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FOREWORD

The increasing contribution of mathematics to the culture of the modern
world, as well as its importance as a vital part of scientific and humanistic
education, has made it essential that the mathematics in our schools be both
well selected and well taught.

With this in mind, the various mathematical organizations in the United
States cooperated in the formation of the School Mathematics Study Group (SMSG).
SMSG includes college and university mathematicians, teachers of mathematics at
all levels, experts in education, and representatives of science and technology.
The general objective of SMSG is the improvement of the teaching of mathematics
in the schools of this country. The National Science Foundation hasiprovided
substantial funds for the support of this endeavor.

One of the prerequisites for the improvement of the teaching of mathematics
in our schools is an improved curriculum--one which takes account of the increas-
ing use of mathematics in science and technology'and in other areas of knowledge
and at the same time one which reflects recent advances in mathematics itself.
One of the first projects undertaken by SMSG was to enlist a group of outstanding
mathematicians and mathematics teachers to prepare a series of textbooks which
would illustrate such an improved curriculum.

The professional mathematicians in SMSG believe that the mathematics pre-
sented in this text is valuable for all well-educated citizens in our society
to know and that it is important for the precollege student to learn in prepara-
tion for advanced work in the field. At the same time, teachers in SMSG believe
that it is presented in such a form that it can be readily grasped by students.

In most instances the material will have a familiar note, but the presenta-
tion and the point of view will be different. Some material will be entirely
new to the traditional curriculum. This is as it should be, for mathematics is
a living and an ever-growing subject, and not a dead and frozen product of am-
tiquity. This healthy fusion of the old and the new should lead students to a
betcer understanding of the basic concepts and structure Of mathematics and
provide a firmer foundation for understanding and use of mathematics in a
scientific society.

It is not intended that this book be regarded as the only definitive way
of presenting good mathematics to students at this level. Instead, it should
be thought of as a sample of the kind of improved curriculum that we need and
as a source of suggestions for the authors of commercial textbooks. It is
sincerely hoped that these texts will lead the way toward inspiring a more
meaningful teaching of Mathematics, the Queen and Servant of the Sciences.
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PREFACE

The present volume is an experimental edition for a highschool course in

the theory of matrices and vectors. In selecting material for the text, the

School Mathematics Study Group has been mindful of the fact that this is the

last mathematics course in secondary school, the terminal course lor many

students. As citizens, they should have a sound idea of the nature of mathe

matics. This point of view has been emphasized in the Harvard report, "General

Education in a Free Society," Harvard University Press, Cambridge, 1945, which

states: "Mathematics may be defined as the science of abstract form. The dis
cernment of structure is essential, no less to the appreciation of a painting or

symphony than in the behaviour of a physical system; no less in economics than

in astronomy. Mathematics studies os.der, abstracted from the particular objects

and phenomena which exhibit it, and in a generalized form."

One of our basic aims is thus to demonstrate the structure of mathematics.

We shall not be concerned, however, with structure merely as such. Rather, we

shall exhibit some rich mathematics that is totally new to the student and

demonstrate structure as we proceed. To make abstract form a topic unto itself

often leads to a barren presentation; to discuss the structure of the already
familiar arithmetic and algebra seems forced and repetitive to the boy or girl

who is dreaming of a place in a jet age,'even in a space age.

It is important to give the student some "new" mathematics that has con

siderable vigor and vitality. Until very recently, the highschool curriculum
has been almost entire]y concerned with ideas that were developed during or

before the sixteenth and seventeenth centuries. Computers and electronic brains

are frontpage news. In order to appeal to the imagination of the student and

to expose some mathematics that is very much alive, the material must be new,

different, and bold.

Another criterion is to provide some tools that will be eminently usefuf

in the student's transition from school to college, tools that will help bridge

the gap from the manipulative spirit of highschool mathematics to the abstract

viewpoint of modern algebraic studies. Yet this material must not come from

the usual sequential courses.

A unit on matrix algebra will satisfy the foregoing criteria. As one

operation after another is defined, the structure of mathematics can be repeat

edly emphasized. Terms like group, ring, field, and isomorphism will be intro
duced when meaningful and needed for unifying concepts. Thus they will be met

in a new, appropriate, and substantial context; they will not be applied to

shopworn material. Introduced by Cayley in 1858, recognized by Heisenberg in
1925 as exactly the tool he needed to develop his revolutionary work in quantum

mechanics, employed today in such diverse ways as providing a language for
atomic physics, measuring the air flow over the wing of an airplane, and keeping

'the parts inventory at a minimum in a factory, matrices can put the student

close to the frontiers of mathematics and provide striking-examples of patterns

that arise in-the most varied circumstances. Moreover, the student meets some

mathematics emancipated from the familiar rules of arithmetic, and he learns

that it.is within his capacities to "invent" some of his own. If this study

can make mathematics more alive, then-here indeed is a promisIng path.

10



Our study of matrix algebra will involve the investigation of a significant
postulational system, which will reflect the vigor of abstract mathematics. This
is a unit in "hard" mathematics that has power and beauty. It will provide an
effective language and some dynamic concepts that will enhance the student's
ability, to handle his first college courses yet not duplicate material.

Lastly, with the objective that the intellectually vigorous students may,
in some small part, obtain an idea of what constitutes "mathematical research,"
there is appended a set of "ResLarch Exercises." These are by no means over
night homework and any one of them may well constitute a project to be executed
by several students. Such team operations are conducive to stimulating dis
course and critical thinking.



Chapter 1

MATRIX OPERATIONS

1-1. Introduction

As we have studied more and more sophisticated mathematics, we have had

occasion to use more and more sophisticated kinds of "numbers." We began with

the set of counting numbers, 1, 2, 3,.... Then, in order to make subtractions

like 3 7 possible, the system was extended to the entire set of integers,

0, + 1, + 2, + 3,.... Next, in order to make it possible to divide any number

by any nonzero number, rational numbers like 1/2, 2/3, 157/321, and 4/2 were

invented. This did not bring us to the end of our story, for, in order that

every positive number should have a square root, a cube root, a logarithm, etc.,

it was necessary to invent still more numbers: the infinite decimals or real

numbers, such as 1.4142..., 3.1415928..., and 0.13131313.... Finally, in order

that negative numbers should also have square roots, and that such quadratic

equations as

x
2

+ x + 1 = 0

should have solutions, it was necessary to invent complex numbers like

3 + 2i, 1 + ni, 4/2 + (1/37)i, and 3 + Oi.

Whenever there has seemed to be a good reason to do so, we have inventd

new sets of "numbers." For instance, in inventing complex quantities, we

began not with tbe quantities themselves but with a purpose: to find a

system of numbers each of which has a square root. When we have made one

such invention, it is not hard to realize that there is no reason to stop

inventing. Why sk4ou1d we not hope to invent many kinds of new numbers?

It is easy to invent things that do not work, but hard to invent things

that do work easy to invent things that are useless, but hard to invent

things that_are useful. The same is true of the invention of new kinds of

numbers. The hard thing is to invent useful kinds of numbers, and kinds of

numbers "that work." Nevertheless, several more or less successful new kinds

of numbers have been invented by mathematicians. .In this book, we are going

to study one of the most successful of these new kinds of numbers: the matrices.

Before we tell you what matrices are, it is well for us to emphasize their

importance. They are useful in almost every branch of science and engineering.

12,



2

A great number of the operations performed by the giant "electronic brains"

are computations with matrices. Many problems in statistics are expressed in

terms of matrices. Matrices come up in the mathematical problems of economics.

They are extremely important in the study of atomic physics; indeed, atomic

physicists express almost all their problems in. terms of matrices, and it would

not be an exaggeration to say " the 'gebra of matrices is the language of

atomic physics. Many otT

and vector algebra, whi

yery easily in terms of. m4

,ebra, such as complexnumber algebrtl

already have studied, can be Ortined

so, in studying matrices, you will bt.: saidy

ing one of the newest and most important, as well as one of the most interesting,

branches of mathematics.

Let us look at a few simple examples.

Many a baseball fan, when-he first opens the newspaper, refers to a tabula

tion similar to the following:

G AB R H

Aaron 68 280 52 109

Williams 52 194, 29 60

Mantle 60 228 51 70

Lopez 63 241 38 72

If he is a Mantle fan, he looks at the entry in the third row and fourth column

of numbers it order to learn how many hits Mantle has thus far obtained during

thc season.

You will note that we have said "row" in speaking of a horizontal array,

and "column" in speaking of a vertical array. Thus, the third row is

and the fourth column is

sort:

60 228 51 70,

109

60

70

72

An assembler of TV sets might have before him a table of the following

13
[see. 1-1]



Model A Model B Model C

Number of tubes 13 18 20

Number of speakers 2 3 4

This table indicates the number of tubes and the number of speakers used in

assembling a set of each model.

Omitting the row and column headings, let us focus our attention on the

arrays of numbers in the last two compler

68 280 52 109

52 194 29 60 13 18 20

228 51 70 2 3 4

63 241 38 72

Such arrays of entries are called matrices (singular: matrix). Thus a

matrix is a rectangular array of entries appearing in rows and columns.

Actually, the entries may be complex numbers, functions, and in appropriate

circumstances even matrices themselves; however, with a few exceptions that

will be clearly indicated, we shall confine our attention to the real numbers

'with which we are already familiar.

Some examples of matrices are the following:

4

' L3.l4 21] ' I

ol , [1/2 1/4 1/8] .

2

3

(1)

You will note here how square brackets [ are used in the mathematical

designation of matrices.

A great adiantage of this notation is the fact that we can use it in

handling large sets of numbers as single entities, thus simplifying the statement

of complicated relationships.

1-2. The Order of a Matrix

The order of a matrix is given by .stating first the number of rows and

then the number of columns in the matrix. Thus the orders of the matrices in

(1E40. 1-1]
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4

the foregoing examples (1) are respectively 2 x 3 (read "2 by 3"), 2 x 2,

4 x 1, and 1 x 3. Generally, a matrix that has m rows and n columns

is called an m x n (read "m.by n") matrix, or a matrix of order m x n.

If the number of rows is the same as the number of columns, as in the

second example above, then the matrix is square. Thus, given two linear

equations in two unknowns,

2x + 3y = 7,

lx = 2y = 0,

we observ aaL .2fficients of x and y constitute a square matrix:

[ 2 3

1 2]

When speaking of a square n x n matrix, we often refer to its order as n

rather than n x n. For example, the 2-x 2 matrix

[2 14]

I.

is a square matrix of order 2, and the 3 x 3 matrix

2

4 5 6

7 8-9

is a square matrix of order 3.

If the number of rows is 1, as in the fourth example in (1), above, thu

matrix is sometimes called a row matrix or a row vector. For example, in terms

of rectangular coordinates, a point in a plane might be designated by the row

matrix [2 3] , or a point in space by the row matrix [2 3 1] .

Similarly, a column matrix or column vector is a matrix having just one

column. Thus, the foregoing points can equally well be designated by column

matrices,

[23]or

2

1 5 -131

see. 1-2]
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and the number of men, women, and children in a family might be denoted by

3

Capital letters are often used to denote general matrices, and the

corresponding small letters with appropriate subscripts are then employed

to designate entries. Thus, we might have

[

all au au

A a
21

a
22

a
23

' B
[till b12 b13]

b
21

b
22

b
23

,

a
31

a
32

a
33

In these examples, the entries located at the intersection of the 2nd row and

3rd column are denoted by a23 and b23, respectively.

Generally, the entry located at the.intersection of the t-th row and

t-th column of matrix A is denoted by a
ij'

An m X n matrix can be denoted

compactly as [aii] Thus the foregoing matrices A and B are

A [a ij] 3 3
and a, [b ij] 2x 3'

If the order is clear.from the context or is ,itrary, the notation might be

reduced to

and b
ij]

Associated with each matrix is another matrix called its transpose, which

is often convenient to use and has interesting theoretical properties. The

transpose A
t of a matrix A is formed by interchanging its rows and columns.

For example, if

A [1 2 2
1 3

3 -a 0] ,then At = -11 .

2 0

Definition 1-1. If A = [a
ij

ie an m X n matrix, then the _trananese

1WC of A ie the n x m matrix ,B = [b ] with b
ij

= a
Ji

for each
.ij



6
j (i 1,2,...,n; j

Exercises L-2

1. (a) Obtain from a newspaper or other similar source six examplas of

information presented in matrix form.

(b) In each of your examples, state the order of the matrix.

(c) In each of the examples, suggest an alternative method (not in matrix

form) of preoenting the same information.

2. A row vector with three entries can be used to tabulate a person's age,

height, ;...d weight.

(a) Give a row vector that lists your age, height, and weight.

(b) Suggest when it might be useful to employ such a vector.

3. Let

1 2 3 4 5

8 10 12 14 16
A =

-1 -6 -6 6 3

0 3 -.7 8 7

fa) 4Ailt is the order of A?

Aame the entries in the 4th row.

(c) Pkme the entries in the 3rd column.

(d) Nome the entry a43.

(e) Milme the entry a14.

,(e) Nitme the entry a41.

=4) Write the transpose At.

4.

1 0 0

B
00 01 0

0 0 0 1

(ftl Qtat is the order of B?
17

[sec. 1-2]
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(b) Name the entries in the 3rd row.

(c) Name the entries in the 3rd column.

(d) Name the entry b12.

(e) For what values i, j is b
ij

0 0?

(f) For what values i, j is b
ij

= 0?

(g) Write the transpose Bt.

5. (a) Write a 3 x 3 matrix all of whose entries are whole numbers.

(b) Write a 3 x 4 matrix none of whose entries are whole numbers.

(c) Write a 5 x 5 matrix having all entries in its first two rows

positive, and all entries in 'ts last three rows negative.

6. (a) How many entries are there in a' 2 x 2 matrix?

(b) In a 4 x 3 matrix?

(c) In an n x n matrix?

(d) In an m x n matrix?

1-3. Equality of Matrices

Two matrices are equal provided they are of the same order and each entry

in the first is equal to the corresponding entry in the second. For example,

2
21-

[1 4 0] [ 1 2 x 2 2 2] [41 [22 [x2 11 [(x-1)(x1)]

2 8 4 4/2 16/2 8/2 - 3
8

but

[ 1 2 31
12 45

4 5 6
3 6

Definition 1-2. Two matrices A and B are equal, A = B, if and only

if they are of the same order and their corresponding entries are equal.

Thus, 1.8

[see. 1-2]
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{a ij] == [b.
rnXn ij] mxn

if and only if 71.
j
= b

ij
for each i,j (i = 1,2,...,m; ji

Using the foregoing definition of equality, we can express certain

relationships more compactly. For example, the following equation between

2 x 1 matrices,

[ 2x + [7
3xy 2]

can be employed instead of the two separate equations

and

2x + 3y = 7,

3x y = 2;

[x y a + [5 11xy ab 1 3

can be written in place of the four equations

x +y = 5, a + b = 1,

x y = 1, a b = 3.

Exercises 1-3

1. Solve the following equations:

(a)

[x + 2 ] [1
3 -y 4] '

(b) [x 2y]
]x + y 3 '

(c) [x2 y [ 1

2
x y 1 1]

19
, P

[sec. 1-31
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2. From the matrix equalities A B and B = C, would you conclude that

A = C? Why?

3. Write the matrix

if

6 [all a12 a13]

a
21

a
22

a
23

a
ij

ma 2i + 3j 4.

4. Write the matrix whose entries are the sums of the corresponding entries

of the matrices

1 0 2

2

[-3

1 and [-3 4
4 2 11-

0 1 0 0

5. Write the matrix whose entries are the differences (first minus second) of

the corresponding entries of the matrices in Exercise 4.

1-4. Addition of Matrices

We have now defined matrices and studied some of their most elementary

properties. But we have not really made them work. To do this, we must give

rules for adding and:multiplying matrices, just as was done, for example, with

complex numbers. If these numbers were defined bluntly as expressions of the

form a + bi, without the operations'of addition and multiplication, and with

out relation to the solution of such equations as

2
x + x + 1 = 0,

they would be of relatively little interest. What gives life to complex

numbers is the fact that we are able to define addition and multiplication for
, .

them in such a way that we have a whole algebra of complex numbers, which is

indeed useful and interesting. 2 0
DM, 1'0]
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The same remark applies to matrices. To give the study of matrices its

real content, we must define "sum" and "product" for matrices. In this section,

we define and study sums of matrices. Products will be considered later.

You will recall that when two complex numbers are added, for example

3 + 5i and .2 + 4i, the two real components and the two imaginary ct't:--nents

are added separately. Thus,

(3 + 5i) + (-2 + 4i) = (3 + (-2)) + (5 + 4)i = 1 +91.

If we represent the complex numbells as column vectors, we find their sum

by adding corresponding entries; thus.

T-2
4 I [ 91

This suggests the pattern used in adding matrices of the same order. The

sum of two such matrices is obtained by adding the individual entries in cor
responding positions. For example,

2 3 11 [ -4

[-1 0 4 1

2

3

11

2 = r2

0

5

3

2

2]

Since we shall not even give a rule by which matrices of different orders

could be added, we shall add two matrices only if they are of the same order.

Accordingly, two matrices that have the same order are sometimes said to be

conformable for addition. The sum has the same order as the two addends.

Defirition 1-3. The sum A + B of two m x n matrices A and B is

the m x n matrix C such that the entry c
j

in the tth row and jth
i

column of C is equal to the sum a
ij

+ b
ij

of the entries a
ij

and b
ij

in the tth r6W'and jth column of A and B, respectively.

Thus,

For instance,

[aij] mxn [bij] mxn [aii + bi.3 i
mxn.

21

(sec. 1-4]



31.

[all al21
+

bll
b
21

b
31

b12
b
22

b
32

al,

a_

+ b11

b21

1

a12 + b12

a22 b22
a
32

rb
32j

c11

c21
c31

c12

c22
c32

If we consider.all m x n matrices, with m and n fixed, as constituting

a set S
m,n

,

an element o

S
m,n

") and

and if A and B are elements of S
m,n,

then A + B is also

f this set. That is, if A e Sm,n
(read "A is an element of

B e Sm,n, then (A + B) 6 Sm,n.

In the algebra of real numbers R, the equation

a + 0 a

is satisfied for all a e R (this time, read "for all a e R" as "for.all

elements a of R"). Accordingly, we'say that 0 is the identity element for

addition in R. In the algebra of matrices, the matrices all of whose entries

'are 0 play a corresponding role. Thus,

2 31 [0
1 4 0

01
0

2

1
+ 0
+ 0

3

4
+ 01
+ 0

1231 41

Such a matrix is called a zero matrix and is denoted by O. If the order

m x n is significant we write . °mxn;
or, if the matrix is square, we might

write 0
n

, where n indicates the order of the matrix. Thus,

01 x 2 - [0 0] ,

The equation

0 2 X 3 31 [

0 0 0

0 0 0

I 0
3
= [0 0 0 .

0 0 0

]

. AAmX n
+ Om

x n mx n

0 0 0

clearly is valid I= all Amxn.

The addition of matrices is a commutative operation, as we can readily

verify. Thus,

[all a12 a13] [bll b12 br3] bll b12 b13 [all a12 al31

a
21

a
22

a
23

b b b [b b h a
21

a
22

a
2321 22 23 21 22 .23

[see, 1 JO

2,2
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In particular, the sum of the two matrices on the left is a matrix having

a
12

+ b
12 as element in the first row and second column, and the corresponding

element of the sum on the right is b12 + a12. But

a
12

+ b
12

= b
12

+ a
12'

by the commutative law for the addition of real numbers.

The foregoing observation holds generally, of course, so that we have the

following result:

Theorem 1-1. If the matrices A and B are conformable for addition,

then they satisfy the commutative law for addition:

Proof. We have

A + B = B + A.

A + B = [aiji + [b..1
13

[a.. + b
13 ij

[b.. + a..]
13 13

= [b + ía

B + A.

Thus, in terms of our usual notation, the entry in the tth row and

jth column of the sum on the left is aij + bij, and the corresponding

entry of the sum on the right is bij + aij. But

a.. + b.. = b . + a.. ,
13 13 i3 13

by the commutative law for the addition of real numbers; hence the theorem

follows from the definition (Definition 1-2) of the equality of two matrices.

The addition of conformable matrices is also associative; that is,

A + (B + C) = (A + B) + C.

2 3
(sec. 174)



13

For example,

and also

2 161 ([--21 12) 011 [15 01 421)

2 3 11
4

[-4 0 6

10 2 41 2 5 5

3 1 3 [71 1 91 '

([ 2 03 161 [-1 2 01) [1 0 41
-2 01 5 1 2

1 5 11 [1 0 4 2 5 51
-6 0 7 5 1 2] [-1 191.

We can state the associative property as a theorem and prove it, as

follows:

Theorem 1-2. If the matrices A, B, and C are conformable for addition,

then they satisfy the associative law for addition:

A + (B + C) (A + B) + C.

Proof. We note that, in terms of our usual notation, the entry in the

i-th row and j-th column of the sum on the left is a
ij

+ (b
ij

+ c. ), and

the corresponding entry Of the sum on the right is (a
ij

+ b
ij
) + c

ij.
But

aij + (bij + cij) (aij + bij) +cij.

You can complete the proof of Theorem 1-2 by telling why this last equality is

valid for all real numbers aif bif and cif
and why this equality implies

the matrix equality

A + (B + C) u. (A + B) + C.

Since it is immaterial in which order the matrices are added, we write

A + B + C for either expression:

A + (B + C) a (A + B) +Cm.A+B+ C.

[sec. 24]
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Once we know how to add numbers, it is usual to consider subtraction. You

will recall that the negative, which we might call the additive inverse, of the

real number a is denoted by -a. It satisfies the equation

a + (-a) = O.

Subtraction of matrices arises in a similar manner.

Definition 1-4. Let A be an m x n matrix. Then the negative of A,

written -A, is the m X n matrix each of whose entries is the negative of

the corresponding entry of A.

Definition 1-5. If A and B are two m X n matrices, then the

difference of A and B, designated by A - B, is the sum of A and the

-negative of B.

Thus, for A + (-B), where A and B are matrices of equal orders, we

write A - B and say that the symbols indicate that B is to be subtracted

from A. For example,

and

12 1

4_0

[ 1
t+c

3

-1]

t-c] _

4

0

[3

[1 t]
c

1

4

2

1

[0

t

-c

0

j1 -4

2]

5

'

Now we can easily prove the following theorem:

Theorem 1-3. If A and B are m X n matrices, and 0 the m x n

zero matrix, then

(a) A + (-A) = 0,

(b) - (-A) = A,

(c) -0 = 0,

(d) - (A + B) = (-A) + (-B).

25
[see. 1-4]
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Proof of Theorem 1-3 (a). The entry in the tth row and jth column of

A is, by definition, aii. Thus the entry in the tth row and jth column

:Of A + (A) is a. + (a
ij

). But a
ij

+ (a..) = 0. Hence every entry
ij ij

of A + (A) is zero; that is, A + (A) is the zero matrix.

The proofs of the remaining parts are similar and are left to the student

as exercises.

Exercisee 1-4

1. Find values x, y, a, and b that satisfy the matrix relationship

2. If

A a

[x + 3 2y 8 0 6

a + 1 4x + 6] = 2x] .

b 3 3b 2b + 4 21

3 2 1

4 5 6

0 8 3
4 6 8

and B =

3 4 8

2 6 1
0 2 31 '

4 1 8

determine the entry in the sum A + B that is at the intersection of

3.

(a) the 3rd row and 2nd column,

(b) the 1st row and 3rd column,

(c) the 4th row and 1st column..
--L

Compute

1/2
1/4

[

1/5

4. Compute

1/3 1/4[1/2

1/5 1/6 1/7

1/8 1/9 1/10

5. Compute

[1/6 1/7

1/8 1/9]

1 0 0

1 + [0 1 0] .

0 0 1

2 6

[secs 1-4]
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x v

s t 1s t
u v w u v 1w

6. (a) Does the expression

make sensa?

(b) Does the expression

2

J. 3

3 1

2

1 3

3 1

1

2

2

1

2

2

+.0
2

+ 03

make sense?

(c) What is the latter sum?

7. Compute

1 1 0 3 2 1 0 1

[

14 0

1

1

0

+ 4 17

9 6

8

14
14 8 6

1+.4 11 11

8. Compute

2 3 9 8 7 0 0 10 10 10

4
[1

5 6 +
1

6 5 4 0 0 0 10 10 10

7 8 9 3 2 1 0 0 1 10 10 10

9. Given

1 2 2 4 2

A 3 4 , B as 3 2 , and C 1 0 ,
5 6 0 1 2 4

compute the following: 27

[sec. 1-4]



(a) A + B,

(b) (A + B) + C,

(c) A + (B + C),

(d) A B,

(e) (A B) + C,

B A.

17

10. (a) In Exercise 9, consider the answers to parts (b) and (c). What law

is illustrated?

(b) In Exercise 9, consider the answers to parts (d) and (f). What con

clusion can be drawn?

11. Prove Theorem 1-3 (b).

12. Prove Theorem 1-3 (c).

13. Prove Theorem 1-3 (d).

14. Assuming that A and B are conformable for addition, prove that

At + Bt 1.1 (A + B)t.

1-5. Addition of Matrices (Concluded)

The theorems given in Section 1-4 include exact analogues of all the basic

laws of ordinary algebra, insofar as these laws refer to addition and subtraction.

We know that all of the more complicated algebraic laws concerning addition

and subtraction are consequences of these basic laws. Since the basic laws of

the addition and subtraction of matri'ces are the same as the basic laws of the

addition and subtraction of ordinary algebra, all the other laws for the

addition and subtraction of matrices must be the same as the corresponding laws

for the addition and subtraction of numbers. We can state this as follows:

Insofar as only addition and subtraction are involved,the algebra of

matrices is exactly like the ordinary algebra of numbers.

So you do not have to study the algebra of addition and subtraction of

matrices you already know it'. But now the algebra that you already know

has a new and much richer content. Formerly, it could be applied only to

numbers. Now, it can be applied to matrices of any order. Thus, we have

obtained a very considerable result with a very small effort, simply by

observing that our old algebraic laws of addition and subtraction apply not

only to numbers, but also to quite different kinds of things, namely, matrices.

This very powerful trick of putting old results in new settings has been used

many times, and often with great success, in the most modern mathematics.

[sea. 1-4]
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A good example of the general principle emphasized above is provided by

the following problem. Suppose that A and B are known matrices of the

same order. How can we solve the equation

X +A = B

for the unknown matrix X? The answer is easy. We do exactly what we learned

to do with numbers. Add the matrix -A to both sides. This gives

X + A + (-A) = B + (-A) = B - A.

Since A + (-A) = 0, and X + 0 = X, we have

X = B - A.

,This is our solution.

1. Solve the equation

for the matrix X.

2. Solve the equation

+

0

X + [0
1

for the matrix X.

If3. [x
1
x
2
x
3
] - [-6 0

Exercises 1-5

[01

0

1

0

2]

Id

1

0]
0

=

= [3

[-41

0

2

4

2

0]
1
X

1

2 3

3 4

-3] , determine [x
1
x
2
x
3
]

1

[11 + [cc2 11 1 , determine [cc2ll

2 c
3

--1 2 9 c
3

[sec. 1-5)



5.

dettsrmine x
1)

2 -1 x x
_ 1 2]

[4 0
Y1 Y2

'1 Y2.

2 that if the mat-: A, B, and C axe conformable for addition,

the equation

1 0 0

0 2 3

1 0 4

1 1 0

- 0 2 3 1=

1 0 4
1

2 1
[1 2

19

1-6. Multiplication of a Matrix by a Number
_

Once we know how to add numbers, it is customary to define.. 2x as the el)k-;

-
sum x + x, 3x as the sum 2x + x, etc. Fractional parts of x are defined

by requiring that (1/2)x + (1/2)x = x, (1/3)x + (1/3)x + (1/3)x x, etc.

All of this can readily be done with matrices. If we add two equal matricei,

the sum is clearly a matrix in which each entry is exactly twice the correspond-

ing entry in the two given matrices. _Thus

2 3] 2 3] 4 [2(2) 2(3)

-1 0 -1 0 -2 0 2(-1) 2(0)]

Likewise, for three equal matrices we have

[2]. 03] + [_12 g] (3)]

[6 9 3(2) 3(3)

-3 0] [3(-1) 3(0)]

Each of the above sums may be considered to be the product of a number and

a matrix. We write

30

[sec. 1-53
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3

2 3[. 1

-1 0

[ 4 61

-2 0

[2 3 1 6 9

71 0 -3 0

1 1
-A + -A =
2 2

deI±r tt rix (112)A, is clearly satisfied by the matrix each of whame

entrx. memac:ly 1/2 the corresponding entry of A; the equation

1 1 1
-A + -A + -A = A,
3 3 3

dear: t c watrix (1/3)A, is clearly satisfied by the matrix each of whose

entri L2 ''.azar.l.tly 1/3 the corresponding entry of A.

7 iese xonsiderations lead us to make the following general definition.

L.iion 1-6. The product_ cA = Ac of a nmber c and an mx n

matrix IA 71 s the m x n matrix B such that the entry bij in the i-th

row and 1-th column of B is equal to the product caij of the number c

and th icry a
ij

in the i-th row and i-th column of A.

Thm,

For exeinp,

mxn ijj n
c = [caiji mXn .

all a
12

c a
21

a
22

a
31

a
32

call ca
12

ca
21

ca
22

.

can ca
32

Note that 'here we have defined the product of a matrix by a number, not

the product af two matrices. It is possible also to define the product of two

matrices; this will be done in Section 1-7.

Net4 we may state the following theorem about products of matrices by

(sec. 1-6]
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=there .

Theorem 1-4. If A and B are m x n matrt.za*, and x and y are

xmmbers, then

x(yA) = (xy)A,

(x+y)A=xA+yi

(-1)A = 7 A,

x(A + B) = xA +LT..

xf2.

(f) OA = 0.

Part (e) states that the product of a number arl.the zero matrix"is the

izero matrix, and part (f) states that the product of .1.tr zero timber and any

matrix is the zero matrix.

Proof of Theorem 1-4 (d). The entry in the tth row and ith column of

the matrix A + B is a
ij

i.b
ij.

The entry in the tth row and ith column

of matrix x(A + B) is therefore,_by definition, x(aij + bij). Mow the_entry

in the tth row and ith column of the matrix xA is xa
ij'

that in the

tth row and ith column of the matrix xB is xb
ij

. Thus the entry in the

tth row and jth column of :he matrix sxA + xla is xaij + xbij. Since the

entries are numbers and, ior all numbers) a(b c) = ab + ac, we have

x(a
ij

+ b
ij

) = xa
ij

+ xb
ij

,

so that each entry in the matrix x(A + B) is the same as the corresponding

entry of the matrix xA + xB. Hence,

x(A + B) xA xB.

The other parts of Theorem 1.4 may be proved in

When We studied the laws governing the addition

matrices, we saw that they were parallel to the laws

subtraction in ordinary algebra. The situation when

a atailar lway.

and subtraction of

governbalvaddition and

we come to the multiplica

tion of matrices by numbers is rather similar, but not exactly titm same.

[sec. 14]
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various parts af Tioorem 1-4 1-7,laemble the basic 7algebrai.: laws for multiplica

tion very closely. as, muuy af the more complicated o:-dinary algebraic laws

and procedures govar ...ng multiplication still remain correct for expressions

involving the mult-l:.itation of matrices by numbers. 1,.-_,,difference is that:while

the product oi a numeEr by -a fl.kimer is a number, the trruct of a matrix

1,-7 a number is not number but a matrix.

We are now ablE :o solva scmamatrix equations inv:_.;ing addition,

aubtraction, and multiplicaziam b:7- a number. Let us-- lamv,. _at an example.

Suppose we want to so1 7a thE equation

rl 2 1 0 0

2 X + 1 2 = 3X + 0 0 0

0 0 1 // 0 0 1

We first perform the indicated multiplication by 2, in accordance with part

(d) of the stove theorem, to get

2 4 6 1 0

2X + 0 2 41 = 3X + [0 0 0] .

0 0 2 0 0 1

Then we add 2X to both sidas of the equation to obtain

[-2

0

0

4
2
0

6
41
2

=

1

3X + 2X + [0
0

0

0

0

0

01 .

1

Next we use part (b) of the theorem to find that 3X + 2X = 5X, so that

[-2

0

0

4
2
0

6
2

= 5X +
1

[0
0

0

0

0

0

01 .

1

Adding

to both.sides, we fInd that

1 0 0

[0 0 0

0 0 11

3 3

(sec. 1-6)
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-3 -4 -6
0 -2 -41 = 5X.
0 0 -3

LzLUplying both sites qpf this

txre theorem that

',1 =

mIriq is our solution.

I. For

[2 -47
'

A =
1 0 4i

last equation by

-3/5 -4/5 -6/5
0 -2/5 -4/5
0 0 -3/5

[

Exercises 1-6

1/5,

and

we see

C =

by part (a) of

[3 0 5]
'

determine the result of the following operations:

(a) 2A B + C, (c) 7A - 2(B C),

(b) 3A - 4B 2C, (d) 3(A - 2B + 3C).

For

-
.... 0

2

, B =
3
[3
6

3

0

9

3

51 ,

-1
and C =

4
[5
7

4

-1
8

4
01

-1

determine=aelresuIt of the following operations:

2A-- '3,2.± C. (c) 7A - 2(12.- C),

(t)'. 3A-60 +-9C, (d) 3(A - 2B

'

3. Let A, B, and be the matrices of Exercise 2. SOlirethe equation

=-3(X + (2X +B)) + C,

[sec. 1-6)
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giving Lil thf_ 3tepo in detail, and justifying each step.

4. Let A, B, aux. C be the matrices of Exercise 2. Solve the equation

5.

6.

Prove Theorem

?rove Thefree 1-4

2.(X

'a).

B) =
1

3(X ± (X 4. A)) C.
2

1-7. Multiplicatior cf Matrices

Thus far, we have defined and studied the addition and subtraction of

matrices and the multiplication of a matrix by a number. We still have not

defined the producac_4: two matrip*. Since the formal definition is samewhat

complicated and may at first seem odd, let na look at a simple practical problem

that will lea±-us tc operate witt Ir.wo matrices in the way that we shall

ultimately call mulniplication.

In Secnion 1-1, the number al tubes and the number of speakers used in

assembling 71n, sets ef three different models were specified by e table:

Number of tubes

Number of speakers

model_A Model B Model C

13 18 20

3 4

"This array vitt ae called the partsrensetlazatrEx.

SuAinse orioca were:received in 2anuary-for 22 nets of moCA. A, 24 sets

Z1714: ILSE= of,model C; and. in February Ear 6 sets ;..f model A,

]:2mE-.T.mmdel E. and.9 -of-model C. We can arrange the inforMatic in the form

of a-a4a:r13.-c-

January, February

Model A 12 6

Model B 24 12

Model C. 12 ?

Thics will be caned the setspezmaath matrix.

[sec..1-C.
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To determine the number of tubes and speakers required in each of the

months for these orders, it is clear -that we must use both sets of information.

For instance, to compute the number of tubes needed ta January, we multiply each

entry in the 1st row of the parts-per-set matrix by the corresponding entry in

the 1st column of the sets-per-month matrix, and then add the three products.

Thus, the number of tubes requireC in January is

13(12) + 2.2,(24) + 20(12) = 828.

To compute the n=tmr of speakers nded in January, welnultiply each entry

in the 2nd row of the parts-per-set mratrix by the corresponding entry in the

1st column of the sets-per-month mat:x and then add the products. Thus, the

number of speakers for January is

2(12) + 3(24) + 4(12) = 1'

For February, first we multiply the 1..nzries from the 'Lst row of the parts-per-

set matrix by the corresponding eatrie9 from the 2nd cclumnt of the sets-per-

month -matrix and add to determine the nanher of tubes; secondly, we multiply

the entries from the 2nd row od: the T...-....y-per-fmat=±x'hy the corresponding

entees from the 2nd tolummn of the ets-per-imartEmotrtx end add to determine

the nuMber of sperAcenrs. Thus lt±R numbers of tubes au1e speakers for February

are, respectively,

and

13(C + 20(9)

2(6) + 3(11) + 4(9) = 84-

We can arrame the four sums i. an array, which we shall call the parts-

per-month

Number of. t111-FPfl5,

:Numbe:r of _speakers

January Pebruary

828 474

144 84

36
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Can we now represent our "operation" in equation form? Let us try:

[13 18
224 12' =

828 474

2 3 4
12 9

144 84]

We have "multiplied" the partsperset matrix by the setspermonth matrix to

get just what should be expected, the partspermonth matrix!

Note that, in Equation (1), 828 equals the sum of the products cf the

entries in the 1st row of the left-41and factor by the corresponding entries

in the 1st column of the righthand factor. Likewise, 474 equals the sum of

the,products of the entries in the 1st row of the lefthand factor by the

corresponding entries in the 2nd column of the righthand factor, and so on.

Consider the "product" matrix

in the symbolic form,

[828 4741
144 84

a a,
21 Z2

(1)

The subscripts indicate the row and column in which the entry appears; they

also indicate the row and the column of the two factor matrices that are

combined to get that entry. Thus, the entry a21 in the 2nd row and 1st

column is found by adding the products formed when the entries in the 2nd

row of the lefthand factor are multiplied by the corresponding entries in the

1st column of the righthand factor. The most concise description of the

process is: "MUltiply row by column."

The description, "Multiply row by column," of the pattern in the foregoing

simple practical problem serves as our guide in establishing the general rule

for the multiplication of two matrices. Very simply the rule is to multiply

entries of a row by corresponding entries of a column and then add the products.

Thus, given two matrices A and B, to find the entry in the ith row and

jth column of the product matrix AB, multiply each entry in the ith row of

the leftband factor A by the corresponding entry in the jth column of the

;righthand factor B, and then add all the resulting terms. Since there must

37
(see. 1-7)
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be an entry in each row of the lefthand factor to match with each entry in a

column of the righthand factor, and conversely, it follows that the product

is not defined unless the number of columns in the lefthand factor is equal

to the number of rows in the righthand factor. When the number of columns

in the lefthand factor equals the number of rows in the righthand factor,

..the matrices are conformable for multiplication.

A diagram can aid understanding; see Figure 1-1.

A

4'1
n

AB

n

Figure 1-1. Matrices A and B that are.conformable
for multiplication. The number of columns of A must
be equal to the nnmber of rows of B. Then the product

AB has the same number of rows as A and the same
number of colums as B.

An entry in the product AB is found by multiplying each of the p

entries in a row of A by the corresponding one of the p entries in the

column of B and taking the sum; see Figure 1-2.

38

[sec. 1-7]
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ith row of A

A

14- n

jth
column
of

Position of
entry c

ij

C = AB

n

Figure 1-2. Determination of an entry in the product
AB of matrices A and B that are conformable for

multiplication.

Thus, for,the matrices

1

[

A = 4
7

2

5

8

6

9

and B =
1

2

4

0

1

1

to form the product AB, we canpute as follows:

[sec. 1..7]
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Determining one entry of the product after another in this way, we finally

obtain the com;lete answer for the product AB:

1 2 0 17 5

AB = 4 5 6 2 11 = 38 111 .

7 8 9 4 1 59 17

(Che=k each of :=1-.e entries of the answer yourself!) To get the answer, 18

mulrilications mid 12 additions of pairs of numbers are necessary. It might

help to think of the first matrix in terms of its rows,

A = R
2

R
3

and exe second in terms of its columns,

Them tae. pminduct appears.as

R2

R
3_

B.

[C1 C2] =

2]

[
R1C1

R2C1

R3C1

R1C2

R2C2

R3C2

AB = .

Eere, of course, RIC1 (for example) represents not a product but a sum of

R
1
C
1
= (1)(1) + (2)(2) + (3)(4) = 17.

The sydhal R3C2 represents the entry in the 3rd row and 2nd column, and you

calm decide for -yourself what symbol represents the entry in the ith row and

irihe column of the product.

Here are some more examples:

4 0
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1 2

(a) 3 1

1 2

(b)

(c)

1 2
1(1) + 2(4) 1(2) + 2(0) 1(3) + 2(1)

3(1) + 1(4) 3(2) + 1(0) 3(3) + 1(1)
4 0 1 1(1) + 2(4) 1(2) + 2(0) 1(3) + 2(1)

[9 2 5

7 6 10 I ,
7 2 1

2

[1 7 3] [4 42 [1(2) + 7(4) + 3(1)] Re [33] ,

1

2(1) 2(7) 2(3)
t 41[1 7 3] as [4(1) 4(7) 4(3)1
1 1(1) 1(7) 1(3)

[2 14 6
4 28 12 I .

1 7 3

Let us now proceed to define multiplication formally.

Definition 1-7. Let

A is [ail] and B Ca [ jk] px n

be matrices of order m x p and p x n, respectively. The product AB

is the matrix of order in x n, of which the entry in the ith row and the

jth column is the sum of the products formed by multiplying entries of the

ith row of A by corresponding entriec of the jth column of B.

The definition of the product of two matrices can be expressed in terms

of the " E notation" for sums. Recall that, in the " notation," we write

the sum

of p numbers as

S X1 + X2 + + X



For example,

Jra

.2 2 2 2 2 2
j = 1 + 2 + 3 + 4 + 5 = 55.

Again, the familiar formula for the sum of the first p positive integers,

Can be expressed as

1 + 2 + + p P(P 1)

P(P + 1)

j=1 2

In this notation, the sum

is expressed as

a
31

b
14

+ a
32

b
24

+ 1- a b
3p p4

E a
3j
.b .

j4

You will recognize this as the element in the third row and fourth column of

the matrix AB. More generally,

is expressed as

a b
lk

+ a
12

b
2k

+ .1- a
ip

b
pk

E a ijbjk;

this sum is the element in the ith row and kth column of AB. Thus we can

express Definition 1-7 more compactly as follows:

4 2
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Definition 1-7'. Let

A [a ij] mx p
and B [bjk]

p X n

be matrices of order m x p and p x n, respectively. The product AB is

the matrix of order m x n, given by

r
AB [aij] mxp {bjk] px n ajd mx n

ijbj1)] Lcik mx n
o

Vote that we have defined the product of two matrices only when the number

,of columns of the lefthand factor is the same as the number of rows of the

righthand factor. Also note that the number of rows in the product is the

same as the number of rows in the left-hand factor, and that the number of

columns in the product is the same as the number of columns in the righthand

factor.

1. Let

Exercises 1-7

[

0 2B a 1 1
1 0 111

C a

2

4 5

1 0

3

6

1

, and D a 2

3
1
2

3
.

State the orders of each of the following matrices:

(a)

(b)

(c)

AB,

DA,

AD,

(e)

(g)

BD,

D(AB),

(CB)(DA).

(d) CB, (h) B(DA).

2. Perform the following matrix multiplication, where possible:

(sac. 1-73

4 3



(a)

(b)

(c)

(e)

(f)

2 3

[1 2

121
3 4

2 0]

4 2
2

(d) 36 151 [-1 2

[ 4 21 [1
1 3 0

[1 2 3

0 2 1

3. Let X = [2 2

3 4] ,

46 ,

[
3 5

3 4
01 '

2 3 4

2 1 61

[4 2

6 1 31

4] , Y = [0 1 2] ,

5 1
U = 1_0 , and W = [41 .

1 2

Compute the following:

(a) 5UX,

(b) (541) (3Y) ,

(c) 5XU (2X Y)W,

(d) XU + YW,

(e) (U W)(X + Y),

(f) (X + Y)(U W).

4. Perform the following matrix multiplications:

[31 Od [26 041

[1

0 x2

(b) 0 1 0 y1 y2 y3

0 0 1 zl z
2

z
3

_
rl r2 r3 2 0

1
(c) [s. s

2
s
3

0 2

t, t, t3 0 0
' . '

0 ,

2

4 4

[see. 1-7]
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(d)

1

0

a 0

0

0

0

0

a:

al

b
1

c
1

a
2

b
2

c

'

0 0 X1 X2 X3

(e) 0 b
1

0
Y1 Y2 Y3

0 0 0 z
1

z
2

z
3_

2 1 0

(f) 2 1 2 1 0 0 ,
1 3 1 0 0 1

1 121
(g) 1 0

[0

0

0 0 1

5. For the matrices

A
[1

=
0 ' B '

and C = 2 ,

3

test the rule that (AB)C = A(BC).

6. Let

Compute

(a) AB,

(b) ABt,

(c) BBt,

(d) (AB)Bt,

(e) A(B8t),

[1 2 3456
7 8 9

and B =
1

[-1
2

0

0

0

1
11 .
1

(f) A(B + Bt),

(g) A(B Bt),

(h) AB ABt,

(i) AA BB -I- BY,
(j) (AA)A.

7. Let I denote the identity matrix of order 3 (see page 46):

1 0 0

I = [0 1. 01 .
0 0 1

(see. 1-7)
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Let A and D be as in ExertAse 6. Compute AI, BI, and BtI. Compute

(AI)I and ((AI)I)I.

. Let

A =
[1 3 2]

nd B = [1 21 .

1 2 1
1

Find (AB)t and Bt At.

9. For a certain manufacturing plant, the following information is given:

Cost

Part 1

Part 2

Part 3

Part 1 Part 2 Part 3

2 3 5

Subassembly 1 Subassembly 2

4

3

7

1

5

2

Model 1 Model 2 Mod.: 2!

Subassembly 1 2 1 2

Subassembly 2 3 4 5

Day 1 Day 2 Day 3

Model 1 7 8 8

Model 2 3 4 , 5

Model 3 3 5 6

Determine the partspermodel matrix and the costperday matrix.

1,8. Properties of Matrix Multiplication

We have learned that insofar as only addition and subtraction are involved,

the algebra of matrices is exactly like the ordinary algebra of numbers; see

Section 1-5. At this moment, we might be concerned about multiplication since

the definition seems a bit unusual. Is the algebra of matrices like the

(g1,00. 1-7)
46
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ordinary algebra of numbers insofar as multiplication is concerned?

Let us consider an example that will yield an answer to the foregoing

question. Let

[0 0] [0 1
A = and B =

1 0 0 0]

If we compute AB, we find

[0 0
AB =

0 1]

Now, if we reverse the order of the factors and compute BA, we fio

[1 0
BA =

0 0]

Thus AB and BA are different matrices:).

For anot=ar example, let

1 2

A = 3 11 and- B =
1 2

Then

1(1) + 2(4)

[

AB = 3 1 [
4 01

1 2 3
3(1) + 1(4)

1 2 1(1) + 2(4)

while

[1 2

1 2
; [1(1) + 2(3)

0 1
BA =

4(1) + 0(3)

1 2

4 0

1(2)

3(2)
1(2)

+ 3(-1)
+ 1(-1)

+ 2(0)
+ 1(0)
+ 2(0)

1(2)

4(2)

1(3)

3(3)

1(3)

+ 2(1)
+ 0(1)

+ 2(1)
+ 1(1)
+ 2(1)

4. 3(2)]

+ 1(2)

=
9

7

7

[4
4 3

2

6 10

2 1

10]

Again AB and BA are different matrices; they are not even of the same order:

Thus we have a first difference between matrix algebra and ordinary

algebra, and a very significant difference it is indeed. When we multiply real

numbers, we can rearrange factors since the commutative law holds; For all

x e R and y e R, we have xy = yx. When we multiply matrices, we have no

(sec. 1-8)
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such law and we must consequently be careful to take the factors in the order

given. We must consequently distinguish between the result of multiplying B

on the right by A to get BA, and the result of multiplying B on the left

by A to get AB. In the algebra of numbers, these two operations of "right

multiplication" and "left multiplication" are the same; in matrix algebra, they

are not necessarily the same.

Let us explore some more differences: Let

[3 1] [-1 3
A = and B =

2 3 9]

Patently, A 0 0 .and B 0. But if we compute AB, we obtain

[: 12] [-3

thus, we find

Then

AB = 0. Again,

A =

AB =

1

1

1

1

1

1

let

2 0

1 01
4 0

2

1 0

4 0

and

0

0 0

1 4

B =

0

01

9

0 9

[0 0

1 4

0

= [0
0

0

01
9

0

0

0

.'

0 .

0

The second major difference between ordinary algebra and matrix algebra is

that the product of two matrices can be a zero matrix without either factor

being a zero matrix.

The breakdown for matrix algebra of the law that xy = yx And of the law

that xy = 0 only if either x or y is zero causes additional differences.

For instance, for real numbers we know that if ab = ac, and a 54 0,

then b = c. This property is called the cancellation law for multiplication.

.Proof. We divided the proof into simple steps:

(a) ab = ac,

(b) ab ac = 0,

(c) a(b c) = 0,

[sec. 1-8]
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(d) b c = 0,

(e) b = c.

For matri,s, the above step from (c) to (d) fails and the proof is not

valid. In fact, AB can be equal to AC, with A 0 0, yet B 0 C. Thus, let

Then

and

but

A =

1

1

2

1

4

0

01

0

, B
1

[1
2

2

1

2

3

11
2

, and C

1

1

1

2

1

1

3

"1 I
1

3 4 1

AB = 2 3 2 = AC,
3 2 7

A00,

B 0 C.

Let us consider another difference. We know that a real number a can

have at most two square roots; that is, there are at most two roots of the

equation xx = a.

Proof. Again, we give the simple steps of the proof:

(a) Suppose that yy = a; then

(b) xx 7 yy,

(c) xx yy = 0,

(d) (x y)(x y) = xx (yx xy) yy,

(e) yx = xy.

(f) From (d) and (e), (x y)(x y) = xx yy.

(g) From (c) and (f), (x y)(x y) = 0.

(h) Therefore, either x y = 0 or x y = 0.

(i) Therefore, either x = y or x = y.

For matrices, statement (e) is false, and therefore the steps to (0 and

(g) are invalid. Even if (g) were valid, the step from (g) to (h) fails.

[sec. 1-8)
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Therefore, the foregoing proof is invalid if we try to apply it to matrices. In

fact, it is false that a matrix can have at most two square roots: We have

Thus the matrix

[

p0.

[1
0

[-1

0

-1
0

01
1

01
-1

0]

0]
-1

[1

0

[1

0

[-1

0

1

[10]
-1

0

1]

[1
0

0

1

[0

0

_1] '

0

r.I '

1
'

[4 0

0 -1] [e 1]

I =
[01 01]

has the four different square roots

[1 [a
and L =

[-1 0

0 1 ' 0 -1: 0 1] ' 0 -1]

There are more! Given any number x 0, we have

[ ()1/xx
0

0

11x
xi

0

[1
0 11

By giving x any one of an infinity of different real values, we obtain an

infinity of different square roots of the matrix I:

[0

1/2 0 '

1 etc.0 1/3

3 0 '

0

'[-1/4
-4
0]

Thus the very simple 2 x 2 matrix I has infinitely many distinct square

roots! You can see, then, that the fact that a real or complex number has at

most two square roots is by no means trivial.
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1. Let

Calculate:

(a) AB,

(b) BA,

(c) (AB)A,

Exercises 1-8

42

A
1

= and B =

(d) (BA)A,

(e) (BA)B,

B(BA),

1 01

(g) A(AB),

(h) ((BA)A)B,

(i) ((AB)A)B.

2. Make the calculations of Exercise 1 for the matrices

1 2 3 1 0 1
A = [4 5 61 and B = 1 0 11

7 8 9 1 1 1
3. Let A and B be as in,Exercise 2, and let

[1 0 0

0 1 01 .

0 0 1

Calculate AI, IA, BI, IB, and (AI)B.

4. Let

[1 11 {1 0
A = and B =

0 2 1 2]

Show by computation that

(a) (A + B)(A + B) 0 A2 + 2AB + B2,

(b) (A +B)(A B) 0 A2 B2,

where A
2

and B
2

denote AA and BB, respectively.

5. Let

[1 0 0

0 2 01 and B =
0 0 3

51
[sec. 1-8]

2

0

0
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2

0

0
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.



Calculate A2, A3, B2, B3, AB
3

, A
2
B, where A

3
denotes A(AA).

6. Find at least 8 square roots of the matrix

1 0 0

I = 0 1 0 .

0 0 1

7. Show that the matrix

[0 0
A =

1 01

satisfies the equation

equation can you find?

A
2

= 0. How many 2 x 2

8. Show that the matrix

0 0 0

A = 1 0 0

0 1 0

satisfies the equation A
3

= 0.

41.

matrices satisfying this

1.-9. Properties of Matrix Multiplication (Concluded)

We have seen that VRO basic laws governing multiplication in the algebra

of ordinary numbers break down when it comes to matrices. The commutative law

and the cancellation law do not hold. At this point, you might fear a total

collapse of all the other familiar laws. This is not the case. Aside from the

two laws mentioned, and the fact that, as we shall see later, many matrices do

not have multiplicative inverses (reciprocals), the other basic laws of

ordinary algebra g6nerally remain valid for matrices. The associative law

holds for the multiplication of matrices and there are distributive laws that

unite addition and multiplication.

A few examples will aid us in understanding the laws.

Let

[1 0 [2 0 [-.1 2
A = B = And C =

1 1] ' 1 1] ' 3 1]

[sec. 1-8)
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Then

and

1 01 ([ 2 0 [.-1 2 I)
A(BC) = [i

[1 [-2 4] [-2 4
1 1 2 3 0 7] '

(1.11 01] [f. 010 [1. fl
(AB)C =

Thus, in this case,

[23 il [ 1

[-2
0 7]

A(BC) = (AB)C.

Again,

A(B + C) =
[1

1

1

01

0

11
1

[4

2

2

2]4]
0

[1
5

1
3

2

2

1

'

and

KB + AC = [1[21 1 4. [1 [-3 ij
12 0]

[1 3] [15 24] '3 1

so that also

A(B + C) = AB + AC. (1)

Since multiplication is not commutative, we cannot conclude from Equation

(1) that the distributive principle is valid with the factor A on the right

band side of B + C. Having illustrated the lefthand distributive law, we

(see. 1-9)
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now illustrate the righthand distributive law with the following example:

We have

(B + C)A =
(t21 131

I-.

1
211) [t

0]

3
1

and

1 2

[4 2.1[1

12
BA + CA =

1 1

-[2 0

21

1

11

[1

1

0

0]
t1

1

4

2

1

[36 221

3

6

2

2

Thus,

(B + C)A = BA + CA.

You might note, in passing, that, in the above example,

A(B + C) (B + C)A.

These properties of matrix multiplication can be expressed as theorems,

as follows.

Theorem 1-5. If

then

A = [a..
ij mx p' B [bjk] px n'

and C =
[ckh] n q'

Proof. (Optional.) We have

(AB)C = A(BC).

5 4
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[Cil aiJbj")] m x n

AB = $

(AB)C = [ i
k=1 CE=1 alibik) m x q

;

P

BC = [(n bikckh) 1
p x q

I

A(BC) =
[P .

Z a bjkckn)
m x q

Since the order of addition is arbitrary, we know that

Inp
cknl = Z.

k=1 C=1 mx q
a
i3 ik

c
kl)1

mx q

Hence,

(AB)C = A(BC) .

Theorem 1-6. If

A = [a
ii] I" B [ bjd px 1.1, and C

_Pc p x n'

then A(B + C) = AB + BC.

Proof. . (Optional.) We have

(B + C) = [b.
k

+ c.
3 3k] px n'

[ P
A(B + C) = Z a.. (b . + c . )

13 3k 3k

= [
P

Z
j=1

a..b.
13 Jk

+
P

Z
j=1 aijcjk ,m x n

[sec. 1-9]
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j1
a
ij

b
jk

= mXn

= AB + AC.

Hence,

A(B + C) = AB + AC.

Theorem 1-7. If

i=
a c

mX n

B [13 ik] pxns C ° pj I px and A = [a. .1kJ nXq

then (B + C)A = BA + CA.

Proof. The proof is similar to that of Theorem 1-6 and will be left as

an exercise .for the student.

It shOuld be noted that if the commutative law held for matrices, it would

be unnecessary to prove Theorems 1-6 and 1-7 separately, since the two state

ments

and

A(B + C) = AB + AC

(B + C)A = BA + CA

would be equivalent. For matrices, however, the two statements are not equiva

lent, even though both are true. The order of factors is most important, since

statements like

snd

7,an be false for matrices.

A(B + C) = AB + CA

(B + C)A = AB + CA

[sec. 1-9]
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Earlier we defined the zero matrix of order m x n and showed that it is

the identity element for matrix addition:

A -I- 0 = A,

where A is any matrix of order m x n. This zero matrix plays the same role

in the multiplication of matrices as the number zero does in the multiplication

of real numbers. For example, we have

12 0 31 [00 ool [0 01
= 02'

1 1. 4 0 0
0 0

Theorem 1-8. For any matrix

we have

ApXn [aij] pxn'

= 0 .omX
p
Ap

x n
= Omx

n
and A op Xn nXq pXq

The proof is easy and is left tO the student.

Now we may be wondering if there is an identity element for the multiplica

tion of matrices, namely a matrix that plays the same role as the number 1 does

in the multiplication of real numbers. (For all real numbers a, la = a = al.)

There is such a matrix, called the unit matrix, or the identity matrix for

multiplication, and denoted by the symbol I. The matrix
2'

namely,

1 0

12 [01] '

is called the unit matrix of order 2. The matrix

01

3
0 0 1

is called the unit matrix of order 3. In general, the unit matrix of order

n is the square matrix [e. j] nXn such that e = 1 for all i = j and
i ij

[see. 1-9]
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e
ij

= 0 for all i 0 j (i = 1,2,...,n; j = 1,2,...,n). We now state the

important property of the unit matrix as a theorem.

Theorem 1-9. If A is an m x n matrix, then AIn = A and ImA = A.

Proof. By definition, the entry in the ith row and jth column of the

product AI is the sum a e
lj

+ a. e + + a
in nj kj

e . Since e = 0 forn 3.2 2j

all k 0 j, all terms but one in this sum are zero and drop out. We are

left with aijejj = aij. Thus the entry in the ith row and ith column of the

'product is the same as the corresponding entry in A. Hence AIn = A. The

equality ImA = A may be proved the same way. In most situations, it is not

necessary to specify the order of the unit matrix since the order is inferred

from the context. Thus, for

we write

For example, we have

and

1. Let

IA = A = AI
n

,

IA = A = AI.

0 1
5 6 5 6

0 2

o 1 .0 3 4 =
0 0 1 5 6

Exercises 1-9

1 2

3 4
5

[ 01 00

and C =B [21 '

58
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Test the formulas

A(B C) = AB A- AC,

(B C)A = BA A- CA,

A(B C) = AB A- CA,

A(B C) = BA A- CA.

Which are correct, and which are false?

2. Let

1 0
A =

[01 00]
and B =

[

0 0]

Show that AB 0 0, but BA = 0.

?. Show that for all matrices A and B of the form

we have

[ a c d
A = and B =

43b a cl '

AB .2 BA.

Illustrate by assigning numerical values to a, b, c, and d, with

a, b, c, and d integers.

4. Find the value of x for which the following product is I:

[2 0 [x 14x 7x

0 1 0 0 1 0 .

1 2 1 x 4x 2x

5. For the matrices

0 0 0 0 0 0 0 0 0

A = 100, B = 000, and C = 200,
0 1 0 1 0 0 1 2 0

show that AB = BA, that AC CA, and that BC = CB.

6. Shox that the matrix 5 0

[sec. 1-9]



0 1 0

A = 0 0 1

1 0 0
J

satisfies the equation A
3
= I. Find at least one more solution of this

equation.

7. Show that for all matrices A of the form

we have

ab
A =

a
2

sb

A
2=0.

Illustrate by

8. Let

D =

assigning

0 1

1 0

[

]

numerical values

E = [0
' 1 0

to a and

'
and F =

b.

1 0

0 1

Compute the following:

(a) DE, (d) ED,

(b) DF, () FD,

(c) EF, (0 FE.

If AB = BA, A and B are said to be anticommutative. What con
clusions can be drawn concerning D, E, and F?

9. Show that the matrix A =
.31 2 is a solution of the equation

.A
2

5A + 71 = 0.

10. Explain why, in matrix algebra,

(A +.B) (A B) 0 A
2

B
2

except in special cases. Can you devise two matrices A and B that

will illustrate the inequality? Can you devise two matrices A and B

[sec. 1-93
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that will illustrate the special case? (Hint: Use square matrices of

order 2.)

11. Show that if V and W are n X 1 column vectors, then

Vt W = Wt V.

12. Prove that (AB)
t
= BtAt, assuming that A and B are conformable for

multiplication.

13. Using Z notation, prove the righthand distributive law (Theorem 1.7).

1-10. Summary

In this introductory chapter we have defined several operations on

matrices, such as addition and multiplication. These operations differ from

those of elementary algebra in that they cannot always be performed. Thus,

we do not add a 2 X 2 matrix to a 3 x 3 matrix; again, though a 4 x 3

matrix and a 3 x 4 matrix can be multiplied together, the product is neither

4 x 3 nor 3 x 4. More importantly, the commutative law for multiplication

and the cancellation law do not hold.

There is a third significant difference that we shall explore more fully

in later chapters but shall introduce now. Recall that the operation of

subtraction was clouely associated with that of addition. In order to solve

equations of the form

A 4. X = B,

it isconvenient to employ the additive inverse, or negative, A. Thus, if

the foregoing equation holds, then we have

X + A 4- (A) = B + (A),

X +-0 = B A,

X = B A.

As you know, every matrix A has a negative A. Now "division" is Ciosely

61
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associated with multiplication in a parallel manner. In order to solve

equations of the form

AX =B,

we would analogously employ multiplicative inverse (or reciprocal), which is
-1denoted by the symbol A

-1
. The defining property is A

-1
A = I = AA . This

enables us to solve equations of the form

AX = B.

Thus if the foregoing equation holds, and if A has a multiplicative inverse

A
-1

, then

-
A 1(AX) = A IB,

(A IA)X = A
-1

B,

IX = A -1 B,

X = A
-1

B.

Now, many matrices other than the zero matrix 0 do not possess multiplicative

inverses; for instance,

g [ 2 -31and
-2 3

are matrices of this sort. This fact constitutes a very significant difference

between the algebra of matrices and the algebra of real numbers. In the next

two chapters, we shall explore the problem of matrix inversion in depth.

Before closing this chapter, we should note that matrices arising in

scientific and industrial applications are much larger and their entries much

more complicated than has been the case in this chapter. As you can imagine,

the camputations involved when dealing with larger matrices (of order 10 or

more), which is usual in applied-work, are so extensive as to discourage their

use in hand computations. Fortunately, the recent development of high-speed

electronic computers has largely overcome this difficulty and thereby has made

it more feasible to apply matrix methods in many areas of endeavor.

[sec. ].-10)
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Chapter 2

THE ALGEBRA OF 2 x 2 MATRICES

2-1. Introduction

In Chapter 1, we considered the elementary operations of addition and

multiplication for rectangular matrices. This algebra is similar in many

respects to tLe algebra of real numbers, although there are important differ

ences. Specifically, we noted that the commutative law and the cancellation

law
do not hold for matrix multiplication, and that division is not always

possible.

With matrices, the whole problem of division is a very complex one; it is
.. _

centered around the existence of a multiplicative inverse. Let us ask a

question: If you

could you solve

were given

1 2 3 41

8 9 0 1
4 5 6 5

0 4 2 0

it for the unknown

the matrix equation

.

.

X
41 X

44

4 x 4 matrix

u12

2 0

0 2

X?

1 01 '

0 1

Do not be dismayed

if your answer is "No." Eventually, we shall learn methods of solving this

equation, but the problem is complex and lengthy. In order to understand

this problem in depth and at the same time comprehend the full significance

of the algebra we have developed so far, we shall largely confine our attention

in this chapter to a special subset of the set of all rectangular matrices;

namely, we shall consider the set of 2 x:2 square matrices.

When one stands back and takes a broad view of the many different kinds of

numbers that have been studied, one sees recurring patterns. For instance, let

us look at the rational numbers for a moment. Here is a set of numbers that we

can add and multiply. This statement is so simple that we almost take it for

granted. But it is not true of all sets, so let us give a name to the notion
-

that is involved.

Definition 2-1. A set S is said to be closed under an operation R on
a first member a of S and a second member b of S if

(i) the operation can be performed on each a and b of S,

6 3
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(ii) for each a and b of S, the result of the operation is a

member of S.

For example, the set of positive integers is not closed under the operation

of division since for some positive integers a and b the ratio a/b is not

a positive integer; neither is the set of rational numbers closed under division,

since the operation cannot be performed if b = 0; but the set of positive

rational numbers is closed under division since the quotient of two positive

rational numbers is a positive rational number.

Under addition and multiplication, the set of rational numbers satisfies

the following postulates:

The set is closed under addition.

Addition is commutative.

Addition is associative.

There is an identity member (0) for addition.

There is an additive inverse member a for each member a.

The set is closed under multiplication.

Multiplication is commutative.

Multiplication is associative.

There is an identity member (1) for multiplication.

There is a multiplicative inverse member a
-1

for each member a,

other than 0.

Multiplication is distributive over addition.

Since there exists a rational multiplicative inverse for each rational number

except 0, division (except by 0) is always possible in the algebra of

rational numbers. In other words, all equations of the form

ax = b,

where a and b are rational numbers and a 0 0, can be solved for x in

the algebra of rational numbers. For example: In order to solve the equation

6 4
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2 1

we multiply both sides of the equation by 3/2, the multiplicative inverse

of 2/3. Thus we obtain

or

3

which is a rational number.

The foregoing set of postulates is satisfied also by the set of real

numbers. Any set that satisfies such a set of postulates is called a field.

Both the set of real numbers and the set of rationals, which is a subset of

the set of real numbers, are fields under addition and multiplication. There

are many systems that have this same pattern. In each of these systems,

division (except by 0) is always possible.

Now our immediate concern is to explore the problem of division in the set

of matrices. There is no blanket answer that can readily be reached, although

there is an answer that we can find by proceeding stepwise. At first, let us

'limit our discussion to the set of 2 x 2 matrices. We do this not only to

consider division in a smaller domain, but also to study in detail the algebra

associated with this subset. A more general problem of matrix division will be

considered in Chapter 3.

Exercise's 2-1

1. Determine which of the following sets are closed under the stated

operation:

(a) the set-of integers under addition,

(b) the set of even numbers under multiplication,

(c) the set (1) under multiplication,

(d) the set of positive irrational numbers under division,

6 5
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(e) the set of integers under the operation of squaring,

(f) the set of numbers A = (x: x > 3) under addition.

2. Determine which of the following statements are true, and state which of

the indicated operations are commutative:

(a)

(b)

(c)

(d) + 11:1 = ,v5 + la', a and b positive,

(e) a b = b a, a and b real,

(f) pq = qp, p and q real,

(g) ,1711 + 2 = 2 + j.

3. Determine which of the following operations 4, defined for positive

integers in terms of addition and multiplication, are commutative:

2 3 = 3 2,

4 2 = 2 4,

3 + 2 = 2 + 3,

(a) x I y = x + 2y (for example, 2 4 3 = 2 + 6 = 8),

(b) x I y = 2xy,

(c) x 1 y = 2x + 2y,

(d) x -I y = xy2,

(e) x -I y = xY,

(f) x-Ey=x+y+ 1.

4. Determine which of the following operations *, defined for positive

integers in terms of addition and multiplication, are associative:

(a) x * y = x + 2y

(b) x * y = x + y,

(c) x * y = xy2,

(d) x * y = x,

(e) x * y =

(f) x * y = xy + 1.

5. Determine whether the operation * is distributive over the operation

4, that is, determine whether x * (y I z) = (x * y) (x * z) and

(for example, (2 * 3) * 4 = 8 * 4 = 16),

[sec. 2-1]
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(y z) * x = (y * x) 1 (z * x), where the operations 1 and * are

defined for positive integers in terms of addition and multiplication of

real numbers:

(a) xly= x+ y, x * y = xy;

1
(b) x 1 y = 2x + 2y, x * y = xy;

(c) xly= x4 y+ 1, x*y= xy.

Why is the answer the same in each case for lefthand distribution as it

is for righthand distribution?

6. In each of the following examples, determine if the specified set, under

addition and multiplication, constitutes a field:

(a) the set of all positi e numbers,

(b) the set of all rational numbers,

(c) the set of all real numbers of thd form a + b./i, where
a and b are integers,

(d) the set of all complex numbers of the form a + bi, where
a and b are real numbers and i

2-2. The Ring of 2 x 2 Matrices

Since we are confining our attention to the subset of 2 x 2 matrices,

it is very convenient to have a symbol for this subset. We let M denote the

set of all 2 x 2 matrices. If A is a member, or element, of this set, we

express this membership symbolically by A e M. Since all elements of M are

matrices, our general definitions of addition and multiplication hold for this

subset.

The set M is not a field, as defined in Section 2-1, since M does not

have all the properties of a field; for example, you saw in Chapter I. that

multiplication is not commutative in M. Thus, for

we have

[0 01 1
A = and B =

[0
1 0 0 0]

[sec. 2-1]
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[0 0 [1 0
AB = =

0 1] '

while BA
0 0]

Let us now consider a less restrictive sort of mathematical system known

as a ring; this name is usdally attributed to David Hilbert (1862-1943).

Definition 2-2. A ring is a set with two operations, called addition and

multiplication, that possesses the following properties under addition and

multiplication:

TBe set is closed under addition.

Addition is commutative.

Addition is associative.

There is an identity element for addition.

There is an additive inverse for each element.

The set is closed under multiplication.

MultiplicatiOn is associative.

Multiplication is distributive over addition.

Does the set M satisfy these properties? It seems clear that it does,

but the answer is not quite obvious. Consider the set of all real numbers.

This set is a field because there exists, among other things, an additive

inverse for each number in this set. Now the positive integers are a subset

of the real numbers. Does this subset contain an additive inverse for each

element? Since we do not have negative integers in the set under consideration,

the answer is "No"; therefore, the set of positive integers is not a field.

Thus a subset does not necessarily have the same properties as the complete

set.

To be certain that the set M is a ring, we must systematically make sure

that each ring criterion is satisfied. Fcr the most part, our proof will be a

reiteration of the material in Chapter 1, since the general properties of

matrices will be valid for the subset M of 2 X 2 matrices. The sum of two

2 x 2 matrices is a 2 x 2 matrix; that is, the set is closed under addition.

For example, 6 8
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C21 [-1 2]311

3 1
[-1 3

5 2]

The general proofs of commutativity and associativity are valid. The unit

matrix is

the zero matrix is

and the additive inverse of the matrix

is

[ac bd]

[a b

59

When we consider the multiplication 'of 2 x 2 matrices, we must first verify

that the product is an element of this set, namely a 2 x 2 matrix. Recall

that the number of rows in the product is equal to the number of rows in the

lefthand factor, and the number of columns is equal to the number of columns

in the right-fiand factor. Thus, the product of two elements of the set M

must be an element of this set, namely a 2 x 2 matrix; accordingly, the set

is closed under multiplication. For example,

11 2] [ 1 11 [-.1 1

3 4 1 1 1 1] '

The general proof of associativity is valid for elements of M, since itls valid

for rectangular matrices. Also, both of the distributive laws hold for elements

of M by the same reasoning. For example, to illustrate the associative law

for multiplication, we have 69
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and also

(133. 24] [11 110 [0). [7.1. 1] [0]. (2)]

[1 '

[1 2
[3 41 (1.11 1] [01 021) [3 24] [-1 22] 1 2

and to illustrate the lefthand distributive law, we have

[13 421 (pl

and also

[1 2 [ 1 1] 11 2] 10 21 .

1 1 3 4 1 0

[01 021)

1
11

1

[13 421

[ 2

4

[131

6 3

111

[1
34

[33.

3

7]

371

Since we have checked that each of.the ring postulates is fulfilled, we

have shown that the set M of. 2 x 2 matrices is a ring under addition and

multiplication. We state this result formally as a theorem.

Theorem 2-1. The set M of 2 x 2 matrices is a ring under addition

and multiplication.

Since the list of defining properties for a field contains all the defining

properties for a ring, it follows that every field is a ring. But the converse

statement is not true; for example, we now know that the set M of 2 X 2

matrices is a ring but not a field. The set M has one more of the field

properties, namely there is an identity element

0]
I

0 1

for multiplication in M; that is, for each A 6 M we have

IA A AI.

Thus the set M is a ring with an identity element.

(we 2-2]
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At this time, we should verify that the commutative law for multiplication

and the cancellation law are not valid in M by giving counterexamples. Thus

we have

but

[1
3

21
4

1[

-1
-1
11

[1

-1
-11
1

[1
3

2

41

-1 1

[-1 lj

-2 -2
[ 22] '

sokhat the commutative law for multiplication does not hold. Also,

[0
1

0]

0

[0

2

0]

0

[0
1

0]

0

[0

3

0

0] '

so that the cancellation law does not hold.

Exercises 2-2

1. Determine if the set of all integers is a ring under the operations of

addition and multiplication.

2. Dfl.termine which of the following sets are rings under addition and

multiplication:

(a) the set of numbers of the form a + b N/i, where a and b
are integers;

(b) the set of four fourth roots of unity, namely, +1, -/, i

And -i;

(c) the set of numbers a/2, where a is an integer.

[ a
0

] '

3. Determine if the set of all rmmatrices of the fo with a e R,
0 a

forms a ring under addition and multiplication as defined for matrices.

a2

a 0
4. Determine if the set of all matrices of the form with a e R,

0
fotms a ring under addition and multiplication as defined for matrices.

7 1
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2-3. The Uniqueness of the Multiplicative Inverse

Once again we turn our attention to the problem of matrix division. As we

have seen, this problem arises uhen we seek to solve a matrix equation of the

form

AX = C.

Let us look at a parallel equation concerning real numbers,

ax = C.

Each nonzero number a has a reciprocal fl/a, which is often designated a-1 .

6

Its defining property is aa
-1

= 1. Since multiplication of real numbers is

commutative, it follows that a
-1

a = 1. Hence if a is a nonzero number,

then there is a number b, called the multiplicative inverse of a, such that

ab = 1 = ba (b = a-1).

Given an equation ax = c, where a 0 0, the multiplicative inverse b enables

us to find a solution for x; thus,

b(a) = bc,

(ba)x = bc,

lx = bc,

x = be.

Now our question concerning division by matrices can be put in another way. If

AcM, is therea BeM for which the equation

AB = I = BA

is satisfied? We shall employ the more suggestive notation A
-1 for the in

verse, so that our question can be restated: Is there an element A
-1

e M for

which the equation

1
AA = I = A lA

7 2
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is satisfied? Since we shall often be using this defining properr,, let us

state it formally as a definition.

Definition 2-3. If A e M, then an element A
-1 of M is an inverse of

A provided

AA-
1
= I = A

-1
A.

If there were an element B corresponding to each element A e M such

that

AB = I = BA,

then we could solve all equations of the form

AX = C,

since we would have

B(AX) = BC,

(BA)X = BC,

IX = BC,

X = BC,

and clearly this value satisfies the original equation.

From the fact that there is a multiplicative inverse for every real number

except zero, we might wrongly infer a parallel conclusion for matrices. As

stated in Chapter 1, not all matrices have inverses. Our knowledge that 0

has no inverse suggests that the zero matrix 0 has no inverse. This is true,

since we have

OX =

for all X e M, so that there cannot be any X e M such that

OX = I.

73
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But there is a more fundamental difficulty than this. Let us take the

nonze6 matrix

and try to solve the equation

If we let

then we find that

AX =

A

X

El Ol[p
0 0

=

r

[01

r

s

°01

q
s

[p q

0 0]

for X e

Hence, no matter what entries we take for X, we cannot have

AX I

since the entry in the lower right-hand corner of AX is zero, and the entry

in the lower right-hand corner of I is 1.

At this point, you might be thinking that no matrix has an inverse. Do not

move too fast: Note that

This means that I is its own inverse, just as 1 is its own inverse among the

real numbers.

Also, let us note that

Thus the matrix

11/2 0 [2 0 1

0 1/2 0 2] [0
0]
1 0

0]
2

[1/2

0

0

1/2]

7 4
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las the inverse

Consequently, the equation

= 2 0A [ ]
0 2

A-1 11/2 0
0 1/21

[(2) o21

[1 21
X =

3 4

may be solved by nultiplying both sides by 1C1, thus:

[1/2 0 I [2 0] [1/2 0 I [1 2

0 1/2 0 2 0 1/2 3 4] '

[ 1 01 { 1/2 1

0 I 3/2 21 '

[ 1/2 1'

3/2 2.1

This is a specific illustration of a general pattern. Let a be any

nonzero number. Now,

I = 11

= aa
-1

= aa 1(I)(I).

Since the multiplication of real numbers and matrices is associative and

commutative, it follows that for all real numbers a and b, and all 2 x 2

matrices X and Y, we have

In particular, then,

abXY = (aX)(bY).

I

[see. 2-3]
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Since aa
-1 u aIa, we can also state that.

=

This result enables us to enumerate a large number of matrices and their in

verses. Thus, let A = al; then A
-1

= a
-1

I. For example, if a = 3 then_ _

If a u 0.2, then

A r=

A r=

3

[0

0 .2

0

0

31

0

0.2

and A-1 u.

11/3 0

0 1/3].

and A74 = 5
0 5]

At least we know that there are a great many matrices A with the property

that there ib a corresponding matrix B such that

AB = I u BA.

Before turning to the problem of finding those matrices that have inverses,

let us show first that if a matrix has an inverse, it has only one inverse;

that is, this inverse is unique. For instance, in the example directly above,

we saw.that

1 [ 5 0 0.2 0

0 5 0 0 .2]

We wish to show that there is no other inverse. Suppose that we have elements

A, B, and C of M such that

and

AB = I u BA,

AC u I u CA;

that is, A has an inverse Bp and A also has an inverse C. Mnitiply the

first of these two equations on the left by C. Then

[sec. 2-3]
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Or

C(a) = CI,

(CA)B = C,

67

since multiplication is associative and I is the unit matrix. But CA = I.

Hence

IB C,

Or

B = C.

This result is so important that we call it a theorem and state it formally:

-1
Theorem 2-2. If A E M and if there exists A

-4
, A M, .4. that

AA-
1 = I = A-

1
A,

-
then A

1
is unique; that is, there is no other solution X of the equations

AX = I = X.A.

Now we can readily show that A is the inverse of A
-1

if we know that

A .) is the inverse of A. This may seem a bit trivial, but it is important

enough to state formally and prove.

Theorem 2-3. If A C M and if A has an inverse A
-1

, then A
-1

also

has an inverse; namely, A is the inverse of A-1.

Proof. Since A-1 is the inverse of A, this means, by definition, that

AA = I = A A.

However, the statement of equality can be given in reverse order:

7 7
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A
-1

A = I = AA-
1

.

This, by ciTinition, is the statement that A is the inverse of A-1.

Exercises 2-3

1. Show that each of the following matrices does not have a multiplicative

inverse:

0
1 , (d) g(a) (b)

r0 ' 1 0] ' (c)

2. Which of the following pairs of elements of M are inverses of one

another?

( a)

(b)

(c)

(d)

(e)

[1
0

[1
2

[2
6

0

a

0

1
and

1

-1]
-g

and

1
and

4]

2
and

7]

and
11
d

[3 -1
2 -1-1

[ 1 -4
-6 2] '

0 1[

1 0] '

[ d -b
-c a]

3. Use the argument in the text to show that, since

[23 -1 [21 21]
0 ,

neither of the matrices in the 1.roduct is invertible (has an inverse).

4. Show that if a
2
+ bc 0, then

[a b] 2
= 0 ,

c -a

(sec. 2-3]
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and hence that in this case

[ac

has no inverse.

69

5. Show that if A c M, B M, B 0, and AB = 0, then A cannot hcve

an inverse. Can B have an inverse?

6. Show Ehat if A.c M, and A
2

4A = 0, then either A = 41 or A has

no inverse. (Hint: Factor the lefthand side and note Exercise 5.)

7. Show that if A C M, B M, C M, and AB = I = CA, then B = C.

8. Show by direct computation that the matrix

satisfies the equation

that is,

[ 23]

A =

A
2

2A 31 = 0,

2

[1 31 2
[(121 31 3 [10. Ql] (0) 01

9. The matrices

1 and

are invevses of one another. Are their squares also inverses? Their

transposes?

10. Since

A
2

= A.A,

A
3

= A.A.
2
= A

2
.A,

A
4

= A.A
3

= A A
3

,

[see. 2-3)

79



70

and so on, we

A
n

= I. Using

ing matrices:

(a)

can readily

this information,

0

0 -1]

0 -1
L-1 0]

demonstrate that A
n-1

is the inverse of A if

compute the inverse of each of the follow-

'

'

11.

12.

1

(c)

Let

and compute

If

B

0[
1

2

-1
01

and

B =

B
3

[

if

cos

0 =

A =

0 sin

0 cos

1200 .

[3 -4
1 -1]

el
e

'

verify that

A
2

2A + I = 0.

Does the transpose of A also satisfy this same equation?

13. Prove that if A E M, if p, q, and r are numbers, and if

pA
2

+ qA rI = 0

with r 0, then A has an inverse. (Hint: Subtract the "constant

term" rI from both members of the equation and factor the remaining terms

in the left member.)

14. Prove by direct substitution that if

[see. 2-3]
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then

X
2

(p + s)X + (ps qr)I = O.

Show that X has an inverse if and only if ps qr O. (Hint: Use

Exercise 13.)

15. Use the result of Exercise 14 to show that if X
2

= 0 then ps qr = 0

and p + s = O. (Perhaps you may have to consider several cases in the

proof.)

2-4. The Inverse of a Matrix of Order 2

At this point, we have proved that the inverse of a 2 x 2 matrix, if it

exists, is unique. Also, we know that there are some 2 x 2 matrices that

have inverses and there are some that do not have inverses. But we have not

yet developed any general methods of attacking the problem. Certainly our

algebra will lack power unless general methods are developed. We are in a

situation similar to that in which a student finds himself when he has not yet

learned the quadratic formula or the general procedure for deriving it. He can

find the roots of many quadratic equations by trial, but he has no means for

solving all these equations.

It is our,purpose now to develop a general method of determining the

inverse of a 2 x 2 matrix when it exists. We shall begin with a matrix whose

entries are specific numbers and then duplicate our procedure with a matrix

whose entries are more general. To start, we shall consider the matrix

A =
[53 =2]

and determine whether there is an inverse B such that AB = I = BA. If we let

then

or

P qB = [

r si

11 [p qi [ 1 0

5 2 r s 0 I] '

[sec. 2-3]

8 1



72

[3p -r 3q -s [1 0

sp - 2r 5q - 2s 0 1]

If these two matrices are equal, the respective entries are equal. Thus we

have four equations,

3p - r = 1, (1)

5p - 2r = 0, (2)

3q - s = 0, (3)

5q - 2s = 1. (4)

After matiplying Equation (1) by 2, we subtract Equation (2) from Equation

(1) and obtain

p = 2.

By substituting this value of p in either Equation (1) or Equation (2), we

obtain

r = 5.

Equations (3) and (4) can be solved similarly, yielding

-1 and s =

Now if we substitute these values for p, q, r, and s, we obtain

[ 2 -.1
B

5 --31

To demonstrate that B is the inverse of A, we must show that AB = I = BA.

This is easy:

[3 -1] [2 -11 [1 0] [2 -1] [3 -4

5 -2 5 -3.1 0 1 5 -3 5 -2] '

Using the notation for the inverse of a matrix introduced earlier, we may write

-1
3 -1 2 -4

[5 -21 -3]

Dec. 2-4)
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In our next step, we shall follow the same pattern as above; but now we

shall use a generai notation for our matrix A. Instead of having specific

real numbers for entries, we let

[a b
A =

c d]

As before, we represent the inverse, if it exists, as

Assuming AB

This matrix

= I,

a b]cdrs-[

equation

we have

[p q] [ap

may

ap + br

cp + dr

be written

= 1,

= 0,

B =
r s

+ br aq + bs]
cp + dr cq + ds

as four equations,

(5) aq +

(6) cq +

bs =

ds =

[1
0

0,

1.

0

11

(7)

(8)

Since we wish to find values for p, q, r, and s, in terms of the real

numbers a, b, c, and d, um multiply Equation (5) by d, Equation (6) by b,

and then subtract. We obtain

adp - bcp = d,

or

(ad - bc)p = d.

Repeating this process, using appropriate pairs of equations, we obtain

(ad - bc)q = (ad - bc)r = -c, (ad - bc)s = a.

Should it happen that ad - bc = 0, then it follows from the four equa-

tions, above, that a = b = c = d = 0, so that A = 0.

We have seen in Section 2.3 that the zero matrix does not have an inverse.

(sec. 2-4)
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Hence if Ad bo = 0 We have a contradiction of the assumption that the matrix

A has an inverse B. In other words, if A has an inverse, then ad - bc 0 0.

Temporarily, let us denote the number ad - bc by h. Now if h 0 0, we

may Write

a
p

h q
r -.

h '

Bubaritutiog these values appropriately in B, we obtain

-Di 1 d -b
B c a ,-c a .1

In °rder co show

AB

we mu$t 81no make

BA=

The tact ,;hat the

that

[a
c

this

b]
d

sure

d
h

_c
h

-

relationship

matrix

d

c

that

b

1-1acd
h
-

b

a

17;

BA =

a[

BA

is

I,

b

the

= I

inverse of A,

-ab+abl

we check:

[1 01
0 1

= I.

[1 0]
" = I.

0 1

relationship AB = I

cd-cd -bc+ad

thus:

ad-bc bd-bd
h h

-ac+ac -bc+ad
h h

/...

follows from the

is quite Oi&nificant. While the definition of the inverse'demands the existence

and equall-tY Of What ere called left and right inverses, we have shown that for

2 74 marrices the existence of one implies the existence of the other and that

ist thenif they elc they are, in fact, the same. Since the multiplication of

maCrices is not generally commutatIve, we might have expected otherwise.

We Pall Stat. ,Nir result formally as a theorem.

and

[a b]
Theol2=4.. If the matrix c d

has an inverse, then h = ad - bc 0 0

8 4
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[a
c d

111 1*
d

h
c

b

a

Also, we state the converse of this result concerning h:

Theorem 2-5. If h = ad bc 0 0, then the matrix
[:

has an

inverse, which is

Proof. Direct multiplication shows that

[a b

L.c

di

h h
c a

=

d

h h [1 0

0 1

]h = abh

d b

c a [c di

h

75.

u will note that Theorems 2.4 and 2.5 together state that the matrix

[1.1c

has an inverse if and only if h 0 0. That is, the condition h 0 0

is bot1 necessary and suffi,2ient for theinatrix to have an inverse. You should

remember the formula

I d b
a[c b

d c

h
a

h

, h = ad bc 0 O.

Exercises 2-4

1. For each of the following matrices, determine whether the inverse exists;

if it does exist, find it:

(a)
[1 1

0 1] '

(
[1.

b)
1 '

(c)
[.3 7

9 21] '

(d)
[ 4 2

1 1] '

[see, 2-4]

8 5



76

(e)
[-23 04]

[

0

2 a

-71 '

2 -6
(g) -1 3]

2. Each of the following matrices is actually a function in the sense that it

depends on the value assigned to x, where x e R. Determine those values

of x for which the matrix has no inverse.

[x2 1
(a)

1 x 1

0 11 '

3. Show that each matrix of the form

(c)
[ 0

x4 x-1

(d) [2x2

[cos 0 sin 0]
-sin 0 cos 0

x--1

3

has an inverse and find it. Show that the product of two such matrices

(different values of 0) is again such a matrix. (Hint: Use the addition

formulas from trigonoMetry.)

4. Show that if A e M then' A has an inverse if and only if its transpose

'has an inverce. If A has an inverse show that

transpose (A
-1

) = (transpose A)
-1

.

5. Prove Theorem 2-3 by first computing A
-1

by Theorem 2-4 and then using

Theorem 2-5 to compute the inverse of A
-1

.

6. Under the assumption that the element A of M has an inverse, show how

to solve the equation AX = B, with B a 2 x 1 matrix. Apply this to

solve the following equations:

(a) 2x + 3z = 9,

-x + 4z = 10;

(b) 3x + z = 0,

-2x + z = 1;

(c) 2y 3w = 0,

-y + 4w = 0;

(d) 3y + w = 1,

-8 6
-2y + w = 0.

.

[sec. 2-4)
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2-5. The Determinant Function

We have seen that the criterion for the existence of an inverse for the

matrix

[ a bd]

involves the value of the expression ad bc. /f ad bc 0, the inverse

does exist; if ad be = 0, the inverse does not exist. Each 2 x 2 matrix

determines one real value for ad be, For example,

[1 '

if A =
0 1 '

3
if A =

4 6] '

10.5 3

if A [ 4 0.61 '

ad bc = 1(1) 0(0) = 1;

then ad bc = 2(6) 3(4) = 0;

then ad bc = 0.5(0.6) -- 3(4) = 11.7.

(Note that the second matrix does-not have an inverse.) With each matrix of M

there is thus associated one value, a real number determined by the entries. It

is convenient to give a name to this number, the value of the expression

ad bc, which is associated with the matrix

Definition 2-4. If

[ a b

c di

[a b
X =

c di '

then 5(X) = ad bc is called the determinant of X.

Thus 5 assigns to each member X of M a real number 5(X), read

"delta of X." It is appropriate to regard this assignment or mapping as a

functi.on from the set M of 2 X 2 matrices

to the set R of real numbers

X =
db

8 7
[3pe. 2-5]
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We indicate this as follows:

that is,

x = ad - bc.

[a b]
---> ad - be,

c d

6 : X ---> 6(X).

The function 6 has interesting properties, sone of which we shall

demonstrate.

First let us compute the values 6(X) for a few products:

(a) If

then

(b) If

then

[3 2] [0 3
A = and B =

1 2 2 1] '

AB =I

6(A) = 3(2) - 2(1) = 4,

6(B) = 0(1) - 3(2) = - 6,

Li
fl [02 ] [4 11

4 5 '

6(AB) = 4(5) - 11(4) = - 24.

[-1 2] [ 8 2
A = and B =

0 3 3 1
]

6(A) = - 1(3) - 2(0) = - 3,

6(B) = 8(1) - 2(3) = 2,

[see. 2-5]

88
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2] 2] 0{I
AB =

0

[8
3 3 1

[---2

9 3]

5(AB) = 2(3) 0(9) ^ 6.

We might suspect that 5(AB) = 8(A) 5(B): This is true abd we shall now Prove

it.

Theorem 2-6. If A M and B e M, theb

then

Proof. Let

A =

AB

5(AB) =

[a
dl '

[ ap + br

cp + dr

8(A) 5(B).

B =

aq +
cq +

[ P

r

bs

ds
1

g]
s

NAB) (ap + br)(cq + ds) (aq bs)(cp 1- dr)

= apcq + apds + brcq + brds

aqcp aqdr bscp bsdr

= apde + brcq aqdr bscp,

8(A) = ad bc,

8(B) = pS qr,

5(A)8(B) = (ad bc)(ps qr)

= adps adqr bcps + bcqr,

By rearranging the terms in expressions (1) and (); we see that

5(AB) = 5(A) 5(B).
clsci.

Let us look at more examples; let

[see. 2-5]

(1)
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so

A =3 [ 3 21
1 2

In Section 2-4 we learned that if

then

Hence

X .

and B = 3-
2 11

x-1 5(X) a]
1 [ d -bl

-1
A

yvrther,

- 1
2 2

1 3

4 4

a n
d -1B

"6

3

1

2

o

5(A) . 3(2) - 2(1) 4,

5(B) . 0(1) - 3(2) zz 6.

8(A-1) 1) (-)

5(B-1) = - (0) 1 0) = - 16-

licative
Theorem 2--7. If 4- is a 2 x.2 mavrtx, and A has a multi!'

inverse, then

Proof. We have

1

. 5-(4)

-1 1
AA

But by computing 5(I), we see that 0

[sec. 2'51



whence

so that hy,Theorem 2-6,

or

ö(I) = 1(1) 0(0) = 1,

NA1) = 1,

b(A) ô(A) = 1,

NA-1 ) = 1

NA)

prove quite a significanWe shall now t theorem, bW.,ich will giVe us the

power to decide when a Product AB has an inverse and what the inverse is,

Theorem 2-8. If A and B are- 2 x 2 matrices, then AB has nn

inverses.inverse if and only if A and B both have if theseFurther,

matrices have inverses, then

Proof. Since

it follows that

if and only if

( AB ) = -1A-1 .

h(A) b(B) =

NAB) °

(A) 0 and b(B) 0.

Then bY Theorems 2.4 and 2.5 we see that AB has an inverse if and onlY if

A and B both have inverses. 91
[sec. 2-'53
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To oereP:ete the Proof of Theorem 2-3, we assume that A and B have

/C-1 -1
inve r'"es and g respectively) and then have only to exhibit a matrix

x such that

Let

Thee

. ABX I = XAB.

X =0

-4
Renee D A is a right inverse. Similarly, we cao show that

-1
B A AB = I.

-1 -
Thos B A 1 is the inverse of AB. This completes the proof.

For example, let

Thea

Now

A [02 13] and B [21 531 .

3 1

A-1 e. and
-4 3 -6

-4 2
1 0

AB
10 [2 5] [1 3

2 3 1 3 7 19] '

[sec. 2-5]
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whence

1- [ 3

7 19

But also,

Thus,

B-1 A-1 =

for our example we have

3
-1 2]

(AB)-

3 1

2 2

1 0

= B-
1
A
-1

19

T
7

3

1

2.

There are many other theorems that can be developed from the concept of a

determinant function. A few of these will be included in the exercises that

follow. It is worth noting, though we shall not prove it, that there is a

determinant function associated with the other sets of square matrices, that is,

with those of order 1, 3, 4,..., and that similar theorems hold for them.

Specifically, there is a determinant function associated with each square ma-trix,

and its nonvanishing is a necessary and sufficient condition for the matrix to

have an inverse.

Exercises 2-5

1. Verify Theorem 2-6 for the matrices

(a) A =
12

1.1
3

B =
2 11

4 3 '

t 0 1
(b) A =

-1 t ' B 1 0 ;

(c) A = [lc x2] B = [x
x3 x4 4' 3 1.

2. Show that

8(tA) = f
2
b(A)

for any A e M and any t e R.

[sec. 2-5)
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3. For A and t as in Exercise 2, show that B(A) is the constant term

in the polynomial MA tI).

4. If

[x 1] [2 1
and B =

x2 -1 -2] '

find S(A) and S(B-1AB) and show that they are equal.

5. Show that if A E M, B E M, and B is invertible, then

5(B-
.1
AB) =

6. Show that if A E M and At is the transpose of A, then

S(A) = S(At),

and conclude that

S(AAt) > 0

for any A e M.

7. The expression S(A - tI) is a polynomial in t. For each of the follow-

ing matrices A, expand this polynOmial and find its zeros:

(a)

(b)

(c)

(d)

[-1

[1 2

0 4] '

0

0 11 '

t o[

t 11 .

a 0

0 b]

8. Let

A
2 0

[-1 1]

9 4

-[sec. 2-5]
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and intpand the polynomial 8(AA
t

xI). Is this the same as the polynomial

8(A
t
A xI)? Are these two polynomials the same for every matrix A E M?

2-6. The Group of Invertible Matrices

In this chapter, we have been restricting our attention to the set II of

2 x 2 matrices. This set is, itself, a subset of the set of all rectangular

matrices. Now this set M can be separated into interesting subsets. In the

preceding section, we have divided M into two complementary subsets, the set

of 2 X 2 matrices that do not hzive inverses and the set of 2 x 2 matrices

that do have inverses.' In this seCtion, we shall confine out attention princi

pally to the set of invertible 2 x 2 matrices. It is convenient to denote

this set by the symbol M.

Let us summarize certain facts about the set M of invertible matrices:

(a) If A E M., and B E M., then AB e M..

(13)IfikEIC,B E M., and C e M
i

then A(BC) = (AB)C.
'

(c) In M., there is an identity element I, that is, an element

I such that AI = A = IA for each A E Mi.

(d) If A E M., then A has an inverse A
-1

e Mi, that is, an

element A
1._1

such that Ai-
1
= I = A

-1
A.

NotonlydoesthesetM.satisfy each of these conditions,

many subsets of H. that satisfy conditions analogous to them.

matrices that satisfies conditions (a), (b), (c), and (d), with

but there are

Any set S of

S in place of

M.., will be called a group.' The concept of a group is fundamental and extremely

important in machematics. Mbre generally, any set of elements A,B,C,..., not

necessarily matrices, satisfying the foregoing -roperties relative to an opera

tion (not necessarily matrix multiplication) is defined to be a group. You.wil

note that only one operation is involved in the group properties. Although we

shall later introduce a few examples of the mort ,;eneral concept, for the

moment let us consider some examples of groups of invertible matrices.

The smallest set of invertible matrices that constitutes a group is the set

L
whose one elenent is the unit matrix

[-I 0]

o
. Since (I)(I) r, I, condition

(a) is satisfied; and condition (b) is automatically fulfilled by any set of

square matrices. Certainly I is a member of the set, so that condition (c)

is satisfied. For condition (d), there must be an Inverse for every element;

[sec. 2-5]
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this condition is satisfied since in our present set the only element I is its

own inverse.

All quite simple, .isn't it? Was it obvious?

Another set that constitutes a group is the set (I, I). Again conditions

(b) and (c) obviou.sly are satisfied. Since

and

(I)( I) = (-4)(I) = I

(MI) = = 1,

conditions (a) and (d) also are satisfied.

The third set that we shall show to be a group is a bit more significant.

The set of all elements A E M such that 5(A) = 1 is a group. The proof is

a bit more difficult, and we must check carefully each one of the defining

properties. To provide a language thee will be helpful, let us denote this set

by W, thus:

W = (A: A E M and 5(A) = 1).

Let us verify first that condition (a) is satisfied. If A e W and 1.1 e w,

then 5(A) = 1 and 5(B) = 1. Since 5(AB) :4 5(A) 5(B) by Theorem 2-6, we

have

5(AB) = 5(A) 5(B) = (1)(1) = 1,

and thus AB E W.

Property (b) holds automatically.

For property (c), siLce b(I) = 1, it is clear that I W.

To demonstrate that condition (d) is satisfied, we must show not only that

each element of W has an inverse but also that the inverse is an element of

W. Now, if A E W, then 5(A) = 1. Since 5(A) 0 0, A has an inverse A-1,

by Theorem 2-5. By Theorem 2-7,

5(A
-1

) =
1 1

= = 1.
5(A) 1

Hence A
-d

E W, and we have now demonstrated that W is a group.

[sec. 2-6]

9 6



87

In our last example, we shall discuss all matrices of the form

(x,y = real numbers)

and denote this set by Z, Z C M. (Read ZC M as, "The set Z is contained

in the set M.")

We observe first that the product of any two members of this set Z is also

a member of Z. We have, indeed,

[xl x2 x1x2 yly2 xy -1-yx

Yl xl Y2 x2 (x2y1 -I- x1y2) y1y2 4- x1x2

Condition (b) is automatically satisfied; and I is a member of Z, with

x = 1, y = 0, so that condition (c) is satisfied.

In considering condition (d), we run into trouble The zero matrix is an

element of this set, but the zero matrix does not have an inverse. The set of

all matricos of the form

does not form a group.

Although the set Z does not satisfy the four conditions, a subset ZI of

Z, defined by

Z
1
= (A: A e Z and b(A) = 1),

does satisfy the conditions and is therefore a group.

The demonstration is ea.:y. Let A e Zl and B 6 Z1. We know that

AB e z, as already shown; and, since b(A) = 1 and B(B) = 1, we know that

b(AB) = 1. Hence AB e ZI, and therefore condition (a) is satisfied. Obviously,

condition (b) also is satisfied. We know that I e Z and that b(I) = 1;

hence, I e Z1, so that condition (c) is satisfied. Finally, for condition (d),

_we must show that if A 6 Z1 then there is an inverse A
-1

such that A
-1

Z1.

We follow the pattern set in an earlier illustration. Since b(A) = 1, there is

an inverse. Then, using the fact that b(A
-1

) = 1/b(A), we proceed to show

that b(A-1) = 1, which means that A-1 e Having demonstrated that the four

groups postulates are satisfied, we conclude that we have a group.

[sec.. 2-61
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Befure considering the more general concept of a group, we shall deMon--

strate a fruitful correspondence between the elements of 21 and the points on

a unit circle, which will let us examine a geometric interpretation of 21.

If

A
Yx1

is any element of Z1, we have 5(A) = 1; that is, we have

x 4- y
2 = 1.

Now, if we let x..and y be coordinates of a point (x,y), we are able to

establish a onetoone correspondence between the elements of Zi and the

points on a unit circle:

[-y

x yl
x

(x, y).

The set of matrices is thus manpvd onto the set of points in such a way that to

each matrix there corresponds exactly one point of the set, and to each point of

the set there corresponds exactly one matrix.

The point (x, y) is On the circle of radius 1 with center at the origin,

as shown in Figure 2-1..

Figure 2-1. The unit circle.

Let us call this circle the unit circle and denote it by Q

[sec. 2-6]
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Thus

Q = (x, y): x c R, y c R, and x2 + y2 = 11.

89

A geometrical meaning can be assigned to the inverse of any element of Z1. If

A =
[ x y

-Y x] '

then we can readily compute A
-1

by Theorem 2-5, to obtain

A-1 = .

y x

Recalling the one-to-one correspondence between the matrices of Zi and the

points of Q (the unit circle),

x y
E--> (x, y),

[-y x

we see, by examining Figure 2-2, that the correspondent of A-1 is the reflec-

tion in the x axis of the correspondent of A.

A-1 4-

A

Figure 2-2. Geometric representation of inverse matrices A and A- e Z1.

Although a full discussion of the general notion of a group would be too

extensive for this book, a few words are in order. The definition of an abstract

[sec. 2-63
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group is stated somewhat differently from the definition given on page

85, although the abstract definition implies the latter.

Definition 2-5. A group is a set G of elements, a,b,c,..., on which a

binary operation o (read "circle") is defined, such that the following

properties are satisfied:

(a) If aeG and beG, then aobeG. (Closure property.)

(b) If a e G, b e G, and c e G, then

a o (b o c) = (a o b) o c. (Associative property.)

(c) There exists a unique element i, i e G, such that

ioa=a=aoi for all aeG. (Identity property.)

(d) For each a e G, there exists an element a
-1

, a-
1

E G,

such that a
-1 oa=i=aoa-1

. (Inverse property.)

If, in addition, the following condition is fulfilled, the group is said to be

commutative or abelian:

(e) For each aEG and each beG, aob=boa. (Commutative

property.)

Alth-,ugh the operations we are most concerned with in mathematics are

addition and multiplication, we are not restricted to these in the foregoing

abstract definition. For instance, a very helpful exercise, not only for under-

standing the notion of a group but also for comprehending a finite number system,

is the addition associated with a clock face; see Figure 2-3. This furnisheo

us with a group. The set of elements is 1,2,...,12. The operation is clockwise

Figure 2-3. A clock face. The addition associated with it gives us a group.

100
[see. 2-6]



91

addition of hours. Each defining property of an abstract group is satisfied, as

ye shall now illustrate. First, the "sum" of any two elements is another

element. For example, we have

1 + 6 = 7,

8 + 4 = 12,

11 + 2 = 1,

3 + 12 = 3.

.

Secondly since, for example,

(8 + 2) + 3 = 1 and 8 + (2 + 3) = 1,

we see that the associative property holds. Thirdly, a full clock rotation, an

advance of 12 hours, gives the same time, so that 12 is our unique identity

element; thus,

12 + 2 = 2 . 2 + 12.

Finally, to each of the elements, 1,2,...,12, there corresponds a number we can

"add" to obtain 12. Thus

4 + 8 = 12 = 8 + 4,

10 + 2 = 12 = 2 + 10,

12 + 12 = 12 = 12 + 12.

One of the most elegant examples of a group consists of the three cube

roots of 1, namely

1,
1 + i N/i 1 i

2 2

under multiplication. The demonstration is left to the student as an exercise.

Interestingly enough, although the integers are the most commonly used

system that has a group structure (under the operation of addition), they were

not the first to have their group structure analyzed. The first groups to be

studied extensively were finite groups such as the two examples given above.

These groups were found during a study of tile theory of equations by Evariste

[sec. 2-61
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Galois (1811-1832), to whom is credited the origin of the systematic study of

Group Theory. Unfortunately, Galois was killed in a duel at the age of 21,

immediately after recording some of his most notable theorems.

Exercises-2-6

1. Determine whether the following sets are groups under multiplication:

[ 1 0] 1-1 0 0 11
(a) o o ; ;

where

(b) I, I, K, K,

[0 1
K =

1 0]

2. Show that the set of all elements of M of the form

t 0 where t e R and t 0,
0 t[i '

constitutes a group under multiplication.

3. Show that the set of all elements of M of the form

[t si
, where t e R, s e R, and t

2
5
2

= 1,
s t

constitutes a group under multiplication.

4. If.

1

-2- 2
A =

show that the set

(A, A2 A3)

1:02
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is a group under multiplication. Plot the corresponding points in the

plane.

5. Let

Show that the set

[1 2] [0 1
T = and K =

6 1 1 0]

(TIT-1, T(I)T-1, TKT-1, T(K)T-1)

is a group under multiplication. Is this true if T is Eta invertible

matrix?

6. Show that the set of all elements of the form

0 b]
a 0

, with a e R, b e R, and ab = 1,

is a group under multiplication. If you plot all of the points (a,b),

with a and b as above, what sort of a curve do you get?

7. Let

and let H be the set of all matrices of the form

xl + yK, with x e R and y e R.

Prove the following:

(a) The prodoot of two elements. of H is also an element of H.

(b) The eleMent xI + yK is invertible if and only if

x2 y2 O.

(c) The set of all elements xI + yK with x
2

y
2
= 1 is a group

under multiplication.

103
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8. If a set G of 2 x 2 matrices is a group under multiplication, show that

each of the following sets are groups under multiplication:

(a) (At: A e G), where At m transpose of A;

(b) (B-1 AB: A 6 G), where B is a fixed invertible element of M.

9. If a set G of 2 x 2 ma'rices is a group under multiplication, show that

(a) G = (A-1: A e G),

(b) G = (BA: A 6 G), where B is any fixed element of G.

10. Using the definition of an abstract group, demonstrate whether or not each

of the following sets under the indicated operation is a group:

(a) the set of odd integers under addition;

(b) the set R
+

of positive real numbers under multiplication;

(c) the set of the, four fourth roots of 1, (1, -1, i, -1), under

multiplication;

(d) the set of all integers of the form .3m, where m is an integer,

under addition.

11. By proper application of the four defining postulates of an abstract group,

prove that if a, b, and c are elements inagroup and aob=ao c,

then b = c.

2-7. An Isomorphism between Complex Numbers and Matrices

It is true that very many different kinds of algebraic systems can be

expressed in terms of special collections of matrices. Many theorems of this

nature have been proved in modern higher algebra. Without attempting any such

proof, we shall aim in the present section to demonstrate how the system of

complex numbers can be expressed in terms of matrices.

In the preceding section, several subsets of the set of all 2 x 2 matrices

were displayed. In particular,;the-set Z of all matrices of the form

x R and
x y

was considered. We shall exhibit a orietO-one correspondence between the set

[see. 2-6]
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of all complex numbers, which we denote by C, and the set Z. This one-to-one

correspondence would not be particularly significant if it did not preserve

algebraic properties that is, if the sum of two complex numbers did not

correspond to the sum of the corresponding two matrices and the product of two

complex numbers did not correspond to the product of the ,orresponding two

matrices. There are other algebraic properties that are preserved in this

sense.

Usually a complex number is expressed in the form

where i vf=i, x E R, and y e R. Thus, if c is an element of C, the

set of all complex numbers, we may write

c = x(1) + y(i).

The numeral 1 is introduced in order to make the correspondence more apparent.

In order to exhibit an element of Z in similar form, we must introduce the

special matrix

Note that

thus

0 1
J =

[-I 0]

0 1110
-1 0 -1 0

1 [0 1] [-1 0

0

1 - 1
[

0 1

1 0]
= I;

The matrix J corresponds to the number i, which satisfies the analogous

equation

This enables us to verify that
105
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[1
+ y

11
xI + yJ= x

0 1 0

[x 0] [ 0 yl
0x 0

[ x y]
y x

which indicates that any element of Z may be written in the form

For example, we have

and

xI + yJ.

1 0 1
21 + 3J = 2

[ 0]
+ 3

[ ]

0 1 1 0

Iz 0] [

0 2 3 0

2 3

[- 3 2 ] '

OI + 5J za 0
[1

0

0

0

0]

1

001
0

+ 5

[

[ 0 1]

1 0

Now we can establish a correspondence between C, the Set of complex numbers,

and Z, the set of matrices:

xl + yi E--> xI + yJ.

Since each element of C is matched with one element of Z, and each element

of Z is matched with one element of C, we call the correspondence onetoone.

Several special correspondences are notable:
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0 = 0.1 + 0.i 0.1 + 0.J = 0

1.1 + 0.1 4--> 1.1 + 0.J = I

i = 0.1 + 1.1 0.1 + 1.J = J

As stated earlier, it is interesting that there is a correspondence

between the complex numbers and 2 X 2 .matrices, but the correspondence is not

particularly significant unless the one-to-one matching is preserved in the

operations, especially in addition and multiplication. We shall now follow the

correspondence in these operations and demonstrate that the one-to-one property

is preserved under the operations.

When two complex numbers are added, the real components are addnd, and the

imaginary components are added. Also, remember that the multiplication of a

matrix by a number is distributive; thus, for a e R, b R, and A e M, we

have

(a + b)A = aA + bA.

Hence we are able to show our one-to-one correspondence under addition:

c
1
+ c

2
Z
1
+ Z

2
=

1y1 ) (x2 + iy2)
(x1I + y13) + (x2I + y2J) =

= (x1 + x2) + (y1 + (x1 4. x2)I + (yl + y2)J.

For example, we have.

and

(2 - 3i) + (4 + li) (21 - 3J) + (41 + 13)

= 6 - 2i 4--). 61 2J.

(3 - 2i) + (2 +0i) (31 - 2J) + (21 + 0J)

= 5 - 2i 51 - 2J.

_Before demonstrating that the correspondence is preserved under multiplica-

tion, let us review for a moment. An example will suffice:
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(2 + 4i) (3 2i) = 6 4i + 12i 8i2

= 6 41 + 12i 8(-1)

= 6 + 8(1) + (-4 + 12)1

= 14 + 8i;

(21 + 4J)(3I 2J) = 61
2

4IJ + 12JI 8J
2

= 61 4J + 12J 8(I)

= 61 + 81 + (-4 + 12)J

= 141 +

Generally, for multiplication, we have

c
1
c
2

= (x
1
+ y

1
i) (x2 + y2i)

Z
1
Z
2

(x1I + y1.7) (2z2I + y2J)

yiy2) + (xly + x2y1)i (x1x2 y1y2)I + (x1y2 + x2y1)J.

If we represent a complex number

as a matrix,

a +bi

a b
a + bi

[

b a] '

we do have a significant correspondence: Not only is there a onetoone cor

respondence between the elements of the two sets, but also the correspondence

is onetoone under the operations of addition and multiplication.

The additive and multiplicative identity elements arc, respectively,

and

p 00]
=0 + Oi 4E> = 0

108
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[2 111 1 + Oi 0
. I;

and for the additive inverse of

we have

[a b
a bi

b a]

99

Let us now examine how the multiplicative inverses, or reCiprocals, can be

matched. We have seen that any member of the set of 2 x 2 matrices has a

multiplicative inverse if and only if for it the determinant function does not

equal zero. Accordingly., if A e Z then there exists A
-1 if and only if

x
2
4.y

2
# 0, since 8(A) x

2
+ y

2 for A x1 4. yJ. Now we know that any

complex number has a multiplicative inverse, or reciprocal, if and only if the

complex number is not zero. That is, if c x 4. yi, then there exists a

multiplicative inverse of c if and only if x + yi 0 0, which means that x

and y are not both 0. This is equivalent to saying that x
2
+ y

2
0 0,

since x e R and y e R. For multiplicative inverses, if

x
2
4.y

2
0 0,

our correspondence yields

c
1

x + yi + yJ Zl

1 1 1
1

(x yi) (xI yJ) Z .

1
c

x
2
+ y

2 1
x + y

2

It is now clear that the correspondence between C, the set of complex

numbers, and Z, a subset of all 2 X 2 matrices,

x 4. yi x/ 4- yJ,
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is preserved under the algebraic operations. All of this may be summed up by

saying that C and Z have identical algebraic structures. Another way of

expressing this is to say that C and Z are isomorphic. This word is derived

from two Greek words and means "of the same form." Two number systems are

isomorphic if, first, there is a mapping of one onto the other that is a oneto--

one correspondence and, secondly, the mapping preserves sums and products. If

two number systems are isomorphic, their structures are the same; it is only

their terminology that is different. The world is heavy with examples of iso

morphisms, some of them trivial and some quite the opposite. One of the slutplest

is the isomorphism between the counting numbers and the positive integers, a

subset of the integers; another is that between the real numbers and the subset

a + Oi of all complex numbers. (We should quickly guess that there is an

isomorphism between real numbers a and the set of all mattiues of the form

aI On)

An example of an isomorphism that is more difficult to understand is that

between real numbers and residue classes of polynomials. We won't try to explain

this one; but there is one more fundamental concept that can be introduced here,

as follows.

We have stated that the real numbers are isomorphic to a subset of the com

plex numbers. We speak of the algebra of the real numbers as being embedded in

the algebra of complex numbers. In this sense, we can say that the algebra of

complex numbers is embedded in the algebra of 2 x 2 matrices. Also, we can

speak of the complex numbers as being."ri`cher" than the real numbers, or of the

2 x 2 matrices as being richer than the complex numbers. The existence of

complex numbers gives us solutions to equations such as

x
2

+ 1 1== 0,

which have no solution in the domain of real numbers. It is of course clear

that Z is a proper subset of M, that is, 2C M ane Z 0 M. Here is a simple

example to illustrate the statement that M is "richer" than Z: The equation

has for solution any matrix

X

[0 t

l/t
t C R and t 0 0,

[sec. 2-7]
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as may be seen quickly by easy.computation; and there are still other solutions.

On the other hand, the equation

x
2

1 =0

has exactly two solutions among the complex numbers, namely c = 1 and

c = 1.

Exercises 2-7

1. Using the foliowing values, show the correspondence ,, ''"on and

multiplication between complex numbers of the form

of the form xI + yJ:

(a) xl =I 1, yl = 1, x2 = 0, and y2 = 2;

(b) xl = 3, yl = 4, x2 = 1, and y2 = 1;

(c) x
1
= 0, yl = 5, x2 = 3, and y2 = 4.

,d matrices

2. Carry through, in parallel columns as in the text, the necessary computa

tions to establish an isomorphism between R and the set

N = { [0( °xi
. x

by means of the correspondence

3. In the preceding exercise, an isomorphism between R and the sets of

matrices

{ [10c X]
xeR

was considered. Define a function f by

x 0

f(x) [0 0 I

Dec. 2-7]
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Determine which of the following statements are correct:

(a) f(x y) f(x), i(y),

(b) f(xy) f(x) f(y),

(c) f(0) =. 0,

(d) f(1)

(e) f (-11c) ( f 00)-1 x 0.

4. Is the set G of matrices

with a and b rational and a
2

-I- b
2

m 1, a group under multiplication?

2-8. Algebras

The concepts of group, ring, and field are of frequent occurrence in modern

algebra. The study of these systems is a study of the structures or patterns

that are the framework on which algebraic operations are dependent. In this

chapter, we have attempted to demonstrate how these same concepts describe the

structure of the set of 2 x 2 matrices, which is a subset ef the set of a].l

rectangular matrices.

Not only have we introduced those embracing concepts, but we have exhibited

the "algebra" of the sets. "Algebra" iv a-eeneric word that is frequently used

in a loose sense. By technical definitiortan algebra is a system that has two

binary operations, called "addition" and 'multiplication," and also has

"multiplication by a number," that make it both a ring and a vector apace.

Vector spaces will be discussed in Chapter 4,and we shall see then that

the set of 2 x 2 matrices constitutes a vector space under matrix addition

and multiplication by a number. Thus the 2 x 2 matrices form an algebra.

As you yourself might conclude at this time, this algebra is only one of

many possible algebras. Some of these algehtas are duplicates ai one another

in the sense that the basic structure of .ouve is the same as the basic structure

of anattAer- Superficially, they seem different because of the terminology.

When th4w have the same structure, two aan are called isomorphic.

1 t.
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Chapter 3

MATRICES AND LINEAR SYSTEMS

3-1. Equivalent Systons

In this chapter, we shall demonstrate the use of matrices in the solution

of systems of linear equations. We shall first analyze some of our present

algebraic techniques for solving these systems, and then show how the same

techniques can be duplicated in terms of matrix operations.

Let us begin by looking at a system of three linear equations:

x - y + z = -2, (1)

x - 2y - 2z u -1, (2)

2x + y + 3z = 1. (3)

In our first step toward finding the solution st-,:t of tilts system, ws proceed

as follows: Multiply Equation (1) by 1 to ot:.i-n Equation (1');multiply

Equation (1) by And add the new equation tcaq-tuiv4t.on (2) to obtain Equation

(r); muitiply-EqUation (1) by -2 and add the new equetzmn to Equation (3) to

obtainEquation (3'). This gives the following 21911=art.

II

x - y + z -2, (1')

0 - y - 3z 1, (2')

0 + 3y + z 5. (3')

Before continuing, we note that what we have dorm is reversible. In fact, we

can obtain System I from System II as follows: N1t#11 Equation (1') by 1

to obtain Equation (1); add Equation (1') to Eq4.1.4-04nso. (2') to obtain Equation

(2); multiply Equation (1') by 2 and add to Equiz,ion ;.;') to obtain Equation (3).

Our second step is similar to the first: 'ecotte.22 ,Equation (1') as Equation

(1"); multiply Equation (2') by -a to obtain Eql.atzm:r (2"); muitiply Equation

(2') by 3 and add the new equation to Equation (3') =a 2btain Equation (3").

This gives 113
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x y + z 2,

0 + y + 3z = 1,

0 + 0 8z = 8.

Our third step reverses the direction: Multiply Equation (3") by 1/8

to obtain Equation (3"'); multiply Equation (3") by 3/8 and add to Equation

(2") to obtain Equation (2" ); multiply Equation (3") by 1/8 and add to

Equation (1") to obtain Equation (1m). We thus get

IV

x y + 0 = 1,

0 + y + 0 = 2,

0 + 0 + z = 1.

Now, by retaining the second and third equations, and adding the second equation

to the first, we obtain

V

x + 0 +0 = 1,

0 + y +0 = 2,

0 + 0 + z = 1,

or, in a more familiar form,

In the foregoing procedure, we obtain system II from system I, III from

II, IV from III, and V fram IV. Thus we know that any set of values that

satisfies system I must also satisfy each succeeding system; in particular,

from system V we find that any (x, y, z) that satisfies I must be

(1, 2, 1).

Accordingly, there can be no other solution of the original system I; if there

is a solution, then this is it.
11.4.
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But do the values (X, 2, 1) actually satisfy system I? For our

systems of linear equations we have already pointed out that system I can be

obtained from system II; similarly, II can be obtained from III, III from IV,

and IV from V. Thus the solution of V, namely (1, 2, 1), satisfies I.

Of course, you could verify by direct substitution that (1, 2, 1)

satisfies the system I, and actually you should do this to guard against com

putational error. But it is useful to note explicitly that the steps are

reversible, so that the systems I, II, III, IV, and V are equivalent in

accordance with the following definition:

Definition 3-1. Two systems _f linear equations are said to be equivalent

if and only if each solution of efther system is also a solution of the other.

We know that the foregoing systems I through V are equivalent because the

steps we have taken are reversible. In fact, the only operations we have per

formed have been of the following sorts:

A. Multiply an equation by a nonzero number.

B. Add one equation to another.

Reversing the process, we un( the addition by subtraction and the multi

plication by division.

Actually, there is another operation we shall sometimes perform in our

systematic solution of systems of linear equations, and it also is reversible:

C. Interchange two equations.

Thus, in solving the system

y + z = 4,

x + 2y + z = 3,

x y + z = 1,

our first step would be to interchange the first two equations in order to have

a leading coefficient differing from zero.

In the present chapter we shall investigate an orderly method of elimina

tion, without regard to the particular values of the coefficients except that we

shall avoid division by O. Our method will be especially useful in dealing

with several systems in which corre5nonding coefficients of the variables are'

115
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equal while the right-hand members are different -- a situation that often

occurs in industrial and applied scientific problems.

You might use the procedure, for example, In "programming," i.e., devising

a method, or program, for solving a system of linear equations by means of a

modern electronic computing machine.

Exercises 3-1

1. Solve the following systems of equations:

(a) ax +4y = 4,

+ 7y u 1;

(c) x + y - z u 3,

2y + z 7 10,

5x - y - 2z - 3;

(b) x - 2y us 3,

y = 2;

(d) x - 3y + 2z = 6,

y z - 4,

(e) x + 2y + z - 3w u 2, (f) lx + Oy + Oz + Ow = a,

y - 2z - w = 7,

z - 2w = 0,

w = 3;

2. Solve by drawing graphs:

(a) x + y = 2,

x - y u 2;

Ox + ly + Oz + Ow u b,

Ox + Oy + lz + Ow = c,

Ox + Oy + Oz + lw = d.

(b) 3x - y = 11,

5x + 7y = 1.

3. Perform the following matrix multiplications:

(a) 0 [u
O 1 0 vl ,

O 0 1 w

[1 0 01 [a x
O 1 0 b yl .

O 0 1 c z

4. Given the following systems A and B,obtain B from A by steps consisting

either of multiplying an equation by a nonzero constant or of adding an

arbitrary multiple of an equation to another equation:

A: B:

(sec. 34.:3

1. 6

2x - 3y + z - 6,

x + 2y - z = 9,

3x + y + 3z .2 6.
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Are the two systems equivalent? Why or why not?

5. The solution set of one of the following systems of linear equations is

empty, while the other solution set contains an infinite number of

solutions. See if you can determine which is which, and give three

particular numerical solutions for the system that does have solutions:

(a) x + 2y z = 3,

x y z = 4,

4x + 2z = 14;

(b) x + 2y z = 3,

x y + z = 4,

4x y + 2z = 15.

1-2. Formulation in Terms of Matrices

In applying our method to the solution of the original system of Section

1-1, namely to

x y + z = 2,

x 2y 2z = 1,

2x + y + 3z = 1,

we carried out just two types of algebraic operations in obtaining an equivalent

system:

A. Multiplication of an equation by a number other than 0.

B. Addition of an equation to another equation.

We noted that a third type of operation is sometimes required, namely:

C. Interchange of two equations.

This third operation is needed if a coefficient by which we otherwise would

divide is 0, and there is a subsequent equation in which the same variable

has a nonzero coefficient.

The three foregoing operations can, in effect, be carried out through

matrix operations. Before we demonstrate this, we shall see how the matrix

notation and operations developed in Chapter I can be used to write a system

of linear equations in matrix form and to represent the steps in the solution.

Let us again consider the system we worked with in Section 3-1:

[sec. 3-1]
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x y + = 2,

x 2y 2z = 1,

2x + y + 3z = T

We may display the detached coefficients of x, y, an, _is a matrix A,

namely

[1 1 1

1 2 21
2 1 3

Next, let us consider the matrices

2
5,X = [ and B = [11 ;

1

the entries of X are the variables x, y, z, and of B are the righthand

members of the equations we are considering. By the definition of matrix-

multiplication, we have

AX = 1 2 2
1 1 1

2 1 3

x
yl
z

=
x y + z
x 2y 2z1

2x + y + 3z

which is a 3 x 1 matrix having as entries the lefthand members of the

equations of our linear system.

Now the equation

that is,

AX = B (1)

1

1

2

1
2

1

2
11

3

x
y
z

=
2
11
1

is equivalent, by the definiticn of equality of matrices, to the entire system

of linear equations. It is an achievement not to be taken modestly that we-axe

able to consider and work with a large system of equations in terms of such:a.

[sec. 3-2]
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simple representation as is exhibited in Equation (1), Can you sec the pattern

that'is em'erging?

In passing, let us note that there is an interesting way of viewing the

matrix equation

AX = Y, (2)

where A is a given 3 X 3 matrix and X and Y are variable 3 x 1 column

matrices. We recall that equations such as

and

y = ax + b

y = sin x

define functions, where numbers x of the domain are mapped into numbers y of

the range. We may also consider Equation (2) as defining a function, but in this

case the domain consists of column matrices X and the range consists of column

matrices Y; thus we have a matrix function of a matrix variable: For example,

the matrix equation

1 1 x y + z

1 2 2 y = x 2y 2z I = v

. 2 1 3 z 2x + y + 3z

defines a function with a domain of 3 x 1 matrices

and a range of 3 X 1 matrices

[

(4)

77] 2: + 2)yr + 3:

x y + z

(3)

Thus with any column matrin of the form (3), the equation associates a

[sec. )-2)
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column matrix of the form (4).

Looking again at the equation

AX B,

where A, is a given 3 x 3 matrix, B is a given 3 x 1 matrix, and X is

a variable 3 X 1 matrix, we note that here we have an inverse question: What

matrices X (if any) are mapped onto the particular B? For the case we have

been considering,

1-1 2
1 2 2 y X,

2 1 3 z 1

we found in Section 3-1 that the unique solution is

1

X = 2] .

1

We shall consider some geometric aspects of the matrixfunction point of

view in Chapters 4 and 5.

We are now ready to look again at the procedure of Section 3-1, and restate

each system in terms of matrices:

21 21 23 =

.

1
0 3 1

[0 1 31
z

yi [5 -211[

2 1 1 1 x1 1 lIlx

<> 1 1 [1 [211
0 0 8 z 8

<=--> [00 °I yzi [-211

1 a 01 [x a

0

0

1

0

00

0 y.1 =
[x

1 z

The twoheaded arrows indicate that, as we saw in Section 3-1, the matrix

equations are equivalent.

In order to see a little more clearly what has been done, let us look only

[3eo, 3-2]
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at the first and last equations. The first is

the last is

1-1 -2
1 -2 -2 yi = -11 ;

2 1 3 z 1

0 1

0 1 0 y I = 21 .

0 0 1 z -1

Our process has converted the coefficient matrix A into the identity matrix

I. Recall that

A
-1

A = I.

Thus to bring about this change we must have completed operations equivalent

to multiplying on the left by A
-1

.

In brief, our procedure amounts to multiplying each member of

on the left by A
-1

,

to obtain

AX B

A
-1

AX = A
-1

B,

X = A

Let us note how far we have come. By introducing arrays of numbers as

objects in their own right, and by defining suitable algebraic operations, we

are able to write complicated systems of equations in the simple form

AX = B.

This condensed notation, so similar to the long-familiar

[aec. 3-2]
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ax = b,

which we learned to solve "by division," indicates fot us our solution process;

namely, multiply both sides on the left by the reciprocal or inverse of A,

obtaining the solution

This similarity between

and

X = A
-1

B.

ax b

AX = B

should not be pushed too far, however. There is only one real number, 0, that

has no reciprocal; as we already know, there are many matrices that have no

multiplicative inverses. Nevertheless, we have succeeded in our aim, which is

perhaps the general aim of mathematics: to make the complicated simple by

discovering its pattern.

1. Write in matrix form:

(a) 4x - 2y + 7z = 2,

3x + y + 5z = -1,

6y - z = 3;

Exercises 3-2

(b) x + y = 2,

x - y = 2.

2. Determine the systems of algebraic equations to which the following matrix

equations are equivalent:

(a)

1

[3

0

4
2

1

51 [x
3 yi
2 z

= [0 ,

2

(b) 3

2

-1

2

-1
1

-4 y
5 z

v
ul

w
=

1

[2
3

2

31
1

3. Solve the following system of equations; then restate your work in matrix

form: 122

3-2]
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x y z w = 1,

x y 3z 1- 2w = 2,

2x y 3z w = 2,

x 2y z 3w = 10.

4. (a) Onto what vector Y does the function defined'by

[13 421 t [3y]
Y =

rx
map the vector [] = [fl ? (b) What vector I I does it map onto the

Ly
vector Y = [3] Y?

2

5. LetAw[a
1
a
2

a
3

a
4
,Y= [y

1 '

axi' y1 e R. Discuss the

domain of the function defined by

AX = Y.

Define the inverse function, if any.

3-3. Inverse of a Matrix

In Section 3-2 we wrote a system of linear equations in matrix form,

AX = B,

and Saw that solving the system amounts to determining the inverse matrix A-1,

if it exists, since then we have

whence

A
-1

AX = B,

X = A
-1

B.

Our work involved a series of algebraic operations; let us learn how to duplicate

this work by a series of matrix alterations, To do this, we suppress the column

matrices in the scheme shown in Section 3-2 and look at the coefficient matrices

[sec. 3-2]
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on the left:

1

[1
2

-1
-2
1

1

-
3

1 -4
-I
3

1

-3
1

(=>
1

0

0

-1
1

0

3

-8

[1 0 0010.
0 0 1

Observe what happens if we substitute "row" for "equation" in the procedure of

Section 3-1 and repeat our steps. In the first step, we multiply row 1 by -I

and add the result to row 2; multiply row 1 by -2 and add to row 3. Second, we

multiply row 2 by 3 and add to row 3; multiply row 2 by -I. Third, we multiply

row 3 by, 3/8 and add to row 2; multiply row 3 by 1/8 and add to row 1;

multiply row 3 by - 1/8. Last" we add row 2 to row 1., Through "row operations"

we have duplicated the changes in the coefficient matrix as we proceed through

the series of equivalent systems.

The three algebraic operations described in Section 3-2 are paralleled by

three matrix row operations:

Definition 3-2. The three row operations,

Interchange of any two rows,

Multiplication of all elements of any row by a nonzero constant,

Addition of an arbitrary multiple of any row to any other row,

are called elementary row operations on a matrix.

In Section 3-5, the exact relationship between row operations and the

operations developed in Chapter 1 will be demonstrated. Earlier we defined

equivalent systems of linear equations; in a corresponding way, we now define

equivalent matrices.

Definition 3-3. Two matrices are said to be row equivalent if and only if

each can be transformed into the other by means of elementary row operations.

We now turn our attention to the right-hand member of the equation

AX = B.

At the moment, the right-hand member consists solely of the matrix B, which

we wish temporarily to suppress just as we temporarily suppressed the matrix

X in considering the,left-hand member.- Accordingly, we need a coefficient

matrix for the right-hand member. To obtain this, we use the identity matrix

[see. 3-3]
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to write the equivalent equation

_Now our process converts this to

115

AX = IB. (1)

X = A
-1

B,

which can be expressed equivalently as

IX = A IB. (2)

When we compare Equation (1) and Equation (2) we notice that as A goes to I,

goes to A
-1

. Might it be that the row operations, which convert A into I

when applied to the left-hand member, will convert I into A-I when applied

-Ato the right-hand member? Let us try. For convenience, we do this in parallel

columns, giving an indication in parentheses of how each new row is obtained:

(R
l'

-1R
1
+ R

2'
-2R

1

(RI; -1R2; 3R
2
+ R

3
):

1 3(-R +R-R
8 3 l' 8 3

+ R

2'

1

2

3
):

0

0

0

0

8

1

0

0

-1
-2
1

-1
-1
3

-1
1

0

3

-1

1

0

--2

3

-3
1

3

-6

0

1

.1

0

0 1

0 0

1 0

-1 1

-2 0

1 0

1 -I
-5 3

3

-8-

7

-8-

5

-8-

0

01
1

0

01
1

0

0]
1

3

1

3

;

;

;

1

3

1

(I1(2 + R
1

; R
2

; 1(3 ):
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1 0 0

0 1 0

0 0 1

Tn detwo -a te that

is a :_e-fr-hand inverse for A, it is

4 4

-8- if

BA= 7 1

5 3
8

4 4
-8-

1 3
-8- -8-

3 1

6S 8 8

4

8

3

3 1

3 8

necc.F.sary to show that

4-

3

1

= I .

You are asked to verify this as an exercise, and also to check that AB = I;

thus demonstrating that B is the inverse A
-1

of A. In Section 3-5 we shall

see why it is that AB = I follows from BA = I for matrices B that are

obtained in thic. way as products of elementary matrices.

We now have the following rule for computing the inverse A of a matrix

A, if there is one: Find a series of elementary row operations that convert

A into the identity matrix I; the same series of elementary row operations

will convert the identity matrix I into the inverse A
-1

.

When we start the process we may not know if the inverse exists. This

need not concern us at the moment. If the application of the rule is successful,

that is, if A is converted into I, then we know that A
-1

exists. In sub-

sequent sections, we shall discuss what happens when A-1 does not exist and we

shall also demonstrate that the row operations can be brought about by means of

the matrix operations that were developed in Chapter 1.
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1. Determine the inverse of each of the foLEcT ,.nshrzhes through 730W

cperations. (Check your answers.)

(a)

[2 3]

-1 2

[ 1

(c) 1 0 3210,
-2 0 0

Exercises 3-3

(b)

(d) o 2

=3 3

2. Determine the inverse, if any, of each of tht -wing matrices:

(a) 2 2 (b) [.172-]'

4

6

(c)

(e)

1 0 3234, C

[1 3 1

[

1 4 7

2 3 6

5 1 -1

3. Solve each of the following matrix equations:

4. Solve

[

(a) 1 4 7 x g (b) 1

2 3 6 y 2

5 1 -1 z 7 5 1

[

(c) 1 4 7 x 1 (d) 1 4
2 3 Y 2 3

5 1 -1 z -4 5 1

1 -1 1 xumr
1 -2 -2 yvns
2 1 3 zwpt

5. Perform the multiplications

11 2/7

[see. 3-3)

-
x

o I y

-1 z

3 1 -6

0 -1 1

4 3 -9

3

0

1

3

= 0,L21

= Cid
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(a)

(b)

3 2 2

2 1 4
1 1 5

1 12 10

17 17 17

6 13 8

17 17 17

1 5 7

17 17 17

1 12 10
17 17 17

13 8

L7 17 17

L. 5 7

IT 17 17

[ 3 2 2

2 1 4

1 1 5

6. Multiply both members of the matrix equation

1 12 10

6

[

13 8

1 5 7

on the left by

f

1

x 17

y = 0

z 0

I2 2
1 4
1 5

and use the result to solve the equation.

7. Solve:

8. Solve:

2x + y 2z 3w a 0,

4x + y + z + w = 15,

6x y z w = 5,

4x 2y -I- 3z w = 2.

9x y = 37,

8y 2z = 4,

7z 3w = 17,

2x + 6w = 14.
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3r-4. Linear Ststems of Equations

In Sections 3-2 and 3-3, a rrocere fc.77 solving a system , inear sltaanns,

B,

was presented. The method produces trJemultfrlicative inverse if it

exists.

In the present section we shall ccrsider systems of linear equations rt

general.

Let us begin by looking at a simple illustration.

Example 1. Consider tho system c7: equations,

2x 337 + 4z = 5,

2x + 7y 2z = 1,

2x + 2y + z = 3.

We start in parallel columns, thus:

2 3 4
2 7 2
2 2 1

1 0

0 1 0

0 0 1

Proceeding, we arrive after three steps at the following:

11
1 0

10

3

5

0 0 0

7 3

20 20

1 1

10 10

1

2

0

0

1

If we multiply these two matrices on the rignt:by the matrines

we obtain the system

{x1
and 1 , respe_ 'y,

3

1249

[see. 3-4]
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11 _19
x z

10

3 2
Y 3 =

5

0 = 0 .

There is no ne=tematical _ass in dropptue the equation 0 = Irom the system,

which then can -'e written aquivalen=ly a5

Y 111 , z.

Whatever value: fts given to z, thts value and the corresponMrog values of x

and y determined by these equations sartsfy the original syrzem. For example,

a few solutions are shown in the fnllowing tablez

2

1

41
10 5

19

10

3

10

2

4
5

Example 2 . Now consider systems

..x. 4-2y z

3T- z = 4,

Zz = 14.

If we start_ in parallel colu=ur=.zl..7roceed before, we, obtain (as you should

verify)

1 0

,

0 1
Z
3

0 0 0

7 l*e. 3-41
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Multiplying these matricels on the right by the column matrices

we obtain the systems

1

and
3

4 I ,
14

If t'.eere were a solution of the origimal system, it would also be.asolution of

this.:.ast system, which -is equivalent tathe first. But the lei system cam-

tains the contradiction 0 = -.1; hence there is no solution of either system.

Do you have an intuitive geometric notion of what might:be gaing on in

eachyaf the above systems? Relative to a 3-dimensional rectangmLar coordinate

system, each of the equations represents a plane. Each pair of ne planes

actually intersect in a line- We might hope that the three lines:af intersection

(in_each system) would intersect in a point. In the first system, however, the

three.Aines are coincident; there is an entire "line" of -solutions,. On the

other7hand, in the second system, the three lines axe pmr471e1; there: is no

point that lies on all three planes. In the exampLe worke in Sections

3-2 and 3-3, the three lines intersect in:a single point.

How many possible configurations, as regards intersectolms, can you list

for 3-planes, not necessarily distinct fro= one another? .",:lie2t,mOIght, itr example,

have.exactly one point in common; or two might be co5,±deTtLalm.: dna third

distinct from. but parallel to them; and aa.on. Th zre sy.-5tecs c linear

equarimns that correspond to each of thesegeame 1_,..ituat.-..ons-

77.Bere are two additional systems that even more c.pviausly than the system

Im7::Eigample 2, above, have no solutions:

x = 2, x y + Lz = 2,

x = 3; x + y + = 3.

Thus you see that the number of variables as c61.apared with the number of equatimns

does not determine whether or not there ±s.a
[sec.
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The method.we have developed for solving linear systems is routine and can

be applied to systems of any number of linear equations in any number of vari

ables. Let us examine the general case and see what can happen. Suppose we

have a system of m linear equations in n variables:

alxl + a2x
2

-I- + anxn =
'1

m1x1 + m2x2 + mnxn = in

If any variable occurs with coefficient 0 in every equat=pn, we drop it.

a coefficient needed as a divisor is zero, we interchange pur-equations; we cught

even interchange some of the terms in all the equations _tar the convenience ot-

getting a nonzero coefficient in leading position. Otbrrii we tan proceed in

the customary manner until there remain no equations in W7mich any of the vari

ables have nonzero coefficients. Eventually we have a system like this:

x
1
+ linear terms in variables other than xl xk =

tl

P2'

=

and (possibly) other equations in which no wadable appearL

Either all of these other equations (if there are any) 'r.-za of tha fa=

0 = 0,

in which case they can be disregarded, or there is at Least one of them ai the

form

0 = b,

in which case there is a contradiction.

If there is a contradiction, the contradictiomwas ?resent km the_criginal

system, which means .there is no solution set.
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In case there are no equations of the form

0 = b,

we have two possibilities. Either there are no variables other than x

which means that the system reduces to

and has a unique solution, or there really are variables other than xl,...,xk

to whiCh we can assign arbitrary values and obtain a family of solutions as in

Example 1, above.

Exercises 3-4

1. (a) List all possible conldgurations, as regards intersections, for 3

distinct planes.

(b) List also the additional possible configurations if the planes are

allowed to be coincident.

2. Find the solutions, if any, of each of the following systems of equations:

(a) x + y + 2z = 1,

2x + z = 3,

3x + 2y +4z = 4;

(b) x + y + z = 6,

x + y +2z = 7,

y z = 1;

(c) x 2y + z = 1,

2x + y z = 1,

x + 2y + 2z = 2;

(d) 2v + x+ y+ z= 0,

v x + 2y + z = 0,

4v x + Sy + 3z = 1,

v x + y z = 2;
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(e) 2x + y+ z-i-w= 2

X 2y + z w = 1 ,

4x + 5y + 3z w = 0

3-5. Elementary Row Operations

In Section 3-1, three types of algebraic operations were listed as being

involved in the solution of a linear system of equations; in Section 3-4, three

types of row operations were used when we duplicated the procedure employing

matrices. In this section we shall show how matrix multiplication underlies

this earlier work, in fact, how this basic operation can duplicate the row

operations.

Let us start by looking at what happens if we perform any one of the three

row operations on the identity matrix I of order

row of I by a nonzero number n, we have a matrix

0 0 1 0 0

0 1 01 , 0 n 01 , or

0 0 1 [0 0 1

Let J represent any matrix of this type. Second,

,another, we obtain

.9 o 1 o o

1 1 01 , [o 1 ol ,

o o 1 1 o 1

3. First

of the

1 0 0010.
0 0 n

if we add

110.
o 1 o

o o 1

if we multiply a

form

one row of I to

,

or one of three other similar matrices. (What are they?) Let K stand for

any matrix of this type. Third, if we interchange two rows, we form matrices

(denoted by L) of the form

[0 1 0100,
0 0 1

1 0 0

001,
0 1 0

0

1

0

1

0

1

0

.

Matrices of these three types are called elementary matrices.

Definition 3-4. An elementary matrix is any'square matrix obtained by

performing a single elementary row operation on the identity matrix.

[see. 3-43
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Each elementary matrix E (that is, each J2 K, or L) has an inverse,

that is, a matrix E
-1

such that--

E 1E = I = E E
-1

.

For example, the inverses of the elementary matrices

J = [0

are the elementary

1-1 =

1 0 0

n 0]
0 0 1

matrices

1 0 0

0 I 0
n

0 0 1
[

2

2

K =

K-1 =

1 0

[0 1

0 0

1 0

0 1

0 0

0

11

1

-1

0

1

2

,

and L =

and L-1 =

0

[1
0

0

[1

0

1

0

0

1

0

0

0

01

1

0

1

2

respectively, as you can verify by performing the multiplications involved.

An elementary matrix is related to its inverse in a very simple way. For

example, J was obtained by multiplying a row of the identity matrix by n;

-1 is formed by dividing the same row of the identity matrix by -11:. In a

sense i-1 "undoes" whatever was done to obtain -J -from-the identity matrix;

conversely, J will undo j-1 . Hence

J 1J = I = JJ
-1

.

The product of two elementary matrices also has an inverse, as the follow-

ing theorem indicates.

Theorem 1-1. If square matrices A and B of order n have inverses

and B
-1

2 then AB has an inverse (AB)-
1

2 namely

Proof. We have

and

( AB ) = B-1 A -1 .

(AB) (i-
1
A
-1

) = A(B B
-1

)A
-1

= A A
-1

= I

-1
(i-

1
A
-1

) (AB) = B (A 1A)B = B-1 B = I,

[see. 3-5]
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so that B
-1

A
-1 is the inverse of AB by the definition of ilverse.

You will recall that, for 2 x 2 matrices, this same proof was used in

establishing Theorem 2.8.

Corollary. 3-1-1. If square matrices A,B,...,K nf order n have inverses

-1 - -1A ,

1
, then the ;,oduct has an inverse (AB.-.K) .1, namely

(AB..K)-4 = K-1---B-1A-1.

The proof by mathematical induction is left as an exercise.

Corollary 3-1-2. If Ei,E2,...,Ek are elenentary-matrices of order n,

then the matrix

has an inverse, namely

B = E E
1 2

-1 -1
B = Ek ..-=,

This follows immediately from Corollsr4F amd the fact that each

elementary matrix has an inverse.

The primary.importance of an elementary matrix rests on the folLowing

property. If an m X n matrix A is multiplied on the left by an m X n

elementary matrix E, then the product is cfne matrix obtained from A by

the row operation by which the elementary omatrim was formed from I. For

example,

I. 0 01 [a
0. n 0 d

0 0 1 g
[

0 01
0 11
0 0 1

b

e

h

c

[a

e

c
f,

i

b

d

f

=

_

....a b

mf: ne
;1.. h

a

c+e

.

z
ni
1

d+f

You should verify these and other similar Ieft multiplications by elementary

matrices to familiarize ymnrself with, the patterns.
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Theorem 3-2. Any elementary row operation can be performed on an m x n

matrix A by multiplying A on the left by the corresponding elementary matrix

of order m.

The proof is left as an exercise.

Multiplications by elementary matrices can be combined. For example, to

add -4 times the first row to the second row, we would multiply A on the

left by the product of elementary matrices of the type 3
-1

KJ:

[-1 0 01 [1 0 0] [-1 0 0 1 0 0

J-1KJ = 0 1 0 1 1 0 0 1 0 = -4 1 0 .

0 0 1 0 0 1 0 0 1 0 0 1

Note that J multiplies the first row by -1; it is necessary to multiply by

J
-1 in order to change the first row back again to its original form after

adding the first row to the second. Similarly, to add -2 times the first row

to the third, we would multiply A on the left by

0 1 0 0

0 1 0 010.
0 0 0 1 0 1

0 0 0

0 1 0 0 1 0

0 1. 1 0 1

To perform both of the above steps at the same time, we would multiply A on

the left by

1 0 1 0 0 1 0 0

141 = [-1 1 0 0 1 01 = [-4 1 0]

0 0 1 -2 0 1 -2 0 1

Since M
1

is the product of two matrices that are themselves products of

elementary matrices, M1 is the product of elementary matrices. By Corollary

3-1-1, the inverse of HI is the product, in reverse order, of the corresponding

inverses of the elementary matrices.

Now our first step in the solution of the system of linear equations at

the start of this chapter corresponds precisely to multiplying on the left by

the stave matrix MI. If we multiply both sides of System I on page 103 on the

left by 141

137
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1

1
2

0

1

0

0

0]

1

1

2

1
2
1

2 yl
3 z

=

1

1
2

0

1

0

0

1

2
11
1

,

we obtain System II. For the second, third, and fourth steps, the corresponding

matrix multipliers must be respectively

1 0 0 1

M2= 1 0 M3 = 0

0 3 1 0

M
4

1 1 0

O 1 0

O 0 1

Thus multiplying on the left by M2 has the effect of leaving the first row

unaltered, multiplying the second row by 1, and adding 3 times the second

row to the third.

Let us now take advantage of the associative law for the multiplication of

matrices to form the product

M M
4
M
3
M
2
M1

1

0

0

1

1

0

U

0

1

1 0

0 1

o o

1

3

1 0 0

O 1 0

O 3 1

1 0 0

1 1 0

2 0 1

4 4

8 8 8

7 1 3

8 8 8

5 3 1

-8- 8 8

We recognize the inverse of the original coefficient matrix, as determined in

Section 3-3.

Theorem 3-3. If

BA m I,

where B is a product of elementary matrices, then

AB = I,

so that B is the inverse of A.

Proof. By Corollary 3-1-2, B has an inverse B
-1

. Now from

138
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we get

whence

so that

and

B 1BA = B
-1

I,

A = B
-1

,

AB =B-1B= I

A
-1

= (B
-1

)
1

= B.

Exercises 3-5

1. Find matrices A, B, and C such that

(a) 1 2 3 1 2 3

A 4 0 21 = 1 0 21 ,

1.
0 1 1 1 4 1

(b) 1 2 3 0 3 4

B 0 21 = 0 21 ,

1.0 1 1 1.1 1 1

(c) 1 2 3

C [-1 0 21
0 1 I

=

1

i0
0

0

1

0

0

01
1

129

2. Express each of the following matrices as a product of elementary matrices:

(a) 0 0

0 1 01 ,

3 1
0

8 8

139
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(b) 1 0 0

0

[

-4 0

0 0 1

(c) 1 1 1

0

[
1 0

0 0 1

3. Using your answers to Exercise 2, form the inverse of each of the given

matrices.

4. Find three 4 x 4 matrices, one each of the types J, K, and' L, that

will accomplish elementary row transformations when applied as a left

multiplier to a 4 X 2 matrix.

S. Solve the following system of equations by means of elementary matrices:

y 2z = 3,

y + 3z = 5,

2x + 2y 3z = 15.

6. (a) Find the inverse of the matrix

0 1

o =4 21.

[
2 0 1

(b) Express the inverse a product of elementary matrices.

(c) Do you think the answer to Exercise 6(b) is unique? Why or why not?

Compare, in class, your answer with the answers found by other members

of your class.

7. Give a proof of Corollary 3-4-1 by mathematical induction.

8. Perform each of the following multiplications:

(a) [a b c 2 0 0
d e f 0 1 0s
g h i 0

l [

0

1

1

s

1[

(b) a b c 1 0 11
d e f 0 1 0

g h i 0 0 1

[ [

(c) a b c 3 0 0

d e f 0 2 0 140g h i 0 1 1
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9. State a general conjecture you can make on the basis of your solution of

Exercise 8.

3-6. SuMmary

In this chapter, we have discussed the role of matrices in finding the

solution set of a system of linear equations. We began by looking at the

familiar algebraic methods of obtaining such solutions and then learned to

duplicate this procedure using matrix notation and row operations. The intimate

connection between row operations and the fundamental operation of matrix

multiplication was demonstrated; any elementary operation is the result of left

multiplication by an elementary matrix. We can obtain the solution set, if it

exists, to a system of linear equations either by algebraic methods, or by row

operations, or by multiplication by elementary matrices. Each of these three

procedures involves steps that are reversible, a condition that assures the

equivalence of the systems.

Our work with systems of linear equations led us to. a method for producing

the inverse of a matrix when it exists. The identical sequence of row operations

that converts a matrix A into the identity matrix will convert the identity

matrix into the inverse of A, namely A
-1

. The inverse is particularly helpful

when we need to solve many systems of linear equations, each possessing the

same coefficient matrix A but different righthand column matrices B.

Since the matrix procedure 'diagonalized' the coefficient matrix, the

method is often called the "diagonalization method." Although we have not

previously mentioned it, there is an alternative method for solving a linear

system that is often more useful when dealing with a single system. In this

alternative procedure, we apply elementary matrices to reduce the system to the

form

a c
1

0 1 c yl = [c21 ,

0 0 1 z c3

(1)

as in System III in Section 3-1, from which the value for z can readily be

obtained. This value of z can then be substituted in the next to last equation

to determine the value of y, and so on. An examination of the coefficient

(see. 3-53
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matrix displayed above shows clearly why this procedure is called the "r:::i

angularization method."

On the other hand, the diagonalization method can be speeded up to bypass

the triangularized matrix of coefficients in (1), or in System III of Section

3-1, altogether. Thus, after pivoting on the coefficient of x in the System

x y + = 2,

x 2y 2z = 1,

2x + y + 3z = 1,

to obtain the system

x y + z = 2,

II 0 y 3z = 1,

O + 3y + z = 5,

we could next pivot completely on the coefficient of y to obtain the system

X + 0 + - 3,

O + y + az = 1 ,

O + = 8,

and then on the coefficient of z to get the system

x + 0 0 = 1,

IV' 0 + y + 0 = 2,

0 + 0 + z = 1,

which you will recognize as the system V of Section 1-1.

It should now be plain that the routine diagonalization and triangulariza

tion methods can, be applied to systems of any number of equations in any number

of variables and that the methods can be adapted to machine computations.
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Chapter 4

REPRESENTATION OF COLUMN MATRICES AS GEOMETRIC.VECTORS

4-1. The Algebra of Vectors

In the present chapter, we shall develop a simple geometric repregentation
ral

for a special class of matrices namely, the set of column matrices
dLt

with two entries each. The familiar algebraic operations on this set of matrices

will be reviewed and also given geometric interpretation, which will lead to a

deeper understanding of the meaning and implications of the algebraic concepts.

By definition, a column vector of order 2 is a 2 x 1 matrix. Consequent-

ly, using the rules of Chapter 1, we can add two such vectors or multiply any one

of them by a number. The set of column vectors of order 2 has, in fact, an

algebraic structure with properties that were largelly exmiored in our study of

the rules of operation with mat=ices-

In the following pair of theorems, we summarize wild:: we already know con-

cerning the algebra of these vert-ers, and in the next sermion wd shall begin the

interpretation of that algehra_ill geometric'terms.

Theorem 4-1. Let V and W be column vectors of order 2, let r be a

number, and let A be a square matrix of order 2. Then

V + W, rV, and AV

are each column vectors of order 2.

For example, if

'then

and

0 110
to 4 and A [3 ,

oWV = [121

[1] [ 0] rV w 4
2 -2

AV ce [o 11 [1] as [..21] .

3 -2 2
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Theorem 4-2. Let V, W, and U be column vectors of order 2, let r

and s be numbers,and let A and B be square matrices of order 2. Then

all the following laws are valid.

I. Laws for the addition of vectors:

(a) V + W a W + V,

(b) (V + W) + U a V + (W + U),

(c) " 4- 0 a V,

(d) V + (V) r 0.

II. Laws for the numerical multiplication of vectors:

r(V + W) rV

(b) r(sV) a (rs)V,

(c) (r + s)V = rV

(d) OV a 0,

(e) 1V = V,

r0 a O.

III. Laws for the multiplication of vectors by matrices:

(a) A(V + W) = AV + AW,

(b) (A B)V a AV + BV,

(c) A(BV) a (AB)V,

(d) 02V a 0,

(e) IV = V,

A(rV) a (rA)V a r(AV).

In Theorem 4-2, 0 denotes the column vector of order 2, and 0
2

the .

square matrix of order 2, all of whose entries are 0.

Both of the preceding theorems have already been proved for matrices. Since

column vectors are merely special types of matriCes, the theorems as stated must

likewise be true. They would also be true, of course, if 2 were replaced by

3 or by a general n, throughout, with the understanding that a column vector

of order n is a matrix of order n 1.

[secs, 4-13



let

and let

Exercises 4-1

-.4
V = [3] W = 1] , and U =

[

4 ' 2

]
[

r = 2 and s = - 1;

[3 0] [ 1 1
A = and B =

2 -1 -2 1]

A

135

Verify each of the laws stated in Theorem 4-2 for this choice of values

for the variables.

2. Determine the vector V such that AV - AW AW + BW, where

[5 1
A =

3 [ 1 0

4-2] $ W m [9], and g =
-4 2] '

3. Determine the vector V such that 2V +2W = AV +BV, if

4. rind V, if

5. Let

W =
[2] A = , and g =

A =
2/3 -1/3 2 1

[-1/3 2/3] '3 = [1 2] , and A(3V) = A(BV).

[all al21
A =

a
21

a
22

Evaluate .

(a) A and (b)
A, [i]

1.45
(Seo. 4-1)
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(c) Using your answers to parts (a) and (b), determine the entries of

A if, for every vector V of order 2,

AV = O.

(d) State your result as a theorem.

6. Restate the theorem obtained in Exercise 5 if A is a square matrix of

order n and V stands for any column vector of order n. Prove the new

theorem for n = 3. Try to prove the theorem for all n.

7. Using your answers to parts (a) and (b) of Exercise 5, determine the entries

of A if, for every vector V of order 2,

AV = V.

State your result as a theorem.

8. Restate the theorem obtained in Exercise 7 if A is a square matrix of order

n and V stands for any column vector of order n. Prove this theorem for

n = 3. Try to prove the theorem for all n.

9. Theorems 4-1 and 4-2 summarize the properties of the algebra of column

vectors with 2 entries. State two analogous theorems summarizing the .

properties of the algebra of row vectors with 2 entries. Show that the

two algebraic structures are isomorphic.

4-2. Vectors and Their Geometric Representation

The notion of a vector occurs frequently in the physical .sciences, where a.

vector is often referred to as a quantity having both length and direction and

accordingly is represented by an arrow. Thus force, velocity, and even dis

placement are vector quantities.

Confining our attention to the coordinate plane, let us inveitigate this

intuitive notion of vector and see how these physical or geometric vectors are

related to the algebraic column and row vectors of Section 4-1.

An arrow in the plane is determined when the coordinates of its tail and

the coordinates of its head are given. Thus the arrow Al from (1,2) to (5,4)

is shown in Figure 4-1. Such an arrow, in a given position, is called a located

146
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Figure 4-1. Arrows in the plane.

vector; its tail is called the initial point, and its head the terminal point

(or end point), of the located vector. A second located vector A2, with

initial point (-2,3) and terminal point (2,5), is also shown in Figure 4-1.

A located vector A may be described briefly by giving first the co

ordinates of its initial point and then the coordinates of its terminal point.

Thus thelocated vectors in Figure 4-1 are

Al: (1,2)(5,4) and A2: (-2,3)(2,5).

The horizontal run, or x component, of Al is

5 1 = 4,

and its vertical rise, or y component, is

4 2 =

Accordingly, by the Pythagorean theorem, its length is

147'
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1(5_02 (4_2)2 v/42 22

Its direction is determined by the angle e that it makes with the positive

x direction:

cos e = 2
sin =

2.13 5 213 5

Since sin e is the cosine of the angle that Al makes with the y direction,

cos e and sin e are called the direction cosines of A
1 .

You might wonder why we did not write simp:y

2 1
tan e = - = -

4 2

instead of the equations for cos e and sin 9. The reason is that while the'

value of tan 9 determines slope, it does not determine the direction of A1 .

Thus if 0 is the angle for the located vector (5,4)(1,2) opposite to A
1,

then

-2 1
tin 0 = = - = tan 0;

-4 2

but the angles 0 and 9 from the positive x direction cannot be equal since

they terminate in directions differing by g.

Now the x and y components of the second located vector A2: (-2,3)

(2,5) in Figure 4-1 are, respectively,

2 - (-2) = 4 and 5 - 3 = 2,

so that A
1

and A
2

have equal x components and equal y components; con-

sequently, they have the same length and the same direction. They are not in

the same position, so of course they are not the same located vectors; but since

in dealing with vectors we are especially interested in length and direction we

say that they are equivalent.

Definition 4-1. Two located vectors are said to be equivalent if and only

if they have the same length and the same direction.

For any prescribed point P in the plane, there is a located vector

equivalent to AI (and to A2) and having P as initial point. To determine

[sec. 4-2]
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the coordinates of the terminal point, you have only to add the components of

A
1

to the corresponding coordinates of P. Thus for the initial point

P: (3,-7), the terminal point is

(3 A- 4, 7 + 2) = (7, .5),

so that the located vector is

A
3'

(3
'

7)(7, 5).

You might plot the initial point and the terminal point of A3 in order to

check that it actually is equivalent to Al and to A2.

In general, we denote the located vector A with initial point (x1,y1)

and terminal point (x2,y2) by

A: (x1,y1)(x2,y

Its x and y components are, respectively,

x2 xl and y2 -

Its length is

r =i(x2 x1)
2
+ (Y2 Y1)

2

If r 0 0, then its direction is determined by the angle that it makes with

the x axis:

x2 xl
Y2 Y1

cos 0 = 2 sin 0 =

If r = 0, we find it convenient to say that the vector is directed in

any direction we please. As you will see, this makes it possible to state

several theorems more simply, without having to mention special cases. For

example, this null vector is both parallel and perpendicular to every direction

in the plane:

A second located vector 149
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A': (x3,y3)(x4,y4)

is equivalent to A if and only if it has the same length and the same direction ,

as A, or, what amounts to the same thing, if and only if it has the same com

ponents as A:

x4 x3 x2 xl, y4 y2 yl.

For any given point (x
0
,y

0 '

) the located vectn=

B: (x0,y0)(x0 + x2 xl,y0 + y2 yl)

is equivalent to A and has (x0,y0) as its initial point.

It -.hus appears that the located vector A is determined except for its

position by its components

a = x
2

x
1

and b = y2 y1:.

These can be considered as the entries of a column vector

In this way, any located vector A determines a column vector V. Conversely,

for any given point P, the entries of any column vector V can be considered

as the components of a located vector A with P as initial point. The

locater vector A .is said to represent V.

A column vector is a "free vector" in the sense that it determines the

components (and therefore the magnitude and direction), but not the position,

of any located vector that represents it. In particular, we shall assign to

the column vector

a standard representation

V =

: (O,0)(u,v)

150
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as the located vectcr from the origin to the point

P : (u,v),

as illustrated in Figure 4-2; this is the representation to which we shall

ordinarily refer unless otherwise stated.

Figure 4-2. Representations of the column vector
[1]

as

located vectors OP and QR.

Similarly, of course, the components of the located vector A can be

considered as the entries of a row vector. For the present, however, we shall

consider only column vectors and the corresponding geometric vectors; in this

chapter, the term "vector" will ordinarily be used to mean "column vector,"

not "row vector" or "located vector."

The length of the located vector OP, to which we have previously referred,

is called the 1211111 or norm of the column vector

1'1 [1/71]

Using the symbol IIVII to stand for the norm of V, we have

IIVII
2

1E4
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Thus, if u and v are not both zero, the direction cosines of OP are

IIVII
and

IIVII

respectively; these are also called the direction cosines of the column vector

V.

The association between column or row vectors and directed line segments,

introduced in this section, is as applicable to 3dimensional space as it is to

the 2dimensional plane. The only difference is that the components of a

located vector in 3dimensional space will be the entries of a column or row

vector of order 3, not a column or row vector of order 2.

In the rest of this chapter and in Chapter 5, you will see how Theorems

4-1 and 4-2 can be interpreted through geometric operations on located vectors

and how the algebra of matrices leads to beautiful geometric results.

Exercises 4-2

1. Of the following pairs of vectors,

(a)
[1] [33]

(b)
[1]

(c)
[-

(f) 5 [12]
12] ' 5 '

2]i
[

;
(g) [ 3.171'

(h)
8

is] ,

(d)
[1] [ 01

0

(e)
[1] [2:543]

(i)
Els

[341

[1]
[3t
4t1

which have the same length? Which have the same direction?

2. Let V = t'
[
3

. Draw arrows from the origin representing V for

t = 1, t = 2, t = 3, t = 1, t = 2, and t = 3.

In each case, compute the length and direction cosines of V.

152
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3. In a rectangular coordinate plane, draw the standard representation for

each of the following seta of vectors. Use a different coordinate plane

for each set of vectors. Find the length and direction cosines of each

vector:

[-j4.] ' Li '

and

and

and

and

and

4. Let V = = t 1 +

Draw the line segments 51; representing V if t = 0, + 1, + 2, and

(a) m = 1, b = 0;

(b) m = 2, b = 1;

(c) m = 1/2, b = 3.

In each case, verify that the corresponding set of five points (x,y) lies

on a line.

5. Two column vectors are called parallel provided their standard geometric

representations lie on the same line through the origin. If A and B

are nonzero parallel column vectors, determine the two possible relation

ships between the direction cosines of A and the direction cosines of

B.

6. Determine all the vectors of the form
[u]

that are parallel to

(a)
[]

) (d)

i-si [311

(b) (e)
03]

[4] 1

5 [10] ' 153
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4-3. Geometric Interpretation of the Multiplication of a Vector by a Number

The geometrical significance of the multiplication of a vector by a number

is readily guessed on comparing the geometrical representations of the vectors

V, 2V, and 2V for

By definition,

while

V =

2V =
[ 6

8] '

2V = 6 .81

Thus, as you can see in Figures 4-3 and 4-4, the standard representations of

V and 2V have the same direction, while 2V is represented by an arrow

pointing in the opposite direction. The length of the arrow associated with V

Figure 4-3. The product of
a vector and a positive number.

Figure 4-4. The product of
a vector and a negative number.

is 5, while those for 2V and 2V each have length 10. Thus, multiplying

V by 2 produced a stretching of the associated geometric vector to twice its

original length while leaving its direction unchanged. Multiplication by 2

not only doubled the length of the arrow but also reversed its direction.

[sea. 4-3]
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These observations lead us to formulate the following theorem.

Theorem 4-3. Let the directed line segment m represent the vector V

and let r be a number. Then the vector rV is represented by a directed line

having length Irl times the length of PQ. If r > 0, the repre

sentation of rV has the same direction as PQ; if r.< 0, the direction of

the representation of rV is opposite to that of PQ.

[u ]
Proof. Let V be the vector . Then

Now,

hence,

IIVII = V/u 2
-1- v

2
.

[ru
rV =

rv] ;

11rVII = N/l(rt.)2 (rv)
2

v/r2(u2

.= IrIN42 2+ v

= Irl

This proves the first part of the theorem.

If

r = 0 or V
0] '

the second part of the theOrem is certainly true.

If

r 0 0 and V 0 [g] ,

111.

the direction cosines of PQ are

[sec. 4-31
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while those of rV are

ru

Irl IIVII

and

and
rv

Irl IIVII

If r > 0, we have Irl = r, whence it follows that the arrows associated with

V and rV have the same direction cosines and, therefore, the same direction.

If r < 0, we have Irl = - r, and the direction cosines of the arrow associ-

ated with rV are the negatives of those of PQ. Thus, the direction of the

representation of rV is opposite to that of PQ. This completes the proof of

,the theorem.

One way of stating part of the theorem just proved is to say that if r is

a number and V is a vector, then V and rV are parallel vectors (see

Exercise 4-2-6); thus they can be represented by arrows lying on the same line

through the origin. On the other hand, if the arrows representing two vectors

are parallel, it is easy to show that you can always express one of the vectors

as the product of the other vector by a suitably chosen number. Thus, by check-

ing direction cosines, it is easy to verify that

p] , pg] , and [- 104

are parallel vectors, and that

= 10
5

while
[-104]

- 2
[22][-20 [-2]

In the exercises that follow, you will be asked to show why the general result

illustrated by this example holds true.

Exercises 4-3

1. Let L be the set of all vectors parallel to the vector . Fill in

the following blanks so as to produce in each case a true statement:

156
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(a)
[_41

e L; (d)

(b) L; (e)

(c) s L; (f)

(g) for every real number h 0 0,

3.47

[6] ¢ L;

for every real number t,
St

for every real number t 12t1 6

2. Verify gtaph;.caIly and prove algebraically that the vectors in each of the

folloWi!f; pair!) act.: parallel. In each case, express the first vector as

the.i7ot of: uhe second vector by a number:

(d)

(e)

(f)

[ 2

32]

[ 2

1]

0

0]

'

'

'

[46

[

8
4
]

2

[ 9]

.

'

'

3. Let V b. a vector and W a nonzero vector such that V and W are

parallel. Prove that there exists a real number r such that

V = rW.

4. Prove:

(a) If rV = [1 and r 0 0, then V = [CI
0 0]

(b) If rV = [00 ] and V 0[0] (2) then r = 0.
'

5. Show that the vector V + rV has the same direction as V if r > 1,

and the opposite direction to V if r < 1. Show also that

IIV + rVII = IIVII Il + rl.

4-4. Geometrical Interpretation of the Addition of Two Vectors
a

If we have two vectors V and W, V =
b
] and W

'

= their sum
d

[sec. 4-3]
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is, by definition,

+ ci-[a]

[I]
= [a

b + d

To interpret the addition geometrically, let us return momentarily to the con
cept of a "free" vector. Previously we have associated a column vector

with some located vector

A: (x1,Y1)(x2,Y2)

such that c = x
2

x
1

and d = y2 yl. In particular, we can associate W

with the vector

A: (a,b)(a + c, b + d).

we use A to represent W and use the standard representation for V and

V + W in Figure 4-5.

Figure 4-5. Vector addition.

Also, we can represent V as the located vector

B: (c,d)( -1- c, b + d)

158
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and obtain an alternative representation. If the two possibilities are drawn

on one set of coordinate axes, we have a parallelogram in which the diagonal

represents the sum; see Figure 4-6.

Figure 4-6. Parallelogram rule for addition.

The parallelogram rule is often used in physics to obtain the resultant

when two forces are acting from a single point.

Let us consider now the sum of three vectors

U = [e] , V = [11b] , and 1,7 [d]

We choose the three located vectors

and

5 : (0,0)(a,b)

F15 : (a,b)(a + c, b + d)

a : (a + c, b + d)(a + c + e, b + d + f)

to represent .11, W, Enid u respectively; see Figure 4-7,

159
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R
i
(a4cie, b4d+f)

V + W U

Q: (a4c, b4d)

F:(a,b)

p.

Figure 4-7. The sum V + W + U.

Order of addition does not affect the sum although it does affect the

geometric representation, as indicated in Figure 4-8.

Figure 4-8. The sum V + U + W.

If V and W are parallel, the construction of the proposed representative

of V + W is made in the same manner. The details will be left to the student.

Theorem 4-4. If the vectors V and W -are represented by the directed

[sec. 4-4]
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line segments 5 and RI, respectively, then V + W is represented by 0Q.

Since V - W = V + (-W), the operation of subtracting one vector from

another offers no essentially new geometric idea, once the construction 'of -W

is understood. Figure 4-9 illustrates the construction of the geometric vector

representing V - W. It is useful to note, however, that since

I IV - WI I =
[1.11, rs]l 2v/(u r)2

the length of the vector V - W equals the distance between the points

P: (u, v) and T: (r, s).

Figure 4-9. The subtraction of vectors, V - W.

Exercises 4-4

1. Determine graphically the sum and difference of the following pairs of

vectors. Does order matter in constructing the sum? the difference?

(a)

(b)

(c)

2[

3[

[72]

'

'

'

7]

[1'

[-510]2

[-a]

'

'

(d)

(e)

(f)

[sec. 4-4]
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[74]
-31

3

[-2] '
[1:/]
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2. Illustrate graphically the associative law:

(V + W) + U = V + (w+ U).

3. Compute each of the following graphically:

(a)

(b)

(c)

(d)

1[21]
[1]

[4 -3 + -4
-2] [ 2]

[ 521 [ 211 [41]

hI
[Od [2] Ill

3

4. State the geometric significance of the following equations:

(a) v + w [g] ,

(b) V + W + U = [00 ]
2

(c) V + W + U + T = [g] .

5. Complete the proof of both parts of Theorem 4-4.

4-5. The Inner Product of Two Vectors

Thus far in our development, we have investigated a geometrical interpre-

tation for the algebra of vectors. We have represented column vectors of order

2 as arrows in the plane, and have'established a one-to-one correspondence be-

tween this set of column vectors and the set of directed line segments from the

origin of a coordinate plane. The algebraic operations of addition of two

vectors and of multiplication of a vector by a number have acquired geometrical

significance.

But we can also reverse our point of view and see that the geometry of

vectors can lead us .to the consideration of additional algebraic structure.

For instance, if you look at the pair of arrows drawn in Figure 4-10, you

may comment that they appear to be mutually perpendicular. You have begun to

162
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Figure 4-10. Perpendicular vectors.

talk about the angle between the pair of arrows. Since our vectors are located

vectors, the following definition is needed.

Definition 4-2. The angle between two vectors is the angle between the

standard geometric representations of the vectors.

Let us suppose, in general, that the points P, with coordinates (a,b),

and R, with coordinates (c,d), are the terminal points of two geometric

vectors with initial points at the origin. Consider the angle POR, which we

denote by the Greek letter 0, in the triangle POR of Figure 4-11.

We can compute the cosine of e by applying the law of cosines to the

triangle POR. If 10PI, IORI, and IPRI are the lengths of the sides of

the triangle, then by the law of cosines we have

210PI 10111 cos 0 = 10PI
2

10R1
2

IPRI
2

.

P:(a, b)

Figure 4-11. The angle between two vectors.
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But

Thus,

10PI = v/ a
2
+ b

2
,

IORI c
2

+ d
2

,

IPRI = 1/4(ac) 2 + (bd)
2

.

2( Via 2 + b
2
) ( c

2
+ d

2
) cos 0 = (a

2
+ b

2
) + (c + d

2
)

I
(ac)

2
+ (bd)2/

Hence,

= 2(ac + bd).

IOPI IORI cos 0 = ac + bd. (1)

The number on the righthand side of this equation, although clearly a function

of the two vectors, has not heretofore appeared explicitly. Let us give it a

name and introduce, thereby, a new binary operation for vectors.

Definition 4-3. The inner product of the vectors

1

Lad and [cl written 41.1

d] '
[ [

d] '

is the algebraic sum of the products of corresponding entries. Symbolically,

[zi
[cl = ac + bd.

We can similarly define the inner product of two row vectors: [a b] [c d] =

ac + bd.

Another name for the inner product of two vectors is the "dot product" of

the vectors. You notice that the inner product of a pair of vectors is simply a

number. In Chapter 1, you met the product of a row vector by a column vector,

say [a b] times N , and found that

[a b] [cd] = [ac + bd] ,

[sec. 4-5]
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the product being a 1 x 1 matrix. As you can observe, these two kinds of

products are closely related; for, if V and W are the respective vectors
[a] [c

]
and we have V = [a 13]

d
and

'

t

V
t
W = [ac + bd] = [V Id .

Later we shall exploit this close connection between the two products in order

to deduce the algebraic propecties of the inner product from the known prop7-ties

of the matrix product.

Using the notion of the inner product and the formula (1) obtained above,

we can state another theorem. We shall speak of the cosine of the angle included

between tWo column (or row) vectors, although we realize that we are actually

referring to an angle between associated directed line segments.

Theorem 4-5. The inner product of two vectors equals the product of the

lengths of the vectors by the cosine of their included angle. Symbolically,

V la W = IIVII IIWII cos A,

where e iu che 5etween the vetors V, and W.

Theorem 4-5 has been proved in the case in which V and W are not

parallel vectors. If we agree to take the measure of the angle between two

parallel vectors to be 00 or 1800 according as the vectors have the same or

opposite directions, the result still holds. Indeed, as you may recall, the law

of cosines on which the burden of the proof rests remains valid even when the

three vertices of the "triangle" POR are collinear (Figures 4-12 and 4-13).

Px

Figure 4-12. Collinear vectors
in the same direction.

Figure 4-13. Collinear vectors
in opposite directions.

[sec. 4$]

165



156
Corollary 4-5-1. The relationship

V V = IIVII
2

holds for every vector V.

The corollary follows st once from Theorem 4-5 by taking V = W, in which

case e - o
o

. To be sure, the result also follows immediately from the facts

that, for any vector V = : , we have

a
2

+ b
2

, while IIVII = .1a 2 + b
2

.

Two column vectors V and W are said to be orthogonal if the arrows

01). and OR representing them are perpendicular to each other. In particular,

[flthe null vector is orthogonal to every vector. Since

cos 900 = cos 2700 = 0,

we have the following result:

Corollary 4-5-2. The vectors V and W are orthogonal if and only if

V W = 0.

You will note that the condition V W = 0 is automatically satisfied

if either V or W is the null vector.

We have examined Eome of the geometrical facets of the inner product of two

vectors, but let us now look at some of its algebraic properties. Does it sat

isfy commutative, associative, or other algebraic laws we have met in studying

number systems?

\ We can show that the commutative law holds, that is,

V W=Wo V.

For if V and W are any pairs of 2 x 1 matrices, a computatiun shows that

VtW = Wt V,
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Hence

V 0 = [V W] , while W
t

V W = W V.

w

157

It is equally possible to show that the associative law cannot hold for inner

products. Indeed, the products V (W U) and (V W) U are meaningless.
,

To evaluate V (W U), for example, you are asked to find phe.inner product

of the vector V with the number W U. But the inner product.is defined for

two row vectors or two column vectors and not for a vector and a number. Inct
dentally, the product V(W U) should not be confused with the meaningless

V (W U). The former product has meaning, for it is the product of the vector

V by the number W U.

In the exercises that follov, you will be asked to consider same of the

other possible properties of the inner product. In particular, you will be asked

to establish the following theorem, the first part of which was proved above.

Theorem 4-6. If V, W, and U are column vectors of order 2, and r

is a real number, then

(a) V W W V,

(b) (rV) o W r(V W),

(c) V (W + U) VW+V U,

(d) V V > 0; and

(e) if V V = 0, then V ro] :

Exercises 4-5

1. Compute the cosine of the angle between the two vectors in each of the

following pairs:

(a)

[4 [ ?31 ;

(c)

(b)
[21] [01] 1;

(d) []3] ' [a
3

'

[Iwo. 4-5]
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[-6 2] [2 5](e)
1] ' [12 '

(g) 5] ' [2 '

[11 0] [2t

'

-t
(h)

' [-1 ' t] [2t]

In which cases, if any, are the vectors orthogonal? In which cases, if any,

are the vectors parallel?

2. Let

0
E [1] and E
1 0 2 [1]

ShoW that, for every nonzero vector V,

V o El V E
2

and
IIVII IIVII

are the direction cosines of V.

3. (a) Prove that two vectors V and W are parallel if and only if

V W ± IIVII

Explain the significance of the sign of the right-hand side of this equation.

(b) Prove that

w)2 lvi 2 114112

and write this inequality in terms of the entries of V and W.

(c) Show also that V W < IIVII

4. Show that if V is the null vector then

V W 0.

5. Fill in the blanks in the following statements so as to make the resulting

sentences true:

(a) The vectors [2] and [ 2]
4

are parallel.

168
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[1
(b) The vectors

]

[11
and are orthogonal.

3

(c) The vectors
[-131

and
P]

are

1
(d) The vectors [-18and

3 [12] are parallel.

(e) For every positive real-number t, the vectors

and 2 ] are orthogonal.J2t

(f) For every negative real number t, the vectors

and
[tt] are orthogonal.

6. Verify that parts (a) (d) of Theorem 4-6 are true if

u [51 , W = 2] , V = 11-21 , and r = 4.
1 3

7. Prove Theorem 4-6

(a) by using the definition of the inner product of two vectors;

(b) by using the fact that the matrix product VtW satisfies the

equation

V
t
W = [V o W] .

8. Prove that IIV WII
2

= (V 4- W) (V 4- W) = IIVII
2

4- 2 V W 11WII
2

for

every pair of vectors V and W.

9. Show that, in each of the following sets of vectors, V and W are

orthogonal, V and T are parallel and T and W are orthogonal:

[

1(a) V = _.2"
[ 8] '

, T =
W [-3.6] '

(b) V = 23 , T = [12d
'

W =[.32]

121

Do the same relationships hold for the set

[0 [1] 5V [2]

0]
T

' ' 7

,
Deo.; 4-5]
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10. Let V be a nonzero vector. Suppose that W and V are orthogonal, while

T and V are parallel. Show that W and T are then orthogonal.

11. Show that, for every set of real numbers r, s, and t, the vectors

Fri and t

[-s]
are orthogonal.

12. Let V = [u] , where V is not the zero vector. Show that if W and V

are orthogonal, there exists a real number t such that

W = t [-v1

13. Show that the vectors V and W are orthogonal if and only if

IIV + WII
2

IIV WII
2

= 0.

a
14. Show that if A =

b
1 and B = c I

'

then
d

IIAII
2

liBil
2

(A B)
2

= (ad bc)
2

.

15. Show that the vectors V and W are orthogonal if and only if

(V + W) (V + W) =VV+We W.

16. Show that the equation

(V + W) (V W) V. V-140.14

holds for all vectors V and W.

17. Show that the inequality

Ily + 1411 < IIVII + Him

holds for all vectors V and W.
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4-6. Geometric Considerations

In Section 4-4, we saw that two parallel vectors determine a parallelogram.

That is, if

.A = [I] and B = [cd]

_are two nonparallel vectors with initial points at the origin, then the points

1)1(a,b), 0:(0,0), R:(c,d) and S:(a + c, b + d) are the vertices of a

parallelogram (Figure 4-14.) A reasonable question to ask is: "How can we

determine the area of the parallelogram PORS?"

Figure 4-14. A parallelogram determined by vectors.

As you recall, the area of a parallelogram equals the product of the lengths

of its base and its altitude. Thus, in Figure 4-15, the area of the parallelo

gram KLMN is b
1
h

'

where b
1

is the length of side NM and h is the length

of the altitude 1CD.

Figure 4-15. Determination of the area of a parallelogram.
[sec. 4-6]
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But if b
2

is the length of side NK, and e is the measure of either

angle NKL or angle KUM, we have

h = b
2

Isin el.

Hence, the area of-the parallelogram-equals b1b2 lain el.

Returning to Figure 4-14 and letting e be the angle between the vectors

A and B, we can now say that if G is the area of parallelogram FORS, then

Now

G
2

= 11All 2 !IB1l2 sin
2

0.

sin
2
e = 1 cos

2
8.

It follows from Theorem 4-5 that

therefore,

Thus, we have

cos
2
9

HAM 2
IIBII

2 '

2
11All

2
IIBII

2
(A B

sin
2

e =
IIAII

2
IIBII

2

G
2

= 11All
2

IIBII
2

(A B)
2

.

It follows from the result of Exercise 14 of the preceding section that

Therefore,

G
2
= (ad bc)

2
.

G = lad bcl.

1.72
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But ad bc is the value

matrix 411, cd . For easy reference,

theorem.
[

Theorem 4-7. The area of

of the determinant

let

the parallelogram
a

bl .

and

[

a

us write

[c].

and

determined

equals

c

5(D), where D is the

our result in the form of a

by the standard

I5(D)I, where

are parallel if and only

_representation of the vectors

D =
c

b di

Corollary 4-7-1. The vectors

if 5(D) = 0.

The argument proving the corollary is left as an exercise for the student.

You notice that we have been led to the determinant of a 2 x 2 matrix in

examining a geometrical interpretation of vectors. The role of matrices in this

interpretation will be further investigated in Chapter 5.

From geometric considerations, you know that the cosine of an angle cannot

exceed 1 in absolute value,

Icos ei < 1,

and that the length of any side of a triangle cannot exceed the sum of the

lengths of the other two sides,

OQ < OP PQ.

Accordingly, by the geometric interpretation of column vectors, for any

V = [a] and W =

we must have

V o W
< 1 (1)

1 (V e V)
1/2

(W e W)
1/2

and

IIV WII < IIVII (2)

[see. 4-6]
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But can these inequalities be established algebraically? Let us see.

The inequality (1) is equivalent to

(V.

that is,

2
< (V V)(W W),

(ac bd)2 <
(a2 b2)(a2 d2),

or -- as we see when we multiply out and simplify -- to

2 abcd < a2d2 + b2c2.

But this can be written as

0 < (ad bc)
2

,

which certainly is valid since the square of any real number is nonnegative.

Since ad bc = 5(D), where

c
D =

b d] '

you can see that the foregoing result is consistent with Corollary 4-7-1, above;

that is, the sign of equality holds in (1) if and only if the vectors V and

W are parallel.

As for the inequality (2), it can be written as

(a + c)
2
+ (b + d)

2
< 1a 2

+ b
2

+ 1/4c 2 + d
2

,

which simplifies to

v/
2 ac + 2 bd < 2

2
+ b

2 2
c + d

2
,

which again is valid since

0 < (ad bc) .
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This time, the sign of equality holds if and only if the vectors V and W

are parallel and

ac + bd >0,

that is, if and only.if the vectors V and W are parallel and in the same

direction.

If you would like to look further into the study of inequalities and their

applications, you might consult the SMSG Monograph, "An Introduction to

Inequalities," by E. F. Beckenbach and R. Bellman.

1

Exercises 4-6

Let OP represent the vector A, and Ei the vector B. Determine the

area of triangle TOP

(a) A =

(b) A = [1]

(c) A =

if

B =

, B =

, B =

[--2]

2

2 '

.

2. Compute the area of the triangle with vertices:

(a) (0,0), (1,3), and (-3,1);

(b) (0,0), (5,2), and (-10,-4);

(c) (1,0), (0,1), and (2,3);

(d) (1,1), (2,2), and (0,5);

(e) (1,2), (-1,3), and (1,0).

3. Verify the inequalities

and

for the vectors

(V W)2 < (V V)(W0W)

IIV + WII < IIVII + IIWII

175
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(a) V a (3,4) and W a (5,12),

(b) V a (2,1) and W a (4,2),

(c) v a (-2,-1) and W = (4;2).

4-7. Vector Spaces and Subspaces

Thus far our discussion of vectors has been concerned essentially with

individual vectors and operations on them. In this section we shall take a
_

broader point of view.

It will be convenient to have a symbol for the set of 2 X 1 matrices.

Thus we let

H { [vul u E R and v E RI,

where R is the set of real numbers. The set H together with the operations

of addition of vectors and of multiplication of a vector by a real number is an

example of an algebraic system called a vector space.

Definition 4-4. A set of elements is a vector space over the set R of

real numbers provided the following conditions are satisfied:

(a) The sum of any two elements of the set is also an element of the

set.

(b) The product of any element of the set by a real number is also an
element of the set.

(c) The laws I and II of Theorem 4-2 hold.

In applying laws 1 and II, 0 will denote the zero element of the vector

space. Let us emphasize, however,that the elements of a vector space are not

necessarily vectors in the sense thus far discussed in this chapter; for ex

ample, the set of 2 x 2 matrices, togethet with ordinary matrix addition and

multiplication by a number, forms a vector space.

Since a vector space consists of a set together with the operations of

addition of elements and of multiplication of elements by real numbers, strictly

speaking we should not use the same symbol for the set ,r elements and for the

vector space. But the practice ig not likely to cause confusion and will be .

(sec. 4-6)
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followed.

A completely trivial example of a vector space over R is the set con-

0.1
sisting of the zero vector 0 alone. Another vector space over R is the

21
3Jset of vectors parallel to

'

that is, the set

Iri.23 1:reR}.

It is evident that we are concerned with subsets of H in these two examples.

Actually, these subsets are subspaces, in accordance with the following defi

nition.

Definition 4-5. Any nonempty subset F of H is a subspace of H

provided the following conditions are satisfied:

The sum of any two elements of F is also an element of F.

The product of any element of F by a real number is an element of F.

By definition, a subspace must contain at least one element V and also

must contain each of the products rV for real numbers r. Every subspace of

H therefore has the zero vector as an element,since for r = 0 we have

OV =

It is easy to see that the set consisting of the zero vector alone is a subspace.

We can also verify that the set of all vectors parallel to.any given nonzero

vector is a subspace. Other-than H itself, subsets of these two types are

the only subspaces of H.

Theorem 4-8. Every subspace of H consists of exactly one of the follow

ing: the zero vector; the set of vectors parallel to a nonzero vector; the

space H itself.

Proof. If F is a subspace containing only one vector, then

Fa 1M

since the zero vector belongs to every subspace.

(sec. 4-7)
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If F contains a nonzero vector V, then F contains all vectors rV

for real r. Accordingly, if all vectors of F are parallel to V, it follows

that

F = IrV: r e R1 .

If F also contains a vector W not parallel to V, then F is actually

equal to H, as we shall now prove.

Let

V = [lad and W = ci

be nonparallel vectors in the subspace F, and let

be any other vector of H. We shall show that Z is a member of F.

By the definition of subspace, this will be the case if there are numbers

x and y such that

that is,

xV + yW = Z,

x [bal + y [de] = ins] .

These can be found if we can solve the system

ax + cy = r,

bx +dy = s,

for x and y in terms of the known numbers, a, b, c, d, r, and S. But

since V and W are not parallel, it follows (see Corollary 4-7-1.) that

ad bc 0 0 and therefore the equations have the solution

dr cs as brx = and y =
d bcad bc a

178
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Since F is a subspace that contains V and W, it contains xV, yW, and

their sum Z. Thus every vector Z of H must belong to F; that is, H is

subset of F. But F is given to be a subset of H. Accordingly, F = H.

Using the :Jeas of Section 4-4, we can give a geometric interpretation to

Equation (1). Let t.Le nonparallel vectors V and W in the subspace F have

standard representaLlons OP and OR, respectively; see Figure 4-16. Let Z

be represented by OT. Since OP and OR are not parallel, any line p:.,rallel

to one of them must intersect the line containing the other. Draw the lines

through T parallel to OP and OR, and let S and Q be the points in

which these lines intersect the lines containing OR and OP respectively.

Then

g.

Figure 4-16. Representation of an arbitrary

vector Z as a linear combination of a given
pair of nonparallel vectors V and W.

But OQ is parallel to OP and OS to OR. Therefore, there are real numbers

x and y such that

Hence,

OQ = x0P and g = yOR.

(sec. 4-7;
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Z = xV + yW. (1)

This elius our discussion of Theorem 4-7 and introduces the important concept

of a linear combination:

Definition 4-6. If a vector Z can be expressed in the form xV + yW,

where x and y are real numbers and V and W are vectors, then Z is

called a linear combination of V and W.

Further, we have incidentally established the useful facts stated in the

following theorems:

Theorem 4-9. A subspace F contains every linear combination of each

pair of vectors in F.

Theorem 4-10. Each vector of H can be expressed as a linear combination

of any given pair of nonparallel vectors in H.

For example, to express

Z =
[105]

as a linear combination of

V =

we must determine rdhl numbers

4
[
3

x

and

and y

W =

such

3
4] '

that

4 3
[1fl
x

1 3] 4]

[4x 3y

3x + 4y1

Thus, we must solve the set of equations

5 = 4x 3y,

10 = 3x + 4y.

We find the unique solution x = 2 and y = 1; that is, we have

180
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Z = 2V + W.

If you observe that the given vectors V and W in the foregoing example

are orthogonal, that is, V W = 0 (see Corollary 4-5-2 on page 156) then a

second method of solution may occur to you. For if

Z = aV + bW,

then for the products Z V and Z e W you have

Z V aIIVII
2

and Z W = WWII 2
.

Z V = 50, Z W = 25, IIVII
2

= 25, and IIWII
2
= 25.

50 = 25a and 25 = 25b

a = 2 and b= 1.

But

Hence,

and accordingly

It is worth noting that the representation of a vector Z as a linear

combination of two given nonparallel vectors is unique; that is, if the vectors

V and W are not parallel, then for each vector Z the coefficients x and

y can be chosen in exactly one way (Exercise 4-7-11, below) so that

Z = xV + yW.

The pair of nonparallel vectors V and W is called a basis for H, while the

real numbers x and y are called the coordinates of Z relative to that
r 51

basis. In the example above, the vector L has coordinates 2 and 1

relative to the basis
{431

and rd
101

In particular, the pair of vectors
ic.1

and
[01]

is called the

natural basis for H. This basis allows us to employ the coordinates of the

point (u,v) associated with the vector V = [u] as the coordinates relative

to the basis; thus,

(sec. 4-7]
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rul r ro

Ni " [0] v [1]

Since every vector of H can be expressed as a linear combination of any

pair of basic vectors, the basis vectors are said to span the vector space.

The minimal number of vect9rs that span a vector space is called the dimension

of the particular space.

For example, the dimension of the vector space H is 2. In the same

sense, the set F

F = r [231 : r e RI

is a subspace of dimensicn 1. Note that neither kl nor
[°1]

is a basis

for this subspace. (What is?)

In a 2space, that is, a vector space of dimension 2, it is necessary that

any set of basis vectors be linearly independent.

Definition 4-7. Two vectors V and W are linearly independent if and

only if, for all real numbers x and y, the equation

xV yW = 0

implies x = y = O.

For example, let

Otherwise,

121

V = [

V and

and

W

W =

are said

2

to be linearly dependent.

. Since

.vrY 1-
[231

2

A- 3
3

= 0,
v/If

V and W are linearly dependent. Note that

12Vw -
3

which indicates that V and W are parallel.

182
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Exercise 4-7

1. Express each of the following vectors as linear combinations of

and illustrate your answer graphically:

(a)

(b)

(c)

(g) [1] '
(d) toll ,

(e) [°1] ,

r 01
(h) [ OP

(f) [I;] ,

L3
(0 4]

173

and

2. In parts (a) through (i) of Exercise 1, determine the coordinates of each
2] [2

of the vectors relative to the basis and1 4]

3. Prove that the following set is a subspace of H:

S =Ir[2] :rERI.
3

4. Prove that, for any given vector W, the set rW : r E R) is a subspace

of H.

5. For

determine which of the followin subsets of H are subspaces:

(a) all V with u = 0, (d) all V with 2u v = 0,

(b) all V with v equal (e) all V with u + v = 2,
to an integer,

(c) all V with u rational, (f) all V with uv = 0.

6. Prove that F is a subspace of H if and only if F contains every

linear combination of two vectors in F.

[31
7. Show that cannot be expreesed as a linear combination of the

1

vectors

6
and Lls]

8. Describe the set of all linear combinations of two given parallel vectors.

[sec. 4-7]
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9. Let F
1

and F be subspaces of H. Prove that the set F of all

vectors belonging to both F1 and F2 is also a subspace.

10. In proving Theorem 4-10, we showed that if V and W are not parallel

vectors, then each vector of H can be expressed as a linear combination

of V and W. Prove the converse: If each vector of H has a repre

sentation as a linear combination of V and W, then V and W are not

parallel.

11. Prove that if V and W are not parallel, then the representation of any

vector Z in the form aV + bW is unique; that is, the coefficients

a and b can be chosen in exactly one way.

12. Show that any vector

can be expressed uniquely as a linear combination of the basis vectors

3 2 2
[7211 , [ 11 , and [11

4-8. Summary

In this chapter, we have developed a geometrical representation namely,

directed line segments for 2 x 1 matrices, or column vectors. Guided by

the definition of the algebraic operation of addition of vectors, we have found

the "parallelogram law of addition" of directed line segments. The multiplica

tion of a vector by a number has been represented by the expansion or contraction

of the corresponding directed line segment by a factor equal to the number, with

the sign of the factor determining whether or not tlw di ,ction of the line

segment is reverseA. Thus, from a set of algebraic elements we have produced a

set of geometric elements. Geometrical observations in turn led us back to

additional algebraic concepts.

Also in this chapter, we have introduced the important concepts of a vector

space and linear independence.

Since the nature of the elements.of a vector space is not limited except

by the postulates, the vector space does not necessarily consist of a set whose

[sec. 4-7]
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elements are 2 x 1 column vectors; thus its elements might be n x n matrices,

real numbers, and so on.

For example let us look at the set P of linear and constant polynomials

with real coefficients, that is, the set

P = I p: p(x) = ax + b, a,b ,

under ordinary addition and md:iplication by a number. The sum of two such

polynomials,

(alx + bl) + (a2x + b2) = (al + a2)x + (b1 + b2),

is an element of the set since the sums a
1
+ a

2
and b

1
+ b

2
are real numbers.

The product of any element of P by a real number,

c(ax + b) = acx + bc,

is also a member of P since the products ac and bc are real numbers, We

can similarly show that addition is commutative and associative, that there is

an identity for addition, and that each elemei :-. has an additive inverse; thus,

the laws I of Theorem 4.2 are valid. In like fashion, we can demonstrate that

laws II are satisfied: both distributive laws 'nold; the multiplication of an

element by two real numbers is associative; the product of any element p by

the real number 1 is p itself; the product of 0 and any element p is the

zero element; and the product of any real number and the zero element is the

zero.element.

We have outlined the proof that the set P of linear and constant poly

nomials is a vector space. Thus the expression, "the vector, ax + b," is

meaningful when we are speaking of the vector space P.

The mathematics to which our algebra has led us forms the beginnings of a

discipline called "vector analysis," which is an important tool in classical

and modern physics, as well as in geometry. The "free" vectors that you meet

in physics, namely, forces, velocities, etc., can be represented by our geometric

vectors. The study in which we are engaged is consequently of vital importance

for physicists, engineers, and other applied scientists, as well as for mathe

maticians.

185
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Chapter 5

TRANSFORMATIONS OF THE PLANE

5-1. Functions and Geometric Transformations

You have discovered that one of the most fundamental concepts in your study

of mathematics is the notion of a function. In geometry the function concept

appears in the idea of a transformation. It is the aim of this chapter to recall

what we mean by a function, to define geometric transformation, and to explore

the role of matrices in the study of a significant class of these transformations.

You recall that a function from set A to set B, is a correspondence or

mapping from the elements of the set A to those of the set B such that with each

element of A there is associated exactly one element of B. The set A is

the domain of the function and the subset of B onto which A is mapped is the

range of the function. In your previous work, the functions you met generally

had sets of real numbers both for domain and for range. Thus the function

symbolized in the form

is likely to be interpreted as associating the nonnegative real number x
2

with

the real number x. Here you have a simple example of a "real function" of a

"real variable."

In Chapter 4, however, you met a function V --> I VII having for its

domain the vector space H, and for its range the set of nonnegative real

numbers.

In the present chapter, we shall consider functions that have their range

as well as their domain in H. ,,ecifically, we want to find a geometric in

terpretation for these "vector functions" of a "vector variable"; this is a

continuation of the discussion started in Chapter 3. All vectors will now be

considered in their standard representations OP, so that they will be parallel

if and only if represented by collinear geometric vectors.

Such a vector function will associate, with the point P having coordinates

(x,y), a point P' with coordinates (x',y'). Or we may say that it maps the.
geometric vector OP onto the geometric vector OP'. The function can, there

fore, be viewed as a process that associates with each point P of the plane

some point P' of this plane.. We shall call this process a transformation of
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the plane into itself or a geometric transformation. As a matter of fact,

these transformations are often called "point transformations" in contrast to

more general mappings in which a point may be carried into a line, a circle, or

some other geometric configuration. For us, a geometric transformation is a

helpful means of visualizing a vector function of a vector variable. As a

matter of co, .mient terminology, we shall call the vector that such a function

associates with a given vector V the image of V; furthermore, we shall say

that the function maps V onto its image.

Let us look at the simple function

V --> 2V, V E H.

This function maps each vector V onto the vector that has the same direction

as V, but that is twice as long as V. Another way of asserting this is to

say that the function associates with each point P of the plane a point P'

such that P and P' lie on the same ray from the origin, but

115'11 = 211511;

see Figure 5-1. You may therefore think of the function in this example as

uniformly stretching the plane by a factor 2 in all directions from the origin.

(Under this mapping,what is the point onto which the origin is mapped?)

'As a second example, consideethe function

V --> V, V E H.

This time, each vector is mapped onto the vector having length equal and direction

opposite to that of the given vector. Viewed as a point transformation, the

function associates with any point P its "reflection" in the origin; see

Figure 5-2.

The function

V 2V

combines both of the effects of the preceding functions, so that the vector

associated with V is twice as long as V, but has the opposite direction to

that of V.

187
[sec. 5-1]



Figure 5-1. The trans-
formation V > 2V.

Now, let us look at the function

V > V.

Figure 5-2. The trans-
formation V -V.

179

As in our first example, each vector is mapped by the function onto a vector

having the same direction as the given vector. Indeed, every vector of length

1 is its own image. But if IIVII > 1, then the image of V has a length

greater than that of V, with the expansion factor increasing with the length

of V itself. Thus, the vector

having length 2, is mapped onto

which is twice as long. The vector

whose length is 13, has the image

[fl

[Ld

[sec. 5-1]
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[65
1561

with length 169. On the other hand, for nonzero vectors of length less than

1, we obtain image vectors cf shorter langth, the contraction factor decreasing

with decreasing length of the original vector. Thus,

2

is mapped onto
0

the image being half as long as the given vector. Again, the vector

4

7

_3
7_

is mapped onto

_20
49

_15
49

the length of the first vector being 5/7, while the length of its image is

only (5/7)
2

, or 25/49. Although we may try to think of ads mapping as a

kind of stretching of the plane in all directions from the origin, so that any

point and its image are collinear with the origin, this mental picture has alsp

to take into account the fact that the amount of expansion varies with the

distance of a given point from the origin, and that for points within the circle

of radius 1 about the origin the socalled stretching is actually a compression.

We have been considering transformations of individual vectors; let us look

at certain transformations of the square ORST, determined by the basis vectors

[ [

10 and ° . As shown in Figure 5-3, the function
1

maps

respectively, onto

V --> V

Ill [0
and

11 '

0
[-1131and [41

189
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R'

Figure 5-3. Reflection in the origin.

Another transformation that is readily visualized is the reflection in the

x axis. For this mapping, the point (x,y) goes into the point (x,-y);

see Figure 5-4.

Figure 5-4. Reflection in the x axis.

That is, the map is given by

[ xl

Using a matrix, we may rewrite this result in the form

(sec. 5-1]
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[;]
as is easily verified.

Now this transformation, applied to the square -ORST, leaves the-Point

[1]
0

is mapped onto itself. The vector(1,0) unchanged; thus the vector

[011

is mapped onto
[ 0

Reflection in the y axis, or a rotation of 180° in space about the

y axis, can b expressed similarly:

as shown in Figure 5-5.

0

1.)37c]

----
[ yl [701 ol] [yx]

>

T' S'

Figure 5-5. Rotation of 180° about the axes.

at-iox

Casual observation (see Figures 5-5 and 5-6) may lead you to assume that

a 180° rotation about the y axis and 90° rotation about the origin in

the (x,y) plane are equivalent; they are not. The first transformation

leaves the point (0,1) unchanged, whereas the second transformation maps

(0,1) onto (-1,0). As a vector function, the 900 rotation with respect to

(sec. 5-3
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the origin jy expv08sd bY

[;1 --v[

4 1.1a 5-6. Rotation of 900 about the origin.4

The transforyCRone °f FiglItes 5-2 through 5-6 have altered neither the

size nor the shay the squara. The ustretchingu function of Figure 5-1,

V 2V,

does al ter size. P. Shear" that moves each point parallel to the' x axis

through a distan e%el to tv/ice the ordinate of the point alters shape. Con-

sider the tranafs
1-011

[X 2Y1
Y j

.[ 1 21 [%

01

which maPs the 111,4W Vectors onto

1]

[ 2

0
LIN

1 , respectively.

The result is a sketng that trans forms the square into a parallelogram; see

Figure 5-7. What ea the %trathitig do to shape? The shear to size?

pee 5-1)

.192
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Figure 5-7. Shearing.

Another type of transformation involves a displacement or "translation"

in the direction of a fixed vector. The mapping

3
V ---> V + U, where U = [9] ,

can be written in the form

[x] -->
[x 31

y +2

One way of visualizing this function is to regard it as translating the plane in

the direction of the vector U through a distance equal to the length of U.

Transformation of two different types can be combined in one function. For

instance, the mapping

1
V > -2.(V + U), where U =

[3

2] 2

involves a translation and then a compression. When the function is expressed

in the form

xlx + 3

2

y +
2 1.

we recognize more easily that every noint P is mapped onto the midpoint of

the line segment joining P to the point (3,2); see Figure 5-8.

[sec. 5-1] 193
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1Figure 5-8. The transformation V ---)..2.(V U).

Under this mapping, the square ORST will likewise be translated
1toward the point (3,2) and then compressed by a factor , as shown in

Figure 5-9. This figure enables us to see that the points 0, R, S, and T

are mapped onto midpoints of lines connecting these points to (3,2).

Figure 5-9. Translation and campression.

All the vector functions discussed above map distinct points of the plane

onto distinct points. This is not always the .case; we can certainly produce

functions that do not have this property. Thus, the function

[see. 5-1]
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maps every point of the plane onto the origin. On the other hand, the trans

formation

X 3C1

maps the point (x,y) onto the point of the x axis that has the same first

component as V. For example, every point of thd line x = 3 is mapped onto

the point (3,0). Since the image of each point P can be lOcated by drawing

a perpendicular line from P to the x axis, we may think of P as being

carried or projected on the x axis by a line perpendicular to this axis. Con

sequently, this mapping may be described as a perpendicular or orthogonal

projection of the plane on the x axis. You notice that these last two functions

map H onto subspaces of H.

Since we have met examples of transformations that map distinct poinEs onto

distinct points and have also seen transformations under which distinct points

may have the same image, it is useful to define a new term to distinguish be

tween these two kinds of vector functions.

Definition 5-1. A transformation from the set H onto the set H is one

toone provided that the images of distinct vectors are also distinct vectors.

Thus, if f is a function from H onto H and if we write f(V) for

the image of V under the transformation f, then Definition 5-1 can be

formulated symbolically as follows: The function f is a onetoone transforma

tion of H prOvided that, for vectors V and U in H,

implies

U

f(V) f(U).

Exercises 5-1

1. Find the image of the vector V under the mapping

195
V --> 3V
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for each of the following values.of V:

(a) [], (c)
0] '

(e)

(b) k] , (d)
[ 71

(f)

2. Find f(V) under the mapping

f : V =

for each of the following values of V:

(c)

(d)

Efl

187

[1131 (e) 5 [:13]

(f)

3. Describe the geometric effect of each of the following transformations of
[x

H on the vector V =
Yi

xl
(a) V --> V, (h) V -->

-Y

[1
(b) V -- > [g] (0 V ->

2

[31
(c) V --> aV, a > 0, 0) V >

3y

[ x 1.- 1
--(d) V > - aV, a > 0, (k) V > .

(1) '''-'>V

V ""'-'.011)

(n) V -->

4. Determine which of the transformations in the preceding exercise are one-

to-one.

5. Find expressions of the type V > V' for the transformations of H that

map each point P onto the point P' related to P in the ways described

bclow:
196

[sec. 5-1)
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(a) F' is one unit to the right pf P and four units above 13.,

(b) p' is the perpendicular projection of P on the horizontal line

through (3,2);

(c) P' is the perpendicular projection of P on the vertical line

through (-1,-2);

(d) ai and 61" are collinear but opposite in direction, and

11613'11 = 115111;

(e) P' is the intersection of the horizontal line through P with

the line of slope 1 passing through the origin (horizontal

prejection on the line y = x);

(f) P' is the intersection of the vertical line through P with

the line y = 2x (vertical projection on the line y = 2x).

6. Show that the mapping of H into itself that sends each point P into the

point of intersection of the line y = x with the line through P having

slope 2 is given by

[x]
--->

2x y

7. (a) Show that the mapping

V =

can be expressed in the form

V

[x]->

{1
4

--->

[ x 2y

4x A- 3y

2

31 V'

[
(b) Find the image under this transformation of 1 .

1 '

(c) Find the image under this transformation of the subspace of

vectors collinear with
[1
1]

[1]
8. Solve parts (b) and (c) of Exercise 7 when is replaced by

1

(c) [..11 ,

197 (d) [21]
l

.

pep. 5-1]
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9. Under the transformation given in Exercise 7, find by two different methods

the image of each of the following vectors:

10.

1

(a)

(b)

Consider the

141

[54

[3

mapping

= 2

[21]

[21

[331

[11.1

2

/

1 [

-
1

1

[4}
5

(e) [231

(f)
[351

11 [x
1 yi

(a) Find the images under this mapping of the pair of points (5,1)

and (1,-2), and show that the distance between the given pair

of points equals the distance between their images.

(b) Solve part (a) if the given points are (-2,10) and (6,-5).

(c) Solve part (a) if the given points are (a,b) and (c,d).

5-2. Matrix Transformations

As noted earlier, especially in Chapter 3, the pair of equations

a
11

x -I- a
12

y b

a
21

x + a
22

y = b
2'

can be written in the form

AV = B,

where

[all all x b

A = , V = [ I , and B
a
21

a
22 Y

bd
2

Consequently, in solving the equations you actually determine all the vectors V
. :

that are mapped onto the particular vector B by the function
[sec. 3-1]
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V AV. (1)

The study of the solution of systems of linear equations thus leads to the

consideration.of the special class of transformations on H that are expressible

in the form (1), where A is any 2 x.2 matrix with realentries. These matrix

transformations constitute a very important class of mappings, having extensive

applications-in mathematics, statistics, physics, operations research, and

engineering.

An important property of matrix'transformations is that they are linear

mappings; that is, they preserve vector sums and the products of vectors with

real numbers.

Let us formulate these ideas explicitly.

Definition 5-2. A linear transformation on H is a function f from H

into H such that

(a) for every pair of vectors V and U in H, we have

f(V + U) = f(V) + f(U);

(b) for every real number r and every vector V in H, we have

f(rV) = rf(V).

Theorem 5-1. Every matrix transformation is linear.

Proof. Let f be the transformation

f : V AV,

where A is any real matrix of order 2. We must show that for any vectors V

and U, we have

A(V + U) = AV + AU;

further, we must show that for any vector V and any real number r we have

A(rV) = r(AV).

[see. 5-2)
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But Ciese equalities hold in virtue of parts III (a) and III (f) of Theorem 4-2

(see page 134).

The linearity property of matrix transformations can be used to derive the

lollowing result concerning transformations of the subspaces of H.

Theorem 5-2. A matrix A maps every'subspace F of H onto a subspace

F' of H.

Proof. Let F' denote the set of vectors

[AU: U e F).

To prove that F' is a subspace of H, we must show that the following state-

ments are true:

(a) For any pair of vectors P', ' in F', the sum P' + Q' is

in F'.

(b) For any vector P' in F' and any real number r, rP1 is in

F'.

If P' and Q' are in F', then they must be the images of vectors P

and Q in F; that is,

It follows that

P' = AP,

Q1 = AQ.

P' + Q' = AP + AQ = + Q).

and P' + Q' is the image-of the vector P + Q in F. (Can you tell why

P + Q is in F?) Hence, (P' + (V) e F'. Similarly,

rP' = r(AP) = A(rP),

-and hence rP' is the image of rP. But rP e F because F is a subspace.

Thus, rP' is the image of a vector in F; therefore, rP' F'.

Corollary 5-2-1. Every matrix maps the plane H onto a subspace of H,

[see. 5-2)
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either the origin, or a straight line through the origin, or H itself.

maps

For example, to determine the subspaces onto which

A =
[42 211

(a) F = I. [x] = 3x ,

(b) H itself,

we proceed as follows.

For (a), the vectors of F are of the form

U = =x[
3

xeR.E3c]
'

Hence,

1 (1,c

[-131:)= x [42 1 [id x LI [211 'AU = [1; = x

Thus, F is mapped onto F', the set of vectors collinear with
[

; that is,

L[i 2
f.

In other words, A maps the line passing through the origin with sloPe 3 onto

the line through the origin witb. slope 1/2:

As regards (b), we note that for any vector

we have

V = [x] H,

AV =
[4 2] [x 4x + [2

= (2x + y)
2 1 yi [2x y 11

Since 2x + y assumes all real values as x and y run over the set of real

numbers, it follows that H is also mapped onto F'; that is, A maps the

entire plane onto the line 201
[sec. 5-2]
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1

y = X.

Exercises 5-2

L. Let A =

(a)

(b)

(c)

1

V =

V =

V

2
.

[121

21

For each of the following values of the vector

, (d) V = [..511 ,

(e) V =
[031

(f) v= [1] ,

V,

determine:

(i) the vector into which A maps V,

(ii) the line onto which A maps the line containing V.

2. A certain matrix maps

into
151
5 ad [ 11 into

141

1 ' 2 5

Using this information, determine the vector into which the matrix maps

each of the following:

(a) [ 331 (Hint: [331 =211
(b)

(c)

(d)
[I]

121
[111

(e)

[ 41
(f)

5

(g)
[231

3. Consider the following subspaces of H:

Fl = 1, F
2
= [ : y = 2x ,

'y

3 F4

[see.

202
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Determine the subspaces onto which F1, F2, F3, and F4 are mapped by each

of the following matrices:

(B)
-I- I

(a) A =
-2 1] '

[1 1
4. Let A =

C 11

-2 3] '

0 1
(c) AB,

(a) Calculate AV for

V [-11 [1] ' [°0] ' Pq]

(b) Find the vector V for which

- 1
AV .= [11 [ 1

-1 1
/

1
I

0
[ 19 I [ I

(d) BA.

5. Determine which of the following transformations of H are linear, and

justify your answer:

(a)

(b)

(c)

V = [x]

[x
x

-->

,

+ yi

V -->

V -- >

(d) V[x
[24]Y

1
(e) V ------> - (V + U), where U =

2

(0 V > IIVII V.

6. Prove that the matrix A maps the plane onto the origin if and only if

[0 0
A =

0 01

-Prove that the matrix A maps every vector of the plane onto itself if and

only if

8. Prove that

1 0
A =

[

0 11

203
[see. 5-2)
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maps the line y = 0 onto itself. Is any point of that line maTtd onto

itself by this matrix?

9. (a) Show that each of the matrices

00 I [1 21and
0 0

maps H onto the x axis.

(b) Determine the set of all matrices that map H onto the x axis.

(Hint: You must determine all possible matrices A such that

corresponding to each V E H there is a real number r for

which

AV = r
[1

LO]
(1)

In part cular, (1) must hold for suitable r when V is replaced

by
[16

and by
1

10. Determine the set of all matrices that map H onto the y axis.

11. (a) Determine the matrix A such that

for all V.

(b) The mapping

AV = 2V

V --> aV (a > 0)

multiplies the lengths of all vectors without changing their directions.

It amounts to a change of scale. The number a is accordingly called a

scale factor or scalar. Find the matrix A that yinlds only a change of

scale:

AV = aV.

12. Prove that for every matrix A the set F of all vectors U for which

204
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is a subspace of H. This subspace is called the kernel of the mapping.

13. Prove that a transformation f of H into itself is linear if and only if

f(rV +sU) = r f(V) + s f(U)

for every pair of vectors V and U of H and every pair of real numbers

r and s.

5-3. Linear Transformations

In the preceding section, we proved that every matrix represents a linear

transformation of H into H. we now prove the converse: Every linear trans

formation of H into H can be represented by a matrix.

Theorem 5-3. LGt f be a linear transformation of H into H. Then,

relative to any given basis for H, there exists one and only one matrix A

such that, for all V H,

AV = f(V).

Proof. We prove first that there cannot be more than one matrix represent

ing f. Suppose that there are two matrices A and B such that, for all

v c H,

Then

for each V. Hence,

AV = f(V) and BV = f(V).

AV BV = f(V) f(V)

(A B)V = [°01 for all V c H.

Thus, A B maps eery vector onto the origin. It follows (Exercise 5-2-6)

that A B is the zero matrix; therefore,

A = B.

[sec. 3-2]
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Hence, there is at most one matrix representation of f.

Next, we show how to find the matrix representation for the linear transfor

mation f. Let S
1

and S
2

be a pair of noncollinear vectors of H. Let

1
)

be the respective images of

=

S
1

all]
a
21

t

and

and f(S
2
) =

S
2

under the mapping

[a121
f(S

22

f. If V is any

vector of H, it follows from Theorem 4-10 that there exist real numbers vl

and v
2

such that V = vISI v2S
2'

Since f is a linear transformation, we

have

f(V) = f(vI51 v252) = v1f(51) v2f(S2).

Accordingly,

f(V) = v

Thus,

1 a
21

v
2 ria2:

a
11

v
1

a
12

v2[a
11

1

a v a v
21 1 22 2

f(V) =
[all a12 [v11

It follows that f is represented by the matrix

(all all
A =

a
21

a
22

a
21

a
22

v
2

when vectors are expressed in terms of their coordinates relative to the basis

SI, S2.

You notice that the matrix A is completely determined by the effect of f

on the pair of noncollinear vectors used as the basis for H. Thus, once you

know that a given transformation on H is linear, you have a matrix represent

ing the mapping when you have the images of the natural basis vectors,

and
11

For example it can be shown by a geometric argument that the counterclock

(sec. 5-3)
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wise rotation of the plane through an angle of 300 about the origin is a linear

transformation. This function maps any point P onto the puint P', where the

measure of the angle POP' is equal to 30° (Figure 5-10). It is easy to see

(Figure 5-11) that

Figure 5-10. A rotation through

an angle of 300 about the origin.

and

Lo

Figure 5-11. The images of the points

(1,0) and (0)1) under a rotation of 30°

about the origin.

30°]
is mapped onto

sin 30
o

[11 is mapped onto [ 30

cos 30°

Thus, the matrix representing this rotation is

,/3 1cos 30° sin 30°
2 7

...01sin 30
o

cos 30
o

2 2

Note that the first column of A is the vector onto which is mapped;

the second column of A is the image of
[0

11

The product or composition of two transformations is defined just as you

[sec, 5.3] .
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define the composition of two real functions of a real variable.

Definition 5-3. If f and g are transformations on H, then for .each

vector V in H the compwAtinn transformations fg and gf are the trans

formations such that

fg(V) = f(g(V)) and gf(V) = g(f(V)).

Thus, to find the image of V under the transformation fg, you first

apply g, and then apply f. Consequently, if g maps V onto U, and if

f maps U onto W, then fg maps V onto W.

The following theorem is readily pro,,

Theorem 5-4. If f is a linear transformation represented by the matrix

A, and g is a linear transformation represented by the matrix B, then fg

and gf are both linear transformations; fg is represented by AB, while gf

is represented by BA.

For example, suppose that in the coordinate plane each position vector is

first reflected in the y axis, and then the resulting vector is doubled

in length. Let us find a matrix representation of the resulting linear trans

formation on H. If g is the mapping that transforms each vector into its

reflection in the vertical axis, then we have

[x [716 01] [;(1

If f maps each vector into twice the vez-cor, then we have

[x [xyl [ 2 01 [ x

yj 0 2 y '

Accordingly, the matrix representing fg is

12
0

01
2

[-1

0

01
1

{-2
0

0

21
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Exercises 5-3

1. Show that each of the mappings in Exercise 5-1-3 is linear, by determining

matrices representing the mappings.

2. Consider the linear transformations,

p: reflection in the horizontal axis,

q: horizontal projection on the line y = x (Exercise 5-1-5e),

r: rotation counterclockwise through 900 ,

s: shear moving each point vertically through a distance equal to
the abscissa of the point,

of H into H. In each of the following, determine the ,,atrix represent

ing the given transformation:

P,

r,

s,

pq,

(f)

(g)

(h)

(i)

(j)

qp,

Pr,

rp,

qs,

sq,

(k)

(1)

(m)

(n)

(o)

s(rs),

(sr)s,

p(sq),

(ps)q,

(sp)(rq).

3. Let f be the rotation of the plane mAunteckwise through 45° about

the origin, and let g be the rotation. 41=....:47ise through 30°. Determine

a matrix representing the rotation cammt4vnucckw1se through 150 about the

origin.

4. (a) Prove that 41.wery linear transformation #mps the origin onto itself.

(b) Prove that every linear transforaticmmamvs every subspace of H onto
a subspace of H.

5. For every two linear transformations 41d g on H, define f + g to

be the transformation such that, for 0,t.N1 V C H,

(f + g)(V) = 17(:4) 4.31V).

Without using matrices, prove that g 1.6 a linear transformation on L.

6. For each linear transformation f ol E au each real number a, define

af to be the transformation such tha:

af(V)

[sec. 5-33
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Without using matrices, prove that af is a linear transformation on H.

7. Prove Theorem 5-4.

8. Without usini matrices, prove each of the following:

(a) f(g + h) = fg + fh,

(b) (f + g)h = fh + gh,

(c) f(ag) = a(fg),

where f, g, and h are any linear transformations on H and a is

any real number.

5-4. Onetoone Linear Transformations

The reflection of the plane in the x axis clearly maps distinct points

onto distinct points; thus, the reflection is a onetoone linear transformation

on H. Moreover, the reflecaon maps any pair of noncollinear vectors onto a

pair of noncollinear vectors. It is easy to show that this property is common

to all onetoone linear transformations of H into itself.

Theorem 5-5. Every onetoone linear transformation on H maps noncollinear

vectors onto noncollinear vectors.

Proof. Let S
1

and S
2

be a pair of noncollinear vectors and let

f(S1) = T1 and f(S2) = T2

be their images under the onetoone linear mapping f. Since f is oneto

one, we know that T
1

and T
2

are not both the zero vector. We may suppose,

therefore, that T
1

is not the zero vector. To show that T
1

and T
2

are

not collinear, we shall demonstrate that the assumption that they are co:linear

leads to a contradiction.

If T
1

and T
2

are collinear, then there exists a real number r such

that T
2
= r T

1.
Now, consider the image under f of the vector r Sl Since

f is linear, we have

f(r SI) = r f(S1)

= r T
1

= T
2'

(see. 33)
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Thus, each of the vectors r

toone, it follows that

S
1

and S
2

is mapped onto T
2

. Since f is one ,

r SI = S
2'

and therefore that SI and S2 are collinear vectors. But thi- contradicts

the fact that S
1

and S
2

are not collinear. Hence, the assumption that T
1

and T
2

are collinear must be false. Consequently, f must map noncollinear

vectors onto noncollinear vectors.

Corollary 5-5-1. The elbspace onto which a onetoone linear transformation
-

maps H is H itself.

Proof. Since the subspace contains a pair of noncollinear vectors, the

corollary follows by use of Theorems 4-9 and 4-10.

The link between onetoone transformations on H and secondorder

matrices having inverses is given in thc next theorem.

Theorem 5-6. Let f be a linear transformation represented by the matrix

A. Then f is onetoone f and only if A has an inverse.

Proof. Suppose that A has an inverse. Let SI and S2 be vectors in

H having the same image under f. Now,

Thus,

Hence,

anci

f(S1) = AS1 and f(S
2
) = AS 2 .

AS
1
= AS 2 .

A
-1

(A51) = A
-1

(AS2),

(A-
1
A)S1 = (A

-1
A)S2,

IS

211
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1
= S

2
.

Thus, f must be a onetoone transformation.

On the other hand, suppose that f is onetoone. From Theorem 5-5, it

follows that every vector in H is the image of some vector in H. In particu

lar, there are vectors W and U such that

and

f(W) = AW =
[011

f(U) = AU =
11

Accordingly, the matrix having for its lirst column the vector W, and for

its second column the vector U, is the inverse of A.

Corollary 5-6-1. A linear transformation represented by the matrix A is

onetoone:if and only if

b(A) O.

The theory of systems of two linear equations in two variables can now be

studied geometrically. Writing the system

in the form

where

A =

a
11

x + a
12

y = u,

a
21

x + a
22

y = v,
(1)

AV = (2)

all al9
, V = I- , and U = ul

a21 a22

we seek the vectors V that are mapped by the matrix A onto the vector U.

(sec. 5-4:
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If 6(A) 0 0, we now know that A represents a one-to-one mapping of H

onto H. Therefore, A maps exactly one vector V onto U, namely, V = A
-1

U.

Thus, the system (1) or, equivalently, (2) has exactly one solution.

If 5(A) = 0, then, in virtue of Corollary 4-7-1, the columns of A must

be collinear -vectors. Hence, A must have one of the forms

[ 0 0 0 a a ra

0 0] ' [0 hi ' or [17 rb]

uot botri and b are zero. If A has the first of these forms, their

A maps H onto the origin. In the other two cases., A maps H onto the

ral
line of vectors collinear with the vector . (See Exercise 5-4-7, below.4.`.

lb

With these resuLts in mind, you may now complete the discussion of the solution

of equation (2)_.

Exercises 5-4

1. Using Theo- 5-6 or its corollary, determine which of the transformations

in ExercisE 5-1-3 are one-to-one.

2. Show that a linear transformation is one-to-one if and only if the kernel

of the mapping consists only of the zero vector. (See Exercise 5-2-12.)

3. (a) Show that if f is a one-to-one linear transformation on H, then

there exists a linear transformation g such that, for all V E H,

and

gf(V) = V

fg(V) = V.

The transformation g is called the inverse of f and is usually written

-1
g = f .

(b) Show that the transformation g = f-1 in part (a) is a one-to-one

transformation on H.

4. Prove that if f and g are one-to-one linear transformations of H, then

fg is also a one-to-one transformation of H.

213
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. Prove that the set of one-to-one linear transformations on H is a group

relative to the operation of composition of transformations.

6. Show that if f and g are linear trans

is a one-to-one transformation, then both

formations.

H such that fg

one-to-one tran.6-

7. (a) Show that if 5(A) = 0, then the matrix A maps H onto a point

(the origin) or onto a line.

(b) Show that if A is the zero matrix and U is the zero vector,

then every vector V of H is a solution of the equation AV = U.

(c) Show that if 5(A) = 0, but A is not the -i'erTo matrix, then the

solution set of the equation

AV =
[0°]

is a set of collinear vectors.

(d) Show that if 5(A) = 0, but A is not the zero matrix,and U is

not the zero vector, then the solution set of the equation

AV = U

either is empty or consists of all vectors of the form

(V1 + tV2 : t e R),

where V
1

and V
2

are fixed vectors such that

AV
1
= U and AV

2
=

0

8. Show that if the equation AV = U has more than one solution for any given

U, then A does not have an inverse.

5-5. Characteristic Values an0 Characteristic Vectors

If we think of a mapping as "carrying" points of the plane onto other points

of the plane, we might ask, through curiosity, if there are cases in which the

[see. 5-4]
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image point under a mapping is the same as the point itself. Such 'fixed'

points, or vectors, are of great importance in mathematical analysis.

Let us look at an example. The reflection with respect to the x axis,

that is,,

o r1v

{;1 [1 [x]--->
0 -4 y F -Y1

has the property of mapping each vector on the x axis onto itself; thus,

each of these vectors is fixed under the transformation.

Definition. 5-4. If a transformation of H into itself maps a given vector

onto itself, then that vector is a fixed vector for the transformation.

More generally, we are interested in any vector that is mapped into a

multiple of itself; that is, we seek a vector V e H and a number c e R such

that

AV 2-1 CV.

Since the equation is automatically satisfied by the zero yector regardless of

the value c, this vector is ruled out.

The number c is called a characteristic value (or eigenvalue) of A, and

the vector V a characteristic vector of A. These notions are fundamental in

atomic physics since the energy levels of atoms and molecules turn out to be

given by the eigenvalues of certain matrices. Also the analysis of flutter

and vibration phenomena, the stability analysis of an airplane, and many other

physical problems require finding the characteristic values and vectors of

matrices.

In Section 5-1, we saw that the mapping

121.

A =
[

carried the plane H onto the line y = x/2. If we consider the set F

F = IJ y = I xi.
2

[see. 5-5]
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Under this same mapping, we see that F is mapped onto P', the set of vectors

collinear with F. Vote that

[4
2

211
1

21 [101
t 5t t '

,

and hence that 5 is a characteristic value associated with A, and
[21

is

a characteristic vector for any t e R, t 0 0.

Definition 5-5. 'Each nonzero vector satisfying the equation

AV = cV

is called a characteristic vector, corresponding to the characteristic value

(or characteristic root) c of A.

Vote that, as remarked above, the trivial solution,
[0]
0

of the equation

is not considered a characteristic vector.

Because of the importance of characteristic values in'pure and applied

mathematics, we need a method for finding them. We seek nonzero vectors V

and real numbers c such that

AV = cV.

If I is the identity matrix of order 2, then (1) can be written as

AV = (cI)V,

or

If we let

equation (2) becomes

(1)

(A cI)V = 0. (2)

La

21 a22

a
11

a
12

1

and V =

216
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11
c a

12
0

a
21

a
22

cl [yl [0 I
(3)

We know that there is a nonzero vector V satisfying an equation of the form

if and only if

BV = 0

o(B) = O.

Hence equation (2) has a solution other than the zero vector if and only if

is chosen in such a way as to satisfy the equation

(all
c)(a22 c)

a12a21 0.

Rearranged, this equation becomes

c

2

(all 1- a22)c 6(A) 02
(4)

which is called the characteristic equation of the matrix A. Once dhis

quadratic equation is solved for c, the corresponding vectors V satisfying

equation (1) can readily be found, as illustrated in the following example.

Since

Example,. Determine the fixed lines under the mapping

3
A =

0 1]

We must solve the matrix equation

[2 c 3 ] [x]

0 1c y 0]

5(A =:(2 c)(1 c),

217
[seo. 5-5]
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the characteristic equation is

(2 c)(1 c) = 0,

c
2

3c + 2 = 0,

the roots of which are 1 and 2. For c = 1, equation (3) beromes

or

[ o
[10. gi [3y1 oi

which is equivalent to the system

x + 3y = 0,

Ox + Oy = O.

Thus, A maps the line x + 3y = 0 onto itself; that is, the set F

F = r [-31
1

r E RI

is mapped onto itself. Actually, since c = 1, each vector of this subspace

is invariant: if V is a characteristic vector, f(V) its image, and c = 1,

then

For c = 2, equation (3) becomes

or

Hence,

f(V) = V.

3g _11 [x 0y] [

01 '

3y = 0,

ly a O.

218
!
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7
maps the line y = 0 onto itself; the seL of Ni(6tors

F = r
]

r E RI
[16

is closed under the transformation.

is

The characteristic equation associated with the matzix

A = k 31]

c
2

3c + 2 = 0.

This equation expresses a realnumber function. For a matrix function, the

corresponding equation is

C
2

3C + 21 = 0,

where I is the identity matrix of order 2 and 0 is the zero matrix of

order 2. If we substitute A in this matrix equation,

9
" [ 2 3] [10]

-3 + 2 = 2,
0 1 1 0 1

we find.that A is a root of its characteristic equation. This is true for

any 2 x 2 matrix.

Theorem 5-7. The matrix A

[all a121
a
21

a
22

is a solution of its characteristic equation

A
2

(all + a22)A 8(A)I = 0.

219
[seco 5-5]



The proof is left as an exercise.

Theorem 5-7 is the case n = 2 of a famous theorem called the Cayley

Hamilton Theorem, which ntates that an analogous result holds for matrices of

-any order n.

Exercises 5-5

1. Determine the characteristic roots and vectors of each of the following

matrices:

(a)

(b)

5

0 3]

4
1 2]

'

'

(c)

(d)

2

1
0

0

1

01

2

1]

9

2. Prove that zero is a characteristic root of a matrix A ,if and onlY if

6(A) = 0.

3. Show that a linear transformation f is onetoone if and only if zero f.s

not a characteristic root of the matrix representing f.

4. Determine the invariant subspaces (iixed lines) of the mapping given by

[6 2

2 3]

5.

6.

Show that these lines are, mutually perpendicular.

11
a
12

Show that the matrix A =
a,

1 2
a,

2
(matrix) equation

2

A

2

(all a22)A

Show that is an invariant vector

is a solution of its characteristic

5 (A)I = 0.

of the transformation

V --> IIVII V,

1]
but that 2

[
is not invariant under this mapping.

0

, 220
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7. Show that A maps every line through the origin onto itself if and only if

[(r) Or]
A =

for r 0 0.

8. Let d = (all a
22

)
2

4- 4 a
12

a 21 , where a
11

, a
12

, a
21'

and a
22

are any

real numbers. Show that the number of distinct real characteristic roots

of the matrix

is

[all al21

a a
21 22

0 if d < 0,

1 if d = 0,

2 if d > O.

9. Find a nonzero matrix that leaves no line through the origin fixed.

10. Determine a one-to-one linear transformation that maps exactly one line

through the origin onto itself.

[s t

r s
11. ,Show that every matrix of the form has two distinct characteristic

roots if s 0 0.

12. Show that tue matrix A and its transpose At have the same characteristic

roots.

5-6. Rotations and Reflections

Since length is an important property in Euclidean geometry, we shall look

for the linear transformations of the plane that leave unchanged the length

IIVII of every vector V. Examples of such transformations are the following:

(a) the reflectiur of the plane in the x axis,

(b) a rotation of the plane through any given angle about tilt, origin,

(c) a reflection in the x axis followed by a rotation about the origil

221
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Actually, we can show that any linear trarlfcrmation that preserves the lengths

of all vecf-ors is equivalent to one of these=hree. The following theorem will

be very uf, Jul in proving that result.

Thr_4gmry 5-8 . A linear transformaticr: of H that leaves unchangeti the

length iry vector =Ilso leaves unchae.d fa) the inner p t-1 -1:very pair.

of ,rects ez14. (b) tb= nuignitude of -the et:711e 1,...,--ween every pai.c o ors.

Lett V anc U be a pair ot s in H and let V" and U'

be thtic ,oztive images under the tranEf :ion. In virtue of Exercise

ase,

and

IIV + Ull
2

= livil U + IlUll
2

(1)

1117' + 11'11
2
= IIV'Ir +2V' o U. + .

Since the transformation is linear, for the image of V + U we have

(v + u)' = V' +

Consequently, (2) can be written as

II(V + U)'11
2

= 1111'11
2

+ 2V' U' + IIV'11
2

.

But the transformation preserves the length of each vector; thus, we obtain

1117'11 = = 111111, and II(V U)' I! = IIV Ull.

Making these substitutions in equation (3), we get

IIV + Ull
2
= IIVII

2
+ 2V' U' + IlUll

2
.

Comparing equations (1) and (4), you see that we must have

V U = V' U';

that is, the transformation preserves the value of the inner product.

(sed. 5-6)
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Since the magnitude of the angle -..totwe-, V U can be expressed in

terms of inner products (Theorem 4-5), it t qvus =a= the transformation a1so

preserves that magnitude.

Corollary 5-8-1. If a linear trans__*"ip,, a porarves the length of every

vector, then it maps orthogonal vectors :z, vectors.

By the definition of orthogonality, thLs nans that the geometric

vectors are mutually perpendicular.

It is very easy to show the transfarma a considering also pre-

serve the distance between every pair of pcizs q the plane. We state this

property formally in the next theorem, the -01-..ch is left as an exercise.

Theorem 5-9. A linear transformation 11_ or.3erres the length of every

vector leaves unchanged the distance betwee: v,aiz of points in the plane;

that is, if V' and U' are the respective 4iitger .:±-the vectors V and U,

then

IIV' - U'II = W

Let U3 now find a matrix representing any g;;;.v-.ra linear length-preserving

transformation of H. All we need to find are r.17e images af the vectors

1]
S
1

= and S =
2 1.1

under such a transformation. (Why is this so?)

Ifsl1 and S are the respective images and S,. then we know
2 - -

that both S' and S are of length 1 and ,'-=.....:-.7F-y are ortheDgonal to each
1 2

other.

Suppose that SI forms the angle a (alpha) with the positive half of

the x axis (Figure 5-12). Since the length of SI equals 1, we have

1 sin a]=S'
[cos a

We know that S' is perpendicular to S. Ance, there are two opposite
2 1

[sec. 5-b)
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Figure 5-12. A lengthpreserving transformation.

possibilities for the direction of SI, because the angle p (beta) that SI
makes with the positive half of the 1K axis may be either

or

In the first case (5), we have

2

In the aecond case (6), we have

2

[cos

sin

2

[cos

sin

[sec. 5-6)
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Accordingly, any linear trformation f that leaves the lenuth of each

vector unchanged must be .',apresented by a matrix having i.. r th farm

or the form

[cos a -sin al
sir a cos a

[z=s a sin a
sim a cos al

(7)

(8)

In the first instance (7), the transformation f stmply rotaxes dmtbasis

vectors S
1

and S
2

through-an angle a and we suspect that f is a rotation

of the entire plane H through that angle. To verify this observation, we write

the vector V in terms of its angle of inclination e (theta) to the x axis

and the length r = Mill; that is, we write

cos e
v =

r sin el

Forming AV from equations (7) and (9), we obtain

AV
pc=s e cos a sin e sin 00
r(sile 9 cos a + cos e sin 00

From the formulas mf trigonometry,

we see that

cos (e +a) = cos e cos a sin e sin a,

sin (9 -I-0) n sin 9 cos a + cos e sin a,

zos (9 +0)i
AV = x sdn (9 + ct)

(9)

Thus, AV is the vector of length r at an angle e + a to the horizontal

axis. We have proved that the:natrix A reprs a znLtation of H through

the angle a.

But suppose f is represented hy the matrix B in equation (a) above.

This transformation differs imam r-rt= one represented by A in thFtr-the vector:

S is reflected across the 11,111. af dote vector S' Cousequently,7zun_may
2

suspect that this transformatima-amounts to a reflectiam(of the pIsma in the

(sec. 2-6)
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axis follownd by a roton thnough the_angle a. Sinm::youl know that the

reflection in x axi], is rev78ented by the matrix

0Ii
=

--11 '

you may therefnre expec that

(10)

We leave this verification as an eoehr:_,as

1. Obtain the matrices that

E=ercises 5-6

rotate H through-the following=gles:

(a) 1800, (f) 9017,

(b) 45°, (g)

(c) 30°, (h) 3600 ,

(d) 60°, (1) -135°,

(e) 270°, (j) 1500 .

2. Write out the matrices that 1.4)reser- the isformatian consisting of a

reflection in the z axis ±=llowed'hy the=otations af Exercise 1.

3. Verify Equation (10), above_

4. A linear transformation ot TE that oreserves_the. i'etnEz!n of every vector is

called-:an orthogonal transiornation, and tImat re!.=esenting the'trans-

formation is called ortraleamth:.-matrix- Prove thannne transpose of an

orthogonal matrix is. ctothaalowsl-

5. Show taan the iaverse of:Act c=d3hcgonal_mat=t1"c is arrorthumanaLimatrix.

6. Show that the product of nwm. gonalmm=izes ig orth-16.4tal-

7. (a) Show that a.translatilm-74.-. IE in_the Biranciarroi thoRvector

and through a distance equal ta the-length of" U is givenlby the mapping

Dmmc. 5-6]
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V V U .

(b) Show that this mapping does not preserve the lengzt of every vector,

but that it does preserve the distance between every pair 2f points in the

plane.

(c) Determine whether or not this mapping is linear.

8. Let Ra and R denote rotations of H through the ang1,2.5 a and p,

respectively. Prove that a rotation through a 5y- a rotaton

through p amounts to a rot4tion through a + p; that is, show that

Rce =

9. Note that the matrix A of_Equation (7) is a represemt,ntton of a complex

number. What Anes the result of Exercise 8 imply for ==mplex numbeist

10. (a) Find a matrix that represents a reflection across :tne line of 6are

vector

[cos a
sin al

(b) Show that the matrix B of equation (8), ..Cove, repreaanLs a re

flection across the line of some vector.

227
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Appendix

RESEARCH EXERCISES

The exercises in this Appendix are essentially "reseatype"-problens

designed. to exhibit aspects of theory and practice in matrix algebra that ===ld

ilot be included in the text. They are especially suited as individual asa4gn

ments for those students who are prospective majors in the theoretical and

'practical aspects of the scientific disciplines, and for =Indents who woulL 'ldke

to test their mathematical powers. Alternatively, small grnups of students

'might join forces in working them.

1, Quaternions. The algebraic system that is explored in this exercise

was invented by the Irish mathematician and physicist, William Rowan Hamilton,

who published his first paper on the subject in 1835. It was not until 1858

,that Arthur Cayley, an English mathematician and lawyer, published the_first

researchpaper on matrices, though the name matrix had previously been applied'

_by James Joseph Sylvester in 1850 to rectangular arrays of-numbers. Since

'Hamilton's system of quaternions is actually an Algebra ofmatl.exem; it is macs

easily presented in this guise than in the form in which lt wam EL=st dEmalc,ped1.-

In the present exercise, we shall consider-the algebra of 2 -x 2 amstri.ces

with complex numbers as entries. The definitions of additior, mnLtipliraricn,

and inversion remain the same. We use C for:the set of all co;nplex

and we denote by K the set of all matrices

[Z W

z
1

w
1

'

where z, w, zl, and wl are elements Of C. As is the case with mal-ricea

Ilaving real entries, the element

of K has an inverse.if and only if

z wl wZ1 0 0
'

228
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. and then we have

w 1 w

1

_wl
zw wz

1
z1 Zwl wzl # "zz1 wl
1

Since 1 is a camplex number, the unit matrix is still

[1 0
I =

0 1]

If

z x + iy,

then we write

and call this Aumber the camplex conjugate of z, or simply the conlugate of

A quaternion is an elitment q of K of the particular form

z wi] , e C and w e C.

We denote by Q the set of all.quaternions.

x2 y2 u2 1,2

(a) Show that 6(q) if z = x + iy and w = u + iv.

Hence conclude that, since x, y, u, and v are real numbers, 6(q) = 0 if

and only if q a 0.

(b) Show that if q e Q, then q has an inverse if and only if q 0 0,

and exhibit the form of 4-
1

if it exists.

Four elements of Q are of particular importance and we give them special

names:

I a.

U

W g2

229



(c) Show that if

q

where z = x + iy and w ='u + iv, then

q = x1 + yU +uV + vW.

(d) Prove the following identities involving I, U, V and W:

and

u2 112 142

UV = W = VU, VW = U = WV, and WU = V = UW.

(e) Use the preceding two exercises to show that if q e Q and r e Q,

then q + r, q r, and qr are all elements of Q.

The conjugate of the element

q =

is

[ z w
17 '

where z = x + iy, w = u + iv,

[7 w
1-4 zi '

and the norm and trace are given respectively by

[6(q)] 1/2

and

t(q) = 2x.

Showhat if q e Q, and if q is invertible, then

-1 1q =
2 q

lql

230



222
-1

From this conclude that if q E Q, and if q exists, then q
-4 E Q

(g) Show that each q e Q satisfies the quadratic equation

2
t(q) q + 10

2
q I 0.

(h) Show that if q E Q, then

= 1q1
2

I.

Note that this may be proved by using the result that if :

q = aI + bU + cV + dW,

then

q = aI - bU - cV - dW,

and then using the results given in (d).

(i) Show that if q Q and r Q, then

and

IgrI = lql Irl

lq + rl < lql + Irl.

The geometry of quaternions constitutes a very interesting subject. It

requires the representation of a quaternion

q = aI + b + cV + dW

as a point with coordinates (a, b, c, d) in four-dimensional spaces. The

subset of elements,

Q1 = (q: q E Q and lql = 1),

is a group and is represented geometrically as the hypersphere with equation

231
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a2 b2 + c2 + d2 = 1.

2. Nonassociative Algehs.ras

The algebra of matrices we restrict our7attentiosfm this exercise to the

set M of 2 x 2 matrices) has an associative but nom.z.:. commutative multiplt-

cation. "Algebras" with nonassociative multiplicatiamMeve become increasingly

important in recent years--far example, in:mathematical genetics. Genetics is

a subdiscipline of biology and is concerned witrItransmission of hereditary--

traits. Nonassociative "algebras" are impartant,also in the study of quantum

mechanics, a subdiscipline of physics. We 7g74e arsta_simple example of a Lie

algebra (named after the Norwegian geometer Sr="ir.rs Lie).

If A e M and B e M, -we write

A0B = AB - BA

and read this "A op B," "op" being an aHhmemistimm for operation.

(a), Prove the following properties .7.

(i)--A0B = - BoA,

(ii) AoA = 0,

(iii) Ao(BoC) + Bo(CoA) + Co(AnB) = 0,

(iv) AoI = 0 =

=7.

(b) Give an example to show that An(BaC) and (AoB)oC are different

and hence that o iesot an associative operation.

Despite these stiange properties:, o behaves nicely relative to ordinary

matrix addition.

and

(c) Show that o distributes over adt9llfrfT7Tr-

Ao(B + C), = (ADE) (A0C)

(A + B)oC = (AoC) (Boc).

(d) Show that o beamses nicely relattme to multiplication by a number.
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It will be recalled that A
-1 is termed the multiplicative inverse of A

and is defined as the element B satisfying the relationships

AB = I = BA.

But it must also be recalled that this definition was motivated by the fact that

AI = A = IA,

that is, by the fact that I is a ENItiplicative unit.

(e) Show that there ia no o unit.

We know, from the foregoing work, that o is neither commutative nor

associative. Here is another kind of'operation, called Jordan multiplication:

If A e M and B e M, we define

We see at once that

(AB + BA) '

AjB =
2

AjB = BjA,

so that Jordan multiplication is a commutative operation; but it is not

associative.

() Determine all of the properties of the operation j that you can.

For example, does j distribute over addition?

3. The Algebra of Subsets

We have seen that there are interesting algebraically defined subsets of

M, the set of all 2 X 2 matrices. One such subset, for example, is the set

Z, which is isomorphic with the set of complex numbers. Much of higher

mathematics is concerned with the "global structure" of "algebras," and generally

this involves the consideration of subsets of the "algebras" being studied. In

this exercise, we shall generally underscore letters to denote subsets of M.

If A and B are subsets of M, then

A + B

\
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s_the set of all elements of the form

A + B, where A e A and B E B.

setbuilder notation this may 'be written

A+B=(A+B:AeA and BeB).

By an additive subset of M is meant a subset A C M such that

A + A C A.

(a) Determine which of the following are additive subsets of M:

(i) (0),

(ii) (I),

(iii) M,

(iv) Z,

(v) Mi, the set of all A in M with B(A) = 1,

(vi) the set of all elements of M whose entries are nonnegative.

(b) Prove that if A, B, and C are subsets of M, then

(i) A + B = B + A,

(ii) A + (B + C) = (A + B) + C,

(iii) and if ACB then A+CCB+ C.

(c) Prove that if A and B are additive subsets of M, then

+ B

is also an additive subset of M.

Let V denote the set of all column vectors

[1;1

with x e R and y e R.

(d) Show that if v is a fixed element of V, then
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A: A c M and Av =

1 [g] 1

is an additive subset of M. Notice also that if Av = 0 then (-A)v = 0.

If A and B are subsets of M, then

AB

is the set of all

AB, A E A and B B.

Using set-builder notation, we can write this in the form

AB = (AB: A A and B B).

A subset A of M is multiplicative if

AA C A.

(0) Which of the subsets in part (a) are multiplicative?

(f) Show that if A, B, and C are subsets of M, then

(i)

(ii) and if' A CB, then AC C

(g) Give an example of two subsets A and B of M such that

AB BA.

(h) Determine which of the following subsets are multiplicative:

(i) (0, I),

(ii) (I, -I),

(iii) the set of all elements of M with negative entries,

(iv) the set of all elements of M for which the upper left-hand

entry is less than 1,

(v) the set of all elements of M of the form
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with 0 < x, 0 < y, and x+y<l.

The exercises stated above are suggestions as to how this "algebra of

subsets" works. There are many other results that come to mind, but we shall

leave them to you to find. Here are some clues: How would you define tA if

t C R and A C M? Is (-0A = A? Wait a minute'. What does A mean?

What does A7 mean? Does set multiplication distribute over addition, over

union, over intersection? Do not expect that even your teacher knows the

answer to all of these possible questions. Few people know all of them and

fewer still, of those who know them, remember them. If you conjecture that

something is true but the proof of it escapes you, then try to construct an

example to show that it is false. If this does not work, try proving it again,

and so on.

4. Analysis and Synthesis of Proofs

This is an exercise in analysis and synthesis, taking an old proof to

pieces and using the pattern to make a new proof.. In describing his activities,

a mathematician is likely to put at the very top that of creating new results.

But "result" in mathematics usually means "theorem and proof." The mathematician

does not by any means limit his methods in conjecturing a new theorem: He

guesses, uses analogies, draws diagrams and figures, sets up physical models,

experiements, computes; no holds are barred. Once he has his conjecture firmly

in mind, he is only half through, for he still must construct a proof. One way

of doing this is to analyze proofs of known theorems that are somewhat like the

theorem he is trying to prove and then synthesize a proof of the new theorem.

Here we ask you to apply dhis process of analysis and synthesis of proofs to

the algebra of matrices. To accomplish this, we shall introduce some new

operations among matrices by analogy with the old operations.

For simplicity of computation, we shall use only 2 x 2 matrices.

To start with, we introduce new operations in the set of real numbers, R.

If x e R and y e R, we define

and

x A y = the smaller of x and y (read: "x sEE Y")

x V y = the larger of x and y (read: "x cup y").
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(a) Show that if x e R, y e R, and z E R, then

(i) xAy=yA x,
(ii) xVy.yV x,

(iii) x A (y A z) = (x A y) A z,

(iv) x V (Y V z) = (x V y) V z,

(v) x A x = x,

(vi) x V x = x,

(vii) x A (y V z) = (x A Y) V (x A z),

(viii) X V (Y A z) (x V 5) A (X V x).

Although the foregoing operations may seem a little unusual, you will have

no difficulty in proving the above statements. They are not difficult to

remember if you notice the following facts:

The evennumbered results can be obtained from 'the oddnumbered results by

interchanging A and V , and conversely.

The first states that A is commutative and the third states that A is

associative. The fifth is new but the seventh states that A distributes over

V.
To define the matrix operations, let us think of A as the analog of

multiplication and V as the analog of addition and let us begin with our new

matrix "multiplication."

We define

bdi [x y A x) Vwi [(ca ((b A z) (a A yy) V ((b A w)Aw)]

This is simply the rowbycolumn operations, except that A is used in

place of multiplication and V is used in place of addition. To see this more

clearly, we write

a

cd
[ [x yl [ax

zw cx

bz
dz

-I-ay bw
cy dw]

(b) Write out a proof that if A, B, and C are elements of M, then

A(BC) = (AB)C.
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Be sure not to omit any steps in the proof. Using this as a pattern, writo out

a proof that

A A (B A c) = (A A B) A c,

verifying at each step that you have the necessary results from (a) to make the

proof sound. List all the properties of the two pairs of operations that you

need, such as associativity, commutativity, and distributivity.

(c) Using the analogy between v and addition, define A V B for elements

A and B of M.

(d) State and prove, for the new operations, analogs of all the rules

you know-Sor the operations of matrix addition and multiplication.
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INDEX

'Abelian group, 90
'Addition of matrices, 9

associative law for, 12
commutative law for, 12

Addition of vectors, 147
Additive inverse of a matrix, 14
Additive subset, 225
Algebra, 100, 102

global structure of, 224
nonassociative, 223

Analysis of proofs, 227
Analysis, vector, 175
Angle between vectors, la:
Anticommutative matrix, 49
Area of a-parallelogram, 161
Arrow, 136

head, 13E-

tail, 13(
Associative law, for addition, 12
Associative law,

for multiplication, 43-46
Basis, 171

natural, 171
Cancellation law, 37
Cap, 227
CayleyHamilton Theorem, 210-211
Characteristic equation, 208
Characteristic root, 206
Characteristic value, 205-207
Characteristic vector, 205-207
Circle, unit, 88
Closure, 53
Collinear vectors, 155
Column matrix, 4
Column of a matrix, 2
Column vector, 4, 133
Combination, linear, 170
Commutative group, 90
Commutativtl law for addition, 12

' Complex conjugate, 220
Complex number, 1, 94, 219
Components of a vector, 137
Composition of transformations, 198-199
Compression, 185
Conformable matrices, for addition, 10

for multiplication, 27
Conjugate quaternion, 221
Contraction factor, 180
Cosine, direction, 138
Cosines, law of, 153
Counting number, 1
Cup, 227

Decimal, infinite, 1
Dependence, linear, 172
Determinant function, 77
Diagonalization method, 131
Difference of matrices, 14
Direction cosines, 138
Direction of a vector, 138
Displacement, 184
Distributive law, 41-45
Domain of a function, 177
Dot product of vectors, 154
Eigenvalue, 206
Electronic brain, 2, 132
Elementary matrices, 124
Elementary row opemation, 114, 124
Embedding of an algebra, 100
End point of vector, 137
Entry of a matrilf.. 3

.Equality of matrizes, 7
Equation, characteristic, 208
Equivalence, row, 114
Equivalent systems of linear equations,.

105

Equivalent vectors-, 138
Expansion factor, 179
Factor, contraction, 180

expansion, 179
Field, 55
Fixed point, 206
Fourdimensional space, 222
Free vector, 175
Function, 177

determinant, 77
domain, 177
matrix, 109
range, 177
real, 177
stretching, 183
vector, 177

Galois, Evariste, 92
Geometric representation of vector, 140
Global structure of algebras, 224
Group, 85, 90

abelian, 90
commutative, 90
of invertible matrices, 85
related to face of clock, 90

Head of arrow, 136
Hypersphere, 222
Identity matrix, for addition, 11

for multiplication, 46

Image, 178
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Independence, linear, 172
Infinite decimal, 1
Initial point of vector, 137
Inner product of vectors, 152, 154
Integer, 1
Invariant subspace, 211
Invariant vector, 209
Inverse of a matrix, 62-63, 113
of order two, 75

Inverse of a number, 54
of a transformation, 204

Isomorphism, 94, 100
Jordan multiplication, 224
Kernel, 196
Law of cosines, 153
Left multiplication, 37
Length of a vector, 137-138
Linear combination, 170
Linear dependence, 172
Linear equations, system of, 103, 119

equivalent, 105
solution of, 103-105
relation to matrices, 107
solution by diagonatization method,

131

solution by triangularization method
152

Linear independence, 172
Linear map, 190, 196
Linear transformation, 190, 196
Located vector, 136-137
Map, 178

inverse, 204
kernel, 196
linear, 190, 196
onetoone, 201

onto, 178
Matrices, 1, 3

Matrix, 1, 3

addition, 9
asso:iative law for, 12
commutative law for, 12
conformalbility for, 10
identity element for, 11

additive inverse, 14
anticommutative, 49
column, 4
column of, 2
conformable for addition, 10
difference, 14
division, 50-51
elementary, 124
entry of, 3
equality, 7
identity for addition, 11

for multiplication, 46

Matrix (continued),
inverse, 62-63, 113

of order two.;.75
invertible, 63 .

multiplication, 24, 30, 32
cancellation law for, 37
conformability for, 27

aaft, 37
mght, 37

multiplication by a number, 19-20
negative of, 14
order-of, 3
orthogonal, 217
product, 26
row, 4
row of, 2
square, 4

order of, 4
sum, 10
transformation, 189
transpose of, 5
unit, 46
variahle, 109
zero, 11

Matrix _function, 109
Multiplication, 24, 30, 32

Jordan-, 224
Multiplication of matrices, 24, 30, 32

distributive law for, over addition,
41-45

Multiplication of matrix by number,
19-20

Multiplication of vector by number,
144

Natural basis, 171
Negative of a matrix, 14
Ncnassociative algebra, 223
Norm of a quaternion, 221
Norm of a vector, 141
Null vector, 139
Number, 1
Number, complex, 1, 94

conjugate, 220
counting, 1
integer, 1
inverse, 54
rational, I
real, 1

Onetoone transformation, 186
Operation, row, 114, 124
Opposite vectors, 138
Order of a matrix, 3, 4
Orthogonal matrix, 217
Orthogonal projection, 186
.Orthogonal transformation, 217
Orthogonal vectors, 156
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Parallel vectors, 143, 163
Parallelogram rule, 149
Perpendicular projection, 186
Perpendicular vectors, 153

Pivot, 132
Point, fixed, 206
Product of transformations, 198
Projection,

orthogonal, 186
pert ndicular, 186

Quaternion, 219-223
conjugate, 221
geometry of, 222
norm, 221
trace, 221

Range of a function, 177
Rational number, 1
Real function, 177
Real number, 1
Reflection, 178, 212
Representation of.vector, 140
Right multiplication, 37
Ring, 57-58
with identity element, 60

Rise, 137
Root, characteristic, 206
Row equivalent, 114
Row matrix, 4
Row of a matrix, 2
Row operation, 114, 124
Row vector, 4
Rotation, 198, 212
Run, 137
Scalar, 195
Set, 53

closure under an operation, 53
element of, 57

Shear, 183
Sigma notation, 30
Slope of a vector, 138
Space, 166
fourdimensional, 222

Square matrix, 4
Square root of unit matrix, 39
Standard representation, 140
Stretching function, 183
Subset,

additive, 225
algebra of, 224

Subspace, 166-167
invariant, 211

Sum of matrices, 10
Synthesis of proofs, 227
System of llnear equations, 103, 119

solution by diagonalization method,

131

System of linear equations continued)
solution by triangulariza=lon method,

132

Tail of vector, 136
TerMinal point of vector, 237
Trace of a quaternion, 221
Transformation,
_composition, 198
geometric, 177-178
inverse, 204
kernel, 196
lengthpreserving, 214-217
linear, 190, 196
onetoone, 201

matrix, 189
onetoone, 186
orthogonal, 217
plane, 177-178
product, 198

Translation, 184
Transpose of a matrix, 5
Triangularization method, 132
Unit circle, 88
Unit matrix, 46
Value,

characteristic, 205-207
Variable,
matrix, 109

Vector, 4, 133
addithm, 147

parallelogram rule for, 149
analysis, 175
angle, 153
basis, 171
characteristic, 205-207
collinear, 155, 177
column, 4, 133
order of, 133-134

component, 137
direction, 138
dot product, 154
end point, 137
equivalent, 138
free, 175
function, 177
geometric representation, 136
initial point, 137
inner product, 1523 154
invariant, 209
length, 137-138
linear combination, 170
located, 136-137
multiplication by a number, 144
natural basis, 171
norm, 141
null, 139
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Vector (continued),
opposite, 138
orthogonal, 156'
parallel, 143, 163
parpendicular,453
representation by located
rise, 137
row, 4, 136

Vector (continued),
run, 137
slope, 138
space, 166
subspace, 166.-167

vector, 140 terminal point, 137
variable, 177

Zero matrix, 11


