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ABSTRACT

False,positive and false negative decisions are the fundamental'

errors committed with a mastery test; yet tbe estimatfon.ofTthe

likelibood of committing these errors has-not been investigated. .

Accordingly., tWO methods of estimattng the likelihood of coMmitting

theseerrors are.deScribed and then investigated using Monte Carlo

'techniques. ConditionS for obtaining accurate estimates are rioted..
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6TIMATING THE LIKELIHOOD (Y. FALSE-POSITIVE AND

0 FALSE-NEGATIVE DECISIONS IN MASTERY TESTING:

AN EMPIRICAL BAYES APPROACH

1. 'Introduction

Typically a mastery test is.designed to sort k examinees into one:of two

mutually exclusive groupS. For example, in'a program of Individually Pres-.

cribed Instruction a Student's progress through-each level of a program of

study is governed by his performance On a test dealing with individual be-
.

havioral objectives. The.purpose of a test in such situations is to make

a mastery4nonmastery decision for each of k examinees. If a mastery deci-

sion is made for a particular examinee then he is advanced to the next level

of instruction.. f,however, a nonmastery decision is made he will be giVen

remedial work.

A model ,af mastery testing whia is frequently adopted may be described

as follows: A pool or domain of dichotomously scored test items, having

mixed item difficulty, is constructed in'relation to a particular course of.

instruction. The item pool may exist de:Ifacto or it may be a convenieni

conceptualization. The item form W.' ively and others (1973) repre-

sents such a conceptualization. Let x4 the percent correct domain

.th
/ '

or"truescoreof.Oelexaminee;x.represents the percent of items that

the ith examinee would answer correctly if he were to respond to every item

in the item pool at a given occasion in time. With respect to the domain of

'

items an exaMinee iS said.to haVe attained mastery if .)., > xo and nonmastery
,

ifx.<x where-A is a known constant with a value'between zero and one.
1 0 0

The problem is to make a masterY/nonmastery'decision for a given examifleeAoased
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en tis responses to n items randomly selected from the item domain.: A maitery

decision is made if an examinee answers n
()

or more items correctly where-

0 < no < n. Note that xo corresponds to econcept of mastery and no to a

mastery score or index (Harris, 1974). We further observe that the model of

mastery testing just described is equivalent to the ranking and selection pro-

blem of partitioning k populations (examinees) with respect to a standard.

This model provides,a reasonable description of mastery testing and is

consistent with definitions of mastery or criteri(41-referenced tests (Glaser

and Nitko, 1971; Harris', 1974). (See also Hambleton and Novick, 1973; Fhaner,

1974; Novick and Lewis,.1974;. Huynh, 1976;. Wilcàx, 1976):

A false-Alosttive error occurs when the examiner estimates an examinee's/

true score x to be above the criterion level Xc, when in fact it is not. A

false-negritive error occurs when xi is estimated to be below xo when the reverse

is true. False-positive and false-negative errors are the two errors that can

be made in a two-valued classification, yet,the estimation of the probability

of committing these types of errors in connection with mastolry testing has

been virtually ignored. Instead attention has keen given to measures of stabi-

lity such as the proportion of agreement (Hambleton and Novick, 1973) which

estimates the probability of randomly selecting an examinee and classifying

him the same way based on two administrations of the same test. Certainly it

is desirable to have a test with a high degree of stability. However; it'may

be that such a,test,is consistently inaccurate.
a

Let a and a equal the probability of committing a false-positive and fal.se.:

negative decision, respectively, for an examinee chosen at random froth Some

population of potential examinees. -Observe that the values of both-a and a are
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a function, of the number of itemson the test as well as the instructional

history of the examinees. Consequently, knowing a and 0 provides a meaningful

,characterization of the entire teaching-testint.complex. The puryose of this -

paper is to examine the problem of estiMating a and:S based on student response

data.

The binomial error model gives a reasonable approximation to the observed

score distributions-on tests (Lord, 1965, p. 253), but the compound binoMial

may be more realistic (Lord, 1965, Section 6; Lord-afid Novick, 1968, Chapter

23) and hence may give more accurate results. Accordingly, two methods of

estimating a Ldd 8 are described and the accuracy of these statistics are

examined underbOth the binomial and,coMpOund binomial error Mode7' SectiOns

3 and 4 derf.9e estimates of a and 0 assuminy that.,_the distribution of true

scores- belongs to a particular parametriC family. Section 5*(aAnes the

accuracy'of these estimation procedures using Monte Carlo techniques. .

2. Mathematical Statement ofthe Problem

As indicated earlier, we let Ai denote the proportion correct "truel%score

ofanomnineetaingannitemtest.'WeregardA-(i=1,...,k) as a sample

from a prior distribution, say g(A), where'0 < < 1. Let h(x
I Ai) be the -

distribution of observed scores for a given true score Ai. Assuming that g(A)

is an integrable function and since h(x I
Ai) is discrete we have,:

n , A

.- (2.1) ,a . E fo° h(x i-A) g(A) dx.
x.no

and-
no-1

1
(2.2) 0 = E , h(x 1 x) g(x) dx

x....0 A0
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If we knew g(X) and if we assume h(x'l is'binomiarwe would also know

a and 8...However, 9(A) is usually unknown.- The approach _taken here is to use

eMpirical Bayes procedur& to estimate g(X). When 4i(x
1
x) is assumed -6 be

compound binomial, it.too must be estimated.' ,We are particularly interested

in the accuracy of pointestimates of a and 0 for relatiVely small ValUes of

k and.n. We emphasize that the results given below do not reflect directly

the accuraCy of our estimate.of g(x).. In fact we are'only concerned with'an

accurate estimate'of g(x) in so far as it improve3 our, estimate of a and a.

It may be, for example, that a relatively poor estimate of g(x) will yield

a reasonably accurate estimate of the frequency of occurrence of both false--

positive and false-negative decisions.

As a measure of the accuracy of,any statistic & whip is used tO esti-

mate a we use the expected value of the square of the difference of a and &

4

over the joint distribution of x and A. That is, we:Use

2
(2.3) w

a
- E fo (a-02.h(x r A) g(X) dk. ,

x=0

which corresponds to the average risk used 4n empirical Bayes method:, (see,

e.g., Maritz, 1970, p. 3). When estimating p with g we usew which is

defined by replacing (a-4)2, with (8-R)2 in (2.3).

3. 'Estimation of a and scassUming a beta prior

The eAimation of the prior distribution g(x) is a most difficult problem

for which no general solution exists. It behooves us, therefore, t6copsider

the estimation of g(x) under a variety of conditions. We begin with perhaps

the simplest, but also the most severe restriction on the family of prior
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aistributions, namely, that g(x) is an incomplete beta distrit:ution with

parameters r and s. That is,

i7

s)
A
r-1

(1-x)
s-1

g(A) = .1 r r s)

where r is the usual gamma function. This assumption is restrictive because

there is little if any doubt that g(A) does not belong to the family of beta

priors:: Yet there are several reasons for considering this case. First,.the

beta density is the natural-conjugate prior of the binomdal kernalli(x I A)

(Raiffa and Schlaifer, 1961). Second we have indentifiability, i.e., there

exists a unique g sOch that

1 (3.1) f(x) = I! h(ix I X) g(A) dx

where f(x) is the marginal distribution of observed scores (Maritz, 1970,

chapter 2). Third, there is evide#Ce-that a reasonable though*not entirely

satisfactory approximation of the true score distribution can!be obtained with

a two parameter beta prior (Keats and Lord, 1962). Finally, and,perhaps most

importantly of all, the results of estimation procedures assUming a particular

parametric form for the prior may be used as a bench mark for j.olging alter-

nate estimation techniques.
46

Let x. (i=1,...,k; j=1,...,n) denote the jth observation pn 4he i"
ij

examinee. By estimating the parameters 7. and s of the beta prior based on the

sample xij, we obtain an estimatelof g which' in turn yields an estimate of

both a and f3. We begin by describing a method of estimating r and S which

"S"lesthatthebinCnialerrornlodel(LordandkArias196Ei,
hapte r 23) holds, i.e.:f

(A

h(x I A) =()(11)Ax -A)n--x



Let M[t] denote that t
th

factorial moment of the marginal,distribution of

observed scores, i.e.,
n. x!

M[t]
f(x)

= E

Let p
t

represent
't
he t

th
moment of the true score distribution g(X). Then

(3.2)

(n t ) 1M
Et]

Pt

(Lord and Novick,'1968, expression 23.8.4). We oktain unbiased estimates of

M[1] and Mr2] with
L

(3.3a) A , 1/1( Ek x
[1] , 1.1 1

(3.3b)

where x 1-1 ij.

(3.4a)

(3.4b)

A
[2]

k 2
l/k E

i=1
(x

i
x )

From (3.2) we have that

(n 1))

are unbiased\ estimates of u and p
2 .

Thus, the Mean, say u and the variance,
I

1 . .

2
say a , of the prior distribution may be estimated as

(3.5a)

(3.5b)

.

%

.2. - 2

a

NOte that it is.pOssible to have Mfai =0 and M[i] > 0 resulting in a negative

estirliateofativis_occiirsweestirliateeadix.as

Ik En .4/(kn).
f=1 j=I

-;)



For this special condition, if A we estimate a to be Zero and .60 be

n -1

E° (n)(1)x (1-)n-x Correspondingly, if A < Ao, we estimate s to be zero
x=0 x

and'a to be En 01 (

x=n x/
0

In terms_of r and s

(3.6a)

n-x

U.
vs(3.60

(r + s)2 (r + s + 1)

(Johnson and Kotz, 1970). Solving (3.6) fay' r and s gives

(3.7a)

(3.7b)

SUbstituting in (1.7) and a2 for u 'and a2, resPectivelY, yields an estimate\

of r and s, say is and i. The estimates of r and s maythen be used to

estiMate a and as

(3.8a) , 2 fA0 (n) Ax(1..),)n-x r(i" xCs-1(1-x)i-1 dx.x
x=n r(i)

0

(3.8b)
1

F fl tnI Ax (1_x)n-x ras Ais-10_AO-1
'3 xo x/

x=0 ras) r(s)

As indyted earlier, the binomial error model may not be completely satis-
,

factory in an item sampling model. ,As suggested by Lord and Novick (1968,

, chapter 23) we use a two-term approximation to the compound binomial, viz.,

7



(3.9) kx

where

p + 60-0 C(x)-

.pn (x ) Cro

2

C (x) = E
V".0

(-1)/14:1*pm. (X-V)
1

Lord (1965) notes that.(3.9) is a close approximation to a frequency distribu-

tion for most cases of interest. Difficulties could arise if d were too lar2e;

we avoid these difficulties,by assuming 0 < d < 4.0. For all 16, distributions

reportedby Lord, the values of d were in thisrange., (See Lord, 1965, p. 264).

Under the more general comidound.binamial we are still 3ble to estimate a

\ and As'shown by Lord (1965, p. 265) the mean and variance of the distribu-

\..tion of true scores fcir the two-term approximation tO the ,compound binomial

error model are,givenlby:

!

(3.10)
Pi M[1]

(3.11)
2 2

,al - a - (n-2d) p q

where a2 is the varia ce of the distribution of observed

r
q = 1-p. The parameter d i given by

(n - q
02.

(.12) d
2[ (n -ti) -a -nal

IT
,

Px x x li-
,

\!where a:is the variance of the item difficulties d may be'estimated using

standard item analysis techniques: Hence, .he parameters r and s of the beta
i

scores., = M
[1]

/n and

prior may be estimated using (3.7) above.

4
8

4



, -.

( i I '''
:

:.
..

,

..

. ,

Substituting (3.9) into (3.8ah the estiMate,of a under. the'compound /

.__...

lyinomial, error mOdel is.
. ,

I.

(3.13a)
a

.ixo fvx ra' g) x17.-1

l(d)
xh0

r(r) r(;)
=

Correspondingly, we estimate 0 to-be

(9,130) fi-4d)

no-1

E f; (x I x) +j) *xl^"71

x=0

t

.

I . Estimati/On of a and B using an invers, sine transformation. ,..

,

In the
,
previous section a procedure for estimating a and s was described

/
. '

I `)

,
which is 'contingent upon estimating the parameters r and s of an assuMed beta

A .

. prior. One difficulty with this estimation procedure is that the statistics
i

and s no doubt%lack the desirable properties of4,unb rdness, maximu likeli-

, 1

hood, and efficiency. Consequently, one might expect estimates of r and s to
J

t I

,

be poor for relatively small samples. Since onwwould,hope that ac urate esti-
.

, I

mates of rand s would yield.accurate.estimates cyr/a 'arid .0.it mayl helpful to
\ .

-.\

.
search for more accurate estimates-Of r and t even though improve ent in our

estiMates of and s promisesttx:he a most diffictat task. Ton exmple., even
. .. r

in.the simpler rpore conventional case.in-which the,sampledvalOesix.i.are'known,

'1,.:1

maximUm likelihood estimates of r and s -are obtained iteratiVely. ,We proPose,
.

.

therefore,"Ao investigate the uce of an inverse sine transform w htich converts
-

a binomiarrandom variable into an approximately normally dAtributed ranch:in
0

i

variable with known variance, the variance being independent of the Value of

4

This is often called a variancest'abilizing tnsformation. The advantageNof this
\\

.9

01.
0





approach is that the esti

,

distribution can be expected to be more*accur4te relacive to th beta-L numial

vImeters characterizing th'

Inodel deqpribedabove if the transformatiGn used does indeed yield-a normally

distributed random variable. The disadvantage:Of this approach isythet the

transformed random variable is asymptotically normal and-thus avestimation

., procedure using small sampla may be poor. In addition., the rate of'convergence

to normality is,a function Of the-unknown parameter x,. The crucial question is,
,. '

of course, whether this apprbach reduces,the val6es of iva and wb as-defined by

(2.3) above:

Let

4 t .47-4*
(4.1) yi (4n .1- 2) ksin ( sin7 (1 Tv-TO

n

where, as before. x E x. 4 is^the observed score of the itl examinee.

, The transformation (4.1) is suggestedty Freeman and Tukey (1950) where yi

given x is approximately normally distributed"with mean

31

(4n 2) sin 1 )

and variance one. As in the previo0s section we iet and 0 represent the

mean and variance of tbe priOr:distribution. Herei4loweVer, the natural con-

jugate prior has A pormardistribution (Raiffa and Schleifer, 1961). Moreover,

the marginal.distributionaf observed score is also normallif distributed with

meang-and'varience a2 + 1.. It follows that

E(y ) = E(T)

E -E(y2 - 1 1 T) = E(T2
T

Hence, we may estimate p = E(T) and 02_= E(T

13
10
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(4.2a)

(4.2b)

E
'1=1

.'k

-2 1 E

7 V i=1

2 .2
Yi 1)

It is known. (see, for example, Hogg.and.Craig, 1970 p: 210) that the joint
/

probability density function of y and x is bivariate'normalbwith comMon meth,

respectiye variances 1 + a
2

and a
2

, and correlation a/ 1 + a2. Applying the/

lmethod,of moments,.as was done in the previous section, the estimales of a

and a are

(4.3a)

(4.3b)

where

and

2

fw 2-;11.-r exp
'

°""ii 1 dxscly
2 A

20

In
y = ½ (4n+2) Isin Ci/ +

n +

(4n+2)s1n (.70)

177 1'
0 1

k .71771"

sAgain we have the difficulty that a2 may be negative. In this case we set

-1'
E9 (0 0(4)n-x when

x=0

2 = E
(fl) ;IX (1-i)11-x as was.done in the previous section.

x=n0

> 0; and when X < A0 we se02=0,
"

It may be helpful.to indicate how (4.3a) And (4.3h) can be evaluated with
. .

existing computer subroutines. For convenience we.write the bivariate

I 4
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,

distribution of y and x as h(x 1 X) g (x). Observe that

.(4.4)
i
x) g(x) dx dy+J f. h(x 1

f(y) dy

g (x) dx dy

where f(y) is the normally diStributed, marginal.distrfbution of the observed

°saores y with mean i; and variance:1 a2. The first integral on,the left hand

side of (4.4) can be evaluated with the IMSL .subrouftne4.1975)._M8BNOR_aftor.

. the random variables y and-A are transformed so as to have common' mearrzeiii-;-

and variance one. The right hand side of (4.4) can bo,evaluated wi4 the FORTRAN'

subroutine ERFC; thus, we have the valuejiiC -.The statistic a2 may be evaluated

.in a simt)er manner. a

The transfohnatiOn-(4.1) is claimed by Mosteller and Youtz (1961) as well

as Pbsteller and Tukey (1968)-to

for the'binomial distribution. As

binomial may be a more appropriate

observed frequency of test scores.

e the best existing angular tra7formation

indicated above, however, the compo;d

probability distribution for descriiing'the,

To be conservative we introduce an inverse

sibe transformation for the compound binomial. The_desirability of using this

transforMation will be discuSsed in section 5 below.

A,s'shown by Lord (1965, p, 265) the mean and variance-of the two term

,ipproximation to the compound binomial distribution given bY (3.12) may be

written as px ind (n-2d).x (1-x). ;t.follows that

(4.5)
2n

sin-I (v'7.15)

rE=E1-

-1 6/K)
,

2n s nis asymptotically normal with and variance one (Rao, 1973,
n-21

1 5
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Section 6g). After estimating d via (3.11), one may use transformation (4.5)

in place of (4.1), then estimate p and a
2
with (4.2a) and (4.2b) , respectively,

!.

v

ane A a and s with (4.3a) i (4.3b). 'When a and B are esti-
,

1

-

mated using (4.5) for a given value of d we denote the estimates by
I

a ,

1 2(d)

ani'8
2(d)

,

'

respectively.

Method and Results Of Monte earlo Experiments

The -true_kore for each of the k examinees (the value of X i=1,. ,k)
I

was generated according to i beta distributi ,11 with Parameters r and s. The

priors used included 1-shared, U-shaped, Ic.tric and skewed distributior5.

Some these distribut is (e.g. U-shaped) 'robably unrealistic in °ems

of tr,..,:ery testing. Thc ' were included, how, so as to obtain1 more general

rest -;. Once X. was determined the observed Jre xi was generted accort-ng

to the two-term approximation to the cOmpound binomial given by (3.9) for

d=0.0, 2.5, 4.0. Expression (3,9) was evaluated by using the relationshipi

I (a, n-a+1) = E X
x

(1
nx

-x) in conjunction with IBM's SSr(1,1) subroutine
n -_

)(Fa

BDTR whare I denotes the inCompleteibfa function ratio'(see J hnson avid Kotz-,
x-

19-0, chapter 24). OVer 200'Monte Carlo studies were made for each of the .

/

estiOr-urs Al, &2 ant 82...

Initially:we set.X870.7 and.1)=x0. For each\ror dist ibution uted,

,

w
a

t., : w
b
were estimated oy first/using the exact value of d find then by

/

,

setting d arbitrarily equal to ztro. The values of k and n Were (k, n) =

(10, 10),- (10, 20), (10, 30), (20,10), (20, 20),130, 10). 1iA11 estimates .

/ '

of w
a

and w
b
were based on 500/iterations. For siiiilicity w6 discuss the

. r

results in terms of wa No additioral insights were found hen examining NI.

'4 16
13



Regardless of the true-score distribution usel, the value of d had

negligible effect on the value of, wa when (3.8a) was used to estimate a.

This result is illustr!.ed in Table ifor the special case (r, s) =.(9,2)
0).

and (r. s) = (3, 4, Ao = .7. Moreover, using the exact value of d in

(3.13a) generally had little effect on lowerinp,w as demonstrated in Table

0
a

II. One exception to this ffnding occured for k=n=10 and r=s=3. For dr-0,

0

NI was estimated to be .093 using (3.8a). For d=4.6, wa dropped to .079.

\

0

In geher , ;nowev:IT, varyirg the value,of d affected w
a

only at the third

/

.

..

Jiecimal pt.g.,1 This result also held when the more general (3.13a) wa.is used

which friclx-lanmat:-.1 the two-term approximation to the compound fyinomial. This,

finding Was nct surprising since there.appeers to be negligible change in the:

obspryedsicore o'id true score distvibutionsiNherr the value of d is altered

(Lori,

As 49, again it was found that altering d had little effect the

,val-Ue of w However, setting d arbitratilY equal to zero and uting trans-

,forilitiottericiedtb.givebettpromierAcalilesofwl:as opposed
A

to using trie .ct value of_d and transforiation (4.5). The apparent reason

for this

(4.5).

is that (4.1) converges more rapidly to normality than does

Table I a ,1 as Table II suggests that reasonably accurate,estimates.

of a can b ined particularly if n.is greater than or equal.,to 30. To

better assess t.ne"accuracy of & and42 weeresent Table III .whichgives the

values of *
a

-..)1° both a, and &2 where r=9, s=2,.
0=,5(.1).8.

Fromfhble III

we see that i; and a2 are very accurate for
o
=.5 but that this accurac dimi-

nz*:7,hes crably as Ao approadhes.8. .The difficulty is,that both &I a (12

s_



' tend to underestimate a. The results indicate that the amount by which a
\

'is underestimated increases as a gets large. In Table III, for example, the,

actual value of a is 0.005 when k=n=10 and Ao=.5. For A0=.8, a=0.157.

\- Note that for x =.8 the most effective method of lowering w is to
a0

inCrease n (the, number of items) as opposed to increasing k (the .6uMber of-
t.

Andividuals). iInAeneralybut not Always, increasing n will decrease the Value

of a. Consequently,iwe lower the value of wa by_increasing n primarily, because

We obtain more accurate estiMates Of a'When 0 is sMall. Intreasfng-k

,
'fixed also lowered W

a
but at.a much slower rate.

.
We also observed that neither of the'Statistici & or a2 dominated:the':,:

other, i.e., had consistently 'lower values for wa -Consequently4 based purely

on statisttcal considerations,,it:As imOossible to recommend one method of

estimation rather than the other. However, we see that a, dominated,a2 for

Ao !.6, .7, ,8 particularly for-% =' 4. The reason:is that Ci2 = 0,occured

more frequently due.to negalOve estimates of'the variance of the prior. Since

the values of'w were particularly lArge for
o
=*.8,-it woul&seem best' to

-

use &i, -On the otherhandt io-ensure,accurate estimates of a, .it moUld *seeni,

prudent to have n equal to at least 30:and preferably largeir. In this

:case, evaluating al.might,be.more difficult computationally ay having n large,

. however, accurate estiWes may sttll be-possible with a2.

,
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k,n

z
TABLE I.

Values of wa using (3:Ba),11x6=.7

100 0 10, 20 \,10 ;3 H20,l0 20, 20 30 10,

0.0 .043 .035 .031 .036 .028 .033

2.5 .041 .035 .031 .036_, .029 .034

4.0 .041 .035 .031 .036 .60 .034

r-=39 s=3

0.0 .093 -.059 .045 .0 .052 .087

2.5 .083 .057 .044 .081 ' .051 :081

4.0 .079 .056 .043 .07,7 .051 .077,

19
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. TABLE II

Mules of w
a
using the exact value

of d in (3.13a), A0=.7

10, 10, 10, 20 g 10, 30

r=9, s=2

2.5 ;.041 .034 . .,.029

4.0 .040 .034'-: .029.

r=3, s=3

. 2.5 .083 .052 .038

4.0 .081 .051 .038,

v

,

20, 10 20 go 30 10

.4137 .029 .035

,036 .030 . \
\

'.035

.082 .051 .082

.080 .050 .077

17
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'TABLE

lalues of w
a

, r=g, s=2, c1.4

k,n 10, 10 10, 20 10,30

Results using al

. 5 .017 L.:011 .008

td

. 6 .020 .014' .012

. 7 .043 , .035 .031

. 8 .106 ..082. .070

..5 .006 .004

.6 .019 .016

.7 :056 .035

.8 -.127 .100

Results using 4

20,

.016

.018

.036

.094

10 . 20,

.011

.012

.072

20 30,

.015

.016

.023

091

10

.004 .004 .065
,

.014 .020 .016

".- .041 :-.051 .048'

.085 .127 .100

21
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.005'

.020,

.058

.126
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