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Abstract

Generalizability

This paper presents "rule's," Procedures, and algorithms intended to aid

researchers and practitioners in the application of generalizability theory

to a broad range of measurement problems.
;

estimation of G study variance components,

D study variance components for different

Major emphasis islgiven to the

and tOtthe estimation and use of

objects of measurement and different

universes. of generalization. Consideration is given to D studies in which

the universe of generalization contains facets that are either fixed or

essentially infinite, as well as D studies that involve sampling from a finite

universe. A notational system is introduced to fac- ilitate.the discussion; and

each "rule," procedure, or algorithm is illustrated using designs that involve

varying types and degrees of complexity.

3
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Glossary of Symbols

Symbol'

x

p/c,i,s,t,o

P,C,I,S,T,0

a

'Y

a

Pa

Definition

:!Crossed with."

"Nested within."

A facet; or a specific condition
of a facet.

A set of conditions for a facet; or
the sample mean for a set oE conditions
for a facet.

Generic symbols for any component or
source, of variancejin a G or D study..

Facet that serves as object of
measurement.for some D study:

Score effect for the.coMPonent a.

Mean score,forthe component a.

X
a
1,- Observed score analogue of p

a
.

a

02(a)

n

14,

Observed score analogue of pa.

Random error.

Expected value.

1Random effects variance .component.for
a (*given sampling from an infinite
universe).

G' study sample size..for a'facet.

N Size of universr of admissible obser
vations fora facet in the G study.'



Symbol

ri'

N'

MS(a)',

,EMS (a)

02(T)

a2(A)

02(6)

0

a2(e)

602

V

F

Definition

D study sample size for a facet.

Size of universe of generalization
for a facet in the D study.

Mean square for a.

Expected mean square for a.

Universe score variance for a D stay:

.

Variance of differences between . ob-
served scores and universe scores.

oVariance of differences between
observed dexiiation scores and
universe scores expressed in
deviation form.

Variance-of differences bets :men
universe scoreS'Snd regregsion
estimates of universe scores.

Expected observed score variance.

Generalizability coefficient.

Maineffect index in y.

Set of facets that are fixed in a
D study.

R Set of facets that are randomly'._

sampled in a D study.

f (a)

!d(aly)

'See Equation 4.

See Equation 13.
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Introduction

Classical test theory nrovides a very simple structural model of the

relationship between observed, true, and error scores. However, the simplicity

Of the model necessitates some rather restrictive assumptions if the model is

to.be applied to real data. Generalizability theory liberalizes and extends

classical test theory in several important respects. For example, the theory

of generalizability doeg not necessitate the claisical test theor'y,assumption

of "parallel" tests; rather, generilizabliity theory employs the weaker assumption

of "randomly parallel" tests. AlsO, classical test theory assumes that,errors

of measurement are sampled from an undifferentiated univariate distribution.

By contrast, generalizability theory allows for the existence pf multiple types

and sources of error'through the application of analysis of variance procedures,

or, more specifically, through the application of the genera; linear model to the

dependability of measurement. Consequently, generalizability theory is ap-

15.
cable to a broad range ortesting and evaluation studies that arise in

education and psychology.

Background and,l'erminoloay

,The basic theoretical foundation for generalizability theory can be found

in papers by Cronbach, Rajaratnam, and Gleser (1963).and Gleser, Cronbach,

and Rajaratnam (1965). These papers were followed by an extensive explication

of generalizability theory in a monograph by Cronbach, Gleser, Wanda, and

Rajaratnam (1912) entitled, The Dependability of Behavioral Measurements.
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However, the use of analysis of variance approaches to reliability issues did,

not begin with the publications of Cronbach and his colleagues, even though it

is they who hatre most clearly and completely formulated reliability issues in

(2)

analysis of variance terms. Over 35 years ago Burt (1936), Hoyt (1941), and

Jackson and Ferguson (1941), discusse is of variance approaches to

reliability. Subsequent contributions were made by Arexander (1947), Ebel (1951),

Finlayson (1951), Loveland (1952), ilnd Burt (1955). Also, Lindquist (1953),

in thb 1st chapter of his experimental desig,n-text,.discussed in considerable

detail the estimation of variance components in reliability studies. In fact,

in several respects work by Burt and Lindquist appears to anticipate the

Nt development of generalizability theory. Additional evidence of the role of

analysis of variance in reliability issues can be seen in the work of

Webster (1960) and Medley and Mitzel (1963) not long before the original

publication by Cronbach et al. (1963) of the theory of generalizability.

Although generalizability theory borrows its tat ical models and

'

research designs'from analysis of variance,' there are some changeS in emphasis,

terminology, and interpretation. For example, invanalysis of variance, the .7/

magnitudes of variance comoonents sometimes receive direct attention (see,

for example, Vaughan & Corballis, 1969), but the ultimate goal is usually a

test (or tests) of statistical significance. In generalizability theory

interest focused primarily on the magnitude of variance components and,

to some extent, generalizability coefficients. Tests of statistical significance

receive less direct emphasis.

8
erg
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Is

In generalizability theory, any observation ont65object of measurement

.(e.g.? school, class, student) is assumed to be- sampled from a universe of

observations. While universe and population are logidally equivalent terms, here

the word population is reserved for the object of measurement; and the word

.universe is reserved for:the conditions under which observations are made.

Any observations from the universe can be characterized by the conditions under

,which the observation is made. The set of all possible conditions of a particular
o F

kind is'ealled a facet.

Generalizability theory also emphasizes the distinction between G studies,

which. examine the dependability of some general measurement procedure, and D'

Studies, which provide the data for substantive decisions (Rajaratnam, 1960).

"For example,, the published estimates Of reliability for a college aptitude

test are based on a G study. College nersonel.officers employ these estimates

judge the accuracy of data they collect on their own applicants (D study)"

(Cronbach et al., 1972, n. 16). The primary purpose of the G study is to

estimate comnonentS of variance, which may then be used in a variety of D

studies, The G study and the D study may be the same study, or they may be

different studies using the same design. enerally, however, G studies are

most useful when they employ complex designs and 1arqe sample sizes to,provide
.

w.
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stable estimates of as many variance components as possible.

Based on the difference between a G study and a D study, Cronbach et al.

(1972') make a'further distinction between ;71:ihiverse of admissible observe-
.

"tions'and,the universe of generalization.

The test developer or other investigator who carried out a G study

rakes certain facets into consideration and, with respect to each

. .

\facet, considers a certain r nge of conditions. The observations'

encompassed by the possible co Mb inations of conditions that tl-e'G

study represents is callli the universe of admissible observations.

We may also speak of the universe of admissible conditions4Of a

certain facet. A decision maker, applying essentially the same

measuring technique, proposes to generalize to some universe of

conditions all of which he sets as eliciting samples of the same
A

information. We refer to that as the universe of generalization.

The G study can serve this decision maker only if its universe-of

admissible conditions is identical to or includes the proposed

universe of generalization. ?Different decision makers may propose

different universes of generalization. A G study that defines

the universe of admissible observations broadly, encompassing all
V

the likely universes of.generalization, will be useful to various

decision makers. (p. 20)

Overview,

In this paper "rules," procedures, and algorithms are presented that

invelve a notational system, analysis of variance considerations, G studies,

and D studies.' In addition, all "rules'," procedures, and algorithms are

illustrated using designs that involve varying levels and types of complexity.
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The notational system used here differs, in some respects, from that used

in the Cronbach et al. (1972) monograph on generalizability theory.. The

primary difference is that the notational system for variance components used

in this paper does not necessitate specifically reporting the effects that

are confounded in a design that involves nesting. Nevertheless, this nota-

tional system does implicitly "carry the meaning" of a nested component.. In

most other respects, the notation used by Cronbach and his colleagues has been

. maintained or minimally altered.

The terminology used in some analysis 'of variance literature is not always

the same as the terminology employed by Cronbach and his colleagues in discussing

generalizability theory. For example, the word "facet". in generalizability

theory has approximately the same connotation as "main effect" in much of the

analysis of variance literature. Also, the word "component" in Cronbach et al.

(1972) is basically synonymous with the word "effect" in some analysis of

variance literature. One oc the purposes of this paper is to help practitioners

familiar with analysis of variance literature to understand and apply general-

0

izability theory. Therefore, some terminolOgiAl compromises are made here.

Generally, the terminology employed is that of Cronbach et al. (1972); but

s

exceptions do occur, especially in initial sections that Primarily treat

analysis of variance considerations. When terminological ambiguities arise

an attempt is made to resolve them, or at least clarify them.

The major Portion of this paper is devoted to a conaideratioh of "rules,"

procedtres, and algorithms for performing G studies and.D studies. Particular

emphasis is give to the estimation of G study variance components, and to the

estimation knd use off D study variance components for different objects of

measurement and different universes of generalization. Most of the discussion
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treats D studies in which the universe of generalization contains facets that.

are either fixed or essentially infinite. HoWever, consideration is also given

to D studies that involve sampling from a finite universe of generalization.

N
.There are some restrictions placed upon the treskment of generalizability

analysis in this paper. In particular, with minor exceptions, only orthogonal

analysis of variance designs are considered; i.e., designs that do not involve

missing data and/or uneaual size subgroups, Also, all designs and studies

involve only one dependent variable; i.e.,. this paper treats univariate gener-

alizability theory, as opposed to multivariate generalizability theory (see

Cronbach et al., 1972, Chapter 10). Finally, the "rules," algorithms, and

procedures are not intended to cover, in depth or breadth, the extensive treat-
.

ment of generalizability theory provided by Cronbach and his colleagues. Rather,

this paper is intended to provide researchers and practitioners with a set

of procedures to facilitate the application of generalizability theory to

a broad range of measurement problems.

12

3
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A Notational System and Analysis of

Variance Considerations for G Studies

The first steps in performing a G study involve the usual initial proce-

dures for an analysis of variance; namely, defining the model and determining

. . - .

sums of squares, degrees of freedom, and mean squares for each of the effects
. .

,

,
v ;,,..

an the G study design. These issues are usually treated 1n-xperimental design
.

. .7

,,, ,,,

textsN_-rfi the context, of specific designs. Here, rules anOlgorithms are pr6-. ....

vided.that are apPlicable to a large class of orthogonal, or balanced, designs.

,
,

Notation for ANCMA Designs

ti

Using the symbols "3q,eo mean."crossed with" and ":" to mean "nested within,"

.

most common analysis of variance designs can be represented by a suitable sequence

!..,

Ayf,effeqt indiceS and tyMbole.. In this paper, five different designs will be used ''------

s
, .,

for illustrative putpoSes: ',X i,,ax i x o, p x (i:s), (1:c) x 3., and
. ,

ja:c) x (i:s:t), Cronbach et al. (1972),pxixois called Design VII,- -

(i.$) is,Design V-A,-and (p:c) x i is essentially Design V-B.] The indices

in these designs can be interpreted as referring to a,person (p), a claSs (c)
-

I

. ,

,

an item. (i), a subtimst (s), an occasion (o), and a test (t). For example,
.....

, - - .

i(a:c) x a cal. be interpreted as meaning that pea-ions are nested' within classes;

. ,

and-both persons and classes are crossed with'items. The use of these specific

identifying words' for each index is maintained throughout this paper; however,-

it'is the nature of the design that is under consideration--not the names'

'associated with the indices.

These designs'have been chosen for two reasons. First, they involve

ferent types and degrees.of complexities in applying the "rules," and prodedures

which will be presented. Second, these designs are typical of the kinds'of

8

dif-
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designs that do occur in testing and evaluation studies. Most of the classical

results from test theory come from a consideration of the basic design for

persons crossed with items, p x i. The design E x i x o, which Cronbadh et'al..

(1972) treat in great detail, is a simple extension of this basic design. In

many realistic situations, however, some degree of nesting is present. For

example, it is very common for items to be nested within subtests, as in the

design E x (i:s). Also, in many testing studies, persons are nested within

classes, as in the design (p:c) x i. Finally, an extensive testing study may

involve considerable nesting, as in the design (p:c) x (i:s:t).1'

Main Effects'and Interaction Effects

Figure 1 provides a Venn diagram representation for each,of the illustratiVe

designs. In these Venn diagrams, the mean square1for a main effect is represented

by-a circle (of any size), and the mean square for an interaction effect is iep-
40

' resented by the intersection of two or more circles. (The words "effect" and

"component".are basically synonymous terms; however, we will use the term "effect"

here because the phrases "main component" and "interaction component" are rare it

ANOVA literature.) . 7

Insert Figure 1 about here

0.) Notation for Main Effects. A main effect can be represented by

main

index i:::!111
nesting

)

first second
effect nesting

index (es)

If the main effect is not a nested main effect, then it can be represented by

the main effect index, only.

For example, in the design px i, the main.effect for persons is denoted

2, and the main effect for items is denoted i. In the design (p:c) x i,.the

. 14
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(nested) main,effect for persons is E:c, where the main effect index is g, and

the nesting index is c. Similarly, in the design (a:c) x (i:s:t), the (nested).

main effect for items is i:s:t, the (nested) main effect for subtests is s:t,

and the main effect for tests is t. In general-, the number of main effects is

equal to the number of indices in the symbolic representation of a desigh.24

In some monographs and textbooks, main effects are called treatments, factors,

or facets. However, not all effects are easily interpretable 'as treatments, and

the word "factor" is apt to cause confusion with factor analysis. Here the terms

"main effect" and "facet" are used synonymously,.unless otherwise noted.

Notation for Interaction Effects. Each interaction' effect can be repre-

sented as a combination of main. effects in the following manner: .

Combination of Cotbination of Combination of

Main Effect : First Nesting : Second Nesting,

Indexes Indexes .
Indexes

subject to the constraint that no index may appear more than once in any inter-

action effect.

%k

Insert Tables 1 - 5 abont here

Tables 1 - 5 list the main effects and interaction effects for each of

the five illustrative designs using the notation defined above. Consider, for

example, the design (E:c) x (i:s:t) in Table 5. The interaction of c and t

is simply ct. The interaction of c and s:tis cs:t; that is, combinations Of

cs,are nested within t (see Figure 1). Similarly, the interaction of p:c.and

i:s:t is pi:cs:t; that is combinations ofi are'nested within combinations

15
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of cs, which, in turn, are nested within t. Also, note that the interactions

of p:c and c would be pc:c, but this possibility is ruled out by two occurrences

of the index c.

Nested Effects and Confounding. Cronbach et al. (1974 usually use a

sequence of confounded effects to ideAify any main effect or interaction

effect that in;ibINYes nes ing. For example, if data for the design (p:c) x

were analyzed as if the design were the completely crossed design E x c x i, then

the effects would be p, c, i, pc, poi; but some of these effects would

be confounded. In particular, the main effect p:s,!in the design (a:c) x

tepresents the confounding, of two of the effects, 2. and pc, from the design

,

x c x i. SimIlarly, the interaction effect 221:c represents the confounding

of L. and pic.

whenever'a design involves nesting, there is some degree of confounding.

In designs with more than one nested main effe6t,, ors more than one level of

nesting, the, representation of a nested effect by its confounded effects
I

leads to considerable complexity. This is one reason for using the.nesting
1

operator in representing effects. Nevertheless, it is frequently,useful to

knOw which effects are cOnfounded'in a nested effect.

,Using the-notation introduced above, for any nested effect, the effects

that are confoUnded are all combinations of indices in the effect that include.

the main effect index (or indexes). For_example,-in the design (p:c).x

the effect s:t represents the confOUnding of,s and st. Similarly, the effect

Cj

1 .

i:s:t represents the confounding of i, is, it, and ist; and the effect pi:sc:t.

0,--sr

represents the confdiinding of pi, pic, ois, pit, pisc,.pict, pist, and pisct.

3-6
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In general, for any nested effect, the number of effects that are con-

founded is:

Exp

number of nesting
indices

in component

0

For example, in the design (p:c) x (i;s:t), the effect i:s:t has two nesting

indices (s and t); and, therefore,. this effect has [2 Exp (2)], or four con-

foundedfounded effecta. Similarly, the effect Ei.:cs:t has C2,Exp (31], or eight
,

confounded effects.

;"

Degrees,of Freedom. For any effect (main effect Or interaction effect)

nested, the degrees of freedom are the product of the (n - 1)'s for

the indexes ih the effect, where n is the G study sample site associated with

an index. ,For any nested effect, the degrees offreedom-are:

that is not

Product of n4
for nesting indexes

yl

IProduct of (n - 1)'s
fot main effedt indexes

Degrees of 'reedom for the effects in each of the five illustrative designs

are provided in Tables 1 - 5. For example, for the design (E:c) x (iis:t) in

Table 5, the degrees of freedom for the main effect s:t are n
7t

(n
s,

1). Also,

for the main effect i:s:t, the degrees of freedom, are asatIni - 1), and for the

interaction effect Ei:cs:t, the degrees pf freedom are n cn n (n - 1)(n. 1).
---s-t -p -s

17 :
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Structural Models

Consider the design (E:c) x i. For this design, the observed score for

person p,in class c on item i can be represented by the structural model:

X . :=V+11 et, +Vq, +Vet, V et, +II et; +e;
a:C i + ci

where 11 = Crana mean in'the universe;

= effect-for person a in class c;

= effect for claps c;

(1)

p
i
it, effect for item i;

,

p
ci
rt, = effect for interaction of class C and item i;

.

interaction

p it, .=. effect for interaction of person E in class c on item i; and
Cl:C .fi-

e = random error

.(Note that the structural model for each of the five illustrative designs is-

provided in the footnotes to Tables 1 - 5.)

,

)
Y,"il Itx . .

-,. ...-v,
.

. .-.

Score Effects. Equation 1.provides a -decomPosition of the'obserVed score
4t

X. in terms of independently, estimable'etects which we will call score effects.;
soi:c . -. ..

Specifically, we will say that lia-rt, is the seitire _effect for the rcomponent a.

Since the words "effect" and "component" are basically synonymous', one could also

speak of the score cothponerilt for the effect a; however, the author generally

.; prefers the former 'verbal description because it avoids some verbal ambiguities

*'!!z' 'in,.subsequent sections.

f tie

t8
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The usual assumptions concerning score effects, such as those represented

in Equation, are well documented in the literature and in experimental design

texts. First, each effect is assumed to be independent of every other'effect.

Second, in order to make the estimates of the-effects unique, the expected

value,of each effect over any of its subscripts is set equal to zero. Consider,

for example, the effect p q, in Equation 1, and suppose we take a sample of n
c

c,

classes from a universe of N classes. The universe of classes is called the

universe Of admissible observations for the class facet. The second assump-
.

tionimplies that the sum of u-" over the universe of.N classes is constrained.c
,

.to be zero, and the sum of the estimates of p
c

over -the sample' of n classesc
is constrained to be zero. HoN4eVerl it is not necessarily true that the sum

p
c
fx, over the sample of n' classes is zero. Finally, note that Equation 1

,involves no assumptions about the .distributional form of theerr0 ors.

Mean Scores, Associated with each score effect is as unique

mean score. Fqr any component a, the mean scori.s the expected value ofothe

observed score over all indices not contained in a. Note that 'for any facet

(i.e.', index) the expected value is taken over the universe of admissible obser-

vations, and the symbol AL" is used 6D define expectation. For example; from

Equation 1:

=p+p =
. pi:c 22_0_

-,

That is, p is the expected value of X over all items in the universe of

p:c 21.:c

admissible observations.

e

Note, in particular, the distinction between U q; (score effect) and

(mean score). Notationally, a score effect always has a tilde (ti) associated'.

with it, and a mean score does, not. Also, the term "mean score" in this context
,

19
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with an observed mean score for a sample, or a universe

D-study, both of which are discussed in considerable

detail later.

Using this notational system it is easy to express any mean score in

terms of score effects. in general, for the component a,

P =

Sum of score effects .

for all components that consist
solely of indices in a

For each component

(2)

in the design (a:c) x i, Table 6 reports equations for mean

scores in terms of score, effects.

in terms offfiean.scores.

Conver4ely, score effects can be expressed'

Insert Table 6 about here

Algorithm I: Expressing a Score Effect

The following algorithm can be used with any

as a combination of mean scores. Let a be a

and m main effect indices; then

,d,
equal to:

Step 0: Pa

P
a /

the

in 11s....11xis of Mean Scores.

design to express a score effect

component with t nesting indices
, .

score effect associated with a, is

? .

------ - , ,

Step 1: Minus the mean- scores for components that consist of the t

nesting indices and m 1 of the main effect indices;

Step 2: Plus the mean scores for components' that consist of the

t nesting indices and m - 2 of the main effect indices;

20
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-

Step Plus (if i is even), or Minus (if i is odd) the mean scores

for components that consist., of the t nesting indices and m -

of the.main effect indices;

The algorithm= terminates with Step m; that is, with the mean score forthe

compoaent containing_only the t nesting indices. If there are no nesting

indices in the component a, then it fdllows that Step m results in adding or
d

subtracting p.

Consider, for example, the component Ei:c in the design (2,:c) x i. This

component has a single nesting index, c, and two main effect indexes, E and i.

.

Step 1 ,in the algorithm results in subtracting p
E.:a., ..

and pci from !ipi:c because
...

.

both p.:c 'and ci contain-the nesting index, c, and 2 '1 1 =.1'main effept index.-
. -

. .

.

Step 2 results in adding p
c
to the result of Step

.

1, because-c is the component
. --

.
.

that Contains the nesting index, c, and 1 - 1 = 0 main effect indexes. There7

.1-1Zq, = -P P
ci

+ P 1.
A;D.1.:C . 01.:C

..-f ..,...

N
.

.4:,

N For eac&component in the design (11:c) x i, Table 6 reports equations for
',.,

.

.,

....

Nscore effectf' in terms of mean scores. .

1 \

Sums of Squares3

,For-ea h\component a, time mean score p
a

has an observed scare analogue,
, !

which we denote Similarly, p q, has en observed score analogue
a Ct

For'example, in the d- ign (p:c) x i, X. is the observed mean score over the
.c

, .

sample of peons and item in class c, and 3..q, is the 'observed score effect
E.

21

.
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fOr class c. The relationship betwedn p
a

and p-N is identical to the relation-
a

ship between R Cc and x
a
N. That is, Algorithm 1 and Equation 2 are applicable to

observed mean scores and observed score effects through replacement of pa, p N,

and pbY
a

, Ta rk,, and Tc respectively. In this terminology and notational

system the "sums of squares' calculated in the performance of an analysis of

variance are, more correctly, the "suits of squares" for observed score effects.

There are two well-known, algebraically identical procedures for determining
--; .

the sums of squares for observed score effects. The first procedure entailsa

direct application of the observed score effects: See, fox-,example, the last column

of Table 7.for the design (E:c),x i.

Insert Table 7 about here

This procedure is at least conceptually, the simpler of the'two. However

a computationally easier procedure involves using the sums of squares fc-r

observed mean scores (to be distinguished from the sums of squares observed

score effects). Kirk (1968), among others, uses this second procedure exten-
.

sively. In general, the sum of squares for observed mean scores, for the component

a, ifs

[71.= f(a)E g2a a
J.

(3)

where the summation is taken over all indices in u; and f(a) is the number of

observations used to calculate the mean'for any one of the levels of a.

.Specifically,

f(a) =

if a includes all indices in the design; and, otherwisu,

the product of the G study sample sizes (n's) for he
(4)

indices not included in a.

4

29
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The quantities [;,c] for each of the components in the design (2.1.c) x i

are reported in Table 7. Table 7 also provides the sums of squares for observed

score effectsexpreised in terms of the quantities EX
a
3. Note that the above

'terminology directly implies that a
x
yk, is the sum of squares for observed

_score effects, for the component a. Furthermore, Algorithm 1 and Equation 2 are

applicable to the quantities [Ra] and Cgdry through replacement of pa, parv,

and p by Ca], and DO, respectively.

From the above development it follows that the sum of squares (for observed,

score effects) associated Stith the component a is:,

SS(a).1= DT
a

1%, , or (5)

:SS(a) = f(a)E(7 A., 2

where E(a) andsE have the same interpretation in Equation 6 that, they-have in

Equation' 3.

EqUaions 5 and 6 are applicable to calctlating sums of gquares 4stociated

with any tomponent, whether or not it is nested. 'In.addition, for any nested

component, the sum of squares can be obtained by.adding the sums of squares

for the confounded effects. For example, in the, esign (E:e) x i (Figure 1

and Table 4), the cofiponent pi:c.representA the'confounded effects pi and

pic, which are independently estimable in the designprni. Therefore;

to obtain the sums of squares.fdryl:c, the data can be treated as if they

-,r came from the designpxcxik. and the addition of the sums of squares

.

associated with pi and nic results in,the sums of squares for 2i:c. This is

ra mpry useful procedure for performing a G-study having nested components,

N

espec4ally when available computer peograms cannot directly accommodate nested

designs.

zs.

01.
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G Study Considerations and the Estimation of Variahce Components

for the Random Effects Model

Whereas, classical analysis of variance vocedures typically emphasize

F-tests, generalizability theory emphasizes the estimation of variance compo-

nents. According to the most recent edition of Standards for Educational &

4

Psychological Tests (APA, 1974): the 'estimation of clearly label.dd components

of'score variance is the most informative outcome of a reliability study, both

for the test developer wishing to ,improve the reliability 61 his instrument 4
' ,

and-for the user desiring to interpret test scores with maximum understanding'''.

(p. 49).

Variance Components--Notation and Terminology

The variance component associated with the component'a is, by definition, the

variance of the universe score effect for the component a. Consider, forGeximple,_

the design 10,x i, which can be represented as:

X . = + rkr + + u +e
(7.)

where u = grand mean in the'universe,

u ti = effect for person EL,

uiti r: effect for item i,

o
U = effect for the interaction of person E with ittm i, and
P1

.
=..random enror.

SR

b

The variance for the component.p is denoted a2(1, which is abbreviated cr2tT5) .

. E v
This is, a2(p), is the variance of u '

.

1,, over all persons in.the universe t .
P
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(or population) of admissible observationl.

Similarly, 02111D is the variance of the component Ei; or, more specifically,

thevarianceof.liinthe universe. However, 02(2.2) is confounded with

random error variance. To account for this confounding, Cronbach et al.

(1972) denote this variance component o2( ,e). Using the, notational systei"

discussed above, the component that consists of all indices in the design is

always Confounded with random error. Therefore, it is not'necessary to expli -

itly indicate this confounding in the notation for variance components, and we

will not do so here. As another example, consider the componentl:c in the__

design (P:c) x-.i (see Equation 1 and Table 4), Here, the variance of this -
Y

component is derloted a27Ei:c). Cronbach et ale (1972), however, repre-.

sent this variance compodehe by a2(El/pic,e), which expliditly indicates both

the confounding resulting from the nesting of Ei within c, and the confounding-.

of random error with EI:c.

For the design p x i (see Equation 7), the variance of X over all persons'

and items is:

a2(x) =. e (x p)2a E/i

ti

/MO

= a2 (a) + a2 (i) + a2(pi)

rr

. (9)

Since the variance components in Equation 9 are non-negative and independent,'

none of talon can be greater than the maximum value of a20( .1. If, for example,.

.

items are scored (0,1), then no variance component can be great,ar than 0.2,, thc.

maximum value of a2(X
120.).

In effect, each variance component in Equation 9

25
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v

2
ly.represents that part of o'(A unique attributable to the component. (This,

2.2

of course, is not true for mean squares.) Furthermore, since X is the observed

score for a simae person and a single item, the variance components in Equation 9

arefor a single person, a single item, and a single person-item combinatiOn,

respectively. It is both usuhl and highly advisable to report G study variance

components for single observations based on sampling one condition of each

facet. These G study variance components can be used easily in subsequent

D studies that involve sampling any number of conditions of each fdcet.

There are several procedures that might be used to.estimate variance compo-'
t

nents. For example;' Cornfield and.Tukey_(1.9.86), Cronbach et.af.-(19:7), Millman

/and.Glass (1967),\and most experimental design texisje.g., /dirk, 1968) discuss

1
.

procedures for-cibtaping the expected value(of mean squares in.terms of variance

I'. . .

components. ,The replAtiAg set of equations can be solved to express estimated
. l' \ 1.. \

variance components im eerrts of mean squares (see Endler, 1966). Also, using

\I . I

these procedures, expecteepean squares and estimated variance components can be

' r -y
,.. .. ..

:Obtained for models Other than the random effects model. These procedures,

vo .

. however, are often mere generifand more complicated than the,requirements of
4

a generalizability analysis demand. For,example, usually a G study'does not

directly require. expected mean4squares. Furthermore, it is usually best to
0

perfOrm a G. stuiy under the assumptions of r random effects model.

. .

'- The terms "random," "fixed'i" and hmixed effects" are common in the
- :

. ,

.
. -

context of analysis of variance, but they have been used less frequently in
,

. the context of generaliZability theory. =Zn the usual terminolosjy of gemeraliz-
. \

-._ability theory, a facet is random if conditions of the facet are randoLyl_

Sri \

sample from an infin ite (or essentially infinite) universe of pos sible conditions

for the acet.

`26
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Notationally, if,n is the sample size for some facet, and N is the
...1.

k .-
. .

r
size of the universe for the facet, then the facet is random if n < N 4 co.

A facet is fixed'if n = N. 'If all facets are random, then the-design is a

random effects design. Similarly, if all facets are fixed, then the design

is a fixed effects design. tf some facets are fixed and some random, then

the design is a mixed 'effects design. FOi a G study it is almost always best
--__I . ---

. i k....

to,estimate variance components under the assumptions of a random effectsIRide-1.

The-varianbe components resulting from a random effects analysis of d study

data can be used easily in subsequent D studies that employ random, fixed, or

mixed models.; The only important exception to this general rule involves

, -randbm sampling from a finite universe,, which is treated later.,

.

Algorithm 2:- Estimation of Variance Components for Random Effects Models.

Another procedure for estimating variance components entails the use of

Venn diagrams (see Cronbach et al., 1972). This procedure (which is illus-

trated-IaterY-is-quite usetui when the random,effects.model is employed in. a

,.

li.7" Aesign that is relatively uncomplicated. However,
°

t e Venn diagram approach
.. .

.

is rather difficult to use with more complicated designs. The following

algorithm 'reflects the Venn diagram approach, but it 'doe's' not require, the use
1..--

of ye n diagrams.
.i

Assume that a is some component consisting of k'indices. Here it does

not matter'whether an index .r1..inc inested or not.- In general, the estimated NO,

value of the variance of the component a, for the-random effegts

e ,J

.2 1 N, some combinatign ,

d` (a) f (a) ---of mean squares '

°
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where f(a) has been defined in Equation 4, and the appropriate combinatiqn

of mean squares is:

Step 0: MS (a)

.

Step 1: Minus the mean squares for ali components that consist of

the k indices in a and exactly one additional index (call

the set of additional, indices A);

Step 2: Plus the mean squares fOr all components that consist of

the k indices in a and any two of the A indices;.

4

Step 3: Minustbe,mean squares for all components that .consist of

-the k, indices in a and any three of the A indices;

Step i: Plus (if i is even) or Minus (if i is odd) the mean squares

for all .JoMponentsthat consist of the k indices in &and

any i of the A indices;

'°

.

The algorithm terminates when a step results in no mean squares added or

lf

*subtracted.

a
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For some components .no steps are required. For-example, the estimated

-variance Of the component that contains a11-indices,in the design is simply

the mean square of that component. ,Also, except in quite cetpiiCaed designs, -

it israre that more thamtwo steps are required to obtain the estimated

variance component in terms of mean squares. The actual number of, steps

required for any component in any design is a - k, where a is the total number

,sof indices in the design.

Tables 1 - 5 provide equations for estimating the variance of the compo-

nents in each of the five illustrative designs, assuming the random effects

model. Consider, for example, the component a = 21:c.in the design (:c) x

Since all indices in the design are included in a, f(a) = 1 and Step 1 results,

in no mean squares subtracted from MS(ni:c); therefore, 82 = MS(pi:c).:

For the component a = 2.:c in the same Aeiign, f(a) is simply n.. Step 1

results in subtracting only MS(2i:c) from MS(pfC), since is the only comp0--

nent in the design that contains a (i.e.,E:c) and one additional index (i).

Step 2 results .4 no mean squares added. ;therefore,

2
(p:c) = LMS(E:c) - MS(Ei.:c)]/ni

For the component a =

sample sizes for the indices

subtracting both ME(E.:50 and

MS(ti.:c): Step 3 results in
".7!""g

in the design (n) x 1, the.prodtict of the

not included ina is n n.. Step 1 results in

MS(ci) from MS(ci. Step 2 results in adding

no mean squares subtracted. Therefore,

2
(c) = EMS(c)'- MS(p:c) - mS(ci) + MS(Ei.:0]/n n:.

Insert Figure 2 about here

29.
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Figure 2 us s Venn diagrams to illustrate the estimation 'of the variance

of the three components discussed above. In the Venn diagram approach, a mean

square for a main effect is, represented by a circle; a mean' square for an inter-

action Is represented by the intersection of two 4ir more circles; and a variance

component is represented by a part of a circle that usually looks like a

phase of the moon. More specifically, a part of a circle represents i(a)(12(a).

. The Venn diagram. approach to determining estimates of variance components is

O

quite useful for relatively simple designs, such as E! x i and (E:c)-x i.

However, this approach is not possible with somecomplicated.designs, and

o

this approach is difficult to employ with designs that inVolve considerable

nesting, such aSthe design (a:c) x (i:s:t).

Algorithm 2 provides an estimate of the Magnitude of a variance component--.

not .itg statistical significance. pve1 if-a_ variahce component is not

statistically' significant, it is an unbiased estimate, and, it is better.to

U3C it, than-to-r estArtheless

estimated variance co nents, like other statistics, are subject to sampling

variation., top' is utside the intended-scope7of this paper, but
V

pertinent issues are treated by Cronbach et al. (1972, pp. 49-56), 17',

Searle, (1971) , and to ,some extent by Scheffe'S1959):and.Winer (1974. If,

however, Algorithm 2 results in a negative estimate of a variance component,

then the use of either Algorithm 2 or the Venn diagram approach is questionable.

Procedures for treating, negative estimates are discussed by,Cronbach et al.,

(1972, pp. 57). One such procedure involvei use of expected mean squares.

Expected Mean Squares'
'

Although a G'study usually-does not require expected mean squares, it

is easy to obtain them for the random effects model using the notation introduced

7

.30
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this paper. Ih general, for the random effects model; the expected mean..
.

A

square associated with the component B is:

EMS(B)-= E f(a)a2(a) ;

a

(10)

4

where a is any component that contains all of the indices in 6, f(a) is.defined

by Equation 4, and 82(a) is the random 'effectS-variance component for a./
A

Consider, for example, the component E. in the design E x From

Figure 1 and Table 3, it is clear that the components that contain the index

.
E are E, ps, and Applying Equation 4 to these components,given f(p) = n.n ,

s

f(Es) '= n. , and f(Ei..:s) = Therefore,

EMS(E) = a2(pi:s) + n.a2(Ps) 4-11.n a2(p).

ry

Si milarly,

iS 1.,

EMS(s) = 0.2(ni:s) 4! ,n.a2(ps) 4. n a2 (i:s) '+ n n.a2(1)- -1_ -2. -1n.

1

(11a)'

(11b)

EMS(i:s) = a2(pi:s) + n a2(i:s)

EMS(ps) = n.s a (ps).;

416

-0

(11d)

EMS(E4:s) = a2(Ei:s) . (lle)

. .

Perhaps the most important use of expected mean squaresin a G study is to

estimate variance components when Algorithm 2 or the Venn diagram approach

results in one or more negative estimates for variance components. Consider,.

k. .

for example, the expected mean squares provided by Equations lla - lle for the

E x (i:s) design. Equation lle can be used to estimate a2(pi:s); and then

Equation 116 can be used to estimate a2(ps). If the estimate of a2(ps) is ,

t 31
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negative, then zero is substituted for the negative estimate, and this zero

is Carried forward as the estimate of a2(E2) in all, other expected mean square

equations.' This "plausible, 'solution" to the negative estimate problem is

suggested by Cronbach et --41;72, Iv. 57).

. A

4=

t

.

a.

32
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,

.The primary result of a typical G study is the e stimated random effects

.

variance components for the G study design. these G study variance components
--.. -..

. ;

are for single observations based on random sampling of one condition of each

facet.,from an infinite universe of admissible conditions (or observations) for
. .

the facet. By comparison, a decision maker will, want to use these results in

some D study that involves its own_sample size, and universe size , for

each facet in the universe of generalization. If, fOr example, N' co, then

the facet involves sampling from an infinite universe of generalization; and if

,

n' = N', then the facet is fixed in the universe of generalization. Here and
.,

in Cronbach et al. (1972) n refers to the size of,the sample and N to the size of

' -
- the universe of admissible observations from the G study. Similarly, n' refers,

to the,Sample size and N'.to the size of the universe of gdneralization defined
1.

%by some D study.
.

In performing a- D study, then, the decision maker must specify, directly

or indirectly, the sample sizes and universe sizes for each of the facets in
4 ?Se

1.4

the universe of generalization. In addition, theodecision maker must specify

A
the object of measurement. It is usually the case that the facet for persons,

or some aggregate of persons (suCh as a class), serves as the object of measurement

in a D study. -Howeve.44 any facet could serve.as the object of measurement

(see Cardinet, Tourneur,, 1976). Suppose, for example, that the design

(aec) x i were used in the G study. A D study might use persons, items, or class

means as the objects of measurement. _In some literature the terms "object of

measurement" and "unit of analysis" are used synonymously.

.33
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However, recently the unit of analysis issue has been viewed primarily

in the context of choosing an appropriate unit of analysis (see Cronbach,

Deken; and Webb, 1976; Haney, 1974b). This, of course, is an important issue,

but it.is 'outside the scone of this paper. Our concern here is with issued

in analyzing D study data once the object of measurement has been chosen.

In order to avoid ambiguity, therefore, we use the term "object of measurement".

rather than "%lnit,of analysis."

D Study Variance ,Components

Syppose a G study is conducted using the-designoxixo. Table2

provider the estitated random effects variance components resulting from such

,
a G study. A typical D study, associated with such a.G study, might use E

as the.object of measurement. For such.4 D study, the observed score for person

o, assuming an infinite universe ofgeneralization for the item and occasion

facets, can be represented as.:

X =X =p+prt, +prt, + p
o
rt, +'p rt, +p il, +pq, +11 rt, .' , (12)p pIO

,...
D 1 PI EL0 10 PM .

. . .

where experimental error e, is completely confounded witp
oI0

q, . In Equation 12,

an upper-case subscript indicates the mean for a D

n!

p
1

-

n!
11q,

-s = 1

n! n'
-2 -o

.

and X = X = , EE pIO n
i =1 o =1

I

y sample of size n'; i.e.,

where X ,' = u + p + + p + p + p + 0, + p,,
plo o 22_ lo EH? ,"

34
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Nbte-that here we use the. Abbreviation X to mean`X
FE;

, where E iethe object

of measurement for the4D study.

. For each of the.score effects in EsTtion 12, the.estimated D study

variance component is obtained by dividing the estimated G study variance com7

.
;

ponent by the frequency of sampling the effect within the object of measurement.

, In general, the frequency of sampling the component a within the objectof

measurement component y, is:

d (aly)

1 if a contains only indices in y; and, otherwise

(13),

the product of the D study sample sizes for 41

indices in a that are not in y .

For example, for the component la in ,hey study design represented by tne'`.'"A

structural model in Equation 12, d(aly),--= d(8j8) = 1; and the estimated D study

variance of the component E is 02(0/1 = 02(1): For. the componnt
*1.

I, a(d)y) = ni , and the' estimated D,study variance

component for Y is (12U) = eji)/W. l'orthe.cOMponent d(aly) -='d(jtElE) = n!,-
. .

'and the estimated p study variance component fOr p1 is 02(nI) = '2(8l)/n!.

All D study variance components for the designExixoare reported in

8. It iiimi8rtant to note that these variancecomponents are forta%'

random effebts D study; i.e.; n! < N!'- oo and n' < N' + co. It is alsb possible
1 -1 -o -o

to,express D study variance components, in, terms of a model different from the

randOM effects model. (See subsequent discussion of sampling from a finite

universe,) However, even wen one or more facets is fixed in the'universe:

of generalization, it is usually more informative to use and report the random

.effects D study variance components.. Various combinations of these components

provide the summary statistics typically used in:a D study. The only important'
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.

. , . .

exception occurs in the case pf sampling from a finite universe.of generalization;
. .-

.
this- ,possibility is considered later.

Insert Table 8 abidat here
:

By convention, here and in Cronbach et al. (19.72), D study. estimated variance
,;

. .

components and summary statistics formed from them, are expresse&in termsof

mean scores. For.example, 82(E) = 02(i)" .
; in Table 8'is the D, study estimated

var iance component associated with the mean score for a sample of n! items. It

is also possible to.express D study variance components in terms of.total scores.

'For example, the D study estimated variance component associated with the total

score for, a saMPle'of n! items is n!02(i). In general, dor the total: score metric,
Ts

D study components are obtained by multiplying (rather than dividing) G study'

variance components by the sampling frequency within the object of measurement

(see- Equation 13).

D Study Summary Statistics

D study variance components are useful in and of themselves, because they

provide a direct indication of the elative magnitude in the D study, of each

of the independently estimable can nests of score variance. In" addition, D study
\

variance components are frequently used testimate one or more'athe following:

02(T): the universe score variance kQr the object of measurement T,

4

Wbich is analogous to the true s ore variance in classical-

test theory;4

36
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E02-00: the expected observed score variance, which"is the expected

value over design replications of observed deviation scores;

i6p2: 'an intraclass correlation coefficient, called a coefficient
...

r . .

of generalizability, which is analogous' to a reliability

coefficient in classical test theory;

.1
s. 1

Ec2'( ): the error variance for making comparative decisions among'.
. .

..)

.

-,

the Objects of measurement (e.g.; personS), which is analogous.,

to the error of. measurement in-classical test-theory. ' "The

error (5 is the discrepancy between the observed deviation

score and the, universe score expressed in deviation forin"

(Cronbach et al., 1972, p. 25).

cr,.(A): the average error variance within an object of measurement

(e,g, nerson), where error is definedas the difference be-

Lween observed and universe' s 'core; and

.2,c.
k ). the variance of errors of estimate'from the linear regression

of universe scores on observed scores; that is, q2(c) is the

variance of the discrepancies between estimated and actual
-

universe scores.
a

following equations provide s me useful relationships among estimates

of'the statistics introduced above:

- e 2
E a2 (X) =

2
(r) + Po (c5) ;

°

37
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62(T) 2 W.0
.p

2 = (15)- '
cr2 '62(1) 6

a2 (a)
n.

2 2 2
cc) = (T) ) (16)

,

. .

Equation 14 is analogous to thesclassical test theory result that the

variance of observed scores equals the variance of true scores plut the variance

of error scores. Note, in particular:, that the error variance in Equation 14 is

F not
2 (A). he latter has no clear analogue in classical test-theory

with its emphasis on.parallel measurements (see Lord, 1962); however, Brennan and

Kane (in press-b) show that a2(A) is related to a type of error variance disCussed

by.Lord (1957) prior to the advent of generalizability theory. Also Brennan

. .

and Kan4e (in press-a, in prdts-b)
,

show that a4(A).is usually an appropriate

'Q '
.

k
.

.
. ..0N

estimate of error variance for domain-referenced mastery tests, whereas 602(4)

.is seldoth appropriate.

As implied by Equation 15, a coefficient of generalizability is defined

as the ratio of universe score variance to expected observed score variance.
---"N

In terms of estimates, p2 is a consistent, estimator of a2 (t)/ea2 (X) because

e
B2 (t) and pa2

(X) are both unbiased estimates (see Ldrd and Novick, 1968,
.

pp. 201-203). Also, the notation ap2 is indicative of the fact that a

generalizability coefficient can be interpreted as a squared:correlation. or--

intr4class correlation coefficient (pronbach, Ikeda, & Avner, 1964), as well
,

as an approximation to the expected value of'the correlation between pairs of

measurements '(Cronbach, et al., 1972, Chapter 8).5

,In Equation 16,
2

i(e) is strictly appropriate only if

P

equation for.universe scores on observed scores is determi ed from the actual

conditions used in the D ttudy. Otherwise, 62(c) in Eq ation
:*

16 is an under-
.

the egression

estimate of a
2
(c) (see Cronbach et al., 1972, pp. 7884).

313



O

4.

Generalizability

34 '.

Combining D Study' Variance Components

In order to determine which variance component., enter each of the summary

statistics defined above, it is necessary that the D study be clearly specified.

Here, the nature of a particular D study employing a specific design will be

identified in the following manner: D(YIVIFIR), where

c°

y = object of measurement component (i:e.tthe facet that serves

as the object of measurement fOr the D study);

V
N

V = main effect index in y ;

.

F = the set of facets. Are fixed in the universe 'of generalization
..... % .

%. \ .. .

(i.e., facets for which n'*= 11!)\and

R = the set of random facets (i.e., fiCets for which the D study

contains a random sa:dple of n' conditill from the universe
.

...x / ..'..-

-'''NCA'

..-

. ." .,-6"i generalization for the facet).*r s,.* .
o o\

.Here, for 4ndom facets,
\
it is assumed that the universe bf generaliation is

I:."'' 1

1

\
.

in 1 to (Lie.
<
, n' < N'..t,g11 later, we consider random sampling of conditions

1 _

-finite universe of generalization.
..

',.!..%,

1ln th notation D(YIVIFIR) and R specify the universe of generalization,

''' /

-.
. I- .

,

..4'

and every dex in the D study design is in V, F, or R. There are, however, two

/
restricti ns on D(YREI R). First, each-index/ ip'); must be in either V or r

but not in both. For example, if 2.1.c is the object of measurement component y,.

4\. . 1-1

4

. c

then Il'might be in. and c in F, but c could not be in both V and F. Second,_
.

there must be at least One index in R in order tc make the D study informative;
.

.

otherwise,the D study woul not involve generalization over any facet.
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Al Algebraic Procedure. Given D(y1371-FIR), the components that enter

2 e 2 c 2
-0 (T) a (X), F a (6), and a2(A) are, respectively:

\s-

r(yIVIFIR) = X - X ;

YR V R
.17

a

X(YIVIFIR) = X - ;-
, Y /I,:

't

\

6(11v1FIR) = (X - aX ) - (f:X - ) ;

Y VY RY 17

and A(yIVIFIR) = X. -
, Y

Y

;

R

where each expectation is taken over the population or universe.
io

\
'In Equations 17-20, 4:;X is the universe scope for the D study, and r(YIVIFIR)

R Y r ,

is, the universe deviation score. Similarly, X is the observed score for the

(17)

(18)

(20)

D.study and X(yIVIFIR) is the observed deviation score.

Consider, for example, the observed score X for the design px i x o in

Equation 12, and suppose that the D study is D(yIVIFIR) = D(2.12.1-1_1,0), where

the symbol. '-" is used to indicate that there are no fixed facets in the

universe of'genera4zation.

'From Equation 17, the components that enter, a-(r1 are:

t(EI2.I- II,O)_''X
1 0 a eio,E

40
a

II



and, 'therefore, .

, a

, .
a2 a2 (p (42 (p)

°

From Equetion[18, the Components that 'enter
,

4.

and, therefore,

d.

Generalizability,

lc

g a2 (X) are:

=
P.

p ,>t; + p + p
p10

;

O

a2 (X) a2 (p)
62(P1)

( ) + .a.;2 (pIO)

Note that a
2 (-XT is different from the total variance, a (X),

sum of all D study variance, componentS

Prom Equation 19,. the components

scplp4II,0Y = ()(

and, therefore,

g X

E

(see Equation 12).

that :enter g'a.:2(d) are,:

( g x g x )
Iog

= Pt) --(11 11)

.= p, + p +jj ;

p10

F 02 ( S) = a
2
(I) ,+ a2 (p0) + a

2
(p T0) .

's

'From the above results it is clear that ga2(X)..equ als,the sum

cr2(d), as indicated in Equation 14.

'36

(21)

(22)'

which is- the

. (23)

,
of a

2
(T) allot

Finally, from:Equation 20, the components; that enter a
2(A)

are

4 .



Acp12.1fi,o) g;gx
E I o E

and, therefore,'

3

= X - p
2

Generalizability
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Iti +11% + VIOL
+ pIO0

V +V
DI po +

-
;

A

a
2
(A) = a2 (I) + a

2
(0) + a

2
(pl.) + a2 (p0). + a

2
(I0) + a

2
(pIO) . (24

. v .

....^.%

4
With the exception of. Joa

2 (X)*, estimates of the above results are

reflected in the fourth column of Table 8. li.F2(X) is most easily obtained

)using'Equation 14; and, of course, Equations 15 and 16 can be used to obtain

.

gp and 62(0. .
.

. , .

' A Notational Procedure. The procedure 6presented by Equations 17 to 20

is a-straightforward application of generalizability theory, but it does

involve some degree of algebraic complexity. A simpler procedure involves a

direct application of the notation for valiance components used in thii paper.

If the D study is D(yIVIFIR), then:

C 2
(a) variance components that enter Vaa (X) are all variance componentS

thatC-Ontain the index in V;

lb) variance components that entera
2 (T) are all variance components

that contain the index in V and do not contain

any index in R;

C

4'

c) variance components that enter soa
2 (0 are all variance componefits

that contain the index in' V and ohe or more of.the indices

0

in R; and

42

1

Si
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(d),,, variance components that enter a2(A), are all variance components

that contain one or more ofthe indices in R.

For example, for the model Equation 12 and D(yIVIFIR) = D(plpl-II,0),

XP
o 2
Pa (X) Consists of the variance components that contain the index p in V.

1.. . At
These components are a (l),

a2
(AI) a

2
(4) 1 and

a2
(p20) therefore,' lona

2
(X)

. .

is the result provided by Equation 22., The - variance components that enter

a
2 (T) are thosewhich contain a'p,ani:i do ndt contain an I or an 0 (the indices

'in R). The only component that'Satisfies these two:conditions is a2(p);

therefore, a
2
() equals a

2
(2), as specified by Equation 21. The variance

) 2- , .

. .

components that enter Ica (a) are those which'bontain a p,,and one or bot of

., .

.
-

the .indices I and .a. These components a
r
e 0

2
(pI),4a

2
(1)0), and a

2
(pI0); there-,°

fcre,Aa2(d) Is the. resul provided by Equation 23. Similarly, all variance

components except a2(2)contain either an I or an 0, or both; therefore, a
2
(A)

,

is. the' result provide by Equation 24.

Illustrative D Studies

2 In this section, the procedures for combining variance components are

'discussed with referendeto various D studies that might be used with each of

the five illustrative designs. The results of applyi1g either procedure are

presented ,in tables similar to Table 8, and certain interesting and/Or

illustrative aspects of these results are discussed in the text. (In studying

these examples.it is useful to refer to the Model equations in Tables 1 5

for the five illustrative designs.)

Insert Table 9 about here

43 i

.
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The Design p x i. Tablel presents a single application of the procedures

for combining variance componentsoin the E x i design. For D(E12.1-II)

T(02.1-1I) axe -fie x
E

.

EI

0

Therefore,

= P

= u
P. ;

= ) - (6)( -
2-)_ ,E

= (X
E.- u2) (11 - 11)E

= U Iti. ; and

= X -

E I E

= X 1.1

E E.

= UIti + u -Iti

(T) = a
2

(E) ;

2 2 2 .

p a (6) = a (p=) = a (a) is" ;

.

62 (A) = 02 (I) + a
2
(El)

2 2 .

o (i) a (22)

n! m!

O

0

.0

.
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g°
p a

2
(X) = v2

2

a

2
= a

re2

.

e
T) + a

2
(6)

d2
(,E?,)

40

and

(25)

(2) + ,

n!'*

,*
(1,2 (2)

(2.) 82 (E) in!

Equation 25 is algebraically identical to Cronbach's (1951) Coefficient a,

'and, when items are scored dichotmously, Equation 25 is.identical to Kuder

and Richardson's (1937) Formula 20. However, the derivation of e.° p2

in Equation 25 does not require the assumption of classically parallel tests

with equal means, equal variances; and eigua intercorrelations. Rather, the,

derivation of 102 requires the weaker assumption of randomly parallel tests.

Two tests are randomly parallel if they both consist of a random'sample of the

same number of items from the same universe. Also, Equation 25 illustrates

-
the regularity that forms the basis for the Spearman-Brown Formula for changes

ill test length. Increasing the number of items, n! , by a specified factor
.0\4.

leaves 8201.unchanged and decreases ga2(6) by the inverse of the factor.

This type -of regularity occurs because the universe of generalization contains

.

only one facet--namely, the item facet. For more complicated universes of

generalization, the Spearman-Brown Formula does not usually apply.

The Design p x i x o. Table 9 treats D studies for three different

universes of generalization when the person 2. is the objeCt of measurement.)

The first D study, D(PIPI - 11,0), has been discussed in detail. The other

two involve a single fixed facet, I or 0.,

a

L. 45
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O

Ss.

Fox' example; for 'D(2,1E1 '10)

T (plank))

= 11E1- PI

= p ti ; and

= ( 8X - 0 , X )

2 E
F

2. E 2

= (X
E
-p

10
) - (1.1 -

=u ti +u
PO E12.

GeneraUzability

41 41

That is, a2(T) consists of components that contain E (the index in V) and do

not contain 0 (the index in R)9 whereas 6a2(d) consists of components that

contain E and 0. Similarly, for D(012.101I) ,

T (EIR101 1.1

E
+ ; and

(RIE1211-) '= u2 1;

That is, a (T) consists of components that contain E (the index in V) and do

not contain I (the index in R), whereas a2 (6) consists, of components that

contain E and I.
O

In both studies, a2'06 is identical to e3a2(X) for D(Elp1-1I,0). This

is a particular instance of a general rule; namely, Once V is specified

e62(X) is unaffected by changes in the universe of generalization. HoWever,

2
the universe of generalization does affect.a.(T) and aa2(45). Using

46

4.L
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D(EIENI,O) as a basis for comparison, in D(EipIII0) the variance component

a2(E1) moves from Ca2(6) to a2(T); and ir D(DIEjoli), a2(100) moves from

ga 2 (6) 'to 62(T).
t

Going one step further, if both I and 0 were fixed in the universe of

generalization, then ga2(X) would be identical to 'P(t), pe(s) would be unestim-
.

...
. 6

able, and, therefore, Gp-
0
would be unity. Such a result occurs whenever

theie,are no facets over which the decision maker generalizes., It is for

this reason that R should contain at least one index for the D study to be

infOrmative.
. .

As indicated in Table 8, 62(A) never includes the variance componentsin

a-(T)..., and 62(A) always includes the variance components in °b 62(5). The

remaining variance components enter 62(A) only if they contain an index in R.

For example, in D(ElalI10), a 2 (I) does not enter 62(A) beCause this variance

component does not contain 0. From another point of view, a2 (I) does not

enter a2AA) because I is fixed in the universe of generalization, and,

therefore; p
I
ry is a constant for all persons.

Insert Table 10 about here

The Design p x (i:S). Table 10 presents illustrative D studies for a

.1
design that involves a single level of nesting in the universe of generalization.

For the second D study, D(yIVIFIR) =D(pIEJSII), with S fixed in the universe

of generalization,

t(p_laisix)= ex _ E
P- ID R

= p rt. + p ti;
E PS

47
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acEjEisli) . (gx
2.

- egx
2.

C = (X P ) al - us)k : s

,

= p
pI:S

; and

n(alEisin = x - gx
. - E

= X - p
.

,

= p +
I

g,

,E_12S
q,

Generalizab4itYzaoq......-

43

In terms of the notational procedure for combining variance components, a
2

(i)

" -

.
consists of variance components that cont E (the index in If) and do

46

contain I (the index in P.); i.e.,

a2
(T) = a2 (1) + a

Similarly, lova
2 (6) consists of variance components that contain and I;

.

cr2(*() 0.2(21:s)

and a
2 (A) consists of variance components that contain I: i.e.,

a2(4) a + a (pI:S) .

If, then, S is fixed in the universe of generalization,

2(
2) +.6 (PS)

2.

102.P -

82 (P) 4'

2
(2§) 4)

2
(PI:S)

48
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whereas, if S is a sample from an infinite universe,

E)
..

02-_

2
(

02 (0 t 02 (mss,) 62 (EDS)

[see D(plE1-1I,S) in Table 10].

Generalizability
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The characteristics and utility of generalizability coefficients that

take stratification,of content into account, were studied by Ckonbach and-his

colleagues (Rajaratnam, Cronbach; & Gleser, 1965; Cronbaoh, SchOnemann, &

McKie, 1965) shortly after their seminhl.Work on generalizability theory

(Cronbach, Rajaratnam, & Gleser, 1963). They concluded that if the items in

atest can be divided into different content strata, then estimates of

reliability should take the stratification into account; otherwise, reliability

may be seriously underestimated:

*

Insert Table 11 about here

D Studies with Nesting in the Object of Measurement Component. Consider

tithe design (2:c) x i and the 'D study DILIcI2JclI)/in Table 11. For this D study,

the object of measurement component, y , is p:c and each.peison is nested within

a particular class. Since both 02(2.:c) and 02(c) contain only indices in

y = p:c, the D study sampling frequency for each of these G study variance com-

ponents is unity (see Equation 13). For this D study, the universe of generalization

contains a single fixed class and an infinite universe of items, from which 4

sample of n! items are drawn. Consequently, 01(c) does not enter

02(T), a2(6), 02 (A), or 8a2(X); for example,

49
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X - EE
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O
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45.

and

=u p ti
21:c

a 02 (i) 02 cift_i

2`'

A

i.e.,
2
(X) consists of-variance componentsthat contain a (the index in V).

.
It is particularly important to note that this D study is not identical to

ttie D study for the p x i design in Table 9 (see Brennan, 1975),

Insert Table 12 about here
0,

table 12 provides illustrative D studies using p:c as the object of

measurement component in the design (10:c) x (i:s:t).. &lthough"these D studies

use a considerably more compl:c..ted design, it is relatively easy to apply

the notational procedure for combining variance components.

Insert Table 13 about here

D Studies with Class as the Object of Measurement. Table 13 provides

illustrative D studies for the design 011:0 x i when the object of measurement

is the class, c, or more specifically the class mean:

-

X =X
PI:c

= p + p + p + p + + p ;

c p: c, c PI:c

where experimental error e is completely confounded with p_PI._.
C

(26)
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O

For the D study in Table 13 that involves generalization over both samples
r

0

of persons and samples of items,

X (c Icl-IP,I) = Xs. - Xs

= Xc - pI

= p
c
0) +.11 + p

cI
+ p ,

P:c Pr:c

and go2(x) = 020 02(p:0) + a cr) + 02(PI:c)

i.e., 'o2(X) consists of components that contain c (the index in V). As noted
0

6-
pre ously-p o

2
i(X) is unchanged by changes in the universe of generalization,

but th's is not true for 02.(T), $02(cp, or 0
2
(A). In particular, Table 13

shows th t when generalization is over both persons and items,

02' = v2 ;

when generalizaioh is over items, only,

0
2
(T) =

,2
(c) + a

2
(P:c) ;

arid when generalization is over persons, only,

02(T) a2
(c) + '02(cI) .

The estimate of ach of these thiee different universe score variances [ox,

equivalently, the three ifferent estimates of E02(d)] provides a different

estimate of the ge eralizabllity of class means. That is, these estimates

differ with respec toothe facet(s) over which the decision maker generalizes.
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The estimation of reliability, or generalitabilkty, when the object of

measurement is some aggregate of persons,. has been a pa cularly troublesome

problem, ip recent years (see Haney,.1974a, 1974b). In to of published
.

.

literature, Medley and Mitzel (1963) and Pilliner and his colleagues (Maxwell

& Pilliner, 1968; Pilliner, 1965; and Pilliner, Sutherland & Taylor, 1960)

appear to be among the earliest researchers to recognize that,the class mean

is frequently the variable of interest, rather than the score for a person.

More recently, large, scale evaluations, such as those undertaken for Head

Start (Smith & Bissell, 1970), Follow Through .(Abt Associates, 1974; Haney, 1974b),

1

and the National Day Care 'Study Stallings! Wilcox, & Traverb, 1976), have

frequently required estimates of reliability when class mean is the object of

\
measurement. Similar issues in the study of course evaluation questibn-

.

nacres (Gilimore, Kane & Naccarato, Note 1; Kane, Gillmore, ,F Crooks, 1976)

\

, '1.

, -.

and studies of school effectiyeness and accountability (Dyer, Linn, & Patton,

1969; Marco, 1974; Page, 1975).

The literkture,does contain some approaches to the estimation of reliability

for class means using classical test theory. For example, Shaycoft (1962),

Wiley (1970), and Thrash and Porter (Note 1) developed three different coefficients,

each of which assume that an Observed score is the sum of a true score and an

undifferentiated error term. However, eadh of theses proceu. makes different

specific assumptionS about what constitutes an appropriate estimate of error

variance. As a result, each procedure gives a different estimate of the relia-

bility of class means. "..ane and Brennan (1977) show that Wiley's coefficient
,r\

is equivalent to f:$2 when items ere fixed, Thrash and Porter's coefficient
41\

is equivalent to tp2 when persons within classes are fixed, and Shaycoft's

"th
coefficient is an overestimate of tO2 when persons within Classes are fixed.



0

It is not_suatign

Geieralizability
48

.

that none of these coefficients correstords to ep2 ashen

generalization is over both persons and items. Classical test theory does npt

r

specifically allow for differentiating among sources of error in a multi-faceted

universe of generalization.

t

Insert Table 14 about here

Table 14 provides illustrative D studies using the class mean as the object

of measurement in the design (2.:c) x (i:s:t). The mader can easily verify the

re sults in Table 14 using the notational procedures'for combining variance'

components. D studies for th is design are clearly more complicated than those

for the (p_vc) x i designChowever, inlarge scale testing 'efforts involving

analysis of class means it is frequently the case that d ata are collected

according to rather.comrIicated sampling plans. To overlook this complexity

is to discard some amount of information in the data, and, therefore, to

potentially restrict the utility of the results.

k

53
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Sampling-from Finite Universes
1

To this point, our discussion of generalizability theory Has, focused on

D studies in which each of the facets in the universe of generalization is either .

fixed (i.e., n' = N' < 03) or essentially infinite (i.e.,,n' < N' co) . Wehalie

seen that:7such D studies can be carried out using G study random effects variance

componwits-i'or, more specifically, variance components for single observations

-..

possilp.e,to,Aevelop equations for calculating G study variance components for

based on random sampling of one condition of each facet from an infinite universe

ofsadmissible conditions, or observations, for the facet (N. -3- 6). It is also

rdhdomsampling of one condition of each facet from a finite universe of admiSsible

-
conditions for the facet (N < 6). These 6 study variance components are especially

_useful in D studies characterized by sampling,from a finite universe of generaliz-
. .

typical ANOVA terms is apt to involve considerable ambiguity. The proble.a

ationa

Unfortunately, any'verbal discussion of different sampling procedures in

", `primarily evident in the term "random effect," which, in traditional ANOVA

terms, actually implies "random sampling from an infinite universe," as opposed

to no sampling.at "fixedeffect"), or random sampling from a finite

universe. It.is particularly important to note that the traditional ANOVA

motion of,"random effect" does not mean sampling from a finite universe, even

though such sampling is "random." For.this reason we will restrict our use of

the term "random effect" to random sampling front an infinite universe.

G Study Considerations

In this section we develop equations for G study estimated variance

components and expected mean squares for any model M. That is, these equations
.
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. .'

. . ,

are applicable to n < N <'.00 (sampling from a finite universe of admissible obser-

. .

7 .17,

o. ,, .
0

vations), n,= N < co (fixed effect)-, and'n < N 4- co (random effect)..

Estimation of Variance.Components. If d2(a)M) is the estimated variance

: for the component a, given a G study design using the model M; then

2
( .)

J
d .rtctiM) =

2
(a) + Z

(27)

7

where d2 (a) and 8241.).aie estimated G .studY variance components for the' random

effects model calculated from. Algorithm 2;'
4

ir
a and

ai any component; except a, that contains all the indices' in

F(B.) . the product of the G study universe sizes (N's)'for all. indices

7

_
,

. .;...___),

in' 6. except those indices in a. '' (28.)

As in Algorithm 2, no distinction is made:Upetweennested and non-nested indices.

If N 5all facets, then d2(6.)/F(6.) is always zero, and 62(a1M) = d2(a).

7 2..

If, on the othe and, all effects are fixed, then all universe sizes (N's) equal

the sample sizes (n's) in the Gstudy. In the case of mixed models, some effects

.are random and some fixed. For other models that involve sampling' from a finite

universe for one or more facets, the actual universe size is used in Equation 28.

For example, in the design, (a:c) x i, consider the component p:c The

only other component that contains the indices p and c is pi:c; therefore,
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82(EL:c)

82(p:c1M) = 82(2.:,c)
N.
'-1.

Generalizability

Now, if i is a fixed effect in 'the G study, then N = n and
. 1

--

82(pi:t)

( V ) 'r--- 82 (V.C) + .

n.
-s.

51

If, on the other hand, i is a random effeCt, then the universe size is

-considered infinite and a2 (E:2IM) = 2
(2:.c). If n. is a sample from a finite

51

universe of size N., then the actual value of N. is used in the above equation.

Also, in the design (E:c) x i ,consider the component i. The:components
"

.that contain i are ci and Ei:07 therefore,

.
. !

82
(ci)

82 (Lc)
62(i1M) = 62(i) + +- . N,N

.

if, for example,.Eis a-randam effect and c is a fixed effect in the G-study, then

0
er

82(ilm) = 62(1)n 0.00

. -C

Expected Mean Squares. . For any model M, the expec.zed mean square for the-

componept f3 is

EMSOIM) = Eh(a)f(a)82(a) ;

at

56
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where a is any' component that contains all the indices in $;f(ci) is defined

by Equation 4; h(a) is the Product of the terms (1 - n/10 for all main effect

indices in a that are not in,a; and d2(a) is the estimated random effects G study,

'variance component for a calculated from Algorithm 2.
, .

.t-

.For the component p in the design_p x (i:s),

n._3.
41_-s

EMS (E1 M) = 1 --* 02 ( ' ) + 1 7 2.3.82 (E...2 + n . n 02 (p)

(f,

p,
_.,..

.s 1.s
, . _ ..... .

If both items and subtests are random effects, then both (1 - n./N.) and
-3. -3..

n
s
/N

s
) are unity and FMS(EIM) equals EMS(p) for the random effects model.

- -
If items are random and subtests are fixed, then (1 - n./N.) is unity,

. _

- n /N ) is zero, and,
-s -s

EMS(EJM)= d(pi:s) ni-ase(P)

If items are random, and the subtestsin the G study are a sample of size n-S.

from a finite universe of size N , then_
-s

EMS(EIM) 62(pi.$) + /
N 3.

n.d2(ps)
3.

+ n.n
s
82(29

, -

D Study Con,siderations

The discussion thus far has focused on D studies in which each of the

.

facets in the universe of generalization is either fixed(i.e., n' = N' ) or

essentially infinite (i.e., n' < N'' =). It, has also been assumed that G

study variance componentsare reported for an infinite universe of admissible

observations (i.e., N 4 c°). For most. studies these assumptions are quite

reasonable; however, a study might involve sampling from a finite universe

of generalization. More specifically, it is possible that, for one or more

facet'S, n' < N' = N s =. For each such facet, the D study uses a
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221esan of size n' from a' finite universe of generalization of size N', which

is identical to the universe size, N, assumed in the G study.

For D studies characterized by sampling from a finite universe, a limiting

case occurs when n' = N' = N < =. In this case, the ,D study actually includes

.

all conditions of the facet in the universe of generalization; and the facet

is fixed in the universof generalization. Another limiting case occurs

when n' < N' = N -+ co. In lits case, the D study includes a random sample from

the (essentially) infinite set of conditions for the facet. (This is the definition

of a random effect in the typical ANOVA sense). When n' < N' = N < = , it is

also assumed that the sampling of the n' conditions is random, but the universe

of generalization for ,the facet is finite.
4-

Let us consider the case in which N' = N < = for only one of the facets

in the universe of generalization, and the D. study involves sampling this facet

n' < N times. In general, the steps involved in conducting the D study are:

(a) -use Algorithm 3 to 'obtain G, study variance cbmponents which reflect the

Act that N < =; (b) obtain D study variance components that take'into account

-sampling from a finite universe; and (c)'emploi, prOcedUres for combining D

study variance components, as appropriate.

Consider, for example, the.design ExixowithEas'thelstudy object

of measurement. Let us assume that in, the universe the item facet has a

finite number of conditions, N., which are sampled n' times inthe D study.1
Since N. , the estimat- variance components are obtained using

Algorithm 3. They are reported in Table 15' for thepxixodesign..

Insert' Table 15 about here

58,
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For any D study component, a, the estimated variance of this component is:'

2 t

8 (a4N. < co)

2
(aIN. < co) = 1

-NiD 3.

-2
n! G

d(alY)

'if fi!
3.

is in d(aly); otherwise,

82(aINi < `°)D

G
2
(a IN < co)

d(aly)

(JO

(31)

where d(aly) is defined as Equation 13; and' (1 - n-3!)N.) is the finite universe
3.

correction (see Cochrafi, 1963, p. 23) associated with variances for the item

facet. Table 16 reports the estimated D study variance components; for the'

designExixowhenpis the object of measurement:'

.It is important to note that the D study variance components defined in

Equations 30 and 31 are for a random sampling model where N. < co and N co .

-3. -o

These variance components are completely analogous to the D study variance

components for a random effects model reported in the fourth column of Table 8.

Indeed, for Ni 4 co the D stue: variance components in Table 16 are identical

to the D study variance components in Table 8. Also, Equations 17-20 and the

corresponding notational procedure for combining variance components are

completely applicable to D study variance components that ihvolve sampling from

a finite universe.

Consider, again, Table 16 and suppose that the D study is D(9IpHI,0)

implying that occasions are randomly sampled from an infinite universe and

items are randomly sampled from a finite universe of size N. = N. For this
-2 -1

D study, the'reader can verify that

5J
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a2 (a) = a2(a2 (I IN. < co) + pI
.'"
i)

+ a2(pIOIN < co

2
N.

n !

;

i '.

(

n!

a2(pi).4. a2(Es9 a2(Pi0)

n' n!n' .

s o 3.o

and, q,c3.2 (xl a2 (.0 .4. a 2 (6)

a2 (2i) a2 (E2)
a2 (pi..,

= 'a?(P) +
n' n!n's o

(32)

wheie the variance components without ,the Conditional cstatelmIt "N. < con are

the usual random effects D study variance components.

It is both informative and instructive to note that Equation 32 is identical

to Equation 22; i.e., '§a2(X) is unchanged by whether or not the universe of

generalization involves sampling from a finite universe. This is true for all

of the possible D udies given a particular design and a particular object of

measurement.

Consider, again, Table 16 and suppose the D *study were D(plE101I) with

occasions fixed In thi- case,

a2(T).= a2 (PIN. + a2(20IN. < co)

a2 (pi a2(po) a2(pio)
= Q2(,)

N. n' N.n'2. o

6a2(a) = a2(pIIN, < 00)

= 1 - RT.

(

-
n!
1

a2 (pi)

N. < co) ;1
'a2 quo)

nb n'n'1 0
(.4

..
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and, ,a2 (X) is identified to Equation 32.

If the D study ;design were D(p1p1I10), then the item facet would be

fixed in this particular D study. In this case,

a2(T) = a2(EjN. < co) + a2(EIAN. < m)

= a2 (E) + a2(pi)/n: ;
(33)

and 6
a2(6)=0.2(2gk.<00) + a2 < co)

= a2(p0)/ni a2 (pio)/n3.w0 o
(34)

Equations 33 and 34 are identical to those obtained using the fifth column of

Table 8. This must be so, because when the item facet is fixed in the universe

of generalization there is, by definition, no random sampling of the conditions

of this facet; and the size of the universe has no bearing on a2(T), 6 a2(d),

a2(4), or any quantities formed from them.

The procedures discussed above can be extended to D studies that involve

sampling from a finite universe for more than'one facet. In suchvoases,"estimated

G study variance componentsere obtained using Algorithm 3, and estimated_D

study variance components are obtained using a more -general version of Equations

30 and 31. For example: if the D study involves sampling from a finite universe

for both, the item facet and the occasion facet in the p x i x o design, then '

the finite universe correction in Equation 30 is:
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(a) (1 - n!/N ) (1 - n'/N ) if d(aly) includes both and n' ;

-a. 1 -o o

(b) (1 - n!/N.1 ) if d(aly).. includes n! but not n' ; and
-2- -

(c) (1 = n'/N ) if d(a1Y) includes n' but not n! .

-0 -o -o -a

If d(alY) includes neither n! nor n'
0

, then Equation 31 is applicable.
" -1 7

ti
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Comments and Conclusions

It is usual in both practical and theoretical contexts, to treat issues

of reliability from a correlational viewpoint. The literature, for example,

is filled with references to reliability coefficients that estimate "internal

conRistency," "equivalence," "stability," etc. While such, coefficients and

terms have a long and distinguished history, they can be a source of considerable

confusion and ambiguity. In particular, it is frequently difficult to identify

explicitly the magnitudes, types, and sources of error variance incorporated in

such coefficients. The use of generalizability coefficients can avoid these

problems, at.least in part, if the nature of the universe of generalization is

clearly specified. However, estimated variance components are even more in-

formative and less ambiguous.. Indeed, estimated variance components are the

most informative outcome of a reliability study (APA, 1974). They can be used

directly to obtain estimates of universe score variance and different types

of error variance .that are appropriate in different decision-making contexts.

Variance components can be used, of course, to estimate generalizability'coefficients;

but such coefficients are of ..uestionable value in the absence of the estimated

valiance components themselves. Note that it is the magnitude of variance

components that is of primary interest--not their statistical significance.

Also, variance components should not be expressed solely as.a percentage or

proportion of some total score variance. To do so is to obviate the more

important uses of variance components.

Since the magnitudes of variance components are central to generalizability

theory, it is important that the numerical estimates of variance components

be as accurate as possible. Therefore, care should be taken to avoid the

deleterious effects of rounding errors. For example, it is usually advisable

that most, if not all, calculations involve at leas': three decimal places.

This is particularly important when a G study itvolves binary data, which is the

usual case for achievement tests.
63
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The notational system used in this paper was invented in order to facilitate

the statement of various "rules," procedures, and algorittms. There are only

two principal ways in which this notational system differs from that used by

.Cronbach et al. (1972). First, this paper uses the nesting operator ":" to

designate variance components that involve nesting; Cronbach and his colleagues

use the "all confounded effects" procedure. Second, this paper specifies a

particular D study using the notation D (YIVIFIR). The notation D(yIVIFIR) is

very useful in specifying rules and procedures for combining D study variance

components. Also, this notation clearly identifies the universe of generalization,

and clearly distinguishes, between the object of measurement and the universe of

generalization. Cronbach et al. (1972) treat object of measurement considerations,

but they do not emphasize them as much as this paper does. However, Cronbach et al.

(1972) do clearly identify a fixed facet by concatenating its index with the

symbol "*" or "**". In terms of certain theoretical expositions,,the star

notation has sane distinct advantages.

This paper treats only G studies and D studies that involve orthogonal

analysis Of variance designs; i.e., designs that do not involve missing data

and /or unequal size subgroups. The application of generalizability theory

to non-orthogonal designs has received little attention in the literature. There

are, however, two procedures that have been used or suggested for "converting"

non-orthogonal designs to orthogonal ones. Kane et al. (1976), for example,

report randomly discarding data until they had orthogonal designs for their

studies of student evaluations of teaching. Also, for designs, such as p x (i:s),

where the number of items is not a constant for all subtests, Cronbach et al.

(1965) mention the possibility of using "half-sets" of items within each subtest.

These procedures may not be ideal, but they are at least reasonable alternatives

until research on variance components in non-orthogonal designs (see Searle,

1971) is applied to generalizability theory.
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This paper provides a more detailed consideration of sampling

from finite universes than is provided in Cronbach et al. (1972). Also, somewhat

more consideration is given to q'erieralizability theory in the context of

different objects of measurement. However, in other respects this paper is not

intended to cover, in depth or breadth, the extensive, treatment of generalizability

theory provided by Cronbach and his colleagues. (In particular, multivariate

generalizability theory has not been treated at all here.) Rather, this 'paper

is primarily intended to provide researchers and practitioners yith a set of

procedures to facilitate the application of generalizability theory to a broad

range of measurement problems. It is inadvisable that these procedures be

used mindlessly; the meaningful interpretation of any statistical analysis

necessitates a thoughtful and informed consideration of the results.
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1
Ic may not be obvious that designs like (a:c) x (i:s:t) occur in practice.

Suppose c is a school, i is an item, s is a content area or subtest, and is a

test. Given these verbal identifiers, this design means that each person is

nested within a single school, each person responds to all items, each item

d ti

is associated with a single co.._ent area or subtest, and each content area is

associated with a single test. This kind of design very closely approximates

The kind of data often collected to assess the reliability of test batteries.

However, it is rarely the case that the analyses of such data distingu±sh-among-

all potentiaLsources of variance. Among other things, this paper is intended
4

to aid researchers and practitioners in conceptualizing and Performing such

rt complex analyses.

For each of the Venn diagrams in Figure 1, a circle is never nested within

the intersection of two or more circles. This is a geometric indication that,

for each of the five illustrative designs, no main effect is nested within an

7 2,



,
,---

Generalizability

66

interaction effect. Consider, however, the design (E:c) x o)], in

which the main effect for items is nested within the interaction of subtests

and occasions. This main effect would be represented i:so.

3
The reader may omit this discussion of sums of squares without loss,

of continuity in the development, of generalizability theory. This section is

included because the notational system used here provides a convenient

way to express sums of squares for a large class of ANOVA designs.

4Cronbach et al. (1972) usually use c2(E) for universe score variance.

Here, however, the general use of a4(E) for universe,score variance could create

confusion, because objects of measurement other than the person p are treated

in this paper.

5Generalizability coefficients have a form that is analogous to that of

traditional reliability coefficients; however, the theoretical basis, for

generalizability coefficients is somewhat more complicatedsand beyond the

intene-d scope of this paper. The interested reader can refer to Hunter (1968).

I



TABLE 1
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Estimated Variance Components for Design p x.i
for Random Effects Model.

69

Effett or
Component

4 Estimated. Variance Component

p n - 1
2

C (p) = [MS(p) - MS(PL)1/11.

2 .

C (k) = [MS(i) - MS(pi)Vn

p e2(pi)(n - 1) (n. - 1) = MS(pi)
p

Note. XpL v
P
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TABLE 2

Estimated'Variance Components for Designpxixo
for Random Effects Model

Effect or Estimated Variance Component
Component

n - 1 8
2
(p) = CMS (p) - MS (pi) - US(po) + MS(p,to)]/nn

o

n; - 1 82(i) = [MS(i) - - MS(.Lo) + MS(pio)]/n n__pro

0 no - 1 8
2
(0) = CMS(o) - MS(po) - MS(io) + MS(pi0)]/npni

pi ()I

P
- 1) (n e

4.

- 1) . 8
2 (11CMS. (pi) - MS(pio)]/n

o

po (n - 1) (no - 1) 82(Po) = CMS(po) - MS(pio)]/n.
P ,.. 4

a (n. 1)(n
0

- 1) 4)2(i°) = [MS(io) - MS(pio)]/n
P

pio (n
P

- 1) (n. - 1) (n0 - 1) 82(pio) = MS(pio)

Note. X
pio

= p + upti + u.ti + p + p + p
po

+ p
io

+ p
pia

+ e .
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TABLE 3

Estimated Variance Components for Design p x (4.:4)
for Random Effects Model

Effect or
Component

d6 Estimated Variance Component

P n
P

- 1

i':.8 n
s
(n. - 1)

4,

s ns - 1

p4 (n - 1)(n -1)

pi:s n (np - 1)(n. - 1)

a2(p) = CMS (p) MS (p4)

2 .

(t:.6) = [MS(64) - MS(Pi.:4)7 /n

a 2 (4) = EMS(s) MS(i:s) - MS(p4) + MS(pi:s)]/ki
P
n.

a
2
(0) = [MS(p4) - MS(pi:s)]/n.

2
(p4.:4) MS(pi:4)

Note. X = u + u u +
pc:s p

+
i:s us uPs p s q ek:

'4
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TABLE 4

Estimated Variance Components for Design (p:C) x ti
for Random Effects Model

Effect or
Component

Estimated` Variance Component

p:c n
c
(n
p

- 1) 62 (p:C ) = [MS(p:C) - MS(pi:c)]/Ni

c n - 1c
02 (c) =CMS (c) - re (p: c) - ms cai + ms (A: c) J/npni

4. . n. - 1
82(i) = CMS ('L) - MS(ci))/n n

.:

p c

a (n - 1)(n. - 1)
c 4.

82(a) = [MS(CL) - MS(p.LC) 7 /np

pL:c n
c
(n
p

- 1) (n. - 1) 02(pi:C) = MS(Pi:C)

Note. X =u+p + 11'1, +
p:C C -C4.qj Upi:Cqj C

,79
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'.TABLE 5

Estimated Variance Components for Design.(p:C) x
for Random Effects Model

Effect
\
or

Component

p:c

4:t

c.6:t

po:c

pi:cA:t

Estimated Variance Component

n
c
(n
p
- 1)

nznt(ni - 1)

62(p:e) [MS(p:c) - MS(pt:03/nin4nt

62(c) = [MS(c) .- MS(p:c) - MS(ct) + MS(pt:c)7 /npninont

02(i.:4:t) = [MS(i:4:1) - MS(ci:4:t)]/n n
p c

n
t
(n4 - 1) -

.

62(4:t) = [MS(4:t) - MS(i:4:t) - MS(cS:t) + MS(ci:4:t)]/n n n.
p c 4.

- 1
62 (t) = [MS(t) - MS(4:t) -4S(ct) + MS(4c:t) 7 /npnenin6

(ne 1) (nt 1)
62 (et) . [MS(ct) - MS(c4:t) - MS(pt:c) + MS(p4:ct)7 /npnin6

n
t
(n
c

- 1) (n
4

1)
62(c6:t) . [MS(c4:t) - MS(ci:4:t) MS(Wct) + MS(pi:Se:t)]/n n.

P 4-

n
4
n
t
(nc - 1)(n4. - 1) 02(ci:4:t) = [MS(ci:4:t) - MS(pi:4c:t)7 in

P

n
c
(n
p

- 1) (n
t

- 1) 02(ptze) = [MS(pt:c) - MS(p4:ct)]/nin6

.4

n
c
n
t
(n
p

- 1) (n
4

1) 02(0:ct) = [MS wet) MS(pi:4c:t0/ni :...,

n
c
n
4
n
t
(n
p

- 1)(n4. - 1) 32(pi:4c:t) = MS(pi:4c:t) 81 .

Note. Xpi:se:t u + + 114:e + 11ex I1Ce 1-1c6:'x + 11 .1 + 11Ppt:C p4:ct
+ 11

rpi:4c.:t
+ e.



TABLE 6
'1..

Components, Mean Scores, and Score Effects for Design (pfc) x .i.

-
.

4

Component

p:C

.-

pi:c

Score Effects in Terms

pf Mean Scores
--14ean Scores in Terms

of Score Effects

P = P. P
p:C up

c

p 1,1 = p
C
.p

Pk

= Pci ' Pc.- Pi P

r.

r

u u : -u f+ P
pc:C = p4:C p:c c

p:C
= V + 4p:C

+ ucti

Pc =u +ucti

= p + .q

uct = p pflq, 11,c. .q

P = p + p +
Pk:C P:C Pc P" Pk PC:C

O.

4.4

$3



TABLE 7
t

Sums of Squares for Design (p:C) x t

f

0.

Component

Sums Of Squares

for Observed mean Scores

Sums of Sauares foil Observed Score Effects

With respect to
Sums of Squares for

Observed Mean Scores

With respect to
Observed Score Effects

p:C

C

pi C

Total

g ] = n. E E X2 IR 1k, = CX ] CX ] = n- E E(R. '142
p:c p:c c p:c

p c P:c P

[X
c
] = n n.

c c
= - = n E(7 ^) 2

p
p C

C

[Xi] = n n EX Oyq, = 011 n n E (7.q,) 2

pcit p c

n E EOT -^,)2
gci] = np E E X2

C k
CC

g = LX` 15(1.1 + 1AJ p ti Cc

g ] = E E2.
pt:c

p c P:c

ofa

[3(] = n n.n
p C

gp]q, = g ] ] + OT] - E E E(X . 1,)
2

p4.:C (.

-f

Note. For this design with one observatAon per cell, is based on only one observation, and, therefore,

. . X . .

pt:c. pc:c

.
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TABLE 8

.D Studies for Designpxixo
With Person (p) as the Object of Measurement

O
Estimated D Study Estimated
C Study Sampling D Study

Variance Frequency Variance

Components Components

A 2 ()r
0.

2
(!)

,2
v (0)

d` (pc)

C
2
(pol

2
C (ke)

a2 (p4.0)

1
2

a (0)

--(1) A A

2
(0) A A

e(0) 0,6 T A,6

2
(0) A,6 A,6

a
2
(TO) A A

a
2
(p10) A,6 A,6 A,6

Note. The entries T, 6, and A indicate which estimated D study variance

components enter C2(t), C2(6), and 32(6), respectively.
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TABLE 9

D Studies for Design p x

With Person (p) as the Object of Measurement

Estimated
G Study
Variance
Components

D Study
Sampling
Frequency

Estimated
D Study
Variance
Components

1

d
2
(P)

d2(i)

1

nt

a
2
(p) ,

a
2
(I)

T

B2(pi) nt
12(0)

A,6
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TABLE 10

D Studies for Design p x (i:6)
With Perk k (9) as the Object of Measurement

Estimated
G Study
Variance
Components

D Study
SaMnling .

Frequency

Estimated
D Study
Variance

Components

82(p)

s2(i:6)

2
8 (5)

d2(p6)

82(pi:6)

4, 6

2
(0)

8
2
(I:S)

8
2
(S)

a2(pS)

d-(pl:S)
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TABLE 11

D Studies for Design (p:C) x ti

With Person Nested Within Class (p:C) as the

Object of Measurement

Estimated
G Study
Variance

Components

D Study .

Sampling
Frequency

Estimated
D Study
Variance

Components

2
(p:C)

2 (c)

a- (ti)

kroN.:c)

1

1

I,
1

nt
C

0-(P:e)

0
2
(C)

82(1)

a
2
(CI)

,
d
2
(pi:c)

A

A

A,S

1
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TABLE 12

D Studies for Design (p:C);x (i:6:t)
With Person Nested Within Class (p:C) as the

object of Measurement

Estimated D Study Estimated
G Study Sampling D Study
Variance Frequency Narianc.i

Components Components

C
2
(p:C)

2
C (C)

d2(1...:5:t)

d-(5:t)

8
2
(Ct)

d- (t)

e..12(CS:t) n:sni. 82(CS:T)

d2(ej:'c:t) Ot nin, r(cl:S:7)
5

.1.

1

cn
)5

, n1
t t

C203:6 T T

82 (C)

2 t7 .
0 (1:0:7o) A

a2(so.)
A

2
d (et) A

(12(T) A

A

a 2 (pt:c) ni C
2
(pT:c)

,2
g (p6:ci) n' ft;, C

2
(pS:cT)

:st.2:-; htn'n1 C-(pl:SC:T)v

9t)
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TABLE 13

D Studies for Design (p:C) x ti

With Class (C) as the Object of Measurement

Estimated D Study Estimated

G Study Sampling D Study

Variance Frequency Variance

Components Components

d
2
(p:c)

2
(c)

82 (ti)

82 (cc)

dt2(pi:C)

n'

1

nt

".

,
8
2
(P: C)

8
2
(C)

8
2
(1)

8
2
(CI)

81(PI:C)
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TABLE 14

D Studies for Design (p:C) x a 6:0)
With Class (C) as the Object of Measurement

Estimated D Study Estimated
G Study SamDlinq D Study
Variance Frequency Variance
Components Components.

v)

Cl)

8
2
(:C)

a2 (r)

.

.

2
(c:L:t, )

a-(5:t)
,

8
2
(0

e(Ct)

62(c5:1)

e(pt:,7)

8
2
(p5:ct)

n'

1

i.ntnt
t.c 6

n'n'' ,
5

}1,..

W,

it ' n '

rtn'n'
t',/ s

)1 ' il ;,.

!)

nin'n'
p t

8
2
(P:C)

a (c)

d
2
(I:S:T)

e(S:T)

,

d' (T)

d
2(cT)

d
2
(c.S:T)

d
2
(cI:S:T)

82(PT:c)

d
2
(PS:cT)

A '

A

A

A,d

A,6

A,d

A,6

A,6

T

A

T

T

8;6

A,.6

A,6

8
2
(.1./:5C:t)

9`)

A A A A



TABLE 15

( Study and D Study Variance Components
for the Desianpxkx0, with Person (p) as the Object of Measurement

whfin Items are Sampled from a Finite Universe (N. = < co)

Estimated G Study D StOdy Finite Estimated. D Study

Variance Comoonent:. Sampling Universe Varaince Components

for Random Sampling Frequency Correction for Random Sampling

82 (PINT 82 (p)
4..d2(pi)/Ni

62(ilNi < -) = oZci) 11

8204. < co) = 82 (0) + 82 ro) N
0

1
2
(plNi < 00) = 82 (p' + 8

2
(pi)/Ni

(1 nt/N.) a
2
(IIN < co), = (1 - nt/N.,0

2 aunt
k

1

(12(1241N-")) = 02(104) (1 - n /N

/2
(p0IN. < m) =

2
(po) +

2
(piouN. n'

2 . 2
8 (4.01N. < co) = (tD),

4 0

!(pui lim. < m) =
2 (pio) ntro

4 0

1

1
-

0)/.n
0

82(01N. < co) = 8
2
(o)/1/1 + a

2(4.,
0 "

02(a1N. < co) = (1 - nt/N)0
2
(p4.)/nt

2
(pu:N. < co) d

2
.(p0)/nt +

AI.,

0
(pio) /114.

(1 - nt/S.)
.2 7..,'n .-. - (1 - nt/N.)8

2
(io)/ntn'c (,v,.,.. . x) _

m
z

2
(p10!N < co) = (1 - n'./N4.. )8-.) (pi tso)/ntn' o0 m t--i

W N.

(1 - nt/N.)
4 4

N

tr

4
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Figure 'Captions

Figure 1. Venn diagrams for five illustrative designs.

Figure 2. Decomposition of three variance components, for the random

0

effects model, in terms of mean squares for the design (p:c) x i.
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