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Preface

4 ~

‘Not all, of mathematics can {or should) e ‘taught in formal

textbooks. Just as an English cgurse is enlivened by selections
from literature, a’ mathematics course can gain depth and interest ~>
‘4 -

from special-readings. - e : ' .

The present volume might be read in conJunction with-the N

“

SMSG First Course in Algebra or Intermediate Mathematics. It intro-"

duces the subJect of. number theory, a branch of mathematics highly

<

%

esteemed for its naturalness, conceptual clarity, and elegance. We

hope that these essays will prove enjoyable and stimulating. !

#"
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. even integer. N? largen eyen number can be prime for 1t has, 2 as: -~

1. PRiME NUMBERS

. R

Among the natural numbers are the p rime numbers: a positive
}
integer is called a prime if it has no divisors except l and itself.

_Thus 6 is not a prime,-gor it has the divisor 2, and 2 is different
from both 1 and 6. We .call 6 a composite number ° Bt 7 is a prime,

because i£s only divisors are 1l and 7. By.agreement we shall not i

L ’

count the ia;eger 1l among_either the primes or ﬂhe composite integers” .~
Thus gvery integer .greater than 1l 1is either prime or composite.

- If a number 1socomposite, 1t WAs a’'prime divisor’(that is,;a,.
i
divisor which is‘prime) For, you have seenﬁﬁn this course or in-an

. ’

earlier course that every integer greater than 1 can be written as

a product of(prime factors. Obviously each prime in the product is-

“s

-~

‘a. divisor of the integer in question. - !

-

-
N

The smallest prime is*a it 1s*also the -only prime which is an"f RS

v El -

a‘divisor. If we wrfte down the prﬂmes in the trder’cf indreasing

[ } ) z ,4:'

size, ve get . B i . ‘ .
4o 2,3, 5, 7, 11, 13, 17, '19, 23, 29; 31, f...ﬂ*?

The d ts at the end mean that there~are still lafger primes. Hod'- ’

LI T

1arge do the primes get° You can probably find a prime larger than fﬁ
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(How wduld you go about finding a -prime larger than 100° If

= ‘Z/ you test a given npmber, lOl say, by dividing it in successigneby

ﬁ . various numbers, would you ha/e to try all integers .less than lOl

N

1, - as possible divisors° _Or uouldiitibe sﬂfﬂicient to &ry all‘_Eimes '
” less than lOl'> If so, wouldn't it be’ enough to. try all primes less

'than, 1015' See if youw can’ prove that if an integer n has.a proper

,1i; sdiyisor, it has a proper divisor which is not more thanV[n:l ‘
. * To. put’the question in another way, are there a finite‘number 4 ’-
of primes or &re -there infinitely many° If you think this over a

) bit -you will probably find it impossible to think of any way to . N

attask‘the problem. ;Yét the answer was known to the Greeks! In

“ o fact we find the proof that/there are infinitely many primes in

»

: Euclid‘s Elements.

- & . This proof is a proof by contradiction: sdppose there were

only n primes, say pj, pg, ooy Pn»s where n is a certain in-

teger. Now let - c, . )
- - 12 h'. . . .

T p1p293°°' pn + 1, e

that is,‘ A is the integer obtained by multiplying together all

4

the primes and adding Bl to the result T e
ﬁ‘?“?‘*' Now‘”A is either prime Qr composite. If A 1s prime, we

A {
Ea A
o

b o

) have a contradiction since A . is\not dne of the primes pl, Pos.eeey

\ .

Hif__-.pn (Why°}, and\thebe webe supposed o be all. the primes. . ot
| 1 f The “other possibilit is that A 1s-. composite. In that case -

~ff“ A is divisible by a prime; call it p. Could p bﬁ equal to p1
” Certainly not, i or if we divide A by p1 we—get a- remainder of 1,

!

since p1 certain y dividesﬂthe préduct plpz.n. p » Since. p _
. .M"’ . ' . \\ 1
divides A, D cannot be p,, In the same way, -p could not be- .

ae ot LT e g VA R
» M o - .




- P, 'Pg, OF any of the primes in the set'pl, Po, «eey Ppe. Aggin wé
haVe a contradiction namely, we assumed that py, Po, ..., pn were

all the primes; but here is a number b, undoubtedly a prime,
which 1is not .one of Py, p2, eeey Ppe “ )

-i\ ' So whether A is prime or composite (and these are the only _
possibilities) we arrive at a contradiction to our original assump-

.

tion that there:are only,a finite number of primes.' Therefore,

this_assumption must be false,-and we have proved the theorem%
: {
THEOREM There are infinitely many primes. ’ . Y -

o v

Although this proof is an example of an "indirect proof", it

can be turned around to make a direct proof What we have actuallx
shown is that-if we have any set of primes {pl, p2, T.:,‘p ; there
is a prime p which is not’ in the set and which is not more than
A. Fonkexample, suppose we know that 2, 3,5;/are primes. Then

our proof shows that there 1s a prime p' which is not either 2,3 .
or 5 (and so is greater than 5) and p.g 2 3:5 + 1= . 31. So there :

is a prime.larger than 5 .but not 1; rger than 31 Actually, of”

'course, there-are several prime between 5 and 31 Our proof then,

,does this given any set of rimes, it gives a limit below which

In this way we can produce in succession |

-

there must be a new prime.
an indefinite number of E/imes._
% There are a very large number of fascinating questions<gavihg :

"to do with primes. Although most of tHese are quite easy to state, f 3

' the answ to >y are not known For example,” 1t was conjectured

that every every number greater than 2 1s the sum of twd primes ' b
" (examples: =3+ 7,146 =23+ 23, 100 = 47 + 53). This is

called the Goldbach conjecture, aftér the name of the man who first

LR




- * ~
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‘ proposed the problem in 1742. It has never been proyed or disproved
. & \é
' However, there are some questions about primes that we can

-answer. *Suppose we write down the sequence. of positive integers
N \ |

fortheformuk-l. _ , . ‘ .
b

, o e

3, 7,0 11, 15, 19, ... ..

Are there an infinite humber of primes'in this sequence?

S

PR

(By an integer of* the form bk = l, we mean an integer which is.

T T A P

'equal to Bk - 1 if we chose the right integer 'k, Thus 3 = 4.1 -.1,
i 27 = 4.7 - 1, and so on, of' course, the value of k 1s different

»
’

‘ in each case.) .
"iBefore ‘we discusslthis question, let us notice a few things
:, _about odd nymbers. Every odd'number is either of tHe form U4k + 1
or ﬁk«— 1. (Can you prove this?). Furthermore, if you multiply two
. numbers of thegform 4k + 1, the product is also of the form hx + 1,
(Check this ) Naturally, if you multiply any finite‘number of in-
» tegers of the form Uk % 1, the product is still of this form, be- ~
eause you could multiply the first two integers, then multiply the ,
)result by ‘the third integer, than multiply this result by the
?ourth integer, and so on, ) 4 B -
‘Now suppose A is an integer of theiﬁorm uk - l . then we can ‘

1,
\ - .,...f—-—
3

conclude that A . has at» least one prime divisor of the form by - 1.

o o
For example, 19 is already prime, while 27 has the prime divisor 3.
-(Proveathis in the general case by assuming that all prime divisors .

P . . are of, .the form uk + 1 and arriving at a contradiction, .Notice, ’ s .

«that A has ‘only odd divisors.)

Now we can return to the original question are"there infi-

' nitely many primes of the form uk - 17 Suppose there are only a - .
$ e . . i 0 ﬂ ) - . " . ,,‘i/é

. ’ . .
\ - 3 “ o ’ . o v "




A
Wy

finite number of such primes, call them pl, Poy «ves Py Let

S

(*) \‘ T }Lﬂ?r&(plpz... P,)- -1,

! Notice that A 1is.of the form bk - 1,

We ﬁollow the proof of the previous theorem. A 1s either

-

prime or composite. If A 1s prime, we have a contradiction, for
. A isrthen a prime of the form bk -1 but A s not one of the
primes Py, Ppos «4e» pn. The -only other possibility is that’6A - s
composite. Since .A° 1s of ‘the form 4k - l.@ A must have a prime
divisor p of éhe form 4k = 1, as we, have Just seen. But p is

) .
not one of the primes P15 Pos «eey p for p divides A wheréas

-~

’

no py divides A. -
So whéther A is prime or composite, there is a prime of the

form Y ~ l which 1s not -one of the pnémes P15 Pps e+ Pp. . This:

is the contradiction we were looking for, and we have proved the

\J

following result ' ) :’ ' : ) \lf

* -+ THEOREM, There are infinitely mény primes of the form 4%k~ 1. ‘
 See if you‘can construct a simllar proof that there.are jnfi-
.nitely many primes of the form 6k, - l,\ R '

_ Actually, it is true that-there are“infinitely many primes of
the form ak + b,-where a- and b .are an&-integers which haQe no -
; %' common divisor (except 1). (For instance: there are iﬁrinite}p
. many primes of the‘rorm 5k + 3.) The proof of “this, howeyer, 1s

e very difficuit The .first proof wag gi n 'by P. G. L. D‘irichlet,

cian A . P

. ]
P H A

LA (1805 -‘1859), a famous German mathema‘
Notice that we did no try to prove the abdve results by
looking for a formuIa for the nth prime. Such a formula, i 1t

. exists, would be highly com licated because the distribution of ’ |
| . , LR , ’ :

) * '

. - ‘ 11 . c .

A~




»

primes among the integers‘is s0 irregular. As an'example of this
'\ ~ , . \ Vx -.
irregularity, we prove° , .

-

THEOREM. There are arbitrarily long sequences of consecutive COMm~

\

posite integers. _
ﬂ -For.example; . there are 50 consecutive integers all\of which

are composite. We can actually exhibit such a consequence.

’ First, we, introduce a new notation 1! = l 21 = 12,

-

3} = 1.2+3, etc. In general, ' (read "n factorial) is the .

5 product of all the integers from 1 to - n, inclusive. Now weicon-

sider the sequence - a7
2 L4

' number, 51! + 3 ’is divisible by 3, for the same reason, In

o«

i -

511+ 2, 51! + 3, 511+ b, el 511 + 51. &

v

" There are 50 consecutive integers'in_thig sequence.: The first

51' + 2, 1s’ dyvisible by 2 since 51! is and 2 is, and'the\sum of

two integers divisible by 2 is again divisible by 2. - The second'

L

’ general 51! + k'is divisible by k as long as k 1s not more

1\

than 51. .So every integer in'the sequence is compoSite. You can
- easily gée how to modify this proof if you want‘a block of length
n instead oﬂ\length 50.° : S ’
We’haVe;seen that consecut%ve primes can be .far apart,vcan
they %e close together°‘ 2 and 3 are consecutive primes that differ
by 1, but obviously there are no other}such pairs, for if p is an
odd priﬂe, P+ 1 is even .and greater, than 2 and so is not a. prime.
o

\The next’ possibility is that consecutive primes differ by 2, and

ere are many examples of such “prime twins" (3, 5), (5,7),%

( ‘7,19) (29,31) But are there, infinitely many such pairs° ‘No .
a

e
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2. CQyGRUENCES'

In many situations in'matnematics, what is important is not

- the particular value of an integer but the fact that it differs

bl

J

_/from another number by a multiple of 2 6r a multiple of 5 or a

multiple of some other number. For example, odd numbers are tho e’

~which differ from 1l by a multiple of 2, sqguares of odd numbers

differ from l by a multiple of 8 etc. The same thing-happens in '
o " : {
What can be said about two time$ which read'the -2

ordinarg li e. @ Y

'{ day but are in consecutive years? ) ‘ . L
Two numbers whieh differ byAa multiple of 2,are said to be J‘rﬂ
, Wie' make- the formal 6efinition - ;

) DEFINITIQN~»«Qwe—iategersmnamb——are said to be congruent modulo{ m
(vhere m .is a -pusitive integer) if and only if.a ‘? b is divisible

congruent modulo 2

- , . - PEEIY

by m.: ~

= 8]

- o “ .

. » o
*

. .

We write". ‘ . - ’ v

: * A\
Ll
3

a

b (mod m) .~

to_ind}bate that a ,and b, are congruent modulo m. In particu-, o

Q (mod,m) means that m .dlvides a_ and econversely.

< -
- . > ¢ 1

is called the modulgé of the congruence.
. " ) ’ ) g

= m

. dar, a

:
SRR /- e

'
O XY »

T 9 ‘ B R . .

.

Bt sons 3} Rt emmssarsrin 1y @ .2 T
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. . . - . . LS.

o v . (B

R : Syt




3

[T
g S
T tel P

4

[y

Congruence ‘l/s..a relation between the integers a, and b - K
o (with respect to the modulus m). . Many of the @operties of- the
more familiar relation. of egualitz carry over to congruences.

Exercise 1. Prove that

. . "a= a (mod m) . . - .
’ . ) if a = b (mod n});. then b = a.(mod ) o T '“/ . 3
}fﬂ : ifa= b (mod 1;1) and b = c'(mo\d m), then a = c (mod m). ' .
& w Congruences gan be 'added, subtracted, and 'multiplied like
5%@,;. _ordinary equations. “Thus, _ o ‘
5. _"if a=b (_moo m) . a‘no e = d (mod'n;),.,‘ then e
~ ' “,...' a.+ . Egv:b“q-}‘- 5 (mod m')‘ R e - .;;s,".. '

(1) . T va - cs b;q (mod m)- '\ l o R
Lo "w ac= bd  (mod'm) < -

‘For (at+e) - (b+d) = (a-b) + (c-d) ahd each.term in the right member

-
b g -

" is divisible by m,. hence the right member is also. S_imilarly for

. A%

: , .
L t‘he second congruenée. Final]sy,,ac - bd = (a-b)ec + (c-o)b Since ’E

iivides ,a-—b -1t,idiis}'ides {Ja-b)’c,_ for “5he same -regson L,m dixﬂ,des, ,,,,,_,i
—n o $~ 13

(c-d)b This establishes the third congruence ‘above.

-~ ] "

" Using 1) we -can answer questions such as:; is 232 + 1a -l

pr‘ime‘7 (A prime is an integer > 1 which has no factors except 1

and it’self ) This n‘umber ig of some hilstorical interest for ) .. .
5 ¢ 3
-Fermat stated that 411 numbers of the form 22" + 1 are primes, -~ - "

~a

-_ o d Whe,reas Euler showeelf‘t:ha‘tr’232‘-!2 1 (i e. n =5} is divisible by 641 <V

We can easily prove Euler's result by neans of congruences without

-
A




- - A &ff?_. y A0 -
. - . _ e 4 - JU R
. ‘s e 5 \ .
" b 4 %"‘” 7o 11
b “‘L {f/v . ) 'f - i . .
¢ - =5 IR Tt P ' v
CRUA ) o
i - 335, ¥ ’ - o
7 pe L, s, -
*Namely, we have: , . > R P P o
2 R T Bl T
— — " / 2. vV, S S -
2= ) (mod 641), 27 = 16 (meod. B41), i/y,' 4 ; Ao
. \(31

48 = 256 (moa 641), 210 = (2567),- 65536/— 154 (mod 641),
640 (mod 6111) o _ n .

C 232 = (154)% = 23716
.: Edch congruence iS‘obtained from the preceding one by multiplying

A

:» K it by itself' The largest number we had to calculate was (256)2 !

\ From the, last congruence we get . . - ‘ . ~
- .232 £+ 1 = 641 = 0 (mog 681), , A - ‘ |

RO as; promised. ' ' .

d

'Another thing wé can do eaéily by means of congruence 18 to

o ~~ prove the -familiar rule for " casting out nines". Iet N be a

*

= positive integer and write it 1 the base 10: L
f:‘:‘l . B 2 . k . . t
x . N = a + loal + lo a2 +. LN ét lo ak N - )

(The digits of N are therefore ay, aj, cers ak.),,,., P
Since 10 = l (mod 9), we have 10° & 12 = 1 (moél 9), ané in

[ RS

general 10T = 1 (mod 9). Hence, using the first equation of (l) .
-~:-~ w-é,éet‘,w-&_".-f »;.»-g«ful-f-m IR TR A R
- (2) Nz ag+ 23 -*L.a2+:... + ag (_m'odll»g):. : .
- Now N. is d;visiﬁ "eﬁby 9 if and only, if N =. 0 (mod 9), which, R <
f - acéording to ('2),5 oceurs if and only if the sum of the digits ‘ g
i. ag + aj + ... + ag = 0 {mod 9). : ' ! . ' o o
', . Exercise 2. Prove that an integer is divisible by 3 if and only if .
w © tHé “sum of its digits is divisible by 3. : P .
r} Exercise 3. Prove that an integer is civishit:le oy ll if' and on y
;_ ... 1f the sum of' the digi”es in the "odd places" is congruent mod o
‘
’ f

A s
e .
TR an




Eikercise 4. Prove that a number7is divigible by74 if and only if

5 ‘the part of the number occupying the units and tens places is

. ' - *a .

diViSible by 4.4 ) .
ey . . L P X

‘In arithmetic we' have the cancellation law:: if.ab = ac and WA

, a £0thenb = c. What is the analogue for congruences9 AN

Suppose we have ab = ac (mod m), which is the same thmng;as |
“~ a(b-c) = 0 (mod m) ' R o A .
It does not follow that mla or ml(b-c) For~some of the prime'
'TactOrs of m might divide a and the remaining prime factors
divide b - c,_ However, if m is prime to a.(i e., m and a,
. ‘have no common divisors other than l), then m|(b-c). This is a.
,consequence of *the theorem if Eﬂﬁl and m is prime fo x, 'then

A [ . Hor a proof see the Supplement The Fundamental Theorem of
: ]

% Arithmetic. So we have the result. ) . 7
. S Theorem 1. If ab = ac (mod m) and.'m 1s prime to a,, then \“

?th .o , . - . [
T = ¢ (modgm) In . other words, we can cancel a common factor-from’

h !
4

PP aggﬁpgruence}provided thé common factor is prime to@the modulus.,a.

T s 3 FASUNS SIS YISV S A B 5 NN S S o

;. u', The equation ax = b, where a,b,x are integers, cannot be solved
‘ for x unless a happens to divide b. By contrast“ the congruence .
ax = b (mod mj can always be solved for x provided only that

K

7 (a,m ) = 1., We shall now ‘show how this comes about . .

.The. numbers 0, .7, 3%, -14 are mutually congruent modulo 7 - ;_'{f*
(that is, ‘any pair of the nﬁmbers.is‘congruent) Likewise-
ve T * Ed *
' , =5, 16, =47 are congruent modulo 7. Consider the set of all ’

tf\-——

integers .congruent a fixed integer modulo 7; this set is called a.

LAY

-regidue class modulo, 7. For example, thernumbers congruent to 0 ., \
7. o L . R

modulo 7 form ohe residue‘cf;ss Ry; the rumbers congruent to 1 o
s, 'q, ° ° . , ¥ 17 , ' .k . L, “.

“ . - &

[}
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‘We see, therefore, that .a complete res idue system modulo m is

modulo 7 form another, residue class R;. Ro andf 1 have no’ common

elements, ‘for if an integer .a = 0 and a = 1 then 0 = 1 (mod 7),
N

TR ) .
* by EJtercise 1, Conslder the residue classgS R,, R, Ry, '..., R6.

(R1 is the. set of numhers = 1 (mod 7) Y Every integer n is in

one ‘'of these classes. For we can write ‘'n = Tq + 1 where

D T
N

0«g i_g, 6. Then n € Ry. (This explains the word "residue“, which

: /
means remainder,) In this way, the set of integers 1is partitioned

Into 7 sets,” the residue .cla s modulo 7, no two of which contain

cbmmon elements,

\Of course, there was n' thing \special' about: the choice of the
'*ﬁ:&i PN
$pdsston, We have, in fact, the general

*’:VMM Ly U o 2 T

modulus T in th,e above d

Aﬁ
result Let g be an integer > 1, and Ri (1 =0, PPNy m-l)

the set of integers which are congruent to 1 modulo m, Every in- -

|

n 1is an _Q_f_,Ri for some 1, Moreover',éxl?\i and R‘3

tege “n 1s an -element

have no common elements/_i_i: i £ Jj. Finally, ne€ R’i if and only if "’ .

1]

'
{ =

n=aqm+ 1 for some‘_g

1
!
i

4

LY.

_.The .set. (0' ¥, 2,

v
A . ~

system.

N . 3 ) . .
DEFINITION. A completie residue system modulo m (m > 1) is a set .

only one element from each. regidue class Ri
N‘f"ﬁl A ( \ -«

). Thus (m, m + 2, 2 -m, 3, B, .. m - 2,

-1) 1is another complete residue system. No complete reslidue system

f

can have fewer than n&n elements, for it must contain ahzelement -

congruent to 0, 1, 2, veey M=1, Nor can itéhave more than m = “*

elements, For if we distribute the r >'m elements among the m

residue classes, Qne cl‘ass is bound to- have at least, two elements.

«lm

18

...y, m=1) 1s calléed a complete residue g

¥



‘e
. 5 ]
¥ |

set of m mutually incongruent integers, and conversely.
]
Certa.in complete residué’ systems are of particular interest

b -

¢ Theorem 2.  If a is prime;t ' m, then § = (a,JZa, eeo, MA)

_:_L;_s_ a complete residue system modulo m, : ' )
oL T ‘| s
: *© Proof, S certainly contains m numbers. Suppose two of
. them were congruent, ra = sa (mod‘m). Since (a m) = 1, we have,

o by Theorem 1, r = s (mod m). But l'<rgm, 1 < 8 ¢ m, "so that
o 0« Ir.'- s| ¢ m. Hence, mj(r - s) only if 1 - s’=g’ 0. This shows
that no ‘two,el_ements of S are congruent%modulo m.{ Therefore, S
,is‘ a complete residue system. l

Theorem 2 is #What we .need to discuss the equation. /#

s _ (3) ax = b (mod m), a prime to m, ‘ S - ,~

| We looI‘< )f,or a solution x. - |

o Since & 1s prime to. m, the set (a, 28, ..., ma') s a com-

‘ plete residue system and so one of its members ax, say, ‘is ‘con- o
i;g_ éruent to b, This proves that (3) always has a splution in,,/inte-

2o &leajéers. RS U TR o - 5,,3' S NS TR T SN AN

> . Thedrem 3. The congruence e - :

B St L ax E.b(médiﬁl)., é__p_mm_egg_ m in which a,b/m

} Tare given{ always has an integral solutio!n X,

j Of course there are rr'lany solutions of, (3), for x + m, x + 2m,

A X -m are solutions ifr x is a solution., But there is only/ one

, "~ solution in any given complete residue system “

Erercise 5, Prove: if: (a m) =1, there is only one,_ b4 s?.‘ti;sfying

:_a b(modm)and05x<m. ” o b -

’ . 'In particular, “the equation ax s 1 (mod m) (a,m) = lf has a

unique solution in the range 1 S X < m,

&‘5’ ik

(Why can't x = 0?) The

S el S I . * -
S 19

.
. .
kS
. . L4 . - - -
A s < 1 ] =
! h
. . E
.
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‘ *h{xmber x 'is called

- . . ‘ . * .
’ B . " - .. -
S L . - ¢
. L] . 4
AN ; : i .15
. . " * e

e reciprotal of a. (mod m) e.nd often written

o .

3 thus, a3 = 1. (fiod 'm). To solve (3), we need onl;y to kndw a,
\f_‘or X 'ab evid tly satisfies (3) o ) ‘ .

. The recl :rocal of an integer mod m can be found by trial. A

2

sometimes quicker is provided for m a prime, by the

E RMAT'S LITTLE THEOREM If .p_ds prime, then
ap = a (mod p), EECHRN
To prove this,' notice first that if pla, the-result is trivial,

ince ap - a= a(ap" - 1) is evidently divisible by p. But inNG

p'f a, we can cancel the factor a and get

NOE ap-l =: 1 (mod p), (a,p) =1 S -
as the congruence we have\;\to .prove.w use Theorem 2 Since
S = (a, 2a," .., pa) 5% complete residue system as well as N ,‘
T = (1, 2,°3, cuey each element of S must be: congraent to ‘5

~

Some'element of T and conversely. Now pa P (mod p). Hence,

-the producti of all tHe\elements.of 81 othet than apa 1is corigruent. .. ..)..

to the product of all #he elements of T other than p

(5) . aw2a...(p-1)a = 1.2...(pr1) (mod p). .

- ) %
But the left member has p - 1 factors and equals ap“l.1.2...(f>-l).

' Cancelling the factor 1.2...(p-1), which is prime to p,  from both
members of (5), we get (4). This completes the proof of Fermat's

. gb' ¢ ’ ' T L. ’ ’ I‘
- theorem, , :

We can use this theorem to calculate the reciprocal of a num-

"ber to a prime modulus. Clearly 3 = 'ap"z if (a’,-p) = 1, for

a3 = aaP"2 = gP-1 = 1 (mod p). - . ’ )

=

Example 1. Solve 4x = 7 (mod 13). "First.calculate 4. Since(l3 «

)



ko
.

%

a prime and ."(ll», 13)‘«: 1, we have T l.{.*lt .

= g Now ‘1}2 = 16 = 3,
=9="n 8= 165‘3, u3's3u—~_{.1.' ’ |
Henge, T = u8 lt3 3--1 = 10 (mod 13). Finally, ‘ 3
,.—QE 7 = 10.7T = 5.(mod 13).- Check: boge= 20 = 7'(‘rﬂo’d 13). 5
. , e

tegers,of‘equations like ]

(@ Bx + 13y = 35.

!

-~
+

preceding discussion can be abplied.to the solution’in in-

-

LI

Since this is a single equation in two variables, we see that there

are infinitely many §olutions if there is one solution1

Xo, Yo. is one‘solution, then certainly xo + 13t, Yo - ht is also a

Por-if )

solution if t is any integer. (Check this . by substitution )

3

Equations .of this ‘gype are called Diophantine equations af‘ter she
3 f ‘ ALY
Such an efuation

Greek mathematician Diophantus who studied them.

arises, e g., from the pr'oblem,jN ‘in how many ways can you make

change for a dollar using only nickels and dimes°

5X + lOy

\
4 i

lOO, with the restr~iction x>0, % 2' 0.

The’ equation is

. K

i .

"%
V4 .

o RS N
T *ean»solvej(6) as. i‘o!llowsa qlihxéééndi Y dre Intéj‘é&ffg -
: . Ve [ 4
which satisfy (6), then 3 L . -
R | bx - 35 = 13y and’ -
3 s, . q ux = 35 (mod *13).. , e
“ Since 1 modés is 10, a.s we Saw in ExaAple 1, we have N
‘ X = 35400 = -~ 423 = -1 (mod 13), " Hencé "x”'is of ‘the Pormt ¥
.= 13t - lwheré t is an integer; write *° ~ - }‘
e . X = 13t - 1, g . “ .
- ‘ . .
Substituting this in (6) gives ' ! o
. 35 - ux.; 35 .- 4 (131;_ ) .3 u » .
: S 21 ' -
) ' ’ : [ !'\?‘?‘A: v d"‘@;&, ¢ -
1 N P \}(’ 9'_%‘;:’ P dig N { e 1 o X

e - o
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LE3

e
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CNAATFE S v €FTR
.
N
.
~
<af

Ia~.‘ s . )
Thus (x = -l'+ 13t y =73 - 4t) is a get solutio§s of- (6) for, b

w

o=

_ééch integer: t, For instance, ( l 3), (12 -lL, Ll68 - 49) are

»

~ . solutions obtalnmed. by taking t = 0, 1, 13 respectivelst, Notice

- . that tHere are no positive solutions (i €.y solutions in which X7 e
l 'mand y are both positive) ' ,@ ' » ‘TT”\%, _‘

PN C.
l" ?

E Exercise 6. In how many ways can a total weight of’ 25 pounds be" .

"~ bullt up out of 2,pound and 3‘pound weights? R .T—‘Tf;*“%‘ &

e

Ry

In the general case : ‘ ) ) T =

- ' (3a) , c ax + by. = ¢, : ' - i'ﬂ{ L e

» ‘o - &

..9

We assume a . prime to b Then we solve the congruencezucﬁﬁc ’
(mod b) which 1is possible by Theorem 3. Let x= x| (mod b), an
X = Xg 4 b t. Substituting 16 (3a)y~we find y = (c - axo)%b - at. . .

Sl @

Note that (c - axo)/b 1s an integer since ax,= ¢ (mod b) . For "Af ‘
reasons of space, we do not complete the discussion by considering
the" generalization of Fermat!'s theorem to the case 1n which the,

modulus is not a prime, _nor do we treat congruences ax & b (mod m) /

Fi Lo

. F.., -

--.Where . a_ is nog p{ime to, m, or the correSponding Diophantine Q‘ “ //n
-t R ¢ e
equation ax + by c where a and b are not~relatively»prime.\lﬁi;‘%'
' ¥ .*P - /e

N L3

For these matters and many other f8801ﬁffff§:§ipics’ the’ rgader E RN fi

referred to books on Number Theory such as; . Y

o
Uspensky”and,Heaslet Elementary’ Number Theory (McGraw Hill) o .
A\l R . I ."
, . . . S A /
- ) '-’;;‘/ )
; ’ 5 L ;
; !- 4 ' - ' “4‘ y
¢ P / o“
) ' N PR PR
3 -+ * . . /
. r 4 \ T
!' ‘ (-\ - 3 N [‘
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3. THE FUNDAMENTAL THEOREM OF ARTTHMETIC

3 N b y

. #

' One of .the first steps in your study 6f algebra was to extend

the sygtem of integersrto the larger system.of rational numbers. - -
The purpose of‘jhis step was to make division possible in all cases.

the equation a —@bx, where a and b are rational numbeﬂ%.and.» —3;
>
b,# O always has a solution” x which is rational By the same .

token, if we stay within.%he set of integers,ﬁdivision ig not always Y

~‘possible: given integers a and b £ 0, sometimes there is an inj/l\ ¢

e LSy

" teger *c such_that a = be,, sométimes not In the'first case we -
C il . v T

'sav that b " divides ‘2, or b 1is a divisor of ‘a, or @ is divi- g

]

_§1ble by b. We write b | afor "y divideSra" (notice that, the ba,

s . ) AFRECT I NS S :
l Y vertical riot” slanting) - e . - éi\ o

The study of the p‘%perties of integers 1s called Arithmetic.

-

hintegers. o g '( i fw

L

Certain simple facts are observed at once and easily proved

i,, * B B . s LN

Q We leave these. as exercises. B

ety

;zExercise.l, Prove:  if a | b a | c; then a l (b+c), a | (b-c),
' and a .| bf,, whgre £ is any integer. )

e .
Prove: if a l,E;;thén a | (-b) and'Qra) | b.

N Z.zgfl : L, .f
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An important tool in the ‘stugy of divisibility is the sg-ca}

- B ’ * ;e » i ""
division algorithm ;ué . - . ;o ~
& (DIVI‘SION ALGORITHM, If a, b éreig&pos}tive Antegers then' ,A y Cok
. ' B " . . // ‘/ :
(1a) e a=qb+r_, - S o
. - ’ ' (- - -/ /
. where : : - o / .
Sl s cog ecb. e
7 . e ;

The integers q and »r. are uniquely determined

h
above, consider- the multiples Ob b 2b .}.. of b. ’
X\ P 7. ‘;
1nteger q such that qb < a. Set a - qb r.. {q is the:"quotient," T
~’ . PP Y - .
r the."rémainder.") First) r'> O. -Next,., if r/> b we would have,
and we have proved 'eéuati‘on (l). ,
Notice that if b 3 2 we have =0, &. < b:a =0b+a.’
Suppose ‘we- could have - ‘ ) - B ' . A
: #. .
’_f"(*?) “a=qb+r) -q2b+r2,/05rl<b, Oyg r2<b ‘ ,
, RC d -
'If~.qi5q2,weget q12q2+land .
g e L / ‘
: \"a..q1b+ur2(q2+1)b+r1>q2b+r2+ 1> 0b+ o =2, - (' _

: }

P
LI ’
- v e T4 .
- . 4
S
" Ry .
i ’ o
. L3
. .
L
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_ . _ : . , . o7 .
- = N : . . '
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" 80 that a > a, a contradiction. So qi‘g.qg. By interchanging q£_>

3
g: * . and q2, we conclude do £ ql. Therefore, ql = gp. Subtracting
§ .qlb = q2b from (2) gives rl = r2. Hepce, q and r are uniqueu

. Interest next centers bn the common divisors of two integers.
- n Since. «d 1s a divisor whenever .4 is; and only then, we may as well
’ consider only positive divisors. For example, 8 and 12 have\ the
? common divisors I, 2, 4; 4 and 9, however, have no common divisor

other than I We say that ¥ and 9 are relatively ‘prime or that

e n e e NG

4 is prime to.g  We call'h the greatest common divisor (gcd) of 8

‘and 12‘(written (8,12) = 4) bvecause every common'divisor of 8.and"

12 divides 4, Clearly, (4 9) = - _
.. DEFINITION, Let. a apd b be integers not both 0. " By the ged of
& and b writtenf(a; ), we mean the positive 1nteger d having

the following properties . ‘ L //
i;é? ‘ (JJ\$ "d.] a, 2 d. b, T .

et K . LS

= (2) 1f dllhﬁy“ a;! b, then d; | d. e ST e

We can see yithout much difficulty that there cannot’be'more
\
i than one gcd. (Hence,ithe use of- “thé‘@&l"the'p”sitive integer a"

s

Lt in the above definition.) ~Suppose there were. two*gcd's d; and d2.

.Since d, is.a ged, d Idl, -since’d, is a .ged, d |d Cii%éth dq and dz

1
| are sitive, therefore d; = do. | 24

A\

' Exercise 3 Why did we assume in the definition of gcd that a and

PR -~
o

g o b. were not both 02 !

14

Factorizing integers in order to find .thHeir ged is troublesome
when the numbers are large. And we can never be sure that evegz
- ‘) .pair of integers has a ged, no matter how many special cases ve

work out. We shall now give & practical method of finding the -ged

. » - -
‘ ' N o
o } . . . Sems” .
‘) ‘/" :"J ' ! : s .. ¢ :
Coh ANy ot - < ¥ 1., -
ALY
o~ . o

N
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G,

(3. 1) .72 =233 + 6 ‘ f - o
.(3.2). T 33 256310 ‘ ' . - S
\(303)‘( \~e 6 = 2 3‘ ’.' ' . . ‘

‘ 3!33 (see Exercise 1).

s | ivisor. ’

6 = 2 3 ror ﬁ _ ; o
33_=56+3~—>3=33:-5-6~. LT Y AR "
o “.J_ R o T
72 = 2.33 + 6-—»6 =72 - 2 33 A Ve O
N : ' T \ i
- s . ~3=033- 5 (72 - 2-33) ‘ :
or . ] +
37 < 5.72 4 11-33. - : : ’ '

which involves-cnly the division algorithm

s .

This method which is

called the Euclidean Algorithm, ,also proves the existence of the %cd. ;o
Let aa ‘and b be the two integers whose gcd is desired - R
shall assume a, b are both positive, the remaining cases are easily

handled once this: case is settled Before treating the general

v

case,‘let us consider the particular 3htegers‘72'and 33.

Write, by the division algorithm

' -

From this ¢hain of equations we. deduce that (72, 33) . Ror _

from (3. 3), we have that 3|6. Then from (3 2) 3]3 and 3|5,6 imply

“From (3. l) {3|6 and 3|2 -33 imply 3|72.,

3 1s a commqn divisor of - 72 and 33. ~Suppose d ,1s ‘ahother common

Then from (3.1): ,al72 and d|2-33; hence, d|6, since '
= 72 - 2.33. From (3.2): 'd|33 and a{5.6 imply al{33 - 5-6), 1. e. \__

d|3. This shows that any common div‘.lsor d 'of T2 and 33 dividés 3,

(72, 33)° = 3. .

, We can obtain an additional result by writing the equations

THerefore 3 is the -ged:

(3) in:reverse order: ‘

The ged 3 18 a linear function of’ 72 and 33 with coefficients
which are integers.




» ‘ “K ‘_.—_..-4‘1::._;" ,‘e:
U v et '<-¢5~‘:
o . o : TR '
general case we wou}d have the—ehain of equations: )
(4.1) -~ a =dgb+.7,. o O_gr<b- . , e
e (‘4".2'2 b = qF + rl‘; . ‘, 0 S n< P ’
T T | o
(4 37 TiT =gy + Ty, o 0Ty <y
. ) - - ’ . .t‘ ] _‘ ‘(\' =, U > ., . - 7 o~ * - .
{f"l*) Ty =93 + T3 0Lry< Ty . ~
This process must .come to an end. For the'sequence 6 Ty Tys-Tosees, ) |
is a decreasing sequence of non-negative integers and so must even- ’ )
tua.lly reach o T ' : S ' .
The~last two steps are: ‘ : B
Je - [ N « ?
_‘: \ - . X - ~ o . ) .
(h.(n—}-l)) n-2.~ 9%n-1 ¥ Iﬁn’, 0™y <’rn-l | 2 ’ g / .
. N LN . ' . . s
(4.(m2)) - 1,y Y a7 _
./ , - ) L . .
- . K e e oo w, . *
B We claim.that r, 1s the gcd of .a and b.- The proof ;s : .
exactly the sa e as in the special case, Certainly T, n 1 by e
(4 (n+2)):an 8o rnlrn 5. ‘by (&, (n+l)) o | ‘ ¢ Ty

Working ) ards we conclude that- rn‘a, rn'b. If 4 'is a corimon S

' f dgvisor ‘of .a*and b,  then d|r by (1h.\1) Working downwards, swe

arrive at the fact that d,»‘ ' byi(*l(-“l A BF 1‘)) - : _ T ‘
Mor[*eover “we can express r' :1n ‘be‘rms of a and Db, From,
N‘ T T - .-‘\
. (n+1 ) we have rj = P InTy- 18/ fgoth  r .1 ande eaR R

sexpressed in terms qf earlier. r's\‘* by, inegns of equations in the
. 'l~7 l"‘\%
After a finite nuriber . pf steps we ha,ve rn expressed as .-

»
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in Eierc ge 1 in an essential way (if an integer divides two other
integers, it divides their;sum, difference, and any multiple of °* N
either integer) L L . ) .
Summarizing our results, we have: - : )
THEOREM 1, . Every pair of integers a, b other than the pair
3 0,0, possesses a unique gcdégﬁig&‘d = (a,b) 1is the ged of a
ieegn"and ba there exist integers x< and y such‘that

R
s

;‘ “ k Q g [ ax + by = d, ' . '
- In particular, if 2 and b are relatively prime, there exist
j'nﬁ ’ integers x and y .such that ) o s
o  ax + by = 1. ! Y ;

a - a3 - -

Exercise 4, Prove the assertions of Theorem 1 in the cases. in

which a and b are not both positive. ] .

~ {

Consider the cases: a > 0, b < O; a«¢0, b>»O0; acO, b { O..
/Theorem 1 enables us to prove the result which will lead

directly tol the Fundamen*tal Theorem of Arithmetic.. °

* THEOREM 2.. Ir a'ibc and (a,b) = 1, then ale.- °

fh' This theorem does not seem so'remarkable if we imagine a, b, c

factorized into primes, but remember that we have not. yet discusséd

: ) factorization into primes. ) . -
8 . The proof of the theorem is very simple. Sincgl(a;b) =1, we
- ' @ AR ; '

have, by Theorem 1, —_ - . i . .

2 —— - N

' . Cax+ by =1
for certain integers ‘X, y. Multiply by ec: - . C -~
, s . acx + bey = ‘_ o co T .

. *

Now ‘a certainly divides acx, and albcy since. a|lbe by hypothesis.’
*Therefore, by Exercise 1, ale:i: ) : : )

‘*5 ' .. 28 f
<y KR , v . Lo

~ A
»

Ny
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As & corollary we get — ' - s

he
'

\\?HEOREM 3. If the prime p|bc and p*b, then ple. (p{b-mean&

Yp does not divide b".) PFor if pfb, p ;must be prime to b, since,.
. . ) \ .

as a prime, p,6 has no divigors other :than 1 and itself. We can

-

then apply Theorem 2.

Exerciseoi. Let p Dbe a prime, Then (p, a)-=11if and‘only if
p{a. o . .

7 A slight extension of Theorem 3 is the'follouing, which we

P4

»

leave as an exercise.
Exercise 6. Let p and P15 Pos «ees Py be primes.‘ Ir
j;ﬁ&"p1(plp2...pn), then p_ is equal~to ore of the
primes Py. Coe e . )
We are now in a position to prove the ' : :: e
-FUNDAMENTAL THEOREMIPF ARITHMETIC. Every integer > 1 can be
, written as a product of_primes. If the primes are writteh in the .
order~of increasing magnitude, the factorization is unidue. ‘ '
We regard a prime.as its own “product*of primes Thus 2 =-2
_is a factorization into primes. . L L -
‘ . The 'proof is 4n. two parts, first we have to show that n>l
is a product of prime factors. If n is_aﬂprimeg we are througﬁ o
Ir not n = aja,, where 1. ¢ al < n, I“<,a2 < n, If al, a2 are'
both primes, we have our factorization; otherwise, we repeat the

_Same process on, aJ and a2, obtaining n = aaaua5a6, w{th

1¢ a3 < al, < ak < al, 1 < a5 < ap, 1 < a6 < as. In the

successive steps of %he process, the factors get smaller and smaller,

. but since they are positive integers they must eventually reach 2

if they are not primes at some¢iptermediate stage._ Thus n has a '

-

- .\ .
/ '
@
.

- 2‘9@ ¢

3

—"




factorization into primes .

|

S Suppose__there, were two factorizations of n:-
A :‘(5) . Plpau. p = qlqa.,. q R ‘ e ~'~ . e

'where the p's and q's" are primes and p1$ p2 _{ S'P:fzz e

43¢ 9p < v < 97 Since pl divides P1Py ... Dpy it dividés

"'qlqz, :ﬂ}:’ q . By Exercise 6, p’;L = a4 for some -1. ’By the samem,-' N Qw.l
reasoning, q; = Py for some j. The fact that the p's and, qts ST
f are arrangedlin increasing order” means that i= 3 =1, pi' = p:‘;, "

gy =9y, (For pygpy=ay<aq = pi, since the first and last

members of this chain of 1nequalities are the same, we have equality

.

throughout ). -, - . LY e
n »__ Now divide both’ members of (5) by P = é getting S . v
b PR . .
PpPge-« Pp = dpdg... dg » B
M 4 < , o D

. and proceed as.,be_f_'ore,.' . We get ?2 = q2 R p3 = Qg4 etc. -
If s> r, we woul.d have -«

l_- Ap1 9pp +0r 95 s : .

which is i;npossib e. Hedce s & r; by symmetry, .r < s, and we
conclude " ® -—s——e-"z‘vhis";is the end of the proof. '

: Here is an application of the Fundamental Theorem. ‘ ) 4
‘ Eiercise 7. If the p“roduct of ‘two relatively prime integers is.a’ . "
‘ - . perfect square, each of the integers 1s ‘a perfect e

Y ' square. ‘

You may ﬁeel that the FundamentaI Theorem is completely obviousM.i &

and ‘neéds no proof. However, there are many number systems besides
the rationals. In these systems we can de?ine integers, divisibili- -'\7

>, >

g -

ty, and primes. we can do arithmetic. But in most of these number

:._ ssYStems,‘ wh}le we, can factor an integer into primes, the factoriza-‘




tion is not unique!

~ Supplement:

sgmething.which 1s.pbvious.

more faqgorizations 1nto“entirely different primes.

,A,.,,-

Ly BB

It needs’ to be prevgﬂa ‘A

" ‘“l

Certain integers in these fields have gwo or

P T et

(See the”
A New Field.) This shows that we cannot regard the
uniqueness of factorization into primes in the ratiogel field as
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. ANSWERS TO QUESTIONS
N : . PRIME NUMBERS. | R o
If n has a proper divisor d (i.e., 1 ¢ d < n), we can write ,
: ‘dd! = n. Now either ‘d‘ or at 1s ¢Vn, because if both !
*;v “ 1 d,at >./m, dd* > n, - ") | -
,;;“ '}2-“ A;‘pi (i-l 2, ..., 1) because the equation #
f. t |[ A = plpa‘*’tf.. P, + 1 shows th:@?A > PPy eee Py >@pi, since . ‘
i , | .‘each prime > 1. G T o
* '.‘ '3," Since an integer when divided by U must have one of the re-
2‘ } ,{ o _mainders O, 1, 2, 3, we can write any integer in one of the -
‘ forms bk, bk + 1, 4k + 2, bk + 3. Now bk = 2 - Pk and L
e Bk 2 = 2(2k + 1), B0 these integers are even, On gh_é‘other .
- , _ rj1and, b + 1 and 4k + 3 have remiinders of 1 when divided by PR o
2; they are odd, But bk + 3 = h(k + 1) - 1, ’ A )
l}.'; Let the two numbers be b’kl + 1 and hkg + 1. ‘ : -

<}
¢

(l}ki + 1) (4, + '.1")““= 16 kq ko +‘hkl +.hk% + 1

-

iR
o Sayd

\

lL(bfklk2 + k) + k2) + 1 L

K

3
N

M




Since- A 1is odd, a1l prime divisors of A are odd. If all
prime divisors were of the form Uk + 1, the product would

also be of this form, contradicting the fa¢ct that A is of the o

. ~
2 1

© form 4k - 1, ’
R . v - - ) - k
-

6. Suppose that there are only a finite number of primes of the'

. . PRs?
‘form Gk - 1, , namely, Pys Doy cee s ,gn Consider

,\

A = 6(p1p2.. j N ). -1, If A 1is prime, we have a contradie-

-~
6

tion” for A “is\not py or pp or ... .or p,

Suppose A s oompoéite. A is of the form 6k - 1.
Since A is odd, A has only odd divisors, and therefore
only odd prime divisors. Now, every odd prime is of the form . \
6k - 1, or else 6k + 1.  (Proof: 6k,‘6k + 2, and: 6k + 4
are all even, and 6k + 3 is not prime.)

- . Since (6kl + 1)(61{2 +1) = 6(6k1k2 + kg + k2) + 1, the

ra 4

product of integers of the form 6k-+ 1 1is again an integer : |
of this’form Thereiore, ZA ‘has a ‘prime factor of the form ,

6k - 1. ‘But this eannot be Dy, DPy» ...» Dys again we have
a contraditronqﬁ‘ i '

4
g ! . 7N

7. Consider’the sequence ‘ . . o

(n )1 +2, (n+ 1)1 +3, oo, (+ 1) +n%+1

-«

-

‘ and folldw the reasoning in the text.
8. There is only one "prime triple". For suppose n - 2; n, n+ 2

are all prime. n must be of: the form 3k + 1, ék -1, or 3k.

In the flrst case, n+2is of ‘the form 3k + 3y . i e., n+ 2 is

divisible by .3. But then n + 2 ¥’3 since 1t is prime. Then ‘

= 1, which 1 not prime, Next, suppose n is of the form | g

&t ’ . . ; |
= B -7 . Ry
. . -

: N M .l

pee
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2 prime tri
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CONGRUENCES - . , ) '
a-2=0 and 0, is divisible by m. -If S
) :
Q ko3 »

b (modmm) y -8 = b 1is div:l.sible, hence, 8o is

®
m:

. -

a, Therefore b = a: (mod m). If ‘a = b, ' s

¢ (mod m),"then a - b and b - ¢ ‘are divisibyy . s

oo
m .

i
8}
2 vyt

) . 'l‘herefore, 8o 1s their sum (a ~ b) + (b - e) *' TG
IR ’ It follows that a 5' c (mod m). . C ’ . -

" Exercise 2, Let the integer be N ='a, 10a1 +%ve. + 10%,. - Since
' 10 =1 (mod 3), 10K= 1 (mod 3), and

]

'_'Ns’e.o-%-al-F ve. + ap (mod 3). Hence, N= 01y

.
s *

§
5

f)and\'only if a, +.a; + '*'"ak 0 (mod~3)';—--~--' . *
’ 2
. eee +1® Jaa'j (this

i yg:gg,wm~ e
%

|
i
)

w

i

1

_Exercise 3. Let the integer be N = a, + 10a
' . %ﬁtegen has an odd number of places). Since

.. 10.= -p.(mod 1), 10K=11r k is even, 1= -1 .., %

- . i . ) %{g ~ ;

if k ‘1s ‘odd. -Hehce, N = ag - 23 + 32: ag Foonk ’Q'RJ “

! © and N = 0 if and only if S . ’
% ; l . . H . , _ - ‘ P
%‘% "."! ’..-'_n ,_E -t \A«»ao + gz + all_ + . + &2{[%—5 al + 8.3 + 8.5 +oco+ aaj‘l
(moa 11). 'The proof when ‘N has an even number of
4o . . . "

R places is practa.cally the same. o,

s

 Neag+10a;+ ...+ 1okak.'- Since 10a
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10% = 2K (mod 4). Thus 10k = O (mod B’ ;f‘kz 2.
Hence, N = a, + 10a (-mo_d 4) and' N =0 (mod?f’h) if .
and only if 8y + 10a; = 0 ('mod. 4),

Suppose xI, X, both satisfy AX, = b, aucgk
1 o
and 0 _g xl < m, O 5 x2 < m, Subtracting ‘bhe’-two cbn- L

gruences, we get a.(xl - X5) =0 (med m) .+ Since

.
;5—‘»

(a,m). 1 we can cancel the fa.ctor a Bmd’ then have . .

-vq‘v.m.--‘. s

e

- - 'f_/ .
Xy - X = 0 (mod m). But O.'$x -x2<m.,;ic,>: .

X) - xp = 0. The two x's are the same—’f e

’

. +We have to solve the equation 2x + 3y = 25 in 1ntegers

/x’, y such that %> O &}_ 0. We have'?‘x"—’ 25 (modl 3),

'x = -1 (mod 3) (sihce 2x = -x (mod—3)):o -Heg;\c.e,'n%

L

x=-1+3t, t an integer. Then ™ =

;25 -~ 2x _ 25 -\2(-1+ 3t)_ o _

I=73 ) 9 - et
Since x >0, t > 1. Since y > O, t'sh‘Hence
there are fo?r solutions (2, 7), (5,5), (8 3),

(11,1). | o .

-
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- - +
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_Exeréise 2.

Exercise 3.’

THE .FUNDAMENTAL THEOREM OF ARITHMETIC ~

-
. -

Since alb, :alc, we have b = adj, c = ad,, where

P
’

d;, @, are‘integers. Therefore P .

o

b+ c=ad) +ad, = a(dl + d2), so al(b + c).v
f =.a(dlf); -

hence a|bf. ‘ .

%

Likewise, al(b - ¢). Also bf = ad

For a certain integer g, we have b = ag. Hence,

-b = -ag = a(-g),‘ and b = ag = (~a)(-g). Thus i

a](-b) and (~a)|b. - . .
Every integer # O divides 0] /ﬁince, all integers are ' -

common divisors of the pair 0, 0. There'is no e *
greatest common divisor of this pair of integersf

Case I. a>o, b < O\ Since b =| bl, we have dlb . .
——ann . o
if and only if dl(\bl) Hence if d = (a,lbt), we ' o
have” d = (a, b). Since there are inbegers X, y such J,:",é
that d =ax + |bly, we have d = ax - by = ax '+ b(—y)..

.Case IE g‘< 0, b> 0. mﬁgé is the same as Case I’ L ¥

<

with a and b interchanged SN

Y

(a, 1) = (-lal, ~Iv]) = (lal, 1b[); ‘I a = lalx = Ibly,
"then d = ~ax ~by =;e(-x) + b(-y). e

g } N T

{
|
K?
e ’ 37 . P ' S

Case 'III. a < O b.< 0. We‘havé o ' .




o does not—have p af a<faotor.. Since the only factors

‘of P ‘ave - 1 and ~5,“ 1t follows “that (p, a) = 1.

Thevréh 3 we get- hat plp1 or p|p2p3...p If\ o
pipyy P = .pl and the result 1s proved.  If not, write“'

v

pgpg...pn = p2 pgpu.;.pn and proceed 1n the same way._

-

If LP does not [divide any of p;, p2, ..:, pn»l’ then

, plpn 1Py 5 the eforé; plp 80 that p. = pn T
”Note. If the student is familiar with Mathematical Induction, he. h,ii‘

~

truct an- elegant proof by assumiﬁé the. result to be true

-

when the produ;i has k factors. - ) -

.

Exercise“7 We . are given ab = ¢ with (a, b) = l _ Write the. __

v ’ el e2 . - ek ’ -

factorization of c, o = p;l sz oo pk

‘e
¥

where €]y oo ek are. positive integers (e is
simply the number of times the prime .py occurs in-

_the factorization). Also, write down the faotoriza-

tions of a and br a =¢q_lfflv.‘._. ~qsi:

. -
Ty cee t >_Mx-We ‘then. have

"”f -3 : ,g ‘ 2e. ' 2
s*‘ 1 t = 1 €k
1 Sag STy Ty = Py Py ¥

-mﬁww 2 . :

- - » E e

- Since the two members of this equation*are both facto-_
5riz§tioﬁ§*8r‘fﬁ”'éame nﬁmber *ab} (or c?), the same

primes must oceur 1n both« Hen%e,f pl' 13 ome q or

“1r; 89?»5913i3 ;:oi?‘ . IE follows that ﬂ

P T T B e “

we, do thiskfor every prime q,

%S
i

BE -,

e e
< iﬁwﬁi" S “’ ey




BEFT
P
e
A
,*gr

;

LA ORI AL Sl BT A FE e R L RSN - - e . . S MY T ndyiada
S L PR P . , . . . Qe 7
R LA T e ; . i LR

& H . .o )

3
A

T
3
2

>

g Rt
s
S

,A
L7
et
S
ESRY
65\ )
N

N ! | ¥

3
W

5y

CE

§ product of primes 'raised to even powers. Th%mre‘forg, .

A
3

gal " a 4is a square. By the same reasoningy b 1s g

N "

< square. : i
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