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THE 'DEVELOPMENT OF THE REA% NUMBER SYSTEM

»
~

1. ‘Introduction 3
;ﬂ ;o \ _In the beginning of” your study of arithmetic you 1earned
) about whole numbers, later you learned about fractions. In
algebra you learned. about negative‘humbers, and about irrational
, T bers These numbers are all called real numbers: ‘
/ As you were ;ntroduced to each kind of new number, you
‘learned rules Tor-operat;ng with them, that is, for performing
addition and multiplication and, where possible, subtraction

and division. You learned the practical reasbns whv‘the new .

?

numbers were needed and these reasons made some of the new
operations seem naturalland simple. Probably some of the

. rules, however, seemed .arbitrary and mysterious. Are there

some ‘witich still seem mysterious to you° Could _one use.

"w different rules for operating with negative and fractional
numbers? If not, why mot? .If there is only one "right" way
of ooeﬂﬁting with these numbers is there any way you could
find the "right"™ rules yourself? —

—
—

In this chapter we are going po take % closer look at
,he real ndmoers and the rules for operating with them. We
W;ll see tnat there are just a few basie rules of ajgebra
and that every other algebraic rule follows logically from
these basic rules. Ve will show you that there are purely -
-mathematioal reascns for introducing each new kind of real~
and "that the rules for operations with -these numbers are B
the only ones possible ff the operations are to have certain
simple and familiar properties. We will actually discover
these rules: ) ’

!

~ Vie will begln our study by examining the whole numbers
and some of the properties of addition and multiplication' : B
of whole numbers. From these properties we will get most of
our basic rules of algebra. We will not suppose that you
know anything about other real numbers or operations with

~ them. ’ co y
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2.

whole Numbers ‘ \\ A i
The numbers first used-by man, even before recorded N :
history, were the numbers ‘1, 2, 3, 4, 5, ..., ete. which )
we '‘call the natural numbers. Very early in man's history . P

“the number O was intro@ueed. Ve call the natural numbers 2 E

"and O whole numbers. We are going to examipe some of ﬁﬁe
properties of operations with whole numbers.

Exercises 2a. ’(Oral). o : . . T 'é
For each equation lgst all the whole numbers that satisfy. _g
1t. If all whole numbeps satisfy the equation the answer ??
is @ll. If no who}evnumber~satisfies the equation the answer -4%
1s none. ' -
1. x+ 5 =17 o l2, x+x =X ;
P 2. x /2 =3 13. x+19 =21 '
3. A6 FF =33 ... 14, . X +21 =19 S
b, 33/ z =11 15, 17 x = x I ST
5. 33 /x =4 16. 1 +x=1 R
. :
: 6. (y+2)y+1)=yy+3y+2 ,
s / 7. x/ 5 =2 17. x(x + 2) = x-x + x.2 :
- 8. (2x-1) /13 =1 18. x+y =y +Xx ‘
§ ‘EL//Z‘i/l =2 + 2 ”/19. 5X = Xx.5 -
?42, 10. 22+ 6 =6+ 2.2 20. 2x + 10 = 2(x + 5) + 3
: 11. xx =X ' 21, x ~(y - 9= (x -'g) + 2 L@

Operations: ‘What is an operation? An operation is a rule
which assigns a number to certain pairs of numbers given
in a definite order. We call a palir of numbers given in
a definite order an crdered pair of numbers, and denote the

> ordered pair--first a, second b --by (a,.b).
Additlon:  The first operation you learned, and still the )

one you consider the simplest and most fundamental is’ addition

Addition assigns to the ordered pair of numbers (a, b) thée N
i rnumber a + ©. What do.you know abeut the addition of whole
;( numbers? We are going to list some properties of addipion
ét  which you use all the time.
%
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.1e -first and simplest property is that addition is
always possible for whole numbers and the result is a whole
number; that Is, addition assigﬂsfa,numbér to every ordered
pair of whole numbers, and the number assigned is a whole )
number. For example, 4 + 3 =7, 112 + 2133 = 2245, 19 + O = 19
We say that the set (or collection, or élass) of whole numbers
is closed under additlion, and refer to this property as the
5iosure property of addition.

~ Closure property of addition: If a and b are whole
numbers then a + b 1s a whole number.

Exercise 2b. (For class discussion)
. 1. Is the set of all natural numbers closed'under the
S operation: '
; , (a) addition?
L . . (b) subtraction?
R (¢) multiplication?
e (d) division? v
2. Is the set of all even natural numbers closed under:
(a) addition? .
(b) multiplication?
g 3. 1Is the set of all odd najural numbers closed under:
; (a) addition?
4b) multiplication?
‘4. Is the set of all natural numbers less than 10 closed
under:
(a)° addition?
(b) multiplication?

[+ -

The -seeond prbperty of addition is that the order in
.Which we add numbers does not affect the result; addition
. assigns'the same number to the orderedwpairs (a, b) and °
(b,a). For example, 5 +.2 =2 + 5. We call this property
- the commutative property ofLaddition. '
A

[-4
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Commitative property of addition:. For all a and b,a +b =b + a.

%
} Addition assigns a number to a pair of numbers. If we
” wish to "add" thrée numbers given in a definite order, we
must first add two of them,”and then add the result to the
third. We “can group, three numbers given in a definite order
in two different ways,'but th€ way.in which we group them
'does not affect the result of addition; that is,
4 + (b.+c) = (a+ Db)+ c. '

- 3 For example, with a = 5, b =6 and ¢ = 9, we have
~££Z a+tb +c) =5+ (6 +19) =5 + 15 =
o : (a+b)3ye=(5+6)+9=11+9 =20~
gé‘ 'We call this property the associative property of additioq,
%}, Assbc;ative property of multiplication:” For all a, b, ‘and c,
%; ‘a*(b*e) =-(a+b).c . . ‘
. o\ . .
%ﬁ . Multiplication: Let us turn now to the second fundamental
& _" operation, multiplication. Does it have properties similar
g to. those of'additic, ? Yes. The product of two whole ,
% numbers is a whole number; the order of factors does not :
éi affect the product; and the way in whlich we group numbers - ’
i for m:tiplication does not affect the result. - /
5 Closure property of rultiplication: If a and b are whole .
; numbers then ;a:b.ls.g whole number. ' ' ]
: Commutative.property of multiplicatiohn: For all a and ' b, o
a‘b = b'a. ‘ ' : '
- -
| Associative property of acdition: For all a, b, and c¢;
a«(b.c) = (a b).c a //r‘~ ;
o~
8 /
/
» /-

&&

k2
“3

&
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Distributive property:

56 + 5 9
Because of the commutative property
also write (b + c)a

" Distributive property:

For all a,

(b + ¢)a

" ‘Exercises' 2c.
Indicate whether the following statements are false

/jxxik)

ba + ca.

6(4 + 5)
)6+(

7
+

(201
5.(3.4) =
5+7)
5+ T)
5+7)

=64+ 6" 5°
= (6 + 4)-(6 + 5)

=

(6.7) + 4

O\II

(7+5)+6
6+ (5+7)
5+ (7 + 6)

-~

e e N e e N N N e e Y N
N e P D| M
Nt et N S e S

o+ F o+
o0 OOV
=

Are addition and multiplication related?
'The most important feature of their relationship is that we
can multiply a number by the.sum of two numbers, or we can :
multiply each of the numbers in the sum by the first number
and then add~-ana we get the same result.
1s expressed by the equation a(b + c)
a = 5, b=6 and ¢ = 9, for example,

Sfmbolically this
ab + ac.
we have )

of multiplication we can
We describe both equations
by saying that multiplication is distributive over additioh

and c,

If true state the property upon which your answer

‘////“\431

o P
S vr_

D QA O
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.
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(1) (12 + 88)-(100 + 10) =:(12 + 88)-100 + (12 + 88)-10 ,

(m) 37 +.8:2 =82 4+ 37 _ (1) (m) |

Explain why you get the same answer whether you 7

: add the column of figures.-up or"down. g > -

’ ' N . I% . .
g : -
%%* The properties we have listed are certainly.simple, but ’
ﬁ% . they are also fundamentaf You may not gealrze that “they are '
%@, ' fundamental because most of the time you use: them without '

thinking abouf ‘them. To gain some appreciation\of their

Mﬁ
s
.
-t
St

e importance, consider “the fact.that with addition and multi-
Z
%&. 1icatign tables only for the numbers) l through 9 sand
7 P Y d
r the rules 10-10 = 100, lQ 100 = 10 ... we can add ° . |
§(~~ ——ang- mdltiply any two whole numbers using simple procedures ’ T
gg How is this poasible9 What Justifies the sum . l 5
v N o3 A SR ’ i<
28 ":i ., o . 14 . 7]
- SRR U ‘ \
:;: s , . N, . et S \
A - - c 61 s . o\
: for example9 L S |
i - . Using place valde’ notation the -associhtive and commutative
é properties of addition, and the distributive property, we
S proceed in the following way: .
2 23 + 38 \h(e 10 + 3) + (3-10 + 8) " Pplace value of digits
(- , £(2:10°+ 3) + (3- 10)]-+ 8 . Associative property
X : c - of addition’
g - ' = [(Z. 10) +.(3 +3. lO)] + 8 Assgqciative property . 4
4, *, of addition:
g [(2 10) + (3 10 + 3)] + 8 Commtative property
b - of addition

C ok oL . = [(g'lb‘+ 3-10) + 3] + 8  Associlative property

- of addition ' .
C - .0 - = (2.10 + 3-10) + (3 + 8) Associative property  * X

. \ ’ of addition
(2 + 3)-10 + (3 + 8) Distributive prgperty

,
1




23. 438
22 + 38

5-10 + 11
5-10 + (10 + 1).

fl

fl

we hayg” | o
S 23+ 38 = (5710 + 10) + 1
23+ 38 = (5-10 + 1-10) + 1

23 +38 = (5+1).10 + 1
23 + 38 = 6.10 + 1
’23 + 38 = 61

?he)sﬁms in parenthesis are known from addition tables.

Finally using the,associative and distributive properties again

4 1 3
We have

Addition table
Place value of digit

19

”»

hssociative property
- of addition

Since 10 = 1-10
bistributive propert& -
"Addition table

Place value of digits.

N

1.
- X

£

Q

2.

3.

~

\ .

’

Exercises 24. & =~ . ' p

Use thé broperties f%? the nat ral numbers and the
given definitions, .

2=1+1, 3 =2+, b =3 41,

to prove , :%i. ‘ E
R 2+2=q’q- ‘ ‘l‘

One way of miluiplying 32 by 23 without pencil or
paper is: 20 times 322 -1s 640, 3 _times 32 1is 96
and the sum of 640 and 96 15 736. Explain why
this gives the @orrect answer,
-issume that you know only additicn and multiplication
tables from the number 1 to 9, and that 10-10 = 100.
_Explain each step in multiplication 23 ¢

: : T8r,
‘Which step corresponds to "carryiqg 2"2

Perform the indicated operations and give the reasons
foréeach step in the operation. ’

Aa) 13 + 25 . (e) 25 x34 . .

o (p) 384 ()
R Y (e) 16 x 1. (g)
(h)

v (d) 86 + 35

12 x 100
123 x 100 _
762 x 379. ‘




Multiplicative identity element: In.the precediné’ when we
said 1-10, we used an important property of operations with

whole numbers. This is the property of the- nnmber 1:

2+l = 1-a = a, for all a. The number 1 1is the only ‘
number with this ppopert&, When there is only one element
with a given property we will say it is unigge._...Becausé'.~

of its peculiar property the number 1 plays &n important
role. We shall call /1 the identity element Tlor miltiplication

N i
or multiplicative identity element.

Multiplicative identity element property: There 18 a

unique elementaf 1, such that for all a, a«l =1l.a = a.

)y
1

Additive idenéi&z»element: What-1s mean by ;n additive . . !
identity elemént? Ve mean a number Xx with the property: f /
that a + x = a for ally a. There is no additive identity S |
among the natubal numbers, but one is desirable even for | ! ) f

the simple processes of arithmetic: it is for’this reason
that O is iantroduced. The number 0 ‘has the prqpenty of an
additive identity that a + O = O + a= a for all a, and
O is the only number with this property. (

Additive identity element property: There is a unique
element, O, such that for all a, a + O =0+ a = a.

Subtraction and division: We have not yet .mentioned sub-
traction and division. The reason for this is that subtraction
is defined '‘in terms of addition and division is defined 1n
terms of multiplfcation. To sax that x = b -\a 1Is to ‘say
that x 1is a solution of the equation a + x = b. Thus

2= 5 - 3 means that 3 + 2 =5, and 7 = - 4 means
that 7 + 4% =11. Ve -say that subtraction is the inverse

. of acdition.

Defirition of subtraction: x =b - a means 2 + X = b ' y

The symbol b -a is ead "s minus a,™ and is called . -
- a-difference. o
i2




a -9- . .,

a

e In_the same manner, division 1s defined as the inverse
of mulfiglication. =6 3 means.that 32 = 6 and -
:3 ;5/ 5 means- that 5°3 = 15, -Generzily x = b/a means N
that - x "is the solution of the eqhation a.x = b. ' )
» If a = 0, thea for ‘all values of X, a-X =0, so that ’ 'i
if . b £ 0, there s no x such that ax = b. (The symbol |
A 1s read M8 not equal to.") However if b = O, then<{:
" -, 'any value of x satisfies the equation. To avoid this .
'situation we exclude division by zero. '

1

" ,1:. '
'agx

.

-
4 s

; DetilRition gg}division: x,_{§-~means ‘a.x = b and a £ O.
The symbol ,g (or b/a) 1is read "b over a," and is called 5

» a fragtion. ' . _

S The equations a + x = b and ax =L, in terms of

'* . whlech subtraction and division are defined, are among the
simblest equations of algebra. Yet, with these equations
. WE run into trouble if, ,as we. are assuming here, the only
"numbers we know are the natural numbers and -zero. The
brouble is that some of these equations may not have solutions.
The'equations ’

-

; - 5+x=3% , 11 + x =7
, i ‘6'x =3 , 15x =5 .
. are examples of equations which do not have whole number
solutions. ‘ ' ‘

JRRASUTEV S Y

< In the case of the equation a + x = b we can say that
wthe equation has a solution if b is 1arger than a or *.
" ‘equal to a, and otherwise does not have a solution. In
. . the ¢ase of the equation, ax = b we can say only that it
g . has a solution if and only if .a divides ‘b, which is
' saying that the equation has a solution if and only if 1t
"‘has a solution which,you will agree, is not saying much.
P »Innkither case we can make no general statement about the
»solutions of these equations. To be able to say anything
about the solutions we have to know what™§pecific numbers
& and b represent. o
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then x =Y.
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An important feature of\glgebra 1s generality.

indication of this is the use of letters to stand for numbers,
which is one feature which distinguishes algebra from arith-
.metic. Oné reason for the use of letters is that we wish to
make statements about relations between numbers without
having co specify the numbers. If we have to be specific

-4in the case of the simplest algebraic equations the develop-

ment of algebra is blocked at the beginning. The disire
for a system of numbers in which the equations a + x =D
and ax = b always have unique solutions is the mathematical
reason for the creation of the new numbers which we will
call integers and rational numbers. )
Cancellation properties: Although we can make no general
statement about the existence of solutions of the equations

x 1is required to be a whole number, we can make a general
statement, about the uniqieness of solutions. We can say
that 4if the equation a + x = b has a solution it has
only one solution. Another way of saying this is:

If a +x =:a + Yy, then x =y. For example, 1f

5+ x =28, or
5+ x=54%3, then
x=3

We can make a similar statement about the equation ax = b.
if a % O and if ax = ay, then x = y. For example, 1f
: 6x = 18, or
6x = 63, then
X =73 N
These statements express important properties of additﬁpn
and r."ltiplication; we will call them the cancellation prOpenties
of addition and multiplication. Because .of the commutative
properties of addition and multiplication we can also write:
If x+a=y+a, then x=y; If a#0 and x-a =y-a,

c

14




-11-
Cancellation property of addition: For all a, if
a+x=a+y(_o_r_'}_§'_‘x+a=y+'a), then x = y.

Cancellation property of multiplication: For all a,

except a =0, if a-.-x = a-.y '(or X.a = y-a)%_Fhen X=Y3 ‘Y

Exercises 2e. (Oral)
Find the whole number solutions of the following equations.
Indicate which equations have no wholz number solutions. Also,

state which cancellation properties are used in finding the
solutions. )

l. x+ 7 =17 T. x+ 11 = 12
2. 8 =172 8. 32 =2x

3. 9+x=19 9. 13 =3 + 2x
b, 8 =14 + x 10. 13 =2 + 2x
5. 2x =0 11, 9+ 2x =93
6. 3x =2 12, 28 + 3y =1
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5. Number Systems

By a number system we shall mean a set of. numbers for
.Which addition and multipli. :tion are defined and have all
the properties 1listed in Section 2. The set of whole.
numbers is a number system; in later sections we will
learn about others. We summarize the properties of a
number ‘system below.

v

Properties of a Number Sysfem
Closure If a and b are in-the system then a + b is

in the system.
If a and b are in the system then - a‘b 1is
in the system. . .
Commtative For all a and-b, a+ b =Db + a a
--Por all a and b, afb = b-a

' ’///As§661ative For all a, 'b and ¢, a+(b+c)=1(a+b)+ec
f:For all a, b and ¢, a-<(b-c) = (a’b)-c
Distributive For all a, b and ¢, a-(b+c¢) =a'b + a-c

(b + ¢)-a = bea + c-a

Identity element There is a unique element b, so that for
all a, a+0=0+a=a

all a, a-l =1.a = a

Cancellati»n For all a, 4f a+x =a + vy, then x = v
For all a, 1f x+a=y+a then x=17y
For all a, except a 0, 1f ax = ay then

X =7y
For all a, except a = 0, 1f xa = ya, then
X =y :

An equation involving letters which is a true statement
when thé letters represent any numbers in a number system is -
called an identity equation, or briefly an-identgtz,iﬁ the
system. '(The word identity here has no relation to the word
identity in the phrases "additive identity,element"

’ i
, i8

. . There is a unique element ul¢W§9M§h§PQQQIL”\“M,-M




B e e A

=13~ &

-

L . - . 'es

|
P - Bl
J

";ultiplicative identity el'ement.") The equations 1 the
statements of the associative, commitative, and distributive
éroperties are identities in every number system. Using

these properties and the others stated above as axloms. or
Rostulates we can establish other statements,  in partioular
identities, as theorenms.

f In proving theorems we will often use statements such

'as: If a=band b=c then amc; ifa=>b andc =d
fthen a+c =b+ d, Such statements are consequences of the
fmeaning of equality and the meaning of operation. The equation
f = b means that the symbols a and b represent the same
fnumber. Thus, if a and b represent the same number and

fb and c¢ represent the same number, then a ¢and ¢ rerresent
; the same number. If a and b represent the game number,
"and ¢ and d represent the same number, then a’+ ¢ and . .
i b-+ d represent the same numhey namely the number assigned

| by addition to the ordered pair of numbers which can be
' represented either by (a, c¢) or by (b, d). When we use ,
statements such as the two we have discussed we nill say
that we are using substitution statements. )
— As a simple illustration, consider the following

. - ; <

Theorem 1 For all a, b and ¢, a+ (b +c)={c +a)+b.

|

Proof: b+c=c+b Commutative property
f c+a=2a+¢ -Commutative property
a.+ (¢ + b) Substitution '
(a+¢c)+ Db Associative property
(¢ + a) + b. Substitution.

a+ (b+c)

fl

L RRTIR
T ——
-
it

/ L Theorems such as the preceding are necessary because

s addition and nmultiplication are defined only for pairs of

| numbers. . We may use the symbol a + b + ¢ for the sum of

F . three numbers only because of the associative property of

/ addition. If addition did not have the associlative property

| a+b+c might man (2 +Db)+c or a+ (b+c) and ‘.
/ these numbers‘nould-not be the same. Similarly we may

17
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write a+b+c¢c=c+a+b, But only because of Theorem 1
and the associative property. There are many similar identities,

<

. a+b+ec=c+a+h

- =Cc+b+a

- _ (=b+c+a
=b+a+c¢

=a+c+b

and corresponding identities for multiplication. Instead

6f stating and proving all of these as theorems, we Shall
accept them, as proved, and say that we are using associative
and commitative properties when we use them.

- There are many statements in algebra which are actually
theorems evéh\though we_dontt usﬁélly call them theorems.
- -In particular, every-equation involving letters which/is
obtained when "simplifying," "multiplying out" etec. 1s.an.
identity, and\hence a theorem. The following examples
‘11lustrate this\ o h " ‘ 7

3

Example: Simplify B&x + 4(x + 7).

LD

Solution: .
' 3% + ¥(x +7) =3x + (4x + 28) Distributive propérty
) = (3x + 4x) + 28 ° ' Associative property
=(3 + 4)x+ 28 Distributive property
= Tx + 28. ‘ o .
Example: Multiply out (a + b)2 y
Solution: _
(a + b)2 = (a + b)(a + b)
=a(a +b)+ bla +b) © Distributive property
= (é~a + ab) + (bea + b-b) " Distributive property
= (a2 + ab) + (ab + b2). ' Commutative prdperty
= (a®'+ b°) + @b + ab)  Associative gnd
a commitative properties -
= (a2 £ b2) + (1-ab + 1-ab) . Identity element
) property- - -
= (32 + b2) + (1 +1)ab ~ Distributive property
) 2.+ 2ab + b° Assoclative and

N =a |
R commutative properties’.
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’Exercises 3.
Simpiify each of the following expressions, Justifying
eachgstep as was done in the- 1llustrative examples.

1. 2(5a + b) + 3(b + 2a)

‘2. (3x) (2y) . N
(x +3) (2x + 3)
. a+3(a+ 4) \ ’

3

i

5. ,xay + 5 + 37 ¥y +\2 ’ . .
6. a(db + 2) + a(b + %) : CL
7. 2a°% + 3% 4 5p° 4 Va

8

9

. (6x +9) (2x +-2) 3% + 18 , N L
. (x+ a) (x+ b) ‘ C s 4
10. {a+Db) (x+y) . Y K
11. (ax + b) (ex + 4) 7 - \\\ =
4 ) \ Z‘?
e “'4.:3} ‘j '
‘ s
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4, The integers ~)

~We hé%e defined subtraction in terms of<the equation:
a+x=b,
The statement % = b - a means that x 1s a solution of this
equation., But in the system of whole numbers thls equation does
not always have a solution, and hence b - a does not always
~ha.ve meaning. .For example, the equation 5 +'x = 3 does not have
a solution in the systém of whole nﬁmbersg and hence 3 -'5 has
no meaning in this system. ) - ‘
- Thus, for the purposes of algebra it is deslirable to enlarge
our system of numbers so that the equation .
. . a+x=2>
, always has a unidue'solution. To do this we join to the set of
e naturql‘pumbers and zero the seft of negative‘1ntegers-<numbers
' représented by -1, -2, -3, ... --and then def4ne addition and
multipliéat;on in this new set, in such a way that all of the
properties <of a number system hold. The new system-of pumbers
is called the system of -lntegral-.numbers or integers. The system
of integers is an extension of the system of whole numbers. By
this we mean that the whole numbers éreéﬁn the‘hew system and that
the operatiohs of -addition &nd multiplication applied to whole '
numbers yield the same result as in the system of whole’nhmbers.
Propertieg.ggyggg_gxgggg‘gg_1ntegers£ As’'a number system, the .

N

(A,

X
R g)
RS

AR R
ot -

& 'z;;fz

tt*-':g’.

%; system of integers nas all the properties listed in Section 3.
% The additional property-it possesses is the following.

é‘ ,  Subtraction property: For all a and ‘b, there is a unigue x,
3 such that. a + x = b. "
;*;{ -———n—._ .

N y

& A . .-

g . .As gxamples consider the following equatlions which do not

have solytions in the system of whole numbers

.\ 54x=3 -, 11 +x =T,
In the sygfem of inpegers these,equatians have the solutions -2
and -4, r?spectively. "o

s Y
¥

i

/

.
% H
20
.
3 -
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Exercises 4a. (Oral)

Find all integer solutions of the following equations. If
_ an equation has no integer solutions the correct answer is “none."
'l. t+12°=7 5. z+3=2+4z B
2. 9z'=15 6. 5x -3 =18
‘3. 2x + 26 =.8 7. 5x + 18 =
"4, 25 4+ 3 = -15 8. 3y +2(7 +2y) =

. Why 1s 1t necessary to introduce the negdtive integers ana
to operate with them as we do to get a system which has all the
properties we desire° ,Let us forget about the integers now and
Just suppose that we have=some number system which 1s an extension
of the system of whole numbers and’which has the subtraction
property. We will show that the negative integers must be in
this system and. that the rules of operation with them must be the

- familiar rules of operation.

Aceording to the subtrastion properiy
the equation y : . .

i a +x =0
always has one and only one solution. For a given a we will call
the unique solution of this equation the inverse of a for

addition or the additive inverse of a, and Qenote it by

Additive inverse *elements:

-

-a.

is therefore *
a+ (a) = 0. .

Observe that because of the commutative property of addition we

,have also, ;

'—a+a=0.

7z

«

Definition of additive inverse:
a means a + (-a) = -a + a = O.

-a 1is the‘additive inverse of

Por example, corresponding to the number
-5 with the property that
+(-5) =-5+5=
-5 1s the only number for which
54+ X=X 4 5.=

5 there 1s a number
and X =

"w“ ~

21




Theorem 3: For all a,. -( a)

]
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The symbol ,-a 18 réad "minus a", “negative a" or ozposite of a." !
The{égditrve inverses of the natural numbers are what we call ., 1
the negative .integers. As we shall show below -(-a) = a, so the
additive inverses of .the negative 1n6égéfs are the natural numbers. 1
For this reason, the natural. numbers will also be called the e
|

positive integers.,

Let us prove the statement we just used.

= Qe . 4
Proof: . We have ‘ ‘ .l s ‘ %
- -4 + [-(-a)] = O " Definition of additiVe inverse

-a + a 0- Definition of addibive inverse.
-(-a) ™= & Subtraction property,

since by the subtraction property the equation =«a + x.= 0 has

<

‘cnly.one solution. . «

Now, using the equation a + (-a) = O which defines the
negative integers and properties of a number system we can find
the rules for operating wlth the 1integers.

Subtraétion and additive inverses: J

Consider. the equétion a +x=Db. As 1n;%ection 2 we denote
&Qe solution of this equation by b - a. Now however the symbol'
élways indicates a perfectly definite number, for by the subtraction
propéfty, tthe equation a + x = b always has a unique sclution.
Thus, subtraction 1s an operation defined for all ordered palirs ’
of integers. _ - ’ L ’ /

We shall now establish an important connection between i

subtraction and additive inverses.

5

Tneorem 4: For all a and b, b -a =b + (-a)

Proof : a + (-a) =0 Definition of additive inverse
[a + (-a)] +b=0+Db Substitution
(a + (-a)] + b =Db  Additive identity element property

22 :
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o a + (-a + b) = b Associative property
a+[b+(-a)l=0» Commutative property
S0, ‘b - a="b+(-a) Definition of subtraction -

3

We shall refer t~ Theorem 4 as the theorem gn subtraction. It
states that a number 1s subtracted by adding its additive 1nverse.
Addition: The theorem on subtraction éi also part of the rule for
adding positive and negative inﬁegers.: For if b is larger than a
the e%uation a+x=Db has a solution 1n the system of wbole
numbers. Since our new system 1s an extension of the system of
whole numbers the solution of this equat}on, that is,' b -a,. in’
our new system must be the 'same whole number, Thus, for example,

T (- 3) 5-3=2 and 17 + (- 11) 1F - 11 = 6. To.find the

sum- b + (za) when a dnd b are natural numbers and & 1is
larger than b--for example, to find 3 + (-5) and 11 + (- 17) --
we need another theorem, namely the following.' '

. »

Theorem 5: For all & and b, b+ (-a) = -(a - b) >
Proof : The nroof of this 1s left for the student as an éxerclse,

(Exercises 4e, 13). For hints on procedure, see the proof of
. Teorem 6 below. '

) Using Theorem 5 we get, for example, 3 + (-5) = -(5 - 3)=
22 and 11 + (-17) = - (17 - 11) = -6. Thus, with Theorems
and 5 together, we can find the sum of two integers in every case
in which one is positive ahd one is negative.
-To complete the discussion of addition we need the following
theorem, which enables us to find the sum of twb negative integers.

Theorem 6:. For all a and b, -a + (-6) = -(a + b)

-

Proof: We have
a+(-a) =0, b+(-b)=20 Definition of additive inverse
[a+(-a)]l + [b+ (-b)] =0+ 0  Substitution
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\ . 2
fa + (~an(+ (b + (-b))-= 0 " Additive iéghtity progérty .
[a + b] + [(-a) + (-b)] = 0 Associative and cocmmutative property
fa+b]+ [-(a+Dp)]=0 Definition of additive invérse

(-a) + (-b) = -(a + b) Subtraction property, '
Since by the subtréction pfoperty the equation (a + b) +x =0 -
has only one solution, : : -

o .. Using Theorem 6 we find for example -3 + (=5) = -(3 + 5) = -8, -
= , and -11 + (-17) = - 11 + 17) = -28. Thus, with Theorems 4, 5,
“ apd 6, and the rules for adding whole riumbers, we can find the sum

i? : of. any two integers. We can also use these theorems, and the
?ﬁ Theorem on subtractlon, and Théorem 3, to find the difference of
%ﬁ any two integers, as 1hd1cated 1nlthe following examples.
5 Examples: : ) ) .
? o 2 -3=2+ (-3) Theorem on subtraction '
§ . =-(3 -2 - Theorem 5 - "~
; ) . = -1 . Substitution
% 2 - (-3) =2+ [-(-3)] ' Theorem on subtraction
?v T =243 - Theorem 3 and substitution
3 =5 Substitution. )
: -2 - 3=-2+ (-3) " Theorem on subtraction
; " = -(2 + 3) Theorem 6

= -5 . Substitution

Exercises 4b.
Perform the indicated operations.
1. 12 - (-12)

2. l1l2 + 12 ..
3. (-8) - (-%)
— 4, (-8) - 4 | L

5, (-6) + (-2) + 3 + (-5) + 8
6., (116 + 88) + (-16)

" T. 7 *a+ (-a)
8. (-9 +.a) + (-7 * a)
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G (io - 12? #t(x - 14) + (20 + x)
1o. ;[_1 + (~2)] - [(-6) + 3]

Multiplication ' ‘ - ' .
In a similar way we can prove two theorems which enable us to

find the product of any two integers,

v
e

o ‘. ' . R
'ﬁ;Theorem 7: For all a and b,* (-a)’s b =-(a + b). ’
Proof:  We have R )
a+(-a) =0 « © Definition‘*of additiye—inverse
fa +¢-a)] - b=0+Db Substitution . _
"[a+ (-a)] b=0 Theorem 1 . - ,
2"+ b+ (-a) « b=D Distributive property > L
“a.. b+ [«(d « b)] = 0 Definition of additive inverse
-{a +-b) = (-a) + b Subtractioﬁ property o
since by the’ subtraction property ‘the equation (a b) + X = D
has only one-: lution. -~ - .- o .
: . ‘ . '/,,
Bxamples: (-5) +3=-(5.3)=~15 = .~ .
5 (-1) « x=-(1 +'x) = -x -
5
= “Theorem 8: For all a and b, (-a) * (-b) =
t. Proof: By the preceding theorem we have ) ‘
%_ : g (-a) » (-b) = -fa » (-D)] = , Theorem 7
§ \ = -[(-b) " a]. .~ . Commutative property
= -[-(b-a)] Theorem:7
5 ¢ > = b e a ‘ Theorem 3
& — . = a D ' . Cuomutative property
Examples: (-5)(-3) = (5 - 3) =15

—
[
S
—
[
S
]

. | :é; : (1L .1) =1 \\:)

. T -
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Perfcrm the indicated operations,

1. . (-2)
2. ( 5) « (-2)
3. (-2) - 5. (-8)
~%. (-3) +'2 - (-6)
- 5. [(-3) +2] - (-6)
6. 7 (-93) +7 + 93 ;
7. 3 (x - 1) + (x - 2) :
8. (-2)(-3)(-1) -
9. 7 (0) §310) . 3
10. 1#(a +‘\*p) + (a + b) + (-3)(a + b) 3
- We emphasize that the theorems we have proved in this section ‘ \f

)

are true statements--and have been proved--for any -integers a

a b;" they state identities in the system of integers. It 1is
true, but irrelevant, that in most of our examples a -and b have
beeﬁ'positive integers.

" Examples: Taking a = -3, b =2 in Theorems 3 - 8 we obtain = -
the following. equations. o
-[-(-8)] = -3 " Theorem 3
T2 (-3) =2+ [-(-3)) Theorem 4
. 2 + [-(-3)] = -=(-=3 - 2) " Theorem 5
i ' D T-(-3)] - 2.= -1(-3) +2) Theorem 6
? (-(-3)1} - -[(-3) - 2] Theorem 7 °
s - [-(-3)] [ 2)= (- 3) Theorem &

Eﬁe theorems we nave proved tirs far, together with the

g

properu*es of a number system, corstitute a basic set of identities
in ‘the system of inbegers,‘from which many other identities for
the integers’ can be derived. 1In parpicular, we can use these basic
identities to "simplify" expressions involving subtraction as’'well
as_addition ana multiplication. Tnls is so beeause the system of
t io?Egers 1s closed under subtraction: subtractdon is defined for
every o?aered pair of 1qtegers, and the Qgsult is. an integer.
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In the following examplesﬁjghe equations we derive are
idenﬁities in the system of 1ntegers. Instead of .proceeding, one
step at a, time in the bolution, we have combined several steps

) where this can bg done without obscuring.detalls. The students’
should f1ll in these detalls.:

r

*

Exampl H Perform'%hg 1ndi§at§d operation: 7. a - 3 .'a

-

© . Solution: Tra-3 . a'= ?‘- a + [-(3 - &)] ]
Teva+(-3)~a | '
[T%+ (-3)] - a

. (7 % 3)

VN : =4 . a

kR ~
<

‘:a

' Example: Simplify (a + b) (a - b) ,

o3

[a + bl[a +“““( b) ]

a [a + (-b)] b [a+ (- b)
a.a+a- ( b) +bea+b . (-b)
P - :=2-(ab)+(a;“‘"b)-b2

- p2-

- Solution: (a + b)(a - b)

Ly

PRI

It sheuid Be noted that subtraction, like addition and °
multiplication, 1s defined only for a pair of numbers. Expressions
« Involving éhreg or more numbers wlthout parenthéses, such as
X -y + z, may be used as abbreviations only when there is no
“danger of confusion. Thus, x - y + z might mean (:i - ¥) +tz
or X + (~y - z); and if we wish to use x - Yy - 2 as dh

abbpeviation we must show that. \\
(x -y) +z2=x+ (-y + 2) AN
‘for all x, y, and z. We have x -y =x + (-y) \\
X -y sx+ (-y) Theorem on subtraction ~~\\

(x - y) +2 =[x+ (-y)] + 2z Substitution
(x -y} + 2 x + (-y + z) Assoclative property.
1 ' Thus, there 1s no danger of ambiquity in using the expression

K
+ t

X -y + 2.

« - ~

' 27
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Summary: Let-us look back af what we have done. We have assumed
that there is a number system which i1s an extension of the.system
of natural numbers and which has the subtraction propefty. We
defined the negative integers to be the additive inverses of the
natural numbers. The natural numbers, zero, and the negative
integers were then called the integers. We then discovered the

-

rules for operatiﬁg with these integers. These were the familiar

.rules, but they were not jJust stated or discovered by intuition.

They were obtained as logical conéequences'of the properties of
a nunber system and the subtraction property.

We have not said that the syétem of integ-.rs is the only
systew having the required propertiesf There are others. Our’
discussion shows that any such system'muS§ include the integers;
and the system of integers 1s. the smallest system having the
required properties. '

For reference we list below the properties, definition, . ¢
and theorems formu;gted in this section,

Subtraction property:- For all a and b, there is a unigue
X, such that a +x =0 ' '

Definition: ~ Additive inverse-- -a 1s the additivé inverse of

'a means a + (-&) = -a +a = 0,

o

Theorem 3: For all a, -(-a) =

Theorem 4: For

r\!
',—l
ot
'

and b, b-a=0b+ (-a)

and b, b+ (-a) = -ka - b)

Theorem 5: For all a .
Theorem 6: For all a and b, -a + (-b) = -(a + b)
Theorem 7: For all a and b, (-a) * (b) = -(a + Db)

|

oy
',—l
o
o
o}
o,
o’
.
P
1
o
-
*
o
1
o’
-
[}
o
*
o’

Theorem 3: For



J R A L e A I

Exercises uid.
* Perform the indicated operations.
(a +b) - 2a

.

.

[ * L]

W O N O U = W o

fu
o

11.
12.
13.
14.

K}

(% -+ 2ab) - [(b? - 38D) + (a - b°)]
(4x - 158) - (38 - 57) + (8x + Ty) - -

_25_

3x + (- 2x - 5y) W
3x - (-2x + 5y) |
[x+ (x - y)] +2(x - y)

-2(3x - 5y) + 10 (x -~ y)

2x 3x - 7)

~2x2 (-5 + 2y)',

(x+y) (x - 2y)

(3x + 4y) (2x - 5y) )

3xi (3 -X - 3):25) AR PPN : «w\.‘,m,_,; B A ‘“:"!’

.

-2ab° (-3ab) (5a\ ' N

(¥ - 5) (3° - by} ¥)

(‘Urc - l)(c2 + 5¢ = 6)

" 3x(x - 2y) (x + 2y)

(2x "SV)?.

(2x - 3)(4x + 1)

~(2 = )2+ b)+ (b~2) (b+2)

(3 (a + b))2

(32 + b)(2a - 5b) + (5b - 2a)(a - kb)

(3 +y) (24 %) | ]

(x + ﬂ)(xe + RX + 6)
{(a + b) =~ 20][(_a + b)) + 2¢]

(3% - (y - 2))3% - (v < 2)] B
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426;
“[{2a + b) = 51[(2a + b) + 2]
[a+b+3][r+s+3]
(x-~y+m-n) (x'+ y'; m+ n)

(2% -y +2z)(ex -7~ z)

(b2 + 2b + 1)(b° - 2p - 1)
(er -8 -t)2

(x - 2y)(x® + 2xy + 45°)
(x + y)(2x + 3y) - H(y° - x2) + (v = 6x) {y +x)
(x + 5) (% - 5x + 25) - "

Ux +y) +31{x +73) - 3]

36. -(a - b)(a+b)+2b(b+a) - (a-b)2

s .
{ -

A S v e . & -
- el LI

/7

-
?
= .Exercises le.

Prove the following ldentities.

1. (x+y)-y=x
i 2. .(x -y)+y=x
3. x - (y+2)=(x-7v)- 2
b, x-(y-2)=(x-y)+2
5. (x+y)-z=x+(y - 2)
6. (x=y)-z=%x-(y+2)
T. Ax)(y)(-8) = -(xys) - . ,
8. (~x)(y)(-8) = xys ‘
9. a(b-c) =ab ~ ac

10. (a - b)2 - a® - 2ab b2:
11. (a-b)(a%+ ab+ b°) = a - b :
12.  (a + b)(a2 - ab + b2) =2 + b

13. b+_(-a) =~ (a -Db) (Theorem 5)
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5 Factoring
. Quite often we wish to represent an algebraic expression
as a product This is called factoring the expression. '
Factoring is useful, for example, in the simplification of
fractions and in connection with the solution of equations.
_In the simplest cases, an- expression can be factored

by usirg the distributive property one or more times.

Example: -Factor 2x + 3x -
Solutién: By the distributive’ property

2;2 + 3x = (2x + 3)x

'

. There 1s no‘sygtematiq procédure for factoring an

'expression; in fact, 1t generally is not possible to facto;

an expression. Essentially the only way one can factor an
expression is by recognizing it 1is a”broduct whose factors
one knows. For this reason it is important to remember
certain identities obtained by "mulitplying out" simple
factors. The following lidentities in the system of integers
are particularly useful.

+ &
s e
PN CHROPIR I ¥ LEARTAC S 7y

For all a, b, and ¢ ~ ab - ac =a(b ~c)
For all a, and b, a 2_ = (a + b(a = by
For all a and b, a a2 +Bab + b° = (a + b)
. For alla and b, 82 - 2ab + b° = (a = b)°
For all a2, b and x, ‘%2 4 (a + b)x + ab = (x + a)(x +b)
_For'all a and b, a + b = (a + b)(a - ab + b ) - ‘

For all a and b, & = 1b° = (a - b)(a + ab + b2 )

. The proofs -of these identitles were given in the examples
and exercises of the preceding sections.

Example: - Factor  x- - 9
Solution:. X © - 9 is equal 2-1v21f a=x, and b = 3.
_— 2

Since a° = b° - (a + b)(a 3\ b) for all a and b,

(x + 3) (% - 3). ' -

. we have X 2. 9 =

31

FXY SOy
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x 2. ix + 3
- 4x + 3 will be equal to x° "+(a +b) x + ab
if ab = 3 and’ a + b = =4, ' The only 1ntegers
a, b which satisfy ab =3 are a =3, b =1
and a = - 3, ‘b=-1 (a=1, b =3 and
a=«1,b =<3 are also possibxe, but provide
nothing new.) a = =3, b = -1, also satisfy
a+b=<lt, Thus witha = =3, b = =1, . x? Z bx + 3
‘18 equal to x° + (a + b)x + ab, and since
x2 +(a+Db)x+ab=(x+ a) (x + b) for all
.& and b, we have

X2 ek 3 =[x+ (<3))x + (1))

Factof
-2

'}

2 kx4 3= (x- B)QK - 1)
‘Because of thelr usefulness in féctoring the identities
, Wwe have listed are sometimes called factoring identities.
However any identity obtalned by "multiplying out" several
factors can be used as a factoring identity just as we have

e

" used those in our list. ’ "

/

We stated that factoring is important in connection
with' the solution of equations. This 1s a consequence of
the following theorem.

X,

i o
S
~

i

+ Theorem 2: .
Ifa=0 or b=20 then a‘*b =0
s -Jf a.b =0 thena=0o0or b =0.

RSN

;'b\_{

i b

% Proof: To prove the first statementof the theorem suppose,
%a say, that b = 0., Then )

4 1+0=1 Additive identity property
5 a(l + 0) = a.l Substitution

: a*l + a0 =a-l Distributive property

- ‘ a +4ea0=a Multiplicative identity property
But, a+0=a Additive identity property
I So, a0=0 Cancellation property of
; ' addition

: o and a*b = a0 = 0. 392
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To prove the second statement suppose a b = 0: If

a = 0 the theorem is proved. If a = O the théorem is .
proved. Suppose a = 0. The a.b = 0, and by the first
statement of the theorem, a+<0 = 0.- Thus by subatitution

a'b = a*0. Since a =0 it follows fﬁbm the cancellation
property of multiplication on that b = 0.

v

_ The two statements of Theorem 2 are usually combined
*n the single statement: "a.b = 0 if and only if a =0
or b =0." In words: " product is sero if an only if o
one of its factors is zero." Notice that "or" is used,
as’'is customary in mathematics with "or both" understood.

Example: Find all selutions of the equation x° - Ux 4 3 = 0.

Solution: We showed in the preceding example that x2 - U4x + 3
= (x - 3)(x - 1) for all x. Suppose the glven
equation has a solution x. Then .
x° - Ux + 3=0

(s-3)(x(\1)=0,
so that by the preceding theorem, either . x - 3.= 0
or, x -1=0. If x=3=0 then x=3; 1f x-1=0
then x = 1. Thus, if the equation has a solution it must l
be either 3 or 1. By substitution we verify that both
3 and 1 are solutions of the equation.

LY

A\

Exercises 55.
Pactor each of the following.
. ax + ay

5x2y° + 30 y°
3bx - 6b°y
¥o - 25 A

1

2

3

4, - 1lbed + 6ce - 2ef
5

6. U9 - x°

- 3




15.
" 16.
17,
18,
“19.
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20.
21.
22,
- 23,
24,
25.

*#26.
7.

28.

29.
*30.

A
.

Ay

gt

k1

NG et
7

¥ o+ 27 \ .
x?,- 64 ‘
+1

278° - 1,

ac’ - 6ha

a(x +7) + b(x + ¥)
x(a - b) - y(a - b}

_a3 -8 - a+ 1

(3x - 3)° - qu®

S - 6ab - a? - 9b2

54a2p° - 2220
5.5

x° +5x = 36
mx? - 12mx + 36m

au - 16

36 - 25x2 + hxu #
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2h - 2y - y°

N

ook,

&

N

£

DL

9r2 - és - 32 -

we = 11w + 24 : B

9c2 -1 .

L4
a

W e s

s
e

.

- 3a2 - b N )
y3 + 2y2 - 5y - 10 R .
a6 ": 78.3 - 8 ‘ - R ' O : *

;4.' hs, ,x2(a - b) + yz(b - a), , . . §

¢ 46, 64 - 16a + a° S : E

: . BT ot 25 , .
; 48. b3 + d3 S .o \ﬂh

P 49, 2122 y +y

;- 50.  ab® - ay®
o 51. 8lx’ - 16y2s°

}\ 52, -3y% + 15y + b2
55.  27a° + 8b°

54, %2 - bx + bxy - 2uy

[}

. Tk
55. ex' - 2ex° - 8 .




SRR 32t ,'/

6m° - T3am + 12a° A S _ '

57.  3r0t + 192t" .

58.  2w® + 3w --10wb - 15b
59. 6% - 8b |
60.  Bx'y? - 20x3y2 I 12532
61. -3a° J k- 15 o ~' : ,
62." bx° + % - by2 ; xy2 |
65. 1 + 4982 - 1ls : | S

64, 18 - 45x - Bx° A /
65. - av - 2bv + Zev - Tam + 1l4bm - ldcm /
66, 5Kk° + 28w = 12w . _ ,/
67, 127 - aéx?ye + syt - - V .
68. ' x> ;59x2y + 27xy2 -,27y3 : | / 4 »
69. yat - 2122 - 25 ,
70 (c-a) - (a - eb)? | S

71. 35(xu - 3xy) - 15(x3y - 3Y2)
72. - (x4 y) +(a+ 3b)°
75, 6st - 952‘+ r?

4. x4 - 2x2 + 1

75. (2x + 4)4 - 18 (2x + 4)2 + 8

- t2 - 10r + 25

Exercises 5b. ,
Find all solutions of the following equations.
Check by substitution.

1. y2 - Ty + 12 =0
2. %2 4 7y - 18 = 0
2. x2 - 3x ~-10=0
b, x2:+ 2a - 24 = 8 - 2a

36




. =33-

5 X% - 2x = 8=-09

6 X2 - % + 1 =1 AN

7 2x? +3Xx + 1 =X +2x + 1

N 25%° - 100 = 0 | .
o | ‘
:i 9. 2x2 = x° + 9 | .
g%i" : Exercises 5¢. R \
% 1. "Multiply out" . (x +a)2(x + b) and use the re;sulting
%%: identity to factor- .,
L (a) x'2 - 3x° 4+ by (v) x3 + 5x° § 7x + }, T
o (e) 0 + 3x° 4 3x + 1. ' . L
2. Write an equation in x which has x =1, x =2 and

- = 3 as solutions, and has no other solutions.

A Y

‘ . ) ¢
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6. Rational Numbers .
In the system of 1ntegers the equation a+xeb
always has a solutidn, but 1t is still not true that’ the

. eguation .a:x = b always has a solution if .'a # 0. Since

" we haye defthed the quotient ~§ as the soluticn of the

equation aox_; b, it follows that % does -not alwayi have

- meaning in the system of integers.. For example, the

equation 5 VX = 3 has no solution in the system of 1ntegers,
and hence %- has no meaning in this system,

Again it is necessary to enlarge the number system.

"To-do this we join to the set of integers the set of all

b

- fractionss =~ where a .and b are integers and a = 0.

a
We then define addition and multiplication in this new set.

The.new number system is ¢alled the system of rational
numbers. '
The system of rational numbers is an extension of the

"system of integers; that is, 1t contains the integers, and

the operations of addition and multiplication applied to
integers yield the same result.as in the system of integers.
Properties of the rational number system: The system of
rational numbers has all the properties of the system of

_ integers, namely, the properties of a number syscem and

and the subtraction property. The additional property

. which the system of rational numbers possesses is the:

following.

Division Property: For all a and b, a # 0, the e is a
unique x such that a.-x = b.

As examples, consider the following equations which do not
have solutions in the system of 1ntegers

5:X = 3, T x =

In the system of reatlonal numbers these equations have
/
the solutions % and -l%, respectively.
38
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'Now let us forget that we know the rational numbé%s and
Just Suppose that we have some number system which 15 an extension
of the system of integers and which has the properties of &
number system, the subtraction property and the division property.
We  will show that the raticnal numbers must be in this system '

and find the rules for operating with them. : -
v

EXercises 6a
Use the definition of division and the division property
to prove the following statements.

1. =1 a#o b, &= -a
2. 2-a ‘ 5. 282 " ago
3. 2=0 . afo ‘

Mgltiglicative inverse elements: According to the division
property the equation ’ .

~a.x =1

has one and only one sclution for each & except a = 0. For
given a # 0 we call the solution of this qnétion, which is
denoted.by '% , the multiplicative inverse of a. The property
which ‘defines’ is thus - : . 1 (< '

. . a-(a-) = 1

Observe that because of the commutative property of multiplication 4;,'
we have also :

i

(é)-a =1

Definition of multiplicative inverse- The multiplicative inverse

T
. g; a 1is the number 3 such that ) a -a(—) =1.

For example, corresponding to the number 5 there is a number
i with the property that .
2 1 -1y
(g)'5 = 5°(;) =1,
| . '
5 and x = e 4s the only solution of the equation
5 ) 75 = 5.x =1

U\[

39




. Y
-36- W

The symbol '% is read ‘"one over a" or "the reciprocal of a."

Division and multiplicative inverses: Consider the ‘equation
aax =b, a # 0. As in Sectio% ‘2‘,we denote the solution of
this equaticu by 'g; Now, however, the symbol always represents
a2 definite numt.r for by the division property, the equation

= b has a unique solution if a # 0. Thus in our new
system division is an operation defined for all ordered pairs
of numbers, except that .division by 0 is not defined
‘ There is an important connection between division and
multiplicative inverses similar to the connection between

suptraction and additive inverseé. : v . ; é

A

\~

(heorem 9. For all a dnd b, a #0, = =b-(3)

) ~—
1y -
;- Eroof: a(E) =1 Definition of multiplicative ¢>
T ' inverse
£ 1
bla(z)] = bl Substitution
/' a
~ b[a(%)] =b Multiplicative identity
element property
(ba)(%) =b Associative property
(ab)(%) =b Commutative property
P
1 < -~
a[b(g)] =b Assoclative properfg//////
//.
But a[%& =b Definition-of” division
3 b _ .1 ] )
o - 7= b(§9 Bpivision property,

//////

since by the division priper ty the equation a+*x = b has orly
one solution.

e shall refer to this theorem as the theorem on division .
states that division by a number is the same as multiplication
by the multiplicative inverse of thé number. :

-

40
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Equivalence of fractlions: Before we go on to find the rules

-by two different fraction symbols

' : - ca_ a
,Theopeg'lo. If cb#0, then R
a
- Proof: Let x = B
Then bx = a ~  Definition of division

Exercises 6b. .

i
3
h
J
2
<
3
y
}
s
P

" for addition and-multiplication of fractions we have to make
an 1mportant observation. The same number can be represented

c(bx) = ca Substitution
7~ (eb)x = ca Associative property
X = %% Definition of division

This 1s the important Equivalence Rule for fractions.
It is Important to note that this rule can also be
read from left to right (as can any equality)'in the form

‘ If be #0, =35
In words we can say: "If the numerator and denominator of a
fraction are multiplied, or divided, by the same non-zero
number the value of the fraction is unchanged." .

Use the equivalence rule for fractions to simplify:

3 I 6 a2 - 4
€ 2a§ + 92 + 10
5. a2 . 7 2e2 +a-~1 A
ab - . 6ac.~ Ta + 2
T 2
9mn 3X° + X
3. -—~§—~g 8. —?——-—J[-
iem” ¥y _ X" + 3xy
l 23X - 9 a® - b2
OB 9. o T
2 bS + ab - 2a o
a+ b ax + ay - bx - by
5 7 2 lO.— am - bm - an + bn
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Mnl&iﬁligagign of fractjong: The operation with fractions that is

ieasiest to perform is multiplication.

Theorem 12. If b #0; then _% + %: 9_.1;._2

Proof: | % + % = a(1l/b) ~ c{1/b) Theorem on division -
= {(a + c) (i/b) Distributive proverty
= §—§-2 Theorem on division

-3 8~

Theorem 11. If bd #0, then (%)(%) = %% .
Exoof: . Let x =a/bandy ='c/d

Then bx = a and dy = ¢ Definition of division
(bx){dy) = ac Substitution
(bd)(xy) = ac Associative ahd commu=
tative prdperties
So Xy = %% " Definition of division

\

- c . \\\

This is the mgltigliggiiog rule for fractioris. In words we' \
can say: "The product.of two fractions is a fraction whose numerant\
tor is the product of the numerators of the original fractions, and
whose denominator is the product of the denominators." - .
Addition of fractjons: We will find the rule for addition of
fractions in two steps, first for fractions with equal denominators .

and then for those with urequal denominators.

This is the rule for addition of fractions with the same denomina-
tor. In words: "The sum of two fractions with the same denomina-
tor is a fraction with that same denominator and with a numerator
equal to the sum of the numerators of the original two fractions."

Now consider any two fractions % and % . According to the
equivalence rule for fractions: ) .
b bd ’ d bd

and hence




»

-3G-
. But now the fractions on the right have the same denominator so
that we may use the preceding theorem to obtain

a, & .ad+ bc
b7 d bd

which is the reneral addition rule for fractions.

il.eorem 13. If bd #97, then % + % - ad ;db

You would find it very awkward to put this rule into words
and, in fact, you w:ll nrcbably solve problems by the method we )
used to establish the rule, so we describe the procedure thus: "To
add two fractions.with different denominators, change them toiequi-
vaient fractions with the same denominator and use the rule for
add%ng fractions with the same denominator.” \

When a "and b are integers, b # 0, the fraction a/b
represents a rational number. Taking a,b,c,d to be integers in
the three precedinz theorems we obtain the rules for adding and
riultiplying rational numberg. Hor example,

(=2) . 21 =2:5 _ =10
3 7 3-7 21
=2 4 2 .=2:7 .35 =1k, 12
3 7 3-7 3.7 21 * 21
_=1h + 15 _ 1
21 21

We e;phasize,,however that in these theorems a,b,c,d do not have
to be inte&ers but may ‘be any ﬂumbers in the systerm; in particular
they may be nuribers represented by rractions. This is true, indeed,
for a#l the theorems we have stgted in this and preceding sections,
~since 'in the proof of these theorems we used only proverties which
Fold for all numbers in our system. This remark is important fer
the remainder of our discussion.

Zxercises bc.
) Txoress as a single fraction and simplify:

12




R A

Division: " According to the theorem on division ' '
a a 4 :
LB % = @i,

that is, to divide by a fraction we multiply by its multiplicative

inverse. We use the following thecrem to find the multiplicative
inverse of a fraction. '

sheorem 14. For all a aad b, ab # 0, ﬁ/(é) - 2
b a

Proof: By deflinition, %/(%) is the unique solution ‘of the egqua-

tion (%) + x =1, We show by substitution that x = b is a

a
solution of this equation. J5ince the solution is unique we con-
clude that L (%) = g . The details are left as an exercise

(Exercises 6z, #1)-,

Combining the thecorem on division and the theorem we have
just stated, we obtain

2/s- 8 (H%-2-

O o
-

41
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" Ihgorem 15. For all a,b,c,d, bed £ 0,
!

1=

and using the rule for multiplication of fractlons we complete a
proof of the following theoren.

(&) /1$) = 2 : .
This theorem states a division rule for fractions. Usually,
however, to divide fractions we follow the orocedure ﬁith which we

proved the theorem using the theorem on division and the theorem
on the multiplicative inverse of a fraction.

A}

Taking a,b,c,d to be integers in the division rule, we
obtaln a rule for dividing rational numbers., For example,

£/5.=2.7 227 =l |
7 3 5 33 15 ° -

Again however, the theorems we have just proved hold when a,b,c,d

,represent any numbers in a system having the properties we have
stated.

§u6trg§tion: According to the theorem on subtraction, we have

p- (B =g+ =%

Thus, to subtract fractions we have to be able to find the additive
inverses of fractions. The following theorem enables us to do this.

Theorem 16, For all a and b, b #0, - (%) = :%

Proof: By definition - (a/b) is the unique solution of the equa-
tion (a/b) + x = 0. We verify by substitution that x = (~a/b) is
a solution of this equation. Since the equation has only one
solution we conclude that =~{a/b) = (-a/b). The details are left
for an exercise (Exercise b6g, #2).

1

Observe that we have

since

Z,
H

N

kA

ot O, b
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The preceding theorem, the theorem on subtraction, and the
addition rule; enable us to subtract any fractioms,. and in particu-

¥ me e
B

lar, to subtract rational numbers. For example,

:Wl«...vz/:\xf; -va/..; "‘_‘3:/;\%:5“‘;"/ e . | ]
l
20,29 10+(-0) _ 1 .
‘ 5 15 15 15 |
Exercises 6d.
Perform the iudicated operations and express the result in its’
simplest form. \ .
C 1. 2/3/4/9 0. 12 -2 o
2. 5/2/5 w s ]
3. %ﬁ;é//ga/Zb 10. %5 5y .
3 11, &2 . X=
L. K!_ Xz X - i X+ 5
‘ X + l. X + 3
< 12. x + 2 x
52 = 2 -;5/ 12 - L,
5. . - 6y + 9 13. m +m T ; +3-m ,
o (0 )/-"1 S, =2 _5sx+1
" T x+ 1l x-1 2 _
2.1 x< -
7 f - : 15, 3 4 i o X =7
% t3 . X T2x7 201
a,a
g, b—c. ]
ab + ac . p *

<

_ As a consequence of the subtraction and division properties,
- any equation of the form ax + b = ¢, a # 0, where a,b, and ¢
are rational numbers, ras a rational solution. Such equations are
called linear equations. ) ' -

-4

w i
2
+

%
]
\)l?-'

Example: Solve




-4 3=

Solutjon: Suppose the equation has a solution x; Then
IR RNCE R Ry
j %j i :%% . | Q
SECORE RRC 2 ~
: .- ;%% ’

so that if the equation has a solution it must be x = -51/56. By
substitution we verify that -51/56 is a solution of the equat{on.

T

Summary: Let us look back at what we have done. We have supposed -
that there is a number éystem which is an exﬁension of the system
of integers and which has the subtraction property and the division
property. We defined the rational numbers to be the solutioﬁs of
the equations ax = b, whére a ¥ O and a and b are i~tegers.
We then discovered the rules for operating with these rational
numbers. These were the familiar rules, but they were not just
stated or discovered by intfiition. They were obtained as logical
S nces of the properties of a number system and the subtrac-

tion and ai§ision properties. \ '

We have .not =aid that the system of rational numbers is the
only system having the required projerties. There are others. Our
discussion shows, however, that ‘any such system must include the
rational numbers, so the system of rational numbers is the smallest
system of this kind.

For reference we list below the properties, definitions, and
theorems formulated in ‘this section.
for all a and b, a # C, there is a unique

X such that a-x = b.

3

-
-
It

Division property:

™
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"Definition: Multiplicative Inverse: The multiplicative inverse of
& is the number 1/a such inat (1/a)a = a(l/a) = 1. .
Theorem 9: For all a and b, a #0, b/a=1b (1/a). |
Theorem 10: JIf-cb # 0, then <& = % ’

C
Theorem 11: If bd # 0, then (%)( ) =
Theorem 12: JIf b # 0, then-

a
b
Theorem 13: "IL 'bd # G, then % +

Y d~ bd 1
i%;’ Theorem 14: For all a and b, ab # 0, °1/(g) _b ki
; , * b’ a 5
. . g

AHeorem 15: For'all a,b,cd, bed # 0, (8)/(%) = %%
Theorem 16: For all a and b, b # 0, -(%) = :’-% : 4 ’

%
RO Mk R 3
5 R 2

o Exercises Ge. , (
% -Perform the indicated operatigns and express the result in its,
; sitplest form. . '
2_3,1 A ' , L, 2., 2
g A b 19. a’ol,  -1-a® a1
teg
; 2. X4 3 _ X ' 2+ p?
4 3T T 11. . a=-b- 220
?} ; 3 . 'lé" - %E + /-Z'é' ’ 2
E ba 12. ;g:l _ﬁg__:_g
g L, 3. ~‘ . XT=1/ 2x% + x=3
%E 58 3. L - L
4% 2 - 3 m+2 2=7
2 . 8b_ . 24eb 2 2
’ 3c? 1, S=Ee=lf . f=be+ 9
! co- a=-ac
& 6 ] OBIE’:: . 3:: 5 22; Z 3
X y
: X +3yx
; %1 _ x+2 15. X X-2y + 3y
PR 2_ - 2 2
« 2x"=18 - 3x"-9x 16, 3x":§xz%x (3% + hyx + y?)
g, Xty . 12 X“ayc
3m=9n x+y a1 -A
. 2 17, a6y . »
9. X1 -1 * 12a" + 5a-2 3a + 2
X"+l X b

43 ’
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Bxercises 6f.

&
R

\\5x-3/2=7/5
2. %'-2=5/2
o dobeded

) A R R L T LRTIGEA b 4 Ty T
TR ‘f‘«*""ﬁi&'g@wm%
A o)
[
)

e
o
[ ]
N
x
i
AN
=
+
N
q

/

Solve the followirig equations.

Check by substitution.

1. Ya -

- - b
30 (B) - (§) = ads-be

2
a
2. -(%) = =% (Theorem 16)




Qrder Relations

The rational numbers can be represented by po:nts on a
sfraight line. To do this we choose two distinet points on the line
arbitrarily, and label the point on the left with © and the one on
the right with 1. Uging the interval between these points as a
unit of measure, and beginning at the point labei d with- 1, we
locate points equally spaced along the line to the righﬁ, agd label
these points with 2,3,4, ahd so on. Similarly we \locate points
equally spaced to the left, beginning at the point lakeled with O,
and label these points with =1, -2, =3, and so on. \\\ A\

Sl | e 4
1 R ¥ ¥ RS T

I 2 3 4 5 -8 \

— —t— PR A
1 4 I HEER\

1
(0
1
N
!
O A

Starting with the line on whichk the iniegers #ve represented .7
. we can label other points by dividing the intervals into halves,
thirds, fourths, and so ou as indicated in the following diagram.

=
| F-
-2 -1 0 | " 2
4 .3 .2 1 o i 2 3 4,
2 2 2 2 Z 2 2 2 2 -
6 5 4 3 2 1 © 1 2 3 4 5 &
3 3 3 3 3 3 3 3 3 3 3 3 3
8.7 6.5 4 3 .21 0 I 2 3 4 5 6 7 8
4 4 .4 4 4 4 4 4 4 4 4 4 4 a4 4 4 4

i .

When every rational number is represented by a p01nt on the line
following this scheme, the line is called a pymber line. .

The representatlon of rutional numbers by points on a number
line is the basis of the deflnltlon of the order :gLat;on for
ratlonal numbers.

ERIC
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The pumber a i leas than the number b, avmbolically ..
a <b, if the point on the number line which represents a is to

the left of the point which represents b.

.For example, 1 <3, =5<=2, -3<1, % < %, -*% = % .
The statement "b is greater than a", which is written symboli-
cally b >\a, is synonomous with ™"a is less than b",

Bxarcisag 7a.
Use one of the symbols <, >, or = to form a true statement.
1. .6 -3 11, .682(2.98 + 67.4)___682(2.98)+682(67.4)

2. "2 -5
3. -7____ 0

12 (~1)e(=1)*(-1)__=3 -2 7&

l}o 8 N 0 13‘ % + % -—-u-% X. %

5. 52.8_____~32.9 1. =45 ~30

60 8.25______ 8.2 15. —I+5 -30 + (-'20)

7. =0.1_____ =0.01 16, =45 + 15 __ =30

8. % % 17. 23 16 N
9. =3 + 10 7 18, 23 19 + 4

10. ,f'; L5 20. 15 =1 + 16‘

A statement involving the order relation is called an jnequali
LY. Inequalities are as important as equations in mathematics. We
are going to formulate the fundamental properties of the order
relation and show how these are used in operating with inequalities.

If a and b are two numbers then either the points repre-
senting them coincide or one is to the left of.the other. Thus
either a = b, a<b or b<a, and only one of these statements
can hold. This simple but fundamental property is called the
trichotomy property. \ :

 Irichotomy property of order: If£ a and b are any iwo oumbers
4hen exactly one of the following holds: a =Db, a<b, b<a,

a1
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The second fundamental property of order, the transitive
property is also geometrically evident. '

Yy

dransitive property of order: If a<b and b<d, then a<c.
_ For example, since -5 <0 it follows that if 0 < x then =5 < x,
- Suppose that we add 2 to every rational number. Geometrically
this has the effect of moving every point on the number line 2
units to the right, as shown in the following diagram.

“+—t+—t——t——t— 1 A
o —2\\\\3 4-
—+—+—t+——t—+————+—+——+—+—+—+—+—+— B

-4 -3 -2 =1 0 | 2 3 4 )

From this diagram it is evident that :¢ a < b, thea a + 2<b + 2
The student should draw similar diagrams showing the geometric
effect of addition of §', =3, etc. These diagrams will serve to
1llustrate the following fundamental property.

N

mnmmuﬁmz If a<b, thep a+c<b+ec.

For example, since 2 < 3, it follows that 2 + x < 3 + x for
all «x,

+

|
E
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Exercises 7v. . P A
Consider the st of rational 43240 N XS 4 -

nunbers on the number line, A. S

* Multiplying eacﬁ'element of the

sat by *2 makés each point of l

line A corréspond to a point YL Y NN

of line B [mappingl. Netice -4-3-2-10 1 23 4

that the order is maintained. L o
2>'1 and 3(2) < 1 (2) T Y

Now, multiply each rational :
number by -2. Show the mapping 1
from A on to B. What has ' -4-3-2-10 1 23 4 i i
happened? Is 2(-2) > i(-2)? ' /

.Fill in one of the symbols, (5; <), to make a true sentence:
l. If 3 > 2, then 3(5) 2(5)
2. If 1<10, then 1(=3)___10(~3)
3. If =2> -3, then =2(15)____=3(15)
L If =3 <3, then =3(2)___3(R)

~~

5. If 2 >-1, then 2(-10)___~1(~10)
6., If 5 >0, then 5(=2)___0(=2)

7. If a>b and ¢ >0, then ac___bec

If a>b and ¢ <0, then ac___be

If a<band ¢ >0, then ac be

10. If a<band ¢ <0, then ac be.
The. preceding exercises illustrate the, fourth and last funda--
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mental property of order.

Multiplication property of order: .
If a<b and ¢ > G, then ac < be,.
If a<b agpdec < O then ac > be.
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?or example, from 1 < 2 it follows that: 13 < 2.3, 1-1 < 3-%

and generally lex < 2¢x if x> 0; but 1le(=3) > 2. (-3),
1'(-5-) °> 3 (- ,57), and generally lex > 2¢x if x <O,

We say that a number x is, positlve if x >0, and nagative
ifeix < 0. The addition and multiplication properties of order are
often stated in words, as follows: "If the same number is added to
both- sides of an inequality the direction of the inequality is not
changed®; "If both sides of an inequality are multiplied by the same
pogitive number the direction of the inequality is not changed, but
if both sides of the inequality are multiplied by the same negative
number ¢ ¢ direction of the ineqaality is reversed.” .

The order relation has many other properties, but all of these
Lollow logically from the properties we have stated and the proper-
ties of the rational number system we stated i. the preceding
section. ‘With the properties of a number system, the subtraction
and division properties, and the four fundamental properties of
order as postulates, every othetr rule concerning inequalities can
be proved as a theorem. We present some examples of theorems we

will use.

. Theorem:- IL a<b them a=-c<b-c.

- Proof: a<b
a+ (=c) <b+ (-c) Addition property of order

a=-c<baec¢ Theorem on subtraction.

<

Theorem: IL ¢ >0 then >0
I£ c<O0 then %<0

Proof: ‘'We will prove the second statement of the theorem.
Suppose ¢ < 0, According to the Trichotomy property exactly one of

the statements % =0, % >0, % < 0 holds. We will show that the

first two are impossible, so that we must have % <0,




If 4= 0, then
c-% = ¢ Substitution

l =c¢.0 Definition of multiplicative inverse

1=20 Theorem 2 ‘
which is a contradiction. Hence % = 0 cannot hold.
1

If py > 0 then since ¢ <0

c-% < ¢+«0 Multiplication property of order

-/ 1< ¢*0 Definition of multiplicative inverse
1<0 Theorem 2
which is again a contradiction, so that %'> O cannot hold. Since

%wo and %>o do not hold if ¢ < 0 we must have g-<o..

The proof of the firct statement of the theorem i; similar.
Iheorem: If a<b aud ¢ >0, &m%< . : 'i

If A<b and ¢<0, thend>

ol ojo

Proof: We prove the second ;tatement; the proof of the first is
similar. If ¢ <0, then

* % <90 Theorem =

%.a > %.b Multiplication property of order

% > % Theorem on division.

It is often convenient to use the symbols < and > which are
read "less than or equal to" and "greater than or equal to",
raspactively., a < b means that either a=b or a<b; b2a
is synonomous. It is easy to verify that, except for the Trichotomy
property, the preceding prcperties and theorems remain true if
a <b {is replaced by a < b,

Ever& statement abcut inequalities can be proved using the
fundamental properties of order, the preceding thgo;ems, and

statements about specific numbers, such as 0 <1, -3 <=2, 1In the

)
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following examples we do not cite the properties and theorems which

Justify each step but we organize our solution so that the reasons
.. for each step can be seen easily. ‘ N
Exagple: Show that if x satisfieb\tse inequality 4x-3 < 2x+5
then x <. .o ‘ : L . - ‘ \
Selution: bx - 3<2x+ 5
; ]
bx - 343 <2x+ 5+ 3
 hx<2x+ 8 |
bx = 2x < 2x + 8 -« 2x _ N i
i ) 2x < 8 |
- NN 1 /
: 5 2x < 2 . 8 o
™ x <4
3 3
Bxample: Show that if o > 1 then 0 < x< 3, that is, 0 >x
and x < 3. '

T ion:s We have
&3 5,
2x

2 () > 241
i3
X > 2
Now we have to consider two cases. If x > 0 then
x(xii) > xe 2
x+ 32> 2
X+ 3= XxXx2>2X ~X

_ 3 > X.
If x < 0 then




L

x(&;‘?l) < xe2

x+3/<.2x
X+ 3= x<2x =X

\ 3<x y

But x > 3 contradicts x<0, 80 x <O cannot hold\ Thus
either x = 0 or x > 0., Since division by O 4is not defined,
the possitility x = O is excluded, and we have x > O, Thus, for
all x satisfying the giver inequality we have 0 < x and x < 3,
_ We will generally use the notation a < b < ¢ as an abbrevia-
tion for the statement 7a < b and b < c"., Similarly, a<'b<e¢c

‘means "a <b and p <ec,"” and so forth.

Exerciseg 7c.

For each of the following, show that if x satisfies the inequali-
ty on the.left, it must satisfy tne inequalities on. the right.

l. If 2x+ 3 >5x=9 then x<4

2, If x+ 5<4x=-1then x>2

3, If (x-=5){x=7) <O then 5<x<7

L. If (x-3)2§l+ then 1 <x<5
5. If x/x=5> 2/x-5 thenx>5 or x<2
6., If (2x+ 5/x <6 then x<O0.orx25/k

7. If 6x + 13 <28/x ther x #0 and =7/2 < x< é*-
8 If x!x=1)(x+2) <0 then ¥<=2 or 0<x<1

Exercises 7d.
Prove the following theorems -

1., If a>1, thena2>a

2, If a<l and a>0, then§2<a
3. If a<1l and

a
4o If a>0 and b >0 and a<b, then a

5. If af 0, then a > O.

6, For all a, a® > 0.

< 0, then a < a® -

2 < pR,




-5l

7. If 8%+ b° =0 then a =20 and b = O.

2 2
8. Foralla and b, ab 53—%& . .
{Hint: Consider (a—b)zj

4

8. 'Sets of Numbers and Graphs

A sat of pumbers is a collection (or class) of numbers speci=-

fied by some coniition. The numbers in the set - that i he

numbers which satisfy the condition which specifies ‘the

-~ are

called glements or members of the set.

Exgmglgg The following are examples of statements which specify
sets of numbers:

(a)

fhe set of numbers x such that x2 = /, « the elements of
this set are 2 and =2. ' ;

(b) The set of natural numbers x _such that x < 3 = the elements
; of this set are 1,2 and 3.

(£} The set of rational numbers x such that 1 < x < 3 « the
elements of this set cannot be listed, but we can say for
each number whether or not it is a member of the set. 2
and . %% are members of the set; -5, %1 are noct mémbers,v

(d) The set of natural numbers - again we cannot list ali the
members of the set. 1,2,3 and so forth, are ih the sat; o,
-1, 3/2 are not in che set.

(e) The set of numbers in the list 1, 2/7, =3.

It is convenient to have a notation for the phrase "the set of
numbers - such that ". We use the symbol {__: 1.
With‘th%s notation we may write tne preé;ainé examples as follows.
Examples:

(a) ix : x* = 4]

(b) {x : x 4is a natural number and x < 3}

(¢) {x : x is a rational number and 1 < x < 3}

(d) {x : x is a natural number}

le) {x:x=1, x=2/7, or x = =3} (In this case we write more

briefly {1,2/7,-3}; we will use a similar notaticn whenever

:

30
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a set is specified by listing its members.)

We will often denote sets by capital letters. In particﬁlaf,
we denote the-set of natural numbers, the set of integers, and the
gset of rational numbers by N,I, and R respectively. We introduce
the curious notion of a set which has no members, which we call the
empty get, and which we denote by the symbol @ ; vou will see in a
moment why this is-a useful notion. .

Every statement about a number x specifies a set, namely,
thg set of numbers for which the statement is true. If the state-
menh 13 not true for any number, the set specified is the empty
det, " @ . For example, {x : x>0 and x <0} is the empty set.

The graph of a set of numbers is the collection of points on
the number line which represent the members of the set. We will
sketch the graphs of the sets we have discussed as examples.

2 T AN ] 1 v 1 T }
(a) {x ¢ x* = 4] 43210 | 23 4
(b) {x :x isin N and x <3} T, 320 1 23 4
fc) {x :x isin R and 1 <% <3} bt Cmpom’—p e
4 -3.2-10 | 23 4

-

(We draw circles around the points 1' and 3 to emphasize
that they are not in the set.)
(d) {x : x is in N} - e

Attt
!

-4-3-2 -1 0

r—r—r>
2 3 4
(We draw an arrow on the right tc indicate *hat the

graph contlhues 10 the right.)

() 11, 2/7, -3)
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< We say that two sets A and B are ggual, and write A = B,
if they have exactly the same elements. For example: .
2 ’ . —
{x ¢ x* =4} = {2, =2}]. If every member of the set A is also a
member of the set B we say that A is contained in B, or B
: contains A, and write A (C B. For example: -{1, 3} C{1,2,3};
ICR. . -
If every member of A is a member of B and every member of
B is a member of A, then A and B have exactly the same
members; that is, if A(CB and B(CA then. A = B. We usually
show that two sets are equal by using“this fact. ‘
The set of all numbers which satisfy én eqﬁation or inequality
is called the golution set of the equation or ineéuality. For
example: {x ¢ 2x = 3} = {3/2} is the solution set of the equation
2x = 33 {x ¢ 2x <3} = {x : x < 2/3] is the solution set of the
inequality 2x < 3., If the solution set of an equation contains
all the numbers in a number system, the équation'is an identity in
the system. For example, the solution set of x + 2 = 2 + X,
" {x s+ x+2=2+x}, is R, so that this equation is an identity
in R.

Example (f): Find the solution set of 2x = 1 < x, and sketch its

graph., - '
Solution: If x isin {x : 2x = 1 <x} then
2x - 1 < x
22X = 1= x+1<x-x+1
x<1l,
so that x is in {x ¢ x < 1}. Thus -
{x:2x-l<x}g{x:x<l}. : "

Suppose now that x is in f{x : x < 1}.
Then ’

x <1
x+ x=1<1l+x=1
2x - 1 < x
so that x is in {x ¢ 2x - 1< =x}. Thus {x : x<1} C

{x 1 2x - 1< x}
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Since the solution set of 2x - 1 < x is contained in and contains 1

{x :€§'< 1} it is equal to {x : x <1}, : ﬁ

. The graph of the solution set {x : x <1} is sketched below. }
' 4

|

¢

Graph sketching is helpful in the_discussion of statements |
involving the absolute value of numbers. | : :
Definition of absolute value: '.F.ns.ﬁbﬁ_uolt zalmof a, denoted :
by lal, is given by

ﬁ/a if a20 ’ _ |
EY :
|-a if a<o0 j
The notion of absolute value has a simple and important geo— |
metric 1nterpretation. If we regard the rational numbers as points
_ on the number line, then |a| is the distance of a from the
£ origin O. The distance between any two points a and b is;.tg
/ la = bl. For example: the distance between 3 and 5 is
| = 3] = |2] =2 = |=-2] = |3 - 5|; the distance between ~1 and .,
=4 s |=l = (=h)| = =1+ 4] = |3] =3 = |=3] = |4 - (-1)];
the distanc between ~1- and 3 is =1 =3] = |=4| = 4 = |4] =
13~ (<131,

Example (g): Sketch the graph of {x : |x = 3] < 5}

Solution: We have to consider two cases x 23 and x < 3 since
if x>3 then x-3>0 and |x= 3] = x « 3

and .

if x<3 then x=3<0 and [x= 3| =~ (x~3) = 3-x.

We suppoée first that 'x > 3, what is, we find the part of the
graph of {x : |x = 3] <5} which is to the right of 3 (or is

3 itself). We have
[x = 3] <5

x - 3<5
x < 8,

61
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g . 80 that the graph to the right of 3 is the graph of i
~, {x -1 3 € x< 8}, which we sketch below.

B0 A0 3000 s e o s oo

0O I 23 4 56 7 8

- Now suppose x < 3. Then
(X = 3] <5
- (x=3)<5
3-%<5
3 =-5<x
-2 < x,
so the part of the graph of {x : |x = 3] < 5} to the left of 3
s is the graph of {x : =2 < x < 3}. The sketch of this graph is
e e
) . -5-4-3-2-1 01 23 4 5 6 7 8 9
( Thus, the graph of {x : |x - 3] <5} is

e

~

21 0 | 23 4567 8

Exerciseg &a
Find the solution set of each of the following and sketch its graph.
l. {x:x isin N and 2x° < 50}
2 {x :x isin N and 2x - 4 < 10}
30 {x:x isin I and 6 < x < 8}
be {x :tx is in R and {2x « 5)(3x - 6) = 0}
5, {x :x isin N and (x-4)(x + 3) < O}
, 6, {x :x is in R and 5x - 4 > 7x + 9}
ﬁi 7. {x ¢x is in R and 2x2- 2 > 25X ; ky
8. {x :x isin R and (x+ L2 > 36}
9. {x :x°<9on x*> 25}
10. {x:x—;-'(—l<l}
1. {x :8-1>3=x}
e &5 &
12. {x :8>48§




13, J2x+ 3] >1 \

e |x+ 4] <2
) 150 ;xi >‘-2
116, |2x - 5] 2 3°

Exerciges 8b

Prove the following theorems.
1. For all a and b, |a=Db| = |[b= a]
2, For all a and b, |ab] = |a] |b]

3. For all a and b, except b = 0, l%l - +%+

9. Real Numbers ‘ G
In the system of rational numbers every linear equation,
ax + b = ¢, . afo

has a solution. The next simplest kind of equation is the quad-
ratic equation . b

, ax® + bx + c =0, - afo
Here again we run into trouble. Even the most simple quadratic
equation may not have a solution if the only numbers we have are
rational numbers. The equation

x2 -2=0

does not have a rational solution because there is no rational
number whose square is 2. i

This last statement seems difficult to prove. How does one
prove that an equation does not have a solution in a certain num-
ber system"except by testing everf number in the system? Although
it required genius to discover the proof, the proof is very easy
to understand. All that is required is a precise definition of
even integer and odd integer. An integer p is even if and only
if p=2m where m is an integer, and odd if and only if B

p =2n + 1. Now you can easily-show that the square of an even
integer is even and the square of an odd integer is odd. From this
it follows that if the. square of an integer is even the integerA
must also be even. Why? It also follows that gvery rational npum-

ker can be written as p/q where P and q are integers not both -
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of whigh are even. Why?
Now suppose that the equation

x2 - 2

has a solution in the éystem of rational numbers. Then x is a
quotient of two integers. Let p and q be any two integers
such that x = p/q and substitute in equation x2 = 2, Then

2
Ry .
(§) =2

[4

- 2 .,
. \”‘\\\ . - qz

'p2 = 2q
2

which states that b , and therefore p is even. éince p 1is
eved, p = 2r and substituting in the equation p2 = 2q2

(2r)? = 2q°

4r? = 2q2
' 2r® = q2 :
.80 that q2, and therefore q 1is even. Thus if-the eqguation
ax” + bx + ¢ =0, a#0 has a rational solution it must be a
- humbgr X such that if x = p/q where p and q are integers

then p and q are both even. But there is no such number,

2

Since there are quadratic equations with no solution in the
system of rational numbers a logical step in view of our previous
discussion would be to look for the siﬁplest possible exteansion of
the system of rational numbers in which every quadratic equation
has a solution. This is a possible approéch,,but if we followed ji¢

we would have to face the possiﬁle ed of more extensions when we
consider cubic equations, quartic equations, etc. In fact, this is
not the way the number system develdped historically. The exten-
sion of the number system which was used in algebra after the
rational numbers was the system of real numbers,

The real number system can be described as a system of numbers
which is an extension of the system of rational numbers, which has
the subtraction, division, and fundamental order properties and
which also has the property that to every real number there

Q ' )
5 1
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corresponds a point on a-line in such a way that two different
pointa correspond to two different numbers, and every point corres-.
ponda to some number. The property which distinguishes the real
number system from the rational number system is this last state-
nent that every point corresponds to some real number.: How did a °
number syatem having this geometric property come to be considered?
We know that there is no rational number whose square is 2,
We cau however with straight edge and zompass construct a right

3,
>
A3

s
Lo

PR

SNy

3

TR

%Q 4 triangle with legs of length 1. If there were a number whose

% . 3quare is two then by the Pythagorean Theorem, the hypotenuse of

o this triangle would have that length. Transfering this hypotenuse

§§ to the number line we mark a point, as8 in the follewing diagram.

g, - .

: °
Thus there is a poinf on the line which does not represent a
rational ngmber;uj P

L Historically, this led to the idea of assigning a number to %

N ) every point on the line. The numbers represented by points which

did not represent rational numbers were called irrational numbers.
" The set .of rational and irrational numbers was called the set of
‘real numbers, o )
The operations of addition, multiplication, subtraction and
division of positive real numbers can be defined geometrically as
indicated in the followlng diagrams.
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. a+b a
} t $
< < > < T >

v

a

Multiplication Division

Operations with negative real numbers can be performed in terms of
operations with positive real numbers, using the same rules as for
the rational numbers. In this way we obtain a system of numbers
with the geometric property we stated. ) @

The picture of the system of real numbers which this con-
struction provides seems clear enough, except for one question.
How do we obtain uséble, that 1is, rational, approximations to
irrational numbers§ The process of physical measurement which
seems to be required 1s unsatisfactory because of its non-mathe-
maticél character and because of its unavoidable lack of precision.
To answer this questicn let us first see how the approxihaéion
procesé could be carried out geometrically in a systematic way.

Suppose that we wish to approximate a real number r “between
2 and 3. We write

2 <r<3

and subdivide the interval from 2 to 3 into ten equal parts. Now
suppose r 1lies in the third subinterval. Then
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2.2 =2 + IG L£rg2+ IG = 2,3

Subdivide the interval from. 2 2 to 2,3 into 10 equal parts and
suppose that r -"lies in the fifth subinterval. Then
2 b 2 5
2.2 = 2 ¢ + {r<2+ + =5 =2.25
10 I62 - b 10
If we cqntinue;this process 1ndefiﬁite1y we obtain an infinite
decimal a, 8) 85 c0. By oy where a, = 2 18 she first pldce digit,

* I o NI
AR

8, = 4 1s the second place digit, and ' a_ 1is the digit in the
- n-th place, with the property that, no matter how large n is,

) a. a 8. . a, a t a
o1 2 n 1 2 n ., 1.
(1) a+ g5+ ~—§-+ veo +* ———-< ENL I v IR E {ah + =

107 10
This infinite decimsal represents the number r in the sense that
by breaking off the decimal far enough out we obtain a rational
approximation to r with an error as small as we wish." -
2 The idea of an infinite decimal may seem difficult to you.
- . How can we know. infinitely many places of a decimal? - Let us make
the proposition more general. An inf;nite decimal may be regapded
‘ as an infinite sequence of numbers, where by a sequence of numbers
E,ﬁ we mean a set of numbefs given in a definite order: How can we
know any’ infinite seguence of numbers? We cannot specify the
sequénce by writing down all of the numbers in it since there are
. infinitely many of them. But the sequence 1s specified and there-
fore known if there 1s a definite rule which enabled us to deter-
mine as _many of the numbers in the sequence as we wish. The '
*geometrical procedure described above is one kind of definite rule
which enables us to determine as many places of the infinite

A Y g e L A 30 X
R R A R R

decimal of a real number as we wish, and which theaefore specifies
the 1nfinite decimal.

The rule which specifies an infiniﬁg decimal may be more or
less simple. The infinite decimal of a rational number 1s always
periodic, that is, after a certain poiant the same block of digits
is repeated indefinitely.- For examplé, the ininite decimal repre-
sentation of 2/7 is .285714285714285714 ... where thr block of '
digits 285714 is repeated indefinitely. In this case one can
easily tell what the digit in any given place is. A mcre aifficult

ERIC . 67
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kind of rule specifies the infinite decimal .12345678910111213 ...
which is obtained by writing all the natural numb/?k‘iﬁ”gﬁﬁcession.
This is the infinite decimal of an irxational number. Heﬁe we can
again determine what digit’ s inp any §EVen place, but with more
difficulty than-in the .case of a rational number. A still more
difficult rule is that whiﬂh determines the infinite d8cimal of Vr,
which we will describe below. ,

The valtu- of the idea ol the infinite decimal representation

of a real number is that the detimal can be obtained in a purely
arithmetic way, without using the picture furnished by the .number
line. For, suppose that we have already determined the decimal of

r to three places a. a, a a3 Then we have only Fo compare I
with +he numbers a, a, a, a3 1l, a. a, a2 a3 cssy 2. a; a, a3 9.

If the iirst of these which 1s éreater than r has J in the fourth
place for example, then the ‘fourth place digit is 6. 1If all are
smaller than r then the fourth place digit is 9. If r 1is speci-
fied by_somé algebraic. property then we can use this property and ~
(io make the comparisons.

algebraic theorems
‘AS an example,” we shall find the first few places 2{ the
decimal of V2. V2 is defined by the equation (‘Jﬁ)e = 2. We
will use the theorem fhat‘if a and b are non-negative numbers
and a2 < b2 then a < b. This 1s easy to prove, but we will put

the proof off until later. We compare 2 with.the squares of

integers and find
1°=21¢pch =28

Next we compute (1.1)2 (1.2)° ... (1.5'% and find

- 2
(1.4)% = 1.96 < 2 < 2.25 = (1.5)
Co “tinuing we f{ind

-

(1.41)° = 1.9331 < 2 < 2.0264 =_(1.42)°

(1.u1u)2 = 1.999396 ¢ 2 < 2.002225 + (1.415)2

(1.4142)2 = 1.99996164 ¢ 2 < 2,00024449 = (1,4143)°
so thet '

4 ’ (1.&1&2)2 < (V/Z)2 < (1.u1u3fi

an
1.4142 <'/§ < 1.u143,

\

H3d
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The decimal of /2 correct to four places is therefore 11,4142, It
1s important to reailze that, although it would be extremely labori-
ous we could use this procedure to determine as many places of the
decimal of /2 as we desired. We could, in particular, calculate
the digit in the one millionth place of ./Z2. No one has ever
calculated this digit and it is highly unlikely that anyone ever
will. But this is irrelevant. What is important is that if we
wished we could calculate that, digit.

59
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ANSWERS

? ’ Exercises 2a, page 2. ~
. 1. 12 12. O

2. 6 13. 2

3. 5 _ 14, None

R 3 15. None
. 5. None ) 6. 0
: 6. All 17. All
3 7. 10 | 18. A1l
A } 8. 7 ~ S 19. ALl
< 9. None 20. None
10. A1l 21. A1l

11. 1, 0

~Exercises 2b, page 3. \

1.
no natural number

(o TN o TN © B\
=3
(o)
n
i
w
It

no; 3X = 2 has no solution in the set.

n
[}

yes
yes

3. a. no; Sum of any two odd numbers is even.

b. yes; (2n+ 1)(2k + 1) = 4kn + 2n + 2k + 1
2(2k + n + k) +1
2k + 1, odd

il




Exercises 2c, page 5,6.

1.

Distributive law

False -

Addition is'commutative.
False - ‘
Multiplication is commutative.
Multiplication is associative.
False '
Addition is commﬁtative
Addition is commutative
Addition is assoclative
Multiplicaﬁ?bn is commutative
Distributive principle
Acddition is commutative

38 \QF ¢« R A 0 o T P

2. One must distingulsh here bétween number and decimal
representation of that number. At this stage, number
is of primary concern, so that the answer intended was

7+ 5+ 3=(7+5)+3=12+ 3 = 15.

However, the associative'pnoperty and the commutative
property for addition gives

(T+5)+3=7+(5+3)
=(3 +5) +7

Exercises 2d, page 7.

1. 2+ 2= 2+ (1+1) Definition

= (2 +1) +1 Addition is associative
= 3 +1 Definition
= 4 Definition

2." The distributive law:

(20 + 3)(32) = 20-32 + 3-32
640 + 96

736




Exercises 2d,
3. 23~8
4 (a)

(a) - (h)

-6G-

(cont'd.)

(2:10 + 3)8

(2-10)8 + 3-8

= 2(10-8) + 3-8

= 2(8.10) + 3.8

(2-8)(10) + 3-8

(16)(10) + 24 ®
(10 + 6)(10) + [(2-10) + 4}
[10°10 + 6°10) + (2°10)] + &4
{10:10 + [(6:10) + (2-10)1} + &
{10-10 + (6 + 2)(10)} + &

= [100 + (8)(10)] + &

= 184,

13 + 25 = [1(10) + 3(1)] + [2(10) + 5(1)]
13 + 25 = [1(10) + 2(10)]1+ [3(1) + 5(1)]
= 3(10) + 8(1)
= 38 AN

38 + b = [3(10) + 8(1)] + [4(10) + 4(1)]
= [3(10) + 4(10)] +[8(1) + ¥(1)]
= 7(10) + 12(1)
= 7(10) + 1(10)'+ 2(1)
=" [7(10) + 1(10)] + 2(1)
= 8(10) + 2(1)

= 82
16 x 13 = [1(10) + 6(1)]1-T1(10) = 3(1)]

= [1(10) + 6(3)]-10 + [1(10) + 6(1)]-3
= {1(100}+ 6(10) + O(1)] + [3(1C) + 18(1)]
= [1(100) + 6(10)+ 0(2)1+[3(10) +(1-10+8)-1 ]
= [1{100) +6{10) + 0O(1)] + [+4(10 + 8(1)]

" = 1(100) + 10(10) + 8(1)
= 2(100) + 0(10) + &(1)

- = 208

These solutions may be obtalned 1ln a manner similar

to that 1llustrated above.

72
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Exercises 2e, page 11.

Answer Cancellation law
1. 0 Addition
2. S Multiplication
‘ 3. 10 Addition
f 4. No solution in set of whole numbers
5. 0 Multiplication
6. No solution in set of whole numbers
7. 1 Addition
3. 16 Multiplication
S. 5 Addition and Multiplication '
10. No solution in set of whole numbers ) |
11. 42 Addition and Multiplication
12. No-solution in set of whole numbers

Exercises 3, page 15.

1. 2(5a + b) + 3(b + 2a)

(102 + 2b) + (3b + 6a) Distributive law

10a + [2b + (3b + 6a)] Assoclative law of addition
10a + [(2b + 3b) + 6a] Assoclative law of addition

]

=.10a + [Sb + 6a] Distributive law, and
) « addition tables
= 102 + [6a + 5b] Commutative law of addition
= (10a + 6a) + 5b Associative law of addition
’ = 16a + 5b Distributive law
2. (3x)(2y) = (3)(2)(x){y)
) = (3-2)(xy)
= bXy

3. (x + 3)(2x ¥ 3)
(x + 3)2x + (x + 3)3
(2x2 + 6x) + (3x +9)

= 2x° + [6x + (3x + 9)]

= 2x° 4+ [(6x + 3x) + 9]

= 2%+ 9x + 9
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L, a + 3(a+ 4) = a + 3a + 12
=al(l + 3) + 12
= 4a + 12
x2y + 5+ 3x2y + 2 = hxay + 7
. 2a(b + 2) = 2ab + 4a ‘
7. 9a2 + 8p2
8. 10x° + 31x + 36
g. (x + a)x + (x + a)b = X° + ax + bx + ab
Note: The teacher should point out that this can be
written in the form :
x° + (a2 + b)x + ab
and that in this form it 1s most usable.
10. (a + b)x + (a + b)y = ax + bx + ay + by
11. (ax + b)ex + (ax + b)d = acx® + bex + adx + bd
Note: The teacher should point out that this can be
written in the form )
acx® + (bc + ad)x + bd
and that in this form it is most usable.
Exercises la, page 17.
1. -5
2. None
3. -9
b, -9
5. None
6. None PRI
7. -3
8. None
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Exercises U4d, page 25,26.

Exercises 4L, page 20, 21.
1. 24 6. 188
2. o4 7. 6-a
3. -4 8. .-léa
L, -12 9. 2x + 4
5. -2 10. 2
g
P, Exercises UYc, page 22.
= 1. -10 6. 0
v 2. 10 7. dx « 5
: 3. 80 8. -6
% @. -15 9. 0
' 5. 6 10, - 2{a+ b)

[ S

W & N O = w

T
n O+~ O

I
W

15%
16.

~

-a b

x - 5y

5x - 5y

Ux - 3y~

hx

ab

12x + 12v - 182z

6x° - 1x \\\\
1Ox2 - hxey

2

X" - Xy - 2y2

6x° - Txy - 20y°

2. 3x3 - 9xu

3Oa3b3

gx

y3 - 9y2 + 24y - 20

3

+ 19c2 - 2Gc + 6

- 12xy2

he

3x3
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Exercises 44, (cont'd.)
17. ux2
18,  8x°

20Xy + 25y2 ) A |

10x - 3

f 19. 2v2 - 8 , ' | g
”? 20: 9a° + 18ab + 9b° é
5 21.  4a® - 25b° _ - e

3

22. 6+ 2y + 3x + Xy - :

23. x°+ 9x° + 26x + 2k o : 3

reiod
14

\%g‘

N

Wt
-3

% A ¥
B 24 (a + b)2 - b c v
e t . g : E

25. 9x° - 6x(y - z) + (y - z)2 - #5

TR

S

26. (23 + b)2 - 3(2a + b) - 10 .

2T
DM

.'i;
l{‘

Wi

27. 9+ 3(r+ 3 +a+b)+ (r+s)(a+b)

LD

28. x° - (y - m+ n)2

29. (2x - y)2 - 2°

30. b’ - (2b + 1)2

2 + t2 - 4prs - Urt + 2st

Ta Tptag M0
NS
A .

N
.

yd

ey ey Y Y

§: 31.  irf 4 s
E: 32.  x° - 8y
C 33. 0
- N 3
3 X" + 125

35. x° + 2Xy + y2 -9

2 »

36. 2ab + 2b
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Exercises le, page 26. : ‘
1. (x+y) -y=(x+7y) + -y Theorem: a - b = a + -b |
=x+ (y + -y) Associative law ‘ -
=X+ 0 y + -y = 0 meaning of
additive inverse
= X 0 the .additive identity
2. (x-y)+y=(x+-y)+y Theorem: a - b = a + -b
=x+ (-y +y) Assoclative law )
=x+0 y+-y=0 »
= X Additive identity
3. x-(y+z)=x+-(y+2) Thedrem: a - b = a + -b
=X+ -y + -2 ~(a + b)"= -a '+ -b
=(x + -y)+ -2 Convention :
=(x ~y) -z Theorem: (a + -b) = a - b |
4, To prove x - (y -2) =(x -y) + 2 -
x - (y - 2z) Theorem: b + -a = b -'a .
=x + -(y + -2)
= x + -1y + -2) Theorem: -1(a) = -a
=x + (-1y + -1--2) Distributive property for
multiplication over
addition
= (x + -1*y) + -1*-2 Asscclative property for
" addition ~
=[x+ -y) + -1'-2 . Theorem:™-1(a) = -a
= (x+ -y) + 2 Theorem: -1(-a) = a
=(x -y) +2 Theorem: b + -a =b - a
sx - (y-2)=(x-y)+ 2 .as a consequence of the

above properties and theorems.

5. Toprove (x+y)-2=x+(y-2)
(x +y) -2 Theorem: b + -a =b - a
= (x +y) + -2

=x + (y + -2) Associative property for
aiddition
=x+ (y - 2) Theorem: b + -a = b - a

Jo(x+y) -z=x+(y-2) as a consequence of the

abose property and theorem.

ERIC : . 77.
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P
Exercises U4e.  (cont'd.)

6. Same as number 4,

7. (x)(y)(-z) = (x){{y)-(-2z)] Associative property

= (x)[(-2)-(y)] ~ Commutative property
= (x){-(zy)] Theorem: (-a)(b) = -(ab)
= (x)"[-(y2)] . Commutative property
= [-(y2z)}(x) 1 ' Commutative property
= -[(yz)(x)] Theorem: (-a)(b) = -(ab)
= -(xyz) - . Commutative property
8.. (-x)(y)(-z) = (-x){(y)(-2)] Associative property
= (-x)[(-2){y)] Commutative property
= (-x) (- (zy)] Theorem: (-a)(b) = -(ab)
= (-x)[-(yz)] . Commutative property
. = XyZ Theorem: (-a)(-b) - ab_ |
9. za(b-¢) = a(b + -c) Theorem: b + -a = b - a ‘
= ab + (a)(-c) Distributive property ' |
= ab + (-¢)(a) Commutative property
= ab - ca Theorem: {-a)(b) = -(ab)
= ab - ac Commutative property
10. (a - b)2 = (a - b)(a - b) Definition: a° = a‘a ‘
= (a + -b)(a + -b) " Theorem: a + -b = a - b

(a + -b)a + (a + -b){-b) Distributive property
a?+ (-b)(a) +a(-b) + (-b)® Distributive property

= a° + -ab + -ab + b2 Theorem: (-a)(b) ={a)(-b)
’ \ = "ab
and (-a)(-b)= ab
= a2-+(1ab)(l + l)-+b2 Pistributive property
= 2% - ab(2) + b° Fact of arithmetic

Theorem: a + (-b) =a - b

2 Commutative property

a - 2ab 4+ b

78
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11 (a + -b)(a2 + ba + b2) Commutative property
Theorem: a - b = a+-b

=(a-+-b)a2+(a+--b)ba\+(a+—-b)b‘ Distributive property

= a3+ —ba2+-ba2+--b2a+-ab2+ -b3 Distributive. property
‘ : = a3 + -b3 Commutative property and
: s d additive inverse

= a3 - b3 . Theorem: a+-b.=a - b

12.  (a + b)(a® + -ba + b?)

(a + b)a® + (a + b)(-ba) + (a + b)b°
3 4 1a® 4+ (a)(-pa) + b{-va) + ab® + b

ad + pa® + (a)(-ab) + :%a 4+ ab® 4+ bS
3
3

]

a 3

+ a%b - a°b - ab® + ab® + b°

4o = a3~ + b

= (- -(-b) Theorem: -(-a) = a

= -(a - b) Theorem: a+~b = a ~ b

Exercises 5a, page 29-32.

: 1. - a(x + y) 15.  (y + 3)(y° - 3y + 9)
2. 5y3(x2-+'6y2) ' 16, (x - 4)(x2 + Ux + 16
3. 3b(x - 2by) _ o170 (e + 1)(c® - c+1)(cP-e3n1)
k. 2¢(7d + 3e - f) 18, (3a - 1)(92° + 3a + 1)
5. (y - 5)(y + 5) 19. alc - 4)(c® + 4 + 16)
6. (7 - x)(7 + x) . 20. (x+'y)(a + D)
7. (3a - 4p)(3a + 4b). 21. (x - y)(a - b) .
8.  A4(x - 4){x + b) 22.7 (a + 1)(a - 1)(a - 1)
9. M- sa){¥ + 5a) 23,7 (3x -y - 3u)(3x - y +3u)

10,  (x + 2)° 24, {3 -a - 3b)(3 + a + 3b)
11, (2x - 3y)° 25. 2a°b%(3 - b)(9 + 3b + b°)

(
(
(
12, (x+ 7)(x + 2) 26, (x+y)(x-¥)(x° -xy+¥°)
(
(

13. vy - 3)(y + 5) (x%+xy +y°)
14, 7+ w)(2 - w) 27. (x + 9)(x -~ 4)
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Exercises 5a. {(cont'd.)

) 28. m(x - 6)2 -
29. (a2 + #)(a + 2)(a - 2)
030, (3 - 2x)(3 + 2x)(2 - x)(2 + x)

31. 5b(kab + 1)(4ab - 1)
32. (au - 505)(a8 + 5a405 + 25010)

~

-~ 33, {m+n)(x +y)
34, (b +¢c)(x -y) ¢
35, (t + u)(t® - tu+ u® - 5) ‘
36. (x. - y)(x +y - 1)

37. ‘(25 - 1)(4a2 + 22+ 1)°
38. (6 +y)(4 - y)
39. (3r - s - 1)(3r +s + 1)

40. (w - 8)(w - 3)

41. (3¢ - 1)(3c + 1)

42, (a2 + 1)(a + 2)(a - 2)
43. (3% - 5)(y + 2)

4y, (a - 2)(a2 + 2a + 4)(a + 1)(a2 -a+ 1)
45. (a - b)(x - y)(x + ¥)
46. (8 - a)2 '
43, (c® + 5)(cf - 5)
48. (c + d)(c2-+ cd + d2)
49, y(3r + 1)(9r2 - 3r + 1)
50. a(k + y)(b - ¥)
51. (9x2 - uyz)(9x2 + Uyz)
52. -3(y - T)(y + 2)
53. (3a + 2b)(9a® - 6ab + 4b°)

Sh. (x < U)(x + 6y) '
55. c(x® + 2)(x + 2)(x - 2)
£6. (6m - a)(m - 12a) ‘
57. 3t(r + up)(rg - brt + 16t

58. (w - 5b)(2w + 3)

59. B8b(2a - b)(4a2 + 2ab + b°)
60. 4x2y(2x + 1)(x - 3)

61. (3a + 5)(a - 3)

62. (b + x)(x + y)(x - ¥)

Py

9

80
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? Exercises 5a. (cont'd.) o
: 63. (7z - 1)2 or (1 - 72)°
5. (3 - 8x)(6 + x) ~
3 , 65. (v - Tm)(a - 2b + 2¢) |
TN 66. (5k - 2w)(k + 6w)
67. (3x° - 5y°)(2x - y)(2x + y) .
68. (x - 3y)° —

- 69. (a2 + 1)(2a - 5)(2a + 5)

1. 5(7x - 3y) (x> - 3y)

J 72, (x « y +a¢ 30)[(x+y)% - (x+y)(a+ 3b)
73f( (r -5 -3+ t)(r -5+ 38 - t)
Th. (x - 1)%(x + 1)°

75, (2x + y + 3)2(2x +y - 3)2

Exercises 5b, page 32, 33.

1. y= 4 and y= 3 6. x= 0 and
2. X = -9 and y= 2 7. X =0 and
X 3. x= 5 and X = -2 8. = 2 and
4, x= 4 and x = -8 9. x = 3 and
» 5. X = 1
Exercises 5c, page 33.
1. x° + x2 (22 + b) + x(2ab + a°) + 2%b
(a) 2a + b = -3 ; o(-2) + 1 =
. 2ab + a’= O 2(-2)(1) + (-2)° =
3% = b (-2)° (1) =
If a=2%1; b=
If a=t2,b=

(x + a)%{x + b) =

F I - B

l

-~
~

. 70. (c -d -a+ 2“{é§° - d)% + (c - é}(a - 2b) + (a - 2b)?]

(a + 3b)°]

Q‘
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5¢, (ccnt'd.)
_ N\
(b) 22 +bd =5 2(1) + 3 = B
2ab+a:2_=7 2(3)(1) + (12 =7
2 _ 2 %
ab = 3 : (1)°(3) =3
.}'.a:--tl, b =3
2 SN2 L - -
(x + 2)%(x +b) = (x + 1)%(x +.3)
(c) 22 + b =3 2(1) +1 =3
2ab + a° = 3 2(1)(1) + (1)% = 3
. a2b =1 (1)2(1) ='1 u
'antl; b:l

(x + a)e(x +b) = (x+ 1)3

2., (x-D{x-2)(x-3)=0
xS - 6x2 +1lx - 6 =0 .
Exercises 6a, page 35.
1. By the definition of division % is a solution of the
< ecuation ax = a. However, we know Unit 1 is also a
~ s8olution of ax = a. Therefore % and 1 are each
solutions of'an equation which has a unique solution
according to the”division property. .°. % =1,
2. Both % and a are solutions of the eguation 1l:'x = a

which has a unique solution according to the division

property. .°. % = a.
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Exercises 6a, (conttd.) .
3. Again we involve the definition of division and the
,division property to show that each of the numbers
3 anéd O satisfy the equation ax =0, .°. % = 0.
b Each of the numbers :%- and -a is a solution of the 1
equation (-1)'x = a. :% = -a. {
. |
5. Each of{ the numbers 2 and g% is a solution of the i
equation ax = 2a provided a £#0. .. 2= g%. !
: ¥
Exerdises 6v, page 27 .
1 a - 2
Nl 7 6. w3 5
a L a + 1
2. 3 7 3a - 2
’ 3n 3x_+
3 Tmy 8. SEwy
) 3 9. - a+ b
i 5 2a + b
1 X y
5 a - b 10 m-n
Exercises Gc, page 39, L40.
' 2(a - 1)
1 1k . 8. 2z 15 z
- 15 i - 15 © (a“+1)(a+1)
2. 1 \ 9. % .
no @ 2
15x . 3x° + 2
{ 3. "‘&‘&' 10. —-'-—Tify—-z—
2
b 53_
b, — 11.
3a B
s (xs p(x -y b _x
x+ 2y)(ex + y) X -y
3 o
6. 13, 22X
x5+ xy +y
k.
7. 1 1 °
~
S
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Exevrcigses 64, page 42.
. 3 ‘ 1
: . l. 'é' 9. -é- |
y o, _225 10. -3-L-5§r-2-
\ 14 20x
) Mo wmEEE -5 §
) - ¥2x + 3
vy R ]
5. =% 13, A2 |
57 - 2(2x + 3) :
¢ -7 B CE R I cIn ] 1
7 2x - 3
[N 15 X - 1) 7 1)
1 /
8. T f

Exercises. be, page 44, 45,

2
] , ~ - 2b
1. 5k . 75%
29x 1 1
2. 1%? 2. xFT
20a + 7 ] 1
3. L3. —j
/jz 6aE 4 - '
b 21 2 - ¢
\\u 5 14, B
. eupd 15. =z2({x + 3y)
(3’ [ . ) X .-?y
- 6x2 + 13xy - 2y2 1
le. 16, —tes
. oxy (x + y)€¢
x© - 13x -12 3 2 \
. 12 3 3lha - 11
T BRI EF D) T. Ay L)
i
8. wom o
9, °© X + 1 19. —_%—_—%—-—
x§ +1 - x(x + 1)
10. a3 +a° - ba -1 ' '

{a+ 1)(a -~ 1){a + 2)(a - 2)

ERIC 84
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o Exercises 6e, (cont'd.)

20. 7-—3;——75 23, (3x° - 12x - 2)(x° + bx +6)
1-a) (x - 3)2.(x + 3)°
2(x - 2

21 X 2h, x + ¥y

2. ++2

Exercises 6f, page 45.

_ 29 __3
1. X --,-5-6 5. v = —é-
2. X = -% 6. x = % and x = -3
3. X = g 7. X =~—% and x = 2
b, x = -9 8. X 1"% and X =—-]-"go-

Exercises 6g, page 45.

1., L. -2
{c.) a
‘D

plo
S
—
o
o
1]
ol

Division property

2.1 ‘ Theorem: (2)(§)= &%
%5 =1 Commutative property!
&) () =1 Theorem: (£)($) = £% /
a(%)b(%) =1 Theorem: §~= b(é) | |
/ - 141 =1  Multiplication inverse 5
| . 2. -% + - %'= 0] Definition: Additive inverse K
‘ !
a*‘a=%+‘%=o Theorem:%iJr%:-a—%-—c- | i
- % = '% Substitution

(s 2

o
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Exercises 6g, (cont'd.)

- 3. % - -& =& 4+ - '3- Subtraction property
= % + '% Thecrem: -(%) = ;%
- ad +bc(1-c)(b) Theorem: %+ % - 2d + be
ad + -be )
= %3 - Commutative property and
Theoren: (~a‘))(b = -ab
=§1‘5é_p_c_ Theorem: a + -b = a - b
Exercises 7a, page 47.
o 1. 6> -3 [or -3 < 6] 11. 682(2.98 + 67.4) |
- 2. 25 -5 = 682(2.98) + 682(67.4)
3. -T<0 12, (-1)-(-1)+(-1)- > -3.2.%5
- b2 1 2 1
y, 8>0 13. -5+§>'3'X-§
5. 52.8 > -32.9 1%, -U45 ¢ -30
6. B8.25 > 8.2 " 15. <45 > -30 + (-20)
f. ~0.1 < -0.01 16. ius + 11 = -30 !
| 7k ‘ ’
8. =£>= 17, 23> 1 1
9. -3+10=17 18. 23 =19 + 4
10 E% < E% | 19. 15 > -1 ’ ’
20. 15 = -1 + 16

Exercises 7b, page 49. {' “,

1. > 6 <
2, > 7. > | !
3. > 8 > .
4, < 9. <
5. < 10. >
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Exercises 7c¢, page 53.
1. 2x + 12 > 5x 2. 5. < 3x - 1
12 > 3x 3x > 6
x <4 X > 2
3. (x - 5)(x - 7) < O means either (x -~ 5) < 0 or (x -7)<0
but not both
if x -5<0 if X -5 >0
Xx <5 x-T7 <0
X-T7>0 ‘ x <7
x>7 : x 55
but it is impossible 5<x \Zv7
for x to be less than 5
and greater tﬁan 7.
b, x° - 6x 4+ 9 <
x? - 6x + 5 < oa
(x - 8)(x-1)% o
(x - 5)(x-1) = 0
X = 5; Xx= 1

(x - 5){x - 1) < O means x -5<C and x -1>0

(0]

x<5 x>1
P S.x S 5 (
If X -5>0
} ‘ x> 2 ' '
If * x - 5<0, x<5 and x < 2 but in order to

insure that both of these conditions are satisfied
we must take x < 5
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Exercises 7c, (cont'd.)

6. If x> 0, 2x + 5 K 6x
5 < ix
X 2_-%
If x=0 we have an undefined opératidn
If x<0, 2x+ 5> 6x '

xg 7
In order té satisfy both of these conditions at

the same time we must. take x < O
x<0 or x> %.

+

A

T. If x>0, 6x2 +:13x < é8
. 6x° + 13x - 28 < O
o (2x + 7)(3x - 4) <0
| and 2x + 7> 0
, Coex > -7
| x>=4
P while 3x - 4 < O
A | N . ’
I ‘ l ' 3x < 4
3 . Cx < %

|
J

y 4
o 0<x <y
+ If x = 0 we have an undefined operation.

If x<0 6x° + 13x > 28
(2x + 7)(3x - 4) > ©
‘then 3x - 4 <0

> 3x < 4
N

X('é' /

38
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Exercises 7c¢, (cont'd.) -
. T (copt'd.) while 2x+ 7> O
' 2x > -7
7
X2-3
- f<x< 0
7 u
x#0 and - < x< =%
8. X -1<x<x+ 2 for all x
. only x - 1< 0 or all factors must be < O
If X -1<0 and x>0
then x <1 )
X +2<3
0 <x<K1l
If X +2<0 it follews that x <0 and x - 1< 0O
80 X < -2
x< -2 or 0<x<1
Exercises 7d, pages 53, 54.
1. a >l
a-a > l-a | Multipl%cation property of order
a2 > a
2. a<l and a > o0 !
ara < 1l-a Multiplication property of order
a2 <a '
3. a<o
a <1 I /
a-a > a Multiplication property of corder
a? >a or ac< aef&

> 0
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7d, (cont'd.)
a<b
a-a < a-b Multiplication préperty of‘order
a:b < b-b Multiplication property of order
a? < b2 Transitive property .
Case I a>o g i
z-a > 0-.a ’ Multiplication property of order
a®> 0 \ -
Case II a<o | “ .
e )
a-a >-0-a Multiplication property of “order
a2 >0 :

See prob. 5 for a>0 or a<o

a=0
a-a = 0-a
a2 = 0
a® >0 '
a~ + b2 = 0 . - ’
Case I a=0" ’
0°0 + b2 = 0 .
b2 = 0
b'b =0
b =20
Case II a#£o }
a2 >0 |
—a2 <C
b2 = 0 - a2
b = -a® < 0
90
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Exercises 74, ({cont'd.)

7. (cont'd.) but b >0 for allb

a must = 0, b=0 .
8. (a-b)2>0
a2 - 2ab + b2 >0
a2 - 2ab + 2ab + b2 >:2ab addition property for
inequalities
2% + b2 > 2ab
a2 + b2
ab < — Multiplication property for
1neqpalities

Exercises 8a,.pages 58, 59.

1. - x° < 25 “
' 25<0
(x - 5)(x +5) <0

~
!

X -5 <0 and x+5>0
-5<x <5
1 1 py
. ! i T
} , ’ 0 | 2
2. 2x < 14
x< 7 ‘
0Ol 23 45 6 7 8
/ 3. 6 <x <8 /
—_— } + i } f L[‘L -+ + L i L{'¢
-0-9-8 -7-6-5-4-3-2-1 0 1| 2 3/4

a1
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8a, (cont'd.)

Exercises

2

or X

b's

™~

~

[ t e
R A X S TP
2y B e 11”855 M

2 5
oot o,

X <

26,

"

0

42 41 -0 -9 -8B -7-6 B -4 -3 -2 -|

1

Ll adnaisin

RSP I
sl o Sve K el g

l®)
V|
l®)
Q
— 1
+ Vv
e
/Xx
5
)
l®)
Al
e
o
1
b
~ O
—~
o Al
—f
N
+
X_\/
|, O~ XK
M~ o

k]

v

+—t t t
-2 <11 -10-9 -8 -7 -6 -5 -4 -3 -2 -|

T

0

23 456 78 9

(-3 <x< 3) or (x < -5 0orx > 5))}

-
-

{x

xis in R and x # O}

<1} = {x:

3

X

X

{x:

10

- O
4+ 0
e

T
- N

+ -
® 0o
4
4

o
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Ixercises Ba, (cont'd.) ¢ .

22, {x:(x =x or x>x) and (x # 0))

or {x:x s in R and x ¥ 0}

4: " - Ll Y L Y 1 4.;’
e palatr v v o Y T L] R L v o ad e A L T 1 L4
- 0 i

(Tre numper 1line except the point 0)

13, (ex + M)(2x + 2) > 0 .

.

2x + 2> 0 or 2x + b <0
” 2x > -2 o ex < -b
— x> -1 x < -2
\ :21 y -
1L, (x + £)2 222 ¢o
' TP x + 4 >0 x+ 4 <O
X+ b4 <2 X+ 4> 2
- {2F+ L+ 2)(x+ L4 -2)<0O
lx + 6)(x + 2) <O
X+ 2 0
x < -2 | )
\ x+€> 0 j,
x > -€
£ KX <=2 i )
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,  Exercises 8a, (cont'd.)
g 16, (2x - 8)(2x - 2) > 0
(x - ) (x -1) >0 _
X -‘MZO . x - ].S_O i
x> b, . ’ . x <1 '
) " g ———————— e
A 0 .2 3 4 .5 8
Exercises_ 8b, page 59.
= ,
1. I1f a-b>¢C . 2. If a>0; b>0
|& - b| = -b |a]= a Ibl: b
- and b = a < 0. lal|o|=a b=|ab|
o - al = -(b - a) If a=0 b=0
. =arb jaf=0 |r]=0
' la’~ o] = |b - a| lal-|bl= 0.0 = a-b = |ab]|
Ir a-b=0 . If a>0 b<O
a=0b la]=a !b|= -b
N and b - a =20 la!lb[= a*(-b)= -ab
la - bl =0 = [b - 2 -ab > 0
, )
, If a-bgo aq <0
- la - o] & -(a - b) lab|= -ab
b a jallol= lab|
and ¢ - a >0 If a<0 and b >0
le - al =b - a the proof is similar to
la - b] = b - a that Jjust gilven.
- 91




3. If a>0 and b >0

»

1]

A

=2

1]

o
s

8l - -2
. lal _ ial
N L o
If a<o and b <o .
la| = -a [b| = -b




