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. L 8 Abstract ;
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. This paper presents "rules," procedures, and algorithms intended to aid ]

0 . A

researchers and practitioners in the applicatiop of generalizaﬁility theory .

to a broad range of measurement problems. Majoi: emphasis is %iven to the
3 9 ~

. ¥ -
estimation of G study varxiance components, and to*the estimation and use of

D study variance comoonents for different objecfs‘pf measurement and different
~ » ’\ %

universes of generalization. Consideration is given to D studies in which

N . N Al M -.- .‘ .'.
the universe of generalization contains facets that are either fixed or

essentially iﬁfini;e, as well as D studies that involve sampling from a finite
- ' L ' . * v b N
universe. A notational system is introduced to facilitate.the discussion; and

’ . .y

each "rule," procedure, or algorithm is illustrated using designs that involve

varying types and deqgrees of complexity.
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"Crossed with."

"Nested within."

-

A facet‘ or a spec1flc condltlon
of a facet.

-
’

A set of conditions for a faget; or
the sample mean for a set of condltlons
for a facet. -

.
k]

"Generic symbols for any component -or
source. of variance, in a G or D study.

_ - . ‘ -

.

Facet that serves as object of

measurement. for some D study. . %

- N
1

Score effect for the-coﬁ?onent a.
Mean écqré,fo;_the component a.

Observed score analogue of v -

Observed score analogue of My L=

‘Random error.

Expected value.

Random effects variance component- for
¢ (given sampling from an infinite
universe) . .

G study sample size .for a“facet.

Size of univers~ of admissible obser-
vations for-a facet in the G study.’




D study sample size for a facet.

¥

. NN

Size of universe of generaiization
for a facet in ‘the D study. .

Mean square for «.

Expected mean square for «.

.-

. 02(1) : N Universe score variance for a D stufly. J
N o " - M * |
o2(a) . Variance of differences between’ob-

» - S - . - ‘

LT . . served scores and universe scores. s

° a2(8) *Variance of differences between
: ' opserved deviation scores and -
V .

. universe scores expressed in
O b : deviation form.

L 02 () . . Variance -of differences between
R universe scores and regression - o
\ ' . estimates of universe scores. .
' ’ E:oZ(X) o e ) Expected observed score variance.
’ & p2 . ) . ’ Ggheralizapility coefficient. = T
v . “ Main*effect index in Y. , -
- F Set of facets that are fixed in a
. . D study. )
P o ) . ) LT ‘o. .
"R ) ) " Set of facets that are randomly-
S . . 3 sampled in a D study.
© £(a) . ' - See Equation 4. _
. . * . -
rd(a]y) See"Equation 13, . CeT
- s * : . ) -
Q . . . . ¢ E) 4 .
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N -, Introduction” !

[]
%

Classical test theorv wrovides a very simple structural model of the’
- ' relationship between observad, true, and error scores. However, the siﬁpliéitv' .

"+ . of the model necessitates some rather restrictive assumptions if the model is

N ‘ Qp:be applied to real data. Generalizability .theory liberalizes and extends

) classical test theorzy in several important respects. For example, the theorv

°

N of generalizability QOgé not necessitate the classical test theory .assumption

< of "parallel" tests; father, generélizabiiitj theory emp}oys‘the weaker assumption v

PP *

of "randomly parallel" tests. Also, classical test theory dssumes that errors

s . of measurement are sampled from an undifferentiated univariate distribution.

~

By contrast, deneralizability theory allows for the existence of multiple tyres -

o

and sources of error’ through the appligation of analysis of variance procedures,

or, more specifically, through thevapbiication of the genpra; linear model to the

~

deégndability of measurement. Consequéntli, generalizability theory is ap-

p"cgblq to a broa? range of" testing and evaluation §tudies that.arise in

education and psychdlogy. - *

"

Background ard Terminology
The basic theoretical foundation for generalizability Fheory can be found
in papers by Cronbach, Rajaratnam, and Gleser (1963) sand Gleser, Cronbach,

and ﬁajaratnam (1965). These papers were followed by an extensive explication

of generalizability theory in a monograph by Cronbach, Gleser, Wanda, and ' .

Rajaratnam {1972) entitled, The Qépendability of Behavioral Measurements.

- . .
* -~ . . = L
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However, the use of analysis of variance approaches to reliability issues did
. N A

not begin_with the publ.ications of Cronbach and his colleagues, even though it

-

+is they who have moust clearly and completely formulated reliability isgues in |
& : o N

analysis of variance terms. Overf 35 years age Burt (1936), Hoyt (1941), and

»
Jackson and Ferguson®(1941), discusse rgis of variance approaches to

“+
v

~

reliabality. Subsequent contributions were made by_AIeiander (1947), Ebel (1951),

[ 4 .
Flnlayson (1951), Loveland (1952), and Burt (1955). Also, Lindquist (1953), --»
in the last chapter of his experimental de51gn text .discussed in con51derable
< <

deta11 the estimation of variance components 1n rellablllty studies. In fact,

in several respects work bv Burt and Ll dqu1 >t appears to ant;cipate the
development of generallzeblllty theory. Ad@itional evidence of the role of
énalysis of variance in reliability issues can be seen in the work of
Webster (1960) and Medley and Mitzel (1963) not long before, the original
publication by Cronbach et al. (1963) of the theory of generallzabllltv.
Although genereiizability theory borrows itsxstgtistfg;} models and

e . ) . ] o,
research designs from analysis of variance, there are some changes in emphasis,
w

terninology, and interpretation. For example, in'analysis of variance, the >/

magnitudes of variance components sometimes receive éirect attention &see, >
tor example, Va&éhan & Corballis, 1969), but the ultimate goal is usuaily a
test (or tests) of’statistical significance. In generalizahility theorf‘
interest .is focused primatily on the magnitude og variance components and,

to some extent, generalizability coefficients. Tests of statisticel significance °

receive less direct emphasis.
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“ . < - .
In qeneralizability theory, any observation on‘soﬁe object of measurement

y -

{e.g.y school, class, student) is assumed to be sampled from a universe of

observations. While universe and RgBulation are logically eqUivalent terms, here

‘the word population is reserved for the object of measurement, and the word

.universe is reserved for the conditions under which observations are made.

Any observations from the universe can be characterized by the conditions undex

.which the observation is made. The sev of all possible conditions of a particular

»~ - - . N |4
]

A S, , -
kind is ealled a facet. S N

Generalizability theory also emphasizes the distinction between G studies,

-

T “

which. examine the dependahility of some general measurement procedure, and D’
» . |
studies, which provide the data for substantive decisions (Rajaratnam, 1960).

§ ~
\

"For.example,‘the published estimates of_reliability for a college aptitude
; \ :

test are based on a G study.' College nerson«el officers employ these estimates
to judge the accuracy of data thay collect on their own applicants (D study)"

(Cronbach et al., 1972, D. 16). The orimary purnose of the G study is to

estimate components of variance, which may then be used in a variety of D

studies, The G study and the D study may be the same study, or they may be
e -

8§ .
different studies usinq the same design. Generally, however, G studies are
— . A Y

most useful when they employ complex designs and lzxge sample sizes to\proqide

-

T
4

Py

- 7 A e S
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stable estimates of as many variance components as possible.
\,“ *

¥ Based on the differenqe between a G study and a D study, Cronbach et al.

A Y
.

" (1972) make a 'further distinction between :;;\Ghiverse of admissible observa-

.
- x . . hd

L T

“xions and.the univérse of generalization. N

.

. The test developer or other investigatog who carried out a G stuéy

“akes certain facetc into consideration and, with respect to each " -
-

a—

facet, considers a certain r§§:: of conditions. The observations=

encompassed bv the pogsible coimbinations of cqnditions that tre'G

study represents is callqi the universe of admissible observations.

-

We may also speak of the universe of admissible conditions “of a
certain facet. A decision maker, applying essentially the same -

measuring technique, proposes to generalize to some universe of
. . :
conditions all of which he sees as eliciting samples of the same
T Lo d v . R ”
information. We refer to that as the universe of generalization.

13

The G study’can serve this decision maker only if its universe- of

admissible conditions is identical‘to or, includes the proposed -

universe of generalization. R&fferent decision makers may propose

*

. different universes of generalization. A G study that defines

? -
*

the universe of admissible observations~broadly, encompassing all ) .
v ’ P *
| ]

fh? likely universes of_éenerélization, will be useful to various

decision makgfs. (p. 20) ) . L.

Overview .
iIn this paper "rules," procedures, and algorithms are presented that

invelve a notational system, analysis of variance considerations, G studies,

and D stugdies.' In addition, all "rules," procedures, and algorithms are

X - .

illustrated using designs that involve varying levels and tyﬂes of compiexity.

R : 10 o
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"are confounded in a design that involves nesting. Nevertheless, this nota- »

Generalizability”
4

6

L3

The ndotatidnal system used here differs, in some respects, from that used’

in the Cronbach et al. (1972) monograph on generalizability theory. The
[§) A

primary difference is that the notational system for variancé components used

in this paper does not necessitate specifically reporting the effects that

Q - -
‘tional system does implicitly "carrv the meaning” of a nested component. _ In

most other respects, the notation used by Cronbach and his colleagues has been
E4

maintained or minimally altered. ) o
The terminology used in some analysis 'of variance literature is not always
the same as the texminology employed by Cfonbagh and his colleagues in discussing
.- ! AR \

‘ 3
generalizability theory. For example, the word "facet' in ¢eneralizability

theory has approximatelv the same connotation as "main effect" in much of the
, . ‘T"’- e ¥ * .
analysis of variance literature. Also, the word "component" in Cronbach et al.

-

(1972) is basically synonymous with the word "effect" in some analysis of
Variance literature. Cne of the purposes of this paper is to help practitioners .
familiar with analysis of variance literature to understand and apply géneral-

. - 9 .
izability theory. Therefore, some terminologid%l compromises are made here.

Generaliy, the terminclogv employed is that of Cronbach et al. (1972); but

- exceptions do occur, especially in initial sections that primarily treat

analysis of variance considerations. When terminoloqiqg} ambiguities arise
an éttémot is made to resolve them, or at least clarify tkem.-

The mafor bortion{of thi§ paver is devoted to a congideration of "rules,"
procedures, and algorithms for performing G studies and.D studies. Particular

~ 1}

emphgsis is/given to the estimdtion of G study variance components, anq_to the
> [

estima%ion nd use of D study variance components for different objects of

- .
t

measurement and different universes of generalization. Most of the discussion
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treats D studies in which the universe of generalization contains facets that.
- . N ‘ -
are either fixed or essentially infinite. However, consideration is also given

¢ \
to D studies that involve sampling from a finite universe of generalization.

There are some restrictions placed upon the treatment of generalizability
analysis in this paper. In particular, with minor exceptions, only crthogonal
analysis of variance designs are considered; i.e., designs that do ndbt involve

missing data and/or unequal size subgroups. Also, all designs and studies

involve only one dependent variable; i.e., this paper treats univariate gener:-
N 4
alizability theory, as oprosed to multivariate generalizability theery (see

Cronbach et al., 1972, Chapter 10). Finally, the "“rules," algorithms, and
~procedurcs are not intended to cover, in depth or breadth, the extensive treat-

ment of generallzablllty theory provided by Cronbach and his colleagues. Rather,

v
this paper is intended to prov;de researchers and practltloners w1th a set

-

~ of procedures to facilitate the application of generalizability theory to
. - . . [7d

.

a broad range of measurement problems. - .
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A Notational System and Analysis of

-

Variarce Considerations for g_Studies

The first steps in performing a G study involve the usual initial proce—

s

" ‘dures for an ahalysis of variance; namely, dcfining the model and determining

3
~

sums of squares, degrees of freedom, and mean squares ‘for eath of the effects

»
[N =

]
3

in the G study design. These issues are usually treated i ‘éxperimental design

text\‘tﬁ the context of specific designs. Here, rules ami%dgorithms are pro-

rx

N
LR
o -

;,Notation for ANOVA Designs
‘ ™I &
;*‘\“

Usinq the symbols "x“ to ‘mean "crossed wlth" and " to mean "nested within,"

.

- Ta) N
oy ~

,most common analysis of variance designs can be represented by a suitable sequence

. e - . o . .v\ P
N ,‘:'

A: of effe%t indices and Symbolstl In this paper, five different des1gns-w1ll be used

.

f

',»for 1llustrat1ve purposes: E»x i,ﬁp_x ix o, p_x (i: s), (p:c) x 1, and

(g-c) x (1 S: t). f;n Cronbach et al. (1972), pxixois called Design VII,

E.x (ifﬁj 1s(Design V—A,,and (p i) x i is essentially Design V-B ] r"he indices

N - -
N - ‘\" - <«

in these designs can be 1nterpreted as referring to a- person (p), a class (c),

d ‘ < ' . ‘. -

_.an item, (i) a subtest (s), an occasion (o), and a test (t) For example,

PR S
t -

3
e WU

N - . - R AN
B ‘. ,

(p c) xvi_ a:. be lnterpreted as meaning that persons are nested within classes,

\,« P

~

and both persons and classes are crossed with "items. The use of these specific

3 M ~

identifying words for each 1ndex is maintained throughout this paper; however,;

PIRR N

-

it’'is the nature of the deSign that is under consideration-—not the names’

o

N ~ .
iassociated with the indices.

AR + . N ° “ . *

These designs;have'been,chosen for two reasons. First, they involve dif-
? . ~ .

ferent types and‘degrees“of complexities in applying the "rules," and procedures

f «

.t

which will be presented. Second, these designs are typical of the kinds of

o N Ay

we

o
CEEE

“ .
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designs that do occur in testing and evaluation studies. Most of the classical
resilts from test theory come from a consideration of the basic design ﬁpri

persons crossed with items, p x i. The design p x i x g,(yhich Cronbach et al. .

-

(1972) treat in great detail, is a simplg.extensidn of this basic design. 1In -

‘many realistic situations, however, some degree of nesting is present. For R

example, it is Qery common for items to be nested within subtests, as in the

design p x (i:s). Also, in many testing‘étudies, persons are nested within

3
]

" classes, as in the design (p:c¢) x i, Finally, an extensive testing study ﬁay

o R " . .. C:
involve considerable nesting, as in the design (p:c) x (ifEﬁE)'l .-

e = . N g

::Main Effects 'and Interaction Effects ' .

B ' ) e ~ - . N
..  Figure 1 provides a Venn diagram representation for each,of the illustrative

N - T ~ N -

designs. In these Venn diagrams, the mean square for a main effect is réprgspnted

~ .t

. by a circle (of any size), and .the mean square for an intqrabtion effect is rep-
1 . * - .

. * . - i
resented by the intersection of two or more circles. (The words “effect" and )
~N - -

1

"cqmponent"'are bésicélly synonymods terms; however, we will use the term "effect"

-

hgre because the phrases "main component" and "interaction component”" are rare ir

~ .

_ ANOVA literature,) . : = : ——

v Insert Figufe 1 about hefe
. c 4

. P -
. 14 4 - .
- -

; © Notation for Main Effects. A main effect can be represented by

2
N Lid

( main < first A . second . o
effect : nesting : nesting Poees G . - -

index . index (es). index (es)

- 3
i -

I1f the main effect is not a nested main effect, then it can be represented by

the main effect index, only.
. .

For example, in the design p x i, the main effect for persons is denoted
~ M . - . aw .

. P, and the main effect for items is denoted i. 1In the design (p:c) x i, the

l'.

.14 . / | - _
/
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.10

(nested) maiﬁ,effect for persons is p:c, where the main effect index is p, and

the nesting index is c. Similarly, in the design (p:c) x (i:s:t), the (nested).

main effect for items is i:s:t, the (nested) main effect for subtests is é;g;

and the main effect for tests is t. In general, the number of main effects is

» ¥
N M

equai to the number of indices in the symbolic representation of a design.ZQ

In some monographs and textbooks, main effects are ecalled treatments, factor
or facets. However, not all effects are easily interpretable \as treatments, and

the word "factor" is apt to cause confusion with factor analysis. Here the terms

¢

"main effect” and "facet" are used synonymously,, unless otherwise noted.

-
-
5

-

Notation, for Interaction Effects. Each interaction’effect can be repre-

-
-

sented as a combination of main effects in the following mannexr: .

Combination of . Combination of " /. - Combihation of N
{ “Main Effect : First Nesting : Second Nesting . : ..
Indexes Indexes . Indexes

=
.

subject to the constraint that no index may appear more than once in any inter-

4

-

action effect.
% " i ’

L3 ? e

Tables 1 - 5 list the main effects and interaction effects for each of

the five illustrative designs using the notation defined qbobe. Consider, for
.- T : ) .

example, the design (p:c) x (i:s:t) in Table 5. The interaction of ¢ and t

is simply ct. The interaction of E_ana _}ﬁ:is cs

—

it that is, combinations of
ég« are nested within t (see Figure 1). Similarly, the interaction of p:c.and

i:s:t is pi:cs:t; that is, combinations of pi are’ nested within combinations

v .
. . R 1

“‘: . ]_Ei | : . 7 .

bid

kY
S, -

2
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of cs, which, in turh, are nested within t. Also, note that the interactions
of p:c and ¢ would be pc:c, but this possibility is ruled out by two occurrences

of the index c.

“n

Nested Effects and Confounding. Cronbach et al. , (1972) usually use a

sequence of confounded e'gfects‘ to ’iden’f:ify any main effect or interaction

- L4 -

effect that involves nesting. For example, if data for the design (p:c) x i

o

were analyzed as if the design were the completely crossed design P XxXcx _i_, then

the effects woild be p, c, i, pc, pi, ac:i:", pei; but some of these effects would

be confounded. In particular, the main effect p:g,'in the design (p_:_c_)‘ x i,

'represeni:s the confounding of two of the effects, p and g_g:_,' from the design
. L t

) ro. ~o s _ae N : ' » * * [' . : ) R ) i L3 ’
- P x ¢ x 1. Similarly, the interaction effect pi:c represents the confounding .

> 3

of pi and pic. o

.. . . r‘ Y . .

Whenever 'a design involves nesting, there is some degree of confonnding.
. . v . AN

. . . . 1
In designs with more than one nested main effect,; or. more than oné level of

‘nesting, the representation of a nested effect by its confounded effects
f I'4 . . .

leads to considerable co\mplexity. This is one reason for using the .nesting .
. N ) i . 4
operator in representing effects. Nevertheless, it is frequently useful to

¢

" know which effects are cé_nfoundéd’ in a nested effect.

- Using thefnot.a}ting}‘ntroduced above, for any nested effect, the effects ]

that are confoundéd are ail combinations of indices in the effect that include

!
v

the main effect index (or indexes). For.example, -in the design (p:c)«x (i:s:t),

the effect s:t represents the confounding of.§_'and st. Similarly, the effect

N H (Y Vo 3 . * 3 3 3
i:s:t represents the confounding of i, dis, it, and ist; and the effect pi:sc:t.

)

reprééents the conf\dﬁ‘hding of pi, pic, pis, pit, pisc,.pict, pist, and pisct. ]

S

2

v

- , ..

VE

v
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In general, for any nested effect, the nmnber:" of effects that are con-

founded is:

) - number of nesting { - . -
2 Exp indices . .
in component

I3
3

For example, in the design (9_:_(_:_) x (is;s:t), the effect i:s:t has two nesting

-

indices (s and t); and, ther:'efo}:e,-'.this effect has [2 Exp (2)], or four con- -

.

founded effects. Similarly, the effect E:g_s_:v_t_;l';as [2 EXP (3).], or eight

.

. -,
3

confounded effects. st o

- .

. - e L. e "
Degrees. of Freedom. For any effect (main effect or interaction-effect)

.

that is not neste&, the degrees of freedom are the product of the (2_"- 1)"5 fo

the indexes ih the effect, where n is “the G study sémblegsiée associated with
’ . - . Y - . ’

PR

an index. -For ény nested effect, the degrees of freedon- are:
]

<@

Product of (_x_i_ - 1)'s ot

-~ a
Product of n's <
v - for nesting indexes for main effect indexes
) Lo . " = J N <

Degrees of “rseedom for the effects in each of the five ,i;LJ;ust-ra'tive designs

are provided in Tables 1 - 5. For example, for ‘the design (p:c) x (_J;._:‘E:_t_:_)l in,

Table 5, the Qegrées of freedom for the main effect s:t are Bt (g_s ~ 1). Also,

foz: the main effect i:s:t, the degrees of freedom are

n
=tL
interaction effect pi:cs:t, the degrees of freedom are n n n (n_ = 1){n, =1).
. — _— ‘ -<c—s—t -p =1 .
! N . ~ —_—-—— = = .
<@ *

Dl ) M A
1 . . '3
L

r

!y

:(n. - 1), and for the

2

S




Strhctural Models

Consider the

person p.in class

design (p:c) x i.

c on item i can be

‘Generalizability

) ™

i3

Fot this design, the observed score for N

represented by the strnctﬁral model :

: X. =u+ LR (T MR TIE N m + Nt oe g
i pi:c H+y ic UE. Uiﬁ U U itc e 1) o
where arand mean in’the universe;
: - . .
) effect‘for person p in class c; ,
- effect for class c; . '
= b . ~ - : . "1
- : . . . A
N N effect  for item i; . \ - -
P T My = effect for interaction of class & and ‘item i; A7
! 7 - . “ . . . .
- . uoi-cm = effect for interaction of person B_in classag_on itemﬁi; and
.*, , - o=l . Lot i Y >
* ~ e = random error g '
- . b % .
’ , (Note that the structural model for each of the five illustrative designs is- 7
. provided in the footnotes to Tables 1 - 5.)
] ‘ o ' k o .
< - ) : ) . M o s .
" ) )?4\% ° K {'e-(. . . "
Score Effects. Equatlon 1 prov1des a decomposltlon of the’ observed score
L] .
~ - Q’ & -
X, in terms of 1ndependently estlmable effects wh1ch we w1ll call score effects. =
N I3 Tpr:c v : "
' Speclflcally, we will say that u A is the sqore effect :or the component a.
Sznce the Words "effect" and "component" are bas1cally synonymous, one could also'
- . speak of the score component for the effect a, however, the author generally <
;prefers the former gerbal description because it avolds some verbal amblgu1t1es
fi=  "in.subsequenf sections. 4 ' ; .o : ) S :
Y
VY .
. &,
9 PR o - ‘
o . * s {
ERIC - - -7 :
o e S . - .
ra - 1 - ;(r - - .
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. = The usual assumptions concerning score effects, such as those represented. .
in Equatlon -1, are well documented in the literature and in experimental design

texts. Flrst, each effect is assumed to be 1ndependent of every other effect

» Second, in order to make the est1mates of the-effects unlque, the expected

P

value of each effect over any of its subscripts is set equal to zero. Consider,

for example, the effect M n in Equation 1, and suppose we take a sample of n,

classes from a universe of N " classes. The ‘universe of classes is called the N

- i
S

universs of admlsslble observations for the class facet. The second assump-

: tigm,implies that the sum of u % over the unlverse of. N classes is constralned

-~ -.- v

.to be zero, and the sum of the estlmates of MY over the sample of n, classes

x

- -— —

is, constrainéd~to be %ero. However, it is not necessarlly true that the sum

o

N -
- RN

: of u n over the sample of Ec classes is zero. Flnally, note that Equatlon 1 ','t“

.involves no assumptions about the dlstrlbutlonal form of the errors.

i ‘

[

Assoc1ated w1th each score effect is a unlque .

s

Mean Scores ,

B

mean score. For any component @, the mean score- 1s the expected value ofothe

" observed score over all indices not contained in a. Note that‘for any facet

(i.e., index) the expected value is taken over the universe of admissible obser-

vations, and the sympr “eﬂ' is used to define expectation. For example; from

-

ot ) .

. équation 1:
h@ T =wtu_ vEuNEU s ’
iP_-C ) :iC c :E.C <

r

That is, u ‘o is the expected value of X ise over all items in thé universe of

admissible observations. ) :

Note, in partlcular, the d1st1nctlon betWeen uE c& (score effect) and

'uR ‘e (mean score) Notatlonally, a score effect always has a tllda () assoc1ated
with it, and a mean score does, not also, the term "mean score" in thls context
. 19 L




-

Qe

e

®

. = v . . . N
should not be confused with an observed mean score for a sample, or a universe

.
.

*
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B
=
"

‘in terms qf-.fean.scores.

V\“\

, score for a particular D-study, both of which are discussed in considerable

detail later.
_Using this notational system it is easy to express any mean score in

terms of score effects. In general, for the component «a,

~

Sum of score effects .
for all components that consist . ¢
solely of indices in a ) .

u (2)

[
'

For each component in the design (p:c) x i, Table 6 reports équationsrfor mean
. : Wl N .

scores in terms of score effects. Converéely, score effects can be expressed’

e L ~ .

'

=Y

1 Tk
—_— —-—

. Insert Table 6 about here ST -

> - _:‘- -}/’

Algorithm l: Expressing a Score Effect iEfTermé of Mean Scores.

The following algo;itﬁm één be used with any design to express a score effect

1

as a combination of mean sco

.I‘
res.

Y * "
Let o be a component with t

nesting indices
. PN

~

and m main effect indices; then uaN,~the score effect associated with «, is

Sl
.
H

equal to

Sseg g: uar

4

.

-t

«

<9

O

ERIC

PR A 1 7o providoa oy cruc [
R -

Step 1: Minus the mean scores for components that consist of the t
nesting indices and m = 1 of the main effect indices;
~ ’ . ) k s -
Step 2: Plus the mean scores for components'that consist of the

t nesting indices and m - 2 of the main effect indices;
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Step i: Plus (if i is even) or Minus ¢if i is odd) the mean scores )

for components that consist.of the t nesting indices and m - _:_L_

L4 k)

of the main effect indices;

N R .
- . ~ ) .

.

~

. The algorithm~ terminates with Step m; th_at is, with tlie mean score for -the

.
L%

shet

O

FRIC

Aruitoxt provided by Eic:

A

component containing.only the t n_es.ting indices. If there are no nesting

N o ..
S

‘indices in the component &, then it follows that Step m results in adding or
- - « d - — -
1Y : . . .t

subt¥acting M. .- .o . . .,

»
x &

Consider, for example, the component pi:c in the design (p:c) x i. This o

S

.

E"omponent has a single nestin'g index, ¢, and two main effect i,nfiexesc ::_f'anig A
i) . ot
Step l in the algor:.thm results in subtract:.ng uE and uc from up:. ic ! be‘oause

—-
- : -

both p:c and ci contain the nesting 1ndex, c, and 2 % 1 = 1'matrn effect index.-

“ . K “

Steg 2 results in adding uc to the result of Step 'l, because. ¢ is the o,orﬁponent >

~
. < — -

o

tha§ contains the nesting index, c, and 1 - 1 = 0 main effect irdexes. There-

fore, - : s
’ . 3 M =
~v . 1 \‘ \ - ¢
=y L =y -y . tu . -~ e .
43piic . Tpizc G piC ci c N
3. y o \"\:) ‘ * . . o ! .,
e L
. - For eacn‘*'compone-'xt in the design (p:c c) x i, r.t'able 6 reports eguations for’
\score effectr 1n terms of mean scores. . . co Yt .
- ., " . . »
X Ve “\‘ N e L) .::'-
Sums of Squares3 ' . . :

~ - . ~

-

~ For e\ék\omponent o, the mean score u has an observed score analogue,

wpi;:h we denote, Similarly, My v has an observed score analogue Xa'b .

v

For'example, in the désign (p:c) x i, yc': is the observed mean score over the

~ . 1}
-

in clags ¢, and ch is the ‘observed score effect

N




score effects). Kirk (1968), among others, uses this second procedure exten-

. . . ) Generalizability B ‘
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Ne -

o . ?

" for class c. The relationship between My and U&W is identical to the relation- .

|
ship‘ﬁetween R; and };m. That is, Algorithm 1 and<fqnati0n 2 are applicable to ‘
.o |

-

observed mean scorss and observed score effects through replacement of ua, ua%,

and u by 7;, 7;&, and 7: respectively. In this terminology and notational

system the "sums of squares" calqﬁlated in the perforﬁance of an analysis of

>

variance are, more correctly, the "sums of squares" for observed score effects.

Al

)

. There are two'well-knoﬁn, algebraically identical procedureés for determiring . %- 3
. . " v 1.

~TsT -

the sums of squares for observed score effects. The first procedure entails a

.
- «

direct applicétioﬁ of the observed score effects. See, for example, the last column
< i N o« ’ - N L Lo

of Table 7.for éhevdesign (p:c) x 1. -, o N »

LN

¥y

- - . . . -~
- e e e o T e S e Tl G T S e e Bt e S s

Insert Table 7 about here “‘

.
&

- J - —— N 5
-

o

AThis procedure is, at least conceptually, the simpler of the ‘two. However;

a computationally easier procedure involves using the sums of squdres fer

observed mean scores (to be distinguished from the sums of squares f-: observed

A
]

Y

sively. In general, the sum of squarés for observed mean scores, for the component -

A 5
.

- Q, i:é ~ ’ LA ’ - .,‘\

= L . ‘
(XJ= @z X, o o 3)

R

whére the summation is takeﬁ ovér all indices in «, and f(a) is the number of

' ébséfvations,useq to calculate the mean for any one of the levels of a. s

{
[

- N

. Specifically,

.
-

1, if a includes all indices in the:design; and, otherwfsa,
fla) = the product of the G study sample sizeés (n's) for .he (%)

y
.

(\indices not ifcluded in «a. ) ‘ ) oy
N B ¢ ‘
. Y

By 2 3% .

-~
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The quantities [R;] for each of the components in the design (EFEj x i

are reported in Table 7. Table 7 alsoc provides the sums of squares for Qbse}ved

;g score effects expressed in terms of the quantities [R;]. Note that the above

. . _' 3
."ﬁ;‘ terminology directly implies that [Xa]N is the sum of squares for observed

"

.score effects, for the component a. Furthermore, Algorithm 1 and Equation 2 are’

eppliceble to the quantities [R;] and [R;]N through replacement of Hyr HoVr

‘and v by [R;], [R;]N, and [2], respectively.

I"

score effects) associated with the component a is: . o t
- v‘ 'v . ’ ) ' 4
ss(a)=[X v, or .. o (5) '
:88(e) = E()I(X V2, - " SN O
: . ’,e s . ) b
where f(a) and-I have the same interpretation in Equation 6 that they-+have in
Equation 3.
“~ . Equations 5 and 6 are applicable to calculeting sums of .squares asbociated
L > : - ' ) g .
= . ‘s
3; _ with any component, whether or not it is nested. In.addition, for any nested

Ihe S

component, the sum of squares can be obta1ned by .adding the’ sums of squares

-

V' for the confounded effects. For example, in the design (g.c) x i (Flgure 1

l

and Table 4), the cofnponent g_ c‘representé the’ confounded effects p1 and
-(

pic, which are independertly estimable in the design p x ¢ x i. Therefore,

-

to obtain the sums of squares. for g_ c, the data can be treated as if they

’{& L
- came from the design p x ¢ x £ and the addition of the sums of squares

[ ' .

associated with pi and pic results in, the sum% of squares for gi:c.' This is

a ggry useful procedure for performing a G—study having nested components,
= - o\ ¢

oy

-,

-
e
-

¢

' especially when available computei [Yograms cannot directly accommodate nested

~ -~ '
\ : *

designs. N

From the above development it follows that the sum of squares (for obser%ed,

*

Y ::
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\ G Study Considerations and the Estimation of Variahce Components N

‘ ' ! for the Random Effects Model . :

-

. Whereas, classical analysis of variance Qrocedures typicglly emphaéize *
.. . .

. F-tests, generalizabiliﬁy theory emphasizes the estimation of variance zompo-

* . nents. According to the most recent edition of Standards for Educational &

-

Péychological Tests (APA, 1974): the “estiﬁa;}on of clearly labeléd components

.- ‘ .

»
.

of ‘score variance is the most informative outcome of a reliability stﬁdy, both .
Tra . 2. - v

: 4 “ . “ :
for the test developer wishing to improve the reliability of his instrument e

o

td M r

R T

and ‘for the user desiring to interpret test scores with maximum understanding"*
> - L

(p. 49) . - - . . N . . . .-
. ) " N ot > ~ ‘ - .
Variance Cbmponents--Notation and Terminology . T - .

The variance component associated with the component' a is, by definit%ion, the:
1 b ., ¢

variance of the universe score effect for the cpmpoﬂent a. Consider, foraexample,,

.~ the desian P x i, which can be represented as: : .

X . =p+pv+pn+ Nk e ; . 7) .
pi T MT MR T MY Tt TR 7
. . LT : ¢/ .
where ¥ = orand mean in the universe,
. u v = effect for person p,
R ? O ‘\ v ?.
uiw =: effect for item i,
- ]
. . . . . ' . *
upiw = effect for the interaction of person p with itkm i, and T .
, e =, random exror. L, . : .
N ’ 1Y

- Ny N . = . ’ -0 G.."
The variance for the comvonent p is denq;ed\o2(uﬁ?x< which is abbreviated o?(p). , .
. J . 4 2 .o J - A
This is, oz(ﬁg'is the variance of'upm, over all persons in_the universe t

»
-

4

-

o

f

. i D




n

S will hot do so here. As another example, consider the component p__ c in the

" sent this variance component by a2 (E’i'Eic'E)' which explicitly indicates both

* - " \'
. ] A ) . ) . . . C

-~ N ."
: « Generalizability
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(or population) of admissible observations. .

Similarly, OZ(E) is the'variance of the component pi; or, more specifically,
the variance of up_i'\' in_the universe. However, 02 (E'_) is confounded with
random error variance. To account for this confoundiug, Cronbach et al.
(1972) denote’ this variance component ¢2 (E,_ej. Using the, notational system "
discussed above, the component that consists of all indices in the design is

always confounded with random error. Therefore, lt is not‘ necessary to expli -~ °

itly indica*'e this confounding in the notation for variance components, and we

design (p:c) x-d (see Equation 1l and Table 4). Here, the‘variance of this A
N - T A ! N Jn-":“,

' com_oonent is demoted 02 lﬁ:c) . Cronbach et al. '(1972), however, repre-.

,‘_‘ e

x

S,

‘the confounding resulting from the nesting of pi within ¢, and the co.nfoundingf-‘

~ . -
MY

of random error with pi:c. 7 z. g
- For the design p x i (see Equation 7), the variance of in over all persons
and items is: .l o ) , ]
o0 . 3 - :
)2 AN BRI RS
o? (X ,) g (x - 1) . . -
. up—- P.'l * ’ ~ .

= o2(p) + 02 (i) + o fpi) . : IO
T +9 : ‘)

. ‘
“s . ¥
[

Since the variance components in Equation 9 are non-negative and independent., N

>

none "of them can be greater than the max:.mum value of 02 (xl?i) . - If, for example, .

- . 4 . -

items are scored (0,1), then no variance component can be greator than 0.2., Lhe
. . ( K -

maximum value of Oz(xoij - In effect, each variance compcnent in Equation 9

~

-

o5

e e
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o . . L . .
represents that part of o (Xéi} uniggelz'attrlbutable to the component. (This,

of course, is not true for mean squares.) Furthermore, since %E;:is the observed
score for a single person and a 51ngle 1tem, the variance components in Equatlon 9
are for a single person, a s1ngle item, and a sxngle person-ltem comblnatlon,

respectively,., It is both usual and highly advisable to report G study variance

N

components for single observations based on sampling one condition of each

E

facet. These G study varlance components can be used easily in subsequent :

D studies that 1nvolve sampllng any numbar of cond1t1ons of each facet

~

There are several procedures that might be used to.estimate varlance compo- '
. . ; . . o .
nefts. For exampze7“eornfield and ‘Tukey.(1956), Cronbach et.af.‘(lQ??), Millman

-

'and Glass {1967),\and mosF experlmental design texts (e e Kirk, 1968) discuss

\ pusiy [}

procedures forvobtaunrng the expected value<of mean squures in. terms of varlance

components. . The regh;\lﬁg set of equatlons can be solved to express estimated

.

3
“-

variance components 1n\ter§s of mean squares (see Endler, 1966) Alvo, us1ng
\

’ these procedures, expectedzmean squares and estlmated variance components can be

. Y - Y
<,

obta;ned for models other than the random_effects model These procedures,
however,.are often more generél and more complicated than the requirements of
a generallzabrllty ana;ysls d;mand: For'example, usually aéG study does not
directly require, expected mean squares. Furthermore, it is usuall} best to
perform a 6 stuily under’the assumptlons of '« random effects model.

o~

T The terms "random," "flxed‘" and “mlxed effects" are common in theé

-
[y

context of analysis of var1ance, but they have been ‘used less frequently in

A -

the context aof generallzablilty theory. In the usual terminolody of generallz-

g ablllty theory, a facet is random if conditions of the facet are randomlz

sampled%from an infinite (or essentlally infinite) universe of posslble conditions

! . . .
? e

for the facet.

~
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T the design is a mixed ‘effects design.

-
g

)
S,

~ N .
. <
————————— s . - A . s ow

-? v

- Generalizability
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R

X

-

size of the un.verse for the facet, then the facet is random if n

22 .

Notatlonally, lf n is the sample size for some facet, and N is the .

’

< N > o,

“If all facets are random, then the ‘design is a

* A facet is fixed if n

b
.

~ L.

random ‘effects design.

is a fixed effects design.

SN -

N.
s

Similarly, ;fpall_facets are’fixedl then the design

®

-

Tf some facets are fixed and some random, then

r\ *

For a G study it is almost always best

e

-l . . . S
T - . - N
to estlmate va? ance components under the assumptions of a random effects mode L, T

. - ts

data can be used easily in subsequent_p studies that employ random, fixed,

O

- - - -

B AThe var1ance components resultlng from a random effects analys1s of G study

ox

S

mixed models

The only 1mportant exceptlon to this general rule 1nvolves

-

e v

. 'random,sampglng from a f1n1te unlverseJ whlch is treated 1ater.;

»7
-~

Algorithm 2:

-

Estimation of Variance‘Components for Random Effects Models.

~ @

t ~

- ~ N

- ~ 3 CEC ;

Another procedure for estimating wvariance components~entails the use of

This procedure (which is illus-
o

Vénn d1agrams (see Cronbach et al., 1972)

E

RIC

B A v provided by R

-

[

A_trated—}ater}—1s—quIte—usefu1 when the random effects model is employed 1n a

12

deslgn that 1s relatlvely uncompllcated However, t e Venn dlagram approach

o
- v <

The following ’

™\
y ~ 1is rather d1ff1cult to use with more complicated designs.

algorithm ‘reflects the Venn diagram approach, but it does’not requiregthe use
- . ¢ [, . g .
diagrams. © .. : " . N v o,

‘Here,, it ddes

.-

Assume that o is some component con$isting of E'indices.

‘not matter whether an index in_a is, nested or not.
. . N + " -

1
In general, the estimated - o
R N ' R . . e ‘“‘\ . - N
,» . value of the variance of the component a, for the-random effegts model ~is: .
- T NS . . w0 T R <
. 7 AR 3 ‘\ - . o ’ v Iy
N . L}
' - ) . . ,‘ \ ‘ ne . v Ty 'S : .o /"/ Al
S : : K P T P
. e . 2 | 1 some combinatign$ . \\9
: D6 ) = e S,
] " f£(a) "|>of mean squares . , : R
! ! . - A .
. /, - - R . ; .
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A . & e - L
. . . . - .. ¢
where f(a) has been defined in Equation 4, and the appropriate combinatian
J° . of mean squares is: _ . LTeT L0
‘ ) - ) . ' . T . :
_‘ . ° . '
8 ¢ . “
. Step 0: MS(a) .
A LN - - ' N
. tr -
- . T .
Step 1: Minus the mean squares for all components that consist of . )
the k indices in a .and exactly one additional index (call .
’ . & o R N N N
. . . the set of additional indices A); ’ ; -
e | ) . ’ : = .; x : %
" Step 2: Plus the mean squares for all components that consist of . .
. - . N . . N ) N N ' ) . v
S ) .- the k indices in « and any two of the A indices;.
L3 =8 = ,
Step 3: Minus the. mean squares for all components that .consist of Co
Cam ‘the k, indices in ¢ and any three of the A ind;'.ces; i - .
¥ ' i N ) T
) ’ ~ ) > < ~ " N 3
. . - Step i: Plus (if i is even) or Minus (if i is odd) the mean squares - o
. .- - for all .:oﬁ\ponents ‘that consist of ‘the k indices in & -and
L v i 2 . .
. . any i of the A indices; s e T
= e - co,w L ) x
. '\/-——-\/ . ‘ N N
s s . . . Y = , .
" 1 M . ~ - . - L
. - . . ‘. . . " —
. N . b ot ! v
B The algorithm terminates when 'd step results in no mean squares added ox, ‘
. 0 > > e
= “ o, N 4 : . s . ' &
- - 4 .
L ’ subtracted. i i T . :
¥ R - . v b "
- s <
B -~ L .
. \ o, . - . L
- 4 N a
Ay ‘v..‘ N 3
[’ o — -
Cx e . s : ~ v ’ N
N . a ' y .
E : < .
. ) N » * . - ‘
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_For some components .no steps are required. For*examole, the estimated

-~

variance of the component: that contains all’ indices in the design is simply

. .

the mean square of that component Also, except in "uite cc:'.’xpiicated designs, -

.lt is rare that more thanv two steps are required to obtain the est:.mated .

~ = -

variance component in terms of mean squares. The actual number o£ steps

(<]
+

required for any componerit in any design is q - k, where g is the total number
i . Bt

' »

- of indices in the design.

'rables 1 - 5 provide equations for estimating the variance of the compo-
\ RN

nents in each of the five illustrative designs, assuming the random effects

model. Cons:.der, for example, the component o = p_ c. in the des:.gn (E c) x i..
N . ‘s

Since all indices ein the des:.gn are included in o, f(a) = 1 and Step 1 results,

in no mean squares subtracted from MS(L e); therefore, 62 (pi:c: c) MS(pi:c). .

(

For the component a = p:c in the same des1gn, f(a) is simply n . Step1l .

results in subtracting only Ms(& c) from MS(R ¢), since pi:c c is the only compo- .

_sample sizes for the in?i‘ices not included in‘c is n n.. Step 1 results in

nent in the design that contains a¢ (i.e., p:c) and one additional index (i).

-

Step 2 results . no mean, squares added. _Therefore, .
» . |
9 .o . , _
§tp:c) = [MS(p:c) - MS(pi:c)/n, . - R XS

N a wn -
For the component ¢ = ¢ in the design {p:c) x i, the proddct of the .

—

subtracting both MS(p:c) and MS(ci) from MS(c). Step 2 results in adding

bad
J . I

p_M__.:;'('p_J';:_c_)i Step 3 results in no hmean squares subtracted. Therefore,

- .-

- < %
¢ - - * 3

2 y . » . * .
6 = [MS(c)' - MS({p:c) - MS + MS(pi:c)] .
(c) = LMS(c)’' - MS(p:c) - MS(ci) + MS(pi:c /229.1_4_

’

- - - [ . oo
.

Insert Figure 2 about here

-

<7
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; rlgure 2 uses 'venn dragrams to 111ustrate the estimation ‘'of the var1ance
of'the three components dlscussed above. In the Venn dlagram apnroach, a mean
. P bl . .
square for a main effect is,represented by a circle; a mean'sqgare for an inter-
( B
actron is represented by the 1ntersection of two 7r more clrcles, and a varlance

component is represented by a part of a circle that usually looks ilke a

. phase of the moon. More speclflcally, a part of a orrcle representq f(a)Oz(a)

The Venn diagram approach to determining estlmates of variance components is

qulte useful for relatively simple desr%ns, such as p_x i and (p:c)-x i.
However, this approach is not p0551ble with some compllcated de51gns, and

this approach is difficult to employ with desrgns that 1nyorve cqnsaderable

nesting, such as the design (p:c) x (i:s:t).
[P . :

- - '

Algorithm 2 proyides an estimate of thé ﬁagnitude of a variance component--.
_not .its€ statistical sSignific#nce. Even if-a vaxiance cémponent is not

statistically significant, it is an unbiased estimate, and.it is better to

[ ~ L
-

!

" . + T -
—use—it,—than-to-r i i ¥ 3 " Nevértheless, °

- .. - R - By

- . . . - . R

nents, like other statistics, are subject to sampling
) <. SN

~

estimated varianfe com

variation. ig. topis is LYutside the intended-scopé'of this paper, but

pertlnent 1ssues are treated by Cronbach et al. (1972, pp. 49-56), by ) '

’

‘*Searle, (1971), and to some extent by Scheffe (l959)‘and winer (1971) if, -

~ -

however, Algorithm 2 results in a negatlve estimate-qf a varlance component,

. then the use of eithexr Algorithm 2 or the Venn diagram approach is questionable.
. S L

B

Procedures for treating_neqative'estimates are discussed by Cronbach et al.,

(1972, pp. §7). One suchlprocedure involves use of expectzd mean squares.

oy
%

Expected Mean Squares ” -

Aithough a G'study usually does not require expected mean squares, it
LY - i - )

is easy to obtain them for the random effects model using the notation introduced

Nt

. e
v . N v c .
M -
. -

L
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n this paper.

. ‘ / , - - A ¢ x .
square assoc?ated with the component B is:
: p

3
-

EMS(8) - =

2

2

A (a)oz (@) ;

a

’

Lt

%
® >

In general, for the random effects model, the exi)ected me'an”

?

Ao
" (20)

-

vhere o is any component that contains all of the indices in g, E(a) is .défined

. . T . ! . . -
by Equation 4, and 62(a) is the random ‘effects -var:i:ancé component for a.

]

L

£ e

o

Considef,’ for example, the component p in the design p x “(i:s).

From

. Pigure 1 and Table 3, it is clear that the components that contain the index

P are P, ps. and PL’-.’ §_. Applymg Equat:.on 4 to these components given f(g) 1ns,
" - £(ps) = n, . and f(pi:s) = 1. ‘-!rher'efore, -
.‘ O N - , . ." ;‘ E
= 2 (pis 2 . 2 ‘ z. 31 -
EMS(p) = o< (pi:s) 'f-ﬂio' (Es,_)..+ 2.5_-.9'.%6 (g)‘. (11a)
. rl . - . rd
Similarly, ) o >
) * d e (3
, v - 2 3 . + + ) 2 2 . , .
. Elde(s) g% (pi:s) ﬂi (ps) EE.G (i:s) "+ n n—o (s) ) ‘ (11b)
- EMS (iis) = 02 (pi:s) +n o2(iss) ; ) ’ (3dc) »
- I B — - ¢ . . . R
: EMS (ps) = 02 (pits).+ n o2 (ps), ; . ’ (11d)
7 ' . .
EMS (pi:s) = o2 (pizs) . b , (1le) .

’

.\‘

-

B3

Perhaps the most important use of expeotea mean squares in a G studS( J_s to

estimate variance components when Algorithm 2 or the Venn diagram approach

.

PR

results in one or more negative eéstimates fox-‘ variance components.

Cons ider .

5

~ -

" for example, the expected mean squares prov1ded by EquatJ.ons 1lla - 1lle for the

v

P x (i:s) design.

Equat:.on 1lle can be used to est:.mate o2 (Q__ s); and then

¢
.

~

Equation 114 can be used to estimate ¢2(ps).

.
»
o
- T

3

31

If the estimate of 02 (ps) is .

~

o
o
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;\ YueL ) o
negatlve, then zero is substituted for the negative estlmate, and this zero
is carrled forward as the estlmate of o (E_) 1n all, other expected mean square ,’ -
Th1s "plau51ble SOlutlon" to the negatlve estlmate problem is * | .
. .

) ) LY u" : ' '

* ~ - . .

equatlons.
suggested by Cronbach et/il,x{{;72, PP. 57).
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D Studies for Random, Fixed, and Mixed Models ) -

¥

PR ..
. .~ . - il
»

. . . I . . ) , o
s .The primary result of a typical G study is the estimated random effects

~ N 1]
. - A .

variance céygonent; for the G study design. Tiese G study variance ;ompoﬁents'

! . . - s
are for s;ggle observations based on random sampling of one condataon of each
. 'A-",, . . R > - Y v
- 4 n . f .
v facet from an infinite universe of admissible conditions (or observations) for
e . . * . .

. the facet. By comparison, a decisign maker will want to use these results in

-

P = : -~

some D study that involves its own_sample size,_g'., and universe size N' , for
. . A

-each facet in the universe of generalization. 1f, for example, N' + @, then

»

. *

the facet involves sampling from an infinite universe of generalization; and if_

M

) N - . . ~ . Xk. ox
. ; n' = N', then the facet is fixed in the universe of generalization. Here and
P o oo M N . N ¢

.
]

ir Cronbach et al. (1972) n refers to the size of_the sample and N to the‘siée of

.
- '

¢ . - -the universe of admissible observations from the G study. Similarly, n' refers
to tHeQQEmple size and N'.to the size of the universe of generalization defined
A - ’ , . ) Al
- by some D study.

.

¢ . - -

In performing a D study, then, the decision maker must specify, directly

-
a

or indirectly, the sample sizes and universe sizes *for each of the facets in , .
. . . - - N = ;'

>
. Z
E

the universe of generalization. 1In addition, the decision maker must specify

I ‘

. the object of measurement. It is usually tlie case that the facet for persons,

~ . . x

or some aggregate of persons (spbh as a class), serves as the object of measuremen

e inaD sfudy. Howeves, any facet could serve.as the object of measuremerit

- - :
(see Cardinet, Tourneur, & Allal, 1976). Suppose, for example, that the design

N AFS

(prc) x i were used in the G study, A D study might use persons, items, or class

o
-

. .means as the objects of measurement. _In some literature the terms "object of

measurement” and "unit of analysis" are used synonymously.

- e

Ea
~ [

. . a -
B g S

) " (3

[

s . 1

t
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However, recently the‘unit of analysis issue has been viewed primarily

- . LS

- “in the context of chooslng an aggroprlate unit of analysis (see Cronbach,

. ) Deken, and Webb, 1976 Haney, 1974b). This, of course, is an 1mportant issue,

but it.is outslde the scope of th1s paper. Our concern here is with. issues

RN
_in analy21ng D study data once the object of measurement has been chosen.

PN - - s
- ’

In order to avoid amblgulty, therefore, we use the term "object of measurement" .

' '

rather than "anit. of analysls ) ' ‘ Cas

-

*

- D Study Variance Componants

, . e Y s

Syppose agG study is conducted using the de51gn b * i x o. Table 2 '.;

~

orov1des the estlmated random effects variance components result1ng from such

e

. a6 study. A typical D study, assoc1ated with such a.G study, mlaht use p
as the_object of measurement. ‘For such.a D studv, the observed score for person )
g ) .

g; assuming an infinite universe of ‘generalization for the item and occasion
-~ - - . P)

- facets, can be represented as: ) S *
X =X = + UNH+ UG N 4 N o4 v o+ N+
p 10 H U H_- U_ UE— UE_ U__ U IO t(12)

—
e
L]
N 2
2 - . .. »

where experimental'érrorNE}is completely confounded wjth-ﬁDION . In Equation iz}

v

. : ' an upper-case subsoript indicates the mean for a D sfuly sample of size n'; i.e.,
% N ~ S — e —

. . oo N
N »

n'

= ) - uIm.= J%— N uim . . .
- ' . - Ei i"-’l - N ’
) ' . nt n' ) _—_-i_.—_q.-
- . i T - "-
' * l
- N andx =x = v T x . ’
. . , zz: zi: io
E &Ig Eiﬂg _i-=l 9_:1 R—— y
[ ~
- LY ", o4 "o+ | N + u v
where X jo S B H N.ﬁ_u +uv uEl uES } u Y .

- — ——

i -

34
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- bt 'ir

Noteathat here we use_ the abbrevlatlon X tec mean X 10’ where p is “the object

-
«

of measurement for the‘n ‘study. -~ . . ‘ e

-

. For each of the.score effects in Eqpatlon 12, the estlmated D study

&

‘var1ance component 1s obta1ned by d1V1ding the estimated G study variance com=
ponent by the freauency of sampling the effect within the object of measurement.
In general, the frequency of sampllng the-component o w1th1n the object Tof

: medsurement cqmponent Y)is: . . ~ *: v

.

1 if a contains only indices in y; and, otherwise
. i - } ’ Lo
dlaly) = : noT S « 3y
. the product of the D study sample sizes for all e

indices in a~that are not in y . -

-

\ For example, for the component p-in the D study deslgn represented by tne 5

N o

structural model in Equation 12, d(aly) d(gjp) = 1; and the estimafed D study

variance of the component p is 62(2)/1 = 62(59 For_the compongnt 7

o

I, d(aly) i ' and‘the ‘estimated D study var1ance ; - e

component .for I is 62(1) = szi)/n!. ?or:the.component I, gjaly) =‘§}EEJEQ

— . N -

i~

‘and the estimated p study var1ance component for pl is 62(pI)

*2(pi)/n}-

All D study variance cowponénts for the deslgn E_x i x o are reported in -

_ Table 8. It is'important to note that these variance components are for a”

_ random effects D study, i.e.; n! <N!'+ o and n' < N' > oo, It is also possible
’ . i —i 0. o .

3
— — — —

A4

to express D study variance components, in texms of a model d1fferent from the

random effects model. (See subsequent discussion of sampling from a finite
» N - 4
. b "y . - . . .
universe,) However, even when one or more facets 1s fixed in the universe
of generalization, it is usually more informative to use and report the random
. A g

3
4

_effects D study variance components.. Various combina*ions of these components
~ R A

provide the summary statistics typically used in a D study. The only important'

i

-~

*

-~

~
~
.
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exception occurs in the case of sampling from a finite universe.of generalization;

L [ . . an

" thisg” poss1b111ty is consldered 1ater. BN

y — .- : ; 1

[4}
{

LI . - N . P 3 - -~ - - . . >
» . . LT ) .
) Insert Table 8 abodut hexe &~ ° N ‘
¥ kS . * ¢ T ¢ > .
- -

¥ s P L
By convention, here and in Cronbach et al. (1972), D study. estimated variance
N DS . e

componer:its and summary statistics formed from them, are expressed'in terms, of

mean scores. For. eyample, 82(_) = 62(1)/n in Table 8 'is the study estlmated _ <

. Lo . —’\ -

v varlance component associated with the mean score for a sample of ﬂi 1tems. It

S

is also possible to .express, D study Variance components in terms of .total scores.
For_ example, the D study estlmated varlance component assoc1ated W1th the total

..score for a sample of 91 items is ﬂ;@z(l) In gennral, for the totaI score metrlc,‘n

— . . A -

D study components are obtalned by mulblplylng {rather than dividing) G study’

. . _variance components by the sampling &requency w1th1n the object of'measurement

. . (see~Equat10n 13). . . . . X .
P . s

-

D Study Summary Statistics . ) . -

D study variance components are useful in and of themselves, because they

-
~ - - N . ‘ -

b . provide a direct indication of cthe xei;tive magnitude in the D study. of each
po

-

of the independently estimable components 6f score variance. Inf addition, D study

variance components are frequently used to estimate one or more of the follow1ng. ‘

\ ‘\f
. 02(1): the universe score variance Q{\the object of measurement T,
- { - R . .
which is analogous to the true shgie variance in classical-

y test tneory;“ ) ’ ’ \< . |
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Aruitoxt provided by Eic:

EN

- Og(A):

Kl

02(6):

- b

The following equations provide =

“ g . Generalizability s
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L]

the e;pected observed score variance, which is the expected
3

value over design replications of observed deViation scores;
\ \ LN
. ¢ T o . ) °
‘an intraclass correlation coefficient, called a coefficient

which is analogous'to a reliability

coefficient in classical test theory; : ' -

( .
of generalizability,

Y - N ) * k]
- -
the error variance for making comparative decisions -among’. !
¥

the objects of measurement (e.qg., persons), which is analogous

- - —

to the error of. measurement in- classical test_theory.' "The

o

error § is the discrepancy between the observed deviation
) [ N X ) [ e 'o ) )
score and the universe score expressed in deviation forfn"
f

(Cronbach et al., 1972, p. 25).

.
. - «

L} ——— .

the average error variance w1thin an object of measurement
(e,g, person), where error is defined as the difference be-

.

tween observed and universe score; and.

. o . D
.

the variance of errors of estimate'from the linear regression
of universe scores on observed scores; that is, qz(c) is the

variance of the discrepancies between estimated and actual

universe scores.

L]
»

me useful reiationships among estimates

of the stitistics introduced above: - : »

P
= 62(7) + Bo%(s)

- - " od
’

(14)

-

37 ‘ . <« . -

o

-

=t
W,

s
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fIn terms of estimates, Ecﬂ is a cons1stent estimator of 02(1)/€02(X), because

. Generalizability'“
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A g2 2. s '
3. (t) 8 () - Y . .
EO = /\ = - /\ - H - . : R (15)(
£l 8P + Eotie) | .
: e2(e) = 2 a- €0 - . LLoae)

. "
- N . N N .
~

Equation 14 is analogous to the:classical test theory result that the °

- ¢

variance of observed scores equals the variance of true scores plus the variance

of error scores. Note, in particularn that the error variance in Equation 14 is
2\ ) L, o . . -
E;G?ié)g not.Gz(A). fhe latter has no clear analogue in classical test.theory

with its emphasis on.parallel measurementsv(see Lord, 1962) ; however, Brennan and

.
L]

& . . 'C ’
Kane (in press-b) show that 02 (A) is related to a type of error variance discussed

-

by, Lora (1957) prior to the advent of generalizability theorY. Also ﬁrennan

H
and Kane "(in press-a, in préss-b) * show that cz(A) is usually an appropriate
N . » ’ %

estimate of error variance for domain-referenced mastery tests, whereas 602(6)

i

3 * . .

.1s seldom appropriate. ' -
_As implied by Equation 15, a coefficient of generalizability is defined

as the ratio of universe’scsre variance to expgct observed score variance.
\

6 (t) and Ec‘(X) are both unbiased estimates (see Lord and NoVick, 1968
/‘\

pp. 201-203). Also, the notation Ep) 1s indicative of the fact that a

generalizability coefficient can be interpreted as a squared correlation or -

intraclass correlation coefficient (Cronbach, Ikeda, & Avner, 1964), ‘as well

as an approximation to the expected value of the correlation between paixs of

measurements ‘(Cronbach, et al., 1972, Chapter 8).5

.In Equation 16, 6 (e) is strictly appropxiate only if the egression
=
equation for universe scores on observed scores is determiped from the actual

conditions used in the D study. Otherwise, 6 (e) in Egfation 16 is an under—

estimate of cz(e) (seeigronbach gt al., 1972, pp. 78-84). '

»
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In oxrder to determ:me wh:.ch variance componenn., enter each ef the summary

statistics defined above, it is necessary that the D study be clearly spec:.f:.ed.
A »

T ) , Here, ‘the pature of a part:.cular D study employmg a spec1f1c des:.gn will be

1dent1£:.ed in the following manner: D(YlvlFlR), where s

© ) s T -
. R

Y = object of measurement component (i:e.._the facet that serves
. ' N as the object ot measurement for the ‘u study'); - e
- - . . ¥ — A '
. . §_l_ = main effect index in y ; b .
o ) . . B &. ’ . . .
" . F = the set of fscets.that are f:.xed in the un:.verse of general:.zat:.on .
- (i.s., facets for which i"= ﬁ'.)\;\\and . T ) . .
! * AN ° S
‘ ' R =‘ti1e. set of random facets (i.e., facets for, which the D stu‘dy' T
£ . . . e
’ y&ontains a random sa:;:ple of n' -conditi from the universe .

N\ . )
ggﬁg}ra\lizatmn for the facet).:
} \ :’ . .

\\

Y e
. r/.({f $

L4
7 Vs s

£ me ni e universe of 'ge\neralizatlon. ) E . .
nli_ R v t-:pwi /! ‘. - .
/ - “L\n th notat:.on D(Y|V|F|R) \F and R specify the universe of generalization, i,
/ .
ar{d every i dex in the D study des:.gn is in V, F, or R., There are, however, two

restrictigns on _I?_(Y|\'_7'l_’§|3_). First, each-index: in'Y must be in either V or i
o <~ = - ' - 2
. B . i ' -
but not in bothyw _For example, if p:c is the object of measurement component Yy,
. . . ¢

- -4 H

- then p’might be in‘ W\ and ¢ in F, but ¢ could not be in both V and E. Second,

there must be at least ope index in R in order tc make the D study informative; P

/ ) ‘ . v

otherwise.the D study would not involve genex:a'lization over any facet.
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An Alcebranc °rocedure. leen D(YL}F‘R). <52 components that enter

~

\_‘\\ O - ('r),. Eo (X), Ec (6), and a (A) are, respectlvc_
.‘nﬁ‘ . \‘ - > ” N
S ty|v|ElR) = EX -EEX ' .7 an
N £, ", R YR )
a0 ‘ ¢ . ‘ ;
AN - * ° , \ .
. ‘ -
_ Xty|lvlelr)y = X - EX ;-\
. ' lulzlR) = X - T | 41
. © d(ylvlElR) = (X, - EX)) - (EX, - EEN\) " . (19)
Y v Y R Y zé Y
\ s ' ) \ \ . R N . »
. and A(y|V]E|R) = X, - EX. ;\ < Lo (20) *
. Y R Y ) . )
— - ¥ -
wheré each expectation is’ taken\over the population or universe. e

. . N\ - .
In Equations 17-20, %XY is the universe scoxe for the D study, and T("YIZIE_IE)

is, the universe deviatiox_m score. Similarly, X‘Y is the observed score for the

o -

D .study and X(YIY_IEIB) is the observed deviation score. . | . .
, . —_— . \
::: v Consider, gor example, the observed score Xp for t;he desigﬁ P % i x o in
. _- Equation 12, and suppi:se that the D study is P_(:!'IKIEIB) = Q(BIEI‘!L:Q.)' where
h the :syxnbo]:, T=" is us;ed to indicate that there ar:a no fixed facets in the

~

universe of generaljzation. ,

2
‘From Equation 17, the components that enter. o™ (t) are:

-
»

gEx tggex .
o B

EIO

- A 1(plp|-|1,0) =

]
1=
e

N ‘ T ‘ ) . Generalizability' =37
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. . - . “ 0 XN ¢
T . ° _and, ‘therefore, L. - . .

: »A‘* N ) h ¢
.mv - B \‘ < . . ‘ '. . ¢ N N L ' . -

o - -~ 62(1) = 0% (u "= 0?(p) ~ ‘ N (21)

. e A - ¥ - B : ’ .

S _ Ry : . T

. - _-f:‘:’-—q ) b * ' . A

o3 - - From Equationé18, the components that ‘enter k0o (X) are: A

- b - PR N <
Sy - - ) - )

i N 1§; \i PO .w’;@’ ‘ . ;"“ - o -:h«, . B ) *\« ©
SO Xplpl-lzoy = X - gx 7 e e
7 . : == 'r P - .

e ‘— - =— X ’ .“ 4 X
fo .t - B
. . o
B . . - < . R - .
. =N+ N, + N o+ R
; - T Mg T Mprt T Mpo” T Ypro” ' : :
’ > ’ - .
and, therefore, - . e . “
o . . , - ) ) . 2." 4 . -
Ec2(X) = o%(p) + 67 (pI) + 0°(pO) “+-0. (RIO) .. (22 ~
e T Ty -3 SV S 2 e b :
Note that o (X) is different from. the total variance, © (X), which is the
- " sum of all D study var'iancg, components ~(Jseg Equation 12).
- - o “ 2
3 From Equation 19, the components that “enter 5 ag(8) are: A
' . 57 = % " ;3
- splpl-lzoy = X - EX).- (EEX —EEEX) ™.
: - - - B _pEB 10® pro*
.~ =X —pr) -(n~u) v 3 s .
. i . ) . 40 P - - ‘;; -
.. . “ S . ~ '
s h ="1u.. v+ n 4 LNy e - .

, " ¥pr " Mpo” TYpro” .

~ 4 2 ~ '

’ . . AR \

. and, therefore, . - «
. . . . L]
2, 2 P
gc (8) = o (pI) + oz(g_g) + 0'2(pIO)- . (23)
. -l . _“ . ) . . ‘.- .t - . “‘ h
. From the above results it is clear that EOZ(X) .ezgia‘\ﬁ',the sum of 02(1) and |

- o : . AP .

. x; go' (8), as indicated in Equation 14. -

. R . . ‘ S 2 - ]

: , Finally, from:Equation 20, the components; that enter o  (A) are:

- . LT ' a . : 5 -
- 3 - . ) ) « o N N nos ¥ .A
. Q T - 41_ ' .
“ERIC+ ..-. "% .
);Z A bt . ; M Jl . . B . )




\'reflectea in the fourth column of Table 8.
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A 1,00 =X - EEX -
| plel-lz.0) =%, g% o |
A =._XE\— uE—

=y o+ pnv o+ N N oun v+ N
L T Sl P T e A

— —_— —

. v
~ .-

and, therefore,* . -

o (a) =

. o . . N
> . . w

- " - " ) ~ i
With the exceptlon of. &o (X), estlmates of the above results &re

56 (X) is most easily obtalned

™
A

and, of course, Equations |15 and 16 can be used to obtolp N

\gp nqa(e). . . | ‘l‘ -'“. .o‘.

?
Q.Notational Procedure. The procedure Lepresented‘by Equations 17 to 20

1s a stralghtforward appllcatlon of generallzablllty theory, but it does

o

1nvolve some degree of algebraic complexity.

&

A simpler procedure anOlVeS a

.,

direct appllcatlon of the notatlon for variance components used in this paper. l

If the D study is g(yly_l_fjg), then:

. 2 . .
variance components that enter go (X) are all variance components

(a)

‘ that\contain the index in v;

(b) variance comporrents that enter'oz(T) are all variance components
that contain the index in V and do not contain

V -
any index in R;

[3

variance components that enterx 562(6) are all variance componerits

(c)
_that contain the index in V and ohe or more of ‘the indices
in R; and

.. 42

o2(1) + 02(0) + o> (pD) + o2(pO) + 02 (I0) + o°(pIO) . (24)

mt
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(d) o> variance components that énter o (A) are all variance components .

" that contain one or more of ‘the indices in R.
} . € ° =

- o ) »
o . e oy

For example, for ghe model Equation 12 and D(Y'IVIFIR) = _D(p|p|-|_I_,O),'
.'Fl‘
50 (X) consists ef the variance components that contain the index B in V.

e ey 5 These components are o (p_), o (pI), 0 (p‘_)“'z and o (pIO), therefore, Eo (X)
“ is the result provided by Equaitj.on 22 Thetvarianc'e components that enter
o 02(1) are those.which contain a\"-_p_.an,d do _xlg_t_:_ contain an Ior an0O (the indices
. ‘in R). The oniy componentﬂ thet‘ s'etisfies the\se two ‘conditions is o?(p); o

. . N

therefore, 0'2(‘1:) eqnals 02 (p) , as specified by Equation 21. The va_riance
31 of

components that enter EU (6) are those which %contain a p, and one or bot
the indices I and-(_):. These components are o (pI) ’ »o (pO), and o (pIO), there-

0 . .

; fore, ,_ggz(d) ‘is thedresul-t_provided by Equation 23. Similerly, all variance

13

. components exéept '02 (p) contain either' an I or an O, or both; therefore, 02 (8)
" is.the' resﬁlt"provided by,Equation 24,

. . e

-

Illustrative D Studies

T In this section, the procedures for combining variahce components are

:‘dis.cussed with reference toc various D studies that might be used with each of
the five illustrat'ivé(designs. The results of appiy’i?qg either procedure ‘are :
presented ,.i.n tables similar to Table 8, and certain interesting and/or .

" ilIustra_tive aspects of these results are."discussed in the text. (In studying

these examples it is useful to refer to the model equations in Tables 1 ~ 5

"’ for the five illustrative designs.)

s S . it W

————— T ot . ot T e . i i S S T i S b

v -j(i ° ) ‘

L

L "
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The Design p x i.

<@
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for combining variance componenfs;oin th‘e pxi éesign. For D(p !gl-l_;_) '
“@lel-lp = EX, -EEx, - -
- L’ El.l ‘ ' . .
= %= p .
. P = '
. . . = u n, o ‘
-~ E H N
splpl-Ip = K= EX) - (3 6€XP_> :
o B 1= pL”
( D "_1_)- (up_ 1) . -
= uP_I'v ; and . ‘
A -jry = X - BgX °
o oelel-in =% BX . .
= x - U
P P :
! = u;-m + N ‘
Therefore, : '
3 P =’ (p) . .
302(5) = oz(p_I_) = cz(p;i)/n_l_.- i N
02(8) = 0% (D) + o°(pI) .
°2(i) i oz(p_i) . . * . o
= + ’ N
- n: n!
X = N

N L

‘Table 9 presents a single application of the procedures .
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= ?() + Eo2(8)

TH

Q
(N

=
|

' 2, . )
R o™ (pi) . ) c R
o°(p) + — i and | v - .

"

N e L - g

62l + 62(pLi/m;

v LI B

équation 25 is algebraically identical to Cronbaoh's (1951) Coefficient «,

.

" 'and, when items are scored dlchotmously, Equation 25 is, 1dent1ca1 to Kuder

.

and Rlchardson s (1937) Formula 20. However, the derivation of epz

<N

in Equation 25 does not require the assumption of classically parallel tests

with equal ﬁeahs, équal. variances; and eéuaI intercofrelations. Raéhex% the .
C
derivation of €¢> reqnlres the weaker assumption of randomly parallel tests. -

Two tests are randomly parallel if they both consist of a random sample of the

same number of items from the same universe. Also, Equation 25 illustrates

. the regulefity that forms the basis for the Spearman-Brown Formula for chanées

in test length. Increasing the number of items, gi , by a specified factor

leaves 82 (1).unchanged and decreases €<32(6) by the inverse of the‘factoﬁ.
Thls type- of regularity occurs because the unlverse of generallzatlon contains

only one facet-—namely, the item facet. For more compllcated universes of

»
~~

generalizafion, the Spearman-Brown Formula does not usually apply.

-

The Design p x i x 0. Table 9 treats D studies for three different

universes of generalization when the person p is the object of measurement.’

The first D study, ijlp[ - II,O), has been discussed in detail. The other -

two involve a single fixed facet, I or O.

L
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For example, for ‘D (él plzlo),

T(plplz]o) =X -
" o2 pok
RS Sl S
=u£’§a+u2}_'\a ; and
stplplzlo) = ¥ o R
)22
= (XR- ul‘q) - (uPl
= ugo.’\; + U&IQ-’\: .

That is, 02 (T) consists of components that contain p (the index in V) -and do

not contain O (the index in R)¢ whereas éOZ(G) consists of components that

lé&x

- T(p_lP_lQl%) ‘—- M+ ij@‘\’ ; and
szﬂggFﬂE? g

s

That is, 02 (T) consists of components that contain p (the index in V) and do

not contain I (the index in R), whereas eoz(G) consists of components that

contain p and I.

-3

LEN

Generalizability

™

-
W

-contain p and 0. Similarly, for E(p_lp_lg_ll) , e

41 a1 41

.In both studies, e 02(X) is identical to eo’- (X) for _Q_(glg_l-l_l_,_(_)_). “This .

. is a particular instance of a general rule; namely, once V is specified

g 0% (X) is unaffected by changes in the universe of generalization. However,

. . " ' ’ 2 .
the universe of generalization does affect o> (T) and €o (8). using

46
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R

v . ’ v
D(p_|3l-|I 0) as a basis for comparison, in D(E_lp!I!O) the variance component

0‘2(P_) moves from é:c (8) to 0%(T); and i» D(o|2|O|I), o? (DO) moves from

. . L -

o,
%

%o (5 to o (1).

. Gomg one step further, ii:' both I and O were fixed in the universe of
. S S
) generalization, then go (X) would be identical to 62 (‘l'), &3 (8) would be unestim-

- -

s able, and, therefore é o] would be unity. Such a result occurs whenever

&

there are no facets over which the decision maker qeneralizes. . It is for

»

this reason that R should contain at least one index for the D study to be

)
..

R o 5
informative.
N ’

As indicated in ‘Table 8, 02(A) never includes the variance components;ih .
. . 1 )

- 6% (1)%, and o2 (A) always includes the vardiance componerts in @ QZ(G). The
remaining variance components enter a2 (A) only if they contain an index in R.
" For example, in g\(p_lp_|£|g) , o2 (I) does not enter 02 (A) bedause this variance

component does not contain O. Fr?m another point of view, o? (I) dogs not

-

enter 02(A) because I is fixed in the universe of gene/ralization, and,

therefore, uI'\: is a constant for all persons.

L E . R

The Design p x (i:s). 'Ifable 10 presents illustrative D studies for a . -

.

-4
GEsign that involves a s.:.nqle level of nesting in the universe of generalization.

~

For the second D study, D(Y|V|F|R) D E|B|§|_I..) , with S fixed in the universe

N

of ,gen_eralization, . , | o

telplslp = €x - € &x - o
. pI

3




o

A. -‘

. o«

I3
~

_ ‘Yonsists of variance components that contain p (the index in z‘) and co fot -

Similarly, 502(6) consists Yof variance components that contain

Generalizabilit¥zamu. . .. mwt

}
{ \ ' ~ ‘
- - i " 43 . Ly

X - EX) - (BX_ - EEX)
= EX) (EX, gi

. s(plplslD

P T = £ : .
o ‘v ' T . . ”
’N ”
. = (XE.-H.I_:E) - (uBs_.- "g). N .
=ul:§_'\' ; and . .
’ A slty = X - EX
al.g!_l_ - %2 |
- =X -p . ——n
. P P—S— <
R TIE S T U -

I’ Yplis

- ’ .
In terms of the notational procedure for combining variance components, 02 (1)

contain ‘__I__ (the index in R); i.e.,

[y
~

o2(1) = o (p) + o

.i‘

) 502(6) = oz(ggzg)

and o? (A) consists of variance components that contain I: i.e., . X
2 2 g '

o (8) = o (I:8) + oz(pI:s) . .

1f, then, S is fixed in the universe of generalization,

6%1p) +.6%(ps)

8% (p) + 62 (ps) + 6°(pL:5) .

48




. colleagues (Rajaratnam, Cronbach, & Gleser, 1965; Cronbach, Schonemann, &k

g ) ; ‘ v } , Generalizability-
v , - ) : 44 n'. A \.“:

i . . . -

: ¢ * ' .
whereas, if S is a sample from an infinite universe,
Toa

g
A

s 6% (p) + 6°(ps) + 6% (pI:S)

[see D(p|p}-z,8) in Table 10].- ‘ . : . .

-

The characteristics and ut111ty of generallzablllty coeff1c1ents that

take stratification'of content into account, were studled by C:onbach and” hlS

-

.

McKie, 1965) shortly after their semlnﬁl work on generallzablllty theory

»

They concludéd that if the items in

a

then estimates of e .

inonbach, Rajaratnam, & Gleser, 1963).

a +est can be d1v1ded 1nto dlfferent content strata,

3

“reliability should take the stratification into account, otherwise, reliability

o

g
.

may be seriously underestimated. . : s
. * b}

>

<@

D Studies with Nesting in the Object of Measurement Component: Consider

€.

"'the design (E c) x i and the D study D(E_clgj |I)’1n Table ll. For this D study,
the object of measurement component, Y , is p:c and each .person is nested w1th1n
Since both 02(2359 and 02(5) contain only indices in

Y 4 N

Y = p:c, the D study sampling frequency for each of these G study variance com-

a particular class.

ponents is unity (see Equation 13).
’ % -

-

. contains a single fixed class and an infinite universe of items, from which a

sample of_gi items are drawn. Consequently, 0219) does not enter

o2(1), 02(8), 02(8), or §0%(X); for example, T

48

For this D study, the universe of generalization'
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T xpsdlplelD = X = EX . ~
. e clplelD =% 5 o ‘
% Tt -
) N =} ’\J+\ ’

p N
p:c Pl

(pI:c) i

and Soz(x'), 02(_2:3) + 02

i.e., 802()() consists of vairiancé components -that contain p (the index in V).

It is’part:icularly important to note that this D study' is not identical to

tHhe D study for the p x i design in Table 9 (see Brennan, 1975).

»

]
-

L)

Insert Table 12 about here

c
<

N

# N
- - an v an an -
)

o

Pable 12 provides illustrative D studies using p:c as the object of

measurement component in the design (p:c) x (i:s:t). . Although’ these D studies
-, . - =

use a considerably more compl.c: ted design, it is relatively easy to apply

=

the notational procedure Zor combining variance components. ’

B e e e S e s s A 4 4 6 S s A 8 S0 @4 A e

Insert Table 13 about here

p I . f L e

D Studies with Class as the Object of Measurement. Table 13 provides

illustrative D studies for the design (p:c) x i when the object of measurement
- . A} v - :;

is the class, ¢, or more specifically the class mean:
. .

X =X = + v o+ '\,+.F'\a+ '\;+ LI A
e Iic M ug,c. Mo My M1 uPI:S i (26)

—— —_— — — — —

where experimental error e is completely confounded with Mor.od
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o . o -
- » L

For the D study in Table 13 that involves generalization over both samples °

of persons and samples of items,

te g . L - A
. -

: Xele|-lpp =X - £X, 7. ~ - ST
— '9_ -_— . ’ .
=% ¥ '
= v + g, Y + 'y v+ uPr:é‘ ' . :-

.

02(c) + 02(pic) + 02 (cD) + o> (RI:c) +

)

3

o ]]

T
Q

=
1l

iled, Ebz(X) consists of compcnents that contain ¢ (the index iq V). &as noted
< x . -

‘ouély“‘goz(X) is unchanged by changes in the universe of genegalizatioﬁ;
but this is'no; true for 0211)} E02(§), or oz(A). "In particular, Table33.\\\\

shows that when generalization is over both persons and items, -
\ N

when generaliza%ioﬁ is over items, only,

2 2 . . . -

) o? (1) = (@) + 0 (@:g)

N

~

‘ 3 ».- P

equivalently, the\three
. ] \
\

estimate of the geieralizabiiéty of class means. That is, these estimates
c

differ with respect toeothe facet(s) over which the decision maker generalizes.

-
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The estimation of reliabili%y, or generaliZabil¥ty, when the object of

- ¥ . . &
measurement is some aégregéte of persons,.has been a pa
~ . ’.

problem in recent years (see Haney,_l§74q, 1974b). In te

icularly trgublesome
\\ of published ..

literature, Mediey and Mitzel (1963) and Pil;inér and his colleagues (Maxwell

& Pilliner; 1968; Pilliner, 1965; and Pilliner, Sutherland & Taylor, 1960)
. v - * L

-

- . \
appear to be among the earliest researchers to recogn

.

ize that_the_class mean

k4

is fréﬁuently the variable of interest, %ather than the score for a person.
More recentlv, large, scale evaluations, such as those undertaken for Head
N k]

Start (Smith & Bissell, 1970), Follow Through .(Abt Associates, 1974; Haney, 1974b) ,

and the National Day Care Study XStallingé, Wilpgx, & Travers, i976), have -

frequently required estimates of relia i}@ty when class mean is the object of

measurement. Similar issues arise| in the study of course evaluation questidn<
° . .

naires (Gillmore, Kane & Naccarato, Note 1l; Kane, Gi;lmore, & Crooks, 1976)

and studies of school effectiqehesg and accountabilify {(Dyer, Linn, & Pattbn,

!

.; . . .

i .

The liief&ture,does contain some approaches to the estimation of reliability

1969; Marco, 1974; Page, 1975).
for class means using classical tesf theory. For example, Shaycoft (1962),
wiley°(1970), and Thrash and Porteri(Note 1) developed ;hrée differeng coefficients,

each of which assume that an observed score is the sum of a true score and an

undifferentiated error term. However, eac¢h of these procea. "s makes different

specific assumptions about what constitutes an appropriate estimate of error

N +

variance. As a result, each procedure gives a different estimate of the relia-

-

bility of class means. ~ane and Bgenhan {1977) show that Wiley's coefficient

-is equivalent to ﬁpZ when items -are fixéd, Thrash and Porter's coefficient
/\ ‘ . -

is equivalent to gpz when persons within classes are fixed, and Shaycoft's

coefficient is an overestimate of &pz when persons within ¢lasses are fixed.




’ , o — e .
Gereralizability .
N 48
. * e /\ LIS

It is not_suprising that none of t}{esg coefficients correspords to epz when

- *

-

N generalization»is over both persons and items. Classical test theory does npt

. < . .
universe of generallizution.

¢ - ban -
~ -

’ } . R e

Insert Table 14 about here

> ’ . - -

¢ . ~.

~

\ * ° . e . . .
. - -

~ - .
. » - S

-~ »'

v *

Lo of measurement in the design (p:c) x (i:s:t). The reader cah easily verify the

° results in Table 14 using the notational procedure'for combining variance'’

components. D studies for this design_are clearly more complicated‘than those

© .

- for the (prc) x 1 de:sign;’ho'dever, in-large scale testing efforts involving
» .’. ‘\
analysis of class means it is frequently the case that data are collected .

L

according to rather._comrYicated sampling plans. To overlook this complexity °

. is to discard some amount of information in the data, and, therefore, to
- -
" .. potentially restrict the utility of the results. .° -
N
! * ) ’ . LS
. . )
£
» - . *
¥,
. . . 'Y
oy
* ~ - . ka
< L]
N ’
+
. A
- s
- . -
v . - - L 4
ERIC ‘ L - .

s . .
= #

specifically allow for differentiating among.sources of error in a multi-faceted

Table 14 provides iilustrative D studies using the class mean as the object

-
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) . . . Sampling- from Finite Universes e
1 N » 1 . ~
=% . ' ’ . - R
~r

* C . i "
To this point, our.discussion of generalizability theory Has, focused on

. . 2 .
\\.' D studies in which each of the facets in the universe of generalization is either .

* fixed (i.e., n' = N' < m) or essentially infinite (i.e., n' < N' - o). We' have
. .t %, . -
s e v X T

Ve « seen that:such D studies can be carried out using G study random effects variance
.J\\ . : R ‘ ’ ~ . LA ]
componasts?y " or, more specificdlly, variance components for single observations }

based on random sampling of one condition of each facet from an infinite universe
& L - ' . » . . e

._lof.admissible conditions, or obsexrvations, for the facet (N = =). It is also
* ¢ ™ vt -

- - . s - -

', ~ ° possihle, to develop equations for calculating G study variance components for

:~; r&hdom sampl:ng of one condition of each facet from a finite universe of admissible

. .
- .

’

. ‘ conditions for the facet (N < ). These ts study variance components are especially .

o =~ 3 .
~ 1

useﬁul in D studies characterizod by sampling from a finite universe of generaliz- )

. . - ) ’

v =

» ‘e . ~
' ationJ * A .
L] P
+

b Unfortunately, any’ vérbal dis s:cussion of different sampling procedures. in Los

4 ‘e

[

v, typica% ANOVA terms is apt to involve ccnsiderable ambiguity. The proble@*is?

»
" . .

I "pfimariiy evident in the term "random effect," which, in ‘traditional ANOVA

terms, actually implies "random sampling from an infinite universe," as opposed ’
. to no sampling at alf'(i.é., "fixed. effect"), or random sampling from a finite

universe. , It is particularly important to note that the traditional ANOVA
. ¢ :

. .
.
. - .

1notion of’"random effect" does not mean sampling from a finite universe, even
3 4 === -

4

though such sampling is "random ‘For.this reason we will restrict our use of

-

= the term "random effec*" to random sampling from an infinite universe.

(3N

G Study Considerations .
* ]
’ kg . * 'Y . [ * !
~~ In this section we develop equations for G study estimated variance -

.

components and expected mean squares for any model M. That is, these equations
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.o -

R :iare applicable tO’n <N<e (sampling £xom a finite universe of admissible obser-

€

. .
Lot vations), n,— N<o (flxed effect), and n <N + = (random effect). .
SR e § Estlmatlon of Variance Components. If 62(a|M) is the estimated variance

y

N .2 for the component a, glven a G study deslgn uslng the model M, then
. » « . - . )

<

A ' ' az(sj)- : : v
e ﬁréalM) = 6 (@) + I A 27 -
- : l F(B ) . R . . ) > V

-

T . .- .
: - S : . -
& . - c

. .
B N . .
. L ~

where 82 (a) and 62(8 )- are estlmated

G study variance components for the randem

.
L) ~

efFects model calculated from Algorlthm 2;

<

Y .
. . ©

. . . 8j~= any component, except d, that contains ell the indices in X
* . v . Ot . N . . N
. a and ) .

. ~ . o
. - - 4 I

or all.indices

) F(Bj) the product of the G study universe sizes (§js)1f

in'Bj except those indices in a. (28)

~

. AY
inction is made between~nested and non-nested indices. -

) = 82(a).

« As in Algorithm 2, no dist

°

If N> @

all facets, then 82 (8. )/F(Bg} is always zero, and 62(q|M

and, all effects are fixed, then all universe sizes (N! s) equal .

-

If, on the othe

R
A the sample sizes (n's) in the G study. In the case of mixed models, some effects

'

. are random and some fixed. For other models that involve sampling' from a finite

’ ’ universe for one or more facets, the actual universe size is used in Equation 28.

-~ 8

-

For example, in the design, (p:c) x i, consider the ccmponent p:C The

only other component that contains the indices p and ¢C is pi:c; therefore,
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ST L, 2 & e . R
. \‘\\-,\ ~ ' < + — e - ' . 7
: o 8 clu) 6% (pxc) . o :
‘ . Now, if i is a fixed effect in the G study, then N = E-i and
SN : A - =
e b e (pise) e )
2R 62(2_ cIM) 62(_p_;c) " .
N S - ﬂ-‘_‘ ) ." N ) = g
" If, on fhe other hand, iis a random effect, then the universe size is R
-cons:.dered :Lnflnlte and 62(3 clM) 82 (p:c). If n, is a sample from a finite
universe of size N., then the actual value of N is used. in the above equation.
—_— — } ' <7 N
' R Also, in the design (p:c) x i consider the component i. The. components’
e .. ~ ' . . : ) . ' . 3 o
e .that contain i are ci and pi:c; therefore, ' )
- : - - . - -
.. -
. il = gt g e Seie PR S
N o s = s + N N . - R
B 6 (_J.'_l.ti) . (i) N + N. N K . RN
AR s i = T . .
. if, for example, p is a random effect and ¢ is a fixed effect in the G 'study, then
\ ) * . . )
s - , 62 (Cl) . . A . ) -
o 62(1|M) = 82(i) + —_ Y :
;',-«:’\ . —'C . < .
’ <. . ' - ’, ) ' . . . .t
{
Expécted Mean Squares. ')Fo;' any model M, the expec.:ed mean square for the'f
T e / . DN N . ;
component B is: . ' '
“EMs (B|M) = Zh(a)_f_(a)ﬁz(o.) ; - , . . (29),
. Q¢ : ) :
., H
L ‘/
< Y yd
- 56 o,
- ‘ ~
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where « is any component that contains all the indices in 8; £ (o) is defined
by Equatlon 4; h(a) is the product of the terms (i - n/NS for all main effect

1n§1ces in o that are not 1n,B. and 62(a) is the estlmated random effects G study

a A
-

’vrariance EOmponent for a calculated from Algorithm 2.

[

.Fof the component g.iﬁ\tﬁe‘deSign‘pr>gif§), )
n © .
' )., = 2
. a = e et s . - — -
EMS (p|M) I 6% (pi:s) + ( ,Es)%_a (ps), + nyn 62(p) .

-

If both items and subtests are random effects, then both (1 - n./Ni) and
. “"‘l_'_

Klw- Es/gs) are unity and EMS(Ejg) equals EMé(gp for the random effects model.

;f‘items are random and subtests are fixed, then (1 - gi/yi) is unity,

“(1L-n /N) is zero, and, ST N
== . )
EMS (p|M)= 8% (pi:s) + n.n 82 . N : BN
EMS (p|M) (pi:g) + n;n 0% (p) ’ P ~
- If itens are random and the subtests_in the G study are a sample of size n_

LR ) -_—

-~ from a ginite universe of size N , then..

. . =2
S msplw 6(eis) + <1

, D study Considerations

2 2
n;6" (ps) + ;0,07 (p) -

%] 14

N

The discussion thus far has focused on D studies in which each of the

facets in the universe of generalization is either fixed Y{i.e., n' = N' < ) or

&

\ essentially infinite (i.e;,[gf < ﬁf’+ ®»), It has also been assumed that G
A . N -
study variance components are reported for an 'infinite universe of admissible

”

observations (i.e., N + ®). For most D studies these assumptions are quite
reasonable; however, a D study might invoive sampling from a finite universe

of generalization. More specifically, it is possible that, for one or more

¢

facets, n' < N' =N < =, For each such facet, the D study uses a
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sample of size n' from a finite universe of generalization of size N', which

3
L]

is identical to the universe size, N, assumed in the G study.

For D studies characterized by sampliné_from a finite universe, a limiting -

case occurs when n' = N' =N <®, In this case, the D study actually includes
all conditions of the facet in the universe of generalization; and the facet

is fixed in the universe of generalization. Another limiting case occurs
¥ ~ N )

when'n' < N' =N *>®, In Qis case, the D study includes a random sample from
the (essentlally) infinite set of conditions for the facet. (This is the definition

of a random effect in the typical ANOVA sense). When n' <N'=N<®, it is

T

also assumed that the sampling of the n' condltions is random, but the universe
of generqlizution for the facet is finite. o
Let us considex the case in which §} = N < = for only on:.of the facets
N - oo .
in the universe of generalization, and the D study involves sempling this facet

2

n' < N times. In general, the steps invglved in conducting the D study are:
Al

‘ » -

(a) use Algorithm 3 to 'obtain G, study variance cbmponents which reflect thé -
fact that N < »; (b) obtain D study variance components that take into’ account

‘'sampling from a finite universe; and (c) employ procedures for combining D

study variance components, as approprlate.

—

Cons1der, for example, the.de51gn pxixo w1th p_as "the N study object

"of measurement. Let us -assume that, in_the un1verse the iten facet has a
. .
finite number of conditicns, gi' which are sampled 21 times in ‘the D study.

'slnce gi < =, the estimated G s y varlance components are obtalned usinq

Algorithm 3. They are reoorted 1n T;;le 15 for the px ix o de51gn.- . N
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RO For any D study component., a, the estimated variance of this component is:

-~ .

‘ 8 (a]N <w) - '
‘ _ 8 (a|N < @) = ( ——) . - - (30)
. daly L

if ni is in d(a|Y); otherwise, .

— »

62(a|N, < ®)
2 & = - " ,
o (a]n, < =) = - : (31)
- = §_(<1|Y) ’

TSI

where d(aly) is defined as Equation 13, and (1 - ni/N ) is the finite universe

correction {see Cochran, 1963, p. 23) associ;ted with variances for the item

facet. Table 16 reports phe_eséimaced D study variance components, for the '

.

design p x i x o when p is the object of measurement.’’
LIt is 1mportant to note that thé D study variance components defined in
Equaulons 30 and 31 are for a random sampling model where N < @ and N > @,

These variance components are completely analogous to the D study variance

components for a random effects model reported in the fourth column of Table 8.

* Indeed, for Ei + o the D stuf,[ variance components in Table 16 are 1dent1cal

— LN

to the D study variance components in Table 8. Also, Equatlons 17-20 and the

corresoondlna notatlonal procedure for combining variance components are

. LI

completely applicable to D study variance components that ihvolve sampling from

a finite universe.

’ Consider, again, Table 16 and suppose that the D study is 212J2J‘|£!9)
. implying that occasions are randomly. sampled from an infinite universe and

items are randomly sampled from a finite universe of size Ei = For ﬁhis —

N
=

D study, the reader can verify that
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» 2 ‘= 2 ® .
0?(v) (,glgi < @)
;.; ‘ "= ‘0-2 (E_) + 0-2 (‘Li)/y-i ; . o N n
o2 = (p_'N <) 4 Oz(pOIN i o2 (pIo|N, < =)

(1 _ _) oz(t'u) 02(P_°) + 02 (pio) o .

_1"‘0

and, € 02 (X1 2(1) + Ba2(5)

H]

L 2(pi)  o%(po)  o?(pr., S
ot(p) + n! ¥ n' | am’ i (32)
= -2 1o

where the variahce components without the conditional:statement “Ni < w" are

-—

.~ the usual random effects D study variance components.

It is both informative and instructive to note that Equation 32 is identical
to Equation 22; i.e., 'goz(X) is unchanged by whether or not the universe of

generalization in\igives sampling from a finite universe. ‘This is true for all

of the possible D

udies given a particular design and a particular 6bject of

measurement.

Consider,, again, \Table 16 and suppose the D study were p_(g_|g|g|}_) with

occasions fixed. In thi¥ case, . T

2(.1.).= 02

OZ(B) M . n’ +‘N.n' '

£ o2 (s)

Z(th_i < ®) + >‘?Io|§i < ®) ;

2, % .
( gi o2 (pi)} o2 (pio)
= 1 - — = i
Py L n'n
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“ and, %oz (X) is identified to Equation 32.
. If the D study design were _l_)_(g_lg_lgg_) , then the item facet would be
’ fixed in this particular D study. In this case,
02(1) = o2 (p|N, < =) + oZ(pI|N, < =) )
P
= o2 (p) + oZ(pi)/n/ ; _ . . (33)
) and Bo2(8) = o2 (poln, < ) + o (eI0fN; < =)
= g2 ' 4+ 02 (pi tnt ‘
o (103)/22 g (21°)/9-_§__30 . (34)

—

Equations 33 and 34 are identical to those obtained using the fifth column of
v

-

Table 8. This must be s.o, because when the item facet is fixed in the uni;rerse
of geperalization there is, by definition, no random sampling of the conditions
of this facet; and t;he size ot" the universe has no bearing on o2 (1), e,oz(cS) ’
02 (A), or any quantities._formed from them. )

The procedures discussed above can be exter;ded to D studies that involve

sampling from a finite universe for more than one facet. In such,cases, “estimated

G study variance components .cre obtained using Algorithm 3, and estimated D
study variémce components are optained using a more general version of Equations
30 and 31. For example; if the D study involves sampling from a finite universe

for both the item facet and the occasion facet in the p x i x o design, then® ~

<

the finit¢ universe correction in Egquation 30 is:




&7
(a) (1 - gi!gij(l - nlfgg? if g{a!y) include§ both gi-and gé
-t : s ' ' d
(b) (1 Bifyég if g}aIYL includes gi but not gg., a?
(¢) (1 < n'/N) if d(a]y) includes n' but not n! .
™ - - - X
If gjaly) includes neither g& nor n' , then Equation 31 is applicable.

. N

Py
’

N

~

Generalizability  *
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Comments and Conclusions

-~

It is usuval in both practical and theoretical contexts, to treat issues

of reliability from a correlational viewpoint. The literature, for example,

is filled with references to reliability coefficients that estimate "internal
consistency,” "equivalence," "stability," etc. While suchk coefficients and

. < )
terms have a long and distinguished history, they can be a source of considerable

~

confpsion and ambiguity. In particular, it is frequently difficult to identify

¥ v

explicitly the magnitudes, types, and sources of error variance ihcorporéted in
such coefficients. The use of generalizability coefficients can avoid thesé
probiems, at .least in part, if the nature of the universe of generélization is
clearly specified: However} estimated variance components are even more in-
formative and less ambiguous. Indeed, estimated variance components are the
gg§g informative outc5me of a reliability study (APA, 1974). They can be used

directly to obtain estimates of universe score variance and different types

! ;

of error variance that are appropriate.in different decision-making contexts.
Variance components can be used, of course, to estimate generalizability coefficients;
but such coefficients are of uestionable value in the absence of the estimated
variance components themselves. Note that it is the magnitude of variance
components that is of primary interest--not their statistical significance.
Also, variance compo;ents should not be expressed soleiy as_a percentage or
proportion of some total score variance. To do so is to obviate the more
important uses of variance compo:.ents.

Since the magnitudes'of variance componenfs are central tofgeneral;zapility
theory, it is important that the numerical estimates of wvariance components
be as acchate as possible. Therefore, care should be taken to avoid the
deleterious effects of rounding errors. For example, it is usually advisable
that most, if not all, calculations involve at leas’ three decimal places.
This is particulaily important when a G study ig%olves binary data, which is the

usual case for achievement tests.

63
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The notational system used in this paper was invented in order to facilitate

the statement of various "rules," procedures, and algoritbms. There are only ’
< . .

two principal ways in which this notational system differs from that used by

,Crongach et al. (1972). First, this paper uses the nesting operator " to ~

designaﬁe variance components that involve nesting; Cronbach and his colleagues
use the "all confounded effeqts" procedure. Second, this paper specifies a
particular D study using the notation D(y|V|E|R). The notation D(Y|V[E[R) is
very useful in specifying rules and procedures for combining D study variance’
components. Also, this notation clegrly ide;tifies the universe of genegaliz;tion,
and c%early distinguishes~betwéen the object‘of measurem;nt and the universe of
generallzation.. Cronbach et al. (1972) treat object of measurement considerations,
but they do not emphasize them as much as this papgf does. However, Cronbach et al.

(1972) do clearly identify a fixed facet by concatenating its index with the

symbol "*" or "**"_( In texms of certain theoretical expositions, the star

‘notation has some distinct advantages.

This paper treats only G studies and D studies that involve orthogonal

analysis of variance designs; i.e., designs that do not involve missing data

“and/or unequal size subgroups. The applicatiorn of generalizability theory

to non-orthogonal deéigns has received little attention in the literature. There
are, however, two procedures that have been used or suggested for "converting"

non-ortnogonal designs to orthogonal ones. Kane et al. (1976), for example,

report randomly discardinc data until they had orthogonal designs for their

studies of student evaluations of teaching. Also, for designs, such as p x (i:8),
where the number of items is not a constant for all subtests, Cronbach et al.

(1565) mention the possibility of using "half-sets" of items within each subtest.

These procedures may not be ideal, but they are at least reasonable alternatives

until research on variance components in non-orthogonal designs (see Searle,

«

1971) is appiied to generalizability theory.

S . B4

¥
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This paper provides a more detailed consideration of sampling

i

from finite universes than is provided in gronbach et al. (1972). Also, somewhat
more consideration is given to derieralizability theory in the context of
different objects of measurement. Howéver, in other respects'this paper is not

M3 N
intended to cover, in depth or breadth, the extensive treatment of generalﬁzability
theory provided by Cronbach ;nd his colleagues. (In particular, multivariate
genefalizability tﬂeory has not been treated at all here.) Rather, this baper
is primarily irtended to prov%de reéearchers and practitioners with a set of

-

procedures to facilitate the application of generalizability theory to a broad

range of measurement problems. It is inadvisable that these procedures be
used mindlessly; the meaningful interpretation of any statistical analysis

necessitates a thoughtful and informed consideration of the results.

- -
’

- . -
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e nay not be obvious that designs like (p:c) x (i:s:t) occur in practice.

Suppose ¢ is a school, i is an item, s is a content area or subtest, and t is a
N

test. Given these verbal identifiers, this design means that each pexrson is
nested within a single school, each person respohds to all items, each item
is qsgoéiated with a single co...ent area or subtest, and each content area is
associated with a single éest. This kind of design ;ery closely approximates . ~é
che kind of data often collected to assess the reliability of teft batteries.
However, it is rarely the case that the analyses of such data distinguish—among-
all p?tentialasources of variance. BAmong other things, this paper is intended

4
to aid researchers and practitioners in conceptualizing and verforming such

complex analyses.

-
For each of the Venn diagrams in Figure 1, a circle is never nested within
the intersection of two or more circles. This is a geometric indication that,

for each of the five illustrative designs, no.main effect is nested within an

]
- 72




‘and occasions. This main effect would be represented i:so. ~
N ¢ ——

.....
»
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interaction effect. Consider, however; the design (p:c) x [i;(§_x g)], in

.

which the main effect for items is ﬁested within the interaction of subtésté

o

3 : ce Tens . . N
The reader may omit this discussion of sums of squares without loss .

of conginuity in the development of generalizéﬁility theory. This section is
4”‘ ’ i c . * :

included because the notational system used here provides a convenient

way to ‘express sums of squares for a large class of ANOVA designs.
. . . 2

> - -

. 4Cronbach et al. (1972) usually use 02(2) for universe score variance.
N
Here, however, the general use of 02(2) for universe ,score variance could create

confusion, because objects of measurement other than tHe person p are treated
2 £

1

in this paper.

~

5Generalizability coefficients have a form that is analogous to that of /
traditional reliability coefficients; however, the theoretical basis for
generalizability coefficients is somewhat more complicated and beyond the

intené-d scope of this paper. The interested reader can refer to Hunter (1968) .

-
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TABLE 1

Estimated Variarice Components for Design p x £
for Random Effects Model . ;

Estimated. Variance Component

62y = [MS(p) - HS(pD1/n,
8%() = [MS() - HS (o) 1/,

62 (pé) = MS(p)

N ] Effett or
Component
. p
o .
- 4L
pL
Note. -

X

pL

S I VI SR TR PR S TR, VI S N -
H Up \UL Up&' e

2




TABLE 2 )
v ' ' Estimated Variance Components for Design P x Lx0
£ . for Random Effects Model
7 ; 0
Effect or df Estimated Variance Component
Component | . o
3 p ny - 1 az(p) = [MS(p) - MS(pi) - MS(po) + MS(pi:o)]/nLno'
4 h; -1 62d) = [MS(d) - MS(pd) - MS(io) + MS(pLo)]/npno
- . hant s i 4
e n, -1 62(0) = [MS(0) - MS(po) - MS(Lo) + MS(pLo)]/nan
pd (n, = 1) (n; - 1) 6% (pi) = [MS(pd) - MS(pio)1/n,
po (, = 1) tn, = 1) 62 (ho) = [MS(po) - MS(pio)1/n,
Lo (n, - 1) (n, - 1) 62(4'.0) = [MS(io) - MS(pi,O)]/np . o
pio (n, = 1)t = G, = D T 8% (pio) = MS(pio)
Note. Xp'éo =u + up'\, + ui.'\' + MoV + qu-m + upo'\' + ui,o'\' + upi,o'\' + e . E
']
3
Y
v
’J-
[
e
o
, o
‘ O ‘ - \\\\ 78
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TABLE 3

Estimated Variance Components for Design P x ({:4)
’ for Random Effeczts Model

”»

Effect or

Component. df Estim.ated ‘Variance Component, o
p Ry - 1 ‘ 62(p) “ = [MS(p) - MS(pA)]/nj‘nA )
L':é | e, - 1) ' 82 (4 :8) ‘= [MS(<:8) - MS(me)]/hp \ h
4 ‘ ne -1 6% (4) = [MSFA) - MS(4:8) - MS(ps) + AB(pL:A)]/nbni
ps ) (np - 1) (n _,1) 62(pA) = [MS(ps) - MS(p«(',:A)]/nL «
pL:s n, (np -, - 1) | 6° (pL:8) = MS(pdi:8)
Note. xpé:é =y + upm g v upAm + “pL:Am +e .

7w
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TABLE 4

Estimated Variance Components for Design (p:C) x 4
for Random Effects Model

Effect or d . .
Component 6 Estlmated‘Varlance.ggmpénent
p:e n, (n -1y 6% (p:e) = [MS(p:c) - MS(pi:c)I/m, ’
p . . L
e n, - 1 ‘ 32(0_) = [MS(c) - MS(p:c) - MS (ed) + MS(pi_:c)]/nan ‘
£ H, = 1 82 (€) = [MS({) - MS(cd) ]}n e
eL (n, - ) (n; - 1) 82(ci) = [MS(ed) - MS(pr:_c)]/np”
. ’ 2, . _
pi:ce "c(np -1 - 1) 8% (pi:c) = MS(pi:e)
Note. Xp&':c R P YR A VAR PV AL YV A

‘¢

3




RE ' ' " “TABLE 5 . .

Estimated Variance Components for Design.(p:€) x (4:4:%)
for Random Effects Model

P

oy

. \\
gzg;g;eﬁi df Estimated Variance Component
. L o ‘_ 2 .l _ . _ .
p:c \ nc(np 1) 8% (p:c) = [MS(p:c) MS(p/t.c)]/runAnt
C - 2 = ' - H - S H .
¢ n, -1 6 (e) [MS(e) - MS(p:c) - MS(ct) + MS(pt e)]/npnknbnt
(28 : - 2((:4: = (:5:4) - MS(edl:s:
L:18:2 R, - 1) 82 (L:8:2) [MS(L:8:8) - MS(ci:s:2) ]/npnc
8:% nen, - 1) ’ - 82(s:1) = [MS(s:%) - MS(L:8:%) - MS(cs:2) + MS(cL:A:,t)]/npncni
;\“‘3“ £ ne =1 ) "62(2) = [MS(t) - MS(s:%) ~ MS(et) + MS(se:t)I/non n.n
- : peds
et (n, -1, -1 82 (ct) = [MS(ct) - MS(cs:£) - MS(ptic) + A{S(m:c’t’]/"pninz,
es:t netn, - 1) (n, - 1) 82 (cs:2) = [MS(es:t) - MS(ed:s8:4) - MS(ps:el) + MS(p/l:Zc:,t)]/npni
L83 ,"A"t("c -1 n; - 1) 82(ci:8:t) = [MS(el:s:8) - MS(pL:Ac:?)]/np
' Q
]
: - - 2 (pt: = te) - (104 . =
ptic nc(np 1 (ny - 1) 8% (pt:c) [MS (pt:c) - MS(ps c,t)]/nLnA 8
' o
ps et ncn/t(np - -1 62(_p5:c,t) = [MS ps:et) - MS(pi.:Ac:,t)]/ni > §'
. 2
. . -
R R = 1) (n; - 1) 32 (pitsc:t) = MS(pitscsd) \ 81 s

-
-
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o - . . ) .
. . - ) Components, Mean Scores, and Score Effects for Design (pdc) x 4
- ¥ . AN 3 . , ./»’ R
-~ - > -
- R > ‘ " .
! . Score Effects in Terms . . «“Mean Scores in Terms X
- N &~ P o
e Component .. of Mean Scores . of Score Effects
Q - - R
5 oo g
g e oY = e =ML . u =P+, v+ pn : *
P p:c _“p:c Ha p: pic e
. - - » . . ¢ . . ; .
P ~ , e - .
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{ A o= .o - u. + » I TR S T S TRV e
e L uC/L u(’/(. uC. u& . M uCl. L \{(‘/(,
- 'Y o v
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TABLE 7

7
"““'f\ 'f;/ N . L
¢ WA sums of Squares for Design (p:C) x 4 -
o
|
Sums of Sauares for Observed Score Effects
. With respect to
. Sums of Squares With respect to

Sums of Squares for

—_

Component for Observed Mean Scores Observed Mean Scores Observed Score Effects
. - _ 72 v v v _ v 2
p:c [’(p:c] =n, X Xxp:c [Xp:c]'» = [Xp:c] [Xe] =n; I Z(Xp:c'”)
, pc - . pe
_ ""2 ’ v o - "2 = ) vl 2
% [Xc] = n, ELIXc [Xc]'\: = LXQ] (%1 nan. i(xgm) i
A X.] =nn 5 X2 [X.]v =1(X.]-1X] - =i (X2
L pe L . AL L : e SV 4
- L . A
\‘la g/—"
. — _ —2 - AR Vo1 oo — _ -— 2
el [Xoé] =n_ L ZXQL. [Xoé]m = LXC‘éJ LXQJ LX/LJ, + LX] =n, L E'I(Xe/ém)‘
¢ < \ C 4
. - <2 _ o — . — ) — 20
L:e X, 1=z X . K. In=[X. 1-[X ,1-0X,3+IX]- T(X_. w) .
P pie” e pA:e piiC plic Piet Yy el e p i v( ni-o
R =x S
Total [x1] = npnincx . .
i o o 4
For this design with one observation per cell, Xn{-c is based on only one observation, and, therefore,
BL:
89 ~
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TABLE 8

°

.D Studies for Design p x 4 X

Wwith Person (P) as the Objec’ of Measurement

RS

0

~
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I

PN 3

Estimated E Study Estimated ;} 3 =

G study Sampling D Study’ 'y oy S
Variance Frequency Variance = s o
Component.s Components o = ry

. 2 .
8% ) 1 8% (p) T T T
32043 e i) A A
L - ¥ '“ v
2

5% () nto 6°(0) A 5

2 ’ 2

87 (pd) nz a”(p]) 4,8 T A,8

[
. & o »
2% (poy S 8% (00 5,8 8,8 T
, 2 ) «

8% (ic) i, 87 (10) s, A b

2, 2 .
8% (pde) 3 8 (p10) A, 5,8 5,8
. B

Note. The entries T, §, and A indicate which estimated D study Oagiénce R

components

»

enter 8%(t), 62(8), and 6?(A), respectively.

T
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TABLE 9 .
D Studies for Design P x L
’ ) With Person (P) as the Object of Measurement
Estimated D Study Estimated =
G Study Samplina D Study -
Variance Frequency Variance -
Components Components =
B 2 2
e (p) 1 8 (M T
2, . 2
87 (L) n 8 (I A
4
2, . 2
87 (pd) n"t- 8 (p1) 8,8
d“

.t
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TABLE 10
D Studies for Design p x ({:8)
With Persc 1 (P) as the Object of Measurement
Estimated D Study Estimated — =
G Study Sampling . - D Study - o
Variance Frecquency Variance = =
Components Components T%: —é-
2 2 ”
8 (p) 1 87 (p) T T
62(L"A) ntn! ’ 62(1-3) A A
: O : ) -
62(5) nyg 62(3) A
2 , 2 . .
87 (ps) ny 87 (pS) 4,8 T
2, . 2
87 (pL:3) ,-‘nL.n' 8% (pI:S) A,$ AS

4
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TABLE 11
. D Studies for Design (p:C) x £
With Person Nested Within Class (p:¢) as the
. Object of Measurement
. : . —_
Estimated D study . Estimated o
G Study Sampling D study =
Variance Frequency Variance e
Cumponents ’ Components a
2 2
87 (p:e) 1 87 (p:2) T
' 2 2
87 (¢) 1 8 ()
2 2
87 (L) ne 8 (1) )
’ 22104y 0w 62 (cT) i}
A
:.2 1m s v 2
(i) )l;-_ o] ().’JI:C) A,S

©

e ea N

i ot s e
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TABLE 12
° D Studies for Design (p:C) x (L:4:1)
s With Person Nested Within Ciass (p:¢) as the
. Nbject of Measurement
. = =
% ~
: : ~ )
- Estimated D Study Ectimated = g
G Study Sampling D Study <. =
variance Frequency Varianc: = =
Components ) Componeuts a o
, 2 2 .
87 ()2:C) L 87 (p:c) T T
° 2 2
¢ ) 1 8 (c)
2 Tk Vit 2 T.0.T\ . .
G (L:5:0) 'l(:"llsltt 8 (1:5:9) o I8
4 . Y = T
87 (5:0) righty 87(S:1) A
+ 6% (ct) g 87 (c7) o
' 6+ () .oy 62(T) A
42 ; .
( . 1yt ind .
(cs: 09 gt 87 (cS:T) A
22,
67 (ci:n:T) g 6:((‘.1’:3:7) & A
2
3" (pt:c) ni 62(pT:c) 5,8 T
{2 3 + [y 2
G (s ic k) Rl g% (pS:cT) b,8 T
2 - L2 T <
el gt nin N 37 (pl:Sc:7) 8,8 4,8

v
.
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TABLE 13
D Studies for Design (P:C) x 4 .
With Class (¢) as the Object of Measurement -
-
Estimated D Study Estimated a oy < ¢
G Study Sampling D Study - = =
Variance Frequency Variance Y = =
Compornients , Components Y Y -
62(}9:0,) ;1,3 62(P:c) 5,8 T .7 8,6 '
62(6) 1 62(0.) . T T T
62 (i) nt 62(1) A A
6% (cd) " &% (D) a,¢ 8,8 T
|
2. .. 2 ' |
87 (pL:e) ",'9"}; 8 (PT:c) A,8 5,8 5,8 1
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TABLE 14

D Studies for Design (p:C) x (£ 4:0)
With Class (C) as the Object of Measurement

Estimated
G Study
variance

Components

D Study Estimated
Sampling D Study
Freguency YVariance

Components

(cle]S.TIP, )

8% (p:cy

-

‘,((‘)

OZ(P:C)

g
(=]

2
8 (c)

! 62(I:S:T)

VRV o

5
n;n; 8°(S:T)

ne OT(T)

82 (cT)

1 |' 2 -
»lstlr_ d° (eS:T)

2
nin;n; 37 (c1:8:T)

/

‘nén% 8" (PT:

R 8 (Ps:

prp Ittt
I .
|




*  TABLE 15

. 6 Study and D Study Variance Componei.ts
for the Desian P X « x ¢, with Person (p) as the Object of Measurement

-

D whon Items are Sampled from a Finite Universe (NL = Ni < o)

- BEstimated G Study D Study "Finite Estimated.D Study
Variance Components - Sampl ing Universe Varaince Components .
fo; Randem Sampling Frequency Cecrrection for Random Sampling
. .2 . e ’
62(p|Ni <w) = 82<p) + 6_"9“‘)/”{ 1 1 62().1IN.£ <o) =62 () + 62 (pQ) /N, .
v &
2, . 2., <2 2 .
N, «© = n' - '!'. . h -] = - ' P '
8 ('LIV:L <) 8 (4) y (1 - /N é (I]V& < ®), 1 n/”&"? (&) /n}
2 . 2 2, e 2 2 ST
. ® = { N. ' . o) . = ' f I.nt
8 (olN& < @) 8% (0) + 87 tLO)/N n 1 8 (O|NL < ) 6% (0)/n) + 6”10y /N s
Oz(pilN. < ®w) = ég(pi) n (r - n'/N 02(p11N. <o) = (1 - nt/N.iﬁz(pi‘/nt
¢ . 4 O L <4 L
2 a2 2, , ‘ 2, i o a2 o a2
8 (po|NJ: <w) =87 (po) + & (pw)/NL. n 1 8°(POIN, < @) =8 x(po)/no + 6 (pw)/N_ino
’ !
2, o = a2 (4 Cr s A TN <2 18N ey = 71 - /N 82 (L ‘i
8 “OIN{ < w) = 87 (40) . in o= N IO, < w) = {1 ”x:/"‘{)e (w)/n&jno ’
Sz(péolN. < w) = 62 (pd0) nin' (1 ntNL Az(w%OH\l < ®) = (1 - n'./N.)Oz(y:M'.o)/vv.'.;i'
{ . {0 U AR a3 L0

£8
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. - Figure Captions
Figure 1. Venn diayrams for five illustrative designs. s
" %
: Figure 2. Decomposition of three variance combonents, for the random
&
effects model, in terms of mean squares for the design (p:c) x i. .
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‘Design p x £ Design P x (4:4) \ ]

"D\e‘s_ign (p:@) x 4 i .

Design px 4 x 0

Design (pre) x (£:8:4) N
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