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ABSTRACT

Fa1se-posit1ve and false negative deciswons are the fundamenta1

errors committed thh a mastery test; yet the estimation of the

11ke1ihood of committing these errors has not been 1nvestigated

these lerrors are. described and then 1nvestigated using Monte Car1o
|

-techniques.

Conditions for obtaining accunate estimates are noted

Accordineg, two methods of estimating the 11ke1ihood of comm1tt1ng



ESTIMATING THE LIKELIHOOD OF FALSE-POSITIVE AND
5 . ‘FALSE-NEGATIVE DECISIONS IN MASTERY TESTING:
- AN EWPIRICAL BAYES APPROACH I

.o I " " 'Introduction

‘) Tybica]]y a mastery test is-designed to sort k examinees into one of two

~

mutua?ly exclusive oroups For examp1e, in-a program of Individua]1y'Pres-. ‘
cr1bed Instruct1on a student S progress throughe ach level of a program of e
L study is governed by his performancu on a test dealing W1th 1nd1v1dua1 be--
i hav1ora1 obJectlves The. purpose of a test in such s1tuat1ons is to maker
a mastery/nonmastery dec1sion for each of k exam1nees., If a mastery deci-
sion is made for a part1cu1ar exam1nee then he is advanced to the next 1eve1
of instruct1on . If, however, a nonmastery ‘decision is made he wi11 be g1ven '
remadial work. N o |
’A mode1 of masteryltesting which is frequently adopted"may-be described
as follows: A ooo1 or domain of dichotomous1y scored test items, having )
mixed item dffficu1ty. is constrycted in relation to a particu1ar oourse of .
instruction. Tne item pool may exist.dezfapto or it may be a convenient
conceptua]ﬁzationﬁ. The ttem form not*~ ively and others (19733 repre-
sents suoh a.conceotualizatfon. Let A, e the-oercent correct domain;
, or}"truef score,of°tbe ith examinee; A; represents the'percent of jtems that
the ith eXahinee’wou1d answer cdrrect]y if he were to:respond_to'erery item
in the item pool at a g1ven occas1on in t1me with~respect to the domain of
items an exam1nee is sa1d ‘to have atta1ned mastery 1f Ay Ao and nonmastery

if Ai < AO where A ~is a known constant w1th a va1ue between zero ‘and one.

The problem is to make a mastery/nonmastery ‘decision for a given exam1nee "based




o

on ‘his responses to n}items'randomiy selected from the item domain.“ A mastery
decision is made if an examinee answers n, or more items correctiy where -
0= no <n. Note that A corresponds to a concept of mastery and n to a-

L mastery score or index (Harris 1974) We further observe that the mode1 of :
mastery testing Just described is_equivaient to-the ranking and seiection pro»,
biem of partitioning K popuTations (examinees) hith respect'to a standard o
| ‘This model prov1des-a reasonab]e description of mastery testing and 1s
consistent with definitions of mastery or criteriun-referenced tests (G]aser
and Nitko, 1971; Harris, 1974). (bee also Hambleton and Nov1ck 1973, Fhaner,
1974; Novick and Lewis, ‘19743, Huynh, 19763 Wilcox, 1976). cod

. A fa]se,pos1t“ve error occurs when the examiner estimates an examinee' sf

'true score A; to be abova the criterion 1eve1 Ao When in fact it is not. -A‘}

faise-negntive error occurs when A is-estimated to be beiow o when the reverse -

Jis true False- p051tive and faise-negative errors are the two errors that can
be” maoe in a two-valued ciassification, yet the estimation of the probabiiity
fof committing these types of errors in connection with_mastery testing has
been‘virtoaiiy ignored. Instead attention has Qeeh given o measures of stabif‘
iity sgsh as the proportion of agreement (Hamb]eton and Novick, 197?) which ;
estimates the probabiiity of randomly se]ecting an examinee and c1a551fying
him the same way based on two administrations of the same testf Certainly it
is desirable to have a test with a high degree of stabiiity However; it ‘may
br: that such a, test is consistently inaccurate. | : o
Let o and 8 equa1 the probabiiity of committing a false- p051tiVe and faise-
negative dec151on respectiveiy, for an examinee chosen at random from some
popuiation of potent1a1 examinees ~0bserve_that the values’ of both o and B are
5
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, |
a function of the number of 1tems on the test as well as the 1nstructiona1
history of the examinees Consequently, knOW1ng a and 8 ‘provides a meaningful
characterizat1on of the entire teaching testinﬁscompiex The purpose of this -u.d
paper is to examine the probiem of estimating o and R based on student reSponse
/;‘ data “ ( | ?
~ The binom1a1 error modei gives a reasonabie approximation to the observed
score distributions—on tests (Lord, 1965, P 253) but the compound binomiai.‘
‘may be more‘reaiistic (Lord 1965, Section 6 Lord: and Novick, 1968 Chapter '
23) and hence may give more accarate results. According]y, two methods of
estimating & tnd B are described and the accuracy of these statistics are -
examined under both the binomia1 and ccmpound binom1a1 error modr . Sections
3 and 4 derive estimates of « and B assuming that che distributﬁon of true -
scores beiongs 'to a particuiar parametric famiiy Section 5 ‘exaiiines the

'_ accuracy of these estimation procedures using Monte Cario techniques
. . . \\

4\2.; Mathematical Statement of . the Prob]em | B
As indicated eariier, we 1et Ay denote the proportion correct “true" score
of an examinee taking an n item test. We regard {j (i=1,...,k) as a-sample
from a- prior distribution, say g(A), where 0 < A 5:1.' Letlh(x.l Ai) be the .
distribution of observed scores for a given true score A, Assnmind that g(1)

-

is an 1ntegrab1e function and since h(x | 2y ) is discrete we have: .

o (2:1) e = z fo°‘h(x #éx),g(x) dr. - ‘;/,ma/‘
' ; %=ng : : . T : .
., and- S B -
| L o - o
, 0 (2.2) . B=1I -y h(x | A g(a) da . .
h __ o x=0 o - , :

6




1f we knew g(r) and if we assume h(x-| ) is'binomia]“we_wouid aisoiknow
. a and B.o-However,'g(k) is'usuaiiy unknoWn' ~The approach taken here is to use
| empirica1 Bayes procedures to estimate g(A) When h(x A A) is assumed to be
| 'compound binomiai, it too must be estimated we are particuiarly interested
- in the accuracy of point. estimates of o and B for reiatively sma11 Vaiues of -
k and n. We empha51ze that the results given beiow do not refiect directiy
the accuracy of our estimate. of g(A) In fact we are oniy concerned with an 4l
accurate estimate of g(A) in so far as it improves our estimate of « and 8 -
It may be, for exampie, that a reiatively poor estimate of g(A) will yield
a reasonabiy accurate estimate of the frequency of occurrence of both false--
° p031tive and false-negative decisions. ‘ T '

As a measure of the _accuracy of - any statistic & whaih is used to esti-

mate o we use the expeCtEd value of the square Of the difference Of o and a P -

‘ over the joint distribution of x and A That s, we: use.
. 2 n - . ' T«""f':—/‘»--/
(2.3) W=z gl (a-)2 h(x [ A) g(r) dx.
5 ‘ . x:O 7 T \ 3
~ which corresponds to the average risk used in empirica1 Bayes methods (see,
e.g., Maritz, 1970 -p' 3). When estimating . with 8 we use, wb which is

defined by replacing (u—d) with (- B)2 in (? 3).

3; Estimation of @ and B assuming a beta prior .
The estimation of the prior distribution g(A) is a most difficult probiem

for which no genera] solution exists. It behooves us, therefore, to con51der Ty

the estimation of g(A),under'a variety of conditions.. We begin with perhaps

the simplest, but also the most severe restriction'on the family of\prior E

a




- assumes that the b1nom1a1 error model (Lord and Nov1ck 1968,

aistributions, name]jZ that g(A) is an incomplete beta distribution with

parameters r and s. That is, | P

gn) = %JT_(‘-; e A as

. where I' is the usual gamma function. This assumption is restrictive because

there is little if any doubt'that g(A) does not~be1bng to the family of beta

priors Yet there are severa] reasons for cons1dering this case._ First the ’

| beta density is the natura1 conJugate pr1or of the b1nomna1 kerna] "h(x | A)

(Ra1ffa and Schlaifer, 1961). Second, we have 1ndent1f1ab1]ity, i. e., there

H — e

exists a uniqie g such that’

e Lt hx | A) o) o & o ,a:i-'

where f(x) is the margina] d1str1bution of observed scores. (Maritz, 1970,
chapter 2). Third, there is evideﬂte that a reasonab1e though not entirely

sat1sfactory approx1mation of the. true score d1str1bution can| 'be obta1ned with
i

a two parameter beta prior (Keats and Lord, 1962). F1na1}y,;and.perhaps ‘most

importantly of all, the results of estimation procedures assaming a particu1ar
parametric form: for-the pr1or may be used as a bench mark for +1ging a1ter-
nate estimation techniques.

Let x 1J (i=1,...,k; 3=1,...,n) denote the Jth observat1on on ‘the 1th_
_ \ .

) examinee. By est1mat1ng the parameters » and s of the beta prlor based on the

5
}

o sample xij’ we. obta1n an est1mate§of g w51ch in turn y1e1ds an estimate of

both « and B. We begin by descr1b1ng a method of est1mat1ng r and ¢ wh1ch

! »
h(x | x)‘=(x)A*,(1-A)" o |

chapcer 23) holds, i.e.



Let:M[t] denote that t

observed scores, i.e.,

th

factoria1‘moment of the marginal distribution of

M[t] x~ 1—“"—'! f(X)

Let Mg represent the t

(3.2) . “t

e e e

,M[]] and “[2] With

th.

/

moment of the true score distribution g(k) AThen‘ | a

rf

(Lord and'quick;’1968, expression 23.8.4). We obhtain pnbiased estimates quj;e‘

-~

' ' ‘ A A C o
. ) qq = z A ’
R £ R
@) sk (- x) |
. s [2] - =1 Y AT
_n . ' . ' . ' . Ers
where x; = Zj.4 X5 From (3.2) we heve that | 5 _ - .

-~

(3.4b)

|

(3.42) i = Mgy /n

iy Mgy / fntn - 1) - S

'are-unbiased%estimates of g end Uy Thus, the mean, say u and the variance,

~ say 02, of the prior d1str1but1on may be estimated as
' f "~ st A
(3.5a) I e ”
I S N 2’ i
(B.Sb) . 6" = pymiy E

Note that it is poss1b1e to have M[Z] 0 and M[T] > 0 resu1t1ng in a negative .;

\

estimate of 02 When th1§_occurs we est1mate each A1 as - .
F=6 " x, /(kn)
=T 3-1
, ) N
v 6 . . v




For this special condition, if A > Ag we estimate o to be ?ero and g to be.

n -1
.0 - . : A
) (;‘()(5.)x (1-%)"X. Correspondingly, if A < A,, we estimate 8 to be zero

x=0
. . n . AavX A N-X
and‘a to be Zx=no ) (X)" (1=2) g

In terms.of r and s

¢ ) . . : : . ’ w’
: ' N g : .
(3.63) ) u = S : | ., o
(3.6b) B
5 ¥ | (r+s)° (r vt 1)
. |(Johnson and Kotz, 1970). Solving (3.6) for r and s gtvesz'
. . ) 2 . N . v .
(3.73) pa ) | L. .
. [s) Tow o < »
.. (3 s=adlow 4y
N - . . . g - ‘ - . ' s B @

- . -
i
5

Substituting in (3.7) u and 02 for u and 02, respect1ve1y, yields an estimate \

~of r and s, say r and 5. The estlmates of r and S may- then be used to

estimate a and g as

. . " ’
(3. Ba). &=L ko (n) > (o)X I{F + 8 A”“(l x)s -1y
. - - x=n_ | | . r{r) r(s) :
, - L Mol 1 Cx C n-x °(r + s 9-1 §;1
(3.8b) ; By =z o (1) A (1-1) T(1-)7
) x=0 r(r) r(s)

As 1nd1oated ear11er the binomial error model may not be completely sat1s-
factory in an item samp]ing mode] As suggested by Lord and Nov1ck (1968, -

. chapter 23) e use a two~term approximat*on to the compound binomial, vii;;‘

k 10
. \ | | - 7




@9 Rl 1) = b (x) * di(1-2) Cx)

where

u

e B ) o r.pn (X) (n) % (]_l)n-x -. : J .

(-1)V*T(§)p5;2 (x-0>

C“(x)‘ =Q : 1~c - - ‘ . \‘

[}
<™ N

Lord (1965) notes that (3.9) is a close approximation to a frequency. distr1bu-
tion for most cases of interest. Diff1cu1t1es could ar1se if-d were too 1aroe,
we avoid these diff1cu1ties by assuming 0 < d < 4 0 For all 16 d1str1butions
reported by Lord the values of d were in this. range (See Lord, 1965, p 264).
Under the more - genera1 compound - b1nom1a1 we are still ab1e to estimate o
X and 8.~ As ‘shown by Lord (1965, p. 265) the mean and var1ance of the distr1bu-
\ _tion of true scores. for the two-term approximation to the compound b1nom1a1 4
| \ \error mode1 aré given)by R g B

Vo (3.10) Y

Meq/n

i

AERERTY . o!,? of - (n-2d) B q

P \ |
' where‘gi is the variﬁnce of the d1stribut10n of observed qcores, p = M[}]/n and
\

§ = 1-p. The parameter d\\tqg1veﬂ by

T Y
12 . d= ’ : : L 3 -
\ : 2[ux (n - u) - oz - Wi o%i S ) -

| where ;E is the variance of the item d1ff1ru1?ies d may be estlmated using j,'3
standard item ana1ysis techn1ques° Hence, <he pwrametevs r and s of the beta I

‘pr1or may be estlmated u51ng (3. 7) above




o - ‘Substituting (3.9) into (3.8a), the estiniate, of o under the’compound |

;binomialfetror model is
. l‘] ) .
. ’
s ’ : ~ " n -
. . (3.13a) ' a](d‘)‘ =3 ‘foo hlx I 2) r+ s ?‘ 1(] )‘)S 'l
L . X=R, r(r) r(s) , ﬁ

Correspondingly, we estimate B‘to-be . _{ ’ \ /

L 01 : @
(3.13b) o = )  EEEE) (1 os‘
o : 1(d) x*O Ro | r (r) r(s) /

— . o 8 / \

4, Estinattpn of a and 8 us1ng an inverse 51ne transformat1on v

"_./'Q /‘.
Y‘ .

In the prev1ous section a procedure for estimating o and 8. was describgg u

/

hxch is. oontingent upon, estimat1ng the parameters r and s of an assumed beta
l

prior One difficu1ty with th S estimation procedure 1s that the stat1stics r

and § no doubt. Iack the desirab]e propert1es of unbtégedness, maximu( 11ke11~ ’

'hood and.eff1ciency Consequent1y, one might expect estimétes of r'and s to

! v

) be poor for relat1ve1y smaT1 samples Since one® wou1d hope that ac.urate esti-

mates of r end s would yield. accurate estimates of/m and 8 it may Ze he1pfu1 to
lsearch for more aocurate\estimates of r and S even though improve ent in our
estimates of >\and S promtses to be 3 most d1fftcu1t task -For, exémple, even
irn- the simpler Hore convent1ona1 case in which the sampled’ va1ues/Ai are’ known,
max1mum 11ke11hood est1mates oﬁer and s are obta1ned iterat1ve1y4/ we propose, “
ﬂtherefore,fto invest1gate the u<e of an 1nverse sine transf%{m W
@ binomia] “random variable 1nto an. approx1mate1y norma11y distributed random

1ch ‘converts ;

o variable with known variance, the var1ance be1ng independent of the va1ue of A

Ve

A
This is often ca11ed a var1ance stab111z1ng tnpnsformatﬁon The advantage of th1s f K

12 ’ L 1 a“ B .v . ]
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approach is that the est1

s
.
‘_,f

P umeters characterizang th
distribution can be expected to be move: accuraxe relatﬁve toxiﬁe\::fa -k num1a1
'model deepribed above if the transformatfon used does 1ndeed yie1 a normalTy
distri“uted random variabTe The disadvantage of this approach 1s that the

transformed random variable is asymptotically normal and thus. any estimation s

. procedure using small samp]es may be poor, In addition, the rate of convergence

of course, whether this approach reduces the va1ues of w and wb as” defined oy

~ (2.3) above. .
 Let - R : \. o -
(4.}) : ¥y = % (4n + 2) (sin ( -——~T) ™ sin ——-—T))
Lo T S _ S g
- where, as‘before. X; = E x1j is"the obsarved score of the 1m examinee

J=1 .
The transformat1on (4 ]) is $uggested by Freeman and Tukey (1950) where ,v,i

given Ai 15 approximate1y normally distributed with mean

Yo \ .
'

e r%(%+zﬁsm4(dw

and variénce one. As in the previous section we let y<and 62 repreeent the

i

mean and va"iance of ‘the prior distribution Here. however, the natural con- oo

Jugate prior has a normal distribution (Raiffa and Sch1aifer. 1961). Moreover,
\

- mean\n and variance o

the margina1 distribution of obscrved score. is also norma11y d1str1buted with

2 + 1. It fo110ws that

v

€. Ely | v) = E(r)

10 o \

"; to normelity is.a function of the unknown parameter ki _ The crucial question is.i;ﬂf

R N I 1 P S
K Hence, we may estJmate u E( ) “and: 0~\:\§(r ) ~;E2(r),with ‘ .

[



‘-\\.\;» . _“: [ .,
- ] : k N
' (4.2a) . ‘ \ :
'i:] ‘
~ . _ 7 2
21 5 (y.,©-1)-u
It is known (see, for exampie, Hogg. and Craig, 1970 p 210) that the JOint
o probabiiity density function of y and X is bivariate normaiew1th common mean M ;“’4f
" L respective variances 1 + 02 and 02, and correiation o//i + o . Appiying the/
\
qmethod of moments, as was done in the previOus section, the estimates of o,
! a . . .
and 8 are .
. . N ‘@ : N
)  (4.3a) - 32 = [ | .m'f" exp. {—ix;él—- A- ” } dx. dy a T o b
) h=oT s (y—x) u-u)N -
[ (4'3b)_ B " I \ E—-exp {= uy I
© where .. . : S S N I .
. - e -,‘\” ‘ . | L. n + ; ‘ ;"
Ny =%-(4n+2)k [sin 1 (V TET ) + sin”t »{J -ﬁ—;rji] N ‘
. ' : ‘ ‘ ‘ o L T .
and " : - .
N S o s
N A= (4n+2)sin (v"') : e e
_Again we have the dif‘icuity that 02 may be negative’ In this'case.ne‘Setﬂ
- / ) " =1 . X ~n -X | | Co . - -
o, = 7 32 0 (Q) AM(1- A) when . > Ao. and when 3 < Ao ‘we set 82=0. gﬁﬁuz_-f_;
a n n “x< A \R=X Y ) o u
ay = I (J) N (1-A) as was .done in the previous section. :
x=no _
B \;, LIt may be heipfui to indicate how (4. 3a) and (4 3b) can be evaluated W1th .
‘ existing computer subroutines For convenience we write the bivariate /
R ‘....,._'__._../'_4__.__ S SR

T




'distribﬁtﬁon oi'y and A as h(x | A) g (). Obsérve that
..(4.4) | [ A) g(a) _dh dy+,frm f;", h(x [ )\{gg’ (») dA dy
= /Y flys dy |
where f(y) is the normai]y distributed, margina1 distribution of the observed

2

f_ ‘sdores y with mean y and variance 1 + o The first integral on. the 1eft hand

side of (4. 4) can be’ evaiuated with the IMSL. suhroufﬁneL(]975)_MDBNDR_a£teii& U

."n-the random variabies y and A are transformed so as to have common’ mean<zer0"‘
/ /
_and variance one. The right hand side of (4 4) can be/eva1uated with the FORTRAN

/
' subroutine ERFC; -thus, we have ‘the va]ue/s2 - The statistic a may be evaiuated

-in a simiiar manner /f o - / 3

/ N
PR

The transformatiOn (4 1) is ciaimed by Mosteiler and Youtz (1961) as well
as hbsteiier and Tukey (1968) -to be the best existing anguiar traqsformation ;
for the binomial distribution As indirated above, however, the compouhd |
‘binomiai may be a more apprupriate probabiiity distribution for describing the. |
-observed frequency of test scores. To be conservative we introduce an inVerse=_w' '

l sine transformation for the compound binomia] The desirabiiity of using this

transformation wi]i be discussed in section. § beiow

-
Lrwisde

As shown by Lord (1965, p. 265) the mean and variance of the two term
=approx1mation to the compound binomia] distribution given by (3.12) may be

-

written as nx and (n-2d) 2 (1- A). ;§t.ﬁoiiows that

Q

. (4.5) . gn_ si'n_'"}(’/ﬁ'ﬁ
R o)

; _ » RS | . . . _
+is asymptotically normal with mean —2nSin Ed(ll) and variance one (Rao, 1973,
: . ] ) ‘ n- : : . .

. V.A ) N

12 L e 1



Section 6g) After estima*ingfd via (3.11), one may use transformation (4 5)
in place of (4.1), then estimate p and o% with (4. 2a) and (4.2b)5 respectiVeiy,
Cand ‘a o and 8 with (4.3a) « « (4.3b): Nhen a and 8 are esti-

mated using (4.5) for a given value of d, we denote the estima 2s b}'&é(d)

.andﬁéz(d),’respectivelyc* . !'j} |

5. Method and Results of Monte Cario Experiments o o]
The true SCore for each of the k examinees (the value of \1, 1]1 .,ki

was generated according to a beta distributi a with parameters r and 5. The
'-:priors used’ inciuded T shaoed U~shaped, syi*~rr1c ‘and skewed d1str1butionﬁ
Some .these distribut s (e g. U- shaped) ~robab1y unreaiistic in ~=rms
of ms .ary testing. ih:“ were-inciuded how:= so as to obtain’more general
rest ‘3. Once A; was determined the observed are X; was generated accora-ng
to the twojterm approximation to the compound binomiai given by (3 9) for
d 0.0, 2.5, 4 0. Expres51on (3. 9) was evaluated by using the reTationship

(a, n-a+1) = z % (1- A)n X in cohJunction with IBM's 555%?ﬁ§7ﬁ) subroutine
X=a

>

BDTR whare I denotes the incomplete beta function ratio (see Jphnson and Kotz,‘

19 a3, chapter_24). 0ver 200° Monte Cario studies were made for each of the

es>im=ors al, By, ap ant 8,

initially we set A8—0 7 and né'k ‘n. For each:prior dist\ibution used,
Wy il Wy were estimated vy first/using the exact value of d nd then by
. setting d arhitrariiy equal to z ro.  The values of k and n wWere (k, n) = :
,(10, 10), (10, 20), (10, 30)," (20 ,10), (20, 20), (30, 10) /Ail estimates -
of LA and Wy were based on 500 iterations. For simpiic1ty wb discuss the
results in terms- of W No additiolai in51ghts were found hen examining Wy -
; v 13
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RegardIess of the true- score distribution use1 the vaIue of d had

. negligible effect on the value of w_ when (3. 8a) was used to esrimate a.

This result is 111ustr"ed in. Tab]e I for the speC1a1 case (r, s) (9 2)

and (r, s) = (3, sjs A_= .7,. Moreover, using the exact value of d in

;(3 13a) generaIIy had 11t*1e effect on IOwering Wy as demonstrated in TabIe

5II; One exception to this find1ng occured for k—n=10 and r-s =3, For d= 0.

W, was est*mated to be .093 using (3.8a). For d=4, 0, W, dropped to ,079.

’In'gener* , hOWever, vary1ng the vaIue of d affected w onIy at the third

decimal 3 iucs ‘his resuI also heId when the more generaI {3. 13a) was used

which ncamporatsn the. tWO-term approximat1on to the compound oinom1a1 This.

: f!nding was nct urprising since trere appears to be nenggibIe change in the

-

observed sicore -n¢ true score distributionsawhen the vajue of d is aItgred

L

7 (Lors, 13£ S . ) e |
As PN again it was found that aItering d had little effect the : f
.value of W However, e*t1ng d arbitrat11y equa] to zero and using trams-

. formatior .. .: tended to give better res.ts (lower values of wa),as opposed

0 usine trc e~ .ct value of d and transforsation (4.5). tﬁe appareht'reason

~ for this = . is that (4.1) converges more rapidIy-to‘norma11ty than .does

[

(4.5). L .

Table I a =il as Table II suggests that reasonany accurate estimates
of a can be u-*awned part1cu1ar1y if n is greater than or equa] to 30. To
better @ssass :ne accuracy of a; and Ay wegpresent Table III which g1ves the
values of ea ar both a; and a2 where r=9, s= 2, 5( 1), 8 From IﬁbIe I1IX
we see that « and ap are very accurate for A" 5 but that this accurac dimi-

~

nishes cv - ‘derably as A approaches .8. The difficuIty 1s that both «; an

.“.\']4»‘,
17
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tend to. underest1mate a. The results indicate'that the amount by which a -

\

actuai vaiue of a is 0 005 WhPu k=n=10 and A= 5. For A .8, a-o 157

4.

,*\- Note that for A = .8 the most effective wethod of iowering Wy is to

‘\

L increase n (the number of {tems) as opposed to increasing k (the number of.

';individuals) In general. but not aiways. increasing n w111 decrease the vaiue
- of a. Consequentiy. jwe iower ‘the vaiue of LA bykincreasing n primariiy because

_ we obtain more accurate estimates of o when a is small. Increas1ng k with n

'l'f1xed also 1owered w but at- a much slower rcte. o

we also observed that neither of the statistics o1 or o2 dominated the
I

other, i. e.. had consistentiy iower vaiues for Woo Consequentiy, based pureiy

\\\

on statistical considerations. it is imﬁossibie to recommend one method of

.

' estimation rather than the other. However. we see that ay dominated ag for :

,—, =, 6, .7; . 1Particu1ar1y for- # ,8. The reason is that az = 0 occured

more frequentiy due to negative estimates of the variance of the pr1or. Since L

‘ the vaiues of wa were particuiariy Iarge for A, 8. it wouid‘seem best to

use By - On the otherhand, to ensure accurate estimates of u. it wouid seem

prudent to haVe n equa1 to at ieast 30 and preferabiy iarger In this

Ncase. evaiuating o1 might be more difficuit computationa11y By having n 1arge,

- however, accurate estimates may stiii be possibie with az.'»‘

C18 o
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is underestimated increases as a gets large. In Tabie III for exampie. the/ .

A



TABLE I S B
R ~ Values of wa"usiyig.' (3.82), 9g=7
d\k: 10,10 10,20 \10,:33 20,10 - 20,20 © 30,10 .

s
- . EN i v
s \

0'0 o 043 ".035 R . . ‘:  .033 ‘
. 2.5 - | - 004‘? . 5035 ) ; - ,“ ‘ _ e 36 B ‘ - 029 ) | 0034 ‘ -
;'*.4'."0 : .04L , ..‘0.35 "i. _ 0 ’_ . | ' ."034‘ " ‘.‘ L

087 - |
)
S wom

0.0 - .093 . .-
2.5 .083




TABLE II
i | "'Vaiues of w, using the exact value S o
* of d in (3.13a), Ao=.7
/ ‘s : 7~ ' o T e

N 90,1000 10,20 - 10,30 20,10 20,20
p=9, s=2 . : '_ T o ] '; .

2.5 .04l .03 -.029 . .037 . 029 .03
4.0  .040 0% 029 .0% .00 ".0%5

.25 0 .083 052 .08 .082 % .051 - 082
a0 .08 .51 .- .0 .080 .6507%,'1i.077

v

20

30.’Ai-0 . ‘.__«,..,_..,_, .-



4
. "TABLE . (I
Jalues of Wos r=3, §=2, d=0' _ : ‘ .

AN Ken 10,1 10,20 10,3  20,10. 20,20 30, 10

P

& | ft . | Results using a)

B .o1j_.  IQL4011 008 .06 M fﬁ?'.61é: |
020 .01 012 o8 Loz o6
043 . .03 .03 . .06 .0
06 - .082°  .070 .09

oS ~J . O

Results using a,

.06 - .004°  .004 - - .004
o 06 .0 .02
056 . . .085 ©  .041 088’ B
27 .00 .08 a2 100 .26

o s

B N >

21\;,
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