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PREFACE . /

For Students and Teachers -

_ Mathematical Background - '

It is assumed, throughout tris volume, that the reader has completed
Chapte;s 1 to 6 of SMSG INTRODUCTION TO PRCBABILITY - Part I. In addiuion,‘
certain topics depend heavily on the ideas about ‘conditiongl Probability
developed in Chapter 7 of Part I. Others reguire some familiarity with cer-

tain ldeas and skills of elementary algebra.

»

The more difficult sections of the text gre marked ‘_r“ , as are some of

- the more demanding exercises.

k3
° - ra
Qutline of Content

Chapter 8 develons technigues tor applying the results of Chepter 7 and,
hence, depends on the latter. Section 8-1 is not very difficult, and it
éupplies the student with a useful method of attacking probtlems which seem
complicated. The exercises of Section 8.2 illustrate the wide range of such
problems. Bayes' formula, which is discussed in Sections 8-3 and 8-k, is

essentially an algebraic restatement and generalization of earlier results on
conditional probability. It should be omitted by students who have not had

some experience in algebra.

The material on Bernoulli trials in Chapter 9 may be studied immediately
following the completion of Chapter 6. It should be noted, however, that ex-
perience with Sectién -1 will make the understanding of Chapter 9 easier. The
content of Sections %-© and -9 will bte meaningful only for students with some
background in algebra. Chapter  does not include a complete treatment of per;
mutations and comlinations, anéd it requires no previous acquaintance with this
topic. However, students who have encountered permutations and combinations
elsevwhere will bte atle to apuly their knowledge here. For many Problems in
probability more than one metnod can be used, and it is both interesting and

»
instructive to see hov different arproaches lead to the same result.

The first five sections of (hapter 10 are not particularly dirficult. They

could be studied imredistel, after Chapter €. Scetions 10-6 through 10-8 intro-

duce ideas trat are important for the study of statistics. These soctions would

science or sovial siudles course. Sertion 10-7 requires some krow.edge of

be of parti:alar-interest iou students who are uslag empirical dets in & natural
algebra. CSection 10-10 ls & ratler lengtry application of ideas of Chapter 9.
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Bertrand's ballot problem (Chapter 11) can be‘gqudied independently of tr-
rest of the volume. It is an interesting proylem and gives students . an oépor-
tunity to enjoy the pleasures of discovery. The méteria;/}n Sectioﬁs/ll-l
through 11-5 is relatively easy and most students shouldzﬁe gble to complete

it readily. Sectgon‘ll-é shows how conditional probability--and Bayes! formula--
enters the problem.

Chapter 12 (Markov Chéins) applies the iaeas of conditional probability
»  and should mot be attempted by those who omit Section 8-1. The ideas here are
"* gomewhat more difficult but they are extremely useful in many practical situa-
) tions. Incidentally, the feader of Chapter 12 encounters repeating declmals in
a rézher interesting setting.

~

Suggésted Plans of Study

1. For those who omit Chapter 7 (Part I) the following is suggested:

.

Chapter 9, Sections 1, 2, 3, 4 and 5.
Chapter 10, Sections 1, 2, 3, % and 5.
Chapter 11, Sections 1, 2, 3, 4 and 5. (Optional)

2. A minimal program for those who compléte Chapter 7 would include the
list ebove, plus Chapter 8, Sections 1 and 2, and Chapter 12, as time

permits.

o

3. Students who have studied {or who are studying) algebra might profit by
completing Chapter 9, omitting pérhaps either Chapter 11 or l2.

A -
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Chapter 8

BAYES® FORMULA

. . s
Rl

8-1. .Tree Diagrams

The material of this chaptér depends heavily on the concept of conditional

probability. In particular, we shall make use of the formula from Chapter 7.

P(ENF " - :
(1) P(B|F) = —%(57—1 - . 3
If we know P(EnF) and P(F), we use formula (1) “
to rind P(E|E). '
6 = f%) 1. For example, if P(EnF) = .3, P(F) = .5, then i
P(E|F) = .- -
Tt may happen, however, that we know P(E|F) and
P(F) and wish to.fird P(ENF).
2. 1t P(E|F)= §-, P(F) = &, then . ) ;
- 2 _P(EnF) ‘
3 1 * 8
75 :
1 ;
l . g - }- == 5 ' =
3'5°3 3. 50,’ P(EnF) = 2 . ;
_ P(ENF) . :
- 4. P(E|F) = Tt be written in the form: -
P(F) * P(E|F) P(ENF) = P(¥) * . ‘
This form ig useful in many situations.h -

Iet us start w«ith

§§2eriment:‘

Use one coin and one die.

an experiment.

2

Toss the coin.

~(l) If heads occurs, record "I". Then throw the die. If 1, 2, 3 or b
occurs, record "R"; for 5 or 6, record "G".
(2) If tails occurs, record "II". Then throw the dle. If 1, 30or>

occurs. record "R". If 2, 4 or 6 occurs, record "G".
b b b

&

,@gﬂ;
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i‘f‘ you do"‘th,e experiment several times, what fraction of the time do you
expect "I" myET ¢ “R" ¢ "B" ? Of those trials when "I"  is gpecorded,
' what fraction of the time do you.expect "K' 7 Tugt g

Perfom 30 trials of the experiment. A table is useful in keeping 7 ',.?

. *Erack of ‘the results. S .

,

i ‘ ] . Number Number
S L % -1 ‘Recorded-} - Recorded -

¥

[
e L iy, gt

. 1 R . 7
S I . £
.- . 3

A B ki

3

~ » s
g

=}

\ »

\ g R

—

o
i

_;_‘. %.) 5. 1If P(R|II) _—;\ P(II) = 2,‘ then P(IInR) = .7

regardless of vhat events "II" and “RY indicate. ;{ j:

In Ttems 4 and 5 we have used the formmla: 7
i : 1 £ e 4
E (2) P(ENF) = P(F)-R(E|F). REE
3¥ - ’ 3 ?
e R f -ﬁ
5 Formla (2) is a general formula for obtaining P(ENF) whenever we :

i, kmow P(F), P(E|F). You may recall that the guestion of -P(ENF) vas considered _
= ' "bfiefly ':Ln Chapter 5. At chat point we were only able to deal with the case T
»f mitually exclusive events, in which case P(ENF) = 0. In Chapter 6 we fi@
_ introduced the notion of independent events. If E, F _are independent. ve
" nave P(EnF) : P(E) + P(F). You‘—shou.d notice now that this last may be
‘&h’ought of as a special case of (2) Independen‘b events were discussed in

more detail in Section 7-6. :
. x ,

T EV PR DA S 153
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. . 6. If E, F are 1ndep°né.ent events, then
_ P(E) - P(E|F) =_____.. (Section 7-6)

'
L

-3

7. Hence, P(EN F) = P(F) + P(E|F) vecomes
*P(F) * P(E) : P(ENF) = . -

—

With this short review behind us, let us see how wve may use formula (2)
in connection with tree diegrams.
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You, have become familia:
S
_comes. In this section we shall see how tree diagrams are useful in calcnla-

ting probabilitiev‘f;/a variety of sltuations.

probabilities we need. .

with tree diagrams as an aid in counting out-

.

-
P

Consider the following experiment: .

There are two urns*. Urn I contains two red marbles and
one green marble. Urn II contains one red and one blue marble.
An urn is to be selected at random. (Recall that "at random”
means that each is equally likely to be selected.) A marble
is then drawn (again, at random) from the selected urn. ‘

An 6bvious set of outcomes for this experiment is:
.- {InR, InG, IINR , IING}. .

By INR we mean that Urn 1 is selected and that a red marble
is drawn. The followr.g tree diagram fits this experiment:

-~
[»]

You recognize the siﬁildrity‘%etween this "urn problem" and the coin and

N

die experiment that you Jjust completed. “

The given information enables us to write down immediately many of the

PO A et Provided by ERIC

chios,

of examples whic
‘theory.

At e o - -

*In the literature of probabiiity, containers for marbles, balls, numbered
etc., have always been ref.rred to as "urns®. A problem, such as"\{he
present one, is called an “yrn problem”. Urn problems are useful as rodels

h similate a variety of practical applications of probabiliity

.
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8. P(I) = . ."I" is the event "Ura I is selected".)

oI

E X P(II) = . . :
2 ' ' ‘ -
g P(R|]T) = . ,

1 .

5 P(G|I) = . :

34
I
1\

ot pof

' P(R|II) = . :

P(c|1II) = .

Here, then, is a situation where we l;iow‘ P(I) , P(II) -

B - and certain conditional probabilities. It is natural ' 4
’ to use formila (2) to find the probebilities of
INRF ING , etc. ) ‘ 3

9. P(InR) = P(I)-P(R]I), using formula (2). Hence,

RN | 1 :
S P(InR) - 3 .§= . . ,
\ 10. Similarly: - ) .
L% P(InG) = . ' R
11: P(IINR) = . (We obtained this result in
1 ( ) Item 5.) L.
'K*"‘ P(ITNG) = . /
11. Of course, . ®
L oa(Reralad P(InR) + P(InG) + P(IINR) + P(IING) = < ;
i 3 BLETE —
This last result is not surprising. Our set of out-
‘__ﬂ, comes 16 {InR, InG, IInR, IInG]}.
~ -
MG e
TR
e M
‘;: ) * M
Let us go back to our tree diagram, We will look at earch branch indivia-
;\ ually. If we follow the branch I - R , we interpret this as “yrn I
? is chosen and & red marble is drawn". We may, then, label the branch as In-R.
. . R INR
S I/ :
; 7 i
5 3
: »
E ‘
152
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AN A N Tl e R

Se e N SRR

/.~ R I \\ . 1 : .7:5
*Gn he- articula.r piece, * / , we shall write "E" . Since T
-~ .‘ 7 .} M . . \“ ) . ;“.;
AN . I . T B
A 1 1 / H — Ed
. P(X) =2 ¢ = . That ls, we label the piece with "its" probability. - {f
N 2 , ’ ' 3
oo ‘ * - . -

How about the piece, / R ? Qhat‘p;‘obability label shall: we give it? j

If Fou think a momenty you will agree that the appropriate probability is "the

_ probability of- R, given that urn I is selected". Since P(R|I) = 3, we now vk

' havé: : oo o - .
» . r s ~ , .
g 2" IR -
1= 3 =
. 1 -
R “ ' . /2 .
' T~
But, P(InR) = P(I)-P(R|I) Y . oo
( _Ll,2.1 B
v 2 3 .‘3 ~ ~ .
To find the probabllity of the J)rénch./"IﬁR"é we 1tigly the probabil-
-~ ities thal occur _along that/branch. . . - '

: wom T 1l :
) M 3 = HInR) £
7 R N 1/3 v 4 . ";:' :":',i
1 . R
. 2 ~ g
. \ - P s
LT o
12, Complete the tre¢ diagram below by supplying the 4
appropriate probabilities: :
1 _ o :

2% -3 (InR)

57

[}
[}
g
—~
[
o]
(7]
St

3 ) *‘t‘A /R =
| —_—
N \ II_< ©
S §e

The completed diagram is shown on the following

rage.
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P(RII) » P(6]T) , P(RIII) , P(GlIX)~

o :(1»5:), ‘Each complete branch represents one of the outcomes of our original

... set of cutcomes: {INR, InG, IIAR, IIn c}. =y
P { %

(c¢) The probsbilities of each complete b, anch are obtained by m.tiplying

the probabilities that occur along the branch.

< . ;3
(d) The sum of the probsbilities of *he complete branches is 1.

' .

We can use our results to find other probabilities. In our example, the
event "red" can only occur in one of two mtually exclusive ways, as INR or -
- as IInR.

L4

+ (In‘R and 13. P(R) = P(InR) P(IINR).
IINR eare mutually|: R S
:_exclus:ive) '
Ll 1 =1 ‘o -
‘-3—4' K-— 12 i lh." P(R) = 3::- = . )
s - . - J
TB(Ing) + ¢ 15. Similarly, P(G). = P( ) + B( ).
16. P(G) = + 11: = )
17. P(R) + P(G) = . .
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The next paragraph deals with another urn problem, similar to the pre-

ceeding example. Try to work this problem by yourself. Sket:ch a tree diagram,
labeling the branches with the approvriate probabilities. Colnrpare your answers
with Item 34. A step-by-step solution is given in Ttems 18 to 33. Befofe you
begin, notice that the given information enables you immediately to write the

. values of P(I) , P(II). Also-obvious. are the conditional “probabilities that

5. a particﬁlar‘ color is drawn, given the* a certain urn is selected.

Urn I contains 5 red, 3 vwhite, and 2‘blue marbles. Urn II contains
3 red and 7 blue marb‘les._ We throw a die to determine which urn to select.
If the dle shows "1" or "2", we use Urn I, otherwise Urn II. A marble is
drawn &t rendom from the chosen urn. Find P(R) , P(W) , P(B).

T A YAy AL e

Vo

B -

3
-5
4
1,

Yo

T
’

Ty

[

g

%- 18. P(I) = , since, for the die, P(1 or 2) = %-.
2 : ‘

= 19. "P(II) = .

3 9 (11) +

P Our tree diagram starts like this:

Lo o 1 .
o e o
\g
3 -
N

RS
¢

PRI eI I

: 3 20. From the point labeled "I!, we need : ‘ .
. {how many} '

branches, one each for red, wbite and blue.

4

: 2 21. From the pcint labeled "II", we need only %
branches. ) (how many)
Lo ‘ -We have, then,
& . ' R INR \
‘- , 1£ - Inw
: ‘ /% B INB )
) ' \g LR IINR
' \II:

! ‘ ~B 1IN B

Y 15 g~

LRIC
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"22. 'P(R|I) means the probability of drawing a red marble

[

given that jQ;S selected.

AT Aoz 2 0 SRS

23. Since Urn I contains 5 red, 3 white, sand 2  blue !
3
marbles, all equally likely, we-have: ,,
P(RIT) =, o
R(W|I) = ) ‘ é
R(B|I) = . -
In the same way,
&
P(R]II) = s
14 . ' E ‘t‘. % ¥
P(B|II) = . ;
Our tree diagram now looks like this: Ch L R
R __IAR
v - -
: s 2 d e
<& InW
v Py ! p - :
3 . ) 5
/ \B 'InB
't ‘ A
R . IINR &

\ / 10 - 3 7

* 1InB :

. e
We are now ready to compute the probabilities of
INk, INW, etc. )

. I
’ ,

2k, To £ind P(INR), we
) (add,multiply)

25. P(INR) = . ' -
26. P(INW) = . . :
270 P(In B) = " .

i6

—-—— - L el m i b s mesh

s

B R

1y

’
NS :
3 N VIR S 4o an s

o

R LRy

v -
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28. . P(IInR)

-29; F(IINB)

o

Now, the event "red marble” can ogeur in one ol two
mitually exclusive ways. Either :\tlge red marble c&mésfz"' P

from Urn I or-from Urn II.

30. P(R) = P(InR), . _P(IInR).
: s ‘
3L B(R) =%+ (Ttems 25, 28); .
oL
=5
“ ’ ’ '# H N
32, By'a similar srgument, NSS!
7 . 2
P(B) = * 15 (Items 27, 29)‘ .. :
S >
T 15 ’
M lif- : -
! . o 7 D , X : . ’ &
33,. P(W) = ) (Item 26) R

34, Changing our amswers to fractions with denominator 30,

P(R) = ’
(W) = , '
P(B) = . i
35. We should be careful to observe: ’
1,3 .16 i
+ v + = o=t + o= . e
’ P(R) + P() + B(B) = 35 + 5 + 55 ]
Ifet us briefly review." :
From < ; . *
EQF
) (1) ):P(EIF)_= -P—(F(f)l . %

'




(2) P(EnF) = P(F)-P(E|F) .~

., We often use this multiplication formula in connection with tree diagrams.
A typical branch might look like this: ' -

P(F)/F-‘ R(E|[F) —F P(EnF)-= B(F) - P(E[F)

A;’f.‘) X - -
- Since each complete branch of a tree diagram represents one of a set of

. matually exclusive events, we may add the probabilities at the tips of different |
" ‘branches to obtain a desired probability. Suppose, for example, that three

¢ Brenches lead to E. That is, E occurs in ENF,, ENF,, ENF,. Cur for-

e 1 2 3
" “mlas would then berome:
P(E) = P(En Fl) + P(EnFe) + P(En F3) N .
:) . ,:‘./.:- ‘
P(E) = B(F)) * B(E|F,) + P(F,) - B(E[F,) + RB(F;) - B(E|F,) ..

L4 -

7 It should also be apparent ho“w we would extend the diagram if we had a’ '~
) .s.ituation invalving more than two steps. For examf)le , the probabilfty of a (';,5’
- . branch such es » :
;f L 3/' < |
H }_ /3 . -xl
% 3 }./. ' e
o i 2 i
L . - L
§,~ Foac
P o4 L.l.2_1 : ;;
L 23379 _ .
; The exe;rcises of Section 2-2 are designed to give you a variety-of practice” “v
©% in using tree diagrams. - i
X . .

N .
A -
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- 82, Exercises.” (Answers on page 31k.) N

1. Urn problem. There are three urms, I, II, I, '

. : Urn I;? contains three chips, numbered 1, 2, 3+’
Urn II contains two chips, numbered 1, 2. o
- Urn III,contains two chips, numbered 2, k. : S

.An urn is chosen-at random and a chip is drawn at random. What‘" is the -~ iR
probability that the chip drawn is nusbered 1 ? 2 3!‘ 31 b 2" C o

B 2. Referring to Exercise l, fiad P(chip has an even number), P(chip has a
number les% than 3), and P(chip is even or less than 3)

3. Seeing two gun machines, a boy doesn't know which to use. He flips a coin

to d.ecide. It happeris that macliine A glves 3 pleces with probability .- --‘

L ana 1 plece with pxobability’ 35“- Machine B gives 1 or 2

5- .
pieces equally often. Find the probsbilities that the boy receives 1, 2,

-

X 3 pieces . . .
oy 2 g
. 1

Ay Here‘d.s .another.urn problem, t‘ilis time using only one urn. The urn con- b

© tains 6 red, L4 blue marbles. A marble is drawn, its -color noted, and’

i
|
WAL

.
foroen yvn!
Arerny vl i vi s

5
N

o then replaced. A second draw is then made and the color recorded. N
Q {(This situation--first discussed in Chapter 6--i8 one 04‘: "drawing with
4. replacement”. The events "red on first draw', "red on second drav" dre
independent ) -The number of times that red is drawn may be either 0, 1 N

or 2. Find P(0), P(1), and P(2) M

- 5. Using the urn of Exercise %, we agein draw twice. This time, however, we
25 do not replace the firgt marble. Find P(0), P(1), P(2). Hint: After
s the Pirst draw there are only 9 marbles left. - .
6. Under the conditions of Exercise 4 (two draws with replacement), find ‘8

<

R . - N
2

Fo P(red on second draw).

o e ow Al o

“
@

1‘. - ! . H
’-; 7 Under the conditions of Exercise 5 (two draws without replacement), find
i

';i * P(red on second draw) . ;

< 8. \\’ Kate and Jane play a simple geme. Kate heg &wo Eicsrii’s,, each oné red on one
S side and green on the other. Jane has one such disk. At a given signal
) Jane and Kate each put & dlsk on the table. If they show the same color,
¢ x(ate takes both of them, if the colors are different, Jane takes both of
; . O trem. They play until one layer has no more disks or until they have = > 7
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- . . .
~ ’ O X
s .

_ofipared disks three times. Make a tree to show the  progress of the game.

. - . 1

“We know that the probability that Jane wins.any pa¥ticular play is 3 .
Find the following probgbilities: )
, ;

(a) Jane wins the game; !
:'('6) Kate wins; - ’ st
. . e
{(c) neither wins. -5
. . * i

In the game of Exercise 8, there are 3 disks in all. Find the probability
thdt-Kite énds up with O disks, 1 disk, 2 disks, 3 disks.

Ii tennis, a player mst win 6 gemes to win the set, but he mst lead
.his“opponent by 2 games when he hag won the 6 games. Otherwise, the _
sét continues until one or the other player has a two-game advantage. ) :
Art and‘B-ili are pleying a set. After 8 gemes the Score is k-k. “Bill :
has just hurt his hand so that fi:om nov on the probability that Art will
win ;my game is %— . They agree to play until either someone wins (6-% or
“1=5) or to settle for a tie if the score reaches 6-6. )

Find the probabilities: P(Art winsj, P(Bill wins), P(tie).
" Here is a game which you might play. An urn contains 7 red and 3
3 o .
green talls. You are to select a ball, note its color and replace it,
‘Your-opponent is then to select a ball. Ry is the event that you
select red; Ro is the event that your opponent selects red; Gy

.

is the event that you select green, etc. Make a free diegram of
possible outcomes. You win if the ball your opponent selects has the
““

. same color as the ball you selected. What is your probability of
winuing?

Our next problem is a little different from the other urn problems. We . 5
are going to draw a marble » note its color, replace it, and then add
two more ;_f the same color. We have an urn with 6 red and % blue
marbles. We select a marble at ranaom, note its color, and return it
and add 2 more of the same color to the urn. We repeat the procedure
egain. What is the probability of seléiting a red marble on the second
drawing? The probability of a red marble on the first drawingris —53- .
Do you think the probability of a red marble on subsequent draws will
be greater or less than 3 ?

5
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(a) In Exercise 12, suppose we continue the same procedure (replace *“he
marble and add two of that cblor). Find P(rew on third draw). *

REEE

(b) Can you guess at a generallzation? What if the-original distribution
o .of marbles had been 5 red, 5 green? T red and g green?

. 1lh. A certain cook can prepare two cereals )’ Iumpies and Soggies s but sometimes
she burns them. In fact, when she cooks Lumpies, her piobability of /e

o burning it is .l. Whenever she burns Lumpies, then she cooks Sogeles

/ the.next day. However, she really doesn!t like Sogglies very well, even

. vhen it isn't burned. Cohsequently, after cooking it one day, she always

! ! ‘. goes back to D..:.mp S She begins a new job on Monday morning by cooking

2_ Lumpies. What is the probability that on Wednesday she cooks Soggie.,?

’ Lumpies? . -

s

f~ N
L5, S g 3 Y S

. -
th Py
ity i fodelar AL

R

Our-cook is even more careless with Soggies. Her probability of burning
Soggies whenever she cooks.them is 4. What is the probebility that
Wednesday‘s cereal_is burned?

4 ‘- “ N . R
The carelees cook finds that she has grown to like Soggics, so she cti%pges t
her plan of operation. She beg* ns, on Monday, Janpary 1, another year, by ‘
Jcool:ing Imapies. Again, she "cooks Lumpies until she burns it, and then ©
changes to Soggies. Now, however, she, cooks Soggies until she burns that, aE

and then changes back to lumpies again. Uni‘ortunately, in all this time
her\ cereal-cooking has not improved. Her probability of burning Lumpies
if she cooks it is .1, and her probability of boming Soggies if she

) cooks it 1s b, ‘

(a) Whet is the probability that she cooks Soggies on Wednesday?

; o (b) tvhat is the probability that Wednesd&y’s cereal is burned? :
' . TJ17. Under the conditions of Exeicise 14, the probability of burned cereal on 7
o Mondey is .1, on Tuesday .13 (work this out for yourself). In ‘ o
Y Exercise 15(b) you found that the probabiflty that Wednesday's cereal is N

e

burned is .145. It appears that, as the days pass, the probability that
the cereal.will be burned increases. Find P(cereal burned on ‘Thursday) .

~
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8-3. Bayes! Formla

We begin this section by returning to the urn problem of the beginning of
*  Section 8:-1. : #

)

Urn I: 2 red, 1 green marble.

Urn II: 1 1red, 1 green marble.

~

An urn is selected at randon; and e narble is drawn at random from
_+that urn. '

4

Our tree aiagram is: |

paconr s

P
¥

R N AR R

:‘%*“'\/ . _2_ /.'R -

1 L "
s 2>~ —2. )
?‘ S \_l_ . “g
i 2>~
I . - ¥
%}}\ :
P : ? ‘ o
i 33 1. P(R|T) = and P(R|II) = . / % #
. 2. P(InR) = P(I) - P(R|I) :
: L=%1.5% = :
: 32 3 B ) -
? § . . %
P(II)-P(R|II) 3. P(IInR) =P(_ ) - P( ) | S
o 1, 1.1 -

=33 - :

¥ P(IINR) . P(R) = P(InR) + P(__ ) - !
e B 1 . {
I ¥ 3t 1
s e - = . :

. m@ — !
;‘ '. vy e‘% ‘
Qur results (Items 1 to 4) tell us all about the probability of "red". |
i We have P(R|I), P(R|II), P(InR), ¥P(IInR), and finally, P(R). o
i ¢ ' ' )

i |
’n i

Y
H




’ Su.ppoae now'that an urn is selected and a marble drawn\. We look at the
w—m&r'ble and it {s, in fact, red. At this point we are no longer interested in
'the probabi....'.ty of red. Of course, P(R|R) =

’ On the other hand, we knew originally that P(I) = -é—, P(II) = %2- Now_
" we have new information: red is drawn. It is natural to ask: knowing that a
xred marble is drawn, which urn was selected? We seek, then, to determine

P(I|R) and P(II|R).

, There is nothing new about this type of problem. We handled similar sit-
. i;‘q.t;tons- in Chapter 7. It may be instructive to work this particulgr problem‘

w‘t;hjrougt_z in some detail. As you suspect, we are trying fo dévelop & geperal
* rale (Bayes® formula). : & )

g, NN
et

3% - el

¥

FER

5. There were red marbles altogether.
’ Thow many ) », ~

%

Kn’cg\dng that \,a red marble is drawn does not tell us
which urn was selected. It might be Teasonadlz.to

- argue: There were origiaally twice as many red
marbles in Urn I; it is twice as likely that the
merble came from {rn I as from Urn II.

.

7. Thug, we might guess

P(I|R) = , P(II|R) = .
(Surely P(I|R) + P(II|R) = 1. The red marble came

. o from one of the urns!)

§
Lt . Perhaps we can guess at the answer to our urn problem. |-

6. Of these were in Um I, in Urn II. A

g
N

‘: ,
,  You have learned that guesses, which at first seem reasonable, are not

"

,_»alw‘ays correct. (See Sections 7-5 end 8-2, for exemples.) ILet us see vhether,

1
1
<
: |
7
4 \
2,
¢ N
1 A
: & '
;
;
5
£
7
r «
i
4
:

' \‘1 163 3 t‘)
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in this case, our guesses are valid.
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r

200 + 150 = 350

10.° So P(I|R)

>

11.

We do know that

1
3
u -
' [

&
Similarly, P(II|R) =

<

. Once again, our seemingly “reasonable" guess fails to
. be correct. On the other hand, P(I|R) 1is greater

than P(II|R).:

vince yourself that

s

N

"~ -

-

and 3

1

If you would like to follow a different .but “Mreagonable" argument to con-
are ;Lndéed the correct velues, read Items 12

P(IIR) = MR_)

- :

Ant We know P(INR) = (Item 2)
and P(R) = (Item k).

N

'
Ia
T v R T

ol : .

‘12,

13.

1k,

15.

Suppose the experiment ‘were repeated, gay, 600" times.
T

On (about) 300 of the trials Urn I would be selected.

On (about.}
selected.

de the trtals Urmf II would be

o

Of the 300 selections of Urn I a red marble would o
be drawn (about) times. :

Of the 300 selections of Urn II a red marble would
be drawn (about) times.

That is, after 600 trials you would see a red i
merble (about) 200 + = times. ;

164 °
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i . . B N
'Of' these 356 red marbles, how many came .from .
Urn 1?2 - ' e
What fraction of the 350 red marbles came from .
Urn I1? ——— = . ' <
. 350 — ‘

3,1 - Now ?t us see if we are able to use the steps of Items 1 to 11 to reach v g
gene f ra\cednre.
L I-‘rom Bur example' oo
(a) P(IIR) = PPII? R) , by the conditioﬁ% probebility formlia (1) of

. ~ 3
~ Section 8-1. 2
et . gg\ . -
: Look at the‘numerator of the fraction in (a). ’ ) s
¥ .

) (12% P(INR) = P(I) » P(R|I), by formla (2) of Section 8-1.
o Fow look at the denomlnator of the fra«,tion in (a).
4 l P(R) = P(InR) + P(IIn R) .since a red marble must come from
i’fg% S either I or II. ) R
o ; S
2l > So, - ‘
¢ (e} P(R) = (I} + P(R|I} + P(II) - P(R|II), again using formila (2)
of Section 8-1. RS

.':17' ) .‘. ‘1*
S Substituting (b) and (c) in (a),we have ;
5 * :

: - P(I) - P(R|I) - i

P(T|R) = STy~ B(R[T) * B(I3) - PLR[IL) <o

. This last result is Bayes‘ formula for the special case we have considered.
T‘You should not try to memorize this formula. (See Remark (3), page 168.)

- TO+ help you understand this rather complicated looking formula, we shall

- - Twin brothers, Ed and Jim, deliver the evening newspaper 6 nights a

: fweek. 1!:‘.(1K delivers on 2 nights, chosen at random, and Jim on the other nights.

(i .;Tl:ey ride by a house on their bicycles and throw the “newspaper onto the porch. %
The proba’bi].ity that Ed hits the door is % and the probability that Jim hits
‘ the- door is. '125 . One night Mr. Jones is watching TV before dinnex, when he

: hears a paper crash against #he door. He sighs to Mrs. Jones, Tt must be Ed's
o :night with the papers." Wnhat is the probability that he is right?

T . 165
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18. If E is the event: E& delivers the paper, then

L P(E) = . 4
19. If J dis the event: Jim delivers the paper, then
P(J) = . . ' \

20. If H is the event: door is hit, then

2a2 Tl .
2 2 -
N .
2l. 75= o(H] ).

&% - "
22. We are trylhg to fiad the probabiilty thst Ed
delivered the paper, given that the-door is hit.

That ‘is, we need P( | ). -

L p(EAH) oty B )
..l 23. PEEM) = Sy -
. p(E) R(H|E) 24, 2(EnH) = P )-P(H[E). )
ily eam L. .
-0 25{{.) Mumerically, P(EnH) .

We now ¥now the value for the numerator of our

expressicn

P(En H)
B

P(E|H) =

4

It remeins to find the value of the denominator, P(H).|[ :

-
P(H) 4is, of course, the probability that the door is ,7
’ hit. Tt can be hit in on: of two (mutually exclusive) | . !
ways. Either E4 hits the door or Jim hits the door. | '
- . U3
‘P(Tn H) 26, P’4) = P(En H) + Lot :
v . We have found ‘- :
S ‘ ! P(EN H) = B(E) * (P(H|E) =% . % _,
©B(3) * B(H|) 2. PInH) =2 ) B )= : o
. e ) 3 u
= ..2. _1— - ——
=3 °10 1 ]
ot A ‘ ? él
— ol ;:‘
166
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. We are now able to write,

. -3

1.3.2, 1 4

.- P == 242 0=, .

(B =35+3"15 RS

Finally, E

-+ 1.3 a ;

_ 3 > I

8. PEM) =T 551 - 0T AN
: 3°5%37° 10 15 e ‘
Since the door was hit, the probability that Ed '
delivered the paper is % . .

‘ ~

-

54w a1h

, '. .
Throughout Items 18-28 we left the nmltn.pln.catlon of the fractions
"indicated" until the last step. We did thls deliberately so that you could
identify the various fractions in Item 28.

b

i3
oy

s L
o nonies W 40 gtk dnl e

' 2
, ’ PE) - PalD) . )
] v
’ . L. 3 ~
Lo PE)- = 3 - — -

BN -
P(E) * P(H|E) + P(J) * P(#|J) ' .
Once again, N ’ }
. p(ElH) - P(E) ~P(}i!E) ;
. = B(E)-P(H|E) + P(J) P(H[J) o
E‘Ebtercis.es . ’ ¢ - :

(Answers on page 323.)

1. ' Write a similar formula for P(J|H). ’Substltute the appmpriate numeri cal
v values for the varioug; probabilities. Verify that P(J IF) =

. ' o
2. HWe have worked this problem without .reference to a tree diagram. Make a

KA

B A R A I )
AN A i FENRY,
e

tree diagram, labeling the pieces and branches witkf the appropriate’

-

R T

probabilities.

*

| - 167 :
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The two ex-amples of this section dealt with situations in which a certain
event ("red" for the urn problem; "hit" for the newspaper boy problem) is the

union of two mutually exclusive events. We had ; z

& R

and H

(InR)u (IInR)

(EnH)u (InH) .

Suppose some event, E, is the u.ion of three matually exclusive events.

. E = (Flﬁ E) U(F2n E)u (F3n E)

A portion of the accompanying tree diagram would look like the following.
(;['he short lines indicate other branches that do not involve E.)'

-

. .
; T et
gl b _3d o, T St s

~. B [

~

- ) E FiNE

/. p(E|F,)) N i

Fl / - “D

£ P(F)) B
P ip(pz) F, P(ElFa)—E FNE .
:}‘ - - . : S’
: P(F,)—F P(E|F,)—E F.NE -4
Sk (Fy) 37 FCEIF) 3 oA
5 P(E) = P(F,N E) + P(F,N E) + P(F3n E) . g
% P(F N E) . :
£ ‘o = Y 3
A BF ) = —5g— ;

o

P(Fl) . P($|Fl)
= B(F, ) P(E|F,) + B(F,) B(E[F,] + P(F3) ‘P(E[F;)

5

(1) To obtain similar formulas for P(F2|E), P(F3|E) it is only

necessary to modify the numerator accordingly.

(2) If E 1is the union of more than thziee mutually exclusive events,

it is clear how Bayes' formula is extended. - .

(3) There is no necessity to memorize Bayes® formula. It is simply a
restatement, in different form, of the conditional probability




)
The numerator of Bayes! formula reminds us

formula of Section

7-3
P(Fl)-P(EIFI-). The denominator is just another

thet P(F)N E)

Any problem in conditional probability in

ion for P(E).
this course may.be solved by using the methods of Chapter 7.” Of

express
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» tree diagrams are often helpful.
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8-k. A Further Example: Exercises.

Example: ’ . . 7 ¢
A factory has 4 machines producing axe handles. Machine I produces Ly

’30 percent of the output; machine II produces 25 percelnt; machine III pro-
«duces 20 percent; and machire IV produces the rest. Defective handles, pro-:
duced by gga‘;:h machine are 5 percent, & percent, 3 percent, and 2 per-
: cei\rl'., respectively. ‘A handle chosen at random from the total output of the '
factory is examined and found to be defective. What is the probability that ‘

4% was made by machine I, II, III, IV ? )
/

‘ R

1. Originally we knew that if- a handle is chosen at. ’
rendom, the probebility that it came from machine I
is P(I) = .

whoed
“(
.
w
()
B

- A pebo e d!
ST
Sorw o

R
7

s

P
.

Now we .have additional informqtion’. Thq handle is . .
defective. We ave interested in P(I|D), We use D

P

for the event "The chosen handle is defeci:iv_e_'j.

a2 I

Bayes' formula applied to this problem is:

=
n
.

. P(1)-P(D]I) ) ‘ P(I)*
- P(2]|D)= FrTy-F(D[T)+P(TI)-P(D|TL)+P(ILL)-F(DIIIL) +
P(Iv)-P(D|IV) _

o

- .
. TR
R R el S

-

P AIRA T A iR N S0
PR . Wy

4]
k3

Our given information is sufficient for us to know
all the individual probebilities on the right hand

s’de of the last equation. For example: >

PN

3

okira e Le

.25 . 3. P(II) = B

t
s

.
'

.0h 4. »(D|II) = .

5. Substituting the appropriate numericel values, we

L oo WA e gl

.015 find that/the numerator = . .
(decimal) :
.036 6. The denominator tecomes .

Z decima-l 5

[ -
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The probability that the defective handle ceme from

machine I is '1_52' . t 5

4

If you had trouble, coupare your work with:

P(I|D)‘ = ' (.3)(.05) ' .|
(3)T-05) + (.25)(.08) + (.2)(.03) + (.25)(.02)

8.  The original probability that a handle chosen at o
random is defective (P(D)) is . B Cord

P(D) is, of course, the denomin‘ator of our fraction.

>

) .

N So ey
TR, e S R A

L3
. You should now be able to compute the probabilities that the defective B
3 . handle came from machines II, III, IV. Remember that you will use the same Lk
B .‘Qét_mminator, P(D), for all of your.celculations. ;
L0 Y. . o
} T
9. Hup=___ . . g
4 < R
.10, P(IIZ|D) = - . - . : e Ll
1. P(1v|D) = . R ] o
AN . . - =" .
. 5:5.1,.5_ , 3
_ 120 ~Ch,80k.' 12 + ’ig + 3 + '33 = L] r»;
T
In a {wo-year college 60 percent of the students are freshmen, ho per//,_.:
” cent sophomores. Of the freshmen, T0 percent are 'boys .. Of the sopho- .
mores, 80 percent are boys. A student 15 chosen at random. Find the )
priobability. thet the student is:
(e) a girl.
* ¢
(v) a freshmen, given that a girl was chosen. . *
&_*_ ' - -




See Exerclse 3, Section 8-2. The 'boy uses one machine without noticing
waich one. He receives 1 pilece of gum What is the probability that
‘he used machine A ?

‘See ‘Exercise 8, Section 8-2. We are told that Kate wins. What is the
.“probability that she won the first toss?

h

i

ége Exercise 1, Section 8-2. Wnat is the probsbility thet Urn II was
_selected, given that the marble drawn is numbered ot ¢

R SO B

T A
.

-

For each of the urn pro'blems of Exercises k, 5 and 12 of Section 8-2,
f£ind the probability that the first marble arawn fs red, given that the
second'is red. (Each time we start with ap urn containing 6 red and
4 blue marbles. In Exercise 4 we "replace". In Exercise 5 we do not
replace. In Exercise 12 we replace and add two of the first color drawm. 3
Before doing‘ the calculations, you should be sble to judge for which of
these situations the'condi:hional probability is the least and for which
it is the greatest.)

Use Bayes! formula to answer Exercise 8(f), Section T-h.

Use Bayes! formula to answer Exercise 9, Section T-k.




Chapter 9

BERNOULLI TRIALS

L
’*9,-_1. An Experiment.

el

) A géamé%has the following rules. Throw a die three times. You win one
F()pi:li’c. each time you throw a8 5 or 6. Otherwise you score nothing. Play the

;™. -game’ 10 times. Record your results in a table as shown.

i N M y

i sFirst Throw Second Throw Third Throw Score
3’) f . " '

6 3 5 2

How many times was your score 37 2?7 1%? 0°?
Record as shown on a ‘table of frequencies.

Score K 0 1 2 3

Number of
times ‘

——d

Do your resulis seem reasonable? For example, did you expect that the
namber of games in which your score was 3 would be sbout the same as
the’ number in which your score was O ?

‘

What was your everage score per game?

Supposé you have a spinner colored red and btlue, but no die. You would
like to use\ the spinner for experimenting\with the game. Could you?
What must be true of ~the spinner.to permit this?

+

This experiment is discussed on page 306.

173 33




- s
P %

— ::,9 ,é,.:' I‘nti‘owctfono . . "’ i

e ey ’,‘g‘,:ix;,; Inia certain dice game a player throws one die three times. He scqres

R wsone pointaeach time the die shows 5 or 6. What is the probability that his
- ¥otal.g ‘re is exactly 2 7 (Notice that this is the game described in the

experimen{:‘ of Section 9-1.)

=

As usual, we first construct an appropriate set of outcomes., A tree helps
us to visualize them. We are iuterestted only in whethér or not a throw wins

w4

g d

.8 point. Hence, we let S stand for success (winning a point) and F for s
fail“re' ) ’“:,i‘
Third. -

_ 1 b4
: ‘- Second Trial ;-
'-‘:!::’ Trlal/s h %
) S - -\' 1, ' N k

' ‘ \F j‘:“

,

H

We may list the possible outcomes as:

' sss, SSF, SFS, SFF, FSS, FSF, FFS, FFF.

b

TN

R

.
e el e L

'SFS, for example, is a shorthand for Msuccess on first throw and failure on

R

v

second and success on third". ‘ .

A A 4, ool
[}
vy

., ons

foata

g

1. The player throws in succession 6, 3, 5. To which |,
> of "the above outcomes does this correspond?

2. Are success and failure on the first throw equally
likely?

At e

Ao
;

'

|
t
4
'
'
|
|



et B(S) be the probavility of's sucééss-on.ahy
given throw end . P(F) be thé*probability of failu:
Rs)=___ ¥ 5=(5,60
: & ' - .
P(F) = - . F= {1,2,3;1}}
k. Since the individual throvs ‘are 1ndependent .o
P(sFS) % B(5) ~B(F) * ___ét_ . &
. 5.: P(SFS) = ‘ . - ' \ - s B S ¢
6. Ve want to find the probability that the totel.score |
is é_‘. Thé:outcomes are SSF, SFS- and . . .. *
) ' ' ) R |
7. Since each of these cutcomes has probebility 527, 7
P(scoré of 2) = . o L
R

Sl - L < )

’ ‘{ 'I'he pro'babilitiés of S andof F ona single ‘throw can be
: &our ‘tree diagram Third

Trial
S sss, P

\F SSF, P o

s SFS, P

et b mtde Bua e S e

)

et aet

S - FSs, P

//
\F SFF, P
-

s FFS, P

~r FSF,
/

¥

. F FFF, P = 27

R Readers of Chapter 8 will recognize t’ .is tree as a special case of the more
general situation discussed in Section 8-1.
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L v.ro.once
A

%\

twice

M@._
R

I L
+-%-‘:{-+-2—7—
L3
27

8. 'The probability’of obtaining S ou the first throw
is .

9. The probebility of obtaining F on the second throw
is .o )

10. The probsbility of obtaiaing™F on the third throw
s . ’

11. The probability of the, sequence SFF is _ .

Notice that this can be found by multiplying the s

" probabilities along the bramch.™

.Look at any branch containing one S and two F's. &'hga

probebility of such a branch is the product of three

factqrs .

12. 1In this probability, —13- appears as & facfor

. (how many times)

2 appears &s a factor .

3 {how many times)

/ .
In each case, we can f£ind the probability for & branch by
multiplying the probabilities for the pieces along that

branch.
13, The event "exactly one S in three trials" contains
the outcomes SFF, FSF, and .

14. Each of these outcomes has probability .

~

L
15. P(exactly one S in three trials) = = * 5 +

16. This last is more simply written as

[{]
~
.

P(exactly one S 1in three trials)

" 17. In a similer way,

n
W'

P(exactly two S's in three trials)

A
PN

.t

,
e e S e,

N o e e

B 5ty i redre s rwh e e ged S

.

.
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”Let us,re-exmune Item'17.

, " P(éxectly two S's in three “trials) = 3 -2% . \

<

NS

Where did the 2 come from? For each appropriate branch we multiplied the
in some order. It is helpful to write:
"'."” 1.1.2_ f. 2 fj
o 3 3 3 3 3° e i
R
K
: ¢ .7“.%‘.‘
o 18. The probebility of exactly two S's in three trials X ;x
Sy 2 . P
(3 ) s 3 ( )2 ). 5
) 19. The probability of exactly one .S in three trials (f ;
o R : R
= s . Lo
You should notice that the event "exactly one S" 4is ‘the
same as the event "exactly two Fis". TR
‘ " 17
20. This is because we have - trials, each of :
B (how many), 4
* which must yield either S or F. SR B
I8 -

s . .

The eg;_gipple w2 have been considering is typicel of many problems ., /Therc; * )
are three specv:ial features of this example that need emphasis.

(1) The repeated trials 'of the experiment ere independent.
(2) ,;Zach trial results in one of two outcomes. o

(3) The probebilities of the two outcomes remain the same from trial
to trial, ' .

~

) Prials satisfying these conditions are called Bernoull‘ik}trials, after the
_matheinatician James Bernoulli.

&

4 *+

& } }

' 21, ‘{’ossing a coin 5 times forms a sequence
* Bernoulli © 4 ., trials. ) .

» x-
v

2 T 22. There are outcomes for each trial, H and T.

~
P

e

-
e s
Y

o




25.

P(H) ="

an(i ’P(T) =

The total number of poséi‘ble outcoumes for tﬁe five
trials is .

“a

& I R
A typical outcome is HITHT. What is the probability |
of this, outcome? ‘ '

L————-

In this case, £11 32 outcomes ere equally likely.

.

-

- — -

f

1

.

f1x

{ s
1 -

Spigning this spinner 4 times wi}:i give a sequence of °
Bernoulli trials. ‘ T

e i

i

. 4 »

L4
i

26. For each spin, P(8) = , P(F) = .

~

27, The total mumber of possible outcomes for four

trials is _ .

A typical outcome ig SFFS.
of this outcome?

What is the probebility

Notice that the response to Item 28 is not 1% .

The 16 outcomes are not equally likely.

29. Which of the following does not form a sequence of
Bernoulli trials?

(a)
{B]

(el

Throw & dle 10 times'.

Throw & die 10 times.

or 6.

Throw a die 10 times.

Record "odd" or “even".

Record 1,72, 3, 4, 5

Rerord 3 or 'mot-3".
A
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N
In [B] there are 6. possible outcomes for each trial.,
Bernouli trisls must involve just two outcomes, 50 your

. resgonse should have.been [B].
s N N L4
- SN
i s ® .
“ = {Exercides. ‘ . (Answers on page 328.)

Drav & tree diegram for 2 Bernoulll trisls where P(S) =M. Label each
piece and branch with the appropriate probability. Find the probability

S of exactly O, 1, 2 succegses.

2. ‘f}ra'w & trae diaéram for 3 trials of tossing a coin. (You may wish to
use H, T instead of S, F.) Use the tree to Eind the probability of
0, 1, 2, 3 heads. -

An ufn contains 3 red, 2 blue marbles. A marble is drawn at‘random,o
its color noted, and is then replaced. Again a marble is drawn at random :
and i*s color noted. What is the probability »f obtaining O, 1,2 red
valls in The-three draws?

6-3. A General Formula. .

Here is a further example of Bernoulli trials.

‘ A baqebail pgyer's batting average is .300. Assume that
’ each "at bat" is an independent trial.

1. If ne comes to bat 4 times, what is the probebility
+26 that he gets exactly 2 hits?

If you need help, complete Items 2 to 8.

We are dealing with U4 trials. Letting H stand for "hit"
end X stand for “not-hit", we may list the outcomes as:

-

R R T
v .|"

HHHH, HHHN, etc.

. = , ‘ 19 39

At

v A




267 % 3
A "‘ s ot ‘
N '
T
&, 6
'?.17)‘(‘.3)( .3 X 07,
i ;;,9’41#1 ’
b 3B? '
: 8.
6.(.33%.7)°
.26

The outcome "hit second and third times at bat and
made an out other times" would be indicated

'There are in:all possible cutcomes, as you
can find if you list them all. (Make.a tree diagram
if you need to.)

-

Of these, the event “exactly 2 hits" contains

outcomes. (Iist them, if necessary: HHNN, HNN, etc.)
p :

For each trial, the probability of H is .3 and
that of N is . : ;

{Either he gets a hit or he doesn't. Hence, the
probability of his not getting a hit is 1-.3, or, .7.)

The probability of the oixtcome NHHN is
X3 X X )
imately .O4k. We may write the product
I X 3 X 33X T es (.3)2(.7)2 .

or . which is approxs

Similarly, \\the propability of each’ outcome with
exactly two'hits is (.3)2( )aq.

\
Since 6 ouﬁgomes in all contain H exactly twice,
the probability that the batter will make exactly two
hits is approximately « (3 )®, or approx-

tely . N

.
t

This problem, like the examples in the last section, deals with repeated
.trials of an experiment such that:

(1)
(2)

(3)
to trial.

the repeated trials are independent;
2ach trial results i{n one of two outcomes; and

the probabilities .of ‘he two out.omes remain the same from trial

T Ty AT s o 0 vslans

-,

Y g e
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We. can state a general formula that can be used in such problems That
iis, = can sta*tn a general formula for the probability of obtaining exactly k

ué‘uc?:esses-in .n  Bernoulli-trials. b

w Fak v

..

- t 9. If there are exactly Xk successes in n trials;,
n-k there are failures.

LR . L
o

Let p Dbe the probabj:lity of success on eny single trisl,

» ) .

. 10.. If q 1is the probebility of a failure, then v
a=1-3 7 gen. .

~3
-

¥

‘"pt+tg=1 11. This is true becalse p 4 q = .

3
-

iz. The probability of each single outcdme containing k

. L eee
.

pkqn'w‘ S successes and n .- k failures is o0 P4 v Hence
s " the probability of exactly k successes 15 : .
¥
y z ! number of possible outcomes) oKLk =4
’ . 'with exactly k successes Pora | R
Test your understanding' by comparing with our result in Item 8 :
RN ) -13. In it, n = s )
iﬁ‘ -3 ) - b=_ s
3 .7 v q = , .
? number of possible outcomes with / ) s
‘(‘.;\....,.\.\_; - .. exactly k successes = .. LA
2- : 14, .In this case, n - k = . H
\ 1 e found: probability of exactly k successes is:
2 2
6-(.3)°C.7) .

If we had 3 Bernoulli trials with P(S) =p, P(F)=1-p =g, our
tree would look 1i; . this:
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n

2
pa

2
qQp

15.

16.

17.

13.

-

For 3 trials, the probability for each branch con-

taining 2 S's end 1 F

-

There are )
(how many5

-

Hence, Plexactly 2 Sts) =

L
For n trials, the probability for each branch con-

and n-k F's

taining k S's

Hence, the probability of exactly
Bernoulli trials is:

-

number of possible outcomes
with exactly k successes

is

such branches.

*paq .

1

)

is .

N n-k
- q .

K successes in n
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_n

e
A TR Nt S
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let us examine the product pk . qn'k . (q, remember, is
1-p.)
19, If n=10 and k = 3, then
k n-k
P3-‘!7 . » .gqg =P3-QD .
No . 20. If n = 10, is it possible to have k = 12°%
k is the number of "successes" in n trials.
r We can't have more successes than we have trials!
‘ 21, If n = 10, what is the largest value k can
' 10 ’ have? *
% 22. If n = 10, what is the smallest vealue k can’
o] have? *
. For 10 trials we may have either 0, 1, 2, 3, 4, 5, 6,
' 7, 8, 9, and 10 successes. '
- For 2 successes in 3 trials, the product p2- ql is understandable,
since ql = q. What if we are concerned about ' 3 successes in 3 trials?

3.0 0

Oux product becomg p°q . What meaning should be attached to q ?

Sk i hgh YA e
4 "o

1

e owate g

Let us vecall an example. ’
, . In Section 9-2 we considered a game where P(success on
4 any trial) = L .
< R 3 .
1.3 3
5 3) 23. We saw that P(SSS) = () .
-3
22
[ 3 N
T 24, If our formula is to hold for this case, then
¢ 3 3,0 3
5 1 1,7,2
B =) =) (5) rmust equal .
?( (3 (3) (3 au ()
2 s But (3-) times "something" can equal (3-) only if the
: "something" is equal teo 1. .
13 a3 )
C 1 25. \g)Y=(§1 only if y = .
Hence, (-§-) must be 1 1if our formula is to hold.




T We decide, therefore; to define qo as 1. (q £0.)
poc;_n ‘ 26. What if k =0 ? Then pk . qn'k becomes pD q[;! .
¥ 1 - 3
27. If you think a monont, you will see that we define .
1 0
v 1 p as __ . i
A ’:
o , : 5 ) 4
RS & . . . 0 . ;
%r ¥hen you study algebra, you will find that the definition of BQ, q £ -
£ given here is consistent with other mathematical usage. ' i Vi
- We have seen:
Probability of exactly k successes in n Bernoulli trials;
number of possible Gfxtcomes) . k. nk . 1
N with exactly k successes e )
; It is convenient to ‘have a symbol for the first factor in the formula. E
We will write E for the number of possible outcomes with exactly k
successes in n  trials. t 4
28. (‘13) means the number of possible outcomes™ with
1; 3 ’ exactly successes in trials.
¥
3 29. ]3. = . (If you weren't sure, look back at
‘ the first tree in Section 9-2.) ;
30. g means the number of possible outcomes with .
2; 4 exactly successes in trials.
6 31. - (g) = . (Look back at Item & in this section
' if you weren't sure.)
u - - »
1 3e. (O) = . #
1 33. This is true because there is only outcone
FFFF with nc successes in 4 trials. This outcome is .
1
1 34, 2:) = . (The only outcome with U4 successes
is" S8sS.)
; ' |
“ERIC o Py C
"k | ‘ |
3 - |
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N
&
«

-s:,:ymh r
. A
fEN

N ‘ .tha.n trials .

¢ yytrials becomes, using our new symbol:

“
o

using the formula.

‘iotice, ‘once &gain, that in the symbol '(k , k can be any of the

) nuﬁbers 0 L, 2, sesp ne It cannot exceed n; there can't be more successes
- . - L]

n

5 %)

: Our result for the Erobabilit of exactly k successes in n Bernoulli

EY

(f)pkqn-k N
k * . . -
e

This is always possible.

In the next example, the number of trials is large. We shall not carxy '’
H
out the-necessary calculations.

20

Aruitoxt provided by Eic:

4 student takes a multiple-choice test in which'each
question has 3 choices. There are 20 questions.
Since he has not studied at all, he décides simply to
pick an answer at random for each question. What is
the probability that he will get. exactly 16 corrett?

2 ’

35. This is a situation with trials.

36. There are 2 possible outcomes for each trial,

hence ( )20, possible outcomes for the 20 trials.

\

»37. On each tri%l the probability of success (getting the
right answer) is , vwhile the probability of
failure is > . .

35. He gets exactly 16 correct if he misses exactly

questions. .
We can apply our foermula to find the probability that he
will get exactly 16 correct. .

In solving problems, you may prefer to think about the tree, ﬁi%hout*ﬁﬁiéﬂhéggégg

v

@

v
K3
sa

LIS

,
< BN ke

2 5

G

R

< TS 4

Ay s v

o .




[0}
-

I R TR
LA v et Ny o b 2t et e e £

[0}
]
i
4
t
i
H
i
{
}
*,

o

» ;
e em b,

“

16 . &
Probability = (fg)(%—) -(g-) .

4

*
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P
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Infor r to ‘compute the probability, we are faced with the‘problem of

6 --that is, of counting how many outcomes (out of * 220 or

g ,576) lead to exactly 16 successes. (1t turns out that there are; h8k5 ). o

3,

w7
PR

TS R SR P S DTN L)

‘fhe other difficulty, that of handling the aritimetic involved in

hBhS . (l) (—) , may be overcome by use of a calculator or by compq&a}iope;l-,
" miethods that you will learn later in your study of mathematics. There are 8180
3 ~tables which eliminate the need for much computation. ’ 4

e

I aem

- . ! g -
Warning! i) is a symbol for the -number of ways certain outcomes occur. ,

°  &Hence, (2 ) is & founting number, not a fraction. -
. k countling s RO

Fherrver g 4t f e

o~

" \Exercises (Answers on page 330.)

-

1. InTtems 1 to 8 we found that for a baseball player with a batting average
. «of .300, P{exactly 2 hits in L at bats) = .26. Complete this

P o, B S e ety A AC T g e
R AL

example by finding the probsbility of exactly 0, 1, 3, k& hits in L4 at
;.’:; bats. You may Iist the outcomes or use a tree diagram to help you in X
*;% counting.
o . ' !
; What is the probability that he makes at least 2 hits in U4 .at bats?
. " 2. Five dice are thrown. What is the probability that exactly one of them ;
:;. shows a 3?7 (lLeave answer in terms of powers.) %

. Y
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3. (a)w Think ‘about tossing 4 coins. What is the probability of no heads;
of exactly one head; of exactly 2 heads; of exactly 3 heads;

of exactly U4 heads?
\V2 -

(b) Try really tossing 4 coins several times. Record the number of
times you get no heads; one head; etc. Compare with the results
you have computed.

v

(¢) Wnat is the most likely number of heads when & coins are tossed?
What is the probability of this resuTt?

4., Ten dice are thrown. What is the probability that at leqft?one shows .
a 67 (Hint: You might find the probsbility of one 6, two 6's, etc.,
and add. It would be simpler, however, to begin by finding the probability
of no 6's. Leave answer in terms of powers.) ’ R

9-4. Tne Pascal Trisngle

oy

We have seen that, in a sequence of Bernoulli trials, the probability of
exactly k successes in n trials is found by multiplying p q? -k by the
number of outcomes with exactly k successes. (Again, of course, p* rep-

résents the probability of a success on any one of the n independent trials, )

Our next task, then, is to discover a convenient method of counting those
outcomes with exactly k successes. That is, we wish to find a method of

f£inding the value of (;). .
First of‘all, we should recall how many possible outcomes
there are altogether. ’ o
2 1. For 1 Bernoulli trial there are possible
' ouécomes, S and F. (how many)
22, or 4 2. For 2 Bernoulli trials there are
(how many)
possibie outcomes: 88, SF, , and .
L)
18 ~
147

3
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N N ooz

For 3 Bernoulli trials there are possible

cutcomes., (how mamr}

In general, for n Bernoulli trials there are 2

vossible, outcomas,

TR,

For a single Bernoulli trial thege are outcomes., One outcome yields
X success, the other yields 0 successes: _11) =1, (36) =1.+ )

o ag

T RERA I Y

5

In the case of 2 Bernoulli trials we have, as the set of possible out-
comes, (ss, sF, FS, FF}. We notice that there are 1, 2, 1 outcomes which
%
- ,.jyield respectively, 2, 1, O successes. That is:

On ()en o 7

5. Develop a similar statemen‘£ yourself for the case of
3 Bernoulli trials. Refer to the tree in Section 9-3, |/~
if necessary. Although it involves a bit more counte- :
ing, try to extend this idea to Y4 Bernoulli trials. i

Find (;t), (g), ete,

Compare your answer with the lists below.

Total Outcomes

(3 2 o

S S N IR R

s

k3

e YN | A e

AN e g W e S SR,
KR

1 trial (l)

o

-,
(=]
(=]

et 2y

2 2 2 2 -

& 2 trials . (2) (J) (0) L

1 2 1 -

3 3 3 3

L el B | & & |6 8 ,

: ' 1 3 3 1

3 L b L h h

e [ TO O] O] W]

3 1 4 6 h 1

{ N

’ You may'havg seen this pattern before: <‘
i 1 trial LI |
2 2 trials 1 2 1 . |
B 3 trials 1 3 3 1

: 4 trials 1 4 6 4 1

~

* Q 188
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are sble to guess, it is helpful to read the dlscussion that follows.
going to build up the pattern for 5 trials from the pattern for & trials.

16

32

Can you guéss how the next row (for 5 trials) will look? Even if you

SFFS

Let us find g by using what we already know about (g) and h)

We are

6. There are altogether ., outcomeg for
4 trials. (hov many)

7. There are altogether outcomes for
5 trials. (how many)

.

-

8. Every h-trfal outcome (such as SSFS) leads to
5-trial outcomes. (Think about the

(how manys

tree diagram.)

9. In particular, SSFS leads to SSFS___ and to
¥ ssrs .

‘

10. The 5-trial outcome SFFSS 1is obtained by attlaching

S to the h-trial outcome .

s

2

Think ebout the tree’ diagram for 5 triels. To obtain a branch (of the
5-trial tree) witn 3 successes, we may proceed in either of two ways:

A

(a) attach an F to a b-trial branch having 3 'S's; or
* (b) attach an S to e l:trial branch having 2 S's.

R L il RPN

-

11. We have L-triel outcomes with exactly 3

successes. By attachinm,

to afdy one of them,

Iwe get a 5-trial outcome with exactly 3 successes.

(Example: ‘The 4-trial outcome SSSF becomes SSSFF.)

12. We haye h-trial outcomes with exactly 2“
successes., By attaching
we get a 5-trial outcome with 3 suceesses.
(Example: .SFF becomes *SSFFS.)

to any one of them

e ek ey e L wE e




g - - ) o . . \' .
137 Are there other h-trigl outcomes that can be ché.ng'gdﬁ' :
to 5-trial outcomes with three successes by attaéhing%f

- . i
|

~an--S. or F ? B

4

1} 14. Thus we have found all the 5-trig)& outcomes with 3
successes. There are + ", or
them.

-, 0f

i N
s - ‘,J%‘na -
;‘Ifgygyo%z;should be able to write the complef;e pattern for the 5-trial
“'a;\lii\ 3 /:\: ' ‘. N ’

. ‘ - )
- - T . - ? .

15. The 5-trial pattern should begin with 1, because :

. the only "5 success" outcome for 5 trials

is S8 - S

r
k3

16. The next-entry should be the number of ways of gettigé:

4 successes. Therd are: B “:sluch ways. You .
could see this by ‘noting that there is Just one @u
failure for this outcome, and it can be on the first,
second, thi'rd, fourth, or fifth trial.

A Y

e

~1 17. You could also think: I can get L " successes by

o~

attaching to SSSS. I can also.get &4 E
successes by attaching to each of 'SSSF, SSFS,| = &
SFSS, FSSS. ' : *
18. Hence, for 5 trial.s the total %er of outcomes ‘
with b successes is: 1 + , or 5. z

v

| We have already found that (g) =L +6=10.

P
o N e ¥ gkl

By now you should see what is going on. Our results thus far can be
suxmed up as follows:

i
¢
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10 10 5 i

1. In each case there is only

: e
We have written the patterns for 1, 2, 3 , 4 and 5 trials. You should .

t‘come with\no snccesses .
AN

ﬁe‘ by now how to write the xow corresponding.to. 6 trials » and then how to so

19. Write the 10 rows for 1, 2, 3, ... 10 Bernoullf
trials. Check with the answer below. '

s

n
'I‘algle qf ‘k) ,i
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21 + 35; 56

-

; .
P oo
£

oy

Y

This teble is pert of the array

be extended to any required number of rows.) It is nemed for the seventeenth

_ denitury French mathematician Blaise Pascal. To make it look more like a
triqgg;eggi could insert an additionel “1" at the top. (We would call this

- the 0, row, associated with no Bernoulii trials.)

known as the Pascal triangle. (It could

20.

2l.

2.

What are the first two entries'of the 27th row of ?he
Pascal triangle? C ity .

What are the last two entries of the 431rd row?

P .

-

h .
T

tlow many numbers are there in the Sth row? ..
How many are there in the 18th row? .

23.

2k,

25.

<G,

T c¢oins are tossed. For how many outcomes are there
exactly 5 heads? « If you hed trouble,
complete the box. If not, omit Ttems 24 to 26.
Notice that tossing 7T coins éan'be considered as T

Bernoulli trials.

@he row of the Pascal triangle corresponding to 7
%oins is:

\ 1

!

7 2 35 3 21 7 1.

Fr‘§m this
healds 7
heaég 6
heads 5

There is 1 outcome with
outcomes with

row w read:
times. There
times. There

times.

ere

are outcomes with

T coins are tossed.
heads?

For how msny outcomes are there

exactly &

Now think of tossing 8 coins. For how many outcomes

are there exactly 5 heads?, 21 + , or .

i

(Think again about the reasoning we used earlier, and then
check with the Pascal triengle.) ]

2 52

v




: Read:bhevnumbers in 8 row of the Pascal triangle from left to right. Now,

r&d the same row from right to 1eft. Did you say the same numbers in the seme

order both timea‘t You did, of course. You will pi'obably see why this must be

*the case it ¥ou think of how a Bernoulll tree is constructed, This synﬁﬁet}-y is
:%g@gggg again in Section 9-7..

N ép*-o'x‘der to use the Pascal triangle more readily, it is convenient to
. :é,zf':an‘ge. 4t 4in the form of the following table.
- 4

PE TR G e g s A oA L Se STades o e IS N B
SN =\‘ T I 2 . LT el

Teble of (;) (£rom Pascal triangle)
,.;2{9123k56789;.101112131u'15
14
2l1 2 12
31 3 "3 1 )
"Wl B 6. k1 * .
sty 5 10 10 5 1 ‘
611 6 15 20 1B 6 1
711 1 2 35 35 20 7 1
81 8 28 56 70 56 28 8 1 o &
9l 1 9 36 8 126 126 8 36 9 1
10/ 1 10 4 120 210 252 210 120 4 10 1
1 11 55 165_330 462 k62 330 165 55 1 1
i'ig6622h79292u792u9522066121 7
_1' 1’ 78 286\ 715 12\87 1716 1716 1287 715 286 718 13 .1
1 1&( 91 364 loor 2092\€003 3432 3003 2002 1001 364 91 W 1
1

1 15 105 455 13?5 3003 3Q05 6435 6435 5005 3003 1365 455 105 15
\

il

\
\ \
‘ \

We have a spinneI\ colored red and blue. Suppose we Think

of Spini{iﬂs 8 tfmes. There are 28 = 256 possible out-

comes. How many of these will show exactly &4 red?

27. Look at the 8th row. Go across it to the column with
L at the top. The number we read is .

y oo
okl e xR

bt e

-rn

e
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165 N
36

36

i

28. We spin 5 times. The number of outcomes with )
exactly 3 reds is . This is also the nuiber \
of outcomes for S5 spins with exactly blues_.

3 . v

.
.

- b3

-

Here are some additional problems to give you practice in using the table.
If you think that you do not need the nractice, go on to Section 9-5. ¢

=0

29. (131) =! . ’

i
-

w () —

32. ‘The pumber of outcomes with 8 successes in 12

tr:!.als equals the number of outcomes with !
successes in 12 trials. {how many)

- () 6)—

Although our table only extends to the 15th row, you

33

should be able to tomplete Items 35-38. .

20\ _ (20
3 (20) B N

- (99—
- (29— .
( .

1000
38. 999)




fihe Biromial Distribution

>
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We are now ready to return to our formula:

£
o
,'2.‘§~
ﬁ; the value of
N
W
.

£, . 4
\v
3
19
k3 .
)
]
& .
k]
:‘\
& 13
%

2
g ?
¢
%
%
Ed
£
-
5
g'
)
7
3
H
3
;
L
k]
-
1.
£
D)
.
LT -
Y
i 8; .2
;
; .
|
: (h\ e
» b
:

O

T

B o e e
v

Let us start with some examples.

n
k

P(exactly k successes in n Bernoulli trials) = (5)pkqn'k

Use the Pascal triangle to determine

Assume that the probability of a successful launch of a

certain type of satellite rocket is .8 . Assume further

that successive launchings form a sequence of Egrnoulli
trials., .
- AN
1., Four launchings are attempted during a given week.
Complete the following table. Record the probabilities
to 2 ﬁecimal places. -
Number of Successes Probability
(x) L kK, 4k
; K (.8)%(.2)
L
3
2
1
° )
L)

Compare your results with ‘Table I, which ‘follows Item 10.
If you had difficulty, complete Items 2 to 10.

2. We use the formula:

P(k successes) = ( )pkqn'k

with n = .
3. P(4 successes) = “ﬁ’ E] ]
- ‘) (.8)%(.2)° .
195 /\ ,



Hence, P(4

Similarly,

a

’

?

P(L success)

E

10. Hotice

at

s '

ings in &

p(0

.Reu(embez; that (.2)o =

P(2 successes) ( )( ) (1 )

P(0 successes) =( )
4

é «
='1(.8)1‘( 2)° ..
1.)

successes)

( ) C3a*
1(.8)3(.2)

'
L~

S

NS,

ey

P(3 successes)

I

»

af

- 5( 83( r.)2

=(‘l*

~

L]

)(.8)1(.2)3

03

(.8 (.2)"

Sf o 8

the probability of no succegsful launch-

Wy e Al e

triels is not exactiy O. In fuct,

successes) =

Here is the completed teble:

Mumber of Successes

-

! P*obability -

( )( 8)%( e)“'

R

11

15

.03

AP,

P

.
3

r‘ .m

~

K

Table I
(n==54, p=3)

156
56

v



Remember that the probabilities 1. Table I are recorded to the nearest
hundredth.

11. For a certain type of light bulb, the probability
) that it will burn for 200 hours is .8 . If L4 of

these bulbs are installed in a certain room, then,

. after 200 hours, .
A1 . . P(none have burned out) ~ (two decimal places)
51 , P(exactly 1 has burnea'out) ~ .

.15 P(exactly 2 have burned out) ~

03 P(exactiy 3 heave burned cut) ~ . -
.00 P{exactly 4 have burned out) ~ '

on\ggg}d, of course, have obtained your responses o Item 11 by actually
calculating égzﬁ\ichab;liiz;\\EFstead, you used Table I. Such a table is
" *

calied a probability distcribution. In tais case it is the binomial probability
T
- distribution for n =L, p’= .3 .. As you see, once & distribution has been
determined, it may be used in e variety'of situations.

We may consider other tinomial distributions, for other values of n and
x. For each value of n we rave many tinomial “distributions--one for each
value of p. Of course, if we know p, we also know gq. Observe that the

possible values of k are 0 <k<n.

Let us take n = L and construct a table showing the tinomial distribu-

{ tion for several different values of p.

12. Complete the following tsble. As you proceed, you may

£ind Wweys to shorten your work.

X .2 -31- 4 % .6 § .8
) 4 .01 .06 b1
3 10 .25 5L
2 30 .38 .15
1 .40 1.5 .03
' 0 .20 .06 .00

Compare your results with Table II, whick follows Item 18.
If you had difficulty, or if you did“not discover the short-

. ” cuts, read Items 13 to 1.

»* .
A binomial distritution, as we Lave seen, arises in confection with a sequence
of Berrowlli trials. The name "binomial” is explained in Section 3-6.

Q -
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You need not do any computation at all in order to complete

" ? v,
Fom b st o A s 05

o
’vwr

q:.lsn e e T M

the column for p = .2 .
«13. Consider k=3, p=.2 . We need: ) “»—-«'_i
(S ) :
L 3 1 1
S0 R
' B/
14, But, (5) =‘D> and (. 2) (. 8 = (.8) ( :2)3 c
Therefore, . ' T
4 1 _ (% 1 -1
(earcor - (Heorcer .
A A
i
15. The right-hand side of the last sentence is the entry ,;2
' for k=1, p= . e
16. This -entry is . tx
decimal -3
. ¢
Similsrly, you can immediately complete the column ’*!
for p==%<.
3 oot
— : §
17. The entry fom is found as follows: ’
()(6)(’)~-l3 R
18. .13 is also the entry for k = , p=.b . -
Thus, once the column for p = .6 is completed, we may
immediately write down the colum: for p = Ao
5 .
1 1 2
k .2 = b = .6 = .8
3 2 3
4 00 |01} 03] .06 .23 .20 | .4
3 03 1.0 151 .25 .35 40 | .0 -
2 15 | .30 .35 ] .38 357 30 | .15 .
1 AL k0| 35 .25 15 ) .10 | .03
0 b [ .20) 23| .06 .03 1 .00 | .00
Table II
Binomial Distribution, n = b ) )
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It is worth a few moments to study Table II. You should notice several

'general patterns. . -

19. We have already vointed out that if we read down the
column for p = %, we find the same entries as if

we read the column for p =

wiro

FaPn s ¢ b3 AR Y R 5%,
. MR
J

¥

20. As we read across the row for k = k4, the entries

i

- . increase : in value.
{increase,decrease)

21. Reading the row for k = 3 from right to left gives
the same sequence of numbers as reading the row -3
k=1 for k = from left to right. 3

. 22. If we add the entries in any column, the sum should ]
1 1 be . '
In fact, the sum for certain colwmns is not 1. This
is because we have recorded the probabilities only to
the nearest hundredth.

- 23. Suppose we adjoined to our tsble a column for p = O.
0 ' Then the entry for k = would be 1, and all
other entries/would be O.

G Py A ne g ThaR T ru N TS
- .

|

=
n
F

|

2 Simttardyy-e-column for p = 1 would contain an O

—_ :
H in each row, except for Kk = . TTT— H
Sl cpmtr—— —— ’——\

25. Finally, only one column of Table II reads the same
from toy to bottom as from bottom to top. This is

P =-]2: tne column for = .

In order to visualize these relatio..;hips, it 1s convenient to draw bar .

graphs. The graphs on rage 200 show the data of Table II. The vertical scale «

is marked with the probabllities, tne horizontel scale with the values of k.
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.

ft is -also interesting to construct a table for a particula\i\value of p

"'and for various values of n. We choose p

Before we begin, we observe that every column of our table
, will read the seame from top to bottom as from bottom to top.

26. This is because with p -_"%, we also have g = 4

: ' Binomial Distribution

it

Yoo 1

Q3 = =

@ -3

T n

R ) 1 2 4 5 6 8 10

i o |50 | .25 | .06 |.03 | .02 |.00 [ .00

o 1 .50 | 50 | .25 | .16 [ .09 |.03 | .01

S 2 25 | .38 | .31 | .23 |1 | .ok

o

6 3 25 .31 | .31 | .22 | .12

L 06 | 16 | .23 | .27 | .21

: 5 03 | .09 | .22 | .25

6 ) 02 | a1 |
7 .03 .12
8 .00 Ok

- y .01

10 .00

e S

zw . Table IIX . ——

5,:':«2 * i

i

&8 N *

! .

3Dil‘c_ - zor- O1




Let us not forget what this table means. We can interpret it, for :
exaisple, as the probability of getting k heads when we throw n coins.

) 27. If we throw 6 coins, the probability that exactly
.23 2 of them are heads is, from the table, .

28. If we throw 6 coins, the number of heads most .
3 . likely to appear is . This fits our intuitive . %
idea, since heads and tails ere equally likei& on

coin throws. ~

-

29. However, the probability of throwlng exactly 3
.31 heads with 6 coins is not very great--only s

which is less than % .
f e, . i
Fage R 30. The probability of throwing more than 3 heads
I k(s .23+.09+.02) with 6 coins is . (Hint: The probability
b of throwing'more than 3 heads is the probability of | -
‘, throwing 4, 5 or 6 heads.)

? Again, it is instructive to display the distributions in the form of bar

graphs. On page 203 are the ber graphs for p = % and 0 =2, 4 6, 8, 10.

-
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. R ;
When you examine the bar graphs for p = %, you note several things
. about them. 2

First, they are all symmetricel, which by now does not surprise us.

Sacond, the bigger n, the more widely the bar graph sbreads out, "Again,
this does not surprise us, becavse for each n the values of k are
0, %, 2, +s0, 0. (See Chapter 10 for more discussion of this idea.)

Third, the bar graph for each value of n is flatter than the one for
the preceding value. The tallest bar is less tall when n is larger.

The tallest bar of each graph corresponds to that value of
k which is "most likely".

31, Complete the table and compare with answer below.

1 o | Most Likely | Probability.of the
;I Value of k Most Likely Value
E s 2 1
R -
e .
& 6 .
“'Ji\,
8
10 . .25

The most likely value is often called the expected value.

ST A AT A DL E P W 8 NP
L X! t Wt e
N .

Notice how the probebilities of the expected value
decrease as n increases. For more discussion of

expected value, sée Chapter 10.

o dF e Awr

| A

Most Likely | Probability of the
i .- ® | Value of k | Most Likely Value
3 -
o/ 2 1 .50
1 f _
- . 4 2 .38
6 3 .31
2 8 4 .27
10 5 : .25
: TC 20k
HMHEMHHH_-—__-——____—_—“‘——‘-‘———~w_~._____ (jfl
‘_»',.t..,/*.’.“,,f e e n . -‘\ - £

— T ——




Item 31 reveals that, for our bar graphs, the highest point is further to
the right when n is large than when n is small. We sometimes say, "As
n increeses, the most likely value of k ‘*walks' to the right".

We have considered earlier the bar graph for n = L, p= %. If we used
tables to dxaw other bar graphs, using this value of p (that is, %) and

%

n=6 n=8, n=10, we would observe again:

For larger values of n, the bar graph spreads
-

out and flattens. The most likely value of k

“walks" to the right.

If you have already learned about functions and their graphs, then you
will understand that each of our histograms can be turned into the graph of a

function. Look back at the bar graph with m =4, p =‘%. We can consider

k -
_the function f(k), where f£(k) = (:)(%) (%)

FAGRZI ot T At RS e X, S

qtné-S s wes

{0, 1, 2, 3, 4) 32. The domain of this function is fu }.

SO Ry

If you put a red dot at the top of each line in the bar
. graph, this set of red dots is the graph of the function.

Exercise. . (Answer on page 330.)

In your record of 100 throws of a die, you have 20 blocks of 5

throws. Count the nwmber of even numbers in each block of 5, recording

&s showa:

%
# a

Number of
Evens

Number of
times
appearing

tRtaaria e

PO AR S T
3 ) A v

R Compare your results with the Bar graph for n= 5, p= %, q = %, Qur
i
i " results ere on page 330.
TN
o ~OF .
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1‘he Binomial Theorem

The work we have done with the Pascel triangle is very closely related to
~ /a-toplc of algebra. You will understand both better if you see this relation.
-~ An expresgion such as x + y 1is an example of & binomial. It is the sum of
- .tuo tem. We are often interested in finding powers of binomiels. That is,

A we wish to £ind expressions for (x + y)2 (x + y)3, \etc.

‘e

' I3
o ook i e § i Mg 2% s

1. You know that if x and ¥y a:g'e real numbers, then

(< + §}(x‘f ) (x + y)?
gE+y)x+ (x+yly

(x + y)( ),
Ax + y)x + ( )y
= XN F YR A XY+ YT

(Here we are applying the distributive property.)

-

2. For most purposes,we simplify further:

/
oxy (x+y)2=x2+ ﬁ+y2. L
commtative We know that xy = yx Zfrom the . property of

. maltiplication.
3. Similarly,
|
(x +¥)2(x + y) (x+y)3 = (x+y) (x+y)
X3+ 3%y + 3xye + ¥ = (x2+8xy+y2)x+(x2+ 235 + y2)y
= x3 + 3){2y + .
4, TLet's try one more:

s !

: xh+ hx3y+6x2y2 (x + y)h = x' +

: + !uq3+yk ' L 3

. (Hint: (x +y) = (x +y)°(x +¥)).

*

: We have: 3

: (x+y) =x+y

b

. (x+y)2=x2+2x;>'+y‘2

g‘ ‘ (x + y)3 =%+ 3y + 3% 4y

: . (x + y) = xh' + st3y + 6x2y2 + hxy3 +*yh.

{ P 206
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Look' carefully for a pattern, Are you reminded of
something? Even if you don't kmow, or if you are not
. sure why, you can at least guess:

(x +y)° = .

-

The coefficients in the expansion of (x + y)5 can be
read, it appears, from the Pascal triangle.

T

It ‘15 not very difficult to see why. Let us go back to our work with

(x + y)2 Iet us suppose for a moment that we did not simplify after using the
v 1y
idistributive property. We have

(x_+y)2=>oc+y=c+>w+yy-
From this we can find:
N ~
(x+y)2 = (x+93x +y)
= (XX +yx + 7+ yy)(x +y) -
= 20X +YXX+ XYX+ YYX + XY + VY XYY +YYY e
Notice that in )

X+ yxX Xy +yy

we have terms 1ike xx, yx. The four temms are all the 2-letter “words"
__vwrite with x end y. 1In finding (x + y)3, ve attach to eech of these two-

\ letter words tirst an "x" and then a "y". This leads, not surprisingly, to all
- the 3-letter words we can write with the letters x and Yo

we can }@

6. The 3-letter words with exactly two x's are:

yxx, xyx, and _ .

f. Remembering, now, the ‘commutative property of mui-
tiplication, along with other properties of the real
numbers, we see that
n
YAX + XYX + Xy = xy .
A little more grouping ond rewriting leads to the
result:

3 3

(x +y)3 = B3 + 3% + 32 + y3.

207
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. triangle.
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WU rigrwe x g A

. 3 3
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all the 3-letter words in x and y.

~- Again, we could compute (x + y)h by attaching first x and then y to

~

’ All thie should remind you very mich of what we dld when we first developed
§72 the Pascal triangle., It should help you understand why the pattern of coef-
ficients in (x +y), (x+ y)e, (x + y)3, etc., 1is given by the Pascal

In the Lth row of the Pascal triangle we see the numbers

1 0% 6 4 1.

8. From this we see that if p and q are any real

numbers, then we can write: -

b 3

1N
(p+a) =p +l+pq+6p2q2+ + .

Suppose we are thinking of a basebell player whose batting
1

average is .333, or =x. X
3 . e

L

9. Each time he is at bat the probability of a hit is %—,
while the probability that ne makes an out is .

Suppose that this player is at bat & times. We have
already found the probsbilities for no hits, for exactly

one nit, etc.

10. The probability for exactly two hits is:

1Hed

€ .
(3 3
11. The probsbility for exactly one hit is ' .
1 2 b
Hotice that i: we compute (§ + %7 , using the pattern
shown in Item %, we nave:
1 ] - -
NS N 3 2 <
1 2 1 1,7, 1,7,2
12. (32+5) =(2) +Mz3)(3)+6(z) () + + .
(3 3) (3) (3) (3) (3) (3)

!

Y 3
The terms (-15-) s 1;(%) (%), etc., are simply the probas
~

bilities for exactly & hits, exactly 3 hits, etc.

<03
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X ) 13. Of course, -;- + -§- = _» and consequehtly, -
L
. 1 2
: 1 =+ =) = .
N\

So our algebraic results and our knowledge of probability
fit together nicely. ’

1hk. If we add the probabilities of exactly 4 hits,
' exactly 3 hits, exactly 2 hits, exactly 1 hit,

1 : and no hits, we get .

. Something is certain to happen!? ' -

In general,

. n_g¢n\n n\n-l1 n\ n-c 2 n\ n-l nin .
(p+a)” = (n)p +(n_l)p q +(n_2)p Tt ... (l)pq + (o)’ .
A , . o' *

By now,you realize why the probability distributions discussed in
Section 9-5 are called binomial distributions.

B ‘ ‘3

-

Tk ST g USSP :”:11:: e e
[

Exercises. (Answers on page 331.)

N g 6
* '

/
1. Write the first 3 terms of (x + y)7.

s

2. TFind (1.01)7 by using the fact that 1.0L = 1 + .OL.

CaSR YN e

3. Sk}ow how you could easily approximate (l.(')2)6 to the nearest hundredth
by using the binomial theorem.

Lk, Write as a sum, using the binomial theorem:

\ 5
‘ (a) (x+2y)° : (c) (x+3) _
() & - )" @ e’

5. (a) Complete the following:

(x + y)5 = (g)x5 + (Z)xhy +

\ {(v) Let x=1, y=1. Use5(a) to show that the sum of the terms in
the 5th row of the Pafcal triangle is 32.

|
? |
{c) Generalize this last result.

ERIC 69
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< 9-7. A Formila for (“)
B -

..~ Bill, Fred, end Mary are the only members of a club. They want the club
< to have three officers--president, vice-president, and secretary. In how many

ways can officers be chosen?

Ag(in, it is useful to make a tree dlagram. If we know that Bill, Fred, - =
#and Mary are officers, then we can list the ways the offices cen be distributed

\ among them, as folliows: K b

President Vice-President Secretary

/I‘red > Mary .
Bill \3 - . - N ‘
Mary —= . > Fred - -7 !

.

Bill —>Mary
rea——"____ . L
ry ~e >Bi1l .
Bill - >Fred -
Mary-<: . i
Fred - —>Bill >

TP A PN

l

T e T
MOEIN

- 3 1. As our diegram shows, any one of the ___ menmbers
mey be president. . ’ R
F 2\ 2. Once the president has been chosen, there are _ o%
possible choices for vice-president.
i
3. Once the president and vice-president have been chosen, |
1 there is only way to choose a sedretary. “
C |
3*2-1;6 4. ‘The officers can be chosen in 3 D - 1,° or !
. ways. L. ” |
d |
Now let us suppcse that a club of 8 members wishes to chgas.e' 3 to 1
£i11 the same offices. Again we wish to find the number of ways officers can
. . L 4
be chosen. Again we can think of how we would make a "tree”. -
. -2 . .. l
, . -
‘ : .
| T r =~ ‘

o 210
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4

) s, "‘I'hene-are . possible choices for prp?ident.
4
-7 L 6. \Once the presid.ent has been chosen, choices °
) . remain for vice-president. : , ..
. - . " N . -
N N .
) - 7. For each choice, of president and vice-president, there
6 . o , are choices for secretary.
“ " 8. The totgl number of ways of choosing 3 officers for
*8-7-6 thigd clud is 8 + __,or 336. '

"

#ow we are going to do the problem in another Way. The new wdy is more
complicated but will shou us something 1nteresting.

We think In order tQ choose officers of our eight-member club we might
R first simply choose 2 nrpenmbers to be officers.’ We could then decide which of

Py

‘thesc 3 1is to be president, which vice-president, and which secrutary. -

LA P ' .

- ¢ 4 )

9. The number of ways of choosing 3 of the 8 members
) to be officers is . (This is the number of
1. 8-letter words in 0“""-Q {for officer) and N (for
not-officer) with exactly 3 o's.)

P . - - * .o
o 10. &1ppose wé have selected 3 - members. We can assign
' the posts of president, vice-p*esident and secretary
3.2-1 . . 40 thesc particula*' 3 members inv 3 - .

: different '.-ays. (Tt = &%) : .

Hence, in all there are (3 + 2 « 1) - (g) vaye of
. - seiect"ing officers: | LT

v

|.
!

% ~ -
LR

Combining our results in Items 8 and 10, we see: .

- L 3

' ) ) c2% 1) -( ) . 6. '

Of cqurse we can eabily ’find (3) from our table. 2But suppose we wanted
to find g and we didn't have a tjble. Suppose we didn't- want to make a

O P A T
1
v

S Rad W et

Pascal triangle in order to find
Just obtained:

<+

- Then we could use the result we have

3

Ty e




11. From this sentence, /g = » which is what
! we find from tH&able. L

How could we find (ll?) without & table? We might think: Suppose a club

of 10 members wishes to elect 4 officers.

12. There are 10 choices for president, and for each
of them choices for vice-president.

. .

13. Thinking of how our tree of choices would look, we see
1029+-8:-7-. that there are 10 + 9 :[}--[] ways in all of

Again we can do the problem in a second way. .

’

electing 4 officers. -

- 1%. There are ways of Welecting 4 of the 10 mem-

bers_to be officers.
by .3.2:1 15. There are L]- 3 . 2.1 ways of assigning the L

.

officers to a group of 4 members.

¥, .
: : b)
’ ¢ | 16. There are, in all, (5 -3-2+1) - gf) weys of
. ) choosing 4 officers for & ciub of 10 members.

Combining cur results of Items 13 and 16, we have: ,

: 10\
.- (h.3.2.l). 1}):10.‘9.8.7.'
s < “Thus, y
. 10_10.9.8.7__91h e
= s/ 3.2 .10 T

Formulas like this are more easily written if we in{roduce a new symbol.
We will write the product 3 « 2 + 1 ,as . 3!, which is read "3 Factorial”.

Thus, 3! 1is anotber name:-for 6. .

?

bt =4 - 3+-2+1, or 2.

o ‘ P2 7

ERIC ‘

Aruitoxt provided by Eic:
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factorial

i
’

wn e

?

An PR
e "
L)

i — - i

Aruitoxt provided by Eic:

S -

5:4+3.2.1; léO

~

-

18.

"

19.

o

20.

DDDDD,O:‘ o ’

5t 1is read W5 e u’

Notice that 5 - 4t = ¢

‘6!_'6-5-1;-3-2'-1_ .
8. 3.02.lv_6DD.

& _s.[0-0O

50 ——m—— ‘ ' .

>

e

" we saw after Item 10 that ‘h€3> 8
Using Item 20, we now see that

Similerly, after Item 16 we saw that

3.
(_8{ 8t :
3] = 3T 51

10 .9.8.7
k = K -3 . g . 1
' 10

8

The reasoning we used in connection with (3) and Cf) can be applied
to any entry in the Pascal trianglé.

Here are other examples.

2. (6) D(’[:J; . &

2.

.6 P

(E)szg! ' =8-3-2-

CE
S’
n
‘.' |
“
(ST
s .

.

You should verify that your results in Items 21, 22 23 do indeed give you

the. correct entries in the table of Pascalts triangle.

A3

2k,

If n 4is a natural number, n! is a product of n

* successive natural numbers, where the smallest factor

25.

is and the largest factor is

6 - -

w
ey
"

Similarly, 2 -+ 1% = 2%

3+ 2= L.

[N




-

26. Indeed, if n is any natural number,

- (n+1) *nt = 1

m———

27. 1% , of course, is .

*

/’ Ve would like to have 1 - O! = 11 , so that the formula in Item 26 would

4

e

hgid for n= 0. Hence, it is customary to define 0! as 1.

[y

$
H

<5 W awe W

2ok, Lo nim o

/
j .
This may seem strange to you at first. However, as you work more with

;"/faptorials you will find that the definition is helpful. -

P

+

We can sum up our reswlts: If n, r are numbers for which’ (;") is. 3
defined: ’ ) . A
' i n\ ___ n! . -

' r] =t (n-r)t ° ;

' 9 :
3_1'26? 28, 3= . (Use factorials.) e
Flg'];"!ﬂ 29. (lhl) = . (use factorials.) ’

Sy P

(o)
e
/'\

3l. g) = . (Use factorials.)

ot 6! _

5 . . P Rnd
5‘ Items 30 and 31 are consistent with what we already know.

’ The definition, 0% = f, ‘makes our formula apylicable to *
i all the entries in Pascal's triahgle.
2 / L

32.°
L T .
45 1 = (153, - 10t

3h.

=

v
S
S

[}}

N
I S nd
2

.

#

i‘
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Can you make the generalizdtion for yourselZ? i

36. (;) - .

{Use factorisls.)

R | n\ _ . .
R C=O 37. (n-k _+ (Use factorials.)
N : . ‘

. ) . .} Hendé, for any n, k _(o'_<_ k<n) -

-~ "

\

[ R TR R ) S

LT e

.

L) A e

. . Our last result is-consistent with what we have observed about the
symmetry of the' eniries /in any given yovw of Pascal’s triangle. .
38. 1In particular, e _‘
-1 o\ _/n\ _ -~ ) 4
- : n) =(Q) *—— .
. a N g
39’ (n_l)=‘ !:' Ne . n‘é
~ 1000
o )40. + = . B
( 9% ) T ' ]
2783\ _ o
) h’l . (2783 = « :
20 + 19 . {20y _
71 ) h. (18) = . . 3
Leave the following in factorial form.
728 - 72 .
E -~ h3 . (129 A4 . ;:
. 10008 yy, 1000\ . -
. 00t 1004 * \9%0 )" —r , ¥
- eni : b
-—5—2-59—!- 45, (;5; = . (Tnis is the total number of :
possible bridge hands.)
52; . 46. (552) - . (This is the total number of
N 5-card hands.) ' .
4 e :
275




difficult for large n. You might compute’ the value of % ou will then ‘\
' l&72 :
11 1}

realize the difficulty of "multiplying out 13 900 129
tunately, computational short-cuts and accurate methods of approximation exist.

He shall not discuss these methods in this course.

Ttems 43 to 46 eiphasize that the actue.l computatio c> . may be quite

. For~

QR
2

X
&4

47. In a certain class there are 7 boys. The teacher
wishes to choose 3 of them to help in carrying some
books. The teacher may select the boys in i
.

" .

nes ot
W

3
ea

by
.

T

3

. or ways.

£ e i

48, Suppose tﬁe teacher wishes to choose boys to go on 3
Y '

different errands. One i)s to go to the library, one

to the cafeteria, and one to the gym. This time the

teacher may make the choice in 7 -] {J= ways. :
) . N E ::E
- - £ - i
- ) The distinction between Items 47 and 48 should be noticed. In -Item 47,

the teacher makes‘ an unordered selection. g is often written as C7 3 or )
* 2

as /703 and is called the "number of combinations of T7-things, 3 at a '

time". In Item 48, the teacher makes an ordered selection. ("John, please go
to'the library. George, please gc to the cafeteria. Max, please go tO\ the
gyfi.") 7 -6 ¢« 5 sis often written as P7,3 or as 7P3 and is c_:alled\the ;
"nurber of permutations of 7 things, 3 ata time". \

.

LA T Py S
T R T

e mss RAATTIIA £
»
.
e -
3

E 19-8. The Multicolored Spinner

‘ ' Suppose we have a spinner divided equally -
into blue. (B), green (G), and red (R) regions.

Let us suppose that when we spin we are equally R

likely to get B, R, G. (If the spinner stops on

a line, we don't count the spin.) -

g Suppose we spin 5 times, getting red,

4 green, red, green, blue in thls order.

76

216

e T A S P




counting.

R Aokl

2
fy

iy

S M

1,

3.

L,

Tne outcome for the 5 spins might be recorded:

R .

If we vish to list all possible outcomes for 5 spins,
we can list all S-letter "words" in the letters _
R, B, G.

0

The number of possibie cutcomes is 3— , or .
(Think sbout how you could use a tree to make .a list

_of possible outcomas.)

.

Since all outcomes ave equally likely, the probability .
T

of RGRGB is e

Suppose”we wish to £ind the probability of getting
exactly 2 reds and 2- greéns in 5 spins. “Then
we must find the 5-.letter words in which R and G
each appear ' times. (You found one example
in Item 1.) ‘ R

(=

If we think a’bout what we already know, it will save us trouble in

Suppose we warited only to find all the 5 letter words
with 2 R' and 3 not-R's. - o

k3

— 3

We could do this easily. We would think" of .5-letter
words in R and N with R occurring 2 times
and XN times. R

——

. “\-\\ —— )
There are , or , such words. ™~

One such word is BX N R N N.

We can change this into a word with 2 R's, 2 G!s,
’ ¥

and 1 B by replacing 2 N's by G's end one N

by .

N

/ .
In how many ways caz Ye jchoose which pair of- N's to

i

replace by G?s ? ', or .
Hence, to each word in. R, N, with 2 R's, there
are 3 words in R, G, B with 2 R, 2 G's,

and a B.

2L7 ’7 7

|

-

-
o
“z
2
B
Sov
3

:
H
X

H
&
é

Lue Ao R

.
N

]
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A FullToxt Provided by ERIC

in 5 :zfpins.

Show another method of finding the probability of exactly 2 R's in

5 spins. ‘

Use a 3-colored spinner, as described in the problem, to see vhat results

you actually get for 5 spins.

If you did Section 9-6, do Exercises 5, 6, ¢ 7 below.

S

Expand: (a) (x +y +2) ‘
() (x+y+2)3 - Hint: (x+y+2)3 =0(x+y) +2)3

In the expansion of (x + y + z)h,

—

write the coefficient of x3y, x2y2,

v

and of xyze.

A 3-colored spinner (red, blue, green), each color having the seme prob-
ability, is spun 4~ times. What is the probability of getting 3 reds
and 1 blue? Of 2 reds and 2 blues? Of 1 red, 1 .blue, and

2 greens?

Exsmple: '
, RBRGG
RNRYN N<R GRBG
RGRGB
-
8. Since there are 10 words of 5 letters in R, N
with exactly 2 R's (Item 6), we conclude: There are
- ""10" 3i 30 . . , oOr -, words of 5 Lletters
.with 2 R's, 2 G's, and 1-B.. =
The probability of each particular ou\r\come with 2. R's,
l -
2 G's, and 1 B is 3pz - (See Item 3.)
- . 9. Hence, the probability of getting 2 R's, 2 G's,
g%, or %]9_ and 1 B is . s .‘\
- ) T :
]
. ‘ ]
Exercises (Answersoon page 33L.) -
1. Find the-probability, for 5 spins of the spimmer, of 2 R*'s and
no G's; of 2 R's and 1 G; of 2 R's and 3 G's. \
. .
2. Use the results of (1) to f£ind the probability that exactly 2 R's occur
3 -

X
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CHAPTER 10

- MATHE&ATICAP EXPECTATION
% LY

10.1 Experiment (Discussion is on page 307.) o

For this experiment you may use some cards from a regular deck. Take
the ace, 2, 3, 4, 5, 6 of clubs and of diamonds. Place the clubs on the table
as shown. Now shuffle the diamonds well. One by one, place them on the table

o in the order they appear. Look below to see the way our cards looked when we
Lh did this.

A 2 3 n 5 16 .
k-
' ) clubs
- V] 2 £ K S 9 -
A 5 3 2 b 6
‘- diamonds
LI 4 € 2 Y 9| .
7
. " Prepare a score sheet and score 1 for each pair that matches. Your
)
score sheet should look like this:
Match Total Number
Trial, A 2 3 L 5 6 of Matches
1 1 X 1 1 3 !
2 s
3
L v
5 .
. 6 !
7
8
N ! ' .
B3 -~
., S ~
Q N - 219

ERIC ., - . .
. : S 79 S




< AE el

"Our first trial--as shown--has been scored. You may use it. Then com- ‘ .
fiete the teble, performing the experiment 9 times. You mist be sure to =
_shuffle well betveen trials. It is difficult to shuffle 6 cards thoroughly. ’
You will find it easiler to shuffle if you add a few more cards. Simply 1guore
Zhem when lining up the diamonds in the order they occur. )

) How many points did you score in 10 gemes? Approvimately how many
would you guess you would score in 100 games?

. In this chapter we will learn more about techniques that can be used to
o help. in analyzing problems of this kind. Save your record. Wé will refer %o
it in & later section.

/ .
10-2. The Mean :

i /7 In this section we will review some ideas that you have used in situations

e /. having nothing to 4o with probsbilities. - .

g, ' ' .

- Example 1: e

%;T' - & student- earned the-following grades in a course: ) -

A Fie

. 83, 75, 92, 83, 83, 79, 6. . ;

What merk can he expect for the course?

>

pr i
T

His mark will probably be based on his average. Let's compute the average

e, e e

.grade: '

' ’

e
p

83 + 75 + 92 % 83 + 83 + 75 + 16 = 567-

Va

k]

The average is —(567) 81. Therefore, the student can probably expect
€
& letter grade that corresponds to 81--prabably a low B.

[
H

.

Inotead of adding all scores, let's tabulate the grades differently.

He earne& a 92 and a 76 just once; twice he got a 75 and three

¥
.

times an 83. So we can write:

T e 1w 1T B et 1ot
G by

g

Y

X
L3
:




¥
S
o

SN e

BKE T

it
Ty

¥

i

v

.t

Score

. 92
83
76

Number of T&nes'
Score Geeurs

Computation of

15

Again we obtain

‘age would fall.
the computegd

Example 2:

N =W

%(567) = 8l as the average grade.
grades, we could have seen that there were three
and that four grades vergwabove 80. So we could have guessed where the aver-

- is always a good idea to estimate first and then compare
sult with that guess.

» students could get at most 8o points.

Average
%2 -1= 9
83 + 3 = 249
T« 1= 76
5 -2 =150
567

Looking at the
grades between T0 and 80,

On a certain test What was the
average test score if the following tabulation shows the results for 20
students? s

Score Number of Students Computatidn
i 4 b« 77 = 308
3 7 ) T+ Th = 518
T2 2 2 * T2 =144
70 5 5+ 70 = 350
s
67 2 2 - 67 =134
> ,/
1454 ‘"1, The sum of all the scores ig .
. 1., 7
72.7 2. The average score ig lh5h(§6), or .

The average is also called the arithmetic mean,
We will use the symbol m for the average,

mean.
write'in this example:

Let us look once again at the example we have Just done.

~ ~

or sometimes simply the

.

m =

the &ve.age, or mean, we computed:

. [ )  2072) 4 50709 2(673(2%) :

12.7 .

or mean. Thus, we

In order to find

o s 4 s S S e




10-2

We might have writtqp this as: . ’ ..

-~

oo SApee

ol

77(—-) + 7!+(—) + 72( 5) + 7o(—) + 67( ;

o T Aa

i

We see that the average grade can be found by multiplying

v P ELage AN A .

each grade by the fraction of students getting v +his grade.
We "weight" each grade by multiplying it by the appronriate

fraction.

3. The fraction of students getting 17 is %g s

1
or .
e )

»

4. The fraction of students getting T4 is

5. Note that 1L ot o=+ EF R = .

6. The average score is 72.7. Did any student actually

get the average score on his test paper?

—

7. How many students had scores above the average?
-

8. How many had scores below the average?

”

. On a certain test 9 students got 100 and 6
students gov %0. Is the average scoue for the

class 50 ?

{A] Yes {B] Mo

’

Although vhe meen, Or av: rage, of the two numbers 100
add 20 is 0, this is not +he ‘hverage grade. You

. rust "weigat" each score vy the fraction of students ob-

taining it:

o

- 100(%) + 20(5) = L.

\

Tnus, .(B] is tne correct result. ~




Exercisge. o (Answers on page 332.)

T 10-2 .{

N

Look back at your record for the experiment in Section 10-1. On the 10

trials, what is the average number of ma*ches?
Look back at your record of 100 throws of a die.
(a) For these throws, what is the average of the numbers thrown?

(b) What was your average for the first 25 throws? Fcr the last
25 throws?

-

A certain machine is designed to cut metal strips 3 inches long. In

order to study the machine's accuracy, one day's outrut is examined care-
fully. It is found that fs of the strips are' 2.8 inches long, i%
2.9 1inches long, 5 are 3.0 inches long, % are 3.1 inches long.

are

(a) What is the average length of a strip?

(b) If 1000 strips ere produced during the day, how many are 2.8

inches long?

2 L
5 57

)

- 1

(¢) wnat is the sum of T i6°
A certain golfer says, "I have played gulf 15 times this year. On ghe
average, I have lost 2.6 balls per game." How many balls has the

player lost in all? ™~

N,




10-3. Mathematical Expectetion: Definition

P

In Exercise 2, Section 10-2, we computed the average of the numbers ‘thrown
in 100 throws of a die. Suppose you are going to throw a dle a great many

¢

LRSS E S

times. What is y guess about the average of the num?.;ers. thrown? , Examine °
your results in the exercise, and also think about how you might just#fy your
guess. Then read on. ~

N

1. You might reason: Suppose a’'die is thrown many
times. Since all 6 faces are equally likely, we
expect each number to occur approximately i of
the time. e

Hence, in order to gues~ the average .of the numbers

p thrown, it is reasonable to compute N s

5(2) + 662) 1) +2d) + 38 6y e °

3
— —

-23];, or 3.5 Our result, then, is [-6:—], or

Notice that in the sum in Item 2, each of the numbexs 1, 2, 3, 4 5;-6-
has the same "weight", % . This is reasonable, since all these numbers are
equally likely. oo

.

Let us consider a second example. Suppose we toss 3 coins mahy times,
recording for each toss the number of heads that occur. (We have already cc;n-

4

sidered situations of this type in earlier chapters.)

We know, for example, that the probability of éet‘bj:ng
no heads on a toss is . (If you had -_trc!Juble,
make a tree or list the possible outcomes--HHH, '}{HT_;
etc.) '

Comp}'ete the following table.

}
Number heads 0 L 7

~

Probability A

AruiToxt provided by ERIC




table pelow. .

; Compere your results with the
Number heads o |.1 2 3
Probability’ % % % % '

.o,

[4 .

6.‘ If you toss three coins many times, you guess that you

would gét exactly.tuq heads about of ‘the time.

T,

| - 2(%_) +—3(%) ’\\__/

::cgmputing averages in.Section 10-2.

You guess that the average n-mber of heads would be

ofg) + 1P +

.+ 3

.or .

\

Note that your result in Item 7 looks like sums we used in

’

Aan¥d

LT

in common.

DTN
L

TS

coins.,

- ’

In this section,we have considered two examples. They have many élemente

. Ip each, we are thinking of en experiment--throwing a die; tossigé three
In each, every outcome of the experiment yields a number, and it is

- -
T these numbers we are considering.
- - <

8.

Each throw of a die ylelds exactly one of the numbers
1,2, 3, 4 5, or .

Bach toss 04 three COins’yields, as the ngber of

heads shownJ one of thke numbers O, 1, 2, or .

t

.

Moreover, in each

numbers involved.' For
i

‘
'
. i

3 0

example, we know the probability of getting each of the

the die we have

. Prob%ﬂility

[
/ I
i .

Number shown™ | 1 2 3 4 5 6 |.
1 1 1 1 1 1
% % % % 6 %
f
| o5 | . ’
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For the three coins, ‘we have:

Mumber heads 0 1 2

o | W

Probability 21; % %

(If you have completed Chapter 9, these tables will be familiar to you.)
[~ .

. .

In each case, our guess as to the average vas derived by multiplying each

number by its probability and then adding.

The result is called the mathe-

matical expectation.

%, or 3.5

¢
%, or 1.5
»expectation

Sometimes the mathematical expectation is called the

10. " If wve throw a die, the mathemstical expectation of
the number shown is . (Item 3.)

11. If we toss three co.nsy the mathematical expectation
of the number of heads is . (Item 7.)

12, 1f each outcome of an experiment gives a number, then
the weighted mean of these numbers, weighted by the
probebilities, is the mathematical

expected value.

This phrase is a little easier to say, tut we must be careful -to understand it.

3 -
2
dannot
is
The symbol

M

We do not always "expect" to obtain the expected value.

13. Fer examéle, the expected value of the number of

heads,if’three coins are tossed ig .* (Item 11.)
T1k, We obtain 'g - heads in a toss of 3

jcan,cannotj

coirs. s "

15. Howevery if we‘per;orm the experiment many times, the

. average of the numbers we get likely to be
{is,15 not)

close to the mathematical expectation.

is often used for the mathematical eXpéctation.

s 226
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~

) Mtg,,that ve used m for the average of numbers resulting from perform-
zing an experlment several times. M, however, is used when we replace exper-
Amental'data witl probsbility. Wetper M or m, we should be reminded of
N -~ ra

(0 ey P Sy AR o o0k s

pean--weighted average. ) . B .

[
e

v : ~
.

N

-

- Exercises. * o ' ) (Answers on page 333. ) .

S arog s o o301

‘;b;l ke

t a party, prizes axe drawn from a pack. In the pack, there are 6
'prizgs that cost $1.00. There are 9 that cost $6o. « There are 5 that
cost $.20. A'guest draws a prize.

B o e

N

v ®

Ty
e e

e

- ~

(a) Again, we bave an experiment--drawing a prize--and a set of nutbers
that can result. ‘ieke a table showing the numbers and their
probebilities. i
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(b) Find the expected value of the draw.

A game 15 played with the spinner shown. .
A player spins and moves ‘the number of spaces

indicated. . o ..
k]

(a) Make a table showing the possible numbers of spaces and their LI
probsbilities. :

A

L5

IR A PR ST
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(b) What is the expected velue of the number of spaces moved?

~ . - -t

N

(a) One coin'is tossed. What is the expéctéd value of the number
*  of heads?

N R i

(v) ‘Two coins are tossed. What is the expected -value of the _ﬂumber

of heads?
|

(c) Referring to (d), (b), and using also Item 7, guess the '-prcted
value of the nymber of heads if & coins are tossed.

At a certain imterspction it is knawn that the number of accidents during’
a given hour on a- certain day have the following probabilities:

< 'I'No. of aceidents | O : 2 3 )
? ' 1 o
. | Probability o | o3 ] o2l \ _.

Find M, the expected number of aceidents dur’ng that hour on one such
day. (Just compute, do not experiment!) How could the answer bef best
interpreted? ’
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'Interpretation .
. % l
Here is a spinney for yhich P(red) = 3
P(green) = P(blue) £,
B" 2
. N w2
Supp.ose] you are playing « game, in which you éet points as’follows: .
. -~ o ;‘
K ; Red - 5 points : :
-, t
.. N, . . ~ Green - 2 points ' !
L © " Blue - 1 point.. ] - o
' / . v :
T S {
§< /é 1 . . 1 :
= (3) 1 The expected value of the score is 5(-3-)_+ ;
£ 7/ b
A | 1, . . T
/ % P et
3 . 2. Is it possible to obtain a score of 2% on any . '
‘s Yo ’ parpicula_r spin? _ ’ o
« average 3. ‘If you Dlayed many times, your ,scere' would be ;
A —_— $
i approximately 2—2—
’ One way to interpret expected value is to think of a game of chance.
: S\xppose you were planning to play this ghme many times. Suppose that it cost
: you $2 00 ecxh time you played, and that you got $L 00 per point you won. ¢

Then you might expect to gain, on the average, $.50 a game. But’ if you had to
» pay $3.00 per game, you would expect to lose $.50 a gafné on the average.

e
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£
A

Here is another example. ‘

-

. On a seccnﬂ: game, played with the same spinner, you get points as follows:

.

v Red - L points
) Green - 3 points

Blue - 1 point.

Let us suppose you are offered a choice. You may play either game, and both r
gemes cost $2. Oo./ wmch game do you pre. er?

/1
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&. Your expected value for number of points won in this
5 ;_Q: . \ game 1s .
g 13 ' -
:?1 less 5. You gain a little , in the long run, on
¥~ N . imore,less,‘
& - . 2 this geme than'on the first.
6. This is a reasq?able senclusion. Comparing the rules;
) , we see that on the second game we get 1 point -
‘less; mox'g for each rea spin and I point !
B imore,lessi ’ imore,lesss .
FARE - Ve . R ~€
o - for each green spin. }
3 more 7. But red is likely than green. . L
- v {more,less)
2t ~ . - .
. Hence, our expectation is less in the second game'. . . of
- LIPS

-Ebcpl‘aining ideas about probebility in terms of gemes may seem somewhat

L - artificial. You may not want to play games for money. In fact, common sense

" by now should tell you that the roulette wheels at Monte Carlo, for example,

( are arranged so that the amount you pay is greater than the expected value of
your winnings. ’ ) BN

? However, situations arise in which decisions must be made, even though

é» the future is uncertain. Toy manufacturers, for example, cannot predict ‘with

A . . .

certairty which items will be most popular. It is to their advantage to pro-

duce amounts of various items which make the expected value of their profits

12 as lgrge as possible. : I

Here are two games, each played by throwing a die once. ’

“ % (. A: You get 21 points if 6 1is thrown, otherwise you get nothing.

( ) B: ‘You win the number of points thrown. ’

,' :

21 1 | . |

l Y or 33 R - The mtbiematical expectation for game A 1is .

.f 5 9. The mathemetical expectation for geme B is .

. (Y!bu have derived this result earlier.) : /

i% ! -

: Q. ' .
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Suppose you could play one of these games, and that_in each you would win

a dollar for ’each point. Which game would you choose? ILook back at Items 8
and 9 and consider carefully. -

The best answer that can be given i.s-~it'doesn't mgtter. The two game;
have the same expected value. If hilf your class made one’choice and half the
' other, there is no reason to think ore group's gains*would exceed the other--in
the long run. After, say, 1000 tcss:s, each group ;would expect to have agccum-

ulated $3,500.

s _ Somge people accept this argument readily but still raise the question: If
' there.is to be only one toss,’ is one game better than the other?

L kd e

. You may feellthat you would frefer to be sure of winnihg something. You

j/"‘ would then chooss the first game, though in it you can't win more than $6.00,

' thus surrendexiing the possibility of receiving $21.00. On the other hand, you )
’i may feel that it would be better to "také a chance" on winning $2}.00, even

; . though the pro:nability .of reéeivingvnothing is, g .

In either case, your decision is based on personal feelings, not reflected
in the mathematical expectation. The expected value of a single throw is $3.50'

i for both games 4 and B.

There aré'many important pr;actlcal situations in which factors such as
personal feelings affect decisions, regardless of the mathematical expectations.
Considerations of this sort have léd economists and others to introduce the .-
idea of Mutility", a concept which is needed when dollar values do not accu-
rately reflect an individuall!s feelings. ‘

~

J { _Ez_erci4es. / {Ansvers on page 333.) .‘y

1. A certain king is always at war with his neighbors. In fact, once a year
his neighbors attack either town A or town B. The i{ing has to decide” g
whether to station all his army at town A or at town B. If the i{ing
has all his army stationed at torua A, he rinds that an attack does
little damage--it cdsts only one bag of goléd to repair. If the axmy i
at . B, however, when B 1s attacked, there is no fgmage at all. But if
A 1s attacked when the army is not there, then repairing A costs y

* " bags of gold, while if B is attacked when the army‘is not ther., then
repairs to B cost only 2 bhags of gold. In order|co decidé whether to .
statiion his ammy at A or 3B,. the king sends spies| to find cut which

will be attacked. What should he decide if his sples report: ‘
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" (a) attacks on A and on B are equally liKely? . )
(b) en attack on B is L4 times as likely ab an attack on A2

as likely as an attack on B ?

wijno

(¢) an attack on A is

Suggestion: In this kind of problem it helps %o use a teble to swmarize

the facts. Here is a table:

Enemy attacks

A B .
A 1 2,
' Ammy is at: -
B L 0

Cost to the king
in bags of gold

"Two dice are thrown. .
(a) Make a probability table for all passible sums.

(b) What is the expected value of the sum when two dice are thrown? ‘.

~~Again two dice are thrown, one red and one green. -

(a) Guess the expected value of the difference:

. number on.red - number on green.

(Note that the difference may be negative.)

(b) Verify your guess by computing the expected value.

Here is another geme pleyed with a rgd and a green die. "The dice are
of the numbers thrown. The othex

thrown. One plsyer gets the product
pleyer gets the square, of the number on the red die.

(a) Guess: Vhich &ayg; has the advantage--that is, which expects to

win the most points?

(v) Compute the mathematical expectation for each player. Was your
guess right? '

(RemeMbef your results for this exercise. We will refer to them later.)

-
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%0-5. _T_l_'x_e_'Mathema‘bical Expectation of a Sum

A certain king had two sons, Andrew, who was the older, snd Bruce. He -
wished to share his treasure with them. He said: "Here is a spinner. On it,
P(red) = .k, P(green) = .3, P(yellow) = .1, and P(blue) = .2. I will spin

it 1000 t:!_.nies. On each spin I, will award gold pieces, as follows:

N Spin Red Green Yellow Blue

“y To Andrew 20 20 50 50

T ‘;,‘.- 52

: To_Bruce - - 30 o] Lo 10
. Probability R .3 1 .2
be ; g s
5

.

~In_this way, each of you will have a fortune." How big a fortune?
T ‘

7

i‘—v
R

1
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5

.
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Bruce at once computed the expected value of his gaiin on a,

i p single spin. } o
2 ~ S

o He used only this pdrt of the king’s\t&le: e

~. S

VA Gain 30 | of % | 10 -

. Probebility | .4 | .3 | .1 | .2 ;
i :

o 10(.2) 1.  Bruce's expected value = 30(.4)+0(.3) +ko(.1)+_ (),

ooy
[
(o]

or , gold pieces.

L .
2. He would expect to average 18 gold pieces per spin.

In 1000 spins, he would expect about : ,gold.
pieces. ) . I .
i

SR
f

L 4
3. Andrew computed his e‘Xpecte4 value as follows: '
Expected value =
20(.k) + 20(.3) + 50(.1) + (),

or . -

%, In 1000 spins, Andrew would expect about

gold pieces.
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Notice that Andrew could have simplified his work by
noting that 20(.4) + 20(.3) = 20( ).

Likewise, 50(;1) +50(.2) =50(_ ).

% Items 5 and 6 illustrate the property. ’
| \. w much, ¢o 'q?e average, does the king glve nway on each spin? Ve might ’f
" reasdn, simply, hé averages 29 gold pieces per spin to Andrew, and 18 per . s

.

e s

spin to Bruce.

s

. 18, It'seems reasonable to guess: . i \ ;
e '1f7 (%9 + 18) . Expe;t’ed value of gift, per spin = .
o . Ir; other words; let:
Sl MG = expe¢ted value of lging'\s gift ’
. MA = expected value of Andrewts. gain °
' ) My = ‘expected vilue of Bruce's gain. ’ )

-

o

& value of G, A, B, and for these values

.

G=4A+B.

It seems _reasbnable, therefore, that:

! t

| ; L.
i My 3 My + Mo, .
! - :

In order to understard :ris relation better, we shall compute MG’ the / ]
~—. v ' N
cted yalue of the kiné‘s Fi¥t, in a special'\aay. -He will use this table fs '

. ; \ - ‘f‘.,,-

Gift: G=A+B|20+30, 0r 50 |20+ G, or 20| 50+40, or 90| 50+ 10, or 60
Probability ’ i 2 .3 1 2 '

>

Expected velue = M, = (20 + 30)(.4) + (20 + 0)(.3)

He e i e (NS SN :
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:'\30(.1'6) . 9; < But we know that (20 + 30) .b = 20(.4) + __ ().

%

- x&istxjibutive 10. Again, we have used the property.

Hence, we see:

’MG « 20(5)+ 30(.4) +20(.3) + 0(.3) +50(+1) + bo(.1) +50(.2) + 10(.2)

L

,ﬁsfnﬁ the uaocintive and commtative properties, we resrrange terms.

: "G - [eo( h) + 20(.3) + 50( 1) +50(.2)]

+ [(30(.4) + 0 (3) + 50(.1) + 10(.2)]

"Alf' . *:MA'FMB‘. -

This seme reasoning can be used in any problem where we wish to find the

-

‘expected value of a sum.

Hence, we always have: The mathematical expectation of the sum can be

found by adding the separate mathemsatical expeztations. .

Ve have already seen some examples which illustrate this result.

v

" At wat £ s

PO B e T e

11. For a throw of a single die, we found: The expected

345 value of the number thrown is e
- ~

12, We also found (Secfion 10-4, Exercise 2) that for a
throw of 2 dice the expected value of the sum
7 is .

. It appears reasonable to suppose that for 3 dice
10.5 ! the expected value of the sum is .

his is trde: We add the expected value for each die to
ind the expected value of the sum. The reasoning 16
exactly like that in thé previous example.

-

Look back at your results in Section 10-3, Exercise 3.

' 14, If you toss a single penny, the expected value of the
-]25 number of heads is .

15. If you toss a penny and a dime, the expected value of
% + -é- 1 the number of heads is + , Or .

234 e
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. We can apply our knowledge about the expected value of the sum to Exper-
iment 10-1, which had to do with matching 6 cards.

- This experiment i11ustrates the femous problem of "matching" (rencontre),
which goes back to the Montmort (1678-1719). It was generalized by Laplace
(1745-1827) and others. The problem tekes on vdrious forms. Here ig cne
example: 75 personal letters are written and the envelopes addressed. The
envelopes drop on the floor, get ui. mixed up, and, without sorting them, the

o e W T Sy
DR A ]

"inefficient" secretary places each letter in an envelope. What is the proba- °
bility that ary given letter. and envelopé are matched properly?

Iook back at your records for Experiment 10-1l. We found the average num-
ber of matches, but we did not find the probabilitles involved, for a very good

51 e Rt

reason. To compute directly the probabilities of no matches, one match, etc.,

Py
hed

we would need to think about all the ways of arranging 6 cards. From Chapter
9, ve know that there are 720 weys. In order to find the probabilities for
our matching problems with 6 cards, we need shortcuts, and these shortcuts

IS

Syt Ryarrg

Fae oA
Habaiely
~mh

are beyond the scope of this chapter.

s

However, it often occurs in mathematics that e simple situation throws
light on a more complicated oné. So, let us look at what happens when the
- number of cirds is smaller.

RNt

A

S

Exerciges: (Answers on page 336.)
1. With I eard:

«(a) Find P(no matches), P(one match);
(b) What is the expected value of the number of matches?

2. With 2 cards, find:

—_
(a) P(no matches), P(one match), P{2 match#s);
(b) Expected value of number of matches.

[l
3. With 3 cards, find: ‘

(a) the probabilitlies of 0, 1, 2, 3 matches;
(b) expected value of number of matches..

' Lg:ok’ at your results for the expected values in Exercises 1 to 3 and in
eriment 10-1. Can you mak a guess about something that is true for
nunber of cards?

)
L
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Let us sse whether, for 6 cards, we can find the mathematical expectation
for the nun' er of matches without actually computing the probability of no
matches, of one ma»ch etc. Look bgék at the experiment, and look at your

record for it.

£¢
[

o™ (13
s

SR

PETISEE
M-

et
";9',
’ ot

g 27 WP
RERS MNP
N ST

R SREIN
ey

L e
s

I

8
4
-
L
¥
L
5
=

e N P gt de b

16.

18.

[e2 1 on
-

Any of the 6
put down first.

cards is as likely as any other to be

Thus, it is regson&ble that there

. should be a match on the first card about

{fraction)

of the time.

:ruu, i1 the first column of your record you would see

a 1 recorded in about of the spaces.

The expected value of the entry in the first column

is, tﬁeré?ore, - % y oOr % .

By similer reasoning, the expected value of the entry
in the second column is .

-

-

The number of mat;bes fo* any single trial is found by adding the entries
in the separate columns for that trial.

Hence, the egpected value of the rum-

ber of matches is fou.d t& adding the expected values of the column entriec.

<@
1 19. Expected value of number of matches = .
~0. Thib is true because:
1 1 1 1 1
1 | B rEtErRrE R - 6 - —'-l—
T~
f | T
: - | ~
21. Would the same reasoning avply if we used any>other
nunper of cards?
. (Al Yes [B] No

- [. The avrgument hold.
! for examrle, yu

each of

-

for any number ¢f cards. For 10 cards,
would appear in

of the time. ([A] Is

would suppose thap 1

the 1C colurns about

correct.

236
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" *" Here 18 -gnother exemple: * * . - .

-~

MY

.-

8702, .You-and a friend are going to toss coins. Whenever

jl * .
‘10(5), «OI’ 5

the results match, you score 1 point. When 'they do
_ nét, you score O points. If you are going to toss

-~ '10_/ times; what is’the expected yalue of your score?
a‘/ LS . M . ” " N 3 )
NS, WU : RS

Do you see how we have applied, once again, the same ;
: reasoning"

. . '
» r |

23. Think about any single trial--that is, pair of tosse
Jhatever your friend®s result, the probability that
. }jours will match it is .

N -~
- T

21{» The’ expected value of your score on a single trial
is 1(—) + o’; . .

.

Your score for 10° trials is found 'by adding your score

L

for thet separate trials. H . \

Hence, the expected value of your score is found by adding
the ten separate expected values.
» . .

kd
« 25. The expected value.of your score is .

_We can think of meny problems relating to matching.;

~

.

v v .
Iet us return to the inefficieat secretary who bes intro-

duced at the beg;mning of this section. .

26. QJ.t of 15 letters, what is the probability that a
N ’particular letter is matched with the proper
en:/elope? T ] o
] N <

. . - J '
Note: For a particular letter there are (15' possible
envelopes--all{edually likely.

1 b s
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- v e .
We might ask. What is the. p}gbability tha at least one letter i8 placed
in the correct envelope'l

. . N ,

\t T .- . v

\ rd - -~ -
. e

. In seeking to answer this qa.estion, you might note that from your results
\ .
1n Exercises 1, 2, 3, .we know the probabilities if she had had, instead of

a 4
’15 letters, only l, or- 2, or J. % : . ' -

-

Fo:r_: one lettér, P(at.least one match) = 1 .

For two letters, P(at least one mstch) =-§- - L
-5 T . LN
4 “For three letters, P(at least one ma..ch) % . =
- . 4 g
- e i ’ . ) - -
- ou. might then try 4 letters , 5 letters, eic. , looking for a pattem L

-as yod do SO, Unlortunately, ..he counting p"‘ocess Becomes lengthy wlthout . .
som‘e' additional tools. Therefcre ) Ve vrlll simply tell‘;".ou the result., It turns, )
out that as you. increase the number of letters 5 thé nroba‘bilities change. -

i gan beRYS o g

+

(For instance, m.th 1+ the probability of at least one match is -8 ) For
75 letters the probability that at least one lettexr and envelope w11 match

4 R

2 -

is close to 3. . T e
3 . 2 14 -

~ d . ® A3 -

-ﬁlrprisingly, the result would be approximetely the same if there weré {
- 3 ’ " ;
100, or 1000, or 10,000 letters--with, of course, the same n\;mbeﬁof \
ehvelopes.: - - : ' S ' » % ;
’ !

- N . ~ -
. .. .

Yo can restate this problem in—many ways. Suppose, for exauwple, we have
«two, j.clenti'cél sets of 100 cards. If each set of cards is well shuffled and
. two- people each tuz; one card at a time , what is the probability that both will
“?*turn up the same card at least once?

{7~ - . Agein, the probability is approximatély % X N\

-~

: . -
. . !
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- Decision Plans

e

iikelfhood ‘that we are right. -

Consider these two spinners,

L. P(sreen!I) s .

. Suppose a friend tells us:,
f ;Lands -heads, I will spin 1I. Otherwise, I mll spin_ II.

you whether I got red or green.,

Ve know, £ course, that P(I) = 5

- A

and P(II)

to make dccisions even when we cannot be certain we are right.

- * P(reafIr) T
N T . "
P(greenln);

I an going to toss an honest” comn.

As we have o'bserved, it, 'is very often necessary in practical situations

Ir 1%

I am going to tell
You are to guess wnich spinner I used.

Knowing proba- R
bility does not make us certain, but it gives us better ways of estimating the

3
4
3
Sl
i
:
&
¥
-
-

.
x + ',‘ +
L AT VRPN, T L L

e

s -

RSN

Usinssdneﬂl/:ieveloped in Chapters 7 and‘8 we-can show:

4
-
L

7

3
H
7

ﬁ(ﬂf |red)
P(IT|red)

"P(Ilgreen)

P(II|green)

&

WIH Wi, \{uw il

‘s

L)

H

<

* ~

P( io red)

s '
. P(In green)

3

P(IIA red)

P(IIn green)

~

7
-

a

g

a
o~ cdw v T,

€ h

-

- (1 y@d do not uvderstand how these pro‘babilities were derived,. pause here and 2
,do Exezr'cise 10 at the end of this section. )
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"e make, in advance, a Dl@:fwgﬁch spinner was used. .
0/ =

.k
. Pa . ,{ L .
. y) . A - ™ th‘ . \.. . Y ) “ .
Lo -‘: . e 4 VT [
o B 0L U1 We note that p(I|red) - . P(;I]';égi).
ERDELAS T -/ S =2 -t
. . . 2. Hence, we plan. .IT our friend says "red", “we will
‘ : o F RO
. A decide o, . oA
’ ! : N (I’II }E - . . : . N . : . « ’
T . 3. But P(I|green) > ° _ P(II|green).
AN . =2 0 T T e
e “" e k. -Thus, we, plén: If our friend .sayé “green", we ~
CRCHRILAIE _ decide o v N _t .
. K 5. But we recognize that we may dceide wrong. Indeed,..
‘ . we ddcide wrong whenever either. = )l
: : ) .. -
I~ "o . our friend spins red on , Or
’,' -green N ’ ¢ our friend sp:ms [ on II.
! . . .

». " IIngreen. 4. 6. Hence P(we-ai'e wrong) = P(In red) + P( )

T 8 ’ o 3 : e .
Lo ’ . . =35 ] v
e ’ L R

[3 ‘ . . ' -

If we repeat this procednre many times, we will be wrong e’bout -8 of the )
time. However, " our plen, based on the information in Itéms 1 nd 3,, is better .

C

than somé of the other-plans we might have chosen.

S - : _ L

Py -4 @ Y .
* / 7. For example, if we glways decide I, regardless of

. wvhat our fr‘iend says, we will be wrong about

. + of the time. . .
ve 8. Suppose we plan that we Will decio.e by tossiug’a coin.

" If we.get heads, we ywill decide on I; if tails, on
, , II. We will be wrong about’ thé time. (If you

had t;rwble,’look back at Items 22 to 25, Section 10+5. ) - ,

| Now let us su'ppose our friend tells us: I will toss a coin, hs before.
Again, I will select spinner I if I get heads, and II if I get tails. This
time I ';ill spin the sptnner lOO times. I will tell you how many times I get

red. Then, ac before, ygu are to decide which spinner I was using. .

. ' yad 00 T ) "t

Fory vp s
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., - When you analyze this situation, you note that:for}‘ :
1% T “ . . “ny H .

! spinner I the expected-valug of the number of reds. -
.« in 100" sping is . . o wfi

T v S Y : it

10.°*0n the other hand, the expected value of the number of

) reds for spinner II is. _ L

. .

SR TS

I P ~
',

s Il. " e «f‘ind these values, of course,’ “by, noting that for a | o
o single spin the expected value of the nuuber of re)ds/bs U
T )., ) , ,' " ¢ 3 for .spinfer I ; ; -I. 4
o T . R B
S ’ L .. forigpimheér  IT,. . - N
: TR — . ; . :

’
~
~ B [ ) -~

-’
N

‘usua.lly about 50. In fact it turns out that 50 ad;is the most 1ike-ly number
"of spins, h9 and 51 the second: most 1ikely numbers. Similarly, we .e‘;,cpecti .
boit: 75 reds ErS spinner II° 15 spun 100 times. - - | we

5, £ + . - T

Ve R ” - Sz ’ i ¥} o0
\'SI’_husl, our- decision plan might b Cooe o .,
ey e decide I if the nuiber of reds is 62 or less; ,
: - dectas I -ar 1% 18 more than 62, T

N 'I’he probability is- vexry great--we feel-.that when our f,riend. r&orts his
results one of two things occurs. Either he reports approximately- —50/1'eds .

‘ decidé I) or he reports approx;.mately 75 reds (and we decide II)
Usual y one of these w:i.ll happen, and usually our decision in eit}xer case wi.'l.l
be correct. . . - o

~

3 1 .

Of course, if our friend reports 61 reds, we are not golrg to be very
) confident gbout our decision. However, we feel that it is very unlikely that
" hesidld report 617 reds. . : T

. ; " Qur intuitive feelings here are quite correct 0.1r probability of decidirkg
correctly is mich greater if the results of 100 spins are- knowrn than if we
kncw iny about _’l spin. It is greater still if the mumber of spins is further
{rcredsed. . ! Lo ' '

.o g ‘

' ) ‘We ohserve that (it is of interest to consider not only the expected’ vs.lue

i}self ‘but tha tendency of results to cluster around the expected value.

:mough a. full d.iscussion of this is bayond the scope of this book, the next -

, section of this chapter deals with a technique that is wseful in this connection

520 5 s R e
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‘Exexcises. ) A e

Answer the same questions as in E:xercise

L.

‘which are based- on :;esults obtained in ‘hat chapter. .

¥

LS

. exactly k

success{on each triel-is p. Even if you have forgotten the formla for
s the probabilities, it is easy to see that the expected value of the number
What is the expected volue-of the

s

Fbcplain. (Hint:
number of successes for a single trial?)

<« . i
- — e

2%  Refer t_o the bar,graph 6?1—§;e'—' for n= b,

L]
- of successes is np.

rrze

(b) What is the moét probable number of successes?

< <

() t is the p;‘obqbility that the number >f successes differs from

the/'expected value by at most 1 ? °

[y
oo

If you .1ave completed. Chaptex 9, you should do F.:xercises 1 through 9, ',

’ (Answers on page, 33';.) .

1,5,5 Iy Chap-,er g we congidered the method for finding the probability of
successes in. n independe'xt trials, where the probabi‘lity of

-~

(8)  What 15 the expected value of the number of succesees? .

P

~

for each of the following cases.

~

2

3
3
— .2
i 3

Iz
4

EERNITRE
“ B

LI T

o i
The- bargraphs are on the pages indigated. ) v %
i . '
3. (page 200) - g s
L, (page 200) . o
- ¢ A (- . 3
5. n=1UL, p=.2 (page 209) ’ >—;
A b N - A X
6. n=h, p‘§ 5. (page 200)° . o
1 | ;
7« n=6, p-= 3 (page 203) . . .
1 - ! . " ° ;
8, n=8, p=3.- (page 203)
1 : ’ .
9. n=10,p=3 - (page 203) ¢
‘ \ : s L
. ,
. - L] ,.
o R , N
“ I . H
) - T . . :
- ek T - < :
‘. ‘. ‘) -.4 ¢ ‘: ' B

3 ~ 'l ‘ - 1/




Consider the following -spihner. - ) . ] T
2 o « LY [N . ' B
St y . 03
. “ . ] : L
‘. ;
° 'vred - * “
- v ) . -
. s - - .
. green LR
. . W ¥ e H
L, X . oo 1 ) oo - e
J?(rgd I) = P(green I) = by ) . .. - -
A .'3’;’/ - . o . . re N . X . .
o _ a . 3
"N P(red II) =-§ , . . N 3
e T8, > : . i ¥
< . AT T T ' . . ) 5
. :',. = . ‘{,P(megﬁl) :r_- % . B ., . . ‘. L S . f\'
L, . - - __; &> S . T\J_,;

S (8) Pinx Brealm), B(tirea)s, BliTlred),s . &~ ]

RIRY A 5 A \ 3
*(b) Epmpare the pro‘tiegilities‘ forc this splnner with those for the two

g T Ay

Ans wT4ANTEar

T %, .~ | upimners st the beginning of this ‘séction. oo | R
) et ™ e . H - o, . s " . n . N o A,:
:f”" ¢ ® PP N B * bt
,Q’:’f - . 4 - ;
(AR . o A i . . ¢ , e . v s ‘ . ‘»’5

10-7..- Standard Deviation - ‘ _ e ]
. 4 Example. A teacher gives a test to three groups of stud;ent'.n Here are
e the results,  _ ° . o . . .
L8 ¢ N . o N v‘
. | Score 00 | 90}-} 8o 70 60 50 . T, :
Growp I 5 al'| 2 j.¢2 « 0 . ;
: Group II 5 . 0 |° .o :
; Growp IIT | 1 | 2| ) & 2 K1 0 ' i
. T - ‘ :
N - . 0 . LY [V , - N '\-
o 4 .. : - :
. - 8o : 1. The average grade for Group I is .
i ~80-- ) 2, For Group II and Group III; the averagg is also . . T
% - -3 " ~e . S—————
;_ - - . . N
? ' < - :- ) s N ~ _o -l
- Though 8ll three groups have the same average, they diff.r in certain
5 - WaYys . R ¢ * ra o . ’ , *
. . ‘ i N
N e . . . ‘ . /’
e 7 LN 2]* . W 1] H
o STEs oS A
169 A

. Ty

Ay
i
H
:—
H ()
N
\\
e



- more complic’ated m'easure of d.isf)e,rsion. Thie measure is found as follows:

1. For each number in the tgble (eachvscore in ou;' examples), find N .
g - the difference ‘between it and ‘the mean m. - A T . ¢
é' N M -° . ‘\") Y < ; M
:v o 2. SQuare each difference. . » . ‘ . ",'
PRI « n\) . \ 5- ) °
i 3. Multiply each sq_uare by the fraction o;f,‘ the group,as,sociated “with

>, ,~ 7, the num‘ber (the score), L PRI & ..
55 ' . ° . - - . N 4
o % Add the products obtained-in 3. .. R
i ) 5.'0 Take the square root of the result. Th:lns square root is the ° . °
.- . o . .
- . - standard deviation. - . AP
';4"” - LA " o N * N > ° CooT Y :
b - °, . Some examples will make the procedure clear,. * .
'i} . - ¢ O : ' ) N
Py . : - T, v 2hy ‘ . -, “ g .
: \)‘ . " - g o N ., -
“ERIC S U 7% PR CT
} T ) . ‘ ‘ . - . ;

2
.

N

‘~8061 4ln Group II however, none are-near 80. The grades in Group II. are, most 5

- . - . -
- b}

5

: Thége differences can be visualized by drawing bar graphs. ;
. haction g Fraction Fraction . » .- , :
-of" studenté . . of students of students . L i
i A AR , o | - . . s
; 1.0 S T g0t - o
"*z ) 08: L L . ’ 08 P - * 08" [ : v & "
‘;. . 106 ';8 ! . 06 e » N 06 .\, “j
P A R o \ 4 !
. ;u ,oh P - # o’h s v ¢ P} °. o!l:' h
a ! : 3
b 02 i . ‘ 02,- . 02 l l 5
R I AN W
4. .100°90 80 70 60 " _ 100 90 80 70‘60 ! 100 9o 80 70 60. .
N . Score : . Scare Scoré .- ‘

. +..r. *Group I ' Group II_ | Gro(zp III
~a - - . . . . N / o “ * -t -
Y [ ‘ * N . }

In Group: III we gﬁserve that most oi’ the grades are fairly neay the mean,\ ‘ ~

-spréad out H those in Grm.p IIT are- the legst so. . . R

Our first thought might be to find, for each score, the distance between )
‘the scorc and the mean,* This distance can be thought of as. the deviation of

AN . - ,

It is useful to have, fér ea"h graph, g number which. measures the a.mount N ‘}'5
S

of spregding. Qur next goal will be to Jdefine such a number_,,, Y @« B
@ P

<
'ﬁhe scor. from the meah! #le could ‘then average “these deviatiox,s, B,nd we could
"usé this average as o measure of the spread, or d.ispersion, of, the,.scores. .
. ; . 4 I -
[ 4 ) : . E'? £y . - : e b

~
-

. $ . . ' . ‘E
. It turns dut, however; that ‘.it is more desirable to use binstead a slightly ..




Ky x Y o =~ ¥
£ras .o . : L,
;:“; e 4w e N ‘:*‘
ndﬂig the st’andard deviation for the scoxres in Group I ’ :
~Scoré; _’,;: w0 | “90 | 80 0. 60 T L vt
‘ ;,Number obtalning| 5 SR S e
:sgom(f) ",‘ 2 2 2 ¥ 2 ..

] Fractiod ( ) 2 2 | .2 2 2 1 "
\V:ﬂ-_,-«-ae\ - r R
2 chzé‘ - 20« |, 10 . 0 -0 |20 |- P 0 i
“ - » N » . - A - ’V » “‘
S S —& : : S ; :
é(Sc:ore ) 400 100 0 2200 | koo ;
. ‘_\\ s Aot - )« - B A..“ K — '_ 0 e . - B 7 + 5
@) (score < m‘) Ifﬁ boo(.8) |'z00(:2) | ‘o(.2) | 100(.2) [ koo(.2) o
] R J . N Sy
L ‘) . m« : oW - B B 7’ H
{4.7_» .~ Adding acfoss line (3), we have: o S
D e D * el
e, W 500(>2) + 100(.2) * 0(-2) + 100(.2) + 400(.2) = - :
5. T TN .. ' K

3 (5). . fow, /B0 - Lhb. . 2 : . -

.. .

The sténd:_;_g__ deviation of the scores of Group I is approghete],y 1h,14.

v ) * . N . N :‘:‘
) : Exemine the preceding work. Complete the items in this | 7
° < |° "box to %est your underétanding. ¢ c \‘
5 ’ . . ::J
1
: o 3. Und.er'the score 100, we gee . .
A C P ) :
L. 20% . ~ score cm=___ . , and . ‘
e f B . .l
5 1" 400 . . (score - m)2 = B }
A . :
o N
o °. L, Under ‘gh‘e score 60, we see :
1’} . \\‘ [ _1
% -20 n score - m = , and : g = ‘
f:ij’ hoo ’ (score - m)® = . . 1
i:fj’ ‘" . . > . ! . 4
At (20 - | s (60 -80)7 = (- )2 -
%g‘:“w ’ ‘ . ° ! 3
17 - oo . = . R ‘
i." %0 i ' - . - R :1
[ l H 2 A, M 1
y . ) C l\— Note that all %he entries in the bottom row are non-negative, |
r - '[*' since each is the square of a real number, |
1 ‘ : |
. s . s |
N ",
e
P9 , A 2l5 - )
CERIC . - 105 - ,
v, N - -
P : - . LT : _L'h f:,w: TR e e e e e
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We have used f for the number of times the score occurs. The\num'ber of

e RO

times of occurrence is often called the freguencx. The table of test scores

.

Y- and. :t‘requencies is so /x?etimes .called d& frequency distri'bution._ ) -

.r

- . “Let /us find the standard deviation for t;’le scorqs in Group II. ’ N

-' x . . (

( . o " ! ' ) ’
. . © * ) AN

Y
) 6, Maske a table, as in the exemple. Compare your result’
carefully with W. o

oo 43 MEr T fw T

4o

. |t 507 0} o] 0.5
. £ I DR .
j . o . *2 0 o-] © s S LN
. L score - m "20 | 10 |, 0 |-10 |20 '

g / (score - mt)2 400 {100 | o0 1'69 koo
"_—_—"‘/’4< - B : .
/ ] . (score - m) lfo @00 | ‘0 0. -0 |20b z

*t .
] .

* 7. Adding across the last line, we find the sum .
. koo ‘ is . . '

_." - N et e -

. - K i
/400, 20 1 8. Standard d"eviwatiqh = o= . L
. . . , . - o « 7 .
w T ™ -
L3 . . N Q -
“ , . . a -

10.95 « 9. ‘,’The standard deviation for Group III is o

.- Y .
If you had difficulty, compare your work carefully with
- ‘ the result béldw.

5

< . Scare “ |00 | 9 | 80| 70 |60
-
£ . 1] e | ] 2| L
£ ! N /./ ’
) —— - it * "o . //
- ) . o - 3 N R 4 2 l_ -
. ~ score-m | 20 [ 10| .0 -10 |-20 [
- - ¢ — o 3 — PG s :
- .- (score - m)2 4oo | 200 0 | 100 |4pd ,
S . . KK .
(score - m)® 5 | %o | 20 | o 207 o, \
. “ l4o+20'+o+20+!4c'>_,'1’2g>.
‘ < Standerd déviation /J._o 105 . S :

ERIC" . - * 106/.

PR A v 7cx: provided oy exic Vo . ,
N *




e S e s el ¢ 10T
. v ; - P < . . -5
We have'found the«standsrd deviations in three examples: i
Lol For Group I, dtandard deviation = 1h.1h ' %
o Fo¥- Group II ‘standard’deviation = 20.b0 % .40
/For Group III, stanaard”aeviation 10.:95 e L
Look 'ba.ck at*the graphs we have j.r?x, It appears in these e: iples that the 1’ :
largest stgndard deviation goe}; th thé\graph with greatést spread. '
~—/—
T I// e N . .. . j' .
j!‘; 2 - e - . ,1" . i o . :" PREEN :”

/ In the ‘Stanford Coaching Cemp, Sfanford, Califorhia, the heights and
:weighta of .32 Yboys were .recorded in July, 1965 The boys were ‘Eo«i’ntg ) '
grade 9 in September, 1965. . In the diétribution for heights, we will use
the sym‘bols h for the number of inches in the height and w for the num‘ber

of pounds. (We Aisted the heights and veights in vertical columns simply"i}or ¢

ease in reading ) S &

N .

R .
~ e .
NP Sva =

N

| Hetent tm | o Weight in R ',‘
. Inches Freguency _.Pounds ‘Freg\'zency . T
4 -n e .| oW £ ’ i
N - : — — i
. e 5 1 k65 L2 =8
SRS IS A S N G- I !
B PR U U Y AR
8 60 1 ws | .2
GRS 138 - | - 2 o
62 T2 130 .5 .
- 63 3 126 1 I N
6t Y 120 - 2 |
65 .2 T s Tl )
» | = 66 T3 Ay 112 3° .
" 68 & 37 V<. 106 21 -,
- . 69 Y 3 103 ) :
N 70 K 2 100 |
7 lx 98 ol
13 2 95 3.
‘ L . &7 .| 1’ :
& . R - (] l T, . ?3 °




N Coel
- Ebcercises.

i

)

(Ansvers on page 338.)
"o

T L. Find the mean' (average) height and weight. vt . - X
' 2, Find the standard deviation for the heights. - ) R
& - N . - Yy 1 ° "' }

.

We have graphed the frequency distributions for the heights and weights. '

‘ Examine the granhs carefully
also indicated?a band" around the mean, extending each way from the mean a
distance of l} standard deviation..‘ . . '

! ~

We have indicated, on each the mean.” ‘We have

-0

Th(. computation of the svandard deviation--22, 7--for the ’neights is
tedious. We used a desk. ca.lculator to £ind it. You mey wish to check qg‘

. reBulto - ’: ’ h . "j’

! .

. Notice that -2—5 of the heights are within 1 standard devitition of the .
P

. Wean, while & 'of'the weights are within (1 standard deviation of the mean. \

32 o
In many situations find—-as in these examnles--that a'bout of all T
values 1lie within. I\\ standa,rd de{iation of the mean. .

You may wish to examine ot\r e\ol‘i.ections of data. SHere a.re some
Y

\./

* - suggesbions: - ’\.
: X R

. .

~

1.

-

2‘

Obtain from your teacher'a set of, 'test scores for your c/lass.
‘t

Obtain the heights and weights for a class ok grade in your sch pl!
(You may be ablé to secure this infbrmation faom the Physical <

Educapion or Health Department. ) LS

A -

[y

-

& Find the number of hours each member of your class watched television

1a‘st week.

) “~ \\ .
o 5. Ask several members of your ‘class to use a .ueter stick +to measure the.
) length of the teacher?s.desk to the nearest centimeter. The results:
widl vary a little. Tabulate the result for each member of the class. ‘
' 5¢, Many science projects involve collections of nqmerical data. Your. . .
: " sciénce teacher may be able to give you suggestiona. . \ ,
* ’ ] - *
. L C N
, B - P o\
. . AN ‘ “w 3 \
[ . ,\. “.
- . , |
o O, d .
. hvld .
Lo . - - ~
* i} -
P . . v ol .
’ t' * . - .
. 1 ! g - N
QO . -4 aug 1 () 3 g

“~ERI!
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10-8. Standard Deviation: Application -
He- have already discussed the standard deviation as a measure of disper-
i ‘sion: for a frequency distribution. Naturally, we can also apply this idea to '
cL. probability. " . :
“In Section 10-3, we considered tossing 3 coins, We made the following . _:
' table:' - .ot . )
. Kumber heads | 0 [ 1 | 2 [ 3 L
: - fEovbiriey | g | 3ol 31 ‘
S — . L N B \J
g . N ¢ " table "I ;
" &lch a table d.efines a probability distribution. {Observe that this :
] “probability distribution assigns to each of the numbers 0,1,2,3 a- S
probability.) . e ~ . Lo T
- . ® \
For this probability distribution, we have found that ° .
' ) R 3 . ~
, - M= ;Ecpected value = 5. . Pl
T ‘'We can draw.a bar graph for this distribution. ({You may.recell that we . %
;:—'\* . " have already ysed bar graphs in connection with probability distributions in :
L. Sedtion 9-5.) - ' . .
RN \d
S Prcbability’ ’ ;
1 . i
z . 4 e
. N - ;
f- '\ . - ?
1
- R I 1 .
. . x . ‘
o, 1 2 3 ‘ . i
l\,‘- < — .3_ ~ -
. * M B 2 ¢
: We can also .ask What is the standard deviation for this distribution: .
: It is natural to proceed as follows: . '
i, 37 3 323y - 322y .
, (a-zr(g)m-a)(gn(a-%)(g)+(3-2><3)-%
k . Standard deviation = /;3: .
iy = % Y3, or approximately .87 ., :
R
{.ERIC - R
cERIC 111 . s
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-

" fTo £ind the standard deviation, then, we form the "weighted" average of
thé .values of (x - M)2 where the values of ,x are O, 1, 2, 3.

° r
Test your understanding by completing the following 1teEs. .
Refer to the work above as, necessary.
M. The value 0 (corresponding to no heads) has =~ .
* %; probability* . )
% ¢ 2. M, the expected value, is . . -
: . " 2 ’ . - -
(0 -% : 3. For x =0, we have: (x - 34)2 ="( - )2 , i
‘3.2, ! : 2 [
“3) or (2. - oo

I
FAPN

.

P ) N *- kb, We know, of course, that (- i) = .
I T; Y .. 2 J 2 ———
(- * 5. In computing the stendard deviation, we used a sum
Lk . of terms, corresponding to the & possible
[ . e _.values of the number of heads. ’
A - Co ) 2 -
/ . 6. The second term of ‘this sum is. (1 - %) (%) . Tt

3 . corresponds to the value of x,. which has

3 probability . \

In this chapter we have studied two kinds of situations. -
We have seen examples' in which data found by obsei'vation can be recorded
in.a frequency table. v ’ . )
| For example, the authors actually tossed 3 coins 40 “times, 'recording .
: : the number of heads. These were our results: . . °
, ,Number of heads ol 1 2 .3
‘ ’ . Frequency f b 6 | 17 3
e £ <4 116 17 3
. | L% | %o To | %o
i, . - . T .
W - ' \
. ., Table II 3
: Q ’ . ) ’
ERIC x . er 112
N .

*
~r
o




) On the other hand, we have considered probability distributions, such as o L
e he one & the ueginning' 'of this s€ction.

.
°

In both s*tuations » we can compute the mean and the standard deviation.

~

‘ f” eré"i’s“e.‘ s : ) (Answers on page 338 ]

7 ".‘v"‘iq

Find the mean and the standard. deviation for our coin-tossing results.

Let us 190k again at Teble I ‘and Téble II. Compare the. nimerical resuits,, ... R

! g '| 7. If we think of a very large myuber of 3-coih tosses, |
) - say, 1,000,000, te would get rio heads about _ . ‘f:
; % ) . of the time, 1 HEad sbout * of the time, efic. |
Lo i L } : . )
AN M .
s S 8. For this situation, the average number of heads -
2 wuldbe . . Sk
LY ’ 3 - et

Teble I, showing the probability distribution, summarizes results we
* ould expect to find approximated if v.e rfepeated the experiment "toss th.ree

.

coins a large nu.mber of times. ~ . T 2

.

% N :
Imagine now that someone takes- l,QOO,OOOU sl:ips of paper. ,This patient -

_someone tosaes 3, coins 1,000,000 times s recording one toss on cach slip of ’

.

L

N
R R S

B BN

G- { ' paper. The slips are placed in a container, and they are well mixed, 40 are‘
: f then selected. These Lo are a sample of the tosses. We can think of our s

’ experiment of tossing 3 coins hO times as simylating (fitting the same )
./mle‘s as) the sampling process. ' T . L A
. ) 3

. 9. If we look at cur second table,’ we observe that for it ' ‘
1.48 ‘ . the mean is and the standard deviation | c
g S : . . =4

L7 v : is ° . , ‘ ' 3

e s ’
» ;o -

OQur sample of LQ toéseé",gives fairly good estimates of
the results for 1,000,000 trials.
il

e B 4

.l{[lc‘ Y133 S '
) ~ A b / .

& g o




Though no one, of course, would rea.lly toss 3 - coins "1, 000,000 ti.mes,

C"'ten we want to know the characteristics of a large group. Manufacturers.

of boys‘ clothing, fer example, need to know about the heights and weights of
boys in order to ma\:e plans about the nunber of articlés of various sizes that

e FFATN G AAgET v s
- LN s

s

‘they should produce. They need to know the ,average (mean) size of boys of var-u .-

e

ious ages. They also need to know how the sizes spread out from the mean. .. i

b, BT

Their information is often 5ained ty studying samples of the general popalation.
Opinion pollsters, market analysts, and other individuals use saemples to pre-
dict the beha¥ior of large groups., ,

T TN e

A4

S OM e T o ars s A

RO . ' o °
. - Exercises. i ' - , {answers on page 338.) .

"2. A die is tossed. We know that the expected value of the number pf.points

throw is 3.5. Find the standard-deviabion. ) & a

3. In Exercise 2,\Section 10-2, you found the average for 25 throws of a
die.  Compute the standard deviation. Compare with;your results for
Exercise 2 sbove. ’ ’ ) ' )

Y ,
. ) . , - j g

. “ S R ;
L 10-9. A Fomuls for Standard Deviation : Yoo e
= . - . : i 3
In this chapter we have obtained a number of results relating, to the throw
A of & single die. We found: ; ‘
: -, ' . .
: ‘Expected value of number thrown = % (Item 3, Section 10-3) . -
;“ t‘ A o :91 .
EE Expgeted value, square of nusber thrown = = (Exercise 4,
Loy i ¢ +  Section 10-4)
3 C Standard deviation, number thrown = %g- (Exeyciee 2, Section 10-8)
R . 2 s 7
::’ i %9-' L, . 1. Observe that »(%) = —D—D .
'.'- pry ' .91 kb 182 [J
T 2. Moreover,; ZT-T 1T 1B )
; 35 . ) ’
3 12 ) )
=\ : f . . R

. A i , 253 > )
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Vﬂ ; . ) f9]_ ( ) =i.5...

2 ..

When we see a simple :elatlonship in one example, we hope that it holds

generally Does this one? . C . i
A . e
o First we had etter state \twhe fomula more generally. Suppose we have

an erimen‘b,, e.outcones of which can be specified in terms of certain -
bers. (In the e:tamnle, the nunlbers\are 1, 2, 3,74, 5, 6, ) “We shall write.

H

[ A E(/N) ’/for the’ expected value of the nunber resulting from the experiient;
A * &
E\(N2) for “the expected value of the square. -

f g
20 /' . §\ :
\,g‘lqeh,?iié‘l;'\;év‘e%-‘-ét least in.our exarple:\ ’

\ o

s/“. E(QF) - (B(W))2 = (Itaxidard‘ deviation)?. .

. ) . ,
. wa e AP
The formula always holds. The pro £ uses- some simple ideas from algebra, -
_:’f7§§;i’*a‘zf% taking alge'bra, you. might Tike ,to try dte - . .. - .

e\j He- wj.ll give a proof i‘or a simple eituation in ord.e"~ to save: writing.

< > Let us sippose, thep., that ve have g teble as follows! . BN
e , ha i e . - ;

{‘gf;»_s‘ a Number aésoéiated < - : 5 '
:;‘ ] ORI - . with experiment ‘ ' / v e ‘e ) ) “_v :
;.0 .. .| probevility Ry | Ry) | Rle) o 0. -

7 ' : . f

-

. Since every outcome 6f the experiment must result in x '

Do or y or 1z, .we-hdve: . / N
3 7 ' . ¢ ] $ ‘ - ‘ -
-1 3. P(x) # B(y) +//P(z) = .
: . N A \ e s 7,
70
4. For the expected value M, we have: . /

22 | M = E(N) = xB(x) + yP(y) + ﬁ

.‘zQP(z) 5. Also, E(Nz) = xasz') + yap(y)' + e

s
* . " -
* .

(s‘tandard d.e\ria*l::i.on)2 = (x - M)?i’(x) + (y\- M')'QP(Y)‘




. ) o 7 . -

o ‘ - -

. * We know, of course, that: _ + ‘
(x - M)2 - X2 _ . . T

———— . R
[}

(x - 0)°P(x) = FP(x) - 20@(x) ¥ __.__.

. . . " Q
Thus, we cah maltiply out in Item 6. Regrouping the t\erms

in the result, we have:

e .t (standard deviation)® = (x°B(x) + yel;(y) + 20(2)) }
v N 4 \ ' @ 5 ' ;

L “ T - 2M(xP(x) + yR(y)=+ 2P(2)) W
- +§@@)+uw+pu» e

Iook back at Items 5, h and .3, in thak order. Usinéithem, A

\\ o
E(R) - 2M(__ )+ﬁ(-%'{f‘f

. our ‘formuia becmeS' .

DS

- (§tandé’§'d'deviation)2 = :
£ S T
; L SpeP) -af ey b
BN : RS
PRI ) \ : = E(Nz) - . e . S : ‘ii';‘
S . " R
nce M.= B(N),-we have. ) . . ! :g’iffgﬁ
iy AR SN I /”’32
_ (standard deviat‘ion) = EUP) - (B(W))°. )
- . w8 HCAR S
13 ] i ) . ’ Ti
. ) Q Q é;’:’u :"T:f,“f
If you have completed Chapter 9, the following part of this section will . \?,’i ;%
-8how you something about the standard deviation in the case 'of Bernoulli tr?.als. ao
.Y - : :
N - . . : M . LI B4

“es X . . s
F.bcercj.see. (Answers on page 339.) °° N
.1y In Section 10-9 we fopnd that fo.:g the n\_zinber of heads on a toss of 3
coins we have: . - ‘
{ M = é v v . .
el . ‘,{ J' , s - 2 i i
- N R j’ ! r‘ ‘ l ) .
= VAR - “Standerd deviation = 5/3 . - :

'::’.\5\ Verify this result, using the formula above. . < .
. i . . .

VR .Find thz expected value and standard deviation of the number of heads 1if

1&- coing are tossed.

,}. Find the expected valué and standard deviation of the number of 1%s 1if
;:,»,1, . ‘m die is tosged 3 times. ‘

i et .

- .
R Ve - - - . . R . - A . . < Y
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ERI

- ] i } .
- . - ; i ) . RIS .
The results of these exercises again suggest certain generalizations. i
For.exmnple, ‘we had: ' ° .

5 &or 3 coins, standard deviation = -;—3’3‘
N , For 4 coins, ‘standard ‘deviation = l= %ﬂi ‘
4 - . .

« la
‘ I_ 9. For 5 coins, stendard deviation = S
. ’ /
. / . -

N * ) . . . '/ . l ’ -

coins, gtandard :d.eviation B‘f number of heads =-2-/§
> o / - ’ »

dicé, standard deviation, of number of 1ts = & 15. 5 .

./// ) ./‘ ‘: 4 .

Lo v L
. 10, /We recognizg, of course, that

7’]:53..:."5,' '/;— ;\

P R R T T Ay

. 3 / t / o o . :
e "] 1. we alao note that for throwing a dle, 4 the probgbility [ - 3
s of. 1 ona throw 13 # _ «, and the’ proua'bili ty of K
. N / I v Lo
e not getting 1 onathrow 5. R T '
P N ) \ ‘e * . . s
TV 3 — = Lo
~ * . \ ) . N LI
i 4 LA ] ;
- It 'begins to look as though Exercises 1, 2, 3 .all illustrate some general N
Tulé. Indeed, they do. For Bernoulli trials, we have 8 simple formula fOrathe ( *
etandard deviation of the number of successes. R :
If n "i’é the number of trials, ,p the probability of Success for each . )
trial and_  q the probability of failure for each trial (so that qQ =1 -~ p),
" then: /\ . /! oo - . .
M st'anda.rd deviation of number of trials = ./np . - e
: For n = 3, P=as= é (Exercise l) o :
. ,stgnda:;:d deviatior =V 3 * % vk l-/— -
Forn=3, p =%, end g = % (Exercise' 3) s B
§tandard deviation = v 3 "% ¢ % = %-/B

Forn=1U4, .p=gq "l-% (Exercise 2) B -
- standard deviation = /4 - % - L .1 . ' g ;. v
o . , ; 2 2 7
p L., s , \ .
. ’ 117 - .
lC o / ) ‘ , ~ i%,.




_’Prove' For n ~'*“3 and- any p, q, show tha'b the, st'andard deviation of

-

..uthe number of successes: s -/ 1, NS e
"" ' SO : // o

. ) . - s ~

N . \)’ 1y . - \ :
-

) . N . i . o
- - N R [ ; - ., :l<
110-10. An Exan@le. The World Series. . #J . .ol

Her° s a.n application of ideas from both Chapter 9 and 10. Do it-only P

[N

B A reporter who-1s going to gover. the WOrld Series wonders Howlong it will ..
. ‘last. In-an old book, he finds ‘the following records of past series.

v‘ . v
s R Amer'ican - }‘la‘lg’ional . -,
. Year . League* f eague * _ Score - ¢ “""
- s 2% @ Washington Pitts'burgh AR T e )
: < 11926 New York - st. ‘Louis 43,
’ 1927 New York Pittsbqrgb v
K 1928 Néw York - St. Louis k
: . i “1929 Philadelphia Chicago
v 1930 Philadelphia St. Lonis
1 . 1931- Fhiladelphia St Louis
: 1932 New York Mcago -
\ 1933 Washington °  New York
- 193% .~ Detroip St.:l'.ouis
1935 Detroit - Chicagb »
e 1936 - New York ° New York
1937 New York New York, *
. 1938 New York Chicago
1939 * New York Cincinatti:
1940 Detroit ; Cincinatti
"19h) New York Brooklyn
S 7Y New York StV Louis
1943 New York St. Louis .
9k, St. Louis °~ St. Louis *,
1945 Detroit . » Chicago
1946 Boston ° i St. Louis
1947 New York <’ Brooklyn
.. . 1948 Cleveland . - Boston
S 1914»9 ¢ _New York - Byooklyn
"950 New York : Philadelphia
71951~ .  Ney York New York
'L 1952 New York Brooklyn
, © 1953 New York Brooklyn
N . 195k Cleveland New York
< A855 New York “  Brooklyn
1956 New York ° Brooklyn N
: . 1957 New York ¢ Milwaukee
. ¢ . 1958 New York - Milwaukee o
S 1959 Chicago Los Angeles
1960 Pittsburgh -
S o 251 ' .
NG .- 11§
v e P AN . Lo e 0 e N "
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He» can *’ind tfxe average number of games and use it to estimatv trow long :
~ the current series will last. _ !

A second reporter says, "I have.no data about past experiences. I do’ :
know, howewfer, that of the two teams playing this year, the Blue-Sox ahd the
Green Sox, the Blue Sox are the better team., In fact, tHe probability that the .

Blue Sox win any particular game of-the series is % M = ‘

} M - ) - ) ‘ 2

: Eb:cei‘ci'ses. - (#nswers on page 340.) ;

1. ‘U'sing the first reporter's data, wvhat is the average nurber of games? ’ '

.2+ -Using the second reporter}s probability estimate, what is the expected

number of games for the World Series? . o i -

(Notice that the reporter assumes tha.} the games are ind.epea;ient trials., The. :
‘probabilities are the same for all thd gemes.) )

i You might be interested in seeing what the results would have been if the
second reporter had made & diflerent estimate of the probability of the Blue
Sox winning any particular game. Suppose’, for example, the Blue Sox win., every \é
P game with prc'ha‘bility % In other words, "the teams are matched 3 sto 1% ;

or suppose they are matched equally, 1 to 1, .0 that for eaéh game the N

T TR

Blue Sox«(and Green Sox) have probebility % of winning. The results for .
. +hese cases, as well as tha‘b of Exercise 2, .are gummarized below. - . ﬂ
* Surmary of the« three 'World Series:
. Probability that the : ,
. . Series ends in: The teams are matched. -
) No. of games 101 2 to0,1 3tol
: " Y 0.21 0.32 . .
a7 5 ] 0.24 0.29 0.33 N - :
£ 6 .0.32 0.27, 0.22 >
P 7 ‘0,32 \0.22 0.13
i ¢ The expected number )
. of games 5.84 5.45 5.16



- // Chapter 11 . )

. > *

BERTRAND®*S BALLOT PROBLEM

111, riment v ) ’ -

A certain class in which there were 25 students had an election bet en '
_Arthlif and‘Bai"ry. When the votes were collected, they were rea off as follows'

S / . .

-+ / AABABAABABAAABAABBA'BAABBB P

/ PN v . “

" After the votes were read off, one student said, "I notice that Arthur ) s

o . w o, - . ‘.
\,iF.B alyays in the lead. This is surpriggr}g ] . ;

) / ’ S
ZA second student replied, "Not at all: The final yote was 14 to ll .‘[n /
£avo )

PYERTaRE A e

_ of Arthur. Since Arthur won, it ls quite likely that he vas always S
ah;éd." .. - \ \ LN \'
* Do you agree with the second student? Think about it. Then, see ‘what you ,.., .i

an find out by experimentihg. Make 25 slips of paper, a/d mark 1% A and |
11 B, Mix them'well in a container. Draw them out one by one, recording your l’ e

YRR

el ,result ‘as we have done above. If several students do this experiment each :
‘ ot should keep his own record. “Save yox\@ record; you will need it again, Examine .y
*:% . your results., Does A - always lead? . , S

V.
Zr

- . }w ~ 4
. An easy way to check is to,think: a- votfe for A is, 1o A vote for B T o«
is (-1). Using ’Ehese v&lues, ‘add the votes as you read along the list. Thus,

¢ <

in the vote above ybu read: o . i

~ ’ . .

et g e
PP

L8 1,21,2,3,23,4 3,45 45,6 5,1 5 4251 6, 5 b 3

) Compare“ywr results with ours. (Discussion of this experimant ie ,un

l page 308 ). After you have examined your results » and,. perhaps, compared yours
with those of other members of ydur clas% s consid.er .again the comments of the . /,,/'
two students. With which one do you agree? The followlng questions will help

you to test whether you were correct. L. / co T
o ;

1. 1f A wgzs leads, then what must the first vote bf? the second vote?

“v 2. Whatis the probability that A leads after 2 voées are counted?

' . 3. |hat 15 the probability thet A leads after 3 - yotes are counted?

k., cwne.t can you conclude about the probaoility that A alw&ya leads?

Ve . -
’ i

- . N ‘

t.

’

120\




ity B

< }S‘. e b *
."‘):"" e oo t .
:,%J%f"* 11-2.. Bertrand 8 Ballot Problem Stated
f\\_-‘\fz",:n 3\-.. \- . .
3 The French mathematicim J. Bertfand (1822-1900) studied a problem ebout

S ‘_t elections. The p*oblem; If we know'the final results of ah election, can we
. find the :broba{bility that, aB the “votes are counted, the winner is always in

., the ledd?.., ¥ R 10 .
3\' » L - X - . LY . :
’ : " Thus, in our example, we would ask: What is the probability--if the vote . .
S0 . vas 14 to Xl--thet Arthur alvays led? , . .

: Whether or not A always leads d.enends on the w in whitkfthe Ik A's
’ and. "1l B*s are arraﬁged in a. Bequence. We will call each possible arrange-

Alent an “ordering". ' A - . ' )
S n‘ N . » - 1 . s X , K
- . ~ , \\ "' ‘c
G e, . S & ' ‘ /S
- . " . - : : AN , .
e e, The event A alvays leads" is a subset of a certain set . 3
E < of ol tcomes.\’l'his set .of ou‘bcomes consists of all the 1y
'3'.‘;’ - ! oz‘derings in which the votés could have*been read off. ) :
oo T . ’ . \
3 . ) 1. 1In order to find the degired nrobabili,ty we could look | ;
B . o " for the ‘total number of orderings and the number of ) ,\
3/ . .leads s c ord.erings of the subset "A always ",
o a —— ;
¥ - , »
i - . . .
: .- 2. We would %lso need to know whether or mot all these
e'qually) , l °  outcomes ere . likely. * >
HE Y N .

.. . . . R N ‘ »

o
\

| If the b8llots drd

from a container are all t{le seme size and are folded
the ser= wiy and mixed we

we can ?-sume that all possible orderings are
v Al
s qqually likely. We shall <o so¢ ,/

\ . Now consider the qu tlon' How many possible equally likzly orderings e
Y are there? A very grea many?
- o If you have studied the chapter on Bernoulli itriels (Chapter 9), you

) should be sble to¢ealcula
11 B!s which are ‘possible.

e number of 25- letter vords with 1k A's “and °
is number is i? --the number of, vayg of '
N .. 3

. \ choosing" 11 positions for”B out of 25 possible positions. The number

,.._ \turns out to be U,457,400. . ' ’

PP T —ror]

\ ‘There areé ‘two surprising thinég about this problem. F'lrst, it has An
easy answer., Second, it is not difficult to discover the answe:r &.d to[see,

3 ‘ + at’ Yeast in a general wdy, why it should be true. . . : N
. . ¢ . . SHt.
“ERIC , ' 191 - ..
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.. . . . .

- e . N ' e ‘ . h O v \

{‘ ’ / Let us.look for the enswer. How shall we begin? Think about this; see
; . waether our procedure in the next section is what you Mould have suigested.

-
- A — A

. . .
. . ks

: - ',', s ) —_— .,;_ .
o d ‘ - A ‘
% . El-3.- A :Iinglér Case .u > LN . i
* * then a pro‘nlem looks difficult it is often helphxl to try a similar but
' simpler case. We might begin 'by seeing what happens when the number of voters .
: ‘is smal.ler. b
R . Suppose‘thnt there are orﬂy 5 voters, end thet. A wins by a \%te of
b L to 1. . 1 ' - .- o
T ‘ -
\:“ " R \ ) <

\ ' l. Iistina colunin 811 the difré'?e\nf“s-retter ordermgs
' " with ¥ A's and 1 B. Dibide for each whether A
[ ' ) elvays leads. Check your results v.th the list below.
: ; :_ (Your list should.contain the same entries as ours;
BN though not necesbaf¥ly.in tRe same order.) .
yan \ / )y -
’ ) * |- Ordert { Does A lead throughdut?
I N e )
¢ e | AAAAFE .- T Yes B
' AAABA , Yes - KN
A AABAA - | ° Yes Y
K ABAAA i No ¥ ~
i . BAAANXA ' ) . &
: . . : k- . ¢
. .

=~ ,L . ’ 3
- :Note that we have <§) ; or %, ,possible orderings, corresponding to 5
. 2t )
#  chdices of position for ' B. - .

‘ \ \ . :
N * 2. If wecount A as 1 and B as "-1, we may count °

the score for each 5-letter woxzd step by step. For
which words does A not lead throughout? A B A A A
" and )




3. There are 5 possible orderings-if the score is UL .
to 1; tnat is, S likely outcomes. ~

s ot

- 13 .

.k, of these,‘ are in the event "A 1leads L2

throughout! . : - :
& O ‘

5. The probebility that A leads throughout is T

v

~ -

~ -
~

& o S ¢ m . . . >
. T Instead of writing a list it is helpful to enter the votes on a circle.
- ‘Exéiwing thé circle below. - ) o
v o0 ) ? ) A . 2o
Co . . . - . , . ﬁ
- ’ B A
. - ;)
N L] hd I3 _:'
) If we begin at 1 and go clockwise around the circle, we have A A A A B.
. }‘, T . 2 .
’ 6. If we begin at 2 and go clockwise bacK to 2. we -]
& AAABA get . '
H - Note that each entry on our list of orderings corresponds : j
ff . ' to a different beginning point on the circle. . ‘.l
. T..- The beginning points that give an ordering for which
1, 2, 3 A is always ahead are , " ., and . :
-
- . ;

A

Having dealt with 5 votes where the vote is 4 to 1, we might also

M )

consider a vote of '3 to 2. ) . .




Lt ;'\'\ ‘i. .

2.

‘}Eée'rciaeg .

.anq

’Wbat is the probability that 4 always lcads for a 3 -~

(Answers on page 34k.)
Howmny possible orderings are there in this case?
‘Choose any single ordering for 3, A's and 2 B's. Locate the A's

's ona circle, 50 that if you begin with rosition 1 and move
se around “the circle, you get the ordering you chose.

2

clock List all the

~ possible orderings you get by choosing different starting points and going

clockwise around this circle. (You should have 5 in all, includ.ing the
one you began with.) .

.
L

For wvhich beginning positions on your circle do you get orde ngs in which
A always 1eads? * . -

Dees your 1list in Fxercige 2 ?includg all ‘ae possible ord:ez:i_ g8 of 3 Als
and 2 B's ? If not, select an orﬁering not on your list,/ Again draw a

‘ci:cle, 1abeling it for this ordering. Again 1ist all the outcomes for
* this circle, (Aways goin& around clockwise, of course )

For how many berinning positions on y'cur seccnd does -4 lways J:eac;?

+ rote? ,

If the vote is 5 - 0, whet is the probadbilidy that A always lee.>?

B4 T - - ° r
8. Let us summarize our results. Prepare a ta’ble, show-
ing for 4 to 1 votes and for 3 to 2 “votes the

following information. )

A aluays leads) °
Kumber outcomes ’
Number circles .

Mumber starting positions on each circle
. for wvhich A always leads.

Compare your table with the one-below.

'l vote

. Number "A always
- - : leads" starting
Number of positions for

P(A alvays leads) Number outcomes | circles uged | a circle
Jé o2 % . G) s 0r 5 1 3
i;- (g) , or 10 2 « 1




¢ - ~

Examine carefully the first and second columns of this table. Then,think

about the following questions. ,

L 9. For the first row, A got votes and B

g . . ' ) got . .

10. In.thig case the probebility of "A always leads"
3 ° is
5 .

Kow, do you obtain 3 Zfrom the numbers in Item 9% . How dQ

' " you obtain 5 ? . AN .

.

in the second

-

Can you see a pattern? Look at the numbers 3, 2, and

. ‘row. Do they fit your pattern? . ;

By now, you may have recogimized a rule which 3eems to spply. lLet:
) X = pumber of votes o A; and .
y = mumber of votes of B.

s ; £ 11. Complete the following table.  Compare with the com-

pleted table below.

Vote | P(& alveys leads) | x |y | x-y | Xy xy

Ltol

3 to 2

.
wito |\

' Vote | P(A always leads) | x | ¥ | x7¥ | x+¥ %

B -3- i ’
“ b tol 5 o I B

‘ . ; E
E 3 to2 5 3]2 1 5 , 5

i “

i
s J

Compare the second and last columns., It appears that:

l - .

. =X-J ’ ,
.  P(A always leads) = FY i

o

*. 't least, this formula holds for votes of 4 to 1 and 3 to 2.

”
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It you begin counting at ’position 1, then A

, elways lead. (In fact, the vote is
{does,does not) .

| tied at the second vote.) . ~ -«

13. Suppose, hgwever, you begin at position 13 and go ;
clockwise. Does A always lead for this oi‘dzring?' (

The other orderings on this circle for which A

16,17 alvays leads begin at and . !
Exetcisé, . . (Answer on page 345.)

10. Refer to your record for 25 vot'es\ {Experiment 11-1). Arrange the 25
votes on a circle. For how many starting positions does A -always lead?

- .
.
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.
- \
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. . ‘
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) . ‘ ' 7 iy
13-4 Emmining Qur Result ’
. . - ) o
Your experiences in Section 11-3 have suggested that: If .

4 . . < " ¢

al < v

X = number of votes for A, . )
¥ = number of votes for B, .
. and if ) ’ _
x>y (that is, A wins) . .
= ‘ then, ) ' :
P o - ) N
e R . . _X-¥ : VoLt . "
e . P(A always leads) = Xvy, . 0

° .

In order better to understand why this is true, we will examine the,
results we got for 25- votes. We entered our oidering on a circle‘.: o .
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Position 1 starts with A followed by ;/.

But 1 + (1) = , 80 A has losb the lead at

the second vote. ‘.

We have the same situation, A followed by B, at
14, 18 . starting positions 8, 10, , ana .
P

T - |

In ‘the circle below, we have indicated the pairings of Item 1 and 2.
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ﬁ on’ ftpg .£ ye c;.rf you have an A* followed by a B if Yyou move around
A:r::': ~ ? &
S iyal hg’ ;:% ecureet on? Yes--the A at 25 and the B at 3. Eliminate
. é,ﬁeﬁ §§ -

pini{e around again in a clockwise direction. You come to the A, at
~ ‘Q ’.}?t f&\llkwya by the B at 4. Eliminate them. On the next round you
7,:‘%e1’i‘l~1n1§’éte 23!, /eud 5, then 22 eand 6. What next? Of course, 21 and T,
’"gnd: }?&ﬁj’ ‘,2.0"%and 12 See the diagram below. -
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PR C ;
Which positions have not been eliminated? 1_1, 16, and 17. Buat we have ’
found that positions 13, 15 and 17 are exactly the positions giving order-

' ings in which A always leads. . S

Does this give the clue for our generalization? If we place our ballots
; around & circle in the order in which they are called, and if we eliminate the
pairs of winner and loser that follow, in that order, as we“go around the
circle clockwise, over and over, we are bound to be left with the positions
0n the circle from which the winner always leads. If you doh*t believe this,
try some more cases and think a little harder. -

. .
¢ N . ]

i But how mamr places will be left each time? Exactly the number by which® . )
' the. winner 5 votes exceeds the loser's: eg(actly Xt y. /i

3

= ' ’
5 . . ¢ - »
< '

. .
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1 11-3 we weré led to the‘guess': *

. . & R
= number of votes for A, and y'= number of votes for B, L

L - - ”~

P 1 I ._x;y .
P . . P(A always les.d.s)--x v e .

-~ - g [y

N .

»
<

(Notice, we are always supposing A wins, so that x >'y. )

In Section 11-4 we got a clue as to why this i’ormnla holds. We saw 4;hat |
if we considkr only the orderings tha‘i'. can be indicated on a sigle féircle, L
then we ‘have: )

- . - 5
T
P

% “ the ‘pu;nber of orderings where A always leads " X -y,

\ s,

Referring again to our .case in which the vote is 3 to 2 we noted R
- that 2 circles e.je needed to give all the outcomes. ’vFor each t“xere are 5'
“ xOlhrings. We"Havel: \ i o . . f
;; ~ Number of orderings on first circle where A alwaya leads & l 3 . ‘
j, . number of orderings on second dircle where A always ledds = 1, V x
r. - total number of orderings where A always leads 1 %1 s -
g L. total number of orderings . 5 +5 5 H
N : You might make a guess about what happens ifr you have T wvotes, wit* 5
:: ‘for A end 2 for B. ' . .

. . .
. . + ‘e
“
. ' 4

£

There are in all < !, or

this case.

e e Tk

-orderings in

. s LY , A
-~ 4 ] * . [ N ' -
It appears reasonable that ycu would need | L
(how many) 7|

(Bach

)

circled to list all the possible orderings.

g . circle would give 7 of the/m.) ,

; .
13 R ‘ . . voa
N :

, . :

. 5-2, or 3 3. Hor each,«it appears that there would be L
- ‘ (how msnyj

2"“‘,'». ’ starting positions’for which A would always lead.

[% . /¢

{The reasoning would be exactiy like that in
- Section 11-4.)

‘ . . . .

It appears reasonable, then, to suppore that in this

P(A alweys leads) :- 3+3+3_

case: 7+:7+7— —~ .
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- . Once again it seems that: /
. ) T . \\ X < ye l"-i
x . P(A always leads) = = /
A3 4

+

«

L] ' .

. "As a mafter of fact, the formla does hold in all cases. The ctatements
in Items 1 to b a’i‘e true. (You could, of gourse, check them if yéu wish.)

However, *he reasoning outlined in Items 1 to 4§ though valid for the
T-vote example, 12 not always complete. If you would like to think a 1Ittle
. aoresabout this problem, the next section will iL.lp y%u. understand it more

—- i

b fully. - . : : o / g
: , ' ‘ . N
; ,. o - - 5 . /
i Exercises. . (Answers on page 345.) ’ !
’ ;“ © 1. A commitkee of '10, seated around a table. will vote 7 ayes and '3, / -
- naye. What is ‘the probability that, as the chairman zalle on each mar’ for
g'; N - .his vote, ihe ayes lead all through the count? , . / N - ;

: 2. Sena or Slatte"y is holding’a committee meeting. "The committee is éeated :
around the table a% ih the figure, Slattery knows how everyone will “vote ) (
f . D ' N ~  except, Senator Smith. He ~
T - " . knovs Senator Smith weld °, * - e
- ) . e ' ' enough to know that/ if the . ,»
y * ) ‘ ayelc are shead when Slattery . . ’
= : " calls fdr Smith's,vote, Smith
. HAye will vote “aye". ' Slattery "':
) . . ' "wants all the aye votes he «‘ .
’ ) o ' can get, How s/hall Slat'tery i
‘ “* dtart the dount arcund the
A . I‘Jay ¢ table to be §/u3.'e the aye's
' are ahead when he calls on

Smico Senator Smitn .
; ) Ney .
~
14 -




a.n 1nrormal par’cy the boys and girls seated t‘hemselves e.round. the table
- as in the figure 3;0 the léft: *
. . When supper ‘was finished, the
i s hostess called, “Boys, gach-
G of you bring the girl on your“
. . left to the patio for: mixed
B . o ping pong." Which boye end.ed..
C up without partners? .

[t O

-
-
.

o F

The Happy’ family is sitting around the dinner table. Mrs. Happy 1is passing

¢ [
S et s o i

~ )

) . the cupcakes. There are 3 ' - .
) . chocolate and '3 vanillas
L. Coa . ) How -can the ‘cugcakesnbe pasée&:.
S clockwise so that Daddy, in’
Seat 1, will be sure t‘o get
chocolate? The letters around b i
- . the circle indicate the pre- !
. ference of e.ach‘z_x{émber of the
femily.' k

Y

4

.
L,
e
.

i L
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3

2
5

In a Z'-event competition, team A yon 16 events. What 15 the probability
that team A led throughout the scoring? . ‘

v "-u -,,hj_ch has won 4 games was always-in the lead? , ‘

Gonzales won. & tennis set of 10 games., The geme score was 6-4. What
L4
ia the "probabilrty that he led in the game scoxe throughout the set? .

f‘ T8a Tild.en won a L2-game set of tennis 22-20, YWhat vas the probability that
% 'he le@ g1l the way? Careful. : v




- . '*W"""'V"m_":"_r}. T =0T
9. A king is attacked by 9 B's and defended by 13 A's. These 22+ men .
fréacp him in rendom orde$. The king is lost unless the number of defenders
.who have reéched him always exceeds the number of a‘&tackers. What is the
3 probabili’cy that the king survives? : o~
, » TlO. A football player catches the ballk and starte mnning toward the goal line
. ' fora touchd.own. Between him and the goal line are 3 members of his tean
; \ ‘ and 2 of the opponents?! team. Helll be dow'ned if the number of opponents
e , ever exceeds the number of members of his own team who reach him. What is
0T _ . the probabillty that he will reach the goal? ' ’
» ‘ . , :
: 11., The papers the day after election anncunce that Joe Doe won by a landslide.
e i N R . .
IS © |, The vote is 2 to 1 in his favor. What is the probability that he ied ,
e ' all through the 9ount'?' . - K B -
’;“ 1 : l |
7 ._ . ;( N ‘
- . " N
’ : Voo ) |
‘ . l
3 1 . .
» - :
o T11-6. Some, Further Considerations T ) . 1
: R ) N , v
» 1 In_t chapter we hav® used circles to help'us list possible orderings.
LI ” o v °i
* 7| 1.' For 5 votel we used a circle with 5 positions, .
5 and this circle gave us - possiblé drderings.-
oy 25 2. Likewise, pur 25 voteicircle gave us’
§ possible orderings. :
, ¢ ‘| Can we always suppose things are quite this simple? *
*»= One more example will enable S/ou‘*tolr answer the_ last question. .
f ', Exercises, ) . (Answers on page 3hs.)
oy
. . < 1% Consider ah election with € votes--4 for A and 2 for B. "How many,
¢ possible orderings are there? , . : \
- 2.’ Choose one. possible, ordering, draw &nd lebel = circle £or this ordering, -,
and list all the differenu orderings (lncluding the one you choose f£irst)
e 139 L
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b ; - .
- ;‘g‘ox“the‘ girele. Select an ordering ttat does not appear on your list.
Draw a circle for it. Continue, drawing circles ang listi‘ng outcomes
until you pave all the possibj.e outcomes. .Work carefully.

.t ’ , BN ~ . ) . * - .
T LI Te TR . s < o
R R >, V3 a - . .

t : Ce ‘x‘ ’ :

. o R i
o A ! .

Lend

In Exercise 2 above , you drew and labelei 3 . Nrcles. ' Though your circles \(J

'f were ,probably not exactly like ours, we have seen that they are essentially the

.

s'mne Here are the- circles. »

» A
. -4
. A P A
e _v .
B A B B ‘A ;o
- ";
I::}‘
B A A A B o
’ N k )i
' A ’ A C
oW . _ .
. R ' :
You heve found: . .
. N ] \
6 . 3.. From Circle I, you ge} different posgible 1
outcomes. - - e
. . _’1
2 - L br these, are in the event "A always leads". 1‘
: . o \ -
§ 1, 2 5 They correspond to starting,iositions and . . 1‘
g\! . e . A |
3 1 . |
3 ppose you have held.an election, and you are told that the ‘
’ outcome is one of the 6 for Circle I. i
\ . M . ’ i
: 1 d éj\diven this information, the probability that A g
N % or % always leads is ' ° ‘ ’ ,
. s 3 ‘ _— . . .
. 40 o - .
:i ‘ (l
i * Let: ' ) <
N E - event "A always leads", ' ]
P o . I = event "ordering in Circle I¥, ¢ -
N , iI 2 event "ordering in Circle II", . N
"’ . III.: event “ordering in Circlé III", ~ .




\- 7. We can revrite Item 6 as: )
1, i ~ ‘
| r— ’ P{ = .
3. 4 ﬂl’)
s .
. ~onditional 8, Tote gthat P(E]I) is a probability.

ll‘ . - \ .

' '.9. In a similar wey, -

1 . : .
3 - . P(E|1I) = /

’ .

. !

N

. i Now let us consider Circle III..

1

1 - ¢
o

3 10." We saw in Exercisd 2 that Circle III has only

3

different outcomes.

~ -

‘L \ 1‘ . 11, For example, starting positions 1 and - . lead

to exactly the same ordering.

*12. The starting positions 1, 2, 3 lead to different
orderings. Of thede, only the ordering beginning
1l : ’ with position is/in event E.

‘ .

1 13. Once more we have found a conditional probability:

3 ' ' . a2
. ) P(E|III) = ..

»
v ]

‘. We may represent the 15 possible outcomes with the following diagram:

* 1k, E can be regarded as the union of 3 sets-- ENI,

ENIII . ENII, end .

aisjoint - 15. These 3 sets-are mutually " . - Hence,
BE) = #(EnI) + P(ENnII) + P(EnIII).

-




At this point, we can apply our knowledge of conditional probability.

L]
.

~

. [ 16. P(ENI) = P(I)-P(E]I). (Seé¢ Chapter 7)
’%— 17. Hence,, P(ENT) = P(I)- . (Item T)
y number
P(II)- L 18. Similarly, P(ENII) = C L ~
3 ’ —_ 3
Also, P(ENTII) = P(III)- % . . .
N .
We-can substitute these results in Ttem 15. .
19. We have: - )
1 : 1 1
P(III)- 3 P(E) = B(I): 3 + P(ID)- 3+

‘= (R(I) + B(11) + P(1I1))- %\
P(I) 1is the probabilfty the ordering can be read from

Circle I. Similarly, P(IT), P(III) are probabilities
that the ordering can be read ¥from II, III.

1 20. Hence, P(I) + P(II) + P(III) = .
- : 2l. Thus, from Item 19, .
1
: PE) == «- 1 = .
(E) 3

The reasoning illustrates the principle’ embodied in
Bayes? forymula. . . )

e

In this example the vote ms 4 to 2. Not all our Circles gave 6
different outcomes. The reasoning of Section :ll-k apl;lies to each circle.
bbréwer, the conditional probabilities associated with the different circles
combine te give precisely the earlier result. More complicatea cases give rise
to more circles, but still to the same final results, '

2=y
P(A always leads) = e {(x>y).

ERIC | | 2137
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Chapter 12

.MARKOV CHAIRS*

12-1. fThe Careless Cook

-

'AAcertain COOK can prepare two cereals, Lumpies and Soggies, but sometimes
she burns them. In fact , When sh; cooks Lumnies , her probability of bl'xrning it )
is .1l. When she cooks Soggies , however, her probability of burning it is h .
Whenever she burns Lumpies. then she cooks Soggies the next day. However, she
reglly doesn 't like Soggies very well, even when it isn't burned Gonséquently,
a.fter cbo:d.ng 11: one day, she always goes beck o Lumpies. (You maj-recall
having net this careless cook in Section 8-2, Exercises 4 and 15).

¥ou would suppose that the test advice you could give this cook would be
to learn how to make pancakes. But, as you may have guessed, we-will turn this
situation into a problem in probab;.lity. As you have already seen, ﬁroblems
about probatility involving dice, coins, and spinmers can be transleted into
probleps of iw'lery real imrortance in other areas. In the same vay, the story
‘of this rathér incompetent cogk illustrates general pnnc‘blee that are often
used. These principles have to do with processes that go on for many steps.

»
.

Experiment (Discussion is on page 305.)

Here is an experiment that illustrates what the careless cook does about
1
the cereal. We will surpose she cooks [umpies on Monday, January 1. Put 9
white merbles and one red marble in a Jar, In another jar, put 4 red and 6

white marbles. Label the first Jar L and the second jar S. Make a record
N 2

-

sheet as follows:
&;J:_ Cereal cookéd Burned Yes/No
Mon., January 1 L
Tues .

Wed.
Thurs.

Fri.
Sat, .

X

N&med after the mathematician A. A. Markov {1356-1,22).
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' - . _
“; Now draw a marble from the L Jar. If it is white, }ecprd "not burned" as
~ * the result for %onday if it is red, record "blirned”. Put the marble tack.

If your resultm;or Monday was qot burned”, write 'L for the cereal cooked on

Tuesday. If it was "burned", write S for Tuesday. In this latter case, draw
a marble from the S Jar. If it is red, mark "t.rned" for the Tuesday cereal.
If 4% is white, mark "not burned".

. It you wrote L for Tuesday, repeat in exactly the same way. If you .-

wrote S for Tuesdsy, write L ‘for Wednesday. (Remember, she never cooks S

more than ane day in a row. ) Then repeat in exactly the same way .
. . s
1. = Comp*ete the ifcord until you have recorded two days' cereal after

your fixst S occurred. - .
§;~ ) 2. Shout how often does the family eat Iumples? About how often does it
N eat burned cereal? ({Remember that when sh® cooks Soggies, her
) robability of burning it is .k.) Make your own estimates before
} | you g0 on. ’
f}‘ : - ) * <
e X "If the cook begins with thie Lumpies, it is likely that for a few days all
© " 411 yo well. (The probability of burning the Lumpies on Monday is only .1.)
Sooner or later, nowever, she will burn the Lumpies and change to Soggies for
: a day. Then she will change bgck, of course. ‘
EP Suppose she goes on and on in this way until she has
: ‘ cooked L 1000 times in all.
! 1. We would expect that she would have burned L
" 100 - | arproximately times.
’ ' 7. Hence, we supyose she wou.d have cooked S roughly
100 : : times.
. .- ; ! f““‘; .
i T 1100 .g i And in all there would have been treakfasts.
: i (Hint: The sum of the number of days she cooked L
* E and the number she cooked S5.)
!
. .E s han now estimate how often the fami.y is served
= . 5 e les.  hAs an approximation we nave: .,
1000 -0 nwaver of times she cooks L _ [:]
1100’ }L numper of treakfasts [:]
! .
y
Q . .
ERIC ’ EEETE
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!

The cook serves Lumpies about —i—g of the time. How often does the . o
fan}i'ly eat burned cereal? '

N a

» o - .
5. -Out of the 1000 times she cools L, the cook burns
100 it approximately . times.
" 6. Cut of the 100 times she cook% S, she burns it
4o approximately times.
7. In 1100 days, ve wouia expect [that the family eats ///
/
T 1ko - 'burned cereal about days. ! /
. _ 8.  Approximately, we have .
140 or _l_ nunber of .times she burns Xé cereal _ /
1100 ’ 55 number of d.ay/ g N T

It appears that the family gets burned cerdal about % of the time.

.
-

12-2. More sbout the Careless Cook

let us see how we can analyze the situation & liivic more carefully. We
have supposed that the cook prepares Lumples on Monday, January l; that is,

the probability that she cooks lumpies on that day-is 1.

In Exercises 1L and 15, Section 3-&, we used a tree to cémpute certain

vrobabilities associatc@xwith the cook's activities. In making the tree, we

used the rollowing information given to us by the problem.

-

.1 1. P(ourns Llcooks L) =
2. j Hence, P(coors S on a given daylcooked L on
1 rreceding day) = .

3. P(rooks L on a given daylcooked S on p§?§eding
1 day) = :

ERIC ' i

Aruitoxt provided by Eic:




-4, Using this information, make a tree showing 4 days
cereal-cooking possibilities. Check your tree with

Fa

the one shown below.

)
Tuesday Wednesday Thursday
v - .9 /Lth
L=
.9 — VT A58
I-lt’x/ th
\//Q9/ — .l‘\
\S . . Lth .
b — L /
— / '9
. w \ i
.1 \s
th

We have used Lé for "Lumpies Tuesday", Sw for "Soggles Wednesday", etc.

«
-

B I S R TS L i S R N T R L e TR r

B e e T

. ¥ N
oA o S

o ey

—anh

2 vems

Ny

4
‘ From the tree, let us compute some probabilities.
1 5. P(L )= . »
~ . - ' T —
: . .
§ 09 6. P(Lt) = .
¢ 9% .9 7. BL) = ( X ) + (.1 x1).
i .91 Hence, ..P(Lw) = .
’ 29X W1, .09 8. Hs)=_ _ X . . )
» ) 9. We note, of course, that i
: 1 . (L) + B(S) = .
- - - L3
Here is a short cut for computing P(Lth').
.13 .09L 10. P(s, )= _ - P(L) = .
13 ;-
: 1-72891, .909 11. Hemce, B{L )=_ - = .
- ERIC " “141 '
- ‘ '




e
12. Of course, you could also find P(Lth) ‘directly:
. .

P(Lth). =(9%x.9%x.9)+ (.9x.1x1) -

Lre v

-

'.['he results we have obtained can be sunnnar.‘.;;,_gg_as follows. The proba-.
bility of cooking cereal L 1is:

o ) 1 for Monday

N roer i o0y s e gl 3

/ .9 for Tuesday
:‘ . g .91  for Wednesday .
¢ ' . 909 for Thursday
4 N F
h) .

o st regatn £,

r What'wYngl happen if you went on and on computing probabilities for
successive days? Let us think a little more about it.

¥

B e d ot ®
-,

¢ - . .
5 Exercises. . \ (Answers on page 346.)

3 >
1. Compute the probability-of cooking Lumples on Friday. Use the short-cut
method.

E

ne madama e o B

2. By computation or by a clever guess, find the probabilities of. I for
Saturday and for Sunday. -

e 13. Guess: The probability of cooking L xMonday,
49090909 January 8, is .

Look back at Item 4, Section 12-1,

; 5 1. 10 . 10
. +909090..., or .90 1L. Write I 8s a decimal; T - .

%

Our work suggests that the probability of cooking Lumpies changes from
10

day to day, but as time goes on it gets closer and closer to i

: Exercises. (Answers on page 346.)

3. What is the probabllity of burned cereal on Monday?

L, Write L asa decimal,

55

El{fC‘ ’ 281 142

o .




“i23

12-3. The Careless Cook Uses a New Plan

The careless cook {inds that she has grown to like Soggies, 80 she‘changes‘

her plan of operation. She teglns, on Monday, January 1, ancther year, by
AN

cooking Imgpies .

Agaln, she cooks Lumpies until she turns it, and then changes

to Soggies. Now, Lowever, she ccoks Soggies until she burns that, and then .

changes back to.Ilumpjes again. Unfortunately, in all this time her cereal-

cooking has not improved. Her probabilit

.1, @&nd her probebility of burning S 1
and 17, Section 8-2, refer to this situat

be

Experiment. {Discussion on page 310.)

1. Write a description of an c..periment

y of burning L if she cooks it is
f she cooks it is .4. BExerdises 16

ion.

-

wtich would match the cook's behavior,

assuming the cook begins with Lumpies. Record the' experiment that would

correspond to 30 dsys of cooking cereal, beginning with L on the

first day.\

X

Would you expect that

(a) the probatility of cooking L
(v)

cooking L would eontinue to

cereal burned oftener than the othd

Again, we can estimale what Lajpens
time. Try to do tlis, using the method o

help or a check.

would not be the same for each day?
e more likely than cocking S ?

If she cooks cereal every morming\for several months, is one kind of

if the ccok goes con this way for a long

t Section 1. ’'Jse Items 1 to 7 for a

It cur coous L

1.00 | gy Lroximately

.. Jhie rieanc chat
100 uyrroxinately
100 o
100

L rosimatoely

2 LTOA0le |

e cons s gurntly, i

for 1000 “days, she will burn.it

times.

[

she will change from L to 6

tines.

5

will z2l¢o change trom to L

timed, which means she burns

tirrs.

(3¢ ver Lo Questlion 3
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. 4. She burns S about of the times she cooks it.
' "o, Hence, if she ‘nurfxegi' it about 100 times, she cooked
) it about times. (100 = .k(250)) :
. 6. Thus, 'if she cooks 'L for 1000 days, she cooks S, :
during that time, on approximately days.
Y1000 . "
.8 <y 7. Hence, P{cooking L) is a out =—= oF . :
. ’ 3’ e -
o _ P i . , . ‘ i
\Aggin,,v_we can use a tree to computeé probatilities in this situation. : -
z, L f . -~ \
r - 8. Draw an appropriate tree , agd find the probabi'fitievs ‘ 2
; "y . for Lumpies for Monday, Tuestday, Wednesday. Compare
¥ . your results with those given bBelow. o
E;f": ’
Voo - . :
P, v Monday Tuedday Wednesday Thursday :
< L :E
/ th ¥ 4
1: ./'9 ] ‘v
g N g L - A
N e S :
jl e Lt —_ — th ¢
y . -9 . 1 ' ) —Lgn )
K \ S e A} .
w \ 6 ¢ E
s L . \ S :
. m th :
3 9 /Lth .
3’ : L _/ -
w -1 e |
2 z= s, / 5
f‘j; ) ) \ ,6 ) h /L'th
v W N
th !
,,} g \ ‘ - ] ] N
P(L) =1
P(L) = .9
P(St) = .l
243 :




P(I.‘;) = .9(.9) + .4(.1) = .85
(. \
P(Sv) =1% .85%:.15
' /.h ] 9. Plly,) = 9 R(L) + P(s ). ’
\
i This is true because she cooks L on Thurd@ay if either:
< she\coqks L on Wedneslay and doegrnot burn it; or
. she cooks” S on Wednesday and burns it.
10. We may conclué.e:
;‘ 0825 v 7 P(Lth) = 39( 085) + oh(ol5) = .
:;‘ b 4
:\; . ) L~
2 -Exercise. . . (Answers on page 347.)
: 1. Find the probebility that she cooks L .on Friday. .
b VAR Lo
” " Now let us examine our results. We have found that the f:i‘obabilities of
i3 ) ' . .
cooking L are:
1 . Dy *a Probability she cooks L . . .
., Monday 1. C
. Tuesday .9
fﬂ . ) Wednesday .85
) Thursday .825
Fridey .8125 N
As we .see, the pr'obability of cooking L changes from
. dey to day. ' v
11. .In fact, each day the probability of eocking L 1is
. less than that of the p-evious day.
: o (Less,more)
o, &V \
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. 12. On the other hand, the probabilit\i\es do hot decrease
very rapidly. Tha‘o is, if we subtra\ct each day'
probability from the previoue one, we, sce the ditfer-
% - ‘ :
] - ences shown below:
. Probability she  Decrease in phobability
Day cookg L . from previous day
’, Mon., 1. . .
cll . 'TueSo -9 l - c9 = .
et " - : \-;
- .05 ) ' Wed. .85 .9~ .85 = © . ) :
.025 Co Thurs. .825 85 - 825 = : "'
L0125 Fri. .8125 825 - .8125 = L. ‘
‘e . -— ,

~ - “

Look carefully at the numbers you found in the last box: . :

1 - : i

LE 9

.05 » / L

1 . ‘ - i

LY . N . 025 \\_:

; 0125 . o

s a -
Do yoﬁ see a pattern? Try to find it before going orn.

Y et Sepiv,

v wte 4 ke

L5 qor3) 13 x____ = .05 ‘

H e,
5 ., 0o X° = .025. .

f‘ -
o5 15. 025 X = 0125, S o -

!

16. We might make a gvess: Tre number aftur 0125 is
»0125 X .5, .00625 L0125 X = . 5 '

You can probably guess, therefore, that we could extena our list of .
probabilities of L.

-

285
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. W11 qse_only the interval between 8 and 1, since this is the interval
" where:all our probsbilities lie. We first locdte and label the probabilities
“: 5 OB Mésoktng L on Monday" and "cooking L on Tuesday™.

. Wed - Tees , Mon
L ! 1 i
1 . 1 1 [ 1
) ' .85 ) : ’, pt
N . * P 0
Repeating this process, ve see: .
Fr{ Thur Wed - .« Tues : ’ oy Mon
| I ! { | i
| 1 f | 1 — 1
.8 .8125 .825 .85 N 1
> ! o ) -
Think about what would happen if you computed several more days' probabil- -
ities of cooking Lumpies. . . , ~
. ¢
For each guestion, state what you think would happen.
< 18. Even if you went on for a month, the probability of
. decrease cooking'Lumpies would contirmue to ° .
. . {increase,decrease)
, would not - 1y, reach a day, however, when the
. (would. would notf -
o probabi-lity of cooking Ll}mpies was less than .8.
)

7y
« | Your guess. From' Friday to Saturdny the probabzlity of

T B cooking . L decreases by .00625. ;

. . R

:

o . 17. Hence, you guess: The probabilit$ of cooking L on |,

-80625 ' Saturday ‘18 -, 1o

. \ — o o
. . :

. ".let us make & number line dlagram of the probabili*::%s of cooking L. We

. ¢ ’ Tues i / M'ozi
E e - | B 1
08 09. 1

] - . %

To locate Wednesday's probability, .we must move to the left. Take -;- (that

is, . .5) of the interval from .9 %0 1 and move this distauce to the left.
. . : B .

- ¢ “

A

i
\
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S Pt Y,

T . ‘ Think éf what you would expect to see if you showed on .

X

L E i » . ' |
[ ]

the nurbet line s the m‘bability of cookfng chgies on’

_ varj‘ousdays. RN i '

.
L, ? . ” v [y

) 20. For eny day, the probability qf cooking S 1is found.
& . o . by subtracting the probability of cooking L
T . from . NI .

P . ( .- . —

2L. As the days wear on, the probabilities of cooking -

Y

- increase Soggies .
- (increase,decrease) ) RN v

- ’

2 ' 22. They always remsin less ithan , but ‘they'ére'
probebilities very, very close to this «umber.

‘ We have only guessed at the resalts summarized et ove. In a later section
we will-find out a little more about how we might have nroved that they are
tyue., ) .

- . s . A8
‘- N ’ " ‘
© Exercises: i . (ﬁns\zwers on page 347.)

-

t. 2. After a month what is the protuatility that the family gets burned cereal

for break.fast'f (Assume in this and the following exercise that the
probability of, L for treakfast is .8. It is, in fact, very close
. *to .B.) :

3. .-'l'he family wekes up one morning to find that the cereal 'is ‘o'urnéd. What
{ ‘ .
is the probability that it was Lampies? .

L. We t;upposed tl:gat. this cook tegan bty cooking Iummpies. Thus, her probabi]ltty) Ve
of cooking L on the first day (Monday} was 1. Suppose instead that the ,
cook beglins bJ. cooking Soggies on the first day. Thus, the probability
that she codks L .on Monday is 0. Think aboat wkat the probability is .
of ccoking L on Tuesday, Wednesday, ete. Try to guess what fsort of

. mmbers you would find for these probabilities. {You may wish to compute
them.) Estimate thci probability of cooking L on Saturday. '

]
L4

o . 287 : .
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‘12-4. Markov Chains

. Let us exemine once more the tree we drew in Section 12-3. Let usrpecall

also our work in the problems in that section. ’ .

. ‘e

" We will copy the* tree._, »;itlx onen:slight change: We will write Ll (Lumpies
on first day), rather than Lm (Lumpies on Monday‘). ﬂikewise', we will write

5, 1n_stgaad of. § ,°etc. Our tree becomes: .o
’ ’ ., ! L ona
P . 9 /’ h’
L] s L
R ' ) .9/ 3\ 1
[ / \ .
L,. . s
- / 2\ N UL
. 1 \I o //Lk
. S. =—
3\.6-
L s
) s
] ’ Q/Lh ‘
L /
1 y— T~ —_—
- -/
2 L
’ : T~ L b -~
3\ .6
A} \\s
L
1. Note that from each L we have two paths
o .y/L
L
T
4 \S
1
, ‘associated with the conditional .probabilities
d o, .9 end
2. This follows from the fact that
" .9 P(L one daylL yreczeding day) - ,
while
S F{S one day|L jreceding dny) =
' 3. Likewise, from eack & we- nave two paths, associuted
Ay 6 witr the conditidnal protetilities and .
ERIC | N
B - .
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, Indeed, a tree for this kind of situation, showing as many days as we wish,
L * can be drawn step by step as soon as we have the answers to two questions:
Pel R 1. %oes the process begin with S or with L ?
y 2. Given what a pai‘ticular letter is (for example, given tha‘c: the -
- . ' "third letter is S), vhat is the probability that the next -
- letter is S ? (If we know this, of course, we can also find
; vy NI the probability that the next letter is L. We need only to
W subtract P(S) from .1.) '

. ‘Problems of thié sort geeur very often. Consequently, mathematicians lave
developed some special definitions to use in deseribing them. .

In such,situations we have a sequence of trlals. The result of ~ach trial
“1s called a state. (In our example, states at each trial are S and 'L.) The
Iinitial state 38 known. After the first state the probability of a specifi.d
: ‘stat& for a particutar trial depends cnly on what happened the time just before.
That is, we know the probability of going t.om each state to each state. These
probabilities are called transition frobetilities. A process that hes these
properties is called a Markov I:rockss.

We can list the transition ﬁro‘l\){abilities for the tree in a teble.

Ll -

. . " | Probability of going ’ .
s If progess -ts next to state N
; «| in state L s
L .9 1 T
a 4
[ b .6 )
‘ K-

: K. The probability of going from stage S to state S )

06 18 . e <

This is P(not burning S|she cooks S).

[

1 5. In each row the sum of the entries is

T

’ An array of numbers, such as

LRIC <

-




e
e

R e e ok SR

ever, she alweys returns to L. - .

states. -

-

is often called & matrix. (A matrix, in general, is a rectangular arrsy of
nunbers. )

-
In Section 12-1, we had to do with a cook who burns Lumpies with probabil-
ity .l. Each time she burns L,

she cooks E£. After cooking S once, how-

Again we can regard "cooking L" and “cooking S" as the two possible

6. As im:the previous exemple, make a table showing the
transition probabilities, Check your result with the

completed table below.

Probability of, going

N If process is

next to sta’te

1 8.

/\‘ in state L , S
o ,,'; L ’-9 . .1 ) ’ ’
s’ Tl . 0

A i oo

7+ The probability of going from state S to state S
is - T . 6,
" . M )
This 1is because gfte\r. eooking S she always returns to L.

s

In each row the sam of the entries is .

.

Exercises. y (Answers on page 349.)

1. A cock always burns the Lumpies and the Soggies. Each time she burns one, ¢

she changes to the other. Give the matrix of transition probabilities.

2. A cook changes cereal whenever she burns it. ,If her transition probabil-
1 0 ;
o 1i).
if she begins with’ § 7 . .

. R
ities are and she begins with L, what happens? What happens




.

12-5. Experiment--Mixtures (Discussion on page 311-)

Put two black marbles in an urn labeled X and two white marbles in an
labeled- Y. Our process is as follows: Draw a marble from each urn. Put
:zSLpne from X into Y, end put the one from Y into X. (Row, of course,
you have a black and a whité marble in each ury.) Repeat, each time recordi;é
the'nuﬁﬂgr of black marbles in urn X.

1. , Contime until you have s sequence wi<n 30 entries.

. 2. Can you find in your seguence ¢ 2 Sollowed at once by 0, or 0
followed at once by 2 ? Why not? . -
3. If there is exactly 1 black marble in urn X, then how fany white

marbles ere there in X ? How nany black marbles and how many white

marbles are there in Y 7

‘We found tkat we hall 1l's more frequently tnan 0%s or 2's. We were

not surprised at all. We-are sure that Jou, too, found this result.

K

1. Zach 2 1is followea by a

Each 0 is followed-by a . (Except, of course,

for the last number of your sequence.)

Suppose ycu repeated this process many, many times
without ccunting how many. Suppose your last number.
was l. Suppose, then, that you found you had twenty
0's and sixteen 2's. You could be certain that your

number of l's was greater than . (Give the

best estimate you can make.) %

Now you should see (if you'didn't before) how we could be so sure that you
had 1's more frequently than C's or 2's, In fact, it is highly piobable
that you had 1l's more frequently theaa both together.

~

3. Would the results
<1012 12101 21210 12101
6 1012 10121
be possible for this experiment?
Would they te very likely?

ERI
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. is followed 1b times by something other then 1, and

1k heads * _ timed in a row with-a cnin. (See item 5.)

{ . Which doesn't happen oftent ’ : ’
Exercises. . (Answers on page 343.)
1. We cen think of the number of black marbles in urn X after each step as

process becomes clearer if w2 use symbols fitted to our purpose.

P, for P(1 as first state), D

third 7.
ERIC

rroe oo enc B
S

A "}" means: We have 1 ‘te and 1 black.marble in X,

and 1 white and 1 black marble in Y.

5. When we have this situation, the probability of getting
1 again is . (We can draw a white from X and
a white from Y, or a black from X and a black

from Y.)

6. The result shown in Item 3 is very unlikely. In it, 1

never by l.,‘l his result is as unXikely as throwing

describing the state of tue process after this step. How many states are

there? ~ -

Draw a tree showing L trfals.

~

Construct a matrix of transition probebilities for this process.

What is éhe probability of having 1 as the first state? as the second?
&s the third? as the rourth?

It is easy to compute the provabilities <or 1 at varicus steps. The
Let us write

Py 2or P(1 =s second state).

= P(1 as state). .

P
3 -
The 3 in Py is called a subscript, because it is

written below.
292

: .
/// e
P .
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s

P

) .
For the probability that the fourth state is 1, we
ndturally write .

In exercise & jyou found:

‘-l, p2 - E]
1
-2-. p3 = b
£ Py = . )

A

DRrarE

hy

8 B3NS,

%
10. The probability that the fourth state is not 1 '
is 1 - . ‘

S

}—J
[}
k=i
=
A )
[o]
e
=t

PN

<

. s

. We know that

¢S, Ve L N reghe ot
I 1 T
“

pg = P(rifth state is 1) v ’

P(fourth state is 1 n fifth state is 1). + P(fourth stafe
? . . . . is not 1)

oy
£
¥
.
[
o

I
n
&~

+

—

}—J

1

o
=

S

1

. The eame reasoning can be used for any state. If Py is the prob'e.bility
the nth state is 1, then pn+1 is.the probability the next otate is 1, and

e
Ty P ’

=1 - S P gl e
pn+l 2.?1.1‘:‘. 4 ol § e J \\ '

DAY

ppry v vt
R et T

% o
We have found a formula whizh enables us tt go from the pro‘qe.‘bility of 1

at the, nth step to the probability c¢f 1 at ‘é’fxe‘n‘ex%--tﬁ'e“ (a¥l)st--step. )
F?,"': o Such a formila, whigh enables us to find a result for n+l if we know the '
result for n, 1is called a recursion formla. With it, along with our mowledge ,
of py, we are able to find the probability of 1 at various ;ztates. (You may |
recall the way in which we built up the Pascal triangle lire by line. Such a

step-by-step process is called a recursive process.) -
~

Exercise. . . (Answer on page 349.)
5. Find Py -

~ ‘.*4




' Ny ‘e
Suppose we wished to find P1000° We could do this, of course, with the f\
regursion formula, finding first Py> then 1 etc. (We have already found
PT in Exercise 5.) .. There are two other ways, however, by which we might
proceed. See whether you can find them; then go on.
% You might have looked for a pattern in ;he rrobabilities we have. Examine
?“‘s the following table.
= . .
N p
S 1 &
. D 1 . .
2 2
e 1 -
4 Py o» 2 #
E;:’;I 3
\ i & ‘ :
}3'::-} - . p 2 /
5 5 . .
vl . 11
: P %
o 2l
. 7 32 .
Perhaps you added to this table Pgs Py plo. By examinring the values of
the 'p‘s, .you could have seen that all are close. to 3 In fact, we have:
| . 2 2
. 2)1 0 =0 pl - -3- = 3-
2 1
‘ 2 1 =1.0 P, - 31 % 3
1 5 . 2.1 ’
: F3 z 5 3 "3l 7%
3 - e 2 — l
Ly Eoes o Py "3 712
' 5 . en 2f 1 '
b 5= 0 Ps - 3|
11 3 2 1
¥ | 5 = 9D % 3] =@
zl - 2 1
e == = 6862 -3 = -
B 3 2 7737 %
L3 ) 2 1
P * gn = .071575 p8 - -3- = 1—9-5
3¢ ., 2f 1
k} 15 ° .bous0625 o - 3- = .3—87;
L 2l 1
P10 g < ORTASTS P10 - 3| * 7ER |
( .
Q agh * )i
.

e

‘o - ' . S




different. However, we would expect P1000 to be close to

.Note the number liﬁé representation.

On the number line we see

p, <

i

P P P
2155 YT

o

13 p5 : Py -

£ S sy e
ARy
7 s

Looking at our number line, we would expect:

P5<P7<P8<P6 .

If you check, you will see that this is Indeed true.

]
1 g

You might also have reasoned in quite another way. You could have thought}

Suppose we repeat this process many tiwes.

-

¥

If we got 2's a hundred times, we'd also

expect 's about 100 times.

We'd expect to change from 1 to 2, then, about
100 ‘times. We'd also expect to change from 1 to

0 about times. i ’

So there would be about _ times when 1 . was,
followed by something different from 1.

i

"But we have roted that if we get 1, then the’
provebilitity of getting 1 the next time is

251 58




18. Likewise, when we get 1, <hen the probadbility of

noj~

not getting 1 next time is .

AY

19. Combining this fact with the conclusion in Item 16,
koo . ‘ we would expect 1 about times in all.

We may conclude: If we get 2's a hundred timeg, we would expect O's
about 100 tiaes and 1l's about LOO times. Eventuelly the probabilities
are about:

. 20. P(2) = P(0) =

n
N

or % 21. P(1)

This does not mean that in our experlment the probability is exacmly
that the tenth number, for example, is 1. However, thqugh the provabilities
of ‘having 1 differ from one entry to the next, they behave in a way that,

(D win

mekes our estimates.reasonable. i ,

12-6. The King's Choice.

Of the subjects of a certain king, not all are truthful. In fact, if a
subject is selected at random, the trobebility that he al always tells the truth

is %. However, the probability that he never tells the truth is %. The __1
king .7 this country is trying to decide whom to marry. There are only two I
possible choices, Princess Anne and Princess Barbara. One day the king

.whispers to one of .is subjects that his choice is Anne. This confidant
hastily whispers .o another person, "The king has chosen _m______ﬁ' Which
name he szys depends, -f course, on whether or not he is truthful. So it goes.
Fach person, when he hears the rumor, whispers .ther the name he hears or the
other to someone who has not heard. Eventually, 1. people nave heard the

rumor. 3But what has the ..'h one hea: ? Has Lr heard <he truth or not?

ERIC 157
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Probably, you would say that you can't be sure. But) then, of course, you
might find the probability that the 12th person has heard the rumor. What do

M

you think it is? Record your guess.

/"
-

eriment. {Discussion on page 312.)

<

If there are as many as 12 students in your class, how can you do as a

group an experiment which would duplicate the history of this rumor? .

Here is ohe possible plane. Twelve students are selected. The teacher
seys, "A" to the first student; this student throws a die. If it shows 1, 2,
3 or b, he sa¥§ to £he next student the letter he heard. (He is truthful.)

If it comes up 5 or 6, he says the letter "B". (He is not truthful.)
Bach student repeats the same process unti} the 12th is reached.

You can use, in place of a die, a spinner, or an urn with 2 black mar-

|
bles' and 1 white marble.

You can try the experiment by yourself. Heré is a record of 12 trials,
using the die-throwing plan desfrived sbove. (A throw of 1, 2, 3, or b

means "no change in letter". Althrow of 5 or 6 means "change letter".)

Letters I A T B T A T B B B B B B T A A T BA]

Die Result |6562231h636

The arrows are inserted to show that throws of 5 or 6 signel changes

in letter.

1. Try for yourself. Record at least 3 results--that iz, at least 3

’ sequences' of 12 letters. ' \\i>
2. In each case, your row of letters begins with A, Why? 3 a:

.3. Out of several runs of ihis experiment, in atout what part of them would

you expect the second letter to be A ?
k, What is the matrix of transition probebilities?

5. Incidentally, suppose the king is untrutbful. Is there anything that ¥
mekes you able to decide whether he is or not? Does it matter in the
problem? <

. =

91158

LA




After 100 repeticions of this experiment, finding 12 letters in each,

approximately how meny times would you expect to find A asg the twelfth
letter?

v

Suppose Just one of the first 11 people is untruthful. Then what is.
the 12th letter? What is it if Just two people are untruthful? !

s

N

\,
\

Let us find the probabflity that the 12th person hears A. Our pfevious
results suggest that we might look for a recursion formulsa.

b

.
[

Let us use p, for. P(first letter is A), p, for P(second létier is 4),
L4 N
ete., ’ ’ T .

e

iy AT T
e ' 4
i« -
s

L

~
2

The king said his choice was Anne. Hence,

P T A BT R b 58
h M

p‘l' = P(first letter is A) =

»
.

The second letter is A if the first person is
truthful. Hence, -

>

Py =

The probability that the se?ondlletter is Q

is 1 - -

Draw the tree which will help you find p3. Check
with the one shown below. .

A/
.\\\\\“\\\\\\\

—
~——

o
~—
A
T~—3

 ERI
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B b on >
W

Sy o

v

(1 - pé)- .

é. This is true because the 3rd letter is A if either-

. the second letter is A and the second person
is truthful, ' : )
. - .
‘or the second letter is B and the second person
untruthfui is .

7. The same reasoning used in Item € shows that

1, ' 2 o
=(1 - = - 3+
3 - py) Py =3 P37 . ,
recursion 8. Again, we have a formula.
. =2 1 e ’
M L , pn+l = 3 pn + 3(1 by Pn) id
Applying the distributive property in Item 8, we have: X \
‘ 2 1 1 : S
= = = _ = ; w it 7
. Pyl 3P P33P B e
(% l T N
- Py T §(pn + 1)

Exercises.
1. Find p3, Ph, P5, p6; p7} PB.-

2. ’Whaﬁ }s the approximate value of P15 ?

The method cutlined above is not the only one you might have used. You
might have reasoned: Each time an untruthful person hears a letter, he

changes it. But when a truthful persoﬁ hears & letter he repeats it.

9. If the number of changes odd, then the last
B letter is

.
®
i

even 10. Bab if the number of changes 1is _» the last
letter is A,

Q 299 . , ,
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Hence,~ Pyos the probability that the last letter is A, 1is the proba-
Bility that an even nuqber of people changed the rumor. Hence, to find p12
we could add the probability that of the 11 people vho passed on the rumor,

all ll were truthful; the probability that 9 of the 11 were truthful ete.

-

« If you have completed Chapter 9, you should recognize, then, that

L Y

o

n ‘
P = ) §)()(>+()()()
6. 10
1l 2' 1 11¢,2,7,1 11y ,2y,1
+ (&) +(355-3-> (-3-> £ Hde .

) This would be tedious to compute dirgctly, but if you had adequate tables
it would be easy tc find P,

- Again you would find: ' After that rumor has been whispered from courtier |
to knight to square to page to cook to beggar to soldier to sailor to tinker
to tailor, the probability that it is the truth is gpproximately 3 And thatls
not all. The seame procedure could be followed for any ratio of truth-tellers
to liars (provided there.is at least one liar), and for lérger numbers of’
people. In the long run, the chance that the person will hear the truth is

Just remember, the next time you hear some wild rumor, that the truth may be
harder to come by than you think.

L
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< : APPENDIX

THE LAW OF LARGE NUMBERS

-

The study of prﬁbability begins with simple intuitivé ideas. We feel
intuitively, for example, that 6Ht of & large number of tosses of a coin,
ve are "almost certain" to get heads "about half the time". Our study of
probability has prepared us ;o explain more fully this intuitive idea. 1In
particular, ve can give more precise meaning to the phrases "large number
of tosses", "almost certain","about half the time". ‘

Tossing & coin meny times can be regarded as a series of Bernoulli
trials. If we regard "heads" as “successes", the probability p of suc- *
cess on a single trial is .5,

Let us think, for example, of 1.0 t;iais. We know how to compute

the probability distribution for Bernoulli trials for n = 10, p = q = .5.

We know:
(1) The most likely outcome is 5 successes, ;
. (2) However, the probability of exactly 5 successes is not great.
( 1t is, in fact, .24€. ) .
(3) On the other hand, we are quite likely to get 4, 5, or 6
successes. {The prébgbility 1s .656. ) )

We can state (3) in terms of the avéfage number of successes per
‘trial in 10 trials -- which we have ealled m. From (3), the prob-
ability is .65 that m *is either .4, .5, or .6; that is, that
m differs from .2 by at most .1. N

'

.1 .1

A
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- . . . . ) '\“ -
wé may write all this more concisely: < . ' o
P( m- .t [ <.l)= .65 ' '
. Notice that in’the preceding line we used the symbel | m - .5 | , .
which is read: "atsclute value of r - .= " . I+ is the distance -
between m and .. I mo- Wt KWL, then m lies in the number
line region shown atove. Fcr .0 triamls, ‘he probability that m lies %
in this 'region i{s .ctv, ° - ! ‘
Now, suppo:e that we consider 100 trials. Though you know how |
to find the provatlility distritution, the lengthy computations that you |
would need are dlsmaying. One question we have left for later éourses '{
is: How can we efficiently rind probatilities of this kind? ‘ |
We can tell you, however, some results. (Compure them with (1) to ]
(3) atdve. ) If we toss a coin 100 times: ) i
{1a) The nost likely outcome s =0 heads.
(2&)'However, the probatility of getting exactly 50 head is smel) --
smaller thar the probability of S leads in 10 <triais.
(Rerall tne "flattening" of the binomisl distrioutions with ’
¥ncreasing n. ) ’ ) w
(3&) Moreover, the probatility of getting 49, 50, or 51 heads <

“ir r0t very greet. It i: nov as grea: ag that of getting &,

(3
fLoor o

heads ‘n 10 ¢ ials.

But. we can ald corething new. The probabllity that the average .
number of hegds per ‘arow s nesr W 1L greater tor 100 throws than
for 10. For _.CC “hrow: N

P - . Col ) e ‘
1]
. . .
That Lo. for W0 throwe ot LS falrly ..ol (protatiLlity s
AUG ) that e nwter T temAl Lh .. » “f w. For .00 ‘hrowg, .
. . Kl . Kl 1
It o rere l4e L, {postetlllcr L) thet e narcer o neads st

. A \
We roulilo oL coamoee L0 trecwe, LOTCOC surowe, et
By now, you oo QL LLpate i Tedt oreaolnal o2 ter - we LoDk for e

~
- . .
. I, s 0 L0 Mave o el L owme re nnd oo ¥ Lt ol exe
A 0" Lorravafielt lus Treze s Wl ey oL LTl Lone
\‘ -
’ M N Jaooe LDoprooatt Lt oodroooar pre-
w oo R O R
.
-
Pl
5 ~ r’ 9
N st 1)




We have, however, & general tendency which is clear. When the number

of throws-is very large,.then P'( | m - .5 | < ) is very close ‘.0 1. %
Ieyjus be more specific about what this méans. Suppose you select.

8 positive numt less than 1. You might choose, for.example, .99. Then

we can find a number r with the following propert&. If the number ~f

“trials is n or mre, P(|m-.5|<.1) >?.99 . If you had chosen

.6999, we would ndt have been jaunted. Again we find how many trials you
‘ﬂ;would need‘tq insure that ) . Q

P im- 0 | <) >.9999 .

S b A0 v MR ¥ B YT

rna

Of course, ycu will realize that our discussion could have been
: carried out with an& specific value of p. It was not necessary to use

p=.5. Nor was it necessary to use .l + In fact, our result is very

P , general.. let d YDe apy appropriate positive number. Consider the region:

~

P
o)
3
A
R
v

AY
- 0
( v-4 . . -p p+d , .

No matter how many trials you decide to use, yod cannot ve certain that
m will lie in the region. But, you can be a;mogl certain if you choose
v a, large enough number of trials. ‘ ’
This fact is qometireu calped The Law of Large Numbers Numbers
- o 2 \
Remsrks: .
(1) Notice that the Law of Large Numbers has to do with the average
number of successesg, not /~1wp.g the number of successes.
o (2) Note also that the Law . Large Numbers does not tell us that
; something is certain., It is stated in terms of probapilities.
It cavs: Yor a very large number of trials, it is extremely

1ixkely *nat the aversgge nurter of successes is close to p.

E 4 . ,
. .
Probability
The law of large Numrerc ... w.del, applicablie.  Suppose we have an ‘
’ experiment for which *he prerati.:ty of sore event E is = . We can
4
consider the long seq.cnce of .niependent trials of this experiment. For
N L
. each trial, we reccri .. cesc" when event E occurs, "failure” when it
’ [}
does not. The protetills, of ".urcesl” jo =
1
- ‘
o 303
3 : 1 o
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We say "if the experiment is repeated a large number of times, then

E 1is almost certain to occur* about of the time." More precisely, the
b =Yy

2
.5
Law of Large Numbers implies that:

(1) If we decide how small we want | m - § | to be (that is, if we
choose some d, with 4 >0 );
. (2) if we decide how nearly certain we want to be ( that is, how close

to 1 wewant P( | m- % | <d) tobe ); then

.

{3) we can find how many trials are required to fix our reduirements.

. .

You may ask: "How do we find out how meny trials are needed ?" The
Law of large Numuers only tells us that the necessary number of trials can be
found. How to do so is another:matter that we defer to later courses.

Reasonihg similar to that used above can be applied to situations
in which we do not know the value of P. In such cases we wish fb
estimare P to,a degréeﬂof accuracy appropriaste to the application: Once
again, we can-do so. By using a large enough number of trials, we can be
almost certain that our estimate will be accurate. ;

The fact that a suiiable nunoer of trials can be found maﬁés prob-
ability an essential tool of the opinion sampler, the scientific experimenter,
the industrial engineer charged with msintaining efficient production.

’ Uncertainty cannot be transiated into certain.; by probabilistic r
techriques. But probabilistic techniques do enable us to decide, in situations

invoiving ‘mecertainty, that some events are overwhelmingly likely.




~ e - Discussion of Experiment, Section 8-1
z Cur results:
: Number Number
Recorded Recorded
ot R 10
. I 16
B 6
. R 7
iI 14
B 7 ]

We expected about an equal number of I's ang II's. Ve expected about
% of the I's ang -;'— of the II's wpuld be R. 4As you see, our results
agree rather closely with our expectetions.

Rotice that we obtained a total of 17 R's on the 30 triels. As you
will see (Items 8 o 1k), for this exreriment P(R) = é ~ .58." Our result,
% ~ 53, 1is remarkebly close. Your resulis may differ from ours, o course.

[l

\
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Discussion of Experiment, Section 9-1

Of course, as usual, your experiment is almost certainly not like the

Here are our results:

First Throw Second Throw Third Throw Score
6 3 .5 2
2 L 1 0 ‘
2 5 2 1
2 L 3 0
& b 1 1
2 5 3 1
1 3 e ! o]
L 5 2 1
3 2 2 ¢
5 1 6 2
For our results, we observe: o
Score 0 1 2 3
Nu?%er of . ) N o ’
tines
Were yours similar? 8

win only 1

1 then

We got mostly Cfc and 1's, and we weren't surprised. You

ou throw a o . On each throw coutre less likely to get
rd

v

0
ou are Lo get Q. 4e exTest & low s.uore to 0O°24r more often than 8
& g

high score.

OQur averasge wes .7, egaln indirating tnat low scores ere more frequent

than high onec. we sound this average by d iing tne total score, 8,
by the number of games, 1C.

1, 2, and 3.

This iz not the seme as the average of O,

Naturally not--we get some sJores rore often than others.

When you rlay the game with the die your protatility of winning e point
s

. 1 . . .2 -
on & Lnrow I 3 ar.d of not winning ls 3 If tre spinner is such that
. s
4 e e
the red area is = the total area, tnen red and tlue have protabilitles
3 ’ t
1 < et . : o -
3 and 3 respe:tively. Hence, W€ 80 uSE tre syinner for the game,
scoring 1 ypornt whnen the ¢y inner ctops on »ed. It ic oniy tne prooa-
. i .
bilities = earnd = <nat matter, now toe lacht L.al 2 die ic used.
3 3
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Our results for 10 trials were:

Discussion of Experiment, Section 10-1

tch

Trial A 2 3.1 & 5 6 |Total , '

1 1 1 1 3
2 0
3 1 1 .
L 1 1
) 0
6 . 1 1
7 i 1 2
8 .0
9 1 1

10 0

PR - .

We scored § rpoints in 10 gaxes. On this evidence, we might expect

to score approximately S0 points in 100 ganmes. However, we recognize

that 10 trials asrents very mény, so we would not have mich confidence in

our guess.

ERIC .
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' Discussion of Experiment, Section 1l1l-1

rd

Our record was:

= ' - ABBBBBBABABBAABAAABAAAAAA

:When we béﬁ%ﬁﬁﬁ%unting, we get 1, 0 -- and this is enough to tell us that A

idid not always lead on our vote. In fact, after the second vote the vote was

: tied. g

k. 1. If the first vote is B, then A 1is behind on the 2irst vote. A leeds
on the first vote only if the first vote is A. If the first two votes
are AB, then A and B are tied on the second vote, and A does not
lead. A leads on the first two votes only if the first two votes

are A A.

: 2. P(aa) = -12-% . -;-[ ~ .3. (This is exactly like an urn problem in drawing

without replecement.)

% ' 3. Tf the first two votes are A A, then A leads by 2 votes. He is
’ certain to-be still ahead after the first 3 votes, so P(A ahead hfter
3 vetes) ~ .3. -

L, Your answer to Exercise 2 leads you ¢o conclude that the probability
that Arthur does not lead after twc votes is .7 . Thus it seems un-

likely thst he will lead throughout the ballot count.

Q 30¢
ERIC - t50
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Discussion g_i_‘.Exgerimen:t, Section 12-1 N

is how ’our record looked:

Mon., Jan. 1 I
Tues. ' 'L ’
Wed. ) L '
Thurs. L
Pri. L
Sat. S
Sun. L
Mon., Jan. 8 L

You may go on a long time, before you get an

»

&

Burned Yes {No

No
No
No
No

Yes (Here we draw a
red marble.)

No (fntomatically go
back to L.)

No

No

This is the sort of

situation where a great number of trials would be necessary to give you results

erough to base any conclusions on.

If you do the experiment a few times, how-

ever, it will L<lp you to understand the situation better. This"was our main

urpose in asking you to do it.

O
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Discussion of Experiment, Section 12-3pa .

1. VUse, as before, two jars, one labeled L and cne S. Place ¢ white :
marbles and one red marble in the L Jar. Place 6 white and 4 red
marbles in the S jar. Draw a merbie from L. ¥ it is vhite, put it
back and draw another marble from L. If it is red, put it back end draw
a marble from S. Continue. After each “raw, put the marble back in the
same Jar: Whenever the martle you dra: is white, draw the next marbie
from the same jar. (That 1s, coOk the same cereal.) Whenever the marble
is red, draw the next marble from the other jar. {You may have worded

your ansver dirferently, tut the ideas should be the same.)

. Our record of what cereal she cooks for 30 days:

LLLLL - LSLLL  LLLLL LLLLL  LLESS  SLLSS

<. {(a) She certainl, cooks L on Monday (probability is 1). The probabil-
ity that she cooks L on Tuesday is .9. So, clearly, the probabil-
ity of cooking L is not the same each day. We would expect from
our results in the lasi section that the probatbility of cooking L

differs from one day to tne noXw.

(b) In your exyeriment, ycu should ouserve thgt you get, a&s a rule, sev-

eral L's in s row, then come S'g, then more L's, .etec. 1. you
2 2 4

’ rereat tuis ewperiment many tiies, you find thet the rows of L's
‘ tend te - longer, on the zverage, tuan tne rows of S's. This is
ot curprising. If she @00 .5 L, she is less likely to burn it
. vhen 1f cne :00ks S.
3. Each time che wuvt™ o L. 4, Sie CL&WLES 10 ti.e other. §o each change in

2

cereal ‘correcyond. to on: wartin;. re ctarte with L, then changes to

S, <thenm tazs *o L, +1-. TIhere arc,'conrequently, arproximately as

many barnin . o, L0l .
Ihic lacs re.dt meo o caror.oe Joa at rirct. ~ 1s more likely to burn

S (ir cre -ooks 1v) ramn to tara . (uf f.e coous IL). sowsever, ‘cthe cooks
Lumpies mor. ogten. “‘on Fewn'l., nin famly seto about so much burned Lumpies

as lurned Co. ¢ le.l .

Fa 2N
. b
4

)
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Discussiog of Experiment, Section 12-%

/ ' ’

terms are 2, 1 and the third may be 2, 1, or O. Here are our
results:

B 21101 21110 11012 11110 11010 21211

2. No. ¥ou ca- change the number Qf black marbles by at most 1 in a
single step. ’

3. 1 white in X; 'l black and 1 white in Y.

Q | ) 311 i72 .

PAFulText provided by ERIC [ -
N ’

You wdll~have a sequence made ur of the numbers 0,1, 2. The first two

Mg
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Discuseion of Experiment, Section 12-6

Here are our results:

(1) Letturs HTBTA TB B B B B BTIA A’TB
;. Die Result j6 5 6 2 2 3 1 b 6 3 6 -
: L
(2) Letters [a AT B B B B B B T A T‘B T A al|
, Die Result L 5 3.2 1 2 4 5 6 6 2 |
Ir\ s \
(3) Letters [ & a ATB BTATB B'B B .
Die-Result [: 2 3 6 2 6 5 3 1 2 |

" We are always supposing that the king whispers to the £irst person, "My

choice is Anne." Hence, the first person heard A.

Since the probapnility that & person is truthful is %l you would,expect

the second letter to be A about %’ of the time. 1Is this the case fq%
your experiments? . T
,_' /\\ﬂ
. /
/.

wirn Wi W

.

A1l we really know is what the king tells the first person. If the king
is untruthful, then, of ‘course, he says "Amne" when his choice is really
Barbara. But this wili not have ahy effect on what happens later to the
rumor. '

Watch for a catch! You might think that because more people are truthful

\ than untruthful, A would be more likely (since A 1is really what the
'L\king said). But look at the next quesiion.

312
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If just one of the 11 people who pass the rumor on i{s untruthful ‘

You can be sure the last person hears B. One person s ys the j
neme, and the rest truthfully pass on what they heard.” But if Just 2
~ )

< other changes ‘it back. It appears that whether the twelfth person hgars .
; A or B depends on wnether an odd or an even number of truthful peo
; passéd the rumor on. Does this change your opn.nion about what the answer
to Exercise 6 shoald be? You will find out the correct answer to Exercise

6 as you read on in this section.

’

v N \

ANt S s
B 0
s

t
Foay, 5

»

Q 313 f 71 . N
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" Adswers to Exercides 8-2 H \
o e

¢
2 P(In2)

\3 P(In 3) =

"
wijr

| d

PR b ¥ e TR
. .
/ .\
Wi~ Wi w
—
—
ol ol
n
[4°]
~~
—
—
=]
n
N”
]
Wi+
.
ol

wir

TS

A,
—
—
=
o= ot

e e SN 37
s e

P(1) = P(In1) + P(IIn1) = % + % = %
p(2) = P(In2) +,P(IIn2) + P(IIIN2) = -;- + % + % = Isé = % .

‘

P(In3) = 3 .

P(TII n‘lt\)\r.%/

o1, 1 ‘_18
Check: 1%+§+§+6=l+1-8+1-8+1'8—"1-8~l.

P(3)

P(k)

S b ok AT AL £ G S Sn S § f ek o0 wd A

S R BRI g2 A (i 003 e b7 YRPen o L
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- 2. ‘P‘(even) - P('é) + P(4) =

P(even or less than 3)

- P(less then 3) = B(1) + PZ2) = %5

L% -

-~

.

b1 o1
9 618

twice. This is a total of 13+ 10 + 6 = 2
sense we might-say for a given play he should "e

29

5 ~ 1.5 pieces.

7

L 13

+ = =

9

18

P(everr) + P(less than 3) - P(even and less

pieces. In some

ect" to receive

(see Chapter 10.)

76 '

v

f 11 .13 4 _16 8
hen 3] "EH5TES
5 . - L
Note: (1) P(even and™less than 3). = P(2) = 5
(2) We also obsérve ’ .
P(even or less than 3) =1 - P(3) = 1 - %: g
/ &
‘ 37 PMAN3) ==
" 1 10
- M 5
) 1 /A< . 2
<§ 5 i PlAn 1l)==
/ 5
~
2 ~ 12 BB N 2)=f
B<2 s N
1
1~ BN 1) =g
2 " .
2,13 c
¥
1 ) .
P(2) = P
1 . .
N 1’_(3) )
L B, 1 13, 5,2_ )
Check: S *F*T0-"20"2%0 %" '" N
Note: If the boy plays this way 20 times he will.( on the "average")
receive 1 pilece 13 times, 2 pieces times and 3 pileces




T Ey - - S
£ . / \ .
5 7 \
_z Fad i - .
g v . .
: yoC ) . .
e i : Second
Draw

. First
. . ,,R (2 reds) .

‘ ) 6/ <10 .

10 B 1 red
e < | (1 xet)
X *, \

L K b . {1 red)

~

6/R
\B /-1-6

L .

£y L ¢ i—o-\\B (0 red)

L » A
LA ‘- T
:. . - ) \
L L 3167 b
: MO) =15 10" 100 - 5
b .
Fet
o 6.4 b 6 4 12
; ML) =% 5% "10°100 - 25
: ‘ 6 6 _ 369

; ) =5 0" T0 - 5

12 . 9
Check: P(C) + P(1 P2) = 53 + == =1
ecki P(0) + B(1) + P(2) ==
’ - 0y
Note: This example is one of a general class of problems that is
; ) discussed *in detail in Chapter 9. }.
- 5. ’ ) Secoend
- i Draw - )
First 5_/R i
. . Draw R
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Sle Gir»

6_8
9 B
2
15
; Check:", P(0) + P(1) + B(2) = i% . ig . Ig -1
. _ - : .

6. P(red on second) may be found by adding the probabilities of the

branches R R apd B-R. _
P(red on second) = 18 . lg. % . -l—g- = f30763'+ % = % = g-
Notice that P(red on secondlred on first) = "The events "red on
::"'" ' second” ghd "red on first" are independent.
; ,0’{. As in the answer to Exercis& 6, .
%‘ P(red cn second) = lgg— E.g=%+g—g=?9—g-=§-. (1)
S ° N .
© , Is it not surnrising that P(red on second‘) is the sam%ither
we draw with replacement or without replacement? In thikxphse, .
N "red on second” and "red on first" are not independent. <
i . . P(rec% on second red on first) =_% .
< 8 ) .
o - ) l/J (Jane wins)
% 2 :

.g ‘ : J(neither wins, Kate
) / has 1 left,

) 1 Jane has 2)

) 2 / 2 . "

- . ..
“ - N 5

M
IS

1 1
: -2_\\ 5\
K- K
- (Kete wins) (Kate wins)
. '
£ -
_

<
5
3

e

.p-/‘\
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10.

~

1 1 1 .
P(Jene wins) = 5°3°F% {from branch "JJ%)
,oy 1.1 1 1 _1_1_5 (from branches "K" and "JRK")
P(Kate wins) =5 +5 .5 -5°5+*§5=§
Pineith vins) = AN g, (from branch "JKJ")
ErWins)=3-32°'2°8
TR S RPN S -
check: I - - 1
P(0) = % (Jane wins)
P(1) = 5 (branch "JKI")
p(2) = 0
P(3) = % (Kate wins) .

The game can never end when Kate has exactly 2 chips.

say eight games, she would "expect” to have O chips twice,

once, and 3 chips 5 times. O+ 1 + 15 = 15,

of chips &t the end of the game is 2.

! 2/3

2l

’ il/3 2/3 1/3
///// \\\\‘B T~B:score 6-6. P
2/3 j
1/2 __~A:score 6-5. P
\B<¢/3
1/3
TR wins 7-5"p
////A wins T7-5. P
1/3 2/3
////ﬂ
2/3 1/3
/,,—A<<: S B:score 6-6. P
3 2/3 1/3 ////A:score 6-6. P
< \ 2/3
1/3 B<::j )
EN _
Blins 6-4. P - 9/81. B wins 7-5. P
: £2 _ N
P(A wins) - 473 P(B'Ylns) = 3% . P(6-all) = %% .
18
| 3h

A wins 6-4. P = 36/81.
2/3////’//// _—~A wins (-3. P =

However, in

1 chip

Her "average" number

»

8/81.

]

4/81.
L/81.

=24§1.
=8/81.

4/81.
L4/81.

i

2/81.




i o'
10
R
7 y
E/_ I% \G
o]
23
10\ _-{/ RO
' 10
Gy< 3 ’
10 \Go

P{win) = P(Ryn R) + P(Gyn G,) = b5 + .09 = .58

The game is not fair. Does this surprise you?

P(Ry .n Ro)

P(Ry n Go)

P(c;y n Ro)

Pgoy n Go)
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5 - A
2 om thir: craw) = 2+ e m e 2= i

P(réa on thira lraw) = TTETEYE SRS

We hope yeou are .ed to guess that for *Lis type of protlen,

P(rex on first drew) - P(rei cn sesonuairaw).

If we start w.tn 5 rex, S biye, then, .

P{rec on firs® draw) = P(red on secopi drav.) = 5

If you are familiar with the manipuilbticn of a.getraic symbol
you will unierstans tre following argument.

Start witrh, r rei, t blue martle. Feplate tne martle Jrawn

and adl K oFf the same =cior. P(rex on first rad) = T -




Ly '\
A ‘ .
* ) g p. L s
. r+b ‘r+o+k
r+k ,
. yibh-s
k<
/ \ i . r
—_ P: T4 THbvR
r+b
I3l
’ b T —
T+l \ r+b+k
s<
: : r -~ _r- r
P(red on seconi draw) = ~em . ., L I
r-t rst+k r-t r+b sk
a
. = I T+ rC
v+t ) (r+r-K)
r(rek-t) )
T (et} (retek ’ |
r
. - —— = P(res cn first 2raw) .
T+t
Are you wi.ling <. guess furiner? How atout - 2 third arawing?
Tre 100th arawing?
. You mightjalsc refer tacs ¢ Exercise 6. Here we replace but do
2ot axx mart.es  (&=C) .
In Zxercise 7 we remove the martle irawn. (k = -1)
The result ir &ll cuses is
* Pres cn firct araw)  P{res on sescna iraw),
.
s Wednesdsy
- L. 1 L.
| .P's:&} / W G 0L ’
¢ )
| A3
- /‘
' e ,
Xonda; e ‘ \{ ’
Iy < \ L0 ’
T, N v
N
B \

ERIC . w2

Aruitoxt provided by Eic:




: (s,) = (.9) (-1) = .09
T Note: B(L) = (:9){.9) + (1)1} = .9
: T2, P{Burned) = P(Lw and burned) + P(Sw ans burned) Y

6.

(=)
Note:

(x)

(.o1)(.2) « (.o9)(-»)
09, ¢ 036 = 12T

Tuesday

[H

il

B(s,) = (.92 « (1)(.6) -
i) - (9)(9) - () -
P(Barnex) = P(L, ani t .mes)

i
ha

P(Lw) - F{Burnex | L) - P(Sw)

- P{Rurned | S)

Weanesday

/ I.w
-3

'A\S-
W

o

W
03 + .66 = .15
e 0= LB

- ——




t.9)(.9)(.9)cJ

L)+ CL)(.9) + (L1)(.6)(.1)
729 + .036 + .036 + .02k = .825 .

=1 - .825 = .175

‘8ot P(Burned) = (.825)(.1) + (.1) + (.175)(.%)

.0825 + .0700 = .1525

The probability that the cereal is burned has increased frém .1b5

~

to .1525. This increase,however, is small (.0075) . . You might guess
that future days the probability would again increase, but by smaller and
smaller amounts. See Chapter 12, l

Answers’to Exercises 8-3

1 _ P(J) ~ P(H | J)
f bR - ey RE Ter e BT R T
2 1

__3°'I5 -

"l 3,2 1 .
5 57310
; — 1 1
i 5 1.1
Fo 3.1 &7k

T T 1

Of course, we knew that
P(J | H) =1 - PE | H)

T

Wl
t=t
o

Not-§  P(EN Not-H) = %

~
i

1
/H P(r N H) = E
- .

wlrn

7 .
10
\Not-H P(J n Not-H) =

I




/Boy P(FN B) = .h2
*

Fresh<:\\\\ ‘
.3\
Girl P(¥Nng)

/Boy P(s ? B)
.8

-3

.18.

o

.32

.2 \ ’
Girl P(s 0 2)

= .08
(a) B(G) = P{(FnG) + P(sng) = .18 + .08 = .26
P(FNG)
N 1
= —% ~ .69\
Notice that if we substitute directly into Bayes! formula we haye:

- .6)(. .18
Flc) - (.6)(.§) %((?3)(.2) =56~ 69




RZIED VL IR Pr

eved U,

) * P§ two reds !
3 C ed
/ P( 1st Tjh ' 2nd I',u.) P(2nd 3

-

»

-

. P(All piece) = B(an 1)

P{1 bl
1 b
. ) _ 25 _ 8
RN R K ‘
. 2°'5 22 ) 7
3 1/

2\K

‘ . (Kate loses first,
wins eventually)

\v »

X
(Kate wins first and wins eventually)

ol

[3

P(K wins first and wins eventually)

- . P(X wins first | K wins eventually) = K wins)
1
\ -
1,1 "5
%8

4. Refer to the answers t. Exercise 1, Section 8-2 for the tree diagram.

’

przje) = BIIN2)
ToL,L 1 :
=TT 1 L I, "L

5. (&) With replacement. (Exerdise L, Section 57-2)

3 6 ,
g 10 * 10 3
' T, 6 6 N 6, 5
. (1‘5-1‘5*(5 '1—6) .

P(two reds)
P(2nd :'ed)—

£, 3

. i 6' 0 9
= 5 Z

(-5 * {5

P( 1st red | 2ni red ) =




AP pa T
-
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P
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Aruitoxt provided by Eic:

R ' i - R R T et et
“ ‘ . R o :Y
1 5
7

N4 R A
PERRN

y/ ! ’ , , .

. , {c) With replacement and add two of same color. (Exercise 12, Section

VA . A -
4 8-2)

B 15t red [r2n red) = S zeas) L

: ' 3 .2
| = Z 3 1 =§
¢ (% .‘g) + (g' . é‘)

»
1

-

Actually, you d11d not_need to perform these calculations if you had re-

membered the gnswer to the earlier exercises.

b H
- P( lst wved 4 2pd red) = ﬁ ;‘;g ;:d_s_;_

exercises of Section 8-2 that P(2nd red) = P(lst’red) = 5

urn problems. So

Recall that:

and ° P(2nd red | lst red) = P(two reds) .
‘ P(lst red . - .

» ! [
The numerators of the two fractions are the same. Also, we “earned in the

3

P(lst red | 2nd red) = P(2nd red | lst’red)

wout of 10, so

P(2nd red | lst red) = 3 ,
N

(b) without replacement: after drawing red, we have left 5 red mar-

—

bles out 'of 9, so

P(2nd red | lst red) =9§- ,

A}

‘But P(2nd red | 1st red) is easy to find;

(a) witn replacement: after drawing red, we have lefti 6

o

¢

L]

Yo

for all three

Lo
red marbles

(c) with replecement’and adding two: after drawing red we are left

with 8 red marbles out of* 12, so

P(2nd red | lst red) = %— .

i

1,

i
P

6. Using the.notation of the answer to Exercise 8, Section

; struct a tree and substitute im Bay s? forml.‘la,

\

.

(87

’7

“

7-4, we con-

ot "

e vn v T e b




k]

i

P(A)-P(L|A)

P(A| L) =

i
= Te - 0

'

7. .Using the notatton of the answer Exercise 3, Sectiocn 7-4, we construct

substitute in Bayés‘ formula.

a tree diagram and

e e e ST YT
< JSGN K e

AW

T

.05/

H —
.98/ \\. 95

—

9

. \S/.' o

~—

.l

\N' o

&

V9,
" B(H) BT ) + ¥(S) - KT [8)

(
+ (.02)(-30)

.13

P(A)-PL[A)+P(T) - P{L]T) *

(.75g(.2o)
.75)(.20)+(.25) (.60}




H
2
s
:t-
W
.
O
3
S
v,
DA
g
I
i

|

o

P (0o
P (L
)

~

.6
\ ) N\ b
\F<

successes) = (.6)2 = .35
success) =2(.4){.6) = .48

successes) = (."«)2 = .16

toh—

N\

LV

/

/
3 -
7Y,

V7

——

6

~

N

@

(There are two branches involved)

B
7

/

jae)
~~
&
had

u

2k

~F o OP(FF) - .36

~H
/

rotE+ POl

-3




P (o h;ads) ='le§ ~

;; P (1 head) = % (Thrge.branches!3 ‘ Cos

, P (2 heads) = % )
P (3 heads) = El; )

f

B B~
Blon

g ' P (0 reds)

P (1 red)

n

P (2 reds)




Answers to Exerciseg

9-3

.

1.

.

P(no hits),. (.7)“,'or approximately

LN 1

.2 .

P(1 hit) = u( )(.7)3, or epproximately .hl .
P(2 hits) =6 .3)2(.7)2,)or approximately .26 .
P(3 nits) = h(\3)3(-7) , or approximately .08 ,
P(4 nits) = (.3)1‘

.

, or approximutely .01 .

He mekes at least two hits if his number of hits is 2,\ 3, or

L. Since exactly 2 hits, exactly 3 hits, and exactly 4

hits are mutually exclusive events, we he-.: Pat least 2 hits)

= .26+ .08+ .01, or .35,
; 5
SENE) - 3k -
Number of heads 0 1 2 |
“Probability 061 s 38 s | .06

The most likely number of heads is 2.

. . ¢ .
ting exacfly .2 heads is .38. (We have®rounded to 2 decimals.)

- 10
P(nc 6's) = (%) ~ 162
) 10
P(at least one 6) = 1 - (2) ~ .838
y.

The probability of get-

Answer to Exercise 39-5

Qur record of 100 thr

v

M

qws gave these results:

|

4
’ Number of . -/
. B 0 X 2 3 I 5
N - Evens
Number of
‘ b 47T s | 21dfo
times occurring
) Fraction of
: Nod | .3 5| .10 .00
.| times occurring
Our values. .0, .2, .2¢, .2, ..0. .00 are reasonably close
. Lo the tal  +ted values: .03, T, X1, .31 L6, .03,
.
[ -
‘ x 0
Q : - . \
ERIC }rad

-
A FullToxt Provided by ERIC
.

PPy

)



ERIC.

Aruitoxt provided by Eic:

Answers to Exercises g:é

i * o
1. x7 + 7x6y - elxsy“

<o) =1
) - 6020 - (Lo2)®

2 ]
. 10(.01) - <(.01)"
25(.02)°

2. 1 +5(.01) + 10{.01)° 0510100501 .

3. (1.02')6 =1« 6(.02) + - 26(.02)" -
(.02)" = .000008, eack ol the b
20(.000005), or .0C0.€. Heus

the nearest hundredth,

Since

e their sum Is lesc then

(@]
¥}
~
o c
b
v
.
-
4

2 . 2 2 =3 3 2 2 2
b, (a) x° - Bty - laxyt - 8y s ux” o+ ax(ay) + (@) - (2y) )
I Q 1
(b} » - bx7y « 6xy - bxy” -+ v
2 ( 13
(c) % + 6% +i0x + 22 eZ « ==

8

=
L

N

b
3 o 2 1
o 2 b2 -
(d) x7 « §x B3

. (>>>r b Oy < Nxiy? e G O’ (/)P

(b) sz :5-(:*:)':6)-- - O -1»<5>13 12 On

OO QR

n 0 n ooy 1 n
() 2%« (-7 = () - (I ) -
0f cource, we aiready anew tnis resulv, from our consideration of
counting out..omes -- from tree dilagrams, for exaap.e. <

1

[
Answers to axerc&ses 9-

[a\ 38}
o
™ fo]
. -
%)
. T8
=
e
r
i t ny
N
L

2, Hlexa:t., n) . the cumoof the three protatilities found In kX,
and tre protaiilat, ol Toang 3 foamt In Iver Q
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.
. . .- K [ .

R 2,3
\ - v .u. tP( anc*'ly ‘R) .\.0(%'-)' (%)

H

(b)x +33+z 15y + Sxy° + 3520 +3yz +3xz+3y2+6xyzn

:,13%6\ y» 12,q,;2 Lo T ’ '

Al

g . v e - ;‘
"1}‘.‘1 ,16,‘»',' 12 ) . ‘ N

.
o
v

- B BT B

Our avera.ge was 9\.

(a.) For 100 ‘throws of a.die, our aversge was:. -
: [12(15 +15(2) + 5(3) + 15(4) + 21(5) + 12(6)1 ( 5 oF 3 sk,

!

(b or the first 25 throws ; our average was;

.
*

{h(l) #1(2) + 6(3) # 6(k).45(5) + 3(6) ] (100 P
etk Nl - - e \
(c) For ‘the last 25 throws) our averege was: ' L

13(1):+ 8(2) + K(3) + 2(4) +5(5) “346) 1 {55 100 ) or 3.8 ..

Yoar averages, of course, are x;ot likely to be exactly the same,

- . "‘» )
(a)ll(28)+ (29)+2(3o)+~(31)-297 o
o ¥ ‘The averade J.s) d.~97 {riches. . ‘ .,/, \l
(Y 100  strips .- . ) . {
\c) 1 (This is what you would expect, if the data 1n the problem is,
complete.) ) ‘ {I :
:Ie has lost 39 balls. (2.6 x 15y . T

SURE T 8o . .

; oo =23 N e )
(a) x~+y2+z 72xy+2y2+2rz"- e R
, ¢

,I' i . L ’ Co »—

.

Sy

o
ity 4t

e
e e 5

< .
Do, st




sreddes~ 10-3

PREESTIN

ST ) _ ’

oo (o) 2 N‘ote,. we had N:% for 1 coin .. L ;
o N ~ 2o . . - A
L . . "“ . M=) for 2 coins . - O

oo =3 for 3ocotms. L 0 T T
" . (You might wish to verify your guess. You will ¥ind tha} )
A 2 is the correct value.) e
k. M= 0(.9%) + 1(.03) + 2(.02) + 3(.01), . R T
", M= 0,03 + 0.0t + 0.03 = 0.10, s ' . o
. M= 0.10 .. . . i

. ! . F
It can be expected that in 100 such periods, 10 accidents

eight cceur. R ) . ey . s
.. Answers %o Exercises* 10-k f o . S
5 v . . s
X, In each part of % problem', the king should c'ompute the -'nl_athematiégl
.expectation of his loss if the army is at A and if it\ is at 3B, .f{e
should then choose the alternative for 'whiph the loss is smallest,
¢ (a) The losses, with _proba'oilities,, and the éxpected value: N

N



PN 20 e i st
LA . s ANa

enemr Ettacks

BTN e e

oFovability:

nemy fattacks AL

P e

I

ol

pr Babimy

%
75
4

q_; .n-“\we,

3
&
3

)
0
e

7
i

~

,‘.1}- a8 possible.
, Pleneny attacks A) =’_5

< we
PO v

enemy attacks A

v.‘Bi‘obability |

~77.7 e " T v
rl}.‘ * R ‘:‘ - “" ?

enemy atta.cks B

NN e,,.\g
.
& .

pj;j bability

SPRVFER

5 . £ \
'.f’he expected. oso .1.5 now sma.ller when the army is at B.w The kirig

g' , P(enemy attacks B) = %

.

«
2 x

e
3

st;guld send his army to B, sihce he wants his Loss to be as small

Vi ¥k Ly

N

Fdiverl

S

.

L P,

o

e

S5




£
.""~~~._.. ~~; ' .
. enenw attacks A enemye,attacks B,
S e, TR e - =
1 ,'" P 3 . 2 :
P « < e Ty N A -
5 . L. 2 5 . N
AN & e - o
~ VA G S
Sods
L e . . .
L- 28

'Theuexpected valyes -are equall It do,gs not matter whether the- army

is at A orat B . Byt, of course, he will still send his arny
totor‘e place-or the other. He might; ~perhans y ‘fosg-a coin ‘%o- decrde’

. .. - f . " - N, -
) - it -
. Y -
. . o -
T2f 3 T
Prebability~ 553151 : ? L
- (If you had. o.ii‘ficulty, refer to- Chapter 3, ) o0

.

(b) ,M 7o .
(a) y Si‘pce there is no reéson to feel that one die has a specia.l
- \
f "advantage", it is reasonable to guess that ‘theé: difference

k4 . N -

fds O - . * . .o .
(8, Prob'“bility table’ for difference} L e

;v..tul)ifference ‘\'-5 '-1}; -3,j-:2‘,;”~;i,:- ( l_u‘ 2 3, h 51 ;‘{
[ [3]8] 2] ] 2] 12 5] 3] 5141 .
. ‘M;O-'. 5 e .,W”" ™ ,.. = ,’.‘: n N . ) \:
(a) In both ganes you are nulti'olyin@ two numbers. Hence you might » ,}
: / . [feel that the two p]ayers can’ expect to w*in the same amounts. ‘o :
But this is not true, as your results in (b) show youA - .-

‘\s .
a ' B
. . . .
I
- . . *
~ -
P e
96 -
! 4
-
. B ~
ety
.. . G e e - . .




i e - EEERRE
* - o S=f' . R .
™

o e T F -t

”

ar

e L A
’i; of thé two humbers thrown, the table, of fg’

t £ B -~
- LI h
“3faif 5| 6|8 7] glro|izfis|16[18 eofer[55]30[36 |
,..= \‘ :'\e’"-A' ﬁ:ht,. ?Mr M

Tal5] el el ol ofafel il 2l 2la] 22t

P S ~ .- e s e -

| ‘Square 26135 |36 | oo
o leemnn BRI R R B R
o T N: | - N
) , T T LT o
. B 'Z\' T . v N 7 v
Answer., to Exercises 105 : ) 3 R
% .

; 1..~ (‘a) P (no ma'bch) B r _
o "P(one!match)—l' o ) : N

N e l (b) ‘ E}cpected.' falue of number of m@.tches = 1. e : . ,v.
T g : [ . % " S
2: ~ (2) P (no imbeh) = -é. ) 7

i

N . P (one match)
« 7 po{2 ratches) ‘

'1 folz )+160)+2( )3 N Je , -
3. -+ LA

nie o
.
¢

(b) Expectéd value = 1

3. . (&) ®(no match) %

1t

[
NHF O ONW

"+2 =« P (one match)
- & .

" P (2matches)
R WP (3 matches)

If you had trouble, simply write “the 6 passi’ble‘ways of amnging

3 cards, and count the number of matches for each arrangement. C ?@

3
LIS Y .

. (b) Expected value: . 5 ' . R o

4. If you couldn't guess & generalizamon, look again at I {a), 2 (a);" o .
) e .3 (a). Wheére do'tne Ofs s, oceur? Then look at 1 (b) 2 (v, 36b).
You could Buess: ,’ »h N «

(a) It can never happen that all except 1 card ‘matches, With 6 -
‘?

 ontdes

cards,:or example , you can’t havé exactly 5 cards in 'oroper ; x,
oL position. A J.itple thought will convince you that this gnneranza- 4
;3

*bion.,i., correctf C ‘ L y-3

. .. (v )H It .appears, that !the expected value is 1 in every case.

» A}

o P
f i b hss v & rgeiod

=
*
-
I3
%,
'

ALY O




3 “Probability ,

Valu@iifo(q) * l(p)

'NIH

Expect d value of numbgz' of, *sggcess on.each trial

RES

174
‘ “

’Numipg;g; of successes‘ on L trials, = sum-Of nunber ‘of successes
: Expected valde of -fumber of successes = h\-é-)
Most ‘probable number of suécessés = 2. T This can be fo% diyget

25t provavility tm/ i
. ‘i‘rom‘ the .graphy The. greatﬂst probability { 38) is-agsodbjhted -
: _'_,,«w.’!.tt‘;a 2y 7 ' e
(e). 1, -2, 3 differ from 2 by 8t most 1. The ‘ph:m‘m‘t1;1.{93;t

A '

the.t “the ‘number of -successes is 1 ’5" or 3 is found by
adding the. -séparate. grobabilities. 25 + .38 % ..25 =,
(a’)‘ SR (b) M °

M R « 3

: < : number of succ

b oy

. . Most probable: . di,ffers fi'om ~t_1p_ ' :
» 1 mp it numhér of éuccesses : by a% most l. ;
— 1 ] . e
= = 1 1 - .10,
3 S
- ) ’ A % N
- 3.2 -+ 3 ,°4 equally YikeMp) -~ .82 .
I o2 .8 f0,1 eqally likely] . .82 !,
- . o TS
- 2.k | - 2,3 eqully likely .70 .
N [d - ! . a3

tvra p

.
P
T syt x4

.

N
"
.
B
.
-
X
’
;
e
N

fesh

)




- . ) ’ o
:“‘3«;
: . Y
: ‘e < "8
. - o
. s ) P Jay

-
)

, sihcetthe red I:area is-half the: I areéa, T
. ; . - 5 ; b

;
Fol

o . i { e ..

.8 \re

' . ‘ S
ﬁ_’,ngg:‘(é(lq f‘?éé‘-@nj is % o'f tie gnti.re .eircular region. ’.I‘he red o~

St s 2

L

: ( T Yegion is,thus ?—' oi’ the red regioh.‘ v . .
c‘A 3 .. H : # - . ¥ 4
S 3 d .o Tt : o "
o "F',’-":P-'I"Ji?i'i‘ed‘*l—u 3 : ; . ‘ Lo %
. - ( l e )< “%5_ S . LY ‘ . & ﬂ ) . 'g
(b) For this sp“inne:;, ‘the probabiliti!as are- exactly the same» as. . . £

P(red [ I), P(I [¥¥ed),, ete:; for-the two spinexs; at *the be-
_,gmning oi’ thé ;sectiecr. Use this xspj,nner.if you had trouble w1th

the pxobabil‘l{;ies' for ‘the \example. t .
& Se Wy )

= 7 T M
& ihches 7 S o, -
5?“ ighed - ol & -

130»3 18 K <=

= y L . ) .
Standard deviation is: ay'proximtely 7
w E T M,';. — e T
B wliumber of points x{ el 2 I

(1-«3 5) (@) ( 3. 5)» (5

S —(-2 5) = (0.5 i:*e(oss;’),.‘_(;‘..'- 5!

. < L4
o . H < “
' e % .
-

6.25(ky,+ 22503 + B ¢ 25(3) +225(3> + 6:25(8)

- = 17.50(%) =‘%% o 9T approximately 292‘ ? N

‘Standard deviation = JZ2.92 , or approximabe’y*}. o —
oux results for our first 25 throws of a die,

SIS <

2 ; < .
s ' . .
¥ ¥, .
2 g : 4
- P , .
f . ’
:
: = ’
4 .
v J3§ ) 9 )
. B 1 I o . .
- 1

-
IS PRI S I SRV g




i,

@l E

. x 50P)

Stand’ard devia.tion

'1;*{21; o+, 36\+ 15 _8o

a E(N ) o(—g) + 1(—6) + (2 )(—g) + (3 )( ) +_(g‘é,):(;l;1€‘:)}

N ig; :

A-h 1 .
&
VIo=1oLy

Nugbers. 175 _

NI R

s

4 Probability .

253)3 ! 3(3)(3)

+
iﬁ‘
)
S

.

W

P @ 3(3)(@ <& 3(3’) (5) +3 (3)3 ‘
Ry +"6o- +9 _ 1!:,2; -2
. 6 i~ _6-3-0

p)
12

1% 2. (Recall E() = np - 3 (3) =

-»

-




.

it £0,

? | I
‘SPq f,.‘\" ‘23
T R
. 2 2 2. 23 -
3pa® + 25 - 354+ 3F B
T ]
+ lap’ q+~9p' - ' . ‘
3pqv+ 12p q +9p3 \ 9p'
¢ .

e

N 3pq *lﬂp-q—h% (p l)%i e
~Ig the last term, wer.cqn replace D= 1,, by <q , sirté p.+ g =

éa N, v .
31)q +l?pq 9pq

nswers* to Exercises 10-10

=gy rraeevlk et Vg D

" l-u Erom: the data, ‘we can Jget ‘btye distribution for the, gum’ber yof,
. - N ) ) o ‘ 3 «i;é*&h

a- series o

o | Number of games | | _
Erequgiey o
P, ——— — E 2 v o A
‘\i: o - L, e > . 3 . : i’
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'E;us»*wri’de P(Bll»), 1>(B5), P(B?), etc., to 1nd1cate' the: probability
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t the BYue Sox.win il games is 0. éo-. NN
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s the Aprobah,lityt*bhat the Blue Sox.wih,in 5 -games? [ . e

\Iue Sox mut win the fii;th ganet.
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C e The: probability, that the Blue Sox vin in 5, games :Ls 0 26
‘{(35),: Whae is the proba,bility that the Blue: Sox win in 6. games'i\ .

. 'I‘his 'bime thg Green Sox win any two- of the. i"ive games. The B .
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o Foop
o 3 Vi
T .' »r. ..

(5) >

r ] ; :e?‘ A
. ,‘.(_Ijist‘th‘e pbs,éibi],;ltge’s Af you werén't sure.):
[ -

oxes

R : __;g‘&lﬁ . ' .-
e So ‘e 'hnve .P(?GZ T.(3) (3) (10) . , o
2(o6) = BRED) < (o20)(Ezi) © ., b

B(B6). w022 . . XA

—
—— - - s 7 -
.
O ) ¥
. PN
v, "_'. ’.{/ / . :
: N . .

“..' 3

" - .
1 Ny ST S PSIITe WL S NS SO PEIIEPICI S S




A Y ' A N
AT . M & ! - N - LW ~ s
N - - 3 : i
) N . > /" - % P
N - A A ;' L ahy et

S it i .

The Jprobability ‘that. the 'Blue/Sox win. 1n .6 games s MR 2’2P Y S
(’3&) Wba'h is the nrobabil*’f,y that the ‘Blue Sox win in T games? ;‘ ,} g
. ) RS Now t.hg Qreen -Sox, wm e.ny. three of the first six gq;nes, §0 Aere. are ) \
- ‘29‘ SWByS ((/3) -P-—Z—-—s- 20) in which. the Blue Sox can win - :
- {ihe series/ As ‘a Tesult we éayitg / . °o ¢ ’ ‘{t;i\‘-_é
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. e \ NN
._',,’f«;»:;’.IBT,')-= (( A )>(-) ~ (o 22)(0 67) P “
; RTINS
; SR P(B?’) .8 15 -y f T T
5 Note aga.in how WQ weére able’ to simnlify the, 'computation by ucing T
~the result o (3) St . L Na -\/;' e
Next we -must ('ompute 'thé' probab'e}.ities for the Green Sox: ‘_ ’ e y
What -are the chanceo ‘that the’ Grenn Sox win in. four, five ; L ¥
" six -or seven\games? ._" o . C s . -%‘ ;J-,,s - ‘)
You should be-able- to follow t&xe f‘gur cases quite easily withbut ;
+ . '/." ".

i‘urther explam.tion -/ .

" (a) . What is the nroﬁabnity that the ;;:e:;) Sox win m ‘L sames? N

. s O R S (Compare with p(sh; ‘3‘
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o } ( ) 3 3 "3°3 N *
R " . (B) Wnat is the probability that the -Green Sox. win . 5 games? .
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RS \ What is“the p]'obability tha.t the Greénwox win in 6 games?
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: {\We can state the result' The pmbg._lb)}ilr{;%tﬁ%_% 'B@\x;é Sox win- in - X 0 .
e 'k gan\xé*\u_“is 0.20, f;f,,"j’f»”_»,v’_ n:ff ;/ o SR
el s games is 026 N c \ 4 ; ) ; .
5 games 15 0.22, R -7 \“ e ‘
5 'I‘he probability thut t‘he B}.ue Sox wih in b, 5 , ~6: cor' 7 _games is '
S 02‘o+026+Q22+og.5 __; Co ° -
Ip othei wo*ds, the prob&bility tha.t the Blue So::\ wih fre Series Ny
Cewloms e s o0
s }. ‘I’he probability, tha.“b the “Green Sox win in . . '
&5 games % 0 Ol . e, A - ' oo e
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©Vf gmes 38 0.5, Lt v T e g
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- The "prog ability } thnt the, Gigen Sox win ir 4, 5, 6, or, Y games "o
3 'ig :‘-‘;'r ’ '. . r", '\ . 3 ."'o:
5 ey S o 9 1+ 0.03 ~+9A‘>5 + 0. Q‘I =a6. AN B
E L., The prdbabili that uhe G}.een Sox .:iu the Series 13 0. l\g‘ “ N «\
: v | ‘The- ser.j.ef wigi end in b meg, if the Blue So:; or the Gree}t\ ) "o
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A L ;. e at 1s‘th,e expected numbe: of gameB in the’ WOrld Seri?s”
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Ansyers. to Exercises 11-3
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- of the.circiles belov.

2. MHe cannot be sure, of course, which ordering you chose. However, we-

can be sure that your circle matches one or the cther (but not both)

™ a

\‘,( .

o w
. Circle T, . . ‘ Circle IT v .
T * KAABB ' ’ AABAB .. 7%
©.  CAABBA-. ’ ‘ABABA . i
* ABBAA < . BABAA &
BBAAA . ABAAB -7
BAAAB A , BAABA - R
+ Ygur list shoild match one of “these two.’ \\\ - :
3. For "A always leads" we have: - 7 E
Circe I Circle II o
AAABB AABAB \ )
J%. and 5. Your first list of orde*'ings (Exercise 2) did nokcontain a1l
the ﬁossible orderings. If your circle -:as lilfe I, for exemple, the -
youl}md only the orderings for it. Your cirele “for Exercise L egain' i
matches one of ours. In fact, it matches the one you did not use for |
Exercise 2. - ? ‘ \‘\ .
6. P(A alvays leads) = -1—2 2 -511 . (There are 2 "a:lwa.ys leads" orderings “'\t %
out of 10 possible ordexmings. All the orderings are equally likely ) n
7. 1. - . _:_:
8. Yes. §+g=%. T :
9. Yes. P(A alwmys leads) = %—:—% - % . . Check that chis is the correct
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We da r\ot know how the ll&A’s and. 11B*s are amnged on_jour ‘tv:ircle. .
However, we are sure tha.'t in your experiment, as-'in ours: y there wé*e '

Qxactly 3 sta.rting poin‘c.s which gave -orderings where A always leads.

o
B 1))
’3-

. *‘Did, yau, ha\npen to notice that’ yﬁ-i—]i 2—53- T
Anm:ers to Exerc;lses 11—5 : — .
- —— . , .
) ¥ > ! . -
; .
or T - , %
qtart at— ’{- 5, 6, or L. ’ .
1 TEe— e
3 ? . . Ve - . -
. b / >
e

-7 // ] : - -
0. . A ..ennis set :loes not gZo l»?. gemes unless there have been several
- ties.. At each tie, 5 Tilden e not ahead. K
R L / . b - 7
. B-9 L 2 { lingt ) ' -
"i339° 22 or 3y - Poor king? ‘ -
‘In %this case we must count orderings in which A always leads or ties.

You have a..ready studied all the possihie orderings for the 3 to 2
case, (Exerciseo 1 to b , Section 11-3,) You can find directly --
4 l-
P(reaches goal) =3 -

by cuunting:

~~

2.

by. proper choice of starting pcsitionm,

Your circles can be matched,
with these:
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B A
A B
i A

“AAAABB . AAABAB AABAAB ;
57 © AAABBA . + AABABA. ABAABA >
-7 . AABBAA ABABAA ° BAABAA ) E
- M ’ <
T "ABBAAA ) - BABAAA ) o . o
BBAAAA ) ABAAAB o
* B
. BAAAAB BAAABA S
g
. pid you notice? Circle III does not give 6 different orderings , ¢
- fhe 6, different starting pOSJ.tions yield only 3 differént orderings. T E
Ansvers to Exercises 12-2 ° - s

(See Item 11.) o .

. 1.~ Pcocks L .on Thursday), = .909 ;
~  P(cooks _I{.,on«%ur’ﬁay‘and burns it) =  ° ?
P(cooks I on Thursday) - P(burns .Llcocks L).= .909X .l = 0909,

Hence I;(gookg\ S on I-'rida.y) = .0909 . ,

FOR ey

2. Saturday: P(cooks L on Fridsy and buras it) = .9091 X .1 =
Hedce™ 'P(cooks S on Saturday) = .09091 ‘

. P(cooks L on Sa.turdaj) =1 -,.0909L = .90909 .

09091

RN W IP IR
N et oy, b . . R *
et ' \ < [ . [,
o . L . .
~ ‘ -
. B
s ‘v
.

3. P(burned cereal on Monday)

y
% Sunday: P(cacks L- on Sur;.lay) - .90909(.1) = .909091 .
g'; ’ You might have saved arithmetic by looking at the pattern: ’
v o 1 Mondey
’ " .9 Tues&ay
’ 91 Wednesday i .
: .909 ~  Thursday | .
- 9091 | Friday . ‘
.90909  Saturday
’ .909091 Sunday . gy

t

P(burned S)
.0909091(.4) = 22727273 .

, P(burned L) +
.9090909( .1) +

>

3%6207 ‘




;12?2121... , or AF L .

N (i he N .
o Jompare Exercise 3 with Item 8, Section 12-1. -
Ansv,{er Vto:* Ebcgfcises 12-3 . ’ ‘ "\
5L )~on Thursday)
?Sv cn‘,"’hu‘;'(sday)

"

1~ .82 = .175 .
L :on° Thursday and doés not burh .t) = .825 X 9 = .714-2‘) .
S on- Thursda.y and burns i?c) = .175 X A= .

~We have- )
P(coo‘ks L)*'— 8. = - )
P(cooks B)E 2. , '
-P(cooks L and burns it) = .8x .1 = .08 .

" Heooks: $ _andiburas it) = 2% b= .08 .
The cereal is buined if she cooks L :and ‘burns it -or if she cooks

«»w-}{u '$--ehd byms. 1t:  (She camnct do both.) - o
henc’e = =" - . -
/P(burned -cexeal) = .16 > . i
This is. approxim.te“ly 3 i ; « B
- ’ - * } ke
3" Pﬁ’ | uraea) = PPth?rn:d ed) = %&8? *% Cw .

~

If you. find. the cereal bu:med it is ;just as likely to be. Lump'les as
ggiq”‘. Took back at Question 3, Section 12-3, for another a.v'gument to
suppov"“ this conclusion. < C e ,

" Noté that we have used: . \

; ) , P(L) * P{burned | L) .
KL l burned) = pryy— p(t()p;z-ned ([ )+ plFT P(burned T8

'In’ot.her words, we have an example Of Bayes?! formula.

You might have suspected thet after a while the probability of cooking
,Lp}mpi»es on a perticular day will be about .8 , whether the cook began
with. Lamples or with Soggies. Here is the reason. ¢

. The important point about this cook is,that she has a very poor

smemory When she gets up in the morning, she only remembers what happened
yestérdey. (This is probkbly why her cooking doeén't improve. ) If she
cooks L on a particular day, subsequent events g6 on as though she ned
begun cooking that day , subJect only to the probabilities of burning, ,

(AN P
» < -
-

»‘—«,‘
A

P
s bk L3R 5

825 (Item.11). ° -
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sihich. never change. Hence. it doesn't matter much; i the long run, ‘
‘wheth/er she begins with L or 8§, bec&use after-a while she is a.‘_l.motat .
] certain» (probab:n.lity ‘nearly 1 ) to have- cooked both L and’ S d

= Wwe can prétend either was on the beginning da.y.
. If you actually computed the probability that she cobked Lumpies

. :_gg&'l‘ggs;@ay , on Wednesday; etc., you should have f‘ound‘ tf_xé foilowihg

Ry

e

resilts. ‘ - NN
‘Sincé. ‘the cook begins )rf{h S , we see: ‘ '_ )
oL ) P(cooks s 6n Monday) ==:1 - s .
. A P(cooks -4 on Monday) ¢ < . Pttt “
‘ She cooks L on Tuesday only ii’ she burns S on ‘Monda.y. - ' "
P(cooks I on-Tuesday) = .M ) e s ﬁ
. I{(cooks S. on Tuesday) = 6 . . "° :
; . X . i Ty . - g v
o (ngice‘, on Tuesday: k S \f
c P{cooks L and does not burn it) = & 3 9 = .36 s . *:(;f
» <P(coocks S. and burns it) = 16X M = BNy 7

~_From this information: . » - .
) P{cocks L on Wednesday) = 36 + .24 = .6. e
. * fThus, on Wednesday: . ’ ’ K ) >
' P(cook‘s L and does not burn it) = 6% 9= ;u', .
P(cocks S -and burns it) = {1 - .6) X .} = 265 .
. From this information: ¢ 77 .

P(cooks L dn Thursday) = .54 + 16 a1, \
" P(cocks L on Thursday and does not burn it)’\_ L 9= .63 5

Jf:: N
o + P(cooks S on Thursday aﬂg\,bums it) (1 c .7) x b= e
\Hwﬁ “ B o : ".c.at g

i N Plcocks. L ou Friday; = .63 + .2 =75 . '
£ ~ .. . \ e
;‘ ‘ . . , N f ' . ! .
s Mon | . Tues Wed ‘-Thur Fri A

- ) R T.6 LT .75 : o

) ) !

2 Probability 6f cooking L . i
: 1 . ' - ' J
W g %
G ‘ v s = . 2 Lo
- Your guess £ér Saturday might be .775 . This is, in fact, the correct ‘g
ie}s‘ . -value of P(cooks L on Saturday) . oL ‘0 -
;
e ~ ¢
N\ : .

. : : 8 209 ' i
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If she begins with® L, she continues L
.
N . L]
r‘*‘ ! ;\
¢
. X

L. vP('l “as first state) =
T P(J. as second. state) = . (see Ttem 1.)

P(l as third state) = -]2-'- . (see Item 5.): : B
’ - NG .
P(l as. fourth sta.te) a L,, , i‘,:,/,:' . .o
v P (P(l as fourth .,tate) P(l as third state) { %‘ 1/’(!101" 1 as shird. 4 :
i:‘j : o sta.te)) Lk 3 . o e ~. i A
L 5., = 1; v (Exercise L) L ' . -
s . . 1 5 ) ' v : - :
P5=1"'2'(13;')=8 ) T
. . i 9y
. H
_ 1,5, _ 11 ” : !
. ‘p6 - L 5(8.) - 1-6 : VR ;
: R Y5 RO s, | . ’ . )
“‘P'(”l'é(a_é"gﬁ' ;!
Note that we cannot use the recursion formula to find p7 in one”ste.p, .
bpig‘ we can use it to find 'all the p's up to the éne ‘re want, step by /_
o ster g ) . . o
X . 4 . e .
’ 4 - v L4 .
. 349.9 1.0y B
RUIE 210, | = .
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W

.. ‘Angw

ers

%afﬁi

<2 ,pl:?// 2 .

er, to,be sure,

)wev
_ 8857k

<Ho

-

1TTAHT

88574
LTTIHT

v 4

E

\C

Aruitoxt provided by Eic:



