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FOREWORD

The increasing contribution of mathematics to the culture of
the modern world, as well as its importance as a vital part of
scientific and humanistic education, has made it essential that the
mathematics in our schools be both well selected and well taught.

With this in mind, the various mathematical organizations in
the United States cooperated in the formation of the School
Mathematics Study Group (SMSG). SMSG includes college and univer-
sity mathematicians, teachers of mathematics at all levels, experts
in education, and representatives of science and technology. The
general objective of SMSG is the improvement of the teaching of
mathematics in the schools of this country. The National Science
Foundation has provided substantial funds for the support of this
endeavor.

One of the prerequisites for the improvement of the teaching
of. mathematics in our schools is an improved curriculum--one which
takes account of the increasing use of mathematics in science and
technology and in other areas of knowledge and at the same time
one which reflects recent advances in mathematics itself. One of
the first projects undertaken by SMSG was to enlist a group of
outstanding mathematicians and mathematics teachers to prepare a
series of textbooks which would illustrate such an .improved
curriculum.

The professional mathematicians in SMSG believe that the
mathematics presented in this text is valuable for all well-educated
citizens in our society to know and that it is important for the
precollege student to learn in preparation for advanced work in the
field. At the same time, teachers in SMSG believe that it is
presented in such a form that it can be readily grasped by students.

In most instances the material will have a familiar note, but
the presentatioh and the point of view will be different. Some
material will be entirely new to the traditional curriculum. This
is as it should be, for mathematics is a living and an ever-growing
subject, and not a dead and frozen product of antiquity. This
healthy fusion of the old and the new should lead students to a
better understanding of the basic concepts and structure of
mathematics and provide a firmer foundation for understanding and
use of mathematics in a scientific society.

It is not intended that this book be regarded as the only
definitive way of presenting good mathematics to students at this
level. Instead, it should be thought of as a:sample of the kind of
improved curriculum that we need and as a source of suggestions for
the authors of commercial textbooks. It is sincerely hoped that
these texts will lead the way toward inspiring a more meaningful
teaching of Mathematics, the Queen and Servant of the Sciences.
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PREFACE

This experimental text is intended for use in a one semester

12th grade course. The appendices provide Material for supple-

mentary study by able students. Alternatively, by including some

or all of the material in the appendices it is possible to use

this text for a longer course.

The central theme is a study of functions. The first chapter,

Functions, gives a background for the study of Polynomial Functions

(Chapters 2 and 3), Exponential and Logarithmic Functions (Chapter

4), and Circular (or Trigonometric) Functions (Chapter 5).

The introductory chapter uses a small amount of set notation

which is explained in an appendix. A function is defined in

terms of the concept of mapping and, to a certain extent, in

terms of a computing machine. After a treatment of constant and

linear functions, composition and inversion of functions are

carefully discussed.

Chapter 2 covers standard material on the algebra of poly-

nomials, but the treatment is a more modern and rigorous one than

is found in conventional texts.

Chapter 3 is concerned with the use of the tangent line as

an approximation to the graph of a polynomial function. near a

given point. The equation of the tangent at this point is

obtained by algebraic procedures which are both simple and logi-

cally precise. These procedures also give a method for deter-

mining the shape of the graph nearby. The student is thus able

to locate critical points and to solve interesting maximum and

minimum problems. Our treatment will furnish him with a good

background for a later course in calculus. An appendix gives

an introduction to the problem of finding areas under graphs.

In Chapter 4 the characteristic features of exponential

growth are brought out in an intuitive way, with applications

to problems of current interest. The method for finding tangents

explained in Chapter 3 is used to obtain the slopes of exponential

graphs. Logarithmic functions are defined as the inverses of

exponential functions.
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Chapter 5 deals with the theory of the circular functions

in the spirit of the preliious chapters, emphasizing the study of

periodic motion and the.analytic properties of the trigonometric

functions. An appendix includes supplementary material for

students who have had no previous course in trigonometry.

This text is an attempt to implement the recommendations of

the Commission on Mathematics of the C.E.E.B. The authors are

conscious of its shortcomings and welcome criticism from those

who may use it.
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Chapter 1

FUNCTIONS

_1-1. Fftnctions

One of the most useful and universal concepts in mathematics

is that of a function, and this book, as its title indicates, will

be devoted to the study of function; with particular attention to

a few special functions that are of fundamental importance.

We frequently hear people say, "One function of the Police

Department is to prevent crime," or "Several of my friends attended

a social function last night," or "My automobile failed to function

when I tried to use it." In mathematics we use the Word "function"

somewhat differently than we do in ordinary conversation; as you
have probably learned in your previous study, we use it to denote

a certain kind of association or correspondence between the

members of two sets.

We find examples of such associations on every side. For

instance, we note such an association between the number of feet

a moving object travels and the difference in clock readings at

two separate points in its journey; between the length of a steel

beam and its temperature; between the price of eggs and the cost

of making a cake. Additional examples of such associations occur

in geometry, where, for instance, we have the area or the circum-

ference.of a circle associated with the length of its radius.

In all of these examples, regardless of their nature, there

seems to be the natural idea of a direct connection of the elements

of one set to those of another; the set of distances to the set

of times, the set of lengths to the set of thermometer readings,

etc. It seems natural, therefore, to abstract from these various

cases this idea of association cr correspondence and examine it

more closely.

Let 4 start with some very simple examples. Suppose we take

the numbers 1, 2, 3, and 4, and with each of them assoCiate the

number twice as large: with 1 we associate 2, with 2 we associate

4, with 3 we associate 6, and with 4 we associate 8. An associa-

tion such as this is called a function, and the set (1, 2, 3, 4)Idth

12
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which we started is called the domain of the function (for a sum-

mary of set notation see Appendix to Chapter 1). We can represent

this association more briefly if we use arrows instead of words:

2---*4, 4---,8. There are, of course, many other

functions with the same domain; for exm, 2, 2 ,

4 3. 5 .
It happens that these two exam 1 numbers, but

there are many functions which do not. map, for instance, asso-

ciates each point on some bit of terrain with a point on a piece of

paper; in this case, the domain of the function is a geographical

region. We can, indeed, generalize this last example, and think of

any function as a mapping; thus, our first two examples map numbers

into numbers, and our third maps points into points.

What are the essential features of each of these examples?

First, we are given a set, the domain. Second, we are given a rule

of some kind which associates an object of some sort with each ele-

ment of the domain, &la, third, we are given some idea of where to

find this associated object. Thus, in the first example above, we

know that if we start with a set of real numbers, and double each,

the place to look for the result is in the set of all real numbers.

To take stil] another example, if the domain of a function is the

set of all real numbers, and the rule is "take the square root,"

then the set in which we must look for the result is the set or

complex numbers. We summarize this discussion in the following

definition:

Definition 1-1. If with each element of a set A there is

associated in some way exactly one element of a set B, then this

association is called a function from A to B.

It is common practice to represent a function by the letter

"f" (other letters such as "g" and "h" will also be used). If x

is an element of the domain of a function f, then the object

which f associates with x is denoted f(x) (read "the value of

f at x" or simply "f at x" or "f of x"); f(x) is called

the image, of x. Using the arrow notation of our examples, we can

represent this symbolically by

f:

[sec. 1-1]
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3

(read "f takes x into f(x)"). This notation tells us nothing

about the function f or the element x; it is merely a restate-

ment of what "f(x)" means.

The set A mentioned in Definition 1-1 is, as has been stated,

the domain of the function. The set of all objects onto which the

function maps the element of.A is called the range of the function;

in set notation (see Appendix),

Range of f = (f(x): x E A).

The range may be the entire set B mentioned in tht, efinition, or

may be only a part thereof, but in either case it is included in B.

It is often helpful to illusrr.ate a function as a mapping,

showing the elements of the domain and the range as points and the

function as a set of arrows from the points that represent elements

of the domain to the points that represent elements of the range,

as in Figure 1-1a. Note that, as a consequence of Definition 1-1,

Figure 1-1a. A function as a mapping.

to each element of the domain there corresponds one and only one

element of the range. If this condition is not met, as in Figure

1-1b, then the mapping pictured is not a function. In terms of the

pictures, a mapping is not a function if two arrows start from one

point; whether two arrows go to the same point, as in Figure 1-1a,

is immaterial in the definition. This requirement, that each ele-

ment of the domain be mapped onto one and only one element of the

range, may seem arbitrary, but it turns out, in practice, to be

(sec. 1-1)
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Figure 1-1b. Ang is not a function.

extremely convenient.

In this book, we are primarily concerned with :functions whose

domain and range are sets of real numbers, and we shall therefore

assume, unless we make explicit exception, that all of our functions

are of this nature. It is therefore convenient to represent the

domain by a set of points on a number line and the range as a set

of points on another number line, as in Figure 1-1c.

Figure 1-1c. A function mapping

real numbers into real numbers.

1 5
[sec. 1-1]



5

More specifically, consider the function f, discussed earlier,

whicln takes each element of the set (1, 2, 3, 4) into the number

twice as great. The range of this function is (2, 4, 6, 8) and f

maps its domain onto its range as shown in Figure 1-1d. We note

that, in this case, the image of the element x of the domain of

4
3

2

Figure 1-1d. f: x = 1, 2, 3, 4.

f is the element 2x; hence we mAy write, in this instH a, f(x)

2x, and f is cz-apletely specified by the notation

f: x 2x, x 1, 2, 3, 4.

In this cas.,:_ the way in which f maps its domairi ';t:o its

range is completi-iy specified by the formula f(x) = 2x. Most of

the functions which we shall consider can similarly be described

by appropriate formulas. If, for example, f is the function that

takes each number into its square, then it takes 2 into 4 (that is,

f(2) = 4), it takes -3 into 9 (that is, f(-3) = 9), and in general,

it takes any real number x into x
2

. Hence, for this function,
0

f(x) = x
2

, we may write f: The formula f(x) = x
2 de-

fines this functl= f, and to find the image of any element of

the domain, we :can merely substitute in this formula; thus, if

a - 3 is a real then f(a-3)
(a_3)2 a2 6a 9. Simi-

larly, if we klaw;hat a function f has f(x) = 2x - 3 for all

[sec. 1-1]
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6

x E R (we use R to represent the set of real numbers) then we can
represent f in our mapping notation as f: - 3, and to
find the image of any real number we need only substitute it for
x in the expression 2x - 3; thus 1(5) = 2(5) - 3 = 7,
f( = 2 IT- 3, and if k + 2 is a real number, then

f(k + 2) = 2(k + 2) - 3 = 2k + 1.

Strictly speaking, a function is not'completely described un-
less its domain is specified. In dealing with a formula, however,
it is a common and convenient practice to assume, if no other infor-
mation is given, that the domain includes all real numbers that

yield real numbers when subst-L,uted in the formula. For example,
if nothing further is said, in the function f: x> l/x, the
domain is assumed to be the set of all real numbers except 0; this

exception is made because 1/0 is not a real number. Similarly, if
f is a function such that f(x) = N/1 - x2 we assume, in the
absence of any other information, that the domain is (x: -1 < x < 1),
that is, the set of 111 L'ea:1 numbers n-om -1 to +1 inclusive, since
only these real numl wILL glve us zeal square roots in the ex-
pression for f(x). - em-7, function is used to describe a physical

situation, the domain is -_11-erstood to include only those numbers
that are physically r.:t.41,1t777,7-o. Thus, if we are describing the
volume of a balloon in _..,7ra of the lengt'h of its radius, f: V,

the domain would inc12de ..;11-121y positive numbers.

A humorist once deftineci mathematics as "a set of statements

abcat the twenty-fon'th aelt;:,r of the alphabet." We may not agree
abcs,= just how funny ::rdz s',7atement is, but we must agree that it
contains an element _ trut: we do make "x" work very hard. It

is important to reca!ni6E that this arises out of custom, not

necessity, and that 1 --. c7her letter or symbol woul.ti do just as

well. The notations f: h>h2, f: t--#t2, and even
2

all desc: c .ctly the same function, 'Fubject to our

agreement that x, t, or # stands for any reLl number.

Another way of -_,'JI_Jafr, at a function, which may help you to

understand this section, Ls to think of it as a mach-the that pro-

cesses elements of its don: to produce elements of its range.
The machine has an inp:t an output; if an element x of its

(sec. 1-1]
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domain is fed on a tape into the machine, the element f(x) of

the range will appear as the output, as indicated in Figure 1-1e.

Figure 1-1e.

A representation of a function as a machine.

A machine can only be set to perform a predetermined task. It

cannot exercise judgment, make decisions, or modify its instructions.

A function machine f must be set so that any particular input x

always results in the same output f(x) ; if the element x is not

in the domain of f, the machine will jam or refuse to perform.

Some machines -- notably computing machines -- actually do work in

almost exactly this way.

Exercises 1-1

1 Which of the following do not describe functions, when x,

y E R?

a) f: - 4 d) f: = x2 f: x--->5x

b) f: x--->x3 e) f: y<x g) f: - x2

c) f:x >x
2 Depict the mapping of a few elements of the domain into elements

of the range for each of the Exercises 1(a), (c), and (d) above,

as was done in Figure 1-1d.

[sec. 1-1]
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3. Specify the domain and range of the following functions, Where

x, f(x) E R.

a) f: x---->x d) f: x----> x - 1
b) f: x--->x2 3

e) f: x--->
x
2

- 4f : x

4. If f: x --> 2x + 1, find

a) f(0)

b) f(-1)

c) .'(100)

a) f(4)

5. Given the function f: x ---> x2 - 2x + 3, find

a) f(0)

b) f(-1)

c) f(a)

d) f(x - 1)

6. If f(x) .1x2 - 16, find

a) f(4) c) f(5) e) f(a - 1)

b) (-5) cl) f(a) f) f(v)

4 98
7. If f: x x

3
- 12x

2
+ x - 20 has the domain (1, 2, 3, 4),

a) find the image of f, and b) depict f as in Figure 1-1d.

8. If x E: R, given the functions

f: x--->x

and
x-

g:

are f and g the same function? Why or why not?

9. What number or numbers have the image 16 under the following

functions?

a) f: x-->x 2

b) f: x---> 2x

c) f: x--* '4(2 + 112

1-2. The Graph of a Function.

A graph is a set of points. If the set consists of all points

whose coordinates (x, y) satisfy an equation in x and y, then

[sec. 1-2]
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the set is said to be the graph of that equation. If there is a

function f such that, for each point (x, y) of the graph, and for

no other points, we have. y = f(x), then we say, that the graph is

the graph of !Lhe function C. The graph is perhaps the most in-

tuitively illuminating representation of a function; it conveys at

a glance much important information about the function. The func-

tion
2

, (when there is no danger of confusion, we sometimes
,

omit the name of a function, as "f" in
2)

bolic graph shown in Figure 1-2a. We can look at the parabola and

get a clear intuitive idea of what the function is doing to the

elements of its domain. We can, moreover, usually infer from the

graph any /imitations on the domain and the range. Thus, it is

clear from Figure 1-2a, that the range of the function there

graphed includes only non-negative numbers, and in the function

f: - x
2 graphed in Figure 1-2b, the domain (x: -5< x <5)

and range (y: 0 < y < 5) are eacily determine.i, as shown by the

heavy segments on the x-axis anC y-axis, respectively.

Figure 1-2a.

Graph of the function f:

2 0

[sec. 1-2]
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Figure 1 -2b.

Graph of the function f: x---* N/25 -

Another illustration: the function

f: x/2, 2 <*x < 6

has damain A = (x : 2 < x < 6) and range B = (f(x) : 1 < f(x) < 3).

In this case we have used open dots at 2 on the x axis and at 1 on

the y-axis to indicate that these numbers are not elements of the

domain and range respectively. See Figure 1-2c.

Figure 1-2c.

Graph of the function f: x---:.x/2, 2 < x < 6.

2 1

(sec. 1-2)
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As might be exp 01 every possible gr is the F

a function. In partiLl., L,.-Pinition 1-1 requ,,. Ghat a function

map each element of its domain to only one element of its range.

In the language of graphs, this says that only one value of y

can correspond to any value of x. If, for example, we look at the

graph of the equation x
2
+ y2 = 25, shown in Figure 1-2d, we can

Figure 1-2d.

Graph of the set S = ((x,y) : x2 + y2 = 25).

see that there are many instances in which one value of x is

associated with two valuesof y, contrary to the definition of

function. To give a specific example, if x = 3, we have both

y = 4 and y = -4; each of the points (3, 4) and (3, -4) is on the

graph. Hence this is not the graph of a function. We can, however,

break it into two pieces, the graph of y =,125 - x2 and the

graph of y = - .125 - x2 (this makes the points (-5, 0) and (5, 0)

do double duty), each of which is the graph of a function. See

Figures 1-2e and 1-2f.

2 2
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Figure 1-2e.

Graph of y = - x2.

Figure 1-2f.

Graph of y = 425 - x
2

If, in the xy-plahe, we imagine all possible lines which are

parallel to the y-axis, and if any of these lines cuts the graph

in more than one point, then the graph defines a relation that is

not a function. Thus, in Figure 1-2g, (a) depicts a function, (b)

depicts a function, but (c). does not depict a function.

(a) (b) (c)

Figure 1-2g. Function or not?

[sec. 1-2]
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Exercises 1-2

. Which of the following graphs could represent functions?

2. Suppose that in (a) above, f: x* f(x) is the function whose
graph is depicted. Sketch

a) g: x--> f(x) b) g: x-->f(-x)
3. Graph the following functions.

a) f: x> 2x
b) f:

c) f: y = 4 x and x and y are positive integers.

d) f: x--* .1)1. x2

[sec. 1-2]
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4. Graph the following functions and indicate the domain and

range of each by heavy lines on the x-axis and y-axis respec-

tively.
,

a) f: = x and 2 < y < 3

b) f: - x-

c) f: x---> NiTand x < 4

1-3. Constant Functions and Linear Functions

We have introduced the general idea of function, which is a

particular kind of an association of elements of one^set with ele-

ments of another. We have also interpreted this idea graphically

for functions which map real numbers into real numbers. In Sections

1-1 and 1-2 our attention was concentrated on general ideas, and

examples were introduced only for the purposes of illustration. In

the present section we reverse this emphasis and study some particu-

lar functions that are important in their own right. . We begin with

the simplest of these, namely the constant functions and the linear

functions.

Let us think of a man walking north along a long straight road

at the uniform rate of 2 miles per hour. At some particular time,

say time t = 0, this man passed the milepost located one mile north

of Baseline Road. An hour before this, which we shall call time

t = -1, he passed the milepost located one mile south of Baseline

Road. An hour after time t = 0, at time t = 1, he passed the mile-

post located three miles north of Baseline Road. In order to form

a convenient mathematical picture of the man's progress, let us

consider miles north. of Baseline Road as positive and miles south

negative. Thus the man passed milepost -1 at time t = -1, mile-

post 1 at time t = 0, and milepost 3 at time t = 1. Using an ordin-

ary set of coordinate axes let us plot his position, as indicated

by the mileposts, versus time in hours. This gives us the graph

shown in Figure 1-3a.

In t hours the man travels 2t miles. Since he is already

at milepost, ,1 at time t = 0, he must be at milepost 2t 1 at

time t. Thispairing of numbers is an example of a linear function.

Now let us plot the man's speed versus time. For all values

[sec. 1-3]
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distance
in miles

3
time
in hours

Figure'173a. (--

Graph of the function f: t--4d = 2t + 1

of t during the time he is walking his speed is 2 miles per

hour. We have graphed this information in Figure 1-3b. When

Figure 1-3b.

Graph of the function g: = 2.

t = -1 his speed is 2, when t = 0 his speed is 2, etc.; with

each number t we assoCiate the number 2. This mapping,in which

the range contains only the one number 2, is an example of a con-

stant function.

Definition 1-2. If with each real number x we associate one

fixed number c, then the resultant mapping,

f:

[sec. 1-3]
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is called a constant function.

The discussion of constant functions can be disposed of in a

few lines. The function we just mentioned, for example, is the

constant function g: t).2. The graph of any constant function

is a line parallel to the horizontal x-axis. Constant functions

are very simple, but they occur over and over again in mathematics

and science and are really quite important. A well-known example

from physics is the magnitude of the attraction of gravity, which

is usually taken to be constant over the surface of the earth --

though, in this age, we must ror:ognize the fact that the attraction

of gravity varies greatly throughout space.

The functions we examine next also occur over and over again

in mathematics and science and are considerably more interesting

than the constant functions. These are the linear functions.

Since you have worked with these functions before, we can begin'at

once with a formal definition.

Definition 1-3. A function f defined on the set of all real

numbers is called a linear function if there exist real numbers m

and b, with m # 0, such that

f(x) = mx + b.

Example 1. The function f: + 1 is a linear function.

Here f(0) = 1, f(1) = 3, f(-1) = -1. This function was described

earlier in this section in term6 of t, with f(t) = 2t + 1. Its

graph can be found in Figure 1-3a.

We note that the graph in Figure 1-3a appears to be a straight

line. As a matter of fact, the graphs of all linear functions are

straight lines (that is why we call them "linear" functions); you

may be familiar with a proof of this theorem from an earlier study

of graphs. In any case, we here assume it.

An important property of any straight line segment is its

slope, defined as follows.

Definition 1-4. The slope of the line segment from the point

P(x
1,

y
1

) tip the point Q(x2' y
2
) is the number

Y1 ,

x2
1

provided xl # x2. If x1 = x2, the slope is not defined.

[sec. 1-3]
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Note that, by Definition 1-4, the slope of the'line segment

trom the point Q(x2, y2) to the point P(xi, yi) is

Y1 Y2
xi - x2

Y1 Y2 Y2 Y1
xi - x2 x2 - xi '

so it is immaterial which of the two points P or Q we take first.

Accordingly, we can speak of (y2 - y1)/(x2 - xi) as the slope of

the segment joining the two points, without specifying which comes

first.

What about the geometric meaning of the slope of a segment?

Suppose, for the sake of definiteness, we consider the segment

joining P(1, 2) and Q(3, 8). By our definition, the slope of this

segment is 3, since (8 - 2)/(3 - 1) = 3 (or (2 - 8)/(1 - 3) = 3).

Note that this is the vertical distance from P to Q divided by the

horizontal distance from P to Q, or, in more vivid language, the

rise divided by the run.

But

17

P(1,2)

rise (6 un i ts)

Figure 1-3c.

[sec. 1-3]
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Let us think of the segment PQ as running from left to right, so

that the run is positive. If the segment rises, then the "rise" is

positive and the slope, or ratio of rise to run, is positive; if,

on the other hand, the segment falls, then the "rise" is negative,

and the slope is therefore negative. The steeper the segment, the

larger is the absolute value of its slope, and conversely; thus we

can use the slope as a numerical measure of the "steepness" of a

segment.

We have stated that slope Ls not defined if xi = x2; in this

case, the segment lies on a line parallel to the y-axis. It is

important to distinguish this situation from the case yi = y2 (and

xi / x2), in which a slope is defined and in fact has value 0; the

segment is then on a line parallel to the x-axis.

If a line is the graph of a linear function f: + b,

then for any xi and x2, xi / x2, the slope of the segment joining

(x f(x
1
)) and (x f(x

2
)) is, by definition,

f(x
2

) - f(x
1

) (mx
2
+ b) - (mx

1
+ b)

m;
x2 - xi x2 - xi

in other words, the slope m is independent of the choice of xi

and x
2'

and is therefore the same for every segment of the line.

Hence we may consider the slope to be a property of the line as a

whole, rather than of a particular segment. We shall also simplify

our language a little and speak of the slope of the graph of a func-

tion as, simply, the slope of the function. We see, moreover, that

we can read the slope of a linear function directly from the expres-

sion which defines the function: the slope of f: + b is

simply m, the coefficient of x. Thus, the slope of the linear

function f: + 1 is 2, the coefficient of x, and, similar-

ly, the slope of g: x---* 5x is -5.

Since the slope of a linear function f: + b is the

number m / 0, it follows that the graph of a linear function is not

parallel to the x-axis. Conversely, it can be proved that any line

not parallel to either axis is the graph of some linear function.

We assume that this, also, is known to you from previous work, and

the proof is therefore omitted.

If the graphs of the functions fi: + bi and

[sec. 1-3]
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12: m2x + b.. 17%a-_-et, there must be a value of x w- ch satis-

fies the equatior_ x) = f2(x), that is,

171x + = m2x + b,_

Or" (n_ )x = -

/
1

m2, then x = ml - satiL

e7uation, ant th- '-- do indeed mee f ml m2 and b., = b
2'

functions f, u are the same, ici there is only

IT ml = m2 anc , the equation haz no solution, an ge lines

do not meet. We lq.ude that lines with the same slope , a paral

lel, and that twc lf es parallel tn each other but not t, tha-y-a=z

have equal slopes,.

Note that lin-- having zero slor_ that is, lines T .11e1 to

the x-axis, are gra- is of constant fuactions. On the other hand,

lines for which no Lope is defined, that is, lines parallel to

the y-axis, cannot be graphs of any functions because, with one

value of x, the graph associates more than one value -- in fact,

all real values.

Example 2. Find the linear function g whose graph passes

through the point with coordinates (-2, 1) and is parallel to the

graph of the function f: - 5.

Solution. The graph of f is a line with slope 3. Hence the

slope of g is the number 3, so that g(x) = 3x + b, for some as

yet unknown b. Since g(-2) = 1, this implies that 1 = 3(-2) + b,

b = 7, and thus g(x) = 3x + 7 for all x E R.

Exercises 1-3

1. Find the slope of the function f if, for all real numbers x,

a) f(x) = 3x - 7

b) f(x) = 6 - 2x

c) 2f(x) = 3 - x

d) 3f(x) = 4x - 2

2. Find a linear function f whose slope is -2 and such that

a) f(1) = 4 c) f(3) = 1

b) f(0) = -7 d) f(8) = -3

[sec. 1-3)
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3. Find th-2 SOTT

a) f(C) = L

b) f(2) = a

4. Find a funct_)r,:

a) P(1, 1), Q

b) P(-7, 4), C\-' o.

'ai lArear fumtion f if f (' -3 and

c) f(5) = 5

d) f(6) = -13

177.7..aph is the line joininE the points-

c) P(1, 3), Q(1, :)

d) P(1, 4), Q(-2, 4)

5. Given f: + f_nd a function whose graph is parallel

to the graph of: -oasses thrpugh the point

a) P(1, 4) c) P(1, 5)

b) P(-2, 3) d) P(-3, -)4)

6. If f is a con l'IlLztion find f(3) if

a) f(1) = 5

b) f(8) = -3

c) f(0) = 4

7. Do the points P . 4(3, -1), and s(7, -9) all lie on a sin-

gle line? ProvE yo11.2 assertion.

8. The graph of a 1 function f passes through the points

P (100, 25) and - 39) . Find

a) f(100.1) c) f(101.7)

b) f(100.3) d) f(99.7)

9. The graph of a 111_ ,ar function f passes through the points

P(53, 25) and Q(5-L, -19). Find

a) f(53.3) c) f(5)4.4)

b) f(53.8) d) f(52.6)

10. Find a linear func-,!- with graph parallel to the line with

equation x - 3y + = and pasaing through the point of inter-

section of the equations 2x+ 7y + 1 0 and

x - 2y + 8 = 0.

11. Given the points A(1, 2), B(5, 3), C(7, 0), and D(3, -1), prove

that ABCD is a parallelogram.

12. Find the coordinates of the vertex C of the parallelogram ABCD

if AC is a diagonal and the other vertices are the points:

a) A(1, -1), :3(3, 4), D(2, 3);

b) A(0, 5), ]b(1, -7), D(4, 1)

13. If t is a real number, show that the point P(t + 1, 2t + 1)

is on the graph .17' f: - 1.

[sec. 1-3]
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14. If you grapt the set of all ordered pairs of the for-.

(t - 1, 3t 1) for t R you will obtain the graph

linear funcalon f. Find f(0) and f(8).

15. If you graph the set of all ordered pairs of the form

(t - 1, t2 4- 1) for t R, you will obcain the graph 1-.f a

function f- Find f(0) and f(8).

16. If the slope of a linear function f is negative, pr-v6,7-Laat

f(x1) > f(x2) for xl < x2.

1-4. The Absolute-value Function

A function of importance in many branches of mathemati..-, Ls

the absolute-value function, f: for all x C H. T".7"..:=_.

absolute value of a number describes the size, or magnitude,

the number, without regard to its sign; thus, for example

121 = 1-21 = 2 (read "121" as "the absolute value of 2"). A common

definition of lxi is

Definition 1-5.

fx, if x > 0

lx1 =

-x, if x < 0.

A consequence of this definition Ls that no number has a nega-

tive absolute value (-x is positive when x is negative); in fact,

the range of the absolute-value function is the_entire set of non-
negative real numbers.

A very convenient alternative definition of absolute value is

the following:

Definition 1-6. 1x1 = .

Since we shall make use of this definition in what follows,

it is important that you understand it, and you must therefore be

quite sure of the meaning of the square-root symbol,N(--
. This

never Indicates a negative square root. Thus, for example,

..,5= 3, not -3. ..5Tis never negative. It is true

that every positive number has two real square roots, one of them

positive and the other negative, but the symbol has been

assigned the job of representing the positive root only, and if we

[sec. 1-4]
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wish to is,p:esent the negative rc. we Imutlt- t_3e a minus sign be-mre

the radical_ Thus, for example, c number 5 has two square

1-5-and

The g777.ph of the absalute-va 1:_e function f_s shown in F1g:7-

1-4a.

Figure 1-4a.

Graph of the function f:

You should be able to see, from the first definition of this func-

tion given above, that this graph consists of the origin, the part

of the line y = x that lies in Quadrant I, and the part of the line

= -x that lies in Quadrant II.

There are two important theorems about absolute values.

Theorem 1-1. For any 7,7wo real numbers a and b, labl =

lal.ibi.

Proof: lai.ibi = V(a= ,j/b2 r-- V/a2b2 = V/(ab)2 = labl.

Theorem 1-2. For an7 7,7wo real numbers a and b,

la + bi <j:z.1 + Ibi.

Proof: By :efiniti= 1-6, Theorem 1-2 is equivalent to

f(a + )2 a2 4- b2,

which is _auivaIent to

a + 2ab + ba< a2 2,;.,!_a2 \AT+
u
,2

[see. 1-41
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and hce to .2ab < 2\AW
or ,ab </a7 b

- (2)
equa7,-Lrm 2) is easy to rra-w.e If a and b have oppo-

-site z..2,_gns, then a2:;: < 0 and (2) hoLdz:L- -4ith the < sign. Otherytise,
we ha.I.e uz-b

Hence _:.11 any a± </a-f
and therefore L. 1ds. q.e.d.

Thus, fo7.7.---.-zraple, 1(-2)(3)1 = = 6 = 2 3 = 1-21 131,

2 + 3 = 131, and

+ 3 = 1-21 +

I(-2) (3)1 ----- 2 (. 5 =

1(-2)-+ (-3)1 = 'f:7-= 2

Exercises 2,4

1. a) For wl-m,t x C R is it true ti=t ,\Ac2 = x?
b) F.-3r what x R is it true that = -x?

2. a) For what x CR Is it true that Ix - 11 = x - 1?

b) For what x R is it true that Ix - 11 = -x + 1?

) Sketch a graph of f: x-->Ix 11-
d) Sketch a graph of f : Ix - 1.

3. Solve:

a) (xi ---- 14

b) Ix 21 = 7
c) Ix 31 = -1

4. For values of is 1 -..7ue that

a) Ix - al < 1

b.` - > 2

c) 'x 0.2

. 0.04

114- 0.22

5. 3how t 2>x.jxfforaIx E R.
6. Show t!..4, b1 < gip!.

7. Show b + to the greater of a
and b wrtaa a aiiilar ,axpression for the lesser of
a and b?

8. Sketch: y lxi + ix - 21. (Hi=:: you must consider, sepa-

[sec. 1-4-
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rately, the three possibilities x < 0, 0 ,< X < 2, and x > 2.)

9. If 0 < x < 1, we can multiply- both sides of the inequality

x < 1 by the Positive number x to obtain x2 < x, and we can

similarly show that x3 <
_2

,

4
.x

3
, and so on. Use this

result to show that if lx1 < 77hen lx2 + 2xl. < 31x1.

10. Show that, if 0 < x < k, heri x
2

kx. Henct- show thglt, if

Ixl < 0.1, then Ix
2

- 3x <

11. For what values of x is it tfue that tx2 + 2xl < 2.7J011W

1-. Composition of Functions

Our c-r7ideration of functions, to this point, has been con-

cerned witn individual functions -4,ith their domains and ranges,

and with their graphs. We mw =raider cerpain things that can be

done with two or more functions somewhat as, when we start school,

we first learn numbers and then 1=-P-rn how to combine them in various

ways. There is, as a matt=v of fart, a whole algebra of functions,

just as there is an algebra of numbers. FunaPians can be added,

subtracted, multiplied, ant divided. The sum of two functions f

and g, for example, is L---ined t be the function

f-g: + g(x)

which has for tomain the ii.r_section of the domains of f and

g; there are similar defia,',..ons, which you can probably supply

yourself, for the different, product, and quotient e two func-

tions. Because, for examplo, the number (f+g)(-,:o, can ne found by-

adding the numbers f(x ano ex-, it follows ttrArt thinpert af the

algebra of functirsrF "2 so 'iJch 1-Lte the familiar algeora, of num-

bers that it would on- pay s to examine it carefully. There is,

however, ane dmportan-- operation in this algebra of functions that

has no counterpart in t.he algebra of numbers: the operation of

composition.

The basic idEa of composition of two functions is -that of a

kind of "chain reaction" in which the functions occur one after the

other. Thus, an automobile driver knows that the amou=o me dezzesees

the accelerator oEdal controls the amount of gasoline Led o the

cylinders and tnis in turn affects the speed of the car. 4:gain,

[sec_
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the momentum of a rocket sled when it is near thE end of its runway

depends on the velocity of the sled, and this in turn depends on

the thrust of the propelling rockets.

Let us look at a specific illustration. Suppose that f is

the function - 1 (this mfght be a time-velocity function)

and suppose that g is the function x---i0.2)e- (this might be a ve-

locity-energy function). Let us follow what =a:opens when we "aonly"

these two functions in successi7zo--first f, tzLen g--to a parti-

cular number, say the number 4. In brief, let 1:s first calculate

f(4) and then calculate g(f(4)). (Read this "g of f of 4".)

First calculate f(4). f is the function x---*3x - 1,

f(4) = 3.4 - 1 = 11. Then calcL.late g(f(4)), or g(l1). Since g

is the function x--->2x2 , g(li) = 2 11
2
= 242. Thus g(f(t,Y =

g(11) = 242. In general, g(Cx)) is the result ve obtain when we

first "apply" f to an element i and then "s7p11y" g to tme

result. The function x--* g(f(1,-..)) is then called a commos_ite ,mf

f and g, and denoted gf.

We say a coMposite rather tT:'Imn the composiz-e tecause the order

in which these functions occur 4-Ls in=tarr7. 7o sae that ttriz is

the case, start with,tte number 4 ragain, hat t:-__Ls time fizt7 4)

first, then f(g(4)). The results .ere as follzmz:

g(4) = 2 42 = 32 and f(g(4)) f(32)== 3 - 32 - ] 9.
Clearly g(f(4)), which is 242, L the f(g(b)), which

is 95.

Warnin5. When we write "gf" .qqe mean that v f is to be appited

before g and then g is applied to f(x). 3incs "f" is wri'zten

after "g" is written, this can easly lead to confusion. Yol. can

avoid the confusion by thinking of the equation (gf)(x)

It may be helpful to diagra-m_ the above process as foilowr:

If gf is the function x---* g f(xV n.nd fg fs function

x>f(g(x)) we have

gf

4 ---1--->11 g >22

[sec. l-5]
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Note particularly that fg is not the product of f and g

mentioned earlier in this section. When we want to talk about this

product, f g, we shall always use the dot as shown. Incidentally,

for the above example, we have (f g)(4) . £(4) g(4) = 11 32 =

352 = 32 11 g(4) r(4) (g f)(4).

To generalize this.illustration, let us use x instead of 4

and find algebraic expressions for (gf)(x) and (fg)(x). We do this

as follows:

(gf)(x) = g(f(x)) = g(3x 1) = 2.(3x - 1)2

and (fg)(x) f(g(x)) = f(2x2) = 3(2x2) - 1 = 6x2 - 1.

Again, note that (gf)(x) and (fg)(x) are not the same so the

function gf is not the same as the function fg. In symbols,

gf / fg. If, now, we substitute 4 for x we obtain

(gf)(4) = 2(3 4 - 1)2 242

and (fg)(4) . 6 42 - 1 = 95

These l'esults agree with the ones we obtained above.

Wa are now ready to define the general process that we have

been 12.1ustrating.

Dafinition 1-7. Given two functions, f and g, the func-

tion x---> g(f(x)) is called a composite of f and g and denoted

gf. The domain of gf is the set of all elements x in the domain

of f for which f(x) is in the domain of g. The operation of

forming a composite of two functions is called composition.

Example 1. Given that f: - 2 and g: x---4x5 for all

x E R, find

a) (gf)(x) c) f(g(x) + 3)

b) (ff)(x) d) f(g(x) - f(x))

Solution:

a) (gf)(x) = g(f(x)) = g(3x - 2) = (3x - 2)5

b) (ff)(x) = f(f(x)) = f(3x - 2) = 3(3x - 2) - 2 = 9x - 8

c) f(g(x) + 3) = f(x5 + 3) = 3(x5 + 3) - 2 = 3x5 +-7

d) f(g(x) - f(x)) = f(x5 - 3x + 2) = 3(x5 - 3x + 2) - 2 =

3x5 - 9x + 4

If we think of a function as a machine with an input and an

output, as suggested in Section 1-1, we see that two such machines

can be arranged in tandem, so that the output of the first machine
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feeds into the input of the second. This results in a "composite"

process that is analogous to the operation of composition. It is

illustrated in Figure l-5b. In this figure the machine for f and

the machine for g have been housed in one cabinet. This compound

machine is the machine for gf.

/
oritr f (x)

Figure 1-5b.

Schematic representation of the composition of functions.

Note that the machine for gf will jam if either of two things

happens:

a) It will jam if a number not in the domain of f is fed

into the machine.

b) It will jam if the output f(x) of f is not in the

domain of g.

Thus, once again we see that the domain of gf is the set of all

elements x in the domain of f for which f(x) is in the domain

of g.

We have noted that the operation of comp6zition is not commu-

tative; that is, it is not always true that ig = gf. On the other

hand, it is true that this operation is associative: for any

three functions f, g, and h, it is always true that (fg)h

f(gh). We shall not prove this theorem; we shall however, illus-

trate its operation by an example.

Example 2. Given f: x---4.x2 + x + 1, g: + 2, and

la: 3, find

[sec. l-5]
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a) fg c) (fg)h

b) gh d) f(gh)

Solution:

a) (fg)(x) = (x + 2)2 + (x + 2) + 1 = x2 + 5x + 7, so

fg: x--> x2 + 5x + 7

b) (gh)(x) = (-2x - 3) + 2 = -2x - 1, so gh: x---> 2x - 1

c) (fg)h: ( 2x - 3)2 + 5(-2x - 3) + 7

d) f(gh): x--> ( 2x - 1)2 + (-2x - 1) + 1

It is not altogether obvious from these expressions that (fg)h and

f(gh) are the same function. But if you will simplify the expres-

sions you will see that they are indeed the same.

Exercises 1-5

1. Given that f: - 1 and g: + 2 for all x C R,

find

a) (fg)(-2) e) (fg)(x)

b) (gf)(0) (gf)(x)

c) (gg)(1) g) (fg)(x) - (fg)(1)

d) (ffg)(1)
x - 1

if x / 1

2. Let it be given that f: + b and g: x--* cx + d for all

x E R.

a) Find (fg)(x).

b) Find (gf)(x).

c) Compare the slopes of fg and gf with the slopes of f and

d) Formulate a theorem concerning the slope of a composite of

two linear functions.

3. Suppose that f: x-----i0.1/x for all real numbers x different

from zero.

a) Find (ff)(1), (ff)(-3), and (ff)(8).

b) Describe ff completely.

4. Let it be given that j: x---3.x and f:x---->x + 2 for all x E R.

a) Find fj and jf. [First find (fj)(x) for all x E: R.]
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b) Find a function g auch that fg = j. [That is, find g

such that (fg)(m) = :(m) for all x C R.]

c) 7ind a function h such that hf = j. Compare your result

ith that of (b).

5. a) 2f f: amd g: z--->x3, find expressions for (fg)(x)

and (gf)(x).

b) If f: x--->ma and g: x---->xn, find expressions for (fg)(x)

and (gf)(x.

6. a) If f: x
>2

ai g: x--->x3, find an expression for (f.g)

(x), where T-g im the Product of f and g; that is,

(f.g)(x) = f(T, g(x). Compare with Exercise 5(a).

b) If f: ar.d g: x----->xn for all x C R (where m and

n are positi7ce integers), find an expression for (f.g)(x).

Compare with 77-=-cise 5(b).

7. Suppose that f: 2, g: - 3, and h: x--->x2 for

all x ER. =-.heessions for

a) (f.g)(x) d) (gh)(x)

b) [(fg)h](x) e) [(fh).(gh)](x)

c) (fh)(x)

8. In Exercise 7, compare your results for (b) and (e). They

should be the sp-m= Do-you think this result is true for any

three functionm f, g, and h, that map real numbers into

real numbers?

9. Would you say that f(g.h) = (fg)-(fh) for any three functions

f, g, and h, ttat map real numbers into real numbers

lC- State which of the following will hold for all functions f,

g, and h, that map real numbers into real numbers:

= fh + gh

= fg + fh

11. Prove that the aet of all linear functions is associative under

comnosition; that is, for any three linear functions f, g,

and h,

f(gh) = (fg)h

4 0
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1-6. Inversion

Quite frequently in science and in everyday life we encounter

quantities that bear a kind of reciprocal relationship to each

other. With each value of the temperature of the air in an automo-

bile tire, for example, there is associated one and only one value

of the pressure of the air against the walls of the tire. Converse-

ly, with each value of the pressure there is associated one and

only one value of the temperature. Two more exaMples, numerical

ones, will be found below.

Suppose that f is the function x---o.x + 3 and g is the

function x--ox - 3. Then the effect of f is to increase each

number by 3, and the effect of g is to decrease each number by

3. 'Hence f and g are reciprocally related in the sense that

each undoes the effect of the other. If we add 3 to a number and

then subtract 3 from the result we get back to the original number.

In symbols

(gf)(x) = g(f(x)) = g(x + 3) = (x + 3) - 3 = x.

Similarly,

(fg)(x) = f(g(x)) = f(x - 3) = (x - 3) + 3 = x.

As a slightly more complicated example we may take

f: 2x - 3 and g:

Here f says "Take a number, double it, and then subtract 3." To

reverse this, we must add three and then divide by 2. This is the

effect ok the function g. In symbols,

(gf)(x) = g(f(x)) = g(2x - 3) =(2x + 3

(fg)(x) = f(g(x)) = f(24-2) -
^x

3 = x.
+ 3

In terms of our representation of a function as a machine, the

g machine in each of these examples is equivalent to the f machine

running backwards; each machine then undoes what the other does,,

and if we hook up the two machines in tandem, every element that

gets Orough both will come out just the same as it originally went

Similarly,

in.

We now generalize these two examples in the following defini-

tion of inverse functions.
41
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Definition 1-8. If f and g are functions so related

that (fg)(x) = x for every element x in the domain of g and

(gf)(y) = y for every element y in the domain of f, then f

and g are said to be inverses of each other. In this case both

f and g are said to have an inverse, and each is said to be an

inverse of the other.

As a further example of the concept of inverse functions let

us examine the functions f: x-----).x3 and g: x---->2,57 In this case

(fg)(x) = f(g(x)) = f( 3,5) = ( 15)3 = x

(gf)(x) = g(f(x)) = g(x3) = = xand

for all x E R.

If a function f takes x into y, that is, if y = f(x),

then an inverse g of f must tak& y right back into x, that

is, x = g(y). If we make a picture of a function as a mapping,

with an arrow extending from each element of the domain to its

image, as in Figure 1-6a, then to draw a picture of the inverse

function we need merely reverse the arrows, as in Figure 1-6b.

Figure 1-6a. A function.

yi

A

Figure 1-6b. Its inverse.

We can take any mapping, reverse the arrows in this way, and

obtain another mapping. The important question for us, at this point,

is this: If the original mapping is a function, will the reverse map-

ping necessarily be a function also? In other words, given a
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function, does there exist another function that precisely reverses

the effect of the given function? We shall.see that this is not

always the case.

The definition of a function (Definition 1-1) requires that

to each element of the domain there wrrespalds exactly one element

of the range; it is perfectly all right for several elements of

the domain to be mapped onto the same element of the range (the

constant function, for example, maps all of its domain onto one

element), but if even one element of the domain is mapped onto more

than one element of the range, then the mapping just isn't a func-

tion. In terms of a picture of a function as a mapping (such as

Figures 1-la and 1-1c), this means that no two arrows may start

from the same point, though any number of them may end at the same

point. But if two or more arrows go to one 'point, as in Figure

1-6c, and if we then reverse the arrows, as in Figure 1-6d, we

will have two or more arrows startin,g from that point (as in Figure

1-1b), and the resulting mapping is not a function. Since the word

"inverse" is used to describe only a mapping which is a function,

we can conclude that not every function has an inverse.

A

Figure I-6c.

Y
2 3

43
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A specific example is furnished by the constant function f: X---4a;

since f(0) = 3 and f(1) = 3, an inverse of f would have to map

3 onto both 0 and 1. By definition, no function can do this.

The preceding argument shows us just what kinds of functions

do have inverses. By comparing the situation in Figures 1-6a and

1-6b with the situation in Figures 1-6c and 1-6d, we can see that

a function has an inverse if and only if no two arrows go to the

same point. In more precise language, a function f has an in-

verse if and only if xl / x
2

implies f(x
1
) / f(x

2
) A function of

this sort is often called a "one-to-one" function. A formal proof

of this Theorem will be found in Chapter 4.

Exercises 1-6

1. Find an inverse of each of the following functions:

a) x----*x - 7 c) x--->l/x

b) x >5x+9
2. Solve each of the following equations for x in terms of y

and compare your answers with those of Exercise 1:

a) y = x - 7 c) y = l/x

y = 5x + 9

3. Justify the following in terms of composite functions and in-

verse functions: Ask someone to choose a number, but not p)

tell you what it is. "Ask the person who has chosen the number

to perform in succession the following operations. (i) To

multiply the number by 5. (ii) To add 6 to the product.

(iii) To multiply the sum by 4. (iv) To add 9 to the product.

(v) To multiply the sum by 5. Ask to be told the result of

the last operation. If from this product 165 is subtracted,

and then the difference is divided by 100, the quotient will be

the number thought of originally."

(W. W. Rouse Ball).

4
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1-7. Summary of Chapter 1.

This chapter deals with functions in general and with the con-

stant and linear functions in particular.

A function is an association between the objects of one set,

called the domain, and those of,another set, called the range, such

that exactly one element of the range is associated with each ele-

ment of the domain. A function can be represented as a mapping

from its domain to its range.

The graph of a function is often an aid to understanding the

function. A graph is the graph of a function if and only if no line

parallel to the y-axis meets it in more than one point.

A constant function is an association of the form f:

for some fixed real number c, with the set of all real numbers as

its domain. The graph of a constant function is a straight line

parallel to the x-axis.

A linear function is an association of the form f: + b,

m / 0. The domain and the range df a linear function are each the

set of all real numbers. The graph of a linear function is a

straight line not parallel to either axis, and, conversely, any such

line is the graph of some linear function.

The slope of the line through P(x
l

y
1
) and Q(x

2'
y
2
) is

'

Y2 Y1
x2 - xi

if xi x2. If xi = x2, no slope is defined, and the line is paral-

lel to the y-axis. Lines with the same slope are parallel, and

parallel lines which have slopes have equal slopes. The slope of

the graph of the linear function f: + b is the coefficient

of x, namely the constant m.

The absolute-value function is conveniently defined as

f: x--->vg. The domain of this function is the set of all real

numbers and the range is the set of all non-negative real numbers.

If f and g are functions, then the composite function fg

is fg: x-----*f(g(x)), with domain all x in the domain of g such

that g(x) is in the domain of f.

Oiven a function f, if there exists a function g such that
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(gf)(y) = y for all y in the domain of f and (fg)(x) = x for

all x in the domain of g, then g is an inverse of f. Not all

functions have inverses; those that do are called one-to-one func-

tions.

Miscellaneous Exercises

1. Which table defines a function f: x--->y?

a) x
I

1 2 3 b) x 1

y 1 2 2

2 2

1 2 3

2. Which graphs represent functions? Which of these functions hav6

inverses?

b )

A

4 6

f )



36

3. What is the constant function whose graph passes through (5, 2

4. For what values of a, b, and c, will

f: x---*ax2 + bx + c be a constant function?

5. What is the constant function whose graph passes through the

intersection of Ll: y = 3x - 2, and L2: 3y - 4x + 5 = 0?

6. At what point do Ll: y = ax + 4, and L2: y = 5x + b, intersect?

Do they always intersect?

7. Write the linear functions fl and f2 whose graphs intersect the

x-axis at P(-3, 0) at angles of 45° and -45°, respectively.

8. If 10x + y - 7 = 0, what is the decrease in y as x increases

from 500 to 505? What is the increase in x as y decreases

from -500 to -505?

9. Write the equation of the line through (0, 0) which is parallel

ta the line through (2. 3) and (-1, 1).

10. Wnite the equation of he line which passes through the inter-

section of Ll: y = 6x --k, and L2: y = 5x + k, and has slope

5/5.

11. Wre the equation of the line which is the locus of potnts

equtdistant from Ll: 6x + 3y - 7 = 0 and L2: y = -2x + 3.

12. Write the equation of the line through (8, 2) which is perpen-

dicular to (has a slope which is the negative reciprocal of the

slope of) Ll: 2y = x + 3.

13. In a manufacturing process, a certain machine requires 10

minutes to warm up and then produces y parts every t hours.

If the machine has produced 20 parts after running 1/2 hour and

95 parts after running 1 3/4 hours, find a function f such

that y = f(t), and give the domain of f.

14. If ABCD is a parallelogram with vertices at A(0, 0),

B(8,0), C(12, 7), and D(4, 7), find

a) the equation of the diagonal AC;

b) the equation of thia diagonal BD;

c) the point of interBection of the diagonals.

15. Repeat Problem 14, using parallelogram ABCD with vertices at

A(0, 0), B(xl, 0), C(x2, y2), and D(x2 - xl, y2).

16. Given the constant functions f: g: and h:

determine the compound functions f(gh) and f(hg). Does this

4 7
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result indicate that gh = hg?

17. Find an inverse of the linear function f: + b.

18. Find a function f such that ff = f.

19. Sketch a graph of:

a) f(x)=JfL
b) Ix! +
c) y = Ix - 11 - Ix + 11

20.. If f(x) = 2x - 5 and g(x) = 3x + k, determine k so that fg

gf.

21. If f(x) = x2 and g(x) = i6 - x2, find the domains of fg and

gf.

48



Chapter 2

POLYNOMIAL FUNCTIONS

2-1. Introduction and Notation

In this chapter we shall be concerned with functions that are

defined by expressions of the form

a xn + a xn-1
n-1 + + alx +

where n is a positive integer or zero, the coefficients a
1
(i=0 1

2,3,...,n) are real numbers, and an / 0. Such expressions are called
polynomials, and the functions which they define are called polynomial
functions. The number n is called the degree of the polynomial.

Examples:

(1) 5x
3

- 3x
2
+ x + 10 is a polynomial of degree 3.

12- 3
(2) f: x -7 X 2 is a polynomial function of degree 4.

In the preceding chapter we discussed polynomial functions of

the types

f : x> c

and

f: + b, m / 0,

which are called constant and linear C.inctions, respectively. It

is natural to turn nexu to quadratic functions, that is, polynomial

functions of degree 2,
2f: x-->ax, + bx + c, a / 0,

where a, b, and c are constants. Such functions occur fre-

quently, as, for example, in the study of the flight of projectiles,

and are familiar to you. The most common way to describe functions

of this kind is by equations such as

y = 2x2 - x - 15, or (1)

f(x) = -2x2 - x + 6. (2)

Each of these functions can be represented pictorially by a graph

(See Figures 2-1).

. An immediate concern is the location of the points, if any,

where the graphs of these functions intersect the horizontal axis,

that is, the points (x, f(x)) where f(x) = O. We have at hand

4 9
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y = 2x2 x - 15

Figure 2-1.

the means of doing this,

f(x) = -2x2 x + 6

Graphs of quadratic

namely the quadratic

functions.

formula,

- b t N/b2 - 4ac
x 2a

Applying this formula to Equation (1), we learn that y 0 when

x = 3 or when x = - 4. Using function notation, we can say:
`

If f:
2 - x - 15, then f(3) = 0 and f(4) = 0. The

numbers 3 and -?1 in the domain of the function are mapped asto 0

by f, and hence are called the zeros of f.

Definition 2-1. Let f be a function. If a is a.number

in the domain of f with the property that f(a) = 0, then a is

called a zero of f.

The set of all_zeros of a function f is the set of all

such that f(x) = 0; that is,

the set:of zeros of f = f(x) = 0).

This is just another way of saying"that the zeros of f are the

roots or solutions of the equation f(x) = 0.

We already know how to find the zeros of polynomial functions

of the first and second degree.

[sec, 2-1)
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If f: x -->mx + b, m / 0, then f(- /2) = 0.
m -b N/b2 4ac

---If f: x i*ax
2 + bx c, a / 0, then f(

2a
Upon examining these solutions, mathematicians noticed that the

zeros are expressed in terms of the coefficients by formulas involv-

ing only the rational operations (addition, subtraction, multipli-

cation, di,ision) and the extraction of roots of numbers, and

believed that it might be possible to express the zeros of Danctions

of higher degree than the quadratic in the same manner. In the

first half of the sixteenth century such formal expressions for the

zeros of the third and fourth degree polynomial functions were

obtained by Italian mathematicians. Unfortunately, these formulas

are to) complicated to be of practical value in mathematical analy-

sis. Mathematicians usually find it easier even in theoretical

questions to work with the polynomial rather than with any explicit

expression .i'or the zeros.

For the bettcr part of two centuries, mathematicians tried to

discover methods for solving equations of the fifth and higher

degrees by formulas analogous to those for the quadratic, cubic,

and quartic (also called biquadratic) equations. The attempt was

doomed to failure. In 1824, a young Norwegian mathematician, Niels

Henrik Abel, proved that it is generally impossible to express the

zeros of a polynomial function of degree higher than four in the

desired way. This does not mean that mathematicians are unable to

obtain any formal solutions for equations of higher degree, but

only that it is impossible to obtain general formulas for solutions

in terms of the rational operations and the extractions of roots

alone. Although the history of the pn)blem seems to end in failure,

the fact Is that the methods developed by Abel and his equally

young French contemporary, Evariste Galois, have found the widest

and most useful applications in fields remote from the problem

they considered. It is often that way in mathematics; the methods

used to attack a problem frequently have value long after the prob-

lem itself has lost its special significance. (There are a number

of interesting accounts of the historical developments mentioned

above; see the references listed in the bibliography at the end of

this chapter.)

[sec. 2-1]
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Even though we shall not develop any general forthulas for the

zeros of a polynomial function, we shall be able to obtain a great

deal of useful information about them. In particular, there are

many methods for determining the zeros to any desired decimal accu-

racy, and we shall examine some of these.

Before beginnIng the general discussion of polynomial functions

of degrees greater than two,we must give some attention to the nota-

tion we are to use. Any polynomial function will be denoted by a

lower case letter, commonly f, although we shall occasionally

need additional letters such as g, q, r, etc. If we wish to

emphasize the degree of the function, we shall indicate it by an

appropriate subscript. Thus f3 will indicate a polynomial, function

of degree 3, while fn and fo will indicate polynomial functions of

degrees n and 0, respectively. The coefficients of the poly-

nomial will be written as a
i
with the subscript i equal to the

exponent of the power of x in that term. Thus, in this notation

we write:

fl: x + ao, al / 0, for the linear function;

f
2*

x -->a
2
x2 + alx + a0, a2 / 0, for the general quadra-

tic function;

fn: x n + an_ix
n-1

+ + alx + a
0'

a
n /'0, for the

general polynomial function of degree n. The three dots in this

formula are the conventional representation of the omitted terms

of the polynomial.

Definition 2-2. A polynomial function of degree n, where

n is a positive integer or zero, is an association

fn: x--4.anxn + an_lxn-1 + + alx + a
0'

a
n
/ 0, where

the domain is the set R of all real numbers, and the range is the

set (or a subset) of real numbers

fy: y = f(x), x E R).

Example 1. The function f2: x -->x2 + 1 is a polynomial of

degree 2 with range (y: y > 1). (Technically, the word "polynomial"

is the name of the expression -- in this case x2 + 1 -- which des-

cribes the polynomial function. It is common practice, however, to

use the word "polynomial" in the place of "polynomial function"

when the context makes it clear that we are really talking about

[sec. 2-1]
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the function.)

While the coefficients a
i

(1 = 0, 1, n) in general stand

for any real numbers, in our examples and exercises they will

usually represent integers. Near the end of the chapter we shall

extend the domain and range of polynomial functions and the coeffi-

cientsof f(x) to the complex number system.

Before concluding this section, we note 'that the degree of a

polynomial fUnction is uniquely defined. That is, if for all real

x a given polynomial function can be expressed as

x * anxn + a
n-1x

n-1
+ + a

1
x + a

0

and also as

x * bmxm + b
m-1

xm-1 ,+ + b
1
x + b

0,
then n must equal m, and the corresponding coefficients must

also be equal,

ai bi (i = 0, 1, 2, ..., n).

We shall not prove this, but we state it for the sake of complete-

ness.

If the degree of a polynomial function is 0, then the function

is

f: x --4.a a / 0,
0' 0

which we recognize to be a constant function. It is useful for

certain purposes to consider the special constant function that

maps every real number into 0,

f: x * 0,

as a polynomial function. f(x) is then called the zero polynomial

(0 polynomial). The zero polynomial has no degree and is not a

polynomial of degree zero. To summarize,

f: x * a
0'

a
0
/ 0, is a polynomial function of degree 0;

f: x 0 is the 0 polynomial, to which we assign no degree.

2-2. Evaluation of f(x) at x = c.

Most of our work with polynomial functions will be concerned

with two related problems:

Problem 1. Given a function f and any number x in its

domain, find f(x).

[sec. 2-2]
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Problem 2. Given a function f and any number y in its

range, find DC : f(x) = y].

In later sections we shall study the second, and harder, of

these two problems. In this section we study Problem 1. To graph

polynomial functions PTITI find the solutions of polynomial equations,

it is important to evaluate a given f(x) for different values of

x. For example, to gramh
3

f: 3x -
2 + x - 6,

we may want the values f(x) at x = 0, 1, 2, 3, etc. Of course, we

may obtain these values by direct substitution, doing all of the

indicated multiplications and additi,ons. For most values this is

tedious. Fortunately, there is an easier way which we shall call

synthetic substitution_ To understand the method, we shall analyze

a few easy examples.

Example 1. Find the value of

f(x) = 2x
2

- x + 3 at x = 4.

We write

f(x) = (2x - 1)x + 3.

When x = 4, this becomes

[2(4) - 1]4 + 3 = 31.

Note that to evaluate our expression, we can

a) Multiply 2 (the coefficient of x2) by 4 and add this

product to -1 (the coefficient of x);

b) Multiply the result of (a) by 4 and add this product to

to 3 (the constant term).

Example 2. Find f(3), given

f(x) = 2x3 - 3x2 + 2x + 5.

f(x) may be written

(2x2 - 3x + 2)x + 5

or [(2x - 3)x + 2]x + 5.

To find the value of this expression when x = 3, we may start

with the inside pareLTheses and

a) Multiply 2 (the coefficient of x3) by 3 and add this

product to -3 (the coefficient of x2);

b) Multiply the result of (a) by 3 and add this product

to 2 (the coefficient of x);
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c) Multiply the result of (b) by 3 and add this product

to 5 (the constant term).

The result is f(3) = 38.

These steps can be represen'ced conveniently by a table whose

first row consists of the coefficients of the successive powers of
x in descending order: (The number at the far right is the parti-

cular value of x being substituted.)

2 -3 2 5

(2 3) = 6

/'(3
3) = 9 ,(11 3) 33

3
a

112 38

When this tabular arrangement is used, we proceed from left to

right. We start the process by rewriting the first coefficient, 2,

in the third row. Each entry in the second row is 3 times the en-

try in the third row of the preceding column. Each entry in the

third row is the sum of the two,entries above it. We note that the

result, 38, can be checked by direct substitution.

Now let us consider the general cubic polynomial

f(x) = a3x3 + a2x2 + alx + a
0'

a
3
/ 0.

When x = c, we have

f(c) = a3c 3
+ a2c2 + alc + a

0'
which may be written

f(c) = [(a
3
c + a

2
)c + a

1
]c + a

0'
Again the steps employed in the procedure can be represented in

tabular form:

a
3

a
2

a a Lg_1 0

a
3
c (a^c + a

2
)c [(a3c + a2)c+a1]c

0

a
3

a
3
c 1- a

2
(a

3
c + a

2
)c + a

1
I f(c)

As in earlier examples, the number being substituted is written to

the right of the entire array.

Let us do a few more examples.

Example 3. Given f(x) = 3x 3
- 2x2 + x - 6, determine f(2).
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3 -2 1 -6

6 8 18

3 4 9 I
12

Now 12 is the result sought, namely f(2). This may be checked by

direct substitution:

f(2) = 3(2)3 - 2(2)2 + 2 - 6 = 24 - 8 + 2 - 6 = 12.
x4

Example 4. Given f(x)
3x2 5, determine f(3).

Note that a3 0 and that this number must be written in its appro-

priate place as one of the detached coefficients in the first row.

1 0 -3 2

3 9 18

1 3 6 20

-5

60

1 55

Thus, f(3) = 55, which, as before, may be checked by direct substi-

tution.

With a little care and practice, the second line in the above

work can often be omitted when c is a small integer.

...21.ELJno,p.5.. Given f(x) = x4 - x3 - 16x2 + 4x + 48, evaluate

f(x) for x = -3, -2, -1, 0, 1, 2, 3, 4, 5.

Solution. We detach the coefficients. In order to avoid

confusion, it is sometimes ,:.,nvenient to write them down at the

bottom of a sheet of scratch paper and slide this down, covering

at each step the work previously done. As suggested above, we omit

the second line in each evaluation and write the value of x we

are using adjacent to the answer. The results appear in Table 2-1.

The last two columns now become a table of f(x) and x. Note

that the row that corresponds to x = 0 has the same entries as

the coefficient row. Do you see whyl

5 6
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Table 2-1

Ccmputation by Synthetic Substitution

Coefficiente

1 -1 -16 4

1 -4 - 4 16

. 1 -3 -10 24

1 -2 -14 18

1 -1 -16 4

1 o -16 -12

1 1 -14 -24

1 2 -10 -26

1
4

3 - 4 -12

1 k 4 24

48

0

0

30

48

36

0

-30

o

168

-3

-2 -

-1

o

1

2

3

4.

5

f(x) x

The method described and illustrated above is often called

synthetic substitution or synthetic divlsion in algebra books. The

word "synhetic" literally means "put together," so you can see how
it is that "synthetic substitution" is appropriate here; in Section
2-4, you will see why the process is also called "division." The

method gives a quick and efficient means of evaluating f(x), and
we are now able to plot the graphs of polynomials more easily than

would be the case if the values of f(x) had to be computed by
direct substitution.

Exercises 2-2

Evaluate the following polynomials for the given values of x.

1. f(x) = x4 + x - 3; x = 1, 3.

2. f(x) = x2 - 3x3 + x - 2; , x = -1, -3, 0, 2, 4.
1 1 ,3. g(x) = 3x3 - 2x2 4, 1;
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48

31 ll
4. r(x) = 6x3 - 5x2 - 17x + 6; X 2.-- 'n - n7, .

5. s(x) = 6x3 - 29x2 + 37x - 12; x = 6, 1, 2, 3, 4.

6. If f(x) = 2x3 - kx2 + 3x - 2k, for what value of k will

f(2) = 4?

7. Evaluate 3x4 - 97x3 + 35x2 + 8x + 2 for x = 1/3

a) directly,

b) by synthetic substitution.

8. Evaluate xl° - 4.2(3 + 10 for x = 2

a) directiy,

b) by synthetic substitution.

2-3. Graphs of Polynomial Functions

As stated at the end of Section 2-2, synthetic substitution

greatly simplifies the problem of graphing.

Example. Plot the graph of the polynomial function

f: x 2x
3

- 3x
2 - 12x + 13

We prepare a table of values of x and f(x) by synthetic

substitution, and then plot the points whose coordinates (x, f(x))

appear in the table. The work is shown in Table 2-2.

Table 2-2

Finding Coordinates (i, f(x)) by Synthetic Substitution

Coefficients

-3

2 -9

2 -7

2 -5

2 -3

2 -1

2 1

2 3

2 5

-12 13

-32

9 -2

20 -1

13 0

0 1

- 7 2

it 3

45 4

f(x) x

2

7

-12

-13

-10

- 3

8.
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From the table we observe that the points (x, f(x)) to be

plotted are (-3, -32), (-2, 9), (-1, 20), etc. These points are

located on a rectangular coordinate system as shown in Figure 2-3a.

Note that we have chosen different scales on the axes for conven-

ience in plotting.

f (X)

45

40

35

30

25

20

15

(0113)
10

(-2,9)

-3 -2 -1

(-3,-32)e

® (z, -7)

Figure 2-3a.

Points un the graph of f: x >2x3 - 3x2 - 12x + 13.

5 9
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Now the problem is how best todravithe-graph. An inspection

of the given polynomial 2x
3 - 3x

2 - 12x 1- 13, shows that for any

real value of x a value of f(x) exists. We shall assume that the

graph is a continuous curve with no breaks or holes in it. But the

question still remains whether the points we have already plotted

are sufficient to give us a fairly accurate picture of the graph,

or whether there may be hidden "peaks" and "valleys" not shown thus

far. .We are not in a position to answer this question categorically

at present, but we can shed further light on it by plotting more

points between those already located. By use of fractional values

of x and the method of synthetic substitution, Table 2-2 is

extended as shown in Table 2-3.

Table 2-3

Additional Coordinates of Points on the Graph of f

Coefficients

2 -3 -12 13

2

2

2

2

2

2

2

-6

-4

-2

0

2

8

- 3

-10

-13

-12

7

2

- 7

35
7!"

18

13

5

2
2

20

3

1

1

3

5
7
7
72-

f(x)

When we fill in these points on the graph, it appears that if

we connect the points by a smooth curve, we ought to have a reason-

ably.accurate picture of the graph of f in the interval from-3

to 4. This is shown in Figure 2-3b.
6 0
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f(x)

45

40

35

30

25

Figure 2-31D.

Graph of f: x---4.2x3 - 3x2 - 12x -13.

6 1
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What about the shape of the graph outside of this interval,

in particular, for large values of lxi? The easiest way to answer

this question is to look at f(x) for x 10, 100, -10, -100, etc.

- values which are easy to find by direct substitution. The func-

tion under consideration is

f: x --).2x
3

- 3x
2

- 12x + 13,

and f(1C) = 2000 - 300 - 120 + 13,

f(100) - 2,000,000 - 30,000 - 1200 + 13.

It will be observed that even when x is no greater than 10, the

term of highest degree is a much larger number than any of the

other terms, and for x = 100 the difference is much greater. Hence,

f(10) and f(100) are large positive numbers, and the points on the

graph corresponding to them are far above the x-axis.

Likewise, f(-10) = -2000 - 300 + 120 + 13

and f(-100) = -2,000,000 - 30,000 + 1200 + 13.

Again, the v,alue of the term of highest degree clearly dominats

the other terms, and f(-10) and f(-100) are negative numbers that

correspond to points on the graph far below the x-axis.

4, Writing the given polynomial in a factored form,
3

2x3 - 3x
2

- 12x + 13 - 2x 3 (1 - -
6

+ 4), may he:Ip. to show why
ex xe

2xs"

the term 2x
3 dominates all other terms for large lxi. The fractions

containing x in the denominator decrease numerically as Ixl

increases, so that for sufficiently large values of lxi, the

expression in parentheses has a value close to 1.
,By this kind of reasoning we can deduce that for any polyno-

mial the term of highest degree will dominate all other terms for

large values of lxi. This means that the sign of f(x) will agree

with the sign of the term of highest degree for large Ixl, and

hence the graph of f will lie above or below the x-axis according

as the value of this.term is positive or negative. Also one can

reason that the nth degree polynomial behaves like the linear

function when Ixl is very small.

The question now arises whether the point (-1, 20) is the

highest point on the graph between x = 0 and x = -2, or whether the

highest point may actually be a little to the right or left of

(-1, 20). By choosing values of x very close to -1, evaluating

f(x) for these values of x, and comparing them with f(-1), we
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decrease our uncertainty about the 1:2cation of the highest point,-

but we cannot assert that (-1, 20) is the highest point in this

interval. For example, for x = -0.9, synthetic substitution gives

f(-0.9) = 19.912, which is a little less than f(-1) = 20. Like-

wise, f(-1.1) = 19.908, which again is a little less than 20.

But we still do not know whether the point (-1, 20) is the

highest point between x = -0.9 and x = -1.1. The answer to this

question will be given in Chapter 3, when we develop a method for

finding these so-called "maximum" and "minimum" points.

In spite of our uncertainty about its exact shape, the graph

does give us inforMation about the zeros of the function. We note

that the graph crosses the x-axis at (1, 0); in other words,

f(1) = 0, and hence, by definition, 1 is a zero of f. Looking

further, we see that the graph also crosses the x-axis between

x = .2 and x = -2, and again between x = 2 and x = 3. Since the2 2
abscissa of each intersection with the x-axis is.a. number for which

f(x) = 0 and hence by definition a zero of f, we conclude that
5 5f has a zero between - and -2 and another between wand 3. The2

graph does not enable us to determine whether these zeros are

rational or irrational; this question will be considered in suc-

ceeding sections.

Exercises 2-3

Draw the graph of each of the following functions:

1. f: x---> 2x3 + 3x 2 + 12x - 13 (Compare this graph with the one

in Figure 2-3b. What do you observe?)

2. f: x >2x3
- 12x + 13

3. f: x-->2x3
- 3x

2
- 12 x (Compare this graph with the one in

Figure 2-3b. What do you observe?)

4. f: (In this case, direct substitution is faster than

synthetic substitution.)

5. f: x + 4 (How does this graph compare with that of

Exercise 4?)

6. f: - 3x
2
+ 4
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7. f: x-->x 4 (Use generous scales on both axes and draw the
3 3 1

graph from x = -
+

.2-to x = Include the points where x = -

+ 3\and x = _ Tr)

8. f: - 2x
3

- 5x
2
+ 6x

2-4. Remainder and Factor Theorems

Momentarily we shall turn away from graphing and take another

look at the process we described in Section 2-2, in order to develop

two theorems that will be useful in finding the zeros of polynomial

functions. The synthetic subS.titution used to determine f(2), given

f:
3

- 7x
2 + 3x - 2,

will be the basis for this development, so let us examine it close-

ly.

1 -7 3 -2

2 -10 -14

1 -5 - 7 -16

12

We rewrite the first row in the synthetic substitution as the

given polynomial (by restoring the powers of x), and then attach

the same power of x to each entry in a given column. Thus we

obtain

1x
3 -7x

2 +3x -2

2x2 -10x -14

lx -5x
2

- 7x -16

The polynomial in the third row is the sum of the two preceding

polynomials. Since f(x) = x3 - 7x2 + 3x - 2 and f(2) = -16, the

above addition can be written

f(x) + 2x2 - 10x - 14 . x3 - 5x2 - 7x + f(2).

By factoring, we may write

f(x) + 2(x2 - 5x - 7) = x(x2 - 5x - 7) + f(2).

Solving for f(x), we have

f(x) = x(x2 - 5x - 7) - 2(x2 - 5x - 7) + f(2),

or f(x) = (x - 2)(x2 - 5x - 7) + f(2).

The form of this expressicn may look familiar. It is, in

fact, an example of the division algorithm:

Dividend = (Divisor)(Quotient) + Remainder.
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In our example, if (x - 2) is the divisor, then

q(x) = x 2
- 5x - 7

is the quotient, and f(2) is the remainder. This result may be

generalized. It is of sufficient importance to be stated as a

theorem.

Theorem 2-1. Remainder Theorem. If f(x) is a polynomial of

degree n > 0 and if c is a number, then the remainder in the

division of f(x) by x - c is f(c). That is,

f(x) = (x - c)q(x) + f(c),

where.the quotient q(x) is a polynomial of degree n - 1.

Proof: We shall prove the theorem only in the case of the

general cubic polynomial,

f(x) = a3x3 + a2x2 + a + a
lx 0'

Following the pattern of the previous example, to determine f(e)'we

write the synthetic substitution

a
3

a
2

a
1

a
0

a
3
c (a3c + a2)e (a

3
c2 + a

2
c + a

1
)c

(a
3
) (a

3
c + a2) (a

3
c2 + a2c + a

1
)(a c3 + a

2
c2 + alc + a

0
)

3

As before, writing in the appropriate powers of x, we get

a
3
x3 + a x2 + a

1
x +a

0

+ a 3?x2 + (a
3c

+ a
2
)cx + (a c + a

2c
+ a 1)c

a
3
x
3
+ (a

3
c + a

2
)x

2 + (a
3c

2
+ a2c + al )x + (a

3c
3
+ a2c

2
+ ale + a )

0

We note that the polynomial in the third row is the sum of the two

preceding polynomials, that the polynomial in the first row is

f(x) and that(a3c3 + a2c 2
+ ale + ao)is f(c). Hence we may write

f(x) + c[a3x- + (a3c + a2)x + (a3c2 + a2c + al)] =

x[a
3
x
2 + (a

3
c + a

2
)x + (a

3
e2 + a2c + al )] + f(c).

Thus we have

f(x) = (x - c)[a3x2 + (a3c + a2)x + (a3c2 + a2c + al)] + f(e)

or f(x) = (x - c)q(x) + f(c).

The process is the-same forhigher degree polynomials. It

gives

f(x) = (x - c)q(x) + f(c),
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where q(x) is a polynomial of degree n - 1.

If the remainder f(c) is zero, then the divisor x - c and the

quotient q(x) are factors of f(x). Hence we have a second theorem:

Corollary 2-1-1. Factor Theorem. If c is a zero of a

polynomial function f of degree n > 0, then x - c is a factor of

f(x), and conversely.

Proof. We know from Theorem 2-1 that there exists a polynomial

q(x) of degree n - 1 such that

f(x) = (x - c)q(x) + f(c).

If c is a zero of f, then f(c) = 0 and

f(x) = (x - c)q(x).

Hence x - c is a factor of f(x), by definition.

Conversely, if x - c is a factor of f(x), then by definition

there is a polynomial q(x) such that

f(x) = (x - c)q(x).

For x = c, we obtain

f(c) = (c - c)q(c) = 0,

and hence c is a zero of f. q.e.d.

Example 1. Find the quotient and remainder if

f(x) = 2x3 6x2 + x - 5

is divided by x - 3.

Solution. 2 -6 1 -5
6 0 3

2 0 1 -2

Hence, q(x) = 2x2 + 1,

f(3) = -2,

and 2x3 6x2 + x - 5 = (x - 3)(2x2 + 1) - 2.

Example 2. Show that x - 6 is a factor of

f(x) = x3 - 6x2 + x - 6,

and find the associated q(x).

Solution. 1 -6 1 -6 j
6 0 6

1 0 1 0

Here, f(6) = 0, q(x) = x2 + 1, and

f(x) = (x - 6)(x2 + 1).

In testing for the divisibility of a polynomial by mx + b,
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m / 0, we write

mx + b = m(x + )= m[x - (-

and see whether f(- ='0. By the Factor Theorem, mx + b is a

factor of f(x) if and only if f(- = 0. (Note that - is the

root of mx + b = 0.)

In applying the Factor Theorem, it may sometimes be easier to

compute f(c) by direct substitution, rather than by the method of

synthetic substitution. Thus, to show that x - 1 is a factor of

'f(x) = 2x73 - x37 - 1,

we note that f(1) = 2 - 1 - 1 = 0.

Evaluating f(1) by the synthetic substitution nethod would take
considerably longer!

At this point you may wohder what to do when confronted with
a polynomial such as

8x4 - 28x3 - 62x2 + 7x + 15

which you might like to factor. Note that the Factor Theorem is
only a testing device. It does not locate zeros of polynomial

functions. Methods, other than blind guessing, for doing this

will be developed in the next sections.

57

Exercises 2-4

1. Find q(x) and f(c) so that T(x) = (x - c)q(x) + f(c) if
a) f(x) = 3x3 + 4x2 - 10x - 15 and c = 2
b) f(x) = x3 + 3x2 + 2x + 12 and c = -3
c) f(x) = -2x4 + 3x3 + 6x - 10 and c = 3
d) f(x) = 2x3 - 3x2 + 5x - 2 and c =

2. Find the quotient and remainder when

a) x3 + 4x2 - 7x - 3 is divided by x - 2

b) x
3 + 3x2 - 4 is divided by x + 2

c) 3x3 + 4x2 - 7x + 1 is divided by 3x - 2

3. If fn(x) is divided by g(x) / 0 so that a quotient q(x) and

a remainder r(x) are obtained, what is the degree of q(x)?

of r(x)?

6 7
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4. In Exercises 1 to 5 of Section 2-2 do any of the polynomials

have linear factors? If so, find them.

5. If f(x) = x3 + 4x2 + x - 6, determine f(x) at x = 3, 2, 1, 0,

-1, -2, -3. What are the factors of f(x)?

6. If f(x) = 2x3 + x2 - 5x + 2, determine f(x) at x = -2, -1, 0,

1, 2, and. What are the faetcr-s nf f(x)?

7. If f(x) = x3 + 3x2 - 12x - k, find k so that f(3) = 9.

8. If f(x) = x3 - x2 + kr - 12, find k so that f(x) is exactly

divisible by x - 3.

9. If f(x) = ax5 + ax + 13x3 - 11x2 - 10x - 2a, and if f(-1) = 0,

what is f(1)?

10. The quadratic formula enables us to find the zeros of any

quadratic function and hence, by the Factor Theorem, to write

any quadratic expression in factored form as the product of

two first-degree polynomials with complex coefficients (real

or imaginary). For example,

x
2 - 4x + 1 (x - 2 - - 2 +

since the roots of x2 - 4x + 1 . 0 are 2 + 45-and 2 -

Write each of the following in factored form over the complex

numbers:

a) 2x2 + 7x - 15

h) x2 - x - 1

c) x2 + 4

d) x2 - 6x + 13

e) x3 - 5x

f) 2x2 - 3x + 2 [Answer: 2(x 3 4-41 )(x 3 -4i )]

g) 9x2 + 6x + 5

h) 2x2 - 4x + 1

2-5. Locating Zeros of Polynomial Functions

As has been pointed out earlier, our primary objective in

this chapter is to study some methods for finding the zeros of

polynomial functions, or, in other words, for solving equations of

the form f(x) .= 0, where f(x) is a polynomial.

If we are confronted with a particular polynomial equation
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f(x) = 0 and a particular number c, we can easily determine -- by

direct or synthetic substitution -- whether or not this number c

is a solution. But this technique does not tell us how to find

zeros of polynomial functions.

You already know how to solve linear equations and quadratic

equations. In fact, you know simple formulas for doing this. In

the sixteenth century, attempts were made to find formulas for

solving equations of higher degree. Although a few results were

obtained, it was found later that to seek formulas is not the best
way to approach the problem.

It may surprise you to learn that the best way to solve equa-

tions of higher degree is to guess at the solutions. To be sure,

it is not at all wise to guess blindly. The purpose of this section

and the next is to examine some methods that will enable you to
guess intelligently.

From your experience in drawing graphs, you already have a

method for estimating the approximate values of the zeros of a

p1:rnom1al function. (Refer back to Section 2-3.) But plotting

zdn'pho is time-consuming, and there are better methods. Inherent

in tne process of preparing a table for graphing, however, is

information that helps us to make intelligent guesses about the

zeros. This information is contained'in the following theorem.

Theorem 2.-2. The Location Theorem. If f is a polynomial

function and if a and b are real numbers such that f(a) and

f(b) have opposite signs, then there is at least one zero of f

between a and b.

Geometrically this theorem means that the graph of f from

(a, f(a)) to (b, f(b)) intersects the x-axis in at least one point.

Figure 2-5a illustrates this theorem. (The graph in this figure

intersects the x-axis in three places -- hence "at least once.")

6 .)
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Figure 2-5a.

Illustration of the Location Theorem: f(a) and f(b) are of

opposite sign so that f must have at least one zero

between a and b.

We shall accept the Location Theorem without proof, first

because its proof requires a sequence of theorems that are beyond

our reach at this time, and secondly because the result is quite

easy to accept intuitively. If the graph is below the x-axis at

one point and above it at another, it must cross the x-axis some-

where in between. The crux of the proof consists in showing that

the graph of any polynomial function f from x = a to x = b is

continuous -- that is, it has no gaps.

Figure 2-5b shows that if, in the Location Theorem, f were

not a polynomial function, the conclusion would not necessarily

be correct. The curve lies sometimes below and sometimes above

the x-axis, yet does not intersect it; however, the graph is not

continuous.

7 0
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Figure 2 -5b. Graph of y = x 4- l/x.

EXample 1. Given that the polynomial function

f: x---->12x
3

- 8x
2

- 21x 4. 14

has three real zeros, locate each of them between two consecutive

integers.

Solution. We use the Location Theorem to search for values

of f(x) that are opposite in sign. It is convenient to do this in

a systematic way by synthetic substitubion, setting down the work

as in Table 2-4,

The intervals that contain the real zeros oP f are indicated

by the arrows at the right in the table.
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Table 2-4

Local:ing the Zeros of f:x---i).12x
3

- 8x
2

- 21x + 14

12 -8 -21 14

12 -8 -21 0 Location of a
zero

12 4 -17 3 1

12 16 11 36 2

12 28 63 203 3

12 -8 -21 14 0

12 -20 - 1 15 -1

12 -32 43 -72 -2

f(x)

Answer. The real zeros of f are located between 0 and 1,

between 1 and 2, and between -2 and -1.

A few remarks concerning the use of the Location Theorem may

be helpful. It is quite possible for f(a) and f(b) to be of the

same sign, and yet for f to have zeros between a ari'd b, as

illustrated in Figure 2-5c, and the zeros may go undetected.

f (x) f (x)

Figure 2-5c.

Graphs with f(a) and f(b) of the same sign,

yet with zeros of f between a and b.

Further information to be developed in the remainder of this chap-

ter will be of assistance, but it should be emphasized that the
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problem of locating the'zeros of a polynomial function is essential-

ly a matter of trial.

How far should we extend the table of x and f(x) when search-

ing for the locations of the zeros? This is a very practical

--question, as illustrated in the next example.

Example 2. Locate the real zeros of f: x---a.2x
3

- x
2 - 2x + 6.

Solution. The usual procedure is shown in Table 2-5.

Table 2-5

Locating the Zeros of f: x---4.2x 3
- x 2 - 2x + 6

2 -1 -2 6

2 -1 -2 6 0

2 1 -1 5 1

2 3 14 2

2 5 13 45 3

2 -1 -2 6 0

2 -3 1 5 -1

2 -5 8 -10 -2

2 19 -51 -3

f(x)

The Location Theorem tells us that there is at least one real

zero between -1 and -2, but what about the other zeros, if any?

Later (Section 2-8) we shall show that any polynomial equation of

degree n > 0 has at most n roots, real or imaginary, and

(Section 2-9) that imaginary roots of polynomial equations with

real coefficients occur in conjugate pairs. Thus, for the example

being considered, there are a number of possibilities: (1) there

may be one, two, or three real zeros, all contained in the interval

between -1 and -2, (2) two zeros may be imaginary, in which case

there is only one real zero, (3) one or two real zeros may be in

some other interval of the table between successive integral

values of x, or (4) one or two real zeros may be in intervals
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outside the values of x shown in the table.

Possibility (4) appears unlikely for the simple reason that

when we evaluated f(2) = 14, all the entries in the corresponding

row of Table 2-5 were positive. They will be still greater for

greater values of x; the table shows this for x = 3, and you can
_ _

check it yourself for x = 4. Thus it appears that for x > 2, f(x)

must be positive, so that there cannot be a zero of f greater

than 2. We prove this, and also that there cannot be a zero of

the given polynomial less than -2, by application of the following

theorem.

Theorem 2-3. Upper Bound for the Zeros of a Polynomial Func-

tion. If a positive number a is substituted synthetically in

f(x), where f is a polynomial function, if all the coefficients

of q(x) are positive, and if f(a) is also positive, then all the

real zeros of f are less than a. We then call a an upper

bound for the zeros of f.

Proof. By the Remainder Theorem, f(x) = (x - a)q(x) +

For x = a, f(x) = f(a) > 0. For x > a, by hypothesis, x - a, q(x),

and f(a) are all positive. Thus, x > a is not a zero of f, and

all.real zeros of f must be less than a.

Now you will see from Table 2-5 that 2 is an upper bound of

the Zeros of the given polynomial. We really did not need to

evaluate f(3).

What about a lower bound for the zeros? Since any negative

root of f(x) = 0 is a positive root of f(-x) = 0, if we find an

upper bound for the positive roots of f(-x) = 0, its negative will

be a lower bound for the negative roots of f(x) 0. Let us apply

this test to our example.

From the given polynomial,

f(x) = 2x3 - x
2

- 2x + 6,

we find that

f(-x) = -2x3 - x
2
+ 2x + 6.

Since we are trying to find the roots of the equation, f(-x) = 0,

it will be less confusing to multiply each member of this equation

by -1 in order to have a positive coefficient for the 3rd degree

term. This gives the equivalent equation -f(-x) = 0, i.e.,
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2x
3 + x 2 - 2x - 6 0.

Using synthetic substitution, we obtain the results shown in

Table 2-6 for positive values of x.

Table 2-6

Evaluating -f(-x) = 2x3 + x2 - 2x - 6

2 1 -2 -6

2 1 -2 -6 0

2 3 1 -5 1

2 5 8 10 2

2 7 19 51

-f(-x)

This table tells us two things. First, a positive root of -f(-x) = 0

occurs between 1 and 2, which means that a negative root of

f(x) = 0 occurs between -1 and -2, as previously shown in Table 2-5.

Secondly, 2 is an upper bound for the roots of -f(-x) = 0, and

hence, -2 is a lower bound for the roots of f(x) = 0. This is the

conclusion which we have been looking for. In actual practice,

however, it is unnecessary to evaluate -f(-x) to find a lower

bound for the zeros of f. You will notice in Table 2-5 that the

synthetic substitution for x = -2 gives alternating slgns for the

coefficients of q(x) and f(-2).

In general, if a negative number a is substituted syntheti-

cally in f(x), and if the coefficients of q(x) and the number f(a)

-alternate in sign, then all of the real zeros of f are greater

than a, and a is a lower bound for the zeros.

To conclude Example 2, we have found that 2 is an upper bound

and -2 is a lower bound for the real zeros of the given function.

Hence, all the real zeros of f are contained in the interval

(x: -2 < x < 2), and we have found that one zero lies between -1

and -2. For the moment we say no more about the other zeros.
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Exercises 5

1. Find intervals between consecutive integers that contain the

real zeros of f, given that:

a) f(x) = x3 - 3x2 + 3

b) f(x) = 3x3 + x2 + x - 3

c) f(x) = 9 x - x2 - x3

d) f(x) = 3x3'- 3x + 1 (Hint: evaluate f(.).)

e) f(x) = 2x3 - 5x2 - x + 5

f(x) = x3 - 3x2 + 6x - 9

g) f(x) = x4 - 6x3 + x2 + 12x - 6.

2. DeterMine the range of values of k for which

f(x) = x
3

- 2x2 + 3x - k has at least one real zero between

a) 0 and 1,

b) 1 and 2.

2-6. Rational Zeros.

If f(x) is a polynomial a
nxn + an-1

xn-1 + + a
1
x + a

0'
all

of whose coefficients an, an_l, ao are integers, then we may

find all rational zeros of f by testing only a finite number of

possibilities, as indicated by the following theorem.

Theorem 2-4. Rational Zeros of Polynomial Functions. If the

polynomial

f(x) = a
11
x
n + an-1x

n-1
+ + alx + ao (1)

_ ...

has integer coefficients an, an_l, ao, and if f has a ration.

al zero,p/q / 0, q > 0, expressed in lowest terms (that is, p and

q are integers with no common integer divisor greater than 1),

then p is a divisor of ao and q is a divisor of an.

(Note that in this discussion q is a positive integer and

is not to be confused with the polynomial function q:

Proof. If p/q is a zero of f, then f(p/q) = 0.

By Equation (1)

= an(i)n + an_l (1.:21.)11-1
+ . + + ao = 0,

or, when cleared of fractions,
7 6
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anpn + an_1pn-1q + + alpq + an-1
0
q
n

= 0. (2)

Solving Equation (2) for aoqn we obtain

,n
Th
r,

l""

,n
n-1

pn-1q + + a
1
pqn-l]

`

= - p[a pn-1 + a
1
p
n-2q + + a

1
qn-l]

n-

= pN, (3)
n-1

where N = -ra ,-,1 -I-1-1 a n-2
4 n'i.; alq

1
J is an integer. Hence,

p divides a
0
q a whole number, N, of times. We wish to show

that p divides ao. To do this, we appeal to the fundamental

Theorem of Arithmetic, that the factorization of positive integers

is unique; namely, we note that since p and q have no common

integer divisor greater than 1, neither have p and qn. Hence,

all the factors of p are factors of ao, and p is a factor of

a
0.

To prove that q divides an, we write Equation (2) in the

form

a pn = - q[a pn-1 + + a
1
pq

n-2
+ a

0
q
n-1].

(4)
n-1

Then we reason that since q divides the right-hand side of (4),

it divides the number a
n
pn. Again, since p and q have no com-

mon divisor greater than 1, neither have q and pn. Hence, all

the factors of q are factors of an, and q is a factor of an.

q.e.d.

The foregoing result may be easier to remember if we state it

in words: If a fraction in lowest terms is a root of a polynomial

equation with integer coefficients, then the numerator of the frac-

tion must divide the constanf term of the polynomial, and the deno-

minator must divide the coefficient of the highest power of x. To

keep things straight, we can always see how the theorem works for

mx + b = 0, m / 0.

The only root is -b/m; the numerator -b divides b, while the

denominator m divides m.

If the polynomial has fractional coefficients, the theorem can

be applied after the polynomial has been multiplied by a non-zero

integer to clear of fractions, because the roots of f(x) = 0 and

the roots of k rf(x)]= 0 (k / 0) are the same.
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Example 1. What are the rational roots of

3x3 - 8x2 + 3x + 2 = 0?

Solution. It is clear that 0 is not a root. If p/q is a

rational root, in lowest terms, then

p divides 2, q divides 3.

The possibilities are

p = ± 1, ± 2, q = 1, 3,

so.that

or
4. 27.,

We test these one by one and find that the roots of the given

equation are, 1, 2, and -

(Note that in the statement of Theorem 2-4, we specified q > 0,

so the possibilities for q are all positive. There is no point

in testing both -;". and 4.)

Example 2. Find the rational roots of

3)(4 - 8x3 + 3x2 + 2x = 0.

Solution.

f(x) = 3x
4

- 8x
3
.+ 3x

2
+ 2x

= x(3x3 - 8x2 + 3x + 2)

Now, f(x) = 0

if and only if either

x = 0

or 3x
3 - 8x

2
+ 3x + 2 = 0. (5)

1By Example 1, the roots of Equation (5) are 1, 2, and - 7. Adding

the root 0, we see that the roots of f(x) = 0 are 0, 1, 2, -

Corollary 2-4-1. Integral Zeros. If

f(x) = xn + a
n-1xn-1 + + a

1
x + a

0

is a polynomial with integer coefficients, with the constant term

ao/ 0, and with the coefficient of the highest power of x equal

to 1, then the only possible rational zeros of f are integers

that divide a
0'

Proof. Suppose p/q (in lowest terms), q > 0, is a zero of f.

Since ao = f(0) / 0, p/q / 0. Hence, by Theorem 2-4, p divides

a
o
and q divides 1. Therefore, q = 1, and p/q = p is an integer

that divides a
0.

q.e.d.
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Example 3. Find the rational zeros of

f: x---*x
3 + 2x2 - 9x - 18.

Solution. By Corollary 2-4-1, the possible rational zeros are

integers that divide -18, namely ± 1, ± 2, 1.- 3, ± 6, t 9, t 18. By

trial, the zeros of f are -3, -2, and 3. ,

Reduction of degree. After we have found one zero of a poly-

nomial function f, we can ase a special device to make it easier

to find further zeros. By this device, we can cut down the number

of possible zeros we have to test, and sometimes we can even use it

to help us find certain irrational zeros. We explain this device

as follows:

We know from the Factor Theorem (Corollary 2-1-1) that a is

a zero of f if and only if there is a polynomial q such that

f(x) = (x - a)q(x). (6)

Since the product (x - a)q(x) is zero if and only if either"'

x - a = 0 or q(x) = 0, it follows that the set of zeros of f con-

sists of a together with the set of zeros of q:

(x: f(x) = 0) = Cx : x = a or q(x). = 0). (7)

Moreover, the degree of q is one less than the degree of f.

Thus, if we can find one zero of f, Equations (6) and (7) allow

us to reduce the problem of finding the zeros of f to that of

finding the zeros of a polynomial q of lower degree. Naturally

we may repeat the process, with q in place of f, if we are

fortunate enough to find a zero of q, say b. For then we may

apply the Factor Theorem to q and write

q(x) = (x b)r(x),

and

Cx : q(x) . 0) Cx : x = b or r(x) = 0).

If we are successful in repeating this reduction until we have

a quotient which is either linear or quadratic, we can easily

finish the job by solving a linear or quadratic equation.

Example 4. Find all solutions of

2x3 - 3x2 - 12x + 13 = 0. (8)

Solution. We noticedin Section 2-3, Figure 2-3b, that 1 i

a solution of Equation (8). Therefore, x - 1 is a divisor of
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2x3 - 3x
2

- 12x + 13. Performing the division,

2 -3 -12 13

2 - 1 -13

-1 -13 0

Thus

2x3 - 3x2 - 12x + 13 = (x - 1)(2x2 - x - 13),

and the solutions of Equation (8) are 1 and the solutions of

2x2 - x 13 = 0.

By the quadratic formula, (1 + ,575 )/4 and (1.- 3,s/1-5- )/4 are

the additional solutions of Equation (8).

Example 5.. Find all zeros of

f: - 8x2 - 21x + 14.

.,Solution. This is the same fanction that we considered earlier

in Section 2-5, Example 1. At that time we found that there are

zeros between 0 and 1, between 1 and 2, and between -2

and -1. Thus, we know that there are three real zeros, but we do

not know whether they are rational or irrational. If all three are

irrational, the best we can do is to find decimal approximations

(see Section 2-7). But if at least one zero is rational, then we

can obtain a function of reduced degree -- in this case a quadratic

-- that will enable us to find the exact values of the remaining

zeros whether rational or irrational.

If the function has a rational zero, it will be of the form

p/q, and by the Rational Root Theorem the possibilities for p

are ± 1, ± 2, ± 7, t 14, and for q are 1, 2, 3, 4, 6, 12.

Thus, there appear to be a good many values of p/q to test as

possible zeros of the given function. But since we already know

something about the location of the zeros, we need test only those

possible rational zeros p/q between 0 and 1, between 1 and
2, and between -2 and -1, until a zero is found.

Now the possible rational zeros between 0 and 1 are
2. 1 1 1 1 1 2 7
q s", E"' 17'

By synthetic substitution, we Pind thlt f(V2) = 3. Since f(0) = 14
and f(1) = -3 (see Table 2-4),,the zero lies between 1/2 and 1.
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Hence, we need not test the values 1/3, 1/4, 1/6, and 1/12. This

is a good example of how the Location Theorem may save us unneces-

sary work.

Continuing, we know that the only possible rational zero

between 1/2 and 1 is 2/3 or 7/12. Testing these, we find

that f(2/3) = 0, and we have found the rational zero 2/3. By the

Factor Theorem, x - 2/3 is a divisor of f(x), and the quotient,

obtained from the synt1-.etic substitution of 2/3, is

q(x) = 12x2 - 21.

The zeros of q are the roots of

12x2 - 21 = 0,

which are ATI- and Air.

"ffThus, the zeros of the given polynomial are .;2,
4

Exercises 2-6

Find all rational zeros of the polynomial functions in

Exercises 1 - 12, and find as many irrational zeros as you can.

1. a) x).2x2
- 3x - 2

b)- x.).2x3 - 3x2 - 2x

2. a) x--->-x
3

- 6x + 1 x - 6

b)
4

- 6x3 + llx2 - 6x

3. a) x>x3
- 2x + 3x - 4

,

b) x-->x - 2x
3
+ 3x2 - 4x

4. a) x--),.2x
3

- x
2

- 2x + 1

b) x - x
3

- 2x
2 + x

5. x---->12x3 40x2 + 19x + 21

6. x---).3x3 - 10x2 + 5x + 4

7. x
3

> - 10x
2 + 5x + 6

8.
n

9. x
4
- ox

2 + 16

10. x
4 - 5x

3 + 5x 5x - 6

11. x--->x 5 4. 3x
4

- 5x3 - 15x
2 + 4x + 12

12. x---43x - 8x3 - 28x
2 + 64x - 15

[see. 2-6]
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13. Show algebraically that the equation x + l/x = n has no real

solution if n is a real number such that Inl < 2. (See

Figure 2-5b for the geometrical picture.)

14. Find a cubic equation whose roots are -2, 1, and 3.

(Hint: use the Factor Theorem.)

You are familia2 with the fact that for the general quadratic

equation, ax
2
+ bx + c = 0, the sum of the roots is -b/a and

the product of the roots is c/a. Similar relationships exist

between the roots and the coefficients of polynomials of higher

degree. The following problems are intended to illustrate these

relationships for third-degree polynomials.

15. Use the roots of the equation given in Exercise 14 for each

of the following parts:

a) Find the sum of the roots. Compare this result with the

coefficient of x2 obtained in Exercise 14.

b) Find the sum of all possible two-factor products of the

roots. That is, find (-2)(1) + (-2)(3) + (1)(3). Com-

pare this result with the coefficient of x obtained in

Exercise 14.

c) Finl the product of the roots. Compare this result with

the constant term obtained in Exercise 14.

16. If the roots of a 3rd-degree polynomial equation are -2,

1/2, and 3, find

a) the sum of the roots,

b) the sum of all possible two-factor products of the roots,

c) the product of the roots.

d) Using the results of (a), (b), and (c), write a polynomial

equation of 3rd degree having the given roots.

e) Check your results by using the Factor Theorem to obtain

the equation.

17. a) Using the Factor Theorem, write in expanded form a 3rd-

degree polynomial equation having the roots rl, r2, and

r3.

b) From the result obtained in part (a), and from the fact

that any polynomial of 3rd degree can be written in the
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form
/ 3 a2 2 a

1
a
0%a3kx + + + --),

"3
-3 a3

find expressions for the coefficients a
2
/a

3'
a
1
/a

3'
and

a0/a3 in terms of the roots rl, r2, and ,r
3

.

18. Find the polynomial function f of degree 3 that vanishes

(i.e., has zeros) at x = -1, 1, and 4, and satisfies the con-

dition f(0) = 12.

2-7,. Decimal Approximations of Irrational Zeros.

Now that we have methods for finding the rational zeros of

polynomial functions, we shall discuss briefly one method for

approximating a real, but irrational, zero to any number of decimal

places. This may be important when there are no rational zeros,

thus making it impossible by our methods to obtain a polynomial of

reduced degree. For example, the polynomial
0

f: + 3x - 1

has no rational zeros, as you can easily verify by testing the only

possibilities, 1 and -1. However, since f(0) = -1 and f(1) = 3,

the Location Theorem tells us that there is a real zero between 0

and 1. Further, since f(0.3) = - 0.073 and f(0.4) = 0.264, we

know that the zero lies between 0.3 and 0.4.

If we interpolate between these two values, we obtain 0.32

as a better approximation of the zero. By comparing f(0.32) with

f(0.31) and f(0.33), and using the Looation Theorem again, we can

be certain of the value of the zero to two decimal places.

This process can be repeated indefinitely, but many people

find that it isn't fun to do the arithmetic without the help of a

desk calculator, and there are more powerful methods, as we shall

see in Chapter 3.

Exerciseb 2-7

1. Find correct to the nearest 0.5, the real zero of

- 3x
2 - 2x + 5 that lies between 3 and 4.
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2. a) Find, correct to the nearest 0.5, the real zeros of

f:x----->x 3 - 2x2 -I- x - 3.

b) Find the zeros correct to the nearest 0.1.

3. a) Find a solution of x 3
-I- x = 3 correct to one decimal place.

b) Find thris solution correct to two decimal places.

4, Find the real cube root of 20 correct to two decimal places by

solving the equation x3 = 20.

2-8. Number of Zeros

As a result of your work with polynomials thus far, you may

have the impression that every polynomial function of degree n > 0

has exactly n zeros. This is not quite right; what we must say

is that every such function has at most n zeros. We shall prove

a theorem to this effect, but first let us exhibit a polynomial

function for which the number of zeros is less than the degree.

The quadratic function
%2

f: x----*x
2

- 6x 9 = (x - 3)

has only one zero, namely 3. But since the quadratic has two

identical factors x - 3, we say that the zero 3 has multiplicity

two.

We define the millaa11.11Ly of a zero r of a polynomial f

to be the exponent of the highest power of x r that divides

f(x). That is, if

f(x) = (x - r)k q(x), k > 0,

where q(x) is a polynomial, and if x - r does not divide q(x),

then r is a zero of f of multiplicity k.

The proof of the general theorem about the number of zeros of

a polynomial function depends on the fact that every such function

has at least one zero. This fact, often referred to as GaussIs

Theorem, is stated as follows:

Theorem 2-5. The Fundamental Theorem of Alcebra. Every

polynomial function of degree greater. than zero has at least one

zero, real or imaginary.

This is the simplest form of the Fundamental Theorem of Alge-

bra. (As a matter of fact, the theorem is correct even if some or

[sec. 2-8]

8 4



75

all of the coefficients of the polynomial are imaginary.)

The first known proof of the theorem was published by the

n-eat German mathematician Carl Friedrich Gauss (1777 - 1855) in

1799. (Eric Temple Bell has written an interesting account of

Gauss. See World of Mathematics, Simon and Schuster, 1956, Volume

1, pages 295-339, or E. T. Bell, Men of Mathematics, Simon and

Schuster, 1937, pages 218-269.) The proof was contained in GaussIs

doctoral dissertation, published when he was 22. A translation of

his second proof (1816) is in A Source Book in Mathematics, by

David Eugene Smith, McGraw-Hill Book Co., 1929, pages 292-310.

Gauss gave a total of four different proofs of the theorem, the

'last in 1850. None of the proofs is sufficiently elementary to be

given here. If you study advanced mathematics in college, you may

learn several proofs. You might now like to read the proof in

Birkhoff and MacLane, A Survey of Modern Algebra, Macmillan, 1953,

pages 107-109. Donit worry if you do not understand all of it.

You may still enjoy seeing what the main idea of the proof is. (A

proof is also given in L. E. Dickson, New First Course in the Theory

of Equations, John Wiley and Sons, 1939.)

We are now ready to state and prove the general theorem.

Theorem 2-6. The General Form of the Fundamental Theorem of

Algsbm. Let f be a polynomial function of degree n > 0. Then

f has at least one and at most a complex zeros, and the sum of

the multiplicities of the zeros is exactly n.

Proof. By Theorem 2-5, f has at least one zero, say rl.

Then (recall the Factor Theorem) there is a polynomial q(x) of

degree n - 1 such that

f(x) = (x rl) q(x). (1)

If n 1, q is of degree zero and we have finished. If n > 1,

the degree of q is n - 1 and is positive. Then, by Theorem 2-5

again, q has at least one zero r2 (it could happen that r2 = r1)

and

q(x) = (x - r2) s(x), (2)

where s is of degree n - 2. Combining (1) and (2) gives

f(x) = (x -rl)(x - r2) s(x). (3)
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If n = 2, then s in Equation (3) is of degree zero and we have

finished. Otherwise, the process may be continued until we arrive

at the final,stage,

f(x) = (x - r
1
)(x - r

2
) (x - rn ) z(x), (4)

where the degree of z is n - n = 0. Hence, z(x) is a constant.

Comparison of the expanded form of Equation (4) with the equivalent

form

f(x) = a xn + a
1
x
n-1 + + sax + ao,n-

shows that z(x) = an 0. Hence,

f(x) = an(x - r1)(x - r2) (x - rn). (5)

Now, if we substitute any complex number r different from

'r r
2' ... ' r

n
in place of x in Equation (5), we get

f(r) = an(r - r1)(r - r2) (r - rn).

Since every factor is different from zero, thc product cannot be

zero. Hence, no number except rl, r2, rn is a zero of f,

and f has at most n zeros.

Since it is possible that some of the rils may be equal, the

number of zeros of f may be less than n. But Equation (5) shows

that f has exactly n factors of the form x - ri, and therefore

the sum of the multiplicities of the zeros must be n. q.e.d.

Example 1.

f: x---).x5 + x
4

- 5x
3

- x
2
+ 8x - 4

has zeros of multiplicity greater than one. Find the zeros and

indicate the multiplicity of each.

. Solution. .Since the coefficient of the term of highest degree

is 1, we know that any rational zeros of f must be integers

that are factors of ,4. (Refer to Corollary 2-4-1.) Using synthe-

tic substitution and the polynomial of reduced degree obtatned each

time a zero is found, we discover that 1 is a zero of multiplicity

three and -2 is a zero of multiplicity two. Note that the sum of

the multiplicities is five, which is also the degree of th.a glven

polynomial.

It may be helpful to show a practical way for putting dr,an

the synthetic substitutions by which we obtained the zeros and

their multiplicities. This is done in Table 2-7.
8 6
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Table 2-7

Finding the Zeros of f: x4 5x3 - x2 + 8x - 4

1 1 -5

1 2

1 2 -3

1 2 -3

1 3

-1 8

-3 -4

-4 4

-4 4

0 -4

-4

4

0

1 3 0 -4

1 3

1 4 4

1 4 4__j 0

0

I

0 -4 1 <_

7 7

1 is a

zero of f

of multipli-

city three.

The entries 1, 2, -3, -4, 4 in the third row, 1, 3, 0, -4

in the sixth row, and 1, 4, 4 in the last row are coefficients of

polynomials of degree four, threu, and two, respectively. The
1quadratic function x---4.x2 + + 4 has -2 as a zero of multipli-

%city two since x 2
+ 4x + 4 (x + 2)

2

Thus, the zeros of f are 1 (of,multiplicity three) and -2

(of multi72licity two).

The graph of f is shown in Figure 2-8 in order to give you

some idea of its shape in the neighborhood of the zeros -2 and
1 (points A and B). To draw this graph at the present time re-

quires an extended table of synthetic substitutions, but in

Chapter 3 methods will be developed that make it easier to deter-

mine the behavior of the graph in the vicinity of points A, B,

and C.

8 7,
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Figure 2-8.

Graph of f: x--->x
5 + x

4
- 5x

3 - x
2 + 8x - 4.

8 8
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The Fundamental Theorem of Algebra implies that the range of

any nonconstant polynomial function includes zero when its domain

is the set'of all complex numbers. The range does not always

include zero when the domain is the set of real numbers. For

example, if

f: = x2 + 1, xE R,

then the range of f is the set

(y : y > 1).

When the domain of f is the set of complex numbers, and the
degree of f is > 0, then its range is also the set of all complex

numbers. For, suppose that f is a polynomial of degree n > 0

and a + ib is any complex number. Then the equation

f(x) = a + ib

is equivalent to

f(x) - a - ib = 0. (6)

This is a polynomial equation of degree n; hence, by the Funda-

mental Theorem of Algebra, Equation (6) has a solution. That is,

there exists at least ore complex number x that is mapped by f

into a + ib:

f(x) = a 4 ib.

Moreover, there may be as many as n different numbers in the

domain that map into a + ib, and the sum of the multiplicities

of the solutions of (6) will be exactly n.

The Fund' ,,,ntal Theorem does not tell us how to find even one

of the zeros (.2 f. It just guarantees that they exist. The

general problem of finding a complex zero of an arbitrary polyno-

mial is quite difficult. In the 1930's the Bell Telephone Labora-
'tories built a machine, the Isograph, fu- solving such problems

when the degree is 10 or less. See The Isograph -- A Mechanical

Root-Finder, by R. L. Dietzold, Bell Labs Record 16, December, 1937,

page 130. Nowadays, electronic computers are used to do this job,
and many others. Numerous applications of computers in science

and industry are discussed in a series of articles in the bool. The

Computing Laboratory in the University, University of Wisconsin

Press, Madison, Wisconsin, 1957,,edited by Preston C. Hammer.

The following quotation is taken from a recent book called

[sec. 2-8]
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Mathematics and Computers, by George R. Stibitz and Jules A.

Larrivee, McGraw-Hill Book Co., New York, 1957, page 37:

"There is an interesting use for the roots of the 'character-

istic equation! of a vibrating system in the dynamics of electro-

magnetic and mechanical systems where many of the properties of

amplifiers, filters, servos, airfoils, and other devices must be

determined. If any one of the complex roots of this characterstic

equation for a system has a positive real part, the system will be

unstable: amplifiers will howl, servos will oscillate uncontrolla-

bly, and bridges will collapse under the stresses exerted by the

winds. The prediction of such behavior is of great importance to

designers of the amplifiers that boost your voice as it crosses

the country over telephone lines, and the servos that point guns

at an attacking plane."

Exercises 2-8

1. Assume that the equations given below are the characteristic

equations of some mechanical or electrical system. According

to the quotation from Stibitz and Larrivee, are the systems

stable or unstable?

a) x3 - x2 + 2 = 0,

b) x3 - 3x2 + 4x - 2 = 0,

c), x3 + 3x2 + 4x + 2 = 0,

d) x3 + x2 - 2 = 0,

e) x3 + 6x2 + 13x + 10 = O.

2 The following equations have multiple roots. Find them and,

in each case, show that the sum of the multiplicities of the

roots equals the degree of the polynomial.

a) x3 - 3x - 2 = 0,

b) x
3 - 3x + 2 = 0,

c) x"- + 5x
3 + 9x 2 + 7x + 2 = O.

3 Find the roots and their multiplicities of each of the follow-

ing equations. Compare the solution sets of the two equations.

a) x5 + 4x4 + x3 - 10x2 - 4x + 8 = 0

b) x5 x4 x3 x2 8x 4

[sec. 2-8]

9 0



81

4. A number system is said.to be algebraically closed if, and only

if, every polynomial equation of degree > 0, with coefficients

in that system, has a solution in that system. Which of the

following number systems are, and which are not, algebraically

closed? Give reasons for your answers.

a) The integers: ..., -2, -1, 0, 1, 2, 3, ...

b) The rational numbers.

c) The real numbers.

d) The pure imaginary numbers bi.

e) The complex numbers.

5. You may have heard thatit was necessary for mathematicians to

invent .1T. and other complex numbers in order to solve some

quadratic equations. Do you suppose that they needed to invent

something that might be called "super-complex" numbers to
4 6express such things as ../-7-7F, ../ -1 , and so on? Give rea-

sons for your answers.

.2-9. Complex Zeros

We know that a quadratic equation

ax 2 + bx + c = 0, a / 0,

has roots given by the quadratic formula

x - - b 42 - 4ac
2a

The coefficients a, b, and c in (1) are here assumed to be
real numbers. The quantity under the radical in (2) is called*
the discriminant. Its sign determines the nature of the roots of
(1). The roots are

a) real and unequal if b2 - 4ac > 0,

b) real and equal if b2 - 4ac = 0,

c) imaginary if b2 - 4ac < 0.

Example 1. What are the roots of x2 + x + 1 0?

Solution. The roots are

-1 + i - 1 - i IT
2 2

We notice that these roots are complex conjugates; that is,

they have the form u + iv and u - iv, where u and v are

[sec. 2-9]
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real. In this example, u = -1/2 and v = .

Is it just a coincidence that these roots are complex conju-

gates? Let us look at (2), and suppose that a, b, and c are

real numbers and that the discrlminarft is negative, say -d
2 Then

the roots of ax
2 + bx + c = 0 are -b/2a + i(d/2a) and -b/2a

- i(d/2a). These are complex conjugates. Thus, if a, b, and

c are real and if the roots of (1) are imaginary, then these

roots are complex conjugates. This is true of polynomials of any

degree, as we shall nnw prove. (In the,following theorem, the

letters a and b represent the real and imaginary parts of a

complex root of an equation of any degre,e, and do not refer to the

coefficients in a quadratic expression.)

Theorem 2-7. Complex-conju4.ates Theorem. If f(x) is a polyno-

mial with real coefficients, and if a+lb is a complex root of

f(x) = 0, with imaginary part b / 0, then a -ib is also a root.

(Another way of saying this is that if f(a + lb) = 0, with

a and b real and b / 0, then f(a ib) = 0.)

We shall give two proofs of this result.

First Proof. The key to this proof is the use of the quadratic

polynomial that is the product of x - (a + ib) and x - (a - ib).

We show that it divides f(x). We can then conclude that

f(a - ib) = 0, and we have completed the proof.

Thus, let

p(x) = [x - (a + ib)][x - (a - ib)] (3)

= [(x - a) - ib][(x - a) + ib]
(x a)2 b2.

Note that p(x) is a quadratic polynomial with real coefficients.

Now when a polynomial is divided by a quadratic, a rem%Inder of

degree less than 2 is obtained. Hence, if f(x) is divided by

p(x), we get a polynomial quotient q(x) and a remainder

r(x) = hx + k, possibly of degree 1 (but no greater), where h,

k, and all the coefficients of q(x) are real. Thus,

f(x) = p(x).q(x) + hx + k. (4)

This is an identity in x. By hypothesis, f(a + ib) = 0, and

from Equation (3), p(a + ib) = 0. Therefore, .if we substitUte

a + ib for x in Equation (4), we get

[sec. 2-9]
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0 . 0 + ha + ihb + k.

Since real and imaginary parts must both be 0, we have

ha + k = 0, (5a)

and hb = 0. (5b)

Since b / 0 (by hypothesis), Equation (5h) requires that h = 0.

Then Equation (5a) gives k = 0. .Therefore, the remainder hx + k
in Equation (4) is zero, and

f(x) = p(x).q(x). (6)

Since p(a - ib) = 0 by Equation (3), it follows from Equation
(6) that

f(a - ib) = 0. q.e.d.

Second Proof. Let

f(x) = anxn + an-1x
n-1

+ + a
1
x + a

0' (7)
and suppose that f(a + ib) = 0. When we substitute a + ib for

. .x in Equation (7), we can expand (a + ib) 2 , (a + ib)
3

, and so
on, by the Binomial Theorem. We can prove the complex-conjugates

theorem, however, without actually carrying out all of these expan-

sions, if we observe how the terms behave. Consider the first few

powers of a + ib:

(a + ib)
1
= a + ib,

(a + ib)
2
= a2 + 2aib + i 2b2

= (a2 - b2) + i(2ab),

(a + ib)3 = a3 + 3a2ib + 3a(i2b2) + i3b3

= (a3 - 3ab2) + i(3a2b b3).

Now observe where b occurs in the ve expanded forms. In the

real parts, b either does not occuL at all, or it occurs only to

even powers. In the imaginary parts, b always,occurs to odd

powers. This follows from the fact that all even powers of i are

real and all odd powers are imaginary. If we change the sign of

b, we therefore leave the real part unchanged and change the sign

of the imaginary part. Thus, if f(a + ib) = u + iv, then

f(a - ib) = u - iv. But by hypothesis,

f(a + ib) = 0,

so that u + iv 0,

and therefore u = v = 0.

Hence f(a - ib) = 0. q.e.d.

[sec. 2-9]
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Example 2. What is the degree of a polynomial function f

of minimum degree if 2 + i, 1, and 3 - 2i are zeros of f?

Solution. If it is not required that the coefficients of the

polynomial be real, then we may take

f(x) = [x - (2 + i)][x - l][x - (3 - 2i)]

= x3 + (-6 + i)x2 + (13 - 2i)x + (- 8 +

In this case, the degree of f is 3. No polynomial function of

lower degree can have 3 zeros, so 3 is the answer. Howevr, if

it is required that the coefficients of f(x) be real, then 't:Ie

answer to the quastion is 5. Foll' then the conjugates of 2 + i

and 3 - 2i must also be zeros of f. No polynomial function of

degree less than 5 can have the 5 zeros

2 + i, 2 - i, 1, 3 - 2i, 3 + 2i. (8)

But

[x - (2 + i)][x - (2 - i)][x - l][x - (3 - 2i)][x - (3 + 2i)] (9)

is a polynomial of degree 5, with real coefficients, that does have

the numbers listed in (8) as its zeros.

Exercises 2-9

Multiply the factors in (9) above to show that the expression

doe' have real coefficients. What is the coefficient of x

in your answer? What is the constant term? Compare these with

the sum and the product of the zeros listed in (8).

2 Write a polynomial function of minimum degree that has 2 + 3i

as a zero,

a) if imaginary coefficients are allowed,

b) if the coefticients must be real.

3 Find all roots of the following equations:

a) x3 - 1 = 0

b) x3 + 1,= 0

c) x3 - )( + 2x = 8

d) x4 + 5x2 + 4 = 0

e) x4 - 2x3 + 10x2 - 18x + 9 = 0

0 x6 2x5 + 3x4 + kx3 + 3x2 + 2x + 1 = 0

g) x6 - 2x5 + 3x4 - 4x3 + 3x2 - 2x + 1 = 0

2-9]
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4. What is the degree of the polynomial equation of minimum degree

with real coefficients havinc?; 2 + i, -2 + L, - i, 3 +

-3 + i as roots?

5. Consider the set of numbers of the form a + bN/7§. , where a

and b are rational. Then a - b17- is called the conjugate

surd of a + . Prove the following theorem on conjugate

surds:

If f(x) is a polynomial with rational coefficients, and

a + is a root of f(x) = 0, then a - b,./-ff is also

J. root. (Note that if u + v,/-f = 0, and u and v are

rational, then u = v = O. Otherwise, we could solve for

-u/v, the quotient of two rational number. But we know

that is irrational.)

6 Find a polynomial with rahional ccclfficients and minimum degree

having 3 + 2-17 as a zero.

7 State and prove a theorem similar to that in Exercise 5 above

for numbers of the form a + Is there a comparable

theorem about roots of the form a + 1o,./.117? Give reasons for

your answers.

8. Write a polynomial function of minimum degree that has -1

and 3 - 2-15' as zeros, if

a) ir-ntional coefficients are allowed;

b) the coefficients must be rational.

9. Find a polynom1 of minimum degree with 2ational coefficients

having y/-71. + as a zero.

10. What is the degree of a polynomial of minimum degree with (a)

real, and (b) rational coefficients having

(1) i + liF as a zero?

(2) 1 + as a zero?

(3) -IT+ i,./T as a zero?

2-10. Summary of Chapter 2.

This chapter deals with polynomial functions and develops

methods for finding the zeros of such functions.

The general polynomial function of degree n, where n is

[sec. 2-10]
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a positive integer or zero, is denoted by

f: xa xn + a xn-1 + + a
1
x + a

0'
a
n
/ 0.

n n-1
f takes a given number c in its domain into the number

f(c) = a en + an 1
c
n-1 + +ac+a

0
in its range.

- 1

Synthetic substitution is a technique for finding f(c). It

is frequently less laborious than direct substitution.

The graph of a polynomial function is plotted by preparing a

table for (x, f(x)), using synthetic, or occasionally, direct

substitution. The pairs of numbers (x, f(x)) are the points of

the graph of f.

Theorem 2-1. Remainder Theorem. If f(x) is a polynomial

of degree n > 0 and if c is a number, then the remainder in

the division of f(x) by x - c is f(c). That is,

f(x) = (x - c)q(x) + f(c),

where the quotient q(x) is a polynomial of degree n - 1.

The process of synthetic substitution gives a convenient way

of obtaining q(x) as well as f(c), since the synthetic substi-

tution of x = c gives the same result as dividing f(x) 'ay

x - c.

Corollary 2-1-1. The Factor Theorem. If c is a zero of a

polynomial function f of degree n > 0, then x - c is a factor

of f(x), and conversely.

Theorem 2-2. The Location Theorem. If f is a polynomial

function and if a and b are real numbers such that f(a) and

f(b) have opposite signs, then there is at least one zero of f

between a and b.

Theorem 2-3. Upper Bound for the Zeros of a Polynomlal

Function. If a positive number a is substituted syntheticall:

in f(x), where f is a polynomial function, if all the coeffi-

cients of q(x) are positive, and if f(a) is also positive, then

all the real zeros oC 'f are less than a. We call a an upper

bound for the zeros of f.

When a negative number a is substituted synthetically in

f(x), if the coefficients of q(x) and the number f(a) alter-

nate in sigi, then a is a lower bound for the zeros of f.

9 6
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Theorem 2-4. Rational Zeros of Polynomial Functions. If the

polynomial

f(x) = anxn + a
n-1xn-1 + + a

1
x + a

0

has integer coefficients an, an_l, ao, and if f has a
rational zero p/q / 0, q > 0, expressed in lowest terms, then p

is a divisor of ao and q is a divisor of an.

The importance of this theorem is that it limits the number

of values of x that need to be tested when searching for rational

zeros of a given function.

Corollary 2-4-1. Integral Zeros. If

f(X) = X + a
n-1

X + alx + a
0

is a polynomial with integer coefficients, with the constant term

a
0

/ 0, and with the coefficient of xn equal to 1, then the

only possible rational zeros of f are integers that divide ao.

It should be noted that if a
0

= 0, then 0 is a zero of f.

An equation of reduced degree can be obtained whenever a ra-

tional root of f(x) = 0 is found. The use of this reduced

equation simplifies the problem of solving polynomial equations.

Decimal aPproximations of the irrational roots of a polynomial

equation may be obtained to any desired accuracy by means of the

Location Theorem, synthetic substitution, and interpolation, although

the numerical computations may be tedious.

Theorem 2-5. The Fundamental Theorem of Algebra. Every non-

constant polynomial function has at least one zero, real or

imaginary.

Theorem 2-6. General Form of the Fundamental Theorem of

Algebra. Let f be a polynomial function of degree n > 0. Then
f has at least one and at most n complex zeros, and the sum of

the multiplicities of the zeros is exactly n.

Theorem 2=/. Complex-conjugates Theorem. If f(x) is a

polynomial with real coefficients and if a + ib is a complex root
of f(x) = 0, with imaginary part b / 0, then a - ib is also

a root.

9 7
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Miscellaneous Exercises

/ 3
1. If f(x) = 4x - 5x ± 9, find

a) f(C) b) f(-3)

9 8

c) f(1/2)
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2. If f(x) = 2x - 3 + 3x3, find

a) f(0) b) f(-2) c) f(1/3)

3. Find the quotient and remainder when

a) 3x4 - 5x3 4x2 + 3x,- 2 is divided by x - 2

b) x4 - 1 is divided by x + 1

c) 5x3 - 11x2 - 14x - 10 is divided by x - 3

4. Find the quotient and remainder if.hen

a) 2x31- x2 + 5x + 7 is divided by 2x + 1

b) 81x1 + 16 is divided by x + 2

5. Evaluate each of the following polynomials for x = -2, -1, 0,

1, 2, and 3. From the information obtained, write each

polynomial as a product of linear factors with rational coeffi-

cients:

a) x3 - 6x2 + llx - 6

b) x3 - 3x2 - 4x + 12

c) x4 - 2x3 - x2 + 2x

6. If f(x) = kx3 + 3x2 - 5x - 4, tind k such that when f(x)

is divided by, x - 2, the remainder will he 22.

7. If f(x) = 3x4 - 2x3 - 7x2 + kx + 3, find k such that

f(-1/3) = 0.

8. Write each of the following quadratic expressions as a product

of linear factors with real or imaginary coefficients:

a) 4x2 - 3 %

x
2

c) - 4x + 7

b) 7x
2 + 9 d) 3x

2
- 5x - 1

9. Locate the real zeros of f between consecutive integers, given

that

a) f(x) 3x3 - 4x2 - 8x + 5

b) f(x) x3 - 2x2 + 3x -

10 Find all rational roots of each of the following equations.

Where possible find any irrational roots.
r

asi 2x
3 + x2 - ox = 0

b) x3 + 2x2 - x - 2 = 0

c) 2x3 - 2x2 - llx + 2 = 0

d) 3x3 - 5x2 - 8x + 2 = 0

e) 3x4 - 8x3 - 40x2 + 48x + 45 = 0

9 9
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11. Compare the graphs of the functions

f: x
3 - 2x

2 - 5x + 6

g: 2f(x) = 2x3 - 4x2 - 10x + 12

12. Write a polynomial function of degree 3 whose zeros are -1,

2, 3

13. Write a polynomial function of degree 3 having the zeros

.given in Exercise 12, with the added condition that

a) f(0) -6 b) f(4) = 25

14. Write a polynomial function of degree 3 that vanishes at

x = 2 and 3, and that has the value 6 when x = 0 and 12

when x = 1.

15. Find the zero of

f: x + 2x 3 + x2 - 1

between 0 and 1 correct to one decimal place.

16. For each of the following functions find all zeros and their

multiplicities, locate the y-intercept of the graph, and

describe the behavior of the graph for large ixt .

a) f: y = (x - 2)2

b) f: x y = (2 - x)3

c) f: y = 3(x - 2)4

d) f: y = -2(x - 1)2(x + 2)

17. Find all rational zeros and their multiplicities of the follow-

ing polynomial functions:

a) f: x5 + x
4

- 2x
3 - 2x

2 + x + 1

b) f: 6x4 + 25x3 + 38x2 + 25x + 6

18. Solve the following equations:

a) x2(x + 3) = 4

b) (x + 1)(x + 2)(x + 3) = (x +1)(x + 2)(x + 3)(x + 4)

19. What is the minimum degree of a polynomial function with the

following zeros?

a) 2, -3, i

b) 4, 7 - i, -7 + i

c) 2 + i, -2 + i, -2 -

20. Find the minimum degree of each polynomial function with real

coefficients having the zeros given in Exercise 19.

100
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21. Find the polynomial f(x) with rational coefficients and

minimum degree so that f(x) = 0 has the following roots:

a) 2, 3 -,s/ b) 1, + 31

22. If f(x) = ix3 - 3x2 - 4, find

a) f(1) d) f(1 - i)

b) f(i) e) f(-1 + i)

c) f(1 + i) f(-1 - i)

23. If f is a third-degree polynomial function such that

f(0) = -5, f(1) = -5, f(2) = 1, and f(-1) = -11, find

f(x).

24. Find the quotient and remainder when
/a) (a - b)x2 + a2 (b - x) + b 2
kx - a) is divided by x - a.

b) x3 - (a + b + c)x2 + (oh + ac + bc)x - abc is divided by

x - a.

25. If fn is a polynomial function with zeros a and/ b, prove

by the Factor,Theorem that fn(x) is divisible by

(x - a)(x - b).

26. Show by using the Factor Theorem that xn - an (n a positive

integer) is divisible by x - a, and that when n is even it

is also divisible by x + a.

27. There is a theorem known as Descartes' Rule of Signs that

states that the number of pooitive roots of f(x) = 0 cannot

exceed the number of variations in sign of the coefficients

of f(x). A variation in sign occurs whenever the sign of a

coefficient differs from the sign of the next nonzero coeffi-

cient. Thus x - x3 + 2x + 5 has 2 variations in sign.

Since the roots of f(-x) = 0 are the negatives of the

roots of f(x) = 0, the number of negative roots of f(x) = 0

cannot exceed the number of variations in sign of the coeffi-

cients of f(-x). Thus f(x) = x - x 3 + 2x + 5 has at most

2 negative roots, since f(-x) = x + x3 - 2x + 5 has 2

variations in sign.

Find the maximum number of positive and negative roots of

each of the following equations:

a) x3 x2 - 14x + 24 = 0

b) x7 - x4 + 3 = 0

c) 3x4 + x2 - 2x - 3 = 0
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e) x5 + 1 = 0

f) x5 = 0



92

28. Prove that N/g + ,/r5 is irrational. Hint: form a polynomial

with rational coefficients having .4/27 + ./S- as a root.

29. If f(x) = 2x3 - 3x + 5, find

a) f(1 + b) f(1 -

30. If f(2 4- = 3 - 4i and g(3 - = 2 + i, find

a) f(2

b) f(2 + i).g(3 + i)

c) f(2 - i).g(3 + i)

(Hint: this problem depends on a property of polynomial func-

tions and complex conjugates that was derived in the second

proof of Theorem 2-5, and that is illustrated in Exercise 29.)

31. Given f(x) = x
2 - 3x + 5, compare f(2 + 15) and f(2 -1(5).

Does the same property hold for g(x) = x2 - + 5?

32. For what values of x are the following equations satisfied?

a) x
2 + x - 6 . 0

b) lxi2 + lxi 6 = 0

c) x + ,AT - 6 0

d) [x]2 + (x] - 6 = 0

Note: [x] is the greatest integer in x, defined as the

integer such that :::: - 1 < [x] < x.

33. An examination question says, "Find the formula for the nth

term of the sequence 2, 5, 10, 17, ." Show that there

is an unlimited number of polynomials in n giving these

values for n = 1, 2, 3, 4. Find the polynomial of minimum

degree answering the examination question.

34 If a, b, and c are the zeros of f:
3
+ 7x

2 + 5,

find a polynomial function with zeros a + 2, b + 2, c + 2.

35. If a, b, and c are the zeros of f: x---> x
3 + 7x2 + 5,

find a polynomial function with zeros 2a + 1, 2b + 1, 2c + 1.
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Chapter 3

TANGENTS TO GRAPHS OF POLYNOMIAL FUNCTIONS

3-1. Introduction.

If we select any point P on the graph of a POlynomial function

and draw a line through P with a ruler, it will be possible to

choose the direction of the ruler so that very, very close to P

the line seems to lie along the graph. When this is done, if we

stay close enough to P, it will be impossible to distinguish be-

tween the line and the curve (see

Figure 3-la). We may appropriately

refer to the straight line which has

this property as the best linear

approximation of the graph at P.

The straight line is also said to Figure 3-la

touch or be tangent to the graph at P. In this chapter, we shall

be concerned with the determination of the direction of the tangent

line at any point of a-polynomial graph. We shall, of course, ap,

this neither experimentally nor inexactly, but precisely from the

polynomial itself%

We shall also be interested in the shape of the graph near

P. That is, we shall want to know whether, sufficiently near the

point P, the graph lies above or below the tangent line, or whether

perhaps the curve crosses over from one side of the tangent to

the other. (See Figure 3-113: (a), (b), (c), (d))

a. b. c.

Figure 3-lb
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Once we know how to determine the tangent and the shape we

shall be in a position to find any points on a polynomial graph

at which the tangent line is horizontal and the graph nearby is

entirely above or entirely below the tangent. Such point3 are

called minimum a..id maximum points, respectively. (See Figure 3-1c)

max. point

min. point

Figure 3-1c

As we learned in Section 2-3, the location of such points would

help considerably in drawing the graphs and locating the zeros of

polynomial functions. Maxima and minima are also of great interest

in applications, as we shall See in Section 3-8.

The problem of finding the tangent to a polynomial graph at

a point P and the shape of the graph nearby is particularly simple

if the point is on the y-axis. As we shall see, in this case the

result can be written down by inspection. At first we shall

therefore confine ourselves to this easy special case, and later

(Section 3-5) turn to,the case in which the point is not on the

y-axis.

3-2. Tangents at Points P on the y-Axis.

In this section we shall illustrate the method of obtaining

an equation of the tangent to a polynomial graph at.its point of

intersection with the y-axis. A justification of the method will

be given in Section 3-3.

The method is simplicity itself. It consists merely of

omitting every term whose degree is higher than one.

Example 1. The graph G of f: x + x - 4x2 intersects the

y-axis at P(O, 1).. The tangent T to G at P has the equation

y = 1 + x

101
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obtained by omitting the second degree term -4x2. It is easy to

draw T from its equation.

Figure 3-2a

G is the graph of f: x-4-1 + x 4x2
T is the graph of y = 1 + x

Moreover, since the omitted term -4x2 is negative for all

Nalues of x except 0, G lies below T except at P. (See Figure

3-2a)

Example 2. The graph G of f: x-4-2 + x2 intersects the y-axis

at p(0, 2). If we omit the x2 term and write y = 2 we obtain the

equation of the tangent T through P. In this case the tangent is

parallel to the x-axis. Since x2 is positive for all x except

zero, all points of G except P lie above the tangent line T.

1 0 5

[sec. 3-2]



96

Because P is the lowest point on G, it is called the minimum point

of the graph. (See Figure 3-2b.)

yi

2 P(o,2)

-2 0

Figure 3-2b

G is the graph of f: + x
2

T is the graph of y = 2

Example 3. The graph of

f: + x-3. intersects the

y-axis at P(0, 0). The equation

y = x

of the tangent at P is obtained by

omitting the x
3

term. Since x
3

is positive for positive x and

negative for negative x, G is

above T if x > 0 and below T if

x < 0. (See Figure 3-2c.) The

graph G therefore crosses from

one side of the tangent to the

other. P is called a point of

inflection of the graph G.

2

Figure 3-2c

G is the graph of f: + x3

T is the graph of y = x

[sec. 3-2]
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Exercises 3-2

In each of the following Exercises find the equation of the

tangent to the graph at the point P of intersection with the y-axis.

Draw the tangent line and sketch the shape of the graph near P.

1. -x+ x2
2. x-11.- x2

3. x-2 + 3x - 2x2
4. + 2x + x4

5. + x + x
3

6. x 1 - x + x3

7. x ---- 2 -
_3

8. x 1 + 2x + x5

9. x x + x5 10. x x4

3-3. Why, Does the Method Work? The Behavior of the Graph Near P.

'The procedure of Section 3-2 is simple enough. The important

question is: Why does it work? In giving the explanation it will

be convenient to look at Example 1 of Section 3-2 in which
h

f: q+ x - x
2

. (1)

As you know we have obtained the equation

y = 1 + x

of the tangent at P (0, 1) by omitting the term -4x2. We wish to

justify this procedure by showing that the line obtained does

represent the best linear approximation to the graph at the point P.

This will entitle us to call y = 1 + x the equation of the tangent

to the graph at P.

From (1) we have

f(x) = i + x - 4x2

which may be written as

f(x) = 1 + (1 - 4x)x. (2)

If x is numerically small, the expression 1 - 4x in parentheses is

close to-1. In fact, we can make 1 - 4x lie as close to 1 as we

please by making Ix sufficiently small.

Specifically, if we wish 1 - 4x to be within .01 of 1 and

hence to lie between .99 and 1.01, it will be sufficient to make

4x lie 'between -.01 and .01:and therefore to make x lie between

-.0025 and .0025.

[see. 3-3]
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This result has a simple geometrical interpretation (see

Figure 3-3a). Let us consider three lines L, Ll, and L2 through

p(0, 1) with slopes 1, 1 .4- .01 and 1 - .01. These lines have

the equations

L,

L: y = 1 + x

L
1

: y = 1 1.01x

L
2

: y = 1 + .99x

-.0025

A
.0025

L,

L,

Figure 3-3a

Their slopes are so nearly equal that the differences can be

shown on Figure 3-3a only by distorting the scale. Let AB be the

-interval (x: !xi < .0025). If we confine ourselves to this

interval AB, the.graph of f: + (1 - 4x)x surely lies

between L
1
and L

2
and,hence,in the hatched region.

The numbers chosen were merely illustrative. They were

designed to give a certain concreteness to the picture. We can

make 1 - 4x lie between 1 +e and 1 -E for an arbitrarily small

value of e, merely by choosing x between - and *. . We did not

need to choose e= .01.

108
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This means geometrically that if we stay close enough to

x = 0, the graph of f: x-1 + (1 - 4x)x lies between two lines,

.L y = 1 + (1 +E)x

L2: y = 1 + (1 - )x

which differ in direction as little as we please.

straight line which is always included between s /.1(1

L
2'

is

rf

L: y = 1 +.x.

Hence, we see that L can indeed be regarded as the best linear

approximation to f: x----1 + x - 4x2 at x = 0.

We can confine the graph G of f: + x - 4x2 to a smaller

part of the hatched region in Figure 3-3a by noting that G lies

below L except at the point P. Hence, on the interval AB, G lies

between L and L
2

to the right of P and between L and L
1

to the

left of P. (See Figure 3-3h)

L2

L,

L,

L,

A

Figure 3-3b
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Exercises 3-3

1. Write f: x 1 + x + x2 as

f: 1 + (1 + x)x.

Show that if lxi < .01, then .99 < 1 + x < 1.01 and therefore

f(x) lies between 1 + .99x and 1 + 1.01x. Draw a figure (like

Figure 3-3a) to show the geometrical meaning of this result.

2. Strengthen the result of Exercise 1 by showing thnt

1 + x < f(x) < 1 + 1.01x, for x > 0

1 + x < f(x) < 1 + .99x, for x < 0.

Show the improved results on a diagram.

3. Show that the results of Exercise 2 c.,:tn be obtained more

simply by noticing that except at P, the graph G of

f: x-1 + x + x2 must lie above the graph of y = 1 + x.

4. In Example 3 write f: + x3

as f: x(1 + x2)x

Show that

a) x < f(x) < 1.01x, for 0 < x < .1

b) 1.01x < f(x) < x, for 0 > x > -.1

c) Draw a figure to illustrate the geometrical meaning

of th .! results in (a) and (b).

5. Consider the function f: + 3x - x
2

a) At what point does the graph of the function cross the

f(x) axis?

b) Show that if lxi < .01,

3.01 > 3 - x > 2.99

and that f(x) lies between

2 + 3.01x and 2 + 2.99x.

c) Draw a figure to illustrate the geometrical meaning.

6. Strengthen the result of Exercise 5 by noticing that the

graph of the function lies below the graph of the straight line

y = 2 + 3x.

What additional refinement can be made in the figure associated

with Exercise 5?

7. Let 0 be the graph of the function f: x x2 - 2x - 1.

a) Write f: - 2x - 1 in the same form as (2) Section

3-3.

[sec. 3-3]
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t) Show that if 0 < x < .01, G lies between the straight

lines y = -1 - 2.01x and y = -1 - 1.99x.

c) Draw a figure to show the geometrical meaning of this

result.

Write f: - 5x - 4-x2

If Ixi < .02, what are the

between which the graph of

P (0, 3)?

If it is desired that near

the straight lines y = 3 -

what values may x assume?

8. a)

b)

c)

101

in the form of (2), Section 3-3.

slopes of the two straight lines

f: - 5x - 4x2 lies near

P (0 he graph,lies between

4. ix a = 3 - 5.002x,

3-4. The Behavior of the Graph Near P.(Continued)

In each of the examples discussed in Section 3-3 there was a

single term of degree greater than one. If the polynomial contains

more than one term of degree greater than one, there may be some

doubt about the appearance of the graph near its intersection with

the y-axis. An example will illustrate this point.

Example 1. The graph of

f: + x + x
2

- 2x
3

passes through the point P(0, 1). If the term -2x3 had been miss-

ing, we should have no difficulty in writing the equation of the

tangent T

y = 1 + x

to the graph of x-1 + x + x2 and concluding that near P, the

graph lay above T on both sides of P.

On the other hand, if the term x
2 had been missing, we would

have written y = 1 + x as the equation of the tangent to the graph

of + x - 2x3 at P and noted that P was a point of inflection

with the graph below T on the right of P.and above it on the left

of P.

The presence of both higher degree terms raises a question.

Which term dominates the situation and determines the shape? The

answer is that sufficiently near x = 0, the lower degree term x
2

dominates the higher degree term -2x3 and that thc graph has the

[sec. 3-4]
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same character as if the term -2x
3 were missing. In fact, near P

the parabola

+x+ x2

gives the best quadratic approximation to the graph of

f: x + x + x
2

- 2x3
.

That this is the case may be shown by an argument like that of

Section 3-3. We wtite

f(x) = 1 + x + x2 - 2x3

in the form
% 2

f(x) - - 2x)x

and n :3 that 1 - 2x is al e to 1 for !xi small

Figure 3-4a

G is the graph of x---0-1 + x + x
2

- 2x
3

.

The grapt of x----1 + x + is shown

by the 677.ted line.
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sec. 3-4]



enough. In fact, the graph G of

f: x----1 + x + (1 - 2x)x
2

lies between the parabolas
2

Cl: + x + (1 + E)x

and C2: x----1 + x + (1 - E)x

for arbitrarily small E, provided that 1-2x1 <e , or lx1 < . In

parabolas C1 and C2, the coefficients of x
2
differ from 1 as little

as we please, provided, of course, that we stay close enough to

x = 0. The only parabola which is included between all such

parabolas C1 and C2 is C: + x + x2. Hence, we say that

C. x --1 + x + x2 gives the best quadr, Ac approximation to the

graph of f: x-0-1 + x + x
2 - 2x

3 for Ix! sufficiently near zero. The

graph of f: + x + x
2

- 2x3 lies below C to the right of

P(0, 1) and above C to the left of P(0, 1). (See Figure 3-4a.)

Example 2. Draw the graph G of f: x----2 - x + 2x
3

- 3' near

its point of intersection with the f(xl - axis.

Solution: We write f(x) 2 - - (2 - 3x x 3 and note that

for 13x1 < E , that is, for Ix f(x) lies between

2 - x + (2+

.and 2 - x + (2 --`

no matter how small E is chosen.

We see that the required graph J lies above the line y = 2 - x

on the right of P and below it on the left of P, for all x suffi-

ciently small_ and hence has thcl sane character as the graph of
, 3

C: x----2 .

2

103

In fact, 2 - x + 2x3 is the be .T. thIrd degree approximation to

2 - x + 2x3 - 3x
4
near x = 0. '(7pe Fizure

The conclusions drawn in thlia two examples would have betm

essentially the same if differe .ers had appeared.as

coefficients. Thus, if

f: x 2x
2 + a

3
x
3

we can write
f(x) = a() + al7 (a2 + a3x)x

2

(sec. 3-11L3
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Figure 3 -4b

G is the graph of x 2 - x
3
+ 2x

3
- 3x

4

The graph of x 2 - x + 2x3 is shown

by the dotted line.

and conclude that the graph lies between the graphs of

xa0 + a
1
x + (a

2
+ e)x

2

and 0
+ a

1
x + (a2 -e)x2

for arbitrarily small 6, provided that la3xl < C.
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Exercises 3-4

For each of the follpwing, draw the tangent and sketch the

shape of the graph near its point of intersection with the f(x)-axis.

1.

2.

3.

4.

5.

f:

f: x----2

f: 1x----

f: x---.4

f: x----4

,3
+ x + 3x

2
-

+ x3 - x

+ 2x - x
2

+ Lh ix
3

2x3 + x4

- 3x + x - 7x5

6. f: x----2x - x2 + 4x3

7 - 12. In each of the preceding exercises show that for any

e however small it is possible to choose lxi small enough so that

f(x) lies between

and

a
0
+ a

1
x + (a

r
+ e)xr

r
a
0

+ a lx + (a
r

- where r is less than
the degree of the
polynomial.

Specify how small ! must he if 6 = .01.

3-5. The TanQpnt to the Graph at an Arbitrary Point P and the

Shape of the Graph Near P.

So far we have confined ourselves to the problem of finding

an equation of the tangent line to a polynomial graph at its point

of intersection with the y-axis, and to an exaMination of the shape

of the curve near that point. There remains the problem of finding

the tangent to the graph at an arbitrary point P and the shape of

the graph near P.

This problem is solved by generalizing the method of the

previous section. The behavior near the point for which x = 0 was

determined from the expression for f(x) in ascending powers 'of x.

The behavior near the point for which x = h, say, cari be determined

if we have an exprssion for f(x) in ascending powers of x - h.

As before, we can best start with an example.
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Example 1. Find the tangent to the graph G of f: - 3x

+ 2x2 at P(1, 3).

In this case h = 1 and hence we write f(x) = 4 - 3x + 2x2 in

powers of x 1. The result is

f(x) =,3 + 1(x - 1) + 2(x - 1)2 (1)

Figure 3-5

G is the graph of x--,.4 - ax + 2x
2

T is the tangent at P(1, 3)

This is easy to verify since (1) is equivalent to

3 + x - 1 + 2x
2 - 4x 2 4 - 3x + 2x2.

A method for obtaining the expansion (1) will soon be given. Mean-

while, let us see.how to use (1) to achieve our purpose. We assert

that the equation of the tangent T may be obtained from (1) by

dropping the term of highest degree. The result is

= 3 + 1(x - 1). (2)

The grap1T_G is above this tangent T at all points other than

P(1, 3),. This is seen by noting that 3 4- 1(x - 1) 4- 2(x - 1)6

3-5]
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%may be obtained from 3 + 1(x - 1) by adding 2(x - 1) 2
, which is

positive for all x except 1. (See Figure 3-5.)

We justify the assertion that (2) is an equation ofthe tangent

to the curve G at point P as follows. The expansion (1) is factored

and written in the form

f(x) = 3 + [1 + 2(x - 1)] (x - 1). (3)

_Prom wo note that if x.is near enough to 1, that is if kK - 11

is sufficiently small, the expression [1 + 2(x - 1)] is arbitrarily'

elose to 1. In other words, for anY e , however small, f(4 lies

between

3 + (1 + e)(x - 1)

and 3 + (1 - E)(x - 1)

provideL that 12(x - 1)1 <E, that is, that Ix - 11 <S.. Hence

3 + 1(x 1) is the best linear approximation to f(x)'near

x = 1 a-d T is the tangent to the graph G at the point P(1, 3).

It shouLf be noted that we have followed the same procedures as

before 7lith x - 1 in place of x.

We now consider the problem of expanding f(x) in powers of

x - 1, that is, of finding the coefficients in (1). We shall

discover how to do this by looking closely at (3).. For convenience

we repeat both (3) and (1).

f(x) = 3 + [1 + 2(x-1)] (x - 1), (3)

f(x) = 3 + 1(x - 1) + 2(x - 1)2, (1)

From (3) we note that if we divide f(x) by (x - 1), we obtain the

remainder 3 and the quotient 1 + 2(x - 1). The remainder 3 is the

first coefficient in Equation (1). Again, from Equation (3), if

we.divide the quotient 1 + 2(x - 1) by x - 1, we obtain the

remainder 1 and the new quotient 2. The remainder 1 is the second

coefficient in Equation (1), and the final quotient 2 is the last

coefficient in (1).

Let us follow this procedure to determine the required

coefficients, 'beginning with f(x) = 4 - 3x + 2x2 and using

synthetic division.

[sec. 3-5]
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2 -3

2
-1

The first remainder in dividing f(x) by x - 1 is 3. The quotient

is 2x - 1.

On dividing-2x - 1 by x - 1

2 -1

2

we obtain the second remainder 1 and the quotient 2. Hence, the

remainders we obtained are in succession the coefficients b b
0, 1,

and the final quotient is b2.

f(x) = bo + bl(x - 1) + b2(x - 1)2.

Exam le 2. Find an equation of the tangent to f: x-1-2 +

3x + x - x at the point for which x = 2.

We need to expand f(x) in powers of x - 2, that is, to find

the coefficients in 3
f(x) = 130 + bl(x - 2) + b2(x - 2)2 + b3(x - 2) .

If f(x) is divided by (x - 2),b0 is.the remainder and the

quotient is bl + b2(x - 2) + b3(x - 2)2. If this quotient is

divided by x - 2, the remainder is bl'and the new quotient is

b2 b3(x - 2). A further division of b2 + b3(x - 2) by x - 2

gives the remainder b2 and the final quotient b. We proceed to

carry out these divisions synthetically.

Dividing by x - 2

-1 +1 +3 +2 I 2

-2 -2 +2

-1 -1 1 4

we obtain the first remainder 4 and the quotieni;

-x2 - x + 1.

Dividing this quotient by x - 2

-1 -1 +1 1 2

-2 -6

-1 -3 1 -5

gives the remainder -5 and the new quotient -x - 3. Finally,
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dividing this quotient by x - 2, we have

-1

-2

-1 1-5
the remainder -5 and the quotient -1. The successive coefficients

in the expansion of f(x) in powers of x - 2 are the succ-essive

remainders oloa-l-ned above, namely 4, -5, -5, and the final

quotient -1. That is

f(x) = 4 - 5(x - 2) - 5(x - 2)2 - 1(x - 2)3.

The tangent T at P(2, 4) has the equation

y = 4 - 5(x - 2),

and the graph lies below T on both sides of P for points which are

Sufficiently near P.

Exercises 3-5

1 For each function below write the expansion of f(x) in powers

of x - h and determine the equation of the tangent to the

graph of f at the point (h, f(h)) .

a) x -- 3 + 4x + 2x2 + x3 h = 2

b) x + 2x3 + 4x2 h = -3

c) - 3x2 + 2x + 1 h = -4

1
d) - 3x2 + 2x + 1 h =

e) + x2 + 3x. h = 3

f) x --2x3 + 1x2 - 16x - 24 h = -2

2. In each case express f(x) in powers of the given factor.

a) f(x) = 3x3 5x2 + 2x + 1_. (x + 1)

b) f(x) = 2x3 - 5x (x - 2)

c) f(x) = 4 + 3x - 7x2 + x3 (x - 2)

d) f(x) = x3 - 2x2 + x 1 (x +

119
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3. For each of the following write the equation of the tangent at

the specified point and sketch the shape of the graph nearby.

a) x--.11. + 3x - 7x2 + x3 at (2, -10)

b) xx3 - 6x2 + 6x - 1 at (3, -10)

c) x ----3x4 - 4x3 at (1, -1)

d) t 2t3 - 4t2 - 5t + 9 at (2, -1)

e) 3x2 12x + 14 at (1, 1)x - -

6s2 6s 1 at (1, 1)s - + -

3-6. Application to Graphing.

Consider the function

f: x--- 2 -.12x - 3x2 + 2x3

and its graph. (See Figure 3-6.)

We know how bo find the tangent and sketch the graph near any

point P(h, f(h)) . So far we have chosen particular values of h.

It will now be useful to carry out the work with h left unspecified.

We want to expand f(x) in powers of x - h,

f(x) = 1)0 + bl(x h) + b2(x - h)2 + b3(x h)3.

As we know, the coefficients b0'
b
1'

b
2
and b

3
can be found as the

successive remainders in division by x - h.

We carry out these divisions synthetically.

2 -3 -12 2

2h 2h2 - 3h 2h3 - 3h2 - 12h

2 2h - 3 2h2 - 3h - 12 1 2h3 - 3h2 - 12h + 2

The first remainder is f(h) = 2h3 - 3h2 - 12h + 2 as we should

expect. This is bo. To obtain bl we divide again by x - h.

2 2h - 3 2h
2 - 3h - 12

2h 4h2 - 3h

L12_

2 4h - 3 1 6h2 - 6h - 12 = bl

[sec. 3-6]
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Figure 3-6

The graph of x 2 - 12x - 3x2 + 2x3
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To find b2 we divide once again.

2 4h - 3

2h

2 I 6h -3 = b2
b
3

is 2.

The required expansion is

f(x) = f(h) + (6h2 - 6h - 12)(x h) + (6h - 3)(x- h)2 + 2 (x- h)3 (1)

The equation of the tangent at (h, f(h)) is

y = fCii) + (6h2 - 6h - 12)(x - h).

It is particularly helpful in graphing to find any places

where the tangent is horizontal, that is, where the slope of the

tangent is zero. Such points are called critical points. In our

example, we set

6h2 - 6h - 12 = 0

The solutions are h = -1 and h = 2. Since f(-1) = 9 and f(2) = -18

we have horizontal tangents at (-1, 9) and (2, -18), as appears on

Figure 3-6.

To find the shape,of the graph near (-1, 9) we substitute

h = -1 in Equation (1) anasobtain

f(x) = 9 - 9(x + 1)2 + 2(x + 1)3.

The graph lies below the tangent y = 9 on both sides of (-1, 9)

nearby,and accordingly we call this point a relative maximum.

Similaay, if we substitute h = 2 in Equation (1) we obtain

f(x) = -18 + 9(x - 2)2 + 2(x - 2)3.

Since the graph lies above the tangent line y = -18 near (2, -18)

this point is called a relative mdnimum.

Another point.of interest corresponds to the case where the

coefficient of (x h)2 is zero. This occurs in'our example when

6h - 3 = 0, that is, when h = Equation (1) then becomes

f(x) = q_cx + i)3.

The tangent line T at (;., 4.) has the equation

-9 27(x -4).

122
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The graph lies above T to the right of the point and below T to

the'left. Hence, the graph crosses its tangent and (;;, iia) is a

22Lat of inflection.

With all of the above information at our disposal 'we can sketch

the general features of the graph of f. We use also the fact that

the point (0, 2) lies on the graph and that the tangent there,

y = 2 - 12x, has slope 712. ,We may find the values of the function

at x = 1, x = 3 and x = -2 to sketch the graph more accurately.

Note that in Figure 3-6 we have used different scales on the hori-

zontal and vertical axes in order to brin& out the features of the

graph more clearly.

The ability to locate maximum and minimum points and points of

inflection enables us to sketch the graph of a polynomial function

rather quickly and it makes it possible to reduce the number of

points required to give a good picture.

Exercise 3-6

For each function

f: ..x--.- 16 - 6x2 + x3

and f: x 2x3 - 4x - 1

a) Find the slope of the tangent to the graph at the point

where x = h.

b) Write the equation of the tangent to the graph at the point

where h = -1.

c) Find each critical point and identify its character.

d) Evaluate f(0), f(2), f(-2), f(3), f(-3), f(10), f(-10).

e) Sketch the graph.
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3-7. The Slops Function..

We can greatly shorten the process of Section 3-6. By doing

synthetic division once for all on a general polynomial, we quickly

discover a formula for the slope of the tangent. This formula is

so easy to remember that it would be a waste of time not to use it.

We illustrate this short cut by considering a general third degree

polynomial function, f: + alx + a2x
2 + a3x3 , and finding

the tangent at (h, f(h)) .

We wish to determine the coefficients in the expansion of

f(x) in powers of x - h,

f(x) = b
0
+ b

1
(x h) + b2(x - h)2 + b 3

(x h)3.

In particular, we wish to find an expression for b
l'

the slope

of the tangent
y = bo + b1(x h).

As usual we use synthetic substitution:

a
3

a
2

a
1

a
0

a,h a3h2 + a2h a3h3 + a2h2 + a h
1

Ih

a
3

a
3
h + a2 a3h2 + a2h + al la

3
h
3
+ a

2
h
2 +ah+a b

1 0 0

Another division gives

a
3

a
3
h + a2

a3h2 + a2h + al

a
3
h 2a3h2 + a

2
h

a
3

2a
3
h + a

2
I 3a

3
h
2 + 2a

2
h + a

1
= bl

The required slope is

b
1
= 3a

3
h2 + 2a

2
h + a

1.

To summarize, for the polynomial function

f: 3x3 + a2x2 + alx + a
0'

the slope at (h, f(4 is

3a3h
2 + 2a2h + al.

[sec. 3-7]
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If we associate this expression with h

h 3a
3
h
2
+ 2a

2
h + a

1

a function is defined. The same function is defined by

x 3a
3
x
2
+ 2a

2
x + a

1

since the mapping is the same no matter what letter is used to

denote an arbitrary number in the domain of the function.

With the polynomial function

f: 3x3 + a2x2 + alx + a
0

there is therefore associated die function ft

fl: x 3a
3
x
2
+ 2a

2
x + a

1.
Since the values fl(x) of this function give the slope of the

tangent to the graph at the point (x, f(x) , we call fl the slope
function associated with f.

Examination of the expression for fl(x) should make it easy
to remember. We can associate the terms of f(x) and fl(x) in accord
with the following scheme:

lx) fl(x)

a
3
x 3a

3
x
2

a
2
x
2

2a
2
x

a
1
x a

1

a
0

In each case the degree of the corresponding term of fl(x) is

one lower and the coefficient is n times as great.

As we know, fl(h) is the slope of the tangent to the graph
of f at the point P(h, f(1.4 . We shall say that fl(h) is the

slope of the graph at the point P.

This scheme works equally well for polynomials of higher

degree. Thus, if

f: x a)tx4
+ a3x

3
+ a2x

2
+ alx a

0'

the slope function fl is given by

0

ft: + 3a3x2 + 2a2x + al.

[sec. 3-7]
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he scheme also applies tr.: ._:7=1-Equadratic function

f: x--a-ax---ax+ a
2 1 0

anere

fl: x L a_.

Exa=7_e 1. Given t. - ,ion f: 1 + x find the

n,er:*ociataa slope func-lo' Lts value when

Solution: fl: x )x.

Hence, f,(2) = -2 + 10.

Example 2. Given the ±" iction f: x---3x3 + 2x2 - x + 1,

id the equation of the -,:azz,L .-ent line at the print (1,

Solution: fl: + 4x - 1.

Hence, fl(1) = 9 + 4 - = 12.

The equation of the ta- ,ent at x = 1 is r = f(1) + fl(1)(x - 1),

that is,
y 5 + 12(x - 1)

or y 12x - 7.

1. Given the functions

Exercised. 3-7

x4 x3
f:

g: x-3x5 - 5x3 - 2

p: x----x
6

- 3x

a) Find the associated slope functions 11, gt, and pl.

b) Find the slope of each function at x = -1.

c) In each case write an equation of the tangent line at the

point where the graph intersects the y-axis.

d) Sketch the graphs of f, g, and p, confining yourself to

the interval (x: lxi < 23.
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2. Find and identify emoh :pctitt given tne functions.

a) x--- 2x 3
+ 3x

2
- 12x

b) x--- x3 - 12x + 16

c) x--- -2x3
+ 3x2 + 12x -

3. The point P(1, 1) lies on 'ic,f f each of the following

polynomial functions. For v j e point (1) a relative

maximum, (2) a relative minim a point of inflection,

(4) none of these?

a) x 2x3 - 6x2 + 6x - 1

b) 2x3 - 6x + 6

c) x 2x3 - 9x2 + 12x - L

d) x-- 2x3 - 3x2 - 12x + 1

4. Draw the graph of x +

each critical point, and firhr

x = -2, 0, 2.

5. Consider the functions

f: x x
3

- 3x
2
+ 1 and

3x after identifying

7alue of the function at

x
2

2 5
- -sx - .6

a) Find the associated slope ___tions ft and gt. Evaluate

. ff(1) and gt(l).

b) In each case write an equazalcn of the line tangent to the

graph of the function at ths- point where x = 1.

o) What observation can you ma're mbout the angle of inter-

section of these tangent

3-8. Maximum and Minimum Problems.

In the last section we develope7t 1:77:ethod fcr finding the

tangent to the graph G of a polynamfai fanction at any point P.

Moreover, in Section 3-6 we learned how to determine relative maxi-

mum and minimum values of any polynomial function of degree greater

than one. We observe that a relative maximum is not necessarily

greater than every other value of the funCtion. However, in this

section we shall abbreviate "relative momtmum" to "maximum." If

necessary, we shall refer to an cy.-r-all maximvm as an absolute

maximum. Similarly, we shall use the word "minimum" in place of
11relative minimum.

[sec.
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There are many situations which lead to the problem of de-

termining the maximum the minimum values of polynomial functimio.

Such situations arise from the consideration of distance, volume,

area, or cost as functions of other variables., In practice, not

only do we often need to know the optimum (maximum or minimum as

the situation requires values of a function, but also how to

achieve them. In other words, we need to know-the values in the

domain at which the function values are maxima or minima. We

shall use the techniques of the last section to find these values.

Sometimes the function is defined by an equation; at other times

a relationship is expressed less straightforwardly and it is

necessary to translate the information in such a way as to discoveT

a function which may be maximized or minimized.

Example 1. A ball is thrown upwards so that its height t

seconds later is s feet above the earth where

s = 96t - 16t2.

What is the maximum height the ball will reach? 1 V

Solution. Our.understanding of the problem is,enhanced by

a graph. Since meaningful replacements for t and s are limited

to positive values, our graph will be drawn for the first quadrant

only.

0
1 8o
') 128
3 144
4 128
5 80
6

128

Figure 3-8a

[sec. 3-8]
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Our graph sugz,a3 that when t R; 3 (% I read 1"ai:prximately

equal to"), we have. a e:aximum height. Let -.. keep this In mind

as we proceed.

Since the functi= is

96t - 16t2

the associated slope __Lct__-= is

ft: t 96 - 32t.
We are seeking a point where the tangent is horizontal, that iB,

where the slope is 0. Hence, we write

0 = 96 - 32t.

Thus t = 3, and the maximum height is 144 feet. Note that

f(t) = 96t - 16t2 = 144 - 16(t - 3)
2

, which confirms that the

value 144 is a maximum.

Example 2. Find the dimensions of the rectangle with peri-'

meter 72 feet which will enclose the maximum area.

Solution. Let x feet represent the width and let y feet

represent the length. Then the wlea is xy square feet. In order

to express the area A in terms of x alone, we Must express y in

terms of x. Since the perimeter, 2x + 2y = 72, y = 36 - x.

Figure 3-8b

Substituting 36 - x for y, we are able 'to express the area A in

terms of x.

A = x1-36 - x) = 36r - m2 = f(x)

The corresponding slppe-fumttlpn is

36 -.2x.

[sec. 3-8]
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Agair we seek Jf x where f1(x) G,

r = 36 - 2x

= 18.

When = 18, = 18 !ince + 2y = 72. Thusi the rectangle with

maximum area ::I11 be a sclu=e 18 feet on a. de. Why is this

not 7 minimum

xample A mazi :7__LI:-..ases to make an can box by cutting a

square from each cornar piece of cardb..!d 12 inches square,

and then turning-up t:Ial .,...Lees. Find the di-iTions of each

square he must cut out: ± arder to obtain a ±!.7,X with maximum

voluxa.

Solution. Let t.e sile of the square -77- be cut out be x

inches. The base of the b= will be 12 - 2xLriches on each side

and the depth will be x inches_

3-80

The volume in cuhLc inches will -t.e

7 = (12 -(-.2.2 220(x)
144x - 48x2 42 = f(x).

Wa must malc1z-t.i, _ _The s1cme ..furrion is

We- are seaLng tha 17.--.aras of tha- sloue -:"uncttrzn. Since

244- 34Em. 122
== 12(6 - x),

the zeros of ff e..,..t.-__2'ztad 6.
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It is :_learat if we Tut a 6 inch square fr= each corner of our

original car-Lboard, nothing will be left for a base, and the

volume will be a mintmum. With a 2 inch square unt from each

corner we can make a box whose dimensions are 3 > 3 x 2 inches.

The maximum volume is 128 cubic inches.

Emalle I. Find the point on the gm-3h Df t function

f: xx that is nearest the Point A(3, )).

Solution. For every real number x, T.,ne 71-cInt P(x, x2) is on

the graph of the given function. Recall that it...ne distance between

two points (x
1,

y
1

(x
2'

y
2

) is given by the ec-zation

d = (xl 2) + (Y1 Y2)
2

A grapn of the functlon f: x----x2 will Let A? repre-

sent the distance from A tp a point P(x, x-) on the graph_

Then

Figure 3-8d

AP =x - 3)2 + )2

3-B]
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Since this does not express a polynomial function, re dc not have

the technique to minimize or maxiziize the distance ftnarion.

However, if we let(AP) 2= K, then

K = (x - 3)
2 + (x

. 9 - 6x + x
2
+ x

4
.

This defines a polynomial function g which we can mixj.:mize. The

value of x which makes K a minimum will also make AP a minimum.

The slope function associated with g iz

141: x 6 + 2x + 4x3.

We find that 1 is the only real zero af gl. It is eas:- to show

that when x = 1, K is a minimum and ha*=, so is AP. .Since f(1) =

1, the point (1, 1) is the point on t,172-e F_Taph which is nearest

to the point A.

Example 5. Find the right circ%dar cylinder cf gatest

volume that can be inscribed in a right aLrcuiar cone,

Solution. Let h be the height of th= given cone smd r the

radius of its circular base. Then in terms of th sketch in

Figure

Figure 3-8e, AC = h and CB = r. IT the height of t:"-ae_tilicribed

cylinder is y, and the radius 9f ita zirctlar lase is x, then

DC ==y and DE = x.

[sec. 3-8]
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Since triangles ADE and ACB are similar

DE CB
7C6

or , where AD = h - y

hxand y = h - .

The volume V of the cylinder is given by

rx2y rx2(, hx)
" r /

rh 3= - --x

123

( 1 )

(2)

where h and r are constants.

The formula for the volume defines a polynomial function f

which we can maximize. The associated slope function is

hft: x---4.2rhx 3rx2
.

The zeros of ft are found by solving

h0 = 2rhx - 3rx2

3= rt.7.(2 - x).

2These zeros are 0 anti r. The cylinder will have a mininium volume
3

when the radius of itz base is 0, and'a maximum voluine when its
2

.radius is 7r. To find its corresponding height we substitute

2x = 7r in (l), so that
2 hy = h -.7h = 7 .

Exercises 3-8

1. A rectangular box with square base and open top is to be made

from a 20 ft. square piece of cardboard. 'What is the maximum

volume of such a box?

2. The sum of two positive nUmbers is N. Determine the numbers

so that the product of one and the square of the other will

be a maximum.

3. A rectangular field is to.be adjacent to a river and is to

have fencing on three sides, the side on the river requiring

[sec. 3-8]
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no fencing. If 100 yards of fencing is available, find the

dimensions of the field with largest area.

4. A wire 24 inches long is cut in two, and then one part is bent

into the shape of a circle and the other into the shape of a

square. How should it be cut if the sum of the areas is to

be a minimum?

5. A man has 600 yards of fencing which he is going to use to

enclose a rectangular field and then subdivide the field into

two plots With a fence parallel to one side. What are the

dimensions of such a field if the enclosed area is to be a

maximum?

6. A printer will print 10,000 labels at a base price of $1.50

per thousand. For a larger order the base price on the entire

lot is decreased by 3 cents for each thousand in excesg of

10,000. For how many labels will the printer's gross income

be a maximum? (See note at end of Exercises.)

7. ecn open box is to be made by cutting out squares from the

corners of a rectangular piece of cardboard and then turning-

up the sides. If the piece of cardboard is 12" by 24, what

are the dimensions of the box of largest volume made in this

way?

8. A rectangle has two of its vertices on the x-axis and the

other two above the axis on the graph of the parabola y =

16 - x2. What are the dimensions of such a rectangle if its

area is to be a maximum?

9. Find the point on the graph of the equation y2 = 4x which is

nearest to the point (2, 1).

10. A manufacturer can now ship a cargo of 100 tons at a profit of

$5.00 per.ton. He estimates that by waiting he can add 20 tons

per week to the shipment, but that the profl.t on all that he

ships will be reduced 25f per ton per week. How long will it

be to his advantage to wait? (See note.)

11. Find the dimensions of the right circular cylinder of maximum

volume inscribed in a sphere of radius 10 inches.

134
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12. A peach orchard now has 30 trees per acre, and the average

yield is 400 peaches per tree. For each additional tree plant-

ed per acre, the average yield is reduced by approximately 10

peaches. How many trees per acre will give the largest crop

of peaches? (See note.)

13. The parcel post regulations prescribe that the sum of the

length and the girth of a package must not exceed 84 inches.

Find the length of the rectangular parcel with square ends

which will have the largest volume and still be allowable under

the parcel post regulations.

14. A rectangular sheet of galvanized metal is to be made into a

trough by bending it so that the cross section has a
I 1

shape. If the metal is 10 inches wide, how deep must the

trough be to carry the most water?

15. A potato grower wishes to ship as early as possible in the

seaiOn in order to sell at the best price. If he ships July

1st, he can ship 6 tons at a profit of $2.00 per ton. By

waiting he estimates he can add 3 tons per week to his shipment

but that the profit will be reduced by 1/3 dollar per ton per

week. When should he ship for a maximum profit? (See note.)

16. Prove that with a fixed perimeter P the rectangle which has a

maximum area is a square.
(,)

17. Find the greatest rectangle that can be inscribed in the region

bounded by y 2 = 8x and x = 4.

18. What points on the ellipse x2 + 4y2 = 8 are nearest the point
(1, 0?

19. Find the altitude of the cone of maximum volume that can be

inscribed in a sphere of radius r.

20. A real estate office handles 80 apartment units: When the

rent of eacla unit is $60.00 per month, all units are occupied.

If the rent is increased $2.00 a month, on the average one

further unit remains unoccupied. Each occupied unit requires

$6.00 worth of service a month (i.e. repairs and maintenance).

What rent should be charged in order to obtain the most profit?

(See note.)
1 3 '5
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Note. In the indicated problems meaningful replacements for

the variables are obviously restricted to positive integers, but

we muSt oonsid_er the functions to te continuous in order to apply

the technique5 of this chanter.

Newton's Method.

In some cases, there exist simple formulas for the zeros of

functions; the linear amf quafratic polynomial functions are cases

in point. In some other cases, such as the cubic and quartic poly-

nomial functions, formulas sist, but are so unwieldy as to be of

little practinal value. In a great many cases, there are no

formulas at all. In this sac-ion, we shall considei, the problem

of locating zeros when no aria.de formula exists. We shall have to

be satisfied with approximatimns to these zeros, but since there is

no theoretical limit to the ao.tcuracy of our approximations, they

can be refined to meet tra ---,=.7r99 of any practical applications.

A simple and obvious teunnique for approximating zeros of

polynomial functions is tzp the Location Theorem (Theorem 2-2)

and linear interpolation- ET this technique, we isolate the zero

first between successive integers, then between successive tenths,

then between successive hrnr4---redths, and so on, thus generating a

sequence of numbers which =fore and more closely approximates the

zero. -In actual practice, tilds method is not generally the most

efficient, and the computations may become auite involved. The

method which we shall describe here is efficient and is applicable.

to a great variety of functipns. it is called Newton's Method.

Newton's Method is an -Iterative process. If, that is, we

start with a good approxinamion xl to the unknown zero, and apply

this method, it will yieIL abetter approximation x2, and if we

then apply it to x2, it will yield an approximation x3 that is

better still. Thus, the trocess yields better and better results

when applied over and over again, and if the error of the initial

estimate is mall, it converges more rapidly than does linear

interpolatiron. Iterative processes are particularly well adapted

to modern machine nomputatfpn, and Newton's Method is a standard

tool in virtually all large computing centers.

Esecae
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Newton's method is based on a simple geometric idea associated

with successive tangents to the graph of a given function. The

tangents intersect the x-axis at points which are successively

closer to the zero of the function. (See Fig. 3-9a.)

Figure 3-9a

Example 1. To calculate the value of the real zero of the

polynomial function

f: x---x3
4- x

2
4- x - 2

Solution. Since f(0) = -2 and f(1) = +1, f has a zero r

which is between 0 and 1. From a graph G of f we estimate .8 as

a first approximation to r. The equation of the tangent to the

[sec. 3-9]
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graph at the point where x = .8 is found by synthetic division.

1.8

1 1 1 -2

.8 1.44 1.952

1.8 2.44 - .048 = f(.8)

0.8 2.08

1 2.6 I 4.52 = ft(.8)

The equation is

y = f(.8) + ft(.8)(x - .8)

or y = -.048 + 4.52(x - .8).

This tangent line crosses the x-axis near the point where x = r.

In fact, by setting y = 0 we find a value of x which is a closer

approximation to r.

o = -.048 + 4.52(x - .8)

= -3.664 + 4.52x

and x % .81

To refine our approximation to r we find the equation of the

tangent to the graph G at the point (.81, f(.81)) .

1.81
1 1 1 -2

.81 1.4661 1.997541

1.81 2.4661 I - .002459 = f(.81)

.81 2.1222

1 2.62 I 4.5883 = ft(.81).

The equation is

y = f(.81) + ft(.81)(x - .81)

or y = .00246 + 4.5883(x - .81).

To find the point at which this tangent line intersects the x-axis

we solve the equation

o = -.00246 + 4.5883(x - .81)

obtaining the root, x a .8105. To two decimal places the zero of

the function f is .81.

Example 2. To find the real zero of

f: x -4- x
3 - 3

we take 1.5 as our first estimate of r since f(1) and f(2) have

opposite signs. We wish to write the equation of the tangent to

[sec. 3-9]
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the graph G of f at the point where x = 1.5. In this example it

is easy to evaluate f(1.5) and ft(1.5) by direct substitution in

f(x) = x 3 - 3 and ft(x) = 3x2 The equation is

y = 0.375 + 6.75(x - 1.5).

This tangent line intersects the x-axis at x = 1.444. Using 1.44

as an approximation to r we write the equation of the tangent to

graph G at the point (1.44, f(1.4)) The equation is

y = f(1.44) + fl(1.44)(x - 1.44)

or y = -.014016 + 6.2208(x - 1.44).

This tangent line intersects the x-axl:s at x 1.442. To two

decimal places the zero of the function f is

A common procedure is to stop the approximations as soon as

two successive ones agree to the required number of places.

We now generalize the procedure in order to develop a formula

for approximating an irrational zero of a function.

Let G be the graph of the given function f, and r the real

zero under consideration. By inspection of the graph G, synthetic

substitution, straight line interpolation, or some other device, we

obtain a good one-decimal place estimate of r. Let xl be this

approximation.

We then write the equation of the tangent to the graph G at

the point (xl, f(x
1

)) The equation is

y f(x1) + fl(x1)(x - x1).

This tangent intersects the x-axis at a point which we shall call

(x
2'

0). Under favorable conditions,

lx2 - rl < 1x1 - ri,

and x
2

is therefore a closer approximation to r.

When the tangent crosses the x-axis we have y = 0 and x = x2

so that

and

0 = f(x1) + ft(x1)(x2 - xl)

f(xl)
x
2

= x
1

- )T (
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, The process may be repeated, giving successive approximations.

x3 = g(x2), x4 = g(x3),

(See Figure 3-9a.)

It is evident that a very large amount of calculation might

be needed. Ordinarily a lot of work of this sort can be justified

only if it can be carried out on a calculating machine. Modern

electronic computers are so fast, and sceversatile, and so reliable,

that it is now possible to do many large-scale calculations which.

were impossible, at least for Practical purposes, just 15 or 20

years ago.

Computers will not do anything useful by themselves. They

must be provided with a list of instruction to be followed. For

comparison we can remind ourselves that a telephone exchange will

do nothing useful by itself. Once the exchange is given an in-

struction (i.e., once the telephone number has been dialed), the

circuitry reacts in such a way that a lphone is rung and, if it is

answered, the call is put through. A computer will also carry out

instructions. It need not obtain its instructions one at a time,

but it can follow a long list, executing automatically one in-

struction after another.

An important kind of instruction which can be carried out by a

computer is one which causes the computer to go back in its list of

instructions to an earlier one, and then repeat the intervening

part of the list any number of times. Iterative calculations in-

volve this sort of repetition of a sequence of operations. Com-

puters are therefore well suited to the carrying out of large-scale

iterations.'

A list of instructions for a computer is called a program. TO

carry out a calculation on a computer one has to write out the ,

program, using the proper code for the particular computer which

is to be used. This program, along with any needed data, may be

punched onto paper tapes. The tape is "fed" into the computer just

as it is.fed into standard teletype equipment. The computerls

memory stores the information while it is being used. As

answers are obtained, they may for example, be printed on electric

typewriters.

(sec. 3-9]
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Exercises 3-9

1. FincLVT,by Newtonts methoc3, to three decimal places. Check

by a table of square roots.

2. Compute the zero of

f: x---6-x
3

- 12x + 1

between 0 and 1 to three decimal places.

3. Calculate to two decimal places the zero of

f: x---wx3 - 3x
2
+ 2

which i's between 2 and, 3.

4. Find an approximate solution of

x 3 + 3x - 7 = 0

correct to two decimal places.

3-10. The Graph of Polynomial Functions Near Zeros of Multiplicity

Greater Than One.

In Chapter 2 we used synthetic substitution to locate rational

-zeros of a polynomial function. We now inquire about the appearance

of the graph near a point P on the x-axis where we have a zero r

of multiplicity greater than one.

This problem is solved by extending the method of Sections

3-6 and 3-7. The behavior of the graph near the point P for

which x = r is determined by examining the expansion of f(x) in

powers of (x - r). We consider a few examples.

Example 1. The polynomial function f: x----x
3 - 3x - 2

has the zero r = -1 of multiplicity two, since f(x) = (x + 1)
2(

- 2),

Using the method of Section 3-6 we expand f(x) in powers of

(x + 1). The required expansion is

f(x) = 0 + 0(x + 1) - '3(x + 1)2 + 1(x + 1)3. (1)

The equation of the tangent T to the graph G at the point

P(-1, 0) is

y=0.

[sec. 3-10]
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The graph G lies below T on both sides of P(-1, 0) for points

which are sufficiently near P(-1, 0). This is seen by noting that

the lower degree non-zero term -3(x + 1)2 of (1) is negative for

all x t -1. Hence, P(-1, 0) is a relative maximum point.

1

1

yA
2

Figure 3-10a

G is the graph of f: (x + 1)2(x - 2).

Graph of f': x-->3(x + 1)(x - 1) is indicated by the dotted line.

[sec. 3-10]
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We know that the point (2, 0) is on the graph G since

f(2) = O.

In order to obtain further information about the behavior of

the graph in the interval where -1 < x < 2 we consider the slope

function

ft: x----4-3x
2

- 3 = 3(x + 1)(x - 1)

obtained by using the method of Section 3-7. We note that ft has

zeros -1 and +1. Since we have already considered the point where

x = -1, we now examine the point where x = +1 and therefore write

the expansion of f(x) in powers of (x - 1),

f(x) = - 4 + 3(x - 1)2 + 1(x - 1)3. (2)

This enables us to write the equation of the tangent T at the

point P(1, -4). The equation is

y = -4.

From (2) we see that tne graph G lies -above T on both sides af

P(1, -4) for all 107,Ants which are suffLrriently near P.

The graph of:the slope functionAlas been plotted on the same

axes as graph G. (,,aee Figure 3-10a.) Over what interval is the

slope of the tangent negative? For what values of N. is the

slope of the tangent positive?

ExaTe 2. To examine the behavior of the graph of

f: + 5x
3
+ 9x

2 + 7x + 2 in the vicinity of its zeros we
x4 5x3

write f(x)
2 + 2 = (x + 1)3(x + 2) and note

that -1 is a zero of multiplicity three. Since

%4
(x + 1)3(x + 2) = (x + 1)3[1 + (x + 1)] = (x + 1)3 + (x + 1)

the expansion of f(x) in powers of (x + 1) is

f(x) = 0 + 0(x + 1) + 0(x + 1)2 + 1(x + 1)3 + 1(x + 1)4. (3)

From the expansion we see that the x-axis (which has equation y = 0)

is tangent to the graph G of f: + 1)3(x + 2) at the point

P(-1, 0). The graph of G lies below the x-axis to the leftlof P

and above the x-axis to the right of P for all points which are

sufficiently near P. Thus P is a point of inflection. The point

(-2, 0) is on the graph G since f(-2) = O. To obtain more

information about the shape of the graph G in the interval

[sec. 3-10]
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-2 < x < -1 we look at the slope function

ft: x.-11x3 + 15x2 + 18x + 7 = (x + 1)2(4x + 7).

Observing that the zeros of f! are -1 and - -4- we note that the

graph has only one critical point in the interval -2 < x < -1.

This is point P(4, 4). At this point the tangent is horizontal.

Since the graph G is continuous over the interval -2 < x < -1, it

is reasonable to expect that t.he ordinate increases steadily from

P to the critical point (-1, 0). It is intuitively quite easy to

see that if she graph G has horizontal tangents at A and B, but

zt no point between A and B, the graph r±ses steadily or falls

steadily from A tp.E. (See Figure 3-10t.)

A A

Figure 3-10b

In terms of the graph of G we note that P(4, g) is a

relative minimum point. An examination of the graph of the slope
-7

function f': x----(x + 1)
2(+ 7) in the neighborhood of x =

P
-7shows that the slope of the tangent to G is negative for x < 7-

-7and positive for x > -4m (See Figure 3-10c.)

144
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Figure 3-10c

G is the graph of f: + 1)3(x + 2)

The dotted line shows the graph of the
,

slope function fl: + 1)
2
(4x + 7).
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Exercises 3-10

1. Consider f: x----x3 - 3x + 2

a) Locate the zeros of the function.

b) Locate each relative maximum, relative minimum, and

point of inflection.

c) Sketch the graph.

2. Draw the graph of f: x----x
3

- 3x
2 + 4 by finding zeros of

the function and points where the slope of the tangent is zero_

3. For each function test each zero of multiplicity more than

one for possible points of inflection.

a) f:
6 + 2x5 + 3x + 4x

3
+ 3x

2 + 2x + 1

b) f: x---0.x
6 - 2x5 + 3x - 4x

3
+ 3x

2 - 2x + 1

c) f: - 1)3(x2 + 1)

d) f: x---!*(x - 1)
3
(x + 1)(x

2
+ 1)

3-11, Summa:ry of Chapter 3.

If P is the point (h, f(4 on the graph G of the polynomial

function f: x--f(x), there exists a straight line= T -through P

which is called the tangent to G at P. T4s the best linear

approximation to G at P in the followinz sense. Let m be the

slope of T and e an arbitrarily small positive number. Then if

ix - hi is mall enough, all points of G _lie in the region bounded

above and below by the straight lines through P with slopes m + e

and m 6 . There is only one slope m that has this property,

and hence only one line that is tangent to G at P.

To find the slope m,- we may use repeated synthetic division

by x - h to write f(x) in powers of x - h,

f(x) = 1°0 + bl(x - h) + b2(x - h)2 + + bn(x h)n. (1)

Then m = b
1'

the coefficient of x - h.

The shape of G near P is determined by the first term in (1)

of degree greater than one with a coefficient different from

zero. If b2
is positive and ix - hi is small enough, G lies above

T on both sides of P. If b2
is negative and ix - 111 is small

[sec. 3-11]
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enough, G lies below T on both sides of P. If b2 = 0, we study

the sign of the first subsequent term with.nonzero coefficient,

for x > h and for x < h.

The slope m of T may be obtained quickly from the slope

function fl, where if

f: x a + a
1
x + anx

2
+ + anxn.0

then f': x a
1
+ 2a

2
x + + nanx

n-1

and m fl(h).

Of particular importance aro points of G at which fl(h)-= 0,

so that T is horizontal. lf, near such a point P, G lies above

T, P is called a relative minimum; if below T, a relative maximum.

Applications of these ideas are made to the plotting Of graphs

(in particular to their shape near points where f has a zero of

multiplicity greater than one) and to the solution of maximum-

minimum problems. Also, by replacing a graph by its tangent near

an intersection with the x-axis, a method (Newton's) is developed

for calculating successive approximations to irrational zeros of

polynomial functions.
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Miscellaneous Exercises

1. Given f: x 2x2
- Tx - 4. If x

2
m x

1
+ 2, how much greater

is the slope at x2 than at xl?

2. Point P(-3, 2) lies on the graph of f: x ---ax2 + bx + 8. If

the slope of f at P is -1, find a and b.

3. If (6, 0) and (2, 0) lie on the graph of f; xax2 + bx + c,

and if the slope of f at (6; 0) is 5, what is its slope at

(2, 0)?

4. Write the linear approximation for f: x x2 - 4x + 3 at x =

and at x = 4. Using these two linear approximations for f,

find the error at x = 2.01 and at x = 4.01. If the error

committed in using the linear approximation for f at

(h, f(14 is to be numerically less than 0.01, then Ix -

must be less than what number?

5. If f: x----5(x - h)2 + (x h) + 3, write f(x) in powers of x.

6. For each function below, write the equation of the tangent to

the graph at (0, f(0)) and sketch the graphs of the function

and the tangent in the vicinity of this point:

a) f: = 3x2 - 2x + 1

b) f: x----f(x) = 4 - x2

7. If f: x----2x
3

- 5x
2
+ x + 3, write f(x) in powers of x + 2

8. If f(x) = a(x - h)2 + b(x h) + c, show that

f(x) = a(x - 1)2 + (2a + b - 2ah)(x - 1) + f(1).

9. Given the function x----f(x) = 4 - 3x + 2x2, find the equation

of the tangent at (h, f(11 and find the value of h for

which the tangent is horizontal. Sketch the graph of the

function and its horizontal tangent.

10. Prove that a quadratic function cannot have a point of

inflection.

11. Express the polynomial 2x3 - 5x
2 + 3x - 4 in the form

al) + al(x - 3) + a2(x - 3)
2

+ a3(x - 3)3

14.8
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12. A farmer plans to enclose two chicken yards next to his barn

with fencing, as shown. Find

a) the maximum area he

can Barnenclose with .
.
. .

120 feet of fence; : ';

Chicken ; yards
.
,

;
b) the maximum area he

.'.

.

:
.
. ,

can enclose if the ,

/,......,...... ,,,,,,,, .1., 71
dividing fence is

parallel to the barn.

13. If a clay pigeon is shot vertically from the ground at a speed

of 88 ft./sec., its distance d from the ground in feet is

d = 88t - 16t2, where t is the time in seconds. In how

many seconds does the pigeon reach maximum height? What is

this height? In how many seconds from the time it is shot

does it hit the ground?

14. If f(x) = 2x3 + x
2

- 3x + 4, what quadratic function is an

approximation for f near x = 0? What is the difference

between the slope of this quadratic and the slope of f at

x = 0?

15. Show that x + a is a factor of x7 + a7. Using synthetic

substitution find the other factor.

16. Prove that if f: x----ax
2

+ bx + c (a > 0)

has zeros x
1

and x
2'

then f has a minimum at

xl + .x2
x =

2

17. Suppose (in using Newtonlb method) our first guess is lucky,

in the sense that x
1

is a zero of the given function. What

happens to x2 and later approximations?

18. Find the root of x
3 - 3x + 1 = 0 between 0 and 1 correct to

2 decimal places.

19. The graph of a function g passes through the point (2, 3).

Its slope function is

gl: + 2.

Write an equation describing g.

.20. At what point on the graph of f: x x
2

+ 5x + 4 does f

have a slope of -5?
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21. Give a formula fOr all quadratic functions f whose graphs

pass through P(0, -3) and have slope 4 at P.

22. Deterinine the behavior of the graph of

f: x--- x3 - 3x

near x = 0. Graph the function for lxi < 2.

23. A rectangular pasture, with one side bounded by a straight

river, is fenced on the rerrPining three sides. If the

length of the fence is 400 -Tards, find the dimensions of the

pasture with maximum area.

24. A box is x feet deep, mx + b feet wide, and y feet long.

Its volume is C cubic feet. Find a function f such that

y = f(x).

25. The graph of a quadratic function f has a maximum at (-1, 1)

and passes through (0, 0).

a) Graph the function and write its equation.

b) Write the equation of the quadratic function whose graph

is symmetric to f with respect to the line y = 1.

26. Find the quadratic polynomial function whose graph passes

through the origin and which has a maximum at (2, 3).

27. For what range of values of x is the error numerically less

than 0.01 when 4x2 + 3x - 2 is replaced by its best linear

approximation at x = 0?

28. The graph of a third degree polynomial function has a relative

maximum at (-1, 2) and a relative minimum at (1, -2). Write

an equation describing the function. Find the slope of f

at x = 0 and show that (0, 0) is a point of inflection.

Compare the slope of f at xl = h and x2 = -h. Sketch the

graph of f.

29. Write the expansior, of g(x) = x3 - 9x
2 + 24x - 18 in powers

of x - 3. Find the slope of g at x = 3, and show that (3, 0)

is a point of inflection_ Compare the slope of g at

xl 3 + k and x2 = 3 - I-. Sketch the graph of g.

30. Compare the graph of f in Exercise 28 with the graph of g

in Exercise 29. If g(x) = f(x + h) what is the value of,h?

Write the equation describing gl if gl(x) = f(x + 2), and

sketch the graph of gl.
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31. Is the graph of f in Exercise 28 symmetric with respect to

the y-axis or to the origin? Justify your conclusion. Answer

the same question for the graph of g in Exercise 29.

32. Classify each of the points (1, 0), (2, -2) and (3, -4) on the

graph of x --x3
- 6x

2
+ 9x - 4 as a relative maximum, a

relative -linimum,,a point of inflection, or none of these.

33.

1) y = 3 - - x3

x
2) y = - - x

2

3) y = 3 - + x2

4) y 3 - + x3

The figure at the left

shows four polynomial

graphs and their common

tangent y = 3 + at

(0, 3). Match each

graph (A, B, C, D) with

one of the following

equations.

5) y = 3 + - x3

6) y = 3 + - x2

7) y = 34 + x2

8) y 3 + + x 3

34. Find and classify each critical point of the following

functions:

a) x-- (x - 2)2 c) - 2)4

b) (2 - x)3 d) x----(x - 1)2(x + 2)

35. Find, correct to 3 decimals, the zero of

x x
4
+ 2x3 + x2 - 1 which is between 0 and 1.

36. Find' ail real roots of x3 - 3x2 + 2x - 1 = 0 correct to

3 decimals.
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37. For what set of values of k will

x 2x
3

- 9x
2 + 12x + k have

a) no real zeros,

b) one real zero,

c) three real zeros.

38. If f: x a(x - h)2 + b(x - h) + c = Ax2 + Bx + f(k),

express f(k) in terms of a, b, c, and h.

39. A right triangle whose hypotenuse is 5 is rotated about one

leg to form a right circular cone. What is the largest

volume which the cone can have?

40. Using Newton's Method find the real root of

x
3

- 2x - 5 = 0

correct to the nearest 0.001.

41. Find the value of k for which the maximum point of the

graph of f: + 3x - 5x2 has the same x and y

coordinates.

42. What number exceeds its square by the greatest possible amount?

Prove your result.

43. Find the point on the circle x2 + y2 = 9 which is nearest

the point (5, 0).

44. Find the maximum value of the function

2
2 - 6x + 10

45. Find the maximum value of the fun,..tion x----x
2

- 6x + 10

with domain (x: 1 < x < 4).

46 Write the polynomial which is the best third degree

approximation to

g(x) = 8x5 - 4x3 + 5x + 2, for Ixl near zero.

Then find the value of g(0.1) correct to three decimal places.

Show that your result gives the slope of the function

f:
6

- x + 2.5x
2 + 2x - 6 correct to the nearest 0.001.

47. Find an equation of the tangent to the graph of

f: x----x
3
+ 3x

2 - 4x - 3 at its point of inflection.
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48. Locate and identify the character of the critical points of

g:
4

- 12x
3
+ 12x

2
- 4.

49. Find .the zeros of f: - 3)2(x + 4)3. Sketch the graph

near each zero.

50. Using Neton's method, compute the real root of x5 + 5x - 1 . 0

correct to three decimal places.

51. Prove that if f: a3x3 + a2x2 + a
1
x + ao has a relative

maximum at x = xl and a relative minimum at x = x2, then it

has a point of inflection at

X
1

X
2x 2

52. If g(x) = cf(x), where c is a constant and f is a poly-

nomial function, show that gt = cf'. Hint: Assume that

f(x) = lac) + b1(x - h) + b2(x - h)2 + + bm(x - h)m

and compare cfl(h) with g'(h). Since this.holds for any h,

we have the required result.

53. If s(x) = f(x) + g(x), where f and g are polynomial

functions, show that s' = ft + gl.

54. Use the results of Exercises 52 and 53 to show that the

determination of the slope function of a polynomial reduces to

finding the slope function of x
k

for k = 1, 2, 3, ...

55. Show that P1(0, 0) and P2(-1, -11) are points of inflection

of the graph of
f: x----2x + 3x 5 + 10x.

56. Show that P(;, -15) is a relative minimum point of the graph

of
f:

4
- 2x

3
- 7x

2
+ 10x + 10.

Then by the Location Theorem show that f has two real zeros

--between 2 and 3. Locate each of the other two real zeros

between consecutive integers.

57. Sketch the graph of f: 3
- x

2
- 3x + 1 by approximating

the abscissas of the relative maximum and minimum points.

Find the smallest root of x3 - x
2

- 3x + 1 = 0 correct to two

decimal places.
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58. Find the slope function ff associated with

f: x----x - 2x
3

+ 3.

Locate the critical points of the slope function. Draw the

graphs of f and ff on the same coordinate axes. Describe

the behavior of the graph G of f near points of G which

are directly above or below the critical points of ft.

59. In using Newton's method, suppose that our guess is unlucky

in the sense that ff(x
1
) = 0. What happens in this case?

60. Show that the function attains its minimum value at

x = 0. What is the slope function? Why cannot the slope

function be used to find the minimum point?
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Chapter 4

EXPONENTIAL AND LOGARITHMIC FUNCTIONS

4-1. Introduction

In the two preceding chapters, we studied polynomial func-
tions, tangents to their graphs, maxima and minima, and so on. In
this chapter, we take up a totally new class of functions, called

exponential functions. We shall also study logarithmic functions,

which are related in a special way to exponential functions.

Exponential functions have appeared in mathematics through
two different avenues. One of these is through ordinary powers
of a positive number. Consider for example the number 2. We

2, 23, 24,know very well what the symbols 21, mean:

21 = 2, 22 = 2.2 = 4, 23 = = 8, 24 = 2.22.2 = 16,

and so on. We then define 20 = 1. Negative integral powers
of 2 are defined as reciprocals of the corresponding positive

integral powers: 2-1 = 1/2, 2-2 = 114, 2-3 = 118, 2-4 1/16,

and in general 2-n = 1/2n, for every positive integer n.

We also know how to define rational powers of 2 for
rational exponents m/n that are not integers. For example,

we write 2
1/2

for the positive number whose square is 2.

Similarly, 21/3 is the positive number whose cube is 2, and

so on. For every positive integc.r n, 21/n is the positive

number whose n-th power is 2. Extending our definition, re

1x3write 23/5, for example, for the number 0-2
/5

) . Thus, if we
write r to stand for a positive rational number, we know what

2r means.

Negative rational powers of 2 are defined as the reci-
,

procals of the corresponding positive rational powers:

2
-1/2 1 -r 1

, and in general 2 = -- for every positive
2
1/2

2r

rational number r.
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and

Rational powers of 2 obey two useful laws:

+s
2r = 2r2

(2r)
5 2

(rs)

(1)

(2)

for all rational numbers r and s, positive, zero, or negative.

We can think of the rational powers of 2 as defining a

function f: r-->211 whose domain is the set of all rational

numbers r.

The second avenue through which exponential functions appear

in mathematics is the study of various natural phenomena. For

example, a biologist grows a colony of a certain kind of bacteria

in a Petri dish in his laboratory. As part of his investigation

he wishes to study how the number of bacteria changes with time.

Under favorable circumstances it is found that so long as the

food holds out, the time required for the number of bacteria to

double does not depend on the time at which he starts the ex-

periment. This is a special case of a general principle of

growth which is of great importance in many sciences, social

and physical, as well as biological. We shall study this special

case and abstract from it certain important mathematical ideas.

To be concrete, let us suppose that on a given day there

are N
0

bacteria present and that the number of bacteria

doubles every day. Then there will be 2N0 present one day

after the start of the experiment. After another day the number

of bacteria will be twice 2N
0

or 2
2
N
0'

after three days twice

22N
0

or 23N
0'

after n days the number N df bacteria

present will be given by the equation

(3)

where n is a positive integer.

If we do not assume that the number of bacteria jumps

suddenly every 24 hours, but rather that N ,increases steadily

throughout any given day, we might ask ourselves such questions

[sec. 4-3.)
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as the following: How many bacteria are present 1/2 day or
1 1/4 days after the 'start? How many were present 2 days

before the experiment started, that is, before the initial count

was made?

You may perhaps guess that these questions are answered by

goileralizing the equation (3) to

N(r) = NO2r (4)

r is not restricted to positive integral values but may

.4ny rational values, such as 1/2, 5/4, 3/17, -2, and

fl.

In S,.ction 4-2, we shall assume that (4) does give a satis-

factory account of the growth of a colony of bacteria. We shall

dedt:.- an important consequence from this assumption and see how

this consequence may be used to test the validity of equation (4)

as a description of bacterial growth.

Of course if an experiment of this sort is repeated and if

counts are taken at various times, it is too much to expect that

the results will be fitted with oomplete accuracy by any simple

equation like (4). A scientist needs a brief method of des-

cribing the results of his measurements. This method must fit

the data with sUfficient accuracy to serve as a convenient way

of summarizing the facts and predicting the results of future

experiments. A description of this sort furnishes a mathematical

model of natural events. It is a fact that equations like (4)

form satisfactory mathematical models for growth phenomena at

least 6ver limited periods of time.

We thus arrive by two quite different avenues at the idea

of a function which associates with every rational number r a

number k2r where k represents any real number, that is,

f: r--k2r

where r is a rational number.

[sec. 4-1]
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For the sake of generality it is natural to ask for a way

to extend the domain of f to include all real numbers x in

such a way that the laws (1) and (2) will remain in force and so

that the extended function f: x---*k2x will have a smooth graph.

The problem that this presents will become evident if you ask

yourself what 212- or 277. should be. We shall take up this

extension in Section 4-3 and when it has been accomplished we

shall have a new type of function which is defined for all real

numbers x,

f:

The number 2 occurs here as a result of the special example

that we considered. We shall see that any positive number a

may replace 2 so that we consider moe general functions

f: x-->kax

for all real numbers x, and a any positive real number. Such

functions will be called exponential functions. Before going on

we wish to show that the exponential functions are really func-

tions of a new type and not just polynomial functions in a new

'dress. The proof which follows for a = 2 can easily be extended

to a general value of a.

It is easy to show that 2x is not a polynomial. In the

first place, it is obvious that

f: x--->2x

is not a constant function since

20 = 1 and 21 = 2.

Suppose then that 2x has been defined for all real x and that

f(x) = 2x = gn(x)

where g(x) is a polynomial of degree n > 0.

158
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Squaring both sides of (5) and using the fact that

2
(21 22x we have

22x [gn (4] 2.

149

But 2
2x

f(2x ) = gn(2x) if equation (5) is true. Hence

[gn(x)] 2 = gn(2x). (6)

However this is impossible since the degree of the term on the

left of (6) is 2n while the degree of the term on the right is

n, and n 2n if n > 0. Therefore the assumption that 2x

is a polynomial is false. We are consequently concerned with a

new type of function Which is the subject of the present chapter.

Exercises 4-1

1. If the identity (1) is to hold we must define 20 so that

20 2' 204r 2r.

Use this fact to show that 20 must equal 1.

2. Similarly, show that if we require that

2
-r

must be defined to be 1
/
2
r

3. Plot the graph of the equation

N = 106(2n ) for n = 1, 2, 3, 4

where N represents the number of bacteria present at the

end of n days. (Note: The unit chosen for the N axis

may be one million.)

Note: In Exercises 4 to 6 assume that the number of bacteria

doubles in 24 hours.

4. The bacteria count at the end of n + 5 days is how many

times as great as the count ,n + 2 days after the beginning

of the experiment?
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5. One week after the initial count was made the number of

bacteria present was how many times as great as the number

present three days before the experiment began?

6. If there are N bacteria present after 100 days, after

how many days were there N/4 present?

7. Suppose that in a new experiment there are 200,000 bacteria

present at the end of three days and 1,600,000 present at

the end of 4 1/2 days. Compute:

a) The number present'at the end of 5 days;

b) The number present at the end of 1 1/2 days;

c) The number of days at the end of which there are

800,000 bacteria present.

Hint: Assume that the number of bacteria present at the

beginning of the experiment is No and that at the end of

24 hours the count is

4-2. Rational Powers of Positive Real Numbers

Let us assume (as in Section 4-1) that under favorable cir-

cumstances we can predict the number of bacteria in a certain

colony by using the equation

N(x) = N023( (x rational) (1)

for the number of bacteria x days after the start of the

experiment. We then consider a bacteria count taken t days

later where t is not necessarily a positive integer, but may

by any rational number, positive, negative or zero. Then if

(1) is indeed valid,

N(x + = N023(4-t

= N
0
23( 2t

and N(x + t) = 2tN(x).

In other words, if N(x) is the bacterial count at time x,

the number of bacteria t days later, N(x + t), is 2t times
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as great. The multiplying factor 2
t

does not depend upon x,

the initial'time, but only upon t, the time interval between
counts.

Hencel no matter when we count bacteria, it is a consequence
of equation (1) that t days later the number of bacteria will

thave increased in the ratio r(t) = 2 (where r(t) depends
only upon t).

Now, clearly, this consequence is easy to test experimentally.

For exaMple, we might count at 1/2 day intervals (t = 1/2).

If (1) is correct, the ratio Niy should be equal to the

ratio N(1) or N(3/2)
Within the limits of experimental

error this is found to be true. We therefore feel justified in

working with equations like (1) in'studying bacterial growth.

To determine how many bacteria should be present at any

particular time, we merely substitute the appropriate value of

x in equation (1).
,For example, let us suppose that No = 106 .kone million).

The number of bacteria 1/2 day later should be

= 106 (21/2)

= 10
6

1.414(10
6
), approximately.

After 3/2 days the number should be

N(;) = 106 23/2

= 106 (2 1/2)

2.828(106 ), approximately.

The number of bacteria 1 day before the initial'count was

taken should be

106 2- 1 = 500,000

assuming, of course, that the conditions of growth were the same

prior to this count.
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Let us recall and generalize our previous line of thoucrht.

We arrived at the Equation

N(x) No2x

from the basic assumption that one day after the start of the

experiment (wnen x = 1) the initial number No was multiplied

by 2. The multiplication factor might obviously turn out to be

different from 2, as we have seen in Exercises 4-1,,Problem 7.

It is quite natural therefore to consider more generally

N(x) = /lex (2)

where a is any real number > 0. This equation is obtained from

(1) by replacing 2 by a. The number a is called the base

of the exponential function. If N(x) increases, a > 1.

Let us review briefly how we deal with numbers of the form

m/n
a where m and n are integers (n / 0).

Positive integral exponents are elementary. Thus

a
2

= aa, a3 = aaa, a aaaa,

'and so on.

We next define a° = 1, a-1 = 1/a, a
-2

= 1/a
2

, and so on.

r-

If n is a positive integer, we define a =l/n nya, the

positive n-th root of a.

Finally, if as before n is a positive integer and m is

any integer, we define

am/n (al/n)
m

[nwalm

It may be shown that
(n.trat)m

It follows from these definitions that

r s r
+s

a a, = a

and (ar)
s

= a
rs
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where r and s are any rational numbers. We include a few

exercises to familiarize you with these well-known definitions

and laws.

1. Prove that

Exercises 4-2a

a
m+n am a

n

for all integers m and n, positive, negative or zero,

where a is any real number > 0.

2. Prove that
n

amn = (am)

for all integers m and n, where a is any real number > 0.

,,-2 3. n -3/2
3. Evaluate: 10000 / j, 3(.0

4 Arrange the following in order of_magnitude:

922/3 (45/2)(8-1),
'2'

-4/3
2-3, (2-2/9) .

5. Show that if x = 22'7, then x = 4 19./U7 .

6. Find the value of m if:

2
a) 8m = (23 ) ;

b) 8m

7. Find the value of m if:

a) 2(45) = 16m;

b) (24)5 = 16m.

8. Show that

h h+2b
2 + 2

2
h 1 + 2

2b
-

2 2

holds for all rational numbers b and h.
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Rational Values of 2r. Table 4-2 gives ratfonal powers of 2.

Ordinarily it is sufficient to use the entries rounded to 3

decimal place accuracy. The table can be extended by applying

identity (3). You are asked to do this in Exercise 4.

The following Examples show how to find 2r for values of

r not listed in the table.

Example 1. Use Table 4-2 to find the value of 2
1.68

Solution. We note that

21.68 2(1+0.65+0.03) 21 20.65 20.03

2(1.569)(1.021) = 3.204 (approximately).

Example 2. Use Table 4-2 to find the value of 2-°57.

Solution. We write

2-1+0.63

2
0.60+0.03 100.60v0.03)

2

(1.516)2(1.021) 0.774 (approximately).

1 6 4
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r

Table 4-2. Values of 2r

2-r2"

.001 1.000 693 4 0.999 307 1

.005 1.003 471 7 0.996 540 2

.01 1.006 955 6 0.993 092 5

.02 1.013 96 0.986 23

.03 1.021 01 0.979 42

.04 1.028 11 0.972 66

.05 1.035 26 0.965 94

.10 1.071 77 0.933 03

.15 1.109 57 0.901 25

.20 1.148 70 0.870 55

.25 1.189 21 0.840 90

.30 1.231 14 0.812 25

.35 1.274 56 0.784 58

.40 1.319 51 0.757 86

.45 , 1.366 04 0.732 04

r.,0 1.414 21 0.707 11 '

.55 1.464 08 0.683 02

.60 1.515 72 0.659 75

.65 1.569 17 0.637 28

.70 1.624 50 0.615 57

.75 1.681 79 0.594 60

.80 1.741 10 0.574 35

.85 1.802 50 0.554 78

.90 1.866 07 0.535 89

.95 1.931 87 0.517 63

1.00 2.000 00 0.500 00
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Exercises 4-2b

1. Calculate 25/4:

a) By using the data in Table 4-2;

b) By noting that 25/4 = 2,21/4 = 2.17.T

2. By using the data in Table 4-2 calculate:

a) 21'15

b) 22'65

c) 20.58

'd) 2.4).72

. With the aid of Table 4-2 compute:

a) 80.84

b) 0.25-0'63

4. Extend Table 4-2 by completing the following table.

Table 4-2 (extended) Values of 2r

2'

-4.0
-3.6
-3.2
-2.8

-2.0
-1.6
-1.2

1.4
1.8
2.2
2.6
3.0

5. Plot the points (x, 2x) for the rational values of x

shown in Table 4-2 and Table 4-2 extended (Exercise 4 above).

166
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4-3. Arbitrari Real Exponents

In the preceding section, we dealt with the meaning to be

assigned to 2
x and a

x
for x a rational number, say r.

Can we give meaning to these expressions if x is irrational?

To be specific, can we define the expression 2
x

in a natural

way for irrational values of x? We know that

f:

is defined for all rational numbers r. We wish to extend this

function to a function with domain the set of all real numbers x.

Let us consider a very concrete example. How should we

define the number 2 ? Since .../T is irrational, the number

21" has no meaning if we limit ourselves only to the definitions

given in Section 4-2. Our problem is to assign a value to the

expression 2 , and indeed to all expressions 2
x

for real

numbers x, that will be reasonable and will preserve the.usual

rules of exponentiation.

We begin with the observation that the function f:

defined for all rational numbers r increases strictly as r

increases. That is, if r and , s are rational numbers and

r < s, then 2r < 2s. The proof is given at the end of the

present section. It thus seems reasonable to require that this

property be preserved when we define 2x for irrational numbers

x. Thus, for x and for all rational numbers r and s

such that

we should like to have
r s

2
r

< < 2 s
.

( 1 )

(2)

Obviously this places a severe restriction on the value we

Nassign to 2
4F

and, as we shall see, determines it completely.

The ordinary decimal approximants to yq give us a handy

167
[sec. 4-3]



158

collection of rls and sts. Thus we know that

1.4 < < 1.5

1.41 < 127 < 1.42

1.414 < < 1.415

1.4142 < < 1.4143

1.41421 < ,AT < 1.41422

and so on. The inequalities (1) and (2) then show that gif

must satisfy the following set of inequalities:

21.4 < 2
.4'. < 2

1 5

21.41 212- 21.42

21.414 gfi 21.415

2
1 4142 < < 2

1.4143

21.41421 gif 21.41422

and so on.

We replace the rational powers of 2 appearing in the last

set of inequalities by certain decimal approximations and arrive

".at the following estimates for 247 .

gr2-
15

2.639 < 21' 4 < 2.829

21.42
2.657 < 21 '41 < 2.676

21.415
2.664 < 21'414 < 2.667

1.414 gAf 21.4143
2.665 <

2 2.666

and so on. Thus, if (2) is to hold, we know g/f to 3

decimal places: 212-= 2.665 ... .

[sec. 4-3]
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The pinching down process that we use to estimate is

sketched in Figure 4-3a.

2
14142

21.4143

21'5

Figure 4-3a. Pinching down on 2 .

21.8

To generalize to any real number x, we choose any in-

creasing sequence rl, -r2. r3, rn, ... of rational numbers

all less than x, and any decreasing sequence sl, 52, s3,

Sny of rational numbers all greater than x such that the,

difference sn - rn .can be made arbitrarily small. We compute
r
1

r
2

the sequence of numbers 2 , 2 2 3 ..., 2 n
s
2and the sequence of numbers 2

1
, 2 , 2 3, 2

n

r, s
nand then look at the intervals 2 < y < 2 ,

169
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Pinching down
on 2x

fr 1.2 rn sh s3 s2 si x

Crowding in on x

1

Figure 4-3b. Pinching down on

It is a property of the real number system that as x is

confined by sn and rn to smaller and smaller intervals, the

corresponding intervals on the y-axis pinch down to a uniquely

determined number, which we shall define as the number 2x. The

number obtained is independent of the particular choice of the

sequences rl, r2, r3, rn, ... and Slp 82.1 Sy eibe S
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The method used for defining 2x for irrational x makes

it possible to fill in all gaps in the graph of the function

r--*21 (r rational)

-to obtain a graph for

(x real).

Figure 4-3c is a careful graph of this function for a limited

part of its domain.

Theorem. 2r < 2s if r and s are rational and r < s.

Proof. I. We first note that

(1) If a > 1, then a2 > 1, a3 > 1, a
n > 1 (n a posi-

,

tive integer).

Similarly,

(2) If a = 1, then an = 1.

(3) If 0 < a < 1, then an < 1.

II. We now assert that 2m/n > 1 for any positive

integers m and n. For if a = 2m/n were equal to 1, (2)

would lead to the result a
n

= 2
m 1, which is false. If, on

the other hand, 2m/n were less than 1, (3) would lead to the

result a
n

= 2
m

< 1 which is also false. Since 2
m/n

is

neither less than nor equal to 1, it must be greater than 1.

III. Now let r and s be any two rational numbers

such that r < s. Then s - r is a positive rational number

m/n. Since

or

28-r . 2m/n > 1

2r(2s-q > 2r

2s > 2r .
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Exercises

1. Use the graph of x-->2X to estimate the value of:

a) 2115
22.65

c) 20'58

d) 2-0'72

2. Compare your results in Exercise 1 with your answers to

Exercise 2 in the set 4-2b.

3. Use the graph of x--.2x to estimate the value of:

a) g,./5

b) 277-

c) 2-7Y4

4. Is there any value of x for which 2x = 0? Give reasons

for your answer.

5. Use the graph of x--).2X to estimate the value of x if:

a) 2x = 6

b) 2x 0.4

c) 2x = 3.8

d) 22c = 3

e) 2x = 2.7

4-4. Powers of the Base a,as Powers of 2.

We have concentrated on the function

f:

We are familiar with its graph and we have worked with a table

of its values.

We shall need to study the function

f:

where a is any positive real number. Fortunately we do not

have to start from scratch because we can express a as a pOwer

of 2, as we proceed to show.
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The graph of f: x--->2x lies above the x-axis and rises

from left to right. Also, f(x) = 2x becomes arbitrarily

large for x sufficiently far to the right on the real number

line, and .arbitrarily close to zero for all x sufficiently

far to the left on the real line. The graph has no gaps. Con-

sequently, if we proceed from left to right along the graph,

2
x increases steadily in such a way that any given positive

number a will be encountered once and only once. That is,

there must be one and only one value of x, say ex , for which

2e` = a ( 1)

(See Figure 4-4) and therefore a may be expressed as a power

of 2.

a

(0,1)

y

(oc, 20')

0 OC

Figure 4-4. Graph of x.--->2x showing that 2c.c = a.

We can find the value of 0c by means of the graph (Figure

4-3c) or Table 4-2.

Example 1. Find the value of 0( for which 2°(.= 6.

Solution. On the graph of x--).2x we look for the abscissa

corresponding to the ordinate 6. The result is 2.6 (approximatelh

If we use Table 4-2 to express 6 as a power of 2, we first
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write 6 = 22(1.5). Interpolating in Table 4-2 between the

entries for x = 0.55 and 0.60 we obtain 2°'59 = 1.50

(approximately). Hence, 6 = 22(1.50) 22(2059) 22.59

(approximately).

Example 2. Find the value of oc for which 1.11 = 264 .

Solution. We look for 1.11 in the second column and read

backward to find the corresponding value of oc in the first

column. Thus, 1.11 =
20.15 (approximately).

Example 3. Express 3.25 in the form 20c

Solution,

3.25 = 2(1.625) g:$ 21( 20.70) 21.70.

165

To.compute ax for a given base a and given, x we use

equation (1) to write

ax = (2 )x = 2 c'cx

and then use Table 4-2 as illustrated in the following examples.

Example 4. Express 30'7 as a power of 2, and find the

approximate value of 30'7.

.7Solution. To find the value of 30 we first express 3

as a power of 2. Thus, 3 . 21(1.5)
21(20.59) 21.59

(approximately). (Verify this from Figure 4-3c.)

Now 30.7 (21.59)°'7 21.113 21.11

2(1+0.10+0.01) 21(20.10)(20.01)

P.: 2(1.072)(1.007) 2.159.
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Example 5. Calculate the value of

Solution. We note that (

6.276 = 4(1.569)
22(1.569) 22(20.65) 22.65m

(Verify this from Figure 4-3c.)

Hence,

(6.276)
(22.65)°4 2(2.65)(0.4) 21.06

2(1+0.05+0.01) 21 20.05 20.01

2(1.035)(1.007) = 2.084 (approximately).

Exercises 4-4

1. Express 3.4 in the form 20c.

2. Write 2.64 in the form 2.64 = 2c( and then find the

approximate value of (2.64)03.

3. Find the approximate value of (6.276)-0'6.

4. Find the approximate value of (5.2)2.6.

5. Show that if 0 < a < 1 and v > u, then av < au.

Hint: See the proof of the theorem on page 161.
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4-5. A Property of the Graph of x-->2x

The graph of f: x-->2x has a simple but important property

which is usually described by the phrase "concave upward". (See

Figure 4-5a.) Precisely, this phrase means that if two points

P and Q on_the graph are joined by a straight line segment,

then this segment lies above the arc PQ of the graph.

Figure 4-5a. The graph of x--->2x. is concave upward.

We shall not give a rigorous proof of this fact, but shall be

content to show that the midpoint M of the segment PQ lies

above the point R on the graph with the same abscissa.
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Proof: Let P and Q have the coordinates (xl, yl) and

Y1 Y2
(x2, y2) respectively. Then the ordinate of M is

2 '

the arithmetic mean of yl and y2. If the ordinate of R is y3,

Y' Y2
Yl Y3

Hence y3 =.8friT , 'the geometric mean of yl and y2..

An important theorem states that the arithmetic mean of

any two positive numbers is grep.ter than or equal to their

geometric mean.

In our case, this theorem would guarantee that

Y1 Y2
2

The result that we require

Y1 Y2
2 > Ply2

( 1)

(2)

stmngthens (1) by removing the equal sign. We shall prove (2)

by repl'aeing it by a list of equivalent inequalities, the last

of Which is obviously correct.

Y1 Y2 > 2filSr2-

2 0
Y1 "Y1Y2 Y2

2
.""

yi
2 - 2y1y2 + y2

2
> 0

(Y2 Y1)2 > ° (3)

Since y2 > yl, (3) holds so that (2) has been established.

Although our proof shows only that the midpoint M of the

segment PQ lies above the arc, it is plausible that all points

of the segment Q lie above the corresponding points on the

arc PQ. For we can apply our result to each of the arcs PR and

RQ (see Figure 4-5b) and conclude that R1 lies below M1 and
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R
2

below M
2' The process of bisection can be repeated as many

'times as we wish. We can therefore obtain an arbitrarily large

.).1 points on the arc PQ which are certainly below the

chord.

Figure 4-5b. Repeated bisection.

Exercises 4-5

1. Let P and Q have coordinates (.05, 2'05) and (.25, 2.25),

respectively. Show that the midpoint M of the segment PQ

lies above the point R on the graph G of x--*2x with

[sec. 4-5]
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the same abscissa. Use Table 4-2.

2. Using the information given in Exel,cise 1, show that the

midpoints M1 and M2 of segments PR and RQ respectively,

lie above the corresponding points on G having the same

abscissas. In this way exhibit 3 points on arc PQ which
are below chord PQ.

3. Represent the results obtained in Exercises 1 and 2 graphically

distorting the scale if necessary.

I. Repeat Exercises 1-3 using points P(.05, 05) and
Q(.25, 425) on the graph G of x--34x.

5. Generalize (1) to the case of four positive numbers, that

Y1 -I- Y2 -I- Y3 -I- Y4is, prove that
4

Hint: Use (1) and an analogous inequality for y3 and yk.

Apply the principle to these two results.

*6. Generalize (1) to the case of three positive numbers, that

is, prove that Y1 1- Y2 -I- Y3

3 > 3N/ Y1Y2Y3

Y1 Y2 -I- Y3Hint: Use Exercise 5, replacing by
3

1

and simplify.

4-6. Tangent Lines to Exponential Graphs

In Chapter 3 we learned that through each point P of a

polynomial graph there exists a certain straight line, the tangent,

that represents the best linear approximation to the graph near

P. One may therefore be led to wonder whether a similar statement

applies to the graph of an exponential function. It is in fact

true that there does exist a tangent at eacL .:Noint of the graph.

In the present section we shall show how to find the slopes

of such tangent lines. The results obtained have important

applications, specifically to problems of growth and of radio-

active decay. 8 0
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We shall begin with the graph G of g: x--*2x and its

tangent at (0, 1).

.Let Q(b, 2bj be a point cifi-the graph to the right of P

and let A be the point (-b, 2-b) (See Figure 4-6a ). We

shall assume that b < 1.

Figure 4-6a. Approximating the graph of x---4.2x near P(0,1)

As we know, G is concave upward everywhere; hence G lies

below PQ and below RP.

Let us extend QP to Q1 so that WI' PQ, and RP to RI

so 'that PRI = RP. We shall show that for pq < b, G lies in

the hatched region between the lines L1 = QQI and L2 = RR'.

It is necessary to prove that G lies above L1 (slope m) for

-b < x < 0, that is, that 2x > 1 + mx, -b < x < 0. This

is equivalent to the statement that 2-x > 1 - mx for 0 < x < b.

x 1Now 2- = and 2
x

< 1 + mx, 0 < x < b. Hence
2x

n-x = 1 1
a

x 1 + mx
2

1 8

[sec. 4-6]
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1 (1 - mx) 1 - mx
Then 2-x > 11 + mx)(1 - mx) 1 - m2 x2

Since 1 - m
2
x
2 < 1

2-x > 1 mx

(2)

(3)

which is the required conclusion.

It can similarly be proved that for 0 < x < b, G lies

above L2.

We expect that if b is small enough, the lines Li and

L
2

will have slopes which differ as little as we please. This

is indeed the case.

Suppose for example that b = 0.01. Since

20.01 0.9S310,1.00696 and 2

00696
we obtain for the slope of L1 ,

0. 0.696 ,
0.01

and for the slope of L2 , 0.g0g90 0.690.

We could take b.= 0.001 or even smaller, and thus get lines

whose slopes are even closer together. It turns out that all of

these wedges include a line whose slope to 6 decimal places

is 0.693147. We shall use the letter k to stand for this

slope, and write the equation of the tangent at P as

y = kx + 1,

where k 0.693 is a sufficiently good approximation for'most

purposes. Thus if

g: ,

g(x) kx + 1, for lxi small. (4)

182
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Exercises 4-6a

1. Consider the proof in the text that the graph G of

lies above L
l'

for -b < x < 0.

At which step is it necessary to assume that mx / -1?

mx / 0? mx +1?

Show that none of these possibilities can occur.

*2. Prove that G lies above L
2

for 0 < x < b.

Hint: Note that G lies below L
2

for -b < x < 0. *se

the given proof that G lies above Li, -b < x <

3 Find the slopes of the lines Li and L2 if b = 0.001.

Hint: Use Table 4-2.

4. Using the results obtained in Exercise 3, show that the

slope k of the tangent to the graph of x--4,2x at P(0, 1)

lies between 0.6929 and 0.6934.

5. Using the same'procedure as in Exercise 3 and 4 calculate

the slope of the tangent to the graph of x---3-4x at P(O, 1).

Compare your answer with the result obtained in Exercise 4.

6. Find the slope of the tangent to the graph of x--).3x at

p(0, 1).

Note: Correct to 4 decimal places, the result is 1.0986.

So far we have considered only the base a = 2. It is easy

however to obtain a general result for the slope of the tangent

to the graph of

g:
x

at (0, 1) for any a > 0.

It is sufficient to write a = 20" so that

ax = 2(xx = g(ocx)

From (4) it follows that

g(cX x) k ocx + 1, for locxl small,

[sec. 4-6]
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and hence the required tangent has the equation

y = kocx + 1

where oc is such a number that 2
oc.

= a.

It would be highly desirable to have the slope of (5) equal .

to 1. This result is obtained by taking ock = 1, that is,

oc= l/k.

This happy choice of the base a is Imiversally denoted by the

letter e.

Definition 4-1, e = 21/1c, where k = .

The use of e in this sense may be traced to the Swiss

mathematician Leonard Euler (1707-1783). The number e is one

of the most important in mathematics; it ranks in importance

with ir. If we use 0.693 as an approximation for k, we

obtain
1 1 1.443,7 0.693

(5)

and e 21
/k_ 21.443 2(20*

4)(20.04)(20.003)
=

w. 2(1.320)(1.028)(1.002)

= 2.72 approximately.

If we use a closer approximation to k, we may naturally expect

to get a better approximation to e.

The number e has been computed to an enormous number of

decimal places. In recent years, high speed electronic digital

computers have been used to obtain the decimal expansion of e

to 2500 places. For the record, we note that the first 15

places are given by

e = 2.71828 18284 59045... (6)

For most purposes e = 2.718 is a sufficiently good approximation.

There is an imiportant method for approximating the value of

e, which may be expressed as follows

e (1 +
1Nri
177 for n large.

1 8 4
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This means that if n is a large positive integer, say 100,

1%
n

is given approximately by (1 + -v . This result may be made

plausible by the following argument. We may expect t)-,t the

tangent line to a given curve will lie very close to the curve

itself for all points close to the point of tangency. Consider

the graph of f: x-,>.ex and the point (0, 1) lying on this

graph. Since the slope of the graph at (0, 1) is 1, the tangent

line at (0, 1) has the equation y = 1 + x. Thus we write

ex 1 + x for Ix1 near zero.

This being so, we take l/n very small (n a large positive

integer) and write

e
l/n 11 + - .

It is indeed correct that for large n, (7) does give a

good value for e. In fact by choosing n large enough, an

arbitrarily close approximation may be obtained. A further

discussion of methods for computing. e will be found in

Appendices 4-16 and 4-17. A table of values of ex and e-x

has been included together with a graph of y = ex for
1 1

-27 < x < 27 . See Table 476 and Figure 4-6b.

135
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Table 4-6 ex and e-x

e
x e

-x

0.00 1.0000 1.0000

0.01 1.0101 0.9901

0.02 1.0202 0.9802

0.03 1.0305 0.9704

0.04 1.0408 0.9608

0.05 1.0513 0.9512

0.10 1.1052 0.9048

0.15 1.1618 0.8607

0.20 1.2214 0.8187

0.25 1.2840 0.7788

0.30 1.3499 0.7408

0.35 1.4191 0.7047

040 1.4918 0.6703

0.45 1.5683 0.6376

0.50 1.6487 0.6065

0.55 1.7333 0:5770

0.60 1.8221 0.5488

0.65 1.9155 0.5220

0.70 2.0138 0.4966

0.75 2.1170 0.4724

0.80 2.2255 0.4493

0.85 2.3396 0.4274

0.90 2.4596 0.4066

v.95 2.5857 0.3867

1.00 2.7183 0.3679

1.50 4.4817 0.2231

2.00 7.3891 0.1353

2.50 12.182 0.0821

3.00 20.086 0.0498

4.00 54.598 0.0183

5.00 148.41 0.0067

S
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Exercises 4-6b

1. Show graphically that there is a unique real number x such

that e
x + x = O.

2. Using Newton's Method find the zero of + x correct

to two decimal places.

4-7. Tangents to Exponential Graphs (Continued).

It remains to discuss the tangents to the graph of

at points that are not on the y-axis. We shall confine ourselves

to the case a = e, where the

base is e. As we know, the

tangent at (0, 1) has the equa-

tion y = 1 + x. Consequently,

for Ix1 small enough,

e
x 1 + x. (1)

To study the graph near

P(h, eh ), we write x = h + (x-h)

and

e
x

= e
h+(x-h) = e

h eX_h (2)

For lx - hl small enough, we

use (1) and replace e
x-h by

1 + (x-h).

Then (2) becomes expe, eh[1 + (x-h)] =

eh + eh (x-h). This linear approxi-

mation gives the equation of the

tangent at P, namely,

/

y = eh + e
h (x h).

[sec. 4-7]

188

Figure 4-7

The graph of

and its tangent at

point (0, 1)



179

The significant part of the result is that the slope of the

tangent is equal to the value, eh, of the function. Otherwise

expressed, if

f: x-aex ,

then ale slope function ft is

ft: x-aex,

that is, ft = f.

Exercises 4-T :

1. Use the data in Table 4-6 to find the slope of the tangent

to the graph of f: x-aex at the following points.

a) (-1, e-1) d) (0, 1)

b) (0.5, e0'5) e) (1.5, el-5)

o) (0.7, e0'7)

2. Use the graph of f: x-->ex in Figure 4-6b to estimate the

slope of the tangent at the points given in Exercise 1.

Compare your results with those obtained in Exercise 1.

3 Write an equation of the tangent to the graph of f at

each point (x, ex) given in Exercise 1.

4. a) Through the point (3, 4) draw a line L1 with slope

m = 2/5.

b) Draw a line L2 which is symmetric tu L
1

with respect
to the y-axis.

c) What point on L2 corresponds to the point (3, 4) on Ll?

d) What is the slope of L2?

e) Consider the general case: line LI drawn through
point (r, s) with slope = m, and line L2 symmetric

to L
1

with respect to the y-axis.

What point on L2 corresponds to point (r, on L 9
1'

What is the slope of L2?

[sec. 4-7]
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5. a) Plot the points (x, ex) for which x = -2.0, -1.8, .

0.2, o.4, , 1.6.

b) Through each of these points draw the graph of a line

having slope m = ex.

c) Show that these lines suggest the shape of the graph

of f:

6. a) For each point plotted in Exercise 5(a) locate the

corresponding point which is symmetric with respect to

the y-axis; then through these points araw lines sym-

metric to those of Exercise 5(b) with respect to the

y-axis.

b) Show that each point located in 6(a) lies on the graph

of g:

c) Compare the slopes of the lines drawn in Exercise 6(a)

with those of Exercise 5(b).--

7. a) Using the same coordinate axes draw the graphs of
-x

f: x-->e
x and g:

b) Compare the slopes of the graphs drawn in (a) at

x = 0, +1, -1.

c) Compare t.,e slope of the graph of g at x = h with

e
-h

.

Write an equation describing the slope function gl of

-xgt

. ,

4-8. Applications.

In the early part of this chapter we examined the equation

N(x) = Noax , a >0, (1)

If a > 1, (1) is a mathematical model for bacterial growth.

Similar equations arise in many branches of science.

Radioactive decay. Radioactive substances have the property of

[sec. 4-8]
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diSintegrating so that in a givenIperiod of time some of the

atoms of a given radioactive substance break up by emitting

particles, thus changing to atoms of another substance. As E.

result, the weight of the unchanged material decreases with time.
The weight W(x) of the radioactive material at time x is

satisfactorily given by

W(x) = Woa-x (2)

where W is the weight W(0) at x = G and a is a suitable0
constant greator than one.

The negative expoaent corresponds to the fact that W(x)

decreaSes with time.

We may write equation (2) using the base 2.

Thus, if a = 2°c

W(x) = W02-ccx .

We may also use the base e = 2 1/k Since 2 = ek, 2°(= ek0(.

Substituting in (3) we have

1.1(x) = Woe-k°(x

or W(x) = Woe-c).( ,

(3)

where c = ka.

The f-raction of radioact!ve material which remains after a

given interval of length t is fixed, since

w -(x+t)
W(x + t) "Oa -t

W(x)
W a -x

- a

0

is independent of x.

The ratio W(x
(

is less than 1 for all values of t,Wx+ )

t)

since t > 0 and a > 1.

Workers in the field of radioactivity usually measure the

rate of radioactive decay of an element in terms of its half-

life. The half-life is the time required for one-half of the

[sec. 4-8]
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active maerial present at any time to disintegrate. The half-.

life of radioactive bismuth (Radium E), for example, is 5.0 days.

At the end of 10.0 days three-fourths of it will have disinte-

grated, leaving only one-fourth of the initial amount. At the

end of 20.0 days, only one-sixteenth of the original radioactive

bismuth is present.

To find the half-life T of a given radioactive suipstance

it is convenient to use equation (3). Thus, the weight W(x)

at time T equals one-half the initial weight- Wo. We find

accordingly that

and

Hence

1 w = W 2-ocT7 0 0

2-1
ocT

1
o(T = 1 and a:=

Thus the process of radioactive decay of an element is described

completely by the equation

W(x)
w02-x/T (5)

Example 1. If radium decomposes in such a way that at the

end of 1620 years one-half of the original amount remains, what

fraction of a sample of radium remains after 405 years?

Solution. The fraction remaining after x years is

144
---

From the given data we have

x = 405,

T = 1620.

Equation (5) gives us.

W(405) = Wo 2
-405/1620 -1/4

= W0
2

Hence the fraction remaining after 405 years is

W(405). ,71/4 1
76 0 841

W(0) `
2.

192
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Example 2. Find the half-life of uranium if 1/3 of the

substarc.e decomposes in 0.26 billion years.

Solution. From the given data

W(0.26) k w .
3 0

Substituting in equation (5) we have

and hence,

2

5 no = w02-0.26/T

2-0.26/T 2
- , or 20.26/T

From Table 4-2

2
0.58 1.5 (approximately).

Thus

0.26
0.58 ,T

so that

183

0.45(billion years)

This means that nb matter what amount of uranium is present

at any given time, 4.5 x 108 years 7.ater one-half of it will

have decayed.

Exercises 4-8a

1. The half-life of radon is 3.85 days. What fraction of a

given sample of radon remains at the end of 7.7 days?

After 30.8 days?

2. The half-life of radioactive lead is 26.8 minutes. What

fraction of a sample of lead remains after a time of 13.4

minutes? After 80.4 minutes?

3. At the end of 12.2 minutes, 1/16 of a sample of polonium

remains. What is the half-life?

4. A certain radioactive substance disintegrates at such a rate

that at the end of a year there is only 49/50 times as much

(sec. 4-8)
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as there was at the beginning of the year. If there are two

milligrams of the substance at a certain time, how much will

be left t years later?

5. A quantity of thorium has decreased to 3/4 of its initial

amount after 3,36 X 104 years. What is the half-life of

thorium measured in years?

6. Radium decomposes in such a way that, of m milligrams of

radium, 0.277in milligrams will remain at the end of three

thousand years. How much of 2 milligrams will remain after

81 decades?

Compound interest. Suppose that P dollars is invested at an

annual rate of interest of r percent or r/l00, and at the end

of each year interest is compounded, or added to the principal.

After t years the total amount At on hand is given by

k

A
t
= P(1 + r/100)

t
.

However, the interest may be compounded semiannually, quarterly,

or n times a year. If interest is added to the principal n

times per year, the rate of interest is f6On
per period, and

the number of periods in t years is nt. Hence, the amount

A
nt

after nt periods (that is, after t years) is

r Nnt
A
nt

= P(1 + .

lppn
(6)

The more often you compound interest, the more complicated the

calculation becomes. On the other hand, if we let n in (6)

get larger and larger indefinitely, we approach the theoretical

situation in which interest is compounded continuously; we

shall see that the result obtained will enable us to find easily

a very satisfactory approximation for the amount of money on

hand at the end of a reasonable period of time.

194
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To study this idea, let -de = h so that n =

Then (6) becomes

A
nt = P(1 + 11)rt/100h

rt/100
P [(1 + h)311-11 (7)

If now n is taken larger and larger, h gets smaller and smaller

and/the right side of (7) grows closer and closer to

pert/100

which we call A, the theoretical amount that would be obtained

if interest were compounded continuously at r pa?cent. Thus

pert/100.
(8)

Example. If $100 is invested at 4 per cent for 10 years,

compare the amount after 10 years when intere6t is compounded

continuously with the amount after 10 years if interest is

compounded only annually.

Solution. We have P = 100, r = 4, and t = 10 (years).

If interest is compounded continuously, (8) gives

A = 100e0 4

which is approximately 149.

To compute interest compounded annually we substitute the

above values of P, r, and t in (6). This gives

A
10

- 100(1.04)10

We may use a table of common logarithms to estimate Alo; thus

A
10

100(1.48) = 148.

The results, $149 and' 148, differ surprisingly little.

195
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Exercises 4-8b

1. Find the amount of $1000 after 18 years if interest is

compounded continuously at the rate of 3 percent.

2. Using 2 Pd e
0.693

, find how many years it takes to dbuble,

a sum of money at

a) 3 per cent compounded continuously.

b) 6 per cent compounded continuously.

c) n per cent compounded continuously.

A Law of Cooling. The temperature of a body warmer than the

surrounding air decreases at a rate which is proportional to the

difference in temperature between the body and the surrounding

air. Let T(x) denote the temperature of the body and B the

temperature of the air at time x. The law of cooling may be

expressed by

or

T(x) B Ae-cx

T(x) = B + Ae-cx (9)

In this equation A + B. is the temperature of the body at time

0 and c is a positive constant whose value determines the rate

at which cooling takes place.

If we let T(x) B = W(x) and A W(0), we have

W(x) = W(0)e-cx

which is identical with our previous equation (4).

Example 1. A kettle of water has an initial temperature

of 1000 C. The room temperature is 20
o

C. After 10 minutes,

the temperature of the kettle is 800 C.

a) What is the temperature after 20 minutes?

b) When will the temperature be 40c C?

Solution. Since W(x) = T(x) - 20

W(0) = 100 - 20 = 80

and W(10) = 80 - 20 = 6o.

[sec. 4-8]
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From equation (4)

W(x) = 80e-ex

and 60 = 80e-c10

Then e
-10c

= = .75 sz e-'3° (from Table 4-6),

so that

10c cs .30 and c $:$ .03.

Hence W(x) = 80e-'°3x

and T(x) = 20 + 80e-'03x.

(a) T(20)= 20 + 80e-'6

20 + 80(.549)

R$20 4. 43.9 = 63.9; hence the temper-

ature after 20 minutes is about 64° C.

(b) 40 = 20 + 80e-133x

e
-.03x 20 'lc

.03x sks 1.39

x sks 46.3; hence the temperature

will be 40° C after about 48 minutes.

Example 2. The law of cooling can be applied to solve the

problem of whether to put your cream in your coffee at once or

to add the cream just before drinking it. Suppose that you are

served a cup holding, let us say, 6 ounces of coffee at tempera-

ture 1800 F. You are also supplied with one ounce of cream

which is at room temperature, 700 F. You wish to wait for a

while before drinking the coffee and also wish to have it as hot

as possible when you drink it. How can you get the hottest

coffee? Should you pour the cream in right away, or wait until

you are ready to drink it? We solve this problem easily if we

assume that the exponential law of cooling holds.

[sec. 4-8]
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First case. Pour the cream in right away. Then the tempera-

ture of the mixture becomes

-642 70180(-9-) + 70(4) - +

since 6/7 of the mixture (coffee) is at temperature 1800 and

1/7 (cream) is at 70°. Using equation (9) with B = 70 and

initial temperature A + B = 660/7 + 70 we find that the

temperature at time x is

660 -exT(x) 7 e + 70. (io)

Second case. Pour the cream in at anytime you wish. Then

at time x, just before pouring in the cream, the coffee has

cooled to temperature

70 + lloe-cx

according to (9) with B = 70, A + B = 180. Mixing the coffee

and cream now, we find that its temperature is

T(x) = (70 + 110e-cx)(;) +

Reducing this expression by elementary algebra gives

660
e
-cx + 70T(x) = (11)

which is the same as the result obtained in(10). Therefore it

makes no difference at all whether you pour your cream into your

coffee as soon as you-get it, or wait and pour it in just

before drinking. It will be as cold one way as the other.

Exercises 4-8e

1. At h kilometers above sea level, the pressure in milli-

meters of mercury is given by the formula

P = P0e
-0 11445h

where Po is the pressure at sea level. If Po = 760,

what height is the pressure 180 millimeters of mercury?

[sec. 4-8)
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2. A law frequently applied to the healing of wounds is

expressed by the formula

Q0e-nr,

where Qo is the original area of the wound, Q. is the

area that remains unhealed after n de:is, and r is the

so-called rate of healing. If r = 0.12, find the time

required for a wound to be half-healed.

3. If in a room of temperature 200 C a body cools from 1000 C

to 90° C in 5 minutes, when will the temperature be 30° C?

(Assume the law of cooling expressed by (9)).

4. If light of intensity Io falls perpendicularly on a block
-^

of glass, its intensity I at a depth of x feet is

I = I0e
-kx

.

If one third of the light is absorbed by 5 feet of glass,

what is the intensity 10 feet below the surface? At what

depth is the intensity 1/2 Io?

4-9. Inversion

Before we can proceed with the main ideas of this chapter,

we must return to the concept of 'an inverse function, which was

introduced in Section 1-6. We shall explore this idea a little

further than we did in Chapter 1, and also prove some of the

most important theorems which relate to inverses. We start by

repeating the definition of inverse.

Definition 1-8. If f and g are functions that are so

related that (fg)(x) = x for every, element x in the domain of

g and (gf)(y) = y for every element y in the domain of f,

then f and g are said to be inverses of each other. In this

case both f and g are said to have an inverse, and each is

said to be an inverse of the other.

This definition leaves unanswered one important question:

Can a function have more than one inverse? That is, if f and
V,
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g are inverses of each other, does there exist a function h / g

such that f and h are also inverses of each other? As you

might suspect, the answer is no, but we shall not prove it here.

Consider, however, a picture of a function a, a mapping, with

arruas going (as in Figure 1-6a) from points representing

elements of the domain to'points representing elements of the

range. To represent the inverse function; we merely reverse the

direction of each arrow, as in Figure 1-6b. It seems intuitively

clear that there is only one way to do this.

The fact that a function can have at most one inverse

justifies our use of a distinctive notation for functions which

are inverses of each other. If f and g are such functions,

then we can say that g is the inverse of f and write g = f-1.

We read f
-1 as "f inverse". Similarly we can write f

-1
.

, -I
Thus = f.

WarninE. Although the notation f-1 is strongly suggestive

of "I divided by f," it has nothing whatever to do with

division. All it means is that

(ff-1)(x) = x and (f-if)(Y) = Y.

We now prove the basic theorems which relate to the existence

of inverses.

Theorem 4-1. If a function .f has an inverse then

f(x1) f(x) whenever x
1

and x2 are two distinct elements

of the domain of f.

Proof. We shall prove this theorem by assuming the contrary

and then deriving a contradiction. Hence we assume that

f(x1) = f(x2). From this we see that f-1(f(x1)) =

Now f-lf(x1) = xl and f-lf(x2) it follows that

xl x2.
But the elements x

1
and x

2
are supposed to be

distinct (i.e., xl / x2). This contradiction proves the

theorem.
[sec. 4-9]
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A vivid expression is used to describe functions f for

which f(x1) / f(x2) whenever xi / x2. This is the expression

one-to-one" If a function has an inverse then by Theorem 4-1

it is one-to-one. Note that in this case the equation

f(x1) = 2(x2) implies t.t.lat xi = x2.

We point out that the idea of a one-to-one function is

fundamental to the process of counting a collection of objects.

When we count a set of things we associate the number 1 with

one of the things, the number 2 with another, and so on until

all the objects have been paired off with whole numbers. We do

not give the same number to two different objects in the collec-

tion. In short, this "counting" function is one-to-one. As

another example, suppose that there are 300 seats in a theater,

and suppose that each seat is occupied by one and only one patron.

Then, without counting the people, we can conclude that there

must be 300 people sitting in these seats. These two examples

deal with finite sets. On the other hand, the idea of a one-

to-one function is fruitful even when the sets involved are not

finite. Indeed, most of the applications deal with sets of this

kind.

Now that we know that every function which has an inverse

is one-to-one, it is natural to ask if the converse is true.

Does every one-to-one function have an inverse? You might guess

that the answer is yes. This is the content of Theorem 4-2.

Theorem 4-2. If f is a function which is one-to-one then

f has an inverse.

Proof. Using the hypothesis that f is one-to-one, we shall

construct a function which will turn out to be f Given an

element y of the range of f, then, since f is onetb-one,

there exists,one and only one element x in the domain of f
,

such that y = f(x). Now associate the element x with the

element y. This-association defines-a function g: The

domain of g is the range f and the range of g is the

[sec. 4-9]
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domain of f. Finally, since

(fg)(y) f(x) = y

and (gf)(x) = g(y) = x,

we see that f and g are inverses of each other. Therefore
-

has an inverse and f
1

= g.

Definition 4-2. A function f is said to be strictly

increasing if its graph is everywhere rising toward the right,

if, that is, for any two elements xl and x2 of the domain

of f, xl < x2 implies f(x1) < f(x2).

An important corollary of Theorem 4-2 concerns strictly

increasing functions.

Corollary 4-2-1. A function f which is .strictly increasing

has an inverse.

Proof. If x
1

and x
2

are any two elements of the domain

of f- then either xl < x2, in which case f(x1) < f(x) by

hypothesis, or x2 < xl, in which case f(x2) < f(x1). In

either case, f(x1) j f(x2). Hence f is one-to-one and there-

fore has an inverse by Theorem 4-2.

A similar result holds for strictly decreasing functions;

see Exercise 5.

Tileorems 4-1 and 4-2 provide an answer to our first

question, which.was: Under what circumstances does a function

have an inverse? We summarize this answer in Theorem 43.

Theorem 4-3. A function has an inverse if and only if it

is one-to-one.

As we might reasonably expect, there exists a rather

simple relationship between the graph of a function f and the

graph of its inverse f
-1

. If, for example, r and s are

real numbers such that r = f(s), t'oen P(s, 0 is, by defini-

tion, a point of the graph of f. But if r f(s), then

[sec. 4-9]
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s = f-1(r), and it follows, again by definition, that Q(r, s)

is a point of the graph of f-1. Since this argument is quite

general, we can conclude that, for each point P(s, 0 of the

graph of f, there is a point Q(r, s) of the graph of f
-1

and conversely; either graph can be changed into the other by

merely interchanging the first and second coordinates of each

point. To picture the relative positions of P and Q we
should plot a few points and contemplate the results. ,(See

Figure 4-9a, in which corresponding points of each pair P(s,

Q(r, s) have been joined together.)

Figure 4-9a

193

The presence of the line ,L = ((x, y) y = x] illustrates

a striking fact: With respect to the line L, corresponding

points are mirror images of each other: Thus we see that the

graph of the inverse of a function f is the image of the graph

[sec. 4-9]
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of f in a mirror placed on its edge, perpendicular to the page,

along the line L. This fact suggests the f011owing (messy) way

to obtain the graph of f-1 from that of f. Merely trace the

graph of f in ink that dries very slowly, and then fold the

paper carefully along the line L. The wet ink will then traca

the graph of f-1 automatically. (See Figure 4-9b.)

Figure 4-9b.

Exercises 1±=2.

1. Find the inverse of each of the following functions:

a) x-->4x - 5

b) 4. 8

c) x--->x3 - 2 204
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2. Solve each of the following equations for x in terms of y

and compare your answers with those of Exercise 1:

a) y = 4x - 5

b) y + 8

c) y = x3 - 2.

3. Justify the following in term te functions, inverse

functions, and functions which associate integers with ordered

pairs of digits. "A common conjuring trick is to ask a boy

among the audience to throw two dice, or to select at random

from a box a domino on each half of which is a number. The

boy is then told to recollect the two numbers thus obtained,

to choose either of them, to multiply it by 5, to add 7 to

the result, to double this result, and lastly to add to this

the other number. From the number thus obtained, the conjurer

subtracts 14, and obtains a number of two digits which are

the two numbers chosen originally." (W. W. Rouse Ball)

4. We know that each line parallel to the y-axis meets the

graph of a function in at most one point. For what kind of

function does each line parallel to the x-axis meet the

graph in at most one point?

5. A function f is said to be strictly decreasina if, for any

two elements xl and x2 of its domain, xl < x2 implies

f(x1) > 2(x2). Prove that every strictly decreasing function

has an inverse.

6. a) Sketch a graph of f: x-->x21 x E. R. Show that f does

not have an inverse.

b) Sketch graphs of fl: x > 0 and f2:

x < 0, and determine the inverses of fl and f
2'

c) What relationship exists among the domains of f, fl, and

fo? (f1 is called the restriction of f to the domain

(x : x > 0), and f2 is similarly the restriction of

f to the domain (x : x < 0).)

[sec. 4-9]
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7. a) Sketch a graph of f: x--)-N/4 - x
2 and show that f does

not have an inverse.

b) Divide the domain of f into two parts such that the

restriction of f to either part has an inverse.

8. Do Exercise 7 for f: x--x2 - X.

9. Divide the domain of f: x---x3 - hree parts such

that the restriction of f to each has n inverse.

10. If the function f: x--->a0 + alx + a2x2 + a3x3 has an

inverse, what must be t,he nature of the zeros of the slope

function f'?

4-10. Lozarithmic Functions.

Thus far we have been concerned with the exponential

functions

f:

Hereafter, we assume that a > 1. Then f is one-to-one.

That is, if we start with any two different values of x we

obtain two different values of the function. Because f is

one-to-one, f has an inverse function f-1. The graph of f-1

is the reflection of the graph of f in the line y = x, since

(d, c) is a point on the graph of f
-1 if and only if (c, d)

is a point on the graph of f. (See Figure 4-10a.) The domain

of f
-1 is the set of positive real numbers (which is the range

of f) and the range of f
-1 is the set of all real numbers

(which is the domain nf f). You should verify this.from

Figure 4-10a.

206
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d,o)

1,0) (a,O)

Figure 4-10a. The graphs of f and f-1.

The function f
-1 is called the logarithm to the base a and

is deno;ed by the symbol logs. Hence we have

f-1: x>logax.

Inverse Functions

f:

-1
f . xiolog

a
x

Examples: If f: x---4.2x, then f-1: xiolog2x.

If f: x--*ex, then f-1: x-->logex.

(1)

A very useful way of thinking about logarithms is derived

-1,
from the fact that if f is a function and f is its inverse,

then

f-1(f(x)) = x ,nd f(f-1(x)) = x.

[sec. 4-10]
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Hence -1x%
f ka ) = x and f(log

a
x) = x,

logax
or log

a
(ax) = x and a = x. (2)

This second identity clearly shows that logax is the

exponent of a needed to yield x. Thus

y = logax and alr = x (3)

are equivalent equat4 ,. This accounts for L1 fact that logs.-

rithms are tsined as exponents. Thus, for example,

since 103 = 1000 and 10-2 = 0.01, we write. 1og101000 = 3

and 1og100.01 = -2; also, since e
1/2

1.6487 and

e
-1 0.3679, .we write loge1.6487 pi 1/2 and loge0.3679 PI -1.

Identity (2) enables us to see that

log101000 log1.6487
10 = 1000 e = 1.6487

1og100.01 l0ge0.3679
10 = 0.01 e 0.3679

On the other hand, suppose we know that logle 0.43429; using

(3) obtain 10
0.43429

e. In other words, t logarithm

of e to the base 10 is the exponent of 10 ;Witch yields e.

The pr77erties of the function f-1. follow tqmediately from

those for tne exponential function f as we proceA to show. If

f is the function

the familiar equation

may be written:

Then of colarSe-

f: x--ax,

a
0

= 1

f(0) = 1.

-1
f (1) = 0.

208
[sec. 4-10]



199

This is immediately clear from the graph (see Figure 4-10a).

In logarithmic notation this result is written

logal = 0.

The fundamental equation

a
X1 +

X2 = a
x
1
a
x
2

becomes in terms of the exponential function f,

f(x1 + x2) = f(x1)f(x2). (4)

-

yltaX

X
1
+X2

Figure 4-10b.

A fundamental. .truperty of exponential funtztions.

On the grapY. 'e 4-10b) of y = ax, tbi identity (4)

means that the o:-inat which corresponds to the sum of x
1

and

x2 is the produc:. ordinates yl and y2. In other words,

addition on the x-aniz corresponds to multiplication on the

y-axis. Since the x y axes are interchanged in the

[sec. 4-101
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reflection of the graph of f in the line y = x to obtain the

graph of, f
-1

, we expect that for f
-1

, multiplication on the

x-axis corresponds to addition on the y-axis. Hence for all

positive numbers x
1

and x
2

logaxix2 yl + y2 logax1 + logax2 , (5)

which expresseL, a familiar property of logarithmic functions

(See Figure 4-10c.)

or

y=log x

1 X1 X2 XX2

Figure 4-10c.

A fundamental property of logarithmic functions.

Similarly, from the fact that

)(JD
axP = (a ) , p rational,

f(xp) = (f(x))1) (6)

we see that for an exponential function f, multiplication of

x by p corresponds to raising y = f(x) to the power p. In

other words, if x--4.f(x),

xp--->{f(xdP .

For the inverse function, raising x to the power p should

correspond to multiplying y by p. That is

logaxP = p logax , (7)

(sec. 4-10)
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which expresses another well-known property of the logarithmic

function.

The results (5) and (7) may be established without appeal

to the figure. From Equation (4)

-1
hence f

-1 /Now fkx1 + x2)

Xi = f (yi) and

tion,in (8) gives

But

f(x1 + x2) = f(x1)f(x2),

/

[fkx
1

+ x
2

)} = f
-1

= xi + x2. We set

y2 = f(x2) so that

xi + x2 = f-1(y1y2)

xi x2 . f(y)

[f(x
1
)f(x

2
)]

yi = f(x1)

-x2 = f
1
(y21.

+
(y2)

. (8)

so that

X Substitu-

If we replace f
-1 by its name l

a
og we have for all real

posit -e numbers yi and y2

loga(y1y2) = logayi + logay2

which is equivalent to ().

Similarly, from Equation (6)

[f(x)] P = f(xp),

f-1 f(x)] P f-lf(xp)

= xp.

With y = f(x) and x = f-1(y), Equation (9) becomes

f-1(yp) pf-1(y),

logayP = p logay,

which i equivalent to (7).

that is,

(sec. 4-10]
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Properties (5) and (7) enable us to use Table 4-6 to obtain

logarithms to the base e of numbers not appearing in the table.

Thus, to find logel0 we shall find loge2 and loge5: from

(5) we know that logel0 = loge2 + loge5.

Example 1. Find loge2.

Solution. In order to apply (5) we must write 2 nn

product of entries in the table,

2 (1.9155)(1.0408)(1.003) (See note below.)

From (5) we have

loge2 loge1.9155 + loge1.0408 + loge1.003

0.65 + 0.04 + 0.003 = 0.693.

Note: Since 1.9155 is the largest entry (in the ex column of

Table 4-6) not greater than 2 we divide: 2 + 1.9155 1.0441.

Furthermore, the largest entry not greater than 1.0441 is 1.0408,

and 1.0442 1.0408 1.003, so that 2 (1.9155)(1.0441)

(1.9155)(1.0408)(1.003).

Example 2. Find loge5.

Solution. We first write 5 as the product of entries in

Table 4-6,

5 (4.4817)(1.115648) (4.4817)(1.1o52)(1.009).
From (5)

loge5 1.50 + 0.10 + 0.009 = 1.609.

In Exercise 1 you are asked to find loge10. We include a graph

of x--->logex in Figure 4-10d for your convenience.

212
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7c.ercises 4-10

1. Use the results les 1 and 2 to in,din loge10.

2. From 1.25cd (1.2214)(1.0202)(1.003) and the data in Table 4-6

determine loge5/4.

3. Use the result of Example 1 to obtain loge4.

4. a) Use your results in Exercises 2 and 3 to obtain loge5.

b) Compare your answer with that given in Example 2.

From 3 C:1 (2.7183)(1.0513)(1.0408)(1.008) and the data in

Table 4-6 determine l0ge3.

6. Use values for loge20 loge3, and loge5 obtained in this

section to determine loge0.25, loge0.5, loge2/3, 1oge5/3,

loge2.5, 1oge6, loge8, loge9.

Use the graph of f-1: x--o.logex (Figure 4-104)to estimate

the value of loge0.25, loge0.5, loge2/3, loge5/3, loge2.5,

loge6, loge8, loge9.

8. Compare your results obtained in Exercises 6 and 7.

9. What is the value of x if 32 = 4x?

o m
10. If a am = (a-) , what is the value of m?

1

11. Prove that for x any real number > 0, log (x.-.) = 0,
a x

and hence loga* = -logax.

x
12. Prove that log (

l = logax1 - logax2.
a x

2

13. Show that logaa = 1. Write this equation in exponential

form.

14. EXpress in exponential form

a) 1og1035 = y

b) 1og225 = x

c) loged = b

d) 2 1og105 = x

e) loge7 + 1oge6 = x

i1oge25 - loge2 = x

[sec. 4-10]
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15. 'Given 1og102 = 0.3010 find

1og105, 1og10(1/2), log10(25/4), 1og10(128/5)

16. Express each of the following in logarithmic form.

a) ../U5 = 5

b) 10-2 0.01

c) 274/3 = 81

d) o.o43/2 = 0.008

e)V;(1;- = 2

17. Solve for x.

log6(x + 9) + log6x = 2

4-11. Special Bases for Logarithms

Our study of exponential functions was founded on the use.

2 as a base. In practice, the bases most generally used are e

and 10. Nevertheless, logarithms.to the base 2 are of some

importance. For example, they play an important role in inform-

ation theory, a yery recently invented mathematical discipline

of considerable and growing importance in the design and operation.

of telephone, radio, radar, and other communication systems.

"In the modern theory of information, originated by

communication engineers, the usual unit of quantity of inform-

ation is the binary digit (abbreviated bit). Thus if a language

of signals is to be composed of three binary digits in succession,

the language contains eight messages, namely, 000, 001, , 111,

and each message is said to contain three bits of information.

Note that this quantity of information is 1og28. In general

if there are N different messages, the quantity of information

in each message is said to be log2N." *

*M. Richardson, Fundamentals of Mathematics, Rev. Ed., Macmillan,
195E, pp. 172,173.

[sec. 4-11]
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Logarithms to the base e are usually called natural 1oga-

rithms; logarithms to the base 10 are called common logarithms.

We shall write logex simply as ln x and show how to express

common logarithms in terms of natural logarithms. We first

consider the general problem of expressing the logarithm to any

base a in terms of the logarithm to any other base b.

By identity (2) of Section 4-10

logbx
x = b (1)

logbx
We take the logarithm of x = b to the base a and use

equation (7) of Section 4-10 to obtain

logax = (logbx)(logab). (2)

If we set x = a, (2) gives

1 = (logba)(19gab)

or
1

logab =
1
---6 .

gba
(3)

To write common logarithms in terms of natural logarithms

we use (2), thus

or

ln x = (log10x)(1n 10),

ln x
loglox ln 10 '

ln.e 1 1
RI 0.434.For example, logne - ln 10 ln 10 2.302

Similarly, by using the entry 0.30103 to be found in a

5-place table of common logarithms, we have

log102 0. 01 .693ln 2 log10e 3

which agrees with the result obtained in Example 1, Section 4-10.

In Section 4 we defined e = 2
1/k

, so that e
k = 2; we now note

that k = ln 2 since e
ln 2

= 2.

(sec. 4-11]
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Exercises 4-11

1. a) If 2P = 26, find 1og226 in terms of p.

b) If logex = 5, find x. (Use Table 4-6.)

c) Find 1og3(31/4).

d) Find lpg2(8 x 16).

2. Express each of the following logarithms in terms of r, s,

and t, if r ln 2, s = ln 3, t = ln 5.

a) ln 4

b) ln 6

c) ln 1/8

d) ln 10

e) ln 2.5

ln 2/9

g) ln

h)' ln 8 Viob

3. Write the following logarithms as numbers.

a) log101000

b) log0.010.001

c) log3(1/81)

d) log432

e) 1og10(0.0001)

O log0.516

g) In e3.

h)

i) log8127

j) log2.137f

4. Given ln 10 2.3026, ln 3 cz-J 1.0986, find

a) log103

b) logle

c) log310

d) ln 100

e) 1n 30

ln 300

g) ln 0.3

h) ln 0.003

5. In each case determine the value of x.

a)
lo ,

+
g45 log5 log2x

4 3 = 2

b) 1og10(x2 -1) - 2 1o1310(x - 1) = log103

7log_5

[sec. 4-11]
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6. Solve the following equations.

a) ln x = 0 d) ln (x - 2) 3

b) ln x + 1 = 0 e) ln x + 3 = 0

7.

c) ln x = 1

in
le

Show that
(B H) og,,

ln 10 logle = 1.

f) ln (2x - 1)

log,oe
-4= 10 e.

+ 2 0

Hence show that,

8. For whe: value(s) of x does it hold that

a) logcx = 0

b) logxx = 1

logxc
c) x = 0

d) logx2x =2

9. Explain why the number 1 cannot be used as a base for

logarithms. (Hint: EXamine the exponential function

f:

to see if it has an inverse function.)

10. Find the values of x _for.which

.
(ln xj

2 = ln x
2

Note: Use a table of logarithms in Exercises 11 and 12.

11. How long will it take N dollars to double itself at

4 per cent compounded annually? At 3 per cent compounded

quarterly?

12. If interest is compounded quarterly, at What rate should

N dollars be invested to double in 10 years?

13. A culture of bacteria hEAs a population of 10,000 initially and

60,000 an hour and a half later. Assuming ideal growth

conditions, find the time required to get a culture of

500,000 bacteria.
218
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14 a) Through the point (1, 4) draw a line L1 with slope
m = 2/3.

b) Draw the line L2 which is symmetric to L1 with

respect to the line y = x.

c) What point on 1s2 corresponds to the point (1, 4)

on L ?
1

d) What is the slope of L2?

e) Consider the general case: line L1 drawn through

point (r, s) with slope m, and line 1,2 symmetric
to L with respeo't to the line y = x. What point1
on L2 corresponds to the point (r, s) on Ll? What

is the slope of L2?

15. a) Plot the points (x, ex) for which x = -1.6, -1.4, .. . 1

1.2, 1.4.

b) Through each of these points draw the graph of a line

having slope m = ex.

c) Show that these lines suggest the shape of the graph

of f:

16. a) For each point located in Exercise 15(a), locate the

corresponding point which is symmetric with respect to

the line y = x; then through these points draw lines

symmetric to those of Exercise 15(b) with respect to

the line y = x.

b) Show that each point located in Exercise 16(a) lies

on the graph of x--4-ln x.

c) Compare the slopes of the lines drawn in Exercise 16(a)

with those of Exercise 15(b).

17. Using the graphs of x--*ex and x--*ln x in Figures 4-6b

and 4-10d, compare the slopes of the tespective graphs at

x = 0.

219
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4-12. Computation of ex and ln x.

Because of its simple properties, the most important of the

exponential functions is x--*ex. Similarly x-÷ln x is the

most important of the logarithmic functions. The computation of

the values of these functions is therefore of great significance

in mathematics.

We found approximate values of ex on the basis of a table

of powers of We then determined values of the function

x which is inverse to

A mathematician would proceed in a different way. He would

compute the values of ex directly (that is, without any refer-

ence to powers of 2). We shall describe the general features of

this method. An appendix carries the development somewhat further.

A brief review of our treatment of polynomial functions will

be helpful. We notice, for example, that in graphing

f: + 3x + x
2 - x

3

near (0, 2), we could replace f(x) by g(x) = 2 + 3x or by h(x) =

2 + 3x + x
2

. For Ixi small enough, f(x) is approximately

equal to g(x),
f(x) g(x) .

A better approximation is given by h(x),

f(x) h(x) .

That is,.the error made in replacing r(x) by h(x) for a given

x near 0,.will ordinarily be less than the error made in

replacing f(x) by g(x). Of course, if we include the final

term -x3, there is no error at all.

Turning to ex, the idea is this: We try to replace

x by a polynomial function whose velues approximate e
x

.

Let,us begin with lxi small, that is values of x which are

near zero. Since the graph intersects the y-axis at (0, 1) with

slope 1, we have the linear approximation

e
x 1 + x (1)

(sec. 4-12]
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To obtain a better approximation to ex, we need to use poly-

nomials of higher degree

ex 1 + x + a2x2

ex 1 + x a2x2 + a3 x3

The problem is to specify the values of a2, a3, etc. The

appendix shows how this may be done. Here we merely report that

the required approximations are

2
e

x2 x3e
x

1 + x +
+

1 + x
X2 X3 xne

x
+ + + + HT

'where n = 1.2.3. ... .n .

x e
xIn Figure 4-12a, we have drawn graphs of

X2 X3x + x + + 03- (Compare with (3)).
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These gr rr 1=plausible that at least th, first

approximatons I listed are, correct.

As we know x
not a polynomial func-: Aa. There

is therefore a d'Ae7f77al_..iifference between the 1oblem of

approximating e' us:_fpolynomials and the pre71ous case

in which the given Hnct-1.,_ f is a polynomial funtion. If

f is a polynomial .1vt;1,---, we can use approximating poly-

nomials of higher AT"' 11-"-;rtez- degree until we reach a polynomial

which is identical .h ,;:) and which therefore gives exact

values for f. Fof. th:.s is impossible. In t17e case of the

exponential, no ma.. iarge an n we choose, zhe value of
the approximating for a given x 0) will always be

in error by some a.71. Tre most that we can hope for is that-

we can choose n so that for a given x,

x
2 xri

,

will differ from e" an arbitrarily small amount. Fortunately

this hope is realizi:_

In particular, fd:r x = 1 and n = 10, we obtain

1 1 1 (4)

Rounding off to the .eighth decimal place, the right side of (4)

has the value 2.7182L261. The correct value to eight decimal
places is 2.71828183.

We have seen that the purpose of computation, the

exponential function T. 7.:,--->ex cam be replaced by one of a

list of polynomial fra=7:77-J. A sirmllar situation holds for

the logarithmic funot:,-or. x. However, it is useless

to try to approximate in x for x near zero since ln x is

not defined at x = 0. It is usual to approximate ln x for x

near 1. This may be done by using the following list of poly-

nomial approximations

ln x = z - 1 (5)

- 1)2 (6)ln x (x - 1)
2

(x - 1)2 (x - 1)3
(7)ln (.x 1) 2 3

[sec. 4-12]
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For values of x near 1, that is, for 1x-1

these app=oximations serve as a satisfactory subst. for

ln x. For: example:

.01
In 1.1 .1 - = .095

2

.01an 1.1 .1 - -7- + .001
3

.09533

fr_cm (5),

frc ( ,

fromn .

The correct value of ln 1.1 to five places is .0353

_

(x
Graphs of x--*ln x and of - 1)

(x a)3
3

are given in Figure 4-12b. These graphs show that tr.:, approxi-

mation is good for x near 1, but is poor for x :ear 0,

say at x = .1.

2 2

[sec. 4-12)
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-7Us si';uation is 111120 by using an approximating poly-

nomia f 1-Lgher degree. Zne difficulty is fundamental, however,

in thF, sense that any giveh polynomial approximation will fail

to give sat7,sfactory answers for x near enough to O. The

reasot is that as previousaT ated, ln 0 does not exist, and

for small, ln x aegative and numerically very large.

The ,..aoximating polynhtlals are useful for calculating

ln x 5 x 1.5, fc=example. Other logarithms can be

compur,a0. 2rom these. Thus, -L±f we know that ln 1.4 ki .33647,

ln 1. 9 iri ( 1. 4) 2 . 2 ln , 4 .67294.

For a .further d1scussih7, of these matters, the student

should cotult Appendix 4-1i.

Exeraises 4-12

x2 x3

1. Use 1 +-x +-27 77 to approximate e
x for

x .1, .2, .5, -.1, -.2. Compare the values obtained

with those given in Table 4-6.

2. Verify-the approximation to e found in (4). Hint: Use the

1 1 1 1 1 1
--='.T:ct that 51 = 5 -41 , ,51 = .6- 51 , etc.

3. _Iccording tc (5), the tangent to the graph of x--4.1n x at

Cl, 0) has -tteTlhmtton y = x - 1. Show that this is

zonsistent latth th. fact that the tangent to ttie graph of

-z--*ex at (:), the equation, y = 2L-F-.1

Use (7) to astimate value of ln 1.2 and ln 1.3 and

with the z:ranh of ln x (Figure 4-10d).

5_ -2----!=r In 1...1 .G9531 -,find ln 1,21, using one of the

;77.7auerties mf

2 2 6

'f-sec. 4-12]
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4-13. Historical Notes

The theory of logarithms is one of the major achievements

of the seventeenth century. Howevi:r, the rudiments of the

_notion appeared as early as 154.

Stifel, who is considered the =.eatest German algebraist

of the 16th century, notice_ tIle atvantage in .s..tting u a

correspondence between a geme7ricrrogression

1 1 1
1, 2,

and an arthmetic progression

-3, -2, -1, 0,

/2,-.

1,

8,

2,

16,

3,

32

4, 5,

64

6.

His treatIse Arithmetica Integra_ oublished in Latin, might be

said to contain the beginning of the theory of exponents and

logarithms.

John Napier (1550-1617), the Scotsman, is often regarded

as the inventor of logarithms. The object of his study was to

facilitate trigonometric zalculanion. One of the curiositier

of mathematical history 1.T. the fact that Napier's Table of

Logarithms appeared (2614) before exponential synhoJIsm was

developed. Althouf!n Napier used 1 - 10-7 = o.999999;1 as

the basis fur is developn'ilt-, the idea of an exponential base

does not rePlly apply to er'-s system in wch zero is the

logarithm of 107 and the Logarithm increases es the nimber

decreases.

Joost Bbrgi (15R,- -16321 conceived the idea and Iepenntly
created a tahl e c gr±ths suf numbers from 10

8 tc lo9 by
tens, but dirt not pu; 17._Ls treatise until 1620 Fis system

was,simiThr to Napier s, but his logarithms increase with the

numbers since he selecned 1.00Q1 as his base. It is Important

to note that Bbrgils object was to simplify all calculations by

means of logal.ithms. In this respect his point of view was

broader than Napier's.

Henry Briggs the Englishman, (1556-1630) was greztir

impressed and influenced by Napier's work. He devoted hiE

[sec. --:-13]
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energies to the construction of a logarithmic table in which

zero is the logarithm of 1. An advantage of Briggstmn logarithms

is that they are built about the base 10. In 1624 Briggs

published his work containing the logarithms of numbers from 1

to 20,000 and from 90,000 to 100,000 to 14 places.

Logarithms were developed principally in order to facilitate

calculation, and in fact simplified ccmputation to such an

extent that they are commonly regarded =erely as a labor 'saving

device. This is unfortunate since logarfthms are ofzreat value

in advanced mathematics, apart from computation.

Bref Biblioualphy

Felix Klein, "Elementary Mathematics frim an Advarcet Standpoint",

MacMillan Co., W.,w Ycrk, 1932, mage 146-149.

Florian Cajori, "A History of Mathematts", MacMillan Co

New York, 1922, pages 149-152 and 482-484.

David Eugene Smith, "A Source Eiook In Illtbamatiras', MnGraw-Hill

Bok Co., Inc., 1929, 7aqes 7.L49-I55.

George A. W. Boehm and the Editora of Fortune, "Ttelw World

of Math", The Dial Pt'aZZ:, New-7-rrk, 1959.

James R. Newman, "The World af Mathp7m7=Ins", Stman ant Schuster,

New York, 1956, pa 120-15:2_

4-14. Summary.

The exponential functions are dEflne=i' by f:

a > 0. This definition= requires an Lnteroretation for the symbol

x. For x a rati=a1 exponent, the LT.tE.r.pretaion aq
2. 1/7

a

is familiar. Meant=z-:, .gfen to e for irratixnaL. .x so

that the resulting fr=ntion is contill-nous and obeve 7::oe laws

x ya a =
-r

a =
rx

[Ben- 4-141
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if x and y are arbitrary real numbers and r is rational.

The graph of x--*ax is concave upward everywhere. It has

a tangent line at every point. If a = 2, the slope of the,

tangent at (0, 1) is k gs 0.693. The most convenient base is

a = e = 2 1,/k
gs 2.718. For this choice of base, the slope is 1

at (0, 1) and eh at (h, eh). That is, at every point on the

graph of x-->ex, the slope is equal to the ordinate.

Important phenomena such as growth, radioactive decay and

cooling are adequately described by formulas of the type,

y = yoe ±CX
, where yo and c are suitable positive constants.

The logarithmic function f-1: x--4.1ogax is the inverse of

f: x---a.ax. Its graph is the reflection of the graph of x-Hp.ax

in the line y = x.

All logarithmic functions have the following properties.

If x x
2

and x
3

are any positive numbers

logax1x2 = logax1 + logax2,

loa(
g_ L )= logax1 - logax2,

x2

log
a
x
1
P = p 7.og

a
x
1,

p rational.

The most important logarithmic functions are log10 and

loge = ln. To change from base b to base a, we use the

equation

logax = logbx logab.

In particular,

ln x = loglox ln 10 gs 2.302 loglox.

Tables of ex and ln x may be computed from the poly-

nomial approximations

xnx x2
e ks 1 + x +.2-r + ... + r-i-r

and ln x (x - 1)
(x - 1)2 + Lc - 1)3, + (x - 1)h

gs
2 3

... n

Some discussion of these approximations and the errors

associated with using them, is given in the appendices.

[sec. 4-14]
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Miscellaneous Exercises

1. Assuming that the number N of bacteria at the end of n

days is given by N = Aen, find:

a) The number of days it takes to double the number of

bacteria; express this in terms of the constant k;

b) The per cent increase per day in the number of bacteria.

2. If f is an exponential function x--4cax such that

f(0) = 2 and f(1.5) = 54, find a and c.

3. Given the function f: x---*ax for which f(2) = 0.25,

find f(5).

4. The gas in an engine expands from a pressure pl and volume

vl to a pressure p2 and volume v2 according to the

equation

P (v1)n1

P2 v2

(Boylets law is the special case where n-= 1.)

Solve for vl in terms of v2, 1)1, p2 and n.

If s =
a - arn

- r
express n in terms of- s, a, r.

6. Solve the following equations for x.

7
111

a)
3y/

. 3 b) ln x
2 - 2 Invri- = 1

If a° 3 = x find logxa.

8. Combine each of the following expressions into a single term.

a) ln + ln 100 - ln 12.

b) 2 ln x - ln y + ln y - - ln x.

9. Without graphing, describe the relationship between the graphs

of x -->ce
x and x-->ec for c = -1.
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10. If f: x---4,2x and g: x--).3x, find

a) (fg)(2)

b) (gf)(2)

11. Given the functions

f: x--*2x + 2-x

g: x2X - 2-x

find

a) f(x) + g(x)

b) f(x) g(x)

c) [f(x)] 2 - [g(x)] 2

12. Solve the following equation for x.

log2(6x + 5) + log2x = 2

13. Solve the equation 22x+2 = 9(2x) - 2 for x.

(Hint: Let 2x . y.)

14. Solve for x: 2
2x+2

+ 2
x 2

= 3.

15. Show that no real number x can be found such that

ln (x - 4) - ln (x + 1) = ln 6.

16. Prove the following special case of the "chain rule" for

logarithms:

(logab)(logbc)(loged) = logad.

17. Solve tlie equation

ln (1 - x) - ln (1 + x) = 1.

18. Sketch the graphs of

a) y = ln Ix1 b) y = 1ln xl c) y = ln ex

19. At the instantaneous rate of 5 per cent per annum, what

will be the value of $100 at the end of 5 years?

(Give your answer correct to the nearest dollar.)

20. What amount must have been deposited 5 years ago to amount

to $100 now at the rate of 5 per cerA compounded

continuously? (Give your answer correct to the nearest

dolla.)
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21. At what rate of interest (compounded annually) must we

invest $1Cat if we want it to double.in 10 years?

(Give your answer correct to the nearest tenth of one

per cent.)

2. Under =mad conditions population changes at a rate which

is (conaidered to .oe) proportional to the population at

any time. The population at any time x is then satis-

factorily _given by

N(x) = Noekx,

where N
C

...ts the population at time x = 0, and k

a suitab:a '7onstant. If a town had a population of

25,000 fn 1950 and 30,000 in 1955, what population is

expected fL 1965?

23. The function f: x--*e
-t/RC , where t represents time,

and R El= C are constants, is important in the theory

of cert=f71 t-7pas of electrical circuits. Using Table 4-6,

evaluEte f'(7.), given the following data:

a) t LO., R = 2.0, C = 0.05

b) t = 12 x 10-4, R 48, C 25 x 10-6

/
24 he. Solve t: equation A = e

-tRC for t. Using this result,

find the value of t for each of the following sets of

data. Suggestion: use the graph of x--*ln x, (Figure 4-104

a) R 10, C = 10-4, A = 1.0

b) R = 25 x 105, C 6.0 x 10-4, A = 0.50

25. Find, coct to two decimal places, the root of
-17

e
x

- 3x . 0 that is nearest 0. (Hint: approximate

the ',act graphieally, then use Newton's method.)

26. a) Sketch the graphs of the functions

x-*2x and x--*2x3 - 3x2 - 12x + 1

using the same coordinate axes.
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b) In how many points do the curves intersect in the

interval -2 x 4?

c) How many solutions has the equation

2x = 2x3 - 3x2 - 12x + 1 if -2 .<.x 4?

d) Answer questions (b) and (c) for the extended interval

-2 x < 12.

27. If a flexible chain or cable is suspended between supports

and allowed to hang of its own weight, the curve formed is

a catenary. Its equation is

x/a -x/aly = + e /.

a) Let a = 1. Prepare a table and graph the catenary over

the interval -4 < x 4. (Because of our choice of a,

the catenary in this case will be a narrow curve if

equal scales are used on the two axes. To offset this

effect, choose appropriate scales.)

b) You will notice that the catenary looks somewhat like

a parabola. The point (0, 1) is on the graph of the

catenary, and the points (3, 10) and (-3, 10) are

very close to it. Find the equation of the parabola

which passes through these three points, and draw its

graph on the same axes as used in part (a).

c) Another approximation to the catenary is given by the

equation y = 1 + x2/2, and a better approximation is

given by y = 1 + x
2/2 + x4/24. Draw the graphs of

these equations on the same axes a9 used in parts (a)

and (b).

28. In the study of probability theory, the normal distribution

curve (sometimes described as a "bell-shaped" curve) is

of great importance. The equation of this curve is

y 1 e-x /2 0.4e-x
2
/ 2

VT37
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a) Prepare a table and graph this curve over the interval

-3 3. (Notice the symmetry of the curve.)

b) By counting squares and multiplying this number by the

area of one square (in terms of the scales chosen for

the aims), show that the area between the curve and the

x-axis, over the interval -3 x 3, is very nearly 1.

c) An interesting application of this curve can be made to

the scores reported for the College Entrance EXamination

Board tests. If we associate test scores with values of

x according to the following table, then by comparing

areas under the curve, we can find what per cent of all

scores will fall between any two scoreu.

x -3 2 1 0 1 2 3

Test
score

200 300 400 500 600 700 800

For example, to find what per cent of the scores on a

certain test will fall between 500 and 600, we find

the area under the curve from x = 0 to x 1. By

counting squares, you should find that this area is

about 0.34, or 34% of the total area under the curve.

This means that about 34% of all test scores on any

given test will fall between 500 and 600.

Using this technique, find the per cent of test

scores that lie between 200 and 300, 300 and 400,

..., 700 and 800. Does the E;um of these per cents

equal 1000?
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Chapter 5

CIRCULAR FUNCTIONS

5-1. Circular Motions and Periodicity

Introduction. From your earliest years you have been aware

of motion and of change in the world around you. The rolling

of a marble along a crack in the sidewalk, the flight of a ball

tossed by a boy at play, the irregular rise and fall of a piece

of paper fluttering in the breeze, the zig-zag course of a fish

swimming erratically in a tank of water are a few of the varied

patterns of movement you can observe. Very often, however, the

motions you see have a quality not shared by the few just men-

tioned. The succession of day and night, the changing of the

seasons, the rise and fall of the tides, the circulation of blood

through your heart, the passage of the second hand on your watch

over the 6 o'clock mark are patterns each having the character-

istic quality that the motion involved repeats itself over and

over at a regular interval. The measure of this interval is

called the period of the motion, while the motion itself iB called

periodic.

The simplest periodic motion is that of a wheel rotating on

its axle. Each complete turn of the wheel brings it back to the

position it hold at the beginning. After a point of the wheel

traverses a certain distance in its path about the axle, it returns

to its initial position and retraces its course again. The dis-

tance traversed by the point in a complete cycle of its motion

is again a period, a period measured in units of length instead

of units of time. If it should happen that equal lengths are

traversed in equal times, the motion becomes periodic in time

as well and the wheel can be used as a clock.*

*The concept of time itself is inextricably tied up with that of
.clock, a periodic device which measures off the intervals. It
would seem then that periodicity lies at the deepest roots of our
understanding of the natural universe. How one decides that a
repetitive event recurs at equal intervals of time and can there-
fore be considered a clock is a profound and difficult problem in
the philosophy of physics and does not concern us here. (See

physics, Vol. 1, pp. 9-17, Physical Science Study Committee,
Cambridge, Massachusetts, 1957.)
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The mathematical analysis of periodic phenomena is a vast

and growing field, yet even in the most far-flung applications

of the subject, such phenomena are analyzed essentially in terms

of the simple periodicity of the path of a point describing a

circle. In the treatment of the most intricate of periodicities,

wheel motions always lie under the surface. An extended develop-

ment of the theory of periodic phenomena is far beyond the scope

of this course, but the study of the fundamental circular period-

icities is certainly within our reach.

Circular Motions. Let us consider first the mathematical

aspects of the motion of a point P on a circle. For convenience

we take the circle u
2 + v

2 = 1, which has its center at the origin

of the uv-plane, radius 1 and consequently circumference 2r.

Now we consider a moving point P which starts at the point (1, 0)

on the u-axis and proceeds in a counterclockidse direction around

the circle. We can locate P exactly by knowing the distance

x which it has traveled along the circle from (1, 0). the dis-

tance x is the length of an arc of the circle. Since every

point on the circle u
2 + v

2 = 1 has associated with it an ordered

pair of real numbers (u, v) as coordinates, we may say that the

motion of the point P defines a function 00. With each non-

negative arc length x, we associate an ordered pair of real

numbers (u, v), the coordinates of P (Figure 5-1a), that is,

v).

However, it is inconvenient to work with a function whose

range is a set of ordered pairs rather than single numbers. We

shall instead define two functions as follows:

cos: x--p.u, where u is the first component of e(x);

sin: x--).v, where v is the second component of 100(x).

The terms cos and sin are abbreviations for cosine and sine. It

is customary to omit parentheses in writing cos(x) and sin(x)

and write simply cos x and sin x. For instance,

/0(0) = (1, 0) cos 0 = 1, sin 0 = 0

ro(D = (0, 1) : cos = 0, sin 7 = 1

236
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10(r) = (-1, 0) cos r = -1, sin r = 0

371.

= ? cos y = ?, sin = ?

(You should supply the proper symbols in place of the question

marks.) From their mode of definition, the sine and cosine are

called circular functions. These circular functions are related

to but not identical with the familiar functions of angles studied .

in elementary trigonometry. We shall discuss the difference in

Section 5-3, but we should notice now that when we write sin 2,

the 2 represents the real number 2 which can be thought of as

the measure of the length of a circular arc and not 2 degrees.

: (11.0 V)

V

10(x).(uN)

Figure 5-1a. The function 10.

237
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Periodicity. From the definition of 10, it follows that

tO(x) = 70(x + 277") and consequently, cos x . cos (x + 270 and

sin x = sin (x + 27). Functions which have this property of

repeating themselves at equal intervals are said to be periodic.

More generally, the function f is said to be periodic with

period a, a / 0, if, for all x in the domain of f, x + a is

also in the domain and

f(x) = f(x + a). (1)

We usually consider the period of such a function as the smallest

positive value of a for which (1) is true. The smallest posi-

tive period is sometimes called the fundamental period. From

this definition we note that each successive addition or subtrac-

tion of a brings us back to f(x) again. We may show this by

first considering f(x + 2a) where a > 0. We have

f(x + 2a) = f([x + a] + a)

= f(x + a)

f(x),

and further

f(x + 3a) = f([x + 2al + a)

f(x + 2a)

f(x).

In general, we have

f(x + no) = f(x) where n = 1, 2, 3, ... .

To show that this holds for negative n, we note that

f(x - a) = f([x - a] + a)

= f(x)

f(x - 2a) = f([x - 2a] + a)

= f(x - a)

=

238
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In general

f(x + no) = f(x) where n = -1, -2, -3 ... .

We may express these two ideas by

f(x + no) = f(x) where a > 0 and n is any integer. (2)

an other words, to determine all values of f, we need only

know its values on the interval 0 ,x < a. Thus, suppose the

period of f is a = 2 so that for all x in the domain of f

f(x + 2) = f(x).

Then to find f(7.3) we write

f(7.3) = f(1.3 + 3 x 2)

= f(1.3).

To fluid f(-7.3), we write

f(0.7 - 4 x 2)

= f(0.7)

Now returning to the unit circle, we observe that the

functions cos and sin behave in exactly this way. From any

point P on the circle, a further movement of 2r units

around the circle (a = 2r in Equation (2)) will return us

to P again. Thus the circular functions are periodic with

period 2r, and consequently

cos (x + 2nr) = cos x

sin (x + 2nr) = sin x

where n is any integer. To give meaning to these formulaa

for negative n, we interpret any clockwise movement on the

circle as negative.

So now if we can determine values of cos and sin for

0 x < 2r, we shall have determined their values for all

real x.

239
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Exercises 5-1

1. Give five examples of periodic motion, and specify an approxi-

mate period for each. (For instance, the rotation of the

earth about its own axis is periodic with period 24 hours.)

2. If 10(x + 2nr) = f(x), express each of the following as

where 0 b < 27. (For example,

pi+ 27) =p(721).)

p(4) c) r(41)
b) lo(37) d) do(40767)

3. Give the coordinates of -p(x) for each part of Exercise 2

abave.

4. :liven that 70 has the period 27, find two values of x

-where 0 x < 47, srich that

a) 9(-5-) c) p(127) =

b) v0(1370 = iD(x), d) lo(-7) = p(x).

5. For what values of x, where 0 x < 27, do the following

relations hold?

a) cos x = sin x,

b) cos x = -sin x.

Hint: Use the fact that (cos x, sin x) represents a point

on the unit circle.

*6. We know that the functions represented by cos x and sin x

have period 27. Find the period of the functions repre-

sented by

a) sin 2x, c) cos 4x,

1 1
b) sin -ffx, d) cos x.

2

*7. Let f and g be two functions with the same period a.

Prove that:

a) f + g has a period a (not necessarily the fundamental

period);

b) f g has a period a.

*8. Let f be a function with period a. Prove that the composi-

tion gf also has period a for any meaningful choice of a.

[sec. 5-1]
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*9. Show that the functions sine and cosine have no positive

period less than 2r.

5-2. Graphs of Sine and Cosine

We wish now to picture the behavior of the two functions

cos: x--->u = cos x

sin: x--->v = sin x

for all real values of x. To do this we shall first look at

some of the general properties of these functions, find some

specific values of the functions at given values of x, and

finally construct their graphs.

We already know that the sine and cosine functions are

periodic with period 2w, and so we may restrict our attention

to values of x where 0 x < 2r. Now by noting that u and

v are the coordinates of a point on a unit circle, we have

u
2

+ v
2

= 1.

But since u = cos x and v = sin x, we have

cos
2
x + sin

2
x = 1.

sin
2
x = 1 - cos

2x

cos
2x = 1 - sin

2
x

If we write (2) as

and as

it is apparent that neither sin x nor cos x can exceed 1 in

absolute value, that is,

-1 sin x 1

-1 cos x 1.

Another property of sin and cos derives from the symmetry

of the circle with respect to the u-axis. Two symmetric points

on the circle are obtained by proceeding the distance x in

both the clockwise and the counterclockwise senses along the

circle. In other words, if 1)(x) = (u, v), then

[sec. 5-2]
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= (u, v) (Figure 5-2a). From this we obtain zhe important

symmetric properties

cos (-x) = cos x

sin (-x) = -sin x.

Figure 5-2a. Symmetry relations.

Since we are ultimately:interested in graphing y = sin x

and y = cos x, we have managed to narrow our attention to a

rectangle of length 27r and of altitude 2 in the xy- plane* as

in Figure 5-2b. If we can picture the graph of the functions

(3)

*Since we shall have occasion to refer to two coordinate planes
for points (u, v) and (x, y), we wish to point out the distinction
between them. The uv-plane contains the unit circle with which
we are dealing. This is the circle onto which the function /4D
maps the real number x as an arc length. The xy-plane is the
plane in which we take the x-axis as the real number line and
examine not the point function 00(x) but the functions
cos: x---.*y = cos x and sin: x--,>y = sin x, each of which maps
the real number x into another real number.

242
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Figure 5-2b. Rectangle to include one cycle of sin or cos.

in the interval 0 x < 2r, the periodicity properties of cos

and sin will permit us to extend the graph as far as we like by

placing the rectangles end to end along the x-axis as in Figure

-5-2c.

41?

Figure 5-2c. Rectangles of periodicity.

243
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We therefore direct our attention to values of x such

that 0 x < 27. To begin with, the unit circle in the

uv-plane is divided into four equal arcs by.the axes; each

arc is of length 7/2, and the division points correspond to

lengths of x = 0, 7/2, 7, 37/2, with central angles of

00, 90°, 130°, and 2700, respectively. The corresponding points

on the circle will be (1, 0), (0, 1), (-1, 0) and (0, -1), as

in Figure 5-2d. Since cos x = u and sin x = v, we have

cos 0 1, sin 0 = 0,

r
cos 7 = u, sin 7 = 1,

Cos r = -1,

3r
cos = 0,

2

sin r = 0,

3rsin = -1.

We next consider the midpoint of each of the quarter circles

in Figure 5-2d. These correspond to arc lengths of 7/4,. 37/4,

57/4, and 77/4 ,
with central angles 45°, 135°, 225°, 3150 .

Figure 5-2d. 10(x) for x = 0, 7/2, 7, 37/2.
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If we drop perpendiculars to the u-axis from these points as in

Figure 5-2e, we note that radii to the points form angles of 45°

with the u-axis. From geometry we know that for a 45° right

triangle with hypotenuse 1, the sides are of length.1-2/2 and

hence that the coordinates of the midpoints of the quarter circles

are (1ff/2, Ntff/2), 4/7ff,/2), (-4/2, -A/2), and (.1ff/2, -4/2),

-respectiVely. We may therefore add the following to our list

of values:

cos r/4

cos 3r/4 =

cos 570 =

cos 7r/4 IT/2

sin T/4 =.,/ff/2

sin 3r/4 =.1-/2

sin 5r/4

sin 7r/4

Figure 5-2e. lo(x) for r/4, 3r/4, 5r/4. 7r/4.

245
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We can find the Coordinates of the trisection points of the

quarter circles by a similar method. In Figure 5-2f, we show

only two of the triangles, but the procedure is essentially

the same in each auadrant. From the properties of the 30°-60°

right triangle, wemote that P1 and P2 have coordinates

Figure 5-2f. lo(x) for x = 7/6, 7/3.

('A, 1/2) and (1/2, ,A7'2), respectively. We may fill in the

coordinates of all of these points of trisection,as in Figure 5-2g,

from which we can find eight new values for cos and sin.

Collecting in one table all of the values which we have so far

determined, we have Table 5-1.

246
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Figure 5-2g. Further values of 0(x).
Table 5-1

Values for cos and sin for one period.

COS X sin x
0

7r/6
1

V'S/2 .87 1/ 2
7r/4 .71 V-272 7z1 .71
7r/3 1/2 V-372 .87
7r/2 0 1

27r/3 -1/2 V-372 .87
3n/li -V-ff/2 \W2 .71
57r/6 -V-V2 k$- .87 1/2

-1 0
7r/6 -qa/2 -1/2
5r/li - V-27/2 .71 .71
4.7r/3 -1/2 -VV2 .87
37/2 0 -1
57r/3 1/2 -0/2 .87
7r/li .71 - V-2/2 .71
11r/6 Nr-372 . 87 -1/2
2ir 1 0

[sec. 5-2]
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With this table we are now in a position to begin graphing

sin and cos. Because we wish to look at the graph of these

functions over the real numbers, we shall use an xy-plane as

usual and work with the points (x, y) where y = cos x or y = sin x.

We shall deal separately with each function, taking first

y = cos x. From Table 5-1 we can now plot some points in the

rectangle in Figure 5-2b, obtaining Figure 5-2h.

0 Tr
2

Tr 377
2

2TT

Figure 5-2h. Values of cos: x-Ho.cos x.

By connecting these points by a smooth curve we should obtain

a reasonable picture of the function

cos: x-->cos x

as in Figure 5-21.

yA

3 7T

Figure 5-21. Graph of one cycle of cos.
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If we wish to extend our picture to the right and left, we

use the periodicity property to obtain Figure 5-2j.

Figure 5-2j. Graph of cos.

A similar treatment of y = sin x leads to Figures 5-2k,
5-21, and 5-2m.

rr IT 37
2

27 X

Figure 5-2k. Values of sin x: x--4, sin x

[sec. 5..2]
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Figure 5-21. Graph of one cycle of sin.

Figure 5-2m. Graph of sin.

Since it is often necessary to work with

y = A cos x

y = cos Bx (4)

y = cos (x + C) (A, B, and C constants)

or some combination of these expressions, it is worthwhile to

inquire into the effect that these constants have on the behavior

of y. In case"of

.y = A cos x (A > 0?,

the A simply multiplies each ordinate of y = cos x by A, and

the graph of y = A cos x would appear as in Figure 5-2n.

250
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Figure 5-2n. Graph of y A cos x.

In Exercises 5, 6, and 7 you are asked to determine for

yourself the effects of B and C in Equations (4).

Exercises 5-2

1. Using f(x + 2nr) = f(x), and f: x--+cos x, find

a) f(371"),

b) f(1i-r),

c) f(r)

d) f(2iI),

e) f(-77),

( 1f) f2).

241

x
arr.'

2. If f: x, find the values of f in Exercise 1 above.

3. For what values of x (if any) wIll

a) sin x = cos x?

b) sin x = -cos x9

c) sin x = sin (-x)?

d) cos x = cos (-x)?

251
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4. Graph on the same set of axes the functions f: x-ay defined

by the following, using Table 5-1 to find values for the

functions.
a) y = 2 cOs x,

b) y = 3 cos x,

1
c) y = 7 cos x.

5. Repeat Exercise 4 using

a) y = cos 2x,

b) y = cos 3x,

1c) ycosx.
6. Repeat Exercise 4 using

a) y . cos (x +

b) y = cos (x - H)
2 '

c) y = cos (x + r).

7. From the results of Exercises 4, 5, and 6 above, what effect

do you think the constant k will have on the graph of

a) y = k cos x?

b) y = cos kx?

c) y = cos (x + k)?

8. From the results of Exercise 6(b) above and Figure 5-2m,

what can you say about cos (x - and sin x?

9. As explained in the text, symmetric points with respect to

the u-axis on the unit circle u
2 + v2 = I are obtained by

proceeding a distance x in the clockwise and counter-

clockwise senses along the circle. In other words, if

f(x) = (u, v) then e(-x) = (u, -v). It follows that

cos x = cos (-x)

sin x =-sin (-x)

What relations between the circular functions can you derive

in similar fashion from the following symmetries of the circle?

a) The symmetry with respect to the origin.

b) The symmetry with respect to the v-axis.

[sec. 5-2]
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5-3. Angle and Angle Measure

As we remarked in Section 5-1, the circular functions are

closely related to the functions of angles studied in elementary
trigonometry. In a sense, all that we have done is to measure

angles in a new way. To see precisely what the difference is,

let us recall a few fundamentals.

An angle is defined in geometry as a pair of rays or half-lines
with a common end point (Figure 5-3a.) Let Ri and R2 be two

rays originating at the point 0. Draw any circle with 0 as

center; denote its radius by r. The rays Ri and R2 meet the

circle in two points P1 and P2 which divide the circle into two

parts. Here we consider directed angles and distinguish between

the angles defined by the pair R1, R2 according to their order.

SPecifically, we set c= 2sr (RI, R2) and le= 4 (n2, Ra) where

Figure 5-3a. Angles oand,e.

each angle includes that arc oi . e circle which is obtained

by passing counterclockwir,e . Ale circle from the first

ray of the pair to the secona (Figure 5-3a).

In establishing degree measure, we could divide a circle

into 360 equal units and measure an angle oc. by the number of

units of ard it includes. For instance, if we found that an

[sec. 5-3)
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angle included of the circumference we would say that the angle

1measured 7x 3600 or 120°. In general, if e divide the circum-
2rr

ference of a circle into k equal parts, each of length -Tr then

this length could be our unit of angle measure. Since the num-
2r

erical factor appears in many important formulas, it is useful

to choose k so ';:hat the factor is 1. In order to do this, it

is clear that k must equal 2r. In this case, 2F will be equal

to r, the radius of the circle. When k = 2r we call the result-

ing unit of angle measure a radian. Radian measure is related

to degree measure by

1 radian = (2)

and

(-Tr)
180°

= (1)

0
1 - 1:875 radians. (2)

You should note that this definition of the radian measure

of an angle implies that an angle of 1 radian intercepts an arc

of length s equal to r, the radius of the circle. In general

an angle of x radians intercepts an arc of length xr. That

is, s = xr where x is the measure of the central angle in

radians while s and r are the lengths of the arc and the

radius measured in the same linear units.

In working with radian measure, it is customary simply to

give the measure of an angle oc as, say, 5, rather than 5 radians.

If we use degree measure, however, the degree symbol will always

be written, as for example, 90°, 45°, etc.

It is also possible to measure an angle oc by the area A

of the sector it includes (Figure 5-3a). Specifically, we have

that the area A is the same fraction of the area of the interior

of the circle as the arc s is of the circumference, that is,

A
2 2rr

7TT

(3)

We saw above that the arc length s on a circle included by an

angle 0c may be expressed as s = rx where r is the radius of

the circle and x is the radian measure of 0c.. It follows from

254
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A

rr2 2r

or
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2Ax . (4)

That is, the measure x of oc.in radians is twice the area of

the included sector divided by the square of the radius.

Exercises 5-3

1. Change the following radian measure to degree measure.

d)

e) 27r,

2. Change the following degree measure to radian measure.

a) 27,00,

b) -30°,

c) 135°,

d) 480°,

e) 195°,

f) -105°,

g) 810°,

h) 190°,

i) 18°.

3. What is the measure (in radians) of an angle which forms

a sector of area gr if the radius of the circle is 3 units?

4. What is the area of the sector formed by an angle of

if the radius of the circle ib 2 units?

5. Suppose that we wish to find a unit of measure so that a

quarter of a circle will contain 100 such units.

a) How many such units will be equivalent to 1°?

b) How many such units will be equivalent to 1 radian?

c) How many of these units will a central angle contain,

if the included arc is equal in length to the diameter

of the circle?
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5-4. Uniform Circular Motion

Let us again consider the motion of a point p around a

circle of radius r in the uv-plane, and suppose that P

moves at the constant speed of s units per second. Let

Po(r, 0) represent the initial position of P. After one

second, P will be at Pl, an arc-distance s away from Po.

After two seconds, P will be at P2, an arc-distance 2s from

P
0'

and similarly after t seconds P will be at arc-distance

ts. (Figure 5-4a.) Clearly 4P00P1 = 41310P2 = 41320P3

Figure 5-4a. Uniform motion of P on circle O.

.
and likewise for each additional second, since these central

angles have equal arcs, each of length s. Each of these central

angles may be written as W. --2;. After 2 seconds, OP will have

rotated through an angle 26) into position 0P2; after 3 seconds

through an angle 314) ; and, in general, after t seconds through

an angle of tO or Wt. In other words, after t seconds, P

[sec. 5-4]
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will have moved from (r, 0) an arc-diatance st, and OP0 will
have rotated from its initial position through an angle of Wt
into the position OP. If we designate the coordinates of P by

(u, v) we have

u = r cos Wt

v = r sin Wt.

247
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When bit = 2r, P will again be in the position Po. This

motion of the point from Po back into Po again is called

a cycle.. The time interval during which a cycle occurs is

called the period; in this case, the period is 4. The number

of cycles which occur during a fixed unit of time is called

the frequengy. Since we refer to the alternating current in our

homes as "60-cycle", an abbreviation for "60 cycles per second",

this notion of frequency is not altogether new to us.

To visualize the behavior of the point P in a different

way, consider the motion of the point Q which is the projection
of P on the v-axis. As P moves around the unit circle, Q

moves up and down along a fixed diameter of the circle, and a

pencil attached to Q will trace this diameter repeatedly

assuming that the paper is fixed in position. If, however, the

atrip of paper is drawn from right to left at a constant apeed,

then the pencil will trace a curve, somethinglike Figure 5-4b.

I 1111111111 11111111111111111 111111 EMMIIIIMMEMBEEMENNUENE
MEUblimmo mmimmoMmummodWEEMMEMITIAMMIMMUMMINIM

MINIMMUNMEMMEMEMEMENEEMEMEMMummil=====.1MMEMEEPS7iliammillia"mUMMEMEMOMMMENEEMMEMNIMMEMMEMAMIP!:ImmiliaWMWEEN
MAIMMIMINIMMICANIMENEMMEMEMEMNEEMENNMEEMMAMWwrAMMPOEMOMINNOm
MN tAIMMEMINUMMigh. MOUNEMMUMMEMNIMMUMMEMMEMMIOSMNENWkkESESJME

AIIII1111111111111124111W"711111111111=111111:11:1:1011AIINInl11MillMb.. N1IrnmINIMIVIII
11111111111 111111111111111111111111111111IIIIIIIIIIII"1111111E11111111111minimmOmmommummommomammummummummumnitummommorwommummow

momminmEMIUMNIMMOMMMEMIMMORI*NanNimullimmiumflmainlimumwwzIAmmimalicil
mommommimmummommommismsommvxmommummunimmimmennommim-Aminimmorim
NummilimmummummiummammtsommuminsamswirallINIIIIIIIIUFON111_7iMulFALIC
WEEMMEMMEEM imEMEMEMMENEWINSUROMMEMEMEMMEMEViNMEMENNWAEMEMMEMMESMEMEMOMEMEMEMEEMEMEEMEMEMPAIMMEMMEMMITWIREMEAMOrMENEMVAMME

MEMEMENMOMMEME
1111111111111111111111111111111 14IMMOmMEONIMANOMUMMMAINAEUWANNONWAXEMEEMENOMOMMEMMERWIEMOO

NUMMIOM
MMOMMERMEM 4111.3.7.9111111116:5111111111Mi
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ENEMMENIMM ERMIREMEMM MN

Figure 5-4b. Wave Motion
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An examination of this figure will show why motion of this type

is cared wave motion. We note that the displacement y of

Q from its central position is functionally related to the time

t, that is, there is a function f .such that y = f(t). By

'suitably locating the origin of the ty-plane, we may have either

= coa wt or y = sin wt; thus either of these equations may

be looked upon as describing a pure wave or, as it is sometimes

called, a simple harmonic motion. The surface of a body of

water displays a wave motion when it is disburbed. Another familiar

example is furnished by the electromagnetic waves used in radio,

television, and radar, and modern physics has even detected wave-

like behavior of the electrons of the atom.

One of the most interesting applications of the circular

functions is to the theory of sound (acoustics). A sound wave

is produced by a rapid alternation of pressure in some medium.

A Pure musical tone is produced by any pressure wave whiCh-can

be described by a circular function of time, say:

p = A sin tit (2)

where p is the pressure at-time t and the constants A and

M are positive. The equation (2) for the acoustical pressure,

p, is exactly in the form of one of the equations of (1) even

though no circular motion is invOlved; all that occurs is,a

fluctuation oP the pressure at a given point of space.* Here

the numbers A and 1,3 have direct musical significance. The

number A is called the amplitude of the wave; it is the peak

pressure'and its square is a measure of the loudness. The

number 0 is proportional to the frequency and is a measure of

pitch; the larger M the more shrill the tone.

The effectiveness of the apPlication of circular functions

to the theory of sound stems from the principle of superposition.

If two instruments individually produce acoustical pressures pl

and p2 then together they produce the pressure pl p2. If

*The acoustical pressure is defined az the difference between the

gas pressure in the wave and the pressure of the gas if it is left

undisturbed.
2 5 8
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.p, and p2 have a common period then the sum pl + p2 has the
,same period. This is the root of the principle of harmony; if

-two instruments are tuned to the same note, they will produce.

no strange new note when played together.

Let us suppose, for example, that two pure tones are produced

with individual pressure waves of the same frequency, say

u = A cos (L) t

v = B sin Qt

where A, B and 41 are positive. According to the principle of

superposition, the net pressure is

p = A cos Ijt + B sin (Jt.

What does the graph of this equation look like? We shall answer

this question by reducing the problem to two simpler problems,

that is, of graphing (3) and (4) above. For each t, the value

of p is obtained from the individual graphs, since

(3)

(4)

p = u ± v.

To illustrate these ideas with specific numerical values in place

of A, B and 14); let

Then we wish to graph
't

A = 3, B = 4, W = r.

p 3 cos wt + 4 sin wt. (5)

Equations (3) and (4) become

u = 3 cos rt, (6)

v . 4 sin wt. (7)

By drawing the graphs of (6) (Figure 5-4c) and (7) (Figure 5-4d)

on the same set of axes, and by adding the corresponding ordinates

of these graphs at each value of t, we obtain the graph of (5)

shown in Figure 5-4e. You will notice that certain points on

the graph of p are labeled with their coordinates. These are

points which are either easy to find, or which have some special

interest.
259
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0 trr

"E"
2 rr 1.7r0 n3

Figure 5-4.c. Graph of Figure 5-4.d. Graph of

u = 3 cos vt. v sin vt.

The points (0, 3), (0.5, 4), (1, -3), (1.5, -4) and (2, 3)

are easy to find since they are the points where either u = 0

or v = 0. The points (0.29, 5) and (1.29, -5) are important

because they represent the first maximum and minimum points on

the graph of p, While (0.79, 0) and (1.79, 0) are the first

zeros of p. To find the maximum and minimum points and zeros

of p involves the use of tables and hence we shall put off

a discussion of this matter until Section 5-7, although a careful :

graphing should produce fairly good approximations to them.
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trt

0 rr 277

Figure 5-4e. The sum of two pure waves of equal period.

Dashed curve: u = 3 cos wt. Dotted curve: v . 4 sin wt.

Full curve: P = 3 cos rt 4 sin rt; 0 t 2. (The scales are

not the same on the two axes; this distortion is introducea in
order to show the details more clearly.)
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EXercises 5-4

1. Extend the three curves in Figure 5-4e to the interval

Iti 2. To the interval Iti 3. What do you observe

about the graph of p = 3 cos rt + 4 sin rt over Iti 3?

Is it periodic? What is its period? Give reasons for

your answers.

2. Sketch graphs of each of the following curves over one

complete cycle; and state what the period is, and what

the range is, if you can.

a) y 2 sin 3t.

b) y = -3 sin 2t.

c) y= 4 cos ().

d) y = 3 cos (-x).

e) y = 2 sin x - cos x.

5-5. Vectors and Rotations

In the next section, we shall develop the important formulas

for sin(x + y) and cos(x + y). Because our.development will

rely on certain properties of plane vectors, we give, in this

section, an informal summary of those properties.

You have probably encountered vectors in your earlier work

in mathematics or science. The physicist uses them to represent

quantities such as displacements, forces, and velocities, which

have both magnitude and direction. Some examples of vector

quantities are the velocity of a train along a track or of the

wind at a given point, the weight of a body (the force of gravity),

and the displacement from the origin of a point in the Cartesian

plane.

In a two-dimensional system, it is often convenient to repre-

sent vectors by arrows (which have both a length, representing

magnitude, and a direction) and to use geometrical language.

We shall do this, and we shall restrict ourselves to vectors

all of which start from a single point; in our discussion we

shall take this point to be the origin. If S and T are

vectors, we define the sum S + T to be the vector R represented

[sec. 5-5]
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by the diagonal of the parallelogram which has sides S and T,

as shown in Figure 5-5a. If T is a vector and a is a number,

then we define the product aT to be a vector whose magnitude

ic lal times_that of T and whose direction is the same as T

-±f-a-> 0 and opposite to T if a < 0; in either case, T and aT

-are collinear. Figure 5-5b illustrates this for a = 2 and a = -2.

It is an experimental fact that these definitions correspond

to physical reality; the net effect of two forces acting at a

point, for example, is that of a single force determined by the

parallelogram law of addition.

Figure 5-5a. The sum of

two vectors.

Figure 5-5b. A vector

multiplied by a number.

These definitions of vector sum and of multiplication by a

number make it possible to express all plane vectors from the

origin in terms of two basic vectors. It is convenient to take

as these basic vectors the vector U from the origin to (1, 0)

and the vector V from the origin to (0, 1). Then, for any

vector R, there exist unique numbers u and v such that

R = uU + vV; (1)

in fact, the numbers u and v are precisely the coordinates

of the tip of the arrow representing R (Figure 5-5c). To

take a specifkc example, the vector S from the origin to the

[sec. 5-5]
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point 1°(- 7-) can be expressed in terms of the basic vectors

U and V as

S =
"1 VT"- V

2 2 '

as shown in Figure 5-5d.

(0,1)

(u,v)

(0,1)

vV

U0,0)

Figure

of

-11.; 0
2

in terms Figure 5-5d. S =
U and V.

1 .NfjffU 77-V.

uU

5-5c. A vector

the basic vectors

We now introduce the idea of a rotation of the whole plane

about the origin 0. Such a rotation carries each vector into

a unique vector, and we may therefore regard it as a function

whose domain and range are sets of vectors. We have so far in

this course considered mosayfunctions which map numbezis onto

numbers, but it will be useful, in this section, to think of

a rotation as a new kind of function which maps vectors into

vectors.

Any rotation of the sort we are considering is completely

specified by the length x of the arc AP of the unit circle

through which the rotation carries the point A(1, 0). Let f

be the rotation (function) which maps the vector OA (that is,

U) onto the vector OP whose tip P has coordinates (u, v). As

we have seen above, OP can be expressed in terms of the basic

vectors U and V as uU vV. Hence

f(U) = OP = uU vV, (2)

2
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as pictured in Figure 5-5e. The same rotation f carries the

point B(0, 1) into the point Q(-v, u), as can be shown by con-

gruent.triangles' (see Figure 5-5e), so we also have

f(V) = OQ = -vU + uV.

(The figure is valid only when 0 < x < The result, however,

is true for any real ,x; for a more general derivation, see

4xercises 8 and 9.)

Figure 5-5e. The effect of a rotation

on the basic vectors U and V.

255

(3)

Now suppose that we subject the plane to a second rotation g,

in which points on the unit circle are displaced through an arc

of length y. Since g also is a function, we may regard the

successive applications of the rotations f and g as a com-

posite function gf, as in Section 1-5. From Equation (2) and

the definition of composition, we have

(gf)(U) = g(f(U)) = g(OP) = g(uU + vV). (4)

[sec. 5-5]
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Figure 5-5f.

We must now pay some attention to two important properties

of rotations. First, a rotation does not change the angle

between two vectors, and collinear vectors will therefore be

rotated into collinear vectors. Second, a rotation does not

change the length of any vector. Now, if a is .a number (/ 0)

and T is a vector, then the vector aT is collinear with T.

If T is a rotation, the two stated properties ensure that--T

and f(T) have the same length, that aT and f(aT) have the

same length, and that f(aT) is collinear with f(T). We will

therefore get the same vector from T if we first multiply by

a and then rotate, or first rotate and then multiply by a:

f(aT) = af(T). (5)

The same two properties of rotations also ensure that a parallelo-

gram will not be distorted by a rotation. Since the addition

of vectors is defined in terms of parallelograms, it follows that

rotations preserve sums; that is, if f is a rotation, and if

S and T are vectors, then

f(s T) = f(S) + f(T). (6)
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From (5) and (6),

g(uU + vV) = ug(U) + vg(V),

and we may therefore rewrite (4) as

(gf)(U) = ug(U) + vg(V).

Exercises 5-5

1. Let T be the vector OP where P is the point 4., 13/4.

Write T in the form uU + vV. If T = f(U), find the arc

on the unit circle which specifies the rotation f.

2. In Exercise 1, replace P by

1
(a) the point (-2-, --2),

1.
(b) the point k--g,

3. Find f(U) if the rotation f is specified by an arc of the

unit circle which is

(a) E units long.

(b) 2r units long.

4. Write f(U) in the form uU + vV if f corresponds to an

arc of the unit circle which is

(a) funits long.

(b) 5. units long.

5. Do Exercise 4 for an arc units long.

6. Let f correspond to a rotation of I units and g to a

rotation of units. Show that, since V . f(U), the result

in EXercise 5 is equivalent to g(V).

257

( 7 )

7. If f and g are any two rotations of the plane about V.,e

origin, show that fg = gf.

8. If the rotation f corresponds to an arc x and the rotation

g to an arc E, show that f(V) = (fg)(U) (gf)(U).

9. In Exercise 8, put f)(.1'! = uU + vV, and hence show that

f(V) = g(uU) + g(vV) = ug(U) + vg(V) = uV vU.
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5-6. The Addition Formulas

We are now ready to bring the circular functions into the

picture. Since f maps the vector, OA onto OP so that

A(1, 0) is carried through an arc x of the unit circle to

P(u, v), it follows from the definitions of Section 5-1 that

U = COS X and v = sin x.

Hence Equations (2) and (3) of Section 5-5 can be written

f(U) = (cos x)U I- (sin x)V (1)

and f(V) = (-sin x)U + (cos x)V. (2)

Since, moreover, the rotation g differs from the rotation f

only in that the arc length involved is y instead of x, we

may similarly write

g(U) = (cos y)U + (sin y)V (3)

and g(V) = (-sin y)U + (cos y)V. (4)

Substituting these results in (7) of Section 5-5 gives us

(gf)(U) = (cos x)((cos y)U + (sin y)V)

+ (sin x) y)U + (cos y)V,)

(cos x cos y - sin x sin y)U

+ (sin x cos y + cos x sin y)V. (5)

Furthermore, the composite rotation gf can be regarded as a

single rotation through an arc of length x + y, and we may

therefore write, by analogy with (1),

(gf)(U) = (cos(x + 5rU + (sin(x + (6)

We now have, in (5) and (6), two ways of expressing the

vebtor (gf)(U) in terms of the basic vectors U and V. Since

there is essentially only one such way of expressing any vector,

it follows that the coefficient of U in (5) must be the same

the coefficient of U in (6), or

cos(x + y) = cos x cos y - sin x sin y, (7)

and a similar comparison of the coefficients of V in the two

268
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expressions yields

sin(x + y) = sin x cos y + cos x sin y. (8)

These are the desired addition formulas for the sine and cosine.

We also obtain the subtraction formulas very quickly from

-Equations (7) and (8). Thue

cos(x - y) = cos(x + = cos x cos(-y) - sin x sin(-y). (9)

Since, however, (Section 5-2, Equations (3))

cos(-y) = cos y

and sin(-y) = -sin y,

we may write (9) as

cos(x - y) = cos x cos y + sin x sin y. (10)

In the Exercises, you will be asked to show similarly that

sin(x - y) = sin x.cos y - cos x sin y. (11)

From Formulas (7) and (8) and (10) and (11), it is easy to

derive a large number of familiar trigonometric formulas.

Example. Find cos(x + r) and sin(x + r).

Solution. By (7), with y = r,

cos(x + r) = cos x cos r - sin x sin r.

Now, cos r = -1 and sin r = 0. Hence cos(x + r) . -cos x.

Similarly, from (8), sin(x + r) = sin x cos r + cos x sin.r

= sin x(-1) + cos x(0)

= -sin x.

Exercises 5-6

1. By use of the appropriate sum or difference formula show that

a) cos( - x) = sin x,

b) sin( - x) = cos x,
2

c) cos(x + = -sin x,
2 269
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d) sin(x + iT) = cos x,

e) cos(r - x) = -cos x,

sin(r - x) = sin x,

3
g) cos(r7- + x) = sin x,

3r
h) s1n(-0 + x) = -cos x,

i) sin(f + x) = cos(f x).

2. Prove that sin(x y) = sin x cos y - CO3 x sin y.

*3. Show that formulas (7), (8), and (11) may all be obtained

from formula (10), and, hence, that all of the relationships

mentioned in this section follow from formula (10).

4. Prove that the function tangent (abbreviated tan) defined by

sin x
tan: x---> (x + 32-* + 2nr)

cos x

is periodic, with period r. Why are the values + 7+ 2nr

excluded from the domain of the tangent function?

5. Using the definition of the function tangent in Exercise 4

and the formulas (7), (8), (10), (11), develop formulas for

tan(x + y) and tan(x - y) in terms of tan x and tan y.

6. Using the results of Exercise 5, develop formulas for

tan(r x) and tan(r + x). Also show that tan(-x) = -tan x,

7. Express sin 2x, cos 2x and tan 2x in terms of functions of x.

(Hint: Let y = x in the appropriate formulas.)

8. Express sin 3x in terms of functions of x.

9. In Exercise 7 you were asked to express cos 2x in terms of

functions of x. One possible result 16 cos 2x = 1 - 2 sin2x.

In this expression substitute x = 3:and solve for sin

10. In Ezercise 9, cos 2x may also be written as 2 cos
2
x - 1.

Use this formula to get a formula for cos

11. Using the definitions of the function tan and the results

of Exercises 9 and 10, derive a formula for tan This

will be an expression involving radicals, but by rationalizing
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in succession the numerator and the denominator You can get

two different expressions for tan not involving radicals.

In Section 5-5 we developed the algebra of rotations, and

in this section we have applied this algebra to derive the

addition formulas for the sine and cosine fun'dtions. As we

shall now indicate, there is a close parallel between the

algebra of rotations and the algebra of complex numbers.

If two complex numbers are expressed in polar form, as are

zi = r1(cos xl +i sin xl)'

and z2 = r2(cos x2 + i sin x2)

then their product .can be found by multiplying their absolute

values r1 and r2, and adding their arguments, xl and x2:

z1z2 = rir2 (Cos (x1 + x2) + i sin(x1 + x2)) .

Multiplying any complex number z by the special complex number

cos x + i sin x = 1(cos x + i sin x)

is therefore equivalent to leaving the absolute value of z

unchanged and adding x to the argument of z. Hence, if we

represent z by a vector in the complex plane, then multiAying

by cos x + i sin x is equivalent to rotating this vector through

an arc x, as in Section 5-5.

Let us replace the vector U of 8ectiCh,5-5 by the complex

number
1 = cos 0 + i sin 0.

Then the product

(cos x + I sin x).1 = cos x + i sin x

represents the vector formerly called f(U) (see Figure 5-6a),

and (gf)(U) becomes

(cos y + i sin y)(cos x + i sin x)1

= ((cos x cos y - sin x sin y) i(sin x cos y + cos x sin 1.
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Figure 5-6a. Representation of T . cos x + i sin x.

If we replace (gf)(U) by

(cos (x + y) + I sin(x + y)). 1

we have

cos(x + y) + I sin(x + y) = (cos x cos y - sin x sin y)

+ i(sin x cos y + cos x sin y).

By equating real and imaginary parts we obtain the addition

formulas (7) and (8).

The subtraction formulas-may be derived equally simply.

Since g-1 is equivalent to rotating through an angle -y, we have
(g-lf)(1) g-1(0

u and therefore

(cos(x y) + i sin(x - 1.

cos(x - y) . cos x cos y + sin x sin y

0in(x - y) = sin x cos y - cos x sin y.

Hence

and

2 '1 2
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Construction and Use of Tables of Circular Functions

It would be difficult to give in a short span an indication

of the enormous variety of ways in which the addition formulas

of Section 5-6,

cos(0:+p) = cosoccosp -sinotsinp (1)

sin(oc +/2 ) = sin occosig +cos ocsinfi (2)

cos ( oc p ) = cos Kcosp +sin oc sinp (3)

sin(oc-,8) = sine( cosie -cos ocsinp (4)

turn up in mathematics and in the application of mathematics to

the sciences. In this section and in Sections 5-8 and 5-9, we

shall describe some of the more common applications. The first

of these is a table of values of the sine and cosine functions.

InP EXercise-1 of Section 5-6, you used the difference formulas

to showthat

and

- x) = cos x
2

cos( - x) = sin x.
2

These formulas permit the tabulation of sin x and cos x

in a very neat way. If we had a table of cosines for 0 Kx KEF,

this would, in effect, give a table of sines in backward

order. For example, from the table of special values in

Section 5-2, we obtain'the sample table shown, where y = x.

0

3

2

2 "

\

1

1

2

0

2

3

sin y
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In this table the values of the cosine are read from the top

down and the values of the sine from the bottom np. Since it

is a very inefficient use of space to put so few columns on
a page, the table is usually folded in the middle about the

value x = y and is constructed as in the following sample:

COS X sin x - x

-6"

1

TS-

2

Nrf

2

0

1

2

2

2

1-

2
sin y cos y Y

At the end of the chapter we give three tables:

I. A table of sin x and cos x for decimal values of

x up to 1.57 (slightly less than D.

II. A table of sin lrx and cos rx in decimal fractions
2 2

of f up to 1.00.

TII. A table of sin
ox, cos

ox and tan
ox, in degrees up

to 9o0.

(We define sin0: x()--osin x , with similar definitions for cos°

and tan°. It is usual to write sin x in place of sin0x, etc.,

when the context makes it clear what is intended. We shall

follow this practice.)

Exercises 5-7a

1. Why is Table I not folded as are Tables II and III?

2. Find from Table I, sin x and cos x when x is equal to

a) 0.73 c) 1.55

b) -5.17 d ) 6.97 (Hint: 2rcs 6.28)

3. From Table I, find x when 0 x and

a) sin x 0.1099 c ) sin x 0.6495

b) cos x 0.9131 271 d) cos x 0.5403
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4. From Table II, find sin lk) t and cos 1.t)t if Id= 5- and

a) t 0.31

b) t = 0.79

c ) t = O. 62

d ) t = O. 71

5. From Table II, find t (interpolating, if necessary),

if (A)=.
'

OKtland
2

a) sin Wt $:-. 0.827 c ) sin 6it ks 0.475

b) cos Wt 0.905 d) cos l.t)t sz 0.795

6. From Table III, find sin x and cos x (interpolating, if

necessary) when

a) x = 45° c) x = 36.2°

b) x 73° d) x = 81.5°

7. From Table III, find x when 0 x 90° and

a) sin x 0.629 c) sin x 0.621

b) cos x 0.991 , d) cos x 0.895

Extending the scope of the tables. Table I, at the end of

this chapter, gives values of the circular functions

cos: x--*cos x and sin: x-->sin x only for 0 x < ir;, but we

can extend its scope to the set of all real numbers by using

(a) Equations (1) - (4), (b) our knowledge of the circular

functions of all mitltiples of 112-. (see, for example, Table 5-1),

and (c) the fact that any real number can be expressed as the

sum (or difference) of two numbers of which one is a multiple

of I and the other is in the interval [x: 0 <. x < ir.]. Similar

remarks apply to Tables II and III. The technique is best ex-

plained through examples.

Example 1. Find sin 2.

Solution. Since 711R1
'

1 57 we write 2 = 1.57 + 0.43,and,
2

using Equation (2), we then hr,ve

sin 2 = sin(1.57 + 0.43)

+ 0.43) = sin cos 0.43 + cos I sin 0.43

= cos 0.43 f.'d 0.9090.
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Alternatively, 2, = 3.14 - 1.14 - 1.14, and therefore

sin 2 sin(y - 1.14) = sin Tr cos 1,14 - cos Tr sin 1.14

= sin 1.14 0.9086.

Example 2. Find cos 4.56.

Solution. Since 4.56 = 3.14 + 1.42 ir + 1.42, we have

cos 4.56 gti cos(r + 1.42) . cos Tr cos 1.42 - sin r sin 1.42

= -cos 1.42 -0.1502.

This technique can be used to simplify expressions of the

form sin (nE + x) and cos(nI + x).

,EAampl.O. Simplify cos( + x).

Solution. cos (2-Tr- x) = cos
2

2Ecos x - sin sin x
2

= cos 2- cos x - sin -2-- sin x

= -sin x.

Example 4. Find cos 0.82r.

Solution. In this case, it is easier to use Table II.

Since 0.82r = 0.50y + 0.32y, we have

cos 0.ft2y = cos(ir--+ 0.32y)

. cos cos 0.32y - sin 7 sin 0.32r

1.

Using the table

sin 1.73

. -sin 0.32y . -sin 0.64() Pe, -0.844.

Exercises 5-7h

that you think most convenient, find

9. cos(-135°)

2. cos 1.3r 10. sin 327°

3. sin(-.37) 11. cos(-327°)

4. sin(-.37r) 12. cos 12.4y

5. cos 2.8r 13. sin 12.4

6. cos 1.8r *14. cos(sin .3r)

7. cos 3.71 *15. sin(sin .7)

8. sin 135°

[see. 5-7]
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Pure Waves: Frequency, Amplitude and Phase

As we remarked in Section 5-4, the superpoSition of two

pure waves of the same frequency yields a pure wave of the

given frequency. Now we shall be able to prove this result.

In order to be more specific, instead of assuming that either

of Equations (1) in Section 5-4 defines a pure wave, let us

say that, by definition, a pure wave will have the form

y = A cos( G)t - 00,

where A and W are positive and 0 oc < 2r. The number m

is called the phase of the pure wave. The sine function now

becomes simply a special case of (1), and defines a pure wave

with phase

267

(1)

y = sinWt = cos(G)t - (2)

The phase of a pure wave has a simple interpretation. We will

take the graph of

y = cos Wt

as a standard of reference, and the cycle over the interval

(0 t < 4) between two peaks of (3) as the standard cycle.

Now the graph of y = A cos( 6it -oc ) reaches its peak, corre-

sponding to the first peak of its standard cycle, at the point

where 6.)t -c< = 0, that is, at t = Since --°45- is positive,

it is clear that the wave (1) reaches its first peak after the

standard wave (3) reaches its first peak, since (3) has a peak

at t = 0. That is, the wave (1) lags behind the wave (3) by

an amount t. Since the period of (3) is SI:, this lag amounts

to the fraction

of a period. (Figure 5-80 'We see from (2) that sinGit lags

behind cosat by a quarter-period. (See Figure.5-4c and d.)

We now wish to test the idea that the sum of two pure

waves which have the same period but differ in amplitude and

phase, is again a pure wave of the same period with some

new amplitude and phase. You will recall that in Section 5-4

[sec. 5-8)
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we sketched the graph of

y = 3 cos rt 4 sin rt

by adding the ordinates of the graphs of u 3 cos rt and

v = 4 sin rt. The graph supported this idea. At that time

we also had to leave open the question of the exact location

of the maximum and minimum points and the zeros of the graph.

.4e-y.A cos(wt-oc)

--1 ... [A =1]., I \/ I \
1 \

/
I \// I

\
i I ir \

1
TAT \

0 / rt\
/ \\

\

y cosurt

-LJ
.2Z/ 2iTcC
CO I w

Figure 5-8a. Graphs of two cosine curves.

We are now in a position to deal with these problems.

Since finding the maximum and minimum points and finding the

zeros involve essentially the same procedure, we shall confine

our attention to the maximum and minimum points.

Our basic problem still is to express

y = 3 cos rt 4 sin rt

in the form of

(4)

y = A cos(Wt -a) (1)

that is, to show that y is a pure wave, but in the process

we shall be able to obtain the exact location of the maximum

and minimum points of the graph of the sum. If we writTe out

(1) in terms of the formula

cos( oc ) = coq?coscc sinpsinoc (5)
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we obtain

y = A cos(G) t - 0( ) = A(cos GA cos oC. + sin GA sinoc )

or

y = A cos It/t cos oc + A sin Wt

In our case, W. ir and we have

y = A cos rt cos 0( + A sin rt sinoc.

UPon comparing (7) with (4), we note t',

A cos 0(= 3 and A sir, 4

then (7) and (4) will be identical. We shall therefore seek

valueb of A and oc which satisfy the Equations (8). To do

this, we may begin by squaring the Equations (8) and adding them,

to obtain

269

(6)

(7)

or

32 42 A2 cos2cx A2 sin2c<

9 + 16 A2(cos2c< + in2oc )

A2 = 25.

Since A is positive, we have

and consequently from (8),

From Table I

A=5,

3 4
cos 04:= - and sin 0( =

5 5

oc.. 0.927.

Now, by using (9) and Mr, we may put (4) in the form

y . 3 CO8 Vt -I- 4 sin 71-t !=-.: 5 cos(rt - 0.927), (12)

showing that it is a pure wave with amplitude 5, period 2

(as before), and phase 0.927.. We note that.°127 0.295

is very close to the value 0.29 obtained graphically in Section

5-4. We are also in a position to locate the maximum and

minimum points of our graph. From (10, y will be a maximum when

[sec. 5-8]
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that is,

cos(rt - 0.927) = 1,

rt - 0.927 = 0

t - 0'927 0.295,
iT

and y will be a minimum when

cos(rt - 0.927) = -1,

that is,
rt - 0.927 = r

t 1 + 0.92] 1.295,

where, in each case, we have taken the smallest positive value

of t.

We now put the general equation

y = B cos tOt + C sinOt (13)

in the form (1). If we proceed exactly as before, using (6) and

(13), we find that for specified B and C, A .%/B2 + C2 and a

solution of the equations
B

cos oc = -A- and sin oc

will determine a unique oc in the interval from 0 to 2r,

from which the form (1) follows. (See Exercise 3 below.)

Exercises 5-8

1. What is the smallest pos:itive value of t for which the

graph of Equation (4)crosses the t-axis? Compare your result

with the data shovn in Figure 5-4e.

2. Sketch each of the following graphs over at least two of its

periods. Show the amplitude, period, and phase of each.

a) y 2 cos 3t

b) y .2 cos(4)

c) y = 3 cos(-2t)

d) y = -2 sin() (Remember that the phase is defined to

'-' be positive.)
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e) y = -2 sin(2t + r)

y = 5 cos(3t i)

3. Express each of the following equations in the form

y = A cos(rt - toc) for some appropriate real numbers

A and oc .

a) y = 4 sin rt - 3 cos rt

b) y = -4 sin rt + 3 cos rt

c) y = -4 sin rt - 3 cos rt

d) y = 3 sin rt + 4 cos rt

e) y = 3 sin rt - 4 cos rt

4. Without actually computing the value of oc , show on a

diagram how A and oc can be determined from the coeffi-

cients B and C of cos Wt and E-in Wt if each of the

following expressions of the form B cos Wt + C sin Wt is

made equal to A cos(6)t ). Computem , and find the

maximum and minimum values of each expression, and its

period. Give reasons for your answers.

a) 3'sin 2t + 4 cos 2t

b) 2 sin 3t - 3 cos 3t

c) s-siny + cos*

5. Verify that the superposition of any two pure waves

A cos(Wt ) and B cos(6Jt -fi ) is a pure wave of the

same equency, that is, that there exist real values C

and"Zr such that

A cos( G)t ) + B cos(6Jt -p ) = C cos( W t -

6. Solve for all values of t:

a) 3 cos rt + 4 sin rt = 2.5

(Method: From equation (12) we see that this equation

is equivalent to 5 cos(ut - 0.927) = 2.5.

For every solution, we have

cos(rt - 0.927) = 0.5,

which is satisfied only if the argument of the cosine

is. + 2nr or -If+ 2nr. It follows that the equation

is satisfied for all values of t such that
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rt - 0.927 = ±7 + 2nr or such that

tpd 0.-P-7 1+ + 2n.

Question: What is the smallest positive value of

t for which equation (a) is satisfied?)

b) 3 cos rt + 4 sin rt = 5

c) sin 2t - cos 2t = 1.

d) 4 cos rt - 3 sin rt = 0

e) 4 cos rt + 3 sin rt = 1

*7. Show that any wave of the form

y = B cos()ut -# ), (im 0),

can be written in the form (1), that is,

y = A cos( GOt - c) )

where A is non-negative, 6) positive and 0 coc < 2r.

5-9. Identities

In the analysis of general periodic motions the product of

two circular functions often appears, and the expression of a

product aa the sum or difference of two circular functions is

quite useful. Such expressions can be derived by taking the

sums and differences of the circular functions of x + y and

x y. In fact we have

1
cos x cos y = .g[cos(x + y) + cos(x - y)]

1
sin x sin y = --ficos(x + y) - cos(x - y)]

sin x cos y = iisin(x + y) + sin(x - y)].

One interesting

they can be used to

We merely set x + y

and (3). Observing

fact about these product formulas is that

obtain formulas expressing sums as products.

=c< and x y =p in Equations (1), ("12)

+that x - 0( g and y - c"c 0 we have
2 2
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cos oc + cos16 = 2 cos -24g--- cos 6<"2"P (4)

fi oc - g
cos oc - cos/3 = -2 sin sin (5)2 2

c oc - jeg
sin oc + sin /6. = 2 sin ,

a
cos (6)

2 2

Formulas (1), (2), (3), and (4), (5), (6) need not he

memorized. .The important thing is to know how to derive them.

(See Exercise (1) below.)

It is often useful to have some expression involving circular

functions in more than one form. That is, we sometimes wish to

replace one expression by another expression to which it is

equal for all values of the variable for which both expressions

are defined. A statement of this kind of relationship between

two expressions is called an identity. For example,

sin2x = 1 - cos2x

is an identity, because it is true for all real x. To show

that a given equation is an identity, we try to transform one

side into the other or both sides into identical expressions.

As an example, consider the equation

cos
3G

+ sin
2e

cos e = cos e.

We note that by factoring cos 6 from the terms on the left,

we have

cos e (cos
2 e + sin2 e ) = cos e ,

and since cos
2e + sin2e = 1, we have

cos 8) = cos e ,

and the identity is established.

Exercises 5-9

1. Derive formulas (1), (2) and (3) from the appropriate

formulas in Section 5-6,

2. In formulas (1), (2) and (3) let x = moc and y = nc( thus

deriving formulas for

a) cos m« cos noc,
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b) sin m oc sin noc,

c) sin moc cos noc.

3. Using (6) derive a formula for sin o( - sinfi .

4. Using any of the formulas C:), (5), (6) derive a formula

for cos x - sin x.

5. Using any of the formulas developed in this chapter, find:

a) sin 17--r2 ; (Hint: 3.1.L2 -

b) cos 12

c) tan II.
3.2 '

13.7r
d ) c o s .

6. Using any of the formulas developed in this chapter, show

that for all values where the functions are defined the

following are identities:

a) coske sinke = cos 2e;

b) cos2 ac - sin2oc = 1 - 2 sin2oc ;

1 1 = tan -ot ;c) 2-
cos oc

d) cos( oc - 7r) = cos( oc + r);

e) tan ie +sincoese; (See Exercise 5-6, 11.)

f) cos2 1e
tan e + sine,

2 tan e '

g) 1 + sin oc = (sin + cos ioc)2;

h) (sin e + cos e) = 1 + sin 2e;

2 tan e
i) sin 2e =

1 + tan2e ;

+ cose sine 2

sine 1 + cose rrie;
sin 2 oc cos 2oc 1

k)
sin oc. cos ex. = coso: '

7. In Exercise 7 of Section 5-6 you derived the formula:

cos 2x = 2 cos
2x

- 1.

( S ec . 5-9 )
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a) Solve this for cos
2
x thus expressing cos 2

x as a linear

function of cos 2x.

b) Consider cos
4
x as (cos 2

x)
2
and by the same methods as

used in (a) show that

1
cos

4
x = ps.(3 + 4 cos 2x + cos 4x).

8. Using the formula cos 2x = 1 - 2 pin2x derive the formula

for sin
4
x:

1
sin x = ps.(3 - 4 cos 2x + cos 4x).

9. Show that the following are identities: that is, they are

true for all values for which the functions are defined.

a) sin 2 e cose - cos 2esine = sine.

b) sin(x - y) cos z + sin(y z) cos x = sin(x - z) cos y.

1
c) sin 3x sin 2x = ecos x - cos 5x).

cos 30
d) cos e - sin e tan 2e cos 2e

1
e) sin3e = 7-(3 sine - sin 3e ).

f) sin x + sin 2x + sin 3x. = sin 2x(2 cos x + 1).

g)
(1 + tan x) 2 1 + sin 2x
1 - tan x 1 - sin 2x'

5-10. Tangents at x = 0 to the Graphs of

and y . cos x

a) The tangent T to the E

of sin: x at P(0,0) turri,, Qut

to be the line y = x, as we shall show.

(See Figure 5-10a.) We shall at first

consider only points on' G which are to

the right of P. that is, we shall take

x > O. We shall also assume that x < 22;;

this will do no harm, since we are con-

cerned only with the shape of G near P.

In Figure 5-101:0,which shows a portion

BC is perpendicular to OA and hence is

[sec. 5-10]
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of y = sin x and y = x

of the unit circle,

shorter than the arc BA;
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Figure 5-10b. Part of
the unit circle.

But if the length of arc BA is

x, then the lengths of CB and

OC are sin x and cos x,

respectively, and therefore

sin x < x. (1)

This means that, in Figure 5-10a,

G lies below the line y = x, to

the right of P, as we in-

dicated.

In Figure 5-10b, AD has been

drawn perpendicular to OA at A,

meeting OB extended at D. By

similar triangles,

and therefore

AD CB
OA OC'

AD
sin x
cos x

Now, the area of triangle OAD is

i(0A)(AD) = i(1 )(nrsi cc),

the area of sector OAB is

i(1)2(x) = lx,
2

and the area of triangle OAD is greater than the area of

sector OAB, or

1 sin x 1-x.
2 cos x

>
2

Because, cos x is positive for 0 < x

sin x > x cos x.

Since 1 > cos x

and, again, cos x is positive, we have by multiplication

Now, from (1),

cos x > Cos
2
x = 1 - sin

2
N.

sin
2
x < x

2
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so that cos x > 1 - x2 .

It now follows from (2) that

sin x > (1 - x2)x,

and therefore, for all x2 <E ,

277

(3)

sin x > (1 - E )x. (4)

Combining this result with (1), we conclude that, to the right of

P," G lies between the lines y = x and y = (1 - E )x for x

omal1 enough. (See Figure, 5-10c). Since G is symmetric with

respect to the origin, it lies between the same lines on a corre-

sponding interval to the left of P. -Therefore, the line y = x

is the best linear approximation to G near P.

y=1

0

Figure 5-10c. Linear Figure 5-10d. Linear
approximations to y = sin x. 'approximations to y = cos x.

b) Let us now turn to the graph of cos: x-->cos x near
. _

P(0,1), the point of intersection with the-yaxis; Since the

graph is symmetric with respect to the y-axis, it is sufficient

tp consider positive values of x. (See Figure 5-10d).
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We know, for 0 < x < --, that
2

cos x < 1;

hence G lics below the line y = 1. By (3), moreover,

cos x > 1 - x2,

that is cos x > 1 + (-x)x,

or cos x > 1 - 6 x

for 0 < x <6

Since E can be chosen arbitrarily small, it follows that the

tangent T is necessarily the line y = 1.

5-11.. Tangent to the Graph of Sine or Cosine at a General Point

To find an equation of the tangents

x of x-Hcos x at

to the graphs of

where x = h, we mustand a point

use the addition formulas. We write x = h + (x - h). Then

sin[h + (x - h)] = sin h cos(x - h) + cos h sin(x - h),

cos[h + (x - h)] = cos h cos(x - h) - sin h sin(x - h).

We now replace cos(x - h) and sin(x h) by their best linear

approximations, namely by 1 and by x - h, respectively, and

obtain for the required tangent lines

y = sin h + (cos h)(x - h) (1)

and
y = cos h - (sin h)(x - h). (2)

According to (1), the slope of the line tangent at (h, 2in h)

to the graph of the function sin: x is cos h. Hence

the associated slope function is cos: x--30cos x or

sin' = cos.

Similarly, from (2), the slope of the line tangent at (h, cos h)

to the graph of the function cos is -sin h. Hence

cos' = -sin.
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Exercises 5-11

1. Write an equation of the line tangent to y = sin x at

the point where

a) x =

411-b), x = -s-

x = 1.

2. Write an equation of the line tangent to y = cos x at

the point where

a) x =

b) x = 2.

3. What is the error involved in using x as an. approximation to

sin x when

a) x = 0 c) x = .2

b) x = .1 d) x = .3?

5-12. Analysis of General Waves

In Sections 5-4 and 5-8 we considered the superposition of

two pure waves of the same period (or frequency). We found

that the superposition of such waves is again a pure wave of

the given frequency. Next we ask what conclusion we can draw

about the stiperposition of two waves with different periods.

Suppose, for example, that we had to deal with

y 2 sin 3x - 3 cos 2x.

Unfortunately, sin 3x and cos 2x have different fundamental
271-

periods, -7s.- and r, so they cannot be combined into a single

term, the way we could if we had only cos ax* and sin 3x,

say, or cos 2x and sin 2x. However, any multiple of a

period can be looked upon as a period. That is, we can consider
271- 4v 8vy = 2 sin 3x as having a period of 7r-,, 2y, 7r., or any other

2yintegral multiple of Similarly, y = 3 cos 2x can be

considered as having a period of y, 2y, 3y, etc. Now comparing

thecie values, we note that botil expressions can be considered

[sec. 5-12]
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as having a period of 27, and hence their difference will also

have a period of 27. In effect, we simply find the least

common multiple of the periods of two dissimilar expressions

of this form and we have the period of their sum or difference.

There is little else that we can conclude in general. About

all we can do to simplify matters is to sketch separately the

graphs of

u = 2 sin 3x, v 3 cos 2x,

and y = u - v. The result is shown by the three curves in

Figure 5-12a.

Figure 5-12a. u . 2 sin 3x, v 3 cos 2x

y = u v = 2 sin 3x - 3 cos 2x,

0 x 27.
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The superposition of sine and cosine waves of different

periods can produce quite complicated curves. In fact, with

only slight restrictions, any periodic function can be approxi-

mated arbitrarily closely as a sum of a finite number of sines

and cosines. The subject of harmonic analysis or Fourier

series is concerned with approximating periodic functions in

this way. The principal theorem, first stated by Fourier, is

that a function f of period a can be approximated arbitrarily

closely by sines and cosines for each of which some multiple

of the fundamental period is a. Specifically,

f(x) A + (A cos 22a + B
1

sin 27x)0 1 a a

47rx+ (A
2

cos + B
2

sina a

(1)

2nvx 2nrxl+ (An cos
a + B

n
cos a "

and the more terms we use, the better is our approximation.

As an example, consider the function depicted in Figure 5-12b.

This function is defined on the interval -v x < v by

0, if x -v

-1, if -v < x < 0
f(x)

0, if x
(2 )

1, if '0 < x < v.

For all other values of x we define f(x) by the periodicity

condition

f(x + 2v) = f(x).

This function has a particularly simple approximation as a

series of the form (1), namely,

41sin x sin 3x sin 5x + +
.sin(2n - 1)x

)* (3)v\ 1 3 5
. . . 2n - 1

291
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Figure 5-12b. Graph of periodic function.

x--->f(x)

Fourier series:

0,

1,

0,

-1,

sin x

if x -r

if 0 < x <

if x= 0
if -r < x < 0

sin 3x sin

f(x

5x

2r) = f(x).

sin 2n

1

As an exercise, you may graph the successive approximations

to f(x) by taking one, then two, then three terms of the series,

and see how the successive graphs approach the graph of y = f(x).

The problem of finding the series (1) forany given periodic

function f is taken up in calculus.

Exercises 5-12

1. Sketch graphs, for lxi < r, for each of the following curves.

4
y = 5: sin x.a) 292

[sec. 5-12]



283

b) k,sin x sin 3x).

4 sin x sin 3x sin 5xc) y = r(
1 5 )'

2. a) Find the periods of each of the successive terms of

the series (3),.--;namely,

sin 3x sin 5xsin x, 3

b) What terms of the general series (1) are missing? From

the symmetry properties of the function f defined by

(2) cah you see a reason for the absence of certain terms?

Inverse Circular Functions and TrigonoMetric Equations

We have now reached the point in our study of the circular

functions where we might well ask if there exist inverse functions

for them. The necessary and sufficient condition developed in

Section 4-9 for a function f to have an inverse is that it be

one-to-one. In other words for every 2 different numbers xl

and x2 in the domain the values of the function must be different.

That is, if xl and x2 are in the domain of f, and xl / x2

then f(x
1

) f(x
2

) It is obvious that this condition is not

satisfied for sine, cosine, and tangent since these functions

are periodic. For example we know that: sin 0 = sin 2r,
kr

cos -4- = cos 41, and tan 7. tan 7r etc. It follows that there

can be no inverse fiinctions for sine, cosine or tangent.

Suppose, however, we restrict the domain of sin to

(x: x

Since sin xl < sin x2 if < x2 it follows that the

sine function, thus restricted, is strictly increasing and by

Corollary 4-2-1 therefore has an inverse which we call sin-1.

(See Figures 5-13a and 5-13b.)

By-imposing different restrictions on the domain of the sine

function (for example, by choosing as the domain the set of real
3r

numbers x such that x .57) we may again obtain a one-to-one

function which has an inverse:- Atowever, the function x-->.sin x,

[sec. 5-13]
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where -- 'x - gives rise to what is called the principal
2 2

inverse sine function and when we speak of the inverse sine it
is this one that we mean.

Figure 5-13a. Graph of
y sin x, x .

Figure 5-13b. Graph of
y = sin-1x, -1 x 1.

Fortunately there is universal agreement among mathematicians
on the definition that we have given.

In like manner if inre suitably restrict the domain of cosine,
we obtain a function whichsis one-to-one and therefore has an
inverse. Again there are different possibilities and we choose

the restriction 0 x 7r, and call the inverse, cos-1
.

The domain of both sin-1 and cos-1 is the interval [-1, 1]
but the ranges are different; that of sin-1 being the interval

7 7[-f -ff] while that of cos-1 is the interval (0, r].
Example, 1. Find sin-1 0.5.

Solution. We know that sin[sin-1 0.5] = 0.5. We want that
number in the restricted region 4 x 272.- such that sin x = 0.5.
It is of course

294
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Example 2. Find cos-1(-0.4).

Solution. cos(cos-1(-0.4)) . -0.4. We want the number x,

0 Kx Kr, such that cos x = -0.4. Using Table I we find that

x = 1.98.

Example 3:- Find sin-1(sin r).

Solution. You might be tempted to say r but you should
-1 -1note that sin r = 0 hence sin (sin r) = sin 0 = 0. What

this example clearly shows is that sin-1 and sin are not inverse

functions unless the domain of sin is restricted to 41..Kx

as we required to begin with.

.bcample 4. Find cos(sin-1(240--)).

-1 VrSolution. We find that sin (-i-2-) -0. Since cos(-7i) = +0.5,

-1 4.cos(sin (-70) = +0.5.

To consider the problem of finding an inverse of the tangent

function we must determine if there is a restricted domain where

it is a strictly increasing or strictly decreasing function.

Now the tangent is defined as follows:

tan: x--> cos x
sin x

Since division by 0 is not defined, the domain of tan excludes

all zeros of cos; these are the odd multiples of

Because the functions sin and cos have period 2r, it

follows that this is also a period of tan, but, As we shall

see, it is not the fundamental period. If a is any period

of tan, then it must be true, for all x in the domain of tan,

that

tan(x + a) = tan x,

or, usihg the definition of tan,

sinfx +
cos(x + a

sin x
cos x'

-Clearing of fractions and rearranging, we have

sin(x + a) cos x - cos(x + a) sin x = 0. (1)
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The left-hand member of (1) is precisely Equation (4) of

Section 5-7, with oc= x a and le= x; hence (1) becomes

sin ((x a) - x) = 0,

or sin a = O.

Hence a may be any multiple of r, and the smallest positive

one of these, and therefore the fundamental period of tan, is

r itself.

We wish now to show that tan is a strictly increasing film-
7

tion over the interval, (x: < x < &. First of all, over the

non-negative portion of this interval, namely (x: 0 x <

sin is increasing and cos is decreasing, that is, if

0 x1 < x2 <

then sin xl < sin x2 and cos xl > cos x2.

sin x
1

sin x2 r
sin x2

Hence tan x tan x2,
1 cos x

1

<
cos x

1
cos x2

and tan is therefore strictly increasing over this interval.

But tan(-x)
sin -x -sin x

= cos -x cos x - tan x,

which shows that the graph of tan is symmetric with respect to

the origin. Hence we conclude that tan is also strictly increas-

ing over (x: < x 0) and therefore over the entire interval

(x: < x < p. It follows from Corollary 4-2-1 that, over

this interval, tan has an inverse tan-l. We can draw the graph

of y = tan x in this region by considering a table of values

and the behavior of sin x and cos x.

296
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sin x 008 X tan sin xx
cos x

-r/2 -1 0 undefined

-0.87 0.5 -1.7

-0.71 0.71 -1

-0.5 0.87 -0.58

0 0 1 0

r/6 0.5 0.87 0.58

r/4 0.71 0.71 1

0.87 0.5 1.7

r/2 1 0 undefined

Figure 5-13e.

< x <
2

Y =

297

(see. 5-13]

tan x,
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The graph of y = tan-1 x is found by reflecting the graph

of y = tan x in the line y = x.

Y

A
2

2

Figure 5-13d. Graph of y = tan-lx,

The inverse trigonometric functions will be very useful if

-you study the integral.calculus later on. They can also be used

to eXpress the solutions to many trigonometric equations, much

as radicals can be used to express the solutions to many algebraic

equations.

Tripnometric Equations. We have solved some trigonometric

equations before. We shall here do a few more. In solving an

equation we are as always looking for the set of all those numbers

which make the given statement true.
1

Example, 5.. Solve sin x =

Solution. One number in the solution set is sin
-1 0.5 which

we know is Are there any others? Because the sine is periodic

with period 2r we know that all numbers of the form 1+ 2nr

[sec. 5-13]'
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belong to the solution set. Now in the region from to 1,

the sine is a strictly increasing one-to-one function and

thus can take on each value in its range only once, but from

to---3r it is strictky decreasing and again one-to-one so it
2

takes On every value once more. We know that sin(y - x) = sin x

and therefore r - .6. or 4 is the only other number in the interval

(lc: 0 x ( 2r) which satisfies the equation. The complete

solution set of possible values then consists of

+ 2n7r and - -71 2n7r.

Testing in the original equation, we find that they all check.

Example. 6. Solve sin x + cos x = 1.

Solution. 3in x + cos x = 1

sin x = 1 - cos x

Squaring, substituting for sin
2x its value in terms of cos

2
x,

collecting and factoring, we get

Hence

1 - cos x 0 or 2 cos x = O.

cos x = 1 or cos x = 0

Using the periodicity we then get

x = 0 + 2n7r or x - + 2n7r or + 2n7r.
-2

These are possible solutions of the original equation but

we must test them to be sure.

sin 2nr + cos 2nT . 0 + 1 = 1 Check.

sin(E- + 2n7r) + cos( + 2n7r) = 1 + 0 = 1 Check.

sin(-5 + 2n7r) + cos(-E. + 2n7r) = -1 + 0 / 1. Fails tacheck.

Therefore the solution set is [2nr, + 2n7r).

Example 1. Solve 6 cos
2x + 5 sin x = 0.

Solution. We aubstitute cos
2x = 1 - sin

2x to get an

[sec. 5-13]
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equation in sin x.

6(1 - sin2x).+ 5 sin x = 0

6 - 6 sin2x + 5 sin x = 0

6 sin2x - 5 sin x - 6 = 0

(3 sin x + 2)(2 sin x - 3) = 0

sin x 2 or sin x 3

3But 7 is not in the range of sine so there are no values of .x

which satisTy the second equation. The first equation yields
-1 2%

one number: x = sin (-v and the complete solution set is

(sin-1(4) + 2nr, r - sin-1(4 + 2nr).

these all check.

Testing we find that

Exercises 5-13

1. Sketch the graph of y = cos lx, indicating clearly the

domain and range of the function.

2. Evaluate

a) sin-1(47) c) tan-1 (1/-g)

b) cos-1(Z1) d) cos
-1 1 - sin-1 (-1)

2

3. Find:

a) sin(cos-1 0.73); c) sin[cos-1 g_ + sin-1(4)];

b) cos(sin
-1 (-0.47)); d) sin[2 cos-1 A].

4. a) Show that sin(cos-1 I) = cos(sin-1

b) Is it true that for all x, s1n(cos
-1x) = cos(sin x)?-1 %

5. Show that sin(tan-lx) Why is the sign + rather
+ x2

than - or +?

. Express in terms of x:

a) sin(2 tan-lx);

b) tah(2 tan-lx);

c) tan(cos-lx);

d) sin[sin-lx + cos-lx].

[sec. 5-13]
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In the solution of the following equations be sure that you have

(a) not lost any true solutions or, (b) introduced any numbers

as solutions Which do not satisfy the original equations.'

7. Solve for x:

a) sin x + cos x = 0; c) 3 tan x -,/T= 0.

b) 4 cos2x - 1 = 0;

8. Solve for x:

a) 2 cos x - sin x = 1;

b) 9 cos
2x + 6 cos x = 8; d) cos 2x - 1 = sin x.

d) 4

c) tan x = x

9. Solve for x:

a) 2 sin-1x= ;

b) sin 2x cos(7r - x) ;

c) 2 sin-12x = 3;

d) 3 sin 2x = 2.

*11 It sometimes happens that you want to solve an equation of

the form x = tan x or x 2x = 2, or x + 2 sin x = 0. No

methods we have developed so far seem to do this. However,

our present knowledge of graphing functions enables us to

get at least approximate solutions of these equations.

We put the given equation in the form

f(x) = g(x)

where f and g are functions whose graphs are familiar.

The points of intersection of the graphs will give values

of x which satisfy the original equation.

a) Solve: x = tan x.

b) Solve: x.2x = 2 by first setting 2x = a and graphing
2

y 2
x and y =

c) Solve: x + 2 sin x = 0.

d) Solve: x = sin-1x.
-x

e) Solve: sin x = e .

301
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5-14. Summary of Chapter 5

We define the circular functions cos and sin as follows:

if the points P(u, v) and A(1, 0) are on the unit circle,

and if the counterclockwise arc AP is x units long, then

u = cos x and v = sin x.

A function f is periodic, with period a, if, for each

x in the domain of f, x + a is also in the domain of f,

and f(x a) = f(x). The smallest positive .,.oh satisfies

this relation is the fundamental period of f. Me fundamental

period of both cos and sin is 27r.

x
We define tan: x--stn>

cos x'
,ith fundamental period T.

Radian and degree measure of angles are defined. They are

related by the formula r radians = 1800 .

We summarize some of the properties of a class of plane

vectors and define a class of fuhctions from vectors.to vectors,

called rotations. These functions are used to derive the formulas

sin(x y) = sin x cos y cos x sin y

cos(x ± y) = cos x cos y 17sin x sin y.

A pure wave is defined to have the form y = A cos(b)t -pc ),

A > 0, a) > 0, 0 oc < 271-. The number ot is the phase.of the

wave; a sine wave has phase f. The sum of two waves of a given

period is a wave of the same period; in particular, if u = B cos tat

and v = b sin Wt, then 1,1 V = A cos(Wt - M.), where

A =.42 + C2, cos (X = 471., and sin c4. = A-.

The sum of two waves of commensurable periods is a wave whose

fundamental period is the least common multiple of their funda-

mental periods. A very general class of periodic functions can

be approximated with arbitrary accuracy by a finite sum of cosines

and sines.

The slope functions associated with cos and sin are,

respectively, -sin and cos: cos! = -sin, sine = cos.

3 k) 2
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Miscellaneous Exercises

1. Determine whether each of the following functions is periodic;

if a function is periodic, determine its fundamental period.

a) y = Isin xl.

b) y = x [x], where [x] is the greatest integer n such

that n ,x.

c) y = x sin x.

d) y = sin2x.

e) y = sin(x2).

sin x + 2 cos x
f) Y 2 sin x + cos x

g) y = sin x+ Isin xl.

*h) y = sin x + sin('y'ra)

2. Consider the function f: x-->f(x) whose domain is the set

of positive integers and for which f(x) is the integer in

the x-th decimal place in the decimal expansion of .9-4

What is the range of f? Is f periodic? If so, what is

its fundamental period? Find f(97).

3. Given a function f:x-->f(x), with the properties

f(Y + 2) = f(x), f(-x) = -f(x), and f(i) = 3, evaluate the

following:

a) f(4)

f(i)

f(9) + f(-7)

4. Change the following angles to degrees:

22
a) 7 radians

2
b) radian

5. Change the following angles to radians:

a) 87°

b)
2
7 degrees

c ) degrees
2
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6. What is the area of a sector with perimeter c and central

angle k?

7. Find the fundamental period, amplitude, and range of each

of the following curves. Sketch the curve over one cycle.

a) y = 2 sin 3x.

b) y = -3 sin 2rx.

c) y = 2 cos -b.

d) y . 6 sin x cos

e) yV.. 2x.

8. Determine A, B, and C so that the function

f: cos(2rx + i) can be described as

f: sin(Bx + C).

9. If a condenser with a capacitance of C farads and containing

a charge of Qo coulombs is placed in.series with a coil of

negligible resistance and an inductance of L henrys, the

charge Q on the condenser t seconds later is given by

Q = Qo sin* +

If L = 0.-,.henry, and 0 ... 10-5 farad, find

al the fundamental frequency of this circu,11

b) .:;he time to when Q-= 0 for the first time;

c) tha7.,ime t1 when Q = 0.5 Q0 for the ,?7-;. time;

d) th:7 time t2 when Q = 0.5 Q0 for the se ond time.

10. Show that

tan 3x cos x - cos 2x-2 = sin 2x - sin x
3x

for all values of x for which tan y is defined.

il. Sketch the graphs of the following:

a) cos x + !cos xl.

b) !sin xl ,4 sin 2x.

w12. Prove the To2lowing: (Hint: the formula for sirax + y) is

needed.)

a) !sin Ycz cos x b) krf sin x + cos xl 2.
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*13. Find addition formulas for the following functions; that is,

express f(x + y) in terms of f(x) and f(y).

a) f: x-->f(x) = 2x + 3.
(Hint: what is x in

b) f: x-->f(x) grn*
c) f: x-->2(cos x + i sin x).

**A Is there an x between 0 and 27r such that

sin(cos x) = cos(sin x)?

terms of f(x)?)

15. Sketch the graphs of the following, grouping together those

with the same graphs.

a) y sin x.

b) y - cos2x .

c) y = 'Sin xl.

d) y2 sin2x.

e) y2 = i - cos.

f ) y =
1 - cci$

2 1 - cos au.g) y
2

h) y = 2 sin i

A) y = 21sin cos

x
j) y = 2 sin S'QS

k ) y = 21sin -2--Hcc3s

1) y2 = 4 sin2 00-j-

3 5
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Table I

Values of sin x and

sin x cos x

.00 .0000 1.0000
.01 .0100 1.0000
.02 .0200 .9998
.03 .0300 .9996
.04 .0400 .9992

.05 .0500 .9988

.06 .0600 .9982

.

.0699

.0799
.9976
.9968

.09 .0899 .9960

.10 .0998 .9950

.11 .1098 .9940

.12 .1197 .9928

.13 .1296 .9916

.14 .1395 .9902

.15 .1494 .9888

.16 .1593 .9872

.17 .1692 .9856

.18 .1790 .9838

.19 .1889 .9820

.20 .1987 .9801

.21 .2085 .9780

.22 .2182 .9759

.23 .2280 .9737

.24 .2377 .9713

.25 .2474 .9689

.26 .2571 .9664

.27 .2667 .9638

.28 .2764 .9611

.29 .2860 .9582

.30 .2955 .9553

.31 .3051 .9523

.32 .3146 .9492

.33 .3240 .9460

.34 .3335 .9428

.35 .3429 .9394

.36 .3523 .9359

.37 .3616 .9323

.38 .3709 .9287

.39 .3802 .9249

a,.

cos x for 0 4 x 4 1.57.

X sin x cos x

.40 .3894 .9211

.41 .3986 .9171

.42 .4o78 .9131

.43 .4169 .9090

.44 .4259 .9048

.45 .4350 .9004

.46 .4439 .8961

.48

.47 .4529
.4618

.8916

.8870
.49 .4706 .8823

.50 .4794 .8776

.51 .4882 .8727

.52 .4969 .8678

.53 .5055 .8628

.54 .5141 .8577

.55 .5227 .8525

.56 .5312 .8473

.57 .5396 .8419

.58 .548o .8365

.59 .5564 .8309

.6o .5646 .8253

.61 .5729 .8196

.62 .5810 .8139

.63 .5891 .8080

.64 .5972 .8021

.65 .6052 .7961

.66 .6131 .7900

.67 .6210 .7838

.68 .6288 .7776

.69 .6365 .7712

.70 .6442 .7648

.71 .6518 .7584

.72 .6594 .7518

.73 .6669 .7452

.74 .6743 .7385

.75 .6816 .7317

.76 .6889 .7248

.77 .6961 .7179

.78 .7033 .7109

.79 .7104 .7035
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Table I - Cont.

sin x cos x

.80 .7174 .6967

.81 .7243 .6895

.82 .7311 .6822

.83 .7379 .6749

.84 .7446 .6675

.85 .7513 .6600

.86 .7578 .6524

.87 .7643 .6448

.88 .7707 .6372

.89 .7771 .6294

.90 .7833 .6216

.91 .7895 .6137

.92 .7956 .6o58

.93 .8016 .5978

.94 .8076 .5898

.95 .8134 .5817

.96 .8192 .5735

.97 .8249 .5653

.98 .8305 .5570

.99 .8360 .5487

1.00 .8415 .5403
1.01 .8468 .5319
1.02 .8521 .5234
1.03 .8573 .5148
1.04 .8624 .5062

1.05 .8674 .4976
1.06 .8724 .4889
1.07 .8772 .4801
1.08 .8820 .4713
1.09 .8866 .4625

1.10 .8912 .4536
1.11 .8957 .4447
1.12 .9001 .4357
1.13 .9044 .4267
1.14 .9086 .4176

1.15 .9128 .4085
1.16 .9168 .3993
1.17 .9208 .3902
1.18 .9246 .3809
1.19 .9284 .3717

sin x cos x

1.-o .9320 .3624
1.21 .9356 .3530
1.22 .9391 .3436
1.23 .9425 .3342
1.24 .9458 .3248

1.25 .9490 .3153
1.26 .9521 .3058
1.27 .9551 .2963
1.28 .9580 .2867
1.29 .9608 .2771

1.30 .9636 .2675
1.31 .9662 .2579
1.32 .9687 .2482
1.33 .9711 .2385
1.34 .9735 .2288

1.35 .9757 .2190
1.36 .9779 .2092
1.37 .9799 .1994
1.38 .9819 .1896
1.39 .9837 .1798

1.40 .9854 .1700
1.41 .9871 .1601
1.42 .9887 .1502
1.43 .9901 .1403
1.44 .9915 .1304

1.45 .9927 .1205
1.46 .9939 .1106
1.47 .9949 .1006
1.48 .9959 .0907
1.49 .9967 .0807

1.50 .9975 .0707
1.51 .9982 .o6o8
1.52 .9987 .o5o8
1.53 .9992 .0408
1.54 .9995 .0308

1.55 .9998 .0208
1.56 .9999 .0108
1.57 1.0000 .0008
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Table II

Tables of sin and cos in decimal fiections of IT
2

sin xr
2

cos x -
2

.00 .000 1.000 1.00

.01 .016 1.000 .99

.02 .031 1.000 .98

.03 .048 .999 JI

.04 .063 .998 .96

.05 .078 .997 .95

.06 .094 .996 .94

.07

.o8
.110
.125

.994

.992
.93
.92

.09 .141 .990 .91

.10 .156 .988 .90

.11 .172 .985 .89

.12 .187 .982 .88

.13 .203 .979 .87

.14 .218 .976 .86

.15 .233 .972 .85

.16 .249 .969 .84

.17 .264 .965 .83

.18 .279 .969 .82

.19 .294 .956 .81

.20 .309 .951 .80

.21 .324 .946 .79

.22 .339 .941 .78

.23 .353 .935 .77

.24 .368 .930 .76

.25 .383 .924 .75

.26 .397 .918 .74

.27 .412 .911 .73

.28 .426 .905 .72

.29 .44o .898 .71

.30 .454 .891 .70

cos y -2- sin yi
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Table II - Cont.

sin x c os x 2

.30 .454 .891

.31 .468 .684 .69

.32 .482 .876 .68

.33 .495 .869 .67

.34 509 .861 .66
.35 .523 .853 .65
.36 .536 .844 .64
.37 .549 .836 .63
.38 .562 .827 .62
.39 .575 .818 .61

.40 .588 .809 .60

.41 .600 .800 .59

.42 .613 .790 .58

.43 .625 .780 .57

.44 .637 .771 .56
.45 .649 .760 .55
.46 .661 .750 .54
.47 .673 .740 .53
.48 .685 .729 .52
.49 .696 .718 .51

.50 ,707 .707 .50

cos y sin y 1r2-

309



300

x
o

sin
ox cc-

0
1
2
3
4

5

6

Z
9

10

11
12
13
14
15

16

1;
19
20

21
22
23
24
25

26

2;
29
30

31
32
33
34
35

36

3;
39
40

41
42
43
44
45

Table III
0
x

0.000 1.000
.018 1.000 .01_

.035 0.999 .035

.052 .999 .052

.070

.087
.998
.996

.070
088

.105 .995 .105

.122

.139
.993
.990

.123

.141
.156 .988 .158
.174 .985 .176

.191 .982 .194

.208 .978 .213

.225 .974 .231

.242 .970 .249

.259 .966 .268

.276 .961 .287

.292 .956 .306

.309 .951 .325

.326 .946 .344

.342 .940 .364

.358 .934 .384

.375 .927 .4o4

.391 .921 .425

.407 .914 .445

.423 .906 .466

.438 .899 .488

.454

.470
.891
.883

.510

.532
.485 .875
.500 .866 .577

.515 .857 .601

.530 .848 .625

.545 .839 .649

.559 .829 .675

.574 .819 .700

.588 .809 .727

.602

.616
.799
.788

.754

.629 .777 :n

.643 .766 .839

.658 .755 .869

.669 .743 .900

.682 .731 .933

.695 .719 .966

.707 .707 1.000

xo st cos
o ox

46 0.719 0.695 1.036

1Z
.731
.743

.682

.669
1.072
1.111

49 .755 .656 1.150
50 .766 .643 1.192

51
'7g

.629 1.235
52 .7 .616 1.280

53 .799 .602 1.327
54 .809 .588 1.376
55 .819 .574 1.428

56 .829 .559 1.483

57 .839 .545 1.540

58 .848 .530 1.600

59
6o

.857

.866
.515
.50o

1.664
1.732

61 .875 .485 1.804
62 .883 .470 1.881
63 .891 .454 1.963
64 .899 .438 2.050

65 .906 .423 2.145

66 .914 .407 2.246
6; .921 .391 2.356
6 .927 .375 2.475
69 .934 .358 2.605
70 .940 .342 2.747

71 .946 .326 2.904
72 .951 .309 3.078

73 .956 .292 3.271
74
75

.961

.966
.276
..259

3.487
3.732

76 .970 .242 4.011

77 .974 .225 4.331

78 .978 .208 4.705

0
.902
.985

.191

.174
5.145
5.671

81 .988 .156 6.314
82 .990 .139 7.115
83 -993 .122 8.144
84 .995 .105 9.514
85 .996 .087 11.43

86 .998 .070 14.30
87 .999 .052 19.08
88
89

.999
1.00o

.035

.018
28.64
57.29

90 1.000 .000 co
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Appendices

Chapter 1

1-8. Set Notation

A:set is a collection of objects - not necessarily material

- objects - described in such a way that there is no doubt as to

whether a particular object does or does not belong to the set.

We use capital letters (A, B, ...) as names of sets. In

Particular, R is the name of the set of all real numbers.

A :set may be described by listing its elements within

braces, as-

A = (1, 2, 3, 4),

or by using the set-builder notation, as

A = (x: x is a positive integer and x < 5).

(this should be read "A is the set of all x such that x is

a positive integer and x is less than 59
The Greek letter E( epsilon) is used to indicate that an

element belongs to a given set, as

2 E A.

(Read this "2 is an element of the set A" or "2 belongs to the

set A.")

The intersection of two sets A and B, written Ar)B, is

the set of all elements that belong to A and also belong to B:

ArlB = (x : x. E A and x B).

The union of two sets A and B, written AUB, is the set

of all elements that belong to A or to B or to both:

AUB = (x : x E A or x E B).

More extensive discussions of sets can be found in the

following:

Report of the Commission on Mathematics - Appendices, College

Entrance Examination Board, 1959, Chapters 1, 2, 9.

The Growth of Mathematical Ideas, Grades K-12, 24th Yearbook, NCTM,

1959, Chapter 3.

Insights into Modern Mathematics, 23rd Yearbook, NCTM, 1937,

Chapter 3.
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Elements of Modern Mathematics, K. O. May, Addison-Wesley

Publishing Co., Reading, Mass., 1959, Chapter 3.

Fundamentals of Freshman Mathematics, C. B. Allendoerfer and

C. 0. Oakley, McGraw-Hill Book Co., New York, 1959,

Chapter 6,

Introduction to the Theory of Sets, J. Breuer, translated

by H. F. Fehr, Prentice-Hall, Inc., Englewood Cliffs, N.J.',

1958.
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[sec. 1-8]



Appendices

Chapter 2

2-11. Mathematical Induction

The primary art of the creative mathematician is to form

general hypotheses in the light of a limited number of facts.

Secondary, perhaps, but equally essential, is the art of proof.

The successful mathematician is one who can make good guesses, by
whih we mean guesses that he can prove. The best way to show how

to guess at a general principle from limited observations is to

+give examples.

Example 1. Consider the sums.of consecutive odd positive

1 = 1

1 + 3 = 4

1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16

+ 3 + 5 + 7 + 9 = 25

integers:

1

Notice that in each case the sum is the square of the number of

terms.

Conjecture. The sum of the first n odd positive integers

is n2 . (This is true; can you show it?)

Example 2. Consider the following_inequalities:

1 < 100, 2 < 100, 3 < 100, 4 < 100, 5 < 100.

Con ecture. All positive integers are less than 100.

(False, of course.)

Example 3. Consider the number of complex. zeros, repetitions

counted, for polynomial functions of various degrees.

zero degree: xr-4a0, ao 7d 0, no zeros

first degree: x-4a1x + ao, al )1 0, one zero at x =

second degree: x-4a2x2 + alx + a0, a2 ? 0, two zeros at

X =

313
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-al +)61 - 4a0a2
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Conjecture. Every polynomial function of degree n has

exactly n complex zeros when repetitions are counted. (True.

See Section 2-8.)

Example 4. Observe the operations necessary to compute the

zeros from the coefficients in Example 3.

Conjecture. The zeros of a polynomial function of degree n

can be given in terms of the coeffici.ents by a formula involving

only addition, subtraction,
multiplication, division and the

extraction of roots. (False. See Section 2-1.)

Example 5. Take any even number except 2 and try to

express it as the sum of as few primes as possible:

4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5, 12 = 5 + 7,

14 = 7 + 7, etc.

Conjecture. Every even number except 2 can be expressed

as the sum of two primes. (As yet, no one has been able to

prove or disprove this conjecture.)

Common to all these examples is the fact .that we are trying

to assert something atout all the members of a sequence of things:

the sequence of odd integers, the sequence of positive integers,

the sequence of degrees of polynomials functions, the sequence of

even numbers greater than 2. The sequential character of the

problems naturally leads to the idea of sequential proof.

If we know something is true for the first few members of the

sequence, can we use that result to prove its truth f6r-the

next member of the sequence? Having done that, can we now,carry

the proof on to one more member? Can we repeat the process again,

and again, and again?

Let us try the idea of sequential proof on Example 1.

Suppose we know that for the first k odd integers 1,3,5, ...,

2k-1,

1 + 3 + 5 + + (2k - 1) = k2, (1)

can we prove that upon adding the next higher odd number

(2k + 1) we obtain the next higher square? From (1) we have

at once by adding 2k-+ 1 on both sides,

(1 + 3 + 5 + + (2k -1)1 + (2k + 1)

(sec. 2-11]
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It is clear that if the conjecture of Example 1 is true at any

stage then it is true at the next stage. Since it is true for

the first stage, it must be true for the second rtage, therefore

true for the third stage, hence the fourth, the fifth, and so

on forever.

Example 6. In many good toy shops there is a puzzle that

consists of three pegs and a set of graduated discs as depicted

in Fig. 2-11a. The idea is to transfer the pile of discs from

one peg to another under tne following rules:

a) Only one disc may be moved at a time.

b) No disc may be placed over a smaller disc.

Figure 2-11a,

Two questions arise naturally: Is it.possible to execute

the task under the stated restrictions? If it is possible, how

many moves does it take to complete the transfer of the discs?

If it were not for the idea of sequential proof, one might have

difficulty in attacking these questions.

As it is, we observe that there is no problem in transferring

one disc.

. If we have to transfer two discs, we transfer one, leaving a

peg for the second disc; we transfer the second disc and cover

with the first.

If we have to transfer three discs, we transfer the top two,

as above. This leaves a peg for the third disc to which it is

then moved, and the first two discs are then transferred to

cover the third disc.

The pattern has now emerged. If we know how to transfer

[sec. 2-11]
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k discs, we can transfer k + 1 in the following way: first, we

transfer k discs leaving the last disc free to move to a new

Peg; we move the last disc and then transfer the k discs again

to cover the bottom disc. We see then, that it is possible to

move any number of graduated discs from one peg to another without

violating the rules (a) and (b) since, knowing how to move one

disc, we have a rule that tells us how to transfer two, and then

how to transfer three, and so on.

To determine the smallest number of moves it takes to trans-

fer a pile of.discs, we observe that no disc can be moved unless

all the discs above it have been transferred, leaving a free peg

to which to move it. Let us designate by mk the minimum number

of moves needed to transfer k discs. To move the (k + 1)th

disc we first need m
k

moves to transfer the discs above it to

another peg. After that, we can transfer the (k + 1)th disc to

the free peg. To move the (k + 2)th disc (or to conclude the

game if the (k + 1)th disc is last), we :must now cover the

(k + 1)th disc with the preceding k discs, and this transfer of

the k discs cannot be accomplished in less than mk moves. We

see then that the minimum number of moves for k + 1 discs is

2mk + 1.mk + 1

This is a recursive expression for the minimum number of

moves, that is, if the minimum is known for a certain number of

discs, we can calculate the minimum for one more disc. In this

way we have defined the minimum number of moves sequentially:

by adding one disc we increase the necessary number of moves to

one more than twice the preceding number. It takes one move

to move one disc, therefore, it takes three moves to move two

discs, etc.

Let us make a little table, as follows:

k 1 2 3 4 5 6 7

1 3 7 15 _31 63 127

k = number of discs

m
k
= minimum number of moves

[sec. 2-11]
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Upon adding a disc we roughly double the number of moves.

This leads us to compare the number of moves with the powers of

two: 1, 2, 4, 8, 16, 32, 64, 128, ..., and we guess that m11=211-1.

If this is true for some value k, we can easily see that it must

be true for the next, for we have

mk+1 = 2mk + 1

= 2(2k - 1) + 1

= 2
k+1

- 2 + 1

k+1= 2 - 1,

and this is the value of 2n -1 for n = k + 1. We know that the

formula for mk is valid when k = 1, but now we can prove in

sequence that it is true for 2, 3, 4, and so on.*

The principle of sequential proof, stated explicitly, is

this:

First Principle of Mathematical Induction: Let

Al, A2, A3, ... be a sequence of assertions, and let H be the

hypothesis that all of these are true. The hypothesis H will be

accepted as proved if:

1) Thera is a general proof to show that if any assertion

Ak is true, then the next assertion Ak4.1 is true.

2) There is a special proof to show that Al is true.

If there are only a finite number of assertions in the

sequence, say ten, then we need only carry out the chain of ten

proofs explicitly to have a complete proof. If the assertions

continue in sequence endlessly, as in Example 1, then we cannot

possibly verify directly every link in the chain of proof. It

*According to persistent rumor, there is a puzzle of this kind in-
a most holy Buddhist monastery hidden deep in the Himalayas. The
game consists of sixty-four discs of pure beaten gold and the pegs
are diamond needles. The story relates, that the game of trans-
ferring the discs has been played by the monks since the beginning
of time, day and night, and has yet to be concluded. It has also
been said that when the sixty-four discs are completely trans-
ferred, the world will come to an end. [The physicists say the
earth is about four billion years old, give or ;:ake a billion or
two. Assuming that the monks move one disc every second and play
in the minimum number of moves, is there any cause for panic?)

[sec. 2-11]
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is just for thir. ..s.ason--in effect that we can handle -in infinite

chain of proofs-out specifically examining every 1Lhk--thst

the concept of -equnntial proof becomes valuable. It- iE.. ln

fact at the he a=7. of the logica, J'Dtent of mathematiw

Througn assuct:tf_2 )f concepts thJ- method

A" sequential .s been named ".77&-_matica.J. induction."

2nduction, in co non English senae, is the guessing

general prop..- from a number of observed facts. Y"3 Ls

the way one arr:v,- t assertions to prove. "Mathemati

induction" is actly a method of deduction or proof a.; Tot a

procedure of gu%Ri.:_ng, although to 1.157.7i it we ordinarily at have

some guess to tes7. This usage has en in the languag 'or a

long time and we ;.121d gain nothing Jy changing it now. Let us

keep it then, and :emember that mathematical usage is special and

often does not resemble in any respect the usage of common

English.

In Example 1, above, the assertion An is

1 + 3 + 5 + + (2n - 1) = n2.

We proved, first, that if Ak is true, that is, if the sum of

the first k odd numbers is k2 , then Aki.1 is true, so_that the
x

sum of the first k + 1 odd numbers is (k + 1)
2

. Secondly,, we

observed that A
1

is true: 1 = 12 . These two steps complete

tho proof.
Mathematical induction is a method of proving a hypothesis

about a list or sequence of assertions. Unfortunately, it

doesn't tell us how to make the hypothesis in the first place. In

the example just considered, it was easy to guess, from a fey

specific instances, that the sum of the first n odd numbers is

n2, but the next problem may not be so obvious.

Example 7. Consider the sum of the squares of the first n

positive integers,

1
2 + 22 + 32 + + n2 .

We find that when n = 1, the sum is 1, when n = 2, the sum is

5, when n = 3, the sum is 14, and so on. Let us make a table

of the first few values:
318
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30 55
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Though some mathema'leAn 11:::.-nt immediately be able t see a-

formula that will givk-- ;jthE UM, most of us would ha to admit
that the situation is ur We must look around for some trick

to help.us discover th that is surely there, and what we

do will therefore be a 7-rtt--'1, individual matter. It is a mis-
take to think that on10: ii,ciipi47oach is possible.

Sometimes experie7.._ a lseful guide. Do we know the

solutions to any simil. -.:_zttaeals? Well, we have here the sum of
a sequence, and Exampl a.To lealt with the sum of a sequence:

the sum of the first n 0,umbers iS n2. How about the sum
of the first n integv tuelves (not their squares)? What is

1 + 2 + 3 + .

This seems to be a rela r?.(3 1:-mblem, and we can solve it with ease.

The terms form an orogrebsion, in which the first term
is 1 and the common dtfZ ce is also 14 the sum, by the usual

formula, is therefore 4I(ni+ 1) = 4n2 + 441. So we have

1 + 3 + 5 + + (2n - 1) = n2

1 11 + 2 + 3 + + = 2
+ 17n.

Is there any pattern here -7;hat might help with our present problem?

These two formulas have one comman feature: both are

quadratic polynomials in _!:L. Yight not the formula we want here
also be a polynomial? It L,m17- unlike.747 that a quadratic poly-

nomial could do-the job more camplicated problem, but how

about one of higher degree? Lat's try a cubic: assume that

there is a formula

1
2 + 22 + + n2 = an 3 + bn2 4. en 4. d,

where a, b, c, and d are numbers yet to be determined.

Substituting n = 1, 2, 3, an± 4 successively in this formula,
we get

319
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1
2 =a+b+c+ d

12 + 22 = 8a + 4b + 2c + d

1
2 + 22 + 32 = 27a + 9b + 3c + d

12 22 32 42 = 64a + 18b + 4c + d

Solving, we find
1 1 1

a = b = c = -6, d = O.

We therefore conjecture that

1
2 + 22 + + n =2 1 3 1+ -ffn

2 1
+ -6n

= -6n(n + 1)(2n + 1).

This, then, is our assertion An; now let us prove it.

We have Ak
:

12 + 22 + + k2 k (k + 1)(2k + 1).

Add (k + 1)2 to both sides, factor, and simplifyl

12 22 k2 + (k + 1)2 = 4k(k+1)(2k+1) + (k+1)2

= (k+1)4k(2k+1) + (k+1))

1= .61(k+1)(k+2)(2k+3),

and this last equation is just Ak which is therefore true

if Ak is. Moreover, Al, which .states

2 1
1

is true, and An is therefore true for each positive integer n.

There is another extremely useful formulation of the

principle of mathematical induction. This form involves the

aseumption in the sequential step that every assertion up to a

certain point is true, rather than just the one assertion

Immediately preceding. Specifically, we have this:

Second Prpiciple of Mathematical Induction. Again, let

A
1,

A
2'

A
3'

... be a sequence of assertions and let H be tte

hypothesis that all of these are true. The hypothesis H wifl

be accepted as proved if

320
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1) ..7ner7. is a general proof 3how thiat, if every preceCinE

assertion AA ... A is true, .hen the ney.t assertion
1=' 2 k Ak+L

is true.

2) TherF_: is a special proof t show that A, is true-

It is hart to show that eiter prIncinle of. mathematical

induction can te derived from the other, but me ahall not do

here.

The value of this form of the principle is that it permits

the-treatment of many problems which would be qUite difficult to

bandleOn the:basis of the first principle- Such problems usually

present a more complicated appearance than the Dries that yield

directly to an attack by the first principle.

Example 8. Every set S of natural numbers (whether

finite or infinite) contains a least element.*

Proof. The induction is based on the fact that S contatns
some natural number. The assertion Ak is that if k S then
S contains a least elemeri-..

Initial step. The assertion Al is that if S contains 1

them it conta=ns a least number. This is certainly true since

1 is. the smallest natural number and so is smaller than any other-

member of S.

Sequential Step: We assume the theorem is true for all

natural numbers up to and including k. Now let S be a set

containing k + 1. There are two possibilities:

* This example is valuable because it can be used as a third prin-
ciple of mathematical induction, although not an obvious one to
be sure. An amusing example of a "proof" by t:his principle is
given in the Amerinan Math. Mommhly, Vol. 52(945) by
E. F. Beckenbach.

Theorem: Every natural number is interesting.

Argument: Consider the 'SE= S of all uninteresting natural
numbers. This set contains aa :east element. What an interesting
number, the smallest in the of =minteresting numbers! So S
contains an interesting numter after all.
Contradictian.

The trouhle 1.f.1:h this ''proof", ,zf course. is that we have /MI
definition af "interesting"; one =Is interest is another manInE
boredom.

`,32 1
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a) S conta-lns a natural mam:)(1.r._ p less than k + 1.

In .7,1a.t ca. p is less than on ecual to k. It follows that S

contains a element .

b) E conins no natural nuamier less than k + 1. In that

cas k + 1 is st.

One ::mportant uses of -thematieal induction is in

,deffnition:-7- 7..e=rsion; that is, define a sequence of things

in thatollz3c_.4z7:manner: a defintion is given for the initial

object of trAe: Bequence and a'rulezis supplied so that if any term

is known thi:,-z_ule provides a deftion for the succeeding one.

For example, ue could have defin: an (a 0) recursively in the

following wuy:

Initial Stet, a
0

= 1.

=Sequential Step:
n + 1 a an n = (0, 1, 2, 3, ..,)

Here Is another useful definIion by recursion:

Let n dei.e the product of the first n positive

integers. We car: define n! recursively as follows:

Initial Stet. 11 = 1.

Sequential Step. (n 1)! = ,n + 1)(n!).

Such .definitions are convenient in proofs by mathematical

inductfom, Hera is a=L example involving the two definitions

we haveltzst gi7an.

Ex==.1e_.2. Forall posLatve integral values n,2n-1..< n!

The prref by Mathema=lcal i=ftuction is direct. We have

Step. 2--.= 1 J = 1.

Sequential Step. Assamtazthat the assertion isrtrue at

the k-;t71 step, we saa...z. to p7o7s- it for the (k + 1)th step.

By we have

1): 1)(k!)..

71-rom t thes1a,, k: > and consequently,
2k

1)! = Lj .121)(k.!).
(k+1)2k-1 k-1

since 1. Lik is a po1.ve _inte---aer). We conclude that

(k + =a!

Theproof Is complete.

Before we conclude these rermerks on mathematical induction,

a word of _mslution. For a complet= proof by mathematical induction

[sec.22;l1)
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it important to show the truth of -toth the initial step and the

sequential step of the induction principle being used. There are

itiany examples of mathematical inducticn gbne haywire because one

-of these steps fails. Here are two al:ammies:

Example 10.

Assertion. All natural nambers are even.

Argument. Fcr the proof we 1;,tiLize the ze=nd princple

of mathematical induction and taLe for A the assertion that all

.natural numbem less than or equal to k are even. Now consider

the natural number k + 1. Let i be any natural number with

1 k. The number j such that i + j== k + 1 can easily be

'shown to be a natural number with j k. But if i k and

.j k, then both i and j are even, and hence lc+ 1 = I + j,

the sum of two even numbers, and ,Itust ftself be even!

Example 11.

Assertion. Every girl haz b11-1= eyes.

Ar4ument. Let us begin with ane girl, ray girl fa:lend,

who happens to have blue eyes. Now let us assume tbat in every

71set of k girls that _includes y girl, all have blue eyes-

-Consider any set of k + 1 gir2m. If any girl is removed from

this set we have k grL left. and hence all the girls left

have blue eyes. lt might be sugaeed that the girl removed fram

:the set had brown eyes. Yet it easy to see that thfs cannot

.floe.. true. Leave the girl supposal tb have brown eyes An the set.

and remove some otfter girl. Sir.0, .k girls remain, 17they=ust.

al:1 have eyes of the same c,ior, blue eyes by assum;tion. 'It

.f.sallows that all k-,+ 1 E71-s haw blue eyes, and the proof .is

.complete.

Find the holes in the ';wo arguments.

Exercises 2-11

_1. Prove by mathematical induction:

+ 2 + 3 + + n =ln(n + 1).
2

:2. a) By mathematical induction prove the familiar result

giving the sum of an_arithmetic progression to n

[sec. 2-11]
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a + (a+d) (a+2d) + + (a + (7,-1)±) = .i1[2a + (t-l)d].

b) Do the same eor a geometric progrensian:

a +_ar + ar2 + + r - 1

Prove the following four exercises by mathematical induction for

all positive integers n:

3. 12 + 32 + 52 + + (2n -
2 1 n3 n).

4. 2n 2n.

5. If p > -I then for ev,-757 positive integar n,

(1 + p)n 1 + np-

6. 3. + 2.2 + 3-22 + + = 1 + (n -

7. Prove by the seeN)nd principle of mathemaical induction:

a) For.all natural numars n, the numbfrz + 1 eithe ls

a prime or can be factored into prime.

b) For each natural nutter n > 1,-let 71.r1' be a reaa'nur

with the property that' for at least one pair naturaa

numbers p, q with m (a= m,

Un = U
t)

+ Uq,

When n = 1-we define UT, = a Irter a Is some E-Tzen
-

real number. Prove that = ma.: all .n.

c) Attempt to ;prove (b) fram-zza. first-pple to

see what (Ttfficultiem-,a=ftee.

In the next three problems, ±iL discover:a. formula fzr tte

sum and then prove, by mathematical induction that your rorrmila

is correct.

8 1 1 1 1.

1.2 -277 3.-4 n + 1)
7

9. 1
3 + 2

3 + 33 ... + n ntl Compane tme sum9 ymu

here with Example 1 ilZ7. tte weaume

that the required rest_.z is a pnlynottal of degrue

10. 1.2 + 2.3 + 3.4 + +-11.(n+1). (Eint: COmpare tittm one

with Example 8.)
32 4
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11. In geometry it has been proved of any 3 points, Pi, P2, P3,

that m(P1P2) + m(P2P3) m(PiP3) (triangle inequality),

where m(PiPi) denotes the distance between points Pi and Pi.

Let P
1° " n

P P denote any n points in the plane,2' "
n

Prove that

m( P1P2) m( P2P3) m( P3P4) " m( Pn-lPn) m(-P1Pn)

12. Prove that for all pos,itive integers n,

(1 +.4)(1 +)(1 41) ... (1 + = (n + 1)2.

*13. Prove that n(n2 + 5) is divisible by 6 for all integral n.

*14. A band of pirates is sitting in a circle dividing up their

lcot. One man is their leader. According to their code,

each man in the circle must get the arithmetic average of

the amounts received by the two men on his right and left.

This zule does not apply to the leader. In what proportions

may tmey divide the-loot?

*15. Consifer the sequence of fractions

1 3 7 11 Pn
-27' 3, -12, ..., 7i?

where each fraction is obtained from the preceding by the

rule
Pn = Pn-1 + 2qn-1

qn Pn-1 qn-1

Show that for n sufficiently large, the difference between

n/q andA/f- can be made as small as desired.
n'

Show also that the approximation to,\/-2.--is improved at

each successive stage of the sequence and that the error

alternates in sign. Prove also that pn and qn are

relatively prime: that is, the fraction Pn/qn is in

lowest terms.

*16. Let p be any polynomial function of degree m. Let q(n)

denote the sum

q(n) = p(1) + p(2) + p(3) + + p(n). (1)

325
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Prove that there is a polynomial q of degree m+1

satisfying (1).

**17. Let the function f be defined recursively as follows:

110121J19.2. f(1) = 3

Recursive 8te2. f(n + 1) = 3f(n)

In particular, we have
q3

f(3) = 3' = 327 , etc.

Similarly, let g(n) be defined thus:

' Initial Step. g(1) = 9

Recursive Step. g(n+1)

Find the minimum value m for each n such that

f(m)

Answer: m n + 1.

**18. Prove that, for all natural numbers n,

(1 +15-)
n

- (1 -,/5-)
n

is an integer. (Hint: Try to express xn - yn in terms

n-1 n-1 n-2 n-2ofx-y,x-y, etc)

[sec. 2-11]



Appendices

Chapter 2

-12. Significance of Polynomials

The importance of polynomials in applications to engineering

and the natural sciences, as well as in the body of mathematics

itself, is not an accident. The utility of polynomials is based

.largely on mathematical properties that, for all practical purPoses,

permit the replacement of much more complicated functions by poly-

nomial functions in a host of situations. We shall enumerate some

of these properties:

a) Polynomial functions are among the simplest functions to

manipulate formally. The sum, product, and composite of poly-

nomial functions, the determination of slope and area, and the

location of zeros and maxima and minima are all within the reach

of elementary methods.

b) Polynomial functions are among the simplest functions to

evaluate. It is quite easy to find the value of f(x), given

x--a + alx + a2x2 + + anxn
0 (1)

with a specific set of coefficients ao, ay., an and a
specific number for x. Nothing more than multiplication and

addition is involved, and the computation can be shortened by

using the method of synthetic substitution.

The foregoing two properties of polynomial functions are those

that make them valuable as replacements for more complicated

functions.

c) Frvquently an experimental scientist makes a series

of measurem6nts, plots them as points, and then tries to find a

reasonably simple continuous curve that will pass through these

points. The graph of a polynomial function can always be used for

this purpose, and because it has no sharp changes of direction,

and only a limited number of ups and downs, it is in many ways

the best curve for t-he purpose.

Thus, for the purpose of fitting a continuous graph to a

-finite number of points, we would prefer to work with polynomials

327
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and we need not look heyont the polynomials, as we shall prove.

We can state the proldem ftrmally as follows:

Given n distinct nr7iters X
1,

X2" . xn and corresponding
'

values yi, y2, ..., yn that a function is supposed to assume,

it iE possible to find a polynomial function of degree at most

n - 1 whose graph: contains tte n points (xi, yi), i = 1, n.

You have already done this for n = 2: you found a linear or

constant function whose graph contained two given.points

(xl, y1), (x2, y2), xi. If y2 is also different from

the result is a lineaz- function; if y2 = yl, it is a constant

function.

One way of d -2 this is to assume a polynomial of the stated

forra,

f(x) = ao alx + a2x2 + + an_lxn-1 ,

and urite the n ezetions

f(xi) = 3., 2, , n

This gives n Th7=3'1- equations in the n unknowns

al,..., an_27 amid in these circumstances such a system will

always have a sniu=lon

Example L. Suppose that we want the graph of a function to

pass through the noints (-2,2), (1,3), (2,-1), and. (4,1), We

know that there fE a polynomial graph of degree no greater than 3

which goes through these points. Assume, therefore,

f(x) a.0-+ alx + a2x2 + a3x3.

Then, if the graph of f is to go through the given points,

we must have f(-2 = 2, f(1) = 3, f(2) = -1, and f(4) . 1;

that is,

ao - 2a, - 4a2 - 8a3 = 2,

ao + + a2 + a3 = 3,

ao + ae + 4a
2
+ 8a

3
=

'

ao + LL-11 +16a2 +64a3 = 1.

Solving these, we find ao = 20/3, al = -31/12, a2 = -37/24,

amid a3 = 11/24. Hence

f(x) =4(160 - 62x - 37x2 + 11x3).

[sec. 2-12]
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The labor of solving systems of linear equations such as

these can be rather discouraging, especially if there are many

equations. For this reason, various methods have been worked out

for organizing and reducing the labor involved. One of the most

important of these methods, called the Lagrange Interpolation

Formula, is based on the following simple line of reasoning. We

can easily write down a formula for a polynomial of degree n..1

that is zero at n-1 of the given x's.

(x4,y4)

)_(

0 xl 1x2 x4

(x2,y2)1
i(x3,y)

Figure 2-12a

A set of values to be taken on by a polynomial function.

Suppose, for instance, that we have four points (xl, y1),

(x2,y2), (x3,y3) and (x4,y4) as in Figure 2-12a. The polynomial

gl(x) = C1(x - x2)(x - x3)(x - x4) (1)

has zeros at x2, x3, and x4. By proper choice of Cl, we can

make g1(x1) = yl. Let us do so! Takc C1 such that

yl = g1(x1) C1(x1 x2)(x, - x3)(x, - x4),

that is, take
y 1

cl = (x1 - x2)(x, - x4).

329
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If we substitute C
1
from (2) into (1), we get

(x x2)(x - x3)(x - x4)
gl(x) Yi. xi - x2)(x1 - x3)(x1 - x4)

If yi / 0, Equation (3) defines a polynomial of degree 3

that has the value yi at xi and is zero at x2, x3 and x4.

Similarly, one finds that

and

(x x )(x - x )(x - x4)

(x - xi)(x - x2)(x - x4)

g3(x) Y3 (x3 - x1)(x3 x2)(x3 x4)

(x - xi)(x x2)(x - x3)J
g(x)

Y4 (x4 - x1)(xli - x2)(x4 '3'

(3)

are also polynomials, each having the property that it is zero

at three of the four given values of x, and is the appropriate

y at the fourth x. This is shown in the table below.

The Lagrange Interpolation Formula Illustrated.

Values of x

Corresponding y

x
1

yi

x
2

y
2

x3

Y3

xii.

574.

Value of gi(x) yi 0 0 0

Value of g2(x) 0 Y2
0 0

Value of g3(x). 0 0 Y3 0

Value of g(x) 0 0 0 Y4

If we form the sum

g(x) = gi(x) + g2(x) + g3(x) + g4(x),

then it is clear from the table that

g(xi) = yi + 0 + 0 + 0 =

[see. 2-12]
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6kA2) = u + y2 + 0 + 0

g(x3) = 0 + 0 + y3 + 0

g(x4) = 0 + 0 + 0 +

From Equations (3), (4), (5), and (6) it is also clear that g

is a polynomial in x whose degree is at most 3. Hence

Equation (7) tells us how to find a polynomial of degree 3,

whose graph contains the given points.

Example 2. Find a polynomial of degree at most 3 whose

graph contains the points (-1,2), (0,0), (2, -1), and (4,2).

Solution. We find that

and

gl(x)
(_-2),l_x43 4)

2x(x - 2)(x - 4)
- 15

g2(x) = 0'

g3(x) = -1 )2c : 141 (x + 111x)lx - 4)

g(x) alc (x + 1)(x)(x - 2),
201

g(x) = - Igx(x-2)(x-4) + /4(x+1)x(x-4) + 1A(x+1)(x)(x-2)

_ 1 2
- 3x),

Remark. The right-hand sides of Equations (3), (4), (5),

and (6) have the following structure:

N (x)
g(x) = y, ;,i i = 1, 2, 3, 4.

The numerator of the fraction is the product of all but one of

, the factors

(x - x1), (x - x2), (x - x3), and (x - x4),

and the missing factor is (x xi). The denominator is the

value of the numerator at x = xi;

Di . Ni(xi).

This same structure would still hold if we had more (or fewer)

points given.

[sec. 2-12)
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d) Instead of a finite set of points to which a simple

continuous function is to be fitted, a mathematician is sometimes

confronted with a continuous but very complicated function that

he would like to approximate by a simpler function. Fortunately,

there is an extremely powerful theorem of higher mathematics

that enlarges the breadth of application of polynomials to this

situation. In a sense this theorem permits the "fitting" of a

polynomial graph to any continuous graph. In other words, any

continuous function whatever can be approximated by a polynomial

function over a finite interval of its domain, with preassigned

accuracy. More specifically, if the function x-->f(x) is

continuous over a x b, and c is any positive number,there

exists a polynomial function g such that

If(x) - g(x)1 < c for all x in a x b.

/
/ 1 /

/ //
/

/
. /
/ / V

/ /

Figure 2-12b.

A strip between f(x)-c and f(x)+c.

This is known as the Weierstrass Approximation Theorem. The

geometric interpretation of the theorem is indicated in

Figure 2-12b. The graph of f is a continuous curve, but it may

have sharp corners or even infinitely many maxima and minima be-

tween x = a and x b. No polynomial graph behaves like that.

But suppose that we introduce a strip, centered on the graph of

f, extending between the graphs of the functions

x f(x) - c

and

where c is any preassigned positive number, however small.

Then the theorem guarantees that there is a polynomial function

whose graph on a x b lies entirely inside this strip. This

[sec. 2-12]
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is the precise meaning of the statement: "Any Continuous function

whatever can be approximated by a polynomial function over a

finite interval of its domain, with preassigned accuracy."

Remark. If you want to read more about how polynomials are

used to approximate more complicated functions, see the book

Approximations for Computers,by Cecil Hastings, Jr., Princeton

University Press, 1955. The author also publishes a newsletter

called "All the Fit That's News to Print" and supplies people in

the computing business with simple functions that may be used to

replace more complicated ones.

Exercises 2-12.

1. Carry out the computations in Example 1, above.

2. Simplify the expression for g(x) in Example 2, above.

3. Find a polynomial function of degree less than or equal

to 2 whose graph contains the points (-1,2), (0,-1),(2,3).

4. Find a polynomial function whose graph contains the points

(0,1), (1,0), (2,9), (3,34) and (-1,6).

333
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Appendices

Chapter 3

3-12. Area Under A Polynomial Graph

In most of the preceding sections of this chapter our atten-

tion was focused on the problem of finding slopes of graphs of

polynomial functions. As we were able to observe, the solution

of this problem had important consequences. By developing a

technique for finding slopes of graphs, for example, we were able

to solve maximum and minimum problems.

In the present section we turn to another problem,that of

calculating areas bounded by graphs of polynomial 'functions. The

.solution of this problem has important.consequences also. It

leads directly to the general concept of integration, which is an

indispensable tool for advanced work in much of mathematics and

science. The extended study of this key concept must, however,

await further develoments in yaur mathematical education.

For simplicity we shall concentrate our attention on findtw,

areas of certain openial kinds of regions. These regions will baL-

located in the first quadrant and bounded by the graph of a poly--

nomial function f, the x-axis, the y-axis, and a second vertical

line, as in Figure 3-12a. (It is not too hard to see that any

Figure 3-12a. X

Area under a graph

region bounded by graphs of polynomial functions can be split up

into regions of this general shape.) Note that we do not specify

the value of the coordinate x at which the second vertical line

cuts the x-axis. This will allow us to find general formulas

rather than particular numbers, and thus will lead to greater
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understanding. In what follows we shall denote the desired area

by A(x).

Usually the first step a mathematician will take in attacking

a new problem is to investigate a few special cases of the problem.

He generally finds this investigation very helpful in getting the

"feel" of the problem and in setting his mind working toward a

general solution. In this spirit we begin with the simplest of

the polynomial functions and examine the area under the graph of

a constant function x---).c where c is a fixed positive number.

This case is very easy to handle. In fact, since we know that the

area of a rectangle is equal to the product of its base and its

height, we see that the desired area is A(x) = oX.

(See Figure 3-12b.)

rr
Figure 3-12b.

Area under f:

Note that the "area function" x--->cx is a linear function

whose slope function is f:

In order of complexity, the next case we should examine is

that of a linear function f: + b. This is illustrated

in Figure 3-12c.

ifiif / A

Figure 3-12c.

f(x)

Aria under f: x mx + b.

[sec. 3-12)
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This case, too is easy to handle. Since the area of a

trapezoid is one half the sum of.the bases times the height (and

..noting that the "height" of our trapezoid is the length of the

horizontal segment from 0 to x) we have

A = A(x) = f(0) f(x). x
2

(m.0 + b) + (mx + b) . x
2

mx + 2b
. x

= (mx2/2) + bx.

Note that-the "area function" x---(mx2/2) + bx is a quadratic

function whose. slope function is. + b.

After the constant functionn and the linear functions, the

next eimplleet oolynomial functions are the quadratic functions.

Even though--these functions seen:to be but a step removed_from the

linear functions, we shall see that they introduce an entirely new

order of complexity. The reason_for this is that the graphs of

quadratic functions are curves, and we have no formulas for calcu-

lating areas of regions bounded by curves (except, of course,

when the curves are circular). Hence it will be wise to move more

8lowly, and first study a very special case,say the function

f:
2

. (See Figure 3-12d.)

Figure 3-12d.

Area under f: x---*x2

If it were possible to cut the region up into a finite number

of rectangular or triangular parts we could add up the areas of

the parts to obtain the total area. There is, however, no way to

[sec. 3-12)
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do this. The best we can do is to approximate the area. We can

cover the region with rectangles and obtain in the sum of their

areas a value that is somewhat larger than the one we seek. On

the other hand, we can pzck rectangles into the region without

overlapping, and obtain in the sum of their areas a value that is

somewhat too small. In this way we may at least hope to arrive at

an approximate value that we might be able to use in constructing

our area function.

A systematic way to_approximate the area by means of

rectangles is illustrated in Figure 3-12e.

Figure 3-12e.

Area approximated by interior rectangles.

The,procedure we shall follow is as follows: First we shall

split the line segment from 0 to x into n equal parts or sub-

intervals, where n is some unspecified positive integer. Each

of these subintervals will be the base of a rectangle, the largest

rectangle that can be drawn under the curve with this subinterval

as a base. (See Figure 3-12f.)

Figure 3-122.

Area of subtnterval approximated by interior rectangle.

[sec. 3-12]
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We shall then calmaate the sum of the 4.reas of all these 77a-c-

tangles to obtain an approximation to the area between theraph

and the x-axis.

If we split the line segment from 0 to x into n e4ua1

parts, the length of each part will be x/n and the end po:L7ts

of the parts will be the numbers

0, 211, 2*, , (n - n(g).

The graph has a height above each of these end points._ The

heights corresponding to these end points are

f(0), f(x/n), f(2x/n), f(nx/n), respectively,

or

0, x2/n2, 4x
2/n2 , 0 n

2x2/n2 , respectively.

With the first subinterval as a base no rectangle can be

drawn, because the curve touches this subinterval at the origin.

With the second subinterval as a base the height of the

largest rectangle that can be drawn under the aurve is f(x/n) =

x2/h2. Since the base is )(in, the ,Irea of tt1a rectangle is

.(x2/n2)(x/n) = x
3
/n

3

With the third subinterval as a base the height of the

largest rectangle that can be drawn under the curve is f(2x/n)

4x2/h2. Since the base is x/n, the area of this rectangle is

(4x2/n2)(x/n) = x3/n3.

Continuing in this fashion we see that the sum of the areas

of all these rectangles must be

(x2/h2%,Ax/n) + (4x2/n2)(x/n) + (9x2/n2) ( /n) +

[(h...1)2 x2/h2] (x/h).

If we factor x3/n3 from each term, this may be written

x3 [ 12 22 32 (n-1)2]
n3

and, as we saw. in Example 7 of Section 2-1101 appendices, the sum of

squares in this is

4.,(n-1)(n)(2n-1) = 4.,(2n3 3n2 + n).

[sec. 3-12]
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Hence the sum of the areas of all these rectangles is

x3 1(2n3 3n2 n)

Since the rectangles we have been dealing with are all drawn below

the curve, it is clear that this approximation is too small.

.(See Figure 3-12e.) It-is desirable, therefore, to obtain another

approximation by sfihding the combined area of rectangles that

extend above the-curVe. This will give us too large an approxima-

tion, and the deSired area will lie between these two approxima-

tions. By calculating the difference between the two approxima-

tions, therefore, we shall get an idea of how far off these

approximations really are. To obtain a useful approximation that

is too large, we find the sum of rectangles as illustrated in

Figure 3-12g. ,y

Figure 3-12g.

Area approximated by exterior rectangles.

This sum is obtained in almost exactly the same way as the one

we just obtained. This over-estimate is

(x3 / h3) [1
2 + 22 + 32 + + (n-1) 2 + nl

= (x3/n3) [( 1/6) (2n3 - 3n2 + n) + n2]

= (x3/n3)(1/6)(2n3 + 3n2 + n).

Now the difference between the two estimates is only the single

term (x3/n3)n2 = x3/n, which is small if n is large compared

to x. Hence either estimate will be quite good when n is

very large.
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To determine what the desired area A(x) must be, let us

express the under-estimate as

x 3 (2n3 3n2

67:

:and multiply through to obtain

x3 x3 x3

Similarly, the over-estimate is

x 3

7T '
6n2.

Given the fixed number x, if n is Very large compared with x

the last two terms of each expression must be veryemall.- The

only value that the area A(x) can have;,therefore, is x3/3.

.Note, finally, that the "area function" x3/3 is a function

whose slope function is f: x>x2 .

3-13. Slopes of Area Functions

In Section 3-12 we examined the problem of finding the area

under the graph of a polynomial function. For simplicity we

concentrated our attention on finding the area of a region located

in the first quadrant and bounded by the graph of a polynomial

function f, the x-axis, the y-axis and a second vertical jine,

as in Figure 3-13a.

Figure 3-13a.

Area under a graph

In order to find general formulas rather than particular

[sec. 3-13]

340



A-32

numbers, we did not specify the value of the coordinate

which the second vertical line cuts the x-axis. Calling

indicated area A(x), we obtained a function x-----A(x),

we called the "area function." In what follows we shall

this area function by the letter A,

A: x---->A(x).

The results we obtained in Section 3-12 can be tabulated as

follows:

x at

the

which

designate

Function

X 7---->C

x-->mx + b

Area function

A

associated with f

mx2x > + bx
2

x3

Slope function

A'

of area function

x--->mx + b

It is impossible to miss the similarity between the first

and third columns of this table. Since these two columns are

identical except for heading, we are practically compelled to

suspect that there must be some relationship between a function

f and the slope function At of its associat'ed function A.

With evidence of this sort to support us, we boldly conjecture:

If A. is the area function associated with a function f,

then AI f. .

In Figure 3-13c, we have plotted the graph of the area

function

A: x----tA(x)

associated with the functibin

f:

shown in Figure 3-13b.

'We wish to prove that at P(h,A(h)), the slope of the tangent to

this graph is f(h). We shall confine our attention to points to

the right of P.
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0
Figure 3-13b. Figure 3-13c.

Graph of a function f. Graph of the associated

area function A.

On the graph of f: x---->f(x) (see Figure 3-13c), we shall

similarly confine attention to points to the right of R(h,f(h)).

For definiteness, we assume that the graph of f rises from R

to T. Now the area BCTR under the graph is A(x) - A(h).

Since this area is greater than that of the rectangle BCSR and

less than that of the rectangle BCTU, we have

A(x) - A(h) > f(h)(x - h)

and A(x) - A(h) < f(x)(x - h).

Hence A(x) > A(h) + f(h)(x - h) (1)

and A(x) < A(h) + f(x)(x - h). (2)

If x - h is small enough, f(x) exceeds f(h) by any arti-

trarily small amount(E. That is, for x h small enough,

f(x) < f(h) E

Substituting in (2),

A(x) < A(h) + (f(h) +E)(x - h). (3)

Now, (1) and (3) tell. us that the graph of A lies between

the straight lines

Yl = A(h) + f(h)(x - h)

and y2 = A(h) + (f(h) +E )(x - h)
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(see Figure 3-13d) for points

near enough to P on the

right. Since this is true no

matter how small E is chosen,

we conclude that

y = A(h) + f(h)(x - h)

is the equation of the required

tangent. (Similar considerations

apply for points to the left of P.)

0 h

Figure 3-13d.

Linear approximations to

the area function.

We assumed that the slope of f was not negative in an

interval to the right of (h, f(h)). We could equally well have

assumed that the slope was not positive in such an interval; our

arguumnt would still hold, with slight modifications which you

might investigate. For all the functions that interest us, one

or the other of these possibilities must hold, and the argument

is therefore quite general. We can then state what we have

proved as a theorem.

Theorem. If f is a polynomial function, and has an

associated area function A, and if h is any positive number

in the domain of f, then Al(h) exists and equals f(h).

Let us turn back to the problem of finding the area function

associated with f: x>x2
. The theorem makes it unnecessary to

carry out the rather lengthy summations of Section 3-12. It is

sufficient to find a function A such that

AI:

If A is a polynomial function of degree n, then the degree

of AI is n 1. Going backwards, it is natural to assume that

A has the form

In this case,

hence, to obtain

A: x >ax3.

A : x ----*3ax2;

A: x

[sec. 3-13]
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we must choose

and therefore

a = 1/3,

1 3
A:

is a possible solution for the required area function.

There are other possibilities of the form

1 3
A: + C,

A-35

(1)

where C is any constant s. since regardless of the choice of C0

At would be given by

At: x--*x2

It can be shown that all solutions for A are of the form (1).
Now, in fact, we wish to have A(0) = 0. This is possible only
if C = 00 so that our simpler solution was the only correct one.

Let us apply this method to two further examples.-

Example 1. Find the area function corresponding to

f: x.-->x3

Solutinn. Since At = f, we seek an A of the form

A: xax1.
It is easy to show that a . 1/4. Moreover the function

1 4
A: X -÷-4X

has a zero at x = 0, as it should.

Example 2. Find A if f: x--->2x2 + 8x - 3, given that
A(0) = 0.

Solution. Since At: 2
+ 8x - 3,

by inspection A: x--->kx3 + 4x2 - 3x + C
3

is a solution. If A(0) = 0, C must be 0. Hence

A(x) = -3x3 + 4x2 - 3x.

Exercises.3-13

1. Find ft if f is the function

a) x>x2 x + 3. c) X ->X11. 3x3 + x + 1776.

b) x-->x2 x + 18. d) x-->x4 3x3 + x - 1984.
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2. Find two functions g such that gl is the function

a) x--* 2x.

b) x>Sx2

c) x>6x5 - 3x2 + 8

d)

3. For each part of Exercise 2 you obtained two functions. How

are these functions related to each other?

4. Find the area bounded by the coordinate axes, the line x = 2,

and the graph of the function f, where f is

a) x > x2 .

b) x>2x + 1.

c) x-->1tx3 + x.

5. a) Sketch the graph of f:x--->3x2 + 1.

b) Mark the region bounded by this graph, the coordinate

axes, and the line x = 1. Find the area of this region.

c) Mark the region bounded by your graph, the coordinate

axes, and the line x = 2. Find the area of this region.

d) Mark the region bounded by your graph, the x-axis, and

the lines x = 1 and x = 2. How is this region related

to the regions you marked in (b) and (c)? Find its area.

6. Find the area bounded by the graph of f:x---->16 - x2,

the x-axis, and lines x = 2 and x = 3. (Hint: see

Exercise 5.)

7. Find the area bounded by the graph of f:x-->lix3 x, the

x-axis, and the lines x = 1 and x = 2.

8. a) Find two different functions g sueh that gt = f,

where f:x--->6x2 + 2, and for each of them find the

value of g(2) g(0).

b) What is the area bounded by the coordinate axes, the

graph of f:x-->6x2 + 2, and the line x = 2?

9. a) F.nd two different functions g such that gt = f where

+ 3, and for each of them find the value of

g(2) g(1).
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b) What is the area bounded by the graph of f.x----.).4x + 3,
the x-axis, and the lines x = 1 and x = 2?

10. If g and h are two different functions such that

gl = hl, what is the relation between the number g(5) g(3)
and the number h(5) h(3)?
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Appendices

Chapter 4

4-15. The Law of Growth. Functional Equations

An avenue through which exponential functions appear in

mathematics is the study of various natural phenomena. Physicists

observe that radioactive elements decay in such a way that a fixed

percentage of the atoms of the element turn into something else in

every time interval of fixed length. Suppose that A(x) is the

amount of the radioactive element under study that is present at
the time x. The amount A(x) can be measured in any convenient
units: all the way from the number of individual atoms, up

through milligrams, grams, ..., tons (although the last-named unit

would be useful only for operations on a very large scale). Now
the physicist waits until a time x + y which is later than x

and observes the amount A(x + y) of his radioactive element still
existing. Since the element decays, there will be less of it. He

computes the ratio

A(x + y)
A(i)

He may also start at another time u instead of x and then wait
for the same additional time. That is, he can observe the amounts

A(u) and A(u + y) of his radioactive element at times u and
u + y. The time intervals from x to x + y and from u to

u + y have the same length but they start at different times x
and u. The physicist then complites the ratio

A(u + y).
A(u)

He will then see that, up to errors in weighing and the like, the

ratios are the same:

A(x + y) A(u + y)
(1)A(x) A(u)
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Exactly the same sort of thing, except for growth instead ox'

decay, is observed by biologists in the increase of bacterial

population under suitable conditions of temperature, food supply,

and living space. Suppose that N(x) represents the number of

bacteria in the colony at time x. Counting the little creatures

at time x + y, the biologist finds that their number has

increased: N(x + y) is greater than N(x). He computes the ratio

N x +
N x

Counting his bacteria at another time u and then at time u + y

(just as far beyond u as x y is beyond x), he gets

population counts N(u) and N(u + y). Computing the ratio

N(u + y)
N(u) '

he finds that it is the same as the first ratio:

N x + N(u +j) (2)
N(u)

This law of growth is, as a matter of fact, fairly rare among

actual populations of bacteria, animals, and so on, but it is

found in some cases to be a good approximation to what actually

happens.

You will note that the Equations (1) and (2) for the functions

A and N are exactly the same. The only difference is that A

decreases as time increases and N increases as time increases.

Even this is not reflected in the Equations (1) ar . (2).

It is easy to see that there is some connection between ex-

ponentials and functions N that satisfy (2). To take a simple

case, suppose that when his experiment starts there are No

bacteria in the colony and that the colony doubles in size in a

unit of time, which might be an hour, a day, a week, etc. (The

unit used is of no consequence in our present argument). We have'

then

2 -
0

if we start the experiment at time zero. Thus N(1) = 2140.
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The law of grOwth (2) tells us that

N 0)'
N(l)

and thus N(2) -
(N(1)12

or N(2) = 4N0.

Proceeding in this way, we see that

N(3) = 8N0,

N(4) = 16N0,

N(k) = 2kN0

for every positive integer k. Thus there is certainly a

connection between the law of growth expressed in (2) and powers
of numbers.

It turns out that functions satisfying laws of growth or
decay like (2) are exactly exponential functions. They are not
polynomials, or even remotely like polynomials, but form an

entirely new class of.functions. In this section, we shall study

functions with this particular growth or decay property; that is,

we shall write down in precise terms what our growth phenomenon

means and then study the function in terms only of this growth

phenomenon. Our attitude is that of the naturalist who wishes to

identify or reconstruct an entire animal from the skeleton alone.

We first derive an equation which our functions must satisfy.

Suppose that we have a function g, defined for all real numbers,

for which the proportional increase is the same in intervals of

equal length. To state this precisely, let x, y, and u be

any real numbers. Let us look at the values of g at the points
x, x + y, u, and u + y. We obtain the numbers g(x),

g(x + y), g(u), and g(u + y). The intervals on the real line

.from x to x + y and from u to u + y both have the same

length, namely, y. Thus the propoitionate increase of g will be

the same in these two intervals (see Figure 4-15a).
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The proportional increase
of g in this interval

equals
The proportional increase
of g in this interval

x+y

This means simply that

Figure 4-15a

u4-y

(3)

We repeat that.the Equation (3), which is called a functional

equation and which describes the behavior of the function g, is

to hold for all pOssible chOices x, y, and u. the Equation

(3) has meaning only if g assumes the value 0 nowhere.

___Ws-are-going-to-tinker with the equation (3) and shoW-What

the function g will have to be. The trick here is that we can

choose x, y, and u in any way we please. This will produce

surprising results.

Our first maneuver is to leave x and y arbitrary and to

set u = O. This means merely that we will begin one of our test

intervals at O. The Equation (3) then becomes

x +
g x

Multiply both sides of this equality by g(x). This gives

g(x + yj
% X

(4)

Equation (4) is still a little clumsy. It will help matters

to divide both sides of (4) by the number g(0). (Recall that g

cannot be zero anywhere if (3) is to hold.) Doing this, we get

[sec. 4-15]
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We now look at the function f: This function f is

just as Unknown a function as g, .but it satisfies a simpler

functional equation that does g. If we replace iltuT by f in

(5), we obtain the functional equation

f(x y) = f(x)f(y), (6)

Which must hold for all real numbers x and y.

We re-state what we have done so far. If g is a function

that sat isfies (3), then is a function that satisfies the
g 0)

functiona

1.

equation (6).

Exercises 4-15a

Prove that the function f: 0 satisfies the functional
equation (6). Does this function satisfy the functional

equation (3)? If not, why not? Can you explain how it

.happens that there are functions satisfying (6) that do not

satisfy (3)?

2. Prove that the function f: X 1 satisfies the functional

equation (6). Does this function satisfy the functional

equation (3)?

3. Let f be a solution of the functional equation (6) that is

nowhere zero and let A be any non-zero real number. Prove

that the function g: x---4.Af(x) is a solution of the'

functional equation (3).

Let us now state our program. We want to determine an un-

known function f, about which we know onl Y that it satisfies the
functiona 1 equation

f(x y) f(x)f(y) (6)

for all x, yE R. There are two trivial solutions of (6) for

which f is a constant function, namely f: x--->0 and
f: ln order to eliminate these two trivial cases, and

also to obtain considerAhly more useful results, we shall impose
on f the further condition that it either is strictly increasing

[sec. 4-15)
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or is strictly decreasing.

We have eliminated the two trivial constant solutions of (6).

Aside from these, there are no polynomial functions that will

satisfy (6). In fact, let f: x---> ao + alx + + anxn,

a
n
/ 0, be any polynomial function of degree n > O. Then if f

satisfies the functional equation (6), we would have in particular

f(x + x) = f(2x) = f(x)f(x).. (f(x))2

for all real 'numbers x. Now f(2x) is
%\

like f(x) itself, while (f(x))
2 is a

Since two polynomial functions are equal

a polynomial of degree n,

polynomial of degree 2n.

for all real numbers, if

and only if they have the same degree and the same coefficients

for each power of x appearing in the polynomials, we see that

f(2x) = (f(x)) 2 is an identity impossible to satisfy for all x

if n > O.

Exercises 4-15b

1. Prove that the polynomial f: x--> mx + b is not a solution

of (6) if m O.

2. Find real numbers x and y such that (x +
y)2 x2y2.

Prove from this that f: x,-->x
2 is not a solution of the

functional equation (6).

We have thus seen that the functional equation (6) has no

familiar functions as its solutions except for the trivial solutions

f: x 0 and f: x> 1. We return, then, to our problem. We

have an unknown function, defined for all real numbers, that satis-

fies Equation (6). Since (6) is supposed to be satisfied for all

x and y, we can choose x and y in any manner we wish, and

draw all of the consequences we can from clever (or lucky) choices.

Our first choice is to take as x some number a for which

f(a) / O. There is such a number, since f is not a constant

function. We take y = O. Doing this, we get

f(a + 0) = f(a)f(0).
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Since a + 0 = a,

f(a) = f(a)f(0).

-Dividing by f(a) (/ 0), we find

f(0) = 1,

which is a nice first bi:t of information about f.

Our next selection of x and y is to keep x arbitrary

and to set y = -x. This gives

f(x + (-4) = f(x)f(-x),

A-45

(7)

or

f(0) = f(x)f(-x).

In view of (7), this may be rewritten as

f(x)f(-x) = 1. (8)

Exercises A-15c

1. Use the Identity (8) to prove that the function f is zero

for no value of x.

2. Prove from the Identity (8) that

f(-x) - Th-c

for all real numbers x.

Exercise 2 in the preceding set shows that we can find

f(x) for all real x if we know f(x) for positive values of

x. (If x is negative, then f(x) is the reciprocal Of f(-x),

where -x is positive.) We sketch the situation in Figure 4-15b.
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This val ue is the
reci rocal of
this value

(x,f(x))

(x 0)

Figure 4-15b

We now observe a curious fact about f. Given any number x,

1 1
we can write x as -ffx + vc. The functional equation (6) then

shows that

f(x) = + = f*f(t) = [f())2' (9)

We see from Exercise 1 above that f() is different from zero.

We know that the square of any non-zero real number is a positive

real number. The Equality (9) therefore proves that f(x) is

greater than zero for all real numbers x.

This observation is important, and we shall come back to it

shortly.

We have already seen that when x = y, the functional

equation (6) gives us

f(x + x) = f(2x) f(x)f(x) = [f(x)]2.

This is a very important step in the development, and the follow-

ing exercises lead to a generalization of it.
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Exercises 4-15d

1. By setting y = 2x in the functional equation (6), prove that

f(3x) = [f(x)]3 for all real numbers x.

2.. Prove by finite induction that

f(mx)' = [f(x)]m (10)

for all positive integers m and real numbers x.

Now in the Identity (10), let us make the substitution

x'= Z
'

where y is any real number. This give-
m

f(n . ) =

Simplifying and writing x for y, we get

f(x) (11)

true for all real numbers x and positive integers m.

Let us see what the Identity (11) means. It means that we

find f(x) from f(i) by raising fOID to the m-th power.

Turning this around, we can find f() from f(x) by taking the

positive m-th root of f(x). That is,

f* is the unique positive number whose m-th

power is f(x).

We write the last sentence in symbols as

1

f(g) = [f(x)]ii. (12)

Now put nx for x in the Identity (12), where n is a positive

integer. This gives

1

f(r4) = [f(nx)]71.
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We already know that f(nx) = [f(x)]n (see (10)), and therefore

the last equation can be re-written as

f(122) = [f(x)]m.

To save a little writing, we replace the quotient fit in this last

identity by the symbol r. Thus we have

f(x) = [funr (13)

for all real numbers x and all positive rational numbers r.

It is now time to take stock of where our reconstruction of

-.the function f has brought us. We select any convenient non-

zero number for x, in the Identity (13). The number 1 has

obvious advantages, and so we take it. For brevity, we write a

for the number f(1). (Remember that a is positive.) Then,

what does our Identity (13) tell us? We can get some idea by

choosing some specific values for r.

Putting r = 1, 2, 3, 4, 5, 6, ... we write

f(1) = a

f(2) = a2

f(3) = a3

f(k)=ak

f(5) = a5

f(6) = a6

1 1 2 1 1 2
Putting r = .p 75, 75, ..., we write

1

=

=

3 5 6

[sec. 4-15]
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Exercises 4-15e

1. Find the numbers f(4-), f(-.), f(4), f(4), f(.), f(4),

and fqp in terms of the number a = f(1).

2. Find the number f( 371) in terms of a = f(1).

3. Suppose that f(1) = 1. Find f(r) for all positive rational

numbers r.

4. Suppose that f(a) = 1 for some positivs rational number a.

Find f(r) for all positive rational numbers r.

We now sketch the graph of the function f for non-negative

rational values, in Figure 4-15c. Notice that the three cases

a > 1, a = 1, and 0 < a < 1 lead to quite different graphs.

f (0)=1

in all cases

f(x)

/a= f (I)>I

a=f (1)=1_

0<ra = f(1)]< 1

(10)

Figure 4-15c.
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It is not hard to see that our graphs have the form shown in

Figure 4-15c. Suppose that a > 1. Then if r and s are

rational numbers 8uch thai 0< r < s, we have ar < as; that

the function far' is a strictly increasing function of

r, for non-negative rational numbers r. For a = 1, we get

,ar = lr = 1 for all non-negative rational numbers r. For

< a < 1, we have a
r > as if 0 < r < S and r and s are

. rational.
We can now extend our grapkof the function f to negative

rational valuee'; by use of the relation f(-x) -
.1

. The case

a = f(1) > 1 is sketched in Figure's4-15d.

a=f(1)>1

0 (1 0)

Figure 4-15d.

3 6 8
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Exercises 4-15f

1. Draw a graph of the function f for all rational values if

f(1) = a = 1.

. Draw asraph of the function f for all rational values if

f(1) = a < 1.

We have now the problem of filling in the values f(x) for

irrational values of x. Unfortunately, the functional equation

(6) does us no good at all here. One can show, for example, tht

there are functions f such that f(x + y) = f(x)f(y) and such

that f(1) and f( are any two positive numbers you like.

At this point, our requirement that f be either an increas-

ing or a decreasing function comes to our rescue. With its aid,

the function f: r---).ar, defined for all rational numbers r,

can be extended in a unique way to a function f: x--->ax defined

for all real numbers x. Because this extension is essentially

the same as that given in Section 4-3 for the special case a = 2,

we shall not repeat it here.

Exercises 4-15g

1. What well-known function f satisfies the functional equation

f(xy) = f(x) + f(y)

for all positive real numbers x and y?

2. Consider the function f, defined for all real x and y,

which satisfies the functional equation

f(x + y) = f(x) + f(y). (A)

a. By setting = 1 and y = 0 in (A), show that

f(0) = O. (B)

35'9
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b. By setting y = -x in (A), and using (B), show that

f(-x) = -f(x). (C)

c. By setting y = x in (A) show that f(2x) = 2f(x).

What does this imply for f(3x)? f(4x)? Using

mathematical induction, show that

f(mx) = mf(x) (D)

for any natural number m.

d. Replace x by in (D) and thus show that

f(X 1) = AT(x) (E)
m m

for any natural number m.

e. Combine (D) and (E) to show that

f(rx) = rf(x) (F)

for any rational number r > O.

f. With the aid of (B) and (C), show that (F) is also valid

for rational r < O.

g. Now write a for f(1) and show that

f(r) = ar (G)

for all rational numbers r.

*h. Now add the assumption that f is increasing or is

decreasing, and show that f must then be

f: (a / 0)

for all real numbers x.

3. One function f, such that, for some real number a,

f(x + y) = f(x) + ay

for all real numbers x and y, is clearly the function

f: x --).ax of Exercise 2. Find another.

(sec. 4-15]
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4-16. An Approximation for ex.

In Section 4-12, we wrote a succession of approximations to

ex for !xl small, namely:

e
x

1 + x (1)

x2
e
x

1 + x + -2- (2)

x2 x3exwl+x+ + 7-;7 (3)

xnex as 1 + x +
x2

+ (n)

Although we showed by graphs and by sample computations that

satisfactory approximations were obtained in this way, we did not

explain how the results (1) to (n) were obtained, nor did we give

an estimate of the error made in using the replacement indicated.

In this section we shall discuss both of these questions.

It is, of course, impossible to find a polynomial function g

whose slope function gl is the same as g, as is the case for

f:
x

. One good reason is that the degree of gl is

necessarily one less than the degree of g. Whatever approximating

polynomial is chosen,.this will be the case.

We already know the best approximating polynomial of first

degree, namely

1 + X .

In seeking a second degree polynomial g2(x) whose values will

approximate ex for Ix' small, we wish the graph of g2 to

have the same tangent, y = 1 + x, at the point (0,1) as the

graph of x.).ex. Accordingly, we assume that

g2(x) = 1 + x + a2x2.

How shall we choose a
2'
9
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The slope g2'(x) - 1 + 2a2x cannot be made to agree with

g2(x). But we can make it agree with our best first degree choice,

gl(x) = 1 + x.

To do this, we set

and obtain

Thus

with

1 + 2a2x = 1 + x

1
a2 = 7.

g2(x) = 1 + x + ;x2,

g2'(x) = 1 + x,

(2)

is our suggested best second degree approximation. Without in-

quiring for the present whether this is indeed the best such

approximation and if so, how good it is, let us continue the

process.

If we seek a third degree polynomial, we preserve the measure

of approximation already achieved and write

1
g3(x) 1 + x +

2
+ a3x3 .

We determine a
3

so that

agrees with

g31(x) = 1 + x + 3a3x
2

g2(x) 1 + x + ;x2,

1
our best second degree approximation. This gives a3 - 77, and

1 2 1 3
g3(x) = 1 + x + x + -277x . (3)

In the same way, we can build up by induction

x
n

1 2g(x) = 1 + x + +
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This achieves our first goal, the motivation for the choice of

these particular polynomials.

What about the error made in replacing ex by one of these

expressions? In answering this question we shall confine our-

--selves -to positive values of x.

The first observation is that any one of these approximations,

n = 1, 2, 3, ..., is too small. Since

gn1(x) g(x)

gn1(x) < g(x) when x > 0.

The graph of the function

fl(x) is always equal to

less rapidly, it will fall

too small.

To estimate the error, we need an approximation which is known

to be too lpjara. Then the true value ex will be known to lie

between two estimates, one of which is too small and the other too

large. We shall illustrate with polynomials of third degree.

As we know,

f:
x

climbs at such a rate that

f(x). Since the graph of g(x) climbs

below that of f and g(x) will be

g3(x) 1

,3
+ x + +

gives too small a value for ex, x > 0. Now consider

x
2 cx3

hl(x) . 1 + x + + 7r-

where c > 1. Certainly h3(x) > g3(x). It turns out that fox

sufficiently small positive values of x, h3(x) is also greater

than e
x

, as we now show. We wish to have h
3
(x) climb too fast

to represent x---*ex. This will be true if the slope is greater

than the ordinate, that is,

h31(x) > h3(x) . (A)

[sec. 4-16]
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Since

(A) will hold when

that is, when

x2
DiViding by Tr we have

h
3
1(x) = 1 + x +

-2-12

cx
2 x2 , cx3

-

x2 cx 3

(c - 1) fr >

or

CXc - 1 >

x < (B)

1N
Hence for positive values of x less than 3( 2- ), h3(x)

gives too large a value for ex.

To be concrete, we take c = 2. Then

x2 2x3
e
x < 1 + x + +7r:

if
3

0 < x < 7 .

Of course, in the same interval,

y2 3

eX > 1 + X + +

If, for example, we wish to compute

e2 < 1 , n .04

.`

and

.04
e
.2 > 1 + .2 + -f-

e

.008

.23

=

=

we know that

.1.222666...

1.221333+
.008
--b--

The same principle applies to approximations of n
th

degree

and gives the result

for

x
2

,
e
x

< 1 + x +
cx

0 < x < n(2-*--1).
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we now show that

x2 xn
1 + x -I- -gr. + +

deis the best possible nth gree polynomial for approximating ex

HarbitrarilY near 0. Let

x2
hn(x) x + + c > 1.

Choose c as close to 1 as You please. Then the graph of

x-->el lies between those of gn and h
n

for 0 < x < n(2.-:_i)
c

Hence, no choice of c / 1 in h(x) could improve on

which corresponds to c 1. The student should convince himself

that changes in the coefficients of the lower degree terms would

also effect no improvement.

Exercises 4-16

1. ComPu te e
001

correct to five places of decimals. Obtain

Ole value of each term to six places continuing until you

reach terms which have only zeros in the first six places,

add, and round off to five places. How memy terms did you

need to use? Note that even though the remaining terms are

individually less than 0.000001, they mi ght accumulate to

give a very large sum; in this particular case, their do not.

2. CarrY out the argument in the text to obtain '4(x) and

(x).

3.- parallel, the argument which leads to (B), to establish (C).

4. Calculate VPPer and lower approximations to e el, using

g(x) and h5(x) with c = 2.
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4-17. Computation of ex la the Use of the Area Function.

If the student has studied Sections 2-8 and 2-9 in the

appendix to Chapter 2, he will have the background to understand

a powerful method for computing values of

1n-these Sections-,- A(x) was used to-represent the-area-.--

below the graph of f, above the x-axis and bounded on the left

and right by vertical lines at 0 and x (see Figure 4-17a).

t*

f ( x )

>x
0

Figure 4-17a. Area below the graph of f:

It was proved that for a continuous fUnction f: x

A(x) =.f(x). (1)

In the case of f: x-->ex we also know (see Section 4-6) that

21(x) = f(x).

.It follows_ from (1) and (2) that, in this instance,

fl(x) = A'(x).
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At any given value of x, the graphs of f and A have the same

slope and, therefore parallel tangents (see Figure 4-17b).

MUMMININ MUMEMERMOMMMEMMOMMEM EM
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ummiummommummummEmmairmammaimmom
MKNEMUMEMMEMMOIMMIMIMPTAMMINIMMUMMIIMMEN
MUMMEMIMMUMMMINMEMIPANIMMUMMMEMEMEMOmummumminimmummnimmammommummumm
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tAXEMEMMEWVOMMOMMMUMIIIIIMEMEM

.411=1111111111MIUMPIM MUM
mnimmummummummimmommum
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MIDWUMMEMUMMUMEMMOMMEMMOMME
rAWAOMMOMMEMEMMEMMUMEMMOUMM

MIUM MEMMUMW2MMEMMERIMOMMUMMOM
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MUMMEMMEMMEMMEREMMEMEMMEMMUOMMEM

Figure 4-17b.
The graphs of x---4.f(x) and x----ioA(x).

The graphs are not identical since A(0) = 0 but f(0) = 1. The

relation between f(x) and A(x) is given by

f(x) . 1 4. A(x). (3)
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Equation (3) is fundamental to our new approach. Since the graph

of f lies above the tangent y = 1 + x to the right of P(0,1)

(see Figure 4-17c),

A(x) is greater than the

area of the trapezoid OATP.

OP
Hence, A(x) > OA

+ AT
2 '

that is,

A(x) >
1 + (1 + x)

2

x2= x + x > O.

111111111111111101111111

WIMMIMMUMMICWIAMOKAMMEMEMOM
OMMENMEMMIIMMIANniiIIMMIMMO
11111:11111;".
MOMMOMMEM MKOMMOMMEMEOMM

UnniMOMAIMIli
immummowArmillummmammommunnommommommummmommummymommummummum
MMOMOROMVAMEMMEMMEMOMMEMMEM
IIMMEMMOV4MMEMMOMMOMMEMSMOMM
OMMEMAWAMMEMMEMMOMMIIMMEMOM
MEMMUIVAMUMEMMEMENMEMEMMIIMME
MOMMWAIMOMMOMMEMINIOMMIMMWM
WOMPAMOMMEMMEMEMMOMMOMMEMME
MIPIVAIMMEMMEMEMMIMMEMMEMMEME
tAMMOMMIMMEMMEMMOMMOMMEMMEM
OrAMMUMMEIMEMEMMEMMEMMEREE
WEEMEMMOMMEMMUMMEMMIMMMO
MEMOMMEMUMMOMMEMMOMEMMEMMEM
MOMMEMMEMMEMMEMMEMMEMEMMON7
MEMEMMONUMMIMEMEMOMMEMMEMMOI
UMMEMPUMMEMMENEMMOMMUMOMMENMMUSIMAMMENMMECIMEMEM
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mum mum m

Figure 4-17c.
Estimating A(x).

But e
x

= f(x) 1 + A(x).

x
2

Hence e
x > 1 + x +

2
(4)

- On the other hand, since the graph is concave upward, it lies below

the chord PQ. Hence, A(x) is less than the area of trapezoid

OAQ10 and

That is,

Since

which simplifies to

A(x) < OA. °P AQ
2

A(x) < x(1 1-2ex), x > 0 .

A(x) f(x) - 1 = ex - 1,

ex - 1 < x(1 ex)
2 -'

( 5)

+ x
2 x, for 0 < x < 2. (6)

[sec. 4-17]
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We may combine the Inequalities (4) and (6) to obtain

x2 2 x
+ x + -2- < e

x
<

+ 0 < x < 2. (7)

Let us use the Inequalities (4) and (6).to compute

.1 .01
By (4) e° > 1 + .1 + 7- = 1.1050.

.1
By (6) e

0
< 1 + 1.10526.

.1We may therefore use 1.105 as the value of e° to 3 decimal

place accuracy.
.1From this result for e° , it is easy to compute e

0.2
,

e
o.4

, and e
o.8

. From these results, in turn, we may find an

approximation to e. (See Exercise 1.)

Exercises 4-17

1. Obtain an approximation to e by computing successively
- 2

e0.2 (e0.1) e0.4, e0.8, (e0.2)(e0.8).

2. Obtain an approximation to e by using a table of logarithms
1 10

to calculate (e°' ) . Compare your result with that

obtained in Exercise 1.

3. Compute e
1.2

in two different ways using only the results

obtained in this section. Compare your answers with entries

in Table 4-6.
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4-18. An Approximation for ln x.

As we know from. Section 4-12,

(x 1)2 ix_i_14
ln x ki.(x - 1)

ifor values of x near 1. It is convenient to let x - 1 = u

so that
2 ,3

ln (1-+ u)ksu- + t- for lul small.

As you might guess, better approximations are given by

u2 u3 + Un
u - + - F- for n > 3 ( 1)

where the + sign iS chosen if n is cidd and the - sign if n

is even.

When u is positive (so that x > 1), the terms of (1) are

alternately positive and negative. It can be shown that in this

case the error E made in replacing ln(1 + u) by (i) is

,n + 1
numerically less than n + 1 Specifically, if n is odd so

that the last term of (1) is + the correct value of ln(1 + u)

is less than
unu`

0
u3

u - 7- + -3-- + H-

but greater than
2 u

3 un u
n + 1

u
u - 7- 4- - + -H771.

A similar statement can be made if n is even.

In the light of these remarks about error, we can be sure,

for example, that

ln 1.1 = 0.1
0.01 0.001

= 0.1 - 0.005 + 0.00033... - E

sts 0.095333 - E,
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where E is positive but less than 0.0001 - 0.000025. The
F

correct value of ln 1.1 to 5 decimal places is 0.09531.

If we examine the expression which represents an upper bound

un + 1
for the error E, we note that if u < 1,

n + 1 can be made

arbitrarily small by choosing n large enough. That is, a

polynomial approximation can be found which is as accurate as you

please. This is no longer true if u > 1. In fact, in this case,

u
n + 1

-17

can be made arbitrarily large by choosing n large enough.-H77
Hence if u > 1, we cannot use (1) to give an arbitrarily good

approximation to ln(1 + u), no matter how large an n we take.

The approximation.(1) can be used also for -1 < u < 0. In

this case, all the terms have negative values. If we write

u = -v, (1) becomes

v
2

v
3

v
n

ln(1 - v) 1;$ - v + + + + Tr), 0 < v < 1. (2)

For example, with v = 0.1 and n = 4,

.001 .0001)1n(1 - .1) = ln 0.9 -(.1
.11%4 0.10536.

The correct value, to 5 decimal places, is -0.10536. Of course,

we may write

9 10 1.ln 0.9 = ln To- - ln = - ln(1 +

1and apply (1) with u = g. This procedure has the advantage that

we are in a position to estimate the maximum error made in ustng

the polynomial approximation. In the case of (2), the signs do

not alternate and the estimation of error is more difficult.

In practice, a number of short-cuts are used to reduce the

amount of computation necessary. These refinements do not-concern

us since we have restricted ourseives to essentials.

A fuller justification of the methods discussed depends upon

a knowledge of the calculus.

3 7
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Exercises 4-18

1. Use (1) with n . 4 to calculate ln 1.2. Estimate the

maximum error.

2. Show that if (1) is used to calculate ln 2, it is necessary

to use 1000 terms to assure an accuracy of .001 and that

therefore (1) gives an unsatisfactory approximation. Note

that here u = 1. Why would you expect some difficulty here?

3. Find ln .8, using the scheme applied to ln .9.

4. From ln .8 and ln .9, find ln .72.

5. Find ln 1.44 from ln 1.2.

6. From ln .72 and ln 1.44 find ln 2.

7. Show that the device used to handle ln .9 in terms of

10
ln 7 fails for ln x if 0 < x < 0.5. How could you find

ln .25 without using the approximation (2) directly?
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Appendices

Chapter 5

5:21. The Measurement of Trian.gles.

This Section is a brief outline of elementary trigonometry,

included for the benefit of those students who are not familiar

with this topic or who may wish to review it.

We introduced, in Section 5-3, the notions of degree measure

and of the circular (or trigonometric) functions of angles.

Because degree measure is traditional in elementary trigonometry,

we shall use it exclusively in the rest of this Section. Thus,

if an angle measures x0, we refer to Table III (page 300) and

find, as appropriate, sin x, cos
o
x or tan

o
:K. For economy

of notation, however, we shall omit the degree sign and write

merely sin x, cos x or tan x.

If 8 is the angle from a ray R, to a ray R2, then we

say 8 is in standard position if its vertex is at the origin of

the uv-plane and R, extends along the positive u-axis. If

R
2

meets the unit circle u
2
+ v

2
= 1 at a point Q, then the

coordinates of Q are (cos 0, sin 0). If, moreover, P(u,v)

is a point r units from the origin on R2, we have, by similar

triangles (see Figure 5-15a) and by the definition of tan,

P (u,v)

Q (cos 8 ,isin 8)

S(uTe) -u

Figure 5-15a. An angle in standard position.
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Theorem 5-15a: = cos 6, 7 = sin 9, = tan 6, (u / 0).

We are now ready to discuss some examples of a simple and

important application of the trigonometric functions -- the

indirect measurement of distances by triangulation.

Example 1. At a point 439 feet from the base of a building

the angle between the horizontal and the line to the top of the

building is 310. What is the height of the building?

Solution: Let P be the point with abscissa 439 on the

terminal side of the angle 310 in standard position (Figure

5-15b) . Then the ordinate v of P is the height of the

439 f t.

Figure 5-15b.

building. By Theorem 5-15a

tan 31 0

and from Table III

We have

tan 310 ks .601 .

.601

v 439(.601) kS 264

so that the building is approximately 264 feet high.

[sec. 5-15]



A-67

aa.m2la_g. To measure the width of a river a stake was

driven into the ground on the south bank directly south of a tree

on the opposite bank. From a point 100 feet due west of the

stake the tree was sighted and the angle between the line of

sight and the east-west line meF,sured. What is the width of the

river if this angle was 60°?

Solution: The point from which the tree was sighted was

taken due west of the stake so that the angle RST (Figure 5-15c)

would be a right angle. Let P be the p ,Ith abscissa 100

on the terminal side of the angle 60° in andard position.

Figure 5-15c.

Then the ordinate v of P will be the width of the river.

From Theorem 5-15a and Table III we have

tan 60° RI 1.732100

v Rs 100(1.732) RI 173.2.

The river is approximately 173 feet wide.
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[sec. 5-15)



A-68

Example 3. At the instant when the moon is exactly at half

phase the angle between the line from the earth to the moon and

the line from the earth to the sun is between 89° and 900 .

.Show that the distance from the earth to the sun is at least 50

times the distance from the earth to the moon.

Solution: From Figure 5-15d we see that if the moon is

exactly at half-phase the angle SME is a right angle. Since

angle SEM and 89° </,..'< 90°, we have 00 <cC < 10 .

Figure 5-15d.

P(ux)

0(1.),o)u

Let P(u,v) be a 'point on the terminal side of the angle m in

standard position with ordinate v equal to the distance EM.

Then the distance r of P from the origin will be equal to ES.

By Theorem 5-15a

. sin M

and from Table III

sin m < sin 1° ps .018 (.0175)

so that
18 20 1

< .018 = 76M5 < 11300

50v.

Thus the distance from earth to the sun is at least 50 times

the distance from earth to moon.
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The essential step in these examples is the discovery and

construction of a right triangle one of the sides of which is the

length to be measured. Later in this section, we shall learn

some additional theorems about the trigonometric functions which

will permit us to use more general triangles in a similar way.

Exercises 5-15a

1. A man standing 152 feet

from the foot of a flagpole,

which is on his eye level,

observes that the angle of

elevation of the top of the

flagpole is 48°. Find the

height of the pole.

2. A wire 35 feet long is stretched from level ground to the

top of a pole 25 feet high. Find the angle between the

pole and the wire,

3. On a 3 per cent railroad grade, at what angle are the rails

inclined to the horizontal and how far does one rise in

traveling 9000 feet upgrade measured along the rails? (A

grade of 3 per cent means that the tracks rise 3 feet in

each 100 feet of horizontal distance.)

4. Find th, radius of a regular decagon each side of which is

8 inches.

5. How long is the chord subtended by a central angle of 52°

in a circle of radius 15 inches?

6. From a mountain top 4000 feet above a fort the angle of

depression of the fort is 17°. Find the airline distance

from the mountain top to the fort.

14000
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The law of cosines and the law'of sines. In the earlier

part of the section you learned how to apply the tables of sines

and cosines to right triangles. We shall now develop some

formulas that will enable us to study general triangles. Let

ABC be a general triangle. The measure of the angle at vertex

A is M , at B is/8 , and at C is 7' . We choose M

and 7 7 to be positive. Also we set 'a = BC, b AC and c = AB.

(See Figure 5-15e.)

C

Figure 5-15e.

There are two basic relations among the parts of triangle

ABC which we formulate as theorems. We begin with the law of

cosines.

Theorem 5-15b. (The Law of Cosines). In triangle ABC we

have

Similarly

c2 a2 b2 2ab cos /4.

b2 = a2 2+ c - 2ac cos,a ,

2 = b2 2+ ca - 2bc cos M .

ifoof: We place triangle ABC on a rectangular coordinate

system in such a way that 14 is in standard position. (See

Figure 5-15f.)

Figure 5-151.
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Then the coordinates of B are (a,0) since BC = a. Also

AC = b and therefore from Theorem 5-15a we see that the co-

ordinates of A are (b cos I", b sin /''). Using the distance

formula we have

c2 = (AB)2 = (b cos Y' - a)2 + (b sin - 0)
2

,= b2 [kcos ) + (sin ) + a2 - 2ab cos 7--

Now by definition the point (cos Y" , sin ) lies on the unit
circle, and therefore (cos f' )2 + (sin r )2 = 1. Hence

c
2

= a2 + b 2
- 2ab cos y" .

This is the first formula in Theorem 5-15b. The other two

formulas are obtained in a similar manner.

Example 4. In triangle ABC, a = 10, b = 7, r = 32°.
Find c.

Solution: By the law of cosines

c2 = 100 + 49 - 140 cos 32°.

Using Table III

and therefore

Hence

cos 32° 76 .848

c
2 149 - 140(.8)8)

30

5.5

Example 5. In triangle ABC, a = 10, b = 7, c . 12.

Find a,

Hence

Solution: By the law of cosines

a2 b2 c2 2bc cos a,

49 + 144 - 100 93cos m
2.7.12 168 .551"

Thus a kl 560 to the nearest degree.
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Suppose triangle ABC is a right triangle with right angle

at C, i.e., 7 = 900. In this case c is the hypotenuse of the

right triangle and since cos 900 = 0, the law of cosines becomes

c
2

a
2 + b2 But this is just the Pythagorean Theorem. There-

fore the law of cosines can be viewed as the generalizationof the

Pythagorean Theorem to arbitrary triangles. However, we do not

have a new proof of the Pythagorean Theorem here, because our

proof of the law of cosines depends on the distance formula which

was established on thn, basis of the Pythagorean Theorem!

It is worth noting, though, that the law of cosines can be

used to prove the converse of the Pythagorean Theorem. If, in

triangle ABC we know that c
2

.2 a
2 + b

2
, then we must show that

Y1 = 90°. By the law of cosines c2 = a2 + b2,- 2ab cos 7"' and,

combining this with c
2 = a

2 + b2 , we obtain cos2t' = 0. We know

that 0 < 7/1 < 180°, and the only angle in this range whose cosine

is zero is 9o0 . Therefore 2 9o0 as was to be proved.

Exercises 5-15b

1. Use the law of cosines in the solution of the following tri-

angles.

a) c= 60°, b = 10.0, c = 3.0, find a.

b) a = 21R, b = 8, c = 10, find M .

c) a = 4.0, b . 20.0, c = 18.0, find m "07, and r'.

2. Find the largest angle of a triangle having sides 6, 8, and

12

3. A parallelogram has two Adjacent sides a, b and included

angle e.

a) Find the length of the diagonal opposite the Z 9.

b) Find the length of the diagonal cutting the Z 9.

c) Find the area of the parallelogram.
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4. Find the sides of a parallelogram if the lengths of its

diagonals are 12 inches and 16 inches and one angle

forthed by the diagonals is 370 .

5. A car leaves town A on a

straight road and travels for

80 miles before coming to a

curve in the road. At this

point the direction of the

road changes through an angle

of 70°. The car travels bo

miles more before coming to

town B. What is the straight

line distance from town A to

town B?

6. What interpretation can one give to the formula

c2 = a2 + b2 - 2ab cos if 18e?

7 Prove that in triangle ABC

1 + cos cC (b + c + + c - a)
2 4 c

1 - cos cc (a + b - q(a - b + c)
2 4 c

The second formula that we shall introduce relating the

parts of a triangle is known as the of sines.

have

A-73

Theorem 5-15c. (The Law of Sines). In triangle ABC we

sin cC
a

sing sin
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Proof: We again place triangle ABC on a rectangular co-

ordinate system so that is in standard position. (See Figure

5-15g.) The coordinates

Figure 5-15g.

of A and B are the same as in the proof of Theorem 5-15b. We

know from geometry that the Erea of triangle ABC is ;ha, where

h is the length of the altitude from vertex A to side BC.

(See Figure 5-15g.) But h is just the ordinate of A and hence

h = b sin //'. Therefore we have that the

area of triangle ABC = -lab sin 7'. (1)

Similarly we obtain
1

area of triangle ABC = Tac sinxg,

1
area of triangle ABC = 7bc sin M

Thus,

1bc
1 1

sin m = -ffac sin/g. -ffab sin 1°.

If we divide this relation by ;.abc we find

sincC sin/9 sin
a b

which is the desired formula.

Example 6. If, in triangle ABC, a = 10, /4 = 42°,

r . 510, find b.



A-75

Solution: Since m +,0 + 7g= 1800 we have = 87°.

By the law of sines

sinct sin(g

a sin/g 10 sin 42
op::

6.69
sin m o .999Sin o7

Example 7. Find the area of triangle ABC if a = 10,

b = 7, 7' ...- 68°.

'3olution: According to (1), the area of triangle ABC

;AID sin 71j.= 35 sin 68°p:: 35(.927) ps 32.4.

Example 8. Are there any triangles ABC such that a = 10,

b = 5, and m = 22°?

Solution: Before attempting to solve Example 8, let us try

to construct a triangle ABC geometrically, given a, o, and

M At point A on a horizontal line construct angle m . Lay

off side AC of length b on the terminal side of angle m .

Now with C as center strike an arc of radius a. There are a

number of poss.Loilities depending on a, b, and M which are
illustrated :In Figure 5-15h.

a

v )

Figure 5-15h.
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In case (i) there is no triangle;

in case (ii) there is one triangle;

in case (iii) there are two triangles;

in case (iv) then?, is one triangle;

in case (v) there is no triangle;

in case (vi) there is one triangle.

Thus to solve Example 8, we attempt to find/e keeping in

mind that there may be zero, one, or two solutions. If such a

triangle exists, then by the law of sines

sin/g sin 22°
5 0

1
or sing = 7 sin 22 .187.

Recall that sin/g is positive if 90° </g< 180°, and if

43= 1800 - 0 where 0 < 0 < 900 then sin/3= sin O. Thus from

s1n,,9 :4.187 we conclude that /3 = 110 or 49 = 169° to the

nearest degree. Are both of these values offg possible? If

= 169°, then car -1-= 191° whf..ch is impossible. Why?

Therefore, there is one triangle.with the given data. We are in

case (iv).

Example 9. Are there any triangles ABC with a = 15,

b = 10, and m = 105°?

Solution: We attempt to find/g . If there is such a tri-

angle we have, from the law of sines',

sin/g sincc
10 15

But sin cc = sin 105° = sin(180° - 75(1) = sin 75° .966. Hence,

2 h

sirvg 7(.9oo) = .644 and this implies/3 . ff0
o or/.9 = 140

o
.

Clearly/g can not be 140° and there is one triangle with the

given data. This is an example of case (vi).

Example 10. Are there any triangles ABC such that a = 10,

b = 50, and M = 22°?
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Solution: We attempt to find 9 . If there is such a tri-

angle we have, from the law of sines,

sina sin 22°
50

sin9 = 5(.375) > 1.

But we know that the sin never exceeds one, and therefore our

assumption that a triangle with the given data exists leads to a

contradiction. Thus there are no such triangles. This is an

illustration of case (i).

Exercises 5-15c

1. Use the law of sines in the solution of the following:

a) = 68°, r= 300, c = 22.0, find a.

b) M = 45°, = 60°, b = 20.0, find a and c.

30°, b = 5, c 2, find M .

d) c = 620, b . 480, r 550, find cc,----and a.

e) 65°, b = 97, c = 91, find./9-.

f) a = 80, b = 100, M = 36°, findfi .

g) a = 31, b = 50, M = 330, find .

-h) a = 50, b = 60, r = 1110, find cc and c.

2. Prove that in triangle ABC

sin cC - sin/g a - b
sin cC + sin/1 77177-6.'
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5-16. Trigonometric Identities and Equations.

The following exercises can be used to provide additional

practice in trigonometric equations and identities.

Exercises

Prove the following identities:

1. tan x cos x = sin x

2. (1 - cos x)(1 + cos x) = sin
2
x

cos x 1 - sin x
3. 1 + sin' x cos x

sin 2x
4. tan x 7 1 + cos 2x

5. tan x sin 2x = 2 sin
2
x

6. 1 - 2 sin
2
x + sin

4
x = cos

4
x

2 cos
2x - sin

2x + 1
7. 3 cos x

cos x

8. sin x tan x + cos x -
1

cos x

9.
1
2

+ tan2x + 1
2

= ---T-
cos x cos x

10. sin
4x - sin

2x cos
2x - 2 cos

4
x = sin

2x - 2 cos
2
x

cos
4
x - sin

4
x

11. - cos
4x

1 - tan
4
x

12. sin 4x = 4 sin x cos x cos'2x

13. cos
4x - sin

4
x 1 - 2 sin

2
x

14.
sin (x

cos
+ ) tan x + tan y

cos x

15. sin (x + y) + sin (x - y) = 2 sin x cos y

16. cos
4x - sin

4x = 2 cos
2
x 1

17. cos (x + y) - cos (x y) . -2 sin x sin y

18. sin (x + y) - sin (x - y) = 2 cos x sin y

19. cos (x + y) + cos (x y) = 2 cos x cos y

[sec. 5-16]
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20. sin (x + y) sin (x - y) = sin2x - sin2y

sin 2x 1 - cos 2x
21. 1 + cos 2x sin 2x

22. cos (x + y) cos (x - y) = cos2x - sin2y

23
sin x - tan1 + cos x 2

24. 3 sin x - sin 3x = 4 sin 3
x

25. Prove by counter-example that none of the following is an

identity:

a) cos (x - y) = cos x - cos y

b) cos (x + y) = cos x + cos y

c) sin (x - y) = sin x - sin y

d) sin (x + y) = sin x + sin y

e) cos 2x = 2 cos x

f) sin 2x = 2 sin x

Solve each of the following equations:

26. 2 sin x - 1 = 0

27. 4 cos2x - 3 = 0

28. 3 tan2x - 1 = 0

29. sin2x - cos 2x + 1 = 0

30. 2 cos2x - 4rTcos x = 0

31. 4 sin3x - sin x = 0

32. 2 sin2x - 5 sin x + 2 0

33. 2 sin x cos x + sin x = 0

34. cos x + sin x = 0

35. 2 sin2x + 3 cos x - 3 = 0

36. cos 2x = 0

37. cos 2x - sin x = 0

38. 2 cos 2x + 2 cos 2x = 1

[sec. 5-16]
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39. cos 2x +.2 co52() = 1

4o. 6 sin2x + cos 2x = 2

41. sin 2x - cos
2x + sin

2
x = 0

42. 2 cos
2x + cos 2x . 2

43: cos 2x - cos x = 0

44 2 sin-x - 3 cos x - 3 = 0

45. cos 2x cos x + sin 2x sin x = 1

46. cos
2x - sin2x = sin x

1 + cos
2x

2

48. 3 sin x + cos x o

49. tan x = x

50. ir sin x = 2x

5-17. Calculation of sin x and cos x.

Eulerls Formula.

We wish to find polynomials whose values approximate sin x

and cos x for x near zero. The process is analogous to that

used in Section 4.-16 to approximate ex, except that in the

present case the required polynomials are developed simultaneously.

Let us use f to denote sin and g to denote cos, so

that f: x and g: x----3scos x. Let us begin with

g: x. Since g is an even function (that is, co$(-x)

= cos x), we seek approximations which include only even powers.

Thus we seek approximations of the form

cos xctl b
0

(o)

cos xs:s b
0
+ b

2
x2 (2)

cos X MS b b2x2 +
4 (4)

[sec. 5-17]
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We know from Section 5-10 that the best linear approximation to

cos x is 1 + 0.x = 1. We therefore choose b
0

1. We wish

to determine the proper coefficients b2, b4, .

For the function f: x-->sin x, f(-x) = -f(x). It is

therefore necessary to use only odd powers in the approximating

polynomials. Using the fact that the best linear approximation

is x (see Section 5-10), we seek approximations of the following

form:

sin x x (1)

sin x x + a3x3 (3)

sin x sks x + a3x3 + a5x5 (5)

where the coefficients
3 5

remain to be determined.

Now coslx . -sin x. (6)

We wish to replace cos.x and sin x by polynomial approxi-

mations. We do this in such a way that the slope function of a

cos x apProximation will be the negative of a polynomial approxi-

mation for sin x. This is possible only if the degree of the

sin x approximation is one less than the cos x approximation.

Thus, from (6),

we obtain

so that

and

cos x 1 + b2x
2,

and sin x g:$ x,

2b2x = -x

1
b2 - - 7

1 2
cos x 2

Similarly, in sin, x . cos x, we replaae sin x by a

.polynomial approximation and cos x by the approximation of

-degree one less.

389
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Thus using

and

we have

so that

and

sin x rts x + a
3
x3 (3)

x
2

cos x ct, 1 - (21)

x2
1 + 3a3x

2 = 1 -

1a3 = -77

x3
sin x x

Continuing in this way we obtain the following approximations for

sin x and cos x.

For example,

and

.008 .00032
sin 0.2 k: .2 - -77- + 120

k$ .19867

04 0016
cos 0.2 k' 1 -

.

ps .98007

(The values given in Table I are sin 0.2 = .1987, cos 0.2 = .9801)
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We shall not prove that the polynomials written represent

the best approximations possible for the degree chosen. (They do.)

Nor shall we discuss the greatest possible error made in using one

of these approximations. We assert without proof that sin x is

between any two of the successive polynomial approximations listed,

in particular, between
a

x -

and

x -

Similarly, cos x is between

1 -

and

1 -

X3 X5

x7

+

x3 x5

X2 X4

- x6

+

2 4x x+

There is a remarkable relation, due to Euler, between the

exponential function on the one hand and the circular functions,

cos and sin, on the other. This relation is expressed by the

famous equation

ix
e = cos x + i sin x. (7)

The symbol eix, with an imaginary exponent, obviously requires

an interpretation.

To interpret (7). geometrically, we draw a unit circle in the

complex plane (see Figure 5-17) with x the arc length measured

(imaginary)

cosx

Figure 5-17. Interpretation of eix.

real)

(sec. 5-17]
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counter-clockwise from A(1 + 0i) to the point P. The vector

OP from the origin to P represents cos x + i sin x, and there-

fore, according to equation (7), it represents e
ix

also. This

is entirely sensible. For, if

e
ix = cos x + i sin x

and

e
iy = cos y + i sin y,

and if we assume that imaginary exponents are added like real

ones, we obtain by multiplication

e
ix + iy = (cos x + i sin x)(cos y + i sin y),

and hence

BY (7)

ei(x Y)=. (cos x cos y - sin x sin y)

+ i(sin x cos y + cos x sin y). (8)

e i(x Y) = cos(x + y) + i sin(x + y). (9)

From Equations (8) and (9) we immediately obtain the addition

formulas for cos(x + y) and sin(x + y).

Let us return to Equation (7) and consider the approximations

that we have made. The fourth degree approxtmation to ex is

X2 X3 x
e
x 1 + x + + +17. (10)

If in (10) we replace x by ix, we obtain

2
3eix 1 + ix + (ix) + (ix) (ix)

3t 4t

That is,
.

,

4

cos x + i sin x 1 + ix -
x2 ix

3 x
7

2 4 3
(1 - 2L. 4=1-) + i(x - IT).

2t 41
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This means that real and imaginary parts are approximately equal

so that

and

x2 x 4

cos x 1 + -417

x3
sin x x 77.

These results agree with the approximations previously obtained.

Exercises 5-17

1. Compute sin 0.1 correct to 4 places of decimals, and

compare with Table I.

2. Over what x interval can we use the approximations

a) sin x rt: x

b) cos x rt: 1

if the error is to be less than 0.01?

sin x
3. Use the identity, tan x = 73-F-17, and the polynomial approxi-

mations to sin x and cos x of fifth and fourth degree

respectively, to obtain by long division a polynomial approxi-

mation to tan x. What does this approximation suggest as a

relationship between tan(-x) and tan x?

. Use Eulerls equatioy to find eix if

a) x = d) x =

b) x = 7 e) x = 0.5

c) x = 3.71-
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absolute-value, 21-23
algebra of, 24
area, A-26, A-27, A-32
circular, 227
composite, 24, 26
constant, 15, 16, 43
cosine, 226-227
domain of, 2, 6, 26
exponential, 145-148, A-53-57, A-58-61
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linear, 73
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multiplicity of a zero, 74
Newtonls method, 126-130
number of zeros of polynomial functions, 74-80
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one-to-one functions, 33, 191
parallel lines, 19
period, 225, 228, 247, 267-270'

fundamental, 228
of cos, 229
of sin,.229
of tan, 285-286

periodic motion, 225-226, 228-229
periodicity, 225-226, 228-229, 233
phase, 267-270
point of inflection, 96
polynomial, 39
polynomial approximations, A-53-57, A-58-61

to cos x and sin x, A-80-85

to e
x

, 210-213
to ln x, 213-214, A-62-64

polynomial function
approximation of irrational zeros of, 73, 126-130
behavior for large lxl, 52
behavior near a point, 97-113
degree of, 39
graphs of, 48-53, 110-.113
locating zeros of, 58-65
lower bound for the zeros of, 64
number of zeros of, 74-80
of degree n, 39, 42
of reduced degree, 69
upper bound for the zeros of, 64
zeros of, 66-84
(see also zeros of polynomial functions)

polynomials, A-18-20
approximation by, A-22

powers of 2, 145-149, 150-152, 154, 163-166
graph, 162
table, 155

pressure, acoustical, 248
quadratic formula, 40, 81
quadratic function, 39, 42
radian, 244-245
radioactive decay, 180-183, A-39
range of function, 3
rational zeros of polynomial functions, 66-71
real exponents, 157-162
reduced degree, polynomial of, 69
remainder theorem, 55
restriction (of a function), 195, 283-286
roots of polynomial equations, 40
rotation, 252-257
second principle of mathematical induction, A-10
set-builder, A-1
set notation, A-1
significance of polynomials, A-17-23
simple harthonic motion, 248
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sine function, 226-227
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function, 114-116
of area function, A-31-35
'of line, 16, 18

solution of triangles, A-65-77
solutions of polynomial equations, 4o
sum of vectors, 252
symmetry of cos and sin, 231-232, 242(Ex.)
synthetic division, 47
synthetic substitution, 44-47

-.tables, construction and use of, cos x and s n x, 234-237, 26o-266
of cos x, 296-299

of e
X

,

176

of sin x, 296-299

of 155
tangent, 93
tangent function, 260, 285-287
tangent line \

to y = ax, 173-174, 178-179

to y = cos x and y = sin x, 275-278

to y = 170-172
tangents at points on the y-axis, 94-96
tangents to the graph at an arbitrary point P and the shape of

the graph near P, 105-109
union of sets, A-1
upper bound for the zeros of a polynomial function, 64
vector, 252-257
waves, 248, 267-270, 279-282
Weierstrass approximation theorem, A-22
zero of a function, 4o
zero polynomial, 43
zeros of polynomial functions

complex, 81-84
complex conjugates, 81
conjugate surd, 85
integral, 68
irrational, approximation of, 73, 126-130
locating, 58-65
lower bound for, 64
multiplicity of, 74
number of, 74-80
rational, 66-71
upper bound for, 64
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