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There are many well-documented shorrcomings of standard testing and

measurement teehnology.3 For one, the values of s andard item parameters

(item a culty and item d serimi-ation) are not invariant across

groups of examinees that differ in ability. This means that standard

item statistics are only useful in test construction for examinee popu-

very similar to the sau1 e of examinees in which the ite
istjcI were obtained. There any testing situations where invari nt

item parameters would be highly desirable. Another sho teoming

standard testing technology is that coi1parisorts of examinees cii an ability

measur d by a set items comprising a test are limited to

Lions whore examinees are administered the same (or parallel) Lest items.

While common standardized aehievement.and aptitude tests are

typically suitable for middle-ability students, these tests do not provide

very precise e timates of ability for either high- or low-ability examinees.

"Tailored t ing" is designed to correct this shortcoming by administering

test items to examinoes tha: a_e carefully selected to "match" their

ability levels (Lord, 1970b, 1974b; Weiss, 1976; Wood, 1973). In

"tailored testing,"

f-A:r
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likely that rio two examinees will take the same
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.:and -d Lest ing and measurement technology" referS to commonly

iied"methods and techniques for test-design and -analysis-.
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sec of test items or even the same number of test ite Since - me

examinees will be administered more difficult sets of test itums than

other examinees, usual examinee test scores (or proportion-correct

score, provide an adoquate basis for ranking exa-tnees on the

ability measu-ed by the test items in the "domain of test items" from

which test items. were drawn. How then cartexaminees be compared? Cer-

tainly standard test models _ d and Novick, 1968) cannot handle the

problem.

Another shortcoming of standard testing technology is that it

provides no basis for determining what a particular examinee might do

when confronted with a te Such information is necessa y, for

example, if a test designer desires to predict test score characteris-

tics in one populations of examinees or to design tests with

particular characteristics for certain populations of examinees.

Besides the three shortco ings of standard testing -:-chnology

men _ined above, standard testi g technology has failed to provide

satisfactory solutions'to many testing problems (for example,-test de-

sign, test score equating, and item bias). For_these and other reasons,

many psychometricians have been investigating and developing more appro-.

priate theories of mental measurements. Consequently, considerable at-

tention is being currently-directed toward the field of latent_t

_theory, - es referred to as item res onse theory or item character -

Astic. _curve_ theory. Latent trait theory can be traced back

the work of Lawley (1943, 1944). Lazarsfeld (1950) was perhaps the

first to introduce the term "latent traits." The
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1952, 1953a 1953b), however, gen Illy _regarded as the

"bir h" of latent trait theory (or modern test theory as it_ is someri es

called). Progress _ the 1950 Ind 60's was painstakingly slow, in pa t

due t the mathemat cal complexity of the field, the lack of convenient

and efficleat computer programs to analyze the data according to latent

trait theory, and the general skepticism about the gains that might accrue

from this particular line of researc However, important breakthroughs

recently iii probLem areas such score equating (Lord, I975a;

Rentz-and Bashaw, 1975), tailored testing (Lord, PYWD; Weiss-, 1976

test design and te.- evaluation (W ight, 1968) through applications of

latent trait theory,have attracted considerable interest .from measure-ent

cialists. Other factors that have contributed to the_current interest

in latent _trait theory Include the availability of a number of useful

computer p publication of a variety of successful applications

In measurement journals <Bock, 1972; Lord, 1968, 1974b, I975d; Samejima,

1969, 1972; Whitely & Dawis, 1974; Wright & Panchapakesan 1969), an

strong endorsement of the fj.e1d by _ thors of the last three reviews

test theory in the AarimAlRevie (Keats, 1967; Bock &

Wood, 1971; Lumsden, 1976). Another important stimulant of interest

in the field was the publication of Lord and Novick's Statistical Theor-e-

of Mental Test Scores. They devoted five chapters (four of them wr

by Allen Birnbaum) to-the topic of latent traii the

-ten

timony to

u rent interest and popularity of the topic is the fact that the

.lour al of Educati-lal Measurement will publish six InviL9A papers on latent

trait the- y and applicarions ln the summer issue of 1977.
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What is latent trait theory? A theory of latent traits supposes

that, in testing situations, examinee performance on a test can be pre

dicted (or explained) by def ning examinee characteristics, referred

traits, estimating scores for examinees on these traits and using

the scores to predict or explain test perf once (Lord and Novick 1968).

Since the traits a e not directly measurable, they are referred to s

latent traits or abilities. A latent trait model specifies a relationship

between the observable examinee test performance and the unobservable

traits or abilities assumed to underlie performance on the test. The

relationship between the "obser able" and the "unobservable" quantities

described by mathemat cal function. For this reason, latent trait

models are mathematical models. These math -atica odels a
b

based on

specific assumptions about the test data. When selecting a particular

latent trait model to apply to one's test data, it is necessary to con

sider whether the data s._ sfy the assumptions of the model. If they do

not, different test models should be considered. Alternately, some psycho

icians (for example, Wright, 1968) have recommended that test developers

desiwl their tests so as to satisfy the assumptions of the particular

latent trait model they are interested in using. In this way, the advantages

of the particular latent trait model of interest can be utilized.

In view of the breakthroughs several testing problem areas

brought about by the use of latent trait theory, it is clear that the

field of latent trait theory will become increas ngly more important to

measurement specialists and test practitioners. -Therefore, en the

-newness-of the field, its rapid growth in recent years and the d versity
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of views and contributions, it seems apparent that a comprehensive review

of the:field in order.

This document addresses four mat -rs: First, the nature and char-

acteristics of latent trait theory are introduced. Second, a review

of many of the technical developmeut in the field is provided. Third,

several promising applications of latent trait models are described.

Finally, some additional areas for research and dev loment are suggested .
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Latent T Theory

he Iatentskce, local ipde endence, and

item characteristic curves are three important notions that arise in

connection with latent trait theory. These three notions, alo-- -ith

a discussion of the ability scale, will be provided neAt.

Ditnensionalit of the Latri5cam
In a general theory of latent traits, it is assumed that a set of

k latent traits or abilities underlie examinee pe formance on a.set of

rest items. The k latent traits can be used to define a k dimensional

latent space, with each examinee's location in the latent space determined

by the examinee's position on each latent trait. The number of dimensions

of -he latent gpa e depends on the number of abilities

me s red by the test: in the populatl: examinees the test is admin-

istered to. The latent space is referred as comp ete if all latent

traits influencing the test acores of a population of examinees have been

specified.

It is commonlY assumed that only one ability is necessary-to xplain,

or "acco for examinec test perfnrmance. Lit nt trait models that

a sume a single latent ability is sufficient to explain or account for

eami.noe performance are referred to as unidimensional. Those models,

_that assume that _more than a single ability is necessary to adequa ely

account for examinee test performance, are r ferred to as multidimen ional.

The reader is referred to the work of Mule k (1972) and Samejimac(1974)

[or discussions of multidimensional latent trait models.
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The assumpt on of a unidimensional
latent space is a common one for

te constructors, since they usually desire to construct unidimensional
tests so as to enhance the interpretability of a set of test scores

(Lumsden, 1976 ). What does it an to sAy that a test is unidimensional?

Suppose a test con i ting of n items is intended for use in r subpopul;
ions of examinees

(e.g., several e hnic groups). Consider next the

test scores at a particular ability level
for the r subpopulations. These conditional distributions for the

subpopulations will be identical if the test is unidimensional. If

conditional distributions

the ttmditiotu dist butions vary across the r subpopula ions,
can only he because-the test is measuring

something other than the
single ability. Hence the test cannot be unidimensional.

It is possible for a test to be unidimensional within one popula-
t on of examinees and not unidimensional in another. Consider a test
with a heavy cultural loading. This test could appe.ar to be unidimensional

for all populations with the same cultural background. - However, when

administered to populations with varied cultural backgron ds, it may in

have more than a single dimension underlying the test score.

amples of this situation are seen when the factor structure of a

porticular set of test items varies from one cultural group to another.

Lumsden (1961) provided an exce1.ent review of methods for con-

cting unidimensional tests. He concluded that the method of factor

analysis held the most promise. Fifteen years later he reaffirmed his

conviction (Lumsden, 1976). Essent ally, Lumsden recommends that a
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test constructor generate an initial pool of test items selected on the

basis of empirical evidence and a prior grounds. Such 3_ item sele

procedure will -increase the likelihood that a unidimensional set of

test items within the pool of items caa be found. If test items are not

preselected, the pool may be too heterogeneous for the unidimensional

of items in the item pool to emerge. In Lumsden's method, a factor

analysis is performed and items not measuring the dominant factor ob-

tained in the factor solution are removed. The remaining items are

factor analyzed and again, "deviant" items are removed. The process is

repeated until a satisfacto y solutio, is obtained. Convergence is most

likely when the initial item pool is carefully selected to include only

items that appear to be measuring a common trait. Lu sden proposed that

the of first factor var ance to second factor variance be used

as an "index of unidimensionali

Factor analysis can also be used to che-1( the reasonableness

t e assumption -f unidimensionality with a set of test items -(Hambleton

& Traub, 1973). However, .the approach is without problems. For

example, much has been Written about the merits -f using tetrachoric

car elations or phi correla ons (McDonald & Ahlawat, 1974). The common

belief is that using phi correlations will lead to a factor solution

h too many factors, some of them "difficulty factors" found because

the range of item difficulties among the items in the pool. McDonald

and Ahlawat 1974) concluded that "difficulty factors" are unlikely if

the range of item difficulties is not extreme and the items are not too

, highly discriminac g.
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have one attractive fea-

ture. A sufficient condition for the unidimensionality of a_

set of items is that the matrix of tetrachoric item intercorre

tions has only one common factor (Lord & Novick, 1968). On the negative

side,:the condition is not necessary. Tet achoric correlations are awk-
,

ward to -alculate (tA formula is complex and requir s some numerical

integ -n), and., in addition, do not necessarily yield a correlation

matrix that is positive definite, a problem when factor analysis is at-

tempted.

Local_ Indq2endence,

The asSumption of local independence states that the probability
_of

an examinee answering a test item correctly is not affected by his or her

performance on any other item in the test.

if we let Ug, g = 1, 2, n, represent the binary responses

, if correct. 0 if incorrect of an examinee -to a set of n test items,

, the probability of a correct answer by the examinee to item

then the assumption of local independence leads to the fella -ing

statement,

Prob (U- = ul, U2 u

n u 1-u- p gQ
g=1 g g

[1]

That, is, the probability o- an examinee response pattern is given by the

product of probabilities of the item responses.

One result or the assumption of local independence is that the Fre-

quency of test across

given _y

;IrnineeS for fixed ability, denoted 0,

10
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u 1-u0
uP g [21

where x is an examineels test score which can take on values

The assumption of local independence for the case.when 0 is unidimensional,

. and the assumption of a unidimensional latent space are equivalent. First, suppose-

a set of- test items measure a common ability. Then, for examinees at a fixed ability

level -0, item responses are statistically independent. For fixed.ability

level 0, if items ere not statistically independent, it would imply Ehat

some examinees have higher expected test scores than other examinees of the

same ability level. Consequently, -ore than one ability would be necessary

to accou f- for examinee test performance. This is a clear violation of

the original assumption that the items we e unidimensional. Second, the

assumption of local independence implies that item responses are sta is-

tically independent for examinees at a fixed ability level. Therefore,

only one ability is-necessary-to:account for the relationship among a

set of test items.

It is important to note that the assump.ion of local independence

does nor imply that test items are uncor elated over the to al group of

exa inees (Lord & Novick, 1968, p. 361). Positive correlationS between

pairs of.items will result whenever there ie variation among the examinees

on he ability measured by the test items.

11
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Becau,,e of the equivalence between the assumptionsof local independence

and of the unidimcnsionality of the latent spa-e the el, ent to which

sut of test items satisfy the assumption,- f local independence can also

be studied using factor analytic techniques. Also a rough check on the

statistical independence of item responses for examinees at the same

ability level was offered by Lord (1953a). His suggestion was to con-

sider examinee item responses for examinees within a narrow range of.

ability. For each pair of items, a x2 -.statistic can be calculated to

provide a measure of the independence of item responses.. .If the pro-

portion of examin- s obtaining each response pattern- (00, 01, 10, 11)

can be "predicted" from the marginals for the group of examinees, the item

responses on the two items are statistically independent. -The value of

the X2 statistic can be computed for each pair of items, summe(i,- aad

tested f_ significance. The process would be repeated for examinees

located in different regions of the ability continuum.

Test and Item Characteristic Curves

The frequency distribution of test scores for a fixed

level of 0 can be obta ned using Equation [2] defined in the previous

n. The curve connecting the means of these distributions represents

the regression of test scores on ability 0. If the teSt- s unidimensional,

this _nrve red to is a t s eristLc curve (or test cha a

istic -nction if the -latent space is multidimensional).-

It is also possible to develop item characteristic curves in a

slini I ir mannur. The frequency distribution Dr a binary item score for

12



fixed ability 0 can'be written

um (1-u
-

=0.

The curve connecting the means 6_ the:conditional distributions, repre-

sented-by Equati n

ii'referred to

[ ] is the regression

as---an item oha-.-

of- ite score on ability and

eristic curve (or item characteristic

function if the latent ability space is multidimeneional)... An4tem

:characteristic curve is a. mathematical function that relates the prob-

ability of success on an item to the ability measured by the item set

test. thar.contains-it: In simple -terms, it is the:non-linea regression- --

function of item score on ,the latent trait easured by the test

the complete latent space is defined for the exa inee populations

theiconditional:distribUtiohs of item scores-for.fixed

ility level must be identical across these populations. If the condi7

tienal distributions are identical, then the curves connec_ing the teens:

of these distributions must be dentical; i.e., the item character-r--

tic curve will-_remain invariant across populations of examineee for

which the c tplere latent space hap been defined. Since the

--probability-of an individual examinee providing-..a correct:answer to an

em depends only on the form ofthe- item characteristic curve, it is

ALIA!Rendent -f-the.di6tribution of examinee ability in.the population

_examinees of inteTest. Thue, the probability _- a co rect respon

an item by an examinee will not--depend on how many orher exatinees are



located at the same ability level. In other words, the shape of-an-item-

characterist curve does not' depend.on the distribution of abilitY-in

the examinee population. This invariance property of item character-

istic lurves and consequentlythe parameters describin the curves is one

f the- attractive Characteristics of- latent trait models. The in--

n e of latent trait item parameters has important implications for

tailored testing,

CC.

tem banking, study of item bias .and.other appli'

tions of latent_trait models.

.It is cOmi -n to interpret P

answering item $ correctly. Lord-(.1974b) questioned this inter- etation

and provided an example to shoW that this common interpre ation of 13(0)

leads7ro an awkward situation. Consider' two examinees a and b, and -t

items, i and j. Suppose examinee-a:knows the.-answer to item .Landdoes.

not know-the answer to item.j. Consider the situation to be reversed

'..-for examinee b.- Then-, Picea) = -Pi(ea) = 0, Pi(013) = 0,--piCeb) = 1.

'The -first two equations suggest that' item- i is easier than item-j. _The

Other two equations suggest the reverse conclusion. One inte pretation

15 that Atem i and j measure different- abilities for the two examinees.

course, this would make it impossible to compare the two studenta.

One reasonable solution to the dilemma-_ is to_define-the meaning of

-P (0-differently. Lord suggests that ) be interpreted as theg_ Pg_

probability of a_correct response for the examinee across test items

with near identical item parameters.

Each item_characteristic-curve. for a-particular latent trait =del-

is a member of a family of Curves of the same. general form The-number

_he probability of an examinee

14
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pare eters required-to describe-an item characteristic curve will

depend on the particular latent trait model. It is common, though, for

he number of parameters to-be one, two, or three. For example the

tem characteristic cu Are of the latent linear model (Figure'l,
L

has the general for P
g
(0) = b

g
a where P (6) designates the prob7

ability of correct response to item g by an examinee with ability leve116.

The function is described by two item parameters, item difficulty and

item discr ination denoted bg_ and a
g
respectively.

.

An i em character-

istic curve is defined completely when its general form is specified and

when the parameters of the curve for a particular-item are kno

Item characteristic curves of the latent linear model will vary

in their intercepts (bg) and slopes (ag) to reflect the fact that the

test items vary in "difficulty" and "discriminating power

Item characteristic cu ves for Guttman's perfect scale model are

s own in Figure 1 (a). These curves take the shape of step functions=

Probabilities of correct responses are either 0 or 1. The critical ability

level 0* is the point on the ability scale where probah lities change

from 0 to 1. Different items lead to different values of 0 When

is high we have a difficult item, and when 6 low, an easy item.

Figure _ describes a variation on Guttman's "perfect scale" model.

Item characteristic curves take the shape of step functions'but the

probabilities Of_incorrect and correct respenses, in general, differ

_from 0 to 1. Figures 1 (d), (e), and u_) show S u shaped curves repre7

senting logistic models, respectively. With the one-parameter logistic

model, the item characteristic curves are non-intersecting curves that



() p fe t col urves (b) latent distance curves



two-part:meter

logistic curves

(1) three-parameter

logistic curves



differ only.by a translation along the 0 'scale. We say that items wlth -.

-.Such characteristit curves-vary only in their_diffieultY. With the

model it m-CharaCteristic curve_ vary in both

slope (some curves incredse more rapidly than othe _

sponding test Items are more diecriminating than others) and

translation along the ability scale ome items are more difficult

than others). Finally, with the three-.arameter loisti2_model.

the- car-

curves may differ in slope, translation, and lower asymptote. With the

one- and t -parameter logistic curves, the probabilities of correct

responses range form 0 to 1. In the three-parameter mod 1, the lower

asymptote, in general, is greater than 0. When guessing is a factor in

test performance, this feature of the item characteristic curve can im-

prove the "fit" between the test data and the model. In other models

(the no inal res.onse model and the graded response odel) there are item

ion characteristic curves. -A curve depicting-the probability of an

item option being selected as a function of ability is produced for each

option or choice in the test item. An example of this situation is

in Figura.1 (g)..

It- is most-common for a user to'specify the mathematical form of

the item characteristic curves before beginning his or her work. It is

easy to check on the appropriateness of the choice because item character-

tic curves represent the regression of item scores on a variable (ability)

that is not directly measurable. About the only way the assumption can be

checked is to study the "validity" of the predictions with the item

characteristic curves (Hamble o & Traub, 1973; Ross & Lumsden 1968).

ill be said about how to make these predictions later in the paper_

2 0



If we were to administer two tests that measured the same ability,to

the:same group of examinees, and one te was more difficult than the

her, we would obtain two different test score distribution- The ex

tent of the differences between the two distribu

among other things

ould depend,

on the difference between the difficulties of the two

tests. UnfortUnately,'there is no basis for preferring one distribution

over the other. What this example reveals i _ general, the

test score distr butionprovides no-informat_n about the d stribution'.

-f abil ty scores.

Theproblem occurs because the raw-SEOre units .from each:test-are-

lunequa1 and different. On-the other hand, the scale on which ability

scores are meaSured'is.one..on which examinees-wi11 have the sameability-

score across_non-parallei- tests measuring a common-ability; .Thus,even-.

though an exa inee's testScores, will very acros non-parallel.forms of

a test measuring an ability,._the expected ability for-an-.

examinee will be the same on each form.

Most measurement specialists are familiar with the concept of t ue

score, the expected test score for an examinee. What is the relationship

between true scores and ability scores? Lord and Novick (1968) showed

that the test characte i_ti_ curve introduced ear,ier,provides the rela-

tionship. This is easily seen from the following argument. Consider the

proportion-correct s6ore, = Then

Var

E P (0)
gl g

1
2 E P_
gln

[4]

[5]



the test characteristic c _ve (scaled by l/n) introduced earlier.

the su--of'iteM -characteristic curves for.- e s-inclUded.in the s

Suppose next we lengthen the test by'Adding:an infinite number

parallel-f

as n

formation which is the te.t characteristic curve. Clearly then, the two

concepts, T and 0, are the same, except for the scale of measurement used

to describe each. One importdnt difference is that true score is defined

on the interval [0, whereas ability scores are defined on the interval

The e are other differences between true score and ability score.

Tru_ score is defined for a particular test. It is the expected

By definition, E(Z10) = T, the true score. Also Var (Z1

_and so T and 0 will be related by a monotonic increasing trans-

test score for an examinee. An examinee's

non-paraliel

. ability.

rue score-will-vary across--

easures of the same ability.. On the other hand, ability

_defined for "universe of items measuring a single
.

An examinee's true sco in different samples of items would

(in general) vary. However, ability score is defined in terms of the

"pool" of items from which the sample was drawn. Latent trait models

specify relationships between examinee item perf

..so-4t-is-alwaya possible

cular sample of items (de

ance and Ability, .and

ansform examinee performance on a parti-

ing a test) onto an ability scale defined f

the larger pool"-cif test-i ems. Thus, hile- -an examinee would have. (in

'general) a different true score for each sample. Of items drawn from the

-pool, and would obtain different_ tes scores in,each- sample of-items, the

pected estimate OE exaMinee ability fret' eaCh saMnle of teet iteMs

-would be Jle same.

2 2
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Ability scores can be used with

for-items included in.a test

--man e. Recall,

tem characteristic curve para-

estimate examinee test perfor-

[6]

Thus, ability scores provide'a basis fpr-conten eferenced interiretations

of examinee test scores. :When- the quantities In Equa

by l/n, E(X 18) rep esentsthe expectedA7 ropartion.of items in test

tharan. exa inee, will answer co rectly and;this interpretation will have

mean ng regardless of the test performance of other examinees. -Of course;

ability scores provide a basis for norm-re erenced inter retations as well.

Let us consider next how.the metric for the ability Sc lais ch

It is chosen so that

mathematical fo

the item characteristic curves have some specified

On the-basis examinee test performance, examinees

=

can be orderecl_on_ability-The_ particular values of these abilities on

-the ability scale are chosen so maximize a criterion reflecting

-agreement between examinee item response dAta, _predictions of the..

test data derived from the "best-fitting" item characteristic curves

optimally positioned'ability scOtes-on he ability scale. Howeve

the origin and unit of measurement of the ability-scale-are Arbitrar

Any linear transformatien of the ability seores is permissible. Also,-

s been suggested that when an external criterion measdre with ean-

ingful units can be located, transformation be found to

transform ability scores to this new scale. Such a transformation would

enhance the IRL!L-211,111Ly of ability scores
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d (1975d) reported one rather distressing property of the

ability scale observed in his work. Item parame e s defined on this

ability scale were found to be correlated in six sets of empirical data

that he studied. Lord proposed a monotonic transformation of the ability

scale to correct the problem With the availability of computer pro-

ams. this operation could be routinely performed.

2 4



The purpose

Latent Trait Models

this section is to introduce several of the most com-i

manly used latent trait models: The normal-ogive model,

and three-parameter logistic-test models ',the graded7response model,

:inal response model, and the continuous response medel. All models

ume that the principle of local independende applies and (ectuivalently)

that the items in the test being fitted by a model measure a common ability,-

A significant distinction among the models is in .the

taken-by the item characteristic curves. A

among the -models is the scoring.--

- Additional latent trait models are-discussed-by Lazarsreld-and-Henr-y-

_ond Important distinction

(1968) Lord and. Novick (1968), and Torgerson (1958). Determinist c

mOdels'(for.ekampl_ Guttman-a- perfec -scale.model) are

us here because they are not likely to fit .most-achievement and aptitUde.

test_data 'very well. Common test items rarely diseriminate---
_

11-enough to be fit- by a-deterministic model..(Lord 1974b).

no 'interesr to

Normal-Gtive Model

Lord (1952, 1953b) proposed.a latent trait model (although he was not

the first psychometrician to do so) in which an item characteristic cu

takes the form of the normal ogive:

ba (8-
-_g g_

L.
[71

where P (0) is the probability that an examinee with ability 0, answers
.g

item-g corre-

--paramet: s characterizing item g.

d ag are

bThe, parnmetet. is usually referred



to as the index of ite_.indLii_fAsL._ylt-. It represent_ the point on the abili y

scale:at which an examinee has a 50% probability of answering the item

Correctly- The parameter ag, called item disi_rimination, is prop° tional

to the slope of P (0) at the point 0 = b .

The item diffiCulty parameter,bg, is-defined on the same'se-e as

abili y ]. In practice though, the range of b is from about -2

to +2 (assuming the ability distribution has been scaled.to be appro-i-

mately on the range from -3 to -1-3). Values of b neat -2 correspond to

ems that are very easy aad values-of bg near +2 correspond to itema that

-are very,difficult-for the grOup of examinees.

The item discrimination parameter, ag, is d fined, theore ically,

on the scale [7=,i-co]. However, negatively discriminating items are dis-

ded frbm ability tests. Also, it is unusual to obtain ag values larger,
-

than two. Hence, the usual range for ite- discr miaation parameters is

High values of a result in item charact- istic curves that are

increase

iep." Low values-of a lead to item characte

gradually as a function of ability.

(b) TWo-Parameter Lo istic Model

stic curves that

Birnbaum (1968) proposed alatent .trait model in which the item

characteristie curve, takes the form of a two-parameter logistic distri-

bution function,

Birnbaum subs

funetion for

[8]

ed the two-parameter logis ic cumulative distribution

normalogive function a the form of the item
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characteristic curve. This model-has the im ortant advantage o: being

more mathematically tractable than the normal ogive model. P (0 ) b-

ag . and 0 have essentially the same interpretation as in the normal ogive

model. The constant D is a scaling factor. It has been shown that when

D = 1.7, values of P (0) for the normal ogive and two7parameter logistic

models differ absolutely by less than .01 for all values of 0 (Haley, 1952).

-

Careful- inspection of the two-parameter-normal ogive and logist

test models reveals an additional implicit assumption that is character7.

istic of most latent trait models: Guessing does not occur. This must

beaosinceforallitemswitha_>0 (that is, items for which there is-a

positive relationship bet een performance on the test item and the lbility

measured by the test), the probability of a correct response to the item

decreases te zero as abJlity decreases.

(c) ThreeParameter_Luistio Model

The three-parameter model can be obtained from the two-parameter

--
cg. The mathematical forn or

the three-parameter logistic curve is written

pa
g
(0-b

g
)

eeg (1-cg) 1,2,,.. [9]

l+epago-bg)

The parameter cg is the lower asymptote of the item characteristic curve

and represents the probability of low ability examinees correctly answering

an _item. The purpose of including a parameter cg in the model is co tf3THp ,

account for the-misfit of item characteristic curves at the low end of

ability continuum, where among other things, guessing is a factor in test

performance. It-has-been common to refer to the parameter ca as the

_guessinz_ parameter in the model.-



-257

It is perhaps surprising to nate that the parameter cg typically

assumesValues that are smaller than the value;that would result if ex-

iaminees of low ability were to guess randomly on the-item. As Lord ,(1974a)

has noted, this situation can probably be attributed to the ingenuity of

item writers in developing "attractive" but inc ect choices. For this

reason, avoidance of the label guessing paramete describe the para-

meter would seem to be desirable.

(d One-Parameter istic Model_ (1a.§Oi Model)

In the last decade, many researchers have become aware of work in the

ren of- latent trait models by Georg,Rasch, a Danish mathem i ian (Rase_

1966), both through his own publications and the papers of Others advancing

his work (Anderson, Kearney, and Everett, 1968; Wright, 1968, I977a, 1977b;

-Wright and Panehapakesan, 1969). Although the Rasch model was developed indepen-

jleoxly_of_ ther_lateat_trait-moc 1 -and-along-quite different-1'1

model can be viewed as ajatent trait -_ model in.which the item characteristic

curve is_ A one-parameter logistic function. Consequently, Rasch's mod 1

is a special ease of Birnbaum's two-prutnerer logistic model, in which all

items ire assumed to lave equal d

of difficulty. The -l_ation-

can he. writ _en as

e
_

14eD5(0-bg

t iIt power and vary only in t tms

the item th cterlstic curve I ur thi!--; model

[10]

-_in whtch 5, the only term not prev1aiirly -defined is the common level

discrimination for all the items. Wright (1977a) p -fers to write the

model with IM incorpor ted into the 0 scale, Thus, the righ -hand s de

of the probability statement becomes e

0'-b'
11-e- g

2 8
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The assumption that all item discrimination para ete:_ are equal is.

restrictive, and sUhstantial evidence is available which suggests that

unless test items a - specifically chosen to have this characteristic,

the assumption will be violated (e.g. Birnbaum, 1968; Hambleton & Traub,-

-1973; Lord 1968; Ross, 1966).

While the Rasch model is a special case of the two- and three

parameter logistic test models, it does have some special propertie g-

that make it especially attractive to users. For one, since the model

involves fewer item parameters, it is easier to work with. Two, the

proble_ parameter estimation is essentially solved.
, This point will be

discussed in a later section.

There .appears to be some misunderstanding of the ability scale for

the Rasch model. Wright (1968) originally introduced the model this ay:

The odds in_favor of success_on_an_itemdenoted_Op,are-given by tlieprodtict

an examinee's ability Of* and, the reciprocal of the difficulty of the item,

1/b
*

. pdds for success will be higher for brighter students and/or e sier

items. The odds of success are defined as the ratio of Pgi to 1-Pgi,

=he probability of success by e4-: -inee i on item g.where P

Therefore,

or

Pgi

2 9

[121
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D50
Equation [10] can be obtained from Equation [12] by set iing and

b.* = epAb g . In Equation [12], both 0* and bg
*

are defined on the inte val

If log ability and log difficulties lre considered, then 0 and

bg, and 1 g 0* and 1 , bg are measured on the same scale, [- L dif ering

only by an expansion transformation.

We return again to the point above regarding the. odds suceess on an

-1

*item. Clearly, there is an indeterminancy in the product of 0. and 1/b
.g

When odds for success are changed, we could attribute the change to either

Of
*

or l/bg
*

. For example, if odds for success.are doubled, it could be

because ability is doubled or because the item is half as difficUlt. There a e.

several ways to remedy:the problem. For one we could choose a special

set o "standard set" of test items and scale the bg's, g = 1,2,...,n so

that b = 1. Alternately, we could do the a so- of scaling for a

"standard" set of _exarilineessuch that the average...0 is

set to one. The-final point is clear. Wben one itertris twice as easy as

3 0
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another, a person's odds for success on the easier item are twice what

they are on the harder item. If one person's ability is twice

as high as another person's ability, the firs_ p son's odds for su _ess

are twice those of the second. person (Wright, 1968). In what sense are

item and ability parameters measured on a ratio scale, .An examin-e with

twice the ability (as measured on the Rasch ability scale) of another-

examinee, .has twice the odds of successfully answering a test item. Also,

when one item is twice as easy as-another item (again, as measured on the

Rasch ability scale), a person has_twice.the odds-of successfully answer

the easier one. The other latent-trait models do not permit this

particular kind of interpretation of item and ability parameters.

(e) Nominal_Response Model

The one-, two-, and three-parameter logistic test models can only

be applied to test items which are scored dichotomously. The nominal

response model, introduced by Bock (1972) and Samejima (1972), is applic-

able when items are multichetomously scored. The purpose of the model is

to maximize the precision of obtained ability estimates by utilizing the

information contained in each response (correct or incorrect) to an itcm.

This approach represents an ther method in --he search for differential

scoring weights that improve the reliability and validity of mental test

-scores (Wang and Stanley, 1970). Each item option is described by an

item o-tion _haracter curve. Even the 'o ' response can be -=

sented by a curve. For the Correct response, the curve should be monotonic-

ally increasing as a function of ability. For the inco -ect options, the

31
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shapes of the curves depend on how the options are perceived by examinees

at different ability levels.

There are, of course, many choices For the mathematical form of the

item option chz istic curves (Samejima, 1972). For one, Bo k (1972)

assumed the probabiliLy that an examinee with ability level 0 will select

_rticular item option k (from m available options per item) to item g

is iven by

Pgk(°
qk + a*

-
m
E b*, + a_

1.1_-,le gn gh
,2,...,a; k 1,2,...- [13]

For any ability level 0, the sum of the prObabilities of selec ing each of

the m item options is equal to one. The quantities b4 and alik are item

parameters related to the kth item option. When m2, the items are

dichotomously scored and the two-pa ameter logistic model and the nominal
. .

response model are identi

Graded Response Model

. . This model was introduced by Sameiima (1969) to handle the testing

situation where item responses are made into two or more ordered categories.

For example, with test items like those on the Raven's Progressive Matrices,

one may desire to score

. ample, Inc partially c

ees on the basis of the co ctness (for

correct) of their anSwers. Samejima

(1969) assumed any response to an item g can be -lassified into m_ -1- -1
-g

categories, scored N,
1

0 _..., respectively. Sameji (1969) in-
1,

troduced the operating characteristLc of a gradei response category. She

1-fines it as

[14]
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is.the regression of the binary item score on latent ability, when-

all the response catgories less than are scored 0 and those equal to

or greater than x8 are scored I. P,
_g
-(0) represents the probability with

.

which an examinee of ability level 0 receives a score of x
g

The mathe-

matical form of Pxg is specified by the user. Samejima (1969) has con-

sidered both the two-parameter logistic and mo-parameter normal-ogive ctrves

in her work. In several applications of the graded -esponse model, ic has

beencommontoassomethatdiscriminationparametersareequalforF_O )xs

xg = 0 1, This model is referred to as the homogeneous case of_.

the _graded response model. Further, Samejima defines and P* _el)(-)

so that

and

13(61) - 1

0 = 0'
+1)

Also, for any response category

P 0) = ) P (0Xg

The shape of

except when xg = mg, and xm!=

[151

[16]

[17]

, mg, will in general be non-monotonic

This is true as long as Px (0) is mono-

tonically increasing, for all xs = 0, 2

g Continuolis Response .Model

The continuo s response model can be c _sidered as a limiting case of

the graded response model. This. model Was introduced by Snmejima (1973b)

to handle the situation where examinee item responses are marked au a con-

tinuous scale. The model is likely to be useful, for example, to social

psychologists interested in studying,attitudes.



Estimation of Para eters

Once 17he various assumptionssuch as unidimensionality and local

independence have been made regarding the latent variables, and the form

the item characteristic curve is specified, the problem of estimating

the parameters of the latent trait model arises. If, say the t o para-

meter normal ogive or the logistic model, is deemed appropriate and if n

items are administered to N examinees, the parameters that have to be

estimated are the .2n item parameters pertaining to item difficulty

and item discrimination, and the N paramets that correspond to the

abilities Of the. examinees. Owing to the large number of parameters which

may result when .a large number of examinees are involved, the estimation

of parameters in-latent trait models present substantial sta 'sAxal and

numerical problems. The statistical problems that arise in the estimation

f-parameters-are-related-to-the=nature-and-properties of-,the,estimates.

numer cal problems, on the other hand, arise in connection with the'Solution

of the estimation equations and are rela ed to the convergence of the

algorithms employed to solve the equat ons

The basic statistical problem associated with estimation of para-

meters in latent trait models arises when the item para eters have to be

estimated simultaneously with the large number of ability parameters In

this situation, the item parameters are common to all the N observations

and hence are called "structural parameters. The ability parameters,

called "incidental parameters," on the other hand, are. specific to the individ-

ual observations and hence increase with the number of observations. The

problem of est mating structural parameters in the presence of incidental

parameters has been studied by various authors. Neyman and Scott (1948)

and Kendall and Stuar (1973, pp. 62) have shown that the maximum likelihood



estimates of the structural parameters in the presence of incidental para-

-meters are not consistent. More recently, Ander en (N73a) ha_ demonstrited

that consis ent maximum likelihood estimates of the struct ral-or item

parameters in a one-parameter latent trait model do not exist when the

ability parameters and the item parameters are estimated simultaneously..

The estimation of the parameters of the latent trait models requires

the determination of he values of the parameters that maximize the like-

lihood function if maximum likelihood estimates are sought. The likelihood

function, which will be defined a little later, is rather complex.and is a function

of a large number of va fables. The problem of finding.the extreme values

of a function of several- variables is not trivial and often requires

numerical methods. These numerical procedures are iterative in nature,

requiring some star ing values for the paraMeters in question and these are

then iterated upon until the sequence of values converges. A)ften, the con-

Vergerfee-Cif-the-aeqUene-May-be- athet-SloWT if-the-sell:fen dbescon-

verge, e, it may not converge to the true solution. A case in point is the

three-parameter logistic model. Samejima (1973a) has shown that the likeli-

hood function for the estimation of ability parame e j in a three-parameter

.

logistic model (under the assumption that the item parameters are known) may

not possess a unique maximum. In th s case, since a unique maximum does

not exist, depending on the starting value, the sequence may converge

to a value that corresponds to a local maximum. -Thus, the.values

of the parnMeters that maximize the likelihood function,or the esti-

, will not be the true maximum likelihood estimateS of the pa--me

'i the case of the three-parameter logistic model with known values for item
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jima (197.11) has provided condi ions under which the likeli-

hood function possesses a unique maximum. However, when the item param

are no: known and have to be e- imated, the likelihood function which is a

fun tion of the item parameters as well as the ability parameters, may not

possess a unique maximum, and hence, the values of the parameters that maximize

the likelihood function may not correspond to the true maximum likelihood

imates.

Despite the statistical and numerical problems mentioned above, the

latent trait theory abounds with procedures for est
literature

ating the

parameters that arise in latent trait models. These estimation procedures,

whith have been developed over the past thirty years range from heuristic

procedures such as those given by Urry (1974) and Jensema (1976) to conditional

as well as uncondi ional maximum likelihood procedures (Andersen, 1970, 1972,

1973a 1973b; Bock, 1972; Lord, 1968, 1974b; Samejima, 1969;-Wright.and

Panchapakesan, 1969;Wright..and_Douglas,_1977)-and-emptrical-as- ellmas-true---

Bayesian procedures (Birnbaum, 1969; Meredith and Kearns, 1973; Owen, 1975).

These procedures are discussed next, and although there are

severe problems with the estimation-of parameters in latent trait models,in

me instances these problems can be overcome.

Maximum Likelihood Estimation in Latent Trait Models

We assume that an examinee is administered n dichotomously scored

items and that the underlying latent space is unidimension 1. Let V be a

vector of binary random variables such that

V = fUl U2... Ug .

anc v, a particular realization of V such that

3 6
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The random variable U takes on the value where u = 1 if.the examinee

responds correctly to the item and ug = 0 otherwise. We also denote

) = Prob [Ug Ile]

and

Q g . 1-P
g
(0 = Prob Dig 7 01 )

_

7

Hence, the frequency distribution of the binary item score for fixed 0

cnn be written _as

0) = Prob [1-1g

1-u
P (a)ug (6) gg g

P (0) if Ug 1

Q (0) if ug

Thus, the conditional probability of a response vector, V = v, for fixed 0

can be expressed as

Prob [1.1 = v101 7 Prob _= ul, U2 = 112. Un

It then follows from the principle of local independence that

Prot:, [V = v101 = Prob lUg 1 ]

g=1

. a P Q
1-

_ g
g=1,

I°]

If the n items are administered to a group of N examinees, then the likeli-

hood function or the joint probability distribution of the response patterns

for tbe N examinees for fixed ability levels 01,

e Prob [VI v- -V2 = V2, Vn = vn101

N n
= R R

k=1 g=1
ug Qgold

is given by

[18)

The function, P-(0) the probability that an examinee with ability 0

responds correctly te item g, is the regression function of nny item response

37
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. on .0, and is more commonly referred to as the item characteristic curve.ug

The item characteristic curve is a function of the item parameters such as

the indices of item difficulty and discrimination as well as the ability,

Ok, of the kth examinee. Once the form of the item characte istic curve

is specified, the maximum likelihood esti ates of the item-para

and the ability parameters can be determined as those values that maximize

likelihood function L given by Equation [18].

The item characteristic curve, Pg(0) can take one of several forms

as mentioned earlier. We shall discuss-- the procedure for obtaining maximum

-likelihood estimates only for the-one-, two-, and three-parameter logistic

models these are the models that are frequently nsed. The one-parameter

logistic modei better known asthe Rasch Model, has the item characteristic

curve Pg(e), given by Equation [10]. In this_- i, P (e)- is a function of

the i difficulty parameter, bg, and ability-parameter, more

appropriately denoted as Ok, correspo...-1-ling to che ability of the_k_th _examinee.

The two-parameter logistic model for which the item characteristic curve

Pg(0) given by Equation [8] is a function of ag, the discriminating power

of the item, bg, the item difficulty index, and Ok th ability of the kth

examinee. Similarly,- the item characteristic curve ,o-c the three-parameter:

logistic model g ven by Equation [ 91, in addition to oeing a function of

the parameters ag, bg, and Ok is a function the parameter in

general if let T (x) denote the function

exp x/(1 exp [19]

-hen the itm cha lcteristic curve for th irle parameter model or the Rasch.

model Ls given by

Plgqd 41(°k-b

The item-characteristic curve for th two-i arameter model is given

T[ag (6-b )1 [21]

[20_]

3 8
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while the item characteristic curve for the three-parameter model is given

by

ek

In o der

+ (1
[221

obtain the maximum likelihood estimates of the pare eters

necessary to solve the likelihood equations

slog L1/Dbg 7 0, slog Ll/O0k7 0 g=1,...,n0c=1,. [231

for the Rasch model, the equations

Dl_g L2/Dag = 0, slog LI% = 0, log L2/DOk - 0 [.241

for the two-parameter logistic model, and the equations

'alog L /

nog L /

-)10g1/R)g -=0, Dlog L3/D = 0, [251

for the three-parameter logistic model. The likelihood functions Ll, L2, and

are obtained by substituting Pig(0), P2g(0) and P3 (_) respectively for

-g-

(O )in Equation-1181 Sine -the-scale-and origirrofO is nd TiXed

have to solve simultaneously rri-N72 equations for the one-parameter mode

2ni-N-2 equations for the two-parameter model, and 311+N-2 equations f__ the

three-parameter model. The exact form of these equations are not given here

sin ethey _ e well.documented (Birnbaum, 1968; Wright & Douglas, 1977,

Solutions to-the likelihood equat ons discussed above are, unfortunately,

-not __ailable in closed form. Hence, numerical procedures have to be em-

ployed to obtain the solutions of the likelihood. equa-iions. Procedures for

solving these equations have been suggested by various writers. Birnbaum

(1968, pp.. 422) suggests a heuristicprocedtire that involVeS specifying

arting values for the parameters, substituting these in the likelihood

equations end

press

ating until convergence takes place. Although this is

an appealingly simple procedure, it is inefficient and convergence to the

true solution is not guaranteed. A more satisfactory procedure is the
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Newton-Raphson procedure sug ested by Bock and Lieber- _(1970 ), Bock (1972 ).aid

Wright and Deu4as (1977). In general, if the equations to be solved are

of the form f() 0 where a is a vector of unknowns, and f' (a)

he matrix of the deri a ives of f(u) with respect to the vector of

parameters then the 141)th approximati-n to the solution of the system

- 0, ta_ , is given byi+l

{fl (a )} f (rt
-i 26]

whore a- is the- ith approximation to the solution of f(a ) = 0. Thus, the

,Newton-Raphson procedure, in this case, requires the evaluation of the

-matrix ef second derivatives,-or -the Hessian, of the logarithm of the lik -

lihood function with-respect to the parameters. Although the Newton-

Raphson- procedure is ImYre tedious than the simpler procedu-es,--the conver-

gence of the-Ne ton-Raphson algorithm is quadratic, at least in the

ne ghborhood of the solu ion vector. In addition, the Hessian evaluated

at-the-maxi um of-the-log-likelihood function -yields the-inverse-of-the-

asymptotic dispersion matrix of the maximum likelihood estimates (the

eXpress nfor the asymptotic dispersion matrix is given in a later section).

Alternatively, the Method of Scoring (Rao, 1965, p. 302) can be employed

to solve the likelihood -equationS. The Method.of Scoring is essentially

the Newton-Raphson procedure, but employs the asymptotic dispersion mntrix_-

in place of the inverse of the Hessian in the iterative sequence. Although

this procedure can be slow in convergence when _compared to- the Newton-

Raphson procedure, it is computationally simpler,=, since the-asymptotic

-dispersion matrix does net-have to.be undated at each iteration. In addit on,

the asymptotic dispersion matrix is positive definiteWhile the Hessian may

become indefinite at some stages of the iteration, a fact that causes

conve gence problems in some instan

4 0
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ikelihood procedure disOussed above has been employed

eatimation of item parameters and ability parameters by

thors as .-Birnbaum (1 968) 1,0 rd (1968) , Wright !Ind In ehapak- U) (I 69),

oifil Wright ;Ind I tig-1 19//) An ex d I scwishm iii sortie ol 1.1w

1 nit it rob qm. t I

model'is giVen by. Lard -(1968)

cricountereti in praLltice I ui the threc
1

He points out that the iterative procedure

fails to converge unless_the number of. items and the number_of .examinees

large-. If either n N is small, the estimqtes of the item discrimli

on why

of

ces may increase without bound. 4right (1977a) has u

this may happen using

ed a

an argument based on the traditional method

Lion

estimating-item discrimination. In order to estimate the item parameters,

of the abilities of the examinees are first obtained. Birnbaum

imalirig the-abllit

q the score- of the

shown that a sufficient statistic

the ith examinee i given by aii, wher

ith examinee on:the j.th item, Since-a - /(1-p
2

nesuming guessing

minimal and ability is

g . g-

normally distributed where is the correlation-

between 0. and ug (Lord. and Novick, 1968, p. 378), an initial value for g can

he obtained when pg is known and the assumptions arc. met bv the __

The it m scores q

-rthe 'ability _

-g

dati.

then weighted by these values.- to yield nn estimate for

an e*aminee. This-procedure is iterated until a stable va

' is obtained. However-, during the itera
g .

on, the that was the la
g

s lar- r un il it-dominates the weighted eombinat on of item scores, and itt

next. step, results in a that ;IIuprOac unity, -thus driving the vni

beyond hounds. Lord (1968) sugge.stS imposing an upl_ r limit For a

based on the largest p= m ssible correlation between the item and the abilit

This suggestion which i_ not unlike that of incorporating p or beliefs into
_

the estimation procedure, produces estimates that are reasonable.

Similar problems arise when estimating the ability of the e

Unlike the a_,,g

and can be

on-ther.tes

ite values (positive or negative_ ) are permissible-

:pecied whenever an examinee._pbtains a perfect

or fails to --o e correctly even on one item.



values

itself.

causes

"an be avoided by using

However

no theoretical problems, it is not necessary to compensate for

Another problem noted by Lord (1968), is that the entire iterative

procedure may fail to converge or may converge extremely slowly. Lord (1968)

employed

equations. Although the procedure converges quadratically in the neighbor-

hood of the maximum, the convergence is ra her slow when the starting
- -I

values given are far from the maximum. In some instances, poor starting

values cause the procedure to diverge. One possible solution, obviously,

_ to provide good initial values, or, employ a linear search procedure

like the method of steepest ascent, and then switch over to the Method of

--Sco ng (or the Newton-Raphson) when the linear procedure slows down in

convergence. The linear search process does not seem to have been incor-

porated in the existing algorithms and its efficacy needs to be investi-

gated further.

The major statistical problem that remains with' he simultaneous

estimation of item. parameters and the ability parameters is that these max-

imum likelihood estimates do not enjoy the properties they are usually

accorded. Andersen (1973b) points out that maximum likelihood estimates

of the item parameters and the ability parameters, when estimated simul-

taneously,are not consistent. This is true in general when structural

parameters are estimated in the presence of incidental parameters. Thus,

the procedure advocated by'Wright and Panchapakesan (1969), Birnbau (1968) and

Lord (1968) may not yield consistent estimateN of the parameters Since

ates may not be consistent, they may not even be asympotot cally
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bounded function of Oi instead'of-Oi

as the'occurrence ofinfinite-Values- for, ei,..itself

the Method of Scoring for the solution of the likelihood

unbiased.
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ight end Douglas (1977) provide a correctiorLfor

the estiMates of the parameter§ in the Rasch model. However

should be pointed out that this correction does not-necessarily guerant

onsistency of the estimates.

The likelihood function given by E uation [18]

sense, a conditional likelihood

parameters, i.e.,

L = L

where y is

function-of-.the-item.para

the-strict

eters and-ability::

u120..

the :vector of item parameters, _

of-the examlnees, and

are the abilities

is the score of theAth-examinee'on the -jth

-As the sample-Size- increases and approaches-infinity, the- number cif--abilitY

--_parameters or incidental parameters increases without bound. Instead of-

becoming stable as the Sample size increasa the-maximum likelihood -es-imates

-become ineffective-in fact they are not even consistent. (Neyman and Scott, -

1948; Kendall and Stua--- 1973, p. 63;,Andersen, 1973b). Thus, the-like-

lihoed function,when- expressed ssra-function conditional-upon the:item::

:. And the abiliy.parameters,does not yield-estimators with-.desirable pro-

. perties. The problem-can-be overcome if it is possible to express

conditional likelihood function in terms .of only_the item parameters. When

this is possible, the item parameters can be-estimated without reference

to the ability parame ers and the estimates can be expected to have. the--

---
desirable properties that maximum likelihood estimates usually possess.

The likelihood function involving the Item parameters can be expressed

independently of the' ability parameters if a minimal sufficient statistic

Ti for Oi exists such that Ti does not depend on the item parameters. Then,

the conditional maximum likelihood estimator of

defined as the value of -y_ that

the item parameters,



e bY definition of a minimal sufficient statistic, the likelihood

function conditional on Ti = t1 is independent Of the ability paraMeters

the vector of item parameters y can be estimated without

any reference to 01 82,..., 0. Anderse (1970 ) has-shOWn that such

nditional maxi um likelihood estimators-are-consistent and asymptotically-

normally dis ributed. Conditional maximum likelihood estimators that are-:

consistent and that are asymptotically normally distributed haVe been

obtained for the Rdsch model (Andersen, 1972, 1973a, 1973b). For the RasCh

model Ti = ,. the .total score for individual i is a sufficIent

statistic for 8. (Birnbaum, 1968, p. 429): and ie independent__

parameters Thus the conditional likelihood function is given

exp

where

b1,

/ H r(t.; b
J'IJ -1 l'
- i=1

- The summafion

the

-Y

exp(- u. b

j=1

is over all response vectors with u t.. The

J71

conditional likelihood function given-above is independent of the ability

-parameters,- 0, and hence the Item parameters b, can be estimated without
)

any -reference- to the ability parameters:- The resulting likelihood eqOations

(Andersen, 1970) -annot be solved in the tioSed form. A numeridal pro-

cedure-Tor the solution of the likelihood equations, based on the Method

-of Seering,_iagiven by Andersen (1972) and the reader is referred to this
-

paper for details of the procedure.



In the wo-parameter model Birnbaum 1968) has shown-that a suffi-

cient statistic for 0 is However, this s atistic is a functi

the unknown para eters a and hence it is not possible to express t

condit onal likelihood funetion as a fun tion only the item parametera.

However; it .is possible to,express the likelihood-function as a- function

f the em parameters alone if it is possible to view the exa inees as a

random sample from a known population If we 'denote the density function .

of the ability parameter 0 as q(0), and the jth pattern of item responses

then

Prob

Tr .
J

(10

where I ip the vectotof-item'parameters .Lord and.NOvick,-J968,-, p. 362)

_When the items are dichotom usly scored, there are in all 2n score patterns..

.If N eXaminees are -rAndomly sampled from the.population, the numbe

eximinees with response pattern j is

_

Thus, the number of examineeswith the jth response pattern are distributed

multinomiatly with parameters N And IT- , whence we obtain the likelihood

function conditional onlY- on the'item parameter, as

.2n 2n
II 7F. / II

j 1 j=1

On maximizing this likelihood function with respect to the=item parame

we obtain the maximum likelihood es itates of the parameters=

Bock and Liebermann(1970)-and Bock (1972) have named,the estimates

obtained by maximizing the likelihood function given above, the
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uneonditional maximum likelihood estimates since the likelihood function.

not c nditioned on the ability parameters. The term "unconditional"

--=imates has been _used in a different sense by Wright and DBuglas (1977)...

and should not be .Confused with the usage Of the term in this. paper.

Wright and-Douglas (1977) term their- procedure for the simultaneous

estimation of item and ability parameters as the_ uncondltional procedure,

in contrast to the conditional procedure provided by Andersen -(1972).

:he present usage, the estimates obtained-by Wright and Douglas (1977)-

are conditional, since the likelihood function i-nloyed by them is

conditional On the ability .par meters.

Bock and Liebermann(1970) and Bock (1972) have outlined a procedure --

for_ the uncenditional_maximu 1ikelihood estimation-of-the parameters. The

procedure introduces a further complication to the already complex estima-

tion procedure. It is necessary to integrate the-likelihood function with

0. As'this integral eannot be evaluated -in the closed . form,

nun e

this,

-ical integration procedures-have- e employed. In addition to

the-likelihood function requires the evaluation of 2ni response

patterns, a tedious task when a large number of iteMa is involved ally,

he problem of specifying the density function of the latent va iable 0

has to be faced. Bock and Liebetmann(1970) and Bock (1970) assumed that 0

is distributed normally with zero mean and unit variance an assumption that

may_not be realistic-

nest,' these problems, the unconditional procedure has theoretical

advantages over the conditional procedur-_ in the two- and three7pa ameter

models. kiefer, and Wolfowitz (1956) have shown that- in structural models,

the mci

then the

ental parameters a e independently and identically distributed,

maximum likelihood es imates of the structural paramet-

4 6
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ent under regularity conditions. In the unconditional approach the

ability parameters are assumed to be independentlY andident callydistribilted.

and henee the unconditional maximum likelihood estimator can be exPected-to

-be consistent.. Thus,as Bock..and LieberMann(1970)..point. out, the uncondi-

tional Procedure provides a-standard-to which other solutions, can be

_compared. A,further justification-is that-when calibrating it 1:.s, it .1s--

not necessary to estimate the ability,paramete-

multaneousIy. Hence, a sample of individdals

and item parameters

andomly-selected-

.ftom a desired population and the item-paramete s estimated without any

reference to the ability parameters. The estimatesof the item parameters,

since they have some of the optimal properties, can be treated as known enti-

ties when estimating the ability of group of examinees to whom the items

-are-later administered. This-.Procedurelis particularly att -ctive since .

theestimationofabilityparametersiwhen item parameters are- known./is..

relatively straightforward and the abiliti.estimates, in this case, possess

the properties that are usually accorded the maximum likelihood estimates.

The estimation of ability parametets)when,the'ltem parameters: are

kno- hasibeen.discussed by various aUthors (Lord, 1974a;Samejima, 1969,

.1972, 1973a). The likelihood function for estimating the ability Oi of

the..i h individual is given by

L.(u11' i2

ui, (1-u..
lei H

j=1

The maximum likelihood estimator is sufficient, and efficient

1968, p. 455-459). Lord (1974a)has shown further that the estimates are

consistent (Lord _ proof of consistency, though valid.-for adifferent case,

can be adapted to-the two-parameter_ case readily).- In addition, the likeli-

hood function for the two-parameter =Logistic model possesses a unique

47



maximum. -Howe-e:, with respect to the three-parameter
. logistic model,

Samejima (1973I)has shown that the _liiteL ood function may not have a

unique maximum, if sample:size is small and

Sameiima (1973a) goes on tu

f the range of e is unrestricted.

ther to show that the problem can be solved b-

considering the subdomain of the-latent trait, e, -such-that

whe e

2 Da .

_the subdomaini the likelihood function.possesses a unique maximum, and

hence the maximum likelihood estimators of

Properties of maximum_likelihood estimators

exist with their usual pro-

Let ; be the maximum likelihood estimate of the vector obtained

by maximizing the likeiihood _function L. Then, underlgeneral conditions

(hotaatisfied, as

parameters

maximu

have seen, by the maximum likelihood estimators when

an_ abilityl)at

A
likelihood estimator, T, is asymptotically consistent unbiased,

eters are estimated simultaneously) the

efficient and a function of the sOfficient statistic if a su ficient

ie exists. In addition,

normally:distributed

is asymp ally multivariate

ith mean T, and dispersion Matrix

)1-j The expression -1

information matrix -(Kendell and Snly known as the

andi_s denoted by

matrix is the expected value

likeliho6d-fu

_ several ways, i.e.,

og L/

uart, 1973,

As:pointed out earlier,-the info -at

the Hessian at the maximum point of the

The information function can b -expressed in oae

4 8



-E (32log a-1)

,D log D log_ L
-1a T a T

Thd last'form ,is p rticularly suitable forevaluating the -jnfo ation_matrix-

of complex likelihood functions.

:The

. esti ates

f the- inf

for

usefulness.of the information ma x is evident.

are

Since the

multivariate normally distributed asymptotically, the inverse

atioa- matrix has along .its diagOnal the asymptotic variances,

the- estimates it is-than possible to censtruct-, confidence intervals

ndividnal Paremete

jointly or individually..

The InformatIon function that is usually of interes_ is that of the

=

and test-hypo lieses- concerning the .parameters

estimates of the ability parameters O. is the
.

maximum likelihood-estimate of0,- then

where

and

The inve

P. (0)

se- of-the asymp-ot

- E -0- log- L

(a log-L/D

n E 'log f

u (1-
_

ij ij

he item characteristic curve.

Expressions for the information function for

given by Birnbaum (1968, 460-462). Thus,

estimate of

he various models are

is_possible-to obtain en,

the standard error associated wi h each ability esti ate



--For details of an. application, _the readel is referred t_ Lord (1953a

confidence..interval for an examinee's abilitY, 0i-, is construc=ed.

shall return to a detailed discussion and use of the irfo-

;a later section.

Heuristic testimation procedures
-
- _

The makimum likelihood estimates as pointed out in the previous

ation func-tion'

section, do have desirable properties) t least asymptotically. However,-_

-these_procedures are-costly-and time consuming in Some situations. When

cost and time are of concern, heuristic estimaCen procedures (Urry, 1974;

Jen-ema,..1976) that provide rough -and.-eady estimates-.of- the item parameters).

May-he employed.

n the case of dichotomously scored items,- under the assumption that

-the ability is -normally.dist ibuted w- -h zero mean and unit variance and

that the item characteristic curve i_ _he two7parameter normal 6give, Lord and Novic

(1968, p 377°378) have ahown that the correlation p between the score

on item g, ug, and the underlying ability, 8, is given by

p ,g

They have also shown that the difficu ty of item: g for the gxoup,
7Te

is

given by

-Y )

whe e y b 0 , and 0(-y ) is the area under the unit normal curve

from -yg to in inity. Since p is the correlation between the score on

item g and the latent ability 0, pg is given as the factor loading of the

item on the common factor obtained by a factor analysis of the matrix of

sample tetrachuric correlations. The item difficulty, 71- g. is estimated

by the proportion of examinees who answered item g correctly. Thus once
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'and 6 ean be obtained readily. -.Of course,g. . .

appropriateness of these estim t

-e estima On procedure.

will depend on the assump ions made in

:Aifur he_ parame er, :the guessing parameter, c has t be estimatedt

in the three-parameter latent trait model-. Jensema (1976), following Lord

(1968) sUggests obtaining a -roportion of the examlnees passing an item

at each of the lower item-excluded subtest scores and using=this as an

-_ate of c Once a value for c: is obtained, the method suggested

in the preceding paragraphs can be employed to estimate ag and b_

Although the above procedure is relatively simple to mplement,

there are several:problems with the procedure. :The.estimate3ag,
g and

obtained by this method do not bave any-known sampling properties.

Secondly, factor analysis of a a rix of tetrachoric correlations pres_

theore.tical problems. The matrix of -sample tetrachoric correlations' not

:neceasarily positive definite and hence cannot, in_the strict iense,-

be-factor analyzed.

-However, despite these problems, Jel7sema (1976) reports tha

correlations between these estimates and the maximum likelihood estimates

oE the pa ameters are relatively high. Hence, these heuristic procedures

can be taken to provide quick and cost-saving estimates of the item

parame ers when these issues are of major concern.

5 1



Byin ee;_cimation of parameters

When prior information (or belief) about a parameter is available,

is conceivable that incorporation of this information in the' _stimation_

procedure w uld increase the "accuracy' or the meaningfulness of the

An cx:=: this was encountered earlier, where in order

to prevent the ates of,the item discrimination parameterfrom drift°-

ing-out of bound, it was neee sary-to impose - limits on the range of- values

the parameter coy-, take. Similarly, the distribution of ability, .11

ur the prior infcaLion about 8, was iniorporated into the unconditional

--/
estimation procedLi Despite these efforts, relatively little is known ,

about the r applYing Bayesian procedures for the es

7f parameters:in-latent trlt -odels.-

It may be instructive to review the logic of the Bayesian es

_proLedure.b-iefly-

-Novick.and_Jackson 1974). Let T_be a. parameter- of _interest and

denote N values of observable random variable X whose probability:

density function f (xIr) depends upon the value.of theloarameter T --. T.

f,-detailed ace-mint the- reader is-referred

mation

Supposing further that the N observationsare independent the join

bility

given by

_he observations,. or rhe-likelihood function, I T is

If prior information or-belief about the parameter T oan be expressed as-.

g(T) where the.probability_density. function of:r,then,the

poatcrior distribution of T given the observation, h(rIxl,,

c n be expres-ed as (Kendall and Stuart, 1973

k L(xIr)g

5 2
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where k is a constant of proportionality.

is thus an expres_ion of the inves igato-

-:me er_onde the data are obtained.:

procedure for obtaining a Bayes estimate_ employ_ng p

The posteripr distribution-

revised belief about the pa

for beLie

has been advocated by, among others,-Lindley and Smith (1972) and:Novick

-and .1, kson (1974), and hs been applied to latent.trait models by

Birnbaum (1969) and Owen (1975). This approach employs ubjective"

notion of probability as opposed to the classical, or, frequency,theery

of probability. A compromise--between these two vi ws of probability is

ob ained'by employing the empirical -Bayes preeedur- in which the prior

distribution ef the parameter i "estimated" from the data. .-This_precedure

which yields empirical Bayes estimators. is exemplified by the works of

-.Lord 1971b), and Meredith. and 'Kearns (1973).

Birnbaum (1969) obtained BaYes estimates for.the ability paramc ers

in the one7 and two-parameter logistic models-under the assumption that

the item parameters are known He chose, for mathematical_tractability,i

the- prior probability density function_ of 01 -tO'lle the logistic density

-unctien,- i.e .

g(01,

where D .= L7 is a scaling factor. :=The likelihood _unction in -his case

given by

where P (g .

isticmedel.

1-u
g (0?)

) is the item characteristic curve for the one- or two-p ameter

The poSterior density-function of-Di is then. given

L(Uil,..ot
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The Bayes es is taken'as the wean _

dIstribution

ui.r1

For a discussion and further details of the procedure -the reader i

referred-to B nbau (1969).

The procedureudvocated byBi-bauM (1969)-is not .general enough ro

permit the estimation of item parameters and ability

eously, in addition, there is no provision for_inco

parameters simultan-

infoi-mation about the-"hyperparameters" that specify the prior dIstrI

ion completely.

The procedure suggested by Lindley and Smith. (1972) for the estima--.

on of pare eters- in the general linear model-can be applied to

eters in the laten

Lstimate

reit models. The likelihood function of the

observations for fixed Oi and item paramete

Parameter Mddel) is expressed ash

L(u11-
'

u
12' uNnIO1' 827-

and:b (for the two

o Aer to obtain the posterior distribution o_ the parameters 9;- a, and -

is necessary to specify-priar-distributions, We assume:that our

,about a are no different than abotit any othet

the prior information is "exchangeable",(Lipdley and Smith 1972:.; Novick

and Jackson, 1974). This implies that the 0_ have the probabiliLy struc-

e of a. random sample-from-some comm on .distribution.- 'Thus,---we

su -tha d ", N(06, il) .- ln turn, we assume that ni-1 and (1) , the

mean and.variance_of the_prior. dist ibution,a e.-independent

54.

a riori -and
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that the density function of 00 is EN_ and that of 00

The assumption that the priCir information about III, bn dnd

al, a2,...,, an is exchangeable may appear to be implausible. However,

is not unreasonable to.assume-a distribution for the item difficulty

parameters. Birnbau (1968, p 466) considers the case where the item

difficulty parameters are distributed normally. Thus, we may assume that

N(Pb, eb) and in .turn assume that pb and eb are independently dis-

tributed with known prior distributions. Although it seems unreasonable _o

assume that the a
g
's have the probability structure of a random sample

from a common distribution, we may assume that the prior information on

the a 's are identical with density function p ). Thus, the -osterior

distribntion of el, e2,... eN, b b2 bn,

Po

P

b,-given the observations is

b b-,.. 'b
1,-2

12,"" in b an' 1

11

a
n

In this case and e
b are nuisance parameters and could beb'

removed by integrating the posterior density function. The resulting

posterior density function is only a function of the.parameters 01, 02,

ON, brI7 al"." Joint modal estimates of these parameters

-can be then obtained by differentiating the posterior density funct

setting these derivatives equal zero, and solving the re. iting "Lind ey

. Equations.' Alternativel the 9's could be estimated independently of

the ag-_'s and the b-'s by integrating with respect to these paraMeters.

The joint modal estimates of 0 0
-2 -N

can be obtained by solving the'.
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ulting Lindley Equations, or alternatively, the marginal d -sity Fun ion of

saY, n he obtained by integrating out the other ability parameters.

The mode or the mi-au of the marginal distribution of Oi could be then taken

as the Bayes estimate of e. The sa e procedure may then be appli-d to-I

each of the remaining parameters.

The procedure outlined above requires specification ot prior distri-

butions for the parameters 0, b, and and also for the hyperporam

and f(pb)

and 4. In the case of prior ignorance, we may take f(

to have uniform distributions. Prior ignorance on 4,0 and

implies that h

p (a

(I FMs

W 413

-d similarly for (1)10. At this point,specifica-Lon

_ 3 is unclear, but could be specified inthe prior distributi

of a rapidly decaying exponential function.

Alternatively, an empirical Bayes procedure could be used to estimate

the parameters in the latent trait models. ThiS apOroach.requires the .

specification of prior distributions for the parameters, but the hyper--

parameters that specify the prior distributions are, in general, estimated

_m the data. Meredith and Kearns (1973) have applied this procedur-

to the Rasch modeL and obtained empirical Bayes estimates of the ability

parameter by expressing the likelihood function in terms of the sufficient

statistic, total score of an examinee.

The Bayesian procedures_ di cussed above are obviously more complex

than the estimc n procedures discussed in the preceding sections.

addition, 13aye procedures require specification of prior information on

the par;

as opposud

when appli

0- interest and_.thus involve a st ctive view of probability

classical or frequency theo y of probability. However,

mble, Boyesian procedures yield more sa 'sfactory solutions)in that
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improper solutiOns do not usually occur. Moreover, it is well knowTi that

the Bayes procedures, with the exception of the empirical Bayes prncedure, are

in general, admissible, in the sense that they minImize the expected loss

(Meredith and Kearns 1973). Further o e, Bayesian credibility intervals

may be more meaningful than cdnVentional confidence intervals. In addition,

as demonstrated by Owen (1975) and Meredith and Kearns (1973), the Bnyes

estimates converge in probability to the true value-with increasing sampje

size. Finally, the Bayes procedures have the potential of offering

solutions to the estimation problems in the latent- trait models when

Ihe sample size and the-number of items are small. In these situations

.prior beliefs assume importance, while with increasing sample size they

end to lose their importance.

Despite these advantages, further investigation is necessary regarding

the Bayesian procedures. The estimation procedure based on the approach

of Lindley and Sirl'_h (1972), outlined earlier, has not yet been tmpl

merited and its usefulness has to be further documented. in pa ticular,

little is known about the families of prio 'that are app opriate,especial

since natural conjugate priors are n-t available for the latent trait

models of interest. Finally, the effect of specifying poor priors on the

estimates has to be studied carefully. In conclusion we note chat while

Bayesian procedures hold the promise for solving the estimation problems

in latent trait theory, considerable research is required before definitive

statements can be made rding the efficacy of these prored

5 7
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.Est4mation_in the nom4nal respenee, gyaded

re_s_aand continuous resionse models

As opposed to the dichotomous response model, in the nominal

response model 4t is assumed that each of N examinees responds to n

multlpie-choiceitems-ofwhichthejthitemha:miresponse categori

his case, the probability that an examinee of ability 0 will

pond to item j.by choosing category kj is given hY

jk1
= exp I

mj

/ exp [z,
h=1

Indersen (1972) chose-- to be of the form

zjh( = bjh + 0,

Bock 1972), on the other hand, chose zjh to be of the form

Since responses to he m
J

egorics fix the response to the in, th--1 c;

response category, we have the re-

+ a ,

ons
h bjb

0 for the onV-parameter

. model, and = 0, haJh =-0 for the- twa-parameter logistic model.

The simplest way to incorporate this rest iction is to take = 0 andbj

= 0, or alternatively, reparameterize the model as indicated by

Bock (1972).

And n (_972) obtained conditional estimates for his one-.

parameter nominal response-model by maximizing the likelihood furiction

conditional on the sufficient statistic. As indicated earlier, these
F

maximum likelihood estimates of parameters are consis_ n Bock (1972)

obtained unconditional estimates.of.thc item -parameters and -lso the

5 8
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condit-.onal estimates of the ite._?as well as ability)parameters in the

manner des ribed in an earlier section.

The sraded response model and its natural extension, the continuous

response model were introduced and studied by Samejima (1969, 1972,

1973b,1974). Although-,Samejima does not discuss the_ estimation of para-

meters in detail -for these models she derives important results con-

cerning thes- estimates.
She shows that,,unlike in the dichotomous response

case both the normal ogive and the logistic models yield sufficient -

----
s_ tistics for the ability parameter. In addition,she _h_ s that the

amount of information increases by shifting from dichotomous scoring

to graded and continuous scoring. Hence, the graded and continuous re-

sponse models offer advantages over-the nominal and dichotomo

mod ls in that-the information available increases. hermore the

problem of estimating ability parameters in the graded and

models

inuous respousu

to be solved. We may, ho ever, expect difficulties 1-n

estima ing item parameters and ability paramete _ simultaneou-ly.

appears t vit these problems may be solved by employing the procedures

discussed earlier, but further research is needed to establish this.
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Testing Assumptions and Goodness of Fit of Latent Trait Models

Assum-tions

How rea onable is the assumption of unidimensionality or

has been shown to be equivalent) the assumption of local independence?:

Lumsden (1976) was particularly distressed that more researchers do not

attend to this assumption. Testing the assumption of unidimensionality

takes precedence over other goodness of fit tests of a latent trait model

since, if the assumption of unidimensionality is untenable, the results

of the other tes s are more difficult to interpret. For example, if tests

of goodness of fit of the model indicate that a particular latent trait

model does not fit the data, and if unidimensionality was previously

established, then at least this potential explanation of the misfit

between the model and the data can be ruled out.

The simplest way to ascertain unidimensionality is to factor analyze

the matrix of inte item correlations. Existence of a single facto- would

mply unidimensionality. Lord (1968) reported that various researchers

have,factor analyzed matrices of tetrachoric item intercorrelations

to determine if a set of tes_ items measure more than a s ngle factor.

noted that the residuals after extracting one factor were often near the

size that one would expect from sampling fluctuations. For example,-

Coffman (1966) extracted 11 factorth for the SAT Verbal Test but most

-of the variance could be accounted for by the first factor. On the

other hand, Hambleton and Traub (1973) were less successful in locating

unifartaral teStS, but in the three ap itude tests that they studIed, t

dtd Find a "dominaht" first factor.

6 0
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Another assumption of latent trait models concerns the particu-

lar choice of a mathematical form of the item characteristic curves

to describe the test data. Since latent traits are not directly

measurable- we find ourselves in a situation where it is quite dif-

ficult to separate the inappropriateness of a particular-choice of

mathematical form for item characteristic curves from violations of

other assumptions of the model. One solution offered by Lord (1970a) is

to compare item characteristic curves derived from a direct method

(where the mathematical form of item characteristic curves does not

have to be prespecified) with estimated item characteristic curves

the form_specified by the user. The "closeness"-of the two sets

item characteristic curves provides- a basis-for checkin he

- appropriateness of the assumption. (Incid ntally, when Lord attempted

this comparison with SAT test data, he found close agreement between

a direct method of item characteristic curve estimation and three-

parameter logistic curves.)

A second possible test of the assumption is to check the "accu-

. various predictions with the estimated item characteristic

curves of-specified form.. Accurate predictions provide evidence of

the suitability of the model for the p rticular data set and, _f

interest here, the as umption concerning the mathematical form of

item characteristIc ._eurves. (:)f course, if the.predictions are.no

good, pinpointing the problem cOuld be difficult. Several researchers

(fo example- Hambleton and Traub, 1973; Ross 1966) have attempted

to study the appropriateness of differe thematical forms of item

characteris ic c ryes by using them, in a comparative wav, redict
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various test score characteris ics. Hambletqn and Traub (1973) obtained

item parameters for one- and two-parameter logistic curves with-three

aptitude tests. Assuming a normal -bility distribution and using test

characteristic curves obtained from both the one- and two-parameter

logistic curves they were able to obtain predicted score distributions

for each of the three aptitude tests. A x
2
measure of goodness of

fit was used to compare actual test score distributions with predicted

score distributions from each test model. The ' elative" app priate-

ness of the two mathematical forms of item characteristic curves was

studied by comparing the x statis ics. A likelihood ratio test for

comparing the "relative" appropriateness of two mathematical forms of

item characteristic curves will be discussed later in this section. In

all three cases substantially improved predictions were obtained with

the twoparamerer logistic curves. The Hambleton-Traub results a so

gest, not surprisingly, that the two-parameter logistic model will

provide the greatest improvements over the one-parameter logistic model

when applied to data from short tests where the variability of discrimin-

ation parameters is substantial.

Goodnes

Statistical tests of goodness of fit of the various latent trait

models have been givn by several authors (Andersen, 1973 Bock

1972; Mead 1976; Wright, Me- d and Drab, _1976; Wright and Panchapekesan,

1969). The procedure advocated by Wright and Panchapakesan (1969),

for tea_ Lg,the fit Of the Reach model essentially invo:ives examining
--

.the quantity fij.where fii represents 'the frequency of examinees at

the ith ability level answering the lth item correctly.- ben, the

quantity y_ where
6 2
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12

is distributed normally with zero mean and unit variance. Since fil

binomial distribution with parameter p the probability of

a correct response is given by et/(ot + bI) for the Rasch model- and

the number of examinees in the score group. Hence, E(f
-ij

and Var (f..) = r,p (1-p..) Thus 4 measure of the goodness of fit,3.3 i ij 13

x
2

, of the model can be defined as

The quantity,

n-1
X
2

= E Y 2
iIl jj=i

defined above has the xL distribution with degrees

of freedom (n-1) (n-2) since the total number of observations in the

matrix F ff n(n-1), and the number of parameters estimated Is

2(n-1). Wright and Panchapakesan (1969) also defined goodness of

measure for individual items as

n-1
= E y?.

ii "
where

3
is distributed as X2 with degrees of freedom (n-2). This.

general method of dete -ining the goodness of fit of overall test

data can be extended to the two- and three-parameter latent trait

models. The reader is refetfed to Ha bleton and Traub (1973) for

anfexample of a test of goodness of fit applied to two- and thi.o

para eter logistic models.

There are several problems associated with the chi-square tests

fit discussed above. The x
2

test has dubious valIdity where any

one of the E(fi terms, i = 1, 2, ..., n 1; j = 1, 2, ..., n,

have-Values less than-one. This follows frem the fact that when- any

6 3
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terms are less than one, the deviates y
ij

1,

n, are not normally distributed and X2 distribution

is obtained only by summing the squares of normal deviates. Another

problem encountered in using the x2 test is that it is sensitive to

sample size. If enough observations are taken, the null hypothesis

that the model fits the data will always be rejected using the x

test. Ho ever it should be pointed out that this is an inherent

weakness of ail statistical tests.

Alternately, Wright, Mead,- and Draba (1976) and Mead (1976) havespg

ted a method of test of fit for the one_ pa amete model which invol-

ves conducting an analysis of variance on the variatiOn remaining in

the data after removing the effect of the fitted model. This pro-

cedure allows not-only a determination of the general fit of the data

to the _xldel but also enables the investigator to pin-poin- guesaing

as the major factor contributing to the misfit. This procedure for

testing goodness of fit of the one parameter model involves computing

.. residuals in the data after removing the effect of the fitted model.

These residuals are plotted against (01-b ). According to the model,g

the plot should be represented by a horizontal line through the

For guessing, the residuals .follow the horizontal line until

the guessing becomes important. When this happens the residuals are

positive since the person is doing better than expected and in that

region have a-nega ive trend. If- practice or speed is involved the

.... items-which are affected display -egative re-iduals-with-a negative

trend line over the entire range of ability.. Bias,for a particular

group may be detected by plotting the residuals separately for the

two groups. It is generally found that the res duals have a negative

2

6

n-1;
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trend for the unfavored group and a positive trend for the favored

group.

Mead (1976) concludes by saying "All of the disturbances consid-

ered represent some form of multidimensionality; they would violate

any model that assumes unidimensionality. Since the effect Of the

disturbances often appears as a change in the slope of the item char-

acteristic curve, any model which includes item discrimination as a

parameter would appear to fit the data".

When maximum likelihood estimates of the parameters are obtained,

likelihood ratio tests can be obtained for hypotheses of interest.

Likelihood ratio tests involve evaluating the ratio, A, of the max-

imum values of the likelihood function under the hypothesis of inter-

est to the maximum value of the likelihood function under the alter-

nate hypothesis. If the number of obse vations is large, -2 log A is known

to have a chi-square distribution with degrees of freedom given by

the difference in the number of parameters estimated under the alter-

nate and null hypotheses. An advantage possessed by likelihood ratio

tests over the other tests discussed earlier is apparent. Employing

the likelihood ratio criterion, it is possible to assess the fit of

a particular latent trait model against an alternative.

Andersen (1973) and Bock and Liebe mann (1970) have obtained

likelihood ratio tes s for assessing the fit of the Rasch model and

the two-parameter normal ogive model respectively. Andersen (1973)

obtains a conditional likelihood ratio test for the Rasch model based

on the within score group estimates and the overall estimates of item

-di. ficulties. He shows fu ther that -2 times the logarithm of this

2
ratio Is distributed as with degrees of freedom, (n-1) (n-2)

6 5
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Based on the work of Bock and Liebermann (1970), likelihood ratio

tests can be obtained for testing the fit of the two-parameter nor-

mal ogive model. It should be pointed out that these authors have

obtained both conditional and unconditional estimates of the para-

meters. For the likelihood ratio test, it would be more appropriate

if the unconditional model is uT.A since with this model ability

parameters are not estimated, and hence the likelihood ratio cri-

terion can be expected to have the chi-square distribution. This

procedure can be extended to compare the fits of one model against

another (Andersen, 1973).

The major problem with this approach is that the test cri la

are distributed as chi-square only asymptotically. When large samples

are used toaccommodate this fact, the chi-square value may beco e sig-

nificant owing to the large sample size! Further investigation is

clearly needed in this area in order to resolve this dilemmc

66
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Test and Item Information and Efficiency Curves

The precision with which examinee ability can be estimated is of con-

siderable impor ance. When the maximum likelihood esti-ace of ability is

obtained, the precision of the ability estimate can be conveniently expressed

in terms of the informationfunction, referred to here as the test infor-

mation_curve. The standard error of maximum likelihood estimates is given

by the square root of the inverse of the information curve. Birnbaum (1968)

defined _formation as a quantity inversely proportional to the squared

length of the confidence interval around an examinee's ability. Thus,

when information at an ability level is high, we have narrow confidence

bands around our estimates. If information is low, we have wider confi-

dence bands. Because the test information curve is a function of ability,

it has been_auggested that test information curves ought to replace the

use of classical reliability estimates and standard errors of measurement

in test score interpretations.

In mathematical terms, Birnbaum (1968) gives the information curve of a

ven scoring formula by

n

_ w_ P_
g g

I [27]
2Ew PQ

14=1 g g g

In the expression above I (0) is the amount of information at ability

level 0 provided by the scoring formula y, where

[28]



The varjabli u takes

-65-

_n values 0 or 1 depending on whether or not item

eredcorrectly;_is the probability of a correct answer toPg tem

g by an examinee with ability level 0 Q is equal to 1-P
g

; P
g

is the

slope of the item characteristic curve at ability level and the i em

scoring weights are Wg7 gl, 2, n.

Birnbaum (1968) demonstrated that the maximum value o (0)-

to as the tes-_ info mation curve is- given by

I, 12
n g

( E (

Pg Qg
1291

maximum value of the.infor ation curve of a given scorin- formula is

obtained-when the scoring weights, ws, are given by

Pg'

Qg
[3o]

id

In order-to obtain the test information curve for a particular

set of test items, and consequently minimize the widths of confidence bands

about examinee ability, it has been shown that the scoring weights for the one-,

-two-, and ee-parameter logistic test models should be chosen to be 1,

and Dag

1-cg) Ps

curves and the best scoring weights :or sever-1 other latent trait models

respectively (Lord and Novick, 1968). (Test'iuformation

ven by Samejima [1969, 1972].) it should be noticed-that only for

the three-parameter model are the scoring weigh s a function of ability

level. The sco ing -system in the three-parameter model has.the effect of re-

ducing the weight assigned to correct answers on Items where the value- of.the

6 8
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he item characteristic curves are large. It can be

seen that the weights for such items are smaller for low-ability examinees

than- for- either'middle-: or high-ability:examinees.
. These

lovi-ability examinees are mist likely- to.-bnanse fact tha

ights re-fie L

guessing. For highability examinens_the optimum

approaCh the quantity, pag.g=l, 2,

..TheAuantity-Pg 2 P-Oi in -EqUatian N91 -is the CtUa_

ering the

scoring weights

to the information curve of the- test. For

:item- info ation curve.

ibution of item

this reason it is called:the

Item_infOrmation.curves have-an imporrant role in determining the

accuracy with which ability is estimated at different levels of 0. Each

item_information curve depends on the-:slopeof the particular item char-

ic curve and the conditional variance of item scores

level 0. The steeper the slope of the item characteristic

smaller the conditional variance, the higher will be the item information

that particular ability level. The height

curve at a particular ability level is a direct measure

e itemjnformation

of the usefulness

the item for precigJif measuring abilitv at that level.

Figure 2 shows em information curves for fly+ verbal test ite s

.and the tesr-information _curve for a test composed -f these ite The-

logistic- parameters- of-the- five-ite s-are-sho

Irem bg

10 1.1

11 -1.5

13 -0.1

30 2.4

47 -0.4

below:

2.0 .05

9 .20

1.6 -16

1.1 .09

.4 _20

'-We are grateful to Frederic Lord for allowing us to reproduce
this figure from (LOrd, 1968).



Figure 2. Information curves estimated for five items
and,a five-item test. The items are from the
verbal section of the SAT. This figure is
reproduced by permission from Lord (1968).
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The informat,ion.,curve for the test :composed of the itemS -is obtained

by summing the ordinates of the five item information:curves. This curve,

reveals that the five-item test provides the most information for high

=ability:-students -This-means-that abilitiea- are more- precisely

estimated at the high end of the ability continuuM.i The height:of the

test informa ion cu ve is misleading though because of its dependence on

the metric ef the ability scale-(Lord n75d) At a particular ability.

level, 0, the item information curve is given by P'
2
/PCI. But the slope

the item characteristic curve is.-4'.fLinetion-of the ability scale. .

If the ability scale is compressed .in the region of 0 P' wil1Ancrease
=

and when the scale is stretched in the region of 0 P will decrease.

A- good example-Of the- effect.. that.a monotonic transfo mation on

scale

he abil

-: on the test information curve is Seen in Lord (1975d).- The,

effect i substantial.

From Equation (29] it is clear that ite s contribute independently

e test information cdrve. 'Birnbaum (1968) has also sho that

with his three7paameter model, an item provides maximum information at an

ability level 8, where

1.7 a
log 5 (I A= /E-+Bc (31

If guessing is minimal then cg = 0, and.-0 = b-g Whe the poin

of

-

maximum information is shifted to the right of the item difficulty

alue,

If non-optimal scoring weights are used=with a particular logistic:
_

test model, the information curve derived from Equation (27] will be

lower, at all ability levels,than one that would result from the use 0_

71
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-eighta'. Birnbaum 1968) Used the term efficiency to refer to

_tion loss due to the use of less than optimal scoring

EffiCiency- is studied by_caleulating.the ratio of the valuea.of

a given _scoring formula e-i the test informatIon-curv

level (Hamble

faund- that

onand Traub 1971). Hambleton and Traub (1971)

hen there was no guesaing (i.e., cg70, g=1, 2, ..
efficiency of:unit scoring weights was quiteAligh (ove 85%) for typical

levels of variat n in the item discrimination parameters (.20 to 1.00,

which very roughly translates into a range Of biserial correlations from

.20 to-70)-.

--ically.

dropped

When-gUessing.-is introduced, the_Sithatien change_ dramat-

For law ability examinees, he efficiency of unit sc ring weights

to t -60%-70% range. The authors concluded that when.a testia-

ing-used to estimate_ ability:across a-broad range of the ability-..-acale

and when guessing is a factor in test performance, the scoring system of

-the three-parameter logistic model is to be preferred. Unit scoring

lead to efficient estimates of ability when there is little or no guessing

and when_ _e range of discrimination parameters is not too wide,_

Lord (1968) investigated the efficieney of unit scoring weights on,

the verbaLsection of the SP,T. Under the_assumption that therhree

parameter model was the correct test model to explain the data, he found

the efficiency of unit-scoring weights varied from 557. at the lowest

ability level-to a maximum of 907. at-the highest abiaty level. Using

Unit acoring weights Was-equivalent to dilearding-abOut 45%-of--

11 ty ex;1rn i riev.



-70

_ On.other occasions one-may b ,interested'in-comparinw: _e rela ive

ellicasy with which two different tests measure the same ability at

va ious poi_ts on the ability scale-. It may also be of intereSt to

know the ative efficiency of two different scor ng methods at various

ability levels This can be determi ed by calculating the ra io of the

values-.of two test information curves at each ability. level.

e mentioned that, the-notion of relative e ficiendy is an impo

:in assessing-the merits:of a test..-for measuring_abilityalong

continuum but Lord [1974c 1974d] has also produ ed a

efficiencY without introducing the concepts of latent

(It should

tant one

ayof. studying relnt

ait theory

-It has been shown- byl3irnbaum:(19) ,that relatiVe :efficiency

.directly.propertional-to the test--length of-a-"base-line".-test.

relative,efficiency..7.2.50_at_e_particular_ability_levelthen-

take 11/2 times-as many items in the baseline test:to yield the discriminating

power at that ability.level, provided by the other .tes under consid _ itiorL
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Applications,of Latent Trait Models

In this settion we will cor4ider several applications _f latent

models.

htiaLsd Res_ponse Alternattves

It isj a common belief among test developers that it oughtA

possible to construct alternatives for multiple-=choice te9t items that

to be

differ tn the
S

be baSed

native

r-deg ee of correctness. An examinee's test score could

on the deeree of correctness of his:or her resppnse

taections, instead .of,simply'the number if torrect_answers, possi

bly, corrected for. guessing., ,_However,-With few-exdeetionS,--the :results of-

-.differential weighting of response alterna ives-have-been disappoint

_Jong & Stanley. 1970). :Despite the intuitive beliefs of test developers

and researchers, from past research it would appear_that_differential-

weighting of response alternatives has no consistently positive effect on

the reliability and validity of the de i_ed. test-scores. Howe er, our

view is that n-ing correlation coefficients to study the merits of any new

scoring system is less than ideal. This is because correlation coefficient:

will not reveal any improvements the estimation Of ability-at different

regions of the ability:scale.- ./Vconce n forxthel,recislon---of Measurethenr----

different ability levels is important. The e is reason to believe that

--the-largest-gain in-precision of measurement to be derived fromascorin g--

system that incorporates scoring weights for the response alternatives

will Occur with low ability examinees. High ability examinees make rela-

theif Tapers and therefore would make litti



of-differentially-weighted

ng _ groupstatis

mprovements-of a new scoring systemAs thatany gains

incorrect response alternatives. The-problem,

like the elation coe ficient to

-of--the ability-continuum will be
. ashed out"- when combined with

gain in_ information at other placeS.on the ability centintrum.

evaluating a_test scoring method-is. in.termS_of the precision

which it estimates an examinee ability: The more precise

the more informatien the test scoring method provides.- Birnbaum s

nformation-Antroduced earlie -vides a much better criterion than

correlation coefficients for judging the merits of new scoring methods.

Thissen (1976) applied the nominal response model to a set of data

from Raven s Progressive Matrices Test the options to each

item can be logically ordered_acco ding to their degree of_cor ectn_

_
The model provides a measure of the-precision ability estimation

(Birnbaum' "information") at each ability level. :fhissen's results

--clear and i pressive ---.The nominal -eaponse, model produded substentie

improvements in the precision of ability e

the nbility range. Gains in info

twi e

imati n the lowe haft-of

mation nged fro 1 more to nearly

h the logistic _ testthe informationderived-from,0-1 Scoring

Aceording Bock (1972), Most of the'ne

_ derived-from-weighted-response-scoring-co es fro

exaMinees who choose plausible or

omit the items.

- in-a study: vocabUlary est iteMs

information to be

distinguishing between--

partly co -ect answers from those who

ith the n minal response

model, Bock (1972) found that belo median ability

7 5

there was 11/2
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-m the nominal response model, over.the

system associated with the nominal

half of the examinee population,

terms of --net length the:scoring

re-sponse model .had- for

p oduced'improvements

about ()ne-

in precision of

_ability,estimation equal- to the precision that could be- obtained by.a

.--,,binary-scored test 1½ to 2, tiMes longer thaw:the originalnne with-the--

new method of scoring. Also, encouraging was that the "curv " for each

alternative (estimated empiridally)_wasjsychologically

lle. -The Thissen and Bock studies,should, encourage . other

inter-

esearchers

to go back and reanalyze their data using the nominal response model and

the measure of "information" provided by the logistic latent trait

models. .The Thissen'anCBock st-ndia indicate that

tharearLbe recave ed-fro: incorrec

ere i "information"

examinee responses to a set-of test

items and provide -interesting applications

compare-dif erent test-scoring methods.- .

Crite ion-Referenced TepOng

Latent t ait models provide an excellent underpinning

tice of criterion-referenced testing'. MuCh has beeand p

test info ation curves to

th,ntopic of criterion-referenced reating, bur

o a theory

ritten on

he area is u ring

because Of..a greaE maaydisconnectedcontributions confuaion over.many

,basic,problems such as test development and test score use, and the-exist-.

Onique-problems_suchns_the establishment:ofnutting

ambleton & Novick, 1973).

A criterion-referenced teat is constructed by-sampling,iteMs from

well-defin-d domain of i
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(Millman 1974). (Typically, a criterion-referenced test will include

ets of test items measuring sever l inst uctional objectives. When

several objectives are measured, the steps described below are repe ted

or each set of items meas ring a single objective.)

One primary use of a criterion-referenced test is to obtain an

esti ate of an examinee's level of mastery (o "ability") on an objective.

-J-Thus, a straightforward application-of .one. -of:the- latent_ trait modelS

(the assumption of.Unidimensionality:would bet likely be .a problem) &mild,

: prednce examinee. ability-scores..... Among the:advantages of this application-

.
-_wbuld be that- items could be:sampled (for example, At_random rom an

item pool_for each-examinee and alI examinee-ability estimates would-be

On a common:-scale '(Hambleton 1977)

Since ite parameters_are inva iant across groups of examinees,

would be pessible to construct criterionreferenced tests t

minate" at different levels of the abilityContinuum. Thuai a tes

detieloper might select an 'easier" set of test items for a pretest than

a posttest, and still, be able to measure "examinee growth: by estimating

examinee ability at each test occasion on the same ability scale. This

can not be done with classical approaches to test development . d test

:score interpretation. If we had good idea of the likely range of-,

bility-scorei for the examinees, test items would-be selected .aoas to

-:maximize the_ est information in the region : of ability for the eXaminees -

-being-tested.-- The optimum selection of-test items

stantially to the precision with which ability boo

would contribute sub-

-ere estimated.-

In the case of criterion-referenced:-tests-,



-75-

test performance on a pretest than on a-posttest; therefore, -he
. pest--

constructor coUld select tha.easier. test .-items from the domain of.items

measuring an objective-for. the pretest-and more difficult items.could be:

-selected for.-.the. posttest.: This:would-. enable the test .cOns ructor to

maximize the precision of measurement of each test in the region of

Jab lity-where---.theexamineeS would mostjikely be located.- Of course,

--theassumptionabout,the location of ability sco es was -n_ acdur3te, .

gains in.preci ion of . measurement_would not b obtained.

Hamblet 1977).Conducted n extensive study of criterionrefe ented

test designs im Narious testing Fituations and has reported substantial-

'--gains in test'efficiency,when the.preper,test-Aesigajor a-particular
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Test Development

In ..this.'section we -All atteMpt to describe a few of theareaso

test development to which latent trait theory has been appli _ and shown

to have dedided advantages over standard teet construction technology.

It can be anticipated that as more is discovered about the properties of

the latent trait models and as more psychomet icians begin to Use-these

models in the test development proCess greater insight into the process

will accrue.

-ent tral theo-y offers two advantages to the psychemet idian

rri pax.gmprors_thar,_

_idtate the-test. development process As well at make-possible,the develop-

ment of tests -for_a-Nariety. of applications, and-..(2) item characteristic

curves that ..provide valuable insights into how examineesperform. on

specifie-test- items.

The_ first step in the test development process is the determinat on..

of test ;Tecifications. One of these specifications is the type Of test'

-item to be eMployed. The worker using latent tralt theory has:two-options-.

opeh to .him/her. .Either items can b -deVeloped to. fit a-specific _est.

model or a test model can be chosen to "fit" the der ved-teet data For

'-

example, one may select the three-parameter logistic test model if the

ems re the Multiple-choice type. However, he/she felt strongly

that the test-- should.be. develeped using the_one.-patameter.-:logistic.

he/she-would include-.in the test specifications that- the .items_be con-
. .

etrudted: to_ minimize guessing 'and to have .equal discriminating:parameters.



the test specification process is completed,- the actual.con-

struttion.of the items-is:generally the next step.-_- In many instances

preViouSly constructed items may exist thar.are -appropriate for,test usage.

-that- an appr priate pool of-pretested items doeS exist.

if. these items were characterized by elassical test- theory parameters

_les ribing ite

.the item

difficultY and item discrimination the usefulness_of...

statistics in test development would depend on the match between

character St

--.of examinees fri

the size of

. .

cs of the prdtest sample of examinees and the population.

hich the test will-be used'. Another sh coming is that

.tem discrimination indices-- dePends both on the number, and the,

inclUded in the _pretest. WhenTitems 'are- plaCed-in:particular items

test which has test items different from those in the p etest, the

usefulness of the discrimination indices is unknown Because of the

invariant properties of the latent:trait item parameter.' this problem

is circumvented.

How does one:select items from :an exist ng item pool in order to:

_construct a

tions?

-there

mean,

est-that meets a set of.--previOuslY..determined-spec fica-

If standard test development :echnology T- employed,

are a series of caloulat,ionsrhat can be carried out to predic

andard deviation and test reliability. (Lord & Novick 1963).

Input data for the calculations are the pretest item statistics.'

, Lord-(1977h)outlined a method for predicting the mean, squared

Srandard error of measurement and the test reliability'based on any set

-items characterized by latent trait theory parameters. The:protedure7:

involves specifying t e ability level_of the groop for whirl-i -the test
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The following expressions can then
H

statistics of Anterest:

( I ) 1/N- P
ga

a .1=l g=-

--- 1/N

-2
t

Thu -prLdicted score variance

Lo

ga

-e used to determine

eon be-e

clis,..-r-zutruxon (LuLd

(1977b) concluded bY saying that ". .if we have a pool of pre-

tested items all measuring the same trait

the mean

intended.

r ability, we can predic

variance, reliability and -score frequency distribution of

any t -L constructed f- m these items once we know the ability-levels-in --

the group tojw tested." When_the .shape. of thic ability d itr ihutton

"-fot z popul-itiori of.cxaminees- can-be specific 'Lord '(1953a

n -I otv to ._uSe latent trait parameters to select-items so as to

.desired tes_ score-distributions.

summarize, when a psychometrician is selecting items character-

ized by classical -te t theory parameters to construct a test, he/she is

forced to use heuristic-process that depends a great deal on the

ability to estimate, from previous experience, the average item test
_

correlation and also on the similarity of the pretest group _and the grou

f ihterest. When using latent trait theorn only knowledge of the
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ability disrribiltion o
.

e group of examiness o interest is,neeessary to-

make- aceurate predictions -f the- test statistics.

-lestAnfOrmation curves -may also- he used as ..a,means-o_ seleCting
.

iLeMS from a previously -e tablished pool of items characterized'hy.later

-trait theory parameters. .The useful -feature iS that- the c

ea`ch

ot

o the test information curve can be determined without knowledge

ems in the test In conventional testing technol

ation is very d 'ferent. 'The...contribution T of any i_em-to,such

stet ies- as test reliabilitylcannot be determined independently of. Ch

characteristics of all the other items in the test.

Lord (1977b) discussed Birrieum's1968) procedure

test.- This,proeedure operates on pool f calibrated

for building a new

-ems t an item

info matiOn rve is available for each em)._ The procedure outlined -hy

is:

.Decida on the shape,of the desired test information curve.
Lord- (19771)) calls this _the tar et information. curve.

Select.items with item information curves that will fill up
the hard-to-fill areas under the target information cu ve.

Afte- each item is added to the test, calculate the
information curve for the selected test items.

4. Continue selecting test items until the test information
curves approximates the target information curve to a
satisfactory degree.

It is obvious that the use of item informa _ n curves in the manner

described above TAU allow the test deve oper to produce p rest that will

very precisely fulfi l any set of desired test_specifieations.

the

-Litent_ iraLL models not only allow the 02St deVeleper e e

ncribution of individual ---_ms-to-a-test- information curve-, _but.-

-_they also allOW for tbe comparison of test information curves. It is

8 2
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possible for a psychome rician to form different 7 mbinati.__ of items

(tenta ive tests) in the initial stages of test development and eompare

the information curves of different setS of items at specific-ability

levels, thus allow- g him/her to- choose the set of items most suited

for the purpose of the test. Marco (1977)-used-this-technique to -stidy--

effect of lowering the difficulty of the Scholastic Aptitude Test.

Ttem .param ters (b e a-g ) were determined on item data from about 3,000gl

students who took the mathematical part of the- SAT_ in December, 1970 and

th' verbal part of _he SAT-on January,1971. He then Selected items to

form four teSts:

1. a test composed mostly f moderately difficult and easy items-;

a middle difficulty test having a bimodal distribution of item
difficul ies;

3. a middle difficulty test with no easy or difficult items, and

4. a very easy test composed of all easy items.

Examination of the four test information curves showed clearly that if LlIt2

easier, discrimination in the upper or middle part (_

abili y range suffered.

In summarize, the test information curves obtained iruin tests devel,ped

using latent trait models make it possible to obtain somejndication

of the p -thable results of combining various subsets of items and also

allow for comparisons among these subsets.- No such feature exists for

tests developed by conventional, test construction methods. Thus,nuuh uI the

ombining of test items or altering of existing tests with conventionai pt

done on an intu-tiVe ba-sis.



_

. Once_ the final test 1orrn are assembled, t17 next step--in the test

development process is usually test forming. in convention-i testing

thi s. is an expensive and time consuming process involvin t -sting

large samples-of examine-- similar to .the popul tion the test is-intended

for. .13ecanse ltcnt trait models-proVide ability etimate that are

independent of the items selected for administration, the forming process..

can be simplified considerably. It is not necessary for all individuals.

-to take all oF the test items. .The test can be broken up into. subtests

with different voups of students taking different subsets of items. A

successful app lea i n of this type of no_ming was made to the 1_10

Diosanost. _ Ari' published by American Guidance Service.
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Since the beginning of for al testing some 60 years ago, almost all

tes_ing has been done in a conventional fashion; that is, a group of

individuals all take the same test. Since these individuals wIll vary in

.terms of the ability that is being -easured by the test, some will find the

test too difficult and otlers too easy. Those who find the test too diffi

cult may cxerience frustration and negative reactions-, while those who

find the test too .easy will not be sufficiently motivated to put for h

maxImum effort. In short the test will do a good job of measUting _or-

-those individuals whose ability is-- at or near the median ability of the

te:;t. FOr- such individualS,- the difficulty level wili-be sUch tha- they-

will-answer half _1-1- que tions correctly and half incorrectly. A logical

e-tension of this line of reasoning dictates that the test would me

maximal-1Y the ability of all individuals in the gr hp if it present i

questions to each individual that that individual could ansWer correc

half Ite time. This of course, is no_ possible using one test.

fn tailored testing: afi attemPt is made to -"tailor he difficulties

of the testitems to the abilityof the examinee being measured. T1

mands

istics

existence of a-large Tool of items whose statistical character

known so that suitable items may be drawn.- The-procedure_does.

not 'lend itself easily to paper andpencil testing situations and hence
.

the caLlo ing pr cess is . typically done by compu er (exceptions to this rule

ire presented in the work of Lord [1971c, 1971d]). According to Lord (1974h),

computer_ mL t b. We__

aminec

ammed to do the followingin orderto -t- lor a

rediet from the minee's p evious responses how the ex mince
nuld respond to various test items not yet administered.
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2. Make effective use of this knowledge in picking-the test item
to be administered next..

3. Assign at the end of testing a numerical score that somehow
represents the ability of the examinee tested.

Tailoring a test to examinees will circumvent the psychological prob-

lems mentioned earlier.- Also, from a psychometric point of view, tailored

testing can insure that the standard error of measurement will be the same

throughout the ability_continuum.
. This is not true Of conventional tests.-

__ the standard error tends to enlarge

of the ability continuum.

individuals at the ex remes

Class cal Testing Theory and Tailored Testiag

Early work on tailored testing, aking.use of classical test thee

tended to focus on concerns somewhat removed from the not'on of ability

estimation for an individual. Because of this different-feCus, classical

methods functioned adequately. These studies (for example, Cleary, Linn, &

Rock, 1968; Linn, Rock, & Cleary, 1972) focused on two areas: Allocation

of examirices to extreme ability groups and the capacity of the ailored

test to reproduce, using fewer test items, the rank ordering of examinees

polled by the conventional group test. The results of these studies tended

to support the use of tailoring strategies and the sorts of questions

. .

-addressed allowed the- use of iditional 1 em indices.

A
The use of- tradi-ional item indices no-longer sufficesat the Andividual

exam nee levelwhen the problem of interest is agility est ion. Here,

based upon the set of test items an examinee encounters, we want to make

an inference as to expected perfo mance on a large set of questi ns like

those-encoun ered-(Lord,-:19.74b).- This expected performance is the ability
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of the examlnee measured by the test items. Since we are concerned now

with ability estimation on a single individual this precludes the us of

traditional item indices in selecting items, because tlies stat_stics are

based upon a par i ular norm group. A set of calibrated items t!imt ls

free from the norm or calibrating group is necessary.

Tailoring t items to an examinee dictates that different examiuees

take different test items,- What is needed are exatninee ability estimates

that are independent of.the particular.choice of test items, if there is

interest in- coMparing one examinee with another. The solution to this.

Problem and the one mentioned previously,is provided by latent trait theor

-Classical methods are of no value here.

(b) Latent Trait Theor and Tailored -Testi

In order to perform the three tasks discussed by Lord, it is necessary

to introduce the notion of item characteristic curves. This will allow us

to predict how an examinee will perform on a new item, even if the item has

a different difficulty level from the one previously responded to. The two

and three-parameter logistic curves have most often been selected as the

mathematical.formsof item characteristic curves used in tailored testing

search.

Tailored Testing StataiE

:-Resáarch,dono -on tailored-itesting, whether based upon latent t it

the ry -or classical theory, has been built upon the-following rule: If An

.examinee answers an item correctly, the-next item should.be more_di

Af an examinee ans ers..incorrectly, the next itemcshould.be easier-. .BAsel

upon this general ule certain branching strategies have been devised.
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These strategies can be broken down into IL12:_ag_sit_Kategies, and multi-

stage_strategies. The multi-stage strategies are -ither if the fixed

branchingieLy or the variable branching variety.

In the two stage procedure, all examinees take a r0uting test and
._%

based upon scores on this test, -are directed to one of-a number-of measure-

ment tests lying at various points along the ability continuum. Ability

estimates are then arrived at through a suitable combination of scores

from the routing test and the measurement test, Which is usually peaked at

a par icular difficulty level. _Lord (1971a) uses a maximum likelihood procedure

that combines ability estimates for both the routing and measurement tes

in a fashion such that each estimate is weighted inversely by its estimated

variance. Other combinations would also appear suitable.

Whereas the two-stage strategy requires only one branching solution,

from the routing to the measurement test, multi-stage strategies involve a

branching decision after the examinee responds to each item. If the same :

item strocture is used for all individuals but each individual can move

through the structure in a unique way, then it is called a fixed branching

model.. Con- dering how much item difficulty should vary from item to itern,:

leads to involvement with constant step size structures (usually represented

decreasing step size pyramids. If guessing should becomeas. pyramids) oi

consideration, then a possible solution would be to make step size in the

. positiVe direction less than that in the n_ ative direction.-(Zold, 1.970p).

For these multi-stage fixed,branching m dels, all examinees sta- at.

an Item -f median-difficulty on the .continuum -(41- 0) and based upon
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corr ct or an incorrect response, start to pass ough a set of items that

have been , ranged on the basis -f item difficulty. After having compl_ ed

fixed set of items, either of twc scores are used to give an estimate of

ability. One score is the difficulty of the item that would have been

admin_-tered to the examinee after the nth (last) item. The other score

is the average of the item difficulties, excluding the first item that

everyone takes, but including the hypothetical n+lst iteM. Lord (1911a,

1971b, 1974b) has demonStrated- that, different scores should be used to

estimate ability depending upon the strategy used. For cc, stant step

procedures (up and down ethods), average difficulty score is prefer ed,

while for variable step-size procedures (Robbins-Monro methods), the final

difficulty score should be used.

The variable branching strategies are multi-stage strategies that do

not operate with a fixed item structure. Rather, at each stage of the pr

cess, an item in the established itleM pool is selected for a certain

in a fashion suell that the item will maximally ,oduce the uncer

inee

nty, 01 Li

examinee's ability e timate, if administered. After administration of the

item, the ability estimate is either recomputed using Bayes Theorem (Owen,

1975), or recalculated using the maximum likelihood pro edure. A. normal

prior on ability is assumed fi_ the Bayesian method and the administration

2of it- is term nated when a aSsigned-value,-m a
m
2 s the.poste ior

nce of the ability estimate after m items have been administered. For

the mqximuM likelihood -pr re, item admini4tration -eases at a set

number or when the standard error of the estimate is a prescribed valu,2

he last i em -dministered.
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-(d ) Studies_il "n ait Theori

As discussed in the previous section, there are a number of ways in

which examinees can be presented with items tailored to their ability, and ,

_there are also a number of -ays of computing scores to estimate ability,

based uPon item difficulties. What is also needed is a means of evaluating-
--

results obtained from various procedures The mechanism for evaluation should

not =be:based on group statistics such as correlation coefficIents because

-the crux of the situation - to determine the accuracy with which we can

-measure ability for a single exa inee. Meat of the studies on tailored

testing to date have made-use of test_information curves.

Lord (1971a) compared the eat information curvesobtained for various

two-step nroceditreq With a tt information curve provided by a conventional

peaked test- which he calls the standard test). His conventional test pro

vided maximum -information for scores at median ability level of the con°

tinuum (b,v0), and decrees nginformation for scores deviant-from median

Specific -ults _f the s udy and others that-he'did (fo

example, Lord, 1970b, 1971b) cannot be summarized briefly because of the

--
What is clearMOltitude

is thi

of test designs ind strategies that h studied.

The tailored-.procedurea-provide more inf _ation at the extremes of the

ibution than does the standard test and provide ad vete

information et the median difficulty.and ability level IDO),_ where- the-

standard test cannot be urpassed.



Studies using the variable branching medels will -net be discussed in

this paper. This is because it is very difficult to compare the results-.

from these strategies among themselves, let-alone with the fixed branching

models. Readers are referred to Owen (1975) and Wood .(1973, 1976a).

Weiss (1974, 1976) and Vale and Weiss (1974), .in.their reviews of the stra-

tegies and relevant studies, also summarize some of the restilts of these

procedures.7

(e) Final. Comments

The work by Lord and others in introducing latent trait .models to

explain or-predict examinee performance in individualizedresting situations

represents one of the most successful of the applications of latent trait

theory to date. Of course, much work remains to be done. For example,

It is unclear as '_7() which of the various scoring methods, be it
final difficulty score, average difficulty score, or any of the
other possibilities, gives the best statistical approximation
of ability. This is especially a problem when the number of te
items administered is small.

The,present.models,do not deal well with the.effects-of guessing.
.Sitice tailoring strategies minimize the number of.items too
difficult -for an examinee guessing should he reduced and
any.guessing that goes on Probably can't be considered:random.
What'. isneeded Is'art investigationof the exact effects-of.
guessing on tailoring strategies for ability estimation.--

The above list ef.p ohlems and/or research areas axe not meant to be

all Inclusive.- Wood -(1973)4-Green (1970), Lord (1977a), -and Weiss (1974)-

all offer futtlier su-gestions for tesearch



Interest in individualized.- instructionand testing, has brought to

light the need for item banking (Choppin, 1970; Wood, 1976b). An item

bank is a collection of test items, "stored -ith known item characteristics

and made available to test constructors. Accordihg to the intended,purpose

of the test items with the.desired characteristics can -be-drawn from the

bank and used to construct a test.with known properties.:

Unfortunately classical item statistics (item difficulty and dis-

crimination) are of-1 mited value for describing the test items_ in the.bank

because theY are dependent on the group of examinees from which they came.

On the other hand, latent- trait item, parameters-do-net have ,this limitation

and therefore-are more useful for describing test items in the bank.

_A practical problem facing many test constructors is- that of building,

. over a period of several years a pool of items to be hsed in constructing

test forms. Because of the time span newly written items Will need-to

be pretested on .groups examinees diffe ent from groups used to p etest

other items in the pool. -Becausaofthe invariance prope ty of the latent

trait item parameters, even though two pretest gr may be quite dissimilar

in ability, there are few problems in obtaining_ item parameters that ar

parable across these groups. Let us,asshme that we are interested i,

scribing ems-by-the-two-itemparaMetera- in the:two-parameter- logistic:

test Model.- The one serious problem is that because the mean and

deviation of the ability sco es are arbitrarily established,

standard

diffe ent for each group; Since:the item parameters i2_2p_end,

is not possible to directly compare latent trait
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em parameters derived From different groups of examinees until the ability

scales ar equated in some way. Fortunately, the problem is not too hard-

to res Lye sino- Lord and Ncvick (1968) have shown that the items parameters

.in the two g --los are linearly related.

items is administered to both groups, the linear relationship between the

estimates oF the item par _me__ers can be obtained by forming two separate

bivariate plots, one establishing the .relationship between the estimates

tiiscrimination para_ _ters for the two groups, and the second,

, ilia subset of calibrated

the relationship between the-estimates Of the'item difficulty-paraMet

Ilving established the linear rela ionship betw en common item parameters

in the two grotips a p

group'.

n equati ,11 can tlen be used to predict item

for the new items had they been ndministered to the

this way, all item parameters can be equated to a -common group

of minees and corresponding ability .scale. No such linear r 1 ionship

between the classical model parameters.
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Item Bias

The notion.that certain items in ,a test may be biased towardcer-ain

. minority groups is becoming a matter of concern for the testing community.

The cOncern for test bias and therefore item bias esSentially ste from

-litigation involving the use of tests to classify minorities fr employ-

ment and education 1 opportunities. The problem here is properly called'

test fairness, but in order for a to be fair (in usage), it is neces-

sary but not sufficient that the items be unbiased.- Test-bias refers to

the:psychometric properties of a set of test items or scores; te fairness

is concerned with the way the test is used in a particular situation. Thus,

would seem that a first step in investigating how tests are being or

not being used fairly with minorities is to investigate item bia_

Investigations of item bias using classical test theory have not been

successful. One reason for this has been offered by Pine (1976). Bias in

testing is caused by the inability of tests to consider individual differ-

ence variables, such as motivation and ethnic backg ound. Investigations

of- these 'Variables using classical test theory.will further perpetrate,

the problem; namely that we are u -ng a group:based approach, whether in

the test or in the bias study, to try to investigate individuaI-difference

variables.-- We create a situation-of bias and then_ try-to use the mechanism

that created the situation in,the first place to .. investigate it'.

itembias and why have traditional.explanatione for- item

bias led te procedures of minimal usage? The most extreme stance on item

bias is that a test is biased to the extent that the

populations cons

a iables besides

dered ar different

eans of the two

The problem here is that other

tem bias contribute to

9 4

se mean differences.
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As Hunter (1975) says, it is not so much that the test __ biased, but that

there is bias in the learning environ __nts that help determine the test

score. The notion of matching will not help; it would be impossible to

list all relevant variables upon which to match. Noteworthy is that, 'rom a

latent- trait point of view, this lack of educational equality of experience

can be viewed as a problem of dimensionality. Experiences,that one group:

has had benefit Of,expand the dimens onality- of the underlying structure

for that group in comparison to-the other.

Taking the mean difference-notion.one step further doesn't help. if -

we suppose that we have a perfect unidimensional test without bias, then-

the difference between the means of groups should be consistent over items..

There would be no group by item interaction. If in an analysis of variance,

a group bY item interaction should.prove to be significant, has been

-
advanced that this fact-is a demonstration that the items are b ased.

However, Hun e (1975) has clearly pointed out that a. perfectly unbiased

test can sho. such interaction. Items of varying difficulty demenstrate

in item by group interaction. Thus, it would seem that dealing with _ tem
-5.7+

difficulties would be the next step, but there are problems with using :he

classical definition of item diffic lty as an indicant of bias.

A ciasSical defin tion of item diEficulty Would refer-to-the proportion

-of correet,answer_. given to an iteM.-if- the item difficulty were the -same for

both gtoups, it has beyn advanced.that this would be demons ration that

the item was unbiased. lord (1976)_has noted that one.could plot these

proportions for items on a-test for both groups, and fit -the.-resu ting

scatterOlot.-with A. straight line Departure from linear_ y.would then_

:.seem to be a good4ndicant..61. tOst-.and onc-.step further, individual item



bias.. Lord clea ly points out that the tailnre -6_ points to fall on a

straight lino does not mean that there is test -and item bias. He states

the following reasons for his stand:

1. There is no good reason for the points to-lie on a straight
line in the first place. If- one group consistently outperforms-
the other,-the relationship-must be curved. Further, while
straightening the line of-relationship by using the .inverse
notAal transformation (and peehapsjurther transforming to 6
values), does straighten the line,:there.are still further_ causes
for..probiems..

If the questions can be answered by guessing, even-using the
. inverse normal transformation is npt going-to Assure that the
_points. will -lie on a straight line unless the groups performed

. equallywell: on the- test-.-

If guessing weren't a problem, the discrimination_index of an
i'om would be. More discriminating items would produce more-of
a difference between groups than less discriminating items. Items
of the same discrimination would lie along the same line, but
there is no assurance, without building equal discrimination int
the situation or model,that this is the case.

Thus, while we would want no other variables to keep points from lying along

a straight line than item bias, using proportion correct will not assure tha

situation will be so. Lord -(1976) then demonstrates in a quite clear

and simple fashion that the proportion of correct answers (classical item

difficulty)

would want th

net really a.measure- of item,diffieulty. Stated simplY,

item difficulty to be independent:of the people USed-to deter-

ne the index; this is not possible using- ortion-correct"

-Wright-, Mead, and-Draba. (197-6) and Hunter (1975) offer further discus----.

sions-about the prOleMs inherent in using group-b-- d Statistics as

indicants- of.itembias or test-bias-- Factor analytic:approaches whereby

factors_ uctures -for the .groups are compared, or the use o

_point biserials suffer teem-the same

f'item-test

problem as proportion_ correct! the

indices are dependent upon the group from which the measures

-liShod.

e e e ab--



-94-

If all of the traditional indices, which not only describe the test

item but also the group tested, are of questionable use in dealing with

test bias, what can be done? A useful index would have to e free of the

group used for defining it. This "sample-invariant" prop rcy does exiSt

for latent trait model parameters.

Using latent trait the ry,rather than classical test _leory, we can

formulate a defini ion of item bias in a different fashion. According to

Pine (1976):

'A test itemiis unbiased if all individualshaving
the-same underlying ability have an equal probabill
of getting_the item correct, regardless of subgrouP
membership;

This means that item characteristic curves which provide the probabilities

of correct responses must be identical across different sub-populations of

interest. Taking this one step fuFther, if-the item characteristic curvi,hi

are the same, then the item parameter(s) have the same values for the

subgroups, up to a determinable linear transformation. If the subgroups

upon which the parameters a e calibrated differ in means and variances,

then a linear transformation will be necessary to equate scales. If the

transformation is not applied) the parameters will be linea ly related

for the subgroups (a 'liming no bias).

How does one proceed? At least three solut ons are currently being

studied. Lord (1916) is developing a statistical test for deciding whether

the item characteristic curve for an item is the same for the subgroups

volved. Pine (1976) diacusses first a test for unidim nsionality, nod

also describes a possible method for correcting For item bia- by adj us_ ng

-item-parameter estimates. Pine and Weiss (1976). take ite varying it
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bias and look at how this affects three test-fairaess models-- Cleary

model the Thorndike model, and the model based upon a validity correlation

with an externaL criterion. W 't, Mead and Draba (1976) and Mead (1976),

utilizing the Rasch model, d-velo- through the use of residuals, an ANOVAL

approach to detecting item bias.

A study described by Lord (1976) i now in progress at ETS. Note-

worthy is that he advances a t"o step approach to the detection of item bias:

1 Plot item difficulties for the subgroups on the same graph,
and fit the plotted points with a straight line. This will put
all items on the same reference scale, and aberrant items will
demonstrate significant departu es from linearity.

Test the hypothesf.s that the aberrant item has the
same item characerisLic curve for the subgroups
of interest.

Pine (1976) suggests a rQ St p procedure like Lord's, but he adds

one additional step; namely testing fcii unidiwnionality of a set of test

items. If the trait dimensions are the sam any variability in parameter

values can be attributed t_ item bias. However,

in

mentioned earlier

paper that factor analysis of tetrachoric correlation matrices has

problems associated with it it remains to be seen how useful in practice

this step will be.-

Wright, Mead, and Draba ( 976) and Mead (1976) utilize the "simpler"

nature of the Rasch model to develop a very inte-is ing approach to studying

test and item hies. They first form a residual, i.e. the difference

between observed outcome-on an item, and expected outco-e based upon the

model, and then transform me from the proportion metric to the ability

Metric. Us lug residuals on the ability metric, they are able to set up a

weighted least squares. ANOVA for testing shifts in item difficulty across

sUbgroups, which in the Rasch model, would be the sole indicant of item

9 8
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bias. Mead (1976) also discu ses a 4raphical method whereby residuals

are plotted against the ability scale. The residuals plotted against the

ability scale fall along a horizontal line through the origin. Any dis-

turbance, such as guessing, discrimination differences caused by practice

or speed, or most important here item bias, will appear as a departure

from the horizontal. The shapes of departures would then indicate the sor

disturbance p -sent.

In summary, the application of latent trait models for the detection

of-item bias _ just now beginning. .As with the-field of tailored

classical test theory will not sOlve the problem of interest. Certain

transformations of the classical indices will help in curtailing some

problems, but one can never escape the dependency upon population char ter-

istics. As such, any indication of item bias can be read in a pure

fashion; it could .A.so be the result of another variable, such as guessing,

which classical indices cannot control for.

The areas for further expansion and research have been well defined

&tsewlwre. These include:

Development of n me Aod for co recting item parameter v lues to
account for Mat,' in the item. This would seem to be of value
in eliminat ng the effect of bias in the item rather than elimin-.
ating the item itself. Pine is p esently working on such techniques.

A- further study of the effects of-item bias on Other test f.
nes models other than those investigated by Pine and Weiss (1976).

Further study and documentation of the ANOVA of residuals
method developed by Wright et. al. (1970..



In conclusion, while the use of item characteristic curves for

detecting bias is in the beginning stages, it- appears-that the

critical areas of concern are now being investigated. The months ahead

will bring evidence as to the feasibility and practicality of the use

these methods..

Test Eam2Lina

Large scale testing situations often dictate the need for multiple

and interchangeable foLms of the same test. Test construction techniques

do nut assure that two (or more) forms of a test can be made equivalent

in level and range of difficulty, and hence there is a necessity for

score equating. In equating the forms, the system of units of one form

is converted to the system of units of the other, so that scores derived

from the two forms after conversion,will be equivalent (A goff, 1971).

Thecdvantage, of equating test scores is that one can study and mea-

sure growth, using equated forms, can merge data when the data is derived

from different forms of a ' st, and-perhaps most importantly, equating

allows comparison of performance of two individuals who have taken different

test forms.

Two sorts of stipulations or restrictions involving the equat ng

process can be exclamated;

1. The tests that.A e to be equated-must be measures of the .same
characteristic-. Teswmeasuringdifferent.traits or-abilities
cannot-be equated.

If equating is to be a transformation of only systems of units,
the transformation must be unique (except for a random error
component). By this is meant that the crans171rmation must not
be situation specific, but be independent of the individuals
from which the data weredrawn to perform the conversion, and
he applicable to other situations.
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The ex ant literature in this field can be roughly separated into

three area- Angoff s explica ion of the field (prior to the use of latent

trait theory), the Rentz and Basha ork-(1975, 1977) on equating using

the Resell model, and Lord's wo k (1975a- 1977b).

The methods described by Angoff are adequa e for handling parallel

tests that are to be. equated. Lord's work essentially deals with inon-

parallel equating situations, and his 1975 study.contrasts situations'

where -aw se _e methods using equipercentile equating can be used,to the

use of item characteristic curves for the same si lations.

There are-essentially three distinct ways of collecting data for an

equating project: (1) Administer the two tests to the sa e group of indi-

viduals. (2) Administer the two tests to two equivalent groups of individ-.

uals where the groups are set up-by random sampling or (3) Administer the

two tests along with an anchor test to two groups that need not be equi-

valent. The anchor test, which is administered as a part of both of the

non-parallel forms to be equated, measures-differences.from equivalence

. in the two groupe. The anchor test-should demonstrat- a high-correlation

with the two tests to be used in an equating study.

Besides the three methods of data collection as mentioned above,

there are also two methods of non-linear equating. One method-is the

equipercentile method using raw scoreg .(Angoff, 1971). For

snon-parallei tests, the true scores on the two tests will have

relationship, and because of this, the standard er or

measurem nt for the equated test-will probably not be equal t

10 1
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asurement of the test being equated to, for the entire

.sc re scale. This is critical to equating, and if the standard errors are

not the same raw scores cannot be equated with the assurance of strict

1----changeability.

The other method of equating is based upon: ability estimates using

item characteristic curves. Lord (1975a) points out that if we are willing

to equate on ability es imates 0, and if the theory holds it models the n

linear relationship exactly,- This means only linear relationships would

need to be dealt with in equating.

Using d ta from the Anchor Test -Study- (Loret, Seder, Bianchini,

Vale, 1974), based upon a single group of individuals who took both tests

to be equated, Lord demonstr'-d that equating using item characteristic

curves formulated an equating line that closely coincided with the line

developed by-equipercentile methods. Using the LOGIST program (Wood at al., ,

1976), item parameters and a single ability estimate for each individual

were obtained by combining forms. Then estimated true scores T were

found for each test form from the rela

g=1

where P
g

(0)- is the three-parameter logistic curve estimated by
.

-LOGIST. These est mated true scores were then equated, and the method was-

found to closely coincide with.equipercentile methods using raw seorcs --

In sum, rd's studiestinvolving a single group,demonstrate that true

score equating and equating using the estimated distribution..of observed --

scores closely.Coincide with the conventional method-of equipercentile
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equating of raw scores. It remains to h 0 seen which method is pract: -11y

most advantageous, but from a computer time p_ nt of view, the c6nventional

method would seem more practical tf item parameters have to be estimated

for each item. If this had a

clear.

) been done, the decision would be .leas

Using an: her data set_ from the Anchor Test Study, where represent_

tive and equivalent samples took oeof the two tests, Lord was able to

equate the testsusing a number of methods. These included:

1.- Because there were no overlapping students (as in the:single

group) or overlapping items (asinthe Anchor Test), there was
no way to get a single ability estimate across-both tests for

An individual. Therefore an ability estimate was gotten for

each examinee on the respective test he/she took, and the

ability estimates were equated using-the equipercentile method-.

An advantage-of such a method-is-that when the two-tests
measure the-same ability, the ability estimatea have a straight

line relationship.under the latent trait model used -(the raw

scores would not). This allows easier extrapolation at the ex-

tremes of the distribution, where data is often scarce.

2. Using the straight line plotted to the abilitY-estimates and .

using an.inverse transformation tWice (see Lord, 1975a), the

curvilinear relationship between true scores may be obtained

and the scores equated.

Thus, for equivalent groups equa ing using ability level offer

distinct advantage in that the line for equating will be straight. Other

ways of equating (using estimated t ue scores, estimated distributions of

observed scores, or equipercentile equating using raw scores) have vi-

near equating lines. It is as if by using ability estimates for equating,

we are reduci g the equating problem for nonlinear tests to one of Jincar

(parallel) tests.

The third and final method of data collection for equati

involves an Anchor Test. Because items overlap, one ability estimate

_can--be obtained for each examinee and then estimated true scores T are
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- . . .

computed and equated as in the second des4,n. Also, an estimated frequency

distribut on of raw scores can be obtained and equated as with the first

method. Both methods were compared to the equipercen ile method using raw

scores, and there was less coinciding of the equating lines derived from

item characte Tstic curves with the raw scores than before. Lord o

an explanation:

The conventional equipercentile equating of two tests to
an anchor-test is an inefficient, and strictly speaking,
a biased and inadequate equating procedure-- for groups
that differ in ability level.

Thus, i would appear that in this situation using i

characteristic curves is a necessity. When the tests are not pa-all

And the groups are not equivalent, it would appear that item character-

ic curve methods are the only adequate way of ascertaining equality of

two tests.

In summary, when a single group takes both tests it would uppear Lit

thu use of latent trait theory would b advantageous only if item para-

meters have already been estimated. Resul - appear to coincide for raw

.score equating and eqUating using it 1 characteristic curves and the

decision about method will probably be based upon computer use.-

When equiv; Lent groups take the two tests, latent tr
offers_a distinct advantage

the

theory equating

the equating is dune using ability estimate

g 1ine will be straight and extr pLiaLlon problems minimized.

Any other method of equating using item characteristic curves seems to

offer no alvantage over convent I oria l me

When an anchor test is used for non-equival t groups, iten -Iv

tstic curve equating is the only juistlfi.ible MC hod to use.

10 4
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aid little about the use of the Rasch model in equat-

ing tests (Brigman & Bashaw, 1976; Rentz & Bashnw, 1975). The following

points can be made:

The papers by Lord deal with the use of general Item character-
istic curves; that is, item parameters are not restricted. From

this point of view, use of the Rasch model can be viewed as a
special case of Lord's work.

Th iteris must fit t e assumptions of the Rasch model. If they

do not,..it would seem a necessity that a discussion of the uses .
of other latent trait models be presented.

3. '[he Rasch procedure is based upon obtaining equating constants
for the two tests (see, Rentz & Bashaw, 1975). Two methods exist

for doing this, the item difficulty method and the ability method.

In either case, it is- necessary that the same-group of individuals

take both tests. Thus, the procedures can be viewed as a subset.
of our discussion of data collection method one above. While

the simplicity of the Rasch equating procedure would seem to

warrant its use, it can only heused for test items that fit the

model and under situations where the same group takes both tests.

in Rentz .= d Bashaw (1975), the authors conclude that equating using

th- Rasrit model involved an equating line that closely eoincid d with the

conventional method. 'lucY also mentioned that the Rasch procedure

involved less time, [fort, and money (discussed as s.vings). Two comniem

seem zrppropriate: The results confirm the results of Lord's study

using a single group, and -2) The mentioned savings may have been partially

an artifa-t of the complexi

reanalysis

the equating study. The Rasch study was a

he data from the Anchor Test Study, which is of a complex

nature, involving multiple equatings. It is not really kno n at pr ,nt

whether equating usin--, item cha :cteristic curves on a single hsing Lho

Rasch model or otherwise, always affords a savings over conventional methods.

'!'hie n ntloned savings may in be situation specific.
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The p Isent state of test equating w uld seem to be well explicated.

Unlike some of-the ither applications of latent trait theory, like tailored

testing, there are conventional methods, not using latent trait theory,

that work well in a variety of situations,. Those areas where latent trait

models offer explicit.advantages have been discussed. Lord (1975a, I977b)

does, however, briefly indicate two areas that need fur'her work:

1. There needs to be more studies done using item charaeteris ic
curves in equating, and particularly in the comparison of
equating methods:using different item characteristic curve
models to conventional methods.

2. If two tests are not parallel to beginwith (i.e. haw!a non-linear equatini
curve), one is forced into the logic-that the tests are not
equally reliable for all subgroups of examinees. Thus, by
definition, it is not proper to .equate raw.scores. Faced with
a choice of exact true score equating or inexact raw score
equating, one finds no .criterion for choosing which to use.
A set of criteria would need to be developed for this and other
situations when a procedural choice must be made.
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Estimation of P-wer Scores

A speeded test is defined as one for which examinees do not have

time to respond to some questions for which ..hey know the answers. A

power test is one for which examinees have sufficient:time to shoW

what they know. Most academic achievement tests are more speeded

for some examinees than for others.

Occasionally the situation exists when a test, that is intended

to be a power test, becomes a speeded test. An example of this situ-

dtiorl is a test that has been misti ed, i.e. examinees arc ;Jven

less than the specified amount of time toxomplete the test. In this

situation, it would be desirable to estimate what an examinee's score

would have been if the test had been properly timed. This score is

referred to as an examinee's power score.

Power scores are not difficult to obtain if the test items are

all of equal difficulty and equal discriminating power. An examinee's

expected item score on each unanswered item would equal the exLminee's

proportion-correct Score on the items that were attempted. However,

if items vary in difficulty or discrimination, another method is

needed. Lord (1973) has discussed a method using the 1 ee-parameter

logistic model and applied it to the estimation of power scores for

21 examinees who had taken a mistimed verbal aptitude test.

Lord's method requires not only the usual assumptions of the

three-parameter logistic model, but also it assumes that the students

answer the items in order and that they respond as they would if

given unlimited time, i.e., if given more time, they would not go

back and change any of their answers.
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If the test score, x, is _he number of correct answers, the

-expedted power score for an examinee w_th ability level, 0, fer a

set of n items is equal to the sum of the examinee's probability of

answering each 'tem correctly. The probabilities are obtained f om

the item characteristic curves. Therefore, if there is sufficient

data to estimate an examinee's abili y score and the.item charac-.

teristic curve p_-ameters are known (or can be estimated) an exam-

inee's p_ er score on the n test items can be timated: It'is

-..equal_ to the examinee s test score on the attempted items plus the

examinee's expected score on the unanswered items (found by summing

the examinee's probabilities ofanswering each unans ered item cor-

rectly). Suppose k is used to designate the last item attempted by

an examinee, x is the examinee's score, n is the number of items in

the test, and 0 is the examinee's estimated ability derived from the

k items attempted by the examinee. The examinee's estitated power

score is given by

x P_ (0

g=k+1 g

Lord (197 reported the following application of his method.

Item parameters of the 90 verbal aptitude items comprising the mis-

timed test were estimated using responses obtained from 944 students

including the 21 mistimed students. Abil ties were estimated for 21

students from their responses to the items excluding responses to

any unanswered items at the eld of the test. Power scores were esti-

mated using the methpd described above.

rd felt his method couldbe justified empirically i- the = 1-

_lowing properties of the estimates could be demonstrated:
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Estimates of item parameters from one group of examinees
closely approximate estimates of the same item parameters
from other groups of examinees.

Estimates of ability parameters from part of a
approximate estimates obtained from the entire

est closely
test.

The power:score of an eXaminee on a test can be accurately
approximated-from his ability estimate as estimated from
the,aame test.

In Lord's judgment, the available evidence has been quite favor-

able:

1. Lord (1970a) showed:good agreement between estimates of item
characteristic curves from two differentegroupa of examinees.

Correlations over .94 were-Jpbtained between ability estimates
derived from different subsets of items in one study of SAT
response data.

Tle correlation between power scores and number r
has exceeded .98 in two different studies.-:_

Lord cautioned that a wide variety of empirical checks would

ehave to be carried out before one -nuld be sure of all the circum-

stancesrunder whichthe three properties of,the estimates listed

above would hold.

1 0 -)
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Computer Programs

ioners use latent trait models in thei

Fortunately, there Ate a number of olmputer program

work?

$ available for.

estimating ability and item parameters (Hambleton and Rovinelli 1972;

Kolakowski and Bock 1970; Wood andfLord, 1976; Wood, Wingersky, and

Lord, 1976, Wright arid Need, 1976a, 197613- Wright and Panchapakesan,-

1969). Some details on four of the computer programs, LOGIST; CALFIT,

-:BICAL, and DATAGEN, willbe provided next.

LOGIST:.(Wood and Lord; 1976) Allows the user to estimate exam

inee abilities and all parameters.ofthe three-parameter logistic'

model.

the

A maximum likelihood method is used to obtain estimates If

item and ability pArameters (Lord, 1974a) The item and ability

parameters are estimated -imultaneously.i For the estimates of the_

parameters to canverge various restrictionsiare-placed oh the para-
.-

meters being estimated. Ability estiMates are scaled to have a mean

zerd_and a standard deviation of one.

Thefollowing s atisticsi. reported by Wood etal (1976) give

some idea of the computer time required for running on an IB1. 360-65 .

test of 60 items and 5305 examinees took approximately 230 seconds

per COMplete stage. A complete stage involves the estimatjon of both

ability and item parameters. A test with 85 items and 2269 exa inees

ook approximately 130 seconds per complete stage-. Convergence was

obtained after 10-15 stages. To achieve convergence, ce tain restric-

tions are imposed: For example, (1) abilities for examinees with

zero scores, perfect scores, and those Who answered less than. 1/3

the items are not estimated; and' (2) an upper bound value is imposed

on the-estimated discrimination parameters

1 1 0
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Wood, et al. (1976) provide a complete description of the out-
.

put from the program after each'stage and after the job is completed.

The output aftetthe final stage is coMpleted inclu:des: ) Final

item and ability estimates;. (2) a summary containing various statis-

tics for each stage; and ( the total time for the run.

According to a write-up (Wright and Mead, 1976a) on BICAL "The

BICAL program estimates -he parameters of the Rasch model when the

underlyiag response process is binomial . The algo_ thm, used

for estimating item difficulties and person abilities are the cor-

rected unconditional maximum likelihood procedure and a normal approx-

imation . In addition to estimates of difficulty and ability,

and tests of item fit, output includes the standard errors associated

with these estimates, residual indices of item discrimination and

the: degree of convergence of the estimation procedures." BICAL con-

tains:a data simulator which can be.used to verify the functioning

of the program or to provide an appropriate random background fo

_ .

-the Monte-Carlo analysis of unusual data.

The CALFIT program has also been described by Wright and Nead

(1976b). This program performs 4 major tasks: (1) Data input and

description. (2) data editing; estimation of parameters; and

'
(4) analysis of _it.

The output includes: (1 Theldistr bution examinees by total

score; (2) the results of the estimation proc the number of

iterations required for convergence; (4) the analysis of the fit of

the data to the Rasch model, (5) a summary of the fit:information

in three rsequences serial order, difficulty order, and fit order;

(6) plot of the _- statistics, used inthe fit analysis, against

111



the nrobability of a person in an ability group an wering the item

correctly; 7) a plot of the item fit mean squares against item dif-

ficulty; -8) a plot of the item fit mean squares against the index

of ite- discrimination; 9) a plot of the item discrimination

index against item difficulty.

Hambleton and Rovinelli (1972) have produced a computer program,

(DATAGEN) to simulate examinee item response data from Logistic test

models. One purpose of the computet program is to allow users the

opportunity to study relationships among item and examinee abil_ty

parameters logistic test models, and test sco e characteristics..

second pUrpose of the computer program is to prbduce test data with

known character sties so that robustness studies, studies of estima-

tion methods studies of scoring methods, and so on cartbe conductech

The prograll designed, to produce a set of response patterns

and test scbrel to represent- the-performance of N examinees on n

binary-scored .items. By appropriate Choice of item and ability.para-

. -meters in the program, it is possible to produce a set of response

patterns with.a distribution of test scores approximating desired

mean,. -variance, kurtosis-and skewness values. Description of the

item . parameters_ in.the.logiatic test models used to-generate the

eet data are described by Lord end .Novick (1968) and Hambleton and

Traub- (1971).

The user reads in spec_fications for the- distribution of item

difficulty, discrimination, :and guessing parame ers and ability par--

meters Parameters may be selected from either a uniform distribu-

tion with specified upper a d lower bounds, or a normal distribution

with a specified mean and standard deviation.. The user -lso speci7

fies the .desired number examinees andAtems
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for the random number generator-.

Output from the program inclndes- desired descriptive -sta sties

on-the item parameters-and estimated values on -the---basis of samPle

data; a-listing of the itemparameters and estimated conventIonal

item parameters calculated from the generated--test-data. Also repor

ted is a complete set of summary statistics on the generated response

-patterns and test scores-. Response pattern_ may be eithet saved on

aidata tapeor.punched out on computer cards.

The prograM is currentlr.designed to generate respense patterns

on up to 100 items although the number of ems can easily be

(4reased by changing a few dimension stat menta. The progriii is

pradtically machine independent except for the random number gener-

ator.-



latent _

gon1 of..thiepaPe-- o review the developmen-s

ait theory to date, to demonstrate the applicability of

latent trait theory models to specific measurement problems

finally, to-point out the-advantages

cal approa h over the classical app

the latent trait theoreti-

-ch for the solution of-mental:

measurement problems. However. the latent trait theoretical models

are, in general, mathematically -ore _mplex than:the classical test

dels, reqUire strong assumptions:that may limit:the

to mental data sets d, in some cases Pose problems that are as

-f yet, Unresolved.

.As pointed--outlin the paper, the latent trait models have num-

us advantageS over :he classical test models.
,7

atent trait models Is that it is-possibleiniportant advantage

Perhaps the most

to eetimate an examinee's ability on the-same ability scale, from

subset of items that have been fitted to the model. This implies

that the ability of an examinee can be estimated independently of

the particular choice or the number of items and hence represents a

major breakthrough In thg area of mental measurement. A consequence

f this fact iS that examineea may be compared with each other even

though they may have taken quite different subsets of items. This

feature makes latent trait models indispensable to the field

tailored testing wh re exami ees receive test items that are ched,

to their ability level In such situations the items administered

to different examinees will not be matched on difficultv,and hence

the usual test scare metric will not permit meaningful comparisons:-_

_of examinees Latent trait models take into account the difficulty
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the'items and reflect thia in the estimates of the ability'.

estimates_ of the:abilities of two sexaminees who receive-

identical -scaresson-easy and"diffiCult subtests, may, differ,i-andshence

a meaningful comparison of the examinees_is p

consequence of the fact that ability can be estimated indepen-

dently of the choice of items is that, equating scores -f tests that

measure the same ability is possible. In addit on the problem of

constructing parallel forms of tests Is eliminated.

Another advantage of latent trait models is that the item

parameters are invariant across subgroups of examinees chosen from

a population of'examinees. Item parameters sUch as i em difficulty

and discrimination, derived from classical test theory models are

not invariant 'across subgroups They are defined for a particular

group of 'interest and will depend on the average ability of- the group

being tested. Hence, despite their computational ease', classidal

not permit meaningful comparisons across differ-

ent populations of interest. Item parameters based on latent trait

models, on the other hand, permit comparisons across different norm-

lations Of interest andsconsequen ly are of immense value to test

developers.- In particular, invariant item parameters are of fund-

amental importance in the development of' item banks and in detecting

item-bias.

A further property inherent in latent trait models notexhibited

by classical test models, is that it is possible to measure the pre

cision of the: ability estimates at each ability leVel. Thus, instead

-f providing a standard error of measurement that'applies to all'
s

examinees _-_egardlese Of test scores, separate estimates of error for

each-:examinee or at-eachability level are Available through the



Despiteihese advantages- there are several unresOved issue's

which need further investigation. Since latent t ait models equire

srrong assumptions,- the question that naturally arises is that of_the

robustness.oUthe latenttrait models. RobustneSs refers to the_

extent that data can deviate fro:c underlying assumptions of

trait model and still be fit by the model.- The studies reported to

date have often produCed different conclusions-(see for example,

Hambleton [1969] and Panchapakesan [1969]). Researchers have reac ed _

different conclusions because,theyjiave Used subjective methods -to

interpret the results of robustness studies.- is-obvious that the .

assumptions of any,latent trait model will never b- completely satis:-

-fied by Any data set. Hence, the importantquestions.are whether
.

latent trait analyses provide useful-summaries of-test data,-lead-to
.

better test

chosen

core interpretations, and can predict appropriately,

criteria When the last question was studied by Lo7d (1974a),

he cbtained excellent predictions. However, the issue of robustness,

is not completely re olved as of yet and further work is clearly

needed to resolve these issues.

problem that remains

of pare eters

he solved is that of estima-'

trait models. As poin ed Out earlier,

the simultaneous:estimation of item and ability parameter- in latent

trait models leads to difficulties. In addition, the estimates of

the item parameters, especially that of the guessing par,ter,
111-nOt be -cable if examine de range abilities are

not used. Furthermore,- current estimatIon procedures require a

iumber of examinees and items before Stable estimate .be



-114-

obtained a problem similar to that _f estimating parameters in

regression modeld. The numerical problems associated with the es

mation procedures present another area of concern.
,

Further research is clearly needed in the above areas. Although

may not b possible to show that the maximum likelihood estimates

of item and ability parameters possess optimal'iirOperties, these

estimates may approximate the ideal estimates in some situations.

For-instancethe comparison of the un onditional estimates and the

conditiOnal estimates of the ite_ parameters in the Rasch model

_(Wright and Douglaa press) has provided a meaningful indight into

the nature of the estimates. These comparisons,can be carried out

for the two- and three-parameter logistic models (In this connec-

tiOn, it shoUld be:pointed out that unconditiona_ estimates in the

sense of Bock [1972] have not been obtained for the three7parameter

logistic -_odel.) Finally,--the feasibility of Bayesian procedures

shOuld be inVeatigated more fully. Incorporation of prior informa-:-

tion in the es imation procedure may provide improved estimates of

the parameters and may also permit estimation of paramete-_a with a

_small_sample_size_and_asmall number :f Items. However, poor speci-

fication of priors may adversely affeCt the estimates

careful stUdy of approprIate priors would be necessary.

In conclusion, we note that latent trait theory offers the prom-

ise for solving the problems that arise in mental measurement. The

advantages of the latent trait theoretic approach over

test theoretic approach are obvious. It appears that the major fad

tors that have hindered:wide spread use,of latent trait theoretic

ethods are the lack of fainilarity with:these methods on the pa-
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of pra- itioners 'and the lack of uset_oriented CO miter

These problems have been overcome:in recent yearsi_and hence we can

expect latent trait theoretic procedures to emerge as methods of the

future for the measurement of mental abilities.
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