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standard testing and
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There are many well-=documented shortcomings of
measurement téﬁhnglagy.z For one, the values of standard item parameters
(item difficulty and item discrimination) are mot invaridnt across

his means that standard
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n ability.
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est construction for examinee popu-
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item statistics are only useful
1, Poie Uty = LI 1 }' . ,Ei 7”*: s s j},,—jh ,h, = 5 ke
tations very similar to the saunle of examinees in which the item stat

istics were obtained. There are many testing situations where invariant

item parameters would be highly desirable. Another shortcoming of

standard testing technology is that comparisons of examinees cn an ability

1:

mited to situa-

o
e

measured by a set of test items comprising a test are
tions where examinees are administered the same (or parallel) test items.
While rust common standardized achievement. and aptitude tests are

typically suitable for middle-ability students, these tests do not provide

2Ty precise estimates of ability for either high- or low=ability examinees.

oy

"Tailored testing' is designed to correct this shortcoming by administering

r’<

test items to examinees that are carefully selected to "match" their

#

ability levels (Lord, 1970b, 1974b; Weiss, 1976; Wood, 1973). 1In

"tailored testing,'" it is likely that no two examinees will take the same
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used methods and techniques for test design and analysi
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tegting and measurement technology" F%Eers to commonly
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st items (or even the same number of test items). Since some
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examinees will be administered more difficult sets of test items than

nees, the usual examinee test scorves (or proportion-correct
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not previde an adequate

"

abilicy measured by the test items in the "domain of test items
which test items were drawn. How then can examinees be compared? Cer
tainly standard test models (Lord and Novick, 1968) cannot handle the
problem.

Another shortcoming of standard tosting te echnology is thgt it
provides no basis for determining what a particular examinee might do
when confronted with a test item. Such infgrmatinn is necessary, for

example, if a test designer desires to predict test score characteris-

cs in one or more populations of examinees or to design tests with

oo

t1

particular Chafactéflgﬁ ics for certain populations of examinees.
Besides the three shortcomings of standard testing technology
mentioned above, standard testing technology has failed to provide
satisfactory solutions to many testing problems (for gxample, test doe-
sign, test score equating, and item bias). For_these and.ather reasons,
many psychometricians have been investigating and Sevelaping more appro-
priate thaories of mental measurements. Consequently, considerable at-

tention is being currently-directed toward the field of latent trait

theory, sometimes referred to as item response theory or item character-

Latent trait theory can be traced back

to the work of Lawley (1943, 1944). Lazarsfeld (1950) was perhaps the

first to introduce the term 'latent traits.' The
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work of Lord (1952, 1953a, 1953b), however, is generally regarded as the
"birth" of latent trait theory (or modern test theory as it is sometimes
called). Progress in the 1950's and 60's was painstakingly slow, in part
due to the mathematical complexiry of the field, the lack of convenient
and efficient computer programs to analyze the data according to latent
trait theg;y, and the general skepti;ism about the gains that might accrue
from this particular line of research. However, important breakthroughs
recently in problem areas such as test score equating (Lord, 1975a;

Rentz and Bashaw, 1975), tailored testing (Lord, 1974b; Weiss, 1976).

test design and test evaluation (Wright, 1968) through applications of
latent trait theory, have attracted Qéﬁsidefable interest from measurement
specialists. Other faCthS:EhEt have contributed to the current interest
in latent trait theory Include the availability of a number of useful
computer pfﬁgraﬁsg publication Qf a yariety of successful applications
in measurement journals (Bock, 1972; Lord, 1968, 1974b, 1975d; Samejima,
1969, 1972; Whitely & Dawis, 1974; Wright & Panchapakesan, 1969), and

the strong endorsement of the field by authors of the last three revicws

of test theory in the Annual Review of Psycholugy (Keats, 1967; Bock &

Wood, 1971; Lumsden, 1976). Ancther important stimulant of interest

in the field was the publication of Lord and Novick's Statistical Theories

of Mental Test Scores. They devoted five chapters (four of them written

by Allen Birnbaum) te the topic of latent trail theory. A testimony to
the current interest and popularity of the topic is the fact that the

{ggfﬂalrnf,EdgcatiunﬁlrM%aggggmpng will publish six invited papers on latent

trait theory and applications in the summer issue ol 1977.

4
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What is latent trait theory? A theory of latent traits supposes
that, in testing situations, examinee performance on a test can be pre-
dicted (or explained) by defining examinee characteristics, referred

i xaminees on these traits and using

£o as traits, estimating scores for

T
i

the scores to predict or explain test performance (Lord and Novick., 1968).
Since the traits are not directly measurable, they are referred to zs

latent traits or abilities. A latent trait model specifies a relationship

between the observable examinee test performance and the unobservable
relationship between the "observable' and the 'unobservable™ quantities

is described by a mathematical function. For this reason, latent trait

models are mathematical models. These mathematical models are based on

specific assumptions about the test data. When selecting a éartiguiar
latent trait model to apply to one's test data, iﬁ is necessary to con-=
sider whether the data satisfy the assumptions of the model. If they do
not, different test models shaﬁld be considered. Alternately, some psycho-
metricians (for eﬁaﬁple, Wfight, 1968) have recommended that test developers
design their tests so as to satisfy the assumptions of the particular
latent trait model they are interested in using. - In this way, the advantages
of the particular latent trait model of interest can be uzilized- |

In view of the hreakthroughs in several testing problem areas
brought about by the use of latent trait ﬁheofy, it is cléér that the
field of latent trait theory will become iﬁcfeasiﬂgly more important ;éwb
measuremént specialists and test pracgitiqnets_ ‘Therefore, given the

newness of the field, its rapid growth in recent years, and the diversity
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of views and contributions, it scems apparent that a comprehensive review
field is in order.

This document addresses four marters: First, the nature and char-

5

acteristics of larent trait theory are introduced. Second, a review

i)

of many of the technical developments in the field is provided. Third,
several promising applications of latent trait models are described.

Finally, some additional areas for research and develapiment are suggested.
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Latent Trait Theory

Dimensionality of the latent space, local independence, and

item characteristic curves are three important notions that arise in

connection with latent trait theory. These three notions, along wirh

a discussion of thé ability scale, will be provided next.

Dimensionality of the Latent Space

In a general theory of latéﬂz traits, it is assumed that a set of
k latent traits or abilities underlie examinee performance on a set of
tést items. The k latent traits can be used to define a k dimensional
latent space, with_each examinee's location in the latént.spage determined
by the examinee's position on each latent trait. ~The number of dimensions
of the latent 39$ge depends on the number of abilities
measured by the test im the population of examinees the test is admin-
istered to. The latent space is referred to as complete if all latent
traits influencing the test z2cores of a population of examinees have boen
specified.

It is commonly assumed that only one ability is necessary. to "exp1§iﬁ,v‘
or "account'" for examinee test perFﬁfﬁance! Latent trait models that

assume a single latent ability is sufficient to Expiain or account for

" ‘examince performance are referred to as unidimensional. Those models,

that assume that more than a single ability ig necessary to adequately

account for examinee test performance, are referred to as multidimensional.
The reader is referred to the work of Mulaik (1972) and Samejima: {1974)

for discussions of multidimensional latént trait models.

7
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The assumption of a unidimensional latent Space is a common one for
test constructors, since they usually desire to construct unidimensional

LS S0 as to enhance the interptetability of a set of test scores

U"w

tes

976). What does it mean to say that a test is unidimensional?

bt

(Lumsden,
Suppase a test consisting of n items is intended for use in r subpopula-
tions of examinees (e.g., Séveralbeﬁhnic groups). Cansidéf negt the
ﬂanﬁitianal distributions of test scores at a particular ability level
for the r subpopulations. ThéSE conditional distributions for the r
subpopulations will bhe identical if the test is unidimensional, 1f
the conditional distributions vary agfass the r Subpopulations, it
can only be because’ the test is measuring something other than the
single ability. Hence, the test cannot be unidimensicgél;
It is possible for a test to be unidimensional within one popula=
tion of examinees znd not unidimensional in aﬁatheri Consider a test
with a heavy cultural loading. This test could appear to be unidimensional
for all populations with the same cultural backgr&und—--ﬂcwever, whéﬁ
administered to populations with varied cultural backngLﬁdS, it may in
fact have more than a single dimension underlying the test Score.
Exsmples of this situation are seen when the factor stfuctufe of a
particular set nf test items varies fram one zulktural group to anothef_
Lumsden (1961) pravided an excelient review of methéds for con-
structing uﬁidimensi@nal tests. He cgnci;dgé that the meghodiaf factor
analysis held Ehe most promise. Fifteen years later he reaffirmed his

conviction (Lumsden, 1976). Essentially, Lumsden recommends that a
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test constructor generate an initial pool of test items Selected on the

K

basis of empirical evidence and a priori grounds. Such'an’item sclection

B

A

procedure will inerease the likelihood that 2 unidimensional set of
cééﬁ items within the pool of items can be found. 1If test items are not
preselected, the pool may be too heterogeneous for the unidimensional
set of items in the item pool to emerge. In Lumsden's method, a factor
analysis iSVPEffomEd and items not measuring the dominant factor ob=
tained in the factor solution are removed. The femaiging items are
factor aﬁalyéed, aﬁd again, ''deviant'" items are removed. The process is
repeated until a satisfactory solution is obtained. Convergence 1s most
likely when the initial item pool is ;arefully,SElécted to include only
items that appear to be measuring a common trait. Lumsdén prgpcsed that
the ratio of first factor variance to second factor variance be used

as uan "index of unidimensionality."

Factor analysis can also be ﬂsed to check the réascﬁab}eness of
the assumption of unid%mensianality with a set of test items  (Hambleton
& Traub, 1973). However, the approach is not without problems. For -
example, much has been written aboui:tha merits of using tetracheric
correlations or phi correlations (McDonald & Ahlawat, 1974). The common
belief is that using phi correlations will lead to a factor solution
with too many factors, some of them "difficulty Factors' found bezaﬁse

of the range of item difficulties among the items in the poel. McDonald

and Ahlawat (1974) concluded that "difficulty factors" are unlikély if
Yy

the range of item difficulties is not extreme and the items are not too

highly discriminating.
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Tetrachoric correlations have one attractive fea-
ture. A sufficient condition for the unidimensionality of a

set of items is that the matrix of tetrachoric item intercorrela-

tions has only one common factor (Lord & Novick, 1968). én the negative
side, the cenditiéﬁ is not necessary. Tetrachoric correlatidns are awk-
ward ;@ calculate (the formula is complex and requires some numerical
integration), and, in addition, do not necessarily vyield a éartelation

matrix that is positive definite, a problem when factor analysis is at=-

tempted.

Local Independence

The assumption of local independence states that the probability of
an examinee answering a test item correctly is not affected by his or her
performance on any other item in the test.

If we let Ugs 8 =1, 2, ..., n, represent the binary responses

(1, if correct; 0, if incorrect) of an examinee to a set of n test items,
the probability of a correct answer by the examinee to item g, and

3
Py

Qg = 1 - Pys then the assumption of local independence leads to the following
statement:

Prob {U] = u_, Uy = uz, veay Uy o= uﬂ}

b | ' m

Il
[=tsl
=

e
[=
og
o]
Jre]

That is, the probability of an examinee response pattern is given by the
product of probabilities of the item responses.
One result of the assumption of local independence is that the fre-

quency of test scores across examinees for fixed ability, denoted 0, is

given by

10

O
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where x is an examinee's test score which can take on values from O to n.

The assumption of local independence for the case when 8 is unidimensional,
and ;he assumption of a unidiménsiénélrlateﬁt Sﬁaée are equivalent. First; suppose
a set of test items measure a common abi;i;yg Then, for examinees at a fixed ability

level 8, item responses are Statisticaliy'independenﬁ. For fixed ability

[

level @, 'f items were not statistically independent, it would imply that
some examiﬂees have higher expected test scores thaﬁ other examinees of the
saﬁe ability level. Consequentiy, more théﬁ Qﬁé ability would be necessary
to account for examinee test peffﬂfmaﬁcei This is a clear violation of

the original assumption that the items were unidimensional. Second, the
assumpticﬂ of local independence implies that item responses are statis-
tically independent for examinees at a fixed ability level. Therefore,
only one ability is necessary to account for the relationship amonp a

set of test items.

It is impoftanﬁ.ta note that the assumption of local independence
does not imply that test items are un:@ffel;ted over the total group of
examinees (Lord & Novick, 1968, p. 361). Positive correlations between
pairs of items will result whenever there is variation among the examinees

on the ability measured by the test items.

ERIC
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Becaure of the equivalence between the assuiptigngaf local independence
and of the unidimensionality of the latent space, the extent to whicﬁ a
set of test items satisfy the assumption of local independence can also
be studied using factor analytic techniques. Also, a rough check on the
Sta;istizal independence of item responses for exéminees,at the same
ability level was offered by Lord (1953a). His suggestion was to con-
sider examinee item responses for examinees within a narcow raﬁgegaf

ability. For each pair of items, a xg statistic can be calculated to

provide a measure of the independence of item féSpénSaS; If the pro-
portion of examinees obtaining each response pattern (0o, 01, 10, 11)
can be "predicted" from the marginals for the group of examinees, the item

responses on the two items are statistically independent. The value oOFf
the Kz statistic can be computed for each pair of items, sunmmed, and
tested for significance. The process would be repeated for exaninees

located in different regions of the ability continuum.

Test and Item Characteristiec Curves

The frequency distribution of test ScGreéVEDt aifixed
level of 6 can be obtained using Equation [2] defined in the previous
section. - The curve connecting the means of these distributions represents
_the regression of test scores on ability 8. If the test—is unidimensional,

this curve is referred to as a test zhggagﬁgristigwguggg(ﬁf test character-~

istic fqpcﬁian if the -latent space is multidimensional).

It is also possible to develop item characteristic Qurves in a
o »

gsimilar manncer.  The frequency distribution of a binary item score for

ERIC
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“fixed ablllty ® can be written

£ (ugle) ;é.qg( “ug) o 131
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The curve connecting the means of the conditional distributions, repre-

sented by Equation [3], is-the regression of item Séﬁré on ability and

is'referred to an item EhafaEtEElSElE _curve (nr item characteri istic
function if the latent ability space is multidimensicﬁal);vrAn1itém

characteristic curve is a mathematical function that relates the prob-

ability of success on 'an item to the ability measured by the .item set or

test thaﬁ,gantains“iti' In éimplé terms, it is thévnon=1ige§r”régression
function of item sééfaton,cﬁe”latent tfaif meésuré& by the tést;

- If ﬁha cumplete laﬁant space 1is deflnéd fcr the examlnae papulat;ans
af 1ntereatv the: céndltlanal distrlgﬁtlcns of ‘item scores for fixed
ahilityrlévelrmust be idepcigal ag§ass thege_pqéula;ioﬁsfr IE the ccnéif

tional distributions are identical, then the curves connecting the mears

of these distributions must be identical; i.e., the item character--.-

stic curve will remain invariant across populations of examinees for

’whiéh'thé,caﬁplé te latent space has been defined. Since the

probability of an individual examinee providing .a correct answer to an

item depends iny on che fom of" the 1tem charactarlstlt curve, it is

”endenﬁ ‘of the. distribution of examinee ablllty in the papulatlan of

”examinees of interestg Thus, the ﬁrcbability of a correct fEEpD se E@

. an 1tem by an examinee will not depend on how many other examinees are

o
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: ’fur‘ examinee b Then, Pi(a ) = l P (8 ) = D Pi(ab)

) . .
located at the sa ablllty level.  In other words, the shape of an itgmr .

characteristic curve daesrnct depend on the distribution of ability in

the examinee pépulgﬁiani,This invariance property of item character~

istic curves and EOnSPqUFntlythe parameters dESEflbiﬁ the curves is one

"of the agtractlve ChafactérlSElES of latent trait models. The in-
_variance of latent trait item parameters has important implications for

tailored testing, item banking, study of item bias, and other appli-

cations of latent trait models.
It is common to interpret Pg(é) as the probability of an examinee

answering item g correctly. Lord (1974b) questioned this interpretation

5

and provided an example to show that this common interpretation of ngé}'

leads”to an awkward situation. Consider two examinees, a and b, and two
items, i and j. - Suppose examinee a knows the answer to item i.and does

not know ‘the answer to item j. Consider the situation to be reversed

1.

0, P (Bb)

= The flrst two equati@ suggest that'lzem i is easier than item-j. The

other two equations suggest the reverse conclusion. One interpretation
is that item.i and j easure different abilities for the two examinees.

it impossible to compare the two students.

e
M
g
Q
=
H
0]
Mg
T
o
e
1]
£
o]
ot
s
(M
=]
\m‘
.
m

“One reasonable solution fto the dilemma is to define the meaning of

Fg(a) differently. Lord suggests that'Eg(S} be interpretedrasrthé,

probability of a correct response for the examinee across test items

with near identical item parameters.

Each item characteristic curve for a particular latent trait model .

is a member of a family of curves of the same general form. The number

14

7
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of parameters required to describe an item characteristic curve will

depend. on the particular latent trait model. It is common, though, for

'

‘the number of parameters to be one, two, or three. For example, the

iﬁemkcharééﬁerisfic curve of the latent linear medel (Figure'l, c)

has the general form-P (9) g + aéé, where Pg(ﬁ) designates the prob-

bility of ‘a correct response to item g by an examinee with ability level 6. :

he Eunctlan is described by two item paramete item difficulty and

o

item discfiminatidn; dénated'bg and &g tespectiﬁelyi An.item character=
istic Eufvaris defined completely when its geﬁeralrfafm is specified and
when the parameters of the curve for a ?artiéﬁlarhicem are known.

Item characteristic curves of the lategt linear model will vary
in their intercepts (bg) and slépeé (ag) to féfiégt the fact that the

test izem% vary in "difficulty" and "discriminating power."

Iteé éha;act risé:c curvesrfér Gﬁétman‘s -ﬁetfect s;aié Vmgdel are
shown in Figura‘i (a).  These curves take the shape of step functions.
Probabilities oE coffegﬁ fespanseg are either 0 or 17 The critical aﬁiliﬁy
level 6% is the point on ;hé abiiity scale where probabilizies change
from O to 1. Diffe ént items le%d to different values of 8%. When 8%
is hlgh we hava a difficult item, and when 6% is low, an easy item.

Flgure 1 (b) describes a varlatldn on Guttman s 'perfect scale Nmade;;

Item EhafEEEEEiSEiE curves take the shape of step functions but the

prabab;lltles of incorrect and correct rESpDHEES, in general differ

w—n‘

‘rom 0 to 1. Flgufes 1 Cd), (e), and (£) show "S" shaped curves :éprEf

'senzing légis,lﬂ'mﬂdéls, respectively. With the one- para eter 1ag15

model, the item characteristic curves are non-intersecting curves that
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differ Dnly.by a tfanélatiaﬁ‘alang the 8 scale. We say that items with

uch chafacteflgtlc curves vary only in th dlfflgulty. With the

twafpafamggeprlagistic model, item characteristic curves vary in both

slope (some curves incredse more rapidly than others; i.e., the cor-

Vraspanding test items are more discriminating than others) and

transl tion alang the ability scale (some itéms are mote difficult

than othe’s)i‘ Finally, with the three-parameter logistic model,

curves may differ in slope, translation, and lower asymptote. With the

one- and two-parameter logistic curves,  the probabilities of correct
responses range form 0 to 1. In the three-parameter model, the lower

asymptote, in general, is greater than 0. When guessing is a factor in

test performance, this feature of the item chara zteristic curve can im-

‘prove the "fit" between the test data and Ehe”model! In other models

(the nominal response model and the graded respanse model) zhere are item,

apt;an :haract eristic curves. A curve deplctlng the probabilizy of an

item optlon be;ng selected as a functlan of ability is pfoduced for each

'gpticn DI'EthCe in the. test item. An example of this situation is shawn

in Figure 1 (g). : - ) A Tz

It is most common for a user to specify the mathematigal form of

- the item characteristic curves before beginning his or her work. It is not

~easy to check on the appropriateness of the choice begause item character-~

e

stic curves represent the regression of item scores on a variable (ability)

_“that is not dlrectly measurable. About the only way the assumption can be

chegked is to study the "validity' of the predictions w1th the ;tem

T

W'characte t curves (Hambleton & Traub, 1973; Ross & Lumsden, 1968).

More will be said about how to make rhese predictions later in the paper.

20
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The Ability Scale

1f we were to administer two tests, that measured the same ability, to
the same group of examinees, and one 'test was more difficult than the -

other, we would obtain two different test score distributions. The ex~

tent of the differences between the twa.diséributicﬁsuwauld depend,

i

among other things, on the difference betwéen the difficulties of the two

tests. Unfortunately, there is no basis for preferring one distribution
over the other. What this example reveals is  that, in'gexierali the

test score distribution provides no information about the distribution

.of ability scores. -

The problem occurs because the raw-score units from each test are

unequal and different. On the other hénd, the scale on which ability

scores are meaéured'is one'an‘whigh examinees %ill'ﬁave the same»aﬁilit?'
score aztoss non-parallel EESES-ﬁEéSﬁfiﬁg a common ability. ,fhus,-evenk
though aﬁ:examinee's test EGDEESiﬁill véry across ﬁbnﬂpérailé;'fptmsfof

a ;es; méasuting an ability, the expected ability for an

examinee ﬁill be the Samerén ea;h‘fcrﬁ;

Most measurement specialists are familiar with the concept of true

score, the gxpacted test score for an examinee. What is the féiationship

between true scores and ability scores? Lord and Novick (1968) showed

- that the test characteristic curve,introduced earlier, provides the rela-

tionship. This is easily seen from the following argument. Consider the
proportion-correct score, 2 2:§ .- Then

Ezle) = 1 i ©, , ) R [4]
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V,E(§IE}—isrzhe test ghafécteristié curve (scaled by l/n)_intfgduééd earlier.
It isfzhe sum of ‘item characteristic curves for - - itémS’iﬂgludedjin the

f,,

o]

test. Suppose next we lengthen the test by adding an infiﬂiée'ﬁumbér

parallel-forms. "By definition, E(%|0) = T, the true score. - Also Var (2|e)y~> 0, -
as n > ©, and so T and 6 will be related by a monotonic increasing trans-
formation which is the test characteristic curve. Clearly then, the tw6 

 concepts, T and 6, are the same, except for the scale of measurement used

to describe each. One important difference is that true score is defi

on Ehe,in;erval [0, n] whereas aEility scores are defined on the interval

T [%E?H-m] ’ - ﬁ
Thefé are atﬁer diffafenceg»beﬁwean true score and ability score.

True score is defined for a particular test. Itzis the»expeétgd
test score- for an examineef An examiﬁée'S’Eruelségfe’will”vary’a;:qss’"
nbn%parallal measureas éf the same ability.. On the other hand, ébility 7
;édtg is.defined for a "pool! or "universe" of items méésufing é'single
éEilicyi, An examinaé's_tfﬁe score in diffetéﬁt samples of items would
(iﬁ_general) vary. Haweﬁef, ability score 1is defined in terms erthé |
“pagi" of items from which the sample was drawn. Latenﬁftrait models
Séééify félaﬁianéhips:bétweeﬁ-aﬁamiﬂee'item ﬁeffgrméncgsaﬁd ability; and
_ sérit is-always possible to "transform" examinee perfgfﬁanéé on a paftii 
;ﬁlaf sample of items (definiﬂg artest) onto an ability'scalerdefined for

__the larger "pool" of test items. Thus, while an examinee would have (in

w

“gegéral) a different true score for each sampl of items drawn from the
pool. and would obtain different test. scores in each sample of items, the

‘expected estimate of examinee ability from each sample of test items

-would be: the same. ¢

22
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Ability scores can be used with item characteristic curve para-
‘meters for items included in a test to estimate examinee test perfor-

mance. Recall,

rng(a)‘ . ' o ’ [6]

I
0.

E(x|0) =

g=1

Thus, ability szareé provide a basis for ;Gnﬁég;srgfefgnged ip;e;pfetagipns
of examiﬁée test scores. lWhen the quan;iﬁiéévin Eqﬁéﬁioﬁ [§];afe scaled
by 1/n, E(X/n[B) fepteséntsthe expe;tgd,prapofﬁigﬁ of items;in.a;tesL

that an examinee will aﬁswgt correctly and{tﬁis interpfétatiaﬁ Qill have .

meaning regardless of the test performance of other examinees. Of course,

abilityrscafas provide a basis for nqgmareférgﬁcgd,intg:p:eﬁg;iggs as well,
Let us consider neitrhéw_the metric for the ability sc:le is chosen.
Ié is chosen so that the item éharactEfistic cufveé havé séme-gpecifiedr
mathgmatical form. - On Ehé;basis’gf examiﬁee test'p2ff§fmance,'éxamiﬁéesu
éah‘bevcr&éfggqukabilitylmuThe;gg;gicuiar valies of these abilities on
theiability scalé:afé chosen so aé,tarméximizeré cfiteri@ﬂrfefleéting

agreement between examinee item response data, = _predictions of the

¥ =+

- test data derived from the "best—fitting'" item ‘characteristic curves and -

optimally positioned ability scétes.on the ability scale. However,

“the

o]

rigin and ‘unit of measurement of the ability scale are arbitrary.
Any linear transformation of the ability scores is permissible. Also,

=

it has been suggested that when an external criterion measure with mean-

ingful units can be located, - a transformation be found to

" transform ability scores to this new scale. Such a transformation would

enhance the }ﬁﬁerpgétabili;y of égilizy scores. .

23
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Lord (19?5d) reported one rather distressing property of the

ability scale observed in his work. . Item parameters defined on this

AaEilityrscale were found to be correlated in six sets of empirical data

that he studied. Lord proposed a monotonic transformation of the ability

scale to correct the problem. With the availability of computer pro-
g o = ) ] . ,é ,,V~r-';-='x
grams, this operation could be routinely perfarmed. .

o
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Latent Trait Models
The purpose of this sectien is to inttaduge;sevefal of the most com-—

monly used latent trait models: The Drmal—oglve model the-@néﬁi'twas,

and thre&aparametef logistic-test modéls,;the g:adedéfespanse mcdgl,

the namlnal respnnsé madel aﬁd the continuoug respgnse model. -All méﬁélé“f

assume that the prlnclple of local 1ndependence applies and xequlvalently)

‘that the itéms.in the test being fitted by a model measure a gémm@n*ablllty;

A sigﬁifiﬁanﬁrgisﬁinﬂtian ambng the models is in the mathematical form ~

taken by the item characteristic curves. ‘A second important distinction

among the models is the s;cring,

Additional latent trait models are- dlSCUSSEd by Laz :Sféld and Henry

(1968), Lord and Novick (1968), and Torgerson (1958)i pezeminiscic”

models - (fo example,.cuttman s perfect scale model) are of no interest to

us hete because they are not likely to fit most achievement and aptitude

_test data very well. 'Ccmmon test’itemg'rarely discriminate'

‘well. enaugh to be fit by a determlnlstlt madel (Lcrd 1974b)

(a) N@fmaléDgive Médéi

LDrd (lQEE 1953b) prupased .4 latent trait model (althcugh he was not

‘the first psychnmetrlaian to da sa) in which an item CharECtEflSt curve"'

takes the férm of the normal ogive:

agce by,) : |
Pa(8) = [ ¢ (t) dt, (g =1,2,...,0) L [7]

where Pg(B) is the probability that an examinee with ability 0, answers

item g correctly, ¢(t) is the normal density function,and b, and a, are .

parameters characte ing item g. The parameter bé'is ususlly'teferred
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to as the index of item difficulty. It represents the point on the ability

scale at which an examinee has a 50% probability of answering the item

“called item discrimination, is proportional

g!

correctly.. The pafa eter a

to the slope Df*Pg(@) at the point 0 bg

 7Tﬁe item difficulty parameter,b,— is dEflﬁEd on the same’ scéle as -
ability [-=,4=]. In practice though, the range of b is from about -2
to +2 (assuming the ability distribution has been scaled-tg be approxi-
~mately on the range from -3 to +3). Valueé of bg near -2 zorrespanﬁ to
items that aféjﬁefy-éasy andnvéiﬁgs»cf bg near +2 EDEFESPOH& t@rizems that
“-.--ATe. very difficultxfar‘thé'gf@up of éxaminées; |
Thé item discrimination parameter, ag, is défined, thectetiéally,
ron the scale [-=,+»]. However, negatively discriminating items are dis-
carded ffgg:ability tests. Also, it is unué 1al to obtain ag valﬁés iargEt e
than two. VHéﬁéé;iéﬁéﬁﬁéﬁél range for item'discrimihézion parameters is

[0, 2]. High values of ag result in item characteristic curves that are . .

L]

very "steep."  Low values of ag lead to item charaéteristic curves that
- - increase gradually as a Function of ability.
fb) Two-Parameter chisﬁicrﬁodai_
_ Eirnbéuﬁ,(l?éS) pfépcsed”a latent trait model in which the ite
7gharact2£ist1c “curve, takes the form of a two-parameter logistic distri-
bution function, - o
_ 7 Da, (6-bg) _ . :
P () = — =1,2,...,n). . [8
g (0) bag(e5,y (BT LLeom. (8]
1+e i
Blfnbaum substltuted the two-parameter logistic cumulative diEtflbutlun
fuﬂctlaﬁ for the normal- ogive function as the form of the item -
26 ,
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characteristic curve. This model has the important advantage of being
more mathematically tractable than the normal ogive model. Pg(e), bg,
ag. and & have essentially the same interpretation as in the normal ogpive
model. The constant D is a scaling factor. It has been shown that when
D = 1.7, values of Pg(e) for the normal ogive and two-parameter lagiSEicr
models differ absolutely by less than .01 for all values of 6 (Haley, 1952).

Careful inspection of the tfa—pagamater normal ogive and logistic
test models reveals an additional implicit assumption that is character-
istic of most latent trait madelg: Guessing does ﬁct occur. This must
be Séjsinéé for all items with ag>0 (that is, items for which there is a

positive relationship between perfcfmance on the test item and the ability

measured by the test), the probabi 1 ty of a correct response to the item
decreases to zero as ability decreases.

(c) Three-Parameter Logistic Model

The three-parameter model can be obtained from the two-parametcr

model by adding a third parameter, denoted Cpe The mathematical form of

the three-parameter logistic curve is written itk
T ' Dag(e -bg) ) o
Py (8) = cp + (I-cp) - (g = 1,2,...,n). [9]
1+ePag (8-bg)
. -

The parameter Cg is the lower asymptote of the item characteristic curve

and represents the probability of low ability examinees correctly answering

an .item. The purpose of including a parameter g in the model is to attemp:

haracteristic curves at the low end of the

[l

to account for the misfit of item
ability continuum, where émong other things, guessing is a factor in test

-as the

‘[T”

gu2551n§ paranme ter in the model.
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It is perhaps surprising to note that the parameter g typically

assumesvalues that are smaller than the values that would result if ex—

aminees of low ability were to guess randomly on the item. As Lord (1974a)

has noted, this situation ecan probably be attributed to the ingenuity of
item writers in developing "attractive" but incorrect choices. For this

reason, avoidance of the label "guessing parameter” tc describe the para-

meter €y would seem to be desirable.

(d) One-Parameter Logistic Model (Rasch Model)

In the lésé ﬂécéde, many f%seanths have become aware of work in the
area of latent trait ﬁadels by.Géotg_Raschiga Danish mathematician (Rasch,
1966), both through his own publications and the papers of others advancing

his work (Anderson, Kearney, and Everett, 1968; Wright, 1968, 1977a, 1977b:

Wright and Panchapakesan, 1969). Although the Rasch model was developed indépen—

dently of other latent. trait.models—and—alo ng-quite-different 1ines —Riwcli' s —— "~

model can be viéﬁed as a latent trait model in which the item characteristic

curve is a one-parameter logistic function. Consequently, Rasch's model

1s a special case of Birnbaum's two=parameter lopistic model, in which all

items are assumed to have equal diseriminating power and vary ﬂniy in terms .
of difficulty. The equé;ign of the item characteristic carve for this model

can be written as

JDE(G—bg} : )
' : (g = 1,2,...,n), [(10]

P, (0) = & e
& DEfa~th °

~in which a, the only term not previously defined, is the common level of

discrimination for all the items. 'Wfighz (1977a) prefers to write the

model with D& incorporated into the 0 scale., Thus, the right—hand side

PNCIEY

1+e

c ' I , 8'-b}
of the probability statement becomes e B

28
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The assumption that all item disctiminﬁtioﬁ parameters are equal is
restrictive, and substantial evidence is available which suggests that
unless test items are specifically chosen to have this characteristic,
the assumption will be violated (e.g. Birnbaum, 1968; Hambleton & Traub,
l??S;VLcrd, 1968; Ross, 1966).

While the Rasch model is a special case of the two- and three-

~ parameter logistic test models, it does have some special properties

that make it especially attractive to users. For one, since the model
inv@l&es fewer item parameters, it is easier to work with. Twé, the
problem of parameter estimation is essentially solved. This point will be
discussed in a later section. - 7 | |

‘There appears to be some misunderstanding of the ability scale for

the Rasch model. Wright (1968) originally introduced the model this way:

,,~m__Th§_ﬂddsfintﬁavgr_qf_sucgesS.Dnvanfitem},denasédjﬂgi;xafe&givenwbyJthgwpfgdugtﬁgf.,ﬂm

an examinee's ability ei* and, the reciprocal of the difficulty of the item,

1/bg . 0dds for success will be higher for brighter students and/or easier

items. The odds of success are defined as the ratio of Pgi to ls—Pgii

where Poi is the probability of success by examinee i on item g.

Therefore,

]
|
*
i)
VH..‘

o
s
I
\T“
el

[11]

m‘

. - (12}

L]
I
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ey

. . - Dad ,
Equation [10] can be obtained from Equation [12] by sett'ing 8% = e and

bg* iléﬁébg . VIn Equation [12], both 6* and hg* are defined on the interval
[ﬁg+m]: 1f log ability and log difficulties are considered, then 0 and

* " = =
bg, and log 6* and log bg are measured on the same scale, [=w,+w], differing

only by an expansion transformation.

We return again to the point above regarding the. odds for success on an
! * "
item. Clearly, there is an indeterminancy in the product of 6; and 1/bg .

When odds for success are changed, we could attribute the change to either

Di* or l/bg*i For example, if odds for success are doubled, it could be

because ability is doubled or because the item is half as difficult. There are

several ways to remedy the problem. For one we could choose a special

set or ''standard set" of test items, and scale the bg's, g=1,2,...,n so

that b, = 1. Alrernately, we could do the same sort of scaling for a

set to one. The. final point is clear. When one itenr is twice as easy as

. "standard" set of exarineessuch that the averaga-afwai,riusyl,z;wji,ﬂ.is -
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another, a person's odds for success on the easier item are twice what

m

they are on the harder item. 1If one person's abili y is twice
as high as another person's ability, the first person's odds for success
are twice those of the second person (Wfigﬁt, 1968). 1In what Senserafe
item and ability parameters measured on a ratio scale? An examinee with
twice the ability (as measured on ;he Rasch ability scale) of another

examinee, has twice the odds of successfully answering a test item. Also,

when one item is twice as easy as another item (again, as measured on the

Rasch ability scale), a person has twice the odds of successfully answver-

ing the easier ~one. The other latent trait models do not parmit this

particular kind of 1ntérpfetat1cn of item and ability parameters.

(e) Nominal Response Mndel

The one-, two-, and three-parameter logistic test models can only

“be appllEdAtD test 1tem5 whlgh are scored dlchﬂﬁomausly. VThé néﬁiﬁéi
response model, introduced by Bock (1972) and Samejima (1%?2), is applic-
able when items are mﬁltichét@méusly scored. The purpose of the model is
to maximize the precision of obtained ability estimates by utilizing the
information contained in each response (correct or incorrect) to an itcm.
This approach fépfesents another method in the search for differential
scoring weights that imprVEVEhE reliability and validity of mental test
scores (Wang and Stanley, 1970). gggi item Dptiéﬁ is described by an

item option characteristic curve. Even the "omit" response can be repre-

sented by a curve. For the dorrect response, the curve should be monotonic-

ally increasing as a function of ability. For the incorrect options, the

E[{I(j; . - P S
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shapes of the curves depend on how the options are perceived by examinees
at different ability levels.

There are, of course, many choices for the mathematical form of the

item option characteristic curves (Samejima, 1972). For one, Bock (1972)
assumed the probability that an examinee with ability level 6 will select
a parrticular item option k (from m available options per item) to item g

"is given by

bAk + ax
Pok(0) = & BX T A O -1 ,
by g pZeeens ks 1,200 0,m), 3

8

ebgh ta,

o

For any ability level @, the sum of the probabilities of selecting each of
the m item options is equal to one. The quantities bgk and a;k are item
parameters related to the kP item option. When m=2, the items are

dichotomously scored and the two-parameter Tngistic model and the nominal

response model are identical.

(f) Graded Response Model

This model was introduced by Samejima (1969) to handle the testing

situation where item responses are made into two or more ordered categories.

For example, with test items like those on the Raven's Progressive Matrices,

one may desire to score examinees on the basis of the correctness (for ex-—
‘ample, incorrect, partially correct, correct) of their answers. Samejima

(1969) assumed any response to an item g can be classified into my + 1

categories, scored N, = 0, 1, ..., g, respectively. Samejima (1969) in-

troduced the operating characteristic of a graded response category. She

defines it as i

P y (O . ' (14]

ok
e

ngia)

&) e et v
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ng(é} is the regression of the binary item score on latent ability, when
all the response catesgories less than X, are scored 0 and those equal to
or greater than x, are scored 1. ng(a) rapresents the probability with
which an examinee of ability level 8 receives a score of Xg - The mathe-=
matical form of Pig is specified by the user. Samejimé (1969) has con-
Sideféé baﬁh Eﬁ37EWD%pafémEEéf logistie and two-parameter normal-ogive curves
in her work. 1In several applications of the graded response model, it has

: . PR . = oF
been common to assume that discrimination parameters are equal for P, (0),
) g

Xg =0, 1, ..., mg. This model is referred to as the homogeneous case of

the graded fespcﬁse model. Further, Samejima defines Pg(@) and P*

mg+13(§)

so that

and

Also, for any response category o

- ke _ ok . .
Pyg (8) = ng(a) - Pfxgﬂ)(u) > 0 [17]

The shape of ng(e), xg =0, 1, ..., Mg s will in general be non-monotonic

except when Xg = mg, and Rg = 0. (This is true as long as Pig(a) is mono-

]
1]

tonically increasing, for all Xg = 0, 1, «.., mg-)

(g) Continuous Response Méﬂel

The continuous response model can be cﬁnsideted as é limiting casc of
the graded responsc model. This model was introduced by Samejima (19735)
to handle the situation where examinee item responses are marked on a con-
tinuous scale. The model is likely to be usgful, for example, to social

psychologists interested in studying attitudes.

33
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Estimation of Parameters
Once rhe various assumptions such as unidimensionality and local
independence have been made regarding the latent variables and the form
of the item characteristic curve is specified, the problem of estimating
the parameters of the latent trait model arises. If, say the two para-
meter normal ogiueror the logistic modgl, is deemed appropriate, and if n
items are administered to N examinees, the parametersrthat have to be
estimated are the 2n item parameters pertaining to item difficulty
and item disc?iminatian, and the N parameters that correspond to the
abilities of the examinees. Owing to the ;arge number of parameters which
may result when a large number of examinees are involved, the estimation
of parameters in latent Eraiﬁ models present substantial statistical and

numerical problems. The statistical problems that arise in the estimation

w= - ...of-parameters--are related to-the-nature- and properties of-the estimates. --The - iumm

numerical problems, on the other hand, arise in connection with the selution
of the estimation equations and are related to the convergence of the |
algorithms empl@yed-ta solve the equations.

The Basié statistical problem assaciéted with estimation of para-
meters in latent trait models arises when the item parameters have to be
estimated simultaneously with the large number of ability parameters. In
this situation, the item parameters are ccmm@n;ta all the N observations
and hence are called "sﬁructural parameteté;" The ability parameters,
called "incidental parameters,’ on the other hand, are specific to the individ-
ual observations and hence increase with the number of observations. ' The
problem of estimating structural parameters in the presence of incidental
parameters has been studied by various authérsg Neyman and Scott (1948)

‘and Kendall and Stuart (1973, pp. 62) have shown that the maximum likelihood

34
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estimates of the structural parameters in the presence of incidental para-
meters are not consistent. More recently, Andersen (1973a) has demonstrated

that consistent maximum likelihood estimates of the structural or item

parameters in a one-parameter latent trait model do not exist when thc
ability parameters and the item parameters are estimated simultaneously. ' i
The estimation of the parameters of the latent trait models requires

sought. The likelihood

I

lihood function if maximum likelihood estimates ar
function, which will be defined a little later, is rather complex and is a function

of a large number of variables. The problem of finding the extreme values

=

of a function of several variables is not trivial and often requires - .

numerical methods. These numerical procedures are iterative in nature,
requiring some starting values for the parameters in question and these are
then iterated upon until the sequence of values converges. 0ften, the con-

“the” sequence does con-"""""T

s

vergence of the sequenceé may BE tather glow, ¢

L’

verge, it may not converge to the true solution. A case in paiﬁt is the
three-parameter logistic model. Samejima (1973a) has shown that the likeli-
hood function for the estimation of ability parameters in a three-parameter
logistic model (under the assumption that the item parameters are known) may
not possess a unique maximum. In thiéwcaSE; since a unique maximum does

not exist, depénding on the starting value, the sequence may converge

to a value thatvcorrESPQHQS to a local maximum. Thus, the values

of the parameters that maximize the likelihood function,or the esti-

mates, will not be the true maximum likelihood estimates of the parameters.

In the case of the three-parameter logistic model with known values for item

ERIC
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parameters, Samejima (1973) has provided conditions under which the likeli-
hood function possesses a unique maximum. However, when the item parameters

are not known and have to be estimated, the likelihood function which is a

[

function of the item parameters as well as the ability parameters, may not
possess a unique maximum, and hence, the values of the parameters that maximize
the likelihood function may not correspond to the true maximum 1ikélih§cd
estimates.

Despite the staﬁisticgl and numerical problems mentioned above, the
literature in latent trait theory abounds with procedures for estimating the
parameters that arise in latent trait models. These estimation procedures,
which have been developed éver the past thirty years range from heuristie
procedures such as those given by Urry (1974) and Jensema (1976) to candi;icnal
as well as unconditional maximum likelihood procedures (Andersen, 1970, 1972,
1973a, 1973b; Bock, 1972; Lord, 1968, 1974b; Samejima, 1969; Wright and
£§§E§b§pagg§§nialéﬁ?;xﬁright and,Dougias,!1977)uaﬁdmempirica1has:wellﬂaS:trug'm
Bayesian procedures (Birnbéum, 1969; Meredith and Kearns, 1973; Owen, 1975).
These procedures are discussed next; and although there are
severe problems with the estimation of parameters in latent trait models, in

some instances these problems can be overcome.
?

Maximum Likelihood Estimation in Latent Trait Models

We assume that an examinee is administered n dichotomously scored
- items and that the underlying latent space is unidimensional. Let V be a
vector of binary random variables such that

V=lup Uyl Ul Ul

24

and, v, a particular realization of V such that

v = [ul Upers Uge.. 'Liﬁ],

36
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The random variable Ug takes on the value Qg where ug =1 if the examince

responds correctly to the item and ug = 0 otherwise. We also denote
Pg(8) = Prob [Ug = 1{6]

and

Qg(8) = 1-P,(8) = Prob [Ug = 0]@]

Hence, the frequency distribution of the binary item score, for fixed 0

can be written as

1

fg(ugl6) = Prob [Ug = ug|e]

= Pg(8)"'8 Qg (8)
) Pg(a) if ug = 1

| Qg (0) if ug = 0,

‘Thus, the conditional probability of a response vector, V = v, for fixed @

can be expressed as

le; = .y Uﬂ = Unle]a

y
~
o
o
=)

I
<
=)

[
[}

Prob [Ul = Lllj U_*_Z

It then follows from the principle of local independence that

Prob [v = viel = [ prob [Ug = ug o]
g=1 o "

]

it
=]

N % 171 ; 1—1',
Eg(e)“g Qg(e) g .

g=1

If the n items are administered to a group of N examinees, then the likeli-
hood function or the joint probability distribution of the response patterns
for the N examinees for fixed ability levels 81? 82, «v+s By, is given by

L= Prob [V} = v, V, = Vy, ..., V, = v, el

=
=

| 1-u,
P (0,08 Q (0))" 8 . [18]

il
=

k=1 g=1

The function, Pg(a), the probability that an examinee with ability 0

responds correctly to item g, is the regression function of any item response

‘G ( ‘7' o : | R '237.
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ug on .6, and is more commonly referred to as the item characteristic curve.
The item characteristic curve is a function of the item parameters such as
the indices of item difficuity and discrimination as well as the ability,

Qk, of the kth examinee. Once the form of the item characteristic curve

ecified, the maximum likelihood estimates of the item. parameters

[,
[

and the ability parameters can be determined as those values that maximize

The item characteristice curve, Pg(e) can take one Df several forms
as mentioned earlier. We shall discuss the procedure for obtaining maximum
likelihood estimates only for the one-, two-, and three-parameter logistic
madels as these are the models thar are frequ Entlﬁ used. The one-paramete
logistic model. better known as-the Rasch Model, has the item characteristic
curve Pg(a); given by Equation [10]. 1In this ~u:zs, Eg(e) is a function of

the item difficulty parameter, b and the ag;llty paramete 8, more

g?

. ,A_,_m:nggEg;i,%t;éyjlgpgt,gf;lmes,ﬁk_;mc:@_rgspouﬂru;, to che ability of the kth

The two-parameter logistic model for wiiich the item characteristic curve
~_PgC6) given by [Fquation [8] is a function of ags the discriminating power

of the item, b,, the item difficulty index, and By, thxs ability of the kth

B

examinee. Similarly, the item characteristic curve fcr the three-parameter-

logistic model given by Equation [ 9], in addition tc bheing a function of

and 8y, is a function the parameter c,. In

the parameters a,, b g

g’ “g?

general, if we let Y(x) denote the function

(x) = exp x/(1 + exp x), | - [19]

i - -

then the ftem ghafa:teristic curve for the une parameter model or the Rasch
model I;E(Q), is given by

= -b ). : : ' [20]
C%) ?(Qk bg), : 120]
The item characteristic curve for ths two-parameier model is given b~

88

fem - ) 7zg(ek = w[ag(ek%bg)j . T IZI]‘

O
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while the item characteristic curve for the three-parameter model is given
by
P3p(8) = cp + (1-cy) vla, (@p=b 1. [22]
In order to obtain the maximum likelihood estimates of the parameters

it is necessary to solve the likelihood equations

dlog L)/3by = 0, 3log L/30, = 0 , g=1,...,n;k=1,...,N, (23]

for the Rasch model, the equations

dlog szaag 0, dlog Lglabg =0, log L,/36, = 0 [24]
for the two-parameter logistic model, and the equations

dlog LB/Dag = 0, dlog La/3b, = 0, dlog L3/aak = 0, [25]

0

dlog szacg

L3 are obtained by substituting P1g(6), Pyg(8) and PBE(S) respectively for

M_EEIS)Lin,Equaiionmfl8]1~wSiECE—thE”SE§lE"Eﬁd origin of 6 is not fixed, we

have to solve Simultaneouglf n+N-2 equations for the one-parameter model,
2n+N=-2 equéti@ns for the two-parameter model, and 3n+N-2 equations for rhe
three-parameter model. The exact form of these equations are not given here
since they are well documented (Birnbaum, 1968; Wright & Douglas, 1977, in press).
Solutions to the likelihood equations discussed above are, unfortunately,
not available in closed form. Hence, numerical procedures have to be em-
plbyed to obtain the sélutions of the likelihood équatiénsi Procedures for
solving these equations have been suggested byIVE?iauS‘wéiters! Birnbaum
(1968, pp. 422) suggésts a heuristicprocedure that involves SPécifying
".starting values for the parameters, substitutihg these in the likelihood
equations and iterating uptil convargence tages plaéei Although this is

an-appealingly simple procedure, it is inefficient and convergence to the

-true solution is not guaranteed. A more satisfactory procedure is the e — e o eovn s




Newton-Raphson procedure suggested by Bock and Liebermann (1970), Bock (1972), and
Wright and Douglas (1977). 1In general, if the Equstiags to be SolQed are

of the form £(u») = 0 where @ is a vector of unknowns, and E' ()

is the matrix of the derivatives of f(a) with respect to the vector of

parameters, then the (i+l)th approximation to the solution of the system

i ® G @I £y : [26]

(@)

Ity

whgfé;gi is the ith approximation to the solution of 0. Thus, the
nNethn;Rapﬁsén pfcceéuta, in zhis case, fequire§rﬁhe evaluation of the
matrix of second défivaﬁives3 or the Hessian, of the logarithm of the like-
liﬁgad function with-respect fo the parameters. Aiﬁhaughr the Newton-
Raphson procedure is more tedious than the simpler pracedureé, the conver-
gence of thé Newton-Raphson algorithm is quadratic, at least in the

neighborhood of the solution vector. 1In addition, the Hessian evaluated

N— AmIQEWEHE»mSEimumVDfiEEé;légElikélihODd”fuﬁEEiDﬂ”Yiélééithé”invetse”watﬁé’”
asymptotic dispersion matrix of the maximum likelihood estimates (the
exXpressionfor the asymptotic dispersion matrix is given in a later section).
Alternatively, the Method of Scoring (Rao, 1965, p. 302) can be employed
to solve the likelihood equations. The Method of Scoring 1is essentially

-the Newton-Raphson procedure, but employs the asymptotic disperéign matfix.
in place of the inverse of the Hessian in the iterative sequence. Although
this procedure éan be slow in convergence when compared tcrthe Newtén=
Raphson procedure, it is campuﬁatignally simplerﬁ since the asymptotic
dispérsi@ﬁ matrix does not have to be quaﬁediét each iteration. .Iﬁ addiﬁi@n,
Eherasymptatiﬁ dispersion macriﬁris'positive definite-@hilg the Hessian may
hecome indeFinité at some stages of the'itaratiﬁn, a fact that causes

- convergence problems in some instances.

40 -
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‘The'msximumrlikélihéad procedure discussed above has been employed

“for .the simultaneous estimation of item paramete and ability parameters by

guch authors as Birnbaum (1968), Lﬁrd (1968), Wright mid Panchapakesin (1969),

vl Welpht amd Donglan (1977). 0 An exeellent discussion ol some ol Lhe

cncountered in practlee bor the three—-parimetoer

=3

He points out that.the itérative procedure

estimatton problems that are

model is given by Lord (1968).
fails to. ¢

onverge unless_the number.of items and the number of examinees ... . .. .

is large. N is small, the estimates of the item discrimination

out bound. Wright (1977a) has SuggESCEd a reason why

of

this may happen by using an argument basLd on. the ‘tradi nal mEtth

e

ng

item disc

rimin

ation.

'In Gfdéf to estimate the item paraméteré;

e:timat

Birnbaum

estimates of che‘abilities of the exami ees are flrst obtained.

(1968) has shown that a. suf mating the dbilLLv

ﬁi for the ith examinee is the score of the

o . 5. , .
ith examinee on the jth )~ (assuming guessing 1%‘

4
minimal and ability is normally distributed), whete.pg is the correlation . .- .-

between 0 and u, (Lord and Névick, 1968, p. 3783, an initial value for ég can

e

iz known and the assumptions arc met by the test data.

ke
prioed
[

The yield an estimate for

m
[N
rr
e
=

scores are then weighted by these values. to

until a stable value

2

-the ability of an examinee. This procedure is iterate

g is obtained. Hawevefilduring the iteration, the gg that wds the ]1rg 5 (-

ggts larger until it -de mi'ates EhE‘WEi hted combination of

‘ma

of

item scores, and in

thg next step, that approaches unity, thus the value

.

results in a ﬁE' driving

ol ng beyond bounds.  Lord (1968) suppests imposing an upper limit for i,

based on the largest peti Sibl c@rtelaticﬁ between the item and the ahility,

This -sugge stlan wh1ch is not un11k€ that af 1ncgfp@ ginp prior beliefs into . .-

the EstlmaL;,n procedure, produces estimates that are reaso nable.
Similar problems arise when estimating the ability of the examince.

“the g infinite wvaluses (positive or negative) are perlié%lhlg

\I"**

Unlike

" for 8, and can-be expected whenever an-examinee obtains a perfect score

.. - 7. oun the test or fails to scdfeﬂcéffeétly even on These infinite
< S L o i L e ol o
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values can be-avoided by using a boundedAfunﬁtlnn of Bi instead of 84 7 ,'4f 
| ltSElf! Hnwever, as the- cégurrence of ;nflnite valueS'fqr_Bi itsglf
causes no theoretical prOblemsj it is nct ;Ecessafy to caﬁpeﬁsate for thisf
| AnDthﬁr prablem, noted by Lord (l968), is that the éntire itefative iﬁ‘

pracedufe may fail to ccnverge or may cﬁnverge extremely SIDWLY. LDfd (1968)

emplayed “the Mathcd of Scnring for the Sulutlgn of the likelihood
EQuatlans. Althaugh the pfocedure canverges quadratlzally in the n21ghbaf— -

thd Df the maximum, the convergence is rather slaw when the Startlng

values glvgn:ate far:ffom the maximgm.? In some instances, poor starting
VJLQes zause the procedure to diverge. :Dne possible salutién,rabviaﬁsly;
is to pr@v1de ga d initial values, or, empiéy a 1ineaf search pr@aedu%e
like the methgd of steépest asgent, and then sw1tch err to the Methad af
~“8coring (or the Newtﬁﬁ Raphson) wheﬁ the linear prncedufe slows dawn in
convergencea The linear searzﬁ process éces not seem to have been incor-
a-pofaééd_iﬁ the éxiszing algarithﬁs,qu_its éffigacy needs to be investi-
gated fﬁfﬁher; o |
| The major statisﬁicai problem that rémains éith"fha simultanéﬂgs;
"estimation of itamgpéfameters and the aEility'paréméters isrthét thesé ﬁax—~-~'
imum'likelihoadVesgimatés do not enjoy the prcpettiesbﬁhey are usually
azéorded; Andersen (1973b) poiﬁts éut that maximum 1ikeliﬁ@@d estimates

- of the item parameters and the ability parameters, when estimated si mul-

‘W

'tanégusly,afefﬁot consistent. This is true in general when stfactural

parémate:s afa étlmated in the presence of 1nz;dental parameters. Thus,
thefpfacedgfg advocated by ‘Wright and Panchapakesan'(l?ég),rBirnbaum (1968),aﬁd' -
Lafd'(lgég) ﬁay not yielé consistent estimates of the parameters. Since - 7

the estimates may not be consistent, they may not even be asympatctiéally,

unbiased. . 7 o o
a 42
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Wright and Déugi;s (1977) préﬁiﬂe arcarfeétigﬁ;forrtﬁéfasymétctic.
biés éf~tﬁé estimatés.af the‘pafamaﬁers in the.Raéch model. ﬁowe?erérit
"_Shdﬁld'be pointed out that this correction dces,nétrﬂecessézilf'guafantéé-'
vthé'cgnSistgﬁcy of ;bé estiﬁét:sgr . | | |
Thé'likéiih@gd'funétiéﬁ given by Equation [18] is,:iﬁ the strict
:sénsé;,a;caﬁéitianal likelihood fgﬂCEiDﬁ-ﬂf the item paramééefé;andrabiiity~

parameters, i.e.,

1.
s

I; (u11', U12;-;;3 uiﬂgigrjrirﬂig uanl, 81‘...71,6N)

where ¥ is the vector of itemrpafameters,féls BZ,Qi., By are the abilities

of the examinees, and ujjg is the score of the ith examinee on the jth item.

" As tﬁe'samﬁlersize‘inéfeases and approaches infiﬁiﬁy, the ﬁumbér'af-aﬁility
pafémetefs’ét inciﬂeﬁzal ﬁaramg&ers increases without bound. Instéad of
becoming stable as the sample éize increases, the maximum likelihood estimates -

lIBecgﬁé'ineffgctivé;aiﬁ faéé they are not éven'canéistent (Nejman andrsééﬁt,

1948; Kendall and Stuart, 1973, p. 63; Andersen, 1973b).  Thus, the like-

.

1ihood Eunctioﬁ,whéﬂ expressed as-'a function conditional upon the item .
and the ‘ability parameters, does not yield estimators with desirable pro-

perties. The problem can be overcome if it i possible to express the

conditional likelihood function in terms of only the item parameters. ‘When

. . . . . N i SR . . .
this is possible, the item parameters can be-estimated without reference

to the ability parameters and the estimates can be expected to have the

desirable properties that maximum likelihood estimates usually possess..

The likelihood function iﬂVleingrthé item parameters can be expressed °

" independently of the ability parameters if a minimal sufficient statistic =
T; for 64 exists such that T; does not depend on the item parameters. Then,

the conditional maximum likelihood estimator of vy, the item parameters, -

is defined as the value of Y that maximizes -

ERIC sy T B e e D e
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- Since, by definition of a minimal sufficient statistic, the likelihood

function conditional on T; = tikis'indépendent;ﬁf‘the ability paraﬁetefs-

any reference to 61;-62,5_!5 QN; Andersen (1970) has -shown that such

conditional maximum likelihood éstimators“atexzan315tentrand.ésymptatiialiy 

‘normally distributed. Conditional maximum likelihood estimators that are

- consistent and that are asymptotically normally distributed have been
obtained for the Rasch model (Andersen, 1972, 1973a, 1973b). - For the Rasch
‘model, Ty = Zi uj y» the total score for individual i, is a sufficient

statistic for 8, (Birnbaum, 1968, p. 429) and is independent of the item

pafamétefsi Thus. the conditional likelihood function is given by

—z

L (uyq, ug9seen, Unn

s Egsenes bys bys bysetns b))

N n oy . e
= axp(e iz ,Z, bjuij)/ I r(ti; bl’ bz,ii-, bﬂ),
i=1 j=1 - =1

where'’

[

j=1 = R
: . o - m -
- The summation Z is over all response vectors with ) Uy t;- The
' s E : j=1 - - L
i o ]

Vr(ti; bl’ bz;ggggrbn) Z, §$E€E

t

1]

conditional likelihood function given above is independent of Ebe’ébili;y

parameters, Si,;and hence the item parameters bi can be estimated without

i

" any fEEEfence'tD the ability parameters. Ihe,fesglting likelihood equations

(Andersen, 1970) cannot be solved in the closed form. A numerical pro-
Wéadufe,fgr the solution of the likelihood equations, based on the Method
of Scoring, is given by Andersen (1972) and the reader is referred to this

- paper for details of the procedure. 4 i

'615.623.,,,'6N, the vector of item parameters y can be estimated without - -

PP
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. In ﬁhe twa~pafametér model, Birnbaum (1968) has shown that a su fi-"

;Eiéﬁt‘sﬁﬁtisﬁiﬂ for 64 is Xjajuij* However, this statistic is a function

o

of the unknown pafaméters aj;,énd hence it is not possible to express the

‘conditional likelihood Function as a function of only the item parameters.

However, it is possible to express the likelihood function as a function-

of the item parameters alone if it is possible to view the examinees as a

random sample from a known population. - If we denote the density Function

of the ability parameter 0 as q(8), and the jth pattern of item responses

by the vector -

§
[<
1]

Vs (ul-‘ Uy 5 iesas i):
7;', | =] '3] nj

, , 0 -
Prob [Ejllj = I iy Egug Q

il
= :

where Y is the vector of item parameters (Lord and Névigk,gléé&g p- 362).

‘When the items are dichotomously scored, there are in all 2" score patterns.

'_;Eﬁﬁ ex;iiﬂegsare randamly'Sampled framwthe population, the number of

)

examinees with response pattern j is fjg where r iji and E(pj)— ﬁji"

Thus, the number of examineeswith the jth tespéﬁse pattern éfé,distfibuted(
multinomially with parameters N and w_, whence we obtain thée likelihood

2n Ts 2n
.
*rrj /

=]
=

r.!

L = N!
. j%l 3

=1

On maximizing this likelihood function with respect to the item parameters,

we obtain the maximum likelihood estimates of the parameters.

"Bock and Liebermamn (1970) and Bock (1972) have named .the estimates

obtained by maximizing the likelihood function given above, the
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ypcpndiciqnal maximum likelihood estimazesi since the likelihood function

is not conditioned on the abillty parameters. The term "unconditional

‘estimates has been used?in a different sense by Wright and ﬁéuglas (1977)
‘and should not be confused with the usage of the term in thié paper.

Wright and Douglas Cl§77j tétm their procedﬁré for éhe simultaneous
astimation af 1Lém~§ﬁd ablllty parameters as the unccndltiénal procedufe}
in contrast to thg LDDdlElGﬁal pfocedute provided by Anderéen (1972).  ‘In
’kchg pfesancrusagg, the estimates Dbtained'by Wright and Dauglas (19?7)

éfe canditional, since the llkelthDd funct;on emplgyed by them is
| constlgﬂal on the ablllty paramete |
Bock"aﬁd Llebermanﬂ(197ﬂ) and Bock (1972) have autllned a prncedurL
for the unccndltnanal maxlmum likelihood estlmatlan of the parameters. -The

, ptﬂﬂeduf& introduces a further complication to the already gcmplex'estimai

tion procedure. It is necessary to integrate the likelihood Euncticﬂ WLth

respect to 6. As this in tegral cannot be evaluated in the closed farﬁ, .

nﬁmetical inzegfatian procedures have téﬁbe_émélayedi in addition to

this, the 1iké1ihcod function requires the evaluation of gnjresp@nsé

patéérﬂsi-a tedicusvgaskrwhen a large number ofi items is iﬁvoiﬁed.z;Finally;i'
~-the problem of Specifying the densiﬁy function of thé latent vsriable 8

has EDibé facaﬂf Bock and Llébermaﬁn(1970) and Bock (1970) assumed that 0

iév&istfiguted narmaily with zero mean and unit variance, an assumptiaﬁrﬁhat

NEY—ﬂGtébé realistig. |

| Dasﬁité Eﬁese pf@blemsg the unconditional procedure has theoretical

advantages over the caﬁiitianal éfécedufe in the two- and Ehreg?parémetér

ﬁDQgisa Kiéferxand.Wélfowit2751956§ Havé shown that in structural médels,
if the iﬁéidenﬁal parameters are igdegenﬁgﬁtly and identically distributad,

then the maximum likelihood estimates of the structural parameters are -

16
ERIC
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from a desired papulat;an and the 1tem parameters estlmated withuut any

consistent under regularity conditions. In the unconditional approach the
abilicy parameters are assumed to be iﬂdépéﬁdentiy'anﬂ”identically distributed

and hence the uncanditlnnal maximum 11kelihmod eszimator can be expectéd to

“be CDﬁSlEtént-' Thus, as Bazk and Liebe mann(l??D) leﬂt cut, the unCOﬁdl-

tlanal pfgaedure provides a standard to whizh other solutions, can be

_compared. A further Justlflc tion is that when caliErazing items, it is .

not necessary to estimate the ability parameters and item parameters

‘simﬁitaneausly_ Hence, a sample of indiviﬂﬁals can béufandéﬁly selected:

'fr2ferenée to the ability parameters. The estimatésaf the item parameters,

since they have some of the optimal properties, can be treated as known enti-

ties when estimating the\ébility of a‘gfbﬁp of examinees to whom the items

are later administered. This procedure is particularly attractive since

the estimatién of ability parameters, when item parameters afe'anWﬁiisr

valEthEly stra htforward and the ab;lity estimates, in this casei PDSEESE

the propeftles that are usually accarded the maximum likelihood astimates.
"~ The estimation of ability parameters,when the*item parameters are

known, has been discussed by various authors (Lord, 197&3;Samejima; 1969,

1972, 1973a). The likelihood function for estimating herabilitydﬂi of

the_ith,individualrisrgiven by

Ulj Q(l_ulj)

1]
=R

Ly Culli uiz, oo uln]el)'

(-

The maximum likelihood estimator of Si'is;sufficiant, and efficient  (Birnbaum,

1968, p. 455-459). Lord (1974a) has shown further that the estimates are

consistent (Lord's proof of consistency, though valid fDr a-different case,

can be adapted to the two-parameter case readily). 1In additiaﬂg the likeli-

hood function for the two y—parameter ,ogistic model possesses a unique

o
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‘maximum.  However, with respect to the three~parameter logistic model,

Samejima (1973a) has shown that the likel.,.ood function may not have a

unique maximum, if sample size is small and if the range of 0 is unrestricted.

“considering the subdomain of the la;ent trait, 8, such that

max (Eg)Af B < éa?

" whare

i

- NP ’
il = ‘F | — .
Bg bg , (lgg‘cg)/ 2 Dag

[n the subdomain, the likelihood function possesses a unique maximum, and -

hence the maximum likelihood estimators of 6 exist with their usual pro-

.perties.

Properties of maximum likelihood estimators

ot

Let 1 be the maximum likelihood estimate of the vector t obtained

by maximizing the likelihood function L. Then, under general conditions

(not satisfied, as we have seen, by the maximum likelihood estimators when

‘item parameters and ability parameters are estiméted‘simultanequsly) the

. . . Lo o - o, A . RERI —' - R " - T A B ]
maximum likelihood estimator, 1, is asymptotically consistent, unbiased,

efficient, and a function of the sufficient statistic if a sufficient -

statistic exists. In addition, £ is asymptotically multivariate

nafmally distributéd with mean 1, and dispersion matrix

- {E (3210g L/07's 7 )} 1. The expression — E (32 log L/37'37)
L/9t'9 1 1 91)

oy

is;zgmmgnly known as the .information matrix (Kendall and Stuart, 1973,

ps'Sij, and is denoted by 'i'(ij. As pointed out earlier, the informatiénr

matrix is the expected value of the Hessian at the maximum point of the

likelihood function. The information function can be expressed in one

of several ways, i.e.,

RE
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- -E (3%log L/37'07)

The,last'fofﬁ is parﬁicularlykéuitéble forfévéluating the ‘information matrix

of complex likelihood functions. -

'r'Theiusefglness of the information matrix is evident. Since the
- eséimaéés' are mulﬁivariaté nérmally dlstflbuted asymptotizally, ﬁhe 1nvefse
7faf the infazmatlan mazrix has alang its dlagcnal thE asymp ailc farla'ceg
'af)tha estlmates._ It is Ehen péssible EG:EQﬂégfﬁcg gonfiden:e intefvalsi

| for individual pafageﬁeféréﬁdVtésﬁ_hypétheéés ;én;g;ﬁiﬁéitgé;pa:ameters
| ,jéiﬁtlyraf ind 'i,ldually - |
The information function' that is usually of interest is that of the

estimates of the ability parametefs, Vi(éi)i In_paﬁticglar; if 5 isrthe

max;mum llkelihaod estlmate of 8, then
BRI RCTRS VA {C/P):

- +The inverse of the asymptotic variance, I(éi)iis given by

[}

I(8;) = - E (3% log L/3 §5)

= E (3 log L/3 8;)2 o o e

‘nE (3 log £ (8;)/3 6;)2

"~ where

u, ., ‘1-u, :
p Uiy o (%) I

~and Py;(8) is the item characteristic curvé.

Expressiéﬂs for the inf@fmatiﬂﬁ furiction for the various models are

CU

‘given by Birnbaum (1968, p. 460-462). Thus, it is possible to obtain an

‘estimate of the standard ‘error assaclataﬂ with each ability estimaté“éi.

R ; ; 453'
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.Far details of an application,,the reader is eferred to Lard (1953a)whefe the
Eonf;denEE 1nterval for an examinéas abllity, Ei, 15 Constructed We

shall return to a deta;lad dlscu551nn and use of the 1nfgrmatinn Euﬁctlan

in a later section.

CR

§3 = _ E), > s - ,V' -
Heurlst}giestlmaﬁ%qgfpf@zg@pfﬁg

[

-

" The maximum 11kellhaod Estimates, as’ palntéd out in the prevlausv

section, da have desi ble peréfElES ‘at least asymptatically : However,,

these procedures are costly and time Qonsumiﬁg in some situations. When

Jénsema, 1976) that pfﬂvide rough and ready est;mates of the item paraheters)
may be emplnyed |
In the case of dichotbm&usly Sﬁofed iteﬁs,'under ﬁhe éSSumptiGﬁ that
- the ability is normally dlstrlb ed &ith zero mean‘and ﬁﬁié variance,'and
- that the item characterlst;a cérve is the tws -parameter normal aglve, Lord and Novie
7(1968 p; 377-378) have shown thaz the CfoelaEiDﬂ p be geﬁ ﬁhe score |
on item g"”g’ and the uﬁﬂeflyiﬁg abili;y, 6,'is.give@ by -~

/'{:I:I-:agf2 S ; n;

[}

Py

They have also shnwn that the dlfflculty of item' g faf the group, ﬂg; is -
given by : ‘ ‘ S

Ty = 2(vg) ,
where Yo = bg Og andr@(évg) is the area under the unit normal curve
frgm ~Yg to infiﬁity. Since pg is the correlation between: the score on

. item g and the 13E3ﬁt,abi1ity,85 pg'is'giveﬁ'as the factar:loadiﬁg of the

L""'

item on the common factor obtained by a faztor analy515 of the matrix of
sample tetrachoric correlations. The item diffizulcy,iﬁg,{isrésgimated

..by the proportion of examinees who answered item g correctly. Thus, once
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pg and T are determined, a; and Eg can be obtained readily. Of course, the .

‘apprépriateness of these estimates will depend on the assumptions made in

‘the estimation procedure.

ha

(]
U

A further parameter, the guessing parameter, c o bLe estimated

,g;
in the three-parameter latent trait model. Jensaia‘(19?6); Eollaﬁing Lord

- (1968), suggaéts obtaining a ptépgrticn of the examinees passing an item -

at each of the lower item-excluded subtest scores, and using this as an

Esfimate of Cg- Once a value for ¢, is obtained, the method suggested
in che'pteéeding paragraphs can be employed to estimate ég and'bgg

Although the abéve procedure is relatively simple to implement,

there are several problems with the procedure. The estimataség; Eg, and

g obtained by this method do not have any known sampling properties.

o)

Secondly, factor analysis of a-matrix of tetrachoric correlations presents
theoretical problems. The matrix of sample tetrachoric correlations is not

necessarily positive definite and hence, cannot, in.the strict sense,

'~ be factor analyzed.

However, despite these problems, Jersema (1976) reports that,thg
of the parameters are relatively high. Hence, these heuristic procedures

can be taken to provide quick and cost-saving estimates of the item

parameters when these issues are of major concern.
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Ba;ﬁaloﬂ eafimatLon of parametefs

When prio; nfo matlon (Qr belief) about a parametef is avallable,

it is cﬂnceivabla that 1n£0fp0fatiﬂn of Ehls 1nfcrmat10n in the EStlmatan

'procedufe would iuncr eas2 the "accuracy" ot’thg meaningfulness of the
] . R i e o AL o
‘estimates. An gx/iple of this was encountered Earl , where in order

to prevent the ﬁSgdgates'Df,the item discrimination parameter from drift- -

ing out of bounds. it was necessary to iﬁﬁéée,limits on the range of values

the parameter cou;ﬁitaka! Similarly, the distribution of ability, q (8),

or the prior infe savion ab@ut 8, was iﬁcofpafated iﬂto che uncanditiénal

P —

estimation pfﬁceﬁuff{ Despite these efforts, 'felatlvely little is known

about the Een51b111t" of applying Bayesian pracedures fa the estimatiéﬂ

of parameters. in 1atent'urdit models.

It may be instructive to review the laglc of the Bayeslan EStlmatlaﬂ

procedure brlefly (for a dEtallEd account, EhE‘readervis TEEEtféd to

‘Novick and,Jéékscn, 1974)i Let waé a ﬁar,meter of 1nterest and xl, Xy

density functlan f (x|T) d2pends upon the value of the parameter T = T.

".Suppasing furthéf that the N abservationsare iﬁdepeadentiﬁthe jaint prqba%_

- bility of the observations, or rhe likelihood function, L(x|t),

given'byrz

m f(xg]T).

TL(x|T)
: i=]

If prior information or belief about the parameter T can be expressed as

(1), where g(t) is the probability density function of T, then the :

posterior distribution of T given the observation, h(fixl,.xz,!!;'xﬁ)
" = 1

“can be expressed as (Kendall and Stuart, 19733795,159)

hCT]xl, Xgsee-as ¥y) =k L(tlr)g(T)
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=5D_

-where k is a EOnstant Df pfopéfthHallty. The posterior dlstributlan of 1

s is thus an expressicn af the 1ﬁvest1gat0fé rev;sed belief about the para-

Fha prncedufe for. thainlng a Bayes estimator emplnylng prlor belief

’has been advggated by, nmang éthers, L;ndley and Smlth (1972) and NEVle o

and Jackson (1974) and has been applied to 1atent-trait mndgls by

Birnbaum (1969) and Owen (1975).  This approach employs the,"subjeztive“

naticn of probability as Dppcsed to the Elassicalg.arf Erequency theory

of probability. A compromise between these two views of probabllity is

Dbtained’by employing the empiriéal Bayeé pfécedute in ”hlch ghe prlcr

distfibutioﬁ Qf the paraﬁéte is "astim ated" Eram the data. This. prDcedurE

which ylelds émpirlcal Bayas estimators, is exempllfléd by the works of

Lord (137UQ, and Hgtedlzh and Kearns (1973). a
Birnbaum (1969) abcained Bayes estimates fc: the ability paramcters

1nrthe one- and two- parameter lo 1stic models under the aséumptiaﬁ éhag

the item parameters éfévkﬁDWﬂ; Hg chose, far'méthematicaletfactability,

thé pfiof éfababiliﬁy densié§ Eungzion::cf éi'té*ﬁe ﬁhe logistic dénéi;y ‘

=

function, i.e.

-D8

go) = &°%/ 4 &%y’

_where D = 1.7 is a scaling faéﬁé:; _The likelihood function in this ca

is given by

, u —u
- - g 5
) P (6;) & Q,(6f)

1}
=t

L(uili“” 3 L‘lﬁlei)
: E

where Pg(ai) is the item characteristic curve for the one- or two- parameter
logistic model.  The posterior de,sit fuﬁctlnn of 8 is then given as.

Eh(ﬂiluil: uizié-!i uiﬂ) = L(ullﬂ'*'i uiﬁlai) .E‘,(ei)!
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The Bayes estimator of 0., 0.5 is taken as .the mean of the po: s
distribution, i.e.

9

E(e |u 1,.;.§ ug

f eih(ei[uil, uy

]

Fét a discussion and further detalis of the prugedure, the reader 13,

FEfEErEd to Blrnbaum (1959)

The pracedufe'advocatad by Birnbaum (1969) is not gEﬁefal aﬁéugh to

permit the estimation of item pafémétefs and ability;parameﬁers simultan~

“eously. In addition, there is no prov151gu for 1ﬂcarporat1ng avallable

information about the ‘hyperparamezers that spELIEy ‘the prlcr distrig

e PP -

The procedure suggested by iindlgy and Smith (1972) for Ehe estima—-
tion of parameters in the general linear model can be applied Eé St;mate the S
pafaﬁeters in-tﬁg latent trait models.- The likelihood function QE_thév~ TR

abservatihﬂs for fixed 0;, and item parameters ag and b (fo the two—

parameter model) is expressed as.

,vL(g,-, uli";‘;"’ uﬂnlel, eziiigs EN; a, 2,;.., a; bl, bzgjx‘;; ﬁ :

In Drder to abtaln the pgster;ar d;stflbutlan Df the paramete s g;-ggrandrﬁ

b, it is necessary ta specify prior disﬁtibutign5577Wg asgume:that our-

prior beliefs about a'ei are no different than about any other 0y, i.e.,

the prior information is "ex;hangeable",CLindley and Smith, 1972, ﬁavick

and Jackson, 1974). Thms implies that the 6, have the probabiliLy struc—

ture of a,fandam‘sample from some common distribution. ‘Thus, we can-

issume” that, 1y " NC”H’ ¢B).' In turn, we assume that‘ué and ¢G* the

mean and variance .of the prior distribution are independent. a prluri and
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that the density Ffunction of ug is E(ug) and that of by 1is h(¢6).

The assumption that the prior infermation about by, boseouy bﬁ and
a4}, a3,...,-a, 1is exchangeable may appear to be implausible However,

it is not unreasonable Ea'assuméié distribution for the item difficulty
parameters. Birnbaum (1968, p. 466) considers the case where the item
difficulty pa%ameters are distributed norﬁallyi Thus, we may 355uﬁe that
by v N(”b‘ ¢b) and in turn assume;ﬁhat My and ¢b are independently dis-
tributed with known prior distributions. Although it seems unreasonable to
assume that the ag's have the prcbability'stfucture of a random sample

from a common distribution, we may assume that the prior information on

the a_'s are identical with density function p(ag). Thus, the posterior

distribution of El, 92,;,.,, aNi blg bziiii!, bn, ays-

Hgs Hp» ¢6’ ¢,» given the observations is

3 blzbzya!ﬁ;b 3 aliazgi--sa 9?‘§”31Lb:d’b,‘l lsulza-iijUNﬁ)

3eevesB 0’

E(HI,Q

2 N

« L(u .,u Ial,ezj.i.,am,bl, bysees byy ap,ag,...,ap)

11Ut oty

: N
x {n ﬂ qbg aﬁbi exp[ {: 'CR —pe)’ + = l (b —ub) ﬂp(a )}f(ne)i(ub)h(f’bu)hffﬁ )
i=l g=1

In this case g ¢e, Hp» and ¢b are nuisance parameters and could be

removed by integrating the posterior dens ity function. The resulting

or density function is only a function of the paramneters 61 GE‘ ssey

posteri
BN; bl"”’? bn, @y5e00, a. Joint modal estimates of these parameters

can be then obtained by dleEféﬂtlatlﬂg the posterior density functlnn,
seLtlng these dET1V1L1VE% equal to zero, -and solving the resulting "Lindley
Equations.'" Alternatively, the 08's could be estimated independently of

-~ the a_'s and the bg's by integrating with respect to these parameters.

The joint modal estimates of 81, 923,.i,6N can be obtained by solving the

Aruitoxt provided by Eic:
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resulting Lindley Equations, or alternatively, the margigal density function of
say, 94, can be obtained by integrating out the other ability parameters.
The mode or the m~an of the marginal distribution of 84 could be then taken
a8 the Baves estimate of ai. The same procedure may then be applied to
each of the remaining parameters.

The procedure outlined above requires specification of prior distri-

L}

butions for the pafametaré 8, b, and a, and also for the hyperparimeters
“G‘r“b; ¢a,_and ﬁh' In the case of prior ignorance, we may take f(ua)

and E(ub) to have uniform distributions. Prior ignorance on bg and 4y

implies that h(¢a) o ¢§l and similarly for éb' At this point, specification of
p(a,), the prior distribution of ags is‘uncléat, but could be specified in

terms of a rapidly decaying exponential function.

Alternatively, an empirical Bayes procedure could be used to eétimaie
the péfamgtefg in the latent trait models. This approach requires the
specification of prior disttibutigﬁé for the parameters, but the hyper-
parameters that specify the prior distributions are, in general, estimated
from the data. Meredith and Kearns (1973) have applied this procedure
té'the Rasch model and obtained empirjical Bayes estimates of the ability
parameter by expfessiﬁg the likelihood function in terms éf the sufficient
statistic, the total score of an examinee.

The Bayesian procedures digcussed above are obviously more campleﬁ
than the estimation procedures d;scussed in the preceding sections. In
addition, Bayes procedures require specification of prior information on
the parameters of interest and thus involve a subjective view of probability
as éppaéud to the classical or Frequency theory of probability. However,

when applicable, Bayesian procedures vield more satisfactory solutions;in that
-
50
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improper solutions do not usually occur. Moreover, it is well known that
the Bayes procedures, with the exception of the empirical Bayes procedure, are
in general, admissible, in the sense that they minimize the expected loss
(Meredith and Kearns 1973). Furthermore, Bayesian credibility intervals
may be more meaningful than conventional confidence intervals. In addition,
as demonstrated by Owen (1975) and Meredith and Kearng (1973), the Bayes
estimates converge in probability to the true value with increasing sample
size. Finally, the Bayes procedures have the potential of offering
solutions to the estimation problems in the latent trait models when
‘the sample size and the number of items are small. In these situations
tend to lose their importance. -

Despite these advantages, further investigation is necessary regarding
the Bayesian procedures. The estimation procedure based on thé4appfﬂﬁfh
of Lindley and Smith (1972), outlined earlier, has not yet been imple-
mented and its usefulness has to be further documented. TIn particular,
littie is known about the families of priorsthat are appropriate, especially
since natural conjugate priors are not available for the latent trait
models of interest. Finally, the effect of specifying poor priors on the
estimates has to be studied carefully. 1In conclusion we note that while
Bayesian procedures hold the promise for solving the estimation problems
in latent trait theory, considerable fegearﬁh is required before definitive

statements can be made regarding the efficacy of these procedures.
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Estimation in the nominal response, graded

Lesponse, and continuous response models

As opposed to the dichotomous response model, in the nominal

> assumed that each of N examinees responds to n

e
]

response model it

multiple-choice items of which the jth item has m. response categorics.

]
In this case, the probability that an examinee of ability 6 will

respond to item j.by choosing category kj is given by

m,
Zi exp 2, 0))

P., (8)
Jky h

exp [z, (8)] /
jk.
|
Andersen (1972) zhose=zjh(é) to be of the form
Bock (1972), nﬁ‘thg other hand, chose Zih to be of the form

(9) = bf + the

e
=

Since responses to the m,-1 categories fix the response to the mjth

response catepory, we have the restrictions Zh bjh= 0 for the one-parameter

m@délg and thih 0, Z a -0 -for the- two-parameter  logistic model.

The simplest way to incorporate this restriction is to take bjm- = 0 and
_ -]
= 0, or alternatively, reparameterize the model as indicated by

a3
Cam;
J 8

Bock (1972).

Andersen (1972) thainad‘canditiﬁnal estimates for his one-
parameter nominal response model by maximizing the likelihood function, *
Qﬂnditiénal on the sufficient statistic. As indicated earlier, these °

maximum likelihood estimates of parameters are consistent. Bock (1972)

obtained unconditional estimates of the item parameters and also the
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conditional estimates of the 1tem?as well as ablllty parameters in the

manner described in an earlier Section.

The graded response model and its natural extension, the continuous

o]
H‘d

response model were introduced and studied by Samejima (1969, 19
1973, 1974). Although’Samejima does not discuss the estimation of para-
meters in detail for these models, she derives important results con-

cerning these estimates. She shows that, unlike in the dichotomous responsc

"'ﬂ”h

¢ase,  both the normal ogive and the lo stic models yield sufficie ent .-

statistics for the ability parameter. -In additio n, she shows that the
amount of information increases by shifting:fram dichotomous scoring
to graded and continuous scoring. Hence, the graded and continuous re-

sponse models offer advantages over the nominal and dichotomous response |

models in that  the information available increases. Furthermore, the
problem of estimating ability parameters in the graded and continuous responsc

models appears to be solved. We may, however, expect difficulties when

cstimating item parnmeters and ability parameters simultaneously. Tt

appears that these problems may be solved by employing the procedures

discussed earlier, but further research is needed to establish this.
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Testing Assumptions and Goodness of Latent Trait Models

Assumptions

How reasénabie is the assumption of unidimensionality or (as
has been shown to be equivalent) the assumption of local independence?
Luﬁééen (1976) was particularly distressed that more researchers do not
attend to this assumption. Testing the assumption of unidimensionality
takes precedence over other goodness of fit tests of a latent trait model
since, if the assumption of unidimensionality is untenable, the results
of the other tests are maré difficult to interpret. For example, if tests
of goodness of fit of the model indicate that a particular latent trait
model does not fit the data, and if unidimensionality was previously
estabiished, then at least this potential explanation of the misfit
beéweenrthg model and the data can be ruled out.

The simplest way to ascertain unidimensionality is to factor analyze

the matrix of inter-item correlations. Existence of a single factor would

imp;y unidimensionality. L@%d (iQSéj reported Ehéﬁdvagious researchers
have.faétar analyzed‘matfices of tetrachoric item intercorrelations

to determine if a set of test items measure more than a single factor. He
size that one would eﬁpect from sampling fluctuations. TFor example,
Coffman (1966) extracted 11 factors for the SAT Verbal Test but most

of the variance could be accounted for by the first factor. On the

other hand, Hambleton and Traub (1973) were less successful in locating
unifactoral tests, but in the three aptitude tests that they'studiéd, they

did find a "dominant" first fFactor.
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~ Another assumption of latent trait models concerns the particu-
lar choice of 2 mathematical form of the item characteristic curves

to describe the test data. Since latent traits are not directly

: measufablé, we find ourselves in a situation where it is quite dif-

ficult to separate the 1napprﬂpriate 8s of a particular choice of
mathematical form for item characteristic curves from violations of
other assumpticns of the model. One solution offered by Lord.C197Da) is
to compare item characteristic curves derived from a direct method
(where the mathema;ical form of item characteristic curves does not

have to be prespecified) with estimated item characteristic curves

of the form specified by the user. The "closeness" of the two sets

- of item characteristic curves provides a basis for checking the

- appropriateness of the assumption. (Incidentally, when Lord attempted

this comparison with SAT test data, he found close agreement between
aAdiregg method of item characteristic curve estimation and three-
parameter logistic curves.)

A Eécoﬁd possible test of the assumption is to check the "accu-
racy' of vafiguskpfgdictioﬁs with the estimated item characteristic
curves of specified form, Accuratéypredictians provide evidence of
the suitabiiity of the model for the particular data set and, of

interest here, the assumption concerning the mathematical form of

item characteristic curves, . Of course, if the predi Q ions are not

good, pinpointing theAproblgm could be difficult. Several researchers
(for example, Hambleton and Traub, 1973; Rog%, 1966) have attempted
to study the appfﬂprlaténé%s of different mathematical forms of item

characteristic curves by using them, in a comparative wav, to predict
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various test score characteristics. Hambleton and Iraub;(1973) obtained
item parameters for one- and two-parameter logistic curves with three
aptitude tests. Assuming a normal ability distribution and using test
characteristic curves obtained from both the one- and two-parameter
logistic curves, they were able to obtain predicted score distributians
for each of the three aptitude tests. ,A xg measure of goodness of
fit was used to compare actual test score distributions with predicted
test score distributions from each test model. The "relative" appropriate-
ness of the two mathematical forms of item characteristic curves was'
studied by comparing the xg staﬁisticsg A likelihood ratio test for
comparing the '"relative" appropriateness of two mathematical forms of
item characteristic curves will be discussed later in this sectiénf In
all three cases, substantially improved pfedicti@ns were obta&neﬁ wiﬁh
the two-parameter logistic curves. The Hambleton-Traub tesﬁlts aléa
suggest, not surprisingly, that the two-parameter logistic model will

provide the greatest improvements over the one=parameter logistic model

when applied to data from short tests where the variability of discrimin-

ation parameters is substantial.

Goodness of Fit

Statistical tests of goodness of fit of the various latent trait
models have been given by several authors (Andersen, 1973; Bock,

1972; Mead, 1976; Hfight, Mead, and Draba, 1976; Wright and Panchapékesaﬁ,

1969). The procedure advocated by Wright and Panchapakesan (1969),

for testing the fit of the Rasch model, essentially involves examining
the quantity Eij where fii represents the frequency of examinees at
the ith ability level answering the jth item correctly.. -Then, the

quantity Yij , where 62
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Y5 = {f,. - E(fij{}/{Var fij}

is distributed normally with zero mean and unit variance. Since fii

has a binomial distribution with parameter pij* the probability of

a correct response is given by E;/(B; + E?) for the Rasch model, and

Py

T, the number of examinees in the score group., Hence, E(fii) =r 5

) Var (f o
and Var (fij) ripij
2

X", of the model can be defined as

(1-p..). Thus a measure of the goodness of fit,

ij

2 n-1
i=1 j

oy
1

S

1]

Il
o

Fona
-

The quantity, x*, defined aEgve has the xg distribution with degrees
of freedom (n-1) (n-2) since the total number of observations in the
magfix Fs={fij}:is n(n-1), and the number»af parameters éstimated'is
2(n-1). Wright and Panchapakesan (1969) also defined gooiness of
fit measure for individual items as

2 n=1

2oy o2
X Y3
I = T4

1}
1

ﬁhere x% is distributed as xz with degrees of freedom, (n-2)., This
general methcd-%§”d3§2tmining the goodness of fit of overall test
data can be extended to Ehéﬁtva— and three-parameter latent trait
models. The reader is referired to Hambleton and Traub (1973) for
an-example of a test of goodness of fit applied to two- and thiee-
7 parametei logistic models.
There are several problems assa:iated-éith the chissquére tasté
éf fit discu;sed above. -The xz ﬁest hés_duhious validity wheteraﬁy

one of the E(fij) terms, £ =1, 2, ..., n - 13 j=1,2, ..., n,

e have valuesnléss'than one. This follows from the fact that when any




of the E(f,.) terms are less than one, the deviates yij’ i=1,2, ..., n-1:
j=1, 2, ..., n, are not normally distributed and a xg distribution

is obtained only by summing the squares of normal deviates. Another

problem encountered in using the y2 test is that itris sensitive to

sample size. If enough observations are taken, the null hypothesis

that the medel fits the data will always be rejected using the xg

test. However it should be pointed out that this is an inherent

weakness of all statistical tests;

Alternately, Wright, Mead, and Draba (1976) and Mead (1976) have sugges=-
ted a method of tesﬁlof fit for the one parameter model which invol-.
ves conducting an analysis of variance én-thervariaﬁidn remaining in
the data after femﬂvingrthe effect of the fitted model. This pro-
cedure allows not only a determination of the general fit of the data
to the model but also enables the investigator to Piﬁépéiﬁt guessing
as the major factor contributing to the misfit. This procadure for
testing goodness of fit of the one parameter model involves computing
residuals in the data after femgving the effect of the fi;zed model.
These residuals are plotted against Ceisbg)i According to the model,
the plot should be rapkesented by a horizontal line through the
origin. For guessing, the residuals follow the horizontal line until
positive since the person is doing better than expected and in that
region have a'négative trend. If practice or speed is invglved, the
...items_which. are affacted display negative resiéuals with a negative

trend liﬁeravefvtharenﬁiféwfange of ability. Bias for arparticular
group may be detected by plotting the residuals separately for the

two groups. It is generally found that the residuals have a nepative
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trend for the unfavored group and a positive trend for the favored
group.

Mead (1976) concludes by saying "All of the disturbances consid-
ered represent some form of multidimensianality; they would vieolate
any model that assumes unidimensionality. Since the effect of the
disturbances often appears as a change in the slope of the item char-
acteristie Qﬁrve, any model which includes item discrimination as %
parameter would appear to fit the data'.

When maximum likelihood estimates of the parameters are ébtained,
likelihood ratio éests can be obtained for hypotheses of interest.
Likelihood ratio tests involve evaluating the ratio, A, of the max-
imum values of.téé likelihood function under the hypothesis of inter-
est to the maximum value of the likelihood function under the alter-
nate hypothesis. If the number of observations ié large, =2 log X is
to have a chi-square distribution with degrees of freedom given by
the difference in the number of parameters estimated under the alter—
nate and null hypotheses., An advantage possessed by likelihood ratio
tests over the other tests discussed earlier is apparent. Employing
the likelihood ratio criterion, it is possible to assess the fit of
a particular latent trait model against an alternative.

Andersen (1973) and Bock and Liebermann (1970) have obtained
likelihood -ratio tests for assessing the fit.of the Rasch model and
the two-parameter normal ogive model respectively. Andersen (1973)
obtains a conditional likelihood ratio test for the Rasch model based
on the ﬁighin score group estimates and thgwvaTall estimates of item
b.-difficultiesg He shows further that -2 times the logarithm of this

: 2 : , .
ratio is distributed as x with degrees of freedom, (n-1) (n-2).
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Baseéron the work of Bock and Liebermann (1970), likelihood ratio
tests can be obtained for tasting the fit of the two—parametar nor-
mal ogive model. It should be pointed out that these authors have
obtained both conditional and uncon ditiaﬂal estimates of the pata=r
meters. For the likelihood ratio test, iﬁ would te more appropriate
if the unconditional model is uzad since with this model ability
parameters are not estimated, and hence the likelihood ratioc cri-
terion can be expected to haﬁe the chi-square distribution., This
procedure can be extended to compare the fits of one model against
another (Andersen, 1973).

The major problem with this approach is that the test criterla
are distributed as chi-square eniy asymptoﬁi&ally. ‘When large samples
are used toaccommodate this fact, the chi-square value may become sig-
nificant owing to the large samp;e size! Further investigation is

clearly needed in this area in order to resolve this dilemmz,
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Test and Item Information and Efficiency Curves
The precision with which examinee abilify can be estimated is of con-

siderable importance. When the maximum likelihood estimate of ability is

obtained, the precision of the ability estimate can be conveniently expressed
in terms of the information -function, referred to here as the test infor-

The standard error of maximum likelihood estimates is given

by the square root of the inverse of the information curve. Birnbaum (1968)
defined information as a quantity inversély proportional to the squared
length of the confidence interval around an examinee's ability. Thus,

when infarmation at an ability level is high, we have ﬁaffﬂévééﬁfidEHQE
bands around our estimatesg If information is low, we have wider confi-
dence bands. Eééause the test information curve is a function of ability,

it has been suggested that test information curves ought to replace the

- . sy 29 o A% i . 3
use of classical reliability estimates and standard errors of measurement

n test score interpretations.

o

In mathematical terms, Birnbaum (1968) gives the information curve of a

given scoring formula by
n
(L w P,')z
1,(8) = —m——————— . [27]

level 9 provided by the scoring formula y, where .

(28]

w
i}

I e
%
o
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The variable U, takes on values 0 or 1 depending on whether or not item

£ 1is answered correctly; Pg is the probability of a correct answer to item

g by an examinee with ability level 8; Q_, is equal to 1-P_; Pg‘ is the

o]

&

slope of the item characteristic curve at ability level 6; and the item

2

coring weights are Wos g=1, 2, ..., n.
Birnbaum (1968) demonstrated that the maximum value of Iy(e) referred

to as the test information curve, is given by

n ,
I(8) = I (——) . , [29]
g=1 Eg Qg

The maximum value of the information curve of a given scoring formula is

obtained whea the scoring weights, Wgs are given by

In order-to obtain the test information curve for a particular

set of test items, and consequently minimize the widths of confidence bands

about examinee ability, it has been shown that the scoring weights for the one-,

‘two-, and three-parameter logistic test models should be chosen to be 1, Dag,

and _Dag (Pg-cg)

(e by

respectively (Lord and Novick, 1968). CTest iﬁfcrmatiﬁn

3

curves and the best scoring weights for several other latent trait models

aré given by Samejima [1969, 1972].) It should be noticed that only for
ﬁhéxtgfee—pafametéf model arve the scoring weights a function of ability
level. The scoring system in the three-parameter model has the effect of re-

ducing the weipght assipgned to correct answers on items where the values of the

63



 lower asymptote (cg)raf~the item characteristic curves are large. -1t can be

~seen that.the weights for- such items'afe smaller for low-ability examinees
than Emf Either mlddle= or hlgh ab,lity examinees These waights"feflect
hé:fgct that lQWESbility examinees'are most likely to be answering the

Lw items by guessing; For high ablllty examinees, the optimum scoring we;ghtq

l.:MoEﬁIVitéﬁé approach the quantlty, Da (3”1 2, ';,;;'n){
The quantlty PE'Z’PSQ n Eq,a ion [29] is the ééﬁtributibﬁ”of;iéem”ém';L'

. to the 1nFormatlgn gurve of the test. For this reason it is called the -

itém"iﬂfarmation curve. .

e Item 1nformatlon -curves have an 1mpartant fcle in determining the

accuraéy with which:ability is estimatéd aﬁ'different 1eveis'of E!v Each -

“item information curv e depends on the slope of the éérﬁicular item char-

actarigtic cufve and - the condiﬁiénal variance 0f izém'SQDres at-each ability

level. 8. lhe StEEpEf the slope of the item characte ristic curve and the
" smaller the condigional vafiance, the highét will be the item information -
‘curve at that particular ability level. The height of the item 1nformat1nn

curve at a particular ability level is a diteét ﬁaéSUte of the usefulness e

lng abllltv at that leve

e - Figure 2 shows:item information curves for fivio verbal test items,

f_and'thé test information curve fo a test composed of tﬁese items! The

“f*““logisEié“pafaﬁEEétS”Gf“thé five-items -are- ShGWﬁ belgw.~j““"W*f1“ e B

: : 7%We are gratefulréé‘Fredétic Lord for allowing'QS tﬂ‘fépfcduﬁé‘ » -
- this figure from (Lord, 1968). - . o . R : ) FE
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IR LR LRI I

e e e i 2 e o8 ,.Abi'“yi__.ﬁ,i_ . .‘ S ,,,__i. ._.V“:,_,_,_,___d..‘_._.:_k._,.; e

Information curves estimated for five items

- and a_five-item test. The items are from the

verbal section of the SAT., This figure is

L repfadqggd b}:pefmlgslgnftcm Lord (1955) . AL A RS



en | , :, r:vw 7:4, ;

= The 1nformatia§;cur§e for the test EOmpOSEdVOf ﬁhe items is Db;aiﬁéd
by summlng the nrdinatés of Ehe flvé 1téﬁ.iﬂf0tmétioﬂ éutves!4 This cdtvg;_
reygais that the,fiyeﬁitem_testrﬁfQQidés the mosﬁ iﬁfofﬁati&n'fof-high' .
: ability.stﬁdenﬁéi This- means that abllltle% afe more p%;;1%Ql§ . =
estlmated at. the hlgh end af Ehe‘ablllty ccﬁtlmu@m. The’ h31ght of the
. test 1nformat10n cﬁfve 1srﬁlslaadlng thaugh becausg.of its dependence on
e the metrlc of the abliity saale (Lurd 19756) At érﬁartlcélar abllitv PR
level G, the item lnfarmatlan curve: is- glveﬁ by P' /FQ But the slape
Vaf tﬁe item chéracéerlstla curveviP{; is.a funct:anraf the abllltgﬁ%cale.
IE thE ablllty séal is c mpressgq/ln the region. of 8, g;wwill;;éggggsgzﬁgw;W;;A;wi

. ability level Sglwhere'

1f guessiﬁg is minimal, then-c_

Q

Aruitoxt provided by Eic:

A gaqd‘éxample‘qf,tha effect that a monotgnicrtrénéférmatién on the ability -

e .

and, when the scale is Stfétched in cha region of E,‘Pfiﬁill'dééreaséi'

’f’étale has dﬁ the Eést 1nfgfmatlén curve is ‘seen in _Lord. (1975&) heanxxg@*4;§wmmm~f¥

effect 15 substantial.
-bFﬁgm Equat;on [29] it is. clear that items contribute lndependent]y R
to the test information curve. ’ﬁlrnbaum (1968) has alsq shown that =

- with his three parameter model, an item provides makimum. information at an

6=bgt L log .5+ /oy . i)
S8 1.7 a, e e : e et

‘i When cg'§'0' the palnt

, IE naﬁ—optlmal Sc@rlng v

test madel, the . - infor atlgn curve derived <rom Equatlmn [27] w:l] he

IQWEE, at all ablllty levels than one that would rasulﬁ ffam the use of




_69.3
optimal weights. Birnbaum (1968) used the term éffigieggzrtD‘TEEEErEQi_

’Ehe inférmatian«lass due to the use of less than optimal scariﬂg weights.

Etflclency is studled by ;alculatlng the ratio of the values of the 1nEDfmd—

,i.

abllity~1evel CHambletaﬁ,and Traub, 1971). Hambleton aﬁdthagb (19?1)

Egund”that whgﬁrghere was no guessing (i.e., CE;Q, g=l, 2, ,..1wn),,th2'

==y

efficiency of unit scoring weights waS:qute highv(avéEVSSZ) fdf'typiﬁﬂ;;7; L e

levels afrvafiaﬁian in the item disgrimingtian pa ameters ( EQ tD l DD
‘which very roughly translates into a range of biserial chfelatanS ffam 

.20 to .70). When guessing is intfcduaedi the,situaticn ‘changes dramacé

“icdlly. For 16w ability examinees, the efficiency of unit scoring weights =~

dropped to the 60%-70% range. The authors concluded that when a test is-

béing used to éstimaterabiliﬁy.acress a braad fange:gf the ability saa;e

aﬁdrwﬁeﬁ guesslng,lg a factor 1n test performan:e, tﬁé scgrlng Eystem of
‘j;Qe Ehfee»ﬁaramegef lOngElQ model is to be PfEfEY?EdE Unit scariﬁé weights
7lgad Eé'efficieﬁtvegtimates of ability Whéﬁfthéfé is little or na:gﬁessing
: andrwhen the range Df dlSErlmlnatLDﬂ ﬁargmetefs is not too w1de

T 1 Lord C1968} 1nvestigated the EflelE ncy of unit széring Weightsron'

‘the verbal section of the SAT. Upder.the"assumptién.that the three--

pafamétef médel»ﬁas*the:corfectfﬁesi model to explain the data, he found

| unit scoring weights was equivalenc to discarding gbaut 45% of the test -

irems Fﬁl thv'luwsnhility,Exnminqus! o . - e
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Dﬁ other occasions, one may be interested in ﬁamparlng the felatlve

ef[;gieg: with which two different tests measure the same abilicy at

various poiats. on the ability»scale_ It may also be of inzereét to

know the fElEthE efflclencv of two dlffefent SCGflﬂg methuds at Vﬂtlﬂuﬁ»ﬂr
dblllty levels ThlS can be determlned by calculating the ratla of the

~values af two test lﬁfomatan curves at each ablllty lével.' (I; Shﬁuld

fjbérmenglqned,that thefnation GE relative effiéiency is an’impé%ﬁaﬁc>§ne
iﬁ~1ése§51n5 the merlts of a- teég fur measurlﬁg ablllty alang sn b 1,;
cuntlnuum but Lord [19742, 1974&] has ‘also prcdured a way ﬁf QEUdYIﬂErtE1ﬂt1VD

, éfflcleﬁcy w1thﬁut 1ntr0duc1ng the cancepts of latent tralf thearv\ Whm_jt;wf;Qﬂ%;f

It'hgs been shown by Elfnbaum (1958) that relatlve ffl ﬂ¢y iS

directly prcpgrtianal to the test«length of a ﬁbasgsline test. That is,

if relative.efficiency = 1.50_at_a_particular_ability.level,.then—it-would - -
‘take-1l)s rimes- as many items in the baseline tést'té yiéld the dié:riﬁiﬁa&iﬁg,

power at that ability level, provided by the other test under consideration.
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_ bly corrected for _guessing. However, with few exceptions, the results of_ . __ __ . ..

=71=
“Applications .of Latent Trait Models
- In this section we will cornisider several applications of latent trait.

models.

%fEETEntlal We;ghtlng of Respanse Alternatlve%

i -
H

N o | : 7
It is; a common belief among test developers that it ought to be
possible to construct alternatives for multiplE%EhDiCé test items that

differ in theit’degrée of correctness. An examinee' 's test score cculd

then be baaed on the degree of correctness of his. ar her response alter-

native SEIECtlDﬂS, instead @f 31m§ly the number Df'QfoEEt‘éﬁéWEfsg possi=

uvdifferéntial weighting of fespgnse alternatiVES'have been disappointing

o

Jang-f Stanley, 1970). .Despite the intuitive beliefs af test develapers

O

Aruitoxt provided by Eic:

-and researchers, frnm _PASt_ fESEﬂfChﬂlt would appeaz_that_d;fferentidlf.mr

SCDfl

- will not feveal any 1mpfovements in the est;matlon QE abll;ty at d
«-theflaféest~gainswiﬁ~pregisioﬁ Qf”méaguremént'tc*be”detived”ftgm“a”séafiﬁg”“”“*

TTtively few errors on their

ERIC™

weighting of response alternatives has no cansiStently'pcéitive‘effect on
the reiiability and validity of the dér%?gd.téstsscgfés! ’Hawever,?aur

v;ew is Ehét uSing céf;elatian éaeffiﬁients to study the merits.of any new
ng Syétéi isflegsithén'iﬂéali'rihis i% Eéééﬁée‘éo%relatién ¢ oefficients-

iffer

.\r"l’

regions of the ability scale. A concern for the . pEEClSan QF measufement

at diEferent ablllty 1evelg is impo aﬂt There is reason to believe that

system that incorporates scoring weights for the reépénsé~alt2rﬁatives

I

‘will oceur with low ability examinees. High ability exa’lnéas make reld=

éﬁd'EﬂzrﬁFﬂfe wole make 1 ft1 uéé

.7;}
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of differentially weighted incorrect response alternatives. The'prgblem;

with using a group statistic, like the correlation ééefficiengvto,r fl ect
of the ability continuum wiLl bé "wééhed‘auc" when combined with the lack

~of gain in 1nformat1an at ather placas on the ablllty ccntlnuum. ,Dﬁé ﬁay

jéf'evaluacing a test sgofing meth@d is iﬁ'terms of the pfecisian,with.

whlch lt estiﬁazes an examlnee =] ability:f Thé;mare pfecisefthé Estimatei

the more 1nformat;an the test scorlng methad prcviﬂes. CBir nbaum 8 concept

the' improvements of a new scoring system is that any gains at -he ‘Tow end

Df infp:ga;iaﬁ intfqduced eaflierrpravides a much better criterion than duvi

Th Eﬂ C1976) applled the nomlnal fESpDnSE model to a se t of data

=i

ffDm Raven’ 5 Progre551ve Matflces Test (a test where the optléns to Each

item can _be 1Dg12311y DrdEfed accordlng ta thElf dagree Df cazrectnesg)w——

(Birnbaum's "information'") ét'each ability.leveli »Thiséen‘s results were

-clear and impréssive, The nominal résponse model pfﬁducéd substantial .

1mpravament5 in. the prClSlDﬁ of abll'ty‘éstimatiﬂp in the lower half of
the ability range. ‘Gains in information ranged from 1/3 more to nearly
twipE*thE'iﬁféfméﬁiéﬁ’defiﬁed‘from 0-1 s 1ng with the lng;stlcftest»"‘“‘

model. Accofdlng to Bock (1972), most of the new 1ﬂform tion to be

—de flvedufram wel hted fEEpDﬂSE -scoring- cames from dlst1ﬂgulsh1ﬁg”betweeﬁ””'

Examlﬁeas wha choase plau51b1e or partly CDfrECt answers from thnse whu
omit the items..
M'ﬁ“**“**W“““In a. stu y of v abulary test 1tem5 Wlth the namlnal response
* model, Back (1972) faund that belaow med1an ability,fﬁhere was 1% to- 2
zr=am: :’F
T 75
\‘1 ,, ,7.;—“ o - - o ’
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-,tlmcs more infatmacian deflv d fram the nominal‘fesponSE“madel over the
‘usual 0-1 EESE scating methad. In terms of test length thEVSEDfing |
system assuclatéd wlth ‘the namlnal reapanse madel had for about one-
hglf of the e#amineepcpulation,~prbducedfimpfo§ementsvinprecisién of
;ability estimation equal to éﬁé ﬁrécisién éﬁéz ééuidvﬁa_bbtained by a
binaryésccréd téSE 1% to 2 times 10ﬁgérvthaﬁ‘the originél,ane ﬁiﬁﬂ thEA,
;neg ﬁéthoaréf'scgfiﬁg; Alsa, éﬁgouﬁaging_wés”théﬁvtﬁé curve"rféf‘éééﬁ:'

pc se alternative (estlmated Emplrlcally) was psyghologically 1nter='f

L3

»_pfetable. The Thissen and Bock studles ShDuld Engourage other fesearnhers

to ‘go back and reandlyge th31f data usin g the ncmlnal fesponse model and

'1nfarmatlan prav1ﬂéd by the ngistlE latent tfa1tv

the m isuré~of

models. The Thlsse1 and Bock Etudles 1ndlcate that there is "iﬂfarmation"

fthat¢¢§n,bé recovered ffgm'incofrect éxamineé“Féspagsesrtﬁ amsetuaf test-

items and provide interesting applicatigns“gf test .information curves to

compare different’ test scoring methods.

= samg.

VCﬁi terion-= Refafenced Testlng
| Latent‘trait m@déls prpViﬂe an,égcélleﬁz unﬁerpimniﬁé faf a theofyl

and pfaﬂtice‘éf-EfitEEiDﬂgfeféfEﬂCEd testing. Much has beenﬁﬁritten cnrlp{"
:;thgftépic'Qf;éfiﬁéfianéfeféréﬁ:éé;ﬁeétiﬁggxbﬁf the aféé,is“éufféfiﬁgbﬁ

be cause DF a great many diEcOnﬂECtEd cantrlbutlans, canfuslon over many

"5351L “problems guﬁhﬁas test develapment and test score use, and the EXlStS

ri'ﬁié Df unlque pfoblems Such as the establlsh ment of cutting s¢cres N

'J(Hambleton & Novick, 1973)

from

o

A Crltgfloﬁ reEarenced tes 15 constructed by sampling item

337w211;d f ued dDmaLn of 1tems measurlng an lnstfu;tlonal DbjEEthE

Aruitoxt provided by Eic:




- Thua, a atfalghtforward appllcatlnn of one of th

>gproduca examinee ablllzy scores.’ AmOng tha advantages of thla appllcatloﬂ
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(Mlllman, 1974) (Typlcally, a cratar;on rafarancad taat w111 1ncludc

sets of test itama meaaurlng aavaral 1natruttlonal objagtivaa. When
“several objaativearata measured, the atapa described below are répeated’

for aachkaaé oE items measuring a single objective.)

Dna pr;mary use of a- cr;taticn’rafafaﬁcad test is to obtaia an

‘eat1mata of an axamlnea a 1ava1 of maatar (Qf "ablllt ) on an ObjELthE."
Y ) Y

‘m

1 te t trait modala'

f(tha aaaumptlon of unldlmanalonallty weuld not 1ikaly ba a prablam) Qou]d‘

g aEeemeet

v\)

Aruitoxt provided by Eic:

" ean not be dcna WLth claaalaal approachaa to test davalapmant[and test -

t:atant,ally to tha prElElDﬂ w1th whlah ablllty SCDFES wara aatlm

item pDDl for aaah axaminea, and all axamlnaa ablllty aatlmataa would ba

‘on ‘a common scale (Hamblatoa, 1977)

Since item parameters are 1nvar1ant across groupa af axamlnaaa,

it would be possible to construct afitarianérafaranaad'taata to discri~_

minate" atrdiffafaﬁtvlavaia of the ability continuum. ~ Thus, a test
ﬂaﬁaiépaf'might select an "easier" set of test items for a pretest than
a pnattaaL and atlli be abla to maaaufa "examinee grbwth" byfaaﬁimating

lnea ablllﬁy at each taat occasion on tha same ablllcy acala_ This |

aaora iﬁ;arptatationi If wa had a good 1daa of tha 11ka1y ranga af,

*abLl;ty ‘scores for the- axamlnaca, test -items wauldaba'aalactadlaq;aa,an. T Py

,-max;mlaa chaataat 1nfarmatlon in Eha region of ablllty for ‘the examinees

bElng teatad : Tha Dptimum aalactian Df'taat itama wauld caqtributa sub=

atad‘*:

¥

In the case ' of criterion-referenced tests, it is common to abaatva;lawar ,




Fleamin.

ﬁeéclpéffgtmancg‘on a pféﬁeét ;ﬁégyan g.pésttesﬁé theféfére; thé test
xcbnSﬁqu;ér éoélﬁ selgcﬁ the easier test items from the doméim éf items
.'measu:ing an objective Eotrthe‘pfeﬁeééfaﬁd ﬁéfé:difficﬁlt itemsnéoﬁld:bé_
,  éeléétéd Eéf thé,ﬁésttéstgl Thiéfﬁ@uid enable the test céh5t§ﬁé£§r to
maximize the precision of messufemenzfaéﬁeach-éest in.ﬁEe.tegiDn.§fm
,“im.,' gf;aBi1igy-whafe Ehajexamiﬁees would mdst 1ikeiyvbe located. Gf:caﬁrse, if:
i theas%umpt10ﬁ abcutthe ,jlo-t:-at:ic;n c:f ability Scorésvwas nVC\El ac:éufét&,*
Vgains in pregisiéﬁ,éf ﬁéas@réﬁéﬁé,wéul&>ﬁct:bé'ébtained.Vv

 Hambleton (1977) conducted an extensive study of criterion-referenced

test designs ‘in various testing situations and has reported substantial

in test efficiency when the.proper: test design for a particular

group of examinees is used.

73
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@ Test Development

"In this section we will attempt-to describe a few of the areas of - -

test dévelapment to whichv]atéﬁtrtraig’thgary has bgeﬁvapﬁlied and .shown "

to have decided advantages over standard test construction techmology. .

IE»Qén be anticipated that as more is discovered about the properties of

‘the latent trait models and as more psychometricians begin to use these -
tes gréater insight ‘into the process

‘models in the test development process,

will accrue.

" Latent trait theory offers two advantages to the psychometrician -

'_gwghééwfaéil;qAH;A;;MM;A“,

ditate the test development process as well as make possible the develop-

ment of tests for a variety of applications, and (2) item characteristic

curves that provide valuable insights into how examinees: perform on

specific test items.
The first step in the test development process is the determination

of test specifications. One of these specifications is the type of test

item to-be emploved. The worker using latent trait- theory has-two options

i open to him/her. Either items can be developed to fit a specific test .

model or a test model can be chosen to "fit" the derived .test data. For

examplé,,éne'may select the EEIEEEpafameﬁéf legistic test model if the

em$’ ate 6f the multiple-choice type. —However, 'if he/she felt SEFOREly =

_that the test should be developed using the one paramétef71§gis;ic model,

ERIC
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‘AE;er_thélﬁesﬁyspe¢ifiéa£icn pfocass is é@ﬁpieﬁed,'ﬁhe actual con-
stfucticn of éhe items is generally%ﬁﬁe next stép,, In"mané iﬁ%ténces
pfaVLDuély cnnétruéted 1tems may ‘exist that are appraprlate fDr test u%ége.

Suppés; that an dppraprlate pool af pfete t d items doesre éﬁi
If ﬁhese items were chafacterlzad by cl3551cal test thé@tyvparamEtEfS
;de%gfibiﬂg item difficuLty and item diSEriminatignv,‘the‘usafﬁln255féf’"v e
Ehe”itémiét ti ﬁlés in test development WOuld depend on the match bétween

tha charagter;stlcs f the prétest sample of examlnees aﬁd the populdtlun

of examinees in whlch the test w111 be used Anmthar shortcomin ng is that

, the size Df item d;SEflmlﬁﬂtlDﬂ 1ndlces dépéﬁds bcth on the number, and the

partlculdt 1tems 1ncluded in the pretéstir When 1tem% afe placed

2 cest WhLLh has test ;tems different from those in the pfetest,,che

, _ 7 [
:uséfglnesé éf the disariﬁinatianindices is uﬁkb@ﬁﬂ;¢,Begaus§ of the . - SR
inuariaﬁz prapertieé Gfrthé'létentfztait,itém péramééetsithis prcbleﬁ
igrgircumvgﬁtédig
How does bﬁe'selEQE itemsrfrom,an exiscidg itemﬁpéol ih order:to
.construct a test that meets a set of ptevioﬁél§ detefminéd'Spacifiégé
.tibns?:v fiE' standéfd test devalopment Lechnolcgy is empluyad

‘;wthere are a SEflES oE calﬁulat*cns that can be caffled Dut tc predlct the

rrimean,bstaﬂdafd devLatlan, aﬁd‘gasz reliabili ty (Loxd & NGVle 1968)

Input data for thc Fal;ulatlﬂns afe the preté%t Ltgm stat15t1cs.

. Lurd (l977b)cutllﬂed a méthod for predlﬂtiﬂg the mean, squared
: staﬂdard Tor Df méaSuTemEﬂt aﬁd the test rellablllty based on any set o -

37f,a§;i;§ﬁs Ehara;terlzed by 1atent “trait- theory parametérs.. The prcc;dur;;‘

iﬁvclves,gpec1fylng the blllty leval of th; grgup EDr which- the te:t is

ERIC™
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intended.

The fGllDWlﬂg expressions can then be uaed to determlne the test
statistics DE interest:

c] ) 1% = 1/N 3 5 . '
! =7 & i

a=1 =]

2) i iy R

“ dg,t ) N - - “ga an

a=1 g=1
e | . .
CB? Dyt =L Gx]t/ O

Lord (1977b) concluded by saying that "

A
4

.if we have a pool of pre-
tested items-all measuring the game trait or ability, we can predict
the mean, varianc

any
the

armncei teliability and raw-score frequency distribution of
1

tes st LQﬁ%LTULEEd frgm these ltems once we knuw the Hblllty levels in
psroup to. hg te%ted
for z

When the shape DF the ability dx%LthuLLnn
a pru1ﬂtlﬂn of examinees can be specified,"

Lord (195 a) has
shown -how to use latent trait parameters to select items so as to
produce desired test score. distributions.

i
=

forced to

To summarize, when a psychometrician is selecting items character—

al ‘test theory parameters to construct
4Se A hawiist

t a test, he/she
a heurist process thatidapeﬁds é'great deal on . the

correls

ab111ty ta estlmate, fom prev1nus expet;ence, the awerage item ta%t

of 1nteregt.

on- and 3156 on the 51mllar1ty of the pretest group and the grQUp

When using latent trait theory,

only knnw]edgé of the

7\‘1 -
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“abiliey dlStrlbuEan of the group oE examlnéss.af interest is ne:essary tD»i*

make accurate predictians of the Eest statlstics

=

LLéms from d prevlnusly LSEEbllgh&d pnal of 1tams characterlged by thLnL
ﬁfait,cheary parameters. The uSEful‘featuferiS that Eﬁé'éﬂntflbutiéﬁ:‘ﬁfv>
cach 1Eém to the te%trinFOfmatlan curve. can be dEEETmlnEd w;thout knuw]édpe
'ar the Dter Ltems ; in the Eesti, In canventi@nal teStingrteghnalngy; thﬁ;;
‘situation ié very differeﬁt;" The ﬁanﬁributioﬁ: of any item to such

statistics as test reliabilizyicaﬁﬁot be determined independently of the

thdFﬁLthlEﬁlLﬁ af all the other ;tems 1n thé test.

R R R S B,

Imrd (1977b) dlscussed Birnizum 5‘(1968) pIDEEduIE for bu11d1ng a n;w

cest, ThL prccedure perates on a pool of calibrated 1tems (sa that an item ;

‘:LﬂFDfmﬂtlﬂn'ﬁ”PVE is avaLlable for each 1tem) ,The prﬁcaduré'uutlihéd by Lardwv'

is:

1. Decide on the shape of the desired test information curve.
LDFd»ClQ?ﬁﬂ calls this,thé target infarmatian curve.

2. . Sélect items with ltem information ‘curves that- W111 flll up )
‘the hard-to-fill areas ‘under the target lnfarmatzan curve.
3. After each item is added to the té&st, calculate the te
- 1nfarmatian curve for the selected test items.
) 4. Continue selecting test items until the test information =~ - .=~ .

curves approximates the tafget Lnfgrmat;an curve to a
'sitlsfictary dégtee.'

'Tt Lb nbv10uq that the use of 1tem 1ﬂfﬂfmdtlDﬂ curves in the manner

des Qflhad abﬁve w111 allaw the test develuper ta ptﬁduCE a tesL thﬁL w1]]

ery pr¢c15&1y Lulflll any s t,af deslred test SPECLELCEELDHE.=

LaLunL Lrait deLI% not Dﬁly allow the Lest devalmp;r LD‘FKIM!HLA

Eh&rﬁﬂﬂtfibutiﬁﬂ of indiuidua] itemsvta a-test information Qufv&} buL

they also allow for the comparison of test 1nEDrmat1Dn cufv 5. ’It is

v
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allow for comparisons among these subsets. No such feature exists

éSG_
possible for a psychometrician to form different combinations of items
(tentative tests) in the initial stages of test development and compare

the information curves of different sets of items at specific .ability

levels, thus allowing him/hgf to choose the set of items most suited

for the purpose of the test. Marco (1977) used this-technique to study

the effect of lowering the difficulty of the Scholastic Aptitude Test.

Ttem parameters (bg,'cg, ag) were determined on item data from about 3,000

students who took the mathematical part of the SAT in December, 1970 and

the verbal part of the SAT on January, 1971. He then selected items to

form four tests:
1. a test composed mostly of moderately difficult and easy items;

a middle difficulty test having a bimodal diétributign of item
difficulties; )

Il

3. a middle difficulty test with no easy or difficult items, and

4. a very easy test composed of all easy items.
Examination of the }our test information curves showed clearly that if the
test was macde easler, discrimination in the upper or middle part of the
abiliﬁy tﬂﬂgé.ﬁufféfedg 7

Td’summarizes the test information curves obtained Frﬂmrtesﬁs deveiﬁpgﬁ

using latent trait models make it possible to obtain some indication

of the probable results of combining various subsets of items and also-

=y

or

#

 tests developed by conventional test construction methods. Thus, much ol thic

combining of test items or altering of existing tests with'énnventicnaj pro= ..

cedures must be done on an intuitive basis.
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development process is usually test norming. In conventional testing tech-

s

nology, this is an expensive and time consuming process involving testing

ol
=
™
I
e
e
£
e
i
i
]

f examinees similar to the population the test is intended

for.  Because latent.trait models provide ability-estimates that are
indépéndent of the items selected for administration, the norming process
can be simplified cunsidérablyi It is not necessary for all individuals
to take all of the test items. The test can be broken up iﬁta subtésts
with diffefénc groups of students taking different subsets cftitemsi A
successful applicatign of this type of néfming was made to the Key Math

Diagnostic Arithmetic Test published by American Guidance Service.
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Tailored Testing

the beginning of formal testing some 60 years ago, almost all

‘J'.’A

Since

m

testing hl% been done in a conventional fashion; rhat is, a group of

]

individuals all take the same test. Since these individuals will vary in

.terms of the ability that is being measu:éé by the test, some will find the

test too difficult and others too casy. Those who .find the test too diffi-

cult may cxperience frustration agd'negaéivé reactions, while those who

find the test too easy will nat'be'sufficiently motivated to put Fgrﬁh
maximumreffaft! In shért,’tﬁe test will do a géad job of measuring for

those individuals whose ability is at or near the median ability of the

test:  For such individuals,'the diffieul;f level will be such that they

will answer half the questions correctly and half incorrectly. A légicsl .

extension of this line of reasoning dictates that the test wauld measure

questions to each individual that that individual could answer carrercly

hall the Eimé{ This, of DufEE, is not pé%%LbiE using one ta%t;

In tailored testing, an attempt is made to "tailor" the diffiéu]tiég
of the test items to the ability:of the Examlnee being measured. This de-
mands the existence of a large pool of items whose ststié&igél ;haragtér%
iétigs arc known so that suitable items may be drawn. - The pfocedure does

not lend itself eaglly Ulpaperandpencll teatjng situations, and hgnce

the tailoring process is typically done by'ggm?uter (exceptions ‘to this rule

afa presgnced in the wark of ‘Lord (1971lc, 1971d]). ACQDFdlﬂg to Lord (1974b), a.

'cnmputer must b; p?aérammed to do the EDllGWlng in arder to Lnilar a test Lo an

. -
.

1. Predict from thé examinee's prévluus respgnseq how LhL anmjngv
“would respond to various test 1tems not yeL Sdmlnlqteféd
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2. Make effective use of this knowledge in picking the test item
to be administered next.

3. Assign at the end of testing a numerical score that somehow
represents the ability of the examinee tested.

Tailoring a test to examinees will circumvent the ps ycholo ,Eal prb—
lems mentioned earlier. Also, from a psychometric point of view, tailcred
testing can insure that the standard error of measurement will be the same

throughout the ability continuum. This is not true of conventional tests

W

where the standard error tends to enlarge for individuals at the extreme

of the ability continuum.

(a) Classical Téstipg Theory and Tailore d Testing

= i

atly wak on tailored testing, maklng use of classi % 1l test theory,

tended to focus on concerns somewhat removed Efom the notion of ability

“estimation for an individual. Because of this different focus, é;assizal_

methods functioned sdequatelyi These studies (for example, Cleafy; Linn, &
Rock, 1968; Linﬁ, Rock, & Cleary, 1972) focusad on two areas: :gllacaticn
of examineeg to extreme ability groups éﬁdAthe caéacicy of theftailared
EesgrtD prEBﬂuEE, using Eéwet test iﬁéms;‘the:rank ordering of exémiﬂéés

supplied by the conventional group test. The résults of these studies tended
‘to support the use of tailoring strategies, and the sorts of questions
addressed allowed the use of rraditional item indices.
The use of traditional item indices no longer Suffizesat the individual
~‘examinee lavelwhen the: prDbLem of 1ntafest is ablllty estjmatian Here,
N = . - ‘“J
based.upan the set vatest items an examinee encounters, we want to make

an inference as to expected Ferfarmanﬁe'@ﬁ'a,lﬁfge set of questiéns'like

V~Ehﬂse'éﬂ§0ﬁﬂzétedfCLQr§5:197éb)-’ Thls expected perfcrmance is the abll;ty
86
Gr_—
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~B4-
§E the examinee measured by the test items. Since ﬁé are concerned now
with ability ésﬁimaﬁigﬁ on é single individual, this precludes the uée of
traditional item indicés in séleéciﬂg items, because these statisti;g are
based upon a'parziculaf norm group. A set of calibrared items that is
free from the norm or calibrating group is necessary.

take different test itémé; What is needed are examinee ability estimates

that are independent of the particular choice of test items, if there is

iy

interest in comparing one examinee with another. The solution to thi

problem and the one mentioned previously, is provided by latent trait Eheary;

‘Classical methods are of no value here.

(b) Latent Trait Theory and Tailored Testing

In order to perform the three tasks discussed by Lord, it 1s necessary

to introduce the notion of item characteristic curves. This will allow us

to predict how an examinee will perform on a new item, even if the item has

a different difficulty level from the one previously responded to. The two-

and three-parameter logistic curves have most often been selected as the

mathematical formsof item characteristic curves used in tailored testing

~research.

(c) Tailored Testing Strategies
“Reséarch done on tailored- testing, whether based upcﬁ latent tr ait

theory or classical theory, has been built upon the following rule: TIf an

examinee answers an item correctly, the next item should be more difficultj;

if an examinee answers incorrectly, the next item should be easier. Based

upon thié?genéﬁélfrule,'cerzaiﬁ'branching'strategies have been devised.

i
oA
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These strategies can be broken down into two-stage strategies and multi-

stage strategies. The multi-stage strategies are either of the fixed

branching variety or the variable branching variety.

In the two stage procedure, all examinees take a routing test and

based upon scores on this test, are directed to one of a number of measure-
ment tests lying at various points along the ability continuum. Ability

estimates are then arrived at through a suitable combination of scores

a particular difficulty 1EVE;-”LQfd (l??la)duses a maximum likelihood procedure
that combines ability estimates for both the routing and measurement test
in a fashion such that each estimate is weighted iﬁvefsely byrits e;timated
variance. Other combinations wagldralsa appear suitable.

Whereas the twa%égagé strategy requires only one branching solution,
from thé féutiﬁg to the measurement Eeét, multi-stage strategles involve a
rbranching decision aféer the examiﬁee reép0ﬁds to éach item. If the same’”
item structure is psed for all individuals, but each individual can move
through tﬁe st?uét;re in a untiE way, then it is called a fixed branching
model. Considering how much item difficulty should vary frém itemrta item.

leads to involvement with constant step size structures (uSuaiiy represented

as pyramids) or decreasing step size pyramids. If guessing should become

7 e 7 . e e - ; 7

a consideration, then a possible solutlon would be to make step size in the

positive direction less than that iIn the negative direction (Lord, 1970b).
For these multi-stage fixed branching models, all examinees start at

an item of median difficulty on the QDntinuum,(bl ='0) and based upon a
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correct or an incorrect response, start to pass EhrDugh a set of items that
have been arranged on the basis of item difficulty. After havingrcampléted
a fixed set of fitems, -either of rwo scores are used to give an estimate of
ability. One score 1s the difficulty of the item that would have been

admi i%t red to the examinee after LhE nth (last) item. The other score
is ;hg average of the item difficulties, excluding the first item that
everyone takes, but including therhypafheciéal n+1St itémi Lord (1971a,
1971b, 1974b) has demonstrated that different scarésrshould be used to

tant step sizes

W
W

estimate ability depending upon the strategy used. For co.

pf@éedures (up and down methods). avafage difficult ty score is preferred,

whlle for varlﬁble Step551ge procedures (Robbins-Monro methods), the final

diffiéulcy score- should be used.

The variable bfanchingvsﬁrategies éfermulti!séage stfatégiasréﬁat~dg
not operate with-a fixed item structure. Rathéf, at each étage of éhe pfu¥
cess, an item in th&besﬁabliShed item pool is selected for a certain examinoe
in a Eéshia§“§déh that the item wiil maximalty . educe the ﬁngerﬁainty,af the

examinee's ability estimate, if administered. After administration of the -

item, the ability estimate is either recomputed using Bayes Theorem (Owen,

1975), or ré:alculgLad u%lﬁg the maximum 11kéllh@@d prQ ;durE; A'ﬁafmal

prior on ability is assumed for the Baye513n mathcd and the admlnlgtratia

2.

' Df Ltems is terminated when O, < 3551gned*values”wthemﬁmz is the posterior’

variance of the ability estimate after m items have been administered. For
the maximum likelihood procedure, item administration ceases at a set

number or when the standard error of the estimate is < a prescribed-valus -

~ for the last item administered. -
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(d) Stugieglysiﬂg Latent Trait Theory

As discussed in the previous section, there are a number of ways in
which examinees can be presented with items tailered to their ability, and
there are élsg a number of ways af‘&@mputiﬁg scores to estimate aﬁility5
based upon item dif;icultiesi What is a;sg’needed is a means of evaluating
results obtained from various procedures. The mechanism for evaluation should
nsczbe»based on group %Egﬁisﬁics Sugﬁ asicérfelation coefficients because
‘the crux of the situation is to detgfmiﬁe thé’acéufacy with which we can
méasure ability‘far a single examinee. Most of the stu&ies'cn tailoteé
testing to date have made use of test infarmati@nrcufvési, ' |

Lord (19?13) compared Ehe,teSﬁ infarmation_;urvesiobtained for various
two-step procedures with a test information curve ﬁrovided by a conventional
peaked test (which he calls the standard test). His conventional test pro-
vided maximum information for scores;at median ability level of the con-
tinuum (b=0), and decreasing information for scores deviant frém median
ability. Specific  results of thé study and others tha§ he'did (for
axample, Lord, 1970b, 1971hb) éannat be gummarizedbeiéglybbeéausercf the
'mﬁltitude of test ﬁég%gﬁ;ﬁénd straggg%es that he stu&iedi ﬁﬁétrisrclear
is Ehis; " The tailoredrprocedutes prévide méré iﬂf{fmatioﬁ aﬁ-ghe.éitremeé of the
 abili¢y7di§£fiButiGn thanr doéé fhé sténﬁé:ﬂ test) and provide adequate

“information at the mediag"aiffficuity and ability level (b=0), where the

standard E&ét cannot be sﬁrpaSSEd} |

L E—————



Studies using the variable braﬁzhing mcdeiS“will not be discussed in
rghié paper. This is because it is very difficult to compare the results
from these strategies among themselves, let alone with the fixed branching
models. Readers are referred to Owen C;B?S) and Gaad (1973, 19763),
Weiss (1974, 1976) and Vale and Weiss (1974), in their reviews of the S;Zfé—

tegies and relevant studies, also summarize some of the results of these

procedures.’

(e) Final Comments

Thg work by Lord and Dthefs in introducing latent trait models to
explain or predict examinee perfarmance iﬁ iﬁdividualized,testiﬁg situati@ns
represents one of the most successful of the appll& tions of iatéﬁt trait
theory é@ da ze Of course, much work remaiﬂs to be donc.  For cxample,

1. 1t is unclear as “o which of the various scoring methods, be it
final difficulty score, average difficulty score, or any of the
other pnsslbllltles, gives the best statistical approximation
of ability. This is especially a ptgblem when the numbef of test

items administered is smqll
1

2. The, present mcdels_d@ not deal well with the effects of guessing. .
- Since tailoring strategies minimize the number of items too
difficult for an examinee, guessing should be reduced and _
any guessing that goes on probably can't be considered: random.
What is needed is an investigation of the exact effects of
guessing on talloring strategies for ablllty estimation.
The above list of prgblems aﬂd/ér‘tesearsh areas are not mééﬁt to be
1l~inclusive. Wécd (1973) Green (1970), Lord: (19773), and Weiss (1974)

all offer’ further suggestions for feSEafEh

=
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Item Banking

Interest in iﬁdividualizad instruction and testing, has brought to
light the need for item banking (Choppin, 1976; Wood, 1976b). An item
bank is a collection of trest items, "stored" with known item characte eristics

and made available to test constructors. Accordi ing to the intended purpage

of the test, items with the desired characteristics can be dtawﬁ from the

bank and used to ;oﬁstrucﬁ a test with known properties, °
Unfoféunately, classical item statistics (itém diffi ulty and dis-
Cfiminaﬁion) are of limited value for describing the test items in the bank
because thév are dependent on the graup of examinees from ﬁhich they came.
On the other hand, latent trait item parameters deo net have this 1i atlmn
and therefore are»mafe'useful for describing test items in éhe bank.
A;§f32t1231 pféblem facing many Eesﬁrggnstructgrs is éhaﬁ of building,
over a period of several yaafs, a pool of items to ba used in :onstruétimg
test férms. Because of the time span, newly written items will need to
be pretested on gréups of examinees different from gfoﬁps used to pretest
other items in the pool. Because of the invariance property af‘the léﬁent
trait 1tem pafaméters, even though twe pratest grﬁn:% may be qulte diSSlmilaf

in dblllty, th&te are few problems in thaining dtem parameﬁers that ‘are

*Qémpafable across these groups. Let us assume that we are interesttd 1n

dESErlblng“ltEmS by -the-two--Ltem- parameters in- Lhe,LwcqparameLer lc_ tic

taac deEl The one serious prablem is that begause the mean and sLandard

dev1acign DF the ablllty SCDfeS are arbitrarlly e%tdbllshed Ehe~abfﬁity

score metrlc,is different Ear each group. Sinﬁé.the item patameter%,égpend,;

on the ability scale, it -is not possible to directly compare latent trait

92
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item parameters derived from different groups E

cales arz equated in some way. Fortunately, the problem is not too hard

W

[

resolve since Lord and Novick (19687 have shown that the items parameters

nd
L]
]

]

in the two groups are linearly related. Thus, if a subset of calibrated

]

]

items is administered to both groups, the linear relationship between the
estimates of the item parameters can be obtained by forming two separate

bivariate plots, ovne establishing the relationship between the estimates

of the item discrimination parameters for the two groups, and the second,

the relationship between the

Having established the ‘linecar relationship between common item parameters

in the two groups, a prediction equati n can then be used to predict item
parameters for the new items had they been administered to the first

group. ' In this way, all item parametecrs can be equated to a common group

of examinees and corresponding ability scale. No such linear relationship

between the classical model parameters.
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Item Bias
The notion that certain items in a test may be biased toward gé%taiﬂ
minority groups is becoming a matter of concern for the testing community.

The concern for test bias and therefore item bias essentially stems from

litigation involving the use of tests to classify minorities for employ-

- ment and educational @ppaftuniziéé;r The préblem here is properly called

test fairness, but in order for a test to be fair (in usage), it is neces-

sary but not sufficient that the items be unbiased. Test ‘bias refers to

i}

the psychometric properties of a set of test items or scores; test fairness

L S—— ==

is concerned with the way the test is used in a particular situation. Thus,

it would seem that a first step in investigating how tests are being or

b

not being used fairly vith minorities is to inyéstigateriteﬁ bias.
Iﬁvéétigatiaﬁs~af<item bias using classical test theory have not been
successful. One reason for this has beeﬁ'éfféféd:by Pine (1976); Bias ih
testing is zausedrby the inability of tests to cansiiér individual differ-
ence variables, such as matiﬁatién and ethnic backgrcﬁnd_ Investigations
afjthésé'va:iableslusing classical test theory‘willkfufther pérpetrate

the problem; namely that we are using a group based approach, whether in

the test or in the bias study, to try to investigate individual difference

variables.  We create a situation of bias and then try to use the mechanism

that created the situation in the first place to. investigate it.

‘What is ditem bias and why have traditional explanations for item

bias led to procedures of minimal usage? The most extreme stance on item

5 biased to the extent that the means of the two

R

test

e

‘populations considered are differént;rQIhe,prgblem herer:is that other

variables besides item bias.contribute to these mean differences.

,“,§)4 '




As Hunter (1975) says, it is not so much that the test is biased, but that
there is bias in the learning enviromments ﬁhat help determine the test
score. The notion of matching will not help; it would be impossible to
list all relevant variables upon which to match. Noteworthy is thaéiffam a
latent -trait point of view, this lack of édﬁcééiéﬁéi“equalityréf éxpefience
can be viewed as a problem of dimensicnaiitya Expefienzesithat one group
has had benefit of, expand the dimensionality of the underlying stfﬁcture
faf,thét group in cémparisoértﬂ thé_ather_

Taking the mean difference notion one step further doesn't help. If
we suppose that we have a perfect unidimensional test without bias, then
tﬁe difference between the means of groups should be consistent over items.
There would be no group by igem interaction. 1If in an analysis of variance,
a group by i;ém interaction should. prove to be significant, it has been |

advanced that this fact is a demonstration that thé items are biased.

However, Hunter (1975) has clearly pointed out that a perfectly unhiased
test can show such intéfaction: Items of varying diffiéﬁ]ty demonstrate
aq'item by group interaction. Thus, it would Seem’that dealing with item

) ’ iy
difficulties would be the next step, but there are problems ;gh us1ng the
glasaicdl dgflnlticn of item dlftlculty as an 1nd1canL of item bLSS.

A classical definition of ‘item difficulty'ﬁoﬁlﬁffeféfiféfﬁﬁéuﬁféﬁafﬁiéﬁ“ww
éf correct answers given to an item. If the item diffizultyrﬁere(tﬁe same for
rbath gtaﬁpsi it hgs bEvn_édvanzéd that this would be = demaﬁstfatiaﬂ that
the item was unblased. Lord (1976) has noted that one could plot these
'perthIDﬂé Eaf items. Dﬂ ‘a-test for bﬁth groups, "and Eltwthg-resultlnh
scatzatplcc_wizh'a stfaight 1iﬂé. Departure f; 11” fity wauld:then,

,SEem ro hE a b@od 1nd1cant ﬁf teat, and one %Lep EuLther, 1nd1v1dLal item

ERIC™ "
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- line in the first place.

Y ) =§3-

bias. Lord clearly points out that thé failure of points to fall on a

5 He srates

straight line does not mean that there is test and item bias.

the following reasons for his stand:

1. There is no zood reason for the p01nts to lie on a straight

1f one group consistently outperforms
the other, the relationship must be curved. Further, while
straightening the line of relatlnnshlp by using the inverse
noraal transformation (and perhaps’ further transforming to A
values) does straighten the line, there are still furthef causes
fDr problems.

It

If the questions can be answeread by guessing, even using the
inverse normal transformation is not going to assure that the
points will lie on a straight 11ne unless the groups performed
equally well on the test. :

3. If guessing weren't a problem, the discrimination lndax of an T

Izem would be.,
a difference between groups than less discriminating items.
of the same discrimination would lie along the same line, but
_there is no assurance, without building equal discrimination into
the situation or model, that this is the case.

Mora d;scrlmlnat;ng items would produce more: uf
“Items

:Thus, while we would want no other variables to kéep points from 1Ying along

a straight line than item bias, using proportion correct will not assure that

the situation will be so. LordlC1976) then demoﬁétrates in a quite‘éleat

c-..1ished.

and simple fashion that thé proportion of correct answers (classieal 1tam ‘

dlfflculty) is not really a measure of item difficuley.

would want Ehe item difficulty to be

mine the index; this is not. possible

_Wright, Mead, and Draba (1976)

sions about the problems inherent in

'indizants:éf'item bias or test bias.

factor structures for the groups are

point biserials -suffer ffém_the'same

iﬁdicés are depeﬁdent upon the group:

[ B

Stated 51mply, we

lndEpEndEﬂt of the people used to deter—

using. prépOLtlaﬂs;orfect" -as* the-indexy -

and Hunﬁgr;(1975) cffe: fgrther‘discusi>
usingigraup?basad statistics as -
Factof‘analytic approaches, vhereby
QQmpSfEd,zéf thEYUSE of {item~test
problem as ﬁ;npartiancqrrect;;tﬁgl

from which the measures were estab-"




O

ERIC

Aruitoxt provided by Eic:

—-94=

If all of the traditional indices, which not only describe the test

item, but also the group tested, are of questionable use in dealing with

test bias, what can be done? A useful index would have to be free of the

group used for defining it. This "sample-invariant" property does exist

Using latent traic-theary‘father than classical test theory, we can
formulate a definition of item bias in a differeant fashion. According to -
Pine (1976):

‘A test item is unbiased if all individuglshéviﬁg

the same underlying ability have an equal probability

of getting the item correct, regardless of subgroup

membership.
This means that item characteristic curves which provide the probabilities
of correct responses must be identical across different sub-populations of
interest. Taking this one step further, if-the item characteristic curves
are the same, then the item parameter(s) have the same values for the
subgroups, up to a determinable linear transforﬁaticni If the subgrcups
upon which the parameters are calibrated differ in means and variances,
then a linear transformation will be negessary't@ equate scales. If the
transformation is not applied, the parameters will be linearly feléted

for the subgroups (assuming no bias).

How does one proceed? At least three solutions are currently being
studied. TLord (1976) is developing a statistigal‘ﬁest for deciding whether
the item characteristic curve for an item is the same for the subgroups
involved. Pine (1976) discusses first a test for unidimensionality, nnd

also describes a possible method for correcting for item bias by adjusting

item parameter estimates. Pine and Weiss (1976) take items of varying item
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gias and look at how this affects three test fairness models—the Cleary
madei, the Thorndike medel, and the model based upon a validity correlation
with an external criterion. Wright, Mead and Draba (1976) and Mead (1976),
utiiigiﬁg the Rasch model, develop, thréugh the use of residuals, an ANOVA.
A study described bv Lord {1%76) is now in progress at ETS. Note-

item bias:

=t

worthy is that he advances a two step approach to the detection o

1. Plot ditem difficulties for the subgroups oun the same graph,
~and fit the plotted points with a straight line. This will put
all items on the same reference scale, and aberrant items will
demonstrate significant departures from linearity. '

]

. Test the hypothesis that the aberrant item has the
same item characteristic curve for the subgroups
of interest.

Pine (1976) suggests a two Steprprﬂcédure like Lord's, but he adds
one additional step; namely testing for unidimenzionality of a set of test
items. If the trait dimensicns are the same, any variability in parameter
values can be attributed to item hias. However, it was mentloned earlier
in thke paper that factor aﬁalyéis of tetrachoric correlation matrices has
problems associated with it. It remains to be seen how useful in praétice
this step will be.

Wright, Mead, and Draba (1976) and Mead (1976) utilize the "simpler"
nature of the Rasch model to develop a very interesting approach to studying
test and item bilas. They first form a residual, i.2. the difference
between observed outcome on an item, and expected outcome based upon the
model, and then transform metrics from the proportion metric to theabillity
metric. Using residuals on the ability metric, they a;a able to set up a

weighted least squares ANOVA for testing shifts in item difficulty across

subgroups, which in the Rasch model, would be the sole indicant of item
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bias. Mead (1976) also discusses a zraphical methed whereby residuals

are plotted against the ability scale. The residuals plotted against the

Tl

abilicy scale fall aleng a horizontal line through ché origin. Any dis-
turbance, such as guessing, discrimination différénées caused by practice
or speed, or most important here, item bias, will appear as a departure
from the horizomtal. The shapes of departures would then indicate the sort
of disturbance present.

In summary, the application of latent trait models for the detection
of item bias is just now beginning. As with the field of tailored testing,
classieal taﬂﬁ ;hagfg will not sdlve the problem of interest. Certain
transformations of the classical indices will help in curtailing some
problems, but one can never escape the dependency upon population character-
istics. As such, any indication of item bias can't be read in a pure
fashion; it could also be the result of another variable, such as guessing,
which classical indices cannot contrel for.:

The areas for further expansion and research have been well defined

elsewhere. These include:

1. Development of a2 method for correcting item parameter values to
~ account for biay in the item. This would seem to be of value
in eliminating the effect ¢f bias in the item rather than elimin-
ating the item itself. Pine is presently working on such techniques.

~2.. A further study of the effects of item bias on other test fair-
nes models other than those investigated by Pine and Weiss (1976).

3. Further study and documentation of the ANOVA of residuals
method developed by Wright et al. (1976).

99



—g7—
In conclusion, while the use of item characteristiec curves for
“.detecting item bias is in the beginning stages, it appears that the

critical areas of concern are now being investigated. The monthe ahead

will bring evidence as to the feasibility and practicality of the use of

these methods.

Test Equating

Large scale testing situations often dictate the need for multiple
and interchangeable forms of the same test. Test construction techniques
do not assure that two (or more) forms of a Ees£ can be made equivalent

in level and range of difficulty, and hence there is a necessity for test-
score equating. In equating the forms, the system of units of one form

i% converted to the system of units of the other, so that scores derived
from the two forms,after conversion,will be equivalent (Angoff, 1971j}.

The alvantages of equating test scores is that one can study and mea-
sure growth, using Eqﬁated forms, can merge data WhEﬁrthE data is derived
from different forms of a test, and perhaps most impatéantly, equating
allows comparison of performance of two individuals who have taken different
test forms. o

ATWD sorts of stipulations or restrictions inval?ing the equating
process can be exclamated:

li' The Eests that are to be aquafed must be measures of the same

. characteristic. Tests measuring different traits or abilities
cannot be equated.

(=]

If equating is to be a transformation of only systems of units,
the transformation must be unique (except for a random error
component). By this is meant that the transinrmation must not
be situation specific, but be independent of the individuals .
from which the data weredrawn to perform the couversion, and
be applicable to other situations.
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The extant literature in this field can be roughly sépafsted into
three areas: Angoff's explication of the field (prior to the use of latent
trait theory), the Rentz and Bashaw work (1975, 1977) on equaéing usingb
the Rasch model, and Lord's work (i975a, 1977b).

The methods described by Angoff are adequate for handling parallel
tests that are to be‘equated. Lord's work essentially deals with non-
parallel equating situations, and his 1975 study contrasts situations’
where raw score methods using equipercentile équating:caﬁ be used, to the,
use of item characteristic curves for the same situations.

There are essentially thfee distinct ways of collecting data for an
equating project: ~ (1) Administer the two tests to the same group of indi-
viduals. (2) Administer the two tests to two equivalent groups of individ-
uals, where the groups are set up by random sampling or (3) Administer the
two tests along with an anchor test to two gfgupsrthat need not be equi-
valent. The anchor test, which is administered as a part of bcthréf the
non-parallel forms to be equated, measures differences Eroﬁ equivalence
in the two groups. The anchor test should demonstrate a high correlation
with the two tests to be used in én equating study.

Besides the three methods of data collection as mentioned above,
there are also two methods of non-linear equating. One method is the

Equigercenﬁile method using raw scores (Angoff, 1971). For

.non-parallel tests, the true scores on the two tests will have

a non-linear relationship, and because of this, the standard error

of measurement for the equated test-will probably not he equal to the

101



EQQ_
standard error of measurement of the test being equated to, for the entire

score scale. This is critical to equating, and if the standard errors are

not the same, raw scores cannot be equated with the assurance of strict

interchangeability.

~The éthét method of equating is bééed upon ability estimates usiﬁg'
item charactetis&ic curves. Lord (l??Ea} points out that if we are willing

' to equate on ability estimates 6, and if the tﬁeaty holds, it models the naﬁjﬁ?ﬁhﬁ

linear relationship exactly. This means only linear relationships would
need to be dealt with in equating. .

Using data from the Anchor Test Study (Loret, Seder, Bianchini,
Vale, 1974), bésed upon a single group of individuals who took both tests
éo be equated, Lord demonstr - :d that equating using item characteristic
curves formulated an eqaat%ﬁg line that cl@geiy colncided with the line
developed by equipercentile methods. Using £he LOGIST program (Wood et al.,

- 1976), item parameters and a single ability estimate for each individual
were obtained by combining forms. Then eétimated true scores T were
found for each test form from the relation: . _—_— 7
T ggil Py (6)

whe?e %g(a)' is the | th;EEﬁparamétgf logistic curve estimated by
LOGIST. These:eszimated true scores were then equated, and the method was
found to closely coincide with equipercentile methads using raw s:quséy

In sum, Lord's studies, involving a single grﬂup,ﬂeﬁ@nsgraze tﬁat true
score ?quatingrand equating using the estimated distribution of observed
scores closely éaincide»with the conventional method of equipercentile
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equating of raw scores. It remains to be seen which method is practically
mogt advantageous, but from a computer time point of view, the conventional

method would seem more practical if item parameters have to be estimated

for each item. If this had alrezady been done, the decision would be less

clear.

Using another data set_ from the Anchor Test Study, where representa-
tive and equivaleﬁt samples took one of the two tests, Lord was able to
equate the testsusing a number of methods. These included:

1., Because there were no overlapping students (as in the single

group) or overlapping items (as in the Anchor Test), there was

~no way to get a single ability estimate across-both tests for
an individual. Therefore an ability estimate was gotten for
each examinee on the respective test he/she took, and the
ability estimates were equated using the equipercentile method.
An advantage of such a method is that when the two tests
measure the same ability, the ability estimates have a straight
line relationship under the latent trait model used (the raw
scores would not). This allows easier extrapolation at the ex-
tremes of the distribution, where data is often scarce.

2. Using the straight line plotted to the ability estimates and
using an inverse transformation twice (see Lord, 1975a), the
curvilinear relationship between true scores may be obtained
and the scores equated.

Thus, for equivalent groups, equsting using ability level offers a
distinct advantage in that the line for equating will be sttaight; Other
ways of eqﬁating (using estimated true scores, estimated distributions of
observed scores, or equiﬁetcentilerequating using raw’scqrcs) have cufvi%
linear aqgating lines. It is as if by using ability estimatés for equating,
we afe feduciﬂg the équaciﬁg problem for non-linear tests'ta onz of linéaf
(parallel) tests.

The third and final method of data collection for equating tests

z

involves an Anchor Test. Because items. overlap, one ability estimate -

can be obtained for each examinee and then estimated true scores T are
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computed and equated as in
distribution of raw scores

method.  Both methods were

Lﬂn
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scores, and there was

s

the second design. Also, an estimated frequency
can. be obtained and equated as with the first
compared to the equipercentile method using raw

coinciding of the equating lines derived from

item characteristic curves with the raw scores than before. Lord offers
an explanarion:

entile equating of two tests to
ficient, and strictly speaking,
at

A-

an anchor test is an in
a biased and inadequate equ ing procedure for groups
. that differ in ability level.
Thus, it would appear that in this situation equs ing using item

characteristic a necessity. When the tests are not parallel,

L)
]
=
s
<
m
iH]
-
W

and the graups are not equivalent, it would appear that item character—
istic curve methods are the only adequate way of ascertaining equality of
twa te St%,

In summary, when a single group takes both tests, it would appear that
the¢ use of Iatent trait theory would be advantiapeous only if item para-
meters have already been estimated. Reguigs appear to coincide for raw
score equating and Equatlng using item chardcteristic Lufvgs and the .
decision about method will probably be based upon computer use.

-

When equivalent groups take the two tests, latent trait theory ecquating

offers a distinct advantage if the equating iz done using ability estimates, .

4 : .

for the EqudLlﬁg line will be straight and exrfapuif Dn problems minimized.

Any other methad of aquating using item charactevristic curves seems to

offer no advantage over conventional methods.

When an anchor test is used for non-equivalent groups, item character—

istic curve equating is the only justifinble method to use.

104



-102-

5o far, we have said little about the use of the Rasch model in equat=-

L

ing tests (Brigman & Bashaw, 1976; Rentz & Bashaw, 1975}. The following

points can be made:

I. The papers by Lord deal with the use of general item character-
istic curves:; that is, item parameters are not restricted. From
this point of view, use of the Rasch model can be viewed as a

special case of Lord's work.

(%]

The items must fit the assumptions of the Risfh model. 1f they
do not, it would seem a necessity that a discussion of the us
of other latent trait models be presented.

3. The Rasch procedure is based upon obtaining equating constants
for the two tests (see, Rentz & Bashaw, 1975). Two methods exist
for doing this, the item difficulty method and the ability method.
In either case, it is necessary that the same group of individuals
take both tests. Thus, the procedures can be viewed as a subsct
of our discussion of data collection methed one above. While
the simplicity of the Rasch equating procedure would seem to
warrant its use, it can onlybe used for test items that fit the
model and under situations where the same group takes both tests.

In Rentz and Bashaw (1975), the authors conclude that equating using

d with the

L]

the Rasch model involved an equating line that closely coincid

conventional method. They also mentioned that the Rasch procedure

involved less time, effort, and money (discussed as gavings). Two comments

i i 5 . . T oV e ot ,’
seem zppropriate: (1) The results confirm the results of Lord's study

using a single group, and (2) The mentioned savings may have been partially

an artifact of the complexity of the equating study. The Rasch study was 2

of the data from the Anchor Test Study, which is of a complex

o
mw

reanalys

aature, involving multiple equatings. 1t is not really known at present

whether equating using item characteristic curves on a single proup, using the

Rasch model or otherwise, always affords a savings over conven ntional methods.

fhe mentioned savings may in fact be situation specifle.
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The present state of test equating would seem to be well explicated.
Unlike some of the asther applications of la;ent trait theory, like tailaféd
testing, there are conventional methods, not using latent trait theory,
that work well in a variety of situations. Those areas where latent trait
models offer explicit advantages have been discussed. Lord (1975a, 19775)

does, however, briefly indicate two areas that need further work:

1. There needs to be more studies done using item characteristic
curves in equating, and particularly in the comparison of
equating methods using different item characteristic curve
models to conventional methods.

2. If two tests are not parallel to beginwith (i.e. have a non-linear equating

curve), one is forced into the logiec that the tests are not

equally reliable for all subgroups of examinees. Thus, by

definition, it is not proper to equate raw scores. Faced with

a choice of exact true score equating or inexact raw score

equating, one finds no criterion for choosing which to use.

A set of criteria would need to be developed for this and other
situations when a procedural choice must be made.
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Estimation of Power Scores

A speeded test is defined as one for which examinees dé not have

time to respond to some questions for which they know the answers. A
7 power test is one for which examinees have sufficient time to show
what they know. Most academic achievement tests are more speeded

for some examinees than fotfgthafs.

Occasionally the situation exists when a test, that is intended

‘to be a power test, be;ppes a speeded test. An example of this situ-
ation 1s a test that has been mistimed, i.e., examinees are ;iven
less than the specified amount of time Lo.c@mﬁletg:the test, -In this
éicuation; it would be desirable to estimate whatraﬁ examinee's score
‘would have been if the test hgd been properly timed, This score is
féféfréé\té as an exéﬁinee% power score. )

Power scorgé are not difficult to obtain if the test items are
all of equal difficulty’ and équal discriminating power. An examinee's
expected item score on each unanswered item would équal the exsminee's
prprtioﬁ‘COfrEGE score on:the items that were attempted. However,
if items vary in diffiéulgy or dissriﬁinatian, another method is
needed, Lord (1973) has discussed a method using the three-parameter
logistic model and applied it to the estimation of power scores for
21 examinees who had taken a mistimed vefbél aptitude test.

Lord's method requires not only the usual assumptions of the
three-parameter logistic model, but also it assumes that the students
answer the items in order and that they respond as thev would if

given unlimited time, {i,e., if given more time, they would not go

back and change any of their answers.
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If the test score, x, is the number of correct answers, the
expected power score for an examinee with ability level, 8, for a
set of n items is equal to thé sum of the examinee's probability of
answering each item correctly, . The probabilities are obtained from
the item characteristic curves. Therefore, if there is sufficient
data to estimate an examinee's ability score, and the item charac-
teristic curve parameters are known (or can be estimated) an exam-
inee's power score on the n test items can be estimated: It is
equal to the examinee‘s test score on the attempted items plus the
examinée's expected score on the unanswered items (found by %ummiﬁg
the examinee's probabiiizies of answering each unanswered item cor-
rectly). Suppose k is used to designate the last item attempted by
an examinee, x is the examinee's score, n 1s the ﬁumber of items in
the test, and 6 1s the examinee's estimated ability derived from the
k items attempted by the éxamineé. )Tﬁé examinee's estimated power
score 1s given by

n

x+ & P_ (B)
g=k+1 B

Lord (1973) reported the following application of his method.
Item parameters of the 90 verbal aptitude items comprising the mis-
timed test were estimated using responses obtalned from 944 students
includingrthéril miscimad studaﬂts. Abilities were estimated for 21
students from thelr responses to the items extiudiﬁg responses to Cewas
any unanswered items at the end of the test. Power scores were esti-

ma&ed usiﬁg the method described above.

_lowing properties of the es;imates could be demonstrated: : R
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Estimatas of item parameters from one group. of examinees-
closaly apprcxlmate estimatés of the same item parameters

-
- A

"2, Estimates of ability paraméters from. part of a test claqelv
apprcximate estimates Dbtained fram the entire test.

3, The power score of an. examinee on a test can be a
approximated from his dbllity estimate as Estima fram
the -same tasﬁ; : '

‘In Lord's judgment, the availahlg_ev;denﬁé,has been qﬁité favor-

1. Lord (1970a) showed good agraement between estimates af item
.77 . characteristic curves from two diffatent groups of examinees.

" 2. Correlations over .94 were thained between ability estimaiesr
‘derived from different subsets of items in one study of SAT

respanse data.

3. The Qarrelaticn between power scores and ﬂumber right scores-
has exceeded .98 in two diffgrent studies. - : e

Lord cautioned that a wide variety of empirical checks would
rhave to bé—carried out béfare dne could be sure of’all the &iféuﬁs
Stanges under wi ich the three praperties of the Estimates 115ted

abave would hald
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'§?§ Computer Prcgrams

How can cest prac;ltioners use latent. tfa;t mgdels in théir m@rk?

Fortunately, there are a number oE camputéi prggrams available for "H
estimating abil;zy and item parameters (Hambleton and Ravinélli 1972

' Kﬁlakowski and Enck 1979 Wocd and- Lard 1976 Waad Wingersky, and
rd 1976 Wright and Mead 19763, 1976b; Wright and Panchapakésan,

';969). Same details on four of the computer prcgrams, LGGI?T; CALFIT,

’BIGAi; and DATAGENg wili,bé éfavided:ﬁait.

LOGIST (Wood and Lord, 1976) aliéws EBEVUSéf:ﬁQ éstiﬁatéféxaﬁ¥-
;QEE abilities and all _parameters of :the Ehféé—péréﬁééef logistic
model. A maximum likallhood methcd is used to abtain estimates of
LhE item and ability purameters (Lord 197éa) The. item and ability :
- parameters are estimated simultaneously, For'thé'ESEimSEES'of §he A
pa ameters tg zonverga, variaus restrictions are placeﬂ on the para-

meters being estiqated. Ability estimaEES'ara scaled to have a mean

of zero and a standard deviation of ome, -~ ~ = e
VTheffollowing statistizs, repérted by Wood et al. (1975), give

some idea of the computer time required for runniﬁg on an IBM 350 55

_A-Eest of 60 items and 53@5 examinees Eaak appfoximately 230 se:onds
rper complété sﬁagai CA complete stage involves the- estimatian af both
~ ability and item parameters. A test with 85 items and 2269 éxamiﬁées.~
7”,,taak apprﬂximately 130 sacands per complete stage. Cgﬁveigénéé'was
obtainad afte: lD 15 stages.r TQ Eieve convgrgence,igertain restric— 
tions are impos ed “For example, (1) abilities for examiﬁées with
 ééto sé@?es,:péffeér éé@ras, and those who answefed less than l/Braf

the iﬁems; are not estimated, and: (2) an upper béund value is imstEd

on the estimated discriminatian parameters.
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Wood, et al. (1976) provide a ccmplete dascliption of the out-
put- from the pragram after each stage and aftér the job 1is Eampletéd_

The,autput afﬁéfAthé final stage 15 ccmpléted includes: (1) Final

item and ability estimates; (2) a summary containing various statis-

tics for each stage; and (3) the total time for the run.

Accordin

bﬁm

a write-up (Wright and Mead, 1976a) on BICAL, "The
BICAL prcgram asﬁimates the parameters of the Rasch model when the

underlyidg response prEESE is biﬁcmial . « . The algotithms,uéed

for estimating item difficuLEies and person abiliti are the cor-

e rected un;onditiﬂnal maximum likelihood procedure and a normal approx-

imation . . . In addition to estimates of difficulty and ability,

‘and tests of item fit, output includes the sta ndard errors associlated

with thése estimates, residual indices of

o]
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_1§he degree of convergence of the estimation procedures." BICAL con-

' ‘tains a data simulator which can ba_uséd to verify the functioning

of the program or to provide an éppfcpriate random background for

‘the Monte Carlo analys;s of unusual data,

' The CALFIT program has also been described by Wright and Mead

(1976b). This program performs 4 major tasks: (1) Data input and

‘7desé:ipﬁion; (2) data editing; (3) éstiﬁatioﬁ of parameters; and

‘{(4) analysic of fit.

T

The'autuut includes: (1) The.distribution of examinees by tota

Vségre; C2) the tesultg of the estimatioﬁ procp,s,_(B) the number of

iteraiians réquired for convergence; (4) the analys;s of the fit of

" the data to the Rasch mcdél (5) a summary of the fit information

in three séquences, Serlal order diffiiulty Drder; and fit order;

(5) a pl@zvggm;he Zgﬂstatiszigs, used in‘'the fit analysis, against
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thg ?fobabilityﬂéf‘a:peréaﬁ in én agility’group answering the item
correctly; (7) a plaz of the item fit mean squares againsﬁ item dif-
fi;ulty, (8) a plot of the 1gem fit mean squares against the index
of item discriminaﬁian; andvig) a'pléﬁrgffthe itém'disgriminaticn '
index against item difficultﬁ. | 7
Hambleton and Rovinelli (1972) have preduced a computer program
‘(DATAEEN) to simulate examinee item résponsa data fram ngiStiQ test:
',Nmode;s. One pufpesa of the camputer program is to allaw users tha
appertunity to study relatianships among item and examinee abillty
parameters, logistic test madels, and Eest score characteristics, A
known characteristi cs, so that robustness Etudies, studies of estima-
tion métheds, studies of scoring- méthads, aﬁd 50 on, can be conducted.
The program is designed to pfaduce a set Df ras p nse p:tterns
and ﬁest scores to represent the perfcrmanﬂe of N examinees on n
binary=scafed items_' By appropriate cholce of item aﬂd abiljty para—gi
meters iﬁrﬁhé program, it is passiblg to praduce a set of IESPOBSEV
pétterns with a distributioﬁ cf test scafas aﬁpréximating desired

mean, variance, kurtosis and skewness values. Description of the

item parameters in the logistic test mcdels used to generate the
test data are described by Lord and Novick (1968) and Hambleton and

Traub (1971). ' e

éifficulty, diszriminatien,_and guessing paramaters and sbilitv para-

meters, Parameters may be selected from either a uniform distribu-

Eiaﬁ,with,spe¢ified upper and. lower bounﬂs, or a normal distribution
with a specified mean and standard dev1aticn. The user also speci-—
fies the desired number of examinees and items, and starting numbers.
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for the random number generator,
Dutput from the prcgram 1nclud3% desired descriptlve statistics
on Qhe item parameters and estimated values on the basis of sample ;

data; a listiﬂg of the izem parameﬁers and estimatéd CDﬂVEﬁtiGnal T A
\‘n 777777 i o )

item parameters calculated%fram Ehé genéraged test data. .Also repaté

ted is a complete set of summafy statistics on the generated response

E3

fre]

patterns and test scores. Response patterns méy be eithet saved on

a data t pe or punched ocut on computer catd%.

on up to IOD items although thé number of i:ems ecan easily be in-. o s
creased by changing a few dimension statements. The program is

practically machine independent except for the random number gener-

ator., : : ' - o b;fs

ERIC *

Aruitoxt provided by Eic:



Ff_ﬁéi Commen ts
‘The gonl of . this pa aper Has EEEﬁ ib'réview the dévelgpméﬁts in
latent t:ait theory to daté; to demonstrate the applicability Qf
zlateqt tralt thagry models to sﬁegif;c easu;emegt prablems,*andr :
'finally; to point Dqt Lhe.advan g's 6f‘tﬁavlate§tgﬁrait”thé§teti*-”~ 
cal apéfcacﬁ avaf the elassigal~apﬁf§aéh for ﬁhé solutiaﬁ afiméﬁtél'Aw
Vrmgasurémant'pfoﬁlemsi5 Hnwever, the latent tralt thégrétical m@dels

are, in general mathematically more cumplax Ehaﬁ the classiéal test

madels, requite sttcﬂg assumptiﬂns that may 1imit their applicabiiity

- - to mental data sets, and iﬂ some cases, pnse probléms that are, .as-

",af yet, unresolved.

_As éoinﬁgdgbpt in tﬁe papgr,~thg létent tféit mcﬁéis havé num= -
‘efqﬁsAédvantégés over the éiéssical test models. Pthéﬁs'thé'mast;”
1mpcttant advantagé of latent trait models is *hat it is- péssible
 to éstimate an axaminea s ability on the ‘same ability scale frgm any
‘subset cf i;ems that have been fittgd to the madel This implies,r
that the ability of an Examineercan be estimafed iﬁdependently of
the partiaular :halce or the numbér of itém pé hgnee tépfg&énts a

majaf br akthrough in the area of mental measurement, A consequence

of this fact that examinées may ba ccmpared Wihh each athar evgﬁ

inthaugh they may béveitaken quite diffarévﬁ subsets . of. items » This
feature makes latent trait ‘models iﬂdispensable to the field Df
>E3ilﬂféﬂ testing whéfa_é#amineas féceiﬁe test i;ems that are matehed
‘to their ability level Viﬁ Sth.Si£ﬁatiGﬂSkthé itémé édﬁiﬁisééﬁédr)fv
to difiéren, éxaminées ill n,ﬁrbé méﬁﬁhéé on diffiéuiéy;"éﬁé $én§éM

the usual test score metric will not permit meaningful comparisons -

' of examinees. Latent trait m@daisrtéke'inta account the difficulty
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lével 6f-thé items and £éfléct ﬁ%ig iﬁ the esgimates ﬁf the’ abi]ity.
:ﬁiﬁﬂéguthe éstimates of the abilities af two examinees, whc recelve

“identical scores. on easy aﬂd diffiﬂult subtests, may differ, aﬁd hencér 7 ':,;me~;
a ﬁeaﬁingful campar ison af the examinees is passibie: A fufﬁheé
: gansequénce of the fact'that_ ability can bé‘éstimatéd iﬁdépenE 

dently of the choice of ;tgms is that, équatiﬁg scores of tests that
frﬁéasuré the same abilityfis possible., - In addizicn, the Pfﬂbleﬁ of

eanstfugting parallél fgrms of tasts is elimiﬁateé

Aﬁazhér advantagércfv latent ;rait models is that the item

parameters are invafiant 4Ccross subgr@ups of examinees chosen fram

a poyﬁlatign,af examinegs. Ttem parameters, such as item difficulty

and disarimiﬁaticﬁ, derived from classieal test theory models are’

not invariant across subgfoups. They are defined far a particular

group of" intérést and will dapend on the average biiity of. the group

b,i ng t,sggd‘ Hence, despiﬁe thair computati@nal ease, classical

item param t ,dé ﬁpg pérmii meanin gf lrggmpafiséns acf055 diffeffw;}, o
yrenﬁ populations of interest. Iﬁém-paréﬁetafs basad on latent trait o 1i}

‘mOdels, on the other hand permit campatiggng across different pDnuiv |
:1atinns of interest and. ﬂansequently are of immensa value ta Eest

e

'dgvelépers. In particulaf, invariant item pafaméters are éf f'nd—

,amantal importance 1n the develapment af item bankg and in dete:tlng

icémibias. S S ., ' T - e

A f ther prop ty inheréﬁt in 1at§nt ;rait mcdéls‘nat ‘exhibited

T by classical test models, is that it is possible to measure Ehg pre-

jicisiﬁn of the abillty estlmatas at each ab;lity level, Thus, iﬂgtéad

of praviding a standard error of measuremant that applles to all ™

examiﬁees regardless Df test sca;es, Separate estimates af errnr»f@t »

'aaeh examinee or at’ each abillty level are available throu&h thejj”'ir' 7ﬁ:

by
{




'laééﬁt ;rai; models,

Despitﬂ these advantages, there are several unfgsclved issuas ’

which néed further investigatian. Since 1atent trait models rEquife v
) m:-ﬁ'%étfaég assump i he questian that naturally arises is Ehat of the

'robustness of the 1atent trait mﬂdals. Rabustness refers to the
extent that daga cag deviate fr@m underlyiﬁg assumptién% of a iafent
t:ait model and still be fit bv the medel.- The studies prérﬁed-tE>
da;e have then pr@duted different caﬁglusians (EEE for Exsmple,
1Héﬁb;gton [1969] and Pan:hap cesan [1959]) Researchers havé‘reachad7 ;~T
diffgfgnt coﬁzlusicn% because they have used subjective methods to.
interpret the results of rabustness studies. It is obvious that the.
assumptions of any latent trait modél will never be campletely gatis;
fied by aﬁy data sat. Henge? the impaftant‘gggstiﬂns are whethefi
vlatéﬁt trait analyses pfovidé uSEful‘éummaries af éest data, 1éad'€5
Ebettezrtest score interpretations, and ecan predict appropriataly
chﬂsan criterla. When the last question was studied by Lo=d (19?43),
"Vhe ﬂbtained e#cell&nt predicﬁians. Hawever, the issue Qf rnbustness
VXiS not’ cmpletely resolved as of yet and further wark is claarly
’,needed ta resclve these. issues.' V> o
- R | ”Tha major pr@blém that remainé to be i;gé is that Df estimae
tion af parameters in latEﬁﬁ trait models A: pginted out earlier,
",»the,siﬁgltaneaug—éstimatiéﬂ of item and abillty parameters in latent :

T trait models iegds to difficulties. In'additlan, the estimates of

the item paramaters, Especlally ghat af the guessiﬁg parameter, cg;’
;’*’?’”f;"will ﬁDt be stab l f'exa”ii es with a wide range af abilitigs are.

‘ ﬁgt_used; Furthermcra,—cufrent estimat ion prccedu r q"i’i

large umber of Examinees and ltems before stable estimates E&ﬂ ba
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 ngainEd a pfablem similar to that of e timéging parameters inv
regrassinn models. The numerigal bl ems - assaciatad with the esti-~
mation prscedgreé-pregént ana;haf argé of eéncarn. |
‘7?Q£;h§f’feéééféhris éléé:l&rﬁééééd iﬁ—ﬁﬁéﬂéﬁéfe afeés; vAiéEngﬁ
it may not be pﬁssihle ‘to shaw that the maximum likelihoad ESEiﬁaEEEV
of iﬁem and ability parameters possess cptimal propertias, these
sti: 1tes may appfcximate the idéal estimates in some situatiaﬂs,
Far instanﬁé, the camparisnn of zhe uncﬂnditicnal Estimaﬁés and the
g@nditig&al estimates QE the item pa:ameters in the Rasch mgdél
_(Wiight and Daﬁg;gsﬁuin pféss) has p:avideﬂ éfﬁéaniggfu;_ins;ght into .
the nature of thE,EStimaEéS.*’TEESé,éomPSfiéﬂgé(éan be carried out

for the two- and three-parameter logistic models. (In this connec-

tinn;-it’shaﬁld bé‘péiﬁtgd out that un;onditiﬂnal'estimatés iﬂ the.
 '5ense of Bnck [1972] have not beé; ﬁbtained for the threaﬂpafameter
'lagistiz model ) Finally:"the feasibility Df Bayesian pfacedures
:Shauld be investigated more fully. Iﬂcorporatian af priaf iﬂfﬁrmaa’
“EiQﬁ in thébes;imatian procedure may pravide iﬁptqved astimatgs af
ﬁhe parﬁmetéfs and may also permit estimation of éafamététs éith a
r;smail sample size and a small number QiAit ,VkH§W§%EE; ﬁéof éﬁégis'
B fication of priérsrmay advgréély affect the astimates’énd—ﬁengeraw
"cérefgl'$£ﬁdy éf éﬁ?fé?fiéﬁéhﬁfiéfémﬁdﬁld bé"nécéSSéty;”l”'“"
In Eéﬁélusiﬂﬂi we néterthéﬁ latent‘trait ﬁhéofv afferé the prom—
ise fofbsalvingvtha prablé' that érise iﬁ méﬁtal méésufeﬁené; The
A éé;éﬁééges of the 1atent trait theoretic apgféééﬁﬁcﬁérﬁtﬁe élasgicallr
’;Eest thearetic app  ach dre obvious, It aﬁﬁéars that the ﬁajér'fgéir

tors Ehat have hindered wide spread use of 1atEﬁt tra;t thEDrEtiE

metho ds are the 1a:k of fgmilafity with thase methods on the part

117-
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- of pfaétigigﬁer5 an& the lack of usér oriented caﬁpﬁtéf ptaﬁfams;

These prablems have bean overcome . in racent yéars and hence WE can

: ) . ,
future far the measurement Qf mental abil s 3
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