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ABSTRACT

This article *vides a tutorial introduction to
Artificial Intelligence (AI) research for those involved in
Computer Assisted Instruction (CAI). The general theme
espoused is that such of the current work in AI,
particularly in the areas of natural language understanding
systems, rule induction, programming languages, and socratic
systems, has important applications to CAI. It is hoped that
this tutorial will stimulate or catalyze sore intensive
interaction between AI and CAI.
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Artificial Intelligence (AI) means different things to
different people. To the public, it is typically associated
with chess-playing programs and building robots. Indeed to
certain AI researchers, AI is the construction of game-
playing programs or robotics. To others, AI is principally
concerned with "studying the stucture of, information and the
structure of problem solving processes independently of its
realization in animals" (McCarthy, 1974, p. 317). For yet
another group of researchers, AI is really the study of
human Problem solving, concept 'learrsing, and language
comprehension, and is a branch of theoretical psychology.

In fact, AI is all of these things. it presently
encompasses many diverse areas of research which include the
following major topics:

1. Problem Solving
a. Game Playing
b. Theorem Proving
c. Heuristic Search
d. Inference

2. Perception
a. Pattern Recognition
b. Scene Analysis/Description
c. Context-based Vision

3. Natural Language Understanding
a. Language Translation
b. Question Answeiing
c. Semantics
d. Speech Understanding'

4. Programming Languages
a. Program Verification and Generation
b. AX Languages
c. Study of Programming Errors

S. Robotics
a. Modelling and Planning
b. Hand-Eye Co-ordination

6. Learning & Adaptive Systems
a. Artificial Evolution E Brain Theory
b. Concept Learning
c. Socratic Systems

within each of these areas, certain topics are more in
current focus than others.' For example, within the area of
Natural Language Understanding, relatively little attention
is presently devoted to language translation, however,

1. Anyone who is familiar with AT research will also be
aware that there is plenty of overlap and interdependence
between the various subareas in the list, as well as some
current research which doesn't really fit into any one of
these categories.
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semantics and speech understanding are in vogue. Furthermore
certain areas are more in the spotlight than others, e.g.,
natural language is at present receiving considerable
attention while robotics is not.

While the list above imparts some idea of the range of
AI research, it does not convey the different perspectives
which can characterize research within almost any one of
these areas. Newell (1974) has discussed three different
conceptual orientations to AI: A'

1) AI as the.exploration of intellectual functions.
The main question of this orientation is "What
mechanisms can accomplish what intelligent functions?"
(Whether this has anything to do with human mechanisms
is irrelevant.) In this perspective would be included
research on pattern recognition, theorem proving,
problem solving, game-playing,etc.
2) AI as the science of weak methods. In this
perspective, AI is a field devoted to th, discovery
and collection of a set of weak methods such as
generate and rest, heuristic search, hill climbing,
hypothesize and match and others.
3) AI as theoretical psychology. AI serves as
theoretical psychology if one adopts the view of human
cognition as involving the processing of information
represented' in terms of discrete symbols and
elementary operators/rules. Furthermore, in this
perspective, the question of whether the program works
in the same way humans do is of consequence.

It is possible to conduct research in any of the areas
outlined above and within any of these 3 perspectives. Thus,
depending upon one's orientation, AI could be properly
considered a branch of computer science, psychology,
mathematics, or even philosophy.2

In this paper the focus is on the educational
applications of Al research, particularly the specific areas
of research which have implications for computer assisted
instruction (CAI). while AI and CAI are blood-brothers in
the sense that they share a common computer methodology and
a certain subset of common problems, there has tended to be
little formal or informal interaction between the majority
of professionals in both domains. Undoubtedly there are many
reasons why this is so, however, I suspect one of the most
major is that in essence.AI is a fundamentally theoretical

2. In fact, recognition of the interdisciplinary nature of
much AI research has led to the recent formation of a new
field, Cognitive Science (and a journal of this name) Which\
spans psychology, computer science, linguistics, philosophy, 4

mathematics, and education.
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endeavor and CAI is a practically oriented activity. Thus,
things which are emphasized in doing AI work (e.g.,
generality, elegance, parsimony, etc.) are not valued as
highly as certain pragmatic considerations in CA/ (e.g.,
efficiency, costs, simplicity).3

As a first step in encouraging formal interaction
between AI and CAI, this article discusses some current AI
research and attempts to point out its relevance to CAI
activity. The following sections will discuss research in
natural language understanding, rule induction, programming
languages and socratic systems. The last section outlines
some of the ways in which AI research could be introduced
into present CAI efforts.

I. Natural Language Understanding

It seems appropriate to begin with this area since it
has a very evident and immediate application to CAI. Work on
natural language (NL) understanding systems (also called
computational linguistics) i.e., programs which can
interpret stories, analogies, jokes, answer questions, and
produce paraphrases, probably represent the major thrust of
current AI research. Furthermore, I think it is fair to say
that the work on NI, systems constitutes the second major
generation (or paradigm) of AI work; the first generation
being mainly concerned with inventing very general methods
(heuristics) for searching combinatorial spaces. This second
generation of AI research focuses on problems concerned with
the representation of knowledge.

Although there were important precursors, the first
really significant work on NL systems was Winograd's (1972)
"blocks world . Winograd's NL system was actually a single
component of the robot SHRDLU which consisted of a simulated
eye-hand manipulation system for moving toy blocks on a
tabletop (e.g., cubes, cones, pyranids). The NI, system was
used to tell SHRDLU which blocks to move and to allow it to
respond. SHRALU was able to demonstrate its understanding of
language by performing appropriate actions (or indicating
that an action was impossible).

Winograd's NL system introduced some very important
features for subsequent NI, work. First, the system was
programmed in Micro-Planner (a subset of PLANNER discussed
later) and PROGRAMMER. Micro-Planner allowed the
construction of the "blocks database in which factual
knowledge and causal reasoning about the blocks and their

3.However, as I have argued passionately elsewhere
(Kearsley, 1977a), I think CAI ought to be following a more
theoretical and less ad-hoc developaent.
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environment was stated via procedural declarations. An
example of such a procedural declaration for the definition
of a cube is as follows:

(CUBE ((NOUN (OBJECT ((MANIPULABLE RECTANGULAR)
((IS ? BLOCK) (EQUIDIMENSIONABLE ?)))))))

Actions were transformed into goal structures which made use
of these procedural declarations. For example, in order to
perform the action of grasping an object, the following goal
stack might be created:
(GRASP B1)

(GET--RID -OP B2)
(PUT-ON B2 TABLE)

(PUT B2 (435 201 0))
(MOVEHARD (553 301 100))

which indicates that in ordeF to achieve the goal of
grasping object B1, first check to see if B1 is being
grasped already, then check to see if anything else is being
held (and if so GET- RID -OP it), which would require the goal
of putting the currently held object 03:4 on the table by
moving the hand (the numbers indicate the coordinates).

PROGRAMMER was the language used to actually parse and
generate language. It was based on a systematic grammar and
involved a combined syntactic-semantic approach to parsing.
The manipulations of SHRDLU and the table with the blocks
were all simulated on a CRT screen. SHRDLU's vocabulary
consisted of only a few hundred words specific to the
"blocks world ". The overall importance of Winograd's work
was a clear-cut demonstration of the necessity of having a
very detailed representation of relevant knowledge in order
to understand language.

About the same time as winograd's work was published,
Schank': (1972) conceptual dependency theory appeared.
Schank°s basic premise was that the key to language
understanding involved an analysis of a small number of
primitive actions such as grasp, move, transfer, etc. and
that all NL parsing should be conceptually based around
these primitives (hence conceptual dependency theory). An
example of a simplified conceptual dependency diagram for
the sentence, *John hit Mary with a hammer." is:

o
11,r)Mary

John <=> PITA NS ÷ hammer
-1-.(John

As this illustration shows, the analysis is built around the
primitive act (in this case, physical transfer, PTRANS) the
actors, and the object acted upon. This diagram can be
mapped directly into a LISP statement and would represent
the coded form of this sentence in terms of concepts.

More recent :fork by Schank and his students (Schank,
1975) has emphasized the notion of "scripts" which are

7
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organized units of concepts about coition or stereotyped
occurrences and situations (e.g., ordering food in a
restaurant, a bus trip, etc.)"....Scripts provide domain
specific knowledge necessary for reasoning and inferencing
vhich are essential in understanding language. Current vork
by Schenk is focused upon large units of information such as
stories, conversations, or paragraphs, in contrast to the
early work which focused essentially on isolated sentences.
Recent introductions to 'IL resea are Charniak & Wilts
(1976) and Chapter 6 in Raphael (197te.

The usefulness of this area of research to CAI is two-
fold. First there is the possibility of replacing the
standard keyword -based answer analysis used in alnost all
traditional CAI languages (e.g., COURSENRITER, TUTOR, CAN)
vith 4 "real" analysis based on meaning. This would relieve
the author of specifying complicated series of equivalent
words, prohibited vords* words to be ignored, etc., using
AND/OR logic. All that vould be required would be the
specification of the appropriate concept and the'system
could determine correct' paraphrases. This would not,
however, relieve the author from specifying the boundaries
on what counts as an acceptable answer, A partial answer, a
misconception, etc. And since I think this constitutes the
major vork in constructing answer analysis, real
understanding or comprehension would not really be much of
an advantage. Thus, this aspect of the use of ilL in Al5
seems relatively minor.

The second use of natural language comprehension is
more fundamental. As should be evident, in order to have the
capability to understand and comprehend a student's response
in a particular subject matter, a very complete and detailed
representation of the subject matter oust be programmed.
This itieludes basic propositions, and their inter-
relationships on the basis of categorical inclusion or via
inferences/deductions. If this type of knowlege base is
available, it is then possible to manipulate this knowledge
via different learning strategies (i.e., simulations* games,
drill & practice, socratic* etc.). Thus the actual knowledge
would be essentially independent of tte node of instruction.
Glimpses of exactly hov this can be done are given in later
sections of this paper. Suffice it to say here that the
availability of such a knowledge base permits the CA/ system
to "understand" what it is teaching, to build a model of the
student's state of understanding, and to identify
deficiencies in its own understanding of a subject. Clearly
this represents an impressive gain over our current
generation of II/Ion-intelligent" author languages and a step
closer to providing the full sophistication of a good
teacher.

Another aspect of AI research on natural language is
work on speech understanding systems. Like the work on WL

8
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systems, the work on speech understanding has used stall and
well-defined knowledge domains. For example, the HEARSAY
system (Reddy & Newell, 1974) has been developed for the
task domain of verbal chess moves; the SPEECHLIS system
(Nash-Webber, 1975) involves the task domains of lunar
geology and travel budget management. Research in speech
understanding tackles the same soft of problems of semantics
acrd knowledge representation which exist in AL research with
the extra addition of a phoentic component.

While the practical application of speech understanding
research is further removed than that of the AL systems,
this research could be applied in the CAI domains of reading
and language learning. More remote in time is the
possibility of using verbal conversation and bypassing the
necessity for written communication via keyboards. Not only
would this revolutionize the nature of terminal construction
and answer analysis procedures but it would also radically
alter the nature of the instructional interaction, for now
the student would be able to interrupt and interrogate the
system during instruction.

While research in both natural language and speech
understanding systems is still in its infancy, it could
already be applied to CAI work. Many topics now taught via
CAI would be ideal for exploring natural language
interaction or speech recognition. Furthermore, CAI provides
an excellent testing ground for AI systems with its real-
world problems and difficulties.

CJ

Rule Induction

The study of rule formation and utilization in solving
problems, concept learning. and understanding language has
emerged as an important arqa of AI research and overlaps
with research in cognitive psychology. In so far as CAI
depends upon or embodies a theory of instruction which is
based on the cognitive processes involved in the acquisition
of knowledge, research on rules is of considerable relevance
to CAI. In addition, rules have been emphasized in the
context of instruction in the work of Gagne (e.g., Gagne,
1966) -4

The work of Egan E Greeno (1974) and Simon 8 Lea (1974)
are attempts to make comprehensive theoretical statements
about rule induction across the tasks of concept learning,
serial pattern learning, and problem solving. The basic
premise of these statements is that the knowledge structures

4. Elsewhere (Kearsley, 1976), I have discussed the
possibility of using rule structures to model individual
differences in an educational context.
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used and acquired in performing these tasks are rule.* stored
in working memory. Such rules are abstracted, or induced by
observing one or more examples of their use. In the Egan S
Greeno analysis, attentio is paid to three distinctive
issues in rule induction: the kind of knowledge structure
which is constructed as a result of experience in a task
(and hence enables performance), the kinds of knowledge
structures that individuals need as prerequisites for
learning rules, and how the process of acquisition (of
rules) occurs. For concept learning they conclude that the
acquired structure is a decision tree with nodes
representing tests of attributes for presented stimuli; for
serial patterns, the general form of the acquired structure
is a hierarchy of operators defined on an alphabet of some
sort; and in the case of problem solving, that the general
form of the acquired structure is a hierarchy of goals (or
goal structure) involving transformations of the specific
features of the problem situation., Table 1 is their concise
summary of their analysis of the three aspects of rule
induction for concept learning, serial patterns, and problem
solving.

Insert Table 1 here.

Simon S Lea propose that rule induction tasks (i.e.,
concept learning, serial patterns) and problem solving can
both he interpreted in terms of problem spaces and
information processes for searching such spaces. Their major
conclusion is the distinction between rule induction tasks
and problem solving tasks is that the former require two
problem spaces (one for rules and one for instances) while
problem solving requires only one space. Thus in a rule
induction task, the attainment of a solution is determined
by simultaneously finding an appropriate rule and testing .
all instances with it; in the case of problem solving the
solution is achieved when a set of rules which produce the
desired result is found.

Another line of AI research which contributes to the
study of rule induction is Winston's (1975) research on the
learning of concepts in the "blocks world". The system was
able to induce simple concrete concepts of structures (e.g.,
arch, pedestal, house,etc.) from "seeing* instances and non-
instances composed on block structures it knew about. The
basis for Winston's system vas a network notation
(implemented in LISP) which allowed the representation of
concepts and their comparison. The crucial procedure in the
learning of concepts was the analysis of "'near misses" of a
concept in order to abstract the essential (and identify
non-essential) attributes. While the details of how the
system worked are fascinating, it is sufficient for our
purposes to note the importance of negative instances in
concept learning.

10



TABLE 1

Summary of Analysis of Egan g Greeno (1974).

Kind of rule acquired

Conceptual Classification:
Associative grouping

)verbal concept)
Singlefeeture classification
Multiple attributive' (connective

structure known'

Connective structure
;attributes known)

Complete classificatory rule

Acquired structure Prerequisite knowledge Process of ecqUisition

Decision tree
Find which category feature is

present .
Test single future

,Conditional feature tests

Associations in semantic memory

Knowledge of or ability to detect
feet:aro

Truth table combinations
0

Feature. and combinations

Scanning instances end noticing
common essoclitions

Selection end elimination of
features

Selection of rules or association
of response to combination, of
features

Construction end modification of
decision use

Relational toecap?:

Analogies

Squentisl concepts:

srt chunks

Test nary relational feature

Conjunction of relational features

Knowledge of or ability to detect
rotations frelations in semantic
memory for verbal meterlaisi

Selnc h in set 0 own relations,
within subsets ochre ' by
complexity

Note relations end teal +11 alterna-
tive answers

I tut

Oiork sequences

Thurston, ',quanta'

nestle hierarchical sequences

Tree structures of relations

Sequence of chunks

Sequence of interval telethons

interleaved sequences of interval
relations

Structure of relations between
subsequences

Knowledge ai alphabet. and O,tection
or computation of relations
Same, next, and backwardnext

on edjecent elements
Difference between adjacent

elements, and same or next
ntetions on differences

Same, next, and backwernoxt
on adjacent and separated
elements

Differences between adjacent
elements and between
subsequences

Solution patterns for solving
Problems

Structure of transformations de
lined on sets of states

Space of problem stales and set
of transformations

Scan sets of elements to identify
chunks

Compute end store sequence of dif-
founts"; compare entries to
detect advancing rules

Find period of teQUette% formulate
rule, and tift on dements

identify subsequence chunks and
frensformellorts between sub-
seta:enter.

Induce pettVran svorence of Iran
torrnations. irrNding modifies-
don of difir It/daring and
COnn.' to
feat ......tennitodity en-
coo ot 11.40.tnf, II necessery
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Yet anoth,r important line of -research on rule
induction is the study of causal reasoning and inference
mechanisms in connection with natural language work. A good
example is the work of Schank & Reiger (1974) . Schank &
Reiger identified 12 types of inferences which could be used
during or after the conceptual analysis of a sentence. For
example, an instrumental inference would occur when a
primitive act has been referred to and a probable Instrument
of that act is inferred. Abelson (1974) in his analysis of
belief systems has extended the study of inference
mechanisms beyond the linguistic level to include inferences
about other peoples' intentions, roles, and plans. Reiger
(1976) has attempted to show how "commonsense alogoritmic
knowledge" underlies both language comprehension and problem
solving.,

The implications of this vcrk on rule induction are as
follows. Problem solving and concept learning are 2 basic
components of learning and hence an understanding of the
underlying cognitive processes will be essential
contributions to a knowledge of how to teach these
components. In the case of concupt learning, this research
suggests that the presentation of concepts in form of
decision trees with emphasis on positive and negative
instances will optimize learning. The importance of
identifying positive and negative attributes has often 1...,en

stressed by educators (e.g., Becker, Roglemann, & Thosas,
1975; larkle & Tiedmann, 1972). For problem solving, the
importance of 'subgoal generation and aeans -ends anlysis is
terms of finding a set of rules which transfore the problem
space suggests the importance of hierarchical analysis and
presentation of problems.

The explicit analysis of rule induction in the domains
of concept learning and problem solving, particularly thsir
expression in computable forsalisms (e.g., the General Rdle
Inducer of Egan 6 Greeno), provides 'the possibility of
building these rules into a CAI tutor. Thus in the case of
problem solving in a programming lab for example, it would
be possible to have the system test or guide the problem-
solving of a student by actually solwinq the problems itself
(and hence generating the necessary subgoals) or
alternatively, generate problems According to certain
specifications. This is of course quite close to CAI
research in generative prograaming (e.g., Koffman 6 Blount,
1976). In the case of teaching concepts, such a system could
arrange suitable instances to build a satisfactory decision
tree representing a concept.

Finally, a computational understanding of inductive
inferences, such as that emerging from current natural
language research has applications in the automatic
generation of hypothesises and questions. This is an
essential component of Socratic {dialog) strategies and also

12
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would alleviate the need for the programming of fixed
evaluation, sequences for all students. Furthermore, this
capacity would be extremely valuable fpr the generation of
questions for domain or criterion referenced evaluation (see
Anderson, 1972 or Eormuth, 1970).

Programming Languages

41 research has probably catalyzed more novel software
development than any other contemporary branch of computer
science. In particular, AI work provided the impetus for the
development of families of non-numerical languages sech as
LISP, LOGO, and more recently, entire subspecies of goal-
driven problem solving languages such as PLANNER, CONNIVER,
0A4 (now QLISP), SAIL, and POP2 (see the summary by Bobrov 6
Raphael, 1974) . In addition to providing the stimulus for
the development of new programming languages, AI research
includes the exploration of automatic programming and
progrim proving (verification) and also the study of
programming errors and debugging. All of these different
lines of research in programming have relevance to CAI
efforts.

AI programming languages (particularly LISP and its
derivitives) provide very different alternatives for the
basic organization of CAI courseware. All major CAI
authoring languages presently in use (e.g., TUTOR,
COURSEWRITER, CAN) are "frame-oriented" (P0) in that they
provide for a basic instructional pattern?

4 Presentation of _text
2) Posing a question/problem
3) Answer. analysis
4) Contingent branching

Those four aspects comprise a single instructional "frame",
(even though they may actually span many physical frames).
Regardless of the initial orientation of the programmer, all
instruction will eventually' adhere to this basic pattern
since in fact this constitutes the basic data structure of a
FO language. Notice also that in a FO language instructional
content and instructional logic are non-separable and
tooether comprise the data structure.5

In contrast, the use of LISP-like languages
necessitates the use of a semantic .etwork (SN) type of data
structure since the basic list structure requires tree-like
Or network definitions.6 The advantage of a SN type of data
structure is that a sophisticated, meaning-based language

5. For a similar argument from an information retrieval
perspective, see Osin (1976).
6. Introductions to LISP are given by Siklossy (1976) and
Winston (1977).

.13
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analysis is permitted; that the database can be interrogated
as well as presented; and, most importantly, the system is
"intelligent" in the sense that it can trace its own
actions. Furthermore, Si languages allow a separation of
content and logic. These points will be elaborated upon in
the following discussion of student models and later in the
section on socratic systems.

Self (1974) provides a demonstration of how AI
languages and methods can be used to implement *student
models", i.e., representations of the hypothesized knowledge
states of the students. Use of a student model allows the
course of instruction to be guided by the specific
comparison between the student's state of understanaing of a
subject and a complete understanding of the subject matter.
Thus,; individualization of instructional content is not
handled via branches contingent upon quantitative evaluation
(i.e., number of correct answers) but rather pattern-
directed evocation of certain knowledge based upon
qualitative inferences about what the student understands or
misunderstands. This is essentially equivalent to building
in the criteria and inferences that a human instructor uses
when setting up branching conditions in a traditional F0-

language.

Self uses a version of the goad- directed- PLANNER
language to illustrate a student model. In PLANNER,
information is stored in basically two forms: facts written
as symbolic expressions, and theorems which are symbolic
procedures for deducing facts from other facts. Thus, a
PLANNER database consists of two typet of knowledge: facts
and procedures. Multiple databases may be created allowing
the construction of plans and hypothetical situations.
Execution procedes via the computation of ''goal structures.
In order to achieve such goal statements,' PLANNER
automatically searches the database(s) to try and find
watching goal patterns (the so-called "pattern-directed
invocation" feature).

Insert Figure 1. -here.

A fragment of PLANNER code from Self's program is shown
in the bottom of Figure 1; this corresponds to the `dialogue
in the top part of the Figure. While this may be
incomprehensible to anyone unfamiliar to LISP -like
languages, some of its major components can be pointed out.
Statements 2 and 3 define the facts that Montana is further
inland than Newfoundland and that Newfoundland is further
north than Montana. Statement 4 is a theorem (inferential
rule) which indicates that X is colder than I if X is
further north or further inland. Statements 6-9 represent
another theorem which indicates how to derive a-
contradiction between facts X,Y, and Z in databases A and B.



1. Teacher: Which is likely to be colder, Newfoundland or Montana?
Student: Newfoundland.

3. Please give your reasons for answering Newfoundland.
4. Newfoundland is further north.
S. Yes, that's true. Are you arguing then, that if you take any two

places in the Northern Hemisphere, the one which is further north
will have the lower average temperature?

6. Yesa guess so.
7, I'll tell you now that Montana has lower average temperatures than

Newfoundland. Does this fact cause you to change your reasoning?
8. Yes.
9. In what way?

10. Being further north isn't as important as I thought.
11. Please try to be more precise. Would you, for instance, say that if

you take any two places in the Northern Hemisphere, the one furthest
south has the colder temperatUre?

12. No, I wouldn't say that.
13. Would you say that how far north a place is has no effect on tem-

perature?
14. No, I know it has some effect.
15. Yes, you're right. Distance north does affect temperature. Yet, even

though it is further north, Newfoundland has higher average
temperatures than Montana. What must this mean?

16. There must be some other factor.
17. Yes/ Right] What could this factor be?
18. I don't have any idea.

1. (PROG (MT MS X Y Z))
2. (LET Fl FACT (FURTHERINLAND MONTANA NEWFOUNDLAND))
3. (LET F2 FACT (FURTHERNORTH NEWFOUNDLAND MONTANA))
4. (LET TI INFER (X Y) (COLDER ?X ?Y)
S. (FACT (FURTHERNORTH ?X V))

(FACT (FURTHERINLAND ?X 7Y)))
6. (LET T2 INFER (X Y Z Ml M2 A B)
7. (CONTRADICTION ?X 7Y 7Z ?Ml ?M2 ?A ?B)
8. (DB ?M2) (GOAL (?X 7Y ?Z) (USE ?B))
9. (DB ?MO (NOT (GOAL (7X 7Y ?Z) (USE ?A))))

10. (LET Sl INFER (X Y) (COLDER ?X ?Y)
11. (FACT (FIYATHERNORTH ?X 7Y)))
12. (DB ?MT)
13. (ASSERT F1 F2 TI T2)
14. (DB ?MS)
15. (ASSERT Fl F2 SI)
16. (DB /MT)
17. (GOAL (CONTRADICTION ?X ?Y ?Z ?MT ?MS TI El) (USE 72))
18. (PRINT IS ?Y ?X THAN ?Z)

Fi gu re 1, Fragments of dialogue and PLANNER code from Self WM.

1 5



Statements 10 and 11 are an assertion (fact) that something
must be cold if it is further north. Statements 12 and 13
places the first two facts and theorems in the database of
the teacher; statements 14 and 15 put, the two facts and
first theorem in the student's database. Thus the student is
assumed to be missing the second inferential rule about
temperature and inland position. Statements 16 and 17
specify that a goal search is be initiated (directed to the
student) for the facts which satisfy the contradiction given
by the second theorem. If found, this is to be asked as a
question. This corresponds to the pedagogical strategy shown
in the dialogue in the top part of the Figure, i.e.,
attempting to get the student to learn both determinants of
temperature. When the student can satisfy this sequence, it
can be inferred that the student's knowledge encompasses
this theorem or rule.

While the details of this example may be rather vague,
it should be evident that this type of approach to CAI would
require the very detailed specification of facts, concepts,
principles, their interrelationships, and inferences which
can be made between them. Doing so allows the development of
an "intelligent" system in which the meaning of the
student's,reponses are used. This example also illustrates
how content (i.e., facts and theorems) and instructional
logic (goal structures) can be keep separate in a PLANNER-
like language.

Considerable research has been devoted to the study of
programming errors and debugging processes (e.g., Gould,
1975; Mayer, 1975), probably inspired by Weinberg s
pioneering efforts (Weinberg, 1971).. This research has
encompassed the study of the frequency of different types of
programming errors, the difference between the errors made
by experienced and inexperienced prograpmers, the effects of
providing models or "mental sets" during programming
activity, and the type of strategies and tactics used in
debugging programs. For a recent review of this research,
see Kearsley (1977b).

This research has obvious relevance to .the teaching of
programming and the construction of problem-solving
laboratories in programming. The work of Barr et al. (1976)
is particularly interesting in this connection because they
have developed a curriculum which combines elements of A/
techniques with aspects of instructional design. Their BASIC
Instruction Pro-gram (BIP) involves at special BASIC
interpreter written in SAIL which provides for a curriculum
information network composed of elementary programming
skills. DIP does not follow a fixed presentational sequence
but selects problems via a task selection algorithm which
chooses problems incorporating skills that a particular
student appears to be lacking. Figure 2 is a flowchart which
illustrates the logic of the task selection algorithm.
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Insert Figure 2 here.

The DIP interpreter also involves an error diagnosis System
which is tutorial in nature, although this does not appear
to be as sophisticated as that of Wilson et al. (1976) in
the PLATO CAPS system.

Work on automatic program generation (also called
program synthesis) and program verification (e.g., Simon &
Sikiossy, 972) involves the attempt to design programs
which can actually generate other programs according to
specifications and programs which are capable of proving
that a program does what it is intended to do (as opposed to
determining this inductively via debugging). The facility to-
take a student's program and verify its correctness or to
generate programs according to a student's specification for
an example would be very useful in pkbgramming problem
solving labs. In the generative programming of Kaftan S
Blount (1976), certain capabilities for program 'synthesis
and verification appear to have been provided.

LOGO represents another AI alternative 1 PO author
languages. LOGO is an extremely simple and powerful language
which is'fully extensible and recursive. 'Along with' LOGO
goes a particular "lassiz -fair** approach to providing a
learning environment as exemplified by the work of Papert
(e.g., Papert & Solomon, 1972). The important technique
provided by LOGO is that of a procedure -- namely the
understanding of something in terms of a coaputable
eltpression. Papert (1971) has argued this approach most
strongly in the domain of teaching mathematics to children.
An interesting application of LOGO to autistic children has
been reported by Emanuel S Weir (1976).

To summarize this section, AI programming languages
provide some alternative approaches to the usual
instructional logic of CAI author languages. This includes
the semantic network orientation of LISPlike languages, the
problemsolving and inferential capabilities of the PLANNER
like languages, and the procedural orientation of LOGO. In
addition, research on programming errors and program
synthesis / verification has many potential applications in
the teaching of programming languages.

Socratic Systems

We come nog to the area of AI research which is closest,
to CAI activity in the sense that it is explicitly concerned
with instruction. This is the work on socratic systems,

17
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mostly conducted by members of Bolt, Beranek S Newman.' The
basic idea of a socratic system is that information exchange
should proceed via dialogue and questioning intitiated by
either the teacher or the student (hence it is also called
"mixed-inititive" instruction). Socratic dialogue is the
paradigm case of individualized instruction and also is the
most demanding of instructional methods for both teacher
(knowledge and skills) and student (attention, motivation).
Hence, the implementation of a socratic system is a very
challenging problem in artifiCial intelligence.

The first attempt to implement a socratic system was
made by Carbonell (1970) in the program SCHOLAR and the task
domain of geography. Carbonell,pointed out the difference
between the semantic-network approach and the "generative"
CA/ approaches. Generative CAI depended upon algorithmic
generation and manipulation and therefore excluded the
possibility of verbally-oriented subject matters whereas a
semantic-network approach suffered no such limitation. In
fact, Carbonellfs rationale fbr choosing geography was that
it represented a verbally-oriented subject with essentially
no. algorithmic structure. Carbonell also pointed out the,
potential contribution of a socratic system to the
understanding of errors and misconceptions, and the eventual
need to develop general instructional strategies to handle
missing and partial information, overgeneralizations*
confused facts, etc. Because of the way answer analysis is
handled in traditional CAI languages, no such interest in a
general theory of errors has emerged'from CA/.

Work on SCHOLAR has been continued ,by Collins and
colleagues (e.g., Collins, 1976; Collins, Warnock S Aiello,
1975; Collins, Warnock S.Passafium, 1974). Hitch of this
work has involved the study of the cognitive processes
involved in socratic dialogues (i.e., reasoning from
incomplete knowledge, types of inferences, questioning
strategies, reviewing, providing hints, error correction,
hypothesis formation, etc.). The most recent effort
(Collins, 1976) is an attempt to formulate rules which
produce eocratic strategies. The rules are formalized as a
production system which could be programmed.

While Collins has been devoting attention to the
theoretical aspects of socratic dialogues, a production
version of SCHOLAR has also been implemented. The EILS
SCHOLAR system (Grignelli, Gould S Hausman, 1975) is a
socratic system for teaching individuals how to use the ?(LS

7. Socratic 'systems are also called tutorial systems but I

shall stick to the label " socratic" since the term
"tutorial" has a somewhat different meaning in a CAI
context.

19
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text editor. Most interesting about the report of their
project is their discussion of the problems encountered in
the initial implementation of the system. This included
problems such as the handling of spelling errors,
unanticipated synonyms, irregular syntax, lack of program
knowledge, poor answers to Questions, and unanticipated
contexts. Thera were also numerous problems related
specifically to the use of natural language such as
anaphoric references, ellipses, indeterminate references,
and paraphrase equivalence -- all familiar problems in
natural language research. Here we see the need for pooling
of conceptual resources between those working on natural
language and socratic systems.

Another implementation of a socratic system is SOME
(Brown t Burton, 1975) which involves an electronics
database. "The nature of SOPHIE is similar to the problem
solving system of Barr et al. and Wilcox et al., except that
the task involves the debugging of malfunctioning electronic
equipment rather than computer programs. SOPHIE implements
many ideas on hypothesis and question generation and also
involves a dynamic simulator which generates and checks
information for questions and answers.

The 'work on socratic systems incorporates many of the
various areas of AI research previously discussed: natural
language understanding, rule induction and inferences,
studies in programming errors and programming languages. In
my opinion, it comes the closest to providing truly
individualized instruction since both the mode and content
of instruction are tailored to the individual.

Conclusions

This article has surveyed some major areas of AI
research and discussed their potential importance to CAI
activity. There are other areas of AI research ;thigh may
have eventual relevance to CAI. For example, it has, been
suggested that answer analysis can be considered a problem
similar to those faced in pattern recognition, namely, '

determining whether a particular answer matches a desired
answer. However, in terms of any immediate interaction
between AI and CAI, the four areas of natural language, rule
induction, programming, and socratic systems are most likely
to lead to an interchange of ideas. Possible applications of
the research in these four areas has been specifically
mentioned in each section. By way of conclusion, we will
consider the general problem of applying AI work to CAI.

Individuals involved in CAI represent heterogeneous
backgrounds and perspectives and hence have differing
orientations to CAI activity. Thus, just as AI means
different things to different people so CAI represents a
variety of purposes. One group are the media and
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instructional specialists who see CAI in terms of its
potential for research in instructional design. Another
group includes psychologists who consider CAI as a fertile
medium or tool for the study of cognitive processes,
individual differences, testing procedures, etc. Those
involved in CAI from a computer science background tend to
see CAI in light of information retrieval, data structures,
or other software/hardware characteristics. Finally, there
are educators from many different fields (e.g., medicine,
chemistry, physics, etc.) who have no. interest in CAI
itself, except in terms of their own subject areas. To this
latter group (which is probably the largest proportion of
CAI authors), CAI is really no more than a sophisticated
delivery system.

This wide range in orientations to CAI means several
things. First, different lines of research in CAI will
appeal primarily to certain orientations, e.g., programming
studies to those with a computer background. Secondly, many
features of CAI languages and systems exist because they
satisfy the requirements of certain groups. Thus, in terms
of delivering instruction, it is important that the system
be reliable and provide quick respainse time. Despite the
theoretical inelegance of traditional frame-oriented CAI
author languages, they are easily programmed by authors with
no prior programming experience. Furthermore, if CAI systems
are to be 'instructionally effective, they must provide
adequate graphic capabilities and automatic collection and
processing of student perforMance data. It should be evident
that most AI research which is relevant to CAI work (e.g.,
socratic systems) is not concerned with the type of features
which are very important from an educator's point of view.

So something of a dilemma exists in terms of the
exploration of AI techniques and ideas in a CAI context.
Unfortunately, the existing tendency in CAI seems to be to
accept this problem as an excuse not to pursue research into
alternate CAI methods. This is most unsatisfactory when the
very rudimentary and primitive state of current CAI systems
is considered. Furthermore, it seems distinctly enbarassing
to me that some of the most important research in CAI is
presently being done in the field of AI not CAI.

What could or should be done? Some possibilities
include:

*joint conferences which bring together workers from
AI and CAI. CAI workers can become aware of the
research in AI ,and AI people can be exposed to the
variety of educational applications

*creation of CAI projects to explore certain AI
methods, languages, etc. in a research (rather than
production) environment

21
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*selection of instructional contexts and applications
for research in AT

*joint AI-CAI research projects, encouraged by shared
funding

Some may feel that interactions between A/ and CAI will
occur ufturally without any explicit need for planned
interaction. While I would like to believe this, I suspect
that without some deliberate match-making, AI and CAI will
proceed in blissful ignorance of each other..

'22



18

References

tbe1son, R.P. The structure of belief systems. In Schenk &
Colby (Eds.).

Anderson, R.C. by to construct achievement tests to assess
comPrehension. Review ig Educational Research , 1972, 42

14C-170.
Barr, ft., Beard, N., & Atkinson, R.C. The computer as a

tutorial laboratory: the Stanford srp Project. Mau-,
Machine a , 1976, 8 , 567-596.

Becker, W.C., Englemann, S., & Thomas, A.R. Teachiag /I:
Concept Learning. Chicago: Science Research Associates,
1975.

Bobrow, D.C. 6 Collins, A. Representation Ami understanding.:_
Studies in cognitive science. New York: Academic Press,
1975.

Bobrow, D.G. S Raphael, B. New programming languages for AI
research. ACM Computing Surveys 1974, 6131 , 153-174.

Bormuth, J.R. On the theory Q,t icvement test items.
Chicago: University of Chicago Press, 1970.

Brown, J.S. & Burton, R.R. Multiple representations of
knowledge for tutorial reasoning. In Bobrow & Collins
(Eds.) .

Carbonell, J.R. AI in 6AI: An artificial intelligence
approibh to computer assisted instruction. IEEE
Transactions on Man-Machirie Systems , 1970, 11 , 190-202.

Charniak, E. V Wilks, Y. Computational Semantics. New York:
Elsevier, 1976.

Collins, A. Processes in acquiring knowledge. Bolt, Bernak &
Newman TR-3231, January 1976.

Collins, A., warnock, E.H., Aiello, N., 6 filler, M.L.
Reasoning from incomplete knowledge. In Bobrow & Collins
(Eds.) .

Collins, A., warnock, E.H., Passafiume, J.J. Analysis and,
synthesis of tutorial dialogues. Bolt, Bernak & Newman
Tn-7789, Parch 1974.

Dwyer, T.A. Heuristic strategies for using computers to
enrich education. Man-Machine Studies , 1974, 6 , 137-
154.

Ygan, D.E. 6 Greeno, J.G. Theory of rule induction:
knowledge acquired in concept learning, serial pattern
learning, and problem solving. In L. Gregg (Ed.).

Emanuel, R. 6 Weir, S. Catalysing communication in an
autistic child in a LOGO-like learning environment.
ProceediggE AISB Summer Conference , Edinburgh, July
1976.

Gagne, R.M. The learning of principles. In H.J. Elausmeier &
C.W. Harris (Eds.), Analyses Qj concept _learning., New
York: Academic Press, 1966.

Gould, J.D. Some psychological evidence on how people debug
computer proerams. Man-Machine Studies , 1975, 7 , 151-
182.

(Irpory, L. Knowledgg Ana gganition. New York: Wiley 6 Sons,
1974.

23



19

Grignetti, M.C., Gould, L. 6 Hausmann, C. ELS-SCHOLAR:
Modifications and field testing. Bolt,'Bernak & Newman
TR-75-358, 1975.

Koarsley, G.P. Individuality, individual differences and
computer simulation. Educational & Psychological
Measurement , 1976, 36 , 811-823.

Kearsley, G.P. Some conceptual issues in CAI. Journal of
CemPuter, Based Instruction , in press, 1977a.

Kearsley, Ga. Computer pr9gramming as a cognitive process.
Manuscript submitted for publication, 1977b.

Koifsan, F.B. G Blount, S.E. Artificial intelligence and
automatic programming in CAT. Artifical Intelligengs
1975, 6 , 215-234.

Luehrmann, A.W. Should the computer teach the student or

vice-versa? Creative Computing , Nevester 1976, 42-45.
Markle, S.M. & Tiemann, P.W. Conceptual learning and

instructional design. Journal of Educational Technology
1A70, 1 , c2-62.

Mayer, R.E. Different problem-solving competencies
established in learning computer programming with and
without meaningful models. Journal, of Educational
Psychology , 1975, 67 , 725-734.

McCarthy, J. BOOK review of the Lighthill Report. Artificial
Intelligence , 1974, 5 , 317.

Nash-weber, B. The role of semantics in automatic speech
understanding. In Bobrow & Collins (Eds.) .

Newell, A. Artificial Intelligence and the concept of mind.
In Schank & Colby (Eds.).

Osin, L. SMITH: How to produce CAI courses without
programming. Man-machine studies , 1976 8 , 207-241.

Papert, S. Teachini children to be mathqmaticians /A.=
teaching about, mathematics. MIT AI Memo 249, July 1971.

Panert, s. & Solomon, C. Twenty things to do with a
computer. Educational Technology. , 1972, 12 , 9-18.

Peele, n.A. Computer glass bores: Teaching children concepts
with "A Programming Language (APL) ". Educational
Technology , 1974, 14 , 9-16.

Raphael, B. The thinking comter: Mind inside matter., San
Francisco: Freeman, 1976.

Roddy, P. & Newell, A. Knowledge and its representation in a
speech understanding system. In L. Grey (Ed.) .

Roiger, C. An organization of knowledge for problem solving
and language comprehension. Artificial Intelligence ,

1976, 7 , 89-127
Schank, R.. Conceptual dependency: A theory of natural

language understanding. Egggitill psychology , 1972, 3 ,
552-631.

Schank, R. Conceptual Information Processing. Amsterdam:
North Holland, 1975.

Schank, R. & Colby, K. Computes models, of thought AAA
language. San Francisco: Freeman, 1974.

Schank, R. & Reiger, C.J. Inference and the computer
understanding of natural language, Artificial
Intelligence , 1974, 5 , 373-412.

24



20

Self, J.A. Student models in computer assisted instruction«
Man-machine Studies , 1974, 6 , 261-276«

Siklossy, L. Lets talk LISPS Englewood Cliffs, N.J.:
Prentice-Hall, 1976.

Simon, H.A. & Lea, G. Problem solving, and rule induction: A
unified view. In Gregg (Ed.) .

Simon, S.A. & Siklossy, L. Representation le meaning.
Rnglewood Cliffs: Prentice-Hall, 1972»

Uttal, W.R. et al« Generative computer, assisted instructi2n.
Newburyport, Mass.: Entelek, 1970.

woinberg, G.N. The psychology of computer, programing. New
York Van Nostrand Reinhold, 1971.

Wilcox, T.R., Davis, A«M., & Tindall, N.H. The design of a
table driven, interactive diagnostic programming system.
Communications of the A21 , 1976, 19 , 609-616.

Winograd, T. Understanding natural language. New York:
Academic, 1972.

Winston, P. Learning structural descriptions from examples.
In P. Winston (Ed .), II& psychology of computer vision.
New York: Academic, 1975.

Winston, P. Artifical Intelligence. Mass.: Addison-Wesley,
1977.

25


