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ABSTRACT

. ‘ The purpose of this project is-to teach learning and

understanding of mathematics at the ninth grade level through the use

of science experiments. This part of the program cqntains significant

B . amounts of material normally found "in a‘beginhing algebra class. The-
material shodld be found useful for classes in general mathematics as’.
a preparation for enrollment in algebra “the following term. In - '
particular, thé loaded beam experiment introduces negative numbers,

. oppositeg, absolute -values and addition of signed numbers. The number
gensrat experiment yields ordered pairsjy when graphed, the equation-
of a line and its slope are determined. The-falling sphere experiment

'gives the samg kind of data but alsc requires the fitting of a "best"
straight line. The quadratic functicn is approached through thres )

experiments: the wick, horizontal métronome, and oscillating spring. .
Fimally, the idea of tangents and slope of & curve are developed . v
through the incltined plane,, the lens, and floating magnet - with need

’ found for translation of axes. Included in. the Teacher's Commentary N
are background inforidation, discussion of activities and exercises, ’
and answers to problems. (RH) . o o
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PREFACE

- ~ o
]

‘ The origindl versjon of Mathematics Through Sciepce, Part III, prepared

<

vin sumuner, 1963, was tried out in the spring .emester of the 1963- 19@ school
yeg}'by 30 teachers in 1o school system witn 2,005 ninth grade students.

From teacher and student -omment. and evaluatlons a thoroughgoing revision

has been prerared b, a writing team in summer, lyé The basic tenets origi- .
nally formulated ror Matuematic. Turough Science have beensadhered to. An ’

attemrt hat bgen made, ho ever, to irovide a reading lgzel 1n termys of the

- »?
expectancey for grade nine. New exieriment. have been devised to substitute
.

for earlier ones .nil:2n oceasioned dl"ﬁlgdltleu ror teachers and st.dentc. .

Part III Revised Sontalns significant amounts of ‘material normallv go be

< %ound in a beginning algetra loirce. t is telieved that Part IIT. Reylsed may

be found aaelul for clacse. in general mathematics ar a preparation for enroll-
B L d o

ment %p algeora tue Iollo ing term. Matgematics Through Sciepce endeavors to-

L. preak a lOuK-uth' in mathematic. education. It seeks to ppen doors to .
" . students upen a ne.’ domain oI ideac and arplizations. Thus studeﬁﬁ* may. gain 0
. .
,; mathematxgal o wledge and Klllu 1 lus some underﬁtandlng of scientific
%;Q investigations and uranL les g o . ) -,

[2 . °

In particular, the loaded beam experimg troduves negdtive numbers,
L) ’ -

ot - - -~ ) . . . iy
- opposites, avsolute values and addition of signed numbers. Thé number

. generator expérfment sield. ordecred palr:,°from which graph equation of a
The.fa vnb crhere experiment giwves the

; of & "best™, straight l;ne. .,

» line and 1ts sloje are debermined.
N

%, same kind of daba but also require. they £ittin
. ’ °Tﬁe quadratic function ic apgrogeohed through tixee experiments: the wick, *

-t . ‘ N

: horizontal metronpme, and occillating .pying. Finally, the idea of tangents . . ... .

. R ”
¢ and slope of a curve are duwflofcd through the inclined planc. the leps, and |
- . ., 4 o

.4
floating magnet—uith need found for tranclation of axes. i 5 2 .
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jEQUlSEENT LIST -
- . PHRT III

Sources for, equi'.gnent in the following experimenis are indicated be\low‘

-' .
Y and are-coded at the ¥ight of edch item.

1.

-
- ~
A
' -
. \ -
’
- - N
.
%
‘¢
%
.
.
~
- [N
*
- .
S
b e R S TN
.
.
.
”~ -

R
ERIC
B

-

(1) Scientific supply (i.e., Cenco or Welch, ete.)

(2
(3

(%)
(5)

A * LY
Hdrdware store
- \e .
Stati'onery store * -
Varlety store

lHome

- b

o
. .
e .
. . -
- * i . . -
» e
' ! -
a .
.

AN EXPERIMENTAL APPEOACH TO THE REAL NUMBERS

L]

Chapter 1°

.
\

:The Loaded, Beam - Students are to work in grOprs

have the following equlpment

1

1

fieter stick - (1)

v

Each group should

.

>

to

I3

)

«

. \
l!—ir\ch flexible wooden ruler - () i — ¥
\ _
3- 1nch c “clamp - (2) - - .
plastlc pulley with mounting rod (approx1mately 2-inch dlameter) - (1),
Cenco No. 75660 - ! L . -
4 ! ) _
set of weights (10, 20, 20, 50, 100, 200, 200, 500 grams) - (1)
ring sand support - (1), Cenco No. 72002-2, T2175-3 - ) )
right angle‘clémp - (1), Ccenco No. 1226k ¢, 7 )
spool heavy thread:or nylon cord - (4) -
.0 - [
- » . . - -
1 e . ‘.
. N ) L
, e ) ‘
; -




‘e ' . . v ¢ Chapter 2 o, ; . ‘
s . AN EXPERIMENTAL APPROACH'TO LINEAR FUNCTIONS -

T Real Number Generator - students are to work in groups . Each group

should have the follomng equipment: o )
e e, L
. (‘_1 %—mch diémeter threaded rod, 12 inche long - (2) T~ T
- / [ 3
|-
. 1 hex nut and washer _threaded for rod\ { .
. L ST Y - Y u»wlﬁ\\:ﬁ*-ﬁa( r i &‘gj‘ . -
®. 1 12-inch ruler LT g.%"?\ .

»
\t ’

"2 empty Scotch “tape holders \- (5) A 3
\ .

I tubé metal cement - (2),%i.e., Miracle Brite

Magic Adhesive, or similar -

a
»’ + -
© "1 rell masking tape : ) . ' . . é .
* + ! . ° K
N o 7
- 2. , Seesaw Ebcperiment - Teacher demonstration with student help. .
g Y . N \ e , N
- ‘ >
1 meter stick.- (1) . - -
. N 1 set of weights ¢10, 20, 20, 50, 200, 200 grams) - (1) )
. seve A ¢
2 pulleys - (1) or nails ¢
e -y ernatte, ~ «
1 spool nylon thread - (k) ‘- .
v v : ) .
1 balance support with knife edge clamp - {1), Cenco No. 75560
or triafgular hlock of wood” S
' v . . » ' = o
» © e ’ ‘ e
. - .
Chapter 3 | ¢ h
. ) . o ' ‘e ' , . 3.
: . THE FALLING SPHERE '@ ' * . - -

. 1. The Falllng Sohere - students are to wdrk in small groups Eacl} group "
' 0

/ should have the following equlpment . >, &
. . - ¥
. 1 -glass cylmder or Jar at least 8~ inches hlgh : A,
1 steel ball bearmg, about g-lnch dlameter - (blcycle sho%) T
. * 3
1 smell horseshog magnet - 2‘) s, & Y ;
— s .
’ 2 ) -




e - I

1 12-inch ruler, also calibrated in centlmeters - 1,3)

1 bottle Karo,Syrup (white) - (gr0cery)
a h

* L paper strips, about 1" X 10" s (5)

& .
“ 1 roll cellophane tape - faey" ' .
L - - enough for entire class
1 metronomet- (school) '

»
\

.
Chapter U

.y .

e '/~ . \[\\ ""\,,.’ A T .
The Wick - students are to work ia %mall gro\ups Eacfi;»group should
ha’ve the foll owing équlpment B

{ "1 500-ml beaker - (_ﬂ '
. /
pi

/\ﬁi\
N

1 ,package’ phper ellps .

o~

N I roll 1- -inch wide chromatography paper .- () .
=/ /\ (2 . ©o-

¢ 2
N A - Y «
. 2\& Horlzo}xtal Metronome - the number of studentrgroups depends on

the jnumber of sets of ‘equipment available. Each set. _should contain

/  the ﬂollowlng equlpment o
. e j R
{;; l habksaw Qade, “high speed (molybdenum steeI), 12 long, —" wide,
7 002 025" thlck (2) - NN :
M TS T
2. -2—.-1 uares, plumb/ér’s 1eM solder - (2)

1

\J

f ,
clamp-"base v1se,~§ -w:f.de jers - {2) \

- 4

L
s eep second‘-hand watch - (5), or stopwatch - (1)
1 , 0 ‘.

LY

% sheets frosted acetate (8%" % 11") - (enginéeri‘né supply)‘

‘ g ] A
‘I‘he’ scillatlng Spring - the number oi’ student groups depends dn the

_number of sets of ’equipment avallable Each set should contain the

following equipment: 5

k2 )

¢ '4/‘ * ¢, 1 setof hqok weights (100, 200, 200, 500) - (1)

1 3windbw—shade roller Spr;ng - (can be obtained- from a shade shopl-,

“or the eguivalent - (2)
. \ .
47 sheets frosted acetate (8%" X 11"}

.
4 P

ERIC ¢

£
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2.

A

o
:

(IS

Y2y, ot

1 . b
. T SO -] .
- - - 4 ‘\ B L]
r ' ‘
. . ) . < - . R ) . o
1 sveep second-hand watch - (5), or stopwatch - (1) - v -
- ” BN PREN
. f W
-,‘-l roll masking tape ¢ * should be sufficient for ;= | .
B N ‘ . -~
T dowel, hardwood (l" x 36", ¢ TGNy groups %o oL . .
. 2 . o 2. v o= ¥ 5,
’-. * - h N ‘N ! J“\' .
v 7%7";_ .- N
. Chapter ; 5 U & o) ) N
e "ANALYSIS OF NONLINE(AR FUNCTIONS , - .
. .o '5. -
The Inclined-Plane - the numbter of .ﬁud@nt groups depends on the number
of sets of equipment avallahle Escn et shoﬁd contain the following .
’ equlpment .
. . . . . . . )
1 aluminum angle (8-ft length, %” sides), "Reynold's Do-It-Yourself
Aluminum", No. TA (2) . . ’ N
s . 3, ‘ ] ‘ . !
1 ~ aluminum angle (L-ft léngth, ‘1, sides), "Reynold's Do-It-Yourself -
o " . , ‘ ~ !
A71uninmm':, No. 74 - (2) P : . .
.1 stopwateh, %-second divisions - (1), or*wrictwatch with sweep second
hand . ' .-
2 <s L .
1 'meter stick - (1) e . . . ) ‘
; - &> (Y - .
T billiard ball[(appz;opfimately 2;%" Aismeterd, or smooth croquet ball -
(gports supplie:r) ‘ '@ P N S
. - - P €
1 pound Qf‘/ lastolane clay , S .
N % - .
“he Simple Lens - the nufmiber of Student groups depends on the number of
e P N . g
sets of equipment ava;x]aﬂe. Eachr et should contain the following.
qmpmemi. < Vot . _ < N -
. ? “
. *l e s —\~ 4
}—pdsitiv® lens; focal length 8 inches or less - (h) . L. .
. T
.. - .
1 meter gtick (1) - . s - ¢ . . .
1 pound. pf plgstolene -, (&) . ,q}f . . X
. ] . 3
‘1 z" ght pﬂ . ,
1 flashllght t (5, 2) .
1 roll adding machine Yape - (3), one roll f£6r entire class '
i - « -~ . Q )
I S b . ‘ d ¥
. . * 22 ot
. ’ 3 . "‘1‘_ . ;
! .3 )
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- 3. The Fiéating Magnet - the number, of student groups depends on the number

o of seﬁs of equlpment available'.- Each set should contain the following ’,

e 1.equi'pn%ent’"‘\ = e - TN R
S 1 aluminum knitting need‘lel(size gy - (&) . .
',_'i _set hook weig‘hts (10; 20, .20, 50, 100 grams) ’ . o
. 1 't;gfard,to mount weightﬁs‘(%-iﬁc}r hole te accomodate ge--lrllch knitting ’ ‘ o .
P ngedle) W (5) DT .o "
~ .k circular c}eramlc magnets, mt}g centev. hole §7§-—1nch diameter, flci}lese . . ,
) . xﬂagnets are taxen from magnet';lc kitchen hooks - (b,‘). .
o ) . 1 epoxy glue - l+) (enoug}} for. gentire ciass) ’ . ¢ .
o’ E . 1 'cent;trzfef‘;é.'z" rgl¥r . ‘ ' ' ., 2t Co )
. P ' P . # . . ' ) '
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- Chapter 1 § ° ot
N “‘) N AN EXPERTMENTAL APPROACH TO THE REAL NUMBERS .
s <., : ~ ¢ o !
® A -~ .
. , P
-~ 1.1 Introductiopn ‘ . . ©
é. \ Y |
In this chapter we use a "Loafled Beam" to develop the negative numbers. }
- The experlmental results will give an 1ntu1t1\(e understandrng -4bsolute value’
7y
: and the add:Lt:Lon of real numbers. The nwnber .1ine’ will be ext ;ed %o include
= thennega%:we numbers end the operation of addltlon;uver the real number's will * o
be devekoped. The nmnber llne will also be used to extend the property of‘or- . .

! dering for all real nurbers . . . ,

From‘a coordinate systen on a line, we will move fo the real number plane.

R A coordinate system for the plane Wlll be'developed and we will learn to assoc-

3 1ate each point of the plane w1th an ordered pair of réal numbers. . .
L The mathematics developed in this chapter is very simllar to that devel- .,
. - op’ed 1n some~ of the early chapters of Algebra I or General ‘Mathématics. For I

k3
thls reason it would be w*se 5.01‘ the teacher to make an early eval?atlon of

'S-N the .materlal to, detetmine the appropr1ate tlmlng tor the study of hlS chapter.
. If the student already has a good understanding of the mathenatlcs devel-

3. i oped in thls chapter the chapter may be omitted. . e i .
. %ﬁ :.. i .

. @
0
\ e
, i
F 1 meter.stick - (1) oLt
1 lS-dnch flexible wooden ruler - () . , ) : | .
: NS s ~ineh*C.clamp - (2)° R
M 1 . :L plastic ‘pulley with mounting rod (anprox:unately 2 inch d1ameter) - (1), .
N —"" e, Cenco ‘No. 75660  + - . . . ‘
N B 1+ set of weights (10, 20, 20 50, 1oo 200, 200, 500 grams) - (1) . .
- ‘U 1 ring stand support - (1), Cenco'No. T2002-2, T2175- -3 . .
b ] ) 1 right angle clamp - (1), Cenco No. 1226k . e
\ e 1. spoo_% heavy thread or nylon cord - (u,) . .
' o The essential feame of ’c.h:LsT‘~ e,rlment is the J::Lnear behavior of the

P
sz y e svrst S i
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One of the pbysical varlaﬁles in this experiment is the length of thefn
» The 15-inch rulex’ should be clamped so that there is at least a 12- 1n¢h over-
hang. , If the C-clamp is not placed at the end of the desk, the beam wil;. have,

‘:3 o v v e N , < . vy * . .
SR T . (a) . (b) -
SR T Figure 1 .o '

S e ‘. . ' .
5 h ) . A piece of wood pIhced over the ruler w:Lll prevent: thls and sure the *
g; , student a beam of constant lengt'h (Figure 2) e '. ' - )
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.different J.engths for "upward” and’ "downward" loads (Figure 1). ' N
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“two ;arge nails’ into the upright to replace the pulley. If the nails are used - K{(
. insi‘.eaé of the pulley, it would pe best to make a special, effort to get nylon %
' string, since this would 1ntroduce the least amount of friection into Lhe

When the pulley grrangement is set up for upward deflections, cai'e mus€

be taken so- that ‘the string is approximately perpendicular to the beam, o ' S ‘
oy : P " s Force . {Figure 3) If the string makes an AR
: , Diagram ' angle with the beam, thén only partv g —_ ‘
Upward of the force applied ﬁé the beam o 1

" Force

m.llabe used in bending the beanm. ‘
One component of t,ﬁe force will be

compressing or;iYstretching® the

)

~

k]

q

beam (Figure- 1%) 'If this happens

then the upwa.rd deflection for a

v -

Force Vectors for
100 gms. loed

! {V 100 gram losd (for example) witi A
Dowpward » ROt agree with the downward %eflec\- Cos

Force tion for the same load. °

—_ Forgg Diagi'am Students may work in groups of N
T ] o six or eight, but each student sho%ld o s
’ A
100 . . have an Spportunity to observe the
M /gm Force Vector ~ pPo Y 8 \ ,
. \o m for 100 gﬂ}i‘ ‘. apparatus at close quarters and ta.ke .
load Upvard Some deflection readings of his own . - f’é

|Force  to get a good. feel for the lineax
' nature of the deflection and !the addie

- ¢ | Comp es-|

100 gn sing ° - tive properties associgted with this "
. .+ Force deflection. The pulley should be’ . "
. .0 R
) . ‘ . ) tappeds 1lightly before each readiné o R
. Force Vector to minimize errors caused by friction.
. - .+ y *for 100 gm. . ? .
’ load There are several substitutions o

. of materials which thay be made for -
“the equipment used, in the experiment. “The beam may be a 15-inch fleg?ble ruler,

as suggested in the {text, or several other things may be used. Among these - p
~are a wooden yardstick which may be supplied free of charge by’ your local / ~

hardware store, a wooden meter, stick, a metal carpenter’s rule, or l" %". °

aluminum stripping cut in appropr ‘Ee lengths. Instead Ofgth}? r,ing stand - . | S
pulléy set-up you may meke an I- shaped sgpport from 2 X ¥'s and drive one or N

o Fo

system. (See Figure 5.)

T
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K 1.37 The ReaI Mumber Line o - ‘
mr, This section assumes that the st}zdent is already familiar with the set
[ - . of .positive'numbers as. displayed on a num‘l)er line. The 1dea of ‘a unit distance
- T
. is emphasized a_.nd the negative agymbers are, developed w:Lth:Ln the sett:.ng of the *°
s w7 experiment. s T ‘ - ",
" e " . j
.. In general ’ we have tal%en the point of view that the student really has e
. some experience with negativé’ numbers. He is ready to label the points to the

deft of Q. We extend the numbers of arithmetic to the set of reagl numbers by
. . ' attaching ‘the negative numbers to- the familiar n bers of* arithmetic.

b
[ . , i'

In graphing real numbers s the t‘eacher should empha51ze the fact that the
‘number line which the stud&rb dra?«rs is-orily an approximation of an ideal number
linefff Consequently, any 1nfomation whil%’he deduces from his number line is

I

o
3 - -

onlyas accurate as his draw:mg. oy

A "ﬁ“/ r

An understending of tlég Pythagorean Theorem ig implieit in the fﬁet’ﬁod o
. .developed for locating Y2~ on the number line. However, this should nof;‘-be v

C &llowgd to distract from the main -ideas of the sectiop - [// ." A T
B - - ﬂ} N sha .

; «Tww . , , F ‘ghe npre capabl§ s',budent 5 the P_ythagorean E'meoré;n ,gég;yhbe %riefly ’

‘ discussed. The scheme ﬁ)ﬁ’ graphzng -/_ c then be extended t‘ﬁf@ive a methed -
- ! for determining successively -/5 /H -/- f6) ete. Given the unit distance on” +.

the number 11ne, let, £ ve a linefparallel to ,the number line and one unit away '

from, it. ‘Construct (31 ¥ as illustrated in the Figure 6 _ A
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[
Figure 6
] - . - " s , ' 4
=l The perpendicular to the number line at v2 neets £ at a point A, and the
s  clrcle with cénte? O and radius OA meets the number line at V3 (Figure 7).
oooee g R e . g "
. R . . /—‘
) A <. . ﬂ
: . £ . ' .
. . —— -
! » . ‘ -2 ,’ e -
. . ‘/’3- ' l , .
. T ' ‘ . ' . .
’ 7 i . - |
. - . A : N L
e -0 1 2 ~ ) T
B . * . ~ ) ;
3 » . ; ¢ ‘a .
<. . Figure 7 MRS ‘ . - ;‘
Applying the same technique to '/3', we Mlocate /% . This g;rocess mey ‘
. . . » 1 B ] i
'« be continued indefinitely (Figure 8). @ . o B
. S~ * A . l ':‘V wzh:‘.':
N ,- : . . . Pene,
o . v ., . ':r . 1 ’ D ‘ ?" N
% I ! . &
- T A .
N ) . ‘ T n .
~ 0 1 Y2 3R o v
) - Figure 8 ) .
1] .
We want the sgudent to realize .that there are many poinfs on the number T ‘
line xhich do not have rational coordinates. I I
ey oy - P - - - ~ N ‘4 ) . ' .. '
v . ) )
- L)
h )
+ ’.
s
. 4 ’ ’ 2 f
Sb .
. ' ! . I
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S . . - Exercise 1 ! : N

., . L. ' JFor each ‘o(.f the following, cr.ustruct a number line a}d determine the

B i Yo " points whose coordinates .re as follows: -~
(a) 0, &, 2, - ']:', -3 ' *f—r—H—.}—!—f—-O—O—r—l—r—O—fr—!—t—f—>'
2 - 1 . o
. -3 -0 1 2 &
(v) %, - %, 2.5, 2.5, 3 Tt
L A 2.5 -2 0 1%,25,3,,
i}
i (¢) -5, .'%: g, 5, 6 <—H—+—¢—4—Q5‘-4—|—%—|—+;|—|—9—9—1—a—>
. . . ‘- A 01 2
‘x N e ’ - > 2 2 2 6 ’ .
o i (@) V2, -¥2, 2/2, 3/2, -2/2 4t
e o 22 2 0 B2l 33 WE
¢ . s i -
ce () 2+71,2-1, -(2+1), 2+1 ~ )
/2 .
w, < @/
3 ¢ ‘ s N
. *. / -
D +— + &~ — —-
3 -2 -2 -1 0 1 V2 oz 3 -
3 Py -l" el -{—L + 1/5 . 1 et
) RS— L —" S
) -(v2+1) < -2 0’ A — ‘/§+l, .
. -— M 4 j S T S — =, . "
., /B0 B , 3
. 2. Ar'range each set of three numbers given below in the order.in whi hey
. X would appear on the number line, feading from left to right. ‘¢
(a) 10, %, 6 . v h<6<10 :
. : N -
. ~ () 4, 2, -k hc2<h . .
" ¥ h - ~ - . .
- .o(e) -1, -2, 3 3<2<-1 .
e 2 3k 2.3 k. ’ \
N 0 358°5 e
;‘;, £y 3 )4. . L 3 & L
2 (-3 35 £<3<3 g
. . , ] AT
(r) 17;, /3, 1.73 . 1.73 < @<17I
g N s ' v
>l . . - v -
1 T (g) -2.~2l¢,. By 4oy - -%<-2.2l+<-»/§ . :
. 2D
5 ) , M 13 ‘ v NN
‘ » (n) ﬁ: ~2.65, 5 .., -2 65 < < 1/_ .
i . 2 ’ ’ i
oL ‘ N . ' - &
:‘;‘,: ~ . i 1 . -ﬁ?
o 19 l? i »
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-~ If, instead of concentrating at ention on the order relation, we con- .

* < q..‘ P .. 0‘-— N; - . \
L - LT, . : : , i . . o
(a) % D2 ~ .
. . * . < . . .
- (h) 5 . // 55 <1 .. (%2) <1 .
RSN an @2 =196 o
" (d) :99 e 22) 2.09(-)19 ' ; ) ,
. . K 27 > ;0 .
(e) o Lo T (%5)_ 20006 - i
. S R o, A R -
1.4  Ordering the Real Numbers - e et T T

The comparison preperty is elso called the trlchotomy Loperty of order.

Not:Lce that it is a property of ! <‘ that 1s, given any two different numbers,
they. can be ordered sy that. one is less fthan the other. When the,property is
stated we must 1nclude the thlrd posslbllity that thé numerals name the sgme

a
.

number. . Hence, the name "triéhotomy . .
Sox L ~
. Althqugh "a < " and "o’ > a' involve dlffe:r;ent orders, these sentences

- .

say exactly the’ sehe thing gbout the numbers a and b.. Thus, we c

For any number a

[ one of these is t

centrate on the two numbers, then eitheX "a < b" or "a'>b" is true, 'but not

both. Here we fix the nymbers & and/ b and, then make a dec:Lsion as to
™ which order relation applies. It is purely a matter of wh:Lch we are inter- ab
ested in: the numbers or the‘order. The comparison property is concerned

with an order.
¢ .

The extension of the é@w‘%‘éf wsperty to the trans:Lt:Lve property is ‘ PR
an important extension of the ‘brder:mg properties. Alny attempt to 1llustrate
this transitive- p:@ e;ty of <. with triples of 1ntege is llkely to be met
- with a voc1ferous 60 what’" by youz? students. On the other hand, not only can
this property' be illustrated with fractions ‘as in the text, but the student
can also begin to appreciate }ts usef‘ulness.‘ 4&

. . . « ‘ M - -
-~ . '\,‘ i &,

o
. , -
o ) ‘ / - 2"0 , ‘
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-———Exercise 2

3 S
T PR L o

MM P
1. Use appropriate properties to order each of the following -pairs of ., |

©7 . numbers . . . . .
- i v . . I

: S (a) 0,56 ¢ . - :

.0<1landl<56, so0<56

EEEE PR

(v) 7,0 ~

»

/.
L)

e . » -

“T<-1<0 ' <. :

oL L) 33.3,3% . ~ !
] .

33.3 <33933 < 33.333 ... = 333 . :

.

o (a) :Eo, -100 ‘ Y co Hg%

50 < 75 < 1003 -so 50 < ,1:90 and -100 < -50 .
- . - () ') 2%3 27 . . L.
- e ‘ :me 2 ’ %‘ . ‘ . -~ &

- rew [ &
‘ B . : .
) . a:‘é g%<l and 1<‘§% S0 -2%<}§% . \ *
N (f). g 667 LN . . T e

13’610:000" ) . N . L.

.3 < H67 < 16,000 e . ) !

Lot

) )
PO . % . . , -
g T . 6 ‘ .
M \ ' %<-8 and-“-g<-% .
~ i Wwe ar @ » P
. Pen @ d

[ C . . 1&{?’ ) ’ s,
. ; . ..” P - o u«m’k?q
(1) -x," -3.1b . . S ISR

!

! . 3.1% < 3.14159 < and -n < - 3.1h - ‘ J
2 P - ! . R T,
=y 4 ",@,’ff' Al . . y [ . o

v (973, 1z : .t

-~ L

s 21732 <0 and O0<¥3 .

* i . « .. . L.

-1.732 < V3
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) - : \, < T 4 s ‘e . »
."‘ - ~' N o e - ,’ 3 N - . - . : ' ! ) ¢ - *
2. " 'Ih"’f:h“e‘b*tranks Tglow, use.one of the sympols, =, <, >, to-make atTue" a4 ..,y %
. sentence. _ Y e N . ' C W e e
’ 6 ‘ ' - ' : v N
o {a) 35 . (£) % > 2 0
i 5= 19 16 — 2 o JERR
() 3> 3 N ONEER - IR '
« > 3: 3. ; 1 ‘ N % pBed
NPT EEORES - SESEE- SR (h) § > .125 o ‘ .
(@) .2 _< ' (1) 25 < 5/ ) K
fan ..]: ' - } 103 ~ éog N . - - i
. (e) 3> - 666 ... (3 < -3 . o '

“Use the transitive property to determine the ordering of the following .

:<::o )
groups of three real numbers. : o
' ; . . 2 2 2 R
N ORE AN L (&) 3,88 G+w2 . ¢
- -%<%<12 3?<b,2<72 ."
(Y L4 B ’ - - L * ' - i L
’ ' 1 1 1 . &
(®) =, -x, 2 ¢ v (£) - 22 "3 "% ) ! . Qi )
. - . ol 1 1. i :
(-zr</2_<zr ) -3 F-5<-% . ‘ 3
AW \ [ » - 2 M ?
. () 1.7, 0, -1.7 ' (&) 1+5 1+ 1+ @3> .
’ ) * . o & N
o -1.7 <0< 1.7 1+ F <1+1l;<1+-21-» .
{ . .
- @ -2 .3 2 S Ly o
3’715 T 15 g , v . LT SR
. - . 27 . .l:i . —2— . L, L . Y
g 15 15 ° 715 . » .o ' -
k. _State a trans:.tlvé pr@perty fon "> and 1llustrate thls property with R
Problen 3(a) and’%b) ) : // ’;:'..
N Ve - ; / .
- If a, , ¢ aré real numbers, and if a > b /d - g : :
- - i >
X then a >e¢ . .. _. _,..a/ ,,/“ﬂ:—-’-f-- e aRQ - N ,?““
i & .
4 4 . 3 i 4 N 25
. ) -t - ! i - A e
(8) 12>3>-4% L (B) x>VE > A = =2
< ' 2 5 /’ .2 | 5 -
- / - { 7l- -~ )
- ! P O T S R ": oy ”“‘vu'\;{,‘ L N
. RIS . * . Lo vf‘;"
e , ’ .7
. g\ - M M 53
‘ N R ‘ . K
i - ’ - - "
. -~ ¢ ' > < 4
’ ) - "
- & , & .,
. O * v ) 15 o ( ‘ '
< E lC\ ‘ L &l .
K * s R . -
1 o . 1 »:,
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5. Sandy and Bo'b are seated on opposite ends of a seesaw, and Sandy's end
of the. seesaw comes slowly to the ground. ' Harry replaces Sandy at one

-

end of the seesaw, after whieh Bobls end of «he seesaw comes to the -

ground. Who 1s heavier, Sandy ox Harry? - g :
L. ) §>B Sendy_is heavJ:er than Bob Ty
B'>H Bob is heavier than Harry ~ ) A‘—-l
. S >H ' Sandy is heayier than Harry ° <
. . . -
. . : N ‘ .
1.5 (_)pmsi{ S o )
. - .

Your students ha\ve quite likely observed by now that, except for.O, the R
real numbers occur asg pairs, the two numbers of each pair being equidistant =
N, ) from O.on the real num'ber line. Each number in such a pair is called the O
) ms:.te of the other. To complete the picture, O 1s~defined to be its ovn
» " opposite. In locating the oppoaite 9f a given number on the number line, you 4

may well want to use a comp¥Ps "to ’emp(hasn.ze that the number and its opposite _

» . .

are equidiqtant from O. .

» . .
T » If x is a positive number, then -x is & negative number.® The opposit\e

a of any~ nega’cive number x'is‘the positive number -x, and -O = 0. 'I‘he student
Should not .jump to the‘kconc)lusn.on that when n 1s a real number, then -n, is a :
negative mumber; -this i§ %rue only w’nen n is a pos:.tive number. e -

i,
», . oer

. *oé?\:a . In order to motivate the."ordering property for opposites",

- 0

.

s ‘ \ .o For real nlimbers a and b, ) ’ ' RN
S ‘ 1% < b then -b < -a," v . " .
. it Would be,.well to,cons1der several‘ other pairs of numbers . For example, we
. o . could cons:.der a pair of distinct -ppsitive "szﬁnbers, a pair of distinct negative
Y ¢
v :) 2 num'be;'s,fﬁx and a positive number, and O and a negative number. 2
- ., . % . . L
e N - Exeh‘ise 3 Gy -~
3 - 1. Simplify each of the following expressi‘ons, ‘ ; ) i
(a) -(4 +2) =6 () -(2+5)+15 .8
) -(23) 7 23 () -(71-10) -3, o0
Qle) (2 +0) . BT -m 3x (3, L5 L
(@)° ~(3.6) - (2.4) -6.0 () -[-(-5)] +5 e
T (e) -(k23%0) o (x) -(-1) + [-(-1)] Tk
(£) '["(‘!*)] LN =L (1) -(3) + [ 3)] [ ('3)] -3
- ° / A ) - ! ’ _-‘-
. 3 16 ’ - J:?,,
L .o
o A . .- - . .



T
v e T \ . . : , v .
%@‘ What kind\ of number is -x if x is posTtive? ~ / .
' i -x is a negative number. ~ ' e T
. : , . " . IR PN
If x is -negafive? e ) ’ ¢ R R T I
-x is a positive.qumber. . ' . oo
. . . ' -
LIf x,is zero? N - . '
. . . B C
- -% is_ zero. Lo e .
3. VWhat kind of nlzmber is x if ~x-is a positive number? A ‘.
x 1s a negative number. ' ‘
If -x is a negative nimber? ' »
. - - R i 'S
x is a positive number. = - . - .
If -x is zero? 1 . N . *
’ hd \
. x is zero. 4 L. N X e .
3 *
k, (a) I every real number the negative of some real n\mbér?
Yes. Renember zero is its own negative. ' )
) Ve
-« - . ) .
(b) Is the set of all negati-veg of real numbers the same as the, * “
. ) et of all real numbers? . .
i YeS . ' v ;T ' I
. . 1 . r :l
(e) 1Is every opp051te of a number a negative number? s .
) ' No. 'Iéxe opposite of a negatlve number is a p051tive number.
5., For each of the following pairs, determine which is the greater number. _
. (&) 297, 2,97 = 2.97 > -2.97  (e) -370, -121 < -1 > =370
(b) -12,2 . . 2>-12 - (f) 0.12, 0.24 0.2k >'0.12 .
. . v S
- §fe) -358, -762 -358 > -762  (g) 0, -0 : r ° 0'= -0 el
- . a 7 //'
., gy 1 1>-1 «(h) -0.1, -0.0L ' . -0.01 >-0.1 .
S © ] .
S, - L s {i) o.1, 0.01 0.1 > 0.01
- . . . . .
[4 - -

5 . N _ o~ ) .
- (\'\-.x
Lo )“t\ % A - T - v - ~ . .
7 - - -
g - ] .
v . < ° \
*
) & . , i
A
. /. ¢
e

) : D s
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using the relations " <" or " >" . ,

.

~

~ Y

!

i

0 b a ,
| ‘l’ /

0 b
s "a wb" have a tq-&‘nsitive property?

! 1
e same meaning?

.

o

» 0 1b ~  a
I, . -7 T <3 )
B g : :
- s wn '

Vo - %,,;,f‘ S :
[N N - ‘
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. ® i 6. Write true sentences for the following numbers and their opposites,

K

¥4

a vﬁxﬁ?:‘e a>b

where b >0

v “ ‘ The set of all non-negative real numbers.

4

&

L

a>b -~ ~

L

B

P T Ex®ple: For the mmbers 2 and 7, 2 < T, :8pd -2 > -7 .
K v oty r x5 v 7
otz .l - ‘ 1.2 2
. * (a), 7)'3 ) __-g<.7:and%> =
. (v) 2, -n - st <V/2 and xn >- V2
. . Y v £
22 - 22
(¢) n,h.( ) “n:.( and'-n>-?a
- ;
(@) 363 +2), Had+®) 33+ < £(20 -+ 8)
. . N and -3(%+ 2) > -,%(20’;- 8)
'Y R . .
i : 8 +6 v . 8 +6 :
‘ “(e) '(. 7- )) 2 "( T ).' = -2 o *
(1), -((3 +17)0), -((5:+0)3) -(5%x3) <0 and. 0 <5x3,
o . 7. Let us write, " *" for the phrase "is farther from O than" on the
real number line. Does " % " have the comparison property en:joyed. by
) " > ", that is, if a and b are different”real nLun’bers, is it true
‘ . that akb or b* a but not both? 1
! . No. The relation a¥b could look, liKe either of the, follow-
) ® ing #lgures. . .

Yes., ;[f"q is farther from zero than b and b is farther from

zero thgn ¢ , then a is farther from zero than ¢ .
* 4

%

For which subset of the set of* réal mmbers do f* " and " >A have the

)
. -




N
" 8. Translate the following Engllsh sentences mto mathematical expressions, | -
H L4 » AN -
descrlb:\.ng the varlable used. -« v o~ T . - 5*.-__0
) . (a) The load on the beam is greater than 100 grams. What is the load?
N .. s
. f>100 . ' . : K
. . . . . A R
: (o) THe defiectlon of the beam was no more than 18"mm up. "What was the A
e defleetlon" , ’ - o a
p >--18 oL . A e
. N s L ’i ¢ - r"nka - »-:;
R " (¢) Paul hung 30 grams from the beam, but Jim added more than 60 grams / :
. to the load. What was the load? ¢ .
2 [ s sy .
‘ 4530460 ok J>90. . A
f . v
*3. Change the numerals "-IJ;—%" and " 74._5'" to forms with the same c‘ienom:mators. —
. : 13 57 v

 (Hint: First do this for 5 end 9 .) shat is the oraer of -r and - 7 ‘

.(Hint: Kn‘owing the order of IJ? and 74_’ what is the order of their.opposites?) "
S 13 . %9 _ 637 15 h2 630 15 13 1 Y
. , Yr r —05-8 and r s = ?@8 S'O Kg I3’ and -E— <- Kz . ) P N

" Jow state a general rule for determm:mg the ‘order of two negatlve rat:Lonal 5 =

/
N

S numbers. . . ’ ’ . - . - .
:‘3. R ~ » , - . . . . =
i ‘ L F’or‘any negative rational numbers -a and ~b, if a<b then 4b < -a. ~
- < - o . : . - R .
. : ., . ) ’ - 24 .
; RS ) .-
1.6  Absolute, Value, S T et . ' : N
LY The cpncept of the absolute value of a number is one of the most usef\:g. PSS on % e
%oy e
ideas ¥h mathematics. We will find an immediate application of absolute value’ EFe N
4 .
when_we def:.ne\a/ddltlon ¢gnd 'mlltlpllcatlon of real numbers., . N . Y

X Ifne usual definition of the absolute value of the repl number ngis that
\ s
¢ oiteid “bhe ﬁumber I.I for( which .

-

; / 1./ A R |n| ‘.= n, if*n >0 ’ . v
1 S X : - ~ . N -n, if n 2\0 . . -
. -~ ~ 1
This is also the form in which the absolute 'valué is 'nost commonly useax f\‘
" the other hand, since students seem to have difflc&lty with definitions of this \”\
« kind, we define the absolute value of a number in such a way that. it ‘can be . \:).\_, T
clearly pictured on the number line. : 4 5 \ ) )
) ¢
By observing that this greater of a number anq 1'bs opposite is just the
. distance between the 'number and O on the real number *llne, we are able to ;nter- )
A - -
: pret the absolute. vajue geome*rlcally i oo v
o C 2 \ o N .
K . \ . K
g , ’ . N
- ' ’ ' LERSAISRR SN A S O NP
" . 3 Ly e . ‘,
: < I E ' .9 2% . - : :
ERIC. . - - , R
. . . . i . . "
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Exercise 4

Flnd the absolute values of the follow1ng numaﬁrs

%
%

a) . |- :
l(b)° 1-(-3)}
He) ](6e- W]
(@ |-+of 1) |-F(5)]1
. (e 10 - )] 5 1[G - 2]

2.. TFor a negative mumber x, which is greater, x or"x|?

T (e A= 3)]|
(g) |14 ol
(h)y [k +3) - 7]
"o

(

3

Ekumfu» 1~
MM Io o iU

o |

- ,
|x| > x, since all positive numbers are greater than any
' i

. .
negative number. K
- ¥ *

3. Which of the following statements are true?

(a) |=7] <3 .- false (e) -3<17
(v) [-2] <-]-3] trug  (£) -2 <-]3
C(e) el false (g) 16| > |-Y]
@ 2+¢/[-3 - false (h) [<2]% =&
Simplify each of the fpllowi%g.
(a) 2| + [3]
el + 3]
-(le] + 13D
-(l-2l + 131)
=71 - (1 -"5) |
7-1-3]
|-5] x 2
251 - 2)
(r) - [-31 - 12l

(5 |l + 3]
v -(]-3] - 2)
(1) -(l-2] + [-3]) .
m) 3-13-2]
(n) 2(]-7] ~.6)
(o) |-5 X‘T
(p) -(]-2] x5)
(@) -(]-5] x |-2])

SRV VI C e T

- Il Ii»"
= Jw Jo
N

A

.

1.7 Addition of Real Numbers

o

At thls point _we again reéturn to the experlment to reinforce 1ntuitive

understanding of the operation.of addition over the real numbers.

We have seen that the definition of addition of real numbers satisfies
two of three requlrenents we‘make. It ingiudes, as & special égse, the

famlliar additlon of numbers of arlthmetlc, and it dgrees with our intuitive

® L b

v, f O
4 ] : .
., N ’.’ ’s‘i‘x}? .




¥

. )
feel:mg for thls opezatlon as shown in working with load‘:mg the ‘beam and w1th N

i%s deflection. The third requlrement is that addition of real numbers have ‘ i", . 5
the same basn.c propertles that we observed for addition of numbers of, arlth-

metlc. It wou’d e awkward, for instance, to have addition of numbers of

© erithmetic commu_tatlve and addition of ‘reasl numbers not commutati\i : Vo
¥ . ' .

’ o i

- - Notlce that the commutative ami assoc1at1ve propertles were regarded
as axioms for the numbers of arithmetic; and the operation of addittion was re- I
2X10mS il fe
“garded ess'entlally as an undefined operatﬂone‘ §r the real numbers however, . .
+ we have madel a deflmtvon of addition in terms of earlier concepts. If our .
definltlon has been properly chosenr, we shbuld find that the properties can .
. be proved as theorems. - . . . J )
Y .
, Exercise 5 -/ ’H/%/r
-3 .
"1 Perform t}re.lndﬁcated additions on real ‘numbers' usmg/the‘number llne
to ald you. . 17 br ( )
@ a ST Ty =6 :
N . ; o ; .
() (-6)7+ (-7) 13 b |
T T /-6 .. 0 -
- ~ ‘t ; ' -6\‘, ) ’ - »
(0) (7) + (-6) . 1 ~ ‘ .
; . . FON 4 . 7
- / i "
. fv"' in
N \ . - 7/
(e) (-9) = (5) b . s -
(@) 6+ (-4) -. 2 ‘ KT
* ” lﬁ ]
, . : = b,
(e) (-B) +18) 0 Parts {eythrough (J) L
- . . would be illustrated ' ;’n, ~
N 5) + (- -4 /= . oy
. (f.“) (25) + (-73) -8 in a similax manner. i/,* ,
1 1 ) > - - : wr™
v -— . k7
(g) 55+ 235 PR 8 S,
' L4
SR O CORTE) ) s _ ‘
:‘f " ) " £ . i -
S ) hB) 1:@) - 6.2 Y
. > " - _.~ ™ , - “ K :
o () (ady iy -4 _— ~ |
, ) g‘ . . —E— . -
2. “ Tell in your own words what%‘/ou do o the two given numb,ers to find -
their sum. - - . .
S, \ -
(&) 7 +'lO ‘ Start at 7 qn the number line and move | <
" /p/ ¢ e = ': 10 units to the right to get a sum of 17.
: Yy .
Pl {(v) 7+ (-] 6/’ Start g.t 7 on the number llne and move
. s
L 7 ’ 10 unlts to the left to get & sum of -3.
goe - * ,yz
i 1 - » 4 ‘ »
* - .' -
K4 " T - - N
YVood > 7 RN al Coe ) N
ERIC ' a0 0T ,
‘I a v , . .o Lt
j |, “ 'fm\f S :




i
' o
: ‘ G
10 * (-7) ool : ; «4wf
(-10) + (-7) R X
10 +0 , Parts (c)~through (J) '
+ (-7) L . ould Ve described in '
7 +-|-10| ' . a similar manhér. :
|71 + (-10)
|7-+ (-10) |~
|710|) s

-~

In each of the following, flnd the, sum, first accordlni to the défini- 2

tion and \hen by any other method you find convenient
(-5) +3 . 18 + (-1k)
(-11) + (-5) C(f) 12+ 7.
(-3 o @ s
2 + (-2) , (-35) + (-65)

In the couv'se of a week the varlatlons 1n mean temperature from the G
ceasonal nérmal of T1 were =7, 2, -3, ;0, 9, 12, -6. What were the mean
temperatures each day? i . ,

Sun: ‘7L -7 = 6k Mon: " T +2=73 Tued: -3 =68
Wed: TL+0=T1 U s 71+ 9 = 80 Fri: 7L+ 12 = 83-.
Sat: 7’1 + (-6) = , ’ ' l

——

./
What is the sum of their veariations?

C () se+(3) r0Eo+12+ (-6)
/ . , Lot ‘ . . ;l" ;@'

1.8 +The Real Number Plane . 4 N

-You will not:Lce that 1n the dlscuss:Lon of the coordlnate system in a

.
plane cart was taken not to mention the x-axis or the y—ax1s. It Ws«ﬁesired
to glve the student the feellng that the 1abel’ attached to the horizontal

o

-
axis apdsto the vertical axis would be dependent upon the sets whi o représent

the domé and the range oft the relation being* graphed

.o,
AN M'fﬁm/

:EMC‘ L
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' Exercise 6 ’ o s

PR Ners

I;lot the fgllowing ordered pairs of numbers, wiite the number of the

\ w . quadraﬁt or the JPosition on an axis in which you find the point re- - l .
} presénted by each of these orde\% palrs ' *
i - 1 (1) (3,22) ' v '
. o Y. <
I . II () (-3,%5) R - S
¢’ - * ' 4 M . N i
oL 1v (1) (:1,3) . © 11 ;
Jb .
&z S (m) (2,-4) LIV ‘ ,
(&) (0,0) origin  (n) (5,2) - 1. -
() (0,5) + y-axis (o) (-3,0) - x-axis
—~ (&), (-3,-1) IIT (p) (-4,-5) . 111
o) (7,-1) W (@ (,2)
— .
- 1) (8,6) 7 I (r) (3,-1)
y - .
~ A Y
. [y g
A . - :
“‘/
4 [ ]
(0,5) (86
x : o(-h,4) 3,5) )
%, (-143)
0 3 ('1;2)0 ) ( o
: 5,2)
- ’ e -3,0){(0,0)
_____ ’('3)'1‘ (3)"1)0 0(7)'1)
‘ I 0(3‘)'2)
) . oo (1,-4)" *° o i
* * LY
L 005 3,9 (2w ~
[~}
£ B .




- l} . 1 li‘ NP ') ? T o o P I A e
N R N
S . o 7‘ . 1 i’ t y ) P i = 4
i ( .‘ 3 j ( 3 } ’ ¥
(a) Plot on a coordinate plane the following set of points:
l ' . o
I(O;O); (“1;0): ('2;'0); (2;0); ('3;0); (’3;0)} . >
) 1 . § {
R T ! |
(-2,0) . . (0jo) | (3,0) . S B
3 ’A e & . N & & a 4 '
¥ h g v v v .\ v ‘ 'I
+(-3,0) (-1,0) . (2,0) ~ .,
N : o . - S Lo e
S L - : o © . : . o : .
RN , ~(b) Do all the points in this set seem to lie orgthe ‘seme line? ‘
& \ ‘ ‘ Yes,, fhey all lie on the horizor’tal axis. . — .
T .~ S e ‘
LA (c) What do you notice about the vertical coordinate for each of B
C A T R .
N . the points? -7
o A1l ordered paii‘s have O as the vertical coordinate. oy
Cee , . .
A . 3. (&) Plot the p01nts in the follom.ng set: ..
: - \_ ’ , (0,0), (O,;—l), (O,l), (O; 2) (0;2); QO,-3), (0;3)]
- . B - (0,3)
(b) Do all the points named in this set seem to be on the
v
. ’ 0,2
same line? g N '  (0,2)
. , N )
. Yes, they all lie on the vertical axis. ?(0,1)
. . . } . \
(¢), What do you notice about the horizontal coor- ——t +
- T e . (Q,O)
dinate for ach of the points? ¢ (0,-1)
Pl . * . - .
A11 ordered pairs have O as the horizontal * L (0,-2)
- coordinate. ’ ,
- ¢ ¢ (0, -3)
b, (a) Plot’ the points in the follomng; set S N TR U el
. ’ : ’ o s
A (o 8, (1,67, (2%); (3 2), (u,o)a S S L
. ” .
o {v) Do &1l the pmnts nemed in this set seem to lie on the same line?
‘ Yes . : ~ ‘
- }oy8) . o ’
! ’ ' ‘ K [ (1;6) . . ) * . L
’ ! g K
s - Teoa,
: I .(2,)*,) . . i
] ™~ o(3,2) ° .
L : ) , B )
§~;f\ % ' » .~ . ‘ £4.0)

200 )
'lRIC . T80
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1.

o

Y o)

b

]

6.

)

i
d
'

.

. B T ' Lo .
(v) The*deflection of the beem was at least 8mm down.

Ss.mL Test Items v

Arrarige each set o$ four numbers given below in the order in which they

would 'appear on the number line, reading left to right.

‘ 1
(8) 0, h’ = 2, 3 >
(b) : '1';: -2, - ‘g i ) «
3.k g v .
(C) 2: 3: 15 .
" Use the transitive property to'determine the orderlng of the follomng
groupSJof three real numbers. ' 1 R T .
o1 - o x
a) ';8’ 9’ " 10 .
Ty X (L2 (L3
v 5 (3% @) ‘ .

(c¢) 1.4, 1.81, 1.M1%:

Simplify the following éxpréss,ions. , ) ‘

() “(-4.7) - ST _ <
(0) +[(-3)] . :

(c) -(3+2) +6° o \
(@) -(2x3)+6

For each of the following pairs, det;ermine which 2

(a). &', 24 :

(v) -0.01, -0.001

() -2,09, -2.10 ( &
(d) -315, -362 r «-ﬁ& o

>

{a) Bob hulig 8(’3 grams fram the heam but Roy added more. What was the
load? )

What was the’

“defrection? .

Which of the following statements are true?

(a) 1-3] < -2 : (@) /5] < |-5]
(v) |-3[° =.9 (&) -|-3]"= -3
(c) 5 £ |-6 A2 |-sh < |-6] -
[ .
- 532

- .




. Simplify each of the following:

7.
: (a) (3] +Ish - ta) -(l-af - [¥]) ‘
(v) 8- (-5) ) -7l % |-3]
(¢) |-71 - I8} (£) -(]-&] x |-3])
o ' 8. In each of the following, find the indicated”sum.
. (a) (-]-6[*+ [sly . £(a) 16 + (-12)
(v) (-13) + (-25) (e) |7+ (-12)]
- (&) -9+ (-9 (f) (.8) % (r6) .
' \ 9. f (&) Plot the po:mts in the following set on a coordinste’ plane.
LIS
.t (63,4), (-2,-1), (-,-¥), (0,1), (5,6))
, (b) Do all the points sedfr to lie on the same line?
5 .(/c)\jf not, what are the freatest number of points on one line?
P B T ) . U \
S ’ . Answers to Semple Test Items ‘
o 1. . (a) -3, - 2 0, % . .
i 7
: & - 2 g A y
. )_; 3 4 >
. . o) 8 %32 .
& ! 1
1 v 1 P
2., ‘ (a) g - -9- < - 0
{v) 111
. ;'\ 2 2 _
(¢)- 1.k < 1.41 < 1.h1k
3.4 (&) b (e) 17 -
A ) I . (@ o )
b (&) 24 v () -2.10 \
M (b) -o0.0i ) L ©(a) -362
5. (a) l>Bo* (®) .p<8 - ..
2 6. (v), (e) and f) are true.
7. -(a) ;8 (c) b (e) 21
I (v) 13" - N C VI (£) -12
)‘l ‘
, k2] .
33 @ . .
N Y . ‘
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Chapter 2

AN EXPERIMENTAL APPROACH TO LINEAR FUNCTIONS

<+ N
- ~ . .

.2.1 Real Number Generator ) SN . e

In Chapter 2, ah effort is made to further motivate the understanding of

the number line and the coordinate plane., The number generator has potential

v for .aiding the understanding of a wide range of whematical ideas. In this

instance, an examination of many aspects of ar:utﬁmetic is made.
. -
The Number Generator Experiment may be done either in student gr‘oups or

Equipmént list for teacher demonstration follows:

as a teacher demonstration.
»5- l"

1

X 12") * " .

threated rod (
l"
5 hex nut

%" inside diameter, l%" outside dismeter washer

transparent tape holders

*
N N £l

vl2" ruler

small roll of masking tapé
b of modeling clay ) NG

’ )

1
2
1
2
L
2
1

Take a one-foot piece of

washer.

tube of adhesive for indicator (Miracle Brite Magic) .

%" threaded rod with a fitting hex nut and
Glue the washer to the hex nuf and thread the combination on the rod.,

Support. the rod nith two transparent tape holders and modeling clay.

Mask the

. A ruiToxt Provided by ERIC .

" - . ’ 4
) B - . I -
P [ . .

% - . . N

2 . ~ s <yt et

b

ruler and "glue" it on tape Bblders as- illustrated in the student text.

In the manipulation of the number generator, the directiop of 'rotation
of the indicator is deliberately ignored sp the "turns" are positive. anly.
The faces of the hex nut are deliberately marked only on the zero and -]21 ~-turn
faces so that the direction of rotation will not be.an obvious issue. If the

hex nut were marked 0, 1, 2, 3, 14—, 5, when you turn it the opposite direction

- would read O, 5, L, 3, 2, 1. . » . ’ .

s
.
E) 1 I

Exercise 1 should give the students a good reviéi of the arithmetic of

the rational numbers. The conversions of turns and facé changes to nuwbers on °

the scale might stimulate a discussion ‘which would make rational numbers more
> meaningfyl to the stl\xdent. .

29 f’mﬁ | o .
ERI

O ) . ’




* How many furns of the indicator aré necessary o

nuunbers ? e ETen RN e

‘r«

(d)

T ) 5k

(a) 3
(o) -k
(e) 1.k

30 turns _2.8
— .- *?
* . 4O turns

1% turns 13

=B

N

28 turns\

- ﬂ ‘ .
generate the followingA

n~ —_—

54% turns

1
=~ turns or
3

~furns + 2 face changéd -+
-

[N

How many face changes of the;hex ﬁut from the zexgkpoint will generate

the following numbexrs ?
(a) .
(b)
(c)
(@)
(o)
(£)
()
~ (n)

T -
(J)‘g
(%) 2
(1) 2
(m)
(n)
" (0) 5

- - — T

120
l8o—>
33
a5

// 4

y

l-l ~ 90

2

/%2
9N

15

35

284

3. "What numbers would be generated by the f:‘isying
~ the indicator?

(a)

L]

-(d) Left k2

o

1
Right 35 3.5 or 33

(e) Right 17%

-(£) Left.2x
v : 3

1
-1.5 oxr -lE i

9.5 or 95 .

(b)
 (e)

Left 15

Right 95

, i L
o oae -'(8'33&'.. or - 30

Wae #

—

’

numbexr of turns of

. 1
k. i
4,2 or 5

1.75 or'13

]

10x

X

-2.333...
t .233...

-2.1




5

Problems 1 and 3, in "ordered pair",
position of the first element and

) Functions ané Relations R .-

What numlgers would be generated by‘the following number of face changes

fzom the zero pokition? - - :
(a)" “Right 90 12 (@) Rignt 156 2% ¢ e
(b) Left 45 - 13:( " (e) teft 512" - &%— T

. e r

1
(c) Left 256° Bt (f) Right 316 5%

& ’1 -ﬁf ’g )
th:y,_im m'rcisa‘i{w T
h the humber on th@ sca

umber of turns of the] cator neces-

At this point tnif student shouRA

éﬂteyn

sary to generate the second element.. Then plot the ordered,pa s gn a coor-

: ol - o CORL
*, dinete plane as instructed in the- tembw>w> ~Tumm’ ;2‘-‘:3}': 7
\ . :,‘) ~ A%
, Since the-apit distance on the =two axes need not be ‘@E»A;ne, “a.typfcal - e
:~ ° graph mhy appear as follows (Figure-l). *\;;;T ! ;." =
i N . ) i T ' 7\??{{3’:

:

L DY

e o




e

K 2.3 The Face-Scale Relation

S , ‘A
Now return to Exercise l Problems 2 and 4. is t1me €. student will

prepare a new set of ordered pairs. The first element thls tJme will be the
number of face changes from a fixed position and the secong-element.will be ..
the number on the scale corresponfdi..ng to the first. The graph in this in-

4
stance may appear as Figure 2 after due consideration of continuity.

Figure 2 1 . .

This section could produce a good discussion of the importance of defini-

3 —tiods-in methematics.. c S’ S oo ‘

T It is possible some students will have difficulty with discrete apd con-*
tinuous relatilons. Many e}tampl)eé should be given such as counting the cars
4n a parking lot and tl'le parking lot itself provided there are Ino "breaks"
in it. Dor.&be formal or rigorous with your examples. Physical continuity

- . s sufficient, so build Mhe student’s intuition.

i " ' . ' s
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1 ey function

-

Which of the graphs of the relations showﬁ below aré graphs of a function?
N . . Examples: ‘

L

" %

.
oo e etz o]
not a func.

] - 1

—f g T T W

not a function

- 12 3b —

14
O VL SRRV W R
N P

not a,

d.

Ffunction A_

’ —t——e .
. : , s
d d o
R .
Y
. } T
Sy )
(f) — T .
. mot a function
n—h\:—
- L & L ot
| h\\ ’ f".
'd’ . d. %
: R ‘. " L N
) <z
X »
A . B . A

P

LY
-

* «
' R
2 7 o - Y2




Example :

¢

((o o}, (1, 2), (e,h)*, (3,

e o s an n;”}«—.rﬂ»’.’b'ﬁp P P SN
. -

i

@)

-

* .

“

Sy

.
o

T Ayt 33

)

AR
A

%
4

v::,;?»,g

' ~
M T

¥

@
by
i
¥
£

2,
x

AL R

%
RN

«Emc

B,
é»:é “""ﬁ:"»&%

A

Sty
““'m’

domain (-1, 1, -2, 2)
“oraffge (2,4) .

3
1(1,2), (-1,2), (-2,b), X2,4))

-~

)

relaticiPi% a f;mction‘

domainy

“(1,3]
-3, 3, \'9)

range

e

£}
, sy S . ,
Grap the%%dered ﬁairs given below, state the domain and range, and tell
if the relation ia' a function.‘,

6)}

“

.\

(C) ) {(-"-::‘L,-Q,), ("]“:2-): :(‘l"’:'6): ("l"':6)) N

(35,1)e |

M . . s e . . R . ) R
g e R y 0 fe R [N ;s 5' ! iy . e \\-"‘é &
3 N .. ~ > v - B
ki vy 7 SIS »a”f{(},\*.. . ' v . - ¢§/—- )
3 . )
e s I3 K] v ' ot - ~
¢

» \ CamT T e

. ¢ P
L ' . .

domain (O, 1, 2, 3}
range {0, 2 “h"‘ 6)
relation is a }‘unctior;

(discrq:te) |

—r

(-1,2)e 4

oS )
s *(1;3) L
—

;;(l,-3)

1

[ jo (3,-9)

=

(-4,6)

domain ( l, -h]
range ( 22, 2, -6, 6]

&

A

——_— ‘; NRTSRN ,( _-_‘]_"2__) ' >
' A

relation 1s not a function
iy

-

} (‘l:'a)._ i

]

“

(-4,-6)e |
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but the prism-ashaped block of wood will servé as a fulcrum SatiSfactorily.

t?sacher demon&tration .

L opening the door to oquilibrium.
too far.
of books'

T g S

Here the equipment may be varied.

‘

° The Sees%; Experime‘nt may be done in either student groups ar §as a

o
. ” <
14

l meter stick -
1 balance support knife edge clamp or triangular block of wood
1 set of w!ights

. 2 pulleys, nails or rods S L.
1° spool of nylon thread s ' . -1 s
o - ¥ * ' ' ' Y e o , /
When we- J',ntroduce the s\eesaw in the manner outlined in the text, ye are-

An excellent discussion of this whole problem is found in a

v
A
“
e ¢
=y
¥

If you have the balance Support i‘dne, .

However, ve don't feel we want to open it

2 - . .,
‘ Y ) PR =
T 2;
(d) ((2: '[I):, ): ( '[I): ('5:' E) 1. i]_ 3
3 . . i ‘. "‘ ] ® '5, {E’
domain [ 5 = te 9
* 2 2’3 " 7 . SR ! . I é : ‘
range ['E: irg) ‘E: - E} ? - i . ’ : d
‘relation is not a function [ .( E.)
| o &-9
Y
T . : O .
()ul)b(l)(1 ), €1 ).' T #
e 5 - 5 10 - 10 K3
’ '1,:: ’ '[I: ) > : . 10k . .
. . . ) * |
‘domain [ E, -E, -1 ']:} . 2 *
v (I ——a
range (5, 10} — 1 ’
relation is a function : 5T ! .
. =101
- ) e - J /,, 7
. . .
. Lo " a s - ¢
- s 4 - — o e o .
" Seesaw Experiment and Multiplication of Numbers ’:;
& > - . i

- 3

.

variety

i

¢ &

)

' wﬁw Am\m;,,\,w,
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St(ldig of Mathemstics, Jolume X1 (SMSG), by George Polya:.. A. C. Vroman,

-~ Inc. (Section 2.2.5). . -
' Science g Mechanics, by* Ernst Mach, Open Court (Chapter 1). )
# Cdmplete Works o_f_ Archimedes, translation by Heath, Doyér or Gr;aat Books.
X The discussion of mult\lpllcat‘ion could be expanded as in: First Course
: in Algebra (smsc), Part I, Chapter 7, Yale University Press.
: .« Exercige 3 !
‘ 1. Fill in the blanks: ' -
! {f (a) The proguct of two positive numbers is a positive.number. '
" . ‘(b) The product of two negative numbers is a positive .number.
igﬂ (e) The product of a negative and a pésitive number is a negétive'n'umber.
L ' (@) The product of a real nu’m‘Per and 0 is __ 0
2. " Calculate the following: . .
) 0w 2 () *(-3)(-) # 7 1
5 ©® (e s &) [-3/(-4) = 7 =
: @ 3F@Gs) 3w sllel + -6) 0
, (@ (P8 + (30D T2 @) (3)(-2 + (-6) - 12
e (- +) 2 ) Gn(-al ¢ lsl) 2
('”ﬁ (x) 05)(|15|+ (-h.2)  1.35
. 3. Find'fthe values of the following for x =-2,y=3,8-= -4
(a) 2x + 7y 2(-2) + 7(3) = .
T ) 3+ ((W)y s 7(8) - 3(2) ¢ (GR)(3) < T() - 6 416 = 22
(a) x2_ + 2(xa) +a° (-2)2+2(_2)(L'z;)+7-a)2 =4 +16 +16 = 36
) (x v a)2m (2+ ()%= (6P -3 -
() x%+ (3lal + (-0)ly) 24 (318 + (a)]3) Sk +o0 =
’ T(g) |x + 2| + (-5)] -3) ~2 -2 + 2x"l + (-5)|(-3) + 2| =0 +€5)-1]=-5
o ] &WMI& .

.
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2.5 Slope p . .. .

m:l.merouslexamples are given in the tex@ad the student to develop a
facility for computing slopes.

2

3

Exercise ‘L_l’

R

. 1. Which of the fqll.gwing two ordered peirs determine a horizontal line, a
’ vértical line and a ‘line whidh is neither?, ’ 2 .
o “(a) (3,2), (5,2) horizéntal (£) (2,3), (2,2) vertic®l )
(®) (0,0), (7,0) horizontal (g) (562,10), (562,11), vertical @
- (¢) (10,%), (h‘,‘lo) neither (n) (3,1%), (6,28) neither |
@) (5,6), (6,7) neither (1) +(9,8), (9,1) verticel . '~ .
(e) (2;8), (%,8) horizontal (i) (0,8), (0,5) vertical

— ,

2. For each of the following two ordered pairs, state the rise and the run

: 2or. the lines determined by thesé points: “Lass '

- (@) (25, 5,8 3 (F) (163063, (25,25). g

¢ 8 .

- ® (3,9, &1 7 . . (&) G, (29 - £ :

Lo () (85,7, (9,9) 5= (n) 18,20), (0,20) g -

) (20,20, (25,7) =2 1) (3.7,12.6), (5.2,2.2) - 222

o 983 3 5y (5 1, - 6/6 1

é:::' e /(e){l (5)3)) '(%)986) ol undefined ) (‘E} E)) (')Z) '6") 2/h or ﬂ'a‘

LN e o -c . .
5 ! 3 \\4 ) 1 -
f: s 4, ‘ E )

RS S T S o .

f€%4 R NI l( - . . 2 ,‘ X !

f" A2 6! A\Ipsol\ite Value and Relation R e fi, v

& . ~ "l i <>"
s - ;h\ function we introduce whose equation is 10|S| fs related to the '”

3,

W

ry

.‘S>0 w ge‘t T =

T\.— 10]s]|

IXI

1OS and develop the idea ,of positive slope.

)

By considering the domain 'WP‘

is an interesting fu,nction.

ering the donﬁain 5 < 0,.we extend to negative slope by examining the graph of
gives us an example with which to define function in

="x|

S
Then c"gnsid-}f‘ v
e
‘ !
In cantrast, '
1 ‘\
- }
i’ SN
Vi
¢ i . i i
— H
bis
3 1, ¢ ‘(
?
. . . P
& . \"
’ e [ e b
S * H
) AR} I §
otk T 1)



. Exercise 5 -

Check the ordered pairs you obtained in the scale-turns relation to see
. )' . ‘w
if they satisfy either T 108 or T =-10S. . LN

A ‘

Check, the ordered pairs you obtained in the faces sq,ale relation tp see
if they satisfy either § = 55 F or 8 —-B— F . = o

Graph e’ach of the following. ,,,? <

(a) y = IX| (@) y=-2|x|] - )

N 5, 7

(®) v =|-3]x - le) y = 3|-x| - i
(e) ¥ =5x] : (£) |y| P - )
v, (b) ¥ (c) ¥ ’

Y
.

S B
~~
fo]]
N
e
L)
—_
(1]
N
[
—
la)
SNa?
e

SE T, AN g A
o ke
’

| 4
.
PN
eS8
e
3
"

;» 0 *- . , -~
- 2 7 Slope- Intercept Form ) o

~ e L .

. ) The teacher may feel additional examples are necessary and many of tle

exercises earlier in the chapter "could ’%e utilized before. the students try

. ! b \
. Exercise 6 (for example, Exercise 4). C - . .

e

"EMC DR

Ty - 1 ’
R :

SR NPT s
ot > s
i R

3

1
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Exercise 6

1. Ca\.culate the slopes of lines zl, 22, 23 and zh in the figure below
using in each case the two points indicated on the lines.
& ¥ ' '
P o-m ==
‘ S Ul - S
i A £ o=m =1
. T 2 e
, o
L L -
B 3 m3 undefined
£ - -
h = mh = "2

L
B P s 3 i x
1 D S .
. L7 ,
AR
e T e + / .

. ; * N

- - A -
s - N i :‘, -

2. What is the slope of a horizontal axis? a vertical axis?

v o

0; undefined_

.

.
- t

;3. With refexence to-a set of coordinmate axes, select the point (-6,-3) and

through this point

.,

(a) draw the 'line whose slope is 2 . .What is the equation of this line? e
(b) draw the dine through (-6,-3) which .. ! :
‘has a slope of zero. “Vhat is the - ' '
’ equation'of this line? . ‘ : Y T .
LS ' ) . 2) R

& .
) - (a) y-=%x+2

I o, )Y y=-3 : /

g N




ll'o

s

t 3
N <

- Qo

Aruitoxt provided by Eic:

e sy Cefong

[

Hint: Determine the slopé\of the line containing (1,-1) and (%,3); then

. i -

Draw the 'folloving lines:

(a) a }Ené t'hrouéh the point (-1,5) wi;h slope -;—
(b) a line through the point (2,1) with slope - L
(c) g line thro:ig}; the point (3,4) with slope 0. .
(d@) a line through the,point (-3,4) with slope 2.

(e)

7
of line has no defined slope?)}

' . (a)
( o {e)

5 -

-

a line through the point (.-3,-1+) with slope undefined.
vertical

(-3,-9) on this line? Yes

»

—~

[

(What type

Consider thei line containing the points (1,-1) and (3,3). Is the poinmt |,

determine the slope of the linegcontaining (1,-1) and (-3,-9).

Y =2

(3,3)
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FEN
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Ly

~
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N
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6. -Write an equation of each of the following lines.
. (a) The slope is % and the y-intercept mﬁﬁber’is ’”2. —u. -
{The y-intercept number is the vertical coordinate of the point
, at which the line crosses the vertical axis. In this case the
: . wh
coordinates of tHe intercept,are (0,-2).) ) - g
wy = gx -2 -
(b) The slope is % and the y-intercept number §s 0. y
y =k .
A / ',‘ \\ L,_ ' »
(¢c) The slope is -2 and tje y-intercept number is 3 .
. y
_ Yy o= -2x + § , * '
~ (a) The slope. is -7 and the y-intercept number is -5., i
i . ° ¢
: y=-1m-5_ - _, 7
~
7. What is the glope of the line containing the points (0,0) and (3,&)? e
s What 4is the 'y-intercept number? Write the equation of the line. ’
Yy -0 & * h :
I I b = O = =X N
3-0 33 . 3 y 3 . .
8.  Verify that the slope of the line which contains the points (-3,2) and
(3,-1) is -1. . ' =Y .
- melo M) 6 ’ . )
L, TS TT3-3 % . .
If (x,y) is a point on this seme line, the slc@could be written as
. : y - 2 y - b ! 4
m = or .
. x - (-3) x-3 v
o » .
Show that both expressions for ihe slope give the same equation for the h .
line. C e
m=¥=2 or Syt Since 'm = -1 )
x +3 x -3
- 2= o(x + + 4 = - (x-
y-2=mx+3) yth=nbx-3)]| 7 x+3) ¥ (x-3)
.-/ Yy =-x -1 y=-x-1
' | ¢ \ . Lo { i A
o -
’ \ . R
. a ! :
- ’ = 1 1 e,
i Ll- . 4 ! ) s e,
Ric! SR L
! [ -
s v I %"«qt ot
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9. Write the equations of the 11nes'through the.tﬁlowing pairs of points.

Use the method of Problem 8.. .
(a) (0’3) and (-5,2) e 0B =4% 5 Yy = -]ix + 3
() (5,8) and (0,-4)  m= 132. 5y =,}5£x -k
{e) (0,-2) and (-3,-7) S om=25y=2x-2 )
T (@) (5,-2) ana (0,6) . m‘=-.5§; &
(e) ('3’3) and (6,0) m= --;—'- ' =__3]:x + 2 , ' j
(£) (-3,3) and (-5,3) m=0;' y=3 ' LT
“ f gg,g;g
(g) (-3,3)-and (-3,5) m is undefined; x = <3 : &2
R ] ' 1, .. 10
- . (h) .A(h,el) and (-3,1) m=z; ¥+ .
‘}v 3 B
Graph eacl of the ;‘ollowing: - <
(a) y=-;-x+8 (@) y=lx| +5
() y<-2x - 12 (@) = lx - 3| :
P
() 3x + by =16 ' (£) y=-2]x-1] +4
, ]
[] *x )
& = ¢ - . ‘l'
j "‘ . 3. . o
. % X ‘ .
b . ‘ SR
. : / , 1 ) &\
, w . } i
;‘JA‘- '?,’ 3 . o E * ‘E‘i%" ? - \ ° N
R ) ) . Jfff%‘ 2
§3 g 3 . . ‘.
Lo he s R . 2 '
; Q ¢t it ' 4 8 42 .
l } E’\ ) ) .’ -8 J \\‘ i
‘ " A
{ :
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A} Sample Test Items

".L. Which of-the graphs of the relations shown })elow are gra

o

phs of functions?

RN M
Ay -
b

s 2 o I v SET S 5
QTS D b AENS, b AESet ‘
E I AR ST 4 .
3 S . - .
.-
E .
He [ ’ .
LR .

. v (a)
s ; (v)
C s (c)

(-3)63)(5)
(-2)(-8) + (-3) "
(-5) (-2) +8 ’

(@)

(e)
(£)

Find the values of the following for

(a) r ‘ " (8) '
N
o, () o7 )

) ]-3] +,&5) .

-2){-5| +10 ¢

(-1.5) (l2.5]+}-1.5])

x==-l,y=2.

* 3,
R R sk AV BT He) B ER
s s P e e IS S preiin 7ok b L e t w
i R ) I B ly - 3|~ (@) (x +y)
%-a " s £
% . 5 .
P .'1w

59

Inn

7 .
< -
) e :
5 () r F T
;‘*/ \ 4 . - ‘ ¢
e ’ ’ .
g ~ ! v
é&{“"“ * l L . ;
b , ° L . ¢
:'? co - . — *
. :/ J . “ ‘ ‘,4
- ' 1
tS 4
:‘o Py _ . > . t Bt ) &
) > 2. Graph the-ordered Yairs given below, state the domain and rangeg‘%and‘ tlall .
‘ if the relation is a function. ’ o L
> (a) ((1,2); (3,5), (5,8), (-2,-3)} - . T ¢ N
& N <7 b ¢ ° . :.‘
(b’ [(‘1)"2)) (O)O)) ('1)2)) 5("""2)“)} .. . e w o ’ . =
3.. Cslculate the following: . ‘ T et q{‘. L *é
t .

F
{ [ L
A f
¢ ﬂ‘ gl‘
fy f
& <
vy ? M
¢ o’
s
2




o poa oy

~

.
- 5. Calcu,late the slopes of l:Lne%q 2 and 3 using the two points
. # ** indicated on.the lines. .
iy ' . . ’

y S
e ErEnsasars
1 % ’ ‘//
ERT SHRNRRSDS i m s .
. tif T
: - 7 =T
N T ,
X[t 1 T
: ; Ladod R I
’ . i o ,. [
; ' 5 I
. ? -y
. < "
. ! T \
g t F
: /
" a8
A 6. Draw the follow:.ng lines:
() a line through the po:.nt (o, O) with slope -]2; .o
T , (b)* a line through the point (5,-7) with slope -32- .
(¢) a 1line through the point (0,9) with slo;ie - -!;- .
"o ) () e line through the point (1,5) with slope 7. -
‘7; Write an equa'tio'n of each of the following lines. ,
a ’ (a) the slope is(;—;- and the y-intercept is 1.
~. (b) the slope is - -;— and the y-intercept is % .
“{e) the slope ‘is -3 and the y-inte:cept is -5.
I |
P p - -
. | f . .
o
h] ’ + LY L

O P
) o . 2.

< ERIC . : o1 .

) 1

— ‘{‘y ‘_



Ansvers to Sample Test Items

>

e 1. “(a) a function . (d) not a function
IR (b) not a function (e) not a funetion
(c) a fulction
2. ’ i b .
© (a) \T ] ( ) S T
% M b 1 gl
\". tw;” 1 ‘
? — v
B ) . T
) 1,
' h T I I J; N
\ ! | R
; i . _4-i_.1._i.4 -i_iu
. domain {-2, 1, 3, 5} dgmain {-1, 0, -2} . ‘
range (-3, 2, 55 8} range (-2, 0, 2, 4}
a function ) + " not a function
. : f . M :
3. (a) 5. - (@) 7 ¢ ) .
- () 9 (e) 0 : S &
- () -30 ) (£) -6.0 ) :
~ . . - ;
L'"- (a) 7 (C) 5 )
L m s @ 1 SR
rm, =2
3 - . .
} Y a1 VII ‘) N
\ i |
S |
‘\ -
|
. & ] ¢
| .
pd b,
-——-L - -4 ! ] I.
§ : i 1
h'\__ - e oS
= t3 {e) y=-3x-5
.
. Tt I -




C e Chapter 3 . CoL
THE FALLING SPHERE :
; 3.1 The Fatling Sphere ; g . .
-'l’hls experiment should be performed by groups of three or four students.
~  The equipment needed by each group performlng the experiment is as follows:
. l.". glass cylinder or jar at least 8 1nches high //
1, steel ball bearlng, about g-inch in diameter ' "t_‘v l .
1 small horseshoe magnet S
1 ruler with metric scale . '
~ %2 Fubber "Bands (small)
" In addition you will need Karo Syrup&(white) to fill each cylmder, a
metronofié or some other audiblé timer, and a supply of paper strips,
about 1" x 10" . . - \/w
’ The purpose of this chapter is to review and extend ,some of the concepts-

of linear functlons which were introduced in Chapter 2., The student w:.ll en- 0

counter the experimental situations from which' the mathematlcs will arise.

'I’hat is, he must do the experiment himself, measure the thlngs which change,

) < record the data in an orderly fashion, and eXBIQ,‘Lné‘ it critically for whatever
general relation it shows. - o7 i . f}
. ‘ This exneriment, as well as:all others in th:‘fs tex 7 were performed by

- members of the writing team. You, as teachers, will be giver{ the results of
these experiments and that data we have collected. The student should be ex~
pected to find his ovm data and make his own analysis of it. With this\method ‘.
the results of each team of students may be diffe'ren’t but if their work is -

done carefully, the différences should not be too great. Even though these

differences exist, the real need for graphing the data collected, .and examin-: X <"
'_ ' ing the graphs-’ for definite relations, functions and equations should be

. ., @pparent.

AR W&suggest that a standard dat. ' eet‘be ‘used for aﬁl experiments ‘ “:(‘

’ . (Figure 1). x'If poss1ble, a supply .0of these data sheets should be dibtoed for

: the use'of your students during this coufse. ' In some of th later ex_periments ) .
we refer t® the data and graphs of experiments already perfomed. If the data Y

¢ ) sheets and/graphs are kept in some form of folder or punched for insertion in o

a ring-binder it w:Ll1 be easy to find- the approprlate page when such a reference .

’ <

- - . ) - -‘ " .
‘ Q o b B sy -
- ERIC \ . 03 3 ‘ ‘

- - * : .
FulText provied by RIC . .

— . - . [ .

3




* - 2 5.1
>Name
Title of Experiment : s
. . . ¥ Date

W

: - T~ L)

3.2 'Ihe lligg Sphere oo ~ .

* In performing this experiment and all others, the students should follow
directions carefully. Mana times the reasons for some dire¢tions become appar-

%xt as the exper'i_ment is performed. If you make a few trials of each experiment

before the particular section is reached you will most likely be able to expand

the directions and ease the students .over some of tHe more difficult portions.
/

This experiment is an investigation of terminal veloci‘ty,, However,

. only after the data has been graphed and analyzed is the idea of velocity in-

43 * )‘ Y
troduced : o ’ . 4 :
e 7 , The Falling. Sphere is actually a small steel ball bearing. When this
e . bearing is dropped into a cylinder of Karo Syrup it reaches terminal velocity .
after a fall of a few milli:qeters and then continues with a constant velocity.
v‘ * . . 7- 13 .
s > It would be advantageous to prepare a teacher demOnstration to s‘how how

the factors mentioned in the text will influence the speed of the ’ball and why'

.

- We must caremlly control certain factors in performing an experiment. .

(1) Cylinders (all the game size and shape) can be filled with various
: fluids, water, glycerine, a light oil ) anfl Karo Syrup. i)/;opping {
ball*bearings (all the same size) into each container should lead™ > |
. the students to reach. conclusions as to the effect of the fluid on

the velocity . . L .

e » .

5 . (2) Dropping ball bearings of different sizes’_\._gto the same container
8 ] N s
H s : filled with Karo Syrip will show ‘the’ effect of .the size of the
- '“!_ , ‘ : "sphere": on the speed. . , / [ . R s

¥ . (c) Cylinders or Jars with different size openings can be used éo show&
s the effect of the type of container on' the terminal velocity, The'
cylinders should be filled with the same type of fluid (preferably )

the Karo Syrup) and the same size bearing used as falling spheres.

o BN r ' ' N . fa< RN . Y 3

~

N 3
&4

T
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‘The effect of the didmeter of the container w‘ill be* very sma'll
, y1f there is any notiieable effect at all., - : i

.

(11») As an enterprising teacher, you will probably also want to deu;,on-

g

)

(A
-

Ll strate with a genufine pearl dropped in Prell Shampoo.

&
The student experiment should be performed with the same container and
‘the same ball bearing for all trials. The fluid used should be white Karg =~ *
Syrup. tFour trials will be needed to provide the necessary dat;a.

Vs . : BN

Y E MY, R
g 1

%

RN

) Affix a th‘in' paper tape te the cylinder with tyo rubber bands (or tape).
Fill the cylinder with Karo Syrup. Drop & small steel ball bearing into the
fluid close enough to the tape to meke ;airly accurate mérﬁs. on the tape at

+ regular intervals. A sma‘il horseshoe magnet placed against the outside wall <

&

- oi: the container will gttract the bearing to the inside wall.and allow you to " .
A position the bearing so that it will fall along one side of the tape.

A metronome is a convenient device for marking the equalE time intefvals.

N It may be helpful to adjust the metronome so that it makes a "elicking sound

: every second and then mark the pos:Ltion of the ball for\mrery other "click".
After a few tr1a1s you will adjust to the peat of the metronome and be able

. to mark the posi'tion of the bearing quite accurately. The students should make

RS

a few practice trials to develop the necessary techniques. The magnet is u ed
- toaretrieve the ball bearing after it has come to rest on the bottom of the ‘!
cylinder. The tape for each trial must be saved for use in the ,next section.

o of;’ the tex‘t. . : {1

= . f

Should a metronome be difficult to oi)tain, it"may be possible to borrow
. e w

-

one for a shortA time. Make a tape recording of the metronome sounding at the
correct inter\,rals. This tape can be Ela%ed loudly enough for the use of the 1

El
ass ~ ’
- e{ltjlre C1~ D - Js N e . L e __,]f_:_, ‘,-.,..—o—- i ‘j’j .o T
.

3.3 ‘I‘abulating Data ’ . “e e )
i ST T e v T ‘)i'"’n
;;' . The tapes obtained from the four trials must now be measured. fch tape
.. > in turn should be fastened to the centimeter rule. The zero 'mark ‘on the tape

should coincide with a centimeter mark on the tuker (Figure 2 in gtudentst ™

e ) text) Measure the distance from the zero mark to each mark on the tape.

ij}‘, Since these distances are to be plotted on the coordinite plane, accuracy
’ Ais important. The data collected by. the writing team is recorded in Figure 2.
’

LN - .
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C- N \ o 5 FALRING SPHERE EXPERIMENT  ° °, (
-, <L Triel J Trial 2 Triel 3 Trial 4
o Time . | Dlstance Distance Distance Distance
t 1 - d d d
(seconds) (mi ll.{.meters) (millimeters) | (millimeters) | (millimeters)
: o g 0 0 .o
' ” ’2 5.5 \, ) 6.5 6.5 6.5 —
b 11.5 \ 13.5 12.0 15,5 ° .
6 20.0 S, 210 ¢ 19.0 23.0 , |'}
g * 2745 ~ets | 2T 30.0 o~
‘ 10 35.0 ~ 35.5 3.0 37.5
. 12 43.5 k2.0 . %o.5 45.0 ,
¥ a iy 5045 \ 49.5 47.0 52.5
L ! . 4.
16° 56.0 57.0 = L tfs% ~ 59.0
18 ‘ 62.5. © 65.5 L 67.0 . ~
. : ¢ . ,
% ’ ) N A !
- .
’ . ' Fi 2 )
/ ’ N A ' igure . .
K/ . , A St ’
3.4  Analysis of Data ’ : / - <
5 This section is e genersl one dealing with the handling of expérimental

date. The students should be made to r;alize they must check thg domein and !

range of their relations befor\e setting the scaies of the coordinate akes.

The axes do not hage to have the hme scales. Foz;‘example, if we were to ’

graph the data recorded in the expemment on the lbaded beam, the load varied
s, from O, grams_to 300, grams whlle the positlon of the end of,;bhe Yeam changed

about 30 or 40 centimeters. If we were tg graph this data, the scale on the A

horizontal axes would go from O to 300 while the scale on the ver-tlcdl axls
}deflection at maximum load.

. 9 would go.from O at no load to the

! By connecting po:.nts the student is inferring physical continulty. H;* »
is beginning to develop the phys:.ca‘l model, but thif does not imply any math-, -
ematical comtinuity. ‘The decision on whetHer an experimdat could yield inter-
medicate pgints must be .based on phenomena being studied.’ It would be desir-

' able for the téacher to .mention a few examples of .discontinuous phys'icalq. * /"
situations_.' For examplé, there 1s a maximum height to f:’n}ch 8 ball baunceg..

) If the height of bounce is related to the ‘c_:orresgonding bounce number, physicdl

t
=
N




2 i T ,
continuity eannot be’inferred. The graph is a set of distinct poi which
% )
cannot be cOnnected, for helght “cannot be inferxed for parts off bounces. !

Half bounces cannot be assocleted with a maxmum height.
ke , . - N . .
. [ ‘ ] e ,
3.5 Graph}tng the Experimental Data .

o

Obtaining the "best straight line™ involves meking the assumptlon that /@ '
there exists a line Which best fits the data. Often it will not be too diffi- ) é
cult to obtain a line which will satisfy the student. Do not pu% too much j'
stress Qn this now: The student Will soon have practice, and he should learn 1
quicklys This line is an idealization of the éraph of the °ph3.rsical data.

K © This idealizatio;l does not represent any possible physical situation. It %5 :
- purely an abstraction. . “ '

. . , R T
3 . The slope can now be determmed by 'the studentﬁ Thls sldpe w:.ll have a . )
. spe01al significance. Note that,' the vertlcali stance is a measure of the &

- .
‘ fall of the Ball ”pea.rlng, and the horizontal @nce"ig a measure .of the -
corresponding inferval 6f time. Therefére, the slope becomes * .
- " & M . d ) . .
. .measure of distance -, i ST N
N - / * . . measure of time o S 4

v
ror, distance per unit of time, which is:velocity.. o
ot L . .. ) 1 ©

¢
v Since the data grephed determines a trai‘ght llne, the veloc1ty of the
'falhng ball bearing 1s constant. This subs'tan'tlates the statement that ,
:; (”\ terminal ve1001ty had been reached by \the time of the initial readlng. 'L ‘(‘ .
. Iy, . oo ,
F‘n.gure 3 is the graph.of, the date recorded in Fi@.fre 2. . -
e v < . e Lot N
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P g

Py y Do these points come clos\er to forming a straight line t‘hg.n any of your

z » t i - } Ao

[ ; T
R Erey - | j . s ; ' f ) - o
o o £ i ] ‘ ! . ) .
. L y .

. . . .i s A ;
T The appendix to this text gives a method for finding the "best fitting
line" known as ‘the ' 'method of least squares “This method is probab].:,r 00

difficult to present to students’ E‘t will be he.Lpful to you as a teacher.,

Exercise 1 ' , é

-'Ihe purpose of the first two problems in this exercise is to give alternate
ways to find the best straight line from the data already collected. Since the
data collected by different groups of.students should vary there m'.ll be no
standard solution for either problen. The teacher should, however, discuss ’the
problems in detail to re1nforce the sthdents understandmg of a "best straight

line" and techniques of handling experimental data by taking averages.

1. Reproduce the "best straight line" you ha¥e drawn to represent the data
of this experiment on a clean sheet of cooxdinate paper. Take the four k
pieces of paper tape useq, to mark the position of the ball and arrange

° them so that the zero marks are in ljne. On a clean fifth tape make a

/s

mark to indicate a "zero" position and align'this mark with the other
, zero"mérks.

1

\

T] New tape . .

op

toy fEod

3
,
5

[ e S )

\

\ ] Four

R = 3_J data

R v, I tapes >

The *other marks on your tapes will not be "in line ; but should tend to

e =b=F -~

-3

PUEr PP s SN
. PN S R}
b =t=1=~~
N B Ep= PO

op

’
{

.

‘

.
P

.

‘
Se.
y¢ >3

N

-

¢

[

~

.

\

I4

§ -

.

-

4

LY

)
center in groups. Make a mark on vthe clean tape to 1ndicate your "guess"

as to the position which bgst represents "each vertical set of marks. Ug-
. 'ing_ the fifth tape as if it wepe a new trial, merk your m'easurements in.
. the usual way, emter the data. a;n' your table, and g}'aph the ordered pairs.

- 1
e h v e W

four trial mns? How doés th1s line compqre with the "guess" you n}gde :
from the "braid" arrar@“anerrﬁ"" e ' ! J

2.;»» From the data of your four trials find" the average distance tmm A’_\’

» “ the ball in each time 1nterval~ To do this, add the dist(ance‘ e’ach’ Arovr”o‘fq ‘r‘}‘*rﬂ

th‘.e trials ‘in Table 1 and divide by the number of trials. Mske a new '

?

column in your table, Average Distahce {nm)", and now plot average dis-

tance versus time on the.same sheet of coqrdinat'e paper used for Problem .1.

How close do these points dome to forming a straight line? You now have

th&'ee lines on this sheet of coordinate veper. The first is the "best

straigh’c 'line" from your original data, the.second is the line obtained ..
. in l’roblem 1, and the ‘third line is the one obtained by t\_‘e process of B
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avleraging-. How do these three llnes compare?

o \
Draw the first quadrant using a scale of 1 second for each horizontal
Dray a line

. division and 1 millimeter, far each vertical divislon.
which passes through the orlgln and has & slope of Imm'/sec, aﬁﬂ;‘éc',
Label these lines. i

and 3 mm/sec.

PR 1 N
, ,
LA L et e S g
. M

Lt

Repeat the above exercise m.th a horlzontal scale/of 1 second per divi-

sion; but with a verticel scale of O. 5 mlll:Lm/er per div1s10n. Are the :

(SR

<

two slopes ;the seme? \
‘The slopes in Problem 3 . ):
, and Problem 4 are the
same because slope is
defined by .
. _vertical distance
+~ horizental distatice '

e
Hence, the slope of "el in
both cases ‘is )

h
= -E =1,
) 7 ° L - 1.7 c ',—-«—l,:..,?
Draw a fourth quedrant on a shéet of coordinate paper., Use the same
horizontal scale (in seconds) that you used to represent the data from
thé Falling Sphere Experiment. Make a negative distance scale-(in
Note' that this was the orienta-

Plot the time-

-
P iakalhd

i
1

millimeters) along the vertical axis.
tion of yodur scale whexd you performed the experlment.

distance data from your experiment on ‘this sheet and draw the "best" 3

line.
velocity?

Calculate the »slgpe. What is the. 51gnif1cance of a negative

>
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A e B

v~' o Table' for No. 5 0 Y

2, time distance o i
' ’ -10 ; , .
o |- o B K 3
. 2 ) -6.5 -20 - )] y
L] =135 ol Q I
! 6 -21.0. . S
N 8 "27.5 . _ho - - - ®
10 -35.5 . . .
12’ -k2.0 -50 -
1k -k9.5 6 ’ ¢ .
16 -57.0 ) - 1
18 . "65-5 -70 “le K : el
The slope is m = -3.6., *
The velocity is in a
downward direction. . ' ’ . }
\‘: o / . .
. M P Y . . ’
3.6 The Point-Slope; Form . o ) -
" There are several forms .for the equation of a straight line. 1In this -
section the’ pbint-slope form is devgloped. This Torm is reduced to the.slope-
intercept form. “:'“ ’ .

]
A
The ordered pair for the point at which the graph of the line crosses the
horizontalyaxis would:have the fom {a,0). Now choose afy arbitrary pdint ofi” ™~
the 1ine having coordinates (x,y)s The slope, m, wh:Lch haj been descrlbed as

j

S
n

Tf"‘ ig;;:ig:ilcﬁzg;e will be Wten as X : 9 2 a from v;ﬂi;h we’ o;tain the equa-
tion ..

5w.' . . ) ’ y@-0=m(x-a)

ig—‘;‘«.».yoi'?* St SR . m(x -a) o~ "y .

.Extend the dikcussion to generalize the equation. ;1'1:18.11 is, éssume the
first point to be a general point with coordinates (c,d). Retain the second
’point as the generaj} point with coozﬁinateé (x,y) ., .We hrave now complétely

[ generaliZed tike discussion. From the definition of slope we have the equation

: ) y-4d _. R
o - X ~-C ‘ ) Iy
A Now the equation becomes . '
’ T oy -d=mn(x-c) )
L% 55 )
Qo . VA . {; { .
. EN,C ' £ \ ‘ ’ [y
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. { .2
and (12,8).

i
1

A~
s , y-2_2
- x-3" 3
'4’_ ’ 1]
y-6=2x-6 .
'?_. ) L 5 -
: yE3*-
i , Using (12,8)  ~
D e o = r-8 _2
‘.-_ . x-42 3
{:«
. or !
: T e . 2
rw - - se N ":?‘x .
. 4
. " -
A T “the equations of “the
: . indicated in the following graph.
%/ & g
;,, 1
& p
s 3
)
£

‘Hence ghe slope is ‘

3 he'géperah point-slope foz;nl\
The sect

ion concludes with the derd vation of the slope-interce
as a special cdse of the pdint-slope form.

j
% ‘s}

\

e Exercis e2

—_—— e, = i =

~ m

~

8 -0

17 - 11

s the sgecial forms whén it applles to the particular line.

In Problems 1 and 2 the students will have to ‘calculate the slope,‘
e, . first using t?e coorg.ii’iates of the two points read from the graph.
the use of this slop€ and one of the given pomts together with: an- arbitrary

f

Yor example, for
2yoblem 1, the glven po:Lnts R and S have the coordinates (3,2)

¥ 4

Boe

,U;!J:- w] &

4

T wlE

w}!w Wi+ w}!no wi

+
of

Then by

lines ,Zl, ,22 and £3, using-the two points
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8 10 12+ 1k 16 18 20 22 24 . .
I
Find the x and y intervepts for lines l * and [6 ’ ’
Do not extend the lires to obtain a graphn:al solutlon. Renenber that
the y-intertept is the point for whith x = 0, and the x-intervept is
the point where y = 0. .
N . 20
Lsiy-2= (x-l9) Lg iy -28=-x-8)
3‘ . ; 20, 160
= - 2 = - + == + 28
vkt e A S &
° - 3 8 y ¥y = _Qx + 326. ' .
y‘ = =X + = < 7
- 5 5 ¢ : ¢
. 1fx—0,theny=—58- B ifx=0,thenyv=-§$— - .,
< ~ W
. Refer to your time- dlstanbe graph obtamed in the Fallmg Sphere Experl-
Tl
Mment. Using a point not on the ’vertn:al axis- together with the slope, i
- find.the equat;ion to represent the best straight_line.. Show _that this
is equivalent to thé equdtion obtained using the slope-iptercept form.
T ‘_The actual equation that each student derives will depend
upon the panticular set of datd that the student has col- ,
lected. Care should be taken to convince the student that Y
"~ " -the péint-sTope f‘-m'and\thel slope-intercept fom are . . . -
. . equivalent. ' . '
‘4;: - b
. /
1
. 57 ;
v ‘J <) N .
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s

.-




‘i;}‘,

' C oy T

Solve each

| The following equations are. exnressed in p01nt slope form.
State the skope.of the line and the

s

of these for y. y-intercept in

each case.

y-intercept
18
L
-8
-13.5

o

N B ' yq';'ﬁ‘6
y+te

3x ».18 "
-ox + ll»

-bx - 13.5

3(x + W)
-2(x - 3)
%(x - 2) -y
'y = 0.5 = -b(x + 3.5)

y

v

<=

Make a graph of the data obtained 1n the Loaded Beam Experiment, fﬁt”
"best" line amd obtain an equatlon of this line’ using the slope- ,
1ntercept form and the point-slope form,'

' ’
. N

See commert made for Problem L. . .

.

~
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Relations and Conpverses ’

This section continues and extends the section on relations in
Chapter 2. If necessary, you should review 2.2 before beglnnlng this section.
The concepts d1scussed in Sectlons 2.2, 3.7 and 3 8 will be used in later

work in this text and in more advanced work in both scierce and mathematics.

Every effcrt should be maje to see that these sections are clearly “understood.

.

<

QA e roviced by s -

T L !

‘#ﬁgﬂw . Exertise 3
m‘@) “ Lxereise

and tell if the relation is & function.

an

Graph tﬁé’ordered pairs given below, state the domain and range

I

-

In each case form the converse relatlon by 1nterchang1ng the first

Graph the converse,

t state the new domaln and range and tell if the tonverse is a

functione
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m;{(a 3) (2,1, (2,5)) -
converse) = [(,3,2) (,2), (5,2)}"
. . \

,l &:;";‘q‘)'

ﬂ ' Al
= ‘e g 5 -
cr
L . ’ s
1 ' \ -
g . 3r
- i ' : ir
1 1 ! 1
2 ol 1 2 L : 0
‘ v, 3 :
' domain: {2}
range’? (3,’4,5} }
e ¥y
not a function .~ N LI
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N A “T<‘ Sy “ K ~
Jiw X RS A A

2. ((543), (6,335 (7%%7} -

((3,5), (3,6), (3,73}

-

T

( convex‘se)

[ 1 1 1 =
12 3 § 5
(3,4,5)
(23 -
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’ \ .
g5 . o
w: i - Ay -
3K }
" »
3,4” : ,, ¢ * 8
Pt : -
£'%
. N
x ¥
’ ’
. ° o2 P
L]
4
’ .
. v
P
- .
' N o
- .
/ .

a

.

-
. //' .
/v./ VN
p L
~Le 7 .
“'4./; !
RN
»
£
-

UV N
g
LY
. .
R A
.
"
‘ .
- . )
- .
~
—_—

—

R e e
iR s b e (g e



,
v

3. W= (3,6, (3,-2)) (4,2))
: (converse) = {(6,3), .(-2’3)’ (-2,5))

“h g

A

acain: (3,4) (-2,6)
range!  {-2;6) \ SRR € FL5
not a function ot a ﬁmption

’

/

u-. ’P = [('l)"3)) ('2)'5)) ('3)'7)] -
[ﬁ(converse) = ((-3,-1), (-5,-2), (-T,13)}

| ———

-

0

ddmein: (-1,-2,-3]} ('31‘5)'.1%?
range: - (-3,-5,-T} . {-1,-2,-3)
functién .. ' ... function

. .
-t
= H

s;




" 3B  Inverse Funchions o
‘ The definltlon of a funct%pn ih the text tells when a given relation
is a function« The graphical methods glven for telling this may prove ﬁost

useful at this poin}.

; *Exercise L < -, .
. . - - * COAR
Refer to fkercisg;zb in Chapter 2. TFor each of the graphs), check ﬁbﬂsee

if the converse of the relation shown is a functfon:

1l.
Are any of these

-
‘ ‘s .
relations one-to-one functions?

Problem 1° . X
. - v P
(v). converse is a (¢) <converse is not

> .

(a) conversé is not ]
a function function ° a function

T T,

s - .
/

4

converse is -

(e) converse is not (£)
a functi@n

converse is not
.
a function

a function

¢
T r

.

r

N .
.

(g) .converse“is not

- a function -
r

N

W

(h)
PN Tfug_d

s

e *

-
-

« ©
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A Tt

2

(v) Is this relation a f{znction'{

P -
b ) .

! .
] . ' - L}
1. i Lo ¥ a4 1
((12) (-18), (2,0 (2] 5 | 1 ’ o
Converse is not a ﬁ{nctlon i .
(6) ((1,3), (1,-3), (3,93, (3,-9)) ‘
. Converse is a function . 1
(c) ((-1,-2), (-1,2), (-},-6), (u6)] ~ ’ LY
Converse ik a function -
. 1 ] <
@ &3, & -d, &, —3-, %)u\v .
- Convéyse i‘s a function .,
(&) ((£:5)s (F,5), (F:10), (%,m)]
Converse is nét a function ' L ’
“None of these reélations is a one-to-one ‘function. B e g

yIn tfle Falling Sphere Experiment, the data in the table forms a re_:l.a:-"
tion. - ® -

] (a) What are the domain and the-range of this relation? )\

The domain is the set of time values and the range is the

>

o
set of distance values. )

T : .
Yes, , - .. - : . ,’_\
Does the "best straight line" describe a function?
B Yes, o T '

'Axig: the domain and range of the "best straight iine" relation the same

as the domain and renge of the "data relation"? Explain.

Yot necessarily, singe the "data relation" is a discrete

- R Fa ; -

. relation and the "best .straight line" is a continuous res
- - &

lation . 7

“Are the domain and rahge of the equation found to repx’esenbo-tho—a-best N

stnaight line" the seme as the domain and range of the best straight )
line relation? . ' ' \\‘ a . T

- }
4 \

L4
The domain of the graph is a subs
real numbers, .while the domain of

the set,of all. real numbers.

.
i

15';~,{J -
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6. In the Falling Sphere Experlment we obtalned the. equation d = mt.

‘2”'% Ohtain the converse relation by alge'bralc means .
A )

. - .
Lt ) - t= —d where ‘4 is the new domain and t is the new range.
. \How mlght we have conducted the exggriment to give the converse rela-
() te .
. tion directly? i - . ,
’ \N - ;

- ’ Pick dlstances along the contalner and, with a stopwateh,
s B . see how long it takes the falllng sPhere to travel that - .

. distance. N
R S .
Te Is the converse relation obtained in the preceding eXercise an inverse

function? Explain. . - .

})‘,

Yes; every distance is traveled in exactly one time and
every time has associated with it exactly one distance.
’ . -~ -~ - ‘. : ) '
3@: . ‘ \ ) ) : '

.#3.9 Graphical Translation of Coordinate Axes .

.

Translating axes by the use of the sheet of frosted acetate (or other
substitutes), is not difficult and will often help the s_tudent to simplify

the equation'of the line and the orien—tation of the graphe We wi also use -

~
!

translation of axes in later experiments which will yield quadratic functidns.
If the acetate sheets are used, the teacher should draw g set of coordinate
«, . @axes in the middle of each sheet: Use a heavy ball-point pen. po not write .

eny number or scales on the'sheet. Students will write ‘on these witi & pen-

cil singe they can then be easily erased. v .

- *

While it is poss1'ble to position the new axes in any manner whatsoever,

(1.e. 3y they can be translated and rota% translation horizentally and ver- .

tically will be»suffmcient for our PUrPOSes . ) TNV .-

The amountieand direction of translation may be purely arbitrary but when .
V Wwe use thls on graphs based on SClence experiments the physical situation AN . '
: usually suggests a "natural" locatlon for the new axes. . . - )

. N
. ) < ‘ v ~ .
5 , P
i . , Exercise 5 v -
1‘ 1. With reférence %o a set ‘of coordinate axes, select the point (2,32 and -
; . through this point draw the line whose slope is- ; / . o
g’ ) " What is the equatlon of this line? ’ . . .
: ‘ ) y-3-—(x - 2) . , )
* / o
~ L4 % -
% B . 63 4 . ? -
" (‘3 q . .
kY
\ . ) /




N

~
. 2.,
T’
S
b
s ore (‘1'
3
.
I
)
. . N
. - -
»
N
P
v by

AV Use y‘our plastic overlay ts obtaln the new equation of this linﬂ when

s

the origi.n is shlfted'
(a) to the left 3 units

J— B

Y—3-'—X-2+f3])

(v) to the right 3 v.nit'sr
y—;3\=~-12-(x‘-2+3)' o

e
° AN Y

y-3=3x-5) o vk
(c) b units upvard _ (4)- % wiits dovmmverd -
. yeSrkegx-2) 0 y-3-beglk-p) ;o
L ytl=3x-2) y-7=%x-2)
‘(le) 4 to the left 3 units and (£) to the left 3 units .and .
up. 4 units j down 4 ur{its .o . .

-
-

yt3+b=Hx-2-3),
y+l=%(.x-5) ’

qehaleo2-3)

y - 13 = %(x - 5) :

.
.

With reference to a set of coordinate q}ées, draw the line which pas;'e's
. through the points (1,7) and (7,5). What is the equation of this line?

s 1-2_2__1 t : .
BEYTTTET U3 .
N [
P11 or =5 _ .1 .
> x -1 3 ! . ' X "'7 3 -
1 ' 1
y - 7= - S Yur 5= - 5(x-7)
. Use your plastic overlay to ‘obtain the new equat{on of this line when
the origin is shifted: -
. A
(a): to the x-intercept r )
89t y =0 « ) . .
-7=-((-}%-i) , y—7=-%(x‘-1+22)
21 =-x+1 " y-Ts-3(x+21)
s X =22 . ’ :;'-y-7.=-'%"x-7 *
E hd N -
: = -
.o o YTT3
(v) to the y-intercept AR ,
let x=0 PP 5 - X
p EES
ooy - T=-30:21) Wy -1+59)
1 ] g
y-173 IR
L1 22
= + == = 4
y=1%3=73 y
L] d "
64 a .
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; s < s Fo, W™ &
Ty e . ; . , P > . A i
o LIS * . ! “f e % = N
X % &

(¢) to the point (4,6)* " - . . \ ot 1
S Ty Nty .
. T y = l = = %x * 3) ! ?‘} e L %
R o 1 N DY ” : v“
- . . ]} - : l . s R
- 3.10 Algebralc Translation of Coordimate Axes oo B 1 .
- . LY w :

This section is purely a mathenatlcal discussion of translation of the

. gjcgs. Except for the better students, you should not expect your class to “i -
fzia's‘ter thg.‘i subject. Some of them may "d}scover" the algebraic procedure while
doing the graphital translatlon. Graphical translation (Section 3.9) is the
section to be stressed fn the study of translatign for this grade level. You
may feel, however, ‘that more drlll similar to Exercise .2 will be needed. All
you will need to prov1cl= this dv‘lll is to give the class equatlons of the sort .
3x -2y - T and .ask them to translate the origin to various po:.nts like the
y-intercept, the pomt (5,%) or (0,6), and so on.

. . To f;ransla'tg the axes,of this tquation to the point (5,%) write it in

. the form ) - o,

o i) »

It is now in the point-slope form and s -

[y

Y+ (o)¥x=m(x+(——g—)"+h) A -,

where h and K are 5 and & respectively; .This becomes * ) N RS
Lo
Y+0+ b= i(x --)+5) .
R S -
. * S Trh=g (X+3) ,
. o =3 . .
or Y 2x . * . - '

Since the point {5,4) is on the line, you would expect to get equa'l:,ions in

the form . .
b . Y =mX . .

- -

: If, on the other hand, you want to translate to the point (5,-4), it is

done in this manner: .
=3 I . .
S Cxs )+ (=3 (x+ (-] +5) .
: Ty . oy =g ()

T . ‘ Y _'\_3_ + ) -
b o o ;;\. o Y = 2X 8 . e .
’ . *"‘.“ * i :,5 ¢ ' 65 ' le . ,.‘ * . »'
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g ‘ . . .Exercise 6 ,
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v

1

2 . - . "ﬁ

ERAR = ' ’ ‘
o . ) . - C e 4 .
Fan - A L - vt
S . o ‘ Sample Test Items J

I , b

L Wr_i’;:r.e't‘he equations of the lines 11,‘ [2 and £3, using the two points

. indicated in each case.”
. . &, .

.

2. The following .equations are expressed in point-slope form: Sye éacp
of these for y. State the slope of t'he line and the y-intercept in

"y

each. case.

4 ’

t’ . (a) .y-9=6(¥+7) °

L. (b) y+4=-3(x-5) . ’ .

" () y+3=2(x-8) - . |
Y e L f

3. (a) Graph the ordered pairs given below, state the domein and range

V. « “and tell if the relation is a Yunciion. - .8

;""rq" . \-\ P (b} Form the converse relation. Graph the converse, state the néw’ .
' domam 'énd range and tell if the converse is a function. '

'f",, .r : ' . ’ T

< - @(5,-5), (2,3), (0,0), (2,-3), (5,5)) .. -

ERIC

i |
b - T
B, o
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JAruitoxt Provided .-

. S
gt

Converse of a l?near function is a linear function. If y & mx is-the

%x is the equation of the

A B

wmﬁmofﬂ@oﬂ@%lﬁm@bthny:
conve;se. ¥hat conclusion cen you draw about the graphs of a linear

) L 1
function and its convetrse?

The graphs of.Qarious relations are sketched below. For each graph:

(1)

(11) Is the convérse relation a function? .

N ~

Is the relation a function?
*»

(iii) Does the relation and its converse form a one-to-one function?

() ()
A 7™
\\\\-_
. V' i
L@ <4 (@)
b

AN

- A}

With reference to a set of coordinate axes, select the peint (2, 3)
and through this point draw ‘the line whose slope is %.

(a)

What' is the equation’ of this line?

-

s (b) Use your plastic overlay to obtain the new equation of this
' line when the origin is shiftei . - o
(1) to the left 3 units . x _
e V. ~ - ]
(41) 2 units downwerd * | , .
(141) 3 units to the left and 2 units downward.
» -
.S ' ” '
L A 0
* "5 i\ 67 = -

<~

.

.

.

Y
~

N N
~ ik o 7
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a1 Text Provided by ERIC

ks . - :
S g e 1 e

Write the equa’cion of the line which passes through the poin-té 3, 2)

and (7,%) in point-slope form. tha:.n the equation of this line

'algebraically when.the origin has been translated . -

.

‘(a) to the right & units

“(b) to the Ieft 3 units and @2 units. ’
'Y H < .

finswers to Sample Test Items )
==

£
i}
=
+
\n
'-l
8
1]
N
-

i

N

<
1]

(e) y=gx-15 m=%;(0,-15)

L domain {0, 2, 53 .
range {-5, '3: 0: 3: 5) '

X relation is noi a function
ry - . . . -
-

» * . ’

R domain {-5, -3, 0, 3, 5}
- ' range . {0, 2, 5} * )

converse 1s a function .

ad . .
;- o

. , 1w )

i




ad . i

- @,

‘. - v
h, The slope of the converse of the linear function is the reciprocal of

=,

.
A Fuiiext Provided by ERIC

. the slope of the originsl functién,
original function and its converse is éﬁ%.-

5. ;g;y Relation is not a function.
Converse is a function.
Relation

{b) Relation

Converse

is a function.
is not a function.

Relation

(¢) " Relation is not & function.

Converse is not a function.
‘ Relation

(@) Relation is a function.
Converse is not a function.

Relation

6. Equation of 'line

y=3= %(xf--e) .
(1) Y-a=%—(x-‘2-3)
, t- 3= -5)
(11) Y‘3.~"2=%(x-5)
. BREEERE TR
(114) Y-5=%(x-5)
J k-2 1
7. Slope = T35 0
EQuation
. l ,.
(a) Bfl:2='2‘(_x-3) N .
v y_2=%(x—3+h? N
R LV
. ) yse=3x-3) ¢
y-2+2=3x-3-3)
.y=‘_l§_‘<x-6) ke ":

(

The product of the slope of the

and converse do not form one-to-one functions.

and converse do not form one-to-one functions.

l D)

and converse do not form one-to-one functions.

3

I3

and converse are one-to-one functions. B

o x5 e ——

-
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Chapter 4 \
' 4
. AN EXPERIMENTAL APPROACH T0 NONLIN;_EA.R FUNCTIONS

. . - )

IS . - B
-~ " d '
*
5 ‘
. N » “ - .
-~ i . N N

- wh ' ’ . \

.- : N R}

4,1 Introduction ! ’ o ' ;
. —_— . P . - [ e N
A3

. The treatment of nonlinear functiops follows naturally from the linear -
functions introduced in the preZeding chapter. The work in this chapter as- L

sumes the development of linear functions as a, prerequisite. .
N 1 N .

. -
The first experfhent in this chapter, the Wick Experiment, is designed

- - a

tqgyield a definite nonlinear graph, and thus lead to a discussion of a "best

. curve" rather than a "best straight line". - . .

’

* s In fhe second experiment, the Horizontal Metronome, the variables are

selected so that they yield the quadratic form

e Uy = e ' .

, 1

This leéds naturally into a consideration of the role played by |fhe constants
A and C. Both the rate of opening of thikparabola and vettical trdnslation
are studied g aphically. . ’ - : .

In the tkird experiment of the chapter, the Oscillating Spring, the con- "

v vgrse of the duadratic function is actually generated by the® experiment From
this there follows a discussion of relations and their converses. Again the

emphd%is is on a graphical analysis and the development oOf the students’ intui-

’ tive feel for functions. The last section of the chapter considers the hori-

’égntal translatiod of *the parabola. ° ) \

4 -

A

7 As in the earlier chaptera of this text, the’ experiments are designed to

motivate the students in'a natural way toward the mathematical development.

- [

- B “ L
3 - . .
, . - 4~

. . % . ) ' . -
L 4.2 The Wick $ T .

%
Since this experﬁhenk is the initial one in nonlrnear relations, it
- should be performed in snall groups‘of two or three students. The equipment

‘Qneeded for each group is: : ’ .
. RO ' l 500-cc beaker or drinking glass or guart jar, etc.
RS ) 1 ruler with.metric seale ‘ . s . of

&

v

»/]: lC 1= W LY I3t -«-u/‘f//"v‘\« s

-

P s i'v
Y
. - r3 L



1 roll of cellophane tape N ,

'

supply of strips of chromatography paper, approximately
15 cm long (% or 5 for each group)

3
EN

P S P B

.
‘

Th:is experiment is désigned to yileld .ii' definite nonlinear graph. ‘I'he
next two experiments give only a small portion of the curve and it 1s neces-
sary to analyze the physieal /s:.tuatién to realize that the data points should S
be con.nected by a curve rathér than a stra!ght line (Figure 1, (a) and (k) ).

. ) N i

. X " \¥
‘;J
- , hd
~ ~ 4 ,. s -
i
- o . .
Y, b L
/ . . , . ,
. . 4
(a) The Wick Experiment " * (b) The Horizontal Metronome .

Figure 1 L

N

The experimental setup is q\.{ite simpie (Figure 2). The s‘tudent's should
make two or thee practice trials to develop the ability to place the wick
- into the water so that the Zero mark is right at the surface®of the water.
One student should watch the water move up ¥A\wick and tell his ,partper as °
the water reaches eagh numbered point. The partnez; shou}ld record '(igg time

ﬁ‘n
<

@
the wick is placeé in the wat’er and the time the water reaches each point.

The students should alternate these roles for each trisl.

1]

. 4 (AN |
. . . ‘_ " s, 3
ERIC - P | 3

Aruitoxt provided by Eic: M , -
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4. 3 The thsical Madel

L5 N

Ai‘ter the students have completed the plotting of the points represented

e v e Age oy re 1

by the distance-time relation, it is necessary to get some sort of line or
curve for the data., It is immediately’ obviou}; that no straight line can fit

RS

* the da{‘.a, and the most realistic physical model is a smooth curve through or
g _near the points This best curve, through or near the points, represents a
M kind of physigal idealization of the data. Moreover, physical continuity is
assumed; that is, there would be a time £oF any pre- selected distance one
. would care to use. It is to be emphasized that at this point no mathématical
. ideaii:zation,of the*data has been made. -

by

s compared o0 the proced_ure of drawing the best straight line through
‘or near the points in the case of a linear function, the best curve through
or near the ,points'in the pfesent case has an added feature. The ideal curve
should be a smooth one. The smoothness criterion stems only from our physical
intuition concerning the behavior of the variables in thd experiment It will
be found later that the best mathematical 'model of .the relation involved is
also a smooth curve. - 7/

-~ - ’
-

\ ' : . »
4.4 Mathematical Model

A

Oncé a smooth curve has been drawn, the student has the problem of finding
'a mathematical relation between distance and time. Exercise 1, which follows
this section, is a very important set of problems. ,In these probiems the stu-
dent will see how some operation on one of the variables in a nonlinear rela-

tion may yield new ordered pairs which are linearly related. >

R : ’ Exercise 1

/

Each of the following problems consists of a set of ordered pa;rs of the form
(x:y) . ’ ) . } 4
(a) Graph each set of ordered pairj (Check the domain and range before

.\\

setti scales on the x- and y-axes )-

'~ ($) Draw g smooth curve through the,points -
(¢) Form/a new set of ordered pairs followiWhe ingstructions given with
R .

‘

each problem. (Problem 1 is partially.completed as an’example.)

~—

(d) Craph this ney set of ordered pairs on a new sheet of graph paper.
. (&) 1In e&chcase, part (d) should yield a straight line; find the equation
of this,line using the methods of Chapter 3.

s o~
T

Q X 73 7 8 .




LN N
A

I .
((0,0), (3 1;>, <1 1), (2,4), G, ), (46), (5,25)} T
? — )
| ¢ Form ordered pairs of the form (x;a,y);_
y N .y
, ) f(0,0), (‘E: ‘E): (l l): (l*' ll').v .
- (9 9), (16 16), (25,25)) ,,
3| , -
.e5 .
. S
20
15 ~
10 -
5 .
1 213 4 5 * a
1(1,0), (2, 6»), (3,16), (%,30), (5,48), (6, 70)}
’ Fomhc;;d:;d_p‘ai;s of the form (x sY)e -
Y {(1:0): (,4":6): (9:16): (16:.'30): :. 7
79 : 7 (25,18), (36,70)) R
60 ' ‘. :
50
ko ..
30 X
20
10
5 0. 15 20 25 .30 Cy
s~ T T
, i B . ;"‘
) . T : f
‘. .\‘ s’ . ;’7- .




fﬂ ’ i ) ' ) 4 e
C3e (), (1,13), (2,5), (3,14), (4,33)) A
¥ i : : . \ ‘ ’ ‘
1 ) d Form ordered pairs of the 1;orm (x3,y).
L o), (1L,1F), (B5) (T,
o " (64,33)) - .
o * - ’\
Y
5 X
. N
Ty, {(0,3))/(1,14-), (1*)5)) (9)6’)},}(16)7)) (25)8)) ) . . : .'
‘ ' : . , ' Form ordetad pairs of the form x,y). .
' ((0,3), (1,4), (2,5), (3,6),
(‘*:7), (5,8)} i -
¢ R * - &£
. y 1‘
’ -3 S -
0| "=T0 "1 S
y=u+3
8,
. vhere ‘u = Vx
) 6
\ 2 * :'
?‘ 1 ) ’ 4 : - ’
' ’ ' ’ * )
5 10 15< 20 25 * 1 2 3,4 5 o,
, « 75 g0 : .

~ - R DA A




D5 (30,2), (05,2), (10,3), (6,5), (3,10, (2,5), (2,30)] ‘

° -

Form ordered pairs of the form (S}E’Y)'

1 1 A 1 :
[(36)1)) ("1'5')_2)) (1'6)3))' ('6)5))_

. . 1 1 A Y
. y . . (")10)) (5)15)') (1)30)}; ‘
3 ° 1
. 2 -1 1 ’
( 30 m= ———l—'. = e o jo

30 .
Te0|y =30+l ' ‘
15| where,u = %—( §
. %
.. 10 ’ i
3 [
5 .

N
Wt e

vl

‘?

N\

N

S

=

<

’ ' - J ‘ ’ N

6. Using the set of ordered pairs (d t) you obtained from the Wick Experiment,

form and graph the ordered pairs: A
- . ) -
(a) {(a ,t) . The graph of each will depend
. (v) (d,te) . upon the particular set of data-
(¢) (a3,t) that the student collected. ’
s, v Which of these givés data which 48 closest to a straight line?
; .The plot of (de,t) ordered uld closely approximate the
! graph of a straight Llide. :
Z:’ - L4 r i .
N _ L} ” ' R ) [
k.5 The Ho\rizbntal Metronome Experiment : L
This experiment should be performed in grOups of k or-5 students. The .
- equipment needed for each group is: €
o 1 ,high-ﬁpeed hacksaw blade (molybdenum steel) oo
. 1 one-pound squére Of plu.mber's lead or soldér
Q ‘ ~7% ., 7/)\
ERIC - 5% ‘
© B v : {
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3

’ ' of the mass. , . K .

..

the amplitude for vibrations of large amplitude

/

cXamp base vd.sek 2-inch wide. jaws o

'l' wrist watch with ‘sweep second hand (stopuatoh ¥ avaijiable) ;
A vibrating eléstic rod is tsea as the introd?etory experiment to quad-d
ratic relations. Koy mass which is acted up@n %y g forte proportional to its -
displacement will execute simple oscillatory'motiqnlv In this experiment, the
lead‘mass is caused to move by the elastlc forces of”the rod. The student
A stopwatch is conwgnient.
bui it is g@lso possible to mdke the. time measurements with the sweep Second

*hand of a wristwatch.

t

text calls for a.stopwatch to measure the period.’?

The students may question the validity of timing many
oscillations and dividing by the number of oscillations to get the period

It may bé worthwhile to try this method for 10, 20 and 50 oscillations- showing
the period is the same for each Case This should make the method descriEgd

2, \Yl‘\,’ i N

nable° ;"
i~ -

As with most oscillating syatems, tﬂ% period is slightly dependent upon
The mass should be pulled
At long lengths (greater than
'20 cm) the period length relation does not follow a parabola
exercised in startlng the motion of the system to prevertt a

in the stuéent text seem xe

P

>

aside Just enough to ensure 50 oscillations.
Care must be

wobble"§motion .

.
N

The text suggests that measurements of the period of the system be made
You should have the students
take date’ with as _short a blade length as possmble
parabola is most clearly evident at these short lengths.

for blade lengths ranging from 20 cm to 10 -cm.
The curvature of the >
A table of values

* found w&th similar equipment is shown on the Jext, page (Figure 3)

S

The students, themselves should enter the column headings as they see the
need for these particular Jhéadings.

Once the class agrees upon the approp-
riate headings, howevér, uniformity is.t“,be desired. There will be a need

for only the first four-columns at tbis p01nt :;i e v

The students should fr at, a In this,
wa§ eag student will follow cl fely all aspects of the experiment, and profit
‘ d‘diigly. Thés experiment
g}/

o 1

’7possible, work in teams of four.

ses its effectiveness’ when done as g student
1

or teacher demonstration

T on\coordinate paper follows closely the proce-
Since the curvature of the parabola
eir data

carefully. i;t is 24

, 9 B .
W oo R -
[:12\1(: hE 174 - DN

: |
,

N
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e -
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Number i |~ pene perioq | Lensth Calculated | 27
’ Curve ‘ ’
of *sec sec . Sqtfa;ed Using o
Oscillations - . cm . t-0.1 =.0025d
. ) . ; Periods
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s . 50 - 32.5¢"] & 0.65 225 , » .
.4'“5 N 1 Y
£ 1}+ . 50 28.9 0.58 196 i
13 T 50 " - 26.4 0.53 ° 169 . .
HIP AR =X 50 4 23.0 | . T0.46 1hY 0.46 1
%) N ¥ 50 . 20.7 0.4 121 .
1] ‘10 50 T 19.0 0.38 _| ‘200 .- ;
~L 8 , 0.26 ,
7 R e N 0.4 ,
0 .o , 0.10
.7 ~ o~
t e . ’
. 4 < . ’ “
S =~ < M,
'f 9 ] f :-;én - | : ‘
ERIC . . rgwre3 - §3
T e ' ‘. , . . .
S : . K. ] _— PR :

A




- ‘. . " ; .‘r . . 4
T . . . . [N L .
- mich more realistic physically than conngeting points by straight lines. You - » .
: should also hasize that the physical model does not -extend beyond the, set &

of points obtained in the experiment. That is, the domain is limited by the .

“  experiment. A-plot of the data £Br this experiment is shown and a smooth o
. .. curve has ‘been drawn.to represent the data (Figure 4). * .-
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_ The students gholﬁf‘d care'f:ully label both the .horiazon'c:al and the rertical
axea. Undts must be specified for both. The‘distance values (d) should be
F;\ ng the horizontal axis, since t;his is t}'xe domain of,the relation,
‘Ihe per od values (t) make| up the range of the relation and sh uld be plotted * . .

i vertical axis. . ° ° . ’ \

~

- . J*At his point a revi w of Exercise 1 may prove valuable. The "bes';

e" for the Horizontal Metronome ~e..embles the cu.rve of Problem 1.' In o oo

. tﬁis problem fofming ordered pairs (x ,y) yielded% linear relation; hence, ° .
it Seems logical to try ordered pair’s of the form (4 ,t) in this case. )

» o

The "best" line drawn_through the blot of the (d ,t) relation a’gain fol- )

' o«

3 ' lowsv the procedure used in the linear chgpter. Si’nce the domain,does not
/include zero, thé stut nt should be cautioned not to extend the stpraight ~Li-ne




DA e
~ to the t-axis intercept. The @w:t -slope form should be used to determine the

" equation of the straight line en°the domain has been extended , the inter-
‘~" eept can be .used to ‘check the mathematical model. .

’ A graph of the (a ,'c) relation, using the data from column 5 of the table,
is shown in Figure 5. The equation obba:hned for this line is *
? »

-

- o

- ' , = 0. 0925(1 +0.1 .

C o Using this equatioh‘dalculated values were plotted (solid circles in Figure b)
. . on the original “(d, t) graph. As ‘with previdus graphs, the s‘craight lines will

’ no'c be the same from group to groups
| . et o
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. ~ Exercise 2

“ k4

i».” The following equations descri‘r;e ;rarious curves. . - o
. (a) What ordered pairs would you form 1n each case to show a straight
' line graph‘7 L ,
(b) Use the following) humbers (-2, -1, 1, 2) from the domain of the
S ' given elatlon tg form the predlcted ordered pairs.
(c) Plot thede,
e {d) . Wrgt® the 1

“«

- v

E)

-

Example: y'= 3(%) + 2 N
Predict ordered pairs of the form (%,y). Y 4

- 1 -, :
. Y—3(-§)+2 : .

N Y
_..2+2_2 (-

[hvi g
-

[ao} o
e

e In a similar way, the following ordered pairs are
calculated: ™ . -

(—l,-l) . .Y :

) (1:5) - .
< 2y SR BRI
2’ 2 . . .

»t

. . Nd%e: O cannot be used to form an

. ordere{g&:‘.\fnfor this relytion,
since -é is wndefined: This\point
(0,2) is/ missing from the gra

- ] the ordered pair (0,25 is- ./]/ T
" ot in thewelatlon. . . : 2 . ’ " l2

o
'—l
1
1

3

The equation of the line is e . ,Py ..

= 3U + 2, The domain of U is :
. wall real numbers except O, and the ,é / Y ’
' . range of y is gll real numbers o ",

. except 2. \ ’ ~ S s

(2) ¥ =#3'j7 ’.
x3,y)

- fls,-l) . . g - ‘
R & Y-) ‘ ' : .
! (138).\ . ’ ) ; ‘.-5 1 5 10 °

g (8:15) : * : s -
Y = U + % | T ' “ e . . - .‘ !
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g e (b) y-3 /7 vvh
y (x ,y) . 5 ‘ .
5 E R | “
T (1) o g . -
;7 - (|-1],11) LT :
o ' (]-4),1%) )
. y=1u]l +10 -
. . - B
- ’ * )
* t
. L] *
. h3-2-1 | 123 b w77
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¢ v v , ’ LY
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L - le) y=om-k Y
. . .:f‘ ( ) . ’ . . .
. _E)y o’ ’ )
1 1 . Yo
- yred '1,_:) |\
(l}'3) “ < .
: T y=lul -4
e J .
= < ., .
. v N\
g ~ 1
. €.
* L4 . \ .
:, L .,
N ) &.
> ¢ )
2 M/:; ,‘. ' ] k. q . -
: ) ’ - ' , s , $ v
« P 2
2. }If you,pick any point on the graph of y = the.fliirst element of the
P ] .ordertd pair will Be the sqdare root of the second lelement. -
: . For example. 'Ib find 9, consider the ordered pair of the gmph for
g which kg is the second element (7, 1}9) The first element of this ordered’
S, v pairis 7 which 1s /B . %
e ) ‘l’m’v‘r v ) ’ ¢ o ]
P { ) - \ ) Lo~ ' . s ' ) ) :
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; ;Note. The student, should .o’ be mcpected*‘so read t}xe ‘horizontel exis closer
o than the nearest 0 l and ‘;:h‘e verticaL axi# ,cIos\r than %‘he nearest unit.




3.

'centfﬁeters Compare the two results. . ‘ .
From the dﬂﬁerimental graph, the period corresponding to d = 8.5 cm
is 0.28 sec . N . ’
N oo XN, .
Using the equation t = 0.0025 as + 0.1, when d = 8.5 cm t = 0.28 sec.

" Each of the following sets of ordered pairs (d,r) describes yvarious curves.
(a) Plot the points.

(
.(¢) Form new ordered pairs of thé*fornf(dz,r)\pnd plot, these points.
(

-

~

From your original graph pf (d,x) pairs find the valge of t corresponding
to d ='8.5 em. Using the equation you obtained 85 describe the' distance-
period relation calculate'the period corresponding to a distance of 8 5

3

b) Draw the curve. ) ’

d) If the (d2,r) ordered pairs foim a linear relation, draw the straight
” 1line and find the equation of the line.

-~

(a)”[(OV.O), (%:2); Ya;a); 3;18); (- )}

: DS (,5): (050}, ,2), (3,.8>,x
’ ‘ 8), &

-~ J - (9:1 ’ Tl:’ ‘2'
2q’ . -
15 ‘ )

> I |
4 . .
L 2 3 - i
(6) -{(0,2), (1 3), (2, 6), (3,11), gp,lg)} e
=¥
4 ) . j ‘ . (defr : (o, 2) (1,3){ (4,6),
L . . L (9,11), (16,18)
’ . el - - . -
L 1)
. K ’
. . 1o
0 .
. 5
o
; . ’ ," », q ‘ w
! 84 | ’ .
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..cc‘) {»(632‘): (é,O), (l: %)} 'é‘: }5)} ‘
. ;. N
o (@,5): (0,2), (4,0, (1,
: G
.- Y
:21‘~
1=

o] o

o
Rl e

3,

3
2

.

(d) [(l l): (2 10), (3 '25):' (‘2"} T): (‘g: T)}

D @B R D

(da,r)z‘% 1), (h’iO), (9 »25),

2> -
e
. o - f 1 : ¢ ’, d2 ) -
- d; v x\l.[zg 5678 9{ -
Coa f .
& ‘/ . ‘ - \‘; ‘e - .,
B, .o I ~ .
5".6;-: If we cq‘gxsider the domain ;Zjlwfi" Include sll positive real numbers , use )"
your mathematical mo%iel to/calculate the values of the period that corres-
pond to the following values of d&. ’ ! Rt
[,ﬁo,‘:eg THe equation from the text is useéd (t =o0. 0025 a? 4 0. l) Student ! )
. z:"ésponses will - differ from those' %*.’tve?&elow.} ! , ! T
= : b CooT e W3
- (a)*d =50 cms? 6.25 sec e) 'g€‘= 500 cm* , 625 gec .+ o
5. ? LF \
¥ N . ’ O ki - - .0 -e 3 P .
o ‘(b)‘.‘,-d 100 em. ! 25 sec . (@), 4'=1000'em -’ 2.5 X 730" sec L
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k.6 The Parabola R A

Ip this section we study the graph of ¥ = sz, where A is apy nonzero

real number. \We show how the graph can be obtained from the graph of y

The sign of A an

IfA

if’'A is ‘negative, the curve opens down-

ward. If |A] is small,the curve is relaTively flat; if |A] is large, the .

. curve is steep. This can be proved, "wut it is probably bes; shown by examples.
Figure 6 illustrates some of these facts. ¢

o

absolute value of A ane the determining factors
is positive, the curve ppens upward;

N

v

’ \ .
4. Y ‘
’ %M,ﬁ ‘

“

A>o

A

1Al smoll

-

L
A>o0

: «

1Al smdit

.

A<O

R

Figur4 6 [ - . ‘}::.
( s ‘ﬂﬁﬂgé .

’f?a tablés similar to those in the text

. The [student shomld be asked to wa
. . for vari?us values of A .

through them.

They should .plot these points and draw a smooth curve
The study of the significance of- the coefflcient A gives quali-
tative 1nfe§mation, but Foes not eﬁable a #tud;nt to draw the graph.

Ax2 + C can be obtained

The graph of ¥ = que + C is congruent to the’

Ax (have students use a sheet Of onion—skin paper-or frosted

_In. this section we ehow how ‘the graph of y=
. .. Jfrom the,graph of ¥y = Ax2 .
N [ ]
- ) . greph.of y =

L =3
acetate to show the congruence).

tra f

lating it upwaré or downward, depending on the value

P

The graph is obta;ped from the lattgr by

The student

og c.
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. T L ‘ \\
needs to know hcw to use the number C to locate thefgraph of y = Ax +C.
T.he vertex of the curve is [c| units above the graph of y = Ax2 if C is pos-
“itive, dnd |¢] units below the graph of y-= Ax if ¢ is negative. Examples,
o Tathes than formal, proofs should be stresséd. The next figure shows some of

“these facts (Figure 7 ,
these facts (Rigur ): ‘ R )
L, T ® Lo s
AN > * ’\\y‘ y=Ax%C C>oa
- y=ax? ¢ ‘
# , )
/ ; .
. . x
R~
- . )
& 1 * T y=AxE, c<o
) , H LY
. , s . 5 |
" » . -
‘ 4 PR \
.'l ) ) I
7 . o - A A
: . ‘Figwe 7 ° . 7 “
. . i \- * . "
& - ) . *
- : "3
, Exercise 3

_Thé three curves shown'at the right
are sketches of the graphs ofJ

- - e
)12 ) .

AN B r ‘
Y31~

. ‘Match eath/curve with the proper . -
‘equation.

. ) *"Curve A is %he graph of " y 5%".
1

N F - ( .~ .
.y .. RN Curfle B_,is thé graph of
] ‘ g . . ‘Curve Ceis the graph of
o troet 1 ‘ el
" a . . ' ., &? . -
‘ o< C M
P A 5 T L

e

.
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3.

-

‘graphs
. {a) v

.(b) y

Make‘

equations. _,Use both positive and negative values of, x. Draw 511 of the, .
on the same sheet of coordinate paper. ' J:- ’ )

W

Deséribe how the .graph of y.=
' 1nlea2h _gf the followj.n% cases: .

f
AJt2

h Y

The smaller the vZue of A, the flatter
2 rd

the graph of y =
degenerates into the
y = 0 which is the x

A1l parsbolas for O < A < 1 are between

the x-axis and the parabola ¥y = x2

For A >.1 the paragolas y Ax2 are inside
. the parabola y =

For A = -1 the pa,rabola has the seme ghape

as y = x2 reflecte'd

x-axis. .

v
& table /of at least seven or?iered pai.fs for eacﬁ of the followin‘g

) ¥ :3x

, L. 2
'(d) y 10.‘.

X

.

"

.3

;]
L

18-

uio WtEule o il ulsu

differs from the graph of y =

, and for A =9, it

linear equat ion

waxis.,
axis o .

LN

‘ ‘ N - i

with respect to the .

- N .
- -
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. ) P .
Plot the. orde\red pairs given below and draw a smooth curve through the \>
points. ’

| x |9 b1 oa ~ L | oy c ‘ P

v 3|2 | 12| 3

Is-this relation a function? No.

Is the converse of this relation ,."_ 1 }
a function? - Yes.

Can you think of an. equation to . °

‘ describe the relation?” x = N
\ ] . .
.. I Ay .
N . i
3. For each of the following pairs of équations below, plot the graphs using
a single set.&of coordinate axes for'each pair. .
' 2 12 . ’ ‘
(a) y=2x"+3 () y=3x+3 g
2 1 .
Yy = " - 3", Yy = Ex -3 3 .
S “__‘___ . ! R N -~ ! ("‘ e a
oo yo=2x" + 3 - .k -
. * Ys 1
. - ' 12 -~
1 ° ’ . y~ - 2X *3
s
z b ,
1 )
L) _3 l 3‘ -
,.‘. * - : g = 2)(2 -3 |
. ; |
. . m . L4
Q . ’) ’ » - .
f ' ’ .
. v, . Ty ' ; &
. ' . . / i / § : , _Q ’\ ’,’ -
. . \ . M / .
fl \ " s . ' . ;
O ‘ ﬁg 89 9 i - L2
ERIC ~ . : e -

<
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.8 maximum value" mat are these values" -

\ . Yy

(a) Both have a minimum. ) .

Y 22 + 3 Min: (0,3) ‘ . . Coe,
d 2 . .

Y= -'3 Min: (0,-3') ¢ . . 28

f

EBoth ' have a hinimum. . ’

+3 Min: (0,3) - ' @ \ .

2 g . .
-3 Min: (0 -3) - g ¢ . r
oo = AR
(c) Both have & maximum. ' 4 V

. .- 5 ) . L » .
y=-2°+3 Max: (0,3)°

Fo v=-22 -3 Max: (0,-3) ‘o T .

(@) Ope minimum &nd one maximum. ' o

2 . "
ya= x° +1 Min: (0,1) ) s . e W

¥
Ty ::—x? +1 Max: (0,1) N e , ) L
One minimam and - Ze\uaxiumm. . 7J - '_
2 ) T ' ¢ k- b R "\v ¥
y=_2x2'--1 Min:  (0,-1) -7 . _ % Sy eld
. -2 -1 Max (o ay

) 3x + 1 Min (O,l) Co ' - / T -

Ly -3x +1 Max: (0,1) ’ ©o ; 3

s 7. ‘I'ne following equations describe curves whicg are not ;)ara’bolas What/, ¥,
:"'\1 ™
o ordered pairs would you form in .each. case to show & parébolic relation? ° \

’:-‘;" (a) y=2xh+3 : ,(b) y=.x6-\2 oo ' e

, N . . . -
A * (x2»Y)" oA * 4 (Xf,)’) Hﬂ ) : ot
' ) ‘ . i ¢ 1

kY T
.
r
———
.
-

~1+ 7 The Oscillating Spring Experimefit

3\

This experiment should be pez:t‘ormed in groups of h ox 5 stude . c f 4;" o
:equipment needecﬁ%’or each group is:. . « . ’ ©os .

’ 4
[ s 3 L4 a M0
. l spring (the spring from-a window shaa® roller is excellént R .
I .
{' * . for thig experiment) ‘ . J ’ , *
i & o X .
% 36-1heh haravood-dovel = - 7 R y
20 L . s N ’ ‘
P "éf :'fs -i 3’. ,g - 4 ' vy ' -
- VA = R K e . . .
* K . S TR . L4
: = U I T
¢k 2N F RS SRS G B \
T z A . v 3 B PR . 0 S B gt ™ 4
e B - I & & :%é q 0 - A X% P :




. - o S ce
a . g . . .
j////// i ’ 1 wrist watch with sweep’second hand
i (stop watch if avai;‘hle)

' 100-gram mass 4/? / ’
' 2 200-gram masses . o L
- 1 500-gram mass ‘ Lo s
\ o ) masking 'tepe . ' S t.. ) .
R S ', R - . .
' " For any spring, the extension/of the sprirg is proportional tq the force
) applied to. it, if the force is not sufficient to exceed the so-called eiastic

limit for the spring. i :

In the present experiment, a spring is made to oscillate with a mass
suspended from it The period-mass relation is the most 1nteresting one to

‘lpursue, - :

o. L}
¢ f A suitaeble spring w1ll oscéillate for a time of seyeral minutes with a

reasonable amplitude. Because ‘of this fact, one may measure the time interval

N

. for )O complete oscillations with a&stopwatch and obtain the period simply by\\
. dividing this time inferval- by 50. - = ' L -
) It is good practice always to encburage suggestions from the students as

~ . ‘ P .
to what the importent variables in ‘a given experimental situation might Ee.
Eventually you will want to focus the attention of the class upon the period-

. * ) L
. mass retesion. . . o ﬂj

y

‘ The spring found inside a window shade roller is an excellent .one for
'4 , our purpose These may be obtained at emy dhade shop, and atre to be preferred
over a commercial item such as those obtained from~a scieptific supply company.
E;ﬁ , This spring may be loaded with a mass of about l kilogram. It 'is convenient to

|
use masses of 100, 200, 300, ..., 1000 grams, thus giving ten data p01nts The

students shoulgd be‘warned to pull the masses dounward when starting tha oscil-

. lation no farther than necessary to give @ smooth oscillation that will persist

at least 50 times. oy / - . . © ! :
pe ALY ,/ 4 t o L F

- i
- As the spring-mass,séstem is osciliating in an, up and down motion,”there

wili also be a slight pendulum swing to the system TIt may be found that for
: a particular load on the spring, the period'Qf oscillation of the spzing will
- cyple withfbhe period of swing of the device considered as a pendulum. - Ir
this happens, you will note a change of "up and down' motion to "swinging"
S )} motion. This change from one form of oscillation to another is an interesting
phenomenon in itself but definitely not a desirable one here. 1% one of the\
1 student grpuﬁb reports this type of behavior, have them change the length chf’
{he spring and‘mass combination. Simply‘hang a "chain" of two or three paper

| .
° .
ERIC ~ L - L
— . > ' - »
. > . -
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P
/

¢lips to the spring and suspend the mass fro? the bottom clip.

/ .

i

H

. The student's data sheet should appear similar to the one in Figure 8..

. &
Iéis one gives data collected from the experiment as performed by members of

the writing team.
i=a

AR TSN

The student's data will, of course, differ from that shown.?

1.

Mags of
load

Number

/fﬁb&

Time

Period

Sec

Mass of '
load
squared

Period
squarﬁd
(sec)

grams /9}5%}lations Sec

(grams)?
Y ) . | g® i
1 ><k 1’0h
Chox loh
9 x 107
16 x 10
25 X 10
36 x 10
] 49 x 10
6h x 10
8l.>< 10

100 X 10

-

"4.8 The Physical Model , .

N

. A{tef the students have completed the plotting of the pQ%Qfg(represented
by the h?ss-peridd (£ ,t) relation, it w?ll be necessary to get some sort of
line~or gurve for the data. By now ‘ 1e 3tudent should be a?c%stomed to this
procedure and realize that the "best" curve through or neasr the points rep-
resénﬁs a 3inq'of physical idealizatioﬁ of the data. Nbreoverz physital con-
- tinuity i% assumed; that is, there would be a period for any pre-selected‘
. It is to be emphasized that .

ét this point, no mathematical idealization of the data has Deen made (Figuxe 9).

. mass.one would care ‘to suspend from the spring.

<
/
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' OSCILLATING SPRING i .
!

3 e

o vgraph of (£,t) peirs obta;ned .

from experiment

[y .

.t N hd ‘

4

®  Once the smooth' curve has been drawn, the student has the problem of
-get‘ging some relation between ,e and t which will be linear. This same prob-
leu was. faced and solved ﬂl the Horizontal Metronome Experiment.
experiment the ;student is allowed to follow this same brocedure by caleulating

sets of ordered pairs in the form of 22 t),

_they do not lie in'g strdight line as indicated in the graph (Figure 10),
» that is, tbis,particular procedure is not successfulc

T
- - ~
. - *- , 924\ . ?
° P ’ L4 ® -7 Y ;ﬂ’#"‘
N . ug
B .

However, when these are'plotf,ed,

. »
. 0.9 ) “
‘ %’ ,
x s
4 0.6}
8 o
[ -
1]
)
Lol
Q e,
B 0.k .
o
LY g‘
D‘ ! .
. . .
* a 9. * -
*
* \ o .o / v
: 0.2 . .,
s » . e . , .
.. v
an’ v *
. .
'I -
3 * el — 5
» R ?
> o - 200 400 600 <+ 800 1000
) . , . .
R o load-grams . .
. ¢k AN ‘ v @ M
. d . Figure 9 \

»

In this’

'l‘his is not a bad
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N ~ . . M i Thoot
experience for the stude¢ht, because in all problems of this s’ort, the scien- . .

. M N . N 7
.tist searches for some relations which will be linear. Sometimes one scheme ' .

will work ‘and sometimes another, This idea will Ee developed further as we

’ & >

go on with the experiments. - . s .
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4.9 The Oscillat:ing Spring’s. Converse Relation

The student must now start a search for soine other scheme ﬁhicl} ‘may wé;rk '
in this situation: This is carefully discy_xssed in the student'!s text and he
first plots the‘oconve’rse of°.the~ (£,t) relatioH because it then "looks" like *
the Metrondme gfaph already discussed in this\chapter.'

‘'verse appears in Figure 1ll. D

The graph of the con-

) L] .
.. The student then proceeds to calculate the values of ordered pgirs

r

~ (tg, f ) and enter them as column 6 of his data sheet, rI’nese_afe already on
the data sheet which is included in this commentary and the paints are plotted

on 'Figu.re 12, These are, of course, based on our date and the student's data
and graph will be different. - !

i v

.
*o 4 o’ N ! . -
. .
) * /
"800 OSCILLATING SFRING . o}
o .
p graph of the converse of the
- . relation in fig. I . s
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. From previous experience with lipear functions, the student ,should (have ..
. . no trouble in writing.the equation pof thesline provided. he is convinced that’
N R Lo . . - , Lo
it 18 a line.r Tiis will be . N T,
“ [ - me + b’ M » - . Y
. “&nd for the lihe oh' F.’igui‘e 5, the equatidn will be | ‘
s A . A ' L
s . ® . A J
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To find whether this equatlon of the lime aetually represents the graph _
of the converse of the origindl data of Figure, l+ the student: must check for
speoific values of & and f. 1gis instructed to do this by adding a new - .
column to his data sheet headed "load (£) in graus, calculated". e cal-

Ay culating ig done by letting t equal the va}.ueé which apbear in {che data table
and flndlng I from th,e‘equatlon above.  For example, when t = 0.36 {first row)

. : 36)=00013,Z +001-‘e .

4 - - £ =9.8 " | -
The experimental value of £ was 100. C e . L ow
N
«The fact that a line'can be used to _appro_ximéte the location of thes‘e . "

woints is all important. It is to be noted that a (0, 0) point has not be'en‘

‘ ssabulated, simply because it wag not an experlmental point. If the questiom~ i
of the signiflcance of thJ‘.S p01nt did xnot arlsebbefore, it surely will now. .
The in!portant point to make here is that the student: should not assume that

the line in this second*graph 'should g}o through the origin. If a student's

) L]
line runs through the orlQﬁ fine, but if it does not,, that's all right Jfoo. .
The student should pot be burdened with the knowledge that a very small posi-
! tlve intercept will be obtalned if hlS ex‘@/enment ihas been done carefully.. .
\ . .
L. . ‘- F, . N IS - .
L c T Exercise k4 o -
- = " The table at the right shows the expenmental . I et -
data, for a tew osc:.llatlng spring. The ‘load i (gl:ams% sec) s ..,
.. a . .
) (ﬂ ) in grams was flxed’and therr the corres- . (2.5 . ‘1 . .
‘ ponding periods (t) in seconds,were measured. ¢ Vb0, 2] '
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'l.. Graph the relation and its converse on separate sheets of coordinate
’ - \ e

pap'uﬁ‘y.. L - e, T <

-

. ; » , -~ a .
\ .. = relation ) s .converse
2
“or < i . . .
. o .
. . .
¢ . ¢ y ?
T e .- '
o - -
7
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s
- .y ~‘
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~
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e
l . . R
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v
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Graph thew(te, l ) relations Draw tife "best" straight line and obtain

the-equation for *f .
2
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-
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lfse yQur equation obtained above’to cal’cuiate values- of the lToad in

'

M
-]

3.
grams for each value-of the perlod in the range of the experimental -
‘. relation. Compare the calculated. and experimental values of the load.
. 5 . v -— ..
[ =-12--t + 2 ‘ [ =-12--(Ll>) =1_0 Y
1 o ‘ 1,92 ,
P =501 +2<25 . - =562 21k
-k +2-10 gy '(7=‘g‘(6)‘2+2=2oo : °
' 1,32 .. ’ ’ ’ 1,..2 ’ o
g f.=363)° +22=65 { =3N? +2=265
- . Loy2 . ®,
£ =58) = 3k
. ; .
« P -
: T ®
4,10 Relations and Converseés 'b )
e . . B A '
This section is intendéd to reinforce the idea of a relation and its
converse. ’
Y v ’ .
- . ‘ Exergise 5 ’
. -
1. In the ser1es' of graphs shown in the accompanymg figure pa# them so
that in each caSe you héve 'a relatign and its converse -
(a) énd (b) form converse relations. . .
(c) and-{d) form converse relations. 4 :
{e) and} (g) form converse ‘relations. .
- (f) and “(h) form converse relations. ' <
<N . (i) and (1) ‘form converse relstions. .. ’
=~ . ’ . - e
(3). and (x) form converse relations. . .
.. . : L4 P j
. . a
2. Which ¢f the graphs in the flgure represent funct10ns° , AN
‘See the labels for eachr group. ' N :
»
“ * . . > A A R R " I I .
3. ~Which pairs of g1aphs obta:med' in Prob&'em 1 represen’c ore-to-one ‘fuRc-
. tions? (Note Tt both a relatlon end its cagverse are fupctions, @
v 3
then, these two rolatlons are calleo onesto-one funetions. )*
-, - . S o, - , .
f (a) and (b) represent one-to-one fungtions. o ’ Ny
¥ «(c) and (d) represent ore-fo-one functions. Y
v * (e) and {g) represent on-:--to—one £functions. Ce
(f) and (h) represent one-to-cne " netions. . Y ¥ '
. c o .v [ ’ . ‘ “I"x“ s
R _" ; ‘. fro
LT W e o
\‘1 «: A e R o o“ - - Fy ity i LA :‘h‘ et
[C* . 1o i S
) T &% . <
- ,'g"h 5:5:) . '._: {g‘
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%.11 Translation of the Parsbola ,

jn this section we show how the graph of y = A(x - k)2
= Ax° . = Alx - k)2
2 N

AX

and is obtaina‘tr)y;.ﬁ.mm the latter by translating it,

from the graph of y "I'he graph of ¥y is congruent to

the graph of y =

either to the right or to the left depending-on the value of k. The student
needs Po know how to ase\the number k to logate the graph of y ; Alx - k)2
) Thé curve is |x| units to the right of the’graph of y, = sz

- and |k| units to the deft of this graph if Figure 13 shows

if k is positive
is negative.

some of these facts. “(A < O for these graphs.)

L) - v

’ i -
—
L / Pl
e - PO - .
. . ) . . o,
. e
. 7
3 - . R ! \
! < : Ikl : -< ikl >
-
@ - o
- \
K
o -
\ ‘o ,
~
' A .
]
~ J - '
- . ,
J— )
v - I , ©
‘ ‘ ®  Figure 13 y -
j - :’

"The last part of, the séction shows that the graph of y = A(x - k)2 +p

- is congruent to the graph of y = sz and can be.obtained 'froni‘this latter
’ graph by translating it up or down depending on the value of p and right or *

Tefrt depending on the value of- k. 7The student wIll need to Know how to use

can be obtained

e

the numbers k and p to loeate’the graph of ¥

. is |p| units above the graph of y = Ax2

= Alx - k)
if p is positive a\nd |p| units

The curve ,

[y

3 - ) -
- below this graph if p is negative, [k| units to the rfght if k is positive,
and 'kl units to the left if k is negative. . - !

- . . -

- - Here, too, examples rather than formal proofs should be gtressed.

) . . & @
- Figure 14 shows some_‘gf these facts, ’
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{ y-A(x-k) +b

-

-
Figure' 14

- N .
&

.. 1f your classa has learned how to solve a’ quadratic equation by completing
. the s/quarevy- the material found in Section 16-2 of SMSG First Course in Algebra

N -wi.ll Tollow the matertal we haye presented thus far.
Y ~ /

-

v . © T Exerdlise 6

.} . ———— -

For each of the followihg, describe how you can obtain the graph of the
first from the graph of the second equation

~

(a)y53X+‘#)u‘y=,3‘x2 ’«‘}f

-

3

_YOu can obtain.the graphiof y = 3(x + l&)‘2 by moving the

; graph of 'y = 33%2 four units to the left.
\‘ . A . Y .

* 2 c. - 2 RN 3
(0) ¥y = -2(X-3'); y e 2 ' :

-

‘(ou can dbtain the graph of y.= —2(x. 3) by moving the
gﬁxjeph of y = -2x g’three units to theﬂright ’

-

-




AR

. . o .
v 1 2 _ 12
() ¥=-3(x+1) v =X . e '
. You can obtain the graph of y'=i -é-(x + l) by woving i
N the graph of 'y = - %xe, Bne unl’q to the left. - o 7
‘. “ oy i
l 1.2 12 P fore
a ==(x + = [N L . .
@,y =3+ 3% 5y -3 , , N
You can obtaln the graph of y = %—( + -) by woving the
A graph of y = 3.x dne-half unl\‘, to the left. o Bl
2. Set up a table of at least seven ordered palrs of the relation below, \
and ‘then draw its graph. -
. . yeaxs2) y o
" v 7 .
xf-b|-3}-2|-2 -% 1o o .4
' oY)
1 ¥ ' % .
1y 8 2 é- 0 § 2 8 - \N’
B 3 ' - ]
) . . & )
You can obtain the graph of
=2(x * 2)2 by moving the T
gra;éh of y = ox , two units . B ’
to the left. ' - ~ x. '
Ld he ) ‘
U ¢ JRS
3. ’vaomplet:er the following table of ordered pairs for the equation ) i
, v =2x° + 8 + 8.
- ~ l ~ l - :. ~
o . X \-5 -k 134 -1 3 0 3. . . .
« ly [18] 8| 24 2| k5| 8 125> . _
. e , . M
k. Draw the graph of the equation in Problem 3 én;i compare with the graph
. ¥ .
* drewn in’Problem 2. "53; .t '
Graphs drawn for Problems 2'and 3 _are tHe samgy b,
. . \ . L * .
5. Compare the location of each of the following graphs {without drewing
. the g:paph).with the loc_:atio'n it would have it if were in the form of
R A Aie LR .; I ; ‘ ‘ et
AR . PRI S . - . .
s (8) y = 3(x - 2) . e RN .
"The graph of y = 3x2 is moved two units to ‘tf‘lle’::\ight *
: and four units downwara. « : '
Kd \ -
“ * , ' N ,
'\‘1 . . l’Oh‘ . ’
/ ' - .

ERI
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b) y=-(+3)%+2

The graph of y iy -x2 is moved three unitstto" the "left
and 'one urdit upward. ’

1 2 ! R .
glx - 2)% -2 ’ )
The greph.of y = %xa

1y
-

is moved two units to the rig&lt -
. . - .
and two units.dbwnward.
2 -
-2(}{ ot l) + 2 . .
L

« ’

The graph of «y = -2x2 is moved one unit to the left
\ O . K
and two units upward. ., % .

¢ -

Find equatipns for the followingagarabo]_.as.

. (a) 'I‘heTgraph of y = x2, moved 5 units to the left and. 2 units

-

v ’

downward. .

.t

y=(x+5°%-2 -

. Lo . ] ’ :
The* graph of y -x? moved 2 units to the left and 3 units

’

upward. .

L' . y=.-(x+2)2 +3 . ' N

.
-

(¢c) The graph of y 12 moved % ynit.to the right and 1 unit
s . 2 u .
“downward. N -

.t Ve
.

. - { .
(d) The graph'of y = %(x + 7),2@; Ik moved 7 umits to the right
upwardes )

Y =

>Sei} up a table o
- iéfﬁ’i then draw its graph.
y= (-1 -k

W
L s
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8, Set up a'table of at least 7 ordered pairs’r
* fhe following relation, and dra% its grapﬁ.

» .1 2~ "*x:;.-zg 5:?*'«,,

y=x"-20-3 '

-

Compare this, graph v;itih tha‘t drawn for * .
Problem 7. % oo .

«

" Problems 7 and 8 will have the same graph.
!

o




Aruitoxt provided by Eic:
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b

N v . - 8
v
Y ) RS 2 s Sample Test Items ) )
- . ! S ‘
L ' . LT o "
TRUE-FALSE 5 i
l.. A1l parabolas h;ave a maximum or minimum point. ' . ‘
"7 7 2. In the equattonm -y = Ax +C, If C =0 the vertex of the parabola
is at the origin. , " A
B »Wwé. - In :the equation ' y = Axe +.C, the'_absolute value of A tellj ‘how rapidly )
-~ the graph of the parabola opens. )
L, THe (distance,tlme) relation discussed in the Wick Experﬂment graphed . ’
as a continuous line over the domsin of all pos1t1ve distances.
¥
. 5. The Rhys:.cal llm@jmons imposed by an experiment must always be impose:i A
— on the .mathematics developed from the experiment. . ’
1 6. -A in order to get a stralgnt line graph from the relatlon ¥y = 5% 3 + 4
you cou]:d graph (x ,y) ordered spairs. . ! )
s 'I.Iixe vertex \<’)f. the grap#of‘ the relation y & A(x\ - h)2 +k is (+h,-k).
. The number ¢ in the relation y = Axe + C indicates a vertical trans~’
"lation of'the.grap:h of y = Axe. ' - . .
. ! . 4
: MULFIPLE GHOICE = ’ - . -~ F
e .. . N ¢
yo 1.  The vertex of the graphs of y = 3(x D)2 g ist . .
SAw @) (3,8 T/
:f'." . (b) (12g5) ‘ . * e
\ ’ - ~(C) (2,-5) - *
L (@) "\(-2,-5) , . .
& ORI IR P
f 2.- The eduation y = %(x + 2)2 - is an example of 5 W e- v
. (&) a linear eguation ' ‘ T N
‘ © (b)) a parz;bola“ .
) ’ ,(c) a physical model . . - s
. (@) a quadratic equation ».
) e’ -none.of, t¥eee _ Sl s N ‘:_" i .
' ¢
- e D 1}07\ . ) B
EMC . PR N W4 * ‘ } N
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3. In the gyaph of ¥ = Ax®
‘ (a) a maximum or minimum point
{®) a horizontal translation
. (¢) ‘the rate at which the graph opens
: (d) ‘a vertical translation
{e) none-of these )
v ‘ ) .
. .« s i ' . ]
MATCHING

The followiné figure shows thesgraphs of seQeral equations -of the form

(S SN

y = &x - k_)2

-

4

.,“

“:~

v

-

”

+C, the magnihﬁae of [AI indicates

"

~ . - r
’ i
. ¢ 0
. N ' l )
s ' |
e ' AR
. .o < I
. | .
* " I
- N\
; > - :
. : ’ I v
o i l
- - e
A
. G |
v F co .
| I
| -
. | . :
. - "\
. .<" * a : .
* I - -
é
Which of t#e graphs, if any, satisfy the following conditions? If there is

no graph plctured which satisfies a given cOndltlon, write the word NONE in

the blank. ' ‘
1. -A>0 S e
o D «‘NKA
k>0 % kK =0
. p‘>0 p<O

WYy

N .

trr.




? ",? N .Tr—— ""-'— ) lW' o
, .3 ,A>0 b A>o0 . ’
e, k =0 ) k>0
S S p=0.- ’
‘ . .-- TR R
5 A>0 .. ... eebe A0, RS
o, “ke< O v ST ’ k<0
o ‘“"‘Z" T . ~ 4 . i
beo o TRERZQ e 8. A>0
3 " k=0 k>0 ) y
pP>0 . p <0 '
B e €3 10. A<O _
el K<O k<O -
'  p>0 . - p<o ;2
o, —_— i-‘ . .t . .
. ol
¢ A
| PROBLEMS _ 4 : *'(‘l“ .
1. Using the set of ordered pairs of the form (x,y) /
. D o,m), (2,1), (352), (- L 3), (-2}2)) - ' _
{a) form the set of (x.,y) ordered pai;-s e
: ‘ (b) form the set of (x3 ,¥) ordered pairs . -
* (¢) form the set of ‘(x,ya) otliered pairs '
- ) (a) form 't:h‘e"setﬂof" (:;,y3 ).ordered pairs_ ) '
. 2.‘ " The graph di'sbi'.ays a gé‘b " ©
r of ordered pairs. ‘ ENEY s
? - (a_)‘- What £rm of ordered ! 5 ) L : :.4 T “”:_::L
{ . pairs would give a
L s’craight line graph?
) . (») - Using ‘the points whose ( 1,1) -
; ' coo;rdinates are indi- / ;
. cated in the, graph, (-2,0) | .. 05 A T I R
f.orm the orderef pairs ‘ ’
I ﬁ‘ of the, form which yould . «
- Y + glve a straight-dine—-- - - cw s i T >
; —— -a- *érépfmf . vy T2 )
i‘ Y o . ’ _. - '
. 109
. ]: Q 1 i o’ . .
, C i ; S M
<&;\ SRR \ ) . e

22
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Tewe g W W&w%w:érwr ss;n, EER
~
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-

pa

pairs you, Just formed fot part (v). -

' 1

N

3

-

4

(a) W‘rite the equatlon of the strai,ght l;ine wh;.ch you graphed in

(c) Sketeh the graph of the straight llne, using the set of ordered

&

3,  Draw. a graph of each of the fol]’,éwiyng relat'ions.
(a) ¥ = xZ 4+ 1 ;] v .
& . () y=(x-e> /-
() y=(x-3)° | .
/) |
..~ .4, Find the coordinates-of the vertex of the parabola that would result
from the graph of each of the following equations .‘State whether each .
P } . .
veértex is a maximum point, a minimum point, or neither. .
(8) y+l=22+1 | (& (x+2)®-3=3 -
I
2 i 2 . ‘
, (©) x=ly-D7+2 | () y= 190(:{ N I
() y+5x®-n (€)iy -2 +2=0
, ' i ‘%' - )
. - |
, ‘ L. |-
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» Chapter 5

LA v ) ‘
R L IR LR MALYS;S orwomm emcmons

. H
’
o
»

B

5.1 "Introduction
AT LT

- There are three major topics developed in this chapter',P the slope of a,
curve at a point, the hyperbola, and irregular curves. The slope of a curve
at a point ahd its physical i‘nterpreta'tion comes naturally from the analysis
. of a simp°lé experiment., Although full developmén'g of the tangent line takes.
consid\egable mathematical sophistication, the fundamental idea can be seen quite‘
easily. The student should obtain some 1ns1ght into the importance of dis~ :

cussing curves by their slope. ¥ N J
- ) . o

It is also felt that when the student has mastered the previous chapters,
his interest will be héightened by investigaeting more complex functions. The
' last two experiments provide such an introdu’ction. .In the first case & curve
is studied which reverses the pattern of considering positive power relations.
_Wreci‘;p.rocal function and the'grap-h of the hyperbola ig easily obtained with
the Lens Experiment.f The properties of the hyperbola lend themselves to &
* discussion of curve sketching. The Floating Magnet Experiment should be an
;ntertaining expe@iment to" perform. Anal‘ysis of its behavior,‘_however, is not
simple, It will chellenge, an?i hopefully Jeed to active discussions by, the .

1 .

P g students. .

5.8 Inclined Plane

- X
In this sectipon the quadrat}ic.'is developed by examining the mwotion of
"a ball rolling down:/an inclined plane. The method followed in developing the

parabola is simdlar tb, the oscillating spring. The slope-of tt a ?’
S

point is. introduged and then shown to be equal to the velocity at

. ¢

that point. ' .

1

e

The equipment necessary to perform this experi,ment is as follows'

N1 aluminum raiqﬂjangle‘?*rkgft by inches L
I o o o "7",\ o

1 gluminum rai;m(angle) 5 feet by in inches

e R

R Ao~ e




. thread for- leveliné ’ ‘
billlard ball (although,not adv1sable, a smooth croguet hall may
be subst:gtuted for the billiard ball)

v

e stopwatcR or wristwatch with gweep sefond hand ¢
’ w r :' I

Sine€ the equlpmentr takeg a long, running space, the “qumber of grozups perform-_

_ing the ¢kperiment will b l‘:Lmz.ted It is °'poss1ble, however, to use the a1sles z

essary. .
' ? d °

The inclined plane 1s mo ted with modellng cla} td the tops of two ad-
jacent desks or tables.. .It should e supporteq in at least three places. The'
clay provides a semi-rigid mounti‘ng\hleh,wlll raﬂ.o\d minor adgus‘tments to, be )
made. A convenlent angle for the rall to make with the llorlzontal is obtalned -
by ralslng ong end 1.5, inches abovte‘. the other. 'I’he actpal angle is not crit-

s, ical, but it should be kept small sb 7t}xe time for an egight-foot roll is, about

7 seconds. The straightness of th ail ‘is very mportant in the performance
of thé exoerimen:t‘ A thread ,stretched‘a long the rall provides an accurate .
N method of dete:cmlnlnb the st:ralgntness of the rail. Attach the thread to one
‘end of the rall and pull it tlgnt ,;rom thé other end. The thread" should lie
«close tp ong of the rail edges. < B},o manlpulatlng the modéling clay, any sag

or h‘&InP‘Can be removed from the rall : - . - .

L] ‘

. e four foot horlz%ntal ‘section 1s butted to the low end of the 1nclined
rall. It is al&o supported by pieces of clay. The discontinuity at the joint
should be Rept as small as possible. To level the horizontal section, roll‘t‘he
ball along the rail andvfadjust 4t with tl_le clay urltil the ball moves with a .
constant velocity “jn either direction. An alternate metl{dd would be to use

.a level. It is important that both rails be free of any nicks on their edges.

( Mark the foﬁowiné distances on the rail starting. from the léwer end:
. 15, 30, 50, lOO., l“jO 200 and 240 cent1metei‘. The horizontal rall is marked;

. .

at 100 centimetexrs from the bottom of sthe incline.

The ball is released at the various merks and the time’interval’ to the
bottom is measured. Three tr{als gre made for each length, and the times — s

averaged @e measurements on the horlzontal rall will not be used immediately,
but 1t 1s very dlfflcult to set the equipment up exactly the same way another] H
d@y. For each of the above distances up, the plane make measurement of the -
‘time taken for the ball to roll e hundred centimeters along the horizontal

" rail. (Qis data is to be /comnared with 'the data on the incline so 1t is

s

LR




. important that it be ta};(en at the same time.

il

The experimental data for a

Y

-  trial run iS presented in Table L ) / >
L. N . —~ ‘y
.. Distance Triall| Trial 2| Trial 3 | Average| Average |,Time to Velocity
- " em Time | Time | Time Time | , Time Travel | Jsec | : C
s Bec Sec Sec ' [>Sec* Squered | 100 cm | CW7®€C¢, -
oY . Sec
' Sec B )
,‘ . i \ . ¢
o 15 E 1.9 3.6 5.8 7’ .
~J] 30 . N . 2.6 ¢ 6.8 "4 21 <
\sg\ ‘ 3.b | 116 | 3.6 | 28 ,
£ 100 N . 4.6 21’ 2.6 | ,38". -
PPN 255 L BARS IR 32.5 2.2 TN K
200 - b5 1.9 | 53 S
240 53 1.6 62 . Y
hd ~
¢ - » r
A - d
h @{ﬁq - * - -
. » \\v' . v ., - A S "\; ‘e
N N A1
. e <. v
] - ., ! ' . ¥
L4 ¢ . y - | ’ )
5.3 Analysis of the Experiment .'
- . F 'Y A
~+ The analysis of the data fq,llows the procedure ‘outlined in 'the osc1lla€1ng -
spring. Distanceés on the plane are selected and, therefbre, are elements of ’
the domaln In this case, direct analysis will not yield a linear graph, S0
the converse set of ordered "pairs. 1s plotted. (See Flgure 1. ) The l:mear
graph formed from (tgd) relation follows 1mmedlately in ‘Figure 2. All dis- .
tances are measure.d from the bottom of the 1nc11ned. plane and hence, the
. ) graph of the relation and its assoc:lated stralght, line pas$ th{ough the origin: )
FAY tlme zﬁ‘o thé distance travelled by the ball is zero. 'i’he oi:i‘fgm should .
be used to select the "pest" straight line. %:mce the’ parabola‘&asses through .
the orlgln, the equation the s{fuflent will ob\t"a\in is, “of the form . v
T . a = slope, (tZ) - N :
:- ' 1d = A%z .
130 .,
From the stra:,ght llne graph in Flgure 2 the slope 1s 35 24k, 6 . The mathé-
- B § o, M P
e mpticaL rriodel becomes ) " ’
. . A
’w d = )F.é t2 . “ * 3’;‘.," s
. ° /“& o
“E
7 ‘ ' ! “ o -
vy ) 4 ’ . ' a4
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- ) Exercise }_ ) *
. 5 O B S U

®. Use the equation d = At~ . With your measured value of the coefficient , _

. 4, calculate dlstance values that correspond to times of: O, 1, 2, 3, .

N L, 5, 6, 7 seconds. . , . R

-" . 2 . & . ., - .

. ! distances computed from d = 1+ 6t ¢ *

. - .0, k.6, 18,4, 41,4, 73.6, 115, 166, ‘205 centimeters ) :

4 2. Draw a vertical llne t0 represent the inclined plane. Starting at the
top, mark to scale.on a piece of, graph paper the calculated gosrclons of

the ball along the inclined plane. Label these position§ with the corres-

ponding timed. . ’ .
. graphs for problems 2 and U -
b : 5
. ’ 0 dec| llse 2 |seq 3|se ’
(gl = = -
- 4
ldec - ) )
) 24ec| 3g9eC 4 ised Slsed .0 e

em— O 20740 60 80 100 120 140. 160 180

[
. N

A .

very care .

. 3y On the dréwmg of the inclined plane in the exercise dbove,’
-y - fully mark the p031t10n you thl‘nk the ball will occupy at a time of
hv¢

2.5 seconds. Us%ﬂﬂe equation, now calculate the position of the
. {All at this time. Compare this point with your estimated position.
f

v the student's-guess-is very.far off, try another point. The dis-- o s
~  tance for 2.5 sec is 28.8 om. - kR \ . ’ e
- 4. Multlglylng your value .of "A" by four will form a new equation. With .
e _n ; this equation cal‘culajce aistance values for times of O, 1, 2, 3 seconds.
x “ The following calculations are made-using the equation \
. 0 a=184+t%:  a=0,18.k, 73.6, 166 centigetersl
. . ' The plot is represented by open squares. See angwer ..
T to Pr;oblem 2. - R /
. RS
* hd .
o ' 118 ‘ ~
ERIC: N N “ - . ,
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S8 Slope of a Curve at a Po;nt ‘ ‘ .

The concept of the slope of a curve at a point is an extremely 1mportant

one. The prlmary purpose ‘for performlng the Inclined Plane Experiment has

‘been to develop this concept For thls reason, some steps weﬁe deleted in

L3

»

' the develogment of the parabola.

4 ’
It is important to stress that the slope of a curve at @ po;nt is defined
=

as the slope of the line which kisses the curve at that one p01nt The kiss
line is the tangent line to the curve. W1th thls deflnltlon in mlnd the
student can measure the slope of a kiss-llne directly from the graph. In the
present instance we have a time-distance relation The slope of a kiss llne
on this graph is therefore a distance divided by a tlme? The physical unit

of the slope is then the same as the physical unit of velocity, but this does

not prove that the slope is a velocity. It is only reasonable to, suppose tnat'

the slope nlght be interprsted.as a veloclty. .\ ¢ e

°

It is impdrtant to realize that the present work €onstitutes an opportun-
ity to present a concept that many students will eventually encounter in cgl-
culus. With the present treatment, a student should flnd the tangent to a

curve as developed in calculus much more eas1ly handled

. , ) d ,.- }

-
-

Ce ) .. Exercise 2 N
. 1 2 e
1. Carefully drav a graph of the parsbola y = E x7, uslng integrally-

spaced valuestof x from -6 to.+6 inclusive. Graphlcally find the slope

of the pgrabola at the points for which x_equals 6, 4, 2, 0, -2, -k, -6,
- / . .
The slope of the parabola y = T x2 at vthe points for which

x equals 6, 4, 2, 0, -2, —h and -6 are, in order: 3, 2,1, 0,
. -1; -2, -3. The graph that follows,shows the constructions.

. . ' ‘ - - ‘ - -

- - A . -~ -
- N *
- s
- d - 3 A/
[ - °
L R
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v
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PIA Fuiimext provided by ERiC
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“xly

The straigﬁt line is characterized by a constant.glope whereas the quad-‘

.ratic has a continuously changing slope. . It is possible to find the,

slope for many points on the curve, and hence, generate a new function

which would consist of ordered pairs composed of slope and the elements
rk

, from the domain.

* Al

From the slopes found in.Broblem 1, form a set of ordered pairs (x,slope).
. On a sheet of graph paper, draw coordindte axes and plot this set of
ordered pairs. What conclusions can you draw about this.new function?
The ordered pairs following the sequence of Problem l.are: (6,3), (4,2),
R 1), (0,0}, (-2,- 1), (- h, 2), (-6,-3). The graph is linear.,

-~
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1

Compare the slope of the curve in Problém 2 with the coefficient of xe_

The experimental measurement of the velocity of the ball rolling down
{ the inclined plane is an extremely important aspect of the experiment. The ,
Jvelocity can be directly determined by providing a 4- foot seotion of rail
Jounted horizontally and positioned at £he end of the incline., Some care
téhoul)dbe taken to place this section of rail horizontally, It should also
_be plac.egl a'gainst the end of the incline 80 that the ball will move as smoot‘hly‘
The welocity of the ball will. 'oe approximately constant {aisre-
The horizontal’
) velocity will depend upon the distance up the incline to the point from which

g

'as possible.
arding friction) as it moves along this horizontal section,

‘the ball was released.,

. 1
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3.
in Problem 1. ’

. . -3

. The slope of the line is twice the coefficient of xe. - (This comes
) 4 close to derivatives and the imterrelation of curves.) A
. & - c —
5.5 Ebcperimental Measu:rement of the Slope» : ) ’
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5.6 The Simple Lens | »

In the experiment, it is recompended that the ball be releasedsléo cm
up the incline from.lts lower ené. A distance of 100 cm is marked from the
lower end of the inqllne along the horlzontal seakion of‘rall. It is, of
course, extremelywlmportant that the incline be set at precisely the same
ang}e that was used in obtaining the o;iginal {ime-distance data. Otheryise,
-the meagured velocity‘?or the same release point would not, be the same as it

was ‘before. . ° - , \&

-

For a,release point, 150 cm up the incline, the ball was found to réquire
2. 2 seconds to traverse thé 100-cm distance along the horizontal section. The
“measured velocity is thus L6 cm/sec. This is to be compared with the slope
of the time- dlstance relatlon taken at the point for which the distance is
150 cm. The klss line for thls point is' shown on the graph of this relation.
The measured slope is 50 um/sec. Allowing for some experimental error, we
can conclude that the two values are the same, It 13 important that the .
student measure the slope flrst, so that he has made a commitment concernlng
the velocity. He then later compares this with the dlsectly measured value

-

of the velocity. ,

e}

" Ehis result is very important. We knoﬁ that the directly observed veloc-
¥ ity h

s the same value as the slope of the kiss line. Since the.slope of the

" kiss line was defined to be the same &s the slope of the curve at a point,

the Yel\ ity‘ofagés ball is therefore the slope of the curve at a point.

-
” ~

hyperbola‘,,Jhe
focal length of a
you-obtgin may have

ns and how to find,the location of focal peints. The lens
_,foésl leng?ﬁ s;émped on itd container. However, you
should not omit this preliminary material and the student shoulll use the ex-

r
perimental value of the,focal length obtained in the classroom.

L3

The following equipment is necessary for each group performing ths ex- .

periment: .. -
, 1 positive lens, focal length 8 inches or less - N 2
1 metér stick | _ o ) I ) ”%Ef
® 1 flashlight- or light source R ~. ‘L)
1 object screen N . :° N
! 1 2-meter st;ip of paper A% -




1 focus or image screen

L ¥

T S e
i To obtain the focal length of the lens, mount tie lens on the meter stick’

with modeling clay.' If the roott is darkened and the meter stick is pointed
through an open w1ndow at some distaht object, you can obtain a 'picture" on
a white card used as a screen. You probably will find that drawing ‘the w1ndow
shade part-way will cut out some of the stray Iight reaching the screen and
hence glve a better picture., . Make at least. three determinations of the dis-
tance fxom the.lens to the card when the_imegé is in focus. i\'b'st .students

. at Qh.is level have not used a lens for this _purpose and will find this proc;e—
?m‘e most interesting. Let a few students make determinations of the focal“

length. Average the values and use the average value throughout the experiment.
.. Y

Use a piece of cardboarcf as an ‘@bject screen". Cut a small triangular

|
Jhole with sides one inch,at the center of the cardboard. Insert & pin in the

t' base of. the triangle. (See Figure 3. ) P 0 e

.._,m,.

-

A flashlight provides a. very con- | - —

. venient light sourceJ “but any ‘type of . ) -

lamp will serve. The screen will pre-

vent stray ‘l'ight from reaching the &

.
I

image screen. : 3! ) s

‘
.
Y - R

N Fasten the 2-meter tape to the

floor. Place the lens halfway along -

Object Screen - i

the tépe. 'Use modeling clay as a base .
and txry to arrange the lens so that 1ts ’ Figu.re 3 - RL.>
center is at the same heigh from the floor as the head’ of the pin which is )

being used as the SirasE

"On btoth sides of the lens make & mark on the tape ‘corresponding to the -
* focal points. The focal points are located a distance from the lens equ,al to . ’ )
the focal length. Befcareful not to ,move. the lens once the focal points have

Coe

been marked. All object and image distances will be.meésured from these points. .
.‘Use the meter stick and mark each centimeter from the focal pdints to both ends

- "of the tape. . X

~ v v

At this point the student should examine some of'the properties of the
.lens. Place, the object about one focal length from, the focal point'. The
image w1ll be found at about the same distance from the other ‘focal point.

2

The class should cbserve as the object moves closer to the, lens the image
* screen must move away from the lens to retain a sharp foeus. Reverse the

procedure and show the opposite effect, As the objegt moves away f"rom the

‘ & S ' y

1 123 . vfm~‘ 7 ? . - ‘. -
v . - ) 8 - N .
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Aruitoxt provided by Eic:
‘

.

lens,i'the image moves closer. FPlace the object closer to the lens than the

~

focal point'. Have .someone in.the class try to find én image po'sitio\n. Do‘
. !}

not spend more than a-few minutes on the procedure but try.to show that an

image-eannot be found on the screen when the object is inside the focal point.
Emphasize the fact that for %arée object dlstance?%the image will not.-be clos-
er to the lens than the focal point. It is a fact that we cannot place the
objeet witﬂhin"thea’i?ocal pefi:nt and obtain én image on the screen. No matter -
what object distance we pick, tHe image screen will not be moved closer to -,

the lens than the focal point. These are our reasons for making all measure-

ments from the focal points. -

To perform the experiment,' plac'e the object on one of the centimeter ’
marks about three focal lengths from the focal point. Move the screen until

you have g §harp image. Record object and image distance frem the focal poi:nts.

" Move the object until the image is out of focus. Move the object at least two
centimeters eagch tlme. Move the screen to regain focus and record the dis-
tances. If you contlnue in this menner u.ntll the immage moves off the tape,

you should have st least 15 data points. ) ’

The ¢ata and the graph for an actual experiment are reproduced in Teble 2.
}\. lens with a focal length of 21.4 .cm was used. The initi%1 .distance of .the

ob‘lect from the fodal point was 65 cm and readngs were taken until the object

”{:as ;? cm from the. focal point. This gave 27 ordered pairs to plot. A graph
of the set of ordetred pairs appears in Figure b,
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- < . ke , W e s ey A R
. . : BExercise B o ’ - 3
:‘“) B . _L i m PRSI e
e ’ T
1. In the Yens experiment what 1is' the domain and what is the rangeV > ¢
. P *
. ! The domain is the set of all object distafces. ’ﬁagh»>;~u SYN Ty e A
B ) - L e e - - -~ . 4 (8 . . #
o e - mﬂhe.range.is the set of all image distances, i
: e i " ¢ . .
i‘ 2." Does the graph of the relation (Figure 8) represent a function? Why? T
v e, 4 - NN . ' H P
' R i i Ty Voo ; <~ B -
H ‘Ees for every image position there ekists onIy . ’ &$3>,
: e n . OTIE obJect distance. o . -
oo .
- 3.“ Would it be meaningful to pass a smooth curve through the plotted pOints?
ot T LWhy? S Lo
. B ) '\_.i
v ‘. Yes. Fbr'eaé% intermediate position of the lens there s .
will be a point at which there is an image. .
. Discuss the possibility of extending the graph of the curve to very , ®
N large or very small object distances. ,
For very large objectsdistances the image positio changes . °
. very little for chaﬁges in object position. is difficult .

to accurately locate image positions. Image positions for "
objects close to the focal p01ht are highly sensitive to ‘
the object position. ‘

{57 The Lens Relation , g - !

. . .
-

It mast be understood that the experimental cdrve of the lens relatien

<
2
|59

shgwn in Figure 4 cannot be represented by either a linear or quadratic rela-

- tion. “Certainly no movement or rotation in any,way cap result in a linear,
i;_ relation. Therefore, linear functions are easily ruled out. The student o \
: find it more difficult to rule out. quadratics, but”the curve which results -
fro this experiment cannot be a quadratic. Iwo points should meke this ob- .
“yious to the student, first, in rel.tion to the axes, the curve does not be- - .

have as a quadratic. For large values of the domain, the values of the range‘
* are riot large. Ih fact the values of the range are Very small. Also;yfor

~large values of the range ‘the corresponding domain values are very small. ’
Secondly, the curve cannot be a parabola even if it is rotated. The tangents

, of a parabola tend to become parallel to each other as we move out on each i}
T ' . r ‘ﬁ", * .

’ , :h - o
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'branch 6% the curve :‘ The tangents of this curve ténd to be at right angles

L to eanh other as we move away from the origin. 'I'he rejection of the quadratic -

relation ‘will be more fully discussed in the Floating Magnet Expe!i’ment.

- The lens relation requires a new approach in* obtaining a linear relation.
Previously other devices were used to develop the line. In this case it ,is
necessary %o use a reciprocﬁ relation in order to determine the set lof or- | .

N 1 w

" dered pairs requisitet for the linear relatio’n. . N ,
| « :
!
The student!'s knowledge of the reciprocals of numbers should 'be suff’icient .
for his use in this chapter._ 'I'hQ'e orde'red pairs (—,X') will provide tge meces-

. sary data. . - . . .,

| ~

When the ,X') telation is plotted, it is argued that the line should o
pass through ‘the* origin. The student should be made to understand that the =
origin is fot a data point but that the line approaches the origin as a
1imit by the kind of mathematical reasoning that has .been employed. When X
is _very large l‘- is small. For these large values of X, X' is shown to be
very small i}r{t,l@n‘e b, Therefore s the extended line comes very, close to o
the origin, as shown in Figure 5.

.~

In forming the (-—,X') relation it ?LS: not necessary €o calculate the oo
‘reciprocals of all the obJject distances. El.eve.n/points were used in the ks
analysis of the data recorded in column 3 of Ta'ble 2. At least ten points
should 'oe used. If the p01nts are selected starting with large val-_ues of
o'bJect distances, there is no 'crowding of points at the lower end. .

The graph which compares the experimentally obtained curve with the

RS

curve, calculated fmm\‘the_student's equation should be one of great satis-
factiod for the student. The good'ma‘tch here indicates that ¥he data for
the object position-image position relation for the lens hag been reasonably
ccurate. The beauty and_sgymmetry of natural laws are another- feature that .
may, 'be stressed, together vith the pover and simplicity of the mathematical

—
N Sy

déseription. T .
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< - IR Exercise 4
. : o ’ - :
1, ..me"follox‘qing'table contains data taken from an experiment with gases.
. , ; i ' :
P ) .
. Bressure Volume ,
.16 w 3 ) . ¥ S
’ ] . cm K .o — .
inz ;o i ":. ‘
’ )3 s <
o9 ' . JOR it
N e b 169 - 7. & ,
; o ! n - | 4 )
I .o 135 , vE— fluid
: " 10 ‘ 68 gas —» column
. 2 " 3 A .
% — 12 56 .
) L 15 45 f Ny T
‘ 18 38
kY
20 Y3k
; 5 |
: 30 Co23 .
- 35 - 19
v 2 - i
N By raising and lowering the fluid column, different pressures can be
exeryed on the gas contained in the left portion of the table. As thé
, , fluid column is raised the pressure is increased and the gas volume
decreases. . N .
. ‘ (a) Which eléments of the table are the domain and which are, the range?
~  Since the pressures are selected, they are the domafn. |
;e ] :1’31e volume elements are the range. '
¢ (b) On a coordinate plane, plot the ordered pairs from the table and
) a (/construct a physical fodel. .
- /’. ) L4 .
.- . PP AL T v -
v ' s 4t ’ ' - . e
s, ¢ - . .
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refresants the data.

< s ..., V=585

w15

or

1"1’

.20

Presure - lb/:Lﬁ2

)

«

25

From the above graph the slope is —3 = 675,
‘ '~ Using this value, the mathematical model becomes

= 675

\
.

(4) Using this information, find the mathematical model which best

v




5.8 The Reciprocal Function

' The preceding section developed tfxe réciprocal relatfon for positive
‘values of object dietances. The present discussion logically extends the do- ’
main to negatiue values. It is true that negfitive object distance and negative l
image distance do have physical significance, However, this opens up the sub- - .
Ject of virtual images and diverging light rays which will lead the student
too far afield. The more* direct approach of the mathematical extenfisn to

negative values is'used. IN

Since the domain is extended to includeNall real numbers except zéro,
a number of points should be brought to the student's attention. Zero is
excluded as an element of the domain because a number divided by zero is not
defined over the real numbers. This exclusion of zero divides the relation ’ <
into two parts. One portion lies in the first quadrant «<nd the other in the
third quadrant. Also, the curve exhibits a high degree of symmetry. Exchang-

ing the domaln and range does not change the graph. Therefore. y = x is a .
line of symmetry. Substituting -x for *x and -y for, Y, does not change
the graph and therefore the curve is symmetric about the origin. Finally, .

the reciprocal relation is a function. Each elenent of the range corresponds

to only one element in the domain.

°

In the text the phrases "direct variation" or "inverse variation" are
not used. These t&rms have been avoidead because of their wide abuses Instead
the terms linear function or reciprocal function are used since they denote
tne form of the equation. The materlal in this section has touched on only
a few properties of the reciprocal ‘function. In particular, it is hoped that
the student will begin to see the symmetry that may arise in the graphs of

functions. . N
® . Exercise 5 .
" . . 2 . o
. 1. Does tﬁeﬂrange of the function X! = T include the value X! =0 ?
- . BExplain. - . .. °
: . . 2 )
The range of the function X! = %— does'not include the value of .
) ] X' = 0. No matter how large X becomes, the value of X! is always
nonzero. . )
. . .
* <

~

g W N . . .
- 5l
ki >




2. 7 Does the simple lens ‘eqhation 'X‘ = ;;—-% , with the range and” dodain °
cted to the values that can be obta:.ned experimentally, represent

- g function if X and X' are interchanged? Why?*
2

< -
3. The focal length of the lens found in many cameras is 50 cm. Calculate

Xt in centimeteys for an‘object at a dlstance X of 1 meter, 10 meters; -

1.5 X 108 meters \(the distance to the moon); and 5.8 X 10%° meters (the ®

2500 .
' = .
). X X%cm) , -

T cm,

+ distance to the s

, in order: 25 cm, 2.5 cm, 1.7 X 10

: e
4, In each of the relations \{ through Vi -

Y

- (a) For what value of x will the denominator become zero?

hd i

(b) 1Is it possible for x to be equal to zero? -
(¢). Find the value of y which corresponds to the following values of x: -
N .
{"8: -3, 0, 1, 3, Zb 7. .,

" 1a) "Using the wfalues just found, form ordered pairs of the form ()g,y)

4,
. W and plot on the coord:.nate plane.
N AW ..
SN ’; (e) Join the points with a smooth curve. Remeuber that there will be
ggf one number (part '8) which is=got in the, domain of the relat:.on. .

> ‘.', . 10 ’
L vExTe ,
) . ~ (a) x=2 -
7, (p) ‘yes-
s .
P (e). {-1, -2, -5, -10,
: . T ,;; 10, 5, 2}
e, 1 , ‘ "/;(d),( (e) see graph -
S
. , (’/f) yes, y=0 .
: ”?I"’W




_ 10
> e y-5=5735 -
c (b) yes
: (c) {4, 3, 0,75,
. 15, 10, T}
(d), (e) see graph
N (£) };es' Yy=5 )
f
[ 4
‘ - -lO . -
ITI. y = -3 .
(a) . x =2
(b)  yes oL
l (c) [l: 2, 5, 10,
: -10, -5, -2} -
. (a), (e) see graph
{- (£) yes. y=0"
.. : /Q -
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. \‘1 ‘ .
- ERIC -
f s

}%\{&;,&},.»‘ et

”

++

@!
| ;‘::

[:5]

18

Ny

piog

-4

RN .

}
—t—

[red

-

s

5

-,

PN
135

140

g

%

vu?




s ;

’ ‘(a)‘ x=2 . :
* (k) yes .

> (c) (6, 7, 10, 15,

"5;; 0, 3} -

i

LT A

Ve

¥

2, L]
SO A R . L
S (a), (e) see graph - _ +
i A P A\v)
b < (£) Jes. ¥y=5 d
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(a) x=2 : '
N (b) yes . 1
(c) (1, 2, 5, 10, - - h ——5
©° ¢ * lb: '5: 2} - - r/ N 5

(a), (e) see graph : = . ~]
, (£) yes., y=0 ! %
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5.9 Translation of. Axes g ’{§§ .

The translation of linear functions was introduced in Chapter 3. The

method for translafing the axes of the coordinate plane both vert{cally and :,.
horizontally was developed. This procegure was extended to parabolas in Chap- .
ter k4, in both cases the development included not only tranglation of the .

axes bpt also translation of the curve. Since it is physically significant,
translatlon along both horizontal and vertical axes 1s performed on the recip-

.

roca function. -

-, C-

'gg. A logical Questlon arises as to the point from which measurements are
taken in the lens experiment. Taking measurements from the focal point may
seem somewhat artificial. The lens is probably a more logical starting point.

Therefore the translation of axes by an"amount f is iIntroduced. N

et
Since the translation is somewhat complex the student can analyze what .

is_being accomplished by using the frosted acetate or onion-skin pgper. Mov-

ing the acetate by the amount f in each dlrectlon will give a pictorial

representatlon‘bf the translation. A shift to the right a distance f for

the obgect focal point puts it coincident with the lens. °Likewise, a simi-

lar shift of f for the focal point on the image side puts it céincident

with the lens. These two translations change the form of the equation and __

establish the lens as the starting point. : . ) o

BExercise 6

whose significance is desé;ibed in

=

1. Start with the equation % + % =
the text. Algebraically translate the axes to the right and upward by
the amount f  in each direction., Hint: Form the eguation .
1 1

1 PR
T3T - F T +°F and simplify.

e translations in this pfoblem are obtained by addinhg

f both object and image distances. ¢
s X '
D TR ! R
X+tfc X' H£ T
iy -
o 1 _ 1 1 v
- - X % £t o FTX L




, 2. Algebraically solve-the eguation %4—% =

»l=

S ‘ -

;* 3. y= x.3-x3 is a hyper'bola in the form found in Problem 2. By hOV.J much

‘}( and in vhat directions/ﬁéuld one have to translate the axes to put it
; in the form y--i%.‘ . = .t

. If one were to translate the axes to the right .3 units and upward

3 units lthe resulting equation could be of the correct form.
N . 1
© oy 43 o= 3(x"+ 3)
. . . zx _s3j + 3 «
. ) _ 3x+3.3 .
X ‘v

AU 33 F /?' J °
) ' ' . 3 ! Ana'{‘m@ww)/c;"" ? , ’
y = 3[}} - . s : -
X

RS

e T
s

.

hd -

L, Translate the axes used to describe the parabo/la y,'.,,=_x2 - bx + 4 s% ~

that the vertex of 4he parabola lies a'(; the origin.' By what am9unts

& and ’in what directions did you translate the axes? i

ey
N . s,

& The parabola y = x2 - 1+x + U4 can be rewritten as R

§ p .

y = (x- 2)

r;’ . A horizontdl translation of 2 unjts to@e right gives

,v=(x+2-2)° )

9,7. ’ or, y=x , - ’ . » !

i o . * + i , 7 .

5 , Ja parsbola whose vertex is at the origin. A

oo A o
’ oy ' - ; ' ¢ » Y
i 5.10 Curve Sketching . . > /

°

This section introduces an important topice that is Qften omitted in a
traditional tr‘eatment of algebra. The student should- learn curve sketching
,at ar early stage in his mathematical training. Although the topic is dealt

e A

ATy
j EAN

. with, briefly here, many opportunities w111 arise in the’ future in which the ‘ ,

X s%udent;my pragtice .curve sketching. 'I’his he should b‘e encouraged to do. '

A , v .

;‘\«ﬁf ‘ ' \‘l 5”\/ o . '

5‘ . l A - , 138 ., RN g
LRIC' 145

S
Y. ST

P e ' ., PR .
N . . . . o .
IR . . : ’ BRI S




I
¥

o

- . Y
Mathem&tical insights are developed in this way that musf‘cherwise be devel-
oped by the student on his own,
‘ .
. The seven steps discussed in curve skefching forms a continuous procedure

for analysis of the function. %hé"di¥sion into two parts in the text is for

¢onvenience in illustrating individual psrtions of the curve, Also the student

. z »

will not be burdened with too many new ideas at once. After a little practice
&Y N 1
he should see the similarity in the operations performed.in the two sections.

Stebs one and seven consider the equation fof‘large positive and negative val-

ues of the elements of the domain. Steps two and six analyze the equation

for small positive and negative values of the elements in the doma;n. Four
discusses an intermediate behavior of the equation, and three and five the
singularities. Here s1ngular1t1es mean any points of peculiar behavior of
the equation. It is important that the student understand the needs and re-

gquirements of each of ths seven steps in the analysis.
. \ . «;r'l .k

*
s

Exercise 7

Sketch the following relations for all possible ngues of x:
..- , 6 . ' 2 * .
. = —— Lk, = - + 1. -
t Y }.(+3 ’ ' - .X Y Qy
2 _x - .
2. y=7—3 . 5. ¥y = 2(x.+ 1)
3. ¥y =x(x - 2) . -
a ’ - * ‘a8
4
.. ., e ' ®
(l) Pl I °’%‘;:g e (2) y s

n
SN
€ . -
o
n
’ilm
3]
o
[
&l
N L
.
e
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1] ‘ 1
( % Y § 1 L L3 [ $ 4 !
7 1*‘= 1': ;& ;* = T : T X .v' T v 0 T ] T T X
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° 'for each group performing the experiment. -
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5.11 _‘.Tih_e_ Floating Magnet . - , -
tt
In this section the student will emcbunter further work with reciprocal

functions. In édditio'n, howe;ver, a new and important aspect of mathematical
- relgti’ons is developed. The student will learn that it is not always possible
to find a mathematical relation that will ‘accurately represent the ekperimen-

tal rééults over the entire experimental domaih and range. The complex be-
., havior of some physical systems brings out the idea of "curve fitting'.

L4

It is found that g reciprocal re]:atidn describes the experimental results
over a portion of the experimental curve, but fails to describe it elsewhere:

p Thi‘ is analagous te the breakdown of a linear relation for describing a
strétched spring or bent beam~ When the spring is stretched too far, of the

beam bent too n‘guch, the relation between lodd and stretching or bending
ceases” to be a' linear.one. |
. . “
, 'I’he Floating Magnet Experiment ‘
£ . s ’
'me experiment with the "floating" magnets should be | most interesting
. one for the students to perform. This will provide good%tivation for the

mathematics that ,is dev’el'oped. The equipment Mst which foﬁ%ws is needed
- o




E—t 1 ten-gram weight

: - : i

oy At !
Fidon, 2

L circular m:gmts* each 8 -inch thick (or, 2-circular magnets
each E ~inch thick) : .

1 aluminum or wooden knitfing needle (of a size to easily slip ,
through=holes in magnets) o .
. 1 _two-tube get of epoxy glue ¢ S .

T g mounting board (with holes through vhich needles will slip

iy

. . easily) ‘ ' ,

.

1 kit of'hooked weights, each kit to <include:
’ 2 twenty-gram weights .
. , 1 fifty-gram weight
- " 1 one-hundred gram w&?eight
1 centimeter rule .
g A supply of four-lines-to the-inch quadrille coordinate paper S

s .

, The caps of each knikting needle dre left in place, but each‘ needle is
cut to a length of 3 to b,inches. For the aluminum needles, one end of a
/stretched out paper:clip :\'Ls glued a short way inside the cut end of the needle,
‘is provides a hook at the other end to sthich the various weights may be sus-

* pended. Epoxy glue is recommended For this purpose. e magnets are “then
arranged in pairs to Tepel one another, slipped on to thd knitting needle, and
the entire device is then supported on a mounting board wi—t%/needle placed

- through the hole. The needle must pass frkely through this hole as well as .
the magnet holes. In this position the bottom magnet system rests on the
mounting board while the uppe magnet syst rides against the cap of ‘the
hnitting needle and is suspende away from the lower system. By ll.oad.ingrr‘theo

end of the paper clip w:tth weights, the separation between the pairs of mag-
)
ﬁ " N . ° \

nets can be made smaller. 4

- e, ~ . X
» The data table and three graphs that follow represent tﬁ%ﬁk actua)ly T

.3

performed with a floating magnet arrangement. This mate,rial is® include only @ >y

Lto serve as a gulde and may perhaps represent the rsltfr:nd of wopk for whichgfhe

student may strive. v o ° . o (, .
N particular problems should be encountered. by the students when p;r-
f:oming this experiment. Be sure to instruct them to tap the needie gently ‘
prior to making a distance measurement. If the needle becomes "hung up"
the side of a magnet hole or on the one in the meter stick, the tapping will
allow .the needle to come to its prgper position. Loads shdhld be suspended
mgrﬁ“« the needle until the separation distance between the magnets is approx-

imately 1 mm. . ) -

o . fas L
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The, Floating Magnet
. - ' ng 80 (l' }
. B load (I) . distance‘ separation 1. selected calculat‘gd‘ -y
¢ in grams (8) in mm (s) in mm 5 s ‘g :
3 3 g ., =511 - @
0 35.0 | 16.1 .06 2 m ’ 198 gn
20 k.0 *10.1 20t kT 88 ™
Lo 4,2 ’ 6.9 1k 6 ~ |+ 515
60 46.0 . 5.1 2 1 8 "33.0
¥ 80 NT.h . 3.7 27 1§ ' 22,0
100 | . k8,22 2.9 .3k, 212 14,7
140 .0 I, 2.1 A48 1k 9.k
160 . 50.2" 0.9 L1 |, 16 5.5 j
. T ' ] . =7 R .
: curve fitted to first.four pbints oS =
o S s - ; ¢
? - .. . o
' :ﬁ ' _'I:abl:e./3 - ° < : Lo
' - - P
“ e - . i
N N \ s - ) S
- / ’
L 20 . > -
iy . - THE HLOATING MAGNETS . :
. 1 ——
. . ; - sei)aration e]s a ffungtior] of fload - - .
. Sz B\ - . :
ot PN
. @ o Kl -
© 4.~ = . ,
o e ' . . -
S 8 T
- i 1-,. h - )
g ] Ay \ ' 3 —~—
. 'z . o o 4 z - - - \
. + . -
: s = \K . |
7 . r *__?__L__? -
X ey PN . o
A 0 20 . ko .68 74 8o 1Q0 120 140 1607
/“ . Pl ’ -
. ) j - ’ - "1oad (£) in grams ‘ ‘
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5.12 Search for a -Mathematical Nbdel

v

PO

The relation evolvéd from the data of the’ Floating Magnet Experiment does,
not fit the pattern of the graphs in the student text Figure l8 (a), (), (c ).
Students need to attempt to fit a pattern before reaching a concilusion that %
methods already developpdbdo not work. The reciprocal relation in Figure 18(d)

_can then\be analyzed. The next section will explore the quantitatire behavior

of this relation.  ,- ' ‘

LA

7
+” 5 . . -
. Ny

5.13 The Reciprocafgﬁelation

The graph of Figure 6 shows the "best" curve through the data points, with
s&aration distance (s) plotted as a function of the load (Z). This, of
course, is the way the experiment was performed:s loads were determined and ’

separation distancés resulted from these loads.
; ) . . L.
~  For reasons explained in the text, the converse of the experimental rela-

" tion is éraphed. This is shown in the graph in Figure 7., Since all relations

have converses, there should be no problem here. Now that the converse rela-
tion has been plotted, this is the relation with which we will work from this
polnt on. " It Wlll be *nstructive to the sﬁudent to have graphed both the rela-
%ion and its converse for he will theh be able to see that there is very little

difference between the two in this case.’

» Figure 8 exhibits the graph of load (.£ ) plotted against % . This graph * /)
is most ihteresting sinde ;t shows a decided kink. The first four points

(small Joads, angd small % ralues) approximate a line. The equation that is
obtained\from th&s line is shown on the gragh. = The dashed'lines indicate the
Fight triangle from which the slope was measured, (Also drawn on this éraph

is the line that approximates the last three points, an exercise that will

be referred to later. Y‘ . . ' -

The points calculated from the straight line drawn through the first, four
points on the graph in, Figure 8 are dlsplayed on the graph in Figure 7. A cal—

culated curve (dashed) is drawn through the calculated points. It is seen | N
that tfMs calculated curve "fits" the experimental curvé® for a rangé of logds
from O to 60 grams, . . .
. ] . &“ ® / .
- . \ i )
+ 1 © % ! , u"
. . N L ' £
) - ~_ b "~ . .x
. ' ) 1hk . . Py . ' .
| ., N
: 143 \= L .
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Sketch roughly the graph of y = g for [k <O . _ B
: N ) y s - o . .S v {
. “ . N “\E“
. . - . ”L
' /‘ ' > ' N
- . ¢ b'd .
3 ) ) . K
3 v E .
T - SN E
. A particq,lar reciprocal Telation is |y .= i . Fin(\he elements in the ' .
.range that correspond to the following eleuments in the domain: ’
! [
,10,6, 10 h, 10 2, 1, 102, 101‘, 106 . !
P ‘ po ' ) :
P In ordery the elements in the range of y = ;];- are: . ) - ' [\
. '106, ml", 102, 1, 1072, 10‘1‘, 1076, f . ~j
- - - . '
4 (SN

rd o - X -

. Exercise 8 . .

In the FIoating Magnet Experiment ve obtained the relation
PR . A : r l J . ‘ . .
. ’ j = m(g - C) . , ! . . “—
+ ]

Algebraically obtain the converse of this .relation. What separation

distance does it prégict for zero load? -0 ,
L o '
To obtain the converse of L =n 5 - c), solve for s .
. - ’ * . - A ) . o
L ! = .l -C ' N ™
m s . . Lo
’ -]-'-=‘-!'+c='1+'mc R . A
s m m . . .
m i
o ST v -

For zero load the converse relation predicts a separatiop distance - )

. of -]i (h%‘ ) This value can be checked dlrectly with the graph . *~ -
in Fig'u.re B~ - . © , ! i
. f ‘ T ‘ . . 2 B
‘For a limitedgdomain, the floating magnet function was found to be - ’
B ~ ,1 - . . .
’ . . j = m('g - C) . ) ‘. P
What. is the nnit of m? the unit of c? - <0 %

. . 1.
The unit of ¢ is - .

A A
A 13

. The unit of m is gram um.

145 . ' o ‘|
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'Se Fbr the relation of the previous problem, find the elements in the domain
iof tie relation that orrespond to the following flements in the rangei
J - 4 Pt
llo6 1078 1, lO,lO,lO ! : ’ S R I
i . i Vn‘;\‘ ‘
In order, the elements of the domain are: §‘
6, 102*, 102, 1y io , 107, 107>, P i
L] - .
¢ . . . 3
6. lLocate the x- and &?intercepts for the relation y =»§i for k > 0.
’ There are no intercepts for the relation y = § for any value
T of k;!o. ]
- -~ v
’ -

5.1 Curve Fitting

The student should easily understand that the reciprocal relation fits
the experimental curve for only a llmited portion of the graph., It is impor-
tant to stress also that there may be no simple curvelthat can ever be found

to fit certain experimental relations. These are mathematical "facts.of life".

Since the initisl attempt to fit the data succeeded for only a portion of
the graph, a second reciprocal relation is fitted to the last three points.
A few of yqurgbetter studéni

-

lhis second curve is developed 1n Problem L,

may be 1nterested in plotting 2 and —3 against the load. A straight liné

pbrtlon of thls graph can be obtained to give another type of "fit" to thé
(“‘-‘

It turns out, however, that these new relaf;ons givé no
better fit than was obtained before. » 8

experimental curve.
o~ .

-

~—

1

A beaker of” water was

recordeQrevery minute

Exercise 2

< L ~

heated on a hot plate,

and the following data

The temperature of the water was

was obtained:

B PP i

' V’Timé‘§“ L Temp- . P ) PP -
e 8 B (1) (°c)y ‘ i
) 0 20 r-%

-1 3k ..

.2 b7 -
3 : + 587 . <

- 4 YA
‘ *" X -~ 5 75 . |
_ ’ AY ..6 . 82 »
‘ 7 ¢ \ 86 “\'- E ] T .
8 90 / -~ -’ L
. -11461 i ’

RIC
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ff .55: The graph of’the time- —-20 ~‘.“ 44//3 ' <>AI
"'; f temperature relationﬁappears ! i; 44‘77 & ®
L et the right. The relation — 80} -] —— ]
. 1 s linear over the domain h / @ T !
Lo MI ‘ )
. from O to 2 or 3 minutes e ~7CT
R ' : P /® ~
and ‘over the range of tem- T <
, o
peratures from 20 to 50 or g-—CO 7 V.o oo
. . B . .
60 degrees. O o % / .
‘ ' S~ g’ 50 - - . .
=
o

e “’

Q
e
s
o
[~

I~
LN
N
¢

i , : o™ . -5678

. ? ) Tim (mlnutcs)
Draw your best stralght llne to represent the "time-temperatute relatlon ’

for a restricted time domaln. Find tpe equation that represents this-1line.

-

The eguation that represents the line drewn is C = 13:6t + 20. j”

5
H

Use the equation obtained in Problem 2 to~calculate temperatures ‘for each

of the 9 time readieﬁs. What is the error 1n temperature pTediction at' ’
times of 1 min; U fiin; 7 min? £ . ’
. 7 ‘ —= ry N - e
- S INGRN §! -4 L4 J J £ <1 . . T . P, _ii S~
o) [ A AT A L BT ]
- | o0 | gu {47 | 6L [ 7w | 88 [T102 15| | -/ N
( c)ﬂ N J N ] | +
) ° < At times of R, 4 and 7 Minutés the errors in the’ temperaﬂure ' .?r”‘?’f"“ﬁ‘
vt . .predictions from the,equation are 0, 7 and 29 d?grees respectively. -
» « ‘ ¢ v a%. u
- < .
> - ) .
P N Pd
~ - p'o ‘
. N {
hEEN 1 ’ . .. v
- t .
- 147 ; . i
. 152 ,
P 'ts \ . ’ ' 1
’ 4
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load (z;)‘ in g
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v

made. a graph of the reg\iprocal of
horizonte axis and the load ( £)
straight line through th\q point§
Obtaa.n the equ&tion for

k., In the Fl‘oatiﬁg Magnet Experir;xent you
the separation distance (-l-) along the
along the vertical axig, Draw a best
which represent loads of 120, 140 and

. Jthis lipe‘ Calculate load values ( £ ) from this equation, selecting the
“ bes{: straightfl,ine through the' load points foz} 120 1 ) and 1

’I'ne equation. of this line is’

(see Figui*e 8.)' The selected separations (s) and the orresponding loads

¢ 2 ) are shown at the extreme fight of the data tablz The caleulated

eurve is compared to the :experimental curve on graph flumber L, Both ,

160 grams.

shown on, graph nunber 3.

r

"scales ha\fe been changed for this graph. -A good fit is obtained for loads

" between 120 and 160 grams. \"

; e -y
+ ) Problem k& .
* CURVE FITTING. ’ . , -
. ) selected calculated
"= . ‘e 8 .
o 0.5 mm éﬁgm 7 . -
< N ' 1.0 ‘154 Al ,
. - 1.5 132 See the following,
. ’
« - * Lo ?.O R _figure for a graph '
Ta.ss 115 of this da’ca'. T
: . . 3.0 © | Lrll 1l . » R .
\ 4 ' S Th ‘ i - =7
r ) \ .[HE FLOATING MAGNET . g
\\ .\ Problem & ™ .
180- ." \ Y * Curve Fitting -
L \ 3 curve calculated from 2 63 6 L +. Je-'CV. o T e
e . . S
* . N -~ "1‘
‘3-160- ‘ | .
, . \ ~

T range “of lo:;ds
for good flt

h

A - »
* . 120}, N '
)
. i
lQG~ ! ' —L w‘l‘
. 0 : 0.5 o, . 15 © 2.0 . r%t W ’;?
. ! » separation (s) in mm, , @f A
m‘*\. "“*"’: t . 148 ro P / L.
b Y ' ' . 1 ,J\ i ‘\ L. . . . * .
7 . . e : ) 2

6(}grams aé
= 63. 6— +90. %




Salple Test Itelys - : s

;
1. (a) Sielect a set of ordered pairs that satn,sfy the follow:.ng three

. ﬁLuatlonS. ) . o, . .

(b) se these ordered peirs to construct the graphs of these equations.,
" ’ f ?; . A ' ~
VI 'y - % =3(x - 1) ‘ ! ; { AR
’ . ‘ . { ’ )‘ [ 4
; t j.i"II. y+3=%x2 . ’
. i e ) h . .
h ITI. y =
qv X - 2

i ¢

2. Using ;t}fe graphs in the preceding question finda the lepeE of the curves

at the following poiats. Draw the kissing line in each case: ] ’ s
. . 8 A

s (a) (2,4) on Graph I.

o (0) (o,- 3)) (’*:3) on Graph II. o . EES S

(c) (4,2) (o,te),/(egloo) on Graph III.

Y B
’ M. 1 R

3. . The follbwing graph wa& drawn from :mformatlon gathered in an exp'e"rimenu,.i,r
dealing with a ball thrown into the air. Tne height of the ball apov'e the ‘5

<
ground was plottea a5 a function gt the time it took the ball to reach

;.
. a d.efim.te height. “~ ) .
. . b - /' )
N 7
- 300 - . . r .
e ’/’J -~ P . la - ) i oud S
. 7:1’-\; TN . 2{3\'\ .
PR . \.H L } . ’ - > . ?
. o< J ) 2001 - ‘ -t
\ N >~ - -
s ] » . . 2 . . . .
Al sy v
R 2 .
., . . b= i .
- 2 . ’ ’ .4
. o . Y loo o - ¢ - « v
.. . X :r:\ .
. «;'a'.~ ,‘1 \ ’ i 50 R .
\\5 R _N’Tq‘. : Ty . f e L - AN DA SR E B 2L, R S - "
< \ . i 3 \ . 3 U :, . —
v L ) . \ _ i .
‘ 5 o’ 'S 8 . B
1 . N - - .
. ' Time (sec) ,
(a) Does the graph describe a function? ‘What is the domain and range b
of the relatlon described by the functlon? , : e . ol
, \(b) Find the slope. of the curvenat the following points: (2 ,122), (h'256);
o - (7,112), (8 1,-13.6). Wnat.is the physical meaning of the slope in
. each case? "rA .
Q@ . . . s ) . .
» ) ' ,:; - 4 o N : oo » ~ ‘\('
.} t 11“ LR - I 2 101{, s "“‘ . .

S AR T ¥ ‘e - . B N



Analyze and sketch y =

3

, 5. Find the equation of the cgve which is represented by the following

ordered pairs: {(1,3), 3,9), ( 6), (3,1), (6,5)) .+ ,
. - / S |
.o 6. ' Draw "})est'" straight lines to reprdsent ,the relation below for a

- - restricted. domain. ‘ -

T * Over what_domain and range would you say that the‘relation is a linear,

"+ one? . . . .
\ I 4

7
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Slope is everywhere the same and .equal to 3.
At (0,-3) slope, 1e-0.

At (4,5) slope is k4,

At (4,2) slope is -1.

At (9,-2) slope is =1,

At (2,100) stope i$ ‘undefined.

_ The equation of ‘the parabola ig: S = 126t - 16t2 .
slopes at the various po!r’ts are:
(2,51.92) sTope 1is 64
(%,256) .slope is 0 ‘
(7,112) slope is -36 - T T
(8.1,-13.6) slope is O (ba/ll has hit ground)

Vi . .
(1) g For very large values of x the values of y are very small.

(2) As the value.of x becomes smaller the’ value of y bgcomes larger.
(3) Whenx =4, y is undefined. ~

As X wegomes smaller and less than 4 but retains positive, y becomes
.o \
smdller negatively. : 3 )
) - 52
ERIC B ¥
1
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. (5) Whenx—o,y-—n ’ ' T

(6) when x 1s equal to small negatge valugs

. is also small negatiw}ely.
’ e

T e P —

7); For very large negative values &f x, ‘bhen;aluesﬁ_o;‘ Y become very
N U

. small negatively.

T s

\ ‘ A
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Z - 1
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v !
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/To f£ind the mathematical model first determine the reciprocals of the -
domain, and then form the reciprocal relatidn of ordered pairs,
(reciprocal of the domain,range) This gives
1o
. (1,3), (3,9), (2,6), ,l), ( 5 . :
...Then plot these points on®a set of rectangular coordinates. . %
- { ... . . . - )
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These poirrts determine a straight.,line which appears to go through the .
origin.“ Th& slol)e 1o this Iine can he found by .
;¥ [ 1 9 — .
. m = E—_- 5 = -é- = 3‘;. .
- -
Since the'slope is m'= 3, the desired equation is ¥y =% .
. a A4 - ' e .
'Three possible "best" straight lines can be drawn. The domains and
ranges are respectively:
domain: -1l to -5 - x}'
' -2 to +2- ’ .
' -
to +11
. N T 2 ™~
P * corresponding ranges: ° B
) - T e . s - 1 . .
, ) . ¢ 745 to +6p .
" N . ) * )
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‘ -t Appendix A . -

THE BEST FI’ITING LINE

iy “ v
4 | !
ko ..

A.l Experimental Data ) A

i -

.

In those experiments in which the data is supposed to satisfy a linear
'r“l_fion, the text tells the studemt to plot the data points and draw the
straight line which seems to "best fit" the data. This is obviously an in-
dividual choice, but if the data is reasonably exact, most studeats will do

+ a very good job of findj"ng such a llne.;\x, -

’

In this appendix we wish to give you a little I;ackgrourid into the mathe-
matical treatment of the "best fitting line". ‘Some of yqur students‘ m;y. N
realize that there must be ‘some mathematical procedure for finding these lines
and you should be ‘keedy to answer questions ox’i this 8ubject.

! First, however, let us’ mention a few facts about experimental data. Some
ex‘perf’iments produce "good" data; some produce "poor" data., .When we say that

an experiment produces "poor" data, we mean that there is a gr’eat—gleal of
@ M"scatter” in the numbers we obtain. Figure 1 shows the graphs of "good" data

'’ and Mpoor" data which might be oBtained in actual experiments. .
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“In Figure l(a) it is, easy to see what the best fitting line is, but in
_ Figure 1(b¥, it is difficult. Scatter like this 4s often inherent in the
experiment but sometimes when such data 1is obtained, it is possible to im-

-
LS
e
¥

prove the experimental conditions to try énd obtain better iralues. Frequently,
“the best way to dg this is to average ‘bhe results ?)f several runs. Here,
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-7 p¥oyld. be,imp:goy?ed :gn a_ppearance by discarding two or three of the
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Suppose we have obtained a set 3f data such as shown “in Fadgure -2,

o ‘ .
Interested in wha;t car be done with data
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The dotted line seems to fit the data very, well except for one point. What

shou:ld we do about that point? ) - . .

s

The answer depends on the experiment: Suppose -that the data in Figure 2

i
-

represents the length of a spring plotted against the mabs suspended from the

‘spring. It would be impossible for the spr:\.ng to shorten as we add more mMASS.
Therefore, the third point must have been in error (possible a\scale was read
wrong)’. The point should therefore be dropped from the data. - ——

" on the, other hand, there are types of exper:\.ments in which we cannot
automat:\.cally conclude that this po:\.nt :\.s in error. In this case, the only

thing to do is g0 back and .check the experlment-. Many important 'discover:\.es

_ ‘have been mage in th:\.s way. ) : v b ) N
P .

~ v .
2 A .. .k PR

LI it is Janossible to go back to check the data point wh:\.ch is out of ,
~ line, %he best cdurse is to ;iiscard it. ‘"However, & point should be d1scarded )
on this basis only when it is clearly out of ‘line. The data in Figure 1(b) ‘

points, but %

P A 5 S St g
The data points are scattered and none of them

”

thig would not be approved.

' are clearly out of.line. Yo i

Lo : ) ) ‘ f
A.2 The Method of Least Squares ' |

RS s

N A ' :
Suppose that we have a number of data points. How do we decide what

line comes closest to fitting these points?
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Figure 3

v'f?

n' Look at Figure 3. Here we show four points.' Th; dotted line must be a better
fit to the data then either of the solid lines. We feel sure of this sir';ce the
top line is "above" all the points, »ghile the bottom line i$ "below" them. The
i K best line must somehow thread 1ts way through the points without being either

above or below too many.

4 R

This condit:.on alone is not enough to characterize the best fitting line.
There are still too many 1ine’s which would satisfy this requirement.

{
¢ _In most experimental situstiohs, the horizontal coordinate (x-coordinate)

oﬁv the data points can be assumed to be known exactly (or at least with a
higher degr_ee/of accuracy then the vertica’.L coordinaté).- This is because
: this wag the’ v‘ariable that was "controlled" in the experiment.

I3
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Suppose that we have a set of points with coordinates (xz,yl), (xe,ya), ceny
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At each of the :g's there will be’lsome vertical distance between this 1ine and
the corresponding data point. At %15 for example, the line will contain’the
point (x 17 mxl + b) The vertical distance between this point and theanta g

point (xl,yl) is ‘ ' . -
- , : (mx +b-,y1) . & ,u -

v ¢

. k
This will be positive i¥ the 1ine pass&s above this point and’ negative if d.t

passes below.

i

It might seem that the best fitting line would be the one for° which the

sum of the absolute values of these differences.is g minimum. Unfortunately,

it is very difficult to find the line which satisfies this condti.tion. It

turns out to be much easier to find the line for which the sum of the squares
© of these vertical differénces is a minimum. This is the so-called "method’ of
1east/squares .. The method of 1east squares can be used to fl{ld the best

fitting line. It Can also be applied to the problem of finding the best fit-
rting parabola , Or the best fitting line satisfying given conditions.

’

s
L] ‘ N .

through the¥"'center of gravity" of the points. That is, if the data is given

__ by the ordered pairs (xl,yl), (x2,y2), vee 5 (x R ), é4nd if\ve let X . @nd

B N -

@

¥ ‘be the averages of the x, and y; coordinates, - C e,
l__ 1 . . ™~ , s
. ='= eos - -
¢ X n ;(xl * x2 * -:- X ) !
e . - 4 ey 1
7 = % (y. + PR ) d N -
§ = q Wy FYp e TV
then t?lé‘\best fitting line must pass throdgh the point (X,y) . . »

¢ a

L

The equathon of the best fitting line is then

e = - S T .
I ' g .?y,-‘yr: m(x ~ %) s : i : I
-'r -

“ where the slope &n* is g;’wen by . .
Xp¥y * Xg¥p * oo + X Y, - XY

- S p——
. X"t X%y *gee vx 5 - XX ,
. if/ o ., o o
(A proof of this is given in ISection 2.6 .) »
.- \ o ° Ve
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- and that we plot—*thése in ‘the coordinate plane and dr&w in some 1ine y mx + b. !
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An ixample my help explain how tl;x is done. We prepare a tab).e of;g;he ,?
o Values of Xy and Yy - Two more col are added to ‘bhis table. One %.s ‘ N "
M the values of xi2 for each line of the tablé and the second contains the , ) i
‘values of xy, . We t‘I{en take the total of the values in each column. 1 . ‘
; ‘ : ‘ ~ - S .
w %, ' yi’ i xi2 X.y -l computed y. 1 J
. o ) ivi ; N i |
) - — 1 p ¥
o o= f 7 1 7. N f

9.80

\

-13.37
6 - 25 36 , ‘1;0 24,08

. _ l:? . . K "':_ - : e 4 . ” "
; X ¥ 5 = 3.4 * ‘ nxy = ,5\3“(3.11-) « (14.8) = 251.60
a -_— ¢ "'2 o
: y < Lo e n¥ = 5+ (3.8°% = s1.80 .

‘@ . . ,;..\' Ll - . .. T

| Ta o 33 -eslbo _ 6Lbo oo / .
N ’ T, 75 - 51.80 7 17.20 ‘

v » ) ‘ T, . . . -

;f"‘ . The equation af -the 'tés‘t fitting ]:ine is therefore , ) .,

H Q: , 1 y ' iy - - J.ja_.u:_JJ;;a-'»JA\ g
;-M.u“-uwz,;»*/wf- Sy = 1k8 = 3.57 (x - 3.4) . :
\ or ’ .

i y - v . s
35 y =3 57x + 2,85 ,5. % e L
.. . &% i ) T

o * CSr—————— T .
. By using this eguétion together with the values of Xy o0 We can compute

| -

<
Wt

'ifi;ﬁé “‘tﬁe’oret,icaL".walues of y, . These- values-have been listeq in, the J,qst e
.column of the table for comparison. Thus when x'= 5 we find

Ve 1%“

©

At —
"{" ¥y (theoretical)s = (3.57) + 5 + 2.66 = &51 . :
E'u ) ""p._e . ’ ”
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AL The Best Fitting Iine Through the Origin . e

-Often. there are good reesons for assuming that the best fitting line
through & set of points must _pass through the origin. That is, that it must
be\of the form y = mx, It is then org.)/ necesfbary to detez‘mme the proper

value of mfneeded to fit\the data. - o ’
~ ~ - . ¢ T ’

supfose that the data.values are given by the pairs (xlyl), (x2,y2)E§ cee
(in,yn). Then :(;,he slope of the best fitting line is given by

_ Xa¥y FEp e TRy ‘
- T T . ‘
le+'x2’+..:+x2 -

1 2 n
This same result is often written in the ;nore compact ‘fqrm P,
) DY : .
. ?
had Zx - ‘e =
\ \ . %
where the capital sigma symbol is used to ipdicate that the terms of this form

are to be added together (the subscript i runs through the values 1 to n). -

* ' If We used the.same dabe as given in the example of"Section A.3, but * .
assumed that the line must pass through the origin, we wowld czggin /
, ‘ 33 _ )
. = == = .1
o R T
"and, hence, the best fitting line would be ’ =
N \ y = 1{».'17){ R

-
_ If ybu plot these points and the two li'nes°, you will see that this line,does
not fit the data nearly as-well as the line found in Section A.3 .'

Ny - .

v

. A5 The Besir Fitting Parabola ~ >

* Suppose we have a set of data which we are sure should be related f\a e
quadratic relation of;;che form ~

L)
A » 4 B

. 2 ~

then we can determine the best value of b in the following way. V*If the data
is given by the ordered pairs, (xl,yl) (x2,y2), eee, (x A ), thén the best

value for b is given by . /1
-0 2. 2 2 ~
. . . —.xlyl+x2y2+...+xnyn‘
T = in L. e
b , Xt K T TNy . .
. . -
~ 160
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Notice that thié formula only applies in thé case of a parabola whose

" vertex is at the origm, that is, when the funcﬁiqnal relation can be assumed !

to be of the form given-above. The compg;ations may be arranged in the fol-\
Lo o T '

1w’fng way:. ) ¢ . ) \
] n 2 .
Xy ¥ ) Xy Coxg XYy compated ¥y
. i
E 1 2 1 2 2.96 &
PV N . ' a
"3 a |, 9 81 225 26.64
. . ) - :
;) 0
5 . 82 25 625 2050 74,00
' 3 - ;
7 141 b9, 2401 6909 5.0k Y
(‘ | , -~ ~ .
- . 3108 9186 ?’3
- . ) N 'hé:‘\
. ’ . 9186 - A
, [ b = 108 = 2.96 - . .
’ . ¢ - - J . :
The computed values of ¥y shown in the last column are obtained from
/e . » .
the formula y = 2.96 xe . . oo v
» ’ ‘- -
w - s
2.6 Proofs o, A -
y Let A > Q and cons:Lder the quadratic function of t : T . . -
, F(ﬁ) = At“ + Bt + C . N
. R .
. For qtfat\‘value of t is ‘thlS expression a minimm? While this can be
h found easily with the help of ca%culus 5 it can be found also by elementary

:. £ind I : « -

. . - ) 2 ' 2

AR F(t) = A%+ Bt + .E-A- P 0 - % - (1)
i«s«; S | ;QL- B 2 Be ! «\

a N = [A-t + __I] +C - g ﬁ%a

s ‘ . by 2A2 . . A v

ST

px

- 'I’ne ﬁrst term in this last expression is always greater‘than or equal to zero
(since it is squared) for any value of t . The minimum possiblé wvalue of . F(t)

is therefofe atjc.ained wh?n the squared term 18 equal to zero. This occurs

- . .

L 8 Qg

. maans. We merely have to'complete the square in the quadratic expression to :
: R =

.

h0



}
oo . . :
5 - . ’ .
yherﬁ;‘{t =~ - o This is the,val't).e that gives-the min:'%mm of F(t) . -

»

Now, letlus use this result to prove some of the assertions made above. .

First , let us ‘take one of t'he simpler casges, that of a straight line passing

) . through théd origin.. -Here we assumg that we hz;fve the data (x:L ,yl), (xa,ya),
. *oasey (xn,y } @nd we wish to find :je best- fitting straight line in the form
. ¥y = mx to this data. We wish to n'imize the sums of the,s‘quarq of the ‘
% . differences me - Yy e The expression we wish.t’o minimize is
1, n ) . .
. s LR 2 .
H P . Flw = Z Jmx; - v, | - (2)
P : o3 ‘ ' S
. . A 2
o - 2 [’“ - ame gy *Vi] X LT

Lot o (Zx2) - (zxyi)m D TaE

- -
L « Bl

. /
This is a quadratic function of m . If we compare it with equation (1),
we see that the minimum value of the sums of the squares of the differences

-

5 L occurs when CT : -
oo 5, -(aXxyy) PR
B — ! - m = e=—- & = .-
. . 24 .. 2 2
' ) 2( Exi ) i in Sy,
j - ) . o - - .,SA
- " In a similer vay, we can derive the best fitting gquadratic expression .
. i - :
" . to fit a given set of data., - If we assume that y = bxa,i then we wish to
. . minimize . \ . . . ,
: F(b) E Tox,2 <y, 1 ‘ 3,
Y . i B . \
& R E[bx ‘sziyi”’i] :
' _ 2 ' 2 ) 2 - —
e T = ( X5 )b - 2<Exi Vi)b 2y :
’ This is & quadratic expression in b . Again, comparing this with (1), we
. . 'find that the best fitting parabola is given by setting
£ ' . . _ L2 2 T
¥ : . - -B (2T % y) %Y
o . b 2 e— = = .
) - aA ’-l» : h’ ) 2
; R - 23 % . 2, Xy ; /
v 2 . .
i, Finally, let us look at the problem of finding the best fitting straight
< line of the formp y =mx + b . Here we have two parameters which can be ad- -
: * ’ Justed to minimize the sum of the squares of the differences. First, let us
5 . , assume that m is fixed and try to find the best va’l/uﬁ_o\f"/b . To,do this,
'4 . ‘o ¢ . '. K " ’ .
i - e R 162‘- I ; n . -~
. K ‘ ) c ) 1 (J’ ‘, . -
*: . . . . Iy : oy - ,.‘




set

n
Since E 2 = E 2

F(b')’

Therefore we find 1! - , N
o~ 2 ‘ A B 2
. F() =.mb° + 2 E(mfi Ayy) E (mx; = ¥,) ‘
To minimize this function of b, we set ' s -
%
. /’ b = :§ - - [2 Z(mxi = yi)] _ £ kv%mx‘ ) )
2A 2n T E . Y
. . ‘ -
Using the definitions , ?
. N [ 4
- -1 - _ 1 2/ . .
. we f£ind thdt .
N o .
i b= Uty s ’ . -
“Putting this into the equation for the line, we have s
’.. Yy = mX-mx +Yy.
‘ J
This is equivalent, t% N - - )
. : - b ‘ B
y-¥y = m{x-Xx). . .
) -

" To minimize this,” we merely follow, the procedure used before and set,

Thus, we have shown that the best fitting line mus
Néxt, we obtain the best valie for m .

(7).

.

F(m)

Z [mxi +b - yi]2 = Z (b + (n;xi‘
E [b2 + eb(mxi = yi) +'?mxi‘ = yi)e] . _).‘ ‘

H
is the sum of n identical terms, E be =nb- .

. -

pass through the point .

do.this we wish to minimize

)
’

noooon

E[m(xi-§)+§--\yi]22 - .-
2 [l - %) - (y, - 7)) .
> inix, - 0% - en

e,
H

¥y - B+ lyy - PP

-7

’.

E

\

Z (x; ‘j§)2 -
K Z(yi-‘y) .

N -

Doy - Dy, - T)
Dy - ®)°
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L .y, For comﬁxtational purposes the nulnerator and denoyina‘tor of this expression
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'. : -t ?‘% 2 ﬁ\ Y :’1 y % s Lo \_‘7\\. .
. (x; - x)(yi =Y = ) lxyy - Xy - gt ch)] ©o
- . * 22 /\ = xiyi -2 X 32 yi -Y E xi + E Xy: .
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