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The Use of Periodic Functions to Measure the Difficulty of Aptitude Test Items
ABSTRACT
\ Ee— .

s

Two different procedures were used to measure thé,difficﬁlties of some

Scholasfic'Aptitude Test items: a new distribution-free proéedure that
uses periodic functions and LOGIST, a well-developed optimization
procedure that fits a logistic model. Despife the fact that the two

procedures used different data in very different ways, they obtained

. virtually the same numbers.
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The Use.of Periodic Functions to Measure the Difficulty of Apt}tude Test Items¥

?

_ : . * INTRODUCTION
, ' \ \

A novel use of periodic functions, called the "periodic procednre,”
, was recently introduced (Levine, 1975) to make practical the use of
'certain physical measurement ideas in psych.logy. This paper reports a - |,

successful attempt to apply the perlodlc procedixre to an 1mportant
-/?. -

psyvhalogical measurement problem, the measurement of aptltude est item

Xt =t

: difficulties.

é

The difficulties of items on a subtest of the College Board's

.~
)

-

Scholastic Aptitude Test were measured with both,the periodic procedure

and with IOGIST, a well-developed alternative propedurew——eur~prin@ipEI“”'_“

finding was a close agreement between the two methods. This close

agreement is particularly striking because’dlfferent samples (from the
same test administration) were used by the two methods.

The agreement provides \support in favor nf both methods. On the one
hand, sinée the periodic mro ledure is distribution free, the close agree-
ment shows that the stronger assumptions underlying IOGIéT are not a source
of error in comnection with its application to‘the SAT (see also Lord,

h> 71970). On the other hand, the close agreement indicates that our weak

assumptions are strong enough to determine the SAT item difficulties,

*We gratefully acknowledge the editorial adv1ce and criticism of
Joseph Kruskaly ‘Ingram Olkin and Thomas Stroud. The long exposition of
" the periodic procedure in Section IT was written in response to Kruskal's
detailed comments on Levine (1975). This project would not have been
attempted had it not been for Frederic M. Lord’s earlier findings,
espec;ally Iord (1970)..
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~ and that our novel method is reasonably, safe against the unanticipated

-y v

aifficulties that often béset new methods,.
. \ . - T .
“The periodic procedure exemplifies a new approach to measurement,

characterized by a use of general functional equations and group theoretical

S

methods in place of specific distribution assumptioné (Leviné, 1970,

1972, 1975, 1976). A great deal of work remeins to be, done before the

'y

new methods can be regarded as fully comparable to the better-developed,

— .
widely used "optimizations methods," i.e., to the methods which, like .,
. ) .. w—'—-__'_..—'
_ . ’_’ﬂ_.____’________..ﬁ-—,“y
IOGIST, work by optimizing an index-of-goodness of fit for a model
- 1 -3

Ot
Y

making a specific distribution assumption. ﬁowever, the close agreement

suggests that the new methods can be as accurate as the optimization methods.’

Furthermore, at least in some applications, functional equations

based methods may evéntually be preferred to optimization methods
because (1) they do not require simultaneous estimation of ability
parameters, which may have large sampling errors, (2) they ére not
iperétive or otherwise susceptible to convergence problems, and (3) they

rest’ on generél psychometric assumptions and inepartiéular are distribution

free.

ROk
A

*a




~Be

I. OVERVIEW

i

" The goal of this research is to evaluate the periodic procedure by

éttempting to estimate item difficulties for a subtest of the Scholastic

, Aptitude Test. The periodic procedure is YTeviewed in Section Iiﬂ Some

necessary psychometric theory and results are presented in Sections IIT
. . !
and IV. Our results are given in Section V. The computeér programs are
. e ]
. ‘_____‘.-—-——""”— .
iscussed—in Séction VI

!
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; II. THE PERIODIC PROCEDURE
g v . "' ) i .

‘In this section some basic definitions are stated and the periodic -

procedure is desceribed in a form convenient for the application. Fbr/é;”ﬂ,,, -
— a7 R " . ﬂ’«/
. . s e e © o
more general discussion of the periodic procedurz, a discussion of the -
. T _ PR et K
;;L;,__,___E%l&tiOpship td”length measurement and a worked example, see Levine (1975)1 -~
.. IL.l Definitiors - oot
- The basic operation of the periodic procedure is function coméosi%ion.' '//i//;
e If f and g are functions and if for all x such that - g(x). is . "
v . s

&

defined flg(x)] is also defined, °then the composition of (£ and g

. . -, S
is defined to be the function written fg and given by the formula-

fa(x) = fla(x)] -

e If f is a real function with domain of definition D , the graph ‘

of f 1is the subset of the plane
X - ~ 2 ) :
. Cz{(f) ={<x,y>e¢ R : x¢D and y = £f(x)} .

N ~ For our purposes, the most important fact about graphs is that the grapﬁ
of the composition of two functions can be determined from the graphs

. of the composed functions. Thus

ACd)(i‘g) = { <x,y > : for some z , < x,z > ¢ ?(g)-& <z,y >

| ‘ ' c i;kf)] .

If the comgnsitions wi and uw are both defined and if for all

values of ¥ in the domain of definition of u and ¥y in the domain of

\ o

4
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w , we'have both wu(x) = x and—uw(y¥)“= y., then w will be called the
) ) '*(/')ﬂ_‘,,_." (’A, e ';,’i‘ » ;

—— -1 g
_—inverse©f” u and written u ~ . When inverses and composites are defined

P A

»

N )

. as above, elemenﬁary arguments can be used to show ~

(1) a function has an inverse if and only if it‘is 1 - 1 .

(ii) . the inverse of a functicn is unique.
° (iﬁi) if u is a 1 - 1 function with inverse w , then w ®

is a 1 - 1 function with inverse .u .. T . ¢

LY

(iv) if u is a 1 - 1 function with domain D , the graph of the

inverse of u is { < u(x),x->: x is in D} . Y

Lie last point is éépecially useful. In the psychometric application,

LY

, we work with piecewise—linéar tabled functions. The last point implies - e S

¢

® that, we obtain the graph of the inverse of a function simply by inter-
&qhanging x and y ‘tables.
A translation is a.real function of the form [(x) =x+k . A

function f is called a conjugate of a translation if there is a trans-

lation and a continuous increasing 1 - 1 functién u such that
f= u_l[u 5 1l.e., if for some constant k and continuous, strictly
increa;ing function u, £(.) = u-l[u(-) + k] .

By éepeatedly composing a function with itself, one defines the

iterates of the function. Thus fd = ff 1is the second iterate, ﬂ3 = fo

3

is the second, f'lI = ff” the fourth, etc.- If f is conjugate to a
.ﬁranslation, then all of its iterates are défined, and from the conjugacy
equation f(.) = u_l[u(-) + k] one obtains the equation

)
(x)

valid for all integers n . . “ ‘

u-;[u(-) + nk] for each iterate. If the usual conventions ' R

X 4 ' ana f° = (f_l)n are used, then this equation is

3
I

50
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simultaneously conjugate to translations. A paif of functiohs':ﬂg are .

Simultaneously conjugate to trenslations if a function u can be found

that simultaneously satisfies both conjugacy equations, i.e., if for a

o

single increasing 1 - 1 function u and a pair of constants kf,kg

£(-) = wu(e) ¥ k] |
(11.1) . | g
z(+) = u—l[u(-) + kg] .

Note that simultaneously conjugate functions commute, i.e., if

f,g satisfy (IT1.1) then fg(x) = u-l[u(x) + ké + kg] = gf(x) and
(11.2) fg=gf .

IT.2 Computing Ratios from Graphs

The periodic procedure is a meané for computing the ratio B.= kf/kg

for a pair of simultaneous conjugates satisfying (II.1l). It can be used
. 1
when the graphs of the conjugates are given but when all that is known

apout u is that it is a strictly increasing, continuous real function.

\
To reintroduce the logic of the periodic procedure consider ﬁ pair

‘ C
of conjugates. f,g satisfying (II.1l). For simplicity, we agsume ko
(]
.1 = -kf s this results in no loss
. P

and kg are both positive.’ gince kf
Sf'gpnerality.

In the next few paragraphs it will be shown how kf/kg could be
computed by‘using only the graphs of f and g .

Suppose for some x , we have e

£(x) < g(x) .

\
)

Y
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From (II.1) and the fect that uw - is an increasing 1 - 1 function, it

£

follows that f£(x) < g(x) is equivalent to k < kg . Consequently, if
£(x) f_g(y) for any x, kf'f_kg and f(y) < g(y) for all- y . Thus
a superfiéial inspection of the graphs of f and g tells whether

B<le

To get a more precise estimate of B , consider the iterates ,fn
and g . Since fn(x) eqials f[fn-l(x)] and gm = ggm-l , points
én the graphs of iterates 6f f and 'g can be computed recursively

from the graphs of £ and g , without referring' to the function

u or the constants kf and k.g of the conjhgady equations. Thus the

graphs of f and g contain all the information needed to decide whether

or not any inequality of the form

(11.3)  "(x) < &(x)

- ' - 3
is true. But since f'(+) = u l[u(-) + nkf]. and g () = u l[u(-) 4 mkg]

are also simultaneously conjugate to translations, (II.2) 1is equivalent

to nk, <mk .
, f-"¢g
Thus, by feferring only to the graphs of f and g for each
integer n we can find the smallest integer m =m satisfying (11.3).

Thus for m = m we have the inequalities
m
fn(x) <8 (X) )

@ Hx) < (x) .




Tﬁese inequalities are equivalent to . ’ A

- 1)k < nk, < mk
(- Ly <onkey Sk

.

(II‘.:h%" 0< mn/n - ki,/kg <1/mn . -

° Consequently, we can, in principle, use the g;aphs of £ and g to decide
v -
o whether inequalities ¢ form fn(x) < g™(x) are valid for large value.

. “

of n qand m and thereby approximate B ~with any desired accuracy. .In
! this sense, the grapﬁs of f,g contain all the informationﬂneeded to

compute ‘the ratio.

EEN | g

IT1.3 Computing Ratios from Segments of Graphs o N
t

Comparing iterates or, more'generally, products in an ordered semi-
g*oué, plays a fundamental role in the logic of physical measurement
(Levine, 1975). But applications to psych&iogicai data have been blocked

__ by various difficulties. The most serious difficqlty)is the fact that
the graphg of £ and g are only known over a finite interval of the
., x axis, often a féirly narrow one. Consequeﬁtly the ﬁigher iterates
cannot_b; obtained, since the calculation of fn(x) requires that, we

evaluate 'f at x , at x, = £(x) , at x, = f(xl) , etc., #hd we

2
rapidly leave the domain where f is defined. Stated in another way,

the domain of definition of T rapidly gets smaller as n increéses,
and soon vanishes entirely. We have only rarely found empirical graphs

of conjugates that could be used to diréctly test an inequality of the

form £ (%) < g"(x) for n or m greater than 5.

€
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- A related difficulty is that the graphs are not known exactly,
- but only gﬁproximated by finite tables of numbers having limited precision.
Each composition reduces the precision, and again the comparison of higher

iteratés is difficult.

L

iw The periodic procedure uses an elementary functional equation and

5

the properties of periodic functions to provide ;n indirect way for
testing inequalities. In so doing it avoids the problem with higher
iterates: At the same time it leads to naturai.dﬁys to combine observa:'
tions agd overcome the difficulties with finite épproximations. It also
suggests ways to judgg éhe\gegpee to which data satisfies a‘model

- N .

implying the conjugacy equations.

)

, THe periodic procedure beging with Abel’s functional equation
4 .

(11.5)  &(*) = wHlu(-) * 1]

wvhere g 1is a given function end w 1is to be determined. Fortun;£ely,
it.is easf‘to solve this equation for w . We begin the periqdic
procedure by computing a continuous, strictl&'incre:sing function w
- that satisfies g(x) = w-l[w(x) + 1] for all values of x in the
domain of g . (References and a discussion of this computation are
.given in Section VI.i.)

This function is used to compute a function ¢, defined by

Q2

(11.6)  #(x) = wiv i(x) .

Since ¢n = (wfw‘fl)‘n = wt™% ! and gh(x) = w-l[w(x) +m} , it follows

that (1I.3) fn(x) < gm(x) is equivalent to

LR
\‘1‘ /-\“ 12
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Thus if the higher iterates of ¢ could be computed, kf_/kg could be

‘computed.

" By using periodic functiogs: all the iterates of ¢ can be computed,

even wh‘%n the higher iterates of f and _ g cannot.

)

4" (x) va +m .

i

. ’ e ’ .
The condition (IX.2) fg = gf leads to periodic functions as followse

ORI . & . -
Let "p* be the translation p(x) =x + 1 . Thed g=w lpw , and

fg = gf can be written f(w_lpw) = (w-l"pw)f.( Equivalently,

. wle (v tpw) ol

<

. - #lx
‘I;hu; if O(‘x)

“o(x

-

dp =

= w[f(w-lpv})lw-l~, that is,’
h ~1 "
(wew “)p = p(wtw Ly = pé
;
LA .

+1)=¢Zx)+%‘ .
= 4(x) - X, '?Qhep

+ 1) = f(x+ 1) - (x+ 1)

= #(x) + 1 - (x+1)

) - x,

A

i’
:

~y) B

T

o

.—\.—"'
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and © 1is periodic with period equal to one. Consequently, if 0 is
) .

defined on an interval of length equal to or greater than one, then 9(x)

can be regarded as known for all xl But in this case, ¢(x) is also

known for all x . For ¢(x) is simply o(x) + x . Consequently

¢ (x) = ¢lg -l(x)] can be computed recurS1vely for all n: and k /k
can be computed w1th any deS1red accuracy.
In all the appllcatlons we know about, only'p01nts on short segments

of graphs can be_adequately est1mated from data. (A segment ‘of a graph

) of a function 1s simply the graph of the restriction of the function to

s:
g

O <3 .
\3:\.';:%:\ 3 '&%“:«

i

an 1nterval ) It is not poss1ble to compute graphs of higher iterates

I, S

of f and g from segments. However & segment of the graph of g
permlts the computation of a segment of graph of w ; and with a segment

of the graph of- w and of f we can compute a segment of the graph of
-

¢ and © . But from a long enough'segment of the'graph © we can compute

;e .
all of the graph of 6 and ¢ . This'permits us to check ‘ ¢"(x) <x+m

and (II.3) for all n,m . Thus we can'compute B with any desired

-accuracy from segments too short to define higher iterates of f and

g o

This completes.the review 6f the periodic procedure.

-~

]

In the next tho sections we prepare to apply the periodic procedure
by showing that current psychometric theory implies that certain empirica;
curves are close to the graphs of simultaneous congugates. The empirical
curves permit us to compute a segment of the graph of a function such that

if the psychometric theory were correct in every detail+«and if our data

H

.,l‘i ’

-
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1

were based on enough observations the graph of the empirical function .

N

4

_would be indistinguishable from the graph of a periodic function.

v \

2 ——

. We

will later use this fact to obtain a rough index of the appropriateness .

of the periodic procedure and a method “for combining observations

¥

increase measurement accuracy.

our application of the periodic procedure.to psychometric data.

S~

to

In the results section we will ref &

It will .

be shown that the periodic procedure works" in the sense that it agrees

]

rd

~

'S

>

-

t
¥

with a thoroughly tested alternative measurenent/procedure.

«
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III. SOME BASIC PSYCHOMETRICS

"
-
-~

) .
According to item characteristic curve theory and the logistic
model, Iord's LOGIST parameter estimates and periodic procedure estimates
should agree. In this section basic item characteristic curve theory,

the logistic model and the logic of the. IOGIST programs are reviewed. A

‘\

'generalizatlon of the loglstlc model 1s then introduced and some empirl- '

“cal results supportlng the logistic model and LOGIST are cited. -

=
hant At h
\ Ead

\ : ,;s. by .

I1T.1 TItem Characterlstlc Curve Theory and the IOGIST Programs

P

Item characﬁerlstlc curve theory “Provides stbchastlc models for

-

“aptltude tests.

ey

multlple choice items. Each candidate or test taker is assumed to have
some (unknown ) ability. H1s answers on each 1tem are scored zero for

'"wrong and one for right. Theotheory relates item scores to ability.
” '
According te the theory the condltagnal probability of a randomly

chosen candidate with ability 6. correctly answering the i -th item

-of a test is an increasing function of © , P, (O) » called the item

o

characte_istic curve.” The candidate's’ right and wrong ansvers are
regarded as the outcome of a two-stage experiment. First an individual

with some (uhﬂbserved) ability o is sampled. . Then a sequence of

1ndependent dichotomous random varlables cbrrespondlng to the items, is

-

observed. The‘probdbility,thatrthe i -thuigem is scored correct is

P.(0) -
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\ .
Let < el,ee,e3 cee € > bea vectST of zeros and ones. The
conditional probability ‘that a randomly selected candidate has this

particular pattern of correct and incorrect answers is

. . n . e. . l-e.’

(I1r.1) m p.(0) *[1-Pp.(6)] * .

Ay =1 1% S 1 ‘ |
s ~

T l_:,.(
4

-~

We will later need to assume that the distribution of aﬁility in .the

populatian -of examinees has a centinuous density. . If the abi}ity density
o : ot
is denoted by £~ then the unconditional/ probability of observing the

Y

pattern.of correct and incorrect answers is . RN
5 s n ei l-ei
(zz1.2)  fe(e) I P (o) (1- B (0)] a0
. fi=1 1
. ' i /
~ <o . . °

L3

and the joint probability qg sampling‘an examinee with ability © in an

intetval T and the given pattern of answers is

l-e, . ' o

: . n e,
(II1.3) '/f(O) T P.(0) “1 - p,(6)] "tae .

iy iﬁl

The goal of testing is t0 estimate the individual examinee's ability
from-his” pattern of right and wrong answers. If the item characteristic
curves Pi are specified, this is féirly routine. In this paper we are

primarily cdncgrne@ with using dgta to specify iivem characteristic curves.

ey

The IOGIST programs compute maximum likelihood.estimates of the

item characteristic curves. FEach Pi is assumed to have the form

1 o
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Pi(t)"= ey + (1 - ¢, )ula(t - b,)]

5

where L is the logistic function, L(t) = 1/[1 + e ) > and &, , b, ,

ci——are—reai'parameters controlling the shape of Pi + (The role of these

parameters and the logistic function is discussed in the next section.)

4 N & 4 ’
Ordinarily a set (a} of at 1east‘3 thousand examinees is procesSed by

/
i

o IDGIST. The typical candldate a produces a vector of item scores Whlch
has condltlonal probability N e )
f oo €ia o l_éia * L -4 |
. © . L P(e) 1 - P, (5,)] . . . ‘ 3
* . ~=l . AT "\
¢ oo~
I0GIST forms the producél R ' )
Y - . N . - . %
: €ia 1-esq ! T i
©(IIT.L). T H P, (9 } *¥q. (0 )
. : ite
it . .xoo&i=l T . .,
SO -y . -

R . -

‘and iteratively seeks a vector of abilities 6a, and item parameters

x

A A A .
-8, bi A max1m1z1ng (II1.4)

Y

. The IOGIST programs have many options and are regularly rev1sed.

s

The data and IOGIST application used for reference in this paper have

T & &
"o

been described by lord (1968). We will review speclal features of-«that

§puqy as needed.

P 2

. <o ’
ITI.2 The Form of Item Characteristic Curves -

s

- B n i

. . * !
; iy |
AR A i

%

-

!

Various item characteristic curve models differ in their assump§ioné“'

about the shapé and functional form of the Pi 's._.Theré is considerable |,

/

/

&
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evidence to support the logistic and normal mbd@lEi' In this section we

»

" review these models and introduce a generalizaFion called the linear

model. vt /
' /

| ,
The logistic model assumes that each Pi/ has functional form

}Ilf.s) Pi(O) =c; + (L - ci)L[ai(Q -‘bi)]

v
*

where L is the S -shaped logistic function. A piot of the graph ofA’d P,

P, appéars § -shaped with a left asymptote of ci and a'right
i . - »

asymptote of 1. Pi is 1 - 1, strictly increasing, continuous and has “

. : . om . €
a single point of infiection.

¥

The parameters, a; bi > ey describe tliree more, or less R
-
"%

independent properties of items. An increase in the "difficulty"- parameter -

bi shifts the graph of Pi along the x -axis and decreases the

a

.,
tr flem
w807

probability of a correct gnswexdgﬁzéll levels. Variation of the posi-
) tive "discrimination" parametef_most conspicuously affects the steepness .
,of Pi at its point of inflection. Geometrically it stretches or con-

-

tracts the graph. The "guessing" parameter ¢; controls the height of

ld

* -

the %gft asymptote of Pi « This parameter is sometimes interpreted as

C .
the limiting probability of an examinee with no preparation or ability

P2

gorrecti§ guessing the answer to the item.

A familiar model commonly associated with Rasch (1960) postulates

o

a [

Pi(0) = 0/(0 4 b,)

vhere ability is assumed to be positive. Birnbaum (1968, page 402)

v

has pointed out that this model can be regarded as a special case of

Ry

]
H

<




the logistic model since

’

' e/(6 + b,) = ci,&» (1 -c,)ula, (6% - v¥)]

Ve

-
/ -

where 'ci =0, a, =1, 6%=1logo, b? = log bi ¢ We will use ‘this 'y

model only to motiva%e some of the definitions of the next section. o fl*

, :
' [Unfortunately, it is not sufficiently general to describe the data we
wish to study. ,/
By replacing the logistic function L(%X) by the normal integral :
; ’ . y v ;
o(x) . . o R
X omg .
o(x) = == [ /2 g N

21 . '
« ¢« =00 N ‘

one obtsins the normal model.. Since lo(x) - L(mx)l vhere D is a

ot s
' .
e N

known constant is very small for all values of x , there i8 very little
difference between the shapes of icc's for the normal and logistic model. .
In this paper we assume that tests sétisfy a generalizatiod of the

logistic and normal models called the linear model. A.set of continuous,
- T . ) . ’ \\,;v" ’ . - = ko
strictly increasing icc's {Pi] satisfy a linear mddel if there exists

"_é‘continuous, strictly increasing probabiI{%&rdistribution P and

real constants {ai] s {bi] s {ci] such that for all 6

<

-

Pi(G) =c, + (} - ci)P[ai(é - bi)] .

Such ice's are said to satisfy a "linear" model because any two curves
ny

can be equated by a linear or affine transformation of the plane having
form <x,y > -<ax +b,cy+1l-c¢c>".) .

o - 7

¢

S
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“ngfﬁal. But the analysié presented in this paper is equally applicable
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For concreteness,‘ P may be thought of as either the logistic or

t

to the logistié, normal or other continuous, strictly increasing
distribation function.

The fact that the periodic procedure does not require complete
specification the functional form of the.ﬁPi has important practical

implications. It is closely related to the ipwvariance of Section Iy.e,
which gredtly simplifies data analysis.
Our goel is to evaluate the periodic procedure by using it to .

estimate item parameters from some frequently analyzed gata,_eiideqtly‘_

well described by item characteristic theory. Lord (1970)'has airgady
obtained impressive evidence for the adequacy of logistic model. The .

close agreement between parameter estimates (obtained without the .

e A . i ’/
logistic assumption) and IbGIST parameter estimates provides further

support- for the loéistic inodel.

. .
&

S
. .
-~ -~w
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IV. ITEM-ITEM CURVES

N v

The follobing subsections are used to introduce and discuss the

baS1c propertles of the 1tem-item ability curve, a generally handy

h

adjunct to 1tem characteristic curve theory and an essential tool for

the applicatlon of periodic functions. To motivate this new development,

\ +

X
f%call,that~acontinuous 1 -1 transformation of ability was shown to

change the item characteristic curves of the Raschlﬁoqéi*into the‘curvesh :
e of a one-oérameter logistic model. Item-item curves will be seen to .
carry very tuch tﬂe same information eS‘Ecc's. But we will show

(Sect}oo &Va2) that they are invarigﬁt under all 1 - 1 continuous EEEN

L
Pt

. trapnsformations of ability. By using this iovariance we are able to

_.specify cons;stent estimators of points on the item-item ability curves
(Section IV.3). Item-item ability curves can oe related to conjugates of -z

translations in various ways. We outline the way actually used (Section

\
v

IV.4) in this study along with eglternative ways, which may be preferred

for free- -response data and other psychometric data for which the periodic

-

. procedure may be applled.

Reg

V.1 Item-Ttem Curves and Graphs
R o )
By cons1dgr1ng pairs of items, one defines item-item ebility curves. . ’

The (iﬁ) -th item-item ébility curve is the subset of the unit square. .

A

R 3 (<xy>: for some ability 6, x =P,(6) and y = B,(0)) .
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v

Every item characteristic curve considered in this paper is 1 - 1
end thus has an inverse. "Thus for each Pi and every t 1in the range
of Pi we may write t = Pi[P;l(t)] . Consequently, each item-item

ability curve can be written in the form

{ < t,Pj[P;l(t)] > : for some ability 0, t = Pi(Of] .

<

In other words, (ij) -th item-item ability curveis simply the graph of

the function P.PTl .
j i

IV.2 TItenm-ltem Curves and Transformations of Ability

Since ability © is not observed, one is led to consider various ob-

served indices of ability such as proportion of correct items, formula

oy
¢

scores, grade point average, composite scores on a battery of tests not
containing the items being studied, maximum likelihond estimate of ability,

etc. If & 1is such an index, theh €i,j) -th item-item index curve of

a test is the curve

| . . .

{ <x,y » : for some value of & , x 1is the conditional
probability of correctly answering the i -th
; item and y , correctly enswering the j -tﬁ} "
There is a special case, which is important for theoretical develop-
menté and which is cénceptua}ly important for our applicétion. Suppose
'an index & is a 1 - 1 function of sbility O , i.e., that for some

invertible function v we have "t = v(6) . In this case the item-item

I

.

.v\F( ‘

.
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< » ¥
index curves and item-item ability curves are equal. This is true because

fgr each value Eo the conditional probability
Prob{item i 1is correct|index E = §0] o
,éduals, o -
° Prob{item i is correctl|ability @ equalé v-l(go)}

which equals Pi[v—l(go)] . Thus the item-item index curve is the graph
of the function (PJ,V"]')(Piv"l)"l which is clearly equal to the graph
of the function PjP;l . It follows that the .(ij) -th item-item index

curve equals the (ij) -th item-item ability curve.

a

This argument shows that the same “item-item curves are obtained

PR

with any 1.- 1 trahéformétion of ability./ In particular, strictly

0 -
increasing, continuous transformations of ability, leave item-item

¢ 3

ability curves invariant.

This simple invariance turns out to be very important. It greatly
simplifies the estimation of item-item curves. It makes possible

results (presented in the next section) that are used to relate observed

>

item~-item proportion correct curves and item—itph ability curves. It

_also implies, incidentally, that two models such as‘the Rasch and one-

«

.parameter logistic with different item characteristic curves can have

¢

exactly the same item-item curves.
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IV.3 Relating Item-Item Curves to Observations

The purpose of this section is to describe some asymptotic results

.

that are used to estimate points on itém—item ability curves.

. / ' o
Consider repeatedly sampling examinees from & population in which

»

abilit& has & normal or some similar smooth probability deusity function

f . Fach s mpled examinee takes the same long test. As noted in

€

Section IiI.l both ability © and the item scores u, can be regarded
as random variables. The cited asymptotic results follow from regularity
conditions and from formula (III.3), the forrula for the joint distribution

of ability and the first n scores.

We intend to comment on the sq;tébility of the observed proportion

’\

of correct answers as an index of ability\ Thus we must define the pro-
’ 1
- . \
portion correct random variable z

i.e., the random variable giving the average item score or the proportion

of correct answers on the first n items.
Let € Dbe a fixed proportion in the range of each Pi . Consider
the 3ve§age “n of the first n item characteristic curves

i)

1
mo(t) =3
- 1

N ™5

P.(t) .
;1 1
3ince according to the linear model each Pi is strictly increasing and

c?ntinuous, the average Ry must be also. Thus “n is 1 - 1 and has a

4

29
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gtrictly increasing, continuous inverse §n o Since ¢ is in the range
of\each P, , ¢ is the range of ﬁn_ and §n(§) is defined,

As we consider longer and longer initial segments of the sequence
of test items, the seéuence of nﬁ;bers [§n(§)) may or wmay not converge.
Howeven, it still can be shown that under quite general conditions it
is possiﬁle to specify a sequence of "proportion  interval widths"
S, %hat sldwly Gecrease to zero such th;t for each item i the

ﬁifférence

elu,| lz -tl<s)-rle (£)]

7

tends to zero as n increases.
In other words, asymptotically, the expected item score for item

i --given that proportion correct on the first n items is close to

‘ { --is approximately equal to the i -th item characteristic curve

composed with a strictly increasiag continuous trahsformaﬁ&gn relating
the set of possibleibroportions to the ability continuum. Furthermore,
1

the transformation §n is iﬁ&ependenﬁ of i .

To appry this fact, one considers a finite set of proportions

and a pair of items, say for definiteness items one and two. A very

large sample A of independently sampled examinees is selected and

I
administered an n item tlest. For each candidate & € A , 'pro-
portion correct zn(a) is computed and used as an index to define

R spbgamples

S




-t n

e . . j:.:'. . - . -2!{-- .

i ST ) - °
. S A= {a € A: lzn(a) - Crl i.an ; r= 1,2,...{R‘ .
- ; As the size N(Ar) of these subsamples becomes large, each observed
N v i ° . i
proportion Pip - . . =
.- ) Nfa ¢ Arla answers item i correctly) )
\ pir = can ] -N(Ar) ’ T . . -

will, with high probability, be close to its expected value -

. dn . <
. , e(ui !Ln lcr| - Sn) ?

x

‘&nd thérefore close to P.[g (g )] Thus the points in the plage

<py 2P > are likely to Be close to the:points < P& (C ~);B ¢t (Q ) >
1,r’2,r , Je’n o

B m""

on the item-item ablllty curve < P P > . This follows from the

fact that each gn is 1 - 1>and the invariance described in the

-

_ Preceding sectian. b

e

- Proofs of these results and a discussion of rates of convergence

will be discussed in a separate paper currently being prepared.

<

_' ) ‘ In this study empirical item-item proportion correct curves have

been used as ‘estimates of points on item-item ability curves.

Al

PR Relating Ttem-Item Curves to Conjugates

Before the periodic procedure can bé‘applied; estimates of points

13

on conjugatés of translations must be obtained. We have juét shown that

a3

PN
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Ree- —— empirical 1te$.1tem proportlon correct curves are estimates of points

e M- M '
onbtheoretical item-ltem abllity curves. In this section it is shown

that the tgeoretlcal iia curves can be related to congugates in various
. = S, o ‘

ways. Each way suggests a somewhat dlfferent data analysas procedure

The special puxrpose of this study and the special nature of our data

have selected a partlcular way, presented below Alternative ways are

i

" noted in pas31ng

v A

-To begin, consider a one parameter model version of ‘the linear model

>

. in which c, = O and a, =1, so that every, icc has form

éi@) = '1;(9 - bi‘)

LT
1 r"

The (1,3) -th item-item ability curve is -simply the graph of the y_ ©

‘eonjugate .
. . "@\ SN !
- . -1 °
X —sr[ijP ‘ .
" vhere ‘Iij is the translation © 50 +b; - b, . . )

In the general linear ﬁbdel‘each icc has form

Pi(O) =c, (1 - ci)P[i(G)

where c; 1is the "guessing parameter,” and li is the linear transformation

"‘4

e -—>ai(9 - bi) = [i(e) .

A

‘“‘
’

e
3

The item-item ability curves here are the graphs of functions of form

n-‘.‘

4 -1
¢ B 5(¢,®L;)
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‘where each function €, is defined by Ci(t) =c, + (1 - ci)t . This
function can be rewritten as (CJP)([j[;l)(CiP)-l where [4(51 can
. ) QY

easily be shown to .be

a,
e-o—Lo+a (b, -b)" . -
. ai J_ 1 . J Y

\ i © e

Thus if item i is compared with an item J with the same disqriminatiod

o

parameter, aJ./ai =1 and (i,j)_-th item-item abilit& curve is the

graph of a function very much like the graph of a conjugate,

! . " -1 ‘ -1 .
. CFUL I

~

]

If 'ci -1s assumed to be the reciprocal of the number of multiple chaice
alternatives aﬁd both items have the same number of.alternatives then
Cj-= \Ci. and
; -1 -1 -1 -1
C.P([.[. C, = C_P([.f. K
UM e )™ = e (A7) (re,)

is again a conjugate of a translation.
¥

A ‘

L When the ey 's are set equal to the reciprocal of the numﬁér of choices
N .
which can otherwise be regarded as known, a simple linear transformation

of the plane can be spe¢ified and used to remove the effects of the ci 's.

>

'Uging elementary algebra, one can verify that the transformation

< XY > =< (X = Ci)/(l - ci)’ (y = Cj)/(l -'cj) > ’

’ °

carries the (ij) -th item-item ability curve onto the graph of the
function P([J. [;l)P'«J’ .

”

- : ‘ 929

<
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:;‘, ' ; In this study it is appropriate tc regard both. the. a: 's and ci"s
;k . -%swknown. (A discussion of this point follows in the next section.) -« e
- bonsequently we were able to pair items with equal discrimination and

%egcalc eqpirical ifem-item proportion correct curves to obtain e;;imates

cf points on the graphs of conjugates of translations. Y

iV.ﬁ .Concluding Comments on Qur Method of Using Item-Item Curves

-y

In this section we wish to state the ratioﬂéle for our way of\estiﬁating
T 1-' points on the,graph of cornjugates. ¢ A y
- The preceding sections show what would happen in a larée scale

simulation of item characteristic curve theory with, séy, one parameter

-

logistic ice's, a bounded sequence of item difficulties and a normal w%;"

distribution of abilities: If a pair of conjugates were approximated

from empirical‘item-item proportion correct curves, smoothed and used , \
. s -

N :
as input for the periodic procedure, then as tést length and examinee

v

' sample size increased, the‘perioiic procedure would almost surely give

_essentially perfect estimates of item difficulties. Some nontrivial c

T mathematicalaqdcstions would have to be worked out to properly qualify

and prove ﬁh&s-assertion in detail. But we do not develob this line

of reasoning any further here because it ic tangential to the previously~

stated éoals of this study. . KA
The central question for this research is not mathcmaﬁfcal; it can

only be answered by data. It is: Can the periodic procedure be cseful ff

wit1 current tests, which are only,imperfectly described by item ’

— -

characteristic curve theory?

To make Sur point clear, recall that item characteristic curve theory

is an ;deaiigation; i.e., an abstract, incomplete description of aptitude

>
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test data. It lacks, for exémple, an expligit account of the complex

- interdependences between items referring to the same reading passage on

A

.i‘ the typicﬁ; verbal aptitude fest.
However, icc has proven to be a powerful tool for investigating
important problems. Loré (1975) cites 17 recently published applications.
Icc's role in studies in progress as well as thé'absence of a likely
" -“;iterﬁapive makes it<fairly certain that icc will be even_ﬁore.widely
uged‘in the next decade. '
> We wish to consider the type of data that is goiég;bo continue’r_
to be analyzed with icq. By reanalyzing such data with the{periodic
procedure we intend to decide whether the periodic f?ocedure estimates .
of item difficulty agree‘sufficiently welk with standard procedures to
justify further developmeﬁt.“
o The reference eééimation procedure; Iord's IOGIST proéraﬁ,
simultaneously fit ai“'s,‘ bi 's, and c, 'g»(as'wéll as' © 's) for
samples of examinees to the logistic model. 1In its present'form,'the

periodic procedure estimates only ‘bi ‘s. Since our goal is to compare

> »

'per;odic procedure estimates with IOGIST bg 's and not to document a new
estimation scheme, it is legitimate and desirable to use LOGIST.estimates

/ 1
. ) . '

of 8, 's and c; 's., Thus we are led t0"the Tollowing steps in
estimating points on grgﬁhs of conjugates: -
1. pair items with equal IOGIST a, 's. K

2. compute empirical ifem-{tem proportion correct curves for

ﬁhegg item pairs.
3. use IOGIST cy 's to rescale and obtain es%imates of points

on the graphs(of conjugates of translations.

° 31 B

W > ) ooy
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All 6f the esseptial details of theVimplqmegtétionfﬁf ﬁ%ééé steps. .

are presented in subsequent sections.

N
~,
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.> V7TV, DATA AND RESULTS

~Our major finding is clese in ag}eement between LOGIST and periodic

estimates. inotbis section we summarize the basic facts about the
! K4
data and computations; additional details are in the references and the

«

sections on computation.

oy,

: Lord (1968) applied IOGIST to a sample of 2,862 SAT4V candidates.

[

Number rlght scores on the SAT-M were used to obtain a_sample with a

-

relatively large proportlon of low ability candldates. The ci:
..q\

guess1ng parameters were.estimated to be equal to_the observed pro-

»)

'portlons correct for low scoring candidates. Omitted and not reached

items were scored as if they had been answered ihcorrectly. The a 's,
b 's, and © 's wére estimated by minimizing equation III.h.

In the following f and % are used to denote IOGIST and periodic

estimates of a parameter x . - =

3

IOGIST estlmates, prOV1ded bJ Lord, were qsed to select a subtest

from the SAT-V. Means, standard deviations and other summary statistics

are given in Tabl; 1.. The IOGIST estimated parameters of the seven
item subfe;p_pig giveq in Table 27 Th;se are all the.items with ai
(10GIST esﬁiégtgﬁ céi ) equal to 1.22 + .02. Tbié particular)constant
was chosen begausepm??y items happehedlto have Qi 's close to 1l.22.

Item-item proportion correct curves were estimated by first computing”

item test regressions from the entire admlnistratlon of 103,275 candidates.

.~

The item test regreSS1on for item i is essentlally the vector proportlons

.'( p;; ) of Section III.3 where r is the index of the proportion Cr .

»
¥
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¥ . Table 2 .
IOGIST Estimates for Subtest
- . A . N A )
: itemsnumber 8 ) b, . ¢y o
- 51 4 102058 --5’40’4 ! 020 . N
6 1.2072 7198 - .12 . )
7 1.2133 ° . 7026 o1k ‘ .
.20 1.2170 * 1.6270 . .09 .
, 80 ) . 1021&) 1.0919:« ) . 15 . ’ ,“
. ’ ll‘ . 102321. ’ 05056 - 020 LY R
59 T l.23h1 -.6478 20 R
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More explicitly, ) -
o Pyy = My ' ' |
where “ . ’ . o
(Nif = the number of éapdidates\answering item i correctly
and either. 2r or 2r - 1 other items correctly;
M. = Nir + the number. of candidates answering item 1
i " incorrectly and either 2r or 2r - 1 other items
¢ . o .
L. correctly. )

]

This minor depa}ture from III.3 avoids tﬁe spurious'dependencies discussed

‘ in Lord‘and Novick (1968, Section 16.k.1) by conditioning on the numbef
correct on the whole test, except for item i , rather than on the whole
test.

The plot of the item test regression (i.e., the plot of p;, 8s a
functioﬁ of Cr ) generaily appears to be a set of closely spaced points
on the graph of a smooth, monotonic function. .This ié especially true
for intermediate values of gr for which thé observed propogtions are
based on a large number of examinees. Some nonmonotonicities were

* observed for very low and very high proportions-co?rect. This is %o
be expected since there were few examinees with very high or very low
proporti;n correct scores. (In Section IV.2 we report a technique for

preventing these unstable proportions from affecting our item difficulty

<

estimates.)



R & o

" proportions ( pir'-). ' “ .

"(‘< p¥ ,p* >} of points on the ij -th item-item proportion correct
_ curveé. fThe‘ ci 's were then used as described in Section IV.h %o ntu

estimate points on conjugates.

: 3“ ' R -3,+ -

N 1 -

As"a first step towards ob%aining:curves suitable for the periodic
procedure, for each item: i a vector ( p?r ) was computed. The fizft \\\\\\\\; Y.

entry p¥, is the asymptote Gi used .by IOGIST. The last eptry e i

~is one. The other values are computed by initially setting p?r )

= Pir
and then applying the algorithm described by Kruskal (1964, Section 8)
to compu;e the monotonic array of points beginning yith e, and ending
with one maximizing a quadratic ihdex of goodness of fit. Ties introduced
by the algorithm were broken b& ﬁaking very small adjustments of the equal
¥ 's. TIn this way’eaqp)item was used to generate a vectér of strictly

©

increasing numbers ( p? r ) approximately equal to the observed
s J

The i -th and j -th vectors weré then used to specify estimates

<

ir’jr

.

=2 -

In this wax the ij -th pain.of‘subtest items was used to specify
an array of poists .{ < xi(r),yj(r) >} in the plane. Since both
fi(r) and yj(r) ave strictly increasing functions of s thes§
points are on the graph of at least one strictly increasing, continuous
real function, By linearly interpo}a?ing between points we selected one
such function fij(-) for each 1ij . o

According t;’the linear model xi(r) is an estimate of
u[gn(gr) - bi] and yj(r) i? an estimate of :u[gn(gr) - bj] .
whe?e g, 1is the 1 - 1 function of Section III.k, b, is the item
difficulty and u(t) = P[1.22t] for P equal to the probability dis-

tribution of the linear -model. Thus the points < xi(r),yj(r) > are

87 .
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< - -
estimates of u[§n(§r) bi]’qun(cr) bj] > on the griph of the
function ,u[g-1(~) +by - bj] . Since the x 's and the y 's are

: i , \
closely spaced, the graph of fi will be (pointwise)zclose to the

J
graph of the conjugate u[u-l(-) + bi‘- bj] , and we are ready to try-

the periodic procedure.

-

We selected three different functions fkl and solved Abel's \

eqyationffor each of them. (CSmments on the selection of the fkl !

~

folldow in this and later sections.) For each kf we used the same
solution to‘Abel's equation to estimate

B(13,%() = (b; - y)/(by - by)

- -

for all pairs ij of items in the subtest.
The results are tabulated in Tables 3a, 3b, 30 and plotted in

¢

Figures la;_lb, lc. Since our'ppograms always esti@ate B(ii,k[) to

be zero and B(ji, .kf) to be -B(ij,kf) only 21 of the possible 49
B(..,k[) neea bé given. Only the positive B are tabulated and plotted.
(The tiivial estim;te B(xf,k[) = 1 is tabulated but not plotéed.)

The periodic estimates are in the -second column. The order of the

rows was determined so that g(ij,k[) (in the third column) increased

°

from the first to the last row in each table. The columns labelled E
and I will be used to illustrate a point considered in a later sectibn.
The periodic estimates are very close to the IOGIST estimates. To

make this obvious we computed an overall éstimate of bi from each table

by averaging B(i.,k{) . That is, for each kf we computed
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. N Table 3a )
s -7
‘Estimates of B(ij;59,77) with Indices
i B B \E I
771 6 .0009 .013 870 \ .66
59 51 .082 .080 .012 .16
i 77 .138 <146 .028 <3l
i 6 .12% .159 .120 .15
6 2 80 0253 -276 .014'7’ -~ 0058 !
77 80 +305 .288 029 . .039 .
\ SQ 20 o,'ll—( 0396 0026 : e 018
“P T 8o 405 R .035
6 20 654 672 014 \3
77 20 .709 .685 - .017\\\\\‘\\\ﬂ
51 14 <7139 <7175 . .02} .023
1k 20 846 .830 L .0095 .0088
59 14 811 854 ‘ 026 - 013
51 77 49225 <920 1 .0014 .0025
51 ( .999 .933 \ .03k .0023
59 717 1.000 1.000 .000 .00003
59 o 1.000 1.013 +0065 < .0022
51 80 1.200 1.209 v , 0037 <0031
59 * 80 1.250 1.288 .015 ' .0043
51 20 1.552 1.605 017 | +0053
59 20 1.594 1.685 .028 10091
rd ;’ \\’
" E\
\
‘a
‘39
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Table 3b

Estimates of B(ij;51,77)

~

B B’ E
.024 .0138 .27
.0875 ° 0864 .006
159 1585 . .016
2138 1723 112
2805 "~ 2994 <032
333 .3132 031
Lsh5 - 24305 « 027
43y JA717 -~ L0k2
700 \ «T298 T.L .021
763 \oomsr - Lo
772 v L8415 043
917 .9022 .0081 «
.857 9279 -0ko

1.000 1\, 0000 .000
1.000 1\.-0138 +007
1.087 110864 .0003
1.001 141002 047
1.333 1. 132 s 0008
1.535 1.3996 -02k -
1.727 . L7437 -005
1.800 .0083

1.8?(01
S ’
"‘a

0017 o




51
59 77
6

29

20
14
20
14
17

‘6‘

51 8o
59° 80
51 20

29

20

Estimates of B(ij;77,20)

~

B

.000)k -
167
2343
240
«3335
«391
‘10

.500
1.000
1.000

857
1.333

"' 1,000 |

1.356

1.214
1.500
1.275
1.500

- 1.5685

24335

2.429

~-38-

~ Table 3c

la)

B

.019
.116
.213
«232

K] L|03 .

421

579

<634
.981
%1.000
1.132
1.213
1.248
1.345

1.363
1.461
1.479
1.766
10882
203,"5

2.461

€

_E

L9

< .18 -
.23
017
09y |

037 ..

.13

.12 -
.0096
.00
JOhT
11
<004

.058

013 |

L
.082

091 -
.0025
.0065

oL

.26
33

- .0b3,
.‘]:2

.029
022
.00004

1028

& .015

".010

010

.0072
.019"
.0083
.030

023

.0013
.0019

61
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bi,kﬁ?’;B(”’k‘) ©

. %
A
ot

Since accofd}ng to the linear model, the b, are on an interval scale,

& comparison of the ﬁi and ﬁi can be simplified by rescaling the gi‘k[ T

v “so that they have the same mean and variance as the ﬁi . Our results

had

are in Tahle L& ' "

¢

’ ~ Iord (1975) found the standard error of, estimate for item difficulty

(the square root of the mean sQﬁared error of prediction from the =

regression of gi on bi) to be :196 in a’ recent computer simulation

--. of the SAT-V. The differences between the ‘ﬁi and Bi in Table 4 are

o

so small relative €o .196 that the periodic estimates and LOGIST

.« . estimates can be considered interchangeable.

-

7 ' : We now reconsider the choice of the pair of items k[ . This choice

is important beéguse if the items are atypical or if fkl make poor use

of the available data, then for every ij the estimate of B(ij,k[)

ﬁfil be adversely affected. A pair of items,can make poor use of data
in many ways. For éxample, if bk - bi is very large, then virtually -

81t of the data will be used to define a segment of © less than unit

k
is néérly zero, then snall sampling errors will have large effects on €

length, and the periodic procedure will give poor estimates. If b, - bl

and again -the periodic procedure'will give poor estimates.

-

. A stra;ghtforwagd, vbjective way‘to reject unacceptable fkl y

without referring to’ bk - b‘ would be to compute periodic estimates

for‘éli pairs < j in the subtest and then test the hyﬁothesis that

B(ij,k{) is equal to the difference X; - XJ between two (unknown,

[ -

| es#imated) numbers plus a small random e;ror. An alternatifé‘way is

introduced in Section VI.3,

*
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" Table 4
o ) . I0GIST and Pgrio&ic Item Difficulty Estimates .
. 'A e Sizkx .

i Py k=59, 77T k(=51,71 . Kf=TT,20 )

6 . .7198 . 734 CLT2h5 T3k

-1k . .5056 . .50 WL o 579

20 1.6270 1.6295 1.689 1.671

. 51 - - -.5404 -, -.555 : T T.56) -.591

‘ 59 'o6t‘78‘ ’ '065h '0609 ) '0602 )
T1 . 7026 . 700 T .683 > 678 -
80 ‘ 1.0919 1.0835 1.086 CLL R v
;A 46: )
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VI.1l Main Features

s

After the main Teatures of the programs are presented, a particulariy
important partdof the computation is discussed in further detéfl. The
discussion of this computation will be use@j@o describe our present

"method for cdmbining observations of examinees on-different ability

levels -and obtaining a rough index of goodness of fit of the equations

0

" of .the periodic procedure.

@

We begin by restating the key equations of Section II in & more

compact and convenient form.

)

Suppose

£(+) u_}[u(-) + b, - bj] ’
(VI.1)

g(-)

u-l[u(-) +b, - b[] ,

for some increasing, continuows u and positive constants bi -b

b - b . 3
k[
let w be any continuous, strietly increasing solution[of Abel's

k]

.j,

~

equation
: 1 )
(vi.2)  g(r) =w lw(-)+1] .
"Define 4, "6 by

(VI.3) ¢=wfw'l s

47 .-
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e (\;I.h) o(x) = #(x) - x ‘ . ,‘ : °
_Then sit}ce‘ o(x) =6(x + 1) and ¢(x) =0(x) + x , ¢fl(x,) féan be computed .
recursively for all n and x from Any unit-length segméﬁt of the graph
of 6. . ' : : :‘ ‘ N
o For each positive integer ,m let m be t%le smu;st inteéer m
o suclr‘1 that ' N ) -

3

.

© (VI5) - F(x)<x+m
for all x-.'. Then

B=(b; - bj)/(bk - b_l) =limm/n .

In fact

- (VI.6) 0<B- mn/n <1/n .

o

Instead of (VI.5) we will use the statistically more stable condition

]

1
(vi.5') S #(x)ax < % +m .
0
This concludes the summary of Section II.

Function composition is the basic opération of our programs. Most.
of our functions are strictly increasing, continuous, piecewise linear
mppiﬂgé‘gf the unit interval onto itself. We encoded each by listing
the coordinates of 10l points on its graph. The first point is alway.s

the origin (0,0), the last always (1,1).

¢
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The first step in the implementation'ef the periodic procedure
has already been desgribed. It is the coﬁputation of the functions }ij
and fkl that play the role of f and g in (VI.}):4’

The second step is solving Abel's equation (VI.2). The basic
a;goyithm was described and 1llustrated in detail in Levine (1970, Section
III.2; also 197%). That algorithm begins with the choice of a continuous
function defined on a short interval in the domain of g and then uses
Abel's equation to recursfvely extend theoinitiai function.

We experimented with linear initial functions and a function sug-

rd

gested by an asymptotlc result of Krantz. We found that the recursive

extens1on of w was generally smoother and eas1er to encode when the

initial function was proportlonal to

X
/’ dt
fk[ t) -t

o)

where Xq is such that fk[(x ) has been computed from a large sample

0 -~
can be found in Krantz (1971, page 593). ;

of candidates and x. < x < £ [(x . The rationale for this formula

1

We recommend choosing items k{ such that fief has few fixed

points, since the recursive procedure defines w only between a pair

. of fixed points containing the initial segment (Levine, 1970, Section

A"
III.2). We also recommend choosing functions fk[‘ such that it is

possible to begin the rec&?sive procedure on an interval with statistically

reliable estimates of function values. We located such intervals by

49
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counting the number of independent observations directly contributing to
‘fhe estimate of-éach function value.

Tﬁe next step is to computé the functions ¢ and © . To do this
we first used the solution to Abei’s equation and fij to define 6 by
o(x) = wfijw'l(x) -(; . This empirical function is of course not
precisely periodic. By approximating it by a periodié fur ion ]
we weré able té combine information from(examinees at different ability

levels and simultaneously measure the extent to which the data from

items ijk{ agree with tle model. A discussion of & is given in the .~

next section. Basically 0 is a trigonometric ﬁblynomial optimizing

* ¢
a measure of periodicity. ’
3 3

. &# . : - * - 2
We also obtained remarkably accurate results.by superimposing .

and averag.ng cycles of © to define an average function S . _But) *

two problems eventually forced us to abandon S and develop a§ i

*
€ o c—

(1) Fa; some data the mapping. x - 8(x) + x is noamenotonic and
(2) we failed to find a satisfactory way of averaging to assure
8(0) = s(1) . \

The empirical function ¢#(x) = ©(x) + x was replaced by ;(x) =
8(x) + x where & is the periodic approximation of 6 .

To estimate B(ij,k{) we used ;n and condition (VI.5') to

estimate integers m ¢ Ouc estimate ﬁn was the smallest integer m

satisfying
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<=+n-
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The estimate of - B was the.minimum of *{& /n :

n = 512, 513,... 532} .

*

VI.2 Computation of ©

The graph of the empirical function -6—commonly appears smooth and
approximately periodic over much of the domain of definition of the
function. However, for very large and very small values of "x , the

éraph appeérs Jagged and amorphous. We experimented with .several ways

to combine the values of ©(x) to obtain a smboth,‘périodic function.

The one presented below does not give the besf agreement with IOGIST, .'._
buq it has the advantage of not requiring inspection of i;termediate
results. ) '

All of the results reported'in this paper have been computed by
first computing a "weight function” W(x) , which will be seen to control

the contribution of 6(x) to 8(x) . Note that 6(x) is simply a

complicated arithmetic expression in the observed proportions pig

and Psg" OF in the end points fij(o) =0, fij(l) =1 . W(x)
is zero if an end point is used in the calculation of ©(x) . Otherwise
W(x)“is'the”dinimum denominator of the observed prgportions. Thus
6(x) 4is based on at least W(x) independent obsefvations.

We recommend that W(x) be computed recursively. To do fhis each
table defining an fij is accompanied by a list of integers (denominators
or zero). When two functiéns are composed, the list is updétéd in the

obvious way. °
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O is approximated by computing the first few terms of a Fourier

r——-
R

k]
series. Recall that the Fourier series of a continuous real function h

with period equal to one is the series H defined by

’
[eo]

H(x) =8+ mil [am cos(En@x) +b sin(@mmx))

vhere the c¢oefficients. am’bm have %he property that for each partial \\‘—-J
. sum H \\\\
- n

Y
A

n
Hn(x) = a5 +.m§l [am cos(2mx) + b sin(2mmx)]

the coefficients minimize the mean squared difference between h gud

H .
n v
“ 1 T~ ,
2
(vI.7) (h(x) -AHn(x)] ax .
o . >

To filter irregularities in the graph of © ve only considered
partial sums of the form H5 . (Ve chose five terms after observing that
the shape of © could easily be described with 5 terms and that with
many terms pathologies like those associated with Gibb's phenomenon
began to appear.)

Instead of minimizing the squared error (VI.7) we selected the

coefficients of the approximation to minimize the weighted squared error

),

Il I definea by

"(vI.8) io - o*} = ]k@(x) - 9*(x)]EW(x)dx .

52
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This permits all values of ©(x) to influence the shape of thF approxima-
tion © , but only to the extent that they are basedton observations.
Another advantage‘of (Vi.8) is that it greatiy simplifies programming
. a&ﬁ §p¢e§s computation. For very high values of x there are no appropriate
candidates for defining the graph of fij « With (V1.8) we arefffee 0
choose any values for the graph that are easy to code and that make the
compositions well defined. If this is done, the computer‘is able té
cqmpute any composition of functions the programmer specifies; wheth;r
appropriate data Qre availabile of not. However, %he portiong Bf graphs
not based on observations result in zeroo W and make no contribution to 6 .
This means that these portions of the graphs are unable to affect the esti-

e
mate of B .

<o

VI.3 Measuring Periodicity

As noted in Section IV, the E(ij,k[) can be combined in various
ways to obtaip overall estimates of’ bi . To s?igct ?he best avaiiable!
estimates 9} bi or B(ij,k[) it wguld be hquful to be able to examine
some intermediate results in the computation!éf B and determine how well
B(1j,k() estimates B(ij,k[) . |

We experimenteﬁ with various approaches to this p}oblem. Our most
promising begins with the ogservation that if the empirical function ©
cannot be approximated by a periodic function, then there are ho o
simultaneously conjugate fun?tions cloge to fij and fk[ . Thus by
measuring the periodicity of © we muy obtain a measure of the error

in the periodic estimates. A

53
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To measure the periodicity of © we first cohsidered

infinimum {]lo~ o*|"; o* is, a continuous function with

o* '
period equal to one} ,

-

where || || is the functional F - f [F(x)]ew(x) ax = ||F|l defined in

the preceding section. To eliminate effects of qg‘cale we divided by MOH .
We approximated infﬂo - 0% by e - ali - Thié gives the index of
periodicity 1(0) = [0 - Gli/Iell = Tlo(is, k()] .

) éﬁ;ck?£he_conjecture that‘ I(d) is relate&;to the error in
the periédic procedure we compared I(9) with the ;Easure of error
E(ij,k{) = IB - BI/|B+ Bl . A full lis£ing of our results is given
in Table 3a, 3b, 3c. For fixed k{ the correlations between I(..,kf)
and E(..,kf) are high ( r = .87, .83, .90 = for (k,[) = (59, T7),
(51, 77), (77, 20) , resPqugyeiy). Thesé correlations suggest a
"simpler relation tﬁat is actually present since there is one véry darge

value of E and several very small values of E that are well predicted.

(:-e-.iln N
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