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1-1. Introduction

SUPPLEMENTARY UNIT 1-

SETS

You already are familiar with the word "set." A set of dishes

is a collection of dishes. A setiof dominoes is a collection, or ,

group, of dominoes. In mathematics we use the word "set" to speak

about any collection of any kind of thing. In your classroom

there is a set of persons. There is also a set of noses in the

rodm. , .

The language of setsIS V-614y useful in desCribing-all' sorts of

situations. How is the set of pupils in your class related to the
,

set of boys in the class? COMpare the number in each of the

ing three sets:
.

the set of pupils in your -class,

ts/;7A

the set of boys in your class, and

the set of girls in your class:

The following three sets are related in a different-way:

the( set of redheads,

the set of-baboons, and

the set of redheaded baboons.

In this chapter we are going to study relations between sets,,
?

and ways in which we can combine sets to obtain new ones. We shall

find it convenient to invent some new words and symbols.

1-2. Sets, Their Members and Their Subsets

Sets and Their Members

When we speak of a set as a collection of things, we do not

mean that the things are all together in One place or time. The

set-of all living women is a widely distributed set. You wilt

{}
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meet members of this set all over the world. The set of all

presidents of the United States has asmembers George Washington

and Dwight D. Eisenhower, among others. Nameother members of this
set.

The "things",mak not be objects which you can touckOr see.

The set of all Beethoven symphonies does not contain any concrete

objects.You may hOTOheard some of its-Memb4rp. The;; set of all

school orchestras4.nN>the,United States is'& set (whose members are
themselves sets of Otils. The set of classes ih your school is'

another set whose memberg-.are sets. At is-diferent from.the,set
of all students in o-lassies-in your school. Which of these sets f,

more,members: The set'of students in your school or the set
gasses in-yoUr school? .

Sometimes we define a set by litting its members, Your teacher

'-',,might-appoint a committee to be in charge of the mathematical-ex,

abits ir:your class. She may say, "The members of the Exhibits

Committee shall be Lenore, Muriel, Dick and Al."

We often name a set which is defined in this way by listing

names of its members and enclosing theM in braces:

Exhibits Committee = (Lenore, Muriel, Dick, Al).

We sometimes calms the members of a set "elements of the set."

You are an element of the set of mathematics students.

We use the symbol "E",(Greek letter epsilon) to mean "is a
member of." Thus we can express the fact that Lenore is on the
committee by writing

Lenore E Exhibits Committee.

We could state the definition of the committee like this:

x E Exhibits Committee if and only if x represents

Lenore or x represents Muriel or x represents Dick
or x represents Al.

Another way to describe a set is to state the membership re-
-quirements. These are conditions that something must satisfy in
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9rder to be in the set. The set of persons in your classroom has
.

a'very simple membership requirement. The object x is in the

set, if; x is a person in your classroom, and only thed;7- The set

of common multiples of 4 and 6 is the set of all numbers, x,

for w hich it is true that. x is a multiple f 4, and x is -a b

multiple of 6. You might imagine:each object in the uniVerse

applying for membership in this set. If the object is not even'

a whole number, then we throw it out immediately. If it is a

whoie:nurilber, we divide it by 4. If the remainder.is,zero, we

then divide the number by 6 and see whether 6 is a factor.

If x passes'thig_test, too, then x- gets its membership card in

the set. If it fails'any of the tests, we reject it.

Property

You begin to see that for a particular set to be clearly defined

, there must be some scheme or devise for determining whether or

not a'given element is in the set. Usually -.a set ls described in

terms of some property, or properties, which its elements have in

common. For example, the set. C may be thought of as the pupils

in your lass. The common property is that each element is a

member of your class. Again, you.may consider set B as the set

of boys in your class. The elements of this set contain two

properties in common: (1); the elements are all in your class,

and (2) 'the elements are all'boys. Sometimes a aet is described .

simply by enumerating the elements.

We could say the set, Lenore, Muriel, Dick and Al. This would

form a set even if they were not on the 'same committee. We can

describe a large,set by listing a few members if it can be done so '

that there is no doubt as to whether or not an object is in the set.

0, 1, 2, 3, ... 100 describes the set of whole numbers from 0

through 100. Some sets with a limitless number of elements can

be described by listing a few elementi; in this case, also, there

must be no doubt as to'whetheror not an object is in the set. An

example of a limitless set is: 0, 2, 4, 6 ... 2r . What

are the common properties of this set?

8
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Exercises 1-2-a

'1. List a ooMmon property or properties of the elements-pf each

of the following sets:

(a) (Sue, Jane, Dorothy, Mildred).

(b) (Washington, Jackson, Eisenhower).

Xc) 5, 7, 9, 11).

(d); (12, 24, 36, 48)..'

1/4

2. translate the following Mathematical sentences into English.

(a) Tom (Carl, Jim, Tom, Robert).

(b) -6 E (0, 2, 4, 6, 8, 10, ...).

(c) If X E (Tom, Carl, Bob, Jim) then X represents

Tom, or X ,represents Carl, or X represents Bob,. or

represents Jim. ry

3. Which of the following are true?

(a) 4 E .(3, 7,:10, 4).

(b) lion E (baboon, tiger, dog,

0,

/,

(c) If X is a multiple Of .6, then X E (8,-14, 17, 28).

(d) If X is a counting number, then X E. (1, .2, 3, 4,

6, ...).

(e) Washington, D. C. E (Alabama, Alaska, Arizona, ...,' West

Virginia, Wisconsin, Wyoming).

4. List the members of the following set9:

(a) The set ,of X such that X is a factor of 12 'and 30.

(b) The set of X such that X plays a violin, or X .plays

the viola, or X plays the cello.

(c) The set of 'X such that X is a whole number.

(d) The set of X such that X is one of the II. S. Presi-

dents since 1930.

9
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Consider, the set of major league baseball teams in New York

in 1959. This. set has one member, the New York Yankees Baseball

Club. Its one riember is itself a set, among,whose members are

Mickey Mantle and Yogi Berra. The set %abuse only member is a

certain object is not the same as that object. The symbol (3)

is a name for the set whose only member is' 3.

The set of players on the New York Yankees team is a subset

of the set of baseball players. Every member of the team is a

baseball player. In symbols, we write: If X e Yankees, then

X E the set of baseball players.

You have been introduced to-a new word: that of\ supset.' Let,

us consider another example. Suppose in a class of 25 pupils

there are 3 pupils whose first name begins with "S." You can

then say that these 3 pupils form a subset of the class.° Again,

consider the set of'even counting numbers: 2,4, 6, 8, 1010,

This set can be considered as a subset f the counting numbers:

1, 2, 3, 4,. 5, 6,

Suppose the set of pupils in your class whose first names

begin with "S" is (Sam,-Susan, Sally). Subsets of this

set may be listed as follows: (Sam), (husari), (Sally), (Sam,'

Susan), (Sam, Sally), (Susan, Sally) and (Sam, Susan, Sally).

Sometimes me say that a set is a subset of itself.

Definition:

A set R is a subset of a set S if every element oP R is

an. element of S.

It is necessary, at times, to talk about the relationship-of

a set, or the relationship of a set to another set: We say, for

example, that the set of even counting numbers (which'is. a subset

of the.countipg numbers) is contained,in the set of counting

numbers. To write this in mathematical language we use the "d"."t

which is read "%is contained in'." YOu can now write: (2, 4, 6,

8,....) C (1, 2, 3, It, 5, 6, ...). sometimes the symbol "0"
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is also used. This is read " contains." You can now also write:

(1, 2, 3, 4, 5, ,..) 0 (2, 4,6, '8, ...),

which reads: The set of'counting numbers contains the set of

eiren counting numbers. Let the set of yourclass be called "C"

\and the set of boys in nur class be called "B". You can then

write:

B C: C, or

C :)

Yoii may be helpe! in this study by use of diagrgms, A

msthdmatician a4 ways draws figures or diagrams when poSsible.

'the diagrams used below are called "Venn" diagra0. Consikler

again the example B C C. We ske,tch the ollowing:

This illustrates that the set of bOYs in your'class is corn fined

the set of your class. Again:

(c

illustrates hat the set of all red flowers is contained in the

set of all flowers. Let the set of all red flowers be ca.2'ed R
ti

and the set, of'S.11 flower's be called F. The relationship of

11
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R and

114is diagram indicates that the.set of all red flOwers belongs to
1-

th set of all floWers. 'It also indicates 'that `the 'set o'f all

tulips belongs* to the 'set of all floWers. Jet the set of ell\

tulips be called r. The abo relatkofiship Tray .n 0! w'be expressed

F can then be written,as:

R C: F, or

F :5 R.

Consider the following Vehn diagfram:

as:

R C

T C F.

What can you say about the relatiOnship of set: R and set I/

You'would certainly have to say that some tulips are red and are

thus contained in the set R, but you certainly cannot say that

T C R is true. Give some thought to this situation for :Iwhile:

Exercises 1-2-b

1. :Translate the following mathemfatical.sentences i to Englsh:

(a) If X E (Rd flowers), then .X E the seat of all flowers.

(b) M C N, .and N D M.
A

(c) (1, .3, /5, -7, 9,' 11 C (1, -2, 3, 4, 5, 6, ...).



2. ,Write 11 possible subsets of the set: (4, 5, 6).
.

1.,1 Translate the following English sentences into mathematical
,;

sentences.

-P. (a) The set (la, 20, 32) is contained in the set of all

whole numbers.
,

4 ' '(p), The set of the Great Lakes contains the set of Lake Huron
-

and Lake Michigan,

(c) The set of (Hoover; Truman) is contained in the set of

all U.S.; presidents since 1920.

Draw a Venn diagram to illustrate the following:

(a) The set of the Hudson and Ohio Rivers is contained in

the set of all rivers in the United States.

(b) The set of tigers, lions, and baboons is Contained in

:the set of all animals.

(c) 'The set of 16,.36, and 4o Is contained in the set of

all counting numbers which are multiples of 4.

(d) The set of 6, is contained in the set of all

'rational numbers.

5. 'Which of the following are true and which are false?

A (a) (Al, Tbm) D (Al, Bob, Jack, Tom).

.(b) (Sam, Sue) C (Slim, Tom, Bob, Sa).ly).

(c) The set of all yellow roses is contained in the set of

all yellow flowers.

(d), (28, 56, 112) C the set whose elements are Multiples of
. 4 and also of 7.

6.' Given three sets A, B, and C. If A D B and B D C,
does A 3 C? Illustrate your answer with a Venn diagram.



Operations with Sets

Union

c

Suppose the set: (Bill, Jim, Tom, Sam) are the boys of a

class who play in the band. Call this set B. Let the set:

(Sam, Tom, Carl) be the boys in the same class who haye red

hair. Call-this set R. Now if we combine these two sets we

- would get the set: (Bill, Carl, Jim, Tom, Sam). This would be

the set consisting of all elements which belong to set B, or

to set R, or to both sets. We call this the union of two sets.

The symbol used is: "W. We can now write:

(Bill, Jim, Tom, Sam) U (Sam, Tom, Carl) =

(Bill, Carl, Jim, Tom, Sam).

If we call the union of these two sets C, then you can write:

U R = C, arid it is read: B union R equals C.

The combining of two sets in this manner is called an operation.

Before working some problems let us consider another matter which

was introduced by writing' B U R = C.

Equality of Sets

We say that. two sets are equal if and only if each element of

one 'is also an element of the other. Suppose we have two sets -A

and B: If A C B ard B C A then we can say A = B. For ex-
,

ample, suppose that in your class, there are only four redheaded

pupils which we shall call set R, and furthermore, these four

redheaded pupils are the only ones having their birthdays in

January, which we shall call set J. We can write:

R C J and J C R, hence R= J.

Consider again: B U R = C. If we can write

C C (B U R), then we can say: B U R = C.

you should see that this is a true statement.

that two sets are equal, we sometimes say they

is a good expression since we can say that two

(B U R) C: C and

After some thought

Instead of saying

are identical. This

Getz are equal if
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and only if every element of each an element of the other.

Properties

that

1. Consider again the two sets, B and R. Do you suppose

O

PU R=RU B?
Let us investigate:

B U R = (Bill, Jim, Tom, Sam) U (Sam, Tom, Carl)

= (Bill, Carl, Jim..Tom, Sam).

R U B = (Sam, Tom, Carl) U (Bill, Jim, Tom, Sam)

= (Bill, Carl, Jim, Tom, Sam).

You see, then, that B U R = R U B. Does this recall to you

what you learned about' the "commutative" property? With a little

thought on the union concept, you should see that for any two sets

M and N, M U N = N U M, and the commutative property is true

for sets under the operation of union.,

2. Do you think the following is- true?

Let

Then:

and

A U (B e)' . (A U B)u c.<

A = (1, 2, 3); B = (1,14); C = (2, 5, 6).

A U (B U C) = (1, 2, 3) U (1, 2, 4,5,

= (1, 2, 3, 14, 5, 6),

(A U B) U C. = (1, 2, 3, 4) 4,1 (2, 5, 6),

= (i, 2, 3, 4, 5, 6).

6).

You see, then, that in our example: A U (B U C) = (A U B) U C.

This should recall to mind the associative property. With some

thought you snould see that under the operation of union the asso-

ciative property is true for sets.

15
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Exerdi,ses' 1-3-a

1. (a) If 'set M.= (Red, 'Blue, Green) andiet = (Blue,

Yellow, Chite), find M L) N.

(b) 18 M LP-N = N U M? Why? 4

2. Let A be the set of even counting numbers; 1 B the set of

odd counting numbers; and C the set of all counting numbers.

(a), Is A' U B = C? Why?

(b) .Is A C C? Why?

(c) Is A C B? Why?

(d) is A UB=BU A? Why?

(e) Does, B D A? Why?

(f) Draw a Venn diagram to illustrate B C C.

(g.)---1-8 A = B? Why?

3. Given three sets R, S, and T.

(a). Is (R LFTS) U T=RU (U T) = T U (R U S)?.

fiW'sliPptise-'(RAY'S) T =a! T C (R ' s), ;then is

R U = T? Why?
(

4. Let C be the set of pupils in your class,, S be the set

of pupils in your school, and X be the, only redheaded pupil

in yourclass. DiaCuss the following as to whether or not

they are true.

(a)' X E" S (e) X e C

(b) C C S (f) S C

(c) C = S (g) Is X a subset of C? Of 8?

(d) ,S C C (h) is 'C a subset of, S?

5. (a) Consider two concentric circles. Let X be the set of

points within a circle whose radius is 4 units and Y

be the set of po:ints within a circle whose radius is '2

units. Draw a Venn diagram to show: X U Y.
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Is X C Y, 40r- Y C: X? After giving your answer_

complete the statement: is a subset of

Intersection
,

Another operat on-With sets is that of intersection. Do you

recall this operation from\plapter 4 of the Seventh Grade text?

YMi no doubt remehoer that he symbol for intersection is 0111.

Consider sets A and B. If we now write: An B, it is read

"A intersection B." The intersection of two sets is the set of

all elements which belong to both sets. For example, let set A

be (Tom, Sue, Carl, Joaft),-and set B be ,(Sam, Sue, Tom, Sally).
AO

Then A a B = (Sue, Tom). Do you remember the following Venn

diagram we had several pages back?

You remember a question 'was raised about the relationship of R

and T, where R was the set of all red flowers and T was the

set of tulips. You can now see that the shaded part of the

diagram is R n T. This situation presents us with another set

which we have not mentioned. Are there any yellow tulips in

set R?

Null Set

At times we have a set which is said to be empty. Such a set

is sometimes called the "null set." For example,. the set of yellow

tulips contained in the set of all red flowers. is an example of a

I ' null set. Suppose there are no redheaded pupils in your class

then the set of redheaded pupils in your class is a 91111 set.

1 7

9
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Mother example is the set all voters Who hive their igt(1.-,t -

residence in Washington, D. C. We shall use the symbol "(1)"

(the Greek letter phi, pronounced "fee") to designate the null,set.

We say that (1) a subset of every set. .,

Properties

1. Given two sets M and N: Is it true that MA1 N =

N n M? Let M be (1, 2, 3, 4) and N be (3, 4, 5, 6),

then M (1 N = (3, 4) and N n M = (3, 4) . In view of your

previous study you are led to see that the commutative property

applies under the operation of intersection of sets.

2. In a similar manner, given three sets R,IS, and T, it

can be shown that\the associative TTOperty holds.' We would then

have: R n (S n T) = (11 n n T. Select an example of your

own and see if you get a true result.

3. Are you reminded .of anything by the following, where R,

S and T are three, sets?

R U T) = (R U S) n (R U TY.

Let R = (1, 2, 7), S = (1, 3, 4) and T = (2, 3, 5).

Then R U (s r) T) = (1, 2, U ((1, 3, 4) (1 (2, 3, 50

= (1, 2, 7) U (3)

= (1, 2, 3, 7)

and. (R U S) (1 (R U T) =e

((1, 2, 7) U (1, -3', 4)) n ((1, 2, 7) U (2, 3, 5))

(1, 2, 3, 4, 7) n (1, 2, 3, 5, 7)

(1, 2, 3, 7).

This. illustrates the distributive property of union with respect

to intersection of sets. In working with sets we'have two forms

ofthis property. We have just studied one form: namely,

R L1'(S riT) = U s) n (R U T). The other form is:

R n (S U T) = (R fl S) U (a n T), which is the distributive

property, Of intersection with respect to union of sets. This is



somewhat different from what you studied in working with the
d

counting numbers in Chapter 3. There was only one form of the

distributive property: namely, multiplication with respect to

'addition.

Exercises 1-3-b

1. Given the three sets: A = (boy, girl, chair), B = (girl,

chair, dog) and C = (ch4ir, dog, cat).

(a) Find A n B.

(b) Show that A n c = cp A.

(c) Show that A n U = (A n B) U (A n C).

(d) Show that A n (B n C n (A,n B).

2. (a)' Where 4) represents the null set, and H ib,any other

set, is the following true? (I) U H = H U 4). .Explain

your answer.

(b) Is $ n H = Explain your answer.

(c) Under'the operation of union of sets, what name may be

applied to 41? (Hint: compare zero in addition and

4) in union of sets.)

3. Let R represent the set of points on the segment 71i, and

S represent the set of points on another segment' m
(a) 'If R n S = 4), then what is true about the two line

segments?

(b) If R n S 4), then what is true about'the two line

segment's?

4 Are there any sifUlarities in properties betwen the symbols

"U" and nrIn, and the symbols "+" and Explain

your answer.

5. Draw a Venn diagram to illustrate the intersection set of all

members of the band In' your school and all the pupils In

your class.

19
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6. Show by uskof a figure the intersection set of two intersect-

, ing circular regions. Shade the intersection set.

7. (a) Let E be the set of even counting numbers:

(2, 4, 6, 8, ). What must be the set F so that

E U F = C, when C is the set of all counting numbers?

(b) What is E n F?

8. Given two sets A and B:

(a) If A C B, is it true that A U B = B? Explain your

answer.

(b) If A C B, is it true that A n B= A? Explain.

1-4. Order, One-to-One Correspondence

Order.

In many situations the order in which we write the elements of

a set is immaterial. For example, set A: (Bill, Tom, Sam), can

be written as (Tom, Sam, Bill), rr as (Sam, Bill, Tom), just as

Under our definition of equality, all

three of these sets are equal. At times, however, the order is

important; For example, the name William Thomas is not the ,same

as Thomas William. If we wrote these two names as a set: (William,

Thomas), then under our present framework, we could just as well

write the Set as: (Thomas, William), and the two sets would be

equal, or identical. An ordered set is one wherein there is an

element which is the first term, another element which is a second

term, and so on. When we wish to Indicate that the elements of a

set are ordered, we shall use parentheses ( ), instead of braces

( ). If we now write the set composed of the elements Thomas

William in the form: (Thomas, William) it is not equal to the

set: (William, Thomas), because the set is ordered with the

element Thomas in the first position and the element William in

- the second position. A set of two elements written in this manner

2 0
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is sometimes called an ordered pair. ,you had some contact with

Ordered pairs when you madd graphs in Chapter 13 of the Seventh,

Grade text and in Chaptets.1 and 2 of the Eighth Grade. A set

such'as: .(al b,; c) may be referred to as an ordered triple.

This idea maybe extended to many more than 3 elements. For

example, the ordered set of the first n counting numbers:

(10 2, 3, 4, 5, 6, ..., n), would give us an ordered,set of

n elements where n may be any countingnumber. This idea

will be used in the section on Counting.

Ordered pairs are very useful in many branches of mathematics.

When you study a course called Analytical; Geometry, you will deal

with ordered pairs such as (1,.4), (6, 2), (12, 15). -

Consider the set of people in line before the box office of

a theater. Is order_ important in this/situatlbn? If you should --

try to, move ahead of someone already in line, you would be made

'to understand, rather quj:ckly, the importance of order in this

case. There are people who consider order important enough to

take a bed roll and sleep hear a box office, so as tobp well up

in a line when the office opens. Some baseball fans do this for the

World Series. Can you think. of other similar situations?

As you know, the following is a true statement:

= (1., 2, 3) = ,(1, 3, 2).

On the. other hand,

ordered sets.

(1, 2, 3) /,(1, 3, 2), because these are-

One-to-one Correspondence

One basic study of sets deals with the comparison,:of,two or

more sets to see whether or not the numbers are equally numerous.

This is done by matching the elements of the sets. In'the

opening pages of Chapter 2 in the Seventh Grade text, you read

that in the long ago a shepherd probably kept account of his

sheep by having a notched stick - a notch for each sheep and a

sheep for each notch. With this arrangement he could tell, whether

21
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or not any sheep were missing by comparing, or matching, th set'

of notches with the set of sheep. If all sheep were presen we

could say there was a'one-to-one correspondence between the set of

sheep and the set of notches.

Consider your class. Suppose there is the same number of

seats in your classroom as there are pupils ih your class. When

all the pupils are present, then the set of seats and the set of

pupils are in one-to-one correspondence. In other words, the

two sets are equally numerous. If all pupils are ,present and

seated in their assigned seats, then your teacher can tell -at a

glance that there is perfect attendance for the day. Without

much more than a glance,she can tell how .many are absent', if some

are not present. How does she do this? What can you say with

respect to ones -to -one correspondence of the following:

1.

2.

(1,

(1;

(a,

2, ); (0, X,A, V);

2, 3, 4, 5, 6,. 7, 8, 9,

b, c, d, e, f, g, h, i,

(A, B, C, D).

10);

j).

3. (the number of fingers on one hand);

(the number of symbols in a base five system);

(the number of players on a boys' basketball team).

In each of the 3 groups there is a one-to-one icorrespondence'

between the elements ofone set and the elements of each of the

other sets.

We are-now in a position to state a general principle with

respect to sets and one-to-one correspondence as follows:

Given ,two sets A and B. These two sets are

said to be in one-to-one correspondence if we can pair,

or'match, the elements of A and B such that each

. element of A pairs with one and only one element of B,

and in the same matching process each element of B pairs

with one and only one element of A. This principle may

be stated more precisely in the following way:

2 2

st.
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Let i) and B be sets. There is a one-.to-one corre-

apondence between A and B if there ely.sts a collection

H of drdered pairs with the following properties:

1. The first term of each pair of Ai. is an,element

of A,

2. The second term of e'a'ch pair of H is an element

of

3. Each element of A is a first term of exactly

one pair of H,

4. Each element of B is a second term of exactly'

one pair of H. .

-A/4),

In Problem 2 above let A b4Phe set

, (1, 2, 3, 4, 5, 6;i-,8,-9, 10)

14

(a, b, c, d, e, f, g, h, i, J).

The set ji would loOk like this:

((1,a), (2,b), (3,6), (4,d), (5,e), lqi--0-0-kr (91i), (10,i))

Unless the concept oforder4s.to :be taki1,0 4ito cdniideration,

the matching Process may be done in more than lone way. .consider

set. A: (Bill, Tom, Sam), and set B: (Ann, Jane, Susi*. Since

thee sets have'only three elements, we can see at a glande that

there is a one-to-one correspondence between theM., The,matching

process, however, can be done in'six 1,klyd.' Two 'di' them are as'

Set A Set B Set A Set B

Tom 4______>Susan

Sam < >Jane

Figure 1-4

23
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The symbol " "*--> "" " 1." simply 'means, for example! that

is
(

atched wjth Ann, and Ann is matched with Bill. \

Let.0 consider the elementS of these two sets again, and

write the\sets as follows:;
'I

A: (Bill",-.Tom, Sam), B: (Ann, Jane, Susan).

The notation indicates the two sets are now ordered. Of course,

we can still match the elements in six ways. If, however, we. want

to preserve the order, the elements can be matched in.only one way

'as follows:

Equivalence

You remember when we talked about the equality of sets, we

said that two sets were equal, or identical,if and only if every

element of each is an element of the other. -For example,

(1, 2, 3) . (1, 3, 2)

Tom 4----*Jane

Sam *---..,?Susan.

.7

because the two sets contain the same elements. The concept of

one-to-one correspondence introduces a new concept of eauality,

that of. equivalence. We say that two sets which are in one-to-one

correspondence are equivalent. We shall indicate this fact by

using the symbol "4--)", which was used in matching the elements

of sets. For example:

(Bill, Tom,- Sam).(----,>(Arin, Jane, S)asan):

Again, given two sets A and B, if we write: At B, we mean

that there is a one-to-one correspondende between the elements of

A and the elements of B.

'4

2 t



a

1.4 :20

Exercises 1-4

1 construct tables similar to those of Figure1-4'tO show -the

- additional four ways in which the two %es may be matched.

2. (a) Howmihy.elements are in each set in Problem 1?

(b) Th how many tables is Bill 4E----Ann?-

(c) What arithmetic operation on the answers to Parts (a)

and (b) 'gives the total-numbei of ways in which the member's

of Set A can be matched with.tfie members of Set B?

3. Use, the sets C = (l, 2, 3, 4) and D = (a, b,,c, d) for °

this problem.
.

(a), Match each Of the elements of Set C with an element of

Set- D keeping 1AE--0a in all cases:

(b) Hoist-many such matchings are possible?

(c) In how many matchings is a? Do not make addifional

tables.
:

(ii) In how many matchings is 3 *--* a?

(e) In how many matcnings is 4 *-"io a?

-(C) How many possible matchings are. there between sets C

and D?

*M Write a rule to find how many matchings are possible

between two equivalent Sets.

4. Determine, whether the follong are true or false. Use ex-

amples to illustrate your answers.

(a) Identical sets are also equivalent.

(b) Equivalent sets are also identical.

(c) Equivalent sets may. be identical.

(d) Identical sets are never equivalent.

2,5
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Construct a matching tab)40 fdr e follbwing sett.so.that

-'order wtj.l.be preserved: (1,, 3, 5, 6), .'
4

(x, y, t*, a, b, c).

I I

6. Suppose you buy a carton of a dozen eggs. 'It it necessary .

to count the.egge.in orde to tell whether or not yOu_have

a dozen? Why?

7. Given two- sets x and y. If x C y and'` y c .x, can

we say that the two s tS are in one-to-one correspondence?

Explain.

8. Are there-more points on an arc of a 'circle than on its

subtended chord?' Explain your answer.

- .

. 1-5 The Number di" a Set and Counting .
,..

Given the dens:: (1-2, 34 4) and (GI 1,A, V)1', YOu notice"

(that
there 17/s. one-to:one correspondence between them: In addi-

.

.)tion you sey that the sets. are composed of 4 elements. In fact,
q

any two sets which are-in one-to-one correspondence haveAlthe same

;
number o

/
elements. Sets, however, will Vary in the number of

.

elemen which' -they contain. This mayyhry. all the way from. zero,

the.nUil set, to an infinity bf elements:The word."infinity"

is 2.4-new to you, because_you will remember that there are an

infinite number of points on'a line, Or again, an infinite number

of whole numbers. A set containing an infihite number of elements

is called an infinite Bet; otherwise, the set is called a finite

/

/
........-.........,

set. Since sets vary in the number of elements they contain, we

can; then, assign.a'number ;so a set. We can only assign the same'

number, however,, to, those sets which huvea one-to-one correspond-

ence between them. discussion we shall consider only

finite sets.

When we wish to talk about the number of a set we shall use the

following notation: n(A). This is,readf "the number of set A."

More briefly it is at times read: "41 16T A."

26
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For the gets:

(1, 2, 3, 4) and (0, 1,A, V),

We can now.write:

n((1, 2, 3, 4)) = n ((0, 1,A, V)).

counting

5 The use of .the counting numbers: (1, 2, 3, 4, 5, 6, 7, ...),

':gives us a basic sequerice whiCh we may consider as the numbers of

,sets. Every counting number, then, pay be considered as the

'number of the set of all counting numbers up to and including it.

Counting can be' considered as:a method of matching between any

finite set and a. subset of the -counting numbers. Let us designate

the set of counting numbers as C. Further, let-vs label the

subsets-of. C as Cl, C2, C3, ; where C1 = (1), C2 = (1, 2),

Ca= (1, 2, 3), and so on. As an example, let us count the set

A composed of (Sam, Carl, Tom, Jack).

Set A: [Sam, Carl, Tom, Jack)

Set -C:r (1, 2, 3, 4, 5, 6, 7, ...).

By matching you see that set A matches with subset C4 of the

set C. Since n(C4) . 4, then n(A) = 4.

Consider set A: (1, 2, 3, 4), and set B: (5, 6, 7),

which are said to be disjoint. Two sets are said to be disjoint

if they contain no elements in common. Now do you remember the

expression. A U B? Applying the -operation we get a new set:

(1,' 2, 3, 4, 5, 6, 7). Upon matching this new set with C, you

note that it is C7. So n(A U B) = n(C
7
) = 7. Let us consider

the problem through another example: Given the disjoint sets,

M: (a, b, c, d), and N: (e, f, g). Now M U N = (a, b, c,

d, e, f, g). Upon matching this new set with C, you notice that

'it is also C7. Hence we have: n(M U N) = n(C
7
) = 7.

Do you now notice that the number of the union of the two dis-

joint sets nay be considered as the sum of the number of the sets?

21
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Exercises 1-5

1. What is the number name of the following sets?

(a) 16(1, 2, 3, 4, 5, 61.

(b) (a, b, c, d).

(c) ,(bird, dog, cat, chair, horn):.

(d) (1,X , *,D, 1/1\ ).

(e) Which of the above sets have the.same number?

2. Suppose a set R matches subset T of another set S.

What can yol say about the number of

to the number of S?

3. Considerihg only finite sets, if set M matches set N., and

pet N matches set R, what is the relationship of set' M

to set A?

R in relationship

4. How does the number of the set of automobiles being driven

at this moment compare' with the number of the set of their

steering wheels?

5. By matching the sets C12 and Cy', shut that 7,<

6. Given two sets A: (Bob, Sue, Tom, Joe) and B: (catl'dog,

chair). Find the set A U B. Now match the union of these

sets with C and determihe the number of the union set.

7. Given the two disjoint sets M: (1, 2, 3, 4), and

N: (5, 6, 7, 8, 9). Find M U N and determine n(M U N)

by comparing it with C.

28
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SUPPLEMENTARY UNIT, 2

SPECIAL FIGUEiES IN PROJECTIVE GEOMETRY

2-1

2-1. GeometrE and Art

In a certain park there is a row of poplar trees. They are

evenly spaced, and all the same size and shape. Two boys wanted

to draw a picture of them. The first said,

"I know that these trees are all

the smile size. I know that there

is the same distance between any
, .

two adjacent' ones. This is how

I will draw them."

The other said, 3tThe trees further off look smaller to me; and

even though I know they are not smaller I will draw them as I

see them." , Which of _their

-pictures do you like better?

The second boy used the idea of perspective, This is a very

important idea in art if we are Interested in drawing things the

39
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way they really look to us. It is the idea used in giving depth

to a picture.

Of coursel'not 11 artists have wanted to do this. In ancient

Egyptian art, for e ple, it-was the rule to draw the pharaoh

larger than anyone else in a picture, and the sizes of other people

were mad&to depend,on their importance.

Not until the, end of the Middle Ages,dida,artists make serious

systematic efforts to understand perspective. At that time they

,'became greatly interested imlearning the rules'that would help

thempIcture'realistically the world about them. This periods

Which historians call theRenaissance; was a tune of great devel-

opment in science and learning as well as art. It was a time of

new ideas and of a new interest in understanding the laws of

nature. It was a time of experiment.

One of the artists of this period was Leonardo da Vinci.

Though we remember him best for his paintings, he pad a wide range

of interests. Among other things he tried to design a way man

could fly. He believed that a knowledge of science and mathematics

is an'essential tool for the artist.

An artist who did a great deal of wbrk in developing rules of

perspective. was Albrecht Darer., In some of his drawings we can

see the way in which he studied these problems. Ydu can find

examples of them in Mathematics in Western 'Culture, ,AV MorrtS:

Kline. This book contains many other pictures Ybucwill also

find interesting.

A mathematician, Girard Desargues, wrote a book about the

ideas of geometry that would be useful in connection with the study

of perspective. ,He was the originator of what is called projective

geometr7.

The word "projective' can be understood if we think about, draw-

ing a picture. In drawing a tree, you can,think:of a line extend-

ing from each point you see to your eye. Each line intersects the

31
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plane of your canvas in a point. The points in the picture thus

match the points of the tree that we see. A geometer says that

the 'picture (the set of points) on the canvas is a projection of

thy set of points of the tree.
CS

Here is another example that will help you understand the

sort of problems that occur in projective geometry. Suppose there

is a triangular rose bed in a garden. Suppose an artist' draws

this rose bed several times. Perhaps he draws it first as seen

from a print in the garden.. Next he draws it as seen from the top

of a high tower. Perhaps he tries other,location's asiell. He

will find that in his pictures.therose,bed is always triangular.

He will find, however, that the triangle has different shapes

depending on,where he stands. He has disovered: The projection

of a triangle is a-triangle. Later we will see another discovery

that can be made about this situation.

Projective Geometry in a Plane

One-to-one Correspondences of Point Sets .

In this figure, lines ,e and

/2 are parallel. Lines drawn from

pOint P intersect lines _Ja
1

and

." 2. One such line intersects / 1
in A and in AI. Another

intersects 11 in B and "2 in
V. The figure gives us a way of

32
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matching the points on /1 with the points on j
2.

To find the

point on 2
that matches C, for example, we would draw the

fle through C and P. The point where it intersects / is

t]e point that matches C.

This matching of one set (the points on .,7i) with anothei.

set (the points on 4) is called a one-to-one correspondence, as

we know. We have-found a one-to-one correspondence between the

points on ./1 and the points on _,/2. (Of course, if we used

soijte.other point in place of P we would find another one-to-one

,correspondence between the points on and those on .../92.

The two point sets can be matched in many different ways.)

Did you wonder why we chose parallel lines for andand 12?

Let us see what would happen if we did not. In the next figufe

j
1

and j2 are not parallel. We can still draw lines through

P cutting ..71 and .12. Point

onf' corresponds to point

At on j Point B corresponds

to Bt. Point C is a special

point. It belongs to both the

set of p6ints on j
1

and the

set of ,points on 2'
A line

thrOugh P that intersects,/ 1:
, -

in C also intersects 2
in

C. In the correspondence betWeen

points on i and points on
A

_402' the point C thatches itself.

It looks as though we have once again a one-to-one correspond-

ence between the points on 1
1

and the points on But we

need to stop and think very carefully. We need to remember' thdt

there is one line through P that is parallel to, Suppose

this line (the dotted line in the figure) intersects .4472 in the

point D'. Dt, is a point on "2, but our system does not give

any point on that matches it. . Points on that are very

close to D' match points that are very far out on Et is

onesuch point.

3 3
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There is alSo a line through F that is parallel to ../1
2'

So there is also a point on .1
1

that has no matching point on

. .12. We have discovered: Our system gives us a way of matching

each point except one on ..1) 21 '
with a point on -./9 and of match-

ing each point except one on _., 2
with a point on .,,?

1'

Let us consider another example. 'This figure shows some of the

elements of the set of lines

through P. ,Each of the lines

through P in the figure inter-

sects the line .../9 in a point.

The figure shows a way. of match-

ing elements of the set Of lines

through P with elements of the

set of points on . The line

11 matches the point A. The

line corresponds to point B.

Again, however, we need to be careful. There is one line

through P that is parallel to . This line does not have a

matching point on . We see that: To each point on ....709 corre-

Sponds a line through P. To each line through P except one

there corresponds a point on

The Idea of Ideal Points

,These exampled will help you understand an idea that is very

useful in projective geometry. It is the idea of an-ideal point

pn a line.

Ih projective geometry we do not use the term "parallel lines:"

,Another way of saying "two -lines are parallel" is "two lines inter-

sect in an ideal point." We think of each line as containing one

and only one ideal point, as well as the usual points we are

accustomed to thinking about. We also assume each ideal point is
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on a line-. Actually each ideal point is on a set of lines,,which

are "parallel." In order to be quite clear, we can call the usual

points, real Rointe,. When we, adopt this new language, We can say

that lay two lines in a plane meet in a point of some sort. In

the figure,
1

and
2

meet

in the real point P. 1
1

and

.13' meet in an -ideal point.

Formerly we would have said they

are parallel. The two statements

mean the same thing.,

In our new language, the set

of all points on a line is made

up 'of all the real points of the

line andl'in addition, the ideal point of the line.

Let us use this new vocabulary to describe the bne-to-one

correspondences which we have alieady studied. As we do so, we

will find that it is a very convenient language for describing

these'situations.

In this figure we can now say

that there is a one-to-one corre-

spondence between the set of all

lines through P' and the set of

all points on Line J 1

corresponds to the real point A.

Line .17
2

corresponds to the

real point B. Line
3

we now
.

say, intersects line J. in the

ideal point of 41 . it corre-

sponds to the ideal.point on _1,9.
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In this figure we can now 911.y that there is a one-to-one corre-

spondence between the set of all

points on .1 and the set of

all points on .12. The real

point A on _11 corresponds to

the real point AI on .1 2. The

real point C belongs to the set

of all points on and to the

set of all points on .../12. It

to itself. The point

corresponds to the

on Ap
1'

The point

corresponds to the

on
2'

(Remember that we now say that each-line--

ideal point. The line through P and E inte:sects

corresponds

DI on 1 2
ideal point

E on _./7

ideal point

contains an

12 in the ideal point.) *

In this figure _1,71. and ../2 intersect in an ideal point.

There is a one -to -one correspond-,

,
ence between the set of all

points'on
1

and the set of

all points on ,/'2. The line

through P and A intersects

1
and ,/2 in corresponding

real points. The line through

P parallel to ,7
1

and

intersects 1
and .../9 2

in an

ideal point. This ideal point

is an element of the set of all

points on
1

.
It is also an element of the set of all points

on., 2.
It corresponds to itself in the one-to-one correspondence.

We have introduced the idea of ideal point so that every pair

of lines intersects in a point, that is, "two lines determine a-

point." What about the statement, "Two points determine a line,"

by which we mean that there is exactly one line through any two

points? This is certainly true in the geometry that we are used

to, that is, for two real points. But is it still true for pro-
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Jective geometry? We have three cases to consider.

Case i. Two real points A and B determine a line.. This

is true in projective geometry just as it is true in the-geometry

we know.

`Case A is an ideal.point and B ,is a real point, then

A--ail.....,-determine a line. T6 see why this is so, lot.,

-.\---tmr-some line through A. Then, we know from our familiar

geometry that there is exactly one line through B parallel

to -/9.1. Call this line -1,2. 'Then ,91 and ,e472 will -

intersect in some ideal point of,/ which must be .A since

1. has only one ideal point. We have thus shown. that _1/7
21

is the only line-through A and B. There is one line through

A and B and there is only one.

Calm 3. Suppose A and B' are two ideal paints. To take care

of this case we define an "ideal line" which is the set of all

ideal points.

As a result we have:

In Projective Geometry not only do two points determine

a line but two lines determine a point.

We' do not haveto distinguish between ideal and real points in

this statement. This symmetrical arrangement is very convenient.

The language of ideal points is probably new to you. Like any

new language, it may seem difficult until one is accustomed to it.

The examples illustrate its advantages. When we use the idea of

ideal points we do not have to consider parallel lines as excep-

tions to our descriptions.,

You will understand better how the idea of ideal points

originated if you think about railroad tracks. When we draw

railroad tracks we draw them as though they come together far

away. The idea of ideal point is suggested by the way parallel

lines sometimes appear to meet when we draw objects in perspective

Of course, if you are building a railroad track thefidea of

idea' points is not useful at all. When we build railroad tracks

3 7
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we need to know; foil example, that lengths of the parts of the

ties that lie between the tracks are all the same. The idea of

length is studied in metrit geometry. Metric geometry uses the

idea of measurement. ProjectiVe geometry does not; this is why

we say that projective geometry is non-metric.

You may feel that ideal points seemsunnattiral. But you should',

remember that all points, lines, and planeS are ideas. They are
. .

ideas that are developed because they are interesting and useful

for'some purpose.

Exercises 2-1

1. Drawtwo parallel lines. Call them
1

and
2'

Mark a

point P between them. By drawing lines through P, find

a one-to-one correspondence between the points an ,/
1

and

the points. on Label the points in your drawing, and

name three pairs of corresponding points.

2. Mark points P and Q. Draw a line , as in the figure.

The figure shows, a way of

matching the set of lines

through P with the set

of lines through Q. To the

line through P and A

corresponds the line through

Q and A. The line through

P and B is matched with

the lin.: through Q and B.

In this way we can, find a

between the set of lines through P and the set of lines

through Q. Draw three other pairs of lines illustrating

this statement.

3. In Exercise 2, is there a line.which belongs both to-the set

of lines through P and the set of lines through Q?
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4. In Exercise 2, which line through P corresponds to the

line through Q parallel to../ ? This line through P

intersects J in an

5.. EXplain'the meaning of the following statement: Sf P 18

any real point and ,./0 is any line not passing through P

there, is exactly one line which passes through P !Ind

through the ideal point on .

6. In this figure four of the

lines are parallel.

(a) Four of the lines

intersect in an

(b) The figure shows a

system for finding a

one-to-one correspond-

deuce between the points

of
1

and the point-,

,,7
2'

Find the points Jrresponding to E, F, and G'.

2 2-2. Desargueol Theorem

One of'the most interesting ideas in projective geometry is

that contained in Desargues' Theorem. In order to understand it,

let us think again about a situation we considered earlier. Let

us think about an artist who is drawing a triangular rose bed.

Suppose that he is drawing his pictUre'as he sees it from a

tower high above a garden. On the following page there is a

sketch that shows the two,triangles -- the boundary of the rose

39
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bed and the picture of it on his canvas. Each point on the rose

bed' is matched with a point on the canvas triangle.

In the sketch the vertices of the rose bed are called

A, B, and C. In the artist's Picture, the vertices

are labeled A', B', C'. The three lines .joi matching

vertices all meet in poi_t 0 -- the eye of the artist. The

two triangles are said to be in-perspective.

40
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We can draw two triangles in the same plane that are

in perspective. In the following figure two such triangles

have been drawn. Again, the vertices of one triangle are

matched with the vertices of the other. Again, the lines

joining corresponding vertices Meet in a point.

Exercise 2-2

Copy this figure carefully. Extend AB and rrir, until

they intersect. Do the same thing with A and 1TTr. Do

the same thing with BC You have found three inter-

section points. Label them P, Q, and R. Do you notice any-

thing about these three points? They should all lie on the

same line.

41
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A boy said, "I wonder whether this will always be true if

extend the sides of a pair of triangles in perspective." He

tried it several times. It appeared to be true each time. Of

course it was sometimes difficult to be mire, because he needed

to extend the lines a long way to find the intersection points.

He decided, however, that it was probably always true that the

three points of intersection were on the same line.

."But what about this figure?" asked another boy. °In my

triangles, AB and KriT3 have the same direction. When I ex-

tend them I get parallel lines. There is no real point of inter-

section."

"I notice something about the figure you have drawn, though,"

the first boy replied. "Those two lines are parallel to the line

through Q and R. I link that this is another place where the

idea of ideal point might be useful. We could say that the three

points of intersection are all'on the same line, but now one of

the points is an ideal point."
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He was right. If it is true that

(a) two, triangles are in perspective, and

(b) each pair of corresponding sides, extended, has

a point of intersection,

then the three pointi of intersection all lie on the same line.

Other cases involving pairs of "parallel" lines can conven-

iently be described by the idea of ideal point.

Of course, the second. boy was not satisfied with leaving the

matte, at this. He Wondered why the three intersection points

all were-on:the same line. Perhaps you wonder too. If you do,

you wilk,be interested in knowing the way we prove that the points

are.always on a line. A proof makes us sure the statement' is

true a good proof also makes us understand better the reason.

Let us again think about the garden and the picture. Let us

suppose that:

(a) the plane of the garden and the plane of the picture

are not parallel (this is the way we drew the figure).

'(b) none of the pairs of corresponding sides have the same

direction.

Look at the line through A and Al and the line through B and

B'. This figure will help you see the lines.
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These two lines intersect at 0. When we have a pair of inter-
,

seating lines, we can think about the pl

The line through A and B is,in this p

through A' and B'. We supposed that t

the same direction. We know that two lin

do not have the same direction meet, so w

line§ meet. P, of course, is the point

Now let us think about where P is.

through A and B. This line is on the

P must be on the plane of the garden.

through- A' and B', which is on the p

e they both lie in.

ane; so is the line

ese lines did not have

s in the same plane that

can be sure that th

here they meet.
/

P is on the line/

lane of the garden. So

is also on the line

ane of the canvas. So

se

P is also on the plane of the canvas. Now we can pit these

two facts together and say. P is o the intersection of two

planes -- the plane of the canvas a d that of the'garden. The

intersection .of these two planes a line.

Now we wave proved that P .s on the line of intersection

of a certain pair of planes. We can prove in precisely the same

way that the line through B and C and the line through B'

and C' meet in a point, which we might label Q. We can also

prove, by exactly the same reasoning as that used in the case

of P, that Q is on the line of intersection of the plane of

the canvas and the plane of the garden. Then we can reason the
4-31.

same way about the point R, the point of intersection of AC
4---?

and A'C'.

So we can see that P, Q, and R all lie on the same

line -- the line where our two planes intersect.

Now we have proved our fact for two triangles that are in

different (and not parallel) planes.

It is more difficult to prove that it is true when the two

triangles are in the same plane. We can see, however, that if

we took a picture of the garden and the canvas, we would really

have two triangles in perspective in the same plane, and that

the points of intersection of the pairs of corresponding sides of

4,i
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correspondinesides of the triangles would all be on a line. When

you are more familiar with the use of geometric reasoning in rather

complicated figures, you should not find it difficult to use this

idea itn constructing a complete proof.

4
2-3. Points and Lines in Desargues1 Theorem

In the figure we see that there are 10 main points: the

vertices of the two triangles, the point 0, and the three

intersection points P, Q, and R. There are also 10 main

lines: the sides of the triangle extended, the lines through

corresponding vertices of the triangles, and the line 'on which

lie P, Q, and R. By checking the figure you can see that --

(a) through each of the labelled points there are three of

the special lines, and

(b) on each of the special lines there are three labelled

points.
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The figure for Desarguest theorem could "he used for a very

"democratic" committee diagram, where, by "democratic" we mean

that in certain respects each committee member is treated like

every other one. We could let each of the ten points correspond

to a person and each of the ten lines correspond to a committee. .

If a certain point is on a certain line, then the corresponding

person would be on the corresponding committee. Then

1. Each committee has three-members and each person is

on three committees.

2. Each pair of.committees has no more than one person in

.common and each pair of persons is on no more than one

committee.

3. Each committee has exactly one person in common with six

other committees and each person is on a committee with

six other persons.

1

Exercises 2-3

Draw several figures illustrating Desarguesijheorem.

2. One of the remarkable aspects of the figure for Desargues'

theorem is that each point and each line play exactly the

same role. For example, we might think of A as the

"beginning" point in place of 0 and one triangle could

be taken to be COB. Since the third point on le is Q,

the third point on tr is A', and the third point on 15r

is P, the second triangle must be QA'P. Then the points

of intersection of corresponding sides of the two triangles

should be on a line. Find the line.

3. Follow through the steps in Exercise 2 starting with the

point P.
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. 4. The-following converse of Desargues' theorem also holds:

, . If ABC and' AIM' are two triangles and if the points

P, Q, R defined as the intersections of the pairs

XVI; BBC' lie on a line, then AAA,

-BB', V' are concurrent. Draw e figure which shOia this:

5. (Breinbuster) /Designate seven points by the numbers: 1, 2,

3, 4, 5, 6, 7. Call the set of three points 1; 2, 4

a "line J and so on according to the following table: _

Line 1471 I/12

Points 1,2,4 2,3,5 3,4,6 4,5,7 5,6,1 6;7;2 7,1,3

Show that each point lies on:three lines. Is it true that

each pair of points determines a line? Is it true that each

pair of lines determines a point? Draw a figure which shows

this. (You cannot make all the lines straight and one. will

have to jump over another.)

C

d7



SUPPLEMENTARY UNIT 3

7---1EPEATING DECIMALS AND TESTS FOR DIVISIBILITY

Introduction

This unit is for the student who has studied a little

about repeating decimals, numeration systems in different bases,

and tests for divisibility (casting out the nines, for instance)

and would like to carry his investigation a'little further, under

guidance. The purpose of this monograph is to give this guidance;

.it is not just to be read. You will get the most benefit from

this material if you will first read only up to the first set of

exercises and then without reading any further do the exercies.

Tliey, are not just applications of what you have read, but to guide

you in discovery of further important,and interesting facts. Some

of the exercises may suggest other questions to you. When this

happens, see what you can do toward answering them on your own.

Then, after you have done all that you can do with that set of

exercises, go on to the next section. There you will find the

answers to some of your questions, perhaps/ and a little more in-

formation to guide you toward the next set of exercises.

The most interesting and useful phase of mathematics is the

discovery of new things in the subject. Not only is this the

most interesting part of it, but thigi is a way to train your-

self to discover more and more important things as time goes

on. When you learned to walk you needed a helping hand, but

you really haci.not learned until you could stand alone. Walk-

ing was not new to'mankind -- lots of people had walked before --.

but it was new to mu. And whether or not you would eventually

discover places in your walking which no man had ever seen before,

was unimportant. It was a great thrill when you first found that

you could walk, even though it looked like a stagger to other

people. So, try learning to walk in mathematics. And be inde-

pendent do not accept any more help than is necessary.

3-1

4 8



3-2. Casting out the Nines

You may know a very simple and interesting way to tell whether

a number is divisibley 9. It is based on the fact that a

number is divisible by\9 if the sum of it digits is divisible

by 9; also the sum of the digits of a number is divisible by 9, if

the number is divisible by 9. For instance, consider the number

156782. The sum of its digits iA 1 + 5 + 6 + 7 +,8 + 2 which.

is 29. But 29 is not divisible by 9 and hence the number

156782 is not divisible by 9. If the second digit had been a

3 instead of 5, or if any of the digits to the right of 5

had been 2 less, the number would have been divisible by. 9

since the sum of the digits would have been 27 which is divisible

-13y 9. The test is a good one because it is easier to add the

digits than to divide by 9. Actually we could have been lazy

and instead of dividing 29 by 9, use the fact again, add 2

and 9 to get 11, add the 1 and 1 to get 2 and see that

since 2 is not divisible by 9, then the original six digit

number is not divisible by 9.

Why is this true? Merely dividing the given number by 9

would have tested the result but from that we would have no

idea why it would hold for any other number; We can show what

is happening by writing out the number. 156,782 according to

what it means in the decimal notation:

1 x 105 + 5 x 10
4
+ 6 x 10

3 + 7 x 10
2 + o x 10 + 2 =

x (99999 + 1) + 5 x (9999 + 1) + 6 x (999 + 1) +

7x (99 + 1) + 8 x (9 + 1) +2.

Now by the distributive property, 5 x 0999 + 1) .

(5 x 9999) + (5 x 1) and similarly for the'other expressions.

Also we may rearrange the numbers in the sum since addition is

commutative. So our number 156,782 may be written

'1 x (99999) + 5 x (9999) + 6 x (999) +

7x (99) + 8 x 9 + (1 + 5 + 6 + 7 + 8 + 2).

4 9
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9999, 999, 99, 9 are all divisible by 9, the products

involving these numbers, are divisibIle by 9 and the sum of these

prbducts is divisible by 9. Hence the original number will be

divisible by 9 if (1 + 5 + 6 + 7 + 8 + 2) is divisible by 9.

This sum is the sum of the digits of the given iimber. Writing

it .out this way shows that no matter what the giVen number is, the

same principle holds.

Exercises 3-2

1. (a) Test each of the numbers, 226843, 67945, 1:2736, and

45654 by the above method for divisibility by Q

(b) For any numbers in part (a) that are riot divisible by

9, compare the remainders when the number 'is Zi4vided by

9 and when the sum of the digits is divided b: 9.

(c) From part (b) try to formulate a general fact that you

suspect is true. Test this statement with a few more

examples.

2. Choose two numbers. First, add them, divide by 9 .nd take

the remalader; Second, divide each number by nine and find

the sum of the remainders; divide the sum by 9 and take

the remainder. The final remainders in the two cases are

the same. For instance, let the numbers be 69 and 79.

First, their sum i3 148 and the remainder when 148 is

divided by 9 is 4. Second, the re-aalnder when 69 is

divided by 9 is 6 and when 79 is divided by 9 is

7; the sum of 6 and 7 is 13, and if 13 is divided

by 9, the remainder is 4. The result is 4 in both cases.

Why are the two results the same no matter what numbers are

used instead of 69 and 79? Would a similar result hold .

for a sum of three numbers? (Hint: write 69 as 7 x 9 + 6,)

Sk
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3. If in the previous exercise we divided by 7 instead of 9,
would the remainders by the two methods for division by 7

be the same? Why or why not?

4. Suppose in Exercise 2 we considered the product of two

numbers instead of their sum. Would the corresponding result

hold? That is, would the remainder when the product of 69

and 79 is divided by 9 be the same as when'the product of

their remainders is divided by 9? Would this be true in

general?' Could they be divided by 23 instead of 9 to

give a similar result? Could similar statements be made

about products of more than two numbers?

5.' Use the result of the previous exerciseto show that 1020

has a remainder of 1 when divided by 9. What would its

remainder be when it is divided by 3? By 99?

6. What is the remainder when 7
20

is divided by 6?

7. You know that when a number is written in the decimal notation,

it is divisible by 2 if its last digit is divisble by 2,

and divisible by 5 if its last digit is 0 or 5. Can

you devise a similar test for divisibility by 4, 8, or -25?

8. In the following statement, fill in both blanks with the same

number so that the statement is true:

A number written in the system to the base twelve is divisible

by if its last digit is divisible by . If there is

more than one answer, give the others, too. If the base were

seven instead of twelve, how could the blanks be filled in?

(Hint: one answer for base twelve is 6.)

51
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9. One could have something like "decimal" equivalents of

numbers in numeration s terns to bases other than ten.

For instance, in the nume tion system to the base seven,

the septimal equivalent of 5(1) + 64)2 would be written'
7 1

.56
7.

just as the decimal equivalent of 5(175-1 + 646)2

would be written .56
10

in the decimal system. The number

.142857142857 ... is equal to in the decimal system

and in the system to the base seven would be written .17.

On-the other hand, .110 = (.04620462 ...)7 . What numbers

would have terminating septimals in the numeration system

to the base 7? What would the septimal equivd1ent of

be in the system to the base 7? (Hint: remember that if

the only prime factors of a 'number are 2 and 5, the deci-

mal equivalent of. its reciprocal terminates.)

10.. Use the result of Ekereise 3 to find the remainder when

9 + 16 + 23 + 30 + 37 is divided by 7. Check your result**.

by computing the sum and dividing by 7.

11. Use the results of the previous exercises to show that.

10
20

- 1 is divisible by 9, 7
108 - 1 is divisible by 6.

12. Using the results of some of the previous exercises if you

wish,' shorten the method of showing that snumber is divisible

by 9 if the sum of its digits is divisible by 9.

13. Show why the remainder when the sum of the digits of a number

is divided by 9 is the s e as the remainder when the number

is divided by 9.

3-3. Why Does Casting Out the NinesWork?

First let us review some of the important results shown in

the exercises which you did above. In Exercises 2, you showed

that to get the remainder of the sum of two numbers, after divi-

sion by 9, you can divide the sum of their remainders '07 9 and

find its remainder. Perhaps you did it this way (there is more

than one way to do it; yours may have been better). You know in

the first place that any natural number may be divided by 9 to

5 2
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get a quotient and remainder. For instance, if the number is

725, the quotient is 80 and the remainder is 5. Furthermore,

725 . (80 x 9) + 5 and you could see from the way thit is written

that 5 is the remainder. Thus, using the numbers in the exercise,

you would write 69 = 7 x 9 + 6 and 79 = 8 x 9 + 7. Then

69 +' 79 = (7 x 9) + 6 + (8 x 9) t 7. Since the sum of two numbers

is commutative, you may reorder the terms and have 69 + 79 =

(7 x9) + (8 x 9) +-6 + 7. Then; by ,the distributive property,.

69'+'79 = [(7.+ 8) x 9] + 6 + 7. Now the remainder when 6 + 7

is divided by 9 is 4 and 6 + 7 can be written (1 x 9)+ 4.

Thus 69 + 79 = ((7 + 8 + 1) x 9] + 4. So, from the form it is

written in, we see that 4 is the,remainder when the sum is .

divided.by 9. It is also the remainder when the sum of the

remainders, 6 + 7, .is divided by '9.

Writing it out in this fashion is more work than making the

computations the short way but it does show what is going on and

why similar results would hold if 69 and 79 were replaced by

any other numbers, Ind, in fact, we could replace 9 by any other

number as well.. One way to do this is'to use letters in place of

the numbers. This has two advantages. In the firstplace it helps
,

us be sure that we did no make use of the special "iroperties of

the numbers we had without) meaning to do so. Secondly, we can,

after doing it for letters, see,that we may replace the letters

by any numbers. So, in place of 69 we write the letter a,. and

in place of 79, the letter b. When we divide the number a by

9 we would have a quotient and a remainder. We can call the quo-

tient the letter q and the remainder; the letter r. Then we

have

a= (q x 9) r

where r is some whole number less than 9. We could do the

same for the number b, but we should not let q be the quo-

tient since might be different from the quotient when a is

divided by 9. We here could call the quotient cif and the

remainder rl. Then we would have

b (q' x 9) + rl.

53
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Then the sum of a and b will be

a +b = (q x 9) + r + (q' x 9) 4: r':

We can use the commutative property of addition to have

a + b = (q x 9) + (q' x 9) + r + rl

and the distrfbutive property tehave

a + b [(q + ql) x 9] + r + r'.

Then if r + rl were divided by 9, we would have a quotient

which we might call q" and a remainder r". Then r + r' =

(q" x 9) + r" and

a + b [(q + ql) x 9] + (q" x 9) +

= [(c1 q' + ce) x 9] + r".

Now r" is a whole number less than 9 and hence it is not only

the remainder when r + r' i.. divided by 9 but also the re-

mainder when a + b is divided by. 9.. So as far as the remainder

goes,''it does not matter whether you add the numbers or add the

remainders and divide by 9.

The solution of Exercise 4 . goes the same way as that for

Exercise 2 except that we multiply the numbers. Then we would

have

69 x > 79 = (7 x 9 + 6) x (8 x 9 + 7)

[(7 x 9) x (8 x 9+ 7)] + 6 x (8 x 9 + 7)

(7 x 9 x 8 x 9) + (7 x 9 x 7) + (6 x 8 x 9) + (6 X 7).

The first three products.are divisible by 9 and by what we showed

in.Exercise 2, the remainder when 69'x 79 is divided by 9 is

the same as the remainder when 0 + 0 + 0 + 6 x 7 is divided by

9. So in finding the remainder when a product is divided by 9.

it makes no difference whether we use the product or the product

of the remainders.
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If we were to write this out in letters as we did the sum,

it would look like this:

a x b = (q x 9 + 6 x x 9 + rl)

= (q x 9 x x 9) + (q x 9 x rt) + (r x cit x 9) +

(r x r1).

"Again ea c of the first three producta is divisible by 9 and

hence th_ remainder when a x b divided by 9 is the same as

when r x r' is divided by 9.

We used the number 9 all the way above, but the same conclu-

sions would follow just as easily for any number in place of 9,

such as 7, 23. etc. We could haveused a letter for 9 also

but this seems like carrying it*too far.

There is a shorter way of writing some of the things we had

above. When letters are used, we usually-omit the multiplication

sign and write ab instead of ax b and 9q in place of 9 x q.

Hence the last equation above could be abbreviated to

or
ab = qq'9 x 9 + qri,9 +.rq'9 + rro

ab = 9 x 9qq' + 9qrl + 9rq' + rr'.

But this is not especially important right now.

So let us summarize our results so far: The remainder when

the sum of two numbers is divided by 9 (or any other number) is

the same as the remainder when the sum of the remainders is

divided by 9 (or some other number). The same procedure ho3ds

for.the product in place of the sum.

These facts may be used to give quite a short proof of the

important result stated in Problem 13, of Exercises 3-2. Con-

sider again the number 156,782. This is written in the usual

form:

(1 x 10) (5 x 104) + (6 x 103) + (7 x 102) + (8 x 10) + 2.

Now from the result stated above for the product, the remainder

when 102 is divided by 9 is the same as when the product of
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the remainders 1 x 1 is divided by 9, that is, the remainder

is 1. Similarly 10
3 has a remainder 1 x I x 1 when'diVided

by 9 and hence 1. So all the powers of ten have a remainder

1 when divided by 9. Thus, by the result stated above for the

sum, the remainder when 156,782 is divided by. 9 is the same

as the remainder when (1 X 1) + (5 x 1) + (6 x 1) + (7 x 1) +

(8 x 1) + 2 is divided by 9. This last is just the sum of the

digits .° Writing it this way it is easy to see that this works

for any number.

Now we can use the result of Problem 13 of Exercises 3-2 to

describe a check called ''casting out the nines" which is not used

much in these days of computing, machines, but which is still

interesting. Consider the product 867 x 934. We indicate the

following calculations:

867 sum of digits:, 21 sum of digits: 3

934 sum of digits: 16

Product: 809,778

sum of digits: 7

Product: 3 x 7 = 21

Sum of digits: 8.L. 0 + 9 + 7 + 7 + 8 = 39

SUm of digits: 3 + 9 = 12

Sum of digits: 1 + 2 = 3 Sum of digits: 2 + 1 = 3.

Since the two results are the same, we have at least some

check on the accuracy of the results.

Exercises 3-3

1. Try the method of checking for another product. Would it

also work for's, sum? If so, try it also.

2. Explain why this should come out as it does.

3. If a computation checks this way, show that it still could be

wrong. That is, in the example given above, find an ircorrect

product that would still check.
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4. Given the-number (5.75) +(3'74) + (2'73) +(1.72) + (4=.7) + 3.

What is its remainder when it is divided by 7? What is its

remainder when it is divided by 6? by 3?

5. Can you find any short-cu' in the example above analogous to

casting out the nines?

6. In a numeration system to the base 7, casting out what

number would result corresponding to that in the decimal

system when nines are cast out?

7. The following is a trick based on casting out the nines. Can

you see how it works? You ask someone to pick a number -7 it

might be 1678. Then you ask him to form another number from

the same digits in a c:Iifferent order -- he might take 6187.

Then Pou ask him to subtract the smaller from the larger and

give you the sum of all but one of the digits in the result.

(He would have 4509 and might add tht, last three to give you

14.) All of this would be done without your seeing any of"

the figuring. Then you would tell him that the other digit

in the result is 4. Does the trick always work?

One method of shortening the computation for a test by cast-

ing out the nines, Is to discard any partial sums which are 9

or a multiple of 9. For instance, if a product were 810,C45

we would not need to add all the digits. We could notice that

8 + 1 = 9 and 4 + 5 = 9 and hence the remainder when the sum of

the digits is divided by 9 would be 0 6, which is 6. Are

there other places in the check where work could have been

shortened? We thus, in way, throw away the nines. It was

from this tl,at the name "casting out the nines" came.

By just the same principle, in a numeration system to the

base 7 one would cast out the sixes, to the base 12 cast out the

elevens, etc.



53

3-4. Divisibility la
There is a test for divisibility by 11 which is not quite so

simple as that for divisibility by' 9 but is quite easy to apply.

In fact, there are two tests. We shall start you on one and let

you discover the other for yourself. Suppose we wish to test the

number 17945 for divisibility by 11. Then we can write it as ,

before

(1.104) + (7.103) + (9.102) + (4.101) + 5;

The remainders when 10
2

and 10
4

are divided by 11 are 1.

But the remainders when '10, 10
3

, 105 are divided by 11 are

10. Now 10 is.equal to 11 - 1. 10
3

= 10
2

(1_ - 1), 105 =

10 (11 - 1). That is enough. Perhaps we have told you too much

already. It is your turn to carry the ball.

Exercises 3-4-a

1. Without considering 10 to be 11 - 1, can you from the above

devise a test for :11.N:isibility by 11?

2. Noticing that 10 = 11 - 1 and so forth as above,can you

devise another test for divisibility by 11?

We'hope you were able to devise the two tests suggested in

the previous exercises. For the first, we could group the digits

and write the number 17945 as (1 x 104) t (79 x 102) + 45.

'Hence the remainder when the number 17945 is divided by 11

should be the same as the remainder when 1 + 79 + 45 is divided

by 11, that is, 1 + 2 + 1 = 4. (2 is the remainder when 79 is

divided by 11, etc.) This method would hold for any number.

The second method requires a little knowledge of negative

numbers (either review them or, if you have not had them, omit

this paragraph). We could consider - 1 as the remainder when

10 is divided by 11. Then the original number would have the

same remainder as the remainder when i + [7( -1)3) 9 4-

[4(- 1)) + 5 is divided by 11, that is, when 5 4 + 9 - 7 1

is divided by 11. This last sum is equal to 4 which was what

5 8
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we got the other way. By this test we start at the right and

alternately add and subtract digits. This is simpler than the

iothemone.

Exercises 3-4-b

1. Test several numbers for divisibility by 11 using the two

methods described above. Where the numbers are not divisible,

find the remainders by the method given.

2. In a number system to the base 7, what number could we test

for divisibility in the same way that we tested for 11 in the

decimal system? Would both methods given above work for base

7 as well?

3. To test for divisibility by 11 we grouped the digits in pairs;

What number or numbers could we test for divisibility by group-

ing the digits in triples? For example we might consider the

number 157892. We(could form the sum of 157 and 892. For

what numbers would the remainders be the same?

4. Answer the questions raised in Exercise 3 in a numeral system

to base 7 as well as in numeral system to base 12.

5. In the repe.ating defmal for in the decimal system there

is one digit in the repeating portion; in the repeating deci-

malmal for in the decimal system, there are-two digits in
1

the repeating portion. Is there any connection between these

facts and the tests for divisibility for 9 and 11? What

would be the connection betAen repeating decimals and the

questions raised in Exercise 3 above?

Could one have a check in which il's were "cast out"?

7. Can you find a trick for 11 similar to that Exercise 1

above?

5 .
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3-5. Divisibility .12 7

There is not a very good test for divisibility by 7 in the

decimal system. (In a numeration system to what base wouldthere--

be a good test?) But it is worth looking into since we can see

the connection between tests for divisibility arid the repeating

decimals. Consider the remainders when the powers of 10 are

divided by 7. We put them in a little table:

n 1 2 3 4 5 6 7

Remainder when 3 2 6 4 5 1 3

10
n

is divided

by 7

If you compute the decimal equivalent for you will see that

the remainders are exactly the numbers in the second. line of the

table in the order given. Why is this so? This means that if we

wanted to find the remainder when 7984532 is divided by 7 we

would write

(7 x 106) + (9 x 105) + (8 x 104) + (4 x 103) +

(5 x 102) + (3 x 10) + 2

and replace the various powers of 10 by their remainders in the

table to get

(7 x 1) + (9 x 5) + (8 x 4) + (4 x 6) + (5 x 2) (3 x 3) + 2.

We would have to compute this, divide by 7 and find the remainder.

That would be as much work as dividing by 7 in the first place.

So this is not a practical test but it does .show the relationship

between the repeating decimal and the test.

NOtice that the sixth power of 10 has a remainder of 1 when

it is divided by 7. If instead of 7 'some other number is taken

which has neither 2 nor 5 as a factor, 1 will be the remainder.

when some power of 10 is divided by that number. For instance,

there is some power of 10 which has the remainder of 1 when

it-is divided by 23. This is very closely connected with the

fact that the remainders must from a certain point on, repeat.

Another way of expressing this result is that one can form a

6 0
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numbeil completely of 91s like 99999999, which is divisible

by 23.

Exercis

Complete the following table. In doing this notice that

it is not necessary to divide 1010 by 17 to get the remainder

when it is divided by 17

one above, like this: 10:

by 17; this is the first

. We can compute each entry from the

is the remainder when 10 is divided

entry. Then divide 10
2

, that is, 100

by 17 and see that the remainder is 15. But we do not need to

divide 1000 by 17. We merely notice that 1000 is 100 x 10

and hence the remainder when 1000 is divided by 17 is the

same as the remainder when 15 x 10, or 150 is divided by 17;

This remainder is 14. To find the remainder when 104 is

divided by 17, notice that 10
4

is equal to 10
3 x 10 and

hence the remainder when divided by 17 is the sane as, when

14 x 10 is divided by 17, that is 4. The table then gives

the remainders when the powers of 10 are divided by various

numbers.
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3 7 9 11 13 17 19 21 37 101 41

1 1 1 1 1

101 1 3 1 10

10
2

1 2 1 15

103 1 6 1 14

104 1 4 1 il
.

105 1 5 1 , 6

10
6

1 1 1 9

107 1 1 5

10
8

1 1 16

10 9 1 7

10
10

1 1 2

10
11

1 3

10
12

1 1 13

10
13 1 11

10
14

10
15

1

1

1,

1

8

12

.

10
16

1 1 1

Find what relationsnips you can between the number of digits in
1 1

the repeating decimals for -7, ,
1 1

1.5
, etc, an d the

pattern of the remainders. Why does the table show that there

Will be five digits in the repeating portion of the decimal for

171-? Will there oe some other fraction j which' will have a

repeating decimal with five digits in the repeating portion? How

would you find a fraction
1 which would have six digits in the

repeating portion?

6 2



3-5 58

If you wish to explore these things further and f nd that you

need help, you might begin .to read some book on the theory of

numberti:, Also there'is quite a little material on tests for

divisibility innMathematical Excursions" by Miss Helen Abbott

Merrill, Dover (1958).

6"



SUPPLEMENTARY UNI1 4

OPEN AND CLOSED PATHS

4-1a. The Seven Bridges of Konigsberg .

A river flows through the city of Konigsberg, Germany. (The

city was taken over by the Russians following World War II and is

now named Kaliningrad.) There is an island in the middle of the

river which passes through the city. To the east of the island

the river divides into two branches. There are seven bridges

connecting-the island and the different parts of the mainland as

shown in the drawing below.

. vow am. .... ..... .... my..
...... ...° ..". .....

..... ....
....... ...1.

.... ......

..O.

During the 17001e, a favorite pastime of the residents of

KOnigsberg was to take walks through the city, following routes

that led over each of the'seven bridges. An interesting game

developed whereby they tried to follow a path that led to all

parts of the city in such a way that each bridge was crossed

only once. And so the people of KOningaberg amused themselves

on their'Sunday walks, but no one discovered a path that led to

all parts of the city, passing over each bridge only once.

After the great Swiss mathematic.J.an, Euler, became court

mathematician for Frederick the Great, a delegation from

KOnigsberg came to him with the problem of the bridges. Now
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you may not think that such a problem would interest a great

mathematician but Euler gave the delegation some help with

the problem.

Euler decided that the exact shape of the different parts of

the city did not matter. It would be simpler to think of the

problem if the parts of the city were represented by points and

the bridges by lines. ,

Let us think of another city, shown in the drawing below. The

4 parts of the city are shown as points and the bridges by line

segments in the figure on the right.

A

B 2 C

We can call a route from one part of the city to another a

path. The path. can be described by using a sequence of letters

and numbers. For example,

AlB2C3A
is a path starting at point A, following "bridge 1" to point B,

then .crossing "bridge 2" to C, and so on.

Note that tne path described above starts at point A and ends

at point A. Also, the path touches each vertex, but in doing so,

the path crosses (or passes through) each segment only once. Such

a'path is called a closed path. Any path which goes through each

vertex, passing through each segment only, once but does not return

to the starting point is called an open path.



Look at the drawing shown at the

0164ht. The path

A 1B2C3A4D5 C

- starts at A, passes through

every vertex and passes through
A

each segment only once-. But it

ends at point C. The path

described in this sequence is

an open path.

Euler asked, " Can we write a sequence of letters and numbers
/'
j-%

in wh h each number appears just once?" The men from KOnigsbergS
were ama ed. "Of course!" They exclaimed. "After we draw the

diagram, it is really very simple now that you have explained it.

If we had only thought of looking at the problem in this way, we

could have solved it ourselves."' They went home and tried. to

finish the problem. Do you think you can solve the problem now?

. Exercises 4-la

1. For each of the following drawings, start' at A and describe

a path. Tell whether the path is open or closed.

(b)

R

6(3

(c )
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2. Make a copy of each of the following drawings. Label the

vertices and the segments and tell whether there is an open
/ path or a closed path.

(a) (b) (c)

3. Can you join the nine points shown below, starting at one

point and drawing exactly five line.segments without lifting

your pencil tip from the paper or tracing over the same line

segment twice?

4. Sometimes there is neither an open path or a closed path for

a diagram. For each of the following determine whether a path

is possible. If one is possible, label the vertices and the

segments and describe the path.

(a) (b) (c)

ci 7

(d)
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5. How did Euler solve the problem of the Konigsberg bridges?

If you don't know, read the next section.

4-lb. The Solution

The following day the men came back to Euler and said "We

have been thinking about the problem, but we still cannot seen

to solve'it. There must. be some simple idea which we have

overlooked. If you could Just get u'started on the right track,

we are sure we can solve it ourselves."

Euler replied, "All right. Let us look at the following

drawing. There is a path which goes over each bridge once and

only once. How can we describe the path?"

One of the men said, "One possible path is A 1 B 2 C 3 A 4

1;45-c--.--li--, "But there is also a

patn'in this drawing," said

another. (The drawing is shown

at the right.) "You car follow

the sequence A 1 B 2 C 3 A."

Euler replied, "Look at these

two paths again. Examine them

carefully. What comes before

each letter except the first?"

"A number," one answered. "This corresponds to a bridge leading

to the point."

8
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"What comes after each number except the last?" Euler asked.

"A number, of course. There is also a bridge leading away from

the point."

"row many bridges are there for each time the path goes through

a point?" he asked. "Two bridges. We come into the point on one

bridge, but we must use another bridge to go away from the point.

For each time a letter appears in the path, except at the beginning

or end, there are two numbers for these two bridges."

Euler suggested, "Let us call all points of the path, except

for the two endpoints, inner points. Theri for each inner point of

the path there are two'pridges. Suppose the point B appears

three times as an inner point of the. path. For instance, look

at this diagram,

C

and the path Al32C7D3B4E9F5BOG10F13H12 E
8 D 11 H. How many bridges are connected to B?"

"Six," answered the men from Konigsberg.

"How did you get that?" asked Euler.

"We simply multiplied the n-,:.mber.of times the point appears

by 2, the number of bridges connected with the point at each

appearanqe."

"Will this always work?" Euler continued.

"Yes, for every inner point of the path."
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"What kind of number do you get when you multiply some number

by 2?" Euler asked again.

"Obviously, an even number." The men from Konigsberg looked

at each other, pleasantly surprised. "Then the total number of

bridges leading to or from any inner point of the path must be

even. Anyone could see that!"

"What about the endpoints, the first and the last point?"

They thought for a moment. "Let us see. There is a bridge

leading from the first point. Then every other time the path

goes through this point, there are two bridges. So the total

number of bridges connected to the first point is one more than

an even number. Tn other words, it is an odd number. The same

is true of,the last point."

Euler questioned them further. "Are you sure? Must the first

point be differem., from the last point?"

They
/smiled.

"Of course not. Thanks for reminding us, not to

overlook that possibility. If the path is closed, that is, if it

comes back to the starting point, then that point will be like any

inner point of the path. Then the number .of bridges to or from

that point must be even."

Euler suggested, " It might be a good idea to summarize what

you have figured out so far."

, They said, "All right. If the path is closed, then th re is

an even number of bridges connected to each point. If the path

1: open, then each of the two endpoints must have an odd number

of bridges. Each of the inner points is connected to an even

number of bridges. Now that we ,,hank of it, the problem is ab /

surdly simple."

The men from KOningsberg bent over the diagram and began

counting. "The C Is connected to bridges 1, 2, and 3,

the point D to bridges , the point A to bridges

, and the point B to bridges . There are

points connected to an odd number of bridges and

points connected to an even number of bridges. Is a cicsed'pat..

possible? (Yes, or no?) Is agopen path possible?

ro

70
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(Yes, or no?) Such an easy problem, after all!" (Fill in the

blanks yourself.)

c:

After tnanking Euler, the merry gentlemen from Konigsberg

went home. On the way,one of them said, "I don't see why Euler

has such a great reputation. We really worked out every step

of the problem ourselves. All Euler did was to suggest how to

look at the problem and ask the right questions." His companions

nodded and replied, "Yes, the problem was really so elementary that

any child could have solved it."

What do you think?

Exercises 4-7b

1. (a) For each diagram list the points which are connected to

an even number of bridges.

(b) List the points connected with an odd number of bridges.

(c) How many points of each kind are there in each diagram?

I

NOTE: II(on next page)

El
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2. (a) In which diagrams is it impossible to find a closed path

which goes over every bridge Just once?

(b) In which diagrams is itimpossible to find an open path

of this kind?

3. For eaCROW the diagrams where it might be possible to have

'a path going over each bridge exactly once, look for such a

path. If you do find a path, degCribe it by a sequence of

letters and numbers.

4. For each of these diagrams find a closed path starting at the

point B which goes over each bridge just once, and which

goes over the largest possible number of bridges.

5. In the upper figure on page 63 there are four paths from A

to C which go over each bridge exactly once. One is given

on page 63,and another is given by the sequence

A 4D5C2B1A3 C. Find the other two.

4-2. What Happens if There Is a Path?

A drawing of a set of points and bridges, in which each point

has at least one bridge attached to it, we will call a diagram.

The points are called vertices (singular: vertex) of the graph.

A vertex is called even if an even number of bridges are connected

to it. Otherwise the vertex is called odd. A path is called

closed if its last vertex is the same as its first vertex.

Otherwise the path is called open. Notice that we are using the

word "diagram" in a special way in this chapter.

By using the same reasoning that the men from K3nigsberg

used, with Euler's help, you can prove the general statements:

Theorem 1. If there is in a diagram a closed path which

goes over, each bridge just once, then every vertex is even. If

there is an open path of this kind, then there are. two odd vertices,

and all the rest are even.

(A theorem is a statement proved by logical reasoning.)
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Exercises 4-2

1. In the diagrams of Exercises 4-1-b, name the odd and the even

vertices. How many odd vertices are there in each diagram?

Does there seem to be a general principle?

2. State a general principle about the number of odd vertices in

any diagram which seems to be rue in all cases. Draw five

more diagrams, and test whether your statement is true in each

case. Compare your results those of your classmates.

In any such diagram you may classify the vertices more

precisely according to the number of bridges connected with each

one. The'number of bridges leading to or from a vertex we shall

call the degreeor-the vertex. In the figure vertex A is of the

5th degree, whereas the others are of degree- 3.

3. For each of the. diagrams you have drawn, make a tableshowing

the, number of vertices of each degree, like this:

Degree Number of Vertices

1

2

3

4

5

etc. See Problem 4

How is the total number of vertices related to the numbers

in the right hand column?

4. Call the total number of vertices in a diagram V. Let V
1

be the number of vertices of degree 1, V2 the number of

degree 2, etc. (The numbers V1, V2, , are the numbers

in the right hand column in the above table.) Express the

relation between V and the numbers V1, V2, etc. as an

equation.

C

5. Take any diagram. Label the

vertices with letters. List

and a bridge connected to it

named:

Al, A2, A4, A5, A6, B5, B6,

bridges with numbers and the

all pairs consisting of a vertex

. In the figure above pairs are

B7, Cl, C2, C3, D3, D4, 177 .
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6. In Exercise 5, in how many pairs does a given bridge occur?

How is the number of pairs related to the number of bridges?

Let B be the number of bridges. Give a formula for the

number of pairs in'terms of B.

7. In Exercise 5, in how many pairs does a given vertex of degree

3 occur? In how many pairs does a given vertex of degree k

occur? What is the total number of pairs in which a vertex of

degree 3 occurs? What is the total number of pairs in which

a vertex of degree k occurs?

8. Give a formula for the total number of pairs in Exercise. 5

in terms of the numbers V V2, V
11 2' 3'

014

9. Give a formula for, the total number of odd vertices in terms

of V
1,

V
2'

V3, .

10. Let U be the total number of odd vertices. Give a formula

for the number (2B) U in terms of V
1,

V2, V3, etc.

11. Can you use the formula in Exercise 10 to prove the principle

you discovered in Exercise 2?

4 3. When Can You Be Sure That There Is a Path?
--------

According to Theorem 1, if there is a closed path in a diagram

which goes over each bridge exactly once, then a certain thing is

true. This is a necessary condition that there be such a path in

a diagram. If a diagram does not satisfy this condition, namely

that all its vertices are even, then we are sure that there is no

closed path going over each bridge just once.

Is this condition sufficient? If all the vertices are even

does there exist a path of this kind in the diagram? Examine all

the diagrams you have drawn so far. Find the ones which have only

even vertices. Can you find, in each one of these a closed path

going over each bridge once and only once? Can you draw a counter-

example, a diagram with only even vertices in which there is no

such path?

/7



71 4-3

Does it seem as though the condition that the diagram have no

odd vertices is sufficient? Compare your conclusions with those

of your classmates before you read further.

Look at this diagram

Are there any odd vertices? Can you find a path which goes over

every bridge just once?' In fact, is there any path which goes

over both bridges 1, and 4?

The trouble with this diagram is that it-is, made up of two

separate figures. There is no use looking for a path which goes

over every bridge unless the figures are connected. We say that

a diagram is connected if every vertex can be joined to any other

vertex by a path. In the figure above vertex A can be joined

to B and C, .but not to any of the other vertices.

It turns out that if a connected diagram has no odd vertices,

then there is a closed path which goes over every bridge exactly

once. We shall lead you to discover the proof in two stages.

Theorem 2. If a diagram has no odd vertices, then through

every vertex there is a closed path which doesn't go over any

bridge twice.

Proof: Suppose Q1 is a vertex of the diagram. Find the

.
longest nath (measured-by the number of bridges in it) which

starts at Q
1

and doesn't go over any bridge more than once.

Suppose, for example, that this path has 7 bridges in it. We

could describe the path roughly like this:

Q1Q2Q3Q4Q5Q6Q7Q8'

7 (5
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Here the subscripts simply help us name the vertices. For example,

Q2 is the second vertex. We did aqt bother to write the number's

of the bridges between the names of the vertices. Now suppose Q8

is not the same as Ql. Is this path open or closed? Is Q8

an inner point or an endpoint of this path? What do you know about

the number of bridges connected to an endpoint of a path? What was

assumed about the t otal number of bridges connected to any point of

the diagram? Can this path contain a ll the bridges connected to

Q8?
If not, then-there is at least one more bridge in the diagram,

connected to Q8 but not in this path. If we go. over this bridge,

too, then we will have a path

Q1Q2Q3Q4Q5Q6Q7418Q9

starting at Ql with 8 bridges. This contradicts our assumption

that the longest path, starting at Q1, in the diagram has only 7

bridges.

Since we got into a contradiction by assuming that Q8 was

not the same as Qi, then this assumption must be false. There-

fore, Q8 .is the same as Q1, so this is a closed path through

Qi which doesn't go over any bridge twice.

Now you are ready for the second stage:

Theorem 3. If a connected diagram has only even vertices,

then there t closed path going over every bridge just once.

Proof: Suppose you look at the longest such path in the

diagram. Color the bridges and vertices of this path blue. If

this path does not contain every bridge, then color in red all

bridges which are not in this path. We are going to assume that

there is a red bridge, and see what follows. We claim that there

is a purple vertex, that is one colo'red both blue and red.

To see this, take any red bridge and some blue vertex P.

Since the diagram is connected, there path joining either ver-

tex, say Qi of the given red bridge with the vertex P. Look at

the last red bridge in this path. Suppose it leads from the vertex

7 7
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R to the vertex. S. Since this bridge is red; then S is colored

recd. -But the-next bridge in the path is blue. Therefore, S is

also blue. So S is purple.

Now look at the diagrath made up of the red bridges, which we

can call simply the red diagram. Since the blue path is closed,

there is an even number of blue bridges connected to each of its

vertices.'Since the total number of bridges connected to any vertex

of. the original diagram is even, that leaves an even number of red

bridges (possibly 0) connected to any vertex.

- Therefore in the red diagram there is an even number Of bridges

connected to each vertex. We can apply Theorem 2 to the red dia-

gram. Hence there Is a closed path'il the red diagram through

the purple vertex S. We have then a picture,like this:

Then the path PABSGHQJRSC4EFP isaclosed path
which doesn't go over any bridge more than once. This path is

longer than the blue path. This is a contradiction since the

blue-path was supposed to be the longest such closed path in the

diagram.

We got into trouble by assuming that the blue path did not

contain all the bridges. Therefore, it does r--)ntain all of them.

So the blue path is the one we were looking for.

78
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Exercises 4-3

1. The drawing at the right is a

diagram of the Bridges of

Konigsberg.

(a) Is there a closed path

for the diagram?

(b) Is there an open path

for the diagram.

2. (Brainbuster) Prove that

if a connected diagram has 2 odd vertices and all the rest

'even, then there is an open path which goes over each bridge' .

exactly once.

( 4-4. Hamiltonian Paths

When the men from Konigsberg asked Euler to help them with

their problem, they probably expected him to"write out" a solution.

Did he find a solution': He did show them that it could be proved

that neither a closed or an.open path could be fOund from the

Bridges'of KOnigsberg.' In a sense, then, this.was a solution.

Are there any more such problems? There is one, 'and it seems

so simple that one would think a solution could be found. Yet, no

one knows the answer as yet. This probleM dealawith Hamiltonian

Pa:ths. Because the first problem of this type was solved by the

great Irish mathematician Sir William' Rowan Hamilton, the paths

were named after him. A Hamiltonian path is a diagram.in which

a closed path goes thrbugh each vertex without going over each

"bridge" more than once. A Hamiltonian path does not have to go

over every'"hridge" however.

7 9
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The figure at the right shows

a Hamiltonian path. The path

follows the sequence of letters

A,BCDEFGHIJ and then
returns to A. The dotted lines

represent bridges which are not

in the Hamiltonian path.

The problem is, that a

necessary and sufficient condition

A

/F G H

V
'J

for a diagram to contain a

C.

Hamiltonian path is not known. One wayfor a person to becbme

famous is to find an answer to questions such as this one. Perhaps

that person might be you. We hope you have lots of fun trying.

Study the figures in the next drawing. Try to determine which'

of the figures contains a Hamilton path.

N.

80
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SUPPLEMENTARY UNIT 5

FINITE DIFFERENCES

5-1. Arthmetic Progressions

Suppose we look at a few interesting sets o2 numbers to

,begin with, and take differences of successive numbers:

Table I

1 2 3 4 5 6 ... n (n+1)

1 1 1 1 1 1

Between each successive pair of numbers and on the line below

it we write the difference:

2 - 1 = 1, 3 - 2 = 1, 4 - 3 = 1, .

It begins to be monotonous after a while. Why did we have the

number n? It was just to indiCate any number (n stands for

"any"). The next number after n would be .(n + 1) since in

this "sequence" you get each number by adding 1 to the number

before. (When we have a set of numbers in some order, we call it

a "sequence.") What would be the next one after (n + 1)? What

would be the one before n? You should read this unit with a

pencil and sheet of paper at hand so that you May answer these

questions as they occur. You may also have questions of yo4r

own which you would like to try to answer.

There is nothing especially strange about the differences

being 1 since one was added each time to get the next entry.

Could you write a Sequence in which all the differences are 2's

.or 3's or any other nt-aber? Any secmence for which the differ-.

ence between successive numbers is the same every time is called

an arithmetic progression.
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Let us look back to the numbers of Table I. There is a

connection wi)h the game of ten pins or bowling. Look at the

triangle of dots below:

If we omitted the last line we would have the usual arrangement

of ten pins in a bowling alley. If there were just one row we

would have one dot, if two rows, 3 dots, if three rows, 6 dots;

etc. These numbers of dots are called "triangular numbers." We .

write these in 'a table:

Table II

Triangular Umbers: 1 3 6 10 15 : 21 28 ...

Differences: 2 3 4 5 6 7 ...

If we compare this table with Table iwe can notice a number

of interesting things. The first entries in the two tables are

each 1. The second entry in Table II is the sum of the first

two ntries in Table I, the third entryjjin Table II is the sum'of

the7first three entries in Table I, etc. The tenth entry in

Table II would be the sum of the first \ten, entries in Table I.

We ,41.11d also say that the n-th entry in Table II (we do not yet

'have a formula for it) is the sum of the first n entries in

Table I.

Another thing we notice in comparing the two tables is that

the differences in the second line of Table II are the same as the

entries in the first line of Table I except for the first one.

Why is this so? Of course if we had written in Table II a third

line giving the differences for the second line we would have
0

had a succession of l's as before.

Now we could find the sum of tile first ten numbers in Table

I by adding them this would give us the tenth entry in the first
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line cif Table II, but this would be rather tedious. There is-an

interesting little trick that Will give us our result with less

effort. Suppose we form another triangleof dots like that above,

turn it upside.down and fit it carefully next to the one already

written.. Then we would have a figure like: s

In this picture we have 5 rows with 6 dots in each row,

which gives 5 x 6 = 30 dots in all. Hence the number of dots

in the first triangle would be x 30 = 15, which is the fifth

triangular number. If we wanted the 20th triangular number we

would have a triangle of 20 rows. if we make another triangle

of dots and place it as we did for the smaller triangle, we would

have 20 rows With 21 dots each and hence 20 x 21 dots in the

two triangles together, which implies that in each triangle there

would be

x 20 x 21

dots. So the 20th triangular number is 210, which is the same

as the sum of the numbers 1.2, 3, ... up to and including 20.

By this means we can find in the same manner the number of

dots in any triangular array of this kind, that is, we can find

any triangular number. Let us write a few:

1
40th Viangular number: 7 x 40 x 41 = 820

1
100th triangular number: 7 x 100 x 101 = 5050

1
120th triangular n tuber: 7 x 120 x 121 = 7260.

1
In each case we take the roduct of 7, the number and 1 more

than the number. We can et a formula by leti;ting n stand for

83



the number and say that

8o

1the n-th triangular number is
2

x n x (n + 1).

Then we would get the above three values by letting n = 40,
1n = 100, n = 120. Other ways of writing 7 x n x (n + 1) are

r( n + 1), (n + 1), or n(n + 1)1 /

2

We could also get this result without any reference to dots

by the use of an idea that it; suggested by the triangles we drew

Suppose we wanted the 20th triangular number. Then we could take

the sum twice in two different orders:

1+ 2+ 3+ 4 + + 17 + 18 + 19 + 20

20 + 19 + 18 + 17 + + k + 3 + 2 + 1.

The sum of each column is 21, there are 20 columns and hence-

the sum of the numbers in the two rows is 20 x 21. The sum in

each row is one-half of this. We could do this for any number in

place of 20 and one way of showing this would be to write it out

usl1ig n for the number in place of 20 or whatever number we

d. It would look like this:

y 1+ 2 + 3 + 4 + + (n - 1) + n

n + n-1 + n-2 + n-3 + 2 + 1.

The sum of each column is n + 1 and there are n 'columns.

Hence the sum of all the numbers in the two rows is n(n + 1),
/and half this is the sum for each row: .,

1
rikn + 1).

We shall find still another way to get this sum in the next

section.

Exercises 5-1

1. (a) Write the first twenty numbers in the sequence starting

with 15 for which the differences are all 3's.

(b) Write the numbers as 14 + 1, 14 + 2, and so on.
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(c) Write the sum,by writing the 141s first and then the

others as: 14 + 14 + + (1 + 2 + ...) 4

(d) This can be written as: (? -14) + -20-?)

(e) The sum written with one numeral is

2. Follow the procedure of Problem 1 with4the sequence starting

with 142. Use ten numbers in the sequence and the difference

of one. (The answer for (e) should be 1465)

2. What is the formula for the sum of the first n *numbers in a

sequence with the difference one? Let us agree to use b for

the number that is one less than the first number in the

sequence.

4. Write a sequence of numbers for which the difference is always

2. Begin with 13. What would be the sum of the first 20

numbers in this sequence? Note that (2 + 4 + 6 ...) can be

written as 2(1 + 2 + 3 ...).

5. What is the formula for the sum -of the first n numbers in a

sequence\ with the difference 2?

6. Consider the formula: 2n + 7 (remember that 2n means

2 x n). When n = 1. 2n + 7 is (21) + 7 = 9; when n = 2,

2n + 7 is (2.2) + 7 =11, etc. We can form a table of values

n: I 2 3 4 5 6

2n + 7: 9 11 13 15 17 19

Carry this table out for the next three values of n. Use

the numbers 9, 11, 13, ... as the first row of a table and

then-write below this row a row of differences. Do you notice

any relationship between the formula and these differences.

7. Do the same as in Problem 6 for the formula 3n + 7 and

for 2n +.6.1

8. What would be the differences for the numbers defined by the

formula 5n + 7?
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9. Write the first 20 odd numbers. Can you find their sum with-

out Just adding them? Can you guess what a formula for the sum

of the first n odd numbers would be? Use either the trick

at the end of Section 1 ur the answer to Problem 5.

10. Give a formula fOr the sum of the first n 1 numbers in

Table I.

11. Find a formula for the sum of the following:

1, 1 + d, 1 + 2d, ..., 1 +.nd.

12. Give a formula for the sum of the following:

1, 1 + d, 1 + 2d, ..., 1 + (n - 1)d.

.13...Find a formula for the sum of the same sequence as in the

previous )roblem except that 1 is replaced by b.

14. Suppose the first two numbers in a table are

7 and 12.

Write a table starting with these two numbers for which the

first differences are all the same, that is, in which the

numbers on the first row are in an arithmetic progression.

15. Write a table of numbers in an arithmetic progression in

which the first two entries are 7 and 5 in order.

16. If you have any two numbers inste d of 7 and 12, or 7 and

t5, could you make. a table starts g with the two given numbers

in which the numbers of the first row form an arithmetic pro-

gression`? Give reasons.

5-2. More Sequences

Now form a table of the squares of the integers. Recall that

the square of 3 is 9 since 3.3 = 9, the square of 5 is 25

since 5.5 = 5
2

= 25, etc. We call them "squares" or ".square

numbers" because if we wrote our dots in squares instead of

86
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triangles, as previously we would have the following sequence of

squares:

0

,Table III

1 k 9 16 25 36 49 n2 (n + 1)2

3 5 7. 9 11 13 w

2 2 2 2 2 ... 2

Notice that the numbers r.: re in the second row are in an arith-

metic progression and that the differences in the third row are

all 2's. We call the numbers in the second row of such a table

"first differences" and those in the third row "second differences."

What would be the n-th term in the second row, that is, the entry

where w is? (w stands for "what.") This should not be hard to

find since it is the difference of the two numbers above it. It

is just

(n1+ 1)12 n2.

Before getting a simpler ex

squares, let us see how it goes

1 write 36 - 25 = 11 is not esp

we write it as

cession for this difference of two

for some of the numbers. Just to

cially enlighte ing. But.suppose

62 - 52 1) 2 52:

If we use the distributive property several times we have:

,

(5 + 1)2 = (5 + 1).(5 + 1) = 6(5 + 1)

= (6.5) + ( 1) = (5 + 1) -5 + (5 + 1).1

= 5
2

4- (1'5) (5.1) + 11

25 /+ (2.5) +

87
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2 2

0 - 5 = 5 (2.5) + - 5 = (2.5) + 1.

In just the same way we could show that

7
2

- 6
2

= 6
2 + (2.6) + 1 - 6

2
. (2.6) + 1.

(Try it and see.) So, putting n in place of 5 or 6 or

whatever number, we have

(n + 1)
2

- n2 = n2 + 2n + 1 - n2 = 2n 1.

We could write this in words: The difference between the

squares of two successive integers is 1 more than twice the

smaller one. For instance: 121
2

- 120
2

= (2.120) + 1 = 241.

This is a much simpler computation than squaring both numbers

and taking the difference. This.can also be shown using diagrams
__.

of dots-in squares, but this is left as an exercise.

This shows that the last entry in the second row of Table III

should be 2n + 1. We might check this: when n is 1,' 2n + 1

is 3; when n is 2, 2n + 1 is 5, etc.

The numbers in the second row are in an arithmetic progression.

If you look carefully, you will see that each number in the first

row is 1 more than the sum of the numbers to the left of it in

the row below. Why is this so? Another way of sayingthis-is that

the fifth number in the first roil is the sum of the first five

1'

odd numbe s, the sixth number in the first row is 4e sum of they

first six) odd numbers, etc. _What would be the sum=bf the first

20 odd numbers? What is the. sum of the first n odd numbers?

We can use this to get the formula for the sum of the first

n counting numbers in still another way. Start with the sum of

the (n + 1) odd numbers

(1) 1 + 3 + 5 4- 7 + ... + (2n + 1) . (n + 1)-
2

= n
2

+ 2n + 1.
....-.

Subtract 1 from extreme left and extreme right.

(2) 3 + 5 + 7 + ... F (2n + 1) = n2 + ?n
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Notice that 3 is the value of 2n + 1 when ,n = 1, 5 is

the value of 2n + 1 when n = 2, etc. Then we can write the left

side of equation (2) as follows:

I)

If 'we_write this in a different order, using the commutative

property, we have

2-1 + 2-2 + 2-3 + + 2n + (1 + 1 +1+ +1)

where there are n l's in the parentheses. Then, from the dis-

tributive property, this 'can be written

2(1 + 2 + 3 + + n) + n

If we substitute this for the left side'of equation (2) we get

the equation:

2(1 + 2 + 3 + + n) + n = n2 t 2n.

Subtract n from both sides to get

2(1 + 2 + 3 + + n) = n
2

+ n.

Finally, if we divide both sides by 2 we have

,

1 1- 2 + 3 + + n = - An
2 + n) = -r(n + 1)

which is the formula we had before for the n-th triangular number.
A'

This is, of cr -sec a much har/der way to fiAd the sum of the

fi st n counting numbers than by the other methods, but it does

su gest a means of finding the sum of the squares. Let us try to

fi d the sum of the squres of the counting numbers by considering;

a table of their cubes and the differences. Try it.

Table IV

1 8 27 6 125 216 n
3

(n + 1)3

7 19 37 61 91 ...

12 16 24 30

6 6 6

89
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Notice that here it is the second differences which form an

arithmetic progression and the third differences which are all

the same.

The second row should be connected somehow with the square

of the counting numbers. To get a clue for this connection, we

must determine the formula for the last term in the second row,

which we have called w. This is just

(n +
3

1)
.

- n
3

.

A

Observe that

(r + 1)3 = (n + 1)(n + 1)2

We found previously that (n + 1)2.= n2 + 2n + 1, so

(n + 1)3 = (n + 1)(n + 2n + 1)

= n(n2 + 2n + 1) + 1(n2 + 2n + 1)

= n
3
+ 2n

2
+ n + n

2
+ 2n + 1

= n
3 + 3n

2
+ 3n + 1.

Thus

(n + 1)3 - n3 = (n3 + 3n2 + 3n + 1) - n3 = 3n2 + 3n + 1.

To check this, let us form a little table of values:

n 1 2 3 4

3n2
I -I

3n + 3n IF 1 7 19 37 61

which checks with the secnd row of Table IV.

From the this we are now going to work out the following

formula for the sum of the first n squares:

s =
2n

3
+ 3n

2
+ n

If you fiild the, algebra too difficult, you can just assume the

formula and go-on to the exercises lfter checking the formula for

a few values of r

90
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To get the formula first_notice that in Table IV,

8 = 1 + 7, 27 = 1 + 7 + 19, 64 = 1 + 7 + .19 + 37, etc. Each

number in the first row after the 1 is 1 more than the sum

of the numbers in the

(n + 1)3 is 1 plus

through w, which is

equation:

second row and

the sum' of the

3n
2 + 3n + 1.

to the left of it. That is,

numbers in the second row

Hence we have the following

(3) 1 + 7 + 19 + 37 + +.(3n2 + 3n + 1) = (n + 1)3 or,

(4) 7 +,19 + 37 + + (3n2
.

+ 3n + 1) = (n + 1) - 1

From our work above we see that the right side of this equation

is equal to

(n
3
+ 3n

2 + 3n + 1) - 1 = n
3

+ 3n
2

+ 3n,

and the left side maj be written using n = 1, 2, 3 ... in

3n
2 + 3n + 1 as

(3.12 + 3.1 + 1) +

(3.22 + 3.2 + 1) +

(3.32 + 3.3 + 1) +

(3n2 + s
,
in + 1).

Notice the squares of the number from l' o n in the first

column and the -numbers from 1 to n in the second column. The

last number-in each line is 1. So if we add by columns we have,

using the distributive property:

3 x (1
2

+ 2
2

* 3
2

+ + n
2
) +

3 x (1 + 2 + 3 + + n) +

(1 + 1 + 1 + + 1),

where in the last line there are n lts. We have called s the

sum of the squares of the first n counting numbers; we know that
, 2

the sum of the first n integers is -2.kn + n) and the sum of the
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n l's is n. Hence the expression can be abbreviated to'

3s +
1 2

+ n) + n,

which is what the left side of (3) reduces to. If we equate it

to what we found above for the right side we have:

3s +
3(n2

+ n) + n = -n3 + 3n
2
+ 3n

2

3 2 33s + r + -r-+ n = n3 + 3n2 + 3n.

3 3 5
Since yl n = n 3s + yi

2
+ -fn = n

3 + 3n
2

+,3n.

3 2 5Subtracting yi +..-np -from both sides of the equal sign we get

3 2 1 2 3 3 2 1
3s = n + r + -2n or yi + ti.

1
Finally if we multiply both, sides by 7 we have the 'formula

2n
3

3n
2

n 2n
3
+ 3n

2
+ n

s + 6 + = ---6---

which is what we stated above.

You should check this for the first two or three 'values of n.

Exercises 5-2

1. (a) Usihg dots arranged in square patterslas shown at the
x

beginning of this' section, show that (5 + 1)
2
- 5

2

(2.5) + 1.

(b) Using the same idea explain how to show that (n + 1

n
2

= 2n + 1. We can show (n + 1) dots this way

n + 1

"I
2. Find a formula for the sum of the squares of the first n

Even integers. (13-gin by writing these squares as

(2.1)2, (2.2)2, (2.3)2, . What is the n-th number

in this sequence?) 9 3
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Find a formula for the sum of the squares of the first n odd

integers. (Begin by writing these squares as (2.1 - 1)2,

(2.2 - 1)2, (2.3 - 1)2, . Notice that (2k - 1)2 =

4k2 - 4k + I for k = 1, 2, 3, )

4. Given the numbers' 4,'7, 12, can you form a table beginning

with these numbers'in which the first differences are in an

arithmetic progression?

5. Answer the same questionas that in Problem 4 but with the

numbers 4, 7, 12 replaced by 10, 5, 11 in that order.

Given any three counting numbers, could a table be constructed

having the given numbers as the first three entries in order

and for which the first differences would be in an arithmetic

progression? Give reasons for your answers.

Find a formula for the sum of the first n cubes of .counting

numbers, that is, for 1, 8, 27, 64, etc.

5-3. Finding Formulas that Fit

By the methods we used in the previous sections we could find

formulas for the sums of cubes; fourth powers, fifth. powers and so

un but the computations and algebra become more and more difficult.

It is time we tried something else.

We can use some of the same methods to find formulas to fit

some tables of values. Suppose we had the sequence of numbers:

11 15 19 ...

and we wanted a forms lo that would fit these values: We could

Form a table and take tht? first differences

Table V

3 11 ' 15 19

9 :3
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These differences are all the same, that is, the numbers in the

first row are in an arithmetic progression. (Of course the next

value might not be, but we are only trying to find a formula which,-

fits the given vlaues.) From this we might guess that the formula

. for the numbers in the first row would be of the form: b + an

for some numbers b and a. Suppose we try it td see if it works.

Then the n-th and (n + 1)st entries would be

r- b + an and b + a(n + 1)

and their difference would be

b + a(n + 1) b - an = b + an + a - b - an = a

which is the difference. Since all the differences. are 4, it

follows that a must be 4 and our formula becomes

b + 4n.

Now when n is 1, b + 4n must be the first entry, that is

b + 4 = 3

which means that b must be 1 and hence the formula seems to

be

4n + 1 or 4n - 1

If we try this for various values of n we see that it works and

this, indeed fits the five entries III the first
I

row of the table.

I

Actually we could see that this ould have to work if the

numbers are in an arithmetic progrei ion, once we have fixed b

so that the firt ent fits the formula; for, whatever b is,

the numbers in the fist row would be

b + 4 b + (2.4) b + (3.4)

and the differences are all 4's.

Really we have proved more than we set out to do. We have

the
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A
Theorem: If the first differencis of a table of values are

all the same, call them a,' then the numbers form an arithmetic

progression and the formula for the n-th term is

b+ an

where b is so chosen that a + b is the first number in the

table.

By means of this theorem we could get a formula to fit any

table of values in an arithmetic progression, that is, in which

the first differences are all equal. What about tables in which

this is not the case? In order to explore this, suppose we test

the tables for a few formulas to see 11 we can make some guesses.

Table foe n(n + 2) = n` + 2n

n 1 2 3 4 5 ...

n(n + 2) 3 8 15 24 35 ...

first differences 5 7 9 11

Here the first differences form an arithmetic progression.

(You should check these values and compute a few more.)

Table for n(n + 1)(n + 2}

n 1 3 4 5' 6 ...

ti
n(n + 1)(n +2) 6 24 60 120 210 336 ...

F rst differences 1 36 Oo 90 126 ...

Second differences 18 24 30 36 ...

Notice that n(n + 1)(n + 2) is the product of three successive

integers beginning with n. Here it is the second differences

which are in an arithmetic progression. This would give us a

way of computing the values of n(n + 1)(n 2) successively,

assuming that the second differences tare in an aritmetic progres-

sion no matter how far one goes in t+- table. For instance, the

next second difference would be 42 . 36 + 6, the next firs?
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difference would be 126 42 = 168 which means that the next

entry in the line above would be 336 + 168 = .504. TO check

this we see that 504 = 7 x 8 x 9. (Notice that every number

after the first line in the table is divisible by 6. Why is

this

/ Try one more table:
-.7

Table for n(n + 1)(n + 2)(n + 3)
A

n 1 2 3 4- 5 6

n(n 1)(n + 2)(n + 3) 24 120 360 840 1680 3024

First differences 96 240 480 8440 1344

Second differences 144 240 360 504

Third differences 96, 120 144

Here it is the third differences that are in an arithmetic progres-

sion. Notice that every number after the first row is divisible

by 24. Why is this so?

Before going further, you should, try out a few for yourself.

Exercises 5-3-a

1 Find tables of values for each of the following formula

and compute first, second, third difTerencesi:

(a) n2+ 3n 4- 2

n
3

n

(c) n3 + n

2 Suppose you computed a table for the formula: n n
2

and

computed the first, second, etc. differences. Guess how soon

you would come to an arithietic progression. Then check it

to find out.
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6 4,14'4 -.7.,,-Vi, s40.0 _of the Pentagon in. Washingtonl Consider
. -.-...
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- --

*'..4,-..

'

,W6-, call 1 the first pentagonal number and 5 In the

next- ilentagon there will be 3 dots' on ,a side and thfree
l':des.-fwityi a total of 3 + 3 ÷ 3 2 = 7 -ClOt6, :(746,,;Oubtiidt- 2-

:±0- the vertices which we have counted tWide.). .The -next 't 6

-we- `-would add 4. * 4 - 2; ld dots. time we d

than we did the previous- time., In this 449: V)get, the

owing table of pentagonal numbers:

Table VI.

1 5 12 22

first differences 4 7 10 13

second differences 3 3 3

"7
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_ Now this has to be :equal to the first difference fOrmula. :$0'the:

second differences must all be 2a. _-See from the- table that

these differences are all ,34 'Thut- -2a --The; .

formula for the first -difference in the table must be (31.1 + -( 'b)

and (3 + b) -Must be 1 to have it _give the-*Mtier - 4"when'-

= 1 So tqe have = 1 and

,Hence the formula for the numbers in the first line of TableVII-

the _PetitagonaI ,fiuMbers, should be:

.

for a proper choice- of c. Putting n = 1 in "le formula and
Setting it equal to the first early,. 1, in the table, we get

21 = (t-1 - + c = 1 + c

which shows that c must be zero. So our formula for the n-th

term in the first row of Table-V1 seems to be

3 2 1 3n2
2

n

98
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yciri n will show dpoio indeed.

fit 04.4O.e, the first. cliffe*enOes,
0:4*Inilsi.e: the entries on the ,first 14.pe after .'the: first

,-vens,

8: 20-

fit each of the fOIli_oWing;stablea

12 17 22 27-

:43' 77s 121

$.P 92'

10.14 tornskula da, yoU i iiiik -WOU

taties of I

.2 10 . '68 2.30 222?

3,. ,Have you, ever rio:ticcd- cannon basis: lb-4§0

.ps:rrai3:iid -on. 44:cq.-ci- battlefield? 't,-*ei, e -6.- '61.:-

.!;!fith 3, .4.-n :4- taangle,;.*Aheb00*-411 ;oil-, r 'ii

;g:i.Ving 4 in -,all . If there: were 'three : tiera4 }{the triangle'

OA the ground' `would' have ',6, :phi* -tries .fof above;., = would`

2.0+. If .there-_ were fOUr- 404- -thOii-0.,.,t40102:cr 1570

-_ tiottori with a tat:41. of 20 iti the ..0:1e. 'These ,numbers- are

caked Apyranildal numbers and' are

1 4 :10 20 35 ,,
discover any relationship betWeen and the stri-

ItingUi'ass. iniiaberS?

,41.ttipothe there is a table of values in which 'the third' differ-

ienceal form_ an arithmetic progression. C4b. you guet -what sort

of a !formula would fit the numbers of the table?

9 9



a famous, t4P0POin.M1-4 'every integer -PXPre00.9.4'

,sum- three- or ,teiier triangular trY'.. ,

p-

*490.144 the numbers and- li .:actual]y ,need to have
three triangular ;numbers, in tthe..,sum. 1140-orp4gO says:
tilat overzt, integar is iocAltive can be expressed; as the

sum, of PWate :4141;)Prs'i 411.P; or ,411,F-r:PAggnP-1-.
numbers,; etc.. You might, be .141'.40,P00'44-474A04.1*014

roof` is very, difficult::,

There are. ,some the t40 no

,44±tOisOhq04-,) no 111.44P.P :1"1.0***.ii*:g94; TOR an
'wo such 004P0aXkthi4ti0 progl'essioir.

1 2 22__ 23

(b) I 1, 2 3

where- in the Second seqUende),each :pumbe,r is the sjim .of' the
preiiiOUs two ,411* that no matter 4.0i marry differenc,k0

you take, no -set will fOrlican, aritliMeti6 prOgrOSiOii.

5 ;4_

We know. from Problem -13 in SeotiOn 1, that. .44y two .given

number's may be used to start an arithmetip..progreSsion. Why

does thisi show that no matter what twonumbera, you may perm,

I can find a formula an + b which has these two nuilli?era

-as values for n =,1 and n = 2?

Look at Problem 6 in .Section: 2 and see if you can answer tne

following question: Given any three numbers, Can we find

a ,formula like

an2 + bn

44hichwill have the given numbers aivalups when n 1,

IT= 21; n = 3?

What kind of a formula do you think would fit any set of four

values? Can you draw any general conclusions?

100



*00010qt
CENT` .INPOIMATI0N; ON PRIM,ES'.

eMittd!

We ,i4re,:,:gOing. to ;report to you an,

A4Pr. Ot, the. University ©f'" ];" forma'

rkeley, in October, 1958, 'issue.- of dings the
Otoan;"MatheMatical 'Society, -041 ,giVe iciea o '

wttOtq41,..01,1, 410,110,,TP#0,-41,0 A170, -0P-441y4.* 'N44.01)0 61,01#0P#
r.040:iliax.064

1p,.44ed '4444&
444 ;I:951 the SWAG. 'c4t4Pc14#01. VOti404 _WO'itki0.0 0101404
0,.:7.:2#0t.p#Y 64.1.4t0t1.4.4University

.af' .the. meaning. ' o f "this .work,, let ;ins h rik'

a- ;moment abo#,,t the ..prgwoin i4i0,1*,, ,,itiVO4.

Ai.#413:Or n, is. 'a. prime. :According .'to 04- clef roil ion rof *'-PrOey

we mush :f.3.nd out :i01.01:10P some **11040±' :#.**141:

0:WOi,::.Z:f4,t11 14 .741.0, #100t: )1W104' ;0'. Olitid0 ri

4-/ 'P.P' *40 n. 7 :1. 4,41/7' 0, #1:011404*

`then i&'.not.a; 1.*66e

0*,P06' ,0900 =ctilte,erOjilt0. t1.104. ri is 6. *0404

2. '00#t 44- if re0.04'
of a second",, this *Air_ :41.t-

'110-*_#1.4431':f3q90#46 4.r0, 0:0e- in `a 121*

-this: fake?i460.4
*6, -0tail ,01102y4ert.thq work very much if we tii**14-tia0. If

be PiPred6ed2 as a product of two

:§37.41lie.t;'
n =

-is the gmaller of these ,factors -then h is at leapt

n > a2.

101



r7'777;W:,;- -

.

erefore , If ,n is not a priMe, then it is divisible by some
1.er= ;a chose 0go?-,re #4#9_4t.. n. "Tij test whet er n 0,

40: 'Pp0417i:',..:6, '4 by the numbers
3.:PatO6t.`'#1-#111KhObe'4CM44 is= no ,

then- we ao.not trSt
a,:since ,1:;;0002' = 1.409.0490:!, op4 i#A-1040:

is -4 14047i0i, 4#1144 '34

is' method- otAy:Apct
s3 ons 4iothpAi.P0#164,10-6h04.,

n- is about thep, this :0:04
401.01.040-i 16":j0 (33;6'6, Xt-04.*4114i4001010-

--,:* of a ---0P9014): 'holf!''-41:ah3,,earill Iff.Pliaci4,- "4ce' :1* -V 4P, -Iti0.464' '49:
,t6,6-t: iiii0*r. n .16- 4 .044/"-ii,

if ,,we wish: to test, .08.1-1'971.arge' nunibers4,, t;ie. io# 1§61c,_-,,r,o,, .. 0, y . ,

better tot4p4s so. that we can 0:15ta#4. '04'''-.440106: 1-#-',4-1*0400141Ap:
time;: 'Therefore., inowippia44.04.6.4* .4t. to,-t1.#4; Oib00-.41- :00.43:60.'0:'d.P''''
4hobei:i,§-,7,014:01.1Ave -01)-0.44, properties 4404 0446 lis:' to 1.,e,00:

i
,,*0,-,40.0 -,ovoi:ti-in'otr!et ,

For example,- '4' great cle4 Oi'*1*.., has :1?:00`i'40#4 '0.,:#1-#16,0,f01.
which: -are, ne, 1,00- thof.ri:-* pow of :2:._ 14P-,03i710.i*O,064t ,040h.

AllWAber0,-in the fOrM "'

--1.

M.= 2,, then niLF.22- 1 &'4~,
in = 4, then n = 2 - 3. = 150. which not .PriMe:

not a, prime, then n ,cannot, be a ,prime.. But may be,
. rIMe n prime.

:Make a Viable for

Exerciees -6=1,

'uiS to 1-m 20-:

4 5. 6 7 8 9 10 l 12 -13 ' 14-20

7 5 31'

1 0 2



then n. is d visib3e :by' ,

4.0 '4-$.11,0:14e, by then.

1..P then n 3s d

'8 the, 4enefe4 19:14?

46±2i,e'ra:
4,4

obitia?n rePai'ts on ,numbers ighidh 'are One ,more, than a small
/0; of a .power that the

*.t*i .04401,414:0 4:'400#,!
h#'gif910, :tested this

;±*In with k < 140,' _4.r14 ,'m. >' 12'_ as it as a, feet larger :numbers
first they divided by a11,. ;.411040`r:§, .10.0 :0A91; anel' far
-< I jthey tried divisors, up. to 300,000 eliminating all

;map- ,faptoia this *Z. they. then ,app Ilea, -a. thee-Atli
roth. in :us see f we; }carin ©t. ;get some : ea,=, -Nhat

0:p4to,The00:R;Pkri 'ikaP.4-W**4 :6,-#344e

st1:00A:ki,.
theorem = gives a. 11*.11:94 of testing

21Y1): for .primeness 15P-.9142.4.4- ki iss

,odd -and, less than '2 ,14e' can much of 'the
t-04010ent of 'Px.'oth',Ce' Vic004 if wt .04tri#::qt00.04:"Y-00 to the

is .hot ,4114*-°4P 0'0 1.46: E8*-' 1#0,-

=4.,,v

1, 2, 3,
r , , N

',Ma, are able to test the- numbers n ..-- (1c!, + 1 'for primeness.
.

-.,

r it hese.nUmbdrs n Froth.' S theorem 'states tha t:

prime if and only if
M11,

a a -factor of.10. 41.10 /$1.0 nal
-3. 0n

3 + 1.



.

,

pOeS,..thiS, look mySteriOUs. you? does,),

-bedaUse you..are-not .6..Matheniatician.. It would. very tirObably iOdg
,Myp4ribUS,,even- inathemati,cian if' he to '1*

:Liai!-with°.the spec,i4 techniques which are needed' for a proof

(.?" :4:!120Pt4:ctilat the9rem! If 3'"(:?11 Yi1.-1 aqdePky-0940.yei' 4 ..out 140X.1
'that it is a true thebrem ..(and a g-r-a-,t manly Nreisr. iiespeptOlei,

iignernaticianq will testify to its ;))(i'ing.. true) then it should not
14,6,.iiki-:!"cLto ,s'60 what it says and ,`how it is used.

I ,...
.1 I

N
n-1 .

O.

ffr
so: the firt 1D1-6.00; 'whe.t.-does 3 + Me4n`i; The ,§):eitreSSA.;On-

f7. ,being used.asnan Ojcpcnent, TYie number n we ere -using' =here

44:044i. (Why? What is the fOin of :r1-5

r1-1
so. ',that is a, counting number,. Thus 3_, 1 is jug. one

more than 3 raised to _a. counting number test.
primeness we need only find this number 04,
11- this divisien comes out even then n i -s .a, priirie otherwise

'is a composite

.What 'numbers can ,we test for primeneSS by this MethOd? Let OS.

list a. few of them in a- table then apply the test :to,' SOMe- of
t.heM. Fill in the blank spaces in the table on the following page:
:AeMeMber that Froth's theorem requires that 0 < k < and that

we have restricted ,Ou'rselves to numbers k which are not divisible
, .

by 3.

a
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Qc

II

;

*

Y-
-:*' '- --

:'-: r

+ i

3,

5

r 57

81

113

P9
33

!(2fl).

;:
1]

I
--

; :::

17

L ';
t1a

'- 7'Jb

'S

;;

*
4%_

-*3

--

+ *

--

, : flow let us see how the test works 'ox a:tew ot these numbers. )
To refe8hTour memories we rest.té t

/'

1 i+=((k.2m)i+ -I whé-b jv1s1

then n is prime if and onLy if it is a f.ctd'r of ____

* t t -

3 4
4) l 4f l___ -.

Example 3. Let k = 1
- - -

and in = 2 so that fl = 5. (Look
-+ _______

-

/ ituptin th table ) We are testing 5 fo' priineness In thIs ____

!4 2, soc&se _is or -*

E: - _; 32 +1=32191=10
( - -+

-

1

-.

-+ n- -a-ae+to+r of,. 3 + 1? is 5 -a ator of 3.0? Yes, it ±8,

sq. the test tells us that 5 is a prime. Does this check with

j what you already inow"
A

1O3
* *-- +--- + ++ - - -+. -- --- .- - - --- ---*---+_.



: :: : ; I :':
O2

) / I
4qt( I

Ic =1 and in = 3 so ti1 n = . (Loojc ,kitup) i. a , 9 ,

: :T .', .

:
, ' I n-i

- ;

'1

:
by The di1visiori does notome out vet, o the est tells us

t1at. 9 is rot a prime. this ch1eck-with wh yqu alzeady

-
3 /

xaple. 3 If :k l andm 6, thert tha is. n? The- --,-- / .- ,
- table Bhquld. tell you that n = 65. If it does not., wor1 it out

gain. !1 is 32, the o /
:-'

nl / /__ '---- - i
3 1 = 3 + 1. 1',853,O2OI8,851,8k. -

We would hyiq to divide this number by 6 toontn. 1ie tesL
It wQuld not le woi'th the effort, how\rer, since we can easily

reognize that 6 h 5 as a ±aqtor, and i' thex'efore- not'a -

pri.tñe
- -'- .'----- -, -

1LLet k = 7 and" m = k so that xi = (k.2'3\ 3.

n-i
J

U3 In this case the number
3r + 3.

366 + 1. is 9 times the

square of l,853,O29)l88,85l,812 plus 1. If you-are -ambitious

you niay calculaie this nWnber and divide it by n 1J3. The -

division w111 come out even if you do rour wo-rk correctly, o what
/

'do-yow -conclude .abo,ub. 113? :

1 :, --

Examples 3 ax ii. should convince us o, one thing. lroth's

thoi!em is not ,Well suited for testing large numbers for primeness
/ -

b hand, calct9.ation Large eomputers, however; are constructed

expressly ty 'make calculaon of th order of the os which dis-

çouraged is above And they do them quickly! On the S the
2' time for/the test was no more than l minutesae long as m < 512

For m/bout 1000 and k = 3, 5, or 7 hetést took aboj

7 mi1es The number n = (7.?1) + 1 is larger than
-

'

: / 106
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II-dilute* -with the: time, it Would -tom the =machine. to `test-
:.*r ;primeness 'by trying all .possible. factors;: ; 4idier in

s:, 40,040.1.-,,,..7',ou got .,some Ades., of this time:, tor nuiiiherS°: Azif" 'the \
'?''''-3.00- .4...,,,

. .

4.7.,i1:' -,:.0) f.- e' 4:Q , , -- .: ,44,''.,--.'

x:. lc ...t,.. 1' the test 444 ittreviOusly" '1?ean, -Carried out- ,fOr.'t:i2i: '

1-92; and the only 1441ear
,

'o h' is, rop t*itoj have h, a.ei foun d

:0-#q 9040f
.-

0,

largest :new :wipe discaverci hy `thfa work. Is the case
1947;

21:947-j

_si:0*,10:41, to --eStintate this 'notice, thit-

19' = 40001 °<-, 40-01

'?.. :1(21-6)-T911",' > (163).:1,P4, 3:60g1 .`

T40r0t,OPqr '11; ti4;:*11,10X'0 :04.-s'440\440` 1144ct'i

'risOtiOe- thiat.
r.

s .

;2,

'Therefore- V
0have,

80§6t<

_ -- o

ottecm#0y has hd more than 6 -00 .di s

-iteine*her. that 'bf the theorem, of Proth,
,.discovered ' a single diVia4od toictok' 4!rtiattir of, pituttas.
AiSinkeitheit of the cruder methOdS disciusseds. ;before, 'at '.`.(east '.

_
divisions would haVe been- necessary. *r.,4 would this.

rhaYe takW) at the.rate of a thousand diVisiona per second?
40;

194-7)

= 1 4; 21550.
111-

< + :UM150
1, 1- 19

660
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number ` s the: fourth largest, pp

j

,present.

.1 ,t, - -:4--- ,,,L -------- , ,

._,..II. in = 847,:p, ,0q:-i I and .265'. 111.1,....f.: le,Iter two Weite:_:,,repOr- t- ed
,

--'40±400n . in the.IiT000: .04-#E0';., of titer/S0040.-n:, $at110#44:00;_,490.05/'
Ari.5,51.t.:..:Thel,)argeit One. was reported; early in 1956 -*;,i1._ 71.0.04p4:-
4.4 .Mathematical _Tables ,and-_, Aid*-tO "CeimPUtatiOn .(Ptai--107---04: :

, .

Example ',5,: Estimate the, ttUfab,o, p.f' -dititg An_eaoli_ of __ _hree-
4 71

e3.4 ' '
I

_*Othe A.

-
'

rhapS: you would-.,'be interested An

general._.

statement of ,,
Prot ?:s- .theip4ent., .''.0.:6':41.:11i.ber,b, ,n, 1,,i! 214:, j-. 1 2.-00; 'it divisible:
by '_ :the_ ililimp.4.0. itreterko0 in- the test f r- priMeriess- '-that`

"4 , -"

the-nuMber' + I ,,,MuSt be re-Placed. by a neW,,n ter.,
to; Ilse is .of the 1'94-

. ... differ1 .
where

;
#,a is a counting number _which bat h es to be:e/h'open. -91ifter=;_

entl.y, *.for different ;rallies of .-k and R. lhe. Conh-co -a

'rust
,

. 'ilru4t. .satisfy will be found in the statement of Protipi -thedreM.
_, . ._.,.

^. . .

e' ._Theorem: Let 0' < ,k <._el and ,n = as, 2m). t,I.. ripp se- a. ''!--
.,.., . -. e

As a OpUnting nutber which has the property: no ,Sut of a 064 'a...
'i 1

AuItiple of n is .a perfect square. (alternatives the sum- 'Of .. a .
1 r -- . .

,,

and a 'multiple of n is never perXCt. square.)and_
_ ,_,

--. .. -
=multiple

, 'Then n is a prime if' nd only ',if it is a fac or of °.

. n-1
a' 2' +

. .The condition which mpst satisfy. is rather is range One.
/. It Would seem that it m4ght be difficult, to find a nuMb st Which

4 , , .. -k

. 108
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1.05
_

4

oases,. 'We pou3:41,_neyer find such a number by
for the condition which a must

py0oies%a., statement about all rraatipiea-ps n We may

Sorne choices of a on the basis ,of a ,single * calculation,
'

It k := a, and in = 2 so that r-k = 3.g
2 = 13 then

cao*y because 11,7 1.3.7
, .

,:squafge and._ 117 is a multib1e of = To- find- a,

,itum:ber a, Which we -can be sure ,will tit -the -cOnoh for'--6.- given
_:, , ,--_-'

zri,,,,,then; we i11 have to use reasoning. Ve will have to reason
...................._ ..- ._,

tthp.ti for a *certain umber a nmatier hOw.friatt:iiii.4-0.gpgi'-c4 'A

:E0.41:ii' 0 w 14 zieverigiVe 0.413erfect 'siukre.,. i4a.4402iiiiiti,,
. 0,, .

`A-J.4.0 101: Of, _0944 ,41)41#i:11,17F4-4c17'4i0 finding such a number '444'

.i:;..i:0,..k ,a,,.. very gffieult prObleni._ As YOtA p:14`,'1141i4'g*:40-10A0.'01*-the-

i: 000,e).011.0.1)ove, it is poisible to- show that whenever it iS',not,

4.,V,I:sihle-.-by 3 the number a ='3 satisfies the CbnclitiOns, or the

4ea;,e10.,, Ow'', we have found the right number a to go -41,-,4 n we

9,a4\0914the,Many, tedious calculations neOeSsary'l-Q test p.` j.4*:-

444ox. for p4Meness-.. Instead of dividing n by all prone e numbers

liOse -squares are less than ri,, we nee0: only perform-iiiie-
.. . We simply try the division

-.4 n-3,
4

(a + 4.- ni
z t .

if it tomes out -even n is a prime, if not, n is not a pri,
4.

4

4

".
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\ SOPLEMOTARY.UNIT 7

-01%7

mould- you -say if you were asked- how a War 6., business,
:a,,,,,g4410--Are.,:a1:iXe? -*ere, is at one p-1, each

eSei,-SOMebne.
.

-conatantlY 494lk :ra eoidi ops; officoi0 in ''-the
braes...must 40.0-j.;446, :what. ,strategy to 'follow: in the -Coming

414--06044i6P.6 *44' 4?)7:#*_-1404rOr of -k

4:4110' 4-P41*1;-#1# 17.141* 404:-404.10. .14 '1407.4g011ilii, s business. Can;

0 ;more tan :just .guess.:at ~"the right decison
.46:- )4010. 'recently :constructed tikft01-0,tid-: ;

many -deatsians- ,involving 'hoW=. big: 4.: oul:d be;

.,W#4_,priapa 'Should. be _.charged=, e went to "0-0.-"$t:aritotia,

00,pAron_ ii:141:tuto,.and asked' liatheMaticians: 'to
. _

P44 nat40041,9'1.4413 441.0.04 him figure.'out what
0440iit- to :make in ottier74- *0-4 the- biggest

thebil is a new th'eary. can

Aped: to .determine l'o11:0-1;

Tan von Neumann .invented game. theory

,applied these ideas to business decisions_ and _game. strategy. You

first learn .how to use game theory finding the bes{ strat -.
-

:to follow in a game.

Strategy

What is strategy? Strategy is a plan you follow to gain Some-

thing you want. Usually, strategy means the plan_ for a coming

,battle in a war. We will use the word strategy to refer to a plan

-1soaq44-1$ to any. decision. Strategy will mean a complete 32....an.that

,CannOt be upset by "enemy" 'action or Nature. YOur opponent is

yOu'r 1.!enemy" . Let e s _talk about strategy in ,gameS . The first

group- of '.games will be very simple.

;
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IbMand Jim are going to play a game.. Each boy wants to win,

of course l Re, must be careful or he might be fooled by the other

oft:' These are the rules.

Each boy writes on a piece of'paper either the letter "A"

or the letter "B" without, letting the other gee. -MEW

they compare what they have written.

2. If both wrote A, Tom Wins 6 points.

If both wrote B, Tort_ wins 4 points.

If one wrote B and the other A, Tom wins 5 points;.-

3. After six turns, the boys change roles and JIM redeiyes the

points according to Rule 2.

The winner is the boy who hat the most points after each

boy has had 6 turns.

The following diagram, called a payoff matrix, shows the pdanta-
,

.
for each combination of ways in which the letters could have been

written. (A rectangular arrangeirAnt of numbers is called a'matrix)..

pomt,s A

'<' Choice

Maximum pa#Off 6
for the column

Jim's Choice

A

Minimum payoff,

for) the row--

5

'The number in each box shows the number of points that Tom 1.1111

Win for each combination of choices.

Example: Tom writes "B" and 'Jim writes "EP - 4 Points.

Jim will allow Torn as, few points as possible so Tom must determine

-.the smallest, or minimum payoff he_ would -win for each of his

choidet. write.the minimum payoff to the right of each romr of

the Payoff matrix. The minimum number of points Tom will win by

writing "A" is 5. The minimum for the choice "B" is 4. We

111
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41e0014:4, the minimum payoff for "A"- is greater than'theminimum

_0490 for "BP.i4Tomwill always win at least 5 points by'writ-

-rig"k,
'or -.each phace by Jim there is a certain greater, Of. Maximum,

ayOff for-Tam. Jim mill try to make Tom's:payoff-AS small as

4oSsibie-, but he knows_Tom will try to win the .maximum number'of

:pOints each time. Jim must determine the maximum payoff for each

_,otjlis choices. Lisf,the maximum payoff below, the column for ,eadh

For which choice is the Maximum PayOft the lesSer? The

AeSSer_of theSe maxima occurs when JiqWrites "r and As equal

5. 'Til-makimUM,riuMber-,of paints TOM-can win-When JiM writes

is :sMaller'than the maximum- payoff when Jim writes JiM-
.

neVet lose more than.. 5 points-if he _Writes "3".:

Ta'summariz4,,we have the foiloWingt-

-.The mintnam payoff for Tom -if he calls

(a) 'A is 5.

(b) B is 4.

The greater of these minimum-payoffs is 5.

The maximum number of points Jim could lose if he calls

(a) 6.

(b);i3 ib 5.

The lesser of tnese maximum payoffs is 5.

In this game notice that the .greater of the minimum payoffs

to To is equal, to the lesser of the maximum lobses of Jim. When

this ,lappens, we say that the garim has a saddle72214A.

Think of the shape of a saddle, tona horse. The lines running

from front-to backdip down in the middle, or we could say "they_

have a minimum point. The lines going across the saddle from left

to right .rise up to a maximum

point in the middle. ,The great-

ept of the minimum points and the

least of the maximum points are

both at the center of the saddle.

This is the point we call the

112



01a440-',1)94it- When,A,taMe has a. saddle

1

_

hUh,giVe the: saddle'point number are the best dhoioet; and he

bststrategy for each boy is to -040900 t,h#:, letter all of the
1refoe the bast 8'01*e,)53j; for om is always to write This

become 4: very b:#1.-lig,-A4R9 34),f649144 this strategy

Wo141:41=g21A

Exercises 7-].

1 i..

i

Work ,out the following problemg. (The rules the sp.m 4S,
,

aboVe, -except that the humbers_ot ,pcifin% ts; that Tont,wind are changed

to Ithe values Oven in the matrioeb beloW).

A. Jim's

Tom's
choice

A

B

7 4

3 2-,

What is the minimum payoff fOr'TO'ill if he Ohooke4

,457'

b) 3?

Which is,che greater of these

4.. What is the maximum number of points, -could lose if he

dhooSeS

(0- A?'

411Wh.Ch is the lesser of these Maximum payoffs?

JDOes the lesser of the maximum payoffsOual the greaterof

the minimum payoffs? Does this game have a saddle-point?

11411k6 iS the best strategy for each bon

113.



*Id JiMls choice

A 113-

ToM is _ A ', .. ,
1$ .

,

choice-. j3 T

-:-:,

4- ,Does the lesser of the,,MaiciMUM:PaYOtfd; equal the &eat:0i! ,
of the #41.3111#0Ab!e4:0g81 Does this game have .a :saddle-point?

..'-2*.i4,1(totoi 1J-00 cP:*.tq0 g91*-0404-1-;!W

, ,--

.._ .

C. JiMi'0\ ;

2 k
Tom!s
choice. . ,-.

. A ,.. , . . ,,$ . ,. ,

, ._ s

...
,.

,-,

. ft.. .1.
I . Olhat . Is the grea r of the minimum payoff. Tom can -,win?

, -

. What is the lesser of the Makimilm -Paytif!,f Jim cari-lose?

, 3_. Does the lesser of the maximum payoffs equal to ,the .greatei?

of the minimum payoffs? Does thid game haVe a Caddie-point?

.si
4, What is the best strategy or each boy. ..

1. What is the greater of the qii-iimUni,dpayoffS Tom can ',Win?,

2. What is the lesser of the D1.0401114', 4..9-t.0 -04 can 1000?

. ,

6. ,

N.

D. In this game, each boy can write "A", "B, or )16". ' The

payoff tells how many points Ttm receives for each combin-'

ation.

Tom's
choice

B

c

Jim' s 'choice

A B C,

10 '

7

El k3

114
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gat -1.:s; the minimum number o 'points Tom would .win if he

chooses

-4 1,

. WhiO11, A.S. the greatest of these, minimum ,iis.y,OffST

l '. / 1 \ .-. 3 1

..<

What iS- the maximum numb of pOintS .110. will lOse if he

chooses 1

'Cal 11-41i,

? 'Whieh- is the .learit, Of these,'MaXimir:i:ipayOffs,?,

.pbes, the least, of the maximum-,:payptfa...*440; tilegreave.st.ot
Minimum' .payoffs? bops- this ga.Me:'haii,e-

6-, -What is the beSt strategy fOr-10. 494

tiaSineas. Strategy

theSe .same methods can be urd Mr-mating 04060. in'
.business. The primary concern. a business is .hoer to- make. :a good,
Profit. In other words,. each decision should result, in a ,payoff

which brings the maximum (that 1.0, greatest) 'possible-
WOM- a pay-ofr matrix a business man could find. the .best :strategy,

to fallow. It is more difficult to set up a pay-of'f.Matrix for
a business decision. Before you can do this you-must learn pope'
business terms.
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A

Jazries: -owns a.-bicycle .!shop. He 14*t, a bike fOr $40 and
,gori 4 65., The ,dgT0ende between. "che;

the, imargiii;

cost
,

Is the itiargin. for the bike
James has- many OqienSe6 in ,hip, 1:1#0.6 'pa"Yr

'Thes'e qa-1:1_W61504.61:rig

,ejcPenS.06-. The difference betWeen, the 'margin; and "'affiei*ting

ey; _ense$ is- the ,profit

Profit. .expenses`:,

-4*40,1 expenses. f9i''PeWitl.g;OW4k0 ',0#: is
al#941t-t

'What would happen If the ;expenses'- -:were greater tha,ri?*he,,

margin" If thie'happenS j'aniet -;*Ni'.

,w044, have a negative profit. 46.meSti' 054)0n00'0,170.4; ,64110.1ett

3'. for Vla.t. bike ,01,4t would die the prof i =t7:

EKamPle:

In a, ,ame- .store; .Merdhandise :Whid#1-8-d6V1 69. was
\ _

SOld' _for 4525." ,What 14#:tin!?
-1

ell ng4 "price 525`
doe

If, the ,operatintenSs. equaled 48oi what is "the

fp.25
:e'xt!enOe&

$

ing
Find the _quantity asked for in each of the poii9wp.

yorkthe = folio
Prob?..ems:

ing roblems.



me 'Store

il4

tXerciseS, 7-

In .a dime
.

store, merchandise costing $250 sand was Sold for-.,

;. ,:What is the Margin?
'The:-(.operating: experiSeS totaled .$60.

'2. What is. thp .profit ?, !

3.. If the operating expenses are $100, what is

profit? /
de .Credli Man.

1
The .ice, cream .supply for one ciast is, 1?(5.14tht for 25: .and: sold

'to- 'customers for $48:. ,

11-: ':What iS, tfi,:iii#*4-gitle?: ,

The gez- for the trUditydoStS 44..00, /p r day.

- 1:ihe lidenSe costs *(Ye' ,Per day,. '

The!, insurance on t-"e .truck costs. 0 /`' -per ,d4y.
.),- , , , 4. , .

Repairs and upkeep fot 1'114' .triaCk- ost '50/ per-c1:47'4

5. .-Vhat is the tOttil 'oPeratin-g, eXPens'e. Per[daY:i
6% That is the' Profit ,tier. clay?

. ' .

titre' ' , ,/ -

,,IiY dine week

70_ tickets 11. ere , sold a. ;25% a*pieCe.

400 ticket0 were Sold at /..5scv apiete.
7. 14h.p.t is the total price paid for all of the tickets?.

Rept (per week) I A tb,-
/

Rent for films, ,§ 50

/WageS'for one week, $120

Eaectriotty (per wee/k) $ 30

8. What is jhe total Operating expense fOr one wee

9: What is/the profit for one week?



115 7-3

Service
0.4 station 'sold' 780 ga11s. 6f gag at: 22 ',Per-

.
gáflon one

11. What ,ta, Vag total, -Selling, pride?
1]. If the :gas, cost' 16/ per gallon, What, IS the-_

"tOtal-
The- Operating: costs total 011:.:50; A:vihat ±s the

13. date, the :syroP*4.c1P

r.galions: .gas fiact

' Cost. 17:ind the: pr-Ofit'

.

/
taYt4ff Matrix for 'a, Aiii.isineSS DediSt6.11-

-A- vendor at ttre-ebOtbail game can se either coffee or
popcorn (hit not both. ) In warm weather the iendor can sell "*.

-,?.4'.91.45s of cOffee. If poffee-dost?"5,C and sells -fOtr lOft
what is the margin per ,cup" What is the.,,ii'largili'On 300 soupa of

coffee" In warm weather. the ;,r endor-dan sel1 t00 boxes of
- ,Popaarn at l0, per box. What is 'the total, tipargin'if.ea0Vs
tor -Costs 50 ,

The following matrix will ho,w the -profits. ('aSSurfte that

there a.kb,e- no operating. expenses.) Think of. the weather as the
Vendor's- opponent in a game and imagine that the'-weather s trSr-
'int to defeat the vendor:

- ,

oPerator §,0i4 ,onlY
the JSaine ,Operating

4* 4e

1.tendor
Order

. .

, -
,-../.'''4.%-r.---\ L \-,...-r-, ...... - ... N... - .- , 4 .

.,-, - - ,,,,, ..

Weather

warni cold

1,?

- _

118
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9:16.

VendoZ...6e116 coffee dri. Old weather, he sells 700
:4

lhat -WOUldl,be .What is the- profit?
the. vendor will '00 boxes of popcorn if i1 is cold

'What is the, 'margin? What" is the :profit?
_Place these numbers in the, correct. tOjte Thti, vendor wants

to *Ye the most -ptofit that is .possible. -Since. he :cannot`

be Sure. of the weather, he must.' deterkine 44.0 best strategy:
-zo'.:theie- a -Saddle=point?' What is his: best :strategy ?' You

0,044 have -found:that the vendor Should, -6.1Ways order ,potiejotia._
aHe i1- always make :at least .$20-..

i

It ,ShoUld be emphasized that thia is- _all On the assumption
that the-weatiler is completely -Far ,inatange; the
vendor could be sure that therp yould;:be.*.)re cold days- than ,hot"
4004. he ,should :ea-ways serves coffee.. We matqs.. the- :assumption, for

this problem that there- is, no Such _assurance. about the -weather.

.

A. Set. -4 a Pay-off matrix tor. ,the tOilotairigVeridpr:-and,
I 7'

-1-11:4--l$6t. strategy,
Z%-

The vendor' can 'seal .eithex;', hot- wogs, .soda ice

tali,-ch'one should he- sells
4

1

Operatic

$2.00
$2.00,

$2.00

$2.00
$2.,oa

Ntuither Sold Selling
Prier

hot day 7 150 15,jeach
=1:120.-t' ',cad day - 250 15, each

Soda Pop
_each_

cold. day - 275 l0 each

hot day' 500 each-
Ice 4relatr1--`colif

day' - 180 10X each

Cost Markin

1.1., each
1.1' -each

6 each
each

each
5, each
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3.3.7

-ghter,,the .profit- for ,each Itetii in. the -orreot box of the

ogs

a'sP0P

e.C.tteam

Rot

Weather.

a

r

:$0.1)04e .a .man, is .selling 44,6 0.*aill and 'coffee' 0,-tthei fair:.
__bp.afrietta is -affected_ by the weather, which _,is, ,00,40.44 iliti,,: -0

,
.,

aro-. 4Omet4.ipee. 034.,.. 'as,. oppOper4 1.s; the weather:. :iie.:haa to

,Order ahead' of time ,,but toff e sells Veit _#' tr4-6, .*-04116'-i. ii-3

.66.;-,4-i- and ice cream, sells 'we. 1-i 4:1' t4e,'IbiPP:PtiO:tk- is ho- .016.-
, ,.

veridor-nrciat. f!.1.44 the dapat. at tegy in or4er- to.:04kethe ,maximum

lr9f40
. , 6 s.

t i

;Assume the coffee co-st4=./.4:-''eri:6- a. :cup and ,0034- fa;

,cehtii. the doe, -cream: Oat's' :$: cents= =a ...w-azi4--ael0 fdz-

-Cent*: :0-4',a hot, -day the vendor". Viiil Eiej7;:'ifei6.,:iOe:orea

bars :e.hsi. -00; _ctipe.:Of' coffee.. If his,.opekttirig Xpeikie- i'6,-

ta, per -4ay, Nifiat' is 1413- .profit an 'a. hot day? -,00:-4,.'dO)4.day
2

t'!,.e. vendor' sells 500. cups of ,coffee- and .200: ice 'Orem* bars.
---.,,,- ,-

i1hat, is his profit on 'a &Old' :c14-1 . ,
:--

..,

The, following kind ,of chart may help -,you 'find 'the .'profit,. ,t
i

0914 on. cold day
Tot41 ItePeiPta

Ordered -for cod day
&t r.

Margin
Operating expezase

loe-,Creat

0



:

that the -vendor Osriricit 'Store ahyhing..overniflit so
at the ezid, of the day thrown ;Boil_

em01:40-4, if the 'vendor orders _go a. Cold' Clay- ,a_ it
he the 24-0 ice: _Ore*, ;134.s -goo 1..orsT,

of coffees .300 ,44-0 of coffee 11644 be= :wasted,

Where- are, thererore4..t.twee Other ,d.hat's_ne-CeSSitry:;.

when order's for and it 4-0, hot i.

TOb.05.,-he -orders_ fora. hp:6 -day
Tien- -he. orders for a cold: is .116t::-

- d

4.14 the 'follbtfirtg pay -off matsix (Make: your own,)

-9#1-ered for: Hot day
Cold day

..'

,OetOtittl4q' Cher max 4±14-1.1411 'y'01illea ,41.:440 111.4tib' x.

a.. Wheil, there is no saiicp,sligro, -a. _s
hot` trio .kost- ,strategy. order to firig4he .beStr state'
know -§briethl.ng about 'We!

-ohari00 in more 0,-dvatl404

A 4

. s

I

.0

.7.03 there.

cal,A:
y yoti.o.ts
the. jittstS

1

-r

C

J

ti

1,
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