through the program. Going
. through the step-by-step execution of a program (exactly as the-
; computer would) 18 a very valuable way to find errors. However, - v
,~ " after a superficial examination of a program, deleting a lime :
JAs probably a bad Jdea. The person writing a progrdm usually has a ’ |
reagon for putting in each line, and before: you delete a line, youw . o
; should understand the intended purpose of that line. . ° L '
- ' The programmer should have run this, program before examining the code. ’ .
v The error message would have given her/him the information that P . :
-was not being defined when either X > Y or X = Y. This information PR
points out which pathway, through the program ¢ontains the error.

»

. - v

h Y

P " '135 . * -,
Q i.. 1 y

. EM; e . v . 126




A =~
« B

4 LI

THUS, EVEN IF A" PROGRAM 1S SHORT AND EASY TO TRACE BY mn" T g
YOU SHOULD FIRST RUN THE PROGRAM. (ERROR MESSAGES: AS WELL™

AS A& CHARACTERIZATION OF THE ERROR IN TERMS OF INPUT AND ‘:,
OUTPUT, CAN BE VERY HELPFUL IN FINDING AN ERBOR. ) %

THER :
. IF YOU MAKE A CHANGE TO A PROGRAMT AND IT STILL GIVES THE o .
SAME ERROREQUS OUTEYT,’ RESTORE THE PROGRAM TO ITS STATE
BEFORE THE CHAHCS. YOU HAVEN'T FOUND THE -ERROR(S) IN THE t
PROGRAM, AND YOU' MAY HAVE IRTRODUCED A NEW ERROR, .

- -
Rl 7 =~

*

[

Sometimes, when,you make a change to correct a prograa, the output ) ¢
‘will still be wrong after the change, but you should leave the change
in the program. (Obviously, if you see any typogzaphical errors that
you made while typing in the program, you should correct those.)

IF YOU MAKE A CHANGE TO A PROGRAM, ARD THE OUTPUT IS STILL
WRORG: IF THE CHANGE. CORRECTS ONE PART OF THE PROGRAH (e.g.,
one part of the output), THEN LEAVE THE CHANGE IN THE PROGRAH. :

It may be the case that there is.more shan one error in tHe program, )
and you have found one but not all of the errots. Take the following ) &
prograa as an example. “
10 PRIHT "THIS PROGRAM TALLIES THE VOIES OF 5 PEOPLE.*' 7 -
_ 20 PRIKT “TO VOTE YES, TYPE 1; TO VOTE NO, TYPE 0." ‘ .’
’ 30y =0 _ T =
' 40 N =0 ) ) < s ’ ‘
S0 FOR I = |1 TO 5
. 60 PRINT "VOTE KUMBER "3l
70 IKPUT ¢ :
. 80 IF V = | THEN 100 -
‘ 90 R = N # | ) S e ' "
100Y =¢ + 1 - :
.110 NEXT I : *
120 IF Y <> N THEN 150 ’ . :
130 PRIKT "TIE WOTE" . . -9
140 Got10 190, ~ | , :
150 IF Y < N THEN 180 —_
160 PRINT "THE KO VOTE WINS" ’ . ,
170 .GOoTO 190 . ‘ .-
> 180 PRINT “THE YES VOTIE WINS" g o, -
190 END . .- ~

Y

This program taIlies the YBS and HO votes of 5 people, then . . e
prints whether the 'YES's or "NO's win. The user inputs the 5 .
votes. He types I for a'YES vote and 0 for a Ko vote;f' '

— g ' ~

X'\, -

© 36 “




-

.
. - . - N

The program is run. When all the votes are eitMer YES or N§. ¢ e'p//f
"TIE, VOTE" is-printeéd. When the number of YES votes input is greater . o
than the.number of NO votes, -"THE NO VOTE: WINS” 18 printed. When the - -
- number. of NO vd{es", is"greater than the number of YES votes, "THE NO
VOTE WINS" is printed. 'This program does the wrong thing for three-
of tRe four different kinds of input!
-4 * -
Since the program gives the correct output slen the number of NO votes -
exceeds the number of YES votes. i.e., ."THE NO VOTE HWINS" (except in:
. the extreme, case where all the votes are NO); the programmer might
,check to see why line 180, "THE YES VOTE WINS", is not printed when )
it should b#, & S/He looks at-tine 180 and the line, itself, looks all. .
right. S/He looks through the program to find the line that goes to

line » which is line 150. ' S/He sees an errory In line 150 #f Y, Y
whick’tallies the YES votes, is LESS THAN N, which tallies the NO votes, & <.
then line 180 is éxecuted, which'prints “THE YES VOTE WINS". Line 150 r

shéuld'say "if Y is GREATER THAN N then execute line 180". This chenge
is made to the program, and it is runm. :

‘After the-correctfon, when the YES vote is greater than the KO wvote, |
"THE YES VOTE WINS" is printed; but when the NO vote 1is greater than ,
the YES vote, “THE YES VOTE WINS" £5 printed. It seems like,the same .
wrong output as before the change, only switched around! (As before, .

when all 5 voteg are ei?:t:et YES or NO, a /"TIE VOTE" is printqc_!.)‘. -

The programmer must decide whether to leave the changé or not, i.e., -
150 IF Yr>\N THEN 180; IBO‘PRINT "THE YES VOTE WINS". &Since ¥ tallies
'tt}e YES votes, and N counts the NO votes, if Y > N, then "THE YES VOTE
+ WINS" SHOULD be printed. The programmer decides to leave the change ~

K3

and look for errors in other partgof- the program. e

In line 150 (which now say® ™IF Y > R.ep”), tf N i8 greater than Y, F °

‘then line 160 is executed, which prints "THE NO VOTE WINS", sp that ' .
part of the prograim is correct. ) “ : ..

' Thisfpzogg:am illustrates helmgprtance of testing thie- progras -wiM .
the extreme values that fhe input can have, in this case, 5 YES votes . .

or 3 NO ®otes. Whenever the, ingut is @i1,YES votes or all HO votes, -~ - c s "
"TIE VOTB" is printed (line 130). The programmer looks for the line:. = = =
that must pretede, the execution of line 130. If line 130 was executed,’

then Y agd N nust have been equal ip line 120. _With an.odd number o%'
votes, this isn’t possible. Because Y and N are both initialized to-
(1ines ¢0. and 40), ,something must be wrfigg with the counting procedure.
The programmer examines’'the FOR loog, Jhére the votes are counted. S/He . __—
“notices that - {¥" the vote is NO, both=%~nd Y ate incremented! So, therk " o
should be a lipe 95 which says “GOTO 110". The change is made. The' -

different possible types of: itput are retested. Success.

- ~
h Ty . ' = -
¥ .
L ' - ~




IT IS DESIGNED® s ",

- ¥

- TEST THE PROGRAM QITH THE EKTREHE -VALUES THAT THE
INPUT CAN HAVE. 3 .

- . .
CHARACTERIZING THE ERROR . ég,, oo .
CHARACTERIZE THE WAY THE ERROR(S) SHOWS UP IN TEEﬁS OF THE
INPUT ARD OUTPUT. .
EVEN IF A PROGRAM IS SHORT AND EASY TO TRACE BY HAND, YOU
SHOULD FIRST RUN THE PROGRAM. (ERROR MESSAGES, AS WELL AS "
A CHARACTERIZATION OF THE ERROR IN TERMS OF INPUT- AND OUTPUT,

CAN BE VERY HELPFUL IN FINDING AN ERROR. ) ) ) )
SOMETIMES A PROGRAM GIVES THE CORRECT OUTP B SOME INPUTS - .
BUT NOT FOR QTHERS. WHEN THIS HAPPENS YOU D EXAMINE THE

DIFFERENCE(S) BETWEER THE INPUTS- FOR WHICH THEJPROGRAM WORKS
AND .THE OMES FOR WHICH IT FAILS. ., ;
AFTER A CHANGE, RETEST THE PROGRAM. USING -ALL PO%?IBLE TYPES
%?F INPUT FOR WHICH THE PROGRAM WAS DESIGNED.

IF YOU MAKE A CHANGE To A PROGRAM, AND IT STILL GIVES THE
SAME ERRONEOUS-OUTPUT, RESTORE THE PROGRAM TO ITS STATZE
BEFORE THE CHANGE. YOU HAVEN-T. FOUND THE ERROR(S) IN THE
PROGRAM, AND YOU MAY-HAVE INTRODUCED A NEW ERROR. .

IF YOU MAKE A CHANGE TO A PROGRAH AND THE OUTPUT 1§ STILL .

WRONG:- IF THE CHANGE CORRECTS ONE PART OF THE PROGRAM {e.g.,
one part of the output), THEN LEAVE THE CHANQE IN THE PROGRAM.

.ot v .
\ 0 129138 e« 7




- - - 'H

. Appendix B.‘ Study Quiz to Accompany Tutorial Text - ) .
OPEN BOOK QUIZ - )
~ ;’y :
NAME: = : ’ .
. ) ‘ - <. 7 - \' ’,
1) After writing a program why should you test it with all ‘the ) )
different types of input that it was designed to handle? . L D
‘2) Testing a program gives the followijz\}ésultsz :
Input: O (number of days) T '
Expected Outpqu 0 dollars and 0 cent .
Output: O dollars and O cents" T .
Input: 1 (oumber of, days)
Expected Output: 0 dollars and | ceat .
Output: O dollars.and 2 centg/ ]
H <
Input: 3 (number of days) .
Expected Output: O dollars and 7 cents T :
Output: O dollars and 14 cents : -
3 =~
Input: 10 (number of davs)
Expected Output: 10 dollars and 23 cents )
Output: 20 dollars and 46 cents i -
Characterize the error in this prog;am. . . -

-

s

- 7
T
-

3) If a program gives the correct output for some inpugs but not
for otliers, you should (a, b, or ¢) - o .
(a) Scratch it and start over. i B "
"(b) Hope that a user will only use inputs -for which the program
*  glves the correct output. . Lo -
(c) Examine the difference(s) between the inputs for which.the program
works and the pnes for which it fails. . .

. . -

Why 7 -




LRV .

4) After making a_chanje to a -program why should you RETEST ‘the
\,progrgm with-all types‘of input for which it was designed?

- ‘ .
—_

- <

- 5 — - . - .

5) If you make a changé’to a program in order to correct it, and it 7
still gives the SAME erromeous output’, you should (a or b)

) Leave thé change in the program. ’ .

(b) Bestore the program to its state befo;e the change.

- - _ a / 4 - ’ v
- L. ‘ -
Why ? - - oo -
. -~ N -~
-
. ‘ - . -
- -
i ! ] : Coe- -
’
1 4 } L3
e - - >
- - ¢ - .
- #
- . . ® ’ a .

", - . - . ’ N
6) If you-are told that a program has an error in"it, and you are
asked to find and correct that error, what is the first thing you
. should do-after reading thqq‘kogram description? (a, b; or ¢) -
\(a) Go'-through the step-by-step execution of the program by hand ‘
. (as the computer- would) ir order-to find'the error. °
(b) Run the program with ‘the differegt types of imput for which it
was designed in order to charact®rize the error. .
*(c) Read over the program, ‘delete any suspicious looking lines, an
run the program. ' ;

.
- P : -
’% * ' - 4

—_— - . « - N
= - ..

- } . . «

i R
5 .
, . !
. DA
' L3 . . - N
“j5 i
» —_— # L B ;
- 'q'f * *
: , ;“’ L] '
. . o -
by +
' . 4,} v .
. . ., . . ey
. N . P
* -

1 ;*J - - 131 » . *




-
o
e

Intrdduction to the Tutorial Text e

. ( endix C:
N
. y

-

IﬂIRODUCIIOp - ’ - /
. & P “ .
This is am attempt tq give you information that will help you to ) .
find the errors in a‘computer program more easily. This ianformation -
. will be presented in the form of rules which apply to certain -
situations, rules-of-thumb that have been formulated from the
experience of programmers who have spent many hours in searching
for errors, or Mbugs”, in computer programs. -
. . b
Once you know there is an error 'in your program, the goal is to find e
. it with a mini=el amount of time and effort. Since it is very )
hard to formalize ALL the knowledge about finding bugs that an
‘experienced programmer would have, the tfules presented here will be
general rules that provide the best way to-gsrabout finding the error(s)
in a computer program most of the time. They provide a general framevork,
and as you gain experience, you will be able 'to add exceptions to théss
rules. If you follow these rules% the process of finding the error T
seen to take longer than tt could; however, it is much more likely that
you will find the error or ALL of the errors im the program, and that
can save quite a bit of time in the long run. As you gain experience
the process of finding the error may gc faster. .
These rules lead to the desired result (which is finding the error with
3 minimal armount of time and effort).most of the time. Everyone
employs this type of rule when trying to solve problems. When there -
is more than one possible course of action to reach a goal, a person
zay'weigh the positive and negative effects of each action under :
consideration before s/he makes a decision. For example, suppose you -
. - are in a strange city, you need to get from where you are to a hotel in
anothgr part 'of the city, and a map of the city is all the information
you have to help you plan your route. In that situation (going _from
" one place to another in a strange city), a general rule~of-thumb you
might have is to stay on main streets. - If you have this rule, it is -
because of knowledge you have gained (e.g., from your -%wn expetience,
or from talking to friends, etc.), for example this knowledge could be: .

(1) -
(2)
(3)

street signs are more visible on main streets
if you get lost, it is easier to ask direct{ons ogm a main street
main streets are safer, if that‘section of town is unknown to you

(4) a backstreet route may make crossing intersections more difficult.

Even if your general rule is to stay on main streets in a strange city,

you may choose not to follow the rule in certain instances. Perhaps ",
. the most important consideration is getting to place X as quickly as
possible, and you choose a backstreet route because it is shorter and
will allow you to miss the rush hour traffic on the main-gtreets. The
circumstances ynder which you make a decision will vary (e.g., finding
the "best” route, where "best” means one that fulfills certain -
requirements such as “requires least amount of time"), and general rules
will not ailways give the best solution to a particular problea. If ypou
are 2 beginning programmer who is trying to find the errors inm your
program, since you have no programaing experience upon which to
foreulate general rules for finding the error, being given these general

. . lfj‘*’*’:‘ - T =




d

Aruitoxt provided by Eic: =

-
. . {
. A .
rules should'save you both time¥ and effort. After you have more
.. progtming experience, you will be able to"add exceptions to these |,
¢ rules. ’ .
3 » - . . s ) ‘e
L4 - = -~
” & e ‘sj
f N 1\, :
- 9:‘
€ < >
- -}
. o " P g
L
. - . ” + 1
- . 1 -
. A
—_— ; _ 7
:“\-\_/ '
~ ] .
- - F L d
¥ * *
1 : . i
- 13
* 14 L3
i " 1]
I
"
. Ll
¥
-~ ‘f
£ L P - Y t

S o w142 >




Appendix D. Test exercise CHANGER -

& tv '
. Inis progras was.written to gi've change to,s customer when the 4tea
. . being bought -costs less than a dollar. The change can be in half
dollars, quarters, dimes, nickels, and pennies. The program should .
pridt both the asovgtt of change in cents and then the FEWEST possible
coins in change. .

5/31/77 11:12:06 , .

_ 19
16 PRINT "TYPE THE PRICE OF YOUR ITEH. . 1T SBOULD BE < §1* _ N .
20 PRIKT " (THE PRICE SBOULD BE IR CENTS, E.G., 25, 49.) " . .
30 INFUT X . o ;

40 LET C = 100 - %
. - 50 PRINT "7OUR CBANGE FROM S1 IS " ; C ; " CERIS.™

) 60 DATA 50, 'HALF-DOLLARS", 25, "QUARTERS”, 10, "szfs"
70 DATA 5, “KICKELS", 1, "PENHIES" - - o,
80 PRINT "HERE IS YOUR CHANGE"
90 8 = 0 .
‘100 READ & ° ~
. 110 RE&D D$ ' : .
o, 120 IF 4 = | TEEK 180
130 IF C < A THEK 160 " .
140 N = K + ) )
150 C =C -4 ’
160 PRINT K; ™ ";D$
170 GOTO 99 ’ ' .
. 180 PRIKT C; " "; D$ : . . .
’ 199 END

»y

"o

W

8

Q .

« ' ' ) .I 34 | -




- L4

. Appendix E. Test Exercise DRILL ! - , -
* - ¢
' - - \ . TASK DRILL' - .
We want you to write & BASIC‘pr&éraa that presents simple 7 -

arithmetic problems -- your own cémputer-assisted instruction-progrim: The

L4 v I

required program will be longér and more cotplex than those ycu have
previously completed fn BIP, but you probably worked with all the BASIC \
statezents you will need. You will have at most /L and 1/2 hours to work on - -

the task during a single sitting at the terminal. Do -your best to coeplete
@ progran chat satisfies the specifications given below (use the bEHQ to
see a fancy nodel program in operaticc), but you will be paid even if you *
can’t do s0 in the allotted time. (Given thextiae constraint, one possible )
approach is to design your prograa and then isﬁleaent it in successive
stages, adding more advanced features it each stage; however, yo; are free ~
to tackle the problca-in any manger ;ou prefer.)

After | and 1/2 hocrs (or sooner, if you are confident your program
worked correctly), we will examine your program and try it out. Tt your’
progra= isn’t satisfactory, you 9%11 have at most another 1/2 hour to fix

e,

P Lo

¥
¥

begin work, sigron to BIP and‘type the coamand TASK DRILL. BIP
%
will pot print the text of the proble=m as it does normally: icskead refer :

to the specifications given below ;n these instructions. During your wvork
you can use any BIP co==ands except the following: MODEL, MORE, REP, | DEHO ‘.
IR&CE. Use RUN to-gry out your program as many times as you like. Since '
you can’t ugse MORE, you will have to be the judge of whether your program

satisfies the specifica:ions before you are ready to have us look at it.

You may use the BIP =anual. Run the DEHO as often®as you Iike, but do not

- - - - . * *
.

135 =154€i ) e




™

.
. 3 <
N . . s
. . i

ask for the HDDEL;‘ig you use the HDﬁEL command, we cannot pay you for your ~

work. REP does' not work for this task, but FLOW does. There 18 paper for
-
. you to do any scratch vork you want to: pleage nn:ber any . sbeets yoﬁ use

and turn th at the end of the sgssion. Since the program you will
wvrite will be too lo;g,to LIST on the terainal screen At one time, we bav;
set-up the teletypes in the godé to provide harchpy of your program (you
’ pay use :gé LIST cossand, but the output will go ;ff the top of the’ '

n ~ screen-—- uée.tbe :HOLD' key on the terminal to stop-anq-sta}i the output).
1o obtain ha%dcopy,‘SAVé your progras in BIP as a ftle and .then, at the é{‘
teletype, type (as requested) your studeat number and nase‘og the file §ou

‘

SAVE'd. You may list your progfan on the teletype as .many times as you

like, ‘and write ?E the liatipgs,'but we want you to turam in fhe listings at

L the end of the session. &

.




N\

Progra=m 8pecificqiions/f;;_TASK DRILL:

- -

1) “The user selects whether he wants.to do addirion or
gubtraction problems. - -

2) The user selects whether he wants problems that

involve l-digit integers (1-9) or 2-digit integers (10-99,

oot 1-99). The integers used in each problem are randomly
. generated. -

. vr
- - < -
-

) e uqér specifies how many problems he will work,
with pmininum of .1 and a maximum of 10 problems. - -

4) Subtraction problems must always have an answer
that is equal to or greater than 0 (no negative answers).

5) The ansver to each problem is checked and
appropriate feedback is printed. . Feedback on incorrect
answers includes the correct ansver. ol

) When the user finishes.the number of problems he

. 8specified, the progran prints his score as number and
percent correct. r

7) Assume that the user of the program is naive and
may type imvalid responses to any questiom asked by the
program. The program should not "blow up" in these cases.
In general, it should also provide cleag questions and

~ Priot~output suirabié for naive users. ¥y to write a
program you would want to show off to- another programmer.
It does not havée te have all the fancy features of the DEMO
program, but should satisfy the requiréments listed here.

[

g

Oy

Y= N

(@p]

P L
A




Appendix F. Test Exercise ARITH-CALC

PROGRAM ARITH-CALC

’

/ : . . -
/This'program is supposed to act as a calculator for simple

arithmetic expressions (e.g., 9%8, 43/5+l1, 10~2#777) which have no
parentheses ;o organize then. It is intended to perfors the operations, ite .
an expression in a left to right order, for example, 10+2%6 first adds 10
and 2 to geg '12 and then multiplies 12 by 6 to get 72. Hote that this.is
different fronm ch; way BASIC evalua:es such expreséions (BIP. manual II.12).
The program is intended to handle only "vell-forued" input from the user

and is expected to behave unpredictably if the {input contains bad 4
characters., The follouing are exasples of expressions for vhich the

program is and is not _expected to work.

[
SHOULD - WORK FOR ROT EXPECTED 10 WORK FOR . ’
4%5 4 +5 (no spaces allowed)"
334/667°23+8%3 4+(5%3) (no parentheses)
8/0 (gives error message) 4.5+13 * (no decimals)
. 4A7413 (illegal charscter)
— - .
i The program is complex. The main difficulty is that_-the expreséion
input by the user is a string, and strings in BASIC (and parts of scrings) !
cannot be multiplied, added, etc. The string aust therefore be analyzed to.
£ind the strings of digits it contains (ice., the numbers in the - *

expression) and cgen these strings of digits must be "translated”. {nto

- —_ - =

numeric values that ‘can be manipulated with ariihgetic opers&ions. Part of
this work is done by a subroutine-in the program.’ BIP didn"t give you any ‘
work with subroutines (BIP Manual II.22), and we dofi”t expect you to et

understafid the one in this ptogran.’ The way in which it is used {8 -

explsfned by the REM statenents in the program. The error(s) in this

Y - F
- ’ * F

4z o




. . . ' .
’ *

program is(are) not in the subroutine or in the first lines of the program

A ] "

which set up an array of values used by the Subrouting. Tbe error(s) "%

.

is(are) in the part of the program delimited by the REM statements N ) ..

containing stars (asterisks). The program can be fixed with only minor

modifications (extensive re—writing is unnecessary). .

~-Tor get the program into your program space, say GET ARITB-CALC

/'after you signon to BIP. You may RUN, LIST, and TRACE the program as you

: % . --
please, but do not use FLOW. Make any changes.you wish; if;jgi any point,

* o~

you want to get the original program back, then just say GET ARITH-CALC

-

again. e - J

-
5

X%




ﬁAME:

B[P KO.%

(1)

(2)

(3)

etc.?

.

s

)

[y

QUESTIORNAIRE

-

Do you feel like the material you read during the first session \

vas useful to you in the subsequent tasks? (Circle the appropriate
number.)

»

I's

Not Useful " Extremely
At All Ugeful ~
1 2 3 4 5

-

As you were testing and debugging programs duting the gessions,
did you follow the guidelines presented in the material?
(Circle the appropriate number.)

Rever

'

Alwvays

1 4

Did you find it difficult to remember the guidelined?
(Yes or No)

-

.

If 8o, did you refer back to’'the lesson?

——
-

‘ /
Was any part of the lesson difficult to understand, or unclear,

-

1f 8o, which

part(s)?




(4) Do you have any suggestions (criticisms), in general, regarding ’ '
the manner of presentagion of the guidelines? .

.
¥ -
- . ! /’ . ‘ - ) ’. 3 . . 3
’ ’ _ ©.
* 7
k4 a .
€
) ('5) Would it have been bétter if the guidélines had been given *
ST to you before you finished the BIP course? Please explain )
your answer. . . : ‘ S
- k) v hd ¥
> e i * - LY
, . = - ) . T
. (&) ;Do you th it would be useful to Have BIP introduce this .
- ‘. . material part of the course? - % T , .. ’
(7’would you like to make any further comments on the three . o ’
sessions yon just completed or on the BIP course itself? : -
N ~ . ‘ - E
. . .
g’r 2 h -
. |
s
=
t ~ -
» 7/
o~
4
: Y ‘ Pt g L4




