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FOREWORD

The increasing contribution of mathematics to the culture of
the modern world, as well as 1ts importance as a vital part of
scilentific and humanistic education, has made it essential that the
mathematics in our schools e both well selected and well taught,

With this in mind, the various mathematical organizations in
the United States cooperated in the formation of the School
Mathematics Study Greup (SMSG). SMSG includes college and univer-
sity mathematiclans, teachers of mathematics at all levels, experts
in educatlion, and representatives of science and technology. The
general objective of SMSG is the improvement of the teaching of
mathematics in the schools of this country. The National Science
Foundation has provided substantial funds for the support of this
endeavor.

One of the prerequisites for the improvement of the teaching
of. mathematics in our schools is an improved curriculum-~one which
takes account of the increasing use of mathematics in science and
technology and in other areas of knowledge and at the same time
one which reflects recent advances in mathematics itself. One of
the first projects undertaken by SMSG was to enlist a group of
outstanding mathematicians and mathematics teachers to prepare a
series of textbooks which would illustrate such an improved
curriculum.

The professional mathematicians in SMSG believe that the
mathematlcs presented in this text is valuable for all well-educated
citizens in our society to . know and that it is important for the
precollege student to learn in preparation for advanced work in the
field. At the same time, tedchers in SMSG believe that it is
presented in such a form that it can be readily grasped by students.

In most instances the material will have a familiar note, but
the presentatioh and the point of view will be different. Some
material will be entirely new to the traditional curriculum. This
is as it should be, for mathematics is a living and an ever-growing
subJect, and not a dead and frozen product of antiquity. This
healthy fusion of the old and the new should lead students %o a
better understanding of the basic concepts and structure of -
mathematics and provide a firmer foundation for understanding and
use of mathematics in a scientific society.

It 1is not intended that this book be regarded as the only
definitive way of presenting good mathematics to students at this
level. Instead, 1t should be thought of as a sample of the kind of
improved curriculum that we need and as a source of suggestions for -
~the authors of commercial textbooks. It is sincerely hoped that -
these texts will lead the way toward inspiring a more meaningful
teaching of Mathematics, the Queen and Servant of the Sciences.
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PREFACE

This experimental text 1is intended for use in a one semester
12th grade course. The appendices provide material for supple-
mentary study by able students. Alternatively, by including some
or all of the material in the appendices it is possible to use
this text for a longer course. :

The central theme is a study of functions. The first chapter,
Functions, gives a background for the study of Polynomial Functions
(Chapters 2 and 3), Exponential and Logarithmic Functions (Chapter
4), and Circular (or Trigonometric) Functions (Chapter 5).

The introductory chapter uses a small amount of set notation
which is explained in an appendix. A function is defined in
terms of the concept of mapping and, to a certain extent, in
terms of a computing machine. After a treatment of constant and
linear functions, composition and inversion of functions are
carefully discussed.

Chapter 2 covers standard material on the algebra of poly-
nomials, but the treatment is a more modern and rigorous one than
is found in conventional texts.

Chapter 3 is concerned with the use of the tangent line as
an approximation to the graph of a polynomial functien-near a
given point. The equation of the tangent at this point is
obtained by algebraic procedures which are both simple and logi-
caliy precise. These procedures also give a method for deter-
mining the shape of the graph nearby. The student 1s thus able
to locate critical points and to solve interesting maximum and
minimum problems. Our treatment will furnish him with a good
background for a later course in calculus. An appendix gives
an introduction to the problem of finding areas under graphs.

In'Chapter 4 the characteristic features of exponential
growth are brought out in an intuitive way, with applications
to problems of current interest. The method for finding tangents
explained in Chapter 3 is used to obtain the slopes of exponential
graphs. Logarithmic functions are defined as the inverses of
exponential functions.

10




Chapter 5 deals with the theory of the circular functilons
in the spirit of the previous chapters, emphasizing the study of
periodic motion and the analytic properties of the trigonometric
functions. An appendix includes supplementary material for
students who have had no previous course in trigonometry.

This text 1s an attempt to implement the recommendations of
the Commission on Mathematics of the C.E.E.B. The authors are
cnnscilous of its shortcomings and welcome criticism from those
who may use it.
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Chapter 1
FUNCTIONS

1-1. Fanctions

- One of the most useful and universal concepts in mathematics
-.1s that of a function, and this book,»as its title indicates, will
be devoted to the study of functiona'with particular attention to
a few special functlons that are of fundamental importance.

We frequently hear people say, "One function of the Police
Department 1s to prevent crime," or "Several of my friends attended
a soclal function last night," or "My automobile failed to function
when I tried to use it." In mathematics we use the word "function"

somewhat differently than we do in ordinary conversation; as you
have probably learned in your previous study, we use 1t to denote

a certain kind of associlation or correspondence between the
members of two sets.
We find examples of such assoclations on every.side. For
instance, we note such an association between the number of feet
a moving object travels and the difference in clock readings at
two separate points in its Journey; between the length of a steel
beam and its temperature; between the price of eggs and the cost
of making a cake. Additional examples of such associlations occur
in geometry, where, for instance, we have the area or the circum—
ference of a circle associlated with the length of 1%ts radius.
‘. In all of these examples, regardless of theilr nature, there
seems to be the natural idea of a direct connection of the elements
of one set to those of another; the set of distances to the set ..
of times, the set of lengths to the set of thermometer readings,
etc. It seems natural, therefore, to abstract from these various
cases thilis idea of assoclation cr correspondence and examine it
more closely.
Let u$ start with some very simple examples. Suppose we take
..the numbers 1, 2, 3, and 4, and with each of them associate the
number twice as large: wilth 1 we assoclate 2, with 2 we assoclate
4, with 3 we associate 6, and with 4 we associate 8. An associa-
tion such as this is called a function, and the set {1, 2, 3, 4}with

12
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which we started is called the domain of the function (for a sum-
mary of set notation see Appendix to Chapter 1). We can represent
thls assoclation more briefly if we use arrows instead of words:

1—s»2, 2—>4, 3—>6, 4—>8., There are, of course, many other

functions with the same domaln; for exar K 2, 2—>1, 3—>2,
y —>5,

It happens that these two exam: 1 ..« numbers, but
there are many functions which do not. .« wmap, for instance, asso-

clates each point on some bit of terrain with a polnt on a plece of
paper; in this case, the domain of the function 1s a geographlcal
reglon. We can, 1lndeed, generallze this last example, and think of
any function as a mapping; thus, our filrst two examples map numbers
into numbers, and our third maps points into points.

What are the essentlal features of each of these examples?
First, we are glven a set, the domaln. Sécond, we are glven a rule
of some kind which assoclates an obJect of some sort with each ele-
ment of the domain, arml, third, we are glven some idea of where to
find this associated object. Thus, in the first example above, we
know that if we start with a set of real numbers, and double each,
the place to look for the result is in the set of all real numbers.
To take still) another example, if the domain of a function 1s the
set of all real numbers, and the rule is "take the square root,"
then the set in which we must look for the result is the set ol
complex numbers. We summarize this discussion 1n the following
definition:

Definition 1-1. If with each element of a set A there 1is
assoclated in some way exactly one element of a set B, then this
assoclation is called a function from A to B.

It 1s common practice to represent a function by the letter
"£" (other letters such as "g" and "h" will -also be used). If x
is an element of the domain of a functlon £, then the object
which f assoclates with x 1s denoted f(x) (read "the value of
f at x" or simply "f at x" or "f of x"); f(x) is called
the image of x. Uslng the arrow notation of our examples, we can
represent this symbolically by

£: x—>f(x)

[sec. 1-1]
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(read "f takes x into f£(x)"). This notation tells us nothing
about the function f or the element x; it 1s merely a restate-
ment of what "f(x)" means.

The set A mentioned in Definition 1-1 is, as has been stated,
the domain of the function. The set of all objects onto which the
function maps the element of A 1s called the range of the function;
in set notation (see Appendix),

Range of £ = (f(x): x€ A}.

The range may be the entire set B mentioned in the :efinition, or
may be only a part thereof, but in either case it is inecluded in B.
It is often helpful to illusr:rate a function as a mapping,
showing the elements of the domain and the range as points and the
function as a set of arrows from the polnts that represent elements
of the domain to the points that represent elements of the range,
as in Figure 1-la. Note that, as a.consequence of Definition 1-1,

Figure 1l-la. A function as a mapping.

to each element of the domain there corresponds one and only one
element of the range. If this condition is not met, as in Flgure
1-1b, then the mapping pictured is not a function, In terms of the
pictures, a mapping is not a function if two arrows gstart from one
point; whether two arrows go to the same point, as in Figure 1-la,
is immaterial in the definition. This requirement, that each ele-
ment of the domain be mapped onto one and only one element of the
range, may seem arbitrary, but it turns out, in practice, to be

{sec. 1-1]
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Figure 1-1b, e 2ing 1s not a funection,

extremely convenient.

In this book, we are primarily concerned with :functions whose
domain and range are sets of real numbers, and we shall therefore
assume, unless we make explicit exception, that all of our functions
are of this nature. It is therefore convenient to represent the
domain by a set of points on a number line and the range as a set
of points on another number line, as in Figure 1l-lc.

Figure 1-1c., A function mapping
real numbers into real numbers.

15
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More specifically, consider the function f, discussed earlier,
which takes each element of the set {1, 2, 3, %) into the number
twice as great. The range of this function is (2, 4, 6, 8) and f
maps its domain onto its rénge as shown in Figure 1-1d. We note
that, in this case, the image of the element x of the domain of

4
3
2~
|

Figure 1-1d, f: x—>2x, x =1, 2, 3, b4,

f 1s the elemen: 2x; hence we may write, in this inst - e, f(x) =
2x, and f 1s ccapletely specified by the notation
f: x—>2x, x =1, 2, 3, 4,

In this cas:= the way in which f maps its domair: <%0 1ts
. range 1s complet iy specified by the formula f(x) = 2x. Most of
the functions which we shall consider can similarly be described
by appropriate formulas. If, for example, f 4s the function that
takes each number into its square, then it takes 2 into 4 (that is,
£(2) = 4), 1t takes -3 into 9 (that is, £(-3) = 9), and in general,
it takes any real number x into x2. Hence, for this function,
2 de-
fines this functimz f, and to find the image of any element of
the domain, we can merely substitute in this formula; thus, 1f
a - 3 1s a rea. .miaber, then f(a-3) = (a-3)2 = a® - 6a + 9. Simi-
larly, if we koaws shat a function { has f(x) = 2x - 3 for all

2 2
f(x) = x, we may write f: x—>x". The formula £f(x) = x

[sec. 1-1]
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X € R (we use R to represent the set of real numbers) then we can
represent f in our mapping notation as f: x—>2x - 3, and to
find the image of any real number we need only substitute i1t for
X 1n the expression 2x - 3; thus £(5) = 2(5) - 3 = 7,
V2) =2 /2 - 3, and 1f k + 2 1is a real number, then
f(k +2) =2(k+2) -3 =2k + 1. ‘

Strictly speaking, a function is not - completely described un-
less 1ts domain is specified. 1In dealing with a formula, however,
it 1s a common and convenient practice to assume, if no other infor-
mation 1s given, that the domain includes all real numbers that
vield real numbers when subst tuted in the formula. For example,
if nothing further is said, in the function f: x—»> 1/x, the
domain 1s assumed to be the set of all real numbers except 0; this
exception 1s made because 1/0 is not a real number. Similarly, if
f 1is a function such that f(x) =./1 - x2, we assume, in the
absence of any other information, that the domain is {x: -1 <x< 1},
that 1s, the set of 211 real numbers “rom -1 to +1 inclusive, since
only these real numt .5 wi’l give us real square roots in the ex-
pression for f(x). :-en = “Tunction is used to describe a physical
situation, the domair is wun.2rstood to include only those numbers
that are physically »=iii=i.c. Thus, if we are describing the
volume of a balloon in - m3s of the length of its radius, f: r—V,
the domain would inciude »nly positive numbers.

A humorist once defined mathematics as "a set of statements
abocat the twenty-fou:¢h lef:.r of the alphabet." We may not agree
abour just how funny =nis wmtement is, but we must agree that it
contains an element.: ' truth: we do make "x" work very hard. It
is important to recorm izt that this arises out of custom, not
necesslty, and that ar osher letter or symbol woul:d do Just as
well. The notatlons ' »--*>x2, f: h-—A>h2,
fu#~—>#:2 all desecr ww e.:ctly the same function, i=ubject to our
agreement that x, %, or # stands for any re:l number.

f: t-—«»t , and even

Another way of _.»:.:np at a function, which may help you to
understand this section, s to think of it as a machine that pro-
cesses elements of its dow ..~ to produce elements of its range.
The machine has an inp:%t zx:- an output; if an element x of its

[sec., 1-1]
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domain is fed on a tape into the machine, the element f(x) of
the range will appear as the output, as indicated in Figure 1l-le,

\*/

/f(x)\

Figure l-le.
A representation of a function as a machine.

A machine can only be set to perform a predetermined task. It
cannot exercilse judgment, make decisions, or modify its instructions.
A function machine f must be set so that any particular input x
always results in the same output f(x); if the element x is not
in the domain of f, the machine will Jjam or refuse to perform.
Some machines -- notably computing machines -~ actually do work in
almost exactly this way.

Exercises 1-1

1. Which of the following do not describe runctions, when x,

Yy € R?
a) f: x—>3x = & d) f: x—>y = x2 f) f: x—>5x
b) f: x—>x e) f: x—>all y<x g) f: x—>16 - x°

c) f: X—>-Xx

2. Depict the mapping of a few elements of the domain into elements
of the range for each of the Exercises 1(a), (c), and (d) above,
as was done in Figure 1-1d.

[sec., 1-1]
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3. Specify the domain and range of the following.functions,'where
x, £(x) € R.

a) f: x———>x2 d) f: x-—>—)—(—i_c—i-
b) f: x—>x . 3
c) f: x—> /X e) f:x— X2 -y
y, If f: x—>2x + 1, find
a) f£(0)
b) f£(-1) -
c) 7(100)
a) £(2)
5. @Given the function f: x-—-——>-x2 - 2x + 3, find
a) f£(0)
b) f(-1)
c) f(a)
d) f(x - 1)
6. 1If f(x) = ~/x° - 16, rind
a) £(4) ¢) £(5) e) f(a - 1)
o) (-5) a) f(a) £) f£(m)

7. If f: x‘—-—>% x3 - 12%° + %8- x - 20 has the domain {1, 2, 3, 4},
a) find the image of f, and b) deplct f as in Figure 1-1d.
8. If x & R, given the functions
f: X—>» X
and -
S8 x——+>§-
are f and g the same function? Why or why not?
9. What number or numbers have the image 16 under the following
functions?
a) f: x—> x?
b) f: x—» 2x
c) f: x—> Vx2 + 112

1-2. The Graph of a Function.

A graph i1s a set of polnts, If the set consists of all points
whose cocrdinates (x, y) satisfy an equatlon in x and y, then
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the set is said to be the graph of that equation. If there is a
function f such that, for each point (x, y) of the graph, and for
no other polnts, we have. y = f(x), then we say that the graph is
the graph of the function f. The graph is perhaps the most in-
tultively illuminating representation of a function; it conveys at
a glance much important information about the function. The func-
tion x——a-xe, (when there is no danger of confusion, we sometimes
omit the name of a functiocn, as "f" in f:x-——>“p) hro bhie b

bolic graph shown in Figure 1-2a. We can look at the parabola and
get a clear intuitive idea of what the function 1s doing to the
elements of its domain. We can, moreover, usuvally infer from the
graph any limitations on the domain and the range. Thus, it is
clear from Figure 1-2a, that the range of the function there
graphed includes only non-negative numbers, and in the function

f£: x——>+/25 - x° pgraphed in Figure 1-2b, the domain {x: -5< x<5)
and range {y: O ¥ <L 5} are eacily determined, as shown by the
heavy segments on the x-axis anc y-axls, respectively.

IFigure 1-2a.
Gravh of the function f: x——9-x2

20
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[5)

Domain
- 1

Figure 1-2b,
Graph of the function f: x—m0» 25 - x2

Another illustration: the functilon
’ f: x—>x/2, 2<xL6 o
has domain A = {x : 2 < x £ 6) and range B = {f(x) : 1 < £(x) < 3).
In this case we have used open dots at 2 on the x axis and at 1 on
the y-axils to indicate that these numbers are not elements of the
domain and range respectively. See Flgure 1-2¢c.

T""'S
Range /
b

——

X
o ¢ § \
i, Domain ! '
Figure 1l-2c.
Graph of the function f: x—>x/2, 2 < x £ 6.
21
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As might be exp.vf nvery possible gr. is the g aph »f
a function. In partic. Lrfinition 1-1 requ.... c¢hat a function
map each element of its domain ..to only one element of its range.
In the language of graphs, this says that only one value of ¥y
can correspond to any value of x. If, for example, we look at the

2 2

graph of the equatlon x~ + y~ = 25,. shown in Figure 1-2d, we can

YYo5s)

(0,-5)

Figure 1-2d.

Graph of the set S = [(x,¥y) :»x2

+ y2 = 25},

see that there are many instances in which one value of x 1is
assoclated with two values of y, contrary to the definition of
function. To glve a specific example, 1f x = 3, we have both
vy= U4 and y = -4; each of the points (3, 4) and (3, -4) is on the
graph. Hence this is not the graph of a function. We can. however,
break it into two pleces, the graph of y =./25 - x2 and the
graph of y = - ,/25 - x2 (this makes the points (-5, 0) and (5, 0)
do double duty), each of which 1s the graph of a function. See
Figures 1-2e and 1-2f.
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f <

—

o

T (0,-5)

Figure l-2e. ~ Figure 1-2f.

Grarh of y = /25 - x2. Graph of ¥y = -~A/25 = x2.

If, in the xy—plahe, we imagine all possible lines which are
parallel to the y-axis, and if any of these lines cuts the graph
in more than one point, then the graph defines a relation that is
not a function. Thus, in Figure 1-2g, (a) depicts a function, (b)
depicts a function, but (c) does not depict a function.

N
x
Ix

(a) (b) (c)

Figure 1-2g. Function or not?

[sec. 1-2]

23



13

Exercises 1-2

1. Which of the following graphs could represent functions?

(2) A e ¢ MO
—

|
|
!
|
1

X
X

T

(c) | (@)

¥ %
p <

2. Suppose that in (a) above, f: x—> f(x) is the function whose
graph 1is depicted. Sketch
a) g: x—>-f(x) b) g: x—>f(-x)

3. Graph the following functions.
a) f: x—> 2x

b) f: x—> %
c) f: x=>y =4 -xand x and y are positive integers.
d) £ x—> -. /4 - x2 .

[sec. 1-2]
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%, Graph the following functions and indicate the domain and
range of each by heavy lines on the x-axis and y-axis respec-
tively.

‘a) f: x—>y =x8and 2<Yy <3
b) f: x—>4/9 - X ‘
c) f: x—> Jvxand x < &

1-3. Constant Functions and Linear Functions

" We have introduced the general ldea of function, which is a
particular kind of an assocliation of elements of one set with ele-
ments of another. Ve have also interpreted'this idea graphically

for functions which map real numbers into real numbers. In Sections e
1-1 and 1-2 our attention was concentrated on general ideas, and
examples were introduced only for the purposes of illustration. In
the present sectlon we reverse this emphasis and study some particu-
lar functions that are important in their own right.. We begin with
the simplest of these, namely the constant functions and the linear
functions.

Let.us think of a man walking north along a long straight road
at the uniform rate of 2 mileg per hour. At some particular time,
say time t = O, this man passed the milepost located one mile north
of Baseline Road. An hour before this, which we shall call time
t = -1, he passed'the milepost located one mile south of Baselilne
Road. An hour after time t = O, at time t = 1, he passed the mile-
post located three miles north of Baseline Road. TIn order to form
a convenient mathematical plcture of the man's progress, let us
consider miles north of Baseline Road as positive and miles south
~s negative. Thus the man passed milepost -1 at time t = -1, mile-
post 1 at time t = 0, and milepost 3 at time t = 1. Using an ordin-
ary set of coordinate axes let us plot his position, as indicated
by the mileposts, versus time in hours. This glves us the graph
shown in Figure 1-3a.

In t hours the man travels ot miles. Since he is already
at milepost .1l at time t = 0, he must be at milepost 2t + 1 at
time t. This%pdiring of numbers 1s an example of a linear function.

Now let us plot the man's speed versus time. For all values
’ [sec. 1-3]
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distance“
in mlles

3t "
ol /

g
4/ 123

-1

time
in hqurs

Figure 1 3a. -‘.,‘ }
Graph of the function f: t—>d = 2t + 1

f-of t during the time he 1s walking his spééd 15-,2 miles per
" hour. We have graphed this information in Flgure 1-3b. When

{ Speed

1

B Flgure 1-3b.
Graph of the functlon g: t—>s = 2,

t = -1 his speed 1s 2, when t = O hls speed 1s 2, etc.; with
" each number t we assoclate the number 2. This mapping, in which

the range contains only the one number 2, 1s an example of a con-
stant functlon.

Definlitlion 1-2. If with each réal number x we assoclate one
fixed number ¢, then the resultant mapping,
’ f: x—>c,

[sec. 1-3]
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is called a constant function.

The discussion of constant functions can be disposed of 1in a
few lines. The function we Jjust mentioned, for example, 1s the
constant funetion g&: t—>2. The graph of any constant function
is a line parallel to the horizontal x-axis. Constant.functions
are very simple, but they occur over and over again in mathematics
and sclence and are really quite important. A well-known example
from physics is the magnitude of the attraction of gravity, which
is usually taken to be constan% over the surface of the earth --
though, in this age, we must ri:cognize the fact that the attraction
of gravity varies greatly throughout space.

The functions we examine next also occur over and over again
in mathematics and science and are considerably more interesting
than the constant functions. These are the linear functions.

Since you have worked with these functions before, we can begin at
once with a formal definition.

Definition 1-3. A function f defined on the set of all real
numbers is called a linear function if there exist real numbers m
and b, with m # 0, such that

£(x) = mx + b,

Example 1. The function f: x—>2x + 1 1s a linear function.
Here f£(0) =1, £(1) = 3, £(~1) = -1. This function was described
earlier in this section in terms of t, with f(t) = 2t + 1. Its
graph can be found in Figure 1-3a.

We note that the graph in Figure 1-3a appears to be a straight
1ine. As a matter of fact, the graphs of all linear functilons are
straight lines (that is why we call them ")inear" functions); you
may be familiar with a proof of this theorem from an earlier study
of graphs. In any case, we here assume it.

An important property of any stralght line segment 1g its
slope, defined as follows.

Definition 1-4%. The slope of the line segment from the point
P(xq, y,) ®© the point Q(xy, y2) 1s the number

Yo - V3
Xp = X1
provided x, # X5. If Xy = Xp, the slope is not defined.

’
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Note that, by Definition 1-4, the slope of the line segment
from the point Q(xz, y2) to the point P(xl, yl) is

Y3 = ¥p
X = Xy O

But ¥y - ¥p Yo = ¥
X, - Xy - Xy - Xy ’

so 1t 1s immaterial which of the two points P or Q we take first.
Accordingly, we can speak of (y2 - yl)/(x2 - xl) as the slope of
the segment joining the two points, without specifying which comes
first.

What about the geometric meaning of the slope of a segment?
Suppose, for the sake of definiteness, we consider the segment
joining P(1, 2) and Q(3, 8). By our definition, the slope of this
segment is 3, since (8 - 2)/(3 - 1) = 3 (or (2 - 8)/(1 -~ 3) = 3).
Note that this is the vertical distance from P to Q divided by the
horizontal distance from P to Q, or, in more vivid language, the
rise divided by the run,.

Srise (6 units)

P(1,2)-\_

S— .
run (2 units)

Flgure 1-3c.
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Let us think of the segment PQ as running from left to right, so
that the run is positive. If the segment rises, then the "rise" is
positive and the slope, or ratio of rise to run, 1s positive; if,
on the other hand, the segment falls, then the "rise" 1s negative,
and the slope 1s therefore negative. The steeper the segment, the
‘larger 1s the absolute value of 1ts slope, and conversely; thus we
can use the slope as a numerical measure of the "steepness" of a
segment .

We have stated that slope is not defined if x, = X,; in this
case, the segment lies on a line parallel to the y-axis. It 1s
important to distinguish this situation from the case ¥y, = V¥, (and

Xy # x2), in which a slope 1s defined and in fact has value O; the
segment 1s then on a line parallel to the x-axis.

If a line is the graph of a linear functlon f: Xx—>mx + b,

then for any Xy and X5s x1 % X5 the slope of the segment jolning
(x4, f(xl)) and (x2,f(x2)) 1s, by definition,

f(x2) - f(xl) _ (nxy + b) - (mx1 + b)

X2~ % Xp = Xy -
in other words, the slope m 1s independent of the choice of Xy
and X5, and 1s therefore the same for every segment of the line.
Hence we may consider the slope to be a property of the line as a
whole, rather than of a particular segment. We shall also simplify
our language a little and speak of the slope of the graph of a func-
tion as, simply, the slope of the function. We see, moreover, that
we can read the slope of a linear function directly from the expres--
sion which defines the function: +the slope of f: X—>mx + b is
simply m, +the coefficlent of x. Thus, the slope of the linear
function f: x—>2x + 1 1s 2, the coefficlent of x, and, similar-
1y, the slope of g: x—>-5x 18 -5.

Since the slope of a linear function f: x—> mx + b 1s the
number m # 0, it follows that the graph of a linear function 1s not
parallel to the x-axls. Conversely, 1t can be proved that any line
not parallel to either axis is the graph of some linear function.
We assume that this, also, is known to you from previous work, and
the proof is therefore omitted. '

If the graphs of the functions fl: X—>mx + bl and

[sec. 1-3]
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52: X—> moX + b re=t, there must be a value of x w..ch satis-
fies the equatio: I X) = f2(x), that is,

mX + bl = MyX + b?.
or (my - my)x = . -z
Ty # my, then = vilue X = (v - 2o my - r2) satic ‘les this
=ruation, and th- °-- do indeed mee: °f my = m, and bl = b2,
-o=: funetions f, -4 - are the same, =:d there is only =m=2 line.
If‘ml = m, anc :; = ; the equation has no solution, an 'ne lines
do not meet. We . ¢ _.ude that lines with the same slope. : 2 paral-

lel, and that twc 1Z. 2s parallel to each other but not t: tie y-a=—:s
have equal slopes..

Note that lin=: having zero slor: that 1s, lines p :llel to
the x-axis, are gra  1s of constant fuuctions. On the other hand,
lines for which no ' lope 1is defined, that is, lines parallel to
the y-axis, cannot be graphs of any functions because, with one
value of x, the graph associates more than one value -- in fact,
all real values.

Example 2. Find the linear function g whose graph passes
through the point with coordinates (-2, 1) and is parallel to the
graph of the function f: x—>»3x - 5, .

Solution. The graph of f 1is a line with slope 3. Hence the
slope of g 1is the number 3, so that g(x) = 3x + b, for some as
yvet unknown b. Since g(-2) = 1, this implies that 1 = 3(-2) + b,
b = 7, and thus g(x) = 3x + 7 for all x € R,

Exercises 1-3

1, Find the slope of the function [ 1if, for all real numbers x,
a) f(x)=23x-7
b) f(x) =6 - 2x
e) of(x) =3 - x
d) 3r(x) = 4x -~ 2
2. Find a linear function f whose slope is -2 and such that

1l

i

a) f(1) =4 c) f(3) =1
b) £(0) = -7 d) f£(8) = -3
[see. 1-3]
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10.

11.

12,

13.

Find thz sloy=  tae 1irear function f if °f* = -3 and

a) f(C) =+ c) £(5) =5

b) f£(2) =: d) f(6) = -13

Find a funct.osr >  :—aph is the line Jjoining -he points

a) P(1, 1), @~ ) c) P(1, 3), Q(1, ) :

b) P(-7, ¥), &5, O, d) P(1, 4), (-2, %)

Given f: x—> -3 + -/, ‘I.nd a function whose graph 1s parallel
to the graph of = ! vasses through the point

a) P(1, 4) c) P(1, 5)

b) P(-2, 3) d) P(-3, -4)

If f 4is a cor. = ¢ Turztion find £(3) if

a) f£(1) =5

b) f£(8) = -3

c) f£(0) =4

Do the points P . ¢ . a(3, -1), and S(7, -9) all lie on a sin-

gle 1line? Prove your zssertion.

The graph of a 1 nei- function f  passes through the points
P(100, 25) and «.. .., 39). Find

a) f£(100.1) » c) f£(101.7)

b) £(100.3) d) £(99.7)

The graph of a li-~ar function f passes through the points
P(53, 25) and Q(5+, -19). Find :

a) £(53.3) c) f£(5k.4)

b) £(53.8) d) £(52.6)

Find a linear func:—-— with gr=ph parallel to the line with
equation x - 3y + ¢ =" and passing through the point of inter-

section of the linez »-.%h equations 2+ 7y + 1 = O and

x -2y + 8 =0,

Given the points A(1, 2), B(5, 3), ¢(7, 0), and D(3, -1), prove
that ABCD i1s a parallelogram.

Find the coordinates of the vertex C of the parallelogram ABCD
if AC is a'diagonal znd the other vertices are the points:

a) A(1, -1), 3(3, %), (2, 3);

p) A(0, 5),  B(1, -7), D(k, 1)

If ¢ 1is a real number, show that the point P(t + 1, 2t + 1)

" is on the graph ' f: x—>»2x - 1,

[sec. 1-3]
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14, If you grapn the set of all ordered pairs of the for:
(¢t -1, 3+ 1) for t € R you will obtain the graph .: -
linear funcion f. Find £(0) and £(8).

.15. If you graph the set of all ordered pairs of the form
(t -1, £2 - 1) for t € R, you will obtvain the graph +-f 2
function f. Find £(0) and £(8).

16. If the slorz of a linear function f 1is negative, prave wiat
f(xl) > f(xg) for x; < x,.

}

1-4. The Absolute-value Function

A function of importance in many branches of mathemati: = s
the absolute-value function, f: x—> |x| for all x € R. T==
absolute value of a number describes the size, or magnitude, o
the number, without regérd to its sign; thus, for example
|2] = |-2| = 2 (read "|2|" as "the absolute value of 2"). A common
definition of |x]| is

Definition 1-5.

X, if x>0
|x| = { .;,.':‘
-X, if x € O.

A consequence of this definition is that no number has a nega-
tive absolute value (-x is positive when x 1is negative); in fact,
the range of the absolute-value function is the.entire set of non-
negative real numbers.

A very convenient alternative definition of absolute value is
the following:

Definition 1-6. |x| = %2 .

Since we shall make use of this definition in what follows.
it is important that you understand it, and you must therefore be
qulte sure of the meaning of the square-root symbol,vf—. . This
never indicates a negative square root. Thus, for example,

J(-3)2 = /T =3, not -3; /X 1s never negative. Tt is true
that every positive number has two real square roots, one of them
positive and the other negative, but the symbol./ has been
assigned the job of representing the positive root only, and if we

[sec. 1-4]
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wish to vrepresent the negative rc. we muiii vse a minus sign beore
the radical. Thus, for example, 2 number % has two square —omsE,
5 and — « 5.

The g—=oh of the absolute-ve e function s shown in Figure
1-4a,

Figure 1l-%4a.
Graph of the function 2: x—>|x|

Tou should be able to see, from the first definition of this func-
tion given above, that this graph consists of the origin, the part
of the line y = x Shat lies in Quadrant I, and the part of the line
v = -x that lies in Quadrantc II. '
There are two important theorems about absolute valuer.
Theorem 1-1. For any —wo real numbers a and b, lab| =
lal-|pl. ' :
Proof: |a|-Ib| = o/ 22 /b2 = /a2 = ./ (ab)e = |abl.
Theorem 1-2. For 2=y “wo real numbers a and b,
la + bl <l=| + Ibl,
Proof: By Definitimn 1-6, Theorem 1-2 18 equivalent to
Vz+v)2 o JSad + </ 12, (1)
which is eguivzient to o
22 + 2ab + b < a2 + 222 V02 4 b2,
[sec. 1-4]
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2ab < 2,/a2 /b2

or ab </a?\/7 (2)
‘ow equies 2) is easy to prewe If =z and b have oppo -~
's8ite :igns, then £ < 0 and (2) hold&s with the < sign. Otherwise,
we haw2 =b =VA;~ VA;i
Hence in any zz== 2b SVA;§'V/E§’
and therefore . ==1ds. gq.e.d.
Thus, far*fwzmple, ~2)(3)| = 46l =6=2 .3 = |-2] 131,
(-2) + (3)] =1 ¢ 5 =2+ 3= |-2|— |3]|, and
(-2) + (-3)] = 5 + 3= |-2] + -3,
Exercises ~.-4
1. a) For wh=t x € R is it true th=t N/EE = x?
b) For what x € R is it true that ./x2 = -x?
2. a) For what.x &€ R is it true that Ix - 1] = x - 19
b) For what x © R is it true that [x ~ 1] = -x + 17
c) Sketch a graph of f: X-—s|x ~ 1]. R
d) Sketch a graph of f: xT—>|x: - 1.
3. Solve: '
a) x| = 14
b) [x=2| =17
e) [x—3] = -1
4. For wk=z values of = 1is 1. —ue that
a) lx-—~2| ¢1
b) Ix -3l v
¢/, =21l - 0.2
¢d {22 — 3 L o0.0b
=3 L+ 351 0,12
5. .ahOW'tﬁf"zéagz x-|xli for 21", x € R,
6. Show trkat = - b| < |z} + {b}.
7. Show the—=w—~ b + |a —2!) is =znal to the greater of a
and bm,.manqyou writ= a siallar expression for the lesser of
a .and 7
8. Sketch: ¥y = |x| + |x - 2|. (Him=: you must consider, sepa-

1-43
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rately, the three possibilities x < 0, 0 { x < 2, and X 2 2.)
3, If 0<x< 1, we can multiply both sides of the inequality
x < 1 by the positive number X TO obtain x2 < x, and we can
similariy show that x3 < 12, :u x3, and so on. Use this
result to show that if |x| < -, =hen |x2 + 2x| < 3|x].
10. Show that, if 0 < x < k, “hen xz " kx. Henes show then, 1f
|x] € 0.1, th=n |x2 - 3x < LK.
11. For what values of x 1s it t=ue that £x2 = 2x| < 2.7301|x|?

1-5, Composition of Functions

Our consideration of functions, to this point, has been con-
cerned with individual functions. with thelr domains and ranges,
and with thesir graphs. We now carsider certain things that can be
done with two or more functicns sumewhat as, when we start school,

we first learn numbers and then l=arn how to combine them in various
ways. There 1s, as a mattsr of f=rt, a whole algebra of functlons,
Just as there 1s an algebrz. of nuzmbers. Funccoions can be added,
subtracted, multiplied, anc divided. The sum of two functions f
and g, for example, is &="ined > be the function
T-g: z—= £(x) + &(x)

which has fcr ¢omain the irtersection of the domains f £ and
g; there arz similar defin’‘..ons, which you =2an probably supply
yourself, for the differenc:, product, and quotient of two func-
tions. Because, for exampi@, The number (f+g)(x) can Zie Zound by
adding the numbers f(x an¢ gx. . £t follows tizzt thiz-part of the
algebra of functicns s so wxuch lixe the familiar algeara. of mum-
bers that it would rrr pay .8 to examine it carefully. There is,
however, ane importarn: operztion in this algebra of fumnctlons that
has no counterpart in che algebra of numbers: the ope-ation of
composition.

The basic 1dea of composition of two functions is +that of a
xind of “"chain rezetion" in which the functioms occur one after the
other. Thus, an zutomobile driver knows that the amouric e dexvesses

the accelerator w=dal controls the amount of gasoline I2d mo the
cylinders and tnis in turn affects the speed of the car. -A&gain,
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the momentum of a rocket s ed when it i1s near th= end of its —unway
. depends on the velocity of the sled, and this in turn depends on
the thrust of the propelling rockets.

Let us look at a specific illustration. Suppose that f 1is
the function x~—>3x - 1 (this might be a tims-welocity function)
and suppose that g 1s the function x—-—>2xE {(this might be a ve-
locity-~energy function). Let us follow what =zzpens when we "apply
these two functions in successism--first f, +thsn g--to a parti-
cular number, say the number 4. In brief, let =3 first caliculate
f£(4) and then calculate g(f(%)). (Read this "g of f of 4".)

First calculate f(4). Simzs f 1is the function x—=3x - 1,
£f(4) = 3.4 ~ 1 =11, Then celczizte g(f(%4)), or g(1l). Since g
' 1s the function x —»2x°, g(11) = 2 - 112 = 242. Thus g(£(k)' =
g(1l) = 242, 1In general, g(f'x)) Ls the result we obtain whex we
first "apply" f to an element =x and then "zmzly" g +to tome
result. The function x—> g(f(xz)) is then ca’l=d a commositz af
f and g, and denoted gf.

Ve say a cormposite rather than th= composiz= becaus= the orgsr
in which these functions occur Iz Imp=—tarm=. 7T se= that this is
the case, start with the number » mgain, b=t tzis time finé 7))
first, then f(g(4)). The results =re as Tolicows:

g(l) =2 . 42 =22 and £(g(4)) =£(32) =3 - 32 ~ 1 = O=.
Clearly g(f(4)), which is 24z, iz ot the sam= =5 f(g(4)), which
is 95.

Warning. When we write "gf" = mean that ¥ is to be =pplied
before g and then g 1s applied to f(x). 3inc= "f" is wristen
after "g" is written, this car eas:ly lead to confusion. <You can
avoid the confusion by thinking of the equstion (=f)(x) = g(f(x)).

It may be helpful to diagr=n The abo7z process as follown:

If gf is the function x—> g (x>

snd Zg Is T Tunction
x—>f(g(x)) we have

/2\ i
a—t 5—9 som 49 53 £ o5
[sec. 1-5]
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Note pzrticularly that fg 1s not the product of f and g
mentioned earlier in this section. When we want to talk about this
product, f - g, we shall always use the dot as shown. Incidentally,
for the above example, we have (f - g)(4) = £(4) - g(4) =11 .- 32 =
352 = 32 . 11 = g(4) - £(4) = (g - £)(%4).

To generalize this-illustration, let us use "X instead of 4
and find algebraic expressions for (gf)(x) and (fg)(x). We do this
as follows:

(7)) ) £(x)) = g(3x - 1) = 2-(3x - 1)°
and (fg)(x) = f£(g(x)) = 2x ) = 3(2x ) -1 = 6x° - 1.

Again, note that (gf)(x) and (fg)(x) are not the same so the
function gf is not the same as the function fg. In symbols,
gf # fg. 1If, now, we substitute 4 for x we obtain

(gf)(4) = 2(3 - 4 - 1)2 = 2hp
and (£g)(¥) = 6 - 4% -1 =195
These ~esults agree with the ones we obtained above.

¥= are now ready to define the genéral process that we have
been i~lustrating. S

D=finition 1-7. Given two functions, f and g, the func-
tion x—> g(f(x)) is called a composite of f and g and denoted
gf. The domain of gf is the set of all elements x 1in the domain
of f for which f(x) is in the domain of g. The operation of
forming a composite of two functlions is called comgosition.

Example 1. Given that f: x—» 3x - 2 and g: x———'>x5 for all
x € R, find

a) (sf)(x) c) f(g(x) + 3)

b) (££)(x) d) f(g(x) - £(x))

Solution:

a) (2f)(x) = g(£(x)) = g(3x - 2) = (3x - 2)°

b) (ff)(x) =f( £(x)) = £(3x - 2) = 3(3x ~2) ~2=9x -8
c) f(g(x) + 3) = £(x° +3) = 3(x°+3) -2= 32 + 7

d) f(g(x) - £(x)) = £(x2 - 3x + 2) = 3(x? ~3x +2) -2=

3x5 - 9x + 4 »
If we think of a function as a machine with an input and an
output, as suggested in Section 1-1, we see that two such machines
can be arranged in tandem, so that the output of the first machine

[sec. 1-5]
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' feeds into the input of the second. This results in a "composite"

~ process that 1s analogous to the operation of composition. It is
illustrated in Figure 1-5b. In this figure the machine for f and

--the machine for g have been housed in one cabinet. This compound .. .
machine 1s the machlne for gf.

Ry

/i—f(x)

g

glfx)

Figure 1-5b,
Schematic representation of the composition of functions.

Note that the machine for. gf will jam if either of two things
happens: : .
a) It will jam if a number not in the domain of f is fed
into the machine.

b) It will jam if the output f(x) of f is not in the
domain of g. "

Thué, once again we see that the domain of gf i1s the set of all \
elements x 1in the domain of f for which f(x) is in the domain
of g.

We have noted that the operation of compozition is not commu-
tative; that 1s, it is not always true that (g = gf. On the other
hand, it is true that this operation is associative: for any
three functions f, g, and h, it is always true that (fg)h =
f(gh). We shall not prove this theorem; we shall however, illus-
- trate i1ts operation by an example.

Example 2. Given f: x———>x2 + x+1, g: x—>»x + 2, and
'ht x——>=-2x - 3, find

[sec. 1-5]
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a) fg c) (fg)h
b) gh ) da) f(gh)
Solution:

2) (fe)(x) = (x+2)2+ (x+2)+1=x°+5x+7, s0

fg: x—>x° + 5x + T -
b) (gh)(x) = (-2x - 3) + 2 = -2x ~ 1, so gh: x—>-2x ~ 1
c¢) (fglh: x—> (-2x - 3)2 + 5(-2x - 3) + T
a) f(gh): x—> (-2x - l)2 + (-2x - 1) + 1
It is not altogether obvious from these expressions that (fg)h- and
f(gh) are the same function. But if you will simplify the expres-
sions you will see that they are indeed the same.

Exercises 1-5

1. Given that f: x——+>x2 ~ 1l and g: xf—a}x + 2 for all x € R,

findg
a) (fg)(-2) e) (fg)(x)
b) (sf)(0) £)  (&f)(x)
c) (e8)(1) g) (fg)(x) - (£g)(1)
a) (££g)(1) x =1
if x #1
2. Let i1t be given that f: x—>ax + b and g: x—> ¢cx + d for all
x € R.

a) Find (fg)(x).
b) Find (gf)(x).
¢c) Compare the slopes of fg and gf with the slopes of f and
g.
d) Formulate a theorem concerning the slope of a composite of
two linear functions.
3. Suppose that f: xr——>l/x for all real numbers x different
from zero.
a) Find (££)(1), (££)(-3), and (££)(8).
p) Describe ff completely. '
4. Tet it be given that j: x—>x and f:x—>x + 2 for all x € R.
a) Find £j and Jf. [First find (£j)(x) for all x € R.]
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b) Find a function g such that fg = j. [That is, find g
such that (fg)(x) = 3(x) for all x € R.]

e¢) Find a function h such that hf = j.
“ith that of (b).

a) If f: x—>x and g: z&——>x3, find expressions for (fg)(x)
and (gf)(x).

b) If f: x—>x" and g: x—>x", find expressions for (fg)(x)
and (gf)(x).

a) If f: x—>X ard g x-—>x3, find an expression for (f-g)
(x), where f-z iis the product of f and g; that is,
(f.g)(x) = £(=. g(x). Compare with Exercise 5(a).

b) If £f: x—>x" znd g: x—>x" for all x € R (where m and
n are positiw= integers), find an expression for (f-g)(x).
Compare with Ex=rcise 5(b). —

I

Compare your result

Suppose that f: =™—»x + 2, g: X—>»x - 3, and h: x———:>x2 for
all x € R. Fim3d ==pressions for

a) (f-g)(x) a) (gh)(x)
b) [(f-g)hl(x) e) [(fh)-(gh)l(x)
¢) (fh)(x) .

In Exercise 7, compare your results for (b) and (e). They
should be the same. Do you think this result is true for any
three functioms &£, g, and h, that map real numbers into
real numbers?
Would you say thz=t £(g-h) = (fg):(fh) for any three functions
f, g, and I, tik=t map real numders into real numbers
State which of the following will hold for all functions £,
g, and h, that map real numbers into real numbers:

(f#£)h = £h + gh

() = fg + fh ,
Prove that the ==t of all linear functions 1s associative under
composition; th=t 1is, for any three linear functions f, g,
and h, ‘

Z(gh) = (fg)n
40
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1-6. Inversion

Quite frequently in science and in everyday life we encounter
quantities that bear a kind of reciprocal relationship to each:
other. With each value of the temperature of the air in an automo-
bile tire, for example, there 1s assoclated one and only one value
of the pressure of the air against the walls of the tire. Converse-~
ly, with each value of the pressure there is assoclated one and
only one valﬁe of the temperature. Two more examples, numerical
ones, will be found below.

Suppose that f 1s the function x—s»x + 3 and g i1s the
function x——>x - 3. Then the effect of f 1s to increase each
number -by 3, and the effect of g 31s to decrease each number by
3. 'Hence f and g are reciprocally related in the sense that
each undoes the effect of the other, If we add 3 to a number and
then subtract 3 from the result we get back to the original number.
In symbols

]
»

(sf)(xj g(f(x)) = g(x+3) = (x+3) -3

Similarly,
(rg)(x) = £(g(x)) = £(x - 3) = (x - 3) + 3
As a slightly more complicated example we may take
f: x—>2x - 3 and g: x—> =L ; 3a
Here f says "Take a number, double it, and then subtract 3." To
reverse this, we must add three and then divide by 2. This 1s the
effect oi the function . g. In symbols,

(87)(x) = g(r(x)) = a(ex - 3) =@E=FLH 3 _ &,

"
L1
n
L1
»

Similarly,

(f€)(x) = £(g(x)) = c(252) = 2243 - 5= x,

In terms of our representation of a function as a machine, the
g machine in each of these examples is equivalent to the f machine
running backwards; each machine then undoes what the other does, .
aﬁd if we hook up the two machines in tanden, every element thét”A
gets ivrough both will come out just the same as it orizinally went
in. R

We now generalize these two examples in the following defini-

tion of inverse functions. 4:1

[sec. 1-6]



31

Definition 1-8. If f and g are functions so related
that (fg)(x) = x for every element x 1in the domain of g and
(gf)(y) = y for every element y in the domain of f, then f
and g are sald to be inverses of each other, In this case both

f and g are said to have an inverse, and each is said to be an
inverse of the other. ’

As a further example of the concept of inverse functions let
us examine the functions f: x———>x3 and g: x-——e-%ﬁa In this case

(£8) (x) = £(g(x)) = £{ 3&) = ( 373 = x
and (82)(x) = g(£(x)) = g(x3) = ¥x3 = x
for all x € R.

If a function [ takes x into y, that is, ify = f(x),
then an inverse g of f must take y right back into x, that
is, x = g(y). If we make a picture of a function as a mapping,
with an arrow extending from each element of the domain to its
image, as in Figure 1-6a, then to draw a picture of the inverse
function we need merely reverse the arrows, as in Figure 1-6b.

. |

T\%

X, l I Yo X2 ><jya

xl : Y. Xﬁ Y2
A b

Figure 1-6a. A functlon. Figure 1-6b, Its inverse.

f
24

We can take any mapping, reverse the arrows in thils way, and
~obtain another mapping. The important question for us, at this point,
is this: If the original mapping 1s a function, will the reverse map-

ping necessarlly be a function also? In other words, given a
: C 4
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function, does there exlst another function that preclsely reverses
the effect of the glven functlon? We shall.see that thils 1s not
always the case.

The definition of a function (Definition 1-1) requires that
to each element of the domain there correspmds exactly one element
of the range; 1t 1s perfectly all right for several elements of
the domain to be mapped onto the same element of the range (the
constant function, for example, maps all of 1ts domain onto one

element), but 1f even one element of the domaln is mapped onto more
than one element of the range, then the mapping just isn't a func-
tion. 1In terms of a picture of a function as a mapping (such as
Figures l-la and 1-1lc), thls means that no two arrows may start
from the same polnt, though any number of them may end at the same
point. But 1f two or more arrows go to one 'polnt, as in Figure
l-6c, and if we then reverse the arrows, as in Figure 1-6d, we
wlll have two or more arrows starting from that point (as in Flgure
l-lb), and the resulting mappling 1s not a function. Since the word
"inverse" 1s used to describe only a mapping which is a function,
we can conclude that not every functlion has an inverse.

X2
X X3

A B ' A B

" Figure 1l-6c. ' Figure 1-6d.

43
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A specific example is furnished by the constant function f: x—>3;
since £(0) = 3 and £(1) = 3, an inverse of f would have to map
3 onto botihh O and 1, ’By definition, no function can do this.

The preceding argument shows us Just what kinds of functions
do have inverses. By comparing the situation in Figures 1-6a and
1-6b with the situation in Figures 1-6c and 1-6d, we can see that
a function has an inverse if and only if no two arrows go tovthe
same point. In more precise language, a function f has an in-
verse 1f and only if x, # X, implies f(xl) # f(xz). A function of
this sort is often called a "one-to-one" function. A formal proof
of this Theorem will be found in Chapter 4.

Exercises 1-6

1. Find an inverse of each of the following functions:
a) x—>»x - 7 c) x—>1l/x
b) x—>»5x + 9 '

2. Solve each of the following equations for x 1in terms of y
and compare your answers with those of Exercise 1:
a) y=x-7 c) y=1/x
b) y=5x+9

3. Justify the following in terms of composite functions and in-
verse functions: Ask someone to choose a number, but not to
tell you what it is. "Ask the person who has chosen the number
to perform in succession the following operations. (i) To
multiply the number by 5.- (i1) To add 6 to the product.
(11i1) To multiply the sum by 4. (iv) To add 9 to the product.
(v) To multiply the sum by 5. Ask to be told the result of
the last operation. If from this product 165 is subtracted,
and then the difference 1s divided by 100, the éuotient will be
the number thought of originally."
(W. W. Rouse Ball).

44
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1-7. Summary of Chapter 1.

This chapter deals with functlions in general and with the con-
stant and linear functlions in particular,

A function is an association between the objects of one set,
called the domaln, and those of another set, called the range, such
that exactly one element of the range is assoclated with each ele-
ment of the domain. A function can be represented as a mapping
from its domain to its range.

The graph of a function is often an aid to understanding the
function. A graph is the graph of a function if and only if no 1ine
parallel to the y-axis meets it in more than one point.

i A constant function is an association of the form f: x—>c,

- for some fixed real number c, with the set of all real numbers ps
its domain. The graph of a constant function 1s a straight line
parallel to the x-axis. :

A linear function is an association of the form f: Xx—>mx -+ b;
m # 0. The domain and the range Of a linear function are each the
set of all real numbers. The graph of a linear function is a
straight line not parallel to elther axis, and, conversely, any such
line 1s the graph of some linear function. '

The slope of the line through P(xl, yl) and Q(xz, y2) is

Yo = ¥y

~ Xp = %y
if X4 % X5 If Xy = X5, NO slope is defined, and the line is paral-
lel to the y-axls. Lines with the same slope are parallel, and
parallel lines which have slopes have equal slopes. The slope of
the graph of the linear function f: x——>mx + b 1s the coefficient
of x, namely the constant m.

The absolute-value function 1s conveniently defined as
f: xf——>.VAZ§: The domain of thls function 1s the set of all real
numbers and the range 1is thé set of all non-negaﬁiVe réal numbers;“'”

If f and g are functlions, then the composite function:fg
is fg: x—>f(g(x)), with domain all x in the domain of g such
that g(x) is in the domain of f.

(iven a function f, 1if there exists a function g such that

[gec. 1-T7]
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(gf)(y) = y for 2all y 4in the domain of f and (fg)(x) = x for
all x in the domain of g, then g 1s an inverse of f. Not all
functions have inverses; those that do are called one-to-one func-
tions.

Miscellaneous Exerclses

1. Which table defines a function f: X—>Yy?
a)x|1|2|3 b)x|1|2|2
y|l|2|2 y|1|2|3

2. Which graphs represent functions? Which of these functions have

inverses?
A A ﬂ\

a)

VN .

(4]
~—
4]
~r

v

! .
\4

p

v

»

.

4G



36

3. What is the constant function whose graph passes through (5, 2)? -

4, For what vaiuves of a, b, and c, will

2 + bx + ¢ be a constant function?

5. What is the constant function whose graph passes through the
intersection of Ll: y = 3x - 2, and L2: 3y - kx + 5 =

6. At what point do Lyt y = ax + 4, and Ly: ¥ = 5x + b, intersect?
Do they always intersect?

7. Write the linear functions f and f2 whose graphs intersect the

x-axis at P(-3, 0) at angles of 45° and 450, respectively.

8. If 10x +y -7 = 0, what is the decrease in y as x increases.
from 500 to 5C5? . What is the increase in x as y decreases
from -500 to -505?

9. Write the equation of the line through (0, 0) which is parallel
te the line through (2. 3) and (-1, 1).

10. Wrxite The equation of =The line which passes through the inter-
section of Ly: ¥y = 6x — k, and Lyt y = 5x + k, and has slope
5/:.

11, Wriie the equation of the line which is the locus of polnts
equidistant from L,: 6x + 3y - 7 = 0 and Lyt ¥y = =2x + 3.

12. Write the equation of the line through (8, 2) which is perpen-
dicular to (has a slope which is the negative reciprocal of the
slope of) Ly: 2y =x + 3,

13. In a manufacturing process, a certain machine requires 10

f: xX—>ax

minutes to warm up and then produces y parts every t hours.
If the machine has produced 20 parts after running 1/2 hour and
95 parts after running 1 3/% hours, find a function f such
that y = £(t), and give the domain of f.

14, . If ABCD is a parallelogram with vertices at A(0, 0),
B(8,0), c(12, 7), and D(4, 7), find
a) the equation of the diagonal AC;
b) %he equation of the diagonal BD;
¢) the point of intersection of the diagonals.

15. Repeat Problem 1U4, using parallelogram ABCD with vertices at
A0, 0), B(xy, 0), C(x X y2,, and D(x, - Xy, y2)

16. Given the constant functions f: x—>a, g8: x—>Db, and h: Xx—>c,
determine the compound functions f(gh) and f(hg). Does this
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result indicate that gh = hg?

Find an inverse of the linear function f: x—>mx + b,

Find a function f such that ff = f,

Sketch a graph of:

a) £(x) =-%

b) x| + vyl =1

e) y=|x-1| - |x+ 1|

If f(x) = 2x - 5 and g(x) = 3x + k, determine Xk so that fg =
gf.

If £(x) = x° and g(x) = /16 - x2, find the domains of fg and
gf. '
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Chapter 2
POLYNOMIAIL FUNCTIONS

2-1, Introduction and Notztion

In this chapter we shall be concerned with functions that are
defined by expressions of the form

n n-1
anx + a, 1% + ... + aqx + ag»

where n 1is a positive'integer or zero, the coerlficients al(1=o,1,
2,3,...sn) are real numbers, and a # C. Such expressions are called
polynomials, and the functions which they define are called polynomial

»functions. The number n is called the degree of the polynomial,
Examples:

(1) 5x3 - SX2L+ x + 10 is a polynomial of degree 3.
(2) f: x—x" -{% x2 is a polynomial function of degree 4,

In the preceding chapter we discussed polynomial functions of
the types
f: x—» c
and
f: x—>mx + b, m # O,
which are called constant and linear functions, respectively., It
is natural to turn next to quadratic functions, that is, polynomial
functions of degree 2,
f: x——a-ax? + bx+c, a#o,
where a, b, and c¢ are constants. Such functions occur fre-
guently, as, for example, in the study of the flight of pro jectiles,
and are familiar to yoh. The most common way to describe functions
~of this kind is by equations such as
y = 2x2 - X - 15, or (1)
£(x) = -2x° - x + 6. : (2)
' Each of these functions can be represented pictorially by a graph
(See Figures 2-1). ‘
An immediate concern is the location of the points, if any,
Wwhere the graphs of these functions intersect the horizontal axis,
that is, the points (x, f(x)) where f(x) = 0. We have at hand

49




ko

1e Af(x)

2 -1 0

S
a

2x° -~ x - 15 f(x) = -2x

y

Figure 2-1. Graphs of quadratic functions.

the means of doing this, namely the quadrzetic .formula,

_ -=b L /b2 - lac
X = Sa .
Applying this formula to Equation (1), we learn that y = O when
X = 3 or when X = = gu Using function notation, we can say:

If £: x—>2x2 - x - 15, then £(3) = 0 and £(32) = 0. The
numbers 3 and %? in the domain of the function are mapped onto O
by f, and hence are called the zeros of f.
Definition 2-1. Let f be a function. If a is a number
in the domain of f with the property that f(a) = O, then a is
called a zero of f.

 The set of all zeros of a function f 1s the set of all x
“such that £(x) = 0; that is, S
the set of zeros of f = {x: f£(x) = 0]}.
This is just another way of saying that the zeros of f are the
roots or solutions of the equation f(x) = O.

We already know how to find the zeros of polynomial functions
of the first and second degree.

‘[sec: 2-1]
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If f: x —>mx + b, m # O, then £(- 2) = O,
2 - m- bt b2 - hac

+ bx + ¢, a # 0, then f( — >4
Upon examining these solutions, mathematicians noticed that the

zeros are expressed in terms of the coefficlents by formulas involv-
ing only the rational operations (addition, subtraction, multipli-
cation, division) and the extraction of roots of numbers, and
believed that it might be pgssible to express the zeros of functions
of higher degree than the quadratic in the same manner. In the
first half of the sixteenth century such formal expressions for the
zeros of the third ané fourth degree polynomial functions were
obtained by Italian mathematicians. Unfortunately, these formulas
are ton complicated to be of practical value in mathematical analy-
sis. Mathematicians usually find it easier even in theoretical
questions to work with the polynomial rather than with any explicit
expression for the zeros.

For the bettcr part of two centuries, mathematicians tried to
discover methods for solving equations of the fifth and higher
degrees by formulas analogous to those for the quadratic, cublc,
and quartic (also called biquadratic) equations. The attempt was -
doomed to failure. In 1824, a young Norweglan mathematician, Niels
Henrik Abel, proved that it is generally impossible to express the
zeros of a polynomial function of-degree higher than four in the

If f: x —ax ) =0,

desired way. This does not mean>that mathematiclans are unable to
obtain any formal solutions for equations of higher degree, but
only that it is impossible to obtain general formulas for solutions
in terms of the rational operations and the extractions of roots
alone. Although the history of the problem seems fo end in failure,
the fact 1s that the methods developed by Abel and his equally
young French contemporary, Evariste Galois, have found the wildest
‘and most useful applications in fields remote from the problem
..they considered. It is often that way in mathematics; the methods:
used to attack a problem frequently have value long after the prob-
lem itself has lost 1ts special significance, (There are a number
of interesting accounts of the historical developments mentioned
above; see the references listed in the bibliography at the end of
this chapter.) '
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Even though we shall not develop any general formulas for the
zeros of a polynomial function, we shall be able to obtain a great
deal of useful information about them. In partibular, there are
many methods for determining the zeros to any desired decimal accu-
racy, and we shall examine some of these.

Before beginning the general discussion of polynomial functions
of degrees greater than two, we must give some attention to the nota-
tion we are to use. Any polynomial function will be denoted by a
lower case letter, commonly f, although we shall occasionally
need additional letters such as g, q, r, etc. If we wish to
emphasize the degree of the function, we shall indicate it by an
appropriate subscript. Thus f3 will indicate a pol&nomial_function
of degree 3, while fn and fo will indicate polynomial functions of
degrees n and O, respectively. The coefficients of the poly-
nomial will be written as ai with the subscript 1 equal to the
exponent of the power of x 1in that term. Thus, in this notation
we write: : ‘
f1: X —>a;x +ay, a; # 0, for the linear function;

£y x -—>a2x2 + a;x + a5, a8, f Q; for the general quadra-
tic function;
£t % —->-anxn + an_lxn"1 + ... +a;x + ay, a, #0, for the
general polynomial function of degree n. The three dots in this
formula are the conventional representation of the omitted terms
of the polynomial.

Definition 2-2. A polynomial function of degree n, where
n 1s a positive integer or zero, is an association
£, x-——>-anxn + a.n_lxn_1 + ...+ a,x + ag, a, # 0, where
the domain is the set R of all real numbers, and the range is the
set (or a subset) of real numbers .

{y: y=£(x), x € R}.

Example 1.  The function f,: X —>x°+11isa polynomial of .
degree 2 with range (y: y > 1}. (Technically, the word "polynomial
1s the name of the expression -- in this case x° + 1 -- which des-
cribes the polynomial function. It is common practice, however, to
use the word "polynomial" in the place of "polynomial function"

when the context makes it clear that we are really talking about -

1
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the function.)

While the coefficients ai (1 =0, 1, ..., n) in general stand
for any real numbers, in our examples and exerclses they will
usually represent integers., Near the end of the chapter we shall
extend the domain and range of polynomial functions and the coeffi-
clents of f(x) to the complex number system.

Before concluding this section, we note that the degree of a
polynomial function is uniquely defined. That is, if for all real

X . a glven polynomial function can be expressed as
n n-1

X —> anx + a, 1% + ... + a,x + aq
and also as
_ m m-1
X —> bmx + bm_lx ..+ blx + bo,

then n mnmust equal m, and the corresponding coefficlents must
also be equal,

a; = by (1=0,1, 2, ..., n),
We shall not prove this, but we state 1t for the sake of complete-
ness, '
If the degree of a polynomial function is 0, then the function
is

f: x —>a,, a5 # 0,

which we recognize to be a constant function. It 1s useful for
certain purposes to consider the speclal constant function that
maps every real number into.O,

f: x = 0,
as a polynomial function. f(x) is then called the zero polynomial
(0 polynomial). The zero polynomial has no degree and 1s not a
polynomial of degree zero. To summarize,

f: x —> ay, a5 # 0, 1s a polynomial function of degree 0;

f1 x> 0 is the 0 polynomial, to which we assign no degree

. 2-2. Evaluation of f(x) at x = c.
Most of our work with polynomial functions will be concerned
with two related problems:
Problem 1. Given a function..f and any number x in its
domain, find f(x).
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Problem 2, Given a function f and any number y 1in its
range, find {x : f(x) = y}.

In later sectlions we shall study the second, and harder, of
these ﬁwo problems. In this section we study Problem 1. To graph
polynomial functions anmd find the solutions of polynomial equations,
it is important to evainate a given f(x) for different values of
x. For example, to grath

f: X —> 3x5 - =° + x - 6,
we may want the values f(x) at x:= 0, 1, 2, 3, etc. Of course, we
may obtain these values by direct substitution, doing all of the
indicated‘multiplications and additions. For most values thils 1is
‘tedious. Fortunately, there is an easlier way which we shall call
synthetic substitution. To understand the“method, we shall analyze
a few easy examples. -
Example 1. Find the value of
f(x) = 2x% - x + 3 at x = U4,
We write
f(x) = (2x - 1)x + 3.
When x = 4, this becomes
[2(4) - 114 + 3 = 31,
Note that to evaluate our expression, we can
a) Multiply 2 (the coefficient of x°) by 4 and add this
product to -1 (the coefficient of x);

b) Multiply the result of (a) by 4 and add this product to

to 3 (the constant term).

Example 2. Find £(3), given

£(x) = 2x5 - 3x° + 2x + 5.
f(x) may be written
(2x2 -3x 4+ 2)x + 5

2

~or © [(2x - 3)x + 2]x + 5.

_ To find the valume of this expression when x = 3, we may start
with the inside parentheses and '
a) Multiply 2 (the coefficient of x3) by 3 and add this
product to -3 (the coefficient of x°);
b) Multiply the result of (a) by 3 and add this product
to 2 (the coefficient of x); ‘
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c) Multiply the result of (b) by 3 and add this product

to 5 (the constant term).
The result is £(3) = 38,

These 8teps can be represented conveniently by a table whose
first row consists of the coeff}cients of the successive powers df
X 1pn descending order: (The number at the far right is the parti-
cular value of x being substituted,)

2 -3 2 5 ‘ 3

(2 - 3) = 6 ,(3.3)= 9 (11 . 3) =33
2 3 11 |38

When this tabular arrangement is used, we proceed from left to
right. We start the process by!rewriting the first coefficient, 2,
in the third row., Each entry in the second row is 3 times the en-
try in the third row of the preceding column. Each entry in the
third row is the sum of the two entries above 1t. We note that the
result, 38, can be checked by direct substitution.
Now let us consider the general cubic polynomial-

f(x) = a3x3 + a2x2 +a,X + ag, ag # 0,
When X = ¢, we have :
. fc) = aSc3 + a202 + a;c + ag,
~Which may be written

fc) = [(aSc + a2)c + al]c + ag.
Again the steps employed in the procedure can be represented in
tabular form:

aq a, a, | ag le
2,0 (asc + a2)c [(asc + a2)c+al]c
a, asc + a, (asc + a2)c + ay | f£(c)

As in earlier examples, the number being substituted is written to
the right of the entire array,
Let us do a few more examples,

Example 3. Given f(x) = 3x3 2

- 2x° + x - 6, determine f£(2).
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3 -2 1 -6 Li%_

6 8 18 N
3 4 9 |12

" Now 12 is the result sought, namely £(2). This may be checked by
direct substitution:
£(2) =3(2)3 -2(2)2 +2-6=24 -8+ 2« 6= 12.
Example 4. Given f(x) = x - 3%° + 2x - 5, determine £(3).
Note that ag = 0 and that this number must be written in its appro-
priate place as one of the detached coefficients in the first row.

1 0 -3 2 -5 L3_
3 9 - 18 } 60
1 3 6 20 55

Thus, £(3) = 55, which, as before, may be checked by direct substi-
tution. ' .
With a little care and practiée, the second line 1n the above
work can often be omitted when ¢ 1s a small integer.
Example 5. Given f(x) = x* - x3 - 16x2 + bx + U8, evaluate
f(x) for x = -3, -2, -1, 0, 1, 2, 3, y, 5, '
Soluvion. We detach the coefficients. In order to avold
confusion, it is sometimes . nvenlent to write them down at the
bottom of a sheet of scratch paper and slide this down, covering
at each step the work previously done. As suggested above, we omit
the second line in each evaluation and write the value of x we
are using adjacent to the answer. The results appear in Table 2-1.
The last two columns now become a table of f(x) and x. Note
that the row that corresponds to x = 0 has the same entries as
the cogfficient oW , D9 you see why? '
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. Table 2-1
Ccmputation by Synthetic Substitution

| Coefficients
1 -1 -16 4 48
1 -4 -4 16 0 -3
1 -3 -10 24 0 -2 -
1 -2 14 Y- 30 -1
) 1 -1 -16. 4 48 0
1 o 16 12 36 1
1 1 -1} ~2h 0 2
1 2 -10 26 -30 3
1, 3 b a2 0 4
1 4 4 - 168 5
£(x) X

The method described and illustrated above is often called
synthetic substitution or synthetic divigion in algebra books. The
word "synthetic" literally means "put together," so you can see how
it 1s that "synthetic substitution" is appropriate here; in Section
2-4, you will see why the process is also called "division." The
method gives a quick and efficient means of evaluating f(x), and

- We are now able to plot the graphs of polynomials more easily than
- would be the case if the values of f(x) had to be computed by
~direct substitution.

Exercises 2-2

-Evaluate the following polynomials for the given values of x.

1. £(x) = x + x - 3; X = =2, 1, 3.
2. f(x) = x2 - 3x3 + x - 2; “ X = -1, -3, 0, 2, 4,
‘ 3 2 11
3. &(x) = 3x° ~ 2x° + 1; X =3 % 2.
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b, I‘(X) = 6x3 - 5X2 - 17x + 6; = %‘, %:‘%}': %‘: 2.
5. s(x) = 6x3 - 29x° + 37x - 12; x =0, 1, 2, 3, k.

6. If f£(x) = 2x3 - wx® + 3x - 2k, for what value of k will
£(2) = b2 o
7. Evaluate 3x*t - 97x3 + 35x° + Bx + 2 for X = 1/3
a) directly,
b) by synthetic substitution.
8. Evaluate x:° - 4x3 + 10 for x = 2
a) directly,
b) by synthetic substitution.

2-3. Graphs of Poiynomial Functions

As stated at the end of Section 2-2, synthetic substitution
greatly simplifies the problem of graphlng.

Example. Plot the graph of the polynomial function

f: x—>2x" - 3x2 - 12x + 13 ..

We prepare a table of values of x and f(x) by synthetic
substitution, and then plot the points whose coordinates (x, £(x))
appesar in the table. The work 1s shown in Table 2-2.

Table 2-2
Finding Coordinates (%, f(x)) by Synthetic Substitution

Coefficients
2 -3 -12 13
> - 15 ~35 3
2 -7 2 9 -2
2 -5 -7 20 -1
5 -3 12 13 0
2 -1 -13 0 1
2 1 -10 -7 2
o 3 -3 4 3
o 5 8 45 b
f(x) X
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» From the table we observe that the points (x, f(x)) to be
plotted are (-3, -32), (-2, 9), (-1, 20), etc. These points are
located on a rectangular coordinate system as shown in Figure 2-3a.
Note that we have chosen different scales on the axes for conven-
ience in plotting.

(X) (4,45 )

(-1, 20)

@ 2o

Do)
(~2,9) Plo,1s
2@ I

+10

45 @(5,4)
(1,0)
— e > X
-4 -3 -2 - o v 2 ‘3 J
——-b .~
®(2,‘7)
<4--10
15
+-20
+-28
+-30
(-3,-32P
+-35
Figure 2-3a.
3 . 3x? - 12x + 13.

Points un the graph of f: x—>2x
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Now the problem is how best todraw thé graph. An inspection
of the given polynomial 2x3 - 3x2 - 12x + 13, shows that for any
real value of x a value of f(x) exists. We shall assume that the
graph is a continuous curve with no breaks or holes in it. But the
question still remains whether the points we have already plotted
are sufficient to give us a fairly accurate picture of the graph,
or whether there may be hidden "peaks" and "valleys" not shown thus
far. . We are not in a position to answer this question categorically
at present, but we can shed further light on it by plotting more
points between those already located. By use of fractional values
of x and the method of synthetic substitution, Table 2-Z is
extended as shown in Table 2-3.

Table 2-3
Additional Coordinates of Points on the Graph of f
Coefficients
2 -3 -12 13
2 -8 8 -7 --g—
2 -6 -3 %5 --g—
2 - -10 18 -%
2 2 -13 i3 | 2
> 0 12 -5 3
2 4 2 20 L
f(x) X

When we fill in these points on the‘graph, it appears that if
we connect the points by a smooth curve, we ought to have a reason=-
ably -accurate picture of the graph of f 1n the interval from =3
to 4. This is shown in Figure 2-3b.
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f(x)

Flgure 2~3b,.
Graph of f: x——4>2x3 - 3x2 - 12x -+13.
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What about the shape of the graph outside of this interval,
in particular, for large values of |x]|? The easiest way to answer
this question is to look at f(x) for x = 10, 100, -10, -100, etc.

- values which are easy to find by direct substitution. The func-
tion under consideration is ’
frox ——>2x3 - 3x2 - 12x + 13,
and £(1¢) = 2000 - 300 - 120 + 13,

£(100) = 2,000,000 - 30,000 ~ 1200 + 13.

It will be observed that even when x 1s no greater than 10, the
term of highest degree is a much larger number than any of the
other terms, and for x = 100 the difference is much greater. Hence,
£(10) and £(109) are large positive numbers, and the points on the
graph corresponding to them are far above the x-axis.

Likewise, f(-10) = -2000 - 300 + 120 + 13
and £(-100) = -2,000,000 - 30,000 + 1200 + 13.
Again, the value of the term of highest degree clearly dominates
the other terms, and f(-10) and f(-100) are negative numbers that
correspond to points on the graph far below the x-axis.

t Writing the gilven polynomial in a factored form,
2x3 - 3x2 - 12x + 13 = 2x3(1‘— é% - f% + if%j, may helr 1o shaow why

the term 2x° dominates all other terms for large |x|. The fractions
containing x in the denominator decrease numerically as |x]|
increases, so that for sufficiently large values of |x|, the
expression in parentheses has a value close to 1.

By thils kind of reasoning we can deduce that for any polyno-
mialuthe term of highest degree will dominate all other terms for
large values of |x|. This means that the sign of f(x) will agree
with the sign of the term of highest degree for large |x|, and
hence the graph of f will lie above or below the x-axls according
as the value of this.term is positive or negative. Also one can
reason that the nth degree polynomial behaves like the linear
function when |x| is very small.

The question now arises whether the point (-1, 20) is the
highest point on the graph between x = 0 and x = -2, or whether the
highest point may actually be a little to the right or left of
(-1, 20). By choosing values of X very close to -1,.evaluating
f(x) for these values of X, and comparing them with ©(-1), we
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decrease our uncertainty about the l:cation of the highest point,.
but we cannot assert that (-1, 20) is the highest point in this
~interval. For example, for x = -0.9, synthetic substitution gives
£(~0.9) = 19.912, which is a little less than f(-1) = 20. Like-
wise, £(-1.1) = 19.908, which again is a 1little less than 20.

But we still do not know whether the point (-1, 20) is the
highest point between x = -0.9 and x = -1.1. The answer to this
question will be given in Chapter 3, when we develop a method for
finding these so-called "maximum" and "minimum" points.

In spite of our uncertainty about its exact shape, the graph
does give us information about the zeros of the function. We note
that the graph crosses the x-axis at (1, 0); in other words,

'£(1) = 0, and hence, by definition, 1 is a zero of f. Looking
further, we see that the graph also crosses the x-axis between

X = =~ %-and X = -2, and again between x = % and x = 3. Since the
abscissa of each intersection with the x-axis 18 a number for which
f(x) = O and hence by definition a zero of f, we conclude that

f has a zero between - g-and -2 and another between g-and 3. The
graph does not enable us to determine whether these zeros are
rational or irrational; this question will be considered in suc-
ceeding sections.

Exercises 2-3

.
Draw the graph of each of the following functions:

1. f£: x—>-2x3 + 3x2 + 12x - 13 (Compare this graph with the one
in Figure 2-3b. What do you observe?)

2. f: x—>2x3 - 12x + 13

3. f£: x—>2x3 - 3%° - 12 x (Compare this graph with the one in

' Figure 2-3b. What do you observe?) '

b, £: x—>x> (In this case, direct substitution is faster than
synthetic substitution,) .

5. f£: x —>x° + 4 (How does this graph compare with that of
Exercise 1?) '

6. f£: x—>x> - 3x° + 4
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7. f: x-——:>x4 (Use generous scales on both axes and draw the

..~ graph from x = - %-to X = %u Include the points where x = . %
and x = T %J

8. f: x—>x - 2x3 - 5x2 + 6x

2.4, Remainder and Factor Theorems

Momentarily we shall turn away from graphing and take another
look at the process we described in Section 2-2, in order to develop
two theorems that will be useful in finding the zeros of polynomial
functions. The synthetic substitution used to determine f(2), given

f: x——%>x3 - 7x2 + 3x - 2,
will be the basis for this development, so let us examine 1t close-

ly.
1 -7 3 -2 |_2__

2 -10 -14
1 -5 -7 -16
We rewrite the first row in the synthetic substitution as the
given polynomial (by restoring the powers of x), and then attach
the same power of x to each entry in a given column. Thus we
obtain

lx3 -7x2 +3x -2
-2x2 -10x -14
1x3 -5x2 - Tx -16
The polynomial in the third row is the sum of the two preceding

polynomials. Since f(x) = x3 - 7x2 + 3x - 2 and £(2) = -16, the

above addition can be written
£(x) + 2x% - 10x - 1h
By factoring, we may write
£(x) + 2(x° - 5x - 7)
Solving for f(x), we have
£(x) = x(x2 - 5x - 7) - 2(x® - 5x - 7) + £(2),
or £(x) (x - 2)(x2 - 5x - 7) + £(2).
The form of this expressicn may look familiar. It is, in

x3 - 5x% - Tx + £(2).

x(x2 - 5x - 7) + £(2).

I

ract, an example of the division algorithm:
Dividend = (Divisor)(Quotient) + Remainder.
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In our example, if (x - 2) is the divisor, then

a(x) = -~ 5% - 7
-1s the quotient, and f( ) is the remainder. This result may be
generalized., It is of sufficient importance to be stated as a
theorem.

Theorem 2-1. Remainder Theorem. If f(x) is a polynomial of
degree n > O and if c¢ 1s a number, then the remainder in the
division of f(x) by x - ¢ is f(c). That is,

£(x) = (x =~ cla(x) + £(c),
where the quotient g(x) is a polynomial of degree n - 1,

Proof: We shall prove the theorem only in the case of the

general cubic polynomial,

_ 3 2
£(x) = a3x” + a5x" + a;x + a,.

Following the pattern of the previous example, to determine f( ) we
write the synthetic substitution

2 a3 89 LiL

a,e (aSc + ae)c (aSc2 + asc + al)c

3 2
a3) (a ¢ + a2) 24 ac + aj)(usc + a,c” + a; o)

- As before, writing in the appropriate powers of x, we get
an3 + a2x2 : + a)x +aq

+a3cx2 +(a30 + ae)cx +(a3c2 + a,c + al)c

24 a,c + al)x + (a3°3 + a202 + a,c + ao)

8.3 a

c + a

3 2
agx” + (asc + ae)x + (aSc
We note that the polynomial in the third row is the sum of the two
preceding polynomials, that the polynomial in the first row is
f(x) and that(a303 + a202 + ajc + ay)is f(c). Hence we may write
2 2
£(x) + c[an + (aSc + ae)x + (aSc + asc + al)] =

x[an2 + (a3c + aa)x + (a,e® + a.c + al)] + f(c).
Thus we have

£(x) = (x - c)[an2 + (age + ay)x + (aSc2 +ac + a

3 2

l)] + f{c)
or £f(x) = (x -~ c)a(x) + £(c). q.e.d.

The process is thesame for higher degree polynomials. It
gives

£(x) = (x -~ cla(x) + £(c),
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where q(x) is a polynomial of degree n -~ 1,

If the remainder f(c) is zero, then the divisor x - c and the
quotient q(x) are factors of f(x). Hence we have a second theorem:
Corollary 2-1-1. Factor Theorem. If ¢ 1s a zero of a
polynomial function f of degree n > O, then x - ¢ 1s a factor of

f(x}, and conversely.
Proof. We know from Theorem 2-1 that there exlsts a polynomial
a(x) of degree n - 1 such that ’
£(x) = (x - c)a(x) + £(c).
If ¢ 1s a zero of f, then f(c) = O and
£(x) = (x - c¢)a(x).
Hence x - ¢ 1s a factor of f(x), by definition.
Conversely, if x - ¢ 1s a factor of f(x), then by definition
there 1s a polynomial g(x) such that ‘

£(x) = (x - ¢)a(x).

For x = ¢, we obtaln
£(c) = (c - clale) =0,
and hence ¢ 1s a zero of f. gq.e.d.
Example 1. Find the quotient and remainder if
£(x) = 2x3 - 6x° + x - 5
is divided by x - 3.

Solution. 2 -6 1 -5 LEL
6 0 3
2 0 1l -2
Hence, a(x) = 2x° + 1,
£(3) = -2,
and ox3 - 6x° + x - 5= (x - 3)(2x2 + 1) - 2,

Example 2. Show that x - 6 1s a factor of
£f(x) = x3 - 6x° + x - 6,
. and find the associated q(x).

Solution. 1 -6 1. -6 L§
6 0 6 .
1l 0] l 0

Here, £(6) = 0, Q(x) = x° & 1, and
£(x) = (x - 6)(x° + 1).

In testing for the divisibility of a polynomial by mx +‘6,
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‘m # 0, we write
‘ mx + b = m(x + %) = m[x - (- %)]

and see whether f(- %) =0, By the Factor Theorem, mx + b is a
factor of f(x) if and only if f(- %) = 0. (Note that - % is the
root of mx + b = 0,)

In applying the Factor Theorem, it may sometimes be easier to
compute f(c) by direct substitution, rather than by the method of
synthetic substitution. Thus, to show that x - 1 is a factor of

f(x) = 2x/3 - %37 1,
we note that £f(1) =2 -1 -1=0, ,
Evaluating £(1) by the synthetic substitution method would take
considerably longer!

At this point you may wonder what to do when confronted with
a polynomial such as ‘ —

8)(1l - 28x3 - 62x° + 7 + 15
which you might 1like to factor. Note that the Factor Theorem is
only a testing device. It does not locate zeros of polynomial
functions. Methods, other than blind guessing, for doing this
will be developed in the next sections.

Exerclses 2-U4

1. Find g(x) and f(c) so that T(x) = (x - ¢)a(x) + f£(c) if

a) r(x) = 3x3 4+ ux? - 10x - 15 and ¢ = 2
b) f(x) = xS +3x° + 2x + 12 and ¢ = -3

c) £(x) = —2x4 + 3x3 4 6x - 10 and ¢ = 3
d) f(x)=2x3-3x2+5x-2andc=%-

2. Find the quotient and remainder when
a) x3 + ux° - Tx - 3 is divided by x - 2
b) x5 + 3x% - U4 1s divided by x + 2
c) 3x3 + ux° . 7x + 1 is divided by 3x - 2
3. 1If fn(x) 1s divided by g_(x) # O so that a quotient g(x) and
a remainder r(x) are obtained, what is the degree of q(x)?

of r(x)?
67
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4. TIn Exercises 1 to 5 of Section 2-2 do any of the polynomials

have linear factors? If so, find them.

Ir f(x) = %3 + 4x° + x - 6, determine f(x) at x = 3, 2, 1, 0,

-1, -2, -3. What are the factors of f£(x)2

6. If f£(x) = 2x3 + x° - 5x + 2, determine f(x) at x = -2, -1, O,

1, 2, and %u What are the factcrs of £(x)?

If £(x) = x3 + 3x° - 12x - k, find k so that £(3) =

If £(x) = x3 - x° + ke - 12, find k so that £(x) is exactly

divisible by x - 3.

9. Ir £(x) = ax® + ax' + 13x3 - 11x% - 10x - 2a, and if £(-1) = O,
what is £(1)?

10. The quadratic formula enablées us to find the zeros of any
quadratic function and hence, by the Factor Theorem, to write
any quadratic expression in factored form as the product of

two first-degree polynomials with complex coefficients (real

\n

w

or imaginary). For example,

x2 —bx +1=(x=-2- 3)(x -2+ 3),
since the roots of x2 - bx+1=0are 2+ +3and?2 - V3.
Write each of the following in factored form over the complex

numbers:

a) 2x°'+ Tx - 15

b) X2 - x =1

c) % + U

d) xg - 6x + 13

e) x° - 5x

£) 2x° - 3x + 2 [Answer: 2(x - é—iﬁEQXZ.)(x - 3= i“/-“‘)]

g) 9x2 + 6x + 5
h) 2x° - Ux + 1

2-5. Locating Zeros of Polynomial Functlons
As has been pointed out earlier, our primary objective in
this chapter is to study some methods for finding the zeros of

polynomial functions, or, in other words, for sclving equatlons of
the form f(x).= O, where f(x) 1s a polynomial.
If we are confronted with a particular polynomial equation
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f(x) = 0 and a particular number c, we can easily determine -- by
direct or synthetic substitution -- whether or not this number c
1s a solution. But this technique does not tell us how to find
zeros of polynomial functions,
o You already know how to solve linear equations and quadratic
~equations. In fact, you know simple formulas for doing this. 1In
the sixteenth century, attempts were made to firnd formulas for
solving equations of higher degree, Although a few results were
obtalned, 1t was found later that to seek formulas is not the best
way to approach the problem.

It may surprise you to learn that the best way to solve equa-
.tlons of higher degree is to guess at the solutions. To be sure,
it 1s not at all wise to guess blindly. The purpose of thris section
and the next 1s to examine some methods that will enable you to
guess intelligently.

From your experience in drawing graphs, you already have a
method for estimating the approximate values of the zeros of a
pal;memial function. (Refer back to Section 2-3.) But plotting
grbéhs is time-consuming, and there are better methods. Inherent
in the process of preparing a table for graphing, however, is
information that helps us to make intelligent guesses about the
zeros. This information is contained 'in the following theorem.

Theorem 2-2. The Location Theorem. If f 1s a polynomial
function and if a and b are real numbers such that f(a) and
f(v) have opposite signs, then there is at least one zero of f
between a and b, '

Geometrically this theorem means that the graph of f from
(a, r(a)) to (b, £(b)) intersects the x-axis in at least one point.
Figure 2-5a illustrates this theorem. (The graph in this figure
intersects the x-axis in three places -- hence "at least once.")
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f(b)

‘ Figure 2-5a.
T1llustration of the Location Theorem: f(a) and f(b) are of
opposite sign so that f must have at least one zero
between a and b.

We shall accept the Location Theorem without proof, first
because its proof requires a sequence of theorems that are beyond
our reach at this time, and secondly because the result is quite
easy to accept intuitively. If the graph 1s below the x-axis at
one point and above it at another, it must cross the x-axlis some-
where in between. The crux of the proor consists in showing that
the graph of any polynomial function f from x = a to x = b 1s
continuous -~ that is, it has no gaps.

Figure 2-5b shows that if, in the Location Theorem, f were
not a polynomial function, the conclusion would not necessarily
be correct. The curve lies sometimes below and sometimes above
the x-axis, yet does not intersect 1t; however, the graph is not
continuous,
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Figure 2-5b. Graph of y = x + 1/x.

Example 1. Glven that the polynomial function
£1 x—>12x° - 8x° - 21x + 1k
has three real zeros, locate each of them between two consecutive
integers.
 Solution. We use the Location Theorem to search for values

of £(x) that are opposite in sign. It 1s convenient to do this in
a systematic way by synthetlc substitutlon, setting down the work
as in Table 2-4,

The 1lntervals that contailn the real zeros of' f are indlcated
by the arrows at the right in the table.
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Table 2-4
Locating the Zeros of £ix—>12%° - 8x2 - 21x + 14

12 -8 -21 14
12 -8 =21 14 0 Locatlion of a
<&——7zZero
12 ] -17 - 3 1
e.__
12 16 11 36 2
12 28 63 203 3
12 -8 -21 14 0
12 -20 -1 15 -1
<————
12 -32 43 -T2 -2
£(x) X

Answer. The real zeros of f are located between O and 1,
between 1 and 2, and between -2 and -1.

A few remarks concerning the use of the Location Theorem may
be helpful. It 1s quite possible for f(a) and f(b) to be of the
same sign, and yet for [ to have zeros between a and b, as
1llustrated in Filgure 2-5c, and the zeros may go undetected.

ﬂ\f(X) f(x) 4

>

[« [ SO

Iigure 2-5c.
Graphs with f(a) and f(b) of the same sign,
yet with zeros of f between a and b.

Further information to be developed in the remainder of this chap-
ter willl be of assistance, but it should be emphasized that the
[sec. 2-5]
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problem of locating the zeros of a polynomial funcﬁion is essential-
ly a matter of trial.
' How far should we extend the table of x and f(x) when search-
ing for the locations of the zeros? This 1s a very practical
-—question, as 1lllustrated in the next example. :
" Example 2. ILocate the real zeros of f: X—» 2x° - X° - 2x + 6,
Solution. The usual procedure 1S shown in Table 2-5. '

Table 2-5
Locating the Zeros of f: X—>»2xS - x° - 2x + 6
2 -1 -2 6
2 -1 ) -2 6 0
2 1l -1 5 1l
2 3 b 4 14 2
2 5 13 45 3
2 -1 -2 6 0
2 -3 1 5 -1
-
. 2 -5 8 -10 -2
2 -7 19 -51 -3
£(x) X

The Location Theorem tel}s us that there 1s at least one real
-zero between -1 and -2, but what about the other zeros, if any?
Later (Section 2-8) we shall show that any polynomial equation of

" degree n > O has at most n roots, real or imaginary, and
(Section 2-9) that imaginary roots of polynomial equations with
real coefficients occur in conjugate pairs. Thus, for the example
being considered, there are a number of possibilities: (l) there
may be one, two, or three real zeros, all contained in the interval
between -1 and -2, (2) two zeros may be imaginary, in which case
there is only one real zero, (3) one or two real zeros may be in
some other 1lnterval of the table between successive integral
values of x, or (4) one or two real gzeros may be in intervals
‘ [sec. 2-5]
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outside the values of x shown in the table.

Possibility (U4) appears unlikely for the simple reason that
when we evaluated £(2) = 14, all the entries in the corresponding
row of Table 2-5 were positive. They will be still greater for

- greater values of x; the table shows this for x = 3, and you can

check 1t yourself for x = 4, Thus 1t appears that for x > 2, £(x)
must be positive, so that there cannot be a zero of f greater
than 2. We prove this, and also that there cannot be a zero of
the given polynomial less than —2,'by application of the following
theorenm. e R

Theorem 2-3. Upper Bound for the Zeros of a Polynomial Func-
tion. If a positive number a 1s substituted synthetically in
£f(x), where f 1s a polynomial function, if all the coefficients
of q(x) are positive, and if f(a) is also positive, then all the
real zeros of f are less than a. We then call a an upper '
bound for the zeros of f,.

Proof. By the Remainder Theorem, f(x) = (x - a)g(x) + fﬁql}»
For x = a, f(x) = £(a) > 0. For x > a, by hypothesis, x - a, q(x),
and f(a) are all positive. Thus, x > a is not a zero of f, and
all ‘real zeros of f must be less than a. '

Now you will see from Table 2-5 that 2 i1s an upper bound of
the zeros of the given polynomial. We really did not need to
evaluate f(3).

What about a lower bound for the zeros? Since any negative
root of f(x) = O is a positive root of f(-x) = O, if we find an
upper bound for the positive roots of f(-x) = 0, its negative will
be a lower bound for the negative roots of f(x) = 0. Let us apply
this test to our example.

From the given polynomial,
£(x) = 2x3 - x® - 2x + 6,
we find that
£(-x) = -2x3 - x% + 2x + 6.
Since we are trying to find the roots of the equation, f(-x) = O,
it will be less confusing to multiply each member of this equation
by -1 in order to have a positive coefficient for the 3rd degree

term. This gives the equivalent equation -f(-x) = 0, i.e.,
[sec. 2-5]
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2x3 + x2 -~ 2x - 6 = 0.

Using synthetic substitution, we obtain the results shown in
Table 2-6 for positive values of x. '

e Table 2-6
. Evaluating -f(-x) = ox3 + x° - ox - 6

2 1l -2 ’ -6

2 1l -2 -6 0]

2 3 1l -5 1

;

2 5 8 10 2

2 7 19 51 3

-f(-x) X

This table tells us two things, First, a positive root of -f(-x) = O
occurs between 1 and 2, which means that a negative root of

f(x) = O occurs between -1 and -2, as previously shown in Table 2-5,
Secondly, 2 is an upper bound for the roots of —f(—x) = 0, and
hence, -2 is a lower bound for the roots of f(x) = 0. This is the
conclusion which we have been looking for. 1In actual practice,
however, it 1s unnecessary to evaluate ~-f(-x) to find a lower

bound for the zeros of f. You will notice in Table 2-5 that the
synthetic substitution for x = -2 gives alternating signs for the
coefficients of gq(x) and f(-2).

In general, if a negative number a is substituted syntheti-
cally in f(x), and if the coefficlents of q(x) and the number f(a)
-alternate in sign, then all of the real zeros of f are greater
fhan a, and a 1s a lower bound for the zeros.

To conclude Example 2, we have found that 2 is an upper bound
and -2 is a lower bound for the real zeros of the given fﬁnction.
Hence, all the real zeros of f are contained in the interval
{x: -2 < x €< 2}, and we have found that one zero lies between -1
and -2, For the moment we say no more about the other zeros.

-
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Exerclses 2~5

1. Find intervals between consecutive integers that contain the
real zeros of f, gilven that: ‘
a) £(x) = x3 - 3x° + 3

b) f(x) = 3%3 + x° + x - 3

¢) f(x) =9 -x - x° - x5

a) f£(x) =3x3-3x+ 1 (Hint: evalvate £(3).)
e) f(x) = ox3 - 5% - X + 5

) f(x) = x3 - 3x% + 6x -~ 9

g) f(x) = x4 - 6x3 + x° + 12x - 6.

2. Determine the range of values of k for which ‘
f(x) = x> - 2x2 4 3x - k has at least one real zero between
a) O and 1,
b) 1 and 2.

2-6. Rational Zeros. .
If f(x) is a polynomial anxn + an~1xn'1 + ... +8;x +a,, all
~ of whose coefficlents 8,5 8, 15 ey 85 @re integers, then we may
find all rational zeros of f Dby testing cnly a finite number of
possibilities, as indicated by the following theorem.
Theorem 2-4, Rational Zeros of Polynomial Functions. If the
polynomial

n n-1 —
£(x) = a,x" + a, ;X t ...t agx +ag (1)

has integer coefficients 8., 8, 15 «-+s 8y, and 1f f  'has a ration.
al zero p/q # 0, q > O, expressed in lowest terms (that is, p and
q are integers with no common integer divisor greater than 1), ..
then p 1s a divisor of a, and q 1s a divisor of a,.

(Note that in this discussion q is a positive integer and
1s not to be confused with the polynomial function q: x—>q(x).)

Proof. If p/q is a zero of f, +then f(p/q) = O.
By Equation (1)

rB)=a B +a BT ra®) +ag=o,

o
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n n-1 n-1 n _
a P +a (P’ a+ ...+ apq o+ Ay =0, (2)
Solving Equation (2) for a,q” we obtain
n _ n n-1 n-1
aa =-lap +a ;P a+...+apqg ]
_ n-1 n-2 n-1
= - plap +ta, 1P at ... +aq ) )
= DN, . (3)
" where N = --[aann"l + an_lpn'2q + ...+ alqn-l] is an integer. Hence,

-.p divides aoqn a ‘wthole number, N, of times. We wish to show

- that p divides ao. To do this, we appeal Uo the fundamental
Theorem of Arithmetic, that the factorization of positive integers
is unique; namely, we note that since p and q have no common
integef divisor greater than 1, nelther have p and qn. Hence,
all the factors of p are factors of s, and p 1s a factor of
ag- ' _
To prove that q divides a. , we write Equation (2) in the
form

n _ n-1 n-2 n-1 ,
ap =-ala,_;p "+ ... +apqg T +agg Tl {H)

Then we reason that since q divides the right-hand side of (%),
it divides the number anpn. Again, since p and q have no com~
mon divisor greater than 1, neither have q and pn. Hence, all
the factors of q are factors of a., and q 1s a factor of a.
q.e.d.

The foregoing result may be easier to remember if we state it-"
in words: If a fraction in lowest terms is a root of a polynomial
equation with integer coefficients, then the numerator of the frac-
tion must divide the constant term of the polynomial, and the deno=-
minator must divide the coefficient of the highest power of X. To
" keep things straight, we can always see how the theorem works for

mk+ b=0, m#£O, '
The only root is -b/m; the numerator -b divides b, -while the
denominator m divides mnm,

If the polynomigl has fractional coefficients, the theorem can
be appliéd after the polynomial has been multiplied by a non-zero
integer to clear of fractions, because the roots of f(x) = O and
the roots of k [f(x))= 0 (k # 0) are the same.
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Example 1. What are the rational roots of
3x3 - 8x° + 3x + 2 = 0?. . -
Solution. It is clear that O is not a root. If p/q is a
rational root, in lowest terms, then S e
p divides 2, q divides 3.
The possibilities are . )
p=%ti1,fte2 q=1, 3,
so.that

1. 2 1l 2
‘g‘:tj_': —-*-T:t’g‘: OI",*_'E‘.

- We test these one by one and find that the roots of the given
equation are 1, 2, and - %.

(Note that in the statement of Theorem 2-4, we specified q > O,
so the possibilities for g are all positive.  There is no point
in testing both % and f%.) '

Example 2. Find the rational roots of

3x' - 8x3 + 3x° + 2x = 0.

Solution.

f(x) = qu - 8x3 4 3x° + 2x
' x(3x3 - 8x° + 3x + 2).

Now, f(x) =0
if and only if either .
x =0
3 2
or 3x° - 8x° +3x + 2 = 0, (5)

By Example 1, the roots of Equation (5) are 1, 2, and - %. Adding
the root 0, we see that the roots of f(x) = O are O, 1, 2, - %.

Corollary 2-4-1, Integral Zeros. If
n-1

— n -
£f(x) = x" + a P+ agx + ag

n-1% _
is a polynomlal with integer coefficients, with the constant term
%3% O, and with the coefficient of the highest power of x equal
to 1, then the only possible rational zeros of f are integers
that divide ag.

Proof, Suppose p/q (in lowest terms), q > O, is a zero of f.
Since aj = £(0) # 0, p/a # 0. Hence, by Theorem 2-%, p divides
a5 and q divides 1. Therefore, q = 1, and p/q = p is an integer

that divides ao. q.e.d.
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Example 3. Find the rational zeros of
f: x————>x3 + 2x2 - Ox - 18.

Solution. By Corollary 2-4-1, the possible rational zeros are
integers‘that divide -18, namely a1, tpo t3, te tog, £18, BY -
::ffiai,ffﬁe zeros of f are -3, -2, and 3. . -
_ Reduction of degree. After we have found one zero of a poly-
nomial function f, we can use a speclal device to make it easier
to find further zeros. By this device, we can cut down the number
of possible zeros we have to test, and sometimes we can even use 1t
to help us find certain irrational zeros. We explain this device

as follows: _ R
We know from the Factor Theorem (Corollary 2-1-1) that a 1is
a zero of f if and only if there is a polynomial q such that
£(x) = (x - a)a(x). - " (6)
Since the product (x - a)a(x) is zero if and only if either’
x -a=0or q(x) = 0, it follows that the set of zeros of f con-
sists of a together with the set of zeros of qa:
(x:f(x) =0} =(x: x=aor q(x) = 0}. (7)

Moreover, the degree of q 1s one less than the degree of £.

Thus, if we can find one zero of f, Equations (6) and (7) allow
us to reduce the problem of finding the zeros of f to that of
finding the zeros of a polynomial q of lower degree. Naturally
we may repeat the process, with q 1n place of £, 1f we are
fortunate enough to find a zero of q, say b. For then we may
apply the Factor Theorem to q and write
a(x) = (x - b)r(x),
and
{x : q(x) =90) = {x: x =D or r(x) = 0}.
If we are successful in repeating this reduction until we have
a quotient which is either linear or quadratic, we can easily
finish the Jjob %y solving a linear or quadratic equation,
Example 4. Find all solutions of
ox3 - 3x% - 12x + 13 = O, (8)
Solution., We noticed in Section 2-3, Figure 2-3b, that 1 is
a solution of Equation (8). ‘Therefore, x - 1 is a divisor of
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-2x3 - 3x2 - 12x + 13, Perfqrming the division,
2 -3 -12 13 | 1
2 -1 -13
e 2 -1 =13 0 .. -
Thus

2x3 - 3x° - 12x + 13 = (x -~ 1)(2x2 - x - 13),
and the solutions of Equation (8) are 1 and the solutions of
2x% - x - 13 = O,
" By the quadratic formula, (1 +-./105 )/4 and (1 - V105 )/4 are
the additional solutions of Equation (8).
Example 5. Find all zefos of
f: x—f+>12x3 - 8x° - 21x + 14,

.30lution.- This 1s the same function that we considered earlier
in Section 2-5, Example 1, At that time we found that there are
zeros between O and 1, between 1 and 2, and between -2
and -1. Thus, we know that there are three real zeros, but we do
not know whether they are rational or irrstional. If all three are
irrational, the best we can do is to find decimal approximations
(see Section 2-7). But if at least one zero is rational, then we
can obtain a function of reduced degree -- in this case a quadratic

© -- that will enable us to find the exact values of the remaining
zeros whether rational or irrational.

If the function has a rational zero, it will be of the form
p/a, and by the Rational Root Theorem the possiblilities for p
are 1, T2, Y7, Y14 and for q are 1, 2, 3, 4 6, 12
Thus, there appear tc be a good many vélues of p/q to test as
possible zeros of the given function. But since wé already know
something about the location of the zeros, we need test only those
possible rational zeros p/q between O and 1, between 1 and
2, and between -2 and -1, until a zero is found,

Now the possible rational zeros between O and 1 are

p_1 111 1 2 %

a 223 % 6 I T 1T
By synthetic substitution, we find that £(1/2) = 3. Since £(0) = 14
and f(1) = -3 (see Table 2-4), the zero lies between 1/2 and 1.
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Hence, we need not test the values 1/3, 1/4, 1/6, and 1/12. This
is a good example of how the Location Theorem may save us unneces-
sary work, '

Continuing, we know that the unly possible rational zero
between 1/2 and 1 1s 2/3 or 7/12. Testing these, we find
that £(2/3) = O, and we have found the rational zero 2/3. By the
Factor Theorem, x - 2/3 is a divisor of f(x), and the quotient,
obtained from the syntl etic substitution of 2/3, 1is

a(x) = 12x° - 21.
The zeros of q are the roots of
12x% - 21 = 0,
which are ~vﬂ7- and vﬁr'
T -

VT

Thus, the zeros of the given polynomial are %3 - - —ﬁz .

Exercises 2-6

Find all rational zeros of the polynomial functions in
Exercises 1 - 12, and find as many irrational zeros as you can.
1. a) X —> 2x° - 3x - 2

b)~ x —»2x3 - 3x° - 2x

2. a) x —>x3 - 6x° + 11x - 6 .
b) x—>x - 6x5 + 11x° - 6x

3. a) X —>x3 ~ 2x% 473x - 4
b) x-——>xu - 2x3 4+ 3x° - I

4, a) x—>2x° - x° - ox + 1
b) x—s2xt - x3 - 2x? 4 x

5. x-—+>12§3 - 40x® + 19x + 21

- 10x2 + Bx + 4
- 10x2 + Bx + 6
~oxS - 7x% 4 8x + 12
8x° + 16
10, x—>X 5x3 + Bx° + 5x - 6
11, x—X 4+ 3xu3- 5x3 5 15x2 + hkx + 12
12, x —>»3x =~ 8x° - 28x° + 6lx - 15

6., x—»3x
7. X-~—>4
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13. Show algebraically that the equation x + l/x = n has no real
solution if n 1is a real number such that In] < 2. (See
Figure 2-5b for the geometrical picture.)

14, Find a cubic equation whose roots are -2, 1, and 3.
~ (Hint: wuse the Factor Theorem.)

You are familliai® with the fact that for the general quadratic
equation, ax2 + bx + ¢ = 0, the sum of the roots is -b/a and
~ the product of the roots is c¢/a. Similar relationships exist
between the roots and the coefficients of polynomials of higher
degree, The following problems are intended to illustrate these
relationships for third-degree polynomials.
15. Use the roots of the equation glven in Exercise 14 for each
of the following parts:

a) Find the sum of the roots. Compare this result with the
coefficient of x2 obtained in Exercise 14,

b) Find the sum of all possible two-factor products of the
roots. That is, find (-2)(1) + (-2)(3) + (1)(3). Com-
pare this result with the coefficient of x obﬁained in
Exercise 14,

¢) Finl the product of the roots. Compare this result with
the constant term obtained in Exercise 14,

16. If the roots of a 3rd-degree polynomial equation are -2,

1/2, and 3, find

a) the sum of the roots,

b) the sum of all possible two-factor products of the roots,

¢) the product of the roots,

d) Using the results of (a), (b), and (c), write a polynomial
equation of 3rd degree having the given roots.

e) Check your results by using the Factor Theorem to obtain
the equation.

17. a) Using the Factor Theorem, write in expanded form a 3rd-
degree polynomial eguation having the roots ry, T and

2’
ra.

b) From the result obtained in part (a), and from the fact
that any polynomial of 3rd degree can be written in the
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form
3,82 & &
an(x? + =% + ==x + =)
,3 aq ag ag ’ |
find expressions for the coefficients a2/a3, al/as, and
| ao/a3 in terms of the roots Ty Tp and + T3
18, Find the polynomial function f of degree 3 that vanishes
(L.e., has zeros) at x = -1, 1, and 4, and satisfies the con-

dition f(0) = 12,

2-7. Decimal Approximations of Irrational Zeros.

Now that we have methods for finding the rational zeros of
polynomial functions, we shall discuss briefly one method for
approximating a real, but irrational, zero to any number of decimal
places. This may be important when there are no rational zeros,
thus making it impossible by our methods to obtain a polynomial of
reduced degree. For example, the polynomial

f: x—-—~:>x3 + 3x -1
has no rational zeros, as you can easlly Qerify by testing the only
possibilities, 1 and -1, However, since f(0) = -1 and £(1) = 3,
the ILocation Theorem tells us that there is a real zero between O
and 1. Further, since £(0.3) = - 0.073 and £(0.4) = 0.264, we
know that the zero lies between 0.3 and 0.},

If we interpolate between these two values, we obtain 0.32
as a better approximation of the zero. By comparing £(0.32) with
£(0.31) and £(0.33), and using the Loration Theorem again, we can
be certain of the value of the zero to two decimal places.

This process can be repeated indefinitely, but many people
find that it isn't fun to do the arithmetic without the help of a
desk calculator, and there are more powerful methods, as we shall
see in Chapter 3.

Exercises 2-7

1. Find correct to the nearest 0.5, the real zero of
fi1 x ~—>x3 - 3x2 - 2x + 5 that lies between 3 and U4,
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2. a) Find, correct to the nearest 0.5, the real zeros of
2 + x - 3.
b) Tind the zeros correct to the nearest 0.1.

f:x-——>x3 - 2x

3. a) Find a solution of x3 + X = 3 correct to one decimal place.
b) Find tirls solution correct to two decimal places.
i, ¥ind the real cube root of 20 correct to two decimal places by

solving the equation x3 = 20,

2-8. Number of Zeros

As a result of your work with polynomials thus far, you may
have the impression that every polynomial function of degree n > O
has exactly n =zeros. This is not quite right; what we must say
1s that every such function has at most n =zeros. We shall prove
a theorem to this effect, but first let us exhibit a polynomial
function for which the number of zeros is less than the degree.
The quadratic ff'unction

£ x-—-—>x2 -6x+ 9= (x -3

has only one zero, namely 3. But since the quadratic has two
identical factors x -~ 3, we say that the zero 3 has multipliclty
two.

)2

We define the mu'!%iplicity of a zero r of a polynomial f
to be the exponent of the highest power of x - r that divides
f(x). That is, if .

f(x) = (x - )" a(x), k> 0,
where q(x) is a polynomial, and if x - r does not divide q(x),
then r 1s a zero of f of multiplicity k.

k

The proof of the general theorem about the number of zeros of
a polynomial function depends on the fact that every such function
has at least one zero. This fact, often referred to as Gauss's
Theorem, 1is stated as follows: ’

Theorem 2-5. The Fundamental Theorem of Algevra. Every

polynomial function of degree greater than zero has at least oné
zero, real oy imaginary.

This 1s the simplest fam of the Fundamental Theorem of Alge-
bra. (As a matter of fact, the theorem is correct even if some or
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all of the coefficients of the polynomial are imagipary.)

The first known proof of the theorem was publlished by the
nreat German mathematiclan Carl Friedrich Gauss (1777 - 1855) in
1799. (Eric Temple Bell has written an interesting account of
Gauss. See World of Mathematics, Simon and Schuster, 1956, Volume
1, pages 295-339, or E, T. Bell, Men of Mathematics, Simon and .
Schuster, 1937, pages 218-269,) The proof was contained in Gauss's
doctoral dissertation, published when he was 22. A translation of
his second proof (1816) is in A Source Book in Mathematics, by
David Eugene Smith, McGraw-Hill Book Co., 1929, pages 292-310.
Gauss gave a total of four different proofs of the theorem, the
“last in 1850. None of the proofs is sufficiently elementary to be
given here. If you study advanced mathematics in college, you may

learn several proofs. You might now 1iké'to read the proof in
Birkhoff and MacLane, A Survey of Modern Algebra; Macmillan, 1953,
pages 107-109. Don't worry if you do not understand all of it.
You may still enjoy seeing what the main idea of the proof is. (A
proof is also glven in L., E. Dickson, New First Course in the Theory
of Equations, John Wiley and Sons, 1939.)
We are now ready to state and prove the general theorem.
Theorem 2-6. The General Form of the Fundamental Theorem of

Algebra., Let f be a polynomial function of degree n > O, Then
f has at least one and at most n complex zeros, and the sum of
the multiplicities of the zeros is exactly n.
Proof. By Theorem 2-5, f has at least one zero, say r.

Then (recall the Factor Theorem) there is a polynomial q(x) of
degree n - 1 such that

C£(x) = (x.- 7)) a(x). (1)
If n=1, q 1is of degree zero and we have finished. If n > 1,
the degree of q 1s n - 1 and is positive. Then, by Theorem 2-5
again, q has at least one zero r, (1t could happen that r, = rl)
and

v Q(X) = (X - I’2) S(x)J (2)
where s 1is of degree n - 2, Combining (1) and (2) gives
£(x) = (x =) (x - ry) s(x). (3)
[sec. 2-§j
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If n=2, then s 1in Equation (3) is of degree zero and we have
finished. Otherwise, the process may be continued until we arrive
at the final stage, L

£(x) = (x - ry)(x - r,) t.. (x - ) z(x), (4)
where the degree of 2z 1is n - n = 0. Hence, z(x) is a constant.
Comparison of the expanded form of Equation (4) with the equivalent

form
' n n-1
£(x) = a x +a, ;X + ...+ ayx + ag,
shows that =z(x) = a_  # 0. Hence, :
£(x) =a(x -r)x=-ry) ... (x -r). (5)

Now, 1f we substitute any complex number r different from
‘ry, Ty, ..., T, in place of x in Equation (5), we get

(r) = a (e - 7)) =~ ry) L. (2 - w),
Since every factor 1s different from zero, thc product cannot be
zerd. Hence, no number except Tys Toe eeey T is a zero of £,
and f has at most n =zeros.

Since it is possible that some of the ri's may be equal, the
number of zeros of f{ may be less than n. But Equation (5) shows
that £ has exactly n factors of the form x - Ty and therefore
the sum of the multiplicities of the zeros must be n. gq.e.d.

Example 1. A
£1 x> x° + xu - 5x3 — x° + 8x - 1
has zeros of multiplicity greater:than one. Find the zeros and
indicate the multiplicity of each.

Solution. .Since the coefficient of the term of highest degree
is 1, we know that any rational zeros of f must be integers
that are factors of . 4. (Refer to Corollary 2-4-1,) Using synthe-
tic substitution and the polynomial of reduced degree obtained each
time a zero i1s found, we discover that 1 1s a zero of multiplicity
three and -2 is a zero of multiplicity two. Note that the sum of
the multiplicities is five, which i1s also the degree of the given
polynomial. ' .

It may be helpful to show a practical way for putting down
the synthetic substitutions by which we obtained the zeros and
their multiplicities. This 1s done in Table 2-7.
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Table 2-7
Finding the Zeros of f: x~~-—>x5 + x4 - 5x3 - x2 + 8x - &4

1 1 -5 -1 8 =4 L;Lf—
1 2 -3 =4 i
1 2 -3 -l 4 0
P2 s LT o ¢
1 3 o -k of multipli-
1 3 0 -4 0 city three.
T 3 o 1.
Ty o
1 y y 0

The entries 1, 2, -3, -4, 4 in the third row, 1, 3, O, ~I
in the sixth row, and 1, 4, 4 in the last row are ccefficlents of
polynomials of degree four, thre¢, and two, respectively. The
' quadratic function x—->x° + bx + 4 has -2 as a zero of multipli-
city two since X% + Ux + 4 = (x + 2)2.
Thus, the zeros of f are 1 (of multiplicity three) and =2
(of multiniicity two). :
The graph of f 1s shown in Figure 2-8 in order to give you
some idea of its shape in the neighborhood of the zeros -2 and
1 (points A and B). To draw this graph at the present time re-
quires an extended table of synthetic substitutions, but in
Chapter 3 methods will be developed that make it easier to deter-
mine the behavior of the graph in the vicinity of points A, B,
and C,
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f(x)

--10

415

Figure 2-8.
Graph of f: x———>x5 + xu - 5x3 - x2 + 8x - &,
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The Fundamental Theorem of Algebra implies that the range of
any nonconstant polynomial function includes zero when its domain
is the set’ of all complex numbers. The range does not always
include zero when the domain is the set of real numbers. For
example, if

f: x—>y = x2+ 1, x€ R,
then the range of f 1s the set
vy + y 21].

When the domain of f is the set of complex numbers, and the
degree of f 1s > O, then its range is also the set of all complex
numbers., For, suppose that f 1is é polynomial of degree n > O
and a-+ 1b i1s any complex number. Then the equation

f(x) =a+ 1b
is equivalent to '

f(x) ~a - 1ib = 0, - (6)
This 1s a polynomial equation of degree n; hence, by the Funda-
mental Theorem of Algebra, Equation (6) has a solution., That is,
there exists at least ore complex number x that is mapped by f
into a + ib:

£f(x) = a + 1ib. .
Moreover, there may be as many as n different numbers in the
domain that map into a + ib, and the sum of the multiplicities
of the solutions of (6) will be exactly n.

The Fund- ental Theorem does not tell us how to find even one
of the zeros (. f. It Jjust guarantees that they exist. The
general problem of finding a complex zero of an arbitrary polyno-~
mial is quite difficult. In the 1930's the Bell Telephone Iabora-
‘tories built a machine, the Isograph, fo» solving such problems
when the degree is 10 or less. See The Isograph ~-- A Mechanical
Root-Finder, by R. L. Dietzold, Bell Labs Record 16, December, 1937,
page 130. Nowadays, electronic computers are used to do this Job,
and many others. Numerous applications of computers in science
and industry are discussed in a series of articles in the book The
Computing Laboratory in the University, University of Wisconsin
Press, Madison, Wisconsin, 1957, edited by Preston C. Hammer.

The following guotation isltaken from a recent book called

[sec. é—8]

89



80

Mathematics and Computers, by George R. Stibitz and Jules A,
Larrivee, McGraw-Hill Book Co., New York, 1957, page 37:

"There is an interesting use for the roots of the 'character-
istic equation! of a vibrating system in the dynamics of electro-
magnetic and mechanical systems where many of the properties of
amplifiers, filters, servos, alrfoils, and other devlices must be
determined. If any one of the complex roots of thls characteristic
equation for a system has a positive real part, the system willl be
unstable: amplifiers will howl, servos will oscillate uncontrolla-

bly, and bridges will collapse under the stresses exerted by the
winds. The prediction of such behavior is of great importance to
designers of the amplifiers that boost your'voice as 1t crosses
the country over telephone lines, and the servos that pcint guns
at an attacking plane."

Exercises 2-8

1. Assume that the equations glven below are the characteristic
equations of some mechanical or electrical system. According
to the quotation from Stibitz and Larrivee, are the systems
stable or unstable?

a) X3 - x° + 2= 0,

b) x° - 3x° 4 Ux - 2 = 0,
c)\ x3 + 3x2 + 4x + 2 =0,
) x>+ x° -2-=o0,

e) x>+ 6x° + 13x + 10 = O.

2. The following equations have multiple roots. Find them and,
in .each case, show that the sum of the multiplicities of the
roots equals the degree of the polynomial.

a) x5 -3x - 2=0,
b) x5 -3x+2 =0, |
¢) xT o+ 5x3 + 9x2 + 7x + 2 = 0.

3. Find the roots and their multiplicities of each of the follow-
ing equations. Compare the solution sets of the two equations.
a) x2 + qu + x3 - 10x°% - lx + 8 =0
b) %2+ xF - 5x3 - x> +8x-4=0

' [sec. 2-8]
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4. A number system is said to be algebraically closed if, and only
if, every polynomial equation of degree > O, with coefficients
in that system, has a solution in that system. Which of the
following number systems are, and which are not, algebraically
closed? Give reasons for your answers.

a) The integers: ..., -2, -1, 0, 1, 2, 3, ...
b) The rational numbers.

¢) The real numbers.

d) The pure imaginary numbers bi.

e) The complex numbers. '

5. You may have heard that it was necessary for mathematicians to
invent +~1 and other complex numbers in order to solve some
quadratic equations. Do you suppose that they needed to invent
something that might be called "super complex" numbers to
express such things as Vf_"_ ~/"'—T— and so on? Give rea-
sons for your answers.

.2-9. Complex Zeros
We know that a quadratic equation

ax® +bx+c=0, a#0o, (1)
has roots given by the quadratic formula
+ J.2
_ - b <~ vYb° - lac
X = s . (2)

The coefficlents a, b, and ¢ 1in (1) are here assumed to be
real numbers. The quantity under the radical in (2) 1is called-
the discriminant. Its sign determines the nature of the roots of
(1). The roots are
a) real and unequal if b2 - hac > 0,
b) real and equal if b2 - lac = 0,
¢) imaginary if b2 - lac < 0.
Example 1. What are the roots of X° + x + 1 = 02
Solution. The roots are

-1 +1 /3 -1 -144/3
2 ’ 2 )

We notice that these roots are complex conjugates; that is,
they have the form u + iv and u - iv, where u and v are
[sec. 2-9]
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real. In this example, u = -1/2 and v = ng.

Is 1t just a coincidence that these roots are complex conju-
gates? Let us look at (2), and suppose that a, b, and c are
real numbers and that the discriminant 1s negative, say -d2. Then
the roots of ax= + bx + ¢ = 0 are -b/2a + 1(d/2a) and -b/2a
- 1(d/2a). These are complex conjugates. Thus, if a, b, and
¢ are real and if the roots of (1) are imaginary, then these
roots are complex conjugates. This is true of polynomials of any
degree, as we shall n~w prove. (In the.following theorem, the
letters a- and b represent the real and imaglnary parts of a
complex root of an equation of any degrge, and do not refer to the
coefficients in a quadratic exprecsion.)

Theorem 2-7. Complex-conjugates Theorem. If f£(x) is a polyno-
mial with real coefficients, and if a-+ibis a complex root of
£(x) = 0, with imaginary part b # O, then a -ib 1s also a root.

(Another way of saying this is that if f{a + ib) = 0, with
a and b real and b # O, then f(a - ib) = 0.)

We shall give two proofs of this result.

First Proof. The key to this proof 1s the use of the quadratic
polynomial that is the product of x - (a + 1b) and x - (a - ib).
We show that it divides f(x). We can then conclude that
f(a - 1ib) = 0, and we have completed the proof.

Thus, let

[x - (a + 1b)1(x - (a - 1b)] (3)
[(x - a) - ibl[(x - a) + 1ib]
(x - a)2 + b2,
Note that p(x) is a quadratic polynomial with real coefficients.
Now when a polynomial is divided by a quadratic, & rem~inder of
degree less than 2 1s obtained. Hence, if f(x) 1is divided by
p(x), we get a polynomial quotient a(x) and a remainder
r(x) = hx + k, . possibly of degree 1 (but no greater), where h,
k, and all the coefficients of q(x) are real. Thus,

£(x) = p(x)-a(x) + hx + k. (4)
This is an identity in x. By hypothesis, f(a + ib) = 0, and
from Equation (3), p(a + ib) = 0. Therefore, if we substitute
a + ib for x 1in Equation (%), we get '

p(x)
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O =0+ ha + ihb + k.
Since real and lmaginary parts must both be O, we have

ha + k = O, . (5
and hb = 0, (5
Since ‘b # 0 (by hypothesis), Equation (5b) requires that h = O

Then Equation (5a) gives k = O. - Therefore, the remainder hx + k
in Equation (4) is zero, and
£(x) = p(x)-a(x). - (6)
Since p(a - ib) = O by Equation (3), it follows from Equation
(6) that
f(a - ib) = 0. q.e.d.
Second Proof. Let

_ n n-1
£(x) = a X +a X + .k agX + ag, (7)

and suppose that f(a + ib) = 0. When we substitute a + ib for
x 1in Equation (7), we can expand (a + ib)g, (a + ib)3,
on, by the Binomial Theorem. We can prove the complex-conjugates
theorem, however, without actually carrying out all of these expan-
silons, 1f we observe how the terms behave. Consider the first few
powers of a + ib:

and so

1

(a + ib)" = a + 1ib,
(a + 1b)2 = a2 + 2aib + 12p2
= (a® - b?) + 1(2ab),
(a + 1b)3 = a3 + 33%1p + 3a(122) + 133

(a3 - 3ab®) + 1(3a%p = b3).
Now observe where b occurs in the ve expanded forms. In the

real parts, b elther does not occu. at all, or it occurs only to

gven powers, In the imaginary parts, b always .occurs to odd
powers, Thils follows from the fact that all even powers of 1 are
real and all odd powers are imaginary., If wé change the sign of
b, we therefore leave the real part unchanged and change the sign
of the imagincry part. Thus, if f(a + ib) = u + iv, then
f(a - 1b) = u - iv. But by hypothesis,

f(a + ib) = 0,

so that - ' u+ iv = 0,
and therefore u=vs=20,
Hence f(a - ib) = 0. gq.e.d.
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Example 2. What is the degree of a polynomial function f
of minimum degree if 2 + i, 1, and 3 - 21 are zeros of £%
Solution. If it is not required that the coefficients of the
polynomial be real, then we may take
f(x) = [x - (2 + 1)1x - 1)[x - (3 - 21)]
= x3 4 (=6 + 1)x° + (13 - 21)x + (- 8+ 1),
In this case, the degree of f is 3. No polynomial function of
lower degree can have 3 zeros, so 3 1is the answer. Howevir, if
1t is required that the coefficients of f(x) be real, then tle
answer to the question is 5. For then the conjugates of 2 + 1
and ' 3 - 21 must also be zeros of f. No polynomial function of
degree less than 5 can have the 5 zeros
2+ 1, 2 -1, 1, 3 - 21, 3 + 21, (8)
But
[x - (2 +1)1lx - (2 = 1)){x - 1}[x - (3 - 21)}[x - (3 + 21)) (9)
is a polynomial of degree 5, with real coefficients, that does have
the numbers listed in (8) as its zeros.

Exercises 2-9

1. Multiply the factors in (9) above to show that the expression
doe~ have real coefficients. What is the coefficlent of x
in your answer? What is the constant term? Compare these with
the sum and the product of the zeros listed in (8).

5. Write a polynomial function of minimum degree that has =2 + 31
as a zero,

a) if imaginary coefficients are allowed,
b) if the coefliicients must be real.

3. Find all roots of the following equations:
a) x3-1=0
b). x° + 1 =0

c) x? - x°+2x = 8
d) x4 5x2 + 4 =0
e) xu - 2x3 + 1Ox2 - 18 + 9 =0

6 5 L 3 2 -
£) x° 4+ 2x° + 3x 4+ 4x7 + 3xT +2x +1 =0
g) x6 - 2x5 + 3}(1'L - 4x3 + 3x2 -2x+ 1 =0

[s2c. 2-9]
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4, What is the degree of the polynomial equation of minimum degree
with real coefficlents havine 2 + i, -2 + 1, -1i, 3+ 1,
-3 + 1 as roots?

5. Consider the set of numbers of the form a + b2 , where a
and b are rational. Then a - b+2 1is called the conjugate
surd of a + b+/2 . Prove the following theorem on conjugate
surds: ‘

If f£(x) is a polynomial with rational coefficients, and
if a+ b2 is a root of f(x) = 0, then a - b/2 is also
.+ root, (Note that if u + v+/2 = 0, and u and v are
rational, then u = v = 0, Otherwise, we cculd solve for
V2 = -u/v, the quotient of two rational number, But we know
that +2 is irrational.) ‘

6. Find a polynomial with rational ccefficients and minimum degree
having 3 + ?3/5 as a zero.

7. State and prove a theorem similar to that in Exercise 5 above
for numbers of the form a + b+/3. Is there a comparable
theorem about roots of the form a + b vﬁf? Glive reasons for
your answers,

8. Write a polynomial function of minimum degree that has ~1
and 2 - 243 as zeros, 1if
a) ir-anional coefficients are allowed;

b) the coefficients must be rational.

9. Find a.polynom'2l of minimum degree with rational coefficients
having ~/3 + /2 as a zero. _

10. Wwhat is the degree of a polynomial of minimum degree with (a)
real, and (b) rational coefficients having
(1) i+ ~2 as a zero? |
(2) 1+ iv/2 as a zero?

(3) Y2+ iv3 asa zero?

2-10. Summary of Chapter 2.

This chapter deals with polynomial functions and develops
methods for finding the zeros of such functions.
The general polynomial function of degree n, where n is
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a positive integer or zero, is denoted by
n n-1

f: x—sa x + a8, ;X + ...+ ax+ay, a #0.
f takes a given number c¢ in its domain into the number
_ n - n-1 . .
f(c) = a e’ + &, 3¢ + ... + a;c.+ ag in 1ts range.

Synthetic substitution is a technique for finding f(c). It
15 frequently less laborious than direct substitution.

The graph of a polynomial function 1s plotted by preparing a
table for (x, f(x)), using synthetic, or occasiocnally, direct
substitution. The pairs of numbers (x, f£(x)) are the points of
the graph of f.

Theorem 2-1. Remainder Theorem. If f{(x) 1is a polynomial

of degree n > 0 and if ¢ 1s a number, then the remainder 1in
the division of f(x) by x - c is f(c). That is,

£(x) = (x - c)a(x) + f£(c),
where “he guotient q(x) is a polynomial of degree n - 1.

The process of synthetic substitutlion gives a convenlent way
of obtaining a(x) as well as fi{c), since the synthetic substi-
tution of x = ¢ gives the same result as dividing f(x) Dy
X - c,

Corollary 2-1-1. The Factor Theorem. If c 1s a zero of a
polynomial function f of degree n > O, then x -c 1s a factor
of f(x), and conversely. '

Theorem 2-2. The Location Theorem. If f is a polynomial

function and if a and b are real numbers such that f(a) and
£f(b) have opposite signs, then there is at least one zero of f
between a and D.

Theorem 2-3. Upper Bound for the Zeros of a Polynomial
Function. If a Positive number a 1s substituted syntheticall.
in f(x), where f is a polynomial function, if all the coeffi-
cients of q(x) are positive, and if f(a) 1is also positive, then
all the real zeros of 'f are less than a. Ve call a an upper
bound for the zeros of f. '

When a negative number a 1s substituted synthetically in
£(x), if the coefficients of q(x) and the number f(z) alter-
nate in sigi, then a 1s a lower bound for the zeros of f.
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Theorem 2-4, Ratilonal Zeros of Polynomial Functions., If the
polynomial

n-1

n
f(x) =ax +a ;x + ...+ a,x + a

1l 0
has integer coefficients a s 812 e 80 and if f has a
rational zero p/q # 0, q > O, expressed in lowest terms, then p
i1s a divisor of ao and g 1s a divisor of a .

The importance of this theorem is that it limits the number
of values of x that need to be tested when searching for rational
zeros of a given function.

Corollary 2-4-1, Integral Zeros. If

£(x) = x™ + an_lxn-l + ... +a

lx+ao

is a polynomial with integer coefficients, with the constant term
a, # 0, and with the coefficient of x" equal to 1, then the
only possible rational zeros of f are integers that divide ay.
It should be noted that if a, = o, \then O 1s a zero of f.
An equation of reduced degree can be obtained whenever a ra-
tional root of f(x) = O 1s found, The use of this reduced
equation simplifies the problem of solving polynomial equations,
Decimal approximations of the irrational roots of a polynomial
equation may be obtained to any desired accuracy Ly means of the
Locatlon Theorem, synthetic substitution, and interpolation, although
the numerical computations may be tedious,
Theorem 2-5. The Fundamental Theorem of Algebra., Every non-
constant polynomial function has at least one zero, real or
imaginary.

Theorem 2-6. @General Form of the Fundamental Theorem of
Algebra. Let f be a polynomial function of degree n > 0. Then
f has at least one and at most n camplex zeros, and the sum of
‘the multiplicities of the zeros is exactly n.

Theorem 2-7. Complex-conjugates Theorem, If f(x) is a
polynomial with real coefficients and if a + ib is a complex root
of f(x) =0, with imaginary part b # O, then a - ib 1is also
a root. o
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Miscellaneous Exerclses

1. 1f f£(x) = 43 - 5x+ 9, find
a) f(c) b) £(-3) c) f£(1/2)
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If £(x) = 2x - 3 + 3x3, find
a) f£(0) b) r(-2) c) f£(1/3)
Find the quotient and remainder when
a) 3x" - 5x3 - 4x% + 3x - 2 is divided by x - 2
b) x4 -1 1is divided by x + 1
¢) 5x5 - 11x® - 1lx - 10 1is divided by x - 3
Find the -quotient and remainder when
a) ox3 - x° + 5X + 7 1s divided by 2x + 1
b) 81x” + 16 1is divided by 3x + 2
Evaluate each of the following polynomials for x = -2, -1, O,
l, 2, and 3. From the information obtained, write each -
polynomial as a product of linear factors with rational coeffi-
clents:
a) x3 - 6x° + 11x - 6

b) x5 - 3x° - bx + 12
c) x4 - 2x3 - x2 4 2x
If f(x) = kx3 + 3x° - 5% - 4, .find k such that when f(x)

e
/]

divided by x - 2, the remainder will be 22.

If f(x) = 3x4 - ox3 - X2 + kx + 3, find k such that
£(-1/3) = 0.

Write each of the following quadratic expressions as a product
of l1linear factors with real or imaginary coefficients:

a) 4x° -~ 3 c) x° - Ux + 7

p) 7x% + 9 d) 3x° - 5x - 1

Locate the real zeros of f between consecutive integers, given
that

a) f(x) = 3x° - 4x® - 8x + 5

b) f(x) x3 - 2x° # 3x - 4

Find all rational roots of each of the following equations.

Where possible find any irrational roots.
3 2

3

|}

a; 2x° + x° -6x=0

b) x3+ 2x% -x-2=0

¢) 2x3 - 2x° - 1lx + 2 =0
d) 3x5 - 5x° -8x+2=0

e) 3x4 = 8x3 - 40x° + 48x + 45 = 0
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11. Compare the graphs of the functions
f: x—> x3 - 2x° - 5x + 6
3 2 - 10x + 12
12. Write a polynomial function of degree 3 whose zeros are -1,
2, 3. . '
13. Write a polynomial function ofldegreé 3 having the zeros
.glven in Exercise 12, with the added condition that
a) f£(0) = -6 b) f£(4) =25
14. Write a polynomial function of degree 3 that vanishes at
x = 2 and 3, and that has the value 6 when x =0 and 12
when x = 1.
15. Find the zero of
f:1 x— x4 + 2x3 + x2

g: x—> 2f(x) = 2x° -~ lx

-1
between O and 1 correct to one decimal place.

16. TFor each of the following functions find all zeros and their
multiplicities, locate the y-intercept of the graph, and
describe the behavior of the graph for large |x|.

a) fi x—>y= (x - 2)2
b) f: x—>y= (2 - x)3
c) f: x—>y = 3(x - 2)“

2(x - 1)%(x + 2)
17. Find all rational zeros and their multiplicities of the follow-
ing polynomial functions:
a) f: x—> x2 + xt - ox3 - 2xf 4 x4+ 1
b) f: x—> 6x + 25x° + 38x° + 25x + 6
18. Solve the following equations:
a) xe(x +3)=14
b) (x + 1)(x + 2)(x +3) = (x #1)(x + 2)(x + 3)(x + &)
19. What is the minimum degree of a polynomial function with the
following zeros? '
a) 2, -3, 1
b) 4, 7 -1, =7+ 1
c) 2+1, -2+1, -2 -1
20. Find the minimum degree of each polynomial function with real
coefficients having the zeros given in Exercise 19.

d) f: x—>y
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22.

23.

24,

26.

27.
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Find the polynomial f(x) with rational coefficients and
minimum degree so that f(x) = O has the following roots:

a) 2, 3 -2 b) 1, V2 + 31

If £(x) = 1x° - 3x° - 4, find

a) f£(1) d) f£(1 -1)
b) f£(1) e) f£(-1+ 1)
c) f(1+ 1) £) f£(-1 -1)

If [ 1is a third-degree polynomial function such that

£(0) = -5, f(1) = -5, f(2) =1, and f£(-1) = -11, find

£(x).

Find the quotient and remainder when

a) (a - b)x2 + a2(b - x) + b2(x - a) 1s divided by x - a.

b) x° - (@ + b+ c)x° + (ab + ac + bo)x - abc 1is divided by
X - a. '

If f, is a polynomial function with zeros a and’ b, prove

by the Factor Theorem that £ (x) 1is divisible by

(x - a)(x - D). '

Show by using the Factor Theorem that x" - a (n a positive

integer) is divisible by x - a, and that when n is even it

is also divisible by x + a.

There 1s a theorem ‘known as Descartes! Rule of Signs that

- states that the number of positive roots of f(x) = O cannot
" .exceed the number of variations in sign of the coefficients

of f(x). A variation in sign occurs whenever the sign of a
coefficient differs from the sign of the next nonzero coeffi-
cient. Thus xu - x3 + 2x + 5 has 2 wvariations in sign.
Since the roots of f(-x) = 0 are the negatives of the
roots of f(x) = 0, the number of negative roots of f(x) = 0
cannot exceed the number of variations in sign of the coeffi-
cients of f(-x). Thus f(x) =x -~ x3 + 2x + 5 has at most
2 negative roots, since f(-x) = x ' + x3 - 2x + 5 has 2
varlations in sign.
Find the maximum number of positive and nega*ive roots of

each of the following equations
3 2

a) x° - x° - 1hx + 24 = d x> -1=0
b) x7u- x4 3=0 e) x4+ 1=0
c) 3x + x2'- 2x - 3 =0 ' £) x2 = 0]
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28,

29.

30.

31.

32.

33.

3k,

35.

Prove that +2 + /3 1is irrational. Hint: form a polynomial
with rational coefficients having /2 + /3 as a root.
Ir f£(x) = 2x3 - 3x + 5, find

a) f£(1+ 1) b) £(1 - 1)

If f(2+ 1) =3 ~ 4 and g(3 -1) =2+ 1, find
a) f(2 -1)

b) f(2+ 1)-g(3 + 1)

¢) f£(2 -1)g(3 + 1)

(Hint: this problem depends on a property of polynomial func-
tions and complex conjugates that was derived in the second
proof of Theorem 2-5, and that is illustrated in Exercise 29.)
Given f(x) = x° - 3x + 5, compare f(2 + v/3) and f(2 -/3).
Does the same property hold for g(x) = x° - J3 x + 57

For what values of x are the following equations satisfied?
a) x2 +x -6=0 s

b) |x]2+ x| -6 =0
c) x+ +vx -6=0
a) [x1°+[x] -6=0

Note: [x] is the greatest integer in x, defined as the
integer such that = - 1 < [x] < x.
An examination question says, "Find the formula for the nth
term of the sequence 2, 5, 10, 17, ... ." Show that there
is an unlimited number of polynomials in n gilving these
values for n =1, 2, 3, 4. Find the polynomial of minimum
degree answering the examination question. '

If a, b, and c¢ are the zeros of f::oi—>&3 + _7x2 + 5,
find a polynomial function with zeros a + 2, b+ 2, ¢+ 2.
If a, b, and c . are the zeros of f: x-—->-x3 + 7x + 5,

find a polynomial function with zeros 2a + 1, 2b + 1, 2¢ + 1.
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Chapter 3
TANGENTS TO GRAPHS OF POLYNOMIAIL FUNCTIONS

3-1. - Introduction. ,

If we select any point P on the gfaph of a ﬁélynomial function
and draw a line through P with a ruler, it will be possible to
choose the direction of the ruler so that very, very close to P
the line seems to lie along the graph. VWhen this is done, if we
stay close enough to P, 1t will be impossible to distinguish be-
'tween the 1line and the curve (see
Figure 3-1a). Vle may appropriately P
refer o the straight line which has
this property as the best linear
approximation of the graph at P.

The stralght line is also said to Figure 3-la

touch or be tangent to the graph at P. In this chapter, we shall
be concerned with the determination of the direction of the tangent
line at any point of a polynomial graph. We shall, of course, 4do.
this neither experimentally nor inexactly, but precisely:from the
polynomial itself.

We shall also be lnterested in the shape of the graph near
P. That is, we shzll want to know whether, sufficiently near the
point P, the graph lies above or below the tangent line, or whether
perhaps the curve crosses over from one side of the tangent to
the other. (See Figure 3-1b. (a), (b), (c), (d ).

o

Figure 3-1b
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Once we know how to determine the tangent and the shape we
shall. be in a position to find any points on a polynomlial graph
at which the tangent line 1s horizontal and the graph nearby 1is
entirely above or entirely below the tangent. Such points are
called minimum a..d maximum points, respectively. (See Figure 3-lc)

max. point

N R

min. point

Figure 3-1lc

As we learned in Section 2-3, the location of such points would
help considerably in drawing the graphs and locating the zeros of
polynomial functions. Maxima and minima are also of great lnterest
in applications, as we shall see in Section 3-8.

The probiem of finding the tangent to a polynomial graph at
a point P and the shape of the graph nearby is particularly simple
if the point is on the y-axis. As we shall see, in this case the
result can be written down by inspection. At first we shall
therefore confine ourselves to this easy speclal case, and later
(Section 3-5) turn to the case in which the point 1s not on the
y-axis.

3-2. Tangents at Points P on the y-Axis.

In this section we shall {1lustrate the method of obtaining
an equation of the tangent to a polynomial graph at.its point of
intersection with the y-axis. A Justification of the method will
be given in Section 3-3. |

The method is simplicity itself. It consists merely of
omitting every term whose degree 1s higher than one:

, Example 1. The graph @ of f: x—=1 + X - 432 intersects the
y-axis at P(0, 1). The tangent T to G at P has the equation
y=1+x '
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obtained by omitting the second degree term —4x2. It is easy to
draw T from its equation.

Cl
e
-—

\

bed

Figure 3-2a
G is the graph of f: X—=1 + X - 1x?
T is the graph of y = 1 + x
Moreover, since the omitted term -4x2 is negative for all

values of x except O, G lies below T except at P, (See Figure

Examglé 2. The graph G of £: x—=2 + x2 intersects the y-axis
at p(0, 2). If we omit the x© term and write y = 2 we obtain the
equation of the tangent T through P; In this case the tangent is
parallel to the x-axis. Since x2 is positive for éll X except

zero, all points of q except P lie above the tangent 1line T.

105

[sec. 3—2]



96

Because P is the lowest point on G, it is called the minimum point
of the graph. (See Figure 3-2b.)

y

4]

2(P(0,2)

n
x‘

-2 -| 0 |

Figure 3-2b
G is the graph of f: x—=2 + x2
T is the graph of y = 2
Example 3. The graph of
f: X—=x + x° intersects the Y
y-axis at P (0, 0). The equation > G
y=X T

of the tangent at P is obtained by . ﬁ
omitting the x3 term. Since x3
is positive for positive x and , ,P(Qoi . -
negative for negative x, G is ‘ ~é 4 i 2 X7
above T if x > O and below T if
x < 0. (See Figure 3-2c.) The
graph G therefore crosses from -2
one side of the tangent to the
other. P 1s called a point of
inflection of the graph G. Figure 3-2c

G 1s the graph of f: x—=Xx + X
.... T is the graph of y

]

X

[sec. 3-2]
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Exerclses 3-2
In each of the followlng Exerclses find the equation of the
tangent to the graph at the point P of intersection with the y-axis.
Draw the tangent line and sketch the shape of the graph near P.

1. x—=1 - x + x° 2, x—=U - x°

3. x—=2 + 3x - 2x° b, x—=3 + 2x + xu
5. XxX—=1+ x + x3 6. x—1 -x + x5
7. X—e2 - x° 8. x—=1 +2x + %
9., X—eX + x5 10, x—=X

3-3. Why Does the Method Work? The Behavior of the Graph Near P.

' " The procedure of Section 3-2 is simple enough. The lmportant
question 1s: Why does it work? In giving the explanation it will
be convenlent to look at Example 1 of Sectlon 3-2 in which

f: xX—1 4+ x - 4x2SM\ - (1)

As you know we have obtained.the'equation
: y=1+zx.
of the tangent at P (0, 1) by omitting the term —4x2. We wish to
Justify thls procedure by showing that the line obtained does
represent the best linear approximation to the graph at the point P.
This wlll entltle us to call y = 1 + x the equation of the tangent
to the graph at P. '
From (1) we have
f(x) =1 + x - 1x2
which may be written as
£f(x) =1+ (1 - 4x)x. (2)
If x is numerically.small, the expression 1 - U4x in parentheses 1s
close to 1. In fact, we éan make 1 - 4x lie as close to 1 as we
please by making |x| sufficlently small. :
Specifically, if we wish 1 - bx to be within .01 of 1 and
~ hence to lie between .99 and 1.01, it will be suffilclent to make
- hx liefbetween -.01 and .Ol,hand therefore to make x lle between
" -.0025 and .0025.

[sec. 3-3]
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This result has a simple geometrical interpretation (see
Figure 3-3a). Let us consider three lines L, L, and L, through
P(O, 1) with slopes 1, 1 4+ .01l and 1 - ,01. These lines have
the equations

L. y=1+x
Ll: y =14+ 1,01x
L2: =1+ ,99x

vy o |
Mét

.0025
A 0 B X

Filgure 3-3a

Their slopes are so nearly equal that the dilfferences can be _
shown on Figure 3-3a only by distortihg the scale. Let AB be the
.interval {x: |x| < .0025)}. If we confine ourselves to this
interval AB, the graph of f: x—e1 + (1 - 4x)x surely lies
between L1 and L2 and, rence, in the hatched region.

The numbers chosen were merely illustrative. They were
designed to give a certain concreteness to the plcture. We can
make 1 - U4x lie between 1 +¢ and 1 -e¢ for an arbltrarily small
value of ¢, merely by choosling x between - ﬁ and % . VWe did not

need to choose €= .0l.

-
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This means geometrically_thatvif we stay close enough to
x = 0, the graph of f: x—=1 + (1 - 4x)x liles between two lines,

Ly:y =1+ (L+e)x
L2: y=1+(i—e)x
‘which differ in direction as little as we please. "
stralght line which is always included between s nd
'L2,is ‘

L: y =1 +.X,

- Hence, we see that L can indeed be regarded as the best linear
approximation to f: x—=1 + x - 4x° at x = O.

- ‘We can confine the graph G of f: x—=1 + x -~ 4x to a smaller
part of the hatched region in Figure 3-3a by noting that G liles
below L except at the point P. Hence, on the interval AB, G lles
between L and L2 to the right of P and between L and L1 to the
left of P. (See Flgure 3-3h)

y L,
- L
:::::::::::; La
P(0O,l
L.
L
L
A 0 B X
Figure 3-3b
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Exerciges 3-3
1, Write f: Xx—=1 + X + xe as
f: x—=1 + (1 + x)x.
Show that if |x| <€ .01, then .99 < 1 + x < 1.01 and therefore
f(x) 1lies between 1 + .99x and 1 + 1.01x. Draw a figure (like
Figure 3-3a) to show the geometrical meaning of this result.
2. Strengthen the result of Exercise 1 by showing thnt
1+ x< f(x) <1+ 1.01x, for x > 0
1+x<f(x) <1+ .99x, for x < O.
Show the improved results on a diagram. h
3. Show that the results of Exercise 2 can be obtained more
simply by noticing that except at P, the graph G of
f: xX—1 + X + x2 must lie above the graph of y = 1 + X,
4, 1In Example 3 write f: X—= X + x3

as f: x—= (1 + x2)x
Show that
a) x < f(x) < 1.01x, for 0 < x< .1
b) 1.01x < f£(x) < x, for 0 > x > -.1

¢) Draw a figure to illustrate the geometrical meaning
of th2? results in (a) and (b).
5. Consider the function f: x—=2 + 3X -~ X
a) At what point does the graph of the functlon cross the
£(x) axis?
b) Show that if |x] < .01,
3.01 > 3 -x>2.99
and that f(x) lies between
2 + 3.01x and 2 + 2.99x.
¢) Draw a figure to illustrate the geometrical meaning.
6. Strengthen the result of Exercise 5 by noticing that the
graph of the function lies below the graph of the straight line
y =2 + 3x. ey
What additional refinement can be made in the figure associated
with Exercilse 5? ,
7. Let G be the graph of the function f: X XZ - 2% = 1.
a) VWrite f: X —ex° - 2x - 1 in the same form as (2) Section
3-3.
' [sec. 3-3]
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b) Show that if 0 < x ¢ .01, G lies between the straight
lines y = -1 - 2,0lx and y = -1 - 1.99x.
c) Draw a figure to show the geometrical meaning of this
result.
8. a) Write f: x—=3 - 5x - 4x2 in the form of (2), Section 3-3.
b) If |x{ < .02, what are the slopes of the two straight lines
between which the graph of f: X—3 -~ 5x - sz lies near

P (0, 3)? , _
¢) 1If it is desired that near P (0. he graph_lies between
the straight lines y = 3 - 4, x a = 3 - 5.002x,

what values may X assume?

3-k. The Behavior of the Graph Near P.(Continued)

In each of the examples discussed in Section 3-3 there was a
single term of degree greater than one. If the polynomial contains
more than one term of degree greater than one, there may be some
doubt about the appearance of the graph near its intersection with
the y-axis, An example will illustrate this point.

Example 1, The graph of

" f1 x—=1 4+ X + xX° -~ 2x
. passes through the point P(0, 1). If the term -2x3 had been miss-
ing, we should have no difficulty in writing the equation of the
tangent T

2 3

y=1+x
to the graph of X—=1 + X + x2 and concluding that near P, the
graph lay above T on both sides of P,

On the other hand, i1f the term x2 had been missing, we would
have written ¥ = 1 + x as the equation of the tangent to the graph
of X—=1 + x =~ 2x3 at P and noted that P was a point of inflection
with the graph below T on the right of P and above it on the left
of P. .

The presence of both higher degree terms raises a question,
Which term dominates the situation and determines the shape? The
ansWer is that sufficiently near X = 0, the lower degree term X
dominates the higher degree term -'?x3 and that th¢ graph has the

{sec. 3-4]
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same character as 1f the term -2x3

the parabola

were missing. In fact, near P
_ X—1 + x + x2
“gives the best quadratic approximation to the graph of

f: x—1+x + x2 - 2x3.
That this 1s the case may be shown by an argument like that of
Section 3-3. We wiite

f(x) =1+ x + x° - 2x°
in the form
£(x) =1 - | - 2x)x2
and n * that 1 - 2x 1s a: e e to 1 for |x| small
y |
3t /
/
/
G /
/
/
- ”
21 )
/
/
/
p
‘ G
AN PG|
\\~____//
- 0 | X

Figure 3-la
G is the graph of X—=1 + X + x2 - 2x3.
The grapt of X=-——-1 + X + x2 is shown
by ths &r=zbted line,
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enough., In fact, the graph G of

frox—=1 + x + (1 - 2%x)x
lies between the parabolas '

Cy: x——=1 + x + (1 + e)x2
and Cpt Xx—=1 + x + (1 - ¢)x°
for arbitrarily small ¢, provided that |-2x| <€, or |x]| < % . In
parabolas C1 and 02, the coefficients of x2 differ from 1 as 1little
as we please, provided, of course, that we stay close enough to
X = 0. The only parabola which i1s included between all such
and 02 1s C: XxX—1 + x + x2. Hence, we say that

2

parabolas C1

Co, XxX—=1 + X + x2 gives the best quadr:.iuic approximation. to the
~graph of f: X—=1 + X + x2~ 2x3 for,lxl sufficiently near zero. The
graph of f: x—1 + X + x2 - 2x3 lies below C to the right of
P(0, 1) and above C to the left of P(0, 1). (See Figure 3-la.)

Example 2. Draw the graph G of f: X—e2 - X + 2x3 ~ 3X near
its point of intersection with the f(x) - axis,

Solution: Ve write f{x) - 2 - = = (2 -.3xyx3 and note that

for [3x] < € , that is, for |x - % . 2(x) lies between
3

2 -x+ (2+ e

.and 2 - x+ (2 -¢g =
no matter how small ¢ 1s chosen.

lle see that the required grapvh & iies above the line ¥y = 2 -~ X
on the right o P and below it on thie l=ft of P, for all x suffi-
ciently small. and hence has the sane character as the graph of

C: x—=2 7= 2,

In fact, 2 ~ x + 2x° 1s the bes: Lhird degree approximation to
2 - x + 2x° - 3xu near x = 0., {%ee Fizure 3-4b.)

3

The conclusions drawn in th=pe “we eXamples would have bessn
essentially the same if differer” mw’™ 2rs had appeared as

coefficlents. Thus, if . 5
f: X—=a, S+ agks + agX

t

we can write o
£(x) = agy + aq7 - (ay + agx)x
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-1 0 |

' Figure 3-4b
G 1s the graph of x 2 - Xg + 2x3 - 3x4

3

The graph of Xx 2 « x + 2x° 1is shown

by the dotted line.

and conclude that the graph lies between the graphs of
X—=>ay + ;X + (a2 + e)x?

2
and X——>ay + 8% + (g - €)x

for arbitrarily small €, provided that |a3x| < €,

il4d
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Exercises 3-4

For each of the following, draw the tangent and sketch the
shape of the graph near its point of intersection with the f(x)-axis.
f: xX—=2 + x + 3x2 - x3
X—=2 + x3 - X
X -1 + 2% = X° + 4x3
Kl = 2%5 + x*
X} - 3% + X5 - 7x5
6. f: x—=2x - X° + 3x3

U & wn
H oy

“

7 - 12. In each of the preceding exercises show that for any
‘€ however small it 1s possible to choose |[x| small enough so that
f(x) lies between '
r
ag + a; X + (ar +€)x

and ag + a;x + (a, - €)x", where r is less than
’ the degree of the

polynomial.
Specify how small ' | must be if € = .0Ol.

3-5. The Tangent to the Graph at an Arbitrary Point P and the
Shape of the Graph Near P.

So far we have confined ourselves to the problem of finding
an equation of the tangent line to a polynomlial graph at its point
of Intersection with the y-axis, and to an examination of the shape
of the curve near that point. There remains the problem of finding
the tangent to the graph at an arbitrary point P and the shape of
the graph near P,

This problem is solved by generalizing the method of the
previous section. The behavior near the point for which X = O was
determined from the expression for f(x) in ascending powers of Xx.
The behavior near the point for which x = h, say, can be determined
1if we have an exprcsslon for f(x) in ascending powers of x - h.

. As before, we can best start with an example.
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Example 1. Find the tangent to the graph G of f: x—U - 3x
+ 2x° at P(1, 3).

In this case h = 1 and hence wé\write F(x) = 4 - 3x + 2x2 in
powers of x - 1. The result is

£(x) =3 + 1(x = 1) + 2(x - 1)° (1)

ol |

Pigure 3-5

G is the graph of x—sU4 - 3x + 2x
T is the tangent at P(1, 3)

This is easy to verify since (1) is equivalent to

34 x -142x° -bx+2=1_3x+ 2x°,
A method for obtaining the expansion (1) will soon be given. Mean-
while, let us see how to use (1) to achieve our purpose. e assert
that the equation of the tangent T may be obtained from (1) by
dropping the term of highest degree., The result is

vy =3+1(x -1). (2)
The grapx G is above this tangent T at all points other than
P(1, 3). This is seen by noting that 3 + 1(x - 1) + 2(x - 1)%

A ]

2

[=x. 3-5]
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may be obtained from 3 + 1(x - 1) by adding 2(x - 1)2, which is
positive for all x except 1. (See Figure 3-5.) _

We jJustify the assertion that (2) is an equation of. the tangent
to the curve G at point P as follows. The expansion (1) is factore:
and written in the form

£(x) =3+ [1+2(x-1)] (x -1). (3)

srom | ' we note that if x'1is near enough to 1, that is if |x - 1]
is sufficiently small, the expression [1 + 2(x - 1)] is arbitrarily:
elose to 1. In other words, for aﬁy € , however small, £(xh lies
between

34+ (1 +€)(x -1)
" and 3+ (1 -¢€)(x -1)
providec that |2(x - 1)| <€, that is, that |x - 1] < %n Hence
3 + 1(x - 1) is the best linear approximation to f(x) near
x =1 and T is the tangent to the graph G at the point P(1, 3).
It shou_Z be noted that we have followed the same procedures as
before =sith x - 1 in place of x.

We now consider the problem of expanding f{x) in powers of
x - 1, that is, of finding the coefficients in (1). We shall
discover how to do this by looking closely at (3), For convenience
we repeat both (3) and (1).

£f(x) = 3+ [1 + 2(x-1)] (x - 1), (3)

£(x) =3+ 1(x - 1) + 2(x - 1)2, (1)
From (3) we note that if we divide f(x) by (x - 1), we obtain the
remainder 3 and the quotient 1 + 2(x - 1). The remainder 3 is the
first coefficient in Equation (1). Again, from Equation (3), if
we.divide the quotient 1 + 2(x - 1) by x - 1, we obtain the
remainder 1 and the new quotient 2. The remainder 1 is the second
coefficient in Equation (1), and the final quotient 2 is the last
coefficient in (1).

Let us follow this procedure to determine the required
coefficients, beginning with f(x) = 4 - 3x + 2x° and using
synthetic division.

[sec. 3-5]
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[

The first remainder in dividing f£(x) by x - 1 is 3. The quotient
is 2x - 1.
On dividing™2x - 1 by x - 1

2 1 L_}__
2 |1

we obtain the second remainder 1 and the quotient 2. Hence, the
remainders we obtained are in succession the coefficlents bO’ bl’
and the final quotient 1s b,.
£(x) = by + bl(x - 1) + b2(x - 1)2.
Example 2. Find an equation of the tangent to f: x—=2 +
3x + x° - x° at the point for which x = 2.
We need to expand f(x) in powers of x - 2, that is, to find
the coefficients in ‘
£(x) = by + by (x - 2) + bo(x - 2)° + b3(x -2
If £(x) is divided by (x - 2), b, is 'the remainder and the
quotient 1s by + by(x - 2) + by(x - 2)2. If this quotient is
divided by x - 2, the remainder 1s b1 and the new quotient is
by +'b3(x - 2). A further division of b, + b3(x -2) by x - 2
gives the remainder b2 and the final quotient b3. We proceed to
carry out these divisions synthetically.
Dividing by x - 2

=1 fl +3 +2 l 2

)2 )3.

-2 -2 +2
-1 1 1 |
we obtain the first remainder U4 and the quotient
2
-X" - x + 1.

Dividing this quotient by x -~ 2

-1 -1 +1 | 2

-2 -6
-1 3 |-5
gives the remainder -5 and the new quotient -x - 3. Finally,
118
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dividing this quotient by x - 2, we have

S

-2

-1 -5
the remainder -5 and the quotient -1. The successive coefficients
in the expansion of f(x) in powers of x - 2 are the successive
remainders obtained above, namely 4, -5, -5, and ﬁhe final
quotient -1. That is
' f(x) =4 - 5(x -2) -5(x -2
The tangent T at P(2, 4) has the equation

y=4'5(x4"2),
and the graph lies below T on both sides of P for points which are
sufficiently near P.

)2 - 1(x - 2)°

Exercises 3-5

1. For each function below write the expansion of f(x) in powers
of x - h and determine the equation of the tangent to the
graph of f at the point (h, £(n) .

2 3

a) x—=3 + Ux + 2x° + x h=2
b) x—3 + 2x3 + 4x2 h = -3
¢) x—ix® - 3x% +2x + 1 h = -}
d) x —=5x' - 3x2 £ 2x + 1 h=3
e) x —4x3 4+ %2 4 3x h =3
£f) x —v2x3 + 1x° - 16x - 24 h = -2

2. 1In each case express f(x) in powers of the given factor.

a) f(x) = 3x° - 5x° + 2x + 1. (x + 1)
b) f£(x) = ox3 - 5x : 3 (x - 2)
c) f£(x) =4 + 3x - 72 + x° (x - 2)
d) f£(x) = X 2x®yx -1 (x + %)
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3. For each of the following write the equatlon of the tangent at
the specified point and sketch the shape of the graph nearby.

a)  x—eb + 3x - TX° + x° at (2, -10)
b) x—ex - 6x° + 6x -1 at (3, -10)
c) x-———3xu - hx3 : at (1, -1)
d) t—2t> - 4% - 56+ 9 at (2, -1)
e) x—2x3 - 3x% - 12x + 1k _at (1, 1)
£) g —e28° - 68% + 65 - 1 T at (1, 1)

3-6. Application to Graphing.

Consider the function

£ x—>2 -'12x - 3%° + 2x

and its graph. (See Figure 3-6.)

We ¥now how to find the tangent and sketch the graph near any
point P(h, f(h» . So far we have chosen particular values of h.
It will now be useful to carry out the work with h left unspecified.
We want to expand f(x) in powers of x - h,

3

£(x) = by + bl(x - h) + b2(x - h)2 + b3(x - h)3.

As we know, the coefficlents bo, bl’ b2 and b3 can be found as the
successive remalnders in division by X - h.
We carry out these divisions synthetlcally.

2 -3 -12 . 2 L_E_n

oh 2h® - 3h 2h3 - 3h° - 12h

2 2h -3 2h° - 3h - 12 2h° - 3n°

- 12h + 2

The first vemainder is £(h) = 2h3 - 3h® - 12h + 2 as we should
expect. This 1s bo. To obtailn bl we divide again by x - h.

2

2 2h - 3 2h® - 3h - 12 | h

h 4h® - 3h
2 U4n-3 | 6n2 -6h-12 =D

1
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3

(~1,9) 107

218

Figure 3-6

The graph of x—=2 - 12x - 3x2 + 2x3

[sec. 3-6]
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To find b2 we divide once again.

o  L4h - 3 h
oh
2| 6n-3=n,

b3 is 2.
The required expansion 1s

£(x) = £(n) + (602 - 6h - 12)(x - h) + (6h - 3)(x-0)2 + 2(x - 0P (1)
' The equation of the tangent at (h, f(h» is ‘ '
y = fih) + (6h - 6h -12)(x - h).

It is particularly helpful in graphing to find any places
where the tangent is horizontal, that 1is, where the slope of the
tanzent is zero. Such points are called critical points. In our
example, we set '

6h° - 6h - 12 = 0

The solutions are h = -1 and h = 2. Since f(-1) = 9 and £(2) = -18
we have horizontal tangents at (-1, 9) and (2, -18), as appears on
Figure 3~ 6

To find the shape of the graph near (-1, 9) we substitute
h = -1 in Equation (1) and ‘obtain o

F(x) =9 - 9(x +1)2 + 2(x + 1

The graph lies below the tangent y = 9 on both sildes of (-1, 9)
nearby;and accordingly we call this point a relative maximum A

Similarly;if we substitute h = 2 in Equation (1) we obtain

Tr(x) = <18 + 9(x - 2)2 + 2(x - 2)°.

Since the graph lies above the tangent line y = -18 near (2, -18)
this point is called a relative minimum.

Another point of interest corresponds to the case where the
coefficient of (x - h) is zero. This occurs in our example when-
6h - 3 = 0, that is, when h = %. Equation (1) then becomes

)3

£(x) = & - El(x - %) + 2(x - %)3.
The tangent line T at (%—, —2—) has the equation
¥ = -g- - -2%(3( ‘-'%).
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- The graph lies above T to the right of the point and below T +to
the left. Hence, the graph crosses its tangent and (%, i?) is a

point of inflection.
' With all of the above informatlion at our disposal'We can sketch
the general features of the graph of f., We use also the fact that
the point (O, 2) lies on the graph and’that the tangent there,
y = 2 - 12x, has slope 712. ‘We may find the values of the function
at x =1, x =3 and x = -2 to sketch the graph more accurately.
Note that in Figure 3-6 we have used different scales on the hori-

zontal and vertical axes in order to bring out the features of the
graph more clearly.

The abllity to locate maximum and minimum points and points of
inflection enables us to sketch the graph of a polynomial function
rather quickly and it makes it possible to reduce the number of
points required to give a good plcture,

Exercise 3-6

For each function

f1 x—16 - 6x2 + x

and f: x—a*ﬂ2x3 - 4x -1

3

a) ' Find the slope of the tangent to the graph at the point
where X = h.

b) Write the equation of the tangent to the graph at the point
where h = -1, .

c¢) Find each critical point and identify its character.

d) Evaluate £(0), f£(2), £(-2), £(3), £(-3), r(10), £(-10).

e) Sketch the graph.
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3-7. The Slope Function.,

We can greatly shorten the process of Section 3-6. By doing
synthetic divislon once for all on a general polynomial, we quickly
discover a formula for the slope of the tangent. This formula 1is
so easy to remember that it would be a waste of time not to use 1%.
We illustrate this short cut by consldering a general third degree
polynomial function, f: X— 8,5 + 8;X + a2x2 + a3x3, and finding
the tangent at (h, f(h» .

We wish to determine the coefficients in the expansion of
f(x) in powers of x - h,

£(x) = by + by(x = h) + by(x - n)? + by(x - n)3.

In particular, we wish to find an expression for bl’ the slope
of the tangent
y=bo+bl(x—h).
As usual we use synthetlc substitution:
a

[n_

a

a3 as 1 0
2 3 2
aah aSh + a2h aSh + a2h + alh
a ah + a a h2 + ash + a | a h3 + a h2 + a.h + a, = by
3 3 2 3 2 1 3 2 1 0 0
Another division glves
2 h
aq a3h + a5 a3h + a2h + ay [___
2
aSh 2a3h + a2h

1, 2 ~ —
a3 2a3h + a, SaBn + 2a2h +ay = bl

The required slope 1s

- 2
bl = 3a3h + 2a2h + a, .

To summarize, for the polynomial function
3 2
f:1 x—azx" + aX + 8;X + &g,
(. the slope at (n, £(n) 1is

2
3a3h + 2a2h + al.

[sec.n3-7]
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If we assoclate this expression with h

2
3h + 2a2h + al

a function 1s defined. The same function is defined by

h —— 3a

2
x-———3a3x + 2a2x + al

since the mapping 1s the same no matter what letter is used to
denote an arbltrary number in the domain of the function.
With the polynomial function

3 2
f: x-ﬂ—a3x + ax + alx + ao

there 1s therefore assoclated the function f!
£1; x—-—-—3a3x2 + 2a2x + a -

Since the values f'(x) of this functlon give the slope of the
tangent to the graph at the point (x, f(x» s we call f' the slope
function assoclated with f. N

Examlnation of the expression for f!'(x) should make it easy
to remember. We can assoclate the terms of £(x) and £'(x) in accord
wlth the following scheme:-

fgx! . £1(x)

asx 3a3x
a2x2 2a2x
a;x ay
a, "0

In each case the degree of the corresponding term of £1(x) 1s
one lower and the coefficient is n times as great,

As we kmow, f'(h) 1s the slope of the tangent to the graph
of f at the point P(h, f£(h) . We shall say that £'(h) is the
slope of the graph at the point P. .

This scheme works equally well for polynomials of higher
degree. Thus, if "

- . 3 2
f: X—=ayX " + a3X" + asx" + a1x + ag,
the slope function f' is given by
3
£r. x——a-uaux + 3a3x2 + 2a2x + a,.
[sec. 3-7]
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“he Scheme also applies t— == quadratic function
bl x-—-azx“Ff alx + ag

iinere
f1; x— 2.2+ a..
Exarie 1. Glven tr - lon £ x—=1 -+ 3x°. find the
asiociatz=c slope funcwlor zG its value when I = 2.
Solution: f': x — - 3%,
Hence, f£'(2) = -2 + = 10.

3

. 2
Example 2. Given th: £ iction f: X—3x" + 2x- - x + 1,

2nt line at the pcint (1, 5).

= 1d the equation of the -z
Solution: ft': x—=S° + 4x - 1,
Hence, f1'(1) =9 + 4 - _ =12,
The equation of the te: cent at x = 1 is 7 = £(1) + £'(1)(x - 1)
that 1s,
v =5+ 12(x - 1)
or y =12x - 7. .
Exercise§ 3-7
1. Given the functions Y 3

£ X—*——-}-cq--l-ﬂs—-l-E
g: x—~—-3x5 - 5x3 - 2

p: x——*-x6 - 3x
a) Find the assoclated slope functions f', g', and p'.
p) Find the slope of each function at x = -1.
c) In each case write an eqﬁation of the tangent line at the
point where the graph intersects the y-axis.
d) Sketch the graphs of f, g, and p, confining yourself to
the interval {x: |x| < 2}.
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2. Find and identify ezzh 7% = 2cih% given thhe functions.
a) xX-— 2x3 + 3x° - 1ox
b) x— x° - 12x + 16
c) X— —2x3 + 3x° + 12x% -
3. The point P(1, 1) lies on t -« rrep: I each of the following
polynomial functions. For v .- % i: ‘e point (1) a relative
maximum, (2) a relative mini~ i, ‘. & 2 point of inflection,
(4) none of these?

a) xX-—= ox3 - 6x° + 6x - 1

b) x—2x° - 6x + 6
c) X —= 2x° - 9x2 + 12x - 1L

d) x—2x3 - 3x° - 12x + 1.
4, Draw the graph of x——-o-x4 + =

Y

- 3x af<er identifying

each critical point, and fini: - .'.= ralue of the function at
X = -2, 0, 2.
5. Consider the functions o
3 2 o X 2 5
f' X—x" - 3" +1 and . - 5 - mX - F .
a) Find the assoclated slope ....tlons f' and g!'. Evaluate

£1(1) and g'(1). _

b) 1In each case write an equaticn of the line tangent to the
graph of the function at th:= point where x = 1.

¢) What observation can you mzre =about the angle of inter-
gsection of these tangent lir=sc?

3-8. Maximum and Minimum Problems.

In the last section we develows= = —ethod fcr finding the
tangent to the graph G of a polynomiaZ fimnctilon at any point P.
Moreover, in Section 3-0 we learned how to determine relative maxi-

mum and minimum values of any polynomial function of degree greater
than one., We observe that a relative maximum 1s not necessarily
greater than every other value of the funétion. However, in this
section we shall abbreviate "relative maximum” to "maximum." If
necessary, we shall refer to an or=r-z’ 1 maximvm as an absolute
maximum. Similarly, we shall use the word "minimum" in place of
"relative minimum."

[sec. o-F]
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There are many Situations which lzad to the problem of de-
termining the maximum cr the minimum values of polynomial functimee
Such situations arise from the consideration of distance; volume,
area, or cost as functions of other variables,, In practice, not
only do we often need to know the optilmum (maximum or minimum as
the situation requiresf values of a function, but also how to
‘achieve them. In other words, we need to know the values in the
" domain at which the function values are maxima or minima. We
shall use the techniques of the last section to find these valuex.
Sometimes the function is defined by an equation; at other times
a relationship 1s expressed less straightforwardly and it is
necessary to translate the information in such a way as to discover
a function which may be maximized or minimized.

Example 1. A ball is thrown upwards so that its height t
seconds later is s feet above the earth where

s = 96t - 16t2,
What is the maximum helght the ball will reach?® Ve

Solution. Our .understanding of the problem is- enhanced by
a grapli., Since meaningful replacements for t and s are limited
to positive values, our graph will be drawn for the firsp quadrant
only.

AS
t__ s
1 Bg
52 | 12
3 | 14 100;
u 1%8
5 0
2 0 50
) % % 4 5 6 7 1t
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1

Our graph sugza23t: that when t ®# 3 (& = read "ayproximately
equal to"), we have a —aximum height. Let . . keep this in mind
as we proceed.

Since the funeti-r is

f: -—=06t - 16t
the associlated slope fimctio— is

£1: t—— 96 - 32t,
We are seeking a point where the tangent is horizortal, that is,
where the slope 1is 0. Hence, we write

i 0 = 96 - 32t.

Thus t = 3, and the maximum height is 144 feet. Note that
£(t) = 96t - 1662 = 144 - 16(¢t - 3)2, which confirms that the
value 144 is a maximum. ’

Example 2. Find the dimensions of' the rectangle with peri-’
meter 72 feet which will enclose the maximum area.

Solution. Let x feet represent the width and let y feet
represent the length. Then the z—sa 1s xy square fe=t. In order
to express the area A in terms of x alone, we must express y in
terms of x. Since ths perimeter, 2x + 2y = 72, y = 36 - x.

2

#igure 3-8b

Substituting 36 - x for y, we are able <o express the area A in
terms of x.
A= x(36 - x) = 36z — x° = T(x)

P x—36x - x°

The corresponding slope Sumztion is
Ty m— 36 -'2x.

[sec. 3-8]
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Agair we seek =he val zs .f x where £r{x) = C.

r 36 -~ 2x

- = 18,
When = = 18, 7 = 18 cince “= + 2y = 72. Tmus tne rectangle with
maximrm area 1.1l be = scuz—e 18 feet on z. z.de, Why 1is this
not = minimum®

il

xample I. A ma- zogeases to make an f-2a box by cutting a
squars from each cornz=r * = plece of cardbczmrd 12 inches square,
and then turning up &= siges. Find the dimsnsions of each
squarz he must cut out: i~ arder to obtain a =X with maximum
volu==,

gJolution. Let ti= siids of the square — be cut out be X
inches. The base of +hs b=z will be 12 - 2x Znches on each side
and the depth will be x inches.

~

I~

x 12-2x

Figme 3-8
The volume in cubi: Inches will =e
T = (12 - =) (22 - Zx)(x)
= 1h4x - 48x° - bx° = r(x).
¥= must maxsmlze & .= . The slcpe function is
£, e ThN - OSx + TZxC
We are se==ing the m==Tcs of the slope functizn. Since
t;=,124-9§xé-1212
= 12(6 - x}(Z - x),
the zeros of f! zz= = zaxd 6.

[sec. 3-8]
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It 1s zlear ~that if we cut a 6 inch square frcx each cornsr of our
originzl carzvoard, nothing will be left for = base, and the
volume will e a minimum. With a 2 inch squar=s cut from each
. corner we can make a box whose dimensions are 3 > 3 X 2 inches.
The maximum volume is 128 cubic inches.
Example 4, Find the point on the gre-h 37 t:s function
f: x—x" that is nearest the point A(3, -3).
Solution. For every real number x, tne Dci=t P(x, xg) s on
the graph of the given Zunction. Recall that tie distance between
two points (xl, yIL (x2, y2) is given by the eczztion

. \e 2
da = '\/(xl - —‘*2) + (yl - yz)

A grapr of the function f: x———-x2 will k="», Let AP r=pre-
sent the distance from & to a point P(x, x~) on the graph.

Y 4
5
4+
2r
\J
~a X
o/, v 2 =
|
Figure 3-8d

Then

AP =+/(x - 3)% + 'x

2)2

Tmmm ., 3-8]
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Since this does not express a polynomial function, = dz not have
the technique to minimize or maximize the distance fynczion.
However, if we let(AP)S= K, then

(x - 3)2 + (x5~

=9 - 6x + X + =,

i

K

i

=

This defines a polynomial function g which we can mizimize. The
value of x which makes K a minimum will also make AP z minimum.
The slope function associated wlth g iz
g': x—=-6 + 2x -+ uxS,

We find that 1 is the only real zero cf g!'. It is eas to show
that when x = 1, K is a minimum and h=zcz2 so 1s AP, Since £(1) =
1, the point (1, 1) is the point on ti= graph which is nearest
to the point A.

Example 5. Find the right circular cylinder c gmszatest
volume that can be inscrited in a rigkt zircular cons,

Solution. Let h be the height of the given cons zmd r the
radiug of its circular base. Then in terms of thz skeSch In

;\\yA
w]
]

V

Figure 3—:i=

Figure 3-8e, AC = h and CB = r. IT the heighi of tne Znscribed
cylinder is y, and the radius of its circular bas= is =x, then
DC =y and DL = X%, -

[sec. 3-8]
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Since triangles ADE and ACB are similar

DE _ CB
| ™ - K
2or -y = % s Vhere AD = h -y
and y = n-2Z, (1)

The volume V of the cylinder is given by

V = vxay vxz(h - %5)
= mhx® - IO (2)
where h and r are constants.
The formula for the volume defines a polynomial function f
which we can maximize, The associatéd slope function is

fr. X——-QTTh?{ - 37]‘%—)(2.

The zeros of f! are found by solving

0 = 2rhx - Snga

— e 3
= TiX ( 2 - -I—'X) .
These zeros ars O arri %r. The cylinder will have a minimum volume

when the radius of its base is 0, and’a maximum volume when its
.radius is %r. To find its corresponding height we substitute
X = %r in (1), so that

_ 2. _h
y-—h—.-g'h—'s-.

Exercises 3-8

1. A rectangular box with square base and open top is to be made
from a 20 ft. square piece of cardboard. 'What is the maximum
volume of such a box?

2. The sum of two positive numbers is N. Determine the numbers
so that the product of one and the square of the other will
be a maximum.

3. A rectangular field is to be adjacent to a river and is to
have fencing on three sides, the side on the river requiring
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no fencing. If 100 yards of fencing is available, find the
dimensions of the field with largest area.

b, A wire 2% inches long is cut in two, and then one part 1is bent
into the shape of a circie and the other into the shape of a
sduare. How should it be cut if the sum of the areas is to
be a minimum?

5. A man has 600 yards of fencing which he is going to use to
enclose a rectangular field and then subdivide the field into
two plots with a fence parallel to one side. What are the
dimensions of such a field if the enclosed area is to be a
maximum?

6. A printer will print 10,000 labels at a base price of $1.50
per thousand. Tor a larger order the base price on the entire
1ot is decreased by 3 cents for each thousand in excess of
10,000. For how many labels will the printer's gross income
be a maximum? (See note at end of Exercises.)

7. 4n open box is to be made by cutting out squares from the ..
corners of a rectangular piece of cardboard and then turning-~
up the sides. If the plece of cardboard is 12" by 24", what
are the dimensions of the box of largest volume made in this
way?

8. A rectangle has two of its vertices on the x-axis and the
other two above the axis on the graph of the parabola y =
16 - x°. What are the dimensions of such a rectangle if its
‘area 1s to be a maximum?

9. Find the point on the graph of the equation y = Ux which is
nearest to the point (2, 1).

10. A manufacturer can now ship a cargo of 100 tons at a profit of
$5.00 per.ton. He estimates that by walting he can add 20 tons
- per week to the shipment, but that the profit on all that he
ships will be reduced 25¢ per ton per week. How long will it
be to his advantage to wait? (See note.) ‘
11. Find the dimensions of the right circular cylinder of maximum
volume inscribed in a sphere of radius 10 inches.
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12, A peach orchard now has 30 trees per acre, and the average
yleld 1s 400 peaches per tree. For each additional tree plant-
ed per acfe, the average yleld 1s reduced by approximately 10
peaches. How many trees per acre will gilve the largest crop
of peaches? (See note.)

13. The parcel post regulatlons prescribe that the sum of the
length and the glrth of a package must not exceed 84 inches.
Find the length of the rectangular parcel with square ends
which wlll have the largest volume and stlll be allowable under
the parcel post regulations.

14, A rectangular sheet of galvanized metal is to be made into a
trough by bendlng 1t so that the cross sectlon has za L___J
shape. If the metal 1s 10 inches wlde, how deep must the
trough be to carry the most water?

15. A potato grower wlshes to shlp as early as possible in the
season in order to sell at the best price. If he ships July
1st, he can ship 6 tons at a profit of $2.00 per ton. By
walting he estimates he can add 3 tons per week to his shilpment
but that the profit will be reduced by L/S dollar per ton per
week., When should he ship for a maximum profit? (See ncte.)

16. Prove that with a fixed perimeter P the rectangle which has a
maximum area 1s a square.

17. Find the greatest rectangle that can be 1ns§}ibed in the region
bounded by y2 = 8x and x = 4,

~18. What polnts on the ellipse %2 4 4y2 = 8 are nearest the point

. (l’ 0)? '

19. Find the altitude of the cone of maximum volume that can be
inscribed in a sphere of radius r.

20. A real estate office handles 80 apartment units: When the
rent of each unit is $60.00 per month, all unlts are occupiled.
If the rent 1s increased $2.00 a month, on the average one
further unit remains unoccupied. Each occupied unit requlres
$6.00 worth of service a month (i.e. repairs and maintenance).
What rent should be charged in order to obtain the most profit?

(See note.) 13,_
9
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Note. 1In the indicated problems meaningful replacements for
the varlables are obviously rastricted to positive integers, but
we must comsiczr the functions to &= continuous in order to apply
the techniques of this chazter. T

3-9....Newton's Method.
In some cases, there exist simple formulas for the zeros of

functions; the linear anc quairatic polynomial functions are cases
in point. 1In some other cases, such as the cubic and quartic poly-
nomial functions, formulas =:iist, but are so unwieldy as to be of
1ittle practical valge. Ir = great many cases, there are no
formulas at all. In this S=con, we shall consider the problem
of locating zeros when no simple formula exists. We shall have to
be satisfied with approximztions to these zeros, but since there 1is
no theoretical limit to the =zcuracy of our approximations, they
can be refined to meet = S=m=nds. of any practical applications.

A simple and obvicus =wimigue for approximating zeros of
polynomial functions is To wse the Location Theorem (Theorem 2-2)
and linear interpolatiom. Iy this technlque, we isolate the zero
first between successive integers, then between successive tenths,
then between smccessive humdredths, and so on, thus generating a
sequence of numbers whizh Zore and more closely approximates the
zero. TIn actual practice, this method is not generally the most
efficient, and the computatirms may become guite involved. The
method ‘which we shall dsscribe here is efficient and 1s applicable.
to a great variety of functions. Tt is called Newton's Method.

Newton's Method is arx iterative process: If, that is, we
start with a good approxim=ricn %y to the unknown zero, and apply
this method, 1t will yieIi = better approximation Xos and if we
then apply it to x5, it =will yield an approximation X3 that 1s
better still. Thus, the mrocess yields better and better results
" when applied over and ov=r again, and 1f the error of the initial
estimate is small, it coovergss more rapidly than does linear
interpolatfon. Iterative processes are particularly well adapted
to modern machine computatizm, and Newton'!s Method 1is a standard
tool in virtually all large computing centers.
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Newton's method is based on a simple geometric idea associated
with successive tangents to the graph of a given function., The
tangents intersect the x-axis at points which are successively
closer to the zero of the function. (See Fig. 3-9a.)

A
Pra
w
X
x
X‘ ’

Figure 3-9a

Example 1. To calculate the value of the real zero of the
polynomial function
) f: x—--—-x3 + x2 + X - 2

Solution. Since f(O) = -2 and f(l) = +1, ¢ has a zero r
which is between O and 1, From a graph G of f we estimate .8 as

a first approximation to r. The equatlion of the tangent to the

[sec. 3-9]
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graph at the point where x = .8 1s found by synthetic division.

1 1 1 -2 L;?__

.8 1,44 1.952
1 1.8 244 |- .08 = £(.8)
0.8 2.08
1 2.6 | k.52 = £1(.8)
The equation 1is

y = £(.8) + £1(.8)(x - .8)
or y = -.048 + 4,52(x - .8).
This tangent line crosses the x-axls near the point where x = r.
In fact, by setting y = O we find a value of x which 1s a closer

approximation to r.

0 = -.048 + 4,52(x - .8)
= -3.664 + U4, 52x
and xn .81

To refine our approximation to r we find the equation of the
tangent to the graph G at the point (.81, f(.81» .

1 1 1 -2 -81
.81 1.4661 1.997541

1 1.81 2.4661 - .002459 = f£(.81)
.81 2,1222

1 2.62 4.,5883 = f£1(.81).
The equatlion 1s
y = £(.81) + £1(.81)(x - .81)
or y = -.00246 + 4,5883(x - .81).
To find the point at which this tangent line intersects the x-axis
we solve the equation '
0 = -.00246 + 4,5883(x - .81)
obtaining the root, x w .8105. To two decimal places the zero of
the function f is .81,
Example 2. To find the real zero of
£ x-—---x3 -3
we take 1.5 as our first estimate of r since f(1) and £(2) have
opposite signs. We wish to write the equation of the tangent to

[sec. 3-9]
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the graph G of f at the point where x = 1.5. In this example it
is easy to evaluate f(1.5) and f!'(1.5) by direct substitution in
£(x) = x5 - 3 and £r(x) = 3%, The equation is

y = 0.375 + 6.75(x - 1.5).
This tangent line intersects the x-axis at x = 1.444, Using 1.44
as an approximation to r we write the equation of the tangent to
graph G at the point (1.44, f(1.uu» . The equation is

v o= £(1.44) + £ (1. 08)(x - 1.44)
or y = -.014016 + 6,2208(x - 1.u44).
This tangent line intersects the x-axis at x = 1.442. To two
decimal places the zero of the function f is 1.4k,

A common procedure is to stop the approximations as soon as

two successive ones agree to the required number of places.
" We now generalize the procedure in order to develop a formula
for approximating an irrational zero of a function. '

Let G be the graph of the given function f, and r the real
zero under consideration. By inspection of the graph G, synthetic
substitution, straight line interpolation, or some other device, we
obtain a good onefdecimal place estimate of r. Let X be this
approximation,

We then write the equation of the tangent to the graph G at
the point (xl, f(x1» . The equation is

y = f(xl) + f'(xl)(x - xl).
This tangent intersects the x-axis at a point which we shall call
(x2, 0). Under favorable conditions,

ng = I‘l < |X1 = rl’
and X5 is therefore a closer approximation to r.

Vhen the tangent crosses the x-axls we have y = 0 and x = X5

so that
0 = f(xl) + f'(xl)(x2 - xl)
f(xl)
and Xp = Xp - TTTEE) = g(xl).
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The process may be repeated, giving successive approximations.
x5 = 8(x5), = = &(xg),

(See Figure 3-9a.)

It is evident that a very large amount of calculation might

be needed. Ordinarily a lot of work of this sort can be Justified

'only if it can be carried out on a ca}gulating machine. Modern

electronic computers are so fast, and S'gversatile, and so reliable,

that it is now possible to do many 1argeisca1e calculations which.

were impossible, at least for practical purposes, Just 15 or 20

years ago.

Computers will not do anything useful by themselves. They
inast be provided with a list of instruction to be followed. For
comparison we can remind ourselves that a telephone exchange will
do nothing useful by itself. Once the exchange is given an in-
struction (i.e., once the telephone number has been dialed), the
circultry reacts in such a way that a 'phone is rung and, if it is
answered, the call is put through. A computer will also carry out
instructions. It need not obtain its instructions one at a time,
but it can follow a long list, executing automatically one in-
struction after another.

An important kind of instruction which can be carried out by a
computer is one which causes the computer to go back in its list of
instructions to an earlier one, and then repeat the intervening
part of the list any number of times. Iterative calculations in-
volve this sort of repetition of a sequence of operations. Com-~
puters are therefore well suited to the carrying out of large-scale
iterations. - ' \

A 1ist of instructions for a computer is called a program. To
carry out a calculation on a computer one has to write out the
program, using the proper code for the particular computer which
is to be used. This program, along with any needed data, may be
punched onto paper tapes. The tape is "fed" into the computer Jjust
as it is.fed into standard teletype equipment. The computer's
memory stores the information while it 1is being used. As
answers are obtained, they may for example, be printed on electric
typewriters.

[sec. 3-9]
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Exerclses 3-9

1. Find./2 ,by Newton's method, to three decimal places. Check
by a table of square roots.
2. Compute the zero of
f: x———x3 - 12x + 1
between 0 and 1 to three decimal places.
3. Calculate to two decimal places the zero of
f: x-———x3 - 3x2 + 2
which 1§ between 2 and 3.
I, Find an approximate solution of
x3 +3x -T7T=0
correct to two decimal places.

3-10. The Graph of Polynomial Functions Near Zeros of Multiplicilty
Greater Than One. :
In Chapter 2 we used synthetlc substltutlion to locate rational

"zeros of a polynomial function. We now lnquire about the appearance

of the graph near a point P on the x-axls where we have a zero r
of multiplicity greater than one.

. This problem 1s solved by extending the method of Sectilons
3-6 and 3-7. The behavior of the graph near the point P for
which x = r 1s determined by examining the expansion of £(x) in
powers of (x - r). We consider a few examples,

Example 1. The polynomial functilon f: X—ex5 - 3x - 2
has the zZero r = -1 of multiplicity two, since f£(x) = (x + 1)2(x-2)
Using the method of Section 3-6 we expand f(x) in powers of
(x + 1). The required expansion 1is
Flx) = 0+ 0(x +1) -3(x+1)2+1(x+1)3. (1)
‘The equation of the tangent T to the graph G at the point
P(-1, 0) is
y = 0,

[sec. 3-10]
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The graph G lles below T on both sides of P(-1, 0) for points
which are sufficiently near P(-1l, 0). This is seen by noting that
the lower degree non-zero term -3(x + 1)2 of (1) is negative for
all x # -1. Hence, P(-1, 0) is a relative maximum point.

<
>

Figure 3-10a

G is the graph of f: x—> (x + 1)2(x - 2).
Graph of f': x—s3(x + 1)(x - 1) 1s indicated by the dotted line.

[sec. 3-10]
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We know that the point (2, 0) is on the graph G since
£(2) = 0. '

In order to obtain further information about the behavior of
the graph in the interval where -1 < x < 2 we consider the slope
function '

| £1: x—=3%x° - 3 = 3(x + 1)(x - 1)
obtained by using the method of Sectlion 3-7. We note that f' has
zeros -1 and +1. Since we have already considered the polnt where

x = -1, we now examine the point where X = +1 and therefore write
the expansion of f£(x) in powers of (x - 1),
£(x) = - &+ 3(x - 1)% + 1(x -~ 1)3. | (2)

This enables us to write the equation of the tangent T at the
point P(1, -4). The equation is

y = -b,
From (2) we see thz=t tae graph G lles =bove T on both sides of
P(1, -4) for all pcints which are suffiziently near P.

The graph of ~she slope function“has been plotted on the same
axes as graph G. {See Figure 3-10a. ) Over what interval 1s the
slope of the tangent negative? For what values of X is the
slope of the tangent posltive?

Example 2. To examine the behavior of the graph of
f: x—»x + 5x3 + 9x2 + 7x + 2 in the vicinity of 1ts zeros we
write £(x) = x  + 5x3 + 9x2 + Tx + 2= (x + 1)3(x + 2) and note
that -1 1s a zero of multiplicity three. Since

(x+1)3(x+2) = (x+ )31+ (x+21)] = (x+2)3+ (x+ 1)*
the expansion of f(x) in powers of (x + 1) 1is
flx) =0+ 0(x+1) +0(x+2)2+1(x+1)3 +2(x+)* (3)

From the expansion we see that the x-axis (which has equation y =
1s tangent to the graph G of f: x—(x + 1)3(x + 2) at the point
P(-1, 0). The graph of G lies below the x-axis to the left of P
and above the x-axis to the right of P for all poilnts which are
sufficiently near P. Thus P 1s a point of inflection. The polnt
(-2, 0) 1s on the graph G since f(-2) = 0. To obtain more
information about the shape of the graph G in the interval

[sec. 3-10]
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-2 ¢ x €< -1 we look at the slope function

3 4 15x2 + 18x + 7 = (x + 1)2(4x + 7).

Observing that the zeros of f'! are -1 and - % we note that the
graph has only one critical point in the interval -2 < x < -1.
This is point P(%F, 5%%). At this point the tangent is horizontal.
Since the graph G is continuous over the interval -2 ¢ x < -1, it
is reasonable to expect that the ordinate increases steadily from
P to the critical point (-1, 0). It is intuitively quite easy to
see that if the graph G has horizontal tangents at A and B, but

izt no point betwesan A and B, the graph rises steadily or falls
steadily from A to. =. (See Figure 3-10t.)

’f': x —Ux

Figure 3-10b

In terms of the graph of G we note that P(%}, 5%%) is a
relative minimum point. An examination of the graph of the slope
funetion f': x— (x +.l)2(4X'+ 7) in the neighborhood of x = %;

- . F\
1. shows that the slope of the tangent to G 1s negative for x < iz
and positive for x > %;. (See Figure 3-10c.)
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Figure 3-10c
G is the graph of f: x—(x + l)S(x + 2)
The dotted line shows the graph of the
slope function f': x—(x + 1)2(4x + 7).
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Exerclses 3-10

3 . 3x + 2

a) Locate the zeros of the function.
b) Locate each relative maximum, relative minimum, and
point of inflection.
c) Sketch the graph. ‘
2. Draw the graph of f: x——-x3 - 3x2 + 4 by finding zeros of
the function and points where the slope of the tangent is zerc.
3. For each function test each zero of multiplicity more than
" one for possible points of inflection.
a) f: X—sx + 2x° + 3xu FS 4 3%+ ex + 1

1. Consider f: x——Xx

b) f: x——a>x6 - 2x5 + 3xu - 4x3 + 3x2 -2x + 1
e) f: x—>(x - 1)3(x2 + 1)
d) f: x—>(x - 1)3(x + l)(x2 + 1)

3-11. Summary of Chapter 3.

If P is the point (h, f(h» on the graph G of the: polynomial
function f: x—f£(x), there exists a straight line T through P
which is called the tangent to G at P. T is the best linear
approximation to G at P in the followirz sense. Let m be the
slope of T and € an arbitrarily small positive number. Then 1if
|x - h| is small enough, all points of G lie in the region bounded
above and below by the straight lines through P with slopes m + €
and m - € . There is only one slope m that has this property,
and hence only one line that is tangent to G at P.

To find the slope m,. we may use repeated synthetic diwvision
by x - h to write f£(x) in powers of x - h,

0 l(
Then m = bl’ the coefficient of x - h.
The shape of G near P is determined by the firsv term in (1)
of degree greater than one with a coefficlent different from
zero. If b, 1s positive and |x - ht 1s small enough, G lies above
T on both sides of P. If b, is negative and |x - h| is small A

£(x) = by + by(x - h) + by(x - n)2 + ...+ b (x - )" (1)

[sec. 3-11]
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enough, G lies below T on both sides of P. If b2 = 0, we study
the sign of the first subsequent term with nonzero coefficilent,
for x > h and for x < h.

The slope m of T may be obtained quickly from the slope
function f', where 17

f' X —an. + a.x + anx2 + ... + a_xt,
0] 1 e n
' 1. e n-1
then fr: x a1 + 2a2x LI nanx
and m = £t(h).

Oof particular importance arc points of G at which f'{h)-= 0,
so that T is horizontal. If, near such a point P, G lies above
T, P is called a relative minimum; if below T, a relative maximum.

Applications of these ldeas are made to the plotting of graphs
(in particular to their shape near points where f has a zero of
multiplicity greater #ir=n one) and to the solution of maximum-
minimum problems. Also, by replacing a graph by its tangent near
an intersection with the x-axis, a method (Newton's) is developed
for calculating successive approximations to irrational zeros of
polynomial functions.
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10.

1l.

Mliscellaneous Exerclses

Given f: X —=2%° - 7x - 4, If x
is the slope at X5 than at xl?'
Point P(-3, 2) lies on the graph of f: X—=ax2 + bx + 8. If -
the slope of f at P 1s -1, find a and b. .
If (6, 0) and (2, 0) lie on the graph of f: X—= ax° + bX + C,-
and if the slope of f at (6;7°0) 1s 5, what is its slope at
(2, 0)?

Write the linear approximation for f: X —eX° - hx + 3 at x
and at x = 4. Using these two linear approximations for f, -
find the error at x = 2.01 and at x = 4,01. If the error
commlitted in using the linear approximatlion for f at

(h f(h» is to be numerically less than 0.0l, then |x - hl
must be less than what number?

If f: x—=5(x - h) + (x - h) + 3, write f£{(x) 1in powers of x.
For each function below, write the equation of the tangent to
the graph at ( , f(O» and sketch the graphs of the function
and the tangent in the vicinity of this point:

a) f: x—ef(x) 3x° - 2x + 1

b) f: x—f(x) 4 - x2

If f: x—=2%x° - 5x + X + 3, write £f(x) in powers of {(x + 2).
If £f(x) = a(x - h)2 + b(x - h) + ¢; show that

£f(x) = a(x - l) + (2a + b - 2ah)(x ~ 1) + £(1).

Given the function x—f(x) = 4 - 3x + 2x2, find the equation? 
of the tangent at (h, f(h» and find the value of h for '
which the tangent 1s horizontal. Sketch the graph of the
function and 1ts horizontal tangent.

Prove that a quadratic function cannot have a point of
inflectlon. |
Express the polynomial 2x

o = x, + 2, how much greater

3 . 5x21+ 3x - 4 in the form

ag + al(x ~3) + an(x - 3)2 + a3(x - 3)3.
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A farmer plans to enclose two chicken yards next to his barn
with fencing, as shown. Find
a) the maximum area he
can enclose with
120 feet of fence;
b) the maximum area he
can enclose if the
dividing fence is
parallel to the barn. .
If a claybpigeon is shot vertically from the ground at a speed
of 88 rt./sec., its distance d from the ground in feet is
d = 88t - 16t2, where t is the time in seconds. In how
many seconds does the pigeon reach maximum helight? What is
this height? In how many seconds from the time it is shot
does it hit the ground?
If £(x) = ox3 + x° - 3x + 4, what quadratic function is an
approximation for f near x = 0? What 1s the difference
between the slope of this quadratic and the slope of f at
X = 0? ’
Show that x + a is a factor of x7 + a7. Using synthetic
substitution find the other factor.
Prove that if f: X—eax" + bx + ¢ (a > 0)
has zeros Xy and X5 then f has a minimum at
- Xy + Xy

o
Q
5
=

Chicken vyards

ANNNL RSNy Y
SLLTTRRRRRRERNN
(CCHCEELLCEY

IVIVIVIVII IV IV IV IIIV I IV I I’

Suppose (in using Newton's method) our first guess is lucky,
in the sense that X 1s a zero of the given function. What
happens to X5 and later approximations?
Find the root of x° - 3x + 1 = O between O and 1 correct to
2 decimal places.
The graph of a function g passes through the point (2, 3).
Its slope function is

g': x—=3x + 2.
Write an equation describing g.
At what point on the graph of f: XX 5 + 4 does f
have a slope of 5% :
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" 21. Give a formula for all quadratic functions f whose graphs
, pass through P(0, -3) and have slope Ut at P.

22, Determine the behavior of the graph of

' f: x——*-x3 - 3x
near x = 0. Graph the funcidon for |x| < 2.

'23. A rectangular pasture, with one side bounded by a straight
river, is fenced on the rem=zining three sides. If the
length of the fence 1is %00 Fards, find the dimensions of the
pasture with maximum area.

24, A box is x- feet deep, mx + b feet wide, and y feet long.
Its volume is C cubic feet. Find a function f such that
y = £(x).

25. The graph of a quadratic function f has a maximum at (-1, 1)
and passes through (0, 0).

a) Graph the function and write its equation.
b) Write the equation of the guadratic function whose graph
is symmetric to f with respect to the line y = 1..

26, Find the quadratic polynomial function whose graph passes
through the origin and which has a maximum at (2, 3).

27. TFor what range of values of x 1s the error numerically less
than 0.01 when 4x2 + 3x - 2 is replaced by its best linear
approximation at x = 0?

28. The graph of a third degree polynomial functlion has a relative
maximum at (-1, 2) and a relative minimum at (1, -2). Write
an equation describing the function. Find the slope of f
at x = O and show that (0, 0) is a point of inflection.
Compare the slope of f at X = h and Xs = ~h. Sketch the
graph of f.

29. Wrpite the expansion of g(x) = x5 . 9x2 + 2Ux - 18 in powers k
of X - 3. Find the slope of g at x = 3, and show that (3,'0)11
is a point of inflectionm. Compare the slope of g at :
Xy F 3% k and Xy = 3 -~ 1=, Sketch the graph of g.

30. Compare the graph of f in Exercise 28 with the graph of g
in Exercise 29. If g(x) = £f(x + h) what is the value of h?
Write the equation describing g, if gl(x) = f(x + 2), and
sketch the graph of 8.
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Is the graph of f 1in Exercise 28 symmetric with respect to
the y-axls or to the origin? Justify your conclusion. Answer
the same question for the graph of g in Exercise 29,
Classify each of the points (1, 0), (2, -2) and (3, -4) on the
graph of X——x5 - 6x° + 9x - 4 as a relative maximum, a
relative 'winimum,.a point of inflection, or none of these.

The figure at the left
shows four polynomial

X graphs and their common
y=3+5 x
tangent y = 3 + 5 at

0,3) >p (0, 3). Match each

c graph (A, B, C, D) with
g D one of the following

0 X equations.

il
w
1

1
”

w PN N w

5) =3 + %.— x3
6) X 2
7) 2

8) y=3+ % + x

3+7£—X

=3+ F+x
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Find and classify each critical point of the following
functions:

w
1

™ol X
+
b

a) x—(x - 2)2 c) x—=(x - 2)4
b) x—(2 - x)° d) x—=(x - 1)%(x + 2)
Find, correct to 3 decimals, the zero of

x——-a-xu + 2x3 + x2

Find all real roots of X

3 decimals.

- 1 which is between 0 and 1.
3. 3x2 + 2X ~ 1 = 0 correct to

151



142

37. For what set of values of k will
' X —e 2%3 - 9x2 + 12x + k . have
a) no real zeros,
b) one real zero,
¢) three real zeros.
38. If f: x—a(x - h)2 + b(x - h) + ¢ = Ax® + Bx + £(k),
"~ express f£(k) in terms of a, b, ¢, and h.

39. A right triangle whose hypotenuse is 5 1s rotated about one
leg to form a right circular cone. What 1s the largest
volume which the cone can have?

40. Using Newton's Method find the real root of

x3 -2X -5 =0,
correct to the nearest 0,001,

41, Find the value of k for which the maximum polnt of the
graph of f: x—2k 4+ 3x - 5x2 has the same x and ¥y
coordinates.

42, What number exceeds 1lts square by the greatest possible amount?
Prove your result.

43. Find the polnt on the circle x> + y° = 9 which is nearest
the point (5, 0).

44, PFind the maximum value of the function

X S 2
x° - 6x + 10

45. Find the maximum value of the function Xx—ex° - 6x + 10
with domain {x: 1 < x < U4}.

46, VWrite the polynomial which 1s the best third degree
approximatlion to

g(x) = 6x° - bx° + 5x + 2, for |x| near zero.
Then find the value of g(0.1) correct to three decimal places.
Show that your result gives the slope of the function
f1 X—ex - x4 + 2.5x2 + 2x - 6 correct to the nearest 0.001.
k7, PFind an equation of the tangent to the graph of
f: x———-x3 + 3x2 - Ux - 3 at 1ts point of inflection.

3
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48. Locate and identify the character of the critical points of

b 3

g: X—=3x -~ 12x° + 12x° - 4,

49. Find the zeros of f: x—=(x - 3)2(x + 4)3. Sketch the graph
near each zero.

50. Using Newton's method, compute the real root of-x5 + 5% -1 =0
correct to three decimal places.

51. Prove thét if £ x-——--a3x3 + a2x2 + alx + ao has a relative
maximum at x = %y and a relative minimum at x = X5, then 1t
has a point of inflection at

Xy + Xy
x=—7

52, If g(x) = cf(x), where ¢ 1is a constant and f is a poly-
nomial function, show that g!' = c¢f!'. Hint: Assume that
£(x) = by + bl(x - h) + by(x - h)2 + e + bm(x - n)™

and compare cf'(h) with g'(h). Since this.holds for any h,
we have the required result.

53. If s(x) = £(x) + g(x), where f and g are polynomial
functions, show that st = £t + gt,

54, Use the results of Exercises 52 and 53 to show that the
determination of the slope function of a polynomial reduces to
finding the slope function of xlc for'k =1, 2, 3,

55. Show that Pl(O, 0) and P2(—1, -11) are points of inflection

of the graph of 6 5
f: X—=2X" 4+ 3x” + 10x.

56. Show that P(%, :%%) is a relative minimum point of the graph

o £1 x—ex' - 2x3 - 7x2 + 10x + 10.

Then by the Location Theorem show that f has two real zeros

‘between 2 and 3. Locate each of the other two real zeros

between consecutive integers.

57. Sketch the graph of f: x——q-x3 - x2 - 3x + 1 by approximating
the abscissas of tne relative maximum and minimum‘points.
Find the smallest root of x3 - x2 - 3x + 1 = 0 correct to two

dgcimal places.
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58.

59.

60.

Find the slope function f! assoclated with

3+3.

Locate the critical points of the slope function. Draw the
graphs of f and f' on the same coordinate axes. Describe -
the behavior of the graph G of f near points of G which
are directly above or below the critical points of f!,

In using Newton's method, suppose that our guess 1s unlucky
in the sense that f'(xl) = 0. What happens in this case®
Show that the function x—=]x| attains its minimum value at
x = 0. What is the slope function? Wny cannot the slope
function be used to find the minimum point?

f. x——*—xu - 2X
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Chapter
EXPONENTIAL AND LOGARITHMIC FUNCTIONS

4.1, Introduction
In the two preceding chapters, we studied polynomial func-

tions, tangents to their graphs, maxima and minima, and so on. In
this chapter, we take up a totally new class of functions, called
exponential functions. We shall also study logarithmic functions,
which are related in a special way to exponential functions.

Exponential functions have appeared in mathematics through
two different avenues. One of these is through ordinary powers
of a positive number. Consider for example the number 2. We
know very well what the symbols 21, 22, 23, 24, ... mean:

)
2t -2, 222221, 220228 2'-2222-1
and so on. We then define ‘20 = 1, Negative integral powers
of 2 are defined as reciprocals of the corresponding positive
, - - Coael

‘integral powers: 271 =1/2, 272 =14, 272 - 1/8, 7% - 1516,
and in general 27 =1/2", rfor every positive integer n.

We also know how to define rational powers of 2 for
rational exponents m/n that are not integers. For example,

we write 21/2 for the positive number whose square is 2.
Similarly, 21/3 is the positive number whose cube is 2, and

50 on. For every positive integer n, 21/n 1s the positive
number whose n-th power is &. FExtending cur definition, we

. )
write 23/5, for example, ror the number (21’5) . Thus, if we
write r to stand for a positive rational number, we know what

2¥ means.
Negative rational powers of 2 are defined as the reci-
- procals of the corresponding positive rational powers:

2-1/2 B lI7§ , and in general 27T = ;? for e&ery positive
2 2
rational number r. .
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Rational powers of 2 obey two useful laws:

ST+8 _ oToS : (1)
and ' s .
(27) = 2(rs) (2)

for all rational numbers r and s, positive, zero, or negative.
We can think of the rational powers of 2 as defining a

function f£: r—>2F whose domain is the set of all rational
numbers r.

The second avenue through which exponential functlons appear
in mathematics is the study of various natural phenomena. For
example, a blologist grows a colony of a certain kind of bacteria
in a Petri dish in his laboratory. As part of his investigation
he wishes to study how the number of bacteria changes with time.
Under favorable circumstances it is found that so long as the
food holds out, the time required for the number of bacteria to
double does not depend on the time at which he starts the ex-

‘ periment. This is a special case of a general principle of
growth which is of great importance in many sciences, socilal

and physical, as well as blologlcal. We shall study this specilal
case and abstract from it certain important mathematlical ldeas.

To be concrete, let us suppose that on a given day there
are No bacteria present and that the number of bacterla
doubles every day. Then there will be 2No present one day
after the start of the experiment. After another day the number

of bacteria will be twice 2No or 22N

2 >3
2°Ng or 2°N

0’ after three days twilce

0’ after n days the number N of bacteria
present will be given by the equation

N = N02n (3)

where n 1s a positive integer.

If we do not assume that the number of bacteria Jumps
suddenly every 24 hours, but rather that N -increases steadily
throughout any given day, we might ask ourselves such questions

[sec. U4-1]
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as the following: How many bacteria are present 1/2 day or
1 1/4 days after the start? How many were present 2 days
before the experiment started, that 1s, before the initial count

" was made?

You may perhaps guess that these questions are answered by
generallzing the equation (3) to

N(r) = Ny2© (4)

witare r  1s not restricted to positive integral values but may
Lk zny rational values, such as 1/2, 5/4, 3/17; -2, and
S o

In 32ction 4-2, we shall assume that (4) does glve a satis-
factory account of the growth of a colony of bacteria. We shall
dedu~« an ilmportant consequence from this assumption and see how

bet ]

thls consequence may be used to test the validity of equation (4)
&5 a description of bacterial growth. .

Of course 1if an experiment of this sort is repzated and 1if
counts are taken at varlous times, it 1s too much to expect that
the results will be fitted with complete accuracy by any simple
equation like (4). A scilentist needs a brief method of des- '
cribing the results of his measurements. This method must fit
the data with sufflclent accuracy to serve as a convenlent way
of summarizing the facts and predicting the results of future
experiments. A description of thls sort furnishes a mathematical

model of natural events. It is a fact that equations like (4)
form satlsfactory mathematicél models for growth phenomena at
least over limited periods of time.

We thus arrive by two qulte different avenues at the idea
of a funectlon which assoclates with every rational number r a

number k2° where k represents any real number, that is,

f: r->k2r

where r 1s a rational number. '

[sec. 4-1]
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For the sake of generality it is natural to ask for a way
to extend the domain of f to include all real numbers X 1n
such a way that the laws (1) and (2) will remain in force and SO

that the extended function f: x——?ka will have a smooth graph.

The problem that this presents will become evident if you ask

yourself what 2J§' or 2” should be. We shall take up this

extension in Section 4-3 and when it has been accomplished we
shall have a new type of function which is defined for all real
numbers X,

£ x—k2*.

The number 2 occurs here as a result of the special example
that we considered. We shall see that any positive number a
may replace 2 so that we consider muire general functions

f: x——->kax

for all real numbers x, and a any posltive real number. Such
functions will be called exponential functions. Before going on
we wish to show that the exponential functions are really fune-
tions of a new type and not Just polynomial functions in a new

‘ dress. The proof which follows for a = 2 can easlly be extended
to a general value of a.

It is easy to show that 2* 1s not a polynomial. In the
first place, it is obvious that

f: x——>2x
is not a constant function since ‘
20 -1 ana 2! =2.
Suppose then that 2%  has been defined for all real x and tpat
£(x) = 2% = g (x) (5)
where gn(x) is a polynomial of degree n > O,
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Squaring both sides of (5) and using the fact that
‘ 2
(%) = 22X e have
2x 2
2" = [gn(X)] .
But 2°% - r(2x) = g,(2x) 1if equation (5) is true. Hence

[gn(X)] 2 = g (2x). (6)

However this 1s impossible since the degree of the term on the
left of (6) is 2n while the degree of the term on the right is
n, and n % 2n if n >LO. Therefore the assumption that oX
is a polynomial is false. We are consequently concerned with a
new tybe of function which is the subject of the present chapter.

Exercises 4-1

1. If the identity (1) is to hold we must define 2° so that
2O .o o 20+r ~ of.
Use this fact to show that 20 must equal 1,
2, Similarly, show that if we require that
27T . 2T - 20 -3,
2" must be defined to be 1/2T,
3. Plot the graph of the equation
N = 106(2n) for n=1, 2, 3, 4

where N represents the number'of bacteria present at the
end of n days. (Note: The unit chosen for the N axis
may be one million.)

Note: 1In Exercises % to 6 assume that the number of bacteria
doubles in 24 hours.

4. The bacteria count at the end of n + 5 days is how many
times as great as the count .n-+ 2 days after the beginning

of the experiment?
[sec. 4-1]
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5. One week after the initial count was made the number of
bacteria present was how many times as great as the number
present three days before the experiment began?

6. If there are N bacteria presenﬁ after 100 days, after
how many days were there N/4t present?

7. Suppose that in a new experiment there are 200,000 bacteria
present at the end of three days and 1,600,000 present at
the end of 4 1/2 days. Compute:

a) The number present at the end of 5 days;

b) The number present at the end of 1 1/2 days;

¢) The number of days at the end of which there are
- 800,000 Dbacteria present. ‘

Hint: Assume that the number of bacteria present at the
beginning of the experiment is No and that at the end of
24 hours the count is a-Nj,.

4.2. Rational Powers of Positive Real Numbers
Let us assume (as in Section 4-1) that under favorable cir-
cumstances we can predict the number of bacteria in a certain

colony by using the equation
N(x) = No2x (x rational) (1)

for the number of bacteria x days after the start of the
exberiment. We then consider a bacteria count taken t days
later where t 1s not necessarily a positive integer, but may
by any rational number, positive, negative or zero. Then if
(1) 4is indeed valid,

N(x + t) = N2t
o oX . ob
= N2 2
and . N(x + t) = 2tN(x).

In other words, if N(x) 1s the bacterial count at time X,
the. number of bacteria t days later, N(x + t), 1is o times

[sec. U4-2]
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as great. The multiplying factor 2° does not depend upon x,
“the initial time, but only upon +t, the time interval between
~counts.

” Hencey; no matter when we count bacteria, it is a consequence
of equation (1) that t days later the number of bacteria will
have increased in the ratio r(t) = ot (where r(t) depends

only upon t).

Now, clearly, this consequence is easy to test experimentally
For exariple, we might count at 1/2 day intervals (t = 1/2).

If (1) is correct, the ratio H%%é§l should be equal to the

ratio ,NN112 or NP2l within the limits of experimental

.error this is found to be true. We therefore feel justified in
“working with equations like (1) in studying bacterial growth.
To determine how many bacteria should be present at any
particular time, we merely substitute the appropriate value of
x in equation (1). '

For example, let us suppose that No = 106

. (one million).
The number of bacteria 1/2 day later should be

108 . (2L/2)

N($)

10° V2 = 1.&1&(106), approximately.

After 3/2 days the number should be
N(Z) = 100 . 23/2
100(2" V3)

2.828(106), approximately.

it

The number of bacteria 1 day before the initial ‘count was
taken should be ' ‘

6

10° + 271 < 500,000

assuming, of course, that the conditions of growth were the same
prior to this count.

[sec. 4-2]
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Let us recall and generalize our previous line of thourut.
We arrived at the e7uation

N(x) ~= Nj2*

from the basic assumption that one day after the start of the
experiment (wnen X = 1) the initial number N, was multiplied
by 2. The multiplication factor might obviously turn out to be
different from 2, as we have seen in Exercises 4.1, Problem 7.
It is quite natural therefore to consider more generaily

N(x) = Nja™ , (2)

where a is any real number > O. This equation is obtained from
(1) by replacing 2 by a. The number a 1s called the base
of the exponential function. If N(x) 1increases, a > 1.

‘Let us review briefly how we deal with numbers of the form

am/r-1 whepe m and n are integers (n / 0).
Positive integral exponents are elementary. Thus

2 b
a“ = aa, 2 = aaa, a = aaaa,

‘and so on.

We next define 2a° =1, a~l = 1/a, a=® = 1/a2, and so on.

If n 1is a positive integér, we define a]“/n =%/Z, the
positive n-th root of a.

Finally, if as before n 1s a positive integer and m is
any integer, we define

/N _ (al/n)m _ [ng]m,
It may be shown that
o (VE)"™ =

It follows from these definitions that

afas = ar+s | (3)
and s
(a¥) =a"" (4)

[sec. 4-2]
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where r and s are any rational numbers. We include a few
- exerclses to familiarize you with these well-known definitions
and laws.

Exercises U4-2a

1. Prove that
m+n m _n

for all integers m and n, positive, negative or zero,
where a 1s any real number > O.

2. Prove that

n
2™ - (a™)

for all integers m and n, where a is any real number > O.

-3/2
3. Evaluate:  1000(8"%/7), 3(2) /

4. Arrange the following in order of magnitude:

-4
222, (w/2)(871), () P03, (29,

]

Show that 1f x = 227, then x = 19/128

Find the value o/ m if:
2

a) 8m = (23) 3
2

b) 8" =237,

7. PFind the value of m 1if:

45)

a) 2( = l6m;

5
b) (2”) = 16",
8. Show that
2h + 2h+-2b . 2b
R

holds for all rational numbers b and h.

N‘m

[sec. 4-2]
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Rational Values of §£~ Table 4-2 gives rational powers of 2.
Ordinarily it is sufficient to use the entries rounded to 3
decimal place accuracy. The table can be extended by applylng
1dentity (3). You are asked to do this in Exercise 4. .
- The following Examples show how to find 2T for values of
r " not listed in the table.

Example 1. Use Table 4-2 to find the value of 21'68.
Solution. We note that

51.68 _ 2(1+o.65+o.03) - ol 0.65 , ,0.03

- 2
~ 2(1.569)(1.021) = 3.204 (approximately).

Example 2. Use Table 4-2 to find the value of 27077,
Solution. We write

5=0.37 _ ,-140.63

) 20.60+O.03 _ (20.60)(20.021
2 2

" (1-516%51*021) = 0.774% (approximately).

[sec. 4-2]
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Table 4-2. Values of 2¥

r of 2~r
.001 1.000 693 4 0.999 307 1
.005 1.003 471 7 0.996 540 2
.01 1.006 955 6 0.993 092 5
.02 1,013 o€ 0.986 23
.03 1.021 01 0.979 42
.0l 1.028 11 0.972 66
.05 1.035 26 0.965 9k
.10 . 1071 77 0.933 03
15 1.109 57 0.901 25
.20 1.148 70 0.870 55
.25 1.189 21 0.840 90
.30 1.231 14 0.812 25
.35 1.274 56 0.784 58
40 1.319 51 0.757 86
A5 1.366 04 0.732 Ok
10 1.4k 21 N0.707 11
95 S 1.464 08 0.683 02
.60 1.515 72 0.659 75
.65 1.569 17 0.637 28
.70 1.624 50 0.615 57
.75 1.681 79 0.594 60
.80 1.741 10 0.574 35
.85 1.802 50 0.554 78
.90 1.866 07 0.535 89
.95 1.931 87 0.517 63
1.00. 2,000 00 0.500 00
1635

[sec. 4-2]
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Exercilses U4-2b

1. " Caleulate 2%/*:
a) By using the data in Table 4-2;

b) By noting that 29/% = 2.2V/% - 2 /73,
2. By using the data in Table U-2 calculate:

a) 21.15
b) 22.65
c) 20.58
Fd) 5-0.72
“%. With the aid of Table 4-2 compute:
a) 80.84
p) 0.2579-63

4, Extend Table 4-2 by completing the following table.
Table 4-2 (extended)  Values of 2©

21‘

]
N
NDONO FOONOO H

WM
[@Xe Y v No P-4

5. Plot the points (x, 2¥) for the rational values of x
shown in Table 4-2 and Table 4-2 extended  (Exercise U above).

166
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4.3, Arbitrary Real Exponents

In the preceding section, we dealt with the meaning to be

assigned to o*

and a* for x a rational number, say r.
Can we glve meaning to these expressions if x 1is irrational?

X

" To be specific, can we define the expression 2 in a natural

way for irrational values of Xx? We know that
f: r—2¥

is defined for all rational numbers r. We wish to extend this
function to a function with domain the set of all real numbers x.
Let us consider a very concrete example. How should we

define the number ZJE ?

2/5 has no meaning if we 1limlt ourselves only to the definitions
glven in Section 4-2, Our problem is to assign a value to the

V2

expression 2", and indeed to all expressions 2% rfor real
numbers X, that will be reasonable and will preserve the‘usual
rules of exponentiation.

Since +/2 is irrational, the number

We begin with the observation that the function f: r—2T
defined for all rational numbers r increases strictiy as r
‘Increases. That is, if r and 8 are rational numbers and

r < 8, then 2T < 28, The proof is given at the end of the
present section. It thus seems reasonable to require that this

property be preserved when we define 2* for irrational numbers
X. Thus, for 'x =~/§; and for all rational numbers r and s
such that

r <2< s (1)
we should like to have v/_
of ¢ V2 ¢ 28, (2)

Obviously this places a severe restriction on the value we

/5

assign to 2 and, as we shall see, determines it completely.

The ordinary decimal approximants to JZ give us a handy
167
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collection of r!'s and s's. Thus we know that

£

1.4 < JZ < 1.5
1.41 < V2 < 1.2
1.414 < /2 < 1.415
1.41%2 < V2 < 1.4143
1.414821 < V2 < 1.41422

and so on. The inequalities (1) and (2) then show that 2¢§

must satisfy the following set of 1nequalities3

ol.4 2 ¢ 215

pl.41 z 2 ¢ pl-k2
pl.bis 5/2 ¢ 21-415
pl.hlk2 2 ¢ pl-H1b3
pl.bikel o2 ¢ pl.tlb2z2

and so on.
We replace the rational powers of 2 appearing in the last
set of inequalities by certain decimal approximations and arrive

at the following estimates for 2¢§.:
2.639 < 2% ¢ 22 215 ¢ 2.829
0.657 < 24" ¢ 2 o %2 . og7s
o.66h < 2LM o o2 o LB 5 g7
2.665 < p1.41k2 < gJE < o1. 4143 < 2.666

and so on. Thus, if (2) is to hold, we know 2/2 o 3
decimal places: E¢§-= 2.665 ...

[sec. 4-3] f
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The pinching down process that we use to estimate 2/5 is
sketched in Figure %-3a.

2.8

Figure 4-3a. Pinching down on ZJE.

To generalize to any real number X, we choose any in-

creasing sequence Ty Tos r3, eve, I . of rational numbers

n)
all less than x, and aﬁy decreasing sequence Sy, 8o 33, ey

s . of rational numbers all greater than x such that the

n’

difference s, - T, ‘can be made arbitrarily small. We compute
: r r r

2l 22 o3

8, S5 S3 S,
and the sequence of numbers 2 -, 2 2 v

the sequence of numbers

r
and then look at the intervals 2 Ly<L?2 n

169
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Pinching down
on 2%

o rnf Sh 53 % X

Crowding in on x

Figure 4-3b. Pinching down on oX,

It 1s a property of the real number system that as x 1is

confined by Sy, and r, to smaller and smaller lntervals, the

corresponding intervals on the y-axis pinch down to a uniquely

determined number, which we shall define as the number 2x. The.
number obtained is lundependent of the particular cholce of the

sequences r,, r2, r3, IREPIES SPERTE and S1» So» 33, sn.

170

[sec. 4-3] -




161

The method used for defining X for irrational x makes
it possible to fill in all gaps in the graph of the function

r —»2F (r rational)
-to-obtain a graph for
x —> 2% (x real).

Figure 4-3c is a careful graph of this function for a limited
part of its domain.

- e em e M e e e e s o mm  mm e e e e e e e e e em s e e Wm e S M v =

Theorem. oT < 285 4f r and s are rational and r < s,

Proof. I. We first note that

(1) If a > 1, then a® > 1, a’ >1, ..., a¥> 1 (n a posi-

tive integer). :

Similarly,

(2) If a =1, then a" = 1.

(3) If 0<a< 1, then a" < 1. _
II. We now assert that 2m/n > 1 for any positive

integers m and n. For if a = 2/ ere equal to 1, (2)

would lead to the result a° = 2™ =1, which is false. If, on

the other hand, em/n were less than 1, (3) would lead to the

result a® = 2™ ¢ 1 which is also false. Since VN g

- neither less than nor equal to 1, 1t must be greater than 1.

III. Now let r and s be an& two rational numbers
such that r ¢ 8. Then s - r 1s a positive rational number
m/n. Since

28T . oW 5
21‘(23—1‘)' > 21‘

or W 28 > ol
171
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Exercises 4-3

1. Use the graph of x—>2% to estimate the value of:

a) 2115
b)) 2265
o) 20458

q) 270.72

2. Compare your results in Exercise 1 with your answers to
Exercise 2 in the set 4-2b. '

3. Use the graph of x—>2% to estimate the value of:

a) ZJS

p) 27

c) o= /4

4, Is there any value of x for which 2% = 0? Give reasons
for your answer.

5. Use the graph of x—>2" to estimate the value of ‘x 1if:

a) 2% =6 a) 2% =3
b)) 2 = 0.4 e) 2% = 2.7
c) 2 =3.8

4.4, Powers of the Base a,6 as Powers of 2.
We have concentrated on the function
f: x—2%,

We are familiar with its graph and we have worked with a table
of its values.
We shall need to study the function

f1 x—sa*

where a 1s any positive real number. Fortunately we do not

163

have to start from scratch because we can express a as a power

of 2, as we proceed to show.
[sec. 4-14]
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X

The graph of f: x-—>2 lies above the x;axis and rises

from left to right. Also, f(x) = 2*  bvecomes arbitrarily
large for x sufficiently far to the right on the real number
line, and -arbitrarily close to zero for all x sufficiently
far to the left on the real line. The graph has no gaps. Con-
sequently, if we proceed from left to right along the graph,

2* increases steadily in such a way that any given positive
number a will be encountered once and only once. That is,
there must be one and only one value of x, sayeoc, for which

2™ = a (1)

(See Figure y-h) and therefore a may be expressed as a power

of 2.
Y

2%)

(0,1)
/ X

0 oc

Figure “*-%, Graph of x—>2%  showing that 2™

It
8]

We can find the value of e by means of the graph (Figure
4-3c) or Table 4-2,

Example 1. Find the value of o« for which 2% = 6.

Solution. On the graph of x—>2% we look for the abscissa
corresponding to the ordinate 6. The result is 2.6 (approximately).
If we use Table 4-2 to express 6 as a power of 2, we first

[sec. U4-4]
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write 6 = 22(1.5). Interpolating in Table 4-2 between the
entries for X = 0.55 and 0.60 we obtain 20.59 _ 1.50

(approximately). Hence, 6 = 22(1.50) = 22(20'99) = 22-59
. (approximately).
Example 2. Find the value of o for which 1.11 = 27 .
Solution. We look for 1.11 in the second column and read
backward to find the corresponding value of o in the first

column,. Thus, 1.11 = 20.15 (approximately).
Example 3. Express 3.25 in the form 2% .

Soiution:

3,05 = 2(1.625) ~ 21(20-70) = 2170,

To -compute aX for a given base a and given- x we use

equation (1) to write
a¥ = (20c )X - 2°CX

and then use Table 4-2 as illustrated in the following examples.

Example 4., Express 30'7 as a power of 2, and find the
approximate value of 30‘7.
Solution. To find the value of 30'7 ﬁe first express 3

as a power of 2., Thus, 3 = 21(1.5) = 21(20'59) = 2159
(approximately). (Verify this from Figure %-3c.)
0.7 .
Now 50T (21:59) "1 _ pla113  pl.11
~ 2(1+o.1o+o.01) _ 21(20.10)(20.01)

~ 2(1.,072)(1.007) = 2,159,
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Example 5. Calculate the value of (6.276)0‘l

Solution. We note that
6.276 = 1(1.569) = 22(1.569) ~ 22(20:05) _ 22.65
(Verify this from Figure U-3c.)
Héhce,

-
[ F\/

0.4 .
(6.276)% % (22-65) _ o(2.65)(0.4) _ ,1.06
e 2(1+o.05+o.01) _ ol . 50.05  ,0.01

~ 2(1.035)(1.007) = 2.084 (approximately).

Exercises 4-4

1. Express 3.4 in the form 2%,

2. Write 2.64 1in the form 2.6%4 = 2° and then find the
approximate value of (2.64)0‘3.

%. Find the approximate value of (6.276)—0‘6.
Find the approximate value of (5.2)2‘6.

5. Show that if O < a< 1l and v > u, then a’ < al.
Hint: See the proof of the theorem on page 161.

176
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‘4-5. A Property of the Graph of x—>2%

The graph of\ £ x——>2x has a simple but important property
which 1s usually described by the phrase "concave upward". (See
Figure 4-5a.) Precisely, this phrase means that i1f two points -

jfﬁu énd Q on.the graph a2re Joined by a straight line segmént,'
then this segment lies above the arc PQ of the graph.

by
Q
M
R
t Yo
P
// }ya
Y
J /- -
(o] X' )(3 Xz X

Figure 4-5a., The graph of x——>2x_ is concave upward.

We shall not give a rigorous proof of this fact, but shall be
content to show that the midpoint M of the segment PQ 1lies

ahove the point R on the graph with the same absclssa.
[sec. 4-5]
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Proof: Let P and Q have the coordinates (xl, yl) and

(x2, y2) respectively. Then the ordinate of M is -————,

“the arithmetic mean of ¥y and Vo If the ordinate of R 1is Yz,

.22
Y1 Y3 '

Hence y3 =,/y1y2 , the geometric mean of ¥q and Yo.
An important theorem states that the arithmetlic mean of
‘any two positive numbers is greater than or equal to their

geometric mean,
In our case, this theorem would guarantee that

¥q + yz

7z 2 /N2 (1)
The result that we require

Al + Yo

strengthens (1) by removing the equal sign. We shall prove (2)
by replacing it by a iist of equivalent inequalities, the last
of which is obviously correct.

yl + y2 > 21/Y1y2
2 2
y1© +t 2V Vs > Mgy,
2
y12 - 2Y1y2 + Yo >0
2
(y2 - yl) > 0 . . ‘ (3)
Since ¥, > ¥y, (3) holds so that (2) has been established.

Although our proof shows only that the midpoint M of the
segment PQ 1lies above the arc, 1t is plausible that all pointé
of the segment PQ 1lie above the corresponding points on the '
arc PQ. For we can apply our result to each of the ares PR and
RQ (see Figure 4-5b) and conclude that R, lies below M, and

[sgc. h-5]
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R2 below M2. The process of bilsection can be repeated as many
‘times as we wish. We can therefore obtain an arbitrarily large

nuw Ler 3f points on the are PQ which are certainly below the
chord.

-

(@]
1% )

Figure 4-5b. Repeated bisection.

Exercises 4-5
L. Let P and Q have coordinates (.05, 2'05) and (.25, 2'25L
respectively. Show that the midpoint M of the segment PQ
lies above the point R on the graph G of x—>2% with
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the same abscissa. Use Table 4-2,

2. Using the information given in Exercise 1, show that the
midpoints Ml and M2 of segments PR and RQ respectively,
lie above the corresponding points on G having the same
abscissas. In thils way exhibit 3 points on arc PQ which
are below chord PQ.

.. 3. Represent the results obtalned in Exercises 1 and 2 graphlcally
distorting the scale if necessary.

i, Repeat Exercises 1-3 using points P(.05, 4'05) and
Q(.25, 4'25) on the graph G of x—>U¥,
5. Generalize (l) to the case of four positive numbers, that

yl+Y2+y +Y)+ —
1s, prove that T b 2> 4/ Y ¥o¥3¥y

Hint: Use (1) and an analogous inequality for y3 and Yy
Apply the principle to these two results.

*6, Generalize (l) to the case of three positive numbers, that

+ ¥, + Yy
1s, prove that zl>44¥2 3 3 .
¥y t¥o + ¥3
Hint: Use Exercise 5, replacing Yy by 3 ,

and simplify.

4-6. 1Tungent Lines to Exponential Graphs

In Chapter 3 we learned that through each poilnt P of a
polynomial graph there exists a certain straight line, the tangent,
that represents the best linear approximation to the graph near
P. One may therefore be led to wonder whether a similar statement
applies to the graph of an exponential function. It is in fact
true that there does exist a tangent at eact 2oint of the graph.

In the present section we shall show how to find the slopes
of such tangent lines. The results obtained have important
applications, specifically to problems of growth and of radio-

active decay. 1 80
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We shall begin with the graph G of g: x—>2% and its
tangent at (0, 1).
Let @(b, 2b) be a point on the graph to the right of P

and let R be the point (-b, 2'b) (See Figure L4-6a ). We
shall assume that b < 1.

b 0 b

.xy

Figure 4-6a. Approximating the graph of x—+2* near P(0,1)

As we know, G 1s concave upward everywhere; hence G 1lies
below PQ and below RP, "

Let us extend QP to Q' so that Q'P = PQ, and RP to R!
so ‘that PR! = RP. We shall show that for |X|] < b, G 1lies in
the hatched region between the lines L, = QQ! and L2 = RR!,

1
It is necessary to prove that G 1lies above L, (slope m) for

-b < x<O0, that is, that 2 > 1 +mx, -b < x < 0. This
is equivalent to the statement that =X >1 -mx for 0 < x < Db.

Now 27X =-%; and 2¥ ¢ 1 + mx, O < x < b. Hence
2
-X 1 1
T = i (1)
181
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Then 2% 1+ (1 - mx) 1 - mx

S T +Fmx (T =mx) ~ 7 _ 22"

2

Since 1 - m°x° <1 (2)

27¥ 51 - mx (3)
which is the required conclusion.
It can similarly be proved that for O ¢ x < b, G 1lies
above 'L2.
We expect that if b 1is small enough, the lines L1 and
L2 will have slopes which differ as little as we please. This

is indeed the case.
Suppose for example that b = 0.0l1. Since

20-01, 1.00696 ana 29Ol % o0.99310,
we obtain for the slope of L , 0'80336 = 0.696 ,

0.00690 _
and for the slope of L, , =5 < 0.690.

We could take b = 0.001 or even smaller, and thus get lines
whose slopes are even closer tbgether. It turns out that all of
these wedges include a line whose slope to 6 decimal places :

is 0.693147. We shall use the letter k to stand for this
slope, and write the equation of the tangent at P as

y = kx + 1,

where k=~ 0.693 is a sufficilently good approximation for most
purposes. Thus if

g x——>2x N

g(x)~ kx +1, for Ix| small. ()

132
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Exercises 4-6a

1. Consider the proof in the text that the graph G of x-»2%
lies above Ll’ for -b ¢ x < 0.
At which step 1s 1t necessary to assume that mx # -1%
mx # 07 mx # +1?
Show that none of these possibilities can occur.
¥2. Prove that G 1lies above L, for 0< x <D,

Hint: Note that G 1lies below L2 for «b < x
the given proof that G - lies above L

< e
17 b < x < U
3. Find the slopes of the lines Ll and L2 if b 0.001.
Hint: Use Table 4.2,

4, Using the results obtained in Exercise 3, show that the
' slope k of the tangent to the graph of x—>2% at P(0, 1)
lies between 0.6929 and 0,693,

5. Using the same procedure as in Exercise 3 and 4 calculate
the slope of the tangent to the graph of x—4% at P(0, 1).
Compare your answer with the result obtained in Exercise &4.

6. Find the slope of the tangent to the graph of x——>3x at
P(0, 1).
Note: Correct to 4 decimal places, the result is 1.0986.

So far we have considered only the base a = 2. It is easy
however to obtain a general result for the slope of the tangent

to the graph of

g: x——-aax

at (0, 1) for any a > O.
It is sufficient to write a = 2° so that
a* = 2™% = g(ex)
From (%) it fol"ﬁ.cm~ that

glxx)~ kox + 1, for lex| small,
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and hence the required tangent has the equation
v = keex +1 - (5)

where o 1s such a number that 2“' = a,
Tt would be highly desirable to have the slope of (5) equal
to 1. This result is obtained by taking «k =1, that is,

K= l/k'..

This happy choice of the base a 1s 'wmiversally denoted by the
letter e.

Definition 4-1. e = 2YK, where k = 0.6931%7...

The use of e 1in this sense may be traced to the Swiss
mathematician Leonard Euler (1707-1783). The number e 1s one
of the most important in mathematics; it ranks in importance
with . If we use 0.693 as an approximation for k, we

obtain
1

z 6.—2-@3 ~ 10443,

and e = oYk pl-d3 _ 5004y 0.0y ,0.003)

u

2(1.%20)(1.028)(1.002)
= 2.72 approximately.

If we use a closer approximation to k, we may naturally expect
to get a better approximation to e.

The number e has been computed to an enormous number of
decimal places. In recent years, high speed electronic digital
computers have been used to obtain the decimal expansion of e
to 2500 places. For the record, we note that the first 15
places are given by

e = 2.71828 182&u4 59045... (6)
For most purposes e = 2.718 1s a sufficilently good approximatilon.

There is an important method for approximating the value of
e, which may be expressed as follows

e~ (1 + %)n | for n large. (7)
134
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This means that if n 1s a large positive integer, say 100, e

: n
is glven approximately by (1 + %) . This result may be made

plausible by the following argument. We may expect tFr .t the
tangent line to a given curve will lie very close to the curve
itself for all ponints close to the point of tangency. Consider

the graph of f: x—s>eX and the point (0, 1) lying on this
graph. Since the slope of the graph at (0, i) is 1, the tangent
line at (0, 1) has the equation y = 1 + x. Thus we write

e*~ 1 +x for Ixl| near zero.

This being so, we take 1/n very small (n a large positive
integer) and write

It is indeed correct that for large n, (7) does give a
good value for e. 1In fact by choosing n large enough, an
arbltrarily close approximation may be obtained. A further
discussion of methods for computingﬁ e will be found in

X

Appendices 4-16 and 4-17. A table of values of e and e~ X

has been included together with a graph of y = e* for
-2% < x < 2% .- See Table 4-6 and Figure L4-6b,
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00

.01

02
03

.Oh
.05

10

.15

20

.25
.30
.35
4o
R
.50
.55
.60
.65
.70 -
.75
.80
.85
.90
.95
.00
.50
.00
.50
.00
.00
.00

1.0000
1.0101
1.0202
1.0305
1.0408
1.0513
1.1052
1.1618
1.2214
1.2840
1.3499
1.4191
1.4918
1.5683
1.6487
1.7333
1.8221
1.9155
2.0138
2.1170
2.2255
2.3396
2. 14596
2.5857
2.7183
4, 4817
7.3891
12.182
20.086
54.598
148.41
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f: x—>e*
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Exercises 4-6b

1. Show graphically that there 1s a unique real number X such

that eX + x = O.

2. Using Newton's Method find thz zero of" x-—»eX + x correct

to two decimal places.

4.7. Tangents to Exponential Graphs (Continued).

It remains to discuss the tangents to the graph of

x——>ax

at points that are not on the y-axis. We shall confine ourselves
to the case a = e, where the

base 1s e. As we know, the

tangent at (0, 1) has the equa-

tion y =1 + x. Consequently,

for lx| small enough, : y

ef~ 1+ x. (1)

To study the graph near
P(h, e")
and

, we write x = h + (x-h)

X = eh+(x—h) _oh . ex—h'(z)

For |x - hi small enough, we P

use (1) and replace eX-h by §7///
Y1 + (x-h).

Then (2) becomes eXw e (1 + (x-h)] =

' X
el 4 eh(x—h). This linear approxi- Y
mation gives the equation of the
tangent at P, namely, ' Figure 4-7
y = el 4 eh(x - h). The graph of x—>eX

and 1ts tangent at
point (0, 1)
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The significant part of the result is that the slope of the
tangent 1s equal to the value, eh, of the function. Otherwise
~ expressed, 1if
f: x——>ex,
then the slope function f!' 1is
£r. x-—>ex,

that is, f!' = f,

Exercises 4-7

1. Use the data in Table 4-6 to find the slope of the tangent

to the graph of f: x—>eX at the following points.
-1

a) (-1, e™7) a) (o, 1)

b) (0.5, e2:3) e) (1.5, e¥3)

2) (0.7, 27

2. Use the graph of f: x~>eX in Figure 4-6b to estimate the
slope of the tangent at the points given in Exercise 1.
Compare your results with those obtained in Exercise 1.

3. Write an equation of the tangent to the graph of f at
each point (x, e*) given in Exercise 1.

I, a) Through the point (3, 4) draw a line L, with slope
m = 2/5.

b) Draw a line L, which is symmetric tv L
to the y-axis. "

1 with respect

¢) What point on L2 corresponds to the point (3, 4) on L.?

1

d) Wwhat is the slope of L.?

2
e) Consider the gencral case: 1ine L; drawn through
point (r, s) with slope = m, and line L, symmetric
to Ll wlth respect to the y-axis.
What point on L2 corresponds to point (r, s) on Ll?
What is the slope of LE?
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Plot the pointé (x, ex) for which x = -2.0, -1.8,
0.2, 0.4, ... , 1.6.

W
8]
~

b) Through each of these points draw the graph of a line

having slope m = e®.

c) Show that these lines suggest the shape of the graph
of f: x—4>ex:¢;

6. a) For each point plotted in &Zxercise 5(a) locate the
corresponding point which is symmetric with respect to
the y-axls; then through these points draw lines sym-
metric to those of Exercise 5(b) with respect to the
y~axis.

b) Show that each point located in 6(a) lies on the graph
of g: x—>e™* '

c) Compare the slopes of the lines drawn in Exerclse 6(a)
with those of Exercise 5(b).--

7. a) Using the same coordinate axes draw the graphs of
f: x—>e* and g x —>e %
b) Compare the slopes of the graphs drawn in (a) at
x =0, +1, -1.
¢) Compare t..e slope of the graph of g at x = h with
-h
e .

*€. Write an equation describing the slope function g' of
g: x—>e~F.

4.8, Applications.
In the early part of this chapter we examined the egquation

N(x) = Noax , a>0, (1)

If a2 > 1, (1) is a mathematical model for bacterial growth.
Similar equations arise 1n many branches of science.
Radioactive decay. Radloactive substances have the property of
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diSintegrating 80 that in a gilven period of time some of the
atoms of a given radioactive substance break up by emitting
particles, thus changing to atoms of another substance. As =
result, the weight of the unchanged material decreases with time.
The welght W(x) of the radiocactlve material at time x is
satisfactorily given by

W(x) = Ww.a™* | (2)

where W, is the weight W(0) at x = 0 and 2 1is a suitable
constant greatsr than one.

The negatlve expoaent corresponds to the fact that W(x)
decreases with time.

We may write equation (2) using the base 2.

Thus, if a = 2%

W(x) = W2 "X (3)

We may also use the base e = 2Y/K, Since 2 koo ke
Substituting in (3) we have '

I(x) = woe’k"‘x
or - W(x) = woe’cx , (4)

where c¢ = k.
The fPaction of radioactive material which remalns after a

glven interval of length t is fixed, since
-(x+4t)
Wix +t) _ W2 - a

‘M; W(x) woa-x

-t

1s independent of x.
Wix + ¢ &
The ratio Wix 1s less than 1 for all values of ¢,

since t >0 and a > 1.

Workers in the field of radiocactivity usually measure the
rate of radiocactive decay of an element in terms of 1ts half-
life. The half-life 1s the time required for one-half of the
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active ma.erial present at any time to disintegrate. The half-
11fe of radioactive bismuth (Radium E), for example, 1s 5.0 days.
At the end of 10.0 days three-fourths of it will have disinte-
grated, leaving only one-fourth of the initial amount. At the
end of 20.0 days, only one-sixteenth of the original radiloactive
bismuth is present. 4

To find the half-l1ife T of a given radioactive substance
it is convenient to use equation (3). Thus, the weight W(x)
at time T equals one—haif the initial weight- Wo. We find
accordingly that

1 _ - T
5 Wo = Wp?
and 2—1 = 27 *<T
Hence «<T =1 and ocz—%‘-.

Thus the process of radioactive decay of an element is described
completely by the equation

W(x) = woz‘x/T : fk (5)

Exampie 1. If radium decomposes in such a way that at the
end of 1620 years one-half of the original amount remains, what
fraction of a sample of radium remains after 405 years?

Solution. The fraction remaining after Xx years is

From the given datéAwe have
X = 405,
1620.

=
i

'AEquation (5) gives us"
w(hos) = Wy - 5-405/1620 _ w02'1/4 .

Hence the fraction remaining after %05 years 1s

W(105) _ H-1/% 1
—(Vﬂ—o-)lz 2_,”/.._.5, = -11-\/_—2-_— ~ 0.841.
192
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Example 2., Find the half-life of uranium if 1/3 of the
substance decomposes in 0.26 billion years.
Solution. From the given data

oy 2

W(0.26) = 3 Wye

Substituting in equation (5) we have
2. _ o 5=0.26/T
3 WO = W02

and hence, 2'0‘26/T = % or 20‘26/T 1.5,
From Table 4-2

20.58 _ 1.5 (approximately)
Thus

Q.Tg'é ~ o 58 >
so that

T® 0.45 (billion years)
This means that no matter what amount of uranium is present

at any gilven time, 4,5 x 108 years later one-half of it will
have decayed.

Exercises 4-8a
1. The half-1life of radon is 3.85 days. What fraction of a
given sample of radon remains at the end of 7.7 days?
After 30.8 days?

2. The half-1ife of radiocactive lead is 26.8 minutes. What
fraction of a sample of lead remains after a time of 13.}4
minutes? After 80.4 minutes?

3. At the end of 12.2 minutes, 1/16 of a sample of polonium
remains. What is the half-1ife?

4, A certain radioactive substance disintegrates at such a rate
that at the end of a year there is only 49/50 times as much
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as there was at the beginning of the year. If there are two
milligrams of the substance at a certain time, how much will
be left t years later?

5. A quantity of thorium has decreased to 3/4 of its initial
amount after 3,36 X 104 years. What 1s the half-1ife of
thorium measured in years?

6. Radium decomposes in such'a way that, of m mllligrams of
radium, 0.277m milligrams will remain at the end of three
thousand years., How much of 2 milligrams will remain after
81 decades?

Compound interest. Suppose that P dollars is invested at an
annual rate of interest of r per cent or r/100, and at the end
of each year interest is compounded, or added to the principal.
After t years the total amount A, on hand 1s given by

A, = P(1 + r/100)%.

t

However, the interest may be compounded semiannually, quarterly,
or n times a year. If interest is added to the principal n
times per year, the rate of interest 1s Tg%ﬁ per period, and

the number of periods in t years 1s nt. Hence, the amount

A, after nt periods (that is, after ¢t years) 1is

A, = P(1+ Ia%ﬁ)nt' (6)

The more often you compound interest, the more complicated the
calculation becomes. On the other hand, if we let n 1in (6)
get larger and larger indefinitely, we approach the theoretical
situation in which interest 1is compounded continuously; we
shall see that the result obtalned will enable us to find easily
a very satisfactory approximation for the amount of money on
hand at the end of a reasonable period of time.

194
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To study this idea, let 'Tg%ﬁ =h so that n = Tg%ﬁ .

Then (6) becomes

P(1 + n)Ft/100n

o=
]

P [(1 + h)l/h] K (7)

If now n is taken larger and larger, h gets smaller and smaller

it

and/ the right side of (7) grows closer and closer to

pel't/100

which we call A, the theoretircal amount that would be obtained
if interest were compounded continuously at r per cent. Thus

A = paPt/200 (8)

Example, If $100 is invested at 4 per cent for 10 years,
compare the amount after 10 years when interest is compounded
continuously with the amount after 10 years if interest is
compounded only annually.

Solution. We have P =100, r =14, and t = 10 (years).
If interest is compounded continuously, (8) gives

A = 100694,

which is approximately 149,
To compute interest compounded annually we substitute the
above values of P, r, and t in (6). This gives

10
Ao = 100(1.04) .

We may use a table of common logarithms to estimate Alo; thus
~ . = 11!
Ao 100(1.48) = 148,

The results, $149 and $148, differ surprisingly 1little.

195
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Exercises 4-8b

1. Find the amount of $1000 after 18 years if interest 1s
compounded continuously at the rate of 3 per cent.

2, Using 2= eo'693, find how many years it takes to Qouble !
a sum of money at ,
a) 3 per cent compounded continuously.
b) 6 per cent compounded continuously.
c) n per cent compounded continuously.

A Law of Cooling. The temperature of a body warmer than the

surrounding air decreases at a rave which 1s proportional to the
difference in temperature between the body and the surrounding
air. Let T(x) denote the temperature of the body and B the
temperature of the air at time x. The law of cooling may be
expressed by

P(x) -~ B = Ae”%F
or T(x) = B + Ae™CX (9)

In this equation A + B. is the temperature of the body at time
0 and ¢ 1is a positive constant whose value determines the rate
at which cooling takes place.

If we let T(x) - B = W(x) and A = W(0), we have

w(x) = w(0)e™%*

which is identical with our previous equation (4).

Example 1. A kettle of water has an initial temperature
of 100° C. The room temperature is 20° C. After 10 minutes,
the temperature of the kettle 1s 80° c.

a) What is the temperature after 20 minutes?

b). When will the temperature be 50° c?

Solution. Since W(x) = T(x) - 20

w(0) = 100 - 20
and W(10) = 80 - 20
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From equation (1)
W(x) = 80e~¢*

and 60 = 80e~¢10 |
Then e~19¢ _ g% = .75% e*?°  (from Table 4-6),
so that
10¢c » .30 and c =~ .03.
Hence W(x) = 80e~+03%
| and T(x) = 20 + 80e~* 3%,
(a) T(20) = 20 + 8oe~ -0

~ 20 + 80(.549).

820 + 43.9 = 63.9; hence the temper-
ature after 20 minutes is about 64° C. :

(b) - " n0 = 20 + 80e~+02%¥
e 0% _ %8 = .25
.03x & 1.39

x 8 46.3; hence the temperature
will be 40° ¢ after about 46 minutes.

- Example 2. The law of cooling can be applied to solve the
problem of whether to put your cream in your coffee at once or
to add the cream Just before drinking it. Suppose that you are
served a cup holding, let us say, 6 ounces of coffee at tempera-
ture 180° F, You are also supplied with one ounce of cream
which is at room temperature, 70o F. You wish to wait for a

“while before drinking the coffee and also wish to have it as hot
as possible when you drink it. How can you get the hottest

_coffee? Should you pour the cream in right away, or wait until
you are ready to drink 1it? We solve this problem easily if we
assume that the exponential law of cooling holds.

W[sec. 4-8]
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First case. Pour the cream in right away. Then the tempera-
ture of the mixture becomes
1 660
=) = e 0
e i
since 6/7 of the mixture (coffee) 1s at temperature 180° and
1/7 (cream) is at 70°. Using equation (9) with B = 70 and
initial temperature A + B = 660/7 + 70 we find that the
temperature at time x 1s

180(-?—) + 70(

T(x) = §$-9 e=%% 4 70, (10)

Second case. Pour the cream in at any time you wilsh. Then
at time x, Just before pouring in the cream, the coffee has

cooled to temperature
70 + 110e~%*
according to (9) with B =70, A + B = 180. Mixing the coffee.
and cream now, we find that its temperature 1is
-cxy (6 1
T(x) = (70 + 110e )(-7-) + 70(—7—).

Reducing this expression by elementary algebra glves

T(x) = -6%3 e %% 4+ 70 (11)

which is the same as the result obtained in (10). Therefore it
makes no difference at all whether you pour your cream into your
coffee as soon as yqnget it, or wait and pour it in just

before drinking. Iﬁ will be as cold one way as the other.

Exercises 4-8c¢

1. At h kilometers above sea level, the pressure in milli-
meters of mercury is given by the formula

P = Poe—o.lluush

where P, 1is the pressure at sea level. If Py = 760, at

what heilght is the pressure 180 millimeters of mercury?
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2. A law frequently applied to the healing of wounds 1s
expressed by the formula

Q= Que ™,
where Q0 is the original area of the wound, Q 1is the

‘area that remains unhealed after n days, and r 1s the
so~called rate of healing. If r = 0.12, find the time
required for a wound to be half-healed.

3. If in a room of temperature 20° ¢ a body cools from 100° ¢
to 90o C in 5 minutes, when will the temperature be 300 c?
(Assume the law of cooling expressed by (9)).

4, TIf 1light of intensity Io falls perpendicularly on a block
of glass, its intensity T at‘a depth of x feet is

_ -kx
I = Ioe .

If one third of the light is absorbed by 5 feet of glass,
what 18 the intensity 10 feet below the. surface? At what
depth is the intensity 1/2 I,?

4.9, Inversion

- Before we can proceed with the main ideas of this chapter,
we. must return to the concept of '‘an inverse function, which was
introduced in Section 1-6. We shall explore this ldea a little
further th@n we did in Chapter 1, and also prove scme of the '
most important theorems which relate to inverses. We start by
repeating the definition of inverse.

Definition 1.8, If f and g are functions that are so
related that (fg)(x) = x for every element X in the domain of
g and (gf)(y) =y for every element y in the domain of - f,
then £ and g are sald to be inverses of each other. In this
case both f and g are sald to have an inverse, and each 1is

‘'sald to be an inverse of the other.
This definition leaves unanswered one important question:
Can a function have more than one inverse? That i1s, if f and

i [sec. 4-9]
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g are inverses of each other, does there exist a function h f g
such that f and h are also inverses of each other? As you
might suspect, the answer is no, but we shall not prove 1t here.
Consider, however, a picture of a function ar a mapping, with
arrcws going (as in Figure 1-6a) from points representing
elements of the domain to-points representing elements of the
range. To represent the inverse funetion, we merely reverse the
direction of each arrow, as in Figure 1-6b. It seems intuitively
clear that there is only one way to do this. '

The fact that a function can have at most one inverse
Justifies our use of a distinctive notation for functions which
are inverses of each other. If f and g are such functions,

then we can say that g 1s the inverse of f and write g = £t

We read £ as "f inverse". Similarly we can write f f~g—l.
‘ -1

Thus (£7Y) = f.

Warning. Although the notation f"l is strongly suggestive
of "1 divided by f," it has nothing whatever to do with
division. All it means is that

(7Y (x) = x and (£7te) (v)

We now prove the basic theorems which relate to the eXxlstence
of inverses.

Theorem 4-1.. If a function . f has an inverse then
f(xl) # f(x2) whenever x, and X, are two distinct elements

.of the domain of f.

Proof We shall prove this theorem by assuming the contrary
and *hen derlving a contradiction. Hence we assume that

f(xl) = f(x2). From this we see that f’l(f(xl)) = f’l(f(xz)).
Now f—lf(xl) = X, and f"lf(xz) = X5, 8o it follows that
Xy = Xp- But the elements X, and X, -are supposed to be
distinet (i.e., Xx; # %5). This contradiction proves the

theorem.

[sec. 4-9]

290



191

A vivid expression is used to describe functions f for
which f(xl) # f(x2) whenever X, # X,. This 1s the expression

"one-to-one". If a function has an inverse then by Theorem k-1
it is one-to-one. Note that in this case the equation
Vf‘xl) = f(xz) implies tuat Xy =%,. 7 :

We‘pdiht‘out that the idea of a one-to-one function is
fundamental to the process of counting a collection of objects.
When we count a set of things we assoclate the number 1 with
one of the things, the number 2 with another, and so on until
all the objects have been paired off with whole numbers. We do
not give the same number to two different objects in the collec-
tion. In short, this "counting" function is one-to-one. As
another example, suppose that there are 300 seats in a theater,
and suppose that each seat is occupied by one and only one patron.
Ther:,, without counting the people, we can conclude that there
must be 300 people sitting in these seats. These two examples
deal with finite sets. On the other hand, the idea of a one-
to-one function is fruitful even when the sets involved are not
finite, Indeed, most of the applications deal with sets of this
kindg. A

Now that we know that every function which has an inverse

is one~to-one, it is natural to ask i1f the converse 1s true.
Does every one-to-one function have an inverse? You might guess
that the answer 1s yes. This 1s the content of Theorem k.2,

Theorem 4-2. If f 1is a function which is one-to-one then
f has an inverse. o

Proof. Using the hypothesis that f is one-tofone, we shall
construct a function which will turn out to be £t Given an
element y of the range of f, then, since f 1s oneto-one,
there existsﬁone and only one element x 1n the dohain of °f
‘such that y = f(x). Now associate the element x with the
“element y. This associlation defines a function g: y—>x. The-

domain of g 1s the range - f and the range of g 1s the

[sec. 4-9]
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domain of f. Finally, since

(rg)(y)
and (gf)(x)

f£(x)

y

gly) = x,
we see that f and g are inverses of each other. Therefore f
has an inverse and f—l =g,

Definition 4~2. A function f 1s said to be strictly
increasing if 1ts graph is everywhere rilsing toward the right,
if, that is, for any two elements Xq and X5 of the domain

of f, x; <X, implies f(xl) < £(x5).

An important corollary of Theorem 4.2 concerns strictly
increasing functions.

Corollary 4-2-1. A function f which 1s strictly increasing
has an lnverse.

Proof. If X and X, are any two elements of the domain

1
of fy.. then either x; < X5, 1n which case f(xl) < f(xe) by

hypothesis, or x, < X;, 1n which case f(xe) < f(xl). In
either case, f(xl) # f(xe). Hence f 1s one-to-one and there-
fore has an inverse by Theorem 4-2.

A similar result holds for strictly decreasing functions;
see Exercilse 5.

Theorems 4-1 and 4-2 provide an answer to our first
question, whichwas: Under what clrcumstances does a function
have an inverse? We summarize this answer in Theorem 4-3.

 Theorem 4-3. A function has an inverse if and only if it
is one-to-one.

As we might reasonably expect, there exists a rather
simple relationship between the graph of a function f and the
graph of its inverse f’l. If, for example, T and s are
real numbers such that r = f£(s), then P(s, r) is, by defini-
tion, a point of the graph of f. But if r = £(s), then
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s = f"l(r), and it follows, again by definition, that Q(r, s)

is a point of the graph of f”l. Since this argument is quite
general, we can conclude that, for each point P(s, r) of the
graph of f, there is a point Q(r, s) of the graph of ffl,
and conversely; either graph can be changed into the other by
merely interchanging the first and second coordinates of each
point. To picture the relative positions of P and Q we
should plot a few points and contemplate the results. .(See
Figure 4-9a, in which corresponding points of each pair P(s, r),
Q(r, s) have been joined together.)

Q4,0

P{0,-4)

Figure 4-9a
The presence of the line L = {(x, y) : ¥ = x} 1illustrates

‘a striking fact: With respect to the line 1L, corresponding
points are mirror images of each other! Thus we see that the
graph of the inverse of a function f 1s the image of the graph

[sec. 4-9]
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of f in a mirror placed on its edge, perpendicular to the page,
along the line L. This fact suggests the following (messy) way

to obtain the graph of f'l from that of f. Merely trace the
graph of f in ink that dries very slowly, and then fold the
paper carefully along the line L. The wet ink will then trace.

the graph of ™1 automatically. (See Figure 4-9b.)

Jr

Figure 4-9b.

Exercises U4-9 ,
1. Find the inverse of esach of the following functlons:
a) x—>lx -5

b) x-e»§-+ 8
c) X —>x0 - 2 204
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Solve each of the following equations for X -‘in terms of y
and compare your answers with those of Exercise 1:
a) y=1Ux -5

b) y = % + 8
c) y = x> - 2.

Justify the following in terms v e functlons, inverse
functions, and functions which associate integers with ordered
pairs of digits. "A common conjuring trick is to ask a boy
among the audience to throw two dice, or to select at random
from a box a domino on each half of which is a number. The
boy is then told to recollect the two numbers thus obtained,
to choose either of them, to multiply it by 5, to add 7 to

the result, to double this result, and lastly to add td this
the other number. From the number thus obtained, the conjurer
subtracts 1%, and obtains a number of two digits which are

_the two numbers chosen originally." (W. W. Rouse Ball)

We know that each iine parallel to the y-axls meets the
graph of a functior in at most one .point. For what kind of
function does each line parallel to the x-axls meet the
graph in at most one point?

A function f 1s saild to be strictly decreasing if, for any
two elements Xq and X5 of its domain, X, < x5 implies

£(x;) > f(xz). Prove that every strictly decreasing function

has an inverse.

a) Sketch a graph of f: x—>x°, x € R. Show that f does

not have an lnverse.

b) Sketch graphs of f: x—>x°, X >0 and fy: xX—>x°,

X € 0, and determlne the inverses of fl and f2‘

c) What relationship exists among the domains of f, f;, and
£,? (f; 1s called the restriction of f to the domain

(x ¢+ x>0}, and f, 1is similarly the restriction of
f to the domain {x :i'x < 0}.)
[sec. 4-9]
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7. a) Sketch a graph of f: x->//8 - x° and show that f does
not have an lnverse.

b)" Divide the domain of f into two parts such that the
restriction of £ +to either part has an inverse.

8. Do Exercise 7 for f: x-—>x2 - bx,

9. Divide the domain of f£: x-——>x3 - % T ~hree parts such
that the restriction of f to each has un inverse.

10. If the function f: X—>ay + a,x + ax" + a3x3 has an

inverse, what must be ‘{he nature of the zeros of the slope
function £'?

4-10. Logarithmic Functions.
Thus far we have been concerned with the exponential
functions

f: x-—:>ax

Hereafter, we assume that a > 1. Then f 1s one-to-one.
That is, if we start with any two different values of x we
obtain two different values of the function. Because f 1is
one-to-one, f has an inverse function f‘l. The graph of £~
is the reflection of the graph of f in the line y =X, since
(d, ¢) is a point on the graph of f£~% if and only if (c, d)
is a point on the graph of f. (See Figure h#-10a.) The domain
of £l 1is the set of positive real numbers (which is the range
of f) and the range of f'l is the set of all real numbers
(which is the domain Af f). You should verify this.from
Figure 4-10a.

1
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Figure 4-10a. The graphs of f and £-1,

The function £~1 is called the logarithm to the base a and

is denoied by the symbol 1log,. Hence we have

-1

£ = x-—>1ogax.

Inverse Functions

£ x—->-ax

-1 (1)
£ x——>1ogax

Examples: If f: x-—>2x, then el x-—>1og2x.

X 1

If f: x—»e", then f 7 x—>10g X.

A very useful way of thinking about logarithms is derived

from the fact that if f 1s a function and £-1' 1s its inverse,
then ‘ o
e e(x)) =x ond £(£7H(x)) = x.

[sec. 4-10]
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Hence f-l(ax) =x and f(logx) = x,
log_x
or loga(ax) =x and a 2 =x,. (2)
This second ldentity clearly shows that 1ogax is the

exponent of a needed to yield x. Thus

y = log,x and a¥ = x (3)
are equivalent emmat® ... This accounts for () fact that loga-
“rithms are S fined as exponents. Thuus, for example,

-2

8ince lO3 = 1000 and 10 = 0,01, we write 1og101000 =3

and log,,0.01 = -2; also, since ‘eL/2su 1.6437 and

e"ln 0.3679, .we write 1og,1.6487 ~ 1/2 and log,0.3679 = -1.

Identity (2) enables us to see that

log, ;1000 logel.6487

1000 e = 1.6487
1oge0.3679
e

]

10

loglo0.0l

10 = 0,01 - 0.3679 .

On the other hand, suppose we know that 1ogloe © 0.43429; using

(3) vz obtair. 1023429 & e In other words, * : logarithm
of e to tne base 10 s the exponent of 10 wiich ylelds e.

The pr—-gzerties of the function f‘lu follow 1 mediately from
those for thne expohential function f as we proce:d to show. If
f 1s the function ‘

the familiar equation

ao =1
may be writtex
£(0) = 1.
Then of course |
r~1(1) = 0.

208
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This is immediately clear from the graph (see Figure 4-10a).
In logarithmic notation this result is written

1oga1 = 0,
The fundamental equation

X, + X X, X
a L 2 a 12

becomes in terms of the exponential function £,

£xy + x2) = f(xl)f(xg).~ (%)

I
|
|
|
1
X, 2 Xyt Xy X
Figure 1-10b.
A fundameni.al property of exponential furictions.,

On the grapr '~ -e 4-10b) of y = a¥*, trz identity (4)
means that the o-iinate which corresponds to the sum of Xq and
Xp is the produc:. ... t-e ordinates vq and Vo- In other words,
addition on the x-axis corresponds to multiplicatlon on the
y-axls. Since the x .1 y axes are interchanged in the
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reflection of the graph of f in the line y = x to obtain the

graph of f'l, we expect that for f'l, multiplication on the

x-axis corresponds to addition on the y-axis. Hence for all

veal positive numbers x and x2

1
log X Xy = ¥y + ¥p = log,xy + log. x5 , (5)

which expresse: a familiar property of logarithmic functions
(See Figure L4-10c.)

VY
y=10ggXx
"t Ys
Y2
’ ; ! X
o 1 X, Xy XXp -
Figure 4-10c.
A fundamental property of logarithmic functions.
Similarly, from the fact that
p
a¥P = (%) , p rational,
or .
£(xp) = (£(x))? (6)

we see that for an exponential function £, multiplication of
X by p corresponds to ralsing y = f(x) to the power p. In
other words, if x -—f(x), : b
Xp —> [f(x)] .

For the inverse function, raising x to the power p should
correspond to multiplying y by p. That is

log xP = p log,x (7
[sec. 4-10]
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which expresses another well-known property of the logarithmic
function. RN '

The results (5) and (7) may be established without appeal
to the figure. From Equation ()

f(x1 + x2) = f(xl)f(xg),

-1 -1
hence e ey +xp)] = e [slxpex)] ()
Now ;'1f(x1 + x2) = X, + Xo. We set ¥yq = f(xl) so that
-1 -1
xy = ¢ (yl) and y, = f(x2) so that x, = f (y2). Substitu-

tion in (8) gives

1,
Xy + x5 = £77(y4¥5)

But = £ (yy) + ).

»
=t
}

»
no
1

If we replace g1 by its name log, we have for all real

a
posit -e numbers ¥q and Yo

log, (v1¥5) = log,y; + log,y,
which 1s equivalent to (:).

Similarly, from Equation (6)
[I(Xi]p = £(xp),

T P
g1 [ f(x)] = £7 1 (xp)
= Xp. (9)
With y = £(x) and x = £~'(y), Equation (9) becomes
-1 -1 o
e (5P) = pr7iy),
that is,
log,y® =p log.y,
which ir equivalent to (7).
[sec. 4-10]
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“Properties (5) and (7) enable us to use Table 4-6 to obtain
logarithms to the base e of numbers not appearing in the table.
Thus, to find logelo we shall find loge2 and 1oge5: from

- (5) we know that 1og,10 = log,2 + log5.

Example 1. Find logeE.

Solution. 1In order to apply (5) we must write 2 an +hn
product of entries in the table,

2™ (1.9155)(1.0408)(1.003) (See note below.)
From (5) we have
log,2 ® log,l.9155 + 1dgel.0408 + log,1.003
~ 0,65 + 0.04 + 0.003 = 0.693.

Note: Since 1.9155 is the largest entry (in the e* column of
Table 4-6) not greater than 2 we divide: 2 + 1.9155=~ 1.0441.
Furthermore, the largest entry not greater than 1.0441 is 1.0408,
and 1.0441 + 1.0408~ 1.005, so that 2= (1.9155)(1.0441)~
(1.9155)(1.0408)(1.003).

Example 2. Find log,5.
Selution. We first write 5 as the product of entr;es in
Table U4-6,
5~ (4.4817)(1.135648) ~ (4.4817)(1.1052)(1.009).
From (5)
1oge5 ~ 1.50 + 0.10 + 0.009 = 1.609.
In Exercise 1 you are asked to find 1oge10. We include a graph

of x —>log,x in Figure 4.104 for your convenience.

212
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xercises 4-10

1. Use the results . a==leg 1 and 2 to biain 1oge10.

2, From 1.25= (1. 2214)(1.0202)(1.003) and the data in Table 4-6
determine log.5/%. ' |

%, Use the result of Example 1 to obtain log, by,
4, a) Use your results in Exercises 2.and 3 to obtain log.5.
b) Compare your answer with that given in Example 2.

5. From 3= (2.7183)(1.0513)(1.0408)(1.008) and the data in ;
Table 4-6 determine log/3. :

6. Use values for log,2, 1log, 3, and log.5 obtained in this
 gection to determine 1og 0. 25, log,0.5, log, 2/3, log 5/3,
log, 2.5, log, 6, log, 8, log,9.

7. Use the graph of f~ -1, x—>log x (Figure 4-10d) to estimate
the value of log 0.25, log, O 5, log 2/3, 1oge5/3, log,2.5,

1oge6, 1og68, log,9.

8. Compare your results obtained in Exercises 6 and 7.
9. What is the value of x 1if 32 = 47 '
10, If a - a" = (a2)m , what is the value of m?
11. Prove that for x any real number > O, 1oga(x-%) =

1y o
and hence 1oga(§) = -log.X.
X4
12. Prove that 1oga EE = 1ogaxl - 1ogax2.

13. Show that 1log,a = 1. Write this equation in exponentlal
form.

14, Express in exponential form

a) logy35 =V d) 2 logyo5 =X
b) logy25 =X e) logT + log 6 = x
¢) log,d =D £) $l0g,25 - log,2 =

[sec. 4-10]
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15. 'Given log,p2 = 0.3010 find
108105: 10310( 1/2) ) 10810(25/4) ’ 10810( 128/5)

16. Express each of the following in logarithmic form.

a) ¥/125 =5
b) 1072 = 0.01

¢) 273 - 81

d) 0.04/2 = 0,008

17. Solve for x.

logg(x + 9) + loggx = 2

4-11. Special Bases for Logarithms e

Our study of exponential functions was founded on the use
2 as a base. In practice, the bases most generally used are e
and 10. Nevertheless, logarithms to the base 2 are of some
importance. For example, they pla& an important role in inform-
ation theory, a very recently invented mathematical discipline
of considerable and growing importance in the design and operafion_

of telephone, radio, radar, and other communication systems.

"In the modern theory of information, originated by o
communication engineers, the usual unit of quantity of inform-
atlon is the binary digit (abbreviaﬁed g;g). Thus if a language
of =signals is to be composed of three binary digits in succeséion,
the language contains eight messages, namely, 000, 001, ... , 111,
and each message 1s said to contain three bits of information.
Note that this quantity of information is 10328. In general
if there are N different messages, the quantity of information
in each message 1s said to be 10g2N." ¥

*M, Richardson, Fundamentals of Mathematics, Rev. Ed., Macmillan,
195, pp. 172,173.

[sec. 4-11]
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Logarithms to the base e are usually called natural loga-
rithms; logarithms to the base 10 are called common logarithms.
We shall write logex simply as 1n x and show how to express
common logarithms in terms of natural logarithme. We first
consider the general problem of expressing the logarithm to any
pase a in terms of the logarithm to any other base b.

By identity (2) of Section 4-10 ’

log,.x
x=b P . (1)

. logbx
We take the logarithm of x =D to the base a and use

equation (7) of Section 4-10 to obtain

log x = (1ogbx)(logab). (2)
If we set x = a, (2) glves '
' 1 = (log,a)(log,b)
or

1
logab = ‘J.—OEE . (3)

To write common logarithms in terms of natural logarithms
we use (2), thus

ln x = (1oglox)(1n 10),

or
in x

10g)pX = T 10 °

For example, 10g;4e = I%E&% = IHlIU ~ E%%U? N 0,434,

Similarly, by using the entry 0,30103 to be found in a
5-place table of common logarithms, we have

log- A2
_ 10 0.301
in 2 = Tom & ~ U-%_B’I =] 0-693

which agrees with the result obtained in Example 1, Sectilon 4.10.
in Section 4 we defined e = 21/k, so that R 2; we now note
that k = 1n 2 since e ? =2,

[sec. U4-11]
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Exercises 4-11

1. a) Ir 2P =26, find 1og,26 in terms of .

b) If log x =5, find x. (Use Table 4-6.)
c) Find 1og3(31/4).
d) Find log,(8 x 16).

2. Express each of the'following logarithms in terms of r,lis,
and t, if r=In2, s =1ln3, t =1n 5.

a) 1n b "~ e) 1n 2.5

b) 1n 6 £) 1n2/9

c) 1n 1/8 g). In %\/3
d) 1n 10 h) 1n 8 2/100

3. Write the following logarithms as numbers.

a) log, ;1000 £) 1ogo.516
b) logy o;0.001 g) Iln e

c) 1og3(;/81) h) In /€

d) logy32 1) logg,27
e) 10g10(0.0001) J) 1og2~f3§

4, Given 1n 10 = 2.,3026, 1n 3 = 1.0986, find

a) 10@103 e) 1n 30
b) log;,e £) 1n 300
c) logz10 g) 1n 0.3
d) 1n 100 h) 1n 0.003

5. In each case determine the value of x.
log,;,5 log-5 log x
4 + 3 > = 2 2

a) 4
b) logyy(x® -1) - 2 logyo(x - 1) = log, 3
. log 5
c) T & =5
[sec. %4-11]
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10.

11.

12.

13.

. 500,000 bacterila.

Solve the following equatilons.

a) lnx =0 d) In(x-2)=3
b) lInx +1=0 ' e) Inx +3=0
c) Inx =1 £) n(2x -1) +2=0

log+ A€ log. e
?> 10° | 1o 010

Show that (eln 1 - e. Hence show that

01 = 1,
in 1 ogloe 1

For wha’ value(s) of x does it hold that

a) logx =0

b) logx = 1
log.c

c) x B° _ c

d) logp2* =2

Explain why the number 1 cannot be used as a pase for

1qgarithms. (Hint: Examine the exponential function
f: x——ai%

to see if it has an inversé function.)

Find the values of x _for which

(1n x)2 = 1n x> .

Note: Use a table of logarithms in Exercises 11 and 12,

How long will it take N dollars to double 1tself at
4 per cent compounded annually? At 3 per cent compounded
quarterly?

Ir interest is compounded quarterly, at what rate should
N dollars be invested to double in 10 years?

A culture of bacteria has a population of 10,000 initilally and .
60,000 an hour and a half later. Assuming ideal growth
conditions, find the time required to get a culture of
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14, a) Through the point (1, 4) draw a line L, with slope
= 2/3.

b) Draw the line L, which is symmetric to L, with
respect to the line y = x.

¢c) What point on L, corresponds to the point (1, 4)
on Ll?

d) Wwhat is the slope of L,? .

e) Consider the general case: 1line L, drawn through
point (r, s) with slope =m, and line L, symmetric
to L1 wlth respe:t to the line ¥y = x. What point
on L, corresponds to the point (r, s) on L;? What
is the slope of L2?

15. a) Plot the points (x, eX) for which x = -1.6, -1.4, ...
1.2, 1.4, -
b) Through each of these points draw the graph of a line
having slope m = e,
¢) Show that thpse lines suggest the shape of the graph

of f: x—»e¥

16. a) For each point located in Exercise 15(a), locate the
corresponding point which is symmetric with respect to
the line y = x; then through these points draw lines
symmetric to those of Exercise 15(b) with respect to
the line y = x. '

b) Show that each point located in Exercise 16(a) lies
on the graph of x—»1ln x.

¢) Compare the slopes of the lines drawn in Exercise 16(a)
with those of Exercise 15(b).

17. USing the graphs of x—>e* and x—1n x in Figures 4-6b

and 4-10d, compare the slopes of the tespective graphs at
X =0,
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4.12. Computation of e* and 1n x.

Because of its simple properties, the most important of the
exponential functions is x —»eX. Similarly x—>1n x is the
most important of the logarithmic functions. The computation of
the values of these functions is therefore of great significance
in mathematics.

We found approximate values of e* on the basis of a table
of powers of oX  We then determined values of the function
x—>1n x which 1s inverse to x —>e>.

A mathematician would proceed in a different way. He would
compute the values of eX directly (that is, without any refer-
ence to powers of 2). We shall describe the general features of
this method. An appendix carries the development somewhat further.

A brief review of our treatment of polynomial functions will
be helpful. We notice,.for example, that in graphing

3

f: x——>2 + 3x + x2 - X

near (0, 2), we could replace £(x) by g(x) =2 + 3x or by h(x) =

2‘+ 3% + xz. For Ix| small enough, f(x) is approximately

equal to g(x),
£(x) = g(x) .
A better approximation is given by h(x),
£(x) » h(x) .

That 1s, the error made in replacing £(x) by h(x) for a given
x near O, will ordinarily be less than the error made in
replacing f(x) by &(x). Of course, 1f we include the final
term -x3, there is no error at all.

Turning to ex, the idea is this: We try to replace
x—>eX by a polynomial function whose velues approximate e*
Let ,us begin with |x| small, that is values of X which are
near zero. Since the graph intersects the y-axis at (0, 1) with
slope 1, we have the linear approximation

eX ~ 1 +x (1)

[sec. 4-12]

2290




211

To obtain a better approximation to ex, we need to use poly-

nomials of higher degree

e* ~ l+x+a2x2 B

x .
e’ l-l-xi-azx +a}x »

The problem is to specify the values of a5, a3, ete. The
appendix shows how this may be done. Here we merely report that
the required approximations zre

2 .

e* n l-+x+x—§- (2)
2 3

X~ 1+x+x—§-+§;3 (3)
2 3 n

e* ~ 1+x+§,—+’3c—r+ o+

‘where n! = 1.2.-3. ,., -n .

In Figure 4-12a, we have drawn graphs of x—>e and of

x° | X2
X1 + X + 5 +5F (Compare with (3)).
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These gremh.s  re2 1 plausible that at least the first

approximat_ons / ... (&), {7  1listed ars correct.

As we know o 2® . not a polynomial funci  :n. There
is therefore a . ,..{me f-z  dlfference between the 1 -oblem of
approximating e + uilir o polynomials and the pre~lous case
in which the gilven = .ncii . f 1s a polynomial fun.tion, 1If

f 1s a polynomial ¢ .¢t:i~., we can use approximating poly-
nomlals of higher ar-“ hurher degree urtill we reach a polynomial

which is identlcal : 1 .,:) and which therefore glves exact
values for f. For thi.s 1s impossible. In ti= case of the
exponentlal, no ma* . = . v arge an n we choose, the value of
the approximating .. v for a glven x (# 0) will always be
in error by some az. Tre most that we can hope for 1ls that-
we can choose n I = =:.>ugh so that for a glven X,

N .}','+)2c—f-+...+)—c'l;

wlll differ from e ¥ - an arbltrarlly small amount. Fortunately
this hope 1s realiz:.
In partlcular, for =z =1 and n = 10, we obtaln
1 ' 1
e~ 1 +1 +§1. +%‘|. + . +'ml. . ()'l')
Rounding off to the e&ghth decimal place, the right side of ()
has the value 2.7182¢:81, The correct value to elght decimal
places 1s 2.7182818%.

We have seen that #: thp purpcse of computatlon, the
exponentlal functlon I ——>eX czm be replaced by one of a
1list of polynomial frirm===m3. A similar situatlon holds for
the logarithmlic functiorn ;‘1: X—>1ln x. However, 1t 1s useless

to try to approximate 1n x for X near zero since 1n x 1s
not defined at x = O, It 1is usual to approximate 1n x for x
near 1. Thls may be done by usling the following list of poly-
nomial approximations .

' Inx= x -1 ' (5)

ln x = (x—l)--(-)i—'é-lf- : (6)
in x= (x - 1) - (x 5‘1)2 + (x 5 1)? (7)

[sec. 4-12]
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Sor walues of X near 1, that is, for I[x-1 zmsil,
these approximations serva as a satisfactory substirue for
in x. For example: ‘

inl.l=s .1 frea (3),
n1l.ls .1 - =2k =.095 frew (5),
e -01 .001 — -y
‘nl.l~ .1 - -l == .09533% from
The correct value of 1n 1.1 to five places 1s L0353, ..
.2 3
Graphs of x-—»1ln x and of x—>(x - 1) - (x - - + (x ; 1)

are given in Figure 4-12b. These graphs show that tr: zpproxi-
mation is good for X near 1, but is poor for x =ar O,

say at x = .1,
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“mris aiguation 1s impzova by using an approximating poly-
nomia. . of higher degree. The d&ifficulty is fundamental, however,
in th= sensz= that any giver polvnomial approximation will fail
to give sat.sfactory answers for X near enough to 0. The
reasor is ==at as previously s:ated, 1n O does not exist, and
for . we=v small, 1n x 2= zegative and numerically very 1arge.:'

Fre zgrnooximating polyn——ials are useful for calculating
inx f= .5<x (1.5, fc— example. Other logarithms can be
comput=t -rom these. Thus, 3if we know that 1n 1.4 =~ ,33647, ‘
In 1.08 =1n (1.4)° = 2 In2.4 ~ 67294,

For z Ffurther discussiz: of these matters, the student
shoul¢ corsult Appendix 4-1:

Exerzises 4-12

"x2 x3 X
1. Use 1 +x +5 +F to approximate e for

x = .1, .2, .5, =.1, -.2. éompare the values obtained
with those given in Table 4-6.

2. Verify the approximatior to e found in (4). Hint: Use the
s ! 1 1 1 1 1 1 '
v’zctthat-B—i—=—5--1n, 161:'6.-5_':’ ete.

3. According tc (5), the tangent to the graph of x—>1ln x at
(1, 0) has The-egzziion y =x - l. Show that this is
~onsistent with the mct that the tangent to tuie graph of
~—»e~ at 0, 1) 'mss the equation, Yy =X+ 1.

L, Uss (7) to estimataz the value of 1n 1.2 and 1n 1.3 and
wommsre with the mramh of 1n x (Figure 4-104).

5. Fror 1n 1L.I = .C9531 2ind 1n 1l.21, using one of the
s—operties ¥ logewithm=. h
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4-313., Historical Notes

The theory of logarithms is one of the major achlevements
of the seventeenth century. Howevzr, the rudiments of the
_notion appeared as early as 154,

Stifel, who 1s considered the zreatest German algebraist
of the 16th century, notice. tizs advantage in setting up a
correspondence b=tween a ge~me ric grogressioz

& % % 1,2, L. 8, 16, 32, 64

and an ar=thmetic progression
"'3’ ‘2" -l’ o’ l! 2’ 3’ ll" 5’ 6'

His treatise Arithmetica InSegr=. published in Latin, might be
sald to ccntain the beginning of the theory of exponents and
logarithms.

John Napier (1550-1617), th= Scotsman, is often regarded
&s the inventor of logariihms. The objJect of his stmdy was to
facilitate trigonmometric zalculazion. One of the curilositiers
of mathematical history iz the fact that Napier'!s Takhle of
logarithms appeared (161k) before exponential symbollism was
developed. Althouga Napiesr used 1 - 1077 = 0.95999¢% as
the basis Tor zis developr:2¥, the idea of an exponertial base

does not really apply to ¥z-ler's system in wirich zero is the
logarithm of lO7 and the lggarithm increases =s thes nusber
decreases., |

Joost Bimgl (1557 -1632) crmeelved the ids= and ixdepeng=ntly
created a tabite ¢ “oygerithas of mumbers from 108 te 107 by
tens, but dic not pmr.ish -is Treatise until 1620. His system
was‘similar'to Napier 3, but his logarithms increase with the
nunbers since he seleczed 1.00Ql as his base. It is important
to note that Hirgi's object was to simplify all calcul=tions by
means of logarithms. In this respect his point of view was s
broader than Napi=r's. v

Henry Briggs. the Englishman, (1556-1630) was greziciy
impressed and ixluenced by Napler's work. He devoteé his

[sec. +-13]
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energles to the construction of a logeritomic table in which

zero 1s the logaritzm of 1. An advartag= of Briggsizn logarithms

is that they are built about the base 1C. In 1624 Briggs

published his work contalning the logerizhms of numbers from 1

to 20,000 and from 90,000 to 100.000 to 14 places. ‘
Logarithms were developed principaZly in order to facilitate

calculation, and in fact simplified ccmputation to such an

extent that they are commonly regardec merely as a labor saving

device. This is unfortumate since logar-thms are of ‘great value

in advanced mathematics, apart from compumbation.
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o1k, Summarx,

The exponential funcitlons are definss by f: x —=ka™ s
a > 0. This definitiox r=quires =1 znterpretation far the symbol

2X. For x a ratizmzI exvonent, the Irberprefation aq = 4/aP

is familiar. Meanizz is go=n to a* “or irratizmal. X SO
that the resulting fi—==ticn 1s conciruous and obews “me laws

X o X
T

(ali) - arx

[ser. 4-147
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if x and y are arbitrary real numbers and r 3is rational.

The graph of x—>a¥

1s concave upward everywhere. It has
a tangent 1line at every point. If a = 2, the slone of the
tangent at (0, 1) ‘is k = 0.693. The most convenlient base is
“a =e =2%¥x 2.718. For this cholce of base, the slope is 1
at (0, 1) and e® at (h, e). That is, at every point on the
graph of x-+>ex, the slope 1s equal to the ordinate.

Important phenomena such as growth, radioactive deéay and
cooling are adequately described by formulas of the type,
v =Y cx’ where Yo and ¢ are sultable positive constants.

The logarithmic function £~ 1: x——>1og X 1s the inverse of
f: x—>a¥. Its graph 1s the reflection of the graph of x—>a¥
in the 1line y = X.

All logarithmlic functions have the following properties.
If Xy, Xy and x3 are any positive numbers

log aX1¥o = log aXq1 * log X0

x ,
1oga(§§>= 1ogax1 - 1ogax2,

log xlp = P Iogaxl, p rational.

The most impoFtant logarithmic functions are log10 and
lqge = In. To change from base b <to base a, we use the
eguation

1o;ax = 1ogbx . 1ogab.
In particular,
In X = 1og10x ln 10= 2.302 log10 .

Tables of eX and 1n x may be computed from the poly-
.nomial approximations

n
e s 1 +x +-§T oo + %T
2 3 n
and 1ln x = (x_l)_.(i_,s._]:_)_.,.i}_[;l) _.“-;;'fx;lll .

Some discussion of these approximations and the errors
assoclated with using them, is given in the appendices.
[sec. 4- 1#]
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Miscellaneous ExXercises

1. Assuming that the number N of bacteria at the end of n
days 1s given by N = Aen, find:
~a) The number of days 1t takes to double the number of
bacteria; express this in terms of the constant k;
b) The per cent increase per day in the number of bacterila.

2, If £ 1is an exponential function x——_:>cax such that
£(0) =2 and f£(1.5) =54, find a and c.

X

3. Given the function f: x—>a®* for which f(2) = 0.25,

find f£(5).

4, The gas in an engine expands from a pressure D, and volume
vq to a pressure Py and volume Vo according to the

n
Py vy
Py \Vp )

(Boyle's law is the special case where n=1.)
Solve for vy in terms of Vos Pys Pp and n,

equation

n

5. If s = QIZ:Q%— , express n in terms-of-18, a, r.
6. Solve the following equations for x.
r4
/
a) 3 ¥ -3 b) 1n x> -2 InJ/x =1

7.‘ Ir ao‘3 = x find logxa.

8., Combine each of the followling expressions into a single term.

U\

a) 1n £ + 1n 100 - 1n 12,
b) 21nx - % ln y + % in y - % in x.

9. Without graphing, describe the relationship between the graphs

c
of x-—:>cex and XxX-—>»e X for c = -1.
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11.

12.
13.

14,
15.

16.

17.

18.

221
Ir f: x—>2% and g x->3%, find
a) (fg)(2)
b) (&f)(2).
Given the functions

1 x =X 4 27X
g: x —=2% - 27X
find

a) f(x) + g(x)

b) f£(x) - g(x)

) [t(x)? - [e(x) 2

Solve the following equation for x.
1og2(6x +5) + logyx =

!
no

Solve the equation poX+2 _ 9(2*) - 2 for x.
(Hint: Let 2% =y.)

2x+2 X+2

Solve for x: 2 + 2 = 3,

Show that no real number Xx can be found such that
In (x - %) - 1In (x +1) = 1n 6.

Prove .the following special case of the "chain rule" for
logarithms:

(1ogab)(1ogbc)(logcd) = log.d.
Solve the equation
in (1 - x) - 1In (1 + x) = 1.
Sketch the graphs of
a) y =1n Ix| b) y = l1n x| ¢) y =1n &*

At the instantaneous rate of 5 per cent per annum, what
will be the value of $100 at the end of 5 years?

- (Give your answer correct to the nearest dollar.)

20.

What amount must have been deposlted 5 years ago to amount
to $100 “now at the rate of 5 per cent compounded
continuously? (Give your answer correct to the nearest
dollar.)
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21.

[AS]
.

23.

2k,

25.

26.

At what rate of Znterest (compounded annually) must we
invest #100 if we want it to double in 10 years?
(Give your answer correct to the nearest tenth of one
per cent.)

Under ncrmal condi=ions population changes at a rate which
is (conzidered to oe) proportional to the population at
any time. The ropalation at any time x i1s then satils-
factorily ziven by

N(x) = Noekx,

where NC ‘s tze population at time x =0, and k 1is
a sultabls —-onstant. If a town had a population of
25,000 im 2950 and 30,000 in 1955, what population 1is
expected =r 19657 '

The funciicm f: x——ae"t/RC

, where t represents time,
and R a=i C are constants, 1s important in the theory
of ceri=fxm trype=s of electrical circuilts. Using Table 4-6,

evaluste (%), glven the following data: ‘
a) t=121.0, R=2.0, C=0.05
b) t=12x10"", R=48, C=25x lo’6 o o

Solve tka equation A = e"t/RC for t. Using this result,

find th= value of t for each of the following sets of
data. Suggestion: use the graph of x—>1ln x, (Figure 4-10d).

a) R=10, C = 10’1*, A =1.0

b) R= 2= x 10°, c=6.o><10““, A = 0.50
Find, corr=ct to two decimal places, the root of

e - x + 3x =0 that is nearest O. (Hint: approximate
the roz: graphically, then use Newton's method.)

a) Sk=sch the graphs of the functions

x—2% and x——>2x3 - 3x2 - 12x + 1
using the same coordinate axes.
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b) In how many polnts do the curves intersect in the
interval -2 < x < U2

¢) How many solutions has the equation

2

2¥ = 2x? - 3x° - 12x +1 1f -2 < x < 42

d) Answer questions (b) and (c¢) for the extended interval
-2 < x £ 12.

If a flexible chaln or cable is suspended between supports
and allowed to hang of its own weight, the curve formed is
a catenary. Its equation is

y = %(ex/a + e’x/a).

a). Let a = 1. Prepare a table and graph the catenary over
the interval -415 XL 4, (Because of our choice of a,
the catenary in this case will be a narrow curve if
equal scales are used on the two axes. To offset this
effect, choose appropriate scales.)

b) You will notice that the catenary looks somewhat 1like
a parabola. The point (0, 1) is on the graph of the
catenary, and the points (3, 10) and (-3, 10) are
very close to it. PFind the equation of the parabola
which passes through these three points, and draw its
graph on the same axes as used 1n part (a).

¢) Another approximation to the catenary is given by the
equation y =1 + x2/2, and a better approximation is

given by y =1 + x2/2 + xu/2u. Draw the graphs of
these equations on the same axes a% used in parts (a)
and (b).

In the study of probability theory, the normal distribution
curve (sometimes described as a "bell-shaped" curve) is
of great importance. The equation of this curve is

2 2
1 e ¥ /2 ~ 0.4e ¥ /2
vermr

Yy =

.
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Prepare a table and graph this curve over the interval
-3 < x 3. (Notice the symmetry of the curve. )

By counting squares and multiplying this number by the
area of one square (in terms of the scales chosen for

the akes), show that the area between the curve and the
x-axis, over the interval -3 ¢ x £ 3, 1s very nearly .

An ihteresting application of this curve can be made to
the scores reported for the College Entrance Examination
Board tests. If we assoclate test scores with values of
X according to the following table, then oy comparing
areas undér the curve, we can find what per cent of all
scores will fall between any twd scorei.

x | 3] -2 -1 0 1 2 3

Test -
score

200 | 300 | 400 500 | 600 | 700 | 800

For example, to find what per cent of the scores on a
certain test will fall between 500 and 600, we find
the area under the curve from x =0 to x = 1. By
counting squares, you should find that this area 1s
about 0.34%, or 34% of the total area under the curve.
This means that about 34% of all test scores on any
given test will fall between 500 and 600.

Using this technique, find the per cent of test
scores that lie between 200 and 300, 300 and 400,
..., TOO and 800. Does the sum of these per cents
equal 100%?
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Chapfer 5
CIRCULAR FUNCTIONS

5-1. Circular Motlons and Perlodicity

Introduction. From your earllest years you have beenfaware
of motion and of change in the world around you. The rolling
of a marble along a crack in the sildewalk, the flight of a ball
tossed by a boy at play, the irregular rise and fall of a pilece
of paper fluttering in the breeze, the zlg-zag course of a fish
swimming erratically in a tank of water are a few of the varied
patterns of movement you can observe. Very often, however, the
motions you see have a quallty not shared by the few just men-
tloned. The succession of day and night, the changing of the
seasons, the rise and fall of the tides, the circulation of blood
through your heart, the passage of the second hand on your watch

‘over the 6 o'clock mark are patterns each having the character-
istic quality that the motion involved repeats itself over and
over at a regular Interval. The measure of thlis interval is

"called the perlod of the motion, whlle the motion itself 18 called
periodic.

- The simplest perlodic motion 1s that of a wheel rotating on
its axle.- :Each complete turn of the wheel brings 1t back to the
position 1t hcld at the beglnning. After & polint of the wheel
traverses a certaln distance in 1ts path about the axle, 1t returns
to its initilal posltion and retraces 1ts course agaln. The dis-

' tance traversed by the point in a complete cycle of its motion
is again a perlod, a period measured in units of length instead
of units of time. If it should happen that equal lengths are
traversed in equal times, the motlon becomes periodic in time

“as well and the wheel can be used as a clock.*

*The concept of time itself 1s inextricably tied up with that of
-clock, a perlodic device which measures off the intervals. It
would seem then that periodicilty lles at the deepest roots of our
understanding of the natural unlverse. How one decldes that a
repetitive event recurs at equal intervals of time and can there-
fore be considered a clock is a profound and difficult problem in
the philosophy of physics and does not concern us here. (See
Physics, Vol. 1, pp. 9-17, Physical Sclence. Study Commlttee,
Cambridge, Massachusetts, 1957.)
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The mathematical analysis of periodic phenomena is a vast
and growing field, yet even in the most far-flung applications
of the subject, such phenomena are analyzed essentially in terms
of the simple periodicity of the path of a point describing a
circle. In the treatment of the most intricate of periodicitiles,
wheel motions always lie under the surface. _An extended develop-
ment of the theory of periodic phenomena is far beyond the scope
of this course, but the study of the fundamental circular period-
icities is certainly within our reach.

Circular Motions. Let us consider first the mathematical
aspects of the motion of a point P on a circle. For convenlience
we take the cilrcle u? + v2 = 1, which has its center at the origin
of the uv-plane, radius 1 and consequently circumference 2.
Now we consider a moving point P which starts at the point (1, 0)
on the u-axis and proceeds in a counterclockwlse direction around
the circle. We can locate P exactly by knowlng the distance
x which 1t has traveled along the circle from (1, 0). The dis-
tance x 18 the length of an arc of the circle. Since every
point on the circle u2 + v2 = 1 has associated with it an ordered
pair of real numbers (u, v) as coordinates, we may say'that the
motion of the point P defines a functlon z°. With each non-
negative arc length x, we assoclate an ordered pair of real
numbers (u, v), the coordinates of P (Figure 5-la), that is,

P x—>(u, v). '

However, 1t is inconvenient to work with a function whose
range is a set of ordered pairs rather than single numbers. We
shall instead define two functions as follows:

cos: x—»u, where u 1is the first component of 70(x);

sin: x—>v, where Vv 1is the second component of w(x).
The terms cos and sin are abbreviations for cosine and sine. It
is customary to omit parentheses in writing cos(x) and sin(x)
and write simply cos x and sin x. For instance, :

72(0) = (1, 0) : cos 0 =1, sin 0 = O
po(ler-) = (0, 1) : cos g—: 0, sin :g- =1
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P(r) = (-1, 0) : cos T = -1, sin T = 0
P(-:ig-):? : cos%1=?, sin%E=?

(You should supply the proper symbols in place of the gquestion
marks.) From their mode of definition, the sine and cosine are
called circular functions. These circular functions are related
to but not identical with the familiar functions of angles studied
in elementary trigonometry. We shall discuss the difference in
Section 5-3, but we should notice now that when we write sin 2,
the 2 represents the real number 2 which can be thoﬁght of as
the measure of the length of a circular arc and not 2 degrees.

(10)

Figure 5-la. The function 2.
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Periodicity. From the definition of 70, it follows that
#(x) = -p(x + 2r) and consequently, cos x = cos (x + 2r) and
sin x = sin (x + 2w). Functions which have this property of
repeating themselves at equal intervals are sald to be periodic.
More generally, the function f 1s said to be periodic with
period a, a # 0, if, for all X in the domain of f, x + a 1s
also in the domain and

£(x) = £(x + a). (1)

We usually consider the period of such a function as the smallest
positive value of a for which (1) is true. The smallest posi-
tive period 1s sometimes called the fundamental period. From
this definition we note that each successive addition or subtrac-
tion of a brings us back to f(x) again. We may show this by
first considering f(x + 2a) where a > O. We have

f(x + 2a) = £([x + a] + a)

= f(x + a)

= f(X),

and further

f(x + 3a) = £([x + 2a) + a)
= f(x + 2a)
= f(x).

In general, we have .
f(x + na) = £f(x) wheren=1, 2, 3,

To show that this holds for negative n, we note that
f(x - a) = £([x -~ a] + a)

=f(X)
f(x - 2a) = £([x ~ 2a) + a)
= f(x - a)
= £(x).
.. 238
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‘In general
V f(x + na) = £(x) where n = -1, -2, -3 ...
We may express these two ldeas by ‘
f(x + na) = £(x) where a > 0 and n 1is any integer. (2)
.In other words, to determine all values of f, we need only

know its values on the interval 0 ¢ x < a. Thus, suppose the
period of f is a = 2 so that for all x in the domain of f

£f(x + 2) = £(x).

Then to find £(7.3) we write
£(7.3)

£(1.3 + 3 X 2)
£{1.3).

To fiad 2(-7.3), we write

£7=7.3) £(0.7 - 4 x 2)

£(0.7)

Now returning to the unit circle, wc observe that the
functions cos and sin behave in exactly this way. From any
point P on the circle, a further movement of 2w units
around the circle (a = 2r in Equation (2)) will return us
to P again. Thus the circular functions are periodic with
period 2w, and consequently

cos (x + 2nmw) = cos x

(3)

sin (x + 2n7) = sin x

where n 1is any integer. To give meaning to these' formulas
for negative n, we 1nterpret any clockwise movement on the
circle as negative.

So now 1f we can determine values of cos and sin for
0 £ x < 2w, we shall have determined their values for all
real Xx. )

- 239

[sec. 5-1]



230

Exercises 5-1
1. Give five examples of perlodic motion, and specify an approxi-
mate period for each. (For instance, the rotation of the
earth about 1ts own axls 1s perilodic with period 24 hours.)
2. 1If 7P(x + onw) = 7P(x), express each of the followlng as 7b(b),
where 0 ¢ b < 2r. (For example,

2 = P&+ em) =pE.)

a, p(-D ) -3
b)  p(37) d) p(ko76m)

3. Give the coordinates of 7p(x) for each part of Exercise 2
above,

4, Ziven that ¢ has the period 27, find two values of x
where 0 ¢ x < Uw, soch that
a) (D) = px), ¢) pliem) = Plx),
b) P (137) = p(x), d) p-m) = p(x).

5. For what values of x, where 0 { x < 27, do the followlng

relations hold?
a) cos x = sin X,

b) cos x = -sin Xx.
Hint: Use the fact that (cos x, sin x) represents a point
on the unit circle. '
#6. We know that the functlons represented by cos X and sin X

have period 2w. Find the period of the functlons repre-

sented by
a) sin 2x, c) cos bx,
1
b) sin'%x, d) cos X .
*7, Let f and g be two functions with the same period a.
Prove that:
a) £ +g has a perlod a (not necessarily the fundamental
period);

b) f e« g has a perlod a.
*8, Let f be a function with period a. Prove that the composi-
tion gf also has period a for any meaningful cholce of a.
[sec. 5-1]
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#g, Show that the functlons sine and cosine have no positive
period less than 27,

5-2. Graphs of Sine ard Cosine
We wish now to picture the behavior of the two functions

cOS: X—> U = CO08 X
sin: x—>v = 8in x

for all real values of x. To do this we shall first look at
some of the general properties of these functions, find some
specific values of the functions at gilven values of x, and

- finally construct their graphs.

We already know that the sine and cosine functlons are
periodic with period 2w, and so we may restrict our attention
to values of x where O < x < 27. Now by noting that u and
v are the coordinates of a point on a unit circle, we have '

v + v = 1. | : (1)
But since u = cos x and v = s8in x, we have
cos®x + sin®x = 1. : (2)
If we write (2) as
sinzx =1 - coszx

and as

coszx =1 - sin2x

it is apparent that neither sin x nor cos x can exceed 1 1in
absolute value, that is, '

-1 {sinx (1
-1 { cos x 1.

Another property of sin and cos derives from the symmetry
of the circle with respect to the u-axis. Two symmetric points
on the circle are obtained by proceeding the distance x in
both the clockwise and the counterclockwise senses along the
circle. In other words, if # (x) = (u, v), then '

[sec. 5-2]
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P(-x) = (u, -v) (Figure 5-2a). From this we obtair the important
symmetric propertiles

cos (-x) = cos x (3)'
sin (-x) = -sin x.
v?v
< P)=(u,v)
u

(1,0)

L 2X F A (U )

Figure 5-2a. Symmetry relations.

Since we are ultimately interested in graphing y = sin X
and y = cos X, we have managed to narrow our attention to a
rectangle of length 27 and of altitude 2 in the xy- plane* as
in Figure 5-2b. If we can picture the graph of the functions

*Since we shall have occasion to refer %o two coordinate planes
for points (u, v) and (x, y), we wish to point out the distinction
between them. The uv-plane contains the unit circle with which

we are dealing. This is the circle onto which the function #°
maps the real number x as an arc length. The xy-plane 1s the
plane in which we take the x-axis as the real number line and
examine not the point function #°(x) but the functions

cos: x—>y = cos x and sin: x-->y = 8in x, each of which maps

the real number x into another real number.
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Figure 5-2c¢c. Rectangles of perilodicity.
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1
0
2m X
-I
Figure 5-2b. Rectangle to include one cycle of sin or cos.
in the interval O < x < 2w, the periodicity properties of cos
and sin will permit us to extend the graph as far as we like by
placing the rectangles end to end along the x-axis as in Figure
‘5=2¢.
y
Yarr 2 0 2n an %



234

We therefore direct our attention to values of x such
that 0 { x < 2r. To begin wilth, the unit circle 1in the
uv-plane 1s dividéd into four equal arcs by the axes; each
arc is of length m/2, and the dlvision points correspond to
lengths of x = 0, w/2, m, 37m/2, with central angles of
0°, 90°, 180°, and 270°, respectively. The corresponding points
on the circle will be (1, 0), (0, 1), (-1, O0) and (O, -1), as
in Figure 5-2d. Since cos X = u and sin x = v, we have

cos 0 =1, sin 0 = O,
cos g-: 0, sin % =1,
cos T = -1, siln r = O,
3T 3T _
cos 5 = 0, 4 | sin 5 = -1.

We next consider the midpoint of each of the quarter circles
in Figure 5-2d. These correspond to arc lengths of /4, 3m/4,
5m/4, and Tm/4, with central angles 45°, 135°, 225°, 315°.

AV
(0,1)

(-1,0) /f \\ ' (1,0) u

|
(0-1)

Figure 5-2d. 7°(x) for x = 0, mw/2, m, 3m/2.
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If we drop perpendicuiars to the u-axis from these points as in
Figure 5-2e, we note that radii to the points form angles of 45°
with the u-axis. From geometry we know that for a 45° right
triangle with hypotenuse 1, the sides are of length+/2/2 and
"hence that the coordinates of the midpoints of the quarter circles
ave (3/2, VB/2), (~/3/2) VB/2), (~/3/2, ~/3/2), and (JB/2, ~/E/2),

‘respectively. We may therefore add the following to our list

of values:
cos m/h =/2/2 sin w/4% =./2/2
cos 3r/h = ~/2/2 : sin 3m/4 = /2/2
cos 5m/h = -/2/2 - sin 5w/4 = ~/2/2
cos /4 = J/3/2 | sin Tm/% = ~/2/2
I\
u

Figure 5-2e. 7o(x) for w/4, 3w/k, sm/h. TH/h.
245
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We can find the coordinates of the trisection points of the
quarter circles by a similar method. In Figure 5-2f, we show
only two of the triangles, but the procedure is essentially
the same in each quadrant. From the properties of the 30°-60°
right triangle, we note that P, and P, have coordinates

1=

Figure 5-2f. p(x) for x = w/6, /3.

(V/3/2, 1/2) and (1/2, /3/2), respectively. We may fill in the
coordinates of all of these points of trisection as in Figure 5-2g,

from which we can find eight new values for cos and sin.
Collecting in one table all of the values which we have so far

determined, we have Table 5-1.
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v
)
%5/
N | ey
, 137[ S
SR A

Figure 5-2g. Further values of &(x).
Table 5.1

Values for cos and sin for one period.

X co8s x 8in x
0 1 0
/6 V3/2 =~ .87 1/2
/4 V2/2 ® .71 V2/2 = .71
/3 1/2 V3/2 = .87
/2 0 1
or/3 -1/2 V3/2 ™~ .87
/b | -VB/emlT1 V2/2 & |71
s/6 -Y3/2 ~-.87 1/2
T -1 0
/6 -V3/2 ~-.87 -1/?
5r/L -V2/2 m-.T1 -V3/2 m-.7T1
br/3 -1/2 -V3/2 x-.87
3r/2 0 -1
5m/3 1/2 -V3/2 ~-.87
/4 V2/2 m .71 -V2/2 m-.T71
11m/6 N3/2 = .87 -1/2
or | 1 0

[sec. 5-2]
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With this table we are now in a position to begin graphing
sin and cos. Because we wish to look at the graph of these
functions over the real numbers, we shall use an Xy-plane as
usual and work with the points (x, y) where y = cos x or y = sin x.
We shall deal separately with each function, taking first
¥ = cos x. From Table 5-1 we can now plot some points in the
rectangle in Figure 5-2b, obtaining Figure 5-2h.

y
0 T ; 3T 2n| X
2 2
Figure 5-2h. Values o cos: X—»cCO0S X.
By connecting these points by a smooth curve we should obtain
a reasonable picture of the function
cos: X—>»C08 X
as in Figure 5-21i.
yh
3T
™ 7 21

ol

[e]
/nm

Figure 5-2i. Graph of one cycle of cos.
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If we wish to extend our picture to the right and left, we
use the periodicity property to obtain Figure 5-2J.

y

S TN N

G I NG ZEE RN

Figure 5-2j. Graph of cos,

A similar treatment of y = sin x leads to Figures 5-2k,
5-21, and 5-2m. '

o
o

3+
SEL

Figure 5-2k. Values of sin x: x-—sin x
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My 1

Figure 5-21. Graph of one cyele of sin.

RN L e
& - gl ~_

Figure 5-2m, Graph of sin.

Since it i1s often necessary to work with
y = A cos x

y = cos Bx (%)
y =cos (x + C) (A, B, and C constants)

or some combination of these expressions, it is worthwhile to
inquire into the effect that these constants have on the behavior
of y. 1In case of =
' .y = A cos x (A > 0},

the A simply multiplies each ordinate of y = cos x by A, ard
the graph of y = A cos x would appear as in Figure 5-2n.

950
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X

Figure 5-2n. Graph of y = A cos Xx.

In Exercises 5, 6, and 7 you are asked to determine for

yourself the effects of B and C in Equations (%).

Exercises 5-2
Using £(x + 2n7) = f£(x), and f: x—>cos x, find

a) £(31), a) £(&),
b) £(&), e) f£(-7w),
c) (&, | £) £(-25T),

If £f: x—>sin x, find the values of f in Exercise 1 above.
For what values of x (if any) will
a) sin x = cos x?

b) sin x = -cos x?
¢c) sin x = sin (-x)?
d) cos x = cos (-x)2
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Graph on the same set of axes the functions f: X-—>Yy defined
by the following, using Table 5-1 to find values for the

functlons.
a) y =2 cos x,
b) y = 3 cos Xx,

c) v L cos x.

il

2
Repeat Exercise 4 using
a) y = cos 2x,
b) y = cos 3x,

c) y = cos %x.
Repeat Exercise 4 using

cos (x + %),

]

a) vy

b) y = cos (x - g),

c) y = cos (x + 7).

From the results of Exercises 4, 5, and 6 above, what effect
do you think the constant k will have on the graph of

a) y = k cos x?

b) y = cos kx?

c) y=-cos (x + k)?

From the results of Exercilse 6(v) above and Figure 5-2m,
what can you say about cos (x -'%) and sin x?

As explained in the text, symmetric points with respect to
the u-axis on the unit clrcle u2 + v2 = 1 are obtalned by
proceeding a distance x in the clockwlise and counter-
clockwlise senses along the clrcle. In other words, 1f

£(x) = (v, v) then #(-x) = (u, ~v). It follows that
cos x = cos (-x)

sin x =-sin (-x)
what relations between the circular functions can you derilve
in similar fashion from the followlng symmetries of the circle?
a) The symmetry with respect to the origin.
b) The symmetry with respect to the v-axils.

[sec. 5-2]
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5~3. Angle and Angle Measure

As we remarked in Section 5-1, the circular functions are
closely related to the functions of angles studied in elementary
trigonometry. 1In a sense, all that we have done is to measure
angles in a new way. To see precisely what the difference is,
let us recall a few fundamentals.

An angle is defined in geometry as a pair of rays or half-lines
with a common end point. (Figure 5-3a.) Let R, and R, be two
rays originating at the point 0. Draw any circle with O as
center; denote its radius by r. The rays R, and R, meet the
circle in two points P1 and P2 which divide the circle into two
parts. Here we conslider directed angles and distinguish between
the angles defined by the pair Rl’ R2 according to their order.

Specifically, we set o<= Z¥ (R, Ry) and @ = Z;_(RQ, R, ) where

Figure 5-3a. Angles ocandg.

each angle includes that arc oi . e circle which is obtained
by passing counterclockwice . che ecircle from the first
ray of the pair to the secona (Figure 5-3a).

In esﬁablishing degree measure, We could divide a circle
into 360 equal units and measure an angle o< by the number of
units of arc it includes. For instance, if we found that an

[sec. 5-3] _
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angle included %-of the circumference we would say that the angle

measured % x 360° or 120°. In general, if we divide the circum-
ference of a circle into k equal parts, each of length 2%3 , then
this length could be our unit of angle measure. Since the nuﬁ-
erical factor %g appears in many important formulas, it is useful
to choose k so that the factor is 1. 1In order to do this, it

is clear that k must equal 27. In this case, gﬁg will be equal
to r, the radius of the circle. When k = 27 we call the result-
ing unit of angle measure a radian. Radlan measure is related

to degree measure by

O (2]
1 radian = (%fro) = (1-?79) | : (1)
and
1 = —%6 radians. (2)

You should note that this definition of the radian measure
of an angle implies that an angle of 1 radian intercepts an arc
of length s equal to r, the radius of the cilrcle. In general
an angle of x radians intercepts an arc of length xr. That
is, s = xr where X 1s the measure of the central angle in
radians while s and r are the lengths of the arc and the
radius measured in the same linear units.

In working with radian measure, 1t 1s customary simply to
give the measure of an angle oc as, Say, g, rather than g radians.
If we use degree measure, however, the degree symbol will always
be written, as for example, 90°, 45°, ete.

Tt is also possible to measure an angle o< by the area A
of the sector it includes (Figure 5-3a). Specifically, we have
that the area A 1is the same fraction of the area of the interior
of the circle as the arc s 1is of the circumference, that is,

;T%=§:? . (3)
We saw above that the arc length s on a circle included by an
angle oc may be expressed as 8 = rx where T is the radius of
. the circle and x is the radian measure of o<. It follows from
254
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(3) that
A X
vr2 2r
or
24
x=;—§——. (4)

That is; the measure x of oC in radians is twice the area of
the included sector divided by the square of the radius.

Exercises 5-3
1. Change the following radian measure to degree measure.

a) 2L, a) L, g) ST,
v) Z, e) em n) 221,
-2 '
c) L, r) 2L, 1) 43T
2. Change the following degree measure to radian measure.

a) 270°, d) 480°, g) 810°,
b) -30°, e) 195°, h) 190°,
c) 135°, £) -105°, 1) 18°,

3. What is the measure (in radians) of an angle which forms
a sector of area 97 if the radius of the circle is 3 units°
4, what is the area of the sector formed by an angle of ( )
if the radius of the circle 18 2 units?
5. Suppose that we wish to find a unit of measure so that a
guarter of a circle will contain 100 such units.
a) How many such units will be equivalent to 1°?
b) How many such units will be equivalent to 1 radian?
¢) How many of these units wlll a central angle contain,
if the included arc i1s equal in length to the diameter
of the circle?
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5-4, Uniform Circular Motion
Let us again consider the motion of a point P around a

cirecle of radius r in the uv-plane, and suppose that P
moves at the constant speed of s unlts per second. Let

Po(r, 0) represent the initial position of P. After one
second, P will be at Pl’ an arc-distance s away from Pj,.
After two seconds, P will be at P2, an arc-distance 2s from
PO’ and similarly after t seconds P will be at arc-distance
ts. (Figure 5-%a.) Clearly APOOPl = 23_19101>2 = A_onPB .

Figure 5-4%a. Uniform motion of P on circle O.

and likewise for each additional second, since these central
angles have equal arcs, each of length s. Each of these central
angles may be written as & = %. After 2 seconds, OP will have
rotated through an angle 2@ into position OP,; after 3 seconds
through an angle 34 ; and, in general, after ¢ seconds through
an angle of t® or Wt. In other words, after t seconds, P
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“'will have moved from (r, O) an arc-dfstance st, and OPy will
Tﬁhave rotated from 1ts initilal position through an angle of Wt
'ﬂinto the position OP. If we designate the coordinates of P by

- (u, v) we have

u r cos Wt

]

(1)

v

]

r sin 0t.

When Wt = 2w, P will agaln be in the positiqn PO' This
motlion of the point from Py back into Po agaln 1s called
a cycle. The time interval during which a cycle occurs is
called the period; in this case, the period is %F. The number
of cycles which occur during a fixed urit of time 1s called
the frequency. Since we refer to the alternating current in our
homes as "60-cycle", an abbreviation for "60 cycles per second",
thils notlon of frequency 1s not altogether new to us.

To visuallze the behavior of the poilnt P in a different
way, consider the motlon of the point Q which 1s the projection
of P on the v-axis. As P moves around the unit circle, Q
moves up and down along a fixed diameter of the circle, and a

- pencil attached to Q willl trace thic dlameter repeatedly --
assuming that the paper 1s fixed in position. If, however, the
8trlp of paper i1s drawn from right to left at a constant gpeed,
then the pencll will trace a curve, something like Figure 5-Ub.

upy.

!

A b |1 111

Figuré 5-4b.“ Wave Motilon
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An examination of this figure will show why motion of this type
is cal’ed wave motion. We note that the displacement y of
Q from its central positlon is functionally related to the time
4, that is, there is a function f -such that y = £(t). By
" suitably locating the origin of the ty-plane, we may have either
v+ = cos wt or ¥y = sin wt; thus either of these equations may
be looked upon as describing a pure wave or, as it is sometimes
called, a simple harmonic motion. The surface of a body of
water displays a wave motion when 3t is disturbed. Another familiar
example is furnished by the electromagnetic waves used in radio,
television, and radar, and modern physics has even detected wave-
1ike behavior of the electrons of the atom.

One of the most interesting applications of the circular

functions is to the theory of sound (acoustics) A sound wave

is produced by a rapid alternation of pressure in some medium
A pure musical tone 1s produced by any pressure wave which can
be described by a circular function of time, say:

p = A sin Wt (2)

where p 1s the pressure at—time t and the constants A and
() are positive. The equation (2) for the acoustical pressure,
p, is exactly in the form of one of the equations of (1) even
though no circular motion 1s involved; all that occurs 1s a
fluctuation of the pressure at a given point of space.* Here
the numbers A and & have direct musical significance. The
number A is called the amplitude of the wave; it is the peak
“Hpressure and its square 1s a measure of the loudness. The
qumber & 1is proportional to the frequency and 1s a measure of
pitch; the larger () the more shrill the tone.

The effectiveness of the application of cilrcular functions
to the theory of sound stems from the principle of superposition.
If two instruments individually produce acoustical pressures P,
and Po then together they produce the pressure P, + Pp- If

*The acoustical pressure 1s defined as the difference between the
gas pressure in the wave and the pressure of the gas if it is left

undisturbed. »_
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;pl and Py have a common period then the sum p, + pé has the
_same period. This is the root of the principle of harmony; if
-two instruments are tuned to the same note, they will produce.
no strange new note when played together,

Let us suppose, for example, that two pure tones are produced
with individual pressure waves of the same frequency, say '

u

Acos Ot (3)
B sin @t (%)

v

where A, B and & are positive. According to the principle of
superposition, the net pressure is

P=Acos Wt + B sin Wt,

What does the graph of this equation look 1ilke? We shall answer
this question by reducing the problem to two simpler problems,
that is, of graphing (3) and (4) above. For each t, the value
of p 1is obtained from the individual graphs, since
p=u-+v,

To 1llustrate these ideas with specific numerical values In place
of A, B and W; 1let

A=3, B=)+, w=7r.

Then we wish to graph

i

p =3 cos 7t + 4 sin wt, (5)

Equations (3) and (1) become
u = 3 cos wt, (6)
v = 4 sin wt. | (7)

By drawing the graphs of (6) (Figure 5-lc) and (7) (Figure 5-14d)
on the same set of axes, and by adding the corresponding ordinates
of these graphs at each value of t, we obtain the graph of (5)
shown in Figure 5-l4e. You will notice that certain points on

the graph of p are labeled with their coordinates. These are
‘points which are either easy to find, or which have some special
interest. 9 59
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Vo
4
u |
EY 3-
2 24
] i
= — 5 t t -
' 2
2 < ] 3 t
-14 -1 4
-2 -2
-¥d -3
L + — —> -4+
o I b/ 3 2r tm
' - f : -
o] g- X a %F 2mr tmr
Figure 5-l4c. Graph of Figure 5-4d4. Graph of
us= 3 cos mt. , v =4 sin wt.

The points (0, 3), (0.5, %), (1, -3), (1.5, -4) and (2, 3)
are easy to find since they are the points where elther u = O
or v = 0. The points (0.29, 5) and (1.29, -5) are important
because they represent the first maximum and minimum points on
the graph of p, while (0.79, 0) and (1.79, O) are the first
zeros of p. To find the maximum and minimum points and zeros
of D 1nv01vés the use of tables and hence we shall put off
a discussion of this matter until Section 5-7, although a careful
graphing should produce fairly good approximations to them.
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L [ 1 i 1 .

0 4 4 i 217
Figure 5-4%e. The sum of two pure waves of equal period.

Dashed curve: u = 3 cos wt. Dotted curve: v = 4 sin 7t ,

Full curve: p = 3 cos vt + 4 sin wt; 0 ¢ t { 2. (The scales are
not the same on the two axes; thils distortion 1s introduced in
order to show the detalls more clearly,)
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Exercises 5-4
1. Extend the three curves in Figure 5-lYe to the interval
t] < 2. To the interval |t]| < 3. What do you observe
about the graph of p = 3 cos 7wt + % sin 7t over |t]| £ 37
Is it periodic? What is its period? Give reasons for
your answers.

2. Sketch graphs of each of the following curves over one
complete cycle; and state what the period 1is, and what
the .range is, 1f you can.

a) ¥y = 2 sin 3t.

b) y = -3 sin 2t.

c) y =4 cos (%).

d) ¥y = 3 cos (-x).

e) y =2 sin x -~ cos x.

5-5. Vectors and Rotations

In the next section, we shall develop the important formulas
for sin(x + y) and cos(x + y). Because our development will
rely on certaln properties of plane vectors, we give, in this
section, an informal summary of those properties.

You have probably encountered vectors in your earlier work
in mathematics or science. The physicist uses them to represent
quantities such as displacements, forces, and velocities, which
have both magnitude and direction. Some examples of vector
quantities are the velocity of a train along a track or of the
wind at a given point, the weight of a body (the force of gravity),

. and the displacement'from the origin of a point in the Cartesian
plane,

In a two-dimensional system, it is often convenient to repre-
sent vectors by arrows (which have both a length, representing
magnitude, and a direction) and to use geometrical language.

We shall do this, and we shall restrict ourselves to vectors
all of which start from a single point; in our discussion we
shall take this point to be the origin. If S and T are
vectors, we define the sum S + T to be the vector R represented

[sec. 5-5]
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by the diagonal of the parallelogram which has sides S and T,
‘a8 shown in Figure 5-5&. If T 1is a vector and a is a number,
then we define the product aT to be a vector whose magnitude

iz |a| times that of T and whose direction is the same as T
.Af . a.> 0.and opposite to T if a < 0; in either case, T and .aT
"are collinear. Figure 5-5b illustrates this for a = 2 and a = -2,
It is an experimental fact that these definitions correspond

to physical reality; the net effect of two forces acting at a
'point, for example, 1s that of a single force determined by the
parallelogram law of addition.

\\
>
S
T 7

A

K
S
5 —
Figure 5-5a. The sum of Figure 5-5b, A vector
two vectors. multiplied by a number.

These definitions of vector sum and of multiplication by a
number make it possible to‘éxﬁress all plane vectors from the
origin in terms of two basic vectors. It is convenient to take
as these basic vectors the vector U from the origin to (1, O)
and the vector V from the origin to (0, 1). Then, for any
vector R, there exist.unique numbers u and v such that

R = ulU + vV; X (1)

in fact, the numbers u and Vv are preclsely the coordinates
of the tip of the arrow representing R (Figure 5-5c¢). To
take a specific example, the vector S from the origin to the

[sec. 5-5]
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point P(—%; -%—) can be expressed in terms of the basic vectors
U and V as

1 V3
‘S = —§'U + —2-V,
as shown in Flgure 5-5d.
‘(o)l) P (0")
{u,v)
3y v
Ve R_Q 2
u(1,0)
o1 > / 1y © )
uu 2U
Figure 5-5c¢. A vector in terms Figure 5-5d 3 = lU N Yg‘v
. . - -2 .

of the basic vectors U and V.,

We now introduce the idea of a rotation of the whole plane
about the origin O. Such a rotation carries each vector into
a unique vector, and we may therefore regard it as a function
whose domain and range are sets of vectors. We have so far in
this course considered mostly functions which map numbers onto
numbers, but it will be useful, in this section, to think of
a rotation as a new kind of function which maps vectors into
vectors. '

Any rotation of the sort we are considering is completely
specified by the length x of the arc AP of the unit circle
through which the rotation carries the point A(1, 0). Let f
be the rotation (function) which maps the vector OA (that is,
U) onto the vector OP whose tip P has coordinates (u, v). As
we have seen above, OP can be expressed in terms of the basic
vectors U and V as uU + vV. Hence

£(U) = OP = ul + vV, (2)
204
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‘as plctured in Figure 5-5e. The same rotation f carries the
point B(O, 1) into the point Q(-v, u), as can be shown by con-
gruent'triangles‘(see Figure 5-5e), so we also have

£(V) = 0Q = ~-vU + uv. (3)

(The figure is valid only when 0 < x < g. The result, however,
is true for any real . x; for a more general derivation, see
yExercises 8 and 9.)

B(0,1)

Qlv,v)

uy
Y U Al1,0)

Flzgure 5-5e. The effect of a rotation
on the baslic vectors U and V.

Now suppose that we subject the plane to a second rotation g,
in which points on the unit circle are dlsplaced through an arc
of length y. Since g also is a function, we may regard the
successive applications of the rotations f and g as a com-
posite function gf, as in Section 1-5. From Equation (2) and
thé definition of composition, we have

(gf)(U) = g(£(U)) = g(OP) = g(uvu + vV). (4)
[seé; 5-5]
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(gfXV)

Figure 5-5f.

We must now pay some attention to two important properties
of rotations. First, a rotation does not change the angle
petween two vectors, and collinear vectors will therefore be
rotated into collinear vectors. Second, a rotation does not
change the length of any vector. Now, 1f a 1s.a number (# 0)
and T is a vector, then the vector aT 1is collinear with T.
If - T 1is a rotation, the two stated properties ensure that T
and f(T) have the same length, that aT and f(aT) have the
game length, and that f£(aT) 1s collinear with f(T). We will
therefore get the same vector from T if we first multiply by
a and then rotate, or first rotate and then multiply by a:

f(aT) = af(T). ‘(5)

The same two properties of rotations alsv ensure that a parallelo-
gram will not be distorted by a rotation. Since the addition

of vectors is defined in terms of parallelograms, 1t follows that
rotations preserve sums; that is, if f is a rotation, and if

S and T are vectors, then

£(S + T) = £(S) + £(T). (6)

[sec. 5-5]
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From (5) and (6),
g(ul + vV) = ug(U) + ve(V),
we may therefore rewrite (4) as

(gf)(U) = ug(U) + vg(V). (7)

Exercises 5-5
2 2
Let T be the vector OP where P 1s the point (%5, -50.
Write T 1n the form uU + vV. If T = f£(U), find the arc
on the unlt circle which specifles the rotation f.

In Exercise 1, replace P by
(2) the point (—%, Jé; N
(b) +the point (JZE, —%).

Find £(U) if the rotation f is specified by an arc of the
unlt clrcle which 1s

(a) %g units long.
(b) 2m units long.

Write £(U) in the form wU + vV 1if f corresponds to an
arc of the unlit circle which 1s

(a) %-units long.

.~ (b) % units long.

Do Exercise 4 for an arc %F units long. -

Let f correspond to a rotatlon of % units and g to a
rotation of % units. Show that, since V = f(U), the result
in Exercise 5 1is equivalent to g(V).

If £ and g are any two rotatlons of the plane about te
orlgin, show that fg = gf.

If the rotation ¢ corresponds to an arc x and the rotation
g to an arc g, show that £(V) = (£g)(U) = (gf)(U).

In Exercise 8, put Hi(i"" = uU + vV, and herce show that

£(V) = g(uwU) + g(vV) = ug(U) + vg(V) = u - vU.

[sec. 5-5]
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5-6. The Addition Formulas

We are now ready to bring the circular functions into the
picture. Since f maps the vector. OA onto OP so that
A(1, 0) is carried through an arc x of the unit circle to
P(u, v), it follows from the definitions of Section 5-1 that

u = cos X and v = 8in x.

Hence Equations (2) and (3) of Section 5-5 can be written

£(U)

il

(cos x)U + (sin x)V (1)
and £(v)

(-sin x)U + (cos x)V. (2)

Since, moreover, the rotation g differs from the rotation f
only in that the arc length involved is y instead of x, we
may similarly write

g(v)
and g(v)

il

(cos y)U + (s8in y)V (3)
(-sin'y)U + (cos y)V. (&)

il

Substituting these results in (7) of Section 5-5 gives us

(gf) (U) {cos x) ((cos ¥)U + (sin y)V)
+ (sin x) «-sin ¥)U + (cos y)?)

il

(cos x cos ¥ - sin x sin y)U
+ (sin x cos y + cos x sin y)V. (5)

il

Furthermore, the composite rotation gf can be regarded as a
single rotatian through an arc of length x + ¥y, and we may
therefore write, by analogy with (1),

(g£)(U) = (cos(x + y)) U + (sin(x + y)) V. (6)

We now have, in (5) and (6), two ways of expressing the
vector (gf)(U) in terms of the basic vectors U and V. Since
there is essentially only one such way of expressing any vector,
it follows.that the coefficient of ‘U in (5) must be the same

.~as8 the coeffieient of U in (6), or

T

cos(x + y) = cos x cos y - sin x sin y, (7)

‘and a similar comparison of the coefficients of V 1in the two

268
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expressions yilelds

sin(x + y) = sin x cos y + cos x sin y. (8)

These are the desired addition formulas for the sine and cosine.
We also obtain the subtraction formulas very quickly from
"Equations (7) and (8). Thus . '

cos(x - y) = cos(x + (-y» = cos x cos(-y) - sin x sin(-y). (9)
vSince, however, (Section 5-2, Equations (3))
' cos(-y) = cos y
and sin(-y) = -sin y,

we may write (9) as

cos(Xx - y) = cos x cos ¥y + s8in x sin y. (10)
In the Exercises, you will be asked to show similarly that

sin(x -~ y) = sin x cos y - cos x sin y. (11)

From Formulas (7) and (8) and (10) and (11), it is easy to
derive a large number of familiar trigonometric formulas.

Example. Find cos(x + w) and sin(x + w).
Solution. By (7), with y = m,

cos(x + 7) = cos x cos T - 8in x sin .

Now, cos T = -1 and sin 7w = O. Hence cos(x + ) = -cos X.
Similarly, from (8), sin(x + m) = sin X cos T + cos X sin.T

sin x(-1) + cos x(0)

-8in x.

Exercises 5-6
1. By use of the appropriate sum or difference formula show that

a) cos(g - x) = sin x,

b) sin(% - X) = cos x,
T
c) cos(x + 5) = -sin x,

269
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'd) sin(x + g)

,*3..

10.

11.

cos X,
e) cos(m - x) = -cos X,
f) sin(m - x) = sin x,

g) cos(%} + x) = sin x,
h) sin(%; + x) = -cos %,

1) sin(% + X) = cos(% - x).
Prove that sin(x - y) = sin x cos y - cos x sin y.

Show that formulas (7), (8), and (11) may all be obtained
from formula (10), and, hence, that all of the relationships
mentioned in this section follow from formula (10).

Prove that the function tangent (abbreviated tan) defined by

sin x T
tan: x— S5 % (x;!i2+2n1r)
is periodic, with period w. Why are the values + % + 2nmr

excluded from the domain of the tangent function?

Using the delinition of the function tangent in Exercise U
and the formulas (7), (8), (10), (11), develop formulas for
tan(x + y) and tan(x - y) in terms of tan x and tan V.

Using the results of Exercise 5, develop formulas for
tan(w - x) and tan(m + x). Also show that tan(-x) = -tan x.

Express sin 2x, cos 2x and tan 2x in terms of functions of x.
(Hint: Let ¥y = x in the appropriate formulas.)

Express sin 3x in terms of functions of x. ™ ...,

In Exercise 7 you were asked to express cos 2x in terms of
functions of Xx. One possible result is cos 2x =1 - 2 sin2x.
In this expression substitute x = %-and solve for sin %.
In Erercise 9, cos 2x may also be written as 2 coszx_- 1.
Use this formula to get a formula for cos %.

Using the definitions of the function tan and the results
of Exercises 9 and 10, derive a formula for tan %. This
will be an expression involving radicals, but by rationalizing
[sec. 5-6]
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in succession the numerator and the denominator you can get
two different expressions for tan %, not involving radicals.

n In Section 5-5 we developed the algebra of rotations, and
-in this section we have applied this algebra to derive the
addition formulas for the sine and cosine functions. As we
shall now indicate, there 1s a close parallel between the
algebra of rotations and the algebra of complex numbers.

If two complex numbers are expressed in polar form,Aas are

Z

1 rl(cos x) +1 sin xl)'

and LN

r2(cos Xy + 1 sin x2)

then their product can be foﬁnd by multiplying their absolute
values ry and Y and adding their arguments, Xq and X5t

212, = T Tp cos(x; + x5) + 1 sin(x, + x2)> .

Multiplying any complex number =z by the special complex number
cos X + 1 sin x = 1(cos x + 1 sin x)

is therefore equivalent to leaving the absolute value of 2z
unchanged and adding x to the argument of z. Hence, if we
represent =z by a vector in the complex plane, then multiplying
by cos x + 1 sin x is equivalent to rotating this vector through
an arc X, as in Section 5-5.

Let us replace the vector U of Section,5-5 by the complex
number

1 =cos 0+ 1 sin O.

" Then the product
(cos x + L sin x).-1 = cos x + 1 sin x

represents the vector formerly called f(U) (see Figure 5-6a),
and (gf)(U) becomes

(cos v + 1 sin y)(cos x + 1 sin x)1

((cos X cos y - 5in x sin y) + i(sin x cos y + cos X sin y» 1.
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cos X +isinx

Figure 5-6a. Representation of T = cos X + 1 sin Xx.

If we replace (gf)(U) by

1

(cos(x +y) +1 sin(x + y))-l
we have

cos(x + y) + 1 sin(x + y) = (cos x cos ¥y - sin x sin y)
+ i(sin x cos y + cos x sin ).

By equating real and imaginary parts we obtain the addition
formulas (7) and (8).

The subtraction formulas may be derived equally simply.
Since g'l'is equivalent to rotating through an angle -y, we have
(g'lf)(U) = g']“(f(U)) and therefore
| (cos(x - y) + 1 sin(x - y)>- 1.

Hence

cos(x - y) = cos x cos ¥ + sin x siny

and

sin(x - y) = sin x cos y -~ cos X sin y.

212
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'5-7. Construction and Use of Tables of Circular Functions
It would be difficult to give in a short span an indication

of the enormous variety of ways in which the addition formulas
of Section 5-6, '

cos(x +pB) = cos<cosf -sine sing ' (1)
sin(e« +8) = sinxcosf@ +cosxsing (2)
cos(« -pg ) = cos Kcos@ +sin« sing (3)
sin(x-g) = sinx cos@ -cos«sing | (4)

turn up in mathematics and in the application of mathematics to
the sciences. In this section and in Sections 5-8 and 5-9, we
shall describe some of the more common applications. The first
of these is a table of values of the sine and cosine functions.

Iﬁi@xerciseul of Section 5-6, you used the difference formulas
to show{ﬁﬁat

sin(12r- - X) = cos x
T i
and cos(z - x) = sin x.

These formulas permit the tabulation of sin x and cos X
in a very neat way. If we had a table of cosines for O X £ "2-5,
this would, in effect, give a table of sines in backward
order. For example, from the table cf speclal values in
Section 5-2, we obtain the sample table shown, where y = % - X.

X cos X —Z—-x
T
0] 1 5
T V3 T
[} 2 3
T V2 T
T 2 T
T 1 T
3 2 6
JUR
5 0] 0]
lré_y sin y Yy
[sec. 5-7]
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In this table the values of the cosine are read from the top
down and the values of the sine from the bottom wp. Since it
is a very inefficient use of space to putzso few columns on
a page, the table is usually folded in the middle about the
~value X =y = % and is constructed as in the following sample:

m

X cos X sin x 5 - b4
' N
0 1 0 5
T V3 1 s
) 2 2 3
T V2 V2 T
T 2 2 RS
%% -y sin y cos y y

At the end of the chapter we giva three tables:

I. A table of sin x and cos x for decimal values of

x up to 1.57 (slightly less than %). by S
II. A table of sin %? and cos‘%? in decimal fractions
of % up to 1.00.
TII. A table of sinox, cos®x and tanox, in degrees up'
: to 90°.

(We define sin®: x°—>sin x , with similar definitions for cos®
and tan®. It is usual to write sin x in place of sinx, ete.,
when the context makes it clear what 1s intended. We shall
follow this practice.)

Exercises 5-Ta
1. Why is Table I not folded as are Tables II and III?
2., Find from Table I, sin X and cos X when Xx 1s equal to

a) 0.73 c¢) 1.55 ,

b) -5.17 d) 6.97 (Hint: 2w~ 6.28)
3. From Table I, find x when 0 X < g-and

a) sin x = 0.1099 ¢c) sin x~ 0.6495

b) cos x= 0.9131 2,7-’1 d) cos xw~ 0.5403
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4, From Table II, find sin W+t and cos Wt 1f W= g and

0.31 c) t = 0.62
0.79 d) t = 0.71

it
il

a) t
b) ¢t

it

5. From Table II, find t (interpolating, if necessary),

1f =25 0<t<1and
a) sinWt= 0.827 ¢) sin Wts 0.475
b) cos Wt = 0.905 d) cos Wtws 0.795

6. From Table III, find sin x and cos X (interpolating; if
necessary) when

a) x = 45° c) x = 36.2°
b) x = 73° d) x = 81.5°

7. From Table III, find x when 0 < x < 90° and
a) sin x =~ 0.629 c) sin x= 0.621
b) cos x =~ 0.991 . d) cos xw~ 0.895

Extending the scope of the tables. Table I, at the end of
this chapter, gives values of the circular functions
cos: x—>cos X and 8in: Xx—>sin x only for 0  x < %, but we
can extend 1its scope to the set of all real numbers by using
(a) Equations (1) - (%), (b) our knowledge of the circular
functions of all multiples of g»(see, for example, Table 5-1),
and (c)‘thg fact that any real number can be expressed as the
sum (or difference) of %two numbers of which one is a multiple
of g and the other is in the interval (x: 0 £ x < %]. Similar
remarks apply to Tables II and III. The technlque is best ex-
plained through examples.

Example 1. Find sin 2.
Solution. Since & & 1.57, we write 2 = 1.57 + 0.43,and,
using Equation (2), we then have

sin 2 = sin(1.57 + 0.43)

sin % cos 0.43 + cos % sin 0.43

zsin(% + 0.143)

cos 0.43 = 0.9090.

[sec. 5-7]
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Alternatively, 2 = 3.14 - 1,14

sin 2 ~ sin(m -~ 1,14)

Example 2. Find cos 4,56.
Sclution, Since 4.56 = 3.

cos 4.56 =~ cos(w + 1.42)

"

This technique can be used

~ 7 - 1.14, and therefore

sin 7 cos 1.14 - cos 7 sin 1.14

sin 1.14% ~ 0.9086,

1l

14 + 1. 42~ 7 + 1.42, we have
cos T ¢cos 1.42 - sin 7 sin 1.42

-cos 1.42~ -0.1502.

to simplify expressions of the

form sin (n% + x) and cos(ng-i.x).

Example 3. Simplify cos(%g + x).

Solution. cos (%; + x) =

"

"

coSs %; cos X -~ sin %; sin x

coSs % cos X '~ s8in g-sin X

-sin x.

Example 4. Find cos 0.82mw,

Solution. In this case, 1

t is easier to use Table II.

Since 0.82m = 0.50m + 0.32m, we have

cos O.M21 = cos(% + 0.32m)

T
= COS
cos )

it

it

0.327 - sin-g sin 0.32T

-sin 0.327 = -sin 0.64(g) ~ -0,8u44,

Exercises 5-7b

Using the table that you think most convenient, find

sin 1.73
cos 1.37
sin(-.37)
sin(-.37m)
cos 2.87
cos 1.8m
cos 3.71
sin 135o

00O~ Ul &~ w e

9. cos(-135°)
10. sin 327°

11, cos(—327°)
12, cos 12.47w
13. sin 12.4
*14, cos(sin .3m)
*15, sin(sin .7)

[sec. 5-7]

276



267

5-8. Pure Waves: Frequency, Amplitude and Phase

As we remarked in Section 5-%, the superposition of two
pure waves of the same freguency yilelds a pure wave of the
given frequency. Now we shall be able to prove this result.
In order to be more specific, ipstead of assuming that either
of Equations (1) in Section 5-4 defines a pure wave, let us
say that, by definition, a pure wave will have the form

v = A cos( Wt -~ o), (1)

where A and W are positive and O ¢ o« < 2w. The number o
is called the phase of the pure wave. The sine function now
becomes simply a special case of (1), and def'ines a pure wave
with phase I, .

. y = sinWt = cos(Wt - g). (2)

The phase of a pure wave has a simple interpretation. We will
take the graph of
y = cos Wt (3)

as a standard of reference, and the cycle over the interval
(0t < %;) between two peaks of (3) as the standard cycle.
Now the graph of y = A cos( Wt - u‘) reaches its peak, corre-
sponding to the first peak of its standard cycle, at the point
where Wt -o = 0, that is, at t = %. Since -2’5— is positive,
it 1s clear that the wave (1) reaches 1ts first peak after the
standard wave (3) reaches its first peak, since (3) has a peak
at t = 0. That 1s, the wave (1) lags behind the wave (3) by
an amount %}. Since ‘the period of (3) is %},
to the fraction

this lag amounts

elyjei

oC
2mr

of a period. (Figure 5-8a.) ' We see from (2) that sin&t lags

behind cos &t by a quarter-period. (See Figure 5-4c and d.)
We now wish to test the idea that the sum of two pure

waves which have the same period but differ in amplitude and

phase, is again a pure wave of the same period with some

new amplitude and phase. You will recall that in Section 5-14

[sec. 5-8]
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we sketched the graph of
y =3 cos mt + 4 sin 7t (%)

by adding the ordinates of the graphs of u = 3 cos 7t and

v = 4 gin wt. The EBraph supported this idea. At that time
we also had to leave open the question of the exacf location
of the maximum and minimum points and the zeros of the graph.

Yy = coswt

jyzA cos(wt-u)

~ \\ [A:‘]]
AN

A
/
/
/
/

v

|
|
|
!
|
[
1

Y+

S
+
51

Figure 5-8a. Graphs of two cosine curves.

we'are now in a position to deal with these problems.
Since finding the maximum and minimum points and finding the
zeros involve essentially the same procedure, we shall confine
our attention to the maximum and minimum points.

Our basic problem still is to express

vy =3 cos mt + 4 sin 7t
in the form of
v = A cos( Wt ~ o) (1)

that is, to show that y 1s a pure wave, but in the precess
we shall be able to obtain the exact location of the maximum
and minimum points of the graph of the sum. If we wriie out
(1) in terms of the formula

cos(f - ) = cosBcoscx + 8ingsino (5)
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we obtain
Vv =Acos(Wt -~ x) = A(cos Wt cos o« + sin Wt sine )

or

]

¥y = A cosWt cosox + A sinWt sin«, (6)

In our case, W= 7 and we have

]

¥y
Upon comparing (7) with (4), we note t' -~

A cos T6 cos & + A sin Tt sinec. (7)

Acos ®=3 and A sin<i =1 (8)

then (7) and (4) will be identical. We shall therefore seek
values of A and o which satisfy the Equations (8). To do
this, we may begin by squaring the Equaticns (8) and adding them,
to obtain ’

2 2

o<+A28ino<

9 + 16 = A%(cos® e« 4+ 8inS )

32 4 ¥e - 4° cos

or
2

A™ = 25,
Since A is positive, we have
A= 5, (9)
qu consequently from (8),
cos o« = % and sin X = %. : (10)‘
From Table I '
ocm 0.927. (11)

Now, by using (9) and (11), we may put (4) in the form
" y = 3 cos b + 4 sin 7t ¥ 5 cos(mt - 0.927), (12)

showing that it is a pure wave with amplitude 5, period.2

(as before), and phase 0.927.- Ve note that 2:5L x 0.295

is very clecse to the value 0.29 obtained graphically in Section
5-4, We are also in a position to locate the maximum and

minimum points of our graph. From (12), y will be a maximum when
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cos(mt - 0.927) = 1,
that 1is,
™ - 0.927 = 0

t = 94%31-z 0.295,

and y will be a minimum when

cos(mt - 0.927) = -1,
that 1s,

where, in each case, we have taken the smallest positive value
of ¢t.
We now put the general equation

y =Bcos®t + C sin Wt (13)
in the form (1). If we proceed exactly as before, using (6) and

(13), we find that for specified B and C, A —/B° + ¢® and a
solution of the equations :

B - c .
cos < = F and sin < = + (14)

will determine a unigue o¢ in the interval from O to 2w,
from which the form (1) follows. (See Exercise 3 below. )

Exercises 5-8
1. What is the smallest positive value of t for which the
graph of Equation (4)crosses the t-axis? Compare your result
with the data shown in Figure 5-le.
5. Sketch each of the following graphs over at least two of its
periods. Show the amplitude, period, and phase of each.

a) y =2 cos 3t

b) y=2 cos(gg
¢c) y = 3 cos(-2t)
d) y= -2 sin(%) (Remember that the phase is defined to

be positive.)
[sec. 5-8]
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i

e) y = -2 sin(2t + m)

£) ¥

Express each of the foliowing equations in the form
¥y = A cos(mt - <) for some appropriate real numbers
A and o,

5 cos(3t + %)

i

a) y=1Usinwt - 3 cos 7t
b) ¥y = -4 sin 7t + 3 cos 7t
c) y=-4sinmt - 3 cos 7t
d) y=3sin7mt + 4 cos 7t
e) y=3sinwt - 4 cos 7t

Without actually computing the value of o<, show on a
diagram how A and o can be determined from the coeffi-
clents B and C of cos&Wt and ¢in Wt if each of the
followlng expresslons of the form B cos @t + C sin Wt is
made equal to A cos(Wwt - ). Compute o< , and find the
maximum and minimum values of each expression, and its
period. Give reasons for your answers.

a) 3'sin 2t + 4 cos 2%

b) 2 sin 3t - 3 cos 3%

c) '-sin(%) + cos(%)
Verify that the superposition of any two pure waves
A cos(Wt -=x ) and B cos(Wt - ) is a pure wave of the

same squency, that is, that there exist real values C
and¥ such that

Acos(Wt - ) + B cos(Wt -ﬁ ) = Ccos(Wt —zf ).

Solve for all values of ¢t:
a) 3 coswmt+ U sinwt =25
" (Method: From equation (12) we see that this equation
1s equivalent to 5 cos(wmt - 0.927) = 2.5.
For every solution, we haVe'

cos(mt - 0.927) = 0.5,
~— which 1s satisfled only if the argument of the cosine

is % + 2nT or -%'+ 2nr. It follows that the equation
is satisfied for all values of t such that

[secf 5f8]
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T™ - 0.927 = i% + onT or such that
. 0.927 . 1

Question: What is the smallest positive value of
£t for which equation (a) is satisfied?)

b) 3 cosmt + 4 sinTt =25

¢) s8in 2t - cos 2t = 1.

d) 4 cos 7t - 3 sin Tt = O

e) LcosTt +3sinwTt=1

*7, Show that any wave of the form
y=BCOS(/Ut-IB ): (/u?{o):
can be written in the form (1), that is,
y = A cos(Wt - o< )

where A 1is non-negative, @ positive and O { °¢¢ < 2w.

- 2-9. Identities
Tn the analysis of general periodic motions the product of
two circular functions often appears, and the expression of a
product as the sum or difference of two circular functions is
quite useful. Such expressions can be derived by taking the
gums and differences of the circular functions of x + y and
X - y. In fact we have

cos X coS ¥ =_%[cos(x +y) + cos(x - ¥)] (1)
sin x sin y = -%{cos(x +y) - cos(x - y)] (2)
sin x cos y = %[sin(x +y) + sin(x - y)1. (3)

One interesting fact about these product formulas is that
they can be used to obtain formulas expressing sums as products.
We merely set x + y =x &and x - y = 1n Equations (1), (2)

oK _ .
and (3). Observing that x = -——i%fi— and y = _ESETEL— we have
282
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cos X + cosf = 2 cos ocg'e cos océﬂ (%)
cos o< - cos@ = -2 sin —= ;ﬁ sin océﬂ (5)
sin X + sing = 2 sin x Z B_ cos d; Il (6)

Formulas (1), (2), (3), and (%), (5), (6) need not he
memorized. The important thing is to know how to derive them.
(See Exercise (1) below.)

It 1s often useful to have some expression involving circular
functions in more than one form. That 1s, we sometimes wish to
replace one expression by another expression to which it is
equal for all values of the variable for which both expressions
are defined. A statement of this kind of relationship between
two expressions 1s called an identity. For examplg,

sin2x =1 - coszx

is an identity, because it is true for all real x. To show
that a glven equation is an identity, we try to transform one
side into the other or both sides into identical expressions.
As an example, consider the equation

c0539 + sinae cOS © = cos e,

We note that by factoring cos © from the termis on the left,

we have

2

cos ©(cos“ e + sinze) = cos e,

2 2

and since cos“ € + sin“ & = 1, we have

cos © = cos 6,

and the identity 1is established,

Exercises 5-9
1. Derive formulas (1), (2) and (3) from the appropcriate
formulas in Section 5-6, '
2. In formulas (1), (2) and (3) let x = mex and y = nK thus
deriving formulas for
a) cos m& cos nex,

[seec. 5-9]
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b) sin moc sin nex,

c) sin moc cos nex,

Using (6) derive a formula for sin« - 8ing

4. Using any of the formulas (%), (5), (6) derive a formula
for cos x -~ sin xl.

5. Using any of the formulas develcped in this chapter, find:

w

a) sin 'ilr2—-5 (Hint: 17—% =T- -76r)
b) cos %—72[ : |

c¢) tan %—721
d) cos 5 -

6. Using any of the formulas developed in this chapter, show
that for all values where the functions are defined the
following are identities: -

a) cos’o - sin'e = cos 26;
b) cosZ et - sinec = 1 - 2 sin2oc;
c) 1 _ 1= tan®ec :
cos“ex
d) cos(oc - m) = cos{ e+ T);
1 sin ©

e) tan 5© = T Gos 87 (see Exercise 5-6, 11.)

21 _'tane+sine.
f) cos” 59 == tazme

g) 1 + sino = (sin %—,oc + cos !“2-“)2;

h) (sine© + cose)2 =1 + 8in 2©;

1) singe = —=tang
1 + tan™©
') 1+ cos® sine 2 .
J sine 1 + cose _ sine’
k) sin 2 cos 2 _ 1 R
sin o =~ cos o  cosX ’ _
7. 1In Exercise 7 of Section 5-6 you derived the formula:
cos 2x = 2 cosx - 1.
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a) Solve this for coszx thus expressing coszx as a linear
function of cos 2x. .

b) Consider cosux as (coszx)2 and by the same methods as
used in (a) show that

cosux = %(3 + U cos 2x + cos Ux).

8. Using the formula cos 2x = 1 -~ 2 8inx derive the formula
for sin x: :

sinux = %(3 - 4 cos 2x + cos Ux).

9. ©Show that the following are identities: that is, they are
true for all values for which the functions are defined.
a) sin 26 cose - cos 2©sine = sine.
b) sin(x - y) cos z + sin(y - z) cos x = sin(x - z) cos y.

¢) sin 3x sin 2x = %(cos X -~ cos 5x).

_cos 38

d) cos © - Sinetan 29 = m.
3 1

e) sin“© = (3 sine - sin 3e ).

f) sin x + sin 2x + sin 3x = sin 2x(2 cos x + 1).
(1+tanx)2_l+sin2x

4]
~

1l - tan x = 1 -~ sin 2x°

5-10. Tangents at x = O to the Graphs of y = sin x

and y = cos X \
a) The tangent T to the ¢ h G y T
of sin: x—»sin x at P(0,0) turn. out
to be the line y = x, as we shall show.
(See Figure 5-10a.) We shall at first >
consider only points on G which are to
the right of P, that 1s, we shall take
x > 0. We shall also assume that x < %§
this will do no harm, since we are con- Figure 5-10a. Graph
cerned only with the shape of G near P. of y=sinx andy = x
In Figure 5-10Db, which shows a portion of the unit cirecle,
BC 1s perpendicular tc OA and hence 1s shorter than the arc BA.

[sec. 5-10]
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But if the length of arc BA is
Ay D x, then the lengths of CB and
oC are sin x and cos X,
respectively, and therefore

sin x < X. (1)

This means that, in Figure 540a,
G 1lles below the line y = x, to

- 8 sin %
205 X the right of P, as;we nave in-
dicated.
- In Figure 5-10b, AD has been
( X drawn perpendicular to OA at A,
meeting (B extended at D. By
sin x similar triangles,
cos x . AD _ CB
0 c A u ' . OA — 0OC’
and therefore
Figure 5-10b. Part of sin x
the unit circle. AD = c;s X

Now, the area of triangle OAD is

3P

1(oa) (aD)
the area of sector O0OAB 1s

H12(x) = 3%,

L

0]

and the area of triangle OAD 1s greater than the area of
sector O0AB, or

1 sin x 1l
Toos x> 2

Because, cos x 1s positive for 0 < x < %,
sin x > X cos X. _ (2)
Since - 1 > cos x
and, égain, cos x 1is ppsitive, we have by multiplication
cos X > 0052x =1 =~ sinzx.

Now, from (1), sin°x < %2 for 0 < x < %u
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so.that cos x >1 - x°. (3)
It now follows from (2) that
sin x > (1 - x2)x,
and therefore, for zll x2 <€ ,
sin x > (1 - € )x. (Hj

Combining this result with (1), we conclude that, to the right of
P, G lies between the lines y =x and y = (1 - € )x for x
emall enough. (See Figure 5-10¢). Since G 1is symmetric with
respect to the origin, it lies between the same lines on a corre-
sponding interval to the left of P. "Therefcre, the line y = x
is the best linear approximation to G near P.

y
y .
y=x
y=(i-€)x y=!
P X
0 X

Figure 5-10c. Linear Figure 5-10d. Linear
approximations to y = sin x. ‘approximations to y = cos x.

b) Let us now turn to the graph of cos: x—>cos X near
P(0,1), the point of intersection with thewy;éiis} ‘Since the
graph 1s symmetric with respect to the y-axils, it 1s suificient
ﬂo consider positive values of x. (See Figure 5-10d).
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We know, for 0O < x < g, that
cos x < 1;
hence G 1lics below the 1line y = 1. By (3), moreover,

cos x > 1 - x7,

that is cos x > 1 + (-x)x,
or cos X >1 - €Xx
for 0<x<KE .

Since € can be chosen arbitrarily small, it follows that the
tanzent T 1s necessarily the line ¥y = 1.

5-11. Tangent to the Graph of Sine or Cosine at a General Point
To £ind an equation of the tangents to the graphs of

x-—>sin x and of Xx-—»cos x at a point where X = h, we must

use the addition formulas. We write X =h + (x - h). Then
s3infh + (x - h)]

It

sin h cos(x - h) + cos h sin(x - h),

cos[h + (x - h)] = cos h cos(x - h) - sin h sin(x - h).

We now replace cos(x - h) and sin(x - h) by their best linear
approximations, namely by 1 and by % ~ h, respectively, and
obtaln for the required tangent lines '

sin h + (cos h)(x - h) (1)

¥y
and cos h -~ (sin h)(x - h). (2)

y

According to (1), the slope of the line tangent at (h, sin h)
to the graph of the functicn sin: x—>s8in x 1s cos h, Hence
the associated slope function 1s cos: X—>cos X or

sin' = cos.

Similarly, from (2), the slope of the line tangent at (h, cos h)
to the graph of the function cos i8 =-sin h. Hence

cos! = ~s8in.
288
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Exercises 5-11
1. Write an equation of the line tangent to y
the point where

sin x at

]

a) x = %

b)' X

]

b
-5
1.

,C) X =

]

2. Write an equation of the line tangent to y
the point where

cos X at

a) x = %
b) x = 2.

3. What is the error involved in using x as an. approximation to
sin x when
a) x=20 c) x
b) x = .1 d) x =

n
w P
)

5-12. Analysis of General Waves

In Sections 5-4 and 5-8 we considered the superposition of
two puré waves of the same period (oryffequency). We found
that the superposition of such waves is again a pure wave of
the given Irequency. Next we ask what conclusion we can draw
about the superposition of two waves with different periods.
Suppose, for example, that we had to deal with

¥y = 2 s8in 3x - 3 cos 2x.

Unfortunately, sin 3x ar.d cos 2x have different fundamental
periods, %} and m, so they cannot be combined into a single
term, the way we could if we had only cos 3x and sin 3x,

say, or cos 2x and sin 2x. However, any multiple of a
period can be looked upon as a period. That is, we can consider
¥y = 2 sin 3x as having a period of %F, %g, ar, %F, or any other
integral multiple of %F. Similarly, y = 3 cos 2x can be
considered as having a period of w, 2m, 37, etec. Now comparing
these values, we note that both expressions can be considered

[sec. 5-12]
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as having a period of 2w, and hence their difference will also
have a period of 2w. In effect, we simply find the least
common multiple of the perlods of two dissimilar expressions

of this form and we have the perlod of their sum or difference.
There is 1ittle else that we can conclude in general. About
all we can do to simplify matters is to sketch separately the
graphs of

u=2 8in 3x, v = 3 cos 2x,

and y = u - v. The result is shown by the three curves 1n
Figure 5-12a,

Ay,uv
/‘\\
/
/
AN
o /%
/
!
/
/
S S —
/
/

Figure 5-12a. u = 2 sin 3x, v = 3 cos 2x
y=ua~V=28in 3x - 3 cos 2x,

0 x(g 2. '
299
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The superposition of sine and cosine waves of different
periods can produce quite complicated curves. .In fact, with
only slight restrictions, any periodit function can be approxi-
mated arbitrarily closely as a sum of a finite number of 8sines
and cosines. The subject of harmonic analysis or Fourier
series 1s concerned with approximating periodic functions in
this way. The principal theorem, first stated by Fourier, is
that a function f of period a can be approximated arbitrarily
closely by sines and cosines for each of which some multiple
of the fundamental period is a. Specifically,

2mX 27X
£(x) ~ Ay + (B cos == + B sin =)

Y Yarx
+ (A, cos == + B, sin ——=)

Foeenn . (1)

2nTX anmx
+ (A, cos == 4 B, cos =3 )»

and the more terms we use, the better is our approximation.
As an example, consider the function depilcted in Figure 5-12b.
This function 1s defined on the interval -m { x < 7 by

[ 0, if x = -7
-1, if -7 <x<O

£(x) =\ o, ir X =0 (2)

1, if 'o <X <.

“~

For all other values of x we define f(x) by the periodicity
condlition '

f(x + 2m) = £(x). e

T

This function has a particularly simple approximation as a
series of the form (1), namely,

u(sin X sin 3x + sin 5x +

-

m

'sin(2n - 1)x
1 3 5 e o on - 1 ) - (3)

291
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Figure 5-12b. Graph of periodic function.
0, 1if x = -7

1, if O0<x <7

x—>f(x) = 0, if x =0 ; f(x + 2r) = £(x).

-1, if -mr<x<O0

4, sin x sin 3x , sin 5x
Fourier series: F( T + = + % + .

sin(2n - 1)x
.+ An T ) .

. As an exercise, you may graph the successive approximations
to f(x) by taking one, then two, then three terms of the seriles,
and see how the successive graphs approach the graph of y = f(x).
The problem of finding the series (1) for.any given periodic
" function f is taken up in calculus. '

-

Exercises 5-12

1. Sketch graphs, for |x| < 7, for each of the followlng curves.

a) 'y = % sin x. 92972
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4 sin i sin 3x
r( + 3 ).

¢) y = %(siix X . siré 3x sin5 Sx)'

2. a) Find the periods of each of the successive terms of
the series (3), namely,

1 X
sinx,srgS,sirz_‘Sx,

b) What terms of the general series (1) are missing? From
the symmetry properties of the function f defined by
(2) can you see a reason for the absence of certain terms?

5-13. Inverse Circular Functions and Trigonometric Equations

We have now reached the point in our study of the circular
functions where we might well ask if there exist inverse functions
for them. The necessary and sufficient condition developed in
Section 4-9 for a function f +to have an inverse is that it be
one-to-one. 1In other words for every 2 different numbers Xy
and X5 in the domain the values of the function must be different.
That is, if X, and X, are in the domain of f, and X4 # X5
then f(x;) # £(x,). It is obvious that this condition is not
satisfied for sine, cosine, and tangent since these functions
are periodic. For example we know that: sin 0 = sin 27,
cos %v: cos %l, and tan g-: tan %FU etec. It follows that there
can be no inverse functions for sine, cosine or tangent.

Suppose, however, we restrict the domain of sin to

{x: _12r_ < x g -725}.
Since sin x; < sin X, 1f -5 < %Xy < X, < 7 1t follows that the
sine function, thus restricted, is strictly increasing and by
Corollary 4-2-1 therefore has an inverse which we call sin~1,
(See Figures 5-13a and 5-13b,)

By imposing different restrictions on the domain of the sine
function (for example, by choosing as the domain the set of real
numbers x such that g-g X g\%g? we may again obtain a one-to-one
function which has an inverse. "'However, the function x-—>sin x,
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where -% <x S_g) gives rise to what is called the principal
" 4nverse sine function and when we speak of the inverse sine 1t

is this one that we mean.
‘ b4

I
2

h

1
i
x

Nl:l s
1
o

W E|

Figure 5-13a. Graph of Figure 5-13b. Graph of
y = sin x,'-g <x < %- y = sin'lx,bfl < x < 1.
Fortunately there is universal agreement amoné matheméticians
on the definition that we have glven.
In like manner if we sultably restrict the domain of cosine,
we obtain a function which.1ls one-to-one and therefore has &an
inverse. Again there are different possibilities and we choose

the restriction 0 < x £ 7, and call the inverse, cos”
The domaln of both sin~! and cos™! is the interval [-1, +1]

but the ranges are different; that of sin‘l being the interval
[-L, I] wnile that of cos~L is the interval [0, w].

Example 1. Find sin™! 0.5. -
Solution. We know that sin[sin”! 0.5] = 0.5. We want that
= 0050

number in the restricted regilon —g-g;x g_% such that sin x

It is of course %u

294
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Example 2. Find cos™1(-0.4).

Solution. cos(cos"l(-o.u)) = -0.4. We want the number x,
0 x m, such that cos x = -0.4, Using Table I we find that
x'= 1.98.

Example 3.~ Find sin_l(sin T).

_ Solution. You might be tempted to say =7 but you should
note that sin m = O hence sin'l(Sin T) = sin"! 0 = 0. What
this example clearly shows 1g that sin‘l and sin are not inverse
functions unless the domain of sin is restricted to -g-g_x g_g

as we required to begin with.

Example 4. Find cos(sin'l(ﬁég)).
Solution. We find that sin—l(légb =‘~§. Since cos(-%) = +0.5,
cos(sin'l(ié;)) = +0.5.

To consider the problem of finding an inverse of the tangent
function we must determine if there 1s a restricted domain where
it is a strictly increasing or strictly decreasing function.

Now the tangent is defined as follows:

sin x

tan: x—» cos x °

Since division by O is not defined, the domain of tan excludes
all zeros of cos; these are the odd multiples of %.

Because the functions sin and cos have period 2w, it
follows that this is also a period of tan, but, as we shall
‘see, it is not the fundamental period. If a is any peridd
of tan, then it must be true, for all x in the domain of tan,
that

tan(x + a) = tan x,

- or, using the definition of tan,

sin(x + a) _ .sin x
cos(x + a) ~ cos X’

‘Clearing of fractlions and rearranging, we have

"sin(x + a) cos x -~ cos(x + a) sin x = O. (1)
295
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The left-hand member of (1) is precisely Equation (4) of

Section 5-7, with o« = x + a and @= X; hence (1) becomes
sin((x + a) - x) = 0,

or sin a = O.

Hence a may be any multiple of 1w, and the gsmallest positive
one of these, and therefore the fundamental period of tan, 1s
T 1tself.

We wish now to show that tan is a strictly increasing func-
tion over the interval. {x: -§-< x < E}' First of all, over the
non-negative portion of this interval, namely {x: O £ x< g&,
sin is increasing and cos 1s decreasing, that is, if

T
0<% < Xp< 3
then sin Xq < sin Xn and cos Xq > cos X5.

sin x1 sin X5 sin X5

H = =
ence tan Xy = 353 X, S Cos x; - ¢o8 X

and tan is therefore'strictly increasing over this interval.

But tan(-x) = %%2%{%%-: :%%%-§ = ~tan x,

which shows that the graph of tan is symmetric with respect to
the origin. Hence we conclude that tan 1s also strictly increas-
ing over {x: < x < O} and therefore over the entire interval
{x: -— < x < —] Tt follows from Corollary 4-2-1 that, over
this interval tan has an inverse tan 1. We can draw the graph
of y = tan x 1n this region by considering a table of values
and the behavior of sin x and cos Xx.

295
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sin x
X sin x cos X tan X = TR
-r/2 -1 o} undefined
-r/3 ~0.87 0.5 -1.7
=1/4 -0.71 0.71 -1
-r/6 -0.5 ' . 0.87 -0.58
0 o) 1 o)
/6 0.5 0.87 0.58
/4 0.71 0.71 1
’v/h""' 0.87 7 0.5 1.7
/2 1 0] undefined
| y |
I 24 I
| I
| I
| I
| |
; o
} | En |
| I
| |
| |
T !
N:,ér.l -1 o) ] .gLI X
| |
|
I |
| |
! -1 |
1 I
| I
' |
| .
I 27 I.
Figure 5-13c. Graph of y = tan x,
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The graph of y = tan'l x 1s found by reflecting the graph
of y = tan x in the line Yy = X.

t
|
]
|
|
|
]
]
|
|
|
[
|
]
|
nl)

Figure 5-13d. Graph of y = tan "X,
Iy<

The inverse trigonometric functions will be very useful if
-you study the integral calculus later on. They can also be used
to express the solutions to many trigonometric equations, much
as radicals can be used to express the solutions to many algebralc
equations.

Trigonometric Equations. We have solved some trigonometric

equations before. " We shall here do a few more. In solving an
equation we are as always looking for the set of all those numbers
which make the given statement true.
-Example 5 Solve  sin x = %u
Solution. One number in the solution set 1s sin” -1 0.5 which
w

we know is 5 Are there any others? Because the sine is periodic
with period 2m we know that all numbers of the form 6 + 2nmw

‘ [sec. 5;131*
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belong to the solution set. Now in the region from -g to %;
the sine is a strictly increasing one-to-one function and

thus can take on each value in its range only once, but from
r to—gé it is strictly decreasing and again one-to-cne so it

takes ‘on every value once more. We know that sin(m - x) = sin x

and therefore 7 - 6 or %; is the only other number in the interval

x: O g_x < 27} which satisfies the equation. The complete =~
solution set of possible values then consists of

% + 2n7 and %? + 2nr.

Testing in the original equation, we find that they all check.
Example 6. Solve sin x + cos x = 1.
Solution. 3in X + cos x = 1

sih x =1 - cos X

Squaring, substituting for sihzx its value in terms of cosax,
collecting and factoring, we get

1l - cos x 0 or 2 cos x = 0,

Hence
cos X =1 or cos X =0

Using the periodicity we then get

+ 2nm or -E-+ 2nmw.

X =04+ 2nmr Or X = 5

nojs

These are possible solutions of the original equation but
we must test them to be sure.

sin 2nT + cos 2nT = 0 + 1 =1 Check.
sin(g-+ 2nm) + cos(g +2nr) =1+ 0=1 Check.
sin(-g-+ onrw) + cos(-g-+ onr) = -1 + 0 # 1. Fails %o, check.

- Therefore the solution set 1s {enm, % + 2nw}.

" Example 7. Solve 6 cost + 5 s8in x = O,
Solution. We substitute coszx =1 - sin2x to get an

[sec. 5-13]
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equation in sin x.
6(1 - sinzx).+ 5 sin x

2x 4+ 5 s8in x

6 -~ 6 sin
6sin2x—551nx-6

i
Nw o o o o

(3 sin x + 2)(2 sin x - 3)

sin x = ‘%‘ or sin x

But % is not in the range of sine so there are no values of X

which satisfy the second equation. The first equation ylelds

one number: x = sin'l(-g) and the complete solution set is

[sin'l(-g) + 2nw, T - sin-l(-g) + 2nw}. Testing we find that
these all check. g

Exercises 5-13
1. Skétch the graph of y = cos-lx, indicating clearly the
domain and range of the function.
2. Evaluate

a) sin-l(—%) c) tan‘l(ﬁ/§)
b) cos’lé) d) cos™t 1 - sin~1(-1)
- 3. Find: ’
a) sin(cos™t 0.73); ¢) sinfcos™ 2 + s_in"'l(--%)];
bs cos(sin'l(-0.47)); d) sin[2 cos™t T%].
-1 2 ’

4, a) show that sin(cos = cos(siri"'1 %J.

3
b) Is it true that for all x, sin(cos'lx) = cos(sin’lx)?
5. Show that sin(tan'lx) = =0, Vhy is the sign + rather

AR x2 -

than - or +?
6. Express in terms of x:

- : -1
a) sin(2 tan 1x); ¢) tan(cos™x);
b) tan(2 tan=1x); ‘@) sin[sin~lx & cos~Ix].
' . [sec. 5-13]
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In the solution of the following equations be sure that you have
(a) not lost any true solutions or, (b) introduced any numbers
‘as solutions which do not satisfy the original equations."
7. Solve for x: ‘

a) sin x + cos x = O; c) 3 tan x /3= o0

b) 4 cos®x - 1 = O; a) 4 - =0,

8. Solve for x:
a) 2 cos x - sin x = 1; ¢) tan x = EE%’E .
b) 9 cosx + 6 cos x = 8; d) cos 2x - 1 = sin x.

9. Solve for x:

1 1

a) 2 sin""x= %; c) 2 sin""2x = 3;

b) sin 2x = cos(m - X); d) 3 sin 2x = 2,

#10, It sometimes happens that you want to solve an equation of
the form x = tan x or x 2% = 2, or x + 28ilnx = 0. No
methods we have developed so far seem to do this. However,
our present knoWiédge of graphing functions enables us to
get at least approximate solutions of these equations,

We put the given equation in the form

£(x) = g(x)
where f and g are functions whose graphs are familiar.
The points of intersection of the graphs will give values
of x whlch satlsfy the original equation.
a) Solve: Xx = tan Xx.

b) Solve: x.2% =2 by first setting * = % and graphing
y = 2* and y = %. '
c) Solve: x + 2 sin x = O.
1

d) Solve: x = sin "x.
e) Solve: sin x = e X,
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5-14, Summary of Chapter 5

We define the circular functions cos and sin as follows:
if the points P(u, v) and A(1l, 0) are on the unit circle,
and if the counterclockwise arc AP is x units long, then
u=c¢608 X and v = s8in X.

A function f 1is periodic, with period &, if, for each
x in the domain of f, x + a 1s also in the domain of £,
and f(x + a) = £(x). The smallest positive .  .ch satisfies
this relation is the fundamental period of f. The fundamental
period of both cos and sin 1s 2w,

We define tan: x——>zi2 i, with fundamental period .

Radian and degree measure of angles are defined. They are
related by the formula w radlans = 180°.

We summarize some of the properties of a class of plane
vectors and define a class of functions from vectors to vectors,
called rotations. These functions are used to derive the formulas

sin(x + y) = sin X cos y + cos X sin ¥y

cos(x + y) = cos x cos y F sin x sin y.

A pure wave is defined to have the form y = A cos(Wt - e ),
A>0, w>0, 0 o< 2r., The number « 1s the phase of the
wave; a Sine wave has phase %u The sum of two waves of a glven
period is a wave of the same period; in particular, if u =B cos Wt
and v = C sinWt, then u + v = A cos(Wt - o ), where

A ='\/B2 + C2, cos X = %, and sin K = -g-

The sum of two waves of commensurable periods is a wave whose
fundamental period is the least common multiple of their funda-
mental periods. A very general class of periodic functions can
be approximated with arbitrary accuracy by a finite sum of cosines
and sines.

The slope functions associated with cos and sin are,
respectively, -sin and cos: cos' = -sin, sin' = cos.

JuU2
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Miscellaneous Exercises
Determine whether each of the following functions is periodic;
if a function is periodic, determine its fundamental period.
a) y = |sin x]|.

b) ¥ = x - [x], where [x] is the greatest integer n such
that n ¢ x.
¢) ¥ =X sin x.

it

d) y = s1in°x.
e) y= sin(xe).
sin X + 2 cos X
f)y"esinx+cosx‘
g) v = sin x + |sin x|.
*h) y = sin x + sin(v2x) )

Consider the function f: x—>f(x) whose domain is the set
~of positive integers and for which f(x) 1is the integer in
the x-th decimal place in the decimal expansion of ;10.

What is the range of f? 1Is f periodic? If so, what is

its fundamental period? Find £(97).

Given a function f:x—>f(x), with the properties
f(x + 2) = £(x), f£(-x) = -f(x), and f(%—) = 3, evaluate the
following:

a) £(2)

v) (L)

¢) £(9) + £(-7) |
Change the following angles to degrees:
a) 22

== radilans

7

b) % radian

Change the following angles to radlans:
a) 87° c) gdegrees
b) % degrees
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10.

*12.

What 1s the area of a sector with perimeter ¢ and central
angle k°?

Find the fundamental perlod, amplitude, and range of each
of the following curves. Sketch the curve over one cycle.

a) y = 2 sin 3x.
b) ¥y = -3 sin 2mx.

X
c) y = 2 cos B
d) y = 6 sin x cos - '
e) Y ='\/~— ~ ' ' 2X.

Determine A, B, and C 8o that the functlon
f: x—>3 cos(2mx + %) can be described as
f: x—sA sin(Bx + C).

If a condenser with a capacitance of € farads and containing
a charge of Qo coulombs 1s placed in.serles with a coil of
negligible reslstance and an inductance of L henrys, the
charge Q on the condenser t seconds later 1s given by

_ t T
Q = Qo SiH(m + 2-).
If L = 0. henry, and C = 10"~ farad, find
a) the “undamental frequency of this circui
b) Uhe time t, when Q= O for the first TUlme;
¢) thacsime t, when Q = 0.5 Qy for the fI! .x time;

1
d) th: time t, when Q= 0.5 Q, for the se¢ ond time.

Show that
3x . COS X - cOs 2x
sin 2x - sin x

for all values of X for which tan %? 1s defined.

tan

Sketch the graphs of the followilng:

a) cos x + lcos x|.

b) |sin x| = sin 2x.

Prove the following: (Hint: the formula for sinix + y) 1is
needed. )

a) |sinx - cos x| < V2. b) |¥/3 sin x + cos x| £ 2.
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Find addition formulas for the following functions; that is,
express f(x + y) in terms of f(x) and f(y).
a) f: x—>f(x) = 2x + 3.
ox + 3 (Hint: what is x in

b) f: x—>f(x) = S——T. terms of f£(x)?)

c) f: x—>2(cos x + 1 sin x).
Is there an x between O and 2w such that
sin(cos x) = cos(sin x)?

Sketch the graphs of the following, grouping together those
with the same graphs.

a) y = sin x.

b) ¥y =41 - cos®x .
c) y = |sin x|.

d) y2 = sinx.

e) y2 =1 - cos .

£) y = V/l - cos

g) y°=il-cgs X

h) Y=2Singgos%
1) y = 2|sin §| cos 3.
J) y=2sin3 cos 3
k) y = 2|sin gwmos %l

1) Y2 = U sinzg Qor® }23

.3.05
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Table I

Values of sin x and cos x for O ¢ x ¢ 1.57.

X sin x cos X X sin x cos X
« 00 . 0000 1.0000 40 .3894 .9211
.01 .0100 1.0000 A1 . 3986 9171
y .02 »0200 .9998 Ao L4078 .9131
.03 .0300 .9996 .43 4169 .9090
.Olt .0400 .9992 Ry 4259 .9048
.05 .0500 .9988 A5 4350 .9004
.06 .0600 .9982 A6 4439 .8961
.0 .0699 .9976 A7 - 4529 .8916
.0 .0799 .9968 .48 4618 .8870
.09 .0899 .9960 .49 4706 .8823
.10 .0998 .9950 .50 L4794 8776
.11 .1098 .9940 .51 . 4882 8727
.12 .1197 .9928 .52 .4969 .8678
.13 .1296 .9916 .53 .5055 .8628
.14 .1395 .9902 .54 .5141 8577
15 .1494 .9888 .55 5227 .8525
.16 .1593 .9872 .56 5312 8473
17 .1692 .9856 .57 .5396 .8419
.18 .1790 .9838 - .58 .5480 .8365
.19 .1889 .9820 .59 .5564 .8309
.20 .1987 .9801 .60 .5646 .8253
.21 .2085 .9780 .61 5729 .8196
.22 .2182 .9759 .62 .5810 .8139
.23 . 2280 9737 .63 .5891 .8080
2% .2377 .9713 L, 64 5972 .8021
.25 L247h .9689 .65 .6052 .7961
.26 .2571 .9664 .66 .6131 .7900
27 . 2667 .9638 .67 .6210 .7838
.28 L2764 .9611 .68 .6288 7776
.29 . 2860 .9582 .69 .6365 JT712
.30 . .2955 .9553 .70 6442 . 7648
.31 .3051 .9523 ral .6518 . .T584 .
.32 . 3146 9492 .72 .6594 .7518
.33 .3240 .9460 .73 .6669 .T452
.34 .3335 .9428 T4 6743 .7385
.35 . 3429 .9394 .75 .6816 L7317
.36 .3523 .9359 .76 .6889 L7248
.37 . 3616 .9323 7 .6961 7179
.39 .3802 .9249 .79 L7104 .703
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Table I - cont.

14 .9086 L4176 .54 .9995 .0308
.55 .9998 .0208

.56 -9999 .0108
.57 1.0000 .0008

.15 .9128 L1085
cl6 09168 03993
.17 .9208 .3902
.18 .9246 . 3809
.19 .9284 3717

X sin x cos X X sin x cos X
.80 Naket .6967 1.7 .9320 . 3624
.81 T243 .6895 1.21 .9356 «3530
.82 L7311 .§822 1.22 .9391 .3436
.83 .T379 .ozug 1.23 .9425. .3342
.84 LTUU6 .6675 1.24 .9458 .3248
.85 .7513 . 6600 1.25 .9490 .3153
.86 .7578 .6524 1.26 .9521 . 3058
.87 L7643 .64148 1.27 .9551 .2963
.88 .T707 .6372 1.28 .9580 .0867
.89 ST7T7L .6294 1.29 .9608 2771
.90 .7833 .6216 1.30  .9636 .2675
91 .7895 .6137 1.31 .9662 .2579
.92 7956 .6058 1.32 .9687 .2482
.93 .8016 5978 | 1.33 9711 .2385
.ok .8076 .5898 - 1.34 9735 .2288
.95 8134 .5817 1.35 9757 .2190
'90 08192 ‘5735 1136 '9779 c2092
.97 .8249 .5653 1.37 .9799 ©.1994
.98 .8305 .5570 1.38 .9819 .1896
.99 .8360 5487 1.39 .9837 .1798
1.00 .8415 .5403 1.40 .9854 .1700
1.01 .8468 .5319 1.5 .9871 .160%
1.02 .8521 .5234 1.42 .9887 .1502
1.03 .8573 .5148 1.43 .9901 .1403
1.0% .8624 .5062 1.44 .9915 .1304
1.05 .8674 4976 1.45 .9927 .1205
1.06 8724 . 4889 1.46 .9939 .1106
1.07 8772 .4801 1.47 .9949 .1006
1.09 .8866 4625 1.49 .9967 .0807
+1.10 .8912 4536 1.50 <9975 .0707
1.11 .8957 Ayt 1.51 .9982 .0608
1.12 .9001 4357 1.52 .9987 .0508
1.13 9044 L4267 1.53 .9992 .0ko8
1 1
1 1
1 1
1 1
1
1
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Table II

Tables of sin and cos in decimal fractions of %
X sin x % cos x %
.00 .000 1.000 .00
.01 .016 1.000 .99
.02 .031 1.000 .08
.03 .0u8 999 T
.04 .063 .998 .96
.05 .078 .997 .9
.06 .09k .996 .9
.0 .110 .994 .93
.0 .125 .992 .92
.09 141 .990 .91
1o .156 .988 .90
.11 172 .985 .89
A2 .187 .982 .88
.13 .203 .979 .87
14 .218 .976 .86
.15 .233 972 .85
.16 .249 .969 .84
A7 . 2614 .965 .83
.18 .279 .960 .82
.19 294 .956 .81
.20 .309 .95 .80
.21 .324 946 .79
-22 -339 -9”’1 -78
.23 .353 .935 17
24 .368 .930 .76
.25 .383 .924 .75
-26 -397 -918 '7“’
.27 U412 .911 .73
.28 LU406 .905 .72
.29 L4240 .898 Tl
.30 Ry .891 .70

cos ¥y % sin y % ¥y
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Table II - Cont.

X sin x —Z- coS X 1_2r
.30 454 .891 T
.31 .468 o84 .69
.32 482 876 .68
.33 495 .869 .67
.34 .509 .861 .66
.35 .523 .853 .65
.36 .536 844 .64
.37 549 .836 .63
.38 .562 827 .62
.39 575 . .818 .61
Ao .588 * . .809 .60
A1 .600 .800 .59
J2 ' .613 .790 .58
-43 -625 '780 057
Ay .637 771 .56
.45 .649 .760 55
46 .661 - .750 .54
A7 . 673 LT40 .53
48 .685 .729 52
49 .696 .718 .51
.50 TO7 707 50
T s
cos y 5 . sin y 3 Yy
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0.000
.018

.035
. 052

.087
.105
.122
.139
.156
174
.191
.208
.225
-2
.259
.276

.292 -

.309
.326
.342

.358
.375
.391

"423
. 438
"u5h
Ju70

. 485
.500

.515
.530
.545
.55

.57

.588
.602
.616
.629
.643

.658
" 682
.695
.707

CC.-

1.000
1.000
0.999

. 999

.996

-995
.993
.990
.988
.985

.982
.978
.O7h
.970
.966

.961
.956
.951
.946
.9ko

. 931"
.927
.921
. 914
.906

.899

.883.

.875
.866

‘8%
.839

.829
.819

.809
. 799
.788
CTTT
.766

.755
.T43
.731
.719
.T707

Table III
.wnox x°
VS _

.01 46
.035 A
. 052 ]
.850 hg-
.088 50
.105 51
.123 52
.141 53
.158 54
.176 55
.194 56
.213 5
.231 5
.249 59
.268 60
.287 61
.306 62
.325 63
. 344 64
.364 65.
.384 66
Lholb 6
. 425 6
b5 69
. 466 70
. 188 71
.510 72
.532 73
.554, T4
YA 75
. 601 76
.625 7
. 649 7
.675 9
.700 0
.72 81
.75 82
.ggl 83
829 84
.839 85
.869 86
.900 8
.933 8

966 89

000 90

1.
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si

0.719

COSOX

0.

695
682

.669
"643
.629

.616
.602

.588"

574

.559
.545
.530
.515
.500

" 423

.3lp
.326

292
.276
259

.2h2
.225
.208
.191
LATh
.156
.139
.12¢2
.105
.087

. 070
.052
.035
.018
.000

K)gﬁQsh ywnj:fﬁ: OJPHD(DND DO PR ERFE FPREBEREE b3 b=t b= b B e B
n
=
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11.43
14,30

18'08
28,64
57.29
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Appendicesr
Chapter 1

. 1-8. Set Notation .
 ﬁ A:.set 1s a collection of objects -~ not necessarily material
- obJects - described 1in such a way that there is no doubt as to
i whether a particular object does or does not belong to the set.
L We use capital letters (A, B, ...) as names of sets. In
:--particular, R is the name of the set of all real numbers,
‘ A set may be described by listing its elements within
 braces5 as
o A= [l: 2, 3: 4],
~.or by using the set-builder notation, as
‘ A = {x: x is a positive integer and x < 5].
(this should be read "A 1s the set of all x such that x is
a positive integer and x 1s less than 5.")
The Greek letter €(epsilon) 1s used to indicate that an
element belongs to a glven set, as
- 2 € A, :
(Read thls "2 1is an element of the set A" or "2 belongs to the
set A.")
The intersection of two sets A and B, written AMNB, is
'4the set of all elements that belong to A and also belong to B:
ANB=(x: x€A and x € B).
The: union of two sets A and B, written AUB, 1s the set
of all elements that belong to A or to B or to both:
AUB =[x+ x€ A or x€ B].
. More extensive discussions of sets can be found in the
~ following:
. Report'gf‘the Commission on Mathematics -~ Appendices, College
Entrance Examination Board, 1959, Chapters 1, 2, 9.
The Growth of Mathematical Ideas, Grades K-12, 24th Yearbook, NCTM,
o 1959, Chapter 3.
" Insights into Modern Mathematics, 23rd Yearbook, NCTM, 1937,
Chapter 3, |
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Elements of Modern Mathematics, K. O. May, Addison-Wesley
Publishing Co., Reading, Mass., 1959, Chapter 3.
Fundamentals of Freshman Mathematics, C. B. Allendoerfer and
C. 0, Oakley, McGraw-~Hill Book Co., New York, 1959,
Chapter 6. .
Introduction to the Theory of Sets, J. Breuer, translated
by H. F. Fehr, Prentice-Hall, Inc., Englewood Cliffs, N.J.,

1958, -
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Appendices
Chapter 2

. 2-11. Mathematlcal Inductlon

The primary art of the creative mathematician is to form
general hypotheses in the light of a limited numver of facts.
- Secondary, perhaps, but equally essential, 1is the art of proof.
f}The successful mathematician 1is one who can make good guesses, by
" which we mean guesses that he can prove. The best way to show how
» to guess at a general principle from limited observationa is to
© give examples. , ;
“". Example 1. Consider the sums of consecutive odd positive
flintegers: '

l=1
l+3=14
l+3+5=9
l1+3+5+7=16
l+3+5+7+9=25
,'Notice that in each case the sum 1s the square of the number of
terms, .
Conjecture. The sum of the first n odd positive integers
1s n“., (This 1s true; can you show 1t?)
Example 2. Consider the followingl;nequalities:
1 <100, 2 ¢ 100, 3 ¢ 100, 4 -¢ 100, 5 ¢ 100,
Conjecture, All positive integers are less than 100,
(False, of course.) ' :
Example 3. Consider the number of complex, zeros, repetitions
counted, for polynomlal functions of various degrees.

' zero degree: X—ag, a, ¥ 0, no zeros -a
first degree: X=>8,X + ag, a, # 0, one zero at x = —
1l

2

" second degree: X—a X~ + a;x + ag, a, # 0, two zeros at

-3 i"\/él ~ Yaga,

X = —

2a2
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Conjecture. Every polynomial function of degree n has
exactly n complex zeros when repetitions are COunteé. (True.
See Section 2-8.)

gxamgle 4, Observe the operations necessary to compute the
zeros from the coefficients 1n Example 3.

Conjecture. The zeros of a polynomial function of degree n
can be given in terms of the coefficients by a formula involving
only addition, subtractlon, multiplication, division and the
extraction of roots. (False. See Section 2-1.) '

Example 5. Take any even number except 2 and try to
express it as the sum of as few primes as possible:

y—2+2 6=3+3 8=3+5 10=5+5 Il2= 5+ 7,

b =7 + 7, etc.

Conjecture. Every even number except 2 <can be e¢xpressed
as the sum of two primes. (As yet, no one has been able to
prove or disprove this conjecture.)

Common to all these examples is the fact”that we are trying
to assert something about all the members of a‘seQuence of things:
the sequence of odd integers, the sequence of positive integers,
the sequénce of degrees of polynomlals functicns, the sequence of
even numbers greater than 2. The sequential character of the

~ problens naturally leads to the 1dea of sequential proof.
If we know something is true for the first few members of the
sequence, can we use that result to prove its truth f6¥”tﬁé
next member of the sequence? Having done that, can we now carry
the proof on to one more member? Can we repeat the process again,
and again, and again?

Let us try the idea of sequential proof on Example 1.
Suppose we know that for the first k odd integers 1,3,5, «..»
2k-1,

143454 ...+ (2k=1) =K, (1)
can we prove that upon adding the next higher odd number
(2k + 1) we obtain the next higher square? From (1) we have
at once by adding 2k + 1 on both sides, ’

[14 345+ ...+ (2k=1)] + (2 +1) = 1@ 4 (2k + 1) = (k+ 1),

[sec. 2-11]
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It 18 clear that i1f the conjecture of Example 1 1s true at any
stage then 1t 1s true at the next stage. Since 1t 1s true for
the first stage, 1t must be true for the second rtage, therefore
true for the third stage, hence the fourth, the fifth, and so
on forever,

Example 6. In many good toy shops there is a puzzle that
consiasts of three pegs and a set of graduated discs as depilcted
in Flg. 2-1la. The i1dea 13 to transfer the plle of discs from
one peg to another under tne following rules:

a) Only one disc may be mcved at a time.

b) No disc may be placed over a smaller disc.

7 -

[ ' B

Flgure 2-1la, ,

Two questlons arlse naturally: Is 1t .posslible to execute
the task under the stated restrictlons? If 1t 1s possible, how
many moves does 1t take to complete the transfer of the discs?

If 1t were not for the ldea of sequentlal proof, one mlght have
difficulty 1in attacking these questions,. '

As 1t 1s, we observe that there 1s no problem in transferring
one dilsec.

If we have to transfer two dlscs, we transfer one, leaving a
peg for the second dlsc; we transfer the second disc and cover
wlth the filrst.

If we have to transfer three discs, we transfer the top two,
as above. Thils leaves a peg for the third disc to which it 1is
then moved, and thé first two discs are then transferred to
cover the third disec.

The pattern has new emerged. If we know how to transfer

[sec. 2-11]
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k discs, we can transfer k + 1 1n the following way: filrst, we
transfer k discs leaving the last disc free to move to a new
peg; we move the last dlsc and then transfer the k dilscs again
to cover the bottom disc. We see then, that 1t 1s possilble to
move any number of graduated discs from one peg to another without
violating the rules (a) and (b) since, knowing how to move one
disc, we have a rule that tells us how to transfer two, and then
how to transfer three, and so on.

To determine the smallest number of moves 1t takes to trans-
fer a plle of discs, we observe that no disc can be moved unless
all the discs above 1t have been transferred, leaving a free peg
to which to move it. Let us deslgnate by m,. the minlmum number
of moves needed to transfer k discs. To move the (k + 1)th
disc we flrst need m, moves to transfer the discs above 1t to
another peg. After that, we can transfer the (k + 1)th disc to
the free peg. To move the (k + 2)th disc (or to conclude the
game 1f the (k + 1l)th dlsc 1s last), we must now cover the
- (k + 1)th disc with the preceding k dilscs, and this transfer of
the k discs cannot be accomplished in less than m_ moves. We
gee then that the minimum number of moves for k + 1 dlscs 1s

m,, +1= gmk + 1.

This 1s a recursive expression for the minlmum number of
moves, that 1s, 1f the minimum 18 known for a certaln number of
discs, we can calculate the minlmum for one more ddsc., In this
* way we have defined the minimum number of moves sequentilally:
by adding one dlsc we increase the necessary number of moves to
one more than twice the preceding number. It takes one move
to move one disc, therefore, 1t takes three moves to move two
dlscs, etc.

Let us make a 1little table, as follows:

xk | 11 2l 3| 4% |55 {67
}nk 1] 3.0 7 |15 |31 |63 ey

k = number of dlscs
m, = minimum number of moves

[sec. 2-11]
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Upon adding a disc we roughly double the number of moves.
This leads us to compare the.number,of moves with the powers of
two: 1, 2, 4, 8, 16, 32, 64, 128, ..., and we guess that mn==2n-1.
- If this 1s true for some value k, we can easily see that it must
be true for the next, for we have
Mery = 2mk + 1
2(2% - 1) + 1

=Kt o4

k+1

= 2 -1,
and this is the value of 2% -1 for n = k+ 1. We know that the
formula for m, is valld when k = 1, but now we can prove in
.sequence that it is true for 2, 3, 4, and so on.*
The principle of sequential proof, stated explicitly, is
this:
First Principle of Mathematical Induction: Let
“Al’ A2, AS’ ... be a sequence of assertions, and let H be the
hypothesis that all of these are true. The hypothesis H will be
accepted as proved 1if:
1) There 1s a general proof to show that if any assertion

Ak 1s true, then the next assertion Ak+l is true.

2) There 1is a special proof to show that Al is true.

If there are only a finite number of assertions in the
sequence, say ten, then we need only carry out the chain of ten
proofs explicitly to have a complete proof. If the assertions
continue in sequence endlessly, as in Example 1, then we cannot
possibly verify directly every link in the chain of proof. It

*According to persistent rumor, there is a puzzle of this kind in-
a most holy Buddhist monastery hidden deep in the Himalayas. The
game consists of sixty-four discs of pure beaten gold and the pegs
are diamond needles. The story relates. that the game of trans-
ferring the dlscs has been played by the monks since the beginning
of time, day and night, and has yet to be concluded. It has also
been said that when the sixty-~four discs are completely trans-—
ferred, the world will come to an end. [The physicists say the
earth 1s about four billion years old, give or :take a billion or
two. Assuming that the monks move one disc every second and play
in the minimum number of moves, 1s there any cause for panic?]

[sec. 2-11]
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is Just for thiz ===son--in effect that we can handle -n infinite
chain of proofs wtTsout specifically examining every Tink~~that
the concept of -equsntial proof becomes =0 valuzble, T te. in
2act at the hez== of the loglca. ™eeli-pment of mathemztles .
Througn ar -=: ~unate assuvcltiz >f conc=pts thi. wethod

~f sequentizl - - - .3 been named "= .~matlcal induction."
Induetion, in .. ¢C anon English sens:. is the guessing o7
general pPropeRLTIc from a number of observed facts. ©'''3 is

the way one arr:v.-% it assertions to prove. "Mathematir -
induction" 1s artiz-_ly a method cf deduction or proof aiui 1ot a
procedure of gugw: 218, although to uss it we ordinarily - 3t have
some guess to tesr. Thils usage has :==en in the languag or 2
long time and we v :uld gain nothing oy changing it now. Let us
keep it then, and -emember that matnematical usage 1s special and
often does not resemble in any respect the usage of common
English.
' In Example 1, above, the assertion A, 1s
14+ 3+5+ ...+ (2n~1)=n°,

We proved, first, that 1f A, is true, that is, if the sum of
the first k odd numbers is k2, then Ap ., is true, so that the
sum of the first k + 1 o0dd numbers 1s (k + 1)2. Secondly, we
observed that Aq is true: 1 = 12. These two steps complete
the proof. s

Mathematical induction is a method of proving a hypothesis
about a list or sequence of assertions. Unfortunately, it
doesn't tell us how to make the hypothesis in the first place. In
the example Just consldered, 1t was éasy to guess, from a few
specific instances, that the sum of the first n odd numbers is
n2, but the next problem may not be so obvilous.

Example 7. Consider the sum of the squares of the first n
positive integers,
12 + 22 4 32 4 ... + 0%,

We find that when n = 1, the sum is 1, when n = 2, the sum is
5, when n = 3, the sum 1s 14, and so on. Let us make a table
of the first few values: 318
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DT 50 |55 | o1 wo

oo
JoVEL

Though some mathema igiwns it immediately be able ¢ see a
formula that will givs i thi=- um, most of us would ha== to admit
that the situation is .t:cur:= We must look around fo- some trick
to help us discover trke satfvern that is surely there, and what we
do will therefore be a - ~rzo--7, individuzz=l matter. It is a misg-

take to think that only s «approach 1s possible,

Sometimes experie~ @ Lz a aseful gulde. Do we krow the
solutions to any simil mnulens? Well, we have here the sum of
a sequence, and Exampl di3c djealt with the sum of a sequence:
the sum of the first n .. runbers 1s n2. How about the sum

of the first n integs ' tacinz2lves (not their squares)? What is
l1+2+ 3+ . ¥ 7

This seems to be a rela =24 %.rtblem, and we can solve it with ease.

The terms form an arith: =%%: progression, in which the first term

is 1 and the common dif:.: -:=ce is also 1; the sum, by the usual
formula, is therefore gﬁn1+ 1) = -—%—n2 + %n. So we have

1+ 3454+ ...+ (2n=1) = n

12 1
1+42+34+ ... 4+n= -—2-n + -é-n.

Is there any pattern here =hat might help with our present problem?
These two formulas heve one comman feature: both are

quadratic polynomials in = ¥ight not the formula we want here

~also be a polynomial? It =ss=w= unlikely that a quadratic poly-~

nomial could do the Job ir =z > more complicated problem, but how

about one of higher degre=? L=zt's try a cubic: assume that

there is a formula

2 2

+ 22 + ... + N° = an3

1 + bn® 4 cn 4 g,

‘where a, b, ¢, and d are numbers yet to be determined,
Substituting n = 1, 2, 3, an? 4 successively in this formula,
we get

319
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12 -a+b+c+ d
l2 + 22 =8a + 4 + 2¢ + d
12402432 -27a+ 9+ 3c+d

12 4+ 22 4 3% 4 42 = 6ha + 16b + dec + d
Solving, we Zind
1 1 1
a=-§,b=—2-,c=-5,d=0,

We therefore conjecture that

l2 + 22 4+ cee + n2 %ns + %na + %n

Zn(n + 1)(2n + 1),

This, then, 1s our assertion An; now let us prove 1it.
We have Ak:

12422 4 ...+ k8 = ke (k+ 1)(2k + 1).

Add (k + 1)@ to both sides, factor, and simplify:

12 4 22 4 L+ 0@ F (k4 12 = k(1) (2er1) + (ler1)?
= (ler1) [gk(2kr1) + (kerl)]
= Z(k1) (+2) (2k+3),

and this last equation 1s Just A . 4, which 1s therefore true
1f AL 1s. Moreover, A,, which states

12 - 3(1)(2)(3),

is true, and An 13 therefore true for each positlve integer n.

There 1s another extremely useful formulation of the
principle of mathematical induction. This form involves the
zgsumption in thke sequential step that every agsertion up to =
certain point 1s true, rather than Just the one assertion
*mmediately pr=cedlng. Specifically, we have this:

Second Principle of Mathematical Induction, Again, l=C
Ay A2, AS, ... be a sequence of assertions and let H be the
nypothesis that all of these are true. The hypothesis H wiil
be accepted as proved 1if

320
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1) Mers

1s a general proof <. :show %thst, 1f every preceding
assertion A A2, sens Ak 1s true, . nen the next assertion A

e 3%
1s true.

2) Ther= 1s a2 =peclal proof t show thit A; 1s true.

It 18 nc hars +to show that eltrer priscizle of mathematiesl
inductlon can z2 d=rlved from the otrer, btut we 3hall not do sz
here,

The valus of this form of the principls 1s that 1t permits
the treatment of many problems which would be quite difficult to
handlé“on the basis of the first principle. Such problems usually
DPresent a more complicated appearance than the ones that yileld
directly to an attack by the first principle.:

Example 8. Every set S of natural numbers (whether
finite or infinite) contains a least element.*

Proof. The induction 1s based on the fact that S contas—=s
some natural number. The assertion Ak 1s that 1f k¥ S +then
S contalns a least element.

Initlal Step. The assartion Al 1s that 1f S contains 1
then 1t contarns a least number. This 1s ec=rtainly true since
1 1= the smallest natural number and so 1s smaller than any other
memk=r of S.

Sequentlal Step: We assums the theorem 18 true for all
natural numbers up to and including k. Now let S be a set
contalning k 4+ 1. There are two possibillitiles:

% This example 1s valuable because 1t can be used as a third prin-
ciple of mathematical induction, although not an obvious one %o

be sure. An amusing example of a "proof" by <his principle is
given 1n the Amerizan Math. Mozzhly, Vol. 52(2948) by

E. F, Beckenbach,

Theorem: =very natural nomber 1s interesting.

Argument: Consider the ==z S of all uninteresting natural
numbers, Thils set contalns = Ze=ast =lement. What an interesting
number, the sm=llest in the === of zminteresting numbers! So S
contains an int=resting numter aftep all,

Contradiction, -

The troubi= wizh this "proof", =F cours=. 1s that we have rm

definitlion of "dnteresting"; one mEm's inter=st 1s another mants

‘boredom,
321
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a) S contzins a natural aumzez p  less than k+ 1.
In vwat ca.2 p 1is less than or equzl to k. It follows that S
con-=ins a le=sT-element.

b) & contalns no natural mamier less than k + 1. In that
cas- Kk + 1 1s I=ast.

One . <=m= cmportant uses of thematical induction is in
.@efinition T memarsion; that is, =2 define a sequence of things
in the follow:. :;z.manner: a defip=tiion is given for the initial
object of tme 3Iequence and a rule 45 supplied so that if any term
is known ths m=le provides a defir=tion for the succeeding one.
For example, we could have defiln-: a (a # 0) recursively in the
folliowing way: :

Initiz. Stern, aO 1,

Sequential Step: 2 +1l_a.a" n-= (o, 1, 2, 3, cee)

Here is another useful definizion by recursion:

Let n! dencte the product of the first n positive
integers., We car define n! recursively as follows:

Initial Sten. 1y = 1,

Sequeniial Step. (n = 1)! = \n + 1)(n!).

Such @efimitions are convenient in proof's by mathematical
inductior. Her= is &= example involving the two definitions

o B

we have jizst giwen.

Exzmmle 9, For =1l posl=ve integral values n, 2™
The prz== by mathemazical i—=antion is direct. We have

Triiwtal Step. 27 =1, 2 = 1l.

Segquential Step. Asszmiriz that the assertlon i=r tTue at
the k—tn St=p, we seex tew prow= 1t for the (k + 1)th step.

1'5 n!

By qefo——=ixr we have
(£+]J!=(k+lﬂkww
From tuz hgzpﬁthesisb‘k!_zvié ~ ~. and consequently,

e 1)1 = ey (kD) > (o)l oy 20287 = 2K

since iz liik is & poszzive inteser). We conclude that
(k + T30 5 25,
The proof is complete.
Before we conclude these rem@rks on mathematical induction,

a word of czution, For a complez= proof by mathematical induction
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-1t 3 important to show the truth of Toth the initial step and the
-sequential step of the induction principle belmg used. There are
?many examples of mathematical inducticn zone haywire because one
~of these steps falls, Here are two examzies:

Example 10.

Assertion, All natural rumbt=rs uire even.

Argument. Fcr the prool we uviilize the sesond princodle
of mathematical Induction and taie for A, the assertion that all
‘natural numbers less than or equal to k are even. Now conslder
the natural number k + 1, Let 1 be =oy natural number with
i ¢ k. The number J such that 1 + J= kK + 1 can easily be
‘ghown to be a nafmral number with J £ k. But if 1 ¢ k and
J < k, then both 1 and J are ever.. and hence k+ 1 = 1 + J,
‘the sum of two even numbers, and must itself be s=ven!

Example 11.

Assertion., Every girl has blx= eyes,

Argument. Let us begin with one girl, oy girl friend,
who happens to have blue eyes. Now let us assume that in every
mget of k girls that includes =y girl, all have hlue eyes.
.Conglder any set of k + 1 girZz, If zuy girl is removed £rom
“this set we have k girls left.. and hence all the girls l=ft
have blue eyes. IT¢ might be sursvezmed that the girl removed from
‘the set had brown eyes. Yet 1t ‘i eamsy to see that th’s canmot
“be true., Leave the girl supposz:i to have brown eyes in the sex:’
sand remove some otoer girl. G33inee i« glzts remaln, whey mmst
-all have eyes of the same ¢ lor, bl= =yes by assummiion. It
‘follows that all k'+ 1 gi-izs have bliue =yes, and the proof is
~complete.

Find the holes in the wo zrguments.

Exercises 2-11

-1. Prove by mathemztical induction:
1+2+3+ ...+ n =-%n(n + 1).

f2. a) By mathematical induction prove the familiar result
glving the sws of an arithmetic progression to n ~werms:

[sec. 2-11]
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a + (a+d) + (a+2d) + ... + (a + (=-1)2) =g[2a + (n-1)dl.

b) Do the same for a geometric progressimm:

no_ 1y
a + ar + ar® + ... + z=n=1 =-§L§—::§* .
Prove the following four exercises by mathamztical induction for
all positive integers n: :
3., 12432 4+5%+ ...+ (20 1,)2 =%(4n3 ~ n).
4, 2on g 2",

5. If p > -1 then for every positive inte;z==r n,
(1 + p)" > 1+ np.

6. 1+ 22+ 3224+ ...+ =22t =14 (n-1)2"

7. Prove by the second principle of mathema~ical inducticm:
a) For.all natural numkers n, the mumber & + 1 either is
a prime or can be factcred into primms.
b) For each natural number n > 1, let T be a re=l mumies
with the property that for =t l=ast ons pair of nahural
numbers p, q with g — a = 1,

n .
When n = 1 we define Ul. = a wherz a Is soms g7=n

real number. Prove‘th&£ U, = na For all n. .
¢) Attempt to prove (a) and (p) from = first primciple to
gsee what difficultiesm zcrise.
In the next three problems, fi-=t discocver & formula frr tre
sum and then prove, by mathemaiical inductiom. that your rermula
is correct.

1 1 1 , 1
8. Ttz tIat e + TETI ¢
9. 13 + 23 + 33 ve. + 7. {(¥nf: Compar= Ine sums you ==t

heére with Example 1 iz the ==xt, or ar==rmatively, aszume
that the required resz = is a paolynomZal of degruee i,

10, 1.2 + 2:3 + 3+4 + ... +n(m+l)., (Ei=s: Compare t:iim one
with Example 8.)

324
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In geometry it has been proved of any 3 points, Pl’ P2, PS’
that m(P; P,) + m(P,P ) > m(P,P ) (triangle inequality),

where m(P PJ) denotes the distance between points P, and PJ

Let Pl’ P2, sy Pn denote any n points in ‘the plane,

n> 3.
Prove that
m( P1P2) + m( P2P3)v + m( PsPy ) T m( Pn_an) > m(,Pan).

Prove that for all positive integers n,
(1+3)( 1+Eﬁ) 1+ ... (1+2n+1) = (n+ 1)2

Prove that n(n 4+ 5) is divisible by 6 for all integral n.
A band of pirates is sitting in a circle dividing up their
lcot. One man is their leader. According to their code,
each man in the circle must get the arithmetic average of
the amounts received by the two men on his right and left.
This rule does not apply to the leader. In what proportions
may they divide the -loot? :

CongiZjer the sequence of fractions

1 3 7 1 Pn
'I: "2" ';; ‘1%, ooy a‘n“,

whnere each fraction 1s obtained from the preceding by the

rule

9n = Ppo1 + 9pa
Show that for n sufficlently large, the difference between
Fh/qr, and +/2 can be made as small as desired.
Show also that the approximation to4/2 is improved at
each successive stage of the sequence and that the error
alternaztes in sign. Prove also that P, and q, are
relatively prime: that 1s, the fraction n/q is in
lowest terms.
Let p be any polynomial function of degree m. Let q(n)
denote the sum '

a(n) = p(1) + p(2) + p(3) + ... + p(n). (1)

1325
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Prove that there 1s a polynomial q of degree m+1
satisfying (1).

#%17, Let the function f be defined recursively as follows:
Initial Step. f(1) =3

Recursive Step. f(n + 1) = Sf(n)
In particular, we have

£(3) = 33 - 327, ete.

Similarly, let g(n) be defined thus:

+ Initial Step. g(l) =9

Recursive Step. g(ntl) = 9g(n).

Find the minimum value m for each n such that
£(m) > g(n). '

Answer: m=n + 1.

*#18. Prove that, for all natural numbers n,

(14450 = (1 =4/5)"
2"\/5
i1s an integer. (Hint: Try to express x® - y* in terms

of xn-l _ y?-; xn-2 _ yn—2’ etc)

2
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~ Appendices
Chapter 2

- 2—12. Significance of Polynomials B e

. The importance of polynomials 1n applications to engineering
and the natural sciences, as well as in the body of mathematics
'itself is not an accident. The utility of polynomials is based
“ largely on mathematical properties that, for all practical purposes,
permit the replacement of much more.complicated functions by poly-~ .

--nomial functions in a host of situations. We shall enumerate some
of these properties: .

v a) Polynomial functions are among the simplest functions to

- manipulaté formally. The sum, product, and composite of poly-
nomial functions, the determination of slope and area, and the
location of zeros and maxima and minima are all within the reach

Lbf elementary methods.

O b) Polynomial functions are among the simplest functions to

'evaluate., It is quite easy to find the value of r(x), glven

. 2 n
£ %x—ag + a;X + a X" + ... +ayx (1)

. Wwith a specific set of coefficients s Bpyeesy By and &

. specific number for x. Nothing more than multiplication and
addition is involved, and the computation can be shortened by
using the method of synthetic substitution.

_ The foregoing two properties of polynomial functions are those
" that make them valuable as replacements for more complicated
1ffuncticns.

‘ c) Frequently an experimental scientist makes a seriles

i of measureménts, plots them as points, and then tries to find a

- reasonably simple continuous curve that will pass through these

“points. The graph of a polynomial function can always be used for
 ”th1s purpose, and because it has no sharp changes of direction,
J-and only a limited number of ups and downs, it is in many ways

the best curve for the purpose.

: Thus, for the purpose of fitting a continuous graph to a

E_’f‘finite number of points, we would prefer to work with polynomials
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and we need not look beyorz the polynomials, as we shall prove.
We can state the proxlem formally as follows:

Given n distincet numbers Xqs Xpseees Xy and corresponding
values Yo y2, e=es Ip that a funection is supposed to assume,
it i1c possible to fird a polynomial function of degree at most
n - 1 whose grapk contains —he n points (xi, yi), i=1, ..., n,
You have already done this for n = 2: you found a linear or
constant functicn whose graph contained two given points
(%1, ¥7), (x X5 yé), iy # %X. If y, 1s also different from y,,
+the Tesult is a linear function; if y2 =Yy it is a constant
function.

One way of dc==.s this 1s to assume a polynomial of the stated
form,

= - 2 n-1
£(x) = ag = ax + 8 X7 + ...+ Ap 90X

k)
and write the n =gzations
f(xi) =E’"i:' i = 1, 2, es oy no

This gives n Iim==r szguations 1in the n unknowns
agy 8yseees Bp o =nd In these circumstances such a system will
always have a s=luzlon.,

Example 1. Suppose: that we want the graph of a function to
pass through tae points (-2,2), (1,3), (2,-1), and (4,1). We
know that thers i= a polynomidl graph of degree no greater than 3
which goes through these points. Assume, therefore,

£(x) = ag+ ax + a2x2 + a3x3.

Then, if the graph of f 1s to go through the given points,
we must have f£{-2) =12, f£(1) =3, f£(2) = -1, and f(4) =
that is,

ag - 221 -+ 4a2 - 8a3 = 2,
ag+ =y + 