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| . Preface’ - s

-’ E%ese notes'have/g;;n prepared'to‘help high’school teachers'
to become familiar with the‘approach to tenth grade Euclidean
geometry which has been adopted’by the‘School Mathematics Study
Group (SMS@). They are intended specifically to be used 'during
the ‘summer of 1959 1a~courses on geometry for high school teachers.

. TthSMSG is preparing a tenth grade geometry text book and a
teachers' manual, and these notes follow the preliminary outline '
of the %ex; book. It should be emphasized that these notes are
quite unsuitable as a text book for high school students, nor can
they be used as a teachers manual. “Tgey contain mudh mEterial

“_which 1is too difficult to HE‘presented to most tenth graders, but

which we belleve it is important for tenth grade: teachers to know.

sThe notes probe deeply into the beginni 8 of the subject, brt do_

tandard tenth grade ometry

o

. coursé In particular, the notes do not_cover such topics as

parallels, circles, areas, Pythagorean theorem, lytic geometry, -

'
o

etc ., Whereas all of these will be treated in the SMSG text book >

) - It\ds assumed that teachers who study these notes have good " ’
/ backgrounds in axiomatic geometry. 1In particular some familiarity

with Euclid's Elements is pnesupposed and the‘teaohers should

(E. P Dutton).is convenient ) ."The notes éontail oniy occasional

> . \v LI . . J . v’ . ° . Aal .
" o 1 . 2
-

~_have access to these. (Heath's translation in\kkeryman's Liﬁrary

1 - !
L .
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references to the ‘common high school treatments of geometry, but

oc T

thefreaders should continually make comparisons of the two types

of treatment especially ir* the proofs of the more familiar .

r

theorems. o -

Although we have tried to antlicipate the content order,

notation, etc. of the pro osed text book there 1s bound to_be some
divergen Howeger, we 2re confidgnt‘that we are presenting the
spirit of\the new coyrse; and that anyone who understands the
_material these notes will be able to use the text boom inin{
1ntelligent and interesting manner. )

i"I'he instructor .in a summer course\for teachers is urged to -

.

spend most of the time«on Chapters [ 7 These contain the

/
material on the Ruler and Protractor Axioms, and the theory oQ -
separation or order of points on a line, lines in a plane, and ,‘

planes in space. Mach of this material is unfamiliar to many

. . e
v

teachers. . . . ' ’
Chapters l -'3 are 1ntroductory in nature, and can be cbvered

swiftly at the beginning, and referred %o’ from time to time as _the

- A
c ‘2 o
ourse pr greSses . 2?,

! L RO MVEREN

These notes are by np means a polished work, and it is s ™

which ' parts ta ampl a which %o light what extra mateqixl to,
put 1n, ete. - Some exercises have heen included but many additional

ones will have to be Supplied The starred theorems ) .. ..f

*»

a(e g. Theorem 3. l ) can be used as exercises, and it is intended

-

that as many.as pospible.of these Qe proved. Most of the early

PR

_expekted that the instructor will use good judgement in dsciding }k ~

.

.~
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ones are used in later proofs, and their ommission would leave

sérious gapb»d.n the pr?entation. - « ¥

1 9

4
%one of our‘proofs are accompanied by diagrams. This was

peh,,.\rﬂx("*-
' done%li‘berately, papt‘ly to urge the reader to draw his own

Ty

diagram apd partly to emphasize that a logical proof should be
\ indepe\ndent of any diagra.m 'Iéae ommission does not mean that we
wish to minimize thp importance of drawing -a figure to fix the

%, 1deas in the mind. The readers should make constant use of*

~

diagrams as an aidjto understanding tbe theorems and discovering-

Q proofs. o ) S~

A

N a

Future work by )the SMSG on the text book, the teache::s'
*manual, and the teacher training, manual can profit greatly from

comments  and ‘criticisms of these noteé. You are 'urged to send

3

yodr seggestions to -\ -

: ' School Mathematics Study Greup-,
‘Drawer 25024 Yale Station
New Haven, Connecticut "+ - A - Ny
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Prefate, to Second Revision

Several chanées have been made i 1% this' edition to improve the
material and‘bring it more into 1ine with the text book

1. 'The notatdons AB for a2 line and AB for a distance
2 ’ .
. have beerl adopted, " On the other hand it did not seem'worthwhile

to changé ~m(/ABC) to m[ABC ahd arc AB to AB.
. ?\ ’ 2.:' The distance and separation postulates have been reworded
\

to conform to the text bodk. However, to change the order of

presentation of these postulates to that used in the tekt book

would have necessitated extensive alterations in Chapte%s 3 and 4

‘o

\\\\ The text book order was dictated by pedagogical considerations,
pgincipally the desire to avoid‘indirect proofs in the’first -
theorems which do not apply to this booy 1t was thefefore N

. -

decided to leave the order as in the earlier editions.; The
. postulates thus differ in numbering as follows: '/

»
-~ i

7/

. These Notes. © Textbook
Incidence postulates 1, 2, 3, 4, 5\ . L5 6.;. 7, 8
Distance ppstulates ( ) 6,7, 8 ‘ 2,3, 4, - .

3 . A . " . " .,' - , e

l ]
'3. Chapters on Parallels,and on Area, have been .Inserted to-

clarify thé position of these topics in our presentation. o oo

3 { - o e

1&., Numerous minor changes, insertions, corrections, ete.
have -been made, and oneesignificant error has been corrected

(Seotion Iy of Chapter 5). - .

'
< . CEEN .-
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The user of this boﬁ 11 fi{nd much additional material in

‘ the text book, including.si % exercises and expository material
in the text boolc proper and s lementary reading in the Teachers'

Commentary, the Appendices, an articularly the Talks' to Teachers.

" In this book we present Eugzggdean gedmetry as a mathematical
‘theory. We have. left aside all a ications'of geometry to ‘
duestions in physics and to otherﬁnghes of mathematics. This
is not tc say that we regard these %li\cations as unimportant for
be. a mistake to teach geornetry'to high chool students.without
brir:ging in some of the significant appS I cati\'ons, especially to
ele}nentary physica. The Teader of thisok 111 find abundant_
supplementary material on applications of ef\entary geometry in l
the rfollowing books : ot .“{'!\ ) B

G. Polya, Mathematics and Plausible/Re , Princeton

University Press, vol. 1, esapeclally the chapter on "Physical

Mathematics { ‘ : ‘ e ;-

R. Courant and H. Robbins, What is Mathematics?, Oxford

L]

S
University Press. S,

.
<

]
.

.- H. Rademacher and 0. Toeplitz, The Enjoyment of Mathematics,

Princeton University Press.

the teacher to know and to use in the vl\assroom, in fact, it would
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. - . Historical Introduction .
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v

i 1. The Glory that is Euclid'*s. -"Euclid is the only man to
’ . ~ ’~ ind 2

whom there "ever came or ever_can come, the glory of hawing success—

fully incorporated in his own writings all the’ essential‘parts of

- lm

the accumulated (mathematical) knowledge of‘his time. .

. He was the most success fut text-book writer that the world
has ever known. Over a thousand editions or., remisions of, his
geometry have appeared since the advent of printing, and his work
has donunatﬁd thé teaching-of the subJect ever since his Elements
'appeared éirst in menuseript form.gnd then in the form of revised
text-books . These revisions always kept the. essential ideas as
developed by Euclid Euclid's Elements was, for the mo\t part, a
highly successﬂul comleation dnd systematic arrangement of the
works:of earlier writers. Euclid ac¢cumulatéd the mathematical
ﬁnbwledge‘which had developed over a period ofasome 300 years,
during whic¢h deductive reasoning in mathematics.had evolved, and
organized this material into ﬁhe oldest-scientific text—book st11l

in actual use. o

© e e o

.
. - '
.

&
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The material of the first four Books can be traced back to
the school of Pythagoras (572-501 B.C. ), Books V and VI treat tg? )
theory of proportion including the method of exhaustion, developed \
by Eudoxus (c¢. 370 B.C.), and Book X presents the theory of
irrationals‘asvdeveloped'by Theaetetus (c. 375 B.C.Z. There 1s
little'doubt; howeyer, that Euclid had to supply a number of proofs
and to complete or perfect others. The chief merit of his work
lies in the skillful selection ‘of the propesitions and their
arrangement'in a logical sequence presumably following from a
“!small mimber of explicitly Stated assumptions. Euclid referred

to these aszumptioné as definitions, common notions and postulates.

Indeed, many of dur modern texts -fail in some respects in which

Euclid succeeded : o ' .

Penhaps some of the early phrases of &his chapter re a
slight exaggeration, for some evidence is missing. No original
90py of Euclid's work ex{sts, and 1t is difficult to Lell what is

due to Euclid and what i1s due to the early revisionists. Recent

"@s

archeological studies indicate that through the various early
7. - ; R

4 -

1Current Amerigan texts on plane geometry are based on Books I,
<, III, IV vV, and VI of Euclid's Elements, texts on solid geometry
' are based on Books XI and yan i The best and most reliable
reference work now available is the monument?l three volume work,

recently reprinted, by. T. L. Heath, The Thirteen Books. of Euclid'

v

Elements, Dover Publications 1956,



hand-written editions,-many changes were made in the "fundamentals"
. = definitions, common notions, and postulates - 80 that we do not -
khow precisely what Euclid nrote. These studies do indicate that
there .was early dissatisfaction with some of the preliminary 1geas;n
this dissatisfaction persists even today. The propositions usually
appear as Euclid’ wrote them, since all such early manuscripts ‘are
in genera%_agreement on this score. But there is no doubt that
Euclid}s work 1s the earliest attempt at a systematic arrangement

of definitions, common notions (now often called axioms), postulates

and propositions whiéh presents mathematics as a logical Geductive
science. The subsequent influence on all sclentific (not merely-

. mathematical) thinking can hardly be overstated. ,

, In order to understand and appreciate fully the contributions
of Euclid to mathematical thought we must g0 back into the history
or even pre-history of mathematics. Geometry, as an 1ntuitive or
factual body of knowledge, grew out of natural necessity Indeed,
the very word "geometry" means "measure of‘the earth”. Many‘ '
,geometric facts were collected by early civilizations in Egypt,
Babylonia, China, "and India. The facts were stated without any
indication of any process of deductive reasoning Some of the
ideas were precise, others were approximate and were arrived at

-

from experience, and some were Just guesses;. the results.ofi‘ _

(]

experience or pure guesses were not always correct. The Theorem of
t 1 7 x ‘ Ky

Pythagdras, for example, at least in one form, was known tq the
Babylonians at least as early as 1600 B.C. -Tablets, dated‘that‘
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far back, giving tables -of values of integral solutions of

“a + b2 2, habe been uncovered. Being conviinced, by experiment,

that ‘"The square on the hypotenuse of a right triangle istequal to
& the sum of the sQuares on the legs is one thing, and proving this

logically from explicitiy (or even implicitly) stated assumptions
= His another thing. We suggest an analogy from’ arithmetic. it 1sone

T Iy g

) thing to know that the product of two odd numﬁ@rs is odd, but it is
a horse of a different color" to,give expiicit definitions and
postulates and then prove this fact o
The origin of early Greek mathematics is. clouded by the great-‘
ness of Euclid's Elements, because this worm,superseded all preced- .
ing -Greek writings on mathematics. After thgjappearance eof the
rh;ElemenfB, all earlier works were thenceforth discarded One of
b theﬂiater“commentators, Proclus (c. 460 A.D. ), who did so much
" towapyds preserving Euciid's work for us, in contrasting Euclid
- * with earlier writers - no doubt believing in the.'infallibility of-

Euclid' - stated in effect:

"The selection and.a menit of "the fyndamentals was

complete, -clear, congise and pid of evérything superfluous. The

of speclal cases, and in a11 ways, Euclid's system was superior

_to all the rest." ’ ' ’ ,
Wevdo know some facts about earlyusreek mathematics., The -

' 1

history of demonstrative geometry prqperly begins with the Greek

N * 5 3 . . N v
- | 5"‘ - ’{ ) /: . vy am -’m,’{;?,‘*h&;‘\ff;\f g~
: : . g “ - s om e
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theorems were presented in general terms rather than as a number - , °’

geometer, Qhaies of Miletus ( 0-5&6 B. C ). His«actual contributions
i * i; ' . ! .
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to geometrical knowla§§e were few, but he first recoénized the
'necessity of giving a demonstration based upon a logical sequence
of ideas. He took the first step in raising geometry from a set ;
of isolated facts. of observation and crude rules- of calculation,
.+ concerning material things, to a logical consideration of geometric
. concepts abstracted from these material things. He ;:; followed by
¢ Pythagoras and his School, whose main contribution was that
mathematics was studied from the intellectual viewpoint The
School of Pythagoras employed the deductive process of reasoning
_ excluslvely and systematfcally, and thus raised mathematics to the
vrank,of'a sclence, despite the fact that,their;who;e philosophy
- _was shrouded in the mysticism of-whole numbers, They distinguished
.Amathematical theory from practice (which they disdained\\ans\proved
fundamental,theorems of plane and solid\geometry, as well a .
theorems of the theory of numbers. To thelr dismay, they also
discovered and proved the irrationality of vf_: This very dis-
.0 covery, being directly contrary to Pythagoras' preconcelived
'mwstical and 1ndefensible concept of the relation of numbers to

the universe, was the cause of the downfall of his own school of .

Coy, thought " : /
- ’ ‘ We shall mention only two of the many geometers that followed

@

this period. The renowned_paradoxes of Zeno (c. 450 B.C.) D :
1nitiated another crisis in mathematlical thought. They are .

' concerned with_the difficult problems of continulity and the..
. « ‘o : ¢
Tiddles of the infinite. Even today the problems of .confinui

i
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. /dhze ﬁeal stumbling blocks for school-boys (or school-men), and the

Fy

ridgles of the infinite have not yet been completely unraveled by ,
mathematiclans and logicians. As far as high school geometry is
concerned, “the problems of continuity were resolved by Eudoxus

(408-355 'B.C. ) in his method of. exhaustion. In modern terminology,

. we would refer to this method ‘a8 the theory of inequalities which

-in turn is intimately connected with the theory of limits., In our

'_American texts such topics are often completely,overlooked or re-
legated to the appendix (that, part which 1s usually left out). In
our better texts after some rationalization, proofs involving such
topicf are replaced by apﬁ%opriate poetulates.

THen came Euclid., His Elemerts® (i 300 B.C.) unified ‘the -
wprkjof many scnolars and‘séstematized the'knownl mathematics of
the day. The definitions and asswumptions, the arrangement) the
‘fonm, and no ddéubf theAcombletion of many pa?tially developed

-

topics are (as far as we know) due- to Euclid, although he leaned - e
. ' I
heavily on the shoulders of Pythagoras and Eudoxus. Euclid set -

= himself the task of finding-an adequate and universally acceptable ‘,

'~set of postulates for geometry, and at the same time, of avoiding

s
° . L]

i . -

1Thfé Work does not consider the subjedt of conics, There is "’
) evidence that some knowledge qQ%this subject was available, but

’

there 1s also some evidence tha this topic wds included in some

of the "lost Books" of Eueclid, v :

’
'
¢




a. proliferation of assumptions. Holding'down the number of
postulates adds to the "fun +When some conclusion is reached with /
less price in the number of assumptions, it may also increase-the

number of interpretations or models of the postulate system, or |

v o/

make it!Lasier to check that a medel actually satisfies the ]
e postulates. (See Section 6 of Chapter 2 on Postulates or the

. ardlele on Finite Geometries in thejyommentaries for Teachers )

modern texts do often contain %‘proliferation of assumptions,

; o% which are repetitious in the sense of non-independence.
Euclidﬁtried to avoid this. In our;modern texts, the criterion,
maybe advisedly, seems to be: 'If it is difficult to prove assume‘

Too bften the assumption 18 never explicitly sfated Euclid
tried to avoid this also. However, some compromise must be’ made
between having Just a few postulates and-presenting a large number
of ‘postulates, 80 that the theorems proved are those that are most
readily understood, by the audience for which the material 1is
intended. Eueclid did,not write for school-boys, but for the
'scholars and philosophers of his’day. His work showed a seripus-
ness of purpose and a desire to be rigorous and to avoid the use
intuitive geometry He even demonstrates‘the,correctness of his
constructions before using them, andf he 1s not aéraid to treat
incommensurable magnitunes in‘a logical fashion. He was interested
in the systemlzation of geometric factsi not in thelr discovery.

His work showed no interest in’the analysis of a proof, but rather

in;itstynthesis in a rigid £3rm: proposition, hypothesis, proof,




coﬁclusi n. He tried to push aside the geometric facts gained by
experie ce and their practical applications, and placed emphasis
upon l gical deductions. "Though experience is no doubt a good
teach r, in manx situations it would be a most inefficient way of
obta

¥

g knowledge *** . The method of trial and error may be

nl

‘ dirget, but 1t may also be disastrous.” To this quotation we may
R, - ~

i

\ add, not only that it may be disastrous, but {t has been. The
higtory of mathematics‘is replete with,incorrect statements based

on limited experience’or experiment., This“does not mean that we /:)
hoﬁld overlook the role of experiment, elther physical or

thematical, in suggesting facts. We must merely make sure that -

any suggested fact is given a logical proof.2 . ‘ ' . ;
Euclid recognized the importance and necessity of starting

with appropriate\definitions and assump fions. He went to un~

necesBary and inadvisable lengths to defYne every term, although T

Pl

he was acquainted with Aristotle's state nt: "It)is not eVbry-

1
- thing that can be proved. You must begin%somewher M Euclid

recognized this with regard to his axioms and postulates but qver- €

4

looked the corresponding idea with regard to his_ definitions.

~

N to ' - & ¢
1Morris Kline, Mathemat}ts in Western Culture, Oxford University

¢ i B ¢
Bress, p. 24. . . . o
<

2i?'or excellent discussions of the role of experiment and other

txpPJf plausible reasoning in mathematics see the book:s by " .
a

G. » How to Solve It, and Mathematics and Plausible Reasoning.
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ﬁnfortunately, most modern text-book writers haven{t recognized
it-yet. It is not our purpose to discuss his deienitions here -~
thaﬁ will come later - but to point out that they are not satish'
factory from either the™ modern point of view or Euclid's ideal
and purpose. They cannot be used in the devolpment of the super-
structure (the Propositions) upon a strictly logical basis. ‘

Fuclid!'s common notions, often called axioms,'are essentlially

general statements wiich correspond to the usual qiioms of

'eqﬁality_and addition of ordinary arithmetic. Euclid did not refer

.

'criptive basis as abstracted from our physical universe of common

"0 them as "self-evident truths®; this connotation was due to later

.

Writers, who were not as expert as Enclid. If,-hpwever, we accept

these definitions and common notions upon an intuitive and des- -

-

v

[ 4

experience, they may gulde us to later precise definitions and

‘ assumptions, which can be used as.a basis for a strictly logical B

AL

developnent of geometry. This is the basdis of Hilbert!s™ axiom

-

-

s ) /

payvia ﬁrbert, Grundlagen der Geometric, 7th and final edition,

Teubner, 1930. Several editions ‘of the English translation )
(Fonndations of Geometry, tr. by E. J. Townsend) _have also appeared.:

For a condensed version for plane geometry, see Eves and Newsom,

An Introduction to the Foundations and Fundamental’ Concepts of

-~

Mathematics, Rinehart, 1958, pp. 87-88. ~-See also Section 2 of *

éhapter 3, where the incidence postulates stated are essentially -
. oo : i 1 .
those given by Hilbert. Other references and details of Hilbert's

e - - -

- -

postulates will be given‘later.' . - : . Y

A 2
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system, by means of whi ~Eu¢lid's Elements ean be made logically
/Sorrect. Tt should be widerstood thab there are no "false" .
Propositions in Euclid's ley_lents, only incomplete proofs and - . !
fstatements that do not follow logically from his stated premises,
but which depehd upon his preconceived ideas based upon\ intuition
and experience. A number 'of these omissions will be discussed.g
,later in Section 2.

- PN E
L]

The assmptions that we -f‘unda'.nientaily‘ of a éeometric NE
character Euclid called tPostulates,:L and 1t was here that Euclid

showed his mathematical acumen. were five such Postulates. ‘

I. A straight l:l:ne can be drawp from any ‘paintt to any point.
» . IZ. A finite straight line canbe produced cpntinuousl'y in a .
straight line. A .

a

III. A cirele ‘may be descr bed with ahy center and passing
- throu,gh"a glven point. .

Iv. All right angles are e‘
V. Will be considered "lat

-+ Although he didn't say so, thepd 1s no doubt that Euclid implied

the uhiqueneés as well as the existence of the corresponding line’
-

~ and cirele. Euclid did not péy attentién to the tools, ruler

. ~ A
4 ‘and compass, theoretic% or practfc 1, by means of which these

L )
et ow s o B v ’ 3 /

/ s
.

¥

Today, mathematicians make no distinction between “the terms:

a.xiom,.postulate, assumption, agreement, and principle, as long

as they are merely statements which are assumed without proof.

X .




onstructions could be madE. As has been already pointed out, he

s interested only in logical'deduction and not the applications

; of geometry. of course; we .cannot actually draw a line or a ¢ircle
in a phfsical sense, hut we can draw very good models of them.

The entities of'geothry are mental constructs ahd the drawings

are physical objects with roughly similar properties or substitutes
for them. The heuris ic value of these models was not overlooked
by Euclid and should never be under-rated by us. A well-drawn ‘

"diagram has enormous h uristic ialue, it 1s essential 1n the

"discovery process and in the analysis, and it is even very usefal

"in the synthegis or firmal proof a.la Euclid, but it cannot be

'.used to provide a logical proof of the statement. Indeed, the
fact that the proof must\use the model is prima facie evidence
that something is wrong or. missing. The‘best two illustrations
are Euclid's proof of the "Theorem of the Exterior Anéle" and of
the Proposition: "If two planes have a point in common, they have

. ’ -

"a line in common." .;. s .

In his second postulate Euclid recognized the infinite
character of the line, and although he did not state so precisely,
he used the postulate in the sense which required that the length
* of the line be‘infinite. Al the definitions axiomss ,and

.,postulates 8o far were relatively simple of comprehension and

fully in accord with experilence, and no one ever questioned,them”l\jéh.

for over 2000 years. But the fifth postulate - Euclid*s Parallel

Postulate - was of a different character. F -
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V. "If a straight line £alling on two straight lines makes

emmn (Y

the interior angles on the same side togethekeless than“two right
. » .
angles, then the two straight lines, if proﬁuced‘ind nitely, .- -

o

meet on, that side on which the angles are tqgether less than two

right angles. . ' MR ‘ N

_This\postulate was not accgpted without misgivings,'and muéh of

[ S

.the history of Euclidean geometry after the fall of the Sohool of
Alexandria until today is concerned with the attempts and failures
+to prove this postulate on the basis of the other,assumptions. We
shall discuss somQ_of these attempts in the nextisection.
The introduction by Euclid of his Parallel Postulate was no
;accident. It was a monument to Euclid's insight and skill as a
tried to proye everything he could without i%; he even 1ntroduced
- pecullar Propositions with but one intent - to prove all he could
about paralleldl lines without the Parallel Postulate. This
postuiate is essentially the converse of Proposition 17, Book I
of Euclid's Elements, whibh An brief form-is: ,
"If two 1lines cut by a transversal do meet, then.the sum of

the angles is 'less than two right angles. P
It is true that the proof of this theorem depends upon Proposition

S

mathematician and logician- The evidence is in the Elements. ,Heu .

16, the "Theorem of the Exteridr Angle", whose proof plete

and cannot be completed on the basis of Euclid's explio Sty ted™-

-

- assumptions. But even the best mathematiclans did not realize this
for’Bome 200¢ years. They were 8¢® Intent _upon "proving" the
Parallel Postulate that they over-looked the other errors and the

TR e

S S . ~
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possibility.that it could not be "proved"., It. would be much simpler
to develop geometry if Postulate V were used immediately after -
Proposition 17, but because Euclid didn't, modern’ text-books do not
either. ;uélid went on as, long as he could without it~mmodern~
foundation theory often does the same thing. In Proposition 28
/Eucli& proved the contra-positive ~ the opposite of the converse
of Proposition l7, and then used his parallel postulate to prove
the opposite of Proposition l7, which is alsoﬁthe/converse of
. Proposition 28 LIt 18 indeed a peculiar order, but motivated by
Euclid's desire to prove everything hefcqyld and postpone the use .

a

Is

of Postulate V as long as he coWgpd. In between Propositions 17
and 27, Euclid developed the theory of inequalities with respect
to one or more triangles. Euclid)was willing to0 pay the prige of
harder work to obtain Propositions 18 to 28 without recourse to'
Postulate V -- and for the moment. the contents “of these Propositions
1s irrelevant -~ the numbérs are relevant because they ‘tell how .

S
long Euclid postponed the use of this Postulate.\ It noﬁhing'ﬁ&re
/

is learned from this analysis, 1t should point out the gxtreme
(”‘ /’l’ /
care used by Euclid in order %o systematizexand organize'geomet,

»/ ‘\\

! :
into a complete and logilcally correct structure ”z v

,aa f.\ i

# . In summary, the outstanding contriiution of Euciid's Elements

b
3

lies in the development of the modern mathematical method ~ the
hypothetical deductive~method of modern mathemaﬁicg. We owe much

P A

e
to Euclid because he possessed the 1deal of placing mathematics
on an unimpeachable logical basis., He demonstrated how _much__

_,;‘,_,‘b
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knowledge can be derived by reasoning alone - for he gave hundreds

s

of proofs ba8ed upon a relatively few assumptions, and it was

T through his Elements that 'later cilvilizations learned the power
d of reaseon. o L C L
"\-‘ .. \

7

)/;

"2, - The Mistak®s of ‘Euclid. Over a period of almost 2000

[N

yea;s,_pany mathematicians accepted Euclid!s Parallel Postulate
with miséivings, and attempted to prove this postulate on the basis
) _ot; his other axioms and postulates. Many "false proofs" were/_
published, or unwittingly, "proofs" yere given which depended upon
ssumptions which are lbgically equivalent to Euclid's postulate.

'." These attempts arid failures finally 1led to the discévery of what
we now call non-Euclidean geometries, which plainly showed the
importance and necessity of Euclid*s Rarallel Postulate (or sope
logically equivalent one) for the completion of Euclid's work.

- ‘But they did more'than that. Theyacpened up wide vistas of
mathematical progress uninhibited by the doctrine of the in-
fallibility of Euclid: ., voo- )

The first redl progress was made 1n*Q733 by a Jesult Priest
and Professor'of Mdthematics at the UniVersity of Pavia, Gerolano
Saccheri, who, however, reputiated his own achlevements, and

.o egtitled his. work: "Buclides .ab omni naevo vindicatus," ar freely

tranSlated~ "Euclid is free of every blemish.” Saccheri denied
an assumption that 18" loglcally equivalent tao Euclid's Parallel
Pos tulafe and.kept all the rest. He developed a loglcally con-
,sistent;gody of theorenshfor a geomet;y which di?ferslfrom that

) > - . -
' ° .

wll Toxt Provided by ERIC

ﬁr[:R\!: 5 o . zlt | .

{n
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of Euclid. But he was Bo convinced of the ihfallihility of Euclid,
‘ thatf/in a fi;;l chapter, he lost himself' in the morass of philo-~
sophical meanderings in the realm of ‘the infinitesimal and réEected
all his own correct reasoning and concluded with: "Euclides ab
omni naevo vindicatus" - when indeed the Fifth Postulate was not
even one of the mistakes of Euclig. If Saccheri had had a little
TS

more Imagination and had not been 80 convinced that there could,be
_ . no mistakes in Euclid, he would have anticipated by a century the

- Postulate was not one of the mistakes of Euclid, 'but it was one of
his crowning mathematical achievements. It is not our intent
go deeply into the subJect, but to make a féw pertinent comments.
Gauss had developed many ideas along this, line by 1800, but he had
puBII“H“ﬁ‘nothing on the subject. But Lobachevski in 1823, and in
later writings, had the courage of his convictions. Aithough the
imprint of, Saccheri's work is plainly visible in his writings, his
; attitude Was different and he gave a complete development of /
Hyperbolic Geometry. About the same time, the work of’the younger '
Bol;ai was sent by his fther to Gauss. Gauss replied that he had
been in”possession of much of this faterial a long time, only to
. be accused of plagiarism. But all of these writersthad stilI’“ '
placed too much faith in Euclid, and it wasn't unti Riemann, in

iy = - 1854, published his famous .disgertation that the true situation

:_1.4»:

‘became appa nt. Riemann started from an entirely d different point
of yiew, that ofwdifferential geometry, and showed th existence '

<

LI
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discoveries of Gauss, Lobachevski, ' and Bolyal. Indeed the Parallel ,

of so-called Elliptic Geometry,jwhich his predecessors had rejected,

»
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fmathematicians of his period did not do much better.

and spointed out that other postulates of Buclid neéied careful

scrﬁtiny. \The importance of the work of these men does not lie’’

entirely in"the discovery of new gecmetries, but” also in the faect
that, 1t caused a crisis in mathematical thinking which led to a

cpitical examination of BEuclid's Elements and to the discovery of

many migtakes of Euclid and to methods of correcting them.

Felix Kleinl wrote in 1908:

"The ideal purpose which Euclid hdd in mind was obviously the
logical derivation of geometric theorems\from a set of premises . ,
completely laid -down in advance.
reach hig high goal Nevertheless, tradition is go strons‘that

pf¥iiars presentatien is widely thought of today as the unexcelled
CNa

pattern for the foundations of geometry. )
Let s now examine some of the mistakes of Euclid, not’ for
the purpose of critfcism, but 8o that we may. avoid them in our
presentation of geometfy. o ' f
- (1) Edelid t71ed to define every tern, . g
"A point 1s that whidh has

Other i

Let us look at one illustration.

¢

Surely this does not tell you what a point is.
gythagoras

88.1d‘ . . . ' » . *

-

no part."

"pA point 1s a wmonad having positioﬁi" .

4 te

1Elementag¥ Mathematics from an Advanced Standpoint. See vol. 2,
pp. 188-208,

See also A.E. Meder, Jr., What i& Wrong WitH Euclid,

Mathematics Teacher, Dec., 1958 N ' s W

t

-\
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But Euclid did not, by any means, _

-

«
.
.
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Ahd what do.you mean by position? Let us make up a definition:
Position is a property possessed by a point' This should be
enough to convince you that we had better let the term 'pointt .
remain undefined. ° It is only necessary "to examine Euclid's ‘

_ definitions of point, line;" and plane to discover that they play
no role Whatever in the‘logical development of~geometry. We must
start somewhere with undETinEd térms if we wish to avoid cirgum-

5o locutions, and here is a good place to begin. . ) )

(2) Euclid's definitions are not always precise and meaningful.
"A 1ine is length without breadth.” , o
If we know what is meant by length and breadth independent of an;

- connection with a line (curve), this might be precise, but as it
stands 1t is nonsense., It tries to identify a geometric entity,

a line, or perhaps a collection of entities, a set’ of, points, with
some attributes of measurement, which themselves are meaningless ®
without knowing what a line 1is. ’ .

*

In the .above definition, the word"line‘ is used in the sense’
5 L . * - ) . ! ’
of 'eurve', including 'straight line', and the latter term is then
defined as follows: . =

i

"A straight line is a 1ine which lies evenly with respect to
its -points " . o ’
This statement 1s wholly obscure. If you trﬁnto‘explain it in
terms of motion, you only complicate matters by bringing 1n more
undefined terms which are extraneous to the subject matter. That -
18, you might prefer some mOdern'(sic) definition like this:

"A ,line (curved line) is the path of a moving point."~ Pirst, the



, - 18 ' I
N

’ . . oo

. idea of physical“motion has been introduced, and second, what'do
you mean by path? If you try to side-stép the difficulty bgbsaying

st v

we merely mean change of position, you are back where Pythagoras

began., ’ ; . d ) . :
| Berhaps you have heard this often: “A straight'line isﬁgggaﬂn®‘~i
shortest distance between two-points.'i "As a definition it f@L
entirely unacceptable. The very concepts of line or line segment
d"distance' are radically different. It is true that Euclid
proved the Triangle Inequality Theorem, but that comes many pages#

and some twenty propositions after the definitions were given.
- - ‘ \

And what do you mean by the iength of a curved line? If you know

n

anything about 1limit theory or the integral calculus, you might

supply an answer, but 1t is too late. Perhaps you are convinced;

anyw!y we are, that the” term '1line' had better remain undefined.
These and many other ill-stated definitions may be harmless

if properly fenced off in the department of pictorial representation

or informal geometry. T?ehpQStulatés 1list thgse asgsertions from "
which all conclusions in this branch of mathematics will follow.

' It 1is nerely in the logical developmentlof geometry that such 111-

stated definitions are worse than useless. This is discussed'

further in Chapter 2 under the headings of Descriptive Definitions,

~—r .
Postulates, and Explicit Definitions.

1

P (3') Euclidts’ postulates are not-always stated precisely.

~

MPostulate 1. It is possible'to draw a straight line from L

any point to any point." & . s

Y

. " 'Draw' has a physical connotatiod but we will credit Euclid

B
. .
.
-
» - M -
& N N
. . -
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as meaning it in the sense of"there exists'. Such ideas were
current in xhe‘philosophy“of hie day. But as Euclid used the
. postulate, he meant more than thet. He meant there is one and
___z one such line, It is not difficult in this case tQ say what
you mean, and tha is precisely what we intend to do.
. "gpstulate 2, 18 is possiple to produce (extend) a finite
straight line continuously in a straigﬁt\line.". £ ’ )
~ This postulate was misunderstood because Euclid did not
indicate what he meant by 'continuously'. To understand the
difficulty let us talk in terms of'measurement. If we start with
a segment ' (Euclid's finite straight line) of unit length and
produce 1t % a unit, and then -% a unit, and then %- a unit,
. and so on ad infinitum,'each time extending 1t by onejpalf the
previous extension, we will be producing the line continuouely,
but that is not what Euclid meant nor how he used it. But he{was
familiar enough with Zeno's paradoxes that he should have avoided
* his loose statement. No doubt Euclid meant that the segment could .
be extended by any amount (1ndefinitely), but so could a circular
arc. But there 1s a difference. In the case of the line, Euclid
meant that we would never return to any point we had before, while :
in the circle we would. This distinction was not clearly recognized‘
until the time of Riemann's famous disser?ation of 1854, so Euclld )
is excusable, but not his modern .imitators. Euclid'& difficulty
cannot be resolved without some considerationvof the concept.of

'Between', which Euclid entlirely overlooked except on a purely
1ntuitiye bagis. This difficulty was recognized by Eudoxus before




. Euclid, and by Archimedes after Euclid, and we must give proper
’ attention to this concept of 'between' in our presentation of
geometry. '

There are similar difficulties in other oostulates and common
'notions, but .we need not point them out here. We mergly need to ?'
heed the warning that if we expect to present geometry on a strict-‘
ly logical bas}s that i1t 1s necessary to say what you mean, or some

LY

one will’ misinter?ret what you say. . -
(4) _The postulate system is incomplete. ’ .
We have a ready given some indication of this with regard to
the Postulate okaxt_ension and the ldck of consideration of any

Postulates of order. “But the-same indictment can be madé because~

the proofs of some propo/itions are logically incomplete due to the
fact that the asstﬁftions upon which they are based were not in-

-

cluded 1n the Postudlate system I,Let us look at some of the proofs

in detail. © ) /‘ c s s
' Proposition 1. Book I.
"Oon a glven finife straight line to construct an equilateral

triangle ." / c

The essence of the construction is

to, draw a circle with center A

which passes through B, and one with A
center B which passes through A. T ’ Fig. 1
- If the circles meet at C, then the triangle ABC 1is equilateral.

" Notice our emphasis on the word 'If'. Since we must take the'tergs

.
=8

>
oy
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line and plane as undefined, wé‘neally do not know precisely what
they mean, although we may have pretty good models for them as in
Fig. 1. Perhaps you construct such a’modéi, using a line segment
Cof relatively small length, and say: "I can see that they inter-
sect. If you can't see that, you are stupid, or mentally deficient,
or Just stubbofn;" If we keep on producing the ‘1ine segment, it
)won't be long until we can no longer construct the physical model,
and we can not see 1if the circles intersect. The Proposition is
stated for any finite line segment, and the proof must be for any
segment.
. Suppose we try the'same construction on_the surface of a
soHere, where we have a different model, the sphere belng called a
'“plane“, and a-great circle being called a "line", where a;} we'
nqu to guarantee 1s that these words in quotes satisfy the
postulates that are used. Upon examination this will be found
: valid if the "1line" segment has a.length less than one-half that
of a great circle, that is, if we restrict our model to a hemisphere.
* First we use a "line".segment of Eelatively small length, and we gee
that thé circles intersect.
We might conclude that the A
Proposition (it is really an .
'enistence theorem stated in
_different ianguage) is also

E.3

valid on the sphere; If the

sphere had a radius of a mile,

or say 4000 miles, We probably
- Fig. 2

-

~~~~~~~~
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a !

could not precelve the difference between it and a plane surface.
On the small sphere, let us extend the "1ine" segment AB & litfle
longer and 1ittle longer (Postulgte 2) but always keeping A and

B, on theﬁsame hemisbhere,'and try 1t agailn, as with AlBl in

) Fig{'2. Ir AIE; exceeds a certain length the circles do not
intersecyf Is this a'paradox§ No, Jjust an error of omission in
the original proof. Of course, we must assume éhe circles are K

continuousl

curves, curves without gnps, but that 1s not enough.\ .
Thé circles always intersect in the Euclidean plane properly conj
sidered but do not always intersect on the sphere, and this
.difference must be establisheﬂ by proof or assumption. What 1s
needed here 1s a circle axiom in the plane which will guarantee

the intersection of circles under appropriatg restrictions. This

/oircle axiom 1is not only a continuity axiom,\but 1s-also e lent

" to the donverse of the Triangle Inequality Theorem, which appwgrs *

asngopositionyao; Book I of Euclid's Elements in the fo
[ ’ e, o N :
k7 "In any triangle two sidés taken together in any manner are
' 4 . A -y
greater than the remaining one." “ﬁ% ‘

In Prsposition 22, Euclid proposed a construction problem: - g

B

lThe qpncept‘of continuity is a difficult one, not only with .
respect to points on a line, but also with respect to our numpgp.
system, Thislconcebt is often hidden in our Postulate Syéﬁem, but

the teacher needs to be aware of some of 1ts implicétions. >
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"out of three straight lines, which are equal Yo three given

31

straight lines, to construct a triangle thus, it is necessagx
that two of the straight lines taken together ‘in any mahner should

ll 4]

be greater than the remaining one." toe it,isvnecessary see
but nothing is said about it is sufficient, and "a&e, there's the .
rub." This sufficient condition 1s one form of a circle axiom.

Using the language of Euclid, but not ggotin » we could take as

an axioms

14

) ‘Circle Axiom. Out of three straight lines, which are equal to

three given straight lines, such that two of them taken together in

K <
any manner are greater than the remaining one, is(possible to

construct a triangle. ‘> . .

s .
This circle axiom can be stated in many differept and better

ways for the plane, but it is not valid for the spheré@ It«is
' sufficient to note that the Triangle Inequality’ Theorem ‘(Proposition |
20) is true but incdmple or a spherical triangle. It is really a
very speclal case’ of the Circle Axiom that'is needed to complete
Proposition 1, because‘forgthe stated construction we would use .
¢+ c¢>c. But our second model suggests that the converse 1is

o

false for the sphere. To prove a'statement 1s false, one'counter-

»

example is enough, to prove it 1s true*“a dozen special cases are
Aot enough. We assume the circle axiém for the plane based on our
" limited experience and this, 1ike all other postulates about a

plane, puts definite restrictions on what the undefineo ngh plane
* . 7

means. e/

’
{

. —e

lThé emphasis on necessary is supplied here.
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Let us now turn our attention to another concept with respect

.to which the postulate system of Euclid (and his modern imitators)

is incomplete, that of motionl. Some of the proofs in the theory

of congruent triangles depend upon the physical concept of motion
which is‘entirely extraneous to Euclid's geometric development.

It is true that'ye can define what Euclid meant by motion, or that,

we can take ‘the concept as undefined, subject o 2 set of assump-
"tions, but Euclid did neither and many of our modern texts do not

do it properly elther. Thése texts do essentially make anhexistence
axiom. "There exist motions that do not qhange size or shape," but
that 1s not enough. Euclid, himself, recognized part of the .
difficulty and avoided the use of motion and 1its concomitant, )
:superposition,‘whenever he ‘could give a proof by other methods. He ° o
wsed it sparingly and often proved propositions without it, even

though its \.BZ

mathematical system of postulates and definitions for motion can

-

would.provide a simpler "proof“ .1t is-true that a

be made, but this point of view is difficult to develop, and uses

explicitly the theory of ﬂgruent triangles, and, hence, could not

be used to -develop the (fheory of.congruent triangles. It 1s no .
-

A e

b - — il
d Beatley, in the Preface to their Basic

wonder that Birkhoff
Geometry.call such "groofs” demoralizing, and this point of view

alistic’ mathematician. But the situation in

»

is upheld by any'

pany —

lFor a furth%r discussion of this concept see the Appendices to

-2

the text, and Talks to Teachers in the Commentaries. ‘

-
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Euc¥id's Elements involves another difficulty. Klein says: "The
only concei&able purpose for Euclid!s Probositions 1, ?, and 3°is
to avoid the use of physical mdxion in order to prove Proposition
4, the Side-Angle-Side Theorem. But then Euclid did not use them,
perhaps recognizing that they were not sufficient for that purpose
If you wish to apply the theory of congruent triangles to |
triangles in different planes, there is still another error of
omission in Euclid's Elements, even if you grant the .use of motion.
It depends upon Euclid's proof in one of the later books of the
- Proposition: . "
"If two planes have a point in common, they have a line in
-common." ¢

The proof of this'fropositiogkis'%néorrect. It depends ubon
the following cited statement: . v

"If two planes have a point in-common, they have a 'second
pointgin.comnon." . -

Why? No reason is given, and no reason based upon any of his
previous work can be given. Of course, we never saw two planes
that did not have “this property, really we never saw two planes,
although we have seen pretty good models of them. However, let us
consider another miéél Two spheres {recall that the (s. A. S)
Theorkm is also valid on the sphere) are(placed 80 they have and
retaii one and only one poinft in common, and let us 1magine these
sphereg, to ghow 1n size until each has'a radius of 4000 miles, say.
D6 you' think you could perceive the difference between the spheres
and two planes anywhere near ‘the common point? Of course not, but
s

—p
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these spheres have fnly one point in common. Euclid's assertion is

L]

a pure agsumption about the properties of planes in 3-space. - "

»lActually it -1s false concerning planes in u-space. 0f, colirse,

Euclid had no such conception available. Since this Proposition

~cannot be proved on the besis .of the otper Postulates, it must be

ta%%n as a Postulate, and this is Just what we dot . S -
The most serious mistake in Euclid's Elements is the complete

omission of any consideration of order of points on a line, that

Iar o

is, the concept of betweenness, and -of separation of a plane-by a

, line$ This accounts for the errors of omission in the 'proof' of .

‘ the Theorem of the Exterior Angle. This theorem is. fundamental for

: fhuclidfs~development of the theor& of inequalities velated to a
triangle, and to his. theory of parallel lin\_“/éhe erucial point'

of the proof depends upon the proof that a certain constructéd

ot

point lies in the interior of an angle.“fBg$~s1nce,n0¢proper con-
sideration of order relations orqseparation axioms ia~included in

-..v‘--

o o

$he Elements (or by most of his imitators), proper'proof can be

given until appropriate Postulates and Defini ohs are‘given.
"These are’ given in our program-for the<devefopment of geometry.

[N

It 18‘no wonder, then,, that Klein states:

I

2.

"So many essential difficulties present themselves, precisely
13 the first theorems of the first book of the Elements 3, that there
wéan be no talk about the attainment by Euclid of his 1deal." . |
* ' Nor is 1t any wonder that Hilbert, Birkhoff, and others as
individuals, and the Commission on Mathematics, The Illinois Study
Group, and the School Mathematics Study qroup reached the conclusion

\
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that to attain the ideal goal of. Euclid, we must have a fresh start

It will not be Euclid, but it wlll be Geometry that is completely *
® vindicated. '

[ d

. " —

‘e

3. The Program for Geometry. After the mistakes of Euclid

have been pointed out; it is not too difficult to correct them by
troducing the needed assum%tions., The best known procedures are

“based upon the works of David Hilbert' and 6.D. Birkhotr?, Hilbert's

program was to stay as near the form, of Euclid as possible and to -

- supply precise postulates which ‘can be made the basis .of correct
proofs of all the Propositions of Euclid's Elementss. The entities',
point, line and\:.%ne, and the relations incidence, between and" \

- congruent are taken as undefined but umi.ted by precisely stated
postulates. The firs't postulates are concerned. with the incidence

[4

- Ipavid Hilbert, Grundlagen der Geometric (Poundatisns of Geometry).

a5

A number of both Germsh and, English editions are available. See .-
¢ N « 1 ~

+also Eves and Newsom, An Introduction to the Foundations jand

. Fundamental Concepts of Mathematics, p. 87. o

~v ¥

'*'r}f’g.z, ‘
. A ’ '

<

' 23.D. Birkhoff, A et of Postiulates for Plané Geomety, Based on
Scale and Protractor, Annals of Mathematics s vol 33 (1932),
_PpP. 3%9-345 See also Birkhoff and Beatly, Basic Geometry, 1940

(- . / { -
3A text for high school students based upon this program has recent-
ly been published Brum.fiel, Eicholz and Shanks @ometgx, 1960,

Addison-Wes ley. .-, . \ -
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of'- points and .lines, points and planes, lines*and planes, and.two
planes, and fill the gaps left to the imagination by. Bu idl.

The next set are the axiom of order, involving tﬁe concept of
-‘between, in order: to give the poipts on a line the same characteris-
.tics that we usuaily relate to real numbers. These ideas aré theh
) re}ated to points in g plane in order to develop the'hdtion of
separation of a plane by a/;yhej a notion often used by Euclid, but
about~which Euclid said nothing fn his "Elements". Hilbert used an
axiom due to Pasch which can be stated as follows: ’ . . -

.

Axiom of Pasch. np line which passes through a point between

two vertices A and /B of a triangle ABC, elther passes through
a vertex;fpr'a point between A and C, or a peint betwee; B

and C." N ’ : , .
'\ “The next set contains the axioms of'cengruence cohcerhipg
ppngruent segments and congruent angles, stated in a mannef to
suggest their analogy With the reldtion of equality and the operation

of addition that we usually assoclate with real numbers. These three

v

&z .
% .
& . s 1

”

11t 18 not expected that the reader be acquainted with the works of

.‘Hilbert and Birkhoff. However, Hilbert's incidence postulates as -
}//~used by SMSG are stated at the beginning of Chapter'3 The purpose

N / here. is merely to start a discussion of the points of view of these =

two leaders, and to state how SMSG drew upon both of these pre-
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sets ane necessary to f111 in the gaps 1eft by-Euclid. To tomplete
tha sttplate system, a parallel postulate and a continuity .

postulate are required. Hilbert used the Playfair fonm of the — .

§;; parallel postulate ‘and an axiom of continuity known as the Law

of Archimﬁdesa. - ) ‘_ . S

4;$ Eucf;d did not write for school-boys but for philosophers and
scholars of his day Neither did Hilbert’ write for schodl-boys
- In part, the Hilbert (or synthetic) approach is too~ sophisticated
for a beginning course in geometry This is why we have been
forced to the conclusion that a tenth-grade course based_upon;:N..

Hilbert's Foundations‘of Geometry would, in our opimndon, be so

vf)‘

his ldeas entirely. Indeed we use many of Hilbert's ideas We
. accept the fundamental idea that point, line, and plane should
remain undefined and adopt Hilbert's Incidence Axioms,‘essentially

.

as he gave them, 2 v

We adopt, however, ?ﬁhe point of view of Birkhoff, that we
should arithmetize geometry as much as possible, and build upon the
student's knowledge of arithmetic, elementary algebra and his

ability to use a scalé and protractor. This requires a careful

.

t 0 -

lFor a statement of this. postulate see p. 32. ' ‘-

'2For a geometnic'statéhgﬁt of this postulate,‘see Eves’ and Newsom,

1oc. cit., p. 88. ‘An arithmetic equivalent is as follows: If a.

Ey
" and b are positive numbers, there exlsts a positive integer n

such that na >b. . —~ .

unteachable as to be ‘ridiculous. #Thls does not mean that we reJect

Y
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statefent™and discussion of the Axioms of Linear Measures and
Angular Measure which are not beyond the understanding of a tenth-
grade student. It 1s assumed that the student 4s already familiar
with those properties of real numbers that‘gpe needed, or these
properties are stated (as axioms) on an informal basis. This .
arithmeticlapproaeh?not only has the advantage that it tuilds upon
.. What the student #1¥eady knows, but it lays the foundation for the
early introduction"ST anglytic geometry. When 1t 1s simpler to use
definitions Qr postulates given by Hilbert than those given‘by .
otHersf wé have o, Qgsitation in using then. But many of Hilbert's
ideas appear asg theorems that can easily be proved by the Birkhoff

approach. . In particular, the notions of between and segment are

closely assocliated with corresponding ideas of arithmetic: It is
very difficult to prove the Axiom of Linear Measure from the
Hilbert or similar approaches-. If you need to be convineed of
" this ‘fact you need only examine how 1t is done An H.5.M. Coxeter's, -
The Real Projective Plane, Chapter 10,' or to study H.G. Forder's

book, The Foundations of Euclidean Geometry. This points out ‘that

the Axioms of Linear Measure and Angular Measure are very powerful

gnd desirable tools for the development of geometry. i
We have'adopted a Separation Postulate (of the plane by a

line) ingtead of the Axiom of Pasch‘because it 1is more ?irectly

'
A#f = . 1 . P Yo

1gee Chapter 5. A formal proof‘that the Plane'separation

. Postulate Amplies the Axiom of Pasch is given as Theorem 5.4,

40
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applicable to:the theorems we wish to prove, and it is more nearly
related to the ideas of inequality useful in analytic geometry.
dT“ls this Postulate, for example, which permits us to supply the
missing steps in Euclid!s proof of the Theorem of the Exterior
e, i; we 80 desire. At least, it makes .1t possible for the
teacher to understand the proof, if ever called upon to explain.it,
and to recognize Euclid!s~assumption in his oft repeated proof.
The Separation Postulate enables'us to clarify the whole concept
of angles related to two: intersecting straight lines. In a number
of Euclid's 'proofs!', hg tacitly assumed that a ray which iies in
the interior of an angle‘oﬂ a triangle meets the opposite side of’
the triangle; and conuersely, that the ray determined by'a vertex
and a point of the opposite side 1ies 1A the interdor of the angle.,
_ This second statement 1is easy to brove on the basis of the Separa-
tion Postulate, but the fi?st statement i® difficult to prove.
Because of this both statements, or at least the first, may well
be stated as a Postulate without proof but neither statement should
be overlooked if we wish to avoid the mistakes of Euclid
One of the*main advantages of the use of the Axioms of Linear
Measure and Angular Measure is that the whole theory of congruent
_?%ksegments or unequal segments apd of congruent angles or unequal
angles can be put upon a precise arithmetical *basis independent of
*  any notion of motion. The necessary connection between congruent
segménts’and congruent angles is Supplied as in Hilbert's P
'Foundations ﬂy assuming the (S.A.S. ) Theorem as a postulate. :
Whether or n@t you prove’that (A.S.n.).Theorem and the (S§§:§°)
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Theorem is & matter of how much rigor you'wish to iriclude.

Eﬁphasis is placed upon the idea of one- ne correspondence, and

the Isosceles Triangle Theorems ape proved by making the triangle
ABC correspond to itself, that 8, triangle CBA, by making A,

B, and C correspond respectively to C, B, and A. .A more
conYentional proof iséalso included, but now the Axiom of Separation
or some other postulate 1is available, if desired, to fill in the gap
in the proof. [

We follow Hilbert in the use of the Playfair Parallel Postulate:

E%“Through a point not on a given line there 1s at most one line
parallel to the given line." Euclid proved the existence of parallel
lines on ‘the basis of the Theorem of the Exterior Angle, by showing
that *if a transversal intersects two lines so that the alternate

- interior angles are equal, the lines are para11e1 " Tt would have
been simpler,’after this 1s done, to assume its converse as the ‘
parallel postulate: s+ "If a transversal intersects two pardllel lines,
then tse a1ternate interior engles are equal.h One reason for'it is
that this angle criterion is the property that-is naed,as the basis

for geometric constructions. For some reason not fully understood,

Fuclid considered what today we call the opposite and contra-
i ¢

7 positive of the Propositions he had proved, but we recognize today
that these concepts need play no role in onr geometTy as long as we

- focus attention upon ‘ax theorem and its coﬂVerse, and are willing to
'usegthe method of proof by contradiction when needed. The Elayfair
Postulate and the Transversal Theorem for Para11e1 lines are logical-
ly equivalent, ‘and it 1s not difficult to prove elther from the‘ |

ofther. . ' Lo

A
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The theory of parallel lines is usually followed by the theory
of éimilar trjangles and the related topic of proportion. The
first and basic theorem to be proved may be stated as follows:

The Basic Proportionality Theorem. If a line parallel to one

81de of a triangle intersects the other two sides in distinct .
points, then it cuts off segments which are proportional to these
sides. .

Several avenues of approach are available. (1) Take the
theorem and 1ts converse as postulates, with or without a proof of
the theorem in the.commensurable case, (2) Give a proof for all
cases based upon the theory of 1limits, or equivalently, on Eudoxes'!

method of exhaustion" as presented by Euclid. Such proofs involve
rather subtle properties of the real number system and are definite-

vt ° <
1y not for "school-boys". Howéver, we give such a proof here (at

“the end of Chapter 8) merely to show what it is like. (3) Adopt

N

the point of view of Birknoff (see Birkhoff and Beatley, Basic

. . A\ .
Geometry) and assume the (S.A.S.) std&Bement for similarity as a
.basic postulate. (4) Follow Euclid an%'base the proof on the area

¢_,concept; (See Euclid's Elements, Book Vi, Propésition 2.) This -

means the development of the area concept, including the Postulates
of Measurement of Area, before the discussion of similar triangles.
The fundaméntal assumption that.the aréa of a rectangle is 1its
length times its breadth, a notion familiar to all students, by-

, basses any continuity argument and enables one to give a readily
understandable proof of ‘the basic theorem. 'This point of view is
not common in elementary texts written in America, butait is the

point of view we finally adopted. . o
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The rest of our program is conventional,,but’we are in a
better p?sitiqn to develop the theory of similar triangles and the. ~
Aiheoremlbf Pythagoraé‘than most texts because of our Postﬁlates of

Linear Measure. The ground work for the study of circles and 'g
pheres, either synthetically or by means of cartesian ooordinates
///in two and three dimensions has been laid. How far we go is a

/.

matter of the audience and our objectives.

We do not repeat the mistakes of Euclid.l We begin with un- -
defined terms, stating explicitly what terms are undefined, and
make precise Postulates about them. We do not 1list all the
Postulates first, but beginjwith a few and see what can be done
with them. We introduce new Postulates when they are needed. ﬁe
make definitions for convenience only, and they are precise and

. hever circumlocutiqns. We do not expect to present’a system of
minimum postulates, but make our postulates strong enough to achie%e
our goal of proving the tneorems from the postulates in a manner -

El
s T

?

14111 mathematicians 2000'years hence point’ out the mistakes in our
work (or, more significantly, in Hilbert's or Birkhoff's)? Undoubt- ‘
edly suoh criticism will™ Gome in a small fraction of the time. k
Standards of mathmatical rigor change with time, and while the :-
present theory may be completely free from mistakes according tq

tpday's Vieﬁpoint we may have well' overlooked some fine point or ° R
made mistakes of a higher order of subtlety than those we realize -
were made in the past centuries. Some future geometer is sure to

point these out.
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:f that the student ;hould be ‘able to follow wit?i:out memorizing the ’
_details of the proof, We have planned the cougse in geometry so
that it is integrated with the students' previous knowledge, and ™

- 80 that It may be .easily integrated with courses that follow it.

We have done all this keeping in mind the spirit of Euclid{s 1deal,

the légical derivation of geometric theorems from a set of premises

completely laid down in advance-,

L \
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1. Setsl. MathemaQ}cs is often concerned with collectiops

_of objects, ra‘ther than with md{viduals 2 One frequently uses such
phrases as "the'integers"f‘"th prime numbers", "the points equi-~ -+
distant from two given points", "the vertices of a given triangle",
"the lines parallel’'to a given line", ete. Instead of speaking of
a ”collectfgn", and "assemblage", or other such descriptive term

" mathematicians;have pretty generally adopted the word "set", and

- for each of the individuals making up the set-the word "element".
Thus, the fourth set given above has as elemengs the : three points,—

‘which are the vertices of the given triangle. The elements of a .
‘set are sald to’belong to the set, and the set 1s sald to contain

: ¢ '
A set itself has a éertain identity. A line 1is a set of

1td elements.

" points, but one can also consider it as an individual and talk

* r

1§ections I\and 2 have been kept brief because 1n Ehe gepmetry text ’
only the language of sets is employed rather than set notation and
‘set relations. A’'Simple presentation of set theory can be found

in Introduction Eé.the Theory of Sets by Joseph Breuer, translated

-

by Howard F. Fehr, 1958, Prentice-Hall.

”
. ~ . N e
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" gbout "a set of lines" as in the fifth example above. Much of
modern mathematics 1is concerned with sets of sets ‘of sets of,
sets eor .. / { ' - , S
If S ‘designates a set and x one of its elements we write
xX€e S, read "x belongs to 8%, ~or "x 1s an glement of. S",‘
‘or "x 1sin S"., -
- In geomet::y we are primarily interestefl in sets of points, or
M sets for short, although for.technical purposes we must alsq
consi/.der sets of numbers. (See' Chapter 4.) A point set is often
rei‘erred to by the more familiar name of “figure
To specify a set we must give a criterion wher.\e&by one’ can tellc
without ‘axflbiguity whether any given object 1s or is not an element
of the;set. "The set of all even integers" is well Gefined, but «
"the set of brown cows" is not unless we specify the time and agree
on exactly what is meant by a brown cow. T ( < ,
"The set of brown cows in my (the author'g) office at 5:15 P.M.
“on April 3, 1‘959 A.D." 18 a well defined set. It is the empty set,

the set which has no elements. It may seeméilly to ¢all this a
set, but remember that at one€ time it.seeme silly to have a symbol

. for zero. We shall see.that the empty set can serve a useful
f N - .‘

purpose.

_ The same set of points may be specified in two, or (\m‘ore,.'
different ways. In fact some basic theorems of geometry consist of
a statement to t¥is effect; for, example, "The locus of points equi~
distant from two given points is the perpendicular bisector of the

‘Af Ane segment jolning these two points." (The word "locus", as
k3 ’v ) )

X

%
<
K

e
b




D
used in element‘g.ry geo;netry, is‘ css'entially c&nonymous with “setf‘.)
I!:f' S and T are specified sets and we writenS = T we mean that
, S and T consist of the same elements, or in other words that

"s" and "T" are just different symbols for‘the' samie set. Our '
use of the lsym';)ol "=" and the word "equal" will be consistent in
this respect. "Equal" will mean "the same in all respects” or -
"1den.tical". This 1s contrary to the practice in most elementary
geometry books, where "equa]_." means different things according to

the context.

'

2. Relations among Sets. If a set S .is entirely contained

in a set % S 1s called a subset of ’(I‘, and we write SC T.
More precisely, S C T if x € T whenever x € 8.

’ 'If S.and T are s.éts, the set of elementc common to S and e
T 1s called their intersection, and is designated by S () T

(read “S cap T“) In symbols, X€ES ﬁ"l‘“fprovided X € S

and x € 'I‘. The word "intersection" is’of cod’rse borrowed from’

geometry, w;here it is cpstomarilg used in precisely this sense, as
in speaking of fthe :Lntersec‘bion of a plane and a sphere®, ete.

A less familiar use 1is illustratea B, sC o :

in the adjacent figure. The inter- Qp—1Y : - R
‘section of the two rectangular A — % 0©

regi‘ons(’ABCD '‘and PQRS 1s the | Lo P . ) i /

region XQYD. Also, according to

“our deﬁnition, the :Lntersection of
a circle and a tangent line is the =~

. v ®

point of contact. Finally, if two

()
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sets have no common elements at all their intersection is tig empty

\ set. In this case we frequently use more common language and say
-
that the two sets "do not intersect®.
. LY

In contrast to the intersection of S and T we define their
uni\on, S U T/ ("S cup ™) <to be the set of points irn either S -
or T or/both. That 'is, xC sUr ﬁrovided’ x€S8S or x&€ T

T e s

" or X€ SYT. The union of B Q ¢ R ’
- - t
region ABCD and regi,gn PQRS
is region. ABRS. - A P D S
o ) Exercises i ' .
7 1, Consider the following point sets: . / . )
/

F i8 a pl\é.ne;
C is a eircle in P; l '
,L is a line intersecting C in two distindt points X and Yy
B S .~is the, line segment consisting of x, Y, and all points of L
between \X ~\gnd Y; ' /
Q ;s the éet of points inside °C; ‘ _
W -i8 the set oonsisting of the two elements X "and Y.
s (a:) Which of the following are true? .
¥ ) ccC P, (11) ‘@ Cp, (111) Q cc, (1v)§ c
(v) sC Q, (vi) w C s, (vii) W c Q, (viii) S C, L.

Write all the true inclusion relations among these six sets.
i

. . i 3
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.

a(P) Which of the following are true?

2

cNL,

s L,

(1) w=

(‘iv) W= S N c,

‘ (vi1)

QﬂSCC:

(11) s
(V) S=Lﬂ(QUC):
-(vi11) QN ¢ Cs.

= Qh L,.t

2t (111) W=

(Vi) S = (Q ﬂL)UW:

»

(c) Describe :Ln geometric terms each of ‘the, follow;!.ng sets:

(1)

2.

QN s,

(11) cU L,

If S 1s a set, 18 S CS°

ever true? always true?

(111), QU c.

« gometimes true?

—— 33.

cases?

P

Loy,
any number of sets.

‘

-

«  Can you assign a reasonable meaning to S - T in 511

in some cases?

\

Give definitions for the.intersection and the union of

-

»

’

°

. : - \
5. (a) Show that (S) T)CT and TC(SU T).
? £ ’
. (b) Show that SN T =T 1is equivalent to TCSs.
> (c) ‘Show ‘thaKS UT=T 1is equivalent to §C.T..
+" 6. Show that SU(TNR) = (S.U T)ﬂgs UR),. and that
sN(T UR) = (sN ) U(sN a) N e
> S BN
Pl o .

-




3. Correspondences. It is sometimes necessary to consider a

certain type of relationship between two sets. Let § _and T be
sets, and suppese there is a well-definef rule which associates
certain palirs of elements, the first element of the. pair being from

S and the second from T. Such a rule 1is called a correspondence

between S and T. . . 4

-

Qle l Let_iS be' the set of ald points of a given plane
and T the set of all circles lying in that plane. . We associate ‘a

TS

point P with a circle C if P 1s the centey of C. This is a
one~to-many correspondence; each circle correspohds to exactly one

point, its center, but each pbint/coq;esponds to many circles.

Example 2., With S and T a§:above let a point-and a circle

corréspond if th% point lies on the le., This 1s obviously a

- many-to-many correspondence. - . ) —

— -~ Example 3. Let S be as befowe but let T consistionly of
. . X . I
. those circles with a radigé,qf one inchguwThen the correspondence

of Example 1 is,one-to-one. 3

h

° J  The last example illustrates the most important type of

corgespondence. A correspéhdence between S and T 1s saild, to -

be onelto-one if each element of S 1s associated with exactly‘

ooe element of T{ and each element of T Wlth exactly one element
of S. Such a "pairing off"™ of the elements ‘of the two sets often .-

enables one to carry over to the .second set some of the properties

of the first.
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* ’ P Exercises . »
1. Discuss“the obvious coxrespondence between book covers
and. colors’,’ ) -

- “ o2, Is it p’ossible for a set to have a.correspondence—éth
itself? with a proper subsety of i.tseﬂ‘?’ could such a correspond- |

N

1
EY

. g »
enceé be one-to~one? /

3. If x and y represent integers discuss the corre-

spondences: ’ !

-

\ (1) x<—-x,

' ('ii) - x <——->x2, .
\ (111) x <« 3x, ‘ s -
(1.v) Xe>y . If x+y=7, . ,
d (v) «x sy 1if x°% ¥, s

(vi) x <>y 1if x°=y°,

-

. %, In this \{‘xigure 0 1s the center of the circle C, AB
. 18 pérpendicular to line -L, and '

v

X «—>Y 1s a correspondence

between points X of L .and-
_points Y of C. Is thisg

Jsorrespondence one-to-one? - -

'y

-

lBy_ de‘f&.tion, évery set 18 a subset of itself, 'S iys a proper
“\subset of T if SCT but S £T.
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) \\\\\\\Sentences. In all mathematics and-pantieule -

AN

geometry we are interested in drawing conclusions from explicitly
stated hypotheses in accordance with assumed laws of logic. To
appreciate this statement fully, it will be necessary to discuss
what we mean by a number of terms used in geometry and to state the
assumed. laws of ‘logic. To communicate ideas we use words (or
symbols) which form sentences.! We confine our attention to such

statements or sentences which we assume are either true or false,

but_not both, and are not meaningless but have content.2 If a
. statement is written to which this assumption does not apply (and
there are such statements),\we exclude it by agreement from our ‘
discourse; The assumptions that the statement must be true or
false, but not’both, ave often referred to as the laws of .

wt -

Contradiction and the Excluded Middle of Aristotelian loglc. :The

’

b4 ’
‘-

*lDescriptive definitions of a sentence to be found in a dictionary v
might be these: (1) a related group of words expressing a complete
thought. (23 A verbal expression of an’ idea which associates a
pefSon, thing, or quality, expressed in-the subject, with an action,
state, -or condition,'expressed in the -predicate. We will use the

Words.statement and sentence as synonymous.

!

aln ordgr to avoid philosophical or semantic discussions of the

terms true and false, 1t is often found convenient to use the

. words "valid" "and "invalid". -

LR}

-
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“w

1




assumgtion that the statement must have content, and thus not be

£

) meaningless, means ‘that we must‘%e able to give at least one, and -
possibly more than one, interpretation to all the terms used We
may not know whether the statement is true or false, but we must be
willing to accept the fact that it is -either true or false but not

- both., We are willing to accept the sentence: "4 =2 x 2" as
true, the sentence: ™4 = 3" as false, and thé sentence: .
%4 = a parallelogram" as nonsense. On the other hand, we do not
lmow‘mther the sentence: "The decimal expansion of the irrational

number T contains ten consecutive -7'8"™ 1is true or false, but

N ¢ - A .
we are willing to accept it as being true or fa%se, but not both.l

- .
5. Descriptive Definitions. To communicate 1ldeas we use

> words (or gymbols) and we must have some idea about what theyﬂmean.

PRl We usually define certain terms by means of other words, and we >
should have some prelimiﬁary notion of what constitutes a (good) B
definition. Some definitions are purely descriptive.and 1nformal,
and by citing special instances, giving illustrations or drawing a
plcture, give some meaning and understanding to the tefm o be}
¢,def:l.ned. But such definitions cannot be used as a logical basis

for the development of geometry. Perhaps such a definition explains
. ~

A »°

lfhe fact that this is an assumptiion is emphasized by the existence

N s . ~
of schools of thought that reject thisopostnfate, especlally the
., law of the Excluded md@r

) "




. these latter terms might be defined by means of stlll other simpler
' M
(?) terms, and so on. But the process cannot go on forever.

Eventually, 1if we wish to avoid circumiocu%ions which are not

logically acceptable, we must arrive at a few terms that are not

!

defined, but for which we have ‘some, perhaps more than one, inter-
)\ ] |
pretation. If we draw a plcture or use a physical model to 1llus-
|
|
|

3 7 .
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_the term to be defined by means of other wordswalready defined;

trate\the term defined, they are only special instances, and there
may be other models that could fit Just as well. If we wish to
define curve passing through two ppints, I am sure you could draw

many pictures. The above type of descriptive definition 1is often
i found in standard dictionaries, and the fact tha\Lg single term
may have many 1nterpretations 18 well illustrated in such
dictionaries. :

The first th{kg we must'acknowledge for any iogical discour$e A
is that there must be some terms that are not defined. We want B
such terms to have some interpretationq, and indeed, perhaps msre
than one. We do not w;nt them tb be Githout any interpretation or
to be meaningless. However, logical deduction must be independént
of the particular interpretation which might be gttached to the
undefined terms.
In geometry we may consider sﬁch entities as ég;g_, 1line,

"

plane, space as undefined. Some of the relationships such-as, on,

contains Agpal, congruent, greater é‘;n, between, ;;parate, lengﬁh,

ete., and such’ operations as addition and dhltiplication (and many’ .

others) may be left undefined‘ There are certain logical terms as |
N AN
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set, and, gr, there exist, all, at'lgast,ytggg, etc., some of which -
mey be left undefined. The set of terms left undefined 1s somewhat
arbitrary and is determined by the objective of the discourse.
Different sets\of\terms may even be &sed for the same objective.

Other terms mentioned are then defined by means of the undefined e
terms. P : . ‘.

] J N l
AN

6. Postulates. After the'set of terms that retmain undefined

is selected, we make statements (sentences) qbout these terms. We
accept these statements to be true without proof the sense that
these statements form part of our hypotheses;from which-all other °
conclusions are logicalE; proved. They impose some condition upon
the undefined terms, 80 these terms cannot be considered ‘to be
_absolutely arbitrary. By means of these hypotheses weﬁdélimit that
part of the universe we,are talking about we are talking about any
systemkcy things possessing the properties expressed in these !
assumptions. The more such assumptions we make, the more limdtationz
we impose, and.the moré difficult ir becomes to realize ‘a model from d
quhlimited experiences. i . !

Y .
FEPRICE -

~ Such assumptions are variouslyvcalled postulates, axioms, -

principles, or agreements. We shall makeono distinction between
such. names and. usually use the word Eostulate, because axiom has’
too often been associated with»the_idea of "self-evident truth".
~In our geometry there are no self-evident truthsﬁ theépostulates
are assumed to be true. fostulates, of*course, are not made up at

random, they are suggested by fundamental properties of- physical

- Q.
. e

P
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_space, Just as the undefined terms, point, line and plane are
suggested by physical obJedts. Naturally, the particular postulates
we use, in elementary geometry are baged on our experience with
physical models, and are usually accepted without question on the %gb
basis of such experience. That is intended for we want elementary
geonmetry to be an idealization of certaln aspects of experience..

The physical models suggest by idealization, certain properties

that would présumably be posgessed by certain highly idealized

substitutes(for the physical objects. Among the many properties
tﬁaf we suspect these idealized substitutes of habing,~some'can )
’readily be deduced logically:from the.oehgrgwand gould be omitt?d,",
fPom the postulate system; the remainder pf' thefe properties could
-" then be tgﬁen as a set of postulates. The postulates used in .' .o

»
~—

elemcntary geometry. are based on empirical considerations; tney

,\are to be regarded however, as independent of such empirical con-

~ . . «

[

siderations. Indeedvthey might have more than one empinical inter-

‘ .

’(\pretatton, or, as we say, we.may present nore than one model which’ (“
. can be used to give an empirical interpretation ;o the same postulate
;\Ezstem.‘ In this way we h?pe, by proof, to make discoveries‘without
;ﬁlicit experience, or to use facts gained by proof gs & check on,_

-

our experience and vice-versa. i _\\ o ~ . ’

R -

4

As an illustration,.let us take the terms p t line, and

S x ~- -

contains as undefined, and assume, that the other (logical) terms

l "-have meaning(. Lo CEEE G , ) : -
“ A ‘e N M - ' )
.,"é v ¢ *
- = .8 . . - = .
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Postulate 1. Given two distinct points, there exists one'and
only one line which contains them.

We might think of a model in which the term "line" has the
1nterpretation of a stretched string and 'contains' suggests thew;
equivalent”idea of 'passing through'. If this is the only postulate

1
) made, there are other models which also apply. We use an 1illus-

‘ tration ‘from elementary analytic geometry. Suppose the 'two points'
are interpreted as the ordered number pairs {(0,0). and (l,il, :
the "line“ as the equation y = x, and 'eontaing' as 'the nufiber

pairs satisfy the equation' You can recognize, with this inter-

~pretation, the sentence, called Postulate 1, is true. However, if

‘the word "line" is interpreted as the equation ¥y = ax2, you may

also verify (and, hence, accept as true) the sentence:
_ X

"Given the distinct points . (0,0) and (1,1) there exists

one and only one parabola of the form ¥y = ax2 which contains <

them." ' - : : ) e

Here the model uged for the word Mine" is the 'parabola of

"the form- y = %‘: If no further postulates about . 'ggint' '1ine!

- fe.

and"contains' are made, other 1nterpretations gre also available-

"Given two different ozs, there exists one and only one

4 . .
committee of two upon vwhich they serve." ’

. . ‘

4

-.pf course, in elementar& geof9try, other postulates are made,

PN

so that all of these interpretations are not then simultaneously

:valid.~
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T. ‘Explicit Defin;tions. Hereafter, the word definition will

& .k ’
refer to explicit defigition tomdistinguish it from descriptive

definition as ‘used. iy Section 5.

(1) An explicit definition of a term is a characterizgtion of
the term by means ¢f its attributes, properties, or relations that
distinguish 1t from all other words that have different meanings.'

(2 The definition must be reversible, in the sense that the

. distinguishing groperties must be both necessary and sufficient to
yield the term defined. . s .

, (3) . To be used 1n a logical discourse, it must use only those
terms which have previously been explicitly defined or accepted as
undefined but]1imited by explicitly stated postulates. '

Let us illustrate these ideas by several examples. From this

peint of view the definition of line segment found in Euclid's

lements and in practically_all of his American imitators is un-

n

satisfactory. ' o ’ T

[

Definition. A line segment AB 1is the set of all points

"between" two distinet points A and B. .
. . . h ] . * ER

~ s

.

o C . . ) . . P
LY First, a line segment 1s a set of points, arfd this”set 1s

- \ ’
«distinguished from all other>sets ot points, in that 1t contains,
all points’"between" two distinct points, second, the fact that we

A

R A

call the se7éence 2 Definition implies that all points "between . 4
the giveﬂ points belong to the set. Third this is an acceptable ’
definition for a logically self-contained system if and only ifxf

-
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ex

the term "between" has been defined before line segment is defined,

or "between" is' taken as undefined subject to a set of postulates,

before line segment 1s defined. It is not an acceptable hefinition'
1f "between" is uséd in an intuitive sense or.merely illustrated '
by”a figure. ~Otherwise you might be temptéd to say: "A point is
between two distinct points A and B, " if it is contained in éhe. '
line ;egﬁent AB", Unfortunately such circularities in definitions

are much too common in American texts.
" The term defined is fundamentally an abbreviation for a mﬁch
. longer group of phraséé, but it could élways be replaced‘by a
‘statgmgnt of 1its distingulishing properties. Howeve}, definitions
aye very convenlent and importaﬁt in helping us think accurately
and cgncisely, and help us avoid using words carelessly and with

+muddled meanings. .

* \
4

/ Exercises . ) S

1. Taking the undefined terms given at the end of Section 5,
'examiﬂel:ach£6f the following statementswto see if it 1s an accept-
able definition. If not, see if you can modify it to male 1t one.

. (a) A straight line is one which lles evenly between all its

‘ points. 7 L - ) ‘

. ) (bdv A line segment 1s tﬁe set of points cbntained—in a gigen o
line and lying between two given points of the line. '

7 (e) The angle between two lines 1is the amount of turning

required to make one line coincide ‘with the other.

? v

. s " ."‘ , 50
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'

(d). Parallel lines are two lines contained in one plane and

¢

which do not- contain a common point. .
(e) A eircle is a closed plane curve, all points of which
* are the same distance from a fixed point in that plane. - }
(£f) The distance from a point to a line is the shortest pafh )
from the point to the line. ’ . < .

2. The treatment of sets in Sections 1 and 2 1s intuitive, .
not logical. Give a logical treatment, selecting and giving’
sultable definitions for subset,‘intersecﬁion, and union, .

+

8. Theorems In accordance with the agreement of Section 4,
the statements or. senjegpes We are to consider in geometry are
either true or false, but not both. When we call a statement a N
Definition, it is to be understood that the statement is true,
withogt explicitly saying 80.  When we call a statement a Postulate
(or any equivalent terms);~qé understand it is true by assumption.
There are other statements, of whicn, without further information,
we cannot.gell whether they are true or false . Examples of such - .-
senﬂences,~some simple and sdme compound, foldow: oo
T Two line segments~¥re congruent. ‘

(2) The triangle is(isosceleb.
(8)**The lines are perp ndﬁcular. o e

(4) «The point. P is ndt on the line u.
t i Ve
(5): a and b stard for real numbers and a = b,
"~ (6) 1t a, b, stand for real numbers, and 1f a=1Db and
, .

. ¢c=d, '4hen a - ¢ =Db - d.

\ .t ‘
. B -
. . .
" » t .. . )‘
» . ‘
h .
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(7) If two sides and the includengle .,0of one triangle are
respectively congruent to two sides and the included angle of
second triangle, the remaining sides are congruent ' L)
- , In examples (1) ~ (5), we do not know whether they are true .
or l‘alse, and cannot determine which unless more information 1s
/available about the ob,jects mentioned. Examples (6) and (7) are
written in the form of compound hypothetical statements called
conditionals. If we .accept them as postulates they are true b;r .
assumption. On the other hand,*it might be possible to provel'them

. £
= on the ‘sls of other postulates}

A Theorem 1is a statement wh%bh can be proved to be true in
, accordance with the stip{llated laws of lcgical déduction ais%ussed
in Section A9 on the basis of the accepted postulate system. ~
‘I{he'gz’ems of geometry are written in two'different forms: they
Bom ~mAy be_,writte:n as a direct simple sentence or as hypothetical
compound sentences (condi;tionels) . We are',justified ir{ ¢alling
them Theorems’ (Eucli,d used the equivalent term, Propositions) only
after they have heen nroved to be true. The statement correspond-
e - - i%g to any Theorem may be written as’ a hypothetical comyund o
sentence {called a’ conditj,onal) in the form

@ - ‘- If p, then q,

~

e
c}.-//:“

i

where p and | are symbols standing for simpler sentences. We

-~ wq". IR

v

-~

AR

- also say P ':Unplies a, and use the symbolic form P =>q. ~ We
are justified in calling' it a Thegrem'%en (If p, then q) 1is

' trne, .where the truth 1s established b}} logical means discussed

AN . ’ .

*
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below. Before considering the methods of proof, let us 111ustrate
thé ideas above by examples‘which are usnall& gtated as Theorems

of Euciidean plane geometry.

-

l. Two distinct- lines intersect in at most one point. .

L

2. One and only, one perpendicular can be drawn to a line
from a point not on it. '
‘3. . The sum of the measures of the angles of a triangle is

180°.

\ ——

4 ”»

4., The diagonals of a rectangle hdve the same length.
éég//The diagonals of a square are perpendicular. . .
Before these are,pgoved, we are merely justified qn caliiné

L)

them sentences. These sentencés can be traéslated into the form:
"if op, then q." The aentence p 1is called the hypothesis; it
is the statement which ia’assumed true, as indicated by the word
"If?. It represents the facts which we think of as given. Thé N
septence q 1s called the conclusion; it is the statement which
is to be pnoved true, as. indicated b&'the word "then". It represents -
the facts which are to be obtained by proof. After the compound
statement "If D, then q" is shown to be true, we call it a
~Theorem. The complete sentence; p implies q is true, is called
an impiication. : ‘, ' 4
) Each of the five sentences given above are now translated into
valternative forms? T ' R
~.la, If m and n rare two distinct lines, then they have at

:

most .oné point in commén.

SN

¥ ’ . ¥

"
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are perpendicular. I

' . 55

Statement 1 or la 18 a Theorem of plane geometry after we
prove it, not merely because we state it.

As a related example, we could wrife the fpllowing two equi--
vaient forms of a sentence:.

6. Two distinct lines lying.in the same plane have a point
in common. . )

' 6a. If m and n are two dlstinct lines in the same plane,

then they have a‘poiht ih common.. ‘ N

Actually the sentence 6 (or 6a5 ig nét a Theorem of plahe
Euclidean geometry in that it is possible to prove (or ;t ie‘often
assumed) that there are distinct lines in the Eﬁclidean plane that
have no point in common.  That is, sentence 6 (or 6a) is falde in
Euclideam geometry, but there are geometries 1n which it is true.

2a. If m 1s a line and C 1is a’'point not on 1t then there
18 one and only one line which passes through ‘¢ and which is
perpendicular to m. i ’

3a. If ,3, are tﬁe measures of the angles of a triangle,
"then: o +& + » = 180%,
ba, 1If a giﬁen quadrilateral is a rectangle, then 1its

diagonals have the same length.

Sa, If a giVUn quadrilateral i8 a square, then its diagonals

-

Statements 1 -5 (or la' -~ 5a) are Theorems because they are
capable of proof, However, the following statements 6 (or 6a)

and 7 .(or 7a) are not Theorems, because it is possible to prove-

/\.
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they are not true. By means of a rhombus with unequal buﬁ’per-

pendicular diagonals, it is possible to show statement 7 1s false.
/
7. THE_quadri;ateral whose diagonals are perpeﬁdicular is

a square. . » e :
- . [N . . 5o
- . Ta. 1If Ehe diagonals of a quadrilateral are perpendicular,
the quadrilateral .is a ‘square. \
- . u -y )

e '% :
9. Methods of Proof. In order to simplify the discussion,

we usually write all hypothetical sentences (or conditionsis)gzg

the form: "If p, then q" and discuss the laws of logic by

means of which the validity or truth of the conditional is

sstablished, and thus Justify calling tﬁe sentence a Theorem.

The intent to p;ove the statement 1s true is indicated by writing:

"If p 1is true, then q@ 1s true" or, ‘, - -
"Giveni p is trﬁe, prove q 1is true L

The basic method of proof 1s a direct application of th\\ﬁollowing

rule (aé?gsption) of inference:

Rule of Inference: If "p" 1s true and if the conditlona

"Ir p, then q" 1s true, then "q" ,is true. .

In the simplest proof, p 1s the hypothesis which 1s Ichown

""to be true or which we assume is true, and the conditlonal

(1f p, then q) Wwill be true if it is the statement of a

postulate, definit;on; or a.previously proved Theorem. The rule

of inference then states that the conclusion q 1s also true.
, o .

2

o
()
v



- The conditional "if- p, then q" “is commonly stated in

” mathematical terminology in the following six ways. ‘ *
»
If p, then gq, |
» - |
,p’ implies q, . &= T . °

.o q 1f p, ’ ;
p only if q,
a 5 a necessary condition for p, °
- p ‘is a sufficient condition for q.
- At this point it 1s also worth while clanifying the statement'

p if and o z if q, called a biconditional “fhis statement is

simply a brief way stating [(if p, -then q) and (if 4, then
P)] In other words a theorem- expressed 1n the form "p 1is true
1f and only if q -is true" really contains two statements to be ¢
proved, namely, "if p 1s true, then q 1s true" and "if q 18
true, then p 1s true". Some other waysaof stating "p 1if and
only if q" are: ) .
'‘q if and'only if p; BN
P 1s equivalent to q,
: ‘/:;a.necessar& and sufficient eonaitien for p 18 G,
' a- necessary and sufficient cond%tion for q 1s p.
Another logical term we have to discuss 1s that of -the converse
T of a conditional ‘statement. We define the converse of the: statement o
"if p, then q" to be the statement "{f q, “then- p". ‘
“We have agreed that our sentences are‘either true or false.
The neggtion of a sentence "p 1is true" is the sentence "p 1is
false which we shalL sometimes express also in the fogm "not p".

- . 7 . . \
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So-fag'all of our discussions has centered around the interg

pretation’of}a gingle conditional statement "if p, then q". .
‘ The applicability of the Rule of Inference is enormously extended

by the next rule of logical reasoning. ‘ " L

Rule of the Syllogism (or Rule of Transitivity of Implication).

If p implies q and q-implies r, then p Ilmplies °£.

G

In other. words, suppose the hypothesis of a theorem is p,

anduthe conclusion r. Suppose among our postulates and definitions
we can find "p implies q" and "q implies r". Applying the
Rule of the Sylloglsm we can state "p 4implies r", and because
the'h&pothesis of our theorem is p, - we can apply the Rule of
Inferencé to conclude r, and tﬁ;\theorem is proved. _ o
“‘“'The final method of proof whic\ we shall describe is.the

method of Indirect Proof, or proof by contradiction, as it is

sometimes called.: First of all, we define a contradiction Fo be

a sentence of the form "p and not p; ¢hat is, "p 1is true and
‘" hot p 1s true", or, "p 1s true and p 1is false". A funda- ~

mental assumption concerning our logic is that every contradiction

is false. ' < f‘

Rule of Indirect Proof. A conclusign q 1is true if (not q)

S

‘ implies a contradiction.
& "

-8
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In the simplest case, to e£tablish the statement "If p, then

" q", we assume the negation of q. If we can derive, using the

rules of logic, the statement "not p", then.q 1s true. More

L]
-

"ot and.the -assumption not q“ ’

generally, if from the hypothesis "p
weé can then derive, using the rules of logic, a\htgtement of the
form "r and not r", that is derive both "r" and "not " » We
can conclude that our original hypothesis that g 1s false 1s‘in-
valid, and, hence, that gq is‘true. There is no general rule
which tells us how to find the contradictory statement "r and
not z;, so that the method of 1ndirect proof sometimes is a more
difficult method to apply than the other rules of~inference. *We

ll find many cases, however, where 1t seems to get at the hear&\
of the matter in short order. - f
! From the simp;est case of the Rule of Indirect Proof, it 4s

possible to derive the following: ' . > F

@ . ~ N

The conditional "if p, then q" is logically equivalent to

the statemen; "if not q, then not p", called the contra-positive

© of the original conditional, ’ ' )

The converse "if q, then p", 1is logically equivalent %o

-+ the statement "if not p; then not q", called‘the opposite of

' the orié}nal conditional. r ‘

) This logi%gl equivalencF indicates that to establish the bi- v

“conditional 1t 1s sufficient to discuss the conditional’ and 1ts,"

1§ converse, At times 1t may be more convenient to use the opposite

* instead of the converse, . L

o~
-
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5

So far all of'our attention has been concentrated on methods
of proof. It is Worthwhile making a remark conerninngethods of

school course to the possihili of having the students discover s

disproo?. Far too 1little emphzgis is given in the usnal high )
theorems for themselves. “After all,’ this is the, way mathematics

is done; a theorem first has to be guessed before it can be proved.
[In this connection the reader is urged to® read in G. Polya's books
"How to Solve It" and "Mathematics and Plausible Reasoning , both*
published by the Princeton University Press.] Assuming that we

are trying to guess some theorems, we shall arrive at a list of
sentences to test._ Some Je may be able to prove, others will
resist our attempts at a proof, and we may be led to entertain the

. possibility that a statement 1s false. Hom,do we sHow ‘that the

statement 1s false? Consider the following statemert. > -

For every triangle with sides of length a, b, ¢ 1t is true -

‘that a3 = b3 + c3.

We are not impressed with the statement; obviously,‘it,is
false. th?\ Well, we now a triangle can have sides of lengths
3, 4; and 5 and 1t 1s false ‘that 5° = 4> + 3%, Sieh an
example shows that the statement ‘is false. A general statement,

" 1f true, will remain true in every special case to whlchfit can be
applied. Therefogg a general statement is false if there exists
one speoial case in which the statement,is false. This special

w . v .
case is called a counter-example to the statement. For a creative ~

student of mathematics, it 1is Just as important to be able to find

counter-examples to explode wrong guesses as it 1s to find proofs e

~

of statements that will turn out to/be theorems.

»
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\Exercises

< ] -

1. " Find a counter-example to disprove thﬁ\statement YIf n

24n+1l ds a prime numper."

4

is a positive integer then n

2. Using the ‘simplest case of the Rule of Indirect Proof,
prove that (1) "if p, then q" implies "if not q, theg not p",
and (2) "if-pot q, then not p" implies "if p, then q".

3. Prove the logical- equivalence of the conver8e~ahd the,

oppositet of a given conditional. ! il
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Chapter'3
Points, Lines, and Planes-

1. Introduction. This chapter contains a list of undefined

terms, and the first definitions and postulates upon which our
entire development of,geometry is based. The language of sets
'1ntroduced in Chapter 2 willl be freely used from the beginning.

It should be emphasized that there are other sets of postulates

equally satisfactory from a logical point of view to those we have '

dopted Those in ‘the present chapter, however, contain no
surprises, and we shall-not attempt to motivate them The postulates
given in Chapters 4 and 5, Howevér, are not commonly used in high
school geometry courses, and we have included rather full discussions

of them in the. Introductions to Chapters 4~and 5.

2. Definitions and Postulates. -We begin with a list of un-|
1 defined terms. ' ’ '

Undefined Terms.

Point. . ° T AN
'idnef a set of'points otherwise undefined. "
Plane: a set of points otherwise undefined.

Definition. The set of all points-is called space.,
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Next,-we consider various statements concerning points, 1lines,

. ’ . .

and planes. Because lines and Rplanes are segs of points, we should

use the terminology "P is an e‘lefnent of A" or "?g A" for the

statement that a point P belongs to the line x.

Z,

Instead we

shall often say P lies on or qX passes through P,

¥

etec.

Definit;on. Points lying on one line are said to be collinear.
‘Points lying in one plane are said to be coplanar.
S ‘ .
The first postulate guarantees that our geometry contains T
- -

enough points to be 1nterestingz

AN L4 -

‘Pogtulate 1.

(a) Every line conpains at least two, d;stinct points. .
(b) Every plane contains at least three distinct non-collinear
points.’ ‘ -
(c): Space contains at least four distinct non~coplanar points.
Pogtulate 2. Given éﬁoAdistinct points, there exists one and
.only one line containing them. - . . rad ,-: .
\, ' .
Notation. Wé shall denote the line containing the distinct

. points A and B by AB. » .

" 'Postulate 3. Given three distinct‘nonrcollinear points, there

/.

If two dlstinct points lie‘in a plane, the - line
. .
containing fhese points 1lies in the plane. _ -

(]

is one and only one plane conta;ning them.

, Poatulate 4
ﬂ\_......_,__

11

72 : '
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;ﬁhat doés Postula?e 4 agsert? Given two poiqts A and B

. which 1lie on a plane p, Postulate 2 asserts that A and B 1lie

<>
on a untque line AB. Postulate 4 then states that the line iﬁg
is a subset of p, 1in other words, every point on ﬁ 18 also

on p.

£

Postulate 5. If two distinct planes intersect, their inter-

section 18 a line.

-

3. Some Basic Theorems. A remark about the numbering of

‘statemehts is appropriate. Theorem 3.1 means the first theorem

" of Chapter 3; Theorem 4.2 means the second theorem of Chapter 4,

o

etec. Results of lesser 1mportance are numbered according to the

'section of their chapter, e Zew(k. 2) of Chapter Q\?eans the second

_result in Section 4 of Chapter &.

-Theorem 3.1. Two distinct lines have at most one point in

common.
- s

I3
.-

Proof: First of all we must interpret the statemenf of thé
theorem. We are éiveﬁ two distinct lines 7 -and X'. Their
intersection consists either of}po points, one point, or more than
one point. Our task is to shéw’that the third possibility cannot
occur. Heée in our first theorem we know of no way to pngceed
except by the®method of indirect proofi How does the method look
in this case? We have a statement p: "two distinct lines have

.;% most one point in common." To make an indirect proof we must

¥
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5

’ ‘,‘“ . . a
6 .
s ‘ ~e ’ /

. '« -
-

.show that (not p) implies a contradiction. What_is (not p)?

It 1s the ‘tatement'that for some pajr of distinct lines 7 and
i, the.intersection of Z and 2! contains more than one point.
Therefore the {ntersection of X and 1' must contain two dis-
tinct points A and B. To say that A and 7B belong to the
intersection of Z and Z' means that A and B  1lie on the
line 7 and that A and B 1lle on the line 2'. Applying
Posvtilate 2, 'which states that through two distinct point¥ passes

- /
one and only one line, we conclude that the lineg Z and X!

coincide _We have reached ‘a contradiction, nanmely, the statement o ( R

+

q and (not q), . ‘

’

where q 1s the assertion "Z and 2' are distinct lines"
Summing up the whole argument, we have shown that (pot p)y implies
the contradiction q and (not gq), and by the;Rule of Indirect

Proof we ‘condlude that Theorem 3.1 is true.

L 4
]

Theorem 3.2. If a line intersects a plane not containing it,
the intersection is a single point.

-

- »

Proof: This time the Theorem takes the form of a conditional
statement. What is the hypothesis? We are given a line X,
a plane P not containing X, such that, p and X do have a
point or points in common. We akre tryiné to show'that they have
exactly one point in common; Agaln we use an indirect proof. This
time, the statement of the theorem is false 1if there exists a line
1 which intersects the plane p in ‘more than one point but such
"that Z 18 not contained in bp. ‘Let A and. B be distinct
boints which lie on poth X .and p. By Postulate 2, there “exists

4

AN £

|
a
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‘ cne and only one -line containing A ‘and B, and because Z -
contains A, and B this line is %, or more briefly, ,1/=<.l\?§>

; By Postulate 4, the line AB lies in the plane p. We have
derived the contradiction ’ , K

. q and (not q),
where this time q 1is the statement "Y ' is contained in p".
Again by the Ruie of Indirect P cf, we can assert the truth of
our theorem. " {
Theorem 3.3. Given a line and a point not on the line, ‘there

is one and only one plané containing tne line and the point.

4 Proof: Again we have a conditional statement to prove, and
this time we shall spare the reader another ':Lndirect proof. P}3le
are‘given a point P and‘a line ,1/ such_that P, does not lie on
X. By Postulate 1, there exists two'distinct points A and B.
on X. Then we can sert that A, B, and P are- non-collinear.
[The reader'is asked ¥to supply the proof of this statement ]
Applying Postulate 3, there exists one and only~ one plane P~
containing A, B, and P. Because of Postulate 2, X = AB and ¢
from Postulate 4,°we conclude that X 1is contained in “p. We
have prcved that the plane p contains P and the line x.
Because any other plane containing 2 and P must contain A, B,
and P, the fact that p 1is fhe unique plane containing A, B,
and P implies that p: 1s also the unique plane containing P

and X, and*Theorem 3.3 1s proved. .

N
-3

VB
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Theorem 3.4. Given two distinct lines with & point in common,

there 1s one and only one plane containing them.

Proof: This’time we have to prove a conditional statement"
with hypothesis that ‘we are giver two distinct lines I and Jt
which intersgct in a pé‘int P. By Postulate 1, the ‘line X!
contains a point P' different from P. By Theorem 3.1, P' does
not 1ie on X. By Tneoreé 3.3, P' and % are contained in one
and‘o’iy one plane p, Because X' is the, unique line containing
P and P', Postulate 4 guarantees that the plane p  contains
aﬁéo the 1line Z'. Finally, any other plane containing £ and Zr
contains P' and X, and becauses p isbthe unique plane contain-
ing P' and X ﬁé conélude that p 1s also the unique plane

containiypfg X and X'. This compleqéf the proof of Theorem 3.4,

k] LY




Chapter 4 Y

¥ . Real Numbers and the Ruler Axiom

’ N
1. Introductogy Discussion. Most of the geometrical questions

) that oceur to us in every day life 1nvolve the notion of length. It
_1s interesting to' learn that. the Greek geometers made very little
use of thi'concept of length, and for a very good reason. At the,
time GreekAgeometry was invented, the numbers which we take for
g?anted)nowadays were understood only in a most fydimentary and
imperfect way. In particular, the distinction between rational and o,

) irrational numbers was a source of great mystery to the early
geometers, who realized that the hypotenuse of a right triangle .

‘both of Whose legs are one unit long must have a length, but‘that

wsRE
(1) - ' ' -
) o
this length could not be compared in a simple way with—the unit
length of each si&e. In more detall, they ws%lggbleito measure
. “lengths which were whole number multiples of unlt length, and which -

[y

could.be"copsyructed from the unit lepgth with.a compass'

Rl ¢

‘ete.

J—.
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to be commensurable if it was possible to form a segment mA whose

.lengthimas some whole number m +times the length of Ay’ and.to
fornlanother segment nB whose length was some other whole number
h times’the length of B, 1in such a way that the segments mA
; and; nB were congruent ‘ More briefly we would say today that the

y length‘;fl A 1s a rational multiple of the lengtﬁ of B, the
" - constant of propoptionality being the repigyal number.~ﬁu Then -

;jhif%he Greek-geéometers made the discovery that the hypotenuse of the
right tr%éngle in Figure (1) waé‘incommensureble difh‘either of the .

Jsides. Once again, we can state this fesult briefly today by s;;-
ing that Vf—' 18 not a rational number. T

We should also recall .that the possibilixy of translating a
problem 1nvolying lepgphs to algebraic equat;one meant 1litfle to

"the Greek geometers. In their time the simbleét algebraic equations
Wwere regarded as difficult For example, the reader may censult the

World of Mathematics (vol. I, p. 197) to see the famoqﬁ cattle .

’problem of Anchimedes. It boils down to a system of linear
equations, ith large coefficiean and- large answers to be sure,
:buf’etill problem that a brig?t high school stugent could do with
ease 4f he had the patience to write dowfvsuch tfemendous numbers.

r

‘The point is theg'for the Greeks these problems were really hard

- -

\
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since they had no workable notation for_the numbers, nor oid they
have tne methods of algebra available to solve(systems of linear

equations.' i ’ R ]

! ] Wﬁth this background, it should not take much persuasion to
convince ourselves that our approagh to those parts of geometry
involving the notlons of length can and should imprové upon the .
way these things were done two thousand years ago. Specifically,
we are going to assume familiarity with the rational numbers and
real numbers, and with the elementary tools of algebra. All tnis

« 18 applied to geometry by means of'tne Ruler Postulate, to.be
given at the end of this chapter. The idea expressed‘precisely

- in the postulate is that we are given,onEe and for all a rnler,
with a fixed unit of length, and with the property that at each

. point on its edge we. have a mark corresponding to exactly one real
number and that every real number has 1ts mark on the ruler
(obviously this\ig not a ruler to be purchased in any hardware
store). Then o%r postulate adserts that for~ézery line L in -; BN
our geometry, and every pair of points P and Q on L, there
is defined a real number which we shall call the distance between
‘P and Q, and which is measured in the following way: our
ruler 1is placed in saoh a way that its marked edge coincides with/
the line' L; then opposite the points P’ and 'Q willl lie marks-
which oorrespond to real numbers p and d. Then the distance  °
between P and Q 1s given by the Ruler Postulate to be either

P-q or q-p, whichever one of these numbers 1is positive.

“

’
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" For example, we might lay down the ruler in such a way that at P
we read 3 ‘and at Q we read 5%. ‘Then the distancehpetreen P

Y and Q 18 '

. On thebijper hand we mighg;lay down the ruler again in such a way

that at" P we read 1 and at Q we read -;g The distance

. ‘this time is 1 - (-13) = 2. )

Besides having the advantage of 1its identification with the
familiar operatign of measurement, the Ruler Postulate has the
ad?antage of making it possip}e‘at ah eerly stage to translate all

_ problems about distance into problems about real numbers, which we
4 shall‘often be able to solve by the methods of algebra.
The purpose of this chapiter is to give first of all a review
s Of thbse aspects of the real numbers which w%}l be important for
B us, such as the properties of ihequalities and absolute value, and .

TR LN ¥ N

finglly to give a precise statement of the Ruler Postulate.
&—

v

8
A Word on the Organization of sk.2 - 4.5

-

A fairly complete bresentation»ef the real number system is ‘

= included, more, in fact, than can or should be covered as back- , ¢

° 7ground fofrihe geometry coLrse. Nevertheless the Ruler Postulate
has hidden in it, so to speak, all the properties of the real
number system, and although, these properties are not exploited
fully until the_chapter on analytic geomeéry, it seems to be a

* good idea to sketch out the properties of the number eystem rathef

] N
fully- ~_ v - '?l

- *
-~
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2. The Real Number System. In this sectfon and thé two°

.

succeeding ones, there will be exercises for the reader at the end
of the sections.. Throughout this book there will also be a number -
of results which will be listed with a *, for example, (2. l)*0
Theorem 4, 5%, ete, - Proofs of these results are omitted,‘and the

reéder is 1nvited to prove them himself. Very little benei:;,is to

be gained from a study of the number system unless strenuo efforts ,
are made by the reader to discover for himself proofs of the starred
results, as well as solutions for the exercises.

Before starting, we make a remark on the terminoloéy: real
.number" is a technical term, ané“;h; real numbers,;re described
exactly by the properties wé"éssﬁke as axioms concerning them. The
fact that there are also complex or imaginary numbers should not |
lead the reader to believe that one sort of number is any more or
"ess mysterious or more or less down-to-earth than the other. It
happens that f'or elementary geometry, it is unnecegsary to consider
the system of complex numbers. St :

Egeryone is familiar with at least one 1nttitive description' "
of the, real numbers._ For example, the real nuﬁbers may be described
'as the collection of rational numbers %, where a and b ~§re
integers, together with all "numbers® n_be approximated
arbitrarily closely by reti @l numbers. Or they may be described
as all numbers repres ed by writing finitely many digits (pre: .
ceded by a #+ or - \), then a decimal point, and then an un-
end;ng seque?ce of %?gits. Still another approach is to view'them‘

S Y .

w .
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as labels fox the points on a line. This is8 not° the placq,to explore

2

the oonneotions among these ideas, we seek a precise and usable
description of the real numbers to apply in setting up our geometry.
To acoomplish this, we proceéd exactly as in geometry by giving a

set of axioms for the real numbers. The axioms may be put into three

grdhps- first the algebraio axioms for the real numbers,‘yhich can be

sumqgrized today in the assertion that the real numbers form a field;

then the oﬁder»axioms which enable us to discuss the size of a real

-~ number; and finally the cogggeteness ekiom which guarantees that
enough real numbers exist for us to da business; for example, that

t re exists a- real nnmber a such that a2

= 2. We-shall organize
the material as follows. First we shall give the algebra axioms, anohb
discuss their consequences- then we give the order axioms and discuss
their oonsequences, and,finally we giye the completeness axiom.
~ PFirst of all we make a remark about sets and the notion of
‘equality. The real number system 1s going tq be defined as a set of
objects, and these onects will be denoted bi.symbols {a, b, ¢, ...,
0, 1, .?:l& ,The symbol representing ap object can be thought of as '
‘the name of the object. We shall assume that with this set we are
given a means of distingulshing whether two objeots are different or
not. In other words _glven an object with name a and an»objeot
Nuitﬁ"name al' we asdume that exactly one of two possibilities holds:
P . (1) The ™two" obJec are really the same; in this case we
? wyrite'a = a' (Bead "9/ equals a'™, or "a .1is equal to a'").
| Example: One:object 1f "Abraham Lincoln", and one 1s "he 1bth
- - president of the United States". ‘ ’

Y
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(11) Ths objects are not the same; in this case we write
a #£ a (read "a is not equal to a'").
. ' In other words, whsn we h;ve'assigned the same obJect different
names a and a', we indicate this fact by wri@ing a=a'.,
[In ths SM§G geometry text Qpe word "equal" will be used on1§ '
in this sense. The statement A ABC = A XYZ, for example, will
mean that we are simply dealing with two different notations for,

. . $ .
the same triangle. The careless use of "equal® in most geometry

*

bodks, to mean "having the same length" in some cases, "having the
same area" in others, etc. ig avoided If we Want to say that
A ABC- and A XYZ2 have the same area we say this; or we qan’say

; that their areas are equal; or we can define a2 new term and call
them: "equivalent" or "equi-areal.] 3 N

We assume that the "equals™ welation has the following proper-

.

ties. o ~ o

) .. (1) a =a (in other words, we cannot use the same symbol to

stand.for different objects). : g

2 . 4

: (i§)~ if a=Db then b =a. : .
. N(iit) if a

< e .
\'/sta%ementgof the notion that things equal to the same thing are

b and b=c, then a 5 & (this is a precise -
[3

¥

equal to each other). : T . P

Finally we introduce a rule which will govgrn the use of the

. >equal sign in our late discussion.

-+
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~ (SP) Substitution Principle. The réal number system will be a

set of objects, and it will also be possible to form combinations
of real numbers by addi-ng, subtracting, multiplying, dividing, etc¢.,

v

rd

for e‘7uple,w7e may have expressions like‘ , .

[a + (b - c)~]dr~/8 - 11;2 + b2 - cd)}.

o ,
-
Pl

Such an expression involving symbols for the real numbers as well

.

as the signs +, -, ',~/_,’ etc. will be called a formula pro=< , -

- vided ,th"at‘ it has'been’put toéether in “such a way that 1t represents ‘
a\real number. The substitution principle asserts that if a |
occurs in any formula whatsoever, and if b =a, then b may-be
substituted fér a jaerever a occurs in the formula, and. the

. resulting formulas are equal in-the sense that they repre’sent the

same real number. .

As.an example of how this 1s umgd, s'uppose we have to solve

the equation

‘ a - . B B i
o x-l=0.‘,' RN
Then usuaIly we say "add one to both sides", This operation is
justified by the substitution principle, for in the gormula ",
. (x - 1) +1 N 2 vl

we may substitute for x - 1 the symbo’l 0, °arglimobtain
/ :

/

L . (x-l)+l 0+ 1

-

-

and| frofm this as usyal we obtain A I
| % = i}.. - /; ’ . *

. .
i . ! ! L3

sy
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"Definition. The real number system is a set of objects called

. g
real nGmbers, and denoted by symbols a, b, ¢, ..., 0, 1, 2, ...,

etc., which satisfies the algebra axioms, the order axioms, and

»

the completeness axiom. °~ . .2
_ Y
Algebra Axioms.l For-any pair a, b of real numbers, there

€

is defined a unique r;alonumber a+ b; called the sum of a apd

+ - -

b, ﬁand a unique real mnumber &-°b, éal;ed the product of a and
b, such that thé following axipms are valid. '

{ .
(F.1) a+b= b'+ a, ab =ba .- . (commbitative laws)
) (FLQ)_ (affb)-+d’£ a+(b+c), (ab)e = a(be) (assoéiati&e Taws) --
, (F.3) a(b+c) =ab+ ac (distributive law)

(F.4) There is a real number O, . such that a + 0 =0 + a -

= 3 for alil real numbers a.

(F.5) There 1§ a real number J1 #£ O, such/%%at 1ia =a‘l =a
: &3 . o .
for all real numbers a.

° .

-
1

(F.6) For each al number a; there exists a real nuqber

‘_a (read "minus -a"), such that s,

&

- (-a) + a =a + (-a) = 0.

(F.7) For each real nunber a’'# O, there exists a real number- -

' (re&d the reciprocal or inverse of a, of one over "a), sueh

« " ) . v

(Ha = afz) =2, ~

! .

N ) ! ) ~ . .
1T'hemalgebra axioms are precisely the axioms for a fleld.

o

!

»
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We begin to degrive consequences of the axioms. ,/

(2.1) (Cancellation law for addition.) If a +b=2a +¢

Thenl D = Cu v cvmrm movoee e B et et e e ot e e e oL ‘, .l 8
N , ¥

v 4 r

‘ Proof: By the wspgbstitutionmprinciple (hereinafter abbre;iated

_ SP) we/pit?rf . -

-+ (-a) + (a+ Db) = (-a) +(a+¢c). :

Appl%(F.2) to ‘both sides to get 4

e . - .
- ((-é.) + a>‘+ b = ((-a)‘+~al) +c. .
Applying (F.6) to both sides we obtain '

-

O+b=0+c¢c,

and by (F.4) we have

- b=c
B .

as required. -

S

. o . .
I3 -

(2.2) If a+b=0 then b ==a. e - .

- ~ B -

Proof: By (F.6) we have a + (-a) = 0. By (SP) we have

- . o
/ a+b=a+ (-a)
. D s N
|-and by (2.1) we have .
.. ‘O b = =a. i k : °
O ) () = | | 4'/ /

/' (2.4 " The equation a + x = b has the unique solution
. (-a) + b. L TT' ' <
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Proof: Fifst we verify that (-a) + b is a solu‘(:;on, that .
18, if we calcufate . '
a+[(-a) +b)=(a+(-a)]+b ' by (F.2),
fa + (-a)] + b-=¢o + b by (F.6),
b by. (F.4), ; 4

. 0‘+b ¥

we have checked that _
-
a+ [(-a) + b] =D,

To prove that the solution is unique, we suppose x and X! are

gsolutions of the hew. Then we have. _—
‘ . ‘ t
-’ a+x=> ' -

and e "

R a +x! =b. .
By (SP) we obtain ~ " \
‘ '. a+Xx=a+x', '
and by the (:‘ancellation.Law, ' .o
x=x'. ’ e
/ B |

&+ .Definition. The unique solution of the equ?.tion X +.a -; b

*is denoted by b - a, and is called the ‘operation of subtraction

of" a from b, or b minus &,

o s : ‘ » T/
Thus, (b -a) +a&=b. ) 9 : .
L C . 1 . .
_(_2'.5)* a-(b+ec)=(a -:b) -c. " \I e
. . : . ;
* (2.6)" fa+Db) = (za)+ (-b).] ", '
) ‘e . I v -

(2.7) " a*0 = 0" for all real numbers -a.

- h B *

4o
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. Proof: We have 1+ 0 =1 by (F.4). By (F.3) and (SP)

we have
a(l +,0) =a*l +a-0=a-1l=al1+0.
By the Cancellation Law (2.1) we have - -

a*0 = 0., °

’

(2.8) (-a)b = -(aﬁ), and in particular- (-1)b = -b.

1]

Proéf: By (F.6) we have a + (-a) = 0. By
(2.7) we- have . '
(a + (-a))b = ab + (-a)b =

By (é.é) we have (-a)b-= -(ab) . as required. .

Qb =

1]

(2.9) =) (-b) = ab.

Proof: By two éppli9ations of (2.8).w§-have.
" (-a)(-d) = -(a(-b)) = ~(=(ab));

and by (2.3),~ -(:(ab)> = ab, as we wished to prove.

% (2,200 (~1)(-1) = 1.

- .

‘Now we come to consequences of" thé "division axiom" (F.T).

“‘The starred theoraqgs at the beginning are the-exact parallels of W

(2-1) -  (2.4) and 1t will be instructive for the reader to supply

T
'

proofs. . .o
( / i . ’ * . . ¢
(2.21)" . (Cancellation Law for Multiplication.) If ab = ac

and a # 0, then b =c.. ) L
( b .
. N N ; N
° . L \_,/\—\ A s ) .
. . RN ° £
-3
cd W .
. ;4 oz ) )
! 7 I 27 I
X P
ot . TeTy ) v >
¢ ” a7 *
. . N §.8 ¢ :. \' _5 N
e ., M . ~ -
w i ) LA 8 ’
- ‘-’\ . o IS p"
= o X

((jé)’ (F.3), and -
0

J
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(2.12)" If ab =1 then b =

(2.13) == .
T

. . A
$ (2.14)" The equation ax = b,, a #,0, has the unique

-

solution. (%)b..

Definition. The unique solution of ax =b, a #0, 1s

a

called the result of dividing b :qz a, " and is Vden’otec.i by -1?-. o
We cald g- a fraction with numérator 13 and denominator a. .

We can now seti:ie the ;time honored question of division by
0. U eans the solution of the equation 0°x = a. By (2.7),
Ox = or !11 x, and the equation has no solution if a-# O. '
'If‘ a =0, * wﬁe.'have to consider the equat?.om ox = 0, whichlis
satisfied‘ by every real number X. Therefore the et'auatl)n ox =
either has no solution (1f a # O) or infinitely many solutions
-~ (1£ a = 0). In neither case can we attach an unambiguoys
significance to -55 which is consistex;t with the preceding K
definition of '5 From now on, when we write '5’ it 1is tacitly

asgumed that b ;! 0. ' .
v, Fl ‘
L (2,15)* If ab = O then either [a =0 or

|

. t

(2.16)° @@ = .

‘ . I
. '
(2.17)° &+ %?—%_be, : Ty 1

0“ . R 1(‘&!-»:P.
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} (2.18)* fn% if and only if ad = be.
N ,/&2.19)*
A ,

o “» ' )
3. .Order Axioms and Inequalities. Order Axioms. There

.

~

’

e:_cisté a collection of real numberd, ‘called the p'bsitive real

. numbers. with the folloioting properties:
(0.1) for each real number a, one and only one of the
"following possibilities holds:

Ta) -a ‘is positive,

() a=o0,

.(e) -a 1is positive; .

. . . - i (™S

(p.2) if a and s are positive, so are a + D and ab:’/,

) . o i t I -

Definition. We shal} write a > 0 for the étateme:nt that
a’iis positive, a > O for the statement that .a is either}
"positive or zero. For any pair of real .numbers a, b we write

7 . .
a<b (and read a 1is less than b) if and only if D - & 1s .~

LY

positive., We write a <D (read a 1s less than or equal to b)

ofif either a <'b or a=D>b, and a>b for the statepent -
»” ” ]

.

b'< a. When a>'b, we read a 1is greater than b.

7 !
(3.1) For any_ftwo real numpers; a and ‘b, one and only ol\e

~

-

of the following T: ‘tements holds: r

s (a) a<b.
(b) - a = b.
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Proqf: By (0.1) we have one and only one of the following -
possibil;tiés:

P . \—/5 b—a‘>0

" b - a 0

a-a" b >‘0’

~(b - a)

_and these conditions:épe\equivalent to (a), (b), and (c), respectibe-

lyo o

” v N ~
(3.2); _If a<b then a+c<b+c for all real numbers ¢

\
C. ¢ )’( .
. ‘ -

Proof: We have (b +¢) - (a+¢)=b-a>o0.° .

. (3.3) If a<b and ¢ X0 then ac < be. . - -

&«

Proof: We have - »
s x4 ?
: . be - ac = (b - a)c >0 .
by (0 2) and the fact'that both b - a and .c are positive by
/7 ‘ .
) 4
z (3.4) If a<b and ¢ <O then ac > bec.

assumption.

Proof:. We prove-first that if a < b, vthen -a > -b. In" -
fact, -a - (-b) =b -a >0 'siheev*a < b. Te’prove (3.4), we
obtain from ¢ < 0 and whaty has Just been proved = > -0 = 0
By (3.3), a<b and -c >0 imply (-c)a é(-c)b By (2.8) this. .
. 18 equivalent to”™ -(ca) < -(cb). By the remark at the beginning

S

of thé proof, we fave -(-ca) > -(-cb), and by (2. 3), ca > ob,

This completes the proof of (3.4). A ' )
v o ' et : Ve

3




‘o

8y a /.

“‘

)

(3.5) If a<b and b <c then a<c. (Transitive Law.)

5

. ) p ( " e
‘ groof. We hgve.by hyppthqgis ~_
b bt 8. > O .
" and - v S .
" . 4 t . L
.(, ’ C - b > Oc N -~
By (0.2) their sum is positive,’or in other words ' T . -

(b-a)ﬁc-b)=c-'-a,>0‘.f C——

-~

Thus, a <ec. -
L4

. e
- R . ] N
"(3.6)  If a#0 then a? > o. ) "
Proof: By (0.1) either a > 0 or -a > 0. In the first
case, a®> 0 by (0.8). In the second, (--a.’)2 > 0 by (0.2) and
we have by (2.8) that (-a)% =2a2>0.
- b4 -~
(3.7 > 0. ‘ . T ‘ ’ g .
Froof: 1% =140, and apply (3.6).° o
3.8)" &> 0 if and only if ab > O, - .
£ 4 ¢ - )
s . ) b ot
_We give now a definition which will play an lmportant role .
in our developmept of geometry.
Definition. The notation
o .
A . x<y<z ‘
means 'that both inequalities x < y  and "'j <,z hold 'simultaneous-
- »

1y. A” real number ¥y 1s said to be between the real numbers x

and z 1if either x\<y<z or z<y<ZxXx.. ‘

/-
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v . .
, &

+the problem of solution of inequalities. We

shall treat this prioblem by a number of examples. /
oo - 2 ' e
Eiample\l;"Fﬂn all real numbers x such that
“'lx - 5> 2+ 7. W ‘proceed by analogy with the solfition of ‘the
Y

linear eﬁuation— bx - 5 =2x + 7, but in the case of the inequality,\

——

we base our approach on (3. 2) - (3. 4), paying particular attention
—+to the faoz/thatmmhen\we multiply an equality by a negative number,
we reverse the sense of the inequality * Thus, we obtain, first by

-

adding 5 to both sides acc&rding to (3.2) that L

) toL x> 2x + 12. .
” ‘ ¥+ -
By (3.3) again we‘obtain
) . azlao v A"'l"]: - . -c
Since 1 and 2 =1+ 1 are both positive by (3.7), > 0 by,
(3.8)u Therefore by (3.3) we have { o ‘

3(2x) >§(12) T

- ® and x> 6. Working backwards we can see that all numbers f

x 2 6 do *satisfy the original inequality, so that the solution
of our problem is that those real numbers X such Ltha.t;~ ‘7‘

A Y

bx-- 5> 2x + 7 are precis
. x > 6. ‘
v

a Example 2. Solve the inequalit} -
. } 2x 4+ 1> 6x + 3.
<

the real numbers x such that -




w & .

\ : 8¢ : "\ )
* ' . :
As ;n E;ample 1, we may add -5x to both sides and then -1 to o
both sides obtainfng first . S iy
R s( T - a3 +1>3 ik
-and then ‘ N !
T A "“"‘F*in >\2 ' o
. By (3.8Y7we 7(1091' that ? 0, ll’by“(ﬁ“#‘)‘weﬂiaa; i
- A 4'1)(-33:) < (—3-)2. \‘ T . -
\'f'Slmplin;dﬁ we have A ':»
o S REE T

and the set of all such x “constitutes the solution of our problem,

' Example 3. Solve .
" z i-—l_—l- > 0.

PRI

_Solution: Our first temptation 1s to multiply by X - l and
we are led to the confusing result 1> 0. Wwhat 1is wrong with our

—~ procedure? The point is that the inequality between .

n © e # e o e i Sttt ]

- s

<

. 1 '
- (x - U(GEF=T7) . ' -
and (x 2 1)0 \is left in doubt because we do not know in advance

whether x -1>0 or x =- 1 < 0. Thus, we must be more careful. -
First of all x =1 cannot be a solution. * By '(3.1) we must have
. efth@r . ' \ f . :

(a) x -'1>0, in whichr case we obtain 1>0, or '

(b) x -1 < 0, %which case we have
& L 1 <o »

. \5"' _',_' _—
’;E« e ‘
o “, ‘ - _\ s ] B T
N ", ' s :

r - / N
- ,(?‘%/ y !\&Z\ 9 /
‘\‘ ﬁ’ SR S » '
& ‘_‘.‘ e ;:':;Mr(‘ -
%‘ 3 _./\/p“:/ , / .
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The second of these possibilities is ruled out by (3.7), and we are ‘

o

- " - Exercises
® ] 4 ‘ [}
o 1. . Solve the inequalities: ° : ’
(a) x+331 |
‘ |
(b) 3 -2xg 4 |
- |
(e) zFT<2
, |
1 ~ |
OR == A |
. g ,
~ 2. Prove the following statements:
(a) If 0<a<b, then a° ¢ be.
. B H
(b) If a and b areiﬁoyh positive and a® < b2, then a < b,
w

-k forced to conclude that = - 1 > 0 4is the solution of our problem.

©

.

[

Al

“What conclusion can you draw from the statemené a2‘< b2\ by 1tself,

1

a+b < b.

.(c-) if a< ‘b, then a<—7—
(Most of these are tgken from Begle, Introductory Calculus, New:
York, 195K.) 7 R
~ |
. |
"~ 4, .Absolute Value. Next we come to the important notion of
absolute value. In the introductory discussion we saw that. if on ‘
the‘Jdge of a ruler we read a at-one p%int‘?pd b at another |
point, tRen the distance between these p&inté hould be a-Db or X
f |
b -~ a, uhichever is positive. It s worthwhile studying this |
situation 1in the light of the follgwing definition. '
: T i
L / o | ] |
-~ Y . . | /
- ‘ | ‘ﬁ
95
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Definition. Fdr each,real pumber &, we define e
a 1f a0 ¢

. Jal = S o
A | -a 1f.a 0. ) "

B ‘3\

“The number, |a| 1s called the absolute value of . a. .
’ &

]
[

that in the example above‘ the distanée between the

’ equal-to |a --bl. We proeeeq to derive some properties of B

N

- . 4
: (4.3) -|a|<as,laL ;oL
A useful property of absolute value 18 contained in the o

. N /

absolute value. “ )
» -

(4. l) For any real numbep a # O, la] > 0; lal’=0 1f
and only 1f a = O. . ) e LD
. o

1 £

L
N

. . Proof: Asvin,moét ﬁrdbf% on, absoluté value.yejgistinéuish
¢ ‘ » - . V4 -t T

two cases, S X N v ok .
N , B Iy
(a) a > 0; then ]a] =a>0 ’ L 7
(b) a < o0; then “a >0 and |a] = ~&> 0.

The second'assertion is clear from tﬂ"definktion.
4

* ‘¢ .
(3.2)" lab] = fallol, J-al = Jal.” .. r

The proof is by dlgtinguishing cases.’

following result

b (k.4)\ Let| b > 0. Then ]a/| < b- if and only |1

7] . -b<a"< b. oo : .

SR G
v

3
NN
R
'
R
N

s Lo, % o

points on the ruler at whidh we read a and Db }s 1n both cases,
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r> -
Proof: We recall that -b < a < b means that both inequalities
-b <.a and. a < b hold. Suppose filrst that -b < a < b. Thén .

-

la] = a or —a, and in the first case we have |a] < b Dbecause
a<b. If |a| = -a, then we have la] = -a*< b, since -b < a. "
' bonéersely, suppose that Ja] < b. If a > 0, then <0, ,
and -b < a by the transitive law (3.5); while |a} = a < b by
assimption. If a < 0, then |a|] = ~a, and |a|] < b implies. ¥
"~a <k or 'a>-b., Finally, a< 0 and 0<Db dimply a<b,

.again by (3.5). This completes the proof.

¢ . A . N

(4,5) .la + | < la] +-]b]"

s

L L

Proof: By (4.3) we have . )
lalgaglal 5
-lp] < v < Ip].
Then . ’ N t
~(Jal + [o]) ga+ > < lal + o] 3

-

and we have by (4.4) Ja + b} < |a] + |b| as required.
v

’ 3 .

* It will be important for us to solve equations and inequalities

~
'

involving absolute value..
l .~

’

& . . .
Example 1. Solve - ) . , .
| x - 2| = |4 - x]. ' '

- »
aE

We have |x - 2} = i (x --2), while |4 - x| =+ (4 - x).

From ]i'; 2| = |% -'x| we have four apparently different equations:
. . ] N y k

N ¢

£ : \
.

97 -
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L x -2 ='%l"" )
Vo _(x_2)= u- ' . | h
X - 2 {=-(ll- - X) . L &
Co(x - 2) ==(4 - x). .

These reduce to the two equations

x-2=%-x .and X -2==(4-x)= X = 4,
The first has the solution- x = 3, wﬁile the secsnd has no solution.
Checking in the original equation we see that x = 3 1is the unique
solution of the equation. ' ' - .

Example 2. Sogve ?

‘Solution: By (L.B); |x - k| < 3 1if and only 1f

‘ -3 <x-U4<a3.
Tbus,, x\- 4 must simultaneously satisfy ‘the 1nequalities \
N . R x - 4> -3 . ]
and o ’ .
I X = B <3. . . ’

The solution of the first 1s x > l and thewsolution of thé second '

iIs x < 7. The solution of the original inequality |x - 4[ <'3
) is therefore the collection of all real numbers 'x, such that

1<K,

3
v Y

- »

{

-~

) s -
Example 3. What conclusions can be drawn. from the equality

la = bl = |b - c| "if it is known that a #£ ¢?

Ly
h




v
) ¥ »
. & ' . . G 91 . . ; -
- b . . 4 . : , . . , .,
. Solution: , Therequallty can mean one of four things, . ,°
(1) asb=b-T, ' T
(ii) a-b"=c-b, .o .
- (111) ‘b-a=ba-d,. AN ) )
(iv) b-a=c,-'b.‘ L o= 1 oy .
, Notice that (1) and (iv) ‘say the same thing, namely,’ R
’ a + ¢ = 2b; )
- and 80 do (11) and (111}, napely,
1 “ ’ "

a s cC.

./ Since we are glven that a #c the conclusion is that, a + ¢ = 2,1)’.'

‘

S~ B Exercises . .

.. 1. Solve the equatic;ns ‘or inequalitiess: o~
“o(a) Tle+2l ks (o) lax ] kb - ).
SUm) Al c— ot Je-x>3 .

*(e) |2~-x| =1° | L - (g) . lx + 1] '<'a ,

”(d)‘Jux+1-|;7“ . »'(h)l,lx-c|<a \ '

>

> by -

(These exercises are t;a.ken froanegle, Introductory ca,lculus,

.

New York,"l954) N . oL - . o

N\

. . — 4§
», . « °
‘< ' . . - ‘

M N 3 A g s . <
. _' 5  Completeness Axiom. Let us first‘ explain some, familiar

.. notions in the context of the real nunber system. By (3.7), 1 1is
/‘ “a positive number. By (O 2), the numbers . ,' )
’ : 2=1+1, 3w24+1, & 5, .. % -

-

]
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e

are all i)ositive. These numbers are called the natural numbers,

\ } A . 0
and as we have seen t;.hey are all positive, If a and b are

patural numbers, so are/b. +b and ab, but not necessarily

- - . - l

'8. -‘b or %o

Next, we de}{ the \cf,/nebtion of all integers to, be thie -
and thqd.n negatives, _together'with zero. If a K

integers, then go are a + b, ab, and a - b Izut

- not in general -5. . . Loy
e extend the syé‘tdﬁz ‘of integers St111 fugther to the system

o%‘ational numbers , wheré the rational numbers are thoge real

humbers which can be - expressed in the form % where a and b -

s /% are integers and b # 0. We can prove by (2.16), (2.175, and
(2.19) that if ,z’-, and s are rational numbers B0 are r +'8,
res, atnd -g e s ¥ 0) '

Two remarks are 1n order. F:gfst,, that the system of rattonal *
numbers satisfies all the axioms ‘we hay'e had up t’o. now. On the
4other_hand, we saw in the introduc\tion to this chapﬁer‘ that 1f we
tried to meashre the lengtﬁs of all ‘line éegments w;!.i:h rationhl X

' numbers, we wou“ld be unable o attach a length to the hypétpnuse-q%
an .}sosce;/es ‘right triangle whoge other~ s_ides: hgve ﬁfxlt.léx;gﬁh.

Tjd make is.remark precise\, we prove ‘the following resulte

~

.
. _ -

" (5/1) There is no rational number x, such that x° = 2,
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¢ . e

Proof: This argument is a famous example of the method of

indirect proof. 'We suppose the result is false, and, hence, that

")
tHere does exist a rational number B’ where a and Db are

1ntegers, such that

(%)2 = 2.

We mai assume that a and D have no-common factors besides +1, -

\

for any common factor can be divided out without changing %u

“Expanding the first equation yields"

-

' - “82 = 2b2,

and qonseguently a2 is an'even number. a 1tself is either odd

oroeven, and -if odd\wéncan ezpress = ?2m + 1, for some integer

S om, ’Tﬁgh 22 - 4m® 4 dm + 1 = 2(2m + ggo + 1, so that the square

2

of énﬁgdd number is odd: Because a2 is even we cqnclude that a

i1s even and can write & = 2¢ for Some integer c. Substituting

yoln the laét equetion we havs

- hce

b

' . 'Mzce.é

Thus, 'b2 is .even, and by the same argument used for ,a, we ﬁnow
tﬁati b is-even. We have sfown that a and Db have the common
+factor two, eveu thougn we had pgeviously nt
b had'po common factors othef‘thau +1,

. / ;15 that our original asdimption

‘ B =2y

4&8 false, in other words the equation x2 =

//the system of;retioyal numbers. L >




o

/

r’ ' : S
We give now an axiom which guarantees tpat the real number

system does contain enough numbers to serve as ‘the basis for

measurement in geometry

H

Definition. A collection of real numbers S is bounded above

if there exists a reai number M, siuch that s < M for every 8

Py

in S. The number M_is ﬁéﬁled an upper bound of S. A number
L 1is a least upper bound of sthe set(is/"if (a)\jh is an upper

bound of S and (b) 'i4f M 1is any upper bound of §, _then
L < M. '

. .
s |
. '

Completeness Axiom. Every non-empty set of real numbers wﬁich_

1s bounded &bove has®a least upper boknd.
¢ ) ! ¢

(5.2)*° If L and L' are least upper bounds of the set of

" real numbers §S;. then L=1.

14

. ! ’ - / T
(5.3). There exists.’'a real number X, ,8uch that x02 = 2,
/

Proof Let S be the set of all positive real numbers . x,
such that x° < 2. The number ‘2, for example, is an upper bound -
for_the sbt S, so that by the Completeness Axiom,’ S; has a,leas%

upper Yound i 3. BecauSe 1° ¢ 2, we have x> 1. By (0.1),
)|

. we must have either‘ex;o2 - 2‘> P, x e 2 <0, or x e_ 2 = 0.

o]

We shall show that neither of the first two cases can occur.
R , . . :
\ ot

(o]
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1
First, s’uppose X, < 2, andlet h =2 - x°2. Then .

M . . 5 l . . . . -
0<h( 1. ‘ ¢.fx' = xg + B-h; then'\x' &xa,- and, we shall prove.
that (x' . Ne have i o .

"""“‘*«ﬁ'ﬂd"kﬁ\ ,‘.3‘ u C . S v < h o .
(x1)? A'(Q‘ + )2 =x 24 i+ h '
ot F o [
/ ‘ 2 ' ‘ 2 l6x + h
\ ) 1 =% +'11'(xo+’]'3) X tT 16 ',
,‘ , " P v
2, h/33y° )
\e <X, + -u-sig) - (since X, £ 2_ and 'h <1)
A - S ¢
- ! _\ 2 2 - 3
C vy <=y S hr 2 (since k= < 1).

We'have shown that "x! 1s a number in the set S which is .larger

0
. of S, and the possibi‘lity X, 2<? nas been elim;.nated

3

. 'than e contrary to our assumption that b 4 1s an upper bound

fext, suppose that xc}e > 2, -and let k be the positive - -

numbér ' x 2 2., Then for any real number u > Xgs -

() -
* ' ’ ° - 2 . [ W
. \ K\ S x,(x,° - 2) K2 o .
R O = Tt - DEE S
L R . : ' « '] » L.
A 4 - x xS -3 . 2
. . - oi\ "o (k 0
e * -, u i + E) > 0. N
< ~‘ - , N
At the same tme, i1f u> '23?_ then we have x > '?G or 4 -
g x 751- > 0. aNow choose a reaI number u which 1s greater than
. ' .
0 k .
‘ bogh’.’ xo and' -a-c-)' and set ) ' '
-! -\\ . . [ -'— K- . . ) B
i A . ) Xo =Xy =B . , .
Then- .as: we have -seen, * N . 7
. . ‘ s . - .
- X . 0<x," <% ’
and L ]
) R y )




x ‘)2> 2.
\ . ' ME]

Now, let x be a.ny positive real number, such that x < 2. Then

»

N LT (x )2 32y 0, ‘ .

¢ ° and, hence, Lo : ) - i
. : . s ‘o \ ' *

. . ““'(x'-x)(x'”+x)'>0

vos

., ' Beéause x;' and ‘'x are‘p‘ositive, x,' + X > 0] by (0.2), and it
" . follows that .
Ca ™A ,

»
x'o.-x> 0.

P
.

‘or x'°’> X., Therefore ‘x':o' is an upper bound of the set S which

is aectually less' than b S contrary to our assumpftion that x
o

a

i8 the .least upper bound of , S. Therefore the possibility
> 2 has also been r'uled out, and we. conclude finally that -

xﬁw%mpletes the pr&of\ ) , -

By the same method’ the following result can be proved.

-
- . (5,4)’_ Let a) be & real number > O. -Then the equation '
5:2 =a has exactly two ‘solutions +r, where r is a real number .
2 ' ' e

°- . such that r° =a.1. - S .

4!' 1)\

. . Défin¥tion.’ Let ‘a > 0. Then the unique positive solution of'
a the equati'on . x'z ='a will be called ‘the squa uare root of a and-

= “
MY T

denéted by /a; phe other solution of the, équation’ is therefore
.’"\?‘:- a. V‘ ‘ L N —‘\ e’ ' !

) . S

As a consequenceof these definitions wé have

I .*. ‘i ) . . -
o WaP el . o
. . AN i !

‘e

T 7
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P Exercises -
v -

1. - ProVve that there exists‘a real rumber x, such tmTE

x2 = 5‘ —-\Q-//\V N 9 s )

M - -~ \‘ — ““" ‘\«‘%

N /2, The equation ax\zm with real number Co<
. efficien{:s .8, b, ¢, a#0, has a real nulgber solution x 4&f

v
AR

e X
and only ;Li‘ b2 %30 “There ‘are ond of twe distinct solutiol

- accordingly as b2 - 4ac =“0~\gr b2 - tac 3> 0. i%é
K - . T . & T p

\.\‘ . - _ M
3. Prove that V3 '1s an :eration&l:%war."w Lo @

4, Is v/3 + +/2 rational or irrational? N

- &

n

< f . Iy

1
~

' 6. One-to-One Correspondences. £s a last breparatior( for

the ruler postula.te we discuss the important concept of a one- to-
one correspondence betwgen sets, whicp has a._lreaciv been 1ntroduca§l_
from,a more general point of view in-Chapter 2. This notlon
origir}ates ‘ the problem of deciding when two sets of éb:jects

. ‘pav‘é the ‘same number of elements. For eprle, a.t g dance, let M

e e

be the set of a.ll men phsent and W the set of tll women present,
° -In order to decide whether the number of men in the set M is equal
to the number of women in tlxe set W, we could count both numbm
separately, and compare the results. Another method would "be to -
) walt until the dance began, and see whether every man and woman has

a. partner. It is the latter 1dea that leads to the concept of a —

one-to-one correspondende,




Definition. . A one-to-one correspondence betwéen two sets A

and A" 1s a rule\yhich assigns to every object a In A exactly
one object a' 4n A' 1in such a way, that if a) #a, 1n A,
" then &' £ at in A', and such that every obJect in A¢ ‘has an
etement in A assigned to it by the rule.

- . v

N . ) . { .
| n ;\think of the rule‘as a palring of the objedtslin A
.~ with the objects in A', in such a way, that (a) each'object‘iﬁ
A is assigned exact;; one paftner from A'; (b) two different

objeéts in " A have different partners Jin A'; and (¢), every

obJect in A' 1is the partner of some objéect in A. - .

-

.

e ) We shall often denote a one-to-one correspondence by the

notation %

v

*
a<___>al .~ .

which means that ‘a' is the partner of a assigned by the rule.
' i

i . Exercises X
- . ' ? N R ‘
1. et A be the set of all integers, and consider the rule

. f E 4

that assigns to each integer its'cube: a<—>a>, Does this rule

define a,one-to-ona%porrespondence of A with itself? :

2. Let A be-the set of all integers and consider the rule

a?——;a + 5. Is this a one-to-one correspondence of A with itself?




‘ .

3. Let A" be the set of all integers and consider the rule
" ae—> 2a. I; this a one-to-one correspondence of A with itself?
! b, Let R Dbe the set of 3ll real numbers, and consider the’

. 2
rule a <—>» 2a. Is’'this a one-to-one correspondence of R with

: N
1tself? - , < -

»

! 7. fne Rulér Postulate. After a long digressien we are back
to- geometry again! This sectidn contains the Ruler ,Postulate, which
is actually broken down 1nto three,separate\parts which we call
"Postulates 6, 7 and 8, some definitions,‘and the conSequenoes of
the Ruler Postulate for the study of the notion of betweenness for
points on a 1ine. ) \ . - .

' At this ppint, thé reader is advised to reread the introduction

. to this chapfer, espeeiaifﬁathe motivating discussion for the Ruler

{ o -
y - Postulate. ' o -
e R J/ + . .
Postulate 6. To every pair of“points A, B there corresponds
¥4 - ’ ,
a unique real rumber, designated by AB, and called‘the distance
between A and B. If A" and B dre different points then AB
-, is positive. Ve allow ‘atso the possibility that A = B; 1in this
-  case,, AB = 0. B . ' :
Pl - N ) N L4 * " -~
— . » .

Postulate 7. The points of a line can be put in one-to-one

.. fcorr;aspondence with the real numbers 1n such a wayg that the distance
AA%\F;%égigen two points 1is the absolute value of the difference between

the*con;esponoing numbers . ‘ . .

" - )\\. ) ) B « 8
N h » ..

‘y
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(7.1) * The distance AB has the properties that -
) ! . AB = BA,
and if A, B, C are collinear, then

AC + CB =

~ Proof: Tﬁe first result Qollows‘from the fagt‘that

Jy - x| = |x =~y|.” For the second, let A, B, C correspond to

v

‘the real pumbers a, b, .c, respectively. Then

n

L AC'+CB = lc-al |b-c]2d(c-a)+ (b.-c)l

b - al = AB :

~

i

R -,

by (4.5). This completes the proof.

. L. / e
Definition. A correspondence of tie kind described in
LAy 7 L

" Postulate 7 18 called a coordinate system on JX; and the number

corresponding to a point of X 1is called the coordinate of. that

point. . ; \

; &

For the convenience of the reid: r we r=peat the following
defihition, already glver
/ * ‘l . ) ~
.+ Definition. Let X, ¥y, 2 be real numbers. Tﬁen z 1is said
to be between x and y if either x <z <y or 7y £z < X._.

4

Definition. If A, B, C are-différent points on a 1{ne &,
B 1is said to be betweexn- A and C 1if and only if

% AB+3BC:AC.  .§ :

IN ’ N F
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Theorem 4.1. If the three different_cpilinear points ‘A, B, C

-

have coordinagtes x, y, z, respectively, then B 1is between A

and C if and only if y is between X and z.
Proof: If y 1is between x and z then elther x < y < 2

or z2 £y < X. In the first case, ‘
AB + BC =_|x - y| + |y - z]

. y (v - x) + (2 -73)

=z-x=[Xx-z| & AC, -

* and B 1is between :Av and C. The casde z < y’{ X ©proceeds

i

similarly. . : -
Conversely, suppose .B 1is hetween. A and C, so that
: o *  AB + BC = AC. .

Then

s

d .
There are eight possible cases of ‘thia equatlon:

- . 4

’ N
Ix -~ 7l +7ly = z| = |x - z].

.

- L (x-yyt (g e2) =x -z

o C ew e G mzix Y
;s E-Wrz-y) =x-2z, r
No(x-y) (2§ =z -x

Y o (y-x)+(y-2)=%-2 K
C Ay - x)+(y~-2) =2 ~-x R .
<
. (y -x) + (z - y) =x -2 .
- N A(y'- x) + gg -y) =2 - Xx. "
ve . ~ /
3 - ':‘-,, ) f‘
IR
- N ‘ ®
\ "
. ¥
LY ) l.‘
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N ¥

[]
L 4
Xx=2, Or y =2,

none of

The-'six middle cases lead to x'=1y,

‘which is true becduse A, B, and C are distinct points, and the

correspondence between points and their coordinates is one- tQ one.

The first case arises When» x> y > 2z and the* last when X < y<z,

f
so that in both possible cases, §y is between x and 2.~

Theorem 4.2*. 0f three different collinear points, brebisely
: -

one 1is between the other two.

We remark thateit may be poséible to introduce many differenp

coordinate systems on 4 line; intuitively, this‘meang that we snift

onr ruler along the line in some way, ,or phat we use a, K different

ruler (i.e., we change the,nnit of length). "We emphasize; however,

<that fﬂe definition ofabetWeenness is independent of the choice of
a particular coordinate system, and that the éonciusion of Theorem

" 4,2 18 1ndependent of the choice of a coordinate system, although

the/proof-is not. -
. -

In accordance ¥with our remarks on page 71 we do not wien to

change the ‘unit of engthz;buﬁ/;e\hay wish to change the position

of the ruler on the linéf This is accomplished by the following

If A and B are distinct pnints on a line X
such that, the co-

postuiéte.

Poséulate 8.
Iosuiave o

.

then i'cbordinate system can be chosen on Z,
. . ey
. -

o;dinetd of A 1is zero and the coordinate of ' B 1is positive.

‘ 1
= + ° -
?

v a

-
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-

*z 18 positive or zero, then by (0.1) either. . -

103 o -

8. Segments and Rays. We begin with some more definitions.’
q° B

.Definition.ﬁ.If A and B are diffepent points on a line p &
the union of A, B, and all points of x between A and B 1is .
called the segment AB. A and B- are end-pL_____of AB.

d(A,B) is the’ _19351-,_ h of AB.. ' . R,

»

3

Definition. If A :and B .are dif?erent points on a line Z,

the union of AB and all points P on Z, such that B is

between A and P .18 called the r x AB,, A 1s the end-po oint off
— .

AB. ¥ Q . " " ‘. ’

¥ - 4 /

A : ' . .
! ‘Definition. If A, B, and C aré different points on a line

. s N —-_—
X, and C is between A and. B, the rays CA and B are <

’
- t *

said to be opposite. " ) ,

E ‘e N . -

. Theorem 4 4.3. Given a coordinate system on a line, the set of

N

points whose coordinates are positive or zero is a’ ray, and ‘tHe set

of points whose coordinates are negative or zer¢o 1is the opposite

'ra&. . .

L . -

" Proof: Let A have coordihate zero, B a positive coordinate

x, C. a negative coordinate AN If P 1is 'a point whose coordinate

Zz=0 and P =A; - ‘ )

z =X and P = B; ! i .
. - Z-%>0 and B 1s betweén A and P; )
-(z -x) >0 and P is betwéen A and B.-

.
© B — . 4
K \ RS
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— ) .
{n any case P "is a point of AB. Conversely, if P is a point
of q&B the four cases can be reversed to prove that 2z 1is either

positive or zero.

. ' T —>
The relation between hegative values of z 'and the ray AC
is proved in a similar way. “Since A 1s between B and C, ic

is opposite to AB. Y : /
el
Theorem 4.4 , The union of two opposite rays is the line

4

containing them. )
L
]

. ) : ry -
Theorem 4. 5* A ray is Getermined by its end-point and any of

]

»

its other points, i.e., if C is a point of AB other than A,
o—> —a
then AC = - .

N

Theorem 4:6*. Given a positive real number, r, on any ray ) i

*  there is exactly ‘one roint whose.distance from the ray's end-point

is . oo e 2N -

s — = S

* : i B i .
"Theorem 4,7 . Given a 1line X, a polrit P on X, and a -

~

» positive real number’ r, there are exactly two points on )L whode
. ; h . ) A

"
.

distance from P is r.
! " - -

. ) . s . . __9 )
~ Theorem 4.8 8. If P and Q are points on the ray AX, then

P 1is between A and Q if and only if AP < AQ.

o

- ’ ¢ {
Thébrem 4, 9* If ¢ an&ggb are different points of AB (or*

e -
e 7

_.of AB), then every pq@nt of oy is a point AB (or” of AB)
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Theprem 4.10. If A and B are distinct /’/points thene 1is’
<> . !
exactly ome point M on line AB, such that d(A,M) = 4(B,M)
. - k y
Proof: et p and q - be the coordinates of A and B/ in
a cosrdinate system on 2, and»let X be/éhe coordinate of M,
. 4
;qssuming the M exists. If AM = BM w must have ’

Ip - x| = |z - 4. - :

There are two cases (the reader will recall a discussion of this

problem in Example 3 of :4). ﬁ°/

(1) p-x=q - x. ‘ ca,

L

This glves p = q, which is impossible since A and are ‘!

.2

]
different points. .
. ,
- T(41) p-x=x-q. '
1

'This equation has the &mique solution ‘x = 'E(p + d),' and the

.0

' unique point M on X witn this coordinate is the ppoint‘'required
© e . \ / .

in the statement of the theorem..—— L [~

Definition. Let A and B be different points on a line p
The unique point M on X (with the property that AM = BM is
calléd the mid-point of the gment AB. .

Befinitions. If A, B, C are non-collinear\bbints, the union
of Kﬁ. EE, and 7EK is called a trian glé These three segments
are called the gides of the triangle; the points A B, C the
vertices of the triangle. ‘A vertex and a side are sald to be

adjacent if the side contains the vertex, otherwise the vertex and

the side are sald to be ogposite. We shall denote the triangle -

T
T

.with vertices &, B1 C Dby the notation A ABC. A

Real

hr
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j Separation in?Planes and in Space

lntroductory Remarks« In Sections 7 'and 8 of the”

preceding chapter, the order of points on a line was discussed
withltheﬂhelp)of a pr ise definition of the relation of between-
ness fo/\points on a line. One by-product of our efforts 1S that
- the reader now has the tools to formulate meaningful definitions
and problems concerning the order of points on a line, besides,

. thoSe‘that have already been introduced For example, the reader

L]

is invited to give a precise meaning to the statement concerning
. R
the three points A, B, ¢C on a 1ine, that A and B_ are on

!
.

the same, side of C. | v ’ -

( 1]
Corresponding problems can now be raised concerning-lines in,

theyplane or in space. For example, given three distinct coplanér

— > >
rays OA, OB,- QC, the reader will observe that at this point. o,
he.Ef unable to giue meaning to the statement tha§ the, ray OB -

\ .
18 between the rays OA and OC Or given a line Z in a plane
p, what does it mean to say that-two points A and B in the ‘

plane p both lie on the same side of Z? Other questions which
#{Rv o
will present themselves later are ;hese. What is meant by the-
* i(.. » ‘ Iy .

interior of an angle? What is the interior of a triangle° ) ‘e

.

Fost of the 1 portant theorems on angles and triangles can-
no e ‘established ‘in a satisfactory way without coming to grips .
with these "separa roblems in the plane. This chapter )

e : < 2 r

contains only the basic separation axioms and their consequences,

I 114 A
t ’ . - s

¥ L4 '
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but the subject nill demonstrate its importance and power time -and
time gain in.Chapter 6 on angles and Chapter 7 on congruence.

' he reader may be concerned about our insistence upon a dé-
taile study of seemingly trivial points. To this we say first
that fthe reader must admit that the difficulties we consider do
exist, so that it i1s only natural that we should confront them ,
forthrightly. There is also the point that the geometry we are
deyéloping is intended to be a mathematical model of.qg¥ perceptual
geometry. Thus some of the d@ifficulties wevfaée are'concerned with
whether our mathematical moded is appropriate, and the fact that
we can overcome them gives us confidence that our mathematicaz-z

geometry is in agreement with our intuitﬂ?n.

- /

4

2. The Separation Postulates. ih the Plane and in Space.

There are two separatiop postulates, the first describing the

¢ N o

separatiofl of a plane into two half-planes by a line; and the >
‘ ~ -

second, the separation of space into two half-spaces by a" plane.

”
i

T, N ’ ‘
Postulate 9. If X is a line and p a plane containing y&

- A,

tne points of p not in X oconsist of two non- empty sets, ca11ed
halif-planes, such that ir two points X and Y are in. the same
half-plane the segment XY does not intersect the line i&' and
if “X and Y are in different half-planes, the segment XY does’
intergect the line X v t .

¥
~

L3




¢
_ opposite sides of a line in t

half-plangs determined by it. A pleng
. ; ]

-

i . . 109

, .
= T
. ° N

. Postulate 10. If p 1is a plane, the points not in p cln-
sist of two non—emp y sets,. called half- spaces, such that if two -
points X and Y ark in the same half space, the segment XY
does not intersect the plane °'p;. snduif ‘X and Y are in dif-.

ferent half-spaces, the-segment XY does intérsect the plane
.._./ 4]

PostuIate 9 can be proved from Postulate 10, but it is in

°

keeping with our elementary pproach to present these separation

o

properties as/distinct ﬁostulates.~

- ‘0 .

3. Theorems on Separation in the Plane and in Space. We
begin with some definit;ons: 5 N

'S v

Definition. Two points in the same half- space de?%gmined by
a pld%éizp are said to be off the same sidesof ;. ,two points “n

'to be on’ ogposite

n & plane are on the same or '

different half-spaces Aetermineq by P are
sides of p. Similarly, two poi

# g : ,
Definition. A line is sald to\be the edge of any of the .
l\ s
s the face of either of

i

the half-spaces determined by it. ;- 1

First of all wa observe that the "if" statemeats in

Postulates 8 and 8a can be replaced by "if and only if." , We

. 4

have:

-

(3.1)* Two different points- A and ‘B 1lie in the same

half-space or half-plane h 1if and only if AB does not intersect

» '




A

.;;‘ AB is in ' h.

'Proof:

the edge of

s

‘ Ki&/is on 7,
¢

(3.1) again,

is in h,

is oompleted.

Theorem 5.1

.Assume first that h -is a half-plane and let I bev
'h.

A and C are on the same side of .X. Because’

so is

- ‘ifr" Y e
' . u;{‘-d
E

let C be a point of AB,

4.9 every “point of AC is a poinéii‘of AB.

1f )¢ =

A,

is in h by asSumption, so that we may assume C £ A,

¢ .Y ‘ . ‘
g - i E.{ : .
Ky / H
“7)} e , ‘%:%? F\g:-a‘lo ':r " vV o ", ,’\Ié‘ [£:] f
" ﬁ/' M . \ B i - A‘/ . - 1 /
/ ¥
. the face or edge, respectively, of h, A f

If h is a half- plane or a ‘half- space, and if
{ ‘A and B are two different points in h, then every point of

{

- NN
P .

\¥
then c

-

By Theorem

By (3.1) no point of

and consequently né point of _AC is on -

C,.

and the proof for thé case of a half-plane

zs{ .

A

o

~

Tue proof in the case of a half- space is entirely .

LN

§

=4

analogous to the argument we have given, and the details will be

.
(2 '

omitted.

.
-«

", Theorem 5.2 'If h is a hal? -plafie wéth edge I or a half-

' spade with face

h, then every point of tne ray AB, other

T
4

Y.

' . ’ L =
satisfied we shall, say that AB 1lies in h,

bd

strictly true because A, is not in h.

Theorem 5.3, In a plane

following reiati onships among them. A, B,

collineaﬁ, B .is between A and D,

,and also between A and
) ’ _j

o

E 1is between Beand C._

Then in the plane ‘p,

X and if A~ is a point X and B a point of )

than A4,

For convenience, when the conditions of Theorent 5.2 are -

although _tiis is not

-

P consider six points with ‘the

and C are non-

C and 'F

is in h. -

-




s

¥

P

Ly > X i
T a?Zon the same side of AB® and D and F are on the same side -

b —

.- v.0f BE . ' . .
“' ‘ . Y?E -

) o

» -7 ¥ ! »
J,.Thié theorem 1s used in Chapter 7 to prove that the measure

Y

- P ) D N !
of '&n exterior angle of a ‘trlangle 1is. greater than the measure of
. | L ’

‘either ¢f the remote interior angles.]
Before beginning the proof the reader 1is advised to make’ a fL
figure to fix the relationships in his mind. It is also helpful

. to derive’ t,he following prelimina_ry result, ’ | '

.

N / (3.2) 1f ina plane p, C and E lie n the same side of

——a

aline/)’ in p, a.nd ir. E and, F li‘e on the same side of 1,

then b and F lie on the same side of J.

/ ~ S

Proof of 53 22 Iet h be the half-plane with edge X <con-
taining c. and E. Then: C and F also lie in h. Therefore,

"E and F 1ie on the same side of - X.

. P.roo'[ of Theorem 5.3: From the hypot sis of the theorem,

the line7 AB and BC are distinct and intersect 1n the unique
point B. On &G, E 1s between B and’c syTheoremu 2, B

is not between C, and E, Consequently o point of the segment

CE lies on 753) and "1t follows that - C/ and E ar{e on the same

s1de or 1B, Because E 1s not on, #B,. AF ant. stinct
lines intersecting at A, Because .,E is oetween AA

' . 18 not between Ef and F and we c’onclude as before that ' E “and
.F ereron the same side of AB. By (3.;2)‘, C and F are on the
same 8ide of <1§3>, and the first assertion is proved.

. For the second part, ob'se_rve _that the segments A—F and QTA—D
both intersect the liie BE in t&e points B and E regpectively.

[Kc © 1l 8 o

. - B
Tt Poided by ERG - R , .
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# Moreover none -of the points A, D, or F 1ie on* the 1ine BE,

-

proyf Thus we may assume that 1 does not contain C,. and .

int/ers\ects AB, in the unique ‘point D. By (3.17, A and " B are

on /opposite sides of ,z' Lét h and®h' Ve the half-planes 1Q B

t§/e plane %f the triangle' AEC " with edge %, and suppdrée tm’%"% A B

1s in h, B in_ h'. Because - C 1s not on )’,, K »1Sae5].‘;:her in .

h or in h"‘ If o] :ks ,;.ﬁ“ ht!, ‘ then A and C‘}a,re om opposﬁ},’e
*"sides of 1, and ;’ 1n€ersect& AC, while bepasﬁﬁé‘ B “and C “;q

A ABC intersects AB 1in a point D between, A 4&nd B, -then

. 112

Therefore A and F 1ie on opposite S:Ldes of BE and A ard

D 1lie on opposite sides of BE ‘Let h and h!' be the half-

planes determined by the line, BE. If "A is in h, the?both .o =
F and D 1ie’'in h' and we conclude that F and D 1ie on. the -
same side of the 1fne <BTE> This completes the proof of this

4

Theorem. ) . . . —

»

. Theorem 5.4. (Axiom ‘of Pasch). If a line in the plane of

Z either contains C or A, 'or;‘ 1ntgrsects AC but not EC,

or Y intersects BC but not AG% ° : /L _

Proof If ¥ contains -C or A then ‘there is'nothing. to

s}w

are on the same side of X, BC does not‘int,effSectu Z”‘ Similarly,

1f,c ‘is in h, then ‘7 intersects EC but.nort’ AC This.

‘;' ~
- .

completes the proof. . _,; -7

In his approach to geometI'Y, Hilbert used Theorem 5’14 as a

postulate 1r§\p1ace of our Postulate 9. —

N

- o 19
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have done in this chapter,

,1ying in a fixed plane p. -

113 .

4. Convex Sets in the“Plane. In a way this section is an
% * . ’

appendix tgéthe chapter; it introduces the reader to some ideas
’:esproved to be of great- importance in present day mathe-
matics,’bﬁt “whieh lead very rapidly outside the realm of elementary
i;ometry On ‘the other hand‘fit is possible to develop at least

7 A,ﬂsm/\ A

the simplest parts of the/subject a8 an application of the work we

¢

Throﬁghout the section, we 5hall consider sets of points.
’

Definition. A set of points ‘C in tHe plane p 1is said to .

be convex'if whenever A and B belong to C, ‘'so does the entire

Se # Lt -
segment AB, oo E .t .. : cL

<
The' simplest example of a convex set is the whole plane P,

» . . .

A-less trivial example is given by the following remark ‘

-

o

(¥.1) A‘half-plane is qonveXT

? This assertion 1s merely a restatement of Theorem 5.1, In

fact the reader may verify that the first part of Postulate 9 .

could be replaced by the equivalent statement:

° IfgeX 1s a line and p a plane containing %, the p91nts

of p not in 1‘ consist of two non-empty convex sets, called

half-planes, : . ' _ .

- One of the most useful. prdéperties of convex sets is the

- - . . t

following: 8

(h:g)* The 1ntersection of two or more convex sets is convex.
1]

- +

QueStion: Is the union of two cynvex sets always convex?
\\‘s

) - TH i . v -
, 4 e o



with edge AB contalning C.

— Definltlion. Let A, B, C be three non-collinear points

“Let HA be the half-plane with edge BC containing A, Hy: the
half-plane with edge 7&? containing B, and HC the half-plane—

The intersection of ‘the half-planes

H,, Hp, H, 1s called the ingerior of the triangle ARBC.

(h.3)* The interior of a triangle is a convex set.

»

Exercises ' '

1: Prove Postulate 9 from Postulate'10. (Hint: Let q be

a plane distinct from p and containing ./ ,

and apply Postulate
10 to gq. )

- )
- ‘

2. Determine all convex sets which aré contaLned in a line

VR L S ’




\ ' Chapter, 6 o .
= Angles and the Protractor Postulates.
1, Introduction. In Chapter 4 we were careful to distinguish

between the concepts of a sqgment and its length; a segment was

i1

defined as a point set; and its length as the real number measuring

. . . f
the distance between the end- points according to the Ruler Postulate

The approach we shall adopt in this ohapter is similar to the '

discussion in Chapter 4 Thus an angle 1is defined as a geometrical

L

o‘iect i. e., a point set, consisting of the union of two non-

2

collinear rays. @ith the same end- point. With every angle is asso-

’1*.

ciated a uniquegreal number which we shall call the measure of the
angle. -
in four postulates, which together constitut® an abstract’’

The propefties of this measure are stated, for convenience

"protractor,"\Jhst as Postulates 6, 7 and 8 specified a "ruler".
That is, we assume that we are givenﬁonce"and for all a "protractorﬂ
a segment toéetherfwi;h a semi-circle with the s%gment.as diameyer,
.such that at each point on"the circumference of the semi chrcle 1is
*and such that each real

t
Then an

marked a real number from 0 to 180
_number from O to 180 hds its mark on our protractor.

angle consisting of the non-collinear rays QA and oQB can be

measured by laying down the protractor in such a‘Way ‘that Q

~

1ies at the mid-point of the straight edge fof the protractor‘and
A and B 1lie in the half—glane determined by‘the)extenqed edge
of the protractor and containing/{he\Tirked semi-circle on the’

@hen the rays QK and _QB

protractor. will intersect the arc

-
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of the, protractor in two points, at which we may read the real

oo numbers a and b respectively. The measure of the angle AQB

- then 1s given by |a - b|, , . o - ‘ -

' . We emphasize that as in our discussion of distance, we are .
adopting a fixed unit of angular measure, which we shall call the \\
degree. Of course 1t is possible to replace 180 by any other.
positive real number and thus chanée the unit of angular measure.

. ‘_As phe‘reader may verify, however, such a change will not aféect

5 «
4 . ~

_the statements‘or content of our theorems in any significant way.
- . fhe one big differenoe between measure‘of diatance and ‘
A geasure of angle lies in the fact that any positise number is the
. measure of some distance, whereas the measure of &n angle 1s ]
restricted to a limited range of numbers, O to 180 if we use .
the‘degree as the unit of measufe.‘ In general this makes .angles
more difficult to deal with than segments. One way to get around °
this\}estriction is to define "angle" differently, so that it is
no longer merely a point set. This Introduces other difficuitiés
but.it.is found to be essential for a complete treé@mept'of .,
trigonometry. A .- ) ’ ~—
1 It is worth knowing that in one of the so- called 'non- “
Euclidean" geometries the measure of distance isggiactly;analo- .
gous to.our measure of angle: Going in the ozheF direction, one
might try to develoo a geometry 1h which both distance and angle
are allqwed to pave arbitrarily large values. It turns out, how-.
| ever, that it is impossible,to do this and still preserve the

pasic incidence postulates of Chapter 3.
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g 2. Definitions and the Separation Properties. All the ;

definitions and results lean heavily on the material on separation

given in Chapter 5. ' .o
. 3

" Definitions. An angle ig the union of two non-collinear rays
with the same end-point. The two rays are called the sides of the
angle; their common end- point the vertex of the angle. _

< Notations. If 'ﬁi and - 5€;~are non-collineaf rays with com-
mon end-point B, we shall denote the angle formed by them by ,
/ ABC (read "angle ABC"). Conversely the notation / ARC w1l
be used whenever A, B, C are non- collinear to denote the angle
which is the union of the rays BA and BC. Sonietimes we shall

abbreviate / ABC to / B when there is no possibility of confu-

sion. . s
e ‘ .
We remark that *f A, B, ,C and A!', B!, C', are two-.sets of

. non-collinear points, we havé/ . .

. J
Z ABC 4 ‘A\ %3;%"‘7' SN S

If and only if therunion of the rays BA and BC is the same

—r—> —id>
. point’ set ‘a8 the union of the rays B'A' or B'C'.. This requires

—> .
that B = B!, A Xles on B'A' .or B!C!', etc.

4

N Definition. The interior of / ABC 1s the intersection of

‘the half-planes h, and h,, where h, .Ts the half-plane withér
) <> a : <>

edge BC containing A and hB . is the half-plane with ‘edge’ AB |

containing C. - ]
™ :
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Definition. The exterior of an angle 1s thé set of all pointsiﬁ
in the plane containing the angle which are netther on the angle nor';

4n the interior of the angle.

Definition. Two angles are said to be adJaéent if they both

v

lie in the same Plane and if they have a common side such that
thelr other sides lie in opposite halftplanes determined by the

line containing their commoﬁ side.

-

v

Definition. The vertical angle of the ‘angle ABC 1s the °°

g
’

N —> —>
angle formed by the rays op?osite to BA and BC.

»

Definition. Given a triangle ABC, the angles / ‘BAC, / ACB,

and / CBA are called the angles of the triangle.

Note that an angle of a triangle is not a subset of the tri-

. — —>
angle. [ ARC 1is_ the union of thé two rays BA and BC, whereas

AABC contalns oniy portions of these rays, nanely segments BA

p—

and IC.

The following theorems state and prove the fundamental sepa;
ration properties of angles. Most of these properties are
"yntuitively obvious" and at the *same time rather difficult to
prove. (This 1s a common situation in mathematics ) These proofs
are therefore not appropriate for presenting to most high school‘
students. In the text book these obvious properties would be

assumed. Howédver, a good teacher should realize that they requilre

proof (unless we introduce them as additional postulates)\and

. should be able to prove them. . T
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, P .
\‘Theorem 6.1. Ahy Yolnt between A and B 1s in the interior |
—_— : s B ] \

-

-

" of [/ AQB.

Proof: Let: P be a point between A and B. By ?heorem«5.2,
every point on the ray EK other th;n B 1l1lies in the half-plane - .
with gdé; ’EE; conﬁaining A, and since P 1lies on the ray Aﬁixz
é is in this half—plane, Similarly P ,iies in %he*half-plane
with edge ‘6,7\’ containing B, and so by the definition at the |

bottom of page 117, P 1is in the interior of / AQB. -

—_— — . . »
Theorem 6.2. If QB and QC are different rays in a half- ~
- > -
plane with edge QA then eilther B 1s in the interior of / AQC

»

or C 1is in the interior of / AQB.

e

. ;zggggz First we sketch the basic idea of the proof. We have’ -

- ;to,prove that eithe; oné of two statements is valid: Conslder . N
%ﬁe first statement: 1t 1is elther true—or false. If it 1s true,
then there is nothing to be ﬁioved. If 1t 1s false, theﬁ we mus%

‘ prove that the second st;tement'is true. Therefore it is suffi-
clent to prove thatalf B 1s not in the interior of V4 AQC, then’ E

C 1is in the interior of / AQB. . - ,

Let h be the half-plane with edge QA containing B and
C. Because the interior of /.AQC 1is the intersection of h |
with the half-plane h', with edge @ containing A; B does
not belong to the interior of [ AQC only if E is not in h', .
if this occurs we must prove thgt C belongs to the interior of

L AB,
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Thus we~supp?se B 1s not in *h'; then A and B efe on
apposite sides of 6?: and AB 1ntersects 63 ina point R # Q.
Our first objective is to show that the rays 'aﬁ and :53
are 1dent%ca1. The only way this can be false is for QR and QC
to be opposite raye. In this case, Q is between 'R and C, and
since (- is in the half-plane” h, Rm{s in the half-plane h" e
with edge fﬂi opposite to h. B& Theorem 5.2, every point.on the
ray Kﬁ'wother than A is in .h". S;nce R 1s between, A and
' B,. B is on AR, and hence lies in. h", contrary to the hyﬁothesis
that B is in h, Therefore 1t 1s impossible for a;i and Ei? to
,  ‘be opposite rays, and we have QR QCﬁ .
Now we are ready to prove that C 1s 1in the 1nterior of
.)Z_AQB. Because R 1s between A and B, Theorem 5.1 asserts
that" R is in interior of / MQB, and since- .QTR?-—*@i we conclude
that 'C‘ is also in this interior. {The reader ls asked to supply
the argument for this last step ']
[We remark that 1f one 'draws a figure for Theorem 6.2, it is
.hard to ;magine how it could be false. We should remember, how-
"ever, that our geometry 1§ an idealization of our experience, and
theofact that our axioms/are sufficiently bowerful to‘make a formal
proof of thie theorem\pessible at al¥ encourages us to think that

our geometry 'is not such a bad model of our perceptual geometry.

The same comments apply to other theoremp in this section, espe-

cially 6.3 and 6.4.] ‘ . . '\

A

Theorem 6.2 will be Very useful when used in conjunction with

PostulaQe 13. }

’ '

Pl

#
o
P
-
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The proof of the next theorem is quite complicated, and is'

easier to follow if we state, for reference, a simple consequence

of Theorem 5.2.

<

.

{

* ,
. Lemma. If Y is a line in plane p, U and V different

points on Y, and X '9nq, Y polnts in p on opposite sides of

—> —
Z, then UX and VY do not intersect.

8

(A "lenma" is a’ theorem which is of no real interest in it-

self but 1is useful in proving other theorems.)

. e
' Theorem 6.3. If P 1is a point im the interior of / AQB |

—> . !
then QP intersects

-

'ﬁK. For convenlence we list the various sepaﬁation properti of

our figure:
(1) P and A
(11) P and B
(111) P and P!
, (iv) P and P!
: (v) A and A!
(vi) A and A!

The first two follow

AB.

.are on

are on

are on

are on

are «on

are on

the same
the same
opb ite
opposite
opposite
opposite

—9 ‘% v v
Proof:: Iet QP' and QA' be the rays,?pposite to Zﬁ? and

<>
side of QB,

<>
side of QA; ‘

- -
sldes of.

sides of
gldes of

sides of

<> .
QA, {

B, .

<«> -2 :
QP’ . /

<>
QB. b

Q.
from the definition of interior of an angle,

the other four from the'definition of opposite rays.

We wish to prove two things:
ey

y

‘ - >
(1) That A and B are on opposite sides of QP,

— —_—3>
(2) That AB ddes not intersect QP!.

]

e

Our theo%em will follow from these, for if Kﬁ- ingersécts Eﬁ?

128
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. ! —> —
(from (i)) and does not Intersect QP!', .then AB must intersect
: R
QF. b

(2) first, since it is easiest.

-
-~

We prove From (1i) and (iii)

- <>

it follows that .B and P! are on opposite/s;deSféft QA. If we
. . <>

apply the lemma, with 2 = QA, ,V=Q, X= Y =

do not intersect. By Theorem 4.9;

U=A, B: P"

e —
¥ we see that AB and QB'

\»

AB and Eﬁﬂ

do not intersect.

We now tackle

(1), which is a much tougher job.

The proof

‘

falls into three parts.

(a) From (1) and (vi), A' and P are on opposite sides

. . €> ; <>
of QB. Applying the lemma With X = @B, U =B, V=Q, X = A?',
-~ - -
¥ = P', we have that BA! does not intersect QP!'. Hence
(Theorem 4.9), BA' does not intersegt QP!'. ‘
‘ +(b) This 1s similar to (a), starting with (11) and (111) s

and ending-with - A‘B not intersecting QP ;

.. (e¢) From (a) and (b) it follows that ‘A'B does, not inter-
sect E:
Combining this with (v) we have that A and B are on opposite
' '
PQ,

This theorem is a godod illustration of the complications one

that is, Av and B are on the same side of '$3

> — . .
sides of PQ; that is, AB intersects as was to be’ proved.

-

!

caﬂ get into -in proving an "obvious" result. This property of an

“

) angle is tacitly assumed in most geometry books, for instance

when one speaks 8& the interﬁal bisector of an angle of a triangle
intersecting the opposite side (e.g. ‘the first proof of Theorem
. 7.1).

-
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The following theorem, while not as ‘basic as Theorem 6.3, is

) inté}esting, It follows from Theorem 6.3, but is not easy.

[

Theorem 6.%, If P is a point in the interior of A ABC
—>
PQ

then any ray intersects A ABC in exactly one point.

I3

Suggestion for proof: Consider the possible positions of @

—_ —_— .
with respect to the rays PA, PB, and ?3 and the angles they

determine.

.
)

The following theorem will be used in Chapter 9. Its proof

is relatively easy and is left as an exercise.

R

Theorem 6.%a. Given /[ BAC, if X and U are points on
AB such that 0 ¢ AX ¢ AU, and Y and V are points on AC
such that O < AV, < AY, then XY and UV intergect.

S sV
< < -

3. Protractor Postulateé.

. [ , .
Postulate 11. To eve angle ° ABC there corresponds a

unigue real number betweén O _and "180, called the measure of

angifaanq designated by m{/ ABC). ,

Postulate'zgé//ﬁet QX be a ray on the edge of half-plane h.

For any real numbeér r between O and 180 there is a point Y

in h such that the m(/ XQY) = r. .

"Postulate 13. If D is a point in the interior of / AQB

therjm(é AQD) + m(/ B]D) = m(AQB).

'
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'

" postulate 14. If /SK and QB . are opposite rrays and c
another ray then m(/ AQC) + m(/ BRC) ="180.

- h { _> .
Theorem 6£.5. Let QA _be on the edge of half-plane h, and -

-

—> —_> . Y -
\J£I<X:§ and QC be/different rays in h. Let m(/ AQB) = r,’
. . Vo
m{/ ) = s. Then - -
(1) r # s, / // e =
' (2) r<s if aid only if B is in the intérior of / AQC.

(3) m(/ B

L

/ AQC or C 4is in the interlor of [/ AQB. E? put the two cases

~

$
in-parallel columns. . R
B_in interipr of / AQC. C 1in interior of / AQB.
) _m([ AQB) + m(/ BRC) = m(/ AQC). | m(/ AQC) + m(/ BAC) = m(/ AQB).
(Postulate 13.)
m(/ BQC) = m(/ AQC) - m(/ A@B) | m(/ BRC) = m(/ AQB) - m(/ ARE) .
=8 -1, ' " =r - S8. "
(1) 'Ip either case, since m(/ BAC) # 0 (Postulate 11),we ’

have r # s. ’

. Y

(2) Since r < s 1is equivaleﬂt to 8 -1r >0, and since |
m(/ BRC) >0, r <s goes wi?h %he case, B 1in the interior of
/ hac. ' ‘ ‘ ' '

(3). In either case, since m(/ BRC) > O, ﬁ([ BQC) =r - al.

¢

This theorem shows that our angle measure behaves much like

ourhdistance measure @é specified by Postulates 7 and g. 5

\ F31 -
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-1 S Theorem 6.6. If QB and QC are different rays in-a half-
- e —=

plane,with edge QA then we cannot have simultaneously both B
“J‘i miﬁ the interior of /- BC and C in the interior of /[ AQB.
A,Si - -

-

P 4; ‘Theorems on Angles Formed f¥ Two Intersectiﬂé/Lines.
e Consider two ldnes X and X' which intersect in the unique ‘
\: :
point Q. Then there exist points A and B on Y which lie o
on opposite stdes of X', and points A' and B' on I“ which
! &
lie on opposite sides of. X. First of all we determine all possi-
et - > — —> ~
ble angles with sides QA, QB, QA', . QB' Because the sides of
an angle must be non- cOilinear, there .are exactly two angles with

t o

side QA, namely,

| v \ | | | A'AQA', AAQB'.\J . . . o

. s —>
The angles with side QB are o
/ -

v

LAY [ QB
- — . v -

with side QA!?!,

W aund ' '
X . ./ AQa, , [/ AaB; \\/ o

—_— %
and with side QB!, g 3

/sB'QA, _ / B'QB. » _—

"

O0f these there are exactly four distinet angles, namely

AAQ“A" .AAQB', th, Am'#

»

<$hese four an; are called the angles formed by the intersect-
. 7

‘ing lines ¥ and X'. Of these we can select out exactly four

pairs of adjacent angles, namely

.
. -
' .
’
-
R ¢
~ .
N ~ N
f
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YA AQ:A.', / AQB!, con'npoq‘,s.ide ,,I-\Q%,
/ BRA',, [/ BB!, common side '463,
A A, / B%A" common side EQK',
"/ AQB', / BRB!, common side Q—B>' .

v

“* these are.all possible pairs’of_‘ adjacent angles, and'we ¢heck that
th&‘irst palir are actually ad@acent in ’the gense Yof the definition;
since, by “assumption, ;\' and B! 1lie in opposite half-planes
determined by the.line ,i eontai?xing the common side QA“ " Because
Q,A and ﬁ, and _OI' and Q—B" are pairs of opposite .rays, ‘f‘t’
is clear that there are exactly two pairs of wertical aﬁgles formed .

"by X . and X', wamely ' - .

: (
[ MQA', /[ BQB';
‘ b3

‘4 AQB", "/ BaAY.

L4

Definitions. Two angles\awgg ruent if their \asures are

equal, they are supplemerﬂ:ary if the sum of their measures is IBU K
(each 1is sa1d to be a ugglement to the other). \ . P
4d3acent

N {"“\ .
k% . ]
Theorem 6.:{. When tg’o Alnes . “and-..1!, interse

4

. gngles are supplementary‘, and vertlcal angles are congruent.
- . -~
. - ) ) o‘ P ]
[Note that it 1s incorrect in our setup to say that vertical

[ad

angles are equal.]
) .

Proof: ILet Q, A, B, A', "B! Dbe defined according to the
beginning of this section. Although there are four pairs of ad-
Jacent angles it is sufficient to prove that [ AQA' and [ QB!

are supplementary, since any of the other palrs can then be t;aken

[c
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1

cgre of by this case and a change of notation, Because the segment

———— 'l v

AYB! intersects X in the uhique point Q, Q 1s bety
e i ¢

and.- B!, and QA’ and QB! are opposite rays. By Postulate 14,

TZ_AQA')+m‘(£AQB')=180 L

+

o

.and the first assertion of the theorem is proved

For the second assertion we shall prove that the vertical

es / AQA' and [/ EQBe//are congruent. Consulting our table

‘of adjacent, angles, both of these angles are adjacent to the com-

mon [~AQB' Applying the first assertion of the theorem, the
rdader can now verify at once that Z_AQA' and / 3QB' have equal

l%m\’f)i}: j/!‘* L4

5\
>

»

3

P

L]

e

<

mMeasure, C \ . -,

Theorem 6.8 If two adjagent angles formed by two intersect-

ing lines are congruent, then all four are congrueniixl\

’ -

" . N - —
ot
’

ﬁefinition. If two adjacent angles formed by two intersect-
. ing lines are. congruent the lines are said to be perpendicular

" and the angles are called right angles.

'¥ ) . . . .
Theorem 6.§f An angle 1s a right angle if and only if its -

measure is 90. T ‘

;. .. -

vDefinitions. An angle is said to be acute if its'measure

/ is less than 90; obtuse if its measure is greater than 90.

J R oo
\ 1
. Theorem 6. lO In a given plane there is one and only one
N —
linerperpendicular to a given: line at a given point lan-the..line

..

- -
. . ‘

L4
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—'«ak&Pﬁgggem 6.11. If adjacent angles are supplementary theéir

)\\’\ ’
'P

\

qéﬁg dmﬁ§§ikides are collinear.

Lgt A_AQB and / BC be adJacent and m([ AQB) +
0. Let aa” b; opposite to QA. Thén m(/ AQB) +

,;)b 802, @gﬂ?}}ﬁ,’?&ﬁ), and so m([ BQC) = m(/ BRA') ). " Now
. A .and C “are on opposite sides of" BQ (definition of adJacent’

angles) and go are A and A'. Hence A' and C are in the

same half- plane with BQ as edge, and it follows from Theorem

— —_— .
6.5 (1) that QC = QA'. This proves. the theorem. '
S -
. o . Exercise

13 o -~/

Iet m and n be distinct coplanar lines and A a third
line intersecting m and n. in distinct points A and B. (X
1s a transversal to m ?nd n.) Give definitions of the following
terms: 1nterior angles, exterior angles, alternate interior angles,
. altdrnate exterior angles, corresponding angles (sometimes;ealled

7 . . .
exterior-interior ‘angles). ‘ b

- -

5. Theorems on stectors of Angles. In this concluding

section we establish the existenee and uniqueness of the internal

]

re
and external bisectoxrs of an angle.

-

. . v ' .
| Theorem 6.12. Given [/ AQB," the%e exists a unique ray -QM
in the interior of Vi ﬁ#gﬁ“guChmthatﬁhJ
~ . m(/-AQM) = m(/ BQN).
‘Sﬁg—: = ‘ " ' * . .
& 4 ) i .

Fx
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' Proof: Let h be the half-plane with edge QA and contain-
. ’ — .
ing B. By Postulate 12 there s a ray QM .in h with m(/ AQM)
= %m(é AQB).~ By Theorem 6.5 (2), "M 4is in the interior of / AQB.

By éostulate 13 (or Theorem 6.5 (3)>, _ E W
- m(/ BM) = m(/ Acgs) - m(/ AQM)
= %m(é AQB)- o
1 3 -
4 = m(/ AQM). N
—_—> - T
Thus QM has the desired properties. . N

To show that there cannot be more than one such Pay, |let

ﬁ v
QN have the same propé}ties. Then since

.. n(/ M) = m(/ BN) ‘
and , ¢ ) ’ .
‘ : m(/ AQN) + m(/ BQN) = m(/ AQE), o
.(Postulgte 13) we must have .
 m(Z AQN) = gn(/ AQB) = m(/ aQu), o

—) N
By Theorem 6,5 (1) this is impossible if QN is different From
> R .

QM. A J
. o — ~
Definition. The ray QM described in Theorem 6.12 is called .

the bisector' of ./ AQB, and is said to bisect / AQB:

“

—> -
Theorem 6.13? et QM' Dbe the opposite ray to the bisector
¥
—_— «
QM of / AQB. Then m(/ AQM') =m([.BQM'). ®

’ — o
, Definition. QM! 1is call®d the external bisector of / AQB;

by contrast aﬁ' is sometimes called the 4nternal blsector of

v

’

AAQB. . « » - K
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Theorem 6.141, (Uniqueness of the external bisector.) Let
QP ,1le in the exterior of / AQB, and suppose that m(/ AQP) =

—_ .
m(/ BQF). Then QP coincides with the external, bisector ’Q—,M_)'
) of}/AQB. ’ )

r
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Chapter 7 -
’ -
Congruence

L 4

—

' 1. Rigid Motion in Euclidean Geometry. We have_geen that

the basic concepts of geometry are idealizations of porticns of
our physical experiences, One of the'most basic of our phyeical
experiences is the motion of a rigid body. Movement in-general ’
is one of the first physical phenomena we‘perceive. .\ clearadis-
tinction between the movement of a rope and that,of a stick comes
much later but is certalnly-well established by high school age.
Euclid took the concebt of the notion of a rigld body for
granted, Just as he’did'mosc of the eepa?ation properties, and
saated no postulates concerning it, If we;ﬁish to make use of

the concept in our ﬁreatment we must Introduce sulitable defini-

tions and postulates to harddle it properly in our proofé. This

can be done, but it turns out to be difficult and rather complic37'

.

ted. ) - . //

e

It 1s also unnecessary, for 1f we examine Euclid's geo ééry_

-
\

we find that the concept of rigid motion is %éally nct patt of it,
Euclid's 1is a static geometry, not a klnetic one,. Th‘ kinetics
of Euclidean space is of course very important bup its study is

- generally regarded as part of mechanics. This i//;urely a matter

> [

of convenience we prefer, in the interest of simplicit 4,not to

< introduce time into our geometry. (It 18’ interesting c? note
that in Einstein's Theory of Relativity it was found extremely \

*useful towintroduce the.concepf of time as part of the geometry.

/ .

138
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This introduction was made in 1908 by the German mathematician
Hermann Minkowski and Minkowskian geometry is now a well estab- ~

% 1ished branch of mathematiecs.)

2. Bagic Definition of Congruence. Consider Euclid's proof

-

of the side-angle -s8ide theorem. Although he speaks of placing one-
triangTe~on*€h€ othep he is not really interested in the actual
-motion, involving all intermediate positions of the triangle, but
oa&y in the beginning and end positions. We sball therefore ignore
the possibie intermediate positions entirely’in stating our defini-
tions-and'postulatesl - ; '
Given two -figures (point T ’ - .
' sets) F and G; if, intuitively, Al ‘
f G can be noved to coincide with F ‘ P ‘ o
each point of’ b must be moved to ' ¢
'coinoide with a corresponding point of F, and, for the motion
to be rigid, the distance between any tWo points of G must‘not
change while G 1is being moved. How cangwe express the essential
features of this situation without using the conceﬁt of motion?
Very easily:

(1) There must be-a 6ne-to-one correspondence between the

i

points of F and those of G;
(25 If P and Q are any two points of F, and P' and
Q' the corresponding points of G, "then we must have PQ = P'Qt.
A correspondence of this type shall be callqd a congruence

betWGen F and G, and the two figures shall be said to be

coggguent.

?
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In most treatments of high school geometry the stress is phﬁ

«

on é%é secénd of these definitions, as is easily.geen froﬁ the
wording of ‘the theorems. We prefer to emphasize the firét, for
the foliowing reasons, In certain c&ées tﬁo figures can be coﬁﬂ
gruent in more than one way,lthat is, "there maf be more tﬁan-one
congruénce between them. It may be of gréat’importance to dis- ‘ R
tinguish between these different cdngruencés. In‘thé éecond place,_'-

1t 1s quite possible for a figure to be congruent to itself. 1In

»

fact, this i1s always the case, since if every point is hadé to
correspond to itself conditions (1) and (2) are certainly satis-,
fied. But tﬁere are,important cases when there is anotﬁen,,non-

trivial, congruence of the figure with itself; that is, one in

-

which not every point corresponds to itself. Such congruences -

are basic in a precise treatment of the notian of symmetry.

-~ .

Notation. A onesto-one correspondence in which A corresponds

to P, B to Q, C to R, ete. shall be written

\

[T

-

A,B,C... «<—— P, Q, R ... "~

If This 18 a congruence we write ‘
A, B, C .. TP, QR .. _

Note that ‘ . , ,

e

' A,B,CZ%P,Q R.

o

1s»éﬁe same thing as /

e

* A, € B

-

but not the same as

e

coon " A, B




X

Sample theorem. If AB = XY there is a congruence between

?

AB and XY such that A, B Y X, Y. .

Par&igl proof: §et up 8 coordinate systen“on 7&? with A
having coordinate zero and B a positive coordinate. Set up a
coordinate System on XY with X having coordinate zero and Y-~
a positive coordinate Let a point P on AB and a point Q on
XY correspond if they have the same coordinates in the respectivel
systems. This correspondence is then a congruence (proof left,to

XS

. . I, .,
reader). y , . Rl e

.

-

e Corollary. There i8 a non-trivial congruence of a8 segment

with itself; in particular, such that, A, B B, A. | _

Proof: Merely take the special case X =B, Y =
was not €xcluded. L |

The ;ambitious reader may try his hand~at the proof of the

following theorem:

t

Two congruences as described above, with A, B¥ X, Y and

-

A, B= Y, X, aré the x congruences between AB and XY

3. A More Suitable Definition of Congruence.‘ Having now

given a satisfactory definition of congruence we must confess that
it is not suitable for a development of high school geometry. One
trouble 1liess in the difficulty encountered in“relating it to the

pod

meaSure of anéies. We certainly want angie measure to be preserved

i

also in our one-to-one correspondence. We can take care of this

with an appropriate postulate, but the treatment is somewhat
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artifical. Then too, we constantly run 1ﬂto proofs of the type

given above, requiring us to set up coordinate. systems on a line._s
To avold these complications we modify our approach and do

not tny to give a general definition of congruence that holds for

all figures. Instead\we define thg notion in a series of‘stebs,

as follows.

Definitions. Two line segments are said to be congruent if
verinitions i congruent
they have the same length. %wo angles are}said to be congruent

~ '

if they have the same measure,

x
L4

Two triangles are said to be(coggruent if tHere is a one-to-
one correspoﬁdence betweeri their vertices such that corresponding
"sides have the same length and corresponding angles have the same
measure..- In this case the correspondence 1s called a congruence '
. The big difference between this last definition and the one
given in Section 2 is that this one 1is sté%ed in terms of only a ‘
finite number of ,points, th six vertices of the triangles, where-
as the other involved all the poiﬂts_of the two figures. This
. one is thérefore easier to apply. its a;plication is all we

ordinarily need 1n devel)ping Euclidean geometry

" R \

- L, The Congruence Posgtulate. Having now found, in the

concept of "congruence,"

a way to avoid talking about "motion"
we must introduce some of the intuitive properties of rigxd

motion as postulates concerning congruence., It turns out ‘that

¢ oniy one postulate 18 needed. There are several choices for this,




- 136

but a’" simple and intuitiYe one to choose is the side-angle~side :
statement ltself: . .

" Postulate 15, If there is a one-to-one correspondence be;
—— e o

-

s

tween the vertices of two triangles such that two sides and the
included angle of one triangle,are congruent to the corresponding

- -

parts of the other then the correspondence is a congruence. .

If one needs a justification for introdncing a postulate‘the u .
. familiar "proof" of Fuclid is an-intuitive argument that this 7
statement agrees with our conception of geometry as an idealization

of the physical world.

D

. Let us now look at the proofs of a few basic theorems.

L]

. Theorem T7.1. If two sides of a trliangle are congruent the

angles opposite these are congruent. :

First proof: In A ABC let AC = BC.® Let CP, ithe bisector
of ./ ACB, intersect AB 1n R. In the corresnondencef ACD—>ECD
we have AC = BC, ?)D - CD' m(/ ACD) = m(/ BOD). Hence by the
postulate A ACD = 'ABCD and m(A DAC) ﬁgc),%wx

AN

This 1s the proof given in most higﬁ'school geometries It

makes use of two falirly complicated earlier theorems; namely, the
- - —>
existence of an angle biseetor and the fact tQat ray ~CP inter-

&) —_— .
sedts segment AB, (Theorems 6.12 and 6.3.)

|
4
_ Second proof: In A ABC let AC BC. 1In the correspondence ‘
ABC «—>BAC we have AB = BA, AT = BC, m(A ACB) = m(A BCA). |

|

Hence the correspondence is a congruence, and m(/ BAC) = m(/ ABC).

!
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. )

. In the second proof we make use of a non-trivial congruence
of the figure with itself. ’ .

: In.pHysical terms the first proof cap be sald to fold the

triangle so as to make the two halves coincide, The second proof

turns the whole triangle oger. Proofs of this kind are frequently

'applicable when the figure has an axis of.symmetry.

Thedrem 7.2. Through a point, P not on a line m there

1

passes a line perpendicular to m.

Proof: Let A and B be any two dififerent points of m.

-

:m and p determine a plane, which 1is separated into two half-
planes by m, In the half—plane not contﬁining P take Kg' 80
that m(/ BAR) = m(/ BAP). On AR take point Q so that
AQ = AP. Since Q and ‘P' are on opposite sides of m, PQ

intersects m 1in a point D,
AN

-
H

# 5/2ﬁ§ﬁ 1. D= A, By the defiﬁition of perpendlicularity, PQ
- ' a
e

*a

is rpendipular'to m. -

-~
-

-
o

<
Case 2. D % A, D on ray AB. Show that the corresponﬂence

PAD $>QAD 1s g congruence and that this groves the theorem,

. ‘ _..> @
.Case 3. D# A, D on ray opposite to AB. Proof left to

‘reader. - . . . -

o 0 : -
. -

This proof, though long, aVvolds the difficulty in Euclid's

<.

~N . . e .
proof of having to assume something about the intersection of a

. line and a -circle. , S ’

~ -

d

S

R A e it
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Theorem, 7.3. If twcj triangles are in one-to-pﬁner correspohdence
\such that two angles and the ‘included side of one are congruent to
. o -
the corresponding parts of the other then the correspondence is a

5

.eongruence. ' . .-
9

Proof: Let ABC<> XYZ sq that m(/ A) = p(/ X),
m(/B) =m(/ ¥), AB=XY. On ray AC take a point D so that
AD & XZ. The correspondence ABD<«—> XYZ 1is then a congruence,
— >
and %o m(/ ABD) = m(/ X¥Z) = m(/ ABC). It follows that BD = BC,
and Jlence D = C, Therefore A ABC A XYZ. (The reader is

expected to fill in thg details of this and similar broofs.)

2 L
This type of proof might be called "proof by identification.™
. The essential feature is the construction of a figure which has
the desired property (AABD in this case) followed,by the demon~

. stration that this figure is jdentical with the given one. For

another proof by identification consider the side-side-side theorem.
i

L4 .
- Thebrem :Z.h. If two trlangles are in one-to-one correspondence

such that the three sides of one are congruent to the corresponding

sides of t-‘he other then the corresp’ondence is a congruence.
s ! ! | '
. 5 ' <>
Proof: .Let ABCe—> XYZ. In the half-plane with edge AC
' L. . - A, —_—p
containing B take P such that m(/ CAP) = m(/ X), and on AP\
take D such that AD = XY, Them A ADC ¥ A XYZ, and’ CD= XY =CB,
We wish to "show that’ D = B, Suppose that D ;4 B, and let M be .
- ’/ . ' — <—>l
the mid-point of BD, Then A BMA = A DMA. and 80 AM 1s perpen-
. >
dicular to <B—6 In exactly the same way we can show that CM 1is

perpendicular to BD. This would mean that line X&’ contains M, >

!
N -
1 . 1
‘ ' o

Yo
(W2}
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<> : .
ible. (If M 1lies on AC then B,and D are on

.Nhickels impo
<> . - ..
opposite sldes of AC, contrary ’co/;cons'cruc’cion of D.) Hence
D= B and the theorem is prove‘d.r
. . N

This proof has some features in common with Euclid's Proposi- -

tion 7, Book I. He proves D = B by a rather elaborate argument
| . N
. With angles, ’ oo T !

N
It is interesting at this point to analyze the logical struc-
ture of the proof of Theorem. 7.4, It is surprisingly complicated.

(1) ¢€onstruct A ADC with D and B on the same side of e,

(2) Direct proof that A ADC = A XVYZ. .

(3)- Indirect proofa that D = B.
L. (a) Assume D);éi B.

(b) Use of previous theorem to justify exis'cenée of

\ 1
(¢c) 1Indirect pro?{f that BMA and DMA are triangles.

(1) AssuK ‘A 1lies on lz.ne BMD
1

(11) Indiredt proof that A .does not\lie be'cwe

mid-point M, _ N

- 3
~

. ~—" B and D. . # ‘

id ° (x) Assume A. is between B (gﬁd QDsg , X
. I é ‘C\ 3 “) -
‘() BD intersects line c JAno AL S

. . A .8 »
. (y) Contradicts (1) < I & @ -
, ) o
R (111) Direct proof that D = B. : SN
i 4 . - SURN
(iv), Contradicts ( ) . ?‘ 2°
,* (d)" Direct proof 'chat A BMA X A DA - b
«—>, K T
(e) Direct proof 'cha'c AM “is perpendicular to BD. . J‘;

. <>
(f) Proof that 7 is. perpendicular 'co BD by analogy

.

with (e), (d), (e). o ot | . '
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, — «>

(g) Direct proof that BD intersects AC. .

. (h) Contradicts (1) e
(4) Identity of A ABC .and A ADC. . :

- .
. -

~(5) Theorem follows from (2). . , - ;

Note that most of the complication comes in proving tné o o
Mobyious" step (c). Such complications are of course not to be 7
emphasized in a nigh school' course. .

»~ * _ Exercises

"
. 1, Prove Thgorem 7.1 b}?ﬁjuclid"s~T
method, 1llustrated in the adjacent fiéﬁre.
2. Carry out Euclid's przbf ok his
Proposition 7, Book i, in the framewigk

. of our set of postulates., . )
. p . . &x

- Al =

5. Furthef Theorems. With the three basic congruence

‘theorems proved ﬁe can' move along the regular sequence of theorems,

with only occasi?nal modifications needed 70 insureﬁiogical rigor.

dle ;shall list the more important theorems, leaving most of the :

proofs to the reader. - -
, .
Théorem 7.5T If two angles of a friangle are congruent the

”

sides opposite them are congruent;anq/the triangle is isosceles,

I3 .

Theorem 7.6 6* In a given plane p, the set of points equi-
distant from two given points A and B 1is the line perpendicular

) to AB ,at its mid-point.
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Theorem 7.7. If a }1ne 1 1is perpendicular to each of two
distinet lines m ‘3nd n at their point of intersection W, then
it is perpendicular to every line tontaining W andkgqﬁiéﬁif with

B - ' ___,)'-‘ - .

m and -n. ’ !
- r

"Proof: Let ‘p be the plane containing 'm and n, ' and let

S . ”
r b% any line in p and contalning W. WE/wisg to prove that. Ty
1s perpendicular to Z. If r=m or r =n this follows by
assumption, so we have only to consider the case in which r, m,
and n are all different. Let h be one of the half-planes with

! —> ¢ —> .
edge n, let WP and WQ be the rays of r and n which 1ie in
h, and let S be any point- of m “distinct from W. BY Theorem
6.2, ei'cﬁeuau is in the interior of / SWP or P 1is in the

interior of ngaa:\“Is the former, then by Theorem 6.3 WQ intere

o _— —>
- . sects PS; if the latter, th&h WP intersects QS. In either

case we obtain a line not containing W and intersecting m, n,

and r.- The standard proof of this theorem can ﬁow be carried out.

Theorém 7.8. _All the lines perpendicular to a glven line at

a given point 1lie in one.plané. . *

N . S——— , . . . 5

Proof: Let I be a line and W a point of 1. Let Q be

a point not on: L (Postulatg 1), u the plane containing Q and

y 4 (fhéorem 3.3), and m the l;né in u perpendicular tp J at '
W (Théqrem 6.10). Let R“ be a point not in u, Vv the plane
contaipingv R and X, and n the Mne in v perpendicular to

“A'at W..If m=n then u and v each contein the intersect-

‘ing lines Z and m, and so coincide (Theorewt 3.4). This is

b \‘ 1 <

£

1

AY

-
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el

impossible since v contains R _and” u does not.. Hence m # n,

%,

Iet p be the plane containing~ m and n,

\ﬁe wish—@o show that if k 1is aﬁy line perpendicular to 1 ,
at W then k 1ies in p.- If k 1s such a line lef t be the "
piane containing 2 and k. If t =p lines X, m, and 'n would,
be cbplan;r, which is impossible by Theorem 6.10. Hencé‘ t and p
are distinct planes which 1nte§§ect at W, and so by Postuléte 5
leey have a 1line k' 1in common., By Theorem 7.?, k' 1is perpeh-
dicular to & ﬁf W, and so by-Theorem 6.10 k' = k, Thus k
lies in p, . ) b i
) Note that the basic idea .of this proof is very simple. The * .
. length 5 the proof is due to all the little detalls that musE be '

filled 1h tb make ? logicai sequence of steps. In most proofé we
omit these hetaiis, Just as ﬁq omit contiﬂual references to the
'associative, commutative, and distributive laws when doing algebra,
We should be aware of their existence, hqwever, and be(ﬁble to f1{£d~

N YR
them in if required. : . ' /)

. ¢
" _ . .
Definition. The plane which .contains all lines perpendicular

dicular to the line at.the point,

-

. Theorem 7.2: The set of points equidistant from two given
'pQ}nts A and B 1s the plane perpendicular to AB at its mid-

W )

. | point, 9 o " b ;

|
EB a glven line at a’ given point of the linelis said to b® perpen- (
|
|
|
|
The next group of theorems deals with inequalities between |
£ measures of angles and of distances., It will be convenient to |
/l

©
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shorten our terminology and say "angle A 1is greater tﬁan\ggéié’“ﬁ'
.A\'“

. _ e v .
or "AB , is greater than CD" instead of "the measure of angle

is greater than the: measure of angle B" or !'the length of AB 1is
£ - )
greater than the length of - CD." ,
) ‘ A ""“ it R ¢ T X
Theorem 7.11. “An ‘exterior angle of a triangle is greater

than either of the non-~adjacent interior angles. .

—> l e
Proof: Given A ABC, 1let BD be the ray opposite to BA. .
ool . o — e R—
Let E be the mid-point of BC. On ray EF opposite to EA take
F such that EF = EA. By Theorem 6.7 m(/ BEA) = m(/ CEF). It

follows from Postulate 15 that A BEF = A CEA, . and so *. ,

. m@é ¢) = m(EBF). Now from Theorem 5.3 it follows that F is in
the interior of& / DBC. (This was the reason for proving Theorem
* ' 5.3.) Hence from Postulate 13 ' S . .
' .m(/ DBC) = m(/ DBF) + m(/ FBC) ’

[

" = m(/ DBF) + m(/ C)
>m(/ C). |

Similarly one can prove m(/ DBC) < m(/ A), and the theorem is

Vsl
. -  established. “

N .
14

Theorem 7.12? If two sides of a triangle are not‘congruent

the angles opposite them are not congruent, and the greater side

is opposite the greater angle, \

Theorem 7.13? If two aﬁgfes of a,triadgie are not congruent

—.. +» the sides opposite them {gg/not congruent, and the greater angle

A

- 1s opposite the greater side.

N :, & ( »

12
<O
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3

4 Theorem 7.14? 'The sum of the measures of any two sides of a

"triangle is greater than the measu?‘ of the third side. !

Theorem Z.lﬁf Through a given point not on a given line there
passes only one line, and only one plane, perpendieplar.%o the
\

given line.
A}

Theorem 7.16? If P 1is a poifit not on a line Y and A
’ <>
and B two different points of Z such that line AP is perpen-’
dicular to Y, then AP is less than BP.

-

°




" Chapter 8

~ an Parallelism

. =T \ . ~—
2.

1. Existence Theorems.

Definitlion. Two coplanar non-intersecting lines are said to
o

be parallel. g , ‘
iR ¢ ‘

We indicaye that lines m and n are parallel by writing

3

m || n. &

Throughout this chgﬁter we shall consider only pdints and
lines lying in one given plane. This will simplify our language
while still enablink us to discuss the basic ideas. Eftensions ‘
of these 1deas to parallelism of'lines,and.p;ades in space can be

‘!

done in the conventional way. ) J/////<<

With our present set of postulates We can easily prove e

/ .

existence of parallelst It is convenient to give a few more

~ definitions.. ' ] A

Y . *

-

Definition. A line _/ 1is a transversal to twoa lines m

.

and n 1f 1t intersects them in two disti;ot points. W

+

Definition. Let a transversal _# intersect line m 1in
-

point P and line n 1in point Q. Let A Dbe a point on m

$<;\ and B a point on n "s0” that A and B are on oppoStte sides

“of /. Then / APQ and / BQP are alternate interior angles.,

4
bowad
<Gy

DN
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T R T

We can now state the basic theorem as follows.
. .

Theorem 8 l, If two lines are intersectedrbg a transversal

so that a pair of alternate interior angles .are congruent then )

the two lines are parallel,

i

Proof: Let ./ , m,

n,

that m gand 'n °are not parallel.

p,

Q3
tion of alternate interfor angles and let /[ APQ = / BQP.

~a”
I

B

B Dbe as in the defini-

Assume‘

Then they intersect in some

point R.

Since A and .B are on opposite sides of S

either

A()Qr B is on the same side of # as R, Suppose that R” and
In the Sriangle PQR,
/ kPQ —‘égRPQ 18 an angle of the trianglg and 7 BQP is an

A are on the same side. of Aﬂ

opposite eﬁierior angle. Hence by Theorem 7.11, m/ BPQ > m/ APQ.

. But t‘ni.s/contradicts the hypothesis that / BPQ ¥ / APQ

Hence

., m and n cannot intersect on the same side of A

as " A

An

~

’ : exactly similar argument shows that they cannot intersecﬁ on the

(\game sMe of ./ as B. Hence they cannot intersect at, all,,and

AN

80 they are parallel.

\j‘ ‘ '
( Cérollary 8.1,

p§§allel

\

Corollary 8.2.

‘

N

\

-

~

least one line pa;a;}el to a given line,

-

Iz

0

<

¢

&

£

-Two<ﬁerpendicdlars tofthe same line are

+

[y

¢

A
t
8

4

’JThrongh a gimen.externgl point there is at ,

(4

T C ExerciSes' > *
* e p - .= LI
: . / . . v
“ 1, Define alternate exten‘gr angles, and correspohding .
“ angles (sometimes called exterior interior angles) State and '
:‘?‘: NS - N
- ’ » .
- * M y - 7 58 | f/ r ' ’
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prove theorems analogous to Theorem 8.1 for alternate exterior

angles and for corresponding angles.

&

2, Prove Corollary 8.1 independently of Theorem 8.1 and

without using Theorem 7.11. [First prove that only one perpen-
diculgr can be_drawn to a line from an external point.] T
[} I R

Cy
-

.

2, The Parallel Postulate. Corollary 8.2 guarantees the

éxisténce of at least one parallel to a linhe through an external
point. The question then arises: "Can there be more t&an)one

sﬁcp parallel?" Our intuition say "No", so we try to prove this
og'the basis of our postulatis. Unfortunately this cannot be done °

(this point will be discussed later) so if we wish to have our

-

geometry match our intuition we must introduce a new postulate.

This we now do. . ‘

L3

Postulate 16. Through a’given external point there.is at

mdst one line parallel to a given line,

' ~

€

) A vast array. of familiar theorems follows from t@}s postufate.
We can mention only a few of the most important ané~1ntgfest1né'

A4 ones here. - ‘ ) ' '

s

! . .
i ’ . . 4
Nt e aa Y - 5
r
.

1® * N 4 . ) ‘
.. . ‘Theorer 8.2. (Converse of Theorem 8.1.) If two parallel

lines gre intersected.by a transvergal any pailr of alternate

.~

-

interior angles are congruent.

» . L _— o
. Theorem 8.3 The sum of the measures of the angles of a- D
—_— ) .’;‘/ _— . . . . - . y
triangle 'is 180, . - ‘ .
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Definitionsf Para11elogr3$§, trapezoid, ete.
~

Theorem 8.4 ™ . Either diagonal oﬁ-a parallelogram separates
iheorem

t into two cdngruent triangles. . .

1

Theorem 8.§T If a pair of opposite sides gf a quadrilateral .

are congruent and parallel then the other pair of opposite sides

are congruent and parallely ¢
3

- .
-
“

2 '
Theorem 8.6T The dlagonals of a parallelogram bisect each
- * v
other. ) . )
. ‘ - . . \G

<

3

The difficult part of the proof of this theorem lies in
proving that the diagonals intersect. This can be shown by making,

u of Theorem 6 3.

Theorem 8. 7* Ehe segment whose end- points are the mid- points
/Qf two sides of a triangle is parallel to the third side and half
.as long. : ‘
7 ‘

" Theorem 8.8T ‘The medians of a triangle are concurrent. !

[N
- "

. < ) \ ) - s

" Pheorem 8,9T If a set of parallel lines injercept congruent

. Ssegments on one tfansvérsal, then they)intercept congruent segments

v
a

° y

R )

- !

>

3.4 Tée Rolehgg the Parallel PoStulate. Since intuition is
‘notorliously unreliable one may ﬁell qnestion the advyisabllity-of ’
.1ntroducing the Parallel Postulgge. Why not Jnst g0 ahea@‘as we
have been doing on the basis of our fifteen postulates, proving

theorems without'making any general stipulation abgnt the sumber

.

31
1

’
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_of parallels through an external point? Of course we can try this,

but if we do we find that the properties of parallels are ,so .

important that .theorems group themselves more or less automatically

into three categorieg:

-

+ Type 1. Theorems independent of the number of parallels 8

*

througﬁ an external point; ‘ *

Type 2. Theorems whose, proof requires that there be only .
one parallel through an external point;

Type 3. Theorems whose proof.??quires that there be more

N
\
than one parallel through an external point. \v
i : ¢ ‘

.

The collectiop of theorems of Type 1 is sometimes called
Neutral Geometry. It fhcludes all t@e theorems we proved before m'.
introducing the Parallel Postulate, as well'ge many others, of
course. On the whoye, however, the numbee of 1nterés\ing theorems

3

of Type 1 1s small compared with the number of either

\‘ the other

types. , -
The theorems of Types 1 and 2, taken together, cbnsti\ute

Euclidean Geometry. )

P

Co The theorems of Types 1 and 3 constitute Lobachevskianl ﬁ,_ T
A Q? o . \\\- .

<o 1y, I;uzochhevski (1793-1856) was one of three men who Indepen-

dently developed this geometry. The other two, K. F: Gauss andl \\
. .
J. Boly&i, did equally good work but were slow in publishing

their fesults and consequently attracted less attention. «

s \

i
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;eometr&. To develope this geometry we would replace Postulate 16

by'

Postglgﬁe 16'. Through a given external point there are jat
least two distinct lines parallel to a given line.

’

Lobachevskian geometry naturally has radical differences from
Buclidean geometry. Here, for example, are two striking theorems

and a definition in Lobachewskian geometry.

<

Theorem. - The st*of the meaghres of the angles of a triangle
- . @}.: , - “ .
is less than 1807 ° : ¥

Definition. ?he deficiency of a trianglé is the difference

e

between the sum of the measures of the angles of the triangle and

180.

Theorém.‘ The areas of triangles are proportional to their '

¢

deficiencies.. C

*

There is nothing in Euclidean geometry analogous to this

last theorem,
. ) b -
- Exergise
. \y;,——JL——- .
T # s .
Prove that in Lobachevskian geometry there is an infinite

%, G,

T~

number-of parallels to a given line through/gn external point,

B ’ v .
In sectjon 2 we remarked on the possibility of proving

Postulate 16 from the earlier postulates. If this could be done

'
N

then Lobachevskian geometry, since it involves the negation of

]

5 ) p
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o

Postulate 16, would be inconsistent. Similarly If we could prove
Postulate 16' from the earlier ones shen Euclidean geometry would
be inconsistent. Probably nobody ever suspected the latter to be
the case, but there were many doubts about the congistency of a;y
other kind of geometry. £Finally, in 1866, it was proved that
Lobachevskian and Euclidean geometries were. equally conslstent;
any contradiction in one would necessarily imply a contradiction
» in the other.
‘IWhy, then, do we commonly study Euclidean geometry to the
neglect of‘lobachevskian? Partly because of tradition, but -
- primarily pecause Euclédeaq geometry is simpler, richer in theorems,
and more easily adaptable to the representation of physical
ﬁ/pheﬁomena. . . ‘ ‘ . ’
| Lobaeﬁevskian geouetry can suitably be called non-Euclidean
geoﬁet?y"”ﬁoaever, this last term embraces st11l another type of
geometry, Riemannian Geometry, which differs still more radically
from Euclidean In addition to dropping Postulate 16 we throw out
the Separation Postulates and radically change the Ruler Postulate.
“*’;~ Th;aend resﬂlt is that we lose many of those theorems‘of n®atral
= geometry that’ dependLon §/ep,a<ratl@ properties; in particular we
lose Theégi %ﬁll and we can no longer prove the existence theorem

o Corollary/B 2 W It 1s thus possible to introduce
% »‘

Postulate" 16". There.are no parallgl lines. .

(/9

This leads to Riemannian geometry.

1
>

Actually, the loss of the .separation properties and the

ruler postulate are not as serious as might be Ihagined, and

Y
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Thus the two theorems and the definition given.above can bé

Riemannian geometry bears close resemblances to Lobachevskian.

transiated into Riepannian geometry by merely replacing "less

by "greater" and "deficiency" by "excess".

ERIC
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l.' Informal Properties of Area, At an early age we all

_became familiar with pertain properties of'figures that involve a

concept of "area". We easily accept that a 4" x 6" rectangle of
paper contains "more paper" than a 2" x é" rectangle, It takes

a little experience to teach us that the former rectangle contains
four times as much paper as the latter.l Still more experience, .
involving further cubting of the per, is needed to shew that the
k" x 6" rectangle contains just as much paper as'a 3" x 8" one,

_or as a 25" by, 9" one.

The concept of the "area" of a "plane region" is an abstrac-
Vi

.

tion of this paper cutting process. Instead of actudlly cutting
'paper we make geometric dissections of the regions and use Qur
.knowledge of geometry to make t;e\c‘mﬁarisons. Tnis was Euclid's
approach, and he regards 1t as 80 natural that he never makes any

: comment on thé notion of area, In a modern treatment we must of

-

- course elther deffgg "area" or introduoe it as an undefined term
and Specify some postulates concerning_it. A.definition of -area
in terms of the econcepts we paye already introéuced turns,out to be
possible, but 1t‘is a very long process, 1nyolvipg i1deas and .
methods entirely out of keeping with elementary mathematlics, We
shall adopt the second approach, essentially introducing area as

an undefined term and postulating enough simple properties to

i¥
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-

enable us to develop a sultable theqry. This, after all, was the —

way we introduced the concepts of distance and congruence,
/

' In another respect our treatment of area will differ from -

/Euclid*s. Since his‘mathematics had no. well-developed number
/ system to use he was forced to word his theorems in terms of
comparison of areas. We, on the other hand, koan use the same

scheme we adopted in handling distances - we can choose a~"unit of
¢ . -
area" and express all areas as real number multiples of this umit,

<

Thus for us "area® is a real number attached to a "plang region"

and satisfying certain well-chosen properties.

» .
2, The Area Postulates. In the above discussion the term

plane region was deliberately left vague, It turns out that a
general definition of ‘this term is, like a definition of "area

a matter for advanced mathematics, We shall therefore limit/our

1

discussion here to a special type of region defined as f gs\\\\

- : ' . . £ v
Definitions. A triangular region is the union of a triangle

" and its ‘interior. Two triangular regions are said to be non-

overl_ppigg if their intersection 1is either the empty set, a point
or a segment i ’ -

-

Definitions. A polygonal region is the union of.a finite
lefinitions polygonal reglon

number of coplanar, non—overlapping triangular ‘regions. Two

polygonal regions are said to be non—overlapp_gg_if their inter-

sectlon 1is either empty or consists of a finite number of points or

lines or both. ‘ ) @

For the rest of. this chapter the word "region" shall always

»8ignify "polygonal region". Also, we shall frequentlu.sbeak of

- -

-
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mthe'area of a triangle® ori"the area of a rectangle", meaniné
there@y the areas of the regions consisting of these figures and

’ their interiors.. We shall designate +ne area of a region R

»

simply by#"qrea R", » o
!

» [}

Postulate 17. .With every polygonal region there is assoclated .

l
1

a unlque positive reallﬁpmber, called the‘gggg of the region,
In Section 1 we talked about comparing areas of regions by
cquigé up the regions and comparing the pietes (presumably by
moving them to see if they could be made to coincide), This
"moving around™ implies that area must not change under rigid

motion, and hence motivates the next postulate.

, .
-t . ¢ -

Postulate ;§. If two triangles are congruent the triangular

! regions have the same area.

»Ihe cutting up process of dete?mining area also implies the
followlng property. .

Postulate 19’ JAf ‘a‘region° R %s the union of two non-
~ - 1
overlapping regions S and T then
L ) area R = area S + area T,

- - ~

These ﬁhrge postula?es would enabie ns to develop a theory
of area, but they suffer from ongydefect‘- they establish‘no
B conne;éion«betweqn the unit of area and the unit of distance, i{w~~
ié highly convenient to have such a comnection, and this can be
‘established by tgking the area of some conveniently sized and S
sngped region as a unit, It is customary to takelas this region

/

a square whose edge has unit.length, and this we shall 3o,

1

\

N
.
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a difficult task to’ prove, for'all cases,. the basic formulas er

thg/ areas of plane figures in tgrms of measurements oﬁkdistance.

2 X 3_ reglion is the union of six non-overlapping Unit squares and
so has area 6. "A 2 x Q.16 region is the union of 63,200 non-
: orerlapping squares of side .01; s1nce‘the unit square is the
union of 1o,ooo‘ such squares éach of the small ‘squares has area
.OOOl ;nd the "2 X 3. 16 rectangle has an area of 6,32, However
) this methpd breaksg down fora 2 X v10 rectangle s1nce’ J10 1is
| an irrational number. This is the so-called "{ncommensurable case"
that has caused so much trouble in past treatments of elementary
- geometry. We choose to avoid this rouble by making a stronger

“ statement for our fourth and final arTea postulate.

v

- Definition. By Theorem 8.4 a diagonal of a rectangle separates
it into two triangles. The corresponding triangular regions are

non-over}apping and theilr union is called ‘a rectangular region.

. <~

Pogtulate 20. The area of a rectangular region 1s the product

Al

. of the lengths of two adjacent sides.

) Exercises. .
1. PndVe~that two triangular regions are non-overlapping if

- 4t

et

and only if the interiors of the two triangles do’ noigintersect.

2. Show that to each rectangle there corresponds a unlque .

s

rectangular region by proving theffollowing: , ‘

»

JIf ABCD is a rectangle then the union of.the two trianguylar .
13

-

o see the reason for this consid&® some rectangular regions.” A,
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régions ABC and- ADC is the sAme as the union of the two fri- ?
angular regions ABD and CBD,

3

Note: To show that two point sets are equal we must show that

. any point lying in either one of them lies in the other, Thus the
required proof will consist in showing that \\\\*)

—

/

o4
(1) If P 1is in either of the regions ABC or ADC then
P is in at least one of ABD or CBD; v

)

S

(11) If P is in either of ABD, or CBD then P 1is in at
least one of ABC or ADC,

’

3. Areas of Polygonal Regions.

Definitdons. Any side of a triangle or a,parallogram, or
elther of the two parallel sides of a trapezoid! may be called a -
pgsgngf the figure{ An altitude corresprQing to aAgiven;bése is
the segment perpendicular to the base from é vertex not lying ou\\
the base, Toe legs of a right triangle are the two sides adjacent
to the right'ﬁngle, the hxpotenuse is the remaining side,

In the following theorems we shall be concerned with relations
between areas and lengths of bases, altitudes, ete, It is custom-
ary tovabbreviate the phrase "len%th of . " to simply " ",
This double use of a word suco as "leg" to mean both a segment and
the length of tkat segment could cause confusiof but rarely does,

since the proper meaning is always evidents from the context.,

Theorem 9.1. The area of & right triangl’ is half the
product of its legs.. 7 . s *

o
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Proof: Let ABC be a right triangle‘with right angle at c.
Let L be the line through | A parallel to BC and M the line

througf B parallel to AC.‘\\él AC and M-|| AC so L and M

cannot be parallel, and tﬁey therefore intersect in'a point D.

ACBD 41s-a rectangle (op;osite sides are parallel and ‘L C is a
right angle) and ABC 1s one of the two triangular regions whose
union is the rectangular regilon. By Theorem 8 4 and "Postulates 18
19 and 20, ’ ’

~

’%&3 | area A ABC' = area ACBD = %AC « BC,

-

k- Theorem 9.2 f The area of a triangle is -half the product of .

any “side and the corresponding altitude.

Sketch _of proof: In A ABC, if h 1s the altitude upon
— ‘ .
side AB, then either . . . v

(1) A ABC 1s a right triangle with legs h. and AB, or

(2) Region ABC 1s the-non-overlapping union of two right

triangles with a common leg h and with the sum of the other two

legs equalling AB; or .

-, ~

(3)' Union_of region ABC ‘and a'suitable right triangle with

leg_ h is another right triangle with leg h, the difference of
the other legs of these two right triangles being _AB.

In the last tuo casas the theorem follows from Theorem 9.1

and. Postulate 19. - A

Degigitionsf Area of a parallelogram; of a trape:oid.

—
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Theorem 9,3, The area of a parallelogram is the product of a

base and the corresponding altitude, N

A%

Theorem 9.4f Area of a trapezoid,'

:
.

The followlng corollary of Theorem 9.2 will be useful later.
' r ’ a ‘ -
L% '
Lorollary 9,1. (a) If two triangles have equal altitudes the

_ratio of #heir areas equals the ratio of their bases.

R * (b) If two triangles have equal bases the

ratio of thelr areas equals the ratio of their altitudes.

»

4, Two Basic Theorems. The more elaborate aspects of
Euclidean‘geoﬁetry rest upon two theorems which involve the
connection of distance with rerpendiculars.and witﬁ paralle%s,
respectively, The first of these is the mosﬁ 1mportan£ theorem
(1f such a term can be EEEE?ed to a single piece of a deductire
theory) in all geometry, the Pytgagorean-Tﬁeorem. <The second is

fhe basis of the th of similar figuresf Together they form

- aFe foundations of coordinate geometry, whioh in turn serves as

-

the start of much modérn mathematics.

\Theae.two theorems follow from our theory of area, and indeed

this was essentially the way Euclid proved them. .

@

Theorem 9,5. ' In any right triangle the square of the
hypotenuse 18 equal to the sum of the squares of the legs,
§, - Y

Sketch of proof:"Let T .be a right triangle with legs a, b

and hypotenuse c¢. Let ABCD -be a square of side a + b, and y

4

-

- let’ W, X, Y, Z be points on the square such that -

+

[} e
l)‘ . *




AW=BX=CY=DZ=8., W'B=XC= =«ZA=b

9

Then each of the trianglea AWZ BXW, CYX, DZY. is congruent to T, .
and it follows that ‘WXYZ is a square of side c. Since thg large :
square is the non-overlapping union of the small square and, the

four triangles we have, ’

v
I

(a + b)2 = ¢ +'4(%ab);

from which follows *

a2 + b2 = 02.

The missing part of this proof consists in showing that the
~ large region‘is the unfon of the five smaller ones. Actually the
situation is even worse, since a square region is defined in terms

of two triangular ones. We really have to prove the followlng:

toe Glven the eight points A, B,-C, D, W, X, Y,JZ as described

above, consider the two sets of triangles

2

(I) Awz, BXW, CYX, DZY, WXZ, K YXZ;
(11) aBC, ADC. \ : o . >

(a) Prove that-a point in the interior of any triangle of
(1) is not in the interior of any other-triangle of (I). ({This

. proves the non-overlapping of the regions ] R

(b) Prove that - .
(2) If a point is in any triangular region of (I) then

it 1s in one of the triangular regions of (II), and converSely '
(11) If a point is in either of the triangular regions of - 'i

(II) then it is in one" of the triangular regions of (I). ° "lﬁi?

[Thia proves that. th’% two unions are the a.K.] . i C
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Igpse proofs simply inveolve an enormous amount of f§ssing
, L.

is the sort of proof which one dismisses with the comment, "The

around with the separation properties ofwghapters,S This

method 1s obvious and the details are boring."

.

‘There are many ‘other similar proofs of the Pythagorean Theorem.

’
-

-

but they all have roughly the same characteristics. A different

type of proof will be given later,
~ Theorem §.6. If two transversals divide the sides of an angle
proportionately then the transversals are parallel. More specifi-

cally, if B and D are distinct points on one side of L A,

and C and E points on the other side, such that AB/AD = AC/AE,
> <> . :
then BC3|| DE. .
\’ .
Proof: Since B and D are distinct either AB/AD <1 or
AB/AD > 1. We shall treat the first case; the other can be .
* handled similarly by merely 1interchanging the roles of B and

C, and D and E. We first show that DE does not intersect
> . " >
BC. For since AB < AD, A-and D are on opposite sides eE' BC, .

> .
and similarly A and E are on opposite sides of BC. Hence D

<> .
BC. . ,

and E are on the same side of

-We next apply Corollary 9.1

¥

area BEA _ AB

area DEA ~ AD’

(a), to get

area DCA _ AC
area DEA = AE®

AC

e

Since we are given that WAB/AD = AC/AE we thereby obtain
LN -

ERIC

A Y
N
area BEA = area DCA.

) . ' ’ <>
Since E and A ardion opposite sides of BC the

y
\.

‘ !

o

2 ,\\ : .

~

O

t

interiors
/

of

3
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,AABC and A EBC cannot intersect, and so region BEA 1is the
non-overlapping union of ABC and EBC. Similarly DCA 1s the
non-overlapping union of ABC and DBC. Hence by Postulate 19

~

"the above equation becomes

-area ABC + area EBC, = area ABC + area DBC,

“from which follows D .

area EBC = area DBC.

Now A EBC and A DBC have the same base BC, and so by Corollary
9.1 (b) they have equal altltudes. That is, if Fand G are the
feet of perpendiculars from D and E “onto BC then DF = EG.
FSince, as was shown above, DE does not intersect §§; and

hence does not intersect FG, DEGF 1is a quadrilateral. DF and’
“EE are congruent ;nd.parallel,‘éhd 80 by Theorem 3Y5, iﬁ; and

%ﬁ? are parallel, which proves the theoren. e
The converse of this theorenm, which is equally important in
applications, can be given an independent proof essentially by
'reversing the steps in the above aréument There are a few added
difficulties, however, (for instance, if we are given that B is
between A and D and that BC | DE Wwe must prove that C 1is
between A and E, for which see Theorem 6.%4a) and so 1t is

-

easier to use Theorem 9.6 to prove its converse.
]
-

Theorem 9,7. Parallel transversals divide the sides of an
) ‘angle proportionately. More Specifically, if B and D are

distinct points on one side of .[ A, and C and D points on
<>
the other side, such that BC || DE thenr AB/AD = AC/AE.

n |

. . : DG /

X
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a " _» ( B 5
Proof: On AD take . B! so that (Theorem 4,6)

y AC
o ] =
‘ AB ADT\E'
) , . ‘. «—> «> .

Then AB'/AD = AC/AE, . and by Theorem 9.6, B!'C || DE. But by the
Parallel Postulate there is only one line Ehro,ugh C parallel to
> . - «> , .
DE, and 80 B! must lie on BC. Hence B! = B, the intersemtion

of (ﬁ; and <A3, and this proves the theorem, -
. Fro;n—Theorems 9.6 and 9.7 there follows the standard
. ﬂeveiopment of the theory of similar triangles. One can also give‘
a proof of the Pythagorean. Theorem not involving the annoying
~manipulations of areas discussed above, as follows: !
Let A ABC have a right angle at A. If D 1is the foot of
the perpendicular from A ' to BC then D l,ies between B and c.
(Proof?’) Let X be the point on BA/smr*Et BX = BD, and let
the perpendicular‘to AB at X intersect E(-)) in Y. (Why mus‘t
this pérpendicular intersect BC‘? Al‘hen A XBY = ADBA,’ and so
BY = BA. Also, XY H»Ac (Corollary 8.1), and by Theorem 9 7
' BX/BA = BY/EC.’ This gives 'BD/BA = BA/BC, oF

/' BAZ = BC . BD.

Similarly we can prove o - K
" CK® = CB - CD. .

‘Adding these two equations gives -

_ . \ r .
BAZ + CA° = BC(BD + CD) = BCZ,
- ) A ‘ v ' “\ v
t #—
. n .

A
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5. Alternate Proof of the Basic Theorems. In Chapter 2 we e

remarked that the basic theorem on proportionality can be proved
independently of the area posﬁulates, but that such a proof necee-
sarily involves rather sophisticated manipulations of real numbers.,
For.comparison with the fairly simple proof of Theorem 9.6 given'
above we present here’the alternate proof.

Since the Theorem of Pythagorous follows from Theorem 9.7 we

can thus obtain both theorems without using the ariea postulates.

"Theorem 2.6. Iff B and D are distinct polnts on one side
of /A, and C arnd E points on the other side, such that
<> <>
AB/AD = AC/AE,. then BC || DE.

Proof: As in the previous proof we shall consider the case

in which AB/AD < 1. Let . be the line through B parallel to &
<> « : °’ —
DE. By Theorem 5.4 applied ta A ADE, .7 1intersects either . AE

) — > —
or DE- (or both), @Being parallel to DE 1t cannot intersect DE,

L]

and so ./ intersects® AE 1in a point F.

-

' . > > ‘ .
If F=C then BC || DE and the theorem is proved. So

suppose F # C; then AF ¥ AC. Since we are given that .

AB _ AC . - _ .
AD = AE’ )
we must have ’ . .
.;
i ?‘ AE‘ ’

Now one of the properties of the real number system 1s that between
any two distinct numbe;s there is a rational number (a proof ef .

this 1is éiven below). Hence there are positive integers’ m and

»

71 o "
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n such that either

L] .

AB ~m _AF AB m _ AF
(*) ‘ b <n<iE °° % >n > aE~
A ‘e
4
‘ -
, D
> Pho -

<

P

p ,

¢ > -

A o Qm" C Opy- E .
~ . . L Y

. ’ . —>
(Qpe figure isidrawn for the latter case.) On AB  take points
2 ~ .

Pl’ Pe, ) ’Pn—l Such that. v

L ~
n - luD,

1 2
AP, =‘EAD, AP, = ZAD, ..., AP, ) = 2

<> ! ——
Let the line through, P, parallel to, DE intersect AE in Q
- ’ ..‘ ] . _ _ -
(Theorem 5.%)., Since AP, = PyPy = PPy = .., = P,_ D wWe have
from Theorem 8.9 that Agl = Q@ = QY = ... =Q ,E. 5
Now AB/AD andéFAF/AE are each less than 1, and so from

(#), M <n, Thus B and, Qm are two of our points constructed
- N

m
above, Hence . Lo
v .
m
‘ AP = {nAP1 = TAD, /

. . B _AQm:-mAQ’l:%AE' . .

. . - L- !

| 172
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From these and (*) we get either . .
APm.> AB and AQm < AF,

<

or '
- AP, < AB and .AQm >‘AF. .
) In either case it follows “from Theorem 6, ua that BF and PQO

intersect. This contradicts the assumption that DF and g;Qm
/“

<>

are both parallel to CE,s and so we cannot have F # B. This

proves the theorem.l . <

=

To complete our analysis of this theorem we must still prove

v

/. ‘the propertypof real numbers that gave s the critical inequalify *

e . v *
(#)., The prodf, which 1s of the type considered in Chapter 4, will

4
be broken- into a sepries of three steps.

Lemma l¢ Given any real number 2z; there is an integer N

such that N > z. _—
\'\ !

, Proofr If the theorem is not true, then =2z is.an upper‘
bound of the set of integers. By the Comp}e\eness Axiom, there

is then a“ lﬁast upper bound, that 18, a number W such that >

(1) ngw for every integer nj; _ .

(11) If n ¢ v for every integer n, then w V.

B

It follows from (i11) that if V< W, thenggPr some Integer
n, we must have n, > V. (This statement is.Just the contraposi-
ative of (11).) Now take V = W - 1.+ Thefl wée have n, > Wwa-1, or
n, + 1:> &. But then (i)\dogs‘not hold for n = nl + 1, and-so
we arriyve. at a contradiction, thus_proving the lemma.

Although we do nof use it here, it is perhaps worth stating

a corollary to this lemma, kndwn as the Axiom of Archimedes.

- ’!—3 !
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’,

Corollarzf (Axiom of Archimedes), If a and b are posi-

tive real rumbers there'is an integer N such that Na >/b.
i

Lemma 2. Given any positive real number =z, there 1s an

.integer M ‘Such that M <z <M+ 1, ~.

~

I I - .
Proof: By Lemma 1 there is an integer . such that N > z.

‘thal‘a z, If there _aremone,'_takef’M—:—.u { —1f there are some take
. M to be the largest one. This choicg of M 6bviously has the
required prbpe;ti'eé. ;.
The lemma is still true 1if e.do not restrict 2z i:o' be posi~

tive, but we do not need thig/more general -case.
e - /

-

Lemma 3, If O < x/<y there is a rational number r = M/N

Y »
such that x ¢ r <y. / ’

’,

o

—1' by Lemma 1, and lef M, by Lemma 2,

i R}

Ny -le > 10

' - w

©ONX Ny -1 (ML) l=M, ‘

or x < %—= r. Thus X <Tr <y, as was to be proved.

\
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L.

~®  There 1s still another approach to the basic proportionality °
'theorem‘that avoids both the above difficulties and the use of_the

area postulates. This Is to assume theAstatement'of the theorem as

A}

a postulate. As was remarked in Chapter 2 the introduction of new

postulates Just to avoid difficult proofs is not to be encoﬁraged.'
v P

In this case, however, it turns out that by assuming as a postulate
a statement'closely related to Theorems 9.6 and 9.7 (the siderangle-
side‘proposition for similar triangles) we can dispense wWith both

the Congruence Postulate and the Parallel Postulate, belng able to

prove them from the new Similarity Postulate.

-«

This '1s the approach taken by G. D. Birkhoff (see Birkhoff and .

Beatley, Basic Geometry) and by S. Maclane (Metric Postulates for
; Cot

Plane Geometry, American Mathematical Monthly, 66(1959)543~555);

It has the advantage of elegance, in replacing two important

postulates by one, but the pedagogic disadvantage of requiring the )

. introduction of similarity before the simpler concepts of congrpence ’

and parallelism have become familiar. Also, itfMMules out" the

development of the non-Euclidean geometries. It is for these’

reasons that we follow the more conventional program.

-
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Chaptér 10 —~— - ,

Circles and Spheres

1. Basic Intersection Properties,
¢

Deféhitions. Given a point Q and a positive number r, the

sphere with center Q and radius r 1s the set of all points

*

whose distance from Q 1s r. If p 1s a plane containing‘ Q,
the circle in 12 with center Q and radius 1r 1is the set of all

points in p whose distance from @ 1is , T

The following theorem is a\\immediate consequence of these

Qefinitions,

»

Theorem 1lO. l The intéf%ection of a sphere with a plane

containing its center is a circle with the same radius and center

as the sphere.
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We now consider the possible intersection of a sphere with

/ :
e , -
& plane not containing its cenger. Co M

Theorem 10. 2 et i{ be a sphere with center Q and radius
r, let p be a plane not cdﬁtaining_‘Q,‘“let‘_Mﬁﬁge‘the foot of

the perpendicular from Q to p, and let a = QM. Then
(1) If a > r, P and S do not intersect
(2) If,a=r, "the intersection of, p and S coﬂ}%sts of

’
" the single point M.

- - [

(3) If a<r, ‘the intersection of p and S 1is a cirecle

with center M~ and radius re _ a2
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Proof:” If A 1is any point of »p then A AMQ is a right

angle, and so .
7 aM? 4 MQ° = aQc.

- ‘
If A 1is also to be a point of S, then AQ = r, Since MQ = a,

)

we get in this case - T : s :

(*) ¢ ' T aM® = £? - 8%,

Y (1) This is impossible if a > r, since'.AM? cannot be
negative., Hence in this case there cannot be any such point—as 'A;
that is,” p \and S do not 1ntersect;

o > .
(2) If a=1r, (*) says that- &M = 0, This is true only

1f" A = M; . that is, M dis“the only point common to p and 8.

e N

- (3) If ac< then a® - r° 1is a positive number,-which

has a pegitive square root b = a® o r°, (*) then says that v

5, AM = B; that 1s, A can be any point in p whose distance from

M is b, ?he set of such po}nts is the'oircle in p with center

M and radius b, Co. o < .
_e_ﬁ\_‘\\\r\\\\

Note that Theorem 10,1 can be considered as a special case

of Theorem 10.2 1if we remove the restriction that p not contain

. # ! ’
Q ard allow a to be zero, : .
Definition. A plane containin _af a “sphere

1s sald to be tangent to the spere-at that point.

Definition. The s ent Jjoining the center of a sphere to any\
point of the sphere 1s called the radius of the sphere to that point,

'
.

<as 1n Chapter 9, this double use of the word "radius" to mean

either a segment or the length of that segment seldom gauses

confusion. A .

- . N g
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Theorem 10.3. A plane tangent to a sphere 1is perpendicular to
. [ ] ) 4 ™ R
the radius at the point of contact, and conversely a plane perpen-

dicular to a’' radius at its end-point on the sphere is tangeht to

the sphere at this point. ~ ©

r, ° M
» P

Theorem 10.4? Let C' be a circle°with center Q and radius
o v

i, Y a 1line in the plane of C, M the foot of the perpendicular

b - . v
from Q to Y, and a = QM. (We allow the possibility M=Q, a=0,)

s

Then - -

v

= (1) If a> r, Z//éid C do not intersect,

(2) If a=r, ¥ and C dirftersect in the single point - M.

-

////C * (3) If ac¢r, the intersection of Y and C consists of

exactly two'points A, and A, such that MA) = MA, = r® - a2,

Vi IS »

I v
\e Defig%tion. Line tangent to a _circle.

Tta The orem 10.5f Analogous to Theorem 10.3. . ot

p

~~<;£, Def}ni%ions. A chord'of a circle is a segment whose ernd-points

* t .
~11¢,oh,tpe circle. A chord which contains the center is a diameter.

N AR !
. . . (fhe word "dlameter" 1is also used as the length of this chord.)

M
1 4

. ) . .
‘f/mhe interior of a circle is the set of all points irn the plane’of
of the circle whose distance from the center 1s less than the radius
of.the circle; the.exterior is fhe gset of points whose distancq is -

greater than the radius.

;. /}' )

o

* . .
T Theorem 1%.5." ery point of a chord except thefepd-poipts is

. in the interior of fhe circle.

e
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3 ¥* =
Theorem 10,6, Every point of a tangent .except the point of
! &

contact is in the exterior %f the circle,

-

* ———— <
Theorem 10.7. Let AB be a chord of a circle with center

Q and-let M be the mid-point of AB. of the following three

9

properties of a line JX: -

(a) X contains Q,

(v) X contains M, '
, «—>
'(c) X is perpendicular to AB;

if any two are true so is*the thirg..

~ .
2. Arcs and Angles, Throughout this sectioﬂ we shall con-

" sider a fixed circle W with center Q . and radius r, and all

4-

. figures will be assumed to lie in the plane of w.

r

Definitions. Let A and B be different points of Wi Ifs
A "AB is not a diameter of W the union of'.A B, and all points
of w ’in the interior of Z AQB 1s called an arc AB; A and B
are the_égd-goint of the arc, Also the union of A, B, and ali
points og W in the exterior of"[ AQB 1is ealled arc AB, again
) with A and B as end-poiﬁts. If one wishes'to distinguish be-
‘tween these two, the former is called a minor arc, the latter a
major re. - .

li AB 1s a diafeter of W, ~are AB 1is defined to be the
union«d} A, B, and /ll points of W lying on one side of AB,
Such an arc 'is calle ;a semicircle.

Ir arc 'AB 1s a minor arc, / AQB is called a central angle,

and 1s said to ihtercept arc' AB.

. -

v
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‘are AB contain C, aegj AC n £ contain B, and arc BC not
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in somé ways arcs behave llke segments, and in soms ways' they
behave like éngles. The faet that we can have two arcs with the
same end~points further complicates matters, If C 1s a point of
w d tinct from A.and B we can distinguish the two arcs AB
by 622 fact that one contains C and the other does not; the
forme?‘is sometimes_specified as arc ACB. The different’kinds of
arc,.{ajor, minor, and semicircle, require our basic pnoo?s to ‘
consider several cases. All in all, a careful treatment of arcs
is a'tedious‘process, and not é suitatle\subject for a beginning

geometry course."The folfbwing detalled proofs are therefore

primarily for the'csnsfit of the teacher.

IS

Definition. With each arc AB there is associated a positiv
number, called the measure of the arc, denoted by m(arc AB),

defined as follows: L%y
(1) If arc AB 1is mingr, m(arc .AB) = m(/ AQB), .

(2) If arc AB 1is major, m(SELI-AB) = 360 - ‘m(/ AQB),.

[»] . ' . ~

(3) "If ‘arc AB 1s a semicircle, m(arc AB) =180

The\following theorsm for arcs 1s anglogous to Postulate 13
Y, . . -
for angles. It 1s worded 1n a form which 1s sultable for proof
nd applications,’ though apt to be confusing ftfirst reading. A

igure“will help to clarify the situation.~° . LR o

‘e
g
- . ¥

. | .
Theorem 10.8. Let A, B C| be diff%rent points on W. Let

v

contain A. Then

m(are AB)A= n(arc AC) + m(arc BC).

’ e 1'810 R o 05 . e
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. , Proof: Thert are seven cases. to be conslidered.
. - . Y

~Cage 1. Arc AB 1s a minor arc., Then C is in the interior
of / AQB, and therefore B 1is in the exterfor of / AQC (Theorem
6.6), so that arc AC ,is miror. Similarly arc BC is minor.
Hence each of the arcs has the same measure as its central angle,

Since C 1s in the interior of / AQB, :

, L ’ m(/ AQB) = m(/ AQC) +m(Z BQC), ’ ’
and sb° ) °
v s
m{arc—aB) = T(arec AC) ¥ H(are " BC).

Case 2. Arc AB 13 a gemicircle. The proof is esgsentially

the same ag for Case 1. . ’ D

. El

Case 3, Arc AB is major, and ares AC 1is major. Since B

-’ 4g riot on the major arc AC, B 1is i}{l the interior of. / AQC, and
% 80 i

»

m(/ AGjC)ﬁ\(&f‘KQB) + m(/ BQC).. .
A 1is in the exterior of’ / BRC, and since LA 1is not on are BC,

! — i °
.

érc BC must therefore pe minor. Thus

e . , m(arc ~ AB) = 360 - m(/ AGB),
“"" ° m(arc AC) = 360 - m(/ AQC),

\ . \ . "m(ar? -BC) = m(/ BQC). L / /

i From these eq%.tions ‘and the dne above we get again

!

" m(are B) = m(are AC) + m(arc PO :

.
A . «
e

v ": Case 4, Arc AB 1is major, arc AC 1is a semicircle. Sim- |

eilar to Case 3. . -
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' Case 5. Arc AB 1is major, arc AC 1s minor, arec BC 1s
minor, Here ¥
/ , m(arc AB). = 360 - m([ AQB), L. |

- . m(arc ‘ AC) = m(/ AQC),’ ‘ | ‘ :

, ' -m(are BC) = m(Z.BQC).” . 1 ®

. If A .and /f were on the same side of 6,_0-: then by Theorem 6,2

P

eit/her A would be in the interior ?f ZBQC or B would be in - ~
the gnterior of / AQC. The first of these'_is_ ruled out because

arec BC is a minor\carc ‘which does not contain A, the second
similarly. Hence ~A and B, -are on opposite sides of ‘QTC:", and

c.. .80 AB intersects ‘é_(? AB cannot intersect _Q? since C, being

on the major arc AB, 1s in the exterior of, / AQB. Hence AB

-
1

— ———
intersects ray QD ogmsite to QC, and so D 1s in the interlor

of / AQB. “We then. have N . . <
< o T n(/ aGB) = m(/ AG) 4 m(/ BD), - ' »
" ' m(/ AQC) + m(/ AGD) = 180, " . ‘
) m(ﬁ[ BQC) + m(Z‘BQ,D) = 180. o
R / \ From.t;le‘se and the ,thre'e previc;us equations we get
‘ m(arc' AB) = m(arc AC) + m('arc BCH i .

. "Tasy Arc AB 1is major, arc ché is minor, are:, BC is
r

maJjo
0 - ) é - a
f Case 7. Arc AB 1s ma jor,| arc ; AC is minor, archﬁ is a

me as Case 3 with A nd B 1interchanged. -

i .

v

|

; semicirele. Sa.me as ‘Cagse 4 with: A and B interchang

Definition., If A, B, P are different points of a circle,
Z AP'B i1s said to be inscribed in the are "APB and to interce E

- the arc AB .not cc_)ntaining P, f -
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Theorem 10.9. The measure of an inscribed angle 1é,half the :

’ measure of the iftercepted arc.

K
-

%:NX Proof: ILet / APB be inscrihed in W. We consider three

h 3

ceseg. - ? \ ‘)

P — S

Case 1. PA° is a diameter., Since P i%uin the exterior o{
I <> ’ .

Z. AQB (P and ‘A are on opposite sides of QB) ahds P is not

on arc AB 1t follows that arc AB cannot consist of the points

«~ exterior to / AQB: yThat i1s, arc AB is a minor arc, and

m(erq AB) A AQB nce we have onl& to prove that S -
© m(/ APB) I/ AGE). Now in A GBE, &= arid 8o . R
L n([ A QPB) (Theorem 7.1). But A AQB. is an exterior

’ ¢ .

" angle of A Q’BP’H and 80,
: m(/ AQB) = m(/ QBP) + p{/ QPB) = 2m(/ APB).
In case PB 1is a diemeter we proceed similarly.
Suppose ‘'then that C, the other end point of the diameter
‘through’ P, 1is neither A nor B. >y i

¢+ Case 2. Suppose A and B are on the same! side of QP .t
Either B 1s in the 1nterior of A AQO or. A is in the 1nterior
of Z.BQC Supposeé the gormer (the latter case can be treated . /
‘similarly); then, by Theorem 6. 6 A is not P the minor arc BC
a?d C "18 not on the minor arc AB We can thr?ﬁore appl&‘ ‘ ).

]

Theorem 10 8 to get - . ) R .

-m(arc BC) = arc AC)J

. . R .

. ' n(arc AB)

. Hence « /

L

m(arc_ AC) - m(afp BC) -
( ([ QpPA) - 2m(/ @PB), . ’
’ |
by case 1 above. Now QA, is in the dinterior of / BQP (since. ‘

I8 .7 - ST ! , ﬂ .

; 183 S
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QB 1is not in the interior of / AQB) and so QA intersects BP
in a point D, By Theorem 10,5, QD < QA, and so D, being
between Q and A, is on .EK. Thus Q and *A are on opposite
< — - *
——ealdes of BP, and therefore PB 1is in the interior of / QPA.

-

Hence

' _m(/ ara)
" .m(/ APB)

m(/ QPB) + m(/ APB);
m(/ QPA) - m(/ QPB) S
%m(arc AB),

L

from above,

°

Case 3. A and B are on opposite sides of Eﬁ?. Then A
i: not in the interior of / CQB, nor B in the interior oé’
Z. AQC; andwsékif”arc AC and%grc‘;éc are minor arcs, and if
_arc Aﬁ contains C,- then the conditions of Theorem 10.8 hold

and we have : N . .

m(arc ' AB) = m(arq AC) + m(arc BC) 7

em(/ APC) + 2m(/ BPC), L

-

) §$We have therefore only to prove that

' m(/ APC) +'m LBPC) = m(/' APB); t P
this will be true if'we show that C is in the interfor of ~

— s
/. APB. Now AB intersects-line, PC in'a point D, and by’
. . . | —_—

fﬁeore@‘lO.S,‘ D 1is inside«jhe circle, Hence D &s on CP and -
L ey ) U —e .
so PC = PD. By Theorem 6.1, PC therefore is in’the interior
.of Z_APB Thig completes the proof of the theoren.

This theorem ig the basls for a sequence of th orems relating
arcs ani angles in various positions, and for anoth sequence of

f \c——’\——\\

theorems relating 1engths of segments of chords, secants, tangents,

fi

S L
S
b
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etc. The usual proofs can be applied, but cai'é must be taken, as ,

~
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in the proof above, to specify which arcs one is using.
. >




