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. Preface',

These notes have'been prepared tohelp high school teachers

to become familiar with the, approach to tenth grade Euclidean

geometry which has been adopted, by the School Mathematics Study

Group (SMSG). They are intended specificalto be used/during

the summer of 1959,1 courses on geometry' for high school teachers.
°A

The 4M,SC1-, 133 preparing a tenth grade geometry text book and a
1

teachers' manual, and these notes follow the preliminary outline

of the `text book. It should be emphasized,- that these notes are
,

quite unsuitable as a text book for high school stUdents,' nor can

they be used as a teachers manual. -They contain twin material

...which is too difficult to bt"presented to most tenth graders, but

,which we believe it is important for tenth grade t eachers to know.
.

-,The'notes probe deeply into the beginni f thesubject,:brt do

not'cover much of the material .of tandard tenth gradg-ieometry

'CR=26. In particular, the notes do no cover such topics as
a

parallels, circles, areas, Pythagorean theoreM, lytic geometry,

4

etc., whereas all of these will be treatedin the SMSG text book. 0,

- .,
It.-.4.8 assumed that teachers who study these notes have good

. .
. ' .\--/

I 'backgrounds in axiomatic geometry. In particular some familiarity
.

..k.... '.
,

with tuclidts Elements is presupposed, and the teachers should

have access to these. (Heath's translation i Everyman's Lit'rary.

(E.p. Dutton) is convenient.) .1rhenotee, oontai onfg occasional 1, .

.t

). i
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references to the common high school treatments of

the treaders should continually, make comparisons of

-

.4

geometry, but

the two types

of treatment, especially the proofs of the More familiar

theorems.

Although we have tried to anticipate the content, order,

notation, etc. of the proposed text book there is bound to be .ome

divergent However, we are confidet that we are presenting the

spirit of the new course; and that anyone who understands the
.

material these notes will be able to use the text book in an:

intelligent and interesting manner.
. A

instructor .in a summer ,course for

spend most of the ti me,on Chapters 4 r 7.

teachers is urged tb

These contain the

material on the Ruler and PrOtractor Axioms, and the theory of

separation or order Of 'points on a line, lines in a plane, and ,

planes in space.' Mtch of this, material is unfamiliar to riliky

teacher*.

. Chapters 1 -'3 are introductory in nature, and can be covered

swiftly at the beginning, and referred to'from time to time as,the

course pr greSses...'
I'.

/

,These notes,are by no means a polished work, and it is: .

.:/

expebted that the
.

instructor will use good judgement in
,-

dekding

which'parts to am;Ify, which to light, what extra mate* to flik

tr.

: :i ,

'put in, etc. Some exercises have been included but many additional *-

,, 0 . ' : k

ones will have to be Supplied. The starred theorems
. .

, (e.g. Theorem 3.1
*
) can be 'used as exercises, and it is intended

. P 1. -

,

that as man -,.as possible .of these 10 proved. Most of the early
, ,

0.4
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onep are used in later proofs, and their ommission would leave
, 0

sriouB.,ga.rilit,,in the pryent.ation. 4
. .

i
.

ne of our'proofs are accompanied by diagrams. This was

'don partly to urge the reader to draw his owz

diagram aid partly to emphasize that a fOgical proof should be

indepeindnt of any diagram.' Ie ommission doed not mean that we

\
wish to minimize the importance of drawing -a figure to fix the"

to ideas in the mind. The readers should make copatantme of

diagrams as an aidto understanding tie theorems and discovering'

proofs. 1

Future work byithe'SMSG on the text book, the teachers'
.

'manual, and the teacher training, manual oan profit, greatly from

comments,and,criticisms of these notes. You are 'urged to send

yo4r sftsgestions to

School Mathematics Study Group::.
',Drawer 2502A Yale Station

C-

.7t

New Haven, Connecticut

t

Tiii

7
.
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Prefa6eto Second Revision

Several changevhave been made iii.this'edition to impiove the
,

material andbring it more into line with the text book.,
.

.

1. The notations At for a line and AB for a distance

have beeri adopted, On the other hand it did not seem 'worthwhile

to change m( LATi.L) ,mZABC and arc AB tOal

tN
2.'' The distance and separation postulates haVe been reworded

to conforin to the text boat. However, to
/

chaege the order of
1 .

presentation of these postulates to that used in the teXt book
.

would have necesgitated extensive alterations in Chapters 3 and 4..
.-.

,-_____ The text bdok
,

order was dictated by pedagogical considerations,
.1

p#inciPally the desire to avdict indirect Tiroof's in theifiist _

.). , ..
.

,

theorems, which do not apply to this boor. It was the efore ,
.

.

.

decided to leave the order as in the earlier editions. The
.

pottulate's thus differ in numbering as follows:

These Notes. Textbook

Incidence postulated 1, 2:3, 4, 5\ 1, .5, 6", 7, 8

Distance ppsiulates 8. 2, 3, 4.

. e
. I "

'3. Chapters on Parallels ,and on Ares.', lave been', inserted to-
f ':.

clarify the position of these topics in oti.r presentation..
. ,

_ _ _ __._
.' r

4.,
,

Numerous minor'thanges, insertiond, corrections, etc,.

have-been made, and one-significant error has been corrected

(Section 4 of Chapter 5).
6

'iv
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The user of this book',

the text book, including,si

.71 find much additional material in

exercises'and expository material

in the text book proper and

Commentary, the Appendices, an

In this book we present Eu

lementary reading in-the Teachers,

articularly the,Talks to Teachers

can gedmetry as a mathematical

theory. We havelett aside all, a ications of geometry to

questions in physics-and to other wiles of mathematics. This

is not to say that we regard these licatiorts as unimportant for

the teacher to know and to use in the ,lassroom; in tact, it would

be a mistake to teach geometry"to high' chool students without
1

bringing in some of the significant aPp cations, especially to

elementary physics. The reader of this k ill find abundant_

supplementary material on applications of

the following books:

entary geometry in

e

G. Polya, Mathematics and kauiible/R Princeton

University Press, vol. 1, especially the chapter on "Physical

Mathematics1'

R. Courant and H. Robbins, What is Mathematics ?, Oxford

University Press. -N.

. H. Rademacher and 0. Toepljtz, The Enjoymentof Mathematics,

Princeton University Press.
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Chapter 1

Historical Introduction

a

1. The Glory' that is Euclid's. '"Euclid is the only man to

whom there'ever came or ever can come,the glory of having success-

fully incorporated in his ,own writings all the
.

essential' parts of

the accumulated (mathematical)knowledge of his time."I
.4

He,was the most successful text-book writer that the world

has ever known. Over a thousand editions or.revAsions of. his

.ge o metry have appeared since the advent of printing, and his work

'N 0. .

has dominated .the teaching,-of the subject ever since, Elements

'appeared, )Arst in manuscript form, and then in, the form of revised

text-books. These revisions always kept the, essential ideas as

developed by Euclid. Euclid's Elements was, for the part, a

highly successful compilation and systematic arrangemen t of the

Works:of earlier writers. Euclid accumulated the mathematical

knowledge which had developed over a period of some 30Q years,

during which deductive reasoning in mathematics had evolved, and

organized this material into the oldest-scientific text -book'still

in actual use.

0

E. Sinith, History of Mathematics, Ginn, vol. 1, p. 102.

I
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.
The material of the first four Books can be traced back to

the school of Pythagoras (572-501 B.C.); Boobs V and VI treat

theory of proportionincludingthe method of exhaustion, developed

by Eudoxus (c. 370 B.C.), and Book X presents the theory of

irrationals,as.developed-by Theaetetus (c. 375 B.C.). There is

little doubt; however, that Euclid had to supply a number of proofs

and to complete or perfect others. The chief merit of hiS work

lies in the skillful selection'of the piopositions and their

arrangement In a logical sequence presumably following from a

small nUmber of explicitly stated assumptions. Euclid referred

to these assumptions as definitions, common notions and postulates.

Indeed, many of our modern textsl-fail_in some respects in which

Euclid succeeded.

Pephlaps some of the early phrases of this chapter re a

oo slight exaggeration, for some evidence is missing. No original

popi, of Euclid's work exists, and it is difficult to tell what is

---due to Euclid and what is due to the early revisionists. Recent

ardheological studies indicate that through the various early

ICurrent American texts on plane geometry are based on Books I,

III, IV, V, and VI of Euclid'S Elements; texts' on solid geometxt

are based on Books XI and XII:,The best and most reliable

reference work now available is the monument three volume, work,

.recently reprinted, by_T. L. Heath, The Thirteen Books,of Euclid's_

Elements, Dover Publications, 1956.

12



hand-written editions,-many changes were made in the "fundamentals"

- deflpitions, common notions, and postulates - so that we do not

know precisely what sEuclid wrote. These studies do indicate that

there,was early dissatisfaction with some of the preliminary Veas;

this dissatisfaction persists even today. The propositions usually

appear as Euclid'wrote them, since all such early manuscripts -are

in genera] agreement on this score. But there is no doubt that

Euclid work is the earliest attempt at'a systematic arrangement

of definitions, common notions (now often called axioms), postulates

and propositions whiSh presents mathematics as a logical, deductive

science. The subsequent influence on all scientific (not merely-

mathematical) thinkihg can hardly be overstated.

.. 0 Tn otder to understand and appreciate fully the contribUtions

of Euclid to, mathematical thought, we must gO hack into the history

or even pre-history of mathematics. Geometry, as an intuitive or

factual hody of knowledge, grow out of natural,necessity. Indeed,

the very word "geometry" means "measure of-the earth". Many

geometric facts were collected by early civilizations in Egypt,

Babylonia,

indication

ideas were

Choina,'and India. The facts were stated without any

of any process of deductive reasoning. Some of the
,

precise, others were approximate and were arridbd at

from experience,, and some were just guesses;, the resuAs.or,:

experience or pure guesses were not always correct." The Theorem of

PythagOras, for example, at least in one form, was known tq the

Babylonians at least as early as 1600 B.C. ifablets, dated that'

"11



far back, giving tabied-ofyalues of integral solUtions of

-a2 + b2 = c
2 have been uncovered. Being convlinced, by experiment,

that "The square on the hypotenuse of a right triangle ist equal to
, 4

the sum of the squares on the legs' is one thing, and proving this
. _

14gically. from explicitly (or even implicitly) stated assupptions

;,,ie.apother,,thiing.\ We suggest an analogy from'arithmeiic:,

thing to know that the prpduct Of two odd nVM4rs is. odd, but, it is

a'"horse of a different color" tiiigive explicit definitions and
4

postulates and then prove this feat. --,

The origin of earkyOreek mathematics is, clouded by the great-

nes& of Euclid's Elements, because this work,Auperseded all preced-

ing-Greek writings on mathelatics. After tesi appearance of the

aements, all earlier works were thenceforth discarded. One of .

,

the la!ter commentators, Proclus (c. 1160.A.D.); whip did so much

towards preserving Euclid's work for us, in contrasting Euclid

- with earlier writers - no doubt believing in the.linfallibility,of
41,*

Euclid' - stated in effect:

"The selection and.a men oethe fundamentals was

complete, clear, co is , and rid of eArything superfluous. The

theorems were prebented in general- terms, rather thin as a number

. of special cases, and in all ways, Euclid's system was superior

_tó all ,the rest."

We do know some facts about early4reekinathematics. The
, ;

4
history of demonstrative geometry properly begins with the (reek

. ,

geometer, Thales of Miletus His.actual contributions

, ,



. 5

to gebmetrtcal knowlIdge were few, but he first recognized the

necessity of giving a demonstration based upon a logical sequence

of ideas. He took the first step in raising geometry from a set

ok isolated fact& of observation and crude rule of calculation,

concerning'' material things, to a logical consideration of geometric

. concepts abstracted from these material things. HeWia followed by

Pythagoras and his School, whose, main Contribution was that

. mathematics was_studied from the intellectual viewpoint. The

Schodl or Pythagoras employed the deductive process of reasoning

exclusively and systematAally, and thus raised mathematics to the

.rank,of a science, despite the fact that,their,wh4e philosophy

was shrouded in the mysticism of whole numbers, They distinguished

mathematical theory from practice (which they disdained, d proved

fundamental theorems'Of plane and solid,
\
geometry, as well a

theorems of the theory of numbers.. To their dismay, they also

discovered and proved the irrationality of '41E Thid, very dis4-

,e covery, being directly contrary to Pithagorasr preponceived

mystical and indefensible concept of the relation of numbers to

the universe, was the cause of the downfall of his own school of

/thought.

2

We shall 'Mention onlY two of the many geometers that followed

thls'iperic.T. The renowned paradoxes of Zeno (c. 450 B.d.)

initiated another crisis in mathematical thought. They are

concerned with,the difficult problems of continuity and the-,

Addles of the infinite. Even today the problems of ,com6Inui

a
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°'are geal stumbling blocks for school-boys (or school-men), and the
1

ridtbles Of the infinite have not yet been completely unraveled by,

mathematicians and loigiCians. As far as high school geometry is

concerned0he problems of continuity were resolved by Eudoxus

(408-355 :B.C.) in his method of, exhaustion. In thodern terminology,

we would refer to this methad'as the theory of inequalities, which

in turn is intimately connected with the theory of limits., In pur

American texts such topics are often completely overlooked or re-

legated to the appendix (that, part which is usually left out). In

our better texts after some rationalization, proofs involving such

topics are replaced by appropriate postulates. ..

,

Mien came Euclid. His Elementetc;,-300-B:0-.)'Unified the

werk,of many scholars and ,systematized the known' mathematics of,

the. day. The definitions and assumptions, the arrangement, the .

form, and no doubt the. completion of many partially developed

topics are (as far as 'ire know) due to Euclid, although he leaned,

heavily on the shoulders of Pythagoras and Eudoxus. Euclid set ,

himself the task of finding an adequate and universally acceptable

-,set of postulates for geometry, and at the same time, of avoiding

i 1 .

1Thii Work does not consider the subject of conics. There is'
,... .

6 evidence that some knowledge o this subject wad available, but

,.there is' also some evidence that this topic was included in some -

of the "lost Books" of Euclid.

1.6

, l
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a.prolieration of assumptions. Holding down the number df '

postulates Adds to the nfunnwhen some conclusion is reached with

less price in the number of assumptions; it may also increase the/

.niumber of interpretations or models of the postulate system, or

make itasier, to check that a- model actually satisfies the

.4. postulates. (See Section 6 of Chapter 2 on Postulates or the
1

.
,

'ar ale on .Finite Geometries in the yromientaries or Teachers,)

modern texts do of-ben contain 'proliferation of assumptions,
-, 4- . ...

,

of which are repetitious in the sense of non-independence.
, - .

Eueliditried to avoid this. In our.Fddern texts, the criterion,

/maybe advise'dlyp seems to be 'If it is difficult to prove,.assuMe
.

z.,

it.' Too bften the assumption is never explicitly gtated.
J
Eficlid

tried to avoid this also. However, some compromise must be. made

between having just a few postulates and presenting a large number

of.postulatts, so that the theorems proved are those that are most

readily understood,by the audience for which the material is

intended. Euclid did,not write for school-boys; bUt for the

,
scholars and philosophers of his'day. His work showed a seridus-

,

,ness of purpose And a desire to be rigorous and to avoid the use

intuitive geometry. He even demongtrates the.COrrectness of his
,

constructions before using them, andlthe is not afraid to treat

incommensurable magnitudes in'a logical Fashion. He was interested

' in the systemization of geometric facts, not in their discovery.

His Work showed no interest in the analysis of a proof, but rather

in its synthesis in a rigid-Orm: proposition, hypothesis,proof,

0

'17
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8

n. He tried to push aside the geometric facts gained by

experie ce and their practical applications, and placed emphasis

upon logical deductions. "Though experience is no doubt a good

teach r in man situations it would be a most inefficient way of

obta g knowledge . The method of trial and error may be

dir ct, but it pay also be disastrous."1 To this quotation we may

ad not only that it maybe disastrous, but it has been. The

h story of mathematics\ is replete with ,incorrect statements based

limited experience-Or experiment. This'dees not mean that we

holild overlook the role of experiment, either physical or

thematical, in suggesting facts. We must merely make sure that

any suggested fact is given a.logical proof.2

Euclid recognized the importance and necessity of starting

with appropriate\definitiOna and assump ions. He went to un-
11-

necesbary and inadvisable lengths to def e every term, although'

he was acquainted with Aristotle's state nt: "It is not eftry-'

thing that can be'proved. You must beginlsomewher . Euclid
. t'

recognized this with regard to his axioms and posttlateb but fiver-

looked the corresponding idea with regard to his, definitions.

0
'Morris Kline, Mathematiti erin Westn Culture, Oxford University

k .y

Press, p. 24.

or excellent discussions of the role of experiment and other

type plausible reasoning in mathematics see the books by

G. ya, How to Solve It, and Mathematics and Plausible Reasoning.

18
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Unfortunately, most modern text-book writers haven't recognized

it yet. It is not our purpose to discuss his definitions here -

thafwill come later - but ta,point out that they are not satis4-

factory from either the'modern point of view or Euclid's ideal

and purpose. They cannot be used in the devolpment of the super-

structure (the Propositions) upon a strictly logical basis.

Euclid's common notions, often called axioms,-are essentially

general statements which correspond to the usual Woms of

equality. and addition of ordinary arithmetic. Euclid did not refer

-to them as "self-evident truths"; this connotation was due to later

writers, who were not as expert as Euclid. If,however, we accept

these definitions and common notions upon an intuitive and des-

'criptive basis as abstracted from our physical universe of common

experience, they may guide us to later precise definitions and

assumptions, which can be used,as.,a basis for a strictly logical
,

development of geometry. This is the basis of Hilbert'il'axiom

David /bert, Grundlagen der Geometric, 7th and final edition,

Teubner,'1930'. Sevteral editions of the English translation

(Foundations of Geometry, tr. by.E.d. Townsend) have also appeared.

For a condensed version for_ plane geometry, see E7es'and Newsom,

An Introduction to the Foundations and Fundamental Concepts of
.

Mathematics, Rinehart, 1958, pp. 87-88. -,See also Section 2 of

dhgpter 3, where th% incidence postulates stated are essentially

those given by Hilbert'. Other references and details ok Hilbert's

postulates will be given later.

19
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system, by means of whi tEuelid's ,Elements can be made logically.

1ori'ect. -Ii should be ulderstOod that there, are no "false"

Propoiitions in Euclid's Elements, only incomplete proofs and.

ltat,mentsthat do not follow logieally from his stated premises,
,

"

but which aepehd upon his preconceived ideas based. intuitign
And experience. A nuMkeir'of these omissions will be discussedi

later in Section . 2.

The assumptl:ans thp:t wie dEithentally.of a geometric

character Euclid called tPastuletes,1 and it was here that Euclid

were five such Postulates.showed his mathematical acumen.

straightline can be drawl ' from 4nrpoipt to any point. \

II. A finite straight line Canctbe produced continuously in a .

straight line.

-III. A circle may be aescr d with al:ly center and passing

'throughta given point.,

IV.' All right angles are e. anoth

V. Will be considered 1

Although he didn't say so, the is no doubt that Euclid implied

the uniqueness as well as the e istence of the corresponding line'

Ar and circle. Euclid did not ply attention to the tools, ruler

And compass, theoretie or pract 1 by.means of 'which these

1Today, mathematicians make no distinction between the terms: .

axiom,, postulate, assumption, agreement, and principle, as long

as they are merely statements ihich are assumed without proof.

2Q

,,



onstructions could be made. As has been already pointed out, ,he

interested only in logical deduction and not the applicatiOns

of geometry. Of course, we.cannot actually draw a line or a circle
. ,

1:; in a physical sense, but we can draw very good models of them.

The entities of are mental constructs and the drawings

are physical objects with roughly similar properties or substitutes.

for them. The heuristic value, of these models was not overlooked

by Euclid and should ver be under-rated by us. A well-drawn

-diagram has enormous h uristic4alue; it is essential in the

"discovery" process and in the analysis, and it is even very useful

in the synthesis or f rmal proof a la Euclid, but it cannot be

used to provide a lo c 1 proof of the statement. Indeed, the

tact that the proof mustUse the model is prima facie evidence

that something is wrong pr. missing. The best two illustrations

are Euclid's proof of the "Theorem of the Exterior Angle" and of

the Proposition: "If two planes have a point in comtnon, they have
0

a line in common.." 4.T,

In his second postulate Euclid recognized the infinite

character of the line, and although he did not state so precisely,

he used the postulate in the sense which required that the-length

of the line be-infinite. All the definitions, axioms,,,And

_.postulates so far were relatively simple of comprehension and

fully in accord with experience, and no one ever questiOned.them,2

for over 2000 years. BUt the fifth postulate L:Euclidgs Parallel

Postulate - was of a different character. v
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, - .
,

V. "If a straight-lpefalling on two straight lines makes .

. _

the interior angles on the same side togeth+Lless-than,two,r1ikt
__

Is
angles, then the two

: straight lines, if prolUcedfindlipitely- ,

meet on, that side on which the, angles are together lea's than two

right anglea.".
,

,.., . -2 . , 't ,

This., postulate was not acc,pted without misgivinip,and mu6h of

.the history of Euclidean geometry after the fall of the School of .

Alexandria until today is concerned with the attempts and failures
0

oto prove this postulate on the basis of the other_assumptions. We .

shall discuss some of these attempts in the nextesection.

The introduction by Euclid of his Parallel Postulate was no

'accident. It was a monument to Euclid's insight andskillas a

mathematician and 19gician-. The evidence is, in the Elements.

tried to . prove everything he could without it; he even introduced

peculiar Pro positions with -but one intent r to prove all he could

about parallei lines without the Parallel Postulate. This

postulate is essentially the converse of Proposition 17, Book I
. .

,
. ..

of Euclid's Elements-, whibh4h brief form.is:

!If two lines cut by a transversal d9 meet, then.the sum of

the angles is less than two right angles."
:

It is true that the proof of this theorem dependi upon Proposition

16, the "Theorem of the Exterior Angle, ", whose proof complete
.

and cannot be completed on the basis of Euclid's explio

assumptions. But even the best mathematicians did not realize this

for.lsome 2000 years. They were sdlintent upon "proving" the

Parallel Postulate that they over-looked the other errors and the

-

2 A
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possibilitythat it could not be "proved ". It,would be much simpler

to develop geometry-if Postulate V were used immediately aftei.

PropOsition 17 but because Euclid didn't, modern'text-books do-not

either. lid went on asp long as hecould without itHiodern-
...

four ion theory often does the same thing.. In,Proposition-28,'

/Euclid proved the contra-positive -' the opposite of the converse

of Proposition 17, and then used his parallel postulate to prove

the opposite of Proposition 17, which Is al$o of
e 4

,Proposition 28.. It is indeed a peculiar order, but motivated by

Euclid's desire to prove everything ha wild and postpone the use
. a

of Postulate V as long'as he cod. In'tetween Propositions 17

and 27, Euclid developed the theory of inequalities with. respect

. to one or more triangles. Euclid'was willing tO pay the prigs of

harder work to obtain Propositions 18 to -28 witbput recourse to

Postulate V 1- and for the moment the contents of these Propositions
,1,. .

is irrelevant -- the numbers are relevant because they tell how
,7 _,,k,,

long Euclid postponed the use of this Postulate.,' If pOthingotore
, ...

is learned from thislinalysis,..it should point oUt the:,4treme
,..

.,,- eT ,

care used by Euclid in order to systematizeiand_orkanize geoiet
. I : ,, 4 ,

into a complete and logically correct structure
-,

In summary, the outstanding contribution of EUciid's Elements
. , .

lies in the developtent of the modern mathematical method - the

hypothetical-deductive-method of modern Mathemi,tiO. We owe much

to EUclid because he possessed the ideal of placing mathematics

on an unimVeachable logical basis. He demonstrated how much
F."

23
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knowledge can die derived by reasoning, alone - for he gave hundreds

of proofs,baged upon a relatively few assumptions, and it was

through nis'Elements that'later civilizatione learned the power

of.reascpn.

2. .The Mistaks of Euclid. Over a period of almost 2000

years, many mathematicians accepted Euclid's Parallel Postulate

with misgiVings, and attempted to prove this postulate on the pasis

of his other'axioms and postulates. Many "false proofs" were

published, or unwittingly) "proofs" were given which depended upon

assumptions Which are lbgically equivalent to Euclid's postulate.

These attempts,add failures finally led to the discovery of what

we now call non-Euclideageometries, which Plainly showed the

Importance and necessity of'Euclidis Parallel Postulate (or some

logically equivalent one) for the completion of Euclid's work.

.Tutthey did morethan that. They opened up wide vistas of

mathematical progress uninhibited by the doctrine of the in-

fallibility of Euclid.

The first. real progress was made in'k1733 by a Jesuit Priest

and Professor of Mdthematics at the University of Pavia, Gerolano

SacCheri, Who, however, reputiated his own achievements, and

,s4itled lad. work: "Euclidess.b omdi naevo vindicates," or freely

translated: ".Euclid is free of every blemish." Saccheri denied

an assumption that islogically equivalent to Euclid's Parallel

Postulate and kept all the test. He developed a logically cod-

sistent body of theorems for a geometry which differs from that

o

2 It
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4

of Euclid. But he was so convinced of the infallibility of Euclid,

that; in a final chapter, he lost himself'in the morass of philo-

sophical meanderings in the realm of'the infinitesimil and rbjected

all his own correct reasoning and concluded with: "Euclides ab

Omni naevo vindicatus" - when indeed the Fifth Postulate was not
0

even one of the mistakes of Euclid. If Saccheri had had a little
. .

more imagination and had not been so convinced that therecouldlbe

no mistakes in Euclid, he would have anticipated by a century the

discoveries of Gauss, Lobachevski,*and Bolyai. Indeed the Parallel,

Postulate was not one of the mistakes of Euclid,'but it was one of

hip crowning mathematical achievements. It is not our intent to

go deeply into the subject, but to make a few pertinent comments.

Gauss had developed many ideas along this, line by 1800, but he had

-putillithiishDthing on the subject. But Lobachevski in 1823, and in

later writings, had the.coUrage ofjlis convictions- Although the

imprint of.Sacdherits work is plainly visible in his writings, his

attitude wai`different, and he gave a complete development of

erbolic Geometry. About the same time, the work oFthe younger
cf

,

Bolyai was sent by his PE/tiler to Gauss. Gauss replied, that he had

been irrIPossession of much of this material a long time, only to

. be accused ofsplagiarism. But all of These writersthad still"'

placed too much faith in Euclid, and it wasn't until Riemarin, in

1854, published his famous.disaertation that the tru situation

-14caste,app7nt. Riemann started from an entirely d fferent point

offyiew, that of_ differential geometry, and showed th existence

of so-called Elliptic Geometry,-WhiCh his predecessori had rejected,

-
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and pointed out that other postulates of Euclid ne ded careful

scrutiny. The importance of the work of these men does not lie-

entirely iethe discovery of new geometries, but'also in the fact

that, it caused a crisis in mathematical thinking which led to a
. -

tritioal examination of Euclid's 2/ements and to the discovery of

many mistakes of Euclid and to methods of correcting them.

'Felix Klein' wrote in 2908:

"The ideal purpose which Euclid 1113:a in mind was obviously the

/ logical derivation of geometric theorems from a set of premises .

\..

completely laid-down in advance. But Euclid did not, by any means,

; 0

reach his high goal. Nevertheless, tradition is go strong-that.

f
.

..

4.,.. Aid's presentation is widely thought of today as the Unexcelled'
- ,

",.. pattern for the foundationaof geometry."
A

A
Let us now examine some of the mistakes ofEuclid, not'for

the Purpose of criticism, but So that we may avoid them in our

. presentation of geometry..

(1) Ettolid tried to define every term. .

, -

Let us 3took at one illustration-. ,"A point is that wilidh has

of
no part." Surely this does not tell

mathematicians of his period did not

said:

you what a pAnt J13*.. Other
0 -

do much better. Vthagoras

"A point is a monad having position. .

3-Elementary Mathematics from an Advanced Standpoint. See vol. 2, '

PP. 188-208. See also A.B. Meder,Jr., What is Wron4 witn Euclid,

Mathematics Teacher, Dec., 1958.

31.
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°

Ahdwhat do47ou mean by position? Let us make up a definition:

Position is a property possessed by a point: This should be

enough to convince, you that we had better let, the term 'point'

remain' undefined. It is only necessary°to examine Euclidos

definitions of point, line;'and plane to discover that they play

no role Whatever in the logical development of geometry. We must

start somewhere with uridififired terns if we wish to avoid circum-

, locutions, and here is a good place to begin.

(2) ,Euclid's definitions are not always precise and meaningful.
o

"A line is length without breadth."
-

If we knoW what is meant by length and breadth independent of any

connection with a line (curve), this might be precise, but as it

stands it is nonsense. It tries to identify a geometric entity,

a line, or perhaps a collection of entities', a serof.points, with
oak

some attributes of-measurement, which themselves are meaningless lb

without knowing what a line is.

In the-above definition, the word 'line' is used in the sense:

of 'curve', including 'straight line', and the latter term is then

defined as follows:

"A straight line is a line which lies evenly with respect to

its.pdints."
.

This statement is wholly obscure. If you trim,to'explain it in

terms of motion, you only complicate matters by bringing In,more

undefined terms which are extraneous to the subject matter. That

is, ydu might prefer some mOderri (sic) definition like. this:

",,line (curved line) is the path of a moving point."- First, the

27
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idea of physical'motion has been introduced, and second, what do

you mean, by path? If you try to side-step the difficulty by saying

we merely mean change of position, you are back where Pythagoras

began.

perhaps you have heard this oftent "A stralght'line

shorteit distance between two .points." 'As a definition it is'

entirely unacceptable. The very concepts of line or line segment
.

. and distance' are radically different. It is true that Euclid

proved the Triangle Inequality Theorem, but that comes many pages

and some tWenty,propositions after the ,definitions were given.

And what do you mean by the length of a curved line? If you know

anything about limit theory or the integral calculus, you might

supply an answer, but it is too late. Perhaps, you are convinced,

anyway we are, that the' term 'line' had better remain undefined.

These and many other ill-stated definitions may be harmless

if properly fenced off in the department of pictorial representation

or informal geometry. 7410patulat4s list those, assertions from

which all conclusions id this branch of mathematics'will follow.

It is merely in the logical development'of geometry that such M.

stated definitions are worse than useless. This is discussed

further in Chapter 2 under the headings of Descriptive Definitions,

Postulates, and Explicit Definitions.

,Euclidts'pOstulates are- not 'always stated precisely.

."Postulate 1. It is possible'to draw a straight line from

any point-to any point." 10

.'Draw' has a physicalconnotatiodflOtt we will Credit Euclid

28
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A

as meaning it in the sense of 'there exists'. Such ideas were

current in thephilosophy-,pf his day. But as Euclid used the

postulate, he meant7more than that. He meant there is one and

only one such, line, It is not difficult in this case to say what

you mean, and that/is precisely what we intend to do.

"Postulate 2. It 1.s possible to produce (extend) a finite

straight line continuously in a straight line."

This postulate was misunderstood because Euclid did not

indicate what he meant by Icontinuously1. To understand the

difficulty let us talk in terms of measurement. If we start with

a segtent*(Euclid's finite straight line) of unit length and

1 1produce it
1

a unit, and then 7 a unit, and then 1-3- a unit,

and so on ad infinitum,'each time extending it by onelalf the

previous extension, we will be producing the line continuously,

but'that is not what Euclid meant nor how he used 'it. But he was

familiar enough with Zeno's paradoxes that he should have avoided

his loose statement. No doubt Euclid meant that the segment could

be extended by any amount (indefinitely), but so could a circular

arc. But there is a difference. In the case of the line, Euclid

meant that we would never return to any point we had before, while

in the,circle we would. This distinction was not clearly recognized

until the time of Riemann's famous dissertation of 1854, so Euclid

is excusable, but not his modern .imitators. Euclid's. difficulty

cannot be resolved without somaconsideration.of the concept.of

'between', which Euclid entirely overlooked, except on a purely

intuitive baps. This diffiCulty was recognized by Eudoxus before

2 9



Euclid, and by Archimedes after Euclid, and we must give proper

attention to this concept of 'between' in.our presentation of

geometry.

There are similar difficulties in other postulates and common

notions, but.we need-not point them out here. We merely need to !"

heed the warning that if we expect to present geometry on a strict-

ly logical baSls that it is necessary to say what you mean, or some

one wili.misinteryret what you say.

(4) The postulate system is incomplete.

We have aiready given some indication of thii with regard to

the Postulate of Extnsion and the liok of consideration of any

Postulates of order. /But thesame indictment can be made because

the proofs of some propositions are logically incomplete due to the

fact that the assump ions upon w1$ch they are based were not in-

cluded in the Pos late system.,Oet us look at some of the proofs

in detail. //
. ,

Proposition 1. Book I.

"On a given finite.staight line to construct an equilateral

triangle."

The essence of the constriction is

to, draw a circle with center A

which passes through B, and one with

-

center B which passes through

If the circles meet at C, then the triangle ABC is equilateral.

Notice our emphasis on the word tit". Since we must take the temp

t

3O
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line and plane as undefined, we really do not know precisely what

they mean, although we may have pretty good models for them as in

Fig. 1. Perhaps you construct such a.model, using a line segment

of ielativiy small length, ands say: "I can see that they inter-

sect. If you can't see that, you are stupid, or mentally deficient,

or Jut stubborn," If we keep on producing the*line Segment; it

won't be long until we can no longer construct the physical model,

and we can not see if the circles intersect. The Proposition is

stated for an finite line segment, and the proof must be form/

segment.

Suppose we try the same construction on the surface of a

sphere, where We have a different model, the sphere being called a

plane", and a'great circle being called A "line", where alb we'

need to guarantee is that these words in quotes satisfy the
. ,

postulates that are used. Upon examination this will be found

valid if the "line" segment has a,length less than one-half that

of a great circle, that is, if we restrict our model to a hemisphere.

First we use a "line.segment of relatively small length, and we see

that the circles intersect.

We might conclude that the

Proposition (it is really an

existence theorem stated in

different language) is also

valid on the sphere. If the .

sphere had a radius of a mile,

or say 4000 miles, we probably

31
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could not preceive the difference between it and a plane sUrface.

On the small sphere, let us extend the "line" segment AB a little

longer and little longer (Postulate 2) but always keeping A and

B an the same hemisphere, and try it again, as with A1B1 in

Fig.'2. If A1B1 exceeds a certain length the circles do not

intersect. Is this a paradoxi No, just an error of omission in

the original proof. Of course, we must assume the circ±es are

continuous1 curves, curves without gaps, but that is not enough .

The circles always intersect in the Euclidean plane properly con-

sidered but do not always intersect on the sphere, and this

difference. must be establishett by proof.or assumption. What is

needed here is a circle axiom in the plane which will guarantee

the intersection of circles under appropriat restrictions. This

oirole axiom is not only a continuity axiom, 'but is-also e lent

to the converse of the Triangle Inequality Theorem, which' ap

ash Proposition. 20, Book I of Euclid's Elements in the fo

L "In any triangle two sides taken together in any-manner are

'

greater than the remaining one."

In Proposition 22, Euclid proposed a construction problem: -

1The concept of continuity is a difficult one, not only with

respect to'points on a line, but also with respect to our number.
,

system. This,concept is often hidden in our Postulate System, but

the teacher needs to be aware of some of its implications.

32
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"Out of three straight lines, which are equal o three given

straight lines, to construct a triangle: thuS, it is necessary1

that two of the straight lines taken together'in any manner should

be greater than the remaining one." ".. it is necessary ,"

but nothing is said about it is sufficient, and "aye, there's the

rub." This Sufficient Condition is one form of a circle axiom.

Using the language of Euclid, but not quoting, we could take as

an axiom:

'Circle Axiom. Out of three straight lines, which are equal to

three given straight"lines, such that two of thgjtt taken together in

any manner are greater than the remaining one, is possible to

construct a triangle.
!

This circle axiom can be stated in many different and better

ways fop the plane, but it is not valid for the sphersif-Itr'is

sufficient to .note that the Triangle Inequality Theorem (Proposition

C.

20) is true but inc mpleb Jfor a spherical triangle. It is really a

very special case of the Circle Axiom that 'is needed to complete

Proposition 1, because for the stated construction we would use

c + c > c. But our second model suggests that the converse is

false for the sphere. To prove a statement is false, one counter-
-

example is enough; to prove it is trtela dozen special cases are

Aotenough. We assume the circle axiom for the plane based on our

limited experience and this, like all other postulates about a

plane, puts definite restriciOns on what the undefined teri plane

means:

-The emphasis on necessary is supplied here.
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Let us now turn our attention to another concept with respect
A

.to which the postulate 'system of Euclid (and his modern imitators)

is incomplete, that of motion'. Some of the proofs in the theOry

of congruent triangles depend upon the physical concept of motion

which is entirely extraneous to Euclidts geometric development.

It is true that we can define what-Euclid meant by motion, or that

we can takeithe concept as undefined, subject to a set of assupip-

,

'tions, but Euclid did neither and many of our modern texts do not

do it properly either. These texts do essentially make an existence

axiom: "There exist motions that do not.ghange size or shape," but

that -is not enough. Euclid, himself, recognized part of the

difficulty and avoided the use of motion and its concomitant,

esuperpogition ,1Ighenever he:could give a proof by other methods. He

used it sparin ly and often proved propositions without it, even

though its use would provide a simpler "proof ".. It 1strue that a

mathematical system of postulates and definitions for motion can

be made, but this point of view is difficult to develop, and uses

explicitly the theory of ngruent triangles, and, hence, could not

be used to-develop the heory of.congruent triangles. It is no

wonder that Birkhoff nd Beatley, in the Preface to their Basic

Geometry...pall such roofs" demoralizing, and this point ?f view

is upheld by any alistiemathematician. But the situation in

.0

'For a furthlr discussion of this concept, see the Appendices to

the text, and Talks to Teachers in the Commentaries.

34
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Euz/id'S Elements involves another difficulty. Klein says: "The

only conceivable purpose for Euclid's Propositions 1, 2,, and 3 ls

to avoid the uee of physical motion in order to prove Proposition

4, the Side-Angle-Side Theorem. But then Euclid did not USe them,

perhaps recognizing that they were not sufficient for that purpose."

If you wish to apply the theoii of congruent triangles-to

triangles in different planes, there is still another error .of

omission in Euclid's Elements, even if you grant the .use of motion.

It depends upon Euclid's proof in one of the later books of the

,Proposition:

"If two planes have a point in common, they have a line in

-co itim on. " 4

The proof of this'Propositioyas incorrect. It depends upon

the following cited statement:

"If two planes have a point .in,common, they have a'second

point.in,cominon."

Why? No reason is given, and no reason based upon any of his

previous work can be given. Of course, we never saw two planes

that did not have-this property, really we never saw two planes,

although we have seen pretty good models of them.

consider'another m
c

m is also valid on the sphere) are(placed so they have and

reta one and only one point in common, and let us imagine these

However, let us

1. Two spheres (recall that the (S.#.6)

sphere, to,0oW,in size until each has' a radius of 4000 mileS, say.

Do you think yoe, could perceive the difference between the spheres

and two planes anywhere near the common point? Of course not, but

O

36'
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.., . .

theSesgheres have ymly one point in common.' Euclid's assertion is
i

g pure assumption about the properties of planes in 3- space.

Actually.,it -is false concerning planes 4-space. Of.cObrse,
.

.

Euclid had no such conception available., Since this Proposition

'cannot be pioved on the basiSof the of Postulates, it must be

ta
r

en as a PostUlatei and this is just what we do,
,

The most serious mistake,in Euclid's Elements is the complete

omission of any consideration of order of points on a line, that

is4 the concept, of betweenness, and -of separation of, a planeby a
.

lines, This accounts for the errors of ,omission in the 'proof' of
,..

.

the theorem of the Exterior Angle. This theorem is fundamental for

YEucliasdevelopment of the theory of inequalities related to a

triangle, and to his. theory of parallel 1 e crucial point-

of the proOf depends Upon the proof'that a certain constructed

point lies in the interior of an angle.--Bgt:Sincena-proper con-

sideration of order relations or.separation-axiomsAs. ipcluded in
_

the Elements (or by most of his imitators); proper proOf can be

given.given until appropriate Postulates ',and

These are' given in our program-tor the-deve opment 'of geometry.

) It is `no wonder, then0hai-:Kleip states:

"So maniesseniial difficulties present themselves, precisely

An the first theorems of the first book of the Elements, that there

4.p be no talk about the attainment by Euclid of his ideal.

' Nor is it any wonder that Hilbert, Birkhoff, and others, as

individuals, and the Commission on, Mathematics, The Illinois Study

Group, and the School Mathematics Study Group reached the conclusion

36
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It will not be

vAndicated.
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the ideal goal of. Euclid, we must have a fresh start..

Euclid, but it will be Geometry that is completely

3. The Program for Geometry. After-the mietakef; of Euclid

have been pointed out it is not'too difficult to correct, them by

Introducing the heeded assu4t3,ons. The best known procedures are

based upon the works of Davld Hilbert 1 and G.D. Birkhoff2 . Hilbert's

program was to stay as near the form, of Euclid as possible and to

supply precise. postulates which 'can be made the basis .of correct

proofs of all the Propositions of Euclid's Elements3 . The entities-

point, line and ane, and the relations incidence, between and

- congruent are taken as undefined but ;plated by precisely stated

postulates. The first postulates are'cpncerned, with the incidence

. /David Hilbert, Grundlagen der Geometric (Foundations of Geometry).

A number of both Germ& and English editions are available. SeeA

4also Eves ,and Newsom, in Introduction-to'the Foundations jand

. Fundamental Concepts of Mathematics,-p. 87.

fr,

2
1 .D. Birkhoff, A Set of Postulates- for Plane Geometry, Based on

Scale and Protractor, Annals of Mathematics, vol. 33 (1932),

pp. 329_345. See also Birkhoff and Beatly, Basic Geometry, 1940.
* .

3
A text for high school students based upori this program has recent-

ly been ,published: Brumfiel, Eicholz.and Shanks, Geometry, 1960,

Addison-Wesley.
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of-points and lines, points and planes, lines..and plane and-two

planes, and fill the gaps left to the imagination by, Eu idi.

The next set are the axiom of order, involving the concept of

between, in order.to'give the points on a line the same characteris-

tics that we usually relate to real numbers. These ideas are theh

related to points in a plane in order to develop the notion of
e

separation of a plane by tlyhe, anotioA often used by Euclid, but

about which Euclid said nothing in his "Elements". Hilbert used an

axiom due to Pasch which Can be stated as follows: - .0.

Axiom of-Pasch. nA line which passes through a point between

two vertices A and .B of a triangle ABC, either passes through

a vertex-,.or-a point between %A and C, or a point between B

and C." 1

The next set contains the axioms of congruence concerning

congruent segments and congruent angles, stated in a manner to

suggest their analogy with the relation of equality and the operation

of addition that we usually associate with real numbers. These three

1It is not expected that the reader beacquainted with the works of

Hilbert and Birkhoff. However, Hilbert's incidence postulates as.
, .4$

used by SMSG are stated at the beginning of Chapter'3. The purpose

/ her.is merely to start a discussion of the points of view of these'

.4,
two leaders, and to state how SMSG drew upon both of these pre-

sentations..----

o.

sl
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sei,S'se.*6 necessary to fill in the gaps left by-Euclid. To -complete

Ve,pOstplate system, a parallel postulate and a continuity

pOstulate are required. Hilbert used the.playfair form.of the -

parallel postulatel'and an axiom of continuity Iinomvas the Law

2f ArchiWes .,
-4.i

Euclid did not write for school-boys but for philosophers and
4 .

scholars of his day. Neither did Hilbert write forechodi=boys.'
, -

3

In part, the Hilbert (or synthetic) approach is*toosophisticated

for a beginning course in geometry-. This is why we have been

forced to the conclusion that a tenth-grade course based.upon_,,.

Hilbert's Foundations of Geometry would, in our opinion, be so
a).

unreachable as to be- ridiculous. This does not mean that we,reject

' his ideas entirely. Indeed we use many of Hilbertts ideaS. We

accept the fundamental idea that point, line, and plane should

I

remain undefined and adopt Hilbert's Incidence Axioms,-essentially

as he gave them.

We adopt, hbweyer,Viie point of-view of Birkhoff, that we

should arithmetiZe geometry as much as possible, and build upon the -

Student's knowledge of arithmetic, elementary algebra and his

ability to use a scale and protractor.. This requires a careful

'For a statement of this postulate see p. 32.
00 e.

2For a geometie-stbtditigh of ihiS postulate, see Eves' and Newsom,

loc. cit., p. 88. An arithmetic equivalent is as follows: If a.

and b are positive numbers, there exists a positive integer n

such that na > b.
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stategent'and discussion of the Axioms of Linear, Measures and

Angular Measure which are not beyond the understanding of a tenth-

grade
.Or

grade student. It is assumed that the student 'is Already familiar

with those properties of real numbers that ape needed, or these

properties are stated*(as axioms) on an informalhasit. This
4

arithmeticiapproach_not only has the advantage that it builds upon

what the student Arteady knows, but it lays the foundation for the

early introductionlit anOlytic geometry._ When it is simpler to use

definitions or postulates given by Hilbert than those giyerOby
,

otler**wit,havepolsitation in Ilsing them. But many of Hilbert's

ideas appear as theOiems that can easily be proved by the Bitkhoff

approach._ In particular, the notions of between and segment are
.

closely associated with corresponding ideas of arithmetic. It is

very difficult to prOve the Axiom of Linear Measure from the

Hilbert dr similar approaches-. If you need to be convinced of

this fact you need only examine iiow it is done in g.s.m. Coxeter's,

The Real Projective Plane, Chapter 10,:or to study H.G. Forder's

book, The Foundations of Euclidean Geometry. This points out that

the Axioms of Linear Measure and Angular Measure are very powerful

and desirable tools for the development of geometry.

We have'adopted a Separation Postulitel (of the plane by a

line) instead of the Axiom of Pasch because it is more irectly

7
1See Chapter 5. A formal proof that the Planb-Separation

Postulate.implies the Axiom of.Pasch is given as Theorem 5.4.
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applicable to the theorems we wish to prove, and it is more nearly

related to the ideas of inequality useful in analytic geometry.

this Postulate, for example, which permits us to supply the

missing steps in Euclid's proof of the Theorem of the Exterior

le, iP we so desire. At least, it makes.it possible for the

teacher to understand the proof, if ever called Upon to explain,it,

and to recognize Euclidtseassumption in his oft repeated proof.

The Separation Postulate enables us to clarify the whole concept

of angles related to two' intersecting straight lines. In a number

of Euclid's tproofst, 14 tacitly assumed that a ray which lies in

the interior of an angleof a triangle meets the opposite side of

the triangle; and conversely, that the ray determined by a vertex

and a: point of the opposite side lies in the,interior of the angle.

This second statement is easy to Prove on the basis'of the Separa-

tion Postulg.te, but the fi4t statelent 1St difficult to prove.
4

Because of this both statements, or at least the first, may well

be stated as a PostOlate without proof, but neither statement should
o

be overlooked, if we Wish to avoid the mistakes of Euclid:

One of the main advantages of the use of the Axioms of Linear

Measure and Angular Measure is that the whole theory of congruent

segments or unequal segments, apd of congruent angles or unequal

angles can be put upon a precise arithmetical basis independent of

any notion of motion. The necessary connection between congruent

segments congruent angles is eupplied as in Hilbertte
1;

,

S.
'Foundations by assuming the .(S.A.S.) Theorem as a postulate.

Whether or npt you prove that (A.S.A.) Theorem and the (S.S.S.)
---..

41 ,
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Theorem is a matter of how much rigor you'wish to include.

Emphasis is placed upon the idea of one- ne correspondence,,and

the Isosceles Triangle Theorems a proved by making the triangle

ABC correspond to itself, that s, triangle CBA, by 'making A,

_B, and C aorrespondrespectiveIY to C, B, and A. ire

conventional proof is ,,also included, but now the Axiom of Separation

or some other-postulate is available, if desired, to fill in the gap

in the proof.

We follow Hilbert in the use of the Playfair Parallel Postulate:

Through a point not on a given line there'is at most one line

parallel to the given line." Euclid proved the existence of parallel

. lines on the basis of the Theorem of the Etterior Angle, by showing

that it a transversal intersects two lines so that the alternate,

.. interior angles are equal, the lines are parallel." It would have

been simpler, after this is done, to assume its converse as the
o

parallel postulate: "If a transversal intersects two parallel lines,

then the alternate interior angles are equal." One reason for'it is

that this angle criterion is the property that-is usedflas the basis

for geometric constructions. For some reason not fully understood,

Euclid considered what today we call the opposite and contra-

,". positive of the Propositions he, had proved, but we recognize today

that these concepts need play no role in our geomettly as long as we

focus attention upon at theorem and its converse, and are willing to

useithe method of proof by contradiction when ;needed: The glayfair

Postulate and the Transversal Theorem for Parallel lines are logical-

ly equivalent,and it is not difficult to prove either from the

other.

4 2 .
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The theory of parallel lines is usually followed by the theory

of Oimilar trpangles and the related topic of proportion. The

first and basic theorem to be proved may be stated'as follows:

The Basic Proportionality Theorem. If a line parallel to one

side of a triangle intersects the other two sides in distinct

points, then it cuts 'off segments which are proportional to these

sides.

Several avenues of approach are available. (1) Take the

theorem and its converse as postulates, With or without a proof of

the theorem in the commensurable case, (2) , Give a proof for all

cages based upon the theory of limits, or equivalently, on Eudoxes'

"method of exhaustion" as presented by Euclid. Such proofs involve

rather subtle properties of the real number system and are definite-

ly not for "schools-boys". However, we give such a proof here (at

the end of Chapter 8) merely to show whatit is like. (3) Adopt

the point of view of Birkhoff (see Birkhoff and Beatley, Basic

Geometry) and assume the (S.A.S.) stnement for similarity as a

basic postulate. (4) Follow Euclid and base the proof on the area
%

_iconcept. (See Euclid's Elements, Book VI, Propaitioh 2.) This

means the development of the area concept, including the Postulates

of Measurement of Area, before the discussion of similar triangles.

The fundamental assumption that the area of a rectangle is its

length_times its breadth, a notion familiar-to all students, by-

passes any',continuity argument and enableSone to dive areadily

understandable proof of'the basic theorem. This pOint of view is

not common in elementary texts written in America, but it is the

point of view we finally adopted.

I
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The Test of our program is conventional,,but we are in

better pOsition to develop the theory of similar triangles and the.

Theorem ,of Pythagorai than most texts because of our Postulates of

Linear Measure. The ground work for the study of circles and

pheres, either synthetically or by means of °artesian coordinates

in two and three dimensions has been laid. How far we go is a

matter of the audience and our objectives.

We do not repeat the mistakes of Euclid.1 We begin with un7

defined terms, stating explicitly what terms are undefined, and

make precise Postulates about them. We do not list all the

Postulates first, but begin with a few and see what can be done

with them. We introduce new Postulates when they are needed. We

make definitions for convenience only, and they are precise and

never circumlocutions. We do not expect_ to present'a system of

minimum postulates, but make our postulates strong enough to achie;re

our goal of proving the 'theorems from the postulates in a manner

1Will mathematicians 2000 years hence point'out the mistakes in our

work (or, more significantly, in Hilbert's or Birkhoffls)? Undoubt-

edly such criticism ii21.4iome in a Small fraction of the time.

Standards of mathematical rigor-change with time, and while the

present thedry may be completely free from mistakes according to

today's, viewpoint, we may have welloverlooked some fine point pr..
k

made mistakesiof a higher order of subtlety than those We' realize

were made in the past centuries. Some future geometer'is sure to

point these out.

4 4
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that ,the student should be 'able to follow without memorizing the

details of the proof. We have planned the coupe in geometry so

that it is integrated with the students, previous knowledge, and

so that it may be,easily integrated with courses that follow it.

We have done all this keeping in mind the spirit of Euclid's

the logical derivation of geometric theorems from a set of premises

completely laid down in advanc.

\

4. 5
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Chapter 2

f-LogiC

1. Setsl. Mathematics is often concerned with collections

of objects, rather than with individuals.? One frequently uses Such

phrases as "theintegers";"the prime nuMbers", "the points equi

distant from two given points", "the vertices of a given triangle",

"the lines parallel'to a given line", etc., Instead or speaking of

a "collection", and "assemblage", or other such descriptive term

mathematicians.have pretty generally adopted the wora-"set", and

for each of the individuals making up the set-the word "element";

Thus, the fourth set given above has as elements the-three points,

which are the vertices of the given triangle. The elements of a

set are said toibelon(i to the.Pet, and the set is said to contain

itd elements.

A set itself has a dertSin identity. A line is a set of

points, but one can also consider it as an individual and talk

1pectione l.and g have been kept brief because in the geoWstry text
1 ,

only the language of sets is employed rather than set notation and

Set relations. Alimple Presentation ok'set theory can found

in Introduction to the Theory of Sets by Joseph Breuer, translated

by*Howard F. Fehr, 1958, Prentice -Hall.

46
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.abolit "a set of lines" as in the fifth example above. Much of

modern mathematics is concerned with sets of sets-of sets of,

sets

If S -designates a set and x one of its elements we write

xE S, read "x belongs to S.", "x is an element of. S",

or "x is in S". -

Jr' geometry we are primarily interested in sets of points, or

point sets for short, although for technical pUrposes we must also

consider sets of numbers. (See Chapter 4.) A point set is often

referred to by the more familiar name of "figure",
, ,

To specify a set we must give a criterion whereby, one can tell

,

without,a4biguity whether any given object is or is not an element

of the; set. "The set of all even integers" is well defined, but %

"the set of brown cows" is not unless we specify the time and agree

on exactly what is meant by a brown cow.

"The set of brown cows in my (the author's) office at 5:15 P.M.

on April 3, 1959 A.D." is a well defined set. It is the empty set,

the set which has no elements. It may seem illy to Call this a

set, but remember that at oneVtithe itiseeme silly to have a symbol

for zero. We shall see, that the empty set can serve a useful

purpose. .

Thee same set of points may be specitiedi in two, or more,

different ways. In fact some basic theorems of geometry consist of

a statement to Allis effect; for. example, "The locus of points equi-

distant from two given points is the perpendicular bisector. of the

One segment joining these two points." (The word "locus", as

4,7
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.

used in elementary geometry, is essentially synonymous with "set".)

If S and T are specified sets and we write 4,S = T we mean that

S and T consist of the same elements, or in other words that

"S" and "T" are just different symbolS for the same set. Our

use of the symbol "=" and the word "equal" will be consistent in

this respect. "EqualAlwili:tean "the same in all respects" or

"identical ". This is contrary to the practice in most elementary

geometry books, where "equal" means different things according to

the context.

2. Relations among Sets. If a set S .is entirely contained

In a set S is called a subset of, and we write SC T.
'

More precisely, S C T if x e T whenever x E S.

If S. and T are sets, the set of elements common to S and

T is called their intersection, and is designated by S n T,

(read "S cap T"). In symbols, x E SC14"f4Ovided x E S

and x E T.' The''Word "intersection" is' of colse borrowed from:

geometry, where it is customarily used in ppeciselir'this sense, as

in speaking of Athp intersection of a plane and a sphere", etc;

A less familiar use is illustrates ,C

in the adjacent figure. The infer-

section of the two rectangular

regions ABCD and pus is the

region XQYD. Also, according to
_,-/-

,tour definition; the intersection of

a circle and a tangent line is the
/

pant of contact. Finally, if two

; 4 8
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sets have no common elements at all their intersection is t empty

set. In this case we frequently use.more Comma; language and say

that the two sets "do, not intersect".

In contrast to the intersection of S and T we define their

union, S LIT/ ("S cup T ") to be the set of points ift either S -

or T or[both. That:is, xE S U T Provided) x E: S or 2cE

or x E S Ct T. The union of

region ABCD and region PQRS

is region. ABRS.

Q C

A

Exercises

le Consider the.following point sets:

is a pl:ane;

C. is a circle in P;

,L is a line intersecting C in two distinct points X and )r:.

S. is the line segment consisting of X, Y, and all points of L

between X -and Y;
/

Q is the.iet of points inside 'C;

W 'ia the set consisting of the two elements X Tand Y.
)

(ar Which of the following are true?

.(1) C ,C (ii), -Q C P, (iii) Q CC, (iv) C

P 0

(v) S C Q , (Vi) W C S,. (vii) W C Q, S C14,.

Write all the true inchision relations among these six sets.
,

49



.44(b) Which of the following are true?

(i) W= C n L, (ii) S Q n (iii) W= L,

(-iv) S C, (v) S = Ln (Q U C), (vi) S = (Q (1 14) uw,

(vii) Qnsc c, (yin) Qn cc S.

(c) Describe in geometric terms each of %the', following sets:

(i) Q n s, L, (iiir,.QU C.

2. If S is a. set, is S CS ever true? always true?

sonietimes true?

AY

3.. Can you assign a reasonable meaning to S - T in all

cases? in some case's?

4. Give definitions for the-intersection and the union of

any number of sets.

(a). Show that (S0 T)CT and TC(S U T).

(b) Show that SOT =T is equivalent to T C S.

(c) 'Show thaS U T = T is equivalent to C. T..

6. Show that S U (T n R) = (S.0 fr)n U R) and that

SNT UR) cs n u(s n R). °,

crItc es

6

of
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3. Correspondences. It is sometimes necessary to consider a

certain type of relationship between two sets. Let S And T_ be

sets, and suppose there is a well-defined rule which associates

certain"pairs of elements, the first element of the, pair being from

S and the second from T. Such a rule is called a correspondence

betifeen S and T. IP

Example 1._ Iet___S___bethe set of all points of a given plane

and T the set of all circles lying in that' lane.. We associate 'a

point P with a circle C if P is the cente' of C. This is a

one-to-many correspondence; each circle correspdnds to exadtly one

point, its center, but each pbint corresponds to many circles.

Example 2. With S and T a above let a,point'and a circle

correspond if thA point lies on the le. Thisjs obviously a

many-to-Aany correspondence.

Example 3. Let S be as befone but let T consistIonly of

. those circles with a radials,of one inch,f Then the correspondende

of Example&ample 1 is one-to-one.
)

-,r
) The last'example illustrates the most important type of

correspondence. A corresaildenee between S and T is said, to

be onelto-one if each element of S is associated with exactly

one element of T, and each element of T With exactly one element

of S. Such a "pairing off" of the elements'of the two sets often

enables one to carry over to the second set some of the properties

of the first.

114,
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- Exercises,

1. Disdussthe obvious correspondence between boot covers

and.colors%'

2. Is it possible for a set to have a.correspondence-4th

itself? with a proper subsetl'of itself ?' could such a correspond-
,

enot be one-to-one?

3. If x and y represent integers discuss the corre-

spondences:

(1) X 4-> X,

(ii) x 4-+ X2

(iii)

(iv) x , i f x y =7,

(V) x *-->y if x2 '= y2,

(vi) x 4--44 if x2 = y3 .

In this4igure ,0 is the center of the circle C, AB

is perpendicular to line -L, and

X 4.--4Y is a correspondence
* .

between points X of L .and-

points Y of C. Is this:

*arrespondence one-to-one? '

'A

1
By detslition, every set is a subset of itself. S is a proper

-Thdubset of T if SC T but S/ T.

5
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4.-,,Sentences. In all mathematics and-Fie

geometry we are interested in drawing conclusions from explicitly 14

stated hpotheses in accordance with assumed laws of logic. To

appreciate this statement fully, it will be necessary to discuss

what we mean by a number of terms used in geometry and to state the

assumed.laws of'logic. To communicate ideas we use words (or

symbols) which form sentences.) We confine our attention to such

statements or sentences which we assume are either true or false,

but not both, and are not meaningless but have content.2 If a

-
statement is written to which this assumption does not apply (and

there are such statements),vwe exclude it by agreement from our '

discourse: 'Nis assumptions that the statement must be true or

false, but noeboth, are often referred to as the laws of
.

Contbadiction and the Excluded Middle of AristOtelian logic. The

'Descriptive definitions of a sentence to be found ,in a dictionary .1,1

might be these: (1) A related group of words' expressing a complete 1,

thought. (2) A verbal expression of an'idea which associates a

person, thing, or quality, expressed inthe subject, with an action,

state,'ar condition, expressed in the-predicate. We will use the

words statement and sentence as synonymous.

2In ordIr to avoid philosophical or semantic discussions of the
-

v. i

.-1

terms true and false, it is often found convenient to use the

. words '"valid" and "invalid".

)
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assumption that the statement must have content, and thus not be

meaningless, means that we must )be able to give at least one, and

possibly more than one, interpretation to all the terms used. We

may not know whether the statement is true or false, but we must be

willing to accept the fact that it is either true or false but not

both. We are willing to accept the sentence: "4 = 2 x 2" as

true, the sentence: "4 = 3" as falge, and the sentence:

q4 = a parallelogram" as nonsense. On the other hand, we do not

know ether the sentence: "The decimal expansion of the irrational

number r contains ten consecutive Vs" is true or false, but

wp are willing to,accept%t as being true or false, but not both.1

5. Descriptive Definitions. To communicate ideas we use

words (or symbOls) and we must have some idea-about what they mean.
41k

We usually define certain terms by means of other words, and we
..

should have some preliminary notion of what constitutes a (good)

definition. Some definitions are purely descriptive,and informal,

and by citing special instances, giving illustrations or drawing a

picture, give some meaning and understanding to the term to bel.

defined. But such definitions cannot be used as a logical basis
A

for the development of geometry. Perhaps such a definition explains

1The fact that this is an assuMption is emphasized by the existence

of schools of thought that reject this,post4te, especially the

law of the Excluded Middle.

J4
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the term to be defined by means of other words already defined;

- these latter terms might be defined by means of still other simpler

(?) berms, and so on. But the process cannot go on forever.

Eventually, if we wish to avoid circumlocutions which are not

.

logically acceptable, we must arrive at a few terms thtt not ot

defined, but for which we have some, perhaps more than one, inter -
%
pretation. If we draw a picture or,use a physical model to illus-

trate the term defined, they are only special instances, and there

may be other models that could fit just as well. If we wish to

define curve passing through two pointa, I am_sure you could draw

many pictures. The above type of descriptive definition is often

found in standard dictionaries, and the fact theta single term

may have many interpretations is well illustrated in such
/

dictionaries.

The first thing we must acknowledge fot any logical discourse

is that there must be some terms that are not defined. We want

such terms to have some interpretations, and indeed, perhaps more

than one. We do not want them to be without any interpretation or

td te'meaningless. However, logical deduction must be independent

of the particular interpretation which might be attached to the

undefined terms.

In geometry we mar consider such entities as point, line,
.

plane, space as undefined. Some of the relationships suchras,on,

contains, equal, congruent, greater than, between, separate; length,

etc., and such'operations as addition and multiplication (and many

others) may be left undefined'. There are certain logical terns as

55
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set, and, or, there exist, all, at least, true, etc., some of which

maybe left undefined. The set of terms left undefined is somewhat

arbitrary and is determined by the objective of the discourse.

Different sets-OfternIS may even be 4sed for the same objective.

Other terms mentioned are then defined by means of the undefined "
terms.

6. Postulates. After the set of terms that retain undefined

is selected, we make statements (sentences) about these terms. We

accept these statements to be true without proof the sense that

these statements form part of our hypotheseS from iihich-all other

conclusions are logically proved. They impose some conditiolp upon

the undefined terms, so these terms cannot'be considered 'to be
0

absolutely arbitrary. By means of these hypotheses we delimit that

part of the universe we,are talking about; we are talking about any .

. .

systedcg things possessing the properties expressed in these

assumptions. .The more such assumptions we make, the more limitations
1

we impose, and.the more) difficult if fecomesto realize a model from

A
91.1i',4mited eXperiences.

4,

4
Esc

Such assumptions are variouslywcalled postulates, axioms,

principles, or agreements. We shall make no distinction betw4en-

sueh_names and,uswlly_use the word postulate, because axiom has'

too often been associated with -the idea of "self-evident truth".

In our geometry there are no self - evident truthtJ the postulates

are assumed to be true. Postulates, ofTcourse, are not made up at

random; they are suggested by fundamental properties of-physical

;, ,
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dpace, just as the undefined terms, point, line and plane are

suggested by physical objedts. Naturally, the particular postulates

we use. in elementary geometry are based on our experience with

physical models, and are usually accepted without question on the

basis of such experience. That is intended, for we want elementary

geometry to be an idealization of certain aspects of experience..

The physical models suggest, by idealization, certain properties

that would presumably be possessed by certain highly idealized

substitutes for the physl,cal objects. Among the many properties
22

t4ai we suspect these idealized substitutes of haVing,some,dan.

'readily be deduced logically.from the. oVars and would be omitted

from the postulate system; the remainder ofthede properties could

then be tglen as a set of postulates. The postulates used in

elementoey getmetry are based on empirical consigerations' they

_are to be regarded, however, as independent of such empiqcal con-
..

sideratioris. Indeed, they might have more than one empirical inter-
.

.c,..pretatt.on, or, as we say, we may present, more than one model which' tic

cap be used to give an empirichl interpretation to the same postulate
.

sy tem.4 In this Way we hope, by proof; to mare discoveries without

FPlicit experience,. or to use facts gained bit proof as check on.
OOP

' .

our'experience and vice- versa'. \

As anillustration,,let ,us take the terms point, line, and '

contains as-undefined, and assume that 'the other (logical) terms
, vo..00 -,

"-have meaning .
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Postulate 1, Given two distinct points, there exists One and

only one line' which contains them.

We might think of a model in which the term "line" has the

Interpretation of a stretched string and 'contains' suggests the

equiv.alent idea of 'passing through'. If this As the only postulate
t

made, there are other models which also apply. We use an illu6-

from elementary analytic geometry. Suppose the 'two points'

are interpreted as the ordered number Pairs (0,0), and (1,1 , ,

the "line" as the equation = X, and 'contains' as 'the n ber

pairs satisfy the equation'. You can recognize, with this inter-

', pretation, the sentence, called Postulate 1, is true. However,, if

the word "line" is interpreted as the equation y'= ax2, you may

also verify (and, hence, accept as true) the sentence:

"Given the didtinct points,'(0,0) and (1,1) there exists

one and only one parabola of the form y = ax
2 which contains

them."

Here the model uked for the word "line" is the 'parabola of

the form. y°= 2': If no further postulates about.'pointl, 'line'

and'Icontainst are made, other interpretations are alsoimailable:

"Given two different boys, there exists one and only one

committee of two upon which they serve."

--Of course, in elementary geOmatry, other postulates are, made,

so that all of these interpretations are 'not theri simultaneously

valid.

8



7. Explicit De tions. Hereafter, the word definition will

refer to explicit ition to distinguish it from descriptive

definition as'used.i Section 5.

(1) An explicit definition of a term is a characterization, of

theterm bymdans .f its attributes, properties, or relations that

distinguish it fr m all,other words that have different meanings.

(2) The def ition must be reversible, in the sense that the

distinguishing properties must be both necessary and sufficient to

yield the term tefined.

(3) To be used in a logical discourse, it must use only those

terms which h e previously been explicitly defined or,accepted as

und ifinedbilt limited by explicitly stated postulates.

Let us Illustrate these ideas byseveral examples- From this

p Int of view the definition of line segment found in Euclid's

lenents and in practically. all of his American imitators is un-

satisfactory.

Definition. A line segment AB is the set of all points

"between" two distinct points A and B.

o

ts, First,'a line segment is aset of polhts, arlid thisaet'id

.distinguished from all other sets a points, in that it contains

all points "between" two distinct points; second., the fact that we

call the ser7ence a Definition implies that all points "between"

the given points belong to the set. Third, this is an acceptable..

definition for a logically self-contgined system if and only ifi.=

59 .
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the term "between" has been defined before line segment is defined,

or "between" is taken as undefined subject to a set of postulates,

before line segment is defined. It is not an acceptable definition

if "between" is used in an intuitive sense or merely illustrated

by a figure. Otherwise you might be tempted to say: "A point is

between two distinct points A and if it is contained in the_

line segment AB". Unfortunately such circularities in definitions

are much too common in American texts.

'The term defined is fundamentally an abbreviation for a much

longer group of phrases, but it c;)1d always be replaced by a

`statement of its distinguishing, properties. However, definitions

are very convenient and important in helping us think accurately
4

and concisely, and help us avoid using words carelessly and with

muddled meanings.

Exercises

1. Taking the undefined terms giVen at the-end-of Section 5,

examine each of the following statements to see if it is an accept-

able definition. Ifrnot, see if you can modify it to make it one.

(a) A straight line is one which lies evenly between all its

pointi. ;

(b). A line segment is the set of points contained in a given

line and lying between two given points of the line.

I

(t) The angle between two lines is the amount of turning

required-to make one line coincide with the other.

00
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(d). Parallel lines are two lines contained in one plans and

which do not. contain a common point.

(e) A circle is a closed,plane curve, all points of which

' are the same distance from-a fixed point in that plane.

(f) The distance from a point to a line is the shortest path

from the point to: the line.

2. The treatment of sets in Sections 1 and 2 is intuitive,

not logical. Give a logical treatment, selecting and giving

suitable definitions for subset, 'intersection, and union.

8. Theorems. In accordance with the agreement of Section 4,

the statements orsent,ces we are to consider in geometry are .

either true or false, but not both. When we call a statement's.

Definition, it is to be understood that the statement is true,

without explicitly saying so.' When we call a statement a Postulate

(or any equivalent terms),-we understand it is true by assumption.

There are other statements, of which, without further information,

1 we cannot tell whether they are true or false. Examples of such

sentencesi-some simple and some compound, follow:

(1) Two line segment94e congr6uent.

(2) The triangle is isoscelab.

linea are perp ndicular.
4-7

(4) .The point. P is n t on the line u.

(5): a and b stand for real numbers and a = b.

(6) If a, b, C stand for real numbers, and if a = b and
sr

c = d, !then a - c = b - d.
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t

(7) If two sides and the included-Agle:of one triangle are

respectively congruent to two sides and the included angle of
.

second triangle, the remaining sides are congruent.

In examples (1) - (5), we do not knOlti whether they are true .

or false, and cannot determine wfiich unless. more information is

de/e---
. ,

available about the objects mentioned. Examples (6) and (7) are

written in the form of compound hypothetical statements called'

conditionals. If we accept them as postulates they are true by

assumption. On the other hand,',it might be possible to prove them

4O

-"on the Isis of other postulates

A Theorem is a statement wh h can be proved to be true in

accordance with the stipulated laws of logical deduction discussed
lk

in Section 9 on the basis of the accepted postulate system. '

Theorems of geometry are written in two'differentlforms: they

-- --may be_writte:h as a direct simple sentence or as hypothetical

compound sentences (conditionals). We are justified in Calling

them Theorems'(Euclid used the equivalent term, Propositions) only

after they have been proved to be true. The statement correspond-
-

fr. e

tO aniTheOrem may be written as
e
a hypothetical'comgRund

sentence (calleda'conditional) in the form

If p, then 'q,
=le

where p-) and q are symbols standing for simpler sentences. We
.

,

also say p :implies q, and use the symbolic form p ==-4>q We

are justified in calling it a Theorem then (If p, then q) is

true where the truth is established by logical means discussed
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below. Before considering the methods of proof, let us illustrate

the ideas above by examples which are uspally stated as Theorems

of Euclidean plane geometry.

1. Two distinct-lines intersect in at most one point.

2. One and onitone perpendicular can be drawn to a line

from a point not on it.

4. .The sum of the measures of the angles of a triangle is

1800.

4. The diagonals of a rectangle have the same length.

The diagonals of a square are perpendicular.

Before these are proved, we are merely justified .1.1 calling

them sentences. These sentences can be translated into the'form:
4,

"If p, then q." The sentence p is called the hypothesis; it

is the statement which is assumed true, as indicated by the word

sties. It represents the facts which we think of as given. The t.

septence q is called the conclusiOn; it is the statement which

is to be proved true, as.indicated by'the word "then". It represents -

%
.the facts which are to be obtained by prOof. After the compound

statement "tf p, 'then' q "" is "shown to be true; we call it a

AwTheorem. The complete sentence; p implies q is true, is called

an implication.

Each of the five sentences given above. are now translated into

alternative forms.

,la. If m and n are two distinct lines, then they have at

most .one point in common.

*A%
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Statement 1 or la is a Theorem of plane geometry after we

prove it, not merely because we state it.

As a related example, we could wrip the £pllowing two equi-

valent forms of a sentence:.

6. Two distinct lines lying, in the same plane have a point

in common.

6a. If m and n are two distinct lines in the same plane,
4

then they have a point it common.

Actually the sentence 6 (or 6a) is not a Theorem of plghe

Euclidean geometry in that it is possible to prove (or it is'often

assumed) that there are distinct lines in the Euclidean plane that

have no point in common." That is, sentence 6 (or 6a) 19- falde in

Euclidean geometry, but there are geometries in Which it is true.
_

2a. If m 1.8 a line and C is a'point not on it, then there

is one and only one line which passes through 'C and which is

perpendicular to m.

3a. If a ,/6,,r are the measures of the angles of a triangle,

VIerl. a: -1-,eg ; 18A.,

4a. If a given quadrilateral is a rectangle, then its

diagonals have the same length..

5a, If a giftn quadrilateral is a square, then its diagonals

are,perpendicular.,___,

Statements 1 - 5 (or la.- 5a) aresTneorenis becp.use they are

capable of proof. However, the following statements 6 (or 6a)

and 7,(or 7a) are not Theorems, because it is possible to prove

6
0 0
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they are not true. By means of a rhombui with unequal but'per-

pendioular diagonals, it is possible to show statement 7 is -false.

7. The quadrilateral whose diagonals are perpeAdlcular*is

a sqpare. . I

7a. If the diagonals of a quadrilateral are.perpendicular,

the quadrilateralds a'sqtare.

9. Methods of Proof. In order to simplify the discussion,

we usually write all hypothetical sentences (or conditionals) in

the form: "If p, then q" and discuss the'laws of logic by

means of which the validity or truth of the conditional is

establiShed, and thus Justify calling the sentence a Theorem.

The intent to prove the statement is true is indicated by writing:

p is true, then q is true" or

"Given( p is true, prove q is true.'"

The basic method of proof is a direct application of thfollowing

rule (gumption) of inference:

Rule of Inference: If "p" is true and if the conditions

"If p, then q" is true, then "q" wis true.

In the simpleSt proof, p is the hypothesis'which 'is known

to be true or which -we-assume is true, and the conditional:

(If p, then q) will be true if it is the statement of a

postulate, definition; or a.previously proved Theorem. The rule

of inference then states that the conclusion q is also true.

)
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The conditional "if, pe then q" is commonly stated in

mathematical terminology in the following six ways:

If p, then q,

implies q,

if p,

p Only if q,

q ft's a necessary condition for p,

p is a sufficient condition for g.

At this point it is also worth while clarifying the statement

p if and only, if q, called a biconditional. "Phis statement is,

O

simply a brief
r-

p)]. In other

if and only if

way stating [(if p, -then%) and (LE q, then

words a tileorem-eXpressed in the form "p is true

q -is true" really contains two statements to be '

proved, namely, "if p is true, then q is true" and "if q is

true:""then p is true". Some other Ways of stating "p if and

only if q" ,are

+v.

'q if and .only if p,

p is equivalent,to q,

,

11,a necessary and sufficient condition for p is :q,

a necessary and sufficient condition for q is p.

Another logical term we have to discuss is that of the converse

e of a conditional statement. We define the converse of the' statement

"if p, then q" to be the statement "if then p ".

'We have' agreed- that our sentences are either true or false.

The negation of a sentence "p is true" is the sentence "p is

false
"

which we shall sometimes express_also in the foam "not p".
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Wfafall of our discussions has centered around the

pretatiobrofg. Angle conditional statement "if p, then q". .

-

The applicability of the Rule of Inference is enormousl extended

by the next rule of logtsal reasoning. 1.1%.,-

Rule of the Syllogism (or Rule of Transitivity of Implication).

If 'p implies q and q -implies r, then p implies

In other.words, suppose the hypothesis of a theorem is p,

. and the conclusion r. Suppose among our postulates and definitions

we can find "p implies q" and "q implies r". Applying the

Rule of the Syllogism we can sts. e "p implies r", and because

therhypothesis of our theorem is ?, -' we can apply the Rule of

Inference to conclude r, and the\theorem is proved.,

;----The final method of proof which we shall describe is the

method of Indirect Proof, or proof by contradiction, as it is

sometimes called.' First of all, we define a contradiction to be

a sentence of the form "p and not p; that is, "p is true and

.

not p is true", or, "p is true and p is falie". A funda-

mental assumption concerning our logic is that every contradiction

is false.
A

Rule of Indirect Proof. A conclusion q is true if (not q)_

implies a contradiction.
A

,67
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In the simplest case, to eltablish the statement "If p, then

q", we assume the negation of q. If we can derive, using the

rules of logic, the statement "not p", then, q is-true. More *

generally, if from the hypothesis "p" and.the-assumption "not q"

we can then derive, using the rules of logic, a tatement of the

form "r and not r", that is derive both "r" and "not r", we

can conclude that our original hypothesis that q is false is in-

valid, and, hence, that q is true. There is no general -rule

which tells,us how to find the contradictory statement "r and

not 4, so that the method of indirect proof sometimes is a more

difficult method to apply than the other rules of-inference. °We

11 find many cases, however, where it seems to get at the heark
' of the matter in short order.

From the simplest case of the Rule of Indirect Proof, it -is

possible to derive the following:,
a

The conditional "if p, then q" is logically equivalent to

the statemel "if not q, then not p", called the contra-positive

ofthe original conditional.

The converse "'if q, then p", is logically equivalent to

- the statement "if not pi then not q", called the opposite of

the original conditional.

Thie logical equivalence indicAes that to establish the bi-

-conditional it is sufficient to discuss the conditional and its

converse. At times it may be more convenient to use'the opposite

instead of the converse.

ro
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So far all of'our attention has been concentrated on methods

of proof. It is worthwhile making a remark conerning methods of

disproof. Far too little emp asis is given in the usual high

school course to the possilikili of having the students discover

theorems for themselves. 'After all,' this is the way mathematics

is done; a theorem first has to be guessed, before it can be proved.

[In this connection the reader is urged to'read in G.-Polya%s books

"How to Solve It" and,"Mathematics and Plausible Reasoning", both'

published ,by the PrinCetOn University Press.] Assuming that we

are trying tp guess some theorems, we shall arrive at a list of

sentences to test. Some ve may be able to prove; others will
-4. . ,

resin our attempts at a proof, and we may be led to entertain the

possibility that a statement is false. How do we show 'that the

statement is false? Consider the following statement. v

For every triangle with sides of length a, b, c it is true

that a
3 = b

3
c
3

.

We are not impressed with the statement; obviously,'it, is

false: Wh?. Well, we know a triangle can have sides of lengths.

3, k; and 5,, and it is false"that 53 = 43 + 33. Sildh an

example shows that the statement Is false. A general statement,

if true, will remain true in every special case to which it can be

applied. Therefore a general statement is false if there exists

one special case in which the statement,is false. This special

case is called a counter-example to the statement. For a creative.

student of mathematics, it is just as important to be able to find

counter-examples to explode wrong gu sses as it is to find proof

Of statements, that will turn out to be theorems-

A
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)Kercisea

1. 'Find a counter-example to disprove th statement If n

is a positive integer then n2 n 11 ,is a prime numper:"

2. Using the-simplest case of the Rule of 'Indirect Prdbf,

prove that (1) "if p, then qh implies "if not q, thee not p ",

and (2) "if not q, then not p" implies "if p, then q".

3. Prove the logicalequivalence of the converse and the.

oppositfiof a given conditional.

1."
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Chapter 3

Points, Lines, and Planes-

4

1: Introduction. This chapter contains a list of undefined

terms, and the first definitions and postulates upon .which our

entire development of geometry is based. The language of sets

introduced in Chapter 2 will be freely used from the beginning.

It should be emphasized that there are other sets of postulates

equally satisfactory from a logical point of view to those we have

adapted. Those in'the present chapter, hatirever, contain no

surprises, and we shall not attempt to motivate them. The postulates

given in Chapters 4 and 5, However, are not commonly used in high

school geometry courses, andswe have included rather full discussions

of them in the, Introductions to Chapters 4-and 5.

2. Definitions and Postulates. We begin with a list of un-,

/defined terms:

Undefined Terms.

Point. \

lainef a set of points otherwise undefined.

Plane: a set of-'Points otherwise undefined.

Definition. The set of all points is called space.,

7!
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Next,we consider various statements concerning points, lines,

and plapes. Because lines and planes are sets of points, we should

use the terminology "P is an eleient of X" or X" for the

statement that a point P belongs to the line X. Instead we

shall often say P lies on X, or ,- passes through P, etc.

Definition. Points lying on one line are said to be collinear.

'Points lying in one plane are said to be coglanar.

The first postulate guarantees that our geometry contains

enough points to be interesting.

'Postulate 1.

(a) Evei7 line conains at least two distinct points.

(b) Every plane contains at least three distinct non-collinear

points.'

(c), Space contains at least four distinct non-coplanar points.

Postulate 2. Given two distinct points, there exists one and

-only one line containing them.'

Notation. We shall denote the line containing the distinct

points A and B by AB.

Postulate 3. Given three distinctsnonrcollinear points, there

is one and only one plane containing them.

Pditulate 4. If two distinct points lie'in a plane, the'line

containin these points lies in the plane.

.
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. ,What does Postulate 4 assert? Given two points A and B

. which lie on a plane p, Postulate 2 asserts that A' and B lie

on a e line AB. Postulate 4 then states that the line 1g

Wirt'is a subset of p, in other words, every point on 1g is also

on p.

Postulate .5. If two distinct planes intersect, their inter-
.

section is a line.

3. some Basic Theorems. A remark about the numbering of

statements is appropriate. Theorem 3.1 means the first theorem

''of Chapter 3; Theorem 4.2 means the second theorem of Chapter 4,

,etc. Results of lesser importance are numbered according to the.-
,

section of their Shapter, e.g.,44.2) of Chapter 4 means the second

result in Section 4 of Chapter 4.

Theorem 3.1. Two distinct lines have at most one point in

common.

Ppof: First of all we must interpret the statement of the

theorem. We are given two distinct lines X 'and P. Their

Intersection consists either of no points, one point, or more than

one point. Our tasiis to shOw that the third possibility cannot

occur. Here in our first theorem we know of no way to proceed

except by the method of indirect proof! How does the method look

1' , in this case? We have a statement p: "two distinct lines have

most one Point in common." To make an indirect proof we must

73
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.show that (not p) implies a contradiction. What, is (not p)?

It is the 'ttatement that for some pair of distinct lines 7' and

XI, the. intersection of X and 7" contains more than one point.

Therefore the intersection of X and 7" must contain two dis-
.

tifict points A and B. To say that A and ,1B belong to the

intersection of X. and 7" means that A and B lie on the

line L' and that A and B lie on the line Xl. Applying

Postulate-2, which states that through two distinct point passes

one and only one line, we conclude that the lines X and X.'

coincide. We have reached's. contradiction, namely, the statement k

q and (not q),

where q is the assertion "X and 7" are distinct lines".

Summing up the whole argument, we have shown that (pot p)' implies

the contradiction q and (not q), and by the:,Rule of Indirect

Proof we conclude that Theorem 3.lis true.
A

Theorem 3.2. If a line-intersects a plane not containing it,

the intersection is a single point.

Proof: This time the Theorem takes the form of a conditional

statement. What is the hypothesis? _We are given a line X, land

a plane p not containing %, such that, p and X do have a
.

point or points in common. We are trying to show that they have

exactly one poit in common. Again we use an indirect proof. This

time, the statement of the theorem is false if there exists a line

X which intersects tfie planelp in more than one point, but,jsUch-
,

that X is not contained in p. 'Let A and B be distinct

points whi8h lie on both X and p. By Postulate 2, there'exists
- I
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one and'only one line containing A and B, and because X

contains A, and B this line- is X, or more briefly, X AB.
-40

By Postulate 4, the line A<-3. B lies in the plane .p. We have

derived the contradiction

q and (not q),

where this time q is the statlement
rix.

is contained in P".

Again by the Rule of Indirect Proof, we can assert the truth of

our theorem. 1

Theorem 3.3. Given a line and a point not on the line, there

is one and only one plan& containing the line and the point.

Proof,: Again we have a conditional statement to prove, and

this time we shall spare the reader another indirect proof. We

it
are given a point P andsa line X such that P. does not lie on

X. By Postulate 1, there exists two'distinct points A and B,

on Z. Then we can sent that A, B, and P. are,non-collinear.

11
. ,

[The readeris asked q supply the proof of this statement.]

Applying'Postulate 3, there exists one and only!One plane p .

4-.>

containing A, Er, and P. Because of Postulate 2, ,l 4 AB and ,

.
.

from Postulate 4,-ye conclude that X is contained in -p. We

have proved that the plane p contains P and the line. X.

Because any other plane containing iLX and P must contain A,

and P, the fact that p is the unique plane containing A, B,

and P implies that p, is also the unique plane containing P

and X, and4Theoret 3.3 is proved.

41,
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Theorem'3.4. "Given two distinct lines with a point in common,

there is one and only one plane containing them.

68

Proof: This time we have to prove a conditional statement

ith hypothesis that'we are gives two distinct lines X and P

which intersect in a point P. By POstulate 1, the'line

contains a point Pi different from P. By Theorem 3.1, P' does

not lie on X. By Theorem 3.3, P, and X are contained in one

and alb one plane p. Because P is the unique line containing

P and PI, .Postulate 4 guarantees that the plane p4contains

elso the line P. Finally, any other plane containing X. and P

contains P' and X, and because, p is the unique plane contain-.

iag P' and X, we conclude that p is also the unique plane

containing X and P. This complete the proof of Theorela.4.

v *
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Chapter 4 4,

Real Numbers and the Ruler Axiom

1. Introductoa Discussion. Most of the geometrical questions

. .

that occur to us in every day life involve the notion of length. It

is interesting to'learn that.the Greek geometers made very little

use of thelconcept of length, and for,,a very zood reason. At the.

time Greek,geometry was invented, the numbers which we take for

granted nowadays were understood only in a moat rudimentary and

imperfect way. In particular, the distinction between rational and -4.,

irrational numbers was a source of great mystery,to the early

geometers, who realized that the hypotenuse of a right triangle

both of whose legs are one unit long must have a length, but:that

thisthis length could not be compared in a simple way with the unit

length of each side. Insmore detail, they wer ablato measure

lengths which were,whole number multiples of unit length, and which

could.be constructed from the unit length mith.a compass'

77
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They defined ,two line segments

A

740

to be commensurable if it was possible to form a segment mA#4whose

length was some whole. number m times the length of Ai' and to

form another segment, nB whose length was some other whole number

times*the length of B, in such a way that the segments mA

std nB were congruent. *More briefly we would say today that the

length,of is a. rational multiple of the iengtil of B, the
°

constant of proportionality being the rational number. 1-1. Then

the Greek-geometers made the discovery that these hypotenuise of the

right triangle in Figure (1) was. incommensurable Atkeither of the .

.4
. -t9

,sides. Once again, we/can state this result briefly today by say-

ing that IT is'not a rational number.

We should also recall that the possibility of translating a.

problem involving lengths to algebraic equations meant little to

the Greek geometers. In their time the simpleit algebraic equations

were regardedasdifficult. For example, the reader may consult the

World of ,Mathematics (vol. I, p. 197) to see the famo4 cattle

problefn of Archimedes. It boils down to a system of linear

equations, ith large coeffi,eients and-large answers to be sure,

but still

_

_problem that a bright high school student could do with

ease 'If he had the patiehce to write doW&such tiemendous numbers.

The point is that for the Greeks these problems were really hard

78
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24
since they had no workable notation for the numbers, nor did they

have the methods of algebra available to solve systems of linear

.equations.

With this background, it should not take ]much persuasion to

convince ourselves that our approash to those parts of geometry

involving the notions of length can and should improve upon the

way these things were done two thousand years ago. Specifically,

were going to assume familiarity with the rational numbers and

real numbers, and with the elementary tools of algebra. All this

is applied to geometry by means of the Ruler Postulate, to,.be

given at the end of this chapter. The idea expressed precisely

in the postulate is that we are given once and for all a ruler,
0

with a fixed unit of.length, and with the property that at each

point on its edge we,have a bark corresponding to exactly one real

numbei., and that every real number has its mark on the ruler
r

(obviously this is not a ruler to be purchased in any hardware

store). Then or postulate asserts that forgery line L in

our geometry, and every pair of points P and A on L, there

is defined a real number which we shall call the distance between

P and Q, and which is measured in the following way: Our

ruler is placed in such a way that its marked edge coincides with/

the line L; then opposite the points- P' and Q will lie marks'

which correspond to real numbers p and q. Then the distance'

between P and Q is given by the Ruler Postulate to be either

p q or q - p, whichever one of these numbers is positive.
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For example, we might lay down the ruler in such a way that at P

we read 3 and at Q we read 53. -Then the distance between oP
u, 4

and Q is

On the of er hand we mighty lay down the ruler again in such a way

that a P we read 1 and at Q we read -1.. The distance

this time is 1 - (-1i) = 271..

Besides having the advantage of its identificatlon with the

familiar operatitn of measurement, the Ruler Postulate has the

advantage of making it possible at an early stage to translate all

problems about distance into problets about real numbers, which we

shall often be able to solve by the methods of algebra.

The purpose of this chapter is to give first of all a review

of those aspects of the real numbers which will be important for
ti

us, such as the properties of inequalities and absolute value, and

fift411y to give a precise statement of the Ruler Postulate.

A Word on the Organization of 84.2 - 4.5

A fairly complete presentatiowof the real number system is

included, more, in fact, than can or should be covered as back-

graind forTethd geometry coLree. Nevertheless the Ruler Postulate

has hidden in it, so to speak, all the properties of the real

number system, and although these properties are not exploited

fully until the chapter on analytic geometry, it seems to be a

good idea to sketch out the properties of the number system rather
Pt 44.-

fully.
...--41to
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2. The Real Number System. In this section and the two

succeeding ones, there will be exercises for the reader at the end

of the sections.. Throughout this book there will also be a number

of results which will be listed with a *, for example, (2.l)*,

Theorem 4.5*, etc." Probfs of these results arebmitted,,and the

'der is invited to prove them himself. Very little benefit is to

be gained from a study of the number system unless strenuous' efforts,

are made by the reader to discover for himself proofs of the starred

results; as well as solutions for the exercises.

Before starting,° we make a remark on the terminology: "real
e

.number" is a technical term, and. the real numbers are described

exactly by the properties we assume as axioths concerning them. The

fact that there are also complex or imaginary numbers should not

lead the reader to believe that one sort of number is any more or

less mysterious or more or less down-to-earth than the other. It

happens that for elementary geometry, it is unnece4sary to consider

the system of complex numbers.

Everyone is familiar with at least one intuitive description

of the, real numbers., For example, the real numbers may be described

as the collection of rational numberb a where a and b ate

integers, together with all "numbe " be approximated

arbitrarily closely by rati al numbers. Or they may be described

as all numbers repres- ed by writing finitely many digits (pre-

ceded by a + or - ), then a decimal point, and then an7un-
-

ending sequence of igits. Still another approach is to view them

8
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as labels for the points on a line. This is note the plact.to explore

pO

the connections among these ideas; we seek a precise and usable

description of the real numbers to apply in setting'up our geometry.

To accomplish this, we proceed exactly as ip geometry by giving a

set of axioms for the real numbers. The axioms may be put into three
0

grOvs; firat the algebraic axioms for the real numbers, which an be

summarized today in the assertion that the real numbers form a field;

then the orderaxioms which enable us to discuss the size of a real

number; and finally the co eteness axiom which guarantees that

enough real numbers exist for us to ds, business; for example, that

there exists a-real number a such that a
2

2. We-shall organize

the material as follows: First we shall give the algebra axioms, and*

discuss their consequences; then we give the order axioms and discuss

their consequences, and,finally we give the completeness axiom.

First of all we make a remark about sets'and the notion of

equality. The real number system is going be defined as a set of*

objects, and these Qbjectd will be denoted by symbols (a, b, c,

0,. 1, ...). The symbol representing ap object can be thought of as

the name of the object., We shall assume that with thid_set xe are

given a means of distinguishing whether two objects are different or

not. In other words, given an object with name a and an object

with'name a' we asdume that exactly one of two possibilities holds:

0.

l'.-

The "two" object are really the same; in this case we

if. equals a' ", or "a .is equal to al").

"Abraham Lincoln", and one is "The 14th

States".

write a = al (dead

Example: One objeot i

President of the Unite

4

21



75

(ii) The objects are not the same; in this case we write

a / at (read "a is not equal_to at"):

In other words, when we have assigned the same object different

names a and a', we indicate this fact by writing a = a'.

[In the SMSG geometry text the word "equal" will be used only

in this sense. The statement ,A ABC = A XYZ, for example, will

mean that we are simply dealing with two different notations for,

the same triangle. The careless use of "equal" in most geometry

bodks, to mean "having the same length" in,some cases, "having the
4

same area" in others, etc. is avoided. If we want to Say that

A ABC and A XYZ have the same area we say this; or we can say
0

that their areas are equal; or we can define a new term and call

them4"equivalent" or "equi-areall'.]

We assume that the "equals" 'relation has the following proper-
.

ties.

(i) a = a (in other words, we cannot use the same symbol to

stand.for different objects).

%if a = b then b = a.

1ii;) if a = b and b = c, then a a (this is a precise

N statement, of the notion that things equal to the same thing are

equal to each other).

Finally we introd

equal sign in our late

ce a rule which will govIrn the use of the

discussion. -.

.
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(SP) Sub4titution Principle. The real number system.will be a

set of objects, and it will also be possible to form combinations

of real numbers by adding, subtracting, multiplying, dividing, et

for exapaple, .*e may have expressions like

+ (b2 - b2 cd)) .

Such an expression invoiving symbols for the real numbers as well

as the signs +, ,,/--, etc. will be calleda formula pro;

vided,that it has been put together in'sUdh a way that it represents '

a,real number.' The substitution principle asserts that if a

occurs in any formula whatsoever, and if b = a, then b- may--be

substituted fdr a rever. a occurs in the 'formula, and,the

'resulting formulas are equal in-the sense that they represent the

same real number.

As. an example of how this is uftd, suppose we have to solve

the equation

x - 1 = cop

Then usually we say "add one to both sides". This operation is

justified by the substitution principle, for in the formula
/

(x - 1). + 1 '

0.

we may substitute for x - l' the symbdi 0, azyliobtain

(x - 1) + 1 = 0, + 1 /

frOithis as ushal we obtain .

0

X' =

c' Exercise: Show how Euclid's first seven axioms follow. from

the subStitution principle.
.

1'

1

-



Definition. The real number system is a set of objects called

real nGmbers,, and denoted by symbols a, b, c, ..., 0, 1, 2, ...,

etc?. *hichsatisfies the algebra axioms, the order axioms, and

the completeness axiom.

tes)

Algebre Axioms.' Forany pair a, b of real numbers, there

is defined a unique realnumber a + b, c,1led the sum of a and
'

b; and a unique real/number

b, such that the following axioms are

called the product of a and

valid.

(F.1) a + b = b+ a, ab = ba (commAtative laws)

(F.2) (a.-Fb) +c=' a- (b

a(b + 6) = ab + ac

(ab)c' = a(bc) (associative laws;

(distributive law;
,

(F.4) There is areal number , such that a + 0 = 0 + a

= A for ali real numbers a.

(F.5) There is a real number 1 / 0, sucithat lia = a.1 = a

for all real numbers a.

(F.6) For each al number a, there exists a real number

-a (read "minus /a"), such that

- ('-a) + a = a + (7a) = 0.

(F.7) For each real number a.'7 0, there exists a real number. .

the reciprocal or inv rse of a, one over a), such

= (.k) =/1.

that

e, algebra axioms are precisely the axioms for a field.

85
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We begin to derive consequences of the axioms.
A

(2.1) (Cancellation law for addition.) If a + b = a +

then b

Proof: By the substitution principle (hereinafter abbrepated

SP) wetta,-

(-a) + (a + b) = (-a) +.-(a'+ c).

Apply (F.2) to'-both sides to get

((-a) + a) + b ((-a) '+-a) + c.

Applying (F.6) to both sides we obtain

0 + b = 0 + c,

and by (?.k) we have

as required.

.

(2.2) If a + b do then b = =a.

and by (2.1) we hav e

b =c

Proof: By (F.6) we have a + (-a) = 0. By (SP) we have

a + b = a + (-a)

b = -a.

.(2.3)* -(-a) = . ./(

,

. .,
. .

/- (2,,11. The equation a ± x = b 'has the
.

unique solut).on

( -a) + b.
,-

I

(

se

00
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Proof: First we verify that (-a) + b is a solution, that

is, if we calcp/ate

a + [(-a) + b] = [a + (-a)] + b

[a + ( -a)) + b 0 +

+ b = b

we haVe checked that

by (P.2),

by (F.6),

by (F.4),
,

a + [(-a) + b] = b.

To prove that the solution is unique, we suppose x and x' are

solutions of the ecs tion. Then we have_

and

By-(SP) we obtain

a + x = b

a + .' b.

a + x =a + x' ,

and by the Cancellation Law,

x = x' .

Definition. The unique solution of the equp.tion x +,a = b

'is denoted by b - a, and is called the'operation of subtiwaction

of a from b, or b

Thus, (b - a) + a . b. 0 I

; 1 I

It I

(.2..5)* a - (b + c) = (a b) -- c.

(2.6)* 4-(a tb):= ( -a) 4- (-b):

)
,. ,

(2.7) ' 0 = 0' for ial real atimbers .a.

J.

8

.0 0
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Proof: We have 1 0 = 1 by (F.4). By (F.3) and (SP)

we have

a(1 4. 0) = a1 + a0 = a1 = a1 + 0.

By the Cancellation Law 2.1) we have

a-0 = 0.

(2.8) (rob = -(ab), and in particular (-1)b = -b.,

Proof: By (F.6) we have a (-a) = 0.

(2.7) we-have

(a (-a))b = ab (-a)b = 0b = 0.

By (2.2) we have ,(-0.b-...,-(ab) as required.

(2.9) =r14(-h) = ab.

Proof: By two applications of (2.8) ilehave

(-a) (-b) -(e(-b)) = -((ab)} ;

and by (2.3),,-- -((ab)) = ab, as we wished to prove.

414

(2.10)* (-1) (-1) = 1.

(F.3), and

-7

Now we come to consequences of-the "division axiom" (F.7).

The starred theor4s at the beginning are the exact parallels of v.

(2.l) (2.4) and it will be instructive for the reader to supply

proofs.

(2J.) - (Cancellation Law for Multiplication. ) If ab = ac

and a t 0,'"* then 1) = c.

r8 8
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(2.12)* If ab = 1 then b = a.

(2.13)*

r

f (2.14)* The equation ax = b,, a /0, has the unique

solVtion,

Definition, The unique solution of ex = b; a / 0, is

b
Ircalled the result of dividing b 1)1 a, and is denoted by

We cal'
a

a fraction with numerator b and denominator a.

We can now settle the Adne honored question of division by

O. V eans the solution of the equation 0x =a. By (2.7),

rOx = 0 or 411 x, and the equition has no solution if a-, O.
. ,.,

.

If a = 0,
4 we -have to consider the equation. Ox = 0, which is

t

satisfied by every real number x. Thrrefore'the equatibn ,Ox = a

either has no solution (if a / 0) or infinitely many solutions
N

(if a = 0). In neither case can we attach an unambiguous

significance to f which is consistent with the preceding

S.
a

definition of From now on, when we write p it is tacitly
17%

asdumed that b 0.

(2115)* If ab

(2.16)* (a)(o)

= 0 then either

ac
=

(2.17)* a
+,§

bc

89
,

a = 0 or b =

e 4- 22

a
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a. c
(2.18)

* .5: 7,:a. if and only if ad = be .

* T ad=

3. .Order Axioms and Inequalities. Order Axioms. There

exists a collection of real numbed, called the pOsitive real

,numbers. with the following properties:

(0.1) for each real number a, one and -only one of the

following possibilities holds:

'Ca) -a is positive,

(b) a= 0,

(c) -a is positive;

,(0.2) if a and ,b are positive, so are a + b and ab/
c?'

Definition. We shall write a > 0 for the statement that
.

a-iis positive, a > 0 for the statement that .a isigitheri

positive or zero. For any pair of realsnumbers a, b we write

7

a < b (and read a is less than b) if and only if b a is,'

positive& We write a < b (read a is less than or equal to b)

if either a <'b or a = b, and a > b for the statement
0

b < a. When a > b, we read a is treater than b.

(3.1) Poi:any wo real numbers a and -b, one and only o e

of the following t tements holds:

r (a) a < b. 4.-

(b) a = b.

*Cc) Ja > b.

I

0

4

*v.
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Prockf: By (0.1) we have one and only one of the following

possibi4ties:

b - a.> 0

b - a = 0

-(b - a) . b >0,

and these conditions%ard equivalent to (a), (b), and (c), respective-

ly.

c.

(3.2 ), If a < b then a + c < b + c for allreal numbers

Proof: We have (b + c) - (a + c) = b - a > 0.°

(3.3) If a < b and c 70 then' ac < be.

Proof: We have
..

bc - ac = (b - a)c > 0

by (0.2) and the fact'that both b - a and c are positive by

assumption.

(3.4) If a < b and 4"c < 0 then ac > bc.

Proof:, We prove-first that if a < b, then -a > -b. In'

(-b) = b .., a > 0 since a < b. TO-prove (3.4), we

obtainifrom c < 0 and wha has just beenTroved, -c > 0.

By (3.3), a <'b and -c > 0' imply (-c)e''4.(-c)b. By (2.8) this

is equivalent to"- =(ca) < - b). By the remark at the beginning
°

of thd proof, we save -(-ca) > -(-cb), and by (2.3), ca'> ob.

This completes the proof of (3.4).
S

7.
3
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(3.5) If a < b and .b < 0, then a < 0. (Transitive Law.)

proof: We have by hypothesis

b - a > 0

c - b > 0.

By (O.2) their sum is positive, :or in other words

(b - a) +,--fc - b) =c - a, >O.,

Thus, a < c.
*

`(3.6) If a / 0 then a
2
> 0. C

Proof: By (0.1) either a > 0 or -a > 0. In the,first

case, a2 > 0 by (0.2).. In the second, (-a)2 > 0 by (0.2) and

we have by (2'.'8) that (-a)
2 = a2 > 0.

(3.7)- -1 > O.

Proof: 12 = 1 0,

13.8)* ik > 0 if and only if ab > 0.

We give now a,definition which will play an importa44role

in our developmeit of geometry.

.Definition. The notation

t; x < y < z

r

means that both inequalities x < y and y <,z hold'simultaneous-

ly. A real number y is said to be between the real numbers x

and z if either x< y < z or z < y < x..

4

.92.

a+.
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Now We the problem pf solution of inequalities. We

shall treat this p blem by a number of examples. /
.

e

EXample Fin dia real numbers x such that

'4x - 5 Z 2x 4- 7. W proceed by analogy with the soVition of the

linear equation- 4x - 5 = 2x + 7, but in the case of the-inequality,
---

we base our approach on (3.2) - (3.4), paying particular attention

--tothe fa that whpn\we multiply an equal4ty by a negative number,

we -reverse the sense of the inequality.' Thus, we obtain first by

4

a

adding 5 to.both sides accdrding to (3.2) that

4
By (3.3) again we" obtain

I

2x > 12.
,

,

Since 1 and 2 = 1 + 1 are both positive by (3.7), .27A> 0 by

(3.8)d Therefore by'(3.3) we have

and

c.
, . 12)

1J r

x > 6. .WOricing'badicwards we can see that .all numbers

x > 6 do`satisfy the original inequality, so that the-solutiOn

of our problem is that those real number x such

4x-- 5 > 2x + 7 are precis real numbers x such that

x > 6.

Exam 1- 2. Solve the inequalit

2x + 1 > 5x + 3.

9 3



As in Example 1, we may add

both sides obtaining first

1 .

and then

.
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-5x to both skies and then -1 to

-3x -1-` 1 > 3

-3x-1>\ 2.

By (3.8T-weloW that < 0, and. r-(1:41-ms-h

0.4

`4implifyj4g we have

44).(-3x) < (4)2.

x <

and the set of all such x constitutes the solution of our problem.

Example 3. Solve

R-771 > °.

_Solution: Our first temptation -is to multiply by x - 1, and

we are led to the corifUsing result 1 > O. What is wrong with our

procedure? The point is that the inequality between

(x -1)(34-1)

and (x 1)0 1.s left in doubt because we do not know in advance

whether x -,1 > 0 or x - 1 <O., Thus, we must be more careful.

First of all x = 1 cannot be a solution. By (3.1) we must have

either

(a) L1 > 0, in-which case we obtain 1 > 0, or

(b,) x - 1 < 0,, ,which case we have

4s*

1 < 0 .
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,

The second of these possibilities is ruled out by (3.7), and we are

forced to conclude that x - 1 > 0 is the solution of our problem.

(a)

(b)

(d)
or

1. Solve

2x + 3 >

3 - 2x

the inequalities:

1

4

4

Exercises

1, < 3

+ 2x)

+ x),>

7'

< 0

0

(e)

(f

(g)

(11)

<

33cc <

(2 - x)(3

'( - 2)(3

+1

2x1
+ 323

<

2. Prove the following statements:

(a) If 0 < a < b, then a2 < b2.

(b) If a and b are both positive and a2 < b2, then a < b.

%What conclusion can you draw from the statement a2,< b2\ by itself.

--(C) If a < b, then a < 11-7+.b < b.

---

(Most of these are t ken fiom Begle, Introductory Calculus, New

York, 1954.)

, 4. .Absolute Value. Next we come to the important notion pf

absolute value. In the introductory discussion we saw that, if on

the*eldge of a ruler we read a atond pOint Ind b at another

point, then the distance between these poiritElsVskituld be a - b or
I

b - a, Whichever is positive. It s wothwhile studying this

situation'in the light ok the foll wing definition.

L.
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Definition. Fdr each,real number a, we define

if a 40

jai=
-a (-)

a if ,A. ( O. ..

-,.,

`Thet number lal is called the absolute,value of . a.
# Illt

that in the example above4 the distanbe betigeen the

points on the ruler'at whidh we read a and b 4.8 in both cases.

equal.to la -.bj. We proceed to derive some properties of

absolute value. .4

(4.1) For any real number a / 0, lal > 0; la.'= 0 if

and only if a =0..
)

./
Proof: Awin mot hrbbis on, absolute value. we

two eases,

(a) a > 0; then 'al = a > 0

(b) a < 0; then 4-8. >.0 and jai = -.fr-> 0.

The second/assertion is clear from tledefinItion.,

(4.2)* lab' = lallbi, I -al = lal.

The proof is by diqtinguishing cases:*

(4.$)* -lal < a lal.

A useful propeiTty of absolute value

following result:

istiniuish

18 contained in the

(4.4) \- Let b > 0. Then tail < b if and only

-b < a.< b.

'96
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Proof: We recall that -b < a < b means that both inequalities

-b <,a and, a < b hold. Suppose first that -b < a < b. Then ,

Ial = a or -a, and in the first case we have lal < b because

a < b. If jai = -a, then we have lal = -a'< b, since -b < a.

Conversely, suppose that lal < b. If a > 0, then -b < 0,

-b <a by the transitive la.4 (3.5), while lal = a < b by

assumption. If a then lal = -a, and lal < b implies

-a < t or a > -b. Finally, a < 0 and 0 < b imply a < b,

..again by (3.5). This complete the proof.

(4,5) .1a + bl < lal

Proof: By (4.3) we have

-1a1 <,a < 1a1

-1b1 < b < Ibl

Then

-(ral + Ibl) < a + b < lal + Ibl

and we have by (4.4) la + bl < lal + jbl as required.

V

It will be important for us to solve equations and inequalities

involving absolute value..

Example 1. Solve

Ix '21 = 14 xl.

We haiie Ix - 21 = ( --2), while 14- xl = + (4 - x).
, .

From lx - 21 = 14 .x1 we have four apparently different equations:

97



90

x - 2 =- 4 - a
- 2) T 4 - x

x - 2 =-( - x)
0-(x - 2) .-(4 - X).

These reduce to the two equations

x - 2 = 4 x and x.- 2 = - x) = x 4.

The first has the solution. x = 3, while the second has no solution.

Checking, in the original equation we see. that x = 3 is the unique

solution of the equation.

Example 2. Solve

Ix - 41 < 3.

Solution: By (4.4), Ix = 4 I < 3 if sild only if

< x - 4 < 3.

Thus,. - 4 must simultaneously satisfyhe inequalities

x - > -3

n 4 < 3.

The solution of the first is x > 1 and the..solution of the second

Is x < 7. The solution of the original inequality Ix - itr < 3

is therefore the collection of all real numbers x, such that

< < 7.

Example 3. What conclusions can be drawn from the equality

- = lb 'if it is known that a / c?
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al6
.

, SolUtionL ,Thetequallty can mean one of four thins,

(i) a b - c,

(ii) a - h'. c - b,
. .

(141) b - a = b - c', *

(iv) b a = c b.

Notice' that (i) and iv) say the same thing, namely,

a + c 2b;

and so do' (ii) and naTely,

a mac.

Since we are given that a / c the conclusion is that a + c

Exercises ,

1. Solve the equationsor inequalitieel .a,0.

q - (a) '14. + 21 ''<. 3. (e). I2x +la] L 14 -.xl-
. . 6 t

.

(b) At = 11 < 1' ''', jf) 12 - xl > .

'(c) 12' - xl =.3.'
6

(g) , Ix + 11 <'a

(d)Plx + 11 F 7 - (h) ;Ix - cl < a

(These exercises are 'Wen fromBegle, Introductory Calculus,

New York; -1954,)

5, Completeness Axiom. Let us first explain some, familiar

notions in the context of the real number system. By (3.7), 1 is

a positive number. By (0.2), the numbers

A

2 . 1 + 1, 3 b 2 + 1, 4, 5,, ...
6

4

Q

(19
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are all positive. These numbers are called the natural nulDerS,

and as we have seen they are all tiOsiti've. If a and b are

patual numbers, so are/a + b and ab, but not necessarily

a - b or S. .

Next, we de e the.111eCtion of all integers tybe the

natural nurilbe and therir'negatives, together with zero. If a.

and `b a integers, then so are a + and a - b, ,but

not in eneral

e extend the sySt467Of integers still f44ther to the system

of/rational numbers ;, where the rational numbers are those real

numbers which can be-expressed in the form tt- where a and b

are integers and b E 0. We can prove by (2.16), (2.17), and

(2.19) that it r and s are rational numbers 'so are r

rs, s ) 0).

Two remarks are in order. First, that the system of rational

numbers satisfies all the axioms"we have had up to now. On the

Ipther,hand, we saw in the introduction to.thii chapiier'that if we

tried to measUte the lengths of all line segments with raiio4.1

numbers,

an lsosce
.

TO make
'.

(5 1

we would be unable to attach a length to the hypdtenuseof

s'right triangle whose other sides lye unit length.
t

is.remark precise, we prove the following, result6

There is no rational number x, such that x
2

=. 21

/
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Proof: This argument is a famous example of the method of

ina,f.rect proof. 'We suppose the result is false, and, hence, that

tVere does exist a rational number .t where a and b are

integers, such ffiat

2
(15a 4 2-

46 may assume that a and b hive no-common factors besides +1,

S.for any common factor can be divided out without changing ly.

'Expanding the first equationNyields'

a
2 = 2b

2
,

and gonieAuently a
2 is an even number, a itself is either odd

oreven,*and.if oddwecan eXpress a = 2m + 1 for some integer

; . o',,Si:

m. 'Tiagn a2 = km2 + 4m + 1 = 2(2m2 + 29) + 1, so that" the square
_ P ,

\r8
of anIdd number is odd. Because a2 is even we conclude that a

is even and can write a- = 2c for some integer c. Substituting

01
n the last equation we hay;

-14

,

Li c2e = 2b2,'

and.

.b

Thus, b2 is.even, and bit. the same argument used for ,a, we 'know

that b iseven. We have snown that a and b have, the common

factor twor even though we had 'previously gua.anteed that 'a^ ,and

b hado common factors other than +1. The only conclusion left

/ tl'iit'our original as(umption
. /

.1.5 false, in other words the equation x2 = 2 has no solution in
.$

'the system of;rational numbers.

e

1 id
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rj.

We give now an axiom which guarantees fiat the real number

system does contain enough numbers to serve as the basis for

.measurement in geometry.

Definition. A collection of real numbers S is bounded above

if there exists a real number M, such that s < M' for every s

in S., The, number .Ms is claaled an upper bound of S. A number
. ,

L is a least upper bound of .the set° Sr if (a) 11ht is an upper

bound of S and (b) if M is any upper bound of S, then

L < M.

completeness Axiom. Every non-empty set of real numbers which

is bounded above has .a least upper botnd.

(5.2)** If L and 1., are least upper bounds of the set of

real numbers S; then L

(5.3) There exists:a real number xo, such that xo
2

= 2.

Proof: Let S be the set of all positive real numbers. x,

such that x
2

< 2. The number '2, for example, is an upper bound"

for the set S, so that by the Completene8s Axiom,' Si has a least

upper bbund.x0 < 2: Becauge 12 < 2, we have xo > 1. By (0.1),

.we must have either xo
2

- 2 > 0, xo
2

- 2 < 0, or xo2 2 = 0.

We shall show that neither bf the first two cases can occur:

0

I;2,
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First, suppose x02 < 2, and.ilet h = 2 - x02. Tirn .'......"...._
`-'

x' c....1%, and,.we .shall.prove.
-.,

that (x1 2.. We haVe
**400e.,*1-5"'"-4,34

(2;1) 2 .6 (x0
2 2 }.xoh

='Xo 1-411- +7

16x2
±

h/
1.70x0 + h) xo2

16

h

x02 + h(5) (since x0 5 2_ and h < 1)

X02 h= 2 (since 33 c 1) .
64

We`have shown that 'xt is a number in'the set ,S which is,larger
'than x0, . contrary to our assumption that x0 .is an upper bound...

?
.

. of S, and the possibiliity x02.,< 2 haz been elimthated.

tiext;stippose that 'x\2 > 2, -and let k be the positiveo
.number x02 2., Then ,for atny real,number u > xo,

k 2 2
(Xo MY 2 = x0

r 2xo()co - 2)
/3k. 2

u (m) 2

24 "xo)(xd - 2) . 2.

o **
k ...'.At the same time, if u > ?T., then we have x0 > m or 'k.s. 1/4. , '',xo - .E 0. .)Now choose a real number .0 which is greater than"

, w

both xo and and set
. N 4 2x

. o i kx01= xo - ...
..

then' as: we have seen,

and

0 < xo 1

t
< x0

3
10 3
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(xor)2

,plow, lot x be any positive real number, such that x
2 Then

.
(,
4'0

)
)y,o,

and, hence,
,

`-' (xo' - x).(x0,1 '+ x):> O. .

.

.,
.

' Because xo' and x. ampepsitive, xo' + x > 0 by (0.2), and it
... --

-.flollOws that

x' - x > 0 .

or 20 > x. Therefore ',0' is an uppQt bound of the set S which

is actually lesg than A;, Contrary,to our assumption that xo

is the.least upper bound of, S. Therefore the possibility

xo
2

>. 2 has also been ruled out, and we, conclude finally that

This completes the pr8bfk'

1.

By the same method the following result can be proved.

.

,

(5.4), Let a bed. real number > 0. -Then the equation

2
x a has exactly two solutions +r, where r is a real number .

such that _r
2

= a. .

. Definition.' Let, 'a > 0. Then the unique positive solution of..

. the equation' x2 ='a will be called the square root of a and

denoted by N/17; the other solution pfyle,e9uation'is therefore

As,a consequence'of these definitions we have

*:
(5.5) \ a =, jai.

\:r
1
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Exercises

I. Probe that there exists's. =real number x, such that

/2. The equation ax with real' number c

efficie*, a, b; c, a 0, has a real nuttber solution x --i-f

and only it b "there -are ona-61 twi distinct solutioi

accordingly as b2 - 4ac b
2
- kac 5 0:

3. Prove that ,./rY is an irrational

a 4. Is qr5- + .s./TF rational or irrational?

6. One-to-One Correspondences. As a last tirepaiation for

the ruler postulate we discuss the important concept of a one-to-

one correspondence between sets, which has already been introduced

fromsa more general'point of view in'Chapter 2. This notion
w-T

originates able problem of deciding when two pets of objects

IlaVgt the same number of elements. For example, at a dance, let M

be the set of all men p'esent and W tlis set of 11 women present.

4..

-In.order,to decide whether the number of men in t e set M is equal

to the number of women in the set W, we could.count both numbers

separately, and compare the results: Another method wouldf'be to

wait until the dance began, and see whether every man and woman has .

a partner. It is the latter idea that leads to the concept of a

one-to-one correspondende.

r.
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Definition. .1% one-to-one correspondence between two sets A

and At is a rule which assigns to every object a in A exactly,

one object at in A' in such a way, that if al /a.:2 in A,

then al' / a2 in A', and such that every object in A' has an

meat in A 'assigned t6 it by the rule.

'We think of the rule as a pairing of the objects in A
N

with the objects in A', in such a way, that (a)` each.object in

A is assigned exactly one partner from A'; (b) two different

objects in 'A have different partners ,in Al; and (c), every

object in A' is the partner of some object in A.

We shall often denote a one-to-one correspondence by the

notation-

a at

which means that 'a' is.the partner of a assigned by the rule.

Exercises

1. Let A be the set of all integers, and consider the rule
o

that assigns to each integer its'cube:
3 Does this rule

define a.one-to-on vorrespondence of A with itself?

2. Let A be-the set of all integers and consider the rule

+ 5. Is this a one -to -one correspondence of A with itself?

6
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3. Let AS be the set of all integers and consider the rule

a 2a. 19 this a one-to-one co-rrespondende of A with itself?

4. Let R be the set of all real numbers, and consider the

rule a 4") 2a. Is'this a one-to-one correspondence of R with

itself?

7. The Ruler Postulate._ After a long digression we are baCk

togeometry again: This section contains the Ruler, Postulate, which

is actually broken down into fhree,separaparte which we call

PostUlates 6, 7 and 8, some definitions, Sand the consequences of

the Ruler Postulate for the study of the notion of tweenness for

points on a line.

At thissvint,the reader is advised to reread the introduction

to this chapter, espeolaliythe motivating discussion for the Ruler

N.- --Postulate.

Postulate 6. To every pair'or"points A) B. there corresponds

a unique real dumber, designated by AB, and called the distance
9

between A and B. If A and B are different points then AB

is positive. We allow'atso the possibility that A = B; in this

: case,, AB = O.

Postulate 7: The points of a line can be put in one-to-one

50:acrrespondence with the real numbers in such a waym'that the distance
P,

$ N'7-44 'en two pdints is the absolute value of the difference between,

the Corresppnding numbers.

1,07
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e

(7.1) The distance AB has the properties that

AB = BA,

and if A, B, C are collinear, then

AC + CB = AB.

Proof: The first result follows 'from the fact that

xl = For the second, let A, B, C correspond to

the real ;lumbers a, 1),.c, respectively.: Then

AC + CB = lc - al + lb - el >i(c - a) + - c)

= lb -al =AB

by (4.5). This completes the proof.

Definition. A correspondence of the kind described in

Postulate7 is called a coordinate system on X; and the number

corresponding to a point of is called the coordinate of:that

point.

For the, cOnvenience of the re-id,r we r,.peat the following

defthition, already giver

Definition. Let x, y, z be real numbers. Then z is said

to be between x and y if either x < z < y or y < z < x.

Definition. If A, B, C are different points on a lfrie

B is said to be between.- A and C if and only if

i.e. AB +,BC J. AC.

a*.

Y

1 '8
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Theorem 4.1. If the three different collinear points 'A, B,

have coordinates x, y, z, respectively, then B is between A

and C if and only If y is between x and z.

Proof: If y is between x and z then either 'x < y < z

or z < y < x. In, the first case,

AB + BC =-Ix YI + IY- zl

=z-x= - z I =AC,

and B is between A., and C. The cake z < y< x proceeds

similarly.

Conversely, suppose .B is between. A and C, so that

Then

I
There are

AB + BC = AC.

Ix - y1 +\Iy., z1 = Ix - zi.
eight possible cases of thit; equation:

(x y) + (y z) = x z

(x y), + (if - z) = z x 6

(x y) + (z - y) = x z

(x y) + (z'- §-) = z x

(y -x) + (y - z) z

.(y - x) + (y - z) ='z x

(y - x) + (z - y) = x z

(y - x) + - y) = z x.

1

.11.. 19 9'
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f

The:six middle cases lead to x'= y, x = z, or y. z, none of

which is true because A, B, and C are distinct points, and the

correspondence between points and their coordinates is one-to-one.

The first case arises when x > y> z and thelast when x < y ' z,

so that in both possible cases, y is between, x 'and zl.

Theorem 4.2*. Of three different collinear pants, precisely

one is between the other two.

We remark that *
it may be possible to introduce many different

coordinate systems on A. line; intuitively, this 'meant that we shift

oup ruler along the line in some way,,or that we use a,different

ruler (i.e., We change theUnit of length). We emphasize; however,

that tie definition of betweenness is independent of the choice of

.a particular coordinate system, and that the Conclusion of Theorem

4.2 is independent of the choice of a coordinate system, although

'the proof- is not.
, *

In accordance with our remarkt on page 71 we do not wish to

change the'unit of ength,}utlemay wish to change the position

of the ruler on the kid. This is accomplished by the following

postulate.

Postulate 8. If A and B are distinct points on a line ,X

then d'doordinate system can be chosen on X, such thatthe co=

ordinate of A is zero end the coordinate of B is positive.

[

t 1.0

4
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. 8. Segments and Rays. We begin with some more defifiitions.'

Definition.. If A and B are different points on a line X,

the union of A,)3, And all points of X between A and B is

called the segment AB. A and B- are end-points of AB.

d(A,B) is the' length of AB.,.

s

Definition. If A =and B are different points on a line

the union Of 4 and all points P on X, such that B is

x,

between .A and ,p is called the ray AB A is the end -point ofi
. .

AFB
V 0

X2

Definition. If A, B, and C are different points on a line
3. .

and C is between A and.. Bi the rays CA and B are

said to be opposite.

Theorem 4.3. .Giveh-a 'coordinate system on a line, the set of

points whose coordinates,are positive or zero is a-ray, and the set

of points whose coordinates are negative or zero is the opposite

'ray.
4

Proof: Let A have coord4ate zero,' B a positive coordinate

x, C, a negative coordinate 'If P A point whose coordinate

z id positive or zero, then by (0.1) either.

z =0 and P A;.

z = x and P. B;

- x > 0 and B is between A and P; or

-(z - x) > 0 and P is between A and B.-
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-->
311 ancy case P 'is a point of AB. Conversely, if P is a point

of"p the four cases can be reversed to prove that z is either

positive or zero.
--*

The relation between negative Values of z land the ray AC

is proved in a similar way. -Since A is between B and C,

--*
is opposite to AB. -

Theorem 4.44. The union of two opposite rays is the line

containing them.

V
Theorem 4.5*. A ray is determined by its end -point and any of

4

its other points, i.e., if C is a point of AB other than A,

>
then AC = AB.

Theorem 4:64. Given a positive real number, r, on any ray

,there is exactly"one point whose.distance from the ray's end-point

is .11. t

'Theorem 4.7 Given a line I., a point P on X., and a

0 positive real number r, there are exactly two points on x whote

distance from P is r.

--> ,

Theorem 4.8*. If P and Q are points on the ray AX, then
ti

P is between A and Q if and only if AP < AQ.

. I

Thebrem 4.9 If C and, D are different points of AB (or;

Of AB), then every picki.nt of CD is a point AB (or of AB).

1 .1 2
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_. ' /

Theorem 4.10. If A and B are distinct,points there i

exactly one point M on line AB, such, that d(A,M) = d(B,M)

Proof: Let p and q be the coordinates of A and B in

. a coordinate system on 1, arid' let x be//the coordinate of
. . /,

;essuning the M exists. If AM =_BM w must have
c

There are two cases (the reader will, call a discussion o this

problem in Example 3 of 54).

(i) p - x =q -x.

This giVes p = q, which is impossible since A and

different points.

(ii) p - x x - q.

are '

1,
,This equation has the unique solution x = Trkp + q),' /and the

unique point M on X with this coordin4e is the point'required

in the statement of the theOrem------, / --
3

.Definition. Let A and B be different points on a line X.

The unique point M on X with the property that AM = BM_ is

,called the mid-point of the gment AB. .

Definitions. If A, B, C are non - collinear points, the union

of AB, Bp, and .CA is called a triangld. These three segments

are called the sides of the triangle; the points A, B, C the

vertices of the triangle. 'A vertex and a side are said to be

adjacent if the side contains the vertex, otherwise the vertex and

the side are said to be opposite. We shall denote the triangle
.0

.with vertices A, By p by the notation A ABC.

173 11
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those that have already been introduced. 'For_example, tiv reader

is invited to' give a precise meaning to the statement concerning

1

the three points A, .B, C on a line, that A and B. are on

Chapter 5

Separation in4Planet and in Space.

1. . ,Introductory Remarks . In Sections 7 and 8 of the'

preceding, chapter, the order of points on a line was discussed

with,the;fieli)of a prise definition of the relation of between-

ness f7points on a line. One by-product of our efforts IS that

tile

*

reader now has the tools to formulae meaningful definitions

and .oblems,concerning the order ,of points on a line, besides

the same:side of C.

r.0

Corresponding problems can now be raised concerning aines4n.,
.w

the plane or in space. For example, given three distinct coplan4r
e - ,--> --). -:->, ,

rays OA, OB,. OC, the reader will observe that at this point.

/
he Fs unable to give meaning' to the statement thop theray OB

A ,0'"\ --> --> Jr
is between the rays OA and OC. Or given a line X in a plane

p, what does it mean to say that-two poiAts A and p in the

plane p both lie on the same side-of ,P,,,:Other questions which

'will present.themselvesaater are Plese: What is meant by the, .

4,
, 1

interior of an ang e? What is the interior of a ttiangle?
,

ost of the i portant thed triangles can-

e
t
orems on angles and

no e" establish =d in,a satisfactory way witnout coming to grip's
,..

with these "separa on" roblems in the plane. This chapter %
.t

contains only the basic separation axioms and their consequenC'es,

V 7

Cr
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but the subject will demonstrate its importance and power timeand

time gain in Chapter 6 on angles and Chapter 7 on congruence.

he reader may be concerned about our insistence upon a de-

taile study of seemingly trivial points. To this we say first

that he reader must admit that the difficulties we consider do

exis so that it is only natural that we should confront them

forthrightly. There is also the point that the geometry we are

developing is intended to be a mathematical model of 440 perceptual

geometry. Thus some of the difficulties we faCe are concerned with

whether our mathematical modil is Appropriate, and the fact that

we'can overcome them gives us confidence that our mathematical
I

geometry is in agreement with our intuition.
. r

2. The Separation Postulates, in the Plane and in Space.

There are two separation postulates, the first describing ehe

separatioh of a plane into two half-planes by a line; and the

second, the separation of space into two half-spaces by eplane.

Postulate 9.- If X is a line and p a plane containing X,
. ,

the points of p not in X oonsist of- two non-empty sets, called
Pe,

half-planes, such that if two points X and Y are imthe same

half-plane the segment XY does not intersect the line and

ro

if 'X and y are in different half-planes, the segment XY does

intersect the line X

I, 0,

1 1 5

4 j,
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Postulate 10. If p is a plane} the points not in p

sist of tWo non-emp y sets, called half-spaces} such that if two

points. X and Y ar in thersamehalf-space) the segment XY

does not intersect the plane '13:, and of A and Y are in dif-,

ferent half-spaces, the'segment XY does intersect the plane:

o

'Postulate 9'can be proved fgom Postulate 10, but it is in

keeping with oupelementary pproach to present these separation
Q 4

properties asi.distinct iostulates.

3. Theorems on Separation in the Plane-and in Space. We
. .

begin with some definitions.

a pl

De inition. Two points in the same half-space defined by

p are said to be off same side4a. p;_ two points °in

different half-spaces aeterMined by p are

sides of ,p. Sihiilarly, two poi

opposite sides of a line in t

4

o be on' opposite

n -a-plane are on the same or

lane according as they lie in.
.

the same or different half - plants determined by the line.
tf

'i

..1.

Definition. A line is said t be the edge of-any of the;

W
. half-planqs determined by it. A plane the

1

face of either of
( 4 ,

the half - spaces' determined by it.

First of all vie. observe that the "if" statements in

Postulates 8 and 8a dan be replaced by "if and only if." t We

have:

(3.1)* TwO different po;nts- A and 13 lie in the same
1

half-space or half-plane h if and only if AB does not intersect'

1 1 6
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'Woe face or edge, respectively, of h.

Theorem 5.1.. If h is a half-plane or alaalf-spate, and if /
f

'^A 'Ad B. are two different points in h, then every point of

9

41

AB is in h.

Proof: Assume first that h .is a half-plane and let X beA 't

Ithe edge of h. Let C be A point of AB; if C = A, then C

is in h by assumption, so,that we may assume C / A. By Theorem

4.9 every point-cf Ad is a POin of AB. By (3.1) no point of

AB/ is on X, and consequently no point of ,.AC is on_X,
4

3.1) again, A and C are on the same side of .X Because

is in h, so is C,, and the proof for the case of a half-plane

is oompleted. The proof in the case of a half-space is entirely
. .

analogous to the argument we have given, and the details will be

omitted.

Theorem 5.2.
4i

If h is a half- plane with edge
,

or a half-
. % ,

/

'spade. with face and if A J. a point and B a point of
-->

h, then every point of tne ray AB, other than A, is in h.

For convenience, when the conditions of Theorem 5.2 are
c, >

satisfied we shall,say that AB lies in h, although this is not.

strictly.true because A. is not in h. '

Theorem 5:3 In a plane p consider six points with the

following reia ionships among them. A, B, and C are non-
,

collinear, B is between A and D, E is between Bo and_

and also between A and Then in the plane 4p, C and ,F

17

c.?
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a on the same side of AB'and D and F are on the same side

*-->
,of BE

.

,

Thl theorem is used in Chapter 7 to prove that the measure
.

oCe.n:exterior angle of atriangle is. greater t an the measure of

either 0 the remote interior angles.)
. "," i.

Before beginning the proof the reader is advised to makes.

figure to fix the relationships in hismind. It is also helpful

to derive the following preliminary result.'

, I
/ (3.2) If in,a plane p, C and E lie Qn the same side of

a line /X in p, and if. E and F fib on he same side of, X,

then and F lie on the same side of X.

Proof of (3.2): Let h be the half,-pl ne,wfth edge X eon-

taining C. and E: Then- C and F also ljie in h. Therefore,

E and F lie on the same side of

Pro° of Theorem 5.3: From the hypot sis of the theorem,
4-* 4->

the lin s AB and are distinct ana i tersect in the unique
4->

point B. On BC, 'E is between B and.; C. By Theorem 4:2, B

is not between C, and E, Consequently ko point of the 'Segment

ies on AB and 'it follows that C and E are on the same

de of AB. Because E is not on AB, AF and- A istinct
4-* *--> 4-*

lines intersecting at A. Becalise. E is between A , A

is not between E and F and we conclude as before that E and
4-*

.p are, one the same side of AB: By (3,,2).? C and F are on the
4-*

same side of AB; and the first assertion is proved.

For the Second part? observe that the segments AF and _AD

both intersect the BE In tcle points B and E respectively.

141 8

A

1



112

4-
4.-.)--

.
.

tMoreover none of the points A, D,
,

or F lie ono the line BE.

e'

Therefore
.

A and F lie on opposite sides of BE and, A-. and

,;E-0. t

D lie on opposite sides of BE. 'Let h and h' be the half-

planes determined by the line, E. If -1 is in h, then both -

. F and D lie'in h' and we conclude that F and D lie on- the

same side of the line BE. This completes the proof of this

Theorem.

.Theorem (Axiom 4of Pasch). If a line in the plane of

ABC intersects AB in a point D between-, A, and B,, -then
;

1 either contains C or A, oi - intersects AC but not BC,

or X intersects BC but not A .

Proof: If X contains C or A then there IS nothing to

proyp. Thus we may assume that X does not contain C and

int'rgpcts AB, in the unique point D. By (3.15, A and

on opposite sides of X, ,Let h and* h' tie the'halfOines ik
, ,,, 4 e

'1 4

t plane if the triangle' ABC with edge X, and"suppO* tneetA
. e:t `kr ,". r

is in h, B in h'. Because- C is not on X,',,ip-;:is::WIther In

...n ..4 _i ,

h or in, hi% If C ig _:iit h',, then' A and Q -00 orF opposite

.. i...,,,.'31. z

sides of X, and X iniersectEr, AC, while becardie7 B ',and C 'Pt4

4 .'',' 1. -

/

. are on the same side of X, BC does nAintorsect, X.:.- Similarly,

/ .
...'

4t. , .

A ..f

if C is in h, then X intersects BC ;hut, not? AC. This

completes the proof. . p -

In his approach to geometry, Hilbert used Theorem 5::4 as a
.,'

postu inPplace of our Postulate 9.
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4. Convex Sets in thePlane. In a way this section is an

appendix tothe chapter; it introduces the reader to some ideas

h approved to be of great-importance in present day mathe-

-t;matiCs,lgtt Whieh lead very rapidly outside the realm' of elementary

feometrk. On the other hand,it is possible to develop at least

the simplest parts of the,subject As an application of the work we

have one in this chapter.

Throughout the section, we Mall consider sets of points,

ilying in a fixed plane p.

Definition. A set of points 'C the plane p is said to ,

be convex 'if whenever A and B .belong to C, 'so does the,entire
,.

.Je"segment AB.

The simplest example of, a convex set is the whole plane pr

A-less trivial example is given by the following remark.

(4'.1) A:half:plane is conve'.X:.

This assertion is merely a restatement of Theorem 5.1, In

fact the reader may verify that the first pdrt of Postulate 9 ,

could be replaced by the equivalent statement:

.1140 is a line and p a plane containing I, the points'

of p not in X consist of two non-empty convex sets, called

half-planes.

One of the most useful,prOPerties of convex sets is the

following:

(4:2) The intersection of two oe'more convex sets is convex.

QuedtidEf __Te the union of two eviex Sets always convex?
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Definition. Let A, B, C be three non-collinear points.

'Let HA be the half-plane with edge .B0 containing A, HB the

half-plene with edge G containing B; and HC the half-plane-
4->

with edge AB containing C. The intersection of half-planes

HA, HB, HC is called the interior of the triangle ABC.

(4.3)* The interior of a triangle is a convex set.

Exercises

1. Prove Postulate 9 from Postulate.10. (Hint: Let q be

a plane distinct from p and containing _/ , and apply Postulate

10 to q.)

2. Determine all convex sets which are contained in a line
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Chapter. 6

Angles and the Protractor Postulates.

1. Introduction. In Chapter"4 we were careful to distinguish

between the concepts of a segment and its length; a segment was

defined as a point set$ and its length as the real number measuring

the distance between the end-points according to the Ruler Postulate

The-approach we shall adopt in this ohapte is similar to the

. discussion in Chapter Thus alt angle is defined as a geometrical

i.e., a point set, consisting of the union of two non-

,-
collinear raya*th the same end-point. With every angle is asso-

ciated a unique heal number which we shall call the measure of the

angle. 'The properties pf this measure are stated, for convenience

in four postulates, which together constitute an abstract''

"protractor," Just as Postulates 6, 7 and 8 specified a "ruler".

That is, we assume that we are given once"and for all a "protractor",

a segment together wleth a semi-circle with the spinent as diameter,
4

such that at each point on'the circumference of the semfLcIrcle is

marked a real number frai 0. to 180, 'and such that ach real

number from Cr to. 180 has its mark on or protractor. Then an

angle consisting of the non-collinear' rays QA 403 can be

measured by laying down the protractor in such a-**ay that Q

lies at the mid-point of the straight edge of the protractor and

A and B lie in the half-plane determined by 'the extended edge

of the protractor and contalning he marked semi- circle on the
A

protractor. then the rays and QB will intersect the arc

, 122
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of the, protractor in two points, at which we may read the real

numbers a and b respectively. The measure of the angle AQB

then is given by la -

. We emphasize that as in our discussion of distance, we are

adopting a fixed unit of angular measure, which we shall call the

degree. Of course it is possible to replace 180 by any other

positive real number and thus change the unit of angular measure.

,As the reader may verify, however, such a change will not affect

the statements'or content of our theorems in any significant way.

The one big difference between measure of distance and

",, measure of angle lies in the fact that any positive number is the

measure of some distance, whereas the measure of an angle,is

restricted to a limited range of` numbers, 0 to 180 it we use

the degree as the unit of measure. In general this makes angles

more, difficult to deal with than segments. One way to get around

this restriction is to define "angle" differently, so that it is

no longer merely a point set.' This 'introduces other, difficulties

but, it is found, to be essential for a eomplete treatment of

trigonometry.

It is worth knowing that in one of the so-called "non-.

Euclidean" geometries the measure of distance isexactlyanalo- e'

gous to our measure of angle. Going in the other'direction, one

might try to develop a geometry in which both distance and angle

are aliLowed to have arbitrarily large values. It turns out, how-.

ever, that it is imposs.ble,to dd this and still preserve the

basic incidence postulates of Chapter 3.

123.



2. Definitions and the Separation Properties. All the

definitions and results lean heavily on the material on separation

given in Chapter 5.

Definitions. An angle the union of two non-collinear rays :

with the same end-point. The two rail's are called the sides of the

angle; their common end-point the vertex of the angle._

Notations. If BA and BC,- are non-collinear rays with com-

mon end-point B, we shall denote the angle formed by them by

L ABC (read "Angie ABC"). Conversely the notation L AEC will

be used whenever A-, B, C are non- collinear'to denote the angle
--*

which is the union of the rays BA and BC. Sothetimes we shall

abbreviate L ABC to L B when there is no plossibility of confu-

sion.

We remark that if A, and At, B,, CI, are two,bets of

non-collinear points, we have

L.AEC, = '41'93A

--a
If and only if the union of the rays BA and BC is the same

point'set as the union of the rays B'A' or Bide. This requires
---> , ,

that B = B', A lies on Beloit' or B'C', etc.

Definition. The interior of L ABC is.the intersection of

the half-planes, hA and he, where hi ..fs the half-plane with

edge BC containing A and h
B .

is the half-plane with edge. AB

containing C.
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Definition. The exterior of an angle is the of all points

.
in the plane containing the angle which are neither on the angle nor

,.

the interior of the angle.

Definition. Two angles are said to be adjacent if they both

lie in the same Plane and if they have a common side such that

their other sides lie in opposite halfplaries determined by the

line containing their commoft side.

Definition. The vertical angle of the'angle ABC is the
--> -->

angle formed by the rays opposite to BA And BC.

. Definition. Given a triangle ABC, the angles LBAC, L ACB,

and L CBA are called the angles of the'triangle.

Note that an angle of a triangle isjlot a subset of the tri-

angle. L ABC is.the union of the two rays BA and BC, whereas

AABC contains only portions of these rays, namely segments BA-

% --
and BC.

The following theorems state and prove the fundamental sepa-

ration properties of angles. Most of these properties are

"intuitively obvious" and at the'same time rather difficult to

prove. (This is a common situation-in mathematics.) These proofs.

are therefore not appropriate for presenting to most high school'

students. In the text book these"obvious" properties wotild be

assumed. Howdver, a good teacher should realiz that they require

proof (unless we introduce them as additional postulates) and

should be able to prove them.
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Theorem 6.1. Any Idoint between A and B is in the interior

of Z. AQB:

/
Proof: Let. P be a point between A and B. By Theorem =5.2,

every point on the ray B- A other than B lies in the half-plane
4-*

with edge QB containing A, and since P lies on the ray

P is in this half-Plane: Similarly P ,lies in the-half-plane

with edge QA containing B, and so,by the definition at the

bottom of page 117, P is in the interior of L AQB.

--*
Theorem 6.2. If QB and QC are different rays in a half -

plane "with edge QA then either B is in the interior of L AQC

or C is in the interior of L AQB.

Proof: First we sketch the basic idea of the proof. We have

- to,prove that either one of two statements is valid. Consider

the first statement:

then there is nothing

prove that the second

it is either true or false. If it is true,

to be proved. If it is false,' then we must

statement is true. Therefore it is suffi-

cient to prove thatzif B is not in the interior of L AQC, then

C is in the interior of L AQB.

Let h be the half-plane with edge la 'containing B and

C. Because the interior of LAQC is the intersection of h
.

with the half-plane h' rwith edge QC containing A; B does

not belong to the interior of L AQC only if B is not in h'.

If this occurs we must prove that C belongs to the interior of-

. LAQB.

2, 6
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Thus we suppose B is not in -III; then A and B are on

Opposite .sides of tr, and AB intersects QC in*a point R / Q.

Our first objective is to show that the -rays QR and 'IV

are identical. The only way this can be false is for QR and QC

to be oppOsite rays. In this case,' Q is between = R and C, and

since 0' is in the half-plane- h, R is in the half-plane h"'

4E-4.
With edge QA opposite to h. By Theorem 5.2, every point.on the

-30
ray AR other than A is in .h". Since R is between; A and

B,, B is on AR, and hence lies in h", contrary to the hypothesis

that B is in h. Therefore it is impossible foe QR and QC to

be opposite rays, and we have QR = QC

Now we are ready to prove that C is in the interior of

L AQB. Because R is between A and B, Theorem 5.1 asserts

that R is in interior of L AQB, and since- QR =1QC, we conclude

that C is also in this interior. tThe reader is asked to supply

the argument for this last step.]

[We remark that if one'draws a figure for Theorem 6.2; it is

hard to imagine how it could be false. We should remember, how-

'ever, that our geometry is an idealization of our experience, and

the fact that our axioms'are sufficiently powerful to make a formal

proof of this theorem possible at alii' encourages us to think that

our geometry is not such a bad model of our perceptual geometry. .

The same comments apply to other theorems in this section, espe-
.

cially 6.3 and 6.4.)
.

Theorem 6.2 will be Very useful when used in conAinetion with

Postulate 13.

X27
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The proof of the next theorem is quite complicated, and is

easier to follow if we state, for reference, a simple consequence

of Theorem 5.2.

Lemma. If X is a line in plane p, U and V different

points on X, and X 'and, Y points in p on opposite sides of
-3. -->

X, then UX and VY do not intersect.

(A "lemma" is a-theorem which is 9f no real interest ift it-

self but is useful in proving other theorems.)

gr.

Theorem 6.3. If P is a point in the interior of Z. AQB ,>
then QP intersects AB.

-->
Proof.: Let QP and QA' be the rays Apposite to T? and

QA. For convenience we list the various separation properti of

our figure:

(i) P and A

(ii) P and B,

(iii) P and PI

(iv) P and P'

(v) A and A'

(vi) A and A'

4->
are on the same side of QB,

4->
are on the same side of QA;

are on opposite sides of. QA, 4

are on opposite sides of V
4.4.

are4on opposite sides of QP,

4-*
are on opposite sides of QB.

a.
The first two folio* from the definition of interior of an angle,

the other four from the definition of opposite rays.

We wish to prove two things:

4->
(1) That A and B are on opposite sides of QP,

(2) That AB does not intersect QP'.

Our theorem will follow from these, for if AB intersects 1?

8 n ,
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(from (1)) and does not Intersect QP,,,then AB must intersect

Q.

We'prove (2) first, since it is easiest. From (ii) and (iii)

it follows that ,B and PI are on opposite 6f4 QA. If we

apply the lemma, with X = QA, U = A, ,V = Q, X = B, Y = P',

we see that AB and do not intersect. By Theorem 4.9,

AB and QP' do not intersect.

We now tackle (1), which is a much tougher job. The proof

falls into three parts.

(a) From (i) and (vi), At and P are on opposite sides
4->

of QB. Applying the ,lemma X = QB, U = B, V = Q,,X = A',

Y P', we have-that BA, does not intersect QP'. Hence

(Theorem 4.9), BA, does not intersect

-.(b) This is similar to (a), starting with and (iii)

andlending-with --A1B not intersecting QP.

. (c) From (a) and (b) it follows that -AID does.not iinnter-

sect I741!; that is, Al and B are on the same side of V.

Combining this with (v) we have that A and B are on opposite

sides of P4->Q; that is, AB intersects PQ, as was to be proved.
.

This theorem is a god illustration -of the complications one

clan get into in proving, an "obvious" result. This property of an

angle is tacitly assumed in most geometry books, for instance
1

when one speaks A the internal bisector of an angle of a triangle

intersecting the opposite side (e.g. the first proof of Th 'eorem

. 7.1).

LI 2 9.
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The following theorem, while not as.basic as Theorem 6.3, is

interesting, It follows from Theorem 6.3, but is not easy.

Theorem 6.4. If P is a point in the interior of A ABC

then any ray PQ intersects A ABC in exactly one point.

Suggestion for proof: Consider the possible positions of Q

with respct to the rays PA, PB, and r't and the angles they

determine.

The f011owing theorem will be used in Chapter 9. Its proof

is relatively easy and is left as an exercise. ,

Theorem 6.4a. Given L BAC, if X and U. are points on

AB such that 0 < AX < AU, and Y and V are points on AC

such that 0 <AV,< AY, then XY and UV intersect.

3. Protractor Postulates.

)

Postulate 11. To eve angle' ABC there corresponds a

unique real number betty n 0 and '180, called the measure of

angle and designated by 111(L ABC).

Postulate Y2. QX be a ray on the edge of half -plane h.

For any real number r between 0 and 180 there is a point Y

in h such, that the m(L XQY) = r.

Postulate 13. If D is a point in the interior of L AQB

the m(L AQD) + m(Z BBD) = m(AQB).

ao
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Postulate 14. If tt and T/. are opposite rays and Tie

another ray then m(L AQC) + m(L BQC) ='180.

Theorem 67).5. LeA QA be on the edge of half-plane h, and

QB and QC be different rays in h: Let m(L AQB) = r,

\-2%m(Z ) = s. Then

(1)- r / s.

(2) r < s if and only if B is in the interior of L AQC.

(3) m(L ) = 1r

prOof: Fr .m Theorem 6.2, either B is in the interior of

L AQC or C s in the interior of L AQB. We put the two eases

in-parallel columns.

B. in inters

n1(Z AQB)

r of L AQC.

BQC) = m(L AQC).

C in interior of Z AQB,

m(L AQC) + m(L BQC) = m(L AQB).

(Postulate 13.)

m(L BQC,) = 111(Z AQC) 111(Z AQB) m(L BQC) = m(L AQB) In(Z AQC)

= - r = r - z.

(1) In either case, since m(L BQC) / 0 (Postulate 11) we

have r / s.

(2) Since r < s is equivalent to s - r > Ot and since

m(L BQC) > 0, r <'s goes with the case, B in the interior of

L AQC.

() In either case, since m(L BQC) > 0, m(L BQC) =.11, -

This theorem shows that our angle measure behaves much like

our distance measure as specified by Postulates 1 and g.

13J
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areTheorem 6.6! If QB and QC arp different rays ina half-

,plane _with edge QA then we cannot have simultaneously .both

7"--in the interior of L-AW and C in the Anterior of L AQB.

4; 'Theorems on Angles Formed 25

Consider two Lines X and which

point Q. Then there exist points A

on opposite sides of X', and points

lie on opposite sides of. X. First of

ble angles with sides QA, QB, QA',,

an angle must be non-collinear, there
-30

side AiA, namely,

The angles with side

with side QA',

Two Intersecting Lines.

intersect in the unique

and -B on X which lie

At and B' on which

all we determine all possi-
,

- ->

QB'. Bcause the sides-of

.are exactly two angles with

AQA', L AQB'.

- ->

QB are

BQB';

A'QA, , L AIQB;

and with side QB1,

4Z/B,QA, B'QB.

Of these there are exactly four distinct angles, namely

AQ', L AQB', BQA',

These four at--

'ing lines X

are called the angles formed la the intersect -

and' X'. Of these we can select out exactly four

pairs of adjacent angles, namely

132



L AQA1,

AQA',"

°Z AQB'.,

126

Z Apt ,

BB'

Z BpA ,

L BB'

common`, side jva,

common side' QB,

common side QA',

common side QB'.

fix`" These are, all possible pairs of adjacent angles, and we check that

thAirst pair are actually aapcent in the sense of the definition;

since, by-assumption, Al and B' lie in opposite half-planes

determined by theA.ine X containing the common side QA Because
.

42A and V, and -al and V.,' are pairs of opposite-rays, it

is clear that there are exactly two pairs of vertical angles forMed

by X, and Xf, amely

Z AQA1, EQ.131;
orr

. -and

Z AO', -Z BU'.
v 1

V .

Definitions. Two angled-arej acongruent if their m asures r, e

equal; they are supplementary if the sum of their measures is 1130:;\
o ,

..'

(each is said to be a supplement to the other). ,,

7
\

Theoremia. When tWO-,lines, '''-and-141,,,Jmt4rse t, adjacent

singles are supplementary, and vert cal angles are congruent. <

a

s. !
(Note that it is incorrect in our setup to say that vertical

angles are equal.]

Proof: Let Q,' A, B, A', .111, be defined according to the

r

beginning of this section. Although there Are four pairs of ad-
.

jacent angles it is sufficient to prove that LAQA1 and L AQBI

arelsupplementary, since any of the other pairs can then be taken

133
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C4re of by this case and a change of notation., Because the segment

/OBI intersects
$

in the unique point Q, Q is bet en Al

and, B', and QA' and QB1 are opposite rays. By postulate 14,

(L- AQA') te(2:1Q,B) = 80,

,and the first assertion of the theorem is proved.

For the second assertion we shall prove that the vertical

elle)es L AQA' and L b*,-J;tre congruent. Consulting our table

of adjacent, angles, both dr these angles are adjacent to the com-

mon L AU'. Applying the first assertion of the theorem, the

reader can now verify at once that L AQA' and L EQ3%1 have"equal

*asure. \

Theorem 6.8! If two adjacent angles farmed by two intersect-.

Jag lines are congruent, then all four are congruent.--

Definition. If two adjacent angles formed by two intersect-

ing lines are, congruent the lines are said to be perpendicular

and the angles are called right: angles.

.

Theorem 6.9. An angle is a right angle if and only if its

measure is 90,

',Definitions. An angle is said to be acute if its measure
,

i As less than 90; obtuse if its measure is greater than 90.

line
s4

-perpendicular to a given -line at a given point 431theline--
*

Theoreth 6.10. In a given plane there is one arrl only one

VI.

c'7
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-46 em 6.11. If adjacent angles are supplementary their

116e omigVides are collinear.
,

Proof: let L AQB and Z. BQC be adjacent and m(Z. AQB) +
-->.: , --->

'BF.A.)
0. Let QA' by opposite to QA. Then m(Z. AQB) +

1 %.

: 4 1a § Wyt t 9 A l t i h t t, ) a : 5 c 1 s 0 m(Z. BQC) . m(L. BQA!). Now
_ .

A and C are on opposite sides of BQ (definition of adjacent"

angles) and so are A and At. Hence At and C are in the

same half-plane with BQ as edge, and it follows from Theorem
--> -->

6.5 (1) that QC = QM. This proves the theorem.

, Exercise

Let m and n be distinct coplanar lines and-X a third

line intersecting m and n, in distinct points A and B. (X

is a transversal to m n.) Give definitions of the following

terms: interior angles, exterior angles, alternate interior' angles,

altaimate exterior'angles, corresponding angles (sometimes called

exterior-interior angles).

5. Theorems on Bisectors of Angles. In this concluding

section we establish the existence and uniqueness of the internal

and external bisects of an angle:

Theorem 6.12. Given Z. AQB,'- there exists a unique xs.Y. 'QM
I

in the interior of Z. RW'saU"ch-that=--6.

m(LAQM) = m(L BQM).

4
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Proof: Let h be the half-plane with edge QA and contain-

ing B. By Postulate 12 there'iss a ray QM in h with m(L AQM)

= .Z AQB).- By Theorem 6.5 (2), ''M is in the interior of L AQB.

By Postulate 13 (or Theorem 6.5 (3)),

m(L BQM) = m(L Ate) - m(L AQM)

1
= ..2m(L AQB).

m(L AQM).

Thus QM has the desired properties.

To show that there cannot be more than one such fay,
--->

QN have the same properties. Then since

m(L AQN) = m(L BQN)

and

m(L AQN) + m(L BQN) = m(L AQB),

(Postulate 13) we must have

m(,L AQN) = -gn(Z. AQB) = m(L A QM) .

By Theorem-6.5 (1) this is impossible if QN is different From

let

QM.

Definition. The ray QM described in Theorem 6.12 is called

the bisector' of AQB, and is said to bisect L AQB:

*
Theorem 6.13. Let QM1 be the opposite ray to the bisector

QM of L AQB. Then m(L AQM') = m(L BQMt).

Definition. QM' is calltd the external bisector of L AQB;

by contrast zi;Jvr is sometimes called the Internal bisector of

AQB:



a

Theorem 6.14.A (Uniqueness of the external bisector.), Let÷
QP....T in the exterior of L AQB, and suppose that m(L AQP) =

m(L Then QP coincides with the external, bisector QM!

off.kkaB.

0

0
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Chapter 7

ti

Congruence

1. Rigid Motion in Euclidean Geometry. We have seen that

the basic concepts of geometry are idealizations of portions of

our physical experiences. One of the most basic of our physical

experiences is the motion of a rigid body. Movement in general

is one of the first physical phenomena we perceive. g clear -dis-

tinction between the movement of a rope and that. of a stick comes

much later but is certainly-well established by high school age.

Euclid took the concept of the motion of a rigid body for

granted, just as he did most of the separation properties, and

seated no postulates concerning it. If wOvish to make use of

the concept in our treatment we must introduce suitable defini-

tions and postulates to haddle it properly in our proofs. This

can be done, but it turns out to be difficult and rather complica-'

ted.

It is also unnecessary, for if we examine Euclid's g7mery

we find that'the concept of rigid motion is really not p It of it.
4

Euclid's is a static geometry, not a kinetic one. Th kinetics

of Euclidean space is of course very important, biu its study is

generally regarded as part of mechanics. This i purely a matter

of convenience; we prefer, in the interest of simplicit, not to

° introdube time into our geometry. (It is interesting to note

that in Einstein's Theory of Relativity it was found extremely

°useful to introduce the concept of time as part of the geometry.

138
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This introduction was made in 1908 by the German mathematician
ze

Hermann Minkowski, and Minkowskian geometry is now a well estab-

lished branch of mathematics.)

2. Basic Definition of Congruence. Consider Euclidts proof

of the side -ankle -side theorem. Although he speaks of placing one-_

'iriiiiigTer-e14 other he is not really interested in the actual

-motion, involving all intermediate positions of the triangle, but

only in the beginning end end positions. We shall therefore ignore

the possible intermediate positions entirely'in stating our defini-

tions and' postulates.

Given twofigures (point

sets) F and G; if, intuitively,

G can be moved to coincide with F
F

each point of G must be moved to

coincide with a corresponding point of F, and, for the motion

to be rigid, the distance between any fao points of G must not

change while G is being moved. How can we express the essential

features of this situation without using the concept of motion?

Very easily:

(1) There must be-a one-to-one correspondence between the

' points of F and those of G;

(2). If P and Q are any two points of F, and PI and

Q1 the corresponding points of G, then we must have PQ

A, correspondence of.this type shall be callek a congruence

between F and G, and the two figures shall b said too be

congruent.

139
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.

In most treatments of high school geometry the stress is pUt

on the second of these definitions, as is easily seen from the

wording of the theorems. We prefer,to emphasize the first, for

the following reasons. In certain cases two figures can be con=

gruent in more than one way, that is,-there may be more thanone

congruence between them. It may be of great'importance to dis-

tinguish between these different congruences. In the second place,

it is qUite possible for a figure for be congruent to itself. In

fact, this is always the case, since if every point is made to

correspond to itself conditions (1) and (2) are oertainly

fied. But there are important cases when there is anothernon-

trivial, congruence of the figure with itself; that is, one in

which not every point corresponds to itself. Such congruences -

are basic in a'precise treatment of the notion of symmetry.

Notation. A one4to-one correspondence in which A corresponds

to P, B to Q, C to R, etc. shall be written

A, B, C P, Q, R

If this is a congruence we write

A, Er, C P, Q, R

Note that

is-the same thing as

but not the same as

A, B, C P, Q, R .

A, t, B P, R,

A, C, B P, Q, R.

140
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Sample theorem. If AB = XY there is a congruence between

AB and XY such that A, B X, Y.

ParLal proof: Set up a coordinate system on AB with A

having coordinate zero and B a positive coordinate. Set up a

coordinate System on XY with X having coordinate zero and Y-

a positive coordinate. Let, a point P on AB' and a point Q on
4-r>
XY correspond if they have the same coordinates pn the respective

systems. This correspondence is then a congruence (proof left to
0 0 e

reader).
;7:

Corollary. There is a non-trivial congruence of a segment

with itself;, in particular, such that. A, B = B, A.

Proof.: Merely take the special case X = B, Y = A, whieh

was not excluded.

Theoambitious reader may try his hand at the proof of the

following theorem:

0
Two congruences as described above, with A, B 24 X, Y and

A, B Y, X, are the.only congruences between AB and XY.

3. A More Suitable Definition of Congruence.' Having now

given a satisfactory definition of congruence we must confess that

it is not suitable for a development of high school geometry. One

trouble liesf in the difficulty encountered in4-relating it to the

measure of angles. We certainly want angle measure to be preserved

also in our one-to-one correspondence. We can take care of this

with an appropriate postulate, but the treatment is somewhat

, 41
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artifical, Then too, we constantly run into proofs of the type
011

given above, requiring us to set up coordinate. systems on a line.

To avoid these complications we modify our approach and do

not try to give a general definition of congruence that holds for

all figures. Instead we define the notion in a series of-steps,

as follows.

Definitions. Two line segments are said to be congruent if

they have the same length. Two angles are /said to be congruent

if they have the same measure.
ti

Two triangles Ete said to be congruent if there is a one-to-,

one corresporidence between their vertices such that corresponding

'sides have the same length and corresponding angles have the same

measure. In this case the correspondence is called a congruence

The big difference between this last definition and the one

Wen in Section 2 is that this one is stated in terms of only a

finite number of,points, the six vertices of the triangles, where-

as the other involved all the points.of the two figures. This
4

one is therefore easier to apply. Its application is all we

ordinarily need in deve4ing Euclidean geometry.

o

-4. Tfte Congruence Postulate. Having now found, in the

concept of "congruence," away to avoid talking about "motion"

we must introduce some of the intuitive properties of rigicd

motion as postulates concerning congruence. It turns out that

only one postulate is needed. There are several choices for this,

N
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but a'simple and intuitive one to choose is the side-angle-side

statement itself:

Postulate 15. If there is a one-to-one correspondence be-

tween the vertices of two triangles such that two sides and the

included angle of one,triangle,are congruent to the corresponding

parts of the other then the correspondence is a congruence.

If one needs a justification for introducing a postulate the

familiar "proof" of Edclid is an.intuitiveargument that this

statement agrees with our conception of geometry as an idealization

of the physic-al world.

Let us now look at the proofs of a few basic theorems.

Theorem 7.1. If two sides of a triangle are congruent the

angles opposite these are congruent.

1
First proof: In t ABC let AC = BC.' Let OP, the bisector

of .L ACB, intersect AB in In the correspondence. ACD-H>BCD

we have AC = BC, CD = CD, m(L ACD) = m(L BCD). Hence by the

postulate t ACD = t BCD and m(LDAC) =

This is the proof given in most hig school geometries. It

makes use of two fairly complicated earlier theorems; namely, the

existence of an angle bisector and the fact that ray vCP inter-
uJ

sedts segment AB. (Theorems 6.12 and 6.3.)

Second proof: In t ABC let AC = BC. In the correspondence

ABC 4--*BAC we have AB = BA, AA = BC, m(L A'CP.,) m(L BCA).

Hence the correspondence is a congruence, and m(L BAC) = m(L ABC).
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In the second proof we make use of a non-trivial congruence

of the figure with itself.

In pIysical terms the first proof can be said to fold the

triangle so as to make the two halves coincide. The second proof

turns the whole triangle over. Proofs of this kind are frequently

applicable when the figure has an axis of,symmetry.

Theorem 7.2. Through a point, P not on a line m there

passes a line perpendicular to m.

Proof: Let A and B be any two different points of m.

-m sand p determine a plane, which is separated into two half-

planes by m. In the half-plane not containing P take .,r so

that m(L BAR) = m(L BAP) On AR take point Q so that

AQ = AP. Since Q and P are on opposite sides of m, PQ

intersects m in a point D.

.

,-°

rCa)P
1. D = A. By the definition of perpendicularity, PQ

is perpendicular to m.

.,
.

.," --->
Case 2. D / A, D on ray AB. Show that the correspondence

. ,

PAD t-NAD is g congruence and that this proves the theorem.

.Case 3. D / A, D on ray opposite to B. roof left to

'reader.

oa

This proof, though long, aVoids the difficulty in Euclid's

pl,00f of having to assume something about the intersection of a

. line and a circle. c=4

1
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Theorem:U. If two triangles are in one-to-one correspo dence

"such that two angles and the included side of one are Congruent to

the corresponding parts of the other then the correspondence is a

.congruence.
0

Proof: Let ABC4---)5CYZ sq that m(L A) = ip(L X),

m(L B) = m(L:Y),, AB = XY. bn ray A? take a point D so that

I))AD = XZ., The correspondence ABb4---).XYZ is then a congruence,

and VR m(Z:ABD) = m(L XYZ) = m(Z: ABC). It follows that ,BD = BC,

an4ence D = C. Therefore A ABC 2=A XYZ. (The reader is

expected to fill in the details of this and similar proofs.)
:

This type of proof might be called "proof by identification."

The essential feature is the construction of a figure which has

the desired property (AABD i this case) followed,by the demon,

. .stration that this figure is dentical with the given one. For

another proof by identificati n consider the side-side-side theorem.

-Thebremli. If two triangles are in one-to-one correspondence-7--
such that the three sides of one are congruent to the corresponding

sides of Ve other then the correspondence is,a congruence.

6

Proof: .Let ABC°-->XYZ. In the half-plane with edge AC

containing B. take P such that m(L CAP) = m(L X) , and on AP

take D such that AD = XY. Then A ADC p, XYZ, and' CD= XY = CB.

We wish to Show that D = B. Suppose that D / B, and let M be

the mid-1point of BD. Then A BMA A DMA. and so AM is perpen-

dicular to BD. In exactly the same way we can show that CM is

perpendicular to BD. This would mean that line re. contains M,
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wh atik s impo ible. (If M lies on AC then B and D are on
<>

opposite sides of AC, contrary toilstructi:on of D.) Hence

t)'= B and the theorem is proven.

This proof, nas some features in common with Euclid's Proposi-

stion 7, Book I. He proves D = B by a rather elaborate argument

with angles.

It is interestin at this
\-

g point to analyze the logical struc-

ture of the proof of Theorem:7.4? It is surprisingly-complicated.

4->
(1) Construct A ADC; with D and B on the same side of AC.

(2) Direct proof that A ADC A XYZ.

(3) Indirect proof. that D = B.

(a) Assume Di B.

(b) Use of previous theorem to justify existence .of

mid-point M.
-----....

(c) Indirect proo/ that BMA and DMA are triangles.

.4E--->

(i) Ass e 'A lies on line BMD'.,
. .

(ii) Indire t proof that A .does no\lie between
!---.

B and D,

Q .

0

(r)

Assume A is between B Yd

BD intersects line AC in,

Contradicts (1) -4,-

(iii) Direct proof that D = B.

(iv), Contradicts (t)

(d) Direct proof tha A BMA .!;'-':°A DMA.

°<-->

(e) Direct proof that AM is perpendicular to BD.

,(f) Proof that 4C? is- -perpendicular two BD, by analogy

with (c), (d), (e).

! 4 6

L

c.
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(g) Direct proof that BD intersects AC.

(in) Contradicts (1)

(4), Identity of A ABC %and A ADC.

r- -(5) Theorem follows from (2).

Note that most of the complication comes in proving the

"obvious" step (c). complications are of course not to be

emphasized in a high schools course.

Exercises

cA

1. Prove Th2orem 7.1 by,r.Euclid's

method, illustrated in the adjacent fi r .

2. Carry out EUclidts proof o his

Proposition 7, Book I, in the framewor

of our set of postulates. .

C

-

5. Further Theorems. With the three basic congruence

theorems proved we can move along the regular sequence of theorems,

with only occasional modifications needed insuv.iogical rigor.

4,,Tleshall list the more important theorems/ leaving most of the

proofs to the reader.

Theorem 7.5. If two angles of a riangle are congruent the

sidesoppositethemarecongruentan4the triangle is isosceles.

Theorem 7.6*. In a given plane p, the set of points equi-
,

distant from'two given points A and B is the line perpendicular

to AB at its mid-point.

11 4 7
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Theorem 7.7. If a line X is perpendicular to each of two ,

. , .

distinct lines m and n at their point of intersection W, then

it is perpendicular to every line Containing W ankpj101taf, with

m and -n.

Proof: Let -p be the plane containing 'm and n,' and let

r be any line in p and containing' W. W,,..wisla to prove that r,

is perpendicular to X. If r = °m or r = n this follows by

assumption, so we have only to consider the case in which x, m,

and n are all different. Let h be one of the half-planes with

edge M, let WP and WQ be the rays of r and n which lie in

h, and let S be any point of m distinct from W. Bi Theorem

6.2, eithe Q isin the interior of Z. SWP or P is in the

interior of Z.1,,iii>7$ the former, then by Theorem 6.3 WQ intern4
. sects PS; if the latter, than WP intersects QS. In either

case we obtain a line not containing W and intersecting m, n,

and r. The standard proof of this theorem can now be carried out.

Theorem 7.8. All the lines perpendicular to a, given line at

a given point lie in one. plane.

,` . .

Proof: Let X be a line and W a point of X. Let Q be

a point not 'on X (Postulate 1), u. the plane containing Q and

X (Theorem 3.3), and m the line in u perpendicillartp Z at

-W (Theorem 6.10). Let R be a point not in u, v the plane

containing_ R and X, and n the line in v perpendicular to

2,l' at W.- If m = n then u and v each contain-the intersect-

ing lines z and m, and so coincide (Theorem 3.4). This is

-

8
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impossible since v contains R _and- u does not- Hence m n.

Let p be the plane containing m and' n.

'We wish-to show that if k is any line perpendicular to

at W then k lies in p.- If k is such a line lets t be the'

plane containing and k. If 't = p lines %, m, and 'n would

be coplaner, which is impossible by Theorem 6.10. Hence t and p

are distinct planes which inteirect at W, and so by Postulate 5

.they have a line 10 in common, By Theorem 7.7, 10 is perpeh-.;

dicular to at W, and so by Theorem 6.10 10 = k. Thus k

lies in p.

Note that the basic idseaof,this proof is very simple. The'

length the proof is due to all the little details that must be

filled in to make a logical sequence, of steps. In most proofs we

omit these details, just as we omit continual references to the

associative, commutative, and distributive laws when doing algebra.

We should be aware of their existence, however, and be able to fill

them in if required.

Definition. The plane which .contains all lines perpendicular

to a given line at a given point of the line is said to b% perpen-

dicular to the line atthe point.

Theorem 2125 The set of points equidistant from two given

'points A and B is the plane perpendicular to AB at its mid-
\ .

point. % ;-4

/ .
. ,

.

The next group of theorems deals with inequalities between

.2==measures of angles and of distances. It will be convenient to

149
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shorten our terminology and say "angle A is greater thanLangle Bi__
or "-AB is greater than CD" instead of "the measure of angle A

is greater than the,measure of angle B" or ,!'the length of AB is

greater than the length of- CD."
6

Theorem 7.11: 1WeAerior angle of a triangle is greater

than either of the none-adjacent interior angles.

--> ,

Proof: Given A ABC, let BD be the ray opposite to BA.

Let E be the mtd -point of BC. On ray EF opposite to EA take

F such that EF = EA. By Theorem 6.7 m(L BEA) = m(L CEF). It

follows from Postulate 15 that A BEF 4 CEA, and so

m(L q) =m(EBF): Now from Theorem 5.3 it follows that F is in

the interior of DBC. (This was the reason for proving Theorem

5.3.) Hence from Postulate 13

m(L DBC) = m(L DBF) + m(L FBC)

= m(L DBF) + m(L C)

> m(L C).

Similarly one can prove m(L DBC) < m(L A), and the theorem is

established.

A

Theorem 7.12. If two sides of a triangle-are not congruent

the angles opposite them are not congruent, and the greater side

is opposite the greater angle.

Theorem 7.13. If two angles of aetria4ie are not congruent

the sides opposite thein ire not congruent, and the greater angle

is opposite the greater side.
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Theorem 7.14. The sum of the measures of any two sides of a

triangle is greater than the measur_

14

of the third side.

,

Theorem 7.15.
*

Through a given point not on a,given line there

passe's only One line, and only one plane, perpendicular Ito the

given line.

Theorem 7.1e If P is a point not on a line X and A

4*
and 8 two different points of X such that line AP is perpen-

,

dicular to X, then AP is less than BP.

6

Ats

S

4.1 4
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-Chapter 8

Parallelism

. -

1. 'Existence Theorems.

Definition. Two coplanar non-intersecting lines are said to

be parallel.
(0

We indica)e that lines m and n are parallel by writing-,

m II n.
4

Throughout this cheer we shall consider only points and

lines lying in one given plane. This will simplify our language

while still enablirit us to discuss the basic ideas. EAepsions

of these ideas to paralleliSm, of lines( and plav?es in Space can be

done in the conventional way.

With our present set of postulates We can'an easily prove

existence of parallels:- it is convenient to give a feW more

definitions.
)

A

Definition. A line / is a transversal to two lines m

and n if it intersects them in two distinct points. /"'

Definition. Let a transversal intersect line, m in

point P and line n in point (;. Let A be a point on m

and B a point on n 'so-that A and B are on oppogite sides

of . Then L APQ and L BQP are alternate interior angles.

1 5

r
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We can now state the basic theorem as follows.

Theorem 8.1. If two lines are intersected ilsky a transversal

so that a pair of alternate interior angleh.are congruent, then

the two lines are parallel.

Proof: Let .J , m, n, P, ---Z A,f. B be as in the defini-

tion of alternate interior angles and let L APQ ..:1"- L BQP. AssuMe

that m and n °are not parallel. Then they intersect in some

point 'R. Since A and .B are on,opposite sides of ,..1, , either

A or B is on the same side of .., as W. Suppose that 'R and
P ,

sit are on the same eideof ...?4 In the triangle PQR,
. . * .

CKPQ = 2.1_,RPZ is an angle of the triangle and z HQ? is-an
.cla

opposite
'

alerior angle,' Hence by Theorem 7.11, mL BPQ > mL APQ.

But thia,bontradicts the hypothesis that L BPQ L.1= L APQ. Renee

.1n and n cannot intersect on the 'same side of as 'Aft, An

e .

exactly similar argumeilt shows that they cannot intersect on the?
o

.(,-,same stile of J as B. Hence they cannot intersect atl, all, ,and,

so they are parallel.
.,,

/
. e ,

/C: 4 / .. ,,..

.

, .

Corollary 8.1. Two,terpendiculars to the same line are
(

pithlael. : ,

I -' -

Corollary :Through a given external point there is at

least one line paQA,Iel to a given line'.
)

Exercises'
Ity

1. Define altepate ekteripr'rigles, and Dorrespohdin
t.

angles (sometimes called exterior-interior angles). State and'.

/ 5 3 )
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. prove theorems analogous to Theorem 8.1 for alternate exterior

angles, and for corresponding angles.

2. Prove Corollary 8.1 independently of Theorem 8.1 and

without using Theorem 7.11. [First prove that only one perpen-

dicular can be drawn to a line from an external point.]
1

2. The Parallel Postulate. Corollary 8.2 guarantees the

existence of at least one parallel to a line through an external

point. The question then arises: "Can there be more than one

such parallel?" Our intuition say "No", so we try to prove this

on the basis of our postulates. Unfortunately this cannot be done

(this point will be discussed later) so if we wish to have our

geometry match our intuition wemust introduce a new postulate.

This we now do.

Postulate 16_ Through a'given external point tliere.is at

most one line parallel to a given line.

A vast array.ot familiar theorems follows from the postulate.

'We can mention only a few of the most important and interesting

ones here.

,--,-. -Tk*

heoreth 8.2: (Converse bf Theorem 8.1.). 'If two parallel

lines ?ire intersected.by a transversal any pair of alternate

interior angles are congruent.
4

- Theorem 8.3: The sum of the measures of the angles of a-
_

triangle.is 180,
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Theorem 8.4!

148

Parallelogriws, trapezoid, etc.

Either diagonal o2p,a parallelogram separates

t'into, two congruent triangles.

Theorem 8.5. If a pair of opposite sides of a quadrilateral

are congruent and parallel then the other pair of opposite sides

are congruent and parallel:t

Theorem 8.6! The diagonals of a parallelogram bisect each

other.

The difficult part of the proof of this theorem lies in

proving that the diagonals intersect. This can be shown by making

of Theorem 6.3.

* ,

Theorem 8.7. The segment whose end-points are the mid-points

/of two sides of a triangle is parallel to the third side and half

.as long.

'Theorem 8.8! The medians of a triangle are concurrent.

-c

Theorem 8,9* If a set of parallel lines in;erpept congruent

.segments on one tansversal; then they intercept congruent segments

on any transversal.
1

3. 1 e Role of the Parallel Postulate. Since intuition is

notoriously unreliable one may well question the advisability-of

introducing the Parallel Postulope. Why not just go ahead as we

have been doing on the basis of our fifteen postulates, provihg

theorems without making any general stipulation about the Humber

,1 5
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of parallels through an external point? Of course we can try this,

but if we (JO we find that the properties of parallels are ,so

important,thattheorems group themselves more or lesS automatically

' into three categories:

. Type 1. Theorems independent of the number of parallels

through an external point;

Type 2. Theoremd whose, proof requires that there be only

one parallel through an external point;

Type 3. Theorems whose proofrquiresKthat there be more

than one parallel through an, external point. \\,

The collection of theorems of Type 1 is sOmtime's called

Neutral Geometry. It includes all the theorems we proved before
.

.

introducing the Parallel Postulate, as well as many others, of

/
course. On the whole, however, the number of interes ing theorems

of Type 1 is small compared with the number of either the other

types.

The theorems of Types 1 and 2, taken together, consti

Euclidean Geometry.

The theorems of Types 1 and 3 constitute Lobachevskian1

111. I, bachevski (1793 -1856) was one of three men who indepen-
%

dently developed this geometry. The other two, K. F. Gauss and

J. Bolyti,did equally good work but were slow in publishing

their results and consequently attracted less attention.

156
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geometry. To develope this geometry we would replace Postulate 16

by

Postulate 161'. Through a given external point there arefat

least two distinct lines, parallel to a given line.

Lobachevskian geometry naturally has radical differences from

Euclidean geometry. Here, for example, are two striking theorems

and a definition in Lobachevakian geometry.

Theorem.' The suprof the measures of the angles of a triangle

is less than 1804:fr

Definition. The deficiency of a triangle is the difference

between the sum of the measures of the angles of the triangle and

180.

Theorem_ The areas of triangles are proportional to their

deficiencies.,

There is nothing in Euclidean geometry analogous to this
.

last theorem.

elf
6

Exerg ise

Prove that in Lobachevskian geometry there is an infinite

numberof parallels to a given line through ,n external point.

In secti,on 2 we remarked on the possibility of proving

Postulate 16 from the earlier postulates. If this could be done

then Lobachevskian geometry, since it involves the negation of

I 5 7
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Postulate 16, would be inconsistent-. Similarly If we could prove

Postulate 16' from the eaglier ones then Euclidean geometry would

be inconsistent. Probably nobody ever suspected the latter to be

the case, but there were marry doubts about the consistency of any

other kind of.geometry, Atinbaly, in 1866, it was proved that

Lobachevskian and Euclidean geometries were. equally consistent;

any contradiction in one would necessarily imply a contradiction

in the other.

Why, then, do we commonly study Euclidean geometry to the

neglect oftobachevskian? Partly because of tradition, but

- primarily because Eucldean geometry is simpler, richer in theorems,

and more easily adaptable to the representation of physical

phenomena.

Loba*evskian gepmetry can suitably be called non-Euclidean

geomestry. 'However, this last term embraces still another type of
`i*,

teomery, Riemannian Geometry, which differs still more radically

from EuCiidean." In addition to dropping Postulate 16 we throw out

the Separation Postulates and radically change the Ruler Postulate.
, i

1..._ Th2 end result is that we lose many of those'theoremsof neltral
.

Iv, geometry that depenck_on 5,ewatidp properties; in pareicular we
'te,.,A ..- -, _., r-

,

.
.

lose Theor m All and we can no longer prove the existence theorem
)kt.

.Corollary,8.2.1;,EIt_is thus possible to introduce
el'

:P7

Postulate'16". Thereare no parallliy. lines.

This leads to Riemannian geometry.

Actually, the loss of theeparation properties and the

ruler postulate are not as serious as might be imagined, and

SR
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Riemannian geometry bears close resemblances to Lobachevsician.

Thus the two theorems and the definition given.above,can b4

translated into Riemannian geometry by merely replacing "less"

by "greater" and "deficiency" by "excess"

4

159
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Chapter 9

Area

1. ' Informal Properties of Area. At an early age we all

became familiar with certain properties of figures that involve a

concept of "area". We easily accept that a 4" x 6" rectangle of

paper contains "more paper" than a 2" x 3" rectangle. Tt,takes

a little experience to teach us that the former rectangle contains

four times as much paper as the latter. Still more

involving further cutting of the Oper, is needed to

4"x 6" rectangle contains just as much paper as'a

21or as a by 9" one.
3

experience,

shed that the

3" x 8" one,

The concept of the "area" of a "plane region" is an abstrac-

tion of'this paper cutting process. Instead of actually cutting

paper we make geometric dissections of the regions'and use our
. -->,,_

knowledge of geometry )oa, make the dbmgarisons. This was Euclid's

approach, and he regards' it as so natural that he never makes any

comment on notion of area. In a modern treatment we must of

course either define 'area or introduce it as an undefined term

c_ and specify some postulates concerning.it. A.definition of -area_

in terms of the concepts we have already introduced turns, out to be

possible, but it
1;4

is a very long process, involving ideas and

methods entirely out of keeping with elementary mathematics. We

shall adopt the second approach, essentially introducing area as

an undefined term and postulating enough simple properties to

160
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enable us to develop a suitable theiry. This, after all, was the

way we introduced the concepts of distance and congruence._

/
In another respect our treatment of area will differ from

/EUclidls. Since his mathematics had no.well-developed number

i
system to use he was forced to word his theorems in terms of

comparison of areas. We, on the other hand,l''ban use the same

scheme we adopted in handling distances - we can choose a-ounit of
ert.,

area" and express all areas as real number multiples of this unit.

Thus for us "area" is a real'number attached to a "plane region"

and satisfying certain well-chosen properties.

2. The Area Postulates: In the above discussion the term

"plane region" was deliberately left vague. It turns out that a

general definition of this term is, like a definition of "area",

a matter for advanced mathematics. We shall therefore limit our

discussion here to a special7type of region defined as f Isxv

Definitions. A triangular region is the union of a triangle

and its-interior. Two triangular regions are said to be non-

overlapping if their intersection is either the empty set, a point,

or a segment.

Definitions. A polygonal region is the union of.a finite

number of coplanar, non-overlapping triangular regions. Two

polygonal regions are said to be non-overlapping if their inter-
,

section is either empty or consists of a finite number of points or

lines or both.

For the rest of: this chapter the word "region" shall always

...signify "polygonal region". Also, we shall freqUent14104eak of
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"the .area of a triangle", or uthe area of a rectangle", meaning

therapy the areas of the regions consisting of these figures and
)

' their interiors., We shall designate the area of a region R

jsimply by_ "area R".

Postulate 21', ,With every polygonal region there is associated .

a unique positive real ,pmber, called the area of the region.

In Section 1 we talked about comparing areas of regions by

cutting up the regions and comparing the pieces (presumably by

moving them to see if they could be made to coincide). This

" moving around`" implies that area must not change under rigid

motion, and hence motivates the next postulate.

Postulate 18. If two triangles are'congruent the triangular

regions have the same area.

The cutting up process of determining area also implies the

follpwing property.

PostulateAo R is the union of two non-
,

overlapping regions S and T then

area R = area S + area T.

These three postulates would enable us to develop a theory

of area, but they suffer from one defect they establish no
-1

oonnectionibetween the unit of area and the unit of distance. It

is highly convenient to have such a_ connection, and this can be

established by taking the area of some conveniently sized and

shaped region as a unit. It is customary to take as this region

a square whose edge has unit length, and this we shall ?io.

162
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simply, postulate this much, however, we Still find itl

a dif icult task to prove, for'all cases, the basic formulas fl'

. th= areas of plane figures in terms of measurements oMiStance.

o see the reason for thiaconsidel, some rectangular regions.

2 x 3 region is tha union of six non-overlapping tinit squares and

so has area 6. A 2 x .16 region is the union of 63,200 non-

overlapping squares of side .01; since-the unit square is the

union of 10,000 such squares each of the small'sguares has area

'.0001, and the '2 x 3.16 rectangle has an area of 6.32. However

this method breaka down for a 2 x ./T46- rectangle since/ ,TiF is

an irrational number. This is t1.7 so-called "incommensurable case"

that has caused so much trouble in past treatments of elementary

_ geometry. We choose to avoid this trouble by making a stronger

`) statement for our fourth and final area postulate.
. ,

Definition. By Theorem 8.4 a diagonal of a rectangle separates

it into two triangles. The corresponding triangular regions are

,non-overlapping and their union is called a rectangular region.

Postulate 20. The area of a rectangUler region is the product

- of the lengths of two adjacent sides.

Exercises.

1. Pneve. that two triangular regions are non-overlapping if

and only if the interiors of,the two triangles do-no intersect.

t

2. Show that to each rectangle there correspon s a unique .

rectangular region by proving the following:

If ABCD is a rectangle then the union of_the two triang lar

(63
A

4
44¢.
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.regions ABC and ADC is the skme as the union of the two tri-

angular regfcins ABD and CBD.

Ndte: To show that two paint sets are equal we must show that. -

. any point lying in either one of them lies in the other. Thus the

'required proof will consist in showing that

(i) If P is in either of the regions ABC or ADC then

P' is in at least one of ABD or CBD;

(ii) If P is in either of ABD, or CBD then P is in at

least one of ABC or ADC.

3. Areas of Polygonal Regions.

Definitions. Any side of a triangle or aaparallogram, or

either of the two parallel sides of a trapezoid, may be called a

base of the figure. An altitude corresploVing to a given base is

the segment perpendicular to the ase from a vertex not lying on

the base. The legs of a right triangle are the two sides adjacent

to the right Ingle; the hypotenuse is the remaining side.

In the following theorems we shall be concerned with relations

between areas and lengths of bases, altitudes, etc. It is custom-

ary to%abbreviate the phrase "length of " to simply " A%

his double use of a word suCh as "leg" to mean both a segmept-and_

the length of that segment could cause confusiohbut rarely does,

since the 'proper meaning is always evidentsfrom the context.

Theorem 2P1,2. The area of a right triangl% is half _the

product of its legs. 77
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Proof: Let ABC be a right triangle 'with right angle at C.

Let L be the line through ,A parallel to BC and M the line
4-*

througli B parallel to AC.' L 1 AC and M,11 AC so L and MI

cannot be parallel, and they th refore intersect in'a point D.

ACBD is,a rectangle (opposite sides are parallel and LC is a

right angle) and ABC is one of the two triangular regions whose

union is the rectangular region. By Theorem 8.4 and Postulates 18,

19 and 20,

1
area A ABC . 2

area ACBD = .AC BC.

OM.

44 Theorem 242. The J.ea of a triangle is -half the product of,

any side and the corresponding altitude.

Sketch of proof: In A ABC, if h is the altitude upon
,t.

side AB, then either-

(1) A ABC is a right triangle with legs la. and AB; or

(2) Region ABC is the --non - overlapping union of two right

triangles with a common leg h and with the sum of the othe; two

legs equalling AB; or

(3) Union of region ABC and a suitable right triangle with
I

leg h is another right triangle with leg h, the difference of

the other legs a these two right triangles being _AB.

In the last two cases the theorem follows from Theorem 9.1

and. Postulate 19.

Deflations. Area of a parallelogram; of a trapezoid.

6

--J,
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Theorem 9.2.2; The area of a parallelogram is the prqdupt of a

base and the corresponding altitude.

Theorem 9 Area of a trapezoid.'

The following corollary of Theorem 9.2 will be useful later.

_Corollary la (a) If two triangles have equal altitudes the

ratio of *heir areas equals the ratio of their bases.

(b) If two triangles have equal bases the

ratio of their areas equals the ratio of their altitudes.

4: Two Basic Theorems. The more elaborate aspeots of

Euclidean geometry rest upon two theorems which involve the
,/>

connection of distance with perpendiculars and with parallels,

respeCtively. The first Of these is the most important theorem

(if such a term can be tried to a single piece of a deductive

theory) in all geometry, t e Pythagorean-Theorem. ( The second is
4 _._

the basis of the th of similar figures. Together they form
..r.

he foundations of co rdinate geometrY, whioh in turn serves at

the start:of much modern mathematics:

'The two theorems follow from our theory of area, and indeed

this was essentially the way Euclid proved them,

Theorem. In any right triangle the square of the

hypotenuse is equal to the sum of the squares of the legs.

Sketch of proof:' Let T .be a right triangle with legs a,

and hypotenuse c. Let ABCD be a square of side a + b, and

let W, X, Y, Z be points on the square such that

r
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AW = BX = CY . DE . a, WB = XC = YD 2A . b.
O

Then each of the ,triangles, AWZ, BXW, CYX, DZY, is congruent to T,

and it follows that 'WXYZ is a squaL of. side c. Since t large,

square is the non-overlapping union of the small square and. the,

four triangles we have

from which follows

(a + b)2 = c2 +'4(2ab),

a
2 + b2 . c 2 .

The missing part of this proof consists in showing that the

large region is the union of the five smaller ones. Actually the

situation is even worse, since a square region is defined in terms

of two triangular ones. We really have'to prove the following:

Given the eight points A, B,C, D, W, X, Y, Z as described

above, consider the two sets of triangles

(I) AWZ, BXW, CYX, DZY, WXZ, YXZ;

(II) ABC, ADC.

(a) Trove that a point in the interior of any triangle of

(I) is not in the interior of any other-triangle of (I). [This

proves the non-overlipping of the regions.]

(b.) Prove that

(t) --If a point is in arty triangular region of (I) then

it is in one of the triangular regions of (II); and conversely

(ii) If a pOint'is in either;of.the triangular regions- of
. . .

(II) then it is in one--,of the triangular regions of (r).

[This proves that-bqktwo unions are'the s .]

4

O r
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ese proofs simply involve an enormous amount of f ssing

around with the separation properties Of,phapters,5 6. This

is the sort of proof which one dismisses with the comment, "The

method is obvious and the details are boring."

'There are many other similar proofs of the Pythagorean Theorem.

but they all have roughly the same characteristiCs. ,A different

type of proof will be given later.

Theorem J.6. If two transversals divide the sides of an angle

proportionately then the transversals are parallel. More specifi-

, cally, if B and D are distinct points on one side of Z A,

and C and E points on the other side, such that AB/AD = AC/AE,
*->

then BC:II DE.
ilir

Proof: Since B and D are distinct either AB/AD < 1 or

AB/AD > 1. We shall treat the first, case; the other can be

handled similarly by merely interchanging the roles of B and

C, and D and E. Wd first shoW that DE does not intersect
4-* mw
BC. For since AB < AD, A- and D are on opposite sided off BC, .

*-* -

and similarly A and E are on opposite sides of BC. ,Hence D
4-*

and E are on the same side of BP.

We next apply Corollary 9.1 (a), to get

Sr
area BEA AB area DCA AC
area DEA AD' area DEA AE* i

,14

Since we are given that AB/AD = AC/AE we thereby obtain
,

area BEA = area DCA.

*-*
;

Since E and A ar,4on opposite sides of BC the interiors of

168
o
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4ABC and gBC cannot intersect, and so region BEA is the

non-overlapping union of ABC and

non-overlapping union of ABC and

the above equation becomes

EBC. Similarly DCA is the

DBC. Hence by Postulate 19

area ABC + area EBC = area ABC + area DBC,

`from which follows

area EBC = area DBC.

Now Li EBC and 6 DEC have the same base BC, and so by Corollary

(b) they have equal altitudes. That is, if F and G are the
4,

feet pf perpendiculars from D and E 'onto BC, then DF = gG.
4-*

Since, as was shown above, DE Odes not intersect BC, and

hence does not intersect FG, DEGF is a quadrilateral. DF and
4-*

EG are congruent and parallel, and so by Theorem DE and

0
GF are parallel, which proves the theorem.

The converse of this theorem, which is equally important in

applications, can.be givenan independent proof essentially by
A

reversing the steps in the above argument. There are a few added

difficetieS, however, (for instance, if we are given that B is

4-* 4-*
between A and D and that BC II DE, we must prove that C is

between A and E, for which see Theorem 6.4a) and so it is

easier to use Theorem 9.6 to prove its converse.

Theorem pl; Parallel transversals divide the sides of an

'angle proportionately. More specifically, if B and p are

distinct points on one side of 1 A, and C and D points on
4-*

the other side, such that BC II DE, then AB/AD = AC/AE.

! 6 9
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Proof: On AD take

AC
AB' = AD--.

AE

163

so that (Theorem 4.6)

Them- ABt/AD = AC/AE,. and by Theorem 9.6, BIC 11

Parallel Postulate there is only one line through
4-* 4-*
DE, and ad BI must lie on BC. Hence BI = B,

4-* 4-*
of BC and AD, and this proVes the theorem.

From-Theorems 9.6 and 9.7 there follows the standard,

4

4-*
DE. But by the

C parallel to

the intersemtio6

development of the theory of similar triangles. One can also give

a proof of the Pythagorean. Theorem not involving the annoying

manipulations of areas discussed above, as follows:

Let A ABC have a right angle at A. If D is the foot of
4->

the perpendicular from A 'to BC then D .lies

(Proof?) Let X be the point on BA.,...zuterdil6t

4>
the perpendicular' to AB at X intersect BC

this perpendicular intersect BC?) 'Then A XBY
4-> 4-*

BY = BA. Also, XY 11441Q (Corollary 8.1), and

BX/BA = BY//C.. This gives BD/BA = BA/BC, or

Similarly we can prove

BA
2
= BC BD.

CA
2 = CB CD.

Adding these two equations gives

BA2 CA2 = BC(BD CD) = BC2.

170 -

between B and C.

BX = BD, and let

in Y. (Why must

ADBA, and so

by Theorem 9.7

j
A

k
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5. Alternate Proof of the Basic Theorems. In Chapter 2 we

remarked that the basic theorem on proportionality can be proved

independently of the area postulates, but that such a proof neces-

sarily involves rather sophisticated manipulations of real numbers.

For comparison with the fairly simple proof of Theorem 9.6 given

above we present here the alternate proof.

Since the Theorem of Pythagorous follows froM Theorem 9.7 we

can thug obtain both theorems without using the area postulates.

'Theorem 26. If' B and D are distinct points on one side

of L A, and C and E points on the other side, such that
<-*

AB/AD = AC/AE, then BC 11 DE.

Proof: As in the previous proof we shall consider the case

in which AB/AD < 1. Let FP be the line through B parallel to

4-31

DE. By Theorem 5.4 applied to t ADE, 2 intersects either .AE

or DE. (or both). .Be

i
g parallel to DE it cannot intersect DE,

and so ...?" intersect AE in a point F.

i

,
4.-,: 4-

If F.= C then BC 11 DE and the theorem is provqd. So

suppose F C; then AF i AC. Since we are given that.

AB AC
AE'

we must have

AB a AF
AD r AE'.

Now one of the propertie of the real number system is that between

any two distinct numbes there is a rational number (a proof of
ir

this is given below). Hence there are positive integers m and

r1
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n such that either

AB m AF AB m AF
AD ' AE

or
AD AE-

P

(Tv he
s
figure is

Pl'P2'''''Pn-1

drawn for the latter case.)

such that.,

On AB ,take points

AP . -AD AP = -AD 6 AP-
1 2

= 12-=-1AD.
1 n 0 2 n ' " 4 n-1

Let the line through, P1 parallel to, DE intersect AE in
Q1

P
(Theorem 5:4). Since' AP, = PIP2 = P2P3 = = Pn_11) we have

from Theorem 8.9 that AQ1 = Q1Q2 = Q2% =

Now AB/AD and4rAF/AE are each less than

(*), m < n. Thus Pin

above. Hence

and

Q11-1E.

1, and so from

are two of our points constructed

AP = mAP, = 11-11AD,

AQm = mAQ, =
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From these and (*) we get either

APm.> AB and AQm <AF,

A
or

APm < AB and AQm >'AF.

In either case it follows -froth Theorem 6.4a thgt BF and PmQm

intersect. This contradicts the assumption that DF. and $1"-A

4>
are both parallel to CE,i and so we cannot have F ?! B. This

proves the theorem., e

To complete our analysis of this theorem we must still prove

the property/of real numbers that gave.ds the critical inequality

(*). The probf, which is of the type considered in Chapter 4, will

be broken into a series of three steps.

Lemma 1, Given any real number zi there is an integer 11

such that N > z.

Proof: If the theorem is not true, then z is. an upper

bound of the set of integers. By the Compeeness Axiom, there

is then a-least upper bound, that is, a number w such that
ok

(i) n S w for every integer n;

(ii) If n .v.r for every integer n, then w S v.

It follows from (ii) that if v < w,, then r some integer

n
1

we must have n
1

) v. (This statement is just the contraposi-
.

tive of-(ii).) Now take v = w - 1. Thee wd hive n1.> w - 1, or
,

n, l'> w. But then (i) dogs "not hold for n = nl + 1, andao

we arrive: at a contradiction, thus proving the, lemma.

Alt4ough we do not use it here, it is perhaps worth stating

a corollary to this lemma, knciwn as the Axiom of Archimedeb.
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Corollary. (Axiom of Archimedeb). If a and b are osi-

tive real numbers there'is an integer N such that Na

Lemma 2. Given any positive real number z, th re is an

.integer M '6uch that M <"z S M 4:1.

Proof: By Lemma 1 there is an integer such that N >,z.

Hence there are at most N 1 positive i egers which are less

than z. If thereAmm_mona,..take M i-f--thare,are some take

M to be the largest one. This choic M obviously has the

.

required properties.

The lemma is still true if a do not restrict z to be posi=

tive, but we do not need thi- more general case.

Lemma 3. If 0 < x < y there is a rational number r = MAN
0.

such that x < r < y.

1n by Lemma 1, and let M, by Lemma 2,

be such that

M < Ny +

Prom the" left i equality we get r < y.° The .right inequality is

NY S. M + 1

and from he choice of N we have A

HEence

Ny -1Nx > 1.

Nx < Ny - 1 S (M + 1) 117 1 ,= M$:

pr x < N = r. Thus x < r < y, as was to be proved-.

174
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. .

There is still another a 'pproach to the basic proportionality

'theorem that avoids both the above difficulties and the use of the

area postulates. This is to assume the statement of the theorem as

a postulate. As was remarked in Chapter 2 the introduction of new

postulates just to avoid difficult proofs is not to be encouraged.-

In this case, however, it turns out that by assuming as a postulate

a statement closely to Theorems 9.6 and 9.7 (the side.- angle-

side plioposition for similar triangles) we can dispense with both--

the Congruence Postulate and the Parallel Postulate, being able to

prove them from the new Similarity Postulate.

This is the approach taken by G. D. Birkhoff (see Birkhoff and _

Beatley, Basic Geometry) and by S. MacLane (Metric Postulates for

Plane Geometry, American Mathematical Monthly, 66(1959)543-555);

It has the advantage of elegance, in replacing two important

postulatea'14 one, but the pedagogic disadvantage of requiring the

.introduction of similarity before the simpler concepts of congrpence

and parallelism have become familiar. Also, it4Ules outthe

development of the non - Euclidean geometries. It is for these-

reaaons that we follow the more Conventional program.

7 5



Chapter 20

Circles and Spheres

1. Basic Intersection-Properties.

Definitions. Given a point Q and a positive number r, the

sphere with center Q and radius r is the set of all points

whose distance from Q is r. If p is a plane containing Q,

the circle in with center Q and radius r is the set of all

points in p whose distance from Q is ,r.

The following theorem is ariN.immediate consequence of these

definitions,

Theorem 10.1. The intdaection of a sphere with a plane

containing its center is a circle with the same radius and center

as the sphere.

04Sluch a circ10.10.e215 to be a great circle.of the sphere.

We now consider the posgible intersection of a sphere with

a plane not containing its cen)er.
4fA 4

Theorem 10.2. Let be asphere with center Q and radius

r, let p be a plane not cdr-taarringQ,____let M be the foot of
1 ,

the perpendicular from Q to p, and let a = QM. Then

(1) If a > p and S do not intersect,

(2) If a = r, the intersection of, p and S cohsts of

the single point M.

(3) If a < r, '.the intersection of p and S is a circle

with center M- and radius r2 _ a2.

1 76 , 4
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Prooft' If A is anepoint of p then L AMQ is a right

angle, and so

AM2 + MQ2 = .

If A is also to be a point of S, then AQ = r. Since MQ = a,

we get in this case

(*) r AM
'2 2 2= r - a .

/
/-1 (1) This is impossible if a > r; since AN cannot bp

negative. hence in this case there cannot be any such point as A;

that is,' p and S do not intersect,

(2) If a = r, () says that.. AM = 0. This is true only

if A = M; \ that is, M ithe only point common to p and S.

(3) If, a < then a2 - r2 is a positive number,-which

has a pq4itive square root b .v/a2 r2. () then says that

AM = S; that is, A can be any point in p whose distance from

M is b. The set of such points is the circle in p with center

M and radius b.

Note that Theorem 10.1 can be considered as a special case
I

of Theorem 10.2 if we removefthe restriction that p not contain
,

JP:

Q arid allow a to be zero. .

Definition. A plane containin

is said to be tangent to the s ereat that point.

a -sphere

Definition. The s ent Joining the center of a sphere to any,.

point of the sphere is called 'the radius of the sphere to that point.
N.

Arts in Chapter 9, this double use of the word "radius" to mean

either a segment or the length of thatsegment seldot causesauses

oonfusion.

d
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Theorem 10.3. A plane tangent to a sphere is perpendicular to
0 C.

the, radius at the point of montact, and conversely a plane perpen-

dicular to a'radius at its end-point on the sphere is tangent to

the sphere at this point.
r

Theorem 10.4.
*

Let C' be a circle'with center Q and radius

X a line in the plane of C, M the foot of the perpendicular

from Q to X, and a . QM. (We allow the possibility M=Q, a=30.)

Then

(1) If a > r, C do not intersect,

(2) If a = r, l and C it ersect in the single point M.

z

(3) If a < r, the intersection of X and C consists of '40

.

exactly two>oint8 Al and A2 such that MAl MA2 /r2 a2.

* 4

DefinOtion. Line tangent to acircle.

Theorem 10.5. Analogous to Theorem L0.3.

Definitions. A chord of a circle is a segment whose end-points

lie oh tbe circle. A chord which contains the center is a diameter.
ty=

(jihe word "diameter" is Also used as the length .of this chord.)

The interior of a circle is the set of all points in the plane of
. . f

of the circle whose distance from the center is, less than the raditai

of.the circle; the.exterior is the set of points whose distance is-

greiter than the radius.

Theorem 1 .5, very point of a chord except thefend-points is

.in the interior of e circle.

78
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Theorem 10.6. Every point of a tangent except the point of

contact is in the exterior of the circle.

Theorem 10.7. Let AB be a chord of a circle with center

Q andlet M be the mid-point of AB. of the following three

properties of a line X:

(a) X contains Q,

(b) X contains M,

(c) Xis perpendicular 'to AB;

if any two are true so iethe

2. Arcs and Angles. Throughout this section we shall con-

sider a fixed circle W with center Q, and radius r, and all

. figures will be assumed to lie in the plane Of W.

Definitions. Let A and B be different points of W.

AB is not a diameter of W the union of A, p, and all points

of W in the interior of Z AQB is called an arc AB; A and B

are the 4nd-points of the arc. Also the union of A, B, and all

pAgtsof W' in the exterior of / AQB is called arc AB, again

with and B as end-poihts. If one wishes to distinguish be-
.

tween these two, the former is called a minor arc, the latter a

major arc.

f AB is a dia eter of W, arc AB is defined to be be

union -6f A, B, and ll'points of W lying on one side of AB.

Such an arc'is calle a semicircle.

If arc AB is J mihor arc, / AQB is called a central angle,

and is said to in tercept arc AB.

7 9
A ,
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In some ways arcs behave like segments, and in some ways they

behave like angles.. The faet that we can have two arcs with the

same end-points further complicates matters. If C is a point of

W d tinct from A.. and B we Tan distinguish the two arcs AB

by the fact that one contains C and the other does not; the

former is sometimes specified as arc ACB. The different kinds of

arc,ipa)or, minor, and semicircle, require our basic proofs to

, -

consider several cases. All in all, a careful treatment of arcs

is a tedious.process, and not a suitable subject for a beginning

geometry course. The following detailed proofs are therefore,

primarily for the benefit of the teacher.
.10110

Definition. With each arc AB there is associated a positive

number, called the measure of the arc, denoted by m(arc ABY,

defined as follows:

(1) If arc AB is.minO, m(aro .AB) = m(/ AQB),

(2) If arc AB is major, m(1 AB) = 360 -*/ AQB),,
0

'

(3) 'If 'arc AB is a semicircle, m(arc AB) .180

The.following theorem for arcs is analogous to Postulate 13'

for angles. It is worded ix-1,a form which is'suitable for proof

nd applications;tbough apt to be confusing t 'first reading. A

figure' will help to clarify the situation. : . %

VI

c
t

Theorem 10.8. Let A, B, C be diffre nt points on W. Let

'arc AB contain C, 4E5 AC .n t contain B, and arc BC not

contain A. Then

1

m(arc AB)
A

. m(are AC) I- m(arc BC).

18q)
O

a

4

O.

0

1
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Proof: Ther are seven cases. to be considered.

Case 1. Arc AB is a minor arc. Then C is in the interior

of Z AQB, and therefore B is, in the exterior of / AQC (Theorem

6.-6), so that arc AC is minor. Similarly arc Be is minor.

Hence each of the arcs has the same measure as its central angle.

Since C is in the interior of Z AQB)

m(ZAQB) = m(Z AQC) + 1;42 BQC),

and so

riif arc mta re Or r+ iii(a-r-F-;. BC).

Case 2. Arc AB is a pemicircle. The proof is essentially

the same ag for'Case 1.

,

Case a. Arc AB is major, and AC is major. Sinct B

is riot on the major arc AC, B is irn the interior of. / AQC, and

. so

m(/ AQC) 51-7A-0) m(ZBQC) .:

0A is in the exterior o / BQC, and since is not on arc

arc BC must therefore be minor. Thus

m(arc AB) = 360 - m( / AQB),

m(arc AC). = 360 - m(/ AQC),

m(arc BC) 'm(/ BQC).

From these Attions and the ne above we get ag in

m(arc AB) . (arc AC) + m(arc pC)

Case 4. Arc AB is major, al.c AC is a semicircle. Sim-

,. ilar to Case 3.

4. t
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Case 5. Arc AB is major, arc AC is minor, arc BC is

A
minor. Here

m(arc AB).. 360 - m(L AQB),
a

A A
m(arc AC) = m(L AQC),

..m(arc BC) = m(/ BQC);-
, 0

If A .and /I were on the same side of QC, then by Theorem 6.2

either A would be in the interior of Z BQC or B would be in

Ar
the anterior of Z AQC. The first of these is ruled out because

are BC is a minor\arc which does not contain A, the second

similarly. Hence A and B,-are on opposite sides of QC, and

so AB intersects Vr. AB cannot intersect since C, being ,

on the major arc AB, is in the exterior of, Z AQB. Hence AB

7-*
intersects ray

1

QD oRlasite to QC, and so D is in the interior

of Z AQB. "We then, have

m(L AO) = m(L AQP) + m(L KA),

m(L AQC) + m(L AQD) . 180,

m(L BQC) + m(L BQD) . 180.

From these and the Atxee prtvious equations we get

m(arc AB) mg m(arc AC) + mearc BC:"

asq 6. Arc AB is major arc AC is minor, arc, BC is

O

major Sjme as Case 3 with A nd B interchanged.

Case 7. Arc AB is major, arc , AC is minor,, are B9 is a
t ,

i semicircle. Same as 'Case 4 wit n A and B interchang d.

Definition. If A, B, P are different points of a circle,

Z APB iesaid to be inscribed in the ate APB and to intercept

I

.

the arc AB ,not containing P.

!82
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Theorem 10.9. The measure of an inscribed angle ishalf the

measure of the ifitercepted.arc.

Proof: Let L APB be inscribed in W. We consider three

casescas

Case 1. PA' is a diameter. Since P is_in the exterior of

L AQB (P and 'A are on opposite sides of QB) edict/ P is not

on arc Ap it follows that arc AB cannot consist of the points

exterior to L AQB: That is, arc AB is a minor arc, and

m(arc AB) = T(Z: AQB nce we have only to prove that

>t (L APB) = ;0(./ AQB). Now in A QBP, QB = QP, and so.

m(Z = m(Z QPB) (Theorem 7.1). But L AQB, is an exterior
, -

angle of A QBP, and sc:!,

m(Z AQB) = m(ZQBP) + m(Z QPB) = 2m(Z APB).

In case PB is a diameter we proceed similarly.

Suppose'then that C, the other end-point of the diameter

'through' P, is neither A nor B. *-221-5y

-47-3
Jr Case,2. Suppose A and B. are on the'sameIside of Qp.

#

iEither B s in the interior of 4/ AQC 'or A is in the interior

of Z. AQC: Suppose the former (the latter case can be treated,

'similarly): then, by Theorem 6.6, A .1.8 not the minor arc BC

and C 'is not on the minor arc AB. We can thiergfore apply

Theorem'10.8 to get

n! (arc At

.Hence (

m(arc AB)

.m(arc = m (arc ABC) .I

(arc. AC) - m(arc BC) '

(L QPA) - 2m (L QPB),

by =be above. Now QA is in the nterior of LBW (since.

I 8 3



177

0 is not in the interior of L AQB) and so QA intersects BP

in a point D. By Theoreth 10.5, QD < QA, and so D, being .

between Q and A, is on QA. Thus Q and -'1% are on opposite
4* >

--sides of BP, and therefore PB is in the interior of L QPA.

Hence

m(L QPA) = m(L QPB) + m(L APB);

m(Z APB) = m(L QPA) - m(L QPB)

. 22 411( arc AB).

from above.

Case 3. A and B are on opposite sides of QP. Then A

is not in the interior of L CQB, nor B in the interior of

Z. AQC; ands if arc AC and Arc BC are minor arcs, and if

.arc AB contains C, then the conditiohs of Theorem 10.8 hold

and we have
,,

m(arc .AB) = m(arq AC) + m(arc BC)

=2m(L APC) + 2m(L. BPC).

have therefore only to prove that

m(L APC) +I m(L 7C) = m(L2APB);

this will be true if. we show that C is ih the interfOr.of-
<-*

L APS. _Now AB intersect8-line, PC in'a point D, and by'

Theorem' 10.5, D is inside. he circle. Hence D his on CP. and

tio PC= PD. By Theorem6.1 PC therefore is inthe interior

. of L APB. Thik completes the .proof of phe theorem.'
. . . ,

This theorem is the basis for a ',sequence of th ()rens relating '--,
y

arcs and angles in various positions, nand for anoth sequece of
.,

!

e ,

theoremS relating lengths of segments of chords, secants, tangents,

L (

.

.. ,,,..,.,.,
et
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etc. The'usual prdofs can be applied, but care must be taken, as ,

in the proof above, tcrsjetify which arcs one is using.

, )
I 8 5


