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Preface

Not alle:of mathematics can (or shoUld) be taught in fordal

textbooks. Just as an English curse is enlivened selections,

, froM literature,a:mathematics course can gain depth and ipterest

from special -.readings.
1

t 4 ,

The presept volume might be read in conjunction with,the'

SMSG First CourSe in Algebra or' Intermediate Mathematics. It intro-s'

duces the'subject,of. number theory, a branch' of mathematics highly

,esteemed''for its naturalness, conceptUal caarity, and elegance. We
. .

, .
,

hope tfiatthese essays will prove enjoyable and stimulating. d ,
,
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o.Amng the ,natural numbers are the prime numbers: a positiVe

41
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1. PRIME NUMBERS
t

.%

1

integer is -called a prime if it hasno divisors except 1 and itself.

0

Thus '6is not a prime, for
,

it has the divisor -2, and 2 is:difgerent
.

I

from both I and 6. We .call 6 a composite numberr 7BUt 7 is a prime,.
. , .

d
. beep.use 10 only divisors' are 1 and 7. By .agreemeht we shall not tr. t

,.

6

count. the 134eger 1 among.. either the primes or the composite integers,. .,
: . - _ ,, , . ,I.

Thus every integer greater than 1 is either?! priie. or coniposlte.
%.

,
- If a number is .compOsite, it Wa's eprime divisor' (,that ia;.:,a.".

. ..4,--
.

divisor vi p swhich' is rime). For. you have eenin this course or in. ,nw ,..,

ealier course that every.integer greater than 1 can be written as

a produce ofCprime factors. Obviously, each prime in the product is -

a. divisor of -the integer in ;question. '.
_ .

The smallest prime .1's'22i; :it! 1S- *also the Izsnly prime which '`i-i, a
, ,.. . . ,

even integer:- No 'larger "even 'number can be prime for it has, 2 *e.g. .
,Ci ..

a divisor. If we write dOWn the Pliimes in "the Wrdei.'i of Iii4riee..eikig ':. ",

/,.. .4

size,)we 'get .

i
,

.

,
. .2 3, 5, 7, 11, 13, 17:; 19, 23, 29; 31, .., . ' " ,

The d is at the end mean that there are still larger primes. How '

large do the primes get? You cdn probably find a prime 'larger than

100, but ,could you find one larger than 1,,0002,900?

t
4
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(How wduId you go about findingsa-prime larger than 100? If

/ you test'a given number, 101 say, by' dividing it in successioneby
I.

. 1
.i. ,various numbers, would you. have to try aal integers ,less a 101

. ,
.

f

as possible divisors? Or would_i_t_Lbv sliffcient to try all primes

less than 101?* If so, wouldn't it be` enough to try all primes less

.than d? See if you,canprove that if an integer_ n has.a proper
4

divisor, it has a prOper divisor which is not morethan5-.)

'To,putthe question in another way, are there a finite number

of primes or arethere infinite ly many? If you think this over a
,

.

. bit,-you will probably find if impossible to think of any way to
. ,

attack the problem. 4.Yet_the answer was known to the Greeks: In

faCt., we find the.proof'thaithere are infinitely many primes in

Euplidl.sElements.

This` proof is a Pil,00f by contradiction: sUPpoee there were

only n primes, say ply V2, pn, where n is a certain in-
.

teger. Now let .

I ..

A
A = PiP2P3:.. pn + 1,

.4- ,.. . .'
thatrisli A is the integer obtained by multiplying together al

the primeS and adding J. te:the.result.,

-.- '1':-11\. 1464t,)A vie'either prime '.9r composite. If A is prime, we

have a contradiction since A ..ie\not dne of'4he primes D Dprimes ., -2,:..,

:Cilixi (Why?), andVollelee were supposed to be afl. the primes.
.

:

: +

The-other rssibiliy is that A ie,9omposite. Inthat case

A is divisible by a prime; call it p. Gould p Izte *pal to p,?,
1 .L

dertainlinot., or if we divide A by Pi me-gpt 4-remainder of 1,

sinCe p certain y divideeathe.prgduct.plp..,. pn. Since.p
,

1
..

,,,,k: . \

divides ''Al p cannot be Pl. In,the.same way, p could notbe-

8
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132,T31 or Any of the primes in the set.pil p2, pn. Again lad

have a :bontradiction, namely-,--we assumed thatyll p21 .,.,'pn were

all the primes; but here is a number p, undoubtedly a prime,
. ,

which is not pe Of p1, p2, pn.

So whether A is prime or composite (and these are theoilly

possibilities) we arrive at a contradiction to our original assump-
.

tion that there,are only ,a finite number of primes. Therefore,
,

this assumptionputt be false, and we have proved the theorem,

THEOREM. There are infinitely many primes.

Although this proof is an example of an "indireCt proof", it

can be turned Around to make a direct proof. What we have actually

shoWn is that we have any set 'of primes (plyr2, there

'ts a prime p, which is not in the set and which is not more than

/
A. FoTexample, suppose we know that 2,3,5, are :primes. Then

Our prObf shows that there is' a prime p"- which is not either 2,3
.

or 5 (and so is greater than 5) And i'=,31. So there
.

is a prime.larger than 5.but not 1 rger than 31. Actually,,of'

course, there.'are several prime 'between 5 and 31. Our proof, then,

does this: given any set of rimes, it gives a limit below which

"$1

there must be a new prime. In this Way we can produce in succession

an indefinite number of rimes..

* There are a very large dumber of fascinating questionsqavihg

to do with primes. Although most of these are quite easy'to state,

the,answ

that every eve

to y are not known. For example,- it was conjectured
;

number greater than 2 is the sum of two primes

= 3 + 7,.46 = 23 + 23, 100 F 47 + 53). This is(examples:

called the oldbach conjecture, after the name of the man who first

9
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proposed the problem in 1742. It has never been proved or disproved.
.,

However, there are some questions about primes that we can

.anewer. 'Suppose we write down the sequence, of positive integers
. 1 .,e )

for the form 4k - 1: -

.0, . .

3, 7, 11, 15, 19, .

Are there an infinfte number of primes in this sequence?

(By an integer of the form 4k -; 1, we'mean an integer which is:
.

equal to 4k - 1 if we choee the.right'integer 'k. Thus a . 4.1 .

27 = '4.7 - 1, and so on. Of' Course, the value of k is different

in each case.)

Sefore4we discuss this question, let us notice a few things
r

about odd numbers. Every odd number is either of the fork4k +

or 4k,- 1. (Can you proile this?).'Furthermore, if you multiply two,

numbers of they form 4k + 1, the product is also of the form 4k + 1.

.
(Check ,this.) Naturally, if you multiply any finite number-of

tegers of the form 4k1+ 1, the product is still, of this form, be-
,

cause you could multiply the first two integers, then multiply the

result by the third integer, than multiply this result by the

fourth integer, and so on.

Now suppose' A is an integer of the..form 4k -,14,then we can

.
conclude that A.,hasat ,least one prime divisor of the form 4k -- 1.

, ,...,...%

For example, 19 is already prime,,while 27 has the prime divisor 3. -

.(Frove.this irythegeneralcase by assumingthat all prime divisors,

.are of ;the form 4k + 1 and arriving mats a contradiction: .Notice,

that A has only odd divisoi's.)

Now we can return to the original question: are there infi-

nitely manT, primes Of the form 4k - 1? Suppose there are only a,

10
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finite number of such primes; call them `p1, p2, pn. Let

(*)
1 4 A-74(1)11)2w Pn)-1;

Notide that A is 'of the form 4k4:. 1:

. We follow the proof of the previous theorem. A is either

5

prime or composite. If A is prime, we have a contradiction, for

A. is :then a prime .of the, form 4k -'1 but21ft is not one of the

primes p1, p2, ..,., Pn The -only other pobsibility is that A is

composite. Since A. is of the form 4k - 10,* A must have a prime

divisor p of the form 4k 1, as we) have just seen. But p is

not one of the primes P1,' p2, pn,,, for p divides A iihereas

no pi divides A. ,

/

S? whether A Isprime'or composite, theie is a prime of the

form 41r- 1 which' is not*one.of the.P4mes Pi; P2, .This-

is the contradiction we were looking for, and we have proved the '

followirig result. ,

THEOREM. There are infinitely'mAny primes of the form Uk'- 1.

t See if-yot.can construct a similar proof that there-are Wi-

)1/4

,nitely many primes of the form 645; ld

Actually, it is true that-there are' infinitely many prime's of

the form ak + b, where a- and b .are any integers which harve no
_

Common divisor (except ]j. (For instance, there are infinitely
. . ,

,. mans, primes of thelo* 5k + 3.) The pr9of of -this) howeryer, is

r 0
very difficult; Thefirst proof was gi

(1805 -'1859), a famous German mathema

Notice that we did no try to prove the,AbOve results by

looking for a forMiaa for he nth prime. Suchga formula, if it
)

exists, would be highly complicated, because the distribution of

N

n P. G. L. ViriChlet
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primes among the iritegers'is so irregular. As an- example of this
. , . . .

irregularity; we prove:

THEOREM. There are arbitrarily lone sequences of consecutive com-

polite integers.

For.example',,there are 50 consecutive, integers a1,1%of which

are' composite. We can actually exhibit such a consequence.,,

.
First, we introduce a new notation: 1! .'1, 2! = 1.2

ar = 1.3, etc. In general, n!' (read "n factorial") is the

product of all the integers from to -n, inclusive. Now tl,e-con-P.,

alder the sequence
-

51! + 2, 51! + 3, 51:c 4, 511 + 51. 4

There are 50 consecutive integers in this sequence.. The first,

51!-+ 2, is divisible .by 2, since. 51! is and 2 is, andithe.1sum of

twg integers divisible by 2 is again divisible by 2. -The second

number, 51! + divisible by, S, for the same .reason. In

general, 51! + 'divisible by K as long as k is not more

than 51." .So every Integer in.the sequence is composite. You can

Heasily see how to modify thls'prOof if you want's. block of length

n instead of, length 50;
,

We have seen that consecutive primes cdn.be.far apart; can'

they,te close together 2 andb.arensecutive primet that differ

8y 1, but obviously there are no gther. such pairs, for if p is an
44 .

odd prinie, p + 1 is.even_and greater:than 2 and so is not a.prime.
. 404

\we next', is that consecutive primes diffei: by 2, and

ere are many enmples'at-such IoriMe twins": (3,5), (507),-

0
7,19)0. (2901): But are ,there,. infinitely many such pairs? No

q
knows, 64thoug1 .many/famous mathematicians ,have exerted

1 2 *.
.4

t



1

themselves trying to find out. 'What is your guess?

Finally, we might consider "pliime triples", like 3,517. Are

tliere,any othei, prime tripl es? See if you can prove it one way oP

the other,.otheg.

7
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2. CONGRUENCES'

In many situations in 'mathematics, .what is important is not

the particular value. of an integer but the fact that it differs

frodanother.pumber by a multiple of 2 Or a multiple of 5 or a
.

multiple of some other number. For example, odd numbers are thole

which differ from 1 by a multiple of 2, sqUares of odd numbers

differ from 1 by a multiple of 8, etc. The same thing.happens in
-It

ordinary li e. What can be said about two times which readthe

. same on the clot About two dates which have the same Month and

day.bat are in consecutive years?

Two numliers Which differ by-a:multiple of 2_ are said to be
)

congruent/modulo 2. ,We' make- the formal definition:
/

DEF,IiIITI914-.----.--Tegers--4.-4,--43a/re said to be cOngruent modulo /m

. (where m .is a.pOsitiVe_integer) if and only if,a b is divisible

by m.

We write'
mtp

b (mod, m)

to indibate that a :and b are :congruent modulo M. In particu-

4.*
o

lar, a EE 0 (mod,m) means that ni .divides a, and eonversely. m

is called. the modulus of the congruence.

14

.
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Congruence -fs"..a relation between the integers a and b

(with respect to the modulus m).. Many of the Rr!operties of. the

more familiar xelation.of equality carry over to congruences.

Exercise 1. Prove that

a -*.s. a' (mod m)
.

if a= b (mod m), then b a a (mod in)

4 if a -7= b (mod m) and b = c (me'd m), then a :T.-. c (mod m).

. Congruences aan added, subtracted, and multiplied like

ordinary equations. -21-114s,

..' ,

if a F. b

,

For (a+c) - (b+d )' = (a-b) + and eacil-term in the right member

(mod m) and d (:nod .m)., then

a + c =-.4* d (mod

b-d(mod4T) .

ac bd (mod' m)

Is divisible by

the secopd congruende. Finally,,ac - bd = (a-b)p (c-d) b.' Since

m2, henee the right member is also. Similarly for

\t11_134,vi40 ,c,,1) ye same _reason;,, _

f .

.(c-d) b.- ThiS eStablishes,the third congruence above.

Using/6Y we-can answer questions such ag:: is 232' 1 a
,

P
prime ?, (A prime is an integer > 1 which has no faetorA except I

a,
. ., . .

and itterf.) This number is' of.some historical interest, for
-,;.,.

- 4
.

.

primes,pZFermat stated that all numbers of the form 22n + 1-are

whereas Euler ,showed.---tluet-123gi n = '5) is divisible by 641'.

We can easily prove Euleris result'by means of congruences without

eXpanding thiAvery iargp number and dividing it by 641..
*V

A

- - --
34' ,

4-> .1 =



'Namely, we have: ,

22 EE .4 (mod 641) , 2 ==--- 16 (trio&

--- I

;

,Ly ,/ '

`1--

V51,1?/
% .11'

,

28 Ei 256 (mod 641), 216 -a-..- (2562).:. 65361F-:.. ,154 (mod 641),
-1,7-,-w ,, ,,, . .

'232 .7,- (154) = 23716 Es' 640 (mod 641) .

.Each congruence is-obtained from the preceding one by multiplying

/

it, by itself. The lapgest number we had to calculate was 25 )6N2=
_

.
. .

Froni the, last t-congruence we get.

. 232 1 rr. 641 = 0 (mod 611),

as promised.

'Another thing we can do easily by means of congruence is to

prove the familiar rule for "casting out nines" Let N be a

positive integer and write it in the base 10:

`. -N -='a0.+,10a1 + 10
2a2 +... * 10kak.,

,% - .
0._

(The ,digits of N are- therefore ao,'al, ..., ak:) . ,
,;... L<

Since 10 =--- 1 (mod 9), we have 102 t. 12 . 1 (m44 9),. and,

c,

general, lOr = 1 (mod 9). Hence, using the. first equation of (1), .

(2) N ao + al +,a2 + + ak (mods 9)h.
. 0

divislb 4Y.by 9 if and only, if N = 0 (mod' 9), which,

according to 2), ()emirs if and only if the sum of the digits
A

ab + al +... + ak 0 (mod 9). '

Exercise 2. Prove that an integer is divisible by 3 if and-only

ofits digits is divisible by 3.

Exercise 3'. PrOve that an integer 4s divisible by 11 if and

if the sum of the digits in the ilodd places" is congruent mod

'11 to-the sum of the4digita in thP "even places". By "odd places!'
r.

we mean the units place, the hundreds place,
.

C
1.6
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Ikercise A.- Prove that a number,-is divisible by if and only if

the part of the number occupying .the units ,and tens places is

.4

'V

.
divisible by 4.,

a

In arithmetic we'llave the cancellation law: if,ab,= ac and

a 0 then b = c. What IS the analogue foi, congruences?'

'Suppose we have ab = ac (mod,m), Which is the same 'ihing,as

. sis
a(b -e) = 0 (mod. m).

It does not follow that mla or mt(b-c): Po'r-some of the prime,
4

TrictOrs of m bight divide a and the remaining prime factors

divide.b - ckl, However; if m is prime,to
.a.

(i.e., m and a,

have no common divisors othei than 1) , then mI(b -c). This is a

consequence of `the theorem: if inky and m is prime to x .then

. m)y. For a proof see the Supplement The Fundamental Theorem of
P I

Arithmetic. So we have the result:

Theorem 1. If ab = ac (mod ml and.' m is prime to as, then-
.,

b c (mqd m). Iii,other words, we can cancel a common factor-from'

.s..copgruente,prockided the-common factor is prime,tothe
J.- -

The equation ax = b, where a,b,x are integers, cannot be solved

.

for x unless a happens to divide b., By contrast; the congruence

ax = 7b)tmod m) can alway6 be solved'foi, x provided only that

. (a,m) = 1. We shall nywshow how this comes aboUt. ,

(The numbers 0,,71- 35; -14 are mutually congruent moduld 7
,

(that'is? any pair of the niimbers,iscongruent). Likewise:

2, 16, -47 are congruent modulo 7. Consider the set of all

integers .congruent a fiXed integer modulo 7; this set is calld a.

-residue clas's modulo, 7.' For example,gthe, numbers congruent to 0 .,

modulo:7 form one residue class ho; the numberis congruent to_l
.

.41
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modulo 7 form another, residue clasi R1. Ro and I have no' common

elements, .for if an integer , a a.' 0 and a = 1, then 0 = 1 (mod 7),
by EXerciSe 1. Consider the residue classes Ro, R1, R2, R6.

(Ri is the set of numbers i (mod 7) Every integer n is in
i

one 'Of these classes. For we can write n = 7q + i where

6. Then n E R1 (This explains thd word "residue", which

means remainder( ) In this way, the set of integers is partitioned
into 7 sets,' the residue ,cla s modulo 7, no two of which contain

cominon elements,.

'Of cou- rse, 'there was thing ,special about the choice of the
modulus 7 in th4 above d St-ion. We have, in fact, the general,

-result: Let .111 be an ,integer 2 1, and- Ri (i = 0, 1, ..., m-'1)
the set of integers whic are congruent to i modulo- m. Every in-

/ r
teger n is an element ,of Ri for some Moreover,Ri and Rj

have no common elements if 1. g J. Finally, n E Ri if and only if
qm + 3 for Some's,.

.The _set 2, .. ; , m-1). is ca.11ed Aompletd residue

system.

DEFINITION. A comple e -residue. system modulo m (m > 1) is a -set .0

which contains on )e an only one element from each____midqe class Ri
. .

, i =0 ). 2:0, ,...., m- ). Thus (m, m + 2, 2 - m n I, 3, 4 , . . . ; - 2,
-1) is another complete residue system. No complete residue system

cah have fewer than rri elements, for it must contain a...-element -,
-I

f

\
1.

congruent to 0, 1, 2,., ..., m-1. Nor can it1have more than m .

elements. For if we distribute the, r >'m elements among. the m

\residue classds, one class is bound to-have at least two elements.
We see, therefore, ithat' a complete residue system modulo m is a

18 ,
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set of m mutually incongruent integers, and conversely.
. .

!

Certain complete residue systems are of particular interest.
.

.

I

/

Theorem 2. If a is prime Ito m,, then S = (a, 2a, ..., ma)
. ,

is a complete residue system modulo m.

Proof. S certainly, contains m numbert. Suppose two of

them were congiment, ra = sa (mod m). Since (a,m) = we have,

by Theorem 1, r = s (mod m). But 1%_< r S m,. 1 <!s...< m, so that

0 S ir,- sl < m. Hence, ml (r s) only if r s This shows

that nostwo,elements of S are congruentomoduio m.' Therefore, S

is a complete residue system.

Theorem 2 is Vihat we .need to disCuss the equatiori:

(3.) ax = b (mod m), a prime to4 m.

We look for a solUtion x.

'

mSince a is prime to. , the set (a, 2a, ..., ma) is a com-

plete residue system and so one of its members ax, say, ip 'con.7
-,*

, 1

ii*: ,truent to b. Thle proves thlt 3) always has a splution in,Ante-
r : ' '-

jgdrs .

i 1
. 1 J 1

2--- _ ,:, I, 1, t ,_ \ __Li-,,,J. ..____1,_..,±

Theorem 3. The congruence .-,

.

ax Es. b (mod, m), prime to m in which a,

are givens always has an integral solution x.

Of course there Are than solutions of. (3), for x m, x

x m are solutions if x is a solution. But there is only

2411,

one

solution in any given complete residtie syStem,

Otrcise 5. Prove: ifda,m) = 1, there is only one siefying

. ax :7-2b "(mod m) and 0,s x < m.
. . /

I n particular, *the equation ax EE 1 (mod NO (a m) =
/

, ,

unique solUtion in the range 1,?:3( < m.,,,w(Why can't x = 0?

19
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,

....her x. is called e reciprocal of a. (mod m)and often written
,i4.0R

a;° thqs,. '.8.-5.- E 1. d 'in) . To solve ( 3); we need' only to knOw I.,

for x = b evid tlY satisfies (3), ..

1

, -

The r rocal of an integer mod m can be found by trial. A
{ ' 0

-way w i sometimes quicker is provided, for m a prime, by the
.

theqrem, which,is important in Ahe own right.

WAT'S.t1TTLE THEOREM": -If .121 is prime, then

aP a (mod p),

To' prove this; notice first that. if pt a, the. result is trivial,

ince 8.13'7 a=..a(aP-1 - I) is evidently divisible by P. :tut

a, we can cancel the factor a and get

(4) aP-1 1 (mod P)) (a,,P) = 1

as the congruence we have.to prove. Again use Theorem 2. Since

S = (a, 2a-..., pa) complete residu,e system as well as
0' a

T = (1, 22'3, ..., each element Of S must be,congrnent to

gome'element of T nd conversely. Now pa s.-- p (mod p). Hence,

..._thePrOauCit_of all ttie elements Sk other than .4,pa is. congruent.

to the product of all h elements of T other than p:

(5) 1.2...(g.T1) (mod p)

But the left member has p - 1 factors and equals aP-1.1.2...(15-1).

Cancelling the-faCtor 1.2...(15 -1), which is prime to p, from both

members of (5), we get (4) . This Completes the proof of Fermat's
Qty'

theorem.

We can use this theorem to calculate the reciprocal of a num-

-ber to a Prime modulus. Clearly 7. aP-2 if (a,p) = 1, for

as = aaP-2 = aP-X 1 (mod p).

Example 1. Solve 4x_;.,1-' 7 (mod 13). .Pirst-icalculate 4. Since ¶13

20
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,/

is a prime And ;01., 13) - = 1, we have 7 = 4,11 Now 2 = ,l6. a 3,

4.4 9 =4; 48 F.:. 16 a 3, 43 a 3.4-a LI.
°

Henee 7 7 48.437 3. -i a 10 (mod 13). Fih9.11y,.

.,l0.7 = 5 -.(mod 13).- Check: 4.5'.-= 20 a 7 (rifo'd 13).

The preceding discussion can be ap plied the solutio n:in In-
tegers. of equations like

....

;,(I) ltx + 13y _=-. 35..
4 .

.

Since this is a single equation' in two variables, we see that there,.... .

are infinitely many polutions if there is One solution. For 'if
I

xo, yo_ is.one_solution, thpn certainly xo + 13t; yo - 4t is also a
solution if t is any integer. (Cheek this .by substitution.) . -. -

-. -
Equations .of this type are called Diophantine equations after the
Greek mathematician Diopha'ntui who studied them. Such an ehuation

arises, e.g., from the problem; 4 in how many ways can you make

change for a dollar using only nickels and dimes? The'equation, is
.

I I...<

5x + loy: =.-- 100, with the restriction x 0, y 0..
.L.......:, ei,,,,_.....i_ Jr .

-We roan- =solve J (6) -as--i'ailows-w: ---,If 2- - an are int gers,
which satisfy (6), then

4x - 35 = 13y and

q 4x. 77.--- 35 (mod -.3.;.3 ),.

Since .4 mod(13 is 10, as we Saw in Exa
) . ., .... -.7----

x = .10 'L.- -- il L3 ....= ...i. (mod 13) . Hence- x'''is of 'the forniv--
b13 t where t is an integer; write

x = 13t - 1.
Substituting this in ( 6) gives

y
-

* 13
4x..t 35 4 (13t 4- 1)

21



ar
. , .

,,,
. , 4 P

-." 1
to

Thus, (x = -1 4 ;13t, y = 3 - kt) is a 'set ,soIutioi'r
..

of- (6) for
4 v -4.

...
- 4 ,

0,
?

. -
1 '

each integer, t Fo instance,' (-i, 3), (121,1-1):..0.68 ' - .
49) are

3 , . i

,

7 -

.
11

, ',
solutions obtained.by taking t =1,..,11 13 respectively; Notice

, .0 0 .0' 1

'.
% .: ; .

,

that there
t

ere are no positive solutions (i.e. solutions ,in which, x._ . 1
0 O.

,.

,and y are both positive). 'o
45-.

Exercise 6. In how many ways can a total weight of'25 pounds be° .

built up out of arpound and 3pound weights? ..
.-.

9 - -In the general case
. , ?4to

(3a) ax + by..= c, , . re. ,

we assume a., prime to b. Then we solve the congruence,ax ae
' -11

( mod b)1/4 which is possible by Theorem 3. Let x F_.- x,,,' (mod b j,'`t en
,.., .

x = xo_+ b t.' Substituting ill, (3a)5 - we find y = (c - ax0))b -- at. ..
4'

Note that (c - ax0),4 is an integer since axoE c (mod b)., For
reasons of space, we,do not complete the discussion by considering

the 'generalization of Fermat's theorem to the case in which the

modulus is not a prime, no do we treat congruences ax tz b (rod m) "

__where_ , a is notc prime to , m, or the corretponding Diophantirie 4
----1--- -= ,_!, -t...,,...,_,!,_. -.---- . < .

equation ax + by = c where -a and b a-k.e- not-relatittely-prime. 1 - t. ,
$..q.'

For these matters and many other fasci topics, the racier is --.
, . ...
referred to _books on Number Thedry such as,:

Uspensky° and ,Heaslet, Elementary- Number Theory (McGraw-Hill)

1.

V

4

t
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3. THE-FUNDAMENTAL THEOREM OF ARITHMETIC

One of ,the first steps in your study Of algebra was to extend

system bf integers rt,o the'larger system of rational numbers.
,

purpose of jilid.8 step was to make division possible in all cases:

equation a =.440

0, always has a

token, if

possible:

teger c

tmy that

Where a and b area rational numbeAand..

solution' x which is rational. By the same

we stay within 'the set of integers,,division is'hot 1.1ways

given integers a and b 6, sometimes there
, ,

1

such_that a = bc,,sometimes not.. :In tre. first case we

.- ., ,

b divides A, or 1p i5 a divisOr )of ,' a, _or ct,i,s'divir
- . -

Bible by b.. We write 11 I 5.Jor"hb diitideb4"(gotice that, the ba

I , is vertical, ribt-51-ditin-4" 'LLJ'jjjj-

called Arithmetic.

Property 51; divisi
.-

the lettei:s of the alphabet shall stand for
<

The study of the APerties of integers, is
4

trP*this Supplement we shall study the7important

billyy.. throughout,

4rtegers.

Certain simple facts are observed, a

e: Heavy these. as exercises.

:.Exercise 1.' Prove: if a l bs

,

or and, easily proved.

6

a I then a I (b+), a 1

and ad bf,, whOre.f is any integer.

Prove;- if a I,11tlien a I (-b) and (-a) I b.Exercise, 2.

(bre),

2'3
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An important tool in the Study of divisibility, is the so-ca

division algorithm.

DIVISION t'?

ALGORITHM. If a, b are positive integers then'

a = qb

0S r <b.
,;-,,

The integers q and r. are uniOely determined.
1-.

-,,. ,

The division algorithm merely states the familiar fac that
,

,when two integers are divided in the usual way wedet a uotient
f

and remainder aqd that the remainder is lesd than the divisor. We
--,, -,

.

have stated the algorithm only for b positive buy it actually
. . ,..: ..

: holds for ,all a, 'b provided gib X O. 1
..1

4

To give a formal proof othe Division'Aigori hm as stated

above, consider-the multiples 0b21),:2b, 4.. of b. SinceOb = 0 < a

but kb > a Ilew.--saM'positive integer k, there mu =t be a largest

integer q such that qb ..1;a. Set a - Ab)= q isItheOkquotient,"

r the .Hr minder.") 0. Next if r Z b we would have

. a- (q+1 la= a - qb b b 0, i.e., (4+ b a, .so qb was'

not the lar at multiple of b which is . 'a. Therefore, r < b,

and we have proved equation (1).

-f

Notice that if b we have q = 0, r A.< b : .a 0.b + a.'

We still have to show that:.,q,,and r are unique.

SUppose:we'could have ..

.g,) a = cub + rl = q2b* ra.p/O.g ri < b r2.
<, be

q1 3 q2 we get ql Z q2 -17..1,411

q2b + r2 + t 1 >,q2b-+ r2 =
4 '

4-

1
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so .that a a, a contradiction. So cil.q2. By interchanging ql

and q2,,we*nclude q2 ql. Therefore, ql = q2. Subtracting

gib = q2b from (2) gives xi, = r2. Hejce,.q and r are unique4

Interest next centers bn the common divisors of two integers.,

Since ad is a divisOr whenever ,d is, and only then, we may as well

consider only positiVe divisors. For examplel8 and 12 haveNthe

common- divisors I, 2, 4; 4 and 9, however, hive.no common divisor

other than 1. We say that 4" and 9 are 'relatively prime or that

4 is prime to We call' 4 the greatest common divisor (gcd) of ,s8

and la (written ($,12) = 4) because es'Very common divisor of 8.and'

12 divides 4. Clearly, (4, 9)

DEFINITION. ;,et, a and b be integers not both O. By4he gcd of

a and 15 written (a.,b),.we mean the positive integer d having

the follOwing,properties:

, d

(2) if d11 b, then d1 1 d.

We can see without .much difficulty

than one gcd. (Hence,:the use of ."the"
4, e

in the above definition.) 4Suppose there were. twa*gOdts d1 and d2.

that there cannoV be more
4

"the-plftitive integer d"

Since d1 isa gcd, d21d1;since'd2 is a -god, dild2. both d1 and qo
,

are plitive3 therefore d1 = d2.

Exercise 3.- Why did we assume in the definition Of gad that a and

b. were not both 0?

FaCtorizing integers in.order to find.their gcd is troublesome*

when the numbers are large. And we can never be sure tbat,evOy

pair of integers has a gcd, no. matter hoW many-special cases me

work out. We shall now give h practical method of finding theed

2J" 4''
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which invoives 1ply the division algorithm.- This method, which, is

called the .g4clidean Algorithm, Also proves the existence of the cd..

Let a.

1

and b be the two integers whose gOd is desired."' 14:

- . .

shall assume a, b are both positive; t1T remaining cases are easily
.

handled once this: case Id settled. Before treating the general

case, let up consider the particular Integers72 and 33.

Writei, by the division algorithm,

(3.1) r 72

(3.2) , 33

6

2 3S + 6

5.6 :1-.®

= 2.3,k
I a

From this chain of equations we. deduce th4t (72, 33) =* 3. Ft>r

from (3.3), we .have that 316. Then froiii (3.2): 313,4nd 315,6 imply
o

3133 ,(see ExerCise 1). From (3.1): f 316 and 312.33 imply 3172., So

3 is a coMmqn divisor of ,72 and 33. .Suppose d is 'another common

Then from (3.1): ,d172 and d12.33; hendel d16, since
.

6 2-3A. From (3'.2).: 'd133 arid di6 imply 01/33 - 5.6), i.e.

d13. Thi's shows that any common divt.sord 'of 72 and 33 divides 3.

Therefore 3 is the gcd: (72, 33)'= 3.

We can obtain an additional result by writing the equations

0) in reverse order:

6 2'3 ' f'?

33 = 5.6 + 3-0.3.= 33,- - 5.6.

or

72 =- 2.33 + 72 - 2.33

3; 33 -5 .(72 -

3,= = 5.72.+ 11.33.

The god 8' IiS a linear' function of '72 and 3? with coeffibients
.;

wniCh 'are integers.

Sd
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In the general Case we would have the-eha-in of equations:

I) a = qb + .r,

(4'.2) b = + 0S rl <'r
0 b'

.01.10

r = q2r, + rZs 0 r2 <rl

r, = q3r2 + r3, r3-< r2.

-This process_ must come to an end. Fbr the sequence b, r,

is a decreasing sequence of non-negative intege'rs and so must even-

tually reach 0.

The last two steps

(11.:(n+-1)) rn-2..

.(4(n+2)) rn_1Anf1 rn`

are:

0 rn <

is the gcd of a and b., The proof is

exactly, the same as in the special case. Certainly rnir-n-1 by

(4.(n+2))4n so rn I rn_2 by (4 (n+1)) .

Working. ards we conclude thatr1 a, rnl b. If d ' is a common

Visor of' .a # and b,: then d r pi.t,1). Working downWards, e. 4

I

'-r:rive, at the fact that oil rn by' 14(/41)).
. i 9

-,*Moriebver, we can express rii/.:4n. te-rms 'of a and b. From.
- 7 f

.(-n+1) We have ,r_n = rn_2 - qnril_ii,,',-Eiotil rn_i and - rd,..2 :Ca.zi
. r-- . ,,,,expressed in terms of earlier . rts byr..bteans of equations in the

1-,7`.r.kii.:- ./4 , .

After a. finite munber.'of steps we have f. r expressed as
. -

n, .,

ear function of a and_ b with intet"rcoefficients.
.

ce that in the abov;ePrioo we used the properties proved
.

. . .....

4",4.

27 ., 6
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j in Exerre 1 in an essential way (if an integer divides two other

integirs, it dividestheirisum, difference, and any multiple of 1.

either integer).

Summarizing our results, we have: -o

THEOREM 1. Every pair of integers a, b other .than the pair-
..

0, possesses a unique gcclwAfilittd T;(a,b) is the gcd .ot a

'and b,t there exist'integers x and y such, that

L

ex+ by = d.
. . .

In particular, if -a and b .are relatiely prime, there exist

integers x and y such that 4,

ax :1- by = 1. :

Exercise 4, Prove the assertions of Theorem 1 in the rases, in

which a and b are not both positive. .

c

Consider the cases.! a > 0, b < 0; a < 0, b > 0; a < 0, b < O.

,Theorem 1 enables us to proVe the result which will lead.

,directly tolthe Fundamental Theorem of Arithmetic.

THEOREM 2.. If illbe and (a,b) = 1, then alc.-
,

This theorem does not seem so remarkable if we imagine a, b, c

factorized into primes, ,but remember that we have not yet discussed
.;

factorization into, primes.

The proof of the theorem is very simple. Since (a,b
43

have, by Theorem 1,

ax + by = 1

for certain integers x, y. Multiply by c:

acx + bcy = c

= 1, we

Yr

Now 'a Certainly divides acx, and afbcy since. albc by hypothesis;
.

.7Therefore/ by Exercise 1, alc
0 .

I

I

28
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As a corollary we get

THEOREM 3. If the prime plbc and p"rb, then-plc. (pfb-means.

p does not divide b".) For if pTb, p must be prime to b, since,.

. as a prime, p, has no divisors other =than 1 and itself. We can

1

then apply Theorem 2.

Exeraise.5. Let p ,he'a prime. Then a).-= 1 if and only if

r A slight extension of Thecirem 3 is ihe- following, which We

lealzeas an exercise.

Exercise 6. Let p and pi, p2, pn be If .

pl(plp2...pn), then p is equal -to one of the
la

primes pi.

We are now in a poSition to prove the
a

'FUNDAMENTAL THEOREM OF ARITHMETIC: Every integer > 1 can be

Written as a product of _primes. If the primes are written in the

order-of' increasing magnitude, the factorization is 'unicfue.
.

We regard a prime,as its own "procNct--.,of primes". Thus.2 =.2

is a factorization into primes.

The 'proof is -in- two paits; first, -we have to show that n > 1

is a product of prime factors. If n isa.,,,Ar.imel- we are thrOu
e79

,, .

If not, n = ala2, where 1.< al < s.2 < n. If al, ,s.2 .are

both primes, we have our factorization; otherwise, we repeat the

)_same process op, a and a2,obtaining n.= a3a4a0.6, with
.., 0

. ,

1 <a3 < al, 1 < alt,,,.< al, 1 < a5 < a2,' 1 < ag < a2. In the
..,-,,.......

,

successive steps off he process, the factors get smaller and'smaller,
.

.

'but .since they are positive infegeigtfiey. must eventually reach 2 : .

.
_

if they are not, primes at some intermediate stage._ Thus n has a



:factorization into primes.
..3

puppose_thsre.weie two factorizations of n:-

(
) P1P2''' Pr = (11526** qs

ilhere_the_ jp 2 s and' 's are primes and pi "p2

ql S qa ,qs: 'Since PI divides p1p2 ... pry. it clii.3 .d0

4
1
q
2- s

. By Exercise 6, p q for some By the

'reasoning, q1 p3 for some j. The fact that the la's' and -; -qis

c

i- ----- A"- r
are arpangediin increasing order 'means that i = j = 1, pi -Z 01,

qj = girt. (Fat' P1 3; pi = 41' gi =:-Pik since the first and last
. _

_ . .

members of this chain of inequalities are the' same; we have eiiiiality

thioughoiat
,

Now divide both'inembers of (5) by p1 = 41, getting.
.

P2P3''' Pr (103' qs 0

and prOceed-aS,befor
. p q2 p3 q 5

etc.

If s >. r, _we wou;d have

-r+1 qr.2 '" qa

which is limpossib. Hence s S r; by symmetry, r S s, and we

conclude, the end of the proof.

Here is an application of the Fundamental Thorem.

Exercise 7. if the .pitoduct of' ,two relatively prime integers is. a'

perfect square, each of the" integers, is 'a perfect

square.

YOu may reel that the Fundamental Theorem is. completely obvious,_,-

'and. need); no proof. However, there are many numbir systems besides

the,rationals. In. these systems we can detine_integers1 divisibili-
/

.

4:.3, and'ptimps: we :can do arithmetic. But in most of these number
.. ,

_,... .-

VateniS,, whge we ,can factor
11
an integer into primes, thefactoriza-.

§;°
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" -'. a. s ; 7"- N.- f'41;

4,.
'`,""""'"'"' gin, ...... ... '.. is

tion is not unique! Certain integers in these fields have two or

more,factorizations into'-entirely different
3

Supplement: A New Field.) This shOws that

uniqueness

primes. '(See the

we cannot, regard the

of factorization into primes in the ratiollgl field as

somethi4g.which is obvious. It needs` to be proyep..

a

A

k,3

4

ti

O

ti

0

e

,

:
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ANSWERS TO QUESTIONS

PRIME NUMBERS.

29

If n. has a proper divisor d (i.e., 1 < d < n), we can write

ddt = n. Now either d or dt is 5,cbecause if both

d,dt >fri, dd t > n.

A p
1

(i = 1, 2, n1 because the equa ion

H
A = plp2-1.. pn + 1 shows that A > pip2 > pi, since

,each prime > I.

3. Since an integer when!divided by 4 must have one Df the re-
,

; ,mainders 0, 1, '2, 3, we can write any integer in one of the

farms 4k, 4k +.1, 4k + 2, 4k + 3. Now 4),c = 2 ik and

f4k + 2 = 2(2k + 1), so these integers are even. ,On the other

hand, 4k + 1 and 4k + 3 have remainders of 1 when divided by

2; they are oddl, But 4k +3 = 4(k + 1) - I.

Let the two numbers be 4k, + 1 and. 11k2 -1; I.

(4ki + 1)(4k2 + 16 klk2 +.4k1 +.4k2 + 1

4(4k1k2 + kl 4: k2) 1- I.., ,

/ 4, 7
.)4. is tht.product of'its prime divisors. -(Some 'Iles may

i

''.v,,;

occur more than; once in the product, 5.)

32
,

I

a
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Since, A is odd, all prime divisors of A are odd. If all

prime divisors were of the form k + 1, the product would

also be of, this fqrm0'contradicting the fact that A is of the

form 4k - 1.

6. Suppose that there are only a finite number of primes of .the'

'form Gk - 1,; namely, pl, p2, . Consider

A = - , If A is prime, we have a conradic-
,

tion, fdr A is ,not p,
I

or p2 or ... .or pn4

Suppose A is compOite. A 16 of the form 6k - I.

Since A is odd, A has only odd divisors, and therefore

only odd prime divisors. Now, every odd prime is of the form

6k - 1, or else 6k + 1.' (Proof: 6k,46k + 2, and 6k1+ 4

are all even, and 6k + 3 is not prime.)

Since (6k1 + 1)(6k2 +'1) = 6(6k1k2 + kl + k2) + 1, the

product of integers of the form 6k+ 1 is again an integer

of this form. Therefore, 'it -has a"prima factor of the form ,

6k - 1. But thiS-cannot be pl, p9, pn;, 'again we have

a contradlt±on,

7.: Consider the sequence

(n + '2, (n + 1)! + 3, (n + 1)! + n 1

and folldw the reasoning in the text.

There is only one "prime triple". For suppose n .= 2; n, xi +.2

are all prime. n must be of: the form 3k 4 1, 3k - 1, or 3k.

In the first case, n + 2 is of the form 3k +'30 i.e., n + 2 is

divisible by,3. But then n 4: 2 = 3 since it is prime. Then

n = 1, which ie not prime. Next, suppose n is Of the form,

,

3.3,

of



'3k t4-4 then h 2-is of the gorm 3k - 3, i.e., n - 2 is divi-

sible by 3. Hence n - 2 = 3, so n = 5, n + 2 = 7: This gives

the priPe triple 3, 5, 7. Finally, if n = 3k, then n'= 3, and

n - 2 = 1, not a prime. Hence, the only prime, triple is'(3,5,7.

r-

/ter
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Exercise 1.

CONGRUENCES'

a = 0 and Oa, is divisible by m. If

a E.-- b (modm),- -e. b is divisible; hence, so, is

b a. Therefore b a (mod m) . If da E-_-- b,

b = c (mod- m),'. then a, b and b.. c are divisible
,

M. Therefore, so is their sum (a - b)' + (b c) = c.

33,

I

b

It follows that a s.--. c (mod m).

Exercise 2. Let the integer be N =.4o 10a1 +'... 10kak Since

10 a 1 (mod 3), 10k 1 (mod 3)°, 'and

N ao + al + + ak (mod 3). Hence, N

and only if a9 +.a1 + +--'afc- p

Exercise 3. Let the integer be N = ao + 10a1 +10242j this

Integer has an odd number of places). Since .

10. F.: 4 .(mod 11), 10k Es; .1 if k is even, 10k a -1

if k is odd. Hence, N r4" 0.0 + a2 r
.

.a3 +..,a+ At

and N 0 .if and only if

Lao + a2+ ai1. + al +a 3 a5 +...+ a2i.i

(mod 11) . The proof when 'N has an even number of

places is .practically the same.

N = a04: 10a1 + + k Since 10 s



,/, s z es. e

3k
1

a 1

.

104. 24' (mod 4). Thus. 10K Er-. 0- (-mod 'if--k

. . .

Hence, N a ao + 10a1 (mod 11.) and,11 a 0 (mqd5:11.) if ., ,.,
,

. and only if ao.+ 10a1 a., 0 (mod. 4).
a .' 4

6 .t''

u
,) . Ai Q. ^." .,

u4

. ExerciSe 5. Suppose xi-, x2 both satisfy axi 7 b, ax s--- b '.(mod th)

%
and 0 ..< x1 < m, o .K x2 < m. Subtracting:the7tvo*tbn- .,

. gruences, we get a.(xl 41 x2)^.-.s 0 (mod, m).-e, Silice- ;.- b' .4

r s

_
(a,m) =, 1 we can cancel the factor- a bid-then have

x1 - x2 = 0 (mod m). But 0S x1 - x2

xl - x2 = 0. The two xis are the Same.---

Exercise 6. flde have to solve the equation 2x + 3y = 25 in integers

y such that x 0 y 2 0. We have 2-x `25 (mod 3),

`x -1 (mod 3) (since 2x -x (mod -3)):- -Hence,;-

x = -.1 + 3t, t an integer. Then - T is

25 -

3

2x 25 .)23-3 1 + 307
9 2t.

Since x 2 0, 't Z 1. Sinbe y 2 0, t S 4. Hence

%,
there are for solutioris (2,7), (5,5), (80), ,,

, .

,
(11,1). , .... -

,

I

.

.

, a..
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THE FUNDAMENTAL THEOREM OF ARITHMETIC

EXercise SAnce alb, 'ale, we have b = ad'
1'

c = ad2, where
T ,

- d1, d2 are 'integers. Therefore

b + c = ad]. ad2 = a(d, + d2), so at(b + c).

Likewise, al (b - c). Also bf = adif = a(d1f);

hence albf.
-

Exercise '2. For a certain integer g, we have b = ag. Hence,

b = -ag = a(-)' and b = ag = ca)(=).., Thus

4(710) and (-a)110.

Exercise' . Every integer / 0 divides 0,%hence, all integers are

common divisors of the pair 0, O.' There'is no
4.

greatest common divisor of this-pair of integers.

Exeroise.4. Case I. a > 0, b < 0, Since b =1-bl, we have dib
---!--, --

if and only if (JI(I A). Hence if we(ap114) we

have- d = (a, b); Since there are integers x, y such ,: -,f

' that d =,ex + Ibry, we have d ax by = ax '+ b(..y).

;Case II. a,< 0, b > O. ThAs is the same as Case Ts , ,
.,

with a and b interchanged.

Case ''III. a < 'b We have

.(a, b) = Ibi) = Ibi). If d = Ialx =, bly,

t1 ens =-ax -by a(-x) 10(..-37).

I *4

t

O



ercise 5. If plat then/ p a
. ,

ha e the .common ;factor p.-
. ..

,....
Hence-', if (p- a) p, '-'SuPPOSe pt a., Then a. , .

does ncit_liave p-_ a a factor.., Since the only factors
..-

--f-t .

a)of -- p are 1 and -p, it folloWs "that (P, a) = 1.
,,,,,...,-. ; .

6. ':Write-pip2... pn piitp ...pn. Now applying ,:--
,---_-,-,,,

Theqdm-3 we get-- hat pi pi or pip2p3. 7,:ki. If

p1 Pp p .,Pi an the result` is proVed.' If ,not, write.
. , _:::

P2Pk Pn = P2P P4....pn and proceed in the same way. _'
. ,,

If ,-p does not divide any, of 'py, p2, ...0pn.o., then
; S

plprifipn ; the fore; PIP so that p. =.-4:11',.
n

,Note.: If the studerk is familiar with filathematical..Induction, he. .----- .

xerdise

.,can construct an elegant proof by assuming' the. result to be true

when the product has k factors.
--- 14,-
,Exerdise-7. We are given dh = c2- with (a, b) = .1. Write the- .

e2
factOrization of c, c = p, p2 pkek

e e

where ei, . . . ek are. positive integers ( ei is

simply the timber or times the prime pi occurs in- .

the factorization). Also, 'write down the faetoriza-

'of' a and be a . fl ...
$

b
1
gl

u
We ihem have

--

_ gt 2e, 2ek
. - =

Since the two members of this equations are/ both facto.?

'7' sake number the same
-

primes muat occur in -botkl Hen el ome q or
,

-2e1

ima4p thip.;,tor,9vOrY Prime we see that a is

/A
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