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PREFACE

For Students and Teachers

Mathematical Background

It is assumed, throughout this volume, that the reader has completed

Chapters 1 to 6 of SMSG INTRODUCTION TO PROBABILITY - Part I. In addikdon.

certain topics depend heavily on the ideas about 'conditional probability

developed in Chapter 7 of Part I. Others require some faMiliarity with cer-

tain ideas and skills of elementary algebra.

The more difficult sections of the text we marked -T" , as are some of

the more demanding exercises.

Outline of Content

Chapter 8 develops techniques for applying the results of Chapter 7 and,

hence, depends on the latter. Section 8-1 is not very difficult, and it

supplies the student with a useful method of attacking problems which seem

complicated. The exercises of Section 8-2 illustrate the wide range of such

problems. Bayes' formula, which is discussed in Sections 8-3 and 8-4, is

essentially an algebraic restatement and generalization of earlier results on

conditional probability. It should be omitted by studenti who have not had

some experience in algebra.

The material on Bernoulli trials in Chapter 9 may be studied immediately

following the completion of Chapter 6. It should be noted, however, that ex-

perience with Section will make the understanding of Chapter 9 easier. The

content of Sections 9 -6 and )-8 will be meaningful only for students with some

background in algebra. Chapter ) does not include a complete treatment of per-

mutations and combinations, and it requires no previous acquaintance with this

topic. However, students who have encountered permutations and combinations

elsewhere will be able to apply their knowledge here. For many problems in

probability more than one method can be used, and it is both interesting and

instructtve to see ho': different approaches lead to the same result.

The first five of ci.apter 10 are not particularly difficult. They

could be studied immudiatel;, after.Chal.ter C. aictions 10-6 through 10 -9 intro-

duce ideas that are imi,ortant for the study of statistics. These sections would

be of partiaLar-interest to students t.o are using empirical data in a natural

science or sok.!ial c*,udics Lourse. Section 10-"; requires some knowledge of

algebra. Section 10-10 is a rather ienitny ai.plication of ideas of Chapter 9.

r-
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Bertrand's ballot problem (Chapter 11) can be studied independently of tY,

rest of the volume. It is an interesting problem and gives students.an oppor-

tunity to enjoy the pleasures of discovery. The material in Sections 11-1
.0)

through 11-5 is relatively easy and most students should be able to complete

it reldily. Section 11-6 shows how conditional probability--and Hayes' formula- -

enters the problem.

Chapter 12 (Markov Chains) applieE, the ideas of conditional probability

and should not be attempted by those who omit Section 8-1. The ideas here are

'somewhat more difficult but they are extremely useful in many practical situa-

tions. Incidentally, the reader of Chapter 12 encounters repeating decimals in

a rather interesting setting.

Suggested Plans of Study

1. For those who omit Chapter 7 (Part I).the following is suggested:

Chapter 9, Sections 1, 2, 3, 4 and 5.

Chapter 10, Sections 1, 2, 3, 4 and 5.

Chapter 11, Sections 1, 2, 3, 4 and 5. (Optional)

2. A minimal program for those who complete Chapter 7 would include the

list above, plus Chapter 8, Sections 1 and 2, and Chapter 12, as time

permits.

3. Students who have studied or who are studying) algebra might profit by

completing Chapter 9, omitting perhaps either Chapter 11 or 12.

6
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8-1. _Tree Diagrams

Chapter 8

BAYES' FORMULA,

The material of this chapter depends heavily on the concept of conditional

probability. In particular, we shall make use of the formula from Chapter 7.

(1) P(ElF) -
P(EnF)

.6( =

;

2

2.3 -3

P(F) P(EIF)

If we know P(E(iF) and P(F), we use formula (1)

to find P(EW.

1. For example,-if P(EnF) = .3, P(F) = .5, then

P(EIF) = .

It may happen, however, that we know P(EIF) and

P(F) and wish to 'find P(E(1F).

2

' 2

1

'
2. If P(EIF), =

3
P(F) = then

2 P(En F)

3 z 22,

1

3. So, P(En F) =

4.
P(En F)

P(E IF) = may be written in the form:
PkF)

P(E(1F) = P(P)

This form is useful in many situations.

Let us start with an experiment.

Experiment:

Use one coin and one die. Toss the coin.

(1) If heap occurs, record "I". Then throw the die. If 1, 2, 3 or 4

occurs, record "R"; for 5 or 6, record "G".

(2) If tails occurs, record "II". Then throw the die. If 1, 3 or 5

occurs, record "R". If 2, 4 or 6 occurs, record "G".

149



4f'YOU.C10 the experiment several times, what fraction of the time do you

COI"'? °"Ii" "R" ? "B" ? Of those trials "When "I"- is recorded,

Wftaction:of the time do youexpect "RI'? "G" ?

Perform 30 trials of the experiment. A table is useful in keeping

t:rackPf.the results.

Number
-Recorded- '

. .

Number
Recorded

I

,
. i R

.

B

II

R .

B

Our results and a brief discussion of this experiment are on page 305.

5. If P(RIII) P(II) = 2"
'

then p(IInE)

regardless of what events "II" and "R" indicate. 4
P.

In Items 4 and 5 we have used the formula:

(2) P(EnF) = P(F)P,(EiF).

Formula (2) is a general formula for obtaining ,p(EnF) whenever we

know P(F),P(EIF). You may recall that the question of ..P(EnF) was considered

briefly in Chapter 5. At that point we were only able to deal with the case

pf mutually exclusive events, in which case P(EfIF) = O. In Chapter 6 we

introduced the notion of independent events. If E, F are independent. We

have P(EnF) = p(E) P(F). You` should notice now that this last may be

thought as a special case of (2).' Independent events were discussed in

more detail in Section 7-6.

P(E)

T(F) P(E)

. ,

With this short review behind us, let us see how we may use formula (2)

In connection with tree diagrams.

If E, F are independent events, then

P(E1F) .. (Section 7-6)

Hence, P(E fl F) = P(F) P(EIF) becomes

P(E n F)

150
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8-

You, have become familia- with tree diagrams as an aid in counting out-

.
comes. In this section-we shall see how tree diagrams are useful in calcula-

ting probabilitiee 'lila variety of situations.

Consiler the following experiment:

There are two urns*. Urn I contains two red marbles and

one green marble. Urn II contains one red and one blue marble.

An urn is to be selected at random. (Recall that "at random"

means that each is equally likely to be selected.) A marble

is then drawn (again, at random) from the selected urn.

An obvious set of outcomes for this experiment is:

(in R , in G , _an R , G),

By In R we mean that Urn 1 is selected and that a red marble

is drawn. The following tree diagram fits this experiment:

You recognize the similarity between this "urn problem" and the coin and

die experiment that you just completed.

The given information enables us to write down immediately many of the

probabilities we need.

* In the literature of probability, containers for marbles, balls, numbered

ch'..28? etc., have always been ref,rred to as "urns". A problem, such as he

present one, is called an "urn problem". Urn problems are useful as mode s

or examples which simulate a variety of practical applications of probabi ty

'theory. oot

ti



2
.3

. P(I) = . "I" is the event "Urn I is selected ".)

P(II) =

P(RII) =

P(GII) =

P(R4II) =

P(GIII) =

Here, then, is a situation where we kiow. P(I) P(II)

and certain conditional probabilities. It is natural

to use formula (2) to find the probabilitieS of

Inv; in G , etc.

R(In R) = P(I)P(RII), using formula (2). Hence,
1 2

P(InR) = -f -5 = .

10. Similarly:

R(In G) =

R(iin R) =

R(Irn G) =

. (We obtained this result in
Item 5.)

11. Of course,

P(InR) + R(InG) + R(IinR) + R(IirIG) = ,(
This last result is not surprising. Our set of out-

comes is (in R in G R 'In G).

1..:C .4

Let us go back to our tree diagram. We will look at each branch individ-
,-R

, we interpret this as "Urn Iually. If we follow the branch

is chosen and a red marble is drawn". We may, then, label the branch as In-R.

InR

152
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"---Aiar4oUl.ar piece; :.,....."'i shaIl write Since.5.4".

. ti 1 11

2

I _ ------- . ,5

.,--'' I

l'
1

. That is, we label the piece with""its" probability.

-..-'.:

HoWabout the piece, i...'"
R

? Khat'probability label shall. we give it?

If you think a moments you will agree that the appropriate probability is "the
..

.-t.

4?..2.,.,- ..
. -

probability of- ft, given that urn I is selected". Since P(RJI) =

have:

In R

lc- ...-
....;1.f,e

2

1
I

= P(I).P(RII)

1 2 1

2 3 3

...
:, :

t . ....4r .

-: . -..5

To find the proba J ity of the.;p4nch,-PIRR1(4 we multililit the probabil.=

--itips that occur along tha brttnch. ,
-.

1
- R -- . p(Iro)

12. Complete the tree diagram below by supplying the

appropriate probabilities:

G = PCin G)

G
:

=

The completed diagram is shown on the following

,page.

153 13
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2
3

2 1

1G
'It'As.,important to notice

Ca) The pxvbabilities on
jràbábilities

116). Each

Cc)

1

3-

R(in G)

= f) FO

P(TIn G)

several things about this7diagiam.

the secOnd7itep pieCee, are Conditional

P(RI) , P(GJI) , P(R11.1) ,

complete branch represents one of the outcomes of our original
set of outcomes: [inR , in G , IIflR , IIn

1
The probabilities of each complete b Inch are obtained by multiplying

-

the probabilities that occur along the branch.

(0 The sum of the probabilities of the complete branches is 1.

We can use our results to find other probabilities.
event "red" can only occur in one of two Irutualiy exclusive ways, as IflR or

121 our example; the

as IIn R.

---_,.--
...41.,. + (in-R and 13. P(R) = P(InR) P(IIn R) .

.._, ..
3:in R are mutually 2
:exclueive)

14. P(R) . 1 +

--. P(in-) + t 15. Similarly, P(G). = P(

--: .j(1:EnG)

+ = 12

(naturally;)

16. P(G) .=

17. P(R) + P(G-) =

154 14



8-1

The next paragraph deals with another urn problem, similar to the pre-

ceeding example. Try to work this problem by yourself. Sketch a tree diagram,

labeling the branches with the appropriate probabilities. Compare your answers

. with Item 311. A step-by-step solution is given in Items 18 to 33. Befole you

begin, notice that the given information enables you immediately to write the

values of P(I) P(II). Also_obvious.are the _condktiknal-probabilities that

a particular' color is drawn, given that a certain urn is selected.

Urn I contains 5 red, 3 white, and 2 blue marbles. Urn II contains

3 red and 7 blue marbles. We throw a die to determine which urn to select.

If the die shows "1" or "2", we use Urn I, otherwise Urn II. A marble is

drawn at random from the chosen urn. Find P(R) , P(W) P(B).

18. P(I) = , since, for the die, P(1 or 2) = 1.

19. -P(II) =

Our tree diagram starts like this:

20. From the point labeled "I!!, we need
(how many)

branches, one each for red, white and blue.

21. From the point labeled "II", we need only

branches.
(how many)

-We have, then,

iR I n R

-W I n w
1

'"B I (1 B

3

155 I

,R II n R

n B



IO

Of,

A

1, 1 1,

1.5v=

., ^ '

22. P(RII) means the probability of drawing a red marble

given that is selected.
%

23. Since Urn I contains 5 red, 3 white, and 2 blue

marbles, all equally likely, we-have:

P(RII) =

In the same way,

P(R1II) =

P(BIII)=

Cur tree diagram now looks like this:

- inR

71
---w2..7 xi

nw

We are now

ifn B
slOW

readytto compute the probabilities of

in R, IflW, etc.

24. To find P(1 n R), we

25. P(InR) =

26. P(In w) =

27. P(I-1B)

156
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(add, multiply)

1
and



28 p(iin =

-29. P(iin,B) =

15

Now, the event "red marble" can occur in one of two

mutually exclusive ways. Either the red marble cornea'

from Urn I9r-from Urn II.

30. P(R) = P(inR) P(iinB).

31. P(R) = +, (Items 25, 28):

0=
30 -

32. similar argument,

P(B) + -1- (Items 27, 29)
15

'8,

1. 33. P(W) lo '(Item 26)

4.5

10

11

30

. 3
30

-a6
30

34. Clianging our answers to fractions with denominator 30,.

35. We should be careful to observe:

16
P(R) + P(W)

11
+P(B) =

tet us briefly review.'

From
(1) ,sp(EIF).= P(f)(7)

.157

17



-we. May conclude:

(2) P(En F) = P(F)P(EIF) .

We often use this multiplication formula in connection with tree diagrams.

.A typical branch might look like this:

F(F)

E P(E n F) = P(F ) P( E IF)

Since each complete branch of a tree diagram represents one of a set of

mutually,exclusive events, we may add the probabilities at the tips of different

,branches to obtain a desired probability. Suppose, for example, that'three

**has lead to E. That is, E occurs in En F1, En F2, En F3. Oar for-

as would then become:

and

P(E) = P(En Fl) + P(EnF
2
) + P(EnF

3
)

/-
}P(E) = P(Fi ) P( ElFi) + P(F2) P(EIF2) + P(F3) NEIF3)

It should also be apparent how we would extend the diagram if we had a'

situation involving more than two steps. For example, the probability of a

.tranch such as

1

is

1 1 2 1

3 3 9

2

1 3

3

The exercises of Section 3-2 are designed to give you a variety-of practice'

in using tree diagrams.

158
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Ekercises.'4-
(Answers on page 314.)

1. Urn problem. There are three urns, I, II, III.

Urn T. contains three chips', numbered 1, 2, 3.

Urn II contains two chips, numbered 1,?.

Urn III,contans two chips, numbered 2, 4.

2.

An urn is chosen-at random and a chip is drawn at random._ Whaiis the

probability that the chip drawn is numbered 1 ? 2 ? 3 ? 4 ?

Referring to Exercise 1, fiad P(chip has an even number), P(chip has a

number legg than 3), and P(chip is even or less than 3).

3. Seeing two gum machines, a boy doesn't know which to use. He flipg a coin

to decide. It happens that machine A gives 3 pieces with' probability

,
,5_and

4
. 1 piece with probability" . Machine B gives 1 or 2

pieces equally often. Find the probabilities that the boy receives 1, 2,

3 fpieces.

---Here-:is.another-urn problem, t4his time using only one urn. The urn con- ,,

' tains 6 red, 4 blue marbles. A marble is drawn, its color noted, and'

then replaced. A second draw is then made and the color recorded. ti
(This situation--first discussed in Chapter 6--is one o; "drawing with

replacement". The events "red on first draw", "red on second draw" are

independent.) -The number of times that red is drawn may be eithei 0, 1

or 2. Find P(0), P(1), and P(2).

5. Using the urn of Exercise 4, we again draw twice. This time, however, we

do not replace the fir %t marble. Find P(0), P(1), P(2). Hint: After

the first draw there are only 9 marbles left.

6. Under the conditions of Exercise 4 (two draws with replacement), find -$
4

P(red on second draw).

Under the conditions of Exercise 5 (two dr'aws without replacement), find

P(red on second draw).

8. Kate and Jane play a simple game. Kate ha4two U.1:es, each one red on one

side and green on the other. Jane has one such disk. At a given signal

Jane and Kate each put a disk on the table. If they show the same color,

Kate takes both of them; if the colors are different, Jane takes both of

them. They play until one layer has no more disks or until they have



4, 0

_edirpared disks three times. Make a tree to show the progress of the game.

know that the probability that Jane wins.any particular play is
1

2'

Find the following probabilities:

(a) Jane wins the game;

=(15) gate wins;

(c) neither wins.

ye,

In the game of Exercise 8, there are 3 disks in all. Find the probability

iliVt-Kate ends up with 0 disks, 1 disk, 2 diks, 3 disks.

10. In tennis, a player must win 6 games to win the set, bit he must lead

his opponent by '2 games when he has won the 6 games. Otherwise, the

set continuesuntil one or the other player has a two-game advantage.

Ak and Bill are playing a set. After 8 games the score is 474t '1411

has just hurt his hand so that from now on the probability that Art will
.

win any game is
2

. They agree to play until either someone wins (6-4 or

7=5) or to settle for a tie if the score reaches 6-6.

Find the probabilities: P(Art wins), P(Bill wins), P(tie).

13.. Here is a game which you might play. An urn contains 7 red and 3

green bails. You are to select a ball; note its color and replace it.

'Your- opponent is then to select a ball. H is the event that you

select red; R
o

is the event that your opponent selects red; G

is the event that you select green, etc. Make a tree diagram of

pOsuible outcomes. You win if the ball your opponent selects has the

,same color as the ball you selected. What is your probability of

winning?

12. Our next problem is a little different from the other urn problems: We

are going to draw a marble, note its color, replace 4, and then add

two more of the same color. We have an urn with 6 red and 4 blue

marbles. We select a marble at rannom,,note its color, and return it

and add 2 more of the same color to the urn. We. repeat the procedure

again. What is the probability of selehting a red marble on the second

drawing? The probability of a red marble on the first drawing is 5-
5

Do you think the probability of a red marble on subsequent draws will

be greater or less than ?
5

1600

20



13. (a) In Exercise 12, suppose we continue the same procedure (replace the

marble and add two of that color). Find P(rea on third draw).

(b) Can you guess at a generalization? What if the-original distribution

,of marbles had been 5 red, 5 green? r red and g green?

104. A certain cook can prepare two cereals, Lumpies and Soggies, but sometimes

she,burns them. In fact, when she cooks Lumpies, her probability of

burning it is .1. Whenever she burns Lumpies, then she cooks Soggies

the.neXt day. However, she really doesn't like Soggies very well, even

when it isn't burned. Consequently, after cooking it one day, she always

...goes back to Lump s. She begins a new job on Monday morning by cooking

Lumpies. What is the probability that on Wednesday she coOkS.Soggie.;?

Lumpies?

Our-cook is even more careless with Soggies. Her probability of burning

Soggies whenever she cooks.them is .4. What is. the probability that

Wednesday's cereal Ls bdrned?

116.
The careless cook finds that she has grown to like Soggics, so she changes

her plan of operation; She begins, on Monday, January 1, another year, by

cooking Lumpies. Again, she cooks Dimples until she burns it, and then

changes to Soggies. Now, however, she,cooks SOggies until she burns that,

and then changes back to Lumpies again. UnfOrtunately, in all this time

her cereal-cooking has not improved. Her probability of burning Lumpies

if she cooks it is .1, and her probability of burning Soggies if she

cooks it is .4.

(a) What is the probability that she cooks Soggies on Wednesday?

(b) What is the probability that Wednesday's cereal is burned?

117. Under the conditions of EXercise 14, the probability of burned cereal on

Monday is .1, on Tuesday .13 (work this out for yourself). In

Exercise 15(b) you found that the probability that Wednesday's cereal Is

burned is .145. It appears that, as the days pass, the probability that

the cerealemill be burned increases. Find P(cereal burned on `Thursday).

161
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8-3.. Reyes' Formula

4
We begin this section by returning to the urn problem of the beenning of

Section 8...1.

Urn I: 2 red, 1 green marble.

Urn II: 1 red, 1 green marble.

An urn is selected at random and a Marble is drawn at random from

that urn.

Our tree diagram is:

2 1
3' 2

2

I

2
3

1

1. P(RII) = and P(RIII) =

2. P(in R) = P(1) P(nli)

3. P(IIn R) = R( ) p( )

i. P(n) = P(1 n n) + )

See

4,

Our results (Items 1 to 4) tell us all about the probability of "red".

We have P(RII), P(InR), P(IIn R), and finally, P(R).

162 22
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,Suppose now that an urn is selected and a marble drawn. We look at the

i.r40.0le%and'it is, in fact, red. At this point we are no longer interested in

the probability of red. Of course, P(RIR) = 1.

1 1
On the other hand, we knew originally that P(I) = P(II) = Now

ye have new.information: red is drawn. It is natural to ask: knowing that a

,red marble is drawn, which urn was selected? We seek, then, to determine

P(IJR) and P(IIJR).

There is nothing new about this type of problem. We handled similar sit.-

Otions in Chapter 7. It may be instructive to work this particular problem

through in some detail. As you suspect, we are trying to develop a general

rule (Bayest formula).

3

2 1

You have learned that guesses, which at first seem reasonable, are not

always correct. ,(See Sections 7-, and 8-2, for examples.) Let us sea Whether,

Perhaps we can guess at the answer to our urn problem.,

There were red marbles altogether.

(how many)

. Of these were in Urn I, in Urn II.

Knowing that 'a red marble is drawn does not tell us

which urn was,selected. It might be reasonable,to

- argue: Therewere'origiqally twice as many red

marbles in Urn\I; it is twice as likely that the

marble came from Urn I as from Urn IL.

Thud, we might guess

P(I111),F P(IIIA)

(Surely P(ITIR) = 1. The red marble came

from one of the urns!)

in this case, our guesses are valid.
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0

. We do know that

P(IIR) _
P(ra R)

9. Alit We know P(I(1R) = (Item 2)

and P(R) = (Item 4).

1

So P(IIR) = 3
a

11. Similarly, P(IIIR) =

Once again, our seemingly "reasonable" guess fails to

be correct. On the other hand, P(IIR) is-greater

than P(IIIR).

If you would like to follow a different.buOireasonable" argument to con-

vince
7

vince /ourself that 7 and are inded the correct values, read Items 12

to 17.

'300

200

150

200 +150 = 350

Suppose the experiment Mere repeated, pay, 600' times.

On (about) 300 of the trials Urn I would be selected.

12. On (about): of the trials Urn II would be

selected.

13. Of the 300 selections of Urn I a red marble would

be drawn (about) times.

14. Of the 300 selections of Urn II a red marble would

be drawn (about) times.

15. That is, after 600 trials you would see a red

marble (about) 200 + = times.'
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1 Of these 350 red marbles, how many- came from

:Urn I?

17. What fraction of the 350 red marbles came from

Urn I?

-How_ et us see if we are able to use the steps of Items 1 to 11 to reach

*genarikieddre.

l*Cnar example.

40. P(If1R)
P(R)

, by the conditiogkpxobability formula (1) of

t#\

Look at the\humerator of the fraction in (a).

P(InR) = P(I) P(RII), by formals (2) of Section 8-1.

Now look at the denominator of the fraction in (a).

P(R) = P(InR) P(IIr) .since a red marble must come from

either I or II.

Section 8-1.

So,

(o) P(R) = P(I) P(RlI) P(II) P(RIII), again using formals (2)

of Section 8-1.

Substituting (b) and (c) in (a),we have

1101) PI) PR
PI PR I +PIS

I)

hislast result is Hayes' formula for the special case we have considered.

,_:Totiahould not tiy to memorize this formula. (See Remark (3),-page 168.)

Torzhelp you understand this rather complicated looking formula, we shall

--1..---

2k:-through another problem.

-Twin brothers, Ed and Jim, deliver the evening newspaper 6 nights a

jki=delivers on 2 nights, chosen at random, and Jim ou the other nights.
f

Thekii*-by a house on their bicycles and throw thenewspaper onto the porch.

T4-,PrOeibility that Ed hits the door is and the probability that Jim hits

the-door_is 10 . One night Mr. Jone's is watching TV before dinner, when he

hears a paper crash against the door. He sighs to Mrs. Jones4 "It must he Ed's

,nigAt with the papers." What is the probability that he is right?
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-P(EnH)

P(E)P(HIE) 24. P(EnH) = )P(HIE).

18. If E is the event: Ed delivers the paper, then

19. If J is the event: Jim delivers the paper,, then

p(J)

20. If H is the event: door is hit, then
A

5 = P( 1E1
4

1
21. P(HI )..

22. We are trying to aad the probability that Ed

delivered, the paper, given that the- door is hit.

That is, we need PC

23. P(EIH) -
P( )

P( )

1,(J) P(111.1)

2 1

= -5 To°

25. Numerically, P(E n =

We now know the value for the numerator of our

expression

P(En H)
P(E111) = .

It remains to find the value of the denominator, P(H).

POO is, of course, the probability that the door is

hit. It can be hit in on of two (mutually exclusive)

ways. Either Ed hits the door or Jim hits the door.
7

26. P's) P(E n +

We have found

P(E n H) = R(E) (P(HIE) =

27. P(J n 1) P( ) P( )

166.-
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15 3

We are now able to write,.

P(H) +

Finally,

1 3

28. P(EIH) = 3 5
1 3 2 1

3 5 +

I

10

Since the door was hit, the probability that Ed

delivered he paper is .

Throughout Items 18-28 we left the multiplication of the fractions

"indicated?' until the last step. We did this deliberately so that you could

identify the various fractions in Item 28.

Once again,

P(EIH)

P(E) P(HIE)

4
3

5
1 3

7
2 1

5

P(E) P(HIE) 1,(1) p(10)

P(EpP(h:E)
P(E1H) p(E)?(HIE) + P(J)F(HIJ)

(Answers on page 323.)

1. Write a similar formula for P(JIH). 4tubstitute the appropriate numerical

values for the various probabilities. Verify that P(JIH) =
1

.

2. We have worked this problem without reference to a tree diagram.

e.-

Make a

tree diagram, labeling the pieces and branches witlethe appropriSte

probabilities,.

Exercises.
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Tb two examples of this section dealt with situations in which a certain

event ("red" for the urn problem; "hit" for the newspaper boy problem) is the

union of two mutually exclusive events. We had

R= (InF)u (an F)

and H = (En II) u (J nix)

Suppose some event, E, is the u,,ion of three mutually exclusive events.

E = (Fi( E) U (F2n E) u (F3n E)

A portion of the accompanying tree diagram would look like the following.

(The short lines indicate other branches that do not involve E.)

Remarks:

(1)

(2)

(3)

P(F )
1

P(F2) 22
F
2
nE

P(F
3

) F
3

P(EIF3)E F
3n

E

P(E) = P(Fin E) P(F2n E) P(F3n E)

P(21n E)

P`FilE) --17(E7--

P(ElFi)

F
1
,,,

E Fln E

P(F1) P(EIF1)

P(F1)'P(E1F1) P(F2)P(EIF2) P(F3)*P(EIF3)

To obtain similar formulas for P(F2IE), P(F3IE)

necessary to modify the numerator accordingly.

If E is the union of more than thxlee mutually exclusive events,

it is clear how Bayes' formula is extended.

it is only

There is no necessity to memorize Bayes' formula. It is simply a

restatement, in different form, of the conditional probability
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formula of Section 7-3 . The numerator of &yea' formula reminds us

that P(Fill E) = P(F1)*P(EIFI). The denominator is just another

eipression for P(E). Any problem in conditional probability in

this course may be solved by using the methods,vof Chapter 7.-.0f

'course, tree diagrams are often help;u1.

-
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8-4., A Further Example: Exercises.

Example:

A factory has 4 machines producing axe handles. M4chine I produces

30 percent of the output; machine II produces 25 percent; machine III pro-

,tdupes 20 percent; and machine IV produces the rest. Defective handles, pro-

,-

&Iced by each machine are 5 percent, 4 percent, 3 percent, and 2 per-

cent, respectively. A handle chosen at random from the total output of the

factory is examined and found to be defective. What is the probability-that

-it was made by machine I, II, III, IV,

. P(I)P(DII)

.25

.04

.015

.036

1. Originally we knew that if-a handle Is chosen-at.,

random, the probability that it came from machine-I

is P(I)

Now we have additional information. The handle is .

defective. We are interested in P(IID), We use Th

for the event "The chosen handle is defective".

2. Bays' formula applied to this problem is:

p(i).

P(IID)=

P(IV)-P(DIIV)

Our given information is sufficient for us to know

all the individual probabilities on the right hand

e.de of the last equation. For example:

3. P(II) =

4. P(DIII) =

5. Substituting the appropriate numerical values, we

find that/the numerator =

6. The denominator becomes

930,

(decimal)

(decimal)



'' -.036

1 .015
P(IID) = -.Tzs -

12 ,

The probability that the defective handle came from

5machine I is
12

If you had trouble, compare your' work with:

The original probability that.ahandle chosen at

random is defective (P(D)) is

P(D) is, of course, the denominhtor of our fraction.

You should.now be able to compute the probabilities that the defective

.hindle came from machines II, III, IV. Remember that you will use the same

dghominttor, P(D), fbr all of your.calculations.

,

P(IIID) =

10. P(IIIII) =

11. P(IvID) =

Check:

1. In a two-year college 60 percent of the students are freshmen, 40
--=
cent sophomores. Of the freshmen, 70 percent are boys._ Of sopho-

mores, 80 percent are boys. A _student is chosen at random. 'Find the

- probability_that the student is:

(a) a girl.

(b) a freshmen, given that a girl was chosen.
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-2. . See Exercise 3, Section 8-2. The boy uses one machine without noticing

which one. He receives 1 piece of gum. What is the probability that

-he used machine A ?

3. See Exercise 8, Section 8-2. We are told that Kate wins. What is the

.'probability that she won the first toss?

4, See Exercise 1, Section 8-2. What is the probability that Urn II was

_selected, given that the marble drawn is numbered "2" ?

P

_

5.. For each of the urn problems of Exercises 4, 5 and 12 of Section 8-2,
.

find the probability that the first marble drawn fs red, given that the

,second is red. (Each time we start with an urn containing 6 red and

4 blue marbles. In Exercise 4 we "replace". In Exercise 5 we do not

,replace. In Exercise 12 we replace and add two of the first color drawn.

Before doing the calculations, you should be able to judge for which of

these situations the conditional probability is the least and for which

it .sthe greatest.)

6. Use Bayesi formula to answer Exercise 8(f), Section 7-4.

7. Use Bayes' formula to answer Exercise 9, Section 7-4.
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Chapter 9

BERNOULLI TRIALS

'9-1. An Experiment.

A gamihas the following rules. Throw a die three tithes. You win one

:Point, each time you throw a 5 or 6. Otherwise you score nothing. Play the

c- -gene 10 times. Record your results in a table as Shown.

4'irst Throw Second Throw Third Throw Score

6 3 5
.

2
,

1. How many times was your score 3 2 7 1 ? 0 ?

Record as shown on a'table of frequencies.

Sore/ ' 0 1 2 3

Number of
times

2. Do your results seem reasonable? For example, did you expect that the

naMber of games in which your score was 3 would be about the same as

the number in which your score was 0 ?

. What was your average score per game?

I. Suppose you have a spinner colored red and blue, but no die. You would

like to use the spinner for experimenting with the game. Could you?

What must be true ofethe spinner.to permit this?

This experiment is discussed on page 306.
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Introduction.

0;a:;;:peftain dice game a player throws one die three times. He scores

.lope.710197ach time the die shows 5 or 6. What is the probability that his

''.;WP11.-4414*A:c_is exactly 2 ? (Notice that this is the game described in the

.,-eXtler**e-of Section 9-1:)

As usual, we first construct an appropriate set of outcomes. A tree helps

us..t§:viOilite them. We are interested only in whether or not a throw wins

.*lpipiat. Hence, we let S stand for success (winning a point) and F for

.failure.

Second

Trialrial

Trial-

Third.

Trial

F

F

We may list the possible outcomes as:

SSS, SSF, SFS, SFF, FSS, FSF, FFS, FFF.

SFS, for example, is a shorthand for."success on first throw and failure on

second and success on thifd".

1. The player throws in succession 6, 3, 5. To which

of the above outcomes does this correspond?

2. Are successand failure on the first throw equally

likely?

3 4 174
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Let P(S) be the pibability

giveurthrow and :P(P) be thelprobabilitjr-of failure.'

P(S) =

P(F) = F`=

. .
4. Since the individual thrpws-are independent,

P(SFS) E P(S) -4-P(F) .

a

6r ;5:-

P(SFS) =

We Want to find the probability that thes-ttotal,peoi*!

is 2. -The;,oUtcOmeaare OF, ,

.

Since each of these outcomes has probability

P(scoke of 2) =

.

\ .

The piobabilitiis of S and of F on a single,throw can be indicaied-on'
otir tree diagram. Third

Trial

,Second
trial

First
1 2

Trial

5
SSF, P 1.1 :71

/ 2

1 s

SFS, P =
3N1F3
3

SFF, P =

2

d7
1

FSS, P 7.--

3

F '
3

3

SSS, P =
1

3,
NF

S

FSF, P =

FFS, P =
4

3 F
FFF, P = -Ft

*lipaders of Chapter 8 will recognize V.:is tree as a special case of the more
general situation discussed in Section 8-1.
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hemi 8 .W17 refer to the tree diagram.

1 2 2

3 3 3
)

,Once

twice

FFS

27

4

27

4

27 .

4

27

4
3 TT

4
(=

3

22

7

8. The probability of obtaining S on the first throw

is

The probability of obtaining F on the second throw

is

10. The probability of obtaiging' on the third throw"

his

11. The probability of the, sequence SET is

Notice that this can be found by multiplying the 41ift

probabilities along the branch-.

'Look at any branch containing one S and two Fts. The

probability of such a branch is the product of three

factors.

1
12. In this probability,

3
appears as a factor

(how many times)

2 appears as a factor
(how many times)

In each case, we can find the probability for a branch by

multiplying the probabilities for the pieces along that

branch.

13. The event "exactly one S in three trials" contains

the outcomes SFF, FSF, and

14. Each of these outcomes has probability

15. P(exactly one S in three trials) =
4 4

+ +

16. This last is more simply written as

P(exactly one S in three trials) = 3

17. In a similar way,

P(exactly two S's in three trials) =

.3(3 176
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Item'17.

P(exactly two S's in three trials) =
2

3 . ft-

Iipire 'did, the -- come from? For each appropriate branch we multiplied the
27

1 2
in some order. It is helpful to write:

1;4

3

1

3

2
1

. g (1)
3 3_'3'

tf,
2

3

18. The probability of exactly two S's in three trials

is 3 ( )2( ).

19. The probability of exactly one S in three trials

4114s 3 ( )( )
2

.

You should, notice that the event "exactly one S" is the

same as the event ,"exactly two Fls".

20. This is because we have trials, each of
(how many).

which must yield either S or F.

The exaiple ve have been considering is typical of many problems. (There qV

are three special features of this example that need emphasis.

I
(1) The repeated trials of the experiment are independent.

(2) Each trial results in one of two outcomes.

(3) The probabilities of the two outcomes remain the same from trial

to trial,,

.

Trials satisfying these conditions are called Bernoulli-trials, after the

mathematician James Bernoulli.

'Bernoulli

2

21. Tossing a coin 5 times forms a sequence

Of trials.

22. There are outcomes for each trial, H and. T.

1773 7



a. 1,00 =, and P(T) =

24. The total number of possible outcomes for the five

trials is

25. Atypical outcome is HTTHT. What is the probability

of this, outcome? k.-
In this case, all 32 outcomes are equally likely.

SpiOning this spinner

Bernoulli trials.
. .

times will give a sequence' of

-

'36(.2
4

)

3 1 1 3

or (i)

2
(")

2
)

26. For each spin, P(s)

27. The total,number of possible outcomes for four

trials is

28. A. typical outcome is SFFS. What is the probability

of this outcome?

1
Notice that the response to Item 28 is not 16 .

The 16 outcomes are not equally likely.

29. Which of the following does not form a sequence of

Bernoulli trials?

(A) Throw a die 10 times. Record "odd" or "even".

(B) Throw a die

or 6.

10 times. Record 1, 2, 3, 4, 5

(C) Throw a die 10 times. Record 3 or "not-3".

178 38.
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hkxerciies.

3-

In [B] there are .6. possible outcomes for each trial._

Bernouli trials must involve just two outcomes, so your

response Should have.been (B].

(Answers on page 328.)

:Dray Ilik tree diagram for 2 Bernoulli trials where P(s) =.4. Label each

-piece and branch with the appropriate probability. Find the probability

of exactly 0, 1,.2 successes.

Draw a trap diagram for 3 trials of tossing a coin. (You may wish to

use H, T instead of 8, F.) Use the tree to find the probability of

0, 1, 2, 3 heads.

3. An uin contains 3 red, 2 blue marbles. A marble is drawn at random,,.

its color noted, and is then replaced. Again a marble is drawn at random

and its color noted. What is the probability 3f obtaining 0, 1,'2 red

balls iS"the,three draws?

9-3. A General Formula.

Here is a further example of Bernoulli trials.

.26

A baseball p erts batting average is .300. Assume that

each "at bat" is an independent trial.

1. If he comes to bat 4 times, what is the probability

that he gets exactly 2 hits?

If you need help, complete Items 2 to 8.

We are dealing with 4 trials. Letting H stand for "hit"

and N stand for "not-hit", we may list the outcomes as:

HEM, HHHN, etc.

179 3 0



X.3 X .3 X .7,

(3)2(7)2

6 .(.3)2(.7)2

.26

. The outcome "hit second and third times at bat and

made an out other tines" would be indicated

Tbeke. are in: ail possible outcomes, as you

can find if you list them all. (1Make,a tree diagram

if you need to.)

. Of these, the event "exactly 2 hits" contains

outcomes. (List them, if necessary: HON, HNBIN, etc.)

For each trial, the probability of H is .3 and

that of N is

(Either he gets a hit or he doesn't. Hence, the

probability of his not getting a hit is 1-.3, or .7.),

. The probability of the outcome .NHHN is

x x , or , which is approx-

imately .044. We may write the product

.7 x .3 x .3 x .7 as (.3)2(7)2 .

Similarly, 'the probability of each' outcome with

(.3)2( )24t.
exactly two hits is

\

. Since 6 ouicones in all contain H exactly twice,

the probability that the batter will make exactly two
( )2( )2

, or approx-hits is approximately

imately

This problem, like the examples in the last section, deals with repeated

:trials of an experiment such that:

(1) the repeated trials are independent;

(2) each trial results in one of two outcomes; and

(3) the probabilities.of the two outcomes remain the same from trial

to trial.

180

4 0



We..can'stdte a general formula that can be used in such problems. That

dp,'we can state a general formula for the probability of obtaining exactly i

tSizocessesin* .n Bernoulli trials.

2

9. If there are exactly k successes in n trials;

there are failures:

c

Let p be the probability of success on any single trial.

140, If q is the probability of a failure, then

q = 1 -

11. This is true becairse =

12. The probability of each single outcome containini4-k

successes and n.- k failures is AP: Hence,,
the probability of exactly k successes is:

t'\

)with exactly k successes P
number of possible outcomes k n-k

Test your understanding` by comparing with our result in Item 8.

'13. In it, n =

k =

p =

(1.=

number of possible outcomes with

exactly k successes =

14. In this case, n - k =

We found: probability of exactly k successes ts:

6* ( -3)2( -7)2

If we had 3 Bernoulli trials with P(S) = p, P(F) = 1 - p = q, our

tree would. look lii J this:

181
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3P2q

k n-kq

Pa

.

P = p
2
q

P = p
2
q

2
P = pq

P = p
2
q

.P = pq
2

P = q
2
p

F P = q3

15. For 3 trials, the probability for each branch con-

taining 2 S's and 1 F is

16. There are such branches.

17. Hence, P(exactiy 2 S's) =

(how many)

2
p a .

0

18. For n trials, the probability for each branch con-

tctining k S's and n-k F's is

Hence, the probability of exactly k successes in n

Bernoulli trials is:

(number of possible outcomes) p qk n-k

with exactly k successes

18242



3 7
P q

No

10

0

Let us examine the prodtict pk . q
n-k

. (q, remember, is

1 - p.)

19. If n = 10 and k = 3, then

pk qn-k p3 (10

20. If n = 10, is it possible to have k = 12?

k is the number of "successes" in n trials.

We can't have more successes than we have trials!

21. If n = 10, what is the largest value k can

have?

22. If n = 10, what is the smallest value k can

have?

For 10 trials we may have either 0, 1, 2, 3, 4, 5, 6,

7, 8, 9, and 10 successes.

For 2 successes in 3 trials, the product p
2

q
1

is understandable,

since ql = q. What if we are concerned about' 3 successes in 3 trials?

Our product becomes p
3
q
0

. What meaning should be attached to q
0

?

(1)
3

3

Let us recall an example.

In Section 9-2 we considered a game where P(success on
1

any trial) = .

3

3,

23. We saw that P(SSS) = ( ) .

24. If Our formula is to hold for this case, then

(1)
3
(-
2

)
°

st equal ( )
3

3
.

But (
3

)
3

times "something" can equal

"something" is equal to 1.

1N3 1N3f/25. y = (-3 / only if y =3
2,0

Hence, (-3 ) must be 1 if our formula is to hold.

only if the

43
183



0
P q

We decide, therefore, to define q as 1. (q / 0.)

C326. What if k = 0 ? Then pk qn-k becomes P
C3

q.;r

27. If you think a mol,.ant, you will see that we define

p
0

as

When you study algebra, you will find that the definition of q°

given,here is consistent with other mathematical usage.

We have seen:

Probability of exactly k successes in n Bernoulli trials;

(number of possible Ortcomes)
P cl

k n-k
\with exactly k successes

It is convenient to have a symbol for the first factor in the formula.

We will write
(n

for the number of possible outcomes with exactly k

successes in n rials.

1; 3

3

2;4

6

FFFF

1

4

28.
(3 means the number of possible outcomes` with
1

exactly successes in trials.

29. ( 3 ) . -(If you weren't sure, look back at

the first tree in Section 9-2.)

30.

31.-

(2)

exactly

4

(2

means the number of possible outcomes with

successes in trials.

. (Look back at Item 4 in this section

if you weren't sure.)

32.
G4)

33. This is true because there is only outcome

with no successes in 4 trials. This outcome is

34
(4 )

. (The only outcome with 4 successes

is SSSS.)
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:Notice 'dome again, that in the symbol k can be any of the
X

,

_hers
-
J4 4 2, _..., n. It cannot exceed n; there can't be more successes

ni ;trials .
1,

Our result, for the probability of exactly k successes in n Bernoulli

I.'i' trials becomes, using our ney symbol:

(n) k n-k
k P q

In solving problems, you may prefer to think about the tree, without'

using the formula. This is always possible.:

In the next example, the number of trials is large. We shall not cariy

out the necessary calculations.

6i

A student takes a multiple-choice test in which each

question has 3 choices. There are 20 questions.

Since he has not studied at all, he decides simply to

pick an answer at random for each question. What is

the probability that he will get exactly 16 correct?

35 This is a situation with trials.

36. There are 2 possible outcomes for each trial,

2
20

hence ( )
20

, possible outcomes for the 20 trials.

.37. On each tri 1 the probability of success (getting the
1

5
right answer) is , while the probability of

,2 failure is

38. He gets exactly 16 correct if he misses exactly

4 questions.

We can app:y our formula to find the probability that he

will get exactly 16 correct.
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39. :Here n =

k=

n-k =

P=

=

n 16 4

Probability = (9(3 )

lo 3

'1EO:compute the probability, we are faced with the'prOblem of

-,:=that is, of counting how many outcomes (out of '22° or

l.ead:to exactly 16 successes_, (It turns out that there are 4845.1

44.***974 we, shall concentrate on this problem-of counting the nuMberOf

A0,00:6Mei-Withexactly k successes on n trials. -

The-othei-diffichlty, that of handling the arithmetic involved in
116 04

,11846'.! (=.) (3 -) , may be overcome by use of,a calculator or by computational-,
3 .

.methods that you will learn later in your study of mathematics. There are also

,tables which eliminate the need for much computatiOh.

Warning! 0 is a symbol for the ,number of ways certain outcomes occur.

)
Alience,

\Z

is a salEtiriE number, not a fraction.

Exercises (Answers on page 330.)

1. In Items 1 to 8 we found that for a baseball player with a batting average

. of .300, P(exactly 2 hits in 4 at bats) = .26. Complete this

example by finding the probability of exactly 0, 1, 3, 4 hits in 4 at

bats. You may list the outcomes or use a tree diagram to help you in

counting.

What is the probability that he makes at least 2 hits in 4 .at bats?

2. Five dice are thrOwn. What is the probability that exactly one of them

shows a 3? (Leave answer in terms of powers.)
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(a), Think about tossing 4 coins. What is the probability of no heads;

of exactly one head; of exactly 2 heads; of exactly 3 heads;

of exactly 4 heads?
,

(b) Try really tossing 4 coins several times. Record the number of

times you get no heads; one head; etc. Compare with the results

you have computed.

(c) What is the most likely number of heads when 4 coins are tossed?

What is the probability of this result?

4. Ten dice are thrown. What is the probability that at least,one shows

a 6 ? (Hint: You might find the probability of one 6, two 62s, etc.,

and add. It would be simpler, however, to begin by finding the probability

of no Os. Leave answer in terms of powers.)

ti

9-4. The Pascal Triangle

We have, seen that, in a sequence of Bernoulli trials, the probability of

exactly k successes in n trials is found by multiplying p
k
q
n-k

by the

number of outcomes with exactly k successes. (Again, of Course, p rep-
o

resents the probability of a success on any one of the n independent trials.)

Our next task, then, is to discover a convenient method of counting those

outcomes with exactly k successes. That is, we wish to find a method of

finding the:value of
\k
(n).

2

2
2
, or 4

First °Vail, we should recall how many possible outcomes

there are altogether.

1. For 1 Bernoulli trial there are possible

outcomes, S and F.
(how many)

2. For 2 Bernoulli trials there are
(how many)

possible outcomes: SS, SF, , and
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or 8 3. For 3 Bernoulli trials there are possible
(how many)

outcomes.

4. In general, for n Bernoulli trials there are 2E1
possible, outcomes.

For a single Bernoulli trial there are outcomes. One outcome yields

siiccess, the other yields 0 successes: 1, (0 = 1.

In the case of 2 Bernoulli trials we have, as the set of possible out-

comes, (SS, SF, FS, FF). We notice that there are 1, 2, 1 outcomes which
414.

'yield, respectively, 2, 1, 0 successes.' That is:

.1%

I. trial

2 trials

. 3 trials

4 trials

= 1, = 2, (0 = 1.

5. Develop a similar statement yourself for the case of

3 Bernoulli trials. Refer to the tree in Section 9-3,

if necessary. Although it involves a bit more count-

ing, try to extend this idea to 4 Bernoulli trials.

Find M, 13l, etc.

Compare your answer with the lists below.

(1)

( )
1

(g)

3

(g)

Total Outcomes

(14) (3) (12) (11) (40)

1 4 6 I; 1

You may.have seen this pattern before:

1 trial 3 1

2 trials 1 2 1

3 trials 1 3 3 1

4 trials 1 4 6 4 1

188
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r. Can you guess how the next row (for 5 trials) will look? Even if you

are able to guess, it is helpful to read the discussion that follows. We are

going to build up the pattern for 5 trials from the pattern for 4 trials.

16

32

2

S

SFFS

. There are altogether outcomes for

4 trials.
(how many)'

There are altogether outcomes for

5 trials.
(how many)

Every 4 -trial outcome (such as SSFS) leads to

5-trial outcomes. (Think about the
(how many)

tree diagram.)

In particular, SSFS leads to SSFS and to

SSFS

10. The 5-trial outcome SFFSS is obtained by attaching

S to the 4-trial outcome

,

Let us find 5 ( ) by using what we already know about .(4 ) and
3 3

(2 4)

Think about the treediagram for 5 trials. To obtain a branch of the

5 successes, we may proceed in either of two ways:-trial tree) wtn 3

(a) attach an F

(b) attach an S

11.

F

6 12.

S

to a-4-trial branch having 3"S's; or

to a li-=trial .branch having 2 S's.

We have 4-trial outcomes with exactly 3

successes. By attachint, to any one of them,

we get a 5-trial outcome with exactly 3 successes.

(Example: The 4-trial outcome SSSF becomes SSSFF.)

We Kaye 4-trial outcomes with exactly 2.

successes. By attaching to any one of them

we get a 5-trial outcome with 3 successes.

(Example: .SFF becomes SSFFS.)
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.Are-there other 11-;tri* outcomes that can be changed.

to 5-trial outcomes with three successes by attaohingi
, ---

--.4

-an- . S.. or F?
J

...,

14. Thus we have found all the 5-trial outcomes with 3
,-....*

,.

successes. There are + , or . - , of
.

them.
,..,.

Waoul:should be able to write the complete pattern for the 5-trial

--",@qPPO'

-r

.4

l5. The 5-trial pattern should, begin with 1, because

the only "5 success outcome for 5 trials

is SS

16. The next-entry should be the number of ways of getting

4 successes. There are such ways. You

could see this by noting that there is just one

failure for this outcome, and it can be on the first,

second, third, fourth, or fifth trial.

17. You could also think: I can get 4 successes by

attaching to SSSS. I can also get 4

successes by attaching to each of *SEW, SSFS,

SFSS, FSSS.

18. Hence, for 5 trials the total n er of outcomes

with 4 successes is: 1 + , or 5.

We have already found that ( 5 ) = 4 + 6 = 10.
3

By now you should see what is going on. Our results thus far can be

ummed up as follows:
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shave ,seen int-the 5-trial pattern, each number after the first is. the

riadjacantliumbers in the 4=trial pattern. It turns out that ili

t*th0;umbersi-the 5-trial row can.bet,found,in the.Same wi;Y.

rby,the reasoning we have used above, that these:entrieStare

YOur reaults

1 6 1

'iice that the last entry in each Tow is 1. In each case there is only

:0#CtiSe withkno successes.

-:14S.have written the patterns for 1, 2, 3, 4 and 5 trials. You shodisl,

*now how to write the row col.respondingito. 6 trials, and then how to go

i0O the 7-trial row, etc.

. Write, the 10 rows for 1, 2, 3, ... 10 Bernoulli

trials. Check with he,answer below.

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

a 8 28 56 70 56 28 8 1

9 36 84 126 126 84 36 9 1

i5 120 210 252, 210 120 45 10 1
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This table is part of the array known as the Pascal triangle. (It could

be extended:to any required number of rows.) It is named for the seventeenth

century French mathematician Blaise Pascal. To make it look more like a

triangle We could insert an additional "1" at the top. (We would call this

the 9 row, associated with no Bernoulli trials.)
o

20. What are the first two entries of the 27th roy of the

Pascal triangle?

21. What are the last two entries of the 43rd row?

22. How many numbers are there in the 5th row?

How many are there in the 18th row?

23. 7 coins are tossed. For how many outcomes are there

exactly 5 heads? . If you had trouble,

complete the box. If not, omit Rani 24 to 26.

Notice that tossing 7 coins can be considered as

Bernoulli trials.

24. The row of the Pascal triangle corresponding to 7

oins is:

1 7 21 35 35 21 7 1.

From this row wr read: There is 1 outcome with

7 heabs 7 times. There are outcomes with

4' 21 heads 6 times. There are outcomes with

head 5 times.

25. 7 coins are tossed. For how many outcomes are there

35 exactly 4 heads?

Now think of tossing 8 coins. For how many outcomes

are there exactly 5 heads? 21 + or

(Think again about the reasoning we used earlier, and then

check with the Pascal triangle.)
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iiiidAhenutbers in a row of the Pascal triangle from left to right. Now,

rtad:the same row from right to left. Did you say the same numbers in the same

'T.:both-times? You did, of course. You will probably see why this must be

ecaet iijOirthink of how a Bernoulli tree is constructed. This symMetry is

,disduited again in Section 9-7.,

In,order to use the Pascal triangle more readily, it is convenient to

Ok
'arrangelt in the form of the following table.

4

Table of () (from Pascal triangle)

1 2 3 4 5 6 7 8 9 310 11 12 13 14' 15

1 2 1

1 3 -n***3

1 4 6. 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8

1 9 36 84 126 126 84 36

1- 10 45 120 210 252 210 120

1 11 55 165 330 462 462 330

1 1F 66 2 792 924 792

1 286 715 107 1716 1716

1 14 91 364 1001 2002003 3432

70

15 105 455 1365 3003 505 6435

\

1

9 1

45 10 1

165 55 11 1

495 220 66 12 1

1287 715 286 78 13 1

3003 2002 1001 364 91 14, 1

6435 5005 3003 1365 455 105 15 1

We have a spinne colored red and blue. Suppose we think

of spinning 8 t es. There are 28 = 256 possible out-

comes. *)w many o these will show exactly 4 red?

27. Look at the 8th row. Go across it to the column with

4 at the top. The number we read is
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28. We spin 5 times. The number of outcomes with

exactly 3 reds is . This is also the number

of outcomes for 5 spins with exactly blues.

Here are some additional problems to give you practice in using the table.

If you tbinl:that you do not need the Practice, go on to Section 9-5.

32. The number of outcomes with 8 successes in 12
NI

trials equals the number of outcomes with

successes in 12 trials.

(4 (15).

\b/(=,#) 9

(17)_
0;)_

(how many)

Although our table only extends to the 15th row, you

should be able to Complete Items 35-38
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. :the Binomial Distribution

We are tiow ready to return to our formula:

P(exadtly k successes in n Bernoulli trials) =
n kqn-k

Let us start with some examples. Use the Pascal triangle to determine

the value of (110.

.8; .2

4\ 4 0
q

Assume that the probability of a successful launch of a

certain type of satellite rocket is .8 . Assume further

that successive launchings form a sequence of Bisf:111

trials.

1. Four launchings are attempted during a given week.

Complete the following table. Record the probabilities

to 2 decimal places;

Number of Successes

(k)

Probability

4
(.8)

k
(.2)

4-k

h

3

2

1

0
) --/./
t,

Compare your results Idthliable I, which follows Item 10.

If you had difficulty, complete Items 2 to 10.

2. We use the formula:

P(k successes)

with n = r, p =

3. P(4 successes) =

(n)k
q
n-k

k

q. =

ti
= () (.8)

4
(.2)

0
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:8)3(.01

02( 2)2

.03

0(.8)0(.2)4

.00

.0016

4

t

5. Hence, P(4 successes) = 1(.8) 4(.2)

.
.Remember that k.2)

0
=

6. Similarly, P(3 successes) = ( ) (:8)3(.2)1

= 4(.8)3(.2)

7. -'P(2 successes) = ( )( )°c
(.8)2(.2

41"

8.
1 3

P(1 success) =(., (.8) (.2)

9. P(0 successes) = )(.8)x(.2)

10. Notice 4Lat the probability of no successful launch-

ings in 4 trials is 'not exactly 0. In fact,

P(0 successes) = .

Here is the completed teble:

Number of Successes

(k)

' Probability
(4),.81k(.2)4-i
k '

4 .41

3 .41

2 .15

1 .03 : .

0 ".. .. .00

Table I

(n = 4,.p =.:8)
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0

Remember.that the probabilities Table I are recorded to the nearest

hundredth.

9 -5

11. For a certain type of light bulb, the probability

that it will burn for 200 hours is .8 . If 4 of

these bUlbs are installed in a certain room, then,

after 200 hours,

P(none have burned out) -

P(exactly 1 has burned out) -

P(exactly 2 have burned out) -

P(exactly 3 have burned cut) -

P(exactly 4 have burned out) -

(two decimal places)

ou_could, of course, have obtained your responses a Item 11 by actually

calculating eITICTeObt.kb10.J1&Instead, you used Table I. Such a table is

called a probability distribution. Td tals_case iL is the binomial probability

distribution for n = 4, p'= .5 .. As you see, once a distribution_ has been

determined, it may be used in a variety'of situations.

We may consider other binomial distributions, for other values of n and

p. For each value of n we rave many tinomial.distributiorisone for each

value of D. Of course, if we now p, we also know q. Observe that the

possible values of k are 0 < k < n.

Let us take n = 4 and construct a table showing the binomial distribu-

tion for several different values of p.

12. Complete the following table. As you proceed, you may

find Ways to shorten your work.

P
.2

1
-. .6

2
=
i

.8

4 .01 .06 .41

3 .10 .25 .41

2 .30 .38 .15

1 .40 .25 .03

0 .20 .06 .00

Comlare your results with Table II, which f011ows Item 18.

If you had difficulty, or if you did'not discover the short-

cuts, read Items 13 to

A binomial distribution, as we have seen, arises in connection with a sequence
of BernotIli'triais. The name "binomial" is explained in Section 9-6.



You need not do any computation at all in order to complete

the column for p = .2 10

.13. Consider k = 3, p = .2 We need:

(314)
)3( )1

1 4

14. But, (I.)
LJrn

and (.2)3(.
8)1 (.8)1(.2)34

Therefore,

03
)

(.2)3(.8,1
(1.°)/0,1(.2)3
1

15. The right-hand side of the last sentence is the entry

for k = 1, p =

16. Tbia.entry is
(decimal)

Similarly, you can immediately complete the column
2

for p = -
3

17. The entry

(4)(.6)4( F-1- .13 .

is found as follows:

18. e13 is also the entry for k = p = .4

Thus, once the column for p = .6 is completed, we may

immediately write down the column for p = .4

.2
1

.4
1
g .6

,)

.8

.00 .01 .03 .06 .13 .20 .41

3 .03 .10 .15 .25 .35' .40 .41

2 .15 .30 .35 .38 .35' .30 .15

1 .41 .40 .35 .25 .15 I .10 .03

0 .41 .20 .13 .06 .03 .01 .00

Table II

Binomial Distribution, n = 4
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It is worth a few moments to, study Table II. You should notice several

general patterns.

- increase

k= 4

19. We have already pointed out that if we read Sown the
1

column for p -, we find the same entries as if
3

we read the column for
2

p = -
3

20. As we read across the row for k = 4, the entries

in value.

('increase,decrease)

21. Reading the row for k = 3 from right to left gives

the same sequence of numbers as reading the row

for k = from left to right.

22. If we add tne entries in any column, the sum should

be

In fact, the sum for certain columns is not 1. This

is because we have recorded the probabilities only to

the nearest hundredth.

23. Suppose we adjoined to our table a column for p = 0.

Then the entry for k = would be 1, and all

other entriesiwould be 0.

2. --S-iirMlarly-3-a_column for p = 1 would contain an 0

in each row, except for k =

25. Finally, only one column of Table II reads the same

from top to bottom as from bottom to top. This is

tne column for p =

In order to visualize these relatio-Thips, it is convenient to draw bar

graphs. The graphs on page 200 show the data of Tablt II. The vertical scale

is marked with the probabilities, the horizontal scale with the values of k.
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"Table:li"ihows the binomial distribution for a particular value of n,

an for various values of p.

It is also interesting to construct a table for a particular\7alue of p
1

tcir various values of n. We choose p =

2"

Before we begin, we observe that every column of our table

will read the same from top to 'bottom as from bottom to top.

26. This is because with p we also have q =

Binomial Distribution

(P

1 2 4 5 6 8 10

0 .50 .25 .06 .03 .02 .00 .00

1 .50 .50 .23 .16 .09 .03 .01

2 .25 .38 .31 .23 .11 ..011-

3 .25 .31 .31 .22 .12

4 .06 .16 .23 .27 .21

5 .03 .09 .22 .25

6 .02 .11 .21

7 .03 .12

8 :00 .04

i .01

10
c

.00

Table III
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Let us not forget what this table means. We can interpret it, for

exainple, as the probability of getting k heads when we throw n coins.

.23

3

.31

.31(= .23+.09+.02

27. If we throw 6 coins, the probability that exactly

2 of them are heads is, from the table,

28. If we throw 6 Coins, the number of heads most

likely to appear is . This fits our intuitive

idea, since heads and tails are equally likely on

coin throws.

29. However, the probability of throwing exactly 3

heads with 6 coins is not very great--only

Which is less than
1

.

3

30. The probability of throwing more than 3 heads

with 6 coins is . (Hint: The probability

of throwinemore than 3 heads is the probability of

throwing 4, 5 or '6 heads.)

Again, it is instructive to display the distributions in the form Df bar

graphs. On page 203 are the bar graphs for p = and 6 = 2, 4, 6, 8, 10.
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.a; When you examine the bar graphs for

about them.

1
= you note several things

First, they are all symmetrical, which by now does not surprise us.

Second, the bigger n, the more widely the bar graph spreads out. 'Again,

this does not surprise us, because for each n the values of k are

0, 1, 2, n. (See Chapter 10 for more discussion of this idea.)

Third, the bar graph for each value of n is flatter than the one for

the preceding value. The tallest bar is less tall when n is larger.

The tallest bar of each graph corresponds to that value of

k which is "most likely".

31. Complete the table and compare with answer below.

n
Most Likely
Value of k

PrObability_of the
Most Likely Value

2 1

4 .38 ,

6

8

10 .25

The most likely value, is often called the expected value.

Notice how the probabilities of the expected value

decrease as n increases. For more discussion of

expected value, se Chapter 10.

n
Most Likely
Value of k

Probability of the
Most Likely Value

2 1 .50

4 2 .38

6 3 .31

8 4 .27

10 5 .25
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iteM3I reveals that, for our bar graphs, the highest point is further to

the right When n is large than when n is small. We sometimes say, "As

-O, increases, the most likely value of k 'walks' to the right".

We have considered earlier the bar graph for n = 4, p = 3. If we used

tables to draw other bar graphs, using this value of p (that is, 1) and

n = 6, n = 8, n = 10, we would observe again:

For larger values of n, the bar graph spreads

out and flattens. The most likely value of k

"walks" to the right.

If you have already learned about functions and their graphs, then you

will understand that each of our histograms can be turned into the graph of a
1

function. Look back at the bar graph with n =4, p We can consider
h k 0 4-k 3

the function f(k), where f(k) (x )(3 ) (3 )

(0, 1, 2, 3, 4)

Exercise'.

32. The domain of this function is 40,

If you put a red dot at the top of each line in the bar

graph, this set of red dots is the graph of the function.

(Answer on page 330)

In your record of 100 throws of a die, you have 20 blocks of 5

throws. Count the number of even numbers in each block of 5, recording

as shown:

Number of
Evens

0 1 2
.

3 4 5

Number of
times

appearing

1
Compare your results with the *tar graph for n = 5, p =

xesults are on page 330
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The'Binomial Theorem
;

The work we have done with the Pascal triangle is very closely related to

a topic_ of algebra.- You will understand both better if you see this relation.

,An expression such as x + y is an example of a binomial. It is the sum of

.two terms. We are often interested in finding powers of binomials. That is,

-* wish to find expressions for (x + y)
2
, (x + y)3, \etc.

(3t + y)Cx y)
K+Y)x + (x+ Y)Y

2xy

commutative

You know that if x and }y are real numbers, then

(x + y)2 = (x + y)(

=44 y)x + (

= xx + yx + yy.

(Here we are applying the distributive property..)

For most purposes,we simplify further:

(x y)2 x2 y2

We know that xy = yx from the property of

multiplication.

(x + y)2(x + y)

x3 + 3x
2Y+

3xY
2
+ Y

3

x4+ 3y +6x2y2

+ 4xy3 + y4

We have:

Similarly,

(x + y)3 = (x + y)0(x- + y)

(x2 y2)x (x2 y2)y

= x3 + 3x2y +

4. Let's try one more:

(x + y)
4

= x +

(Hint: (x + y)4 = (x + y)3(x

(x + y)1 = x + y

(x + y)
2

x
2

+ 2xy + y
2

(x + y)3 = x3 + 3x2y + 3xy2 + y3

+ 6x2y2 + 4xy3 +*Y4.(x + y)4 x4 + 4x3y
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5. Look carefully for a pattern. Are you reminded of

something? Even if you don't know, or if you are not

sure why, you can at least guess:

(x + y)5 =

The coefficients in the expansion of (x + y)5 can be

read, it appears, from the Pascal triangle.

. -
It is not very difficult

tX -I! y)2. Let us suppose for

to see why. Let us go back to our work with

a moment that we did not simplify after using the

- distributive property. We have

From this we can find:

Notice that in

we have terms like

write with x and y. In finding (x + y)3, we attach to each of these.two-

N

(X + y)
2

= xx + yx + xy + yy.

(x + y)3 = (x + y)2(x + Y)

= (xx + yx + xy + yy)(x + y)

-= )00( YXx XYX rix xY-*r M +1-47 +57Y

xx + yx xy + yy

xx, yx. The four terms are all the 2-letter "words" we can

letter words first an "x" and then a "y". This leads, not surprisingly, to all

the 3-letter words we can write with the letters x and y.

3x2y

. The 3-letter words with exactly two x's are:

yxx, xyx, and

7. Remembering, now, the commutative property of mul-

tiplication, along with other properties of the real

numbers, we see that

yxx + xyx + Mc/ = 2.
x y

A little more grouping and rewriting leads to the

result:

(x y)3 = x3 + 3x2y + 3xy2 + y3.
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Again, we could compute (x + y)4 by attaching first x and then y to

all the 3-letter words in x and y.

All this: should remind you very much of what we did when we first developed

the Pascal triangle. It should help you understand why the pattern of coef-

ficients in (x + y), (X + y)2, (x + y)3, etc., is given by the Pascal

. triangle.

4pq
3

+ p
4

2

3

4
n 3

3

n
te.1)(a3 )

'3

In the 4th row of the Pascal triangle we see the numbers

1 4 6 4 1.

. From this we see that if p and q are any real

numbers, then we can write:

(p + q)
4

p
4

+ 4p
3
q + 6p

2q2 +

Suppose we are thinking of a baseball player whose batting

average is .333, or
1

.

3

Each time he is at bat the probability of a hit is 1,

while the probability that he makes an out is

Suppose that this player is at bat 4 times. We have

already found the probabilities for no hits, for exactly

one nit, etc.

10. The probability for exactly two hits is:

1 2 0
6(

.2

11. The probability for exactly one hit is

1

3
)

2,
Notice that if we compute

3
+ using the pattern

4

shown in Item t, we have:

1 .,
,

12.
3

4

3 3 3
(3) + 1.(.3 )

3
(=3 ) 6(±)

2
(E) +

1,' 1
3 2

The terms (5) ,
4,3) y, etc., are simply the prober

bIlities for exactly 4 hits, exactly 3 hits, etc.
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1 2
13. Of course, + _

1

In general,

, and consequently,

0: g)
4

=
3 3

So our algebraic results and our knowledge of probability
, -

fit together nicely.

14. If we add the probabilities of exactly 4 hits,

exactly 3 hits, exactly 2 hits, exactly 1 hit,

and no hits, we get

Something is certain to happen!

(10441)n / 4.( n )n-lql n n-2 2
kn n-1 Y 1n-2 P q

qn-1 n

by now,you realize why the probability distributions discussed in

Section 9-5 are called binomial distributions.

Exercises. (Answers on page 331.)

1. Write the first 3 terms of (x + y)7.

2. Find (1.01)5 by using the fact that 1.01 = 1 + .01.

3. Show how you could easily approximate (1.02)
6

to the nearest hundredth

by using the binomial theorem.

4. Write as a sum, using the binomial theorem:

(a) (x + 2y)3

(b) (x Y)4

(c) (x + t.:)5

(d) (x + 1)3

5. (a) Complete the following:

(x + y)5 = (5)x5 + (5)
x
4

4

(b) Let x = 1, y = 1. Usee5(a) to show that the sum of the, terms in

the 5th row of the Ictgcal triangle is 32.

(c) Generalize this last result.
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9-7. A Formula for (Inc)

Fred, and Mary are the only members of a club. They want the club

to have three officers--president, vice-president, and secretary. In how many

ways can officers be chosen?

Ain, it is useful to make a tree diagram. If we know that Bill, Fred, s

tend Mary are officers, then we can list the ways the offices can be distributed

"N among them, as follows:

President

Bill

Fred

Mary

1

3 2 1; 6

Vice - President Secretary

Fred > Mary

Mary >Fred

Fred

.1

Mary

)Bill

Fred

Bill

1. As our diagram shove, any one of the members

may be president.

2. Once the president has been chosen, there are

possible choices for vice-president.

nE

3. Once the president and vice-president have been chosen,

there is only way to choose a secretary.

4. The officers can be chosen in 3 Q 1,- or

ways. '

C

Now let us suppose that a club of 8 members wishes to choose 3 to

fill the same offices. Again we wish to find the number of ways officers can

be chosen. Again we can think of how we would make a "tree".
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5. enere-are possible choices for pilfident.J
6. ,Once thb presAdent has been chosen, choices n

remain for vice-president.

7. For each choice,of president and vice-president, there

are choices for secretary.

8. The total number of ways of choosing 3 officers for

tht club is '5 , or 336.

V

Ndv we are going to-do the problem in another Way. Tile new way is more

complicated, but will show us something interesting.

We think: In order to choose officers of our eight-MeMbek cltlb, we might.

first simply choose 3 members to be officers.' We could then deide which of

these 3 is to be president, which vice-president, and which secretary.

9. The number of ways of choosing 3 of the 8 members

to be officers is . (This is the number of

8-letter words in O (for officer) and N (for
. .

not-officer) with exactly 3 _01s.)

10. Suppose we have selected ,3 -umnbers. We can assign

the posts of president, vice - president, and secretary

to these particular 3 members in' 3

different ways. (/1 -1 4)

Hence, in all there are (3 2 1) O. ways of
_3.

selecting officers: .

3

Combining our results in Items .8 and 10, we see:

(3 2 .- 1) (83) = 8 7 - 6.

Of u se we can eabily find (8) from our table. But suppose we wanted

elto find
8 3

and we didn't have a t ble. Suppose we didn't-want to make a
3

Pascal triangle

(
8

in order to find . Then we could use the result we have
3

just obtained:

(8) 8 7 6

3
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How could we

11. From this sentence,
\8/

/8)

we find from t e ble.

= which is what

find
4

without a table? We might think: Suppose a club

of 10 '.members wishes to elect 4 officers.

10 9 8. 7.

12. There are 10 choices for'bresident, and for each

of them choices for vice-president.

13. Thinking of how our tree of choices would look, we see

that there are 10 9 0-0 ways in all of

electing 4 officers.

Again we can do the problem in a second way.

4 3 2 ,1

r'

4

14. There are ways of-mlectfng 4 of the 10

bersto be of icers.

15. There are 0. 3 2 1 ways of assigning the 4

officers to a group of 4 members.

16. There are, in all, (4 3 2 1) 1°4 ) ways of

choosing 4 officers for a club of 1 members.

Combining our results of Items 13 and 16, we have:

(h . 3 2 1) (4) 10 9 810\

(101_l0 10 9 8 7 no
4 3 2 1

Formulas like this are more easily written if we introduce a new symbol.

We will write the product 3 2 1 eas, 3!, which is read "3 factorial".

Thus, 3! is another namefor 6.

4! = 4 3 2 1, or 24.
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5.4.3.2.1; 120

factorial

8.7.6

9-7

17. 5!= a ID 0 4:]

5! is read '05

18.

A

19.

20.

Notice that

6! 6 5

5

4

4!

3

=

2' 1 6

3!

8!
5T

3 °2 3.x.

or

A

We saw after Item10 that ..0(!) 8 7 6

3 3 2 1
.,

Using Item 20, we now see that
,(8)4. N'8!

3 3 5!

(1C) 10 9 8 7Similarly, after Item 16 we saw that
4 4 3 2 1

10!

4!

The reasoning we used in connection with
, (:)

and
(Llf)

to any entry in they Pascal triangle. Here are other examples.

6!
Fi7T

1!

can be applied

21._ (6)- 6!
6 5

4 0 tot 2

.22. (8) - 8! -
4 lot

23. (7)

8 7 6 5
4 3 2 1

7

You should verify that your results in Items 21, 22, 23 do indeed give you

the. correct entries in the table of Pascal's triangle.

1; n

6!

3!

24. If n is a natural number, n! is a product of n

successive natural numbers, where the smallest factor

is and the largest factor is

25. 6 5! = ! . Similarly, 2 1! = 2! and

3 2! =
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26. Indeed, if n is any natural number,

(n 1) .n! =

27. 1! , of course, is

/ We would like to have 1 0! = 1! , so that the formula in Item 26 would

hold for n = 0. Hence, it is customary to define 0! as 1.

il

;factorials you will find that the definition is helpful.

We can sum up our results: If n, r are numbers for which-(') is,

This may seem strange to you at first. However, as you work more with

defined.:

45.

,
45

71 1R
3! 4! ".

(n n!)
r! (n-r)!r

28.

(3)

(Use factorials.)

29.
(11)=

. (Use factorials.)

S.

30_

(6) = J:11-

6 E.)

31.
(g)

. (Use factorials.)

Items 30 and 31 are consistent with what we already know.

The definition, 0! = 1, *makes our formula applicable to

all the entries in Pascal's .triabgle.

32. (f) .,23,-0!, -

33. 03 =44f -

34. (7)- 071 _

El CI I

35 . (73) DE'll 6
----;----.
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%kt(n -k)!'

'A!

4n-k.)1

Can you make the generalizition for yourself?

36. = . (Use factorials.)

37 (.111k) c
(use factorials.)

Hendd, for any n, k (0.< k < n)

=(nnk)

0ur_last result is-consistent with that we have observed about the

symmetry of the'emries in any given row of Pascal's triangle.
iy

1000

1

190( =2019 )

.472t

-1291 343!

:tom
:T017557f

131-391

38. In particular,

39 (nnl!
=(

n.

4o. Ce
=

41.
(2783)
2783

42. (g)

Leave the fbllowing in factorial form.

43.
(72)

.
129

,

44. (W) =

45. (Z23). (This is the total number of
possible bridge hands.)

46. (5) . (This is the total number of
5-card hands.)
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Its 43 to 46 emphasize that the actual computatio (7 may be quite

difficult for large n. You might compute the value of , . ou will then

)

realize the difficulty of "multiplying out" 52) 1
13

,
900

, or
472

129
For -

tunately, computational short-cuts and accura ,T methods of approximation exist.

We shall not discuss these methods in this coarse.

.(3)

35

7 6 ; 5; '21:0

47. In a certain class there are 7 boys. The teacher

wishes to choose 3 of them to help in carrying some

books. The teacher may select the boys in

or ways.

48. Suppose the teacher wishes to choose boys to go on 3

different errands. One is to go to the library, one

to the cafeteria, and one to the gym. This time the

teacher may make the choice in )7 .{J ways.

The distinction between Items 47 and 48 should be noticed. In .Item 47,

the /teacher makes an unordered selection. 7 is often written as C
7,3

or
3

as /7 C
'3

and is called the "number of combinations of 7 -things, 3
\

at a

tide ". In Item 48, the teacher makes an ordered selection. ("John, please go

to the library. George, please gc to the cafeteria. Max, please go to' the

gyil.") 7 6 5 Isis often written as P
7,3 7

or as P
3

and is called\the

"number of permutations of 7 things, 3 at a time".

19-8. The Multicolored Spinner

Suppose we have a spinner divided equally

into blue. (B), green (G), and red (R) regions.

Let us suppose that when we spin we are equally

likely to get B, R, G. (If the spinner stops on

a line, we don't count the spin.)

Suppose we spin 5 times, getting red,

green, red, green, blue in this order.



Ni

243 "

1. -or
5

3

2

1. The outcome for the 5 spins might berecordedv

If we wish to list all possible outcomes for 5 spins,

we can list all 5-letter "words" in the letters

R, B, G.

2. The number of possible outcomes is or

(Think about how you could use a tree to makea list

of possible outcomes.)

3. Since all outcomes are equally likely, the probabilityi

of RGRGB is = .

4. Suppose"we wish to find the probability of getting

exactly 2 reds and i- gre4ns in 5 spins. Then

we must find the 5- letter words in which R and G:

each appear times. (You found one example

in Item 1.)

If we think about what we already know, it will save us trouble in

counting.

3

(5) (5)
; 10or

B

(;) or ; 3

5. Suppose we wanted only to find all the 5-letter words

with 2 R's and 3 not -R's.

We could do this easily. We would think'of.5-letter

words in R and N with R occurring 2 times

and N times.

(There are , or , such words.

One such word is AV 17 R N N.

7. We can change this into a word with 2 R's, 2 G's,

and 1 B by replacing 2 N's by G's and one N

by

In how many ways c e /choose which pair of. N's to

replace by G's ? , or

Hence, to each word in. R, N, with 2 R's, there

are 3 words in R, G, B with 2 R's, 2 G's,

and a B.
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Example:

RNRNN
RBRGG
RGRBG
RGRGB

8. Since there are 10 words: of 5 letters in R, N

with exactly 2 R's (Item 6), we conclude: There are

, or words of 5 letters

with 2 R's, 2 G's, and 1 B.

The probability of each pdrticular outomewith 2. WS,'

2 G's, and 1 B is
1

. (See Item 3.)

9. Hence, the probability of getting 2 R's, 2 G's,

and 1 B is

Exercises (Answervon page 3

1. Find the-probability, for 5 spins of the spinner, of 2 R's and

no G's; of 2 R's and 1 G; of 2 R's and 3 Ws.

2. Use the results of (1) to find the probability that exactly 2 R's occur

in 5 spins.

3. Show another method of finding the probability of exactly 2 R's in

5 spins.

4. Use a 3-,colored spinner, as described in the problem, to see what results

you actually get for 5 spins.

If you did Section 9-6, do Exercises 5, 6, e 7 below.

5. Expand: (a) (x + y + z)2

(b) (x + y + z)3 Hint: (x + y + z)3 = ((x + y) +

6. In the expansion of (x + y + z)4, write the coefficient of x3y, x2y2,

and of xyz
2

.

7. A 3-colored spinner (red, blue, green), each color having the same prob-

ability, is spun 4- times. What is the probability of getting 3 reds

and 1 blue? Of 2 reds and 2 blues? Of 1 red, 1 .blue, and

2 greens?

218
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CHAPTER 10

MATHEMATIC A EXPECTATION

10.1 REsElast (Discussion is on page 307.)

For this experiment you may use some cards from a regular deck. Take

the ace, 2, 3, 4, 5, 6 of clubs and of diamonds. Place the clubs on the table

as shown. Now shuffle the diamonds well. One by one, place them on the table

in the order they appear. Look below to see the way our cards looked when we

did this.

A

-V

2

a

3

A 5 3

V

2

5 6

9

6

9

clubs

Prepare a score sheet and score 1 for each pair that matches. Your

score sheet should look like this:

Match
Trial A 2

Total Number
6 of Matches

1 1 . 1 1 3

2 ,

3

..._ 4 0 ,

5
.

,

6

7

8
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Our first trial--as shown--has been scored. You may use it. Then com-

plete the table, performing the experiment 9 times. You must be sure to

,oi4uffle well between trials. It is difficult to shuffle 6 cards thoroughly.

You will find it easier to shuffle if you add a few more cards. Simply ignore

them when lining up the diamonds in the order they occur.

How many points did you score in 10 games? Approximately how many

would you guess You would score in 100 games?

In this chapter we will learn more about techniques that can be used to

help in analyzing, problems of this kind. Save your record. We will refer to

it in a later section.

; 10-2. The Mean

In this section we will review some ideas that you have used in situations

having nothing to do with probabilities.

Example 1:

A student earned the-followinggrades in a course:

83, 75, 92, 83, 83, 75, 76.

What mark can he expect for the course?

His mark will probably be based on his average. Let's compute the average

grade:

83 + 75 + 924 83 + 83 + 75 + 76 = 567.

1
The average is

7
(567) = 81. Therefore, the student can probably expect

a letter grade that corresponds to 81--probably a low B.

Instead, of adding all scores, let's tabulate the grades differently.

He earned a 92 and a 76 just once; twice he got a 75 and three

times an 83. So we can write:



10-2

Score
Number of TLTese
Score Occurs

Computation of
Average

92 1 92 . 1 = 92
83

3 83 3 = 249
76 1

76. 1 = 76
.75 2 75 2 = 150

567

1Again we obtain 7(567) = 81 as the average grade. Looking at the
grades, we could have seen that there were three grades between 70 and 80,
and that four grades were.-above 80. So we could have guessed where the aver-age would fall. is always a good idea to estimate first and then compare
the computed sult with that guess.

Example 2:

On a certain test,
students could get at most 80 points. What was the

average test score if the following tabulation shows the results for 20
students?

Score Number of Students
Computation

.77 4 4 77 = 308
74. 7 7 74 = 518
72 2 2 72 = 144
70 5 5 70 = 350
67 2 2 67 = 134

1454

72.7

1.

2.

The sum of all the scores is

ti
piThe ,average score is 1454k0),

7
or

The average is also called the arithmetic mean, or sometimes simply themean. We will use the symbol m for the average, or mean. Thus, we
write'in this example:

m= 72.7

Let us look once again at the example we have just done. In order to find
the ave_age, or mean, we computed:

[4(77) + 7(74) + 2(72) + 5(70) + 2(64( )
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We might have writtsn this as:

4

20

7
20

1

no

11.

9

77(20) + 74(20) + 72(20) + 704) + 67(15).

We see that the average
grade can be found by multiplying

each grade by the fractioniof students getting this grade.

We "weight" each grade by multiplying it by the appropriate

fraction.

3. The fraction of students getting 77 is 20 '

or

4. The fraction of students getting 74 is

4 7 2 5.

5. Note that -- + + +
20
2 =

20 20 20 20

6. The average score is 72.7. Did any student actually

get the average score on his test paper?

7. How many students had scores above the average?

8. How many had scores below the average?

vie

0

9. On a certain test 9 students got 100 and 6

students got 80. Is the average score for the

class 90 ?

(A) Yes (B) No

Although the mean, or average, of the two numbers 100

add 80 is 90, this is nQt the 1verqge grade. You

must "weight" each score by t'le fraction df students ob-

taining it:

L. - 100(1) +

Thus, .[E] is tne correct result.

82



10-2

(Answers on page 332.)

Look back at your record for the experiment in Section 10-1. On the 10

trials, what is the average number of matches?

2. Look back at your record of 100 throws of a die.

(a) For these throws, what is the average of the numbers thrown?

(b) What was your average for the first 25 throws? For the last

25 throws?

3. A certain machine is designed to cut metal strips 3 inches long. In

order to study the machinets accuracy, one
1

fully. It is found that -27-5 of the strips
2

2.9 inches long, are 3.0 inches long

(a) What is the average length of a strip?

(b) If 1000 strips ere produced during the day, how many are 2.8

inches long?

(c) What is the sum of 1--
3

2 1 9
10 1 10 ' 5' 5

dayts output is examined care-

3are 2.8 inches long
' 10

-- are
1= are 3.1 inches long.
7

4. A certain golfer says, "I have played gulf 15 times this year. On

average, I have lost 2.6 balls per game." How many balls has the

player lost in all?
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10-3. Mathematical kpectation: Definition

In Exercise 2, Section 10-2, we computed the average of the numbers'thrown

in 100 throws of a die. Suppose you are going to throw a, die a zreat many

times. What is yorr guess about the average of the numbers thrown?, Examine'

your results in the exercise, and also think about how yod might justify your

guess. Then read on.

1. You might reason: Suppose a'die is thrown many

times. Since all 6 faces are equally likely, we

expect each number to occur approximately of

the time.

2. Hence, in order to guess the average.of the nuMbers

thrown, it is reasonable to compute
4%

+.2() + 3(b) + +

3. Our result, then, is i, or

Notice that in the sum in Item 2, each of the riumbevs 1, 2, 3, 4;

1

5)-6-

has the same "weight", . This is reasonable, since all these numbers. are
,

equally likely.

Let us consider a second example. Suppose we toss 3 coins many times,

recording for each toss the number of heads that occur. (We have already con-

sidered situations of this type in earlier chapters.)

1 .
7.,

4. We know, for example, that the probability of getting
I

no heads on a toss is . (If you had trouble, -

make a tree or list the possible outcomes--HHH, IIHT, Y

etc.)

5. Complete tne following table.

Number heads 0 1 2 3

[-

Probability ,
1
7

,

.

15.

) ....1.1

4
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-Compare your resuits with the table below.

34)

-2'
or 1.5

Number head's 0 1 2 3

Probability' $ .

B
1

B

o. If you toss three coins many times, you guess that you
.- -

would get exactly two heads about of 'the time.
'

.

-7. You guess that the average n-mber of heads would be

.or

Note that your result in Item 7 looks like suns we used in

computing averages in. Section 10-2.

In this section,we have considered two examples. They have many element.-

in common.

In each, we are thinking of an experiment-- throwing a die; tossing three

coins. In each, every outcome of the experiment yields a number, and it is

these numbers we are considering.

8. Each throw of a die yields exactly one of the numbers

1, 2, 3, 1, 5, or

9. Each toss o three coins'I
11

yields, as the ber of

heads shownl one of the numbers 0, 1, 2

Moreover, in each example, we know the probability of gettin each of the

numbers involved.' For the die we have
4c

Number shown 1 2 3 4 5 6

Probability
111111
b- g g 73
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For the three coins, we have:

iiiamber heads

[

0 1 2 3

Probability 3
13

3 1

(If you have completed Chapter 9, these tables will be familiar to you.)
a

In each case, our guess as to the average was derived by multiplying each

number by its probability and then adding. The result is called the mathe-

matical expectation.

7 or 3.5

'
or 1.5

2

'expectation

10.' If we throw a die, the mathematical expectation of

the number shown is . (Item 3.)

11. If we toss three coins; the mathematical expectation

of the number of heads is . (Item 7.)

12. if each outcome of an experiment gives a number, then

the weighted mean of these numbers, weighted by, the

probabilities, is the mathematical':

Sometimes the mathematical expectation is called the expected value.

This phrase is a little easier to say, but we must be carefulto understand it.

3
7,

Cannot

is

The syMbol M

We do not always "expect" to obtain the expected value.

13. For examlle, the expected value of the number of

heads,ifithree coins are tossed is (Item 11.)

14. We

(can,cannot)

coins.

obtain 3 ,heads in a toss of 3

15. However) if we per.,brm the experiment many times, the

average of the numbers we get likely to be
(16,16 not)

close to the mathematical, expectation.

is often used for the mathematical expectation.
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.

Nottthat we used m for the average of nuthirs resulting from,perform..

,ing an experiment several times. M, however, is used when we replace exper-

imental' data probability. Whetber M or :11, we shourd be reminded of

mean--weighted average.

Exercises. (Answers on page 333.)

1. ht a party, prizes are drawn from a pack.. In the pack, there are 6

prizes that cost 41.00. There are 9 that cost 4..60..-There are 5 that

cost $.20. A...guest draws a prize.

.(a) Again, we.have an experiment--drawing a prize--and a set of numbers

that can result. 'lake a table showing the numbers and their

probabilities.

(b) Find the expected value of the draw.

2. A game is played with the spinner shown. .

Apltiei- spins and moves'the number of spaces

indicated.

(a) Make'a table shOwing the possible numbers of spaces and their

probabilities..

(b) What is'the expected value of the number of spaces moved?

, 4

3. (a) One coiris tossed. 'What is the expected value of the number

of heads?

(b) 'Two coins are tossed. What is the expected-value of the number

of heads?

(c) Referring to ( ), (b), and using also Item 7, guess thec.xptcted

value of the n ber ofheads if 4 coihs'are tossed.

4. At a certain ionters ction it is known that the number of accidents during'

a given hour on i.dertain day have the following probabilities:

9
No. of acoidenis 0 1 2 3

Probability .91+ .03 .02 - .01

kind M, the expected number of accidents durfng that hour on one such

day. (Just compute, do not experiment!) How could the answer bet best

interpreted?

2278y7
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10.4. Mathematical Expectation: Interpretation

Blue Here is a spinner, for which P(red) =
1

. P--
3. 1

P(green) . r?, P(blue) = -f.
..,t,

Red

Green

Suppose you are playing a game, in which you get points asfollows:

A(-16)

/ 1
2--
2

No

average

Red - 5 points

Green -2 points

Blue - 1 point.,

3'

1. The expected value of the score is

,

'
+ 1(--1) or

2

2. Is it possible to obtain a score of 2-
1

on any
2

particular spin?

3. 'If you played many times, your score-would be
1

approximately 2-
2

.

One way to interpret expected value is to think of a game of chance.

Suppose you were planning to play this game many times. Suppose that it cost

you $2.00 eL:ch time you played, and that you got $1.00 per point you won.

Then you might expect to gain, on the aVerage, $.50 a game. But! if you had to

pay $3.00 per game, you would expect to lose $.50 a geie on the average.

Here is another example.

On a second game, played with the same spinner, you get points as follows:

Red - 4 points

Green - 3 points

Blue - 1 point.

Let us suppose you are offered a choice. You may play either game, and both

games cost $2.004 Whibh game do you pre.er9

228 88



rf

21
3-

less.

'less; mox4

more

10-4

4. Your expected value for number of points won in this

game is

5. You gain a little
(more,less

this game than'on the first.

, in the long run, on

6. This is a reasonable tsonclusion. Comparing the rules;

we see that on the second game we get 1 point

for each rea spin and 1 point

(more, less)

for each green spin.

7. But red is
(more,lessj

I

likely than -green. .

(more, less)

Hence, our expectation is less in the second game.

Ekplining ideas about probability in terms of games may seem somewhat .

artificial,. You may not want to play games for money. In fact, common sense

by now should tell you that the roulette wheels at Monte Carlo, for example,

are arranged_so that the amount you pay is greater than the expected value of

your winnings.

However, situations arise in which decisions must be made, even though

the future is uncertain. Toy ihanufacturers, for example, cannot pred4ct'with

certainty which items will be most, popular. It is to their advantage to pro-

duce amounts of various items which make the expected value,of their profits

as 1 geas possible.
i

Hire are two games, each played bi.throwing a die once.

ir
!

A: You get 21 points if 6 is thrown, otherwise you get nothing.

B: You win the number of points thrown.

21 1
or 3

3-
1

. 8. The mathematical expectation for game A is

9. The mathematical expectation for game B is

(Y u have derived this result earlier.)
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Suppose you could play one of these games, and that, in each you would win

a dollar for each point. Which game would you choose? Look back at Items 8

and 9 and consider carefully.

The best answer that can be given is--it doesn't matter. The two games

have the same expected value. If hIlf your class made one'choice and half the

other, there is no reason to think Ale group's gains yould exceed the other--in

the long run. After, say, 1000 toss:sr each group would expect to have accum-

ulated 0000.

Soap people accept this argument readily but still'raise the question: If

there:is to be only one toss,' is one game better than thaother?

You may feel4that you would prefer to be sure of winning something. You

would then choosethe fist game, though in it you can't win more than 46.00,

thus surrendering the possibility of receiving $21.00. On the other hand, you

may feel that it would be better to "take a chance" oh winning $21.00, even

though the probability of receiving nothing is. .

In either case, your decision is based on personal feelings, not reflected

in the mathematical expectation. The expected value of a single throw is $3.50

for both games A and B.

There are many important practical situations in which factors such as

personal feelings affect decisions, regardless pf the mathematical expectations.

Considerations of this sort have led economists and others to introduce the

idea of "utility", a concept which is needed when dollar vilus do not accu-

rately reflect an individual's feelings.

Exerci es.
I I

.(An Jwers on page 333)
. .

1. Ascertain king is always at war with his neighbors. In fact, once a year
.

his neighbors attack either town A or town B. The king has to decide'

whether to station all his army at town A or at town B. If the king

has all his army stationed at to1,1 A, he finds that an attack does

little damage--it cdsts,only one bag of gold to repair. If,the army i,..

at, B, however, when B is attacked, there is no r'dmage at all. But if

A is attacked when the army is not there, then repairing A costs 4

"bags of gold, while if 13 is attacked when the armylis not then.., then

/

repairs to B cost only 2 bads of gold. In order co decidi whethei to .

stallion his army at A or B,, the king sends spies to find 6Ut which

town will be attacked. What should he decide if his spies report:

230 0



(a) attacks on A and on B are equally likely?

(b) an attack on B is 4 times as likely an attack on A ?

(c)
2

an attack on A is as likely as an attack on B ?

SUggestion: In this kind of problem it helps to use'a table to summarize

the facts. Here is a table:

Army is at:
A

B

O

Enemy attacks

A

1 '2

4 0

Cost to the king
in bags of gold

2. Two dice are thrown.

(a) Make a probability table for all possible sums.

(b) What is the expected value of the sum when two dice are thrown?

3. J.-Again two dice are thrown, one red and one green.

(a) Guess the expected value of the difference:

number onred - number on green.

(Note that the difference may be negative.)

(b) Verify your guess by computing the expected value.

1

. Here is another game played with a rd and a green die. The dice are

thrown. One player gets the product of the numbers thrown. The other

player gets the square, of the number on the red die.

(a) Guess: Which Asyer has the advantage--that is, which expects to

win the most poin4\ts?

(b) Compute the mathematical expectation for each player. Was your

guess right?

(RemeMber your results for this exercise. We will refer to them later.)
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10-5. TheMatheMstical EXpectation of a Sum

A certain king had two sons, Andrew, whowas the older, and Bruce. He

wished to share his treasure with them. He said: "Here is'a spinner. On it,

P(red) = .4, P(green) = .3, P(yellow) = .1, and P(blue) .2. I will spin

it 1000 tittles. On each spin I, will award gold pieces, as follows:

Spin Red Green Yellow Blue

To Andrew 20 '20 50 50

To, Bruce . 30 0 40 10

Probability .4 .3 .1 .2

/-,

-In this way, each of you will have a fortune." How big a fortune?

10(.2)

18

18,000

50(:2)

29

29,000

Bruce at once computed the expected value of his gain,en a,

single spin.

He used only this part of the king's able:

Gain 30 0 40 10

Probability .4 .3 .1 .2

1. Bruce's expected value = 30(.4)+0(.3) +40(.1) + ( ),

or , gold pieces.

t

2. He would expect to average 18 gold pieces per spin.

In 1000 spins, he woup.d expect about /gold

pieces.

3. Andrew computed hiS expected value as follows:

Expected value =

or

20(.4) + 20(3) + 50(.1) + ( ),

4. In 1000 spins, Andrew would expect about

gold pieces.

232
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atribntive

Notice, that Andrew could have simplified his work by

noting that 20(.4) + 20(.3) = 20(

. Likewise, 50(.1) + 50(.2) = 5D( ).

Items 5 mid 6 illustrate the property.

Bow much, on the average, does the king give away on each spin? We might

reason, simply, he'averages 29 gold pieces per spin to Andrew, and 18 per

spin to Bruce.

:47 (69 +).8)

. It seems reasonable to guess:

Expected value of gift, per spin =

In other words; let:

M
G = expected value of kingts gift

M, = expected value of Andrewle'gain

expected value of Bruce's gain.MB =

On each spin, we have a value of G, A, B, and fok'these values

G= A + B.

It seems reasonable, therefore, that:

I

MG MA
MB.

In order to understand :1,is relation-batter, we shall compute MG, the,

&Led value of the kindle gift, in a special . --We will use this table

Gift: G= A+B 20+30, o. 50 20+0, or 20 50+40, or 90 50+10, or 60

Probability .4
m
1, .3 .1 .2

Expected value = :10 = (20 + 30)(.4) + (20 + 0)(.3)

+ (50 + 40)(.1) + (50 + 1

233
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distributive

9. , But we know that. (20 + 30) .4 = 20(.4) +

10. Again, we have used the property.

,Bence we see:

H0 m 20(.10+ 30(.4) +20(.3)+ 0(.3) +50(.1)+ 40(.1) +50(.2) +10(.2)

sink the associative and commutative properties, we rearrange terms.

i46,, [20(.4) + 20(.3) + 50(.1) + 5o(.2)]
if

+ (30(.4) + 0 (3) + 40(.I) + 10(.2))

HA + 14B!

This same reasoning can be used in any problem where we wish to find the

expected value of a sum.

Hence, we always have: The mathematical expectation of the sum can be

oundlt addinE the separate mathematical expectations.

3.5

1.0.5

We have already seen some examples which illustrate this result.

11. For a tliroW of a single die, we found: The expected

value of the number thrown is

12. We also found (Section 10-4, Exercise 2) that for a

throw of 2 dice the expected value of the sum

I:

.

is

It appears reasonable to suppose that for 3 dice

the expected value of the sum is .

is is trde: We add the expected value for each die to
,

ind the expected value of-the sum. The reasoning is 's-`

exactly like that in the previous example.

Look back at your results in Section 10-3, Exercise 3.

14; If you toss a single penny, the expected value of the

number of heads is

15. If you toss a penny and a dine, the expected value of

the number of h!eads is , or
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We can apply our knowledge about the expected value of the sum to Exper-

iment 10;,14 which had to do with matching 6 cards.

This experiment illustrates the famous problem of "matching" (rencontre),

which goes back to the Mbntmort (1678-1719). It was generalized by Laplace

(1749=1827) and others. The problem takes on various forms. Here is one

example: 75 personal letters are written and the envelopes addressed. The

envelopes drop on the floor, get alp mixed up, and, without sorting them, the

"inefficient" secretary places each letter in an envelope. What is the proba-

bility that any given letter.and envelope are matched properly?

Look back at your records for Experiment 10-1. We found the average num-

ber of matches, but we did not find the probabilities involved, for a very good

reason. To compute directly the probabilities of no matches, one match, etc.,

we would need to think about all the ways of arranging 6 cards. From Chapter

9, we know that there are 720 ways. In order to find the probabilities for

our matching problems with 6 cards, we need shortcuts, and these shortcuts

are beyond the scope of this chapter.

However, it often occurs in mathematics that a simple situation throws

light on a more complicated one. So, let us look at what happens when the

number of cards is smaller.

Exercises: (Answers on page 336.)

1. With 1 -card:

t(a) Find P(no matches), P(one match))

(b) What is the expected value of the number of matches?

2. With 2 cards, find:

(a) P(no matches), P(one match), P7,2 match s);

(b) Expected value of number of matches.

3. With 3 cards, find: I

(a) the probabilities of 0, 1, 2, 3 matches;

(b) expected value of number of matches.;.

4. Look at your results for the expected values in Exercises 1 to 3 and in

erimel.t 10-1. Can you mak a guess about something that is true for

t:Py number of cards?

235
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Let us see whether, for 6 cards, we can find the mathematical expectation

for the =der of matches without actually computing the probability of no

matches, of one match, etc. Look bOiek at the exporiment, and look at your

record for it.

16. Any of the 6 cards is as likely as any other to be

put down first. Thus, it is reasonable that there

. should be a match on the first card about
Y

of the time.
TEWITET&T

17. Thus, iu the first column of your record you would see

a 1 recorded in about . of the spaces.

The expected value of the entry in the first column

is, thereYore, 1 a , or 13.; .

18. By similar reasoning, the expected vafue of the entry

in the second column is

The number of matches for any single trial is found by adding the entries

in the separate columns for that trial. Hence, the expected value of the num-

ber of matches is found ty addin4the expected values of the column entries.

1

1

19. Expected value of number of matches =

'O. This is true because:

11 1 1 1 1 1 1
17)._fv- .r 101 6(;) =

21. Would the same reasoning apply if we used anS%-other

number of cards?

(A] Y's (B] No

The argument hol d. for any number f cardA.' For 10 cards,

for exampl?, yc would suppose tha 1 would appear in

each of the 10 columns about of the time. (A] Is

correct.
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liere its hnOther eXample:

4

1
.1.

10k.) or
2 '

4

We can think of many problems relating to Matching.;

5

4

22. ,Yowand a friend are going to toss coins. Whenever

the results match, you score 1 point. When they do

net, you score 0 points. If you ore gOing to toss

. times; What is'the expected value of youi score?

Do you see how we have applied, once again, the same

reasoning?

23. Think about any single trial--that is, pair of tosse

.Whatever your friend's restilt, the probability that

. eours will match it is

24.- The'expeated value of your score on a single trial

is 141 +.4) .

Your score for 10 trials is found by adding your score
1

for theseparate'trials.

Hence, the expected value of your score is found by adding

the ten separate expected values.

. 25. The expected value .of your score is

k

1

75.

4

Let us retu/n to the inefficient secretary who 1.)Ssintro-

duced at the beginning of this section.
.

26. Out of 75 letters, what is the probability that a

' - )particular letter is matched with the proper

en..61ope?

1
/

Note: For a particular letter there are /5' possible

envelopes7al\tqually likely.

;`.
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Li.
.- . t ,.. . ,,

..., t
. , ..

tg9,44ght ask: What is the.p obability tha at least one letter 16 placegI
. . . .,

4-the,torrect envelope? ...; .

.:,
..

, - :,'. .- ,.: .t

In seeking to answer this question, you.might note that from your results
: 4-,.--, - -_ -- \

lnExercises 1, 2, 3, . we know the probabilities if she had had, instead of
. , .; .-'-

-7 i. letters" only 1, or 2, or 30.

For one letter, P(at.least one match) = 1
-te

,

For two letters, P(at ledit one match) = ..-

i
,

For three letters, P(at least one match) =
/ 3

night ihen try 4 letters, 5 letters, eke., looking for a pattern.
A ,

ea yo,ao so. Unfortunately, the counting proCessilecomes lehgthY without
.

-somV.additional tools. Therefore, we will simplytell4pu_the resalt It turns

out that as you-increase the number of letters, the probabilities change. ..., .

.._ _ (For instance, with !s7 the probability of at least one match is .) For'
.

15 letters the probability that at least one letter and envelope ',will match
.

2
is to -.5.. .

-Sutorisimgly, the result would.be approximately the same if there were
.

160, or la*, or 10,000 letters--with, of course, the same nuMbeiiof

envelopes. : -

_
, .

-

We can restate this problem in many ways. Suppose, for example, we have
* k :

.:tw14entical sets, of 100 cards. If each set of cards is well shuffled and

two people each turn one card at a time, what is the probability that both will

-"turn up the same card at least once? ._ .

, ..;
2

\\
-Again, the probability is approximately

s
t
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.

AP-Wb':hajile-abSerxed, it is very often necessary in

'.tciii.a.ke.7-claciairins even when we gannot be certain we are.i
:not make us certain, but it gives, us better

vie are right..

-' 4116ider these two spinners..

I

1,,P(redlI)

"p(green II)

'Suppose a friend tells up:, 'I am going to toss an honest -corn. If it
4 %

Ileads will 'spin I. Other se,wi11 spin II. I am gin-to tell-., -
.5Ou whethei-I got red or green. You are to-guess which spinner I used.

Z.1
2

1

2

,

t
practical ,situations

right. Krio-iring ,proba:.,

Ways of estimating the

,- II. ,

P(rea1Ir)-7--;". 4

P(grenIII),=

We know, of course, that

, Using,j4t.t.....o developed
f., .1

i(ttlred)

1

P(IIIred)

; k 7-.s. sp(IIgreen))....7.,
t .

P(II 'green)

a

(If Aq do not understand how

,do Exercisse 10 at the end of this section.)

.p

:3

3

1

3

1P(I) PkII) =

in Chapters

Ta.

7 and.'8 we-can show:

P(In red)

P(In green)

p(nn red)

P(nn green)

these probabilities were derived,. pause

s

239
991

here and



,...Sppp#0emaksi in advance, a plketf

1

:green

.!

,

ch spinner was used.

. 1. We note that P(Ilred) P(IIIred).

(<1 =
' e

our friend pays "red, we will2. Hence, we plan: .ff

acide
I,II

But P(Ilgreen) P(IIIgreen).

(<, , >)

4. ,Thus, we plan: If our friend.says "green", we

f

.

decide

5. But. we recognize, that we may decide wrong,

we decide wrong whenever either.,

our friend spins red on , or

your friend spins, on II.

6. Hence, P(we. aSe wrong) P( I n red.) + p(

3

Indeed,

3
If we repeat this procedure many times, we will be wrong about ,E of the',

_ -time. However,'our plan, based on the information in Items 1 Ond 3,, is better ,

than some of the otherplans we might have chosen.

7. For example, if we always decide I, regardless of

What our friend says, we. will be wrong about

of the time.

8.' Suppose we plan that we will deeideby tgsging:a coin.

If we.get heads, we will decide on I; if tails, on

II. We will be wrong about' the time. (If you

had" trouble;look back at Items 22 to 25, Section 10,5.),
o

INOw let us suppose our friend tells us: X will toss a coin, bs before.

,Again, I will select spinner I if I get heads, and II if I get toils. This

time I will spin the spinner 100 times. I will tell you how many timed I get

red. Then, as before, you are to decide which spitnerI was using.

?Id. 0 0



. When you analyze this situations you note that,'fOr'

spinner I the sXPeCtedvalue. of the number :of r_ eds:,

in 100' Spins is
1

, si_ _

.%_

10.°+.0n the other-hand, the 6cpected value. of the.number Of-;
.

reds for spinner II is-
,

11. W.find these values, of coursei''V, noting that For,a

single spin'the expected Value of the number of reds
.

lntUitiVeiy, We feel ihet'for 100 spins

--about '56. In fact, it turns out that

-of =spins; '49 and-- 51 tile'Second'mbst likely

-45 i'edS 1f'spinner. II' is spun 100

for . spinner' I ;

for ;spinner

go our-decision plan might be:

decide I if the number of reds is
--

decide -if it 16 more than 62.

r

Of'1I' the number of reda'is,

50 is the most likaiY nUtber-

nutbers. wer.4pet,.

times.

62 or less;

he-probability is-very great--We feel-..that when our iiiend. rgtorts:his!

''ta-onS of tvb things occurs. Either hepreporta approximately C
_ -

dhe,CWe, eaide I) or he reports approximately 75 reds {and we deCide II),

g"one of these will happen, and usually our decision in eit4el* cEiSe.Wi11

6e-dorrect. :,

Of course, if our friend reports 61 reds,, we are not goirig to be very

-confident about our decision. However, we feel that it is very unlikely that

'sail report ,61' reds,

,.. , ,

9;tir intuitive feelings here are quite correct. Our probability of decidiN6
.

correctly its much greater if the results of 100 spins areknown than if we
.

.

'Ichow ,#ly:aboui '1 spin. it is greater still if the number of spins is further

increased.

We Observe that is is of interest to consider not only the expected value

itseIf ut the tendency of results to cluster around the expected value,
e,

plough a,full discussion of this is beyond the scope of this book, the next

section of this chatter deals, with a technique that is asefal in this connection
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If you ;lave -completed. Chapter 9, you should do Exercises 1 through 9,

:whi.Chara based on results obtained in that chapter.

r

Exercisea. ,a, ' (Answers on pages 37.)

Ig Chapter 9 we considered the method for finding the probability of

. exactly_ k successes in. n independent trials, where the prObab4ity of

suacessoneach,t4al-is, p. Even if you have forgotten the formula for

s the -probabilities, it is easy to see that the expected value of the-number
e,

* ,of suCcebses is gp. EXplain. (Hint: What is the expected value -of the

number -of successes for a single trial?)

2. Refer to the bar.graph on page for n = it, p =
2

.

(a) What.i13 the expected value of the number of successes?

CO What is the most probable number of successes?
. , .

. .

(c) t is the probability that the number -pf successes differs fromgit

th)'expected value by at most 1 ? *

. ,

Answer the same questions as in Exercise 2 for each of the following cases.

The-,bara3raphs are on the pageb indicated.

'5. n = 4, p = .2 .

6. n= ptv .6 .

n = 6, p =2

1
8. n . 8, p =

9. n = 10, p =
1

.

r.

. (page 200):

(page 200)

t-

(page 200)

(page 200)'

(page 203)

(page 203)'

(page 203)

. 'A

t

0
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,

. . .

'Consider the -following spinner.

.red

-red

41, 1, '

green

. green

44,

1;'(red 1) = P(green I
1

. 5-11(irin\II) ,

11, : ,

(a) FinFt PUedlIY, T(IITed.)P(IIIred). .

4,.
/

,

'(b) Compare the proba1)ilities' forc this 9pinnqr with those for
.

.- fluinners at the beginning of this section. . j

10-7.. Standard Deviation

4 Focample. A teacher gives a test to three groups of studentt,.

the results, ,

80

.4,

,score. loo . 8o 7o "60 5o

Graft I 2 2 2 . 2 2 . 0

Group II 5
. 5 0

Group III 1 2 . 4 2 1 0

4.

- .

the two

.1

Here are

6

. The average rde for Group I is

4'4
. For Group II and Group III', the average is also

.,

...

Though all three groups have the same average,, they dif.r in certain
: 1

,
ways. ,

211
0

.1



`1-

It

/Th4Se Aiffeences can be visualized by drawing bar graphs.

. .

;Fraction- Fraction Fraction_
-of-studentb . , of students oC students

1.0 : 9.

1.0-t 4.1.0

.8.8' .8.-.

:6 a . .6 .6

.2
0,

.2

°

., -

100 90 8o 70'60
1

100490 8o 70 6o.

.. Score Score .'

ioo 90 8o 7o 6o

.

Group I

Score

Group 'II, 1 Group III
'i . . . .

t ,°. 4,. ,
In Group.III,we observe that most ,of the grades are fairly near,the` mean .

, '-80. In Group Ii, however, none are-near 80. The grades in Group Ii.aremost
,

4..

-dpresAout; thoSein GrotiP III are-the ledst so.

- `
. .

. ..

It is useful to have, for each graph, a number whichnleasuresthe amount

o spredding. Our next goal will be to define such a number,' 't :.

our first thought might be to find, for each scoret the distance between ,

the ScOrl andthe mean, This distance can be thought of as, the deviation of
. , _

.." .0.1e'stoz_ from the meaiv: oWe could then average thesedeviatio9s, Ind we could
. , . ...

use this average as a. measure of the spread, or dispersion, of.thevscores.
(.. ..0. .

, . -4' °

,

It turns dut, however, that4it is 1
t

tore desirable to use instead a slightly

more complideted Pleasure of dispersion. This measure is found as follows:

1. For each number in the tdble (eachtscore in oup examples), find ,

the difference between it and'the mean m. ° . .. .

-O _1 . .

tt, 2. Square each difference. .

. 6'. . '

3. Multiply each square by the fraction og the gruptailiociated:with
, .

-.
, °

0 the number"(the score).
. . .

Add the products obtained -in 3.
-

5. Take the square root of the result. This square root is the

standard deviation.

Some examPled will make the procedure Clear..

' 244 2
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*indiitthestandard deviation for the scores in Group 1.

,,,,

'Score- : 100
.

90 '80 70: 60

number obtaining
2 2

,

2 .2 ,

Fracti6i
- -.--..---

f
10

) .2 .2 .2 .2 .2

'score -, -tr.
.., , .

,20 ' . 10 , 0 -10 .'-20

(Score:- Iwo. 100
.

o
.

i.00 4000

Oa-0e,-; 375

,

400(.2)
.

'100(42)

.

o(2) ' 100(.2)

R

400(.2)
i

Adding across line (3), we have:

,

(41 400(a.2) +`100(.2) + 100(.2) + 400(.2) = 200
-0 00 n

106

,The standard deviation of the scores,of Group is approXihately 1414.

460

-20

(720)2

4co

&amine the preceding work. Complete the items in this

lox to test your underStanding.

3. Under'the score

score - m =

loci, we pee'

, and

(score - m)
2

=

4. Under th'e score
466

score - m

60, we see

and

(score ...m)2

5. (60 (_ )2

Note that all the entries in the bottom row are n4-jaegativey

since each is the square of a real number.

245
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We have used f for the number of times the store occurs. The number of

tunes of occurrence is often called the,frequency. The table of test scores

arid frequetncie6 is so times.called d frequency distribution.,
, I 1,

Let us find the standard deviation for tehe scores in Group II.

.

4

k.

400

5, 20

10.95

.

Make a table, as in the example. Compare your, result'

carefully with e belo .

Sc Ore -190 . 90 .80
.
7o 60

f 5 : o ,o .ti .5

10

___

5 0 -o.., o 5

score - m
.

20 10 0 -10, .720

( score - m)2 406 0106 . 0 .3:60 400

(score - m)
2 4'

0
--
1

1200 '0 0 . -o 200

7. Addis& across the last li e, we find the sum

is

8. Standard deviation = ='

iqr

9 The standard deviation for Group III is' c-A

1
If you had difficulty, compare yOUr work carefully with

the result'beldw.

Score 100 h'.) 80 70 '6o

f , 1 4 2
..

1

f
10 -,

.1 .2. .4- '.2 .1

w
. ....

score - m 20 10
.

9
.

-10 -20

(score - m)2 .406 100 '1:) 100 4p6'

(score - m)2 10 40 46 20 0 X0.2
<

, 40

40 + 20 + 0 + 20 + 46
.

Standard deviation = = 10.95
'

246
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t" i -.

;!. > .....

We have `found thestandrd deviatiOni3 in three examples:
.. . .

. ,

4,

,,, For Group I, Standard deviation = 14.14
.% ),c .

/ /
For' -Group II, staidard." deviation = 20.'00

,.

/For Group III, staridared.eriation..= 10195. ,_

/ . . /-
- / -,->

Leek -ba'ek st*the- graphs we have drayie It appears in these e iples that the

"largest ,standard deviation, goel; 14'h thewsraph with greatest spread.
1 vh,

__----7.: 't . '

',1

;

In-thS'Stanford: Coaching Camp,...4anford, Califortnia, the heights and

ights a .32 boys were recorded in July,.1965,. The boys were tadintg
._.

...-graae 9 ire September, 1965.. In the diStnibution for heights, we will use

the symbols' h for the number of inches in the height
.

and w for the number

of °pounds. (We ,listed the heights and weights in vertical columns simply Vor
, -

.
ease 'in reading.) - r 0

0

I-

Height in
'Inches Fre uenc

h

55

58

.59
6o

63,

.62

63

64

65

64

68

69

70

71

73

.1

1

1

1

3

2

3

2

3

3

3

2

2

Weight in
-Pounds

w

%,

Frequency .

f

4 165

159.

150

148

138

130

126

120

115

112

. 106

105

100

98

95

87

75

24.7
1 0 7

,
4

t
, ' 2

1

2

.5
1

2

1

1-

3

1

1
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'EXercises.

1. Find the Mean'(average) height and weight.

22. Find the standard deviation for the heights. -

C'

(Answers on page 338.Y

A

We have graphed the frequency distributions for the heights and weights.
___ _..

EXamine the graphs carefully. We have indicated, on each; the mean. We have
. .

also indiaaied?a band) around the mean, extending each way from the mean a

deftance of 1 standard deviation. ,

.

I
1.

Ilk. Computation of the standard deviation--22.7--fOr the weights.is

tedious. We used a, desk.calculator to find it. You may wish to check our
. -110.

,

.

result. :: . '

21 1
Notice that if of the hiighth are 41thin 1 standard derittion of the

21 " .*
,e, mean, while, -- of'tne weights are,within .1 standard deviation of the mean.

.
. a N

. 2In many situations we find2-as in these.examples--that about of all
a . 1 - 3

.

value's lie withint.standkrd aeration of the mean.
.. 1

' '

__
nu May wish to examine othak co4ection0 of data. SHere are some ,

,.- suggestions: 1 i

. A
\ f I

1. Obtain from your teacher a set of test cores for your class.
.,

/,
. . -.: *

. .

2. Obtain the heights, and weights for a class ok glade in your sch 011.\ ...

(You may be able to secure this information f m the Physical
iEducation-or Health4 i.

partnent.) ta
.. .

Find the number of hours each member of your class watched television

. c---' lest week. ,

-: ..e. ..
4 ASkseveral members of your class to use a .peter stick ;to measure the.

, 1

length of the teacher's,desk to the nearest centimeter. l'hh results;

will vary a little. Tabulate the result for each nenper,of the class.

5., Many science projects involve collections of numrical data. Your. .

:science teacher may be able to give you suggestions. .

. N
. . , \

. . .. .- . , A
, ,

248 8

6



11111111111111111111111111111111111111MINIMINNIMEIMMINIMEINWEINE 
1111111 1 11111 11 111111/1111MEIMM EMII INIUIMERIMIEMEN REIM EN IMM 11111 11N III IIIIIMIIMEMOIREINIE 

EIMEMEMERIMMIIIIIIIIII111111.1111MiliMEM1111111111111111111nan 
11111111111111111111111111111111111111111111111IMEMINAMMINIMME 

ammirmisimimmunimiumimmEmmumminga EIMMIIIIIIIMMINIBIZEIMIIIIIIIIIIIMMI111111111111111111111111111 
MillMEMEMEIMIIIMMINIENEEMILMEMIEM11111=11111111111111111111111111 

, 

111111.11111111=EEMININEEMMIEMMIIII0121181711111E11111111111WEI 
1111111.1111MERREIRIIIMINIMEMINIMEINIIIIRIMINIIIIMIEN111 
1111111111113131EMBEERMIERIEREIMEMEMESIEBEIMME2111011ElliEll101111 
1111111111111111101111111111111MESSIMIHMINIIIIIIIIIIIIII111111111111111111111111111 
Entimisommommulinmimummougummuumansmons EmomminammaiamsmanimumaiiimmimaimmEss ISEIRMIMMIN11111111111111.111111111111111111111111.1111111111111111111111111111- 

1E111111111111 1111 1111 IN IMIIIIIMM IER111111111111 111 111INNE 11111111M IIMIIIII I1 111111111111M111111=1111111111111MINIUMMITIMIUMMEREMIN 
IIRBIEINENIMEN EIREM11111111111111111111111EMEMIMMIIIIIIMIN ESMINIESIMEN 
1111111111111111111111111111111111111111110111111111111111111111111111111111111111111111111111111EIMIMEMiliii 

1111111111111111111111MMEMNINEIMENNINIMMINIMINIMMENIN 111.1111111311111132 



1111111E111111MIIMMIIIIIIIMMEMEMINEMOMMILII

SIESIMINIMENEIMMREMMN
MESIMININIEREINIIIMMEINIMME11151111MINEM

INE11111.11111111111HMENIMMINNIMENIIIIIIIIIIMENIIII1
IIIEMEMEMEREOE-MCIEMEZIMIIMENEIESEIIRMIIIIIIIMMINII

llikniiIINNAMMILELIZAINIZZAKEELLE=EIRMIELIMMIII
NE SIMIN NIIIIIIMIEMIMMZINE11
SERMIEZMIMMIFIENTHEMMWEIVINEMILMINIIIIMIll
MENIER111111111111111111111111111R11111111MIMMIIMIMMIEM

MillIMMERMINIMMIIMEREIREME11111.11111IMMifillill1111.111111111MEMMINIBIENEMIMERMIMIIIIIII

ME11111=111111111111111111M11111111111MMIN
1116111M1111111111111EIMIMIRMEIHRIBISIMMEMEMI



'VI

-

10-8. Standard Deviation: Application

We-have already discuised the standard deviation as a measure of diaper-
.

for a frequency:distr3bution. Naturally, we can also apply this idea to

probability.

'In Section 10-3, we' considered tossing 3 coins. We made the gollowing

tible:' -

S

Number heads 0 1 2 3

Probability
1
TS

.3 .

TS :
3
TS

I
ET

' Table I

84ch a table defines a probability distribution. (Observe that this

probability.distribution assigns to each of the numbers 0, 1, 2, 3 a
probability.) .

For this probability distribUtion, we have found that

. ,

M = Bipectea value =
2

'We can draw.a bar graph for this distribution. (You may.recall that we

have already load bar graphs in connection with probability distributions in

Sedtion 9-5)

Probability'

1

- .

We cakelso ask: ,What is the standard deviation for this distribution?

It is natural to proceed as follows:

2)2(8) 2)2(8) 2)2(1)

Standard deviation

2

1
,- Y.5 or approximately .87



To find the standard deviation, then, we form the "weighted" average of

the.valUes of (x - M)2 where the values of .x are 0, 1, 2, 3.

9

Test your understanding by completing the following items.

Refer to the work above asvnecessary.

?).. The value 0 (corresponding to no headn) has

probability'

2. M, the expected value, -is

3. For x = 0, we havd:

or )2

2

- 4. We know, of course, that (4) =

3

)2

5. In computing the standard deviation, we,used a sum

of i:erms, corresponding to the 4 possible

.values of the number of heads.

, 2-
6. the second term ofthis sum is, (1 - (i) . It

corresponds to the value of x, which has

probability

In this chapter we have studied two kinds of situations.

We have seen examples in which data found by observation can be recorded

in.a frequency table.

For example, the authors actually tossed 3. coins 40 'times,'recording

the number of heads. These were our results:

I

,Number of heads 0 1 2 t. 3

Frequency f 4 16 , 17 3

.i. 4 16 17 3

.45 Z Vi 1 70. Vo

Table II

251 1 1.2



'On the banci, we have considered probability

,

distributions, such as
..

e-one,4tttle t?eginuing, of this sgption.

Sot-situations, we can Compute the mean and. the standard deviation.

(Answers on page 338.)

Tindthe mean and the standard. deviation for our coin-tossing retultd.

itts 15ok again at Table I and Table II. Compare thanumerical resüits

that we have obtained from them.

7. If we think of a very large number of 3-cOin.tOsses,-__

-2.

say, 1,000,000, we would get no heads aboUt -- --
, of the time, 1 11ad about ,-- of 'the time, etc.-

_

,.... .--

.-,.

'..-. cv - 8. For this situation, the average ntmber of heads

would be
;-

Table I, showing the probability distribution, summarizes results we

would expect to find approximates if \e repeated the experiment "toss three

coins" a large number of times.
- t

Imagine now tha t someone takes- 1,000,000_ skips of paper. This patient

someone tosses 3 coins 1,000,000 times, recording one toss on each slip of

Paper. The slips are placed in a container, and they are well mixed. 40 are
e

then Sel decte These 40 are a sample of the tosses. We can think of our
- - ,

'eXpertment ors. tossing 3 coins 40 times as simulating (fitting the same

4ules as) the sampling process.

9. If we look at our second table,/ we observe that for it

the mean is and the standard deviation
/ *is..,

Our sample of 4Q toSsee,gives tairly.good estimates of

the results for 1,0001000 trials.

252 1 1,3
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Though no one, Of course, would really toss 3 coins '1,000,000 times,

#ieAdeas that we are ,working with are extremely useful impracticalsituations.

Often we want to know the characteristics of a large group. Manufacturers,

of boys' clothing, for example, need to know about the heights and weights of

boys in order to mike plans about the number of articles of various sizes that

"they should produce. They need to know the,average (mean) size of boys of'var-
,

ious ages.. They also need to know how the sizes spread out from the mean.

Their information is often gained by studying samples of the general population%

Opinion pollsters, market analysts, and other individuals use samples to pre-

dict the behaVior of large groups.

Exercises. t (Answers on page 338)

2 A die is tossed. We know that the. expected value of the number ofpoints

thrown is 3.5. Find the standarddeviation.

In Exercise 2, ection 10-2, you...found the average for 25 throws of a

die.. Compute the standard deviation. Compare with your reGulta-for

Exercise 2 above. 1

10-9.. A Formula for Standard Deviation

In this chapter we have obtained a number of results relating. to the throw

of a single' die. We found:

O

Li47

-,12

35
12

`Expected value of number thrown =
7=- (Item 3, Section 10-3)

91
Expected value, square of =Doer thrown =.-6- (Exercise 4,

. . Section 10-4)

Standard deviation, number thrown . 11; (Exercise 2, Section 10 -8)

2

1. Observe that (i) = .

91 49 182 0
2. Moreover;

-6- 12

253
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e.:See:
.

, 91 35

\ -6-
12 ' .

1
, !

Whp:Ilii See a simple xdlationship in one example, we hope that it holds

4.t

0044r. ,Does. tills 4e?

First,, We had better state \t.'le formula more generally. SuppoSe we have

erplent,,, .,1ie,outcomes of which can be specified in terms of certain,rFm-

:heis., the4'eAamcle, the `areare 1, 2, 3,- 1, 5; 6!) We shall Write:

t(N :Or the- expected value of the 'number resulting from the experiinent;
1

1

)for'the expected value of he square.

Then,ire hays-!-at least in. our example:

1.4*" i(N2) - (E(N))2 = ( tandard deyiation)
2

.

.

'' -,The :forniula always holds. The proof uses some simple: ideas from algebra,
'---;,e .4)--- Jr, ".

, -

isirmi IS yolz 'are taking _algebra, you-might like to try it. I .
. ,

.k ..'
will ,give a proof for a simple' situation in order to save- writing.

..j. ..

;:Let 00. suppose, thep; that we have 4 table as fbllows
.. °

c.

1

zP(z)

z
2P(

z)

m)2p(z)

Number associated
with experiment

x ,. Y

Probability P(x) P(y)
. ,

P(z) .!,

Sinop every outcome Of the experiment must result in

or y z,

4. For the expected value M, we have:

M = E(N) . xP(x) + yP(y) + .

5. Also, E(N2) = x2P(x) + y2P1(y) +

6. (standard deviation)2 = (x - M)2P(x) + (y

A

254
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We know, of course, that:

(X r M)2 = -

(X - M)2P(x) = X2P(X) 2xMP(x)

Thus, we cab multiply out in Item 6.* Regrouping the terths
0

in the result, we have;

(standard deviation)2 = (x2P(x) + y2P(y) -:6(z))

TN.
- 2M(xP(x) + yi,(y).4 a(0)

+242(P(x) + P(y) + P(z))..

Look back at Items 5, '4, and3, in*thats order.. Using:them,

pur-itOrmula becomes: ' '

(stand4d.deviation)2 = E(N2) - 2M( + M2( )

= E(N2) - 2M2 + M2

= E(N2) _

.,",:`.'Since M E(N), -We have:

.

(standard deviation)
2

= E(N2) - (E(N))
2

.

° i-(-1
11W

. :

-%

...
!

-,..'//
If ypu have completed Chapter 9, the following, part of this section willv-,

' Show you something *about the standmi deviation in the casePf Bernoulli trials.
.,'

,41

Ekercisee. (Answers on page 339.)"-

1. In Section 10-9 we found that for the number of heads on a toss of 3

coins we have:

vt
VerifY, this result, using the formula above.

. --.-.

, -. \
.

4-1-.2. .Find the expected value and standard deviation of the number or heads ifb

k coin are tossed.

-", -

... \

I,t3,.
.Find-the expected valud and standard deviation of the number of lts if

,

,.,..4...

,

. 'a die is ossed 3 times. ,/
--,..

....J 255 1.1 6 4

M 3
2

1 r
°Standard deviation =

-



. '

The results of these exercises again suggest certain generalizations.

FOr:,eXiPlei',,we had: °

),.

.G10610.: P5

',Zor 3 coins, standard deviation = t-15

For 4 coins, standard' deviation = 1 =

!;1.

1...

9. For 5 coins, standard deviation=

It

Moxeover, 'um had:

it

A

../
coins, dtandard.deviationOf number of heads =,243-

2-

50

For 3 dice, standard,deviatiOnof number of 1's = 415,

/

/

10.

Vs.

10. /We recognitt of course, that /15, =:16,* )----

11. We also note that for throwing a die the probability

of 1 'on a throw is' 40 %, and Ihepx:Obability of
4".

t

not getting 1 one.' throw is .

\,
4

-`It begins
st

to look as though Exercises 1, 2, 3 ,all illustrate some general

iule. Indeed, they do. For Bernoulli trials', we have a simple formula for.the

standard deviation7of the number of ,successes.

If esh the number bf trials, .p the probability, of success for each

trial, and q the probability of failure fo'r each trial (so that q

then:

st'and'ard deviation of number of trials = npq .

For n p = (Exercise 1)

,standard deviatiori = V4 3
=2 2 2

For n
1 5 f= 3, p = -6, and q z ( Exercise 3)

Standard deviation = 1 3 11.5
.

For n = 4, .p = q =1' (Exercise 2)

standard deviation = Y 4
2 2= 1

256
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erafie:,

ve: iOr 4t3 and -any;

Aho-ii*beiof sucCesses:is'

1 .

T19=10:' An.Examp1e: The World Series.

b
(Answers on page

show that the.standard:deviatitin of

ger.lan'applidation of ides.afrom.both Chapter,50 and 10. Do it-only
,

70u-141V6-;doinPleted. the early sections of both.
- 1

4,reporterwho,is going to covertieWorld-Series-wonders how:long it will

In-in old:book, -be finds the following records of past series. ,

Year

1525
1926

1927
1928
41929

1930
1931
1932
1933
1934
1935
1936
1937
1938
1939 '

1940
1941, .

1943
1944 .

1945
1946
1947

1948 Cleveland__

1949 _ New York
1550 New York

J1951--. Ney York
1952 New York
1953 New York
1954 Cleveland

4-955 New York
1956 New York
1957 New York
1958 New York
1959 Chicago
1960 New York

Amdrican
League

Washington
Nei; York

New York
N41. *Irk

Philadelphia
Philadelphia
Philadelphia
New ,York

Washington

Detroit
New York
New York
New York
New York
Detroit;,

New York
New
New York
St. 'Louis

Detroit
Bostpn.
New York

National
League ' Score

Pittsburgh
St. Louis
Pittsb4rgh
St. LOdis7

Chicago
St.. Louis

St.'Louis
sago:

New-York
St0Zuis
Chicagb
New'York
New York,
Chicago
Cindinatti,

Cincinatti
BrOoklyn
SeSIouis
St. Louis

'N a4r. LOUis

Chicago
St. Louis
Brooklyn
Boston
Bzooklyn
Philadelphia
New York
Brooklyn,
prookliya..

New York
Brooklyn
Brooklyn
Milwaukee
Milwaukee
Los Angeles
Pittsburgh

257.
118

4

,

4,1

4-2

mil
4-3

4-2
4-2
4,1
4-o.
4-o
4-3

41.1 et

4-1

4-2
4-3
4-3
4-3
4-2
4-1

.47-0
4r2
4.3
4-2
4-o
4-3
4-3

4-3
4-=t

4-3



16,-

He? can find the average nusiber of games and use it to estimate. how long

the'current series will last.

A second reporter says, "I have,no data about past experiences. I do'

howefer, that of the two teams playing this.year, the Blue...Sox and the

:Green Sox, the Blue Sox are the better team. In fact, the probability that the

Blue Sox win any particular game of.the series is §

,

(Answers on page.3400
4'

Eitercises.

1. Using the first reporter's data, what is the average number of games?
.

2. Using the second reporter =s probability estimate, what is the expected

number of games for the World Series?

(NOtice that the reporter assumes thce, the games are independent trials. The

probabilities are the same for all thdf sames.)

You might be interested in seeing What the results would have been if the

second reporter had made a diff.erent estimate of the probability ,-.of the Blue

Sox winning any particular game. Suppos, for example, the Blue:Sox win., every

game with probability, i . In other words, the teams are matched 3 .ito 1:
,

16
i4.0?" Or suppose they are matched equally, 1 to 1, .so that for eaoh game the

., 1,Blue Sox' (and Green Sox) have probability
2

of winning. The result for

these cases, as well as that of EXercise 2,.are summarized below.

Summary of thethiee'World Series:

Probability that the
Series ends in:

No. of games

The teams are matched,

1 to 1 2 to ,1 3 to 1

4 s 0.12 0.21 0.32

5 0.24 0.29 0.33 -.

___

6
..

0.32 0.27e 0.22

7 '0,32 1O.22 0.13

The expected number
of games

5.84 5.45 5.16
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palea.immt

Chapter 11

B1 RTRAND1S BALLOT PROBLEM

A certain class in which there were 25 students had an election between

Arthdt and,Barry. When the votes were collected, they were read off as follows:

AABAB-AABABAAABAABBA*BAABBB

one student said, "I notice that Arthur"After the votes were read off,
4.
was al s in the lead. This is surprising." .

A second student replied, "Nei at all: The final yote was 14 to 11 ...in,
, 'j I

favor of Arthur. Since Arthur won, it 1s quite likely that he was always.
/ i \f"..c--7

,

" . '.

Do you agree with the second student ?. Think about it. Then, see what you

an find out by experimenting! Make 25 slips of leper, aild mark 14 A and

11. B. Mix them-well in a container. Draw them out one by one, recording your
..

o
1. If A always leads, then what must the first vote be? the secored.vote?

2. What is the probability that A leads after .2 voted are counted?
,09

3. What is the probability_that A leads after 3 lotes are counted?

4. ,What can you conclude about the probability that A. always leads?

result "is we have done above. If several students do this experiment' each
. #

should keep his own record. Save your
\
record; you will need it again. &amine -,

your results. Does A -,always leadd-
..

), r
An easy way to check is to,think:, avotefor A is:'1: A vote for

13 r.

.. . . 1'
is (-1). Using ibese Values, add thd votes as you read'alonithe list: Thus,

in the vote above you read:
I

1, 2, 1, 2, 1,'2, 3, 2, 3, 2, 3, 4, 5, 4, 5, 6, 5, 4, 5, 5, 6, 5, 4, 3

Compare your results with ours. (Discussion of this experiment ief.,n

page 308.). After you have examined your results, and,,perhapp, compared yours,
.

with those of other members of your cleat, consider.again the moments of the

two students. With which one do you agree? The kollowing questions will help

you to test whether you were correct.
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Beetrandts Ballot Problem Stated

-4..ne,FrenCh mathematician J. Bertrand (1822-1900) studied a problem about

eleCtions.-Theiram:le If we knowthe final results of an election, can we

find tie
'0

151-64bility that, as thevotes are counted, the winner is always in

the lead?.,- lc
.

T-Tirl1

Thus, in our example,, we would ask: Wbat is the probability--if the vote

was 14 to 13.--that Arthur always led?

. Whether or not A always leads dependa on the way in whech'the i4 A's

and. 11 Ws are arrahged in a.sequence. We will call. each possible arrange-

/ment an "ordering".

*'

a

leads

equally)

`the event "A always leads" etis a subset of a certain s,I.
of otttcomes..".This set of outcomes consists of all the

-

orderings in which the votes could have been read off.
I. Y.

In order to find thidesired probabiltty,we could look

for thetotal numbei' of orderings and the number of

Orderings of the subset "A always

. We would tlso need to know whether or not all thyse,

outcomes are likely.

If the ballots dra

the sar.a why and mixed we

equally likely. We shall

Now consider the qu

are there? A very grea

If' you have studied

should be able tocgalcula

11 B's which are possible.
4-

choosing 11 positions for

\turns out ,to be 4,457,400.

-
from a container are all the same size and are folded

we car., -some that all possible orderings are

o so:1'
tion: How many possible equally lik4y orderings

many'

e chaster on Bernoulli, trials (Chapter9), you

e number of 25-letter words with 14. A's and

is number is ( 25)' --the number of.wayt of
11

B out of 25 possible positions. The number

ilbere.a?*6-Two surprising thing about this problem. First, it has n

easy answer.. Second, it is not difficult to discover the

pat'least in a general way, why it should be true.

4.

41
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/Let us.look for the answer. How shall we begin?' Think about this; see

Whether our procedure in the next section is what you Arould have suggested.

.

\Nt

41,3.- A Simpler Case a
, .

When a problem looks difficult it is often helpful to try a similar but

simpler case. We might begin by seeing What happens when the number of voters

'is smaller.

SUpposeOzsti-triere are only, 5 voters, and thht A wins by e).'ilote of

4 to 1.

Dist in a coluMn 631 the diffrietter orderings

with 4 A's and 1 B. D.;6ide foreach.whether. A

always leads. Check your results vf.th the list below.

(Your list should,cOntain the same entries.ssours;

though not necesatily.in tie same order.)

/
-

.
Ordering r Does A lead throughbut?

AAAAEr ..., - Yes

"AAA B A Yes *si

AABAA ,

Yes

A B 'A A 'A No

BAAAA 0/.L

Note that we have
'

) or
1

;, ,Tossible orderirigs, corresponding to 5

choices of position for B.

BAAAA

2. If we count A as 1 and B as '-1, we may count

the score for each 5-letter word step by step. For

which words does A not lead throughout? ABAAA'

and

261
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3. There are 5. possible orderings-if the score is 4

to 1; thitrt is,- 5 likely outcomes.

4. Of these,' are in the event "A. leads

throughout".

5. The probability that A leads throughOnt is

--

Instead of writing a list it la helpful to enter the votes on a circle.
.

-ne the circle below.
A

If we begin at 1 and go clockwise around the circle, we have AA A A B.

6. If we begin at 2 and go clockwise bad to 2, we

get

.-

Note that each entry on our list of Orderings corresponds

to a different beginning point on the circle.

The beginning points that give an ordering for Which

A is always ahead are , and

Having dealt with 5 votes where the vote is 4 to 1, we might also

consider a vote of 3 to 2.
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Ikarciaes.

I.- Howmany possible orderings are there in this case?

2. 'Choose any single ordering for 34 Afs and 2 B's. Locate the A's
-and Is on a circle, so that if you begin with position 1 and move
clo rise around the circle, you get the-ordering-you chose. List all the

possible orderings you get by choosing different starting points and going

clockwise around this circle. (You should have 5 in all, including the
one you began with.)

(Answers on page 344.)

,

3. For Which beginhing positions your circle do you get orde ings in which

A always leads?

Dices your list in Exercise 2 includg all '..ae possible orders s of 3 Ms
and 2 BIS ? If not, select an orhering not on your list Again draw a

ci.zcle, labeling it for this ordering. Again list all the outcomes for

this circle. (Always going, around clockwise; of course.)

For how many beginning positions on y6t:; seccnd does 4 Ways lead?

6. 'What is the probability that A always 1.sols for a 3 - vote?,

7. if the vote is 5 - 0, what is the probability that A always lee-.:1?

8. Let us summarize, out results. Prepare a table, show-

ing for 4 to 1 votes and for 3 to 2 'votes the

following information:

P.f,A always leads)

Mather outcomes

Number circles

Water starting positions on each circle
for which A always leads.

Compare your table with the one

Ilbte

-
,'

P(A always leads) Number outcomes
Number of

circles used

Mather "A always

leads" starting
positions for
a circle

1 to l" 3

5
,

. (1) , or 5 1 3

3,to 2 1

5
5) or 10

(2 ,
2 ,

263
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Examine carefully the first and second columns of this table. Then,think

about the following questions.

4

5

9. For the first row, A got votes and B

got,

10. In,this case the probability of "A always leads"

is

Howedm,you obtain 3 from the numbers in Item 9? .How dq

you obtain 5?

1

Can you see a pattern? Look at the numbers 3, 2, and 5 in the second

row. Do they fit your pattern?

By now, you may have recognized a rule which seems to apply. Let:

x = nuMber of votes ce" A; and

y = number of votes of B.

11. Complete the following table. Compare with the com-

pleted table below.

Vote p(A always leads) x y x-y x+y LI
x+y

4 to 1
3

-5
4 1

3 to 2
2

3

Vote P(A always leads) x y x-j x+y .;-:.

4 to 1
3

5
1 - 3 5 2

5

3 to 2
2

5
3 2 1 _5 -;-

Compare the second and, last columns. It appears that:

.
P(A always leads) = .

x + y

At least, this formula holds for votes of 4 to 1 and 3 to 2.
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(Answers on page 344.) .

s-the' Tormala hold if the vote is 5 to 0 1

,*es the formula hold if there are 3 votes and the vote is 2 to 1 ?

,kere is the result of our experiment for 25 votes. We have arranged

our ordering on a circle. i5,

A

B

Study this circle.

126.



does riot

yes

.16i la

Exercise.

12. If you begin counting at'position 1, then A

always lead. (In fact, the vote is

(doee,does not)

tied at the'second vote.)

13. Suppose, however, you begin at position 13 and go

clockwise. Does A always lead for this ordering?,

14. The other orderings on this circle for which A'

always leads begin at and

(Answer on page 345.)

10. Refer to your record for 25 votes (Experiment 11-1). Arrange the 25

votes on a circle. For how many'Starting positions does A always lead?

11-4: Examining Our Result

Your experiences in Section 11-3 have suggested, that: If

and if ,

then,

x = number of votes for Al

y =-number of votes for B,

x > y (that is, A wins)

P(A'alwrqs leads) = 2=Z2 .
x + y.

In order better to understand why this is true, we will examine the,

results we got for 25 votes. We entered our ordering on a circle.,

2162
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B

0

14,18

A

II

*1

20

B 19

'B

Position 1 starts with A followed by

But 1 + (-1) ., , so A has lost the lead at

the second vote.

2. We have the same situation, A followed by B, at

starting positions 8, 10, , ann.

In the circle below, we have indicated the pairings of Item rand 2.

4
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Take these pa4:.'s out f,.1" the circle nd you have:

.

A



,

you have an As followed by a B if you move around

-direct-on? Yes--the A at 25 and the B at 3. Eliminate

*.6 Itesp. Qo J;Te around again in a clockwise direction: You come to the A. at

21014 "..178j4,0a:by the B at 4. Eliminate them. On the next round ,you

pi A )2 ,:aba-, 5, then 22 and 6. What _next? Of course, 21 and 7,

. ("lineti?-6/ 12. See the diagram below.
1.(1'.

iJ

Which positions- have not been eliminatadZ-13,,16, and 17. But we have

found that positions 13,16, and 17 are exactly the positions giving order-

ings in which A always leads.

Does this give the clue for our generalization? If we place our ballots

around a circle in the order in which they are called, and if we eliminate the

pairs of winner and loser that follow, in that order, as we go around the

circle clockwise, over and over, we are bound, to be left with the positions

on the circ).e from which the winner always leads. If you dohlt believe this,

try some more cases and think a little harder.

But how many places will be left each time? Exactly the number by which.

the winner's votes exceeds the loser's: exactly x = y.
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1:4:6*,11-3 we were led to the guess:

If x = number of votes for A, and y"= number of votes for B,.
_ _

h.

'Jliptice, we are always supposing A wins, so that x >"y.)

in.Section 11-4 we got a clue aa to why this formula holds.. We sawthat
. v. .

,if-We-,COnsider only the orderings that can be indicated on a EINL191circl,,

-then-we Aave:

the Ilumber of orderings where A always leads = x - y.

Referring again to ou5,,case in which the vote is 3 to 2, we noted

tlmt 2 :circles e needed tagive all the outcomes. %Tor each, there are 5.

,orderings. Wehav :.
1

Number of orderings on first circle wilere A always leads 1 ;

P(A always leads).= YX
+ y

number ofprderings on second Circle where A always lgads = 1,

total number of orderings where A always leads 1 1

. total number of orderings 5-7-5
A

YOu might make a guess about what happens if you have 7 votes, wit' 5

for A and 2 for B.

(75) or (72), 21 1.
4

.4 ,

3 24

5 - 2, or 3 3.

4.

7

There are in all (--) or 'orderings in

this case.
k 1

. ,
I

It appears reasonable that you would need
(how many)

circlei to list all the possible orderings. (Each

circle would give 7 of theiba.)

Itor each,"it appears that there would be

(how many)

.starting positions'for which A would always lead.

The reasoning would be exactly like that in

Section 11-4.)

It appears reasonable, then, to suppose that in this

case: P(A always leads) - 3 3 3
7 + 7 + 7



Once again it deems that:

P(A always leads) =

'As a matter of fact, the formula does hold in all cases. The statements

in Items 1 to 4 are true. (You could, of course, check them if yOu wish.)

Holiever, the reasoning outlined in Items.1 to 4t though valid for the

7-vote example, id. not always complete. If you would like to think a little

ooredhout this problems the next section will L..lp you understand it more

fUlly.

. .

,
Exercises.

.

.
(AnswerE, on page3/i45.)

1. A committee of 10, seated around a table, will vote 7 ayes and .3

nays. What isthe probability that, as the chairman calls on each mar, for

his vote, 41e aye's lead all through the count?
/

/

Sena or Slattery' is holdinta committee meeting. *The committee is seated

around the table at in the figure. Slattery knows how everyone mill vote

* '
,\ eXtept Senator Smith. He

N . L

knows Senator Smith /yel' '' '

enough to know that/if the '4 .

P

Ayd)

Nay
aye's are ahead when Slattery

calls tbr Smith's,vote, Smith

will vote "aye".
/
Slattery

'wants all the aye votes he

can get, How shall Slattery

start the count around the

table to be sure the aye's

are ahead when he calls on

Senator Smith?

Nay

Nay
Smicr.

271

1 3'2

J1.



:an infoiial. party the boys and girls seated themselves aroundthe-table,

as in the figure,o thelefti`'

When supper'wAs finished, the

hostess called, "Bois, ,each -

of you bring the girl on your_

left to,the patio for,mixed
_

I ping pong." Which-boYeended_

up without partners?

sitting around the dinner table. Mrs.,11appY is passing

0

5.

the cupcakes. There are 3 -,..

chocolate and 3 van4iai

How can the.cupcakewle pasied,

clockwise so that Daddy, in

seat 1, will be sure to get

chocolate? The letterS, around:

the circle indicate the pre
,

ference of eachnl6mber of the

family.

In s.'-eVent competition, team A von 16 events. What is the probability

.-th4t team A. led throughout thf_ scoring?

World Series stands 4 to 3. What is the probability that the team

;46iilasis won 4 games was always-in the lead?
, .

.
,,

.

1:- :06 ales von. a tennis set of 10 games. The game score was .6-4. What
. .

is,the'probability that he led in the game score throughout the set? ..

Tilden won a 42-gaiMe set of tennis 22-20. What was the probability that

he led. all the way? Careful.
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I
9. A king is attacked by 9 B's and defended by 13 A's. These 22.' men

reach him in random orde. The king is lost unless the number of defenders

who have reached him always exceeds the number of attackers. What is the

probability,that the king survives?

TiO 4 football player catches the ball and starts running toward the goal line

for a touchdown. Between him and the goal line are 3 members of his team

and 2 of the opponents' team. Hetll be downed if the number of opponents

ever exceeds the number of members of his own team who reach him. What is

the probability that he will reach the goal?

The papers the day after election announce that Joe Doe won by a landslide.

The vote is 2 to 1* in his favor: What is.the probability that he led

all through the count?

-

Tii- 6. Some,Ftirther Considerations

I t chapter we havb used circles to help'us list possible orderings.

1.' For 5 voitet we used a circle with 5 positions,

and this circle gave us possible orderings..

2. Likewise, pur 25 votelcircle gaVe us.

possible orderings.

Can we always suppose things are quite this simple?

N. One more example will enable you.to''answer thelast question.

Exercises,. (Answers on page 345')

1: Consider an election with 6 votes - -1+ for A and 2 for B. How many

possible orderings are there?

2.*. Choose one.possibla ordering, draw and label a circle for this ordering,

and list all the different orderings (including the one you choose first)
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4
)

4or'the circle. Select an ordering that does not appear on your list.

T/raw:acirele fqcit. Continue, drawing circles and( listing outcomes

until yoil have all the possible outcomes. .Work carefully.

*15cereise 2 above, you drew and labeled 3 _4_1.c:1es. 'Though your circle

vere ,probOWi not exactly like ours, we have seen tt,at they are essentially the

4ime: Here are the-cii.cles.

A

1

6

2

1, 2

.Let:

A

B

A

A

You have found:

3.. From Circle I,' you get

outcomes.

different possible

4, bf these, are in the event "A always leads".

5. They correspond to startingiositions and

appose you have held.an election, and you are told that the

outcome is one 'of the 6 for Circle I.

-/'8Thilven this information, the probability that A.

always leads is
ti

- event "A always leads",

event "ordering in Circle I",

II event "ordering in Circle II",

event "ordering in Cir,cle III ".

3 D



11-6

7. We can rewrite Item 6 as:

8. !late that F(E1I) is a probability..

9. In a similar way,

1
3

P(EIII) =

I

.

Now let us consider Circle III..

10.. We saw in Ekercis2(2 that Circle III has only

different outcomes.

ll For example, starting positions 1 and . lead,

to exactly the same ordering.

`12. The starting positions 1, 2, 3 lead to different

orderings. Of the , only the ordering beginning

with position n event E.

13. Once more we have found a conditional probability:

P(E1III) =

We may represent the 15 possible outcomes with the following diagram:

E can be regarded as the union of ,3 sets-- En I,

En and

15. These 3 sets-are mutually . Hence,

P(E) s(En 1) + P(En ii) + ?(En III).
. .

1.36



At this point, we can apply our knowledge of conditional probability.

16. P(En I) = P(I)P(EII). (See Chapter 7)

17. Hence,, P(En L) c P(I) (Item 7)
(numbery

18. Similarly, P(EnII) =

1
Also, P(En III) = 3,

fie-.Can substitute these results in Item 15.

19. We have:

1P(E) = P(I)
3 5
+ P(II) +

(P(I) + (II) + P(III))

P(I) is the probability'the ordering can be read from

Circle I. Similarly, P(II), P(III) are probabilities

that the ordering can be read from II, III.

20. Hence, P(I) + P(II) + P(III) =

21. Thus, from Item 19,

P(E)
3

= 1 =

The reasoning illustrates the principle embodied in

Bayess formula.

_

In this example the vote- -was 4 to 2. Not all our circles gave 6 .

different outcomes. The reasoning of Selition .11-4 applies to each circle.

Moreover, the conditional probabilities associated with the different circles

combine to give precisely the earlier result. More complicatea cases give rise

to more circles, but still'to the same final results,

P(A always leads) =
x + y
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12-1. The Careless Cook

Chapter 12

MARKOV CHAINS'

A certain cook can prepare tip cereals, Lumpies and Soggies, but sometimes

she burns them. In fact, when she cooks Lumpies, her probability of b6ning it
is .1. When she cooks Soggies, however, her probability of burning it is .4.

Whenever she burns Lumpies, then she cooks Soggies the next day. However, she
relly doesn't like Soggies very well, even when it isn't burned. Consequently,
after coking it one day, she always goes back-to Lumpies. (You may-recall

having net this careless cook in Section 8-2, Exercises i4 and 15).

You would suppose that the test advice you could give this cook would be

to learn how to make pancakes. But, as you may have guessed, we-will turn this

situation into a problem in probability. As you have already sev, problems

about probability involving dice, coins, and spinners can be translated into

problems of irery real importance in other areas. In the same way, the story

of this rather incompetent cook illustrates general principles that are often
used. These principles have to do with processes that go on for many steps.

Experiment (Discussion is on page 309.)

Here is an, experiment that illustrates what the careless cook does about
the cereal. We will suppose she cooks Lumpies on Monday, January 1. Put 9
white marbles and one red marble in a jar, In another jar, put 4 red and 6
white marbles. Label the first jar L and the second jar S. Make a record
sheet as follows:

Day_

Mon., January 1

Rtes.

Wed.

Thurs.

Fri.

Sat.

Cereal cooked

L

Burned Yes/No

*

Named after the mathematician A. A. }1arkov (1:i56-1)22).

; 77

11111=1.millnalumme*
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0

Now draw a marble from the L jar-. If it is white, record "not burned" as

the result forMonday. )if,it is red, record "burned". Put the marble back.

If your result,for Monday was "not burried", write 'I, for the cereal cooked on

Tuesday. If it was "burned", write S for TUesda . In this latter case, draw

.a marble from the S jar. If it is red, mark "Lrned" for the Tuesday cereal.

If ;it is white, mark "not burned".

.

. If you wrote L for Tuesday, repeat in exactly the same way. If you

wrote S for Tuesday, write L for Wednesday. (Remember, she never cooks S

more than one day in a row.) Then repeat In exactly the same way.

1. ' Complete the ecord until you have recorded' wo days' cereal aAr
your first S occurred.

2. about how Often does the fetntly eat Lumpies? About how often does it

eat burned cereal? (Remember that when shy cooks Soggies, her

probability of bUtning it is .4.) Make your own estimates before

you go on.

If the cook begins with the Lumpies, it is'likely that for a few days all

will bo well. (The probability of burning the Lumpies on Monday is only .1.)

Sooner or later, however, she will burn the Lumpies and change to Soggies for

a day. Then she will change back, of course.

Suppose she goes on and on in this way until she has

cooled L 1000 times in all.

1. We would expect that she would have burned L

100 approximately times.

Hence, we suppose she wou_d have cooked S roughly

100 times.
-

1100 ;. And in all there would have been breakfasts.

(Hint: The sum of the number of dais she cooked L

and the number she cooked S.)

'can now estimate how often the family is served

*I; 7,ur.'ies. As an afTroximation we nave:

1000
1100'

or

1

number of times :,he cooks 1,

number of tmakiasts

9



12-2

The cook serves Lumpies about
1
--
1

0
of the time. How often does the ,

1
family eat burned cereal?

140

140 7
1100 '

Or

5. Out of the 1000 times she coo s L, the cook burns

it approximately times.

6. out of the 100 times she cook S, she burns it

approximately times.

7. In 1100 days, we would expect that the family eats

burned cereal about day . I

8. Approximately, we have

number of times she burns e cereal
number of day

1
It appears that the family gets burned cer al about 3 of the time.

4 '

12-2. More about the Careless Cook

Let us see how we can analyze the situation a littic more carefully. We

have supposed that the cook prepares Lumpies on Monday, January 1; that is,

the probability that she cooks Lumpies on that day.is 1.

In Exercises 14 and 15, Section 3-2, we used a tree to compute certain

probabilities associattl with the cook's activities. In making the tree, we

used the following information given to us by the problem.

.1

.1

1. P(burns Licooks L) =

Hence, P(cooks S on a given daylcooked L on

1.reeding day) =

P(:!ooks L on a given daylcooked S on px ceding

day) ,=

1 0

'4!



41.

-4. Using this information, make a tree showing 4 days

cereal-cooking possibilities. Check your tree with

the one shown below.

`Monday Tuesday Wednesday Thursday

L
th

.9

w
.9 .1 S

th
C r,

.1,

L Sm
1

w
. .1

th
.9--

w ,

th

We have used L. for uLumpies Tuesday ", S
w

for "Soggies Wednesday", etc.

From the tree, let us compute some probabilities

1

.1; .091

1 -`)G91, .909

5. P(1100.) =

6. P(Lt) =

7. P(Lw) ( x ) + (.1 x 1).

Hence, ,F(Lw) =

8. P(sw) = x

9. We note, of course, that

P(Lw) + P(Sw) =

Here is a 'short cut for computing .P(Lth)

10. P(Sth) = . P(Lw) =

11. Hence, E(Lt, =

281141



12-2

12. Of course, you could also find P(Lth) 'directly:

P(Lth) (.9 X 9 x .9) + (.9 x .1 x 1)

+ (.
)

The results we have obtained can be summari4eoLas follows. The probe.

bility of cooking cereal L is:

1 for Monday

.9 for Tuesday

.91 for Wednesday

.909 for Thursdaye

What TIOhappen if you went on and on computing probabilities for'

successive days? Let is think a little more about it.

(Answers on page 346.)

1. Compute the probability-of cooking Lumpies on Friday. Use the short-cut

method.

2. By computation or by a clever guess, find the probabilities of. L for

Saturday and for Sunday.

.909090..., or .90

13. Guess: The probability of cooking L AMonday,
January 8, is

Look back at Item 4, Section 12-1.

10 1014. Write yr as a decimal: .

Our work suggests that the probability of cooking Lumpies changes from

day to day, but as time goes on it gets closer and closer to
10
-- .
11

Exercises.
,(Answers on page 346.)

3. What is the probability of burned cereal on Monday?

4. Write
5
- as a decimal.

5

281 4 2
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12-3 '1

12-3. The Careless Cook Uses a New Plan

The careless cook finds that she has grown to like Soggies, so she'changes,

her plan of operation. Ste begins, on Monday, January 1, ancther year, by

cooking Lumpies. Again, she cooks Lumpies until she turns it, and then changes

to Soggies. Now, however, she cooks Soggies until she burns that, and then

changes back toLumples again. Unfortunately, in all this time her cereal-.

cooking has not improved. Her probability of burning L if she cooks it is

.1, and, her probability of burning S if she cooks it is .4. E erctses 16

and 17, Section 8-2, refer to this situation.

Experiment. (Discussion on page 310.)

1. Write a description of an L..periment which would match the cook's behavior,

assuming the cook begins with Lumpier,. Record the experiment that would

correspond to 30 days of cooking cereal, beginning with L on the

first day.

2, Would you expect that

(a) the probability of cooking L would not be the same for each day?

(b) cooking L would continue to e more likely than cooking S ?

3. If she cooks cereal every morning for several months, is one kind_of

cereal burned oftener than the other?

Again, we can estimate what naiTens if the cook goes on this way for a 1mg

time. Try to do tlis, using tr.( method of Section 1. 'ise Items 1 to 7 for a

help or a check.

IV :ooks L for 1000 'days, she will burnit

100 alp'oximz,tely times.

m' an: that si:(. will .hance from L to S

100 .,itroximately times.

.1
will alto chance from S to L

100 ro,imat Lor time:, which M..ans she burns S

100 .nor, rrt (h(l'er to question

4J



She burns S about of the times she cooks it.

Hence, if she burned it about 100 times, she cooked

it about times. (100 =.4(250))

6. Thus, if she cooks L for 1000 days, she cooks 'S,.

during that time, on approximately days.

'

Hence, P(cooking L) is dJut
1000

Aga n2 we can use a tree to compute probabilities in tnis situation.1,

,.
ri , .

f

r.
8. Draw an appropriate tree, mid find the probabilities

for Lumpies for Monday, Inedday, Wednesday. Compare

your results with those given lielow.

Monday

4

9

Tuedday

9

.1

.4

.6

Wednesday

w

S
w

L
w

.

-Thursday

9
L
th

.1
Sth

L
th

.4

S
th

.1
S
th

_---- L th
.4

P(Lm) , 1

P(Lt) = .9

P(St)
.1

2`53

1 4 4

Sth 1.



PN) = .9(.9) + .4(.1) = .85

PCS,;> = 1 = .85\=

9. P(sw)..

\

This is true because she cooks L on Thurgaay if either:

she cocks L on Wednesday and does,not burn it; or

she cooks. S on Wednesday and burns it.

10. We may conclude:

P(Lth)
9(.85) + .4(.15) =

Exercise. (Answers on page 34.)

1. Find the prOability that she cooks L on Friday.;

Now let us examine our results. We have found that the probabilities of

cooking L are:

less

az 4 Probability she cooks L

Monday 1.

Tuesday .9

Wednesday .85

Thursday .825

Friday .8125

As ve_see, the probability of cooking',1 changes from

day to day.

11. In fact, each day the probability of cooking L is

than that of the p'evious day.
(less,more)

284 .15



.025

.0125

;

12. On the other hand, the probabilit es do not decrease
0

very rapidly. That is, if we subtract each day.'s

-

\
probability from the previous one, we\v-e the differ-,

ences shown below:

Probability she Decrease in p bability
Day cooks L from .reviotl8 day

Mon. 1.

ues. .9

Wed. .85 .9 ..., .85 .

Thurs. .825 .85 - .825 =

Fri. .8125 .825 - .8125 =

Look carefully at the numbers you found in the last box:

.1

.05

.025

.0125

/
to you see a.pattern? Try to find it before going on.

.0125 x :5, .00625

1---13. .1 x = .05.

14. .o) x' = .025.

15. 025 x = .0125.

16. We might make a goess: The number af4vr .0125 is

.0125 x

You can probably guess, therefore, that we could extena our list of
- .

probabilities of L.

L

285
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480625

1 .

Your guess: Fram'Friday to Saturday the probability of

cooking Is decreases by .00625.

17.. Hence, you guess: The probabilitl'of cooking L on

' Saturday-lb

- -Let us make a number line diagram of the probabiliN

will Use:Only the interval between .8 and 1, since this

yhere:all-our probabilities lie. We first-locate and label

,Of-MOOOkiheis on Monday" and "cooking Lon TUesdkee.

Pies

9e

To locate Wednesday's probability,.we must

is, .5) of the interval from .9 to 1

.8

1

Wed

.85

Tues

of cooking .L. We

is the interval

the probabilities

Mon.

move to the left. Take
1

(that

and move this distance to the lift.

Mon

Repeating this process, we see:

Fri Thur Wed Tues

.8 .8125 .825 .85 .9

tl

co Mon

1

Think about what would happen if you computed several more days' probabil-

ities of cooking Lumpies.

decrease

would not
WO

For each question, state what you think would happen.

1).

Even if you went on for a month, the probability of

cookingsLampies would continue to
(increase, decrease)

u

(would,wojiT5FE):

probability of cooking

reach a day, however, when the

ies was less than .8.

286
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1

-1

Think of what you would expect to spelf you showed, on,
.r

the number line, the probability of cooking Soggies on

various days. rir

.> . .

20. For any day; the probability of cooking S is found.1.

. by gubtracting the probability of cooking L ,

froM

21. As the days wear on:, the probabilitiei of cooking,

Soggies
(increase,decfease)

22. They alWays remain less than

probabilities very, very close to this.number.

, but they'are

We have only guessed at the results summarized above. In a later 'section

we will-find out a little more about how we might have proved that they are

txue.

Exercises: (Anvers on page 347.)

2. After a month, what is the probability that the 'family gets burned cereal

for breakfast? (Assume in this and the following exercise that the

probability of L for 17-,.akfast is .8. It is, in fact, very close

to .8.)

3. The family wakeb up one morning to find that the cereafis hurried. What

is the probability that it was ies?

4. We supposed that this cook began by cooking Lumpier. Thus, .her probability

of cooking L on, the first day (Monday) was 1. Suppose instead that the

cook begins bj cooking Soggies on the first day. Thus, the probability

that she cools L on Monday is 0. Think about what the probability is

of cooking L on TUesday, Wednesday, etc. Try to guess what sort of

numbers you would find for these probabilities. (You may wish to compute

them.) Estimate the probability of =king, L on Saturday.

287
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12-4. Markov Chains

Let us examine once more the tree we drew in Section 12-3. Let us - recall

also our work in the problems in that section.

-,
.

. . . .

We will copy the tree,, with oneslight change. We will write L
1

(Lampies

on first day),.rather than Lm (Lumpieson Monday). Likewise, we will write

S2 instead of: k ,' etc. Our tree becomes:
,.

L,

.9

L39 .1

L
.

S
4

L4

---' S3

9

.1

S2

/4
, 4

-------
4

3-------
.6

4

1. Note that, from each L we have two paths

'associated with the conditional. probabilities

.1 .9 and

9

2. This follows from the fact that

while

.1 P(S one daylL ire:'eding day)

P(L one daylL Ire2eding day) - ,

3. Likewise, from each S we-nave two 1.aths, associated

.4,, .6 with the -.!onditidnal probatilities and

9
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Indeed, a tree for this kind of situation, showing as many days as we wish,
t

can be draWn. step by step as soon as we have the answers to two questions:

1. noes the process begin with S or with L ?

2. Given what a particular letter is (for example, given that the

'third letter is S), what is the probability that the next

letter is S ? (If we know this, of course, we can also'find

the probability that the next,letter is L. We need only to

subtract P(S) from .1.)

Problems of this sort occur very often. Consequently, mathematicians rave

developed some special definitions to use in describing them.

In such,situations we have a sequence of trials. The result of each trial
A

is called a state. (In our example, states at each trial are S and L.) The

initial statejs known. After the first state the probability of a specifik.d

'stati.for a particular trial depends only on what happened the time just before.

That is, we know the probability of going I.JM each state to each state. These

probabilities are called transition probabilities. A process that has these

properties is called a Markov Process.

We can list the transition probabilities for the tree, in a table.

.6

1

If propess-ts

Probability of going
ext to statenext

in state L S

L .1

.4 .6

4. The probability of going from state S to state S

is

This is P(not burning SIshe cooks S).

5. In each row the sum of the entries ;.s

An array of numbbrs, such as

(.49

.1

3 0



4

is Often called a matrix. (A matrix, in general, is a rectangular array of

numbers.)

In Section 12-1, we-had to do with a cook who burns Lumpies with probabil-

ity .1. Each time she burns L, she cooks S. After cooking S once, how-
.

ever, she always returns to L. -

Again'we can regard "cooking L" and "cooking S" as the two possible

states.

0

6. As in; the previous example, make a table showing the

transition probabilitiese Check your result with the

completed table below.

If process is

Probability of, going

next to state

L , Sin state

/ L '.9 .1

S 1 0

The probability of going from state S to state S

is .

4
40

This is because after stoking S she always returns to L.

8. In each row the sam of the entries is

Exercises. (Answers on page 349.)

1. A cock always burns the Lumpies and the Soggies. Each time she burns one,

she changes to the other. Give the matrix of transition probabilities.

2. A cook changes cereal whenever she burns it. ,If her transition probabil-

ities are
(1 0

and she begins with L, what happens? What happens
0 1)-

4 if she begins with
//f

7

290
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12-5

12-5. Ekoeriment--Mixtures (Discussion on page 311.)

Put two black marbles in an urn labeled X and two white marbles in an
labeled- Y. Our process is as follows: Draw a marble from each urn. Put

t1445...6. one from X into Y, and put the one from Y into X. (Now, of course,

you have a black and a white marble in each urn.) Repeat, each time recording

the' number of black marbles in urn X.

1. Continue until you have a sequence ul:n 30 entries.

2. Can you find in your sequence a 2 followed at once by 0, or 0
followed Ea once by 2 ? Why not?

If there is exactly 1 black marble in urn X, then how tany white

marbles are there in X ? Haw many black marbles and how many white

marbles are there in 1 ?

We found that We haq l's more frequently tnan 0's or 2's. We were
not surprised at all. Weare sure that you, too, found this result.

1

36

1. Eacn 2 is followea by a

Each 0 is followedby a . (Except, of course,

for the last number of your sequence.)

Suppose you repeated this process many, many times

without counting how many. Suppose your last number.

was 1. Suppose, then, that you found you had twenty

0's and sixteen 2's. You could be certain that your

number of l's was greater than (Give the

best estimate you can make.)

Now you should see (if you didn't before) how we could be so sure that you
had l's more frequently than C's or 2's. In fact, it is highly pxobable

that you had l's more frequently thcn both together.

yes

rio

3 Would the results

2 1 0 1 2 1 2 1 0 1 2 1 2 1 0 1 2 1 0 1

6012 1 0.1 2 1

be possible for this experiment?

4 Would they be very likely?

291
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Let is be sure we understand. why.

Exerciies.

A "1" means: We have 1 'te and 1 black,marble in X,

and f. white and 1 black marble in

5. When we have this situation, the probability of getting

again is . (We can dray Ewhite from X and

a white from Y, or a black from X and a black

from Y.)

6. The result shown in Item 3 is very unlikely: In it, 1

is followed 14 times by something other than 1, and

never by 1. This result is as unlikely as throwing

heads' timeg in a row with-s coin. (See item 5.)

Which doesn't happen often!

(Answers on pRge 343.)

1. We can think of the number of black marbleain urn X after each step as

. describing the state of tLe process after this step. How many states ara

there?

2. Draw a tree showing 4 teals.

3. Construct a matrix of transition probabilities for this process.

4. What is the pkobability of having 1 as the first state? as the second?

as the third? as the fourtY

It is easy to ccmpute the probabilities for 1 at various steps. The

process becomes clearer if use symbols fitted to our purpose. Let us write

p
1

for P(1 as first state), n
2

for P(1 as second state).

third 7. p
3

P(1 as state).

The 3 in p
3

is called a subscript, because it is

written below.



/
8. For the probability that the'fourth state is 1, we

naturally write

0

In exercise 4 :iou found:

P1

P2

p3

=

10. The probability that the fourth state is not 1

is 1 -
1

1 - p4, or t

ti

We know that

p
5

= P(fifth state is 1)

= P(fourth state is 1 n

1=2 P4 (1 P4)

1

P4

fifth state is 1),+ P(fourth sta e

is not 1)

The same reasoning can be used for any state. If pn is the probability

the nth state is 1, then D
n+1

iAthe probability the next state is 1, and
.

I,

pn+1 = 1 ?t,

;

We have found a formula which enables us to:go from the probability of 1

at the nth step to the probability cf 1 at4fienekt--ife'(1Ast--step.

Such a formula, which enables us to find a result for n+1 if we know the

result for n, is called a recursion form....1.a. With it, along with our knowledge

of p1, we are able to find the probability of 1 at various states. (You may

recall the way in which we built up the Pascal trtangle lire by line. Such a

step-by-step process is called a recursive process.)

Exercise.

5: Find p7 .

293
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Suppose 14e wished to find
P1000'

We could do this, of course, with the

repursion formula, finding first 138, then 19, etc. (We have already found

p..v in Exercise 5.) jhere are two other ways, however, by which we might

proceed. See whether you can find them; 'then go on.

You might have looked for a pattern in the Probabilities we have. EXamine

the following table.

P1 0
41*

.P2 1

1

2

3
P4 4

5
P

5 6

11
P6

21
p7 32

Perhaps you added to this table pti, p9, P10'
By examining the values of

2
the pts, you could have seen that all are close.to

3
. In fact, we have:

Pi

p2

P
3

P4

P6

r47

PG1

P10

0 = 0

1 = 1.0

1 5
3 .75

11
lb

21

32

65
12b

111

256

625

.6675

. 65625

671675

. 6640625

.66T)6675

291 5;5

P1

p3

p5

P6

p7

IP8

1

1Plo

1 2

3

El 1

31 3

21 1

31

3

1

12

3

1

1

192

21



Some or all of this data may .have led you to conclude: The p's are all

2
different. However, we would expect

P1000
to be close to 7:

,Note the number line representation.

'P
3

p2> P4 > P6

P5 < P6

1

1 5 11 3
0 1

I 1

1 P3 0.P5 P6 P4 P,a

11. On the number line we see

12. p2
(<, >)

P1

P4 P6
7777

<p
5

13g
P6

Looking at our number line, we would expect:

P5 < P7 <p8 < P6

If you check, you will see that this is indeed true.

You might also have reasoned in quite another way. You could have thought:

Suppose we repeat this process many times.

O's

100

200

14. If we got 2's a hundred times, we'd also

expect 's about 100 times.

15. We'd expect to change from 1 to 2, then, about

100 times. We'd also expect to change from 1 to

0 about times.

16. So there would be about times when 1 . was

followed by something different from 1.

17. But we have noted that if we get 1, then the'

probabilitity of getting 1 the next time is .

29 I 56
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18. Likewise, when we get 1, then the probability of

not getting 1 next time is

19. Combining this fact with the conclusion in Item 16,

we would expect 1 about times in all.

We May conclude: If we get 2's a hundred times, we would expect 0's

about 100 tiaes and l's about 400 times. Eventually the probabilities

are about:

1

b-

4 2g or

20. P(2) = P(0) =

21. P(1) =

This does not mean that in our

that the tenth number, for example,

of having 1 differ from one entry

makes our estimates reasonable.

12-6. The King's Choice.

experiment the probability is exactly

is 1. However, though the probabilities

to the next, they behave in a way that

Of the subjects of a certain king, not all are truthful. In fact, if a

subject is selected at random, the probability that he always tells the truth
2

1is
3
. However, the probability that he never tells the truth is

3
. The

king _f this country is trying to decide whom to marry. There are only two

possible choices, Princess Anne and Princess Barbara. One day the king

whispers to one of is subjects that his choice is Anne. This confidant

hastily whispers ,o another person, "The king has chosen " Which

name he says &Tends, -f course, on whether or not he is truthful. So it goes.

Each person, when he hears the rumor, whispers ether the name he hears or the

other to someone who has not heard. Eventually, 1 people nave heard the

rumor. But what has the -.'h one hea: '? Has hr heard the truth or not?

29b
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Probably, you would say that you can't be sure. But then, of course, you

might find the probability that the 12th person has heard the rumor. What do

you think it is? Record your guess.

eri ant. (Discussion on page 312.)

If there are as many as 12 students in your class, how can you do as a

group an experiment which would duplicate the history of this rumor?

Here is o e possible plane. Twelve students are selected. The teacher

says, "A" 1,o he first student; this student throws a die. If it shows 1, 2,

3 or 4, he sas to the next student the letter he heard. (He is truthful.)

If it comes up 5 or 6, he says the letter "B". (He is not truthful.)

Each student repeats the same process until the 12th is reached.

You can use, in place of a die, a spinner, or an urn with 2 black mar-
1

bles' and 1 white marble.

1.4

You can try the experiment by yourself. Here is a record of 12 trials,

using the die-throwing plan des4ried above. (A throw of 1, 2, 3, or 4

means no change in letter". A throw of 5 or 6 means "change letter".)

Letters

Die Result

IAIBIAIB BB B B B

[6 5 6 2 2 3 1 4 6 3 6

The arrows are inserted to show that throws of 5 or 6 signal changes

in letter.

1. Try for yourself. Record at least 3 results--that is, at least 3

sequences' of 12 letters.

2. In each case, your row of letters begins with A. Why?

Out of several runs of this experiment, in about what part of them would

you expect the second letter to be A ?

4. What is the matrix of transition probabilities?

5. Incidentally, suppose the king is untruthful. Is there anything that

makes you able to decide whether he is or not? Does it matter in the

problem?
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15. After 100 repetitions of this experiment, finding 12 letters in each,

approximately how many times would you expect to find A as the twelfth

letter?

7. Suppose juati one of the first 11 people is untruthful. Then what is..

the 12th letter? What is it if just two people are untruthful? 1

Let us find the probability that the 12th person hears A. Our previous

results suggest that we bight look for a recursion formula.

Let us use p
/

for.P(first letter is A), p
2

for P(second letter is A),

etc.

1

2

3

1.- p2, Or

1 -
2

3

1. The king said his choice was Anne. Hence,

pl = P(first letter is A) =

2. The second letter is A if the first person is

truthful. Hence,

p2

3. The probability that the second letter is B

is 1-

4. Draw the tree which will help you find p3. Check

with the one shown below.

2

A
-

2 --- \1

1
A

3

3

298
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1

untruthful

- P )3

recursion

5. P3 = I P2 4.
(1 - p2). .

6. This is true because the 3rd letter is A if either

the second letter is A and the second person

is truthful,

Or

O
the second letter is B and the second person

is

The same reasoning used in Item 6 shows that

2

P4 P3

8. Again, we have a fOrmula.

2 1

Pn+1 3 Pn Pn)"

Applying the distributive property in Item 8, we have:

2 1 1
P = P Pn+1 3 n 3 3 n

Pn+1 l(Pn
1).

Exercises.

1. Find p3, 134, p5, p6, p7, p8.

2. Whai. is the approximate value of p12 ?

t

(Answers on page 350.)

The method outlined above is not the only .oneyou might have used. You

might have reasoned: Each time an untruthful person hears a letter, he

changes it. But when a truthful person hears a letter he repeats it.

B

even

;9. If the number of changes odd, then the last

letter is

10. Bul if the number of changes is

letter is A.

, the last
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Hence1. p12, the probability that the last letter is A, is the proba-

bility that an even n9ber of people changed the rumor. Hence, to find p12

'''we could add the probability' that of the 11 people who passed on the rumor,

all 11 were truthful; the probability that 9 of the 11 were truthful, etc. .

If you have completed Chapter 9, you should recognize, then, that

P12 =

-

2
()

11 11 2 9
+ ( )(-5)

11 2'5 1
+ (4 ()

. 3 3

2

6'

+ (

+ (

11' 2 7
)(-5)

11 2 3
3 )(3)

1)4

1 8
(5) +,

11 2 1
(1 )(-3-)(3)

10

This would be tedious to compute directly, but if you had adequate tables

it woad be easy tc find p12.

-Again you would find: After that rumor has been whispered from courtier

to knight to square to page to cook to beggar to soldier to sailor to tinker
.

to tailor, the' probability that it is the truth is gpproximatel,i' 1. And that's

not all. The same procedure could be followed for any ratio of truth-tellers

to liars (prOvided there-is at least one liar), and for larger numbers of

people. In the long run, the chance that the person will hear the truth is 1.

Just remember, the next time you hear some wild rumor, that the truth may be

harder to come by than you think.
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APPENDIX

THE LAW OF LARGE NUMBERS

The study of probability begins with simple intuitive ideas. We feel

intuitiVely, for example, that out of a large number of tosses of a coin,

we are "almost certain" to get heads "about half the time". Our study of

probability has prepared us to explain more fully this intuitive idea. In

particular, we can give more precise meaning to the phrases "large number

of tosses", "almost certain","about half the time".

Tossing a coin many times ,:an be regarded as a series of Bernoulli

trials. If we regard "heads" as "successes", the probability p of suc-

cess on a single trial is .5.

Let us think, for example, of :0 trials. We know how to compute

the probability distribution for Bernoulli trials for n p = q= .5.

We know:

(1) The m,st likely outcome is 5 successes.

(2) However, the probability of exactly 5 successes is not great.

( It is, in fact, .246. )

(3) On the other hand, we are quite likely to get, 4, 5, or 6

successes. (The prcbsIbility is .656. )

We can &tate (3) in terms of the average number of successes per

'trial in 10 trials -- which we have called m. FrdM (3), the prob-

ability is .0-)6 that m -is either .4, .5, or .6; that is, that

m differs from by at most .1.

.1
>

.5 .b
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Vld may write all this more concisely:

P( m- ; 1 )

Notice that in the preceding line we used the symbol ; m - .5

which is read: "absolute val,,.e of r - " . I= is the distance

between m and .5. If then m lies in the number

line region shown above. Fel 10 trials, the probability that m liet

in this'region Is .

Now, suppose that we consider 100 trials. Though you know how

to find the probability dIL.tritution, the lengthy computations that you

would need are dismaying. One question we have left for later courses

is: How can we efficiently find probabilities of this kind?

We can tell you, however, some results. (Compare them with (1) to

(3) abbe. ) If we toss a coin 100 times:

Oa) The most likely outcome Is '-,;0 heads.

(2a) However, the probability of getting exactly 50 head is small --

smaller than: the probability of 5 :leads in 10 trials.

tne "flattening" of the binomial distrLutions with

increasing n. )

(3a) Moreover, the probability of getting 49, 50, or 51 heads

is ''ot very great. no- as great ac that of getting

or c. heads in 10 'ials.

But. we can ald Lor.eth!ng new. The probability that the average

number of ptt nrow 15 :!ea! greater for 100 throws than

for 10. For _CC .1-.rol.L.

That 1._ (protatl-Ity Is

For _00 tilt-Dias,) *ha. ht r4".:tr

it I:. _k , (. ) ha*

bet.weez, ,C

j.cc ;:lrow.,, et..

By now, Yc _pa''- :ex* ,er for a

tre!.,1.

...

. . :44,', " f:: r. . ..._ : T. :.:. 1 . ._:ii. ::. rx-

a7dr.1r.4.

. In .,-r Ire-

ser.' ..3itLa



We have, however, a general tendency which is clear. When the number

of throws-is very large,, then P.( I,m - .5 1 < .1 ) is very close 1.
-.-

Letus be more specific about what this means. Suppose you select,

a positive numt less than 1. You might choose, for.example, .99. Then

we can find a number r with the following property. If the number :f

'trials is n or more, P ( I m - .5 1 < .1 ) >.99 . If you had chosen

.9999, we would nbt have been daunted. Again we find how many trials you
an.

I
would need to insure that

P( m - < .1 ) > .9999 .

Of course, you will realize that our discussion could have been

carried out with any specific value of p. It was not necessary to use

p = .5 . Nor was it necessary to use .1 r In- fact, our result is very

general_ Let d be_a:PYappFlopriate positive number. Consider the region:

A

No matter how many trials you decide to use, you cannot be certain that

m will lie in the region. But, you can be aimobt certain if you choose

a,large enough number of trials.

This fact is sometimes ca.1a The Law of Large Numbers.
4:1V

1

Remarks:

(1) Notice that the Law of Large Numbers has to do with the average

number of successes, not/Limply the number of successes.

(2) Note also that the Law A Large Numbers does not tell us that

something is certain. It is stated in terms of probabilities.

It says: For a very large number of trials) it is extremely

likely 'hat the average number of successes is close to p.

Probability

The Law of Large

experiment for which

consider the long oeq

each trial, we recori

does not. The proLatiii'

applicable. Suppose we have an

the pro:,
2

atlilty of sore event E is 7 . We can

.ence of -niependent trials of this experiment. For

". ,e,s,o" when event E occurs, "failure" when it

j03
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We say "if the experiment is repeated a large number oftimes, then

E is almost certain to occuis.about
7
7 of the time." Mbre precisely, the

Law of Large Numbers implies that:

(1) If we decide how small we want 1 m- I to be (that is, if we

choose some d, with d > 0 );

, (2) if we decide how nearly certain we want to be ( that is, how close

to 1 we want P( I m- 5 1<d) to be ); then

(3) we can find how many trials are required to fix our requirements.

You may ask: "How do we find out how many trials are needed ?" The

Lay of Large NumUers only tells us that the necessary number of triala can be

found. How to do so is another matter that we defer to later courses.

Reasonihg similar to that used above can be applied to situations

in which we do not know the value of P. In such cases we wish to

estims.6e P to a degreegof accuracy appropriate to the application. Once

again, we can-do so. Ey using a large enough number of trials, we can be

almost certain thht our estimate will be accurate.

The fact that a suitable nuitner of trials can be found makes Trob-

ability an essential tool of the opinion sampler, the scientific experimenter,

the industrial engineer charged with maintaining efficient production.

Uncertainty cannot be translated into certain,:, by probabilistic

tedr.iques. But probabilistic techniques do enable us to decide, in situations

involving 'mcertainty, that some events are overwhelmingly likely.
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Our results:

Discussion of Experiment, Section 8-1

Number
Recorded

Number
Recorded

,,,A R 10
I 16

B 6

R 7II ,...

B 7

gx

We expected about an equal number of Is and II's. We expected about13 of the I's and of the II's would be R. As you see, our results
agree rather closely with our expectations.

Notice that we obtained a total of 17 R's on the 30 trials. As youwill see (Items 8 to 14), for this experiment P(R) =
12 .58.' Our result,17

- .53, is remarkably close. Your results may differ from ours, of course.

3O) 6 6



Discussion of Experiment, Section 9-1

Of course, as usual, your expertment is almost certainly not like the

authors'. Here are our results:

First Throw Second Throw Third Throw Score

6 3 , 5 2

2 4 I 0

2 5 2 1

2 4 3 0

6 4 1 1

2 5 3 1

1 3
, 0

5 2 1

3 2 2 0

5 1 6 2

1. For our results, we observe:

Score 0 1 2

Number of
times

" - 2 0

Were yours similar?

CI

2. We got mostly 0's and l's, and we weren't s,:rp,rised. You win only if

you throw a or On each throw you're less likely to get 1 than

you are to get 0. tie exret a low s,:ore to olzar more often than a

high score.

3. Our average was
indicating tnat low stores are more frequent

than high ones. We found this average by d ling tne total score, 8,

by the number of games, IC. This is not the same as the average of 0,

1, 2, and 3. Naturally not--we get some stores more often than others.

4. When you play the game with the die your probab ility sf winning e point

.

on a tnrow is 7
'

an 3
d of not winning is -. if tne spinner is such that

1

the red area is - the total area, trier. red and Clue have probabilities

1
3

-5 and 3, respe:tively. Hence, we ,'an use tne spinner for the game,

scoring 1 point wnen the slinner stois on red. It Is only tne proba-

bilities, i and - t:lat matter, not n' :a ti.at a die is used.

11



Discussion of Experiment, Section 10-1

Our results for 10 trials were:

tch
Trial A 2 4 5 6 Total

1 1 1 1 3

2
0

3 1 1

h 1 1
5 0

6 . 1 1

7
.
- 1 2

8
o

9 1 1

10 0

We scored 9 points in 10 gazes. On this evidence, we might expect
to score approximately 90 points in 100 games. However, we recognize

that 10 trials arenft very many, so we would not have much confidence In

our guess.

N.
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Our record was:

Discussion of Experiment, Section 11-1

ABBBBBBABABBAABAAABAAAAAA

t

When we bealiftunting, we get 1, 0 -- and this is enough to tell us that A

t

idid not always lead on our vote. In fact, after the second vote the vote was

tied.

1. If the first vote is B, then A is behind on the first vote. A leads

on the first vote only if the first vote is A. If the first two votes

are A B, then A and B are tied on the second vote, and A does not

lead. A leads on the first two votes only if the first two votes

are A A.

25

14 13
2. P(A A) - - .3. (This is exactly like an urn problem in drawing

24
without replacement.)

3. If the first two votes are A A, then A leads by 2 votes: He is

certain to-be still ahead after the first 3 votes, so P(A ahead after

3 votes) - .3.

4. Your answer to Exercise 2 leads you or) conclude that the probability

that Arthur Hoes not lead after two votes is .7 . Thus it Seems un-

likely that he will lead throughout the ballot count.

3C6



Discussion of Experiment, Section 12-1

,ftre is how our record looked:

Day
gob

Mon., Jan. 1

Wed.

Thurs.

Fri.

Sat.

Sun.

Mon., Jan. 8

Cereal cooked

`L

L

S

Burned Yes/No

No

No

No

No

Yes (Here we draw a
red marble.)

No (Automatically go
back to L.)

No

No

You may go on a long time. before you get an S. This is the sort of

situation where a great number of trials would be necessary to give you results

enough to base any conclusions on. If you do the experiment a few times, how-

ever, it will 1,,ip you to understand the situation better. This, ,was our main

purpose in asking you to do it.

C)
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Discussion of Experiment, Section 12-3k9_,

1. Use, as before, two jars, one labeled L and one S. Place 9 white

marbles and one red marble in the L jar. Place ,6 white and 4 red

marbles in the S jar. Draw a marble from L. Itf it is white, put it

back and draw another marble from L. If it is red, put it back and draw

a marble from S. Continue. After each ar.aw, put the marble back in the

same jar. Whenever the marble you dray is white, draw the next marble

from the same jar. (That is, cook th, same cereal.) Whenever the marble

is red, draw the next marble from the other jar. (kou may have worded

your answer differently, but the ideas should be the same.)

. Our record of what cereal she cooks for 30 days:

C.

3

LLLLL LSLLL LLLLL LLLLL MSS SLLSS

(a) She certainlj cooks L on Monday (probability is 1). The probabil-

ity that she cooks L on Tuesday is .9. So, clearly, the probabil-

ity of cooking L is not the same each day. We would expect from

our results in the last section that the probability of cooking L

differs from one day to 'one' next.

(b) In your experiment, you should observe that you get, as a rule, sev-

eral L'c in a row, then come S's, then more L's, .etc. If you

releat tnis experimcnt many times, you find tnat the rows of L's

tend to - longer, on the tnan tine rows of S's. This is-

not _:uririsinc. If she L, sue is less likely to burn it

than if r..!,e :oo?.s S.

Each time ch_ c.urn- c:, 'hant-cs to ti.e other. ';) each change in

cereal .orreond. c.Irnin:. :re .:tart;, with L, then changes to

S, then to -o There arc, consequently, arproximately as

many burnin .

Ails la.% re, n1'_ r-,rcr_ce jou at first. P is more likely to burn

S (if %roan to :Ara (If .700Xs it). no.:ever,.Fhe cooks

Lumpier; mor,_ (11:1._11. frIrruly aLout muoh burned Lumpies

as turned So,.le. .

3C(7



Discussion of Experiment, Section 12-5

1. You will have a sequence made up of the numbers Of 1, 2. The first two

terms are 2, 1 and the third may be 2, 1, or 0. Here are our

results:

21101 21110 12012 11110 11010 21211

2. No. You ca change the number o blaCk marbles by at most 1 in a

single step.

1 white in X; '1 black and 1 white in Y.

L ! 72



Discussion of &periment, Section 12-6

1. Here are our results:

4.

(1) Lett.!rs IAIBTAIB B B B B

Die Result 16 5 6 2 2 3 1- 4 6 3

I,

/.

(2) Letters IA B B BB

Die Result 11 5 3 2 1 2 4 5 6 6 2

(3) Letters 1 A A A A t B

6

B B b

DieResult I h
2 3 2 5 3 1 2

l

We are always supposing that the king whispers to the first person, "M5r

choice is Anne." Hence, the first person heard A.

Since the probaoility that a person is truthful is
2

you would expect

2
the second letter to be A about

3
of the time. Is this the case 1'0.

- /
your experiments?

A B

5. All we really know is what the king tells the first person. If the king

is untruthful, then, of course, he says "Anne" when his choice is really

Barbara. But this will not have any effect on what happens later to the

rumor.

6. Watch for a catch! You might think that because more people are truthful

) than untruthful, A would be more likely (since A is really what the

't,\

king said). But look at the next question.

312
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iseassion of Experiment 12-6 (Continued)

If Just one of the 11 people who pass the rumor on s untruthful then

you can be sure the last person hears B. One person s ys the ng

name, and the rest truthfully pass on what they hard. But if st 2

people in the chain are untruthful, then one changes the name, an the

other changes it back. It appears that whether the twelfth person h ars

A or B depends on wnether an odd or an even number of truthful peo e

passed the rumor on. Does this change your opinion about what the answer

to Exercise 6 should be? You will find out the correct answer to Exercise

6 as you read on in this section.

\
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s 1 4 1 11
2. P(even) = PC2) + P(4) =9 +b=- +

6 1$

,P(less than 3) -.4'1(1) + P(2) = 3231 +

P(even or less than 3) = P(even + P(less than 3) - P(even and less

t 11 13 4 16 8

E'

13

than 3)

MI

Note: (1) P(even and' less than 3). = P(?) =

(2) We also obshrve

4

9

P(even or less than 3) = 1 - P(3) = 1 -
1
g 8

-

---,,--A1
p(A n 1) =

p(A n 3)
3.o

`12
1 2 P(B n 2)

2 /
1

2
1 P(B n 1) __

2 1 13
P(1) -- + 7 =

P(2)

Check:
13 1 1 =13+ 5 4., 2
20 4 10 20 20 20

Note: If the boy plays this way 20 times he will,( on the "average ")

receive 1 piece 13 times, 2 pieces times and 3 pieces

twice. This is a total of 13- + 10 + 6 = 2 pieces. In some

sense we mightsay for a given play he should "e ect" to receive

29
1.45 pieces. (See Chapter 10.)20
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0

5.

1

PO/

P(1)

,N

Pt''

Check: P(0) + P(1) + P(2) .

First
Draw

R

44- 16_ 4

Second
Draw

6
(2 reds) '

10

, 14.

10 B (1 red)

6
(1 red)

4

(0 red)

10 10 100

6

:

4 4 6 48 12

10 10 10 --100 25

6 6 36 9

10 3.7 70 25

4

25

12 9

25 25
1

Note: This example is one of a general class of problems that is

discusses min detail in Chapter 9.

6

Second
Draw -

First
Draw 9

4

lc 6
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;

.

P(o) 7,3 .

. k 6 4 4 6 8

6 5 5
P(2) y6 -

P(2)Check: ".P(0) + P(1) + Pk2) . + 37 +5:

4,

6. P(red on second) may be found by adding the probabilities of the

branches R-R apd B-R.

6 6., 6 36 211 6o 3 ._P(red on second)
15 16 YE 155 100 100 5

Notice that P(red on secohdlred on first) . The events "red on
5

second" /rid "red on first" are independent.

7. As in tie answer to gxercis 6,Ao

6 5 .4 6 30 24 54
P(red on second) . + ir0 . - =

90 90

Is it not surprising that P(red on second) is the sam ether

we draw with replacement dr without replacement? In thi se,

"red on second" and "red on first" are not independent.

P(red on second red on first) = 2.
-9

J (Jane wins)
, 8.

J(neither wins, Kate
has 1 left,

Jane has 2)

317 I 78
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, 1 1 1
P(Jane wins) = (from branch "JJ ")

P(Kate wins) = f
1

+
1
f .

1
. f1 1

+
1

.-
5 (from branches "K" and "3KK")

% 1 1 1 1
P(neither wins) = f . f f =

Check: T4

1
-.

5
.

1
=

9. P(0) = (Jane wins)

10.

1
P(1) = g (branch "JET ")

P(2) = 0

p(3) (Kate wins)

(from branch "JKJ")

The game can never end when Kate has exactly 2 chips. HoWever, in

say eight games, she would "expect" to have 0 chip3 twice, 1 chip

once, and 3 chips 5 times. 0 + I + 15 = 16. Her "average" numbgr

of chips at the end of the game is 2.

1-/3

1[3

A wins 6 -4.11 = 36/81.

2/3
wins 7-5. P = 8/81.

2/3

A ,A
1/3 2/3

1/3 B:score 6-6. P = 4/81.

1/3
......A:score 6-6. P = 4/81.

xt<2/3

1/3
wins 775.IP =2/91.

wins 7-5. P =8/81.

2/3

2/3 1/3
B:score 6-6. P = 4/81.

Bcc2/3 1/3

NN
,,_,.-A:score 6-6. P = 4/81.

2/3

NB:13
1/3\B ,1

B wins 7-5. P 2/81.
wins 6 -i. P 9/81.

----

13 16
P(A wins) 7. P(B win,) P(6all)

Ol ol
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,

,77

11.

o
10

7
io 10

0

10

<10

10 Go

*in) = P(Rn R) + P(Gn Go) = .45 + .09 = .58

The ,game is not fair. Does this surprise you?
2

R:8

P =
5

2

B:4 3

5

P(Ry.R R0) = .49

P(Ry fl G0) = .23.

P(Gv (1 R0) = .21

P(G n G ) = .09
Y 0

R:6

R:6
2

5
B:6

1

3

PCred on second draw) = + =

5 5 5
)

44."b)urprised? Refer back- to Exercises 6 and 7.

319
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,

3/5

R:8

G.

..,''''11

R:10
RG: /7

..........,,R

2/3 2/7---G
R:8

11.;"------_______%6<4/7-R

2 10

13= 7 f.

r = T .." 4

4
P =

3/7,._

-G P = a .
R:6 35

G:4
R:8 4

G:6 4/7/-B ' = y5,-

2/5 _______..R<
1/

3/7----G -P = 3
G

R:6
35

G:6
1/2\___G 3/7

R P = 3

35
R:6 /7

'''"G0 :8 P = 4

35.'

P(rea on thira araw)
10

+ t +
21

35 35 35

(b) We hope you are led to guess tnat for this type of problee,

P(rea on first draw) , P(red cn se-onlviira.w).

If we start w-tr. 5 red, blue, then,

P(rea on firs*. draw) = P(rea on second draw.) . = .

If you are familiar with the manipulation of a-getraic symbols

you will understand tne following argument.

Start with r rea, t blue marble. Pe:plae tne marble drawn

and add K the same calor. P(red on first iraw) = .

320
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r

r+b

b

r+t

P
r+b 'r+b+k

r+k

r r+k

r+b-k

r+b+k

P(red on second draw)

Are you

r-b+k

2,
r +rk + rb
(r+b) (r+-k)

r(r-k-t)

(r+b) (7-7E717

C

P
t .

r+0

r+b+k

P(rea on firs:. .;raw)
r+b

r

r+b+k

wi-ling guess furtner? How &coat e third a'awing?

The 1COth arawing?

You mightjalso refer tack tc Exercise 6. Hare we replace but do

zAot. ac.1 rart:_es (k=c)

In Exercise 7 we remove the marble arawn. (k = -1)

The result in all case-; i3

P(rea c firct araw) P(re.; on

1.,roiay

Wedne&dv
L. n

8 2



116.

P(Sw) = (.9) (.1) =

Note: P(Lw) = (.9)(.9) (.0(1) .91

P(Burned) = P(LJ and burned) P(Sw and burned)

= P(Lw) F(Burned Lw) - P(Sw) P(Burned

= (.91)(.1) - (.09)(-4)

= --)36 = .127

Wednesday

.6

kw

Sw

I sw)

(a) P(Sw) = (.9)(.t) (.1)(.6) = .c = .1

Note: P(L1) = (.9)(.9) = = 85

(b) P(Burned) = P(Lwand P(Sw and burned)

) )( )

= .C6c ..4;

3

t `ICJ

3



t.9)(.9)(.9) +-1.9)(.1)(.4) * (.1)(.4)(.9) (.1)(.6)(.4)

= .729 + .036 + .036 + .024 = .825

P(STh) = 1 - .825 = .175

Sot P(Burned) = (.825)(.1) + (.1) + (.175)(.4)

= .0e25 + .0700 = .1525

The probability that the cereal is burned has increased from .145

to .1525. This increase,however, is small (.0075) . .You might guess

that future days the probability would again increase, but by smaller and

smaller amounts. See Chapter 12.

Answers to Exercises 8-3

P(J) - P(H 1 J)1. P(J H) P(E) P(H I E) + P(J) P(H

2.

2 1

3 10
2 2 1

3 5 3 10

1 1

15 15 I
E

15 15 15

Of course, we knew that

P(J ( H) = 1 - P(E 1 H)

1
= 1 -

Jj

10
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Answers to Exercises 8-4

1.

2.

(a)

Fresh

Soph

P(G) = P(Fn o) + P(sn o) = .18 + .08 = .26

(b) P(F1G) - P(F4G)
P(G)

.18 6
= 72-6 .

p(F n B) = .42

Girl P(FT1G) = .18.

Boy P(S n B) = .32

Girl P(S n :1) . .08

ti

Notice that if we substitute directly into Bayese formula we have:

P(FIG)
(.6)(1)6)+(e))(.2) .69

324
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I

3.

.P(All piece) =
P(P(Ar11))

1 4_ .
2 5- 8

13

K
(Kate wins first and wins eventually)

P(K wins first K wins eventually)
P(K wins first and wins eventually)

P(K wins)

(Kate loses first,
wins eventually)

4. Refer to the answers t. Exercise 1, Section 8 -2 for the tree diagram.

I

. P(Ii
P(III2) _

P(2n)

2)

1 1 1

2

(t t) (t
2) +(3 2)

-9
8

(a) With replacement. (Exer ise 4, Section -2)

PC 1st red ( 2nd red)
% Pro reds)

P 2nd red)

6 6

Io 10

6 6, / 4 6

%To' TEJ To' )

Without replacement. (Exercise 5, Section 8-2)

P ( 1st red I 2nd red ) Two red:)
P 2nd red)

3

5

6 5

f 6

.1):. 5I0
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(c) With replacement and add two Of same color. (Exercise 12, Section

8-2)

P( 1st red l'2nd red) _
Pro reds)
P 2nd red)

5 3 2

t (5. ' 3

Actually, you did not need to perform these calculations if you had re-

membered the answer to the earlier exercises. Recall that:

P( 1st ted 4 20d red)
Two red

red.

s/.

2nd

,

and P(2nd red I 1st red) = Pro reds
P 1st red )

The numerators of the two fractions are the same. Afso, we 'earned in the

exercises of Section 8-2 that P(2nd red) = P(lst'red) = for all three
5

urn problems. So

Past red I 2nd red) = P(2nd red I lst'red)

But P(2nd red 1 1st red) is easy to find; 4
(a) witn replacement: after drawing red, we have left 6 red marbles

.out of 10, so

P(2nd red I 1st red) = ;L

(b) without replacement: after drawing red, we have left 5 red mar-

bles out 'of 9; so

P(2nd red 1 1st 'red) =

(c) with replacement'and adding two: after drawing red we are left

with 8 red marbles out of 12, to

P(2nd red I 1st red) = .

6. Using the.notation of the answer to Exercise 8, Section 7-4, we con-

,' atruct a tree and substitute in\Bay so formula

I
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.

____L
p(A)-peLIA)

,:---.6o'
p(A I L) p(A)p(LIA)+P(T)p(I.ITY

__.T..
.25 (.75)(.20)

..40, (.75)(.20)+(.25)(.60)
---N

75 .20
----........ _.----

A

/L

---------.8o....._N

7. .Using the-notation of the answer Exercise 9, Section 7-4, we construct

a tree diagram and substitute in Bayes* formula.

.15+..15

.05

H

.98

,,,/ ...,

%95

0 .9
,

S..,.,..,,

: ---'---N

_________,T

P(H T) -
P(H) P(T 1' H)

1

,.I P(H) P(T 1H) + P(S) P(T 1 S

i

.049 .049

.049 4 .018 757
,

1327

1 hE3

.

i

t



Answers to Exer cises

1.

P (0 successes) = (.6)2 = .36

P (1 success) =2(.4)(.6) = .48

, z
P (2 successes) =

(2
.4)

P(ss) = .16

P(SF) = .24

P(FS)' = .24

P(FF) - .36

(There are two branches involyed)

1

T

Probability of each
4

bunch 13:

I

1/42' U

j23



P (0 heads) =

N

$P (1 head) = 5.

3P (2 headS) =

, 1
P (3 heads) =

(Three, branches!)

It

P (0 reds) ,.., 75-

P (1 red) =

P (2 reds) =

-I-

6 12

25

325

! 9 0

P(RR
9

25

6
p(RB) = 25
P(BR) = 4

4
P(BB) =

1

(.,

d

A



Answers to EXercised 9-3
4

1.
%

P(no hits).= (.7)
4
; or approximately .24 .

P(1 hit) = 4( )(.7)3, or approximately ;41 .

P(2 hits) = 660)2(.7)2:or approximately .26 .

P(3,hits) = 4( \3)(.7) , or approximately .08 .

P(4 hits) F (.3)4, or approximately .03 .

He makes at least two hits if his number of hits is 2, 3, or

4. Since exactly 2 hits, exactly 3 hits, and exactly 4

hits are mutually exclusive events, we he",: P(at least 2 hits)

= .26 + .08 + .01, or .35 ,

55
2. '5(T)(T) .34.

s4, 3 (a)

Number of heads 0 1 2

-Probability .06 .25 .38 .25 .06

(c) The most likely number of heads is 2. The probability of get-

ting exactly ,2 heads is .38. (We haverounded to 2 decimals.) ,

10
4. P(nc 6,$) = .162

10

P(at least one 6) = 1 - (i) . .838

Answer to Exercise 9-5

Our record of 100 throws gave these results:

Number of

'Evens
0 2 4 5

Number of

times occurring

i
, 7 5 2

Fraction of .

times occurrir.g
. 0' . .35 .25. .10 .00

0 1 . , r values. .0' , .2 , .:0. .00 are reasonably close

to the tat %ted values: .03, .31, .31. )t, .03.

4



Answers to Exercises 9-6

1. x
7

+ 7x
6
y r 21x-y .

5 c

2. 1 4-'5(.01) + 1.0(.01)` + 10(.01)- (.07)
14

(.01) -= 1.0510100501.

3. (1.02)
6 ,

= i + 6(.o2) 1.t(.02)` - 20( f,(.,2)
4

4- 6(.02)5 (.02)6 ., ""
Since (.02)-' .000008, each o: the 4 last terms is less than

20(.000008), or .000.6. their sum is less than .00064. To

the nearest hundredth,

(1.0;1° .001

(1.02)
6

4. 1.'4'4

4. (a) x - 6x2y 2
; Lx- 3x2(2y) 3x(2y)

2
4. (2y)- )

,-4

(b) x4
2 4

- lory 6x-y - 14xy- y
7= .

( c ) x5 + ; c,
x' x'

(d) x3 x2 itx + 1
2

4 5 2

5. (a) (x = (5)x5 +. (5)x + (,)x- (5)x" 4 (5) (5)Y5
5 4 YY+'Y 1" 0

(b) + 1)- = (-) ( ) 14 1 + (5)13'12 4- ()12'3
5 3 2

4
, (c ,) + (v̂), 2

(' )
0

Of T a.Lread:, :mew trir result, from our consideration of

counting Jut..r.es -- from tree diagrams, for examp_e.

Answers to Exerles 9

1. 2 and n, 7.;

2 and

2 1

: C

2142.

C
:

(

2. 1-(exa_-__. protalLities, in 1.x.

1,1 G f'D'aii Iterf Q.

C

1, :7.4 'oh. 1:
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1

R). disc -fouOct 7 Sr. the- pathos!.

7-Eite.A:114140Petici.eiit -triple,-arid for each the probability of spinning
5 yhile the probability of not-red is

5
10- iords with exactly 2

- .
-,111emov,: :

1 2 2 3,p(exact1y2'R) 10(5) (])

80 .

2 2
z- 72:9- + 2y.z, 4 -

iicy2 jiz 2 2 2' . .2
1- + 33r, +

8-1? 'SP BT,

Si4ers-:td-,-_Exercistes 10-12

.Our- average- -was .9,'
a

--);,?or 100 -throws of a,,ge, our average was:.

`t-J-?.(1) + 3,5(2.):'t 25(3)- t. 15(4) + 21(5) + 12_,(8)] (ice

Chi .torAhe first 25 throws, our average was;-4 a(4(1) +t1(2) + 6(3) 6(4), 45(5.) + 3(6)
100

3.64.

'CC) `the last 25 throws, our average Nas:
113(1):+ 8(2) + 4(3) + 2(4) +515) +44.3 (**3-76-0),

.4' Your averages, of course, are riot likely-to be exactly the same.-
1 3

(ii) _(2.8) + (2.50 + g- (3.0) +1 (3.1) .-. .9-/
10 10 5 _ 5

r The average is) 2.-97 iriches.
\

"Aii): -106' strips _. .

:.
i ' cr.

(C):1 (This is chat you would expect, if the data in the problem Is

complete.)

: He has lost 39 halls. (2.6 x 151 .

332
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tcreiffe-e,:la=3

'-- a iie' -Of: Piize

:,461lars
:
1v/ -' ,.2

'.-T-robabilipy
___,--.

.,

i
:3

d i.j

.

. ..
Number.- spaces'

_

1 .

Obab 13.ity
.....;

..
.--v

6)" 2: Note,. we had M
2

for 1 coin

Mr- 35, fOr 2 coins

for 3- coins. .

(You might wish to verify your guess. You *4111

2 is the correct Valu e

M = 0(.94) + 1(.03)" + 2(.0'2) 3(/01)./

0:03 + 0.04 + 0.03 = 0.10,

= 0.10

rind that.

It can be expected that in 100 such periods, 10 accidents

might occur. .

Answeis to Rxerc.ises 10-4

1. In each part of r problem, the king should compute tha.mathethatidal

,expectation of his loss if the army is at A and if it is at B. He

should then choose the alternative for which the loss is smalle'st..

(a) The losses,.with probabilities, and the expected value:

333
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enemy attacks enemy. atta B

... .- ..
.

probability

heM 4:attacks A, . ezie aitacka

'..:,'..._ .

__,,....,
itiiiiii4tsr,

.
= -.. :

, -

,.,---

--eXpectecUlialna of the. loss is Sthaller -when the :ail* 3s*..-
.

.- - 4, -- ,
The .ing- should -send the .iiiiiiv to Pz S-InCe:Iie Wants '-.the to zbe

. _

M4*004;*0'15,0411.1.e- .- . -. , - .4,

:this eaSe- B(evieiit,attaCkS A)- = 32 ffenertittacktP,'B

Army-at A .-.1

enemy -attacks: enemy attacks",
. ,
_lass'

.

, _,

probability.

. 1
1(4 +

5-;

. Artily

enemy attacks ,k -
9

enemy attaCks

loss
.,.. . .

4irCbability ...

Ihe expected lass 4s ,now smaller when the army fs at B.. The king
,",'

should, send his arm. to' B , since he Wants his loss to be as small.

) p,enenw attacks. A) =
5
- P(enemy attacks B) = .

334 9 5



enemy ettacke A..

loss? -I 2'

-ibbiliiiity
,._

,

:enemy,'attacks .A

-

elierkytittackS

..
a 7-

.

'The,iexteeted values -are equait. It -doffs riot matter 'Whether the.-atrtiy,

or- at 'B . -HLtrit, of course, he° Will still send 'his a-±*

to _ore Ic4c9,-.Or the Other. lib °perhapS, 'toes:s. .aollirto-"dee:0e

,theta -Ond it.-

, ..
)-, ..-

12.1

P;obability
.- 1 '

., .. ._ ,

1

.

.1,,

-F:

yoU had-difficulty, refer te-th:aPsters, 3.:

1-

-,14 T.
(a) 8ipce there is no reason, to feel. that One die 'has a special

, 1, "adyentage", it is reasonable to' guess thet'the' difference

is 0, .

'(b')', `#i table' for differgicel

-bifierences - -3 - 1..

.

Probability _.** ?6 36- 1-6-''' 56 .56:6::
4 .526 3i6.

.
= 0.. .

, 4) In both gaMes you are multkolyAng two nu'riberS. Hence you might -

/

)4 -, 0. .

/ feel that the two players can expect to wain the same amounts.
*1.-

But this is not true, as your results ii; (b), show you

139 6
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t t.,,e,-,produe,,, -of the two 'numbers thrown, the table, of

-.-

644eLo ,' f
,

,1010 12 15 1.6 16 20 24 25 30 86

7-1.,..,,-:..-,...,,,4 .

' '''''' ''')!.j'41..tr,,
I

3.6:

,,2

7
2,2

F
3

55
2

T.
- '

5-6.

2
T6.

" 1

T,6,

11

T
2

r6:T,
' i

3

2'
T

2 2
5'3-b

1-

$1, = 3.2 :47

..or the .square of the numbers on red:

..,
25 36

.
Pr'obability .

a:.

.1
. 1.5 -r-

:AnsWers to Exercises 10-5
. _

(no. match) = 0
,Qe

(Ohe. match)' = 1

pcpected *Ilue of number of matches = 1.
. P (no match)

P (one match) = 0
1P '(2 matches) =

(b) EXpected value = 1 (0(2) + 10) + 2(i))
k 2 1(a) P (no match). = g =

"ve,'
3.! (one;match) = =

P (2 matches) =
P (3 matches)_ =

If you had trouble, simply write the 6 possible.ways of arranging.
. , .

3 cards, fl.and count the number of matches for each arrangenient.
.:,

(b), Expected value = 1 , . .
....4., . .

If. If you couldn't guess a genexta3.ization, look again at r ta),, 2 (a),'''

. (a),. Where do'tne Ots, occur? Then look at l'(b), 2 '(b), 3(0).
I tsYou could zuess: I

,

(a) It can,
/
never happen that all except 1 card.-matche.., With. 6°

cards,for example, you can't have- exactly 5 cards in proper,
f

ilosition. A little thought will convinde you that this generaliza-
tion.,is correct. i , ,13:4

(b),It . appears that the expected value is 1 in every case.

It

.4 1

I

-336 7 ,
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-
nswerap, erc see: -

r444s haves

r

Number ',of :successes
,.,. ,..

1

..L.

A.:

. . .. ,,.....

obabilttY;- ," `' , ^-,,, ;,, ,t fYt,S ;..;,
t

rzr
',,etbA'''la. '0'"77.` '0.(4): + i(i'):"" ',1). ,,

,tria.10; -we 'add: the eXpected;'.yirlue.,for each trial; attaining'

;Expect d''' value' Of 'ilUMber- of, ';s1..19ce-S, on.each trial =4-

(0umber f auceesa'es on '11. triaia = ...ufa...of nuMberibf -snccesses

eaChltiiai; .

o- -

)

enter" -Yable,of -number -Of successes = 14.(1)`..="2:
. -

.:plo'et..TrObalge number of successes =. 2: This can .be.-fo ii..06--el.:y

- cfrOms.06 graph* The..gYeat.eat probability 1.38) ib ;1304,6 .0'.

,=with, .. ; ;i.,

1 ,,. .? ,. I differ from 2 'by.,at most 1 -. `The' Probability
.

-'that 'trio ,numpqt of -suaeesse is ,I , 2: or 3 is 4.4#4 by.

' add the.-separkte.,probabiiiti4a. ;25 + .8° + ,,t,.. ,,,$;,',

.

p np '
MO6t .probable: '4i.tNis'q§01

S1 number of successes_ ',,..

_,Y.''*11-.%'-i''''0ftiol,l't,
iininter'xif:.0naCea'SaS

'4-
'by at most 1.... ..

,.,:',,__,8--

6

8.

10

,

.

.2

;6.

2

1

'..-

I.

2

_....-

14.

T

3.2

.8

2.4
.

3

4 ,

-5

.,

3
.v 0

2

..
(

,' 4

, 1

, 3

. .. ....,
1

equally likeV
ik.

eqtially likely

equally likely

3'

4 f.
.

5

,' .IO,

48.

.82'

.7o

..71

.71

.67

&
,r

A ',..

u-
. - ,



red' j. 1 ,:sincv the. :red Larea is :halt the t

red) = i
;): I;

$
.

C
- -.'

. ., .

-5
Cie', red` region, is' u & the entire-circular region. ,..1,11e red'

, ,

2.. . .

_T egiOiv .isthus ,57* Act' the red regiOh.-

s

.

1? 'For' thXs, ',s1:414,nq..IX',, ;tile .Probabilitirs are exactly the SaMe,

-
',PA.'r,4" I ,vred etc:; fOr- the two spinners, fit 'the',1?e .

th0:-`sedtior., Use this ,spinner. if, you 'ho.c). £rouble° with.

,
prohahiliieS° for "the

1°4:

4ye'04011,0.tht ,=, 05 inches
..1.. q . L.

. .

',.Averstge 'weight ..4 10 't lb.
0

.. , ,

.:p4.:444-4(10)4'40,0',9gAe3, ghts 4.3 inches

11 i-AnsWe'ia;ztoticerei666 16=8 . f

1,.'.48-

:Standard deviation is approximately .

;NI:il-tier.- of points-,x .,1 2
,

b.
54
A

.§
..%

1 1- 1 1, ,

=Probability ,u -
- r

1/1)2
=(1.=85) : 0-:0)' 31'.3),/ 11.! -'-A.,

.7( -26),, .-4.+1.:53,-, ...t...0.5)0tovo. -15j, .-:

oer"
, 1 1 1 -3.

6.2gevi- .25(;) .25(;,T+ 2:25 (z.)

11
= 17'59() =.12

isco,r appro*imately 2.92..
c

Standard deviation = J2 , or apProximate4Y-1,71
,

'Oar resu1ti-for our first 25 thrOws of a die:

14 3:64 (Note that this is a good estimate., of, the xpeted. 3.

st0Etr# deviation is approximately 1.55

33/ 9 9 )



eteilieea049',

tirdieilfeads. `i... ,.....
,....,

. .

''.,13ioba.bilitf:

Inc& 4- (.22)414- (32).(g) =

o

(3)2` r
2 .

Oili,i.cwo%440tio4_,-. [37,

r-

Number -heads .'' .
o, ,

..,4.

;Probability
.. . 1 '1 ... , .

('E(N)) 2
= 4

Standard.aevialOn = 0/t

4427) ( i7-6 )' ( 2

.
4.-1- 24 3614.16 8o

16, 5

c?)( )(24)

= 1.
kw'

1>

9

Tigiltie275 ' l EO ; ° 1.
s

-.1,

3' , °'

_ .

Probability (5e3
1 53(g.)(6) 1

.

*v cz
..

f(ei 3

2 ' 30 ( ) .1.2 3()(t)2 -h 22 '3() *'+ 324)30.
: P

.75 -1..°6o, + 9 144_2
6' 6 q 3

-.-(E(N)) =

Standard de,viittion
4

,

#

(Recall E( -1) .=) rip - 3 ( 1 1
) )

2
o °

115

P92 o



. ..

Number1,
. . .,_.-

successes,
, . ... ....

3

g91, 1i t tiilit . 3p4

. ....

, 3p q 11

-2 - 2 -2' '2 . '2' .3+ 1 3pck + 2- ,3p q; + 3- p,

3pe* 4-90' j 9p2

31YCP:

In the last. ,we,,orF by

,e _have

-7-0(1.0'' 5W+ 31,A1 = 9p2q
a

(°
= 3pq- + 3p.(1

4

=' 31347

p. +

,._ .

St.400.tci deviation ' 5, _gpil,

'''-fibVera..- to it)---cereides 3-2046' '

,..,,,osr, the data, we oan'ot the: dIStrikuOzOn for -4i,, 01212be1 c1:,

°'a Series' A , . ,,,, ley444.,,

, ...... _ , ..,... .
ilubiber -of -gapie S

, .
:

,,Yrequ4ricy-
_ ,

.
.

7 +4-5.'7 7 -1=-Z0 ,,8 + 7
1.

A team -niust win 4 games. and, it inoie- than- 4 ganied are- play_ed- ,

I

:' team must,-of courte min the lait one, the deciaiire :one.,

con:side/. Tour -caSeS;

No bf games: , The winning, teahl-

'Cie& played wins

.

4

5

6

7

a
3

'all four

out of 4 and th& 5th

out of 5 and the 6th

out of 6 :and 'the 7th

3k0

"O I

1

The teats

14i-14

none

off
Yirst

3, ,out. of first' 6



A

-I"
)1

06FIf,e&pftlj,cif, hest-. caseisi,,,ve -Must t,ake '').nto', account, the pbbaibi1ity .that.

2aithie.,-,, eam i tlia-the Series-Winner.. .
..4:#1,tit,e, 'poq,:..,p(35),, ,(37);., ,etc., to indicate the,-#404.4ty
4..**13..no...:po.ic:,$r4n.lin foul...104es; :filler:gab:es,. Seyen22/guiles,,, eta:"

:t"iiifat7,fisi.tha-Pi:05ability.that the Blue ..Sox win Iii 4 :ia.niesi

'c 2 Is '2 2' "

'Check the..arithmetiet

ae ro150.b.iiity ,game_ is ,
What is t.hejl'obabd4.ity 'that the Iflue Sox, -Win, dn --game's ?'

`ertiViber this ease the Blue. 46x, must the-fifth' gamet-

The-Oeen.:44 4-t
game, , So.,we ioailb

)- #13,0`
r.

_
,

4 4

or,ico:-that the number- cif-possibilities is, (11.1)", . The 'probability'

Hof ;any one of these- POssibilit.Aes is t"-.1N5f" `?:

.aan*rite:7
d p(B5)-

3

.-(0(14
3

Atc.26'

24
.We have already found (z). in :(1.) above

1,
The Probability, that the Blue Sox vin in 5., 'games' 41.a .

what_ is the ,probability, that the ,Blue' So* 'win 4n- gaMeal,

This time the:Green, Six "win any two-',14 the. sfi'veames-.

series caw be played in* 10. differena.ys:.

= Tyg =`10 ,.(List the .if. you 176ienet sure.):

haye: .F1(0.(1):(.10)
3 3

P(B6) (?-)1.1(1-2-) - (0.20
3 9

P(B6),-,022 .

292!

(ill) I 1

-
\



..

'iihe prribe.bility, -that. thetlue Sox win-iin -6; games JO ;0.22 ..,,
): '-wisit, is the probabilIty 'tcia.; the -11.te Sox 'win in 7 71;6.10'0: r

-.,, ;_, .. .- r.
V7'',' '''' ' liciw the Green-:Sox,win any three of- the first six t40e0, ,so,. here. are-, ,,,-,, r.' (.

`-40' 2waks ( .1 .--!.- _ -. - 20) in which- the Blue Sox can win '
,. /5 1-' --' 2 ,.

the SerieW ACa. result we dah w- itp:.V

.4:
",-

'
P(B7) (t).3120)"

, '\
.

..,......,--_'_,...---P 334;),. = .1.,k(1)1,t(.1)4
,

t

-r! , .P(B7); L.15 .. '
1'....

Nrota. again :how.w.e, were_ able' tO simplify 'tlie,icoinputatiC-n-bSir 4...trig

_ the ,result of 13)' ,: '
.

_ , , . .

AT
lext :We must compute th4 prlabifties the ,Green. Sox: 4

.What 'are the chances that theGreen Sox- win irk, Pour,., five;
six ,-or -seven,gasieal 2 - , - ;... :',., ;.54'
You shotild- be able- to follow the fr ur cases S quite easili wityiut

- further -explanation:
s

I i '

(a) , -Whp.t is the ,pitbp.bi.Ii.ty 'hat thelGree Sox win ice. 11:. games?
,, ; 1 1 1 1

.. TVA), = s- 1 3..-§ . --g .., o:63. .. `- (Compare :w.41, .15,(V4-):,,,.,.

CO What. is the probability that the--Green ,Sox. Win in, 5 ;"4.nled7
1 4.3.. ' . .=1 ,

e,'t. ' , .. _ ,-
P(05). = 41t(3.) -. 4 .- - . (Conipare With 105) )

. 1 . -4. 3 74.

P(05) . ()4( 6).0:63. ..
,,. y.,,,'

3 3 ...7.---= ., .1

Whai ,is 'the p 'hilbility thai the Green.Sox win in 66 ,genes?,
'...- ..

1 4 2-2- 5 :"

.,

, i ..P(G6) =1().,() (2) , (compare with .F.(336) :): .,_,

1 14,-\
,

P(er6)n ,;-.(& q)(y)'.. (0:03)(3;67), - 6.05 -.
What Ifs the.probability th t the Green Sox. win in 7 gaiesZ

... -,

2s ,

1J

i

(0.22)(0:67)'

:

4P(G7) )4(04) .

,

P(..,i4(6),(3)

,(Compare with `P(137)....-.)

005)(1.33) 0.07 .



1

(,We cam state the result:

lb -- " k gave 1.S 0.20

4-*/
4--1` 4 -

The p2Dbalu.lit,*,,tga.,t t

..
0.26,4

.gates1 *i.13 0.22
0,-,

..IgaTel, is 0.15., 0

-Blue Sox win in

The prcihability that The Blue Sox OA in 4., 5, -6, - or' 7 games is,
_

' 0.2'0 4- 0'. 26 + Q.22 + 045 = 0.83

. other words,' the probability that the ilue Sox wig the Series

e 41, \ts.

. 0: . -f

A, The probability.that the Green Sok s+1 in

games. i's`" 0:01,

5
ZS! 'I

'.gs,rnes is :0.03,

§ games Xs-. 0.05,,.

7 gamer, is, 0.07' .

I

$

1

The protabIlity,,that the,Green_Sox win iri,
1 ..,,,.

is
.

,s

O,. ' + 0.03 -1.1?.-.-1- o.10- = 10.16 .
1= 'A

The pr6bahili

'The- aeries wi
1)

.SOr'win in lit`g:ames:,,,,

P(B: or, G, 4) 0.01 =L,21...
' P(B' or '', G, 0.26 + 0:29 ,

that the Green Sox win the Series \
end .in 4 games, if the Blue Sok

is \'
or the Green

341,'

-1/473

' games

P(B or G, 6) = 0.22.

41 'or Z.,

Note: Either the Blue Sbx o

we have,a

+ 0.05 = 0:27 ,

7) = 0..15 + -= 0.22 .

r-the Green Sox win the series,- so

ir

AqB. -or G) = 1. : 0.83 + 0.16 ='0.99 .
of 0.94, instead of' 3; 2

game's in the World Series?

man yolf account for the result

at is. the expected number of. I

No of Games 4 5- 6 7

P(B or G wins) '0.21 0.29 0.27 0.22

M = 4(0.21)

1.1 C/A4- +

M = 5.45
L

The expected number .of games

50.29)+ 6(0.27) + 70.22)-,

1- 62 + 1.54 ,

id 5.45
.

311-3.
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'Answert to.,Exerciset 11-3

or 10

2. We cannot be sure, of course, which ordering you chose. Howe;,rer, we,

can -be sure that your circle matches one or the ottier (but not both)

ttf the.ciralEles

A

4

_Circle

KAABB
A A .B B A--

A BA A

.BBAAA
B A.A A B

2

Circle it

AABAB
'ABAB
B ABAA
A-BAAB
B AABA

YeuF list should match one of -these two.'

3. For "A always leads" we have:

Circle I 'Circle' II

AAABB AABAB
4. and 5. Your first list of orderings (&ercise 2) did no,tcontain

the possible

youkbad only

matches one

orderings. If your circle was like I, for example, the

the orderingi for it. Your circle 'for Exercise 4 again
. i

of ma's. In fact, it matches the one you did not use for'

Exercise 2.
1

.6. P(A always leads) =
2

= 5 . (There are 2 "always leads" orderings '

out of 10 possible orderings. All the orderings are equally likely.)

7. 1.

o. Yes.
5 - 0
5 + 0

- i .

9. Yes. P(A always leads) =

result by listing the possible orderings fera. 2 to 1 vote..

1 1
- Check that this is the correct

1 3

344
2, 0 5



, -
O., do-Ot.know-how.the 14AiS and 1Ipis are arrangedon_Your circle.

Ilbwoyersweare sure that in_your experiment, as-in-ours, therewe

atartingLpoints which gave-orderings where A always leads.

-bikyOU,h4 14f 11notice, that ,

Answers_tb,Ekeroises-11-5

'5
6

6, or 7 ._
9-,

iqtaxt-At 5, 6, or 1 .

i6 =.3,- 8 1
!- ÷-8

3 1_

4 3, 7

6,, 4: 2 1

6-:+ 3 10 5
,

.0. _ A tennis set does-not, go o 42/ games unless there have. beedneyeral

ties.. teach tie, Tilden s not ahead.

--4 2
2-2- or rs. . Poor king!

10. In "tbds case we muet Count orderings in which A always leads or ties.

'You have already studied all the possible orderings for the 3 to 2

case; (Exercises 1 to 4 Section 11-3.) You can find directly -7

N -by counting: Preaches goal) = .

2 = 1 1=

,Answers to Exercises 11-6

1.- (2), or.
J

2. Your circles can be matched, by-proper choice of starting position,

with these:L

r

345 266
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i LAAABB
-E_ B A

A A--B-B A A'

ABBAAA
13"B-A A AA

B AAAAB

sy

A A A BA B

, AABABA.
'A BA B A A .

BAAAA
ABAAAB

s.BAAABA

A. A B"A A B

ABAABA
BAABAA

Did you notice? Circle III does not give 6 different orderings.

different starting positions yield- only 3 different Ordering%.

Answers-to Exercises 12-2

1.- P(cooks L on Thursday), =.909 (See Item 11.)

P( cooks 4_911-Thtif-61-Ayind burns it) =

P(cooks L on Thursday) P(burns L(cooks L).= .909 X .1 = .6909,

Hence P(cooks S on. Friday) = .0909

P(cooks L on Frid0)--=-1. .0909.= ,9091 /
2. Saturday: P(cooks L on Friday and burns it) .= .9091 X .1 = .09091

Xcooks S on Saturday) = .09091 .

P(cooki L on Saturday) = 1 -_,09091 = .90909 ..

Sunday: P(ccloks L. on Sunday) = 1 - .90909(.1) = .909091

You might have saved arithmetic by looking at the pattern

"1 Monday

.9 Tuesday

. 91 Wednesday

.909 - Thursday

. 9091 \ Friday

90909 Saturday

.909091 Sunday .

3. P(burned cereal on') onday) =I I(burned L) + P(burned S)

= 9090909(1)

346 2 0 7

0909091(4) = .12727273



i127272f or .127 _

't
,.Tcogrparc:.*ernise 3 with Item 8, Section 12-1.

nswers-to:.13xercises 12:1
CbOka ;c3n. Thuriday.). .825 (Item 11),.

Oboke 15_
.<1

orA--.ThurSdai) ..825 -= .175 .

Hence

:-P(books L =on- Thursday and does not burn 4) .825 X .9
,S on -Thursday and .burns i`t)- = ..175

'.f(§'§-c4i' :0-,-Iii.4a5r)" .7425 + .07 = /.:8325

4(5.4120= 4
(books . _

4(0064.4' t PlIctburns it) 7 .8 x .1 = .98 .
docks .:S and-burns it). 7 .2.X = .08 .

The Ore al: is burned if she books L and -burns it or if She cooks,
burns. it .(She. cannot do both.)

terte- -

= '.7425

:.....----.,P(bUrnied.,cereal) 'a6 ;..
1This is. approxixr.-te-1y 6.

P
P L.rt burned .08 1' ( I -burned ) = P burned 71b 4 -

If you,tind p_.e, cereal burned, it is just as likely to be. Lumpips as

SoggitS; Look back at Question 3, Section 12-3, for another argument to

Support this conclusion.
Note that we have used:

P(L I burned) _ P(L) P(burned L)
) P(burned I L) + P S) P(burned I S)

.1n- other words, we have an example of BayesT formula._
You might have suspected,the.t after a while ,the probability of cooking

.Luinpies on a pprticular day will be about .8 , whether the cook began

with Lumpies or with Soggies. Here is the reason. 4

The_ imx;rtant point about this cook is&that she has a very poor
qemor0.- When she gets up in the morning, she only remembers what happened'

-Yesterday. (This is probb.bly why her cooking doeqiit improve.) If she

:books L on a particular day, subsequent events go, on as though she had

'begun cooking that day, subject only to the probabilities of burning,

347 , 2 08



which. never change. HenCe_it doesn't Matter.much; in, the long run,

.yhethe4hebegins with L. or S , because after a while she is a1Mo8t

Certain,(P-robability nearly 1),to-have-.cooke.d bOth .L and S :and

14e can-Trgtend either was on the beginning day.

If you actually computed the probability that she c(liCked Lumpies

:on Tuesday, on Wednesday, etc., you should have found the following

.results.
7"'

Slinca.'the cook. begins,yfh S , we see:

4,,, P(cooks S on Monday) =al ;

P(cooks -L on1,10nday)'= 0 :
d

= .

.,,

She. cooks L on Tuesday only itshe'burns S on,'Monday;

P(cooks L pnTueSday) = .4

P(cooks S. on Tdegdayr= 6

Hence, on Tuesday:

P(cooks L

(cooks S.

From this information:

P(cooks

Thus, on Wednesday:

P(cooks

P(cooks S

From this information:

P(cooks

P(cooks

P(cooks

and does not burn it) = ,4 x .9 = .36 ,

lynd burns it) = :6 X : ; :24-:;(

L on Wednesday) = .36 .24'= .6 .

ence:

Mon

P(cooks L

and doeS not burn it) = X =

and burns i;?) = 41 - .6). x .4 =

<

do Thursday) = .54 .16 = .7 ,

on Thursday and does not burn itl ='.7 X .9,= :63

on Thursday attl-lhurns it) = fl c x .4 ...la

2

on Friday) = .63 .12 = :75

Tues
,

Wed '41hur Fri

:0
.4 .7 .75

Probability of cooking L
a

Ygur guess f6r Saturday might be .775 . This is, in fact,'the correct

.value of P(cooks L on Saturday) , 4

5, I

31,8209



-?Analiera.tO,ExerbiSas'

L
.

cook never burns cereal

beginS with S.

ArieVers4O :Exercises 12 -5
..

b

r.

If she begins with' L she continues L
.0

, she continues-

2 'IV) 1 0 P

4. ,P(1 as 'first state) = o- 6

Pa- as second. state) 4 1 . (See Item 1.)

P(1 as third state) = 22: . (See Item 5.) ,

.

P(1 as. fourth state) = .

s

"'(-1

1

as fourth state) =.2. P(1 as third state)
j

6
1

+
2

1' state) -:

5.- pii. = i: (Exercise 10-,

1.- l'(X) ?+
5 2 4 0. .

1

4

not 1 as ;third
-

.1 1I,51 11 A

136 , }3.1

. ,

g-.6

.I 11
P7 a .i) 21

.

iiote that we cannot use the recursion formula to find p
7

,in one step,

but we can use it to find all the pia up to the one 'we want,, step by

Step. ,

e

J 3"-21o,

r



ii:swere-th.:-',EicerCisea, 12-8

. '.. .: r 122
P -= 'P6 r-7 ...7".;

9,
3651!- e t,'' , ._

.7 : 7?9' .
4

....

141-
\ .

1094
P5 ' 8T P8 7,24-137

,'

-,/, .,
2 You can See the' pattern developing in Exercise 1.

`P12./.4." 2

,rifowe-yer, to, be sure, you woul need to- work. out pn exactly.. iil .fact,
*., .

88574
1771 ' and

88574 1
T.773-7471 2 354294

{I.

4


