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N ) . o .
1. ' Why Should Applied Mathemastics be TAught in the High School? .
T Rt s T - -

Jacobi (1804¢51), speaking for:the pure mathematicien, claimed that the

‘ motive for mathematical research'is "the honor of the human spirit.” fThe same

. . /',. -’ R . . .

could be said of playlng chess: there is no deny’ing its aesthetic and iﬁtellec-
B e SN g

tual sanpeel. S0 why is the youth who ta.kes his chess as seridtisly as his mth—
] i 4

ematics thought to te misguided? Is there such a difference between movmg

pieces of wood abou‘t on a bodrd and manipulating ink merks on paper? .

L3
[

] Chess, fqr all its exceilence, is merely a game; unllke mathematics;,it is
3. 0 . v R 2

without apolications.‘ The miracle of mathe,matics is that paper work can be re-

.
‘%

.‘lated to the worlq. we live in. W1th pen or pencil We .cén ,hitch & pair-of scales

tc a star and weigh the moon. Such pPssibili“Eies give applied mathematics its

vitel fascination. Can any subject give the ‘would-be mathematician ~- i_nitially,'

av * -

at least - a= stronger angd more natural’ g{ntperest?
&

- ’ -

A.ﬁ'd what about t1re non—mathemticia.n?‘ ‘Deny him introduction to this sub-

o . v

ject,,ar_xd his appregiation of our cultural heritage must inevitebly be inad-

equate. For mathematics ‘lh_the broadest sense is instrumental not only to our
~ . . - , . M . . K -
t s ’understa'zidipg,;but also to our changing the world we live in. And are “we not
. . .. 7 .- ¢’ . . ; .o
& changing sociéty.in &,changing world? . - ’ o
' s ! .

B . . . o ) | ' ~ T N .
2. ' Difficulties of Teaching Applied Mathematics in the High School.
o — = : I —

In our high school systems the teaching of science and the teaching of

d

\u

.

mthemati,cs ha.ve become estranged. To. apply mathematics there must be some-
thing’ to aeply it to. To apply it there must be.& field of application even .

.Y though there is nothing which you can count as common scientific knowledge among

. . - !

i your students. Yot you cannot squeeze many lectures on physics or chemistry

or biclogy intd your mathematics course. This is your first difficulty. There

.

. v :
is a second.' The bu.lk of mathematics which) does apply to other fields is too

2 -
advanced for your ~§tudents 5 you would be te.}k‘iﬂg"above their héads.
5 - S -

: . .
. . . A
e . . R PR
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3. What is the’ Way/Around This Dilemme? ;‘ :

- Go back to thefbegmnlngs of sc1ence, to Archl_medes, to Buclid and Heron,@

2 .

| ‘to Galileo and Stevinus, when thmgs were very obvious, very simple, and could
o .

N be explalne&a"’i ﬂew words.. Thus, a.pp,lled mathematlcs in the narrow sense of )
. “

¢ . A

tﬁe term, ﬁ., m chanlcs, is the, 1deal top:Lc with Whlch to. begm, and 1s,e alc-

cordingly, the su’tJect of C‘hapter -l. For the same reasons, in Chapter 3, I take )
1' . optlcs to illustrate the role of mathe’matlcs in formulatmg scientlfj]c theorles
: and begin witl’f'Euclid's_. And although in Chapter 2 (which illustrat'es i:rnpor-
"tant applica'tions of functional and recursive equations to gro(wth problems) ,
a things are not always 50 obvio.us and simple, and so concisely explai'nable, the %&4
same Drlnc1ple 1s nevertheless adhered ,to. Here, its applica’tion is slightly

less stringent .s N -

2 . A . .
,? L Rejection of” the "Modern" Apbroach.

Many eyebrows.will rise in horror at such a proposal. Modernists will

¥
’ . exclaj:.{ "Here we are living in the s_pace age, yet you propose to teach the .

n'c}" ma'thematlcs of anthulty. Such people never tire of “pointlng out that whereas
e ‘ v D% =

. ’ s M s
today s college courses in the sciences cover twentieth-century science, to-

‘

-day's college ecurses in mathematics deal with eighteenth-centyry mathematics'

. They infer-that the mathematics currently taught is necessarily out of date.
PR . The ehler;e.nce of such a conclusion in a"technological‘society is under- |
‘ . ’ standable; the infe.renc,e is none the less fallacious. ' °
‘ Edison's phonograph, Fdrd’s Ivfodel T, and the Wright brothers!® aeroplane

are out of date. But such machines are not.out of date because they are old;

1
they are put of date because, of rapid technological progress; they have been '9 1‘
1 . " Ve

-
.

\
| . superseded by znore efficient ones of 'better des'ign.' The p&ramids of Egypt, al-

these days; the Egyptiap variety, although old, has yet to te superseded. Super-

[y

session 1s not necessarily entailed by newness. Beset by the fad of modernity

o

we must be ever mindful 87 Aladdin and the.cry, "New lamps for old."
o ' {

\)‘(",. ¢ o 9

o . . . -

though old, are not out of date; progress in the pyramid building line Is slow J{
|
|
|




d -, ‘ . ,

. . < y . .,

Technology and sclence advan‘c’e hz?;nd in hand; egeh helps the other over <
4

- I3 % .
obstacles to progress. Likewise , the rudimentary chemistry and biology of the
‘ . . R . .
eighteeglth century is now, in large measuxe, out of date. But not, ma_%k you, .
. . . . . i ¢

out of date because, 1like trhe pyramids, 1t is old: ‘out of date bécause inad-
SR ' v . -
equa,te theories ﬁave been superseded by more adeguafe ones " S0 we seé the sense

~ . .
n’ r »

ain present-day college teaching of the sciences gi’ving‘eighteenth:century develdp- |

ments scdnt attention. The diligent ‘reader will how exclaim, :But surely twen-

tieth.century mathematical developments supersed€ those of the eighteenth cen-
* - o . - .

tury, and a fortiori, supersede those"'of antiquity." Such an exclsmation ind1-
. 1 . . . '!

.

cates grave misconception. : . 4 .

-
- a——y

Mathematicg is different. ,014 scientific theor1es, like old automobiles
. S ~ N .
_superseded by better ‘ones, are re..;!.egate@ to the scrap heap. Mathematics usually
- . ¢ . i \ . 14
conserves, seldom rscraps. , New mathematics is superimposed upon the old rather '

.. L]

~

¢ than the 0ld superseded by the new. As with the successive c1t11es of, Da.xyascus,
~
L
the old is the foundation of the newa Mathematics is cumulative. <oncepts

thousa.ndess of years olci are still in use today. _‘Old bricks are used to make new,

. S .
buildings. 1 ' ‘

* The mthemtics most im?nediately applicable to the sciences is mechanics..

Boug@but concisely put, mechanics is the alphabet of ‘science. To spell out

\ . - -

" new theories ire need new words, not a new alphabet. e

o A )
. " S ‘i«;é}, 4 [ e o N -
. .5. Mechanies?{™*The Alphabet of Science. . re
———————— et R—————— — ettt » A .

Our childrén.are both the beneficia.x'ies “and the ¥ictims of a techno-.
4 . § e ° - ’
logical age. Pull a switch, Er\ess & button, or move a Jever, and ai:complic,ate('l
mechanism is'set 'in motion. Turn & knob, and we see and hear the President

making & speech in Waeshington. How doés the mere turning‘of’,,a knob result in,

the presentation of distant events" ~T;\Iith the tremenilous jun;p from the simpltc-
ity of primitive machines to the, conlpler:é‘ity of mode‘rn mechanisms ) connections

" are lost sight of . The great idl_lumination of understanding a simple machine )
the insight of* grasping, say, that the principle of the lever underlies prying-~

Q | “ = 10 X

. ERIC
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L4

. L ‘ - . .
off qpe 1id of a can, 14 lost to the modern child. His docile nonunderstanding ‘

- ’

ccepiing the pronouncements of the white-coated, 1 l
' bespeetacled man on,TV, wiyh his solemn, “Science has proved that .J..."

Understanding science \starts with;mechanics. And mechanics, to borrow a
\ . -

. ) . i z

phrase from Pdlya, starts with the "congenitéal or inarticulate" «physics we all

acquire, willy-nilly, in crawling from 'the cradle: the.experieﬁtial facts of.
o7 : . . <
pushing and pulling, the properties of sticks and stories; our unavoidable in-

.

troduction to force, méss, yeiéht, rigidity, flexibility, ... . Here is a
. D‘ [ 3 .

common background of knowleége for the teacher to exploit. His ﬁusiness is to

make ‘this knowledge artiduiate. .

The brilliant, very simple, very obvious, coneisely explainable mechanics

of Archimedes is the natural articulatlon.ﬁ Ofﬁpourse, I<¥§not suggest that the
Jaw & the lgeer can lead in three easy lessons to show1ng how a TV set works

. There\ﬁg no denying the ¢hasm betweem levers and,electfohics Yet innovators
r LINOVators

bf both had~commonlhabits of mind -- the péientific attifude. Something of this

attitude can be 1ncul"ated by show1ng how the painstaking appliqatlon and re-

appkreationwez a slmple, seemingly tr1v1al .concept, the lever, can lead to

~
R somethlng complex’ and deep, the theory of mechanics. In teaching mechanics we i
-~
Vﬁﬁake a decisive step toward brldglng the gap. ot
-t 6, A Question of Rigor. L L

~Idea;ization is inevitable in the applications of mathematics. By this . 4
% g dey > .
~device the complexity of a physical situation is reduted to manageable propor-

. 1]
r . »

¢ tioﬁs. A stone becomes & point, a‘lever a line; knots in beams are ignored, and

. the wood is presuped to be precisely, homogeneous QAL thls ifage Justlficatlon a '
P 4 - ™
. is practlcal‘raﬁher than logical. And occasi%nally in teaching we introduce an
° . > ’

! or. a have of the hand -
;

and meet a ¢oo fussy objection with e shrug of the shoulders Partial artic-

additional assumption with an "It is obvious that ...}

v .

F ulation Such reasoning was good enough, initially, for Archimedes, for Gallleo, .
’ ™
and for Newton. -Surely it'is good enough for your students! high school'ini— -

. L 3 » .
1tlation. or, do you Presuie your stuégnts abler than Archimedes? b

[JQJ!: .- ; o e 1.1 .

. . . -
oo - . N
’

M
5




* -
.

The mechanics of antiquity is not antiquated: its pefennial yg{uth is as
- . ’ ‘ .
young as: today-and as modern as tomorrow. v < .

i . . ‘
Liken applied mathematics to a car. Insight, intuition, imegination are .
‘s ~ .
\ «
its matory, its driving force; rigor, its trakes, the logical checks  that con-

‘trcl it. Of ccurse a car without brakes is dangercus; imagination must not be

.
-

allowed to run riots We need to control imagination and to direct insight. But
« 1)

a car without a motor is uselegs.’ .we need to drive & little before we need to

. * brake a little. / - , - ’ *

Btlt.&xionlatics are the disc brakes of mathematics --the ver), latest, up-:

Y
L]

s .
to-date-est, most rigorous of logical checks. 5o why ‘contént ourselves by

i

teaching mechanies with only an axiom or two? Why not give a full-blown axio-

. . ~ - a
matic treatment? - »

'

The ,.object of axiomatics is to find explicitly the absolute minimum of

<

assumptions necessary[to a theory. With axiomatics we byy deep enl.ightenment;

) the price that must be pa'id is sophistication beyond the novice. An axiomatist

" 15 a man who finally ties a bow tie with the othex 'hend behind his back. Oh
~ . ’ < ' S .
I.  yes,. it can be done with ene hand; oh:ﬁo, itscannot be done with less. Beginnexs
) lJest use both hands.

<

b - Development of gebmetry @id not patiently wgit sevexjal centuries for
. ! W‘ B
Euclid's a.xiomatizatian,' nor did it wait more than twenty succeeding centuries
. ‘e / 3

after Euclid for Hilbert's final dotting of the logical i s and crossing out of _

N Y, ¢ .
the illogical ‘t Se Pa:rtial articulation of inartiEulate experience necéssarily
F >3 . X, }
preceded comﬂlete articulatibn. Z .
1 s‘ .

<

To' teach,dis_astrously, teach with a level of rigor inap‘p’ropriate to your

e

Y
. -~

students or your sub,ject . ' . .

30 a e i ' : \ « o
N 2&?‘.&‘2’ i 4—?}}% . ) "s , .
I hope to have persuaded you that some 'imdérstanding of applied mathematics
H

(especially mechanics), liberally conteive% ought 40 be part of the very fabric

* of educb.ted common sense, not exclusively the p:r;erogative of the would-be math-
I . e

“les or science specialist. 12 ' ; . '
i lC ENT -
! <, . , i o ’ % .
o ‘- - . joe - . . -

e
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Being teachers, you know full well| that teaching is an art, that to

~

teach efi‘ectively you must have the Gree}f sense of theater, the ability to tit-

R

il,Late or irritate the imagination of yo Students, to make them articulate

1

their experlence, sp that they would hitch scales to a star and weigh the moon.

&

Allow me to give the }naterial T beJlieVe"important to present. Only you

] »

is

can best knpw how to present it. Teache':is are apt to be overawed by university
peopl4 Whlle the latter can proba.bly decide whatsmaterial is impOrs:ant, it

the role of the teach;r to declde what aspects can be taught in the high school,

.

w‘hen‘ it cgh be taught, and how best to tegch it. . .
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Chapter 1. Methanics for’the'High School Student.
- . O .

- el
. . .

1.1, Archlmedes‘ Law of thg Lever Lever. <> . - I e

. —
°

© We start with the sdmplest maohine known, to manklnd-, the lever Supposedly,

. .
- ‘
¢ - .

_ever since man developed beyond the level of the ape he has used stlcks .to lever

4 ~

stones. The Egyptians in building their pyr,amlds used elaborate machlnes con-

a

sisting of a combination of levers;” yet the1r knowledge of levers appears. to .

.

. 14
nearer the pqQint at which we push is to the line of the hinges the harder we
- v . R . v

|

. . , |

have been largely inarticulate. We wll know that in pushing a door shut, the }
|

|

|

need push. Yet how many of us realize that this common experience exeriplifies
[ ] N . o

- o« * . |

the law of the lever? The hinge is the fulerum gbout which the turning moment |
, : . : . . o

oi‘/onr push counterbalénces the opposing. turning moment of frictien &t the hinge’ 1
T ‘ ‘ ¢ ‘

We have experlence but not the e.rtlculatlon, .o : o ' .

Tt seems that Archlmedes (287-212 B c. ) vas the first in history to ask

for the precise mathematlcal formulation of the conditions of equilibrium of ..

\
: .

. R .
the lever. To ask $his question was itself a tremendous step --to ask for math-

s

- ematical laws for the behavio e
Do .
is a crucial novelt
nature. ) . . x .,
—_— « . - 14

» i - -
..

We r;ow retrace the essential steps by which A.rch}medes derived his for-

2

mulation. He started with the simplest casé: a w&g_}gmleg& lever with equal

' arms suspendirg-equal weights. . See Fig. l.em oo :‘o?f» >
) : . v . G L
’ ' Ld . ) ‘ .F - s - -
. ~———l————+——— Zc——-r—.‘
¢ ) . R L i /\ R
. ” ' ° . ""‘\?‘ )
— - o —_— e ] 9)” ’ . - 4 — a . . -
|, " — . e el ,“c ,/ ; _
. \/ ' e . / )
- \ \ .
' AW o Fig. 1. - W e
° . - . . » ). < LY . \.\«,‘
Question: Which weight sinks? By the law of insufficient reason there ig ho .
R ! . . . ¢ . I
\) ‘ . ) ' v A

. .
- . . . . . » &
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¢
more cause for the left-hand weight to sink tham the right; by the daw of suffi-

.
H

cient reason there is as much reason for the left not to sink as for the right;
S S

the figure is symmetrical That is, the lever does not move at all.

We cannot prove this by n}athenxatics. Resort to the l&ns.of su.fficient

s(or insui‘ficient) reason is, really an appeal to ~our common experience. So, wit

.

Archimedes, we take it as ax1omat1c that 2 lever as 1llustrated in Fig. 1 is im

equili'brium.

We shall refer to this as Archimedes’ Axiom. ‘

.
-

At first sight such a beginning seems too trivial to be capable o:f‘ devel- .

opment.

And yet

.....

E !

CO?ISldeI‘ Flg. 2.

A

F

.

-

— — — b'——‘»‘

R

-

TN -

N\

.t

h

o

v o ¢

4

) Fig 2 R M

Here, a homogeneous beam of constant cross section is suspended by a string a‘t"

¥ each end El’ E, of the lever. If the lever tilts about its fulcrum the Beom . ,
. e >

i tilts with it.

L4

symmetry there is ne reason why the, lever (and vith it the beam) should tilt

The same argument is again applicable by considerations of

4

PR

’ D Next, consider carefully Fig. 5,‘a}fdiﬁc’atio‘n of Figia.-

either way. We have equili'brium.

v A2

o [2—"

s
B A I

Fig.

o

R >t

What changes have been made? The 'bea.m is now suspended 'by strings from Al

s -

(Where ’ElAl =4, A2E = ,8 ), instead of from the ends of the lever

Bzut, despite these changes, equilibrium of lever and beam remain-

o “terdepeadent;‘ 4if. the' lever t11ts then the beam must tilt with it; it the beam, -
ENC bl e 15 . | .
. hali il aene N - o Lo _—

[ -
L Caen o

S - ———,—»Wdﬂ' -
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, S_ince ElAl 2 zl, AE, = £2, it follows that E 1B = 2£ 2 = 2£ 8 d&si}}ce
: = - /' Vd { 59
ELE + EE2 = E1E2 =24 it folllows th:a.t ‘ . .
. . v
’ S
o " ‘ A
i.e., ; (1) i
p - L ‘ / ..
. Bt MF = BF- By L N
& BT / —’/£ L /" SRR \‘;
- R o : SN P
: : U e ’/;: v':?{‘: jfﬂ':f":dx
Hence, by (1) r /" - ’ 195 g
* : /’ ' ;1' % ’ j
. .. AF 42’ ALY = 4. . (2) . /.
. a L )
, , . /eyl . . .
. This result leads, t9/ ohdideratiof of.Fig. 5. i S
(S 1 . ‘ . - ‘ z Tt
. Pl / / . .
ERIC S Byt . g
. TR Ya oo S = L
— L ; . : . . . ;
. ¥ 5 K - -

-

l . . . 9 .

‘ . . ’ P
- . . - ]

does not tilt the lever cannot tilt. The difference is that the modified figure

~ QW%'.*'ra

jéa not symmetrical --unless Al’ A2 happen to"Bé 'synmxetrically placed with

= £.). At this s\tage we_need introduce fur:

T 2
ther idealilza.tion_; suppose the strings by which the beam is supgorted at Al-' A2

respect to F (i.e., not unless Y]

Thus,,. conceptually, we regaln symmetry, and consequently,

1

to be weightless.

With weightless strings, we have ofie bedy,.a lever.-cum—beam,
‘ N
symmetrlcally balanced about its fulerum F with respect to external forces

equilibrlum.

Whether the tensions in the strings (internal forces) are equa.l is irrelevant. .

®

Next, we introduce &n element of specialization. Study Fig. L and under-
. N

stand it. ) A a A, ’ T
. E
i/} . E .
’ . '-A—Z’—vﬂ—ﬂ, e lz s - A DS ﬁz ! S S -
) & r A lEé :
» tf. | | . ¢ ‘.
S | .
. ’ 7/
- , / ° R
. .' / };*w\
2 V2N
. Fig. 1" s 7 "=
We take any a.rbltrary pomt E on- E:IEZ \and select Al, A2 to be the speci
N .

% points such that Al is the midpoint of E

,and A2 the midpoint of ER,.




/'."‘f 5

i Ide’aily, we sup_;iose there to be no loss of matérlal in cuttmg Zhe beam, and,
consequently, no»loss 1n welght :__ d that there is no change in the -~
distributlon of materlal --whlch woulﬁ/;r sult in & change in the d1stribution iy

L N e : . ! Nah

«d"'welght -- equ:.llbrlum w1ll st;kll obtain. That is, equilibrium still obtains

. .’wr" . w
provided that the parts oi‘ e cut beam retain the posa.tlons they had prior to '
3 1t \\ ~ \\
the cudt. Were theseﬁ;yf(rouate in vertical planes about their points of suspen- > o
. ¥ ‘» / - e
8 . -
o slon,fthegdfn’gution,of welght would be changed. But 'since Al A2 are the \
P . . { . . N
. » \ .
/ midpoips of E E and EE2, we see that these are symmetrically placed w1th

. ‘:‘ . P
. s spect to their suspending strings and will remaln in equllibrium Thus the

v .
-« -
o

»m»;rwsysﬁm .of lever Q_-two-beams is in equillbrium
- ‘j/‘.' wv, P,
e # 8ince the woo@. is supposed homogeneous, we mai', w1thout loss of generality,

suppose it of' unit denslty JThus we. _have amdklght 2.81 suspended- at Al‘ coun=- - *

/terbalance&"By a weight' 2[- suspended et A,. That is, by (2) a weight 26,

/ acting at a distance ,3,32' 'from the. .f‘u).crum counterbalances & weight 2.82 act-

g ing at ai’(hstance !l fronf it. This §ituat10n is 1llustrslted by Fig. 6.

o - ™ - e WUz . A g . N L. . - ',
) , A s Fo 4 Ag :
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°

8w
, w, i W S




5

What are the conditioﬁs for equilibrium? Obviously

2yt = 2l
\
g

Wl = 2£2,~, Wz := 2£1 » and ‘we-have

right welght X length o) ight arm = left ‘weight X length of ft arm. The

product of,the welght and the length of the axm is a measure of, e tendency of
/

: o

the weight to turn the ayrm about the fulcrum. W1£1 is said to be the moment of

Wl about F. So, alternatively put, for eqnillbri
- ; ’
b right hand moment = lef‘t hand }nOment

‘

l *
o -
‘e

¥
1 KA

-

This is Archimedes’ 1aw of the lever. P
e . ,
I have shown you How Archimedes' law ig devised from 'congenital or in-
3

articulate . physics. Ac ually, this original treatment was so\mewhat more c'émpll- .

lever that he spent two leet e periodd EZscussing Just the axiomatic 1mplica-

tions of this kind of proving./ This invo ves explication gt the notion of sym-_

1

et . 1 /A , ' .
. m:?', the distinction bet,ween foroes external to and i}i‘fernal to a system,
7

nothing is chanéed by 'cutting“the beam, and many other considerations

) ~ /:/ ‘ -
We could, for example ) give an alternative proof by considering the beam "to be
%{ and one_cat E2 instead of f
< /,.»-"

C / 5,
E and E,. The ﬂinal step would be to replace the susPension of each beam

2 #
o+~ g single string at its midpoint, €, strings at A A2 would replace
18 .

¥

R A v ext Provided by ERIC
+
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strings at_ El’ E and at E, EQ’ respecti\{eiy._ This is an alternative way of
3 ’ . -~ -
*,obtaining the original Fig. 5.

3

-~k mention these.matters only to show that the mathematics of
i's not trivial, despite its antiquity. Here there is enough fdod to atisfy

the hungriest tiinker. (I have already pointed out the unsuitability f i’ull-

blown exiomatics for the beginner.) This is how, starting from "the ob fous," |

the inarticulate physics about which thev'e is common agreexent we build up

our-mithematicd in a cumulative way. I shall f\zrther_illustrate this cumllative

Process by making applications of Archimedes! law.

‘
R . t 3

1.2 ‘First Application: - The Centroid of & 'I‘xxiangle.

We consider an idealized triangle, mé.de ,of rigid but weightless material
®

1ying in a horizontal plafe, w1th a weight w suspended from eath vertex. Our

Pty .

problem is Lo find the point at which the triangle can be supported witho‘}.&

[

tilting fro;m the horizogtal. See Fig 7.
A d

w N \.
. ' A 3 \
’ ) \
h . Y '(
3 - x'ﬂ;'.' g / .
) - / . ‘
) « i " ;
) N B 1~ -
’ . C .
‘ g ‘ K )
x . * 1. . . : .
T VN S 72 o e B kS RN 4 ) '
Ve /A N A / T e 3 i .
.h w ‘ . w; - .l.)ew?-'-.»;s-rw«: : ‘ K
v . ’ \ . Fig. 7. ¢ CiTThoael
- . - % - W . ’
. But how are we to contend with three forcesi all at once? We must use

P L8

vhat we know, yet the law of the levep is applicable only to two forces That

——— -

this&law. may be applied we must eliminate the effect o&the theight, tsayz; -

the one at A. %e, achieve our purpose by introducing a support at A., Ivow,
.~considering Av, the mid point of BC as the fulcrum of BC, we have a leve ok

,with equal weights suspended frogmz equal arms. Thus if the triangle is also

T supported at A', the points A, At 5 ,and 7co,nsequently the line AA' (a median? |
H P . s
: & ] —
o : z - » - ——————
ERIC. PR 1’*9‘ g .
o ) . S ( . —— e .
e, ‘«0_ ‘ N 530 . e




8

of ‘t;h,e triangle) are fixed, _so thet the only motion p0551b1e is a rotation

about AA' "But the forces at, B, C counterbalance, -8Q that, the ;triq.ngle is

in equilibrium T I A BN

r:l‘ . . ’ -

ObvioﬂsJ,y an upwai‘d force of Ws at A will counterbalance, thé.t of the

’weight suspendeﬁ there’. Wha.t upward force at A! wll counterbalance the

V\ ;
downwa.rd f'orces of W vat .A and Bt ,'B? When standing on the platform of a

-

weighing machine, your wexght as "indicated by-the machlne, is the same no

-, -

mgtter whether you stand on’\one leg or both. The tptal dosmward fo_rce is 2W,
. N N ~ .

SO we require 2W acting upwa-rd at (A'. In short, in so far as equilibrium

T \ \ s - w

is concerned, the orlg\lnal fbrces are *equlvalent to downward forces of W at
H x 4

A and 2W at A'. We haw & problem of;‘& three forces to a probl}em

of two forced. Seé Fig. 8,
Yo _ NN
s

g

The rest is easy, 'for.— the law of the lever is i;mnediaotely applicable to

this pair of forces®MLet G be the pojnt on AA' such that
. ! ras ; 1

4 ~

AG = 2+ A'A

-

@

so that Ny ) vt
WeAG =W- (2 A%A) =2W . A'A/

Thus the'triangle is in equilibrium when suspended et G. This solves our
problem. Additidnally,‘we 'Jma.yfremark that, .eince the total of the, downward .

i’o«r’ces'et A, A' is 3W, we have that the effect.of the three equal forces |

. " : . . . r's
/at the vertices is equivalent to’ a force, of M at G. )

4

-
.
34 N 1
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Articula/‘l:ion of our common-experience and painsta.ﬁing application of the
. M N \ . .

Y
°

law of the leverthas solved our problem; yef we have’ by no means eXhausted the
. Soe

results inhexent in this problem. The arguinent by which we conclude that*the
/ -

W7 . .. . » -
point of susPension for equili‘brium-/is G,‘two-thirds the way down the median,

. .

15 equally appllcable to the' oﬁher two medians. There are no grounds for~p'r'ef‘-) o

1
erence. Yet the foreces éonsidered can have only one resultant, consequently ‘
] ™
three medians must be concurrent at G, a point two-thirds the way down each.
. Ce .

See Fig. 9. * ‘ y

»

A4

‘e

In this short deduction we see~ the\)interplay between mechanlcs and
. L RN

geometry, Not only* can we use mathematics to deduce la‘ws of nature; we can

. Y
P

use laws of nature to deduce more mathematics. Here is an art of which
a

e
3 o ?

Archimedes was a master. . ‘ .

. .4 v

Another result.: Now ‘supposes the horizontally placed triemgle of Fig.‘ 9

to be a lamina of homogengous material. From a simple application of similer-..,
£ g 4 vt . ... . LS
K triangles it follows that any line segment B'C' parallel to BC is .bisected .

R
v

by the rﬁediar'l AA' . Consequently the thinner we make .a strip with Blcl as ,
N - .

> s

ne— edge, the more nearly rectangular it will become, and the more nearly its

- -

geometrical center lie on the median. And with homogenious\‘material a rectan- .
gila,‘r lamina would, if suspended at its ge&metrical cé‘nter, be in equiiibriwn.

Thus we may conceive of the ’Eriangle a.s made up of 1ndef1n1te1y *t,hln strlps, v’
. d - ¢ | . - .

with the’ equilibrium po:.rit of each -Zand therefore ‘the equillbrium pomt‘p,f all L

v, .

Q oonJoinedF-- Iying on this median See Fig 201 o '

s -

EMC ' ’ ;_. <. 'z.' : ) . BTN

’ :
. . " -
vt o e - . . Ve .
R et .



) Fig. 10. ° - -

’ . . ; . Lo~ PR . .9
-Bu} for precisely similar reasons the equilibrium point must alsq lie on ,"‘.«
' D~ N . . - P

the other two medians, so by the foregoing result this point must be G. Thus

_the“triangle, horizontally orientated, could be maintained in equilibrium by a°’
force equal to its welght acting vertically upwaxds at G. In short, the multi

L e\S' -
tude of gravita.tional forces gcting on the va.rious~bits of the lamina’ act as if °
,they Wwere a.ll condentrated at G. For this reason G 1is known,ag the center e
4 “ 4 . . i . .

of gravity,- or centroid, of the triangular lamina. .

" L. . ' ~ \’ . - ‘ . -
1.5 Second Application: ‘I'_h_gArea Under a Parsbola. - ) A

i - v 3

Archimeo.es"‘predecessors and contemporaries had tried, unsuccessful

. r R

compute the e.rea of an ellipse and the area under a hyper'bola Charact isti-

, to

cally, Archimedes tackled the othe; conic section --the para.bola. - and ‘Was "
-
successf\ll.ﬁ}{is success, caused a sensation,*as well it might for his method
M i~ P i - . - - . ,_':. P RN
lies at the threshold of the integral calculus. ‘?s )

*a

~ \e
] Unlike Archimedes, we have the notational convenienée a'fford by analyt--

~_ ical geometry.s The problem is to find the area. unde‘r thée \,pa.rabola. y = 2

' g %
. - ~—— |

~ ;
e 'between x =0 and x =.h, 1.e. the shaded area OAB of‘«Fig. 115 By considera- N

tions of symmetry it is visibly obvious that this is one ha.lf' the a.rea OBB

' one-half that between the given parabola and its mirror imege in- Ox, y = -a.xa. '

Caref“ully compare Figures 11 and 12, To any vertical strip PQ (of length
». e R S N T X > ) i ’

ax”) ‘at a distance x from "0 in Fig. 11 there is a corresponding vertical_

’ i strip P'Q' (of length ia.x) at a. distance x from O', in Mg. 12, As the

s

mtﬂpoint of PQ moves from 0 to A, and "to use a favdrite expﬁhssion of )
4» 4 * ) »22 - -, . A .

.
. . . . - .
D , Ceaas P s
y N P s . . %S
et . . ’ - e e > v 4 <
. 1 . - -

¥




-~ ™ " Fig. 12 <. yE-ax

Py »
. 3 o . .

Archimedes, "fills" the area OBBl3 the midéoint of P'Q' moves from 0" to

-A* and "f£ills" triangle O'B'B, . ' '

. Now study the conjunction of these figures in a vertigal plane given by
Fig, 13. -

5

N
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The lever .OA' has.fulcrum at, 0', where OO" = 1. We‘suppose the correspon.d- o
ing typical strips . PQ .P1Q' to have the same wigth ¢, and t};e homogeneous

) materia& of both bodies to be of unit denSity Thus the weight 6f the strip

PQ is 2ax -e-],, ‘and the weight of P'.Q’ is 2ax-e-i.1 But, obviously the

. -

*&center of gravity of PQ lies vertically below 0, so that the moment of PQ

L]

0

about o' is . . ,
: - O o
2 2 2
.007+(2ax"+€+1) = 1+(2ax +g-1) = 2ax"¢ .

4 2

“ - \ .7‘ i ~
And since P'Q' js at a distance x from O', its moment about O' is

* S x~(28:x;e~l) = 2axe . \
» e "o ., hetd
: . . v ¢ 0
T‘hus’ ) '.l .. ’ -
v * moment of PQ.about O' = moment of P'Q' about 0' ,¢ p
‘« Fid . -

and the corresponding strips counterbalance one another. But this result holds
- . ,

L . L] ) \

for each and every torrgsponding paiir! We conclyde that
- L ‘

.. . Moment of whole body QBR out 0! =) me_nt.of OB'BJ:' about 0f

1
. v /
¢ J . ;
. Let. W be the welight of "0BB,. A#B'B' Ims height OA' =h and base :
’ ) 3 ! .
B’Bl' = 2ah and therefore weight .v‘ 2ah+l = a.hz. This weight acts gs if
colﬁ’entrated at G, the centr01d of the A.- By a previous result G 1s two- .
. thirds the wa,&along 'OA’< a.nd our st equation becomes .
. ?%: N A o Em .
%? IR . 2 2
A - . o
b . . M.’M’_,o‘“\\x' . 4 = 3 h a-h ° " ’?: ~ - ’
So., remembering that our mazteri s are of¥ unit density, wg have , o .
¥ -t ?gm . - e
4 .
Y £ ” =
N irea OBB, = 2 a.‘n2 . - .
- = 1.3 e “ .
& - N Lo o
a.nd, remembering ‘bhe°symmet . > "
Ares. OAY under the parabola = -15 ah’ . "/1
. . \ ( . ,
v We conclude with tne elegg result that . ’
H ‘ o - e
- /s 1 N
.~ . ea OAB = 3 re cta:ngle OABC .

O g4l - o~ T2 . L
ERICTT Tmf S 3
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- known /mathematicians of the Renaisgance. That he hs.d initi used a .

1' ]:K

Aruitoxt provided by Eic:

-

. ¢ : - ‘ -
. Fig. 1k )

. . - * N : i kY

Of coursethis proof 'is not completely rigorous, since the strips

rese ) !
. . o .
‘PQ, P'Q', of thickness ¢, are not precisely rectangular. Yet it is intuitiw.y~
. .

evident that by meking ¢ sufficiently small we make the errors of these ap-
proximations as small as we please, so that for sufficiently small € the
difn‘.‘erence between the moments of -PQ and" Pt Q,’\ about O’ may Be made a;;bi-

traribr small. Furth@r articulation w0uld necessitate explication of the notion

of limit. To say this is not to smeer.at Archimedes 'pro”’o%“‘ by ‘his "mechani-
cal method,' as he called it: to the contrary, it is to suggest that \intuitive

proofs are often indispensable steppi.ng stones to better ones. Archimeded was

~

too good a mathematician to rest contex;t with this proof' he subsequently gave

-

a completely rigorous o%e by the "method of exhaustion. " The discovery (by

his mechanical method¥ of what was the right "formula was necessarily prior to

. - . e, . RN

proving i,t right. To g‘oof&, first’ dmtel your hare.
. 1 g £ ¢

Archimedes rigorous 'proof for the area under_the. ﬁr&bola, together 7

with a dozen or so other proot‘s including the ,Lg;ume of» the sphere, were

- *ﬁ*\\‘ -
. "mechanical method" was also known, but not the details. His cooking told = ~*

.

~nathing of his catchir_lg. .Cavs.lieri (1598-1647) devised a way, based on the .

intuit'ive*:‘qonsideration that 1f two figures have €qual ¢orresponding strips or
. . A o
cross_sections (e.g. , PQ and P’Q' in Fig. 13), then the corresponding tote.l

areas {or volumes) are equal. It was not until 1906 that a palimpsest giving °

the details, of Archimedes¥ mechanical method vas discovered in Istanbul, and

o - - - USRI

translatéd by Heiberg (185'&1928), the great Danish;expert .on-Greek mathematical

IcC -

N




texts, f{z}d this been available to Cavalieri, his develqopment, and consequently ‘

-
. - .

- ;o . .
that of Fermat, Newton, and Leibnitz, would have been radically different.

1 . . . -
Let us recapitulate. Ue began with the .question, "What is the law of :
% ’b—" ’
the lever?" Geometry, with "inarticylste" mechénics,ensbled us to find this _:é“
] N ‘ ' ' M SN,
law; successive applications of it, reducing a problem of three forcés to two,

to vone, detez:rr;ined the centroid of the triangle -~ _é.nd gave us, incidentally, a

.

theorem of geometry, The notion Lf centroid with yet another reapplication

of the law.of the lever gave us the area urger a parabola. This is typicgl

+ .

of the way matherma.tics works: beginnings almost too trivial to take seriously,

. ~ .
lead, w’d rep_ea.ted applica.tions, to new insights and new discoveries, which, , «
* mth repea.ted application yield yet further insight andydiscovez‘y . )

1.% . Third Application: The Law of the Crooked Lever. ° .

i

- X
A & We suppese a homogeneous beam to be freely‘ pivoted in a vertical plane

4 -

sbout a (orizontal) nail through its geometrical genter F, with weights

- l) 2 & b .
- h , . v
°

s

W. suspended from.it as illustrated b)" F:tg 15 and such that ‘ .
o

> . . W, 4 —_-‘W:Z. ’ (2)
. pr ¢ . 1710 22 ) -

Wooa W e T T
R . Fig. 15"i e - o,
& : - . ‘ \ ’ 3 ,! T . -
. The homogeneous beam being symmetrically placed a.bout F, 1its weighﬁ has ’
F A no effect cbn the equilibrium of "W 1 w2, the whole figure is in equilibrium. s
“-&& } o .
T — N C s
: What changes may we m@.}te in ,the suspens'ion of wl without disturbing = 7 ¥
gquilibrium .Supposing HI,to be a. constant weight, AlF must remain un- ) .

-

L tpmracaanee wacods X5 i
2> 2 cﬁanged, for otherwise the turning moment of W about P’ would be altered. . .

.

‘5‘ we all know ‘that the vertica.l pull of a weight on dts goint of,, suspensj.on i

EMC | ' 26 . . SR

. .
¥ p

ro, 2
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o
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X
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&

‘ equilibrium is

.
! T
=

“— F e

if the string 1tself is of negligible weight. Clearly“, W may be rgised

>

1 °{
lowered; what matters for equil;brium is that its 1ine of action, its support-"

Lay, N

ing string, passes vertically througp A1 See Fig. 16. N )

hd .

.
’

Az

Fig. 16 .

- ' ® 1Y

» (Study Fig. 16. Does it ma:tter,-ggi W-L are now.suspended from
Aty ALY

lo, o » respectively, instead of from Af;AQ? No, for the lines of ac@ons

of the two forces (and the forces themsel'ves, of ,course) are unchanged. .
—

But what is .the role of the beam in this secheme- of~things? Being

'homogeneous and suspended a.bout its geometrica.l center, it has no turning

moment ; 1t \is, in effect, weightless Its role is glven by its rigidity, whe;‘eby

the turning moments of Wl I}Je with points of appllcation A A2'/ are Just '

A2 It remeins merely to ideaYize a

~ o -
o

little more to reject its substance while retaining Pts rigidity.

the same as 1f these points hed been A

In short,

W, i W,
A 'FA \13 a crioked, weightless, rigid lever.

.
.
e
- *
N

L]
-




. 21’ <« *7

Hence, if @), @, are the ahgles which, A\'Fy A'F make with-the

.v‘ertica.l, we have ) ) J :

. , . ' _
5 £, -sinay =4, 4, .Sina2—f¢2 ,,

and, by (2) T - i T .
;.;u—\ PP, & ) - B ;- o , ,' N . *
. ' = ' - .
lel ' sin o W22-2 sin a, , . (3)

[ 4 :

f B -

the law for crooked levers. That is, the turning moment of a force 1s now the

product of the force, the length of the arm, and the s:me of the angle between

them. The factor~ sin o is the.price we pay f‘ar crookedness ‘Note that when
& ° -
@, 9, are "eacti 90°, since sin 90° =1, (3) becomes ’
. e t — . LI - M .
N . Wl zl W2 ‘12 s

o .
Cha.racteristicaﬁ.y,‘ our new result includes that from which 1t yas deduced.

.
.

Iet us turn te Pdrther developments. -

v L - .
Galileo (156‘24-161;2) was interested in the mechanics of the inclined

plane. He asked a.nd answered the question: . Glven & weight, W on a friction-

, less plane inclined at an angﬁfgﬁ‘d to the horizontal, what force w acting
: . . . .,

up_the plene is, nedessary to, prevent. %J from §liding’ down? See Fig. 18.

- h .
f ’
P o ,
' '
.
. - ’

Fig..3§  °
N e . *

Note that the p‘recise formulation of the problem is {tself a step toward solu-
L .

tion. The Inarticulate physics of %ioycligg mekes it obvious that the steeper

- * - ’
' the incline the greater the necessary re'straining force, Clea.rly oH iz a

" maximm when « = 90 and must then, w1thout any help from the mcllhe, support

-

the'f‘ull welght of W,_,otherwise w< W Thus it is appropriate‘ to deno!e the

»

Q - : : _ T
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) restraining foree by the sme.ller letter. ‘I‘his consideration suggests the ques-

JRP -~ e -
- 5 , -

. T ‘tion:™ Ts the designation of the angle of 1ncline by "a" entirely fortuitous?

4 Jonsid.er the notation of (3). Can the ?olution of Galileo's. ;grdblem be con-

- -~ vcei ‘of;as an - Fp;ﬂimt'iﬁ'ﬁ“ o?*’cﬁ'e law of tfe crooked lever’? Yes 5-given the
) ’ N Y \ . ‘ T
s = inggpgy;xnf‘“d‘“ileo. . . ¢
(S : . - M r -

First, since vertical forc;:s are better understood, Galileo converts W .

acting yp the inclined plane into a./vertical force by int?oduclng.a friction-
-
less pulley wheel ahd a weightless string, thus: ) “w . v

H s
. . O A .
s 5

, Fig.-19 @‘, .

.
.

" This sttategem may not appear at first sight to advance solution of the problem.

‘But vhet is the problem? Whet welght w 1is needed to counterbalance W? If

.
rd -
pu—— 14

these are in eq_uilibrium,there is a certain constraint‘between them. The

connecting string being inextensible, if W moves up Qr down the incline a ’
Yo~ f IS
distance d then W moves vertica.lly up or down thé same distance.. Galileo
had the great insight to sle that. this constraint could be realized in a dif-
.Perent i:ay-- by the introduction of & crooked lever. See Fig. 2_0.
. - ! Sl : - . » s FO IV B R i - d
" - ~ h
| ’
’ . | e -
P
.;“‘ ’ &
‘ - re.
w [y

3 : Fig. 20 ,

AlFA2 is an eq_ual-armed, crooked (and rigid but weightless) lever with ful- '
M
. crum F.- Al is the center of gravity of W and FAl is perpendicular to

the inclined pla.ne; . 1s any., poin*b on' the lipe of action of w,\ and FA
2 "o ’y | 2

/- is horizontal. ‘I‘o satisfy ouré%lves tha.t a point F, satisfying these

[MC ’ o T 99 - . .\\' ]
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Ay is"the locus of points equidistent from AV end Ag"f.

If the lever is rotated ebout F in a vertical plane, since the lever , .
. v ‘ e -
is equal- armd, Al’ trace out arcs of equal circles. The smaller the -° ’ o

rotation the more nea.rly these/ arcs approximate to straight lfnes, «i.e., :
Pl N .

for infinitesmal rbtations the disylacemen»t of——A__L {(the center of gravity of

=« a %

. W) along the inclined plane is the same as the vertical displacement of A2, .

and therefore the same as that of w. Thus the constraint realized by strfqg
and pulley may, alternatively) be realized by the crooked lever AlFA2 But'
" we know the conditions for equilibrium with crooked levers, so thai the problem -

is, in principle, solved. \

Now, the details. . . . )

) . Fig. 21 . ./ .

N

/ ~
From Fig. 21 it is cledr that the angle. between the arm AlF and the vertical

. line of action of W at Al is a. So, by the foregoing considerations, w.e '
see that the condltions for w to maintain W in equilibrium on an inclined :
- ! DURIUR G N DU

, plane of a.ngle a are equivalent to those for equilibrium in tbe following

-

situation. “ ) ' R

>

-
v .
¥ h . . )
. - » (-
\ ‘
L)
”~ R )
..
» L4 :
P
b ]
B
-
; L
.
) - e
.
‘. k) . ’
: \
AY
' i iy e mbeinents 8 et i s .
A .
.
.
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‘ : ’ P
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o T : wed | Lo
o / 3 . . Yo ) . - //
* < : - v 2"{*
-y s - - %
P \ cﬁl
By the law of the crooked lever,
s since wh '+ sin 9° =wb-1 . -
- ‘.. . . .
. L Wi = WA sin ¢
= so thdt \
AT na = , "\
Co - i W=W sing ’

.

MC .

.

Ly

This is t\h?la’%v of the 'inclined plane.

! [y

. ‘

. s
\
¢
g. \
\
s

y ¥
,,

1.6 Stevin: The Law of the Inclined Elane ,r.;,\:

~

There is another proof,o a most eiegant proof; due to a Dutch mathematician

Simon Stevin or Stevinus (15h8 1620) Although’Staan‘ﬂzaS one of the most bril-
. é»/'
liant applied mathema‘tlcians who ever lived,he is less well known than Ga.lileo;
a Ay

he was not threatened with death by burning at the stake. He invented the i‘irst

* hotseless carriage ; & saiiing carriage for use on the dunes of'the Dutch cc;ast;
_,_—a

he constructed famous dikes still in use today, and feeling pra%cal need for

the facility of detimal fractions , he invented them. For him, mathematics, to
-

4 . . BN

be any good, ‘ad to be good for something. . . % °

Let us see how he proved the®law of bh.e inclined i)lane , that the force

;7

_acting down it ‘due tq W, when the angle of inclin'a’tion is ¢, is W sin q.

~

His proof is based on the followiné figure.

~ &

- . ‘ “D'\‘, 9

‘)%; . . Fig. 23 Ce e s . f'

Stevin was so pleased with his proof that this diagram graced as vignette , with

I .

the inScr }}‘on, "It looks like a miracle, but it is not a miracle, is the
- " - . ‘

,[‘

[ RN
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+

title page of h'iS treatise on mechanics. He had good cause for his pleasure,
. ( ;\ ¢
ho\:«} the law of the inclined plane follows from the equilibrium of a heavy rope,
N . 4
; with joined ends, when suspended over & triangular prism, is &pvious only to a
. ‘

.
-

. man of his, genius . ’

) 1 v " ‘ . ‘ S
wRiippose the he@m rope to be in motion initially. This supRosition raises

- PRI - B - .

A
the qu'es%ion, when will” t stop rotating?/ Its rotation is ‘caused by the forces °

racting Iipan 4t. But for every particle jof ropeée that goes down, say,

an identical°particle moves up at A

. ,s«’

motion stlll- persist. Therefcl\re, since 1t,;is rotating in1t1a1_ly, it must con-

9'-v
tinue to rotate forever.‘n We have a perpetual motion machine and caj use its

. by

(B s

power to drive a dynamo.

A

We feel, as Stevin felt, that this conflusn.on is absurd.
heavy rope is in equilibrium or it is not. With hi_.m, we have no
" but to conclude that th; rope must be in e‘q_uilibrium
Undoubtedly the portion of the rope hanging below the tri ngle hangs
syzmnetrically, t}?e downward force at A is counterbalanced by an eq_ual down-
ward force at C.

v

moval of the~portion ADC,

, Thus, since the rope ABC is in eq_uilibr before ﬁhe re- -

it must remein in equilibyium af er its removal.

s 3

That is ), thé force acting down the one incline due to.the eight of the fope

PR

,p"
BA cou.nterbalances the force acting dowh the other due

*

rope BC.' ' See Fig. 24.

[N .I
»'% , A~ —
) :ur," ~ Fig. 24 LA
.\2 R ) :‘ ‘, [l ,P x ) - \ . ‘) h . 4
;. The force P qecessary to 4preve\nt a weig f W from sliding f;_own en in-
* ‘ . .“ ! :
elined plane of angle 6,, depends on -}'e'. F iwcr‘eases as @ | increases, F .

decreases as 6 decreases; that is, .F is a function of 6, .58y, £(0). Also,

, e -
l: l C ) ’
. - hl
. K . . . - . A : .
e Provided by ERIC. . PR b . 5 .
o .
Y . .
; ’“1\“ . 5 . B n . B . P




. . Ik
of course, F depends on W. If for a given incline W is Qoubled then F
7 * . - 4

1s doubled. F varies both as W veries and as 6 varies, that is,

.

. - F = w(f(}a)) )

-

.The problem is to specify f£(6). Sge Fig. 25,

.

e e et s S

. i ‘w . X
Wé

Uy b )

1

.
’

Fig. 25

.

‘ -
o -

Let p Dbe the density of the rope, i.e., ‘the weight of unit length, so

that the weight of the rope AB is ap and that of BC 'is bp. Then, since
. S
AB “is inclined at angle ¢ to the horizontal the force Fl to prevent it

slipping down is given by ) .

- «

-

R o=a0 - 2(d) )

Likewise, the force F2 to prevent BC slipping down it‘:s ;‘.ncl'ine of a.ng]y.e B is .

! : . N e -
P - PEY Lok e s e e

F, =%bp - £(B) .

But since the rope .AB count'erba.lances' the rope BC

. . ¢

’

s

so, by (3): (2"): and (5);
. ap - fk;x) = bp . £(B)

and from the geometry of Fig. (2 h;

' .a =B _
. sin

.,EK

BRI A1 7ex Provided by ERIC
s
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. - J 2r N ., .
giving ' , -
o ‘L ‘. , b []
- ! h _ "
| sina P’ (o) “sing® f(.B) .
so that . -
‘ SN flo) _ ‘e8] 7 ‘ .
- . sina ~ sin‘B d
\ ~
Bﬁt Stevin's argument is appllcable to any arbitrarx,,,triangle ABC. No
matter what non-obtuse angle o we have selected for the one incline, we are
, free to Select B for the other incline independently, of our first choice. If .
o Ve teke another case of Fig. 24 with angles «, B' we simila.z"ly‘ deduce T
' £(a)  _£(B')
e sin @ = sin/B!
) ) ] »
giving, with- owr first result, ; "
. p / ’, S
P (o) _£(8) . _£(B .
R sin ¢ \sin B 7 sin (B! .7 .
s ¥ N .
[N £(6 “ i A
i.e,, in 8 ° C, is azgonstant, &nd any non-obtuse angle 8. Hence,
in (3), we have
-l;wé»*»‘ 3 WJA'; ' F :-=‘W~-. c -sin—@:e-:-‘—"-’““““ ’ (6)" Lo l;"“,&“"‘ ~t
» 3_;5 A - ' ,
It remains to determine 0'; When 6 = 90°, ~ W is as if suspended adjacent

to a vertical wall, and clearly f’ =W,

- g
f

-'
* a

wlli M

o g L]

substituting in (6), we have,

~3

- N T2y ¢
) W=W-Cwsin90° =W %¢C - 1
therefore, =1 v
- '
", and ) . =Y sin 6 ] ‘
o . i .
+ — 1 h
. . . /
QO
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1.7 In conclusion . . , >

Although I have made this derivat#on much longer than need be, T feel it
A

well worthwhile to teach. It has the advantage of Introducing the ndtion of a
A e .

function in a natural way. I know it is "modern" to teach children that a fupc-

.
]

tion is an ordered pair, and that a nine-yéar-old sounds so sweet when he tells

4 7 - . o .
you so. " Wou.'Ldn',t it Be nice if the nine-year-old knew what to do with an ordered
. . [ -~ [

pair? Matheaticians evolved the notion of function because the}r had a need;

it enables them to cope with situations in which this depends on that That this
{ ioa
ﬁtﬁs*ﬁ&&tﬂp%ddence‘*is up*’g;gg, same logical tree as the son-fathe7 relationship

comes much later. In teachipg, never put.logical carts before h¥uristic horses.

Do remenber the inscription Stevin gave his diagrazrv "It 1odks‘lﬂ<e at
" e
miracle, but it is .not a miracle The endiess rope which does not slide pon
' )
’ the triangle -contains » so,to speak, the law of the incm fplane. Stevin's

achievement was to make thlS unanalyzed, inarticulate knowledge, acrticulate

What at first sight is apparently miraculous , We see subsequently to be no more .
a
miraculous than other items we, regard as self evident. His work is characteris-
’ ‘ . . e
" ’

tic of the first rate in applied xpéthematics.

A =

The law of the J#ver has mAny other applications, but I have no more time. .
” -
I hope I have given you some insight into the driving force .of mathematics and
. . \
some Jdea of how good mathematicians go, initially, about their business.
- ey

Wy >

\ at work have we considéred? .Archi.medes as simplified by, Lagrange ) then

RIC | | 35%.__ ..

PR A .1 70x rovided by ERIC

Galileo'sy then Stevin's. The sequence is not entirely fortuitous. Mankind has

found its wey by groping, by trial ahd successive correctiori, by clo'ser approx-

ar

imation to tie truth. * Oh, yes s there have been tremendous blunders in the,

devéiopment of mathematics and scienee, bu hgadly, speaking the work of first-
. v - Wa&’* .

rate men of one era.has been used as a foundaf;d.on for their work by the first- R
)
rate men of the\succeeding era. Mechani(;s, as we have said, is the alphabet of

of "science. Thus the sequence in which fruitful concepts-evolved is a first
indicationnf\ the Sequence in which to teach them.. ‘The history of ideas concerns®

-

itsel? with all concepts, good, indifferent, and bad. s\'.[b the contra.ry, the

’

(%)

>

£

-




i

e - '
/ \ .

génetic method concerns itself only with the good ohes,_ except imsofar as

™ “ . , .
their contrast with ba. ideas can serve to show what makes better ideas better.

'I'aﬁvconclude this lecture may I remin,d.you that the initial devélopment of

-

1

. « I b > 4

meg:h@nics"\‘was not, a fu.ll(:lown axiomatic treatment. Are your students abler
, * - ' ’

4

than Archimédes? |

A Fuirrex provided by enc
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- - \) .Chapter 2.. Growth Functions. . . .

}iats, therefore hat pegs; gr.owth, therefore growth functions. What could

‘* be a-moré natu.ral introduction to, the concept of function thaﬁ growth problems‘?

- & *

In the f st section I show how the exponential law of growth is deri*red €rom

1

-a functiona equation that ises naturally from its context In the second
P

9
section we*gonsider an application by Me.xwell “of this result. Next, impo_nsid-

v

ering populé.tion growth we, are led from functional to recursive equations.

Their use is further elegantly exemplified in the fourth section by considering

.

the,"growth" of the number of .sides of a regular polygon of f1xed perlmeter,

PN

: thereby giving Cusa:\‘s’ formula for m. - o ‘o . )

< . .
2.1  The Exponential ‘Law of-Growth. L ¢ - L N

How much timber is there in a fore'sq Trees grow. The older the forest,..
the bigger the thees. The.bigger the trees, the greater the amount of wood:

Provided that there are no forest fires and no trees die, the volume of wood

increases with time. The volume of timber depends upon when the forest was
. ¢ ‘ .

;P;Lgntedi it is a function of the time for whieh the trees h:?been groﬁng.

Doesn't this situation invite introduction of a mathepatical notation"l

We irLtroduce one. "N t)" is to be read as the volume of timber in cubic feet
I < ’

. say) in ‘a given forest t years after it was planted." Thus N(O) is the

volmne of timber in the given forest 0 years after it was planted, i.e., N(O)
-~

is the volume of timber initially. B \

But the volume ©of timber\ in the give/n forest after t years, N(t), does”

. not depend only upon the time for which it hag been growing; als?, it depends

v

» Tupon the’size of the forest originally, .N(0). And how does N(t) depend upon

N(O)? We take it as obvious that if a forest had originally been tvice as big
v . - . \ ’

- . then it would_now be _twite ag big as it is; if originally three tin_les.\the orig- o .

.
’

inal size,/now three times its present size; if originally four times che',orig- '

nal size, now four times the present size; and so on. More precisely, supposing®

L]
re

‘:’4‘;,“ - 'l. .37‘

L . ° N S ‘ e

’

oe




i A
i v F

that the gi n forest has-been growihg for tl years, itg present volume of
timber “wou f1 be N(tI)‘ or 2N(t1) —or 3N(t ‘), or ; N(tl), or whatever, .
accordmg s its orlginal volume was N(o), _or= 2N(O)J or-—3N(>O')' “or lLi‘I(O)

‘or whatev 1t vas, respectively. “Thus the “relation betweeri N(t ) endN(0) is

v
) i such that . ' - - ) . s . mh_f S St -.v Lo
/ : ) # '
Me) pH(t) - 3Hy) w( 2) -
o) ~ [2Wo)” - 3%(0) hN(T Ze eas F kl, where kl is a constant
'( ) -
. ~~a - . - l ‘ b
so thay ° _ ' ..
v 4 . -~ s
-k . ’ , )
, ; . N(ty) =k NQ). S (1) .
| . . . )
'I'his fis the ma.thematical statement of the assumption that the present (at time ~
1) yolume of” timber is directly proportional tb" the origlnal amount +» This ,
. - e vv————-hL—o-—-"v-
» ass tion merely amou.nts to assuming non- interference of different trees in the
) , forst, one with another; they grow independently. ’
If, alternaig:'i};gly,,\we had supposed the forests to grow for t2 years, v
would have toncluded that e \ - . T
e T : N(t,) = k, N(O - 2 !
’ | M) =k WO) ' @ :,
., . ¢
where k2 is some constant. \us raises the question: Does 1 = k2? Well,
e ) ~ ’ . - - -
suppose “them equal. What follows‘z' ) .
- o N . . " [
- . SRR CHIE C . .»

i.e.,that the volume of timber in the given forest 1s the same after t ‘Vears .

- i\t\ »
as it was after. tl years. The consequence is that there would have been no
[N e [ .
. . ‘ N ;b
growth at ‘all rfor t2 tl Zears. , , . ' N .

~But with forethought we could have foreseelnxthis' consequence. (1} or ey
tellsbut half the story; the present size of tHe forest depends not only on its
origina] *siZe, but p.lso on the time for which it has been growing; N(t) de.pends
o t. as well as on N(0). So, to"te!.l the whole story, k Mn (1) must de-

o nend on, or be &, function of, ty5 ‘and k2 in (2) must depend on,or be a ﬁmction

ST e

g, . 2 . - e




of, t

where

n

. ‘ ~33

-

§ON(t) = % N0)

s

k depends on ' t.

Although we know that k depends on tf-

.

' »

N

\w.

. J:.

-+

- - -
“,

That is, (1), (2) must be exemplificat\ioi of a lﬁ’r of the pattexn '_*_

..

r

we do not know how k depends

on t._

éo we must leave the nature of the relationship unspecified, and write

that k -~f(t),

.

Note that putting t =

-

s0 that

1

)

3 ¢ *

Q‘

N(t,) = N(0) -+ £(t;) , - N(t,)

. ky

giving

3

»
.

A

tl,

]

= f(tl)

. N(t) = N(O) - £(t) .

~

t =t successively, we get

2)

IS

= ¥(0) - £(t,)

5 =‘f(t2)

a

)

-

.
. »

s0 that kl’ k, are constants as required by (l), (2); but that K is fixed in .

’ }lue for a given

for different val

timber in one tree after t years of growth, then N(O) trees

[

game period have a total value/oﬂ'timber of N(O) - f("t),

forest after t years,

With hindsight, we can now see (3) as o'bvious.

We must use ($) to specify f£(t).
. J

of

-

forest was planted at the

E)
size

.

N(5)

satisfies the

What’is its size in 19117

after p];?.nt ing?

one in terms of its

+hf= nther in terms of its additional growth since 1905, 6 years ago.

[mc

PAruntext provided oy enic [l

*v

-
TwO wWays

growt

ue of t 1is not to imply that X has the same fixed vhlue : A
s

N(t).

- -
.-

t. . T

-
.

- N

If f£(t) _is the yolume of

growing for the .

-~

the volume of the. .

o . .
3

= ,

A J

Suppc;se for ease of exposition that our --

turn of the century. Then 5 years later, in 1305, its -

equation ) p
q - )

N(5) =‘N(O)‘- £(5) .

-~

N—

Whet,‘ in other words, is the size (5 ¥ 6) years
0 ! ‘ »
of answering this question now present then}selves': the .

V4
h since it was planted in 1900,

>

{5 + 6f years agoj




- " ' R

a

(R the first answer is - o~ - ;f"wfa;?;

-

o N5+ 6) SH(0) - £(506) . (5) .

ot ~ 3 2 . » ¥
. . .
«

. J
The second enswer is slighilass obvious. We now consider our forest as if

it had been plarrted~in 1905 Wwit#the initiel size .o
~< < rm—— . -

. [N(0) - £(5)) -- see (4)--and had grown for only 6 yeers. lBy%(3), we have s
. . ’ ' <

o T W6 = o) - 2(5)) - £(6) «(6)

. . .

. (the bar in "N(6)" 1is used to remind us that "€" refers to 6 years after 1905,

not 1900) .¢ » '

But thesertwo answers, Eiven by (5) and €6), must be the same, for N(S + 6),

the volgme of wood in, our forest (5 +, 6) yeers after 1900, is the volume of

A

wood there, "N(6), 6 years after 1905. ConSequer}tly, . "

o N(6) "+ £(5 + 6) =.[N(0) - £(5)) - f(6)

N o .
.- ~ [ - «

which gives the functional equation .. & ‘?rgy e

% « ~.‘\’v{
- 3{5\. - %
‘ Lo £(5 + 6) = £(5) - £(6) . . < s

. -

& . . N ar . ‘.

The specific periods, 5 and 6 years, were used for ease of exposition.
4

The e.x;gt.klment may "E;e repeated w:j.tgx the pnsPecifie'd a.lrbitrary‘periods tl, t2 » .
N e - ; >

giving S ‘ : .

- T+ )= 2(e) 2, (1)
- [ 3 P 3

& .
f‘ e - "

. .the fun%%onal equation that the function of . the sum is_equal to the product .

v - ’

of the functions .

N o
o . g
. . v

Noté that ta deduce, this equation I did%not need al:]y techni%é.l knowledge.

. L3 ¢ > ;
of’ bi.o].ggy or forestry That I merely made articulake what we all know even ,
M TadiE 4

— though we never stopped to think about it is evidenced by your immediate

acceptance of my: premises i . z - »

o . -

. . * K S B
i - '40 : o e w2 “
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. where n,

y o\

Let us use the functiona.l equa’tion, (7), to sPecify f(t)

Pyagen

2

/ £(2t) =£(t) - £(t) = £(£)% , -
and with t) =%, ty =26+ } ° -

' . ) .

s 5
- L) - o) - 22 - 2= £(t)

» - These results lead us

A
4

» a

the consequence of which, since

m —
' f(nt) = £(t+n-1-t) =
is that -
. f(nt)
. ) N ‘ Q - >
Bt £(1-8) = £(t) = ()t - ‘

"™  “so that (8) holds when. n =

%

. A
Thus, werhave

M ‘q A T -
.A»"b. ,' .

\

1: - 'Ruf puttizfg

[mc T

’

; L . ‘9
PR oo . -
.r’x“ < AR

Raisipg to’the mth pover,
o, o~

L f(l) r(n)"

£(t) - £(t)

)

°

t
i

3

to supposé that ‘ )
‘r’"
- (BT t), = £(e)PL
v
~

1,

\1

.

. -

-f(nt)

f(mt)

m are positive integers.

- ° WO
. "‘ Puttinz t =;—]; in (8) ¢ »
.ty ': o * * )
. Thiing the nth root ) 1
< T % ’ f(l)n
S )L;V\\\‘m\ “ e MpE vy v wda Y AN

£(t) - f(,;;'x-—l-t)t '

= £(t)"a -

and consequently by

.3 4,

AN

@
L d

‘

matical i’nduéjti‘on "(8) holds for every positive integer n.

N
t &

3

2"

()t A

f@“f

in (9), [
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Putiing
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%he principle of mathe-
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N
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]

‘4).-

“

. “ \
* , Therefore, .. - m\ %1 > )
_ o o) =£) . B _

. ‘ ) v . ‘-
Puttipg %1 =t and f(l) = a, “we obtain specification of £(t), namely,
LY . ~ . . F] )
at . o (20)

Cost)

v

where a 1s a constant since £(1) is-a constant, and t 1is any positive .
-~ &
rational since wm,n are ar'bitrary Positive integers. This is «known as the

. ’ N\
. exponential function. . ~

, N ‘ ’
Hence, by (3) the law of growth for our forest "becomes

: ST N x(o) et . (0),
. Y

¢

the value of a depending upon the ki_nd of forest copsidered. ,
. T (Strictly speaking f(t)* has been defined only for ration;.l values of‘
t; 'but if 1t is conceded that a forest grows continuelly, then obviously (10)
is to 'be accepted, for all (real) values of t. Whether this point should be
discussed or not discussed depends upon the matu.rity of ydur students ) -
We have answered the question: Héw much timber is there in a forest? . -
Yet it takes 'but slight reflection‘ to see that the_law of growth need ?not be
applicable solely to forests. Of course, it is applica'bie to any phenomenon
whose Erowth oceurs as the growth of trees oceur., And how do trees grow? Trees .

grow in such a way ‘Ehat the amount of growth made. in any period is proportional ‘::n

to the a.mount of %lood growing at the beginning of that period. ‘. ‘ ' -y
> I . is

It is important to be clea?.r on this point. Part of our] inarticulate - }:

).

< common knowlgdge ,»it is readily (articulated by the law of growth. N(t), N(t + l) sk

o

N(t +2) beIng"'L'he volu.mes of éimber in a glven forest at the end of t, . {

. ’ \‘ ‘

t+1, t+2 yea.rs, respectively, N(t + l) - N(t), N(t + 2) 3- N(t + l) are \

the amounts of growth in the (t‘ ¥ 1)th a.nd (t + 2)th years. By (10), i

i [ - -

th b - '

M+ 1) - N(d) = Wo) ¢ (a*fa") A3(0) - a¥(a- 1) = (2 - ) - n(b) . i
Qo iV e A2 ’ .
ERIC A -

r |
l ? ’ "‘ %I’
. t
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Similarly, \ - l
.

.

o

N(t"" 2) - N(’t + 'l)‘ = (8. _‘-l)‘N(th.'. l) .

\
s

In words: the a.mount of growth in the tth year i; (a - 1) times the amount

’
¢

A a.vailabl,e to growth a.t the beginning of that ‘year, a.nd the a.mount of growth in

the (t + 1)'Ch year is (a - 1) times the a.mount aveilable to growth'at the 3

sbeginning of that yedr. Bui that t is measured in years is irrelevant; we

could hava measured t in seconds; we could have ‘teken one-millionth of a

w

second to be our unit of time. It follows that, the amount .of.g;’owt:h in any

instant is proportional to the amount of material availeble to growth at the

.

. Al N °
+beginning of that instant; i.e.,that‘the instantaneous rate of growth is propor-

’ »

tional to the ‘amount of growing material.

.  What grows in this way, as trees grow? If.in (10) & were less than 1 the 4
- v . . » P

trees would grxow smaller, 1. e.,decay. ¥t“1s kxnown that the rule of decay of

-

radiocactive material is proportiona.l to the amount of material available; con- '

v * : '

sequently the law of growth is applicable. When a ray of light passes through
' é“‘f" .

an absorbing .medium, 'the intensity of th'e light is weakened by the passage; the’

¥

weakening is “proportional to the intsr;sity. 'llgu.s tl}e_ la.wi‘c‘Jf growth is also ap-.

plicable here. Weshave . !

[N

’ - »
- S N -~ ~

> S+ I{x) = 1(0) a*

. -, e -
f - .
‘ . P

v;here= 1(0) 1is the intensity of the incident light ray at the surface of the

-
absorbing medium, I(;c) (the intensity at a depth x within the absorbing
: medium, a.nd a (less than one) the a.bsorption fector. ~ g
) Compound, as oppose%i to simple, interest is another exal;;ple.‘ With simple .
] ; in:l:eres‘l": the rate of g:rowth of the investment (supposing interest to be left on o
? deposit)_is .%o;nsfan't and is proportional tc; the capital invested initiall&.

v’.

The amount of interest eaynéd in the thirtieth.ye.ar is the same as that earned :

.in the third year, If, to the contrary, interest payafble on capital is pérmit-

Q

SR et e e o b Mo

v ted to accrue as additional ca.pita.l a.nd the total capital to da.te (1. e.,initial

“
H ! . .

RIS e preppva ey




- ital C~’ at the end of n years would be'given,hy

+
PAruitext providea oy enic [l

o -
-

"thvestment plus accrued interest) grovs at a rate proportional to the total =,
capital to date (not” proportionally to the capital initially), then intgrest

is said to be compounded. -

@ N

' ’ - \
If interest is permitted to acecrue as capital at yearly intervals, the in-
terest is said to be compounded annually. Of course, in this event the amount

of 1nterest earned in the th1rt1eth year vastly exceeds that earned in the third

-

year, for the capital grows with the-interest. The formule is

: - 4
C 6 =C,a _ (11)

where CO is the capital initially, C - the total capital at the end of n*

years, and a a constant depending upon the annual rate of interest. “If in-

terest is compounded at more frequent (or less frequent) regular intervals,

then n is to be taken as the number of times interest has been permitted to

h < 2 . »

accrue as capital, Cn the total capital after the nth increment, and a a

-
.

constant depending upon the rate of interest for'the intervals in question,
\sgmiannual, quarterly, or whatever it may be. With this application of the
N
law of growth there is merely the differénce that n is restricted to integers. ¢

Interest could be compounded daily or at’ far more frequent 1ntervals. .

-

Though your bank manager might ngt agree, you could argue that an instant after
1nvesting your capitéi—?gu should be éntitled to an instant'’s interest. of

course, calculated pro rata with the annqual rate this would be _small. Nevér-

theless, with your money growing continually you might be tempted to suppose
that you would become 1nfinitely rich in a year or two -~ until you tempéred

your wi, hful‘ thinking with the somber reminder-that this growth would also be
;S gr

-

governe@ by the general law of growth. It turns out that if your capiwal C
was invested at 1004 per anoum compounded instantaneously, then your total tap-

1
L -

n .
l H . d

i

. X n
o o ) Cn = CO e .

- I ' * ’
where e, a rumber of great 1mportance in mathematics, is the base of Naperian <

’l LY .

logarithms. This formula was first d yced by Bernoulli. Note that it.exemplifies

. T 1A " C A4 .
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The only difference is that since the increment

the general law, with & = e.

.

periods are instentaneous, n is not restricted to integrsl values. Futting

-

n =-1, ‘we conclude that in the time C would double ifself at 100% simple

interest, wit® the interest tontinually .compounded it becomes C d. Approxi-

mately e = 2.718, so, investors please note, while the one way $100 becomes

.

$200, the other way it grows’ to nearly $272. : ‘ )

%

To recapitulate' I have shown how the concept of function and the barest

rudiments of functional equation theory may be uoed. to deduce the exponential

‘

law of growth, end I have indicated fields of application.

- o

2.2 l«hxwell s Derlvation of the Law of E'orors. ’ {

¢ N ‘

‘ In this section we consider Gauss' law of errors (Causs 1777-1855). We
«
shall find that Maxwell's (Maxwell 1831-1879) ingenious derivation of 1t depends.

upon the solution of & functional equation. This solution is an application of

the exgonential lay functional equation considered in the ’last section.
L

When at the beginning of the last century astronomers, physicists, and
surveyors started to make very precise meastrements, it was realized that there

B

J;.s no such thing as an absolntely accurate measurement. ‘ /

First consider the question of a single observation. Astronomers chart

‘

the stars as 3ccurately as they know how, yet two astronomers seldom observe
, the sa.:me-star as bging 1in the samg position/--thotllgh it is in the same posi-

THe figures expressing their measurements.are apt tc differ in the last )

N H

3 tion.

decimal place or two.

'l‘o come nearer home, the spring in _your bathroom scale becomes fatigued.

and loses & little of its springiness. With changes in temperature bits of .
¥

‘

&
, metel alter in length and SO modify its mechanism. It over-conscientiou,s about
3 N ; .
your weight, you may evade many of, theése contributians to inaccuracy by.resort-

e

ing to an eq_ual-\arm balance of appropriate dimensions. But even the arms of

. balances become tired and droop & little. Better designed and more carefully

e e \
) N consﬁmcted instruments measure more accurately, yet it is always a question,of/

4 &

o ‘ :

. ERIC - - 45 :
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.




more or less better; t.here are no absolutely' accurate meas}’lr’jng devices. _.}Je

. .

include the human eye reading a pointer against a graduated scale.

We suppose you, afflicted by a welght-reducing fad, weighed yourself on

T

- N
-

three bathroom scales this moxning, their' readings ‘being 201, 207, 204 pounds.

[

S e,
.

Your problem: What was my weight this morning? Possibly you would, in the

absence of a known welight with which to test the scales, take the arithmetic
average, 203 pounds, as correct. You would éonclude almost with certainty that
you did not weigh BOO/ﬁunds, and think it very unlikely that you were as much

as 250. Surely the further removed the estmated figure from 203 or\there-
\ /
v . } . ,
abouts, the more unlikely its correctness. /"7\ | #11 .
4 .
/Ai L4 * Y -

P T =
JUninvited, the notion of probabllity intrudes upon the scene

. Gertain } Wt
v - o \_‘ v W \\‘ -
. of the correct figure we cannot be certain of the error of,_\\ measm‘e%df'r;{

? T S
.ing; the most we can ask is such questions as,"What is the elihood that. the \

’

observed reading n does not differ from the actual measure by, say, more than

~ N

&
i l% n?" The general answer to questions of this sort is called the law of errors.

.

,r With this answer we shaLD be Qresently concerned

Secondly, cons1der the question of the combination of obﬁervations. Al-

0 v - ¢ "'f

though hundreds of physicists have ma.de measurements from which to deduce the

LI A\
[ L

B

velocit}_%g;f light, no two physcists have obtained exactly.the same result. The
das . , )

ded@ed number being dependent upon seyeral measurements ,» each subject to erro.k ¢
— - ..

the final\result nec'essarilz incorporates a combination of these: errors. -

.

Consider, for simplicity, the following example. A square lamina of side

5 u.nits is measured as having sidés of. 5.1 and &, 9 units. So whereas the actual(
area is 25 squa;r'e vunlté, the area deduced on the basis of our measurements is :
. ' !

T2k, 99, Althouéh there is a 2% error in each \of ou; measurements there is only
- a -21'5-’ of 1%°error’ in the final result. One Ime.asuzi.e;nent was too big, the other
too small, so that each error tends to annul the inaccuracy due to the other.“ -

But this oversimplifies, the point being that we never know with certainty the

A .actual errors. A more realistic question isnL If 1% is 95% certain tha,t the -«

PRy
. A

" errof in each of our measurements does not exceed 2%, what is the probability

> T : 46 P
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e [y
that the error in the area calculated on the basis of these measurements does *

not exceed, say, 142 ) ) . R

3

We have briefly 1nd1cated the k1nd of problem this line of thought leads

to: now we must return to what it leads from,; the probability of guch and

' - &
such an error in a single measurement., As we have said, the general answer to

this latter question is known as the law of-errors. /
. 1 v »> [
The law was first derrved by Gauss in the masterly way characteristic of
[ 4 . -

this~great mathematician; but his ‘approach to the problem was so abstract that

Maxwell, among others, was only partially convinced of the correctness of his
derivation. It lacked that down-to-earthness found in, for'example, Stevin's

9

‘deduction of the law of the inclined plane. Maxwell was led to exdmine Gauss'
proof when he needed the law of errors to further develop statistically the,
kinetic theory of gases. He was concerned with the down-to;earth conception of
the beﬁav}or of & gas as that of billions'of_molecules'daﬁting to end fro,

pushing against the walls of their enclosure, so it is perhaps not too sur-

N

prising that he came up with a marvelous, 1mmediately graspable, proof.- Yet

.
- - ~

on second thoughts it is most surprlsing, many contemporary physicists shared
"his d;ssatiszactlon, but none his dlscovery; Su is the prerogative of genius.
K3 . ) ~ [

From.the problem of molecules impinging on the walls of their enclosure,

Maxwell turned to that of bullets hitting a target. Let us consider his deri-
: . ‘a .

-

2 .
vation of the law of errors.

»

¢ i .

Consider the marksman who misses the bull's;eyg. Tyﬁically, the, (prlntable)

N

phrase he usgs to describe his shot, is one of the following sort: ‘to the

right of center, on center, but too far to Ehe left, on cEnter, but tOo hlgh,
i{& - ' v ,\ v t
to the right of center and %oo hlgh, “left of center gnd lowe He r;fers to'his

| o
bulletis position as & combination\of two errors,,a horizontal and al vertical

] ( ! )

\h‘.: »

J

v -
»|

deviation ﬁrom the bull's-eye. Taking our cne from him,we,introduce rectangular .

s

- e ) S
coordinate axes with origin at the bulI's-eTe and x-axis‘ﬁorizontal.<:H(x,y) .

is the position of his hit.




-\.

-

' >
; oL e

-

If a marksmsn is standing in a fixed positir% at a certain distance from

the ta.rget what is his proebsbility of hitting the bull's-eye? First this

w1l_l depe.nd, upon the size of the bull's-eye. “Surely we are agreed that, :Lf it

N

is no bigéer than the point of a pin, then it is practically impossible to hit;

ami that if it is conceived of as a mathematical point, then the probability of

hitting it is zero.

Y

Thus we must reformulate our questions: instead of asking,

i

"What is the probability of hitting (0,0)2" we must ask,

of .hitting the target within the neighborhood of 0,0)?" The general questlon
is, "What is the probability (when aiming at (0,0)) of hitting within the ,neigh-

borhood of (x,y)?"

- Obviously, the probability will depend upon the size of the neighborhood;
take the whole world for the neighborhoocg of (0,0),and the marksman cannot miss.
The neighborhood mst be specified. If is natural to teke the rectapgle of

&x, 4y, centered on See Fig. 1.

Y

e sides ,y) as the neighborhood of (x;y)-

4

\

-
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Yet there remains & question.

What, eXplicitly, flo we mean by probability"?

If a marksman‘ in firing his first 1000 xqmds at the« b‘ull'sv-eye hits. its

Co

neighborhood 60 ‘times , does the seme ‘thing with his second,1000 shots, with his

third,, and fourth thouéand then we would say- that his probability of a bull‘s-

thusiast whose marksmanship does not improve with practice.

realistic to suppose h:.s succesgive scores 60 57, 62, 59, To ‘Xudge his

eye is ===

.60
1000 *

48

]

[ »\

m P

It would be more

”

N

|
)
by .5

»

! But it is a commonplace that performance varies, even for an en-

v

e

5
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.

expedtdtion of a bull's-eys: we,would consider his perfémmance in the long run.

o~

1 g .
More generally, ‘the probabilit§ of & shot hitting the neighborhood of (x,y)

will be said to be p, if he has hit this neighhborhood ‘pn  times with n shots,

where n 1is very large. . -

Clearer as to what we mean.by "probability,"
o

i M - » .
"What is the probability of a hit in the rectangular Ax >?Ay‘ nei'gh-'

we -readdress to ourselves the

question:

borhood  of (x,y)"

For brevity, we put ‘this symbolically, P(x, y, &x, oy)?

But aren't we really asking two questions? Or, to be more preeise, are'there

not two (easier) questions on which the ansver to our original question depends?

-

(1)

t2)

What is the probability that a hit will lie in the rectangular strip of

width Ax centered on x? Symbblically, P(x, &x)? . 2

What is the probability that a hit will 1ie in the rectangular strip of

width Ay centered on y? Symbolieally,

Study the conjunction of Figs.

2(1),

P(Y; Ay_})?

2(2) to give Fig. 1.

A v ~
A |
S IR NN\

-~

c

I

[~

|

I

| .
-y -~ -
i .

|

Fig. 2(1) . “ Fig. 2(2)

. Does 'not this make it elear that our original question may be copstrued as;' -’
What is the,probabilft}; that a hit will lie in both strips?

HCM, spec1fically, does P(x, y, Ox, Ay) depend on P(x, Ax) and P(y, ,Ay)?
! A\
»  The dependence may be illustrated by a problem of throwi‘ng diCe.

g « ‘

= ¥

Suppos.e that the probabiIity of throwing a

0
«

‘hb,at of throwing a'l w:!,th a second die is also Z > whgt is the probability of '
t’hrowing 8 3 with the

3o
:‘;‘

éirst and a 4 with the. second? In the long run 3 turns up

i fo.

'[MC | s

. ' . ‘o
. { ; i 49 e ﬁ;’
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with a given die is 3 and . . )

. > X ,
oL feax~f . T




with g freﬁuency of 3 , 80 that if we consider 36n throws, where n 1is large,

s

.
6n of these pair/s ‘é)ill have a 3 uppermost on the first die (and the other 30n

.

pairs will not). of these 6n p‘rs, since the frequency of a h with the second
H

&
die is, % B mdéfendently of the first result, jhst n of them will have a k4 .
o«
upperm&;t. Thus, just n of:the 36n pairs will have a 3 uppermost on the firstu
AN s

and a 4 prpermo‘st. on the second. In short if two independent events have prob- '

abiliti\s\ of 3 and 3’ then the conjoint event has a probability of 3 X %

More’ gen@xrally, P py» P, are the probabilities of" two independent events,

then the probability of the combined event is Py X Py the product of the in-
AT ) -
dividuél probabifities. It follows that .

ke
s
. \ . :

- M

( o Ll
R - P(x, s &x, &y) = P(x, ) x B(y, &y) . -
<l\_.. . ’ * . . ' . ,
It s aft %pen mathematical secret that with two, questions to answer it is

\.; ———— ? ®
best to ansWer «fhem dne at a time. Wwhat is P(x, Ax)’2 If a barn is five -times -
\

P &

ask‘wide as its door, then su.rely "the chance of hitting the barn is five times
\,. \ . s
that Ofﬁ'\’l(';*tting the dopr. Or, if the door is fixed in position (1. e., the

@ !

{
position (:c{,,o’f its center line is fixed, say x = xl() but its width ox ] varies,

then the probébility of hitting it varies directly as 1ts width. So,' we ta.ke .

~ s \ -
it that for a vertical strip whose <¢enter line ds ux%;-:f.

«

Rl s g - o
where kl is a constant with respect to A&x.
j »
But, although the "constant of proportionality" is ihdependent of h&” )
S
width Ax of the vertical strip, it is obviously not independept of the- posi/;/ .

»

tion of the strip (i.e., tHe x value of its center line). Consider, for = 4%

'

example, & barn with'two doors of the same size. Surely the chances of hittingj

the one we aim at, straight in front of us » 1is greater than that of the oﬁher.

'l‘he farther“to the side the other 1is, the smaller its chance o:t\:‘being hit. Thus,
reminiscent of (1) and {2) of the last’ section we will have

A
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s P(x,, &) =

N
- |

P(x2, &x)

X . . :
exemplifying the pattern,
P (xn) Ax) =

. .

' - Y.

"
g

where ‘kn’ . a_l'though uncha\nged by changes in Ax,'/ is dependent upon, i..e. , 1is

8 ‘i‘gnction of, x . In short,
. 3 , . N B
- . P(x, &x) = F(x) « &

k] *
4 <

Suppose a barn to have three doors of the same size, the one to the left and the

-

one to the right being equid.istant from-the one straight ahead of us. Surely'
the chance (when aiming at Ee middlg one) of hitting the one on the left is Ehe
sa.m% as that of hitting the one on the ¥ight. The chances of a "left" error are

the same as .t'hose of an egual “right" errér. Mathematically,

P(x, ) ep(-x, &) . Co.

.

Hence, by (3)) . ) . T

Ce RR)=R)

- . )
< o

that is, F(x) is' a symmetrical function. . .

Since (x) = (-x) s clearly the simplest unspecified symmetrical function

<

is f(x2) There is, for example, no ‘gain in generality in ta.king £(x ), or
- e(x ), or these are also of the/(’ﬂn f(Xz) ’wi_th X= e s Xl © » respec- -
T ® e - ‘.

.tive]_.y. Thus (3) becomes of the form ) L

¥ M -

. P(x, &x) = £(x°) - Ax . R

] L4
which indicates, for example, that the probability gf a Lii;_‘in the left-side

strip of Fig. 3 is the same as tnag of a hit in the! right-side strip.
The next question~ P(y, 4y)? Again compare Fig. 2(2) With Fig. 2(1)

. What dii‘ferences are there? If x=y, Ax = Ay, the strips are of the same

’ ,_.; . N * ¥ee

size and at the same distance from 0. The only‘di.fference is that of ciirection;

[MC> o A - .

[ wv‘\,u“ Y N
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" the one 1s above, the other to the right of, 0. And what role does difference
play" We are agreed that a hit, (say) 3 inches left of center has the same
1
probebility as a'hit 3 inches right of center, is a hit 3 inches above center
‘more likely than 3 inches below center? Right of center was glven n¢ bpreference
over left of center, why should above center be given preference over below . i *
.. : o
center? It is na.tural to. consider them-equiprobable This leads to another
it
question: Is a hit 3 inches to right of center more likely than, say, 3 inches
.. above ~center? Consider the c1rcle of radius 3 inches with center o, illus- .
trated by Fig. 4. o i .
‘ * W T R
y ) 3
-
- : ~ 1 ’ Tos
. » - * ’
. ‘

r - . . o
{0 R oy oy
h - ) \y; N *\, 02
. . S k f | : . b
i In firing at © (the immediate neighborhood, of), which point on this circle

) has thq eatest‘probability of being hit? 'Has the point at "1 o'elock" more

or le%s pro'bability than that at "5 clock"" We suppose the probability of hits .
. g H
E * at any two points on a circle to be equiprobable; no direction is supposed tofb

-!»""
w, ko
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function as P(x, &x). So, by (k) !
« I'e
3 o e 5
. B(y, &) = £(y7) - &y (5)
and hence by (1) . ’
L] * ’ ¥ v Ey
. . 2 2
° P(x,y, &x,-0y) = £(x7) « £(y°) « &x < 4y . (6)
At this stage Maxwell displays his ingenuity. He introduces & rotation of.
LY
axes. ‘See Fig. 5. ~ R :
| 7
- N //
v ‘\ X ] H -~ .
‘ ' \ F -
03 ., \\ > ~ » %
' \' //. N
L '/ - y
, \ 2 .
: A\ESgE - ~
o N ‘ . q
. . -
‘ s . . Fig. 5 . !

—

« b7 ‘ .
Direction being considered irrelevant, it follows that the strips of %g
2(1), 2(2) (vith x =y, &x = &y) are not only of the same size and at the

same distance from O, also they ‘are similarly situated with.respect to 0 in

the probabilistic sense, Thus P(y, b&y) is determined by precisely the same

~

w ™ His ingenuity is that the ordinate of H ﬁlative tg the new L.xes is zero, for

1S

H 1lies on the g-a.xis.

es is

H(x,y) relative to the old H(t,0)
* .

relative .

t0 the new. And since the probability of a hit within the neighborhood of a
e o

point is 1nde:péndent of the direction of the a.xes‘to whic

1&_ is referred, the .

probability of a hit within the immediate neighborhood of

? is given by -
3 ‘ S e

\ "
. i { P(§,O, &, A"'I) "f4§ ) if(O) ?A§ an v o ce (?) N ‘
a' (’i « ] ; . -,‘ \/',ﬂ . s })( R “;“ } . . 'K'
] b ‘631 6 RX 7‘;' . { V. 17 tr -’
. as well as by((6)} From (6), (7), weihave, B | T g C i
. i ¥ Q . o { ¢ ,’. ¢ . - L
e , i 2 42 ' i ! f
B L R(T) - £y ):’~‘Ax Av—f(§)~« £(0) A8 - An -
N ! N 0 , « . oy ’
_and since the immediate neighbgrhood of H 1s descr;tbed both, by Ax * Ay and

by Ag A'q s tﬁese terms cancel’ out, and imply tﬁ?&t S

i
y ! o ) ) i ; ; i
]: l{l‘/C P : 1 ‘ - , ~*95 3 l . - “ Y {’ { .
Sk , - ’ :1‘,;@ b ¥ ; 9
S N RPN | N ! e K b N .
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£02) - '2(%) = £(0) - £(£5)

. . *
By Pytha,gbré.'s’ Theorem, 52 = x2 + y2’ 50

£(:) + £2(5%) < £(0) - 2(2 + ¥P).

’
-

(8) is a functional equation of the form

f(a) * £(b) = K. f(a‘f b) ¢ L

where f£(0)

>~

functional equation for the law of growth is of the form .

~

= XK. Here we may indulge in wishful.thipking, for we recall that the

»

= f(a) - £(b) = f(a +Db) .- . (10)

If K were equal.o 1, then the law of errors would have the same form of

functiqnal equation as the law of graugth, and consequently the solution of (8)\

would likewise be an gxponential function. ' )

+

It turns out that (8) can be reduced to the form (10). We put

, .

gf) , A

£(0) - &%)
£(0) - &(s°)

- £0) .- &(® +¥°) .

Su'bstituting in (°8)

te(o) - g,(x)] [£(0) - é(y)) r(o) (o) « g6 + 1.

-IA - o

-

" Dividing by . [f(o)_] 2, wve obtain, .

- o

g(Xf) : g() = gz(x2 + y?

~

N i

the “functional equation of the law Of growth. Consequently
' o ,

. Q x

gx) =2

54;'




. . % .
- | o b9 : .
- - - - .
i.e } L x2 = ax2 . ’ 9
ey . O
. - X 2 .
s0 that £(x") =£(0) & ..
and, by (&) \
. 2 .
o > O
. P(x, &%) = £(0) - a* + Ax . ‘
. - ,\
‘ And finally, for brevity,.putting f£(0) = A, o
9 P AN
- . 8 2
Plx, &) = A + &~ .« &x .

hd

-

(%

~

In onsequence, my hands are tled; so, let us see what else we can do with the
funStional variety.~ P s - ' *
« T 55 .
[MC L : 2 N ©.
. g < - M .
‘e:. e R - "

s

% . , -.,,13

This completes Maxwell's derivation of Gauss' famous law of errors.

We discuss this law briefly. Sfnce the chance o‘fLa large deflection is

. 2
X

obviously smaller than the chance of a small deflectioh, a < 1. Plotting a

as a function of X, we obtain a bell—shaped curve typical\ of symmetrically

deviated errors.

8

See Fig. 6.

~n

&

(o]
Fig. 6 ~

) =

This *is the starting point for “the development of the whole theory of the error

of combinations “of observations. .
. - ~ - '.5"‘“7~ 3_ . v N RN ’7.,‘.,

W i

. wé ' . ' ’ N
2.3 pifferential Versus Functional Equations. S :7-’-"6 -

<4

. Generally speaking, scientifi'c Yaws are deduced ;‘rom differential, rather

than functional, equetions. Wﬁy? Differential equations are easy to set up; .

.they are the mathematical answer to:

=

state?. Functional equations are hard to ‘come by, often, genius is required to
f ’

find them.. I would prefer to use differential equations 3 Your students cannot.

or

What is the instanta’neous change of a given
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,2.4. The Problem of Predicting Population Growth. .

i
' | 50 . ~ " Ty
;
Lt ;

|

, ks . .
What is the.law of incregse of human population? The simplest, plausible
t

assumption is that!the Qnumber of people ofthe (n + l)th generation, X 41
. ; . }

w11l ,be directly proportional to the nth, X, Symbolically, : ~ {
. ] o L o, y
3 .. € | MELE ).{n . . . (3) .
~ ! .

On this basis, if Xy is therpopulation of the first’ ggneration considered, the

-
t

population of successive generations will be

(. . ’ ¢
. 2 :
/\A ‘ xl’ qul, q~xl’ qixl’ ™
Tk .o )
n-1 - -
so. that . X, =q - X . ) {2)
! :
- * { g,;

If q>1, thespopulation is increasing. Again we have &n 'eiponential law.

This formila wes stated “in words/ by, Malthus (1766-1834); pgpq_].ations
. .
of countries increase in geometric ratio. It is interesting to note that Malthus

was led to his formulation by inspection of the census records of the American

- . -

people, which showed a-doubling” of population every 50 years. His statdment,

simple as it is, crudeas it is, haL a tremendops iszluence on the whole of

social philosophy in the 'l9th centui‘y. . / . )

i’ The social philosophers of the ¥rench Revolution argued that it was man-'
- -'Jﬁ" o O

3 e wa

kind's duty to ease the hardship of the poor, and to abolish pestilence, plague,

. = e
famine ) and ; ‘}, so that everyone could Tive heppily till death of old age.

Malthus,thought this view*grea,tly n'listaken. What would heppen with neither

..
‘I

pestilence nor plague, with neither famine nor #mar? -The pbpulation, increasing

~

» w7 . )
in geometrical ratio, would in a few years, he argued, become se”vast that the” .

» "

earth could not feed it. ‘Ime Manchester industrialists used this argusnent w0,

prop up their policy of free ente:qprise , to increase trade while leaving the
m— v v A -
*  world-at large to sort itself out There could be no obligation tg better the
£ - -
‘Jlot of the poor nor attempt to prevent famine or war; for these th!ﬁgs if evils )

were evils _necessary to prevent overpopulation, MaltM(‘ law became the arith- ,

®

\ e

E lCleticof.hyman rniserY.- BRI

et -

. S 3

S 5 v {l ) ‘ D
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4~
-

Darwih also thought _z'about the consequences of a population jincreasing

\

geometrically, For him,the problem had a wider context. ;He&was as much, if not

. . * .
nare, interested in the increase of a,colony. of sea birds as in the Manchest

birth rate. What }e asked, controls population? The dinosaurus has lcmg been

1
extingt; the whale hds urvived'. Ultimately he gave an answers his theory of.
§ s

natwal selection. There followed his theory of evolution of species What is

man's obligation to man?

Is one to succor or to starve one's neighbor" The

®

- . ]
fall of the Bastille and the dark Satanic mills gave contradictory answers. , By

’ -

the middle of the last century even some industrialists began to q'uestiOn whether

the evil of overworked and underpaid facto%hands ) living underfed in over-
-

Couldn't.theregbe a better arithmetic?
[ -

e Belg\ian 'seciologist, Verhulst, made an important obsérvatiom.

' K

crowded slums,.was a necessary evil.

[

Catas~
e e

. : ’ N
have occurred from time, to time, not all the time.

‘s

. «trophies, %ars, and plagles

‘Between any two successive catastrop'hies there,was a period ofgtranquility, say,

‘tyPically, ‘that of two or three generations. This ﬁeriod; had. the law of inc'rea‘se

bgen geometrical wowld have given the _population ample time to regain and, su.r(r

v

pass, before the next catastrophe, i\bs size before‘ the ldst. We i,llustrate Vith

- . -~ .4 - -
" Fig. 7. : T -~ . ) .
. . . .
@D° ¢ . -
N . et . ) - ‘i R
- g “ -~ - 4 ,,: - .
b . , ' - [
T
A 3 Lo
) ..
. «§' . . ) " B ‘
R AR AR S I B ST ] .
- .8k ‘ x .
. - f;; .
[ ,84 -
. & . - .
- ) 7 . .
. ) X 1‘ - ) LY . .
: i\ " ax T, - '
v Co. . succgssive generationse-d = . R S
' ~ * e ! o . A
. ) . < | . o -\
ol ; Fis)ﬂ N - A

N .

.But mankind Fas inhabited the earth for thousénds of’ years, go that althoggh we

. R
th generation) popula-

EA

is the present (n

-

do not know the value %f n, Where 'xn

tion,. we d5 know that n is large . With ' large, and “the populatioh 'before

imminent catastrophe greater t?}an that before the preyious one, surely the world

G

L
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would now be qvercrowdlad. Verhilst concluded that the.geometric law does not

give & correct account$ of the faéts. T .

—— -
5

f
Disconterrt"wifﬁq;’éﬁ‘_old arjithmetic was the first step tow&rds the nev.

i
i

L

Verhul‘ replaces

-

»

- Y ¢4 N -
. A . o
. . ¥ o ~~
. % . i s -*& ,‘5‘ . x = q . x , (l)
. . n+¥ n+
%
-
- .
by . N
- M M -
> - > 2 i >
. X = X =T X . ‘
' n+l 4 n n .- . (3)
. .

What is the effect of -r - x_i? The larger, X, becomes, the larger xi
'3 ’ 4

relative to X s SO that the larger the.population the greater the braking

™

effect of -r . xi on its rate of growth. A vast pdépulation can®only increase

.

—r— very slowly. To say that T xi is a "sIowing up" factgr is to describe ifi,/;

in terms of its consequences; Ve;:hulst did better. His factor is the outcome

of a more palnsta.klng analysis of population growth; he described it in terms

o
. 1

+of what causes the. slowi’ng ups. competition. -
4.
, Man's activities are of two kinds, cooperative and competitive., A marriage
.t N
is‘ the outcome of successful cempetition by a man against other men for a woma.n'~

. v . ‘
‘o8 child is the outcome of successful ,cooperation by. & man with a*womén., Farm-

N .
1SR

ers and biochemists cooperate to prgduce greater yields of whéat, bankers and

s -

bank robbers compete for the customers' deposits. Soldiers cooperate ‘ag armies
: 4 ST T Ty al

- IS

-

i

"to‘ compete against other soldiers"cooperating as armies. Verhulst. took »the s e 'g,,.‘

7

view that in the main cooperation tends to increase, and competition tends ta )

” i

» . L4

_deigease, the population. ‘-

/-_\77 How 1is the intensity of the struggle for fa.mily existence to be measured? ;
Competition occurs ¥hen each of two .or more people Wants exclusively the same {

thing. When, for example, two married men want_homes, and only one house is

~

available. WHat 15 the probability that two men of a population Xy both want

the :same house? If p is the probability of either wanting it, ‘pe is the

-~ e

probability »f both wanting it. But the' larger X0 the greater the chances, - .

- & . * .
y~° & man wanting it. '_m.at to double X, would be to double be) 5 is a plausible
EMC /T -7 58 . Do
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b
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S - .

; supp.ositf.'on. ‘Yet,. if P is d?rectly propoftional to x - then p2 is directly

’f préportional to. xi. Thus it is not un.reasonable‘ to take r - xi as ai{ measure

L, ofithe chdpetition. ‘ PO ‘f : ¢

. ”"‘] # I discerning, you my observe that we have neglected to adia competitio‘n\
factor Ty - xi, thgt fop three competitors, ‘and a i‘actor Ty e xﬁ, that for

e

8

f

.

-

]

A

completely fit a situation if this leaves us with mathematics too difficult to

’what is too complex ’is reduced to what is manageable.

investigation?

Y select r such~t t (_q__ r) is arbitrarilyfsmall. Cons\quently x|

four coxr,metitors, and so 1. True. But it is useless to set up equations which
. “

handle. In applying mathematics to reality there is always a compromise- by .

introducing an element of idealization, or by ignoring less important factors )

Often, the proper question

is not ’"I‘ a given formula dead accurate"" but rather, "Is ita sui‘ficiently good
approximtion Tor the present investigation?", Is (3) adequate for population

I' am anxious to answer this question, for in so doing I shall
/

Bhve opportunity to exemplify that quite intricate problems can be dealt with by
. ooy

mere high school mgthematics. .

. 3 y
If r = '-r~°x2

the competition factdr and, wevi‘ind ourselves

3

O, = O’

>

considering a so,ci with the tranquility of lotus eaters. With no competition

-

@5) reduces to ‘((l), S0 \that (3) is-a better formula in" the sense of including

/
(1) as & limiting case. * Tuxn fronki the tranqmility of eveméne lotus-eating to

the deSperation of someE~not %ating at all. . We all know what happens it \competi

\ . )4.“ . )

there.are more hands than ,j\obs 3 and more mouths to. feed

LI

y-

tiop is so severe that

. v }
than fqod to feed them: lifi‘i‘.s\rfsty, brutal, énd for many, short That

" &ould be smaller than X,
n+l

We wz‘ite it in the form X . .

S g N
- .
. A
‘. . G
o

X is obvious. But, what answer does (5) ‘give?

-r) . _ ' «’
' n o .

This for:;z make‘s it clear that when, .for any given q, xn is specified, wé can -

nl can

But there is no .

~

n

be ‘made as small -as We please and,'a fractiOn, less than X,
. A . B
immediate _answer to the question'

Does {3) also give X . correctly?

n+2

-
. . .

: ‘ 59 '
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. ~ q
% o= (
n+2 Lkl xn +1

3
where the ‘previous factor (— - r) is now replaced by ( - r). The dif-
*n *nel )
fictilty is that the denominator of q has been changed. Since X4 < X it
follows that the factor (;—9‘— -r) > (x—q- - r), but this is, of itself, in-
T . n+l . n

sufficient to detexrmine if x <x

n+2 4;\1 ° . .

.

However, that[(3) can be used to describe correctly' the populatiop at

_least one generation ahead in extreme states of soclety gives us some expectation
that it will serve far ahead in intermediate states, neither completely tran-

I . . '
quil nor thoroughly brutal. At least it does merit more systematic examination.

Y

First we further reconcile ‘the complex with the manageable. .For interme-

diate states of society the change ip population from one generation t%tpe next

will be & good approximation to §i Con-"~

will be so s’low that xn v X

n+l
’ .
sequently, we may consider

4
| Y]

=" ar T8 ¥ o T xnxn+l - (B

- 7
.

instead “of (3)7 without introducing any really significant change j.n\the popula&

- R DEIS I
tion law. (h) is preferable as this makes for .much easier mathematics. .

. () 1s a mixed equation; X oceurs on both sides of the equation.'

n+l
the subject of the formula, ve lat;ve‘ W

- mk-_:l..ng \xn+l cam e By -
xn+l=l+rxn “*q e

» . - - Ll

: ~
"We observe that whereas with Malthus' law ¢x  has a factor q, with (vhat, is

q

1l +1x

. x .
longer a constant, but depends on xn. The longer X, "becomes, the bmalleg the
d

essentially) Verhul’st's law the factor is ; the growth factor is no

\1

grow‘th factor. The population i# self-regulating; overpopulation is prevent:
- 5 N .
Verhulst's law echoes his original observation. R . '\
“ - ’ .

oux problem is to find X in terms of - Xy With Malthus® “aw this

n+l.
Q 8as easy. Indeed, the textbooks are crammed so full with geometrical
-t . \ \‘ .
o - 60 '
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progressions that the student is apt to suppose there are no other vﬁrieties.

v

Real problems, alas, seldom have the neat aAd obvious form of school exercises 3

-~

. to the contrary, they often come in ugly an hidden forms. How to’tre.nsform
the latter inmto the former is an essential par‘b of the art of doing ;mathematics.

Although t'he student cannot reasonably be e;icpected to have the fores;ight to see

) , « &
that (5) is in essence geometrical, he can reasonably be required to have the
hindsight. . . ;!

*  “Taking reciprocals in (5), ‘

i S N U
7 Xl Fn X, .
. , , AN ' 0
That the reciprocals o X410 %, gatisfy a simpler law, invites the sub-
stitutions - ] R
' N -1 !
€ = E) £, == ,
nfl n+l " *n
M - - > 7.
vhich give e ' L . R
. - l 1 N r
T fnel a ity
’ tex und

But for the constant term we would have the form of Malthus' 1aw. The thought '

D < IRV ,,L%

is father of the wish. Substitutmg

b

<

N ,

. ’ . b )
= + = + - .
) ¢ L e FOs Sk E, O, Co
PR e :..é " e ; —— - .,“_’:\_ ~ . ":v; N . y— - \ — .

whére Q 1s an arbitrary constanty weshave,

kN

o + O é(%+w+-:

i

1]
(o}
<t
B
<t
-
4

1 Q. r . . '
T TF Mt GrEed - -

» . P

. ) \ . -
Since o is an arbitrary constant,we are at'libé%'ty to give it whatever speg-

L
3

ification we please. But we wish the constant teé:m of the equation to be zero;_(

- accordingly, it pleases us to define « By _ 4\\ . Rl
: \ e e - ¥
ERIC . 61 ) -
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=gt

v : a- Ir )
. - -+ ==-0=0 _ )
{0 e 2 : .
? ; ; . ° ¢ . j
i.e .y such that, { . ‘
, - Q+r=qa :
R : / * ; i
, which gives f
o =~— =, provided q 1 .
P q5 -1
The condition that q > 1 merely implies that when r =0, 1i.e., when there :
s is‘> competition, the population is increasing This supposition is accep%able
and meets the proviso that q # l Consequently, we take « to be q- T and
¢ e Y . )
infer that T ¥ &
. . L
' ’ - 1 ‘ - 3 '\ “; o
T =g T s (&) . .
) * . ‘ ‘ ' N l- ( ;‘ -
We have transformed the form of Verhulst's law to that of Malthus': the laws
+ * themselves .are, of course, distinct ' ﬂ? :
JEaN i T
- Since (6) is of the sa.me form as (1), we have, as an analogue of(2). 'f\
'-R \ . "‘ h
fé’i
. N & 1\n k
- ‘. nn-i-l =s=~(€) (7} -’ U
RN . B \ , P , ; . - * di«; \ .
- "It Tehains mérely to reverSe our transformations to obtain x . asd f‘unc%ion -
of X, There is a ga;tn of notational compactness by delayi'ng the substitwgion
. for a until the end{ ; .. S
v " . °
I 5 Pirst, we-go. batk .from,the 1's to the..t's. Since ) T ITIL PO T T %
3 ) ) A - '
=Ty T O - /
- I . &
by (7) ) L o
¢ \'_- ! + . " - y
ntl " n Y
) a.,, .
. . o ’ >
T ST R
o « z * '.'
4 W B ] 4
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4 it s e

! 7 N - -
~. ; .2 ! .
o : | ¢ ’ ’ j
p that .
_SIO & 1 ; 1 1 \-gl + (q 'l)a
i bpir = 5 (B1- @) va==g +(1-= n .
a . pa - q a -,
!

Second, we go back-from the £'s to the x's. Since,

" 1 1 - s -
g = e— § = — " -
n+l X0 1 X
L .
. -~
we have, ., 1 ' -
q-la .
o 1 _h - 1+ (g-lax
*nel qn ' qn X
’ -' ’ l ° ’
. \ , .
. and taking reciproca¥s . .
. qn
* : X = (e Xq .
R ("= 1)a Xy . .
Finally, since ‘ N )
N iy ‘.
. we have, \ . . s -
. - n : .
~ . q. .
X = . X (8) p
2 n+l n 1 ‘
. : _' 1 + M T X , - .
1 - - ie e N e a2 e .3 ._Jq-l“‘ R 1 - a4 .- w i
. s .
Common prudence demands some check on our work. Substituting n =1 ‘
in (8), ve pave l et o SO . -
?“{lg() '.":'. CTTEITE e T§ie e i g Se F o o5 Ty :‘}‘;;:;{;“'}";"rj """"
2 T T Ml o ' ~

' 1

. Tﬁe samé substituition in (5) gives whe sa:me result., It checks.
N A ey
) By a judicious use of the fact that (2) is a consequence of (1), we have

when subject to Verhulst's 1aw, in terms of -

-’

deduced a formuJ;p. for xn a

s Q and r. What is its signi:f‘icanee" We suppose q greater t . but
xl y)

N

close to, ¥, ahd r very small-indeed. . - T~
’ " Pirst we investigate the consequences of n be;ng small also. §ince :
. . : . T %
e, q-1 2 e y oL

o T =l+q+q +-r g ™0 (a=~1),

Zome . >




n . | . ! "L
qq — i - rx; Will be small compered with unity when n is small. Thus, with-
i 4 K ' ' /

- . ; \ o Y
out chifrge of gross’ neglect we can ignore ‘the second term of the denomindtor of

+ -

(8) when considering the first few generatiens. We have e
‘ LT ] ~ql . x - -
nel 4 1 ' .

Y ”

i.e., that Vgrhuls}ﬁs law appyoximates to Malthus'.

Next we investigate the consequences of large n. When n is large a*nd‘

. . n _ ° n
q > 1, it follows from qq‘—_i ~n ‘that 4 - i rxXy is large compared with

. unity. * So without gross neglect we may ignore the firsttter;n of the denominator

~

“of (8), eiving

. . " \.\
7~
x'lz Wmh =qn.‘.i'_l . L
n+ n r n r °*
(q 1) -,(-q—_-]-_-)xl ~q. -1 ) R

] . . :

Y -

But, with ‘@ >1, the larger n is, the larger.q " and the nearer g +®
. 3 . d , ' _ » q -l
1. Consequently, the nearer X to gi; Yet in neglecting the first term
N . ¢

’ ~
of' the denom‘inatér, we overestimate xn+l’ 'so that no matter for how many gen-

erations the pobu«latior; continues it will not exceed i;—l Observe that this

—_— —— ——
- e .y, « - Lo

" upper li:mit:’f‘:? th% Asize pr xn~ i's indfemndent of the 312e o‘f— }:he o?gina} N

. populati 1 Isn't this astonishing?
? - . i 7 A ’ »
‘The ‘E®ph of (8), kmowm a3 tic or flying § curve is illustrated
b}' Fj_.g.' §f SR :'“xi'r,‘"ﬂ oo -y ' 5 EBE R
: ) 4 nl
. an
) » gy — - N )
N N Flg. 8 - "

B
P
- “ A

-, /r. . A . B
. "How, in actuél gractice, do we apply (8) to predict thespopulation of,
say, the United States, a dcecad'e‘oi' a cer{tlu*y hence? (8) gives the number of.
Pepple who belong to the” (n+l) th generation, x .., in terms of the number of
Y . A

people who belorng to the first generatidn cpnsidg.red,‘ Xy But how long an

. . . .o .
- Q ] PN L T 6 'i\ . v
. . . i , -
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interval is there between one generatibn and the next? Every minute several

;E?' beople-die,and several'E;e_born. Who be}ongs to the present generation? &b be

precise "the pFesent genersation” refers_to an overlapping of ;ghy generetions, -
those generated in the'years 1900, 1901, 1902, 1920, 1921, among others(if‘still ’ .

su;viving). As statistics are usually taken on a yearly basis,it is convenient
to eonsider the population in successive Years as successive gerferations, to
Jﬂ

“take X, as the poﬁggg%ion for the first year consifiered and x . ‘that n

j
years later. ‘

. '

Iet us take 1959 as the first year and obtain the actual figures for %) 5

x,, end Xz the’ population of the U.S. in 1959, 1960, and 1961, frop the N

L -
available table of population statistics., Substituting the figures for * and
2 ' .

X, in (8), we obtain a first equation reldting q and r; substituting the

figures for Xy and xBf we obtain a second. We now have two equations in the

two unknowns, q and r, sufficient to determine them. {8) has been tailored

to fit the facts; the growth coefficient q and the competitive:coefficient r
y .
are chosen so as to describe 3orrectly the recent population history of the U.S.
' v : . ’

If in (8) we write the figures for a, r, end x;, our formule is ready for o

’

. use. Substituting n=3, we predict +the populaetion for 19623 substituting

s
'
- o 4 - s . .

hjé‘h, ‘we predict that for 1963. ) -
Would it be rash to take the result of substituting n = lOO as more than

a yery tentative prediction of the population for the year 20599 Eypically,

-

-sd
'
4

3 T

growth and competition remain steady, 50 that a formula that has accurately

described the last two years may reasonably be expected to describe the next

two. But over the-span of a’century®the growth and competitive factors have

. ' : ) .
more time in which to alter, so that the long term prediction should be more.

P -

cautiously refarded. o

.

We have seen that three successive years' statistics are sufficient to

;detenmine e} Land r. Had we used all the statistics\of the last deeade, the

eigbt*ﬁeriods'iQSQTQQ, 1953-55, 1954-56, ..., 195961, would nelve given us eight

" — - >
v determinations of, q and eight of r., Had thtse differed in,the last decimal

Q (,’ . d \ (}ES ) ) . . .

Aruitoxt provided by Eic . . . . *
1 ]
1 2] . . ,
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2 his la‘w to predict their populations as far ah;aad.as a'céntury.’ Some of his *

place or twg we would have ‘struck the typical figure which would give the best )

-

oversll description of the decade. What‘ fits ’the facts for the lgst ten years

is surely more likely to fit the ne)& hundred than that which fitted meyely the
1] - . »
last two. R

Is Verhuist‘s formula reliable? Around about 1850 he made-a c&refui pop~

-

ulation study of several European countries -and, of the United Statss. ;’I"ei,used .
)

a

predictions are famous, and Justly so. " For example, he calculated that F:-a.rtee

would réac}l a meximum population of 40 million in 1221; the event proved him

correct. Despite the £ivil War, .his\ predictidn for the U.S. population in 1540

L4

|

|

|

was less than a million out, But ironically, his law<applied to his own country, l|
. |
Belgium,' did not work. -Belgium's population curve for the century is given by ‘
|

|

|

» . .
Fig. 9.
)
> A o) e
N O
Aol
- +
o
N ~
. B, |
N -’ Q ‘
B |
. ;
- ) - ‘
, i
v | )
haB Jia ] . E wa 4 }
R . }
|

How did Verhulst's prediction g0 wrong? Belg'ium’ switched from agriculture

ta” indu)stry and éolonized the Congo. This,ydistixx‘ci. ﬁocio,lqgical change per- |
, 1 L . - ) 2.
manently altered the growth and competit'ion coeﬁ‘icients. His application

of his law continued to describe the growth of Belgium as agricultural when it
_— .

was in fact industrial. Observe that the Belgian population curve is a com-

bination of the parts of two S-¢ -gurves, the earlier with agricultural and the

B . : ; N
* mwas his prediction for the Unite:d States successful despite the Civil War? oOf
. Fl Al

J
later with industrial,cgnditions obtaining. How then, it mey well be asked, ]

course, Verhulst could not know that the Civil War was going to break out a de- ,
. "\ . .,

cade or so after he made hls population analysis and so he could not take the &

L . . .
nha.nged velues of the growth éand competition coefficients into account. The

e T °



s g
3

e
©
e

' : ) i ! 3 .
« point is that these changes of coefficients, u]nlike those due to & switch from
! .
agriculture to industry in Belgium, were merel{y temporary: soon after the Civil
s

War his coefficients WAKe agein accurately descriptive. Wwith peop;Le killed in

-

the war his 1865 population estimateswas hlgh‘} but his* estimate an‘d‘ the actual
population of that time both~have growths asyzﬁptotic to g-—-:-L- an ‘the long run

his prediction would have beenygorrect; the run tq 1940 was long enough -for 1t
to be correct.within 1 million.. - Lo *

o ~

" As propised, I have shown you that quite intricate results can be obtained
jgithout using dlfferentlal equatlons. Actually X formula fo/r Xp4 for any

specified n ' can be obta:Lned from (5) wg'only the very simplest of 'al- .

gebra. Putting’ n*= 1, 2, successively, we have

° .

=4 . -9 ,
2 T1E = *y x5~- 1+ rx, %2 -
c/ ) : . ' '\y
so that . . - :_ ‘
I X. = q i q X ’
. 5 L4 x( qxl) l+rxl 1\ .
, l+rx . . -
ﬁ ® o \.‘\ > -

Multiplying numerator and denominator of right side by 1 + Xy,

. ~—;’-<'-"-* L 20 S 2

e

»

~ 2 N

- Proceeding in this ey X, xs, ++y Can be obtained ;gom wggl,._,We g0 step by

ad .

step along a%adventurous path to find where it leads us. Aftexr patient travel

-

the way the road runs being pl(early discerned, the more ambitious student may

@

prove the formulas for xn+l by mathematical induction.

' ° . 1 .

2.5 Cusanus's Recursive Formula for s ) coe co
3 for x

PEY
'

| " . o °
When, as in the last skction, X, @ member of & sequence, is definéd in
e A .

o

terms of eatrlier members of the sequence, it is said to be defined recursivelyy
This terminé;logy ,acknowledges descriptively‘ that the sequg"z%e refers bgck to

i’tself, it f{.}s, SO to speak a snake bit.!;)g its own, taill
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We now consider one of the most elegant recursive formulae in mathematics,

P

nemely that given by Cusanus (1401:6L4) in about \11350. Even though it wass the _

- H
i

first to facilitate the calculation of‘. n Dbetter than Archimedes' formula,’ it

is not w1dely known. Already more than five hund.re years old, perhaps it is

=
too modern for the modernists. " With this formula we have a hint that there

w L)
.. .

A

* was, contrary to popular historical misconception, tremendous intellectual activ-

«
-

’ .

ity beﬁore t}}%issance. Despite what the history books fail Jto say* without

Cusanus and/hg'.s ilk Gaelileo and Newton could not have inherited the groundwork

they did in fact inherit. ‘ L ' ; e

Cusanus ' calculation of =x. It really’is obvious that if a Pegular poly-
gon of ﬁerimeter p is circumsfribed by a circle of radius R .then th more

-
. numerous the sides of the polygon the closer the approximation of P to 2R \t/

a

and ﬁ' to n. Surely thousandsﬁof persons before and since Archimedes must
N . s ‘ .

have thought of -thisp yet how many have found a method of effectively exploiting
- . . .

its to calculate n’* Archimedes-considered an. unending sequence of regular poly=-

» \)

gous, each polygon w1th more sides than ltu predecessor, each circumscribed by ,
., -

the sane circle, Cusdnus considered an unending seguence of regular polygons,

each polygon with more sides than its pre(fecessor,.but all of tHe same perimeter

N\ -
and therefore circumscribed\by different’circles. Whereas Archimedes found the
A0 w e md g . - . 7 ."9 ,’ R L0 . 4
1imit of p .with- constant R, 'Cusanw\ found the limit of R with constant p.
S “® )u - . .e
e b ~ N . \ v j
] Both methgg.,s are e egant Encourage the student who finds Cusaﬂﬁs""éI gance .
T ° . .
+ exciting to study QPrchimedes for himself .. /" L . o
How, specifically, did Cusanus exploit his idea? - He did so in.the follow- .
4

ing~way. From g giyen circle’ Cl, of radius .rl circumscribing a regular poly- i,
3 - . . ‘ f ! . e
® .
- : - - Y N s
gon of ¢m sides and pertmigter Kk, anothq' Circle ‘02. of radius L cir- - .,

cumscribing & regular polygon of double the number of sides, but with the same |

o -, .

E%Y

s
'

perin/xeter, is construct&l By repetition of the procedure n timeus ‘there,

-

. %
l‘ obtains a sequence. of circles ..L 3, Cn+l’ of radii l’ r2, r3,
¢ ..t.,rm_l, circumscribing regular polygons with constant perimeter k, of” .
0 [ 4 ~.‘.‘; ] “e - ~
m, 2m, 2 m, ,2 m sides, rgspectively I‘t'. is 1ntui‘kfively clear that R
O BTN
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N

rE

g
%

/;easons‘ T), has the same relation to r

“determined in terms of ‘its sequential prredeceeser, w}‘xicn in turn

0 =K upere R M
3 where R—n__)oo n+l.

) : \ g -

.(Since ye are now considering a8 sequence of circles of constant perimeter we
&

- >

usé the letter k in preference to D.) '.I‘he real problem, of course, is to”

determine Tl he way in %hic\h, 02 1s constructed from C, determines thes

°+ * : ¢ -

relation between T, and rl. But .C5 is constructed from C2 “as C2. i‘rom.

¢, so that ‘r5' has tl:e same relation to I, 88 }‘r2 . to Ty and for similaD§

*

. &
3 as r5 has to. T,. Thus r), ‘can

. .

determined in terms of‘er while r5 ‘can be determined in terms of T

2)

.and T, in terms of ry, SO that findlly T, + can be determined in ter;ns of

1 More generally, r° is determined in terms of L)

el which in turn is

., so
‘ .

that finally Ty 31s‘determined in terms of ry. The formula is recursive.

Now for the details .. What, specifically, is the }/elation between T

2
and’ ry? Fig. 10 illustrates the essentials of what we are given' the m-sided

cireumscribed polygon being ‘regular, it is sufficien to consider Juss one of
its sides. . ) . ’ o
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. We make the construction illustTated by Fig. 11. s ,,% . iy
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Fig. 11 i . ’ .

-
. A

Since, as Euclid tells us, angle subtended at circumference is one-half’

.
.

angle subtended at center,
. ., h» ~ v M A T - ) )
' VmaB =L oA Lo A
- - LB BT =5 LBAB)T . L
‘¢ , ° : ] e
’ Consequently 2m such ﬁriangles as B,' fit together to form a regular
: N 1 -

polygon with ‘pez:imeter 2m X BlB,' s =hich s circtmseribible by a. cirele C*
Y * & c s
N ’

-

with center Ay and (s4y) radius rX. Fig. 12 1llustrates the essentials.

Retaining A2 as center we now ;shrink Fig. 12 to half size. We now have a ,

' circle 02 wc_:%z;pumspribiﬁs a regular polygon with the same_ perimeter ‘as ) fmt .

£y

- twice tﬁe.numbg of sides of, that circumscribed by 'Cl. See Fig. 13. Compare
SN ‘ y . e o
' . Tig. 15 with Fig. 10. - ) : A
¢ - S <L
A \. ’ .

. . . : ,
li- MC Tt !
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o > - M N . - .

o 1 -




. FRIC. - :

N , ‘ * ' ‘ . ¢ ! .

= P e *

. R ) 5»&.-,'! N L ~ . o e ' B




Fig. s

.

The problem is to fii.nd T, in terms of . To do this we first consider

" the geometry of Fig. l‘i. Since, as Thales tells us, the angle included in a
semicircle is a righ’t angle,' A2B1E is a night angle (it is su'?’ended at’ the
cir‘cumferenc‘e of C) by diameter A2E).' Thus triangles A B.E, AQB]_D]_ are
both right triangles {the latter is riéﬁt engled at D, ) and additionally -hé.ve'

& common a.ngle B AZE _Therefore these triangles are similar, and consequently

their corrésponding sides are proportional, so that

X3

B AE
) A2D% 2B

(rp *)?

[} - 4 / . .
a0, But hz* is an uninvited bedfellow and is. speedily to be replaced.

R .12




‘

= A2}’1 = Ahy * Dy

% = 1) +'h1‘. . - / (2)’

*s

We have related the measurements of Fig. 10 to those of Fig. 12; we wish

-

to re]ll.a‘te them to those of Fig. 13. But Fig. 13 was obtained from Fig.. 12 by

- . s ’ L
reducing everything to half size, so that

. Hence, from (2) we have
® .

v

3

and from (1),  wa°

fscsinsinnome s &

so that

»

Thi§ derivation ,di‘sclos'es our motive for using'a. stear notafion: to emphasife the
. \}
. * K &
transitory role of T, and 112 . whogr,

(3) and (1}) give r, in terms of rl‘ (a.nd hy).

h's is an incidental complexity that must not be permitted to obscure the

The intruslon,of the .«

leading idea., in specifying the relation beftween r2

|+ have reached the heart of the matter. In repeating our procgdure ’co obtain C3

‘and ry (and hl) we

from 02 as 02 was obtained from gl, 1'5 "will have the same relation to

' r2 as I, hds to ?cl and In obtaining Cy from 05, ), will have the same

LS . ‘* - -
has to “ra and I, has to r,. Consequently, for

relation to !“ as 1

3 8 73
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t
a]
=4

» Thel = n n+l : (€)
[ "a—tl ) . . - . \i,
Let us recapitulate. To avoid the verbosity of saying that hn is the

’

. ! — -
altitude of any trianglé whose vertex is_the center-of C, &nd whose base is

Z oné of the sides of the regular polygon circumscribed by Cn’ let us refer to

. hn' as the altitude of Cn' Then, if Cl is a circle of radius ry and al-
’ . o~
itude hl <ircumscribing a regular polygon of m sides, and perixpeter' k,

by repeating ™’ times the proéess considered above we form a sequence of ciréles
. . M D e
Cys Cys CS"""Cn+l of radii Tys Tps Tapee Ty (anfi altitudes hy; é«, ’h3,l

.. "hn+l) circumscribing regular polygons of m, _2m, 22m, .. .,2nm sides, .

respectively, where hn‘*'J.-’ r ., satisfy (5), (6) for n=o0, 1, ?,...,n.

-
A

- To calculate* x, i.e., -21—%, it merely °remins,¢to determine R, where
"o . . .

R = lim,‘l:n_*_l-
n - w T e

agon, i.e., to take m'= 6, and to take r, = 1. See. Fig. 1k.
=0 8nd g 1 )

It is convenient to take Cl as cireumscribing a regulé.r hex-

*

/ ' . >'Fig. 14

" Eere hy '1s evidently ‘the altitude of an équila.teral ,trféngle of. unit side,’
O ' . o ; '
. . By Sim%’l.e calculation we find h) = J—ZT . The reader is, now in a position to
: (<) ’ . .
ERIC o . :
. , b . .
G Ly s .
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3
and hence, .

.
& ;
v ] .
.

-

calculate a sequence of successitely better approximations to R,

-
.

to x. L] ; .
This raises the question of'the accuracy of approximations7 It really is

n increases the angle at the vertex of each
will get smaller

»

intuitiveLy obvious that as

triangle constituting the regular polygon circumscribed by C
and hﬁ more and more nearly equal, giving

and smaller, end therefore r

im r = lim h_ ,
n

Ny © n -w

both converge to R. And since the hypotenusc is the

i.e., that r and h
n n B
greatest side of a right angle,

]

iy '

See Fig. 15.

Fg. 15 .

ansiéering the polygon, " is the radius of the circle it iﬁécribes and r,
. ) PR : * c . .

is the radius of -the circle circumscribing it: ultimatel&, in the limit surely
‘ these circles'coincide. Thus it seems reasonable tc suppose that r
75 :

h

decreased,

7
13
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h‘n' increases and

-rn>‘R>hn

v R . -

’ - i, > . < J . )
The astonishing thing is that?we’are,able to anticipate that, for exampl’e,'for

- y , r . H .
the pes‘{agon, with r, = 1, and so perimeter k = 6, .the repeated applications.

. Y

of (5) and (6) will converge to —§-, .., to ;-3-. C . ’ .
. . 25 ; at -

‘We may add that neither Cusanus nor ’i)é$caz':tés (1596-1650) (.who.made exten-

sive use of Cusanus® formulae) worried overmuch’ about. convergence: they were -

. ~
confident of their intuition. 4

e

With no more than an elementary knowledge of inequalities we can prove

L4

convergence. The crux of thegmitter is that the difference between r, and hn
. : . [ -

+ gets smaller and s_maller.‘ But having the gabho:rrence for square‘roots that

o SR

- [

'Pythagoras had for bean eating, we érefer to considér the difference of rr21

and hi : .

»

By (5’): ~6): e
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2 ,2_ 1 ,2 .2
r3'h3'h2(1‘l—hl)'

. ' - R %‘ |
Proceeding in this way, after 'n steps, we have _
. . . )
B WNEE S e o ’ (D '
- n+l n+l yn 1 1Y -

. -
N N -

. - A

3 i

é

But .rl the hypotenuse o,f the triangl:'e' is greaterlthan .hl the altitude (see

1 1,

P .

Fig 10), so’that 2 - n° is positive add hence

’ r > . )
l , . . . . ' - ) |l ,

I3 : .

l . " l* » IO
nil " Py = §+‘\7 h) -
and therefore ' ' ;
N\ ' . . .
‘- - - hn+l > hn ) < (9)
. ’ ,\ /‘ - . d
X Squaring (6) and dividing '{iy T T e

-

]

Lol
I € 0)

Arithmetic confirms _ifltuitibr}. (9) shows that successlve values of hn

Increase (so that if tlﬁé@. exists an R, h < R), 'v{hile (10) shows that
successive values of T decrease (so that if theré exists an R, R < i‘i) apd

r

-




(7) shows that if éither T

-~ 7

eonverges then both converge to the same

of h
n

"1limit.
m, h <R<r, and that ( , L
o lim h_ %R = 1lim r
. n n
~ n-x n —w

»

I3

v e

| That is'to say that theldij‘fereng:\e between the radii of the. cfrcumscribing and
: - ' 4 ' '
. inseribed circles of the, pol;{gon\,obtained;after n steps from the initial hex-

» 8gon is < FJ-_ Convergence is rapid.
Since 2R = k and in this example the perimeter of the hexagon is 6
. o ‘ p 5 . o
\ (as remarket} earlier), R = il sf \t@.t the successive values of hn
inerease to 3 while the successive values of r,
. , - \ . ; 5 .
. 0*':“ ~ h <=<r )
=, n o ox n
., - Q
) - C 3. 3 .
so that - x < F—'. ), .I_‘— <
. n n
N . P4
i.e., oz—<n<%— .
n n
Q ..
:* ERIC : . 18
===y c " ‘ « i

¢
» /

Let's be specifié .

r, = 1 and (consequently) hl = % > by (7)
3
2 2 1,273 1
- == (1" - =
Thel ~ Ppay s ( . E) y
\ R e , "
so that . )
A - /7
. ] 1 N .
n+l N+l 24_n+l r,m_:L + nﬁ:

¢

" 3 ‘/3'
But, by (9)' h,n+l >hy ‘[2., and by (8) ra Cha >V s:o that r . +

3- ‘/3— 01, 1 i
h >4‘: +4¢> and <4= ‘ ,s
] n+l 2 ‘2 rn +l + h l 3 L
Therefore, L5 ‘ N
! ’ 1 1 1
T - < et P QL R
n+l n+l hn+l R f"3 ,*n+l .

.

C

Conjointly these results imply 'fhat thefe is an R such that for all

o

Teking the hexagon as our initial polygon, with

decrease to it.

'a



.‘A‘w‘ * -
. 4 73 -
Even the case n =1 is interesting

<n<

v

3<x<2/3% 34"

! 4

i.e.,
» . R

- y

-

Surely the reader will want to work out, n =2, 3, 4 (and maybe Sthers) for

» himself. ’

Finally, with the suggest:,ion that the reader take a second *look at Fig.

15 and the reminder that

Yin sinb_,
. . 9—)0

L

of hn, i.e., R, is\given by . .
[ '-.
f‘ -

'

-2

e

he is urged to prove that in the general case the limit of r, and the limit

s

3 e

“r

,mean:)f r .epd h, while’ (6) states that r .

s { .-
+1° STl .

r . and h
ni } 4{1 ) ]
) ) If alhthf .quanti‘tiés‘ ay5 8,5 85 tos , iare
Q RS "_ \ s, . . )
ERIC, - o 79
m’“" R -

5 e
P , PO . . P

Thus, for exaimplé, (5) of the lafE™section States that h.n+

2.6  Arithmetic gln_g Geometric Means,
- M, the arithmetic xﬁea'n of a,, a,, as;...‘,an is defir;red by ‘
o M=§l+a2+a’L5+¥--ﬁan 7, "
. g A ' n y _ »
MG the geometric.mean of. these qixantities is defined by ;‘
. : "MG = r11/al . a; <& a8, ':

l‘
is the geometric mean of

:‘.eq,uai "then -

> .

18 the arithmetic
1

ey

£

e




ne,

i = e—— . = ' = L’
MA =5 8y and MG nye, =& ¢
% ,-/\ N -, . ! R ’
S0 uhat:, MA = «MG' I-f not all tl\@uantiities .are equal thex: MA > MG' This is

very ¢asily pro{red inﬁ_the simple case n = 2. For the two E;_uantities a, b we

2 ’ ’ . . %
ave .
. = a+thb -
X M, -—Lz v Mg = Yab ,
[ - . - *
therefore” ’

‘ o
My - Mg

hv T

(2 +b - 2/) = 3 (- 2/ fE + ()]

L (/e - AP ,, : #
1

] .
but 5 (Va - »/%)2 >0 unless a = b. This proves the proposition. . . ]

Wwhat are the uses of these means? “If “n independént measurements are

| =

-

\ made of the same quantity, if, for example, 817.85) Bzy +- 58 aYe the n
numbers indePermButly obtained for the distance of the sun frem the earth, then
. - 3

the arithmetic mean is the most reliable estimate. Gauss' argument to this
. ; <
effect is well known. Less well known is his applicafion of the geometric mean.

) Thi} follows.

by

How is a welght W to be accurately determined by using badly made scales?

-

How, for exaﬁxple, with scales of which one arm is longer -than the other? We

X ~ % -
suppose that W, when placed in the right and left pans, counterbalances weights

~

W, Viz, respecf&vely. What is the actual weight of W? Study Figs. 16 and’ 17.

Aruitoxt provided by Eic:
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and for equilibrium in Fig. 17, . o, - o
o, ) S e - o
- U zlw,_._z2w2 . .. @
/,/ -
Now we come to Gaus$' important observation. Multiplying (1) vy (2)
- ’ "\ ( ) ’ [\]
v‘ 1] \% 1
- ' B ByWes £y bWy - W v
! N -
)\
so” that - 2
. { . .
N . » .
\ V- T »
PO . H . - ' : .o *
Thus W is independent of the lengths of the arms. Use of the geometric mean
. L A4 . - ~
rectifies this ifprecision of the scales. .
. ) . . ) .
3} _ .
k-4
I d
*
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s %1 Puelia's Optics. ; ’ . RN

.

We begin with Buclid (c. 300 BC) Not unnaturally for a geometer, he
wished ,as doubtlessly had many geometers before }::m, to apply geometry to opt’ics
Unlike the cothers he was successful. Conceiving light as propa.gatcd in straight
lines e_nabled him to 4pply geometry to optics. dn' second thoughts this state~
_ment cannot stand. Until Imclid had applied geometry a_;r,o optics there was, td '

ilse the‘ Irish idiom, no such suBject as optics. ~l‘fowadays,when using diagrar'ui'

”
‘a @ ‘

is an ingredient 'of educated common s_ense, of ‘course it is obvio‘as that light is =
I?ropagated in stréight-].ines. If- ligh‘t? rays could not be represented by lines,
cptical phenomena could not be illustrated by diagrams. We, with the arrog&nce-
of hindsight, cannot begin to understand Euclid's foresight in making his basic

. -
assertion}hat light is -rectilinearily propa.gated When the needle in the hay-

T >
~st§ck has been pointed‘ out to us, we ,are prone to suppose that finding it Wgs
. o . L
/'/ no problem at all . 'L C ,

.

+ Ph ical objects that more or less crudely appr,oximate to straight lines

ﬁ_x

readily” come to’ mind, for example, a taut wire. But surely a{@shaft,qf sunlight

-

.
. piercing“the shutters of a darkened room is s1ngula:rly apbte ;,Isn't this the” ‘per-

fect example? #Buclid must have been well pleased witél his observation. Yet

Kofe that hi,é basic assertion embraces metaphysical speculatan as well as

physica.l observation. We see 6nly the shafts of light at which we lodk; we do not’

seg the sha.fts with whic‘h we "look. We cannot observe the rays with which we ob-

LY

- serve, yet. Euclid claims all rays to be propagated in straight l‘ines. Such meta-

—

physica’l‘ﬂasswnptions regarding unobservables are acceptable in so far as they

- -

fa.ci;Litate understanding of observsbles. Is his.pestulate obvious? Your answer

-
o

T

depends upon how much or how little you think sbout it. ' .

. N
- ' T
o - 7 .

. \‘1- he N . - ’
FRIC L L ga e s v
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Given that~ rayqp-e:. light are straight 11nes, how, Euclid asked is the

- L

direction of a ra triking the’ -suriace of a-plane mirror‘related, to that of
e rop < ‘

the reflected ray? ' See Fig. 1. . ) e

~

Fig. 1. o
» . -, [ . .
This figure reduces optics to geometry. The lines zl, 22, n, represent  the .

incident ray, the reflected ray, and the normal to the su¥face at the point. of -

~
incidence, respectively. The angle O between incident ray and normal is termed

the*angle of incidence, while the. angle B between, reflected ray and norma] is °

‘ ‘

*  termed the angle of reflection, What 18 thé relation between A and o7

- Y .

- Euclid found by experiment that & lies in tbe plane determined by Kl

.

“and . Thus’ il, n, and 22 1n Fig. 1 may be considered to lie in the plane
. 3 ? f

‘e ,of the pafer.. To determine 22 uniquely, it remains to spécify B. As the e
'result of many experiments Euclid found that B =a, 1.e. » that angle ,of re-

. T ection is equal to angle of 1ncidence.\ Th"is is the famous law of reflection'

L4
[ . v

as formulated by him in his Qp_tics. ¢ : .
\~&::/- g . « ‘ -

Y ’ ‘Although t~his law was based on a large. number of experiments e must ‘res

[ ]

v member that Greek technology was rudimentary, the.1r measuring instruments im- ] )
i !

‘ ‘.

' ., Swas precisely equali-to Q? He had the comforting securi'ty of experiment backe

s

k»prg,cise, and thei / 1ane,mirrors ,imperfect. What assurance had Eu 11d that B *

y 4

| T y belief, He hel a possibly only half-articulate,&bxut certainly deép -seate
- 1

rolL R .
; \"*f elief ‘about the* nature of th:tngs, that Nature ‘not, .fortuitous, that her laws

.
‘\, s 2

.- é\ ' wi.’b:( have simplicity and elegance. With the co age of” convic‘t\ion he aSSerted

J 3 " .
f% ) his law to/hold exactly for perfectly pla.ne mirrors. Bu‘t many -of Euelid's ;

$ ~ 4-“ . L o

P contemporaries ; eyen if equé.ll:y courage s,- had _grave doubts wheth/ez:- hiis law

.

g

F L I .
is right. Some wifh different'c metaphys és doubted whether there couiL 'be aws
o L K \‘v\« . T
/og nature at all. €y e

: ‘*. e g pmart v s oy gt i

- \ e ‘4 T -]
2 (R "'“83 ' ; %6
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. lines without ﬁ =a,

Heron: /he’Shortest Path Principle. _ - ’ - .

3.2

TQ add grounds for belief we 1ntroduce Heron of Alexandries who lived a .

.~

1

éeneration or so after Euclid.

v ~ -

(His birth and death detes are uncertain.) A

ma/.gAho played a far greater role 1n the development of science than that
N
usually ascrlbed in the textbooks B he built the first automaton , npade

- . 2 .

the flrst attempt at buildlng a steam engine, developed trigonometry and applied

‘
. -

.1t extensively. A man with both feet on the ground, he was forever stressing ’
. [ LS ' .
the possibilities of applying mathematics. . ’
- - N ¢ N

Ce Heron E;ave g proof of Euclid's law of reflection. His proof consists of

showing that- both of Euclid s laws, that

El Light is magated rectillnearlly

@2 Angle of Reflection = Angle, of'Incidence

- are comsequences of the ‘principlé proposed. by Heron himself, that -

Al i ¢

4  Light.takes the shortest patmossible.o

' L4

Here we have whet_is probably t;})ie first example of the dnifying trend, so charac-
teristic of science. Surely either of %, 'E2

o Is it not ‘pe'rfe,ctly reasonable to conceive of light being propagated..in stfaight

and cﬁversely? But H could not be true w1thout both
¢ . < - .
being true. Whereas bellef in the truth of both E1 E merely affords grounds

for believ‘lng H, believlng H necessitatfes bellev1ng both El’ %
.3
\9 the COmplete fomulation of E2 is complicated, while H like E1 is simple. .

. Moreover,

not easier to belleve one statement of|a cfertain kind than twenty or tvso
N, ° o e

‘of he same or & more complicate klnd?

,,ee

Tt is in this sense that Heron ' p?oved"

' -

o ;Euclid's “law- of re‘flecfion. : - ‘ . f ! o
i The proof that El follows from H is o%vious. Since the sho.rtest d }s-‘ .
) ta'née between any twd points 'A and B (in free space) is the straig,ht lire
4B ’that Tjoins them, light in movinf ﬁz:om A Fo B by the sho‘rtest:@ath i ‘ ’
:;os;‘ib:xl'e , is ne essa;ily propagated rect__illnearil . Fig. ?2‘ isaaself-e;cpi.ana er
“x ::i. ! . .?- .l

S
EK

Arui e provided by enic

could be true without the other.

o e
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The proof that ’E; follows from H is.not obvious. . We suppose light’ to

- -

7. ‘travel from A via some point P in the mirrdr surfa.ce to B. PN- is the

s * - ’ .

_normal t6 the mirror surface at _@P. See Fig. 3, 7. ‘
5. h .
. - 8 .
‘ - A .

L B ‘ P -
2 !" Fig 5 ! .

.-.— - Py

If* the light did not become 1nc1dent to the mirror surface, tl"xen the 1ight could

., hot be reflected from it, Here, in asserting that a ray takes the shortest’ path

.

poss1ble from A to B, we cannot mean the shortest of all pos51ble paths (the

N straight line AB), we must mean the shortest possible path via the surface _o;:

| the mifror. Thus to prove that E,
it APB 1is the.shortest path pos'si

is a cbnsequence of H 1is to prove that,

(via the mirzgr surfac_e), then the angles
made by th‘e straight li:@s AP PB wi&h PN are equal ; ™ . ‘

First we sho that the Iines AP, FB. cannot be w.iggly. The distance from.

. . '70"" *

/
A to "B via P.will be a minimum uhen»AP and PB are both minima, for’ if

both were not minima‘their sum could be’ldecrea.sed. But the minimum distance be-

S v -

" tweed any two points is the straight line ,joining them, s0 that the distahc,e

from A to B via P can be a minimim only if- AP and IB a.re both straight

y

® lines. Accordingly, we exclude wiggly ines from further consideration.

- Thjs leads*us to] the cxrux of .the proof. at is the position of P| such
that the sum of the straight link distgnces AP, PB 1is’a minimum;? At this . ‘

stage we avail ourselves of Herdn's fhgenuity by introducing an auxili point
. - . o~
) B!, the mirror image of B. That is to say,‘*__?'. s the poﬁt\o;jhe nor:né,l .

-

"from' B to the mirror as far'belosw the ,surfac% as ‘B 1s above See Fig. k..

~ v

4 o to
+  Since MC is per;oendiculé.r tﬁ’ BB* and C is the midpoint of BB', M¢ |
y

’

is the perpendicular bisector of BB'- i.L. MC is/the locus of,’,points equi-

ds ‘t’ from B afd B'.  Thefefore,no matter what poim-,., P 1% on MC;
o o , s Do ’ B j e
-~ PB = FB? '
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and eonsequently'

v

-

.
&~

L]

The lformer will te a minimum only when the latter is a minimum. But t

i
distance between A oy B
latter, and conseguently the former, will be minima“when P is \c‘bllineaz: with
L e ‘ .

A and B'.

»

, Sincé" AFB' is noy a straight line, MPA and B'FS

.

-A‘

Pig. L

<

—————Z

.

AP + £B = AP + FB' .

¢

b tl,fﬁ

[ge < 3

‘
’

=

=

-

It remains merely to show that when APB' is a straight line, th

\.

angies, so that e

-

-

4
i
i
-~

1‘\
AI
!

R &

, RN A

i Figo 5

‘

-

is the straight line Joining them, so that the

, - ,
made by AP and BP with the normal at P are equal. Study Fig. 5¢

o '
e\aln%les

T e v—
. L]
< z
,
Y .
f
L] "
v

he shortest

ks

»

~
"

are verfically opposite
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by synnnetﬁr (and also, by congruence of trlangles PBC and PB'C, from two sides
< - ?
and melr included angle, PC = PC, ZPCB = 90° = LPCB', CB = CB'},”
; - ; .

- .

so that . - ) }
BN ’ LMPA = ZBEC . ' z. '

e,

Therefore the complement of the former is eqﬁal to the complement of the latter;.‘
> 4

-

i, o

L APN = L EPN .
This complete proof that .E, is implied by H.
f’he critical-r ader nay well ask, 'How did Heron hit upon the idea of the

auszliary point _ B'?" But haven't we all seen swan and 1eflection flsating

double on a placid lake" The ,swan 8 image is the same size as the qwan, but

upside do{m in terms of Fig. 5, 1f MC represents the leke surface and CB

_the swan, thén CB' represents the swan™s image; in particular B' is the im-

- £ »
.

age of B. 'To an observing eye at A looking along’ AP,. B appea.rs to be on
AP produced at B, To see B "in" a rei:lectirrg surface is to see it as if
it were at B' and-there were no refleling surface. The concept of mirror
ima.ge‘enables ﬁs B in. effect, to throw away the mi’rror and reduce the probler'n.of ]
a reflected ray's pé.;th to that of a nonreflected'ray By~ E “the path of

light from A to B! (when no ‘'mirror intervenes) is ‘the straight line AB’{‘ the

shortest path possrble. We _can but suppose t?xat Heron had s.uch considerations
1

. -
v AN

%T tgese 7 mind when he pondered the pfdblem' for p_onder th problem he did.

y P ' - N
‘ . + ' 3
'3 Ptolemy and 'Refra.ctiog,. . R w -

I - -

l”

e nn]*cner He"vfelopment of optics leads us' to the work of the grea’t

A.’l.exandrian astronomer, Ptolemy, who flourished 127 to 1l o lSl AD. Shortly

L

a.fter the time of Hervn deep interest :(h astronomy ratged other questions con-
‘ v ’
cerning the na.ture of light. Ptolemy found from his observations bf the stars

that the propagation of light nea.r the earth's surface is not precisely recti-

-

N linear, but slightly curved. On the analogy rf azstraight stick partib.lly im-

the curvatu.re of light to passage

S L

mersed in wa.ter, appea.ring bqgt, he ascribed




through layers of air of diffef‘ept d:ensity. . ’

Textbook writers would have us believe t}{et‘the Greeks were interested

only in the things that they could see but not t\ofic‘h. . To the contrary, a vast

emount of experimental work was done i'n‘ Alexandrian times: ,Ptolemy, to better

- N g

- A » /
' atmosphere, conducted experiments to measure the deflection of light rays in

‘e ‘ *

understand the j&ect of change ip density on the bending of Zfight rays by the

passing-from air t6 water. See Fig. 6.

12 . » '
-~ \ A - ~ .

Inol’den ¢

AIR

. - ‘- ! \\\ ] . . -
’—}\ 4 - Y% \\"« - WATER
'S ~ .
o » . P2y ~~
- % ~- .
5® ° S~ .
- > A -
v .

. . . . ] B . ..
- Fig. 6.> .
& ' .

L d

L. . . 7 .
Upon penetrating the surface of the water the incident ray does not con- '

. /
tinue along AP (produced); but at ah angle.to #t. The deflected ray, is saic},

t0 use the eomogly accepted term, to be refracted. Possibly the reader is

"disposed to take <BPA' as a measure of the refraction. Ptolemy did not do
. - L
" this. Refra‘ctia is sufficienbly;'similar to refl'ection to merit analogous\ter-

e- mmology. With both phenomena there is a ra.y incident - to a surfa.ce ,
' -

fore an angle of incidence,, 'I'he only difference is that whereas with reflection

o

?
the ray after 1ncidence is determined a.bove the ‘surface, with refraction it}iS; L

and there—'

LY -~ T

deflected below it Is it not 'therefore glatural to measure angles ‘for both . \)“1
P o
|3

phenomena with referenct ‘to the normal to the S rfa.ce, to Segthe Shae defini-

1nc a ray deflecte(‘i upwards is meaf -

ured against the upwar‘d ,norme.l, to measure against ﬂQe doynward normal a ray R
.,_ ‘.,}

.
-

. deflec‘bed downwa.rds? \Thus in Fig 7, rﬂ gs sa."i[d, to’ﬁ'\{heﬁ.ngle of :anidence

. P A el W

as 2

\\a;nd ﬁf. the”angle oﬁr‘eff‘actlbn‘

e e

T

Ra P

a

“«“* 8

B
o e ”
3., & ptis

. -

e Qt

o B
“e§ gt - "

y Liwsn Tz




, ) . Fig. 7. B
,- Ptolemy found that B depends upon <« ; a change in the angle of incidence

L
results in a change in the angle of refraction. Mathematically put, B is &

»
~

function'of o, say, P = f(a).. As a first step toward specification cff f£(a)
*
Ptolemy made extensive tabulation of the ordered pairs, a with the correspond-

ing B.- Despite more and yet more experiments with extensiﬁ a.nd et more ex-

Y

fod by ERI

tensive tabulation, the law of ordering con’cinued to elude him. Finally he had
'S . N -~ . -

“ a0y * R .
to give up. ™ .
. .

-= -

- .

] ‘ k]
3L ‘Kepler and Refraction. . L.

. More thad a thousa.nd years later the problem was tackled by Kepler (1571-

1650), an astronomer Justly famous, who had genius at finding the ﬁmctiona.l

?

rela.tion governing the 751: /Iecalcitrant of ordered, pairs. Allow me to illustraté

his capa.cityw XY

I e

-

¥ear 7f‘ter year he Worked am‘iy, conJectu.ring a c/hecking, “until finally

£

e hit upon hypotheses that. fit his observationa.l 'ta. He”showed that each .

planet d!escribes an ellipse having the suh at one of its foci, and that the e

f

areas described by the ra.dii drawn from a planet to the slin are préportiona.l to '
. i

the time teken by the planet ‘bio describe them. Fori each lanet he knew r, the

e
ma.ximum distanCe of its elliptical orbit from the sun, and for §ach he calcula— :

té)ﬂl\\ e etary/year T,. ;:::e tine it ta.kes to cqmplete a full or‘pit,s }’{e

eﬁ§ T a;ld T. gle askeq himﬁelf), Whe.t is the I‘unctional :cela‘bion between\‘

. '?’n d
Q pEmt fo the ?.nsqer. creg)iibl g -
mc%ww PR %, N
b - ; o o i . ¥ ¥
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Rseek the relation of T to r for the following tabulation.

\

-~

That hewmay have some measure of Keplér's achievement, the reader is

asked

; i o SR I 4 '
. '
) 1,601,613 1,521 >
' 2;1146,6,89 1,849 R " ' .
,
. 4, 251 528 ‘2,96 - . < ’
) ’ u,721,632 3,1% T ’ '
’7, bk, 875' - b, 2.25
: ° 9,261,000 1, $00 )
Not obvious, eh? Alas, to find is to seek successfully. After hours or )
’ days of unsuccess we likely concede that, such problems dema.nd.a Kepler But

i3
these are neat gnd tidy figures, tailor-.made for the orcca.sion° devoid of messy

declmals, our tabulatlon has none of the more-or-less-ness of the observational

.8
His was difficult.

" data of Kepler's problem.
A hint.

T °f
tion of T to’ r now obvious? No, .thé "obvious"

Ow r column contains naught but perfect squares.

N

con,jecttire is wrong;

-

- i

” Is .the, rela-

&

T is *

/ ; I Text Provided
2

not also a perfect square.’ No, neither is T the/ sum Of two perfect sguares.

T, it so ha.ppens ) is a perfect eube. Adva.ntageously we rewrit]e our tabulq‘tion. -

/ ' ’ N . ' “T ~ } & r ' A , : J
- 7 & || 2 - oy
‘ ‘ 7, 39° - R
’ A 1293 . . !"-32 \ )
. A . 162? . 5!42- . . 7
Lo 1687 562
N o 195° B fssféf S '
v 207 || 0t - ‘ ’
<,
. eldtion between T and r now appp.zfent 4’:0 you? That depends .

i

cermnent Perhaps you notice ’?{hat neglecting e nents the first

pn L

G”

mc:

Tl

E 4

-

w wet

o
)
5




. . . ¢
. . S
~ Y - - 86 -
. 66 _ 117 _129 = _
. N %39 TFF S 4 <3
4 ?;ig. ) - ’ . .
Thus, for example, ., ’
o - # ’
* ’ 66 = 322
. so"that the entry’ for T with J_cyonent is = . .
Yot § - » ’ » ) . 5 5 . . M
o & o 66 5 (227) ., \ ;
What a pity the 22 is cubed instead of squared. Thinking wishfullly, wefwrite ‘
¢ < -
SN | (6P L (PR (220 : ’
. - L
. .
e It is left to the reader to shoy’ that . * . o -
.. S TR S PR
. . . \ - v
- satisfies our thhulation.

b

Kepler's tabulation,' though diffidult, was, g:overneci by the sam® proportion-

’ ality, He found that l-‘ * o e~ .

- v . . ‘f2 = k"r5

< where k 1s a constgnt.* This is his famous third law that the square of the

-

time of revolution of a planet about the s;&n is’ proportional to the cube of that

.. planet’s maximum distance from it. Although our tabﬁlation with nice whole

“n

~

’ 4W
cessant toil, ) - . .4
t : ! RO e A - ’ - a

With équal enthusiasm Kepler turned to the refraction pro‘ﬁlem of spécifying

\

" it does afford rsome hint why Képler's discovef‘y cost him nearly a decade of in-

- <. bay .
T g in terms/%f & . Knojing his ability, we anticipate his success. His|for-

. *

mul works well‘for sme. \a but the greater oz@ecomes the greater its-in-

acc, acy. For a greater than 15 its ina.c:cur/ac}r is unacceptabfe. It is a

4 mak shift ‘affair; even Kepler was unsuccessf‘ul e 7, ) : i '
¢ N ‘_ f. o ' ¢ u '

P '\fi.st Fe_rmiﬁ The Quickest, Path “Principle. \ |

4 standably impatienﬁ to le ‘correct for-

~ Alth ‘gh the reader is un
J
H

+
Yy

.
.

e

¢ ¢ mula, the}development of science i} not to be hurried Solutio}| 4f 1ons\s(‘ta.nd-'
. ;——2" H
e

;‘1 ing probliamsf is attendant upon the~winds of fresh discovery,

r:g'\t“\/’“”" v ;7 - '\} z’j :

nev 1deas of a ,

3 s s

T
91 < ; \i’ ’i‘:’f !
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numbers devoid of observational error inadequately illustyates his achievement ,%
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11ve1y intelligence, stimulated by the intellectual ferment of its day The-

z RN 4 ;
él‘ively intelligence was Fermat's\ (Fe \ 1601-1665) 3 the intellectual ferment

- %\. . N
o'f its day, the question, "Does light have a velocity or is its propagation in- N
. L] - - B
stantaneous?" ® .
' . . - .

- -

Possibly Galileq '(lio‘tlﬁﬁ) was- thé first to.tackle this question experi-

mentelly. At night on a mountein top he signalled with a lantern to a colleague

-
.

on an adjacent mountein. His eolleague on seeing tﬁe light of Galileo s lantern, -

uncovered his own. Galildb tried to measure the jinterval between dispatch of
. . . [ . . .

4 .
‘his signal and receipt of his colleague's. As near as he could tell, light is
~\ -

inst‘é:htaneous 1 Tc us the experiment i$ incredibly néive, but Galileo did not know )

»° e -

td

that the time for say, two 10-mile light Journeys, is of the order of one “ten-- .
thousandth of a second. He experimented to find out. s ) ‘. . ,
This live issue captured Fermat's attention. Suppose,,he pondered, light

- is not mstantaneously propagate , but has a velocity. Fixrther suppose this veloe- ) .
oY * - Rl
ity to be constant, What then‘.’ Time is distance divided by velocity, the short-

est path is the quidkest. Thg supposition thdt light takes the shortest tlme bas =
/ -
Precisely the same consequences as Heron 5 principle “that it ta.kes the shoz\test .

- path.» But alternatively, suppose that the velocity of li,ght whae constant for
- \ .
‘any given medium, is Eifferent for different media. In pa.rticular, suppose that

| light.in vaer’has'a velocity different |from ght in air. ’What then? With X

; ! Lt ' 4 .
tra;vel in oth air and water'the shortest pat "conceivable is not the quic est. .

.,

2

. A bent Jdine is onger than the straight. line between the same end poin‘t

' because a refra te& ray is refracted it cannot take the shortest pga.th. d es it -

take the quick t? If S0, the consequences of Heroxs shortest path principle M /

-
- e 1 .'

. still hold, and/ perhaps z»efraeﬁtion is also explicable. e . T
/ » [ILANEN . “

L . Fﬁi‘ther thought gives this con,jecture fubsher ‘plausibilit:} F“.I. could be
expressed as a /minimupn principle. A straight ‘line bends‘ “heither t the one

, side or the other; it has zero curvature. ’ So, instead of'saying@t at light is K .
LI 8 ‘{
propagated rectilinearily, why not say that ight take,s the path of minimum .. ; .

curvature? Héron!s minimum principl‘e that light takes the s/hortest&path is more

v
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.
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embracing a.nd covers reflection as well. as E . Why/not an even more efr‘nbracing
minimum”pi‘incipie .‘t:hat dovers refraction as well as reflection and. E ?

+ " Fermat's conjecture explains at ledast as much as Heron' s. Does it explain
1, p

) more? Whét preci,sely are the implications for refra,ction of the mindmum. prin/]

P

IS

-

N
- : ciple tha?c ,light takes the quickest' _path possible" What is the quickest path? -, .
‘ an{ider the plight of af golfer who in G.riving from thg fairway a# A, hooks™ ¢ ‘(
N ,/ R

. ’(not slices--the golfe.r is left-‘hande&) his ball 1nto the .box gt  B. See Fig. 8.

. o
. e e , Fig.8., R PG -
P N " . - R . _

How best can he retrieve his ball? Not by taking. the shortest route AP'B 'but

' b;f taking’ the route A.P"B ’Which minimizés the amou?t ‘of- bog t}iat he, franticaJ,;l.y

determined as golfers are 5 must floundez; through wavist‘%ﬁevep, ?lbearly' this .is%thef ;M
quickest possif)le route. 3 ?fl re it, for example, with AP‘B - Hisg longer ?wal}; o
L ‘l;.P" “across the airway ’Whereli ing i}; easy a.nd th_re\fore rapid takes him at o ®

> - mosta mi'nute T twd more, But hi shortest bog route:  P'BC ;saves him\/ h‘our o

'l

. L
. A"
two of floundering. The extr: time s nt in},walkiqg_ fmher ac st the £ irwa,y
k T

& .
‘,..- .

. E)
« 1s negiible compared with the time saved frombattling.th!‘o "_Egog. Similarly'
N ‘V"’"‘\""a:

AP"B  compares favorably agains;/any other route. It is ihﬁu

rvely ev1dent .,
’ / ' te, , SNy t‘c '

" ’tha‘b floundering is o, exasperatingly slow that ase increase :ggw\ t%;p flouhd,e;ing ﬂ\\
‘ d:!.s,ta.nt\er cenniot be compensated for by the corresponding,decreasé:;n faimy‘f -
. travgl. - Therefore the quic}{est route has the mirfimum of bOg tra;r\el i, eij that i%
) in ¥hich TCP" is, perpendicular to MP" Ve have dolved: f . ;ﬂck i ‘

,.’,

_s}: p‘%.'th p'r%- j'

b,lem in the .ext.reme case where the«golfer"s fairway velo ‘tm’ V "’ixs very large

o compa.red ith (since almost zero), his bog velocity.

Q . Sy .
- R * e
l B L o . .%q,gg 9 3 P; N s

e Py .
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' What is t'he other extreme case? TH&% imewhich bog is replaced by fa.irwa\y,

4 so that V2 is increassd to Vl. Then,of cour'se, the guickest path is the
- . ¥ o . ,
~ . " l.
shortest path AP'B. And what about intermediate cases? Surely the quickest
AN > N ¢ -

2 ) . -
route from A to B 1s, AFB vwhere P moves recti,l.inea:cly from P' to P",/

Vl to nea.rly ZEeYo. - o °
/ ’Suppose th; pog?;placed by b‘racken and gorse.

-

as V2 )%crea.ses from
Off the fa.irway ,the going

Y
bog, but more arduous than fair-

is no?’ so desperately bad as floung,ering throuA

;v:ay walking; we expect P to be intermediate between Pt a.nd P', Were the

. . ! . ‘
going rougher than it is off the fairway, our golfer would go farther out of

his way (i.e.,deviate farther from the shortest rou‘f‘;eb AP'B) to cut down the

amount of rough, time-consuming, terrain he need travel across} were it less
- 0

-

rough he would go less far out of his way. Less time-consuming terrain would

necessitate a smaller, more time-consuming terrain.a greater, deviation. It

.

to nea.i'lyb zero, the quickest

P" - . e v

v

is intuitively clear that as decreases from Vl

2

route is'such that P moves from P' to

—— N N . - . - — B8

We suppose AFB to be, the quickést route from A on the fairway to- B .

_in the rough.

See Fig. 9.

Figr\ 9.

e . . B
Let us "cqmpare AQ'B w'i_th the quickest route. In tfaking '.th*mer: goute

\"2 o’ BRI °
fairvey, he oses T in struggling through the rough.
3 " 2

must lose more time than he gains, for otherwise the la.tter route could nc;"f. be

@ ® i , ,% . 2
R A L ] LB "é
JERIC - pooe b

.g‘u [l ‘

Yet a.ll told he

. ./ .

-,

3

F1oour golfer has less faidway to stride écl‘oss; n:.mely AP-AQ' , so thé.t'His./biTe
sa.ving on fa.irway travel is APV——AQ' . g But with less fairway travel he h;,s
4more »of ‘the rough to cross, nameJiLy _BQf- BP so’ that his extra timqtspent in t:: )

’gfough?;&s BQ'V- BP,‘ : *’Although he gains’ —l in st iding across the’ -

/

)

e




5

the’ quickest.

~

t'

awhere

r

[ »

. but gBP-Bg"

That is to say.

P

.
”

short, (1) 4s. spch, thal

‘\.
Next et us compare<

£

AP - AQ!

1

,' not be the quickest route.

. That is to sa.y

',sitive t' tends to zero

’a S

= !

»
s

e

4

less si}ruggling in the rough, which gains him .

is the time by which rou’t:e AQ'B exceeds the quickest.

2

the é‘loser Q" éproﬁmates to" P the more t! decrea.ses towa.rd zero. In

Ql

our, golfer has ,-AQ* = AP of/extra. falirway travel, which losés him

v

-

BpP - BQ'

Moreover,

the closer the rorte AQ'B to i;he quickest, the quicker it becomes; that is,

tends to P.

"B with the quickest route. mith the former route

AQ"
. ‘Vl

But

a.ll told he must lose more time tha.n he gains, for otherwise the latte1 could

71) ,.

q: is 1io the left or ﬁo %he,

Yrigh‘t: of | B

%cké%t pat APB t

We ha.‘

D 3
a.nswered 3bluaf question, 'What

3\3 su%% tha when ¢ mpared with

LI < . . - , .
Tl et N . . ) 2
- ,»---fc“.‘% N 1.,:‘AQ" ~ AP BP - BQ"* .. ' -3
AN . - N RO V - V =1 (2) . PN
: ' ,J'-_ ¢ C 1 2 . )
< T / i - 3 - s
where t" 1s’thé time by uhich route, AQ"Bl exceeds the quickest And as with
bk s “‘————;
the p,revib’hs c0mpar1soq, (2) 4s such that positive t" tepds to zero as Q"
. ten,As to R e - M e ?
, ‘/ ¥ 4
2, / Lat us ¢ompare the left side comparison AQ'B of the quickest route with
~, the right side comparison” AQ"B. Thg) condition (2) is equivalent to
. AP - AQ" BQ" -BP .. T
* _,’t - V PEEN - ~V T = t b i ’
u‘ o »,”) K \3 ’ f“x ' . 2 . ® ) ,
. " eand consequently, equivalent to 4 - S Lo
PR ’ "";".9'2" N “ % 11 1 s, ° i
T D "B = BP AP - AQ" L gn - (3) 1
,}2}*1,‘/
;‘;‘ Gompare (l) with (5) We obserVe that lthe_fomer, -when Q"A= Q and t' Bt
[AER Y o
o - and the latter; when Q" =Q and t" £3%,-1s the condition . '
; . i . o i R . .
C - . §; . .." uBQv“"- BP - APV— AQ =1 , B (h‘) .
# E - 2 -1 ¢ - '
j » . where positive t tends to zero as Q, tends 0 P. .'That 1$"to say, the- rela- R
I #, T 3
N )
f; tion between AQB 4na the quiickest roui:e is overned by ( 14-) no matter w%ﬁether ]
M '& ) ;x.i .

:'




91 R . " e : v’ o

- 4 -
- . Y .

any other pa.th AQB,

condition (h) is satisfied. <

'Few ma'gknatlclans, even anong t}zpse of th,a" first rank, could claim mven-'

tion of the calculus. Fermat is &ne ol%he few. To splve the problem of the

- . 0
*ﬁf quigkest path he invented the method of the cach‘us of variatlons. To the

L
’ e
+ ’ o

ic idea of this metho&, the reader has,,. in following‘the plight of our golfer,

been afforded an intult:]ve :Lntroductlon. With the falr\ﬁray 1eplaced by air, th/

4
. rough by wate;r, and our golfer by a ray of light, (L) is immediately appllcable

4

tO\the problem of a refracted ray taking the quickest path possible. .

.But, as_
- \

4

~t .’

Q »¥P, clearly Z QAP -0,

- . s
R'P > QP « sin y. Moreover,. as

SO, that AQR'P\—-)
- P, RP SRYP, i.e.,
» L]

AP-AQ-—)Q,P- sin’y.

A

4

’ M Lo
and consequently,

L

- AQ SR'E

4

-
.

See Fig. 10. ' L , -‘.{’ \
. , .
' ’ . " ° 3 1
. 2 P
- . R .
» * S )
. 4 atg .
vt > y .
7 . T e & -
_f . i arc, radius AQ P \\\\\ - .
- . ) center A e P J R . s
- ) N . - v, ” ./(,\j "’, B .
l. Ag. 10. LA g
'Ihe circle with center A a.x{i redius AQ _cuts AP in R, and its tangent at 0~
o ¢ ..
Q (perpendicular to. AQ, of course) outs AP .in R'. ZPQR' =y \ P
¥ € .‘.
Wha.t happens a.s Q moves closer and closer to P, i.e.,as Q - P? Since -
. * . - . - ;%‘
exteridr angle of triangle is equal to #;he’éunlx offth% two interior oppo?ite I s J
' | v [ ‘ . ’ .
angl‘es - ) of°
T‘ A Ll . . , N v :
=4 T JZLZG@R'P =907 + ZQAP. .. “
) ' ) | A :'4 ’

-éonsequently f ) NS ’
- P A
N ‘s
AP A ;
—,vr—Q as Q@ -P . .(5‘)
) Y N
. . . 1 . e »
Nexty study Fig. 11. . o r ) ’
H ' e LN , . ’ - ) T -
. : 2 i ) g
i . t ' ..ﬁv‘\
1 . N * E.
‘ b %5
: { . . s &
Q B ) i 9 6 ~ ¥ t
ERIC I MO =
» 1 t H s N ,, T
! K 1 \ . \ P ) - .
) ‘} 2 . .
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arc radius BQ .
. . ‘center B

. Fig. .,
. . '
The ciréle. w1th center B -and radius BQ cuts BP (produced)’in S, a.nd 1ts

. tangent at Q (perpendicula.r to BQ, of cou.rse) cuts BP (produced) in s'.

Y

LR =8, - S ! ' .

It 1s left as an exercise 'for:the reasder to shoy in a precisely similar \
. , - |
/way that vt - o |

BQ . sin® * °

== 5Qqp . 29 4 Q-P,
V2 V2

By (%) ,
BQ - BP AP.-'AQ
Lo T N
"so that by (5) and (6)

e

-0 as @-P o

QP - s\d}nﬁ . s‘d}nvﬁ
v 1

?l"hat is to say‘that, when the routes AQB, AFB are arbitrarily close,x the S

- -

difference

’ Q,P{Sin S’f_’sin‘r ’,
e V2 V ’\A\

is arbitrarily sma.Il t’he closer AQB is to the quickesi;route, £he more .

true that . o : - 4

- 4

L]

N L. .. v R ) : .
In other worgi_{}"}“&or the¥quickest route equality holds; i.e.,

N Pl V.«
Y . .+ 8in. B _ 2 v oo :

sthy TV L

4 3

{

~ .-‘.___..—_,‘ !

Sinee in the 1im:iting position the routes AQB, ABB” are a.rbitra.rily t:iose,
4 QR'P differs from a right angle by an a.r’bitra.riiy sriall e.mount; sa that

Aruitoxt provided by Eic:




° ' . =~ > ) "J\~\:. . L 3
. ‘ - .
\ . R 0] 937 . .
- L .v . - .
fhe - situatian of Fig. 12 obtains. ,
1 ,

N D

Fié. 13, .
., . -
Consequently, & and ZS'PN are both compiements of * LQPS', -and the latter- W e
is verbica.].ly opposite to « BPN' , the angle of refraction B. Therefore
- ’ rd A ot v
- . .(' f ‘.‘\ "
' B=25%. (9). /
' Substituting (8)¥ (9), -ih (7), we have . | : g/.
L3 « #
4 v . ) .
. ! sin B 2 @ .
" { s sin '—V_ s ‘:. . (lo)t ’
N A l f . v
This is Ferni;a.t‘s law of re'fraction, which may be alternatively expressed .
- N ) v2 S ) . \\’. .
) ;-. sin g = Kl * sin o, where K.L = -v-; . : (ll) :
. 'Y a i

i.e., that sin ﬁ is dj:rectly proportiona.l‘to sin o, where the constant of

¥ proportionality is \_/'2 o ’
o ‘ 1 . ! ’ '
T e ,f ’ he - :

\‘1 ’ e r - EVRNE . b e ot ’ 1-'
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A%

* between B and a occasions no \surprise. What is Surp_rising is that he was

K—’/ Newton begins at the beginning. The first tﬁing to, explain is the recti-

£y

.

;!

- I‘!? won rapid acceptance with éont'g'amporary scientists. ,From (10) we have .
- . ’ i . i . R .
1y '_: . V2 . / ' c s . : .
S e e B—arc sin(—-— sinQ ).
, . Y l ’ . . - .
. A Y e [ . .

] " ¢
/ s ¥, - - ) L - h
. 3.6/ Newton's Mechanisic Theory of Light. ’ -

the enthusiasm borh of his’ success, his laws and ax10ms were. as clear as day. .

- The minima_l path princ pl'es of Heron and ‘Fermat were still darkly mysterious.,

~‘.h ',7\;??&‘?4,

Fermat*s law was later rediscovered independently by both Snell and

Descartes, an? was used by the latter to explain the phenomenon of the rainbow. S

-

That Kepler failéd to eonjecture such a complicated mnctional relationship

H
~ 4 s

[{e) successful &s to find a formula of toleraeble accuracy for o < lSos

1 ' . - .

P * o, . .

» EARaY -

With Newton (1632L1727) science came of age. Understanding:the, starry oL

N 3 . ~ . i
heavens was within man's grasP. It was\almost as if Newtqn with his three laws.

{ 3

e .~
and few a.xioms could, as Jesus, wd.th his two )//loaVJ a#;d\ f’ive fishes, work .
] .
mlracles. Hé\expgined the by, and flow of the waters of the deep and the
- ., ? )

bassage of the fiery bodies 1n the firmament above. Nature lost her mystery,

man his impotence. 'I'he solar -system 1,s a gigantic piece of clockwork, and

Newton had discovered how 1t ticks. Newtgn s mechanics is the key to every-
» BN
thing around the sun, must it not be the key tp everytﬁing under the sun? To

Surely the optics “of Euclid Heron , and Fermat could be explained mechanisti-

cally.. Newton thought .80, . . "

a
i

,- ! -~

'linear propaga'bion of light. His first law states that -a body moving with uni-

“Fortn veloeity/ in a straight line will contNto do so unless acted upon by

extermal for;!gs to change that motion. Are not Eucli:d’s and Newton's first
r

%

/ la.ws remarkably s::.milar? With,characteristic ingenuity Newtdn makes the fprmer

// ' 2. . ’
as an, 1mmedia1te consequenceé of the Iatter by introduction of the supposition _,'::; )
. , - .- % -
tha/t a ray of light coﬂ!ists of minuté bodies, particles, or c,orpuscules. Be-
i : * - & a‘g«' . . 1

cé.use of this suppqsition Newton's theory of light is known.- as the corpuscular

i ’ 99 N

,[Mceory. . '. T ey . ,.\‘ ) ) . ) ' ‘ _\”‘L

-~ .
= - 2o . T vt - T
. s . - . « N .

2
i~ RO B
P




\
3}
mirror. It is, of course, sufficient to co!

! 3 g ,
particle, for all the others will beha\;% in the same way under similar circum-

d e R ./ 4 \ ) .
stances. - . 4 . L N

-
ro-

First let us consi?er a specigf{/case, that of an incident ray} normal to

-« . <
.

“the miM see Fig. 1h. . “ ' -

%.

“ ' Fig. 1k, % -
s g "\\’.

-~ , A Y4
7
. What happens when a constituent pa.rtlcle of a ra.y trwy&ﬁng along NP reagches

M ¥ -

» It/$ .e.ttem 4 to” penetrate the surface MM perpendicularly downwards is
re ;sted sglely by forces acting perpendicularly upwards (due to the constituent

«

* - !

icle returns along the nermel. , ¢ - . ' et

. .

We now turn to the general case. It i{aésumed that Vl’ the velocity of
S
a,light ra)g in air is constant irrespective of its <{irection relative to the

. !

mirroxr. Thus the problem is the following. A pa.rticle travelling with velocity
71 . .

'Vl aiong AP at an angle « to the normal is reflected"ﬁith velocity Vl

along BP which makes some angle £ with the normal What/ /'the relation - 7
e, - ,/

between B and a2 ”\See Fig. 15.

PR

Aruntoxt provided by Eric
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< . v .

) obli q/ly, Newton insists that the structuxe of this surface is such that the

| rEsi%stahce t0 penetratiorf is solely ‘by forces actiﬂ‘g perpendicularly upwards--

/ just as "in the special case considered above What a.re the cbnse’quences of hisg
‘-

, e ”1

insistenqe? Forces acting in the direction PN have ho components in thé-

// » »

/ " direction - MM', so that the' forces (if any) acting in this directiox‘r on the -

< particle at P before impact are unche.nged by impact. Therefore the velocity

/ of the particle parallel to MM' when pa.r(', of the reflected ray, is just the

.

sdme as when pa.rt of the 1ncident ray. Motion parallel to the surface remains %
P &
° ch 5 . Equating/eomponent velocities parallel to MM, we have

o o . N Vl sinﬁ=V1 sin '

\ . . ’ A
> ¢ X F ~ ‘

)\But by hypothesisy the resultant velocity of the p&rticle when reflected is..

AN

V1 at an angle B to PN. Hence it is clear from Fig. 16 ‘that JB=a.

°
el : g l
H

14 ’
. a Jl ‘.
Next, refraction. What is the difference between reflection and refraction" E
b . ' N !
*~ Whereas in the latter the incident ray 'is successful in penetrating the surface,
) ) -~

/
i in the former it is not. Newton treats, these phenomena similarly. No matier

”
, . AN

\>whether or not penetration‘ is successful, Newton continues to insist that the Ry

4 o 2.

.- . . 7 .. Tig. 16.

only forces opposing penetration, even if oblique, act perpendicula;cly. to the

‘sufface. Consequently, for refraction as for reflectiqn, motion parallel to

.

thé surface remains invarlants And vhereas the refraeted ray differs- f:g'om the k
p ) reflected ray by being propagated in wgter instead of &ir, so that itﬂ» componeﬁnt‘
LSRN velocijy pa.rallel to MM' is V2 ~ sin B instead oi‘ V + sin B,-’the incidjant,
_ray 'is the same in both cases. See Fig‘ 3_7. ' Lo - R

. - -
- - t ® ’ "
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Vzsinf
RFig. l"('}-
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¢

-si.fz5=ll',l.-‘sina,

gi_n B=K, - sin ‘o , . where

‘e ,
- o T
'y @,
. - .

' .‘ N
3.7 Fermat'Versus Newton: °Ebcperimentum Crucis.

Thus Newton, like Fermat, concludes that sin g is d!i.rectly proportiona.l

' & Laes
“Sin O’ H0wever, compari§2n of (ll)

’

reciprocal o‘g t's. And it is an experis ental fact that the refracted ra.y

~ o

\
is bent tswards the no:;mal, i.e., B <a,. so that s_in B<sinwg. Consequently -~

.

cannot be cf rreht u.nless the conéta:?t of proportionality K, is less than
e v v RN

unity. ll) he correct, 'V?- < l; if’(l2), Vk‘ < l( eréas
A 1 2 w0
?
Fenna.f's formulae ca.nnot be corr.ect unless the velocity of light in water is

‘~b.,‘ o v

iess than the Velqcity in air, Newton 8 ca.r;not be correct unles!’ the. pi'eciSe

s . 7 X P ’ 1;..
. 4' . . .
Pmﬁite is the Cage, - — ° ! » e .
e . /‘p . .

gewton,had no difficulty in, finding a.n argument to, vindicate ‘his own -

3

€ ,‘

theory., 4 par’gicl é S J:ight' when in air is traveling in a homogenequs

Ea] - - "ﬁm,
K .

WA i ens Providsd oy EniC

I .w:. .




0
Y

. - -, * - . .
‘medium, so that the forces acting u\pon 1t are constant; there being no accelera-
~ . . [N -

\-

tion #he' net force mast be Z€Y0%

pa.ss;}lg.é'rom one medl

R
um to another ‘there is a eha.nge from one homogeﬁty to

[

Similerly in water.

But when a particle is .

’

ano‘cher, S0- that the ‘forces actlng upon it momentarlly are not constant

Water

‘h&s greater dinsity thap: a}z;, its parificles are more tigl\tly pa.cked. When a
- .
pa.rtncle reachés the neighborhood of the interface, ahead: of 1t 1s an acgumu-

&

la.tion of ma‘tter, b

& d“

e'ffind it, a sparsity

A

s

Consequently, since the more the mass

Py

LY

the eater the a.t}tra. ion, the pa.rtlcle has momentarily a terrlflc a.ccelera- '
ar (‘\\

tion and ‘%i)eeds up from Vl to Ve. Having passed through' the infg'face, 3

. - . -

’

once a.gain therz~is no net force and the partlcle continues w1th constant

xeloclty
\

4.0

- ‘ c

Vé

t

$ ‘.

\

>

N

<

0
.

>

-

< ¥t was a good a.rgument as long, as it-lasted; it lasted ra.ther more than g

Y

that ;Ligh‘?c is slower in water than in air. This was the expemmentum. crucis« »

Al . h N
» The basis of Newton's argument, that hght conslsts of pa.rtlcles, 1s untena.ble.

' v

, ‘We must a.dd that Ferma.t e;mncia.ted his quickest pa.tﬁ princlple a quarter of a
sl N
century ‘oefore 1t wes, known experimentall,,f that the pz;opa.gation of light is

L]
. £ .
not ‘instantaneous. »

. . * . ~ .

>

/ . ; I ‘e

/ .
3.8 To Recapitulate:

”

J

[y

hé.ve traced the development qf elementa.ry 0ptics over the centuries up

*

R

,regard

. .

. same kind.of formula for refraction:

»~ of fact.

\l

~ ; b

!
- !

to refra.cti’on they differ in /ﬁetail.

-

‘Thet is thé role of} crucia.l g perlment

yet they are rivals_.

L

' to the formulatlbn of\ Fermat ] a.nd Newton s theories. Both ebcpla.in rectilinear

. propa.gation of 1lght; both accgunt for the law of- reflectlon, both glVE‘ the

Rivels, for with

.‘."

[

Here is'a situa.tion tfpical of .

{ o scienﬁe s hlstory, & conflict of theory only to be resolved by determlnation

t when a consequence of a theory ‘is in question, the ba.sis oi‘ +he theory

a

'J?k also in questlon. In rejecting Newton's consequences for refra.ction as ’ ’

contrary to fa.ct we must reject the,'ba.sis of these conseg_uences- the. .

RRIC, . e

Aruitoxt provided by Eic:

- .
. ~ . e
W) LENY.A

ntury. And then technologlca.l advances made it pbssi,ble to show eD'cpe/.mentally .

.

3
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,qéorpus,cule.r nature of llght That Fema.t's theory -could expla.in all the fa.cts
"

vindlca.ted his quickest path p;'inciplé La.ter “this developea into the wave

L.d -

theory of I_ight-—' that the cop-stitution of light is nqt _corpuscles, but waves.

.
P »

Alghouth ‘sfface does not permit consideration of further dew./elopments, I
hope. tb have sho.wn' you somethihg well worth showing of the role of ma.thematics

1 P 7

.4 . » C }
it the evolution of science. Mathematics sﬂﬁ'(pens our seeipg of logical con-

A
.

. sequences ands fomses our attention on appropriate experimentation, an aid to

. -

,vision, it is the eyeglass of the mln'd

[y

.'.
>

ot LI

A

59 e Role of Science in Methematics.

T w;f;h to end with a curiqus twist.‘_ From'the role of mathematics in °

- o, s .
" - ’

¥ } . . D
science, we turn to the role of science in mathématics; for despite an a u.n-

‘ dance of ma.terial, how sc:.ence gﬁves grounds for mathematical theorems‘."is

.
’

little known. Convenient to our purpose is the problem of how to construc:t p.
av! he * .

tangent to tn‘e ellipse. _ . : . .

d:” Af two ;>egs Fi; F, are hammered *into th_e ground and a, co;‘éi fied to both

of th:—:-m is kept taut by a stick P, _the movement of 1;’ und;er this restraint

‘

marks out an ellﬁptiqa.l', flower bed. See Fig. 18.

- -M"-'»-’—-—---'r~»/~mga:>‘-
voos ’
This method of construction exhibits the usual, generative, definition of the

ellipse., The locus of a point P such tha.t the sum of its dlstances f;‘g%m twd™ &

‘103 |
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fixed points ¥, Fy' (callecl the_i:o,cn.) is constant, is sa.id to be an ellip-
A N

soid; when P 1is réstri&j:ed to oh’e_plane through F,, 2, its locus —is said

to be an ellipse. Traditionally the constant sum is talcé_n %o be 2a, giving

the equation.of the ellipte as

: . 1 T2 —

" The *circle is a special caseof the ellipse, the ellipse a generalization

of .the ¢ircle. . When Fl’ FE‘ become coincident < |
FlP + PF2 = 2‘F1P = 28 1
o t . . - o e
a so that Fl (and FE.) become the center of a circle of radius a. This guggestg%, |
. ‘ . |
, that properties of.the circle will be limiting cases of properties of the I

elliypse. What light does this suggestion 'j:hrow on theé problem of constructing

" a tangent at ' P to the ellipse? See F:LE; 19. . [ . ) *ﬁi‘ﬁ

. 1

R - H-Flg. 19

. )

The tangen.t at P to ‘the c1rcle with center F 'is peri)endicular to the

1
- ra'dzus FlP. How &o ,we go from this llmit:fng case to the general" qu‘lally ]
+ well ve could sa.y that the tangen\s is perpendicular to’ F2P , Or that it is 8 .
. ‘ perpendicular to bc; th FJ.P and FZE: But obviously the tanger;t can b? per-
+ pendicular onl¥y '30 “one of these lines\iwhen the}} ;a.re:no longer coi.nc‘j.d‘ent;. .
s ' Wfiich one? Surely they have équa.l cla:\Lms. What is an acceptable com;;rom,ise?' @@

.

TPhat ;F»lB P .are equally iﬁTined to the tangent, i.e.7that 7 = & .

s L e

.. ¥ ' See Fig. 20. : me TR e

ERIC S
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the limiting.case€;_ when
t

e F 2 become coinoident 7y =8 =90 . But to s ppose,that 7y =8 1is equivix-
lent to supposing their complements to be equs.l i e., that o = B. See Fig.
B1y .t . = .

’
v M
. N ~ ‘ / Tl } / .
~ /e .

. . N [

kY . e \ .

\ -
. v 0N .

RN B N

Could it not be
We now use science to do,
) . . :
The phrdse "to throw light," hitherto construed as a figure of

Are not the principal ingredients of Ynis £igure fa.milia.r\?
interpzieted as illustrating the law of I:eflec"tion?

mathematics.

-

‘speech, is now to be taken lite y. Come to think of it, what more perfect
< g

o

/
. exemplifigation of a ma.thema.tica straight line than a ray of light is there? *

We suppose a ray of light F P t be reflected gt P froma mirror TT'. . If
the reflected ray does in fact Jpass through' F ) then i (the ta.ngential line

to the ellipse at P) is the /nomal et P to the bisector of /T, FF,, and
) / ¥ Q\.

1 1

we have solved oux problem. i
~ ’

Does the reflected rayt/pess through
L4
pa

> F 2

o7 Ve recall that reflection is a

conseq_uence of the shortes 2th principle.

L ' 106
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Thus, if Q 1is the ‘point on the
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mfrror from which an inci;ient_;:a\y F Q is refiected through * Y then FlQF2
f6t be the shortest path pessible (v1a the mirror) from\’ F, to F It re-

mains to show that the shortest path is such that Qq | is coincident with P,

the point at which TR 4s ta.ngential to the ellipse.
hY

- Consider Fig. 2?: T~

\Q,

Y

I A

. . : 4
. It\ig evident-that any point Q (gn ")’ not coincident with P st 1lde

v

- .
- outside the Jellipse; therefore suppos,e FlQ to cut the ellipse at R. Since
? - 3

..

RF, ‘is the shortest path from R to Fau v
YU e . -
; N g T e ,~.§%+QF2>RF -~
. o [PPSR~ S . Aoyt
. o Consequently, adding F R to both sides of the 1nequality, .
'% ) ‘ . .
e T ERER e RR R o ra ey
. g - v » LI .
S i,'e', ) o b
, ':’1 ] - . 5 ¢ . FlQ + QFz > ‘FlR + RF . . P ' * A
&But R «is on the ellipse, so that by definition . ‘ C -
‘. . Q‘ ! T
- ' ~ . hid v _ r M
o i . F1?+RF2‘”2a'% . .
' . [y 4 - . o)
" / Therefore, .- -, v . : ' . . 'S
- B T T e
C Rt @ > g - ‘ .
v ¢ S 7 . -;;‘ - v
. whereas,, P being on the ellipse, s - b
. ! . ” . -3 Tt N
s + = . e e e
; FlP . FF, . 28 . K
! V4
. Since light tekes theﬁshortest\path, it follows that Q must be coincident
ES

with P. ’Ihat is, a. ray of light from one focus, incident to a mim‘or‘ -

: S 107 : v
aé@[}qc ~\ . s

7 . v . . A - .
. L . Co it 28t E bt g
L . . I U -
L U IS PR LT S h A b < ! -
St - .



' 103
M
(tangential to the ellipse) at its.point of contact, is reflectedythrough the

* qther. This completes the proof of-our conjectured construction of a tangent ,
~ P s v
to th\e/ ellipse.

,: AFe'rmat was the man who first raised and substantially answeréd the wider
questjon of how to fifd tangents to plane c\urves in general. To solve this,
problem for any curve whose function is an algebraic polynomial he invented the

differential calculus. VYet- it i%& iefz’eshing with the present dens'ity of

<

. S -
calculus textbooks to find that a construction for the ellipse can be estab-

-
-

Aished without resort tc differentjation. The solution by optics, given above,
“s s : ) .
was the earliest. . BN , -

- . .

That in Fig.~2l Q@ = - has sevéral practical applications. The key té"
.o N,

~ ‘ . a ¢

fhese applica‘.\tions is that’for a silvered ellipse the immediate (elliptical)

“neighbérhood of P will r.efJ_.,ect light as if it were the sidrface at‘ P ‘of
Jthe mirror iangegt}al to the ellipse at that point. 'éConsequentl'Sf, no mattér
what its direction, a ray pa‘:ssing through one focus will be reflected at the

ellipse fhrough the othe‘r. The heat of a fire at F., although radiated in all

1

. directions will be reconcentrated at F2. If no rediation is dissipated en & .
*route and none lost in codtact with the ellipses silvered .surface, F2 is
v . \ . .
< - ~ M v s, " .
as hot as 'Fl. A refleeting ellipse with a fire at one focal point ha§ & fire
N . . . [ . 4 S, W .
T e o RE R W . a . :
- at bo’cl;;’Focus is the latin for fireplace orf hearth, Similarly for an audi-
‘ 1 * = Py L \\ ‘
., torium with an el&ipso'idal cupole, Fl, F2 ég'e known as the whispering points.
T. / - ;) ’ g %
Since-sound is r?ai‘lected in the same way‘e.}s‘lig,ht, a dispersed and therefore
- . ' - H
weakened '%Ifhisper from Fl w'ill‘be inaudii@e in &ll other parts of the room .0
C e “y ‘ , o
.. except at 'Fg where the whisper is reconcentrated. See Fig. 23. L
- AL
Nd >
i, "Q‘
. ~
e . ! . g
- -‘ , . 13 ’ - < ¢+ « N . . .
‘ ; ¢ ‘ Fig. 23: 2~ e o T 3T g "
: Q # \ - . i()%i ::1 ot /q‘@i %‘;k&k_ﬁ}g‘\kﬁ;
. L e = >osomov v . f’ . » s :' o ' . - " T &’
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ST AR far apart:as possible.
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rd

ok, . '

. -’

It is often instructive to go to\the limit.a

AN}

consider the limiting or degenerate case of the ellipse where F

We found it profitable to

and 1‘"2 o

3

'become c01nc1dent; we now,go to the other extreme and suppose, them to be as s

With F F, 1is moved from it,/‘

fixed, the farther P

LR

’e

.,

.- o R
'f? the more elongated the ellipse and the m T’e hearly paralleﬂ PF,%"' to_;:;he
o ‘a \
A : . ah
axis, VF,. See F;Lg. 214- s é'xt'ﬂ"" 4
* - /”-——_ hﬁ‘ } )
I’ L ///. . . e i-’ '
- ~ .
n / . i n"A‘J - ¢ '\
. 7 " . \ '
B /\: s .
o . V \ F' . - I v F2 1 L
‘ \\L o, % '/7‘/ . f .
.\\" ) o . o
- o o T— e -_ - "
v ‘3 LAY \"\" o \.’[‘ TN ' Fig" 21; il . - v - :"“*“ R
N T ‘
Firelly, yith ’F2 at infinity, the ellipse has degenerated into what is. Rywﬁ
as ‘the parabole and PF2 has becOme parallel to the a.xis. See Fig‘ %5. )
% & M I - ) . . ‘v:\*(,.“'
\ ey i = 4 F@M
"‘ L ° B >, ;_‘_ .
W ] T ‘ .
] et R e
. . '03‘
s L | ~
— e )
< ""', : ! e?
R - T /\« f y § | IS I
S S .Fig. 25, ° < “
Lt :»", it 3,.‘.’-“ L. N

L

Thus, given a p01nt source of light at F

the reflectibn frdm ag’s*ilvered .

is a beam parallel to/trfe mxis Of the parebola VF

Rotation <

-

:;abola MVM!

" of revolution .

‘I'his,of course,reflects a solid. beam of light from a point

\ of the parabolic mii’ror about its axis generat’%s wha.t is known as a paragoloid

LS

source at F pa.ra_'l_lel to its a.xis, a.nd is exemplified by the motorcar ,head-,

PAruntext provided by enic [

o\.‘

. @

~

lanip. And conversely, since the rays radiated from a distance sources a.re almost
‘mc e T
v . < ¢ IOC) Y e i 4
"~ .( L]




parallel, they are accumulable within the immedigte neighborhood of Fl. A .
i . { -

.
¥4 A .

LIRS f
paraboloidal reflection cou‘ld. with equal Jlustice be termed a paraboloidal

. accumu.l\ator. Radio rayé N individually weaks can be collectivel}i megnified

M /. . -

. » . 3 . - [
. into a strong signal. As well as essential to radar listening”devices,. the
‘ tos L e N
‘ . . ¢ I
paraboleidal reflector is the basis of the radio telescope. -, -
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‘&uﬁe;h Appllcatfns Of Matrix Algebra.

A v P e smer m -

—

___,___/-—‘-.s)uz,». v o
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-

Although my purpose in this lecture is to show what matrices are good for,

r——————m Y 3

not to teach matrix theory as. sucﬁ,yI shall assume merely that you recognlze ‘a’,

N v
matrix when you ‘see one a.nd can reacth perform watrix, row times column multi-
’ ]

. A '-.-,

plication for very simple matriges. = TN

~ -

My aim is two-fold, my lecture hal two parts. In Part l', Mathematics
with?Matrices, my princl?pal obJjective ls'to convince you that matrices -are ﬁ’luch
" more than a kind of mathematiaal noughts-and—crosses designed to delight exam-
P TN . B .
inexs and depress examinces, that matrix technique really does facilifate doing

- .
re

mathematics. In Part 2, From Matrix Theoretm to Relativity Physics, I aim to

show how this facility, used with bold imagination, devastates comfortable,
; St v ) \ 2 ‘

commonplace’ conceptions of our physicel world., .

Part 1. Mathematics with Matrices

N ’

4.1  Why-Use Matrices? :

-

* o -~ :
. * Have yeu ever tried using a lump of rgck_to drive a six-inch 'nail into a

;t‘our-inch beam? It is easier w1th a ha.mmer E‘asler because the hammer is de~-
signed expressly for the J&b,"desz.gned to have good balance, to handle well?
effect a neater Jé)b w1th less effort."’ fts des1gn, deceptlvely simple, is depen- ;
:dent upon giv‘ing much thought to questlons of rigidity, dlstrlt;ution of vizelght,

PR

to

'and'center of percuss1on. Hard thinklng goes into its deslgn, Pard work 1is
'si;nplifiéd\by'it‘s use. .

L MatriceZ, tod, are deceptlvely simple SOme clever fellows gave much
thougnt to devising a notation that handles well and a technlque that does a

— S, ~

+

) tidler,, more effortless job. Yes, matric,es ta.ke the slog out of nailing equa—
'ﬁ tions. And, as with driving na,lls, there is no need to takKe anyone's word for
it; experience is concluséve. Presently, you will have the experlence Not to

* . .
start our mathematical carpentry with rusty nails, we first reviews
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= 4.2 Rotatlbn of Rectangular Axes. N

% * Given a plaw introduce a rectangulgr coordinate system X,¥ wit

.

orn':vgin 0. ii‘ from any arbltrary point P(x y) .we drop a. per;pend' ula'r: o the

\

one point P. See Flg. 1.
. , vh .
? ) {
< . .
]
7
- ’
i ™~ Next we intro

of P remalns uhchanged, relative to the ney °

_coordinate systefi, it has ue ,cgord,mates £%,y), ~See. Fi—g.. - ,,‘,_

-
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"I'his situation very naturally raises fhe qnefstion, what is the relation , ~
between the 0ld and ne'w coordinates of FE? If we are gi\;en P's ‘"oId':éoordiha’t'es "y
(’x,y) then, P is ;'ixed and sﬁo‘its new coordinate§- (E‘,J) must, in ?rinciple ;
at l‘east, be determinate. Conversely, glven P's nev; eoordlnafes ( ,y), w;x_at ’
/afe its old _coordinates. (x,y)? What is the transformation from the jone coor- . :*
i dima.te system to"the othdf? . ] S \ )
\2 Easy reasonmg shows that the rule for going from%he coordl tes in the ) :

. .- -
onei system to those in the other, say from (x,y) to. ,(x)y), must be a linear |
trarzsfoz;maltlon<F That is to say, the rule must be a system of lin r equations :
in x,y and .>;,y of the form - ’ - ;--*’73

. . e ' ——
sl e - R By L ‘{
. ) T 2l . .
R y»@pm R &
. : wherd A B, C, and D' are numbers 1ndepend\nt of x,y and x,a; /

Why 1s this? Because this is the only sfort of system which can be in-

l “-

erted. Since P has uniqge coo_rdinates in both systems’ the/?'oyrmulae mus_t .

~ ¢

' also d'ete'rrnine a unique value for x and for -y when *x and "y are given.'

& ‘ : g .
If A, B, C ,and D Jwere not j;ndependent of x and ¥, then the formulae would

Al
ine x and ¥ uniquely~

-

explicit formulae for x and- y, he will et formulae of the pattern

o e . Y ' )
) x=Rx + By - -
' L2 2 : 3

®
~ A . Y -

[ v im

’ wlrkere A, B, C, and D are expressed in terms of A, B, C, and .7

oo

. You know Well how to solve a system of two simultaneous linear equations "
in\,“the two urknowns x }nd Y. You will obtain the above two equations if ‘yo‘u
‘. eftress'x :a.nd Yo in terms of X and y It is easy t¢ express the nev;:co“n-i ’ 7
! _stari"ps\lk B, C, and Diéy means of A, B, C, and D. It might be a good |
‘/‘ exereise for you ,fo caz{ry Out ‘the calculatlon\’ ‘We do not o it here because we" R
R ~N ST . R
ENC goB e 113
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1 SRR RN
.
. N

___,.,dew not n'eecr Ehese

’}\ or course_,ﬁthe%ngxt«questl J"is . What are A B, C/and D?

“
v

‘ are 1ndependent of P e o rdlnates of P, they may be fouind by spec1allzlng A

Since “they -

educe, the labor of c&lculatlon--! SRR R

' Iet us ta,ke the/ point on the x-a.xis at unit distay ce-from the origin.
e e g

Py therefore has coordinates (l/Q)' in the old system. °

See Fig. 3. . ;
[ N !
’ N . / . -
. / / - )
a . g
L “ ’ 4
\- N “ \\/ . Q X l.| s .
Y % \SIQ(X f * -
- © \
“% o .. Z Nty
S . . . R X o i .
A 3} b : R .”7‘ I ¢ .
- - . . : -
- ‘ Fi ;/ :
} vl bt *

is, of course,.

Q is the‘foot of the perpendzculat dropped .

‘_.: T

. -~
. with x =1, y=0, . .
. I —% - ‘ T A , ke o
. . ‘ . ‘; .
.. ' To.go farther v need/to know th is wi . Let -
- - —Saacr i e R [P ] Zerk Y p EY ‘ N
', this 0. JA'om th obv1ous geometry of Fig. 3, since OPO = 1,
"' o Y- - R=cos o W -
CﬁonsequeRly, \ L. . \ - K 3 .
T e ‘ ' U ) Vel
..._.‘/‘:,...—/ .

— RSN A = cps.a.

Next, what is|the ordinate y of P ? Since . PO lies below the ;-axis-,

/it 1is the negative $r the perpendicular P, that is,

o
-~
e ¢, -
- Y . .
- . +
. O N .
: : ' ISR P
. E lC . . ek ! ,
N - o
. b . ]
NPV ey . . B . o
e et R 2 * -




¢ s«}? taking our

\
with” x =1,y

i

ready found two,

: iy . 0 ’
vious vhat to do?

.

second

-

equal consideration.

(0,1)

te

What are

.«):‘a-

W’f&&

~in the f*‘*t“emm%@the transform}zg.tlop; .5 -

.

— And 51nce AOP R and the angle

—pn
PR )

of APOX 40PR=a.

.«"

. .
S
PSS ra

o s

Let Pl .be tie point with coordinates °
See Fig. b. - . ’
A st -
YM ) . »’{\‘;@.ﬂ "~.,. '\.-.-..-:'-! (e “'-M'A(M'Z"'.mn\’.‘-\«;‘“ N aeeed
3 v . {w. A ' . L S, -
o g"? . T ) .
g T A 8
I Ve © v X . . /’
\ . J
N \ [ g '
g . =
o . {
R R o
. o X
- Mg, b . oo L
h * ¢ f.’n red prboy ’, A -
coordlnates 1n,the new system" Tts abscissa X - i‘s, of
course, the dlstance from 0 to R, where R is the foot of the perpendicular »
So, subetltutmg %X =O0R and' x = O, y= l,‘
‘ 4 . N “ S ’ [ >
[ b N o
"R =A-0+B+1l= B frmontns U
) ) I PSS
a between OX and OX are .both complements
L, -
Consequen’c'ly 5 w:L't;h OP 2 1 . = o
: / ) : ?).g.:. o
OR = sin g e T~
2 S
e “ g S -
E - . e = - '
B=.sin a:" L i
¢ /‘ -~ Pl . - -
o, we obtain from the second equation of the - s
’ - - . M SPOUNEL
. “ -
) t# C Ses ‘

dropped from . P

[RGB LA

so that -

g
Pl

rl

111
equation .
A 5 = Cx + Dy
—sm a2C+L+D:0=

A and C.

Y
It remeins to~find, B and #D.

?

C.

And

con

. ‘(‘5 ‘
Of the four numbers. &, B, C, and D ~in the transformation, we have al-

L4

isn't’ it ob-

The y-axis is just as goed as the x-axis; it should be given

¢ . > @ . " . -
So, having taken a point one unit along the x-axis, we now

in the old syétem.

e — Yy

..e..v,-,.w?/ ‘

n Similerly, since '?A=,coe,
o | “

JERIC o -
e

Yo >

o
.

tske a point one unit along the y-axis.

to the x-axis.

W




. 3° ’:X} ) ~ R . 3,
. . . 'S - . .
, : 12
* heY
- - 2 . R 3 “~ Al e - ‘ -
transformation that . T . .
v . . v 4 1 ‘
D =cos a.

X

B C, end D.. We conclude that the requlred transfor-'

\ ‘%. N % :. . N 3 . ! . '— - " !
\t}ﬂmj\lsé e .- .
¥ SRR, L ‘ ) ‘
RS ISR « - - ,
: R . ,x= (cos a)x + (sin a)y (
o 7 \%;\ ‘_ ‘ - . e ’ c l) \
’ - // - ':\'--«g,ly = {-gin a)x + (cos a)y.) - .
’ N . ’ A - |
i Our refresher course is coépleted; we have, s.'craped the ruét off our nails. \- |
’ e N ‘ ' : \
: r‘?\\\ . |
3 o K o .
GRS {}k.,s Transformat on wg%ﬁvwithout Matrlces ¢ s 1

1) in a glightly simplified form We

We now use maxcglx algebrahto wrlte {

Y -- 5

N

. which equal x an&’ y, respective
'l, ’ " oa ey
The first element' of this column matrix ds obta1ned, as the reader doubt-

.

lessly recalls, by multiplying x;(the first element of the colummr of the sec-

/
ond matrix) by cos o (the first element of the first row. of the first matrix),
A P e
by multiplying y {the ,second element of the column of the- second matrix) by

s [

sin g (the second elementbof the first i‘ow of the first matrix), and by adding

ol

these prod{ts t,ogether. Yes, it’s eagsier to do than to state. The seoond
elemeni:E s similarly obtained by using the elements of the second row of the

first matrix instead of its first row ,elements. In brief, multiply columns by

4

rows.
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L RN »

i
N

o To ve ‘gain anything? ) does 1ook & 1ittle more compaci: ~than (L) Is

’

—ting Hairs, What matters is “not so nfuch how a tool looks, but how it handles

~How. wed.l dpes it_handle? Let us do some mathematical carpentry to find Gut, ..

_let. us deduce -- I beg your pardon, let us nail home;- the basic trigonometri(:

.
SN 5 ey

angle sum formulae for cos (¢ + B) and sin (g + B).

) ' )

LRI

do 'the job twice; once driving our ‘nalls with a hammer, i.e., using matrix
. . | . ) .

transformations such as (1%), and once hitting our nails with a stone, i.e.,

For comparison let us
N .
. L

(1). ' <

»

using nonrmati'ix transformations such as

. v

Suppose that the x,y rectangula.r coordlnate system is first rotated

through an angle a “to give a second x,y
o
tional ‘angle B to give w- third ? 7 system. See Fig. 5. .

CTTY Y T Y A - ~
- L and

systém and then through an a.ddi-
! '3

[ f s 5 %

-

A 4

\ . -

) I : : v
) Regardlng thecsec‘bnd system as the old and the thxrd Eystem as the new,
’ ., since the latter makes an angle N

B with the former, by virtue of (1), 1

-

substitutir;g B for a,. X for X, ','; for y, and ‘X for X, ¥ for Y e
) . & » ” e . '
we have ) o .
@ . % = (cos B)x + (sinkp)y , T
. BN T _ . R AR - (2)
. ¥ = (-sin B)x + (cos By ’

’

and, by virtue of (1*)

@ v ‘ (

.
') +

Next taking the first system to be the old and the, third system to be the new,

since the latter mekes an angle a+p with the, ﬁormer, by virtue of (1),

117

: e e —_ - - So— e b\’s -

QIO e T, . ‘ . z"’.-‘-«—\_u_ -

e oaimarries . G e -

3 .y - - . o
n "

e

,
) &.
...»m'-

o

a _hragket, less la'borlous to writ than an equalrty s1gn',’ Really, this is split-
e\

[

( N e
-sin B cos B/ \y/* ___ - :




-,

. <« = ) ' .-g,.l'lh - - . ’ . ’ -
. . i i _ - ” _ iy — _v; / o.'_‘
/ i.e., substituting- a +f for o5 X for/x,é ¥ for y, % for x, and -y
. , » . R . s 0
“ for y, we have ° T . S

N . - - ‘
&3 —// 4 . - < k)

- - N (cos a + B)x +~(é.in T Bl } ' ]
(-sin o + B)x + (cos E+Bly.)

¥ =
—— Similarly, by virtue of (1*)} . - P T .
- 7 -

C

. '\ T .cosa+5/s,ipa+5 A ' . '0'.
ﬁ\?,%‘,?‘,—.: Ve ¢ ; LI = . R — e g??*); ‘ :ﬂ;‘:
LT Py .

s ? --sina+[3§cdsg.+6

~
P
. . . .
C N w g - . . e °

Note that this far the differences are merely notational, but this Is the %:r’c‘«
-\ — - ~'

! ing of the 'ways. From here on the non-matrix method is more laborious. T

N v

-~ . . . . riged . . : * h
- First, we continue with the metrix method. Using (1¥%) to eliminate (_% L
~ o . . oo WY

‘ ~ .
4 /o~ W e ~, . g.

from (2*), we have

0 . ’

ERENEN : = . : . a * ‘e, e
2 - . ”(x) » (o.os B sin B) {(eo‘é ‘a  sih@
» = = s, ' ) e A A &
M y -sin B cos B/ (\=sina sina

N ) . , ] ' o
Hence, from (3*) =nd (4*), we-have, in view of the associative law of matrix .
"'\ : ) 1
multiplication, - — ’ s .

-
! ’ -

. / N . R , . -
. “yafcos a+ B sin a + B),/x ‘cos B sin B\ fcos a-. sin a x * -
. C e {\ v=-l ' o .' (5%) ,
. -sin a~+ B cos a + B/ \y -sin B cos B/ \-sin a ,cos AN/ 2 ‘.

' - / / / !

so that M -

"(.,;i:':os'a+ B sina + B) “. fcos B sin B)
. b < \egin gt B -cos aFPp/— \-sin B cbs B

P e
.

v -
>

- 0
>

o . - ,
4 a"%t'zply the first row of the *
K Th : A
el KLY . ~
%iwnr;f of+ th§ second., We get

Vg R R

B4 .
7

. . .- &
’Lb,t_l_etexmingﬂ_ucos a+ B it remains merely 4o

' first matrix (on'the.right side) into.the first

»

. -t - A

e, ;. %08 0+ P =cos P cosa + sin B (-sj:;)‘f’"q)_ PO - LY

’ GToaen > 7 noor [N A NN «zg‘«» v>--..-,"_
b + - . 4 L. .

. which, to show'due resﬁect to the alphabet, .we write - - : T e ¢

- 4
+ L)

!
Y . ., cosa+-f=cosacosP-sinasinf. .

- <

., . ; S £
Similarly, multiplying the\first. row into the second column, we get
‘ * v - .

?

. : R s ., i~ ’ ,
. . sin o + B = cos B sin a + sin B cos, a, £ : .

CERIC - 118 Do




sin o + B = sin o cos B + cos @ .sin B.

pe

N , Next, we continue with the non-maetrix method. Using (1) to eli;ninate ;_

’}:M nd y from (2) is a much more strenuous affain tha.n using (l*l to ellminate

(_) from (2*). How much more strenuous ) you can find out only by doing the alge-
Yy ‘ s

bra for yourself; your mental muscles’ will not tire by watching me work. I'll

. - LY
wait. . R B
. . . < N
. ¢ PRRYTS - B ‘

A . 13
~Your labqrs‘correctly comple‘ted, we both have -

=1
I

(cos a cos B -.sin g sin B)x + (sinRYy cos B + cos & sin Bly } () : .
. L

-(sin o cos B + cos a sin B)x + (cos a cos B - sin a sin>B)y

<l
n

a

.. Hence, from (3) and (%), we.have' -
&

- - T ' RO ’ l
: (cos,a + B)x + (sin o + B)y . * - )
£l ‘- 4
oL _ . .
- = (cos'a cbs B - sin d sin B)x % (sin awos B + cos a sin By . S
’ ’ ' w " ) (5) v
( -sin o + B)x + (cos a + B)y : [T U
. (%3 ’ ) ¢ R
= ~(sin a cos B + cos s1n B)x + (cos a 08 B - sin @ sin B)y-|*
L A -

. [N

. And sincef®iese é?ﬁgtions hold._for.arbitrary x and ¥, taking x=1l, y=0,"

”

the Ffirst gives.us immediately the foz_"r?mlIa for cos'a + B, the:sﬁé_ond the .‘Quf‘-' . -

: my].‘afor""sina+ﬁ St o , T A\
\ .~

. AP
-

How much extra work does the non- -metrix m thod entail? Qulte a-lot; ve

J

fodny sy ug g S \t’—s? } N ) i
e have botﬁ done it, we know 4ZBui: let Us see. pre%sely what this extra work 1s.\
e o v o A
T £ e 2 e b g ) I r . E
(5‘)nwr1tten dlrectly in matrix notat:.on iss ) ! PR :ﬁ..,‘;:,;..;_*_.____, SR ,7
- N . N . PR —? ——-—-L-
-\ cosa+ P sina + B) (7)' L . . . . U\J
‘\~ -s§.\na+6 cosa+B 2 / c ‘ 9
, . ..
- N \ * (5 ) .
- - kR cos @ cos B - sin OL sin B o - sin a cos ﬁ + COS a s1n a
RN N \ = - h .
L A (‘smabos\ﬁl+ cqsasin_) cos O €Os B-sinésinﬁ \,

\ - % . - .
- . v .\ _fl\

- - . »\ L4 £
" tnat oL T - N\ B s
. . + . ' »
K j.‘_‘ *
. AN . . % () ) w"‘@"y 3 4
» ! e -~
made t
*

.
.
L]
-
')t
é i
I .
N
Fi
t
.
e
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(cos ¢ cos B- sina sin B sin a cos B + cos a sin B)
, .
. -(#in a cos B + cos a sin B) cos acos B - sin a sin B
y " o s , .
cos B sin B cos a sina , ,
= _ : g (5")
- -sih B cos B/ ~ -smia.mg@ﬁsha .

N . Y .
= ?’*f
. oot 4 ~ o 2

, (B) written directly in'matrix notation is

v

—) h(cos :a cos B - sin a s@‘n B sin a cos B + cos a sin B) (x) . -

-(sin a cos B + cos a sin B)°, cos @ cos B - sin a sin B

> . )
éus»_(h) is, th effect,/(h*) with the first pair of metrices on its right mul-
./ tiplied out. . ' h
o =S S : . ' v,

' .What do you conclude? "Tink about it.: Whereas by using matrices, we ob-
: . .. LN - . A

téfn-@*) without Having to multiply out the product

- ¢ ’

' R ‘ P LT ) : 7
cos B sin B\ fcos a -, sin a
s N . . * .
- . =sin B cos B/'\-sina cos a/, °
4 . N .

- . . .
. A f N »

to obtain (5) w.i.thout .using matrices.necesgdtates multiplying out the non-matrix

.~

eggivalent of thig/product. Put paradoxical,ly, wherea “the use of matrices

AN N
avoids compntat\i:)n ¢f the matrix progiuct,’ the gvoidance of {natrices necessitates
. 2

it. Isn't it eagier to drive nails with a ha.mmer than with a store?

, . »
-

» : .
L.%  Orthdgonal Ma.trices.w * . -
Co ; ider (5%*). This is a curious equation. The miltiplication of tyo
. . prd . . s
‘ matric the.form__ , ‘ 3
> v N N“‘:-~M""«b‘.‘~ e . 14 ; ’ 3 ‘
fcos 6 sfﬁ“e) . : Lot o
s i ‘ \
s T © \-simr6 cos 6 - !
o= . Ce
b gives another matrix of the sa.me form, they constit te & group. r.T.'he performance.y

T ¢ °

e T "ﬁ . L
,__,,A’-r«&,')‘f -, cgs d.’ sina - fx ! ‘g, )

" of the operation iy on (see o l*)) s follgv&d by theé feffor-
- . ¢ -sin, a cos a ’
.l B . (cos B sin By

. ‘. mgnce of a second and similar operation, namely, )\,on the' result .7_,'
L T - Fsin § dbs B

of - the first operation (see (h*)), is .equivalent to'thé performa.nce of the

i

S . - 1( 9 O ’“y_,’—'"""- T—]
O ‘ o e * . e - .
CERIC o o st SIRT

Lo {

$




Come— cos @+ P sin a + B )
( . ) () (see (3*)) 'These opéra-

-sina+fB cosa+ B

tions éi've the transformations of the coordinates of P for rotation’s of axes
. % \ -
through an. angle a, an anglg P following an angle @, and an anglé o + B.
N : A ) o T ’
But, of course; a rotation ’tHrgufgh " followed by a rotation through ‘B has

-~

\ - A I
' the same outcome as a single rotatijon through a + B+ This is the reasoning

underlying the deduttion of (5*) from (3*) and (L*). Isn't it obvidus from the
geoxd’etrieal‘poiﬁt of view that rotation transforms must constitute a groupd,
or course‘, the t‘ransi"orm for a‘retation 6 will have 6 for an ingredi-
. ) e ‘

ent, but why cos 6 and sin 6?7 Of course, q, B, afid a + B will be ingre-
* dients of our transforms, but why their cosines and sines? ot

. : - . \
Reeonsider m derivation of (1%). Take another look at Fig., 3. If 0
1‘ A}

-~ A

-
.

- ~ FEE N . . —_ 23
is to be the x value of PO, by-definition FoQ must be parallel to OY. Yet -

if OX OY were not peri)endicular, the angle at Q would r‘ﬁ be'a right angle, >

» e -

" s0 that 0Q would not. be ecjual to cqs a and POQ would not be sin a«, 'I’hus, /

_ we come t6 see that Co ’ ‘. -

‘ . . - ’ J .
e BF cos 8 sin @ : -
. ’; ¢ . L.
+ \=sin 8 cos 8/ . ¢
¢ !‘
1s necessarily the pattern of‘matrices with which we can handle: tre,nsfonnations
r’ L4

s

of coordlnates induced bg rotatlons of rectangular axes. And since mathema.ti-
¢ - -
_ cians are disposed to use the word orthogonal rather than rectangular or Mht-

P

a led, matrices of this pattern are Laid to be orthogonal matrices. Ji

3

Rygi-é angles are very special ahgil.es, right angled a.xes very special

a.xes, we ‘must expect orthogonal matiices to have very, special properties. They

do.- Look at the pattern again. The "first row is such that T
' - o ) .(cos 6)? +'gsi;1 9)2 =1, G ; v*?)‘
| the se‘fond, such that : . - o -
) ’ « ‘. . ;o
1 (sin 0)% + (cos 8)2 = 1.~ : -

- ~ "

EMC ' ) "" ’ - " a




N v = - » - .
'y v. ‘ ) v A\ : ! ’ 1 A
Y . P - 118 . . ! ’
‘Wpy:j.'le adding the<product of tlhe elements in each column, we have IS

“w ' _ cos 8°(-sin @) + sin f.cos § = 0. - - X

» . . s o® , - Ao R b

These properties are characteristic; if a matrix has them it is orthogo- '

nal; if it doésn't, it isn't. Formally, a ma.trix i .

w«&i—tw‘uaw%y\ \u Wﬂg iy t,,.\(,;\, -

- ‘ |
‘ |

. \1‘11‘ . I
. ? . - |
. , |

. . 1

e

is ‘said %o be ortﬁbéonal if and only 39‘ K 3 - ,
x - 22 sepf o1 : e
g : ‘ ” e
P ‘ \ « . 02 _}_ D%;: 1 2 . "
{ | : ~f |
¥ . " < AC/ + BD'= 0.
I3 . © . i - .
A 4.5 A Mst Important-Theorem. . "~ '~ . R R
! Given that . " i .
) \ . . (;) - (A B>(x e ..
H . & 2 v Y
N Lo -/ = . . - i
.- , o \y/- ¢ D/ \y A ®
’" <. - € . ' & A B — y
f- is sub,ject’tcﬁthe'very special c'ondi,tion that - } is orthogonal, ought not
. . y ¢ .DJ/--
¢ we antici*pate some ve.ry special relation betweén the new and the old coordinsates
IS -~ *,‘,w e

of‘ P? Look'at the question geometrically. See Fig. 6. * ‘;:ji’

[ LY
P
. A, ) Fig. 6 . ~ DR .
' L 4 f’? . - - ""’ ' . ¥ H
2 . 'JZkIe“’orfg‘ ;Y '”éfﬁ"’fﬁ?’i)&int *P rd "fn ﬁxed no, “matter what the rota{‘,ion
; ’ _‘_,__,_" R W“"‘ A Y "‘i v o= A -
HAN fr'el)
.. of the ortho onal axes,” so* that the di.stance OP remains unchanged.. But if
; h g ’
L P «g N . s
o 7 - av e, . P P T
A R R S - SR
- g
- P . - LN . - .
EMQ 4R e no IR
, T I E mosey K ‘ 3::3’.{1’
o - - Car, Y

L \ .~
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[P

f
' T @ * o

b { ,

3 .

We have the result:

Gi)ven that

| ‘ ‘<;> (A BA) (x) "' | | A ““
" v/ -\ D/\y, . B

2 2

2_;.‘;{ +y.

A B\ L
-~ 1f } is orthogonal, then x + ¥y
cC D ) AP ’ .
Can we say more? Well, we‘can at least suspect more’

Suppose that, the

. N . \ 3
peirs of axes to be obligud instead of orthogonal. It is no longer true, in

.

general, that ’ A , -

2° +3° cennot (for ‘arbij:r%

S

this most unlikely? We .cor;ject,ure that X

! . A B ’ -
y) be equal Yo X2+ v2 unless ( : ) is indeed orthogonal., '
¢ D . ‘ .
N .(The reader gélas used oblfque axes will recall that if the a??gle ‘be-

. . . .7
_ tween them, is w, then in consequence of the Cosine Rule, calculating in the

old x,y system e ' .- - " :
5 . .o .
(OP)2=X2+y2+ 2xy cos W -

v

ERIC 7, 123 .

R B B 7

Celculating in thé old x,y .coordinate system, . ‘
vl 2 2 ' r
T - «CQB) 2'3 '.F y ! ' \
ST e T , i . , .t
- ’ ., - It k’ .« - ' D
and 'in the new x,y system, 7
™~ .
P2 -R+3 .
. 6" ¢
so that* . ' ¢ .
- *
e AL EE 5 . '

e

OP  remeins unchenged, so does its square. And we all Temember Gne of the very '1
i3t formulee we learned in‘coordina,te. geometry, na.méiy , that the squazl"e,q,of the
' N hd 1 v ° ‘ N

.- distapce of a point from the o}‘i,gin is the sum’ of the squares of its, coordina.tes

2 2 2 ' - ,
- P e P + . PR - .., - LA
- N . 4 - (o) X y ‘. S
© or that  * gur > ) B -
’ . ‘ (0p)2 = X2 + 2. -
.o - =2+ B > ' ’
Of course, it could conceivably still be true that’, x *ty =% +y, but isn't !

&
.h




. - o } - A
3 \
- 7 - p t . oo
p | - 120, ' S
5“5a,nd’in-i;he new' X,y system . » ’
, ) ‘ . - — 2 ’ ' - e
~ . .. . (OP)2=§2+-},'2+2:qrcosw. . . ‘
~ - . : . . ¢ [ N )
-2 2 2 . L == ’ " .
.. ‘I'hus x‘ +y  =x +y .if and only if xy = xy, so that our suspicion is seen
' to be well foundet, ) T .
.Cqmbining fact with fancy we'aﬂticipate: .
. . ' Given that o PR S : L o :
& . ! . |
. 2 ) (E) (A‘ B) (x) i :
.o ‘ ¥ ¢ D/ \y/, ‘ . . ’
. ! ‘ . ’ A,‘ B\ ! ¢ .
%+ ;2 = %%+ y2 if and only if ( ) fs orthogonal. We have committed
= f N C’ D, » R
ourselves to an opinion. Until we know whether we are right or wrong,, how can
: ’ - . ) v , o .
- we decently rest? ’ ‘ . LN
. We rewrite the given matrix equation thus ¥ . “ . I
s . . . ’
i X = Ax + By . . e
. - s e . N
N Yy =C + Dy,
.. L - .. o
Squaring béth equations and adding, we get . . Ct
. 2 58 . (422 + 2nmxy + B3y°) + (c X2 + 200y + 7y?)
SRR (58 P2 s 2B L )y ()t
A B ‘ . N R
- . If ( NN ) is orthogonal, by definition, A2 + 32 = i, Ce‘+‘D2“= 1';Land R
. c ,D !
f - AB + CD = 1, whereupon (6) glves . . L y
S B T TP A2y -4
- ., - . EY
Not surprising, but we would have been surprised at 'Che contrary. The Substitu-
- tibn does sérve as some sort of icheck on our algepra, doesn'f it? .
PSR RYR T °
4 If for arbitrary x,y <. o . ;
(6) gives . ™ ".1\
v1exf 41 '.ye + 0uxy = (a2 4 Qe)x + (8% + D2)y +2(AC% BD) xy. - *
- LT 12 R
’ Q. e o o, oo . S oL
- ERIC - - . ‘ R - , ol
‘- . . ©o. . ; ) Ll
2~.‘. .J ,.,. '\ . L .. e L Pkl S h Tt et T Ty TR T gt TRy
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* PBgqueting coefficients of this identity - a Lo - 1

. X . . ‘ L .
for ‘xe, . % Qe : S T
.& . t - r 3 [\
,.(g v . K A2 + cc -‘ . ¢ ~ - .
p ot .
fory-, 4 .
A‘( r L , .
3 - 1 = B2 + D ; - <

'
-

0 = 2(4B + CD)

K v . 0= AB + CD.

The matrix is orthogonal; our conjectufre is, & theorem.
. 3

J
- «

(4 ' ) ?\ ‘ . T
4.6 A Matter of Notation. R v v

- ! A
K}

1 .

We have seen that’ someiorthdgonal metrices are characterised by the patbern

IR . : | : il
' “ cos & sin 6\ -~ . . .. .
A . . . v 3t SR
— R he i "'.‘- i}t
: ‘ -sin 6 cos 6/ . N & PR
# R B “ Al
- o ’g\{
To com_pute the elements of this matrix given cos 6, it is ,q,f course, natural to

- - ‘ ® o
use trigonometric tables, If, for exa.mple, cos 6 = 05172, we yse the cosine . 7

table to find 6, the angle where cosi'ne is 0.5172, and then thek'gine table to

find t’he sine of this angle. But tables Jare not always at ha.nd. How can we R '
I N \Q\vl, . . A_ll‘ ."_'.

get along without them? Yes, 'byfusn.ng . ~ ~J .

sinG l-cos(..‘ .

1
With_ _cos 6 = o. 5’172 we have, witho%rt usiné ta%sﬁq \\:.,\

1

o -
s

. T sties /1 - 0.51722. A

“ .

4
[

‘I‘o indicate our dispensation from the need to use tables, we put 28 cps 6, in"

consequence of which sin 6 = v[l - £os 6 = '/l - 22, and write the ebove typical
’ ) 2. DR A
rd ’ A
-orthogonal metrix with the notatio“rzi& ~ SRl e -,

T B X T s T oW - ey e e T VR
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We have said the same thing, yet with asdifferent emphasis.

. roe . .
Has,now, every orthogeonal matrix such a representation by means of one ~

o i

- l. A B ‘>~ M Q
variable 2? .Gi\fen an arbitrary orthogondl matrix < D,) » let us replace the
- . ' . . T

letter A by-z. Since A2 + 8% = l, ve ‘see that B = -\ 2° wheiie the

'1 N . o S
square‘-root may be ta.kenjelther p051t1ve or negative. Next, the condition

L
-

" AC + BD = 0 now reads z2C + V1 - z°D= 0. ’ Hence, we find & -%f 1- z2,'; this -

B . -
’ ) v

oo

fact can now be stated as follows. There exists a constant e such that

C=a/l1- zz, D = -0z. Since, finally, @ + ID2 = 1, ve conclude . -

ag(l -.22 + z2) =1 and a2 = 1. This alloWS us two choices for & namely,

. «, 4

a=+l and a = -1. Hence, , the xhost general orthogonal matrix has _the form

v (A B) * Z ’ /:? . z 1 - z2 . ) .
n = — ’ 1] or = | L —— )
¢ AW AL Y1 -z -2~
5 P

"\C D,
",

Only the first kind of orthogonal matrlces oceur under rotations of* the coordi—
l w L
nate axes. : . ~ % ~ . o
e i . - Pl - ' ‘
What is ‘the meaning of the second kind of orthogonal matrices? Let us

- D

-, +

.specialize and®hoose” the convenient value z = 1. Thus, we are led to the

0~ -
knowledge of this one particular orthogonal matrix allows us to brldge ove:r; feom

1 0 - ) N ’
matrix ( ) ’which is of the exceptional form. As a matter of fact, the

!

) all orthogonal matrlces of the first klnd to all orthogonal matrices, of the sec-

.\:(

ond kind. Indeed , the rulesa of matrix nmltlplicatlon yield the 1denti.ty
rl L] N
- ) .
1 o] z V1. zi ’ z dL -2, - ..
o -1/ \-Y1 - z2 .z Y1 - 2. -z

as you may verify’g%s an exercise in matrix multiplication., *Thus, each orthogo=

L N

nal m&trix of the first .kind becomes an orthogonal matrix of the second kind by

N .

multiplication with this particular matrix

., let us now interpret the meaning of the tra\gléfomation

C . (}) l‘ O) X
09D
h o . ] 1y N 0 =l N/

(e -




-;5\."' v’ '
%"

non-matrix ‘form,

\Jhe i‘ollowmg shape:

. ", . ; - \ - )
Nt ) ‘X/=X, * y = =Y.
. ® L . /.
Youu can easily veri that thls transformation takes
'0 . 1 ’
dinate axes but direct the~pogitive y diréction i

R I
othe;_ words,

i .

Clearly, under such a coordlnate transformatlon the dlstance from the _;r‘

thus, proved that every orthogonal matrix can%*eqi@é

;&;‘%«*

.\

!

i 0
the special reflection matrix

L o)

In general, the mathematlclan bewares of changes of coordlnate systems )

. v/
v
which involve a reflection,

A

in such a pos1t10n that the flrst axis is obtained from the second by a rotatlon

-

in counterclocl;_mse sense.

- by P

B
If we make a transition to 3 new coordinate system by reflection, vyange the 1.‘__",_.,3

orientation of‘k the coordinate axes.

ing the x-axis in the clockwise (negatlve) sense,

1t )

We can assemble the insight obtained in thls section in the following

v

o
-

Wb

theorem:

P
-

-~ P e

0)

.y

*

G

' -

)0

Theorem A: Given that

‘

A
B

t

preserves the distance from the origin x2 + y = x2 + '_2.
s+  only if ’ i N
’ * - : N L tgsfy*
oy ', «fo B z A V’ZT ’
. = ‘e
\C DJ -Y1l - z z o
* he %t

to a rotation or as a matrlx which is the produd{"b

~

in th

place if we ke
we reflect the. y-axis on the x-»é.x1s .as if the x-axis wer?a

also preserved The transformetion congldered is cal_led a reflectlon.

l\' P
> ’;’

A

._ d'.

One is accustomed to drawing the y- ax:.s- and x-axis

This is the so-called positlve-sense of rotation.

!

They go nbn over _into each other by rotat-

is a transformation nihich preserves the orientation of the coordinate areas and

séed as, ‘a matr:r.x belonging
f

o-\\“
4

This holds if and

g

f

g Lid fmv‘

- . - 2;”
o { .
§our coor- ?
‘ N EEEN ]
e iopposite sen‘ce. 'Iri" '.w‘/”‘

Q

Z -

We

1.
» ‘
A

ry rotation andﬁ‘ﬁ?

:

]
h N

& &

i
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=% 5 i ~as
o 3 - .
y; ‘,\,'entp(tan of thé coordlnate axes is not «changed and the distance
A TR
U - . -
OP rimams,invafri . 3; \1 L . . oo
AN T % -2, =2 _ 2. .2
. S O A '
) . - . . e
A . é ! I3 R ¥ . y ?’
We have in conseguence -0f Theorem A ) - .
S A S S . . .
- ¢ ’ .
. - }3 B/ A N P ) '/.l -z x\ ——
. 2 = o
i * . "k y -2 . y/ o -
N —~, ~ ) T :
i.e. &% .
s U< i .
X=2x+4/1-2%y 2

[N . : - \ - A4
o 1 . -7l - 2 °x+zoy. . I, R

. N ’ : 9 - -. , « _‘ ‘
mp.gn geometncal 51gnificance to 'z, it ’is convenient ‘t‘.:)“ ‘};Ea.ke‘ X = l,.k I

<]
1

- A : T R - N T ’
"y‘”TLO whereupon . ; ' . -~ .
l:\‘ ’ S K=z * . - o]
N LR .
4/‘// N , R P SN .
; .’ s . s . -
;{ \ “From Fig. 3 1{: is obvious that x = cos , ¥ = -sin a. (the minus sign because
I . ¢ .
. * ° 'QP, has the opposite sense to 0Y), so that .
P o - / ] 1
" A » . \»\‘ \ .
. - L g = QE . i . « .
R . 5' . .
/'/ . AN " l - 2 ’ A
o, L *
‘ Thus,. Ll) £ollovs 1mmeqiately SR T 6"
~ TS ‘ - ' -
" . Eff{r‘bless? \‘I'his is hitting a. naeil with a power-driven hammer. For us
:x’ »\ ‘l ¢
muscle driven hammers are a thing of the past. A.nd bashi away with stones?
rRIC . 128 .- }‘1 S
RS ~j~ * _ e N, —‘r)"j‘w* e ' R O B




Oh, that sort of thinfg'beldngs tb cave-man mathematick, - -

Although Lli ‘could have ,lbee‘n deduced even more succintly, T have preferred

. v .

the presreﬁt argument because“ it .is echoed -- albeit faintly -- in a subsequent - . _

argument. P R .- ' 2

. . e N o

- 4.8 To'StmUp. . Foon o ‘ -
e e M

. By considering_ orthogonal tra.nsformatlons 1n some detall, I ha.ve tried to "
b T T ! |

typify wha.t matrices are good for iﬂ mathefiutlcs. And bJ Pmphasizing the rough .

P Y——— s "

1 and x:rithout. harmﬁer:s and doing algebra with and

analogy besween nailj.ng wi

. - ~.

“without matrices, I have t
. . i
forded by matrix technigue

ied to meke it easier to appreciate the facility af-

Y
4

But do not mistake analogy for mathematical appre-
Iy PR :
ciation; in particular, there is no substitute for wolrking out .and pondering

over the mathematics of Sdetion 4.3 for yourself. .

- *‘“Pa'.ﬁ‘?““’Fro "Matrix Theopem to Relativity Physics.-

S |

Here my main obfectfive, you will recell, is to show how rgl.ati'vity theory *

arises out of matyix alggbre used with bold imagination. - 'I‘his pa.rt is more dlf\-
o ) {

flcult , although not more dif'flcult mathematicq.lly. More difficult because B

) Aem o - P

L 4

‘ unllke Part 1, it demand; that you -- how shall I put it? -- unthink firmly~ even
~lé

if uncritically-held notfions.

o
.

" The basic relativity problem arises out of trying to s'tate with mathemat- .

*  ical precision what we clan mean wheh we use the phrase "at the s.ame‘time" or

. ’ say that two events wére simultaneous. &nd what on earth has this' tc} dgd with .
matrix algebra? A good |qguestion, a very good question, but™let us not get aliead
[

N ‘1);" N
"Ii' of ourselves. It is betiter first to appreciate how the problem arose; the

strangest motive for thg re‘cep{:ion of new notions is the failure of old'ones.

4.9+ %_Michelson-tvbrley Expez"iment.., ) e T

. ’ ) -~ P
. A. A. Michelson (1852-1931), awirded the 1907 Nobel Prize ?’or Physics, was
o I v

' EMC ) 1= . R 1t

' "
. . s L g emrtiwyem o B A
33 ’-—", o i "~ . D P BRI Y, 4 ;!k r{
2 P . o
. '

“*-3

.
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- B 926 1 .
s \

one of the worlﬂ s greatest experlmen‘Eal phys:LaLsts. He is perhapsxbest intro-

*duced by the follow'ing anecdote: Asked by a father if nis son should be encour:/' A

B

f aged to continue his studies to become a physicist, Michelson is said to have

[N
. R ' \
‘ replied, “"No, 1 advise your son not to study physics. It is a’dead sub ject. l ;
e S AV ' ‘ B . ’ N
. ” ' What there is to know, we know-- except that possibly we could measure a few\ ‘ \"

k4 ~

< things_ to the sixth decimal place instead of the fourth."

. - o
' The irony of the story is that Michelson is the man whose e

« ° to such a revolution that we have learned more about physies in the last sixty
~! e ] v

Years than in all the preceding centuries. ’ o
Butthis story is revealing as well as ironical. Michéﬁson was a man with

. (]
t a pa_.ss%on for accuracy, a man who measﬁred everything to the sixth decimal place,

ey

He had 1n partlcular, in the late 1870's, by most 1ngen10us experimentation

. measured the veloclty of light with hitherto unhearé-of accuracy. The velocity

of the earth in its journey round{the sun having been determined with fair ac-

H ' curacy from astronomical data, Mic}helsc;n's next ambition was to refmeasure, it
» f ‘

{ L .
- himsel? -- to the. sixth deeimal pldce. With this obJeative in sight, in 1881,

o

gssisted by Morley,

made the experiment that wasto make them famous [ the

Michelson-Morley xperiment. ’ .

- The concep upon %which this exper:.men% vas based was simple. Suppose that
Low o vl o -

we put a fran

-go ﬁ'om T to R. See Fig. 7. . ' f" . .

.
- Vet oy, 1
.

Direction

Earth's Rotation

. ¢ " . “

. ) _ Fig. 7. - L ’ .
. ’ \ - N . L] ’ »
s SN
4‘§ -’ ) -~ ’ ¢ J' ' . M y'."' :a v 7*,,‘)‘




. Tt T T o TS L
1
) - 127 . PR ——»—‘\ R , C -
_— P N, TNy
The!signal sent from T ~with the en?rmous veloc1ty of light ¢ ‘'has to overl',aké
A - tH .-—.,_/~ - e = a}m\\)ﬁg
R _which is moving a.head with velotity v, the veloc1ty of the eaxrth. Therefore
— T s T 2
it has veloc1ty c-v rela‘tive to R and in consegyence will ta.ke%a Iittl; >
v Tt e St -»-—:‘r‘w‘ ....4~ - f 5 "/; 1
, more time to reach R +than it would if the earth were at rest, And 1{ Ey re- b
7 - : - -
}1. turn signal 1s seixirh‘om R back to T it is approached by T ‘as it approe.ches ——
T, so that its veloc1ty relative to T is ¢ + v. See Fig. 8. : R s
' . . ' !
‘ , - ' ' , / -
! o C4 |
ty I B = (T’_L' : ; —— __,__i
PR SR , . .
o . Y i ) . N v ;
e - - N : ‘ . \
# . Direction Py ‘
: - s of *
! ; - Earth?s Rotation
» . i {\\ - ..
. i (Y S ) .
\ . / K uFiS 8 . ' -
p . . 7, . }
- Therefore the return s:.gn?l w1ll take less time ’chan it would if the earth were ' /'
* at rest and still less time than the initial, outgoing signal does.. ’ “
§ { - ¥ 4
let us descrlbe briefly the 1ngenious experimental arrangeme,nt to carry - ‘
» - " AR
out this gbservation. - See Fig. 9. ’ °
— . —
. . ‘- hd . .
PO YRR 4 . b oL 4 oet Ll .‘ P . . RN 1——" T M2 ) ’\L‘ L ‘ ‘-)L ;
. ] .
. _ ' , 2l ) v
Light source ‘;I?*' ot J[ G ‘1
I . . M |
! | » ’ | Ml- 3 |
s ] . . >
- £
. 'y I .
" Y, *[ %
—(i;« e ter , + M ‘h - Tty ' 1 l) 1 5 = “ .3 £- e
) " R K P ! F ke 1 ‘
I - . . »
:o‘ ‘o . ]
] . Fe. 9 L%
N P . . v . :&*’) . . i
B We have a light source. L which sends a light rdy in the direction of the mo-~ \
. &
+ tion of the earth This ray falls on a mirror M which ds pa 1 ially transpa.r- :
. - i : v -
]: l{[lc and sta.nas under an angle oi‘ u5° agains?%}gye intoming rky. Thus, a part ~° .
- K B, . . P i
'Ilmrmlm-vmc . ‘i" g * % ’ ’“




-

-~

d

%

* ERI

r ' «{ - "'m . . v ) ) b
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. L . 5 ‘ ' .

of‘ the llght is reflected under 90 t0 a mirror‘ M2 and a part goes, through

0 ; u ))k

to a mirror M3 Observe that the 1;,ght ray has now been split, up into two

! T 1

| .
rays one moving along the 3.1ne MIM 5 that is, perpendlcular to the earth' -

motion, and’ the othen moving along M1M3 parallel to the earth's motlon -3Both -

~

) rays are reflected agaln at the mirrqrs M2 and M3 a,nd return to the trans- .

- parent m'irror Ml Now, part of the vertlcal llght rdy MZM]. passes through T
Ml and goes to /the objective of an interferometer J. At the sa.me time a ;part
. of the light ray M3M1 is reflected at Ml and also enfers into the same.

interferometer: Thus, we mix in J the llght of two dlfferent travel histories.

The two types of light differ in their part By the dlfference in time which 1s

k

necessary to travel from Ml to M2 andic—}j compared to the time which elt

5 &

takes to travel from Ml to M3 and back.,I0u dc not' weed to know the cpera-

\

, tion of an interfeeromete’r. It is sufficient to know that such an finstrument is ;':

sensitive enough to compaxe light rays coming from the same origin but haviné . Lt

.

‘ ' » . - .
spent different times in travel. Being mathematicians, we stall rather calcu-

late the expected diit*f"erence_ in travel time which the instrument will meabure. ™

-+, Let £ be the distance between the mirrors Ml .and M3_,'and Ml and .

-

M3 whith, as you see, we assume to be edual. The travel jtime .from"Mi to M3

“and back is evidently , -

e U LN TV SIS B

- ~_.+" N ‘\.
. cvcvce_ve , P 3 ,

- .
since in the forward motion light should travel with the lesser relativ}e velo-

¢ity c¢.- v and in return Grith the larger velocity ¢ + v, as we discussed - *
before. B N ) o M

N
™y - - ’z : : ", .
bl

-

It is more dlfflcult to find the travel® time from Ml to ME_,,and bagk - —**-
I.et us look at the e)@erlment fram a point in outer space, so that we do not

EY

participate in the motion of the earth. At’ the moment when the.ray 'eave's the *
- , £
mirror M, this mirror has the position, Ml(l) in spaced and M2
(1)

point M . . But, suppose it takes the time Et until the ray hits the mirrof‘ .-

~M2' During this time the mirror M2 has shifted in the direction of the earth's

ict e 182 0 e

its at the

©

L} M K 5
. S

t . .. [P




s : e v \ : !‘ N ,
motion and sits at|the point M (2) sace. It reflects the light ‘back to

M1 by reason of symmetry it will take the same time -l-t to retur ; from _ M ’
. 2 ‘ U e
to Ml But when the-light reaches Ml’ its rosition “in space will be at \—’ )

1,
-’Ml("). We know that the distahce (1§ to (3) is given by since #F¥-
9 S~ , RS . \ . A N ] ‘

» v
is the total travel tilne and since the earth noves w:Lth the speed 'C On 1:he"i

H
.

other hand, the light which- travéls w%.th speed c had to cover in the time %‘t
" the distance Ml(l) %o M, (2), Tous, in the right triangle A(Ml(l)Ml(Q)M 3))

.an three s,ides are known, as indjcated in Figure 10. By the/ Pythagorean theo- |

- ) Y w - =

. fe
N rem, we have - O ) P 1\ . ‘? . R
. . 4 ‘ . . 22 = %ti‘z (c2 - V2) thb.t is, -t = -_./—'22___3_”?; ‘{;’ : N oL . ;}_.“é
T . : a =¥ Sy
_AJ,___,_‘_.,L [E 7T S S TJJ. A S L S, S --«-.J-- T J A—"s..«a} ».,.W

from

®

“The travel' time T from Ml to M3 i not the: same as that needed to_.go

M1 to M The ra,tio of tra.vel times is. -

. L4 »

..... B S i, Sl ceam S, . «-Awm, g e

This square root which 0 curs here in. our é‘leme tary considerapions is cha.rac—

n'.- .

'.Ehe aboyve rea.soning allowec% Michelson to predict a time di

-

fference o

-‘1
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g
&
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necessary to achieve the accuracy that Michelson deman made the actual exper-

imental set -up a hive of ingenuity. A4s I have s"aid, Michelson was one of the o
world»‘s greatest experimental physicists. Indeed he achieved such accuracy
that he would have been able to determine v, the earth's veloclty, even if it

had been moving only one tenth as fast as it does. Lo Y
1 "Michelson made \t)p/measurement and created a scandal invphysics. What
N >

value for‘ v 4did he get? Zero. Yes, ZERO. The flash of light takes Precisely

the same time to go from T to R as from R to T. But this is preposterous

“ *

Even the small boy who steals apples from an ofchard appreciates the importance

of relative velocity-- even if he cannot spell the words. He Know(s perfectly
Vd - .
" well that to eésqape a good hiding he must continue to run away from, not towards,

the wrathful farmer hard in 'his pursuit. But surely there can be no difference
in principle between being chased by a farmer and a flash of .light" The flash

is more fleet of foot, that's all.
o)
Physic:.sts (‘:ould ‘not believe their eyes. The Michelson Morley .experiment
was zsepeated again and again. Again and aga‘in the answer was zero. This was

against all uﬁﬁerstanding of physics. How, for goodness sake, could the welo-

” ° .

city of light relative to a moving object be the ‘same when overtaking the obJect
1

- as vhepr moving towards 1t? Despite heated discussion, the cold fact is, that the

A .
-

|, . e,
Avelocity‘ of Lightais 1nvar.18snt. N B a s 4 : !

; e . ! e " l ¢
< %.10 Wnat, Time is 3t2 !1

£

t

After a discussion o;t‘ the Michelson-Morley experiment and its concedwable ({

& Qonsequ.inces had been prolonged ~:(Ln scientific journals for sdme twehty years, - ¥

-

oy E:Lnstein came up, with a penetrating temark. "What," he asked, ."do we mean by

e

| o
sayi that two events happened at the same time. How'do we know that every-
n&;‘v' z T e—— N

. 4 ! -
’body can agree what the timq is at this very instant?" '

>

N 1, !
le £his ‘age of jet trayel it is a commonplace experience that dif‘ferent

e

longitudes have different tlmes. A<telephone dall from San Francisco to New -

i

York immedlately confirms a d‘ifferent clock reading there. This communication,-

]{[IC S ’\ ;; 134 e o o
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mede by electricity at the speed of light, Uapld that for all practical .

e 1 -
purposes the West Coast inguirer hears the East Coast answerer s reply at the

~

, same -time as it is spoken 1n New York At the same time the two clocks record

different times, yet neither clock is W'ronF SOmehow or other clock readings ,

are dependent upon an agreement about how we measure time. This remark is silly

. or subtle, as you please Doesn’ t it sound p‘ecullar to say that at the same

time dlfferent clocks can orrectlx record different’ times" I am mindful of

the Vléitlng phllosophy professor who, in concluding hls dlscourse on Time with

the renmrk,“ "So you see, gentlemeng I do not know what Time is," looked at his
vatch -- and dashed to catch his train. ‘ N
, Even if :'r'e disr1is.s" the-different-times-at-the-same-time paradox as merely
- - LY
verbal, it is none the less a fact that with in't';erplanetary travel a rgealistic .
o ! \
probabilifey the business of synchronising clocks becomes of practical impor-

-

~

-

el

; I
tance. A:nd cosmic voyaging 1ntrod1ic/e_s,a complication not encountered in terres-

tial travel. Whereas the time lag in hearing in San Francisco what is said in

- th . .
News‘l'ork is abdbut L of a second, the time lag in interplanetary communica-

.50 -
, _ .
tion {by radi®’ waves with the velocity of light) is a matfer of*minutes, and .

that between tht earth and the stars, months.

- .

H

Suppose, for exbmple, that a radio signal sent by E, an observer on <z

'ea'r'bkh,l_ to A, an astronaut im oyter space, 60 X 186 000 | miles away, takes ,1
» : P

‘u}w‘

[ ¥ 9 -
minute. \If E sends his signal tilelen hig clock records 12 o clock, then his

signal reaches A when his (E's) watch records 12:01. A, in receiving the
) .

a2

signal sets his clock at 12:01. To confirm receipt of E's signal A imme-

diately signals back. And since the distance betweén A and E remains un- °
t " - -
cha.nged this return signal also takes 1 minute. Therefore E receives A's

°

acknowledgement at .12:02 by his (E's) clock. . Vo *
~—

This, you will say, is all very simple Surely there s no difficulty.

o

At 12: Ol E says to himself, "A is now receiving my signal sent at ],2 00 -

£
by my clock and setting his clock at 12:01, the sa.me time as mine." And from

E's point of view isn't his conviction established beyond doubt by his clock

.

t .

-

e
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b iu . . .
' reading 12: 52 when he receives A's return'signal? ) - .

¢

v " The point is thet vhereas E knows that he himself sends'a signal at
12:00 by hisﬂ',cl‘otck and knows he recedves- A's! confirmatory signal at 12:02,
E does' not kmow that A received his (E's) signgl when his (E's) clock read

12: Ol %yes,, he is convinced, but he does not know. He cannot be in both

Foryy
. . -«
places at once to find out. He has no method of direct veriication. .
'w"vz . . . N “
. . . 7To synchronize clocks by means of light or radio signals, we must know

theg velocity with which our signé.ls are transmitted, but ito detennine this velo-

B c{ty, we, must know how long the transmission takes. To attempt to, synchronizes

clocks without knowing the velocity of light and to determine the velocity of

light without using a clo‘ck is Just as futile as to try to produce hens without

) L
=

. 888s and eggs withoﬂt hens. * s . L.
,.// It is arguable that if eyewitnesses to E’ signalling i\. are separated
- S PR

. by great distances s then they must report vastly differé‘nt , yet equally reliable, )
opinlo.ns of the time indicated by his (% s) clock when his signal reaches A

All very conf‘using. To g0 into great detail is to invite great confusion.

Y L
"‘.c»

Physicists went in'E’o very great detail. Many on-paper experiments were made in

»;_hich people frantically set their watches as they hastily got on and off

trains, trams s boat®, and olcycles ’ scheduled for immediate departure at velo-,

ca.-ties";(near that of light. Scientific journals were full of these wild

e

jexcursions. < L, X

.
of course, it is easy to poke fun., The physicists.were a.ble, serious-

e «
: "minded people trying to f&gure out an important problem. Their real difficulty

was conc%.\a_lﬁrathermmw,n ma;thematical,, quite literally, they:didn't know what

fbhw,,were a;:king about. Whereas we all know well enough how to use; the can-
. - < ;é ."

cept of time in everyday conversation, we a™ at a loss vwhen we come to map its.

e - (4

1ogical geography .
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/of the greatest possible importance for physics: (l) He saw more clearly than

B
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.

m& .11 'lhe Space-Time Transfomation Problem.

s ?

°

“metaphysics. e .7

The ‘matter was finally cleared up in 1905 by Einstein. He did two. things

-,

-
>

y .
any of his contemporaries What the basic problem_ is and gave it precise mathe~

mtical formlation} (2) Hs,solved it. The first is by far the more difficult
. ' ’ .
achievement. . - o '

’!:‘{‘L » ' ) -
This section I shall devote to (1), the next to (2). .
Although Einstein {1879-1955) was an imaginative thinker with his head in

the clouds, he had both feet on the .ground. He did not spend several years in
the Swiss Patents Office for nothing. A professor of met.}hysics would ha.ve

asked: "What is Time"" or, "What is the essence of Time?" or more recently,

~

v

"What do we mean by Time?" BEinsteir, on the contrary, asked: "If a _happening is

observed by two persons, how.are the one man“sganswers to the quettions, :'.Where?',

'When?' » related is the other's? He 1¥oked for an answer in terms of measuring

rods and clocks, not essences or semantics. He was a professor of physics, not
. z

,
»~

Aithouéh"‘fmnstein was primarily interested in observers c’ta.stronomi,cta.l dis-

\

’ }:a.rices apart¥more homely exposition results from bringing them down to earth.

J * -
: S0 is“?a. man’vho is standing at a railvay %rack in the darkness, of the

night, and T - 1s a tree by the side of the track. d;stance x in the positive

direction from "s . See Fig. 11. ‘The notation S, stands for Standing Still

0
at the Origin of the Stationary System; "T" you can figure oﬂt'f‘or yourself. . ,
. —— b - T ow
¢ g t ‘ .‘... . «‘ i 2 .'*r »(x,t? ‘j. » ‘; "-“ : [
- L - Q Y - Mo: i ;{- )( » h }
b S ‘_______T‘__:.-A__?:m_,.>+ M;vmg
Lo - - a ! \ System ;
o .. Flash of light '@ ——» , * )
. . . . .
. N . . -
L P . *——— —> + Stationary
. So o by System«a ”
& — 2 .
! ¢ 3.. X, B (x;t) & ‘
tl . . P [ ' ’ i
> e LY o Y.,
. ) { Fig. 11 . e
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MO is an engine driver or,;motorman who drives a train along the tra'ck in the
o " 'S N

. N A
, -positive direction. He measures distances from where he siﬁs in his moving cab,

ahead positiv* behind negative. And since he moves with his traln, the dis-

o«

tance X of the tree from him is, of course, changing as his Train moves along.

3

The notation MO stands for Motorman who is the Origin of the, Mtwing System., .
- "
¥hen Mo in his locomotive thundering along the track pa:sses SO’ they

a

} ‘synchronize their watches; each sets his to zero hour. SO sets his t = 0O,

and MO sets his (a different watch, SO we must use a different letter) t = 0.

.~

» E4

powerful lantern in the positive dlrection of the track. Almost Immediately-

.
.

the tree is made visible to both S and "MO for an instant by the passing

flash-- Just &s it would be by a flash of lightning. SO says that he ca\ight a

.

glimpSe of T ata distance X fran himself at time t; MO says that he -

glimpsed the tree at a distance, X from himself at time t"’ Whereas SO

scribes that the tree was momentarily visible as the event (x t) MO describes

it as the event (x,t).

We' put Einstein's uqnestion thus: "If a happening is observ\edy two men,

r
- how are the one men's answers to the questions’ 'Wheré?', 'When?' related to the

-

other's?" It now takes on & more mathematical tone to beeome: What are x land

t in terms of x dnd t? Or, hindful of nﬁtrices{ What is the transformation

. . — N . , . £ ‘ .
. % .
from {°7] to (_).? e . . ,
. b . . t t w ’ -

Very possibly you are tempted t0 say that, whereas x and x are differ-

\‘ ) ; ¢ ‘(

$ . .
v . ‘ent because Mé‘ is mov:.ng ahd SO 1s stationary,;‘ t and t must be the same.

[y

Do not be intimida.ted xt>;y practical co‘ncern with sméll scale terrestial

. i : . - '

. I ' S [ ¢
o experience. ' r‘ = { , -4 . "

s 3 [ -

. - - And although no;: concerned with the color of Athe engine-driver's soeks,'
' %

. you may be temptad ‘at /this stage to introduce v, the velocity of the train.
. S s
‘I'his Would be a mistake, Ein,stein I;ept the problem ‘s:.mple. We all know the

v

‘maxin, "'Put first thiﬁgs fgst"' hé knew which thinés are the first things.

I pR . .
e His thinking Was incigive, '~ “ a ’ S

. EMC EURTE LN G £:5:

I ’

3y

T - e

Also when MO is passing him (i.e., when t =0, T = O}, S, flashed a -

M ~
gy L R b
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- . A -
What is rélevant? Let us cast our minds back to orthogonal metrix trans-

.~ . . { ’ X X

formetions. Our problem then was to go from \2 _}5 our problem now is
b P Y Y

to go from J -to _ . There is’'a similarity. e previous transformation

) t v . -
is linear becduse of a one-to-one eorrespondence between x and x and ¥

and y. Yet for any happening, foz;'exa.mple, the momentary visibleness of the

tree T, So- has Jjuss one descrlptlon (x t) and Mo ,just one descriptlon Lt

* (;,;). To the unique descrlptlon of an event by SO tpere corresponds 8 unique -
descriptlon of that event by MO’ and conversély, We %st ¢onclude that the
required transformé.tioan is linear. It being understood, as pre'viously, that the

Iy

letters A, B, C, and D stand for numbers independent of x,y and ;,5 our .

..~ present problem becomes: . . -

x A " [x /A B
* . Glven that \_j = ) , find d. ‘

t c -of'\t) - c o -. / >

~ : !
JA  BY | ' .
/Yes, find . But subject to what conditions? The only thing we
B C D y
know from experlence is the result of the Michelson-Morley experlment tha‘t; the

. - .

velocity of light is invariant., And how are we to make use of thls condition?
~ . -

We must inject it into the body of the p;'oblem.
o Refer back tokEig.ll. First consider So‘s ‘Stationary System. What is.

. the relatioh between x and t? . The flash of light isat x =0 when t =0.

A 4 kb bt e P

Jhere will it be after time t?, Taking ¢, as is cu‘e'tomary, to.be "the velocity

- -

. of light, - , '  ,,," - ~/

¢ } k4
i t 7 ! X = C\t .
\ é o - y ) L ‘ o

. , . . o . i \ | | ! j : s | !
‘;{.‘»' l.eq, <] 3 . ! ‘ f
! IR Y ' ‘o o .
| o . YUY T oxtet= 0. :
1. * i‘ i i “o . ~x \ l C . . s

REEEERN N ) ]
! Thi§ 1s's osing, of course that the” f’lash moves in e osi‘bise dire ‘ ’
. ctlon
; % u’PP &) ) t}} L_‘_\ .
\ alqn‘f the .raijway track, But this supposition is too restrictive for our pur- .
l‘\ l ’ ]’ - 4 * “sw:
., " posesy i‘f, could well be that So flashed his lantern in the oppqsite direction
] b i
! .},.» : P - i Tam e T ’ . 7 o
e to aitree * Tt " Bee -Fig. 12. » x v , 'y . i

! L ‘ C toe ¥ : ' ‘
. o : S ‘ . ‘
et . / . i TN . . L .
‘;‘ Q- J' \ e R | e s
SERIC -+ SN A . e
Geemm oy ' RN 2 :
\:3,;!‘,‘ . 4 \ ,,44: “;; ]‘ N { [I R I
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o ’ * '<X)t) X " M ’ N
IS — S e —— ® n———-~—> + Moving System .
* < Flash §f Light oo
- g . —> + GStationary. System
T! o © ‘
‘c ’ " ‘ .
- %, ¢) -
. ) A \“ ; . 4%
- - Fig. 12’

v
’ 5

o .

If so, having due regard to signs, the velocity of the flash would be‘

-

;- x = =ct

, ¢ -

‘e

i.e.,

L XY

x +ct = Q» N

9 L]

Needful of coping with either possibility, it is more convenient to handle them

) -
.conjointly., By multiplying the two equations together, we have . v
. ) * . * oy . )
(x - ctMx+ct) =0 .o
. & | . ’ *
LY i’g‘) . A : ‘ ’ - =
N T - x2 - ,c2t2 =0t .
< N L} N - - . .‘ - - 'y
. = ¥ j .
And since, if the wt of two factors is O, thén at least one of them must 3

4
*be 0, this eqliation covers both the possibilities.

v
14

Nexts consider M,'s Moving system. Because thé velocity of 1¥%ht is
invariant, Mo's movement makes no difference tAo the‘velocity with which a

flakh reac}x‘eé him, ‘]XIn c‘onseque'p‘&e, similarly, x eand .t are'L such that
& . 1 ' . .

c ’ [ t

- ’ : §2 - c2€2 = 0, .
. | »
From the last two equations we have .
. , %2 - %P = x° - c2t2, )
4 - -

- This is the c;orfdition to which the required transformatior) is subject. Thus,

.
. . s

the completely maither;naticaL formilation of Einstein's space-time trans.foz"mationc.. ‘
R . - ) . , . NN
problem is: : ' 4 . ’ ”

~

‘ :
: e 140 ‘ . ; 3
- Q r )

. ? L ta ‘ N . i

~ERIC - - X : Ce

s T . . .

N - Ca e oo, - N t y €, { >4
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CGiven that .
. N x A B\ [x .
. * b9y ~ = . ]
T t, c- o/ \t s )
subject to the condition that ) s : v
' ' ISR ) -
‘find - Iy . . -
) -f& B\, .
) c DJ: Y

[}

By discovering,this “transformation, Einstein opened up a2 new werld and

B e
J < v

——-—ehemgem our ideas of space and time.

l(\ . .

b ? . .
DN L - . e

k.12 Firnstein's Solution.

- [}

. ~: Recall Theorem A:

Given that ' . N v \ -

S e n B\ fx\ w0 T L
v - = - . ‘ . N
. / C. D/ \y . ’
preserves the orientation of the coordinate axes and the distance J,
! . X : . ..
. o s pa -] :
W ) x2 " y2 - x2 + y2,
“ [ ' !
it must necessarlly have the form .* o .

- : .g% (A R z. “/l_-? L

-

T I L\ = .
. S "\C D VR . « LR U

EXEN ) ) 1
S . ; . . | o, ,% :
There is a.similarity, yet only a partial similarity, between .
4 . . { il 1 3
¢ ° 5 : . .. . 4
. . 2472 i 4 g2 A R
.t and , O : 1 S : .
: - ;2 - (c-t?)2 = x> - (ct)2 Vo .
. . . . Yoy : T, 2
- . . . . . _ N 'y
4 Also, just as we do not allow a transformation x =%, y = -y which de-

stroys the orientation of our coordinate system, we canrfot allow a transforlna.

: \
’ By
- ‘tiony' X = X, ¢t = =ct in spite of the fact that x2 - cetemwould be unch K

under such a substitution\ _ Indeed, the transformation t = -t would interd?a.nge ;
»

:?EMC« -.1 o /< - 141 " ' i. e
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7 past and future and make clotks run backvards. It is a'ﬂ’e"ep'philosopﬁical ques-

tion what mekes time run in e unLque sense and why we cannot change its course

*
v

by physical devices. We cannot dlscuss this problem which has been the despair

* .

of wiser men. But we can use the fact that past and future cannot be inter-

+ changed to exclude the special transformatﬁcm . X = X, t = -t wvhich plays the
! : & )

same role here as the reflection played \iri cb'ordinate transformation.

[ 4 ’ “ L
Thus, had the mlnus signs been plus signs, with the substltutlons ci: =Y,

3

ct = ;, Theorem A would have been immediately appllcable and our problem solved

- d ~ T A z \‘
T What a pity. , v .
: e o %
;Still, wishful thinking has its uses. If we do not make M& \1; ye do not
[y . by - N . ; R
*héve a wish to come true. How can we change, t ‘ )/,\ o ir '
’ 2 - > 22 AL h
P ‘ - ; - Ceg‘g =X t )w‘ ».‘g.\- {e ‘1 X v
. , 4 > 4? -~ 4’
3 ¢ ~ ¥, AR
into ) . e
¢ » . ;:-2 + 2{‘2 = x‘2 + c2t2? ,‘“ bl

0 - - . . . ‘. * . +
We cannot. . Yet if we*Dcannat have all our wish, can we have & part of it? .We.

.
N -

' write . . - ' )

¢ ' » “f
~ | VI S x“é+'(-c2t2). )

. -

. Thls is a little better; we have introduced a plus. And remembe}'ixig conven\ A

. iently that i = V-1, we have* -’ i ‘ - ) T ’:’"
: N e -cet‘2 -1 ’-“‘c:et‘2 = 1%:%° ) '
\ , ‘
s0 that l . T ! o
A ] ; ‘ o xS et =Ty 4+ (i'ct)‘2 v s
[ an;i,‘similarlyq, . \:« . ’ ' )
K Lt o X - %P = %+ (1) ' : ’
: .Therefore the condition . . ‘
. 2. - ;252 = x‘2 - cet‘2 . ) ‘ /’
. . mey, be replaced by'the condit‘:ion ’ i . - ' . Cot
' v‘: v l Z o+ (lc?’f)‘2 = X2+ e(ict,)g. ‘ N ./‘ ’ ; ’

Q b . T ‘ 1 2 ’ o ety

R A . providea vy enic [ . B . . X "
4 L . N . .

L. . - N, i . . N .

ko L S . . .. , «

"
b
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Thus it would seem that the best we can do is put ) ’ o -
. . s
.. T ¥~y =dct, Yy =ict. o
g ) g 4 . N
. ‘ ’
With these substitutions Theorem A becomes: . N
- ) X B b'e . ¢ -
Given 1 =
ict D/ \ict oY
: pr (ict)2 =x%+ (:i.c:t)2 g [i:e., %2 - o%Ef = X2 - 02t2] ~ R

if and only if .

.
8

£

L.
o
‘Q x>
(>~ s

"In consequence

! ;) . : /.:? x\ . - ._ o J,

’ ict -71 2% 2z ict ¢ -
so that * - - ’ e ) ’
* a x=zx +./1 - 2" det” . ¢ .

ict = -1 - Pex+z - ict. o

N

We have succeeded, at least in a formal way, in determiping the nécessary

¢
AN

price for 4t; there is this wretched number 1.
DO PR

a time t or a time ct, yet no clock can record b time ict. Must we'con-

.

-

clude these eqqatifons to be vér.i.thoutw plzysi‘cal significance?

’ t;ra.néfo:&mation between X,t and ;,:E We seemaowever, o have paid a heavy !

o P,

1

Pf course, a clock can xecord

N t

<

E { ‘
Consider V-6 +i. This is a sheep in wolf's clothing. Since the notation

h , | * . . -
contains the letter i, it is natural to suppose /6.1 to be an imaginary
‘ mmber, yet Y281 = ¥=6 «/-X =" /{-B)(-1) = /8, a real number. Are our trans- .

.

Writing /-1 for 1 in the first equation

3

%1
]

+
formation equations impc}stg:rs, a
. . » S e

s
.

<X I

z2x + Yle 2 e /-1.ct

Czx + -/'(]..- éé)’(-l) cet

zx + Jz° lect.-

1so? t _ys..gpclojt:}re, them

A}

¥

to, ‘gigd'_q out. ‘.

Chaane
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Making the same substitution in the second equation
. ‘/:I~c€=-°-/l'-zz~x+zﬁ~‘ct -
- dividing both sides by -1 t ‘
. ot =-Xi=o z - ex + zct

’ 1 ‘/ - 3 : - ! Lo %
- - = *x +tozet g - |
\ * T 5
“ - :.4' 2 1l.x + zct. (2)

Real coeffieients! Provided '22 > 1. . v

Echoing the é.rgument of Section 4.7, it remains to determine the physical

.

significance‘ of z., We return to the railway track. i\'do speeds through the T
- +
. RS

night sittlng in his engine cab. He says, IHI do not budge an inch; I am X = o'

. SO s&ys, "Oh no, to the contrary, you are moving very fast, you have the same

v

¥ veloc:.vty v as your train." Puttlng X =0 in (1)

. N ” B . . . . . *
»_& Q‘V< . 0=zx+'/zz-l"ct . ’ L MR
e : - : a
i.ey,o - : \ . .
A0 )\i‘ . . ="VZ2-l.ct k ’

3 z °

And since, when. t = 0,, x = d}\ this equatiop tells us the distance the.t M

° . has trave]ied from SO in time \{t (by So‘as watch). x, the distance»traveled,
\ Voo

IR MYy Yo : T ) 2o 4 A \
T ° is propc? onal 't:o{ t, the timeitaken by the factoy « == T2 c. But, ?.s e‘verx 1~
d o b ~‘
N . . & . v S ,7; . ,!
’\,} - schoolboy oWs,¢ ’ b ! e &
\ , . . ) ) , , L4 - R g H‘ . ;
pe T distance traveled = velocij:y X time spent traveling. f “'\’4; . .t
1 ‘? . o ,, T, - '
b So? The velocity ¥ df M and his train relative to- SO and the trdck is 3\
. sivenvby o \"‘ % , Lo o
- T ' ! ) . E v = -u ¢ © ’ ’ . .' 3:‘
¢ N v - <y "za 4 2 ‘ ! ° ° \s
: . T . ‘v
i whez‘e-. v “is weal when the above condition that 221 isJ satisfied. We have
- ~ - . ‘r - . . , }
’ found the physiical significance of a function of 2z. This sufficese . : i
- ., o . — E . R . A ‘ . o
With the fegark that it is convenient to begin by writing (1) -= and i
2 . s oy N . —t

mutatis mutandis (2) --in the 'form




0 - c o AF
. 1 . .
o o R o
\‘4 A - -8
,_.‘-:; N ’ZE -1 ) L B L.
BN - X3 et Y SO
I leave it to the reader to show that . . s
R , . ] :
= x - vt ) .
x= (3) "o
. » ‘
. \/1 "3 L
Sz _ . . ‘ c € & :\‘
t _ E )‘
- ’ '<:2 4
. t = N (h)' '
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. This is Einstein's solufion.

In brief: GCiven that ¢, the wveloeity of light, is ngarimt; if SO de-/

7
scribes arl event as happening at a distance x from himself at time t_ by his =+
watch and Mo, who is moving with velocity v, describe-s it as happening a;: ay
) 2 : - : . ¥
. distance x from himself at time 1 by his watch, then the relations between
Xt and x,t are given by Equations (3) and ().
. We recall that the completely mathematical fomul'ation of Einstein's prob-
. . ) ;
¢ - 7
lem ~- expressed in matrix notation -- is: - . N
Given that
o - . ; ;) A B\ fx\. -7
. . -~ = -
. o . > E b_; D t ’ -
. .. Y .
;. ds subject %oithe condition that 0
N ' ." \ "y , v N - ) .
31 - . . ! R % 3 . . \
. / ) I x2—\c2?2=x -c2t2, "

it

1 ' s

W
—
Q = .
o o]
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It is fitting to conclude this section by giving Einstein's answer in the sem

.

e

4 '.T ’nota‘t:;ior{'fm A moment's thought will sh‘ow that (l) a.ndm(gjé m%.'\y be written as
o . - A ).' v

[

"3 follows: - / .S a , -
L oy "

2

-

"
‘l
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»

P
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first expressed 1n'th1s form by the Dutch phys:.cis-t.lc@ntz 1853 1928), is

known as the Lorentz metrix.- Such matrices are analogous to orfhogonal ‘Hlatrices,,
%,
they constitute a group. The given matrix, when mult;l.plied by a similar ma:t;rix,

’ E
&

with only ¥ " replaced)\ gives another’ matrix of the same form. .
To consolidate this knowledge you are ask'ed to work out, for yourse;f an

elaborgtion of Einstein s problem. We introduoe a ;;%d motorme.n Ml t.he

‘Ao © q. Vu'

origin of the moving system x)i':‘), who driyes hi§ e9n in’ the' a.me dlrection

Y L
.ﬂ * . . ol

. as JM drives his on a pa.rallel trackr sg_v Fig. l_s.

o

Fe . o
P

"end
4 {1

4
. J:_St Movmg System

Stationary
System

J ’ :
t=0"and x=0, t =0, also X780, T =0 (i.e., M, passes’

Do : S g
‘when“Mo does, and all three synchronize their watches), Given that Ml

! ‘ - 146y,
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moves with velocity w .relative to Mo,’ by usingl Lorentz matrices in a role

analogous to that of ortﬁogonal matrices in Sectiop 4.3, deduce formulae for X
(P ,o

and t in terms of x,t. Confirm your answer by considering the motion of LY

:z:elative to So. . oy ‘ . o -3,
. r . ‘ . v,
ka3 Einstqin's Achievement. - e
B |\ . - ' . .
I have taken great pains to try to make Einste:m ] formulation of his T

’ space-time transformation problem a.nd his soluti:on by matrix algebra readily

«’ . -

¥ .
intelligible to the reader who will give them his serious attention. Being wise

.
-~

‘,’ after the event, it is difficult to s.ppfec;iate the magnitude of his achievement.

Now that:’-wé- have the comforting a.ssu‘ra.nce"-o_g'a. well sign-posted road that we

will, fsach our destination, we forge® that When there was no road there was no ,;? ‘*},““.

road to follow, Yet, making the roed yas the egsy part. We forget absolutely .

that without a new destination, there could never have been a new road. Einstein
had to see that there was a place to gs to before he could figure out how to get

14
‘there. .o ) ) ' ‘ %
Analogy will help us to see his achievement in perspective. ) -

Y

Given a hammer, a bag of nails, and the instruction, "Get bus’}:, " what

does & boy do? Drive a few nails in the wooden floor" Fun for a youngster yet

unimaginative. Or, drive a nail in the door to impz:ovise a hat peg" ‘I‘ha.t s a
\

"more intelligent thing to do. Or, drive dozens oﬁ.f?ails to make dozens of ha.t
pegs? The boy who does this runS/o‘tn of ideas-before he runs gut of nails. But

N
wha.t a.bout the highly 1ma.g1native boy? He drives his Lat peg nails into the, -

door up to their heads so that their points stick out on the other side. Why,

.

don't you see? Take the door off its hinggs --and there's a fakir's bgd of

- - - . /
nails! Not every Tom, Dick, or Harry would think of that. It tekes imagihation.
" b

. 7 i . .
What's that you say? A crazy idee: Came to think of it that's just what a lot.

of physicistd at first said about Einstein's 1905 sbace-time transformation
A . . ~

" paper. - i Lo :

. e, . v :
Elnstein s,aw what contempora.ry ma.thematlcal physicists failed to see; he .

. Q .- . e
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e P DA S A P g«i SR ooas . o
‘1:»;,‘,‘ U en. - - - . <. . A Fey

- 3 . . g O %




& B - R h] H . ' “ ’ ‘ :

B
R
it

e
L
-

c g " ‘ ) L r
o ! ' : A T |
’ / SR . .
saw how to get busy . He'aid what his gofitemporbries failed to do,, he used
\ ) ‘ ! .
, matrices witte bold Imaginatipn. “ ; / . .
o ’ . | ‘ : ;
‘w .14 Important Consequences \ . . f . i

.‘Equa.tians (1) ;.nd (2), \Kpaé%}lhit*)g are éhe basis of Ei:nsteip's Speci-al
Theory of Rel;ativity. ‘We may' or may not 'l}e/dispased to accept them. ﬁu% whether
Or not-we like ity the fact remaing. .that these z\a.\re necessarily consequences\of
the invariance of the Jelocity of light. ‘ . N

In this, the final s‘ection, we shall consider thrée major ¢ nsequences of
these equations, consequences ~that shatter our cémplacency. To acc’efpt the basis

of ‘the Special Theory of' Relptivity without accepting its consequences is illog-

.

‘ ical, If we are willing to accept- the evidence of the Michelson-Morley experi-
‘ i

ment] we should l®kewise treat its.logical consequences. ,

e (L) TFastei astronauts age more slowly.
. = : Ve - ’

e return to the railway track again. Suppose that So sees the tree, by

the track momentarily made visihle by the flash of light from his lantemn at

12:01 by*his watch, i.,e., when t = 12:01. Does Mo see it before or after *

- .
>

Ay
SO? Remember \thg.t they synchronized their watches when Mo was at SO'. In

: e \ ) e i,
other words, is 't 1less than or greater than* t? R .
‘ )
v B LY

Sinc€ S, remains at the origih of his system 'x = 0, so that (2) becomes
0 ;8 b .

4
-

\

o ‘- . L &
y“ } . ~t~="—t_.‘, . e (l)

- . N

- And since the velocity of the train v is, of course, >0,
LTI ’ . ' -~ . . N

] ) . "‘.fw N .
V. ’ . ‘/1 - 'v_;_) <1, and L >1, so that ) e
N . - ¢ ’ 1 - LA . h
, ~! r] C;U‘FA A
N e s R T (2) v
B . - EeY - N n fL o d FE

'therefore M describes the event that the tree wag momentarily visible as
oceurring later. ™ Suppose, to be definit!‘;\ Mo says that theé even‘t“ occurred at

. W

;{},j;x . ) t .?, i‘_':_;f; — M'_ "‘"“;‘;,..4—:‘_ s
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12:02. What does So conclude? He says, on the basis of the event, timedgby "
[}

his wa.tch as happening at 12:01 and timed by the moving watch as not. ta.king .

~
[y

.
place until 12 02 that the moving wa.tch runs fast and that events as described
3
' by the moving man lag behind the same events as described by himself. ) .

Although equations (1) and (2) are simple, their physical application is
. ! o ~ :
most difficult; 1t makes no concession to muddle-headedn_ess. We mus_t be clear N

that t is the time recorded by a watch that moves re]:e.tive to a watch that

records time t.- (1) may be expressed

. moving clock time = stationary clock time (1)
1- % |

‘ . 2" R |

e
’ - . 4
and (2) .
. ’ . 3
moving clock time > stationary clock time. (2")

. %

Suppose the statian master has a stop watch whose hgnd makes a full turn

in one Eeéond. The motorman would think that the stop watch is Slow because in
his gpinion the time t for such a turn is more than a second. But suppode he

is given an identical stop' watch. Then he will now say that his own stop watgh
is correhct and that its hand makes 6ne turn per second. However, the station -

master looking in will conclude that the engineer's stop watch is slow, since he

moves relative to the train and now his time scale is increased. "I‘hus, the to-

,_t’al consequence of (2') is as follows. A process ofgphysics which would take at
P - . . ' r . ) : :
rest an amount of time t “appears to an ohserver moving relative to it as longer.
- N - “
If you ask, “therefore ; who of. two observers is more justified in ascribing time
Q 8 Y )
to a. given physical phenomenon , we sl}ould say that that observer will ﬁave the
better ,jud‘gment who rests relative to the appara.tus or phenomenon which is to be
~ 4 P
Judged. LA
. 7 "a. A M .
. Equations (1') and (2') hsve most important gonsequences for space travel

1 toe
\

8k, yelocities near that of light. L < : . '

FECR T X~ - ‘ - -

' We now suppose Mo tQ "be an aatronaut heading stra.igflt for a, diste,nt star
, » o L) 7 7 VNN — P T P .{14—1-14.41”}

o e
P , PO

. “from 1 the earth q‘tﬁ S When he 1s hurtling through outer space with velocity v,

- o9 T R




. . \ st 4 - ' .
» k k6 , -
o .. .. . . .
his clock, which measures timé t, is at rest relative to him, and the t‘erres- .
3 )
tial clock, which measures time ts is moving :qelative«xo him. This is the
crucial point: In M,'s experience, 'f is his local or stat'ion'ary clock time, .
't is terrestial or moving clock time. ‘And since he moves at velocity v rela-
tive to the earth the earth moves at -v relatiVe to him. Buf’ (nv)? = 2,
50 that-Dy (11), ofor ¥, ' ’ N
. - - S
£ = .t )
. [ ¥ L '
' . l] = —
. 2
. c . ,
=3
. - i.e., . ‘ . .
- . . - My's time ‘ '
. terrestial clock.time = — . . :
' . - . . » v2
» -~ . . - l - _2. . -
et S Ye .
N Suppose,-to take a concrete 1llu'stration with easy arithmetic, that MO
“ = 2
. : travels with -22 the velocity of light., With v = ‘}-22 e, .2 so,. |,
. ‘. Y100 c2 100 v
. that . i ' o
/ v‘_ _ h ‘/* N T
. . - 100 10 ) v
’ and 4 . _ ..
. . - h SRR Z I
. * t = - ';"' g . JZ: - R " .
‘ 10 B
» N - » k]
. . p .. .
i.e., - )
’ 7 o= . . .
. ) i 3.07c N S R -

"Thus the duration of MO' experience in traveling from the edrth to a distant ~

T star at a velocity of /V +C 1s only one tenth that of the terrestial obser-

= »

r! . : : N
_ver's experience , ) JE e

Suppose ‘that accordiné to So's watch "MO ta.k-es 200 years to reach the

disi:ant star. Had MO. set out at the age of 25, his .body would be 225 years

’

- o0ld when heereacheé his des;:ina.tion. Surely he would haye arrived a corpse.' B
- ‘ _ . ¥
i, No, 200 Yyears is the duration of the flight in the experience of SO ,arId N

— L . ad A Sy ._A)‘w. : [P LU SN

OIS PN

his descendants, the people who stay at home. MO, the man who ' goes, lives s his .

_ e ’: s — v e e -
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experience in his own time t, that of the watch he takes with him. When

t =200, t-= fs- 200 = 20. MO will' be hS years old, not 225, when he, .
reaches his destinatign. ' . . - ;, . . -
- - -~ : . \ ~ .

Thet the faster an.astronaut travels the more slowly he eges gives us

. .
! <

hope of men living long enough to visit the stars, all way out beyond the solad

system. Yet you may be disposed to retort Such subtle arguments are good, - ’

+

”‘clean fun, but would &ny hard-headed astronaut be prepared to set, out on.a

200 year journey because it had been argued by a few 1onélhaired professors that

he would be only 20 yeaTs older when he got there? Not very likely. If I

ey, {

, tear a page off my desk calendar and call today the first of September instead
of the first of<Au st, it doesn't meke me any older physically. Next you will

be telling me that if I forget to wind my watch, then'I'll stop aglng when 1t - |
a <

stops—-and live forever! . R /o a

v s

» No, the pgint is ‘that’ each physical phenomegpn runs its naturel course.in

the system in whigh it rests, and 1ifd is a physical pPhenomenon. The moving .

\‘ 3

astronaut lives his reéular 1ife in s‘space capsule’ He does not have any

benefit from the fact that an observer on a different system (which moves with
s . e o - o - i

" very high speed relative to hlm) thinks that he lives very much longer. At this
moment there are many galaxies whi%h move relatlve %o the earth with fantastic

speed, nearly the velocity of 11ght. It there were in such a galaxy a star with

-

intelllgent cbservers, they would think that we hufians aretpractically immortah

i

'_ Thls does nét do us much good. However, for such purposes this differébce in

&

aging is a great use. While according to our system of. accounting, an astro- =
naut might ‘need 200 years to_reach axdistant object; in his time scale he

would need only 20 years and thus be able to survive his trip. .

. S 4 . 3 ‘ -
You may be quite bewildered and upset by ‘our- argument. But remember that

-

i your'experience in life has been in systems of very slow motion, and there.is

.

nothing which could prepare your imagination to experiences of high speed travel

X

“inh outer space. Wherever,experience.fails us, insight and intuigion gill fall

“”"y*ﬂe. Ourtbnly guide is our reason stringfﬁened by mathematical,argument.3.
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We might be wrong in our. extrapolations, but until now the predictions of sci- i
I

e b Ao nat e

ence have been more frequently verified than :E‘als1f1ed.,

)
J Do you know what“a, radioactive sutktance is? It consists of a large num-
¥ » v S

i ber_ of atoms, of which, iluring a given pe%og a certain percentage disintegrateé
. g 3 e [

or dies. Uranium atoms ; ¥hen placed in a cyclotron, are made to trave’l at nearly

\ "

the velocity of light'-- Just as we suppose M0 to do. It is found that uraniuﬁx
} .

i " ’ -
sub jected 1’7'0 such cyclotron experience decays much more slowly than uranium sub-

Jected to T)rdlnary terrestial experience. Here 1s<‘,§’/1dence in favor of Emﬂ’-

'

stein's t11me contraction formula. And isn't our aglng, a physiologxcal process

, [ 4
whose rate is that at which tissue and that.sort of thing decay?

. - ‘. .

i - (2) No treveling faster thah light. ,

Using (1), and (2), we divide x by t. This is asnide thing t do for it
A .

. eliminates the square root. ’ N ’ { .
s _ ; ‘.’5 - v -
; - ’ ' X x- vk . _t . > (3) ’
- - I A
- . 2 2 t .
. ec© 4 ¢

’l‘he algebra is very easy, the Rhys1cal interpretation --w1thout which the alge-

‘

7 . [
bra is, pointless -~ not qu;tte so obyious. . .
J 7 M,gsa-,.iJru‘J} _— s " . S} 134_‘1.1,»1‘LJJJ-
- Once again we return to our rgilway tfac . A passenger ), traveling with-
dut a ticket, is, for reasons best known toh , rwaning along the brain (a’ .
i o, *. : )
uniform velocity) from My where he was when 4, passed Sy-  See Fig. 1k,
,,..ii . L ~_\ " s, . (;Eg_f)‘ . , -
'LA*_ b Pl TTWV“:TT h - h.*"*: e P . e - Md" - : - 23 T N
et — o—— > + Moving System
. s » " i . .
Ty . | P . A, . e
. I » + Stationary
. £ - :
. S X (x,t) . w . System »
. o , v - o
. .
o - >
. Fig. 1k N r\) .
- R ) ) '
’ Since P has coordinates (x t) on the train, he has moved distince 15 rela-
W . "' S,
. tive to Mo in time t. Accoxdingly, Mo says that: P's veloc;Wy is -?- .
ST s K t .
" ) And since P h\as coordinates (x,t) relative to SO‘/S says that P-has
B Q moved diqtance in- time t and that therefore Pts velocity is % For -~
., '“‘-‘, o . -
RIC S B S ot ‘V 2
e T, \, O - v, % , -
s AL et S 3. o . @V P s 7 :&:
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~§~s brevity, 1gt yo VRV S R T TS
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"“so that (3) becomes ) . - ; 5 . L
. ; ° -_u-v ) t L
. u —,l w
{' ' N ! 2
[ C .
1“ N «
We have’ & physical interpretation that gives P's velocity relative to the )

“o

« amoving train in terms of his veiocity relative to & fixed obgerver. This is the
. ’ - .

.

.

famous addition law of velobity, : *  ° .
“x . . . . Lt : ‘

Whet <are its implications? Could we, from a “rocket going at nearly the

Velocity of light, sfloot off a. ;‘ocket to go m ‘neanly at the speed oftight

a.nd from éhis, sh:ot off another to go even moré nearly at the speed of light?

By boosting yelocity in th:z,s way, couldn t we achieve a velocity eXCeeding that
) of‘ liglit? TLet's use the addition'law to find out., °* i . T
““‘: " ‘I’he ‘oest that ve can do for u is to -ta.ke v tp be a r;ega:ive number.

Replacmg v ' by -v, the addition formula becon{es

s ™ ) 5 . . .
‘ ! ) u(‘l +-E) +Dv\_. u'%- AV(l -'u_é). . v {.~ .
-~ = utyv ' e” g e e . o
u = = < =y + —apg——— (h-) '
‘ 1+ XX o v . e R .o T
A ALl gl .‘2 B »),)‘igét, - L TR
. ‘ J“ “'m to ¢ L R
. . > . = . -~
so that : . / ) R
*b . ' . : 5 © - '. .
u 3 u provided that . 1 - > 0 e . '
, - . vy L. r . [«JEN - . [}
. l.e., . pronded t”hat C>u.e , . .
g g - .o RS CocL R T o ¢;¢:'<'~ e T TR ra e
" If c=u, then M =u = c. Alternat'ively, putting = c in® (h)
o . v . +_‘ « . N . ., B
1. K - ‘o <
' l) 7 v - ,}r =00' z_= ce ¥ - . »
. . RV B e
.“”“‘ - - « \ -~ ¢ ¢ 'ﬁf’:‘*{’ r ° v m e

" : LI iz o

We mst conclude that i‘t is imp&sible to ixceed the veiocity o;‘/ ligh‘E\. BT

- >
’

L (h) is of intrinsic mathematical interest. If u a.nd v ere two ‘given

\ ]

q,
.veiocities ’ their combined velocity is given by the formula -~ - \‘ -
= v ) = ) ,
» r Ld . . . .
oo e ‘ ._u+tv . .
e e - X, ot
. . ,: ’ - - B l' 3 e— - - -
St . ¢ . . .
] N vy » . 1 : < t \ - ! “ \ 4
., \) .o~ ’ P " * \ . , N ’
[RIC . * 77 20 L aEg |
oLt - Ty L - : ! . b, .
(s v \ e : - ' e ) !
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°L. This function is a kind of gene‘,'t‘alized sum, of | u and v, Itfsatisfiés the com-

»
+
-
‘
t
)
4 .
4
”

nmtative a,nd associative laws o;f' addition. j
I’ B N ‘-i , ‘ 4 - «\ N L !
j

g

!
R
o "
]‘()‘.' P

' ,‘ \ \i\ N

S f(u, ) = #lv,u); | £fa f(v,w)) = £(elus),v).

“ ; “\ e N\L»\:\\\ R N . } . s
If u- and v are e‘éch less than ,p, the sa.me will be 'true for this sum velocity.
. An -experimental verification for t®is law of addition of velocities can be
. * fouilgwin an experim\ent by Fizeau vwhich was, in fact, perfomed before the theory
. 7 -

~of relativity was ‘even formulated. As yoy probably know, the velocity o‘f light

. e

in water u is slightly lower than the velocity of light in empty space c.
Suppose now that we se-nd a ray of light through a body of water whicgh moves
,i'ﬁself in the direction of the ray with the velocity v. According to classical .
’ i)hysics, the total §elocity of the light ra.v should be u + v since the ray ’ .

. runs through the water.with spged u, and the whole arrangement is carried for-

lward witil the velocity v. Fizeau carried out a very precise measuz"eme'ﬁt of the -«

LI

velocity of such a ra.y in a moving ;nedium. - But to his surﬁrise ‘he aiscovered_

. . [ <, .
the following fact. The velocity Of the light in the moving fluid was . .
. ¥ X ‘. - , ’ *

T ! 2" .o ;c“a=u+v(l-—-) ‘(’ o (6) ‘_°
. e dadentaaded S o T 4 - a --ui-.g)w‘— IR R . S
P A N Ld . - Fy

) Again, vy is the velocity ot light in the water anc} v 4is the. stream ve}ocity, .

» . .« N F) o -~ N

RS - of the water. ) . '

-
. -
- <

-

D, : . . » .
Consider now the addition law (L4). ! Obsetve that the flow'velocity v~ 4is

- ’ “

e, VETY, STELL. combared to the velocity of light <. Hence % |15 & very smd1l ;
TETE TSN 7 5 R . ) ' ! . . . °

c Y
mmber. We may use the geometric series formula .to write R A
.. ’ .
‘ ;=1-_+(‘”) (“V) TP ) -
T Y ' 1+ —' c ) »
e - a X c% ) o A R
o . - ) . - . - 1
L ) We commit & very small error if we put o . '
X
LA ‘ o XV - =~ ; . . c -
. .".‘ PR . 1 ”f"aé" ‘..‘,‘ - L3
¥ ) . 7 1+ c ; N ’ »
. 2
v, ? . c 5 4
- ’ ‘ S ) *Y e
. Observe that with the approximation the addition law (4) becomes the formula (6)
.. S & ) K L LN
. established by Fizeau. The error due to our approximation is sb small that the
. . ‘ A 1 * = *
! et v...«\«uu!ww:r‘x Traard v ! . ! . - ‘
X 2 LMC + %’ : h B ‘ '\', . 1 5.4 i P S "0‘,
e L S TP Sy B
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experimenter could not possibly observe it.' Thus, Fizeau's formula is a bril;

liant ,just/zfication for the addltlon law (4) of velocities. )
But now we should..34d a remark which shows particularly well the great .
(R
/
power of mathanatica:}thmry.‘ Suppose a good mathematician had heard of JFizeau's

experigentt and of hi formala (6) but had never heard of relativity theory and ,

. . ! . J
_of the law (4) of additiod of velocities. He might logk at (6) and muse about 1

~ 1its meaning. It is somethimg like an addition law for u and v s but it does

- - .

not satisfy the commutetive arfd associatiye laws (5). The mathemafician mi%ht .
suspect that (6) is only approximately true and is a good approximation to an

/ h . Ll
addition law f(u,v.) in the case of small v, He might then ask the ‘question:

P

What is the function flu,v) which satlsfles (5) and becomes very nearly (6)
¥ for small values of v? It can be shown that the only possible choice for
: ,
f(u,v) 1is' the fugction (4). Thus, the mathematician could have_deduced the
N .

“correct law of addit’ion of velocities from an approi(d.‘mate experimental formula.
i

:, Think this over! You w111 understand‘why scientists call mathematics our sixth

! y

« sense’ with which to e@erlence reality: ) . ‘ o -
) /

3) Energy has mass. : D

' ~ - -

(
Fuhlfameri’cal‘ to the study( 6" even the most eiemen%ary ‘ciynamics is Newton s,

-, » .

]
. faz‘noqs la,}z that‘_the force ao\ting on a body is proportlonal t6 the mass times the .
- . . b\p e 4 ' ' . .
|- " . + N .
acceleration of the body:s . . e st
Ay " ‘ - s
N - , . - .
p— . ) o . s :«au‘fE-'\;=‘m‘);‘a'( TR PRIV RN
In consequence, if a given b%\k_s' a'cted upon by a éonstant'force, it h‘a.s a don-

-

stany acceleration. But, if its acceleration is constant, then its veloc:;ty

continually increases, so that finally it will go*rfaster than light. On the
othez; hand, if we accept the well verified Michelson-Morley result that the *

velocity' of liéht is invariar'f{ we.are forced to accep‘t its logical éonsequence

-

°

_+ that .nothing can go faster than light. Someth;lng must happen to reduce the -
». body's acceleration at high velocitles. ¢ A . y
5 PR/ * ’
R To concentrate on the acceIeration a, ye isolate it by writing Newton s.
’ A A3 R . ’ .
= ' .

. \.)‘“". . oy, . B - | ‘
L L T
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law in the form N ., g ‘

.
- s .

-~

v

. Since

hypothesis,

velocities at least m must increase as the velocity of the body inereases.
However, it would be most odd if the increase were not continuous.

. -y
quence, the only explanation Einstein could find is that mass must increase with

.

1

-

a. must decrease for high velocities, so must the ratio i.

F 1is a fixed force,”so what do,you conclude?

-

But, by

)
Yes, that for high

In conse~

v

velocity.

-city.

:Mass must bedome progrilsively harder to push with increasing velo-

)

In h:l.s famous paper of 1905 Einstein argued that *to: the mass_ of a body at

rest My

m , its mass at velocity.* v:

But the difference between masses

/

hN

*

m
v

o)

.

' itself must be transformable into mass:
. ' \

-

E
my¥ <.

and m
v

must be added the energy, E of the body times
Wy

-

’

ig surely a mass, so that energy :

-

5 to g}ve :I.t mass"’ "

e “ %

1

. N B v

At that t:l.me this was«a fa;ltastic idea.

° that mass and ene’rgy “could be eggs out of the same basket.

D ~
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Energy is mass in

.

Nobody had ever before tho?lght

Y

T

_scales.

73
Surely energy is not the sort -of stuff Vhich ean be we:l.ghed;? Even in

* #1905 when Einstein wis startled by his own idea he suggested that.a study of.

. -

‘. radioactive substances -- where tremendous energies are hidden -~ would very pos-

- . - -

- . .’

- = . e
s:l.bly show that energy can be transformed into mass and mass into energy.

Forty '

T

years 1ater,,:l.n 191&5, this was all too dramatically verified; his the‘sis tha'b

L., E= mc2 was the bas:l.s of calcu}.%,t:l.on for the aj;om:l.c bomb as well as for atomic
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4.15 In‘Retrospect. . ! e .
R . Given the Michelson-Morley experimental result; what follows¥ We now know"

the more important consequencés and the simple matheMatics used to deduce them.

»

by particular,‘we have seen what can be done with matrices when used with bold
3 |

imagingtion. Of course, what was done elegantly with matrices could have been

done inelegantly without them; but, who wants €o drive nails with stones? Yet
) ) . .

never forget that it is the/man who handles the hammer that counts. Such simple

~

mathematics enabled Einsteﬂn to change our entire conception of the physical

world and to make grprediction, forty years in advance, that heralded new mas-

-

tery of our world. This is an example of the power and the glory of/m&themat-

1
ics --and the geniyssef Einstein. , :
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