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1-1. Introduction

3

SUPPLEMENTARY UNIT 1°
"SETS

- .
You already aré familiar ‘with the word "set." A set of dishes

© 1s a collection of dishes. A setvof domindes 1s a collection, or -

group, of dominoes. In mathematics we use the word "set" to speak
about any collection of any kind of thing. i In your classroom
there is a set of persons. There is also a set of noses in the
rodm, .

4 The language of setsris‘Véry useful in describing -all sorts of
situations..  How is the set of pupils in your class related to the
set of boys in the class? Compare the number in each of the follo

ing three sets: _ ' . . . ﬁ%ﬁkﬁ .F
"the set of pupils in your .class, A7 5 -i
the set of boys in your class, and _
the set of girls in your class. u/’&

The.following three sets are related in a different way:

the/ set of redheads,
the\set of baboons, and
" the set of redheaded baboons.

In this chapter we are going to study relations between sets,

"and ways in which we can combine sets to obtain new ones. We shall

find it convenient to invent some new words and symbols.

1-2. Sets, Their Members ancd Their Subsets

Sets and Their Members

When we speak of a set as a collection of things, we do not
mean that the things are all together in one place or time. The
set’ of all living women 1is a widely distributed set. You wil®

:
|
|
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'ﬁkff‘ciasses in-your school? ~ .

. might appoint a committee to be in charge of the mathematical- ex-

i
1]
.1 . o "

§

meet members of this se§ all over the world. The set of all
presidents of the United States has as members George WashingtOn
and Dwight D Eisenhower, among others. Name- other mempers of this
set. ~ D ;; ‘ ~\“,
The "things" may not be obJects which you can touch or see, ‘
The set of all Beetnoven symphoniés does not centain any concrete ‘
objects. .You may have heard some of its membérs _ They set of allﬂ'.
~ school orchestras- 1& the United States is“4 set Mhose{members are
themselves sets of pﬁplls. The set of classes in your school is-
another set whose memberd’are sets. M is different from the-set
of all students in ciasses in your school. which of these setsf .
s more,members: The set cf sbtudents in your school or the set

Somet;mes wWe define a sét by listing its members, 'Your teather

‘hibits ir your class. She may say, "The members of the Exhibits
" Committee shall be Lenore, Muriel, Dick and Al." N
We often name a set which is defined\in thls way by listing
names of its members and enclosing them in braces

-

Exhibits Committee = {Lenore, Muriel, Dick, Al}.

We sometimes cal. the members of a set "elements of the set.”
You are an element of the set of mathematics students.

We use the symbol "¢" .(Greek letjer epsilon) to mean "is a
member of ." Thus we can express the fact that Lenore is on the

committee by writing ) )
Lenore € Exhibits Committee.

We could state the definition of the committee like this: -
X € Exhibits Committee if and only if x represents
Lenore or x represents Muriel or x represents Dick
or X vrepresents Al.
Another way to describe a set is to state the membership re-
~quirements. These are conditions that something must satisfy in
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order to be in the set The set of persons in your classroom has

avery simple membership requirement. The. object x is in the E
set if, x is a person in your classroom, and only tnen - The set

.of common multiples of 4 and 6 1is the set of all numbers. X,

for which 1t 1s true that. x 1s a multiple of 4, and x isa’
mult;ple of 6. You might imagine’ each object in the universe
applying fqr membership in this set. If the cbject is not .even

a whole number, then we throw it out immediately. If it is a
whoie humber, we divide it by 4. If the remainder.is zero, we
then divide the number by 6 and see Whether 6 1is a factor.

If X passes thiggtest, too, then x gets its membership card in
the set. If it faills any of the tests. we reJect it.

Prgpertx
You begin to see that for a particular set to be clearly defined

- there must be some scheme or devige for determining whether or
: not a given element is 1in the set. Usually-a set is described in

terms of some property, or properties, which 1ts elements have in
cpmmon. For example, the set. C may be thought of as the pupils
in your lass. - The common property is that each element is a
member 'of your ctass. Again, you. may consider set B as the set
of boys in your class. The elements of this set contain two
properties in common: * (1)..the elements are all in your class,

and (2) ' the elements are all boys. Sometimes a set is described .
' i

%

simply by enumerating the elements.
We could say the set, Lenore, Muriel, Dick and Al. This would
form a set even if they were not on the .same committee. We can

describe a large.set by listing a few members if it can be done so

' that there is no doubt as to whether or not an object 1s in the set.

0,1, 2, 3, ... 100 describes the set of whole numbers from O
through 100. Some sets with a limitless number of elements can

be described by listing a few elements; in this case, also, there
must be no doubt as to- -whether or not an object is in the set. An ‘
example of a limitless set 1s: 0, 2, 4, 6 ... 2n ... . What

are the common properties of this set?




(a) {Sue, Jane, Dorothy, Mildred).

(b)‘{Washington,-Jagkson, Eisenhower]}. ' <
() (1, 3,5, 7,9, 11l.
(a) . {1z, 24, 36, 48}. -

(a)
(b)
(0)

Which of the following are true?

(a)

(v)

(c)
(a)

(e)

List

(a)
(b)

(c)
(d)

List a .common property or properties of the elements -of each
.of the following sets:

Translate the following mathematical sentences into English.

Exercises‘l-E-a

&

Tom é
6 €

(carl, Jim, Tom, Robert].
4 . .
[o’ 2’ u’ 6, 8’ lo’ -oo}'

If X € (Tom, Carl, Bob, Jim} then X represents
Tom, or X fpepresents Carl, or X represents Bob,.or

X- represents Jim. -
<

¥ € (3, 7,.10, 4).

lion Ey {buboon, tiger, dog, lion}. . o

(8, 14, 17, 28}.
If X 1s a counting number, then X €. (1, I,
6, voc}v ,

7

Washington, D. C. € {Alabama, Alaska, Arizona,
Virginia, Wisconsin, Wyoming].

If X 1is a multiple of .6, then X €

3, 4, 5,

..., West

the members of fhe following sets:

The set of X such that X is a factor of 12 'agd 36.
The set of X such that X plays a violin, or X .plays
the viola, or X plays the gello. '

The sét of X such that X is a whole gumber. |
The set of X such that X 1s one of the U. S. Presi-

dents sipce 1930.
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Subsets A ' '

Considern the set of maJor league baseball teams in New York
in 195%9. This set has one member, the New York Yankees Baseball )
Club. 71Its one member is itself a set, among whose members are
Mickey Mantle and Yogl Berra. The set ‘whose onlJ member is a
certain object is not the same as that object. The symbol {3}
is a name for the set whose only member is’ 3. ‘ ‘

' The set of players on the New Yo“k Yankees team 1is a subset p
of the set of baseball‘players. Every member of the team 1is a
baseball player. In symbols, we write: If X € _ Yankees, then
X € the set of baseball players. )
. You have been introduced to-.a new word: that of\ sgpset.‘
us consider another example. Suppose in a class of 25 pupils
there are 3 pupils whose first name begins with "S." You can
then’say that these 3 pupils form a subset of the class\o Again,
consider the set of” even counting numbers: 2, u, 6 8 10, ... ) .
; This set can be considered as a subset of the counting numbers:
_ 12,0,45,6 j .
: Suppose the set of pupils in your class whose first names
A , begin with "S" is {Sam, -Susan, Sally) Subsets of this
v/ set may be listed as follows: (Sam}, Léusan], {SallJ}, (Sam,
3/ Susan}, ISam, Sally), {Susan, Sally} and {Sam, Susan, S ally}
; Sometimes we say that a set is a subseE of itself.

IV

R AR
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b Definition: , , “

i . A set R is a subset of a set S 1if every element of R is
an. element of S.

i )
3 .
¢

It i's necessary, at times, to talk about the relationship—of
a set, or the relationship of a set to another set. 'We say, for
example, that the set of even counting numbers (which'is a subset
of the. countipg numbers) is contained in the set of counting
numbers To write this in mathematical language we use the ",
which is read ".is contained in." You can now write: - {2, b, 6,
8,-...} C (1, f, 3, 4, 5, 6, ...}. Sometimes the symbol "—"
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.is also used. This is read " contains.” You can now also write:

s (1,2,3, 4 5 ...) D, 46,8, ...},

@
<

which reads: The set of counting numbers contains the épt of
, elen counting numbers. Let the set of your class be called "C"
\and the set of boys in your class be called "B', You can then
write: o oo C .:

» ! h . v T - . 1°©

. BC C, or ]
> . . ’ C 3 B . . /
You may be helpe? in this study by use of diagrams. A

mathématician a /ways draws figures or dilagrams when p0831b1e
e ~~—"The dlagrams used ‘below are called "Venn" diagrams. Consider .
: " again the example B C C. We. skepch the tollowing: )

Boys in
'yov- class

; your class

/

. . ! “ .
This illustrates that the set of boys in your “class is corx;' ined
in the set of your class. Again:

Al

flowers .

All  flowers . :

. / ) ] . . 3 ) ) <

11lustrates Bhat the set of all red flowers is contained in the

£ set of all flowers. Let the set of all red flowers be ca?“?d R
o and the set offall flowers be called F. The relationship of

/
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R and F can then be written as:

? v

RCF, or - .
F D R. '
Consider the following Venn diagram: o ’ : .

- ~ .

"Tﬁis diaéram 1ndicates that the :set of all red flowers belongs to
th set of all flowers. It also 1ndicates ‘that the set of all
tulips belongs to the ‘set of hll floWers. . Let the set of aily

tulilps be called - T The abo relat‘enship may noy ‘be expressed

o . .
A as: , , -,
N v ’

N

ﬂ‘?,‘ﬁq, "
N
.

Rl

Rz

»

IlC;F," and -
3 i \ . -
;y/.‘ - ) TCF. | . : _— .
?‘ ' What can you say about the' relationship of set : R ksnd set T? g'

: You “would certainly have to say that some tulips are red and are,
thus contained in the set R, but you certainly cannot say that
TC R 1is true. Glve some thought to this situation for 2 while

"

| . Exercises 1-2-b f//

f 1. Translate the following mathematical sentences Zpto Engl sh: -~

T " (a) Ir X € (Red flowers), then .X € the set of all flowers.

L

(p) MC N,ﬁand N D M. N
(e) (1, 3, fs 7, 9711770 € (1,72, 3, 4,05, 6, L),




~

.
:.
i
i

v
3

T T R
o E
. .

2. Write éll possible subsets of the set: . (4, 5, 6]}.

3. - mran&late ‘the following English sentences into mathematical .
sentences. : -

. (2) "The set {12, 20, 32} is contained in the set of all
whole numbers. )

A (b) The set of the Great Lakes contains.the set of Lake Huron
E - and Lake Michigan. : T

(c) The set of {Hoover; Trumén} is contéined_in the set.of
all U, S presidents since 1920.

4,. Draw a Venn diagram to illustrate the following:

(a) The set of the Hudson and Ohio Rivers is contained in -
. fhe set of all rivers in the United States.

-

{v) The set of tigers, lions, and baboons is contained in
. - the set of all animals. T .

»

'kc) "The set of 16, .36, and 40 is contained in the set of
g . 211 counting numbers which are multiples of 4,

(d) The set of 6, %,-%' is contained in the .set of all
' rational numbers. C

5. 'Which of the following are true and which are false?
() (A1, Tom} D {21, Eob, Jack, Tom}.
A1) {Sam, Sue} CC (81im, Tom, Bob, Sally].

- (¢c) Tne set of all yellow roses is contained in the set of

-

all yellow flowers. Tl

~

(a) {28, 56, 112} C the set whose elements are ultiples of
4 and also of 7. °

6.  Given three sets A, B, and C. If A DB and BD C,
does A O C? Illustrate your answer with a Venn diagram.
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‘/i-B. Operations with Sets

% , s <
?f Suppose the set: {Bill, Jim, Tom, Sam} are the boys of a
%F class who play in the band. Call this set B. Let the set:
: {Sam, Tom, Carl} be the boys in the same class who have red
: hair. Call this set R. Now if we combine these two sets we
- would get the set: {Bill, Carl, Jim, Tom, Sam}. This would be
. the set consisting of all elements which belong to set B, or
: to set R, or to both sets. We call this the union of two sets. v
; The §ymboi used is: "U". We can now write:
2 " (Bill, Jim, Tom, Sam} U {Sam, Tom, Carl) =

{Bill, Carl, Jim, Tom, Sam}.
i w; call the union of these two sets C, then you can write: Ly e

-— .
B*U R = C, aAd it is read: B union R equals C.

The cocmbining of two sets in this manner 1s called an operation.
Before working some problems let us consider another matter which

’

was introduced by writing' B U R = C.

Equality of Sets

: We say that.two sets are equal if and only if each element of
?A‘ one -is aiso an element of the other. Suppose we have two sets - A
- ~and B: If AC B ard B C A then we can say A = B, For ex-
- ' ample, suppose that in your clas® there are only four redheaded
‘pupils which we shall call set R, and furthermore, these four
redheaded pupils are the only ones having their birthdays in
January, which we shall call set J. We can write:

- RC J and 'J C R, hence R = J.

Consider again: B U R =C. If we can write (B U R)C C and
¢ C (BUR), tnenwe can say: B U R =C. After some thought
you should see that this is a true statement. Instead of saying
that two seis are equal, we sometimes say they are identical. This
is a good expréssion since we can say that two sets are equal if

Panb
o .
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and only if every element of each is an element of the other.

Propeﬁties

1. Consider again the two sets, B and R. Do you suppose
that . - -

BEU R=R U B?
Let us investigate:

(Bi11, Jim, Tom, Sam} |J {Sam, Tom, Carl}

BURSE=
= {Bill, Carl, Jim..Tom, Sam}.
RU B = {Sam, Tom, Carl} | ({Bill, Jim, Tom, Sam}

{Bill, Carl, Jim, Tom, Sam}.

You see, then, that B U R = R U B. Does this recall to you
what you learned about’ the "commutative" property? With a little

thought on the union concept, you should see that for any two seté ‘
M and N, M U N =N U M, and the commutative property is true

for sets under the operation of union.
2. Do you think the following is true?
- A

AU (BU ey= (AU B)U c.«

et A= {1, 2, 3); B=(1,"%); Cc = {2, 5, 6).
Then: A U (BU C)=1(1, 2, 3} y (1, 2, &4, 5, 5}.
, (1, 2, 3, &, 5, 6},
and (A UB) U ¢C 1, 2, 3, ¥} v (2, 5, €},

= (1, 2, 3, &, 5, 6}).

You see, then, that in our example: AU (B U C)= (AU B) U C.
This should recall to mind the associative property. With some
thought you snould see that under the operation of union the asso-
ciative property is true for sets.

15
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(¢) Is A C B? WuWhy?

If set = {Red, ' Blue, Green} and set N = {Blue,
- Yellow, Jhite}, find M U N. :

Is M U-N = N U M? Why?

Let A Dbe the set of even counting numbers,, B the set of
odd counting numbers; and C the set of all counting numbers.

(a), Is A'U B =C? Why?
(b) Is A C C? Uhy? : ]

-

(d) Is A U B=BU A2 Why?

() Does B D A? ¥? . : _ o

(f) Draw a Venn diagram to 111ustr@te BC C.

4,

(g) Is A = B? Why?

¢

@¢iven three sets R, S, and T. )
(a): Is (RU'S)U T=R Y (sumT=Ty (RU 9~

¥
ar

‘(%j"’Suppose (RAUS)y T and: T C (r {J S), then is

RU S=T? Why? ‘

<

[P

Let C be the set of pupils in your class,. S be the set o

of pupils in your school, and X be the. only redheaded pupll
in your class. Discuss the following as to whether or not
they are true.

(a) x€ s (e) X € ¢

(b) cC s (£) sDOc¢

(¢) c=5 (g) Is X a subset of C? Of 8?

(d) .sC ¢ (h) 1s 'C a subset of S?

(a) Consider two concentric circles. Let X Dbe the set of !
points within a circle whose radius is 4 wunits and Y .!
be the set of points within a circle whose radius is 2 /
units. Draw a Venn diagram to show: X U Y. : /

| j
16

~

i1 1-3
' Exeraises 1-3-a ﬁfn,ff7‘51'??”*ﬁfii;ﬁgfvr?wm‘v'
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After giving your answer

'
t fﬁ/: P /s/\'m.,/ IS x C Y, @r' Y C Xo
is a subset of

, - complete the statement:
j
- ! .
- Intersection . .
Do you

;" f Another operatygﬁ'with sets ls that of intersection.

jf rgcall this operatdon from'\Chapter 4 of the Seventh Grade text?

é You no doubt remember that the symbol for intersection 1s "M, |

i: Consider sets A and B. If we now write AN B, it is read E
- "A intersection B." The intersection of two sets is the set of 3

;%, all elements which belong to both sets. For example; let set A '
-3 be {Tom, Sue, Carl, Joan}, and set B be .{Sam, Sue, Tom, Sallyl}. 5
7 Then A . B = {Sue, Tom}. Do you remember the following Venn @ ,g
; _ diagram we had several pages back? R -§
3 ;
Allvtiowers e
g‘ Al red L "
D os flowers
N

b4

You remember a question was raised about the relationship of R
and T, where R was the set of all red flowers and T was the
set of tulips. You can now see that the shaded part of the
diagram is R N T. \

/ which we have not mentioned.

This situation presents us with another set
Are there any yellow tulips in

’
"

set R? . ) -

<l :
i Null Set ‘
/ ”~

At times we have a set which is said to be empty. Such a set

is sometimes calied the "null set." For example,. the set of yellow
thlips contained in the set of all red flowers is an example of a

I null set. Suppose there are no redheaded puplils in your class

!
then the set of redheaded pupils in your class 1is a 9»11 set,

v 1 A
X ! .
j e
: - BN
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Another example is thé set all voters who have their légal® -
residence in Washington, D. C. We shall use the symbol "¢"
(the Greek letter phi, pronounced "fee") to designate the null set.

L

We say that ¢ 18 a subset of every set. - .

Properties

1. Given two sets M and N: Is it true that M 1 N =
N M2 Let M be (1,2, 3,4 and N be (3, 4, 5, 6},
then M N N = (3, 4} and N N M= {3, 4}. In view of your
previous study you are~led to see that the commutative property |
applies under the operation of intersection of setg. '

l
!
l

o

2. In a similar manner, éiven three sets R,ES, and T, 1t
can be shown that\the associative,property holds. We would then
have: RN (SN T) = (RN 8) N T. Select an example of your
052 and see if you get a true result. : '

3. Are you reminded of anytning by the followlng, where R,
S and T are three sets? :

R U (SN T)=\(RU.S)n (R U T)-

et R=(1, 2, 7}, S=(1,3, ) and T=(2, 3, 5}.
mén RU (S NT) =(1, 2, 7} U ({1, 3, ¥ n (2, 3, 5))
(1, 2, 73 U (3) )
{1, 2, 3, 7] )
and (RU S) ﬂ (RU’I‘)
= ({1, 2, 7} U {1, »3,4})0({1 2, 7}u{2 3, 5))
={1, 2, 3, 4 73N 1,2 3,5, 7} '
> = (1, 2, 3, 7}. Y

This illustrates the distributive property of union with respect

to intersection of sets. In working with sets we ‘have two forms

‘ of’ this property. We have just studied one form: namely,

“~ Ry (sAT=(RUS)N (RU T). The other form is:

< " RA(GUT =(RN S) U (RN T), which 1s the distributive
property, of intersection with respect to union of sets. This is

N %

¢
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somewhat different from what you studied in working with the
counting numbers in Chapter 3. There ‘was only one form of the
distributive property: namely, multiplication with respect to
‘addition. ' '

~

Exercises 1-3-b

1. Given the three sets: A.= {boy, girl, chair}, B = (girl,
chair, dog} and C = [chéir, dog, cat}.
(a) Find A ) B. \\
(b) Show that A N C =cC|N A,

(c) Show that A N (B U [)
(d) show that A& N (B N ¢)

i

(AN B U (AN ©).
¢ N (AN B).

2.. {a) Where ¢ represents the null set, and H 1%, any other
set, 1s the following true? ¢ U H=H U ¢. .Explain
your answer. :

il

(b) "Is & N H = fi?° Explain your answer.

(¢} Under-the operation of union of sets, what name may be
applied to ¢? (Hint: compare zero in addition and
¢ in union of sets.) ' '

3. Let R represent the set of points on the segment AE, and
S represent the set of points on another segment * TD.

(a) '1f RN 8 =1¢, then what 1s true about the two line
segments? 4 -

(b) If R N S # ¢, then what 1s true about the two line
segments9

4, Are there any siiilarities in properties betwekn the symbols
"U" and "M", and the symbols "+"  and "\C? Explain

your answer. ‘ \

5. Draw a Venn diagram to illustrate .the intersection set of all
members of the band irr your school and all the pupils in
your class,

19
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6. Show by use .of a figure the intersection set of two intersect-
ing circular regions. Shade the intersection set. ’

7. (a) Let E be the set of even counting numbers:
. {2, 4, 6, 8, ---}. What must be the set F so that
E\U F=C, when C 1s the set of all counting numbers?
(b) What is E () F?
8. Given two sets A and B: ¢

%

B? Explaiﬁ your

(a) If A C B, is it true that A | B
answer. -’

(b} If A C B, 1is it true that A N B = A? Explain.

1-4., Order, One-to-One Correspondence
Order . “

In many sitaations the order in which we write the elements of
: a set is immaterial. For example, set -A: {Bill, Tom, Sam}, can
; ‘be written as (Tom, Sam, Bill}, cr as {Sam, Bill, Tom}, Jjust as
Wrﬂ/~~«wweir«a8winmthe original. Under our definition of equality, all
three of these sets are equal. At times, however, the order 1s

important,. For example, the name William Thomas 1is not the same
as Thomas William. If we wrote these two names as a set: {William, -
Thomas}, then under our present framework, we could just as well
write the set as: {Thomas, William}, and the two sets would be
equal, or identical. An ordered set is one wherein there ig an
element which is the first térm, another element which is a second
term, and so on. When we wish to indicate that the elements of a
set are ordeyed, we shall use pareﬁtheses ( ), instead of braces

{ }. If we now write the set composed of the elements Thomas,
William in the form: (Thomas, William) it is not equal to the
set: (William, Thomas), because the set 1is ordered with the -
element Thomas in the first position and the element William in
thF second position. A set of two elements_written in this manner

/

20
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is sometimes called an ordered pair. .You had some contact with
ordered pairs when ycu made graphs in Chapter I3 of the Seventh_
Grade text and in Chapters.l and 2 of the Eighth Grade. A set
such'as: .(a, b, ¢) may be referred to as an ordere8 triple.
This idea may be_extended to many more than 3 elements. For
example, the ordered set of the first n counting numbers:

(%, 2, 3, ¥, 5, 6, ..., n), would give us an ordered.set of

n elements where n may be any counting.number, Thie idea

will be used in the sectlion on Counting.

Ordered pairs are very useful in many branches of mathematics.
When you study a course called Analytical Geometry, you will deal
with ordered pairs such as (1, 4), (6, 2), (12, 15). -

Consider the set of people in line pefore the box office of
a theater. 1Is order. important in this situatibn? If you should - ——
try to. move ahead of someone already in line, you would be made
t.o understand, rather qu;ckly, the importance of order in this
case. There are people who consider order 1mportant enough to
take a bed roll and sleep .aear a box office, so as to be well up
in a line when the office opens. Some baseball fans do this for the
World Series. Can you think. of other similar situations?

As you know, the following is a true statement:
{1.) 2: 3} =‘{1: 3’ 2]-
" On the. other hand, (i, 2, 3) #.(1, 3, 2), because these are

ordered sets.

¢

One-to-one Correspondence

One basic study of sets deals with the comparison of two or
more sets to see whether or not the numbers are equaliy numerous,
This is done by matching the elements of the sets. In\the
opening pages of Chapter 2 in the Seventh Grade text, vou read
that in the long ago a shepherd probably kept account of his
sheep by having a notched stick - a notch for each sheep and a
'sheep for each notch. With this arrangement he could tell‘whether“
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17 1+4

- of notches with the set of sheep. If all sheep'were present, we
could say there was 5'one—to-one correspondence between the set of

sheep and the set of notches.

Cconsider your class. Suppose there 13 the same number of
seats in your classroom as there are pupils in your class. When
all the pupils are present, then the set of seats and the set of
pupils are in dne-to-one correspondencel In other words, the .
two sets are equally numerous. If all puplls are present and .
seated in their assigned seats, then youf“teacher can tell .at a -
glance that there is perfect attendance for the ‘Gay. w&thout
much more than a glance she can tell how .many are absent 1f same
are not present. How does she do this? "What can you say with

or not any sheep were missing by comparing, or matching, the set ° . l
|
|

n

respect to bnet&z;zne carrespondence of the following: . -
1. (1, 2, 3,%); (0, x,A\, v}; (& B, C, D}. LN :
. 2. {1, 2,3, 4 5 6,7, 8,9, 10};
E«‘.‘,’t ) B {a9 b: C, d) e, f, & h: 19 J}- = ’

3. {the number of fingers on one hand};
{the number of symbols in a base five system};
{the number of players on a boys' basketball team}. ‘ \\

Y

L= In each of the 3 groups there is a one-to-one”cbrrespondence'
between the élements of* one set and the elements of each of the
other sets.

: " We are-now in a position to state a general princirie with

% ‘ regpect to sets and one-to-one corfespondence as folliows:

'

Given two sets A and B. These two sets are

‘sald to be in one-to-one correspondence if we can palr,

or match, the elements of A and B such that each
element of A pairs with one and only one element of B,
and in the same matching process each element of B pairs
with onevanddonly one element of A. This principle may
be staﬁed more precisely in the following way:
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- the matching process may be done in more than BhE way.

there is
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Let Q and B be sets. There is a one-to-one corre-

snondehce between A and B if there éxists a collection
H of &pdered pairs with the following properties' e

1. The.first term 6f each pair of H is an element -

of A,
ot 2. The second term of .each pair off H 1s an element
of B,
3. Each element of A 1is a first term of exactly
one pair of H, e <
4. Each element of B 1s a second térm of exactly:
" one palr of H. o e

2

VGU
In Problem 2 above let A béﬁghe set

: ;(12345,6«/»8 9, 10} - |

and B the set * ’ n‘

»

kY -~
v

(a, b‘ ¢, d, e, £, g, h, 1, J}-

— - . o+«

The set H would lodk like this: . o \ e
_{(1 a), (2,b), (3,¢), (4,0), (5.6), §6~f)z, (8.,2) {9:1), (10,4))

Unless the concept of orderois to be taken 1hto cohsideration,
-Gonisider
set. A: {Bi}1l, Tom, Sam}, and set B: {Ann, Jane, Susan}. Sirce
theée.sets have ‘only three elements, we can see at a glance that
a one-to-one correspondence between them The,mgtching

baL e

process, however, can be done in 'six ways." Two gf theﬁ are ag
" follows: , i
| set a Set B~ Set A Set B
Bill¢———>Ann Bill«———>Ann
Tom <¢—————>Jane Tom &————»Susan
Sam €—————» Susan .| Sam €————>Jane
Figure 1-4
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The symbol > " I‘“ simply means, for example\ that

™

'Bill is atched with Ann, and Ann is matohed with Bill. \

Iet us consider the elements of these twc sets again, and
write +he\sets as follows: ;

A: (Bill,ffrom, Sam), B: (Ann, Jane, Susan).

The notation indicates the two sets are now ordered. Of cdurse,
we can still match the elements in six ways. 'If however, we.want

" to preserve the order, the elements can be matched in.only cne way

as follows

v

-

3 ! . . Bille<—>Ann
Tom <«—> Jane
Sam <——>» Susan.
Equivalence ’

You remember when we talked about the equality of sets, we
sald that two sets were equal, or ldentical, -if and only if every ]
element of each is an element of the other -For example,

{1 2, 3} = (1, 3 2}

o

because the two sets contain the 3ame elements. The concepf of
one-to-one correspondence introduces a new concept of equallty,
that of.equivalence. We say that two sets which are in one-to-one
correspondence are .equivalent. We shall indicate this fact by
using the symbol "e—", which was ysed in matching the elements
of sets. For example: - F_
4

. \
{Bill, Tom, Sam}<—> {Ann, Jane, Susan}:

Again, given two sets A and B, if we write: A<—>»B, we mean

‘that there is a one-to-one correspondence betwesn the elements of

A and the eiements of B,

3
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(¢} What arithmetic operation on the answers to parts (a)

. (b) Equivalent sets are 21so identical.

L4
- 20
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Exercisgs 1-4 . : ) .

Cdnetruct tables similar to those of Figure 1-l4 to shiow the
additional four ways in whilch the two seﬁs may be matched.

(a) How mahy elements are in each set in Problem 12

(b) Ih how many tables 1s . Bill 4——->Anp? -

and (b) gives the total number of ways in which the members
of Set A can be matched with.the members of Set B?

Use the sets C = (1, 2, 3, 4} and D= {(a, b, ¢, d} for
this problem. o

<4

(a) Match each of the elements of Set C with an element of
Set. D keeping l.«—>»a 1in all cases. - .
(b) How many such matchings are possible?

.

(¢) In how many matchings is 2<—>a? Do not make addifional
tables. . . )

(d) In how many matchings is '3 «—> a? .
(e) In how many matcnings' is 4 €« 37

{f) How many possible matchings are.there between sets C
and D° ) ~

*(,) Write a rule to find how many matchings are possible
between two equivalent sets.

Determine whether the following are true or false. Use ex-
amples to 1llustrate your answers. '

(a) Identical sets are also equivalent.

(¢c) Equivalent sets may. be identical.

- {d) Identical sets are never equivalent.

-
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. ; Gonstruct a matching tabLe for ‘fhe following sets.so. that
- ‘order wi}l be preserved- (1, 2, 3, 4, 5, 6), . : tL
(x, ¥y, t, a, b, ¢). - <

. -

6. Suppose you buy a carton of a dozen eggs. IS it necessary .
to count the. eggs'in orde to tell whether or not you_have
a dozen? Why? '

7. Given two set3 x and/y. If xC.y and*y C..x, can
we say that the two séts are in one-to-one correspondence?
Explain, g

8. Are there-more points on an arc of a ‘circle than on 1ts ¢
subtended chordj, Explain your answer,
/
/

-

1-5 The Number d% a Set and Counting o .

Given the Sets {1,.2, 3 4} and {0, 1 /\ V)/r You notice-
that there 1s a one-to-one correspondence betwéen them: In addi-
._Jtion you see that the sets are composed of 4 elements. In fact,
any two sets which are 1n one -to-one correspondence have{bhe same
number of elements. Sets, however, will Vvary in the nunmber of
elemenpé?which they contain. This may vhry all the way from zero,
the. nll set, to an.infinity of elements. The word . "infinity"
is t- new to you, because you will remember that there are an
1nf1n1te number of points on a line, or again, an infinite number
of whole numbers. A set containing an infinite number of elements
. y is called an infinite Set} otherwise, the set 1s called a finite(
set. Since sets vary in the number of elemehts they contain, We
Jcan; then, assign.a’ number %o a set. We can only assign the same

S Ry A Ry

~

.
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number, however; to those sets which have a one-to-one correspond-
ence between tiem. In ‘nis discussion we shall consider only
finite sets. ' ) ,
When we wish to talk about the number of a set we shall use the
. following notation: n(A). This is read: "the number of set A."
More briefly it is at times read: "n oOf A."



i-we can npw write: #

Counting '

22 -

For the gets:

{l, 2, 3, Ll'} a'rld {O, l,A, V},

n(@, 2, 3, i) = n (6, LA, VD).

The use of .the counting numbers: (1, é, 3, 4, 5, 6, 7, ...),

gives us a basic sequence which we may consider as the numbers of -

finite sets. Every counting number, then, may be considered as the

“number of the set of all counting numbers up to and including it.

Counting can be "con~idered as'a method of matching between any

.finite set and a subset of the counting numbers. Let us designate

the set of counting numbers as C. Further, let.us label the
subsets.of. ¢ as Cl’ Css 03, ; where C, = {1}, C, = {1, 21,

C3f= {ij 2, 3}, and so on. As an example, let us count the set
A composed of ({Sam, Carl, Tom, Jack}. '

Set A: ({Sam, Carl, Tom, Jagk)

Set G: (1, 2, 3, 4, 5, €, 7, ...0.
By matching you see that set A matches with subset Cu of the
set C.. Since n(C,) =4, then n{a) =

- Consider set A: ({1, 2, 3, 4}, and set B: {5, 6, 73,
which are sald to be disjoint. Two sets are sald to be disjoint
if tnej contain no elements in common. Now do you remember the
expression. A |J B? Applying the »nperation we get a new set:

(1, 2, 3, 4, 5, 6, 7}. Upon matching this new set with C, you
note that it is C,. So n(A U B) = n(C7) = 7. Let us consider
the problem through another example: Given the dlsjoint sets,

M: f{a, b, ¢, d}, and N: {e, £, g}. Now M U N = {a, b, ¢,
d, e,‘f, g}. Upon matching this new set with C, you notice that

‘it 1s also C,. Hence we have: n(M U N) = n(C7)‘=

Do you now notice that the number of the union of the two dis-
joint sets may be considered as the sum of the number of the sets?

21
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Exercises 1-5

.

what is the number name of the following sets?
(a) %[l: 2, 3‘9 49 5 6]- *
(b) [a” b’ C, d}.

“{c) . {bird, dog, cat, chair, horn}.’

(d) X, =, VA L
(e) which of the above sets have the same number?

Suppose a set R matches subeet T of another set S
What can yo'1 say about the rumber of R in relationship
to the number of §? . . - .

Considering only finite sets, if set M matches set N, and
set N matches set R, what is the relationship of set' M
to set u1? :

How does the number of the set of automobiles being driven

at this momernt compare with the number of the set of their .
steering wheels? ' \

By matching the sets C,, and 07,; shdw ‘that 7.< 12,

given two sets A: (Bob, Sue, Tom, Joe} and B: K {cat, dog,

chair). Find the set A L} B. Now match the union of these
sets with C and determine the'number of the union set.

Given the two disjoint sets M: [1, 2, 3, 4}, and
N: (5, 6, 7, 8, 9}. Find MU N and determine n(M U N)
by comparing it with C. '

LA
¢
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: S SUPPLEMENTARY UNIT 2

SPEéIAL FIGUAES IN PROJECTIVE GEOMEIRY

2-1. Geometry and Art

"In a certain park there 1is a row of poplar trees. They are '
evenly spaced, and all the same size and éhape. Two boys wanted
to draw a plcture of them. The first said,

"I know that these trees ave all

the same size. I know that there
i$ the same distance between any
tﬁb adJaéentfoneé. This 1s how

I will draw them."

The other said, "The trees further off look smaller to me, and
even though I knowhthey are not smaller I will draw them as I
see them." . Which of their ’

pictures do you like better?

The second boy used the idea of perspective, This 1is a very
important idea in art if we are. interested in drawing things the

30
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way they really look to us. It 1s the ildea used in givingfdepth '
B to a picture i .
of course, not 11 artists have wanted to do this. In ancient
Egyptian art, fpr e ple, it .was the rule to draw the pharaoh .
larger than anyone else in a picture; and the sizes of other people
were made to depend on their importance ; ;
- Hot until the end of the Middle Ages didgartists make serious
systematic efforts to understand perspective At that time they

FARY s

i B

R T R

became greatly interested in- learning the¢ rules ‘that would help .ﬁ
el

them plcture realistically the world about them. This period, 4
which historians call the' Renaissance, was a time of great devel- * g

opment in science and learning as well as art. It was a time of
new ideas and of a new interest in understanding the 1aws of
nature. It was a time of experiment.’ , -

OCne of the artists of this period was Leonardo da Vinci
Though we rememper him best for his paintings, he had a wide range
"of interests. Among other things he tried to design a way man
cculd fly. He belleved that a knowledge of sclence and mathematics
1s an'essential 00l for the artist. ‘

An artist who did a great deal of work in developing rules of
perspective was Albrecht Direr. In some of his drawings we can
see the way in which he studied these problems. You can find
examples of them in Mathematics in WesternICulture ,ﬁ& Morris-
Kline. This book contains many other pictures youfwill also
find interesting.

A mathematician, Girard Desargues, wrote a book about the
ideas of geometry that would be useful in connection with the study
of perspective. H He was the originator of what 1is called projective
geowetrx. ;

The word "projective' can be understood if‘we'think about draw-
ing‘a picture. In drawing a tree, you can-think'of a line extend-
ing from each point you see to your eye. Each line intersects the
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plane of your canvas in a point. The points in the plcture thus
match the points of the tree that we see. A geometer says that

“the picture (the set of points) on the canvas is a groaection of >
the set of points of the tree.

" Here is another example that will help you understand the

sort of problems that occur in projective geometry Suppose there
is a triangular rose bed 1in a garden. Suppose an artist draws
this rose bed several times. Perhaps he draws 1t first as seen
from a pcint in the garden Next ne draws it as seen from the top
of a high tower. Perhaps he tries other. locations as-well. He
will find that in his pictures the rose bed 18 always triangular.
He will find, however, that the triangle nas different shapes
depending on where he stands. He has diséovered The proJection
of a triangle is a triangle. Later we will see another discovery
that can be made about this situation
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.Projective Geometry in a Plane .--
One-to-one Correspondences of Point Sets .
. In this figure, lines ./ , and
j 5 are parallel. Lines drawn from
point P intersect lines _/ , and
/ o Orie such line intersects //7 1
in A and _/, in A'. Another
intersects _/ , in B and ,/72
B!'. The figure gives us a way of
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matchlng the points on.,/7 with the points on ,/7 To find the
point on 4ﬂ o that matches C, for example, we would draw the
1ine through C and P. The point where it intersects A o 1s
the point that matches C.

This matching of oné set (the points on ,/7 ) with another
set (the points<n147) is called a one-to-one correspondence, as
we know. We have- found a one-to-one correspondence between the
points on‘A/ and the points on‘A/ (Of course, if we used
some .other point in place of P we Wbuld find another oné-to-one
.correspondence between the points on 4/ , and those on Ao
The twq point sets can be matched in many different ways.)

Did you wonder why we chose parallel lines for,A/ and ,4’2
Let us see what would happen if we did not. In the next figure
./, end ,/72 are not parallel. We can s5till draw lines through
£ P. cutting /1 and /2 Point - , -
iWHMMqﬁ,Aq on‘/{‘l corresponds to point
A' on 4/ o Point B correeponds
to B!'. Point C 1is a special
point. It belongs to both the
set of points on Aﬂ]. and the .
set of.points on ,/’2 A line
through P that 1ntersects_jﬂ 10
in C also intersects 4472 in
C. In the correspondence between
points on ,/71 and points on A ' : £
/o the point C ratches 1tself.
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It looks as though we have once again a one-to-one correspond—
ence between the points on 4/ 1 and the points on ,/7 But we
need to stop and think very carefully. -We need to remember that
there is one line through P that is paraliel to_4ﬂ 1" Suppose
this line (the dotted line in the figure) intersects ,f72 in the

~point D!'. D! 1is a point on 4/72, but our system deces not give
any point on.Aﬂ that matches it. . Points on,4/ o that are very
close to D! match points that are very far out on.,/l "E' 1is
one -such point.

D}
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There is also a line through P that is parallel to ./ o
So there 1s also a point on ./ , that has no matching point on

.4’2 We have discovered: Our system gives us a way of matching
each point except one on.A’ with a point on.4/ X and of match-
ing each point except one on Aﬂ o with a point on.A’

Let us consider another example. ' This figure shows some of the

_elements of the set of lines )
through P. . Each of the lines
through P 1in the figure inter-
sects the line ,/7 in a pgoint.
The figure shows a way of match-
ing elements of the set of lines
through P with elements of the . :
set of points on ./ . The line //@ ) 5\\~Jﬂ
./, matches the point A. The
lin° ,/72 corresponds to point B.

Again, however, we need to be careful. There 1is one line
through P ‘that is parallel to.4/ . This‘line does not have a
matching point on,4ﬂ We see that: To each point on ,Jﬂ corre-
sponds a 1ine through P. To each line through P excepl one
there corresponds a point on -~ . '

The Idea gg Ideal Points

These examples will help you understand an idea that is very
useful in projective geometry. It is the idea of an ideal point
en a line. '

In projective geometry we do not use the term "parallel lines.'

qAnother way of saying "two 1ines are parallel" 1is "two lines inter-

sect in an ideal point." We think of each line as éontaining one
and only one ideal point, as well as the usual points we are
accustomed to thinking about. We also assume each ldeal point is

v
i -
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on a line; Actudlly each ideal point 1s on a set of lines, which
are "parsllel." In order to be quite clear, we can call the usual
points real points. When we adopt this new language, we can say
that any two lines in a plane meet in a point of some sort. In
the figure, A , and 4/ meet
in the real point P. 4/ , and
4’3 meet in an ldeal point
Formerly we would have said they
are parallel. The two statements
mean the same thing.

In our new language, the set
of all points on a line is made
up‘af all the real points of the "
line and, 'in addition, the ideal point of the line.

Let us use this new vocabulary to describe the one-to-one
correspondences which we have already studied. As we do so, we
will find that it is a very convenient language for describing
these ‘situations. '

In this figure we can now say
that there is a one~to-one corre-
spondence between the set of all
lines through P and the set of .
all points on /. Line /1 ' P . js
corresponds to the real point A. L
Line / , corresponds to the
real point B. ILine ,4/3 we now )
say, intersects line _/  1in the A Y
ideal point of 4/ . It corre-
sponds to the ideal .point on

x
7
g
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In this figure we can now say thet there is a one-to-one corre-
sponuence "between the set of all
points on / and the set of
all points on ,/ o+ The real
point A on ,/ corresponds to
the real point A' on ,/ 2 The
real point C belongs to the set
of all points on / and to the
set of all points on ,/ e It
corresponds to itself. The point
D! on / o corresponds to the
ideal point on ,/7 The point
E on / 1? corresponds to the
1deal point on / 2. (Remember that we now say that each—line~ ——
contains an ideal point. The line through P and E :Lnte-"sects
/5 1if the 1deal point.) *

" In this figure ./ , and e 5 intersect 1n an 1deal point.
There 1s a one=to-one correspond-

R R i e PR e
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;f: ) ence between the set of all , v

v points on / " and the set of ° P

f all points on ,/ The line

it through P and A intersects .

g‘; / 1 and 4 o in corresponding ﬂp
f real points. The line through 7 '

P parallel to /1 and ,/2
‘intersects /1 and /2 in an
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- ideal point. This ideal point 1A /J, 2
is an element of the set of all :
points on / It is also an element of the set of all points

on.,/yz. It corresponds to itself in the one-to-one correspondence.
We have introduced the idea of ldeal point so that every palr

of lines intersects in a poiﬁt, that is, "two iines determine a-

point." What about the statement, "Two points determine a line,"

by which we mean that there 1s exactly one line through any two

points? This is certalnly true in the geometry that we are used

to, that is, for two real points. But 1s it still true for pro-




32

Jective geometry? We have three cases to consider.

Case 1. Two real points A and B determine a line.. This N

s true in projective geometry just as it Is true in the geometry .y
we Know. ' .:{ :

it
&5
e
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‘Case 2. If A 1is an ideal. point and B . is a real point, then
‘ A ---aAd-+-B.. determine a line. T? see why this 18.86,'10t,¢ﬂ 1
"”ﬂﬁ“ﬁ~ﬁ€"some 1ine througk A. Then, we know from our familiar i
geometry that there is exactly one 1line through B parallel
to /.. Call this line -/ ,. Then A, and A, will
1ntersect in some ideal point of_4’ which must be .A since
_4/1 has only one ideal point. We have thus shown that ,/’ -
18 the only line’ through A and B. There is one line through
A and B and there is only one.
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Case 3. Suppose A and B are two ideal peints. To take care
of this case we define an "ideal line" which is the set of all
ideal points. : '

R e s,

As a result we have:

(IO

t In Projective Geometry not only do two poinﬁs'determine
a line but two lines determfne a point.

We' do not have to distinguish between ideal and real points in
this stétement This symmetrical arrangement is very convenient.
The language of ideal points is probably new to you. Like any
new language, it may seenm difficult until one 1s accustomed to it.
The examples illustrate its advantages. When we use the idea of
1deal points we do not have to consider parallel lines as excep-

tions to our descriptions.. R .
You will understand better how the idea of ideal pcints

5 originated if you think about railroad tracks. When we draw -
i railroad tracks we draw them as though they come together far
' away. The idea of ideal point 1s,suggestéd by the way parallel
lines sometimes appear to meet when we draw objects in perspective.
e Of course, if you are bullding a railroad track the:idea of
ideal points is not useful at all. When we build railroad tracks

37
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" we need to know, for example, that lengths of the parts of the l
|
|

ties that 1ie between the tracks are all the same. The idea of

%% ) length i1s studied in metrit geometry. Metric geometry uses the

%?‘ idea of measurement. Projective geometry does not; this is why

é’ we say that projective geometry is non-metric.

Eh; You may feel that ideal points seem unnatural. But you should” .

remember that all points, lines, and planes are ideas. They are
ideas that are developed because they are interesting and useful

for some purpose.

R R R A

Exefcises 2-1

s : 1. Draw two parallel lines Call them ,/7 and ,/” Mark a :
3 point P between them.' By dvawing lines through P, find .
¥ co a one-to-one correspondence between the points on ,/ﬂ and ' g

the points. on ,/ﬂ Label the points in your drawing, and -
name three pairs of ‘corresponding points.

2. Mark points P and Q. Draw a line ./ , as in the figure.

- . The figure shows a way of : . -
matching the set of llnes : .
through P with the set

i} of lines through Q. To the
line through P and A
corresponds the line through
Q and A. The line through
P and B 1is matched with
the lir. through @ and B. ' Q
In this way we can,find a
- between the set of lines through P and the set of lines
3 through Q. Draw three other palrs of lines 1llustrating
this statement. '
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3. 1In Exercise 2, is there a line.which belongs both to -the set
of 1lines through P and the set of lines through Q2

a
/

’
/

/
/

Q ‘fx N ,




g,

SRR

@ﬂmm@
A

-

M

-
<

[

1

PR
]

i N S R e

-2 . . 34" '

’ = . B ¢
4. 1In Exercise 2, which line through P corresponds to the
line through Q parallel to # ? This line through P °

;ﬁEE}sects ./ in an ' . :

5.. Explain the mééning of the following statement: »if P 1is
any real point and .4/ is any line not passing through P,
there is exactiy one line which passes through P and
through the ideal point on _/# .

6. 1In this figure four of the
lines are parallel.

(a) Pour of the lines
. intersect in an

{(b) The figure shows a
system for finding a
one-to-one correspond-
‘dence between the points
of.4/ 1 and the point~

_# 5. Find the points ,rresponding to E, F, and G'.

2-2. Desargues' Theorem (‘

One of the most interesting ideas in projective geometry is
that contained in Desargues' Theorem. In.order to understand it,
let us think again about a situation we éons;dered earlier. ILet
us think about an artist who is drawing a triangulér‘rose bed.
Suppose thaﬁ he is drawing his picture ‘as he stes it from a
tower high above a garden. -On the following page there is a
sketch that shows the two.triangles -- the boundary of the rose
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bed and the plcture of it on his canvas. Each point'on the rose
bed is matched with a point on the canvas triangle.

X
Y IY
Y'Yy Ty

"In the sketch the vertices of the rose bed are called
A, B, and €. In the artist!s picture, the matching vertices
are labeled A', B', C!'. The three lines -joi matching
vertices all meet in poi.t O -- the eye of the artist. The
two triangles are gaid to be in.perspective.
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We cun draw two triangles in the same plane that are
in verspective. In the following figure two such triangles
have bteen drawn. Again, the vertices of one triangle are

- matched with the vertices of the other. Again, the lines

‘ Joining corregponding vertices meet in a point.

@

&

Exercise 2-2

: Copy this rfigure carefully. Extend AB and A'B! until
A _ they intersect. Do the same thing with AC- and A'C'. Do
’ the same thing with EC and—BTCT. You have found three inter-
gsection points. Label them P, Q, and R. Do you notice any-
thing abtout these three points? They should all lie on the

same line.
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| A boy said, “I wonder whether this will always be true if I
extend the sides of a pair of triangles in perspective." He
tried it several times. It appeared to be true each time. Of
course it was sometimes difficult to be sure, because he needed
to extend the lines a long way to find the intersectlon points.
He decided, however, that it was probably always true that the
three points of intersectlon were on the same line.
"But what about this figure?" asked another boy. "In my

triangles, AB and A'B' have the same direction. When I ex-
tend them I get parallel lines. There 1is no real point of inter- a

section." ,
' \

>
>
[

"I notice something about the figure you have drawn, though,"
the flrst boy replied. "Those two lines are parallel to the line
through Q and R. 1 Qgink that this 1is another place where the
idea of ideal point might be useful. We could say that the three
points of intersection are all on the same line, but now one of

the points is an ideal point."

42
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"He was right.  If it is true that
(a) two triangles are in perspective, and
(b) each pair of corresponding sidés, extended, has
a point of intersection, -
then the three points of intersection a;l lie on the same 1iﬂe.

Other cases involving pairs of "parallel" lines can conven-
iently be described by the idea cf ideal point. ’
) Of course, the second. boy was not satisfied with leaving the

‘matte. at this.  He wonderéd why the three intersection points

. all were on the same line. Perhaps you wonder too. " If &ou do,

' you will*be interested in knowing the way we prove that the points

arg\aiwa§é on a line. A proof makes us sure the statement is

true -- a good proof also makes us understand better the reason.

Let us again think about the garden and the picture. Let us

suppose that:

(a) the plane of the garden and the plane of the pictura
are not parallel (this is the way we drew the figure).

‘(b) none of the pairs of corresponding sides have the same
direction. ‘

Look at the line through A and A' and the line through B and
Bi. This figure will help you see the lines. :

70
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These two lines intersect at 0. When we have a palr of inter-

secting lines, we can think about the plane they both 1lie in.

Ihe line through A and B 1is in this plane; so 1s the line

. through A' and B'. We supposed that these lines did not have

¢ the same direction. We know that two lines in the same plane that
do not have the same direction meet, so we can be sure that theé: \

lines meet. P, of course, is the point Wwhere they meet.

Now let us think about where P 1is. |P 1s on the line/
: : through A and B. This line is on the plane of the garden. So
P must be on the plane of the garden. is also on thé line
through' A' and B!', which 1s on the plane of the canvas So
: ) P is also on_the plane of the canvas./ Now we can pdt these
% two facts together and say: P is oxY the intersection of two
3 \ planes -- the plane of the canvas apd that of the garden. The
intersection of these two nlanes a line.

Now we *have proved that P 13 on the line of intersection
of a certain pair of planes. We can prove in preclsely the same
way that the line through B and C and the line through B!
and C! meet in a point, wnich we might label Q. We can also
prove, by exactly the same reasoning as that used in the case
of P, that Q 1is on the iine of intersection of the plane of
the canvas and the plane of the garden. Then we can reason the
gsame way about the point R, the point of intersection of AC

/

<

and AC'.

} So we can see that P, Q, and R all lie on ahe same
1ine -- the line where our two planes intersect.

. Now we have proved our fact for two triangles that are in
different (and not parallel) planes.

It is more difficult to prove that it 1s true when the two
ﬁriangles are in the same plane. We can see, however, that 1f
we took a picture of the garden and the canvas, we would really
have two triangles in perspective in the same plane, and that
the points of intersection of the palrs of corresponding sides of
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correspondiﬁgisides of the triangles would all be on a line. When
you are more familiar with the usé of geometric reasoning in rather
complicated‘figures, you should not find it difficult tc use this
idea %n constructing a complete proof.

N 4
2-3. Points and Lines in Desargues' Theorem
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X R T

£33

5 5

poagts

SR

A7 s

PRTICT

LRIy

In the figure we see that there are 10 main points: the
« vertices of the two triangles, the point O, and phe three
intersection points P, Q, and R. There are also 10 main
) lines: the sides of the triangle extended, the lines through
o corresponding vertices of Che triangles,'and the line 'on which
lie P, Q, and R. By checking the figure you can see that --
(a) through each of the labelled points there are three of
the speclal lines, and
(b) on each of the special lines there are three labelled ¢
points.

ERIC ' 4o
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The figure for Desargues' theorem could re used for a very
"democratic" committee diagram, where, by "democratic" we mean

4 that in certain réspects each committee member is treated like
%z“ every other one. We could let each of the ten points correspond
g' ' to a person and each of the ten lines correspond to a committee. \\.
§ If a certain point is on a certain line, then the corréesponding
5 person would be on the corresponding committee. Then

% 1. Each committee has three ‘members and each person is

; on three committees.

:; 2. "Each pair of.committees has no more than one person in

% a .common and each pair of persons i1s on no more than one

% committee.

g 3 Each committee has exactly one person in commonwwith six
T

other committees and each person 1s on a committee with

Eaizea

six other persons. ,

’

pA e

P poN

Exercises 2-3

"1. Draw several figures illustrating Desargues"ﬁheorem.

2. One of the remarkable aspects of the figure for Deéargues'
theorem is that each point and each line play exactly the
same role. For example, we might think of A as the
"beginning" point in pléce of O and one triangle could
be taken to be COB. Since the third ﬁoint- on ﬁ is Q,
the third point on jﬁ? is A', and the third point on
is P, the second triangle must be QA'P. Then the points
of intersection of corresponding sides of the two triangles
should be on a line. Find the lilne.

3. Follow through the steps in Exercise 2 starting with the
point P.
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The " following converse of Desargues’ theorem also holds:
_If ABC and A'BIC' are two triangles and if the points -
P, Q R defined as the 1ntersections of the pairs o

ﬁ e, 1@ o v lic on a line, then AAY,

?;’! are concurrent. Draw & figuve which shows this.

5. (Breinbuster) | Designate seven points by the numbers: 1, 2,.
3, 4, 5, 6, 7. Call the set of three points 1, 2, &4
a "line _/ 1" and so on according to the following table:

Wne /2 fo S3 ALuv s A6 T
POil_’ltﬂ \1:2:4 2,3,5 3»4:6 4,5,7 5:6:1 6’:792 7,1,3

Show thﬁt each point lies on three lines. Is it true that
each pair of points determines a line? 1Is it true that each
pair of lines determines a point? Draw a figure which shows
this. (You cannot make all the lines straight and one will
have to jump over another.) .

o
-




SUPPLEMENTARY UNIT 3
> T REPEATING DECIMALS AND TESTS FOR DIVISIBILITY

o
~< * * ‘

321. Irtroduction

' This unit is for the student who has studied a little
about repéating dedimals, numeration systems in different bases,
and tests for divisibility (casting out the nines, for instance)
and would like to carry his 1nvestigation a~11tt¥e further, under
'guidance. The purpose of this monograph is to give this guidance;
it i1s not Just to be read. You will get the most benefit from
this material 1if yoﬁ will first read only up to the first set of
exercises and then without reading any further do the exerciles.
They are not just applications of what you have read, but to guide
you in discovery of further 1mportant and interesting facts. Some
ef the exercises may suggest othér questions to you. When this
happens, see what you can do toward answering them on your own.
Then, after you have done all that you can do with that set of
exercises, go on to the next secticn. There you will find the
" answers to some of your questions, perhaps, and a little more in-
formation to guide you toward the next set of exercises.

The most interesting and useful phase of mathematics 1s the
discovery of new things ir the subject. Not only 1is this the .
most interesting part of it, but this is a way to train your-
self to discover more and more 1mportant things as time goes
on. When you learned to walk you needed a helping hand, but
you really hag .not learned until you could stand alone. Walk-
ing was not new to“mankind'-- lots of peoplg had walked before ---
but it was new to you. And whether or not you would eventually
discover places in your walking which no man had ever seen before,
was unimportant. It was a great thrill when you first found that
you could walk, even though it looked 1like a stagger to other
people. Sn, try learning to walk 1in mathematics. And be inde-
pendent -- do not accept any more help than is necessary.
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3-2. Casting out the Nines

You may know a very simple and interesting way to tell whether
a number is d*visible by 9. It is based on the fact that a
number is divisible blx9 if the sum of 11:& digits is divisible

by 97 also the sum of the digits of a number is divisible by 9, if

the number is divisible by 9. For instance, consider the number
156782, The sum of its digits 1s 1 + 5+ 6 + 7 +8 + 2 which

is 29. But 29 is not divisible by 9 and hence the number
156782 1s not divisible by 9. If the second digit had been a

3 instead of 5, or if any of the digits to the right of 5

had been 2 1less, the number would have been divisible by. 9

since the sum of the digits would have been 27 which is divisible

by 9. The test is a good one because 1t is easler to add the

digits than to divide by 9. Actually we could have heen lazy
and instead of dividing 29 by 9, use the fact again, add 2
and 9 to get 1i, add the 1 and 1 to get 2 and see that
since 2 1is not divisible by 9, then the original six digit
number is not divisible by O.

Why is this true? Merely dividing the given number by 9
would have tested the result but from that we would have no
idea why it would hold for any other number.” We can show what
is happening by writing out the number. 156,782 according to
what it means in the decimal notation:

b 3

1x10°+5x% 10" +6x10° +7x10° +8x10+2=

x (99999 + 1) + 5 x (9999 + 1) + 6 x (999 + 1) +
7% (99 + 1) + 8 x (9 + 1) + 2.

Now by the distributive property, 5 X {9999 + 1) =

(5 x 9999) + (5 x 1) and similarly for “he other expressions.
Also we may rearrange the numbers in the sum since additlon is
commutative. So our number 156,782 may be written

x (99999) + 5 x (9999) + 6 x (999) +
x (99) + 8 x 9+ (L +5+6+7+8+2).

49
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o .NoW 99999,- 9999, 999, 99, 9 are all divisible by 9, the products

involving these numbers are divisible by 9 and the sum of these
products is divisible by 9. Hence the original number will be
divisible by 9 if (1 +5+ 6 + 7 + 8 + 2) 4s divisible by 9.
Thi$ sum is the sum of the digits of the given hymber. Writing

1t out this way shows that no matter what the given number is, the .
same principle holds. '\

\\
\\

Exercises 3-2 \\

1

. )
1. (a) Test each of the numbers, 226843, 67945, 427536, and
45654 by the above method for divisibility by 9

.‘l‘
(b) For any numbers in part (a) that are not divisible by
9, compare the remainders when the number is d*vided by
9 and when the sum of the digits is divided b; 9.

(c) From part (b) try to formulate a general fact that you
suspect is true. Test this statement with a few more
eXamples.

2. Choose two numbers. Eirst, add them, divide by 9 gnd take
the remaiader: Second, divide each number by nine and find
the sum of the remainders; divide the sum by 9 and take
the remainder. The final remainders in the two cases are
the same. For instarice, let the numbers be 69 and T79.
First, their sum 13 148 and the remainder when 148 1is
divided by 9 is . Seconl, the reaainder when 69 1is
divided by 9 1s 6 and wnen 79 is divided by 9 1is
7; the sum of 6 and 7 1is 13, and if 13 1s divided
by 9, the remainder is 4., The result is 4 1in both cases.
Wny are the two results the same no matter what numbers are
used instead of 69 and 79?7 Would a similar result hold .

for a sum of three numbers? (Hint: write 69 as 7 x 9 + 6.)
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If in the previous exercise we divided by 7 1instead of 9,
would the remainders by the two methods for division by 7
be the same? Why or why not?

Suppose in Exercise 2 we conslidered the proauct of two
numbers instead of their sum. Would the corresponding result
hold? That is, would the remainder when the product of 69 -
and 79 4is divided by 9 be the same as when the product of
their remainders is divided by 9? Would this be true in
general? Could they be divided by 23 instead of 9 to
éivé a similar result? Could similar statements be made
about products of more than twoe numbers?

Use the result of the previous exercise ‘to show that 1020

has a remainder of 1 when divided by Q. What would its
remainder be when it i1s divided by 3? By 99?

What is the remainder when 720 is divided by 62

You know that when a number 1is written in the decimal notation,
it is divisible by 2 4if its last digit is divisble by 2,
and divisible by 5 if its last digit is O or 5. Can

you devise a similar test for divisibility by 4, 8, or -25?

In the following statement, fill in both blanks wilth the same
number so that the statement is true:

A number written in the system to the base twelve is divisible
by if its last digit 1s divisible by . 1If there 1is
more than one answer, give the others, too. If the base wére

‘seven instcad of twelve, how could the blanks be filled in?

(Hint: one answer for base twelve is 6.)
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9. One could have gomething like "decimal" equivalents of
numbers in numeration systems to bases other than ten.
For instance, in the nu:S?agipn system to the base seven,
the septimal equivalent of 5() + 6(%)2 would be written -
:567. Just as the decimal equivalent of S(f%ﬂ + 6({%)2
would be written .56, =~ in the decimal system. The number
.142857142857 ... 1is equal to-'% in the decimal system
and in the system to the base seven Would be written ‘:17.
On- the other hand, 1y = (.04620462 ...)7 .  What numbers
would have terminating septimals in the numeration systenm
to the base 7? What would the septimal equivalent of
be in the system to theé base 7? (Hint: remember that if
the only prime factors of a number are 2 and 5, the deci-
mal equivalent of 1ts reciprocal terminates.)

1
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10. . Use the result of Exercise 3 to find the femainder when

9 + 16 + 23 + 30 + 37 1s divided by 7. Check your result®

by computing the sum and dividing by 7. - ¥
11. Use the .results of the previous exercises to show that .

1020 _ 1 1s aivisible by 9, 798 -1 1s aivisible by 6.

12. Using the results of some of the previous exercises 1f you
wish, shorten the method of showing that number is divisible
by 9 1if the sur of its digits is divisible by 9.

»

13. Show why the remainder when the sum of the digits of a number
ig divided by 9 1is the sa?§ as the remainder when the number

(2RI PO et iy g LG X o =y
o ¥ tla et TR ST fﬁf‘“‘r’*ﬁ'ﬁ“‘:ﬁ”{{?ﬁr‘g”f‘:

is divided by 9.

REMES

- 3-3. Why Does Casting Out the Nines Work?

First let us review some of the important results shown in
the exercises which you did above. 1In Exercises 2, vou showed
that to get the remainder of the sum of two numbers, after divi-
sion by 9, you can divide the sum of their remainders vy 9 and
find its remainder. Perhaps you did it this way (there is more
than one way to do it; yours may have bveen better). You know in
the first place that any natural number may be divided by 9 to
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‘get a quotient and remainder. For instance, if the number is
725, the quotient 18 80 and the remainder is 5. Furfhermore,
725 = (B0 x 9) + 5 and you could see from the way this is written
that * 5 1s the remainder. Thus, using the numbers in the exercise, -+
you would write 69 =7 x 9+ 6 and 79 = 8 x 9+ 7. Then .
69+ 79 =(7x9) +6+ (8x9)+7. Since the sum of two numbers o
« 18 commutative, you may reorder the terms and have 69 + 79 = : ) .E
(7 x-9) + (8x9) +6 + 7. Then; by the distributive property,
69+ 79 = [(T-+ 8) x 9] + 6 + 7. Now the remainder when 6 + 7 ;
18 divided by 9 1s 4 and 6 + 7 can be written (1 x 9) + 4.
Thus 69 + 79 = [(7 + 8 + 1} x 9] + 4. So, from the form it is E ;3
‘written in, we see that 4 18 the _remainder when the sum is
divided.by 9. It is also the remainder when the sum of the . g
remainders, 6 + 7, .is divided by 9, ‘ 3
Writing it cut in this fashion is more work than making the L,
computations the short way but it does show what is going on and E
why similar results would hold if 69 and 79 were replaced by
“any other numbers, nd, in fact, we could replace 9 by any other
number as well. One way to do this is to use letters in place of
the numbers. This has two advantages. 1In the first place it helps
us be sure that we_dié th make use of the speclal Rropertieés pf
the numbers we had~withou§}meaging to do so. Secondly, we can,
after doing it for letters, see.that we may replace the letters
by any numbers. So, in place of 69 we write the letter a,. and
in place of 79, the letter b. 'When we divide the number a by
9 we would have a quotient and a remainder. Wé can call the gquo-
tient the letter g and the remainder, the letter r. Then we
have

3 :\‘;
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; a=(qgx9)+r
where r 1is some whole number less than G. We could do the
=, same for the number b, but we should not let q be the quo-

i tient since it might be different from the quotient when a 1s
N diviaed by 9. We here could call the quotient q' and the
remainder r!'., Then we would‘have

b = (q' x 9) + r',

- 53
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Then the sum of a and b -will be ' .
a+b= (q x9) +r+ (q' x 9) + r'f
Wé can use the commutative property of additlon to have '
a+b=(agx9)+(a*x9)+r+r | <:‘
and the distributive property to have
a+b=1[(ag+q")x9] +r+r,

Then if r + r' were divideZ by 9, we would have a quotient
which we might calil q" and a remainder r". Then r + r' =
(q" x 9) + r" and

a+bw=[(ad+qg')x9]l+(q" x9)+r

= {(qa+q" +q") x 9] +r".

MNow r" 1is a whole number less than 9 and hence it is not only
the remainder when r + r' 1. divided by 9 but also the re-
mainder when a + b is divided by. 9.. So as far as the remainder
goes,’it does not matter whether you add the numbers or add the

remainders and divide by 9. .
The solution of Exercise 4 . goes the same way as that for
Exercise 2 except that we multiply the numbers. Then we would

have

(7x9+6)x(8x9+7)

[((Tx9) x (Bx9+7)]+6x(8x9+7) '
(Tx9x8x9)+ (Tx9xT7)+ (6x8x9)+ (6x7).

69 * 79

The first three) products.are divisible by 9 and by what we showed
in Exercise 2, the remainder when 69% 79 1is divided hy 9 1s
the same as the remainder when O + 0 + O + 6 x 7 1is divided by
9. So in finding the remainder when a product is divided by 9 .
it makes no difference whether we use the product or the product

of the remainders.
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If we were to write this out in letters as we did the sum,

it would look 1like this:
* e
axb=(aqx9+r; X {qg"' X9 +r')
={@gx9%xq"x9)+ (ax9xr')+ (rxqx9)+

(r x r').

*Again eéiy of the first three products is divisible by 9 and

hence th¥ remainder when a X b s divided by 9 1s the same as
when r X r! 1s divided by 9. :

We used the number 9 all the way above, but thé same ccnclu-
sions would follow Just as easily for any number in place of 9,
such as 7, 23. etc. We could have used a letter for 9 also
but this seems like carrying it too far.

There 1s a shorter way of writing some of the things we had
above. When ietters are used, we usually omit the multiplication
sign and write ab 1instead of gtx b and 9q in place of 9 X q.
Hence the last equation above could be abbreviated to '

ab

aq'9 x 9 + qri9 +.rq'9 + rrt
or
. ab

i

9 X 9qq' + 9qr"+'9rq' + rr'.

But this is not especially important right now.

So let us summarize our results so far: The remainder when
the sum of two numbers 1is divided by 9 (or any other number) is
the same as the remainder when the sum of the remainders is
divided by 9 (or some other number). The same procedure holds
forsthe product in place of the sum.

These facts may be used to give quite a short proof of the
important result stated in Problem 13, of Exercises 3-2. Con-
slder again the number 156,782. This is written in the usual
form:

(3 x 105) + {5 x loh) + (6 x 103) + (7 x 102) + (8 x10) + 2.

Now [rom the result stated above for the product, the remainder
when 10? is divided vty 9 18 the same as when the product of
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the remainders 1 x 1 1s divided by 9, that is, the remainder
is 1. Similarly 103 has a remainder 1 X i X 1 when ‘divided
by 9 and hence 1. So all the powers of ten have a remainder
1 when divided by —9. Thus, by the result stated above for the
sum, the remainder when 156,782 1s divided by. 9 1s the same
as the remainder when (1 X 1) + (5 x 1) + (6 x 1) + (7 x 1) +
(8 x 1) + 2 1s divided by 9. This last is Just the sum of the
digits.” Writing it this way it is easy to see that this works
for any number. , )

Now we can use the result of Problem 13 of Exercises 3-2 to
describe a check called “casting out the nines” which 1is not used
much in these days of computing machines, but which 1s still
interesting. Consider the product 867 x 934, We indicate the
following calculations:

867 sum of digits: 21 sum of digits:

3
G634 sum of digits: 16 sum of digits: 7
Product: 809,778 Product: 3 x 7 =21

Sum of digits: 8.t 0+ 9+ 7+ 7+ 8 =39
Sum of digits: 3 + 9 =12 ‘
Sum of digits: 1 + 2 =3 Sum of digits: 2 + 1 = 3.

Since the two results 3’ are the same, we have at least 3ome
check on the accuracy of the results.

Exercises 3-3

1. Try the method of checking for another product. Would it
also work for ‘a sum? If so, try it also.

2. Explain why this should come out as it does.

D

If a computation checks this way, show that 1t still couild be
wrong. That 1s, in the example given above, find an ircorrect
product that would stlll check.
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4, @Given the <number (5'75) +(3°7L) + (2'73) +(1°72) + (4“7) + 3.
What is its remainder when it i3 divided by 7? What is its
‘remainder when it is divided by 6? Dby 3°?

5. Can you find any short-cu’ in the example above analogous to
casting out the nines?

6. In a numeration system to the base 7, casting out what
number would result corresponding to that in the decimal
system when nines are cast out?

7. The foliowing 1s a trick based on casting out the nines. Can
you see how it works? You ask someone to pick a number -- it
might be 1678. Then you ask him to form another number from
the same digits in a cifferent order -- he might take 6187.
Then you ask him to subtract the smaller from the larger and
glve yoﬁ the sum of all but one of the digits in the result.
(He would have 4509 ‘and might add thc iast three to give you
14.) All of this would be done without your seeing any of”
the figuring. Then you would tell him that the other digit
in the result is 4. Does the trick always work?

One method of shortening the computation for a test by cast-
ing out the nines, is to discard any partial sums which are 9
cr a multipie of 9. For instance, if a product were 810,045 ,
we would not need to add all the digits. We could notice that
8+1 =9 and % + 5 =9 and nence the remainder when the sum of
the digits is divided by 9 would be 0O + 6, which is 6. Are
there other places in the check where work could have been
shortened? We thus, in .a way, throw away the nines. It was
from this that the name "casting out the nines" came.

By Jjust the same principle, 1n.a numeration system to theé
base 7 one would cast out the sixes, to the basge 12 cast out the
elevens, etc. "

ot
~3
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3-4., Divisibility by 11

_ There 1is a test for divisibility by 11 which is not quite S0
simple as that for divisibility by’ 9 but is quite easy to apply.
‘' In fact, there are two tests. We shall start you on one and let
you discover the other for yourself. Suppose we wish to test the
number 17945 for divisibility by 11. Then we can write it as
before

(1.101) + (7-10%) + (9-10%) + (4.10%) + 5.

The remainders when 102 and 10” are divided by 11 are 1.

But the remainders when ‘10, 105, 10° are Jdivided by 11 are

10. Now 10 1is equal to 11 =~ 1. 103 = 10 (12 - 1), 1 =
(11 - 1). That is enough. Perhaps we have told you too much

already. It is your turn to carry the ball.

Exercises 3-4-a

1. Without considering 10 to be 11 - 1, can you from the above
devise a test for Zivisibility by 117

2. Noticing that 10 = 11 - 1 and so forth as above, can you
devise another test for divisibility by 11? '

We -hope you were able to devise the two tests suggested in
the previous exercises. For the first, we could group the digits
and write the number 179&5 as (1 x 10 ) + (79 x 10 ) + b5,
‘Hence the remainder when the number 17945 is divided by 11
should be the same as the remainder when 1 + 79 + 45 is divided
by 11, that is, 1+ 2 + 1 = 4. (2 1is the remainder when 79 1s
divided by 11, etc.) This method would hold for any number.
The second method requires a little knowledge of negative
numbers (either review them or, if you have not had them, omit
this paragraph). We could consider - 1 as the remainder when
10 is divided by 11. Then the origlnal number would have the
same remainder as the remainder when (7(- l) ]+ 9+

[U(- 1}] + 5 is divided by 11, that is, when 5 - 4 + 9 7T+l
15 divided by 11. This last sum is equal to % which was what

58
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we got the other way. By this test we start at the right and
alternately add and subtract digits. This is simpler than the
other one.

Exercises 3-4-b'

1. Test several numbers for divisibility by 11 using the two
methods described above. Where the numbers are not dlvisible,

find the remainders by the method given.

+ 2. In a number system to the base 7, what number could we test
for divisibility in the same way that we tested for 11 1in the
decimal system? Would both methods given above work for base

7 as well?

3. To test for divisibility by 11 we grouped the digits 1in pairs.
What number or numbers could we test for diyisibility by group-
ing the digits in triples? For example we might consider the

"number 157892. wecould form the sum of 157 and 892,
what numbers would the remainders be the same?

4. Answer the questions raised in Exercise 3 in a numeral system

to base 7 as well as 1n numeral system to base 12.

5. - In the repeating devimal for % in the decimal system there
ic one digit in the repeating portion; in the repeating deci-
mal for %T in the decimal system, tnefe'ére'two digits in
the repeating portion. 1Is there any connection between these
facts and the tests for divisibility for 9 and 11? What

would be tne connection betyﬁen repeating decimals and the
questions raised in Exercise 3 above?

6. Could one have a check in which 11's were “"cast out"?

7. Can you find a trick for 11 similar to that in Exercise

above?

~ -

ot
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3-5. Divisibility by 7

There is not a very good test for divisibility by 7 1in the
decimal system. (In a numeration system to what base would there—
"be a good test?) But it is worth looking into since we can see
: the connection between tests for divisibility and the repeating
"decimals. Consider the remainders when the powers of 10 are
divided by 7. We put them in a 1little table:

n 1 2 3 4 5 6 7
| Remainder when *gé 2 6 4 5 1 3
- ’ 10" 1s divided T k
% . by 7

’ If you compute the decimal equivalent for %- you wiil see that
the remainders are exactly the numbers in the second, line of the
tahle in the order given. Why is this so? This means that if we
wanted to find the remainder when 7984532 1s divided by 7 we
would write

LR 98 4

(7 x 106) + (9 x 105) + (8 x 1ou) + (4 x 103) +
(5 x 102) + (3 x10) +2

and reblace the various powers of 10 by their remainders in the
table to get '

(7x1) + (9x5)+ (Bx4)+ (4x6)+ (5x2)+ (3 x3)+2.

We would have to compute this, divide by 7 and find the remainder.
That would be as much work as dividing by 7 1in the first place.
So this 1s not a practical test but it does show the relationship
between the repeating decimal and the test.

S Notice that the sixth power of 10 has & remainder of 1 when
it is divided by J. If instead of 7 some other number is taken
which has nelther 2 nor 5 as a factor, 1 will be the remainder
when some power of 10 1is divided by that number. For instance,
there is some bower of 10 which has the remainder of 1 when
it 1s divided by 23. This 1s very closely connected with the
fact that the remainders must from a certain point on, repeat.
Another way of expressing this result 1s that one can form a

ERIC T
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number completely of 9's 1ike 99999999, which is divisible

by 23. .

Exercisé/B-j

Complete the following table. 1In dolng thls notice that
it 1s not necessary to divide 1010 by 17 to get the remainder
when it is divided by 17. We can compute each entry from the
one above, .like.this: 10: 1is the remainder when 10 1is divided \
by 17; this is the first entry. Then divide 102, that is, 100
by - 17 and see that the remainder is 15. But we do not need to
divide 1000 by 17. We merely notice that 1000 is 100 x 10
and hence the remainder when 1000 -is divided by 17 1is the »
same as the remainder when 15 X 10, or 150 1is divided by 17. : Hq<%f
This remainder is 1%, To find the remainder‘when 104 is
divided by 17, notice that 10 1is equal to 10° x 10 and
hence the remainder when divided by 17 1s the same as when
1% x 10 is divided by 17, that is 4. The table then gives
the remainders when the powers of 10 are divided by various
numbers.

A
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379 |a3)ar|19f=aa|37|i1|n
1 111 1
1ot 1 {3 |12 10
10° 121 15
10° 1161 14
10" 1|4 |1 y
10° 1051 6
10° 1112 9
107 1 1 5
108 1 1 16
107 1 1 7
1010 1 1 2
10t | 1 3
1012 3 1 13
1083 1 1 11
10t 1 ) 8
10%° - | 1 1 12
1010 1 1 -1

Find what relationships you can between the number of digits'in

the repeating decimals for %, %, %3 f%, %3, etc. and the

pattern of the remainders. Why does the table show that there

w11l be five digits in the repeating portion of the decimal for

1

ET? Will there oe some other fraction % which will have a

repeating decimal with five digits in the repeating portion? How
would you find a fractlon %

which would have six digits in the

repeating portion?
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%% If you wish to explore these things further and find that you
%§ need heﬁp, you miglit begin to read some bodk on the theory of
%ﬁ numberé;ﬁ Also there is quite a 1ittle material on tests for

by

£

/ divisibility in"Mathematical Excursions" by Miss Helen Abbott
Merrill, Dover (1958).
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SUPPLEMEN{ARY UNI1 4
OPEN AND CLOSED PATHS

L-la. The Seven Bridges of Konigsbverg

A river flows through the city of Konigsberg, Germany. (The
city was taken over by the Russians following World War 1I and is
now named Kaliningrad.) There is an island in the middle of the
river which passes through the city. To the east of the 1sland
the river divides into two branches. There are seven bridges
connecting -the island and the different parts of the mainland as
shown in the drawing below.

During the 1700's, a favorite pastime of the residents of
Kénigsberg was to take walks ﬁhrougﬁ the city, following routes
that led over each of the seven bridges. An interesting game
developed whereby they tried to follow a path that led to all
parts of the city in such a way that each bridge was crossed
only once. And so the people of Kdningsberg amused themselves
on their Sunday walks, but no one discovered a path that led to
all parts of the city, passing over each bridge only once.

After the great Swiss mathematic.an, Euler, became court
mathematician for Frederick the Great, a delegation from '
Kénigsberg came to him with the problem of the bridges. Now
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you may not tanink that such a problem would interest a great

%i mathematician,, but Euler gave the delegation some help with

g the problem. . ~

? Euler decided that the exact shape of the different parts of

? the city did not matter. It would be simpler to think of the : B

probliem if the parts of the city we}e represented by points and
the bridges by lines. - .
Let us think of another city, shown in the drawing below. The
‘ parts of the city are shown as points and the bridges by line
segments in the figure on the right. ’

We can call a route from one part of tne city to another a
path. The path. can be described by using a sequence of letters
and numbers. For exanmple,

Al1B2C3A

is a path staréing at point A, f{ollowing "bridge 1" to point B,
then crossing "bridge 2" to C, and so on.

Note that tne path described above starts at point A and ends
at point A. Also, the path tcuches each vertex, but in doing so,
the path crosses (or passes through) each segment only once. Such
a2 ‘'path is called a closed path. Any path which goes through each
vertek, passing through eacn segment only once but does not return
to the staréing point is called an open path.

+

)
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~ Look at the drawing shown at the

pwht. The path

A1B2C3A4DSC

starts at A, passes through
every vertex and passes through
each segment only once. But 1t
ends at point C. The path
described in this sequence is
an open path.

Euler asked, " Can we write a sequence of letters and numbers4/ﬁ“
in whigch each number appears just once?" The men from KSnigsberg
were amaked. "Of course!" They exclaimed. "After we draw the ’
diagram, it is really very simple now that you have explained 1it.

If we had only thougnt of looking at the problem in this way, we
could have solved it ourselives.” They went home and tried. to
finish the problem. Do you think you can solve the problem now?

Exercises 4-la

1. For each of the following drawings, start at A and describe
a path. Tell whether the path is open or closed

(a) () (c)
A1 X c B
4 3
2 5 |3 ‘5 X |
5/ \é
7
R 4 N 0 A

b6
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2 2. Make a copy of each of the following dGrawings. Label the
vertices and the segments and tell whether there is an open

- 7 ‘path or a closed path. '

o - ./

s . (a) (v) (c)

TR &g;}:‘w$’&5ﬁu§§;}w@qﬂa ARG

=

2

AT A 0y ‘i_a!:.‘

Gy

3. Can you Jjoin the nine points snown bélow, starting at one
point and drawing exactly five line .segments without lifting
your pencil tip from the paper or tracing over the same line
segment twice?

4 Sometimes there is neither an open pa*th or a clcsed path for
a diagram. For each of the following determine whether a path
is possible. If one is possible, label the vertices and the
cegments and describe the path.

(a) (b) (c) () |
A

b7
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5. How did Euler solve the problem of the Kdnigsberg bridges?
If you don't know, read the next section.

4.ib. The Solution

The following day the men came back to Euler and sai® "We
have been thinking about the problem, but we still cannot seen
to solve it. There must. be some simple idea which we have ‘
overlookéd. If you could just get usestarted on the right track,
we are sure we can solve it ourselves."

Euler replied, "All right. Let us look at the following
drawing. There 1s a path which goes over each bridge once and
only once. How can we describe the path?" )

One of the men said, "One possible path 1s A1 B2 C 3 A &4

-

6\5MCT“\\"But there is also a

patn in this drawing," saild

another. (The drawing is shown B8
at the right.) "You car follow

the sequence A1 B2 C 3 A." l N\
Euler replied, "Look at these

two paths again. Examine them A 3

(@]

carefully. What comes before

each letter except the first?"

"A number," one answered. "This corresponds to a bridge leading
to the point."

by
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"What comes after each number except the last?" Euler asked.
g number, of course. There is also a bridge leading away from -
the point." ]

“"Wow many bridges are there for each time the path goes tﬁrough
a point?" he asked. "Two bridges. We come into the point on one
bridge, but we must use another bridge to go away from the point.
For each time a letter appears in the path, except at the beginning

_or end, there are two numbers for these two bridges."

Euter suggested, "Let us call all points of the path, except
for the‘two endpoints, inner poipts. Theﬁ\fof_each inner point of
the path there are two bridges. Suppose the point B appears
three times as an inner point of the path. For 1ns€ance, look
at this diagram, ‘

and the path A1 B2C7D3BYE9F5B6 310F 13 H12E
8 D 11 H. How many bridges are connected to B?"

o

Six," answered tne men from Konigsberg.
"How did you get that?" asked Euler.

"We simply multiplied the number .of times the point appears
by 2, the number of tridges connected with the point at each
appearancze." )

"Will this aiways work?" Euler continued.

"yes, for every inner point of the path."

)
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‘"What kind of number do you get when you multiply some number
by 22" Euler asked again.

"Obviously, an even number." The men from Konigsberg looked
at each other, pleasantly surprised. "Then the total number gf
bridges leading to or from any inner point of the path must bé
even. Anyone could see that!"

_"What about the endpoints, the first and the last point?"

They thcught for a moment. "Let us see. There 1is a bridge
leading from the first point. Then every other time the path
goes through this point, there are two bridges. So the total
number of bridges connected to the first point is oné more than
an even number. n other words, it is an odd number. The same
is trve of_the last point." .

Euler questioned them further. "Are you sure? Must the first
point be different from the last point?"

They ,smiled. "0f course not. Thanks for-reminding us.not to
overio that possibility. If the path is clpsed, that 1is, if it
comes back to the starting point, then that point will re like any
inner point of %the path. Then the number of bridges to or from
that point must be even." . . )

Euler suggested, gy might be a good idea to summarize what
you have figured out so far.

. They said, "All rignht. If the n th is closed, then th re is
an even number of bridges connect to each point. If the path
1z open, then each of the two endpoints must have an cdd number
of bridges. Eacn of the inner points is connected to an even 2
number of bridges. Now that we think of it, the problem 1is abQ%
surdly simple." o

The men from Koningsberg bert over the diagram and began
counting. "The point C .3 connected to bridges 1, 2, and 3,
the point D to bridges , the point A to bridges
, and the point B to bridges . There are

coints connected to an odd number of bridges and

points connectéd to an ever number of bridges. Is a clcsed 'pat.

possible?_ (Yes, or no?) Is apn-open path possible?

"y

(4
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(Yes, or no?) Such an easy problem, after all!" (Fill in the
blanks yourself.)
( After tnanking Euler, the merry gentlemen from Kdnigsberg
went home. On the way,one of them said, "I dor't see why Euler
has such a great reputation. We really worked out every step
of the problem ourselves. All Euler did was to suggest how to
look at the problem and ask the right questions." His éompanions
nodded and replied, "Yes, the problem was really so elementary that
any child could have solved it."
What do you think?

/ Exercises ¥-1b

1. (a) PFor each dlagram 11st’ the points which are connected to
an -even number of bridges.

(b) List the points connected with an odd number of bridges.

(c) How many points of each kind are there in each diagram?

" NOTE: 1II(on next page)

I1I
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2. (a) In which diagrams is it impossible to find a closed path

which goés over every bridge Just once?

(b) 1In which diagrams is it  impossible to find an open path
of this kind?

3. ' For eac®® the diagrams where it might be possible to have

"a path going over each bridge exactly once, lack for such a

path, If you do find a path, describe it by a sequence of
letters and numbers.

4, For each of these diagrams find a closed path starting at the
point B which goes over each bridge Jjust once, and which
goes over the largest possible number of bridges.

5. In the upper figure on page 63 there are four paths from I
to C which go over each bridge exactly once. One 1is given
on page 63 and another is given by the sequence
A4 D5 C2B1A3C. Find the other two. : ‘

4-2. What Happens if There Is a Path ?

A drawing of a set of points and bridges, in which each point
has at least one bridge attached to it, we will call a diagram.
The points are called vertices (singular: vertex) of the graph.

A vertex 1is called even if an even number of bridges are connected
to 1t. Otherwise the vertex is called odd. A path 1is called
closed if its last vertex is the same as its first vertex.
Otherwise the path 1s called open. Notice that we are using the
word "diagram" in a special way in this chapter.

By using the same reasoning that the men from Kinigsberg
used, with Euler's help, you can prove the general statements:

Theorem 1. If there 1s in a diagram a closed path which
goes over each bridge Just once, then every vertex 1is even. 1If

there is an open path of this kind, then there are. two odd vertices,

and all the rest are even.

(A theorem is a statement proved by logical reasoning.)

i3
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: |
Exercises 4-2 : |
- |
In the diagrams of Exercises k4-1-b, name the odd and the even |

vertices. How many odd vertices are there in each diégram?
Dces there seem to be a general principle?

State a general principlé about the number of odd vertices in
any diagram which seems to be “{rue in all cases. Draw five
more diagrams, and test whether Jyour statement is trie in each
case. Compare your results those of your classmates.

In any such diagram you may classify the vertices more

precisely according to the number of bridges connected with each

one.

The ‘number of bridges leading to or from a vertex we shall

call the degree’ of. . the vertex. 1In the figure vertex A 1s of the

5th degree, whereas the qthers are of degree 3.

3.

For each of the-diagraﬁs you have drawn, make a table showing
the. number of vertices of each degree, like this:

Degree Number of Vertices
1 -
2
3
4
5 .
etc, See Problem &4
How is the total number of vertices related to the numbers
in the right hand column? '

Call the total number of vertices in a diagram V. Let V1
be the number of vertices of degree 1, V2 the number of

degree 2, etc. (Tne numbers Vl, V2, «+«. 5 are the numbers
in the right hand column in the above table.) Express the
relation between V and the numbers Vl’ V2’ etc. as an
equation.

Take any diagram. Label the bridges with numbers and the
vertices with letters. List all pairs consisting of a vertex
and a bridge connected to it, 1In the figure above pairs are

named:
" Al, A2, A4, A5, A6, B5, B6, B7, Cl, C2, C3, D3, D4, DT .

74
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6. In Exercise 5, in how many pairs does a given bridge occur?
How 18 the number of pairs related to the number of bridges?
Let B be the number of bridges. @Give a formula for the
number of pairs in terms of B.

7. In Exercise 5, in how many pairs does a gilven vertex of degree
3 occur? In how many pairs dces a glven vertex of degree Kk
occur? What is the total number of pairs 4n which a vertex of
degree 3 occurs? W¥hat is the total number of pairs in which
a vertex of degree k oecurs?

§, Give a formula for the total number of pairs in Exercise 5
in terms of the numbers V], Vs V3,

g. Give a formula for the tofal number of odd vertices in terms

Of vl’ V2, Va; . o0 . N -

16. let U be the total number of odd vertices. Give a formula
for the number (2-B) - U in terms of V,, V,, vy, ete.

11. Can you use the formula in Exercise 10 to prove the principle
you discovered in Exercise Z?

4 3. When Can You Eg Surz That There Is a Path?

According to Theorem 1, i{ there 1s a closed path in a diagram
whilch goes over each bridge exactly once, then a certain thing is
true. Tnis is a necessary condition that there be such a path in
a diagram. If a diagram doces not satisfy this condition, namelv
that all its vertices are even, then we are sure that there 1is no
closed path going over each bridge just once.

Is this condition sufficient? If all the vertices are even
does there exist a path of this kind in the diagram? Examine &l!
the dlagrams you have drawq so far. ¥ind the ones which have oniy
even vertices. ban you find, in each one of these a closed path

example, a diagram with only even vertices in whicnh there 1s no
such path? -

"going over each bridge once and only once? Can you draw a counter-
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Does 1% seem as though the condition that the diagram have no
odd vertices 1s sufficient? Compare ydﬁr conclusions with those
of your classmates before you read further.

_ Look at this diagram

8
! 4
2 $
A D
3 6
C F *

Are there any odd vertices? Can you find a path which goes over
every bridge Jjust onqe?' In fact, is there any path whlch goes
over both bridges 1 and 42 N} . '

The trouble with this diagram is %hat it-1is made up of two
~ separate flgures. There is no use looking for a path which goes
over every bridge unless the figures are connected. We say that
a diagram 1s connected if every vertex can be joined to any other
vertex by a path. In the figure above vertex A can be Jjolned
to B and C, but not to any of the other vertices.

1% turns out that if a connected diagram has no odd vertices,
then there is a closed path which goes over every bridge exactly
once. We shall lead you to discover the proof in two stages.

Theorem 2. If a dlagram has no odd vertices, then through
every vertex there 18 a closed path which doesn't go over any
bridge twice.

Proof: Suppose Ql is a vertex of the diagram. Find the
longest nath (measured by the number of bridges in 1t) which
starts at Q1 and doesn't go over any bridge more than once.
Suppose, for example, that this path has 7 Dbridges in it. We
could describe the path roughly like this:

Q25922067 % -
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Here the subscripts simply help us name the vertices. 'For example,
QQ is the second vertex. ' We did .aot bother to wri@e the numbers
of the bridges between the names of the vertices. Now suppose 98
18 not the same as Ql‘ Is this path open or closed? 1Ia Q8

an inner point or an endpoint of this path? What do you know about
the number oi bridges connected to an endpoint of a path? What was

assumed about the toval number of bridges connected to any point of
the diagram? Can this path contain all the bridges connected to
Qg?

If not, then there is at least one more bridge in the diagram,
connected to Q8 but not in this path. If we go. over this bridge,
too, then we will have a path

Q1Q2Q3Q4Q5Q6Q7Q8Q9

starting at Q; with 8 bridges. This contradicts our assumption
that the longest path, starting at Q;, in the diagram has only 7
bridges.

Since we got into a contradiction by assuming that Q8 was
not the same as Ql* then this assumption must be false. There-

fore, Q8 .1s the same as Q so this 1s a closed path through

1’
Ql which doesn't go over any bridge twice.

Now you are ready for the second stage:

Theérem 3. If a connected diagram has only even vertices,
then there i: 1 closed path going over every bridge just once.

Proof:  Suppose you look at the longest such path in the
diagram. Color the bridges and vertices of this path blue. If
this path does not contain every bridge, then color 1n red all
bridges which are not in this path. We are going to assume that
there is a red bridge, and see what follows. We claim that there
is a purple vertex, that is one colored both blue and red.

To see this, take any red bridge and scme blue vertex P.

Since the diagram 1s connected, there is“a path Joining either ver-
tex, say Ql .of the given red bridge with the vertex P. ILook at
the last red bridge in this path. Suppose it leads from the vertex
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R to the vertex - S. Since this bridge is red, then S‘ 18 colored
red. “But thée next bridge in the path is blue. Therefore, S 1s
also blue. So S 1is purple.

Now look at the diagram made up of the red bridges, which we
can call simply the red diagram. Since the blue path is closed,
there is an even number of blue bridges connected to each of its
vertices. Since the total number of bridges connected to any vertex

. of_ the original diagram is even, that leaves an even number of red

vridges (possibly 0) connected to any vertex.

- Therefore in the red diagram there is an even number of bridges
connected to each vertex. We can apply Theorem 2 to the red dia-
gram. Hence there 1is a closed path in the red diagram through

the purple vertex S. We have then a plcture 1ike this:

i

Then the path PABSGHQJRSC D\E F P 1is a closed path
which doesn't go over any bridge more than once. This path is
longer than the blue path. This is a contradiction since the
blue path was supposed to be the léngest such closed path in the
diagram. ’

We got into trouble by assuming that the blue path did not
contain all the bridges. Therefore, it does ~»ntain all of them.
So the blue path 1s the one we wereﬂlooking for.

>
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( 4.4, Hamiltonian Paths

b ‘ T4

Exercises 4-3

1. The drawing at the right is a
diagram of the Bridges of
Konigsberg.

(2) 1Is there a closed path
for the diagram?

(b) 1Is there an open path
for the diégram.'

2. (Brainbuster) Prove that
if a connected diagram has 2 odd vertices and all the rest
‘even, then there is an open path which goes over each bridge
exactly once. :

When the men from Konigsberg asked Euler to help them with
their problem, they probably expected him to"write out" a solution.
Did he find a solutionr He did show them that it could be proved
that neither a closed or an.open path could be found from the
Bridges of Kdnigsberg.” In a sense, then, this'was a solution.

Are there any more such prooblems? There‘is one, "and it seems
so simple that one would think a solution could be found. Yet, no
one knows the answer as yet. This problem deals-with Hamiltonian

" paths. Because the first problem of this type was solved by the

*7__
great Irish mathematician Sir William Rowan Hamilton, the paths

- were named after him. A Hamiltonlan path is a diagram in which

a closed path goes through each vertex without going over each
"bridge" more than once. A Hamiltonian path does not have to go
over every "bridge" however.

YR
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: The figure at the right shows
PR a Hamiltonlan path. The path
: follows the sequence of letters ' N D
ABCDEFGHIJ and then '
returns to A. The dotted lines
represent bridges which are not
in the Hamiltonian path. SF G
'The problem is, that a \f' i o
necessary and sufficient condition for a diagram to contain a
Hamiltonian path is not known. One way, for a person to become
famous is to find an answer to questioﬁs such as this one. Perhaps
that person might be you. We hope you have lots of fun trying.
Study the figures in the next drawing Try to determine which’

of the figures contains a Hamilton path. *

.0}
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SUPPLEMENTARY UNIT 5
FINITE DIFFERENCES

5-1. Arthmetic Progressions

Suppose we look at a few interesting sets o. numbers to
begin with, and take differences of successive numbers:

N
Teble I S
1 2 3 4% 5 6 ... n (ntl)
. 1 1 1 1 1 1
g Between each suécessive pair of numbers and on the 1ine below
1t we write the difference:
. ’ 2_1::1’3_2:1,4-3:1, ;

It begins to be monotonous after a while.\ Why dld we have the
number n? It was just to indicate any number (n stands for
"any"). The next number after n would be -(n + 1) since in
this "sequence" you get each number by adding 1 to “the number
before. (When we have a set of numbers in some order, we call it
a "sequence.") What would be the next one after {(n + 1)? What
would be the one before n? You should read this unit with a
pencil and sheet of paper at hand so that yoh may answer these
questions as they occur. You may also have questions of your
own which you would like to try to answer.

There is nothing especlally strange about the differences
being 1 since one was added each time to get the next entry.
Could you write a sequence in which all the differences are 2's
.or 3's or any other nuabér? Any sequence for which the differ-
ence between successive numbers is the same every time is called

an arithmetic progression.

31
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L2t us look back to the numbers of Table I. There is a
connection w%ﬁh the game of ten pins or bowling. Look at the
triangle of dots below:

e -

~ If we omitted the last line we would have the usual arrangement
" of ten pins in a bowling alley. If there were Just one row we
would have one dot, if two rows, 3 dots, if three rows, 6 dots;
etc. These pumbers of dots are called "triangular numbers." We .
write these in ‘a table: éb

b ™ Table II

Triangular/jmbers: 1 3 6 10 1521 28 ...
Differences: 2 3 4 5 6 7

If we compare this table with Table I we can notice a number
of interesting things. The first entries in the two tables are
each 1. The second entry in Table II is the sum of the first
two entries in Table I, the third entry”’in Table II is the sum’ of
the/?irét three entries in Table I, etc. The tenth entry in

fable II would be the sum of the first\ten entries in Table I.

We %buld also say that the n-th entry in Table II (we do not yet .
" have a formula for it) is the sum of the first n entries in

Table I.

Another thing we notice in comparing the two tables is that
the differences in the second line of Table II are the same as the
entries in the first line of Table I except for the first one.

Why 1s this so? Of course if we had written in Table II a third
ligg giving the differences for the second line we would have
had a succession of 1l's 2as before.

Now we could find the sum of tne first ten numbers in Table
\I'by addine them - this would give us the tenth entry in the first
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‘1ine of Table I1I, but this would be rather tedious. There is.an

interesting little trick that will glve us our result with less
effort. Suppose we form another tr*angle,of dots like that above,
turn it upside .down and fit it carefully next to the one already
written.. Then we would have a figure lilke:

1

: |

In this picture we have 5 rows with 6 dots in each row, Y |
which gives 5 x 6 = 30 dots in all. Hence the number of dots
in the first triangle would be -% X 30 = 15, which is the fifth . . i
triangular number. If we wanted the 20%h triangular number we
would have a triangle of 20 rows. iIf we make another triangle ‘
of dots and place it as we did for the smaller triangle, we would
have 20 1rows with 21 dots each and hence 20 X Ei dots in the
twoe triangles together, which implies that in each triangle there
would be N>

)

% X 20 x 21 . -

dots. So the 20th triangular number 15 210, which 1s the same

as the sum of the numbers 1, 2, 3, ... up to and including 20.
By thls means we can find in the same manner the number of

dots in any gfiangular ?rray of this kind, that 1s, we can find

‘any triangular number. Let us write a few:

40tn Epiangular number: % X 40 x 41 = 820

100th triangular number: % X 100 X 101 = 5050 §
120th triangular number: % X 120 X 121 = 7260. '
In each case we take the groduct of %, the number and 1 more
tnan the number. We can get a formula by letting n stand for
ol
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"/?9d. It would look like this:

¢
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the number and say that

L xn x (n + 1). v

the n-th triangular number is 5

Then we would get the above three values by letting n = 40,

n = 100, n = 120. Other ways of writing % xn X (n+ 1) are

%n(n + 1), g(n + 1), or Bt E

We could also get this result without any reference to dots
by the use of an idea that i:c suggested by the triangles we drew
Suppose we wanted the 20th triangular number. Then we could take
the sum twice in two different orders:

1+ 2+ 3+ 4+ ... 417+ 18 + 19 + 20 ‘

20+ 19+ 18 + 17+ ... + 4+ 3+ 2+ 1. P A

The sum of each column is8 21, there are 20 columns and hence -
the sum of the numbers in the two rows is 20 X 21. The sum in
each row is one-half of this. We could do this for any number in
place of 20 and one way of showing this would be to write it out
usiug n for the number in place of 20 or whatever number we

Iy

1+ 2 + 3 + 4 + ...+ n-1)+n
n+n-1l1+n-2+n-3+4 ...+ 2 + 1.

The sum of each column is n + 1 and there are n [colufns.
Hence the sum of all the numbers in the two rows is n(n + 1),
and half this is the sum for each row: %n(n +1). ‘

We shall find still another way to get this sum in the next
section. ’

Exercises 5-1

1. (a) Wrlte the first twenty numbers in the sequence starting
with 15 for which tThe differences are all 1's.

(b) Write the numbers as 1% + 1, 14 + 2, and so on.
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(c) Write the sum.by writing the 14's first and then the
others as: 14 + 1% + ... + (1 +2 + ...) »

(d) This can be written as: (2 -14) + (5 -20.7)
(e) The sum written with one numeral is

Follow the procedure of Problem 1 withsthe sequence starting
" with 142. Use ten numbers in the sequence and the difference
of one. (The answer for (e) should be 1465)

What 1s the formula for the sum of the first n numbers in a
sequence With the difference one? Let us agree to use b for
‘the number that is one less than the first number 1n the
sequence. )

Write a sequence of numbers for which the difference 1s always
€. Begiln with 13. What would be the sum of the first 20
numbers in this sequence? Note that (2 + 4 + 6 ...) can be
written as 2-{(1 +2 + 3 ...).

What 1s the formula for the sum of the first n numbers in a
sequence with the difference 2?
A

Ccnsider\the formula: @2n + 7 (remember that 2n means
2 xn). When n=1,2n+7 is (2°1) + 7=9; when n =2,

on + 7 is (2-2) + 7 =\11, etc. We can form a table of values:

n: 1 2 3 &4 5 6
°n + 7: 9 11 13 15 17 19

Carry this table out for the next three values of n. Use
the numbers 9, 11, 13, ... as the first row of a table and
then .write below this row a row of differences. Do you notic%
aﬁ& relationship between the formula and these differences.

Do the same as in Problem 6 for the formula 3n + 7/ and
for 2n +.6. ’

What would be the differences for the numbers defined by the
formula 5n + 77 {

8
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9. Write the first 20 odd numbers. Can you find their sum with-
out Just adding them? Can you guess what a formula for fhe sum
of. the first n c¢dd numbers would be? Use elther the trick
at the end of Section 1 ur the answer to Problem 5. .

10. @Give a formula for the sum of the first n - 1 numbers in
Table I.

11. Find a formula for th; sum of the following:

1, 1 +d, 1 +2d, ..., 1 + nd.

12. Give a formula for the sum of the following:
1, 1 +d, 1 +2d4, ..., 1 + {n - 1)d.

13.. Find a formula for the sum of the same sequence as in the
previous ,roblem except that 1 1s replaced by b.

14. Suppose the first two numbers in a table are
7 and 12.

Write a table starting with these two numbers for which the
first differences are 211 the same, that is, in which the
numbers on the first row are in an arithmetic progression.

15. Write a table of numbers in an arithmetic progression in
which the first two entries are 7 and 5 in {..a. order.

16. If you have any two numbers insteid of 7 and 12, or 7 and
5, could you make- & table starting with the two given numbers
in which the numbers of the first row form an arlithmetic pro-

gression? Give reasons. ;
N\

5-2. More Sequences

Now form a table of the pquares of the integers. Recall that
the square of 3 18 G since 3°3 = 9, the sqguare of 5 is 25
since 5°5 = 52 = 25, etc. We call them "squares” or ".quare
numbers" because if we wrote our dots in squares instead of

B
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triangles, as previously we would have the followlng sequence of-
squares:

, Table ITI
1 4 9 16 25 36 49 ...n® (n+1)°
3 5 7 9 11 13 ... W )
2 2 2 2 2 ... 2 1

Notice that the numbers r.re in the second row are in an arith-
metic progression and that the differences in the third row are
all 2!'s. We call the numbers in the second row of such a table
"fipst differences" and those in the third row "second differences.”
What would be the n-th term in the second row, that is, the entry
where w 1s? (w stands for "what.") This should not be hard to
find since it is the difference of the two numbers above it. It
is Just
! (n]+ l)f - 92. |

Before getting a simple; exgression for this difference of two
squares, let us see how it goes (for some of the jnumbers. Just to
write 36 - 25 = 11 1is not especially enlightening. But suppose
we write it as ' |

62 - 5% = (5 + 1)° - 5°.
If w#e use Qhe distributive property several times we have:

(5 + 1)° w+1yw+ﬁ>=as+n
(6:5) + (6:1) = (5 +1)-5+ (5+1)1

52 4+ (1-5) + (5-1) + 1
52 4+ (2-5) + 1.

i
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(Try it and see.) 3o, putting n in place of -5 or 6 or
whatever number, we have ) :

5-2 8l i
And thus o ‘
2 ‘ ‘ <

62 - 57 = 5% + (2:5) + 1 - 5° = (2:5) + 1. o

In just the same way we could show that ﬁ
|

72 62 = 62 + (2:6) + 1 - 6° = (2:6) + 1. I

I

|

|

(n + 1)2 -n°=n®+on+1 - n° = 2a + 1.

We could write this in words: The difference between the ;
squares of two successive integers 1s 1 more than twice the |
smaller one. For instance: 1212 - 120 = (2:120) + 1 = 241,
This is a much simpler computation than squaring both numbers
and taking the difference. This can also be shown using diagrams
of dotsfiﬁ squares, but this 1s left as an exercise.

This shows that the last entry in the second row of Table III

when n 1is 1, 2n + 1

should be 2n + 1. We might check this:

is 3; when n 1is 2,
The numbers 1in the
If you look carefully,

2n + 1 1s 5, etc.
second row are in an arithmetic progression.
you will see that each number in the first

row 1s 1 more than the sum of the numbers to the left of 1t in

the row below. Why 1s

the fifth rnumber 1n the first row is the sum of the first five
" o0dd numbe 8, the sixth

first six odd numbers,
20 odd numbers? What

We can use this to
n counting numbers in

this s0? Another way of saying this-1is that

number in the first row is tﬁe sum of the}
etc. .What would be the sum:bf the first
is the. sum of the first n odd numbers?
get the formula for the sum of the first
still another way. Start with the sum of

the (n + 1) odd numbers

(1) 1 +3+5+7
Subtract 1

(2) 3 +5+ 7+ ...

w2 2
+ ...+ {en+1)=(n+1)°=n"+2n + 1.

from extreme left and extreme right.

+ {on + 1) = n? + on

ke
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. Notice that 3 1s the value of 2n + 1 when n =1, 5 1is
Z the value of 2n + 1 when n = 2, etc. Then we can write the left
. side of equation (2) as follows:
) ((2-1):+ 1) + ((2-2) + 1) + ((2-3) + 1) + ... + (2n + 1)
;ﬁ\»4rf,-I§jwe#writé this in a different order, using the commutative
property, we have
' : 21 422+23+ ...+2n+ (L +31+1+...+1)
s \ .
4 Wwhere there are n 1's in the parentheses. Then, from the dis-

tributive property, -this °can be written
21 + 24+ 3+ ... +n)+n

If we substitute this for the left side'of equation (2) we get
the equationE

2(1 + 2+ 3+ 4. +n)+n=n°+ 2n.

\,
Y

Subtract n from both sides to get

21+ 2+ 3+ ... +n) = n® + n. .

Finally, if we divide both sides by-. 2 we have

1+2+3+ ...+n= %(n2 +n) = %n(n + 1)
which 1is the formula we had before f%F the n-th triangular number.

This is, of cc ~»se, a much hadder way to find the sum of the
finst n counting numbers than by the other methods, but 1t does
suggest a means of finding the sum of the squares. Let us try to
find the sum cf the squres of the counting numbers by considering
a table of thelr cubes and the differences. Try 1it. )

Table IV
1 8 27 6+ 125 216 ... n°  (n+1)
T 19 37 61 91 e W
/ 12 16 2k 30 ... | /
6 6 6 |

o | 59
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Notice that here it is the second differences which form an
arithmetic progression and the third differences which are all
the same. .

The second row should be connected somehow with the square
of the counting numbers. To get a clue for this connection, we
must determine the formula for the last term in the second row,
which we have called w. This is Jjust

(n + 1)3 - n3.

A

Observe that
(r + 1)3 =(n+1)(n + 1)2

2 ron+ 1,” so

We found previously that (n + 1)2-= n
(n + 1)3 = {(n + 1)'(n? + 2n + 1)

ne(n®+2n+1)+1(n°+ 20 + 1)

n3 + 2n2 + n + n2 + 2n + 1

n3 + 3n2 + 3n + 1.

3 3

" (n + 1)3 - n" = (n3 +3n° + 3n + 1) - n° = 3n° + 3n + 1.

To check thls, let us form a little table of values:

n 1 2 3 4
" 3n° 4 3n ;L 1 7 19 37 6
which checks with the»seand row of Table IV. :

Prom the this we are now golng to work out the following
formula for the sum of the first n squares:
s = 2n3 + 3n2 +n
, )
If you figd the algebra too difficult, you can just sssume the
formula and go on to the exercises ifter checking the formula for

a few values of r
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To get the formula first notice that in Table IV,
8=1+7,27=1+T7T+19, 64 =1+ 7 + 19 + 37, etc. Each
number in the first row after the 1 is 1 more than the sum
of the numbers in the second row and to the left of it. That 1is,
(n + 1)3 is 1 plus the sum of the numbers in the second row
through w, which 1is 3n'2 + 3n + 1. Hence we have the following
equétion:

(3) 1+ 7+19+ 37 + ... +.(3n2 +3n+ 1) = (n + 1)3 or,

(%) 7T+19 + 37 + ... + (3n2 +3n+1) = (n+ 1)3 -1

From our work above we see that the right slde of this equation
is equal to

3

(n3 + 3n2 +3n+1) -1=n + 3n°

+ 3n,

and the left side ma, be written using n =1, 2, 3 ... in
3n° +3n+1 as

(3'12 +3°1 + 1)+
(3~22 + 3.2 +1) +
(3-32 + 3.3 + 1) +

(3n° + 3n + 1).
{
Notice the squarec of the‘number# from 1 Jo n 1in the first
column and the.numbers from 1 to n in the second column. The

last number in each line is 1. So if we add by columns we have,
using the distributive property:

f

|
3 x (12 + 22 4 32 oo, + n2) + i
3Ix{(l+2+3+ ... +n)+
(L +1+2+ ...+ 19,

where in the last line there are n l’s: We have called s the
sum of the squares of the first n counting numbers; we know that
the sum of the first n integers is %(ne + n) and the sum of the

91
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n 1's 1s n. Hence the expression can be abbreviated tc-

3s + 3-%(n2 ¥=n) + n,

" which 18 what the left side of (3) reduces to. If we equate it

to what we found above for the right side we have: “
38 + nsé-(n2 +n) +n = 1% + 3n° + 3n

or
3s + %ng + %n‘+ n = n3 + 3n2 + 3n.

H

Since %n +n = %n 3s + %n2 + %n = n3 + 3n2 +:3n.

Subtracting %nz +wgn Zfrom both sides of the equal sign we get

3 3.2 1 2.3 3.2 1
38 = n~ + 30 + G or B j/zg + §n.

Finally i1f we multiply both. sides by % we have the formula

which 1s what we stated above.

You should check this for the first two or three 'values of n.

’ / Exercises 5-2

z
1. (a) Usihg dots arranged in square patterds;as shown at the
beginning of this section, show that' (5 + 1)2. 52 -
(2°5) + 1.
(b) Using the same idea explain how to show that (n + 1)“ -
n® = 2n + 1. We can show (n + 1) dots this way

n + 1 |

g
f A
!
2. Find a formula for the sum of the squares of the first n
even integers. (P gin by writing these squares as
(2-1)2, (2-2)%, (2:3)%, ... . what is the n-th number
in this sequence?) 0/
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3.» Find a formula for the sum of the squares of the first n odd
=.~""" integers. (Begin by writing these squares as (2-1 - 1)2,
{2.2 - 1)2, (2-3 - 1)2, ... . Notice that (2k - 1)2 = .1
S yk® - bk + 2 for k=1, 2,3, ... ) l
. . . . i
4. Given the numbers 4, 7, 12, can you form a table beginning i
|
|

" with these numbers in which the first differences are in an
arithmetic progression?

RS -t

L e i e A S S B AR e ST T
,//’(«,'maﬁm» T
Kl

5. Answer the same question.as that in Problem 4 but with the
aumbers U4, 7, 12 replaced by 10, 5, 11 in that order.

6. Given any three counting numbers, could a table be constructed
" having the given numbers as the first three entries in order
and for which the first differences would be in an arithmetic
progression? Give reasons for your answers.

*7, Find a formula for the sum of the first n cubes of -counting
\ numbers, that is, for 1, 8, 27, 64, etc.

N -

5-3. Finding Formulas that Fit

By the methods we used in the previous sections we could find
formulas for the sums of cubeé; fourth powers, fifth. powers and so
on but the computations and algebra become more and more difficult.
It 1s time we Fnied something else. |

We can use scme of the same methods to find formulas to fit
some tableé of vaiues. Suppose we had the sqggggpe of numbers:

2 7 11 15 - 19

and we wanted a formuli that would fit these values:. We could
form a table and take th» first differences

} Tahle V
J

3 7 11 ' 15 19

4 4 L i1
¢

93




8o
. \\-
These differences are all the same, that 1s, the numbers in the
" first rdw are in an'arithmetic progression. (Of course the next
value might not be, but‘we are only trying to find & formula which‘;?
fits the given vlaues.) From this we might guess that the formula
. for the numbers in the first row would be of the form: b + an ~
for some numbers b and a. Suppose We tf& it to see 1f it works.

Then the n-th and (n + 1)st entries would be

|
1
|
|
ro b+an and b + a(n + 1) ' ‘!

and thelr difference would be !

b+a(n+1l) -b-an=b+an+a-b-an=a

which is the difference. Since all the differences.are 4, it
- follows that a must be U4 and our formula becomes

b + 4n.
Now when n is 1, b + 4n must be the first entry, that is
b+ 4 =3

which means that b must be '14 and hence the formula seems %o
be )
bn + "1 or 4n -1

" If we try this for various values of n We see that it works and
this indeed fits the five entries in the first row of the table.
Actually we could see that this jould have to work if the |
numbers are 1in an arithmetic prognei ion, once we have fixed b
so that the first entrj fits the formula; for, whatever b 1is,
the numbers in the first row would be

b+ U b+ (2-4) b+ (3-4)

"and the differences are all 4's. _
Really we have proved more than we set out to do. We have
the




or . .53
A v ) :
Theorem: If the first differencéé of a table of values are
—-_ 1Y
all the same,.call them a,  then the numbers form an arithmetic
progression and the formula for the n-th term is

b + an

where b 1s so chosen that a + b 1s the first number in the
table. .

By means of this theorem we could get a formula to fit any -
table of values in an arithmetic progression, that 1is, in which
the first differences are all equal. What about tables in which
this is not the case? In order to explore this, suppose we tesﬁ
the tables for a few formulas to see ii we can make some guesses.

v

Table for n(n + 2) = n® + 2n
n 1 2 3 4 5
n{n + 2) 3 8 15 24 35

first differences 5 7 9 1l

-~

Here the first differences form an arithmetic progression.
(You should check these values and compute a few more. )

Table for n(n + 1)(n + 2)

n 1 2 3 h 5 6 ...
Ca(n+1)(n+2) 6 24 60 120 210 336 ...
First differences 1 36 60 90 126 ... [

Second differences . 18 2% 30 36 ...

Notice that n(n + 1)(n + 2) 1is the product of three succgssive
integers beginning with pn. Here it is the second differences
which are in an arithmetic progression. This would give us a
way of computing the values of n(n + 1){n + 2) successively,
assuming that the second differences Ere in an aritmetic progres-

sion no matter how far one goes 1n tq table. For instance; the

next second d*fference would be 42 = 36 + 6, the nex¢ firs%

? 91
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A " difference would be 126 + 42 = 168 which means that the next
; _ entry in the line above would be 336 + 168 = 504. To check

; this we see that 504 = 7 x 8 x 9. (Notice that every number
2 after the first line in the table is divisiblé by 6. Why is
’ this -80?)

; Try one more table:

\ 7
£ Y

“* Table for n(n + 1)(n + 2)(n + 3)

n 1 2 3 4. 5 6

n(n + 1)(n + 2)(n + 3) 2h 120 360 8k 1680 3024
First differences -96 240 480 8o 1344

Second differences 144 240 360 504

Third differences 96 . 120 14

Here it is the third differences that are ir an arithmetic progres-
sion. Notice that every number after the first row is divlisible
by/ 24. Why is this so?

Before going further,\you should try out a few for yourself.

Exercises 5-3-a

1. Find tables of values for each of the following formule:
and compute first, second, third differenceﬂ:

(a) n® + 3n + 2 |
3
(b) 275 | :

(c) n® & n

’ u 14

2. Suppose you computed a table for the formula: n - n2 and
computed the first, second, etc. differences. Guess how soon

you would come to an arithﬁetic progression. Then check it

to find out. 4
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We call 1 the first penuagonal number and 5 the ‘next ',In the
ext pentagon there will be 3 dots on a side and: we add ‘chree
des with a total of 3+ 3+3~-2=7 dots. We. ssmbt;r ct 2

for the vertices which we have counted tiice.) 'I‘he next tig
wer would add 4 + ¥ + 4 -2, cr 10 “doks. -Each time we d

threg more than we did the previous time. In this v/ay we g;et the
) ‘gollowing tabie of pentagonal numbers: - - ) .

AR : Table VI- /

1 5 12 22 35

first differences . 4 7 10 13

‘sec»o'r';d' differences 3 3 37 e

2

[Kc |

' Aruiex: provideavy e |

&'.‘ SN
LN B



pnoper'choice of the. numbers a,. ,b, and C. Let us see ;;iu:
Thefi ’che #-th and’ (p + J.)s’c ’cerms would bf

r-‘*
4

an2 + B4 & and a(n + 1)2 + b( ot l) +

i
2, '\

‘heir aéfference would be ‘

a[(n+1)2 -A21+b[‘f(n+ 1) = hl # -
(n+1)2~r£2“f

- 2

a(an + 1) A+ b.eizan‘+ N
Now *his has to be equal to the fivst diw et
econd differences must all be 2a.» We see'
. %hesemdifferences are all 3+ Thus
vaformula for the first difference in the table must be 3n + (Q
and (§ + b) - must be 1 to have it give the- number 4 when
1., So we have §»+ b = 1 and b = (g)

~ Hence the. fornula for the numbers in the first line of Table
" the pehtagonal numbers, should be k

# - - A o
Tt dase
for a proper choice of c¢. Putting n =1 in_yhe‘fofmnle.and
Setting 1t equal to the first entry, 1, in the tablé, we get

1= G re=1%0

<

 which shows that ¢ must be zero. So our formula for the n-th
terim in the first row of Table VI seems to be

-




Vd‘trydng valueekfor n willkshow you that it doee indeed fit
'rﬁore 1t has £0 fit since the first difxerences are fixed
hey”‘“etermine the entries -on thé firsj; line after'the fii'st

o~
a

S ExercisesaS 3s b 11 . )\ : vfil

CARIN mE we o VRS

rmulas which f*t each of fhe fcllowing tables of v&lﬁééi'fl

‘,\

7oas a7 oe e .

table of values' ) ) . .
2 10, 80 .68 iab, 222“ B aiqi*\";»

.

N

Have you ever noticed cannon balils: biled in @’
pjramid on. an “old battlefield° 'Tﬁéfé gHE be
with 3 in a trianglewwwMgQg botto‘
" giving 4 in-all. If thére were Thr
on the ground‘would have 6, plds tne four avae
. 10. If there were four uiersh there wouid be ,10”7:~
. _bottom with a total of 20 in the pile. These humbers are

called pyramidal numbers and are - ¥

riangular

‘7

C1 4, 10 20_ 35 e

-

~:Can you~discover any relationship between them and Lhe tri-r

;‘ft;\ i ° e : - : N - N
Suppose there is a tébie of values in which ‘the third differ-
-ences; form.an arithiietic progression. Tan you gues -what gort ~

of a formula wbuld flt the numbers of the table? “

- angula numbers° .. . ] ,

v

A I B . o
LRIC... ] - - \

)
B o o e I




isum,of four on fewer square numbers, five or fewer pentagonal
k;numbers, etc. Ybu might be interested 1n trying this>out= The

,,,,,,,

"‘Vi-<a) 2 a?‘—‘ie

o). 1 L 2 3 5. 8 18 :2'51* ; '.-.-..

r d T - &0 . . . '1(,-’. e

-]

7 where in the oecond*sequence each number 13 the gnm of the
e previous two. Show that no matter how maqy differences
you take, no set will form an arithme%ic progression.

Iy -

7. We: know from Problem -13 in. Section 1, tnat aﬁy two given
VAnumbers may be used to sﬁart an arithmetie progression. Why
Adoes this, show that no matter what two numbers you may name,
I can find a formula 1ike' an + b, which has these two numbers

a8 values for n=y1 and n = 2?2 . I

"
%

;§;" Look at Problem 6 in Section 2 and see if yow can answer tne
L following question: Given any three numbers, Qan~we f£ind
a formula like .

D an2 + bn + ¢ ’ |

;ﬁhiehﬁwill have the given numbers aé'velues when n = 1,
n = 2 n = 32 , =

i ~

g. What %ind of a formula do you think would £1t any set of four
values? Can you draw any general eonplusions?\

.
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( sor Raphael ML
lBerk eley:, 1n October, 1958 issue of the‘
.“a n‘Mathematical Societyﬁ This. will give ‘
oW: res eanch mathematicians are. applying high speed

;

bme idea of
°9mputers to
,{,:‘ T R ,_\r:w’

«numher L is prime. X
must £ind out whether n 1s divisible by~some sma;“ ]
ther than: 1. Thé most .obvious. method is to divide ‘n by-the »T

‘ ,stl(

numbeI‘S 2, 3, u‘a b8P
wdivide_evenly inte n,

ioo

’ ‘»areqﬁifes n - 2 divisiqna. If nv 1s about 10
001 of a second, then this would‘

We could shorten‘the work very much if-we think ﬁ;little. If’:
is*notga prime, then n can be expressed as a product of two -
‘ ' T I ' n=abh, : ~

.

-

) n > 2?,

i F MC :

3




g if n is nob a prime, then it is divisible by some r
‘33 whose square is at most n.‘ To test wheﬁher A is

3; uﬁ.‘o‘.:;"

thep we do npt have to try any divisons greater

3o 2

thai, 1,900, since 1, ooou =1 ooo,ooo Thus to see whether i,;
Rty 3’ t‘”w"

PR

001 of a_second, how many years weulérit.take by %his method to .
lwtest whéther R 18 a. prime? ; ,/x(~a»m\ » fa:m;?\

If we wish: to test really large number 83 we must 1ook for ”
better methods so- that. we can obtain the answers ina reasonable
time. Tnerefore, mathemq?icians try to &ind special classes of
numbers which ‘have special properties which enable us to 1educe

L4 “‘,.
> - Wt

theﬁwork even more. - ~ B T
For example;. a great deal of- work has been done ohrnumbers ‘
which are drie. less than & power of 2, we may represent sﬁch

L5 -

?1xnumbers in/thé form 2 ' R S

3 . »

) \—’/ ’ o n ‘:,}Qm - .l,ao ; - : \ ~ lv(,

T . . D 5
N om=2, then nus 22 - 121 =3, whichisa prime. Ir
L o=k, then n=2" -1%16 -1+ 15, uhich is gt @ prime. If
‘ ,m is not a prime, then n cannot be a prime.' But oI may be &

‘pr;me ¥ithout n  Dbeing -a prime. ' E ;fiji

¢

. Exereises 6 1 K : oo

ji; 1ﬁake a %eble for n = = 1y up to ‘m = 20:
Sl L ofelr o[ il b
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TF m is divi sible by g, théen n
B ‘;&‘ e - * s -

e

ﬁjxf .18 dfvisible by' 3, thek +n

g ‘_J“ T :f)

. Robins?n reportsfon numbers which are one more than ﬁ
"ber8~of the &

. He and his groug ﬁestea for priMé”/_
m with k¢ 100 and m & 2. as wE1L
"st they diviﬁed by all nnmhers 1e'§

\as & few 1§ﬁéer

- ;“&—(

'1Q,000, nd.
‘Afteﬁ éliﬁinéti‘

TrRaa?

sm’ 1 factors 1n this wav, they then ap‘

B
£

Thus we may use

, . -

~ - o f
. - . .

z k = 55 7: 1-‘-:‘? 13 1) .5\9*?,’ ’ . A
1~s A‘ 2: 3-’: 4, 55 6’, 7} ‘-“‘; ;l‘ . - ;M;
test the numbers oy (k 2 ) + 1 for primeness.
n, Prothls’ theorem stateé.that

Y
l

=
]

- -

n is prime if and only 1f-it ﬂs a factor 01
.. ¢




<i~mathemabicians W111 testifx,to its peing true) then it should not

S Y
.

v

T
I

Does\this look mysteriousato you° It is. 1ike1y that it does, j -
because you are not.a mathematician. It would very probably 1ook
yst¥rious -even: to a mathematician if he didntt ‘har pen to be

_amixiaf with theé special techniques which are needed for;a proof
o'fthiSeparticular theorem, If you will aocept,;however, ouﬁ*worﬂi

“

that 1t is a true theorem {and a great many very respeotable

be hard to sée what it s z and ‘hot it 1§ used S ’
1«7 ‘ ' ‘ . n-1 . Ltk

Intthe first pldce; what. does 3 é;:¢ i\\meanz‘ ThesexpresSion

} is being used .as-~an éxponent. Tne}numbeﬁfwn We are. usingﬁhere ;Vj,
is oddv (Mhy? What Ls the form of n?) Thus n"s1 i even; ‘
2 {nr':’l‘ : .
8o tha# —§~ is a counting numbér. Thus 52 4 + L ,isfjusﬁ,one,
more than 3 raised to a counting numbér power.. To test. “n-aféf',”* ,
primeness we need only £ind: this number and then &ivide“i‘ by n. L
If this divis1on cqmes out even then n is 2. prime, otherwise .
n: i§ a composite. . - : -

Nhat ‘numbers can we test for primeness by this method°‘ Let us
1ist a. few of” them in a table and then apply the test to some- of
them.® Fill in ‘he&blank spaces in the table on the following page.
Remember that Proth's theorem requires that 0 < k < 2m ‘and that
we have restricted ourselves to numbers Xk which are not divisible '

by 3. .

-

[ .
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43-!- 1= 81 +l 82

:,’ I » ! ? 7 "” - N . ‘ ‘_-,
o ‘I‘he -ai ision does not ome out ;even,,so the. \jest /s’g,ellé: gg_ . K
9. 43 . Joed this cheok 'with wha{ you already
» I RN i/ 1"a /: :"{

I‘L“

€
R
al

If k ZL and m = 6 then:wha /18",n"'*The
65 If it doés notJ work 1% ’ou’c '

g

g«.

o

We would 1.have to divide this number by 65 to con’cinu ;. the. t

K

s ;It would not be wo:cth the efi‘ort s how*e’ver, since we‘, can _'asiiy

Iy

gle4 Let k'=7 ":
3 L A _‘5_]_._ 66 : o
’, “113, In this case ‘the number 3 ¥ l is 9 times the
sgt} e, of 1;853, 029,188 851,842 plus 1. If you, are embitious s
j *may calcule.i:e this number and div,ide :Lt by 'n :-o113 ,T:héi ’ ;.

s
<

_.you conclude aboub 1139 A < ; - . o o

Examples 3 al;; 4 should convince us O" one thing. ,r«’Proth's
theorem 18 not /Well suited for testing 1arge nugpers for primeness

by° hand calcu/lation. Large computers, howevez', are constructed )
expressly to- make calculations of thé order of the ones which dis-—

»aged 1}8 .above:. . And they -do them qu:tekly' On the SWP.C the .

fime for* the test was no more than l-lé- minutesﬁ‘ ag' long as m< 912

- X 1, 7abou’c 1000 and k = 3; » 5, or 7 the tést took a.bout__w
; 7 mi utes The umber n= (7 2]‘0‘00‘) +. 1 is larger than 16300

Ehgrest




i R - .. - b, - - - -
.. *‘i Lo T . ¥ " - - * T2
R N 6 ), B - i BHw2.
3 s L ) o=« -
v - 1 - [ »
R - B R ) - V.o s
s -7 ‘- 2 -

*

7 minutes wlth the time it would take the machine ‘bo test

for primeness by trying all possible factorS* Earlier in.
) of this time for numbers of ‘bhe

’,;.»order 9f ) R A : T o .G”f e

‘Fc;r k = 1 ’che test had previously been carried out for a.ll

- 9.- ; a0 ‘,_ c _' . ‘,
¢ \ \ \ . .‘:" ‘__ai o ,3\_-%‘-‘# !‘_ ®, e"l,
= o", 1, 2;.4, }g, and: 21'5..?, LY Co
/ ’ L
The largest new prime discovered bJ thfa work is ’che case ’ R
7‘ M - R »* ~c g )%',' s j:‘;. .
T e
19 N N Voo y
i »”‘,v"y“’ B (5 2 ) ’F 1‘ . ',“:':~ -‘.ao‘l’«ti"'ﬁ 7:_ . ,:;q" r»
. ‘If.' you wish te °stimate this number, first notice thgt * ;, 4 "‘f’
‘ f“ TR . 10 = 1000 & 2 .a. :wau ‘: - ‘;,f -
& Thgrefore we: have L T S o a“; e
| ‘ 21947 5 21,9240 5210)194 (103)1914 10582 r ; i
f'.[‘hereforq n . ha$ 'mbre than” 582 Jigi‘bS’ On the\hther hand

_‘otice ’chat (- - : Sy o
. Y w T 4 A L s ‘,W’i

e 213 gogb e a0t LT T T
T A - P \ ‘ =

-\ Therefore we have e ST | |
- “ —,'- , n < l + (8 P19,+7) 1 + (2 lﬂg(:.j\{,): \j . \“ ‘“: — :,

CUher ik & 51950 \{14- (213)150 S TR
"‘*i:iv:‘ G g +:(101?)15°i“ L+ 106 % e .::'f.j

+

S
-
-~
i

Consequently n has HO more than 600 digits.
Remember that ‘by using the theorem of Proth, this prime wés
discovered by a single division ‘caking a matter of, minu’ces.
nsing either of the cruder me{;hods discussed ‘haforé at ieaet
10291, divisions would have been. necessary. How 1ong would this
_have takbn at thei‘f'ate of a thm;and divisions per second" i

, .
-
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N v 101 : . . N : ! )

SRS, SO AP S > i . . .
T e il ‘““*% Bl o e




'umber§\s' %he fourth 1argest pri{ne lmown at present
i
N &

L e o A

tk 3217, 2281, and 2203, Tb_é labter two were-,,reported o
by' ‘;-ﬂ_obinsdn in the Proceedings of the: }American Mathematical Socie‘éy
in 195&.. ] Tne largest one. was re‘ported early ;ln 1958 by H Riesel

: in Ma’chematical Tables and ‘Aids to Computation ( \'60“) '

g Tha
v | AP '3‘; TR ‘1*7'. -

2
*.:l;ze ‘.‘.1_...,,13(-. of dia:its ﬁLeacI Q
' .4_

PR - IS
S

LA
"

=

l LY - Y

_ *gerhaps you would, be 1nterested in the general statement of ?'!
. Proth‘s tneorem. Fonfiwnbers. n (kra“‘) 1 with k divisible \}
by 3 the important ;iifference in the test for ;’chat

\ & [N = - .\X‘
L : . ‘ > A . . , "y
n1 N e
-

- i;h.e numbern L+ l musfc he replaced by a new A _ber. ‘_I‘henumbe\r it

to use’ is of the form - : SN w

where a is a counting number which ma§ have to be chosen differ- ’
entiy for different values of k. and m, . 'The €0} dibion‘ which 8
*nust sati sfy will be i‘ound in the s‘catement of Pnoth!s \theorem.

. " ]
i

a-.‘I‘heorem.'Let 0<k<2m and n (kem)+1 pose a -

:ls a counting number which has the property- no «sum of a aind a )

ﬁml’ciple of n 1s a perfect square. (Alternative. the sun nf a

and a multiple of n’ is never & perfect square ) L b
'J.‘hen n is a prime 1f a:\d only ‘Af 1% 18 a fac or of

n-1 o Wt ,)& i
a'a' + 1 : ' veoN
3

}




1 %%éfiﬁ ih sonie cases. We‘could never £ind sach a number by
x\;mgvr of trial operations, for the conditiog which a must
Bﬁﬁ in;:lves a stetement about all multiples of " m. e may )
‘"t‘eome chnices of a on the basis ef a single calculation,
iﬁ‘ukg= 3, and m = 2 so that n = 3. 2? 1= 13 .theti
8 = Z!i do? No, because 117 +at= 117 + 4= 121 s a

ec xsquaﬁe, and 117 is a multiple of n = 13 no find a

a wbich we can be sure will £it the condition for ‘& given
‘we will have*to use reasoning We will have to. reason )
: ,umber a,' no matter hoﬁfneny multiples of n
‘ne'ﬁnw, adding A Wikl never.give afperfect square. Mathémati-
’ians.know enough about numbers so«that finding Such a number ia
v.»nob'@ Very difflcu}t problem. As you may, have guessedéfrom.the i
; \Wdiscussion abovey it is possible £o show that Whenever k i8° no°
o divisible by 3.  the number a =3’ atisfies the condition of ‘the
_hheoremi Once,we ‘have. found the right number a to go wifh n_ we
:.can avoid the any. tedious calculations necessary to uest a Barge y
,a"w umbe; for prlmeness. Instead of dividing n by a11 prime numbers

\;whose squares are less than n, we need only perform one calcnla—

2

e simply tey the division , -~ . - 4 é? \ﬂ
' ' . n-1 L R

# 1) +'n3 B . N

5 ' " . - . 4. : ot - ’
.comes out even n is a prime, if not, n is not a prime.




SUPPLEMENTARYUNIT 7 B
. L GAMES’

i - -~ }‘ . ,-; . . .

: gwould you say if you were asked how a war, a business,

: There is at 1east one similarity In each
-someone»is constantly making decisions. Officers in’ the

2 Many decisions are made b} the o1ayer of ‘a game._,k
bujinessman.mnst make aecisions 1n managing_his business. Vﬁan;

Research Institute and asked t’

these decisions. The mathematicians he1ned him figure out what
‘decisions ‘to make in order o make tne biggest prolit. -

. Game(theory is & new branch of" mathematics. Game theory can
be used £0 determine the best strategx to follow in making a

= s

—ixdecision. John von Neumsnn invented game(fheory in 192§~ ‘Hé
applied these 1deas to business decisions and game strategy. You
will first learn. how to use game theory . An. finding the best Serat—*
gy’to follow in a game. ;

L jr’il Strategy
What is strategy? Strategy is 2 plan you follow to gain some-
thing you want. Usually, strategy means the plan for a coming
3 bautlevin a war. We will use the word strategy to refer to a plan
O ’eading to any. decislon. Strauegg will mean a complete plan-that
o cannot be Lpset by "enemy" action or Nature. Your opponent is
your enemy Iett!'s talk about strategy in\games. The first

group -of". games will be very simple. - N

110
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of course‘

Yﬁoy“ nhese are the rules. )
W Each boy writes on ‘a piece of paper elther the letter "A"
or ‘the letter ngt without,letting the other sée. Then
they compare what they have written. ' %
2. If both wyrote A, Tom wins 6 points. o
If both wrote B, Toméwins 4 points.
If one wrote B and the qtheér A, Tom wins 5 points.
3. , After six turns, the boys change roles and Jim receives the>
points according to Rule 2. ’
~ }. The winner is the boy who has the most points afte ach

written. (A rectangular

A 108

Tbm and Jim are going to play a game. Each boy wants to win,
He must be careful or he might be Fooled by the other

boy has had 6 turns.

The following diagram, called a payoff matrix, shows the points‘
each combination of vays in which the letters )

could have been
arrangement of numbers is

h ©

called a matrix).

for the column

>

, . Jim's Choice Minimum payoff, . i
A - .B  for'the row — “
/rom&§ ~ |6 5 | 5 o
YChoice  ° B | 5 b * -
‘Maximum pafoff | g 5

>

choices.,

writing nAn‘

number in each box shoys the nnmber of points that Tom will
‘for each combination of choices. - ;

Example: Tom writes "B and Jim writes "B -4 points.
will allow Tom as few points as possible so Tom must determine
smallest, or minimum payoff he would win for each of his

e write the minimum payoff to the right of each roy of
The minimum number of points Tom will win by
The minimum for the choice "B" is 4. We

payoff matrix.
is 5.




iog' - - Cora

_;wsee that the minimum payoff for A" is greater'than"the minimum
{5&payoff for "B'. ”&Tom will always win at least 5 points by writ-~
': "'f'ing“ A A" . = ' : .
_ - For each ch&ice by Jim there is a certain greate oihﬁéximum,'“
;;*payoff for Tom. Jim will try to make rr‘om's payoff as small as
) ;;possible, but he knows Tom will try to win the maximum number of
ipoints each time. Jim must determine the maximum payoff for each
: ioﬂ is cholces. List the maximum payofz below the column for each
—:.Zchoice. For which ﬂhoice is the maximum payoff the lesser? The
.-lesger of these maxima occurs when Jim, writes up and is equal
ko 5 The'maximum nuiiber .of points Tom can win when Jim writes
"B“ A8 smaller than the maximum. payoff when Jim writes T Jim-
ﬁill rever lose more thar- 5 points if he writes “B“' '
To summarize, we have the following° ’
~. The mint mum payoff for Tom -1f he ca11s

-

_ (aﬁ‘“A is 5. ] o
—< (b) . B 1is &4,
Ih%f The greatex ‘of these minimum payoffs is 5. "

The maximum.number of points Jin could lose if he calls
(a) A is 6. .

(b)*B 18 5. ,
The lesser of tnese maximum payoffs is 5.

‘\In this game notice that the greater of the minimum payoff’s
to Tom 1is equal to the lesser of the. maximum losses of Jim. When
this ..appens, we say that the game has a saddle—point.

 Think of the shape of 2 saddle for'a horse, The lines running
from front- to back.dip down in the middle, or we could say they.
have a minimum point,. The 1ines going across the saddle from left
to right rise up to a naximum
point in the middle. . The great-
estrof the minimum points and the
1east of the maximum points are
~both at the center of the saddle.
This'is the point we call the

‘

e S - g e
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which giveithe saddle point number are the best choices, and the

o v-,v

e

WO d;become a very boring'game. If Jim followed this strategy

AR ,

\Ther fore the best strategy for Tom is always to write “B“ This ‘f;

!
. l

8

téffhe values given in the mat?;qgs-be'ow) - ) L
} I A I ‘N*“¢$;2 RN

U cholce B | 3 2; . : "*_, | ; : /

ey (a) A Sl ”\';ﬁ~ I
L b)\ B . ‘ ‘ ,;' »l b |
'#} Which.is\\he greater, of these minimum payoffs ”
. $ What is the maximum number -of points Jim ccu1d 1ose if he
g - chooses v : L .
/ “(a) A7 _. ‘ P -
(b) B o . = ) . |
7:?@. Which 1s the lesser of these maximum payoffs° e -,

5 Does the lesser of the maximnm payoffs eqnal the greater of
f~f; the minimum payoffs? Does this game have & saddle—poinb”

6 tht 1s the best strategy for ‘each boy,, .
. ugv [




Jimts chodice - :
A B '
SR Tomts .. 15,“ | >.8 : . \
,l;m_ “choice B .‘5’ 1_ 4.T'J

l.~ What is the greater of the minimum payoffs Tom can win

2.“ ﬁhat ds the 1esser of the maximum payoffs Fim can 1ose?
i@g Does ‘the 1esser of the maximum payoffs equal the greater

- of the minimim: payoffs? Does this game have a saddle-point?
:4_ What is the best strategy for each boy? .

\

’ -

G.f _ o Jim‘s* choice ' ';, .
| o '\\, A "Bi
S O i I
- cimoice. % * 8 1 6 S : “?, Ts

LA
LR

1.KOWhat ls the greaﬁsf of‘tﬁefminimum~§ayoﬂf§ Tom Can—win?
2. What is the iesser of the maximum payoff Jim can-lose?

. 3. Does the 1esser of the maximum payoffs equal to the greater

of the minimum payoffs? Does this game have a saddle-point?
f 3

L4

g, What is the best strategy for each boy. “ ‘ R

D. In thils game, each boy can write "A" “B“‘ or "C%. < The
payoff tells how many points Pom receives for each combin-

-

ation. ) “
Jimts cholce '

A. B c.
A Ji0| 2|8 ‘ )
choice =~ . : : ) -
B 7 61 9
’ c- (1} v ] 3 g




Ki;i; What is the minimum humber of ‘points Tom would win 1f he
o —chooses
(a) “1‘;":‘?_ ) o, ’ . o . . .
’(b) diBh? ‘ . J/ /.:: ) s ) .‘
.. - T \ .
e . j(c) llc",) » 'vjv" L N e
"i . \‘/\ \ *
g Which is the greates;of these minimum payoffs°
4‘§§ What s the ‘maximuin numben of points Jim will lose if he
' chooses : o *
<vc (a) "A!'?:J N ‘ - ¢ . { - ‘ v
h (b)' "B“%“ T g R gv;',im,g‘
. (c) llc"") L ) —, . : -
, —_——i ,, . ,
4, Which is the least. of these ‘maximm payoffs° . . - ’

‘5» Does. the least of the maximum: payoffs equal the greatestof the
minimumlpayoffs? Does- thio game have a saddle-point°

6. Whdt is the ‘best strategy for'each boy, o - ;o .
;oo ‘ s

7%2;‘ Business Strategy . / - - . - =
- These same methods can be used for making decisions in ,

business. The prinary concern pf a business is how to-make a good
profit In other words, each decision\should result in a payoff
which brings the maximmin (that 4s, greatest) possible profit

s

From- a payuoff matrix a business man could find the best strategy

(VU

to follow. It is more oifficult to set up a pay-off matrix for
‘a2 business decision. Before you can do this you must 1earn some

. hisinéss terms. ’
. o .
Ve
) “ Y ’ : N i
: N v ¢ Fat
< R } : N
€ ‘ ’w
. s ) 1 1 5
. AN
”~ » : \
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‘James oWhe a bicycle shop. He buys & Bfﬁé'for $% and
on,;$§5y The difference between the selling price and

EREES

« - - .

thefmargin_ L o
margin ; selling price = cost L
- v ’ ) . \ ’ g

He must pay
These are called operating

T2

The difference between ‘the margin and: the operating

e ‘:u—%-“‘
S ¢ A pense is the profit o u> = RO
TR A IR T weg e sty v A S Ty R “ ”,/* "!'K
T . Y . ﬁe’/‘. 5 i ’/
: profit = margin w~expensesm 4/ o o
P o

. ~»--—1

f;ﬁgéxtgg;¢t¢~ N n‘,,, AP e
: What would happen if the expenses were greater than the

: margin" If tHis happens M James will 1ose money. Mr. James
;f~would have & negat*ve profit If Mn. James* expenses had equaled

$30 for that bike what would; be the profit? T
, , AN
- Example‘ , " R
e * \“‘9\1 »‘mwwu, ‘M'm. N 'AQ’"’ S
Ina dime store, merchandise wﬁiéh”cost“ $§OQ> was -
_ sold for 4525. Wnat isthe mavgtnt - '
- ' sellingsprice $525° S
‘ L ...t = _GOBY 100 - S L
S IR SerEn WiZ5 o L
R Ifxthe operating ‘&¢penses. equaled $80; what 1s’the
- SN ~prc\>f.’_ﬁ.’c" ’. \ ""““““’“""“""*-—-m .- ML. ) o : "ﬁ:‘
BRI ’ _mapgin $125 , 0 A
S - expenses. .80 : ’
“ik}jflfi ‘ " profit $ 45 0 - ' -

otk “the: foIlo\eng probiems-l
“ Problems: Find the quantity asked for 1n each of the follquwm

ihg problems. |’ .o ' y

an -
N B
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Exercises T2 ’

E&mg Store - . o
'*‘d"In a2 dime store, merchandise costiﬁé "$250 and was‘SOId‘for5'
ofphoy .o L -,
. 1. What is the fargin? = _ v

'Theaopereting expenses totaled #60.

awf B 8. What.is the profit.,. ‘ /

. .. If the operating expenses ‘are %100,_what 1s the N
R profit? . L . : 7{ o R
FFSiééfcream Man, - o . . / : o _,1'f' :
\ The dce cream supply for one day is bought for $25 and sold
. to customers for $48. 3 . / . Coo
' b, What is. the: margin9 SRV T ’

fhe gas for the trucg/costs $4‘00‘>per day.
Jhe license costs 5@% per day. /- o
The! insurance on tée truck costs *FQ# per day. .
Rep airs and’ upkeep for ﬁHe truek o8t 5Q¢ per day.
5. What is the total operaﬁing expense per day°

7 ‘\ 6~ What is thé Droiit pep* day? C \
. T A A
Y 1 he week " Coe
" 780 tickets were. sold at 25# aspiece. -
koo tickets weré sold at ;Qﬂ aplece. L
7. What 1s the total price pald for all of the tiokets?
Rent (per week) // $. 70 . S oo
Reht for films, 450 T
IWages 'for one week /l $120 Ly
Enectricrty (per week) $ 30 , ' ‘-

. 8. What is éhe total operating expéense for ohe wee 9 .
o 9: What is.the profit for one week? 7 S
/ : . ! ' ' T

< -

Y
et
~1

1




‘asoline ‘e Service Station ) R

SRS pRv

10.

. ll'

L igp’

!

The gas station sold 780 gallShs of gas at 22% per
gallon one day

A

What 15 tne total selling,price9
If ‘the gas. cost:, lé% per gallon, what is the
total margin” N

Thé operating costs total $21¥,.50, ;What is the

fofit9

it

¢

At @ iater date, the s;@ti
,550 gallons of gas bu h
costs. '

37
Eind the.pro ity

- S .

,I’"

on:
ad %

p‘,ﬁ,{wﬁ*
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7-3 Pay-Off Matrim for a Business Deeis-on~

¢

o
e

&

' coffee9

* ‘box' costs

‘

Vendorﬁs
order

>

.

f300'oups of coffee.

,~ popcorn at 10f per box.
54,
The following matrix will show the profits.

there are no operating. expenses ) Think of, the weather as the
e vendor's opponent in a game and imagine that the' weather is try-
“%A‘ing to defeat the vendor;

£y

*

coffee

Yopeorn

é

B

If coffee “costs’

-

. Wedther
warm cold -
_$15 S
* $20 ‘

118

»
s

3

operator~sold only “K=

the

e :Same -opefating

o

A.Nendor at- thEQibotball game ‘can sell either coffee or ..
popeorn (but not both ) In warm weather the vendor can Sell
LT and sells for 1of
what is the margin per . cup? ‘What. is. theenargin on ;00 cups cf
In warm weather the véndor ‘¢an sell
What is the totul margin’if each

iQ0: ~ boxes -of

(assume that

%
LN w
. g




I the vendor Sells coffee in cold weather, he sells 700
',}cups of coffeey . T ’ .
: ‘What would be the margin? Hhat 18 the~pr6fit°
. ;The vendor will 861i 600 boxes of popcorn if it 1is cold
'x}outside. ’ : v : .
What is the,rmargin‘7 What is the profit9

Place these numbers in tke correct boxes.‘ The. vendor wants
to make the most profit that is possible. Since he cannot
be sure. of the weather, he must determine his best strategy .
’ Is there a saddle-point° What is h 8. best strategy9 You '
should have found,that the véndor should always‘order popcorn.A:)lf'

)

:é“{f\;g" JHe il always make at léast $20. ‘ -. R

B g "“';

TR ST AT T
K T

EA)

~

.

. Itfshould be emphasized that this is all on the: assumption .
that the weather iS«completely unreliable. For instance, if the :
vendor cbuld be sure tbat there would‘be mBre cold days than hot
days» he :should ‘always. serve. coffée., We make‘the assumption.for

this problem that. there is. no such assurance about the weather."

. . - 4,

. = L

~f*’ - are——

r ' . y - o ) i hﬁf
. g Exeroises 7’3 - R ?f;-
. ~ NI
A Set up a pay~off matrix for the following vendor and determine
C his best strategy. - e e RN
:, .!. -\’ F R
The vendor can sell either hot dogs, sodatpopfgl ice-cream. N
Which -one Should he sell° AT . i
: R ‘ A ‘ :,' cie :" ] /» b . P
o - Selling , PR 1) 2@ B pinfih
.e, Nunber Soid 5 Ig—is Cost  Margin - Y Z, ting  profit
T ‘hot day - 150 15 ‘each 1 each o 2 00 :‘
Hot Dogs*ﬁ , T # 1f ’ $ '
cold day - 250 15¢ each 1l¢ -each 4 $2.00. ﬁ
5 ;;r;*»mlﬁﬁfiﬁnf‘“sso—-—lQé_eacn ;wf each ,3 $2.00
048 FOP . co1d. day - 275 10¢ each 6;5 gach T $2v00- —
- . hot’day - 500 -10¢ eazh *5 éach ‘ 2,00 ,‘
Ice Cream 1F . ' ) $ ‘

¢01d day - 180 10¢ each ~ 5¢ each ~$2.00
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éfll?ﬁf f§4
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J"

Y

rr

Su;@ose a man is selling 155 oream and coffee at the,fair. ﬁHiS‘
business is affected by the weather, which 1s somqtimes hot i
and éometimes cold. His: opponent is the weather.‘ He has to

&

T

cold and 1ce crear, sells we;l, 1f the weathen is hot The .
venuor mist. find the dest. gt1 tegy in order to make the maximum
profit. . - ?“ ’ S B _
Assume the eoffee costs4)4 cents a GUp and sefl;"“"
10° :cents. The 1ce cpeam: cgsts 5 cents ‘8 bar and sells for
10 ¢énts: On @ hot day thé véndor will gel1” 60 e cream
bars and » 200: cups ©of coffee, If’his operating expense 15
. $3 per day vhat is his profit. on a hot day? On-a. ¢old daj
“the: vendor sells 500 cups of coffee and 200 ice cream bars. ;

- ¥What, 18 his nrofit oh a gold day? . . . B

N
3,

"
3

ol 1‘The following kind of chart may help yeu find the profit..
. 3 4 o |
Ice Cream - Coffee.. a

e

..§616; on cold day

. Total Recelpts

1 Orderéd for cord day . -
fi‘**”M*Wf”ﬂTotalmcosb§i~-«

¢
s

] Margin ° A
. _Operating expense
~ Profit ¢
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Assume ’chat the vendor cannot store any"hing overnight so
anything .Lef’é a‘b the end of bhe day 18 thrown avay ,E‘or
,example, if the vendor orders for a. coId day aryi it is )'xot, ‘

R - he will 8ell: the 200 ice cream bars and only 200 e pq
-~ ot coffee! 300 - cups of ‘coffee would ‘ber wasted b
"‘here are 3 therefore, ‘b*u'ee other charts necessary - \
~» 1. When he orders for a hot day and 11: hot; . j - A
2. When he orders for,a. ot day .and i{:‘ is co’ld L
, a., Wheh e orders for a cold d&y and it is hot‘ 7
. R A LT
Fill in ‘the i‘ollo'.ging pay—off matrix (Make your own) . ’
a N : ’ i_ A : Weather L0 . h o o
m T A L{ < ) o N R
- B Hot . . G S N 2
. ~,0iidé;'éé@'.‘ for: Hot day . SHNPRR e p . ) ’\“\ o
. Cold dayi . ,,11 . B

a saddle-point" When there is no saddle-point N a single call is
ot _the best strategy - order to find Lbhe best: stfategy you mus%

- ., Kriow something gbout the' laws of -chance. You will study the laws//

oi‘ chance in moreé adva.nced WOrk. . |
t . {
A |
o ! | \
o . 1 (R
’ ’ L] . s .
” . . ‘ )
. i T ) . . ’
k4 i ) 3
” ? . . ’ .
LY . . ) I ! ‘
S - _\\
el \\ , . .
® . ., I ‘
. { . . . » B —‘;'." - L
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