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FOREWORD

The increasing contribution of mathematics to the culture of the modern
world, as well as its importance as a vital part of scientific and humanistic
education, has made it essential that the mathematics in our schools be both
well selected and well taught. '

With this in mind, the various mathematical organizations in the United
States cooperated in the formation of the School Mathematics Study Group (SMSG).
SMSG includes college and university mathematicians, teachers of mathematics at
all levels, experts in education, and representatives of science and technology.
The general objective of SMSG is the improvement of the teaching of mathematics
in the schools of this country. The National Science Foundation has iprovided
substantial funds for the support of this endeavor. '

One of the prerequisites for the improvement of the teaching of mathematics
in our schools is an improved curriculum—one which takes account of the increas—
ing use of mathematics in science and technology‘'and in other areas of knowledge
and at the same time one which reflects recent advances in mathematics itself.
One of the first projects undertaken by SMSG was to enlist a group of outstanding
mathematicians and mathematics teachers to prepare a series of textbooks which
would illustrate such an improved curriculum.

The professional mathematicians in SMSG believe that the mathematics pre—
sented in this text is valuable for all well—educated citizens in our society
to know and that it is important for the precollege student to learn in prepara-—
tion for advanced work in the field. At the same time, teachers in SMSG believe

-that it is presented in such a form that it can be readily grasped by students.

In most instances the material will have a familiar note, but the presenta—
tion and the point of view will be different. Some material will be entirely
new to the traditional curriculum., This is as it should be, for mathematics is
a living and an ever—growing subject, and not a dead and frozen product of an—
tiquity. This healthy fusion of the old and the new should lead students to a
betcer understanding of the basic concepts and structure of mathematics and
provide a firmer foundation for understanding and use of mathematics in a
scientific society.

It is not intended that this book be regarded as the only definitive way
of presenting good mathematics to students at this level. Instead, it should
be thought of as a sample of the kind of improved curriculum that we need and
as a source of suggestions for the authors of commercial textbooks. It is
sincerely hoped that these texts will lead the way toward inspiring a more

" meaningful teaching of Mathematics, the Queen and Servant of the Sciences.
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PREFACE

The present volume is an experimental edition for a high—-school course in
the theory of matrices and vectors., In selecting material for the text, the
School Mathematics Study Group has been mindful of the fact that this is the
last mathematics course in secondary school, the terminal course ior many
students. As citizens, they should have a sound idea of the nature of mathe—
matics. This point of view has been emphasized in the Harvard report, '"General
Education in a Free Society,' Harvard University Press, Cambridge, 1945, which
states: ''Mathematics may be defined as the science of abstract fomm. The dis—
cernment of structure is essential, no less to the appreciation of a painting or
symphony than in the behaviour of a physical system; no less in economics than
in astronomy. Mathematics studies osder, abstracted from the particular objects
and phenomena which exhibit it, and in a generalized form."

One of our basic aims is thus to demonstrate the structure of mathematics.
We shall not be concerned, however, with structure merely as such. Rather, we
shall exhibit some rich mathematics that is totally new to the student and
demonstrate structure as we proceed. To make abstract form a topic unto itself
often leads to a barren presentation; to discuss the structure of the already—
familiar arithmetic and algebra seems forced and repetitive to the boy or girl
who is dreaming of a place in a jet age,” even in a space age.

It is important to give the student some ‘'new'' mathematics that has con—
siderable vigor and vitality, Until very recently, the high—school curriculum
has been almost entirely concerned with ideas that were developed during or
before the sixteenth and seventeenth centuries. Computers and electronic brains
are front—page news. In order to appeal to the imagination of the student and
to expose some mathematics that is very much alive, the material must be new,
different, and bold.

Another criterion is to provide some tools that will be eminently useful
in the student's transition from school to college, tools that will help bridge
the gap from the manipulative spirit of high—school mathematics to the abstract
viewpoint of modern algebraic studies. Yet this material must not come from
the usual sequential courses.,

A unit on matrix algebra will satisfy the foregoing criteria. As one
operation after another is defined, the structure of mathematics can be repeat-
edly emphasized. Terms like group, ring, field, and isomorphism will be intro-
duced when meaningful and needed for unifying concepts. Thus they will be met
in a new, appropriate, and substantial context; they will not be applied to
shopworn material. Introduced by Cayley in 1858, recognized by Heisenberg in
1925 as exactly the tool he needed to develop his revolutionary work in quantum
mechanics, employed today in such diverse ways as providing a languag> for
atomic physics, measuring the air flow over the wing of an airplane, and keeping

"the parts inventory at a minimum in a factory, matrices can put the student

close to the frontiers of mathematics and provide striking examples of patterns
that arise in~the most varied circumstances. Moreover, the student meets some
mathematics emancipated from the familiar rules of arithmetic, and he learms

‘that” it is within his capacities to ''invent'" some of his own. If this study .

can make mathematics more alive, then here indeed is a promising path.

10



Our study of matrix algebra will involve the investigation of a significant
postulational system, which will reflect the vigor of abstract mathematics. This
is a unit in "hard" mathematics that has power and beauty. It will provide an
effective language and some dynamic concepts that will enhance the student's
ability to handle his first college courses yet not duplicate material.

Lastly, with the objective that the intellectually vigorous students may,
in some small part, obtain an idea of what constitutes ''mathematical research,"
there is appended a set of "Resiarch Exercises.' These are by no means over—
night homework and any one of them may well constitute a project to be executed
by several students. Such team operations are conducive to stimulating dis—
course and critical thinking.

ERIC
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Chapter 1
MATRIX OPERATIONS

1-1. 1Introduction

As we have studied more and more sophisticated mathematics, we have had
occasion to use more and more sophisticated kinds of 'numbers.'" We began with
the set of counting numbers, 1, 2, 3,.... Then, in order to make subtractions
like 3 — 7 possible, the system was extended to the entire set of integers,

0, +1, +2, + 3,.... Next, in order to make it possible to divide any number

by any nonzero number, rational numbers like 1/2, -2/3, -157/321, and 4/2 were

invented. This did not bring us to the end of our story, for, in order that
every positive number should have 2 square root, a cube root, a logarithm, etc.,
it was necessary to invent still more numbers: the infinite decimals or real
numbers, such as 1.4142..., 3.1415928;:., and 0.13131313.... Finally, in order

that negative numbers Should also have square roots, and that such quadratic

equations as

x2 +x+1=20
should have solut{ons, it was necessary to invent complex numbers like
3+ 24, 1 + =i, —1/2 + (1/37)i, and 3 + Oi.

Whenever there has seemed to be a good reason to do so, we have invent~d

' For instance, in inventing complex quantities, we

new sets of 'mumbers.
began not with tbe quantities themselves but with a purpose: to find a
system of numbers each of which has a square root. When we have made one
such invention, it is not hard t6”r;élize that there is no reason to stop
inventing. Why should we not hope to invent many kinds of new numbers?

It is easy to invent things that do not work, but hard to invent things
that do work — easy to invent things thgt are useless, but hard to invent
things that_are useful. The same is true of the invention of new kinds of
numbers. The hard thing is to invent useful kinds of numbers, and kinds of
numbers "that work.'! Nevertheless, several more or less successful new kinds

of numbers have been invented by mathematicians. In this book, we are going

_ to study one of the most successful of these new kinds of numbers: the matrices.

Before we tell you what matrices are, it is well for us to emphasize their

importance. They are useful in almost every branch of science and engineering.

12.
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A great number of the operations performed by the giant "electronic brains"
are computations with matrices. Many problems in statistics are expressed in
terms of matrices. Matrices come up in the mathematical problems of economics.
They are extremely important in the study of atomic physics; indeed, atomic

physicists express almost all their problems in.terms of matrices, and it would

not be an exaggeration to say ‘'-* thr lgebra bf matrices is the language of
atomic physics. Many ot* .2bra, such as complex-number algebrn

and vector algebra, whi: Ly .+ already have studied, can be : !ained
very easily in terms of wa ‘. 250, in studying matrices, you will bc uudy-—

ing one of the newest and most important, as well as one of the most interesting,
branches of mathematics.

Let us look at a few simple examples.

Many a baseball fan, when he first opens the newspaper, refers to a tabula—
tion similar to the following:

G AB R H

Aaron 68 280 52 109
Williams 52 194’ 29 60
Mantle 60 228 51 70
Lopez 63 241 38 72

If he is a Mantle fan, he looks at the entry in the third row and fourth column

of numbers in order to learn how many hits Mantle has thus far obtained during
thz season.

You will note that we have said "row" in speaking of a horizontal array,
and "column' in speaking of a vertical array. Thus, the third row is

60 228 51 70,

and the fourth column ig

109
60
70
72

An assembler of TV sets might have before him a table of the following

sort:
[sece 1=1]



Model A Model B Model C

Number of tubes 13 18 20
Number of speakers 2 3 4

This table indicates the‘Hhmber of tubes and the number of speakers used in
assembling a set of each model.
Omitting the row and column headings, let us focus our attention on the

arrays of numbers in the last two e«smples

68 280 52 109
52 194 29 60 13 18 20
5 228 51 70 2 3 4
63 241 38 ~ 72

Such arrays of entries are called matrices (singular: matrix). Thus a '
matrix is a rectangular array of entries appearing in rows and columns.
Actually, the entries may be complex numbers, functions, and in appropriate
circumstances even matrices themselves; however, with a few exceptions that
will be clearly indicated, we shall confine our attention to the real numbers
‘with which we are already familiar.

Some examples of matrices are the following:

, [1/2 1/4 1/8] - (1)

| ounsm—
s N
OoOw
U
e
-
—
w

r O
-

-3
-5
[ S|
on &

|
™

You will note here how square brackets [ ]a:e used in the mathematical

designation of matrices.
A great advantage of this notation is the fact that we can use it in

handling large sets of numbers as single entities, thus simplifying the statement
of complicated relationships.

l—i. The Order of a Matrix

The order of a matrix is given by stating first the number of rows and

then the number of columns in the matrix. Thus the orders of the matrices in

[6600 1'1]
14 ‘



4

the foregoing examples (1) are respectively 2 X 3 (read "2 by 3"), 2x 2,

4x 1, and 1 X 3. Generally, a matrix that has m rows and n columms

is called an m X n (read "m by n") matrix, or a matrix of order m X n.
If the number of rows is the same as the number of columns, as in the

second example above, then the matrix is square. Thus, given two linear

equations in two unknowns,

2x + 3y = 7,
1x = 2y = 0,

we observ  aat aofficients of x and y constitute a square matrix:

]

When speaking of a square n X n matrix, we often refer to its order a8 n

rather than n X n. For example, the 2.X 2  matrix

is a square matrix of order 2, and the 3 X 3 matrix

-1 2 3
4 ~5 6
7 8 -9

is a square matrix of order 3,

If the number of rows is 1, as in the fourth example in (1), above, thu
matrix is sometimes cailed a row matrix or a row vector. For example, in terms
of rectangular coordinates, a point in a plane might be designated by the row
matrix [Z 3] s or a point in space by the row matrix [2 3 —1] .

Similarly, a column matrix or column vector is a matrix having just one

column, Thus, the foregoing points can equally well be designated by column
2
[g] or 3 H
15

~ [seca 1=2]

matrices,




and the number of men, women, and children in a family might be denoted by

Capital letters are often used to denote general matrices, and the
corresponding small letters with appropriate subscripts are then employed
to designate entries. Thus, we might have

a a a
. a11 a12 a13 " . [bll 12 b13
a21 azz a23 by, by byy
31 %32 “33

In these examples, the entries located at the intersection of thé 2nd row and
3rd columm are denoted by a,, and b23, respectively.

Generally, the entry located at the.intersection of the i—th row and
j—th column of matrix A 1is denoted by aij’ An m X n wmatrix can be denoted
compactly as [aij] axn® Thus the foregoing matrices A and B are

A= [aij] 3x3 d ® [bij] 2x3°

It the order is clear. from the context or is . itrary, the motation might be

reduced to

A= [aij] - and & - [bij] .

Associated with each matrix is another matrix called its transpose, which
is often convenient to use and has interesting theoretical properties. The
transpose At of a matrix A 1is formed by interchanging its rows and colums.
For example, if '

1 3
A= [g 2 g] , then A= |2 -1 .
2 0

Definition 1-1. 1f A = [aij] is an m X n matrix, then the transpose
&.° of A 18 the n xXxm matrix B = |[Pij] with bij - aji for each

[sece 1~2)

16
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i, U =1,2,000,m; o= L,2,...,m).

Exercises 1--2

1. (a) Obtain from a newspaper or other similar source six examplas of

information presented in matrix form.
(b) In each of your examples, state the order of the matrix.

(c) 1In each of the examples, suggest an alternative method (not in matrix

form) of precenting the same information.

2. A row vector vith chree entries can be used to tabulate a person's age,
height, :...d weight.

(a) Give a row vector that lists your age, height, and weight.
(b) Suzgest when it might be useful to employ such a vector.

3. Let
1 2 3 4 5
8 10 12 14 16
-l -3 =5 6 3 *
0 3 -7 8 7
fa) #hmt is the order of A?
{t Neme the entries in tﬁe 4th row.
(c) bPume the entries in the 3rd column.
(d) Nane the entry a4
{z) Mpmme the entry 84"
{£) Name the entry 841°

{g) Write the transpose at.

OO0 =~
OCHO
[y

- C OO

rark
=3

(«) et is the order of B? vl

[sece 1-2)




(b) Name the entries in the 3rd row.
(c) Name the entries in the 3rd column.
(d) Name the entry b12.

(e) For what values i, j 1is % 07

bij
(£) For what values 1, j is bij a 07
(g) Write the transpose Bt.

5. (a) Write a 3 x 3 matrix all of whose entries are whole numbers.

(b) Write a 3 x 4 matrix none of whose entries are whole numbers.

(c) Write a 5 x 5 matrix having all entries in its first two rows

positive, and all entries in "ts last three rows negative.
6. (a) How many entries are there in a 2x 2 matrix?
(b) Ina 4 X 3 matrix?
(¢) Inan n X n matrix?

(d) In an m X n matrix?

1-3. Equality of Matrices

Two matrices are equal provided they are of the same order and each entry

in the first is equal to the corresponding entry in the second. For example,

2 2 '
1 4 0} _ 1 2x2 2-2 4l = 42 x% - 1l [(x—l)(x+1)]_
L ’ ?
2 8 4 4/2 16/2  8/2 8 1,3 1 ox x

but

—
-
(W0 N}
oW
—_
S
wN -
[« 3V, I =g
—
o
o
| S
~“
—
o
[ -
.

Definition 1-2. Two matrices A and B are equal, A =B, if and only

if they are of the same order and their corresponding entries are equal.

Thus, ‘ 18

[sec. 1=2]



[“‘13] mXn [bij] mx n

if and only if aij = bij for each 1,j (1 = 1,2,...,m; j = i,2,...,n).

Using the foregoing definition of equality, we can express certain

relationships more compact y. For example, the following equation between

%) 11

can be employed instead of the two separate equations

2 X1 matrices,

2x + 3y = 7,
Ix - y=2;

and
x+y a+b|l _ |5 -1
X—y a-—b>b 1 3
can be written in place of the four equations
x +y=35, a+bs=s-1,
X—y=l, a—bs= 3.
Exercises 1-3

1. Solve the following equations:

(a) (x+2] | [1
| 3—- ¥y 41 °

(b) [x — Zy] . [—3
| x + ¥ 3 i

(c) sz y] - 1 -1 .
% y2 -1 1

[sece 1=3]
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2. From the matrix equalities A =B and B = C, would you conclude that
A = C? Why?

3. Write the matrix

» 41 %12 %13
871 822 823

if
8y = 24 + 3) - 4.,

4. Write the matrix whose entries are the sums of the corresponding entries

of the matrices

1 o 0 2
2 -1 -3 4

3 4 o 2 1| °
0o 1 0 0

5. Write the matrix whose entries are tae differences (first minus second) of

the corresponding entries of the matrices in Exercise 4.

1-4. Addition of Matrices
We have now defined matrices and studied some of their most elementary

properties. But we have not really made them work. To do this, we must give
rules for adding and:multiplying matrices, just as was done, for example, with
complex numbers. If these numbers were defined bluntly as expreséions of the
form a + bi, without the operations of addition and multiplication, and with—

out relation to the solution of such equations as
2
x +x+1 =0,

they would be of relatively little interest. What gives life to complex
numbers is the fact that we are able to define addition and multiplication for
them in such a way that we have a whofe hlgebra of complex numbers, which is
indeed useful and interesting. 20

{sec, 1=3)
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The same remark applies to matrices. To give the study of matrices its
real content, we must define "sum" and 'product” for matrices. In this section,
we define and study sums of matrices. Products will be considered later.

You will recall that when two complex numbers are added, for example
3+ 51 and -2 + 4i, the two real components znd the two imaginary cuueoments

are added separately. Thus,
(B3+51) + (2 +41i) = (3 +(=2)) +(5+4)L =1 + 91.

If we represent the complex number: as column vectors, we find their sum

by adding corresponding entries; thus.

3 f—2 1
HRHEH
This suggests the pattern used in adding matrices of the same order. The

sum of two such matrices is obtained by adding the individual entries in cor—

responding positions. For example,

2 31 + |7 2 It _ |=2 5 2
-1 0 4 1 3 -2 0 3 2 :

Since we shall not even give a rule by which matrices of different orders
could be added, we shall add two matrices only if they are of the same order.
Accordingly, two matrices that have the same order are sometimes said to be

conformable for addition. The sum has the same order as the two addends.

Defirition 1-3." The sum A +B of two m X n matrices A and B is

the m X n matrix C such that the entry cii in the i—th row and j—th

column of C is equal to the sum aij + bij of the entries aij and bij
in the i—th row'and j—th column of A and B, respectively.
Thus,
[aij] mxn F [bij] mxn [aij + bij] mxn'
For instance, 21

[SBCQ 1""4’]




[“‘11 a12.\ by P12 aj, +byy) 8y, *by, 1 12
1 8; + |by bypl = |2, by 8y R Pyl T oy S -
N P31 P32 a- o %32 7Py 31 “32

1f we consider all m X n matrices, with m and = fixed, as constituting

a set S , and if A and B are elements of § , then A+ B 1is also
m,n m,n .

an element of this set. That is,‘if A€ Sm n

»
$ ") and B€S _, then (A +B) €S .
m,n m,n m,n

3

, v
(read "A 1s an element of

" In the algebra of real numbers R, the equation
a+0=a

is satisfied for all a € R (this time, read "for all a € R" as '"for. all

elements a of R"). Accordingly, we‘say that 0 1is the identity element for

addition in R. 1In the algebra of matrices, the matrices all of whose entries

"are 0 play a corresponding role. Thus,

12 o3y 0o o 24+0 3+0| _ 2 3
-1 4 00 -1 +0 &4 +0 -1 4 °
Such a matrix is called a zero matrix and is denoted by 0. If the order

mX n is significant we write . O or, if the matrix is square, we might

nx n’
write On, where n indicates the order of the matrix. Thus,

00 0
0 0 O
°1xz"[° 0] v O3 ™ [ooo]' 0y = ggg .

The equation

Axn)(n +0mxn = Aan

clearly is valid fxx all Am><n.

The addition of matrices is a coemutative operation, as we can readily
verify. Thus,

4, %2 853 b1 P12 Pr3 by P12 P13 8 82 93
a.. a + 1b.. b.. b |-" |b,, by, b * |la, a,, a .
8y, 8 83 21 P22 P3| - 21 P22 Bxm 21 822 823
[sece 1=4)
22
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In particular, the sum of the two matrices on the left is a matrix having
a;, + b12 as element in the first row and second column, and the corresponding

element of the sum on the right is b, +a

12 But

12°

ajp tbyy, =by, +a,,

by the commutative law for the addition of real numbers.
The foregoing observation holds generally, of course, so that we have the

following result:

)

Theorem 1-1. 1If the matrices A and B are conformable for addition,

then they satisfy the commutative law for addition:
A+B=B+A.

Proof. We have

A+B= :aij] + [bij]
= oy by
B :le * aij]
= [Pys] * [ag)

= B + A.

Thus, in terms of our usual notation, the entry in the i—th row and
j—th column of the sum on the left is aij + bij’ and the corresponding
entry of the sum on the right is bij + aij' But

aij + bij = bij + aij ,

by the commutative law for the addition of real numbers; hence the theorem
follows from the definition (Definition 1-2) of the equality of two matrices.
The addition of conformable matrices is also associative; that is,

RY

A+ (B+C)=(A+B) +C.
23
[sece 1-4)
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We can state the associative property as a theorem and prove it, as
follows:

Theorem 1-2. If the matrices A, B, and C are conformable for addition,
then they satisfy the associative law for addition:

A+ (B+C) = (A+B)+C.
Proof. We note that, in terms of our usual notatiom, the entry in the
i~th row and j—th column of the sum on the left is aij + (bij + cij)’ and
the'corresponding entry of the sum on the right. is (aij + bij) + cij' But

aij + (bij + cij) = (aij + bij) + cij'
" You can complete the proof of Theorem 1-2 by telling why this last equality is

13 bij’ 13’ and why this equality implies
the matrix equality -

.valid for all real numbers a and c

A+ (B+C)=(A+B) +C. —

Since it is immaterial in which order the matrices are added, we write
A+ B + C for either expression:

A+(B+C)=(A+B}+C“A+B+C.
[580.1"’4‘]
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Once we know how to add numbers, it is usual to consider subtraction. You

will recall that the negative, which we might call the additive inverse, of the

real number a is denoted by -—a. It satisfies the equation

a+ (—-a) =0.

Subtraction of matrices arises in a similar manner.

Definition 1—4. Let A be an m X n matrix. Then the negative of A,

written -A, 1s the m X n matrix each of whose entries is the negative of
the corresponding entry of A.

Definition 1-5. If A and B are two m X n matrices, then the
difference of A and B, designated by A — B, 1s the sum of A and the

"negative of B.

Thus, for A + (-B), where A and B are matrices of equal orders, we

write A — B and say that the symbols indicate that B is to be subtracted

0 1 =2
3 4 1

from A. For example,

21 3
4 0 -1

2 0 5
1 -4 -2

and

1 t—c l ¢ 0 —c
tic 4 c 2 t 2 '
Now we can easlly prove the following theorem:

Theorem 1-3. If A and B are m X n matrices, and 0 the mX n

zero matrix, then

(a) A+ (-A) = 9_»
(b) = (-A) = A,
(c¢) -~ 9_ = 9_»

(d) = (A +B) = (=) + (-B).
25

[sece 1-~4]
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Proof of Theorem 1—3 (a). The entry in the i—th row and j—th column of

A 1is, by definition, _aij' Thus the entry in the di-th row and j—th column
of A+ (A) is aij + (—-aij). But aij + (—aij) 0. Hence every entry
of A + (—A) is zero; that is, A + (—A) 1is the zero matrix.

The proofs of the remaining parts are similar and are left to the student

as exercises.

Exercises 1—4%

1. Find values x, y, a, and b that satisfy the matrix relationship

x+3 2y —8 0o -6
b-3 3b 2b + 4 —21
2. 1f
3 2 1 3 4 8
4 =5 6 =2 6 -1
A= lg g —3| ad B= 14 o 3l >
4 6 8 4 -1 8

determine the entry in the sum A + B that is at the intersection of
(a) the 3rd row and 2nd column,
(b) the lst row and 3rd columnm,

(c) the 4th row and lst column.

3. Compute
1/2  1/3] _ |1/6é 1/7
1/4 1/5 1/8 1/9 )
4, Compute
1/2 1/3 1/4 1 0O
1/s 1/6 1/7 + |0 1 0 .
1/8 1/9 1/10 0 01

5. Compute 2 6

[secs 1~k]
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(a) Does the expression

make sense?

(b) Does the expresaion

make sense?

(¢) What is the latter sum?

QOmpute
1 10 3
1 0 1] + 14
J2 10 9
Compute
1 2 3 9
4 5 6] + |6
7 8 9 3
i
Given
1 2
A= {3 4| , Bm
5 6

compute the following:

[sece 1-4]
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(a) A + B, . (d) A -B,
(b) (A +B) +Cn (e) (A"B) +Cn

(c) A+ (B +0C), (f) B —A.

10. (a) In Exercise 9, consider the answers to parts (b) and (c). What law
is illustrated?

(b) In Exercise 9, consider the answers to parts (d) and (f). What con—

clusion can be drawn?

111. Prove Theorem 1-3 (b).
12. Prove Theorem 1-3 (c).

' 13. Prove Theorem 1-3 (d).

14. Assuming that A and B are conformable for addition, prove that
A" + 3% = (a +B)".

1-5. Addition of Matrices (Concluded)

The theorems given in Section 1—4 include exact analogues of all the basic

laws of ordinary algebra, insofar as these .laws refer to addition and subtraction.
_We know that all of the'mbre complicated algebraic laws concerning addition

and subtraction are consequences of these basic laws; Sincé the basic laws of
the addition and subtraction of matrices are the same as the basic laws of the
addition and subtraction of ordinary algebra, all the other laws for the

addition and subtraction of matrices must be the same as the corresponding laws
for the addition and subtraction of numbers.  ‘We can state this as follows:

Insofar as only addition and subtraction are involved, the algebra of

matrices is exactly like the ordinary algebra of numbers.

So you do not have to study the algebra of addition and subtraction of

"matrices — you already know it! But now the algebra that you already know

has a new and much richer content. Formerly, it could be applied only to

numbers. Now, it can be applied to matrices of any order. Thus, we have

obtained a very considerable result with a very small effort, simply by
‘observing that our old algebraic laws of addition and subtraction apply not
~only to numbers, but also to quite different kinds of things, namely, matrices.
_This very powerful trick of putting old results in new settings has been used

many times, and often with great success, in the most modern mathematics.

[sece 1=4]
28
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A good example of the general principle emphasized above is provided by

the following problem. Suppose that A and B are known matrices of the
same order. How can we solve the equation

X+A=1B

for the unknown matrix X? The answer is easy. We do exactly what we learned
to do with numbers. Add the matrix —A to both sides. This gives

X+A+ (—-A) =B + (—=A) = B — A,
Since A + (-A) = 0, and X + 0 = X, we have
X=B —A.

.This is our solution.

Exercises 1—5

l. Solve the equation

for the matrix X.

2. Solve the equation

0 0 1 2 1 2
X+ |0 1 0] = {3 2 3
1 00 4 3 4

for the matrix X.

3. 1f [xl Xy x3] - [—6 0 2] = [—6 2 -5] , determine [xl x, x3] .

4. If
1 <, 0 » c1
+ i = ) 1], determine 2 .
2 c co -1 Cc

3

32 29
[secs 1-5]
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5. if
[2 - } _ [xl xz] - [—3 4
4 0 Yy ¥, 15 -1
det=rmine xl, e »raad Ype
®r -2 that 1f the mat-; ++ A, B, and C are conformable for addition,
th: (A+C)=-(A+3, = C~B,
7. the equation
1 00 1 0O - 7
0 2 3] - |o 2 3| = [2 a7 [2 03
1 0 4! 1 0 & 1 1tz
»alid?

+

1-6. Multiplication of a Matrix by a Numbef

Once we know how to add numbers, it is customary to define: 2x as the erRESE

sum x +x, 3x as the sum 2x +x, etc. Fractional parts of x are defined "™
by requiring that (1/2)x + (1/2)x = x, (1/3)x + (1/3)x + (1/3)x = x, etc.

All of this can feadily be done with matrices. If we add two equal matrices,

the sum is glearly a matrix in which each entry is exactly twice the corresﬁond—

ing entry in the two given matrices. .Thus

[ 2 3] N [ 2 3] - [ 4 6] - [2(2) 2(3)]
-1 0 -1 0 -2 0 2(-1) 2(0)| °

Likewise, for three equal matrices we have

SRR SRR

Each of the above sums may be considered to be the product of a number and

[3(2) 3(3)]
3(-1) 3(0)| °

" g matrix., We write

.80

[sece 1-5] |
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1 1, _ .
ZA + 'Z‘A = &y
- defir: - tte - otrdx  (L/2)4, 1s clearly satisfied by the matriz :each of whom=
entrie - eexaczly 1/2 the corresponding entry of A; the equation
1 1 1,
EA + -§A + -é'A = A,

defist 4 v mzerix (1/3)A, is clearly satisfied by the matrix each of whese
entri * iz wzxactly 1/3 the corresponding entry of A.

T wse zmsiderations lead us to make the following general definition.

Zi. mition 1—6. The product cA = Ac of a nimber ¢ and an m X n

3 .
matrix A is the m X n wmatrix B such that the entry b:l.j in the i-th
row and j—t& column of B 1is equal to the product caij of the number ¢

in the 1i~th row and j—th column of A.

and the 2nery aij

Thes,

‘Z = [ =
€ ["13'] mxn Laij] mxn © [caij] mxn’

For exams.e.

a1 %12 a5 4
€181 82| T |81 ©85) -
831 832 Caj) Ca3

Note timt here we have defined the product of a matrix by a number, nat

the preduct of two matrices. It is possiblewélso to define the product of two
matrices; this will be done in Section 1—7. '

Meww we may state the following theorem about products of matrices by

[sece 1-6]
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mmbers .

Theorem 1—4. If A and B are m X n matrider. and x aznd y are

mmmbers, then

(a) x(ya) = (xy)A,

(b) (x+y)A = xA +yi
(c) (=1)A = — 4,

(d) x(A + B) = xA + 8,
(e) x0 =0,

(£) 0A=0.

Part (e) states that the product of a number anc the zero matrix is the
., zero matrix, and part (f) states that the product of th®: zero number and any

matrix is the zero matrix.

froof of Theorem 1—4 (d). The entry in the i-—th row and j—th column of
the matrix A + B 1is a, + bij' The entry in the i-th row and j~th column

-of matxix - x(A + B) is therefore, by definition, x(aij..,.'*f, bij)~ Kow the entry

in the 1i~th row and j—th column of the matrix xA is xa, j; that in the
i—th row and j—th column of the matrix xB is xb Th Thus the emtry in the
i~th row and j—th column of 'he matrix =xA + xB 1is xaij + Xb:l.j' Since the

entries are numbers and, for all numbers, a(b + c) = ab + ac, we have

x(aij +b,,)= xaij +Xb:|.j’

ij

so that each entry in the matrix x(A + B) 1s the same as the corresponding

..........

entry of the matrix xA + xB. Hence,
x(A + B) = xA + xB.

The other parts of Theorem l.4 may be proved in a simillar way.

When we studied the laws governing the addition and suixtraction of
matrices, we saw that they were parallel to the laws goveruming -arddition and
subtraction in ordinary algebra. The situation when we come to the multiplica—
tion of matrices by numbers is rather siin:llar, but not exactly tie: same, The

[sece 1-6)
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various parts of Ticorsm 1—4 rmizemble the basic zlgebrai: laws for multiplica—

a

tion very closely. a8, meny of che more complicated ordinary algebraic laws
and procedures gover _ng muitipiication still remain correct for expressions
involving the multi: . ication of matrices by numbers. "% difference is that-while -

the product of a nump=r by & numizer is a number, the mrmiuct of a matrix

‘v a number is not . aumber but & matrix.

We are now abl: -o solwvs scme matrix egquations Znvwi sing addition,
zubtraction, and multiplicazism t7r a number.  Let us loos at an example.

Suppose we want to sols= the equation

[1 2 3] 1 0 0
2 {x+ju 1 2|])=3+l0 00
lo o 1 00 1

We first perform the indicated multiplication by ~2. in accordance with part

(d) of the atove theorem, to get

12 <4 -6

1 0 9
22X+ | 0 ~2 ~4| =3X+ [0 0 0
0 0 -2 o 0 1

By
el

Edwgséhméiées of the equation to obtain

—4 -6 1

~2 0 0
0 -2 —4| =3X+4+2X+ |0 0 O
0 0 -2 0 0 1

Next we use part (b) of the theorem to find that 3X + 2X = 5X, so that

-2 4 -6 100
0 -2 —4 = 5X + 0 0 O}.
0 0 -2 o 0 1
Adding
1 0O
-0 0 O
0 0 1
to both, sides, we $ind that 3 3 .

[sgc. 1-6]




-3 -4 =6
0 -2 4| = 5%,
0o 0 -3

M=itiplying both sifes of this last equation by 1/5, we see by part (a) of

+me theorem that

-3/5 —4/5 =6/5
D= 0 =2/5 —4/5].
0 0 -3/5

Thris is our solution.

Exercises 1-6

_ 21 -3 30 5 5 -1 0
A= [10 4] B=[69—1]’ and C“[7 8-—1]’

determine the result of the following operations:

Gy B B (c)7A—2(B _C)
(b) 3A — 4B - 2cC, (d) 3(A - 2B + 3C). .
2. For
[ 7 3 3 4 4 4
o= fi;1~3, B= (3 0 5|, am C= {5 -1 0},
s 0 & 6 9 =1 7 8 -1

derermine: =he result of the foilowing operatioms:
(&) 24— =+ G (c) 7a—-2(¢ - 0),
(3} 3A—&B +9C, (d) 3(A - 2B +‘3C;)_.,{
' l-%ﬂ S
johavE o

3. Let A, B and I be the matrices of Exercise 2. Sdiﬁé?ﬁhe quaéion

]

%ﬁ_(x +A) =-3(X + (2X +B)) +c,

[sece 1~6]
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giving z1l th: steps in detail, and justifying each step.

4, Let A, B, am C be the matrices of Exercise 2. Solve the equation

2(X + B) = 3(X +%_-(x +A)) +C.

5. Prove Theorem .—4 "2),

6. Prove The-rec i—4 (b).

1-7. Multiplicaticr of Matrices

Thus far, we have defined and studied the addition.and subtraction of
" matrices and the multiplication of a matrix by a number. We still have not
defined the product = two matrire=. Since the formal definition is somewhat
complicated and may at first seem odd, let us look at a simple practical problem
that will lead ms tc .operate with =wo matrices in the way that we shall
ultimately call mulziplircation.

Il.'l Seczion l—l, the number c£ tubes amd the number of speakers used in

assembling TV sets cf three different models were specified by = figble:

Mcdel. A Model B Model C

Number of tubes 13 18 20

Number of speakers .z 3 4

This array witi pe called the parts—p=r—set m==trix.

Su .pose ordess were received ir Zznuary for I2 sets of moc.l A, 24 sets
of .moite. B, wm* 1. se=s of'model C; and in February T 6 sets =f model A,
I2 = .rafiel E. and 9 of model C. We can arrange the informatic . in the form

of a marvix:

January- February

Model A 12 6
Model B 24 12
Model C 12 B

Thiss will be called the sets—per-month matrix.
[sece 1-€
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To determine the number of rubes and speakers required in each of the
months for these orders, it is clsar that we must use both sets of information.
For instance, to compute the number o tubes needed Zn January, we multiply each
entry in the 1st row of the parts—per—set matrix by the corresponding entry in
the lst column of the sets—per—month matrix, and then add the three products.

Thus, the number of tubes requirec in January is
13(12) + 15{24) + 20(12) = 828.

 To compute the numver of speakers nzded in January, we multiply each entry
in the 2nd row of the parts—per—set wmztrix by the corresponding entry in the
lst column of the sets—per—month mat==x and then add the products. Thus, the

number of speakexrs for January is

2(12) + 3(2&) + 4(12) = lis.
For February, ficst we multiply the uniries from the imt row of the pérts—-per—
set matrix by the corzesponding enirie:ss from the 2nd coimmr of the sets—per—
month matrix and add to determine thz number of tmbes; secondly, we multiply
the entries from the 2nd Tow of the p=—ts~per—s=t mat—ix by the corresponding
entries from the ™d wuymmn of che sets-p=r-meott mat~ix =nd add to determine
the number of spezkers. Thus :zhe pumbers of rubes mni sp=akers for February

are, respectively,
13(¢ +1E170) + 20(9) = 475,
and

2(6) + 3(12) + 4(9)

i

84.

We can arramse The four smms im an array. which we shall call the parts—

per—month mat—ia

January Pebruary
Number of tubsas: 828 474
Number of spezkers 144 84
Emo p 1"?]

36
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Can we now represent our ''operation' in equation form? Let us try:

13 18 20] |32 &) _ [8s28 474 .
2 3 4|5 % 144 84 M

We have "multiplied' the parts—per—set matrix by the sets—per-month matrix to
get just what should be expected, the parts—per-month matrix!

Note that, in Equation (1), 828 equals the sum of the products cf the °
entries in the lst row of the left—hand factor by the corresponding entries
in the lst column of the right—hand factor. Likewise, 474 equals the sum of
the products of the entries in the lst row of the left—hand factor by the

' corresponding entries in the 2nd column of the right-hand factor, and so on.

Consider the "product’ matrix
828 474
144 84

'in the symbolic form,

211 212

821 %22
The subscripts indicate the row and column in which the entry appears; they
also indicate the row and the column of the two factor matrices that are

combined to get that entry. Thus, the entry in the 2nd row and lst

a
21

column is found by adding the products formed when the entries in the 2nd

row of the left—-hand factor are multiplied by the corresponding entries in the

1st column of the right—hand factor. The most concise description of the

process is: '"Multiply row by column."

The description, "Multiply row by columm,' of the pattern in the foregoing

simple practical problem serves as our gulde in establishing the general rule
for the multiplication of two matrices. Very simply the rule is to multiply
entries of a row by corresponding entries of a column and then add the products.
Thus, given two matrices A and B, to find the entry in the i-th row and
j—th column of the product matrix AB, multiply each entry in the i~th row of

the left~hand factor A by the corresponding entry in the j—th column of the
right-hand factor B, and then add all the resulting terms. Since there must

[sece 1-7)
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‘be an entry in each row of the left—hand factor to match with each entry in a
column of the right—hand factor, and conversely, it follows that the product
is not defined unless the number of columns in the left—hand factor is equal
to the number of rows in the right—hand factor. When the number of columns
in the left-hand factor equals the number of rows in the right—hand factor,

" 'the matrices are conformable for multiplication.

A diagram can aid understanding; see Figure 1-l1.

i

Figure 1-1. Matrices A and B that are conformable
for multiplication. The number of colummns of A must -
be equal to the nimber of rows of B. Then the product
AB has the same nnumber of rows as A and the same
number of colursis ags B.

) An entry in the product 'AB is found by multiplying each of the p
entries in a row of A by the corresponding one of the p entries in the

colum of B and taking the sum; see Figure 1-2.

38
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Tj—th
I column
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|B
|
3 s |
+
1 _
i—~th row of A T AT
e e — e e e e — e — ] L — — pogition of
m entry cij m
l A C = AB J

Figure 1-2, Determination of an entry in the product
AB of matrices A and B that are conformable for
multiplication.

Thus, for; the matrices

[
[}]

~N P

wwn N

oW

PN

-0
-

and B =

to form the product AB, we compute as follows:




Determining one entry of the product after another in this way, we finally

obtain the comziete answer for the product AB:

1 2 3111 0 17 5
AB= |4 5 6|2 1| = |38 11§ .
7 8 9114 1 59 17

(Che=x each of t-e entries of the answer yourself!) To get the answer, 18
multiplications :and 12 additions of pairs of numbers are necessary. It might

he¥p to think of the first matrix in terms of its rows,

R

and tH= second in terms of its columms,

B.= [cl Cz] )

Therxr —he. mroduct appears-as

R RC ’iG
AB = RZ [ C. CZ] = R2C1 RZCZ .
RiCy RyGy

Eere, of course, Rlcl (for example) represents not a product but a sum of
products:

Rlcl = (L)(1) + (2)(2) + (3)(4) = 17.
The symHol R3C2 represenﬁs the entry in the 3rd row and 2nd columm, and you‘
carx decide for -yourself what symbol represents the entry in the i-th row and

j—the column of the product.

‘Here are some more examples:

40
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12|, , 4 [ 1Q1) +2¢4)  1(2) +2(0) 1(3) + 2(1)
(a) 31 [4 : 1] = | 3(1) +1(4) 3(2) +1(0) 3(3) + 1(1)
-1 2 S1(1) + 2(4) —1(2) + 2(0) —1(3) + 2(1)
[0 2 5
= 17 6 10/,
: 7 =2 -1
(b) [1 7 3] 2 = [1(2) +7(4) +3(1)] - '[33],
| 1
o ' C2(1) 2(7) 2(3)
() 4 [1 7 3] = |41) 4@7) 4(3)
1 1) 1) 13)
(2 14 6
= "v 28 12 .
17 3

Let us now proceed to define multiplication formally.

Definitjon 1-7. Let -

A= [aij] mx p and Bu[bjk] oX

be matrices of order m X p and p X n, respectively., The product AB
is the matrix of order m X n, of which the entry in the i—th row and the
j~th column is the sum of the products formed by multiplying entries of the
i—th row of A by corresponding entries of the j—th column of B.

The definition of the product of two matrices can be expressed in terms
of the " 2 notation" for sums. Recall that, in the " Z notation,' we write
the sum

s-x1+x

g Foren xp

of p numbers as

41
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" For example,

’ 5
T i2=12+2%2+3
j=1

2 1 4% 4 5% < ss.

~ Again, the familiar formula for the sum of the first p positive integers,

1+2+...+p=B£P__+_12.

2 ’

can be expressed as

% j = plp +1)
j=1 2

In this notation, the sum

ses 4 a

831014 * 83204 * 3p°pt

is expressed as

p

jZi aijjé'

You will recognize this as the element in the third row and fourth column of
the matrix AB. More generally,

b .+ aipb

L ay1Pp F 8yabp t ok

is expressed as

p

jz& aijbjk;

this sum is the element in the 1-th row and k—th column of AB. Thus we can

express Definition 1-7 more compactly as follows:
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' Definition 1-7'. Let .

A-[aij] nXp and Bﬂ[bjk] pX n

be matrices of order mX p and p X n, respectively. The product AB is

the matrix of order m X n, given by

p -
0= [ouaxe () e = | ()| wr ™ [l e

Note that we have defined the product of two matrices only when the number
w0f columns of the left—hund factor is the same as the number of rows of the
right—-hand factor. Also note that the number of rows in the product is the
same as the number of rows in the left-hand factor, and that the number of
columns in the product is the same as the number of columns in the right-hand

factor.

Exercises 1-7

1. Let

1 0 -1
Aﬂ[_igg]. B= |0 -1 1|,
-1 o0 11

1 2 3
456] -1l
c= |7 2 g/, and D= [2 2.
101J =3 -3

" State the orders of each of the following matrices:

(a) AB, (e) BD,

(b) Da, (£) D(aB),
(c) Ap, (g) (cB)(DA),
(d) cB, (h) B(DA).

2., Perform the following matrix multiplication, where possible:

[sec, 1"'?]
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1]
T 2
(a) _1234]3,
. 4-
"1 -
(b) 3[1234_,
4

4 2]

2 3 4
(c)[__ ]61.
g

4 2
2 3 4
o [ 24
(4 2]1]1 2 3 4
(e) 1 3][02—1 6]’
(1 2 3 4]fa 2
® lo 2 6][1 3]'

3. Let X = [2 -2 4], Y=[0 1 2],

Compute the following:

(a) SUX, (d) XU + YW,
(b) (5w)(3Y), (e) (U—-wW(X +Y),
(c) 5XU -~ (2X ~ Y)W, () X+9(WUW-wW.

4. Perform the following matrix multiplications:

‘<a'> HIHEE

1 o0 X X, x:J
(b) |0 1 0| |y ¥, Y3,
_0 01 z) 2y z3~
Prl r, r, 2 0 0-1
(c) . Sy 8, 8,4 o 2 of,
Ltl .tZ t3 0 0 2- 44
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1 4 8
(@ |0 o o |lb b,
0 3¢ ©2

00
(e) 10 b, Oy, ¥, ¥qf>
00

i "1 "2 *3

(1 2 1] [o 1 o]
(£) 2 1 21 o of,

1 3 1{flo 0 1

- E =

0 1 2|1 2 1
(8) 1 0 o2 1 2.

0 0 1|1 3 1

5. For the matrices

- 1
1 -1 1 -1 0
A=[o 2},B=[4 Oljl,and c = g
test the rule that (AB)C = A(BC).
6. Let
1 2 3 1 0 -1
A= 4 5 6 and B= |~-1 O 1i-.
7 8 9 -2 0 1
Compute
(a) 4B, (£) A(B +B%),
(b) - aBt, (g) A(B - BY),
(¢) BBE, (h) AB — aBF,
(d) (AB)BE, (1) AA - BB + B°BE,
(e) a(BBY), (3) (AA)A.

7. Let I denote the identity matrix of order 3 (see page 46):

L.

a
O -
o~ 0O
-~ C O

.

.
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Let A and B be as in Exer:uise 6. Compute AI, BI, and BtI. Compute
(AI)I and ((AI)I)I.

8. Let
. 1
1 -3 2
A= [1 2 1] and B = [2].
1
Find (AB)c and Bt At.

9. For a certain manufacturing plant, the following information is given:

Part 1 Part 2 Part 3
Cost 2 3 5

Subassembly 1 Subassembly 2

Part 1 4
Part 2 3 5
Part 3 7

Model 1 Model 2 Mode. 2

Subassembly 1 2 1 2
Subassembly 2 3 4 5

Day 1 Day 2 Day 3

Model 1 7 8 8
Model 2 3 4 5
Model 3 3 5 6

Determine the parts—per—model matrix and the cost—per—day matrix.

1-8. Properties of Matrix Multiplication

We have learned that insofar as only addition and subtraction are involved,
the algebra of.matrices is exactly like the ordinary algebra of numbers; see
Section 1-5. At this mément, we might be concerned about multiplication since
the definition seems a bit unusual.. 1Is the algebra of matrices like the

[sec, 1-7]
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36 '
ordinary algebra of numbers insofar as mul:tiplication is concerned?

Let us consider an example that will yield an answer to the foregoing

0 0 0 1
A= [1 0] and B = [0 0] .

If we compute AB, we find

question. Let

"N

Now, if we reverse the order of the factors and compute BA, we fi.

1 0
- [} o].

Thus AB and BA are different matrices:!

Y

For anotzsxr example, let

1 2
. 1 2 3
A = 31 and” B = ].
B
Then
1 2 1 2 3 L(1) +2¢4) 1(2) + 2(0) 1(3) + 2(1) 9 2 5
AB = 31 [4 0 1] = 3(1) + 1¢4) 3(2) + 1(0) 3(3) + 1(1) =7 6 10
-1 2 =1(1) + 2(4) ~1(2) + 2(0) -—-1(3) + 2(1) 7 ~2 -1
while

BA = [1 2 3] § 2\ [1(1) +2(3) + 3(=1) 1(2) + 2(1) + 3(2)] . [4 10]
)] 4(1) +0(3) + 1(-1) 4(2) + 0(1) + 1(2) .

Again AB and BA are different matrices; they are not even of the same order!
Thus we have a first difference between matrix algebra and ordinary

algebra, and a very significant difference it is indeed. When we mhltiply real

numbers, we can rearrange factors since the commutative law holds: For all

x e R and y € R, we have xy = yx. When we multiply matrices, we have no
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such law and we must consequently be careful to take the factors in the oxder
given. We must consequently distinguish between the result of multiplying B
on the right by A to get BA, and the result of multiplying B on the left
by A to get AB. In the algebra of numbers, these two operations of "right
multiplication" and ''left multiplication' are the same; in matrix algebra, they
are not necessarily the same.

Let us explore some more differences! Let

_ 3 1 - |1 3
A= [6 2] and B [ 3 _9] .

Patently, A #0 and B # 0. But if we compute AB, we obtain

RIsE Rt

thus, we find AB = 0. Again, let

&
I

1 2 0 0 0 0
A= 1 1 0 and B = 0 0 O !
-1 4 0 1 4 9
Then
1 2 0 0 0 O 0 0 O
AB = 1 1 0 0 0 O = 0 0 O
-1 4 0 1 4 9 0 0 O

The second major difference between ordinary algebra and matrix algebra is
that the product of two matrices can be a zero matrix without either factor
being a zero matrix. N
The breakdown for matrix algebra of the law that xy = yx and of the law
that xy = 0 only if either x or y 1s zero causes additional differences.

For instance, for real numbers we know that if ab = ac, and a ¥ 0,

then b = c. This property is called the cancellation law for multiplication.

.Proof. We divided the proof into simple steps:

(a) ab = ac,

(b) ab — ac = 0,

(c) a(db—-c) =0,

[sece 1-8]
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(d) b-c=0,
(e} b=c,

For matri~es, the above step from (c) to (d) fails and the proof is not

valid. In fact, AB can be equal to AC, with A # 0, yet B ¢ C. Thus, let
1 2 0 1 2 3 1 2 3
A= |1 10|, B=11 -1|, and C= |1 1 —1].
-1 4 0 2 2 2 11 1
Then
3 4 1
AB = 2 3 2 = AC,
3 2 -7
and
A#0,
but
B #C.

Let us consider another difference. We know that a real number a can
have at most two square roots; that is, there are at most two yoots of the °

equation xx = a.

Proof. Again, we give the simple steps of the proof:

(a) Suppose that yy = a; then

(b) =xx = yy,

(¢) xx—yy=0,

(d) (x—=y)(x+y) = xx+ (-yx + xy) —yy,

(e) yx = xy.

(f) From (d) and (e), (x —y)(x +y) = xx - yy.
(g) From (c) and (f), (x —y)(x +y) = 0.
(h) Therefore, either x -y =0 or x+y =0,
(i) Therefore, either x =y or x =-—y.

For matrices, statement (e)

(g) are invalid.

is false, and therefore the steps to (f)

[sec, 1-8]
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- Therefore, the foregoing proof is invalid if we try to apply it to matrices. 1In

fart, it is false that a matrix can have at most two square roots: We have

1 o] {1 o] _[r o0
o 1} {o 1| T o )"
1 o] [ o] _ [1 o]
0 -1 0 ~1| = |o T}’
-1 o[ o] _ [1 o]
o 1{}lo 1 o 1|
-1 o|f{ o] _ [r :]
0 1|10 -1 e 1]

Thus the matrix

has the four different square roots

_ 1 0 A T _ |1 o
I‘[n 11"’ [o -1:{;"'“‘[0 1]"‘““ L"[o—l]'

4.

There are more'! Given any number x # 0, we have

0 ' 0 b d - 1 0
1/x 0 I/« oy o 1f°

By giving x any one of an infinity of different real values, we obtain an

infinity of different square roots of the matrix I:

[o 2] .[o 1/3] [o —4] ete
172 o|l* {3 o |*> |-/ of° :

Thus the very simple 2 X 2 matrix I has infinitely many distinct square
roots! You can see, then, that the fact that a real or complex number has at

most two square roots is by no means trivial.

50
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Exercises 1-8

1. Let
ST R
Calculate:
(a) 4B, - (d) (BA)A, .(g) A(aB),
(b) BA, (e) (BA)B, (h) ((BA)A)B,
(c) (AB)A, (£) B(BA), (i) ((AB)A)B.

2. Make the calculations of Exercise 1 for the matrices

1 2 3 1 0 -1
A= |4 5 6 and B= |-l O 1] .
7 8 9 1 1 -1

3. Let A and B be as in.Exercise 2, and let

-

n
(=N =0y
o~ 0O
-~ 0O O

.

Calculate AI, XA, BI, 1IB, and (AI)B.

4, Let

11 -1 1 0
A= [0 2] and B = [1 2].
{

Show by computation that

(a) (A + B)(A + B) # A> + 2aB + B2,

3
L

(b) (A +B)(A-B) # A2 - BS,

where A2 and B2 denote AA and BB, respectively.

5. Let
1 0 O 2 0 O
A= [0 2 O and B= |0 2 0.
0o 0 3 0 0 2
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B

2 3 2 2
Calculate A, A, B, B3, AB3, A"B, where A3 denotes A(AA).

6. Find at least 8 square roots of the matrix

-

[}
OO -
o~ 0
==

7. Show that the matrix

0 0
satisfies the equation A2 = 0. How many 2 X 2 matrices satisfying this

equation can you find?

8. Show that the matrix

o

[}
o =~0
=~ O 0O
(ol =N o]

satisfies the aquation A3 = 0.

1~9. Properties of Matrix Multiplication (Concluded)

We have seen that two basic laws governing multiplication in the algebra
of ordinary numbers break doﬁn when it comes to matrices. The commutative law
and the cancellation law do not hold. At this point, you might fear a total
collapse of all the other familiar laws. This is not the case. Aside from the
two laws mentioned, and the fact that, as we shall see later, many matrices do
not have multiplicative inverses (reciprocals), the other basic laws of
ordinary algebra generally remain valid for matrices. The associative law
holds for the multiplication of matrices and there are distributive laws that
unite addition and multiplication.

A few examples will aid us in understanding the laws.

2

1 0 [2 0 | [ 2
A= [1 1]’ B = [1 1], and C = [ 3 1] .

[sec. 1-8)
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Then

ey - [} 2]([% 0 1)

and

wen (A [

Thus, in this case,

A(BC) = (AB)C.
Again,
wweo = [13] (9] - [34])
1L o|lfr 2] _ f1 2
= [1 1][4 2] [5 4]’
and

o F 0 - [0 ]

so that alsc
A(B + C) = AB + AC. 1)

Since multiplication is not commutative, we cannot conclude from Equation
(1) that the distributive principle is valid with the factor A on the right—
hand side of B + C. Having illustrated the left—hand distributive law, we

[sec. 1-9]
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now illustrate the right—hand distributive law with the following example:

We have u

srons (18]« 3 1]) [ 4]
HHIEE
' wean [FH[E ] 3]
SEHEI IR

(B + C)A = BA + CA.
You might note, in passing, that, in the above example,

A(B + C) # (B + C)A.

These properties of matrix multiplication can be expressed as theorems,

as follows.
Theorem 1-5, If
A= [aij] mx p’ B = [bjk] pxXn’ and € = [ckh] nxq'
then

(AB)C = A(BC).

Proof. (Optional.) We have

54

[sec. 1=9]

43



p 1
ap = <j§1 aijbj1<>J X n ’
E: .......
(AB)C = a,.b c :
k=l \j=1 M jk> K| nxq
>
BC = b, ¢ ,
(&) | e
A(BC) =

5 oy (3
. a,., b.. ¢ .
I <=1 Jk k‘) mxgq

Since the orxder of addition is arbitrary, we know that

n P P n
z Z a,.b c = Z a. . z b .c
K=l \ j=1 i1j jk kh mx q =1 ij k=1 jk kl> mXq
Hence,
(AB)C = A(BC).

Theorem 1-6. If

A= [aij] mx p’ B = [bjk] pX n’ and C = [cjk] pXn’

then A(B + C) = AB + BC.

Proof. (Optional.) We have

(B +0C) = [ jk cjk] px n’
)
A(B + C) = a,, (b +c, )
j=1 4 jk jk mXn
) )
= + a,.c,
j=1 ij gk j=1 13" jk mXn
[sec. 1-9]
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g: E&

a,.b + a,.c

i=1 1373k mXn j=1 1373k mX n
= AB + AC.

Hence,
A(B + C) = AB + AC.

Theorem 1—7. 1If

.

B= [by] pxn ©° [e3k] pxcar and A= [ %) nxq *

then (B + C)A = BA + CA.

Proof. The proof is similar to that of Theorem l—6 and will be left as
an exercise for the student. )

It should be noted that if the commutative law he}d for matrices, it would
be unnecessary to prove Theorems 1—6 and 1-7 separately, since the tmo state—

ments

A(B + C) = AB + AC
and

(B + C)A = BA + CA

would be equivalent. For matrices, however, the two statements are not equiva—
lent, even though both are true. The order of factors is most important, gince

statements like

A(B +C) = AB + CA
and
(B +C)A = AB + CA

:an be false for matrices.

[sece 1-9]
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Earlier we defined the zero matrix of order m X n and showed that it is
the identity element for matrix addition:

A+0 =4,

where A 1is any matrix of order m X n. This zero matrix plays the same role
in the multiplication of matrices as the number zero does in the multiplication
of reaj numbers. For example, we have

[olale)
[Nl
1
—
oo
oo
[
it
o
nN

Theorem 1-8. For any matrix

Apx n"- [aij] pXxXn’

we have

Omx P Ap><n = 0m><n and Ap Xn Oan = 0p><q'

The proof is easy and is left to the student.

Now we may be wondering if there is an identity element for the mulfiplica—
tion of matrices, namely a matrix that plays the same role as the number 1 does
in the multiplication of real numbers . (For all real numbers a, la = a = al.)

There is such a matrix, called the unit matrix, or the identity matrix for

multiplication, and denoted by the symbol I. The matrix 12, namely,

1 0
L= [o 1]’

is called the unit matrix of order 2. The matrix

1 00
13 =10 10
o0 0 1

ig called the unit matrix of order 3. In general, the unit matrix of order

n 1is the square matrix [eij] axn such that eij =1 forall 1i=3 and
: [Sec. 1-9]
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'eij =0 forall 44 3j (1=1,2,...,n; j=1,2,...,n). We now state the
important property of the unit matrix as a theorem.

Theorem 1-9. If A is an m X n matrix, then AIn = A and ImA = A,

Proof. By definition, the entry in the i-th row and j—th column of the
cee +a, e Since

ilelj + aiZer + in®nj ekj = 0 for
all k ¥ j, all terms but one in this sum are zero and drop out. We are

product AIn is the sum a
left with aijejj = aij' Thus the entry in the i-th row and j—th column of the
product is the same as the corresponding entry in A. Hence AIn = A. The
equality ImA = A may be proved the same way. 1In most situations, it is not
necessary to specify the order of the unit matrix since the order is inferred
from the context. Thus, for

ImA = A= AIn’
we write

IA = A = AI.

For example, we have

) ) ) )
3 4 [é 2] =3 4
5 6 5 6
and
1 o of|1L 2 1 2
0 1 .0f]|3 4| =13 4}.
0 0 1||5 6 5 6
Exercises 1-9
l. Let

58
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Test the formulas

A(B + C) = AB + AC,
(B + C)A = BA + CA,
A(B + C) = AB + CA,
A(B + C) = BA + CA.

Which are correct, and which are false?

2., Let
00 _J1 o0
A= [1 0] and B = [0 0] .

Show that AB # 0, but BA =0.

3. Show that for all matrices A and B of the form

a b c d
A= [-—b a] and B=[—d c]’

we have

AB = BA.

Illustrate by assigning numerical values to a, b, ¢, and d, with

a, b, ¢, and d integers.

%4, Find the value of x for which the following product is I:

N

0 7| |== -l4x 7x
0 1 0 0 1 0 .
1 2 1 b3 4 —-2x
5, For the matrices
0 0O 0 0 O 0 0 O
A= 1 0 0}, B = 0o o o], and C= 2 0 0},
0 1 O 1 00 1 2 0

show that AB = BA, that AC *» CA, and that BC = CB.
6. Shov that the matrix 59 !
[sec. 1~9]
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[

-~ OO0
oo
oro

satisfies the equation A3 = T. Find at least one more solution of this

equation.

7. show that for all matrices A of the form

we have

Illustrate by assigning numerical values to a and b.

8. Let

_[o1 - [0 _[1 o
o= 93] e [ 3] wna 53]

Compute the following:

(a) DE, ' (d) ED,
(b) DF, (s, FD,
(c) EF, (£) FE.

If AB=—~BA, A and B are said to be anticommutative. What con—

clusions can be drawn concerning D, E, and F?

31

9. Show that the matrix A = [_1 2

] is a solution of the equation
A~ sa+71=0.

10. Explain why, in matrix algebra,

(A +3B) (a~B)#a’ - g

except in special cases. Can you devise two matrices A and B that .
will illustrate the inequality? “'Can you devise two matrices A and B
[sece 1-9]
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that will illustrate the speciél case? (Hint: Use square matrices of
order 2.)

11. Show that if Vv and W are n X 1 column vectors, then
vE W= ut v,

12, Prove that (AB)t = BtAt, assuming that A and B 4re conformable for
multiplication.

13. Using E: notation, prove the right~hand distributive law (Theorem 1,7).

1-10. Summary

In this introductory chapter we have defined several operations on
matrices, such as addition and multiplication. These operations differ frsm
those of elementary algebra in that they cannot always be performed. Thus,
we do not add a 2 X 2 matrix toa 3 X 3 matrix; again, though a 4 x 3
matrix and a: '3 x 4 matrix can be multiplied together, the product is neither
4 x3 nor 3 X 4. More importantly, the commutative law for multiplication
and the cancellation law do not hold. '

There is a third significant difference that we shall explore more fully
in later chapters but shall introduce now. Recall that the operation of
subtraction was cloéely associated with that of addition. In order to solve

equations of the form
A+ X = B,

it is convenient to employ the additive inverse, or negative, -A. Thus, if

the furegoing equation holds, then we have

A+ X + (-A) = B + (-4),
X+ 4+ (-A) = B+ (-4),
X +0 =B~ A,

X =3~ A.

45 you know, every matrix A has a negative -A. Now "division" is closely

61
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associated with multiplication in a parallel manner. In order to solve

equations of the form

A = B,

we would analogoualy employ multiplicative inverse (or reciprocal), which is
denoted by the symbol A -, The defining property is A L A =1 = AA Y. This

enables us to solve equations of the form
AX = B,

Thus if the foregoing equation holds, and if A has a multiplicative inverse

A~1, then

A—l(AX) = A B,

(a tayx = 4718,
IX = & '8,
X =alp.

Now, many matrices other than the zero matrix 0 do not possess multiplicative

0 0 q 2 -3
1 o| @m -2 3

dre matrices of this sort. This fact constitutes a very significant difference

inverses; for instance,

between the algebra of matrices and the algebra of real numbers. In the next
two chapters, we shall explore the problem of matrix inversion in depth.

Before closing this chapter, we should note that matrices arising in
scientific and industrial applications are much larger and their entries much
more complicated than has been the case in this chapter. As you can imagine, °
the computations involved when dealing with larger matrices (of order 10 or
more),-which is usual in applied-work, are so extensive as to discourage their .
use in hand computations. Fortunately, the recent development of higl. -speed
electronic computers has largely overcome this difficulty and thereby has made

it move feasible to apply matrix methods in many areas of endeavor.
. [sec. 1~10]
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Chapter 2
THE ALGEBRA OF 2 x 2 MATRICES

2-1. Introduction

In Chapter 1, we considered the elementary operations of addition and
multiplication for rectangular matrices. This algebra is similar in many
respects to the algebra of real numbers, although there are important differ—
ences. Specifically, Qe noted that the commutative law and the cancellation
law do not hold for matrix multiplication, and that division is not always
possible.

With matrices, the whple problem of division is a very complex one; it is
centered around the exiﬁéghce of a mﬁltiplicative inverse. Let us ask a

question: If you were given the matrix equation

1 2 3 4] [x, - x 1020
8 9 0o —1 (.11 1% 1o 1 0 2
4 5 6 5||. .| T |z 01 of-
0 4 2 of|xX, - X, 02 0 1

could you solve it for the unknown &4 X 4 matrix X? Do not be dismayed

if your answer is ''No."” Eventually, we shall learn methods of solving this
equation, but the problem is complex and lengthy. 1In order to understand

this problem in depth and at the same time comprehend the full significance

of the algebra we have developed so far, we shall largely confine our attention
in this chapter to a special subset of the set of all rectangular matrices;
namely, we shall consider the set of 2 X 2 square matrices.

When one stands back and takes a broad view of the many different kinds of
numbers that have been studied, one sees recurring patterns. TFor instance, let
us look at the rational numbers for a moment. Here is a set of numbers that we
can add and multiply. This statement is so simple that we almost take it for
grénted. But it is not true of all sets, so let us give a name to the notion

that is involved.

Definition 2-1. A set S is said to be closed under an operation R on

a first member a of S and a second member b of S if

(i) the operation can be performed on each a and b of 8,
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(i1) for each a and b of §, the result of the operation is a

member of S.

For example, the set of positive integers is not closed under the operation
of division since for some positive integers a and b the ratio a/b 1is not
a positive integer; neither is the set of rational numbers closed under division,
since the operation cannot be performed if ‘b = 0; but the set of positive
rational numbers is closed under division since the quotient of two positive

rational numbers is a positive rational number.

Under addition and multiplication, the set of rational numbers satisfies

the following postulates:
The set is closed under addition.
Addition is commutative.
Addition is associlative.
There is an identity member (0) for addition.
There is an additive inverse member -a for each member a.
The set is closed under multiplication.
Multiplication is commutative.
Multiplication is associative.
There is an identity member (1) for multiplication.

. AP . . -1
There is a multiplicative inverse member a for each member a,
other than O.

. - .

Multiplication is distributive over addition.

Since there exists a rational multiplicative inverse for each rational number
except 0, division (except by 0) is always possible in the algebra of

rational numbers. 1In other words, all equations of the form
ax = b,

where a and b are rational numbers and a # 0, can be solved for x 1in

the algebra of rational numbers. For example: In order to solve the equation

64
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1
x=,—2‘,

win

we multiply both sides of the equation by — 3/2, the multiplicative inverse
of — 2/3. Thus we obtain '

or

which is a rational number. )

The foregoing set of péstulates is satisfied also by the set of real
numbers. Any set that satisfies such a set of postulates is called a field.
Both the set of real numbers and the set of rationals, which is a subset of
the set of real numbers, are fields under addition.and multiplication. There
are many systems that have this same pattern. 1In each of these systems,
division (except by 0) is always possible.

Now our immediate concern is to explore the problem of division in the set
of matrices. There is no blanket answer that can readily be reached, although

there is an answer that we can find by proceeding stepwise. At first, let us

"limit our discussion to the set of 2 X 2 wmatrices. We do this not only to

consider division in a smaller dumain, but also to study in detail the algebra
associated with this subset. A more general problem of matrix division will be

considered in Chapter 3.

Exercises 2-1
1. Determine which of the following sets are closed under the stated
operation:
(a) the sét of integers under addition,
(b) the set of even numbers under multiplication,
(c) the set {1) under multiplication,

(d) the set of positive irrational numbers under division,

[se;:. 2"1]
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(e) the set of integers under the cperation of squaring,
(£f) the set of numbers A = {x: x >3} under addition.
2. petermine which of the following statements are true, and state which of
the indicated operations are commutative:.
(a) 2—-3=3~— 2;
(b) 4 +2=2%4,
(¢) 3 +2=2+3,
() Ja+ Jo=./b+ ~/3, a and b positive,
‘(e) a—-—b=b—-a, a and b real,
(f) pq =qp, p and q real,

(8) -L+2=2+ /1.

3, Determine which of the following operations ¥, defined for positive

integers in terms of addition and multiplication, are commutative:

(a) xFy=x++2y ~ (for example, 233 =2+6=28),
(b) x ¥y = 2xy,

(¢c) x¥y=2x+2y,

@ xEy=x,

(e) xFy-= xy,

(f) xEFy=x+y +1.

4. Determine which of the following operations *, defined for positive

jntegers in terms of addition and multiplication, are associative:

(a) x*y=x+2 (for example, (2 * 3) * 4 =8 * 4 = 16),
() x*y=x+y,
2

() x*y=xy,
d) x*y=x
(e) x*y= Jx,
(f) x*y=xy+1.

5. Determine whether the operation * is distributive over the operation

%, that is, determine whether x * (v ¥z)=(x*y)F (x*2z) and

[sec. 2~1]
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(y #2z) *x= (y *x) ¥ (z * x), wvhere the operations ¥ and * are
defined for positive integers in terms of addition and multiplication of

real numbers:

(a) xEFy= x+ y, x*y = xy;
(b) x*y=2x + 2y, X*y = % xy;
(¢c) xEy= x4+ y+1, x*y = xy.

Why is the answer the same in each case for left—hand distribution as it

is for right—hand distribution?

6. 1In each of the following examples, determine if the specified set, under

addition and multiplication, constitutes a field:
(a) the set of all positi e numbers,
(b) the set of all rational numbers,

(c) the set of all real numbers of the form a + bw/i, where
a and b are integers,

(d) the set of all compléx numbers of the form a + bi, where
a and b are real numbers and i = /-1,

2—-2, The Ring of 2 X 2 Matrices

Since we are confining our attention to the subset of 2 X 2 matrices,
it is very convenient to have a symbol for this subset. We let M denote the
set of all 2 X 2 matrices. If A is a member, or element, of this set, we
express this membership symbolically by A € M. Since all elements of M are
matrices, our general definitions of addition and multiplication hold for this
subset.

The set M 1is not a field, as defined in Section 2—1, since M does not
have all the properties of a field; for example, you saw in Chapter 1 that

multiplication is not commutative in M, Thus, for
0 0 01
A= [1 0] and B = [0 0] »

we have

[sec. 2-1]
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00 1 0
AB = [0 1] , while BA = [0 0] .

Let us now consider-a less restrictive sort of mathematical system known

as a ring; this name is usually attributed to David Hilbert (1862-1943).

Definition 2-2. A ring is a set with two operations, called addition and

multiplication, that possesses the following properties under addition and

multiplicacion:
The set is closed under addition.
Addition is commutative.
Addition is associlative.
There is an identity element for addition.
There is an additive inverse for each element.
The set is closed under multiplication.

Multiplicatibn is assoclative.

Multiplication is distributive over addition.

Does the set M satisfy these properties? It seems clear that it does,
but the answer is not quite obvious. Consider the set of all real numbers.
This set is a field because there exists, among other things, an additive
{nverse for each number in this set. Now the positive integers are a subset
of the real numbers. Does this subset contain an additive inverse for each
element? Since we do not have negative integers in the set under consideration,
the answer is '""No''; therefore, the set of positive integers 1is not a field. ‘
Thus a subset does not necessarily have the same properties as the complete
set. .

To be certain that the set M 1s a ring, we must systematically make sure
that each ring criterion is satisfied. Fcr the most part, our proof will be a

"reiteration of the material in Chapter 1, since the general properties of
matrices will be valid for the subset M of 2 X 2 matrices. The sum of two
2 x 2 matrices is a 2.x 2 matrix; that is, the set is closed under addition.
For example, " 68
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The general proofs of commutativity and associativity are valid. The unit
matrix is

~ the zero matrix is
and the additive inverse of the matrix

=]

When we consider the multiplication of 2 X 2 matrices, we must first verify
that the product is an element of this set, namely a 2 X 2 matrix. Recall
that the number of rows in the product is equal to the number of rows in the
left-hand factor, and the number of columns is equal to the number of columns
in the right—-hend factor. Thus, the product of two elements of the set M
must be an element of this set, namely a 2 X 2 matrix; accordingly, the set
is closed under multiplication. For example,

1 2 1 =1 _ |-1 1

3 411 1 -1 11"°
The general proof of associativity is valid for elements of M, since it‘is valid
for rectangular matrices. Also, both of the distributive laws hold for elements

of M by the same reasoning. For example, to illustrate the associative law

for multiplication, we have 69
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and also

0 kD -BAR AL

and to illustrate the left—hand distributive law, we have

FRCERD BT TR

and also

BRI R R e R R

Since we have checked that each of.the ring postulates is fulfilled, we
have shown that the set M of. 2 X 2 matrices is a ring under addition and
multiplication. We state this result formally as a theorem.

Theorem 2—-1l. The set M of 2 X 2 matrices is a ring under additiom
and multiplication.

Since the list of defining properties for a field contains all the defining
properties for a ring, it follows that every field is a ring. But the converse
statement is not true; for example, we now know that the set M of 2 X 2
matrices is a ring but not a field. The set M has one more of the field
properties, namely there is an identity element

1 0
- [o 1]
for multiplication in M; that is, for each A € M we have
TA = A = AL,

Thus the set M is a ring with an identity element.

[sec. 2-2)
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At this time, we should verify that the commutative law for multiplication
and the cancellation law are not valid in M by giving counterexamples. Thus

we have

| SRR e

but

IR ]

so{tﬁat the commutative law for mul tiplication does not hold. Also,
0 0ojj0o O _ 10 OjfO0 O©
1 0]{2 o0 1 o]l |3 o]

so that the cancellation law does not hold.

Exercises 2-2
l. Determine 1f the set of all integers is a ring under the operations of
addition and multiplication.

2., Darermine which of the following sets are rings under addition and
multiplication:

(a) the set of numbers of the form a + b N/E, where a and b
are integers;

(b) the set of four fourth roots of unity, namely, +L, -1, 1,
and —~i;

(c) the set of numbers a/2, where a 1is an integer.

3, Determine if the set of all matrices of the form 8 g » with a € R,
forms a ring under addition and multiplication as defined for matrices.
4. Determine if the set of all matrices of the form 8 22 » with a € R,

forms a ring under addition and multiplication as defined for matrices.

71
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2-3, The Uniqueness of the Multiplicative Inverse

Once again we turn our attention to the problem of matrix division. As we
have seen, this problem arises when we seek to solve a matrix equation of the

form
AX = C.
Let us look at a parallel equation concerning real numbers,

ax = c,

¥

Each nonzero number a has a reciprocal / 1/a, which is often designated d-l.

Its defining property is aa =~ = 1, Since multiplication of real numbers is
commutative, it follows that a_la = 1. Hence if a 1is a nonzero number,
then there is a number b, called the multiplicative inverse of a, such that

1

ab =1 = ba (b=a ).

Given an equation ax = ¢, where a # 0, the multiplicative inverse b enables

us to find a solution for x; thus,

b(ax) = be,
. (ba)x = be,
1x = be,

X = ve.

Now our question concerning division by matrices can be put in another way. If

A€M, is there a B € M for which the equation

AB = I = BA
ig satisfied? We shall employ the more suggestive notation Am1 for the in—
‘verse, so that our question can be restated: Is there an element A-l e M for

which the equation

ml=1eala
72
[sece 2-3]



‘ 63
is satisfied? Since we shall often be using this defining propert,, let us
state it formally as a definition.

Definition 2—-3. If A € M, then an element A~1 of M is an inverse of
A provided

anl = 1= ala,

1f there were an element B corresponding to each element A € M such

that
AB = i = BA,
then we could solve all equations of'the form
AX = C,
since we would have

B(AX) = BC,

i

(BA)X = BC,
IX = BC,

X = BCG,

and clearly this value satisfies the original equation.

From the fact that there is a multiplicative inverse for every real number
except zero, we might wrongly infer a parallel conclusion for matrices. As
stated in Chapter 1, not all matrices have inverses. Our knowledge that O
has no inverse suggests that the zero matrix 0 has no inverse. This is true;

since we have
X =0
for all X € M, so that there cannot be any X € M such that
{‘QX = I.

73 )
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But there is a more fundamental difficulty than this. Let us take the

1 0
A= [o o] y

nonzero matrix

and try to solve the equation

A& = 1, , for X € M.

If we let

then we find that

= | Ol)lp af _ |P 9
AX [0 0][r s] [0 o "
Hence, no matter what entries we take for X, we cammot have

A =1

sincg the entry in the lower right—hand corner of AX is zero, and the entry
in the lower right—hand corner of I is 1,

At this point, you might be thinking that no matrix has an inverse. Do not
move too fast! Note that .

I'I=I=I-1.

This means that I 13 its own inverse, just as 1 is its own inverse among the
real numbers.

Also, let us note that

R R BN R R IR A

74
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‘has the inverse

-1 1/2 0 |
Ao [ 0 ,1/.2]?

Consequently, the equation

2 0 1 2
(& 8]x 5 4]
may be solved by multiplying both sides by A-l, thus:
1/2 0 2 0 X = 1/2 0 1 2
0 1/2310 2 0 1/211}3 4}’
10 X = 1/2 1
01 3/2 2}
o[z v
X [3/2 2_| .

This is a specific illustration of a general pattern. Let a be any

nonzero number. Now

I=11
1

= aa~ 1
~1
= aa (I)(1).
Since the multiplication of real numbers and matrices is assocliative and

‘commutative, it follows that for all real numbers a and b, and all 2 X 2
matrices X and Y, we have

abXy = (aX)(by).
In particular, then,

I = (al) (a"ll) .

[sec, 2~3])
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Since aan1 = a a, we can also state that,
~1
I=(a I)(aI).

This result enables us to enumerate a large number of matrices and their in—

verses. Thus, let A = al; then Ari = a—ll. ¥or example, 1if a =3 then

_ 30 -1_ [13 o
A [0 3} and AA = [ 0 1/3].

If a = 0.2, then
- |02 O -1 =12 0
A [ 0 0'2] and A [0 5].

At least we know that there are a great many matrices A with the property
that there 1s a corresponding matrix B such that

AB = I = BA.
Before turning to the problem of finding those matrices that have inverses,
let us show first that if a matrix has an inverse, it has only one inverse;

that is, this inverse is unique. For instance, in the example directly above,

we saw' that

~1_[5 0 0.2 0
A=[os] if‘*[o o.z}'

We wish to show that there is no other inverse. Suppose that we have elements
A, B, and C of M such that

AB = 1 = BA,
and
AC = I = CA;

that i8, A has an inverse B, and A also has an inverse C. Multiply the
first of these two equations on the 'left by C. Then

[sece 2-3]
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c(aB) = CI,

or

(CA)B = C,

Hence
IB = C,

or

B = C.

This result is so important that we call it a theorem and state it formally:

Theorem 2-2. If A € M and if there exists A—l, K—l € M, . .u that

Al =g=ala,

then A"} 1s unique; that is, there is no other solution X of the equations

AX = I = XA.

Now we can readily show that A 1is the inverse of A-l if we know that
A—ly ié‘the inverse of A. This may seem a bit trivial, but it is important

enough to state formally and prove.

Theorem 2-3. If A € M -and if A has an inverse A =, then Al also

has an inverse; namely, A 1s the inverse of A~1.

Proof. Since A—l is the inverse of A, this means, by definition, that

aalaz=ata.

However, the statement of equality can be given in reverse order:

77
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This, by définition, is the statement that A is the inverse of A_l.

Exercises 2~3

1. Show that each of the following matrices does not have a multiplicative

inverse:
(a) [8 3] (b) [i 8] ) [i }] @ [_‘; 3]

2. Which of the following pairs of elements of M are inverses of one

another?

[1 0 L o
@ o 1] and [o 1] ’

(1 -1 3 -1
®) 1, —3] and [2 —1]’

(2 4 1 -4
(c) 6 1] and [—6 2] ,
(d) -5 7 0 1

[ 0 2 and 1 0

[a b d —-b
(e)  © d and - a|’

3. VUse the argument in the text to show that, since

[-§ ~6] [i f] -0,

neither of the matrices in the product is invertible (has an inverse).

4, Show that if a2 + bc = 0, then




10.

. and hence that in this case

~_has no inverse.

Show that if A€M, BeM, B#0, and AB =0, then A cannot heve

an inverse. Can B have an inverse?

Show that if A€ M, and A2 — 4A = 0, then either A = 4TI or A has

no inverse. (Hint: Factor the left—hand side and note Exercise 5.)
Show that if A€M, B€M, C€E€M, and AB = I = CA, then B =C.

Show by direct computation that the matrix

-1 2
SaEN

satisfies the equation

A2 -2a-31=0,

that is,

R R R R

The matrices

-1 3 5 3
are inverses of one amnother. Are their squarés also inverses? Their

transposes?

Since

A" = A-A,

A3 = A-A2 = AZ-A,

A% = aad = Al

[sece 2~3]
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and so on, we can readily demonstrate that Ap_l is the inverse of A if

n . . . ) .
A" = I. Using this information, compute the inverse of each of the follow—

ing matrices:

@ [ 3]

11. Let

B = cos © sin ©
~sin © cos €

and compute B2 and B3 if e = 120°,

12. 1If

verify that

A  —28 +1=0.

Does the transpose of A also satisfy this same equation?

13. Prove that if A€M, if p, q, and r are numbers, and if
2
pPA" +qA +rI =0

with r # 0, then A has an inverse. (Hint: Subtract the '"constant
term" rI from both members of the equation and factor the remaininé terms

in the left member.)

14. Prove by direct substitution that if

o= [21]

[sec. 2-3]
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2
X" — (p +s)X + (ps —qr)I = 0.

Show that X has an inverse if and only if ps —qr # 0. (Hint: Use

- Exercise 13.)

15. Use the result of Exercise 14 to show that if X2 =0 then ps —~—qr =0
and p +8 = 0. (Perhaps you may have to consider several cases in the

proof.)

2—4, The Inverse of a Matrix of Order 2

At this point, we have proved that the inverse of a 2 X 2 matrix, if it
exists, is unique. Also, we know that there are some 2% 2 matrices that
have inverses and there are some that do not have inverses. But we have not
yet developed any general methods of attacking the problem. Certainly our
algebra will lack power unless general methods are developed. We are in a
situation similar to that in which a student finds himseif when he has not yet
learned the quadratic formula or the general procedure for deriving it. He can
find the roots of many quadratic equations by trial, but he has no means for
solving all these equations.

It is our purpose now to develop a general method of determining the
inverse of a 2 X 2 matrix when it exists. We shall begin with a matrix whose
entries are specific numbers and then duplicate our procedure with a matrix

whose entries are more general. To start, we shall consider the matrix

_[3 2
o= [5 3

and determine whether there is an inverse B such that AB = I = BA., 1If we let
B=[p q]:
r s
then

Hi N

[sece 2~3]
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3p —r 3q —-s - 1 0
S5p — 2r 5q — 2s o 1} °

If these two matrices are equal, the respective entries are equal. Thus we

have four equations,

3p—- r=1, (1) 3q~- s =0, (3)

5p — 2r = 0, (2) 5q — 28 = 1. (4)

After miltiplying Equation (1) by 2, we subtract Equation (2) from Equation
(1) and obtain

p=2.

By substituting this value of p in either Equation (1) or Equation 2), ﬁe
obtain

r =35,
Equations (3) and (4) can be solved similarly, yielding

q=-1 and s = -3,

Now if we substitute these values for p, q, r, and s, we obtain

=

To demonstrate that B 1s the inverse of A, we must show that AB = I = BA.
This is easy:

3 —1[2 <] _ [1 o] . [2 —1][3
o v 5 =2 =3] 01 5 =315 --2]°
Using the notation for the inverse of a matrix introduced earlier, we may write
3 1] [2 4
5 <=2 5 ~31]°
[sec. 2-4]
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In our next step, we shall follow the same pattern as above; but now we

shall use a general notation for our matrix A. Instead of having specific

real numbers for entries, we let

As before, we represent the inverse, if it exists, as

= [P 4
r s|°’
Aésuming AB = I, we have
a blip q| _ lap+br aq+bs| _ |1
c dlir s| ~ lep+dr cq +ds 0
This matrix equation may be written as four equations,

ap +br =1, (5) aq + bs = 0,

cp +dr = 0, (6) cq +ds =1,

HE

(7
(8)

Since we wish to find values for p, q, r, and s, in terms of the real

numbers a, b, ¢, and d, we multiply Equation (5) by

and then subtract. We obtain

adp — bep = d,

or

(ad — be)p = d.

d,

Equation (6) by b,

Repeating this process, using appropriate pairs of equations, we obtain

(ad — be)q = —h, (ad — be)r = —, (ad — bc)s = a.

Should it happen that ad — bc = 0, then it follows from the four equa—

tions, above, that a=b =¢ =d =0, so that A = o.

We have seen in Section 2.3 that the zero matrix does not have an inverse.

[sec, 2-k4]
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Hepte if 8d —bc = 0 we have a contradiction of the assumpﬁion that the matrix
A hag ap inverse B. In other words, if A has an inverse, then ad — bc # 0.

Tempo¥arily, let us denote the number ad — bc by h. Now if h 40, we
mgy Write

SubStiturifg these values appropriately in B, we obtain

In ©tder t© show that this matrix is the inverge of A, we check:

ad-bc  —ab-tab

b
hy _ h h I L I
a cd—cd —pec+ad 01 '
h

We Mugt glS0 make sure that BA = I, thus:

ad~be  bd—bd
e rn— eemteee——

a b o h h - 1 0 -1
c d Tactac —betad 01 :
h h

BA =

=lo e
I oo

The fact <hat the relationship BA =1 follows from the relationship AB = I

{s Quite Slgnificant. while the definition of the inverse demands the existence
and tqualtty of what are called left and right inverses, we have shown that for
2 # 2 mattices the existence of one implies the existence of the other and that
{f they e*ist then they are, in fact, the same., Since the multiplication of
gattices 18 not generally commutative, we might have expected otherwise.

We 9“311 stat. our result formally as a theorem.

Thegf®m 2—4. 1If the matrix [i 2] has an inverse, then h = ad — be 40

84
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Also, we state the converse of this result concerning h:

Theorem 2—-5, If h = ad — bc # 0, then the matrix [2 2

] has an
inverse, which is

olo Fle
oo o

Proof. Direct multiplication shows that

IR E -

[ u will note that Theorems 2.4 and 2.5 together state that the matrix
a b ‘

olo ola
|
o>|Ie oo
|
Tlo ole
> oo

c d has an inverse if and only if h # 0. That is, the condition h # 0
is both necessary and suffi~ient for the matrix to have an inverse., You should

remember the formula

N 4 _b

a b h h

[c d] = _ -c- -a_ ’ h ad bc # 0.
h h

Exercises 2—4

1. For each of the following matrices, determine whether the inverse exists;
if it does exist, find it:

11 -3 7
(8) [o 1]’ (e [3 21]’

[Seco 2"14']
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o [3 3],

2. Each of the following matrices is actually a function in the sense that it
depends on the value assigned to x, where x € R. Determine those values

of ' x for which the matrix has no inverse.

3. Show that each matrix of the form
cos 6 sin ©
—-sin 6 cos O

has an inverse and find it. Show Ehat the product of two such matrices
(different values of ©) is again such a matrix. (Hint: Use the .addition

formulas from trigonometry.)
' [

4. Show that if A € M then A has an inverse if and only if its transpose

“has an inverse. If A has an inverse show that
-1 -1
transpose (A ~) = (transpose A) .

5. Prove Theorem 2-3 by first computing A—1 by Theorem 2-4 and then using

Theorem 2—-5 to compute the inverse of A~l.

6. Under the assumption that the element A of M has an inverse, show how
to solve the equation AX = B, with B a 2 X 1 matrix. Apply this to

solve the following equatioms:

(a) 2x +3z= 9, (c) 2y %+ 3w =0,
~x + 4z = 10; -~y + 4w = 0
(b) 3x + z = 0, (d) 3y + w=1,
—2x + z = 1; -2y + w=20

. -86
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2—-5. The Determinant Function

We have seen that the criterion for the existence of an inverse for the

28]

involves the value of the expression ad — bc. If ad — bc # 0, the inverse

matrix

does exist; if ad — bc = 0, the inverse does not exist. Each 2 X 2 matrix

‘determines one real value for ad -- bc. TFor example,

if A= [é 2] - zuen ad — be = 1(1) ~ 0(0) = 1;
if A= [Z 2] , then ad - be = 2(6) = 3(4) = 0;
fo.s 37
if A= [ 4 0'6J . ther ad — be = 0.5(0.6) — 3(4) = ~11.7.

(Note that the second matrix does-not have an inverse.) With each matrix of M
there is thus associated one value, a real number determined by the entries. It
is convenient to give & name to this number, the value of the expréssion

ad — bec, which is associated with the matrix

28]

Definition 2—4. Tf

a b
X = [c d] ’

then B®(X) = ad — bc is called the determinant of X.

Thus & assigns to each member X of M a real number &(X), read
'delta of X." It is appropriate to regard this assignment or mapping as a

function from the sct ¥ of 2 X 2 matrices

a b
te the set R of real numbess 87
i3¢.’c. 2"'5]



x = ad — bc.

Ye indicate this as follows:

.|la b o
8 [c d] —> ad — btc,

that is,
&+ X —> 5(X).

The function 5 has interesting properties, some of which we shall
demongtrate.

First let us compute the values &(X) for a few products:

(a) 1f
A= [i 2] and B=[(2) i],
then
5(a) = 3(2) - 2(1) = 4,
5(B) = 0(l) — 3(2) = — 6,
3 2)[o 3 4 11
AB = [1 2][2 1] = [4 5]'
B5(AB) = 4(5) — 11(4) = ~ 24.
() 1f
o[B8 w51,
then

5(A) = — 1(3) — 2(0) = ~ 3,
5(B) = 8(1) — 2(3) = 2,

[sece 2-5]
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: “[-1 2][8 2 2 0
AB = [“o 3“3 1] = [9 3]'
5(AB) = — 2(3) — 0(9) = ~ 6.

We might suspect that &(AB) = 5(A) 5(B)! This 35 true and we shall now prove

it.
- Theorem 2~6, If A€M and B e M, t‘hen
G
8(AB) = B(A) 5(B),
Proof. Let
S M
then

8(AB)

i

(ap + br)(cq + ds) — (aq + bs)(cp + dr)

i

apcq + apds + breq + brds
— aqcp — aqdr — bscp ~ bsdr

= apds + brcq — aqdr — bscp, . )

5(A) = ad - be,

5(B) = ps ~ qr,

i

5(A)5(B) = (ad ~ be)(ps — qr)

adps — adqr - beps + beqr. (2)

"

By rearranging the terms in expressions (l) and (2), we See thag
5(4B) = 8(A) 5(B). qie.d:

Let us look at more examples; let
[sece 2-5]
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3 2
A B
= [l 2] and

[
L
N o
- W
——

In Section 2—4 we Jearned that if

b
X = a
g [c d]’

then
ola 1 4 -b1
5(X) {~¢ a] ’
Hence
1 _1 1 1
_1 > — _ —— . _—
AT ) § and B s 6 2
-1 3 L of "’
4 4 3
Further,

5(A) = 3(2) — 2(1) = 4,

5(B) = 0(1) — 3(2) =~ 6,

LN LY.
(3694
1
2

0y ~

G(A )-2

8(BL) = -

o~ Mw

Theorem 2-7. If & is a 2% 2 metTix, and A has 8 multiplicative

inverse, then
-1 1
oa ) =5y -

Proof. We have

AA_l = I)
crpa—l %
o(Aa ) = O(I) .

But by computing 5(I), we see that 90
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5(1) = 1(1) ~0(0) =1,

whehce
5y =1,
SO that by Theorem 2-6,
5(a) 5(a Ly =

a ") =1,

or
-1
5(a Ly = S?%T .

We shall now prove quite a significant theorem, which will give us the

POwer to decide when a Product AB has an inverse and what the inverse is,
ZW' If A and B are 2 X 2 matrices, then aB haﬁ an

inverse if and only if A and B both have inverses. Further, 1f these

matyjces have inverses, then
am L =5
Proof. Since
8(A) 8(B) = 5(aB)>
it folloys that
5(aB) # O
if and only if

5{A) # 0 and d(B) # 0,

Then by Theorems 2.4 and 2.5 we see that AB has an inverse if and only if
A and B both have inverses. L 91
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To complet? the proof ©f TheOrem 2‘3, we agsume that A and B have
inverses Al ang B—l, regpectively, and then have only to exhibit a matrix
X such that

. ABX = I = XAB,

Let
x = BL7h,
Then
ABX = ABp tA!

= A(sg )AL

= A(T)A Y

= AA—]'

= 1.

—

Henc® Bfl a7t is a right inverse. Simjlarly, we can show that
R

Thus B’l Alqg the inverse of AB. This completes the proof,

For eXample, let
. [o 1 ' 2 5
A 2 3 and B = 1 3 .

The?
3 1
- -7 2 - 3 -5
A 1 = 2 and B 1= [fl 2] .
1 0
Now

o l|lz S 1 3
IR
[sec, 2-5)
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whence
-1 193
-1 _ |1 3 _ 2 2
(48) = = [7 19] =z 1
2 2
But also,
=31 _l 3
B—l A—l - 3 —5‘ 2 20 _ 2 2 )
-1 2 1 0 7 _1
2 2

Thus, for our example we have (AB)—1 = B—1 A~1!m

There are many other theorems that can be déQéioped from the concept of a
determinant function. A few of these will be included in the exercises that
follow. It {s worth noting, though we shall not prove it, that there is a
determinant function associated with the other sets of square matrices, that is,
with those of order 1,'3, 4,..., and that similar theorems hold for them.
Specifically, there is a determinant function associated with each square matrix,
and its nonvanishing is a necessary and sufficient condition for the matrix to

have an inverse.

Exercises 2-5

1. Verify Theorem 2-6 for the matrices

"
_l2 1] _ 2 1],
(a) A= 3 ] B = L"’ 3] 3
L
[ ¢ 1 _lo 1

w4

-~ 2 ~
X
(c) A= Lx3 A ], B 3 ].
2., Show that

5(tA) = tZ5(A)

R, 93
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Show that if A € M and At is the transpose of A,

For A and t as in Exercise 2, show that ()

in the polynomial &(A ~- tI).

v fea] e 54

find &(A) and B(B_IAB) and show that they are equal.

if

and

Show that if A€M, Be M, and B is invertible, then

S(B—IAB) = 85(A).

5(a) = 6(a"),

and conclude that

5(aA%) >0

for any A € M,

The is a polynomial in t.

ing matrices A,

expression B(A — tI)

(a) [(1, 2] Y
w [,
() [_§ ‘1’]
(@) [3 g]

Let

is the constant term

then

For each of the follow—

expand this polynomial and find its zeros:



O

ERIC

Aruitoxt provided by Eic:

85

and axpand the polynomial B(AAt — xI). Is this the game as ﬁhe polynomial

5(A'A — xI)? Are these two Polynomials the same for every matrix A € M?

2—6. The Group of Invertible Matrices

In this chapter, we have been restricting our attention to the set M of
2 X 2 matrices. This set is, itself, a subset of the set of all rectangular
matrices. Now this set M can be separated into interesting subsets. 1In the
preceding section, we have divided M  into two complementary subsets, the set
of 2 X 2 matrices that do not have inverses and the set of 2 X 2 matrices
that do have inverses.’ In Fhis section, we chall confine our attention princi-
pally to the set of invertible 2 X 2 matrices. It is convenient to denote
this set by the symbol Mi'

Let us summarize certain facts about the set Mi of invertible matrices:

(a) If A€ Mi’ and B € Mi’ then AB € Mi'

(b) If A€M, BeM, and CeM,
(¢) In Mi’ there is an identity element I, that is, an element

I such that AI = A =IA for each A e M

then A(BC) = (AB)C.

it
(d) If A€ Mi’ then A .has an inverse A_-1 € Mi’ that is, an
element A—l such that AA_l = 1= A_lA.

Not only does the set Mi satisfy each of these conditions, but there are
many subsets of Mi that satisfy conditions analogous to them. Any set S of
matrices that satisfies conditions (a), (b), (¢), and (d), with S in place of
Mi' will be called a group.’ The concept of a group is fundamental and extremely
important in machematics. More generally, any set of elements A,B,C,..., not
necessarily matrices, satisfying the foregoing -~roperties relative to an opera—
tion (not necessarily matrix multiplication) is defined to be a group. You-will
note that only one operation is involved in the group properties. although we
shall later introduce a few examples of the mor: Jeneral concept, for the
moment let us consider some examples of groups of invertible matrices.

The smallest set of invertible matrices tbat constitutes a group is the set
L0 Since (I)(I) = I, condition

o 1) °
(a) is satisfied; and condition (b) is automatically fulfilled by any set of

whose one element is the unit matrix [

square matrices. Certainly I 1is a member of the set, so that condition (c)

is satisfied. For condition (d), there must be an inverse for every element;

‘[sec. 2~5)
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this condition is satisfied since in o&r present set the only element I is its
own inverse.

All quite simple, ‘isn't it? Was it obvious?

Another'set that constitutes a group is the set {1, ~1}. Again condition§

(b) and (c) obviouscly are satisfied. Since

n
i
—

(D (-I) = (-I)(I)

and

u

(D(I) = (~I)(-1) = I,
conditions (a) and (d) also are satisfied.

The third set that we shall show to be a group is a bit more significant.
The set of all elements A € M such that 5(A) =1 1is a group. The proof is
a bit more difficult, and we must check carefully each one of the defining
properties. To provide a language thac will be helpful, let us denote this set

by W, thus:
W={A: AeM and B5(A) = 1}.

Let us verify first that condition (a) is satisfied. If A €W and = €W,
then &(A) =1 and B(B) = 1. Since 5&(AB) = 5(A) 5(B) by Theorem 2—6, we

have
5(aB) = 5(A) 5(B) = (1)(1) =1,

and thus AB € W.

Property (b) holds automatically.

For property (c), since ©&(I) =1, it is clear that T ¢ W.

To demonstrate that condition (d) is satisfied, we wmust show not only that
each element of W has an inverse but also that the inverse is an element of

W. Now, if A € W, then 5(A) = 1. Since B8(A) # 0, A has an inverse A ,
by Theorem 2—5. By Theorem 2-7,

-1, 1 _1_
5(A ) = 5y " 1 1.

Hence Afl € w; and we haﬁe now demonstrated that W 1is a group.

[sec. 2-6]
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In our last example, we shall discuss all matrices of the form

[_; i] (x,y = real numbers)

and denote this set by 2, ZCM. (Read zZ(C M as, '"The set 2Z is contained"
in the set M.'")
We observe first that the product of any two members of this set Z 1is also

a member of Z. We have, indeed,

XLV ¥ Y2 _| MM T2 RV tNi%
V%Y % “Goyy Fxyy) Y, X,
Condition (b) is automatically satisfied; and I is a wmember of 2, with

x = 1, y = 0, sc that condition (c) is satisfied.

In considering condition (d), we run into trouble. The zero matrix is an

element of this set, but the zero matrix does not have an inverse. The set of

5 %]

Although the gset 2 does not satisfy the four conditions, a subset Z1 of
Z, defined by '

all matrices of the form

does not form a group.

z, = {A: A € Z and 8(A) = 1},

does satisfy the conditions and is therefore a group.

The demonstration is eacy. Let A ¢ Z1 and B € Zl' We know that
AB € Z, as already shown; and, since 8(A) = 1 and 5(B) = 1, we know that
8(AB) = 1. Hence AB € Zl, and therefore condition (a) is satisfied. Obviously,
condition (b) also is satisfied. We know that I € Z and that B&(I) = 1;
hence, I € Zl’ so that condition (c) is satisfied. Finally, for condition (d),
_we must show that if A € Z, then there is an inverse a1 such that ale Z,-
We follow the pattern get in an earlier illustration. Since &(A) = 1, there is
an inverse. Then, ﬁsing the fact that B(A—l) = 1/8(A), we proceed to show
that S(A-l) = 1, which means that A—l € Ul.

groups postulates are satisfied, we conclude that we have a group.
. [sec. N 2"6].
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Before considering the more general concCept of a group, we shall demon~
strate a fruitful correspondence between the elements of Z1 and the points on
a unit circle, which will let us examine a geometric interpretation of Z,.

If '

a= | X7

is any element pf 2, we have &(A) = 1; that is, we have
<+ y2 = 1,

Now, if we let x.and y be coordinates of a point (x,y), we are able to
establish a one—to-one correspondence between the elements of z1 and the

points on a unit circle:

[__yx i] <> (x, ¥).

The set of matrices is thus mapped onto the set of points in Such a way that to
each matrix there corresponds exactly one point of the set, and to each point of
the set there corresponds exactly one matrix. .

The point (x, §) is on the circle of radius 1 with center at the origin,

as shown in Figure 2—1._

Figure 2-1, The unit circle. -

Let us call this circle the unit circle and denote it by Q.
[sec. 2-6)
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Thus

Q= {(x, ¥): x € R, y € R, and x2 + y2 ] 1}.

A geometrical meaning can be assigned to the inverse of any element of Z,. 1If

1
A“ltxy}’
- x

then we can readily compute A—l by Theorem 2-5, to obtain

A—la [x —y] .
y x

Recalling the one—to—one correspondence between the matrices of Z. and the

1
points of Q (the unit circle),
X
[_y i] <> (x, ¥)s
we see, by examining Figure 2-2, that the correspondent of A-l is the veflec~

tion in the x axis of the correspondent of A.

» X

Figure 2—2. Geometric representation of inverse matrices A and A~1 € Zl'

Although a full discussion of the general notion of a group would be too
extensive for this book, a few words are in order. The definition of an abstract
[sec. 2-6]
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group is stated somewhat differently from the definition given omn page
85, although the abstract definition implies the latter. -

Definition 2-5. A group is a set G of elements, a,b,c,..., on which a

binary operation o (read neircle") is defined, such that the following

properties are satisfied:d
(a) If ae€G and b €G, them .aob€G. (Closure property.)

(b) If a€G, beG, and c €G, then
ao(boc)=(aob)oc. (Associative property.)

(c) Theére exists a unique element i, i € G, such that
joa=a=aoi for all a e G, (Identity property.)

-1

(d) For each a € G, there exists an element a—l, a €G,

such that a_—1 oa=1=ao0 a_l. (Inverse property.)

1f, in addition, the following condition is fulfilled, the group is said to be

commutative or abelian:

(e) For each a € G and each b €G, ao b=b>bo a. (Commutative

property.)

Althsugh the operations we are most concerned with in mathematics are
addition and multiplication, we are not restricted to these in the foregoing
abstract definition. For instance, a very helpful exercise, not only for under—
standing the notion of a group but also for comprehending a finite number system,
is the addition associated with a clock face; see Figure 2—-3. This furnishes

us with a group. The set of elements is 1,2,...,12. The operation is clockwise

Figure 2—-3. A clock face. The addition associated with it gives us a group.

100
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addition of hours. Each defining property of an abstract group is satisfied, as
we shall now illustrate. First, the "sum'" of any two elements is another

element, For example, we have

1+ 6= 7,
8 + 4 =12,
11 + 2= 1,
3 +12 = 3.

Secondly sincé: for example,
8 +2)+3=1 and 8 +(2+3) =1,

we gee that the associative property holds. Thirdly, a full clock rotation, an
advance of 12 hours, gives the same time, so that 12 is our unique identity

element; thus, .

12 +2 =2 =2 +12.
4
Finally, to each of the elements, 1,2,...,12, there corresponds a number we can

"add" to obtain 12. Thus

4+ B=12= 8 + &,
10+ 2=12= 2+ 10,
12 + 12 = 12 = 12 + 12.

it
[}

n
ft

One of the most elegant examples of a group consists of the three cube

roots of 1, namely

~14+i 43 -1-41 3

19 ]
2 2

under multiplication. The demonstration is left to the student as an exercise.
Interestingly enough, although the integers are the most commonly used
‘msystem that has a group structure (under the operation of addition), they were
not the first to have their group structure analyzed. The first groups to be
studied extensively were finite groups such as the two examples given above.

These groups were found during a study of tRe theory of equations by Evariste

[Sec. 2"‘6]
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Galois (1811—1832), to whom is credited the origin of the systematic study of
Group Theory. Unfortunately, Galois was killed in a duel at the'age of 21,

immediately after recording some of his most notable theorems.

Exercises 2—0

Determine whether the following sets are groups under multiplication:

1.
@) 1 0 -1 0 o 1],
o 11° 0o - ? -1 0]°

(b) 1, -1, K, ~K,
where

[o 1

| K— [1 0].
2. Show that the set of all elements of M of the form

’

[S 2] , where t ¢ R and t #0,

constitutes a group under multiplication.

Show that the set of all elements of M of the form

3.
2 2
[: i] , where t e R, s €R, and t —s =1,
constitutes a group under multiplication.
4o 1f i
D SR/
_ 2 2
S DERVCRR N
2 2
show that the set
2 .3
[f\'s A1’A2]




3

is a group under multiplication. Plot the corresponding points in the

plane.

Let

T = [é —i] and K = [2 é] .
Show that the set

(TIr L, T-D)T L, TKT L, T(-K)T 1)

is a group under multiplication. Is this true if T is any invertible

matrix?

Show that the set of all elements of the form

0 b

)

[a O] , with ae¢R beR, and ab=1,

is a group under multiplication. If you plot all of the points (a,b),

with a and b as above, what sort of a curve do you get?

- 2 1]

and let H be the set of all matrices of the form

Let

xI +yK, with xe€e R and y € R.

Prove the following:
(a) The product of two elements of 'H is also an element of H.

(b) The element xI + yK is invertible if and only if
x2 - y2 # 0.

(c) The set of all elements xI + yK with x2 - y2 =1 is a group

under multiplication.

.. 103
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. Ifaset G of 2X 2 matrices is a group under multiplication, show that

each of the following sets are groups under multiplication:

(a) {At:

A € G}, where At = transpose of A;
(b) {B_l AB: A € G}, where B 1is a fixed invertible element of M.
9, Ifaset G of 2 X 2 me rices is a group under multiplication, show that
(a) G = i ae Gl, ¥
(b) G = {BA: A € G}, where B is any fixed element of G.

10. Using the definition of an abstract group, demonstrate whether or not each

of the following sets under the indicated operation is a group:
(a) the set of odd integers under addition;
(b) the set R+ of positive real numbers under multiplication;

(c) the set of the four fourth roots of 1, {1, -1, i, —i}, under
multiplication;

“(d) the set of all integers of the form 3m, where m is an integer,

under addition.

11. By proper application of the four defining pos@ulates of an abstract group,
prove that if a, b, and c¢ are elements in a group and ao b= ao ¢,

then b = c.

2—7. An Isomorphism between Complex Numbers and Matrices

It is true that very many different kinds of algebraic systems can be
expressed in terms of special collections of matrices. Many theorems of this
nature have been proved in modern higher algebra. Without attempting. any such
proof, we shall aim in the present section to demonstrate how the system of
complex numbers can be expressed in terms of matrices.

In the preceding section, several subsetsuoflpbgvset of all 2 X 2 matrices

were displayed. In particular, ithe~set Z of all matrices of the form T

[_; 1] . x€R and y € R,

was considered. We shall exhibit a 6ﬁe%t§—one correspondence between the set

[secs 2-6]
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of all complex numbers, which we denote by C, and the set Z. This one—to—one
icorrespondence would not be particularly significant if it did not preserve
algebraic properties — that is, if the sum of two complex numbers did not
correspond to the sum of the corresponding two matrices and the product of two
complex numbers did not correspond to the product of the orresponding two
matrices. There are other algebraic properties that are preserved in this
sense.

Usually a complex number is expressed in the form
x + yi,

where i = +~-1, x e R, and y e R. Thus, if ¢ is an element of C, the

set of all complex numbers, we may write
c = x(1) + y(i).

The numeral 1 is introduced in order to make the correspondence more apparent.

In order to exhibit an element of 2 in similar form, we must introduce the

2]

special matrix

Note that

R O

thus

J2 = — I,

The matrix J corresponds to the number i, which satisfies the analogous

_equation
i ""'lo

This enables us to verify that

105
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1 0 0 1
xI+yJ=x[0 1] +y[_l 0]
x O (VI
R
Xy
-y x|’

which indicates that any element of Z may be written in the form

xI + yJ.

For example, we have

21 + 3J

u
[\
—
o
|l =
e
+
w
1
- O
o
—_—

)

and

01 + 5J

[
o
—
o r
- O
—_—
+
W

[

- O
o
[

SERH
Stht

Now we can establish a correspondence between C, the set of complex numbers,

and 2, the set of matrices:

x1l + yl <> xI + yJ.

... .Since each element of C 1is matched with one element of Z, and each element =~

of Z 1is matched with one element of C, we call the correspondence one—to—one.

Several speclal correspondences are notable: _

[sece 2-7)
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o
[}

01 +0.1 €<>0-I +0.J=0

11 +01 «>1.I+0-J=1

—
]

0:1 +1:1i «=>0-I +1:J=J

1}

As stated earlier, it is interesting that there is a correspondence
between the complex numbers and 2 X 2 matrices, but the correspondence is not
pgrticularly'Significant unless the one—to—one matching is preserved in the
Voperations, especially in addition and multiplication. We shall now follow the
correspondence in these operations and demoastrate that the one—to—one property
is preserved under the operationms.

when two complex numbers are added, the real components are added, and the
imaginary components are added. Also, remember that the multiplication of a
matrix by a number is distributive; thus, for a € R, b € R, and A e M, we

have
(a + b)A = aA + bA,
Hence we are able to show our one—to—one correspondence under addition:

c1 + c2 . Z1 + Z2 =

=) Fiy, ) H(x, Fiy) Gl 4y )+ (T YD)

For example, we have.

(2 — 31i) + (4 +11) . (21 ~— 3J) + (4T + 1J) =

=6-21 <> 6I - 2J.

and
(3 — 21) + (2 +01) (31 - 23) + (21 + OJ) -
=5-21 : <> 5I-2J.

!

. Before demonstrating that the correspondence is preserved under multiplica—

tion, let us review for a moment. An example will suffice:
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(2 +41) (3= 21) = 6 — 4i + 124 — 8i°

6 — 41 + 121 — 8(-1)

n

6 + 8(l) + (~4 + 12)i

14 + 84;

612 - 413 + 12731 -- 8J2

(21 + 43)(31 -~ 23)

n

61 — 4J + 127 - 8(-I)

61 +B8I + (~4 + 1233

1]

141 + 8J.

Generally, for multiplication, we have

clc2 lez =

= (x1 + yli) (x2 + yzi) (xII + le) (RZI + sz) =

= + 12 4+ xy.1 4+ i %15 + P+ 1J + JI =
X¥* TN Xyt T % 1%t TV, *Y2 1%2

= (xyx, Ty Yp) F Gy, F x> (xpx, = yyy,)TH (Y, + %300,
1f we represent a complex number

a + bl

as a matrix,

. a b
a-+ bi €<—> [—b a] ,

we do have a significant correspondence! Not only is there a one—to—one cor—
respondence between the elements of the two sets, but also the correspondence ;
is one—to—one under the operations of addition and multiplication.
The additive and multiplicative identity elements are, respectively,
0=0+0i <> [_g g] =0

108
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and for the additive inverse of

a + bl €—> [‘; b].
- a

we have

- a — bi €> [': 'b].
_a

Let us now examine how the multiplicative inverses, or reciprocals, can be
matched. We have seen that any member of the set of 2 X 2 matrices has a
multiplicacive inverse if and only if for it the determinant function does not

equal zero. Accordingly, if A € Z then there exists A—1 if and only 1if

' xz + yz # 0, since B(A) = xz + y2 for A = xI + yJ. Now we know that any
comylex number has a multiplicative inverse, or reciprocal, if aad only if the
complex number is not zero. That is, if ¢ =X 4+ yi, then there exists a

multiplicative inverse of c 1if and only if x + yi # 0, which means that x
2

and y are not both 0. This is equivalent to saying that x + y %0,
since x € R and y € R. For mulciplicacive inverses, 1if
x2+y2*0’

our correspondence yields

¢, = x + yi &3> XL +yJ= Z1

1 -
gL = 3 (x—yl) €«> — 1 5 (I ~yJ) = zll'
1 x +y x +y

1t 1s now clear that the correspondence between C, the set of complex
numbers, and Z, a subset of all 2 X 2 matrices,

x + yi €> xI + yJ,
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is preserved under the algebraic operations. All of this may be summed up by
saying that C and Z have identical algebraic structures. Another way of
expressing this is to say that C and 2 are isomorphic. This word is derived
from two Greek words and means ''of the same form.'" Two number systems are
isomorphic if, first, there is a mapping of one onto the other that is a one—to—
one correspon&ence and, secondly, the mapping preserves sums and products. If
two number systems are iscmorphic, their structures are the same; it is only
their terminology that is different. The world is heavy with examplas of iso—
morphisms, some of them trivial and some quite the opposite. One of the szuplest
is the isomorphism between the counting numbers and the positive integers, a
subset of the integers; another is that between the real numbers and the subset
a + 0i of all complex numbers. (We should quickly guess that there is an
isomorphism between real numbers a and the set of all matrices of the form

al + 0J%)

An example of an isomorphism that is more difficult to understand is that
between real numbers and residue classes of polynomials. We won't try to explain
this one; but there is one more fundamental concept that can be introduced here,
as follows. ‘

We have stated that the real numbers are isomorphic to a subset of the com—
plex numbers. We speak of the algebra of the real numbers as being embedded in
the algebra of complex numbers. 1In this sense, we can say that the algebra of
complex numbers is embedded in the algghié of 2 x 2 matrices. Also, we can
speak of the complex numbers as being'"ri%her” than the real numbers, or of the
2 X 2 matrices as being richer than the complex numbers. The existence of
complex numbers gives us solutions to equations such as i

x2 +1 =0,

which have no solution in the domain of real numbers. It is of course clear
that 2 1is a proper subset of M, that is, ZCM and 2 # M. Here is a simple
example to illustrate the statement that M is "richex' than 2: The equation

¥ -1=0

has for solution any matrix

X = [13t g]. t€R and t 0,

[sec, 2=7]
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as may be seen quickly by easy computation; and there are still other solutions.
On the other hand, the equation

has exactly two solutions among the complex numbers, namely ¢ = 1 and

c=-1.
Exerciseg 2—7
1. Using the foliowing values, show the correspondence ... ‘' 'on and
multiplication between complex numbers of the form R .d matrices

of the form xI + yJ:
(a) X = 1, ¥, =~ 1, X, = 0, and Yo =~ 2;
(b) X = 3, vy, =~ 4, X, = 1, and Y, = 1;

(c) X =0,y =~ 5, x, = 3, and y, = 4.

2. Carry through, in parallel columns as in the text, the necessary computa—

tions to establish an isomorphism between R and the set

.

S (OIS

by means of the correspondence
x<—-—>'[" O].
0 x

3. In the preceding exercise, an isomorphism between R and the sets of

TR

was considered, Define a function f by

£(x) = [B‘ 8] i

matrices

[sec. 2'7]
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Determine which of theﬂkollowing statements are correct:

(a) f£(x +y) = £(x) + ily),

(b) £(xy) = f(x) £(y),
(e) £(0) = Q:
(d) (1) = I,

CEeN7L, x ¢ 0.

o <)

4, 1Is the set G of matrices

4

with a and b rational and a2 + b2 = 1, a group under muleiplication?

2-8. Algebras
The concepts of group, ring, and field are of frequent occurrence in modern

algebra, The study of these systems is a study of the structures or patterns
that are the framework on which algebraic operations are dependent. 1In this
chapter, we have attempted to demonstrate how these same concepts describe the
structure of the set of 2 x 2 matrices, which i1s a subget of the get of all
rectangular matrices.

Not only have we introduced these embrzcing concepts, but we have exhibited
the "algebra' of the sets. ‘'Algebra'" in = .pepneric word that is frequently used
in a loose sense, By technical definitiorz.an algebra is a syytem that has two
binary operations, called '"addition" and 'multiplication,' and also has
"multiplication by a number,' that make it both a ring and a vector space.

Vector spaces will be discussed in Chapter 4, and we shall gee then that
the set of 2 X 2 matrices constitutes a vector space under maﬁrix addition
and multiplication by a number. Thus the 2 X 2 matrices form an algebra.

As you yourself might conclude at this time, this algebra is only one of
many possible algebras. Some of these algei=ss are duplicates of one another
in the sense that the basic structure oi ows is the same as the basjc structure
of anotbér. Superficially, they seem different because of the t=xminology.
When they lkave the saze structure, two g;g;gbaa are called isomorphic.

1L2
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Chapter 3
MATRICES AND LINEAR SYSTEMS

3-1. Equivalent Systems

In this chapter, we shall demonstrate the use of matrices in the solution
of systems of linear equationms. We shall first analyze some of our present
algebraic techniques for solving these systems, and then show how the same
techniques can be duplicated in terms of matrix operat::l.ons.

Let us begin by looking at a system of three linear equntions:

x-—- y+ z==2 ¢9)
1 X — 2y — 2z = ~1, (2)
2x + y +3z=1. (3)

In our firat step toward fi&ding the solution ser of this system, we proceed

as follows: Multiply Equation (1) by 1 to ob...n Equation (1'); muleiply
Equation (1) by —1-"and add the new equation tc Zguaion (2) to obtain Equation
2"y, multiply”Eqdation (1) by =2 and add the new egwa=xm to Equation (3) to
obtain.Equation (3'). This gives the following #yarwar:-.

XxX— y+ zm==2 a")
11 : 0~ y=—32zm=1, (2Y)
0+3y+ z=35, 3"

Before continuing, we note that what we have dowe 18 reversible. In fact, we

can obtain System 1 from System II as follows: :Myltiply Equation (1') by 1

to obtain Equation (1); add Equation (1') to Equa#ios (2') to obtain Equation

(2); multiply Equation (1') by 2 and add to Equation {.') to obtain Equation (3).
Our second step is similar to the first: i=ten Fquation (1') as Equation

(1"); multiply Equation (2') by =1 to obtain Egatumr {2'); multiply Equation

(2') by 3 and add the new equation to Equation (3') o abtain Equation (3").

This gives 1 1 3
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X—y+ zm=m-2, am
‘I1I 0+y+3z=-1, 2"
0 +0—8z=38. , : (3"

Our third step reverses the direction: Multiply Equation (3") by — 1/8
to obtain Equation (3"'); multiply Equation (3") by 3/8 and add to Equation
(2") to obtain Equation (2''); multiply Equation (3") by 1/8 and add to
Equation (1") to obtain Equation (1'"). We thus get

X—y+0=-l, am)
v 0+y+0=2, . @m)
0 +0 +2z=-1. . (3")

Now, by retaining the second and third equations, and adding the second equation
to the first, we obtain

x+0+0=1,
v O +y+0=2,

0 +0 +2z=-1,
or, in a more familiar form,

x =1,
y =2

z = ~],

In the foregoing procedure, we obtain system II from system I, I1I from
II, IV from III, and V from IV. Thus we know that any set of values that
satisfies system I must also satisfy each succeeding system; in particular,

from system V we find that any (x, y, z) that satisfies I must be
(1, 2, -1).

Accordingly, there can be no other solution of the original system I; if there
is a solution, then this is it. ‘ i 14

[87800 3"1]
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But do the values (), 2, —l) actually satisfy system I? For our
systems of linear equations we have already pointed out that system I can be
obtained from system II; similarly, II can be obtained from III, III from IV,
and IV from V. Thus the solution of V, namely (1, 2, —1), satisfies I.

Of course, you could verify by direct substitution that (i, 2, -1)
‘'satisfies the system I, and actually you should do this to guard against com—
putational error. But it is useful to note explicitly that the steps are

'reversible, so that the systems I, II, III, IV, and V are equivalent in

" accordsance with the following definition:

 Definition 3-l. Two systems _f linear equations are said to be equivalent

if and only if each solution of either system is also a solution of the other.

We know that the foregoing systems I through V are equivalent because the
steps we have taken are reversible., 1In fact, the only operations we have per—

formed have been of the following sorts:
T A Multiply an equation by a nonzero numBer.
B. Add one equation to another.
Reversing the process, we unc the addition by subtraction and the multi-—
plication by division.

Actually, there is another operation we shall sometimes perform in our

systematic solution of systems of linear equations, and it also is reversible:

C. Interchange two equations.

Thus, in solving the system

"
&

y +2
X+ 2y +z=3,

Xx—- y+z=1,

our first step would be to interchange the first two equations in order to have
a leadiﬁg coefficient differing from zero.

In the present chapter we shall iavestigate an orderly method of elimina—
tion, without regard to the particular values of the coafficiénts except that we
shall avoid division by 0. Our merhod will be especially useful in dealing

with several systems in which corresponding coefficients of the variables are’

ZSGC. 3"'1 ]
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equal while the right—hand members are differemt — a situation that often
occurs in industrial and applied scientific problems.

You might use the procedure, for example, in "programming," i,e., devising
a method; or program, for solving a system of linear equations by means of a

nodern electronic computing machine.

Exercises 3—1

l. Solve the following systems of equations:

fa) 3x + 4y = 4, (b) x -2y =3,
3=+ 7y =1; y=2;
(c) X+ y=— z =3, {d) x-—3y + 2z =6,
Zy'*' 2?10, y — z:x-[g,
5« — y — 2z w - 3; ) z=7;
(e) x+2y+ z—3u=2, (f) 1x +0y + 0z + 0w = a,
y—2z2—- w=17, Ox + 1y + 0z + 0w = b,
z —2w=0, Ox +0y + 1z + 0w = ¢,
w= 3; Ox +0y +0z + lwm d,
2. Solve by drawing graphs:
(a) x+ y=2, (b) 3x— ym=l1l,
X— ym=2; , 5x +7y = 1.
3. Perform the following matrix multiplications:
(a) 1 0 O}fu (b) 1 0 Oj|la x
0 1 Of|v], 0 1 Oo]|{b y{.
0 0 1f||w 0 0 1 c z

4. Given the following systems A and B,obtain B from A by steps consisting
either of multiplying an equation by a nonzero constant or of adding an

arbitrary multiple of an equation to another equation:

x = 2, 2x =3y + z =~ 6,
A: v =3, B: X+2y— z=9,
=w -1 3x + y+ 3z = 6,

[secs 311
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Are the two systems equivalent? Why or why not?

5. The solution set of one of the following systems of linear equations is
empty, while the other solution set contains an infinite number of
solutions. See if you can determine which is which, and give three

particular numerical solutions for the system that does have solutions:

(a) x+2y—- z =3, (b) x+2y — z =3,
X— y+ z=4, X— y+ z=4,
4x 7 + 2z = 14 4x — y + 2z = 15.

3-2. Formulation in Terms of Matrices

In applying our method to the solution of the original system of Section
3—1, namely to

XxX— y+ z=-—2,
X —2y -2z=-1,
2x + y + 3z =

1
[
-

we carried out just .two types of algebraic operations in obtaining an equivalent

system:

A. Multiplication of an equation by a number other than O.

B. Addition of an equation to another equation.
We noted that a third type of operation is sometimes required, namely:
C. Interchange of two equations.

This third operation is needed if a coefficient by which we otherwise would
divide is 0, and there is a subsequent equation in which the same variable
has a nonzero coefficient.

The three foregoing operations can, in effect, be carried out through
matrix operations. Before we demonstrate this, we shall see how the matrix
notation and operations developed in Chapter 1 can be used to write a system
‘of linear equaticns in matrix form and to represent the steps in the solution.

Let us again consider the system we worked with in Section 3-1:

[sece 3-1)
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il
|
N

M

xX—- y+ =z
X -2y —2z=-1,

n

2x + y + 3z

We may display the detached coefficients of x, y, and : 4s a matrix A,

namely

1 -1 1
A= 1 -2 =2 .
2 1 3
Next, let us consider the matrices
X ' —2
X = y and B = -1];
z 1

the entries of X are the variables x, ¥, z, &and of B are the right—hand
members of the equations we are considering. By the definition of matrix-

multiplication, we have

1 -1 1||x X~ y+ z ‘
AX= 11 -2 =2]ly| = X — 2y — 2z ,
2 1 34|z

2%+ y + 3z
which is a 3 X 1 matrix having as entries the left—hand members of the
equations of our linear system.

Now the equation

AX = B (1)

that is,
- 1 -1 1 X -2
l -2 =2 y| ={-1],
2 1 3 z 1

is equivalent, by the definiticn of equality of matrices, to the entire system
of linear equations. It is an achievement not to be taken modestly that we -are

able to consider and work with a large system of equations in terms of such a
[sec. 3=2]
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simple representation as is exhibited in Equation (l). Can you see¢ the pa:ternm
that is emerging?
In passing, let us note that there is an interesting way of viewing the

matrix equation
X =Y, : (2)

where A is a given 3 X 3 matrix and X and Y are variable 3 X 1 column

"matrices. We recall that equations such as
y=ax +b
and
y = 8in x
define functions, where numbers =x of the domain are mapped into numbers y of
the range. We may also consider Equation (2) as defining a function, but in this
case the domain consists of column matrices X and the range consists of column

matrices Y; thus we have a matrix function of a matrix variable! For example, -

the matrix equation

1 -1 1l]}x X—- y+ 2z u
1 =2 2}yl = x—-2y—2z| = [|v
2 1 312 2x + y + 3z w

defines a function with a domain of 3 X 1 matrices

X
y - (3)
z
and -a range of 3 X 1 matrices
u] X— y+ z
vi = X — 2y — 2z . (4)
wJ 2x + y + 3z S

Thus with any column matrix of the form (3), the equation assoclates a

[sece 3=2]
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110 ‘
column matrix of the form (4).
Looking again at the equation

AX = B,

where A is a giveﬁ 3xXx 3 matrix, B is a given 3 X 1 matrix, and X 1is
a variable 3 X 1 matrix, we note that here we have an inverse question: What
matrices X (if any) are mapped onto the particular B? For the case we have

been conaiﬁering,

1 -1 1] x -2
1 -2 =2f|ly| = |-1},
2 1 3 z 1

We shall consider some geometric aspects of the matrix—function point of

view in Chapters & and 5.
We are now ready to look again at the procedure of Section 3~1, and restate

each system in terms of matrices:

r ’ - 'l - -

1 -1 1f}=x -2 1 -1 1]|=x "(—2
1 -2 2||y| = || & o -1 -3||y|« |1
2 1 3|1z] . 1 o 3 1 z | 5
(1 a1 1] [x] -2

& |o 1 3fiy| =]

o 0 -8ffz 8

= 3F 3 = s

1 -1 offx -1

&> o 1 oof|y| =] 2

0 0 1 z -1

1 0 offx 1

@ o 1 ofll|ly|l =] 2

o o 1||z -1 .

The two—headed arrowswA<?i> indicate that, as we saw in Section 3~1, the matrix
‘ equations are equivalent.

In order to see a little more clearly what has been done, let us look only

[890. 3"2]
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‘at the first and last equations, The first is

i 1 -1 1)}x -2
o 1 =2 =2||y| = |-1} 3
2 1 3 2z : 1
the last is
1 0 O]]x 1
0 1 Ofly}l = 2] .
0 0 1|}z -1

Our process has converted the coefficient matrix A into the identity matrix
"I. Recall that

Ala=1.

. Thus to bring about this change we must have completed operations equivalent

to multiplying on the leit by A-l.

In brief, our procedure amounts to multiplying each member of

AX = B
on the left by A-l, \
A lax = a7,
to obtain
x = a7l5.

Let us note how far we have come. By introducing arrays of numbers as
objects in their own right, and by defining suitable algebraic operations, we
are able to write complicated systems of equations in the simple form

AX'= B.

‘This condensed notation, so similar to the long—familiar

' [sec. 3-2]
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ax = b,

which we learned to solve '"by division," indicates for us our solution process;
namely, multiply both sides on the left by the reciprocal or inverse of A,

obtaining the solution
X = A B,

This similarity between
and

should not be pushed too far, howevér. There is only one real number, O, that.f?
has no reciprocel; as we already know, there are many matrices that have no i
multiplicative inverses. Nevertheless, we have succeeded in our aim, which is
perhaps the general aim of mathematics: to make the complicated simple by

discovering its pattern.

Exercises 3-2

1. Write in matrix form:

(a) 4x — 2y + 7z =2, () x+y = 2,
3x+ y + 52 =2 ~1, xX—y =2,
6y — z = 3;.

2. Determine the systems of algebraic equations to which the following matrix

equations are equivalent:

(a) 3 4 5|tx 1 (b) 3 2 -2|]x u 1 2
1 2 3fty] = |0}, 2 -1 ||y v|] = |2 3].
01 2 zZ W 31

z 2 1-1 1 5

3. Solve the following system of equations; then restate your work in matrix

form: 122'

L38Ce 3‘2]
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13
x+ y+ z—- wal,
X~ y+ 32 + 2w = 2,
2x + y+ 3z + w= -2,
x~2y + z + 3w = 10.

(a) Onto what vector Y does the function defined by

e [ L]

r .
map the vector [;] = [3] ? (b) What vector L;] does it map onto the
vector Y = [g] ?

Let A = [al a8, a3 84] y Y= [yl] ’ éi’ xi, yl € R. Discuss the
domain of the function defined by

AX-= Y.

Define the inverse function, if any.

Inverse of a Matrix

In Section 3-2 we wrote a system of linear equations in matrix form,

AX = B,

and Saw that solving the system amounts to determining the inverse matrix A 7,

1f it exists, since then we have

A A% = B,

whence

X = al5.

" Our work involved a series of algebraic operations; let us learn how to duplicate

this work by a series of matrix alterations, To do tﬁis, we suppress the column

matrices in the scheme shown in Section 3—-2 and look at the coefficient matrices

[sec. 3-2]
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on the left:
1 -1 1 1 ~1 1 1 -1 1 1 -1 0 1 00
1 2 2|l -1 3o 13 0 1 0 o 1 of.
2 1 3 0 3 1 0 o0 -8 0 0 1 0 0 1

Observe what happens if we substitute 'row" for "equation' in the procedure of
Section 3~1 and repeat our steps. In the first step, we multiply row 1 by -1
and add the result to row 2; multiply row 1.by —2 and add to row 3. Second, we
multiply row 2 by 3 and add to row 3; multiply row 2 by ~1. Third, we multiply
row 3 by. 3/8 and add to row 2; multiply row 3 by 1/8 and add to row 1;
multiply row 3 by — 1/8. Last, we add row 2 to row l., Through “row operations'
we have duplicated the changes in the coefficlent matrix as we proceed through
the geries of equivalent systems.

The three algebraic operations described in Section 3-2 are paralleled by

three matrix row operations:

Definition 3—2. The three row operationms,

Interchange of any two rows,
Multiplication of all elements of any row by a nonzero constant,

Addition of an arbitrary multiple of any row to any other row,

" are called elementary row operations on a matrix.

In Section 3~5, the exact relationship between row operations and the
6perations developed in Chapter 1 will be demonstrated. Earlier we defined
equivalent systems of linear equations; in a corresponding way, we now define

equivalent matrices.

Definition 3-3. Two matrices are said to be row equivalent if and only if

each can be transformed into the other by means of elementary row operations.
We now turn our attention to the right—hand member of the equation
AX = B.

At the moment, the right-hand member consists solely of the matrix B, which
we wish temporarily to suppress just as we temporarily suppressed the matrix

X 1in considering the left-hand membef: Accordingly, we need a coefficient
matrix for the right—hand member. To obtain chis, we use the identity matrix -

[sec. 3-3)
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to write the equivalent equation
AX = IB. (1)

. Now our process converts this to

X = AL,

which can be expressed equivalently as

IX = A 1B, (@

When we compare Equation (1) and Equation (2) we notice that as A goes to 1,
I goes to A—l. Might it be that the row operations, which convert A into I
when applied to the left-hand member, will convert I into A_l when applied
u’i‘to the right—hand member? Let us try. For convenience, we do this in parallel

-columns, giving an indication in parentheses of how each new row is obtéined:

~ - -

1 -1 1 1 00
1 -2 =2 01 0};
2 1 3 0 0 1]
(R; 1R} + Ry; —2R; + R,):
1 -1 1 1 0 01
0 -1 -3 -1 1 of;
0 3 1] -2 0 1
(Rl; —-1R2; 3R2 +R3):
(1 -1 1 1 0 oT
0 1 3 1-1 0/
0 0 -8 -5 3 1
1. 3 T T )
(§R3+Rs gRy+ Ry ~ 5 Ry)
[ 3 3 1
Lo § 8 8
7 1 3!
0 1 0 iy 8 gl
5 3 1
0o 0 = -= -z
| S 8 8 8,
(lR2 +R1; Rz; R3): 25




- 4 4
Loo T 8 8 /
T 1 3
01 0 g g gl
) 3 1
001 “‘ECT; 8 8
To densmes i -ate that
M 4
' . 8
: s 3
B= |- 3§ 3
> 3 _1
5% 3 8

is a :eft-hand inverse for A, it is nececssary to show that

4 4 4
"8 8 @s|f|t 11
7 1 3 N
BA g8 8§ gfflt % | =T
5 3 1
8§ ~8 ~8|||* ' 3

" You are asked to verify this as an exercise, and also to check that AB = I;

thus demonstrating that B is the inverse A—l of A. 1In Section 3-~5 we shall
see why it is that AB = I follows from BA = I for matrices B " that are

.obtained in thic way as products of elementary matrices.

We now have the following rule for computing the inverse A_] of a matrix
A, 1if there is one: Find a series of elementary row operations that convert
A into the identity matrix I; the same series of elementary row operations
will convert the identity matrix I into the inverse A-l.

When we start the process we may not know if the inverse exists. This
need not concern us at the moment. If the application of the rule is successful,
that is, if A is converted into I, then we know that A_-1 exists. In sub~
sequent sections, we shall discuss what happens when A—1 does not exist and we

shall also demonstrate that the row operations can be brought about by means of

the matrix operations that were developed in Chapter 1,

o ]-53(3 .
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Exercises 3~3
1. Determine the inverse of each of tkte folIm&: . ~nszr—tes through -ow
cnerations. (Check your anawers.)
@ [ 2 3 () ol
-1 2}’ & -
(c) 1 0 3 (4) Lo 2
2 1 0}, S A
-2 0 0 300
2. Determine the inverse,'if any, of each of the - rowing matrices:
(@ [2 2] (b) |4 o
-1 V2 6 |’
(c) 1 0 3 d) = ,:
2 3 4 ¢ =
1 3 1 1 3 N
L N -
(e) 1 4 7T
2 3 61 .
LS 1 -1
3. Solve each of the following matrix equatioms:
(a) 1 &4 7T X 3 (b) 1 &£ 7|lx 3
2 3 6{|ly| =10, 2 ollyl| = ol ,
5 1 -1 z 7 5 1 -1 z -2
(c) 1 4 7 xT 1 (d |1 4 iz o
2 3 e||lyl| =] 3}, 2 3 tyl = |o].
LS 1 -1 Lz —4 5 1 — .z c
4. Solve
3 1
1 -1 1{|x v m r 3 1 -6 7
1 -2 =2}y v n s = |0 -1 10 .
2 1 3||lz w p ¢t 4 3 -9 %%-
5. Pérform the multiplications s

[sece 3=3)
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(a) 3 2 =2 %§' %% %%
REEREI R

(®) 5 2 L {3 2 -2
% -;_3 -% 12 1 -4,

-5 = |l

6. Multiply both members of the matrix equation

1 12 10| x 17
6 ~13 -8 y| = 0
-1 5 7 z 0
on the left by
3 2 =2
2 -1 -4
-1 1 5

and use the result to solve the equation.

7. Solve:
2x + + 2z — 3w = 0,
bx + y+ z + = 15,
6X - y— 2z ~— = 5,
4x — 2y + 32 - w= 2,
8. Solve:

9% — y = 37,
8y — 2z = 4,
7z — 3w = =17,
2x + 6w = 14.

[sece 3-3]
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34. Linear Systems of Equations

In Sections 3~2 and 3-3, a rrocecure for solving a system -  inear '‘squztions,
&L = B,
-was presented. The method produces t=-multizlicative inverse - ~ {f it
exists,

in the present section we shall c:zside— systems of linear equations *m
genezzl .
Let us begin by looking at a simpiz illustration.

Example 1., Consider the system o= equations,
2x ~ 3y + 4z = 5,
2x + 7y - 22 = 1,

2x + 2y + z = 3,

We start in parallel columns, thus:

2 -3 4 1 00D
2 7 =2 010
2 2 1 0 01

Proce=eding, we arrive afte three steps at the following:

11 7 3
1o 15 20 20 ©
3 1 1
o1 -3 i T °
1 1
00 o0 -3 =31

If we multiply these two matrices on the right by the matrices

b 5
y and 1}, respec—w=ly,
z 3

we obtain the system 129

[sec. 3-4]
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There is no matmematical .28s in droppinz the equation 0 =4 Jirom the system,

which then can +e written 2quivaler=ly as

" Il
S T I
2. 3
y =—=+73 2.

wWhatever value #%s given to 2z, this value and the correspontimg values of . x
and y determined by these equations sarisfy the original sy===m. TFor example,

a few solutions are shown in the fellowing tmble:

z x v
41 8
-2 01— 3%
4 1
1 3; 5
s 2
Yo 10‘ 5 1
b __2. .‘isi
- 1o| 5

Example 2. Now consider —Thez systems
x+2y -~ z =3,
m—— w4 oz =4,

d— 7 + 2z = l&.

1f we start.in paralZ=l columms i zroceed == before, we-ob==in (as you should

verify) 7
B
10 3
2.
o 1 -3
0 O 0

. f[fsec. 3""4]
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Aruitoxt provided by Eic:

Multiplying these matrices on the right by the column matrices

X 3
y and 41,
z 14
we obtain thé systems
1 11
X +-3- zZ = T R
~2,.-1
y 3 3’
0=—-1.

1f tmere were a solution of the originzl system, it would also be .a:solution of
:this last system, which is equivalent to the first. But the lats=- system cor—
tains- the contradiction O = — 1; hence there is ;'Lg solution of esither system.
Do you have an intuitive geometric notion of what might be gming on in
zach of the above systems? Relative to a 3—dimensional rectangulzz coordinate
system, each of the equations represents a plane. Each pzir of tiz=se planes
actually intersect in a line. We might hope that the three .lines :»f intersectimm
(in _each system) would intersect in a point. In the first system, however, the
three:lines are coincident; there is an entire ''line" of eziutions. On che
other  hand, in the second system, the three lines zre parzilel; there is no’
point that lies on zll three planes. In the example worke: %ut in Sectzlons
3-2 and 3-3, the three lines intersect in a single point.
How many possible configurations, as regards intersecringmms, can you list
for 3 planes, not necessarily distinct frcm one another? Théx might, “or example,
have .exactly one point in common; or two might be coi~aidery anc the tidrd

distinct from but parallel to them; and so an. “Therwe zre svstems & linear

tequatiins that corr=spond to each of these:geometric :mituat.ons.

“B=re are two additional systems that :zven more opviously than the system

im:Exzmple 2, above, have no solutions:

t
1

x = 2, X +y +tz= 2,

= 3.

ti
1

x = 3; x+y+

Thus--vou see that the number of variables .as @mmpared wizh the number of equatioms

does not determine whether or not there is & seldition.
[secs. =Ll
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The method we have developed for solving linear systems is routine and can
be applied to systems of any number of linear equations in any number of vari~
ables. Let us examine the general case and see what can happen. Suppose we

have a system of m linear equations in n variables:

+ a2x2 + e + anxn = al

mlx1 + m2x2 + e + mnxn = Oh

If any variable occurs with coefficient 0 in every equaztom, we drop it. IE
a coefficient needed as a divisor is zero, we interchange —ur equations; we ught
even interchange some of the terms in all the equations Zz= the convemnience or
getting a nonzero coefficient in leading position. Otherwiziz we can proceed in
the customary manner until there remain gg'Equations in wnirch any of the vari-—

ables have nonzero coefficients. Eventually we have a system like this:

X, + linear terms in variables other than =x, ... =f_,

| , 1 TR
xz + " = -62’
4 ‘ xk + n - :':_K’

and (possibly) other equations in which no variable appears.

Either all of these other equations (if there are amy) .zxe of thz forzm
0=0,

in which case they can be disregarded, or there is at least one of them ci the

form

0=b, b # T

in which case there is a contradiction.
1f there is a contradiction, the contradiction ‘was present im the crighml

system, which means there is no golution set.

[sec. 3-4]
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In case there are no equations of the form
0 =1, ‘b 40,

we have two possibilities. Eitrher there are no variables other than xl,}..,xk

.. which means that the system reduces to

xknﬁk’

and has a unique solution, or there really are variables other tﬁan Xyseeos¥y
to which we can assign arbitrary values and obtain a family of solutions as in

Example L, above.

Exercises 34

1. (a) List all possible configurations, as regards intersections, for 3

distinct planes.

(b) List also the additionmal possible configurations if the planes are

allowed to be coincident. v ot

2. Find the solutions, if any, of each of the following systems of equations:

(a) X+ y+2z=1, - (c) X -2y + z=1,
2x + z = 3, 2x + y— z =1,
=

3 + 2y + 42z = 4, X+ 2y + 2z = 23

(b) x+ y+ z=6, (d) 2v+ x+ y+ z=0,
‘X + y+2z=17, v—- x+2y+ z=0,

y+ z=1; bv - x +5y +3z =1,

v— X+ y— 2= 2;

133
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(e) 2x+ y+ z+w=2,

X+2y+ z—-w=-1,
4% + S5y + 3z —w=0_.

3-5. Elementary Row Operations

In Section 3—1, three types of algebraic operations were listed as being
involved in the solution of a linear system of equations; in Section 3-4, three
types of row operationé were used when we duplicated the procedure employing
matrices. 1In this section we shall show how matrix multiplication underlies
this earlier work, — in fact, how this basic operation can duplicate the row .
operations.

Let us start by looking at what happens if we perform any one of the three
row operations on the identity matrix I of order 3. First if we multiply a

rowof I by a nonzero number n, we have a matrix of the form

, or

cosn
OO
~0o0o

S oor
oB o

I mrO0O
oo~
oro
5 00

.

Let J represent any matrix of this type. Second, if we add one row of I to

. another, we obtain

O r -
O =0
~O0O0
-0 -
o r-=0
-0 O
-
(==l )
O =
- OO
-

or one of three other similar matrices. {(What are they?) Let K stand for
any matrix of this type. Third, if we interchange two rows, we form matrices

(denoted by L) of the form

o =0
(=M=l
- OO0
[=R2y
-~ 00
oOrO
-
- OO0
OO0
(=N Ry
.

Matrices of these three types are called elementary matrices.

Definitioﬁ 3—4. An elementary matrix is any square matrix obtained by

performing a single elementary row operation on the identity matrix.
 [sec. 3=4)
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Each elementary matrix E (that is, each J, K, or L) has an inverse,

that is, a matrix E_1 such that—

For example, the inverses of the elementary matrices

1 0 0 1 0 0 0 1 0
J = 0O n O, K= 0 1 1|, and L = 1 0 0
0 01 0 0 1 0 01
are the elementary matrices
1 00 1 0 O 0 1 0
-1 1 0 ~1 . -1
J = Py , K =10 1 -1 , and L ~ =1{1 0 O0}»
01 0 0 1 0 0 1

respectively, as you can verify by performing the multipliéhtions involved.

An elementary matrix is related to its inverse in a very simple way. For
example, J was obtained by multiplying a row of the identity matrix by nj
i~1 is formed by dividing the same row of the identity matrix by -n: 1In a
sense J_1 “undoes" whatever was done to obtain “J -‘from- the identity matrix;

conversely, J will undo J_l.. Hence

The product of two elementary matrices also has an inverse, as the follow-

ing theorem indicates.

Theorem 3—1. If square matrices A and B of order n have inverses

A and B—l, then AB has an inverse (AB)—l, namely
R
Proof. We have

@) Ay =a s At =aat =1

1

and
@ @y =3 N B =BT = 1,

[sec. 3-5]
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so that 3—1

A_l
You will recall that, for 2 X 2 matrices, this =ame proof was used in

establishing Theorem 2.8.

is the inverse of AB by the definition of iaverse.

Corolléf& 3—-1-1. 1IZ squa~e matrices A,B,...,K 2% order n have inverses .

1,....,1(—1, then the mroduct AB:+°*K has an inverse (AB---K)al, namely ...

AL 5

—_ — e
(a3+--k) L = K- B RaL

The proof by mathematical induction Zs left as an exercise.

Corollary 3-1-2. 'If Ei’EZ""’Ek zre elementzry matrices of order n,

then the matrix

has an iaverse, namely

~ This follows immediately from Corollz—y =-1—l and the fact that each
elementary matrix has an inverse.
The primary-importance of an elemerrary matrix xrests on the following
property. If an m X n matrix A is multipliied on the left by an m X n
elementary matrix E, then the product ¥s tie matrix obtained from A by

the row operation by which the elementary matriwx was formed from 1I. For

example,
] 0T a b c a2 b =
0 n O]|d e £ = |zf ne ofj,
1o 0o 1|lg n 1 lg n 1
10 O1 a b | a b
0 1 1 c d = je+e d+f| .
0 01 e f e f

You should verify these amd other similar Taft multiplications by elementary

matrices to familiarize ymnzself with the patterns.

136
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Theorem 3—~2. Any elementary row operation can be performed om an m X n
matrix A by multiplying A on the left by the corresponding elementary matrix
of order m.
The proof is left as an exercise.
Multiplications by elementary matrices can be combined. For example, to
add ~1 times the first row to the second row, we would multiply A on the

left by the product of elementary matrices of the type J—IKJ:

oot
O ~0
-~ OO0
(=T
o~ 0O .
-~ OO0
QOO
o =-~0
-~ 0O 0O

n

I
(=T
o=~ 0
= OO0

Note that J multiplies the first row by —1; it is necessary to multiply by
J—1 in order to change the first row back again to its original form after
adding the first row to the second. Similarly, to add ~2 times the first row

to the third, we would multiply A on the left by

—%o of |1 o ol |-2 0 o 10 0
o 10/ /o 10/lo 10 =]o0o1o0].
0o 6 1f|1 0o 1jlo o1 -2 0 1

To perform both of the above steps at the same time, we would multiply A on
the left by

1 00 1 0 O 1 0 O
Ml = |~1 1 O 0 1L 0| = (-1 1 O]f.
0 0 1j|-2 0 1 -2 0 1

Since Ml is the product of two matrices that are themselves products of
elementary matrices, M1 is the product of elementary matrices. By Corollary
3~1-1, the inverse of Ml is the product, in reverse order, of the corresponding
inverses of the elementary matrices.

Now our first step in the solution of the system of linear equations at
the start of this chapter corresponds precisely to multiplying on the left by

the atove matrix Ml. If we multiply both sides of System I on page 103 on the -

left by M, 187

[secs 3-5)
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1 00 1 -1 1= 1 0 0fji-2
-1 1 0 1 -2 =2}yl = 1|-1 1 o}]|—-1}],
-2 0 1 2 1 3}z -2 0 1 1

we obtain System II. For the second, third, and fourth steps, the corresponding
matrix multipliers must be respectively

1 0 0 10-;— 11 0
3
My= 0 -1 o, my=lo 1 2f, u= |01 of.
0 3 1 00-—% 0 0 1

Thus multiplying on the left by M, has the effect of leaving the first row
unaltered, multiplying the second row by —l, and adding 3 times the second
row to the third.

Let us now take advantage of the associative law for the multiplication of
matrices to form the product

; 1 4 4 4

1 1 0 1 0 g 1 0 0 1 0 0 8 3 8

3 7 1 3

M= M4M3M2M1 = |0 1 O 0 1 5 0 1 0 1 1 0 8 8 3
~1 5 3 1

0 0 1 0 0 ) 0 3 1 2 01 g g ~8

We recognize the inverse of the original coefficient matrix, as determined in
Section 3-3.

Theorem 3-3. 1f
BA = I,
where B is a product of elementary matrices, then
AB = I,
so that B is the inverse of A.
Proof. By Corollary 3—1-2, B has én'i;verae B-l. Now from

138
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we get
5 lpa = 870,
whence
A=BT,
so that
AB =B 1 =1
and h

Exerxcises 3-5

1. Find matrices A, B, and C such that

r - o -

(a) 1 2 3 1 2 3
Al-1 o 2| =|-1 0o 2],

[0 -1 1 1 -1 -1

(b) 1 2 3} 0 3 4
B |[-1 o 2| = j1 o =2/,

[0 -1 1 1 -1 1

(c) 12 3] 1 0 o0
c |-1 o 2| = 0 1 of.

0 -1 1 0 0 1]

2. Express each of the following matrices as a product of elementary matrices:

139
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~d

(b) 1 00
o -1 of,
Lo 01
(c) 1 -1 11
o 1 of.
0 0 1

Using your answers to Exercise 2, form the inverse of each of the given

matrices.

Find three 4 X 4 matrices, one each of the types J, K, and L, that
will accomplish elementary row transformations when applied as a left
multiplier to a &4 X 2 matrix.

Solve the following system of equations by means of elementary matrices:

X = y=~2z=3,
y + 3z =35,
2% + 2y - 3z = 15,

(a) PFind the inverse of the matrix

1.0 1
0 -1 2{.
2 01

(b) Express the inverse a product of elementary matrices.

(c) Do you think the answer to Exercise 6(b) is unique? Why or why not?
Compare, in class, your answer with the answers found by other members
of your class.

Give a proof of Corollary 3—1-1 by mathematical induction.

Perform each of the following multiplications:

r b
(a) a b cw (2 0 0
d e f[l0o 1 of,
g h i{lo o 1
® [a b c]f1 o 1]
d e f{lo 1 of,
g b ijl0 0 1
(c) [a b cT -3 0 0-
d e f|]]|0 2 0} .
g h iflo 11 140
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9. State a general conjecture you can make on the basis of your solution of

Exercise 8.

3~6. Summary

In this chapter, we have discussed the role of matrices in finding the
solution set of a system of linear equations. We began by looking at the
familiar algebraic methods of obtaining such solutions and then learned to
duplicate this procedure using matrix notation and row operations. The intimate
connection between row operations and the fundamental operation of matrix
multiplication was demonstrated; any elementary operation is the result of left
multiplication by an elementary matrix. We‘can obtain the solution set, if it
exists, to a system of linear equations either by algebraic methods, or by row
opérations, or by multiplication by elementary matrices. Each of these three
procedures involves steps that are reversible, a condition that assures the
equivalence of the systems. '

Cur work with systems of linear equations led us to._a method for producing
the inverse of a matrix when it exists. The identical sequence of row operations
that converts a matrix A into the identity matrix will convert the identity

matrix into the inverse of A, namely A_l. The inverse is particularly helpful

when we need to solve many systems of linear equations, each possessing the
same coefficient matrix A but different right—hand column matrices B,

Since the matrix procedure 'diagonalized' the coefficient matrix, the
method is often called the ''diagonalization method.' Although we have not
previously mentioned it, there is an alternative method for solving a linear
system that is often more useful when dealing with a single system. In this
alternative procedure, we apply elementary Watrices to reduce the system to the

form

1 a b c1
01 ¢ = eyl (1)
0 0 1 z c3

‘as in System III in Section 3~1, from which the value for =z can readily be
obtained. This value of 2z can then be substituted in the next to last equation

to determine the value of y, and so on. An examination of the coefficient

tsec. 5]
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matrix displayed above shows clearly why this procedure is called the "

nri—
angularization method.” .

On the other hand, the diagonalization method can be speeded'up to bypass
the triangularized matrix of coefficients in (i), or in System III of Section
3~1, altogether. Thus, after pivoting on the coefficient of x 1in the System

I,

2x + y + 3z = 1,

to obtain the system

’ - + z =<2,
11 0—- y—32= 1,
O0+3y+ z= 5,

we could next pivot completely on the coefficient of y to obtain the system

x+ 044z =—3,
111’ 0+
0+ 0—8z

o

+3z = -1,

n
[o.}

and then on the coefficient of 2z to get the system

x+ 0+ 0= 1,
v’ | 0+ y+ 0= 2,
0+0+ z=_1)

which you will recognize as the system V of Seétion 3~1.
It should now be plain that the routine diagonalization and triangulariza—
tion methods can be applied to systems of any number of equations in any number

of variables and that the methods can be adapted to machine computations.

142
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Chapter &
REPRESENTATION OF COLUMN MATRICES AS GEOMETRIC VECTORS

4—~1. The Algebra of Vectors

In the present chapter, we shall develop a simple geometric representation
for a special class of matrices — namely, the set of column matrices [i]
with two entries each. The familiar algebraic operations on this set of matrices
will be reviewed and also given geometric interpretation, which will lead to a
deeper understanding of the meaning and implications of the algebraic concepts,

By definition, a column vector of order 2 is a 2 X1 matrix. Consequent—

ly, using the rules of Chapter 1, we can add two such vectors or multiply any one
of them by a number. The set of column vectors of order 2 has, in fact, an
algebraic structure with properties that were largely ex—iored in our study of
the rules of operation with mat—ices..

In the following pair of theorems, we summarize wha= we already know con-—
cerning the algebra of these verrors, and in the next se~rion wd shall begin the

interpretation of that algebra .i: geometric 'terms.

Theorem 4—1. Let V and W be column vectors of order 2, let r bea

number, and let A be a square matrix of order 2, Then
V+Ww rV, and AV

are each column vectors of order 2,

For example, if

 then

and
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Theorem 4~2. Let V, W, and U be column vectors of order 2, 1let r
and s be numbers, and let A and B be square matrices of order 2. Then
all the following laws are valid.
I. Laws for the addition of vectors:

(8) V+W=W+V,

(b) (V+W +U=V+ (W+U),

(¢) "+Q0 =1V,

(d) v+ (V) - Q.

II. Laws for the numerical multiplication of vectors:
a) r(V+W) =1V +r1k,
(b) r(sV) = (rs)V,

{e¢) (r +8)V =1V + 5%,

(d) ov=0,
(e) 1V =V,
(f) 0 = Q.

IIX. Laws for the multiplication of vectors by matrices:
(a) A(V + W) = AV + AW,
(b) (A 4 B)V = AV + BV,
(e) A(BV) = (AB)V,
(d) 02V =0,
(e) V=V,

(£) A(rV) = (rA)v = r(AV).

in Theorem 4—2, 0 denotes the column vector of order 2, and 02 the
square matrix of order 2, all of whose entries are 0.

Both of the preceding theorems have already been proved for matrices. Since
column vectors are merely special types of matrices, the theorems as stated must
likewise be true. They would also be true, of course, if 2 were replaced by

3 or by a general n, throughout, with the understanding that a column vector

of order n is a matrix of order n X 1.
e 144
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Exercises 4-1

.Let
[ e [ e [
let
r=2 and 8 =~ 1;
LY
and let

.13 0 ' 1 1
A [2 _1] and B = [_2 1] .
Verify each of the laws stated in Theorem 4—2 for this choice of values

for the variables.

A

Determine the vector V such that AV — AW = AW + BW, where

e e[ e ]

Determine the vector V such that 2V 4+ 2W = AV + BV, 1if

el e 1Y)

Find V, if
A= [_i;g '253] , B= [i ;] , and A(3V) = A(BV).
Let
A= 91} f12|
81 %22
Evaluate .
(a) A [é] and (b)) A [2] .
145
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(c) Using your answers to parts (a) and (b), determine the entries of.f

A if, for every vector V of order 2,
AV = 0.

(d) State your result as a theorem.

6. Restate the theorem obtained in Exercise 5 if A 1is a square matrix of
order n and V stands for any column vector of order n. Prove the new

theorem for n = 3. Try to prove the theorem for all n.

7. Using your answers to parts (a) and (b) of Exercise 5, determine the entries:

of A 1if, for every vector V of order 2,
AV = V.

State your result as a theorem.

8. FEestate the theorem obtained in Exercise 7 if A is a square matrix of order
n and V stands for any column vector of order n. Prove this theorem for -

n = 3. Try to prove the theorem for all n.

9. Theorems 4—1 and 4—2 summarize the properties of the algebra of columm:
vectors with 2 entries. State two analogous theorems summarizing the
properties of the algebra of row vectors with 2 entries. Show that the

two algebraic structures are isomorphic.

4~2. Vectors and Their Geometric Representation

The notion of a vector occurs frequently in the physical sciences, where .a:
vector is often referred to as a quantity having both length and direction and
accordingly is represented by an arrow. Thus force, velocity, and even dis—
placement are vector quantities.

Confining our attention to the coordinate plane, let us investigate this
intuitive notion of vector and see how these physical or geometric vectors are
tela:ed to the algebraic column and row vectors of Section 4~1.

An arrow in the plane is determined when the coordinates of its tail and -
the coordinates of its head are givep. Thus the arrow Ay from (1{2) to (5,4)
is shown in Figure 4—~l. Such an arrow, in a given position, is called a located

146
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Figure 4-1. 4drrows in the plane.

vector; its tail is called the initial point, and its head the terminal point

| _(or. end point), of the located vector. A secqnd located vector Ay, with
(:I.n:l.t::l.al point (-~2,3) and terminal point (2,5), is also shown in Figure 4~1.

A located vector A may be described briefly by giving first the co—
ordinates of its initial point and then the coordinates of its terminal point.
Thus the ‘located vectors in Figure 4~l are : -

A: (1,2)(5,4) and Ay: (-2,3)(2,5).
The horizontal run, or x component, of Al is
5-1e=4,
and its vertical rise, or y component, is
4 -2 = 2,

Accordingly, by the Pythagorean theorem, its length is
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[sece 4-2)



138

N AR L L P L W

Its direction is determined by the angle © that it makes with the positive

x direction:

4 25 2 S5
COs O = ——— = ——— sin 8 = ~—— = = -
25 5 2./35

Since sin © 1is the cosine of the angle that A makes with the y direction,

1
cos O and sin © are called the direction cosines of Al.

You might wonder why we did not write simpi,

RN

" 1
tan @ = = >

'

instead of the equations for cos ©® and sin ©. The reason is that while the’

value of tan 8 determines slope, it does not determine the direction of Al.
Thus if ¢ is the angle for the located vector (5,4)(1,2) opposite to Al, then

—2

tan @ = = = = tan 6;

N =

but‘tﬁe angles @ and © from the positive x direction cannot be equal since
they terminate in directions differing by =x.
Now the x and y components of the second located vector Ay: (-2,3)

(2,5) in Figure 4—1 are, respectively,
2 - (=2) =4 and 5 -3 =2,

so that A1 and A2 have equal x components and equal y components; con—
sequently, they have the same length and the same direction. They are not in
the same position, so of course they are not the same located vectors; but since
in dealing with vectors we are especially interested in length and direction we

say that they are equivalent. .

Definition 4-1. Two located vectors are said to be equivalent if and only

if they have the same length and the same direction,
For any prescribed point P in the plane, there is a located vector

(and to A and having P as initial point., To determine

[sec. 4=2)
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_the coordinates of the terminal point, you have only to add the components of
A
P: (3,-7), the terminal point is

to the corresponding coordinates of P. Thus for the initial point

(3 +4, =7 +2) = (7, -5),
so that the located vector is

Ay (3, 1), ~5).

3¢
You might plot the initial point and the terminal point of A3 in order to
and to A,.

1 2
In general, we denote the located vector A with initial point (xl,yl)

check that it actually is equivalent to A
and terminal point (xz,yz) by
A (%,5)(%,,5,).

Its x and y components are, respectively,

Its length is

r =J(x2 "‘1)2 +(y, = y)"

If r # 0, then its direction is determined by the angle that it makes with
the x axié:
"cos O = —2———1, sin9=y—2—-—y—1.
r r

If r =0, we find it convenient to say that the vector is directed in
any direction we please. As you will see, this makes it possible to state
several theorems more simply, without having to mention special caseé. For
example, this null vector is both parallel and perpendicular to every direction
in the plane!

A second located vector : 1 49

} [SQC. 4-2]
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1.
A': (x3xy3)(x4xY4)
is equivalent to A 1if and only if it has the same length and the same direction

as A, or, what amounts to the same thing, if and only if it has the same com—

ponents as A:

Xy T X3 T X T Xy Yy T V3TV T Yy

For any given point . (xo,yo), the located vectoz
B: (xoxyO)(xo + x2 - xl’yo + yz = Yl)

is equivalent to A and has (xo,yo) as its initial point.
It ~hus appears that the located vector A 1is determined except for its

position by its components
a= x2 - x1 and b = Y, = yl'

These can be considered as the entries of a column vector

v 2]

In this way, any located vector A determines a column vector V. Conversely,
for any given point P, the entries of any column vector V can be considered
as the components of a located vector A with P as initial point. The
locater vector A  1is said to represent V. '

A column vector is a "free vector' in the sense that it determines the
components (and therefore the magnitude and directiomn), but not the position,
of any located vector that represents it. 1In particular, Qe shall assigﬁ to

the column vector

a sﬁandard representation

OP : (0,0)(u,v)

150
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as the located vectcr from the origin to the point
P (U,V),

ag illustrated in Figure 4—2; this is the representation to which we shall

ordinarily refer unless otherwise stated.

P:(-3,4)

Figure 4~2, Representations of the column vector [—2] as

located vectors 55 and 6&.

Similarly, of course, the components of the located vector A can be
considered as the entries of a row vector. For the present, however, we shall
consider only column vectors and the corresponding geometric vectors; in this
.chapter, the term "vector" will ordinarily be used to mean ''column vector,'

not ''row vector” or 'located vector.”

The length of the located vector 5%, to which we have previously referred,

is called the length or norm of the column vector

- [3]

Using the symbol |{VI! to stand for the norm of V, we have
FEVI =‘«'/u21+5v;- .
[sece 4~2)
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Thus, if u and v are not both zero, the direction cosines of OF are

u v
TV and TV

respectively; these are also called the direction cosines of the column vector
v.

The association between column or row vectors and directed line segmeﬁts,
introduced in this section, is as applicable to 3—dimensional space as it is to
the 2—~dimensional plane. The only difference is that the components of a
loceted vector in 3-dimensional space will be the entries of a column or row
vecfor of order 3, not a column or row vector of order 2. ,

In the rest of this chapter and in Chapter 5, you will see how Theorems
4—1 and 4-2 can be interpreted through geometric operations on located vectors

and how the algebra of matrices leads to beautiful geometric results.

Exercises 4~2

1. of the following patrs of vectors,
o [ [ o Ed |
I N A
R S E I e R
o B[] e )
]» [fgﬁg]; (1) [Z]

which have the same length? Which have the sawe direction?

2, Let V=1t [;] . Draw arrows from the origin representing V for
t=1, t=2, t=3, t=-1, t=~-2, and t=- 3,

In each case, compute the length and direction cosines of V.

152
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In a rectangular coordinate plane, draw the standard representation for
sach of the following sets of vectors. Use a different coordinate plane

for each set of vectors. Find the length and direction cosines of each

L[ o ]
oGl e [

vector:

- O

- I -
1 1
o]’ [ ] ’ wd o ¥ [:: ;
21 r‘2ﬂ 3"'
(d) 3 , [ ] R and 3] + [_1_ ;
5] 5] 2
(e) [4+— ’ [ ] ’ and [_4-‘ + [ 2|
. y
Draw the line segments OP representing 'V if t = 0, +1, +2, and ’

(a) m=1, b = 0;
(b) m= 2, b =1;
(C) m='—1/2) b = 3,

In each case, verify that the corresponding set of five points (x,y) lies

on a line.

Two column vectors are called parallel provided their standard geometric
representations lie on the same line through the origin. If A and B
are nonzero parallel column vectors, determine the two possible relation—
.ships between the direction cosines of A and the direction cosines of
B.

Determine all the vectors of the form [:] that are parallel to

ol w0

() [g] ¥ [13]’ 153
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4—3, Geometric Interpretation of the Multiplication of a Vector by a Number

The geometrical significance of the multiplication of a vector by a number
is readily guessed on comparing the geometrical representations of the vectors

vV, 2V, and -2V for

By definition,

while

[

6
e 4]
Thus, as you can see in Figures 4-3 and 4-4, the standard representations of
V and 2V have the same direction, while -2V 18 represented by an arrow

pointing in the opposite direction. The length of the arrow associated with V

o x
Figure 4—3. The product of Figure 4~4. The product of
a vector and a positive number. a vector and a negative number.

is 5, while those for 2V and -2V each have length 10. Thus, multiplying
V by 2 produced a stretching of the associated geometric vector to twice its
original length while leaving its direction unchanged. Multiplication by =2

not only doubled the length of the arrow but also reversed its direction.

[l

[sece 4-3]
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These observations lead us to formulate the following theorem.
Theorem 4—-3. Let the directed line segment fa represent the vector V
and let r be a number. Then the vector =V is represented by a directed line
~ having length ({r!| times the length of fﬁ. If r >0, the repre—
sentation of rV has the same direction as fa; if r <0, the direction of

the representation of rV 1is opposite to that of fa.

Proof. Let V be the vector [3] + Then

Hvil = u2 + v

Now,

hence,

i
~~
a]
=
~
N
+
~~
3]
<
~
N

IRES'AN

1]
~
~~
[=1
+
<
~r

L}
"
[
+
<

i

el 1IVIT,

~ This proves the first part of the theorem.
1f

the second part of the theorem is certainly true.

I1f

r# 0 and V ¢ [g] R

the direction cosines of PQ are

[sec. 4-3)
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d
rvir 2t v
while those of rV are
ru and TV
fri 11V Il v e
If r >0, we have Ir|l = r, whence it follows that the arrows associated with

V and rV have the same direction cosines and, therefore, the same direction.
If r <0, we have |Ir| =~ r, and the direction cosines of the arrow associ-
ated with rV are the negatives of those of 56. Thus, the direction of the
representation of rV is opposite to that of 56. This completes the proof of
~ the theorem.
One way of stating part of the theorem just proved is to say that if r 1is

a number and V is a vector, then V and rV are parallel vectors (see
Exercise 4—2—6); thus they can be represented by arrows lying on the same line
through the origin. On the other hand, if the arrows representing two vectors
are parallel, it is easy to show that you can always express one of the vectors
as the product of the other vector by a suitably chosen number. Thus, by check—

ing direction cosines, it is easy to verify that

e R

are parallel vectors, and that

2] e e [ )

In the exercises that follow, you will be asked to show why the general result

!

illustrated by this example holds true.

Exercises 4—3

1. Let L be the set of all vectors parallel to the vector Fill in

2
3|
the following blanks so as to produce in each case a true statement:
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(a) [ﬁ]e L; () [E] ¢ L;

(b) [;] € L; ~ (e) for every real number
-2/3
(c) 7 e L (f) for every real number

(g) for every real nuiber h # 0, [E] ¢ L.

2. Verify graphicailly and prove algebraically that the vectors in

17

each of the

followisg pairy 2cv parallel. In each case, express the first vector as

the ; voJu.t ol cvhie second vector by a number:

o e e LR
o B e [ 2]
o 3. Bl e [ [

3. Let V be a vector and W a nonzero vector such that V and

parallel. Prove that there exists a real number r such that

V = rW.
4., Prove:
0 0
(a) If v = [0] and r # 0, then V= [0] .
0 0
(b) If Vv = [0] and V # [0] , then r =20,

5. Show that the vector V + rV has the same direction as V if
and the opposite direction to V if r < — 1. Show also that

IV + eVEE = LIVEL 11 + ri.

4. Geometrical Interpretation of the Addition of Two Vectors
If we have two vectors V and W, V= [S] and W = [c] .

d
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r>-—1,

their sum
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‘is, by definition,

v [+ [ - 124,

- To interpret the addition geometrically, let us return momentarily to the con—

cept of a "free'" vector. Previously we have associated a column vector

c
with some located vector
A (x),51)(x,,5,)

such that ¢ = x and d = Yo =~ ¥p- In particular, we can associate W

2" %
with the vector

A: (a,b)(a +c, b +d).

We use A to represent W and use the standard representation for V and
V + W in Figure 45,

A (a+c, b+d)

V+W

(a,b)

Y

Figure 4~5. Vector addition.
Also, we can represent V as the located vector
B: (c,d)(a + c, b +d)

158"
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'and obtain an alternative representation. If the two possibilities are drawn
‘on one set of coordinate axes, we have a parallelogram in which the diagonal
" represents the 'sum; see Figure 4—6.

¥

Figure 4—6. Parallelogram rule for additiom.

- The parallelogram rule is often used in physics to obtain the resultant
when two forces are acting from a single point.

Let us consider now the sum of three vectors

We choose the three located vectors

OP : (0,0)(a,b)

fa : (a,b)(a +c¢c, b +d)
and -
QR : (a+c, b+d)(a+c+e, b+d+f)

‘to represent V, W, and { respectively; see Figure 4—7,
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R (atcte, bid+f)

U
Q: (at+c, bdd)

V+W+U
P:(a,b)

Figure 4~7. The sum V + W + U.

Order of addition does not affect the sum although it does affect the

geometric representation, as indicated in Figure 4-8.

( V+U+W

Figure 4~8. The sum V +U + W.

If V and W are parallel, the construction of the proposed representative

of V4 W is made in the same manner. The.details will be left to the student.

Theorem 4~4. If the vectors V and W -are represented by the directed

[sece U=lit]
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line gegments 61.’ and Fé, respectively, then V + W 1is represented by 56
Since V = 4 = V 4 (~W), the opération of subtracting one vector from
another offers no essentially new geometric ‘idea, oncé the construction of -W
1is understood. Figure 4—-9‘ iliustratés the construction of the geometric vector

‘representing V ~ W, - It is useful to note, however, that since

u -
Vs
the length of the vector V — W equals the distance between the points

P: (u, v) and T: (r, 8).

V=Wl =

m \/(u—r)z-i-(v—s)z,

hY
1 ‘Tz (x, 8)
//
W/ P:(u, v)
/
/ \
/
/ -
0|/ ~W -
~— X
/ U
/
=W, S: (uv—r, v—8)
/
/
/
f 2
R: {(-r, ~8)

Figure 4~9, The subtraction of vectors, V — W.

Exercises 4~4

1. Determine graphically the sum and difference of the following pairs of
vectors. Does order matter in constructing the sum? the difference?

¢

-1l

@ [1]. ]3]

() [Z] [ﬁ] (£) [-3 [3

~
-]
N~
—
&SN
——t
-
——
-~
PR S |
we -e
~
(=
~
—
o W
L )
-
N
~—
N
L
we




152
2. Illustrate graphically the associative law:

(V+W +Us=V+ (W+U).

3. Compute each of the following graphically:

S HERHENHE
o 4]+ 3+ [
o (3]« [+ [+ (3]
o [ - [ [ - [

4. State the geometric significance of the following equations:

(a) V+w =[g],

(b) V+uWw+U= [8] s

(c) V+W+U+T=[ﬂ.

5. Complete the proof of both parts of Theorem 4.

4~-5, The Inner Product of Two Vectors
Thus far in our development, we have investigated a geometrical interpre—

tation for the algebra of vectors. We have represented colurmn vectors of order
2 aé arrows in the plane, and have  established a one—to-one correspondence be—
tween this set of column vectors and the set of directed line scgments from the
origin of a coordinate plane. The algebraic operations of addition of two
vectors and of multiplication of a vector by a number have acquired geometrical
significance.

" But we can also reverse our point of view and see that the geometry of
vectors can lead us to the consideration of additional algebraic structure.

For instance, if you look at the pair of arrows drawn in Figure 4-10, you
may comment that they appear to be mutually perpendicular. You have begun to
162
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Figure 4-10. Perpendicular vectors.

talk about the angle between the pair of arrows. Since our vectors are located

vectors, the following definition is needed.

Definition 4-2. The angle between two vectors is the angle between the
standard geometric representations of tlie vectors.

Leq us suppose, in general, that the points P, with coordinates (a,b),
and R, with coordinates (c,d), -are the terminal points of two geometric
vectors with initial points at the origin. Consider the.angié' POR, which we
denote by the Greek letter ©, in the triangle POR of Figu;é 4-11.

We can compute»the cosine of © by applying the law of cosines to the
triangle POR. If |{OPI, VIORl, and [PR|! are the lengths of the sides of
the triangle, then by the law of cosines we have

210P! IOR! cos 8 = IOPI2 + IORI2 - IPRIZ.

47
P:(a, b)
-
o s
o
s’
s’
rd
A
-,
s’
-,
: .
R:(c, d)

+

Figure 4~11. The angle between two vectors.
[sec. '4~5]
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But

0P| = a2 + b2 ,

IOR| = c2 + d2 ,

PRI = o/ (a=c)? + (bd)? .
Thus,

2( a2 + bz) ( c2 + dz) cos 8

(&% + b8y + (7 + a8y ={ (a)? + ()2}

2(ac + bd).
Hence,
1OP| {OR! cos © = ac + bd. (1)
The number on the right-hand side of this equation, although clearly a function
of the two vectors, has not heretofore appeared explicitly. Let us give it a
name and introduée, thereby, a new binary operation for vectors.
Definition 4—3. The inner product of the vectors
a ] o c
[b] and [d} ’ written [b] ® [d] ,

is the algebraic sum of the products of corresponding entries. Symbolically,

a c

[b] ° [d] = ac + bd.

We can similarly define the inner product of two row vectors: [a b] ) [c d] =

ac + bd.

Another name for the inmer product of two vectors is the "dot producf” of
the vectors. You notice that the inmer product of a pair of vectors is simply;g
number. In Chapter 1, you met the product of a row vector by a column vector,

say [a b] times [cl » éand found that

[a b] [g] = [ac +bd] ,

[sec. 4~5]
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the product being a 1 X 1 matrix. As you can observe, these two kinds of
products are closely related; for, if V and W are the respective vectors

s] and [;] » Wwe have Vt = [a b] and

vy = [ac + bd] a [v . w] .

Later we shall exploit this close connection between the two products in order
to deduce the algebraic propecties of the inner product from the known propsrties
of the matrix product.

Using the notion of the inner product and the formula (1) obtained above,
we can state another theorem. We shall speak of the cosine of the angle inciudgd
between two column (or row) vectors, although we realize that we are actually

referring to an angle between associated directed line segments.

Theorem 4—5. The inner product of two vectors equals the product of the

lengths of the vectors by the cosine of their included angle. Symbolically,
VeW= |IVIl 1IWll cos 6,

where € 313 cthe ="+ between the vectors V and W.

Theorem 4~5 hwas been proved in the case in which V and W are not
parallel vectors; if we agree to take the meésure of the angle between two
parallel vectors to be 0° or 180° accérding as the vectors have the same or
opposité directions, the result still holds, Indeed, as you may recall, the law
of cosines on which the burden of the pronf rests remains valid even when the

three vertices of the 'triangle" POR are collinear (Figures 4-12 and 4~13).

y
'y
R y
P
| 4
0 - A/fff/’/”’/”o —+x
R
Figure 4—12. Collinear vectors Figure 4-~13., Collinear vectors
in the same direction. in opposite directions,

[sece 4-~5)
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Corollary 4—5-1. The relationship

Ve V= IlV!I2
holds for every vector V.

The corollary follows at once from Theorem 4—5 by taking V = W,"iﬁnﬁhidﬁfw'
case © = 0°. To be sure, the result also follows immediately from the facts

. that, for amny vector V = g , we have

Veu=al+b? while 11VIl = +/a’ +b%

Two column vectors V and W are said to be orthogonal if the arrows
OP. and OR representing them are perpendicular to each other. 1In particular,

the null vector is orthogonal to every vector. Since

0
0
cos 90° = cos 270° = 0,

we have the following result:

Corollary 4—5-2. The vectors V and W are orthogonal if and only if

VeW=0.
)

You will note that the condition V e W =20 is automatically satisfied
if either V or W is the null vector.

We have examined fome of the geometrical facets of the inner product of two
vectors, but let us now look at some of its algebraic properties. Does it sat—
isfy commutative, associative, or other algebraic laws we have met in studying
number systems? "

A We can show that the commutative law holds, that is,

VeWnWelV,
For if V and W ‘are any pairs of 2 X 1 matrices, a computatiun shows that
vew = wtv,

[s;£53555]
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But

v = [v.w] , while v = [w.v] )

S

Hence v

R VeW=WelV.

It is equally possible to show that the assbcfative law cannot hold for inner

~ products. Indeed, the products Ve (WeU) and (Ve W) ¢ U are meaningless,

To evaluate V e (W e U), for example, you are asked to find the inner product
of the vector V with the number W o U. Bﬁt the inner product'is defined for
two row vectors or two column vectors and not for a vector and a number. Inci—
dentally, the product V(W @ U) should not be confused with the meaningless
Ve (We U). The former product has meaning, for it is the product of the vector
V by the number W o U.

In the exercises that follow, you will be asked to consider some of the
other possible properties of the inner product. In particular, you will be asked
to establish the following theorem, the first part of which was proved above.

Theorem 4—6. If V, W, and U are column vectors of order 2, and r

is a real number, then
(g) VeW=WeV,
(b) (xV) e W= x(Vew,
(c) Ve (W+U)mVeWw+Vel,

(d) Vev > 0; and

(e) if VeV=0, then V= [8] .

Exercises 4—5

1. Compute the cosine of the angle between the two vectors in each of the
1 3
o e fi] ]

following pairs:

o [ 1

o [ |

we
~
0
~

|

- w

—d
-



i (e) [‘f] . [1§] ; (8) [ﬁ] . [3] ;
o [ B e B[R

In which cases, if any, are the vectors orthogonal? In.which cases, if any,

are the vectors parallel?

ool el

Show that, for every nonzero vector V,

2. Let

are the direction cosines of V.

3. (a) Prove that two vectors V and W are parallel if and only if
VeWws+ Vil LW,

Explain the significance of the sign of the right—hand side of this equation,

(b) Prove that

W e w2 < v

and write this inequality in terms of the entries of V and W.
(c) Show also that V e W< LIVIL HIWHL,

4., Show that if V 1s the null vector then
Ve WnO0,

5. Fill in the blanks in the following statements so as to make the resulting

sentences true:
(a) The vectors [z] and ['EP] are parallel.

168
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—6W are orthogonal.

(b) The vectors [;] and

(¢) The vectors [_4] and _2 are .
L

.

-

3 12

(d) The vectors [—18] and s are parallel.

e (e) TFor eve‘ry’ positive real number t, the vectors

- g;] and [i] . are orthogonal.

(f) For every negative real number t, the vectors

[ 2
gt] and [ ] are orthogonal.
L<t -

6. Verify that parts (a) — (d) of Theorem 4~6 are true if

Ua[i’],wu [_2], Ve [—gl,and r=4,
7. Prove Theorem 4-6

(a) by using the definition of the inner product of two vectors;

(b) by using the fact that the matrix product viW satisfies the

equation -

vy = [v.w].

8. Prove that |IV+ W2 = (V+W o (VW = [IVIIZ+2Vew+ W% for

every pair of vectors V and V.

9. Show that, in each of the following sets of vectors, V and W are

orthogonal, V and T are parallel, and T and W are orthogonal:

w v o] 3] v [a]
o [ s[5 - [3]
Do the same relationships hold for the set
0 5 2
S RN H RN H L

[sec. .1\3-5]
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10. Let V be a nonzero vecter. Suppose that W and V are orthogonal, while

T and V are parallel. Show that W and T are then orthogonal.

11, Show that, for every set of real numbers r, s, and t, the vectors

[:] and ¢t [~:] are orthogonal.

12, Let V = [:] , where V is not the zero vector. Show that if W and V

are orthogonal, there exists a real number t such that

13. Show that the vectors V and W are orthogonal if and only if
NV + w2 = v -wii? =o.
14. Show that if A = [2] and B = {3], then
Han? 1% - a e ;% = (ad - bey?.
15. Show that the vectors V and W are orthogonal if and only if
(V+HW e (V+W) =VeV+We W,
16. vShow that the equation

(V+FW e (V-W)y=VeV-—Wewlu

holds for all vectors V and W.

17. Show that the inequality
IV 4+ W< TIVEE + TIWL

holds for all vecfors V and W.

170
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4—~6. Geometric Congiderations

In Section 4—4, we saw that two parallel vectors determine a parallelogram.
That is, if

'. a= 5] e s [g]

i - . . . . . s . S .- e R . e e e mean

..are two nonparallel vectors with initial points at the origin, then the points
Pi{(a,b), 0:(0,0), R:(c,d) and S:(a +c, b +d) are the vertices of a
parallelogram (Figure 4—14.) A reasonable question to ask is: "How can we

determine the area of the parallelogram PORS?"

“y
P:(a, b)
A
0 > x
5 / S: (a+c, b+d)
(-]
Ri(c, d)

Figure 4-14. A parallelogram determined by vectors.

As you recall, the area of a parallelogram equals the product of the lengths
of its base and its altitude. Thus, -in Figure 4—15, the area of the parallelo—
gram KLMN is b.h, where b is the length of side NM and h is the length

1 1
of the altitude KD.

Figure 4-15. Determination of the area of a parallelogram.

[sece 4~6)
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2

But if b, 1is the length of side NK, and © is the measure of either
angle NKL or angle KNM, we have )

h = bz Isin O1.

‘Hence, the area of-the parallelogram-equals . b1b2~|sin el.. ... ..
Returning to Figure 4-14 and letting © be the angle between the vectors
A end B, we can now say that if G is the area of parallelogram PORS, then

6% = 1ian1? 118112 sin? o.

Now

sin2 0 =1 - cos2 9.

It follows from Theorem 4—5 that

2

cos? 6 = — (BB
tlall™ 1Bl )
therefore,
2
2 van® 1s1i? -~ (a e B)
sin ©6 = 2 7
11all™ 11BI

Thus, we have

¢2 = 11an? 1112 - (a e B2,

It follows from the result of Exercise 14 of the preceding section that

6% = (ad — be)2.

Therefore,

G = lad — bel.

172
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But ad —_bc 1is the value of the determinant &(D), where D is the
matrix i g « For easy reference, let us write our result in the form of a

theorem.,

Theoret. 4~7. The area of the parallelogram determined by the standard

~representation of the vectors E and ; . equals. .|8(D)I, where
D= |2 €
: b 4l

Corollary 4—7-l. The vectors [E] and [;] are parallel if and only
if 8(D) = 0. '

The argument proving the corollary is left as an exercise for the student.

You notice that we have been led to the determinant of a 2 X 2 matrix in
examining a geometrical interpretation of vectors. The role of matrices in this
interpretation will be further investigated in Chapter 5.

From geometric considerations, you know that the cosine of an angle cannot

exceed 1 in absolute value,
lcos B8] <1,

and that the length of any side of a triangle cannot exceed the sum of the
lengths of the other two sides,

0Q < OP + PQ.
Accordingly, by the geometric inteérpretation of column vectors, for any
a ' c
V= [bl and W = [d]

we must have

VelW

I v e 2 (e w2 I =1 | W
and
" NV + W< VI + W (2)
[sec. L4=6]
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But can these inequalities be established algebraically? Let us see.
The inequality (1) is equivalent to '

(Ve W)Z < (Ve V)(We W,
" that is,
ac +bd)? < (a% + b2)(e? + aP),
or — as we see when we multiply out and simplify — to

2 abed < azd2 + b2c2.

, But this can be written as
: 2
0 < (ad - be)",

which certainly is valid since the square of any real number is nonnegative.

Since ad -~ bc = 5(D), where

a ¢
D= [b d]’

you can see that the foregoing result is consistent with Corollary 4-7-1, above;
that is, the sign of equality holds in (1) if and only if the vectors V and
W are parallel.

‘As for the inequality (2), it can be written as

Ma+a?+m+d? < al +v? 4 S?+dh

which simplifies to

2ac+2bd_<_2«/az+b2 VAN

which again is valid since

0 < (ad - %c)z.
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This time, the sign of equality holds if and only if the vectors V and W

are parallel and
ac + bd > 0;"

_that is, if and only,if the vectors V and W are parallel and in the same
“direction. 7
If you would like to look further into the study of inequalities and their
applications, you might consult the SMSG Monograph, "An Introduction to
Inequalities," by E. F. Beckenbach and R. Bellman.

Exercises 4—6

1. Let OP represent the vector A, and OT the vector 3. Determine the
area of triangle TOP 1if '

ol el
(b) A= [’2] , B = [:‘;] ;
() A= [;] B = [_3]

2. Compute the area of the triangle with vertices:
(a) (0,0), (1,3), and (-3,1);
(b) (0,0), (5,2), and (-10,-4);
(¢) (1,0), (0,1), and (2,3);
(d) (1,1), (2,2), and (0,5);
(e) (1,2), (-1,3), and (1,0).

3. Verify the inequalities

(Ve w)2 < (Ve V)(WeW)
and
FIV # WL < 1V 4+ Wy

for the vectors 1 7 5

[sec. l&-6]
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(a) V= (3,4) and W= (5,12),

(b) V= (2,1) and W= (4,2),

(¢) V= (=2,-1) and W = (4,2).

4—7. Vector Spaces and Subspaces

Thus far our discussion of vectors has been concerned essentially with

individual vectors and operations on them. In this section we shall take a

broader poiht of.Qiéﬁ.

o i ’

It will be convenient to have a symbol for the set of 2 X 1 matrices.

H= {3]:ueR and\;eR},

where R is the set of real numbers. The set H together with the operations

Thus we let

of addition of vectors and of multiplication of a vector by a real number is an
example of an algebraic system called a vector space.

Definition 4-4. A set of elements is a vector sgaéé over the set R of

real numbers provided the following conditions are satisfied:

(a) The sum of any two elements of the get is also an element of the
Set.

(b) The product of any element of the set by a real number is also an
element of the set.

(c) The laws I and II of Theorem 4-2 hold.

In appiying laws I and II, 0 will denote the zero element of the vector
space. Let us emphasize, however, that the elements ¢f a vector space are not
necessarily vectors in the sense thus far discussed in this chapter; for ex—
ample, the set of 2 X 2 matrices, together with ordinary matrix addition and
multiplication by a number, forms a vector space. '

Since a vector space consists of a set together with the operations of
addition of elements and of multiplication of elements by real numbers, strictly
speaking we should not use the same symbol for the set .[ elements and for the

vector space. But the practice ig not likely to cause confusion and will be

[sec. 4=6)
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followed.
‘ A completely trivial example of a vector space over R is the ser con—
sisting of the zero vector g alone. Another vector space over R is the
2

get of vectors parallel to ] , that is, the set

3

e

It is evident that we are concerned with subsets of H in these two examples.
Actually, these subsets are subspaces, in accordance with the following defi—

nition. I

Definition 4—5. Any nonempty subset F of H is a subspace of H

provided the following conditions are satisfied:
The sum of any two elements of F is also an element of F.

The product of any element of F by a real number is an element of F.

By definition, a subgpace must contain at least one element V and also
must contain each of the products ¥V for real numbers r. Every subspace of

H therefore has the zero vector as an element, since for r = 0 we have

) L0 )
- [2]-

It is easy to see that the set consisting of the zero vector alone is a subspace.
We can also verify that the set of all vectors parallel to. any given nonzero
vector is a subspace., Other“than H itself, subsets of these two types are

the only subspaces of H,

Theorem 4—8. Every subspace of H consists of exactly one of the follow—
ing: the zero vector; the set of vectors parallel to a nonzero vector; the

space H itself.

Proof. If F 1is a subspace containing only one vector, then

gince the zero vector belongs to every subspace.

[sec. 4-7]
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If F contains a nonzero vector V, then F contains all vectors rV
for real r. Accordingly, if all vectors of F are parallel to V, it follows
that s '

F = {rV: r e-R} .

If F also contains a vector W not parallel to V, then F is actually ~

equal to H, as we shall now prove.

o (3] e [

be nonparallel veétors in the subspace F, and let

r
- [
! o
be any other yectof of H. We shall show that Z 1is a member of F.

By the definiﬁion'of subspace, this will be the case if there are numbérs
x and y such that '

XV + yW = Z, ’ ‘ (i) o
that is,

JHRUCRIHE

These can be found if we can solve the system

ax + cy = r,
bx + dy = s,

for x and y 1in terms of the known numbers, a, b, ¢, d, r, and s. But
since V and W are not parallel, it follows (see Corollary 4-7 -1) that
ad — bc ¥ 0 and therefore the equations have the solution

178
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Since F 1is a subspace that contains V and W, it contains xV, yW, and
their sum 2. Thus every vector Z of H must belong to F; that is, H 1is
# subset of F. But F is given to be a subset of H. Accordingly, F = H.

Using the ideas of Section 4%, we can give a geometric interpretation to
Equation (l). Let the nonparallel vectors V and W in the subspace F have
standard representatlons OP and 65, respectively; see Figure 4—16. Let 2
be represented by OT. Since OP and OR are not parallel, any line pzrallel
to one of them must intersect the line containing the other. Draw the lines
through T parallel to 0P and 6&,. and let S and (Q be the points in
which these lines intersect the lines containing OR and OP respectively.

Then

OT = 0Q + 0S.

Figure 4—16., Representation of an arbitrary
vector Z as a linear combination of a given
pair of nonparallel vectors V and W.

But 66 is parallel to OP and 0S to OR. Therefore, there are real numbers

x and y such that
0Q = xOp and OS = yOR.

Hence,
[sec. 4=7]

179

O

ERIC

Aruitoxt provided by Eic:



170

Z = xV + yW. (L

This euds our discussion of Theorem 4—7 and introduces the important concept

of a linear combination:

Definition 4-6. If a vector 2 can be expressed in the form xV + yW,

vhere x and y are real numbers and V and W are vectors, then Z is

called a linear combiration of V and W.

Further, we have incidentally established the useful facts stated in the

following theorems:

Theorem 4-9. A subspace F contains every linear combination of each

pair of vectors in F,
Theorem 4—-10. Each vector of H can be expressed as a linear combination

of any given pair of nonparallel vectors in H,

For example, to express

as a linear combination of
4 _ -3
vV = [3] and W = [ 4],
we must determine reil numbers x and y such that .
5 4 -3
4x — 3y
3 + 4y | °

" Thus, we must solve the set of equations

]

5
10

4x - 3y,
3x + 4y.

We find the unique solution x = 2 and y = 1; that is, we have
[Sec- l}-?]
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Z =2V + W,
1f you observe that the given vectors V and W in the foregoing example
are orthogonal, that is, V e W = 0 (see Corcllary 4—5-2 on page 156) then a
second method of solution may occur to you. For if
Z = aV + bW,
then for the products Z e V and Z e W you have
. 2 : 2
ZeV=allvil and Z e W=DbIlIlWlI".
But
2 2
ZeV=250,2eW=25 1IVIl" =25, and |IWIi = 25,

Hence,

50 = 25a and 25

250,

and accordingly

It is worth noting that the representation of a vector Z as a linear
combination of two given nonparallel vectors is unique; that is, if the vectors
V and W are not parallel, then for each vector Z the coefficients x and

y .can be chosen in exactly one way (Exercise 4-7—l1, below) so that
Z = xV + yW.

The pair of nonparallel vectors V and W is called a basis for H, while the
real numbers x and y are called the coordinates of Z relative to that
basis. 1In the example above, the vector [lg] has coordinates 2 and 1
relative .to the basis 3 and [—2] .

0
1
natural basis for H. This basis allows us to employ the coordinates of the

In particular, the pair of vectors [é]' and [ ] 'is called the

point (u,v) associated with the vector V = [:] as the coordinates relative

to the basis; thus,
[secs 4=7]
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Since evéry vector of H can be expressed as a linear combinationqof any
pair of basic vectors, the basis vectors are said to span the vector space'.
The minimal number of vectors that span a vector space is called the dimension
of the particular space.

For example, the dimension of the vector space H is 2, 1In the same

sense, the set F

is a subspace of dimensicn 1. Note that neither [é] nor [2] is a basis
for this subspace. (What is?)
In a 2-space, that is, a vector space of dimension 2, it is necessary that

any set of basis vectors be linearly independent.

Definition 4-7. Two vectors V and W are linearly independent if and

only if, for all real numbers x and y, the equation
xV+yW=0

implies x = y = 0, Otherwise, V and W are said to be linearly dependent.

-

/i -

For example, let V =|" and W = . Since i

] V2

wins

JZ +3 | 3| =0,

V and W are linearly dependent. Note that

which indicates that V and W are parallel.

182
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Exercilse &4—7

1. Express each of the following vectors as linear combinations of [i] and

» and illustrate your answer graphicaily:

(a) [‘i] , f(d). [3] , (8) [:g] ,
{b) [_;} , (e) m , (h) [8] .
I I )

2. In parts (a) through (i) of Exercise 1, determine the coordinates of each

of the vectors relative to the basis _?} and Z .

4
3

1

3. Prove that the followlng set is a subspace of H:

el ]

4. Prove that, for any given vector W, the set {rW: r € R} 1is a subspace

HE

determine which of the followinZ subsets of H are subspaces:

5. For

<
il

(a) all V with u =0, (d) all V with 2u—-v =0,

(b) all V with v equal (e) all V with u +v =2,
to an integer,

[}
o

(c) all V with u rational, (f) all V with uv

6. Prove that F 1is a subspace of H if and only if F contains every

linear combination of two vectors in F.

7. Show that [i] cannot be expreased as a linear coabination of the

[@] and [—12]'

8. Describe the set of all linear combinations of two given parallel vectors,

vectors

oo [sec. 4=7]
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9, Let F, and F2 be subspaces of H. Prove that the set F of all

1 .
vectors belonging to both F1 and F2 is also a subspace.

10. 1In proving Theorem 4-10, we showed that if V and W are not parallel
vectors, then each vector of H can be expressed as a linear combination
of V and W. Prove the converse: If each vector of H has a repre—.
sentation as a linear combination of V and W, then ¥V and W are not

parallel.

11. Prove that if V and W are not parallel, then the representation of any
vector 2 in the form aV + bW is unique; that is, the coefficients

a and b can be chosén in exactly one way.

12, Show that any vector

3 2 -2
21, ~1|, and 4| .
-1 1 5

4—~8., Summary

In this chapter, we have developed a geometrical representation — namely,
directed line segments ~— for 2 X 1 matrices, or column vectors. Guided by
the definition of the algebraic operation of addition of vectors, we have found
the “parallelogram law of addition" of directed line segments. The multiplica-
tion of a vector by a number has been represented by the expansion or contraction
of the corresponding directed line segment by a factor equal to the number, with
the sign of the factor determining whether or not th: dl..ction of the line
segment is reversed. Thus, from a set of algebraic elements we have produced a
set of geometric elements. Geometrical observations in turn led us back to
additional algebraic concepts.

Also in this chapter, we have introduced the important concepts of a vector
space and linear independence.

Since the nature of the elements of a vector space is not limited except

by the postulates, the vector space does not necassarily consist of a set whose

‘ [sec. 4=7]
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elements are 2 X 1 column vectors; thus its elements might be n x n matrices,
real numbers, and so on.

For example let us look at the set ‘P of linear and constant polynomials

with real coefficients, that is,.the set
P= {p: p(x) = ax +b, a,b € R} s

under ordinary addition and m.!:iplication by a number. The sum of two such

polynomials,
(alx + bl) + (aZx + b2) = (a1 + az)x + (b1 + bz),

is an element of the set since the sums a, + a, and b1 + b2 are real numbers.

The product of any element of P by a real number,

.

c(ax + b) = acx + bc,

is also a member of P since the products ac and bc are real numbers. We
can similarly show that addition is commutative and associative, that there is
an identity for addition, and that each elemen: has an additive inverse; thus,
the laws I of Theorem 4.2 are valid. In like fashion, we can demonstrate that
laws II are satisfied: both distributive laws aold; the multiplication of an
element by two real numbers is associative; the product of any element p by .
the real number 1 1is p itself; the product of O and any element p 1is the
zero element; and the product of any real number and the ze;o element is the
Zero..element. _

We have outlined the proof that the set P of linear and constant poly—
nomials is a vector space. Thus the expression, ''the vector, ax + b," is
meaningful when we are speaking of the vector space P.

The mathematics to which our algebra has led us forms the beginnings of a
discipline called ''vector analysis,' which ja an important tool in classical
and modern physics, as well as in geometry. The "free' vectors that you meect
in physics,.namely, fdrces, veiocities, etc., can be represented by our geometric
vectors., The study in which we are engaged is consequently of vital importance
for physicists, engineers, and other applied scientists, as well as for mathe—~

maticians.

185
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Chapter 5
TRANSFORMATIONS OF THE PLANE

5-1. Functions and Geometric Transformations

You have discovered that one of the most fundamental concepts in your study
of mathematics is the notion of a function. In geometry the function concept
appears in the idea of a transformation. It is the aim of this chapter to recall
what we mean by a }unction, to define geometric transformation, and to explore
the role of matrices in the stu@y of a significant class of these transformations.

You recall that a function from set A to set B, is a correspondence or
mapping from the elements of the set A to those of the set B such that with each
element of A there is associated exactly one element of B. The set A is
the domain of the function and the subset of B onto which A is mapped is the
range of the function. In your previous work, the functions you met generally
had sets of real numbers both for domain and for range. Thus the function

symbolized in the form

is likely to be. interpreted as associating the nonnegative real number x2 with
the real number x. Here you have a simple example of a 'real function' of a
"real variable.' '

In Chapter 4, however, you met a function V —> (IVi| having for its
domain the vector space H, and for its range the set of nonnegative real
numbers.

In the present chapter, we shall consider functions that have their range
as well as their domain in H. . ,.ecifically, we want to find a geometric in—
terpretation for these ''vector functions'" of a ''vector variable'; this is a
continuation of the discussion started in Chapter 3. All vectors will now be
considered in their standard representations 65, so that they will be parallel
if and only if represented by collinear geometric vectors.

Such a vector function will associate, with the point P having coordinates
(x,y), a point P' with coordinates (x',y'). Or we may say that it maps the
geometric vector 55 onto the geometric vector 65'. The function can, there—
fere, be viewed as a process that associates with each point P of the plane

some point P' of this plane.  We shall call this process a transformation of
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the plane into itself or a geometric transformation. As a matter of fact,

these transformations are often called "point transformations'' in contrast to
more general mappings in which a point may be carried into a line, a circle, or
some other geometric configuration. For us, a geometric transformation is a
helpful means of visualizing a vector function of a vector variable. As a
matter of c¢uv- - mnient terminology, we shall call the vector that such a function
associates with a given vactor V the image of V; furthermore, we shall say
that the function maps V onto its image.

Let us look at the simple function
vV—>2V, VeH

This function maps each vector V onto the vector that has the same direction
as V, but that is twice as long as V. Another way of asserting this is to
say that the function associates with each point P of the plane a point P'

such that P and P' 1lie on the same ray from the origin, but
11OP' 11 = 2110P11;

see Figure 5—1. You may therefore think of the function in this example as
uniformly stretching the plane by a factor 2 in all directions from the origin.
(Under this mapping,what is the point onto which the origin is mapped?)

‘As a second example, consider the function
V—>-V, VeHl.

This time, each véc;or is mapped onto the vector having length equal and direction
opposite to that of the given vector. Viewed as a point transformation, the
functionhassociates with any point P its 'reflection” in the origin; see
Figure 5-2.

The function

V-—>—-2V

combines both of the effects of the preceding functions, so that the vector

assoclated with V is twice as long as V, but has the opposite direction to

that of V.
187
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‘Y 7
b
P &
]
2y _~F v
v P
) X 0 » X
\
H
Pl
]
Figure 5-1. The trans— Figure 5-2., The trans—
formation V —> 2V. formation V —> -V,

Now, let us look at the function
v —> 11Vl V.

.As in our first example, each vector is mapped by the function onto a vector
having the same direction as the given vector. Indeed, every vector of length
1 is its own image. But if .IIVII > 1, then the image of V has a length

greater than that of V, with the expansion factor increasing with the length

of V itself. Thus, the vector o

having length 2, is mapped onto

which is twice as long. The vector

vhose length is 13, has the image

[sec. 5-1]
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65
156’

with length 169. On the other hand, for nonzero vectors of length less than

1, we obtain image vectors cf shorter langth, the contraction factor decreasing

with decreasing length of the original vector. Thus,

|
ol

is mapped onto

o
o Bl

the imaze being half as long as the given vector. Agaih, the vector

_4 - 20
7 49
3 is mapped onto 15>
7 49

tﬁe length of the first vector being 5/7, while the length of its image is
only (5/7)2, or 25/49. Although we may try to think of this mapping as a
kind of stretching of the plane in all directions from the origin, so that any
point and its image are collinear with the origin, this mental picture has aisp
to take into account the fact that the amount of expansion varies with the
distance of a given point from the origin, and that for points within the circle
of radius 1 abéut the origin the so—called stretching is actually a compression.

We have been considering transformations of individual vectors; let us look
at certain transformations of the square ORST, determined by the basis vectors

é] and [2] . As shown in Figurg 5—-3, the function
V—>> -V

maps

respectively, onto

-1 0
0 and ~1l
189
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y
Iy
T s
Rl
0 R
s T

Figure 5-~3. Reflection in the origin.
Another transformation that is readily visualized is the reflection in the

x axis. For this mapping, the point (x,y) goes into the point (x,-¥);
see Figure 5-4.

(-] (x:Y)

—

(x,—y)

Figure 5—4. Reflection in the x axis.

That is, the map is given by

x x
y -y]
Using a matrix, we may rewrite this result in the form

{sec. 5=1]
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Now this transformation, applied to the square ﬁORST, leaves the point

aé is easily verified.

(1,0) unchanged; thus the vector 1] is méBBéd onto itself. The vector

0
[2] is mapped onto _2

Reflection in the y axis, or a rotation of 180° in space about the -

y axis, can ba expressed similarly:

as shown in Figure 5-5,

y ¥
: s! T S
T S L
0 R o ax .
‘ R 0 R -
T' s!

Figure 5-5, Rotation of 180° about the axes.

Casual observation (see Figures 5-5 and 5-6) may lead you to assume that
e 180° rotation about the y axis and 90° rotation about the origin in
the (x,y) plane are equivalent; they are not. The first transformation
leaves the point (0,1) wunchanged, whereas the second transformation maps

(0,1) onto (-1,0). As a vector functicn, the 90° rotation with respect to

[sec. 5-1°
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the origin is exp,¢¥led bY

Figd¥Q 56: RO%tion of 90° about the origin.

Thé traﬂSfoM‘ﬁ{onE of Fig“res 52 thl‘Ough H have altered neither the
size not the shap, 9% ¢he Square, fthe "gtreeching" function of Figure 5-1,

vV —>» 2V,

! .
does alter size. p 'sheaT"' that poves each point parallel to the' x axis
ghrough 8 distanc, 8Qyal tP° twice the ordinate of the point alters shape. Con—

sider the tranquvﬁ&\Qn

K i R I FE

which maPs the bayiS vectoFs ento

1 2
[O] ang [1] , regpectively.

The result iz a s]\ﬂal‘ing that tra, formg the gquare into a parallelogram; see
Figure 57, What 0% the Strétepyag do to shape? The shear to sizef
[sec. 5-1)
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v

Figure 5—7. Shearing.

Another type of transformation involves a displacement or ''translation"

in the direction of a fixed vector. The mapping
3
V—>V +1U, where U= }_ |,

can be written in the form

HEIHSE

One way of visualizing this function is to regard it as translating the plane in
the direction of the vector U through a distance equal to the length of U.
Transformation of two different types can be combined in one function. For

instance, the mapping

vV —> %(V + U), where U = {2] ,

involves a translation and then a compression. When the function is expressed

in the form .

X+ 3
x A—————
__-> 2 3
oyt 2
y 2

we recognize more easily that every noint P is mapped onto the midpoint of

the line segment joining P to the point (3,2); see Figure 5-8. .
[sec. 5~1) 193
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/ - (3,2)

v

Figure 5-8. The transformation V ——5'%(V + U).

Under this mapping, the square ORST will likewise be translated
toward the point (3,2) and then compressed by a factor % » as shown in
Figure 5~9. This figure enables us to see that the points O, R, S, and T

are mapped onto midpoints of lines connecting these points to (3,%).

v

Figure 5-9, Translation and compression.

All the vector functions discussed above map distinct points of the plane
onto distinct points. This is not always the case; we can certainly produce

functions that do not have this property. Thus, the function

[seca i—é] N
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= [¢]

maps every point of the plane onto the origin. On the other hund, the trané—

SHEAH

maps the point (x,y) onto the point of the x axis that has the same first

formation

component as V. For example, every point of the line x = 3 is mapped onto
the point (3,0). Since the image of each point P can be located by drawing

a perpendicular line from P to the X axis, we may think of P as being
carried or projected on the x axis by a line perpendicular to this axis. Con—

sequently, this mapping may be described as a perpendicular or orthogonal

projection of the plane on the x axis. You notice that these last two functions
map H onto subspaces of H.

Since we have met examples of transformations that map distinct points onto
distinct points and have alsc seen transformations under which distinct points
may have the same image, it is useful to define a new term to distinguish be-—

tween these two kinds of vector functionms.

Definition 5~1. A transformation from the set H onto the set H 1is one—

““to—one provided that the images of distinct vectors are also distinct vectors.

Thus, if £ 1is a function from H onto H and if we write £(V) Zfor
the image of V under the transformation f, then Definition 5-1 can be
formulated symbolically as follows: The function f is a one—to—one transforma—

tion of H provided that, for vectors V and U in H,

V#£U
implies
£f(v) # £(U).

Exercises 5-1 .

1. TFind the image of the vector V un%;gsthe mapping
v —> 3V
[sec. 5-1]
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for each of the following values.of V:

w [ e [ e []e[
P S P R

2. Find £(V) wunder the mapping

v 3] = (3]

for each of the following values of V:

(a) m ) [:_3,] (&) 5 [j,],

| .
) [ﬁ] @ [‘f] (£) -2 [(’;]

3. Describe the geometric effect of each of the following transformations of
x

y

H on the vector V =

b

(a) v—>y, (h)

J

| [
® v—> [8] , @ v — ["' ],
|

<

<
<X

X

I

(c) V—>av, a >0, (i) gy

X +y
y

(d) V—>-av, a >0, (k) V—>[ » |
(e) V—> [g], 1 v— [iny],
€3) v—-—>[§] v [";ZY],
() v—> ["y‘] ® v—> [yf:,x] ,

4, Determine which of the transformations in the preceding exercise are one—

to—one.

5. Find expressions of the type V —> V' for the transformations of H that
map each point P onto the point P' related to P in the ways described

196
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(a) P' is one unit to the right of P and four units above P

(b) P' 1is the perpendicular projection of P on the horizontal line
through (3,2);

(¢) P' is the perpendicular projection of P on the vertical line
through (~-1,~2);

(d) OP and OP' are collinear but opposite in direction, and

11GB' 11 = 2 118B11;

(e) P' is the intersection of the horizontal line through P with
the line of slope ~1 passing through the origin (horizontal

prcjection on the line y = - x);

(£) P' is the intersection of the vertical line «hrough P with

the line y = 2x (vertical projection on the line y = 2x).

6. Show that the mapping of H into itself that sends each point P into the
_point of intersection of the line y =X with the line through P having
slope 2 1is given by

7. (a) Show that the mapping

can be expressed in the form

1 2
[~

(b) Find the image under this transformation of [i]‘.
(c) Find the image under this transformation of the subspace of
1
. 1 )
8. Solve-parts (b) and (c) of Exercise 7 when [i] is replaced by

(a) [f] - e [_}] ,

(b) [3], 197 v(d) [;]
[seg. 51
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9. Under the transformation given in Exercise 7, find by two different methods
the image of each of the following vectors:
' 4 [ 2 . 4
@ H "2 Ll]' @ [5]
s [ 2 3 2
(b) [4] - _1] r [3] @ 13>
3 E 1 5
(C) [2] - L]'] * [1] ' (f) 3 '
10. Consider the mapping
x 1 1 1 x
y V2 71 1Ly} .
(a) Find the images under this mapping of the pair of points (5,1)
and (1,-2), and show that the distance between the given pair
of points equals the distance between their images.
(b) Solve piEt (a) if the given points are (-2,10) and (6,~5).
(c) Solve part (a) if the given points are (a,b) and (c,d).
5—2. Matrix Transformations

As noted earlier, especially in Chapter 3, thé pair of equations

can be wfitten in the form

where

a1

21

A= a

_Consequently, in solving the

4 X *tapy=h,
a21 X + a22 y = bz,
AV = B,
a b4 b
812 . V= , and B = - bl X
22 2

equations you actually determine all the vectors

that are mapped onto the particular vector B by the function

[sec. f—91.]8
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vV —> AV, (1)

The study of the solution of systems of linear equations thus leads to the
consideration of the special class of transformations on H that are expressible
in the form (1), where A is any 2 X 2 matrix with real entries. These matrix
transformations constitute a very important class of mappings, having extensive

" applications in mathematics, statistics, physics, operations research, and
engineering. '

An important property of matrix'éransformafions is that they are linear
mappings; that is, they preserve vector sums and the products of vectors with
real numbers.

Let us formulate these ideas explicitly.

Definition 5~2. A linear transformation on H is a function f from H

_into H such that

'(a) for every pair of vectors V and U in H, we have
~f(V + U) = £(V) + £(U);
(b) for every reai number r and every vector V in H, we have
£(xV) = r£(V).
Theorem'5~1. Every matrix transformation is linear.
Proof. Let £ be the transformation

f:V—>Av,

where A is any real matrix of order 2. We must show that for any vectors V

and U, we have
A(V + U) = AV + AU;
fufther, we must show that for any vectoxr V and any real number r we have

A(xV) = r(Av).

[sec. 5-2) 'ﬁ
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But taese equalities hold in virtue of parts III (a) and III (f) of Theorem 4-2
(see page 134).

The linearity property of matrix transformations can be used to derive the

following result concerning transformations of the subspaces of H.

Theorem 5-2. A matrix A maps every subspace F of H onto a subspace
F' of H.

Proof. Let F' denote the set of vectors
{au: U ¢ F).

To prove that F' 1is a subspace of H, we must show that the following state-—

ments are true:

(a) For any pair of vectors P',' Q' in F', the sum P' + Q' 1is
in F'.

(b) For any vector P' in F' and any real number r, rP' is in
F'.

If P' and Q' are in F', then they must be the images of vectors P
and Q in F; that is,

P' = AP,
Q' = AQ.

It follows that

P' + Q' = AP + AQ

AP + Q),

and P' + Q' 1is the image of the vector P+ Q in F. (Can you tell wﬁy
P+Q is in F?) Hence, (P' + Q') € F'. Similarly,

rP' = r(AP) = A(rP),

~“and hence rP' 1is the image of rP. But rP € F because F is a subspace.

Thus, rP' is the image of a vector in F; therefore, rP' ¢ F'.

Corollary 5-2—1. Every matrix maps the plane H onto a subspace of H,
[Seco 5"2] :
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192 .
either the origin, or a straight line through the origin, or H itself.

For example, to determine the subspaces onto which

(5]
(a) F={[’y‘]:y=—3x},

(b) H itself,

maps

we proceed as follows.

For (a), the vectors of F are of the form

v .[-3;] -x[a]e xen

Hence,

oeft 9 € LD R - - )

Thus, F is mapped onto F', the set of vectors collinear with ; that is,
1

SIUIRE]

fn other words, A maps the line passing through the origin with slope -3 onto
the line through the origin with slope 1/2. ‘

As regards (b), we note that for any vector

=[] e
o (2150 - (23] - eeen 1]

we have

Since 2x + y assumes all real values as x and y run over the set of real
numbers, it follows that H is also mapped onto F'; that is, A maps the
entire plane onto the line : 201 '

[s:ec._ 5-2]
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Exercises 5<2

L. Let A= [i g] . For each of the following values of the vector V,

() V ) (£) v

(a) v= M (@ v= [_i]
® v= [::2”]. (e) V= [3]
|

1}
—
[}
|
& o
[ ————————
-

" determine: \

(i) the vector into which A maps V,

(ii) the line onto which A maps the line containing v.

2. A certain matrix maps

f e [ [ e [

Using this informationm, determine the vector into which the matrix maps

each of the following:

S H R HRH P
o m o) m :
(@) [_i] : () [‘;]
- (@ [‘ﬁ] , (8) [g] :
3. Consider the followiyg subspaces of H: .
F1={[g]}. : F2={[’;]:y=2x],

x
F3 = { [y] Tt y=—-2x¢, F4 =H itself.

[seé.:;;é]
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pDetermine the subspaces onto which Fl, Fz, F3, and F4 are mapped by each
of the following matrices:

(a) &= [j}], () B = [_2 2] (c) 4B, () BA.

1 1
’ 4, Let A= [C‘ 1].

(a) cCalculate AV for

S HBHEE RN

(b) Find the vector V for which

ool [ ] 8] 2]

5. Determine which of the following transformations of H are linear, and

justify your answer:

(a) V= [‘;] — [_x;'l] ) (d) v— [g’;] ,
(b) v—> \:T] s (e) V——>-;- (V +U), where U = []2.
(c) v—>[::§] (£) Vv —> 1iVil V.

6. Prove that the matrix A maps the plane onto the origin if and only if

ok g].

7. -Prove that the matrix A maps every vector of the plane onto itself if and

1 0 '
e \

only if

8. Prove that

[& 1]
203
______________ [sec. 5-2]
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maps the line y = 0 onto itself. 1Is any point of that line map:d onto
itself by this matrix?

9. (a) -Show that each of the matrices

B e o8]

maps H onto the x axis.

(b) Determine the set of all matrices that map H onto the x axis.
(Hint: You must determine all possible matrices A such that

corresponding to each V € H there is a real number r for
which

AV = T [0] . L

In particular, (1) must hold for suitable r when V 1is replaced
and by

1 0
by 0 1 )

10. Determine the set of all matrices that map H onto the y axis.

11. (a) Determine the matrix A such that
AV = 2V
for all V.
(b) The mapping

vV —> avVv (a > 0)

multiplies the lengths of all vectors without changing their directions.
It amounts to a change of scale. The number a 1is accordingly called a

scale factor or scaiéfl Find the matrix A that yields only a change of

scale:
AV = aV.
12. Prer that for every matrix A the set F of all vectofé U for which
0
[sece 5-2] .
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is a subspace of H. This subspace is called the kernel of the mapping.
13. Prove that a transformation £ of H into itself is linear if and only if

f(xV + sU) = r £(V) + s £(U)

for every pair of vectors V and U of H and every pair of real numbers

r and s.

5-3. Linear Transformations

In the preceding section, we proved that every matrix represents a linear
transformation of H into H. We now prove the converse: Every linear trans—

formation of H into H can be represented by a matrix.

Theorem 5~3. Let f be a linear transformation of H into H. Then,
relative to any given basis for H, there exists one and only one matrix A
such that, for all V € H,

AV = £(V).,
Proof. We prove first that there cannot he more than one matrix represent—

ing £. Suppose that there are two matrices A and B such that, for all
V e H,

AV = £(V) and BV = £(V).
Then
AV - BV = £(V) — £(V)
for each V. Hence,
(A - B)V = [g] for all V € H.

Thus, A — B maps every vector onto the origin. It follows (Exercise 5~2—6)

that A~ B is the zero matrix; therefore,

A = B,
(sec. 5-2]
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Hence, there is at most one matrix representation of f£.
Next, we show how to find the matrix representation for the linear transfor—

mation £. Let S1 and S2 be a pair of noncollinear vectors of H. Let .

a
£(s,) = 111 and £(s,) = 12

81 : 82

be the respective images of S1 and S2 under the mapping £. If V 1is any

vector of H, it follows from Theorem 4—10 that there exist real numbers v

1
and vy such that V = vls1 + stz' Since f 1is a linear transformation, we
have

(V) = f(vls1 + VZSZ) = vlf(Sl) + vzf(Sz).
Acéofdingly,
_ a1 | %12 1% YA
£(v) = 1 |a +v a = v, +a,,v ‘
21 22 8211 T %22%2
Thus,
a a v
£(V) = a11 12 v1 .
21 22 2

It follows that f is represented by the matrix

A= :11 :12
L 21 22
when vectors are expressed in terms of their coordinates relative to the basis
Sl’ Sz.

You notice that the matrix A 1is completely determined by the effect of f
on the pair of noncollinear vectors used as the basis for H. Thus, once you
know that a given transformation on H 1is linear, you have a matrix represent—

ing the mapping when you have the images of the natural basis vectors,

For example, it can be shown by a geometric argument that the counterclock—
[sec. 53]
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wise rotation of the plame through an angle of 30° about the origin is a linear
transformation. This function maps any point P onto the puint P', where the
measure of the angle POP' is equal to 30° (Figure 5—10). It is easy to see
(Figure 5-11) that '

A/

Figure 5-10. A rotation through Figure 5~11. The images of the points
an angle of 30° about the origin. (1,0) and (0,1) under a rotation of 30°
about the origin.

1 cor 30°
[0] is mapped onto [sin 300]

and

o
0 —sin 30
[ ] is mapped onto [ cos BOO] .

Thus, the matrix representing this rotation is

fr=

cos 30° —gin 30°

A= =
sin 30° cos 30°

N NI&
S
wir

1
Note that the first column of A 18 the vector onto which [0] is mapped;
the second column of A 1is the image of N

The product or composition of two transformations is defined just as you

(sece 5-3) -
207
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define the composition of two real functions of a real variable.

Definition 5-3. If f and g are transformations on H, then for each

vector V in H the compo«itinn transformations £fg and gf are the trans—

formations such that
fg(v) = £(g(V)) and gf(V) = g(£(V)).

Thus, to find the image of V wunder the transformation fg, you first
apply g, and then apply £. Consequently, if g maps V onto U, and if
f maps U oﬁto W, then fg maps V onto W,

The following theorem is readily prrv i ~3=7).

Theorem 5~4. If f 1s a linear transformation represented by the matrix
A, and g 1is a linear transformation represented by the matrix B, then fg
and gf are both linear transformations; fg is represented by AB, while gf
is represented by BA. '

For example, suppose that in the coordinate plane each position vector is

first reflected in the y axis, and then the resulting vector is doubled

in length. Let us find a matrix representation of the resulting linear trans—
formation on H. If g 1is the mapping that transforms each vector into its

reflection in the vertical axis, then we have

SHESHEcHIHE

If f maps each vector into twice the ve:tor, then we have

T HEN I HE

Accordingly, the matrix representing fg is

HEI R
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1.

2.

Exercises 5-3
Show that each of the mappings in Exercise 5—1-3 is linear, by determining
matrices representing the mappings.
Consider the linear transformations,
p: reflection in the horizontal axis,
q: horizontal projection on the line y = — x (Exercise 5—1-5e),
r: rotation counterclockwise through 900,

s: shear moving each point vertically through a distance equal to
the abscissa of the point,

of H into H. 1In each of the following, determine the r.atrix represent—

 ing the given transformation:

(&) (£) ap, (&) s(rs),

(b) aq, (8) pr, (1) (sp)s,
© ) o, @ plsa),
(d) s, (i) gs. (n} <ps)q,
(&) pa, (1) sq. (©) (sp)(ra).

Let f be the rotation of the plane cauntescivckwise through 45° about
the origin, and let g be the rotatiocs clwmcdkwise through 30°, Determine
a matrix representing the rotation comoniviuliozkwise through 15° about the

origin.
(a) Prove that =very linear transfornatioz sisps the origin onto itself.

(b) Prove that =zwery linear transforrericr mmrs every subgpace of H onto
a subspace of H.

For every two linear transformations i &wl g on H, define f + g to
be the transformation such that, for ¢==fn ¥ € H,

(£ +8)(V) = €4y 4 370),
Without using matrices, prove that @ + g 1& a linear transformation on L.

For each linear transformation £ o1 & any each real number a, define

af to be the transformation such thac

af(V) = #aV).
[sec. 5-3)
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Wiphout using matrices, prove thaé af is a linear transformation on H.
7. Prove Theoré@ 54,
8. Without usiég matrices, prove each of the following:
(a) f(g +h) = fg + fh,
(b) (f + g)h = fh + gh,
(c) f(ag) = a(£fg),

where f, g, and h are any linear transformations on H and a 1is

{
any real number.

54 . One—to—one Linear Transformations

The reflection of the plane in the x axis clearly maps distinct points
onto distinct points; thus, the reflection is a one—to-one linear transformation
on H. Moreover, the reflectcion maps any pair of noncollinear vectors onto a
.pair of noncollinear vectors. It is easy to show that this property is common
to all one—to—one linear transformations of H into itself.

Theorem 5~5. Every one—to—one linear transformation on H maps noncollinear
vectors onto noncollinear vectors. '

Proof. Let S and S., be a pair of noncollinear vectors and let

1 2

f(Sl) = T. and f(Sz) = T

1 2

be their images under the one—to—one linear mapping £. Since f£ is one—to-—
-one, we know that T1 and T2 are not both the zero vector. We may Suppose,
therefore, that T, is not the zero vector. To show that T, and T

1 1 2
not collinear, we shall demonstrate that the assumption that they are co..linear

are

leads to a contradiction.

1f T1 and T2 n
that T2 =r Tl. Now, consider the image under f of the vector r Sl' Since
f is linear, we have

are collinear, then there exists a real number r such

f(r Sl) = r f(Sl)

ar T1

= TZ’

[sec. 5-3]
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Thus, each of the vectors r S, and S, is mapped ontc T

1 2° Since f 1is °“e_;é

to—one, it follows that

and therefore that S1 and Sé-~are collinear vectors. But thi- contradicts

1 and S2 are not collinear. Hence, the assumption that T1

and T, are collinear must be false. Consequently, £ must map noncollinear’

the fact that §

vectors onto noncollinear vectors. :

Corollary 5~5-1. The e'bspace onto which a one—to—one linear transformat{oﬁé

maps H 1is H itself.

Proof. Since the subspace contains a pair of noncollinear vectors, the
corollary follows by use of Theorems 4—9 and 4~10.
The link between one—to—ovne E}ansformgtions on H and second-order

matrices having imverses is given in the next theorem.

Theorem 5~6. Let f be a linear transformation represented by the matrix'>7

A. Then f is one—to—one : and only if A has an inverse.

and S be vectors in

Proof. Suppose that A has an inverse. Let § 9

1
H having the same image under f. Now,

f(Sl) = AS, and f(SZ) = AS

1 2°

Thus,

AS

i

AS
Hence,
-1 ~-1,,.
A (as)) = A (aSy),
(A—IA)SI = (A“LA)SZ,

Is, = IS,,
211
[sec. 5-4)
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Thus, f must be a one—to—one transformation.
On the other hand, suppose that £ is one-to—one. From Theorem 5-5, it
follows that every vector in H is the image of some vector in H. 1In particu—

lar, there are vectors W and U such that

£(w)

n
>
=
n
—
O
3

and

]

£(U) = AU

n
r—
- O
3

Accordingly, the matrix having for its fizst column the vector W, and for

its second column the vector U, is the inverse of A. \

Corollary 5—6~1. A linear transformation represented by the matrix A is

one—to—one if and only if
5(A) # 0.

The theory of systems of two linear equations in two variables can now be

studied geometrically. Writing the system

all X + a12 y = u,

(1)
a21 X + a22 y =V,
in the form
AV = U, (2)
where
a a X u
9
A= 11 12 , V= , and U= »
81 222 y v

we seek the vectors V that are mapped by th= matrix A onto the vector U.
[sece 5=l |
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If ®(A) # 0, we now know that A represents a one—to—one mapping of H
oW 1

" onto H. Therefore, A maps exactly one vector V onto U, namely, V= A U.

Thus, the system (1) ~— or, equivalently, (2) — has exactly one solution.
If &(A) = 0, then, in virtue of Corollary 4-7-1, the columns of A must

be collinear wvectors. Hence, A must have one of the forms

00 0 a a ra
{o o] ’ [o b] » oF [b rb] '
... uwot bot: - and b are zero. If A has the first of these forms, them
A maps H onto the origin. In the other two cases, A maps H onto the
line of vectors callinear with the vector [E] . (See Exercise 5-4~7, below.:

With these results in mind, you may now complete the discussicn of the solutian

of equation (2).

Exercises 54

1. Using Theormm 5~6 or its corollary, determine which of the transformations

in Exercisez 5-1-3 are one—to—one.

2. Show that = linear transformation is one—to—one if and only if the kernel

of the mapming consists only of the zero vector. (See Exercise 5-2-12.)

3. (a) Show that if £ is a one—to—one linear transformation on H, then

there exists a linear transformation g such that, for all V e H,
gf(V) = Vv
and

fg(V) = Vv,

The transformation g is called the inverse of f and is usually written

g = f_l.

(b) Show that the transformation g = f_l in part (a) is a one—to—one

transformation on H.

4, Prove that if f and g are one—to—one linear transformations of H, then

fg is also a one~to—one transformation of H.

213
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Prove that the set of one—to—one linesr transformations on H 1is a group

relative to the operation of composition of transformations.

Show that if f and g are linear trans +i H such that fg
is a one—to—one transformation, then both 1 : & "2 one—to—one trany -
formations.
(a) Show that if ©(A) = 0, then the matrix A maps H onto a point
(the origin) or onte a line.

(b) Show that if A is the zero matrix and U is the zero vector,

then every vector V of H is a solution of the equation AV = U.

(c) Show that if 5(A) = O, but A is not the zero matrix, then the

solution set of the equation S

o3

is a set of collinear vectors.

(d) Show that if &(A) = 0, but A 1is not the zero matrix,and U is

not the zero vector, then the solution set of the equation

AV = U
either is empty or consists of all vectors of the form
{V1 +tV, : te R},
where V1 and v, are fixed vectors such that
AV, « U and AV, = 0
1 2 0] © .

Show that if the equation AV = U has more than one solution for any given

U, then A does not have an inverse.

Characteristic Values an¢ Characteristic Vectors

If we think of a mapping as ''carrying' points of the plane onto other points

of the plane, we might ask, through curiosity, if there are cases in which the:

[s'elc‘. " 5=4]
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image point under a mapping is the same as the point itself. Such 'fixed'

points, or vectors, are of great importance in mathematical analysis.

Let us look at an example. The reflection with vespect to the x axis,

: 1 ¢
e

that is,

Hisa SR -E

has the property of mapping each vector on the x axis onto itself; thus,

each of these vectors is fixed under the transformationm.

Definiéion_S—A. If a transformation of H into itself maps a‘given vector
onto itself, then that vector is a fixed vector for the transformation. '

More generally, we are interested in any vector that is mapped into a
multiple of itself; that is, we seek a vector VeH and a number c € R such

that
AV = cV.
Since the equation is automatically satisfied by the zero vector regardless of

the value ¢, this vector is ruled out.

The number ¢ is called a characteristic value (or eigenvalue) of A, and

the vector V a characteristic vector of A. These notions are fundamental in

ctomic physics since the energy levels of atoms and molecules turn out to be
given by the eigenvalues of certain matrices. Also the analysis of flutter
and vibration phenomena, the stability analysis of an airplane, and many other
physical problems require finding the characteristic values and vectors of
matrices.

In Section 5~1, we saw that the mapping
4 2
carried the plane H onto the line y = x/2. If we consider the set F

- {f5] ot

[sec. 5-5]
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nder this same mapping, we see that F is mapped onto F', the set of vectors

‘“collinear with F. Note that

&3 - 15 -0 1]

t

%Hand hence that 5 is a characteristic value associated with A, and [2t] isp

a characteristic vector for any t € R, t #0,

Definition 5—~5. "Each nonzero vector satisfying the equation

AV = cV

- is called a characteristic vector, corresponding to the characteristic value.

. (or characteristic root) c of A.

Note that, as remarked above, the trivial solution, [8] of the equation
is not considered a characteristic vector.

Because of the importance of characteristic values in pure and applied

- mathematics, we need a method for finding Ehém. We seek nonzero vectors V

and real numbers ¢ such thau

AV = cV. (1)

If I is the identity matrix of order 2, then (1) can be written as

AV = (cI)V,
‘ior
(A-env=0. o @
L If we let
a a,, X
a= | M Y ena v=[],
21 %22 4

. equation (2) becomes

216

5-5]
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all -~ C a]2 X

a1 a2 7 |V

(3)

We know that there is a nonzero vector V satisfying an equation of the form
BV = 0

if and only if
8(B) = 0.

Hence equation {2) has a solution other than the zero vector if and only if ¢

is chosen in such a way as to satisfy the equation

(a11 - c)(a22 - q) — 8553, T 0.
Rearranged, this equation becomes

ot - (a; + ap,)c +8(a) =0, (&)

which is called the characteristic equation of the matrix A. Once this

quadratic equation is solved for ¢, the corresponding vectors V satisfying

equation (1) can readily be found, as illustrated in the following example.

Example. Determine the fixed lines under the mapping

Foe 2Bl - 5]

5(A — cI) = (2 = ¢)(1 - ¢),

9217
[sec. 5-5]
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the characteristic equation is
' !

(2=¢e)(1-¢) =0,

or
c2 —3¢c+2 =0,
the roots of which are 1 and 2. For c¢ =1, equation (3) becomes
1 3 'x] 0
=
0 0|yl o}’
which is equivalent to the system

X + 3y = 0,

| Ox + 0y =0.

Thus, A maps the line x + 3y = 0 onto itself; that is, the set F

F{[—g] cen

is mapped onto itself. Actually, since. ¢ =1, each vector of this subspace
is invariant: 1f V 1is a characteristic vector, £(V) its image, and ¢ = 1,
theﬁ

£(Vv) = V.

For ¢ = 2, equation (3) becomes

HEIHEHE

or

3y =0,

-ly = 0.

Hence, ' 2 1 8

| [sec. 5-5]
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i 2
maps the line y = O onto itself; the sel of wW.dtors F %~

el e}

is closed under the transformation.

The characteristic equation associated with the matcix

is

c2 -3¢ +2 =0.

This equatioh expresses a real-number function. For a matrix function, the

corresponding equation is

¢? -3 + 21 = 0,

where I 1is the identity matrix of order 2 and 0 is the zero matrix of

order 2. If we substitute A 1in this matrix equation,

,
2 3f° 2 3 1 0
we find. that A 1is a root of its characteristic equation. This is true for
any 2 X 2 matrix.

Theorem 5—~7. The matrix A

811 212

A=
’ 21 %22

a
is a solution of its characteristic equaticn

2 .
AT~ (a11 + azz)A.+ 5(4A)I = 0.

219
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The proof is left as an exercise.

Theorem 5—7 is the case n = 2 of a famous theorem called the Cayley-—

Hamilton Theorem, which states that an analogous result holds for matrices of

-any order n.

Exercises 55

Determine the characteristic roots and vectors of each of the following'

matrices:
2 5 2 1 ¢
w 23, @ 21,
-3 4 0o 2
(b) [—1 2] ’ (d) [ 0 1] .

Prove that zero is a characteristic root of a matrix A if and qnlyfff
5(A) = 0.

Show that a linear transformation f is one—to-one if and only if zero is

not a characterjistic root of the matrix representing f£.

Determine the invariant subspaces (fixed lines) of the mapping given by

B

Show that these lines are mutually perpendicular.

11 212

a1 %

]

Show that the matrix A is a solutjon of its characteristic

(matrix) equation

2
8% = (agy +a,,)A +B(A)T = 0.

Show that [é] is an invariant vector of the transformation
V—> IVl V,

but that 2 [é] is not invariant under this mapping.
[sec. 5-5)
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7.

10.

11.

12.

5-6.

Show that A maps every line through the origin onto itself if and oﬁly if

r O

for r # 0. -
2 1

Let d = (a11 - 822) + 4 812321’ where a1y a9 ay)» and a,, are any

real numbers. Show that the number of distinct real characteristic roots

of the matrix

11 %12
an 22
[ ]
is
0 if d<o,
1 if d =0,
2 if d >o0.

Find a nonzero matrix that leaves no line through the origin fixed.

Determine a one—to—one linear transformation that maps exactly one line

through the origin onto itself.

,Show that every matrix of the form [: i] has two distinct characteristic

roots if s # 0.

Show that tue matrix A and its transpose At have the same characteristic

roots.

Rotations and Reflections

Since length is an important property in Euclidean geometry, we shall look

for the linear transformations of the plane that leave unchanged the length

11V

of every vector V. Examples of such transformations are the following:

(a)
(b)

the reflectiun of the plane in the x axis,

a rotation of the plane through any given angle about the origin,:
(c) a reflection in the x axis followed by a rotation about the origi
[sec.: 5-5]
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Actually, we can show that any linear tracsfcrmation that preserves the lengths
of all vecrors is equivalent to one of th=se —=hree. The following theorem will
be very us: Jul in proving that result.

Tor;, om 5-8. A linear transformatio> of- H that leaves unchangri the

length ri =~yz2ry vecter also leaves uncheme=d fa) the inner p.oivew o’ =very pair

of vect»#=s &4 (b) th: magnitude of the =—ie . ween every paic oF rucr0rs.

. «’. tet V anc U be a pair ¢ =7' s in H and let V' and U'
be ther = ,:tive images under the trun:~ jon. In virtue of Exercise
4~58, ue -

2 v - 2
NV + U = [{VIIT"% Ve U+ [IUI (1)
and
v + U'II2 = [V + 2Vt o U' + IUYIIT, (2)

Since the transformation is linear, for the image of V + U we have

[
'

(V+U)' =V +U',
Consequently, (2) can be written as
e +m o2 = nvin? v avt e v+ v, (3)
But the transformation preserves the length of each vector; thus, we obtain
1V = IIVII,‘ I!U'II = ||UIl, and 1I(V+U)'I] = |IV + UII;
Making these substitutions in equation (3), we ge;
v +un? = v +2vt e ut + U2, %)
Comparing equations (1) and (4), you see that we must have
VelU=V' eU';

that is, the transformation preserves the value of the inner product.
[sec. 5-6]
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Since the magnitude of the angle wwtwe: ., V zas= U can be expressed in
1. quwe tiaT the transformation also

terms of inner products (Theorem 4-5), it

preserves that magnitude.
VCorollary 5-8-1. 1f a linear trans :-sqis-..d por--2rves the length of every
vector, then it maps orthogonal vectors iats =i nzEni vectors. B
By the definition of orthogonality, thz3 - lmpl- 'wans that the geometric
vectors are mutually perpendicular.
5ok » considering also pre—
We state this

It is very easy to show the transforma::
« the plane.

wh:eh is left as an exercise.

serve the distance between every pair of pox
Wi

property formally in the next theorem, the -

v

preeserres the length of every
of paints in the plane;
Vv and U,

PR

A linear transformation :.
T3 SROY-L. b

Theorem 5-9.
vector leaves unchanged the distance betwee:
and U' are the respective szger. 2= the vectors

that is, if V'
then
[V = U'1l = {13

Let us now find a matrix representing any griven linear lgngth—preSerVing
All we need to find are the images of the vectors

transformation of H.

s, = [é] and s, = {1’]
under such a transformation. (Why is this so?)

If Si and Sé are the respective images =T ﬂi and SZ’ then we know
that both Si and Sé are of length 1 and tS=—rmey are orthogonal to each
other.

Suppose that Si forms the angle o (alpna) with the positive half of

Since the length of Si equals 1, we have

the x axis (Figure 5-12).

Sl

1=

cos O
sin O

S! is perbendicular to Si. Fsnce, there are two opposite

We know that 2

223
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—t

I €0,1)
.gk
‘s (cos @, sin Q)
N 2
\\ i
sl
SN 1
LN
AN
\
N o
X
0™ (1,0)
\
\
\\
N
52\
\
N

Figure 5-12. A length-preserving transformation.

possibilities for the direction of Si, because the angle £ (beta) that

makes with the positive half of the x axis may be either

N

7
f3=a+-2-

or
b
B"a""z'-

In the first casé (5), we have

cos B cos .(a +32£) —-sin ¢
Si =t = ’ =
sin & sin (Ot 1-12‘-) cos ¢

.In the second case (6), we have

cos (Ot - 12‘_ 8in ¢
Sé = = .
sin (o —:X ~cos ¢

[soc. 24)
224
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(6)
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Accordingly, any linear trzmsforma

vector unchanged must be ~zpresented by

or the form

In the first instance (7), the transformation f

S, and S

1 2
of the entire plane H
\

and the length

vectors through =n angle
through that an
in terms of its angle of

vl

the vector

r that is, we

|

Forming AV from equations (71 and (9)

r
r

K _|'t(czs © cos @~ sin 8 sin Q)
r(sic © cos @ + cos © sin Q)

From the formulas =f trigonométry,

cos (@ + Q) = cos
sin (& + @) = sin
we see that
AV = [r
r

Thus, AV is the vector of lemgth r

axis. We have proved that the matrix A repr====ls a ~~tation of H

the angle Q.

But suppose f is representec by
This transformation differs from th= on
Sé is reflected across the lime of the

suspect that this trans forma timma amonnt

tion f that lezves the leng:h of each

a matrix having ¢ =2r the fom

o —sin

e cos a] (7)
o sin O
o —cos a] ) (8)

simply rotzzes the basis

o and we suspect that £ is a rotation

gle. To verify this observatiom, we write
inclination © (thata) tc the x axis
write
cos ©
sin 9] ) 9

, we obtaia

© cos 0 — sin © sin Q,

& cos O + cos O sin Q,

cos (O + a)7

sin (8 + a)j

at an angl= © + ( to the korizontal

through

the matrix B in eguation (8) above.

e represented by A in tha=—the vector
vector Si. Comsequently, =om.may

s to a reflectiom ©of the pl=me in the

[sec. 2-6]
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x axis follow~d by a rorm-.omn thr=ugn the angle . Sinc: you: know that the

reflection in *he x axi: is represented by the matrix

1 o
7= i0—1j°?
you may thereZare expec: that
T ol (10)

We leave this verification as an emexr sam:,

Ezercis=es 5-6

l. Obtain the matrices that rotate H through the following=mngles:

(a) 180°, (£) 90°,
(b)  45°, () —120°,
(c) 30°, ()  360°,
(@) 60°, (1) -135°,
(e) 270°, (i) 150°.

2. Write out the 'mat:rices that “™presemt: the r—=msformation consisting of a

reflection in the x axis Z=zllowed by the —otations == Exercise 1.

3. Verify Equation (10), abome=.

4, A linear transformation of E that preserves. the [«mzh of every vector is
called-an orthogonal ~ranscormetion, and th=matyir reprasenting the trans—

formation is called 2n .ortzogonsi. matrix. Prove that whe transpose of an
orthogomal matrix s socthommed .

5. Show toat the inverse of z» aortfhoponal m=t—Fx is az orthmzemal matrix.
6. Show that the prmmuct of twc:a—tiwgonal meurdices i% orthogomal.

7. (a) Suow that a. rranslatiom=s 'E  in the @irecsjomw of che vector

[

and through a distance equal to: the"length of U is givem by the mapping

[z=mc. 5-6]
226
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10.

vV—V-—-1U.

(b) Show that rthis mapping does not preserve the lengzt of every vector,
but that it does preserve the distance between every pair 2f points in the

plane.
{¢) Determine whether or not this mapping is linear.

Let &3 and RB denote rotations of H through zhe zngl:s & and B,

respectively. Prove that a rotation through @ -“sllcwed by a rotation

through B amounts to a rotaztion through o + B; thacr s, show thst

RB Ra = %14'5.

Note that the matrix A of Eguation (7) is a represemimtion of a complex

number. What does the result of Exercise 8 imply for —=mplex numbers?

(a) Find a matrix that repr=sents 2 reflection across ithe line of the

vector
cos O
gin @ | °

(b) Show that the matrix B of equation (8), =Sove, represents a re—

flection across the line of some wector.

227
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Appendix

RESEARCH EXERCISES

= The exercises in this Appendix are essentially ''resear=k—type'' problems
designed to exhibit aspects of thecry and practice in matrix algebra that zczid
‘not be included in the text. They are especially suited as individual asszgn-
ments for those students who are prospective majors in the theoretical and
~practical aspects of the scientific disciplines, and for suundents who would IiSke
to tesf their mathematical powers. Alternatively, small gzoups of students
‘might join forces in working them.

1. Quaternions. The algebrajc system that is explor=r in this exercise

'was invented by the Irish mathematician and physicist, WeIlism Rowan Hamiltom,
- who published his first paper on the subject in 1835, It was not until 1858
~that Arthur Cayley, an English mathematician and lawyer, published the first
_research paper on matrices, though the name matrix had prewjomsly been applied’
.by James Joseph Sylvester in 1850 to rectangular arra&s of numbers. Simce
"Hamilton's system of quaternioms is actually an algebra of matrices, it is m=e
-easily presented in this guise than in the ferm in which it wap Soost Gewelrped.
" In the present exercis=, we shall consider the algebra af 2 x 2 matrices

with complex numbers as entries. The definitioms of -additior.. multiplicatimm,

and inversion remain the same. We use C for the set of all complex numbers

‘and we denote by K the set of all matrices

fyherg z, W, Z;, and w, are elements of C. As is the casz with matrices

‘having real entries, the element

i0f K has an inverse.if and only if

ZW, — ﬁzl # 0,

1
228
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.‘and then we have

-1
z w 1 w, —W
= ——— 1 s ZW, — WZ *0.
[zl wl} zw wz) [—zl z] P § 1

Since 1 1is a complex number, the unit matrix is still
1 0
- 39

z = x + iy,

If

then we write

z = x — 1y

and call this dumber the camplex conjugate of 2z, or simply the conjugate of z.
A quaternion is an el=ment q of K of the particular form .

] , Zz€C and we€C.

We denoté by Q. the set of all quaternions.

(a) Show that ©5&(q) = x2 + y2 + u2 + v2 if z=x+1y and w= u + iv.

Hence conclude that, since x, y, u, and v are real numbers, &(q) =0 if

and only 1f q = 0.

(b) Show that if q € Q, then q has an inverse if and only if q#0,
and exhibit the form of q & if it exists.
Pour elements of Q are of particular importance and we give them special -

names:

(=0 or
|..____|
L__l_._l

o ¢

o <
v,[,

i

229




(c) Show that if

- |

where z = x + iy and w ='u + iv, then

|

dn
Nl €

qQ = xI +yU + uv + vy,
(d) Prove the following identities involving I, U, V and W:

et awa-r

and

W=W=s—-V, VWs=U=-—yy, and WU = V = — Uy,
(e) Use the preceding two exercises to show that if q € Q and r € Q,

then q +r, q —r, and qr are all elements of Q.
The conjugate of the element

z W :
q= % z/ where z = x + iy, w=u + iv,

is

and the norm and trace are given respectively by
: 1/2
iql = [S(q)] /
and

t(q) = 2x.

(f) Show ‘that if q €Q, and if q 1is invertible, then

230
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From this conclude that if q € Q, and if qm1 exists, then q_1 € Q.

(g) Show that each q ¢ Q satisfies the quadratic equation
q® - t@ g+ 1q1* 1= 0.
(h) Show that if "q € Q, then
qq = 1912 1.
_Note that this may be proved by using the result that if
q = al + bU + cV + dW,
then
q = al — bU — cV — dw,

and then using the results given in (d).

(1) Show that if q € Qv and r € Q, then
lqr! = Iql Ixl
and
Iq + rl < I?I + I,

The geometry of quaternions constitutes a very interesting subject. It

requires the representation of a quaternion
q = al + by + cV + dW

as a point with coordinates (a, b, ¢, d) in four—dimensional spaces. The

subset of elements,
Q = {q: ¢ € Q and Iq! = 1},

is a group and is represented geometrically as the hypersphere. with equation

, 231




223

a +b +c¢ +d2n1.

. 2. Nonasgsociative Algeb:ras

The algebra of matrices we restrict or— attention im this exercise to the
set M of 2 X 2 matrices) has an associative but not : commutative multipli—

cation. '"Algebras" with nonassociative multiplicatiox ‘hzve become increasingly

important in recent years—for example, in mathematical genetics. ' Genetics is
- a subdiscipline of biology and is concerned wifi: transmission of heredirary— -

mechanics, a subdiscipline of physics. We jgive fHrst a simple example of a Lie
algebra (named after the Norwegian geometer Sozimus Lie).
If AeM and B € M, we write

AOB = AB — BA

and read this 'A op B," '"op" being an siErewiatiom for operation.
(a) . Prove the following properties of o=
(1) --AoB = — BoA,
(1i) AcA = 0,
(ii1) Ao(BoC) + Bo(CoA) + Co(amB) =0,
(iv) Aol =0 = ToA.

(b) Give an example to show that Ao(BoC) and (AoB)oC are different
and hence that o is:not an associative operatiom.

Despite these stmange properties, o behsves nicely relative to ordinary
matrix addition. :

(c) show that o distributes over additrim:

Ao(B + C) = (AcE) + (AoC)
and

{A + B)oC = (AoT) + (BoC)-.

(d) sShow that o belmwes nicely relatime to multiplication by a ﬁumber.

232




224
It will be recalled that A~1 is termed the multiplicative inverse of A

and is defined as the element B satisfying the relationships
AB = 1 = BA.

But it must also be recalled that this définition was motivated by the fact that
Al = A = IA,

that is, by the fact that I is a multiplicative unit.

(e) Show that there is mo o umit.

We know, from the foregoing work, that o is neither commutative nor
associative. Here is another kind of' operation, called Jordan multiplication:
If A€M and B € M, we define

{(AB + BA *
AjB = —T—z‘.

We see at once that
AjB = BjA,

so that Jordan multiplication is a commutative operation; but it is mnot

associative.

({) Determine all of the properties of the operation j that you can.
For example, does j distribute over addition?

3, The Algebra of Subsets

We have seen that there are interesting algebraically defined subsets of
M, the set of all 2 X 2 matrices. One such subset, for example, is the set
7, which is isomorphic with the set of complex numbers. Much of higher
mathematics is concerned with the "global structure" of 'algebras,'" and generally
this involves the consideration of subsets of the "algebras' being studied, In
this exercise, wé shall generally underscore letters to denote subsets of M.

If A and B are subsets of M, then
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iy‘;f:'is“t:he_ set of all elements of the form

A+B, where AecA and B e B.
/In set-builder notation this may be written
A+B=(A+B:AcA and B € B).

By an additive subset of M 1s meant a subset A C M such that

A+ACaA.

(a) Determine which of the following are additive subsets of M:

1) (o),

(11) (1),
(111) M,
(iv) 2z,

(v) Ml' the set of all A in M with 8(A) = 1,
(vi) the set of all elements of M whose entries are nonnegative.
(b) Prove that if A, B, and C are subsets of M, then
(1) A+B=B+a,
(11) A+ (B +C) = (A +B) +¢,
(241) and if ACB then A +CCB +C.

(c) Prove that if A and B are additive subsets of M, then

A+B

is also an additive subset of M.

Let V denote the set of all column vectors

with x e R and y € R.

(d) Show that if v 1is a fixed element of V, then
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[ncn s o Hl

is an additive subset of M. Notice also that if Av = 0 then (-A)v = 0.

I1f A and B ‘are subsets of M, then

is the set of all

AB, A€ A and B € B.

Using set—builder notation, we can write this in the form

AB = (AB: A e A and B € B}.

A subset A of M is multiplicative if

(e)
(£)

(g)

(h)

Aa C A

Which of the subsets in part (a) are multiplicative?
Show that if A, B, and C are subsets of M, then
(1) A(BC) = (AB)C,
(i1) and if A CB, then QE_C BC.

Give an example of two subsets A and B of M such that
AB # BA.

Determine which of the following subsets are multiplicative:
() {0, 1},
(11) (1, -1},
(ii1i) the set of all elements of M with negative entries,

(iv) the set of all elements of M for which the upper left—hand
entry is less than 1,
(v) the set of all elements of M of the form
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HHE

with 0 <x, 0<y, and x +y < 1.

The exercises stated above are suggestions as to how this 'algebra of
subsets' works. There are many other results that come to mind, but we shall
~leave them to you to find. Here are some clues: How would you define tA 1f

t€R and ACM? Is (-1)A = - A? Wait a minute! What does —A mean?
~What does é7 mean? Does set multiplication distribute over addition, over
union, over intersection? Do not expect that even your teacher knows the
answer to all of these possible questions. Few people know all of them and
fewer still, of those who know them, remember them. If you conjecture that
something is true but the proof of it escapes you, then try to construct an
NJexample to show that it is false. If this does not work, try proving it again,

and so on. .

4. Analysis and Synthesis of Proofs

This is an exercise in analysis and synthesis, taking an old proof to
pieces and using the pattern to make a new proof. In describing his activities,
a mathematician is likely to put at the very top that of creating new results.

"~ But "result' in mathematics usually means ''theorem and proof.' The mathematician
does not by any means limit his methods in conjecturing a new theorem: He
guesses, uses analogies, draws diagrams and figures, sets up physical models,
experiements, computes; no holds are barred. Once he has his conjecture firmly
in mind, he is only half through, for he still must construct a proof. One way
of doing this is to analyze proofs of known theorems that are somewhat like the
theorem he is trying to prove and then synthesize a proof of the new theorem.
Here we ask you to apply this process of analysis and synthesis of proofs to
the algebra of matrices. To accomplish this, we shall introduce some new
operations among matrices by analogy with the old operations.

For simplicity of computation, we shall use only 2 X 2 matrices.

To start with, we introduce new operations in the set of real numbers, R,

If x€ R and y € R, we define

x Ay = the smaller of x and y (read: 'x cap y'")

and

x V y = the larger of x and y (read: "x cup y").
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(a) Show that if x € R, y € R, and z € R, then
(1) xAy=yAx,
(11) xVy=ny,
(1i1) xA (Y Az2) = &AY)Az,
(lv) xVVz=&VyV sz
(v) xAx=x,

(vi) xVx=x,

]

(vii) xA(yVza)=&Ay)V (xA2),

(viii) x V(@A z)=xEVy) AxYVa2).

Ali:hough the foregoing operations may seem a little unusual, you will have
no difficulty in proving the above statements. They are not difficult to '
remember if you notice the following facts: ) }

The even—numbered results can be obtained from the odd-—numbered results by
interchanging A and V , and conversely.

The first states that A is commutative and the third states that A is
associative. The fifth is new but the seventh states that A distributes over
V.

To define the matrix operations, let us think of A as the analog of
multiplication and V as the analog of addition and let us begin with our new

matrix "multiplication.”
We define

] a b Alx Y| - (aAx) VI Az) (aAy)V (bAwW
c d zZ W (cAX)VWAAZ) (CAYYVUHEAW]®
This is simply the row-by—colummn operations, e:;cept that A is used in

place of multiplication and V is used in place of addition. To see this more

"clearly, we write
a bj|x y| , |ax +bz ay-+ bw
c dilz w cx +dz cy + dw| ’
(b) Write out a proof that if A, B, and C are elements of M, then

A(BC) = (AB)C.
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‘Be sure not to omit any steps in the proof. Using this as a pattern, write out

a proof that

AABAC=(AAB)AC,

3

verifying at each step that you have the necessary results from (a) to make the
proof sound. List all the properties of the two pairs of operations that you

‘need, such as associativity, commutativity, and distributivity.

(c) Using the analogy between V and addition, define AV B for elements
A and B of M. :

(d) State and prove, for the new operations, analogs of all the rules

you know -for the operations of matrix addition and multiplication.
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Additive subset, 225
"Algebra, 100, 102

global structure of, 224
. nonassociative, 223
" Analysis of proofs, 227
-Analysis, vector, 175
Angle between vectors, 13
Anticommutative matrix, 49
Area of a.parallelogram, 161

Arrow, 136
head, 13¢
tail, 13¢

Associative law, for additiom, 12
Associative law,
for multiplication, 43-406
Basis, 171
natural, 171

' Cancellation law, 37

Cap, 227

" Cayley—Hamilton Theorem, 210-211
Characteristic equation, 208
Characteristic root, 206
Characteristic value, 205-207

- Characteristic vector, 205-207
Circle, unit, 88
Closure, 53
Collinear vectors,
"Column matrix, 4
Column of a matrix, 2
Column vector, 4, 133

- -Combination, linear,

Commutative group, 9U

Commutative¢ law for additionm, 12

* Complex conjugate, 220

Complex number, 1, 94, 219

Components of a vector, 137

Composition of transformations, 198-199

Compression, 185

Conformable matrices, for addition, LU
for multiplication, 27

" Conjugate quaternion, 221

Contraction factor, 180

~.Cosine, direction, 138

Cosines, law of, 1353

Counting number, 1

Cup, 227

155

170

Decimal, infinite, 1

Dependence, linear, 172

Determinant function, 77
Diagonalization method, 131
Difference of matrices, 14 : '
Direction cosines, 138
Direction of a vector,
Displacement, 184
Distributive law, 41-45
Domain of a function, 177

Dot product of vectors, 154
Eigenvalue, 20¢

Electronic brain, 2, 132
Elementary matricas, 124 -
Elementary row operation, 114, 124
Embedding of an =zigebra, 100

End point of vector, 137

Entry of a matrix, 3

138

.Equality of matrizes, 7

Equation, characteristic, 208
Equivalence, row, 114
Equivalent systems: of linear equatiouns,
105
Equivalent vectors, 138
Expansion factor, 179
Factor, contraction, 180
expansion, 179
Field, 55
Fixed point, 206
Four—dimensional space, 222
Free vector, 175
Function, 177
determinant, 77
domain, 177
matrix, 109
range, 177
real, 177
stretching, 183
vector, 177
Galois, Evariste, 92
Geometric representation of vector, 140
Global structure of algebras, 224 ‘
Group, 85, 90
abelian, 90
commutative, 90
of invertible matrices, 85
related to face of clock, 90
Head of arrow, 130
Uypersphere, 222
Identity matrix, for addition, 11
for multiplication, 46

_ Image, 178
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Independence, linear, 172
Infinite decimal, 1
Initial point of vector, 137
Inner product of vectors, 152, 154
Integer, 1
Invariant subspace, 211
Invariant vector, 209
Inverse of a matrix, 62—63, 113
of order two, 75 .
Inverse of a number, 54
of a transformation, 204
Isomorphism; 94, 100
Jordan multiplication, 224
Kernel, 196
Law of cosines, 153
Left multiplication, 37
Length of a wector, 137-138
Linear combination, 170
Linear dependence, 172

Linear equations, system of 103, 119

equivalent, 105
solution of, 103-105
relation to matrices, 107

solution by diagonalization method,

131

Matrix (continued),
inverse, 62-63, 113
of order two,.. 75
invertible, 63
multiplication, 24 30 32
cancellation law for, 37
conformability for, 27
A=ft, 37
rught, 37

" multiplication by a number, 19-20

negative of, 14
order-of, 3
orthogonal, 217
product, 26
row, 4
row of, 2
square, &4
order of, 4

sum, 10
transformation, 189
transpose of, 5
unit, 46
variable, 109
zero, 11

Matrix function, 109

solution by triangularization method, Multiplication, 24, 30, 32

152
Linear independence, 172
Linear map, 190, 196
Linear transformation, 190, 196
Located vector, L36~137

Map, 178
inverse, 204
kernel, 196

linear, 190, 196
one—to—one, 201

onto, 178

Matrices, 1, 3
Matrix, 1, 3

addition, 9
associative law for, 12
commutative law for, 12
conformalbility for, 10
identity element for, 11

additive inverse, 14

anticommutative, 49

column, 4

column of, 2 .

conformable for addition, 10

difference, 14

division, 50-51

elementary, 124

entry of, 3

equality, 7

identity for addition, 11

for multiplication, 46

Jordan, 224

Multiplication of matrices, 24, 30, 32
distributive law for, over addition,

4145

Multiplication of matrix by number,

19-20

Maultiplication of vector by number,

144
Natural basis, 171
Negative of a matrix, l4
Nonassociative algebra, 223
Norm of a quaternion, 221
Norm of a vector, 14l
Null vector, 139
Number, 1
Namber, complex, 1, 94
conjugate, 220

counting, 1

integer, 1

inverse, 54

rational, 1

real, 1
One~to—one transformation, 186
Operation, row, 114, 124
Opposite vectors, 138
Order of a matrix, 3, 4
Orthogonal matrix, 217
Orthogonal projection, 186
. Orthogonal transformation, 217
Orthogonal vectors, 156
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- parallel vectors, 143, 163
“Parallelogram rule, 149
‘Perpendicular projection, 186
‘Perpendicular vectors, 153
‘Pivot, 132
'Point, fixed, 206
Product of transformations, 198
‘Projection,

orthogonal, 186

"perr.'ndicular, 186
Quaternion, 219—223

conjugate, 221

geometyy of, 222

norm, 221
: trace, 221
" Range of a function, 177
. Rational number, 1

Real function, 177
Real number, 1
Reflection, 178, 212 .
Representation of ‘vector, 140
Right multiplication, 37
Ring, 57-58

with identity element, 60
Rise, 137
Root, characteristic, 206
Row equivalent, 114
Row matrix, 4
Row of a matrix, 2
Row operation, 114, 124
Row vector, 4
Rotation, 198, 212
Run, 137
Scalar, 195
.Set, 53

closure under an operation, 53

element of, 57
.Shear, 183
"Sigma notation, 30
Slope of a vector, 138
Space, 166

four—dimensional, 222
Square matrix, 4
Square root of unit matrix, 39
Standard representation, 140
Stretching function, 183
Subset,

additive, 225

algebra of, 224
Subspace, 166—167

invariant, 211
Sum cf matrices, 10
Synthesis of proofs, 227
System of l'inear equations, 103, 119

solution by diagonalization method,

131

System of linear equatioﬁs (continued)
solution by triangularizzrion method,
132

" Tail of vector, 136

Terminal point of vector, I37
Trace of a quaternion, 221
Transformation,
_composition, 198
geometric, 177-178
inverse, 204
kernel, 196
length—preserving, 214-217
linear, 190, 196
one—-to—~one, 201
matrix, 189
one—to—one, 186
orthogonal, 217
plane, 177-178
product, 198
Translation, 184
Transpose of a matrix, 5
Triangularization method, 132
Unit circle, 88
Unit matrix, 46
Value,
characteristic, 205207
Variable,
matrix, 109
Vector, &4, 133
addition, 147
parallelogram rule for, 14%
analysis, 175
angle, 153
basis, 171
characteristic, 205-207
collinear, 155, 177
column, 4, 133
order of, 133-134
component, 137
direction, 138
dot product, 154
end point, 137
equivalent, 138
free, 175
function, 177
geometric representation, 136
initial point, 137
inner product, 152, 154
invariant, 209
length, 137—-138
linear combination, 170
located, 136~137 |
multiplication by a number, 144
natural basis, 171
norm, 141
null, 139
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'?"Vector (continued), Vector (continued),

opposite, 138 run, 137

». = orthogonal, 156 - slope, 138

- parallel, 143, 163 space, 166
perpendicular, 153 subspace, 166—167
representation by located vector, 140 terminal point, 137
rise, 137 variable, 177
row, 4, 136 Zero matrix, 11
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