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EBSTRACT

This article ppovides a tutorial introduction to
Artificial Irntelligence (AI) research for those involved in
Computer Assisted Instruction (CAI). The dgeneral these
espoused 1is that smuch of the current work in AI,
particularly in the areas of natural language understanding
systems, rule induction, programsing languages, and socratic
sy stems, has important applications to CAI. It is hoped that
this tutorial vill stimulate or catalyze more intensive
interaction between AI and CAI.




Artificial Intelligence (AI) means different things to
different people. To the public, it is typically associated
with chess-playing programs and building robots. 1Indeed  to
certain AI researchers, AI is the construction of game-
playing programs or robotics. To others, AI is principally
concerned with "studying the stucture of. information and the
structure of problem sclving processes independently of its
realization in animals®™ {(McCarthy, 1974, p. 337). Por Yet
another group of researchers, AI 1is really the study of
human vproblem solving, concept learming, and language
comnprehension, and is a brapmch of theoretical psychology.

In fact, AT is all of these things. It presently
encompasses many diverse areas of research which jinclude the
following major topics:

1. Problem Solving

a. Game Playing

b. Theorep Proving

C. Heuristic Search

d. Inference
Perception

a. Pattern Recognition

b. Scene Analysis/Decscription

c. Context—based Vision
Natural Language Understanding

a. Language Translation

b. Question Apswering

c. Semantics

¢+ Speech Onderstanding’
Programming Languages

a. Program Verification and Generation

b. Al Languages |

c. Studv of Prodramming Frrors
Robotics :

a. *odellinyg and Planning

b. Yand-Eye Co-ordination
Learning & Adaptive Systems

a. Brtificial Evolution & Brain Theory

b. Concept Learning

C. Socratic Systeams

Within each of these areas, certain topics are more in
current focus than others.? For example, withip the area of
Natural Languade Gnderstanding, relatively little attention
is presently devoted to language translation, however,

1. Anyone who 1is familiar with AYI resparch will also be
avare that there is plenty of overlap and 4interdependence
between the various subareas in the list, as well as sone
current research which doesn't really fit into any one of
these categories.




semantics and speech understanding are in vogue. Purthermore
certaliln areas are gore in the spotlight than others, e.g.,
natural language 1is at present receiving considerable
attention while robotics is not.

¥hile the list above imparts some idea of the range of

AI research, it does not convey the different perspectives
which can characterize research within almost any one of
these areas. HNewell (1974) has discussed three different
conceptual orientations to RI:

1) AT as the.exploration of intellectual fanctions.

The  main question of this orientation is "what

mechanisms can accomplish what intelligent functions?”

{*hether this has anything to do with human mechanisms

is irrelevant.) In this perspective would be included

research on pattern recognition, theorem proving,

problea solving, game-playing, -etc.

2) AI as the science of weak gmethods. In this

perspective, AI 1is a field devoted to the discovery

and collection of a set of weak methods such as

generate and test, heuristic search, hill clismbing,

hypothesize and match and others.

3) AI as theoretical psychology. AI serves as

theoretical psychology if one adopts the view of human

cognition as 1involving the processing of information

represented - in terams oi discrete symbols and

elementary operators /rules. Parthermore, in this

perspective, the question of whether the programr works

in the same way humans do is of consequence.

it is possible to conduct research in any of the areas
outlined above and within any of these 3 perspectives. Thus,
depending upon one's orientation, AI could be properly
considered a bhranch of comnputer science, psychology,
mathematics, or even philosophy.2

In this paper the focus 1is on the educational
applications of Al research, particularly the specific areas
of research wvwhich have implications for computer assisted
instruction (CAI). While A1 and CBI are blood-~brothers in
the sense that they share a common computer methodology and
a certain subset of common problems, there has tended to be
little formal or informal interaction between the majority
of professionals in both domains. Ondoubtedly there are many
reasons why this is so, however, I suspect one of the wmost
major 1is that in essence.AI is a fundamentally theoretical

2, In fact, recognition of the interdisciplinaryv nature of
much AI research has led to the recent formation of a new
field, Cognitive Science (and a journal of this name) which
spans psychology, computer science, linguistics, philosophy,
mathematics, and education.




endeavor and CAI is a practically oriepted activity. Thus,
things which are emphasized in doing AI work (e.g.,
generality, elegance, parsimony, etc.}) are not valued as
highly as certain pragmatic considerations in CAI (e.g.,
efficiency, costs, simplicity).2

As a first step 1in encouraging formeal interaction
betwveen AI and CAI, this article discusses some current AI
re<earch and attempts to point out 3its relevance to CAI
activity. The following sections will discuss research in
natural language understanding, rule induction, prograaring
languages -and socratic systems. The last section outlines
some of the ways in which AI research could be introduced
into present CAI efforts.

I. yatural Language Bnderstanding

It seems appropriate to begin with this area since it
has a veryY evident and immediate application to CAI. ¥Work on
natural language {NL) understanding systeers (also called
comnputational 1linguistics) i.e., prograss which can
interpret stories, analogies, jokes, answer dquestions, and
produce paraphrases, probably represent the major thrust of
current AI research. Porthermore, I think it is fair %o say
that the work on HL systems constitutes the second sajor
generation (or paradigm) of AI work; the first generation
being mainly concerned with inventing very general methods
(heuristics}) for searching combinatorial spaces. This second
generation of AI research focuses on prroblems concerned with
the renresentation of knowledge.

Xlthough there were 1important precursors, the first
really significant work on NL systems was ¥inogradf®s (1972)
"blocks world™. Hinograd's NL SYstem was actually a single
component of the robot SHRDLU vhich consisted of a simulated
eye-hand manipunlation system for moving toy blocks or a
tabletop {(e.g., cubes, conas, pyramids). The KL system was
used to tell SHRDLU which blocks to move and te allow it to
respond. SHRDLU was able to demonstrate its understanding of
language by perforning appropriate actions (or indicating
that an action was impossible).,

Winograd's ©NL system introduced some very important
features for subsequent ¥#1L work. PFirst, the system was
programmed in HMicro-Planner (a subset of PLARNER discussed
later) and PROGRAMHER. PMicro-Planner allowed the
construction of the ™"blocks" database 1in which factual
knowledge and causal reasoning about the blocks and their

3.Howvever, as I have argued passionately elsevhere
{Kearsley, 1977a), I think CAY ought to be following a more
theoretical and less ad-hoc development.
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environment was stated via procedural declarations. Amn
examrple of such a procedural declaration for the dJdefinition
of a cuybe is as follows: .

(CUBE ((NOUN (OBJECT ( (MAN1FULABLE RECTANGULAR)

((IS ? BLOCK) (EQULDIMENSIONABLE ?}})})))
Actions were transformed into goal structnres which made use
of these procedural declarations. Por example, in order to
perform the action of grasping an object. the following goal
stack night be created:
(GRASP BT)

{(GET-~RID~OP ®2)

(PUT~ON B2 TABLE)
(PoT B2 (435 201 0})
(MOVEHARD (553 303 100))

which indicates that in order to achieve the goal of
grasping obdject BT, first check to see 1if BT is being
grasped already, then check to see if anything else is being
held (and if so GET-RID~OF it)}, which woyld regnire the goal
of putting the currently held object (B2) on the table by
moving the hand (the numbers indicate the coordinates).

PROGRAMMER was the language nsed t6 actnally parse and
generate language. It was based oh a systematic grammsar and
involwed a combined syntactic-semantic approach to parsing.
The manipulations of SHRDLU and the table with the blocks
were all simulated on a CRT screen. SHRDLU's vocabulary
consisted of only a few hundred words specific to the
"hlocks world®. The overall isportance of Winograd's work
was a clear-cut demonstration of the necessity of having a
very detailed representation of relevant knowleddge in order
to ynderstand langunage.

About the sape time as winograd®'s work was phblished,
Schank's (¥972) conceptual dependency theory appeared.
Schank's basic premise was that the key to langiage
urderstanding involved an analysis of a small number of
primitive actions such as grasp, move, transfer, etc. and
that all NL parsing should be conceptually based aromad
these primitives (hence conceptucl dependency theory}. An
erxample of a sisplified conceptual dependency diagram for
the sentence, "John hit Hary with a hammer.” is:

Mary

R
John &= PTRANS €— hamneré—l:

John

As this illustration shows, the analysis is byilt around the
primitive act (in this case, physical transfer, PTRANS), the
actors, and the object acted upon. This diagram can be
mapped directly 1into a LISP statement and would represemt
the coded form of this sentence in texas of concepts.

More recent ¥vork by Schank and his students (Schank,
71975) has emphasized the notion of “scripts® which are
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organized units of concepts about common or sgtereotyped
occurrences and sitnations {e.g., ordering food in a
restaurant, a bus trip, etc.}...Scripts provide dJomain
specific knowledge necessary for reasoning and inferencing
.which are essential in understanding language. Carremt work
by Schank is focused upon large units of informatiom such as
stories, conversations, or patagraphs, in contrast to the
early work which focused essentially on isolated sentences.
Recent introductions to NL resea :h are Charniak & wilks
(1976) and Chapter 6 in Raphael (197¢;.

The usefulness of this area of research to CAI is two-
fold. First there is the possibility of replacing the
standard Xeyword-hased answer analysis used in almost ‘all
traditional CaI languages (e.d., COURSEWRITER, TUTOR, CAW)
with a ®real®™ analysis based on meaning. This would relieve
the author of specifying complicated series of egunivalent
vords, probibited words, words to be 1igaored, etc., using
A¥D/OR logic. A1l that would be reguired would be the
specification of the appropriate concept and the  systenm
could deteraine correct paraphrases. This would not,
however, relieve the author from specifying the boundaries
on what counts as an acceptable answer, A partial answer, a
misconception, etc. And since I think this constitutes the
najor vork in constructing answer analysis, |real
understanding or comprehension would not really be guch of
an advantage. Thus, this aspect of the use of WL in CAI
seems relatively aminor. ‘

The second use ¢f natural language comprehension is
nore fundamental. As should be evident, in order to have the
capability to understand and comprehend & student's response
in a particular subject matter, a very complete and detailed
representation of +the subject matter must be programmed.
This ircludes basic  propositions, and their inter-
relationships on the basis of categorical inclusion or via
inferences/deductions. If this ¢type of knowlege base is
available, it is then possible to manipulate this knowledge
via @ifferent learning strategies {i.e., simnlatiomns, games,
drill & practice, socratic, etc.). Thus the actnal knowledge
would be essentially independent of tie mode of instruction.
Glimpses of exactly how this can be done are givem in 1later
sections of this paper. Suffice it to say here that the
availability of such a knowledge base permits the CAI system
to "understand™ what it is teaching, to build a model of the
student's state of understanding, and to identify
deficiencies 1in its own understanding of a subject. Clearly
this represents an impressive gain over OUL  current
generation of Ynon-intelligent® author languages and a step
closer to providing the full sophistication of a good
teachaer.

Another aspect of AI research on natural langunage is
work on speech understandiny systems. Like the work on %L




systems, the work on speech understanding has used ssall and
well-defined knowledge Jdomains. Por example, the HRARSAY
systen (Reddy & Wewell, 7974} bas been developed for the
task domain of verbal chess moves; the SPRRCHLIS system
(Nash-Webber, 1975) involves the task domains of lunar
geology and travel budget management. Research in speech
understanding tackles the same sort of problems of semantics
ard knowledge representation which exist in NL research with
the extra addition of a phoentic component.

.Wthile the practical application of speech understanding
resecarch 1s further removed than that of the RIL systeas,
this research could be applied in the CAI domains of reading
and language learning. More remote in time is the
possibility of using verbal conversation and bypassing the
necessity for written communication via keyboards. Rot omly
would this revolutionize the nature of terminal construction
and answer analysis procedures but it would also radically
altex the nature of the instructional interaction, for pow
the student would be able to interrupt and interrogate the
system during instiuction.

while research in both naiural languade and speech
understanding systems is still in 1its infancy, it could
alreadyY be applied to CAI work. Rany topics now taught via
CAI would be ideal for exploring natural language
interaction or speech recognition. Purthermore, CAI provides
an excellent testing grouwund for AI systems with its real-

world problems and difficulties.
¢/

Rule Induction

The study of rule formation and utilization in solving
problems, concept learninag. and upderstanding languade has
emerged as an important ar:a of AI research and overlaps
with research in cognitive psychology. 1In so far as CAI
depends upon or embodies a theory of instruction which 1is
based on the cognitive processes involved in the acquisition
of knowledge, research on rules is of considerable relevance
to CAI. In addition, rules have been enphasized in the
context of instruction in the work of Gagne (e.g., Gagne,
1966) «*

The work of Rgan & Greeno (1974} and Simon & Lea (197H%)
are attespts t0 pake comprehensive theoretical statements
about rule induction across the tasks of concept learning,
serial pattern learning, and problem solving. The basic
premise of these statements is that the knowledge structures

4. Elsewhere (Kearsley, 19763, I have discussed the
possibility of using rule structures to model individual
differences in an educational context. »
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used and acquired in performing these tasks are rule.* stored
in working memory. Such rules are abstracted or induced by
observing ohe or more exarples of their use. In the Egan &
Greeno analysis, attentior 1is paid to three distinctive
issues in rule induction: the kind of knowledge structure
which is constructed as a result of experience in a task
(and hence enables performance), the kinds of knowledge
structures that individuals need as Pprerequisites for
learning rules, and how the process of acquisition (of
rules) occurs. For concept learning they conclude that <¢he
acquired structure 1is a decision tree vwith nodes
representing tests of attributes for presented stimuli; for
serial patterns, the general form of the acquired stiructure
is a hierarchy of operators defined on amn alphabet of some
sort; and in the case of probler solving, ithat the general
form of the acquired structure is a hierarchy of goals {or
goal structure) involving transformations of the specific
features of the problen situation., Table ¥ is their concise
sunmary of their analysis of the three aspects of rule
induction for concept learning, serial patterns, and problea
solving.

‘.
s st — - W . e, Sy AP

) Insert Table 1 here.

- - - -—

Simon & Lea propose that rule induction tasks (i.e.,
concept learning, serial patterns) and problem solving can
both be interpreted in teras of problem spaces and
information processes for searching such spaces. Their major
conclusion 1is the distinction between tule induction tasks
and problem solving tasks is that the forsmer require two
problem spaces (one for rules and one for instances) while
problem solving requires only one space. Thus im a rule
induction task, the attainment of a solution is deteramined
by simultaneously finding an appropriate rule and testing-
all instances with it; in the case of problem solving tke
solution is achieved when a set of rules which produce the .
desired result is found.

Another 1line of AI research which contributes to the
study of rule induction is Rinston's (1975) research on the
learning of concepts in the "blocks world®™. The system was
able to induce simple concrete concepts of structures (e.g.,
arch, pedestal, house,etc.) fros ™seeing” instances and non-
instances composed on block structures it Xknew about. The
basis for Winston's system was a network notation
(implemented in LISP) which allowed the representation of
concepts and their comparison. The crucial procedure in the
learning of concepts was the analysis of ®near misses™ of a
concept 1in order to abstract the essential (and identify
non-essential) attributes. ®hile the Jdetails of how the
svstem worked are fascinating, it 1is sufficient for our
purposes to note the importance of negative instances 3in
concept learning.

10




TABLE !

Summary of Analysls of Egan & Greeno {1974).

Kind of rute tequised Actuired siructute Preraquisite knowledge Procen of scqulsition

Coﬂcopllual CImII:;ation: D?Ik?n m I , ‘ ot
Assoclative grouping nd which category ieature is Seanning Instsncet end noticing
{verbal concept! . Fresent. . Assoclations in semantic memory common swociations
Single-feature ciessilication ost single feeture
Multipte attributives fconnect “F K?::u.r:sw of or ablilty to dotect s«llee:tt:c::'und slimingtion of
struciure known)

Selection of sules or sssoclation
Con negthre struciure Londitional Mature ety Truth tabls combinstions of responsas 10 combinations of
"“flbu tes kn DWI'I] & leatures
Compiete clsssilicatory rule Festurss and combinetions c%';::‘l':;::‘:; :ﬂd modification of

—Berrch In sat of, known relstiony,
Aelationsl corcepts Test n-ary relationol festure Knowiedge of or abitity to detect within subsefs ordare * by

relations {relations in semantic complexity
Ansiogiss Conlunction of ralstlonst fectures | MHMOY for vertbal materialy) Note relstions end tet o alternas

tiva snswers
Knowledpe ol siphsbel, and - 1ecfion
or compuistion of retations
Sarme, next, and backward-next Scan sets of slamant: to Identliy
on sdjecent elementa chunks
Differsnce between adjacent Computs end stora yeauence ol oif- IS
Bjork sequences Sequence of interval relations elements, and same of next lerences; compare entries to -
raletions on :'i Itl.arenmd dateet sdvancing sules
Sama, néxt, s gckward-noxt
. ’ Find pariod of sequence, Tormuiate
on adiacent and separated rute, and tist on elements
Diiterences between djseant Identily subszguance chunks and
s‘::g:::u:l:g:'“om between elsments and between translorriations betwaan sub-
subsequances sequences
Intuce Fattern in ssJUenes of 1ran
tormasions, le s udirg modifics.
Sclution pafrerny for solving Structure of transformations de Space of problem states and sef tion of ditter . Osdiring and
problems fined on sets of states of tramtormationy conn. * Jrmationt to
. foat * .. it midily en-:
gort i peevizn, I necessery

Pl gy

Sequentist congepts: Trew structures of relations

¢t chunks Sequence ol chunks

{nterizaved sequences ol Intervel

Thursrane sequences falgtions

Restle hiersrchics! sequences

Q

IERIC

PAFullToxt Provided by ERIC




-

Yet anoth.r important 1line of :‘research on rule
induction is the study of causal reasoning and inference
nechanisms in connection with natural language work. A good
example is the work of Scharnk & Reiger (1978). Schank &
Reiger identified 12 types of inferences which could be uged
during or after the conceptual analysis of a sentence. Por
exampie, am instrumental inferenmce would occur vhen a
primitive act has been referred to and a probable imnstrument
of that act is inferred. Abelson {1978) in his analysis of
belief systems has extended the © study of infererce
rechanisss beyond the linguistic level to include inferences
about other peoples' 1intentions, roles, and plans. Relger
(1976) has attempted to show how "™copmonsense alogoritmic
knovledge® underlies both lamguage comprehemsion and problem
solving.

The 1implications of this wrzk on rule induction are as
follows. Prohles solving and concept learming are 2 basic
components of 1learnirng and hence an understanding of the
underlying cognitiva processes wvill be essential
contributions to a Kknowledge of how t0 teach these
components. In the case of concupt learning, this research
suagests that the presentation of concepts in th? form of
decision trees with emphasis on positive and negative
instances will optimize 1learning. The importance of
identifying positive apd negative atiributes has often L.en
stressed by educators (e.g9., Becker, Bnglemanni, & Thomas,
1875; Markle & Tiedmanmn, 1972). For problem solving, the
importance of ' subgoal generatioh and aeans-ends anlysis ij
terms of £inding a get Of rules which transfors the problem
space suggests the importance of hierarchical analysis and
presentation of problenms.

The explicit analysis of rsle induction in the Adomains
of concept learning and problem solving, particularly their
expression in coaputable formalismas {e.g., the General Rule
Inducer of Egan & Greeno), provides ‘the possibility of
building these rules into a CAI tutor. Thus in the case of
problem Solvimg in a programming lab for example, it would
be possible to have the system test or guide the probles-
solving of a student by actually soising the problems itself
{(and hence generating the nexassary  subgoals) or
alternatively, gemerate probleams «ccording to certain
specifications. This 1is of course yguite close to CAI
research in generative prograaming (e.g., Koffman & Blount,
1976) » In the case of teaching concepts, such a system could
arrange suitable ipnstances to build a satisfactory decision
tree representing a concent.

Pinally, a couputational understanding of indoctive
inferences, such as that emerging from current natural
language research has applications in the gautomatic
generation of hypothesises and gquestions. fThis is an
essential component of socratic {dialog) strategies and also
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wvould alleviate the need for the programming of fixed
evaluation sequences for all students. Purthermore, this
capacity would be extremely valuable for the generatiosn of
gquestions for domain or criterion referenced evaluation (see
Anderson, 7972 or Bormuth, 1970).

Programring Languages

31 research has probably catalyzed more novel software
development than any other contemporary branch of computer
science. In particular, 21 work provided the impetus for the
development of families of non-numerical languages such as
LISP, LOGO, and more recently, entire subspecies of goal-
driven problem solving languages such as PLANNER, CONNIVER,
QA4 (now QLISP), SAIL, and POP2 (see the summary by Bobrow &
Raphael, 7974}. In addition to providing the stimulus for
tha development of new programming languages, AI research
includes the exploration of' automatic programming and
pProqr am proving (verification) and also the study -of
prograrming errors and debugging. All of these different
lines of research 1in programming have relevance to CAI
efforts.

AI programming languages (particularly LISP and 1its
derivitives) provide very different alternatives for the
basic organization of CAI courseware. All major CAI
authoring langunages presently in use (e.g., TOTOR,
COURSFWRITER, CAN) are "™frame-oriented® (FO) 1in that they
provide for a basic instructional pattern?

1) Presentation of text

2) Posing a questiohy/problen

3} Answer analysis

4) Contingent branching
These four aspects comprise a single instructional "frame®
(even though they may actually span many ophysical frases).
Regardless of the initial orientation of the programeer, all
instruction will eventually ' adhere +to this basic pattern
since in fact this constitutes the basic data structure of a
FO language. Notice also that im a ¥P0 langunage instructional
content and instructional Jlogic are non—separable and
toagether comprise the data structure.®

In contrast, the use of LIsP-like lanyuages
necessitates the use of a semantic .etwork (SN} type of data
structure since the basic list structure requires tree-like
or network definitions.® The advantage of a SH type of data
structure is that a sophisticated, meaning-based language

% Por a similar arguident froe an inforsation retrieval
perspective, see Osin (1976} . '

6. Introductions to LISP are Jiven by Siklossy (1976) and
winston {(1977).




analysis is permitted; that the database canh be interrogated
as well as presented; and, most importantly, the systeam is
mintelligent” in the sense that it can trace its own
actions. Purthersmore, SN¥ languages allow a separation of
content and logic. These points wiil be elaborated upon in
the following discussion of student models and later in the
section on socratic systems. .

Self (1974) provides a demonstration of ' how AI
languages and methods can be used to implement %student
nodels™, i.e., representations of the hypothesized knowledge
states of the students. Use of & student model allows the
course of instruction to be guided by the sPpecific
comparison between the student's state of understanaing of a
subject and a complete understanding of the subject =matter.
Thus,:. individualization of instructional content &s not
handled via branches contingent upon guantitative evaluation
{(i.e., number of correct answers) .but rather pattern-
directed evocation of certain knowledge based upon
gualitative inferences about what the student understands or
misunderstands. This is essentlally eguivalent to building
in the criteria and inferences that a human ianstructor uses
vhen setting up branching conditions in a traditional FO
language. -

Self uses a version of the goal-directed- PLANNER
language to illustrate a student model. In PLANNER,
information 1is stored in basically two forms: facts written
as symbolic expressions, and theoreas which are syabolic
procedures for deducing facts from other facts. Thus, a
PLANNER database consists of two types of Xnowledge: facts
and procedures. MHultiple databases may be created allowing
the construction of plans and hypothetical situvations.:
Execution procedes via the computation of "goal structures.
In order to achieve such goal statements,” PLANNER
automatically searches the database(s) to +try and find
matching goal patterns (the so-called %pattern—directed
invocation® feature}. .

- —— - -

Insert Pigure 1 -here.

-
A

A fragment of PLARNER code from Self'’s program is shown
in the bottom of FPigure 1; this corresponds to the *dialogue
in the top part of the Figure. While this ®may be
inconprehensible to anyone unfamiliar to LISP~like
languages, some of its major components can be poznted ocut.
Statements 2 and 3 define the facts that Bontana is further
inland than Newfoundland and that Newfoundland is further
north than HMontana. Statement 8§ is a theorem (inferential
rule) which indicates that X 1is c¢older than ¥ if X is
further north or further inland. Statements 6-9 represent
another theoren which indicates how to derive a
contradiction between facts X,¥, and 2 in databases A ana B.
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1. Teacher: Which is likely to be colder, Newfoundland or Montapa?
. Student: Newfoundland.
Please give your reasons for answering Newfoundland,
Newfoundland is further north.
Yes, that’s true. Are you arguing then, that if you take any two
pla in the Northern Hemisphere, the one which is further north
ave the lower average temperature?
Yes.nl guess 50,
I'l} tell you pnow that Montana has lower average temperatures than
r;cwfoundland. Does this fact cause you to change your reasoning?
s, .
In what way?
Being further north isn't as important as 1 thought. -
Please try to be more precise. Would you. for instance, say thal if
you take any two places in the Northern Hlemisphere, the one furthest
south has the colder temperature?
No, I wouldn't say that.
Would you say that how far north a place is has po effect on tem-
peratore ?
No, I know it has some effect.
Yes, you're right. Distance north does afiect temperature. Yet, even
though it i5 further north, Newfoundland has higher average
temperatures than Montana. What must _this mean?
There must be some other factor.
Yes! Right! What could this factor be?
I don't have any idea.

PR

. (PROG (MT MS X Y 2))
. (LET F} FACT (FURTHERINLAND MONTANA NEWFOUNDLAND))
. (LET F2 FACT (FURTHERNORTH NEWFOUNDLAND MONTANA))
. (LET T1 INFER (X Y) (COLDER 7X ?7Y)
(FACT (FURTHERNORTH 7X 2Y))
(FACT (FURTHERINLAND 7X 7Y)
AETT2INFER (X Y Z M1 M2 A B)
(CONTRADICTION 7X 7Y 1Z ™1 M2 7A B)
(DB ™M2) (GOAIL (X 7Y 12) (USE ?B)
(DB ™M1} (NOT (GOAL (7X 7Y 1Z) (USE 1A))
. (LET S1 INFER (X Y) (COLDER 17X 1Y)
(FACT (FURTHERNORTE X 1))
. (DB TMT;
. (ASSERT F! F2 T! T2)
. (DB TMS)
. (ASSERT F! E2 SI)
. (DB ™MT)
. (GOAL (CONTRADICYION 17X ?Y 1Z TMT MS T! 81) (USE 12))
. (PRINT IS 7Y X THAN 72)

— Rt st St Reed ik ek

Fragments of dialogue and PLANNER code from Self (1974).
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Statements 10 and 11 are an assertion (fact) that something
nust be cold if it is further north. Statements 12 and 13
places the first tvo facts and theorems in the database of
the teacher; statements 14 and 15 put the two facts and
first theorem in the student'’s database. Thus the student is
assumed tO0 be m®missing the second inferential rule about
temperature and inland position. Statements 16 and 17
speclfy that a goal search is be initiated (directed to the
student) for the facts which satisfy the contradiction given
by the second theorem. If found, this is to be asked as a
gquestion. This corresponds to the pedagogical strategy shown
in the dialogue 1in the top part of the Pigure, i.e.,
attempting to get the student to learn both determinants of
temperature. When the studeni can satisfy this sequence, it
can be inferred that the student's knorvledge encompisses
this thgorem or rule.

Rhile +the details of this examkple may be rather vague,
it should be evident that this type of approach to CAI wonld
require the very detailed specification of facts, concepts,
principles, their interrelationships, aud inferences which
can be made between them. Doing so allows the development of
an "intelligent" system in which the wmeaning of the
student's A reponses are used. This example also illustrates
how content {(i.e., facts and theorems) and instructional
logic (goal structures) can be keep separate in a PLANNER-
like language.

Considerable research has been devoted to the study of
programming errors and d{ebugging processes (e.g., Gould,
1975; Mayer, 1975}, probably 1inspired by ®einberg?®s
pioneering efforts (Weinberg, 1971}. This research has
enconpassed the study of the frequency of different types of
programming errors, the difference between the errors made
by experienced and inexperienced programners, the effects of
providing podels or “mental sets" during - prograsming
activity, and the {ype of strategies and tactics used in
debugging programs. PFor a recent review of this research,
see Kearsley (1977b).

This research has odvious relevance to.the teaching of
programming and the construction of problem-solving
laboratories in programming. The work of Barr et al. (1976)
is particuliarly interesting in this connection becaunse they
have developed a curricualum which combines elements of Ax
techniques with aspects of instructional design. Their BASIC
Tnstruction progran (BIP) involves a- special BAsSIC
interpreter written in SAIL which provides for a curriculups
information network composed of elementary programeing
skills. BIP does not follow a fixed presentatiomal sequence
but selects problems via a task selection algorithm which
chooses problems incorporatind skills that a particular
student appears to be lacking. Figure 2 is a flowchart which
illustrates the logic of the task selection algorithm.
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Insert Figure 2 here.

The BIP interpreter also involves an error diagnosis system
vhich is tutorial in nature, although this does not appear
tn be as sophisticated as that of %ilson et al. (1976) in
the PLATO CAPS systen. )

Work on automsatic program deneration (also called
vrogram synthesis) and program verification {(e.g., Simon &
Siklossy, 1972) involves the attempt to design programs
which can actually generate other programs according to
svecifications and prograas which are capable of proving
that a prograr does what it 1s intended to do (as opposed to
determining this inductively via debugging). The facility to
take a student’s progranx and verify its correctness or to
generate programs according to a student®s specification for
an exanple would be very useful in pfogramming problem
solving labs. In the generative progranmming of XKoffman &
Blount {1976), certain capabilities for program 'synthesis
and verification appear to-have been provided.

LOGO represents another AI alternative Jo PO aunthor
languagas. LOGO 1s an extremely simple and powerful language
which is fully extensible and recursive. ' Along with"” L0GO
goes a particular "lassiz .faire"™ approach to providing a
learning environment as exemplified by the work of Papert
(e.g., Papert & Soloson, 1972). The important technique
provided by L0600 is that of a procedure -- namely the
understanding of something in terms of a computable
etpression. Papert (71977) has argued this approach most
strongly 1in the domain of teaching sathematics to children.
An interesting application of LOGO to autistic children has
been reported by Emanuel & Weir (1976).

To summarize this section, XxI prograsaming languages
provide some  alternative approaches <¢o the asnal
instructional logic of CaI author languages. This includes
the semantic network orientation of LISP-like langunages, the
problen-solving and inferential capabilities of the PLANNER~
like languayges, and the procedural orientation of LOGO. 1In
addition, research on progqramring errors and progras
synthesis / verification has many potential applications in
the teaching of programmping languages. '

Socratic Systaas
¥We come now to the area of Al research which is closest

to CAI acxivity in the sense that it is explicitly concerned
with instruction. This 1s the work oh socratic systeas,
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mostly conducted by members of Bolt, Beranek & Newman.? The
basic idea of a socratic system is that information exchange
should proceed via dialogue and guestioning intitiated Dby
either the teacher or the student (hence it is also called
"pixed—-inititive"” instruction). Socratic dialogue 1is the
paradigp case of individualized instruction and also is the
most demanding of instructional amethods for both teacher
{knowledge and skills) and student {attention, motivation).
Hence, the implementation of a socratic system is a very
challenging problem in artificial intelligence.

The first attempt to implement a socratic system was
made by Carbonell (1970) in the program SCHOLAR and the task
domain of geography. Carbonell ,pointed@ out the difference
between the semantic-network approach and the "generative®
CAI approaches. Generative CAI depended upon algorithaic
generation and manipulation and therefore excluded the
possibility of verbally-oriented subject matters whereas &
semantic-network approach suffered no such limitation. In
fact, Carbonellts rationale fbr chcosing geography was that
1t reoresented a verbally-oriented subject with essentiadly
no- algorithmic structure. Carbonell also pointed out the
potential contribution of a socratic systes to the
understanding of errors and misconceptions, and the eventual
need to develop general instructional strategies to handle
missing and  partial information, overgeneralizations,
confused facts, etc. Because of the waY answer analysis 1is
handled 1in traditional CAX languages, no such interest in a
general theory of errors has esmerged’from CAX.

Work on SCHOLAR has been continued , by Collins and
colleagues (e.g., Collins, 19763 Collins, warnock & RAiello,
1975; Collins, warnock &.Passafiume, 1974). Huch of this
work has involved the study of the cognitive processes
involved 1in socratic dialogues (i.e., reasoning from
incomplete knowledge, types of inferences, guestioning
strategies, reviewing, providing hints, ‘error correction,
hypothesis  formation, etc.). The nmost recent effort
(Collins, 1976) is an attempt to foreulate rules which
produce socratic strategies. The rules are formalized as 2
production systerm which could be programmed.

#hile Collins has been devoting attention to the
theoretical aspects of socratic d4ialogues, a production
version of SCHOLAR has also been 1implemented. The HLS—
SCHOLAR system (Grignelli, gGould & Hausman, 1975) is a
socratic system for teaching individuals how to use the NLS

7. Socratic systems are also called tutorial systems but I
shall stick to the label “socratic" since the terms
“tutorial®* has a somewhat different meaning in a CAX
context. )
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toxt editor. Most interesting about the report of their
project is their discussion of the problems encountered in
the 1initial implementation of the system. This included
probless such as the handling of spelling errors,
unanticipated synonyms, irregular syntax, lack of prograsa
knowledge, poor answers to aqguestions, and unanticipated
conteyts. There vere also numerous problems related
specifically to the use of natural languvage such as
anaphoric references, ellipses, indeterminate references,
and paraphrase equivalence -— all familiar problems in
natural landuage research. Here we see the need for pooling
of conceptual resources between those working on natural
language and socratic systems.

Another implementation of a socratic system is SOPHIE
(Srown & Burton, 1975) which involves an electronics
database. The nature of SOPAIE is similar to the problesx
solving system of Barr et al. and ®wilcox et al., except that
the task involves the debugging of malfunctioning electronic
equipment rather than computer programs. SOPHIE implements
many ideas on hypothesis and question generation and also
involves a dynamic simulator which dgererates and checks
information for questions and answers.

The "york on socratic systems incorporates many of the
various areas of AI research previously discussed: natural
language unjerstanding, rule induction and inferences,
studies in programming errors and programming languages. 1In
Ry ovinion, it comes the closest to providing truly
individualized instruction since both the mode and content
of instruction are tailored to fhe individual.

Conclusions

This article has surveyed some major areas of AI
research and discussed their potential importance to CAl
activity. There are other areas of Al research which may
have eventual relevance to CAI. Por exaaple, it has bheen
suggested that answer analysis can be considered a prohlenm
similar to those faced in pattern recognition, namely,
determining whether a particular answer matches a desired
answer. However, in terms of any immediate interaction
hetween AI and CAI, the four areas of natural language, rule
induction, programming, and socratic systems are most likely
to lead to an interchange of ideas. Possible applications of
the research in these four areas has been specifically
mentioned in each section. By way of conclnsion, we will
consider the general problem of applying AI work to CAI.

Individuals involved 1in CAI represent heterogenecus
backgrounds and perspectives and hence have differing
orientations to CAI activity. Thus, Just as AI gmeans
different things to different people so CAI represents a
variety of puUr poses. One group are the media and
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instructional specialists who see CAI 1imn terms of its
potential for research 1im instructional design. Another
group includes psychologists who consider CAI as a fertile
medium or tool for the study of cognitive processes,
individual differences, testing procedures, etc. those
involved in CAI from a computer science background tend to
see CAI in light of inforeation retrieval, data structures,
or other softwares/hardware characterlstics. Pinally, there
are educators from many different fields (e.g., medicine,
chemistriy, Physics, etc.) who have no. interest in CAI
itself, except in terms of their own subject areas. To this
latter group (which 1is probably the largest proportion of
CaI authors), Cal is really no more than a sophisticated
delivery sYsten.

’ This wide range 1in orientations to CAI means several
things. Pirst, different 1lines ©f research in CAI will
appeal primarily to certain orientations, e.g., programming
studies to those with a computer background. Secoandly, =wmany
features o©f CAI languages and systems exist because they
satisfy the requirements of certain grouaps. Thus, in teras
of delivering instruction, it is important that the systea
be reliable and provide qguick response time. Despite the
theoretical 1inelegance of traditicral frase-oriented CAI
author languages, they are easily programsed by amthors with
no prior programming experience. Purthermore, if CAI systems
are to be ‘instructionally effective, they aust provide
adequnate graphic capabilities and automatic collection and
processing of student performance data. It should be evident
that most AI research which is relevant to CAI vork (e.g.,
socratic systems) 1S not concerned with the type of features
which are very important from an educator's point of view.

so something of a dilemma exists 1in teras of the
exploration of AX technigues and ideas im a CAI context.
Unfortunately, the existing tendency in CAI seeams tc be to
accept this problem as an excuse not to pursue research into
alternate CAI methods. This is most unsatisfactory when +the
very rudimentary and primitive state of current CARI systesms
is considered. Purthernore, it seems distinctly enbarassing
to pme that some of the most important research im CAI is
presently being done in the field of RI not CRI.

#hat oould or should be done? Some Ppossibilities
include: :

*joint conferences which bring together workers from
AI and CAI. CAI wvorkers canm become aware of the
research in AYX and AI people can be exposed to the
variety of educational applications

*creation of CAI projects to explore certain AI
methods, languades, eic. in a research {(rather than
praduction) environment

N
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*selection of instructional contexts and applications
for research in AT

#joint AI-CAl research projects, encouraged by shared
funding
fome may feel that interactions between AX and CAI will
occur unaturally without any explicit need for planned
interaction. #hile I would like to believe this, I suspect
that without some deliberate match-making, AY and CAL will
proceed in blissful ignorance of each other.:
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