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The" Use of Periodic Functions to Measure the Difficulty of Aptitude Test Items

ABSTRACT

Two different procedures were used to measure the. difficulties of some
4

Scholastic' Aptitude Test items: a new distribution-free procedure that

uses periodic functions and LOGIST, a well-developed 'optimization
fi

procedure that fits a logistic model. Despite the fact that the two

procedures used different data in very different ways, they obtained

virtually the same numbers.
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The Use of Periodic Functions to Measuie the Difficulty of Aptitude Test Items*

,

'INTRODUCTION

A novel use of periodic functional called the "periodic procedure:

was recently introduced (Levine, 1975) to make practical the use of

certain physical measurement ideas in psych,aogy. This paper reports a

successful attempt to apply the periodic procea.ure to an important
ii

psyAblogical measurement problem, the measurement of aptitude est item

difficulties.
O

The difficulties of items onca subtest of the College Board's

Scholastic Aptitude Test were measured with bothithe periodic procedure

and with LOGIST, a well-developed alternatiye_procedure-.--Our-principitl

finding was a close agreement between the two methods. This close

agreement is particularly striking because' different samples (from the

same test administration) ere used by the two methods.

The agreement provides support in favor of both methods. On the one

hand, since the periodic pro ,educe is distribution free, the close agree-

ment shows that the stronger assumptions underlying LOGIST are not a source

of error in connection with its application to the SAT (see also Lord,

'1970). On the other hand, the close agreement indicates that our weak

assumptions are strong enough to determine the SAT item difficulties,

*We gratefully acknowledge the editorial advice and criticism of
Joseph Kruskali Ingram Olkin and Thomas Stroud. The long exposition of
the periodic procedure in Section II was written in response to Kruskal's
detailed comments on Levine (1975). This project would not have been
attempted had it not been for Frederic M. Lord's earlier findings,
espeCiaily LOrd (1970)..
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and that our novel method is reasonably, safe against the unanticipated

difficulties that often beset new methods.-
. '

'The periodic procedure exemplifies a new approach to measurement

characterized by a use of general functional equations and group theoretical

methods in place of specific distribution assumptions (Levine, 1970,

1972, 1975, 1976). A great deal of work remains to be, done before the

new methods can be regarded as fully comparable to"the better-developed,

widely used "optimizations methods," i.e., to the methods which like

LOGIST, work by optiMizing_An_index-of-=goadness of fit for a model

making a specific distribution assumption. However, the close agreement

suggests that the new methods can be as accurate as the optimization methods.

Furthermore, at least in some applications, functional equations

based methods may eventually be preferred to optimization methods

because (1) they do not require simultaneous estimation of ability

parameters, which may have large sampling errors, (2) they are not

iterative or otherwise susceptible to convergence problems, and (3) they

reseon general psychometric assumptions and in,partiCular are distribution

free.

t
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I. OVERVIEW

The goal of this research is to evaluate the periodic procedure by

attempting to estimate item difficulties for a subtest of the Schola.itic

,Aptitude Test. The periodic procedure is eviewed in Section II. Some

necessary psychometric theory and results are presented in Sections III

and IV. Our'iesults are given in Section V. ._She-compUter programs are
.

.
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II. THE PERIODIC PROCEDURE
,

In this section'some basic definitions are stated and the periodic

procedure is described in a form convenient for the application. Fbr

more general discussion of the Deriodic_procedure,d ussion of,ple 6-
. k

relktionship to length measurement and a worked example, see Levine (1975).

II.1 Definitions

The basic operation of the periodic procedure is function composition.'

If f and g are functions and if for all x such that -g(x) is

defined f[g(x)] is also defined,then the composition of rfr,, and g

.

is defined to 1.,t, the function written fg and given by the f6rmulv

fg(x) = f[g(x)]

If f is a real function with domain-of definition D , the graph

of f is the subset of the plane

6-I(f) = ( < x,y > c 1R2 x CD and y = f(x))

For our purposes, the most important fa2t about graphs is that the graph

of the composition of two functions can be determined from the graphs

.of the composed functions. Thus

..,q(fg) = < x,y : for some z, < x,z E 9(g).& < z,y >
e'

If thr com.3,0zitions wu and uw al'e both defined and .if for all

values of x in the domain of definition of u and y in the domain of

7
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silwehair.eboth---and--uw(y-Y='y then w will be called the77: tt
inversea' u and written u

-1
. When inverses and composites are defined

. as above, elementary arguments can be used to show

(i) a function has an inverse if and only if it'is 1 - 1 .

(ii) .the inverse of a function is unique.

(iii) if u is a 1 - 1 function with inverse w then w

.is a 1 - 1 function with inverse .u..

(iv) if u is a 1 - 1 function with domain D the graph of the

inverse of u is ( < u(x),x> : x is in D) .
o

lle last point is especially useful. In the psychometric application,

.we work with piecewise-linear tabled functions. The last point implies

that we obtain the graph of the inverse of a function simply by inter-

changing x and y tables.

A translation is a. real function of the form 1(x) =x4-k. A

function' f is called a conjugate of a translation if there is a trans-

lation and a continuous increasing 1 - 1 function u such that

f = u
-1
tu , i.e., if for some constant k and continuous, strictly

increasing function u , f(.,) = u
-1
[u() k] .

By repeatedly composing a function with itself, one defines the

iterates of the function. Thus f
2

= ff is the second iterate, f3 = ff
2

is the second, f = ff
3

the fourth, etc.- If f is conjugate to-a

translation, then all of its iterates are defined, and from the conjugacy

equation f(.) = u
-1
[u() k] one obtains the equation

-0(*) = u-l[u(*) nk] for each iterate: If the usual conventions

f0(x) fl
f and fn = (f-i)n are used, then this equation is .

valid for all integers n .

4,7
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The periodic procedure is applies e to pairs of functions
00

simultaneously conjugate to trans tions. A pair of functions f,g are .

simultaneously conjugate to translations if a function u can be found

that simultaneously satisfies both conjugacy equations, i.e., if for a

single increasing 1 - 1 function u and a pair of constants k ,k
f g

f(.) = u-1[u(.) + kf] ,

g(*) = u-i[u) + kg]

Note that simultaneously conjugate functions commute, i.e., if

o
f,g satisfy (I1.1) then fg(x) = u [u(x) kf kg] = gf(x) and

(II.2) fg = gf .

11.2 Computing Ratios from Graphs

The periodic procedure is a means for computing the ratio B.= k
f
/k

g

for a pair of simultaneous conjugates satisfying (ILO. It can be used

when the graphs of the conjugates are given but when all that is known

about u is that it is a strictly increasing, continuous real function.

To reintroduce the logic of the periodic procedure consider d pair

of conjugates. f,g satisfying (II.1). For simplicity, we assume kf
0

and kg are both positive.' Since k = -kf , this results in no loss

of'gpnerality.

In the next few paragraphs it will be shown how kf /kg could be

computed by using only the graphs of f and g .

Suppose for some x , we have

f(x) < g(x) .

9
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. From (II.1) and the fact that u
1

is an increasing 1 - 1 function, it

follows that f(x) < g(x) is equivalent to kf < kg . Consequently, if

f(x) < g(5,:c) fox any x kf < kg and f(y) < g(y) for all- y . Thus

a superficial inspection of the graphs of f and g tells whether

< 1-.

To get a more precise estimate of B consider the iterates fn

and gm . Since f
n
(x) evals f[f

n-1
(x)] and g

m
= gg

m-1
points

on the graphs of iterates of f and g can be computed recursively

from the graphs of f and g , without referring:to the function

u or the constant? k
f

and k of the conjugacy equations. Thus the
g

graphs of f and g contain all the information needed to decide whether

or not any inequality, of the form

(II.3) fn(x) < gm(x)

is true. But since fn(.) = u-i[u() nkf] and gm(.) = u-l[u() my
are also simultaneously conjugate to translations, (II. is equivalent

to nk
f
< mk .

g

Thus, by referring only to the graphs of f' and g for each

inte6er n we can find the smallest integer m = mn satisfying (II.3).

Thus for m = m
n

we have the inequalities

1

f(x) gm(x)

gm-3,-(x) < fn(x) .
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These inequalities are, equivalent to

- 1)k <.nk < mk
g f

or

-(IIC .4
f

) 0 < mn/n - k-/k
g
< lin .

Consequently, we pan: in principle: use the graphs of f and g to decide

whether inequalities c form fn(x) < g
m,
(x) are valid for large value.,

of n ,and m and thereby approximate B with any desired accuracy. In

this sense, the graphs of f,g contain all the information needed to

compute 'the ratio.

.7?

11.3 Computing Ratios from Segments of Graphs

Comparing iterates or: more generally: products in an ordered semi-.

group: plays a fundamental role in the logic of physical measurement

(Levine, 1975). But applications to psychological data have been blocked

by various difficulties. The most serious difficulty)is the fact that

the graphs of f and g are only known over a finite interval of the

x axis: often a fairly narrow one. Consequently the higher iterates

cannot.be obtained, since the calculation of fn(x) requires that, we

evaluate 'f at x , at x
1
= f(x) at x

2
= f(x1 ) etc.: and we

rapidly leave the domain where f is defined. Stated in another way:

the domain of definition of f
n

rapidly gets smaller as n increases:

and soon vanishes entirely. We have only rarely found empirical graphs

of conjugates that could be used to directly test an inequality of the

n,
form f (x) < g

m
(x) for n or m greater than 5.

0



A related difficulty is that the graphs are not known exactly,

but only approximated by finite tables of numbers having limited precision.

Each composition reduces the precision, and again the comparison of higher

iterates is difficult.

The periodic procedure uses an elementary functional equation and

the properties of periodic functions to provide an indirect way for

testing inequalities. In so doing it avoids the problem with higher

iterates. At the same time it leads to natural ways to combine observe.-

tions and overcome the difficulties with finite approximations. It also

suggests ways to judge the degree to which data satisfies a model

implying the conjugacy equations.

The periodic procedure beging with Abelis functional equation

g(.) = w-1(14) + 1]

where g is a given function and w is to be determined. Fortunately,

it. is easy to solve this equation for w . We begin the periodic

procedure by computing a continuous, strictly-incre.sing function w

that satisfies g(x) = w-1[1.4(x) f 1] for all values of x in the

domain of g . (References and a discussion of this computation are

_given in Section VI.l.)

This function is used to compute a function O,, defined by

(11.6) (x) = wfw-1(x) .

Since
in (wfw-.1)p wfnw-1

and gm(x) = w-1[w(x) 4 M] y it follows

that (II.3) f(x) < gm(x) is equivalent to

12
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(1)1'7) On(X) (pt M 0

Thus if the higher iterates of could be computed, It.,/k
g

could be

'computed.

By using periodic functions; all the iteratea-4 V can be' computed,

even whgn the higher iterates of f and g cannot.

The condition (11.2) fg gf leads to periodic functions as follows.

Let` }.ID be the translation p(x)b= x . Then g = wipw , and

fg = gf can be written f(w-ipw) = (wlvw)f., Equivalently,

;."
wif(w

1
pw)]w = w[f(w-1pW)lw -1, that is,°

and

Thus if

a

61) = (wfW1)p = p(wfW1) = pri

Ax + 1) = (x) +]

G(x) = V(x) - x then

g(x + 1) = gf(x + 1) = (x + 1)

'J

= (x) 1 - (x + 1)

= -;(x) - x

= rfx)

18
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and A is periodic with period equal to one. Consequently, if 0 is
0

defined on an interval of length equal to or greater than one, then 0(x)

can be regarded as known for all xl. But in thig case, i(x) is also

known for all x . For V(x) is simply 0(x) + x . Consequently

n-1
VI(x) =.

/

(x)] can be computed recursively for all IT, and k f( k
g

can be computed with any desired accuracy.

In all the applications we know about, only points on short segments

of graphs can be adequately estimated from data. (A. segment'of a graph

of a function isisimply the graph of the restriction of the function to

an interval.) It is not possible to compute graphs of higher iterates

of f and g from segments. However a' segment of the graph of g

permits the.computation of a segment Of graph of w ; and with a segment
0

of the graph of- w and of f we can compute a segment of the graph of
1

i and 9 . But from along enough'segment of the graph 0 we can compute

all of the graph of 8 and i . This permits us to check, in(x) x + m

and (II.3) for all n,m . Thus we can'compute B with any desired

accuracy from segments too short to define higher iterates of f and
,g

This completes the review of the periodic procedure.

In the next two sections we prepare to apply the periodic procedure

by showing that current psychometric theory implies that certain empirical

curves are close to the graphs of simultaneous conjugates. The empirical

curves permit us to compute a segment of the graph of a function such that

if the psychometric theory were correct in every detail'and if our data

of
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were based on enough observations, the graph of the empirical function

would be indistinguishable from the graph of a periodic function.. We

will later use this fact to obtain a rough index of the appropriateness

of the periodic procedure and a method for combining observations to

increase measurement accuracy. In the results section we will religh'

our application of the periodic procedure.to psychomeiric data. It will

be shown that the periodic procedure "works" in the sense that it agrees

\

with a thoroughly tested elternative-measurement rocedure.

lb
t..
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III. SOME BASIC PSYCHOMETRICS

According to item characteristic curve theory and the logistic

model, Lord's LOGIST parameter estimates and periodic procedure estimates

should agree. In this section basic item characteristic curve theory)

the lOgistic model and the logic of thP.LOGIST programs are reviewed. A

generalization of the logistic model is thedintroduce4 and some empiri-

cal results supporting the logistic model and LOGIST are cited.,
%--

III.1 Item -Characteristic.Curve Theory and the LOGIST Programs

Item characteristic curve theory'Provides stochastic models for
....

1

;

`..$:.:

aptitude tests'. The theory,is,designed for tests with many separate
. ..i','

,
.

multiple choicb items. Each candidate or test taker is assumed to have

some (unknown) ability. His answers on each item are scored zero for

wrong and one for right. The theory relates item scores to,ability.

According to the theory the conditional probability of.a randomly

chosen candidate with abllity 0,:correctly answering the i -th item

.0fatestisanincreasingfunctionof0,P.(0) called the item

characteristic curve. The candidate's right and wrong answers are

regarded as:the outcome of a two-stage experiment. First an individual

with some (unobserved) ability 0 is sampled. .Then a sequence of

independent dichotomous random variables corresponding to the items) is

observed. The TrobEibility, thatfthe i -th_item is scored correct is

Pi(0) .

1\

16,
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Let < e1,e2,e3 e
n
> be a vector Of zeros and ones. The

conditional probability'that a randomly selected candidate has this

particUlar pattern of correct and incorrect answers is

n e.

(III.1) n p.(o) 1
, i=1

1-e.

Pi(G)) 1

We will later need to assume that the distribution of ability in:the

population of examinees has a continuous density. .If the ability density

is denoted by f. then the unconditiona probability ,of observing the

pattern*of correct and incorrect answers is

e. 1-e.
(III.2) ff(0-- Jr P. k. 1[1: - Pi(g)] 1 dA

1=1
I

and the joint probability of sampling an examinee with ability 0 in an

inte'tVal T and the given pattern of answers is

e. .

I f(g)

1=e

Pi(9) 1[1 - pion .

d0
i=1

The goal of testing is to estimate the individual examinee's ability

from-his...pattern of right and wrong answers. If the item characteristic

curvesP.are specified, this is fairly routine. In this paper we are

primarily concerned with using data to specify item characteristic curves.

The LOGIST programs compute maximum likelihood. estimates of the

item characteristic curves. Each P. is assumed to have the form
1

17
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Pi(tY= ci + (1 - ci)L[ai(t - bi)]

-

whereListhelogisticfunction.
ciare real parameters controlling the shape of Pi role of these

parameters and the logistic funCtion is discussed in the next section.)

Ordparily a set (a) of at least a thousand examinees is processed by

IOGIST. The. typical candidate a produces a vector of item scores which

hat conditional probability

n

. TI, Pi (0
a

)

IOGIST forms the product

l-e%

- )1
is

1 a

T.-

n e. 1-e. ....., /
(111.4):

a

) la

q .
.e.A

and iteratively seeks a vector of abilities and item parameter's

..'L
i

, 13i
i
8maximizing.(III.4).

The IOGIST programs have many options and are regularly revised.

The data and IOGIST application used for reference:in this paper have

been described by Lord (1968). We will review special features of.-that

Study as needed.

111.2 The Form of Item Characteristic Curves-

-Various item characteristic curve models differ in their assumptions

aboutthe'shapeandfunctionalformofthelp.'s. .There is considerable

18
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evidence to support the logistic and normal modeli. In this section, we

review these models and introduce a generalization called the linear

model.

The logistic model assumes that each Pil has functional form

Pi (A) = ci (1 - ci)L[ai(G

where L is the S -shaped logistic'function. A plot of the graph of:,'

P
i

appears S -shaped with a left asymptote of c*. and a right

asymptote of 1. Pi is 1 - 1, strictly increasing, continuous and has \

a single point of inflection.
,e

....Theparametersa.lb.,c.describe three more or less
1 1 1 1

.

- .,

-
independent properties of items. An increase in the "difficulty"-parameter

b. shifts the graph of P. along the x -axis and decreases the

probability of a correct answer .0 all levels. Variation of the posi-

tive "discrimination" parameter most conspicuously affects the steepness

of P. at its point of inflection. Geometrically it stretches or con-

tractsthegraph.The"guessineparameterc.contrgls the height of

theleftasymptoteofP..This parameter is sometimes interpreted as

the limiting probability of an examinee with no preparation or ability

correctly guessing the answer to the item.

A familiar model commonly associated with Basch (1960) postulates

P.i 0) = GAG
i)

where ability is assumed to be positive. Birnbaum (1968, page 402)

has pointed out that this model can be regarded as a special case of

""N

. 19



the logistic model since

w h e r e c .

0/(8

= 0 ,

+ b.3. )

a .
3.

= c.3.

= , 1 ,

,+ (1 - c.3. )L(a.3. (4)* - bit)]

-,..

,

0* = log-0 , bit = log b. g' We will use this '',,

i,,... -

model only to motivate some of the definitions of the next section. ,.,
Y,\

/

Unfortunately, it is not sufficiently general to describe the data we

wish to study.

By replacing the logistic function L(X) by the normal integral

0(x) = 1 Jr. e
-t /2

dt
VTI

one obtains the normal model._ Since 10(x) - L(Dx)I where D is a

known constant is very small for all values of x , there iery little

difference between the shapes of icc's for the normal and logistic model. .

In this paper we assume that tests satisfy a generalization of the

logistid and normal models called the linear model. Aset of continuous,

l'.....-strictlyincreasingicc's(Pj1 satisfy a linear model if there exists
. .

..,.:0.:

a-continuous, strictly increasing probabilaWdistribution P and

realconstants(a.),(b.), (c.) such that for all 0
,

Pi(0) = ci + (1 - ci)P[ai(0 - bi))

(Such facts are said to satisfy a "linear" model because any two curves

can be equated by a linear or affine transformation of the plane having

form < x,y > ax + b, cy + 1 - c >
-

f.

:-
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/' For concreteness, P may be thought of as either the logistic or

normal. But the analysis presented in this paper is equally applicable

to the logistic, normal or other continuous, strictly increasing

distribution function.

The fact that the periodic procedure does not require complete

specification the functional form of the.,Pi has important practical

implications. It is closely related to the invariance of Section tV.2,

which gxeatly simplifies data analysis.

.

-Our goal is, to evalUate the periodic prodedure by using\t to

estimate item parameters from some frequently analyzed data, evidently'',_

well described by 1teM characteristi,:. theory. Lord (1970) has already

obtained impressive evidence for the adeqdacy Of logistic model. The

close agreement between parameter estimates (obtained without the

logistic assumption) and LOOM parameter estimates provides further

supportfor the logistic Model.

21 f
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IV. ITEM-ITEM CURVES

The folloWing subsections are used to introduce and discuss the

basic properties of the item-item ability curve, a generally handy

adjunct to item characteristic curve theory and an essential tool far-

the application of periodic functions. To motivate this new development,

11

recall that-acontinuous 1 1 transformation of ability WEIS shown to

change the item charaCteristic curves of the Rasch model into the curves

of a one-parameter logistic model. Item-item curves will be seen to .

. -

carry very Much the same information at icc's. BUt we will show

(Section IV.2) that they are invariiht under all 1 - 1 continuous

trap,sformations of ability. By using this invariance we are able to

,specify consistent estimators of points on the item-item ability curves

(Section IV.3). Item-item ability curves can be related to conjugates of

translations in various ways. We outline the way actually used (Section

IV.4) in this study along with alternative ways, which may be preferred

for free-response data and other psychometric data for which the periodic

procedure may be applied.

IV.1 Item-Item Curves and-Graphs

)
By considering pairs of items, one defines item -item ability curves-.

The (ij) -th item-item Ability curve is the subset of the unit square.

< x,y > : for some ability A , x = Pi(G) and -y = ye))

2 2
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Every item characteriitic curve considered in this paper is 1 - 1

EmdthuSbasaninverse."IllusforeachP.and every t in the range

or P. we may write t = P.[P
-1(t)]

Consequently, each item-item

ability curve can be written in the form

[ < t,P:[P71(t)] > : for some ability 6 , t = Pi(0)
J

In other words, (ij) -th item-item ability curve is simply the graph of

-1
the function P.P. .

J

Item -item Curves and Transformations of Ability
-c,

Since ability A is not observed, one is led to consider various ob-

served indices of ability such as_proportion of correct items, formula

scores, grade point average, composite scores on a battery of tests not

containing the items beirtg studied, maximum likelihood estimate of ability,

etc. If is such an index, theh (i,j) -th item-item index curve of

a test is the curve

( < x,y > : for some value of k , x is the conditional

probability of correctly answering the i -th

item and y , correctly rnswering the j -th]

There is a special case, which is important for theoretical develop-

ments and which is conceptually important for our application. Suppose

an index P is a 1 - 1 function of ability A , i.e., that for some

invertible function v we have -k = v(g) . In this case the item-item

I

23
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index curves and item-item ability curves are equal. This is true because

for each value E
o

the conditional probability

equals

Prob(item i is correctlindex = 0)

/ NI
° Prob(item i is correctlability 9 equals v

-1
kton

which.equals pi[v
-1
ao)] . Thus the item-item index curve is the grap

of the function
-1%*-1

which is clearly equal to the graph

of the function P.j P.
1

. It follows that the ,(ii) -th item-item index

curve equals the (ii) -th item-item ability curve.

This argument shows that the same'item-item curves are obtained

with any 1,- 1 transformation of ability. In particular, strictly

0

increasing, continuous transformations of ability,leave item-item

. ability curves invariant.

This simple invariance turns out to be very important. It greatly

simplifies the estimation of item-item curves. It makes possible

results (presented in the next section) that are used to relate observed

item-item proportion correct curves and item -item ability curves. It

also implies, incidentally, that two models such as the Rasch and one-
;

,parameter logistic with different item characteristic curves oan have

exactly the same item-item curves.

2 L



TV.3 Relating Item-Item Curves to Observations

The purpose of thit section is to describe some asymptotic results

that are used to estimate points on item-item ability curves.

donsider,repeatedly sampling examinees from a population in which

ability has a normal or some similar smooth probability density function

f . Ea'ch r,mpled examinee takes the same long test. As noted in

Section 111.1 both ability 0 and the item scores ui can be regarded

as random variables. The cited asymptotic results follow from regularity

conditions and from formula (111.3), the formula for the joint distribution

of ability and the first n scores.

We intend to comment on the suitabAity of the observed proportion

of correct answers as an index of ability's Thus we must define the pro-

portion correct random variable z
n

in
z = E u.
n n

i=1
,

i.e., the random variable giving the average item score or the proportion

of correct answers on the first n items.

Let t be a fixed proportion in the range of each Pi . Consider

the average p of the first n item characteristic curves

µn(t)
1_17. 2

Pict)
1.1

Since according t," the linear model each Pi is strictly increasing and

continuous, the average pn must be also. Thus pn is 1 - 1 and has a
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r\..
-4-------,--

strictly increasing, continuous inverse g
n

. Since t is in the range
\

of\eachl'i 1t is the range of il

n-
and t

n
(0 is defined?.

we consider longer and longer initial segments of the sequence

of test items, the sequence of numbers tE
n
(0) may or may not converge.

Howeve it still can be shown that under quite general conditions it

is possible to specify a sequence of "proportion interval widths"
1

s
n

that slowly decrease to zero such that for each item i the

difference

C(uil - < sn) - Fi[En(t)]

tends to zero as n increases.

In other words, asymptotically, the expected item score for item

i --given that proportion. correct on the first n items is close to

t --is approximately equal to the i -th item characteristic curve

composed with a strictly increasing continuous transformaaOn relating

the set.of possible proportions to the ability continuum. Furthermore,

the transformation to is independent of i .

To apply this fact, one considers a finite set of proportions

'1' '2'
.

'R

and a pair of items, say for definiteness items one and two. A very

large sample A of independently sampled examinees is selected and

administered an n item test. For each candidate e A ,Tr)-

portion correct zn(a) is computed and used as an index to define

R subsamples

2
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A
r
.= (a E A: lz

n
(a) -

r
I <

n
) r = .

fA

As the size 11(A
r

) of these subaamples becomes large, each observed

°

proportion .

Pir

N(a e A la answers item i correctly)
- or

.

Pir N(Ar)

will, with high probability, be close to its expected value

it
Iz
n

- I s )
n

and therefore close to PJE
n(t r )1 . Thus the points in the plane

<:PlIr1P2,r> are likely to be close to the'points < P,gn(tdcp2g6t;) >

on the item-item ability. curve < P1, P
2
> . This follows from the

,=

fact that each gn is 1 - 1,and the invariance described in the

preceding,section. .%

Proofs of 'these results and a discussion of rates of convergence

will be discussed in a separate paper currently being prepared.

In this study empirical item-item proportion correct curves have

been used ass estimates of points on item-item ability curves.

TV.4. Relating Item-Item Curves to Conjugates

Before the periodic procedure can be applied, estimates of points

on conjugates of translations must be obtained. We have just shown that

27



empirical itenCitem proportion correct curves are estimates of points

on,theoretical item-item ability curves. In this section it is shown

that the theoretical iia curves can be related to conjugates in various
\

ways. Each way suggests a somewhat different data Analysis procedure.

The special purpose of this study and the special nature of our data

have selected a particular Way) presented below: Alternative ways are

noted in passing.

-Tolbegin) consider a one parameter model version of'the linear model

in which c. = 0 and a. = 1 so that every, icc has form

Pi (8) = - .

The (i,j) -th item-item ability curve is ,simply the graph of the

'conjugate

X -4

where /
i

is the translation 8 -48 +b. - b .

j

In the general linear model each icc has form

Pi(G) = ci (1 - ci)Pl(G)

O

where ci is the "guessing parameter," and I. is the linear transformation

The item-item ability curves here are the graphs of functions of form

cj j 4Pf (c..) -1
.1

28
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Where each function C. is defined by IC.(t) = c. + (1 - c )t . This

function can be rewritten as (CI .1)XI OW- 0-1 where I (71 can
j jii

easily be shown to.be

a.a. + a (b. - tr.)
a.

J. i
31

Thus if item i is compared with an item j with the same discrimination

parameter, a. /a. = 1 and (i,j) -th item-item ability curve is the

graph of a function very much like the graph of a conjugate:

c.P(f 171)(c..0-1 .

If c. is assumed to be the reciprocal of the number of multiple choice

alternatives and both items have the same number of-alternatives then

and

= c J 1 p.

is again a conjugate of a translation.

'.14henthec.'s are set equal to the reciprocal of the number of choices

which can otherwise be regarded as known, a simple linear transformation

oftheplarlecaribesPediftedanclusedtoremovetheeffectsofthec.'s1.

Using elementary algebra, one can verify that the transformation

< x,y > - c1)/(l - ci), (y - c)/(l -_ci) >

carries the (ii) -th item-item ability curve onto the graph of the

function P(Iii;1)P-41".

29
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In this study it is appropriate to regard both. the. ai 's and c..'s

as known. (A discussion of this. point follows in the next section.).

Consequently we,were Ole to pair items with equal discrimination and

rescale empirical item-item proportion correct curves to obtain estimates

of points on 'the graphs of, conjugates of translations.

IV.5 Concluding Comments on Our Method of Using Item-Item Curves

In this section we wish to state the rationale for our way of estimating

points on the graph of conjugates.

The preceding sections show what would happen in a large scale

simulation of item characteristic curve theory with, say, one parameter

logistic ice's, a bounded sequence of item difficulties and a normal

distribution of abilities: If a pair of conjugates were approximated

from empirical item-item proportion correct carves, smoothed and used

as input for the periodic procedure; then as test length and examinee

sample size increased, the,periodic procedure would almost surely give

essentially perfect estimates of item difficulties. Some nontrivial

mathematical questions would have to be worked out to properly qualify
z,

and prove this assertion in detail; But we do not develop this line

of reasoning any further here because it is tangential to the previously

stated goals of this study.

The central question for this research is not mathemati'cal; it can

only be answered by data. It is: Can the periodic procedure'be useful

wits current tests, which are only imperfectly described by item

characteristic curve theory?

To make our point clear, recall that item characteristic curve theory

is an idealization, i.e., an abstract, incomplete. description of aptitude

30



test data. It lacks, for example, an explicit account of the complex

interdependences between items referring to the same reading passage on

r the typical verbal aptitude test.

However, icc has proven to be a powerful tool for investigating

important problems. Lord (1975) cites 17 recently published applications.

Icc'S role in studies in progress as well as the absence of a likely

alternative makes it' fairly certain that icc will be even. more_widely

used, in the next decade.

We wish to consider the type of data that is going_to continue

to be analyzed with icc. By reanalyzirig such data with the periodic

procedure we intend to decide whether the periodic procedure estimates

of item difficulty agree sufficiently wellwith standard procedures to

justify further development.

The reference estimation procedure, Lord's LOGIST program,

simultaneously fit ai 's, bi 's, and ci 's (as-well as A 's) for

samples of examinees to the logistic model. In its present form, 'the

periodic procedure estimates only .bi 's. Since our goal is to compare

periodic procedure estimates and not to document a new

estimation scheme, it is legitimate and desirable to use LOGIST.estimates

of ai 's and c: 's. Thus we are led tbtHerbilbWing steps in

estimating points on graphs of conjugates:

1. pair items with equal LOGIST a. 's.

2. compute empirical item-item proportion correct curves for

these item pairs.

3. useLOGISTc.'s to rescale and obtain estimates of points

on the graphs'of conjugates of translations.
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All of the essential detftils of the implementation o-f -Ofese steps__

arp.presented in subsequent sections:

T

r

'V

T.
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V. DATA AND RESULTS'

Our major finding is close in agreement between LOGIST and periodic

"

estimates. In,this section we summarize the basic facts about the
7

data and Computations; additional dettiils are in the references and the

sections oh 'computation.

- . Lord (1968) applied LOGIST to a sample of 2;862 SAT-V candidates.
.r-

' Number right scores on the SAT.-M were used .Co obtain a sample with a

relatyively large proportion of low ability candidates. The cis

guessing parameters were,estimated to be equal to.,;the observed pro-
,

portioris correct for low scoring candidates. Omitted and not reached

items were scored as if theyhad been answered incorrectly. The

b 's, and A 's were estimated by minimizing equation 111.4.

In the following )1 and .5E are used to denote LOGIST and periodic

estimates of a parameter x .

LOGIST estimates, provided by Lord, were used to select a subtest

from the SAT-V. Means, standard deviations and other summary statistics

-are given in Table 1. The LOGIST estimated parameters of the seven

item subtest.aTe given in Table 2. These are all the. items with gi

(LOGIST estimated a. ) equal to 1.22 .02. This particular constant

S'
A ,

was chosen becauseymany items happened,to have ai 's close to 1.22.

Item-item proportion correct curves were estimated by first computing'

item test regressions from theentire administration of 103,275 candidates.

The item test regression for item i is essentially the vector proportions

(
Pi . r

) of Section 111.3 where r is the index of the proportio
P r

.

33
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Table 1
0

t.- -
Summary Statistics fortOGIST Estimated Parameters

bi C.

1/4

Mean, 1.09 .65 .15
Standard Deviation
'Median

.385 .855 .05
1.07 .77 .16

Maxamum 2.03 2.425 .2
; .40 -1.52 .04 -'

T1,

0

a

g

o

1-T
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Table 2

LOGIST Estimates for Subtest

item: number gi
f3.
1

. 8i

51 1.2058 -.5404 .20

6 1.2072 .7198 .12

77 1.2133 .7026 .14

20 1.2170' 1.6270 .09
80 1.2180 1.0919: .15
14 1.2321 .5056 .20

59 1.2341 -.6478 .20

0,,



-33-

Mbie explicitly,

where

o
,:c t^"1*

.

43VL.I'red:6,(?r,!4.
b sj..f . .

' Pir Nir/Mir

/

Nir = the number of candidates Answering item i correctly

and either. 2r or 2r - 1 other items correctly;

Mir ir
number.of candidates answering item i

incorrectly and either 2r or 2r'-. 1 other items
O

correctly.

This minor departure from 111.3 avoids the spurious dependencies discussed

in Lord and Novick (1968, Section 16.4.1) by conditioning on the number

correct on the whole test, except for item i rather than on the whole

test.

The plot of the item test regression (i.e., the plot of pir as a

functiOn of
r

) generally appears to be a set of closely spaced points

on the graph of a smooth, monotonic function. .This is especially true

for intermediate values of t
r

for which the observed proportions are

based on a large number of examinees. Some nonmonotonicities were

observed for very low and very high proportions correct. This-is to

be expected since there were few examinees with very high or very low

proportion correct scores. (In Section 1V.2 we report"a technique for

preventing these unstable proportions from affecting our item difficulty

estimates.)

36
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As-a first step towards obtaining curves suitable for the periodic

procedure, for each item i a vector ( plr ) was computed. The nut

entrypillistheasymptotea.used,by LOGIST. The last entry
piR

is one. The other values are computed by initially setting ptr = pir

and then applying the algorithm described by Kruskal (1964, Section 8)

to compute the monotonic array of points beginning with ci and ending

with one maximizing a quadratic index of goodness of fit. Ties introduced

by the algorithm were broken by making vety small adjustments of the equal

ir
's. tiXn this way each item was used to generate a vector of strictly

increasing numbers ( pi ) approximately equal to the observed

proportions ( . %).
Pir

The i -th and j -th vectors were then used to specify estimates

( PtrYPIr > )
of points on the ij -th item-item proportion correct

curve.Thec.'s were then used as described in Section IV.4 to

estimate points on conjugates.

In this way the ij -th pairorsUbtest items was used to specify

anarrayofpointsj<x.(r),y.(r) > ) in the plane. Since both

x.(r) and Y .(r) are strictly increasing functions of r , these

pointt are on the graph of at least one strictly increasing, continuous

real function. By linearly interpolating between points we selected one

suolifunotionfi*) for each ij .

1

Accordingto'thelinearmodelx.(r) is an estimate of

u[t
n
(t
r

) - b.] and y.(r) is an estimate of u[t
n r

) - b.]

where to is the 1 - 1 function of Section 111.4/ bi is the item

difficulty and u(t) = P[1.22t] for P equal to the probability dis-

tribution of the linear model. Thus the points < x.(r),y
j
(r) > are

37
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estimates of < u[tn(tr) - b,],u[L(tr) - b ] > on the graph of the

fufunction .ufu
-1

(-) + bi - b.] . Since the x 's and the y 's are

closelYspacedtbegraphoff.v/ilibe bointwise)..close to the

graph of the conjugate
-1

] and Ve are ready to try'

the periodic procedure.

We selected three different functions fki and solved Abel's

equation- for each of them. (Comments on the selection of the fki

follbw in this and later sections.) For each kf we used the same

solution to'Abel's equation to estimate

B(ij,kf) = (bi - bj)/(bk - b1)

for all pairs ij of'items in the subtest.

The iesultd are tabulated in Tables 3a, 3b, 3c and plotted in

Figures la1,1b, lc. Since our programs always estimate B(ii,kf) to

be zero and B(ji, 4) to be -B(ij,kf) only 21 of the possible 49

g(..,kf) need be given.. Only the positive g are tabulated and plotted.

(The trivial estimate g(k(,k() = 1 is tabulated but not plotted.)

The periodic estimates are in the second column. The order of the

rows was determined so that B(ij,kt) (in the third column) increased

from the first to the last row in each table. The columns labelled E

and I will be used to illustrate a point considered in a later section.

The periodic estimates are very close to the LOCUST estimates. To

make thid obvious we computed an overall estimate of bi from each table

by averaging g(i,k1) . That is, for each kf we computed

38
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ti Table 3a

i

77 6

59 51
14 77

14 6

6 8o

77 80
89 20

14 80
6 20

77 20

51 14

14 20
59 14

51 77

51

59 77
59 u
51 8o

59 80

51 20
59 20

Estimates of B(ij;59,77) with Indices

B

.0009

.082

.138

.125

.253

.305

.417

II \ E

.013 .870

.08o .012

.146 .028

.159 .120

.276 .045

.288 .029 1.

.396 .026

.405 .434

.654 .672

.709 .685

.739 .775

.846 .830

.811 .854

,.9225 .920

.999 .933
1.000 1.000
1.000 1.013

1.20o 1.209
1.250 1.288
1.552 1.605
1.594 1.685

.035

.b14

.017

.024

.0095
x'46

.0014

I

.66

.16

.34

.15

.058'

.039 .

:018

.414

21
20

'.023

.0088

.013

.0025

.034: .0623

.000 .00003
.000 .0022

:.0037 .0031
.015 .0043

.017 \.0053

.028 ,,m091
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Table'3b

Estimates of B(ij;51,77)

i j

77 6
59 51
14 .77

14 6.

6 80
77 8o

80 20

E

.024 .0138

.0875 .0864

.159 .1585

.138 .1723

.2805 .2994

.333 .3132

.4545 .43o5

14 80
. .434 .4717.

6 20 .700 1 .7298
77 20 .763 \ .7437

\51 14 .772 .8415
14 20 .917 .9022
59 '14 857

\\.:

.9279
51 77 1.000 1 woo

51 6 1.000 1\.o138

.. 59 77 1.o87 110864
59 6 1.001 ...1002
51 8o 1.333 1. 132
59 80 1.333 1.996
51 20 1.727 .1.7437
59 20 1.800 1.801

E'

.27

.006 .17

.016 .36

,.182
.032 .063
.031 0 .025

.027 .026

.042 .013-

.021 .02

.013 .0077

.043 .02

.0098
.o4o .011

.000 .00004

.0Q7 .0024

.0003 .0017

.047 .002$1,

.008 .0029''

.024' .00144

.005 .0017

.0083 .003

0

-

40
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Table 3c

i

77 '6.

59 '51
14

6
7,

14
7

Estimates of B(4;77,20)

A
B B

.0004- .019

.167 .13.6

343 .213
.240 .232

E

.959
1.18
.234

.017

I

.61

.26

.33

.14
6 '8o .3335 .403 .094 -.043.
77 80, .391 .421 .037 .037
8o 20 .75o .579 .13 .12

14 80 .500
,

.634 .12 .029
'6 20 1.000 .981 .0096 .022
77 20 1.000 -,,1.000 .00 .00004
51 14 .857 1.132 .14 1.928

14 20 1.333 1.213 .047 zk' .015
59 14 '1.000. 1.248 .11 .010'
51 77 1.356 1.345 .004

AS,
.010

51 6 1.214 1.363 .o58 .0072
59 -77 1.500 1.461 .013 , .019
59 6 1.275 1.479 .474 .0083
51 80 1.500 1.766 .o82 .039
59° 80 ,-, 1.5685 1.882 .091 .023
51 20 2.333 2.345 .0025 .0013
59 20 2.429 2.461 .0065 .0019

41
O



-39-.
c ti

1
N

, N
0

0

U 0
L.

x,
0

0
0

X

I t 1111111
o 0.9 0.4.0.8 0'8 1.0 I 2 1.4 I 81.8 2.0 2.2

LOGIST ESTIMATE
2.4 2 6

Figure la. Periodic and LOGIST estimates of B for kt = 59,77

4 2

4.



fD

0

Y

ca 0 0.2

X X

RX

1 [

0.4 0 : 6 0 0 1 0 1 2 : 4 1 6 1 9 2.02!2 e..4 2.6
LOCIST ESTIVATE

Figure lb. Periddic and LOGIST estimates of B for lc,/ = 51,77A

.1

ti

.43



ti

o

1 m
(

0
N
CD

0)

0

0

0
N
0
0

x

X

X I

Ca 0 0 9 0 4 0
T I I01 0 1 2 1 4 1 6 18 8 2,0 2.2 2.4 2.6

LOG 1ST EST imnrE

Figure lc. Periodic'and LOGIST estimates of B for k,t = 77,20..

ij

Q4

..

4



o.

n

-

-42-

Ei , E jr3(ij,kf)
lkx 7

Sinceaccordingtothelinearmodel,thebi are on an interval scale,

comparison of the 13.
1

and -S.
1

caribe simplified by resealing the U.1 .4
. sothattheyhavethesamemeanandvarianceasthei..Our results

i

are in Table 4r

Lord (1975) found the standard error of, estimate for item difficulty,

(the square root of the mean sqdared error of prediction from the

13. on b.) to be .196 in a'receni computer simulationregression of

oftheSAT-V.Thedifferencesbetweentheb.and E. in Table 4 are

so small relative to .196 that the periodic estimates and LOGIST

estimates can be considered interchangeable.

We now reconsider the choice of the pair of items kf . This choice

is important because if the items are atypical or if fkx make poor use

of the available data, then fob every ij the estimate Of B(ij,kt)

will be adversely affected. A pair of items,can make poor use of data

in many ways: For example, if bk - bf is very large, then virtually

all of the data will be used to define a segment of 0 less than unit

length, and the periodic procedure will give poor estimates. If b
k

- bi
X

is nearly zero, then small sampling errors will have large effects on 0

and againthe periodic procedure will give poor estimates.

A straightforward, objective way to reject unacceptable f
kf

without referring to bk - b1 would be to Compute periodic estimates

for all pairs i < j in the subtest and then test the hypothesis that

B(4,14) is equal to the difference X. - X. between two (unknown,

estimated) numbers plus a small random error. An alternative' way is

introduced in Section VI.50.

45



t,

,74

-43-

Table 4

LOGIST and Periodic Item Difficulty Estimates.

O'N

13

i

131.,k1

kl=59,77 kl=51,;/ kt=77,20

6 .7198 .734 .7243 .731
'14 .5056 .501 -491 .579
20 1.6270 1.6295 1.649 1.671
51 -.5404, -.555 --...56.4 -.591
59 -.6478' -.609- -.602
77 .7026 .683 .678
80 1.0919 1:072(3 1.086 , .992 ,..'
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VI. COMPUTATIONS

After the main features of the programs are presented, a particularly

important part of the computation is discussed in further detail. The

discussion of this computation will be used describe our present

method for combining observations of examinees on=different ability

leVels.and obtaining a rough index of goodness of fit of the equations

of the periodic procedure.
s.

VI.l 'Main Features

We begin by restating the key equations of Section II in a more

compact and convenient form.

Suppose

(VIa)

. u-1[u(.) + bi - bj] ,

g(.) = u-1[u(.) + bk - b1]
,

for some increasing, continuous u and positive constants bi - bj ,

b
lc

-b,
A

.

Let w be any continuous, strictly increasing solution of Abel's

equation

(VI.2) g(.) = w-l[w(4+ 1]

Define vS by

(VI.3) = w
-1

47
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(v1.4) 9(x) = 51(x) - x

Then since 9(x) = E(x + 1) and 51(x) = 9(x) + x s r( x) ^can be computed

recursively for all n and x from any unit-length segment of the graph

of 9 .

For each positive integer )111 let mn be the smallest integer m

such that

(VI.,)
n
(x) < x + m

for all x . Then

B = Obi - bi)/(bk - bl) = lim

In fact

(VI.6) 0 < B - mn/n < l/n .

O

Instead of (VI.5) we will use the statistically more stable condition

1

(vi.5,) f 0n(x)dx < m
0

This concludes the summary of Section II.

Function composition is the basic operation of our programs. Mbst

of our functions are strictly increasing, continuous, piecewise-linear

mappings of the unit interval onto itself. We encoded each by listing

the coordinates of 101 points on its graph. The first point is'always

the origin (0,0), the last always (1,1).
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The first step in the implementation-of the periodic procedure

0

has already been described. It is the computation of the functions fij

and fkf that play the role of f and g in (11.1).

The second step is solving Abel's equation (VI.2). The basic

algorithm was described and illustrated in detail in Levine (1970, Section

111.2; also 1975). That algorithm begins with the choice of a continuous

function defined on a.short interval in the domain of g and then uses

Abel's equation to recursively extend the initial function.

We experimented with linear initial functions and a function sug-

gested by an asymptotic result of Krantz. We found that the recursive

. extension of w was generally smoother and easier'to encode when the

initial function was proportional to

x

I dt

f
kx
/(t) - t

x
o

where x
0

is such that f
114 u
4(x.,) has been computed from a large sample

of candidates and x
0
< x < f

kx
.(x

0
) . The rationale for this formula

can be found in Krantz (1971, page 593).

We recommend cho6sing items ki such that fkf has few fixed

points, since the recursive procedure defines w only between a pair

of fixed points containing the initial segment (Levine, 1970, Section

111.2). We also recommend choosing functions f that it is

possible to begin the recursive procedure on an interval with statistically

reliable estimates of function values. We located such intervals by
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counting the number of independent observations directly contributing to

the estimate of each function value.

The next step is to compute the functions and A . To do this

we first used the solution to Abel's equation and f.. to define A byla
A(x) '= "wf.:w-

1
(x) - x . This empirical function is of course not

ij

precisely periodic. By approximating it by a periodic fur ;ion g

we were able to combine information from examinees at different ability

levels and simultaneously measure the extent to which the data from

items ijkf agree with the mode.. A discussion of 5 is given in the

next section. Basically 5 is a trigonometric polynomial optimizing

a measure of periodicity.
. .

.0-
We also obtained remarkably accurate results,by superimposing

and averaging cycles of G to define an average function S . But '

two problems eventually forced us to abandon S and develop A :.

(1) For some data the mapping. x -4S(x) x is nonmonotonic and

(2) we failed to find A satisfactory way of averaging to assure

S(0) = S(1) .

;

The empirical function /(x) = G(x) x was replaced by i(x) =

g(x) x where 6 is tha periodic approxiMation of A .

To estimate B(ij,kt) we used in and condition (VI.5') to

estimate integers m
n

Ouc estimate M
n

was the smallest integer m

satisfying
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1

I-n(x)

0

The estimate ot B was the.minimum of '(ISVn 4 n = 512, 5131... 532)

VI.2 Computation of 5

The graph of the empirical function -9--commonly,appears smooth and

approximately periodic over much of the domain of definition of the

function. However, for very large and very small values of -x the

graph appears jagged and amorphous., We experimented with ,several Ways

to combine the values of 9(x) to obtain a smooth, periodic function.

The one presented below does not give the best agreement with MOIST,

but it has the advantage of not requiring inspection of intermediate

results.

All of the results reported in this paper have been computed by

first computing a "weight function" W(x) which will be seen to control

the contribution of 9(x) to a(x) . Note that 9(x) is simply a

complicated arithmetic expression in the observed proportions, pig

and pig° or in the end points fij(0) = 0 fij(1) = 1 . W(x)

is zero if an end point is used in the calculation of 9(x) . Otherwise

W(x)-is the minimum denominator of the observed proportions. Thus

9(x) is based on at least W(x) independent observations.

We recommend that W(x) be computed recursively. To do this each

table defining an f.. is accompanied by a list of integers (denominators
lj

or zero). When two functions are composed, the list is updated in the

obvious way.



ti

4 G- is approximated by cbmputing the first f w terms of a Fourier

series. Recall that the Fourier series of a con inuous real function h

with period equal to one is the series H defin d by

S.

H(x) = a
0

+ E
,

[a
m
cos(27m) + b

m
sinitmx))

M=1

where the coefficients a
m
,b

m
have the property that for each partial \44---d

. sum H
n

H
n
(x) = a

0
+ E [a

m
cos(211mx) + b

m
sin(2Amx))

M=1

the coefficients minimize the mean squared difference between h qud

H
n

(VI.7) ir [h(x) -Jin(x)]2 dx

0

To filter irregularities in the graph of G We only considered

partial sums of the form H5 . (We chose five terms after observing that

the shape of G could easily be described with 5 terms and that with

many terms pathologies like those associated with Gibb's phenomenon

began to appear.)

Instead of minimizing the squared error (VI.7) we selected the

coefficients of the approximation to minimize the weighted squared error

h h defined by

'(71.8) he - = f[8(x) - G*(x)]2w(x)dx

52
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This permits all values of G(x) to influence the shape of the approxima-

tion A , but only to the extent that they are based on observations.

Another advantage of (VI.8) is that it greatly simplifies programming

and speeds computation. For very high values of x there are no appropriate

candidates for defining the graph of f.. With (VI.8) we arefiee t4
3.j

choose any values'for the graph that are easy to code and that make the

Compositions well defined. If this is done, the computer is able to

compute any composition of functions the programmer specifies, whether

appropriate data are available or not. However, the portions of graphs

not based on observations result in zero W and make no contribution to G .

This means that these portions of the graphs are unable to affect the esti-

mate of B

.

VI., Measuring Periodicity

As noted in Section IV, the B(ij,kf) can be combined in various

WaystoobtEkinoverallestiffaitesofb..TO Tect the best available

estimatesofb.or B(ij,ki) it would be hepful to be able to examine

some intermediate results in the computation* B and determine how well

B(ij,kf) estimates B(ij,kf) .

We experimented with various approaches to this problem. Our most

promising begins with the observation that if the empirical function G

cannot be approximated by a periodic function, then there are no

simultaneously conjugate functions close to f..
3.j

and fit' . Thus by

measuring the periodicity of G we may obtain a measure of the error

in the periodic estimates.
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To measure the periodicity of A we first considered

infinimum (De- e*h-: e* isra continuous function with

G*
period equal to one)

where 0 0 is the functional F -0 jr[F(x)]2W(x) dx = IIFH defined in

the preceding section. To eliminate effects of scale we divided by hell
.

lit

We approximated inflp - GI by MA - eh This gives the index of

periodicity 1.(G) = IIA - 4400 = I[G(ij,kt)] .

_

To check the conjecture that I(G) is related:to the error in

the periodic procedure we compaied I(G) with the measure of error

E(ij,kf) = IB - + . A full listing of our results is given

in Table 5a, 3b, 3c. For fixed kf the correlations between I(..,kf)

and E(,kt) are high ( r .87, .83, .90 = for (k,f) = (59, 77),

(51, 77), (77, 20) , respecttlyely). Thesd correlations suggest a

'simpler relation that is actually present since there is one very large .

value of E and several very small values of E that are well predicted.
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