
ED 143 508

DOCUMENT iEtUME

/,
....-

. , ,

AUTHOR Charp, Sylvia ; And Cther's .

,'TITLE 'I . Algozit'hms, Computation and Mathematics (Algol
Suplement) . Student .Text. Revised Edition.

INSTITUTION Staaf6ed Univ., Calif. School Maptematics tudy
* . . Group. . k.,4; : ":"-' 4 Af..:*

` SPONS ApIllm National Science Foundation, Wasihingtoli:Ar: C..
PUB DATE
NOTE

0.1

SE 022 985,V..-

S

66
. -

138p.; For related nocumentsc_ see SE 022 983-988; Not.
available- in hardI -CEPy- due to marginal legibility
original document .

4 0

40, _

6 ,J
EDRS PRICE MF-$0.83 Plus Postage. HC Not Available from EDRS.
DESCRIPTORS. Algorithms; *Cpmputers; *Instructional 'Materials;

*Programing Languages; Secondary. Education;
*Secondary School Mathematics; *Textbook§

IDENTIFIERS , *PLGCL; *School Mathematics Study Group

ABSTRACT /104 .

-

This is the stuidtiatis textbook for Algorithms,
Computation, and Mathematics (Algol ,Supplemeilt.) . This computer
language Supplement is split off from the main! text to enable a '

school to' choose the computer language desired, and also to make it
easier to Ifidaify the' course' as languages-change. The, chapters in the
text are designed to add language capability. .Each -can be read in
conjunction with/the main text section by section. (RH)

tir

6 I

v I

I

e

9

h

* , TocuMents acquired by ERIC include. maneinfarmal unpublished *

* material* not available from other.sources. ERIC. makes _every effort *
* to .dbtai41 the best copy available.. Nevertheless, .items of marginal. *

"reproducibility are often encountered and this affects the quality '-
* of the eitrofiche and hardcopy reproductions ERIC makes availabld *

s* via the MC Document Reproduction Service (EDRS) . EDRS is not *

* rlipon ble for thd quality of the origin -document. ReprOduqtiolls *
* supplie by EDRS are the best that can b Aade, from theWriginal. *
*Ic*****# **************44************** ****************************

,I
N

.
.

s, .

,

. -

et...! 0 1.

J

itt

U S OEPARTMENTOF HEALTH;
EDUCATION& WELFARE,
NATIONAL INSTITUTE OF

EDUCATION

THIS DOCUMENT HAS BEEN REPRO.
OLICED EXACTLY AS RECEIVED- FROM
THE PERSON OR ORGANIZATION DRIGih
ATING IT POINTS OF,VIEW OR OPINIONS.
STATED DO NOT NECESSARILY REPRE-
SENT OFFCIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY,.

ALOORITHMS,
C 0 ISVUTATIO N

ND
NIATI+EMATICS
(Algol Supplement)

. (-
Stitgent Text -

Aiv;seVidition
47,

4

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

. SMSG

TO' THE EDUCATIONAL. RESOURCES
INFORMATION CENTER 4ERICI AND
THE ERIC SYSTEM COVIT,4ACTIQRS "

'o

10.k

.Jr

The following is a list. of all those who participated in the preparation of this 9
volume:

Sylvia Ohhrp, Dobbins Technical High School, Philadelphia, Pennsylvania
Akexandra Forsythe, Gunn High School, Palo Alto, California
Bernard A, Galler, University of Michigan, Ann Arbor, Michigan
John G. Herriot, Stanford University, California
Walter Hoffmann, Wayne State University, Detroit, Michigan
Thomas E. Hull, University of ionto,,Toronto, Ontario, Canada
Thomas A7 Keenan, University of Rochester, Rochester, New York
Robert E. Monroe, Wayne State University, Detroit, Michigan
Silvio 0. Navarro, University of Kentucky, Lexinton, Kentucky ,
Elliott I. Organick, University of Houston, Houston, Texas
Jesse'Peckenham, Oakland UnifiedoSchool District,Oakland, California
George A. Robinson, Argonne National Laboratory, Argonne, Illinois .
Philip M. Sherman, Bell Telephone Laboratories, Mu 'ray Hill, New Jersey
Robert E. Smith, Control liata Corporation, St. Paul, Minnesota
Warren Stenberg,{Jniversity of Minnesota, Minneapolis, Minnesota
Harley Tillitt, U. S. NavaOrdnance Test Station, Chinakake, California
Lyneve Waldrop, Newton South High School, NewtonNassachusetts,

Tlte-follo*ing were the principal consultants:
George E_Forsythe, Stanford University, Califbrtlia
Bernard A. Galler, University of Michigitl, Ann Arbor, Michigan

alace Givens, ArgortnG National Laboratory, Argonne, Illinois

tk

di

A

9

_j

01965 and 1966 by The Board of Trustees of the Leland Stanford JUnior University
\A11 rights reserved

. Printed in the United States of America

/
".
t

r4

V

0

a.

t . .

Permission-Co make verbriiim us'e-of material in this book nritsrb.e secured

frdm the Direc'tor of SMSG.'Sych permission will be,* granted. except in
unusual circumstances. Publications incorporatinSMSG materials must
include both an ackwgiledgment of .the SMSG copyright (Yale Univer-.
siy o'r Stanford University, as the case may be) and a disclaimer of SMSG

endorsement. Exclusive license -will not b& granted ,save in exceptional

- circumstances, and then-only IQ/ specific act,ion of the Advisory Board of
.

.

4'

\ r

c

-"

\ .-) . ..

_Financial sqpport lor the Schook Mathematicl Study' .Group has:been
provided by the National Sciehce Foundation. '

.

3.

I.

I

0

a

qt.

"N.

1

TABLE OF CONTENTS

. '.. /.

ChapteT i .

.

1A2 , ;ALGOL LANGUAGE MANUAL TO ACCOMPANY CHAPTER 2

/
4-

, \

. A2-1.I Introduction .
; 1

v .; A2-2. ALGOL . . . ,language elements. . % .. ,. : . 7
42-3. Input-output statements . 15 ,

.

12-4. Assignment statements . 22
A2-A. The order pf computation'in an ALGOL expression. . % . 31
A2-'6: Meaning of assignment wheh,the variable on the left

is, of different type i±'rom the expression on the right. i2
A2-I Writing complete ALGOL programs 35 ,

.
A2-8: Alphanumeric data. ' '., 39.,

,

"
A3 BRANCHING AND SUBSCRIPTED VARIABLES

r,

A3 -l. Conditional staNments ..
45

.
'

A3-2. Auxiliary variables 60
A3-3. Compound'condltiqp boxes and multiple branching. 62

. A3-4. Precedence levelg for-relations . 72
.

,A3-!5. Subcrip;ted variables , , 73
A3-6. Double tlabstripts. . A . : 78

A4 LOOPING ..0
'1

A4-1. The for clause" and the "for statement" - 81. I .
A4-2, Illustrative examples: 87
A4-3. - Table- look -ups ,p 91 ,

A4-4% Nested loops 93

PROCEDURES ;
.

.

A5.-1 Procdures , 97
A5-2. Functions and ALGOL ' 102
A5-3 ALGOL function nroceddres 103
A5-4. ALGOL "proper" procedures. 106
A5-5. Alternate exits and techniques.for bradching 109

-A5-6. Symbol manipulation ire ALGOL 111'

.

A7 SOME MATHEMATICAL APPLICATIONS
A7-1. Root, of an equation by bisectign .119
A7-2. The area under ,a curve: in exaMplej y = l/x,

bet%ge.en x = 1 and x = 2. . 126
A7-3. Area under.curve: the general' case ;28
A7-4. imultaneous'linear equations: Developing a systematic -

me hod ;A' 4lution 130
-5. 'Simultaneous linear equations: Gauss algdrithm. . . 131

os

0
ti

o

C

Chapter A2

ALGOL LANGUAGE MANUAL TO. ACCOMPANY CHAPTER 2,

. .
A2-1 Introduction- ' .

In.Chapgr 2 we developed an apprekation of input, output and assignment

/ steps as compon'4ntsof algorithmstexpressed in the form af flow charts. So -

e ,

'far, weilave viewed flow chgrts as a means for conveying a,sequence of compu-
. 1.

r't

\-?

r. A2;1'

4.

tation rules primarily from-one person to another. We have tacitly assumed

that only than can read, understand and carry out the intent of such flow charts.

Naturally we wantlto include computers" in the set of all things which cart read,

understand d carry out procedures. Allp
.

,

?

.0 .

ALGOL-'-language and processor, 11'
N....

.

. .

Prdgramming languages like ALGOL and FORTRAN accomplish this objective.

t., The steps of a progrEuihing language are.called statements. They correspond

roughly to the boxes of a 'flow thart.

ALGOL 6e

...

-Several years ago a'group of combuter specialists and mathematicians from
4.

many covntries,jointlyAeveloped an English-like programming language which
$

.

they called ALGOL 60. The language' was designed with these objectives.

. '.. ,

1: A wide val'iety'of algotithls-garvbe described with this language.
AO. ./
Its chief area, of application is fox' expressing algorithms which

deal with scientific and engineering computation. Algorithms

panyother typWof problems cantalso be expressed satisfactorily

inn ALGOL60.

:

2. The rules or. grammar" of the kanguage are defined precisefY-'..i.e.,
.

.r
with mathematical. rigor (Unlike English). The net result is that an

.

Iklgori-thm'yritten in ALGOL 60means precisely the same thing to each
...' ,.

person who reads its i.e., tt means'the same thing'all over the world ' i

'to people w have learned'thiS language. Hence, ALGOL 60 provides ,,

t ..

, '

'

..

O

t.

1 -

a means for.communicating algorithms via correspondence and publica-

tions, from one person to another, It is indeed an international.
. ,.

.
: .language.

3. With minoradditions. or modifications, 'ALGOL 66,1balk-be "implemented"

on many types of digital computers. By, implementation we mean,that.

a compute can be programmed to accept as "sourc4 programs algo-
°

rithms written ina Version of ALGOL 60 and automs:tlically convert

%them to sequences of computer instructions often called !'target"
.

programswhiCh can)ihen be executed by the:computer.

t

' These features of ALGOL 60 have led 'toits wide, international acceptance

'among mathematicians and scientists. In this chapter, we shall begin to de-
r

scribe ALGOL 60 as it is typically implemented for use on a computer,"califng

it simply ALGOL.

Each statement, in ALGOL is,written so that whenstyped off' puaohedon a

card it can be tranpferred to the compute1.4s memory. Here it can be scanned

character by character.' and analyzed fel- its full intent.

Z. --
Programs which-analyze these statements are called-compiler or processor

programs. A typical ALGOL pr ssor reeds statements originatink on punch

cards and spalytes,the :converting each'Statement intoran,equivalent sequence

of computer inst ions! Were thede instructions to be executed, it would
Ai

amoung to hav

(

the computeicarry Out the intent of the ALGOL statement.

- ,

Target programs and, source programs

i

' ,1e processor program wi'11 read apd analyAS all the statements-of an ALGOL.
-IC

prOgiA to generate a complete set Of. instructions or "target" progranlfi'suffi-
,

Cient, if executed, to carry out ;he intent of the entire process. The "target"

prdgrqm gets its'nsme,because it istne target or obje'ctive.of the processor .

:.
progrim. Similarly, the procesbor.has received as input a "source" prozrala

written in the'ALGOL languag&. When the processor program finiH shes generating
. .21 ,

'
.

the target program, the computer.may executethese*Instructions right away.
.

i

'his is becaise the target program is developedffidkept in the coma
A

puterig14Mori: If the target program is too big to fit in high
e
speed,Memory.

ti N N.

alOni with the, large processor program, the geperatedtargdt 11,11stored tempo:-
.

rarily in some form of auxiliary. memory medts, such ,as on magnet c drums, disks,
.,,

or tapes, .or in the form of depks of punched cards, .When;stor in auxiliary'.
.... 0

-, . , - 6 e
, I

This process is fgrther described in Sect lion 24. of the main.teXt." ,r

' 1 100 I.
. , 2- ,..,:

'6 -!'...'

, .,!
.

14
!,..y

1

0

iS

v

A2-1
,

'

. -
/.

. ,

memory media, especially puhched cards, target programs Ciin be rpcalled for
. .

execution at auy subsequent time, as suggested in Figure A2-1. We would rarely

-dish to read or study the targetpro/gram ourseles, but i n'principle this can

alwaybe'done.by causing the pwessor to print the target program:

I

Figure A2-1. The "compiling" process

It may be intriguing to you-to learn Clow the prockssor.prOgram does its

job.. After all, it is also a f/oW-chartable process and henCe Could easily be

Within bur abilities to understand it.% Chapter 8. will shed some -light on this
1

interesting process. For the present, however, we will avoid any head,on.

discussion of tiais topi@ becaUse our first interest must bq to learn to write

simple algorithms for solvfnglathematital problems in ALGOL: We will, however,

be making occa4.onai comments that bear indirectly on the nature and. structure

'of the processor.'

'General appearance of an ALGOL'program

- Recall the process for computing

42,4. w c2

whppe flow chart we displayed in Figure 2-4,_ Each box can be written as an

4GOli statementeas shown-in Figure A2-2.

. .

0

r

I

3

A2.-1

-input

assignment.

Output

Flow chart form .ALGOL statement

read(A,B,C);

D := sgrt(Al2 + BI2 + Ct2);

write(A,B,C,D);

Figure A2-2. ALGOL statements compered with flow chart boxes

Notice the sinalarity betweentlithe boxes andtheALGOL statements. The

differences are largely superficial;-that'is, the symbosNused in .eh case

may, be different, but the ideas appear to be the same.

We don't-haVe to connect the statements with arrows, because, when we

writo.ALGOL statements,one below the other, we imply that theyare to be carried

out one after the other from top to bottom. In'order to suggest

process for many sets ofdata, we drew a line from box 3 back to
a .A /'

flow chart. There is an analo
/

gy in ALGOL to accompfish4the same

repeating, the

box 1 in the

objective.
44

We simply"giVe the "read" statement a name or label, say STAfri--Then we add

after the "write" a statement which :'sends control" to the des l nated statement:,

4 "di

This ishown i igure A2-3.

tr.ART: i,ead(A,B,C);

D :=.sqrt(A.12 B12 + Ct2);

write(B,C,D);,

\ go t6 START;

FiguOf A2-3t The go.to statement, directs controlltoany desired stat'pment

In other words,. we give the "read" statement the label START and then

°introdute an ALGOL statement,

t
go. to START;

4.

4 Q.

a

A2-1.

for the purpose of indicating a jump or transfer to that statement. The jump

statement consists of the special symbol "go to" followed by a label. Because

it reads like English, the jump statement is easy to tinderstand and we shall

say 'no more about it at this time.

As we focus on a new language, it always takes a while for its features,

its special symbols and punctuation patterns to stand out clArly. If you are

observant, however, you have probably concluded, and correctly, that in ALGOL:

(1) statements are separated by the semicolon' (;).

Asa reminder that the semicolon is needed for this purpose, we will

usually show the semicolon at the end of the statementtevenwhen the

statement stands alone. -

(2)" a statement may have a label. If so, the label'precedes -the_state-

went and'is separated from it by a colon (:).,

(3) the assignment symbol is a colon followed by an equal sign (:=)..,

Alas;a left-pointing arrow would have been our choice!

(4) the symbol for exponentiation is the upwai-dipqinting arrow (t)

and we appear to have lost the ability to use a symbol like V ,

having now to use sqrt with the argument followingit enclosed in

paienthees; .

(.5)'for some curio s reason certain words are underlined. We cannot yet .

guess whet, if ny, significance to attach to this.

Now, before takin'd-a more methodical look at input, output and assignment '

statements ,and rules for forming these correctly, we show in Figure
1
A2-4 a

complete ALGOL prpgram and, discuss kt briefly.

Ilegin comment Evaluation of D;

end,

real br B, C, D;
.

START: read(A,B,C);

sqrt(At2 + B1261 Ct2W

write (A, B, C, D);

go to°START;

Figure ,k2-4. Complete ALGOL program ,

.

9

,

A223.

Card layout

Under 'control of an ALGOL processor, the computer will read statement by.
. _

statement this program which is punched on. cards. It is a good idea to place

each statement, on a separate card or at.least to begin each statement on a new

card. Id this way the program becomes easier to read and proofread. StriCtly

speaking, however, singe the semidolon at as a separaling Mark betweqn state-
.

....ment , it is possible to pack more than one statement Zn a
r

card. If a state-
e

merit is too,. long to fit on one card, it may be continued on succeeding cards.
...

. . .
.

Figure A2-5 shows how our program may bd punched on cards to form a
.

.

"prr gram deck".

I

You recall that today's key punches 'do it punch special cod s for
;It

io er case letters. Computer implementaqbns of ALGOL which accept]srograms

' in ut on puKied cards are designed to expect only
.

capi'tal letters. This ex-

ins part of the difference you, see between Figures A2-4 and A2-7:

i

END

GO TO START;
WRITE- B, C, D).;

D SQRT(A T2+B T 2+C 2);

START:. READ(A,B, C);7--

REAL A, A, Cs D;

/ BEGIN COMMENT EVALUATION OF D;
..

°

Figure A2-5. The program as a "deck" of

The' keyspunch used to prepare these cards is not typical. It has special

punchet for characters like the : ; --o. which are useful for preparing ALGOL

programs. 'In this case the character. (is recognized to mean' := .

If you prepare ALGOL pfograms on standard key ,puncheb. which have character

sets such as that.Shown in Figure l-l8, other compromises Will have to be made.

,our instructor will explain these details.

if6 1

I MO
ti

t

A272

A2 -2 ALGOL language elements 4

We are now ready to begin p detailed look at ALGOL, starting with ALGOLts
'

" 'icial" alphabet,or character bet, and the,va rious types of symbols which

may b- formed from these ciaracters. Among these are the numerals (constants),

' variable , labels, names of functions, operators,.and special symbols.

Language,

.0
The program of Figure A2-4

A
betins and ends witt'the special (Jun4erlined)

symbols begin and end. We'Llan almost gdess the intent of.the first two lines.

-The special symbol comment is plated there to identify, in ajureiy degcriptive

way, the title of the program. Comments help, 'tcrtake the ALGOL self-explanatory.

The spe6ial symbol real identifies the type of numerical values assigned to the

variables listed after real' In this ca fie each of the variables A, B, C, D

has a value wrresponding to.a real number.i We shall refer to a line liker
real A, B, C, D;

, . ,-, r;7

as a "declaration" to distinguish, it from a statemft Okt.Deration's describe
. . ..

the variables and other components Of the algorithm to the compiler program.

They are, in a sense, Plkssive. Statemelits, on the other hand, are imperatives' '

* .
expressing action. Only statements can correspond to the boxes of a flow ' '

- q
chart.. _ ,

. ...,
.

, 117.
. . . -v .

In summary we see,that an ALGOL program appears to,consist of, a group of

statements preceded by a group of one or more.deblaratiens. The symbols

begin and end sandwich the two groups, i.e., they-perform the,same.functiore

74 as parentheses. An ALGOL program can be punchad as a deck of cards, thereby
- . 1 elx

"becoming machine readable. To do thip reqUires transliteratioa intri -the-Htre
4

restrictea character set of the key punch.

.

t

INaturally, not all real numbers can be represented accurately inside a com-
puter as there is only a fixed (finite) predision for,each.nuMber stored in a
word of the coQmputerts memory. This precision, in turn, may depend on the
.computer forifttal ALGOL 60 has been implemented.

sa. II
4,

!'

7. ,--
O

4**
.

. .

A22"

The ALGOL character set

p

t

,j

The characters which are used in ALGOL are shown in Table A2 -1.

Tab1e,A2-1

The ALGOL Chatacter Set

(a) 1.,etttys'

4 r
'It

A ' 4

4.

). S

4b) Digits

I r
D E s'!, F G. f H I

J L 'M % N 0 .P Q R
4

T - U V W X Y

c .

1 n o p. q

v w x y 'z

.

4 0 1 3 4 11(45 6 7 8)

(c) Special Characters
4

+ I

to
) .;

) J

« > >

Ccnstructingnumerals (numerical constants)

A numeral may have

essential. These are:,

1. Stn

2. The numeral itself which may be written with

a) a fractional 'part only .A

b) an integral part .only

** c)
-

.

a fractional and an integral part

4.111Z4

.

W.reral parts, home of whi.ch'may be omitted when not 4

0
8

aaf

e

-k

_.

t"

5,

, .

A2-t -
3. Scale factor to the base 10 (written as an integer with or Without

,/ a`sign

Listed below.are soon example numerals.) To the right of each numeral 'are the

tarts', as defined,abave, out o?.which the numeral issNcons-eructed. Study these

-

ekamples carefully.

Examples

.0059

Constructed fr.cm'varts

1, 2a

1, 2a

2a

0

155

I.

2b

.21)

1, 2b

4.0 Ec

- 154.04 1, 2c

410 _ 7

e -1- 310

1016

3

O

means

\

4 x
KJ-

1 2a 3 means

mean's 0."

.596 x 103

-10 16

15.246
0

- 4
10

2c, 3 meant

1; 3 means

15.246fr

-ezikY
rszcl;

.40

:Exercise A2-2 Set A ",

.

Identify the.components which gq into ;'qrmi.ag th e'seirilinberp,

*-14
10

+ 04

52.0

-017.14.

'10

+10
10

10

e

\

. 4.

Pr I OL
One type, of numeral whiclitieare used to, writing is 6utlawed in ALGOL. This is

an integer with a decimal point to its }sight. Thus

(
e

4. .is invalid ' t 4 or 4.0 is valid

17 or .11/.0 ',is valid"

F

A2-2

),

A way to remember that a numeral like 4. is invalid is to imagine that the

fractional part of the number, suggested by the presence of the decimal point,
A ,

is missing.

Constructing variables, labels andszmes for functions

Variables

ence literature

rule: A letter

identifier.

labels, and fun ttiou names are called identifiers in tie referr

of ALGOL. Ally of these may be formed,,,lr; according to the same
! t

folloiged by a,sequence"of letters or digits constitutes an

Examples :

Harry Temp .1('T461

IKE COLUMN A15AA

In principle -there is o restriction to the lengthof -an Identifier but
!..z

from a practiCal considera# ,we will restrict them tO'six or fewer letters

and/or'Aigits.1

*4 ,

Exercise A2-218et B

Each of the fo

individual identifier:

EXplain why
,

ps of

4

aWJOHN
11/

characters would be invalid as an

T.6 F-6

.

Variables--integer versus real
F===

We must agree to think` Of every atithmetic variable of our program as

either type real orq'type integer.

At the to or "head" of every ALGOL program we will state or "declaS"

typ4"Of each variable used in the prograM'and, in This way, will help4he

prop 60Z0li4020rogrmn,to properly analyze the statement's which-follow.

___To. declare -the types of our variables, we simply group all thoSe.of

ger type in one ,list and all those of real type in another list:

o

inte-

t

Some ALGOL implementations restrict identifiers to six characters. ethers

accept mdre than six characters but keep'tracit of only the leading six
characters.'

t 4

4°

p

Examples

4 4
integer I, P, q, priltS; COUNT ;

real height, X, ORD, y3

A2-2 ,

The underlining of intbger and real will <be explained at the end of the

section under theheading Special Symbols:

As you know, the set of.all real numbers includet thejntegers, so a

Variable of type real may have a 'value which is integral; i.e., one which hai

no fractional part. Thus, legittmate values for real variables eve

-4, 2.1, 16, -0.149, 174.0

On the other hand, a variable of type integer cannot have a value with a
. -

fractional part. Thus, the values,--`

1
.4, esl,° 17

obviously cannot'be assigned.to variables declared to be of type integer.

-
I

Names of standard mathematical functions

A,
Gertain identifiers are reserved to refer to names of standard Mathe-

..

matical functions as shown in Table A2-2. Notice the special way we spell

these functions.

Table A2-2

standard Mathematical Functions

" r`ALGOD---;'-'? 0
. identifier

(name) meaning,.

1. aba

2. sqrt

3, In t'A

4. exp

5. sin

6. cos

AO

I

4,bqolute value

square root

logarithm to the base e

powers of e, or exponential

sine of an'angle whose measure' is

given in radians

cosine.of an angle whose Measure

is giVen in radians-

.

v-

14 I

A2-2

Table A2-2 Standard Mathematical Functions,.continued

7. arctan

8. enti:evl

. sign

arctangent, o principal angle in

radians of a given tangent

value. (That IS, arctan(x);

gives a value in radians-cor-

responding to the principal

anglewho&etangent is x).

greatest integer function. (That

entier(x) means [x].)

sign of a number. '.(That iS, sign(x)

means xilx1 , unless x = 0

in which case sign(x) means

O.)

3 1 , .* .1

By now you. are probably familiar with all of these mathematical functions.,
IA'

"entier" is the name chosen iri ALGOL for the greatest integer function which

has been discussed thoroughly in chaptet 2. The functions "sin", '"cos" and

"arctan" will of course be familiar to.you if you hOe .- studied- trigonometry.

A use for the "sign" function, perhapsthe least Utmiliar of these, was sug-
,

gested in Anti :on 2,5.

When we use any one of thesestandarditunctions in an ALGOL statement,

the resulting'ilachine code (target program) automatically car?kes out the

°
.evaluation of the specified function.

\

Operators
. r

0 .

To wri-V arithmetic exprte-ssions and assignment statements we need symbols.

fo? arithmetic operations. The characters chosen for these operator symbols
. -

are: , '.."
,,,.- .,1,-'1

4

x /
In Trble A2-3 we show a list of the symbols we shall be using for the various

' arithmetic operators. F,,r convenience later discussion they eve given,in

hierarchical order, that is, in 4scending order of precedence which is the

same in ALGOL as it is in our flow.chart language. We have also included the

assignment symbol := ,in this group., It is a binary operator, but, of cotirse,

not really arithmetic in nature],

'pronounced on-t-aye

316

04,

I

same level
of precedence

'same level
of precedence

Symbol

ALGOL Operator SyMbols

Meaning

RJcponentidton

MUltiplieation /

Division (real)

Division (integer).
I

Addition A + B

Subtraction A -I, B,

.: A2-2

AtB means AB.

AXE.'

A/B .
%

:6-

AlB, means sith()X(1.1iilr -,. .

, .

Special symbols,

Assignment

,1 ,

4 ,

4
Certain symbols which at'first glance,rebemble Rnglish wolcds appear under-

..

lined in ALGOL programs. r, have already/Seen a few OXS.1414S: %.

. ,,

begin end comment real integer go to:--4 l,-
.

'
..

.

4,

ly = B means A B

7 7

These symbols play a special role A L programs and are not to be confused

?Iir

(I

with identifiers. They will not e cohfused with identifiers if they are .

marked or printed ih a distinctive fa Ilion. Texts printed commercially usually
..) & .

use boldface letters or place such sy ibols in quotes. In_this book we underline

such symbols.
I

il`
.. /

The following ALGOL statements,

rl

1real T;

-

J

re 1: . T T + 1;

go to real;

whilesomewhat confusing at firs

word real is used as a statemen

elan

la

iF

-

, are perfectly correct here. The

and is not at all the same as the

special symbol real.

The ALGOL special svtbols ich were described above as underlined in this

book present a problelfor'pun h card, input. There is no way to underline on a

keypunch. Burroughs ALGOLso1 es this dilemma by decreeing that special

symbols may not be iisedlis ide tifiers. In other VOrds, special symbols are

reserved words.. "Real" canrio 'be a label in Burroughs ALGOL.

7
-

f. 0

Spaces bgtween cpsEracters?lay no part in ALGOL 60. The identifier, go to,

is the same as goto and the special symbol go to is the same as auto. However,

in some implementations of tsuch as Burroughs ALGOL fpr the B5500, spaces,

act as -separators. In r ughs ALGOL some is a single i entifier while so me

.67)is a sequence of two 1 n ifiersi the first is "so" and tht\ second is "me".

It i bably a good idea to avoid using spaces insid variables'or con-

stants. i In this y' our rules for con4tlucting these compo ents are in harmony

with the other anguages.

(

Q.

C

0

A2-3

A2-3 .Input-output statements

Now that you have become somewhat accustomed to the appearance of ALGOL
.

.

characters and to their use in --Fe elementary components of thp language, like

numerals, identifiers, and operators, yoll are readyto studY,thesplree impor-

. tent statement types, input, output and assignEent.

You half already seen examples of ipput and output statements, namely:

read(A, B, C);

and

write(A, B, C, D);

The statements are simple in form. They always begin with the word

read

or

write
.

/

Foil wing this we write, enclosed le parentheses, the list of variables

whose valeses are either to be read or printe d. If there 4 more than one,:

this list is separated by commas. We will, not limit the number ;Ptist

ments;of

In t is y we arrive at-the general for of an input or output statement,

i.e.,
,

read(input list);

n input or output list

or

write(output list;

For,a read statement, the list elements are the variables whose values,

are to be assigned from the input data, while for a write statemet'he,lisi

elements are the variables whose currently assigned values aretp:,be printed.

Strictly speaking, ALGOL 60 does not specify any particular form for the

input or output statements or any particular standard name to suggest input

or output. The forms we are describing here merely' represent a typical ALGOL.

computer implementation. In some implementations, for instance,'"print" is

used in place of "write". While, the names for-the standard mathematical func-

tions (Table A2-) were ch9sen by those individuals who specified ALGOL 60,

the identifiers like "read" and "write" are names of procedures chosen and

defined by the persons who developed the particular Oplementation. 'These

procedures are special programs which are made available automatically whenever

o

fi

L5

19

11,

A2-3
1

c.

they are mentioned by name in an ALGOL prcgram. Obviously, you should-learn tcAt.

use the procedure names Id statement fAmls which are correct for the implemen-
t

...

tation you are usine: - e

1

Executing a read statement

In this discussolon we. shall assume, ag in the flow cliarttext, that input

data originate on punched cards. The effect ,cf executing a read statement is

as follows:
t

1. :First we assume a card is in pbsition tb be read by. the computertg

input device.
.
-If not, the execution of the program:ceases immedi-

lately. some,but not all, systems the Compdter might then print

some,message-l-ike

"YOU,HWE'RUN OUT OF DATA"

or

"ALL INPUT DATA HAVE'HEEN PROCESSED" .
,

..<

i

2, The conitrOs of the'card ready to be read is thAttra ported

1

ea% 4 -numeral
ato the' computer memory, where it is examined tele at tiMe

-,

from left to might. A 0,4-4it -one match iq then made between the

numerals on:r the,caid and the variables oi' the input list with the

result that each variable is assigned tipe matching value. What

happens if thecard,fails to contain eaough.numetals to match all

the variables of the input list or vice versa? This will depend on

the nature of, the read procedure, which is likely to vary 'with each

ALcipi, implementation. However, in most cases, anotlidr card will be

read and numerals from this card matched with the as-yet-unmatched

list elements. The process continups with as many cards being read

as necessary until all the list elements. have been assigned valueg.

When tliis has occurred, we say that the list is exhausted.... Execution

of the read statement then terminates even if some n merals remain

list data card that was being read.,,

At this point, some examp)es can help us see ht this matching process is

carried :out.

Example 1

Study Figure A2-6 whgre you ,see a read statement and a picture Of a card

that might- possibly be read as a result of ex4uting the given statement.

0

-V

41,

ti

0

read (NUMBER, PAID, AMOUNT);

1502, 145.72 -169.14

Figure A2 -6. Picture of a data card and a read statement
.

.

, 1)

)

The effect ofrexecuting this read statement is-the sam as if the follow-.e\

4

A2-3

ing assignments had occurred successively.

J

NUMBER 1502

I

s

PAID +- 145.721

OUNT F -169.14

/

Different read procedures may scan the contents of data cards in different

ways. In the scheme suggested in Figure A2-6 the computer is expected to recog-

nide'the end of one numeral when it "sees" a sane. Since there are many other
4 , , ,
schemes in use, you should learn the rules for punching data, often called

formatting, which are used with your system. In our text we shall presume the

system we are using is the very simple one we have bust described.

Example 2

Study Figure A2-t where-yOu 'see a read statement alprig with three data
)

'Cards which might possibly be rd as a result o executing the given statement-.

read (A, -13; c, D, E, A, G, H, s);

A2-7:' 'Picture.of three data cards and a read_statement
a_

17

-21
.044a0.1,4

,

'

ow,

The effect "executing this read statement is the same as if, the follOw-

inenine'assignmants had been accomplished in order:
.

t.

? 1

first card is read.
_

1

- .

1 411, 4--.--nextcard'fs read

1 14.73

15.D

Ofi

41--..... card is readnext

14.4

A
15.64

17.74

18.914

Notice that two assignments are made for A because it happens to appear

twice, perhaps as,a resultsof a key punch error. Followiffg the principle of

destructive read-in the current value for. A at the end of the input step

would be 14.4 and not 9.1 as perhaps desired.

Notice also that,i4a list is,- exhausted when 18.94 has been assigned

to S. The last value on the last card, 20.96, is then ignored. .

%./

Exercises A2-3 Set A

We ima§ie a class of very simple problems to be solved on the computer.

Let the flow chart for each of these have a structure identical with the one

In Figure A2-3. In the following exercises you are given box 2 in detail.

Your job in each case is to decide what should be in box 1. Then

(a) wriie an appropriate read statement.

1.8
4.

I

tk-

. .

(b)

: A2-3

Draw a picture of 'a typical card which could b;res.8 (in the system

you will be using) as a'Asuit of executing the read statement which

you have'just written.

S

2

ExeCuting a write statement

Writing is. analagous to'reading, but-in a reversed sense. 'The.value%
,

that is currently aPsignei,to each element of the output list will appear typed

Or printed.across the page by output device. When each number is copied
.,.

from its plade in memory it converted 137or printing from its internal repre-

sentatio toy the desAed external form.
'

%

lr2 - s2 + r2 x

cf

- 2

ante statement merely itemizes the varia-

It gives no Clue as tolow the numbers

Write procedures in common use merely

page, one.for each item in the list--

ou may have_ noticed that thelyr

bles whose-values are to be written:,

are to be d,tsplayed on printed paper.,

print t numerical valuet across the

say up to m items per line. If there are more than m items in the list,

additiOhal lines will be printed, with up to m items on each succeeding

line. We .H normally assume m = ! in our illustratibns. The magic number
.

m may vary depending on the width of the printer carriage that is used.,)You

should consult your instructor for more details because"sonle computer imple-

mentations hite more elaborate write procedures than others, which would make.
4

it possible to obtain more elegant and more readable printed output. .If this

is the cage with your computer, no doubt your instructor can. furnish you with

a booklet which adequately' details the use of such fancy write procedures.

19,
23

A2-3

Example 1 ti

Examine Figure A2-8 where you will see an example of a write statement

and what it might accomplish when executed, Notice 'the uniform spacing of

the numbers across thepage, each number allotted the same width with'the
It

fracti+1 part always given to four decimal places. How, does the computer

know to do this? The answer is simple. The write procedure arranges for this

"formatted" appearance fdr us automaticlily. Write procedures vary from one

implementation to another. Some,, for instance, will print more decimal places,

others fewer. Thes'eare details which are left for you to determine because

they are related to the p6rticular computer system you will Ise using.

1

/5

write (NUMBER, AMOUNT, PAID);

30 T7 . so

'502.0000 1 -169.1400' 145.7400 :

O q I . -.

O
1

I
.

. p I

Assumes current value
-of NUMBER is 11502
of AMOUNT is -169.14,

of PAID is. 145.72

/10

Figure A2-8. Example of a write statement and a possible line'

of printed results caused by execution ofthe

/5

write statement

write (A, BC,.D, E, A, G, H, S.)1,

so 45 60

O. 1 1

0 114.4000 t -15.4000 1 . 14.7306:
0 ' 15.9006 ; 15.6400

1

I 17.7400!
0 18.2400 1 I

1

0 1 I

I

1 ,
I

0 I
I
I I

i
4 II ' (

Shows printed valUes 'for B and A.

/20

Figure A2 -9. When executed, the write statement shown here

causes three lines to-be printed. Since A

appears ttice in tl output list, the first and.

sixth printed values are identical.

21) 2 4

A2-3

Example 2 -5

.

Now suppose we wish to print, say nine values, asa result of executing a

single write statement. With a write proceduie contf011ing.the printing of

up to fOur items per line; we may expect output like that illustrated in

. Figure A2-91

When the write statement is executed, values are copied out of memory onse

at a time from positions associated with A,'B, C, etc. Each copied value isP

then converted for printing in the desired external form, as illustrated.

If a line printer device is used then, when four such numbers have been
*"..

converted, a complete line is printed at once. However, if a typewriter device
\-

is used, each number is typed as soon as it'has been converted to output folk'

This difference in behavior has no vital4eonsequence as the net effect is the

same. In any case, when fOur items have been ;sIfensed wi:th, the line is
...

printed. Values are then copied from memory locations associated with four

'more list elements and printed. The last value isethf copied froiviemory.

At this point the procedure discovers that 'the list is exhausted, i.e., no

more items remain to be copied. This discovery then signars"the end of the

'process. Execution of the write statement is erminated and the computer is

free to execute whatever statement happens to be next in the program.

.

EXercisegLA2-3 'Set B ,

7%

- 6.. In these six exercises you will continue with the develvpment you

began in the preceding exercise tbt, For each 3our job now to decide :"s

what should go inside box 3 of the flow chart. Then

(a) 'write a write statement which, if executed,wouLd carry out the

intent of box 3;
.

(b) for thesdata you used in the first set of exercises, compute the

S result which would be printed and showhOw it would appear on the

printed page using the write procedure at your laboratory.

v.

t

A2-4

A2-4' Assignment statements

r-
We shall first exathine the parallel existing between our preNtiously de-

.

veicped f1.w-chrt concepts, of assignment step6 and those of ALGOL statements.'

Flow Chart

specific --ILI-42.4- B2 +wo2
example

,genera/

form
VARIABLE *-EXPRESSI.ON

ALGOL

L := sqrt(At2 + Bt2 + Ct2);

variable :=
-arithmetic

expression'

lit.

The ALGOL Ldentifier is a character string built up of letters and digits
./ .

s

(up to six in all,.with the first character being a letter).r .

The ALGOL arithmetic expresgfon corresponds to any meaningfUl computational
. ..-

rule which uniquely defines ksipgle numerical value. Thve still be a fez' .
.?

Important restrictions to obsdrve in writing such expressions correctly.
,-

Before

considering thesa4 let us see hpw several flow chart examples are rewritten in
.

ALGOL.

Examples

- Ni

tr.

,
1.

2.

4,

5.

6.

Flolg Chart \)). 'ALGOL

X b/c;

9/2) x

ly)j

;,

X := 2.5;

Z := 2.51 +T;

t abs(a)

Q :=

X 2/(y

x.-2.51--.

2.5 +

X b

c

-_
X 2/ Y + :=

,

AREA._ 314159 X r2,- (s X lir2-/s2 r
2
X pHI)

AREA := 3.14159/2 x rig - (s x sqrt(rt? stRk* A.1.25(PHI);
-11;14

2226

A2-4

Rules -for deciding the "type" of an evaluated expression

When we discussed and illustrated t step by step evaluation of arith:

metic expressions inmiection 2-4, we did not need to consider the questions of

,operand type. All our n)bers were thought of as being available on a handy

scratch pad. At each step in the evaluation if one operand of a binary pair

happy d to be an integer and another a number which had a fractional part, we

si took this in stride and added, subtracted, multiplied or divided as the

opeVior symbol required. The computer evalua on of an ALGOL expression,
*..
forllows along similar lines, but what are these specifically?

To understand exactly what the computer does ih each case, we need to

realize that its action depends to some extent on which operator is involved.

The operators fall into three classes and we will treat each separately.

class 1 + X

class 2

class 3

class

Class 1: +, X

There are four possibilities because each operand may be either type

real or type integer.

The rule.is: The Operation results 41 a number which is type integer if,

',and only if, both operands are integer. In all three other cases the result "11"

is of type real.

Let us.....see 'how we may project this donee t in tabular fashion. Let the

operatirtui be depicted as
' f

A E)B

.44

.where A stands for the left-hand operand, E) is an operator symbol which

in this case represents +, -, or X, and B ,stands for the right -hand

"operand.
a

Table A2-4 shows at a Lance the type of result obtaJ,ned. In the table

we have abbreyi t real as R and integer as I.
r

0

V

r

TEible A2-4

Types resulting from +, - or x operations t4'7

9
,

) .
,

Class 2: 1 0 ,K-.
.: .---.--

.

It is best to thinks of the divisid A/B as- the multipliCiiitipn of A by. 4

the, reciprocal of' B, or A x (B-11. en we It this, we see that the result
il

of.division is always of type real. Table A2-5 displays this case.

A

FX3 R I

R , R

I !I I

!

r t,

-PA4-11-414,1" f,r

rt

-Table A2-:5

f N .

Types resulting fibm / operation
's

:).

Class 3: f'

a .
The symbol f is reserved for a special integer division, when both

b .\ R . I

R R ,R'

I R R

4

operands are integer,:yielding a result of type integer, as) shown in Table A2-6.

The operation is no, defined for any other type combination.

e

.

Table A2-6

Types resulting from + operatidn

A,X R I

.7
I - .26 I

2
"

4
2

Integer division is.related to the greatest integer Or '!bracket"

function, as can bd,seen from the following equivaiengs.

1.

° ALGOL
Expressi9A Computed Value Mathematical Eqvivalent

9 10, 0 [9/10]

2. -10 t,(-10) [10/10]

3. .11 4- 10 1 (11 /10]

4. 10,÷ 1 10 [10/1] .

5 10 0 45/101
6. -15 10 - [15/10]

7. 10 (-1). - [10 /1]

8. 1 (-10) 9 - [1 /10]

ALGOL's integer division Yieldsig remainderless integer quotient with the

same sign we would ordinarily obtain for the real quotient. For integers. A

and B it can be expressed mathematically as

A 4. B = TRUNK(A /B) = 6ign(A/B). X [IA/BI]

The right-hand sidedgan be written in ALGOL as:

sign(A/B) x entier(abs(A/B))

recalling that both the entier and sign function were defined in Table A2-2.

It is instructive to ndtiee that for A/B > 0, A + B and (A/B] 'are

computationally the same but for A/B < 0 they are not.

1'

ClassA: f -

% ,Finally, we hake the operator f , denoting e ntantirtion such as Af B..

Many possibilities arise in this operation, depending o the sign of the A.
- ° .

and the type spolisign of B.
Al

O

"'

A2-4

C,!4] rcises A2-4 'Set A

1. Complete the table by filling in the type of the result, or "undefined".'

A

Operands

A B

Operation.

0

type of,result

A 0 B
.

. r

2 +

0I!.3 .09 x,

100 .4 -
,

6 . 4 /

6' .4 +
.

, .

2. We wish to verify the mathematical formuia.kor integer dixAsion in each

of the eight ALGOL expressions in the pr ceding discussion. The first

expression, 9 + 10, is #-ified in th table.shown, below.. Your job is

to fill out the rest of the table for the remaining seven expressions,

scanning each from left to right according to the step by step evaluation

scheme developed in Section 2-5 of the main text.

Verifying that A + B = sign(A/B) X entier(abs(A/B))

Case A B

4

(A/B)

410,

sign(A/B) abs(A/B) entier(abs(A/B)) A + B

1

2

3

8

9 10 0.9 +1 0.9 0

TWhat is step 3?

4

'Exercises A2-4 Set /.8 1/4

A2-4

Study the following cases in.order to formulate rules,to explain exponen:

tiatiori. The rule has nine ..partsl. Hint: The first 11 cases have td do with

raising integers or real numbers to integer powers. Cases 12 - 22 deal with

real powers only.

1.

2.

.3.

4.

-5.

6.

7.

8.

9.

6 t 2

-6 f 3

(-6)) 3

6 fn

2.5 13

3 1 0

4.2D 0-

s (- 4.25)10

3 f, (-2)

means

it

It

tl

It

6 x 6
_ -

-6 x 6 x 6

(-6), x

6 >c 6 x..

2.5 x 2.5

1

r

1/(3 x 3)

(-6)
.

A. x 6 (41 times).

x 2.5

10.

,11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

31 c-tf) .

- 2.51 (-2)

5 t 2.0

5.4 t 2.3

0 t 3.1

0 t o.o

o1 (-514)

(- 5.2)13.2

(-6) 1 3.2

(-6)10.0

(-5.2)1 0.0

(- 16.1)t(-3.2)

(-6) f (-3.2)

**.

tt

is undefined

tt

It

tl II

II

it t

1/(3 x 3 x,3 x 3)

1/(2.5 x ?.5)

exp(2.0 x-ln(5))1

exp(2.3 x ln(5.4)).
ty

0.0

./".
a

tie

1Recall Table A2-2. exp is the exponential function and In is the natural
logarithm function. Thes expresdion exp(2.0 X ln(5)'). means "e raised to a

ga::;

power which i,s 2 times the natural, logarithm of- 5." Natural -logarithms,:in
case you haven't already, seen. them, use as their base the number e
2.71828..., rather than the number 10. Using base, 10, we mean the mathe-

matical expression, 102 x log105

27
A

A2 -1.

4

Hint: let i be a number of type integer

let r be a number of type real

let a be a number of either type ,

Divide the rule into two parts\ Let category 1, govering Cases 1,- 11

above, be represented by a f i:. Now for i > 0, for,. = 0, and for

i < 6 try to specify the type or al. If you need to,,break these cases

further into'subcases depending on the type of a., Next let category 2-
.

cover Capes 12 - 22 above and be represented by at r. Notice that_here

the, relevant factor is the value of a. Is a > 0 or is a = 0 or

is 'a < 0 Z SubdivideitheSe cases if necessary until you can either*

specify that the result is rtefined or you can deterinine.the type.

S

Function references

We have already bepome acquainted with three of the basic components of

arithmetic expressions, namely, constants, variables, and operators:

Two other important components are parentheses and function references.

In ALGOL we use parentheses in several different ways. In the expression'

Z/(Y + A/Y)

the parentheses are used to form a subexpression that forces a desired order-

Ipgoihe computation. In tile expression

"sqrt(a) X bid

parentheses are used in another way--to enclose theargument of a function.

A reference to a function valuebor a function reference, for short, consists

of the name of the function followed by a pair of pirentheses enclosing the

argument.. This convention in ALGOL is used for all functionsi

)

328

A2-4

Since home functions are even special marks or symbols, like I I, V,
3 '

0

y
/

, which are not available in the ALGOL character set, it makes good sense
\

to use the parentheses.

Here are some examples oftypicalHfunction references:

sqrt(rt

cos(PHI)

40
sin(6.4)

entier(3 N)

abs(X)

They are easy to type from left to right as strings of characters. Remember

the rule:j'Every function argument must be placed inside parentheses even if

it is a single numeral or variables

How are parentheses used in the expression

sqrt((m - 9/2) x n) ?

You.,,canprobably see that the outermost parentheses serve to enclose the argu-

ment of the sqrt function. This argument is the value which will be obtained

upon evaluation of the expression

(m- 9/2) x n
AL

in which the parentheses are employed for.ordering computation.

As you can tee, a function argument may itself be an ALGOL expression ofo

decided complexity._ In fact, in some of the expresSions in the next exercise lb:

the argument of a function is expressed in terns of the value of another func-

tion.tiop. This is perfectly permissible, 1,n ALGOL. Annther)xaniple Of this is
.

exp(3 xln(A)) ,

argument of exp

'44' it
tr

eN.

4

A2-4

Exercises A2-4 Set C

1. We would like to express A3/ in ALGOL, where A > 0. Keep in mind that
02

A
3/2

is in this case the same as 47,Por (A') . All of the following

correctly express A
3/2

in ALGOL. tsoMe are awkward. ,Some have superflu-

ous operations. Comment on each and tchoose the one which appears to be

the most efficient computatiopally.

4

(s).abkAt1.5)

--(43)t0.5

(c) sqrt(At3)

(d) abs(sqrt(A43))-

() (At1.5)

(f) abs(A)t1,5

.(g) sqrt(ips(At3))

2. If A can have negative values,'which4f th'e seven ALGOL expressions

given in the preceding exercise ;orrectly wresses 11643/2? If more

than one, which is simpler computationEdly? Explain._

Unary minus

.

In Section.274 or the flow chart text you learned to distinguish betireep.

the unary and number-naming minus "on the one hand, and the binary minus on the

other hhnd. If a minus sign appears at the very beginning of an expression or

immediately following a left parenthesis, it is either a ary minis or a '.--

number-namineminus. lt cannot be a binary minus.

Here are some examples in ALGOL statements.

(1) .Q := -5;

(2), Q := -(A + B);)

(3) Q := -At(-C);

(4) 'Q := (-4)t2; A

(5) 14:= -(4?2);

(6) Q := -4t(2);

(7) Q = -4t2;

(8) Q := sin(-A + B x (-cos(C)));

7

30

6

Note that (4) assigns a value of +16 to Q. Rem mbeAng from Tiable

of the flow chart text that exponentiation takes precede ce over unary minus,

we see that. (5), (6), and (7) each assign =16 to ' Similarly, -Af (-C)

is the same as -(A t (-C)). Two operators may not bb itten s y-side.

Thus, A X -B is'invalid. We must write instead A X (-B) or perhaps -A X B.

Similarly, A t + C or A t - C tiTe both. invalid.

Exercise 2-4 .Set D ..-
".

Correct the following three invalid ALGOL statements. What problems
17-arise in correcting the'second andr-----third statements?

(1) .T := B x -A;

(2) F C/-3 + 4;

(3) G := A*+ B x (C X -FAD);

r
A2-5 The order of computation in an ALGOL expressiqp

We have not deferred this question because there is anything special to

say about ALGOL that is different frOm what was already said in Chapter 2.

On the contrary/ the rules tor the order of, computation are jorecisely.the

same. Close the book, and try to reconstruct them. Then compare with,the

following. 4

1. When parehtheses are used to neat one subexpression inside another,
.41,1

evaluate the nested subepressiona from the innermost to the outermost.

2. Within any one subexpression evaluate in descending order of precedence:

Highest function reference

f (exponentiation)

x,. /,. +

Lowest +, -
i

3. In case of a tie In precedence level (within any subexpression) perform

those operations in the tie from left to right.
4r.

31 ,

_t

4

A2-6 ' --- f

, A2-6 Meaning of assignment when the variable on the left is of different type_

from the expression on the right

Is it possible to convert a nuMbel, from integer to real.representation-or&
/

vice versa? Notice tAt until now all the assignment statements we laxe_illus-'

*crated were homogeneOus in the sense that the variable s.n011erle t of.the (:=)

signand_the number evaluated from the expression on the rig t were both of
he same type-(real or integer). Two other obvious possibilities in ALGOL are

.

. both legal!

In short, we 'have four eases:

(a) real variable := real expression:

(b) integer variable :='iriteger expression;

o k
(c') real variable := integer expression;

(d) integer variable := real expression;

We have nothing further to say about cases (a) and (b). It is (c) and (d)
we are interested in because such statements can be used to convert integers to
reals and vice versa.

-'In case (c) the number assigned to the real variable simply has no frac-
tional part.

real. T;

integer V, W;

V := 4;

W := 3 x 6;

T := V.+ W;

Observe that this satluesee o AYLclarations and statements leads to a
real value for T equal to 22.0. In other words, the integer sum of V + W
results in the real value for T- having a zero fractional part.

In/ case (d) the integer value assigned to the variable is rounded in the
sense cscribed in Section 2-5. In other words, when the expression is real.
.and the variable is integer

variable := expression;

really tans '

variable _:....--entier(expression + 0.5);

Mist this meanslig.that if I is an integer variable and R is a real
variable, t'ne ALGOL stittment

::= At

6

4

is equivalento the flow chart assignment

.s
777.1 RCUND(A+1----

--ri I [A + .5] 1---

Neither of these is identical to

I

".;

ti

---.1 1 (f AI. _

/

Why? lecause .the flow chart variables I and A do not have specific
/

digital epreselations associated with them. Hence, no rounding can'be im-

plied in simple flow chart assignment.
4 .. 4

Example 1 I A.
.

...,
.ts

4
,

..;61 DIEN; ..

.--4, ,./ 4

I integer CIRCUM;";2..
's

cIR6um :='3.14159x DIA fq sc..)-j'

, :)

This sequence of ALGOL statementaleids to .arvaluel,of 19 for CIRCUM,

and not 18.535 which would be thel*Augloircumference or a circle with a

5.9.diameter of

Example 2'

\
integer OWE;

real BAL,, WITHDL;

BAT, :=15p.97;

WITHDL := 92.49;o
OWE := BAL - WI

4 /A:-
Assuming at, refers to bank balance the. overdraw is $41.52'. The dif- '.-

ference between BAL. and WITHDL is -41.52. The rounded value assigned to OWE,

- ,
t

v

o

=.5), = entier(-41-.02) = --42.

k
-.A

3 7 .

4'
ti

Exercises ,A2 -6
,

1. WhicA of the follOing statements are invalid ALGOL assignment statements?

Explain.
% .

, . .

I

k Ti := T X VAR/4.;
4 .

(b) A := exp(A4*E)Pt3A + A3*EX112.0);

-(c)' Y := ln(sin +

(d.) J := J.+ 1.0;

(;) I := I/K + .4i

.41

$1°7,4

2. Assuming 1(b) above is valid, what changes would you propose in the

interest of efficiency? If not, correct 1(b)and then improve it.

;=.

In each of the following, write a sequence of declarations and ALGOL

assignment statements to accomplish tfie, indicated task.

3. Assume the-real variable V Is assigned values which are always greater

than or equal to zero. 'Assign to,FPART, which is to be a type real
,

variabl4, the fractional part of V.

4. Assign to INPT, antteger variable, the integral part of V. V is a

real Variable whose value is never negative.

5. Compare the lo116wing.ALGOL statement with the accompanying flow chart

box assuming I,.cT and R to be integers.

se

:= 'I + K;

' '4

S H I/K

Are they the same? If not, draw another flpw chart box to conform with'

the ALGOL statement.

6. Carry outthe-instructions of Problem 5 for the ALGOL statement4

J := I/K;

- ,

and the same flow chart box.

,

rt

A2-7 Writing

Remember

to compute how

Wr.ite your own

A2-7

complete ALGOL programs

the $20 bill problem? You are now able to write ALGOL statements

many $20 bills are contained in (real) PRICE of your Jersey cow

version sand then compare with that below.

comment WHAT THt JERSEY COW WILL BRING;,

integer NUM20

real PRICE, RNUM20 ;

RNUM20 := PRICE/20.00;

'NUM20 := entier(RNUM20);

A complete ALGOL program posesses a certain "structure". Before giving a

formal description oli.this structure, we first form a complete program for the

JERSEY COW problem as shown in Figure A2-10. We also put a label on the read

statement and add a go to statementto make the program loop.

begin'

again:

end

comment WHAT THE JERSEY COW WILL BRING;

real PRICE, RNUM20;

integer NUM20;

read (PRICE);

comment PRICE is given ih dollars and

RNUM20 := PRICE/20.00;
of

comment "RNUM20 is the real number of twenty dollar bills;

NUM20 := eritier(RNU4'f0);

comment NUM20 is the answer;

write (PRICE, NUM2C1.);

g6 to again;

cents;

Figure A2-10. The Jersey Coprogr

35

Illjl

Picture of a
data card

Picture of
printed results

ed in ALGOL

1`

r

o

A complete ALGOL program.raust begin withta begin symbol and end withan
.

end symbol. There are no exceptions.-,We might say that begiR(and end sandwich

the declarations and statements. Notice that declarations precede the state-
..

ments. We might think of the declarations as the "head" and the statements as

* the "bodyl of the program. A strufture, then, begins to emerge as suggested

einFigure A2-11.
,

Figure A2-11. Structure of a complete ALGOL program

Now,we 'introduce the concept of a "simple" and a "compound" statement.

r '

The simple statement

We hkalre seen in this chapter 'four examples of simple or basic statements.

es

The basic forms were

variqble ,i= expression;

read(input list);

write (output list);

go to label;

Each of these is a request to .a computer to carry out a-specific set of

Actions and when completed, the next statement, ust.ally in sequence, is execu-

ted.ted. The exception is the go to statement:

The compound statement

It is perfectly proper to think of a sequence OfHsimple statements as ,

\ !

L. -9z Oement since it describes a unit of action. In the flow-chart.sense
4

thi 0'6 p of individual actions might be thought of as a single 14. We,

ther ore, employ the concept of a compound statemeIit which consists of a

sequehce-of statements preceded by'"begin" and followed by "end". For our

present purposes, the statements between begin` and all will be considered to t?e4 .

simple statements. In Section A3 -1 compound statements will be discussed

, further.

.364
.s

ol

The

.

general form of a.compound statement can be thodght of as

begin

j Si;

S21

end

.8
n

;

. "
where' S

1,
S etc.

4'
represent the statements.

.*

Mw

The-program

"7

0

A2-7

We cake a program by packaging with the compound statement all the
..,

necessary declarations and comments that are necessary or appropriate. We
. then have as.a.general form for a prbgram 4. >

begin
..r

Dl;

a.

0

D2' -

Dm;

S '

2'

.
4.
C

. c

Sn;
'',

,

.end
4

(

% , 1

.

. ,

Here, the D's represent the one, or moilo declarations which are now in-t

chided to form the cothplete program. Comments may be inserted anywhere between

the, begin and end of any,prograra.
'

. ,, "'.

In_subseoident chapters we shall see many more examples of complete ALGOL'

.programs. You'will40,be:urged to -write many of yOur.own.

1 I

A2-7

Exercises A2117

- 6. In Section A2-3 you worked out the input and output details needed for

six ALGOL programs each having the simple loop structure shown in Figure

A2-3. 'You're to finish the job now by writing out on a coding Sheet each

of these six simple ALGOL programs.

7. What single assignment statement can replace the two that are used in the

prograM given in FigureA2-10?

8. Recall the problem (in SeCtion 2-5 oe the main text) to simulate a

carnival roulette wheel. It's presumed you have already drawn a flow

.chart for the situatj.on specified. Now write a complete ALGOL program

which is equivalent to your "flow chart.'

3

4

'

:

41A2 -8 Alphanumeri to

rmwm
/ A2 8

An ALGOL program may deal with alphanumeric data, numeric dat or any

mixture of these. When data is"input the computer needs special i istructions

to convert alphanumeric data to the appropriate binary bit patters for stor-
.

ing in memory. These_ patterns are of course different for stori g alphantileric

characters than for '&1:merle values,
e

Alphanumeric characters.will.be stored one character per word of memory.
/

They may be stored in space that is earmarked for either int7gemkor realvar-
t ,../ >fe.---;

iables. To avoid confusion, however, we shall always store!suph data in spact..
, . /

(window toxes) for integer variables. A special input statement will b'urbek.,

when reading alphanumeric characters. Instead of the read statement we ubea
..1v

readsymbol statement . The, form is:

readsymbol(list ofQ.ntegerliariables);
3

We illuL1Fate in Figure A2-12.

integer) Y, Z;

readsymbol(X,Y,Z);

Figure A2-12. indow bA64'after executing the readsymbol

statement for the data card shown

/
-

Similarly, to output alphanumeric characters which may be currently

assigned!to certain variables,-we use the printsyMbol statement. For example

prpltsyMbol(Z, Y, X);

1'

lilot all ALGOL implementations, use exactly t e same technique--you should con-
suit your teacher or a reference manual to just how it is done on
the computer system you aTe,using. For inttance, in' Burroughs ALGOL alpha-
numerie)values can be ,assigned to variableq, declared as type alpha. Three
'types are. then possible: real, integer and',alpha. The usual free field read
or write procedures can be used with alpha 1ariables. Such variables can have
any set of six or fewer alphanumeric characters.

. ,

3994 3

ti

A2 - 8

If this statement were executed following the input that was illustrated in

Figure A2-12,\the printed result would be Figure A2-13.

#

. Figure A2-13. Printed result
4 4bn

Once an alphanumeric character has been assigned to a variable, it can be

used on the right side of an assignment statement of the form

variable := variable;

Armed with this much information, the flow chart in Figure 2-28 can be written

in ALGOL as shown here:

begin comment utterly ridiculous process;

integer A, B;
/

readsymbol (A);

Box2: readsymbol (B);

printsymbol (A, B);

A :=B;

go to Box2;

end

The only trouble with this program is that only the first character from

each card is read ilsto A or into B. After executing Box2 the first time

using the datit cards shown,in Figure 2-28(c), A will have the value "M"

and B the value "X'. The rest of,6MUTT" and "ale?' is lost.

We can remedy this situation by a straightforward revision of the program,

although by doing 8o we are forced to make the program quite a bit longer. To

handle names of up to six characters we will use six variables in place of A

alone, like Al, A2, A3; A4, A5, A6 and six more for B.'

I

4o'

4
A2-8

Here is the program:

begin comment ridiculous process;

integer Al,A2,A3,A4,A5,A6;
B1,B2,B3,B4,B5,B6;

readsymbol(A1,A2,A3,A4,A5,A6);

BOX2: readsymbol(B1,B2/B3p4,15,B6);

pkinlsymbol(A1,A2;A3,A4,A5,A6,B1,B24B3,B4,B5,B6);

Al := Bl;

A2 := B2;

A3 B3;

A4 := 134;

A5 := B5;

A6 := B6;

go to BOX2;

end

A lot of work just to describe a_ridiculousprocess--to be sure. For-

tunately, techniques will be developed (Chapter 4) to make our ALGOL writing,

task'far easier.

e- When a charadier, be, it a digit'or any other, character, is enclosed in

quote marksit will be understood to be ifi.alphanumeric constant. Thus, the

prdgra4r,

. begin °; integer A, B, C;

A := 1"

B "-";

C :=""5";.

. . Printsymbol (C, B, A);

ie

end

Will cause the 'atpbt,oftbeycharacters "5 -

Stdtemerk6i like,
4

A' := "T" t 2;

or A := '!2" + "2";

are meaningless and as far as we are concerned inyalid:. Statements like

A := "TF"'
y

;

would also be considered improper because in our ALGOL system we are permitted

to assign only one alphanumerical character to A variable. In other words

la 4 5

. -

f a alphanungric constant can only be one character "long":

le

SupPose the instructor who posed the original problem to compute

D = -/A2* + B2 + C2

now poses the problem this way:

"Imagine that several sophomore geometry, ,students have given

you values of A, B and C, corresponding to the edges of a rec:

tanguAr .You are to compute for each of them the distance

D, which represents the length of a diagorial according to the

formula suggested in Figure 2-1. Write a program which prints

values of A, B, C, and the computed value for D, and then also
. ,

prints for identification purposes the student's initials (three

letters), his room number (a03-digit integer) and seat locatiOn'

(a two-character code); like

BJM

342

c4,

Yon will notice that all identification can be thought of as alpha-

nlameric including the room number- =even though the instructor thought of it

as an integer.

If identification of this sort were'punched on.a card, it might look like

that shown in Figure'A2-14%

I

f

Figure A-14, "ID". card

0,

^s.

To input the data for this card we might use a readsymbol statement like

readayndbol(Il, 12, 13, Bl, B2, R3, S1,.S2);

---.0-4-"1-------*--'-.-^-
initials room number seat

4246

4.

A2-8

We willnot need to change the structure of the algorithm in any signifi-

cant way to achieve our ,new ob,lectives--as you can see in Figure A2-15. We

have merely added Boxes 0 and 4. The "ID" card is imagined always to precede

,/ . the card bearing the student's values of A, B and C.'

I.D. CARD
INFORMATION

4

t Figure A2 -15. Ney flow chart

,The corresponding ALGOL program--you could probably write it your-

self - -is shown in Figure A2-16.

143

47' 4

t s;

A2-8
. .

Ai.

begin comment Evaluation of D; .

integer Ili 12, R1; R2, R3, SI, S2;

real A, B, C, .

BOXZERO: readsyMbol(Il, 12, 13, R1, R2, R3, Si, S2);

read (A, B, C);

D :=,sqrt(At 2 + B}2 + C t2);

write (A, B, C, D),;

printsyMbol I8);

printsymbol (R1, R2, R3),1

printsyMbol (S1, S2);'

go to BOXZERO;

end,

Figure A2-16. The ALGOL program that goes with Figure A2-15

The three separate printsyMbol statements are used in order to Split up

the "ID",information on to three successive printed lines.
0

4

7
)

4.0

4,

44

1
4 8

0

Chapter A3

BRANCHING AND SUBSCRIPTED VARIABLES

A3-1 Conditional statements

In Section 3-1 of the flow chart text you studied-techniques for branching

by means'of a condition box. In ALGOL you can write branch frig instrudtions by

means of a conditional statement. Later in this chapter you will see that one

ALGOL conditional statement can represent the equivalent of several condition,

boxes in the flow chart language. But first ie will loCk at an-ALGOL condi-

tional statement that starts from one condition box--along with the two lines

that emanate from it.

If D< 29 then write (N);

I

Figure A3-1. Structure of one type of ALGOL
conditional statement a

4.0

The meaning,of this condAtional statement is clear: If -D is less than'

or equal to 29, then write the value of N, otherwise,'Ilo not. Tlie two

flow chart branches then come together again.

,

, .
In the flow chart language, the rules for what could be writtej,inside the

oval were not rigidly specified. As you-might suspect, in ALGOL it is neces-

. I.

saryto, be rather, ,specific about this tatter,' sinCe.e machine must translate

your ALGOL Program into executable code. An "if-clause" can be defined as a
0

pair of arithmetic expressions separated by any one of the six relational

symbols
r

,

V

V
and set off by, if and then. ',The above simples form of conditional statement

can therefore be written in the fort

if-clause then'
a read statement,
a write statement, or
an assignment statement

.
L. 15

49

1-

a

A3

Recall the 4tanian PoStal Regulations problem from Figure 3-1. This

is one waliyo-writd the program in ALGOL:

begin comment RURITANIAN POSTAL REGULATIONS;

real A, B, C, D;

integer N;

BOX1: read(N,A,B,C);

D := sqrt(At2 + Bt2 + Ct2);

if D< 29 then write (N); ift

go,to BOX1;

end

'am

EXercises A321 Set A

WhicA of the followingare correctly formed if-clauses? For those which

dr are incorrect, cite the defects.

1. if A.< B < a then

2: if A + B < C then

3.

4.

5.

8.

if
^

A +3 C+ 1 then

if A + B > C; then

if C.= B + 4 / C then,

e,

Write ALGOL statements for each of the following flow chart fragments.
,

7.

6/5 0

.

fa.

A3

Draw flow chart boxes for each oP the following ALGOL statements. In

each case rejoin the floW chart branches.

10. if Z < A then write (SS);C,

11. if sqrt(Af2 + Bf2) = C then P:=P + 1;

12 if C + D / T then read(A,B,N);

Actually, the statement which follows the "then" in the conditional

Statement need not be restricted to a single read, write or assignment state-

ment. Any simple or compound statement can be used after then. For instance,

the following ALGOL statements are proper: 4

t.
"

< 2 then

begin y := z + x;

T := 3, X T;

end

4

0,

a

In Section A2'-7 we defined a compound statement as a sequence of statements;

thesequence being preceded by "begin" and followed by "dnd"4 Now that we kndw

' what a conditional statement is, we can point out that the individual state-
.

ments in the compound statement may be conditional or compound, as well as

simple.

If the statement, following then is a go to statement, then, of. course,

the two branches of the program do not rejoin tmediately after the conditional.

,,The following example is of this type:

if -z < 5 then go to BOX5;

0

/-

Zr
.

A3

Exercises A3 -1 Set B

Write ALGOL statements equivalent to each of the following flow chart

'fragments.

2.

S

'Draw flow chart boxes for the following ALGOL statements.

5. if Z A then go to BOX30;

Z := A;

6. if P + 3 < S - K then go o BOX30i'

P := P.x sqrt(P);

S := S x sqrt(S);

7 . if C + then

begin F := 10 x T

G := - 5;
end; ,

+ 5;

1.

fore""Nek.t.,

1;8 5 2

In the simple conditional statement the if-clause causes the program to

branch And the part of the conditional following the word "then". affects only
/1*"
one of the branches. Whether the branches reunite immediately following the

conditional depends on the topic of the particular conditional statement.

basic flow pattern for a simple conditional is then:

or

The

There is a se.coA type of conditional statement which is. equally useful

and important, It makes use of an alternative when the if clause condition is

not fulfilled. The basic pattern for the "else" conditi nal'is this:

Figure A3-2 repeats a familiar flow chart which lends itself to thil

second type of conditional statement. The ALGOL statements parallel the flow

chart quite naturally.

Flow Chart Form

Figure A3-2.

sot

lee

read(A,B); :

if A < B then

LRGR := A else LRGR := B;

writeLLRGR4

rgr"I

'1
Conditional Statement, ell-type

49

5.3

-71)
\.

A3 I,

"(45fr. 0

Any statement type that could,'ollow then in a cOnditional can legally

follow else. That means any simple stAement or compound statement can follow
,

else.'

You will recall that a compound statement Is a sequence of ALGOL state-

ments preceded by a begin and followed by an end. Since you can do practically

anything with a compound statement, it is possible to insert the equivalent of

a whole chunk of flow chart following the then and another whole chunk follow-

ing the else.

Here Ware sever examples of legal ALGOL conditionals:

if p< 0 then 5.2 to BOX1 else go to BOX5;

if k - r = 0 then X := Y - Z else

begin y := z + x;

T 3 x T;

end;

Notice that there is no semicolon before else. In fact, else :must never

be preceded by a semicolon!

CAUTION: If you use a statement (whether compound or

not) between then and else, ydu must observe the

following restriction: The else may note imme-

-diately preceded by a semicolon. Some other (non-

blank) legal characters (e.g., end) must occur between

them. ,For example, the following is trictlY illegal:

if A > B then B D; else := D;

get rp Of it!

s

55 4

el.

Exercises A3-1' Set C
-

For tie follOwing flow charts write ALGOL conditional statements. Use
compound gtatementg, following then and/or else wherever, feasible: Assume. the
next statement to be tritten corresponds with liox 30, and is labeled Bono.

A3

1. 2.

6,

1

Tell which of the following are correct ALGOL conditional statements..

For those which are not, tell what is wrong.

8: if A < B then T := T + 1; else T := T -.1;

9. if COUNT -5 100 else go to BOX40;

10. if COUNT + 1 then begin A :== A x S; B := B x end;

11. if GLOOM < JOY then begin BOYS := BOYS + 1; GIRLS := GIRLS + 1;

-else defeat :=

5
52

6

EXAMPLE: You are gi''en that thelequation AXx 2
+ 8XxtC.--.0 lix.E"1.&.,.,.__

least one real root, but you doSot know that, A 0. -T put A, 113, and C.

If A = 0, output B, C, and the root of the equation.-If _A 0, outW A, '1

B, C, and the two roots (postiblY equal) X1 and X2. Then goe-4ekto read

A, B, and C for the next equation.

fLOVI, CHART SOLUTION:,.

c

c

1

3

2

B

B, C, X-

t

A, B,

5

DISCR

6

2-4><AxC

xi'1 4-- -B + DISCR
. 2xA

e

. 4

7 a

-B - DISCR
-t-* 2XA

A;,B, C
xi, X2

0

r e

53

5 7

011.1

A3

ALGOL PROGRAM METHOD ONE: 4 4

bein real A, By .0.,,,K, xi, X2, DISCR;

BOX1: read(4B,C);

if A = 0.0 then go to BOX3;

DISCR := scirt4B12 - x A x

X1 := (-B + DISCR)/(2.0 X A);

(-B - DISCR)/(2.0 X'A);

write(A,B,C,X1rX2);

go to BOX1;,
,

BOX: X :. -C/;

write(B,C,X);

go to BOX1;

end

C);

m

ALGOL PROGRAM -- METHOD TWO (using, compollnd 'statements):

begin real A, B,C, X, xi, X2; DISCR;

reed(A,B,C)5':

if A = 0 then begin X -C/B;

I write(B,C,X);-

end

elle.begin2DISCR := sogt(* - 4 x A 5<C);

(-B + DISCR)/(2 X A); ,

X2 := (-13 - DISCR)/(2 X A); ''' -

o
write(A, B, C, xi; X2);

end;

go to BOxi;'.

Compare the methods used lathe two ALGOL programs in the example. Whibh

do you think is easier to read? To write? There is room for a difference of
,

opinion here, as the choice between the two methods.it largely a'm&tter of

,taste. YOil should learn -to read and write ALGOL in either style dnd,u ee which-
.

ever seems more appropriate to a given problem,

tc.

54,

In Section 3-1 of your flog chart text, you used output boxes involving

n9t only variables but'idenafying remarks in quotes. In ALGOL we will hadlie

identifying remarks in precisely the same fashion as you did in your flow chart

work, We will merely enclose them in quotes and add them to the output list

where appropriate. As with other output list items, a comma should separate

the identifying remark from the following list item (if there is one) and.from

the preceding list item Cif there is one). But this is nothling new, since you

did it that way in flow chart.output boxes.

' 4Example 1

write("AFTERD", N, "OTRIES,OTHECLANSWERMIS0", t,C)

t
If the value of N were 3 and X', were 4.9, then executing this

write statement wo ld result in printing the line,

AFTERt3tTRIES,tTHEtANSWERIIS14.9 I

one space above each arrowcorreponding to each

square () in the'print statement. The square

,:is simply our mark for a blank space; it isn't

pinted, and on a punched card it is represented

by a column with no punches in it.

_4

.

L.

A

1

.55 5

Ir

Exgmp le 2

Recall the flow chart from, Figure 3-4. Figure A3-3 shows how; this flow

chart could be written in ALGOL'.

- Flow Chart 'Form

1

((fi4 B

A < B

rh

l

3 /.

.

t,

4

"A IS THE

LARGER.

THE VALUE
OF A IS",

"B IS THE

LARGER.
THE VALUE
OF B IS",

A B

A

read(A,B);

ALGOL Statements

.

if k< B then write("B IS THE LARGER. THE VALUE OF B IS", B)

j
else write ("A IS THE -LARGER.- TH VALUE OF A);

Figure A3-3. Use of identifyi, emiarks in ALGOL Output,

.

a

Strictly speaking, it isnrt neCessarY that a write statement dal/ for

printing of any numerical values. One may wish to write only remarks or,__ _ _ _

messages. .For example:

or

write("ACCESOTHECILARGER"a);

write("KILROMWASIHERt");

In BurrougHs Algol any string of characters placed between quote Marks

may be used as a "field specification". The effect is to print the string

without the*quote markg in
,

the line at this point. An example is:

write(< "B IS THE LARGER" >);

The less-than syMbol, "<",st the beginning signals the compile; that what

'follows is not a variable. whose value is to be written, bat some "format"

56

60

4.!

K.

A3

information. Format information includes literal strings as well as directions

for how variables are to be printed. The free-field write procedure in

Burroughs Algol does not allow the insertl.on-of strings of .identifying

,characters.

If A and B were integers of 5 digits or less in Figure A3-3, the

Burroughs Algol for the statements would be

READ(A,B); ' ks
IF A< B THEN WRITE(< "B IS THE - LARGER. THE VALUE OF B IS", 15 >,B)

ELSE WRITE(< "A IS THE LARGER. THE VALUE OF A IS", 15 >,A);

15 in the write statement above is a field specification which reserves

5 spaces at the place in the line where a variable is to be printed and causes

...the number to be prin das an integer. The greater-than symbol, ">", iUdi-

fcates the end, of the f t information. What follows is the variable to be

printed. . _

The integer field specification has the form' Iw hereere w is the field

width.

Two other field specifications are fai .common. These are the ,F sand

E fields for printing real numbers. The F field specification is of the

form F w.d where! w denotes the fiel&midth and d denotes the number of
. .

decimal places to the righ the decimal point: The number will-be rounded

to d decimal places.

The thiila type hasythe form E w.d where again w is the field width

and d the number ofdaT.Mai places to the right of the decimal' point. An

example would be E20.10. The E-type is called floating-point type because

the printed result includes a power of ten, addusted to allow d places_to

the right of the decimg1 point.

Formatting is a topic'which has a great degl more detail%than we need to

include here. The Fortran, language supplement to this course can be&consulted

for more information on format.

5761

_<

c

A ,

A

A3

Exercises A3-1 Set D

Write an ALGOL print statement.for each of the following output bakes.

3.

1 4o

"THE IMPOSSIBLE"

40

"A=",A,"B="ri,"C=",C

"Nest-ing" one conditional statement within another

There is one more impLicati9n of the use of compound statements within a

conditional.statement that we should examine before going on. A compound

statement may contain one or more conditional statements. Thus, a conditional
A

statement may contain something that itself contains more conditional state-

ments. The following ALGOL program for-the -flow chart in Figure illus-

trates one way of using a conditional within a compound within a cor ional:

'begin : ''comment TALLYING; -
. .

integer LOW, MID, HIGH, T: N, COUNT;

reacr(N); t

COUNT := 0;

LOW := 0;

MID := 0;

HIGH := 0;

BOX3: read(T);

if T < 50 then LOW := LOW +1

mo..=

end

4,

else begin if T < 80 then MID :=

,

end;

COUNT :=.COUNT +1;

-

else HIGH := HIGH +1;

if COUNT < N then $2 to BOX3;

wxite(:,VALUES OF COUNT, LOW, MID, AND HIGH.ARE", COUNT,

LOW, MID, HIGH) ;;

(
58

i

1..

A

Exercises A3-1 Set E

1 - 5. Refer to Exercises 9 - 13)'Section 3-1, SetoNin your flow chart text.

For each of these five exercises you prepared a flow chart of a simple

algorithm. Now, write an ALGOL program corresponding to.each,flow

chart. Choose statement labels, in Exercises 12-and 13, to correspond

with the box numbers used in the flow charts.

Exercises A3-1 Set F

1 - 6. Refer to Exercises 1 - 6, Section 3-1, Set B. For each of these six

exercises you prepared a flow chart of a simple summing algorithm.

Now, write an ALGOL program corresponding to each flow hart. Choose

statement labels, where needed, to correspond with the box numbers

Used in the flow charts.

5963

4

51%

R-

A3

A3-2 Auxiliary variables-

The use of auxiliary variables in ALGOL programs mirrors what you have

already,learned in the flow chart text.

Exercises A31 Set A

1 - 5. Refer.to Problems 2 - 6 of Exercises 3-2, Set A irryour flow chart

text. Write ALGOL programs for each of the flow charts you have

constructed for these problems.

You might like to see how the flow chart for the EUclidean Algorithm

given in-Figure 3-14 might work out in ALGOL:
of

begin comment EUCLIDEAN ALGORITHM for two non-negative integers;

BOX5:

'41ilteger A, B, r;

HALT:

end

read (A,B);

write("THACD OF", A, "'AND ", B, "IS");

if A < B

then begin

.r

if A = 0

then begin write(B);

gd to HALT;

'lend

else-begin r := B - entier(B/A) x

B := 4.

A := r;

go to A0X5;

411;

ends ,01".--+
else begin T. := B;

B := Ai(

A = r;

go to B0X5;

end;.

110

r

o

f

a

,r.

j

)

,

A3,

In this example you should note a different kind of basic statement: the

dummy statement. It consists of no symbols at all and shows up only by means

of its label, in this case "HALT". Nothing is to be.done at this point,. We

merely want to mark the place at the end of the program so that we can use the

statement

go to HALT;

Not all programs require this technique; 'Jut it is frequently useful when the

box occurs in the flow chart and we want to express this in ALGOL.

0'

Note that we must not forget to declare the type of any auxiliary variable

jothat is used in the program. r is an auxiliary variable and appears in the

integer declaration.

Exercises 43-2 Set B

Write an ALGOL program corresponding to the flow chart you constructed

in Problem 2 of Exercises 3-2, Set B of your flow chart text.

t

Exeicises A3-2 Set C

1 - 8: Refer to Problems,1 - 8, Exercises 3-2, Set C in your flow chart text.

For each of these eight exercises you prepared a flow chart of a simple

algorithm related-to coordinates of, points on a straight line. Now,

write an ALGOL program correspondiogrto each of tifese flow charts.

Choose statement lalSells, where needed, that are of the form BOX1,

BOX2, etc., to correspond-to the box numbering of-the flow charts,

_

6;

A3

A3-3 Compound condition boxes and multiple blitnching

IXr Section 3-3 you encountered condition'boxe§ involving more than one

decision, e.g.,

and ycusawthCthis single decision box was equivalent to a pair of boxes

From your study of Section A3-1 you know that boxes 1 and 4 in the latter flow

v- Cha&-,can'be expressed in ALGOL as

cr,

BOX1: if 2 < X then begin ff X < 5 then go to BOX2;
e
*, ,end 7 ,

else go to BOP,

if the statement -BOX3 immediately follows the statement pox;

BOX1: if 2 < X then begin if X < 5 then go to BOX2;

end; .

Similarly, the following pair of flow charts

62/66

A3

may be written in ALGOL as

BOX1.: if X <-0 then go. to BOX2

else begin if X >..1 then go to BOX2;

end;

provided, of course, that the statement'BOX3 immediately follows the state-

ment BOX1.

In Section A3-1 you learned that any basic or compound statement was legal

folloWing then and also legal followishg else. In addition to basic and com-

pound statements, conditional statements, are also legal following else! 'Thus,

we can abbreviate the last conditional statement BOX1 displayed above by

BOX1: if X < 0 theb go to B0X2

else itf X > 1 then go to BQX2;

CAUTION: Conditional statements are not_legal following

then unless they are buried within a compound statement

enclosed by begin and end.. Thus, we can legally write
e

A: if X < 0 t4en go to BOX2

else if X > 1 then go to BOX2;

but we cannot legally write

.

B: if 2 < X then i f X-< 5 then go to BOX2 ;,----
In place of statement B we must trite

y

ti

C: if 2 < X then begin if X < 5 then go to BOX2;

end;

In other words, then if is orbiddem but else if

is alright.

Exercises A3-3 Set,A

. .

Which of the following are legal in, ALGOL/ For those which are legal,

'draw a flow chart. For thd1014ct are not legal, tell Why they are not legal.

Assume that a statement lab4ed BO,,immediatelyLfollows the ALGOL code given

in the exercise.

I.

a

o

t

63 6 7

a

to

.
,

S

a

A3

1. if A < B then go 1 7O'BOX5 else go to BOX7;

);...

2. if A < B-then go toBOXJ;

3. if A < B then if:Cl< D theng tO4A0X5;'

4. if A < B then go to BOX5 else if C < D then go to,BOX7;

J. if A < B then go to BOX 5 nse begin if C< 0 then'go to BOX7;end;

6: 'if A ,..B,then begin if C < D then go to B0X5.end; .r

7. if A < B then go to BOX5 else A := B;.

e. if A < B then A := B;

f A < B := A; A := B; B := C; end;

i0.7 if A < B then C := A; A := B; B := C; e1s'e go to BOX5;

11. if. A < B then C := A; A := B; B := C; go to BOX5;

Exercises A3-3 Set B
;

F-

1 - Refer to Exercises 1 - 7, Section 3-3 in yob r flow chart text. FLI-

each Lf these exercises write ALGOT., statements equivalent to the flow

charts you prepared. Fur example, the flow chit.rt example, might be

coded in ALGOL as:

if X1 < X2 111.22 go to BOX2 else go to BOX30;

BOX2: if P > G then go'to BOX20

else if T g S then go :to BOX20

else go to BOX30;
O

At tcpic you studied in Section 3-3 was multiple bAnching, for
1

"' example

7,

t°

o

4

. ,/, :0'

. T < .50

)

4
sf : , .

/
4 6 4 . "4 -

: 6 8. . . . A

50<T<80 80 < nT
C

1

A

;

A

I.

- The ALGOL program we wrote eariieirin this clApterliNrespOnding to the
4.4

ing flow chart of Figure 3-7used a ,succession'of'two two-way branches-4

achieve the-effect of a three-way branch. The ALGOL statement was this:

if T < 50 then LOFT + 1.

elAa begifj then MID := MID + 1

else HIGH IGH +
r

t

ends '
a .. li

,
r

1

Compare this'iAth.the ALGOL statement for the single'three-way b of the
,../4

flow chart i
, ,

n*Figure 3-20. ' ..

.

''',g T < 50 then DOW := LOW + 1

s

°

else if T < 80 then MID := MID + 1

else HIGH :=''HIG 11 + 1;
.

The only difference is the omission of "begin;! and "end" around the second

conditional statement.

The warnings in Section 3-3 concerning
/
tIle non-overlapping and exhaustive

nature of the exit conditions' from a cbnaition box pare notreallyInecessary
,

in ALGOL, since in an ifthen . else ifl...,,,-then else it...4.,.then . . 1.4--. A --
statement' - "
.. (1) The first if-clause that comesoUt true atisties the condition of

the entire if, so the remainiing if-cla ses are ignored.

(2} If none of the if-claused comequt true and there is no else after

the lest theh, we merely go on to the net piece of code after the

conditional statement.

ft '
Y401 may haye noticed that the discrimination betwee is at

,
can follow then

.and what can follow else seems at first glance fit '`unfair" to compound
,

condition boxes invOlving,"and". If you didn't notice this, lodk at the first
.

.

two exemplesin this sectipn--the ones involving "and" and "'or" and see which
' .

is easier to code in ALGOL. .-
-

, J

,
.

.

s -

For relatively uncompliCated compound condition boxes 4Uch as

-- 6569
4)
,

tt*

:10

A3'

this "discrimination" actually poses no difficulty. If you know a little

about the logic of the words "and" and "or" you may see" withOut difficulty

that we can replace the "and" Lox above by the following "or" box:,

This may be easier to see by looking at the pair of condition boxes

4.1

,
.....

You will remember fr M Section 3-1 that the two
.
.

k.

5

I/

arrangemnts

are equivalent, and that tile same "applies to the two arrangements

4 .

A

ea f

1

.

1

If we put these fragments together we find that the arrangemepts

are equivalent. But now take a fresh look at the right-hand flow chart.

'mer6ly rearranging the drawing on the page we get

r
which, according to your study in Section 3-3, is the pre as

Btit this is just another way of arranging the drawing for

3

2> X 011 X >-5

4.

r

6171

A3

By

,

0

1,

A3
.

Thus, you can see that the following two are equivalent eondition boxes:

For the purpose of your `work with ALGOL, the important lesson

for you to.learn from the foregoing discussion is that it'ii possible

to transform a sequence of condition boxes connected by "T" arrows
a

. into a sequence*of conditiofi boxes connected by "F" arrows, and

vice versa. This is important because of the'correspopdence between

00.

the ALGOL construction °

if else if then else if ,e;,

and a sequence of condition boxes connected in "series" by,"F"

The algorithms illustrated below in Figures A3-4 and A3-5iiarp e

arrows.

if 2 < X then begin if X < 5 then begin if A > B then go to BOX4

else go to BOX5; end; aad;

Figure A3-4. T-series method of coding 211K X and X< 5 and A > B

c.

if 2 >.phen go. to BOX

else iY X> 5 #41-1 go to BOX5

else if A < B then go to BOX5

else go to BOX4;

Figure A3-5. Easier F-series way of coding-the problemsin Figure A3-4

Exercises A3-3 't Set. C

In Exercises 1 - 3, complete the flows chart on the right making it

equivalent to the one on the left. Then write a single ALGOL conditional

statement equivalent to either flow chart form. Is it easier to write the

ALGOL fiom the first form or the second?

a
0

73

.00

I

2.

3.

4

In Exercises 4 - 5 write an equivalent ALGOL statement without using

begin or end. Hint: Use if.,--then if

4. if P < Qthen begin if Q > R n go to BOX7 else go to BOX8; end;

then begin if R / S then go to BOX75. if P = Q then begin.if Q = R

else go to BOX8; end; elid;

In Exercises 6 - 7

else'if-construction.

write an equivalent ALGOL statezbent without using the

6. if A / B then go to B0X6 else if
.

C = Dthen go to BOX6 else go to BOX7;

7. if A.> B then go to BOX6 else if B > C then go to B0X6 else go to BOX7;

1'

11.

A3

Draw_a multiple brzinch condition box fOr each of the following ALGOL
q;.-

statements. Observe the cautions concerning non-overlapping and exhaustive

exits as set down in Section 3-3.
.

8.' if X '5 B then go to BOX6

BOX8;

if A = B then go to BOX6.9.

else if X 5 B + 5 then go to BOX7 else go to

else if A = C then go to BOX7 else go to BOX8;

10. Write an ALGOL statement for the following multiple braahing condition

box:

Exercises A3-3 'Set D

1. Write an ALGOL program corresponding to the flow chart you prepared for

Problem 10, Exercises 3=3.

2. Write an ALGOL program corresponding to the new flow chart which you pre-

pared for the carnival wheel problem as the answer to Problem 11,

EXerdises 3-3.

71

7.;

1

4

1

A,3%.4 Precedence levels for relations

In ALGOL the precedence levpl for relation symbora mirrors that in your

flowchart language and should require no special study.

v

4

O

7,

sr

72'

Vc

gs.10.0.

A3

A3-5 Subscripted variables

' Representation of subscripted' variables in ALGOL

Figure A3-6 shows how subscripted variables are represented in ALGOL.

Flow Chart Form ALGOL Form 77

. Xl X[1]

XN X[N]

BI+1
)3(I +

Z[5 x I + 2 x5xI+J+2xK
4"tl

Figure k-6. Representation of subscripted variables in ALGOL

As ycu can see from the figure, subscripted\variables are represented in

ALGOL by enclosing the subscript in square brackets and writing it following

the variable to which the subscript is affixed. This is another example of a.

notation thit enables ALGOL code to be written "on the line". Other examples

you have seen include "At2" for "A
2"

,and "sqrt(X)" for TYX". Since the

".greatest integer functiorris represented in ALGOL by entier(X), there need be

no confusion between use of square brackets for this function in, flow chart

'lanzua.,.,:e and its use for subscripts in ALGOL. In ALGOL square brackets always

indicate subscripts. They are not Akila4le as a special type of parenthesis

as in ordinary algebra. For parentheses you must always use "(" and ")".

Exercises A3-5 Set A

Write each of the following subscripted variables in ALGOL form:

1. X5 2. zN 3. CHART 4.
+ 2

Allocation of memory storage for arrays

As you know, the computer must have a storage location available corre-

sponding to each variable in a given ALGOL program. variables were ,of
1 .

the form

4
J

A, X, CHAR, X4,. etc.

7377

ti

A3

this would be a simple problem indeed. The processor could merely assign a

storage location to each variable occurring in your program.

But what about Y....? How can the processor knew for what values of I to

assign storage lratiohs? it cannot tell mereir by looking at the occtsrences

of XI in your program. But if it were to wait until the program was being

executed, it might find that it needed locations 'for X X X, ... X and
2' 3' ' 25

had assigned locations only for X1, X2, ..,, X10. Since storage' of arrays sufh

as X1, X2, ...,X25 in consecutive locations in storage is of importance in'

tfficiency of program execution in most computers, we yould like to have ad-

vance knowledge of the range of values possible for a subscript before we start

executing the portion of the program in which that subscript occurs. Mcre

pre,cisely, we require at least knowledge of the maximum range so that we will

"allow enough locations.
-

In ALGOL.this problem is solvetby means of a declaration. You have

already learbsd about the declarationg real and integer. For arrays (sub-

scripted variables) we have the declarations real array and integer array.

Figure A3-7 shows the form of the array declarations and compares' them to the

declarations real and integer.

Declaration

real X;

integer I, J;

Resulting Storage Allocation

one location for X

one location for I and brie -for J

real array X[1:51; five locations: one each for X X2,

)X3, X4, and)5
1

integer_array 1[5:601; 56 locations: one each for15, 16, ...,

through 166.. '

real array X[-2:3,; ' six locations: one each for X_2,

X0, X1, X2, and X
3

real array X[1:3), Yi2:5]; ondlOcation each for X
1
, X 2' ' X

3'
Y
2'

.

Y
3'

Y
4'

and Y
5

Figure A3-7. Storage alldbations l'orALGOL declarations.

Ai

74 8

4

ti

Input and output of arrays

You will study more Convenient methods fok input and output of arrays in

Chapter 4. 'For the present, weshall use a loop to input an array. Figure A3-8

illustrates one possible method.'

A3

Flow Chart Box

{Bi,i=1(1)6)

X

AGAIN:

Crude ALGOL PrOgram

I := 1;

read(B[I]);)

I := I +

if I < 6 then go to AGAIN;

J := 3;

REPET: write(X[J]);

J := J + 2;

if J < n therigo to REPET;

Note that n will already have been assigned a 'Value before the array"

is written out, in-the second example.

Figure A3-8. Crude method. for input and output of arrays in ALGOL

of

MI 9

0

c

r

A3

Example

Draw a flow chart and write an ALGOL program to find lar.:est component of

an n-component vector (n < 100):

)
Flow Chart

0
ALGOL

begin comment LARGEST COMPONFITT;

real array A(1100);.

LRGST;

integer N, K, I;

n
read(N);

I := 1;

START

2

(A., I = 1(1)n)

3

LRGST

K F 2

I.

-(K >
T

7 1,F

(:LRGST > AK

6 jF

ILRGST > AK

7

K K 1

8

"LARGEST.

COMPONENT
IS"

LRGST

BOX2: read(A[I1);

I := I 1;

if I < N then go to BOX2;

LRGST := A[1];

K := 2;

BOX4: if K > N then go.to B0X8;

[if' LRGST A[4] then go to BOX7;

LRGST A(Ki;

BOX7: K := K 1;

go to BOX4;

BOX8: "write("LARGEST 'COMPONENT IS",

LRGST) ;

end

U t

A3

Exercises A3-5 .Set B

In Exercises 1 - 3 write the necessary ALGOL declarations and ALGOL state-
.

ments to input the real arrays indicated. In each case assume that befdre we

start, n or k hks been assigned a specific value. Use the inequality on

the right only for the purpose of reserving space, i.e., in the array declar-

ation.

1. (Ai, i = 1(1)k) Assume k < 50.

2. (B., j =',(2)11) Assume n < 125.

3. (Ai, i = 10(1)n), (B1,4i = 16(2)n Assume n < 50.

7--

Exercises A3-5 Set C

1, Write an ALGOL program corresponding to the flow chart, in Figure 3-24(b)

(the carnival.wheel problem using subscripts).

2. Write an ALGOL program that/corresponds to Figure 3-25.

3. Write an ALGOL program corresponding to the flow chart you drew for

Problem 8 of Section 3-5, Set A. Assume the value of n will never be

greater than 50. Assume polynomial coefficients are punched in order

on successive data cards.

Exercises A3-5 Set D

Write an ALGOL prograi for the flow chart you drew fo'r part c of

Exercise 3-5, Set Gin the maim text. AsSume by 'any size orchestra"wemean
" one, that has ho More than 125 players. AssuMe the ages of the players are

integers punched on succdssiVe cards. '

I

-
77. 81I -

. .
I,

;----4 ,fr', i
, .,/

---.....a...c,litl t,

a

s-

A3

A3-6 Double subscripts

Representation of double-su i ts in ALGOL

t

In Section A3_5 you learned that a subscripted variablelike

x

could be written in ALGOL as

X[I]

Lw, in Sectiori 3-6, you have been introduced in your flow chart language to

doubly subscripted variables such as

0- xi

The AIGGEr-tRpresentation for such a doubly subsgripted variable is just about .

what you would expect it to be:

X[I,J]

The two subscripts are separated4by a comma.

Thus, the assignment' box

could- be written in ALGOL as

r

WINS --WIN + AK °-;
41

.WIN := WIN + A[K,J];

Allocation of storage for doubly subscripted aAsrays

An array declaration is required to allocate space for doubly subscripted

variables. You an no doubt guess how this idone. For example,

real array A[1:3, 1:4];

declares that Acceptable values o the first subscript on A lie between 1 and

3, inclusive, and of the second subscript, between 1 and 4, inclusive.

In Section A315 you learned to write the ALGOL program for an input box

such as

I

82
0

4,

a
r' as

I := 1;

THERE: read(A[I]);

I I= 1; .

-if I < 4 then go to THERE;

It is possible to generalize this technique to take care of input bo;Zes such as

A3

[(Ai 3, J - 1(1)4, I = 1(1)N)

but to d& this in Chapter A3 would cause you busy work which can be avoided

when we have more powerful tools for looping that you will learn it Chapter A4,

For now,merely place a comment in your ALGOL program showing where the input

(or output) of aidoubly subscripted array is-to occur. Then, in Chapter 4,

you gill learn iMaw to Complete the program to run on a computer,

.
With this convention, we are now prepared to look at an ALGOL program for

the problem in Figure 3-34.
e

begin comment GAME;

/241 array A[1:6, 1:6];

rea1,WIN, LOA, NET;

integer-I, J,.K,L; 1

comment INPUT OF ARRAY A[I,J] GOES HERE;

vad.(K,Or ;

WIN = 0;

, LOSE :.,-= 0; .

: e s

J.:= 1; ,
,

.41/4 Ba4: if J < & then g6 to9BOX5 else go to BOX6;.,

BOX5i WIN := WIN + A[K,J];

4 = J' -1- 1;

-4,

g..L5 to BOX4; :,

i
BOX6: I < 6 then go:to.Ba7 else Es to BOX8;

....

BOX7: E 7... LOSE + A[I,L];,
. ... ,

'\,.../,'
I = I +,1;, .

go .to BOX6; r

Bd8: 1141-:= WIN ',USE ;"
- '

write(Ntr); I

.

\

4,

'2

%-e

. /

R.,

Exercises A3-6

1 - 5. Refer toi Ekercises l - 5, Section 3-6. For each of these, exercises

you have already -drawn flow charts describing certain "row-" or "column-
.

operations" on a matrix. Now your job is to write equivalent ALGOL

statements preceded by all necessary declarations for each of these

partial flow charts.

P

L

o.

A4-1 The "for

It should

1,1

Chapter A4

'LOPPING

clause" and the "for statement"-

come.advno surprise that the remarkable box

."iterationLhox" has a Perfect parallel in ALGOL. This

example is shown in Figure A4-I.

AN-

the "for clause."
,

for I := 1 step

01.

ti

we called the.
e-

is calla.shorthand
0

until 1000 do

k\
. -

(initial increment
value-r or

decrement

Figure A4-1. The iteration box and an equivalent
?nr clause

rinal,value
upper limit

. or

lower- limit .44k

An entire flow chart loop consisting of the iteration box and the`Compu--

'tati.qn portion "hung" on it can be expiessed in ALGOL with the for statement.

We pre-sent this parallel in Figure A4-2. The algorithmfdisplayed, you will

'37 cognize, islthe FibO acci.Sequence genei:ator. (Figure 4-6)

The "for statement" consists of a for clause f llowed state-
'

ment,.either-simPle or compound, that-isito berepe tett.

'

81

(7

A4-3.

begin

integer I, LTERM, NLT, con;

LTERM := 1;

NLT := 0;

for I := 1 step 1-until 1000 do

4

end

portion

Figure A4-2% The flow chat loop and the equivalent
ALGOL for statement

In the example shown the whole for statement is:

compound ;statement
that is to be
repegtedly executed

for 1 step`11 Until 1010 do

The general for of the for statement is then:

simple
clause statement (or) ;

compound
I }.

,

I

ode for statement

82.
\

c.

ThT form o the for clause is seen to be:

-for OP COUNTER := INITIAL VALUE step INCREMENT

until FINAL VALUE do

al/N

A4-1

We mean to imply here that if the INCREMENT ig a positive quantity the

FINAL'VAIUE has the significance of at upper limit, while if the INCREMEMT is
-

negative (i.e., a decrement) then the FINAL VALUE has the significance

be' loWr limit for the LOOP COUNTER.

The statement that follows the word "do" is repeatedly executed once for

each value assigned t,o the LOOP COUNTER. Of course, after each assignment of
A

a value to the LOOP COUNTER, tie test is made to see'if its value remains

within its proper range. Itznot,4 the repetition is discontinued, and execu-

tion of the foi statement is We then go on to execute the next

L statement.

Here are some examples of the for clause and its equivalent iteration

t- box. Be sure to study each example carefully--especially Example 4.

Example
__-for clause

1. for I := 1 step 2 until N dos.

j)
'eration box

14-1+2
N

IT

--11.

,

Means: Ex cute the statement' that immediately f011owg the word d' once

fo each value of 1 in stepg of.' 2 until I < N is fa set

(or if you 'like, un il ,L.>.N is.true). Thus, if N h,s a.

vl e of 7, the statement would be repeated (four times) for

values of I of 1, 3, 5,.
,
and 7. 'When the counter is .

incremented again, its value exceede'l and we exit from the

).Oop by procee:ding to execute the nest statement after the

for s tement.

O

:1

A4 -1

Example for clause Iteration box

2. for K := 3 step 2 until 8.,do

Q.

K < 8

T

Means: -Execute the statement immediately following the word "do" once

for each value of K until K < 8 is false. K is given an

initial value of 3 and is incremented each time by 2. The

statement is executed for K = 3, 5, and 7 (three times).

3. for J I step K until L - 1 do

J I

.14--J+K

J < L-1

T

Means: Execute the statement immediately following the word "do" once

for each,iralue J until J < L - 1 is false. J is given

a starting value equaltd that currently assigned to I. The

increment is the current value of .

.4 4. for a := N step
II

1 until 2 do

4-

eans: ,EXecute the statement immediately fo lowing the word "do" once
,.....,- L.

for each:VhfUe Of ,f as it descends in VaItie froM
!,
N In steps .

''.
r...1

thmehor equal to-, 1(i.e.,'until it is np longer greate

N-

(

:=0

at '84

8$

A

We might now take a look at one More application of the for statement

and then do some exercises. 'Figure A4-3 shows how we would write the ALGOL

program for the flow chart you drew in answering Problem 1 of Exercises 4-1

in the flow bhart text.

ALGOL

begin integer I, ID;

real A, B, C, D;

for I := 1 step 1 until 50 do

) begin

end

read. (ID, A, B, C);

D7csqrt(A t 2 + t2 + C L-2);

print (ID, A, B, C, D),;

end;

the whole for statement

Figus4 Another illustration of the for statement

In an exercise where you are interested in writing the ALGOL equivalent

of a flow chart box like:

/
(P.A. = 1(1)4)

ou should consider the three alternatives that are now available to you.

read (P(1), Pft), P(3], P(4]);

I := 1;

BOXA: read (P(I));

I := I + 1;

if I < 4 go to BOXA;

3. ft for I := 1 step 1 until 4 do read (P(I1>

.t

for statemen

Pick whichever form'pleases you.

1

ey will all do .he

C.

t

job. However,

A4-1

there is one aepect,to the alternatives which should be pointed out. The

first method

'read(P(1), P(21, P(3), WO);

will activate the reading mecha;pm and contidUe upil four numbers have been

read. The data -themselves may all be on one card or two to a card, or each,

on a separate card.
as

The second and the third methods, on the other hand, activate the reading

mechanism anew each time to read one number, P(I). Data for these two forms

must be punched one to a card since only.one number is read from each card.

Burroughs,(Extended) Algol allows an interesting variation, a for clause
77-

inside the read statement. The following statement is legal in Ektended Algol:

READ (FOR It- 1 STEP 1 UNTIL N DO PiIi);

This statement will read, one or morepeards, until N numbers have been read,

assigning them sequentially to the .(P1, i = 1(1)N).

Exercises A4-1

1 - 3. For each of the other flow charts you drew in answering Problems 2,

3, aid 4 of EXercises 4-1, now write an equiValent ALGOL program.

4. For Problem 5 of Exercises 4-1 write an ALGOL progra1ff assuming the number

of employees never exceeds 100.

s,

1.;.

t

I

869 O

N.

p .

7

A4-2

A4-2 Illustrative examples

There are a number of simple examples of. loops, in Section 4-2 of your

flow chart text which can be easily translated into ALGOL code with the

aid of the for statement. We shall_use these to further illustrate some of

the ditails in the proper use of)the for statement. Fig A4-4 shows ALGOL

coding equivalent to the flow'charts in Figure 4-8.

for I := 1 step 1 until N do i" for J := 1 step 1 until N do

begin , .4:1
I begin

Y:= X(I) t 3; I

. i
read (X);

write (X(I), Y);. 1 Y := X t3;

end; i

I
write (X,Y);

end;

, (a) (b)

Figure A4:4.Z ALGOL for flow charts in Figure4-8

Similarly, we see in Figure A4.:5 an ALGOL equivalent of the flow chart

in,Figure 4-9(a)..

SUM := 0;,

for J := 1 step 1 until N do

SUM := A[J) t 'SW

write (SUM);

'Figure-A4-, .' ALGOL for Figure 4-9a)

.Before looking a our next translation; try4your h

the ALGOL for Figure 4-9(b). Now compare your code wit

Figure A4 -6.\

'als;nglel

forOAtement
.

d at writing

that in

s MAX = abs(A(1

for J := 2 Step 1 until N do
(

if abs A(J)' > MAX th n MAX := abs A(J);

write (MAX); 's

FigUre A4-6. ALGOL for Figure 4-9(t). .

niimwri

.87 4

A4 -2

Notice that the statement which is to be repeated, under dontrol of loop

counter J, is an if statement. The, semicolon after A[J] marks the end of

the for.statement.

In summary, we see that any single if-statement, or read, or write, or

assignment statement may be the candidate for repetition. If more than.one

statement is to be repeated, we "weld" .Nem into one by forming one compound

statement, with the aid of begin and end.

Exercises A4-2 Set,A

In each of the following exercises-we-present ALGOL code for the flow

charts in Figur; 4-10(a), 4-10(b)-, 4-11(a) and 4-11(b), respectively. Your
f 4

Job is to indicate what errors, if any, have been made in the coding process.

The necessary declarations are to be di'Sregarded here.

1. For Figure 4-10(a):

MAX:= abs (A1);

INDEX := 1;

for J := 2 in....Ateps of 1 until N

if abs(A[J]) > MAX then

--begin MAX := abs(A(Jr);

INDEX := J;

end;

2.

write (INDEX, MAX);

''pure 4 -10PD):

MAX := abs A([2))

for J :='4 step 2 until N do, 0'

4

if abs(A[i]) > MAX; then'MAX := A[J];

write

.3. For Figure 4- (I):

FACT :=

for k := 1step,luntil N do;

FACT :=1C x FACT;

write (IC, FACT);

88

. 9-2

4

-

For Figure 4-11(b):

Nog
begin LTERM-:. 1;

NLT := 0; end;

for k := 1 step 1 until N do

begin COPY LTERM;

',TERM LTERM + NLT;

NLT

end;

write (K, LTERM);

Exercises A4-2 Set B

1 -17. For each of the flow charts you drew in answering the exercises of

Section 4-2, Set A, now write the equivalent ALGOL statements as part!al

programs. only: Do not bother to write the needed deClarations.

For'Problem.12: Is the following code correct? If ,not, why not?

for. I := 1 step 1 until N do

-if-mabs(P[I]) > 50 then begin

AP[I] ; ANY :. 1; end;

ANY := 0;

A4:-2

.
..i. ';

.You m
w.ynow be interested in seeing how the flohart of the;::lfaptors-of-.

N algorithm.(Figure 4-14) is coded in ALGOL. Here it .$$ in Figure A4-7. If .

...,:.: - .

you have done tie exercises thethe prebeding set, you d hgu1d ha e no problem4 :

in ollowiig the program in his figure. .

begin. comment Finding the factors Qf N;

'NJ

N te:.,this is one

or statement

/ 4

44-.4
bqbw

real BO

integer N, K, L;--

read (

BOUND :i sqrt(N);-

write 'The factors of", N, "

ALGO

Figure

(
factOrs of N'equiValent.tq

-14. 0'
89.
93

3

f

1

A4-2 .

:21

Similarly, yousshould have no problem following the way we code the

polynomial evaluation algorithm,(Figure 4- 7) in ALGOL. This is shown in

Figure A4-8. '

begin

end

comment Polynomial evaluator. Sunday method;'_

real array B[0:3);

real X, VALUE;

integer I, K;

BOX1: for I.:= 0 step 1 until 3 do read (BM);

read (X);

VALUE := B[0];

for K 1 step 1 until 3 do. -
VALUE := VALUE x X + BiK);

write ("The value is", VALUE);

Figure A4-8. ALGOL eq uivalent of the polynomial
evaluation (Figure 4-17)

.11

Y
In the statement labeled BOX1, the use of a for clause allows us to

repeat the statement:

rid

n

for various values of I. Thi.s is the equivalent of the.flow chart notation

I

EXercciles A4-2 Sei

For each of the flow charts you drew in answering he three problems of

Exercises 4-2, Set B, now write the equivalent' fun. ALGOL programs. 'For

Problems 1 and 2 assume that N will never exceed .50:Check the Main Text

for details, on Problem 3(s).

[3i, I = 0(1)3)

1,
0

A4-3

)4.

A4-3 Table-look-ER 11:

7"--
,

We now test our'abil y to write the ALGOL equivalent to the table-look-

up"(Figure 4-24) Using t bisection methikt. Figure 4479 shows...the program.

We assume for the ALGOL program that the table to be stored will never contain

more than 200' X's' and 200 Y's.

begin comment Table-look-up by bisection;

real array X[1:200], Y(1:200];

real A;

integer N, K, LOW, HIGH, MID;

read -(N);

for K := 1 step 1 until N do read (X[K], Y(K));-

read (A);

if X(1)'< A then begin

if A < X[N] then go to,B0X5;'end;
.

write (A,."is not in the range of the table.") ;.

to HALT;

B0X5: LOW := ;;

HIGH N; Ex'

BOX6: if HIGH-LOW = 1 then begin

write Ot[LOW], '[LOW], A, X(HIGH], Y[HIGH])a

go to HALT; end;

MID := entier((LOW + HIGH) / 2)i

if A < X(MID].then

begin HIGH :1 MID;

1 "I [ego-to IOX6; end

else begin -LOW : ='MID;

go to B0X6; end;

HALT:

end

a

47.

Figure A4-9. ALGOL equivalent of ,table- look -up .

by bisection

4

Study the corresl)ondence between this ALGOL program and its ,flow chart

By ow -you should rea;i6 here are many equivalent ALGOL prograqs. The o

in igure A4-9 is only one 'of- several possible ones. You'may prefe

'the ALGOL somewhat di42eltlY:

014 71.7.

A.14 - 3

Exercises A4-3

tt

Write an.ALGOL program equivalent'to°the flow chart in ,Figure 4-Li'5.

Assume -tlhat we will nat. /wed td store more than 200 X,Y pairs in nemory

0.] C u !
1 at any cane time. n % ,'

.
' IR

e

t

.

01

b

r

It
492

9 6 1..**.:

*

.r

tfi

A4-4 Nested loops

Just as one loop, with its iteration box, can form pert of the computation /

portion of another loop, we can have one complete for statement become part of

another. TheThe statement which immediately follows a for clause (i.e., Aight

after the word do) can either be a for statement itself or it can be a compound

stateent one of whose parts is a for statement.
1V.

Fbr our first example, examine Figure 4-29, beginning with Box 4. We

now show the equivalent ALGOL code in Figure A4-10.
1,4

for I := 1 step 1 until M do

begin 'SUM[I] := 0;

for J := 1 step 1 until N do.

SU:KW := ACI,J] + SUMLI;

4 TOTAL := TOTAL + SUM(I];

end;

write,("The*total is", TOTAL);

x Figure A4-10. Nested for statements

.

outer for
statement

inner for
statement

..1. .

. The indentation of the statements helpi to suggest the idea of nesting.

The compound statement which follows t ord do 'of.the first for clause is

' "-the computation portion of the outer loop. There are three parts_to this
.ei- g

compound statement; the second one being another for statement which has its. ,.
) .

own computation portion. When executing these ALGOL statements the computer

of what loop it is in at.all.timeS.'can keep track

N8w let's

the matrix can

entries willlb

see how to write the whole program\for Figure 4m29. We assume

have_ tip to 50 rows and 50 `columns`. Data for thAtfiatrix

assumed unched in row by row ,rder, one umber ptr data '

.:1 /
'Carol. Ne,l

t

, '

t
,

pro} s' to express Box 2 41 ALGOL.. Y.ou may reMember that01:11'

we sidesteppe

you how to d(-
this with.neste

. -

a prallem like this in Sectici 3Z6 aria promised we would tell

thiPlahapter A4. You have probably already figuredVw to do----
.

ir statements as shown n Figure A4-11..

A

for r := 1 step 1 until M do

/
((A 1() N =1(3)m)

1

'1.Z-3omputatioh portion

outer loop__

computatibn portion 9f the
inner loop

of the

Figure A4-113 Equivalence between box 2 of'flow chart
and nested for statements

After studying this figure you can probably see how

the matrix entries row-by-row order, We could say:

f0

____Hom_would you print

reverse the order of the

II

for

1 step 1 until M do

J := 1 steptl-until N do

write (A[I,J));

might print 93.1t

out the entries in column-by-column order? Just

two forp.lauses
.

: '

for J := 1 step 1 until rdo

for I := 1 step 1 until M do

write (A(I,J1);

We are now ready to write the whole ALGOL program for Figure It.729. .Here

it is in Figure A4-12:.

o)

-
be'gin comment suhming entries of a matrix;

real array A[1 : 50, ; 1 :50] , SUM(4:50] ; .

comment We need. to reserve 50 locations for the SUM vector

and.enough locations for a 50 X 50 Matrix A;

real TOTAL;

integer'I, J,

read (M,N);

for .I l.step 1 until M dot
for. 1 .step .1 until N do

read. (A(I,Ji)";

end.

TOTAL 0;

for I,:= a. step 1 until M do:
4 begin SUM[I] := 0;"

et)
for J 1. step 1, until N do

SUM[I] := A[I,J] + SUM[I.] ;

TOTAL :4 TOTAIr + SUM(I] ;

end;

write ("The total,,iA", TOTAL);

rt-

Al- 4

e

Figure A4-12. ALGOL- equivalent of Figure 4-29.

.

Exercises ,A4-4 Set A

1-8. For each of the flOw charts you constructed forplexercises.in
I

Sectiofi 4-4, Set A, write tie equivalent ALGOL statements. _Don't bother
- t-

writAng declarations unles you feel they add -to 'your understandingcof the. .
translation problem. . .

Triply-nested loopsrare just as .easy to 1.rnitte in ALGOL by the nesting

for statements as they are to draw in ,the flow charts. Figure A4-13 shows

how the "stickler" in Figure 4131 would. be coded. in ALGOL.

'$

.

95

99

a.

of

Jo

A4-4

1.

begin , corm:rent. The Stickler;

integer H, T, U;

)for H 1 step 1 until 9 do

for T ;= 0 stepl until 9 do

for U :='0 step 1 until 9 'do

; if 100>411+ 10XT+U=Hf3 +T't 34+10.-3

then write (H,, T, W.;

ar

end

. C '..
.

.-. .

Figure A4-13. 'The stickler in ALGOL

&

Exercises A4-4 Set B

Wr'ite ALGOL programs for the _low chart solutions you obtained I*

Problem 7, Exercises 4-4 Spt B in Cie Main Text.

Exercises 4.-4 Set Cr

.

Write Lomplete progriam-for the Prime Factorization Algorithm, Figure 4-32.

2. Write a complete ALGOL program for the shuttle interchange sorting algo-,

rithm, Figure 4-34. Assume you may wish'to sort up to '500' numbers.

3. Write a iomplete ALGOL program for the sort algorithm:shonin Figure 4-35.

Make*ihe same assumption-in this.program'that you are asked to make in

the precediAg exercise.

4. Write ,a complete ALGOL prograM for finding tlit longest decreasing, sup,

sequence. Base your program on the flow charts in Figures,4-38 and 4-39.

Assuffie the given sequence will not exceed 100 lialuep in a11.

96 ir

4

rs.

A5-1 .Frocedur

'v

4

,

ALGOLfhapter A5

PRO666K.RES

The AWOL translation of g reference flow cha as called an *ALGOL °

PROCEDURE: This procedure looks very much like a,.com to ALGOL program

except within the initial group of assertions, correspe ng to the _ ow chart
-

funnel. The 'head of a procedure conslits*an introdUctorr symbol (to be
.o.

explained short1..) 0, the name of the procedure, a list of peters and,
,

isomething about their types. Th10head is followed by a body o oarAy out

the task of the procedure. - ,.
.

\\ '

'.. The ent,ireALGOL procedure, (the head and the body) is to be though o4 as
.

ht
N

...,.. ...

a.declaration:, This procedure declaration must be included in the head. (along
e-.1*

with suchdeclaratiott as real, integer, etc.) of any program using the pro-
_ .

I

re. \ ,
-. .

declarations ,

ocedure head
procedure

declaration
program head

declarations

body ,

statements program body

FigareA5-1. "StruCture,of 0 ogram
inqluding a procedure

1

V

Earlier in Chapter 2 we defined an ALGOL program as a sequence ofdeclara-
.

tions oliowed,by asequenCe oestatements, with the ,.whole thing enclos4by

li.begin"ntl'ena". Another name for a program is a block. A block must.ih-
s,

, 8 ^

.clude at least one detlaration after the begin. Otherwise, weimaxhalie a coin-
4' *. .
. poUnd.statement'rath9r than a block. , Z....-

.
. .

i

4

4

e

I

'
f

/*:

97

, 1 - .
.

t't '

I

,

A ,
A5 '

-11

5,9

The body of a procedure. dedlaration pay be a single statement.' For

example:.

integer procedure parity(i);

d integer i;

if i = 2 X entier(i72) then parity := 0

else parity :. 1;

l'procedilre- ,brocedure
head 'declaration

procedure
body

e 0
.

,;he body of a procedure pay also be a compound statement. If,lobal variables

are required, the body will be a whole program or block. -

ALGOL procedure to eValuE;te a function-Ad report a 'single value is
, , .,...

called a function procedure. (A second type of ALGOL procedure Will be en-
,'

countered in Section A5-.) Fora function procedure, the flow dhart funnel

correspondsto an assertion at the beginning of the procedure d- eclaration.

This assertion 'begins with the woods real procedure If the value to bey reported
a.

is real, or integer procedure if thevalue to,',I,4 e reported is ari integer. These

words are followed by the name of thd funct;on, its argument in parentheses and.
,/

a semicolon. For example:
//- /

real,procedure sqroot(y);

The,head of this procedure declaration conclUdes with the type declaration for

y. The use of this function procedural/is shown in more detail in Figure A5-2.

begin comment The head of the program using the sqroot procedure comes
first: It is made up of the usual type declarations and
,the procedure declaration for,sqrbot.;

real y, x; a, ;3 ,

I

41-

comment' The procedure declaration for sqrootfollows;

real procedure ;sqroot(y);

real. ; - I

z,

. begin

sqrdot

end .

comment" The body of the program using the'ciroot
, proceduretcompletes this example;...

f

:= a + sqrcibt(x);

1
. 7

,end . .

..

,
. .

Figure A5-2. 'Use of an OL function proceddre

if z = 0 theez := a 1.sqroot(a);.

0.2

I

t

K.

A5

. Since tpecial symbols are not available in ALSOL,'we "replace sucn a

symbol with an alphabetic name for.the function (in this cases sqroot). Any
. ..

name can,:,be chosen except'for'unusual reserved words.
1R

,

'

.

,

,

`You are already familiar with the use of standard mathematical ?unctions

liie,.iqrt, sin, abs, etc. (See Table A2-2). ALGOL, procedures are different
6

from these standard mathematical functions, .e.Nen though our first example,

sqroot, serves the same purpose as 4A.. The difference is not just in toe way

the names are spelled but is mainly in the fact that'the standard mathematical

functions are part of.thb compiler system. The techniques that might be Used

for adding to the list of btandard mathematical functions are outside of the

scope of this,book. Function procedures provide a way that you can develop
(

whatever 'set of ,reference programs youwan't,

The bodYNof an ALGOL procedure may be enclosed by a begin and an end.

Just as reference flow charts sooner or later reach a return box, an ALGOL

procedure may eventually reach a final enclosing end. This end corresponds' to
77-

... the floW chart return box shown in Figure 5-5. Since the end in an ALGOL

function procedure dries not indicate what variable is to be reported to the

main program, a convention is needed to identify the value to be reported.
-J

: The convention used .is that the name of...the function proceduce.itself must

'appear at least once on the left 'side of an assignspnt statement," and its,

value, when the'procedure is completed; is.the value. reported. This conven-

tion mast be observed for all function procedures whether the body is enclosed

in begin-end or no4. c

In other irspects,tan ALGOL procedure must conform to the requirements of

any ALGOL program. In particular, the type of 41 variables used in the pro-
.

cedure must be declared. '
/ .

An ALGOL procedure is a self-contained'unit one expects to Pse many times.

It is especially convenient to compile procedures separately, rather than along

with the programs in which they are going to be used. Then one can develop a",

library of procedures which can,be used at any later time. Some ALGOL com-

pilers allow4or the separate Compilation of procedures; others do not. Find

out Which ap lies for the compiler you are using. In this chapter we will

l'olloW the o

not tell ho

Y

lAinal.'clefinition of ALGOL, which, without forbidding it, doep

to achieve separate compilation of.iprOcedures.

1

0

,

Figure. A5-2 is intended to relate to Figure 5-6 of the flow chart text

illustrating features related to ALGOL proCedure use. The first time/the ALGOL

procedure required by the "function d signator", sqroot(x), we go to the
.

AF real Lrocedure_decleration via route l.

of x be assigned to Y in-the procedur . . It is essential that'the variable
.

t'ne function designator agree in type with the parameter declared in the

1

is declaration directs that the value

1..rocedure declaration. That is, since ST has been declared real in the pro-

ctNire declaration, declaration of x' to be integer in the calling' program

would be in ergpr.

Wneri tne executton of the procedure

assignedtq sqroot and tne return to the

Is cy route 1.,.Uon return to the, ALGOL

has bOf completed, a-value has been

statement that requested the,-procedure

program, the value assigned to sqroot

is added to a and 1, he result assignedcto ,z. At the next function designator

(in,tra-Condltional statement) we go tb the real procedure decAration ty

.route 2, substitutst n -for' y in the procedure (note that they 'are both real),
.0

execute the procedure and return via route 2 to the conditional statement, the

result of. the procedure having been assigned to sqroot.

An actual fUnctioil procedure 'declaration for the square root can be pre-
,

,ared with reference,..to,Figure/5,7 and is shown in F,igue A5-3.
. !"; .

...-

'comment square root function progedure.;

*Teal X-oceduresqroot(y);-

real y;

begin redl g, h; it

'g :=:i.9;'

BOX2: h :.,0.5 x (g +
4

if abs(Ii <.0.0001 then go to-BOX5;,
g := 1:1;

go to BOX2;- '

BOX5 sqroot *:. h;

end

.4 \
Figure A5-3. A funCtion procedure declaration for roots

-Az ytt inspect this function procedure, we take the

you about something you are unlikely to do anyway. That

an argument (in this ease y) of .a function procedure!

opportunity tty warn

is, dot. not assign to

It is never. necessary'- --,------ .-

44 isto do this and with some ALGOL compilers it can produce very dire results.

You will be re this dangdr area.once more in Section A5-5.
,

.
di*

I

,Exercises A5-1

1 - 3. Write ALGOL function procedures for the flow charts prepared in

Exercises 5 -1, Whin text.

1

J

140

O

*.

4

ti

A5

A5

A5-2 Functions .and ALGOL

.

The'flow chart text tells us that we can view any flow chart which, given
7 u

a value,will produfe.another value as the evaluation of some function. The

statement is as true for ALGOL programs as for flow chart5,,. Although mathe-

matical functions exist which. cannot lie evaluated, eith45-wiih a Flow chart or

by an ALGOL program, the common,'usage of th,e word funcglon in computing is

strictly limited to those which can b evaluated with a flow chart.. In com-
.

puting, then, a function is commonly thought of as a relationship for which a

reference flow chart is'useds

The domain of a.funCtion, in-computing, is the set of values that the

arement in the funnel of the flow chart can take on. 4ihe range of a function

is the set of valUes, thht can be reported to the main flow chart. In ALGOL,

the domain'can be either a set df real numbers representable in a computer or

a set of intigers representablein a computer.

102

10G

I

. P

A5-3 .ALGOL function procedures

A5

'ALGOL function procedures can have ',as Many arguments as are necessary. -The

min function prftides anexample
. procedure declaration in Figure A5-4..

corresponds to Figure 5-14 of the flow chart text.

comment minimum of two arguments function procedure;

real procedure min (b, c);

real b, c;

begin real z;

end

"go

if b > c then go-to BOX3,'

z := b; go to BOX4;

BOX3:

BOX4; min::= z;

Figure A5.-4. A function procedure of two arguments

.
Notice that the type of eachvariable has been declared to be real by the three

type declarations. That is, the function procedure expects to receive two real
,

values and to report "a real
1

value. The variable z is also decla'red to be

real. Melprocedure detlaration'could be Changed easily to expect integer

values or to report an integer value by appropriatel4 substituting integer for

real. In Figure A5-4 we do not need tointroduce the variable z since win
can serve the same role.

Figure A5-5./

For this reason Figure A5-4 can be replaced by

comment minimum of two arguments function procedure;

real procedure min (b,,c);

real .b, c;
$

if b > c then min := c else min :rip;

I

Figure A5-5. Improved m1,11 procedure declaration

".

Figure A5-5 contains other improvements. Not only has the extraneous variable,

2, teen dropped , but assignments have been includedfin the if-:clause.. The

body of the procedure declaration is then just one statement. :

0

;*

. The uarameter list of an ALGOL pro.cedure declaration may cont integei

Gr real variab,les, variables containing alphanumeric information, A: es (A

vectors and names of array's. In every ease there must:be a one- to-one cor es-\

pondence in both number.and'type betweeki parameters in the (actual) list o the

function desi-gnator and those in the (formal) list-of the procedure decla tion.

Co;ifusion would reign ii we tried to refer to the procedure declaration of

Figure A5 -7 by writing something like'

;

t =min(a, b,. c)

0 1"

t = Mi4(111, p) where m has beeneteclared
r to be an integer.

4

e function irochre declaration may use another function procedure.

Both-declarations can then appear in the head of the.main program. See

Exercises A5 -3, Set B.

A classifj:ption of variables

11.

The disrtinction between local and nonlocal variables with respect to

ALGOL procedures is the same as ii decribediln the flow chart text. Thus, in

the two procedures fOr min given in Section A5-4, the arguments b a d c,

are nOnlocal variables. ,In the firstletrocedure z is a local variable.
,

Difficulties can arise :if nonlacal variable's are changedwithin a function

procedure declaration. What can happen depends to some extent on the partic-

ularular compiler that is being Used. lnless you are absolutely sure about what

can happen, avoid changlpg nonlocal variables in function procedures!

. An appreciation of the distinction between local and nonlocal variables

can be had by recalling that procedures are separate units. Upon leaving a

procedure, the values.of local variables are lost; the storage space used to

keep this innarmation is freed, Nonlocal variables, on the otl;er hand, remain

defined after leaving a procedure.

A local variable in an ALGOL procedure is completely independent of any

variable with the same name that might appear outside the procedure. Notice

that the locoal variable is declared. in the body of the procedure, and not along

with the' specification of the variables whIC*appear in. Ithe parameter list. We

will always insist that nonlocal variables156 given in the parameter list.

There is another way in which they can aprfear ird ALGOL procedures, but we'w121
.

not Qonsider this other possibility. '

4 06 8

T

Composition of fUnction.designators

A5

The situation with respect to composition of function de_ignators is

6exactly as desdribed in the 2`I ow chart text. This is just what you have
. ' ,

_learned asp composition of fUhctions. -That is, given function procedure dec-

,larations defining fl(x) and f2(x)., one can write
,

. .

y 4:= fl(f2(x));

so long as the range of f2 is a Subset of the domain of fl. Correspondingly,

the following, unction designators are ehiirely proper:

4

y := min(abs(A703).,5 .4)

or y := min(min(f,abs(t)),Q);

or y := min(sqroot(b X,b 7.4.0 x a x c), -6);

, or y := sgroot(mtn(x,y));

. ,

Exercises A5-3 'Set A- .

.

.

1 - 6.'and 7(a). Write ALGOL programs or function procedures corresponding to
. .

4'

the flow charts prepared in Exercises 5-3, Set A, main text.
. r

Exercises A5-3 Set B,

1. Write an ALGOL functi,on procedure fOr the flow chart of the Euclidean

Algorithm you prepared in Problem 1 of Exercises 5T3, Set B, main text.

2, Write an ALGOL function procedure for Problem 2 of Exercises 5-3, Set B,

the greatest' common factor of three integers.,

. i
3% Write an ALGOL program that corresponds to the foW'bhart for determining

'-.) 0 ,(a) the number-Of non-similarAriangles;

(b) the gam of the:perimeters of the non-similar triangles corresponding

. to the flow charts,you prepared in Problem 3 of Exercises 5:3.,Set B.
.

.

4. Write.= ALGOL program_for the algorithm Of Problem74, Exercises 5-3,
---,-,*._

..e.

T.Set B. Try to estimata how much computation will be involved. .Measure
)....::... ._, .

computatibn in terms:of the nuMber'Of ddditions, subtractions. and com-

parisonsparisons that'must be madd, counting each as l'.

,

r l

If) 9

O

fr

A5

A5-4 :ALGOL "'proper" procedures

ALGOL procedures which torrespond to reference flow charts for procedures0
that are not functions are called "proper". procedures. Corresponding to the

' funnel of the reference flow chart is an assertion beginning:

procedure sort(n,;

integer n;

' ' real array d;

i4

The word procedure is followed by the name of the procedure being declared, a

parameter list in parentheses and a-semi-colon In the sort example we see

that an'entire vector is identified by its name d in the parameter list. No

attempt is made to subscript d in the parameter list but d. is declared as

a real array. 0f course, n is declared as an.integer.

Since a proper peccedure.does not reporta value.in the same way that a

function procedure does, the name of the procedure will not Appear in the body

of the procedure and we do.not attach real or integer to ta declaration defin-

ing the pro re identifier.

`A proper procedure declaration Correspondi,ng t0 Figure 5-16 is given in 'it

Figure A5-6. The dimension of the array d does notneedlto be specified in

the procedure declaration. Whatever the dimension of d. may be (and it must

be specified in the ALGOLcalling'prograM), n is the actual number of com-

ponents of d to be sorted. ThUs, theprocedure declaration is.usable for

a vector with any number of components.

comment proper proedure for.-sort;

procedure sort(n,d);

integer n;

real array

begin

end

integer i,j;

real 15;:

for i:=1 step 1 until n - 1 do

for j:=i+1 step until n .do

if dlij > d[j] then

begin

b:=d(j]; d(j]:=d(i]; d(i]:= ;

end; .

O

Figure A5-6. Procedure declaration for sorting

106

1.1 0

ti

A5 '

Look at Figures 5-16 and A5-6 side by si Y See how the ALGOL statements

correspond to thaTlIw chart bogtes. Noticeor4aso that valuescan be intention-

ally assig*ed to parameters of a proper procedure._ We 'warned you not to do this

in function procedures but it is right and proper here. This is how a proper

procedure produces its output.'
,r; . I

Use of a proper procedui-cti is activated by a "procedure statement!!., anal-
\

ogoas to the'execite lox of the flow chart text. -The procedure statement con-

sists solely of the procedure name followed by the parameter list in paren-

theses and a semicolon, for example:N' -

sOri(88,0i 15:
t ;

where b isan array having at least 88 components in the calling ALGOL

program. In ALGOL the process of referring to a procedure is termed "calling

the procedure":
'4

An ALGOL program calling sort, corresponding to Figure 5-23, is shown ic

Figure A5-7. This program assumes that the maximum..dimenaion of b and c

begin

end

comment a program to illustrate procedure statements;

real array b(1:100], c(1:100];

integer k,i;

comment tile.procedure declaration, for sort (Figure 45-6) Mvst
be inserted here;

read_

for :=1 step 1 until k do read (b(ij);

for' step,

sort (k,b);

sort (i,c);

k lo read (c(i]);

for i:=1 step 1 until k do

begin

write (b(i]);

write (c[i]);

end; ' ti

Figure A5-7. A program calling4the sort procedure

I s

is 100. We also call attention. to the comment.in the head of the program which

says that the procedure declaration for sort.mutt be inserted. This means that
. .

Figure A5-6is to be, physically placed.in the head.of the program. We make

. this comment rather than the actual insertion 1n'the calling program here so

'that the,figures can be more eas,ily scanned by the eft.

A5

Exercises A5-4 Set A

1 - 5. For the flow charts prepared in Exercises 5-4,.Set A, main text, write

ALGOL programs and procedures.

1

Exercises A5-4 Set B

1,=4,3. For the flow Oharts prepared in Exertises 5-4, Set B, main text, for

Problems 1, 2 and 3, write ALGOL programs and procedures.
11.

Exercises A5-4 Set C

1 -'4. For the flow charts preparedin Exercises 51.4, get C, main text,

Problems 1 through 4, rite ALGOL programs and/or procedures.

108

112

0

o.

teK",..:- :-/., A.::A5-5 Alternate exits and techniques for-branchiig

- 4 . ' ,. .

Provisicihs for alternate exits and branching from ALGOL proper procedures
- . ,

can-mirror-the initial discussion in the flow chartMxt. A*parameter is pro-
V' P '

i.,. .

vided to indicate. the results of tests performed by the procedure. Figures A5 -8.

and A5-9 present a procedure declaration and a calling program corresponding to

the flowcharts of Figure 5-26 and Rd.gure 5-27.

rl

,

comment a procedure to test equalitylrof two complex numbers;

procedure compeq(a,b,c,d,n);

real a, b, c, d;

integer n;

begin

if a = c :then begin if b = d then' n:=0 else '

n:=1 end else nt=1;

end

F

e
Figure A5-8. A4procedure declaration for compeq

begin
ti

comment pieces of aprogram showing tile use of compeq;

real x, y, u, v,;\

integer k;

comment

\

the proeedure declaration of Figure A5-8 must be
1)hysically'inserted here;

compeq(x,y,u,v,k);

= 0 then ,.go to ;t24.- else go to st3;,

st4:

st3:

end

Figure A5-9. Pieces of an ALGOL program testing the
equality of two complex numbers

, A5 /

Fungtion names and statement labels as procedure parameters

In ALGOL. both function names and labels are allowed as parameters of pro-

cedures. In the head of the procedure declaration these parameters must be

specified as to type. For example:

.

procedure SMSG(x,y,f,e);

real x,y;

real procedure fi

label e;

The actual parameters which replace the formal on s in.the call of this pro-

cedure must match the typ4 specified. For instancy, if the call is

1.
SMSG(R1,R2,R3,R4);

then R1 and Ri must ?lave been declared to be real in the head of the caling

program. R3 must have} been declared as a real procedure (function) and

must be a label. ALGOL 60 does not require labels to be declared in the all'ng

progrtm. (Extended ALGOL does require this.)

Many procedures can be written more naturally and easily in AL6o by
,t

eluding functions or labels as parameters: In Chapter 'Tilt would be, dif icult

to write some of/the procedures in any other way.

'aercises A5

1. FollTATIg the flow chart prepared in Problem 1,Ekercia main text,

write an ALGOL procedure to sOLve two equations in two .wns.

2. '(a) - (d). Write the ALGOL corresponding to parts ((b) or (c) and,

(d).of,Problem 2 of Exercises 5-5. Use -r complete pro-
. . ,

gram on the following quadratic equati s:

(e) 2x2 - 3x + 7 = 0

4 (r) 3.14x - 6.2x - 14.23 = o

4,

I e
3. Write an ALGOL pioce e and the calling prog am orresponding to one

of the techniques you used for solving probl m Exercises 5-5, main text.
%

I.
.

,k

A5 -6 Symbol manipulation in ALGOL

In.Section,A2-8 the input and, output of alphanumeric

cussed. NoW we want

that we will be able

, I.
or

or

A5

characters was dis-

to-fihd out how alphanumeric data can be processed so

to alter such input data as

THE QUICK BRO1,1H FOX JUMPED OVER THE LAZY DOG

3.1459

r s(t u(v w)).
,

Since we will want to be able to'refer to each individual element in such

charaCter strings, we will associate a separate ;variable with each element of

a str4ng. -

In Section A2-8 you were told about the read symbol statement to input

alphanumeric data You may, remember that this statement appeared as, for

example,

readsymbol(a,b,c);

which would read whatever symbols

card and assign these symbols to

ing to the next statement.

were punched ioa the first three columns of a

a, b and c, respectively, before proceed-.

Comment: In Burroughs (or Extended) ALGOL, symbo/ manipulation is espec-

iall\y. easy. Varf- les whose values are alphabetic, numeric or other characters,

are decla'red as as separate type called alpha.

Example: alpha a,b,c;

Each such variable'can atore up to six alphanumeric characters. ALPHA arrays

It is possible to read or write characters with a free-
)

it is Ofterilmore convenient tsi..liore One ALPHA character

In Mended ALGAL this cante done with a read statement

can also be declared

field read; however,

per ALPHA variable..

like the following:
;,-

if read(< 72A1 for I <--1 step 1 until 72 do C(I));

where 72A1 is a format of 72 one-character ALPHA types. This statement

will read 72 columns of alphanumeric information. A corraisponding wriIe,state-

ment can be formed.

I

a

'A5

.

In ALGOL 60, can the readsymbol statement. be used to read whole Orings?

If the string we want to readfis punched on a card, and:the punching goes all

the way across the, card (as you wouldnaturally do in punching a long Englien

sentence such as this one), readsymbol Would have to be followed 41a parameter

list with eighty identifiers*(one for each card column). Iteration on the

readsymbol statement doesn't help reduce the number of identifiers needed

since a new card is read for each readsymbol execution.,

.
The way out df this is indicated by noting that the, readsymbol statement

looks just like a sort statement or any other procedure statement.' In fact,

that is alost what it is! The statements read, print', readsymbol and

printsyubol are all similar to'procedures. They are Written in machine lan-

guage and included in the various ALGOL compilers-which automatically Insert

them when needed. None is a basic fart of ALGOL and that is why input-output

procedures'may vary in name and in the details of-their spetifications from

one implementation to another. A

All we need to do to be able to read and print strings is to,define new

procedures. Let us imagine that symbols are to be input from a siring of

indefinite length (like symbols on a punched paper tape or on cards laid end

to end). Now we can define a procedure (and leave it to an expert to prepare

it) with the declaration head:

procedure getsymbol(S,n);

integer n;

integer array s;

The pdrpose of getsymbol is simply to -read the -next symbol of the input string

and assign it to the ail element of s. The procedure will read a new card

whenevter it is,needed.to be sure that a next symbol is always available;

Now we define a procedure declared by

comment procedure declaration for reading strings;

procedure readstring(length,s1ring);

integer length;

integer array string;

begin integer i;

for i:=1 step 1 until length do

getsymbol(string,i)

end

112)

116

A5

We can also define complimentary procedures called putsymbol and printstring to

provide for the outputLo-fstringer .

We are now readyto write a proper procedure, corresponding to%Figure 5-28,

for chekch. This declaration-is shown in Figure A5-12.

comment zs procedure declaration to search for a character;

procedure chekch(n,s,m,c,p);

Integer n, m, c,. p;

integer array s;

r' begin

integer i;

for i-:=m step 1 until n do
4

sfij = c then

endchekch:

end

p:=0;

begin- p i;
1?-0

gorC4to

end;

ale

' Figure 4-12. *A character searching procedure

a

' ',IV ' ',5,!ZA' .
re.

';'One of the things to notice about the procedura,declarati.on in Figure A5-12
% .,,,, ,

(7. t
is that no limitation is made on the length of the,stming. The same declare-

.Cit-ilncan be u to insect a string of..length 51.4 0a string of length. 5000string

(jr enough memory is available). 9klother thing til, .ce is that two characters.
c

can be comparea by he relation " f,.. " .

I .

r

113 1 1 7

C

A5'

An ALGOL procedure corresponding to Figure 5:34 is given in Figure A5-13.

440,
, .

.3.

comment procedure declaration for chekst;

procedure chekst(n,s,m,k,c,p);

integer n, m, k, p;

integer array s, c;

begin

integer 2, r, j;
1

comment the procedure declaratioA for chekch- must____,__
be inserted here;

repeat: if i > n - k + 1 then go to zero;

chekch(n,s,2,c[1],p);

if p = 0 then go to ,endchekst;

,if .p >n - k,+'1 then E2 to zero;

r:=p+1;- j:=2;,

test.: if. j > k then go to endchekst;

if s[r]-= crj] then

begin i := p 1;

go
i

to repeat;

end; o

. end;'

Figure A5-13 A procedure inside a procedure

,

One way to code the procedure declaration for chekst is seen in Figure

A5-13. We know that there are various forms to code a flow chart. Each form

may be an equally valid program; the choiCe of one over another is often's

4latter of taste. To illustrate this point we'present Figure A5-13a which is

equivalent to Figure A5-13 but has a very different appearancA Which do you

prefe#?,

na

o

procedure chekst(n,s,m,k,c,p);.
-

integer n, ML, k, p;

integer array s, c;

begin
o

AInteger r, j;

A5,

comment the procedure"declaration for chekch must
be inserted here;

2:=m;

rep ;at: if i<n-k+1 then
begin A

chekch(n,s,Z,c[1],p);

if p / 0 then

begin

if p < n + 1 then'

begin

r: =p +1;

for j:=2 step 1 until kvdo

'begi

4 4 end;

end.

else pi=0;

end.

,

end
,

"else p:=0;

if s[r] = c[j] then

rt=r+1 else

begin i:=p+1;

go to repeat; ,

end;

end;

igure A5-13a. An,alternate procedure declaration
for chekst

The l4teriitilig thin

they make use of another

Aninspectio of the struc re of Figure.A5-13 shows,us how procedures can use

ot11011 proce res to any level. Figure A5114 displays this structure.
r

AEI

about either of these,procedure declarations is that

ocedure and so contain a "subprocedure declaration ".1

151,9 :s1A1

"

1/1" "
t,

is

.

A5

.

,.....'

. 4 FiguregA5-:14. Structure of nested procedure declarations

,/

procedure head

begin

body'(declaration part)

subprocedure head

subprocedure.body
subprocedure
declaration

body (statement part)

end

Procedure
Body ,

' Procedure
declarativi

ft,

c.

,

One Tgriher point should be.-made here.. It'is often very conveniept to

consider the length of a string, and the string itself, as beipg part'of a

single entity. Onk way to do this La,to use an,array, say str, with the
. ,

property that its first componentr'str[01 is an integer equal.to the length

of.the string, while its remaining components str[1], str[2],. _and lb. on, are

the characters themselves.

1".
.

If 'we now denOte character far Which the search of chekch is 'being
. ,

*made by char, the procedu decla?ation for'` chekch is shown in FigAreA5-15.

.,..

I.

a e r

rJ

tyt

100

Vi1 .4.10

comme`5tt ---tb-d'fied procedure declaration for chekch;,

'proced e chek (str,m1char,p); °
4

integer m, Qhar, p;

integer array str;

begin

integer i;

for . step 1 until str[lJ do

begin

if str[i] = ch44r then begin p:=i;

go to endchekch end;

end;

P:=9;

endchekch:
end':

'Figure A5 -15. A.new,c,heltch

A5
,

Exercises A5-6

1 - 4. For the flow charts prepared in Exercises 5-6, Main Text, write ALGOL

procedures and/or Calling programs.

"1 2 1

4

D

, Chapter A7

SOME MATHEMATICAL APPLICATIONS

.

'A7 -1 Root of an equation by bisection

0'

Since finding theroot of, an equation is such a common problem, we shall

write the ALGOL progrefM ie the.form,of a procedure called bisect. This program

will correspond to the flow chart of Figure 7-5; then we will write an ALGOL

program whichcIlls this procedure:

' The parameters of the procedure are clearly a and b, the

endl of the interval under consideration, a tolerance, epsi, which

specifies the acracy.of the resufb,and a variable, root, which

will be set equal to the root of the equation.

Figure A7-I shows one way to code the bisect procedure. The first'Ching

that is d6he in the body of bisect is to reassign the values of parameters a

and b to auxiliary variables -xl and x2, ,respectively i as a safeguard to

protect the values of arguments that match a and b in 4he calling program.

We protect against the possibility of there not being,a root,in'the interval

by printing the message indicated in this case.

16,2

4

9

AT

fW

procedure bisect (a,'b, epsi, rootIL

begin

real xl, x2, xetemp,
?

xl := a;

BtX6t

real a, b, epsi; root;

x2 := b;

yl := f(xl);

temp := yl X f(x2);

if temp > 0 then write ("Method is inapplicable")

else if temp = 0 then

begin if yl = 0 then root := xl else root := x2;

write (a, b, epsi; root);

r.

end

else begin

xm := (xl + x2)/2;

if abs(x2 - x1) > E then

begin temp := yl x f(xm);

if temp < 0 then

begin x2 := xm; go to BOX6; end

else if temp > 0 then

begin xl :=xm; go to B0X6; end;

end

else begin root :=,2t;

write (a, b, epsi, root);.-

----end;-'

41i4
, end;

,end 'bisect

Figure A7-1

Now suppose we wantedlto procedure to :Find the root of the equa-

tion - 7x - 2 = 0 which lies between 1 and 2. Then we should need to

define,a real procedure which calculates the value of 3x3 - 7x - 2. If we

'choose epsi = 10 - we Would then need to-call bisect bytheptatement,

bisect(1,2,10 ,root).

120

1.23

a

'The ALGOL program could. be, written As follows-:--;

rs

begin

end

Comment Place the d$claration of the'Procedure:Ergett-here;

real procedure f(x);;reallr;

f:'=(3 x x - 7) x x - 2;

real root;

.

bisect(1,2,10
4

;root);;

)

Suppose we wish to use the bisect procedure with a series of functions

Tho4gh desirable, this wbuld be difficult with bisect as written.

have,to reproduce the procedure bisect and "package" it with each

separately. What we need is some means by which to jdentify each

We woud

function

of a series

of functions so that we can' communicate to the orocedure bisect which of the

functions it is to use when called. Most ALGOL processors take care of this

problem by allowing the function itself to be'a parameter of the procedure.
,

Find out if your processor will allow you to do this In this book weare

assuming this is the case.

O

We now revise our procedure, renaming it "zero" and adding the function

name f as a parameter. We.also add the,statement label L as a parameter

(also permitted.in most ALGOL processors). Now we can have a parameter list

that is identical with the one in the funnel of Figure 7-6. The revised ALGOL

procedure is given in Figure A7-2. It matches in nearly every, respect the
6

flow chart procedure given ip the main text.

A

9

3.24 ;'

A7
N.,

procedure zero (f, L, a, b, epsi, root);

real a, b, epsi, root;

real procedure f;

label L;v

begin

BOX6:

A

"OW

real xl, x2, Imt, temp, yl;

xl := a; x2 := b;

yl := f(xl); temp := yl xf(x2);

if temp > 0 then go to L

else'if temp = 0 then -

. begin if yl = 0 then root := xl else root := x2; end;

else begin

end zero

xm + x2)/2;
. ,

if abs(xl - x2). >. then

begin temp := yl x f(xm);

. -

end

if temp < 0 then
1

begin x2 := xm; go to BOX6; end. .

else if temp > 0.then

begin xl = go to 30X6; end;.
, ..'

elde root := xm;

end;

Figure A7-2-

Along with the two new parameters f and , we notice two new deq.ara-

tions in the head of the procedure:

real-procedure f

label L;

These declarations are necessary to convey to the 2aompiler the vital

iiiformation that the iden.ter f is not e. variable but a placeholder for

a function name. Similarly, must tell the compiler that the identifier

L has the meaning of (and is placeholder for) a label.

122

125

A7

Now let us use this second procedure to find the root of 3x? - 7x -.2 = 0

between 1 and 2, the root of x5 - 4x4 +-7x3 - x + 3 = 0 between -1 and

0 and the root of x cos(x) between 0 and 1. Eacli of these equations,

can be thought of as a function of x. We give each a distinctive name:

f(x) =3x3 - 7x - 2 = 0,

g(x) = x5 - 4x4 + 7x3 - x + 3 = 0,

and t(x) = x*-.cos(x)

If we choose epsi = 10
-4

, we could then write the ALGOL program shown in

Figure A7-3.

begin

real procedure f(x);,real x; f := (3 X xt2-.7) x x-2;
,

real procedu're g(x); real x; g :='(((x-4) x x+7) x xt2 -l) x x+3;

real procedure t(x); real x; t : ='x- cos(x);

comment Place the procedure declaration for zero here;

real root;

zero(f,labe1,1,2,.0001,root);

write(root);

zero(g,label,-1,0,2, .0001;root);

write(root);

zero(t,labe1,0,1,.0001,root);

write(root); fic2 to BOXx;

label: write("Method is inapplicable"); BOXx:

end

Figure A773

We :low show that it is possible, if we wish, to complete the analogy

between our: LGOL zero and the flow chart procedure. Up to now we have pro-
,

teeted the incoming values'for the third and fourth parameters by reassigning

theseto the auxiliary or 16cal variables xl and x2 inside the procedure.

This achieves the intent of the "wa4y,linea", i.e.,, xl , x2 used in. the

funnel which tells us to protect these values. ALGOL gives us an optional way

to achieve this that is closer in spirit to the wavydlines. We see this done

in Figure A7-4 wheretwe.repeat the head and the first few statements of the

body of a final vertion of zero.

12E)G

Q
A7

. procedure zero (f,L,x1,x2,ePsi,root);

real X114,epsi,root;

real procedure,f;

a label L; 4 4

begin

real xm,temp,y1;

f(xl); temp := yl x f(x2);

.c

Same as Figure A7-2

E

end

Figure A7-4. Final version

Notice that we have used the parameter, awes xl and x2 in place of

a and b, but have declared these in a special declaration

value xl,xa;

to be parameters whose values are being supplied to the procedure (i.e., slips

of paper and not window boxes). Making xl and x2 each a "value parameter'f
1. 0

means, we -no longer need the explicit protection mechanism we used before of

writing assignment statements that transfer the values to local variables.

If you decide to use the value ,&claration in'any of the procedures you write,

remember this simple restriction: A value declaration must be the first dec-

laration in the procedure heading after the procedure name and the parameter

list are given.

1

124

127

41.

v)

Exercises A7-1

1. Write an ALGOL "driv

Exercises 7-1, Set

and'ih; indicated

with epgi = 10
4

hand-calculated o

2. Write an ALGOL p

drawing the gra

3. Write and run

Exercises 7-1,

hundredth of

the crossove, poin

gram to solve all of the equations given in

n'text. Use the indicated intervals

olerances. Include equation 3 a second time

the program and compare your results with the

to'carry out the function evaluations, needed in

Exercises 7-1, Set A, main text. Run yoUr program.

A7

L program to solve the alley problem (No. 6) in

main text. Then solve the problem to the nearest

if the ljdders are 2583 -and 19.14 ft. long and

is 7.t7 ft. ab8Nie the ground.

4 - 5. For each of the flow chart sblutions you prepared for Problems 1 and

Exercises 7-1, Set D, employ the zero procedure (Figures A7-1 or

*7 -2) and write the companion ALGOL program and function procedures.

15

$!,

A7

A7-2 The area under a curve: an example, y = 1/x, Between x = 1 and x = 2

Since the area under the curve y =1/x is of interest in defining loga-

rithms we begin by ,writing a simple ALGOL program for the calculation of_the_ _

approximate area under this curve between x = 1 And x = 2. This calculation

will provide an approximation to £n2. We assume thnt-an-e=ar,tolerance epsi

is read in from a card and that calculation of the approximate area isto be

carried out by doubling the number of subdivisions each time and _terminaing

the calculation when the absolu4 value of the difference of two successive

approximations is less than epsi. The following program in Figure A7-5,-follows-

closely the flow chart of Figure 7-16. Remember that f(x) = 1/x.

begin .

i integer n, k;

real epsi, AREA, S;

array ,T[0:100];

read (epsi);

2[0]:=0.5 x (f(1) + f(2));

n:=1;

BOX3: S:=Q;

for k:=1._ step 2 until' 2 4 n- 1 --do

S:=S + f(1 + k/2 4 n

T(n]:=0.5 x T[n-1] + S/(24 n);

if- abs-(T[n] - T[n-1]) < -epsi_then go to BOX9;

n:=ir-+ 1;

go to BOX3; ,

BOX9: AREA' := (n];

write("AREA =", AREA);

end
Figure A7-5

Exercises A7-2

r

1. In the above program it is implicitly assumed that the calculation wil

. 'terminate before n exceeds 100.

(a) Is it possible for n to exceed 100 ?

(b) What would happen if it failed to terminate before 0 exceeds 100 ?

(c) Add some statements to the above program to protect against this,

undesirable event, even if the error tolerance is not satisfied._

Print out a message in this case indicating failure to satisfy the error

tolerance.

126

12 4

et.

AT

' 0
, 5 -

2. Criticize the above progiam for inefficiency. Revla,eltta-maltmore
efficient by following the flow chart of Figure 7-17.* Also incorporate

a safety termination if n

first 0.01 and then

exceeds 100_4_..11th...Y.Orevised program using

0 .-00r eis-Thralitel= e'psi

3. Instead of rminating the calculatiOn of the approximate area when the
,

absolute value of the difference of two successive approXimations is less

than e we coulgt,terminai:e :the calculation after a, fixed finite

number ofappr tions have teen calcUlated. Revise4thd program of the

previous problemto read in an",:4pper limit for the number of iterations to

be car'ied out n-to terminate wheilthis is reached. Run your

program for 15.

4. Explain how to 'revise thetprograM;given in this section so that the calcu-

lation coulebe repeated for a series of values of epsi each of which is

read in from a card.

5. Write an ALGOL program for the calculation describtd in Exercise 7-2, Set C,

Problem 6, main text. Use f(x) = l/x. Run your program and compare

results 'using n = 5, 25, 75, 125, 200.

I 1210 0

-#

4

A7

k

' A7-3 Area under curve: the general case
.

We now, consider the general case of finding an,approx' tion to the area

under a curve y = f(x), above the x-axis and between th vertical lines
1

x = a and .x . b. In order to make the program as usefu es possie we'shall
- -

write it in the4form of a procedure. ThefUnction- f(x) 'is assumed to be
. p

defined as areal procedure. An eeror viance epsi is given and we term-
,

inate the calculation when the absolute flue of, the, difference *of two succes-

sive approxidations is less than epsi. ', follow the flow chart of Figure 7-20.

real procedure area(e b epsi
3
g) real a3 -b

3

epsi; real prbcedure f;

begin N:

integer k,m;

real h, S, OLAREA, NUAREA;

m := 1;

h := b - a;

OLAREA := 0.5 x h x (f(a) + f(b));

BOX3: m := 2 x m;

h := h/2;

S := 0;

for k := 1 step 2-until m-1 do

S := S + f(a + k x h);

NUAREA: := 0.5 X OLAREA + h x'S;.

. if abs(NUAREA - OLAREA) < epa then go to BOX9;

OLAREA = NUAREA;

go to BOX3;

BOX9: area :.,NUAREA;

end area

. -

If we want to use this procedure to calculate and print the approximate

area under the curve y = l/x, above the x-axis, ana belween the lines x = 1

anti x = 2, we might use a tolerance of epsi 10
4

and then we could write

the following program:

begin

end

real procedure f(x); real x; f := l/x;

comment Place the above procedure declaration fpr area here;

real z;

z := area(1,2001,f);

write(1,2',z);

r

A7

Exercises A7-3

,l. (a) Write an ALGOL Ttnction procedure area2(a,b,n,f) which calculates

an approximation to the area under thepcurye y = f(x), above the

x-axis, and between thehaines x = a and x = b And which uses a

subdivision of the interval (a,b) into n equal parts. Follow

the flow chart drawn in Exercises 7-l'aoblem 1, of the main text.

Test your program for y = in x between x = 0 and xi= n With
fw

n = 000. (How does your result compare with the area of a semi-

circle of diameter it ?)

(b) Use function area2 to print out a table of natural logarithms for

numbers from 1 through 51 ,141 intervals of 5. Also, print out

the library function ln(x) for the same values of x for com-
.

paridoh.

.2. Tell how the Procedure area (a,b,epsi,f) of this section may be adapted to

protect against the possibility of an endless loop by causing termination

of the calculation if the number of subdivisions exceeds n. If th

iplIculation isiterminated in this manner without satisfying the accu acy

(criterion, a message should be printed in addition to giving the approx-

imation to the area.

3. Write an ALGOL program in which you first declare the procedure area of

this section and the procedure area2

'procedureswith appropriate values of

imations to the areas described below

of the interval and then use an error

of problem 1. Then call these

the parameters to calculate approx-

. First use 1,2,4 equal subdivisions

tolerance of eDsi = 10-3. Of course,

you will need to Suppl the necessary real procedure declarations to define,

the functions whic enter into the descriptions of the areas.

(a) Below y% .43429/x, above x-antis, betweed x = 1 and x
(The rea is log"3.),

,slow iy = 3x2 + 2x + 1, above x-axis, between x = -2 and x = 2.

Below y = x3,, above y = x
2
, between x =, 1 and x = 4.

. .

'Write an ALGOt"program and necessary real procedures that can be used in 504.,.
.----

,:.

calling on drea(a,b,epsi,f) to compute an approximate value of n to

four decimal places. (See Problem 6, Exercises 7-3, main text.)
:',

AT

0

A7-4 Simulta neous linear equations: Developing a systematic method of solution

In this section of the main text we explained carefully how to solve_

systems of two and three simultaneous equations. Exercises 7-4 provided exam-

pies of the method. You Should now be ready to write a simple ALGOL program

for the gaution of two simultaneous equations in two unknowns.

Exercises A7-4

1 Follow the flow chart drawn in Exercises ?-k, Set B, of the,main text,

and write a corresponding ALGOL prografor the solution of two simultan-

eous' quations i n-two unknowns

p a
11

x
1

+ a
12
x
2

= b
1

a
21

x
1
+ a

22
x
2

= b
2

I

4
Z. Use the program of Problem 1 to solve the following systems of equations

on the_ computer. Make a hand-calculated -check of your computer results.

1'or syStems,(f) apd (g), slide rule accuracy is sufficient.

(a) 4x - 2y = 5

'2x y,E 4

to,

(b) 4x
5

2 - 4y .-, 7

(c) 3x - 4y = 12

'4x + =3

(b.) 2x + Wy = ,7

3x 4- y = 2 0-

(e) 5x + y = 2

3x - 4y 7

(f) 3.124)(1'4- 5.375x2 = -1.234

10.245x1 - 5.214x2 = 3.714

(g) 5.128x1 - 3.874x2 = 12.42

3.817x
1

+ 15.157x ,= 3.784

,

130

1

J.

A7

-A7-5 Simultaneous linear equations: Gauss algorithm

In describing the solution of three equations in three Unknowns we des-
-

.
cribed each of the essential operations in.turn and drew a flow chart for each.

. .

It will beinstructive to build ire ALGOL program in the same gradual fashion.

"*we ?gin by dividing thefirst equation through by all, as described in Figure

7-24: The. corresponding ALGOL statements woula.be:

for j:=2 step 1 until 3 do

a[10]:=a(1,ji/a[1,1];

b[1]:=b(11/a[1,1];

The .elimination of x
1

from the i
th

row, i = 2,3 is described in

` Figure 7 -25 and the corresponding ALGOL statements, would b6:4

for j:=2 step, 1 until 3 doM
a[i;j]:=a(i,j) - a[i,1] x a[10];

blil:=b11] - a[i,1] < b[1];

Next we hgv to divide ti*: pew second equation by a22 and then\liminate

x
2

from the third AlU4Idn. Following.these simple examples, you should have

little trouble writing the ALGOL that's equivalent to Figures 7-27 through 7-30.

0

Exercises A7-5 Set A

1. Write the AWOL statements corresponding to the flow chart of Figure 7-27.

2. Note the similarity between the statements of Problem 1 and those corres-

ponding to Figure 7-24. Write a single set, of ALGOL. statement's t19 cover '

both cases by following Figure 7-28.

3. 'Write the ALGOL statements for the flow chart of Figure 7 -30.

4. Now write the ALGOL"that's-equivalent to Figure 7-33.

4

J

-AT

Next we want to carry out the back solution in order -Co obtain x3, .x2, xi _

in turn. This is described in the flow charts of Figures 7-34 and 7-35. The ?

ALGOL statements corresponding to the latter flow chart, Figure 7-35, would be:

for i-:= 3 step' -1 until 1 do

begin

x[i] := b[i];

for j := 3 step -1 until i + 1 do

:= x[i] 4[i,j] x x[i];

end;

Now just as the complete flow chart of Figure 7-33 was built up from par-

tial flow charts, $o we can build up the complete ALGOL program corresponding

to Figure 7-36 from the partial ALGOL programs which we have just discussed and

which you have written in Exercises. A7-5, Set A$

Exercises A7-5 'Set B

1. Write a complete ALGOL program for the Gauss Algorithm given in Figt. 7-36.
, .

2. Run the above program on yodr mao31ine and use the program to solve the

systeL6f'simultaneous, linear epations

(a)' 3x + +-z = -7

2x +,4y z = 3-

3x 5Y + 3z =7

(h) x + 2y - z.= 4

3x - 2y + 4z = 1

x- 3Y - 2z = 7

; - (c)

Pr

(a)

0

represented by the following

4x - 2y - 3z = 7

5y + 2z = 1 !"

2x +-y+ 2z =1

2x - y + 6z --to
3x - 4y +- 4z = 1

x + 2y - 5z = 7

3. Now use the above program on your-machine to solve

,equations:
=-+

(a) 3.147x1.+ 2

6.241x1 5

3.841x1 + 5

,,A).27.147x, -

. 31.468x,

11.121xi
D.

.419x2 3.479x3 = 4.219

.678x
2

+ 4.271x
3

= -52.17

.761x2 + 34.3+3 = 27.14

3.417X2 - 3.47.9x3 = 5.617

3.428x2 + 4.719x3 = 31.421

3.171x2 + 5.314x311, 47 121
.

di

these systems of

ti

132

1.35

-

Solution of n. equations in n junknowns

The generalization to n equations is quite easy if we follow

exactly the pattern we just used for 3 equations. You are asked to make the

necessary changes in the partial programs in the followiN,exereises.

45
Exercise F7-5 Set C

Revise your ALGOL program for the Gauss Algorithm to handle n equations

and n unknowns, according to the procedure flow chart you prepared for

Problem 2, Exercises 7-5, Set AI main text. Call the procedure Gauss. Test

the procedure using the 4 by 4 system given in Problem 3 of Exercises 7-5,

Set B, in the main text. Show the calling program which calls on Gauss.

*Exercise A7-5 Set

In Exercises 7-5, Set C,.of the main text you'Were asked to insert

"partial pivoting" as a capability of your floi; chart for the Gauss

procedure. Show the corresponding changes necessary to the ALGOL pro-

cedure Gauss which you prepared in the preceding exercise.
O

Use the revived Gauss procedure to solve the following systems of simul-

taneous linear equktions with and Without partial pivoting.

(a) 3x2 - 4x3 = -4

3x1 - 2x2+ 4x3 = 7

+ 15x2 - 3x3 = -4

(b). 2x1 - 3x2 4x3 = 7

4x1 - 6x2 + 13x3 -1,11

2x1 - 7x2 - 12x3 = 1

f3,33

0

O

S

ALGOL character set, 8
Algol 60, 1
alphanumeric data, 39 0'

alternate exits from procedures, 109.
i' area under a curve

from = 1 to x = 2, 126
genelel case, 128

- arithmetic expression, 22
array declarations, 74

for doubly-subscripted variables, 78
array input and output, 75
array storage, 73
assignment meaning when there are type

differences, 32
assignment statements, 22

a

a

INDEX

4

-bisection process,
block, 97
body,of a piogram, 36
branching, 45

from procedures, 109
Burroughs Algol write statement, 56

calling a procedure, 107
card layout, 6 ,

compotition of fuqction designator's,

compound conditions, 62
compound statement, 36
computer program, 2
conditional statement, 45

else type, 49

"' double subscripts, 78,
duMMy statement, 61

for'clause, 81
for statempnt, 81.
format, 57
function designator, 100
function naiades as procedure parameters,

110
-

function procedure, 98, 103
function reference, 28

'k functioness procedure parameters, 122

at 1

Gauss algorithm, 131
02:to statement, 4
greatest, integer function; 35.

HALT, 61
'head of a program, "36

identifiers, 10
if statement, 45 -,

identifying remarks in output, 55
input-output statements, 15
integer

division, 25
procedure, 98
type variable, 10

iteration, 81

labels, 10
As procedure parameters, 110, 122

local variable, 1041.3,,

looping, 81 -

multiple branchirig, 62

'nested conditionals (2-wayobranchas

only), 58
nested loops, 93
nested procedure declarations, 116.."-,-

'non-local'arnipblei 104`
numerical constants, 8

operator symbols, 13
order of computation) 31

parameter list of,a,Procedure, 104
procedure

bisect (a, b, epsi, root), 120
`body, 97

call, 107 '

declaration; 97
'head, 97

zero'(f, L, a, b, epsi, root), 122
procedures, 97
program, j7
pioper procedures, 106

_

read 'statement, lb,
real numbers, 7
real procedure, 98
real type variable, 10

simple statement,. 36

simultaneous linear equations, ly?:,,
aburce programs, 2
spacesx;14
specieT symbols, 13 .

standard mathematical functions, 11
STOP; 61
storage of ddubly-subscripted arrays,

string, 112
string procedures, 112
Subscripted variables, 73
symbol manipulation, 11

in extended ALGOL, 111'

.

1a

o

A

table-look-up,.91
target program, 2
.type of an evaluated expresSion, 23

unary minus, 30 %
1

value declaration, 124

variable (value) protection in ALGOL, 123
variables, 10

write statement, 19

lk

138

p

OP'

11.1.11.

