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PR \ %
Mathematics 1s suth a vast and rapidly expanding field of ,study that there

are)inev:.tably many‘ important and fascinating aspects of the subject which

.

though within the grasp of secondary school students, do not find asplace in the
- curriculum simply becaude of & lack of time, d . .,
. Y
Many classes and 1nd1v1dual stuﬁents, however,:may find time to pursue . LT
methematical topics of special ihterest to them. This series of pamphlets,
whose production is spdnsored by the School Mathematics Study Group, is designed

"o-make material for such study readily accessible in classroom quantity. .

Some of the pamphlets 'deal w1’ﬂr material found in the regular curmculun)
but in 2 'nore extensi‘ve or intensive manner or from a novel point of wiew.
- Othérs deal wi’ch topics not \usually found at all in° the standard curriculum
. It is hoped that these pamphlets will find use 1n clagsrooms \in at least two . ~

«  ways. Some of the pamphlets produced could _be used to extend the work done by .
a class with a regular textbook but’ others iould be used profitadply,when teacherbs

want to experiment with & treatment of a to

ic.different from thé treatment‘in the
regular text gf‘ the class. In ~all cas'es, the pamphlets are des:.gned to prbmote :
the enjoyment of studying mathemati-cs.. v . : B

-~ T a
Prepared under the supervis:.on of .the Panel on Supplementary Publications of the
School Mathematics’Study Group:

. -

Professor,R. D. Anderson, Depa‘rtment of Mathematics, Louisiana State . "
A . Uhiversity,  Baton Rouge 3, Louisiana .~
. -
Tt " Mr. Ronald J. Clark; Chairman, St. 'Paul's School, Concord, New Hampshire 03301

‘ Dr. W. Eugene Ferguson, Newton }\{)igh School, Newtconville, Massachusetts 02160
R&r’. Themas J. Hill Montclair State College, Upper Monﬁclair New Jersey

Jee. Mr. Karl s. Kalman Roqm 711D, Office of the Supt. of Schooljy, Parkway at

Lo © 2lst, Phi‘ladélphia 36, pearsylvanig 19103 . . -t
¥ . Professor Augusta’ Schurrer Department of Mathematics, State College of, Iowa, ..
P Cedar Falls, Iowa \
) o RS Dr. Henry W. Syer, Kent School, Kent, Connecticut - ' ’ ;
. . Professor Frank L. Wolf, Carletdn College, Northfield, Minnesota 55057 R

Professor John E. Yarnelle, Department of Mathematics, Hanover College, .
#+ "Hanover, Indiana . T - )
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This booklet will be most useful for enrlchment at the
eleventh and twelfth grade levels. It treats algebralc structures

., 'as abstract mathematical systems and introdices such important ¢

[
. 1d%as as group, non-abelian group, field and subfield, Proofs )
e are°§1sorous, but not tedious. Answers to the problems w1ll be 7
© féund in Te vack of the booklet. ' .
-y .‘0 o) -
. -~
. < . « ] . — .
. As ckground’the reader needs familiarity with the follbwing
: sets of numbers: 1ntegsrs, ratlonéls, reals and complex numhprs. . .
> No deep or strange theorems are presupposed bdt the bcoklgt
o,
e 'requires mathematical gnaturity. .
' L *
< . » * : .
° o, It was originally publlshed,as a chapter in the SMSG course
called "Intermediate Mathematics', A . ..
« . L N ~ ’
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i - . *ALGEBRAIC STRUCTURES \
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. ’ . . >~
1. Introduction. .o ¢ NEPEA £ ,
I T— N . . . ’ -~
“ . i‘;
. ° During our study of mathe\matlcs, we use several number systems the {‘:i;
fehi
natural numbers, the integers, the rationsl numbers, the real numbers—and thej‘
« complex num’ters In each of these systems our concern is with the follow1ng K P
~ » . v S . -
~~ (1) Objects on elements: numbers ; T . . -
» ‘, . § ~ . .
N (2) Two operations: addltlon and multlpllcatlon, , N o
\“ (3) Laws satisfied £y tnes‘e onerations, sueh as the commutatlve and\ N
. P '\ associative lats of addnfh.on and ltlpllcatlon and the dlstrlbutlve !
[, A law. " 0 J" s . ! /‘ -
. . - T, . . ¢ L .
If we ytop Qnd‘rei;lect for a moment, we see'jthat many of the algebraic LN
) computations whid')l\) wé carry out art indegendent’ of the nature of the numbers o,
wfth which we gre operating and depend solel:, on the fact that the o geratlon ,
7 In dues.tlon are syt ject to laws ‘pespected in each system Thus, for example, .
we cons d'er the identity’ . : -
~ S . 3 oL N .. boe
s T e : : .
: la . ‘& 8 -1v"=(a+1)a-0) e ’ A
M i 8, Y ' -t ) . ) T
\\. and think of, this’assertion, as, applying to a and t taken as c
- 2 .
® - .
S . . [ ] N > .
(T) integers, <, ° v . T - > .
e . F 3 >
«(2) 'rational numvers, L B . -
. .’ - . 1
. .. . (3). real numters, , L .
- . s ° r * 3
)(L) cemplex numbers. - . .
', *
2‘, Ve see, that, if we esbak lx,slfed the Identlty la at the earliest stage onm )
\‘ . ~integers and observed. , ° _ . . :
’” :’ P « .
i~ , (1) that'the verfrication depended only on the dlstmbutlve lav,. the .. .
L -, ' as‘smqg@fe’"’féws “and commutatlve 1aws and propertles of the addi-
- . Vo . J
- T tives 1;}‘3}’?&@ and . E , . o
v i (’2) the.t cadr of tne laws ari‘d groperties invokted. were in force for the :
iy RS R! N K A T
~ . compxex num%eﬂ; System, © ™ , < R ~ -
* then 1t would bte unnecessar_/ to répeat the ver}-flcatlon for the caci where a ’ :
—~"- and b are complex numbers. o .
- L . o= ‘
Without sLich laws algeiraic computation as we know it would cease to ‘. At
i~ 7
P exisi'. The whoWe source of rules for algenrale computatlon is to be foupd inm | . ’
’ these lavs . s . . :
. T 3 . ’ ‘. d . S N .

Ao
EpE

ERI

v . . ;
e A e ‘ .. ; . o
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:_e i ) We can, I we like, seek to abstract what is algebraically essgntial and /,l

é,d cemmon twﬁ‘a],_‘spécific number systems and develap, algebraic results whi«.h
SR hold fér each' of'/tiese systems without having to repeat our work-in each

v‘w r;, special case. This approach }s of great impo ance" 1:n many parts of modern '

&, . mathematics, especially in modgrn higher algebra which is- sometimes ealled - .,
< »abstract ,algebra.. ‘ S » . . ' -
* ) ’0' What is the nature of the ﬁmdamental algebraic operations th&t we have Co .
R met""qiet us takg,the addition of real num“qers "Ye are given real snumbers,

h"/ ‘say a and b , in or&er,( or, if we like, the ordered pair (a b) . The, oper- -

ation of gddition assigns to the ordered bair {a, b) & unique real number

*which we designate a+b. ‘I‘he‘words 'assigns" and "unigue" give ‘the secret

‘:"i o way. The operation of }ddition (of real numbers) 1‘s a function defined for -
each os%ezed‘,pa:.r of real numbers which assigns to each such ordered pair
(a,b) \of reb.l numbers a real number, the sum, a, 'b * It should be dbserved

, that while most of functions which. you have mef assigned real numbers to

. real numbters, the function concept s, an extremely general one and we may

v c’ertainly con31der a 'function f whlch assigns to eath element a of a given )

) \\,..class A a unique elemen’i labelled f(a)) of a given cldss B . In the ‘
example of addition of real numbers, the class A- is the set of ordered pairs

4 ' of' rea® numbers and thé class B 1is the seil of real numbérs i:tsel'f. There is
a point concex;nmg notation that should be made. Instead of writing the real

. N number a.sssciated with the ordered-pair (a,b) in f‘unctionsnotation, say

’ S[(a v}, where § { sthnding for "sum") is the function just described ve
use the usuaL notat,iqn and w—rite a+b.

»
- v .
E-o N - . ) W <,

. . -
- . S Y ,

~

‘2. Interpal Operation. - ) ' ‘ . /

. |
L]
- i

Let us try to abstract what is algebraically essential in the example of
addition of real numbers SuppOSe that A 1is an arbitrary non-empty set of

‘e
.

elements, the nature‘of whi. h need not concern uses Suppose further that there ,/
e, 1s given Y fundtxon vhich .is .defiped; fory the ordered pairs (a,b) ) where T
a e’ and b € A, which assigns to each such oz;dere& pair a member of A. / :

,' Such a- function is called an internal operation :I',n A, (}t is called Qnter-

nal" becausd the components a and b of the np_ut (a,b) are drawn from
}
A and the output assigned by the function i3 ‘also a member of A,._, Hence,

3 ~the ‘operation in, gu_estion does not involve data taken outside of A.) . /

. PR ' - _ ~
- o

"- . ,' ~ . * »
” . . r'l . . .

- % See 6MSG publicstion entitled FUNCTIONS. - -
: 56 publica ,

[mc.-' : S

- Y - 4
R LI .




‘Theré is al‘so a notion of an external operation and, indeed, an e;iampie

is'to .be fou‘nd' in the algebra of vectors when one considers real multiples of .
K a‘given vector so that input is an ordered palr of theé _form {real number, .

. vector) ané output is a ‘vector., Here we go outside the domain of vectors/ to

specify ‘the input - hence "external." ’
~ ‘ .- ) ' .
s+ * <« In this chapter7 hqwelver, we shall conslder édly internal operations and.

.for that reason we s;\al,l enceforth simply say operatlon rathet thap "in- -

-

iy
“Q térnal Operation. As it 1s customary, we shall usually denote &n opere.tion

2

'by a.multiphcation Slgn . an@&he element‘ assigned tfo the ordered pairm

-

. (a,b) by, a-*b when we are conce:‘ned with-a s:.ngfe operation. We shall also
write "ab" for "a -b" when there is no doubt about the meaning. We shall
Ll

,

- have opccasion later to deal with'two operations and then we shé_.ll usually use

+ and + to denote the two operations. . . .

. ©

- o If we are concerned With 8 fﬂzle_ set A, ‘we may specify with *bhe aid of
a multiplication table how ¢ glven operation acts in the same way that we
1isted the sum and product of certain important pairs of natural numbers with
By the; aid of.additlon and multipllcatlon tables in elementary arithmetic. The
procedure is to use ‘a square table marking rows by the elements 'of the set A
. . and columns by the elements of the set A. The row markings are indicated at
the lei‘:t of, the body of the table and the column markings arg indicated above ~
the» body of the table. leen a, b€ A, in the space in the body of the ‘

‘tab_le belonging to the rovw marked "a'" and the ¢olumn marked "b",_we record
5 the element associated with (a,b) by the operation_' ., . s -
‘ Here 3‘5 a ‘simple/ exdmple: ILet A = (0,1}, and let ° denote conventional
m‘ul\tiplication in t‘hz real number system. Then the operation - &y be tabu-
latedJas ,follows.:. . . ' 'q ' oA
B . . b o . '

. o |1 , ‘
Lo o | o] o g '
1

' i
1

Z 1 - ‘ . R , -
Tl Suppose that we oonslder a sgt A consistiing of two distinct elements- B v
! . ~ .

and b and we ask in how many ways can wWe specify an operatioh in A'. T‘nist .
a * amounts ’c.o cons‘tructi:ng in all poss:.bleaw‘axs two by-two square tables in each °
, space of which is recorded an element .of A. Heré are some: . ' . .
’ -8 % g ,b N a b . a b \b 'N‘ a
ala @& al|b ] . . a i a a
. .bjla avy b b, - b s a. -

v There are 16 such operdtions in A

¥ -




; N . \ ~ \ T ‘ Nyt
N - . T i
~ o Eb(ercz.ses 2" o . N N
. . - . - ‘ - \\ \\,
e 1. List the remainlng 12 opepatlons in A ., ') - v
. 4 v
Sz 2.’ Let A = {1, i, -1,,,~1} and ltet R denote conve tional multiplicatm
v /rs‘for complex numbers. Show that . ig #n operation.in A and construc
. 1
- ‘the table for - o . . L, N
\ B L. + . R

- .
N N . . . .
W2

. It is of 1nterest 0 note that if A is a finite set containing n

-

v . ‘ e 2 . M f “
. elements, thep there are nn distinet operations-inm A . (For n=2, we
. !4‘ 2 . \ 9 *
have 2 = 16 dist¥Inct operations in, A ; for n =3, ~we ha\ge 37 & 19,683
d1st1nct operations in A, ) - 7. . o .
L ..

We shall be 1nterested in studymg, the composlte obJect consisting of a
non-empty set A andione or two operations in A Precisely, the term
G "composite object” is to be taken here to mean eltheﬁn ordered pair of the
form (&4, ) where * 1s an operation 4n A or an ordered triple of the .
form (A, +, +) vwhere + and  * are operations ih A . Such a eomposlteﬂ
obJect is called' an _gebr!m structure with on‘§ operation (or two operatlons

respectlvely) An example of a structure w1th one operation”is given by e
* ‘taking A as the set of integers and < as the customary additmn. An- ex-_
am%le of a structure yith two operations is §1ven by taking A as the set of
real numbers and -+ and - respectlvely as the customary addltlon and gmulti-
pllcatlon for the reals. Another gexample, of a structure with two operatlor}s

' is glven by ‘taking A as the set of real numbers, + as the customary multi-
pllcat:,on for the real numbers and * as the customary add1tion for the real

numbers, s° . -
Now it turns.out that the 1nteresting structures are those which are sub-

N ,Ject to various laws, We saw that -the number systems which we studied earlier
<. were structures with two operations which respected such laws as the commuta~ 4
P tive laws, the associative laws, and the distributive ]\aw. If we wished to
' ta.ke into account structures which are, not subJect to any xestrlctions orﬂlaws, :
wé would be faced" with many different kinds of structures hav:mg very few pro-
perties m common. Welcould not hqpe té find interesting results Which would
be vaxid for all structures with,a given set A and w1th a given number of

s

. onerad'ions .

.

. o . N

, . On occasion, instead of referring to the structure . "(A )" or .
i A, F, o) we shall use the less formal "A together with the operation

R 4

" 1

cor "A together with the opera.tlons + *and’

! .respectively,éas well .
8 . . M

‘as "A and the o;peration - etc_._j e * .

o ¢ - W ‘ ! .
PN ) . I4 ' ’ :
= « L IO . . @ ~




»

We shall concentrate on two important «tructures which permeate elemen-

tary algebra -2 the group and the-field OQur interest will center principallyQ

n the notxon of a field which embraces three of thevimportant nunber systems

- v
which;we have.met so far -- the systems of the rationaf numbers, the real num-

bers, anfi the complex numbers. hd

e
¥ . v
Grbup. - o . ' -
rOup. . ) -, '

Suppose that we consider a structure with one oper&tion (A,e ) One

.

example which we cited aboggf where A is the set of 1ntegers'and + 1s the

customary addition, has the follow1ng two propertles ’ .

(1) ' The assocrative law. for addition is satisfied .

a and U, there ex1sts a unique 1nteger x satis-

(2) Given integers

fying a + X =b and there exists a unique integer y satisfying
. y+a=b-. g‘ / . ) ° _.

(he ignore deliberately the Questlon of the equality of " X and y for a

reason which will become clear presently. ) If w
’Wthh have these listed propertles and th1S\§peciaf structure, we

e ask for structures w1thﬂone

operatioﬁ
are led to the very important structures with one operation called groups.
uisesy - ‘The study of-

L) &
. gxoups as such 1s‘€n 1nstance of algebra at at 1ts most abstract. .

i They appear throughout mathematics in many different g

-

‘ Sbecifically \(AV - ¥ is said to be & group provided that the following
“two conditions aresatisfied: °
. N

: .
+ is associative. That is, given elements a, b,

. . ‘ . *

G 1. The operation

¢ in A, ‘we have - .
1]

Wg(\ﬂg . b c)

“»

¢
/

Given elements a, b 1in gach of the equations b

L

"and . . . y -

L
has 8 unigue solution in

- e ¥ X > ‘i
: e observed that we have not required that the operation .
K

- s It is to b
commutative In fact we shall meet examples where - does not satlsfy the Ut

commutative law which assérts that a-b = b.ea for all a, b € A. This is

n defining the notion of operation to. have as oux 1nput

$ why it was isportant- i
The.’ order in which the compopénts are

'hn orgere pair of elements of “A.

ass1gned may very well bé essential It “the operation

PruiiText provided by e [
=




® ) B fo ' ) " -
N - L d R N . ;
comnmtatiye law, the group is called commuta{:ive. Oor, as is more usqalf abelian, .
in honor Of the great Norwegian mathematician N. H. Abel (1802-1829) who di;i‘,

; 4

. Plonger work in the theory of groups. . '

/N
»
'

LY

. . s let us consider some examples of 8roups drawn from our earlier experiencd..
* . M *
In theése exa.mpl‘es the operations are the standard ones &f the number systems

. so that the groups in juestion are necessarily‘abelian. . We shall consider an'sl-
. L]

example of a non-abelian gro'up later (Section 5).

! - e
. . R
Ex le 1. A = gset of integers; the operation - is.the co entional
amp . f integ ; D . conv 2
O ) " 8dfitioh + . The second Posfulate states that the equation -
8+ X =b, vheres a and b are integers, has a unique in-
., I tegral selutaon. ) '
! . ) s
R Ebcamgle 2. A = set of real numbers different vfrom 2ero; * is the con-
et ©  ventional multiplicatioh, . ‘
Example 3. A = set of vettors in 3-space; - is the usual addition of.
. ] veetors. « ’ )
‘ -t " , ‘ % ’ > . ! "‘ . N
. v - - . 4 * /
. Exercises 3 . .

. o ~
[y

1. V'grify ‘that each orf the cited examples satisfies the &roup postulates

Y
<+

‘ G.1. and gG 2. Show that -the following are also examples of groups: ’

L]

- ) Exa.mgle L, a ]:.S the set of nJCh Troots of 1, whére n is‘g positive
. - N

integer, and *{ is the conventional multiplication for com-

. . Plex Rumbers. ' Here it is to be observed that 4 has just

] N n elements, _ . " . .
' ' 'Examgl 5.+ A is the set of positive rational numbers; - is the con-
. . ventional multiplication, .-

2. Irv what way does the following fail ‘to yield an example of a group:

) A = set, of é;l complex numberé‘ and. - 1is the conve/htional‘ muitiplioa_’cioP?
3. Le't \A denote the set <;f r'eal numbers’ of the form a & bY2  where a -

v sand b ‘are\' integers and let. . be‘ t};é c'onventiona'l ac{dition. ‘Ve'rify

< thgt . J ®is an operatidn in\ A End ?‘:hajt the. group pogtulates are satisi

C %L ftea. T 0 . . . ) i
d., Cey < L L .

' b, Let A denpte the set of a1 numbers different from-zero of the ‘form

. . a + b/2 where . a "and b .are rationd] ard let - A€ the conventidnal

-~ mltiplication. ‘\Y'/e}-ii-‘y that - is an Operation in* A, and.that the
: \ T N .

"

) . group postulates ére'satisf;ged.‘ o - - ) o
¥ ) s s e
. - > 1 - - . ' .
.o SRV A .
» ) o Lo
P . X o ' L ,
3 ' . ! .
\ s . N 2, R
"ﬁﬁ}. - 6 4 ? . ¥
* +
b .o ., S . T b
* ‘\) 4y , ¢ (.4

. .
B oo e [ . -4




Tk, Some General Properties of Groups .

Barlier woxk with number systems may have cbnv:.nced you “that an 1mporta”nt .

role was played Ry the ‘notions of a.dditive identity, additive 1nverse, multi-

plicative identitty, multiplica.tive inverse. The counterpa.rts of these notions
~<____&ppear in general group theoyy &as we shall now see. Bear 1n mind.that the

conmmta.tiv'e law need not be i e{fect for an, arbitrary group!.

Identity element. Here »se ask wheihex:”there is an element e in A

N which has the' property that ce=¢ .Ja = a for all elements a € A In

"¢ Y-*eaeh 'of the ctted examples of Sect,ion 3 tﬁere is precisely one element with

L X w B
this property. Thus in Ex ‘p‘ie 1, the %eger O is the ynique elem;nt .
' ha.vmg the sta.ted propez’ty,' in Example 2.,~ "}’12; i Exa.mple 3, it is the ..
* 4.;‘ zero vector (o, 0,0), m,@x ple h it is l 5 in Ebcample 5, it*is 1. “We
‘Y “now turn to the s1tua.tlon for an a.rbitra.ry group a.nd a proof of the following -
© thearem: \ vt .
) Theorem _1_+§. leen the é oup ¢ consisting of the set A and ogeratmon : .
.t o there is & nigue element ‘e of A which sa.tisfles the .
following dl)nditi'on: '
t . ! ‘ N v
- J e A€ = e) 8 = 8 R - )
for all a € A, / ) +
ek N . The element e ‘is-~called the identity element of the group. o .
iy .
Proof of Theorem hg: We fix an element b € A . Tha.t there is a.t most
_ s¢ ONEe glement e having the stated property - follows from the fact that e is .
V74 ; 2. solution-of the equa.tion b.x=Db which ha.s precisely ‘oné solution. .
S . - . :
ST 'Now@ ‘e denotg the solution of , b-x*=1b and let us verify that
- ,‘\ K
: a?g e =48 ﬁ-):\,;%a in A . GCiyen 8% A, let c saiisfy cyb.=a. j
AK: , N : { : -
. ;J‘A;s%{'l’hat is, "¢ ~is the ﬁﬁ‘i?que solution'of +y »B¥ = . Our reason for introduc-
‘lﬁls.—;? .
g}tﬁ'; ing ¢ 1is tha.t, if ve write a- as b , we are in ‘a position to relate the
¥ L
f.:;“‘v t product, a.e (which we should like to show is equal to a).to the product vy
0y ‘e about w“tnch we have fnyformation:’ - Specifita.l‘;.y,‘ /\ - : .
' K g - ) are=f{cb).e . ,: T e ‘3‘;0;{_?
| S - . ;
o ;o= c e (br.e ¢ .
L ¢ r e, - ( ) » *
. sc b - .,
. Lo =a . ‘ sy , .
HES e . . : ’ T
- The proof..of the theorem’will be complete when we show tha.t we also have .
* e+8 =a forall a in A ¥ Given a € A , let d denocte the unique s0lu- /'/
i

- tion of* the equation Y. a'=a..In order to rela.te d and e *;we introduce

.- 4

ERIC ~ - - 15 - .
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&
£ the unique solution,of the {equatlon 8 X = eq (thereby linking the ele-

ments a and e) ‘From d-a =a and a-f=-e, we have ‘

-~

[P .
>

s (A 8N -fr=a.p

S , =e.
]
e

. From the associative law-and ' a . f =e, we have.

° b

- (da-a).r éd-(a. f'g
’ - .
- s d

Taken together “these dqualities yield

N -

-

& s .
\ - ] d-e'=e,

’

Now e satisfies the equation yee=e, (Recall that a - e =a for’
all* ‘f in. A, ,in particular for a = e .~ This yields e.e = e) Slnce e
and 4 both satlsfy the equation y . e‘ and since this equatidn has g
unique solutlon, e's d . Hence on taklng account ‘of the relation d-a=a,

Ve have‘e-a = a. The proof of the theorem is now complete.
n_

Ttie notation "e" will be reserved for the identity elgment.

- B o

Inverse element. Given a € A< let us consider the two equations‘

- .

./\) a.x ="¢ and5y-a=e. . ‘¢ : ¢ ]
i Since we do not héve the - -commuteative, law at’ our dlsposal, 1t is not ob-
v1ous ~that the soclutions x and y og these resp ctive equations are *equal

Let us see whether it is true,'ln splte of the no availability of the commu-

tative law, that ‘X =y . Let us multlply each side of a.x = é on the left”
’ b‘fy Yy . We obtaln ’ g :

prim-iSinde fo »

¢
2 - *
-

: - ,_i,,\ve conclude that X y . The common solution of "a. cX = e and y-a ='e
‘x\"-;
> ¢

- \,
“ -
B R
)

— e
. .

- S P
&alled simply the inverse of a A O - denoted a I : . ‘




v : Exercises 4 ° -

1. Determine the inverse element of an arbjtrary element fQr each of the
groups’ examined in Section 3. Tre'answer is to be stated in terms of the’

special int'erpretation,of a ngoup given by the example. Thus in Example o
. o v N . . .

"

1, the answer is "the inverse of a is -a.”: . .
3
.o 4 . . .
2. Show that a t.b is the solution of a+x = b, and that bva ™ is.

. ' solution of yea=b. ) : , ' VAR el
3. Which of the multiplication tables considered in Section 2 satig?t‘ydthe ‘
s group requirements? In case of failtire, ~state the reason. In

+ where 8 group is specified, exhibit the' identity element and
- - \

of each element. -
R 4,” Let A denote a non-empty set, and - an operation in Y, Show that
a for all - K -

, .

;

there is at most one element e € A* such that a-e

<

Py " a€A.

‘5. Let A denote a non- empty set and an operation i AL ‘Su’ppose’.

- .‘ that 1+ satisfies the associafiveolaw. &ippose tha there exists an /' .
element .e € A such that a-e =e-a za forall ‘ach. (The ele- :

~ ment e is unique by Exercise L.) Suppose that. for eaoh q € A, there
e and that .there ex1sts :,57 € {}

exists x € A such that a x = such/

r

that y-.a = e’ ‘Ihqw that A together with +« is a group. ‘Hinﬁ' /
Y YN Withe x“‘satisfying a X = €. and hA satisfya.ng y-a f e 2 show t/hat‘
a-z =b is satisfied by’ x+b , anq, by&ﬁhult’iplying each ‘side hy vy
that the‘only possible solution is y+«b. Hence conclude that there is
precisely one solution. Treat the remainir& case simil'arly. o

[ 6.. eConsta'uct multiplication tables- fog operationséln a set A of §hree ¢le- . .
s
. »-  ments so that the group postulates G 1 and”G 2 are satisfied. Hint: '
e We may g.ssume that one of; the elements is e , the i‘dentity, ard we may
call one of the rema1n1ng} .elementy a and the other b . The construc- -
P tion of a multiplication table &an be carried out in only cne "way when )
P TR
decount ts taken of the nature of the 1dertt1{y element and the group e
P Qstulates. Pl ,” n ) . . . Ty
Te 7 o L
. P S . ’ - N 5
.\ . . * oot ' - .‘%": -
,© D:  An Example " of a Non .Jﬁ/elian roug. . ‘ - v )
v .4 S~ , ‘ 4
’ It is not hard to give an example of a group which 1s not abelian by 1
means of a specifically constructed multipllcation table. ’Howe}er, there is
i gree:ter interest 1n constructing an exe.mple which is meanmgful in terms of. !
our earlier experience and whjch at the same time is impbrtant i terms of our -
“future study of mhthematics. Thé elements vhich we consider are’ ‘the non- o
. . N N - ‘, ' b
) , 9 . . [T f . -
. - ¢ ‘ ¢ ] (‘) f T N
-~ - ‘ 4 . *
~ LN ‘ - h _v ~ " ' - . i N
\ e . “ 3 H Ky
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function, for the coefficient of x in the l&st line of Formula 5b is not
- ' zexo. The rule Wthh assigng to the ordered pair (m,£) of non-constant
- linear functions the composition function m +£ 1is an opérgtion in A . By
.. analogy with what we did wltb sum and product we denote the operation of
composition bg , Lét us pause to conslder a numer;tffal exemple beforé ’we
- : continue our study of the str.ucture i shave Just introduced. .
' ’ Coet - "w. e *
g Thus, suppose - 4w i . o
PN - i
‘ z(x) ex + 1 and m(x) =-2x + 3 = .
- Ve have for Lem - @ * -
s T L e R ,
iy . ' m(x Jan +'=2(-2x+3);‘1=-bxer;(. . .
& : H
L. - ’
3 ’ v \
L , : .

S

. ' B
constant linear.functions; that is, the functions £ defined for all real

[§

numbers by the formulas of the form ' .

.
.

58' o ' * 1(X)=C(X+B,

.

®here \ a and f are redl numbers and 0.7’= O . Our set A 1is taken to be

the set whose elements are the Jfunctions z

- 1
It shoyld be observed that & given linear function is defined by pre-
cisely one foimula of the form 5a . That is, if

% | - Y ox + B = yx + 8 a#(;'and'x;éo

i \
. ¢

for all r.eal x , then o= v ©and B =6 . This is seen by first setting
oz ‘0 and ’“iﬁ’erriﬂg,.that\& & and then that o =y . ‘

[

RN

Compositicn. Suppose that we are given non- -constant 11near functions\
and m vwhere £(x) =ox +8 and m(x) =yx + 6 . It is often of 1ntez§‘st

"

construct a function from the given functions £ and m in the following

v,
‘,‘"N

-,
N,

<

to

mamer. Starting with input x our first function £ yields ocutput £(x) =&

Suppose that we now use {(x) as input with the function m . The output is,

m{ £( x)) We see that for each real x the quantity m(£(s)) is unambi-

tq.each réal x there is assiénea rn(z(x)) . This function is called the

.composition.ofsm &nd A It is denoted by m- £*.. Let us determine

m(£(%)) explicitly.~ We have - '
S . ’ .

5t «on(e(x) = y(e(x)) + 6
‘ < Yox + B) + 5, .
QYx By +.5)

‘guously épec:.ﬁed Thus we have a functlon determined by the requirement that

This computation shows that the fun¢tion m+£ is a non-constant lineai'_l;}'

-

A)
%

ER

e
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I

b~ e

g

» . » l
3 . . . “ . <
3 + - L o . - N - a

"We have for m - l - ’ !

# n‘(

- n(£(x)) = -24(x). + 3 =

-

x+?. +3"-1+>:j_+l.

f

- »

R

. This example shows that w1th the Specz.flc chodices made for £ and m ,

we, have - -7
: £ e m ;4 me- g . ‘ . . .
. ~N " . P -
We recadl that two functions which~have the same input sets (1 e., domaln) are
different if they asslgn diffe,rent outputs for some mémber “of thelr common in-

put set. In our exa.mple £.m &nd m- £ assrgn dﬁ‘ferent outputs E‘ éach

. o

¥
real x . Hence they are distinct- f‘unctIOns. . . . e

3

¢
-

- This example shows us that the cqmmutatlve law does no’t ‘hold f'or the. op-~

s ETAbIODROF xcomposz.tlon of (non- cons’c?'ant.)sllnear functions. “« "

<

A}

°

te o, o~ g2 N T il
/

How do wWe show that the structure ¢bnsisting of the non -constant linear
:f‘unct:.ons‘ together with the dperatlo}l of composltlon is a group" 'We simply
verlfy that G 1 and G 2 are :f‘ulfllled w1th the operation of cempositlon. v

.

TGL. 'Suppose that ' ;myand n are three given (non-constant) ’

linear functions. leen & as 1nput £+ (m~n) assigns as output the 3 e

output for input 1 - n(x) s 1 ;e., %he oujut for input m(ntx)) . ‘leen ®,

as input, (£+m) - n ass1gns as output the £ - m output for input n(x)

%¢ ’
. . % . . .
X that is, . ’ B0 A -

- -

oo

2
~

R o geemlnx) . ke o e
° o ' - = i

. . t
But £ .m(g(,x)) is' the' £ output for input m(h(x)) é HenCef I‘cz; each rea];
x as fnput," £ : (d+n) and (¢ . m)+n assign the shme oui‘,put. Hence .the

‘fur'lctiQns £, (m n) and (¢ “m). 10 are equal. The_,assoc1at1v¢] ld%" 8 1. is-

verlfied for cdnposltlon. y ] - S /\ R

G 2 . Given two members of A ,f and m, ﬁle"/ask: Is there a member

‘n sati‘sfying - B / P . '

s . . .
O N TR .

“is there just One such member'? Let us try to épproach the Iquestion in an éx— i
"ploratory way. Let . S > ’ T .
E e i ‘e .,

4(x) = ax + B,;‘m(x)='}’x+6. - .

* Suppose«that’ Py _.'(

-

i

i . n()'=7\x+u

)

e .

v «’ y/ -n(x)4_= anx + (? +<3u) . . ) J

a .

. o
& gatisfies5c. . From 5b we have - . JO e e e
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. A S . ! //,’
. . . o~ N ‘
(Hence if £°n=m , we h/aye, using the/f;acﬁ that a \linea\n f_\mction may be
¢+ represented by only one formula of the form S5a , *
. . T ah=y, Bral=5.
- Hence . 7 . .
d : =¥, - 8-8) ' /
5 . X o’ M )
P «We conglude that, there is at most one such mgmber n\. OUn the other

hand, if we take A and W" as given by 5d the function n defined by

: -
3 s . ‘ s

2 - n(x) = M + U

* N L4
doeg satisfy Sc. Hence, Sc has a unique solution.
. \1 The treatment ot the other equatlon, n- /z =m, whére £ and.m are ’

.given membvers of A, is simjlar. “Trus we see that the .set ofxnon constant

linear functions together w1th ﬁqe cperetion of comp051t10n 1s a non-abelian

. N v

group. . - . -
R . T . , T \ ¢
. . \ . Exercises 5. A O
w‘i}\- - - . . -1
‘.,‘ 1. Furnish the details concerning the equ.ation n.f£=mnm ,,where £ and m

\

e N gl are given 'm,erribers of A . ’ ‘ '

V! 2. Detérmine the..ldentlty element of the group which. we have studled in this

“gl . “ o . ,"‘

4 section, . . wﬁ
g 3. Determine t?e inverse of £ if A(x) =ax+B8,af 0. > - \
:.‘ * k., Show by .direct! computatien tha‘t ‘a= 2—1 » m satisfies £+ n =m ang,

LIRS ' 4 . .

'

. that!n=m. ¢ satisfies n-d=m vhere A(x)=ax+p amd
- m(x) =yx+86 ,af0,v£0. T "5%{
5. Show that £ . m, m -4 for the functions of Exercise h 1f and only 1f
(a-1)8=(¥.-1)8.
A . 6. Let A denote the set of orderéd pairs of real numbers with non-zero
. . f:?t}components. Given (a,b) , (c d) in )\ let (a b) (e, a) bve
X fined as (ac, ad + b) { Show that '(A » -) is a groupy What is the

there any re‘latiBnA Letween.this group and ?e group of non-constant

linear functions treated in this section? \
4 L. . : , .

; — -7 T L
e . W .
- “ ) - N K4

B T | . ’ . ’ o
N . . ¢ 2 7 R
| ¢ . . . v -

.« » - Ve 5 . . ¢ . - )

identity element? What is.the inverse of the element (a,b) of A ? Ts'

Hint: Use No. 5 of Exercises .

o




. . - . .
- " ¥ - ~ . . 5 = )
7. Suppose t'hat A is ‘the set of ordered pairs of rational numbers® with

< non-zero. ffrst components and that + is deflned as in Exercise 6 .

Show that (A, ) is a group. Show that a correspondmg result holds

-

,Ehen A is the set of ordered palrs of complex numbers with non-zero

first oomponents and again + 1is defined as in Exercise 6. VAR
L
/ N ~ ¢ N -
-~ 3 - - B
' L v . b
6. TField. " - . R

. < . -
>

' + - .
We now turn to the consideratiof of an algebrad./cv?m'c"ture which is pre-

- sent in very man;y areas of mathematifcelsstudy. We refér to the notion of a

field.. Once the definition of a fidld is st‘at_ed, it will be clear that each .
of the following number systems is a field:

.

: (&) The rationgl numbers w1th‘ the usual-addition and multiplication.

(b) The real numbers w1th the usual addition and multiplication. -

(¢) The complex “numbérs with the usugl addition and multlpllcatlon.

- Let A denote a set containing<mere than one memper.’ Let + and - de- :

" note two operati-ons in A . Then (4, o ) is called a field provided that

Y

the following postulates are satisfied: ) .
. -
F 1. The structure (A, +) is an abelian group. (The identity element

+
*

‘ of this group is called “zero", and is denoted by ™O0" in-waccor- °, - -z
N dance with the usage employed for the number systems whlch we have
- studled earlier; the 1nverse of the element .a 1s &enoted by -a‘, %
. “ andthe solution of a+x=b by'b:a)~ o ’ .
S Fa Let B denote the set obtained from, A Dby the removal of the - B
- , element 0 . It is required .
. ’ " . »o
(1), that - be ap opersition in B -- i.e., if b) ;. b, €B,
V.l A AL : . e
.then by * b, e% “Tand a8 , -
. . S RS s .
. (2) that_the-structure (B, :) be ¢ an abelian group. (The -

" "

B identity ‘element of ,‘thls< grofip is called one and is denoted
- ‘ by "i"s. Jihen we spehk.of + as®n operation in B , we
e e
L actually refer, not to:the full operation *« in A, but’
e i *

b . —wTE KON .
” ratherm‘oo tge‘ functlon obtaxned from - by restricting atten- '

o '”\,: +w. tion to inp:its- of the form ( 17P ) vwheré Db, and 5'2 iare.
L members -of - B, L. .- : :
. F 3."The o distributinfe@gws ) ;:—-)-:ﬁ e s« "o ‘
. _: N -V“‘w“"“"‘m}:‘_{&m s gt ¥ ;: : b
. (Rt &) marb vavc , . Freden
“ R —_— o 1
. (b+<;5)'a=‘,b..-.a+c-a, R -

hold 2 , b, and c being arbitrary, elemenfs of A:- ®

- »

ERIC: - B -
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“

;:\.';' .:'-',j.j: i ‘ : 'v,. - . *° . * . )
e, L ot - - R " i v
3 ', v . < b. N
NN \ ' A AN > I -
AN .. Some remarks aré in order. M . !
N . ° re ° . «. - - “ . ..
%_-':.’\g\;: e oae Given 8 field (A, +, ')‘, 1t is sometime& éonvement in order to avoid
. Loe O
) unnecessarily clumsy modes of expre%ion to use the[ph.'rase "the fleld ‘A" and
to mean ei;ther S : - ’ .
¢ o ‘ Lot . ‘ ¢ , . )
Y . ™
° (l) the set A , or’ ¢ / N Yo
B (2) “the rleld in the strict sense! (A, +, « ). ) . / .

Which meaning is 1ntended w111 te clear .from context. When we speak of the

elements of tl're field we mean of. course the elements of A . -

s

-

ry

&ﬁ“}"“"’"”*"""“ﬁ@**shw}ﬁ.\xaﬂ.so agr%e .to write, fs.is. usual "ab" for. ."a . b*

Of course, it. ;s possz.ble to state the requireq postulates in alternative

form and in deteil. The group coneept howewer, permits us to separate off in

individual compartments a descript.lon of the,action of eacp of the given opera-

tions + and °* . It is now.clear tha:t if the two operations are to be in-

terrelated in a serlous sort of way, some condition pertainmg to both + and

must be in efﬂect.

In the postulates wh1ch we have listed, it .is

which links

+ and

F3

+ . In particular,-it is nz%tural to tutrh to °F 3 to"see

how © acts in multiplication.’

N We have - Y- :
FOON
. ‘ Ca . B .
end hence if a is an arbitrary elément of
~ ‘ .
, a(0 + 0) =
and . ' . .
’ (0 + 0)a =
n '-. ‘:‘
Applying the distributive laws, we obtain
Re b aé +aQ = .
afil o . - -
%, ’ e + Oa =
&
relations which state that ‘a0 =nd Oa are each the zero of A ;- i.e., “
. .
a0 = 0a, =0, t a €A, , .
7 Fostulate F 2 pertains only to B . Are the commutative and agsocia-. .

. tive laws iy effect for, + in A ? The 6nly case that need concern us 1is
when one of the glven elements is zero, but then we see that_ the t'wo laws are

A ' ~

Ty Nin g;ff)‘ec‘t,i~ for each side is zero if one of the given elemé/ts is.

:

-

-

. e
o " A

-

. ¥ ‘
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. amd whose proots depended only on the strugtural 1aws which hold for an ar‘Qi-
| /

' . s ’" 4

.
ay - "
. <

- . N )
Since 1+0=0 and l+a=2a, ;4 0 , we see that "1 1is an] identity / -

a
element for , in A, _The eleément 1 is the only element in A with thls
o

[}

property. If & ¢ A satisfies a-e =a for all a € A, we have

: “ 4
, ..
N . . le-e=1 : .2 ¥
- N ! W
and . ! ! ;,;_v.
- T “lee = es, N !
‘ < Wy N
Hences ‘ Y \f*, L.
» - l=e. - o ﬁf’ .
. . . %g.:‘
Consider eguation & X = l:).\~ If a=0 and b £ 0, then &’there s no !
R vM
)solution. If a=0 and b =0, then every elemént of- A 15; solutiog
Suppose that a ;4 0. Here ‘we se¢e, using the same argument that we used, m -
the study of a group, that'if a ;4 o, the equation has the lurd.ﬁue solution
a_l N b Again, following out earlier practice ﬁor number systems, we shall
dénote the solution of afx=b,af0, by %‘. . o B
We now see that',the identities and theorems which were obtained fQf the | e

rational number system; the _real number system, or/the complex number sys’ce‘m,

::’x. ’ trary fleld, continue to hpld .for an arbitrary figld. Thus, if ‘a,b,c,d I -
.4 are members of an "arbitrafy field and b ;4 Q az}d ato, then - ‘ cL ;
. - * ‘ Al .
< a ¢, _ad+ be : -
e = b ==y = . ~ .
*Y j6a * . o, b d . bdl: S
- o . ‘\‘ ,,"\, -
? "9 § ‘ . :‘ \ Exercises 6 - r . o
‘x . ! ;
o ‘l. .Verify ‘that Equation 6a holds for an arbn'rary field. 5
| B , Given that a, b, c,d are elements of a field ghd that b # 0,c £0, .
i ; .
| " / t " §_). * B (E) .
] } .
o : o _a o’ _ad - -
. & #0b. show that —— == and that o) T -
. ‘ < s, - a > ¢ .
N |
e ir 3. &Show that if a,b,c sd,e, f are arbitrdry elexfnents 6f a field and
: *"ges - bd £40 , then “the system of equations = ‘ - : ., /
: LA . R P
A ~ {axi-f- by = ¢
é- ’ ! . dx + ey F f ’ ' "‘.'Y " ‘. . .
. . , . | s :
e has & uni‘que solution (x,yj whose components are elements of the field"
.yt Give‘*explicit formulas "for the solution. / . . i !
{'s‘ ‘ ‘ ‘a, * T, ' , ¢ -
M’ } ' ¢ . ‘ i " - ’ B - L —
;‘ U : o ‘ NP ¢ . . v .
S oo 8 § - ki "-‘i"’;}‘f"b S15 \ . . -
??]:MC n A . PR i Ce . .
i . o - R T ’ )
3 » v “___-,.,,,B'@'r ) .. 6 s es - .
T S 5 . J.N' .. L, 4 .




L. 'Let A consist qf the. numbers .0, i, 2. Let.an operation + be
" defined in A by the requirement that if a,b € A, ¢hen a + b"ds‘to
be the remainderbobtained when the number a + B (+ being ‘the conyen—'
tional :addition) is divided by 3 Thus 1f a=2 and b =2, then
‘a4 b is the remainder obtaingd when 4 = 2 + 2 is divided by 3;
- i.ef, 1., Sinilarly, ¥et an operation +* be defined in AR by the re-'
. quirement that, if . a,b € A s, then a- b is to be the remainder when :
° the number ab (reference being made td conventional multiplication) is
‘divided by 3 . Display the tables for + and * . Verify that the

structure’ (A +500) is a field. Thls eXera;se yields an eﬁample of ‘a
PE Ly .

field wHich has prec1sely 3. elements.

let A consist of two distinct elements a,b . Let % and * be the
operdations in A given by the following tables.
RN

. ~

[}

. ' b

: Show that the structure (A, +4 ) ln a field Specify the add1t1Ve
1dent1ty and the multiplicative 1dent1ty of this field. '

-
3

Subfield. .
N . S - LS4
Given a field whbse eleménts constitute a set A-. It is natural to
N N r 1
consider subsets B of A which taken together with + and *+ make up a

field; that is, subsets’ B which have .the following two properties£

(1) When + ‘and -  are restricted to q?dered pairs (bl’bé) s whose

X

components are in B, thex d@fine operations in B. '
(2) B together with + and' + so restricted Is.a field.

M 7

Such a subset B of A s called a subfield of A . Of course, one can also
sublield

8.

call such a B taken’ together w1th its two operations a subfield of
field. The meaning which is 1ntended w1ll be clear from.context.

With this notion we can proceed to find out something about the architec-
ture of the complex number system. ‘Let Q denote the set ‘of rational num-
bers; lgj R denote the set of real numbers, and let C denote the set of
compqu numbers. We know that Q is a subset of R. and that R is a %ubset
of QS';' in the notation of the theory of sets, ’

: « acrce .
| )




17 - -t

R
) L
\ . i -
We may ask,'whether there are any intermediaté subfields between R and ‘C or
. between Q and R ’ and whether there is any stivfield of the complex number
B system which 1s a «prope‘r nart of Q. ] e
' - Suppose that A 1is a subfield of the complex number system’yhicr‘x' con-

Suppose that A cortains an element not already inyR . Then

an eldment mist be of the form a + bi where _a and L. are r:eal and
#0 . Since ac€4h, (a + bi) - a=b1€ A Since. b€ A, i€ A. Hence
given arbitrery real nunbe¥s ¢ and d ye have dlé A and therefore

% #c+di €A . That is, CCA. Ve need to recall that if ‘A C C and cCa,

"= " then A=C. }Ience A =C . VWe are led to the follow:.ng conclusion:
Dol . SR e o
Theorem 7a. If A is a subfield of the copex number system contain- -
‘ ing R, then either A=R or, A=C.,

This theorem stateg that there is no subfigld of the complex number sys-

4
tem which-contains R as a proper subset and at the same time is a proper
LY - . - 0

N .

subset of C . N
. , , 5.
- .A‘selcond result, that is easy Yo obtaind is the followipg: . L.

. * ) » . H

”
e >

Theorem (_o.‘ + Bvery subfield Eﬁ the complex number system contains’ Q',

» g . )
T Proof'. et A° denote a subfield qf the complex number sysfem.- ¥We note

- that if a afid *&“fbelong to A and B A0, then SeA. Now le Ay It
Y . S . . .

1s a conseoueneé 8f the additive eclosure of A and the well- orderlng property
of the naturaL number system that every -natural number is a- member of A.%
" Su%ose that there are One 'or mere natural numbers not in A and let. m be
the mlnlmal member of the set of r\aturd’.L numbers not in A (the well-ordeTing

3. -
s;i. property assures us there is such a minimal member) Then m-1 is a mem-
. N i

ber of A , but our hypothesis tells us m. is not. Slnce m= (m -vl.} 1
and m -1 an’d 1> are in A, it.follows from the addltlve closure of A

- 'that m 1tself ig'in A .? This contradiction proves that the set of natural
numbers not_in ‘A is empty. \"t now follo»?s that every 1nteger is a member
of ‘A , since for eacn natural number n , -n. is a member of A Slnce A
contains the q_uotients‘of its mem'bers, it follows that A_ gontains every ciuo-,,
tient of the form % where D 1and ,q are integers and q f 0. fl‘t}‘lis says

e

>
that every ratlonal number is a fxfember of A . In other woyds, QCA . The
3 - theorem iy establi€hed. - ' _ . .

L3 —~

\

* See G. B;i.rkhoff ands3. MacLane, A Survey of Modern Algebra; N.Y., R
~o ‘ .
MacMillan, '}-9&6; p.l;
:‘ p . ~ ) . ‘ - 17 2 :3 \ ' '
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* Subfields infermediate to Q and R . rI'h‘ere is a vast }\i\erarc}_ly of sub-
fields Jetween Q and R . Their study is a large undertakiné\ We shall
content ourselves to see that certain intermediate fields can .be exhiblted :i.nj
-& simple way.

” v - »

et A denote the set of reel numbers of the form:

9
a+b/_ ]

» .

where a and b are both ratlonal numbers. What can be Said aLbout.the \sum
and produc of elements of A ? Given that a, b ;¢ ,d are rational numb 'Sy
N > : [ Y

we see that !

s ;o

—- e s < (a +‘b‘)‘§) +.,(\°,+ dv@)? (an+c){+ (b;d)’@’

- , . K ) . \ Il o
¢ N .

* and since a + ¢ and b+ 4 are rational numbers, we have
{a+bv2) + (c +a/2) € A. hd

Similarly, ' :
. , . 5
(a + ©/2) - (cr+ d/_) (acs+ 2bd) + ad + be)2

’

. and since ac + 2bd and ad + bc are rational numbers, we have

to0 (e bY2)(c + av2),e A . '

T
Suppose that a+ b/_ 0 wheére' a and "b are rational numbers. Then -
b=0, otherwise /2 would be a rational number. It follows that also
,?a-; O}. Thereﬂore, & member - a + b/2 of A (a gd b rational numbers) is

-

equal to zero if and only if a =0 and b = 0 . Thls 1mp11es that if

a + b/—f 07, {:hen a® - .2b # 0 . Otherwise we should have '

' s O=a2-2b?—(a+b/_)a-t-b)1/_)

\]

. 4
so that either a + b/_ 0 or a + ‘(-b)[ . ¥rom a + (-b)fé = 0, 'we
/h‘ave_ a=0 and -b = 0 and consequently a + b/_ . That is,' if

e e ’

;ae -‘2'b =0 ‘then & + W§‘ o} ‘J
° A ,Jr‘-;?"“‘“

-~ We mow,have by.a familiar rationalization methq;d, .

v a+b/2._ (8% b/2)(c - a/2)
¢+ af3. ‘g' + d/_)(c - d,/_) .

7( ac - 2bd) (.bc - ad)/—

L 568 ;‘ 2. 2

Ay -

This tells us that the quotien't of “two members‘of A is also a member of _

™ Yy

>




°Q‘) ‘ . ‘ﬂ \\
s - . , vo
- It is now easy to vei"iﬁ/. that A ‘is a subfield of the real number sys-
tem.' We leave the details as an exercise. . < . "~
14 h v
y ) l‘ . . A\]
2 - Lot Exereises 7
1 ’ M . . .
1. Show that A 1is a subfield of the real number system.
2. ILet B denote the set of real numbers of the fOrm a + b/— where a
© " . and b are rational numbers. Show that B is a subfield of the real
e xon i ,number-gcsystemn el - " . Pt
¥ 3. Show that the only- real ntmbers belchging to bbth A and B are rational
\ «  numbers. In particular, ¥3 does not belong to A ., Hence, A 1is inter- s,
. * -~ - .
- mediate in the strict sense to Q and R . That is, @ 1is a proper
RN R N
. part of A, and A 1is a proper part of R. . : *
‘ References: Y 4 . .
[ .
1. Birkhoff, Garrett and Saunders: Maclane, ﬁ Survey of Modern Algebra
T4
(rev. ed.), Micmillan Company - <
/ 2. Books cited in the blbllography of Reference 1 above.
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P . - * ANSWERS TO PROBLEMS
> N <] i
o Exerfise 2. ¥ . . , ~
. == . . N 5
’ 1. a® b a B° ari b a b
a f e a a a : b a a,
~ » . P —
) . b 2 .. b b a, a a, . b B e
¥ ? v ’%'f'-. ! " ’ - - ° R
& b a b «]'a b° - a .b
' ala o a|l b b * a’ albv o,
s S R
’ s b oa v,y v a Ca, . a, b a b ,bv -
7 N -®
h - a ‘b, a b { a b o . *a -P
. a  a|b b a |l v . bv°
R ) , ;
e bbb, b b b, b-la b, + “b | bea.
. ' . ) .-
/'2. That - . 1s an operation in A follows from the;act that the product
o " *_\ . in the conventlonal sense of member., a and b ‘of A itself a
‘. e member of A The- multlpl.lcatlon takle 1s *
7 ° a » ! . M - N -
S . . 1 i I -i AN 3
év ® P S TR s
" d ' * Y 1 i -1 - A .
S ) .1 RS S R .
. o “ S .
: ~1 =1 -1 1 i .
'“4 . i . - ] ' -I - [
; : S S 1 i -1 .
:-’ ’ . ‘ ’ i e .
N *J.( . . . .
" i . . . -
. * Exercises 3. . T : &
Y - == . . . ) .
e ) ! 5 4 -~ . N
;‘ﬁw 1. “Here only Example L calls for comtent. Suppose that @ and B are nth
.. d . ~ -
. roots of .1 . From FL =1 and B" =1, we have (@B)" =1 and .
a)n e That, is, 78 and % "are each nth yoots of 1 . From the

' fact that: czBN“is an nth rocLof l w.e’see that + is an operation in

. <~
TAL Fren the fact % is an nth rodt. of 1e, we see that Postulate G 2

e S
is :fulfilled the uniqueness of solu’c:i.gn16 of the equatmn Bz =a in A
being guaranteed by the uniqueness of the solut’ion of Bz =a in C.

The associatlve law follows automatically from th‘t?ac.t .;that multi;plica-
tion in' ﬁhe complex number system is assoc1a’cive Note sthat- -« - i%:cfo

tati,vq.

- sefgta A, as%es BZ"‘CL..' - .5 LIt
o - . . .

-

uk.« Jedar W

Consequentlyx the equation zB = 0 has exactly the game sol?ﬂ:ion




N . N /i; . .
Not évery equation of the\' orm jﬁz =B where a and 5 are given cotn-
s . . Y ¢
plex numbers has a sblutioh; e.gf., take @ =0 B = i7 *
. « - PN
Given a,b,c,d integet ,‘ we have N B -
‘x“ - (a+b/—)+(c//+d»/_)-(a+c)+(b+d)/—€A . £
\2‘:1nce\£a +c an% b + d,’oare integers. Also the equatlon T
(‘a+‘bf)+ =a‘c+d»/_< o | - ..
R Ny : : : :
" has ‘the’ unique solutibn - /}' . ’ . S
!:‘ - ‘:’ ¥ A e g T ’ - ; ? ’ . ) T ':"
ﬁ ) . e . (c - a).q~_»,(d - b)/2 : 5 v
[ N . . 3 B .7 [
tw B . >
‘o in R., and moreover this solut{on is a member E§’£1A since ¢ - a _and S
. . — —‘ \ .
] 4 - b are bpth integers. The remaining details)aée rea.dlly I‘urnished. ,
- L, §ee Section 7 of this booklet, "Subfields intermediate to Q and R." -
_.-»5,;, . . ’ B c. '
12 . .Z’ . . N -
. - / . -
_ « Exefcises &. 7, N . - .
; . < ; - . e P : - .
. . 1. “Example 2:- thé inverse of a 15 % . ’ e LT e
oA , o ; = T .
Example 3: the inverse of (a,/b',j c) is (-a, -b, -¢¥* .
Coe Exagple 4: the inverse of o = ,cos(%t-}s) +1 sin(,ét—}-c) y k=0,1,
o BN ¢ . o~ e T
i * : ' ’ Loy '
o . © +e.,mn -1, is .:L(—cos(-—-)-i i( ) ‘ '
) Example 5: the inverse of a i/s %‘ - ToeNE S , :
s" r. , \\ » b . . . . - )
; Exercise 3: the inverse of a +}>/— is (-a) + ( b)/— ' " T
. Exercise 4:“the inverse of a +/b/- is.. - e g
. 4 T - o
?‘ . . P JupE peys -
. ot - M 1"){“‘
"* N . P .
o . .
¥
. R -
! - 1 4 H
™ E
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.o, :
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The table for (Q,l] does not satlsfy the‘group requirements. The gqua—
tion 0~- x =1 does not have a solution in 0 l} e The fi"rst three

e e TR
) tables given 'for (a,b} .do not satisfy the roup requirements, for in,
the cases of the first and third tables the%ué.’tion g _x=Db has no

—_—

solution in A and in the case of the second fable the egua.tion

b . x = a. has no solution in A™. . . s ,

.

—— ~
2

The fourtk table for [(a,b} does satisfy ‘the'group requirements. That
¢ 2 id satisfied may be seen by noting that each new—row,aud each.
column of the body of the table contaln each of the elements a a.nd ‘b

_ {without repetitlon) . " L T -

t
- Notlce that we cannot be ca.va.ller about" the associatlve law! We must .

exa;nine the 8 cases afforded by the dlstinct, ordered triples with com-

ponents in A . The confirmation of the assoclative law® 1s given by the '

following table. a .
: . o~ ‘ . !
B S P . R

&y cp & ¢y (c2'c3)

S

J ) a - (as) = a | “(sa) +a:
.a - (ab) S = (aa) + b =
a(ba.) . ) (ab)la =
" a{bb) (ab)b
. blaa) (va)a
b(ab) "~ (va)b
:o(ba.) (vb)a ,
b(bdb) (vo)b = ¥

o o P P T T O P

,a'
b
a
b
a
b
a
b

Each of the indicated reductions in the secon®& andﬁhird columns of the
~body of the table is” carried out by use of the multiplication. table with

. . P .
which we are concerned. .

3 - -~

“We havé: b-1 =b

The tablée ~

Nkt .
yields a'.n example of a non-assoclative opera.tion. In facty

(aa)b bb=a. and a(ab) = ab =b , so that (aa)b # a(ab), = being
. distinct from 1\ ) . .
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FLATRLT - 0 Fo ATy L
LT s -
s i e _ " / . . . T
—_y— : -z 3 Do 7 N N . o -
W Suppose that e and £ are eleménts of A satisfying for each a €A,
.
ST - —: - . . o e v . T
yof s .- ) ae = ea =& , . - e o
- . r P
S e ~ af =fa=a . ) . PP
'Y ~~-— Then setting a = f in the first 1liné, we obtain . . |
N o N * . ‘ R ;
. ¢ . . fe=7¢7, . LT |
* R - ’ - 3 - : > ————owe T X
. v ¥ ’ .
C and setting a =¢ in the second line, we obiain- . L.
. s ) e ' - ~ ———pt e
;’,‘} 39 o = * ' .: fe =e€. ) ‘ ’ -
e - © T - -
4 “ M : [ a 7 —— et
Hence ' \
- oL e v . «
- e=1*f, ¢

-

* It follows that there is at most one element e € A satisfying for all

—— a €A : @serFea=a, T ‘ ' . !

5. Wé have ' ‘
* N ‘ - . 4

) l a(xb) = (ax)b ;éb =b,

N .

g R -

- so that xb 1_'_ gsolut\ion of az =b ., Thus az = b has at least one
' solution. If z is any solution of &z =,b , we have -

~

yb = ¥(az) = (va)z = ez = z , .

" so the only possibility for 2z is the element .yb § Thus az = b has

L4 . £
' at most one solution in A, . Hence the equation 28z =b has a unique

solution in A . . ‘

. X T <.
The equation® wg = b 1is similarly treated. . .
Corollary. x =y . ‘
. C. T 7
We found . (i) xb satisfies az = b , (ii) no member of A besides '
yb satisfies &z =b . It follows that xb.= yb. But b 1is arbitrary. .

Teking b = e , we obtain x =y . (Thus a "right" inverse is also a, .
h
"left" inverse -- even if our operation is non-commutative, provided
- eash of them exists. We neither knew nor needed this fact in solving

Exercise 4, No. 4, however.) - , . : >

" Since e is the identity element, the following pgxz%,of“ the t;apie_iﬁ
gvident: ' ) i

3 . . - .
eya" b R .
4
e e._ a b . . .
4 g :
\ - ’ h ¢
. - b b N . 4
t b 4 i. N ’ ’
A ’ ., e
23 . Eif&- ' "&i:: .’ !
* - Tk
\ * E e
. ¢ , 2 9 - , 2 L d
’ ¢ .« - . .
* . v - k3
- - + *
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PR . : i A=Y
* ) N - -

% _Consider thesproduct aa . It is not possible that ad = a , for . .

& ae =a and the equation ax = a’_has a unique solution’
. \

v

o, #
[y
. .

Tt is not possible that ea = e , for if aa = e , then

¢

Mg Fl

~ ™ . v - ~>

. .. ab =b .

N b -
. [ R

since the equation ax = b has a solution in A and this solution would

.
.

have to be distinct from e and a . Since
I ‘

< eb =b , e

and the equation yb =Db .ﬁas a unique solution, we should be forced to

concjude that a = e . This is impossible. We must reject aa ="e .
v . M : “
Hence necessarily aa=b . . . v

/ - -
At this stage we are assured that our table contains the following

Ientries: .
v‘ . S
.- . e a b - .
o . . N
v ‘e e _a b o
.
- . . . a
” A -b -b v
: M [ 2 e

R . . * . »

- " . -1 o .

Since the element a has an inverse of a and neither e nor a is

tﬁe inverse of a {(as we see from the second line of "the table as far -

.

. as it has been constxucted), 2™t = p Hence ab =ba = e . We'haQe at
o this stage - ) ' ’
i;':‘ [
- : . 5] a b
M /@Z\I . = r/ ’ ]
M . ﬁfw . -
. . - e e a 'b
~ ' - ) ~ \ . '
i Ve b e o
, . T b b.e . ’ .

« We:ﬁqw see, since the‘equation bx = a has a soluﬁiqp in A and this

T solution is different from e and g,, that "bb.= a . Cohclusion: If °
A %, A

< . Wwe ha&e & group'containing précisely

D ]

.
three elements: e ,a, b, and’ e

3
4;‘J$:i§»thg identity glement; the multiplication table is -. . . ... —d
b ) . “
- \j: o . I e «'a. b
-~ \N. = . T e »
. ol ¢ e & . b ' . e
R . ‘
(%) e a b-e
- . b e a

2"’

RIS 4 .

2

o
¥
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2 &he multiplica.tion table is given by (%) . There remains to be shown
that (*) does respect the group axioms. 5,

O G 12y ‘*Sj_.g,cwe,each row and column of the ‘body of (*) contains each of
B e e "j, z,..;éhe 2lements of A precisely once, G 2 is satisfiedi

£o L 4t _ .

{’D’Q v ) . -

25 ~3‘f!f" G 1.- We-may-break doym the clfecking of the assbciative law intd two

R Y

i
4

)
)
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Exereises 5. ‘ ' ~ b

4 . 'y‘
1. Here n, . x) = )(ax+ B)™+ u . Ffom n & % *m, we conclude that _

Aa =Y and B +L =6 . Hence x=1,u-6-(ﬁl). With A and
- Q. ,&a

\
Lo .4 PR
<

_”p‘sotaken\{l N T
#* 2, The 4ddentity element is, the lindar funotion e ,.given by
F
elx) = -x+0 . ° . Lo e
(x) 9 ¢ :
o ¢ 1 . -
3. Fow ien=&, wphave A-g,p=-g

"T mc

"r

W‘g must note that we have merely shown that, if (A <) ig a group, then
oé »

o0 it " ocases. T, o ' - . .
13 - v i
f[ , Case 1. At least one of the factors _i_§ e . This case is disposed of
" by noting =, \ - L ’
W = P - N l‘t \ /l ) f N R A
™ (.ece)c3 = celc3 = g(c2c3)«, cyscy € A
(cle)c3 = ey = cl.(ec3) TEUTES A ; .
© § v
(cice)e“: ¢ cpy = ?1(c2e) » . C1aCp € A
© T M . M .
Case 2. No factor is e, We list all the possibilities and,compute the
- desired products employing (%) N .
TN ’ ' ‘ ' . -
. ' . . . R4
Loy ey S (clge cq ¢ (cgc3) ‘ .
a ‘a°'a (aa)a & va =.e a:(aa)=a:b=e
a a- b (sa)b = bb = a alab) = ae' = a
¥ a4 b 8 (abla.= ea =& “a(ba).= ae = a
@ a, b bt (ab)b = eb =D a(bb) = aa = Db
‘ b & a (ra)a = ea = a b(ae) =bb = a
be-a D (ba)b = eb = b f(ab) = be = b
b b a (bb)a = aa = b blba) = be = b
b b _b'| (bp)p=@ab=ce | b(kb) = ba = e

Foaw "
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»

Ll(x) = ax * B~ ,m{x) =vx + 5 ,"'-Z--l(x) = éi‘*h’(;g%:: ‘ -

o) = Hyx r0) # (B - DB

L et vn)(x) = 6[ 'Y)x + ——E] +PB=Yx+5 . ,
m el (x) = —x + —é)] 4‘\%—’ 'Y + aé_;m .o . ’ ‘ -'*m:é-“-
(m-2l) . E(x) 1((owc*‘ ) +a_g Yx+.8 . - ,

. - .
We have £ m(x) aYx+ (B +ab) and m-4£(x) =vax + (5 + 'YB)
’Hence Lem=m-4L if gnd only if B+ ab =58 + Y8 . This latter ,
equality holds, if and o l'y if a6 -5 =9 - B . The assertion follows.\y

6. DNote that,, if (X,)r) , (d,d) € A, then (a,b) -(c,d)'— (ac, ad + b) er’
. since ac ;é O . Given elements (fa.‘l, bl) R (8.2, b2) R 3,b ) € A ; we
have ) . .
' ) (&, b)) ) ‘ -
. (e, p 2’ bp)) -« (g, by - (3132’3.1"2"&1’1)'(&3’1’3)‘
. = (a a 23 ,a1a2b3 +, (alba,+ bl)) s
and ’ . . hd
. ,
(8, ,0,) ( 2,b ) (ag,b ))=(al,bl)-(a2a3,a2b3+b2) _ ‘
/\ = + + g
. . (a o83 8 (?2b3 b)) bl) .
. - - . N
The associative law now follows. . ¢
Note that for every +(a,b) € A, we have _ - g p .
(ab)-(10)=1"‘o)-ab)=(a,b), o o
CeSE L~ 1 b T
Hence A has an identity el®ment, namely (1,0) . Firther, (=3 - E)
+  satisfies both . ;" ‘ . o N
"i * (&,b) ¢ (i;y) = (1;0)’ . . . - '{;L
. . - ’ N . . . )
and . (_k T GE . ‘ ) , - . 3
b i N . v tM.;_) B . L
, -(x,y) +(a,p) = (1,0) . o y .
. . > 6\ Yooy \’:*»vs
" The conditiong®of Exercise ll- No. 5 are f‘ulfilleﬁ (—- - —) is the >
™ inverse of (a,b) . , . )
. - o ’
A (1 1) correspondénce hetween A- ahd the set of non-constant linear R
functidns is defined by th rule which assigns to (a, b) e A the lineer
function given by , ! ,,\,r ty
$ 17
. .. [y
e . £(x), = ax_ kb . Pl . ‘
) : X )
26 5 . \
- 32 - .
) ‘ ‘
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e vy .+, +» This correspondence has the property that if m corresponds to .
LT a) € A , then m+ £ corresponds to "(c,d)- (a,b) . That is, "product <.
t.a , 'corresponds to product. This is an instance of an 1somorphlsm. The
.‘0‘35 At e €
structure ‘(A, *) was, of course, constructed in an obvious way from the
Tl r >

group of n‘oneconstant linear functions with composition as the operatlon.

e R - - . . S .
Thé objéct of the exercise was to c.onstruct a group 1somgrph1c to an in-

')

’ *, portant group of common occurrence but having elements and rules of &
-~ different nature. . v - .- .
TOMIRT o L L : < . e

7. 'I'his exgrcise is straightf'orward. It suffices to note in either case

> . .
> that “'is an operation, that (1,0) € A is the identity element, that,
b i . T - '
»
srmmm 48 (a,b) € A , then (é - -) € A° and that the verlflca;tion of the - R
- T :

assocmtive law remalns valid for the.case where A con51sts of the set*" o -

of ordered palrs of complex numbers with non-zero flrst components.

LRI S S '

- . ~“ ‘t—:.‘# - s

" Exercises 6. ' o0 T ’ L

. |

= 1.. Ve note that (bd)(p™Ya ) =1 , SO <that (va)™! = v7la"t - |

! . N . |
" Hence - y . |

[ ad + be . -1 -~ Y
—_ ‘ =g = (bd)""(ed + be) | ' ‘
E _ = 1’ ld L(ad + be)

. ‘ . ' ‘ ’ (v ta 1) (ad) + (272 )(be) d )

b la + ale : )

]

a C
} T Tsa

i

“'The détails are readily supplied.
2. The argument may be based on the use of reclprocals. p Thus B Lo ) £
. . ) *’z ! ‘ )

7 ¢ -

- o R
(v .,la) R 1

B

:l l)a

. A

(bC)'la . P .
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A R e DL ; . ‘\; . PP B "
. .,_.__———-—m:—naa‘r bl . > -
'I'Ee second part may be treated.ag follows. " . =
S L - » B */ e ) - 4
- e . - e < - A § Vet
- ) "“}ﬁ' . . ' . r .
J”(‘% (B 2 ’ R \Ww “ o R
' (&) (ate) Y
d b i ;

*Since ae -bd £ 0,
. &

SN .

_ce - bf
T ae - bd '

we conelgdé

L

_gf - cd -
'le\—e_—- W

N 50 thét if our systeém has apy.éolution (x,y) it mist
:

N8

gi-’bf af - cd
ae - bd /ae - bd

e

o The following points should be emphasized: "

T (a) e indi®ated calculations in the asserted identity are all mean-

> ) :

: ingful, tliere being no divisions by zero. - . .

' ' ¢ . ’ ~

() (@hHl=qa. . ,_ o= o

’ '(c) A corresponding result holds for an arbitrary abelian group.'

‘., 3. The given pair of equations.imply - ' :

/ - { e(ax + by) = ce. {d(a& + by) = cd

/o bdx + ey) = bf a(dx + ey) = af . .

- N A

RIS . > o e »
e and subtraction giues (respectively) .

b . Y N

N (ae - bd)xs ce - 1.){»’««.1-»%/‘-’” ae = bd_)y = af - ?q A %. ° .

CEE YT T ‘ : \,
= (bc) l(ad) ’
ad . . .
. v T e ! 5

. f
i
Substitution in the oz"iéinal uations verifies that/this couple is in- ’
deed a solution: / i - .
o S8 ="bf b af - cg/ ace - abf + abf - bad 5
5 7 ae-bd . Taei- BT ~de - pd* “ - : .
ce - bf o &f - cd . cde - bAf + aef - cde’ ; T A T
bd ae - bd : ae - bd . . ©os
. N ." B
+10 1 2 -1 01 2 "
610 1 2 o1% o o \
1 2 0 - 0 E‘ 1 8 o
2|2 o 2 [012 1 ~
i 28 ~
34 . S
< )
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As far as" F3 is concerned- we may pubt a:s:.de the case where a=0"
s:mce we know that the ;gaoduct- *0 and any - elem‘ent og‘ A is 0
;ther since multiplication 1s commutative, 1t suff‘ioes to cons:.der only

the flrst of the two dlstrn.butlve.laWS.

The check mey be, tabulated s,

Fux-

t

8o,

g

developeg, a Ygll as &the ’resul’tf"ﬂthat if a pI‘lme number divides a Iﬂoduct

This Is , qul;be frankly, tedious. If the leJ.SlOn algonthm has been

of integers it divides one of the factoz’s, it is not hard to generalize
this exercise to the case whefe 3 is replaced%y an arbltrary prime p ,-
A is replaced by {0,1,...,4p - 1} and "addl%ion' and "rrmltiplléation

are d'efined as in the exerc:.se save that.we operate with rémainders ob-

e

. “" Bothi¥omputative laws fol,low from ‘the very constru¢tion of the addition " ‘
\ - and multiplication tam On turning to the table (¥) of Exercise L, »
:fﬁ No. 6, we see pn taking e-O,a—l,b—2,that (A, +) is a K .
- .group whose identity element is O . 'The postulate F'1 is verified. : o
*f o The;postulate F2 is readily checked £rom the multlplicatlon table.

. (Be‘sfsure that the assoc:La.tJ.ve law‘ds% verified.) ‘ Co
S E;{” PR . p

follows B .- - P
¥ g ‘b ¢ "o o) " NMebea -
1 0 o L 170=0 0+0=0 e
1 0 1 T o11=1 0+1=1 \ '
1 o0 2 1.2=2 o+2=2
’ 1 1 0 R T - R (d+0=1 ) ‘
111 1.2=2 Jdet 1= 2 ) .
, 1 1.2 1L.0=0 G 1+2=0 > 3 ¢
1 2 0 ;12 =2 . 2 +0%.2 - :
1 2 1 1:0=0 ,2+1=0
1.2 2 ., Y111 2+251 ‘
2 0 0 2:0=0 , 0+ 0= 0
2 0 1 "pe1=2 " v, fo+2i=2
: 2 0 2 2.2=1 #0412 Do
2 10 2.1=2 " .. 2+0=2
2 1 1 22=1 g+e=1 o
Je .1 o2t 2,0=0 V¢ 2+1=0 .y, ™~
T2 2 0 N P 1+0=1 - ]
2 2 1 2. 0=0" 1+2=0 o
, 2 2 2 o 2152 ! L 1¥l=2 . o

. talned' o‘f) division ’by p. If p is re‘placed by a natural humber which I
is not & pz‘ime , th‘e resulting structure is not a field. T . ) ' ’
[ k] L ,s - ’ j\
29 Y . " s ‘t"
R _ o ] L
35 .
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5 The verification of F 1’ and F 2 is immediate, cf. Exercise L, No. 3.

‘~ The a@dipive i@entity is a. and the ‘multiplicative identity is b . o

Note that S cénsis%s simply of the element b . It suffices to verify

P

27 %1%
\

“‘to be assured that F 3 holds. Since P =1 ,,

+ bg €A, l“

ble, + ¢ + ¢

1. 2) =

-
{
i
t
|
i

1 2

[

b + be

&xercises 7. |
—— L . Vo
. "

1. From our formulas for sum“end product we sed that the ugual addition and

a

multiblieation define operations in A .. The difference of ‘two ‘elements
of A is an element of A, as is ea51ly checked. We have seen that the
same holds true for quotlents of elements of A . The’commutative,.asso:
‘ciative, and dxstrlbut1Ve laws hold for (A, +, +)  since they hold for

the real number uystem. The verification of the field pbstulates Is now

N \

-
routine. N .

The details parallel those of thé first exercise and are readily-

i “urnished. ,. \\Nﬁr’//
’ Suppose that x is a real number belonglng to bo A and B . Since

lox e A x = a ﬁ/bfé vhére &° and b are ratlonal Since x €<B ,
1w

X =c+ d/— where ¢ and d are rational. It is essentlaI‘Eo recall

x <<%hat V2 and Y3 are both irtational. We start with the equality
. ; a+b/2=c +av3

} "~
< i

and draw the consequences.

-

Case 1. d =0, Here x 1is a rational nhmber.

1se 2. d £ O . Here we conclude that

r

-

is, Y3 1is of the form

’ ‘ . T ra iﬁ@#ﬁ

where o and 8 are both rational numbers. On taking squares, we have

2. (a2 v - .
Ly /‘/ o
1 L P e
Qﬁ?* a2
.44,\_\::-
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e,f‘ ’ ) .
4 N ¥ :‘
ve conclude s by the uniqueness property, established in Sectin 7 cencern-
. ing the represeﬁfation of the members of” A zn\the form . & + ’/5 s j

. a end b “rational numbers, that

’:

o < i w v oo - > . ’2’ 2 \ . R .
YT L i . ’
© amd . N . : " .
Kl - ’ . . R ']
. - . ‘ . ’ , = eaa’ : , h » )
- . ) . , " ‘
. .- n ) I 3 .
P - . f . ) s
~ ~Now .8 #£%0 since f is an* irrationa grumber., Hence from 0 = 208 , '
.e P . \ B
., we-conclude.that .« = O and,ﬁ ) ' : “ “ ‘
- & - ’ ) s -
. . . > “ , . N
(%) - . 3e= 287, - ;
) '-( ‘ Q \ . .

At this peint we make use of théwfa".ct that B may be written in the form
. § where p and q yare natural numbers which are not both d.ivlslble by +,

= :‘ M
a nattral number”greater than one. -In part‘icular, p and g c?‘ﬁnot both

. e even. From (%% we obtain o .
. | S—— . . . 12 '
: ’ ;o ’ . 2 ; ’ .‘
B . = 2 'R { ¢
. | \(q) - .
. N { ™ - . |
and hence .o . -7 e, .
: ' U iy ) ‘
. 2 [ [ = f
(%) - v o : 3q =2 . - ' - . C
‘Nov q must be even, otherwise the left-hapd side of (%%% would be = ° .

odd .and the right-hand sideseven. Henge g = 2r°, éere r isa natural

: mmber. From ***) “reobtain Y ‘o S '
2’."’ . . ‘ ¢ - - * ’ :‘ ’ "0
A ' 2 2 : - . »
cLL 7 PR COMEE : .
i, and hence VI o : - . s
g‘ N 61‘2 - P2 . . . § . ;
I_s‘ : i N F . .tn
: We now see that p is even. This is.impossible,. for p is odd. Hente \ -
i5 L) M -
Sg“ .. the hypothesis a&# 0 must be rejedted. ; ’ ’ '
>: : . . .y ‘ ) — ; ’ o L} ' ' ) N - Tt
: R T . - o ’
.Conclusion: x is a.rational number; i.e., A'QB cq..- (U
. ,‘ L . . N . -
AL - y -~ ’ S . AT
Since QE\Ar\B,we have Q. ANB. ' ¢

1

“ Note: AMB meang the intersection of sets A and B .-

pe
el [



