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Suggested Time Schedule

Following 1s a suggested schedule for teaching the chapters
of this text. Thils schedule 1ls based on informatlon obtained from
. the centers where Intermediate Mathematics was taught experi-.
mentally during the 1959-60 academic year. Strict adherence to
this schedule 1s not recommended. Teachers should feel free to
modify it in accordance with the background and abllity level
of each class. |

Number
Of Weeks
Chapter 1  Number Systems b5
Chapter 2 Introduction to Coordinate Geometry 2
Chapter 3 Functions 2
Chapter U4 Quadratic Functlons and Quadratic Equations 2
Chaptef 5 Complex  Numbers 3
Chapter 6 Coordinate Geomet®y ~ Straight Lines and
Conic Sections ' 2
"Chapter 7 Systems of Equations in Two Variables 2
Chapter 8 Systems of Equations in Three Variables 2
Chapter 9 Logarithms and Exponents it
Chapter 10 Introduction to Trigonometry 3-4
Chapter 11  Vectors 3
Chapter 12  Polar Form of Complex Numbers 2
Chapter 13 Sequences and Series 2
Chapter 14 Permutations and Combinations 2
36

Chapter 15 Algebraic Structures (Supplementary)
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Commentary for Teachers

Chapter 1
NUMBER SYSTEMS

1-0. General Observétions.

Chapter 1 1s devoted to a careful study of the number systems
of elementary algebra. (Chapter 15 is an introduction to some of
the corresponding systems of higher algebra.)

' and

Scientists often speak of mathematics as a "language,'
their point of view is certainly Jjustified by the way they use
mathematics. However, there is an lmplication here that they are
the "poets" while mathematicians are the "grammarians." This im-
plication is not very generous, for there is little similarity in
the aims of grammarians and mathematiclans. If we may Say that
the grammarian analyzes statements, breaking them down for purposes
of classification, we may say on the other hand that the mathe-
maticians' aim is to show the relationships between statements
and in particular their logical dependence on each other. Mathe-
matics is concerned with inferences--the processes of drawing
conclusions from given statements. Thus mathematiclans are con-
cerned with collections of statements and the "structure" of such
collections, rather than the "structure" of individual utterances.

Students are introduced to geometry organized as a mathema-
tical,/br'deductive, system, so they have some familiarlty wilth
the mathematical approach. In Chapter 1 we organize our knowledge
of the familiar number systems along similar lines. Some of the
advantages of thls organization are indicated on pages 1 and 2
of the text and need not be repeated here.




The basis of this organization is the Euclidean method of
postulates, theorems, and proofs. There 1s nothing 'modern! about
this method; what is 'modern! 1s the appreclation of 1its wide
range of applicability and the recognition of its power. Studylng
geometry, a student sees how tidy the subject becomes, and how
tightly knit our knowledge of it 1s when it 1s organized this way.
He sees that by setting down relatively few assertions as
postulates and by using some common sense and ingenuity we can
derive from these postulates the other assertions which go to
make up the body of geometrical knowledge. However, what he 1s
not as likely to see in a first course in geometry 1s that
Euclid!'s 1deas on organlizing the subject have a significance far
beyond the fact that they enable us to detect a logical structure
in a single body of knowledge. Their value is enhanced
tremendously when we use them as a basls for the "comparative
anatomy" of mathematical systems.

The comparative anatomy of different geometries is something
beyond the experience of most students, for they have seen only
one geometrical system. On the other hand, they are already
familiar with several different number systems. Thus, once
tﬂese systems are organized along Euclid's lines, a study of
thelr comparative anatomy is possible and appropriate. Moreover,
the problems encountered in organizing our knowledge of the
simpler numerical systems (the natural numbers, the integers, and
the rationals) are much less involved than the logical problems
encountered in casting geometry in deductive form. For this
reason algebra may well be a better vehicle for presenting
Euclid!s ideas than geometry!

Why should we study comparative anatomy anyway? We have-
several reasons. We want to consolidate and reinforce our
knowledge of the familiar number systems. We want to bring out
as clearly as possible ﬁheir similarities and differences. And
we also want to study two number systems not so familiar and
considerably more complicated than the more fémiliar ones.,

12



(They are the real number system and the complex number system.)
The main thing all these systems have in common 1s their logical
structure. The 'numbers' involved in them are quite different.
Shifting cur attention from the numbers themselves to the structure
of the systems, we find that, to a considerable extent, in th
various systems we are EEXEEﬁ much the same things but say:

about different things. It 1s this similarity which makes

real - and complex number systems fit more comfcortably into our
thinking about numbers.

We therefore start by "backing up" to the very beginning of
our knowledge about numbers and have a good deal to say about
counting and other ldeas which the students first met as far back
a8 first grade. Many of the things we discuss are often called
"obvious"--meaning apparently that they are thoroughly familiar.
What we do here with such things is generally anything but
obvious. Two statements may be obvious; for example,

alb +¢) =ab+ac and a « 0 =20 ;

but that one of them follows from the other, or that we can't
prove one of them without using the cther; these statements are
certainly not obvious in the same sense that the formulas them-
selves are "obvious".

It will be noticed that there is not a single picture in .
Chapter 1, not even a "number-line". This 1s no accident; it is
quite Intentional. One of our objectives is to present the real
number system in such a way that there may be no reservations
about using it as a basis for geometry--as 1s done, for example,



in the SMSG Tenth Grade Course. By emphasizing that our discussion
of the real numbers is based entirely on arithmetical coﬁsiderations,
we demonstrat: that there is no poésibility of logical circulérity
when it is used in geometry. There have been many presentations

of the real number system using the "number-line" for purposes of
illustration of many of its important properties. In some of

these presentations it may not be absolutely clear to the students
that such 1llustrations are not central to the presentation, that
they are merely asides or aids. We are confident that no such

misiﬁ%erpretations can occur reading Chapter 1.

From time to time in this Commentary we suggest places where
such 1llustrations may contribute to class discussion and help to
clarify matters. The fact that they are irrelevant for our
proofs in Chapter 1 1s what 1s important.

There are many ways a class can study Chapter 1. We do not
think that any class should spend more than 5 weeks on 1t and
that most classes should svend 4 or fewer.

Students who have been through the SMSG Ninth Grade Course
and have a thorough understanding of the real number system and
the solution of inequalities may find it possible to skip from
Section 1-1 directly to Section 1-8, with only a brief review
of the basic properties of the rational number system listed on
pages 63, 6k,

Students without this preparation may pursue a variety of
routes. The chapter is written in such a way that a class with

-
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relat’vely weak preparation and slight interest in fine points can
skip through the first 10 sections (1-1 to 1-10), reading perhaps
only the summaries of each number system (at the ends of Sections
1-3, 1-5, 1-7;, 1-9), and then settle down to the review of
radicals, factoring and the manipulation of rational expressions

in Sections 1-10, 1-11, 1-12. This is one extreme, which should
take approximately U4 weeks.

The other extreme is to take the whole thing co 11y and
in detail. A class with strong preparation and : .rea . of
interest mlght be able to cover everything in 5 wc

Between these two extremes is a whole spectrum of possi-
bilities. By the time a class hits the second or third set of
exercises in Section 1—2; the teacher should have fair ideas of
what his students can take and how much he can get them to
absorb. Depending on reactions by this time, or at any.later
time, adjustments can be made in plans. For 1nstance, instead
of taking each proof to bits, after the filrst couple of sections
a class could just read the definitions and theorems, i1llustrate
them with numerical examples, omit all problems calling for
proofs, and g0 on to the next nunber system. Even this way, the
class ought to get a better-than-average picture of number -
systems and theilr ofganizatipn and be prepared for the work in
later chapters, which makes few demands on the specific proof.-
techniques presented in Chapter 1. If later, a class finds 1t
needs a better foundation--for instance, in 1lnequalities--1t is
always posslible to go back and get it. There 1s much to be said
for the point of view that a demonstrated need for some skill or
plece of knowledge adds to one's appreciation of it and to his
motivation in studying 1it.

Ve do feel, however, that many students--and most of all,
teachers--will have sufficient interest, curlosity, and drive to -
want to cover everything in this chapter. If we had not thought
o, wWe wouldn't have written it.

15
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1-1. Introduction.

The first page-and-a-half 1s devoted to telling the student,
in language we think he can understand, some of the things we have
said in this commentary under the headlng "Gerieral Observations."

The remainder of Section 1-1 is devoted to a discusslon of
statements having the form "If A , then B ." We give examples
of such statements, discuss thelr converses, and say how we shall
use the expression "only if." The last point is quite important
for "only 1f" is used repeatedly throughout this book and in
nearly every plece of mathematical writing in the Engllsh language.
Its meaning seems to be something students must bc told; whether
mathematlcal use of "only 1f" conforms to that in conversational

English is a disputed question.

We resist the temptation to go into any real questilons  of
logic--although an excellent case may be made for presenting a
good deal of symbolic logic at thls level--i¢r we have so many
other things we must get on to. We don't -ver %nry to say what
"if ... then ..." means, although we do ru; .rass 1t in sevaral
ways. We rely on the student's past experiencs with statements
having this form and take it that he has w.m& “mderstanding” of
them. We believe that this understanding w7 . e strengthened by
making him think about such statements in the ex:rclses.

The Exercises are q.ite "formal" in tue senmc that the mean-
ings of the statements to be reworded are - rpeserwznt as far as the
broblem of rewording them is concerned. T.us, for example, the
converse of

Hottentots are polytheists only :  eristentialism
1s nominalistic

is obtained by deleting the word "only"; & 4 thi. fact has nothing
whatever to do with the meaning of the eni:i "o .t:tement (if it has
any), or any of the words in 1t (eﬁhépt for "zaly" and "1f"--of
course), or whether eilther the original statemesnt or its converse

17
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Answers to Exercises

Exerclises l-la:

1. (a) If y 1is greater than x , then X + 3 =1y .
(v) If a natural number is a multiple of 2 , then it is even.
(¢) x=1 1if x°=1 .
(d) If x 1s less than z , then x 1s less than vy .
(e) If "If B, then A " is the converse of "If A , then
B", then "If A, then B " is the converse of "If

B, then A" .

2. (a) If x+2z2=y+ 2, then x=y, and, if x =y ,

then. X + z =y + 2 .

(b) If y~1=x, then x+1l=y, and, if x +1 =1y ,
then y - 1 =1x .

(¢) If x=3, then 2x +1 =7, and, if 2x + 1 = 7,
then x = 3 . ‘

(d) If x or y 1is zero, then (x + y)2 = x° *,yg, and,
1r x° + y2 = (x + y)2 , then x or y 1is zero.

(e} If "If B, then A " is true, then the converse of
"If A, then B " is true, and, if the converse of
-"If A, then B " is true, then "If B, then A"

is true.

P
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1-2. The System of Natural Numbers.

In this sectlion we collect a list of properties cf the
natural rrumber system. Our attitude is that, to a greater or
lesser extent, these properties are ones which the student has
encountered before. For some classes a considerable amount of
review will be required here.

Some students may never have seen these properties stated as
general propositions before, athough they will have used particu-
lar instances in arithmetical work. For them 1t will be necessary
to have some class discussion of "symbols", the meaning of
“Yarbitrary", and--in general--a review of the differences between
algebra and arithmetic. (In arithmetic we deal with gilven numbers
and are concerned with calculations; in algebra we deal with
arbltrary symbols and are concerned with derivations--with proving
formulas and solving equations.)

For other students, a largre part of the section will itself
be review. For them, the bigr t task will be putting the names
to the varicus properties and . ctting them all clearly in mind to
prepare for what is coming in later sections.

The first page (bottom of 4 and top of 5) is extremely informal
and carefree. We merely set the stage and introduce some of the
actors. There is no real plot, except for the word "closed."

The words "subtraction" and "division" appear here, but they are
really out of place from a loglcal point of vliew. They are

mentioned merely to emphasize that "closure" 1s an important

notion; that one makes a signifilcant assertion when he says such-and-
such a system 1s closed under such-and-such an operation. Sub-
tractlon will be introduced formally on page 2%, division on

page 48; untill then they play no officlial part whatever in our
considerations, except that we have to learn to live without them

in the meantime.
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On pages 5 and 6 we refer to the "relation" equality and the
"operations" addition and multiplication. These words require
careful interpretation if their use is to be understood. The

relations we consider (equality, order) and the algebraic oper-

ations we work with (the so-called rational operations) are binary.
This means two symbols are involved: a=b , a#b, a<b,
a>b;a+b,a-+b, a->b, %-. The grammatical result of
compounding a pair of symbols with the sign for a relation between
them 18 to fem a2 statement. Thus a=5b , a#£b, a<db and

a > b are each statements; they assert something about numbers
(or more precisely about letters representing numbers). On the
other hand, the grammatical status of the result of compounding

a palr of symbols with the sign for an operation between them 1s
that of a noun. Thus a +b, a-b , a - Db, %- are "expressions"
for certain numbers (or more precisely become so if the letters
are replaced by numerals). A mathematical expression 1s Just a
more or less complicated noun. It is never a statement as a
formula always is.

In Exercise 1-2b, Part 2, the student 1s asked to supply
some proofs. Generally speaking, throughout this book we offer
a model--usually called an Example--in the text before we ask
the student to undertake any activity on his own. In this case
we deliberately failed to offer such a model. Our reasons for
thls are as follows.

There are many ways to write out proofs using the basic
properties presented on pages 6 and 7. Such ways range from the
the completely detailed--giving a reason every time we do any
thing at all--to the completely sketchy--e.g., dispatching
Exerclse 1-2b, 2(a) with the words "commutativity, distributivity".
In the "Answer" sectlion of the Commentary the proofs will be
given in considerable detall, but for class work some middle
course seems the most desirable. '

[pages 5-T]
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One question that will undoubtedly come up is whether
students may use their familiar "substitution principle (or axiom)":
equals, may be substituted for equals. The answer is an emphatic
"YES" . Since it is so easy to show that this principle is a ‘
theorem in our systems, we suggest that it be proved in class to
pre amp '~ of a very detalled proof. This principle is
suamarized by the following three theorems:

Theorem 1: If a=b, a=c¢c, and b=d, then ¢ =4d .

Theorem 2: T

H
)
+
o’
]
o
Q,

a=d,then d +b==c.

Theorem 3: I ab =c¢ and a d , then db = c .

Proof 2£ Theorem 1:

1. a=-c [Hyz. b, ¢ =D (E) (Trans); 2),3

2. c=a (E., (Symm); 1) 5. b =4d {Hyp.

3. a=D>b [Hyo. 6. ¢ =4d (E)y (Trans.); 4),5)
Q.E.D

Proof of Theorem 2:
1. a+ b=c [Hyp. b, a+b=4d+0b LES;B)
. =a+b L§3;1) 5 ¢c=d + b (Ey; 2),4)

3. a=4d [Hyp. 6. d+ b = L§355)

Q.E.D.

Proof of Theorem J3: Same as proof of Theorem 2, writing a
dot for each plus and citing g£ in place of .gs .

21
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These three theorems are almost obvic

If the class wants to see more proofs llke tres:¢ ~he teacher
can work Exercise 1-2b,3 in class. (These theorems are useful
variants of the substitution principle.) If they had no trouble
following the previous arguments, Exercise 1-2b,3--or only one of
1ts parts--may be assigned as homework.

The important thing, however, is that the students should feel
free to use the substitution axloms whenever they wish in all i
later proofs without filling in the details. (This is the essence
of Hardyt!s remarks.)

. T T T

*WDhere 1s a certain ambiguity in this phrase which the reader will
do well to notice. When one says !'such and such a theorem is
almost obvioust! one may mean one or other of two things. One may
mean 'it 1s difficult to doubt the truth of the theorem!, tthe
theorem 1s such as common sense instinctively acceptst, as it
accepts, for example, the truth of the propositions '2 + 2 = lys

or tthe base-angles of an 1sosceles triangles are equalt'. That a
theorem is 'obvious! in thils sense does not prove that it 1s true,
since the most confident of the Intuitive Judgments of common

sense are often found to be mistaken; and even if the theorem 1is
true, the fact that it is also 'obvious' is no reason for not
proving it, if a proof can be found. The object of mathematics is
to prove that certain premises imply certain conclusilons; and the
fact that the conclusions may be as 'obvious! as the premises never
detracts from the necessity, and often not even from the interest
of the proof.

"But sometimes (as for example here) we mean by tthis is almost
obvioust! something quite different from this. We mean t'a moment!'s
reflection should not only convince the reader of the truth of what
is stated, but should also suggest to him the general lines of a
rigorous prooft!. And often, when a statement is 'obvious! in this
sense, one may well omit the proof, not because the proof is un-
necessary, but because 1t 1s a waste of time to state in detall
what the reader can easily supply for himself.

"The substance of these remarks was suggested to me many years ago
by Prof. Littlewood." :

This footnote appears on Page 130 of the Amerlcan Reprint of
_the Eighth Edition (194%3) of G. H. Hardy's A Course of Pure
Mathematics, Cambridge University Press and The Macmillan Company.
It is quoted with the permission of The Macmillan Company, New York.

[page 7]
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As an example of their use, the teacher may work Exercise 1-2b,
2(a) 1in class as a model for the other proofs requested in
Exercise 1-2b,2 .

(x + ¥y)z = x2 + yz
Proof:
1. z(x + y) = 2x + 2y (D
2. (x +y)z =x2 + yz [ Subst. (yb)

Our first "Qpblic" proof, on Page 9, 1is quite sketchy--con-
sidering the detail we could have supplied--but 1t 1s not so
sketchy the omitted detalls cannot be inserted easlily. Our real
interest 1s in the consequences of the _A_,_I_Vl_,_lg,_g properties.

Their significance would be less apparent 1f we always burled them .
among a mass of detail which can well be omitted if it is "almost
obvious" anyway. We expect the student to react to our proofs by
feeling that we could supply all the details 1if someonefiﬁsisted.w*
We think he should write his proofs the same way; and we hope he
feels that he could also supply such details, although we shall

not insist that he do.

Answers to Exercilses

Exerclses 1-2a:

1. Addition and multiplication.

2. Addition and multiplication.

3. Multiplication.

4, None.

5. Multiplication and division, assuming that -% is not defined.

6. Addition and multiplication.

23
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Exercises 1-2b:

1.

(a) A, (Commutativity) (4) L  (Distributivity)
(b) D (Distributivity) (e) D (Distributivity) .
(e) My (Associativity) (£) A, (Associativity)

Note that parts e and f 1involve use of different names

‘for a number (7 . 5= 35 and 2 + 3 = 5), which is the

relation of equality rather than a property of the natural
numbers.

(a) (x+ 3z =12z2(x+y) [Comm

Il

Il

zZX + 2¥ - [Dist.

X2 4+ yz { Comm.

Il

Note: This proves the "right hand" distributive property.
It may be used to make proofs shorter 1n later work.
(b) x+xy=1+x+xy [Mult. Iden.

Il

=x » 1 4+ Xy [ Comm.

= x{1 + y) [Dist.
(¢) =iy + (w+2)) =x[(y +w) + 2] ~ [Assoc.
= x(y + w) + x2 -~ [Dist. (
An alternate method would be to use D three times.
(4) x+ (y+2)=(z+7y)+xz [Hypothesis
= (¥ + z) + Xz [ Comm.
=xz + (y + 2) [ Comm.
therefore x = Xz [Cancellation
24
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3. a=b and c =4d {Hypothesis

a+c=b+c and b+c=Db+d (E5 (Addition)
a+c=Db+4d [24 (Transitive)

a=b and c¢c=d | . [Hypothesis

ac = bc and bec = bd [g% (Multiplication)
ac = bd [Ey (Transitive)

Exercises l=-2C:

1. (a) 5pf{3 +r) =5 3 +5p 1 [Dist., Muwx
= 3(5p) + 5{p « r) [Comm., Assoc.
= (3 « 5)p + 5pr [Assoc., Def.
= 15p + 5pr

(b) (2x + 3)(x + %) = (2x + 3) « x + (2x + 3) - 4  [Dist.
=2 c X +3x + 4 2x+h .3 [Dist.;Comm.

= 2x2 + 3x + 8x + 12 [Assoc., Def.

= 2x° 4 (3 + 8)x + 12 [Dist.
= 2x° 4 11x + 12
(¢) (y+(y+21)=(y+1) +y+(y+1) -1 [Dist.

Yy evy+1leoey+y-1l+1-.1 [Dist.

il

ye +y+¥y+1 [Def., Mulp. Iden.

¥e 4+ 2y + 1 [Det.

1

il

(d) 2m(m +n 4+ 3) =2m * m+ 2m ¢+ n + 2m « 3

2(m + m) + 2mn + 3(2m)

om® + 2mn + (3« 2)m

ome + 2mn + 6m

Il

Il

[page 10]
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(e) ;(x +1)(x +y +2)
=(x+1) «x+ (x+1) «y+(x+1)-2 .[Dist.

=X - X4+1eX4+Xey+1l--y+x-24+1-2 [Dist.

= X" + ¥ + Xy + Yy +2x + 2 [Mult. Iden., Comm., Def..
= x° + XYy + X +2X + 2+ 7y {Ccomm. |
X2 4 XY + 1 e X 42 e X +Y+2 [Mulé. Iden.
= x2 rxy + (L +2)x+y +2 [Dist.
= x2 + Xy 4+ 33X +y + 2
2, (a) (e+b+c)+d={[(a+b)+c]+d [ Def.
= (a + b) + (c + d) [Assoc.
(b) (a +b)(c+d)=(a+b)-c+(a+b)-d [Dist.
= ac + be + ad + bd [Dist.
= ac + ad + bec + bd ' {Comm.
o (e) (px + a)(rx + t)
= (px + q) « rx + (px + q)t [Dist.
= px(rx) + a(rx) + (px)t + at | [Dist.
= rx(px) + a(rx) + t(px) + ta , [ Comm.
= rx(xp) + a(rx) + (tp)x + qt [Comm., Assoc.

= (rx « x)p + (ar)x + (pt)x + at [Assoc., Comm.

2 .
= p(rx®) + (ar + pt)x + qt  [Comm., Dist., Def., Assoc.

= prx2 + (ar + pt)x + qt . [Def.
= prx2 + (pt + ar)x + qt [Comm.
(d) a{(b +c+ d) =a[(b+c) + d] : [Def.

‘ = a(b + ¢c) + ad _ [Dist.
= (ab + ac) + ad : [Dist.
= ab + ac + ad [Def.

w3
[page 10] ~. ‘
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(e) a(vecd) = al[(be)d] [Def.
= [a(bc)]d [Assoc.
= [(éb)c]d [Assoc.
= (ab)(cd) [Assoc.
3. (a) bx +2xy=x+ 4 4+ x .2y {Comm., Assoc;
= x(4 + 2y) [Dist.
(b) 2(%u + 1) + 3(%u + 1) = (2 + 3)(%u + 1) [Dist.
= 5(4u + 1) '
(¢) m(p +aq) +m(p +a) = (m+ m)(p + a) [Dist.

=(me21+m>21)(p +q) [Mult. Iden.
=m(l + 1)(p + q) [Dist.

An élternate sequence would be:

m(p + aq) + m(p + q) = 2[m(p + q)]

Il

2m(p + a)
using the agreement that x + x = 2x .

(@) (2x + 1)(x + 1) + (1 + 2x)(1 + x)

= (2x + 1)(x + 1) + (2x + 1)(x + 1) [ Comm.
=2{(2x + 1)(x + 1)) [ Def.
=2(2x + 1)(x + 1) [ Def.

4, An even natural number has the general form 2a , Where a
may represent any natural number. Since
(2a)2 = (2a)(2a)
132

= 2(2a

2)

b4

and 2a° 1s a natural number by M, (Closure), then (Ea)2

is even. 27

[page 10]




18

5, An odd natural number has the general form (2a + 1) , where
a may represent any natural number. Since
]
(2a + 1)° = (Pa + 1)(2a + 1)

()
ha®™ + lla + 1

“)
= 2(2a“ + 2a) + 1,
and (2a2 + 2a) is a natural number by M, (Closure) and

W
A (Closure), then (2a + 1)° is odd.

6. Representing the product as 2a(2b + 1) = Yab + 2a = 2(2ab + a) ,

1

then the product is even since (2ab + a) 1s a natural number.
4
7. Any two digit number ending in 5 can be represented in the
decimal system as 10a + 5 where a represents the flrst

digit on the left. Since

ti

2 2
(10a + 5)° = 100a” + 100a + 25

100a(a + 1) + 5° ,

Il

then a(a + 1) provides the first digit or digits on the left,
with the 100 factor fixing their position, and the 5° pro-

vides the last two digits.

Exercises 1l-2d:

l, X +2 =3 4+ 2
X = 3 [Cancellation - Add. -

2. No solution in N , since there is no natural number z such
that 1 Z 4+ 3 .
3. ¥y ¢ 3= . 3 [ Comm.
Y = [Cancellation - Mult.

28
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4, 2u + 5 =2 + 5

2u = 2 [Cancellation - Add.
Ue?l =12 [Comm., Mult. Iden.
u=1 [Cancellation - Mult.
5. 2u + 1 = 3 + 1
2u = 3

No solution in N , since there is no natural number u Such
that 2u =3 .

6. 3p + 4 =p+ U [ Comm.
| 3p = p [Cancellation - Add.
. No solution in N , since there 1s no natural number p Such
that 3p =D . '

1

7. 2w + 1 = 3w + U [ Comm.
= 3w + (3 + 1)
= (3w + 3) +1 [Assoc.
2w = 3w + 3 [cancellation - Add.

No solution in N .,

8. 3m+ 1 =2m+ (3 + 1)

= (2m + 3) + 1 [Assoc.
3m = 2m + 3 [cancellation - Add.
m+ 2m = 3 + 2m [Comm.
m= 3 [Cancellation - Add.

1-3. Order in the Natural Number System.

In Section 1-3 we begin our study of inequalities. (This
study contlnues in Sections 1-5, 1-7, 1-9.) We observe that the
counting process arranges the natural numbers in a definite order

29
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and we & our order relation on tr= ~ztlon of precedence pro-~

vided by - - counting process. We —is —he order relation to the

additic: ¢ zration in N wusing the triZerion: For a, b 1n N
+<¢b 1f and only 1if i(tk:ere is a =~ 7 zuch

Jatoa + ¢ o= o,

This =rihTey 18 to -=1uce 02,0 : A,M,D,C. Ye ceo

deduxt Pros E,A,01L,20,C. (Ve fa- 1 - -1~ .ion this in the Text.

That vr 2= & prove 1t follows Lrun - fact that there exist

systems =2  'ying all of the E,4,M,”,» wroperties of N, I,

and ever ., -ving none of the O prope;y  ies. Examples of such

systems are ne so-called "modular syst~ms".)

We »g; .n our study of the solutic . of inequalities o
pages 15-1., where we discuss the cance. ‘ation properties and
"checks". At the
bottom of page 18 and the top of page 19, we solve our first

their converses and consider the probl:a of

inequalities.

We close Section 1-3 by completing the list of "basic

properties" for N and summarize the results of Sections -
L~ JO, DAY PR N } ‘

We state the Archimedian and Well Order properties, because
they are needed for a complete 1ist of "bagic propertles" as we
explalned that expression on page 11. We shall have no occasion
to.use either of them 1n our work. The Archimedian property
holds for all the number systems in Chapter 1. Because of this
we state it as a property for N, although in N we could drop
it or prove it from the Well Order property. (The Well Order
property holds for none of the other systems.)

The importance of property 95 (Archimedes) for all of our
systems rests on the fact that any number system without this
property 1s inadequate for problems of '"measurement." Q, asserts
that any "length" b can be "measured"” by any given'length" a.
Thus we know that a yardstick (of length a = 3 feet) can be
used to measure a mile (b = 5280 feet) by putting it down some
nunber n of times, where na > b. If our numbers did not have
this property, there would be some length N (a mile or perhaps

[pages 13-20]
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a light-year, or some greater dista.ice) w.... . .2ould -9t be
détermined as gsome multiple of a yaxrd. I 7 10€z.-ar systems

are not even ordered, they are certainly ‘.| «wmcthizdian ordered";
r.aus8 they are useless for questlons of mecsu =mis>  Although

=hey may not help surveyors or astronomers, ey c =~ ugeful to

people with other kinds of problems.)
On a more elementary level, the Archimedi-n mropsrty is what

makes The long division algorithm work. We tlee . subtracting
miltiples of the divisor. OQur quotient 1is < =rgeit multiple
»f the divisor not exceeding the dividend. ' it mu-tiple of the
“divisor" exceeded the dividend, this subtr s zirccedure would
fall in a dismal way to prodube an& quotien: .

How do we prove .95 from 196 in N? T% .. _~der prin-
ciple implies that no element of N 1s less .man I, Therefore,
if a #1 and a 1is in N, we have a > 1 . : . . But then
-94 gives ab > b, Thus b 1itself 1s such a: n \;s 95 demands.
But if a =1, then a(b 4+ 1) >band b+ 1 .7ills the

- requirement on n. o
The well order property, QG(N), provides t.te logical justifi-
cation for the method of "mathematical induction.” The principle
©of mathematical induction may be expressed as “0llows:
If Sl’ 82, ..;, Sn’ ... 18 a sequence :f statements
and 1f the following statements are true:
(1) s
(11) 1zIr Sp_1, then S

(the latter being true for each naturcl —rr2r m
greater than 1), then every one of the given gtate-
ments

S S S

12 Sos eees Sy een
is true.

We may deduce this principle from the well order rroperty as

follows. Suppose, contrary to our desired conclusion, that at

tleast one of the statements

Sl’ 82, cery Sn’
is not true. We are to force a contradictior from this supposil-

[page 21]
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ticm in conjunction with our hypcmheses. Consider the set of
natural numbers n having the property that Sn ig false. Our
supposition tells us this set contains one or more members. From
the well order property we conclude that this set has a minimal
member, say m. Then Sk is trus for k 1less than m, but Sm
{tzelf is false. Surely m canzot be 1, for hypothesis (1)
wates that Sl is true. Since m > 1, we know that S . 1s
~we. Our second hypothesis, (1ii), tells us that S must be
tr:e since both

Sm--l

and If S then Sm

m-1?
a== tprue. This 1s our contradition, for by the definition of m,
we know that Sm is lfalse, Thus we must reject our supposition
ard conclude that every one of the statements

Sl, Sa, l.l,‘ Sn, e s 0

is true. Q.E.D.

We have shown that the principle of mathematilcal induction
is a consequence of the well order property. Conversely, the well
order property is a consequence of the principle of mathematical
induction. (ef. Birkhoff and Mac lane, A Survey of Modern
Algebra.) These two principles are therefore 1ogically,pquiva1ent;
neither tells us any more about the natural numbers than the other
does. Peano, in his postulational development of the natural num-
ber system, takes the principle of mathematical induction as one
of his postulates. Here we have chosen instead the well order

property, since it seems to be easier to grasp on first reading
than the principle of maihematical induction. We do not explicit-
ly use elther of these principles in this book (except for the
proof of Theorem 15-7t), although detalled proofs for manj of the
results in chapters -3 and 1% would require one or the other of
them. (The statemenzs made in Sectlon 1-2 on page 8 and at the
top of page 9 also conceal "inductions.")

. 32
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I .operties 95, 96(N) are presented in the text fc- =wo
reasons: (1) they complete the 1=st of basic propertie: and
- hence distinguish N from the othke=r systems I, Q, R, C con=
8idered in this book, (11) they rvmvide a2 basis for the studem=s!
future study of mathematics. We c¢. not ==lieve the teachsr neecd
emphasize them beyond pointing out —he=s facts. Certainly thei-
mastery at this stage 1s unnecessazy; It 1is their existence whicn
is significant.

Answers to Exzercises

Exercises 1l-3a:

1. (1, 2, 3, 4 }.
2. 2+’+=6..

3. (a) 2 ¢ 6.
(b) 3 < 5.
(c) a ¢ 3a.
(d) 1+ ac2+a.
(e) b ¢ c. -
(r, ace.
o (=) x g b
(B) 5<¢<x<T7.
(e) ¥ <y.
(d) m # n.
. (e) 3<¢x¢s5.

5. O3. Statement: If there is a d in N such that a + d = 3,
then there is an e in N such that (a+c) + e = b
Proof: Since a+ d=Db, (a+ &) +¢c=Db + c. Now
(a+d) +c=a+(d+c)=a+({c~d) =(a+c!+4d

S(a+e) +d=Db+c '
Thus a + ¢ < b + ¢ because we have found a —imer e = d
which added to a + ¢ gilves t + ec.

+
Q

.3i3
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-

0.

0,(N)

‘there

a + d
Then

. Tf there it & d i N such that a + d = U, then
is a= e 1in I suc: =ha: ac + e = bc., Sirce
= b, then (. + d)ec = bc and ac + dc =be.
e =.°2, where dc it ino _: by the closurz zroperty

for multip._.ication.

X < 2

frooe tpansitovity oo ewms.l: and the order - “inition,

Exercises 1-3b:

l'

(a)

(b)

(d)

(£)

(a)
(b).
(c)

If 2 +b=oc, then &= Db)+ b =c+ b a=< by the
defi—stion for order, a + b ¢ c + b,

If &(b+ c) = d, then a. + ac =d. Since ac 1s
N, then ab ¢ d.

If a ¢b and ¢ ¢ d, then trere are natural Tumbers

e and f such that a+ e =b and c+ f = 2.

Then (a + e) + (c+ f) =b—d, and

(a +c)+ (e+f)=b+d by use of Commutlvity and
Agsociativity for addition., Since (e + f) in N,
then a + c ¢ b + d. An alternate proof can be made
using Transitivity and the_@_3 property.

Trichotomy provides *iree cases; (1) a < b,

(11) b<¢a, (11f) a=Db. If a Db, tuen

ac ¢ bc by Qu(N) which contraficts the hypothesis
ac = be. Similar®r, case (il) wontradizms the
hypothesis, 8so0 = = b.

If a+ c ¢ b+ c, then there is 2 naTuires mumber d
sach that (& + &) = d= b + c. By wsz ol Assoclativity
axnd .91' a~+ T=" =a3macb.

T4 chotomy provides wrmse cases. I a.=b or b a,
then ac = be or = L & for e In N. ===th of these

conclusior=s contrad=t the hypwihesss, 80 = < b.
mwo= 1. ,f.d:) X = Z.

p = 1. « (=) y=21, 2, 3, or =,

x = 1. f) x=2, 3, 4, or S.

Since a ¢ b ¢ c 1If and-only if a ¢ b and b £ =, use ggl.

En

roas
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Exercises 1-3¢:

l. 1 <¢2and 3°1> 2,

2. 10.

3. (a) M5, (B) B, (e) Ag. (d) D.  (e) 9%.
(£) M3. (3) 9,. (n) E,. Ap- (1) 2.
(k) Eg. (1) 0. (m) Eg. (n) 0, (N).

9

(o)

4, Suppose p 1is a solution. T2en p+ 2 = 2 and from the
azfinition for a ¢« b 1t foliows that oD < 2. But
wmls contradicts O, (Trichotomy).

1-4, The System of Integers.

In Section 1-4 we discuss the integers. Just =s in
Sectlon 1-2 where we first discuss the elements of N, we: do not
say what these humbers are, We take that as ”knbwn." We feel
that for us to attempt any description of the numk=rs in our
various systems, or to discuss their "existence," mould besloud
the discussion completely. Throughout this crimpter, we see our
aim as belng the organization, in a logical Jatterw, of properties
of the various sets .of numbers with whzcn the stud:nt is familiar
and some (at least) of whose properties he already .. rows. It
1s not our job to convince the student that "his" muyhsrs have
the basic properties - he has to grant that. Writ we do do -
and it is a pretty ambitious project by Atsels. - is =y to cone
vince him that the rest of the properties Ttiliow as :heorems.

Some .0f" these "derived" properties he :already ..mows, of course,
but wh=Ther or non.he does is irrelevant because we prove Them.
Tds attitude 1s not new to the siudent. It is preclisely
the atvltude in geometry, where the most "basic" words (point,
line, plane) are not deflned; the only attzibutes the geometer
requires of whatever they name 1s that the:postulates be
satisfied. One may put the same interpretztion on our sets of
baglc properties: that our 1lists of basic Propexrties are all we
need know about the various sets of mumberk %hey describke. This

 [pages 23-24j]
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is a possible attitude, and 1t 1is the oOne we adopt here; but it
would be misleading to imply that no other alternative 1s
avallable.

It is possible %o begin with the natural numbers as glven,
and from them to construct, successively, each of the other num-
ber systems. Such programs are carried out in Iandaut's
Foundations of Analysis, Thurston's The Number Sysziem, Kershner
and Wilcox's Anatomy of Mathematics, and other beaits. This
program has been summarized by the great nineteemzh-century
German mathematician Leopold Kronecker in the enZzram "God made
the integers, the rest 1s man's work." Since Krmm=ckert's time,
man has presumed to "make" even the natural numh=rs. How this
may be done is described, for example, in Elements of Algebra,
by Howard Levi.

We "create" no numbers - at all here. We merelz " obsarve"
them and arrange their properties in a loglcal hitsrarchy:
"pagic" properties, and theorems.

Thus on page 24, we simply state that I hss prop=rties A,
(Additive Identity) ami Ag (Subtraction).

Having 55, we define the differemnce of two lakegers a-
page 24, and on page 25 introduce the abbreviation -a for GC—=.
With these items at our disposal we umdertake our f{irst serlom=
sequence of proofs. We show how all the "usuel" mopsrtien of
additive inverses follow from A, AS and the propecrzies we
inherited from N.

The proofs we give for a-0 = O and all the usmal "laws @f
signs" are by no means the only ones we could have mz=lected.
Each teacher has his own favorite way of proving thkese things =nd
we feel we cannot be too emphatic in encouraging kEm to present

alternate proofs to his class. Two proofs a=z alwsys betier tzam
one. More than just twice as good 1n fact, it they felp totzs
the result in question to diverse complexes of deas, thus re—
vealing logical relationships otherwise unnoticed,

The proofs we present in Section 1=-4 are all variatdoms of
Zhe idea that whenever two exppgq;ions satisfy -an equation ‘having
@nly one solutilon, they are eqﬁéli This 1s the: 1dea :of

[pages 24-27]
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"uniqueness," or "unicity." This notion is one of the most im-
portant in all of mathematics: +two numbers have one and only

one sum, product, etc. Such and such a differential equation is
‘satisfied by precisely one function meeting certain initial or
boundary conditions. Each non-negative real number has one and
only one non-negative square root, Each positive real number has
one and only one common logarithm. Indeed any function assigns
one and only one element of its range to each element of its
domain. (See Chapter 3.)

Answers to Exercises

Exercises l=4a:

1. (a) =2. (d) -m.
(b) =-(-5) = 5. (e) ~(-p) =0p
(¢c) =0 or o. (f) -(b ~a) or (a - b)

2. (a) Definition 1-4b.
(v) A, (Additive Identity).
(¢; Definition 1-la.
(8) Theorem l-4a. '
(e) Corollary 1l-ka,

3. A counter example, 5 - 3 ¥ 3 - 5, proves that subtraction
1s not commutative for a, b in I, Perhaps question could be
raised whether subtraction is ever commutative to'emphasize
properties of zero, i.e., a -~b=b-a 1f a = b,

4, A counter example, (5 - 3) -2 # 5 - (3 - 2), proves that
subtraction is not associative for a, b, c in I. An exten-
sion of this would be to determine conditions under which
subtraction is associative in I.

5., If -x ==y, then x =Y.

Proof: If =x = -y, then x4+ y = -y + Yy by_gu
and -Xx 4+ ¥y = 0. Hence, y = -(-x) or y = x.

If x =y, then =~x = -y.
Proof: If x =y, then x+(-x) = y+(-x) and
0 = y+(-x). From this, -x = -y.

37
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If a4+ 0=a for a in I, then O+ 0 = 0. Also, if
a+x=0, then x = -a. Using O+ 0 = 0 as a form of
a+ x=0, then 0 = ~0.

Suppose a in I, a # 0. If a = -a, thena + (=a) = 0 by
Definition 1-4b, or (-a) + a = 0. Since a = -a by
hypothesis, -a + (-a) = 0 and -a = -(~a). But this con~
tradicts Theorem l-ba, a = -(-z.), so a # -a for a # 0
and a in I. From number 6 above, O = 0, so O 1s the
only integer which is its own additive inverse.

Suppose a in N and -a in N. Since at(-a) = 0 and
the system of natural numbers is closed under addition, then
zero i1s a natural number. But zero is not a natural number,
so the additive inverse of a natural number cannot be a

natural nuﬁber.

Exercises 1-Ub:

l.

(a) 14 (=2) =1~ [~(-2)] [Th. 1-b4a,c
=1a~-2 ’ [Th. l-ia
= -1 [Def. l-Ba

(b) 12 - (~4) = 12 + [~(~})] [Th., 1l-lc
=12+ 4 [Th. l-la
= 16 '

(c) (=8) - (=7) = (-~8) + [~(=T)] [Th. 1l-kec
= (~8) + 7 [Th, l-ba
= T+ (~8) [Comm,
=7-38 [Th. l-lc
= =1 [Def. l-ba

(d) (~5) + 7 =7+ (=5) {Comm,
= T=5 [Th. l=lec
=2 [Def. l-la

(e) (~4)+(5) = = (4:5) [Th. 1-Uf

- = -20 38

(£) (=2)-(~7) = (2:7) [(Th. 1-lg

= 14

[page 30]
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(a)

(d)

3(a + 2) -~ U(a+2) =3(a+2)+ [~4(a+2)] [Th. l-bec
= [3 4 (-4)] (a + 2) [Dist.
= (3 - 14) (a + 2) [Th, l-lc -
= (~1) (a + 2) [Def: lala :
-5 (6)(-3) = [-5(6)" (<5 T2 ooz, e oo
= [~(5-6)] (~3) [Th. 1-4f
= (30) (3) [Th. l-big
4(5a)(0) = [4 Sa)] (0) [Def.
= 4{(5a)(0)] [Assoc.
=4 (0) : [Th. 1-lb
=0 [Th, 1l-lb
~(2a~-3) + 4(3~2a) = (3~2a) + W(3~2a) [Def. 1~4b
= (3-2a)+1 + (3=~2a)l4 [Mult. Iden. and
-Comm,
= (3=2a) (1+4) [Dist.
= 5(3-2a) [Comm.,
~(x ~y) = =1(x -~ y) [Th. 1-4%e, and Comm,
= =1[x + (=y)] [(Th, 1-bc
= (~-1)x + (-1)(-y) [Dist.
= =X + ¥ [Th,1l-4e,Comm.,Th.1~ ltg,and Mult Iden
=y - X [Th. l-llc, Comm, :
(~x) + (~y) = «1(x) + (~1)(y) [(Th. 1-4e, Comm.
= =1(x + y) [Pist.
= (x+y) (-1) [Comm,
= ~(x + y) [Th. 1l-le
(-x)y = [(x)(-1)]y [Th, l-le
= (x) [(-1)y] [Assoc,
= (x) [y(-1)] [Comm.,
= [(x) y] (-1) [Assoc,
= - Xy [Th. 1-be
(~x)(~y) = [x(-1)1(~y) [Th. 1-be
= x[{-1)(-y)] [Assoe.
= x[(=y)(~-1) %+ [Comm.
= Xy . {Th. 1l-4e, Th, 1l-la
[page 30]
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3.

ll'.

a(b - ¢c) = afb + (=c)]
= ab + a(-c)
= ab -~ ac

(a) 5x - 3 =

[5x + (~3)1+3=.2+3
5x + [('-'3) + 3] = 1

5x + 0 = 15
bx = 5 «3
x5 = 3+5
= 3
3y + 4 =2y - 18

(3y+d) + (-4) =
3y + [U+(=4)] = 29+ [(-18)+(-l)]
3y + 0 = 2y + (-22)

3y + (~2y) = [2y+(-22)] + (-2¥)
3y + (=2)y = [(-22)+2y] + (-27)

yI3+(-2)] = =22 + [2y+(-2y)]
y = =22
3m - 2(7-2m) =

3m + (=2[7 + (=2m)]} =

3m + [-2(7) + (-2)(-2m)] =
3m + [-14 + Um] =

3m + [4m + (-14)] = 21

{3m + 4m] + (-14) = 21

m 4+ [(=14) + 14] = 21 + 14

Tm = 35
me7 = 57
m=5.

206z + 2) + 3 = 12 - 3(2z - 1)
lz + U4) + 3 =12 + (=3[2z +

[2y+(-18)1 + (=%}

{=1)1}

[Th., 1-be
[Disx.
{Th. l-lec,Comm.,Th,l=4f

{Th, I-lUc and E
TAssze.

5

[AdE&. Inverse
{Add. Iden.
{Comm.,

i,

[Th., l-liec and E)
fAssoc.

[Add.Inv. and Th.1l-U4d
(B -

ITh.1-4f and Comm.
{Camm.,Dist., and Assoc. -
{Th. l-4c, Add. Inv.,
ard Add. Iden,

1z + (4+3) = 12 + [-3(2z) + (~3)(-1)]
1z + 7 = 12 + (=6z + 3)

lz + 7 = 12 + [3 % (-62)]7

1z + 7 = (12 + 3) + (=62)

12z + [7 + (-T)1 =

[page 31]
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(d) (continued)
12z = (~6z) + 8
12z + 6z = [8 + (=-62)] + 62
z(12 + 6) = 8 + [ (- 62) + 6z]
18z = 8 + 0

No solution in I since there 1s no z in I such
that 18z = 8.
(e) x + (~1) = x + (-2)
x4+ (~1)] + 1=1{x+(=2)] + 1
X+ [(=1) + 1) =x + [(=2) + 1)
X=x + (-1)
X=X =1

No solution In I since there 1s no x in I such
X=X -1
(f) 100 (p + 4) + 11p = 1llp + 400
100p + 400 + 11P = 111lp + 400
100p + 11p + 400 = 11l1p + 400
1llp = 1ll1lp
All values of p 1in I will satisfy this equation.
ac = bc if ~(ac) = - (be)
Proof: ~(ac) = - (bc)
(ac)(=1) = be(-1) (Th. 1-le
ac = bc (c

ac = bc only 1f -(ac) = -~(bc)
Proof: ac = bc
(ac) (=1) = (be) (-1) [Eg (Mult.)
- (ac = = (be) [Th. l-4e, Mult, Iden.

. There are eight possible cases for a, b, ¢ to be natural

numbers or not. Of these, only four will have ac = bc
and ¢ ¥ 0.
Case (1). O ¢a, O¢b, and O ¢ ¢c. If ac = bc,
then a =Db by Cy(N).
Case (11). a ¢ 0, b ¢ 0, and ¢ ¢ O, Then O ¢ ac and
0 ¢ bec, If ac = bc, then a = b by _ga(N).

11
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Case (11i). O <¢a, O¢ b, and ¢ ¢ O, Then ac ¢ O
and bc ¢ 0, s0 0 ¢ - ac and 0 ¢ - be
and a =b by _gz(N) and preliminary
Theorem proved.

Case (iv). ac¢0, b¢o, and 0 ¢c. Then ac ¢ O
and be ¢ 0, so same argument as Case (iii).

1-5. Order of the Integers.
' In this section we continue our study of inequalitiea:
First we must extend the definition of the relation ¢« from
the "subgystem" N to the entire system I.
Theorem 1-5a, page 32, permits us to do this (Definition
1-5a) without changing the wordlng we had in N, However antici-~

pating the next extension to all of Q (the rational number-
system), we introduce the terms "positive," 'negative" and reword

our first definition (1l-5a), calling it a "second" definition
(1-5¢c). ‘"It is the latter form which we shall carry over to Q
in Section 1~7. This procedure has a slight pedagogical dis-
advantage, perhaps in that 1t seems to provide two definitlons
for the same thing, If this should bother any of the students
point out that the first (Def. 1-5a) is really the official one
here, the one we actually use in Section 1-5; and that the other
(Def. 1-5c¢c) may be interpreted as a "eriterion" for a < b '
which we shall need later.

_Next we have three theorems on the products of positive
and/or negative numbers. In proving them we use the "law of signs"
theorems (Theorems 1-4f, 1-lg) in our arguments. It should be
clear, however, that Theorems 1l-5c¢, 1-5d are not the same as
Theorems 1-4f, 1-4g as the former are concerned with order and
the notions "positive," "negative" while the latter have nothing
whatever to do with any of these ideas. Theorems 1-4f and 1l-lg
are valid results in any "ring" (i.e., any system with the
E,A,M,D Properties of I) whether or not it has any kind of
"order relation." On the other hand Theorems 1l-5b, 1l-5c¢, 1-5d

¢ are theorems about an order relation.

42
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Using these theorems, properties 91"92’ 93’ 94 (1)

- follow easlily. Note here, that this time we can prove 91’
although we couldn't prove it in N, (See Commentary on Section
1-3,) ' The reason we can prove it now 1s to be found in the fact
that I contains the subsystem N which has the following three
properties: .

(1) Forany a in I, if a # O, then either a 1is

in N, or -a 1is in N
(11) For a, b in N, a + b is in N
(11i1) For a, b in N, ab is in N.
(Property (i) is Corollary l-4a; (ii) and (1ii) are, respectively,
A.,M, for N)

Any ring containing a subset having the properties (i), (ii),
(iii) written above for N also has "our" four order properties
91,9,,05,0,. We might have adopted (1), (11), (111i) as our bvasic

; order properties instead of O O 03,_4 whlch would then be

*.theorems., This 1s done, for'instance, by Birkhoff and Maclane
in their Survey of Modern Algebra and by Stabler in his

.'Introduction.gg Mathematical Thought. We feel the saving to be
gained by having 3 basic properties instead of 4 is more than

- offset by the fact that we are able to throw the entire theory

‘of order back on the counting process, which 1s - after all -

a notion more familiar to students than the idea of the "exist-
ence of a set of positive elements.,"

On pages 35 and 36, we formulate the cancellation properties
for order in I. We give none of the proofs because we believe
that these results will not startle any of the students after
what they've been through already. Any student who is really
interested in seeing some proofs for the assertions on these
pages can construct his own. If he can't, then he ought to go
back and study the proofs for the cancellation properties in N,

He can't possibly lose if he tries: he stands to profit either
way.

We close Section 1~5 with a discussion of "absolute: value
and, on page 38, we solve an inequality involving absolute
values, Students should be endouraged to draw number-lines

—-12=1

[pages 34-38]'
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in connection with Example 1-5, page 38, and Exercise 1l-5b, 2.
-They help to keep the cases straight. .For instance, in
Example 1-5 in case (1) we find -1 ¢ x ¢ 1:

t t 4 90— L4
-3 -2 -l 0 |

(The "dots" represent elements of the solution set)
In case (i1) we find -3 ¢ x ¢ -1:

—e - + —— }
-3 -2 - (o] |

Since the pair of cases (1) O ¢ x+ 1, (1i1) x+ 1 ¢ O

represent alternatives, the solution set of the lnequality 1s

the "union" of thése two sets:

@- 4 - ©- *—
=3 -2 - 0 |

(This device will prove even more useful in Section 1-7,)

Answers to Exercises

Exercises 1-~5a:

1. (a) -2 ¢ 1. (8) -x < x.
(b) -8 ¢ -T. (e) x-y<y~-x.
(c) -2 ¢ O, (f) ox ¢ =-3x.

2. (a) If x<¢y and y < z , then there are a, b in N
such that x+a =y and y + b = 2z,
Since y =2 - b, then x+a =2 - Db or
x+ (a+b) =2, and x ¢z since (a + b) is in N.
(b) If x <y, then there is an a in N such that
x+a=y. Then (x+a)+2=y+ 2
or (x + 2) +a=y+ 2, and x + 2 ¢y + Z.
(¢) If x <O andy <O, then O0< -y and by 0
(Multiplication), x(-y) < O(-y).
Hence, -xy ¢ 0 or O ¢ xy.
If y<O and O<x, thenby0,, y<x or x5>Vy.
e) If x <y, then =x+(-z) ¢ y+(-2) by Oy-
Hence,‘ X -2y ~ 2, 4(1

[pages 35, 38]
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(f) If x ¢y, then x+(-x) ¢ y+(-x) and Oy =-x
or y - x>0,
(g) If -x<¢ O, then =x+ x <O+ x or O X.
If O ¢ x, then O+ (~x) ¢ x + (-x) or -x ¢O.
(h) If x ¢ O, then x + (=x) ¢ 0+ (~x) or O < =x.
If O0¢-x, then O+ x ¢ =-x+x or x<O.
(1) If xy < yw, then xy + [~(xy)] ¢ yw + [~(xy)] -or
0 ¢ yw+ [(~x)y]. By use of Commutivity and Distribu-
tion, O ¢y [w+ (=x)] or O ¢ y(w =~ x).
(j) If x<¢y and w >z, then there are a, b in N
such that x+a =y and z + b = w.
Hence, (x+a) + (=w) =y + (-w)
[x+(-w)] + a =y + [~(z+b)]
+ y + [(~2) + (~p)]
= (y-2) + (~D)
(x-w) + a + b= (y=z) + (~b) + b
(x-w) + (a+b) =y - z
By the definition of order in I, X=W & Y=~2.

a

(x=w)

Exercises 1-5b:

)

1. 3, so the solution set is (1,2].

) 3 so {...-2, =1, 0, 1, 2}.

) 5, so the solution set 1s (1, 2, 3, 4).

) 5, 80 (...-2, =1, 0, 1, 2, 3, 4],

) 3/2, so the solution set is (1]).

) 3/2, so {..., =1, O, 1},

) p ¢ 2, s0 the solution set is the empty set.
) 2 ¢y < b, sothe solution set is (2, 3, 4).
)

)

)

)

)

)

)

= X X N N B B
AN NNNNNN

(a
(b
(c
(a
(e
(£
(&
(h
(a) 3, =3.

(b) =4 ¢ c ¢ 4, so the solution set is (-3,-2,-1,0,1,2,3].

(¢) No solution, since O ¢ |a| for a in I.

(a) (-2, 1).

(e (2); There is no solution in I when U4y-1 < O.

(f) =10 ¢ x < 4, so the solution set 1s (-10,~9,~-8,...,2,3,4}.
(g) 2 < x < 8, so the solution set is (3,4,5,6,7).

[pages 35, 39]
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(h) -3 ¢ x < 9, so the solution set is (-3,-2,-1,...,7,8,9]).
(1) -9 ¢ x ¢ -3, so the solution set is {-8,-7,-6,-5,-4]},
(a) If O ¢ x, then Oex ¢ xex by 0, and O ¢ x°.
(b) If 1 ¢ x, then since O ¢ 1 it follows by Transitivity
that 0 < x. l
Then by 0, 1lex ¢ x*x and x < x2,
(c) If1<¢x, then 0 ¢ x and -x ¢ O, From part b,
X <& x2 if 1 ¢x. From -x<¢0, O0<¢x, and x < x2
it follows by Transitivity that -x < x=.
(d) If x ¢ -1, then 1 ¢-x by 0. Since x < ~-1<0,
then x ¢ O and by 0, -x(x) < 1(x) or -x°¢ x.
Case (ii1): Use proof similar to that for case (11).
Case (EX): lal = =a and |b| = ~b, Since O ¢ ab, then
lab| = ab = (-2)(-b) = |a|-|Dp].
case (1): O0<¢x and O¢y so |x| =x and |y| =y.
Since O ¢ x + y, then |x+y| = x+y = |x| + |yl.
Cage (41): x <O and O<¢y, so |x| =-x and |y| =y.
Also, x + y has two cases; O ¢xy orx+ Yy <O.
If O<¢x+y, then [x+y| = x + y. Since -|x| < |x], then
-|lx| + Iyl < Ix| + |yl by 04+ Also, since |x| = ~x and
|y| =y in this case, then x = —ix| and -~|x| + |y| = x + y.
But «|x| + lyl ¢ Ix| + |yl from previous use of 045 80
x+y<Ixl + 1yl and |x+y| < x| + |yl since {
Ix4y| = x+ty. If x = 0, then |xty| = (-x) + (-y).
since -lyl < lyl, then |yl + Ix| < Iyl + [x| by Oy, or
=y + (=x) < Iyl + Ix|l. But (-y) + (=x) = |x+yl, s0
Ixtyl < Ixl+ Iyl.
9332_1223): 0 { x and y ¢ O. Proof is similar to that
for case (ii) h
Case (iv): x < O and y ¢ 0, so |x| =-xand |yl = -y.
Since x + ¥ ¢ O 1in this case, then |[x+y| = =(x+y) =
(-x) + (-y) = Ix| + |yl.

Combining the four cases into a single statement,

|x+yl < 1x| + |y

[page 39]
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1-6. The Rational Number System,

When we come to the rational number system we shift our
attitude somewhat concerning the extent of understanding we ex-
pect of the student regarding the numbers under discussion. In
the cases of the natural numbers and the integers we said nothing
about how you decide whether a pair of numbers (such as 3 and
13) are equal, how you add them, or multiply them. - All these
things we took for granted. Unless he has had a good deal of
experience working with integers written to various bases
(vinary, octal, duodecimal, hexadecimal, etc.) the student knows
only one name for each number (its decimal name) and so is not
likely to be worried about the multiplicity of "aliases" for the
numbers he knows.

With the rational numbers, however, the questinn is quite
different, for even when we us=: oniy one scheme for naming the
integers (i.e., decimal) we s3£11 have a multiplici=y of names
for each rational number:

3. §-9-22. ... .

We therefore presume to define what we shall mean in saying

two rational numbers, %, %, are equal. (Definition 1-6a.) We
motivate this definltlon by seelng how it must be stated if 1t is
to agree with the equallity relation we already have in I, This
We do on pages 43, Ui, On pages U5, 46 we treat addition and
multiplication for rationals in a similar fashion. The moral
of the whole discussion is that it is our E,A,M,D properties
which force us to frame the definitions as we do. Relying on
these old friends, E,A,M,D, our intent is to dispel any residue
of mystery or dogma the student may have been left with after
hils first exposure to manipulation with fractions,

Since we go so far as to define equality, sum @nd product
in Q, we prove that with this relation and these aperations @Q
actually possess the properties E,A,M,D,C. This program is
carried out on pages 46, 47, 48, 49, On page 50 we get to the
new property ﬂs which Q shares with neither of lts predecessors
N, I. This property "rounds out" the lists A,M and puts them

[pages 43750].
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on a more nearly "equal" basis than they have previously enjoyed.
For instance in N we had

Ay

M., M

D M

=~3* =U-
In I we had '

Ay

By Bys By
Mw M.g’ Mg’ Mlp

where the A-list takes a temporary lead. In Q, these lists are

matched 511ﬁ5, M17M5’ the only discrepancy beimz the exclusion f

of zero atc a divisor in M5¢ As we have emphasized, however, this

discrepancy 1is unavoidable because of the presencs. of property D.

(See the parenthetical remarks following Theorem .- le, page 28.)
We close Section 1-6 br-ztalking about solving equations and

give the usual sermon on that cardinal sin: divislion by zero.

Answers to Exercises

Exercises 1l-6a:

1. .(a) 3/5 A (a) 222
o (e) Ezbe
2. (a) 6 ‘ :
(b) 6
(¢) 5

3. If a, b, c, d in I with bd # 0, then % =g if and

only if ad = bc by the definition for equality of fractions.
Since ad and bec are integers, then by ES (Symmetry) for
integers, bc = ad and by Commutativity, cb = da.

ApPplying the definition for equality of fractions, % = % .

" Exercises 1-6b:

1. (a) %%

(b) %zﬁl 48

[pages 45, 50-52]
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39
() 2522

() HFERtet or %‘z
(e) ZPpz*

(£) 2+
(a) 4 (a) '('g,f—aﬁ' or-ﬂi;-f—z—;
(b) #£ (e) O.

(c) £

3. If b, d, and f are non-zero integers and % = % s

-

then ad = bc. Since

a . e _aftbe _ (af+ve)(df) _ adfP4bdef _ befPbdef
L S tdf’) bafe bdfe
and
c & _ cftde _ (cf+de)(bf) _ befetbdef
d7 T~ daf ~ = ar(of) - 2
baf
then
a e _Cc, €
L B
If h» d, and f are non~-zero integers and % = %, then

ad be. Since

a,e _ae _aeldf) adef _ becef
B T~ BF FT{'_A'G bdf?  bafd

and
c e _ce _ce bﬁ% _ becef
= = = ;)
I I ' F bar2
then
a e_c. ¢e
P°FTTE°T
(3+S) + & = adtbe . e _ (ad+bc)f+(bd)e _ adf+bef+bde
AN T~ "bd 7T = T1ud)-T = baT :
a c ,ey _a ,  cf+tde _ a(df)+b(cf+de)  adf+bef+bde.
5+ (G+F =%+ g = —5(ar) = bar

[pages 48-49]
49



_ac _ca _c.a
" Pd"db~F b
a 1
- -:5 = —(a v—a-) = ...l.
& =a(@) =a(n.2) =a.1=a.
9. If b=0 and a £0, then b+ = = 0e2 by E
. = ’ a - a W Ze°

o.

olo
W

If g =0 and a #

. 1y,
0, then (b. 5) a=0.a by Eg

and b(% +a) = 0 by Association.

Then b+*1=0 or b =0,

Exerclses 1l-6¢:

1. (a)

(c)

2X
=5 4

2x = 12 [E6
x =6 M

E[?\
(]
1
(]
|
ulw

Ul
1
n
O
]

Note: There are many different ways
in which these solutlons can be
made and more# or less detail
can be included.

[§6 and Dist.
(E
(M

12 E§6 and Dist,
g
(M

2(1-w 3w _
Jﬁﬁ+?-2

3w
-2 + 5 = 2

-10 4+ 3w = 10

[Th. -(a=b) = b - a
[§6fénd Dist.
(E5 - 50
LMs
[pages 49, 52]



(e)

No solution;
O«x = 11

If pr, s, and t are rational numbers, then r
r+ t=138+t. '

and only if

The equation can be transformed to

g

-1f

Let'r=%, s=—§,and t=-§,where b,}d, and f

are non-zero integers.

Proof for "if": Ir

and

F+rE=v+5, then

[Def. 1-6b

(af+be)(df) = bf(ef+de). [Def. 1-6a

adf® + bdef = bef® + bdef [Dist.
adr? = bef? [c, for I
ad = be [C; for I
a ]
. =3 [Def. 1-6a
Proof for "only if"': If -% =-§ » then
a e _ af + be
a,g_afdbe [Def. 1-6b
af+be )df ac _ a
=Lm-a'f§— [Th. %5 =%
2
_ adfP+bdef [Dist
baf?e
Similarly
c, e _ (cf+de)(bf)
atr=
_ befPebdef
bdf
a _ ¢ _
Ir =7 then ad = be so that
a , e _ adrPtbdef _ befPtbder _ ¢, e
PTTF bare bdf2 d" T

B
e

[page 52]

b1



42

3, If r, s, and t are rational numbers, then r = s 1if
and only if rt = st. Let r = %, | =-% s and‘ t ='% s
where b, d, and f{ are non-zero integers. ,
Proof for "if": If F+¢ =g-F » then £F =gy and

ae(df) = bf(ce). By Commutativity and
Assoclativity,

ad(ef) = bec(ef).
Using -§6 for integers,

ad = be,

80 by the definition for equality of fractions.
a _ ¢
T a

Proof for “only if": If % =-§ , then ad = bc aud

ad(ef) = be(ef).
By Assoclativity and Commutativity,

ae(df) = bf(ce).
Then

ae _ ce
Bf T dr’
and

a e

c e
TTTTET

1~7. Order of the Rationals.
In Section 1-~-7 we begin by doing to <« what we did to
4+, + 1in Section 1-6: we examine what the E,A,M,D,0

=y
properties have to tell us about how we must define < 1in Q@
go that it will agree with the order relation we have already
in I. This we do on pages 53, 5h.

On page 55 we announce that 91*92’93’94 all hold in @
and that this fact follows from the definition we have given
for <« (Definition 1-7b). At the bottom of page 55 and the

top of page 56, we quote the cancellation properties in "if

1752

[pages 52-56]
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_ Our attitude by now 1s that these properties are all "almost
obvious" consequences of the definitions and of the "old" proper-
ties in T. Proofs are chains of words, and since we now have the
-same vocabulary in our "new" system Q, we can go back and reread
. the 0id words with their new meanings. This way of getting
proofs 1ls what shows most spectacularly, perhaps, the power of
" the study of "structure" as a means of "unifying" these various
number systzms.
On pages 56, 57 we present Archimedes! property and .the
. special order property 96 (Q) of the rational number system.
‘All- of the properties of Q which have been mentioned go over
“intact to the real number system R. (We shall not actually
‘prove this assertion, we shall merely proclaim it.) Thus every
gingle consequence of all these properties will also hold in R.
 (The blg difference between Q and R 1s the fact that R has
one additional order property, Eh (R) (page T76), which it does
'not share with Q. See Commentary on Section 1-~10,)
On pages 58, 59 we discuss the solution of inequalities in
Q, pointing out how the "density" of Q and the "discretion" of
I make a big difference in the way we can specify~solu£ion sets,
At page 60, we return to “absolute value" and look again at
inequalities involving them. The theorems we give here make 1t
possible to "clean up" our methods for handling such problems.
Drawing number-lines to illustrate the solution sets for these
problems 1s highly recommended. Thus -

{ — s oy — —
-2 - 0 [ 2

~deplcts the solution set of the inequaiity in Example l-Tc,
.page 60, This picture may be compared with that for the

problem
' |x] ¢ 1 4if and only if -1 ¢x < 1

' — b — ¥ +
-2 - 0 Y 2

53

[pages 52-60]
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which differs from its predecessor by lacking just 2 "points",

the "end-points" of the interval.

Answers 1:_9_ Exercilses

Exercises 1l-7a:

1. (a) ':2;<'? (a) —3(%
(b) -%—,g{-<-,? (e) 2x+..’~_<£§i-f2
(c) ’5‘<1‘%
i

2. -3 <-25 <-—§ << 2 ¢ 8L, since -~ThO ¢ -T32,
-708 < 940, 235 ¢ 236, 4 ¢ 10, and '26 < 27,
3. Proof for "if"; If O ¢a, then O <% a.
If 0« a,. then O.a ¢a-1l. Using this result with the
def‘initibn for order in Q, | ,%— <-% or O« -5 .

Proof for "only if"': If 0 < al-, then O ¢ a.

Ir 0¢2, then 2¢2 and 0-aca-1 by the order

definition in Q. Hence, 0 < a.

4. Proof for "if": If ad > be, then F > <.
Since ad > bc means bc ¢ ad, then cb ¢ da
: L .a a,c
and 3<B’ °" 1 >3 -

C

Proof for "only if': If ¢ > , then ad > be.

Since %)% means % <%, then c¢b ¢ ad, or bc ¢ da.

From the definition for order in Q,

b
§<5,0r 353
5. Since %=%§, if %<-‘d’-, then %{c<§-,and

afr(d) < bf(c).
[page 56]
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c‘lo‘
hﬂm

Similarly, $ =<2 and if £ <%, then

cb(£) ¢ ab(e).
By Commutativity and Associativity, since af(d) ¢ bf(e),

afd ¢ bfc and bfc ¢ dbe.
Then by Transitivity,

afd ¢ dbe,
or a(fd) < b(ed).
Hence, % <-%% ; )
or <.

Exerclses 1-7b:

1. If 95 (Archimedes) 1s to hold for Q, then for positive
rational numbers r and s, with r ¢ 8, there must be a
positive integer n such that nr > s. ILet r =-% and
8 ='§ s when a, b, ¢, d are integers with O ¢ b and
0 ¢d. Since r ¢ s, then ad ¢ bc. But ad and bc are
positive integers, so O holds and there is a positive
integer n such that ;?ad) > be, or n> §%° This
determines n for O (Q) Note that a # 0, since
r = B must be positive.

2. If a < b, then a + 2a ¢ b+ 2a, or 3a ¢ 2a + b,

Hence, a < 222 | Similarly, 1f & ¢ b, then
, 3 <SP <

a+2b¢b+2b, ora+2bg 3band 22D (b, also,

if a ¢ b, then a + (atb) ¢ b + (at+b), or 2a + b ¢ a + 2b.,

Then -%(2a+b) <-%(a+2b), or 2%;2 < 3529 .

2a+b 2a+Db a+2b

Summarizing, 1if a ¢ b, then a ¢ y =K x,
and 222 b, so by Transitivity,

b
a < 2a§b < a+2 < b.

[pages 56-58]
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In a similar manner, if a ¢ b, then a + 3a ¢ b + 3a and

a ¢ 224D . p190, If a ¢ b, then a + (b+2a) ¢ b + (b+2a),

a+b _ 2a+2b
and 3a + b ¢ 2a + 2b. Hence, 3 T < T . Using

a+2b a+3b ,
a + (a+2b) < b + (a+eb), then ZHED (2D Finally,

b a+2b a-+3b
By Transitivity, a ¢ 33‘1' < 2{ < z‘f <b .

Exerclges 1-7c:

1.

2.

3.

4,

5.

-,g’-<x<-g_- -6, O_<.c<—2:-[-
-%<y<—l 7. %<xs%
-2<a{% 8. --2—111<x_<n-§
l¢ncg3 9. -—%—st%
..-6-%<x<l ) 10, -—%—<x_<——%

Exerclses 1-74:

l.

(a) ~5¢x<¢3 (d) xs% or 1¢x
(b) 0gxgl (e) No solutior:
(¢) x<¢-2 or 4 ¢x 0 < lal for all a.

*(f) 2 < [x+1| ¢ 3 means the same as 2 < Ix+1] and |x+1] ¢ 3.

From Theorem 1-7b,

|x+1] 4if and only if x + 1 £ =2 or 2¢x+ 1,

if and only if x< =3 or 1 < X.

From Theorem 1-7a, .

|x+1} ¢ 3 if and only if -3<x+1¢ 3,

if and only if -} <x <2,

Combining these results,

2 < Ix+1] ¢ 3 if and only if x ¢ -3 and -4 ¢ x ¢2,

[pages 58-59, 63]
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This has the same meaning as 2 ¢ |x+1] ¢ 3
if and only if x ¢ -3 and
b ¢ x <2, or 1< x and
b ¢exg2 |
if and only if -4k ¢ x ¢ -3 or
: lgxcga.
Another approach would be to use the definition of absolute
value as a "side condition." .
OLx+ 1 and 2 < x+1<3, orx+1¢0and2g ~(x+l) ¢ 3,
-1 ¢x and 1¢ x¢ 2, or x ¢ =1 and =3 ¢ x + 1 ¢ -2,
-1l <¢x and 1 ¢ x ¢ 2, or ¥ ¢ -1 and =4 ¢ x ¢ -3.
Since =1 ¢ x 18 1ncluded in l¢x<2, and x ¢ =1, 1s
included in ~4 ¢ x ¢ -3, then the previous statemept becomes,
l¢xg2 or ~l ¢ x ¢ =3.
This solutlon 1s incomplete since 1t gives,
"if 2 < [x1] <3, then 1¢xg<2 or -4 ¢x ¢ -3,"
but does not guarantee that the converse of this statement
1s true. The first solution of the other hand is complete,
since the theorems used involve the "if and only " phrase.

1-8. Decimal Representation of Rational Numbers,

Mohammed ibn Musa al-Khowarizmi, one of the greatest Arab
mathematiclans around 800 A.D., wrote a book called Al-Jabr
wal-Mugabalak. Thils book 1s credited with having much to do
wlth the spread of the arablc decimal system in the Arab world
and, later, in Europe. Our word "algebra" had its source in the
title of this bock, and our word "algorithm,” or "algorism"
comes from the author's name. An algorithm is any step-by-~step
procedure for calculation. The term has recently been less
widely used than 1t had been earlier, but 1is coming back into

57
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use concurrently with the development and wide use of automatic
computing machines.

Answers to Exercises

Exercises 1-8a:

1. (a) 0.7 (d) 4.28571KF
' (v) 0.1I8 (e) 1.2352941176470588
(¢) 0.6875 or 0.68750
2. (a) 3 (a) $22
16
(v) 53 (e) 38651
(c) Li23 11000

4, Let a = 1.9 . Then 10a = 19:§ and 9a = 18 ,

80 a=2 or a=2,0
5. —lﬁ means a decimal expression having (n ~ 1)
10

zerog followed by a "1" ,

1.9, Infinite Decimal Expressions and Real Numbers.

In this section we unvell the whole collection of infinite
decimal expressions and talk about their role as names for real
numbers. We don't say very much, for there is not much we can
say without getting too involved.

We exhibit Liouville's example of an irrational number at
the bottom of page 72 to convince the student that there are
such things; that the number system R we'd like to talk about
really 1is different from Q, the one we have talked about.

Using decimal expressions to introduce real numbers involves
a number of bothersome details which we try to "sweep under the
carpet." (An account of this approach may be found in the first
few pages of Dienes'! Taylor's Series, a book on functions of a
complex variable recently repr;nted by Dover Publications.)

58
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We go so far as to frame definitions for = and <« in

the part of R not in Q. We restrict ourselves to this sub~
get to avold discussing decimals in which the digit 9 repeats and
which are all rational. For similar reasons we omlt entirely

any definition of 'sw:’ or 'product!.

The details are less involved 1f real numbers are introduced
as "Dedekind Sections" (Hardy, A Course of Pure Mathematics,
Chapter 1) or as "Cantor Sequences" but it is 'difficult to
motivate these approaches without a conslderable amount of back~
ground, for the ldeas involved are rather sophisticated. These
methods are outlined and compared in Friedrich Waismann's
Introduction to Mathematical Thinking, Harper Torchbook 511
(paperback). We believe students have a fairly good idea of
what decimals are, so we say about as much as we think they can
take in this context and omit all the rest.

We announce that R has all the @ properties, and take
this announcement as license to invoke any of the Q properties

we wish when working with real numbers throughout the rest of
this book. )

As our version of the speclal order property distinguishing
R from Q we state, Q7(R), the "principle of nested intervals."
If any mention is made of 97(R) in class, a pilcture of the
number-line can be used very effectively:

a a a b b b
0

t

h brace‘is lrss than L the Intervals

n ;)
) : 10~
get small very fast. Putting 1t this way, the class may find it
remarkable anyone could suspect that two different numbers could
both survive this "squeeze" process. If they grant that much,

they are saying that at most one real number lies in all these

As the "length" of the n

intervals. The rest of the assertlon is that one actually does,.

59
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Answers to Exercises

Exercilges 1-0a:

1. 2.153... < 2.1545 < 2.15458 ¢ 2.1547 ¢ 2.1547...

2. (a) 0, (Trichotomy) (8) E;
(b) 0, (Transitivity) (n) A, (Commutativity)

(Dichotomy)

(¢) M, (Commutativity) (1)_ M, (Associlativity)

=2 -3

() C, (Addition) (3) E, (Transitivity)
(e) o (Multiplication) (k) _55 (Subtraction)
(£) Og (Density) (1) D (Distributivity)

1~10., The Equation xn = 4.
In Section 1=10 we examine one of the ways in which 'Q and
R differ. All such differences depend ultimately on property
27(R) which R bossesses but which Q does not, That Q does
not possess thils Property is a consequence of one of our calcula~
tions in Section 1-10, We do not stop in the text to draw this
conclusion, however, for to do éo would cause us to digress from
our discussion. We have written the text in such a way that 1t
¢1s¥possible tq skip over this point in class, in the event the
teacher considers it inappropriate to dwell on the matter. We
take the liberty, however, of filling in some of the details in
this Commentary for the benefit of teachers who would prefer to
gee a more thorough treatment. ’ o
As we say in the text, Q and 'R share all their E,A,M,D
properties. ‘Thus R 1s the first number system in our chain of
extensiona of N which 1s not closed under a new algebraic '
operation, The differences between N and I can be attributed
to the lattert!s closure under subtraction; the differences between
I and Q to the latter!'s closure under division ( O excepted =~ =~
of course). However the 1lists of A and M properties are
completed when we get to Q. R contributes nothing more in
this direction.

60
[pages 77-811

4



51

| The new property, 97(R), however, does produce a very
significant enlargement of the set of numbers involved in the
-new system, Some'enlargement of the rational number system is
necessary on geometrical grounds if we are to have a number system
capable of measuring the diagonal of a square with unit edge, for
example, or any of the other lengths one can construct with
straight«edwe an! compasses, However the demand for all such
"constructikie" lengths is still not enough: the edge of a cube
whose voluse s twice that of the unit cube 1s not constructible,
nor is the nlrvumﬂérence of the unit circle. (These last asser~
tions are prewd in texts on "Theory of Equations.")

The real number system 1s a system "closed" under iimiting
processes. Xt is on these grounds that R 1s adequate for
geometry as wall as "analysis" (calculus and its extensions),

We outline in the text the proof that R contains \/ﬁ—, and
thus lets us measure the diagonal of the unit square. We
announce that R contains %/", which implies that, usiﬁg R,
we can "duplicate a cube," even if this is impossible with only
straight~-edge and compasses. We announce alsoc that R containsg
a solution for each of the equations 1 = a, a non-negative,"”
We do not emphasize, however, that R contains many numbers
which are not Walgeﬁraic” (i.e., which do not satisfy equ;tions
like that in Theorem 1-10a with rational ag, aj, ..., a,_q).
Some of these "transcendental" numbers (i.e. non-algebraic
numbers).are w, e, and even Liouville's number ( 0.1010010001,,.,
“in Section 1~9). 1In short, we certainly do not do Justice to

R or to the many problems 1t can handle. We merely indicate
only a few of its more elementary facets. ‘

With Theorem 1-10a and 1ts Corollary we show the inadequacy
of Q when 1t comes to solving equations more complicated than
bx = a. We turn then to x> = 2 and argue that R contains a
solution — indeed, two solutilons.

We first present an algorithm for determining successive
digits of the number we seek. (We can't call it N/§~ yet because,
we don't even know there 1s such a number until we prove there
1s. All we can say with any cergg;pty is that the number we

[pages 77-81]
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want 1s not in Q. Untll we find it, we know nothing at all
about it beyond this.) There are,. of course, many other algorithms
available, some of which will give us more than Just a single
digit in each step of the calculation. The one chosen seems to
require the least amount of Justification to carry out and DPro-
duces for us two sequences of rationals, the a's and the b's,
"elosing in" on 4/2 . The first part of the argument requires
only the recognition that some real number is produced by our
algofithm. (Whether it 1is the one we want is considered in the
second part of the argument.) That this algorithm must keep
going, that 1t cannot stop after some number of steps follows
from the fact that none of the al's or b's can have thelr
squares equal to 2. The a's and b's are all rational
numbers since they have terminating decimal reprusentations.

In the second part of the argument, we "show" that our
number (by this time we are calling it "e") has 1ts square equal
to 2. We assert that

a, <c< bn , all n,

implies
an2 < c® < bn2 , all n.
This follows from 'Q5 for (writing " =>" for "implies")
2 2
0« a, and a < ¢ =» a," < a,c and a . c<c
= an2 < 02 .
Similarly
2
O¢ec and ¢ < by - ¢? < b,e and cb < b
-3 02 < bha.
: 2 2 1
Finally we assert O < b~ - a, <-zaﬁ , all n.

Here 1s a proof:
From the manner of their construction, we can
say of the a's and b's that

1
by = 30 = T0
by - a. =1

1 15702

[pages 80-81]
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1
b ~-a = .
n n lon+I
But we also know that bo = 1,5 and all the
other b's and all the a's are less than bo:
bn‘s bo for n> Q,
a, < bo for n > 0,

Herice
bn +a, <'2bo = 3, for all n.
But b, +a <3, all n,
and b, ~-a, <-;6%;I ’ all. n,
give
bn2 - an2 < lOg+I < l;g+1 = lén, all™ n,

This calculation proves that the word "real" cannot be re-
placed by "rational" in property 97(R). Notice that here all of
our a's and b's (and hence thelr squares) are rational numbers.
Our number c, howéver, is not rational.

The rest of Section 1-10 deals with radicals. (Students
detecting the trickery in Exercises 1-10a, U46-52, and interested
in learning the pattern behind their construction, may be directed
to the references under "Pell!s Equation" given in SMSG's
"Study Guide to Number Theory.")

Answers to Exercises

Exercises 1-10a:

1. 242 | 8. 10vT 1, %
2. 543 9. 9v3 5
3. T2 10, 122 15, =
ho 343 ' 1., 3

5. b3 . 1%& ' 16. Y12
6. 642 o :

7. 8.3 13. —2—5‘/3 17. '%6—

[pages‘81-85]
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18, 258 36. 1

19. 5@% 37. 3+ 22

20, 8 8. 5

21, 6 39. 2

22. 10 10, 28 + 1746

23. 2+v15 41, -1 ++2

2h, 2 bo, 24 243

25, U 43. -5 ~24/6

26, Y30 B, 7+ 542 -
27. /5 45, 385 + BVI |
28, 2 ’_;, 46, 2 -/3 T ~ WT

29. 2 7. 3 - 242 17 - 121/§“
30. 2§§ 48, 5»- 2 /03 ig - 20406
31, b/ 49, 7 - b/E 9T - 56VE
32. V2 50, 8 - 34/T; 127 - U8/T
33. =46 51. 9 - 44/5; 161 - T724/5
34, 7415 52. 17 - 12+4/2; 577 - 408 V2
35. 3145

1-11. Polynomials and their Factors. (Review)

64

.
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Answers to Exercises

Exerclses 1-1la:

1. 5(x - y) ' 11.
2. -2(3a + 8) 12.
. 3. 3(2p - g + 5r) 13,
b, 5(2y - x + 4w - 2z) 1k,
5. 6b(2a + 1 - 9¢) 15.
6. (x + y)(a + b) 16.
7. (a = b)(x - y) 17.
8. ulx+ y) 18.

9. (x - y)(b+ 1) ' 19.
10.

Exercises 1-11b:

v

Exerdises l=-11c:

2

S OoON oUW e
L1 ] * L] L] . * *
e T e S N

b - 3x)(16 + 12x + 9x2)

[pages 91, 93-94]

2(a + Db) 20.

1. (x + 5)(x + 3) 11,
2. (w - 8)(w - 3) 12.
3. (3 + 5)(a - 3) 13.
boo (Bx + 3)(x - 2) 14,
5. (y - 5)2 15.
6. (3a - 2)(a + 2) 16.
7. w(x - 6)2 17.
8. d(y - 6)(y - 5) 18.
9. (5x - 3y)2 19.
0. a(9w® + 5w - 36) 20.

(c + d)(c2 - cd + a2) 9.
(w -~ 4)(w2 + bw + 16) 10.
(x + l)(x2 - x4 1) 11.

(m - 2u)(m“ + 2mu + qu) 12.
. (3r + y)(9r2 - 3ry + y2) 13.
2a + x)(ka® - 2ax + x°) 1%,
r - l&s)(r2 + Urs + 1632) 15, " (m2 + u2)(m - m2u® 4 u )

(2m + 3n)

(a=2)(a + 2)(a® + 4)

T(c = 3)(c + 3)

(x +a -Db)(x - a+ b)
(a+b+c+d)(a+ba=c~d)
(x = y)(x -y + 2)

(2u + 3v)2

(72 + 1)2

c(x - 4)(x + 2)

2(1 - 4a)(1 + a)

(3 + 4e)(3 - 2¢)

3(7 - y)(2 + y)

(4 + 3x)(5 - 2x)

(2ab + 1)2

(a+ b+ c)la+b-c)

[(a +1b) -1)2 = (a + b - 1)2

alc - 4)(c® + hc + 16)

b(a - 5b)(a2 + 5ab + 25b°)
y(3r + l)(9r - 3r+ 1) -
b(x - 2)(x + 2x + 4)
16(2 + y) (4 - 2y + ¥7)

(x-y)(x2+xy+y2)(X+y)(x2-xy+y2)
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Exercises 1-11d: (Miscellaneous Exercises)

(6m - 5)(2m + 3)

1.

2. (a - 1)2(a + 1)

3. xy(4y - 13)

4, (d+h+ £)(d+ h - 1)
5. (2a + 3b)(m + x)

6. 3a3(2 + 3b - kab?)

7. (3 - 5z)(x = y)

8. (a -Db)a+ b+ 4)

9. (m =~ 2u)(m? + 2mu + 4u2)
10, (3y + 4z)(2y - 3z)

11. (r = 8)(k + w)

12, 4x2y2(2x + 1)(x -~ 3)
13. 2(2r - 3)(4r® + 6r + 9)
14, (e¢+ d+ h)(c+ @& - h)
15. (x° + 1)@

16. a(y - 5)°

17. (10 + t2)(10 - £2)

18, (r - s)(m + p)

19, (a+ b+ c)la+Db~-c)

20, y(3r + 1)(9r - 3r + 1)
21. (7z - 1)°

22. (5c¢ + x)(x - 1)(x + 1)

23. (er - 5)(4r2 + 10r + 25)

o, (2x+y - z)(2x - ¥y + 2)

25, ala - 2)(a +'2)(a2 + U4)

26. (2 - x2)(2 + x2)(4 + x7)

27. (2x + 2y = 1)(2x -~ 2y + 1) i

28, [x~5(x+y) Jx#l(x+y)] = ~(4x+5y) (5x+4y)
29, (x+y+ T)(x+y -~ 1)

w
(@]

. (Pr=-5+ 33 -~ t)(r=-5-335+ t)
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fl-12. Rational Expressions. (Review)

Answers to Exerclses

Exercises 1-12a:

1.

(b)
(c)

( dv,)A....A.;
’(e)

(£)
(g)
(h)
(1)
(1)

(a)

(c)
(d)
(e)

(£)
(g)

(k) X =2

(1) =55y

(m) <2 =3

(n) =5

(o) x° 4

(p)

(@) $55 or -5

() a+b
(s) x =~y 4+ z
(v) 2=f=%
(h) __];__

(1) 3

(1) (c - 3a)®

(k) 2
(1) 5=
() :2++11
+tn) a + b
67
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(x~2) (4x~1)(3%x+2)
(o) > ‘

2(2x-1) (3x“=Ux4l)
(p) BB

ala -~ b
() FF

Exercises 1-12b:

1, ATx - 8

a

1
=

awﬁm

2 L 16y + 5
Ly

5. 19x —2210

6. Ta + 3
a(a® - 1)

7. ~(2x + 1) or 2x + 1

x~ -1 l - x"

oy, Y

g B+l
¢ D

9. 2 x° 4+ y° |
. X 2x+3y) -
L2
10, W+ 18

. mE -9

Exercises 1-12c:
-2

622 - Sab - 2b°
3. bab
y 4

68

2X(X -
(r) FJHx+y
(s) 3 Exx or - x Exz
11 ad 4+ 0a® _ a4 1
c e+ 3 (= -~-1
2
10, 6c2 - 3¢
. ¢t -9
13 13
* 2(x + 2y)
2x + 3
14, isrifxzy)
15. 5a® - hab + 3b°
~ (a + b)(a - b)?
2
16, L= 4b =
(b + 2)(b“~ 1)
2
17. 2x =
(x - 3)(x° ~ 1)
~6m 4+ 7
8. (my Hm =)
19. -xu -~ x3 + 2x2 4+ 3x
(x + 2)2 (x + 1)2
(y° -~ 2y + 5)(y - 1)
20x
5.
x2 - 25
6 -
7 -1 or 1
mE - U b - m§
2
8. 2x§x - x 2!
(x - y)
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10.
11.
12,

13.

S14 .

1
(M F IJ (m+ 1) 15. 2 - x
X2 - x + 12 6. = op°
6x(x2 - 9) a + b
5 ~a 17. r}FT 3
x(x - y) 18, =2u(x + 3y)
¥3(x + y) x =2y

-X 4+ 4 19. 1+a
(2x = 3)(X + 5)(x + 1) T-=a

w 4+ 23
(w + 2)(w = 1)(w + 5)

69
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1-13. Additional Exercises for Sections 1-1 Through 1-7.

Answers to Exercises

_Exercises l~lat:

1. (a) If x<y, then 2x+ 1 =y. - e
(b) If the sum of two integers is even, fhen they are each
odd numbers,
(¢c) xy =0 4f x = 0. (Note change of "only if" to "ir.")
(d) If a=b, then a+c¢c=D>b + c,
(e) If the sum of two numbers is an even number, then it
1s a multiple of 10.

2 2

(1) a2 + b2 =a+b only if (a + b)2 =a“ + b
change of "if" to 'bnly ir.")

2, (Note

(g) 3x+2=81f x = 2, _

(h) If ¢ =0, then a(b + ¢) = ab.

(1) If xy 1is negative, then 2xy + 3 = 1,

(3) (a-Db) ~-c=a~(b-c) only if c¢ = 0.

2" (a) If 3x-2=0, then x = 4; and if x = 4, then 3x -2=0,

(b) If y =2z, then y+ X=2+ %x; and 1f ¥y + X = z + x, -
then y = z. .

(¢) If m<n, thenm~a<n ~a2a; and if m -a < n - &,
then m < n.

(d) If abc = 0, then ¢ = 0; and if ¢ = 0, then abc = 0,
() If r+ 8 =0, then r = -3; and 1f »r = ~s, then
r+ 38 =0,
(f) If p(r + s) = ps, then r = 0; and if r = 0, then
p(r + s) = ps.
(g) If x 1s negative, then -x 1s positive; and if -x
is positive, then x is negatlve,
(h) If a =b, then (a - b)(a + b) = 0; and if (a - b)(a + b)
= 0, then a = b,
(1) If x+ (y - 2) = (x+y) * (x + z), then x = 0; and
1f x =0, then x4+ (y * 2) = (x+y) * (x + 2).
Note: The A and B phrases may be reversed in these gtatements.

’
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Exercisesl-2b':

1. (a) [N (Addition) (£) Ay (Associativity)
(b) D (Distributive) (g) M, (Identity)
~(e) M, (Associativity) (h) Co (Multiplication)
(@) M, (Commutativity) (1) 4, (commutativity)
(e) A5 (Assoclativity) (J) D (Distributivity)
2. (a) x(y + z) = xy + x2 © [Dist.
= ZX + ¥X. [Comm,
(b) (x+y) +z=24+ (x+y) [Comm.
=(z +x) +y [Assoc,
=y + (z + x). [Comm.
(¢) (x +y)(ustv) = (x+y)(v+u) [Comm,
= (v +u)(x +y) [Comm.
= (v +u)x + (v +u)y [Dist.
= x(v +u) + y(v + u) [Comm.
= y(v + u) + x(v + u) [Comm.,
(d) xy+y=xy+1 .% [Mult. Iden.
=yx+y 1 " [Comm.
= y(x + 1) [Dist.
= y(1 + x) [Comm.
(e) 2[x + (y +¢c¢)] =2x + 2(y + 3) [Dist.
=2x+ 2y +2 ¢ 3 [Dist.
=2y +2x + 2 * 3 [Comm.
=2y + 2(x + 3) [Def. and Dist.

Note: Each of these proofs can be done in several different ways,

Exerclses l1-2¢!':

1. (a) (x+1)(3x+2) = (x+1) * 3x + (x+1) + 2 [Dist.
= 3x(x+1) + 2(x+1) [Comm.
= 3x° 4 3x + 2x + 2 [Dist.
= (3x2 + 3x + 2x) + 2 [Def.
= [(3x2 + 3x) + 2x] + 2 [Def.
= [3x2 + (3x + 2x)] + 2 [Assoc.,
= [3x2 + 5x] + 2 [Comm. and Dist.
= 3x° + 5x + 2 [Def.
[page 104]
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(b) 2x% 4 5x + 2; same properties as for (a).
(¢) ox(x+y+3) = 2x[(x+y) + 3] [Def.

= 2x(x+y) + (2x)(3) [Dist.
= (2x)x + (2x)y + 3(2x) iDist. and Comm.
= 2(x%) + 2(xy) + (3 - 2)x [Assoc. and Def.
= 2x° + 2xy + 6x [Def,
(d) 6x° + 3xy + 12x; same properties as for (¢).
(e) (x+2)2 = (x+ 2%+ (x+2)2 [Def. and Dist.
= x(x + 2) + 2(x + 2) [Comm.
=x° +x -2+ 2x + 1 .. [Dist.
= x2 4 Ix + 4 (Comm., Dist.
(f) 2x° + bx + 2; same properties az for (e).
(g) 15(2x)(3y) = (15 - 2)x(3y) [Assoc.,
= (30x . 3)y [Assoc.
= (3 - 30x)y [Comm.
= (3 + 30)xy [Assoc.
= 90Xy [Def.
(h) 6xyw; similar to part (g).
(1) (x+1) (x+y+2) = (x+1) [(x+y) + 2] [Def.
= (x+1) (x+y) + (x+1) - 2 [Dist.

il
—~~ o~

"

+1)x + (x+1)y + (x+1)- 2 [Dist,

= x(x+1) + y(x+1) + 2(x+1) [Comm,
= x2 + X+ YyX +F +2x + 2 [Dist.
= x° + Xy +X+y+2x+ 2 [Comm,
= x2 + Xy 4+ Yy 4+ X+ 2x + 2 [Comm,
= x° + Xy +y + x-1l 4+x-2+2[Mult, Iden.
o and Comm,
=X 4+ Xy +y+3x+ 2 [Dist. and Comm,
= x2 + xy + 3x +y + 2, (Comm,
(3) (x+y+z)2 = (x4y+x) [ (x4+y)+2] [Def.
= (x+y+z) (x+y) + (x+y+z)z [Dist.
= (x+y+2)x + (x+y+2)y + (x+y+2z)z [Dist.
= x[ (x+y)+2] + y[(x+y)+2] + z[ (x+y)+2] [Comm.
and Def.
= x(x+y) + x2 + y(x+ty) + yz + z(x+y) +2z° [Dist.
= x2+xy+xz+yx+y24yz+zx+zykz [Dist.
2

it

x< + y2 + z° + 2Xy + 2xz + 2yz. [Comm., Dist,
[page 10%]
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(a)

6« x + 3xy

hyz + 2z

i

il

2(3x) + (3x)y
(3x) . 2 + (3x)y
3x(2 + v)

(ty)z + (22) - 1

z(4y) + (2z) - 1
(hz)y + (22) . 1
2z(2y) + (22) - 1
2z(2y + 1)

7(m + n); Comm, and Dist,
7(3x + 1); Comm, and Dist.

a(x +y) + a(x + y)

(x + y)a + (x + y)a
(x + y)(a + a)

(x + y)(2a)

2a(x + y).

it

il

2x(a + 2b); similar to (e).

y+3xy =y~

it

y .

1+

1+

(3x)y
v(3x)

y(1 + 3x).

p(5q + 1); similar to (g).
(ab + ac)+ ad
a(b + ¢c) + ad
a[(b + ¢) + 4]
a(b + c + d).

ab 4+ ac + ad

ab + ac + bd +

(x +y) + (w+

cd

= [(ab + ac) + bd] + cd
[a(b + ¢) + bd] + cd
a(b + ¢) + (bd + cd)
a(b + ¢) + d(b + c)
(b + c)(a + 4d),.

il

it

[(x +y) +w] + 2
(x +y + W) + z,

73
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[ABSO¢. and Def.
[Comm,
[Dist.

[Def. and Mult,
Iden, o
[Comm, -

_ [Assoc. and Comm,

[Assoc, and Comm,
[Dist.

[Comm,
[Dist.
[Def.

[Comm,

[Def., Mult,
Iden.
[Comm,

[Dist.

[Def,

[Dist.

[Dist.

[Def,

[Def.

[Dist.

f Assoc,

[Comm, and Dist.
[Comm, and Dist.

[Assoc,
[Def,
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(b)

Xy + XZ 4+ YW + wz

[(xy) -
(u) -
= Xyuv.

(xy) (uv)

(a+b) (x+y+z)

x(a

2 2
X

x° + 2xy +'y
. x2

= [(xy+x2) + yw] + xz
[x(y+2) + yw] + wz

x(y + 2) + (wy + wz)
‘x(y + z) + w(y + z)

(y + z)(x + w).

il

‘

u] v
v

(a+b) « x + (a+b) -y + (a+b)

+b) + y(a+b) + z(a+b).

+ xy(1l + 1) + y2

+ Xy + Xy + y2

X*X + X'y +¥*X +¥-y

[Def.,
[Dist.
[Comm, and Assoc,
[Dist. o
[Corm. and Dist.. ..
[Assoc.
[Def.
[Def,

[Comm,
[Comm,
[Dist. and

Mult. Iden.
[Def. and Comm.

Dist.
[Comm. and Dist.
[Def.

[C1 and Comm,

= x(x +y) +y(x+y)
= (x + ¥)(x +y)
= (x + y)°.
Exercises 1-24°':
1. 1; ¢4 (Addition)
2. T; C1
3. 8; Cy (Multiplication)
h, 3; Co
5. b C; and C,
6. 8z + 3 =24 + 3 [Comm.,
z +8=3-°8
z =3 [02.
7 22 + 5=a+ 3 + 5
Pa=a+ 3 (Cy.
a(l +1) =3+ a [Comm.
a+a=3+a . [Dist.
a=3 ‘ (C,.
1
74
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10.

3p = p + 14
p(2 + 1) = p + 14
pP*2+p=14+p

p,¢2=7¢2

p = 73
bw + 5 =5w+ 1+ 5
by = 5w + 1

No solution over N.
3 + 9+ 6 =5x 4+ 6

3x + 9 = 5x
9 + 3x = x(2 + 3)

9+ 3x=x+2+3°

S = 2x
No solution over N.

Exerclses 1-3a!':

1.

.

.

Ul &= W P

-

(1, 2, 3}.
{1}. -

65

(Cq-
[Comm. .

[Dist., Mult. Iden., an
Comm,

(Cy-
Co-
[ Comm,

(-

‘[ Comm,

-1+ x=3; orl+2=3,

l+%x=5;o0orl+4=05,

(a) 3 <&,
(b) 7 < 12,
(¢) x < 2x.
(d) a < a + 2,

(a) x #v.
() x #v.
(¢c) x<9<v.
(d) x<5¢<v.
(e) x< 2,

[y -
[Comm,
[Dist. and Comm,

Lgl and Comm,

(e) 3x+ 1< 2x + 4,
(f) 5m + 1 < 4m + 3.

(8) ¥<

(£)
(g)
(h)
(1)
(J3)

X O &= o
NINIVIA A

75
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Exercises 1-3b!:

1. (a) (1, 2. (£) (1, 2, 3}. -
(v) (1, 2, 3}. (g) (1.
(c) [1, 2, 3, Ll., 5, 6}‘ (h) [1]0
(a) (1, 2}. (1) 2 < x < 3, 80 no solution
(e) (1, 2}. over N,
(3) 3>x>2, scno solution
over N, '

2, (a) If x<y, then x+ a =1y where a 18 a natural number.
Then (x +a) +z =y + 2 by Oy or x+ (a +z) =y + z.
Since (a + z) is in N, then by the definition for
order In N, x <y + z. '

(b) If x(y + z) = wz, then Xy + xz = wz, or
X2z + Xy = wz, Since xy 1s In N, then xz < wz,

Hence, x < w by gge.

(¢) If x(y + 2z + w) =a, then x[y + (z + w)] =a by
definition. Then xy + x(z + w) =a, or x(z + w) + xy = a.
Since xy is in N, then x(z + w) < a.

(d) Zf x>y and w>z, then y+a=x and z + b =w
where a, b in N, Then (y + a) + (z + b) = x + w, or
by Association and Commutation, (y + z) + (a + b) =
X+ w, Since a+ b 1is iIn i, then y + 2 < x + w, or
X+ W>y + 2. '

(e) If a<y, then a+ ¢ =7y, where c 1s in N. Since
X =a2a+b, then {a +¢c) + (a +b) =y + x, or
2a + (b+¢c) =x+y. But (b + c) is in N, so
2a < x + y.

Exercises 1l-lat:

1. (a) -4 (d) x -1
(b) 5 (e) ¥
() x (f) -x
70
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2. (a)
(b)
(c)
(d)
(e)
(£)
(&)
(h)
3 Let
and
Cq»
b, Let
a,
¥ +
5. Let
and

Associativity, and C.,

a -

Note: ﬂh

not -

Ag (subtraction)
Ay ‘(Add. Iden.)

67

and 55 are propertles;
Theorems or definlitlions

as required in the exercise

instructions.

1-U4b.,
1-la,
1-Ub.

Def'.
Def.
Def.
EEQ
Def. 1-ka.

Corollary 1l-la,

x=(a+b) -c and y=>b - c.
y+c=b, 50 x+c=a+ (y+
x=a+y. Hence, (a + b) ~c
Xx=b-c and y =2a - b,

so (x+c) + (y+Db) =b+a, or

c =a~-X. Hence, (a -b) +c =
x=a-(b+c) and y=a - b,
b+y=a, 80 (b+c)+x=Db+7y.

c + x
(a - b) - c.

V>

=

(b + ¢)

Exercises 1-Ub!':

1. (a)

SN TN TN N N N
R » 0 o T
e e e e e N

(x + y)(-1) = (-1)(x +¥)
= -(x +¥)
3x; Th. l-bg. s
6 - (-2) = 6 + 2°= 8; Th. l-kec.
-12; Th. 1-lf,
0; Th. 1-kb.
(-x) + (-2) = -(x + 2)
-2(3)(4) = -6(4)

= 24
8+ 12 = 12 + (-8)
=12 -8 =14

77
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Then X+ c¢c=Db and ¥y + Db

\

Then x4+ c¢c =a+ b
c).
a+ (b -c).

=

¥y +c)+x=a and
a - (b-c).

Then (b +c) +x=a
By Commutlivity,
Hence,

or x =Yy ~C,

[Comm,
[Th, 1-4f, Mult. Iden.

[Th. 1-4d
(Th. 1-4f
[Th. 1-4f
[Comm,

[Th. 1-kc

By Assoclativity and .
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(1) =b ~ (=7) = b+ [=(-T)] = b + T [Th. 1-ke
. =T+ (-4) [Comm.
=7 -4 =3 [Th. 1-lc
(3) (-5) = (-9) = (5) + [~(-0)] = (-5) + 9  [Th.l-he -
- = 9 + (-5) [comm, 7
=9 -5=14 .. [Th. 1-kc

2y (a) Ux -2 =8 if and only if U4x = 8 + 2 = 10[Def.
No solution over I, since there 18 no X in I such
that 4x = 10,

(b) 6m+l = 13 if and only if 6m+l+(-1) = 13+(-1) [EC,
if and only if 6m = 12 [Add. Inv.,
. Add. Iden.,
Th., l-lc
if and only if m*6 = 2.6 [Comm.
if and only if m = 2 [EQQ
(¢) 5y-3 = 2y+6 if and only if 5y+(-3)+3 = 2y+6+3 [EC, and
Th. l-ke
if and only if 5y = 2y + 9 [Add. Inv.,
- Add. Iden.
if and only if 5y+(-2)= 2y+9+(-2y)  [EC;
if and only if 5y ~ 2y = 9 [Th, 1l-4c,
Comm., Add. Inv.,
Add. Iden. ;
if and only if 3y =3 * 3 [Th. 1-kec,
. Comm., bList.
if and only if y =3 [Comm., and gge

(d) 3p+T=p+9
3p + 7+ (-P) =p + 9 + (-p) [EC,
(Comm., Th. l-4c, Add.

2p+T7T =209 . Inv., Add. Iden.
2p = 2 [(Add. Inv., Th. 1l-lke,
Add. Iden,
p=1 (ECo, Mult. Iden., Comm.
(e) Ux -2x - 2=06 [Dist. Th. l'-lc
2x =6+ 2= 8 (EC;, Th. 1-4¢c, Dist.
x=4
1]
78 ‘
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(1)

(o)

Ty + 6y + 9 = 17
13y = 17 + (-9) = 8
No solution over I.

bag + 31 = 6a + 21
31 = 2a +'21
10 = 2a
a=>5 .
5 -6x - 8=23x+ 6 ~18
-6x - 3 = 3x - 12
9 = 9x
X =1
3y -3 +2=6-2y -6
3y - 1 = -2y
5y = 1

No solution over I.

13 - 3w+ 4 =1 -2+ 6w

69

[Dist.,
[Dist., Comm., EC), Th, l-he

[Dist., Comm. R
[Egl,,Add. Inv., Comm.,

‘Add. Iden.
[Egl, Add. Inv., Add. Iden.

[EC, and E, (Symmetry)
[Dist., Th. 1l-kc

[Th. 1-4c, Comm.

[EC;, Add. Inv., Add. Iden.,
Dist., Th. 1l-kc

[Dist., Th. l-lec

[Corm., Th. l-4c, Add. Inv.,
Add. Iden.

[Add. Iden., Add. Inv.,

ECy, Th. 1l-le

[Dist,, Th. l-kc,g, EC,,

Add. Inv., Mult. Iden.
Add. Iden.

17 - 3w = -1 + 6w [Th. 1l-bc
18 = 9W [-E-C-l’ Com.’ Dist.’ Add-
Iden., Add. Inv.
w= 2 [Ege, EE
a-(b-c)=a+[- b+ (-c)] [Th. 1l-kc
=a+ [(-b) + ~(-2) ] [Th. 1-k4d
"""" =a+ [(-b) + c] [Th. 1-la
=[a+ (-b)] + ¢ [Assoc,
=a-b+ec [Def. and
Th. 1l-lc.
a(b - ¢) = a[b + (-¢)] [Th. l-lc
= ab + a(-c) [Dist.
= ab + [-(ac)] [Th. 1-4f and
Comm,
= ab - ac [Th. 1-ke

79
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(c) ({a=b)(a+b) = (a-b)a + (a - b)b [Dist.

afla + (-b)] + bla + (-b)] [Comm,, Th. 1l-lc
+ a(-b) + b. a + b(-b) [Dist.

b2)]

= a» a
= a2 4 [-(ab)] + ab + [-( [Def., Th. 1-bf
- 2 : Comm, o
=a 4+ 0 ~Db - [Add., Inv,, Th,
5 o 1-le
=a~ - b". , [Add. Iden.
(d) (a-b)2 = la + (-b)]{a + (-b)] [Th. 1l-kc, Def.
= [a + (-b)]a + [a + (~b)](-Db) [Dist.
=a-+a+ a(-b) + (-b)a + (~-b)(-b) [Comm., Dist.
= a° 4+ [~(ab)] + [-(ab)] + b2 [Def., Th, 1-f,
o '2 Th. l-ig ’
= a“ + 2[-(ab)] + b“ [Mult. Iden.,
o o Dist., Comm.
= a° 4+ |-2(ab)] + b [Th. 1-4f .
= a% - 2ab + b° [Th. 1-lc, Def.
(e) (a-b)(a2+ab+b2) = (a-b)a2+(a-b)ab+(a-b)b2 [Dist.

= aE-a+a2(-b)+ab(a)+ab(-b)+b2-a+b2(-b)
[Comm,, Dist.
3 2 2)

= a +(-a2b)+a b+(-ab2) 2

+ab“+(-b
[Def., Th, 1-4f,
Comm,, Assoc.

= a3 4+ 0+ 0+ (=bd) [Add. Inv.
= ad .3 [Add. Iden.,
Th., l-lc
Exerclses l-5at:
1. (a) -6<¢ b, (F) 3w < 2w.
(b) =3 < -2. (g) z < -3z.
(¢) -5<2. (h) ¥y -1<y+1.
.(d) x < =X. (1) -2x < 2x.
(e) 1<v. (J) 2p - 1< 2p + 1.
2. (a) Since y >0, y 1is a natural number. Also X+y = X+¥.

Therefore x ¢ x + ¥y by Definition 1-5a.
(b) If x<y, then x+ (-y) <y + (-y) by 03. Then
X -y < 0 by Theorem l-4c and Ay.
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(¢) sSince x <y, x+a =y where a > 0. Then
[x + (-¥)) +2a=0 or (x-7y)+a=0. Therefore,
X - ¥ < O by Definition 1-5a, because a is in N.

"(d) If x<y, then x+ a=y where a is in N. Then"

(x+a)+(~w) =y + (-w) and (x-w) +a=y -w, or
X =-wW<y-w, If z< w, then ~-w < -z and
~-W+Y< -2+y,0r y-w<y-z, Since x -W<y -w
and ¥y - w< ¥y - z, then by Transitivity, x - w< ¥y - 2.

() If 0<x<y, then 0< x and =-x < O. Since =-x< O
and O < X, then -x< x and -x+y<x+Yy, or
vy -x< X +Yy.

Exercises 1-5b':

1. (a) x< 7, so (1, 2, 3, 4, 5, 6}.

b) No solution over N.

c) (1, 2}.

d) (1}).

e) (1, 2, 3}.

£f) (..., =1, 0, 1, 2, 3, 4)
g) No solution over 1I.

h) {-2, -1, 0, 1, 2},

i) No solution over I.

(3) (-1, 0, 1,2, ...},

(a) [‘3: 3)-

(b) No solution, since 0 < |a] for a in N.

(¢) (-4, -3, -2}, i.e., integers 2. such that -5 < z < ~1.
(¢) (o, 1, 2, 3, ..., 10).

(e) (-4, 3}.

(f) No solution, since 0 < lal] for a in N.

(g) (-1, 0, 1, 2}, i.e., integers x such that -1 <x<£ e
(h) (-1, 5]}.
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(1) {'6: -5J -ul ‘SJ -2, '1: 0]; ’qu + 3[ 2
ly +3l <3

[0y +3~andy+3<3]or [y+3<0and -(y o+ 3) L3

[-3<y and y< 0] or [y<-3-and -3K7V¥ + 31
[-3 <y £L0] or [y < -3 and -6 £ ¥l
[-3 < ¥ < 0] or [-6<y<-3]

. Combining these results; -6 < y < O.
(J) {’2; -1J 0, 1: 2, 3}

Exercises 1-6a':
1. (a) 1 (r) 252
(o) 2 (g) oo 2
() -3 (n) 252
(@) g | (1) A2
- 3 (3) e
2. (a) 16 (d) 16
(b) 12 ()
(c) 35 C(£) 5
Exercises 1-6b':
1. () 1f (r) 252
(v) Bty (g) 2o g2
(c) -7—a7{§ﬂ : (h) §'a*.\.j§“g
(o) o (1) Bbta -2 +2
(e) 2+ % (3) o
82
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2. (s) 38 () Ty
() & &) &2
(e) 22 (n) Exg-2
(a) 28 (1) o
() 2 (3) ﬁg
Exercises 1-6¢1!;
1. (a) -5—}39=4.1f and only 1f 3(2%) = 3(4), [EC,
if and only if 5x = 12, [Mult. Inv.
if and only 1f  x = L2, [

Note: Only the major reason involved in the statements are
glven. For example, in forming the second statement
use 1s made of a number of other reasons such as

Assoclativity, % = a % , etc.

(b) 2% +1 =6 if and only 1f &L +14(-1) = 6+(-1),  [EC,

if and only if 2% = = [Add. Inv.
gg ’ Th. 1-4c
if and only 12 7. F = 7.5 [EC,
1f and only if 2y = 35, ' [Mult. Inv.
if and only if ¥y =‘§§ LMS
() }
4
(@) =
(e) &
2
(£) £

83
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(&) 9
1
(h) &7
(1) Since (1 - x) = -(x - 1), then the equation is the
same as 1 - 2(-1) = 54%-3, so X =T.
11l
(3) 10
2. (a) 1f &=% then 2+2-S%4+ 8 by E.. Adding
: @ P hd T d =5" !
a+b_c+d
b - d
(b) If % = %, then ad = bc. Using Commutativity, da = cb,
and by definition for equal rational numbers, z = %-
b _d
Hence, £ =7 by Eo.
(¢) 1If % = %, then % = % from (b) above. By ES’
b a_d, ¢ b+a_d+c -
stz = ¢ + <y 80 2 = s " Using Commutativ%ty,
a+b_c+d
a  cC '
@) 1£ =S5, then 2+ (32) =%+ (2. ndding
@ b b d da’- ’
a+ (b)) _c+(4) , a-b_c-4d
- d - d
Exerciges 1-7a':
11 _ 13 m-1_m+1 o
1. (a) =7 < =g. (d) 5 < e for -8 < m;
2 L m+1 _m-=-1
(b) =T < BT 7 <=3 for m < -8.
2x . 9 28 5
(c) —§<j%- (e) m<'3§-

26 _ 53 _ <15 _ 1
<5 <TF<3<FHF<TFS
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3. If a<o0, then < oO.
Proof: If a < 0, then 0 < -a by 05. Since 0-1< -a-1

by My, then O < 1(-a) and by Def. 1-7a, 0< i-.
1 1
Bu? =3 for a #0, so 0< - %. Hence,
1
<0 by (_)5
Ir % < 0, then a < 0.
Proof: If % <0, then 0K - % and O < :%. By Def. 1-Ta,
0< 1(-a) or 0 < -a. Hence, a <0 by_QS.
a.c c e c a e _¢
b, If _5>E‘I and 'a'>-fr, then -a-<E- and —f-<a-, By
Transitivity, % < %, Hence, % > %.
Exercises 1-7b':
, 5 11 6
1, If average method is used; 7 <ix < 7
5 6
7(—8<—1;<-2'8'<7:
5 41 43 - 45 23 _ 6
7<B'6<§8<'5'6<']7I<'5'6<§8<7‘

An alternate method would be to form 7 =5 and g = %g .
Then
3

5 _ 30 .31 32 _3 34 _ 35 .36 _ 6
Trm<m<mL<mp<p<plp=r7

5 3; _ 19 5 3; _ 1 5 3, _ 15 3 5. _ 1

2. '6 + El = 15 lg T| = 15 Ig y H' = 37 'E' - '6' = -5

Hence, I%I - I%I < I% - %l < Ig syl <12+ gl

3. The proof is exactly the same as that used for Theorem 1l-5e
except that a 1is in Q@ rather than a in I.
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b,

The proof 1s exactly the same as that used for Theorem 1-5f
and part U of Exercise 1-5b except that a in Q rather

than a 1in I.

Exercises 1—70':

1. 6 ¢ 3x+ 2< 10 if and only if 4 < 3x< 8, [oC,
Fex<d o
2. - %§<( y < - %u
3. -2<,-2-"§£-3—<2 1f and only 1f -10 < 2w + 3 < 10,  [0C,
13 < 2w <, [9_(_:_‘1
Fcw<t 196,
4, -1< 3 - x< 1 1if and only if -4 < - x < -2 (oc,
' 2 < x< b, [oc,
5. 22<y<3
6. 0<m¢K %.
T. % <ag %.
8. -1§ <P<F-
9. -1¢ =X <1 if and only if -2< 4 - 3x < 2,
-6 ¢ -3x < =2,
%_g x < 2.
10. % £ xKL %.
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Exercises 1-7d!':

1. (a) |x+ 3] <5 1if and only if 5<x+3<5, [Th. 1-7a
-8 < x < 2. [Q_Q_l
(b) -8< x < 6.
() 0<y <
(@) o<y <os.
(

e) |4 -m| > 6 1f and only if b-m¢ -6 or 6 < 4-m, [Th. 1-7~
-m < -10 or 2 < -m, [OC

10<m ormc< -2, [Oy

i) 1< Ix+2] <3 4if and only if

[x +2< -1orl<x+ 2] and [-3 < x+ 2 3]
[x < -3 or -1 < %] and [-5 < x < 1].
Combining these cases,

[x { -3 and -5 x< 1] or [-1 {xand -5< x < 1],

[-5 < x £ -3] or [-1 < x<1].

The combining of the two cases is actually the use
of the Distributive Property of propositional logic:

(a Ab)V c=(aVe)A (bV c), where a = (x < -3),
b=(-1<x), and ¢ = (-5 < x < 1); using A for the
conjunction "and" and v for the inclusive "or." This
point will necessarily have to he made by appealing
to student!s acceptance of the same meanling for the
two cases, 'Number line diagrams may be helpful to
make this point.
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x<-3 or -1<X -5<x<1
e o f =t -> ' . SE e e e S S
- -3 ' _f 0 and -5 o 1
x< -3 and -5 x<g1 -5 < x(g1 -1 < x
— —A -
= 4¢*; S t——- or "—W
-5 -3 o 1 -5 -t o0 |
5 < x< -3 -1 <x<1

() 1¢x<2.

2. Theorem 1-17a for a = 0. |x] <0 4f and only if -0 < x O,
i.e., X =0, .

Proof for "if": If x =0, then |x| < O.

If x = 0, then

x| =0 and |[x| ¢ O.
Proof for "only if": If |x| < O, then x = O.

Since 0 < |x| for x in Q, then |x| < 0 only for
|x] = 0. Hence, x = O from the definition for order.
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1-14. Miscellaneous Exercises.

Answers to Exercises

1. (a) I, Q, R. (£) I, Q, R.
(b) Q, R. (8) N, I, Q &
(¢) I, Q, R. (h) R
(d) I, Q, R. (1) Q, R.
(e) I, Q, R. () N, 1, 9, R.
2. (a) False (f) False
(b) False (g) True
(¢) False (h) True
(d8) True (1) False
(e) True
3. (a) M, (Associativity) (f) M, (Commutativity)
(1p) Ey (Transitivity) (g) D (Distributive);
(c) o (Multiplication) (m4 is also involved).
() M, (Mult. Identity) (h) Ay (Add. Identity)
“ (e) E, (Symmetry) (1) Og, or 0C,; also Ag and A,
(1) A, (Commutativity); also
possibly_g_q2 and Dist,
4., (a) True; D (Distributivity)
(b) False u
(¢) True; Aé (Commutivity)
(d) False
(e) True; M, (Commutativity)
(f) True; Mg (Associativity)
(g) False
(h) True; Ay (Commutativity)
(1) True; A, (Commutativity)
(3) True; M, (Commutativity)
(k) True; D (Distributivity)
(1) 'True; 52 (Commutativity)

5. Commutatlvity for addition,
89 .
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6. (a) -3 <6. (1) - <-13 ‘
(b) -5 < -2. (1) 15 <=
(¢) =7 <O. (k) a < a®
(d) 8.2535 ¢ 8.2536 (1) a® <¢a
(e) -0.1 ¢ ~0.001 (m) a ¢ -a
(r) +<% u (n) a2 ¢a
(8) -3 <73 (o‘) a ¢ af
(n) T% <‘f}
7. (a) (1} (x < 2).
() (1,2,3,4) (y g ¥).
(¢) {1,2,3) (p < }).
(4) No solution in N (m < -.?—).
'(e) No solution in I (-g <X <¢2).
(£) (1,2) (e <. |
(&) (2,3,4,...) (§f <x).
33
(h) (1) (v <53}
(1) -3F<x<-3
(1) -3<wg3
(k) 5 <yge2.
(1) (... =8, =T} (4 7 -6).
(m 2o3c1arr1-2¢11er -2 co.
Hence, 0 « X.
8. (a) (=3, ~2, =1, 0, 1, 2, 3) (=4 < x ¢ }4).
(b) y<¢=-4 or 4<cvy.
(¢c) No solution; O ¢ el for ¢ in R.
(8) {1, 2, 3} (p < ). _
(e) (... ~lt, =3, -2, 2, 3, ...)(n<—-%or %<n).
(f) ["6) 6]' .
(g) No solution; |[3m - 1] ¢ -1,
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(n) Case (1) 0g X ; 1 angZ2t1 4 x=-56

-1l ¢ x and x = ,
Case (ii) 5—%—1 <0 and - X ; 1yx= 6,

X ¢ -1 and x = 13,

No solution, sinece no x in N satisfies

X+ 1
= <0

8. (i) No solution; case (i) - %'g y and y = - g

(3) case (1) 0 <-g£—:—l and 4

Case (i1) y <_:-% and y = = %.
+
<

Case (11) 2c -1 <0 and 4 - EEL;:_E”< 6,

-2 1
5 < ¢ <5

Combining the two cases, ;

|

1 A -2 1

. "pse<z o mp<e<glh
Hence, - % < e <-% .

(k) No solution, since O ¢ lal for a in R.
(1) case (1) 0 ¢ x and x = 8. Case (1i1) x ¢ O and
A x =-§ . Only Case (i) gives a solution, x = 8.

(m) -3 ¢z<¢-2 or 1c¢z<?2. This can be done by use of
Theorems 1l-Ta, b; see Teachers Commentary for 1-13,
Exercise 1-7d', part 1 (1) for a discussion of a
similar problem,

41
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(n) If |x| ¢ 3, then =3 ¢ x £ 3 by Theorem 1-7a.
it |x| >5, then x ¢ -5 or 5 < x by Theorem 1-7b.
Since |x| ¢ 3 or |x| > 5, then

[-3¢x¢3] or [xg-5 or 5¢zxl
Combining these glves

-3 ¢x¢3 or x<=-=5 or 5 < X.
This 1s the use of the general assoclatlve property
of propositional logic, e.g.,

av(bve) = (avb)Ve =aVvVbVve
where in this case a = (-3 ¢ x < 3), b = (x < -5),
and ¢ = (5 ¢ x). -
A number line diagram 1s useful to plcture these

gstatements. 4
,,,,,,,, N _ N ‘
- G . G —
-5 -3 (o] 3 )
9. (a) x ~ (y+z) = x + [~(y+2)] [Th. l-hé

x + [(~y) = (-2)] [Th. 1-4d
(x + (-¥)] + (-2) [Assoc.

_ (x = y) -z [Th. 1-kc
(b) (x~y) + (x~2) = x + (~y) + w + (-2) [Th. 1-lc and Def.
x+w+ (-y) + (-2) [Comm,

(x+w) + [=(y+2)] [Def. and Th. 1-k4d
(x+w) ~ (y+2) [Th. 1-4c

(c) Use OC,; 0 < x 1f and only if
x(-1) < 0(-1),
or -x < O.

(d) Use oC,; x < 0 1if and only if
0o(~1) ¢ x(-1), or

0 ¢ -x.
92
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10,

i

x(y + 2)

I

(x +y) + 2

(x + y)z

i

x + (y + 2)

(x+y) (w+z)

x(z + y)

(z + y)x

=x + (y + 2z)
=x+ (z +y)
=(x+ 2) +y
z(x + y)

zZX + zy

Xz + yz

[l

[l

[l

[l

]

i

it

(x +y) + z

(y +x) + z
(x+y)w  + (x+y)z
wix+y) + z(x+y)

[Comm,
[Comm.

[Assoc.

[ Comm,

[Assoec.

[Comm.
[Dist.
[Comm,

[Assoc.

[ Comm,
[Dist.
[ Comm,

wX + wy + 2x + zy [Dist.
XW + YW + Xz + yz [Comm.
XW + X2 + yw + yz [Comm.
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I1llustrative Test Questions

A. Multiple choice items.
1. Which of the following statements 1is a correct logilcal
inference from the statement: Every element of set A

is an element of set B.?

(a) If P 1is an element of B, then it 1is an element
of A,

(b) P is an element of A 1if and only if it is an
element of B.

(¢) P is an element of B if and only 1f it is an
element of A.

(d) P 1s an element of A only if it is an element
of B.

(e) If P 1is not an element of A, then it is not an
element of B.

2. Which one of the following 1s NOT equal to % ?
. 2
(a) % +-$ 5 (c) .(%) H _ (e) % - % .
(b) 3+ 2 (a) 2+ 5.

3. Which of the following is an equation with integral
coefficients that has the same golutlon as

3 n

-PIX = -é-j: ?

(a) 6x = 12; (¢) 8x = 6; (e) 9x = 8.
(p) 7x = 12; (d) 8x = 9;

4. Which of the following properties of zero is the basis
for excluding "division by zero" ?
a) a+ 0= a for every integer a.
b) a + (-a) = O for every integer a.

d) O 1s its own additive inverse.

(
(
(¢) a+ 0= 0 for every integer a.
( .

(e) O 1s the additive identity.

5. If a <O and O ¢ b, then 2vb + -Vazb equals

(a) (2 + alWoj
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(b) (2 - a)vh; (a) (b + a®)p;

(¢) (2 + a)b; (e) /(4 - a®)v.

If p, g, r and s are arbitrary natural numbers,
four of the following expressions have the same value,
Which one has a different value?

(a) pc + rs; (d) ap + sr;

(b) sr + pqg; (e) rs + qp.

(¢) pr + sq;

Which one of the following is NOT true if p, q, and
are integers such that p < q <¢r ¢ 0 ?

(a) p+r<ca+ r; (d) 0 < pr;

(b) pq < rq; (e) ar < pr.

(¢) O¢r -~ p;

What 1is the smallest positive integzer n such that

(3-4)> &

(a) 6; ~(b) 8; (¢) 9; (a) 10; (e) 1s.

Which one of the following sets of numbers is NOT
closed under the "operetion" of squaring?

(a) ({2, 4, 8, 16, 32, ...).

(v) (-1, o, 1}.

(¢) (-2, 4, -6, 8, =10, ...).

(a) (-1, 2, =3, 4, -5, ...}.

(e) (1, 3,5 7,9, ...).

If a, b, ¢, and d are arbltrary integers such that
O<¢ac¢bc¢ce¢d, which of the following is a correct

conslusion?
a _c a _b.
(a) 'B <'a':' (C) 3 < c’
,ooa b a b
(eb 5 < g’ (a) P+¢c< P +4d°
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B. Short answer :tems.

1. Express each of the following rational numbers as the
quotient of two integers:

(a) 1+3+3 (b)

wh—‘lmjw.

. Find the integer k such that the rational number

k - 3 :
T is equal to the integer 2.

3. PFor what integer k will the pair of rational numbers

k + 1 k
T K= 3 be equal?

4. Express the reciprocal of 6 - 2./5 1in the form
A + B-/gi where A and B are rational numbers in
simplest form. .

5, Identify the following numbers as being rational or .
irrational, ‘ T

3/.8, /3, (-2)%, 0.9, 3.1F, =2.121121112 . . .,

JE, ot A2’ /2

6. Uhich of the following properties of the system of
integers are NOT also properties of the system of
naébral numbers? ' '

(a) The existence of a multiplicative identity.

(b) The existenhce of an additive identity.

(c) Closure under multiplication.

(d) The existence of a solution of a + x =Db ior
all a and b 1in the system.

(e} If a ¢ b there exists an element c¢ 1in the
system such that a + ¢ = b,

(f) If a ¢ b, then a + ¢c £ b+ c.

7. State whether or not each of the following sets of
numbers is closed under the operation specified. If
it is not closed, give a counter-example to 1lllustrate
this.

(a) Natural numbers under division.
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(b) 0dd integers under subtraction;

(c) Irrational numbers under squarilng;

(d) Rational numbers under multiplication;

(e) Rational numbers of the form %, where a
and b are natural numbers and a ¢ b, under
multiplication.

8. Any odd integer can be expressed in the form 2n + 1,
where n 1is an integer. Using this definition, prove

that

(a) the set of odd integers 1s closed under multipli-
cation,

(b) the set of odd integers 1s not closed under
addition,

9. (a) Show that the subset of integers consisting of all
integral multiples of 3 1s closed under subtraction
and multiplication,

(b) Give a counter~example to show it 3s not closed under
division,
10, Find the subget of the set
("‘5: ")'l.v -3, -2, -1, O, 1, 2, 3, LL: 5}
which satisfy the conditlons

|x - 7] ¢ 6 and |x + 1| ¢ 5.

Answers to the Illustrative Test Questions

1. (d). 2. (d). 3. (e). 4. (c).
5.  (b). Note that since /a“ =.lal, then for a < O,
Va2 2 .a. 6. (¢) 7. (b). 8. (c). 9. (). 10. (c).

1. (a) '—161; (b) 2. 2. -3. 3. -3. &, 3+g V5
5. Ratiomal; ¥-8, (-2)%, 05, 3.1, (5%,

=2)% , /? . Irrational; 2.12112111?»_”_...,w/-l-g s V3.

6. (v), (d). 7. (a) Not closed; -g. (b) Not closed;
3-3i=2, (c) Not closed; (112)% = 2. (d) Closed.

S
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8. (a) Let 2a + 1 and 2b + 1 represent odd numbers,
where a,b in I. Then
(2a+1) (2b+l) = bab + 2(a+b) + 1 = 2[2ab+(a+b) ] + 1.
Since (2ab + a + b) is in I,
then 2[efab+(a+b)] + 1 = (2a+1)(2b+1l) 1is odd.
(b)(2&4)+(2M&)=2UHb)+2==2Hmm)=lL
~Since (a+ b=1) in I,
Then 2[(a+b) + 1] = (2a+l) + (2b+1) is even.

9.- (a) Let 3a and 3b .represent integral multiples of
3 a, b in I, Then 3a - 3b = 3(a - b).
Since a - b in I, then 3(a -~ b) = 3a - 3b
is an integral multiple of 3.
Since 3a(3b)= 3(3ab), where 3ab in I,
Then 3(3ab) = 3a(3b) is an integral multiple of 3.

(b) %-_-'2‘.
10. [l, 2. 3} .

98




Commentary for Teachers

Chapter 2

AN INTRODUCTION TO COORDINATE GEOMETRY IN THE PLANE

2-0, Introduction. 4

Chapter 2 1is only an introduction to analytic or coordinate
geometry in the plane. It is important that the teacher keep
this in mind and that he make this clear to his students. The
reélly important idea of this chapter is that we have two ways
of looking at the same situation, a geometric view and an alge-
braic one. This comes by setting up a one-to-one correspondence
between points in,thé plane and ordered pairs of real numbers.
We then look at whichever formulation happens to be more con-
venient for our purpose in a particular problem. As the text
says on the first page, the method gives us a way of solving
geometric problems algebraically. The advantage of the new
method is that we have quite a formidable array of algebralc
rules and techniques already available and ready to appiy to a
geometric problem, once 1t has beén'translated from its geometri-
cal form into the language of algebra.

The new coordinate geometry is then useful primarily in
solving two kinds of problems.

(l) Given an algebraic relation, find the set of points

. whose coordinates satisfy the relation. In most of
the problems we will meet in this course this relation
is given by an algebraic eauation (occasionally by an
inequality).

(2) Given a geometric condition find an algebraic relation
which must be satisfied by the coordinates of all
points satisfying the geometric condition. If we
keep in mind that these two problems are the central
ones, then the details which are important and which
must be studied carefully, can be kept in the proper
perspective. ' ‘

In addition to solving these problems, the analytic method

is a powerful tool in constructing proofs of geometric;theorems.

99



Q0

. Its great advantage here is that in general -1t offers a straight-

forward method for proving the theorem, which relies on the mach-
inery of algebra rather than ingenulty, as is so often the case
with prbéfs in synthetic geometry.

The subsequent work in analytic geometry in Chapters 6, 7
and 8 develops systematically the relationship between geometric
and algebraic concepts. In particular, the correspondence
between lines in the plane and linear equations in two unknowns,
parabolas (and more generally conic sections) and quadratic
equations in two unknowns, planes and linear equations in three
unknowns 1s developed and exploited in these chapters.

A notion that needs emphasis appears in several exerclses
and proofs in thisbsection, i.e. the absolute value of>a number,
Repetition in all possible ways of the idea that the absolute
value of a is a only if a 1is non-negative and that
| a] = -a if a 1s negative may be helpful.

While some of the material of this chapter is discussed in
grades 9 and 10, this 18 the beginning of a systematic develop-
ment of analytic geometry. It is important, therefore, that the
fundamental idea of the one-to-one correspondence between polnts
in the plane and pairs of real numbers be made clear, The one-
to-one property of the correspondence 18 useful for most pur-
poses; however 1t is worth noting that other coordinate systems
are possible. At a later stage polar coordinates are introduced.
This system has definite advantages 1in representing certain types
of curves and in describing certain kinds of geometric condi-
tions. In this system the one-to-one property 1s sacrificed for
other desirable properties. In solid analytic geometry besides
the obvious extension of rectangular or carteslan coordinates,
spherical and cylindrical coordinates are useful. In many
branches of physics still more general curvilinear coordinates
have been found useful. In fact the study of some branches of
physics would be difficult if not impossible without the frame-
work of these more general coordinate systems. (See Bell's
THE DEVELOPMENT OF MATHEMATICS, p.521 £r.)

[pages i19-120]
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Exerclses 2-1, Answers.,

1., -

2. A(2,1); B(1,6); ¢(-2,6); D(-5,1); E(-5,-6); F(-1,-1); G(1,-4);
H(5,-5).

3. (3,3)

b, (a) (-4,-4).
() (-4,4), (4,-4).
(c) (4 v2,0)(0,42), (-k v/2,0), (0,-%2).
From inspecting the graph, the students may approximate the
coordinates. To 3 decimal places they are (+5.656,0),
(0,45.656) «
(d) (1) The points -re located

outside the circle. _

(2) The points are NG
located inside the 1

circle. = :
(3) The points are ~/////
those located outside

the circle and those on
the circle.
*5. (a)  (-%,-¥)
(b) (—xl’yl)’ (xl’_'yl) : '
6. (a) y =2, 8, -4, 0. The number pairs will be (2,2), (8,8),
(-4,-4) and (0,0).
(b) ¥ = x. " .
7. (a) (-6,6), (-6,-6), (6,-6).
(b) (630): (016): ("610); (01‘6)-
(¢) /288 or 12+/2 units (by the Pythagorean theorem.)

'8. AC =6¢
BC =6
AB = 6/2 (by the Pythagorean theoren.)

iArea = 18

101
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9. A' "8)
d(A,A') = d(A,0) + d(0,A') -
d(A,0) =/6° + 8° = 10, Pythagorean theorem.

Since d(A,0) = d(0,A")

Then d(A,A') = 10 + 10 = 20
) At(0,5)

) B!(6,0)
) M(6,5)
) D(—3,0)
)
)
)

10,
b

c(5,0)
DCc =8
M1(1,0). DM! = MiC ? DC = 4 because of segments
intercepted by parallel lines theorem in geometry
Dc =8, OC = 5, then OM! = 1, Hence the coordinates
of M! are (1,0).

(e) M(1,2). Project A and

B on the y-axis:at E and F 4y
respectively. EF =
Since MM" bisects E_
*he coordinates of
M" are (0,2). Hence
the coordinates of M
are (1,2).

(a

(

. (e
1. (a
o
(

(

\ 4

2.2, The Distance Between Two Points.

In section 2-2 the use of subscripts on the coordinates to
denote particular points sometimes causes difficulty. The con-
venlent tradition that‘P(x,yﬁ represents a variable point, while
Po(xo,yo), Pl(xl,yl), etc. represent particular points, which
may have a certaln kind of generality in a particular problem,

needs a good deal of explaining and emphasizing. For instance,

if we say let P(x,y) be any point on a eircle with radius r

and center at C(h,k), then.therequation for the circle is

(x - h)2 + (y - k)2 = r2. If we wish to state that a particular

[pages 123-124]
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point Po(xo,yo) is on the circle, this is clearly indicated by
writing (x_ - h)2 +'(yo - k)2 = r?, P(x,y) is the variable
point. For appropriate values of x and y it can stand for any
point on the circle. Po(xo,yd) on the other hand 1s a fixed
point., We still may mean any point on the circle, but the sub-
scripts tell us that in this particular discussion Po' is fixed
-(whatever point on the circle it may be) and does not change.

The real'point of Section 2-2 of course 1s to establish the
distance formula, one of the fundamental tools of coordinate
geometry. Many teachers find that the proof goes more easily if
they first illustrate the iaea of the proof with specific line
segments in the first quadrant, say the segment Pl(l,2)P2(h,6).
Then take general coordinates, drawing the picture in quadrant I.
This is usually convincing enough so that drawing a diagram with
Pl and P2 in various positions in other quadrants offers no
great difficulty. It may trouble some students that
| a(P;,R) = Ix2 - xll regardless of the signs of x; and Xx,.
This is a.rather important point and will be used in many other
problems. Repeated numerical examples should help ‘to gef the '

- point across. Another idea which needs emphasizing 1s that the
~ distance d(Pl,Pe)Q is always non-negative. We have defined the
distance between two polnts, which is not a directed distance.
Hence d(P19P2) = d(Pe’Pl)'

After the midpoint formula, an excellent exercise for a
good class (or an especially good student) would bé to try to
get the class to guess at a formula for the coordinates of a
point which- divides a line segment in a gilven ratio; that is
d(P,P) r,
—_——— = =, It can be pointed out that the midpoint divides
d(p,p,) T2
the segment in the ration % + Then ask what the coordinates
 would be if ‘the point was 1/3 of the way between P, and Py,
etc. The general formula 1s

103
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S o MO v = To¥y + T1¥p
T e —————————m— ’ T S S———————————— .
I'l + I'2 I‘l + I'2

This ability to generalize is one of “he marks of a potenfial
.mathematician. The practice of making conjectures, testing +hem, ‘
and then proving them if they seem to be true, should be en- -
couraged whenever possible. While the midpoint formula is a
useful bit of information,. it is not a central result in analytic
geometry and it 1s not used nearly as frequently and with as
significant results as is the distance formula. Both cf 1'h'==3e

- results are tools -- important ones ~- but still tools to be used
in solving problems and in proving other results.

‘Fxercises 2-2, Answers.

1. (a) 545 (b) 226
2. ©(1,3)
3. AB =5, BC = 285, AC = 17 and the perimeter = 22 + 2 vB5,
y, 39
3
5. M5, - %)

Length of PM = 32

Length of PP, = 32,
6. d(P,R)= 13 -

a(Q,s) = 17

7. d(A,B) =5
da(a,c) = /B0 = 5/2.
d(B:C) =5

Since d(A,B) = d(B,C) the triangle is isosceles.
8. The length of the radius is 13.
No, since the distance between the points (0,0) and(4,-3)
is 5.
9. B(4,-6) .-
10. Assign to C the coordinates (x,y).
Then d(A,C) = d(B,C) fulfills the gometric condition

Vix+1)2 432 e/ (x +1)2 + (y.- 5)°
y2 = y° - 10y + 25
y =25 |
[pages 124-129]
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10. cont. Hence, d4(A,C) = d(B,C) if C 1is (x,2.5) for any real

11.

12.

13.

number x. However if x 1s -1, A, B, C do not form
a triangle., _ .

a(p,0) = +/(x; - 0% + (y, - 0

M(3,1); N(4,-2); P(2,0)

d(M,N) = +10; da(N,P) = 2/2; d(M,P) = V2

perimeter A MNP = 3 /2 +./10

Here the students may recall from geometry that the length
of the line segment joining the midpoints'of two sides of

)2

‘the triangle is equal to 7]5 the length of the otHer side.

So, the perimeter of A ABC™is twice that of A MNP. Other-
wise, the student will use the distance formula to find
the length of each side of A ABC in order to find its
perimeter in order to compare the perimeters.

d(A,B) = 42
d(A,C) = 2./10
d(B,c) = 242

Hence, the perimeter of ABC = 2(3/2 + /10 )
In this set of exercises the student 1s expected'to use the
distance formula to show that d(A,B) + d(B,C) = d(A,C).

d(A,B) = JB1 : -
a(B,C) = 261
d(a,c) = 361

In case he remembers the slope concept from the 9th grade,
he may find the slope of each segment and then compare them,
as,

slope (A,B) =_g.
slope (B,C) = g.
slope (A,C) = % L

Or, after section 2-3, where slope. has been discussed, you
might suggest that this cohcept_now be used to solve this
problem. ' J

[page 129]
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14,

- 15,

*16,

*17.

(3, )

a(py, By) = /x5 + 3]

(b) a(N,0) =25 - d(p,M) = 245
d(o,P) = 25 a(M,N) = 2./5 -

perimeter = 8 /5

(c) Silnce d(N,0) = d(P,M) and d(0,P) = d(N,M), the quadri-
lateral MNOP is a parallelogram. Furthermore, since
da(N,0) = d(P,M) = d(0,P) = d(N,M), the quadrilateral is a
rhombus.,
Four different solutions are possible.
They are (a + c,b), (a + cy,b + c), (a,b '+ ¢c);

(a + c,b), (& + cyb - c), (ayb -~ c);

(a - c,b), (a - cyb + c), (a,b + c);

(a - c,b), (& ~ cyb - c), (a,b

+

o

-c).

o

The midpoints are

(2—8"5‘—(: s D), (2 + c, 2b2-l: c): (2a2+ < s b+ c),(a, 'gb—%'g'):
(e, p),(a+c, B9, (BFES p-0), (a, By
(B2, b),(a - oy BfL), By +o), (a, BFE);
e, ), - By, (B, - o), (2, 270,
d(A,B) = 22
d(B,C) = ‘\/.§
a(a,c) = 342

Since d(A,B) + d(B,C) = d(A,C), the points A, B, and C are
collinear. '

Here 1s an opportunity tc suggest that the students investi-
gate for collinearity such sets of polnts:

(a) A(1, 2 + h); B(3, 6 + h); C(5, 10 + h),

(b) A(1, -2 + h); B(5, -10 + h); C(%, -8 + h).
Others may be given by the students.

106
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2-3. The Slope of a Line.

The formula for the slope will be review for students who
have been through either the SMSG First Course in Algebra or the
SMSG Geometry Course. It 1s introduced prematurely here in
order to have the idea available for use in Chapters 3, 4 and
5 before a systematic study of the first degree equation is
attempted in Chapter 6. The descriptive terminology "rise" and
"run" was purposely omltted. If the teacher feels this 1s
natural, helpful, or meaningful, its use 1s hallowed by tradition,
The point that the slope 18 independent of the points P1 and
P, on the line should be stressed; that 1s,

Yo =¥ ¥ ~ ¥
Xp =X X3 - X

The theorems on 8lope andlparallel and perpendicular lines
are extremely useful. The broofs may be omitted in favor of
informal arguments with numerical examples. However the proofs
in the text are novel and well worth the good student!'s time
and effort.

Exercises 2-3. Answers.

(b)) m =2
(¢) m = %
(d) Slope is undefined.
(e) m = 2
(fF) m=0
2. (a)
Y N ™~
\ <;\/ ol
=
ﬁ//’ P{5,)
A1 A1 1\d
) 5T

1

[pagegiiap-ISS]
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(b) The line having slope -3, since the magnitude of the
steepness of a line is mmeasured by the absolute value of
its slope. '

(c) They become steeper.

(d) They are perpendicular, since %(-3) = =1,

(b) Slope of line through (3’23“T
and (7,1) is - % .
Slope of line through

Y

(c) They are parallel. ~N

(3,2)

; \4&2-2 -

3,2 S
3.,/2
6

(a) m(A,B) =1 . d(A,B)
m(B,C) = -1 d(B,C)
m(A,C) is undefined d(4,C)

(b) A ABC is a right tri-

angle with right angle B,

since the product of m(A,B)

and m(B,C) equals -1.

(c) Midpoint of AB 1is

(4.5,3.5); of BC is

(4.5,6.5); of AT 1is

(3,5).

(@) m(My, M) =1

m(M, , Mg) = -1

- m(M,, M2) is undefined.
m(A,B) =
m(B,C) =

m(A,C)
Hence the points A, B, and ¢ lie on a straight line.

108
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2
6. m(A,B) = - 1 - b [v ?4 1]
2
2 _2 o
If-m—g,thenb—l
2~-0_3-1
Te (a) P-1 TF72 53 P
(b) 2 S
p-T*z=-Livp
8. (2) m(A,B) = -1 m(A,D) = 4
i\ | ' m(D,C) = -1 m(B,C) = 4
D28 Since the opposite sides
- NN have the equal slopes, they
T / e "f’ are parallel and ABCD is a
i | AkLHA) / parallelogram,
: / (b) No, since the slope of any
- B(3;2) one side 1is not the negative
X reclprocal of an adjoining
O side.
LY ola in | ‘
9. ; PR T (@) m(a,) = -2 m(B,0) =3
) /
/%,/ A m(C,D) = - ‘g m(A,D) =%
A N Hence ABCD is a parallelo-
7
e A\ gram. d(A,B) = ./I05,
\ 2 \\ d(B,Cc) = ./I06. Hence the
) parallelogram is a rhombus.
\\ (2% (b) ABCD is also a square, since
z Y% Sz, 3
Y. ,// X T(A;.B) X.m(B,C) "‘g g
N % -
\
-
23
10. m(A,C) =1
m(B’D) = "1

Since 1+-1 = -1, AC |_BD.

[pages 138-139]
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1. (a) g-

(b) -2

p
- - b
120 (a) m(Pl,P?) = %—Ta- = —l

(b) Slope of a 1ine_J_ PP, 18 1. ' _
13. C 1is the vertex of the right an.l. ..cause the slope of
the line segments AC and BC are negatlve reciprocals,
1.e. m(A,C) = 5 » m(B,C) = - 5 and (=) = -1.
14, (a) (5,5), (8,7)-
(b) Yes, Some students may find that the coordinates
can be found by the
followlng:
XxX=2++ 3n \'4
y=3+2n ‘

m5. m(n,0) = R = £
n(s,0) = L= 3

= -1
Since 1 x (-1) = -1, AC. | ED.
*16. m(A,B) = e+ 8) [v o =1 - ‘ X

m(B,C) = (a + bg

b = -
m(A,C) = (a + bg (b + c) = 1

Since the slopes ofaIE; BG, and AC are equal, the points
A, B, and C are collinear.

*17. (a) m(A,B) = O which means that AB is parallel to the x-axis
m(B,C) is undefined which means vhat BC is parallel to the

y-axis.
Hence AB _| BC and AABC is a right triangle.

(v) The coordinates are given by

a+ (a-+c 1l
2 m(a+%c,b+%d)
yabt(®ad p,la

2.4, Sketching Graphs of Equations and Inequalities.

In Section 2-4% it helps to remember that this is an intro-
duction to sketching graphs. Many of the curves treated here
[pages 139-140]
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will be studied in detail later when more machinery can be
brought to bear, In fact some curves can not be satisfactorily
discussed until the derivative concept 1s available in a calculus
course, So the aims here are: '

(1) To give the students experience in plotting péints on

(LR TAY

curves, and after they have a good deal of practice

at this, .

(2) To help them ;ee that obtaining information about
the inter: oo - ymmetry of the curve can be more
helpful in -~nv se8 than plotting great numbers of
points,

A discussion of asymptotes and "extent" (that is, values of
X for which y 1s not real and vice versa) is omitted in this
section in order to avold confusing the central issues with
useful techniques which occur for rather special curves.
Asymptotes will be treated in Chapter 6 when the hyperbola is
discussed. Extent will also be touched on in the discussion
of the conic sections in that chapter.

Exercises 2-4., Answers. \ Y Q.
1. Sample number pairs,

(a) x[—e -1 o0 1 2

y[ 5 3 1 -1 -3

~
>

X
(®) x|-2 -1 0o 1 2 —Y\b
yllLlOlll'
\ /
X
111
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A
(¢) x|-2 -1 o 1 2
y[6 3 2 3 6 TN
(@) x|]-~talof 1 2_,

; : o| 0 l 0,-1,-2,1,24¢5 | O
L\"*DY)zx-l:Uory:o} Y
@ ]t B

y | -3 | -3 | '39'2,-1,0,1,2,°"| PR
[(x,y): x =0cor y = -3} y
(£) x|-1-.5 0 .25 .5 1 2 ,
y[ 3 T 0 -5 0 1 6
’l
/
[
112

[page 148]




103

Y
(g) x |-2 -1 0 1 2 e
v | 2 1 o0 1 2
X
Y
(h) x | y} 3 2 1 0 1 2 h
y |-2 -1 J 1 2 3 y 7
X .

(1) Saxg.z pairzs for y = x

are:
x|-2 -1 ¢ 1 2
y| -2 i 1 2 7

Plot these numbzr pairs.
But, the mumles palrs that
we need are {(x,7):y > x}.
Some of “them &2
x| -2 -~ 2
- > and are plotted
y' -1 2.5
in the =hadef portion. None
of these neleng to
{((x,¥):y -~ =), thus the
line y = x 1s :0t included.

113 ' e

L4
*
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(j) Some number pairs for
¥y =x + 3 are:

x|-2 -1 0o 1 2
v | 1 2 3 4 5
The graph 1s

((x¥):y = x + 3]V
{(x,¥):¥ < x + 3} shown by
the 1line and the reglon.

v

(k) Some number pairs for

x = y° are,

x| + 1 o 1 4
yj-2 -1 o 1 2

The graph is {(X,¥y):X > ¥
the shaded region.

2

14

(1) Some number pairs for
vy = |x| may be found in (g&).
The shaded region 1is the
graph of ((x,¥): ¥ > x|},

(m) The graph of ((X,¥): x> 2ory >'3§ is the shaded
region shown. This is {(x,¥y):x > 21U ((%,¥):y > 3}, Ll.e.
all the points whose first (m)
coordinate is greater than

2 and all the poilnts _

whose second coordinate

is greater than 3.

HE ]
LI

114
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(n) The graph of {{x,y):x > 2 and y > 3} is the shaded
region shown. This is ({v,y):x > 2}N {(x,¥):y > 3},

i.e. all the points whose
first coordinate is greater
than 2 and whose second
coordinate 1s greater than
3. Note the distinction
between the problems m

and n.
(a) , (v)
Y a
v P32 '
11" X
F'(:3 -2)
(c) (d)
Yi le
PI-3,2) P(3,2)
X
115
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2. (e) (£)
Y e Y f
A3,2) PUj2) | H(3{2)
X . X
i
PB-4) - P
3. x-intercept(s) y-intercept(s)
(a) 3 ' -6
(v) +1 1
(c) 0 0
(d) 1 *1
(e) . *2 -4
(£) None None
(g) 9 There 1s no real number whose
squ-.re 1s a negative number.
(h) 0 ‘ 0
(1) | There is no real 15
‘ number whose absolute
is a negative number. )
(3) -3 B -9
116
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4., Symmetry with respect to:

X-axls y-axls origin
(a)” Yes Yes " Yes
(b) No ies o
(e) No No No
(a) No No Yes
(e) No No No
(£) Yes Yes Yes
(g) Yes No Nq
(h) Yes , Yes Yes
" (1) No Yes No
(J3) No Yes No
(k) No ' No Yes
(1) No Yes No
(m) No No Yes

5.7 (a) (b)
Y|/
Y
=
/ X ~ 1 IX
/
117
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5. (c) (a)
. y
/ |
X CE Z
(e) (f) e
Y Y
N X :
TN ;
(g) ()
Y
X
\

118
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(k)

(m)

(3)

X
S~
(1)
™.
\
X
J
/
%
(n)

119

[page 149]

109




110

5. (o) (p)
Y Y
X ] X
(q) (r)
Y Y
X X
) i - ’
{ \
*(s) *(t) |
Y
l‘ X
»
120
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5. *(u) . *(v)

-
//

I

*2-5. Analytic Proofs gg Geometric Theorems.

In section *2-5 there are two principal difficulties which
you are likely to encounter. One is that in assigning cdbrdi-
nates in the figure, it is easy for the student to assume

" properties equivalent to the ones he 1s trying to prove. The
other 1s that care must be taken to avoid taking a figure or a
position of a figure which results in proving a special case of
the proposition rather than the prorosition itself. There are
no magic prescriptions for eliminating these difficulties, but
the student needs to be constantly reminded of the need for
avolding both of these pitfalls,

121.
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*Exerclises 2-5, Answers. N
1. Given: A line connecting the (be)
midpoints of two sides M
of a triangle. 2
Prove: The line is parallel to X
(e10)] (e 0)
the third side of the ‘
triangle and tqual to
half of 1t.
i 1}11(% , 5. 1. Midpoint formula.
' b
2. My(E%2, 3). 2. Midpoint formula.
3. Slope M.1M2= —‘55_?13=03’ Definition of slope.
- T2
4, mWS || O . 4, Slope of x-axls 1s O and
' parallel lines have same
slope.
b b a
5. d(iy,My) = |2> - 3| =%.5. Distance formula.
6. Length of base of 6. Distance formula.
triangle = a.
7. Hence, MM, = %(OA). 7. By steps 5 and 6.
8. . . theorem is proved. 8. Steps 1 - 5.
2. Glven: A parallelogram with
diagonals perpendic- y
ular to each other. Pyb.c) Pstb,c)
Proye: Parallelogram 1s a
rhombus.
X
R|QO Po@Q -
S -
1. Slope P1P3 = %70 1. Defin%tion of slope.
2. Slope PP, = b—‘_’—a 2. Definition of slope.
" [page 155]
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_a-=->, _ l _a-b
2. 3. Slope PPy = = 3. Glven my = - === = =0,
1 d2
(Definition of perpendicular
lines.)
a~->b c
L ~— " 37 F 4, Steps 1 and 3.
5. a2 = b2 + 02 5. Pythagorean Theorem.
6. d(PlPu) = »\/b2 + ¢2 6. Distance formula.
7. d(PyPy) = la] ~ 7. Substitution, steps 5 and 6.
8. d(p;P,) = la] 8. Distance formula,
9. % P1P2P3P4 is a 9. A parallelogram with.adjacent
rhombus sides equal is a rhombus.
3. Given: A quadrilateral ' y
with diagonals MN Q,(be)

and QP bisecting
each other at O.

Prove: MPNQ is a parallel-
ogram.

M (—N Nia :O)

P (b,-c)

Proof: Choose the x and Yy axes so that the diagonal MN
lies along the x-axis. Then the midpoint 0 of
this diagonal will have (0, O) as coordinates. If
we let N have coordinates (a,0), then the coordi-
nates of M must be (-a,0). We can name the co-
ordinates of either P or @ arbitrarily, but when
those for one of these points have been labeled
those for the other are determined. If we label P
as (b,-c), then Q has the coordinates (-b,c),
.since P 1s reflected in the origin.

[page 155]
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ll'.

If MPNQ 1s a parallelogram, then QM =

MP=QN¢

NP, and

But Q1 = ~/{-b + 2)2 + ¢

2

2

and NP = «/f; - a)2 + aZ.
Hence QM = NP
In a similar manner it can be shown that MP = QN.
. MPNQ 1s a parallelogram,
Given: Rhombus P,P,P5P) Y
with midpoints of
the sides. Ribc) (9F2c)  Rlawb,c)
Prove: Figure formed by 0 Lo
Jolning the mid- (55 (mkgc
points of the
sides 1is a rectangle. La (1
X
_-P 0,0 G‘ P(a)@
Proof: . c 09 (3o) 2
1. Slope of ! 2 1. Slope formula
¢ op a + b a+ b ¢ b ¢
2
c
/ c .z £
2. Slope of 2 2725 2aib F—h 2. Slope formula,
2 2
c
3. Slope of /4 =—o? =-S. 3. Slope formula
. op 3 2326 b  atb . p .
2 )
, c
4, Slope of [/, = 2 k, Slope formula
‘ P L~b a b-a i b .
T2
5. % Zl 22 31?4 forms a 5. A quadrilateral with
parallelogram. opposite sides parallel
: 18 a parallelogram.
2
6. a®=1b%+c 6. A(Py,P,) = d(P),P,)

124
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4, 7. (Slope of Zl)x(Slope of 22) 7. By step 6.
: _ c

C = e
=335 "5 -z "1

8. 21 1 22 8. By Theorem 6-2,
9. S /1 22 23 ZM is a 9. A parallelogram with
rectangle. a rigg} angle 1s a

a rectangle.,

5. Given: Ml and M2 are the
mldpoints of two
sldes of a tri- y
angle, and p?r-
pendlculars are o %(QC)
drawn to the
third side from
M, and M,. (M, Mo (8,
Prove: The sum of the :
lengths of these
perpendiculars’
equals the length
of the altltude
drawn from P3 to P1P2.

X

RTOO N, N, N, P,(a0)

Proof:
1. .Coordinates of M, are (3, %). 1. Midpoint formula.

Coordinates of M, are (EEE ,-%).

2. d(Ml,Nl) = d(MoN,) = J_%L = 2. Distance formula.
1
»d (P3N3). .

3. .. Theorem is proved. 3. Steps 1 and 2.

125
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= /3an: Ml,r,le,rvls’ the mid-
points of the sizes
of the -v-amz.> ABC

TR e The four wvrizw—:asg

formed are csna:ent.

«

Prcof:
1. d(A,M3) = d(M3,B) 1.
= % d(A,B) = 1%1 .
”2.'¥d(B,M2) = d(Me,C) 2.
=  4(B,¢)
_ «/22 + (b - a)2
= 2 ,
3. a(a,My) = d(my,c) 3.
= Ramo <o
b, MM, = AMg = M,B 4,
M Mg = CM, = M,B
MM, = CM; = MjA

5. <. the four triangles 5.
are congruent.

126
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Distance formula and MB
is a midpoint.

Distance formula.

Distance formula.

No.l, Example 2-5.
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Te Giver: "  3tsrp-:
W RCTNg Y
e Mimeaints
- the - po-
8¢ ®ises of
8 quadrilateral,
Prove: I se _.ii23 bi-

- ¥ . =zZachk other,

Proof:

1. F ois (%, -) ' 1. Midpoint formula.
2 ) .

His( *’5 c-ge)

2
E is (3», =)
2. The micz»int of EG is 2. Midpoint formula.
(a + bA—»d c + e)
T

The mi;'dpoint of FH is
(a+b+d_c+e)

T
3. &% EG =3t 7Y bigeos 3. Because the coordinates
each otr== of the midpoints are
the same,

127.
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y Di2b,2¢)
8. Given: d(A,C) = d(c,B) =
a(c,D).
Prove: BD is perpendicular
to AB. CE??
Select the coordinates of o
A, B, and C as indicated in
the drawing.
X
A {00 B(a,0)
Proof:
1. Coordinates of D are 1. Midpo-at formuleh
(2b,2c) .
2. d(a,c) = d(C,B) o, Hypotaesis and dfstance
) b2 + o = (b-a)2 + ¢ formula.
0 = -2ab + a2
3. 0= -2b+a [a#0]and 3. a cannot be zero since
a = 2b B is distinct from a.
4, DB 1is vertical. 4y, B and D have The

same absclssas.
5. AB 1is horizonta’ and
. perpendicular to BD.

9. Given: Isosceles trapezoid

ABCD with lines con- Y
necting the mid-
points E,F,G,H. D( IS Clde)
prove: EFGH 1s a rhombus .
H
. x
A[00) = B0)
Proof:
1. B3, 0) reEd, 5 1. Midpoint Tommila.

G('b—".*-g‘g' ’ c), H(% ’ %)

123
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9. 2. d(A,D) = da(B,c) ©. Hypothesls and =’s=ance
b2 + c2 = a2 - 2ad - ﬁz + :J formula,
b2 = (a - d)2
b==2 -4d
d =2 -0D>
3. Slop= EF = slope HG = % J. Slope formula.

Slope FG = slope EH = B%E

4., 2 EF || HG and FG || EH I, ILines having equal slopes
are parallel

5. . EFGH 1s a paralielcgram 5. If opposite sidas of a
quadrilateral are ||, it
i1s a parallelogram.

(%)2 + (%)2 6. Distance formuiz.

d(E,H) = «/1559)2 + (- $)°

6. d(E,F)

it

7. d(E,E) = «/1%)2 + (2§)° 7. Substituting in step 6
A for 4 in step 2.

8. .. 4(E,F) = d(E,H) and 8. A parallelogram maving

EFGH 1s a rhombus, two adjacent sides con-

gruent 1s a rhombus.

2-6. Sets Satisfying Geometric Conditions.
In this section the problem rezlly is in translating a
geometric conditlon which is usually stated in words into an

algebraic relztion stated in mathematical symbols, The best
éavice for the: student is, as in the zase of "word problems",
-to reaé th= problem through once. .Then read it again. Begin by
letting P{x,y) be any point which satisfies the geometric
condition. Then writs Jown the algebralc condition which must
be satfsfied by the z=srdin=tes x and y of any point in the
set, =implify the r==ulting expression, if possible, IIllus-
tratioms < the technigue by meny examples will help the
student tc get the idea, bub no amoumt of watching The w=acher
can takee ti= place of attemmts on th=—part of the studers ‘to
‘set up—the algebraic equatinn fbg,ﬁimself. The only way to
| [pages 155-158]
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z=in -onfidence in salving such problems is to attempt enough of
threm, proceeding from —avner simple ones like finding the set of
soirss at a glven dissar:e from a fixed point, with which most -
stpi=—ts can succeed, e more difficult ones which require the
=z - several of the .:rmulas of sections 2-2 and 2-3.

mm teacher will k=-e noticed that these are the problems
w1 are usually cali=é "locus" problems in geometry. The word
"rems was not mentirmsd in this section since 1t may have un-
plzzzant connotations Z'or some students from experiences in
zeometry and more impzrsant because it really contributes nothing
to tzs poirnt the sectimm is trying to make -- the formulation of
an algebraic statement o»f geometric conditions.

Another omission from the traditional treatment of this
topic is the discussior showing that the coordinates of every
point in the set satisfy the equation and conversely that every
point-whose coordinates satisfy the equation belongs to the set.
This discussion was deliberately omitted at this point since the
difficulty nevar arises in the easy examples which the student
meets at this time. The proper place for this discussion is in
Chapters + and 7 where equivalerit equations and operations lead-
ing To equivalent ezuations are treated. If the teacher wants
to cautlor étudemtS’about squaring both sides of an equation
and assurr:mg thei =he solution set of the remulting equatlion 1is
the same = thzt &% the original equation, it is entirely
appropriat=. I sesmed that to make a big issue of this point
== this Sime was inappropriate, almost useless, and certainly

=ffective, Y
=rapcises 2-€. inswess,
1. a(0,3 = AT T R

. = 2 {/ 2 \

2 ==—-/}C + 7T + — X

: o = \ O}o0

% = ¥ + y- . the equation. N /

AN .

-~ -

130
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,d(P:L.,.P) = 4,74, F)

121

Y

a(C,P) = /(x - 1)2 + -2

1= '\/(X - l)2 + y2 ,"-;‘ I\Dl(x,y) X
1= (x -1)%+y° X

(CsP) = /%% + (v -2)°

3=z 4 (y - 272
3 = x° + (v 2)2

1C,P) = /(x - 2)% 4 7 - 3)2 " o= Py
B L %
25 = (x - 2)° + (3‘—3_2 | K ,'l
d\C,P) = \Ax + 1)+ iy -3)% =k A §
(x + 1) + (y - 3)% = ¥°

(68 = S W T R e

)2 2

(X"h)2+(Y-k =r

The set is a cir-le wit: radius r, center zt C(h,k).

Y v
NI - 5)2 + y° ! :P(x,y)x
(- 3)% 43" 52 yf T ABO) Bem)
X =& ' K
d(%,B) = d(B ®)
'v/:i **’2)2 T+ 75)"2 = Ax - 3)2 + (y - 2)°
52 - 7y = -8

’\/(3C __.xl)E - (y - yl)E = ‘\/(X - XE)E + (y - ‘,’32)2

2 2 2
2)

2
EX(XQ + Xl) + EY(B’E - Yl) + (Xl + X5+ Y] +7T5) =0

A3

[p=ge 159]
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10. d(P,A) = 2d(P,B)
A (x + 2)2+y2= o~/ (x - l)2~,y2

x2—4x+y2=o

Y
Py \-\P(x,y) \\
el AW

Acz0 \ BULO)

11. m(P,A)m(P,B} = -1, the conditzion for PK | T%

m(P:A) = ')'c"_,x:": 3 m(P"B) = 'X'_',_L'j‘ : Y

T FrT- 2 ' ke fi(:('y)
X2+y2=l,y;éo. ;’:/‘ \ X
This set consis#is of the set £i6+4,0) B!(1,0)
of all points =xecept A =nd X /"

B or the clrcis with cerwer SN P

(0,0) and the lemgth of The

radius equal to ..

*12, Using the midpmirs formulz,
P(x,y) = P(% , -13- .. hence
a=2x, b =2y, Using the Y
distamce formula,
d(A,B) = «/a.2 + 12 =0

2 ~ . B(C-e) “-M(X )

\/(?x) + (2y)° = 2, by \.\,y X

substitutirz. Ala,0)

x° +y° =1

132
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'13. d(c,T) = d(c,A) \ Celxy)
2 )2 \ /

v =X+ (y -1 \\g /
\ /.
1.2 1 ~2404) X
y = X + X At/
2 2 T(x,0)

(The set of points is a parabola.)
14, This problem can be con-

sidered as that of finding

the set of all points 0

distance from the origin.

Hence
~ a(p,0) =/x2 +y2 =0
x2 + y2 =0
15. d(P,0) = /%% + y2 = 2 o
4 /’

x2 4+ y2 =

"But, this includes all {
' \ 0(0,0)
values for x and y. To \
exclude che "right" part of ~
the circle ,the description
may be written as any one of the followilng:
(a) { (x,y):x = /4 - §%)
() { (x,¥) x< 0:x° + y2 = 4 }
16. a(p,8) = v42 = Iyl )Y
a(0,8) = 3 ~eefrm e D
Area = 3 d(p,A)-d(0,B)

|
;2 - I \s x
5 lvl-3 Oo[(co QxO EO
L Y
3 lYl : , B

y i.%, which means that
the set of points (x,y) is
tne graph of two lines parallel to the x-axis. This may be

2

described as,

{ (x,5):y =% WL (%y):y = - % boo

[pages 159;1601
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2-7. Supplementary Exercises for Chapter 2 - Answers.

e

2.

Symmetric with respect to, Intercepts

x-axis y-axis origln X v
(a) No No No -2 %
(b) Yes Yes Yes +2 +2
(e) No Yes No + {6- -3
(d) Yes Yes Yes +3 6
(e) Yes Yes Yes +2./3 None
(£) No No No 6 and 1 -6
(2) No No No None -2
(h) No No No 0 0 and -1..
(1) Yes  Yes Yes None 4l
(3 No No No %
(k) Yes No No 0 o
(1) No Yes " No None L
(m) Yes Yes Yes +3 +4
(n) Yes No No ~7 and 1| /T
(o) No No No 1 and 2| -4
(p) No No Yes 0 0
(2) (b) (c)

Y Y Y
S i S \ x |\ | x

B ‘ j | Q/ ﬁ

134
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(4) (e)

AR

(£) | (&)

(h) ' (1)

[page 160’]. 2
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2. (3) \ LY (k)

Y
(1) \‘j : (m)

(n) o) (p)

136
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3. (a) Each point has coordinates of the form (a,y).
“ . (b) Each point has coordinates of the form (x,b).

b (a) Y () & Y

J U 1s the symbol
for unlon and
137 . means all the
. points 1in either set.

[page 160]
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5.

(2)

(a)

()

(c)
(d)

(a)

(v)

N 1is the symbol .=
for intersection,
and means all the:
points that are .
in both sets.

c(65

R

m(A,B) = -2; m(C,B) =7]é-

Since -2(%) = -1, BB | TB and AABC is a right triangle.'-"

m
3

d(A’B) 2~/5-5 d(B’C) = l&ﬁ
Area = 7 2 J5:4/5

The coordinates of

M, (A,B) are (7,-2) | Al ,z)Ms x :
M,(B,C) are (9,-3) | Y N
My(A,C) are (8,1) M\ v,
a(my,Mg) = V10 1 B(8,6)

m(Ml’ M2)'= -% ‘: i 138 T

W

m(A,C)

i

i

[pages 160-161]
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Y AAR4)
Te A ABC 1is isosceles since )
a(c,B) =5 /2 : X
d(C:A) =52 ok
a(4,B) = 2 /10 ]
. a B4,-2)
8. m(C,A) = ] [a #3]

m(C,B) = &==2 [a # 0]
(a) If &k 1 EE,

a_,8-~-5__ =
thena_ = = -] and a = 4

3
(b) AB || &3
_ 3a - a-3;
a- (a - 1
a=- 3

9. d(P:A) = d(P:B)

VB4 yP = Ax - 6)2 4 (v - 3)°

2y -l|-x + 15

'\/(x -_2)2+y2=3

2

The required set is, { (x,y): ¥y > O and x2 - Ux + y© =51}
11. Plot the vertices as shown in Y

the flgure. Use the Bla,b)

distance formula to cob) "

show d(A,C) = d(0,B).

| X
d(A,C) = +/a° + b2 o[l0,0)  Ala,0
d(0,B) = /2% + b2

X, + X ¥V, + ¥y
1 2 _ Y1 2
12, X = T—— »y ¥ = ——-2—-——
formula for coordinates
of the midpoint
5= w3

x2 =5 YQ = "5}.. 1 39

[page 161]
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13.

14,

15.

16.

17.

- 18,

The coordinates of
M, (B,C) are (lg 1)
My(4,C) are (% ,6)

m(My, M) = - &
‘m(A,B) = - %

S MM 2"_ || B
d(M1M2) =2./5
d(A,B) = 4 /5

sod(MM,) = % d(A,B)
d(P,A) = d(P,B)

M1 -3)2+ (y - 2)2

V=12 (5 - 6)°

‘ y =8
s P(1,y) = P(1,8)
(a) ((%¥):y =T or y = -T)
() ((x¥):x =T or x = -T)

(c) ((x,y):x% + ¥° = 72)
(@) ((x¥y):ix] =7 and |y} =17])
The equation of the perpendicular bisector is derived by
using the distance formula and a related theorem from plane
geometry. It is
' X+y =09 .

The coordinates of point C satisfy this equation, hence C
is on the perpendicular bisector of AB.
Each point is on the circle. The reflection of (a,b) in the
x-axis is (a,-b); of (a,b) in the origin is (-a,-b); of '
(a,b) in the y-axis is (-a,b). : '
(a) ((x,¥):(x > 0and y >0) and (% + y° = 9))
(6) ((x,¥): (x < 0 andy >0) and (x° + y° = 9))
(c) ((x,¥): x < 0and x° + y° = 9 and y # 0)
(d) ((x,¥):[(x>0and y>0) or (x< 0andy<0)] and

(x% + 32 = g)) |

[pages 161-162]
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Another description is ((x,y):(x > 0 and y > 0) and
(x2+y2 9)IU(x,y):(x < 0 and y < 0) and
(x® + y° = 9)},

19, ((x,y):(x >0 and y > 0) and (2x + ¥y < 3)}.

20. Since the vertices of such triangles will be the set of
points, namely, the perpendicular bisector of 1B, the
equation is derived from

d(p,A) = d(P,B).
The equation 1is Y
. 14x - 12y = -17. ,

21, Area = % ab = k. B(O,b)

The coordinates of M give,

M(x,y)

b
X=3,5%3 Ala,0)
or 2x = a, 2y = Db ' Y
o H(2x)(2y) = k by
substitution P(-4,3)
2xy = k
22, The slope of / is the

negative reciprocal of 0
PO, the radius.

m(P,0) = - F. -

s+ 8lope of / is + -g-
23. (a) (b)

[pages 162-163]
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23. {e) (d)

24, m(A,B) = -2 ; d(A,B) = 2.5
 m(B,C) =5 ; a(B,C) =45
SJAB | BC d(A,c) = 10

Area. AABC = 20
Perimeter AABC = 10 + 6 ./5

m(AT,B!) = 2 ; d(A!',B!) = 2./5
m(B1,0') = - % ; d(B1,C1) = 45
= BTBT _| BTCT d(at,c!') = 10 .

Area AA'Bic! = 20
Perimeter AA'B!C!' = 10 + 6 ./

Challenge Problems Answers

1. d(PlgR) =X - xl P(X,Y)

d(p,8) = x, - x Shxny)

d(R,P) =y - ¥,

d(s,P5) =y, - ¥

AP;RP ~ APSP,

. P;P PR RP
TP, - P§ T SF,

P (x,y) R(X.y.)

142
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*l. cont. v
: Let PlP =ry and PP2 = Ty
PPa I'2 x2 - X Y2 - y
r2(x - xl) = rl(xe - x) » ne(y - yl) = rl(y2 - Y)
roX + X = riX, + PoXg and, '
x(ry + 1)) = X5 + roX, ‘
< o A¥2 T TP g = fa¥e T Ty
r2 + rq ’ ?2 + r

‘There is no loss of generality in
taking one side on th=:x-axis anc
“the third vertex on t=e y-axis.

143

Iet tome centroid be Pix,y), P, X
‘b My, and P, be A, Ala,0) M§0:E_Q’o) B(b,0)
b
x = 1(a) + 2(3) _a+bh
- 3 3
c
_ 1(0) + 2(x) _c
v = 3 3
The same results are found when
,Pl is M2, P2 is B; when Pl is M3
and P2 is C. ‘ '
2. P(x,y) divides P; and P, in Y
- the ratio ry:r, if, ct34) M,(,4) B(5,4)
£ o A%2 T ;= Oy + Fo¥y
o ————————— it , — L]
b B T+ T By)
Assigning P, to M; and P, to B, M.HJ»<: - M3,
L _ N
x =205 £2(-1) _ \/
1(4) + 2(1) All,-2)
y = = 2
Assigning Pl to M3 and P, to C,
[page 163]
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.x=1(-3)4§2(3) -1

y =3 4) + 2(1) _ 5

An alternate solution 1is given by,

equation of Mlﬁ isy -1= %(x + 1)

equation of M

]

Cis y -1 = :%(x - 3)
solving for and y, x=1andy = 2.
Hence the coordinates of P are (1,2).

o

3. Length of abscissa X = 2 times length of ordinate y.
In (xl,yl), ths length of x, Y
is actually 2xl.

. Use "o1d" distance formula,

u

a(r,p,) = ngx))? + (vp-v))% | | P22)

" u .
replacing xy by 2x;, the "new PG3,1) . X
distance formula is, | 2

d(Pl,Pe)- '\/(23{2"23(1)2 +(Y2"Yl)2
'\/laxe"xl)e + (YQ'yl)e

Check this by using the coordinates used in the above

drawing. 5 5
a(Py,P,) = \[(2 -3 +(2-1)

= V10

4. This system is really a disgulsed
form of polar coordinates. In-
stead of the usual polar coordi-

!

P(s,d)

nates (r,0) we are using (tan ,r)
with special conventions about
the signs of s = tan © and 4 = r.
For instance (c¢) in this problemn,
d = ks 1s essentlally the polar
equation r = k tan ©.

144
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Use these transformation equations,
Rectangular coordinates "New" coordinates
+ -
X = = s d=./42+y2, y>0
:;1 + 82 ‘

d = -4/x" + y<O
+ 1f d and s have same sign v

{- if 4 and s nave opposite g = ¥
signs X
y:—L
1+ 82 ,
] ~ Rectangular "New"
2
(a)x2+y =,I’2 d2=1’2
(b)¥=k s =k
(c) .Graph of d = ks
The equation in rectangular
coordlnates 1is,
+ % F e =k % 1Ify >0
- 2+y2=k¥-ify<0 |
+
—= - by the d
/1 + 82 " a
transformation equations

(e) A X + By + C = 0 general linear equation
+

! B+ C =0 by the transformation
:;l + 8° :;1 + 82 equations

+ Ad + Bsd + C 14-8 = 0

v /
,- ,

145
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2-8. Illustrative Test Questions for Chapter .

The following is a set of 1llustrative te=t 1ltems for
Chapter 2. It is not intended that this be us=d as a Chapter
test, but rather as a model for making test qusstions, ‘

1. The coordinates of the projections of polrz P on the
axes are (-2,0) and (0;3); the correspont—g coordinates
for point Q are (4,0) and (0,5). What =re the coordi-
nates of the midpoint of PQ?

2. Which of the following terms apply to tke Ttriangle whose
vertices are (2,4), (4,-2) and (—3,41)?

(a) acute (d) non-isosceles ,
(b) right (e) isosceles and non-equilateral
(c) obtuse (f) equilateral

3. Given the points A(1,2), B(-11,4) and c(13,-6). Find the
distance between the midpoint of AB and the midpoint of K—;_f

4, Given the points A{1,2), 3(-11,4), and C({13,-6). Find the
slope of the line through the midpoint of ‘AB and the mid-
point of AC.

5. Find the valus of k for which the line tixrough the point
A(k,2k - 1) ard B(2k + 1,k) will have a siope of % .

6. Given the poirts .A(2,-3), B(<1,2), and P(a - 1, a - 3).
Find the values of a for which PA will be perpendicular
to PB, ' ‘

7. Given the three points A(-4,-2), B(0,2) and C(3,y). Find
the value of y for which these points are the vertices
of a right triangle if, '

(a) the right angle 1s at B.

(b) the right angle is at A,

Show that the right angle. cannot be at C for any real
value of y. -

8. Given the points Py(3,5), P,(r,1), P3(-1,2) and P)(-4,s).
Find r and s such that,

(a) PP, dis parallel to FgP).
(b) P P; is perpendicular to 33?;.
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9. If a line Zl has a slope -3 and y-intercept 5 while
liine /2 has slope 2 and y-intercept 8, in which quadrant
do the graphs of 71 and /é intersect?

1C, Find the point P(x,¥y) that is symmetric to the point
P'(3,2) when reflected in the line y = x.

11, Determine in which quadrants the graph of each of the
followlng equations has points, Indicate for each graph
whether 1t is symmetric with respect to the x-axis; with
respect to the y-axis; with respect to the origin.

(a) y = -2x + 3

(b) v = |x]

(e) v = 2x2 + 3

(@) x2 - 5% = 9 )

(e) ¥ = x3 - 3x% + 3x - 1

12, Write the equation of the set of points equidistant from
the two points A(-5,3) and B(5,3).

13. Describe the graph and write the equation of the set of
points whose distance from the point A(0,3) is 5 and for
which y > 0.

14, Write the equation, sketch, and describe the set of points
P(x,y) such that FX | PH, The coordinates are A(-2,3) and
B(2,-3). '

15. The points whose coordinates are (5,2) and (-1,4) are
symmetric with respect to a line,
(a) Give the coordinates of the point that is on the line
of symmetry and on the line connecting the two given points.
(b) What is the slope of the line of symmetry?

16. What are the coordinates of the point on the line ¥ = X,

. if its projection on one axis has coordinates (0,-7)?

17. Given the points A(0,1), B(%,-3), C(6,0).
(2) Find the coordinates of M;, the midpoint of AB.
(b) Find the coordinates of M,, the midpoint of BC.
(¢) Find the length of M M.
(d) Find the slope of MM,

147




138

17.
18.

19.

20.

2l.

e2,

- 23,

24,

25,

26,

(e)

Find the slope of AC.

(a) Find p such that-AC ||

Given the points A{3,5), B(p,-1), C(-1,2), D(2,-3).
DB.

(b) Find p such that AC _| DB.

Glve the equation of the set
points whose coordinates are
Find the equation of the set

of points equidistant from the o

(5,7) and (7,5).
of points equidistant from

"~ from the

the points whose coordinates are (3,25) and (-5,25). e
Find the equation of the set of points which is equidistant ;;
two points (-2,5) and (3,-2). L

Find the equation of the set of points which is

5 units

from the point (-l4,-5). .

What is the slope of thé‘line whose equation is,
(a) y = x¥ i '

(b) x = 02

(e) v =07 | .~

A line L wilth slope =~ % which intersects the x-axis at
(2,0) will pass through which quadrants?

Give the coordinates of the x-intercept(s) and/or the
y-intercept(s) of each of the following equations:

4

(a) ¥y = 2x.

(b) ¥ = x°.

(c) x° + y° = 9.
(@) y = |x].

(e) x% = 4 + y2.
(£) x =y° + 7.
(g) 3y + 6x = 9.
(h) y = x° - 3.
(1) x = 2.

(3) v = 2.

(k) y = 0.

Give the 1line(s) of symmetry for the equations labeled (b),
(e), (d), (£), (h) in Problem 25 above.
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27. Select a sentence from the 1ist given below the figures which
will completely describe each of the graphs. [The dotted =—--
portions of the graph are excluded.]

(1) (2)

AW
2

3 )
(3) y (4) v
X //-_(\ X
YU
-— ’)\\\
(5) (6)
Y Y
}
>, X
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v

/7
/7
(9)
| Y
T
< x
I _
(a) ((x,¥):x =3 or y = 2} i
(b) ((x,¥):x = 3 and y = 2]
(e) ((x,¥):y > I1x[]

p) ((x,y):x > vy and x > -y° +2and y > 0)
a) ((x,y):(x = v2 orx = -y + 2) and y > 0}

{

{

{

{
(e) (
(£) ((x,¥):x +y < 3}
(8) ((x,¥):y = x°)
(h) ((x,¥):y = x°)
(1) ((x,¥):x> + y° = 9) ,
(3) ((x,¥):x° + y° and x > 0 and y > 0)
(k) ((x,y):x° + y2 = 9 and x > 0}
(1) ((%,¥):-3< ¥y < 3] -
(m) - ((x,¥):(x + 2)2 + (v - 3)% = 9)
(n) ((x,y):-3 >y > 3]}
(o) ((x,¥):x = y2 and X = -y2 + 2 and y > 0}
(
(
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Tllustrative Test Questions for Chapter 2. Answers.

(1,4)

(a) acute.

(e) isosceles and non-equilateral.
13

1

5
{o,4}
(a) When y = -1, the right angle is at
(b) When y = -9, the right angle is at A,
For the right angle to be at ¢,

vy -2 v+ 2 )

o

T = -l
y2 ~ 4 = -21 which has no real number solution.
(a) s =6
(b) »r =6
2nd quadrant
p(2,3)

(a) I, II, and IV. Not symmetric with respect to either
: axis or the origin.

(b) I and II. Symmetric with respect to y-axis only.

(¢) I and II. Symmetric with respect to y-axis only.

(d) I, II, III and IV. Symmetric with respect to both axes
also origin.

(e) I, III and IV. Not symmetric with respect to either
axlis or the origin,

x = 0 (the y-axis)

x2 + (y - 3)%2 =25 [y > 0] is the "upper" half of a circle

whose center is (0,3) and radius 5. The description may be
given in set notation as,

24 (y - 3)2 = 25)
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14,

16.
17.

18.

19.

20,
2].

22,

23.

2k,

y-3.%X
X+ 2 x -2
b4 = 13
The greph is a circle with
center at 0(0,0) and radius
V13,

(a) (2,3)

(v) slope is 3

("7:'7)

(a) Ml(2,-l)

(b) My(5,73)

(c) 4L

(d) slope M M2 = - %

-
N

N

1
(e) slope AT = —'%
(a) p = %#
(b) p =-3
Mx -8+ (3 -12 =/ x -7)% + (v - 5)°
y =X
X = =1 .
5x - Ty = -8
Sx + 8%+ (y+5)% =5
(x + 1)2 + (v + 5)2 = 25

(a) slope is 1.
(b) slope is undefined.
(c) slope is 0.
Quadrants I, II and IV,
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25, x~-intercept(s) y-intercept(s)
(a) 0 0
(b)  © 0
(c) +3 +3
(d) 0 0
(e) +2 None
(f) + V7 None
(&) 3 3
(h) +8 -3
(1) 2 None
(3) None - -2
(k) Every real number 0
26. (b) y-axis '
(e) x and y axes
(d) y-axis
(f) x-axis
(h) y-axis
27, (1) (k)
(2)  (a)
(3) ()
(4) (o)
(5) (1)
(6)  (m)
(7)  (e)
(8) (e)
(9) (a)
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Commentary for Teachers

Chﬁptgr 3

THE FUNCTION CONCEPT AND THE LINEAR FUNCTiON

- 3=0. General Introduction.

: This chapter is about functions, but the student should not

" feel that when he is finished with the chapter that he has fin~-
ished with the concept. He will meet the idea throughout the
rest of his mathematical studies. Some of the functions he will
meet are the traditional ones - the linear function, the quad-
ratic function, the trigonometric functions, the logarithmic and
exporential function. He will also meet a more abstract kind of
function that may pair other objects besides numbers. In=~
geometry, for instance, 1t is instructive to regard congruence,
similarity, angle measure, and the like 1in terms of functlons.
‘These are functions which involve snts of points as well as
‘numbers. Also, in the twelfth grade algebra course, the study
of groups, rings and fields 1s pursued in terms of functions
which involve quite abstract objects. The student should emerge
from this chapter with some understanding of how widely appli~
cable the function idea is. He should be able to recognize a
function when he sees one, and he should be able to see one
wherever he looks. ) '

3-1, Informal Background of the Function Concept.

Once the student grasps the function idea he should be able
to find functions in all sorts of unlikely places, ‘
He will probably get the pairing ldea first, and the class~
" poom has many examples: students and their first names,
‘students and seats, heights of objects above the floor, etc.
Some points to establish are:
(1) that the pairings need not be one-to-one (It 1is
all right if several students are named Joe).
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(2) Every member of the domain set must have exactly one
obJect assigned to it. (Each student has exactly one first
name.)

(3) Every member of the range set must be assigned to at
least one member of the domain set. (If no one in class 1is
named "Algernon," then "Algernon" is not in the range.)

There are usually three sets involved in a function, its
domain, its range and & third set which includes the range.

For instance, assigning the first name of a student to a student
involves as domain the set of all students, as' range the set of
all names which are names of students. It also suggests as a
third set, the set of all first names. Thils latter set has no
special name but. in more advanced studies of functions such

sets are mentloned.

Suggestions for section 3-1.

1. These exercises are better suited for class discussion than
for written work. The fact that some of them have many
interpretations and many answers 1is an asset in a discussion, -
it is a 1liability in a writing situation,

2. TFor some of the problems the domain or the .range cannot be
explicitly given. For instance in problem 5, no one knows
the set of ages of li&ing people. In every case, however, a
descriptlion phrase can be given which 1s correct. The
teacher should not accept an anawer like "whole numbers less
than 8,000,000" as the range sought in problem 6, This set
includes the range, but a more accurate answer should be
required.

3. The teacher should also ask for relations suggested by these
phrases which are not functions. For instance in problem 1,
assigning triangles to areas does not define a function.

4, It should be possible to have the students vclunteer examples
of their own, from sclence, politics and everyday living.
The teacher Jould even CHalienge his class to specify a

[pages 165-166]
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toplc which does not suggest functions. The brighter
students can be counted on both to produce far fetched
topics and ingenious solutions,

Answers to Exercises 3-1

Areas of triangles
Domain: Set of all triangles. .
Range: Set of all posltlve real numbers.

Rule: To each trlangle is asslgned the number
%bh, where b 13 the length of'its_base and

h 1is the length of 1its altitude.
Multiplication table for positive integers
Domain: Set of all positlve integers.
Range: Set of all positive integers.
Rule: Asslign {o each palr of integers (x,y)
the integer xy.
Electlon returns
Domain: Set of all offlces,
Range: Set of all elected candidates.
Rule: Assign to each offlce the single candidate
elected to that office.
Peopleg! first names
Domain: Set of all people.
Range: Set of all first names of 1lliving people,
‘Rule: Assign to each person his first name,
Peoples! ages R
Domain: Set of all 1living people,

Range: Set of all positive lntegers whilch are
ages in years of living people.
Rule: Asslgn to each person his age.
Note: (1) The domain of this function is contin-

ally changing. .
(2) We are not able to specify its range
precisely. It is roughly the set of
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10.

(3)

Population of dities

positive integers x such that

1l ¢ x £ 110. There may be a few larger
numbers in the set, too. Also babiles!t
ages are not generally measured in years
at all but in months, days and even
hours. B

It is recommended that the teacher not
try to gloss over these difficulties,

It 1s a sad fact that every day language
is full of unclear phrases. However,

he can promise the class that when
functions are used in mathematlcal con-
texts such difficulties do not arise.

Domain: Set of all cities,

Range: Set of all positive integers that are
population of cities.

Rule: Assign to'each city a positive integer that
is the number of its inhabitants.

A dictionérﬁ

Domain: Set of all words.
Rahge: Set of all meanings,
Rule: Assign to each word its meaning.
Relative nearness to sun of planets
Domain: Earth, Jupiter, Mars, Mercury, Neptune,
' Pluto, Saturn, Venus, Uranus.

Range: {1,

2’ 3 LI 9 }

Rule: Assign to each planet its rank.

Batting averages

Domain: Set of all baseball players,

Range: Set of all 3~place decimals which are
actual batting averages.

Rule: Assign to each player his average.

Absolute values

Domain: Set of all real numbers.
Range: ‘Set of all non-~negative real numbers,

[page 166]
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Rule: To each non-negative real number x
asgign x.
To each negative number X assign -x.

Note: The second part of the answer to this
problem looks pecullar, We wished to assign .
positive numbers and in thils part we -
asgigned -x, which looks negative,
Actually we assigned ~X only in the case
that X was negatlve, and In this case «x
is bositive.

3-2. Formal Definition of Function, -

After the student has learned to discuss functlons informally,
he can be led to try to give a formal definition. He will-al-
most certainly get stuck on the "rule" part of the definition.

This 1s no disgrace. _In fact, mthematlclans have come to recog-
nize that it is hard to define "rule" and they avoid this problem.
They think of a function A3 being like a box with an input funnel

and an output end.
TNPUT (11EMBERS OF DO/ auv»v4umnzv

|
1 DPALUE SIDES (RAIRING
{ DEVICES MNSIRE)

N TFUT (P IEIrTBERS OF
RANGE COME QVT HERE)

It 18 a device which feeds something out of the output end after
something is fed into the ilnput end. The rule of the function
corresponds to the machinery inside the box. It 1is not necessary
to know exactly how the machinery inside the box converts the
input to the output. All that 1s required is that the machine
always ylelds the same output element for any given input element.
In advanced treatments of function the idea of a rule disappears
'altogether. The pairings are taken as the primary thing and no
questlons are asked as to how they are arrived at.

[page 166]
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.

It will be helpful to give some examples of functions in
which the "rule" is Just an arbitrary pairing. For instance if
A 1is the set {1, 2, 3} and B is the set (4, 5}, assigning

5to 1, 5 to 2 and ¥ to 3 1s a function whose domain is A and
whose range is B, The teacher should Judge for himself how much
of this kind of arbitrary pairing can be used.

Our text treats two classes of functions ~ those whose
domzin and range are sets of numbers, and those with more abstract
domain and range. In the ninth grade text, only the former kind
are discussed and therefore this is probably"%he student's first
exposure to the second kind. The teacher should be‘willing to
adopt pretty much the same attitude toward both these. When the
familiar linear and quadratic functions come up the approach to
functions introduced here should be maintailned.

Suggestions for section 3-2. The problems are sultable for
written work.

Answers to Exercises 3-2

1. (a) Domain: Set of all real numbers.
Range: Set of all real numbers.
(b) Domain: Set of all real numbers,
Range: Set of all real numbers.
(c) Domain: Set of all real numbers,
Range: Set of all non-negative real numbers.
(d) Domain: Set of all real numbers.
Range: Set of all non-negative real numbers.
(e) Domain: Set of all real numbers. “
Range: Set of all non-negative real numbers.
(f) Domain: Set of all real numbers.
Range: {4)
(g) Domain: Set of all integers.
.. .Range: ... { 0, 1}
(h) Domain: Set of all.points in the plane.
Range: Set of ali points in the plane.
[pages 167-168]
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(1) Domain: Set of all rectangles,

Range: Set of all positive real numbers.
(3J) Domain: Set of all pairs of points in the plane.
Range: Set of all non-negative real nhumbers.
2. (a) £(1) =14, g£(2) =5, £(3) =24
(b) £(1) =2, f£(e)=1, £(3) =3
(c) £(4) =4, £(5) =5

(d) Any function whose domain is B has a range containing
at most two elements. A 1s therefore ruled out; it
has three elements.

3-3. Notation for Functions.

In traditional discussions of functions the language is
often sloppy. The teachlng of functions can be made less diffi-
cult if a precise language 1s established and maintained.
Consider, for instance, f, f(x) = x2, y = f(x). The first f
should be used to denote a functlon, the second, f(x), should
be used to denote that member of its range that the function f

assigns to the number x of its domain, f(x) = x2 should be

used to mean that the functlon f assigns x2 to x. The
equation y = f£(x) suggests a function but does not always
define one. This point 1s discussed at length in the next
section. The trickiest part of the function notation involves
the technique of substitution. It should cause no difficulty to
use the symbol £(3) to denote the object assigned to 3 by
the functlon f. Things get a little more complicated when .
letters appear and substitutions are made. For instance if
£(x) = x° then £(2x) = (2x)2 or 4x%. It probably is best not
to discuss substitution as a separate topic, but to try to
establish the rules by use of examples. .

The symbol f(x) does not necessarily denote an algebraic
expression. If f 1is the function which assigns to each state
of the U.S.A. its capitol then f(New York) = Albany.

Suggestions for Section 3-3.
1. The fast learners will catch on to this material quickly

[page 168]
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and enjoy it. Some of the slow learners may feel hopelessly
lost at the start. The teacher should try to get across the
recognition that this notation for funetions 1is only a new
way of saying something, what 1s said 1s not new.

o. The text uses only the letters " and "g" to denote
functions. In classroom discussion it is a good idea to use
other letters as well.

Answers to Exercises 3-3

1. (a) The range of f 1s the set of positive
integers { 3, 6, 9 ... )

(b) £(4) =12
(¢) £(6) =18
(g) f(a) = 3a

(e) £(3a) =9%a

(£) f(2 + x) =6+ 3x

(g) Yes, because £(3x) = 3(3x) = 9x and
3f(x) = 3(3x) = 9x

(n) No, because
£(3h + 1) = 3(3x + 4) = 9x + 12
3f(x) + 4 = 3(3x) + 4 =9x + 4

2. (a) The range of f "1s { 0, 1)

(b) f(2) =0 o

(e¢) £(3) =1

(d) f£(104) =0

(e) No, because f(3) + f(5) =1+ 1=2
and f(3+5) =1(8)=0
“ (f) Yes, because £(3) + f(4)y=1+0=1
and f(3+ U4) = £(7) =1
(g) Yes, because £(2) + £f(4) =0+ 0=0
and f(2 + 4) = £(6) =0
(h) Yes, because f(3) «f(4) =1-0=0
(

and f£(3-U4) =f¢
(1) Yes, because f(2) - f(4) =0.0=20
and f(2 - 4) = £(8) =0

[page 169]
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(3) Yes. If x+ 2 1s even, so is x and f(x + 2)
f(x) = 0, If x+ 2 1s odd, so is x and ‘
flx+ 2) = £f(x) =1

(k) No. If x 1is even, then x + 1 1s odd so f(x) =0
and f(x + 1) =1, If x 1is odd, then x + 1 1s even,
so f(x) =1 and f(x+ 1) =0

(1) No. 1If is odd, then 2x 1s even so f(x) =1 and
f(2x) = 0. (For even values of x, f(x) = f(2x), but
gince this doesn't hold for all values of x, the

~ answer 1is "no",) -
3. [x:0gxc2)
b, {x: x>0

"

-3-4. Functions Defined by Equations.

The notion of the solution set of an equation has already
been defined and discussed. This section 1s concerned with the
possibility of using such solutidn sets to define functions. A
solution set of an equation in x and y consists of pairs (a,b).
If each first member a occurs only once, then assigning b to
a defines a function whose domain is the set of all first
members .whose range is the set of all second members.

For some equations this condition is fulfilled, for others -

e defines a function

- for each X there 1s only one y. The equation y2 = x2 does
not define a function since for every ,x other than O there are
two values of vy, | : .
. The traditional study of functions tended to concentrate
exclusively on functions defined by equations. It should be
made clear here that
(a) Not all equations define functions

(b) Not all functions are defined by equations,

it is not. PFor instance the equatlon y = x

Suggestions for section 3-l4,

Some points to be made are:
1. Not all functions are defined by equations

[page 170]
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2. Not all equations define functions
3. To find the domdlin and range of a functlion defined by an
equation, it helps to obey these rules:
(a) don't divide by zero
(v) dont't take the square root of a negative number
(or any even root) ’

+ {¢) The square of a real number must be non-negative
(or more generally any even power of a real number
must be non-negative)

(d) Negative numbers have real roots of odd index and
odd powers of negative numbers are negative.

Answers to Exercises 3-4

1. f(x) =2x+ 6
(a) The domain of f 1is the set of ail real numbers.
(b) The range of f 1is the set of all real numbers,
(¢) f£(2) =10
(d) f(x) = 100, x = 47
(e) f(x) =0 , x=-3
2. (a) y=3x
Domain: Set of all real numbers,
Range: Set of all real numbers.
(b) y=2 _‘
Domain: Set of all real numbers except zero.
Range: Set of all real numbers except zero.
(¢) yv=vx
Domain: Set of all non-negative real numbers,
Range Set of all non-negative real numbers,
' (@) y=x° i

Domain: Set of all real numbe:rs.
Ransgz Set of all real numbers.

Domain: Set of all real numbers,
Range: Set of all real numbers.

[page 171]
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3. ¥ = x2

(a) Domain: Set of all real numbers.

(b) Range: Set of non-negative real numbers.

(c) Yes, x =46 . Also -,/B.

(d) No. The square of a real number canrot be negative.
b, y = x3

(a) Domain: Set of all real numbers.

(b) Range: Sgt of all real numbers.

(¢) Yes, x =06 .

(d8) Yes, x = 3:6-.
5. ¥ = xn, n 1is a positive integer.

(a) Domain: Set of all real numbers.

(b) Range: Set of all real numbers if n 1is odd.

Set of all non~-negative real numbers if
nnis even.
(c) Yes, x=,56.
(d) No, if n is even. n
Yes, if n 1is odd, y =,-b6 .

(a) Range: Set of all real numbers except zero.
(b) Domain: Set of all real numbers except zero.
(¢) Yes. If f(x) =6, x = % .

(@) ies. If £(x)

i

-6, X = ~ % .

(2a) Range: Set of all positive real numbers.
(b) Domain: Set of all real numbers except zero.

(c) Yes. x = J%-.

(d) No. y has to be positive.

(a) Range: If n 1s even, all positive real numbers.
If n 4is odd, all real numbers except zero.
(b) Domain: Set of all real numbers except zero.

[pages 171-172]
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(e) Yes. x =i/-g .

(d) Yes, if n 1s odd, x = e
No, if n 1s even.

The word "graph" is already part of the student's vocabulary.
It occurs in thils text as a technlcal word with a very precise
meaning and it 1s probably best to use 1t only in this way;
Recommended .usages are to talk about "the graph of a- function,"
"the graph of an equation," "“Plot, draw or sketch the graph of
a function." While it 1is probably harmless to talk about
Ygraphing an equation" or "graphing a function" these usages are
are not recommended. In other words "graph" should be used as a
noun and not as a verb. . :
The graph of a function 1ls a set of ordered pairs. If UEsepar
dare pairs of numbers then they can be regarded as points and the
graph becomes a geometric flgure. There 1s no geometric figure
attached to the functions which do not pair numbers with numbera.
Nevertheless, these functions have graphs too. The graph of such
a function  1s the set of all pairs (a, f(a)) where a 1is
the domain of f and f(a) 1s what f assigns to a. Thus
if £ were the function which assligned to each state of the
U.S.A. its capitol then (New York, Albany) would be in its
graph. This pair is clearly not a point on a geometrlic obJject
of any kind. The student will not have much occasion to use
the term "graph" for non-geometric objects in this course. In
. his later work such usage will be more frequent. .

Suggestions for sectlon 3-5.

1. Problems 1l and 2 are suitable for classroom dlscusslon.

2., Problems 3 and 4 should be handled lightly as far as
geometry and calculatlion are concerned, The main thing
18 that for each X there 1s exactly one VY.
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Answers to Exercises 3-5

1. No, (1,2) and (1,3) cannot occur in the graph of same function
for to a single value of domain must be assigned only one
-~ value of the range.
2. Yes, (2,1) and (3,1) can occur in the graph of same function
since each first number is paired with a single second member,

Y
3. (@) \(0/) %)

Y

Voo @af | X
/féﬂ) o
{0)_2) \g,‘\'

4. (@) 4 {6) Y
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3-6. Functions Defined Geometrically.
This sectlion reverses the relation studied in section 3-5.

In section 3~5 we start with a function and plot its graph., In

thils section we start with a set of points and seek a function

of which 1t 1s the graph. Two facts are noteworthy. In the

first place, not all sets of points are graphs of functions. The

second fact is that a set of points can be the graph of a function

and fall to be the graph of an algebralc equation., A set of

points 1s the graph of a function if and only if. each vertical

line intersects 1t in at most one point, This permits some

strange looking set of pointa to define functilons.

167
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Suggestions for section 3-6,

1. All these problems except Problem 8 are suitable for classroom
discussion. The "vertical line" test 1s the important thing.

2. Problem 8 calls for-'a proof. It cannot be answered com=
pletely by a graph or by some numerical examples. Neverthe~
less, a graph and numerlcal examples can show whether the
student 1s'th1nking along correct lines. '

168
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Answers to Exercises 3-6
1. No, because some vertical lines intersect the circle in more

than one polint.

2. Yes, 1f the diameter is parallel to x-axis.

3. Yes, if diameter 1s not parallel to the X-axils.

4, No, for some vertical lines cross the triangle in more
than one point.

5.*“&es, any line not parallel to y-axis is the graph of a
function.

6. Yes, because no line parallel to the y-axis is the graph of
a function, ‘

7. Use the vertical line test on each of: these.

(a) Yes.
(b) No.
(¢) No.
(a) Yes.
(e) Yes.
(f) No.
(g) No.
(h) Yes. .
(1) No.
8., If n 1is odd for each real number x, there 1s one and only

one number Yy for which yn = X, Therefore yn = X

defines a function for odd n,

If n 1s even for each negative number i, there 1is no
number y and for each positive number x. There are two
numbers ¥y such that yn = X. Therefore yn = X does
not define a function if n 1s even.

3=7. Functions Defined by Physical Processes.

This may be a good place to point out that sclence and
common sense are not the same thing. Common sense can See that
a falling body has a speed at each instant but 1t needs deep
ingight to find an algebralc equation which will relate speed
and time. This 1is the task of the physiclists. Some students

[page 180]
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will know a few such equations of physics but the teacher should
not require or expect 1it.

Suggestions for section 3-7.

1.

Most of the answers involve a constant k. This is to
allow for variations in the physical conditions of the
problem, choice of units, and other relevant factors not
mentioned expliecitly.

One of the objectives of these problems is to obtailn
mathematical statements which express what the studcit
knows. He should not be expected to know the correct
formula but should be required to devise one which 1s
qualitatively (if not quantitatively) reasonable. This
means that 1f he knows that the temperature diminishes
with time, he should devise a formula in which this
actually happens,

Answers to Exercises 3-7

Domain: Pressures
Range: Volumes
Rule : Assign to each pressure its corresponding
. volume.

Algebrale Formula: V = ?, where P denotes pressure,“mv de=-
notes volume,and k 1s a number which
depends on the properties of the gas
and the container.

Domain: Set of lengths of pendulums.
Range: Set of time intervals.
Rule: Assign to each length the time 1t takes
a pendulum of that length to complete
a swing.

Algebraic Formula: (approximate) t = k /L, where L denotes
length, t denotes time,and k 1is a
sultable congtant.

Domain: Set of all positions in space of the
body.

[page 182]
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Range:

Rule:

-,
N

Algebraic Rule:

L, - Domain:
Range:
Rule:

Algebraic Formula:

5. Domain:
- Range:
Rule:

13

Algebraic Formula:

6. Domain:
Range:
Rule:

Algebralc Rule:
T. Domain:

Loages
Rule:

Magnitude of the gravitational
attractions.
Assign to each position of the body, the

gravitational attraction of the earth on

it in that position.

F = EE, where r denotes the distance of
r 4

the position of the body from the center of .

the earth, F denotes the attraction in ques-
k 1is a suitable constant. -

tion and where

Set of all weights of the objects.

Set of displacements of the beam.

Assign to each weight the displacement

it produces.

d = kw, where w denotes the welght, and.
d denotes the displacement. (This is

a reasonable guess, which is not entirely
accurate.)

Set of distances of the observer.

Set of apparent brightnesses.

Assign to each distance the corresponding
apparent brightness,

b = k_ , where 1r denotes the distance,

e

b denotes the apparent brightness and
k 1s a sultable constant.

Set of all distances of fulcrum.

Set of all forces exerted.

Assign to each distance the corresponding
force.

F =-§ , where L denotes the distance,
F denotes the corresponding force and
k 1is a suitable constant.

Set of all times of flow,

Set of all volumes of the water.
Asslign gpye?ch time the corresponding

171
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Algebraic Formula:

Domain:
Range:
Rule:

Algebraic Formula:

Domain:
Range:
Rule:

Algebraic Formula:

Domain:
Range:
Rule:

Algebraic Formula:

163

V = kt, where .t denotes time of flow,
V dénotes volume and k 1s a suitable
constant. ‘

Set of all cooling times.

Set of all temperatures of coffee.
Assign to- each cooling time the
corresponding temperature.

T = Tr + E—%-B , Wwhere T denotes

temperature, Tr denotes room temperature,
t denotes time and where a and b are
suitable constants. (This is a reasonable
guesc., Chapter 9, on exponentlals gives
a better one.)

Set of all altitudes.

Set of all bolling points of water.
Assign to each altitude the corresponding
boiling point.

B = 212 -~ kh, where B denotes the
boiling point, h denotes the altitude.
and where k 1s a sultable constant.
(This is a reasonable guess. It is far
from accurate.)

Speeds of an automobile,

Times needed to stop.

Assign to each speed its corresponding
time. :

T = kv2 , where T denotes stopping
time, v denotes speed of automobile and
where k 1is a sultable constant.

(This 1is a reasonable guess., It shows
that if the speed of an automobile 1is
doubled, 1ts stopping time is quadrupled.)

172
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3~-8. Punction Defined by Composition; Inverses.
Composition of functions 1is easily illustrated by using

boxes like those mentioned in section 3=2.
rINPUT '

!
v
i

. oUTAUT
s — INFUT

”

F-machine

S e — e i ] e — e —

< T N pyreur

If the output of the f~-machine 1s fed into the input of the
g~machine, then the whole device illustrates the composition of

g with f. Notice that it 1s assumed that the output of the
f-machine can be fed into the input of the g-machine. This
only requires that the range of f be included in the domain
of g. Our formal definition goes a little farther and asks
“'that the range of f Dbe the came as the domain of g, This
makes for a neater treatment later. The notion of inverse
functions 1is treated in Chapter 9, in the discussion of
logarithmlic and exponential functilons. 'Some preview here for
the student (and also for the teacher) might not be amiss.

Suggestions for section 3-8,

1. In classroom discussion students can be invited to find -
examples of composltlion of functions frdm everyday life,
Elections in which voters elect the electors,and the
electors elect the office holders 1s an-example.

2, Addition and multiplicatlon have good examples on inverses.
Note that x + 6 has an inverse, but x + y does not,

.3, Algebraic technique for actually finding inverses should
not be stressed. {

[pages 183-187]
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Answers to Exercises 3-8

(a) f£le(x) = (x3)2 = x5,
(b). g(£(x)) = (x2)3 = x°.
“(c) Yes. :
%) fe(x) = (B4 1R+ 1=x0raxds
(0) g(£(x) = (x3)3 +1 =x0+1
(¢) No.
3. f(x) = 2x + 3.

1 3
g(x) = -§x - -2-.

It

flg(x)) = 2(%—x —'%) + 3 = X,

dﬂﬂ):%@x+3)-%=x. |
Therefore f and g are inverse functions.
4, f£(x) = 4x + 5.

1
&(x) = 13573

1 4 _ 29 + 20x
£le(x) = Hozss) + 5 =TF Bt 5= M5 £ X -

1 1
g(f(x)) =T(Ox + 5) + 5 _ 1bx + 25 # X
Therefore, £ and g are not inverses,

5., Only a, d, e, and h .define functions
and none of these has an inverse because
each of the graphs 1s crossed by some
horizontal line in more than one point.
6. (a) The line y = x 1s the perpendicular bisector
of the segment whose endpoints are (a,b) and
(b,a). To prove this, use the distance formula.

174
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(x —a)2 4 (y-1)2=(x-0)24+(y-a)

2 2

e - 2ay + a

x2 - 2ax + a2 + y2 ~ 2by + b2 = X~ - gbx + b2 + Yy
X=y-

The rule we infer is that if a point P is on the graph of
a function f which has an inverse g, then the mirror
image of P in the line y = x 1s on the graph of g.

The whole graph of 'g can be obtained by reflecting the ,
graph of f in the line y = X. '

6. ) :
(b Y graph of f Y graph oFf £
//‘?P‘w a/'y»x /',5/—';7//7 a/‘y.-:x
//ww o7 Vr@ﬁ s
/7 // :
- z % . X :
////;// /;;7 (f//r/’/ f/J :
’ :

Y
graph of F
|\ s graph of g=x

7 9*&;(% /g

THIS FLNET/0/ /S
. L S7E DN NV ERSE”
(3) B (4)
175 -
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: 3=9., The Linear Function.

- The traditional treatment of the linear function emphasizes
- the graph to the exclusion of almost all its other properties.
_It 1s hoped that the teacher will be willing to stand behind
iﬂthe'somewhat different viewpoint stressed here; that the linear
function is a special kind of pairing of numbers with numbers,
Theorem 3-9a relates to an interesting paradox. Consider
"all the positive integers {1, 2, 3, ..., n, ...} and all the
even positive integers (2, 4, 6, ..., 2n, ...}.

There is a natural pairing of the members of the two sets,
n with 2n, which is in fact a one-to-one correspondence. It
- follows that there are as many even integers as there are inte-
gers, This fact 1is somewhat distressing because it is clear
that the second set 1s a proper subset of the first, and so ought
to have fewer members. Theorem 3-9a can be regarded as a gen-
eralization of this fact,
' Theorem 3-9a also implies that every linear function has an
inverse. The corollary which states this fact 1s an example of
what mathematicians call an "existence theorem." It should be
. compared with Theorem 3-9b which shows how to find the inverse
in question and identifies the inverse as a linear function.

Theorem 3-9c and 3-9d are rarely stated in elementary
: courses because when the treatment is largely geometric they seem
almost trivial. The proof of Theorem 3-9d may creaté some
problems. It ends up by representing f(x) as the expression
tx - tq  + f(qo). It 1s not easy to see that this really is

of the form
: "number times x plus number"

on account of all the subscripts, letters and parentheses. It
also may occur to a bright student to wonder whether a different
linear function could have been obtained if a different value
fron dos  S4Y qq , had been used at the outset. Starting the
proof with q, would have led to f(x) = tx - tq; + f(q,). The
question is whether the expression ~tq, + f(qo) and

~tq, + f(ql) are equal. . i@

This can be settled by appealing to the hypothesis, which

[pages 189-193]
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implies that
f(ql) - £(q,)
91 = 9

= t, and
then clearing fractions.

Suggestions for section 3-9.
The algebra of finding the inverse of a linear function 1s

‘easy. If f(x) = ax + b, then its inverse g 1s found by
golving y = ax + b for X and substituting x for y in the
result. The student should know primarily what he is looking
for; the method of finding it is subordinate.

Answers to Exercises 3-9

1. (a) Yes. (e) Yes.
(p) VYes. : (f) Yes.
(c) Yes. (g) No.
(d) No, (constant function). (h) -No, (constant function).
2, y=5x+6
(a) £(0) =6 (6) x= -2
(b) £(3) -3 () x= -0
- (e) f£(11) = 61 (f) x= 1

) Y1717
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/ / \\y=-x +2

Y
y-5‘x -]
' (c,6)
Jy=a££>(-¢r .
-_g,ﬂ) {5,0) X

y=-5$(“5.
| e-e

==X +6
178
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2X =y + 1
X =-%y+—é-
y = 3% + 2 (Inverse)
(v) y=-%x-% .
(¢) y==2x+3
(d) y=-x-14
(e) ¥ =%X-%
" (bYy=3x+5
y=§x-3 ¥

179
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THIS LINE (5 THE

CRAFNY OF THE
OR/GINAL FUNETIGN A5

WELL AS /725 /INVVERSE.

8.
(a) &(x) =3x + %
(p) £(6) =5
(¢) g(£(6)) =6
(a) g(6) = L2 180
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10.

11.

12,

(e) f£(s(6)) =6
Prediction: ~3 using Theorem 3-9c.

Computation: .§-3002%0+ ;ou = ‘-—%%§}= -3

For example choose points
A(-’-l»,’-l») and B(—5:7)

£ - (%) _ .
- :’-I»______3‘ Y
B\(57)
A N4
X
&
o~
f(3%-f§5_l__ g - 25 - =16 _ g
- 5 - -5 ~2
£(4) -~ £(6) _ 16 - 36 _ =20 _ g
Y = i a6 T -2
Therefore I
£(3) - £(5) o £(4) - £(6)
3-5 -0
(&) We solve
x2 - 49 _ 16 si
~— = 16. nce x # 7 (and hence x - T # 0)

we divide both numerator and
denominator of the fraction on tie
left'by X -~ 7 to obtain

181
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X+ 7 =16
Hence x 9
(b) Every real x except 7 (this follows from
Theorem 3-9c¢),

]

1]

3-10. Linear Functions having Prescribed Values.

In some traditional algebra courses students are given sample
pairings and are asked to fill in others, as in the following:

NBEIREE
NAEEHE

While it is true that such problems afe often dealt with in an
acceptable way, the problema themselves really are not acceptable
problems. They involve hidden assumptions without which no
definite answer 1s possible. For instance, there is no way of
telling what f£(5) is knowing that f(1) = 4, f£(2) = 6,

£(3) = 8, £f(4) = 10. The guess that f(5) = 12 is reasonable but
there is no sound way of Justifying this unless further assumptions

are madé about f.

The state of affairs with the linear function 1s quite
different. If f 1s known to be a linear-function then from
information such as f(1) = 4, f£(2) = 6, the value of f(x) for
any x whatsoever can be computed. It 1is with this that Theorem
3-10b 1s concerned. It asserts that any two pairings of a
linear function determines all other pairings. It also asserts
that a lirear function can be found to assign to given numbers
Xy, *, &lven numbers Y5 Voo

When we study the quadratie function in Chapter 4 we éhall
see a theorem there which 1s like Theorem 3-10a. It asserts that
any three pairings of a quadratic function determines dllmits other
pairings and that generally a quadratic funetion can k2 found to
assign given numbers yyis y2, V3 to giveq numbe rsg X1s X5 Xge

Suggestions for section 3-10,
Use the graphs. to illustrate the algebra, not to develop it.

182
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Answers to Exercises 3-10

l, y=ax+ Db
4
\

a) 1l=a+b — y = -x + 4
3=ia+b (c)y "I]fx"'}%
a =
b =0 (d) y=42M34
Yy =X '
Y
2, Same as problem 1,
(a) y=x
(b) y=-x+4 \\
(¢) y = - %x + lg
(d) y = bex - 294
3’
(a) f(x) =x+1
f(x) = 2x
(b) f(x) =a(x - 1) + 2 for any a # O »
(c) The graphs of each of these fu..ctlons goes through (1,2).
4, ' Y

(a) f(x) = ax for all non-zero real a.

All graphs have (0,0) in common,

[page 198]
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\

(b) f£(x) = ax + 6 for all non-zero real a.

All graphs have (0,6) in common,
Y

(0,6)

(¢) f£(x) = (—-%)x + b for all non-zero real b,

All graphs have (6,0) in common.

[page 198]
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(&)

(n)

(1)

Answers to Miscellaneous Problems 3-11

Domain:

Range:
Rule:

Domain:
Range:
Rule:

Domain:
Range:
Rule:
Domain:
Range:
Rule:
Domain:
Range:

Rule:
Domain:

Range:

Rule:
Domain:

Range:

Rule:
Domain:

Range :
Rule:
Domain:
Range:
Rule:

Set of all hexagons.

Set of all non-negative real numbers.

To each hexagon 1s assigned the number which
is sum of lengths of its 6 sides.

Set of all circles.

Set of all positive real numbers.

To each circle 1s assigned the number wd
where d 1s the dilameter,

{1, 2, 3]

Assign 9 to 1, 4 to 2 and 9 to 3,
Set of times.

Set of temper-atures.

Assign to each time its temperature.

Set of all real numbers.

Set of all real numbers greater than or
equal to -6,

Assign to each x +the number X
(1, 2, 3}
(a)

To each number in {1, 2, 3} assign a.
Set of all real numbers,

Set of all real numbers greater than or

or equal to 3.

To each number X, assign the number x2 + 3.

Set of all possible speeds r and elapsed

times ¢€.

Set of all possible distap%es d.

d = rt.

Set of all integers.

{1, -1}

To each even positive integer assign 1, 1

to each odd positive integer assign -1.
185
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(J) Domain: Set of all state capitols.
Range: Set of all distances of state capitols from
Washington, D, C. Fach number in this set
is a positive integer.
Rule: To each capitol assign its distance from
Washington, D. C.

2 (a) Domain: Set of all real numbers.
(b) Range: Set of all real numbers greater than or
equal to =5,
(c) f£(0) = -5
(a) f(-1) = -2
(e) f£(5) =70
(£) f£(a) = 3a° -5
(g) fla -1) =3(a -~ 1)2 -5 = 3a® - 6a -~ 2
(h) £(r) = 3r° - 5
3.
(a) Range: (1, -1}
(b) f£(=3) = -1
(e) f£(0) =1
(d) f£(3) =1
(e) f(2 - 6) = =1
(£) r(2) - £(6) =0
(g) £(4) + £(2) =2
(h) f£(4 +2) =1
(1) f£(-6) = =1
(j) £(-6) + 3 =2
(k) £(3-6) =1
(1) 3f(6) = 3
186
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4, (@) Y " (b) Y (c) \ %
’ Y | X
5
/‘5 X ACY \ /La
i) )
> o9
7 @ |

\23:3

ERIC

Full Tt Provided by ERIC.

(30 /

f(x) = x° + 3 and g(x) = 2x + 5

(a)
(b)

(a)

(b)

£lg(x)) = (2x + 5)2 + 3 = 4x® + 20x + 28

g(f(x))

f:ry=x+5
X=y m
g:y=x=~5

flg(x)) = (x = 5) + 5 =x
g(f(x) = (x+5) ~5=x
f1y = -2x = 1

+2x = -~y - 1

1 1
x=-3Y -3

U

2(x° + 3) + 5 = 2x° + 11

1 wm

(continued ~ next page)
[page 200]
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o= o- X -3
£(a(x)) = -2(- Zx - 3) = 1 = x
g(£(x)) = - 5(-2x - 1) _.%zx

-3X=y-7
X=.a--%y+_g.
BiY = - 3% + &

g(f(x)—“§-3x+7)+%=x
(a) f:y =5x -6
~BX-m Yok 6
_1 .6
x=5Y*3
v =i 1 8
8-y—5X+5
sl . 6
f(g(X)) 5(5){ + 5) - = X
=1 6 _
S(f(x)) = 5(5){ - 6) + g = X

f(){)—S__x.'.?, f(x - = =X = 2
© f(x) = ~x + 8 £(x) = -x + 1 .
¥ -3
(o) 2l =t@) .3 () Hxf=gO)=-3
£(x) = - #(x = 1) £(x) - 5 = - 3x
¥ -3
f(x)’:"]]fx’l'% f(x):-%x-}-s
(a) Yes

(b) No. Here is the graph of a function f which 1s not
the constant function for which f(x + 1) = f(x).

[page 200]
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10.

11.

12.

13.

Y
X
(a). Yes.
(b) “No, same as graph in 8(b).
i1y = x3 + 1
gy = %/x -1

flg(x) = ( SA=T)3 +1

=X =14+ 1=x

g(r(x)) = %/x3 +1-1=x
1
y=Ex+1I

(a) Domain: Set of all real numbers except ~1.
Range: Set of all real numbers except O.

1
(b) 3y =337
. 1
gy =% ~1

Domain of g 1s all real numbers except O.
Range of g 1s all real numbers except -1.

f(x + 1) = a(x+ l)2 +b(x + 1) + ¢

f(x) = ax® + 6x +

flx + 1) - f(x) =2ax +a + b
Therefore, since g(x) = f(x + 1) ~ f(x) and since
a £ 0, g is a linear function.

(a) y = x defines a function which i1s its own inverse.
(b) y=-x+b forany real b
or
V=X

189
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Illustrative Test Questionsg 3-12

1. If f 1s the function defined by f(x) = (x - 1)2 + 1
whose domain is the set of all positive real numbers, find
(a) f£(1) ana r(2)
(b) the range of f
(¢) the value of x for which f(x) = 5.
(d) Does f have an inverse?

2. Answer (a), (b), (c) of question 1 for the functicsn defined

by f£(x) =-g§f£—% sy 1f the domain is the set of all positive

real numbers.

3. Find the linear function such that
(a) £(-2) =-1, £(4) =2
() £f(1) =2 , f£(2) =5

4, For which value of k will the 1linear function
¥y = kx+ k pair -3 with 27

3x° + 5
5x + 3

5. Given that f(x)

: g(x)

(a) f(a(x)) = °

(b) &(f(x)) =2
(c) Does f(g(x)) = g(£f(x))?

6. Which of following graphs defines a function?

) Y €)

\/X \/x
Z \

/
/
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e

7/

/// N\

7. Which of following graphs does not define a function?

@)

—

Y

— X

)

(b)

Y

X

€)

N
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13.
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Given the followlng linear functions. Find the inverse of
each., For each function plot its graph and the graph of
its 1nverse using a single set of axes.

(a) y =3x+ 8

(b) 3y =-x4+6

(¢) y=2x-3.

(d) y=x-6

Give an example of each of the following:

i

(a) A function whose range is a single real number

(b) A function whose domain 1s an infinite set of real
numbers and whose range is a finite set of real numbers.

(c) A non-linear function whose domain and range are

the same.
Which of the following equations does noi define a function?
(2) v = Ixl |
(b) Iyl =x
(e) V¥ =x .
(d) vy =vx

1

(e) v = -

If the domain of a function f 1s (x: -5 ¢ x ¢ 2] and
ir f{x) = 2x + 4 what is the range of this function?

(a) f{y: -1 ¢y < 8) (@) {y: -0 ¢y <)

(b) {y: -6 <y <8) (e) {y: -6 ¢y < 12)

(e¢) {y: 10<¢y < 12}

The domain of the function defined by f(x) = i“%—ﬁ is

(a) All real numbers
(b) (x: =3 ¢ x < 3)
(¢) (x: x #1)

(d) {x: x # 3)

(e) None of these.

Given that f 1s a linear function, that g 13 its
inverse, that £(2) = 4 and that £(3) = -2.

g(#) =2, gl-2) =2, g(5) =2

192
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14, ' Plot the graph of each of the followlng linear functions
using a single set of coordinate axes.

(a) y=23x+2
(b) ¥y =5x+ 2
(c¢) y=-x+2
(d) y=x+2

15, Let f(x) = |x| + x
(a) What is the domain of f?
(b) What is the range of f?
(¢c) Sketch the graph of f.

16. Which of the following pairings are the pairings of a
function?
(a) (1,2), (2,3), (3,%)
(v) (1,2), (2,2), (3,2)
(¢) (1,2), (1,3), (1,4)
() (2,1), (3,1), (2,3) E
~17. Describe the domain of the function defined by each of
the following equations. '

(a) vy =3 (4) vy =vX
(b) v = Efl;;g (e) ¥y =% - x
(c) ¥y =——

X"= 2

18. For what value of c¢ 1s the function defined by
y = ¢x + ¢ 1its own inverse? -
19. (a) Which of the following equations defines a function
which has an inverse?
(b) Which, if any, of these functions is its own inverse?

1) ¥y = x| B) y = x° + 1
2) y=-x-3 5) V¥ = x3 41
3

1
3) v =5y

193
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(a) Given f(x) = 2x find g(x) such that
f(g(x)) = -x.

(b) Given f(x) = %x + 1 fine g(x) such that
f(g(x)) = -x.

Answers to Illustrative Test Questions 3-12

(a) f£(1) =1, f£(2) =2

(b) (y: y> 1)

(¢c) 3, (Even though -1 also gsatisfiles (x - l)2 + 1 =5,
is not in the domain of f),

No.

f(1) ==, f(2) =1

o1 [

-2

)
)
(v) (y: ¥y #£2) 1i.e. all real numbe=s except 2.
)
) Yes.

(a) f(x) - £f(=2) = £(4) - £(-2)
X+ 2 4 4+ 2
£(x) =~ (~1) =2 + 1
X+ 2 3]
£(x) +-1 = x + 2)
f(x) = %x (answer)
(b) f(XJ){ = i‘(l) - f(Q% - g(ll
f(x) =2 _ 5 =~2
x -~ 1" 1
f(x) = 3(x - 1) + 2

f(x) =3x -3+ 2

f(x) = 3x = 1 (answer)
y = kx 4+ k
-3 = 2k + k
3k = =3
k = -1 (answer)
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o N

10.

(b)

(a)

(a)
(b)

(c)

3(5x + 3)2 + 5 = T5x° + 90x + 32

5( 3x

£(g(x))
g(£(x))

No.

I
-3
U1
»

b

2 4 28

it
=
\Jl
x&

+5) + 3

n

1
N
C
1] n il
1
" d

1 M
[} 1
o + (&

Mo

+ 6

g:y = x+ 6

Assign 17 to each real number.,

Assign O to all the rational numbers and 1 to
all the irrational numbers.

il
N <

The function defined by Yy = x3.

Y

GRAFH OF

Y=
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11.
12'
13.

1k,

X
% AN
Y/
3/
0
15, A
(a) Domain: Set of all real numbers.
(b) Range: Set of all non-negative real numbers. .
Y
X
16, (a) and (b),
196
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17.

18,
19.

20,

Q
ERIC

Full Tt Provided by ERIC.

{x: x # 0)
(x: x #+ 1)
(x:x;!_-t/é"}
(x: x » 0}
{x: x ¢ 4.

2): 3):'5)
2), 3) .

£(g(x)) = 2(g(x)) = =x

g(x) = -% (answer)

£(g(x)) = 5(g(x)) + 1 = -x

g(x) = -2x ~ 2 (answer)
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Commentary for Teachers

Chapter 4

QUADRATIC FUNCTIONS AND EQUATIONS

4.0. 1Introduction.

A reasonable teaching time for this chapter 1s three weeks,
allotting generally one classroom hour per section. Some of this
material can be covered at a faster rate, 1f the class has a good
background. Section 4-1 and 4-2 can be combined into a single
lesson. Sections 4-3, U4-4, 4.5 and 4-6 are so much alike that
they could be covered adequately in as few as two days. Sectlon
4.0 1s a falrly solid one and 4-11 1is relatively light. A total
" of two days would be adequate for both of these, most of the two
days being given to 4.10. It would be possible to spend a whole
term on_working the kind of problems which are introduced in
Section 4-13. It i1s recommended that the teacher aim at an intro-
duction to this material rather than to strive for perfection;
two teaching days should be an adequate amount of time.

4.1. Quadratic Functions.

Most of the important facts about quadratic functlons are
clearly 111ustréted by their graphs. This tempts most teachers to
stért their discussion of this subject with the graphs and to work
with them exclusively. While this practice 1s pedagoglcally easy -
it 1s mathematically unsound. The graph can't be drawn with any
‘assurance until the function itself 1s studied. In this chapter
the quadratic function 1s treated primarily as a special kind of
pairing of real numbers with real numbers. Its-analysis is based
" on certain properties of real numbers -- that no square of a real
nmber is négative and that every positive real number b 1s the
. square of the two real numbefSu_)457 and /b . The graph is used
as a way of displaying the facfsjafter they are derived.

- 198
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Suggestions for Section 4-1

Problems 1 - 15 can be covered by oral dlscussion. Problems
17 - 20 are suiltable for written work.

Answers to Exercises 4-1

1. Yes.

2. No.

3. Yes.

4, No.

5. Yes.

6. No.

T. Yes.

8. Yes.

9. No.
10. No.
11. All non-zero real numbers.
12. All real numbers.
13. All real numbers, except t = 2,
14. All non-zero real numbers.
15. t = 2. '
16, a =3, b =0, c =0,
17. a 3, b = =24, c = 48,
18, a =3, b = ~24, ¢ = 53.
19, a=1, b = -1, ¢ = -6.
©20. a =12, b = 13, ¢ = =14,

4.2, The Function Defined by ¥ = x°.

The irregularity of figure 4-2a can best be described in
geometric language -- that certain lines intersect the graph in
more than two points. It will be shown in Chapter 7 that no line
cuts the graph of a quadratic function in more than two,poiﬁtsl

Tﬁé teacher should maintain the distinction between properties
of the graph which were formally derived and those which were used
without proof. Properties of the first kind are (a) that the

[page 203]
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curve has a single minimum point at (0, 0); (b) that each
horizontal line above the x-axis intersects the curve in exactly
two points, symmetric with respect to the y-axis; (c) that

as x 1increases indefinitely through positive values ¥y Increcases
indefinitely. Properties of the second kind are (a) that it is
“unwrinkled; (b) that it i1s concave upward.

Suggestions for Section U4-2

1. Problem 1 asks the student to check the whole sketching process
of making graphs. In this process he plots only a few points
and then draws the rest of the graph freehand. Problem 1 can
be used to give him assurance that his freehand sketch really
produces the desired graph.

2. Problem 3(b) is a tricky one. The drawing looks exactly like
the graph of y = x2 for real values of x, This is so
because the rational numbers are so densely distributed among
the real numbers that the thickness of the pencil makes it
impossible to differentiate between the two graphs.

Answers to Exercises 4-2

209
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2
2. Have the student plot the graph of the equation y = x.

Y

fy
¥
N
X
Figure 4-2a
3.
(a) Y . (v)
-3,9) (35) Y
| y=x‘?
s
. [ ) 'X
24 | 249 N
VA
X
20) (g2
201
[page 206]
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4-3. The Function Defined by y = ax®.

In this section we study the graph of 'y = ax2, where a 1s
any non-zero real number. Ve show how the graph can be obtained
from the graph of ¥y = x2. The sign of a and the absolute
value of a are the determining factors. If a 1s positive
‘thé curve opens upward, if ‘a 1is negative the curve opens down-
ward. If |a| 1is small the curve is flat, if J|a| is large the
curve 1s steep. This can be proved, but 1t is probably best
shown by examples. Figure 4-3a illustrates some of these facts.

Figure U-3a

- Suggestions for Section 4-3

1. The student should be asked to‘plot the graphs of Probleﬁ-l
in the usual way =-- to draw up a short table of values, plot
the corresponding points and pass a smooth curve through them.
His study of the significance of the coefficient a’ gilves

" him qualitative information but does not by itself enable him

[page 206]
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to draw the graph.

2. Problem 3 is intentionally stated in algebraic form. It will
help the student to solve this problem if he sees what 1t
means in geometric language. The algebraic question about
which of the numbers 1s the greater means, in geometric
language, which of the curves is above the other.

Answers to Exercises 4-3

1. Y
X
3
X ,}( X
N
l%'
v
iy
%’ .
X . X
N3
4
3
(c) (a)
2, y = axz.
(a) a=1
(b) a=2
(¢) a=3
(d) a=-1 L
() a=g 203
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(£) a=3
3.
(a) (b)
. : Y
Y q)‘( y=Fx*
‘;1 )
(yv) yz:;xz
/ wy) X
n;;( (2
{
v Sw v<w
(c) Y
(yv) X
YV,
=—3x2
(Yw)
y=—4x
vV > W
2.0.4
[page 209]
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4-4, The Function Defined by ¥ = ax® + c.

In this section we show how the graph of y = ax2 + ¢ can be
~obtained from the graph of ¥y = ax2. The graph of y = ax2 + c.
is congruent to the graph of y = ax2 and 1s obtalnable from the
latter by translating it upward or downward, der
value of c¢. The student needs to know how tc i n e
to locate the graph of y = ax2 + €. The vert.. .t _raph of
¥ = ax°> +c is at (0, ¢), and its axis is the line x = O. The
curve is |c| units above the graph of y = ax2 if ¢ 1is '
positive, and |[c¢| units below the graph of y = ax> if c¢ is
negative. Here, too, examples, rather than formal proofs should

be stressed. Figure U4-la shows some of these facts.

Y
y=axi+c, c>0
e
|t/ X
(o, 1
-~
12 P4
l z@ax+C, €<O
X=0
Figure'ﬁiﬁa
[page 209)
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‘Suggestions for Section 4-U4

Problem 2 suggests a topic for the brighter students. The
, 1
table of values for Yy = §x2 - 1 can be obtalned from the table

of values of y = %xz by the simple arithmetlic operation of
subtracﬁion; the graph of y = %xz - 1 can be obtalned from the.

graph of j = %xe by the simple geometric operation of slidi.,.

The topic in question i1s about the relation between sliding anA
subtraction.

Answers to Exercises Y-l
1. Vertex Axls
(a) (o0, 1), x =0
(b) (0, 2): x=0
(C) (0, "1): x =0
(a) (0, - 3), x =0
(e) (0, 6), x=0
2.
Y Y
2
=5x+/
/ | <<2€%i£;xim?
) v ~
L]
(a) (v)
206
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Y Y
L
\ / X X
| =42/ Y70-

- (e) (a)

|0 ~y=-5x%+6

(e)

207
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3 Y Y
\ y=25+3 \ = Ix°+3
3 (03)
| | X X
:-'ZX{.? b 1.2
\\\\ b \\\\‘_~__—////3; = FX 7
©,-3) (0-3)
(a) (©)
Y Y
Q%) ' 2 .
y:-ZX?E’J:_*? : y.:)( +/
’ ‘ p —+<(0,) X
[ \ y==xt
©,-3)
| / \y: -2x%3
(c) (a)
208

(T=ge 211)
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\ =3 24/
\ / y.-.-ZX 2‘;(/ ®,1)

X
? 10,~/) / \y--.?x‘f/
=-2% =/

(e) (£)

b, (a) Minimum: 1 (d) Minimum: - 3
(b) Maximum: 2 | (e) Maximum: 6
(¢) Minimum: -1

5. (a)

4
!
 y=3x"-4
VPl x
|
| (yv)
/‘v«, (0, -4+
i
L\ w)
y=-3><2—4-
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(v)

X

v<w

210
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4.5, The Function Defined by y = a(x - k)z.

In this section we show how the graph of ¥y = a(x - k)2 can
be obtained from the graph of ¥ = axe. The graph of y = a(x - kf
is congruent to the graph of ¥y = ax2 and is obtainable from the
latter by translating it, either to the right or to the left,
depending on the value of k. The student needs to know how to
use the number k to locate the graph of y =a(x - k)a. The
vertex of the graph of y = a(x - k)2 is at (k, 0), dnd its N
axis is the line « = k. The curve is |k| units to the right .
of the graph of y = ax® 1if k 1is positive and |k| units to thé i
left of this graph if k 18 negative. Figure 4-5a shows some of‘ ‘

these facts. (a < O for these graphs.)

i x =0 o
| !
! :
%2 22 - 9
|
| |
| :
|
! i
' :
1
|
o e A
4 beo yrax k>0

Figure 4-5a
[page'eilj
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¥Suggestions for Section U4-5

The novelty of these problems is that we work with x instead
“of with ¥y and slide the curve to the right or to the left instead
of up or down.

Answers to Exercises U4-5

1. Vertex Axis
(a) (2: 0), X = 2
(cj (-1, 0), X = -l
_ (C) (1: 0), x =1
(a) (-2, 0), x-= -2
(e) (2: O), X =2
(£) (1, 0), x=1
2. ‘ )
Y Y
| — & !
: y-fX‘Z) :
I |
\1/ X (1) X
. | | y=20t))?
(a) ‘ (b)
212
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X

(a)

b - —-—

(e)

(£)

213
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.3. ‘
- Y ) Y
| yAx-3) o
I .
| | |
J x @0 | o) x
N o O ;
| VN
| y=-(x-3f » |y’
| . :-6(4/)
(a) (b)
Y R%
E -~ E y=2/x’4)j A 2
: | y=4xctl) /{l y=41x=~/)
1(-4,0) /S X ! | X
| { (%,0) (-1,0)! :0, o)
: : o
ys-Z'(xM)z | ]
(c) (a)

214
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" (e)

4, (a)
(b)
(c)
(d)

(a)

Y Y
| ' | '
I _2 _ 2 I =20+
L] et |t
Y 3. 2 ("2 : \\
/ ! \ 3-4( ,) : y "2[’('*
|
(r)
Minizum: 0 (e) Minimum: O
Maximum: 0 (f) Maximum: 0
Minimum: O
Maximum: 0

Foru=4, v=w
Foru<< borud>b, v >w

[page 214]
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—

y=3(x‘4)2

(v) For u =0, Vv
For u > 0, v
For u< 0, v

A\YAPAN'|
=

216
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4-6. The Function Defined by y = a(x - kle + p.

In this section we show how the graph of y = a(x - k)2 + p
can be obtained from the graph of y = ax°. The graph of
vy = a(x - k)2 + p 1s congruent to the graph of y = ax® and 1is
obvainable from this latter graph by translating it up or down
depending on the value of p and right or left depending on the
value of k. The student needs to know how to use the numbers
k and p to locate the graph of y = a(x - k)2 + p. The vertex
ofwthe graph of y = a(x - k)2 +p 1is (k, p) and the axis is

the 1line x = k. The curve is |p| units above the graph of

Y = ax> i1f p 1s positive and |p| wunits below this graph if

p 1s negative, |k| units to the right if k 1is positive, and’
|[k|] units to the left if k 1is negative.

Here, too, examples rather than f'ormal proofs should be
stressed. Figure U4-6a snows some of these facts.

Y
} y:a(x-k)2+,a | : ysa(x—kjaf'f
k<O k>0
lp>9 1279
;/‘3/’) T4)
X= y:ax‘? =k
| g0) P
| <O | k>0
: ,'f:o y.—.ﬂ/ﬁ(ﬁ@if :/"‘ o y-.—a/x-é)‘z-f,é
[(4.p) (4 L)
| i
x=f X=
Figure ﬁ-6a
[page 214]
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Suggestions for Section 4-6

‘ The novelty of these exercises is that the student works
‘simultaneously with x and y and he has to slide both right
or left as well as up or down.

Answers to Exercises 4-6

1. Vertex Axis
(a) (3: ll'): x =.3
(v) (3, 1), X = &
(¢) (-3, 0} x = -3
(d) (1: "1); x =1
(e) ("1: 2): x = -1
(£) (2, -3), X =2
2.
l )
Y\ | g3y
' |

- (a) (b)

218
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, Y Y
:yzﬂkﬁif :
| I
I l
g o
l //,/,, ?‘-f\\\éﬁrjé&§?19 |
| o

(c) (d)
| \ Y
El2N E
|
:3/3(-#/)‘2 l
E X i X
| |
| Tk
| ('*3: ‘y gdﬁ(werif
i
(é) ()
219
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) BN\
X X
X N X P
1] 3=~
-~
w S » D
& &
y Il_ o = .
~ - T T ™ | T
hd U
> N I
)
X )
N X
1) — & — (-
> - i o ©
? S
2\4/ o o
g 2% A g
N
DD

(a)

(c)




_1k+0$2

_/x+/)‘1«z
7 2

(e)

4, (a) Minimum:
(b) Maximum:
(c) Minimum:

’

-<
o = &
"G .
&3

v >w

i
.

N\

{r)
(d) Maximum:
(e) Minimum:
(f) Minimum:
y=2(¢~3)%&
yv)
X
=23~ &
yw)
(v)
[page 216]
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2
(x+3) +6
‘k;\\/ :
X
(c) For u >0, v<w
For u =0, v=w

For u< 0, v>w

47, The Function Defined by ¥ = ax> + bx + c.

The text shows how to represent ax2 + bx + ¢ 1in the form
a(x - k)2 + p, by completing the square. It 1s probably best not
to let the students read off the values of k and p from the
formula of the text, but rather to have them carry out the steps of
completing the square in each individual case. The student has
been exposed to many details in progressing from ¥y = x2 to
¥y = ax2 + bx + ¢. This is a good time to try to give him some
unifying'perspective so that he doesn't drown in a sea of algebralc
tricks. He studied the function defined by y = x2 by referring
to properties of the real number system. The information obtained
in this way was then applled to the case ¥ =:ax2'+ bx + ¢ by
~é few algebralc and geometric devices. The material about ¥ =
s probably deeper than the steps leading to y = ax2 + bx + ¢,
(although 1t is not easy to Justify such a value Judgment). How-

ever, the student will probably be more interested in these latter

e

[page 2171}
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steps, because there he = ivzd e serform >»ather than -
meditate.

Suggestions for Section

i

The emphasis in these roblexr should not be on the pl:rsting
of the graphs, but rather - ~he :.iizbraic reduction of the
problem to the previous casz=z

Answer:s Tael ises h.o7

1. (a) y = x2 - Ix
y = x2 - Ux + 4 -
y=(x-2)°% -1

(b) y = _x° + 2x
y = -(x2 -2x + 1)
v = -(x -1)%+1

(c) vy = x° + 3
y = (x - O)2 + 3

(@) v =3x°+5
y =3(x-0°2+5

(e) v = X2+ Bx + T
yo=-(x®-6x+9)+7 0
y = -(x - 3)2 4 16

(£) y = x° - 144
y = (5 - 0)2 - 144
¥y = X+ 2x + "

(g) v=GZ+2x+1-3-1
y = (x+1)% - b

(n) y=‘2X2+8x-5
y = 2(x2 + Ux +4) -5 -8
y = 2(x + 2)% - 13

223
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(1) y = X2 4 2x - 2k
Y =x2 4 2x+1 -2k -1

¥y = (x+1)% - 25
(3) ¥ = -5x° + 5x + 10
Y='5(X2—X+'zlr)‘+10+15r v
L .
y = -5(x - 5%+ 2
2 and 3 :
(a) y=x°+7x -8 |
' X
2 49 49 \ : /
y = x4+ Tx + -8 . I
ot R e g By
y=(x+ 52 -F-F ;
]
_ 7\2 _ 81 ‘
A (2%
Vertex at (- %y - %i). .
Axls 1s line x = = % .
(b) y = -x% - 11x - 31
y=-(x2+llx+lﬁl)+lf—l-l§u Y
_H
y=—(X—+%)2-% | 2 X
T
11 3 44)
Vertex at (- s =) ‘¢
(-5 - % i
Axis is line x = - 3 . !
|
|
!
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(c)

(a)

y = -2x - -1

y = —2(}{2 +-5X + %6) -1 + B

y = -2(x +*-'j\‘2 -

Vertex at {«%;, -%).

1l
Axis '1is lin=s x = - .

leE + -

w

i

y

1
y=lt(x2+%x+-6%')-3—m

h(x +~é)2 hﬁ?

it
t

y

Vertex at- (- %, lL9) .

Axls i8 lize x = - @-

_2x° - 5x - 1

2
--'.2(x2 —1—-%{ + %2—) -1+ —85-

-
o

1

T

y=-2(x+%)2+%7-

: 5 17
Vertex 1s (- %> §/-

Axis is the lir= :c=--15I,

[page: 220]
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_d
5‘,,-

L m——

- TN

R

_l
x=3

!
|
|
|

| 111
|
:
|
|

o
_

-y

o
>~
N

P e LN
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(g

- (n)
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Y
Yy = x° - %x + }
|
e T = 4
y o= x° =% +r~—._—6— + - —1% \ i /
~ ' X
y=(x p°-3 7 ]
;(;»'/2)
Vertex _s at poo=s - - T%) |
Axis is tre lir=s = 17;
2
¥y =5x" + 4x + 3 Y
y=5(x2+-gx+:%)+3—% :/
2,2 .
¥y =5(x+ %) ~—l5—1 (/’5‘2)59:
. | X
Vertex is at point (—m%,~%%). i
2 i
5 ,\’:-;.- !
Axis iz the line x = - 5- '
y = _3x2 + Zx —~ 2 Y
!
- - \X=7
y = -3(x" 5=+ —;—) -2+ !
] | X
y = -3(x - =:; - —2- :
]
- g ]
. Vertex 2t (= —=+j L r1
< = (#\(,?/-.;)
— |
Axis i: line —== /I\
~ I
|



P

21:

]

1
\un
”

no

+
w
»

(1) 7

- 3y2 9
v = 5(x -5 * 2% +
l 3
: . 3 9 =
Vertex is at (10, 20) l‘f’ho
Axis is lire x=——:i
s L

it

(3) y=2x°+¢ \\\,g/

y = 2(x - 0\2 + 8

it

Vertex at (0, 8).

Axis is line x = 0. ﬂ X

4-8. Quadratic Functions Having Presgiized Vecues.

We saw in Sectiom 3-1C fth:o if Xxq axd X, are &stinct
numbers and 1if ¥y and Vo =ma dis< incs numbers then There 1s
one and only‘one linear functiz:: which pairs ¥, with X1 and
Yo with xei This seciion is .oout the carresponding state of
affairs for quadratic functions -- to discuss how many and what—
kind of prescribed pairings determine a quadratic function. It Is
irstructive to compare the :zonclusion about the linear function
with those about the quadratic function. It-is helpful to

consider the constant funciion in this connection as well.

2727
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The followlng table summarizes the concluslons and sugzests

thelr similarities.

Constant Linear Quadrati-
Function Function Functior
Defining _ _ R o Avl .
Equation y = a y = ax + b Yy = ax +— IX + ¢
Auxilia
Condtion none a#o a A e
?umbe§ of Pailrs (one ) ( two ) ( thre§ ( )
X, ¥) that can X., ¥ Xy, ¥-) =nd Xy YVa)s (Xns ¥
be,Prescribed 1 L 1 R 1 1 _2 2
(Xe, Vo and (x3, -]
Supplementary Not the Not the rairings
Condition on none pairings of of a linszr nor a
the Pairs a constan constant fzzetion.
function.
Algebraic Ts =Ty Ta-=7
Statement of none el # Yo — A= _,Kl
Supplementary -2 1 3 1
Conditions
Graph Any Any linpe Iny mar=stola
rap horizontal which s with zxi=z
line neither parai—“el T the
horizontal § y-ayss.
nor vertic= .
Conditions To contain To contain To contain amy
that can be any given any two three non-ccllinear
imposed on point points (not points, mo two of
graph on a hor=- which have szme
zontal or x-coordimzza.
vepticzl
{ line).
L
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The teacher can iet the brighter sStudents try to extend the table
to include the functions defined by

y = ax3 + bx2 + cx +d

Yy = axu + bx3 + cx2 + dx + e

etc.

The proof that there is a quadratic function which makes
three prescribed pairings depends on solving three equations in
three unknowns. It 1s postponed until that topic is discussed in
Chapter 8. The student can probably handle the calculations here.
However, he is not prepared for an important subtlety which is a
part of the problem. He probably can find the a, b and c¢ of
the quadratic function which makes prescribed assignments. He 1s
not yet able to prove that the coefficient a he discovers by
his calculations will be different from zero if and only if

X =X X3 -5

Suggestions for Section 4-8

1. Problezs?2 ané 3 are basically the same, Problem 2 18 stated
in geometric language and Problem 3 in algebraic language.

2. The exercises cannot be counted on to get across all the
material of thls section, The teacher will want to discuss .
the material apart from its problem solving aspect.

Answers to Exercises 4-8

1. = ax2 + bx + ¢

=04+ 0+c

=a+b

=a ~-b

1, b=0, ¢=0

=x2.

by Inspectlon

i

< pHH OY
[

hence .

299
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2. ¥ = ax® + bx + ¢
0=0+0+c
0= 4% + 2b

-1 =a+b
za = 2
a=1
b= -2
c 0
y = x2 - 2X
3. Answer is Yy = x2 - 2x., Calculations same as those in
Problem 2.

4. We need to determine t so that (0, 0), (1, 2), (-1, t)
are not collinear.

2 -0 t -0
If the polnts are =
collinear, 1-0 -1-0
2 = %
t = -2,

Hence, for the points to be non-collinear, ¢t ¥ -2,

4.9, Equivalent Equations, the Equation ax® + bx + ¢ = O.

o This section gives a definition of equivalent equations. It

then shows some ways of transforming an equatlion to obtain an
equivalent equation. The virtue of these transformations is thatv
they can be applied to any equation and always yileld an equivalent
equation. in Section %-13 we discuss transformations of equations'
which need not lead to equivalent equations.

Quadrutic equations can occur in various forms, sSuch as

3x° + 4x + 5=6o0or x-3-= x° - 4, In solving a quadratic
equation a‘useful first step is to transform 1t to *he standard
form, ax2 + bx + ¢ = 0, All later instructions usu thlis as a
point of departure.

Suggestions for Section 4-9

1. Problems 1 - 9 are suited‘for oral discusslon. The remaining
problems are sultable for written work.

(230
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2. Some of these problems are tricky. The equations in Problem
18 look alike to the eye, but are not equivalent, The )
equations in Problem 21 look quite different, but are equi-
valent. The moral is to use the formal test for equivalence
rather than a visual one,

Solutions to Exercises 4-9
1

1. Multlply by %3
2. Add -6 and multiply by 3 .
3. Multiply by % .
4, Add  -3.
5. Multiply by 2 and add 16.
6. Add  -11.
7. Add -20.
8. Add -x - 6.
9. Multiply by % i
10. Add -bx - c.
11. x° - 8x + 15 = O.
12. x°+x -6 = 0.
13. x° - lbx + 49 = 0.
14, x° +1 = 0.
15. b4x° + 8x - 5 = O.
16. Yes.
17. No.
18. No.
19. No.
20. Yes. D .
21. Yes, becsuse the solution set of each is {50}. The multiplicity

of the root 50 is 125 for the first equation and 13 for
the second. This 1is discussed at length in Chapter 5, Section

°9- 231
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4-10. Solution of ax° + bx + c = 0 by Zompleting the Square.

Theorems L4-10a znd 4-10b set forth a procedure for solving
quadratic equations and also furnish a formula for thelr roots.
‘The student should : aster the procedure as well as the forumla
because he will nee to complet= the squar= over and over again in a
mathematic career. He should bz able tc szart with a quadratic
equation such as 2%° _ 6x + 3 =0 and (a) complete the square
“without referring.to a formula, =Y decide from his own calcu-
ations without referring to formulas whether the equation has a
solution or not, (c) be able toc fmd Zts solutions, if they
exlst, without referring to formul=: . He should also know the
quadratic formula =nd be able to mz= it. He should know the dis-
eriminant test for the existence = real solutions and be able to
‘use 1t~ Some drill on identifyinz @, b and c¢ 1s indicated,
especilally on such equations as ZIx + 4 = 2x2‘- 5.

The requirement of being =kl= fo work without the forumlas
and yet to know them and be arls Tp use them might require some
Jjustification. If the student is ezmected to be able to derive the
formulas himself he can see why T I5 valuable to kmow both the
procedure and the result.

We comment briefly on equeZions with exactly orte root, such
as x2 - 2xXx + 1 = 0. There is & *%radition which calls such a root
a "double root," but this langu=zs should be avoided here. In
Chapter 5 the notion of "mulitiplicity" of a root is discussed care-
-fully. This is a refinement wizich goes beyond soiution sets, and
here we are cnly concerned with solution sets, Chapter 5 also
shows that if complex numbers are zllowed as solutions, every quad-
‘ratic equation has a root. The Z==cher should explain that the
discussion of this chapter.épplies only to quadratic equations
~with real coefficients and is moncerned only with thelr real roots.

Suggestions for Section 4-10

‘\1. Unless you have an excepti::ally slow class you will not need
"‘ to cover all the problems of this section.

‘2, It is recommended that the *teacher stress the theory of

' quadratic equ=ztions aé well == the technique of solving them.
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This means that the discriminant test should be glven at least
as much importance as the use of the quadratic formyla.

Answers to Exercises 4-10

1. 2 roots. 11l. No roots.
2. 2 roots. 1l2. 2 roots.
3. No roots. 13. 1 root.
4, 2 roots. 14, 2 roots.
5. No roots. 15. No roots.
6. 1 root, 16. 2 roots.
7. No roots. 17. No roots.
8. 1 root. 18. 2 roots.
9. No root. 19. ({7, -1}

10. 2 roots. 20. [18, 10} -

21. (9, -5}

22, (13, -11}

23. ({9, 5]}

5.9 _5 21

2 -5+ 3H -3 F)

25- [-5’ 2}

26, (-7 -1)

27, (F -4

28. (3 3)
29, (-1+y5,-1 -5)

3o. (-1, - 5

31. [%"'*‘4-—%": %“g}
2. (3
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s, -3+, -1-53

1
3., -5 -

5. -3+ 5% -3 -YED

36. [%: - %]

11 |, V1b5 11 Y1k5
37. ['T'*'"Ii__’ -T"""[r—‘}'
8 -b +-Vb2 - lhac ~b ~ b2 - lac
8. T ’ T )
-a, +}a2 - Ube -3 -)a2 - Ube
39. == ’ o5 )
-C + 02 - lab -c - )02 - hab
Yo, b ’ Zb )
1. (0, )
b, (3, -1)

43. [—E- + B —2:'1'— -
R 3)/‘2, -4 - 3y2)

45, [1-5 —1-— s 15t 2%]
46, ['E Ny ER 15; - [-IE]
v, -3, 1)
18, (- %}

_)'_n'_'o_ , 1 _ Yo,

T
-5 + Y109  -5_-)Y109 9
5+b , =2 - . 234

49, [ﬂ

50. (
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4-11. Solutions of Quadratic Equations by Factoring.

In traditional algebra courses a great deal of time 1s spent
on factoring and on solving quadratlic equations by factoring. We
do not linger over this topic here., Factoring an algebraic ex- '
pression rarely accomplishes anything of value, and the quadratic ;
equation which can be solved by factoring is rarely met outside theu
classroom in which drill problems on the subject are provided. Théf
connection between factors and roots is discussed in Chapter 5, "
especiaily in Theorem 5-8. The mathematlically valuable aspect of .
the subject considered there and here is more the information thatff
roots glve about factors than with the information that factors '
glve about roots.

Suggestions for Section 4-11

Factoring is primarily a mental process. Many of the problems .
~of this section can be handled in oral discussion. E

Sy

Solutions to Exercises 4-11

1. (2, 3) 1. (- %, %)
. Ei] 1) 2 &P

b (9, -6) 1. (5 -3)
5. (3 1) 1, (3, -4
6. (-3 1) RECHNN:
70 (-2 3 16. (-2, 2)
8. (0, 3) 17. (0, - 3)
> [;13’ :] 18. (& 3

o 5 -2 19. (3 - 3)

[pages 228-230]




227

.20, (- %, 1) 26, (6a, -la)
a L3 ., )
, 1 5 28. {a, b}
: 22, [7‘: - '3'] 29. [_a, b]
23. (0, - 3) a b

30. [E: ’E]

2k, (&, 3)

25. (§)

4-12, Some Properties of the Roots of a Quadratic Equation.

This sectlon reverses the emphasls of the prevlious sectlons,
Instead of starting with an equation and seeking its solution we
start with a set and seek an equation of which it is the solution
set, !

Several points should be emphasized; (a) If r and s are
~any real numbers, therels one and only one quadratic equation

x° + PX + q@ = 0 whose solution set is (r, s}, (b) the numbers
P and q can be expressed simply in terms of r and 8, (c)
there are infinltely many quadratic equations whose solution set
is (r, s}, (d4) a, b, ¢ are not determined by r and s but
the quotients g and % are so determined.

Suggestions for Section U4-~12

All the problems in this section are suitable for a written
assignment.

Answers to Exercises 4-12

1. x® - 1lx + 30 = O,
2. X% 4 Ux - 21 = 0. '
3. x2 - 8x + 16 = 0.
4, x° - 36 = 0.
5. x2 = 0.
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6. 3x2 - 1lx - 4 = 0.

7. 5x2 - 2x = 0,

8. 12x° + x - 6 = 0.

9. x2 - 8x + 11 = 0.

10. rx° - (r2 +1)X +r = 0.
Sum Product (If roots exist)

11. 13 ko

12. -5 -50

13. 3 2

14, 3 0
.11 8

15. T -7

16. p+q pq

17. Sum: 4, Product: 1. x2 - Ux+1 =0,
18, 9x° 4+ 2ix + 11 = O.

19. (a) (8} (b)) (15, -5 (c) (§)
-b ) bE - lac

20. n - 2a
x. = b+ YbE ~ lac
2 2a
If X, = Ex2
then
b - Y2 - bac _ (-1 4 b2 . bac
2a Za 2a
2
b 2b 2Yb° - hac Yb° - bac
"7 ‘vt a T 7a
b _ 3Yb° - lac
Za a
b = B,bz - lac

2317
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b2 = 9b2 - 3bac
—8b2 = -36ac
2b2 = Qac

4-13. Equations Transformable Yo Quadratic Equations.

This section cculd have been entitled "Solution of Equations
by Ingenious Devices." There are in fact threé.specific types of
équations which are discussed here, but the interest of the section
goes beyond showing the student how to handle these three types.
He should learn that a little bit of algebraic '"get up and go" can
occasionally make a new problem solvable.

The central toplc 1s the transformation of given equations to
quadratic equations. The actual transformations include multiply-
ing both members of an equation by an expressionh containing the
unknown, and squaring both members of an equation. These pro-
cedures can: (a) introduce new roots, (b) lose roots, (c)
yileld an equivalent equatlon, and there is no simple way of
telling from the procedure just which of these outcomes has
actually been attained. Ths student should therefore be urged to
check his answers in the original equation and to seek some kind
of assurance that he has all the roots. The student should see
some simple examples of galning roots and of losing roots.

Example on loslng roots

To solve x2 = 2x divide both members by x. This trans-
formation yields the equation x = 2 and the root O has been
lost, : :

Example on galning a solution
To solve Y2x - 5 = x - 4, square both sides. This trans-
formation ylelds the equation . é.“
2x - 5 = x . 8x + 16
[page 233]
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or :
x2 - 10 x + 21 = 0.

This last equation has solution set (3, 7)}. The number 7 1is.a
' solution of the original equation but the number 3 does not

satisfy the original equation because

Yy 2 -3-5=1 and 3 - 4 =-

This 1s a good place to compare general procedures and
>ingeneous devices. Linear and quadratic equations can be solved
by straightforward means which do not require inspiration or
luck. The problems of this section cannot be handled by a uniform '
method. Some temperaments prefer th=: first king€ and some pnefef
the second. Mafhemaiies includes boSh kinds of problems. ' :
Some studerts will be curious azmout equations of higher: degnee
than two. The esuation of third degrse '

=S + bx° +cx +d =0, a #0

and the equation of fourth degree

axt + bxS + cx° + dx + e = 0, a#0o0

are solvable by formulas involving extraction of roots somewhat
1ike the quadratic formula. It has been proved that there are no
such formulas for equations of higher degree. All that is avail-.
able of a general nature for these cases are methods for solving
them approximately. Some individual cases yleld to ingenious
devices, but no uniform methods are known or can be discovered.

Suggestions for Section 4-13°

The teacher with a slow class may want to spend three days on -
this section, devoting one day to each type. With a better class
it is preferable to deal with all the types in the same lesson.

The student should get the feeling that he needs.a little
initiative in tackling these problems.

239
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Answers to Exercises h.13a

1. (-4, 1)
2. (3, -3}
3. (-1}
o),
l5' {o, 2}
6. (-2, 1}
7. {'7, 5]
8. (o0, 1T}
9. {2} 5 1s a root of the auxlliary quzdratic but doesn't
. satisfy the original equation.
'10. Empty set.

inswers to Exercises 4-13b

In some of the-proilems in this section the auxiliary
'quadratic equation has roots which do not satisfy the original
" equation. These extraneous roots are not listed with the
answers. A

1. (o, 10} 6. (3 18)
2. {3, -1} 7. (2}
3. (7} 8. (&, -1}
b (5) 9. (3, 1)
, 5. (1} 10. Empty set,
Answers to Exercises 4-13c
Sl {1, 2, Y3, VI
2. {2, -2,y 2, Y2
- 3. {2, -2, 3, -3)
 ”4' Ee, -2, 5, '5]
] 5' {l, -l, 2’ 4]
6. (-1, _2’_%+y_§;_%_y_§] v
7. @& P
8. (2} g 24()
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Answers to LExercises 4-13d

-

(1)

[1! 7]

3, -1)

(-3, 3)

{+5, -5, -1, 1}
{-1, 2, -3, 4}
No solution.

Ve, YT

{2}
(27}

1. (=2 +Y5 -3-Y5 -9 +Yil1i -9 - YlEl]
. 5] ’ 2 ’ 4) ’ . 6

O O N Oo00U & W

=
(@]

12, (-3, - %)

13- ["1}
14, (3) .
15, [0, +ll': "ll'}
6. @, -6, -3 -0, 3. 1E
17. ["r‘g""[‘g: "%"'[25—]
18. (-3 +/Z7, -3 Y2}
19- {2! = B‘%

a
20, (-5 -b)

241
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4b-1k4, Quadratic Inequalities.

Plotting the solution set of a quadratic inequality on the
number line can yield one of four possible figures:

(a) the whole 1line

(b) the empty set

(c) all the points of — O ————
a segment éxcept
its end points

(d) all the points not G Ou——

on & segment,

Figure 4-1lka

These facts become a little less mysterious if the graph of the
assoclated quadratic function is drawn. Cases (a) and (b) are
illustrated in Figure 4-1Ub. The whole line is the solution set
of. ax2 + bx+ c¢c >0 and of a'x2 + B'x + ¢' ¢ O, Tke =moty set
is the solution of ax2 + bx + ¢ <0 and of a'x2 + b'x+ c' > 0,

U“’x'z* bxre

Figure,urlub
242
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jmax4$x+c

y:a.’xeﬂé'x»*c ‘

Figure U4-1llc

cases (c) and (d) are illustrated in Figure 4-llc. All the points

of AB except A and B constitute vhe solution set of

2 2

ax® + bx + ¢ < 0 =nd of a'x® + b'x + c' > 0. All the points of
the line not on BAE constitute the solution set of ax2 + bx +

c > 0. and of a_'x2 + b'x + ¢t € 0.

The solution set of quadratic inequalities can also be found
by factoring but the method is tricky and not generally applica-
ble. For instance, to solve '

| 3x2 +x-2>0
notlce that
3%2 4+ x - 2 = (3x - 2)(x + 1).
The inequality 1s equivalent to
"(3x - 2)(x + 1) >o0.
‘For this to hold either
3x -2 >0 and x+1 >0 or
3x ~2 <0 and x + 1< 0,

The first pair are satisfied if x > % and the second pair are
satisfied 1f x < -1. Therefore, the solution set is the set
shown in the Figure 4-14d. -

-/ o %'f

Figure "-14d
[page 2u40]
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This method 1s not recommended for general consumption,

Sugéestions for Section 4-14

Notice that Problem 9 and those that follow are not in
standard form. The student should put them into standard form.

Answers to Exercises U-1l

2

1. x° -lx +3<0 Y 2

- =X =4 +3
y = x° - bx + 4 - 4 4 3 J
Cy=(x-2°%-1

v 1 3.
{(x: 1 < x< 3} (o) (309 X

2-1)

| Y
2. x4+ 5x+ U4 >0 yax"+5x+4
(x: x< =4 or x> -1}

244
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3.}(’*:)(-6)0
{x: x< =3 or x> 2}

4, 2x2 + Ux +5<¢0
Empty Set

5 x2-16<0

(x: -4 < x < U)

'2¢t5
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UW’-JW
X

(30

6. X2 -6x+9<0
: Empty Set, Y

7. x2-6x+8<0 Y

{x: 2< x< U}
y:XZ-JX +8
X
2./ (49)

(3-)
- 8. -x2+2x+3.<0
(44
{(x: x< -1 or x> 3} (4 Y
X
o) (39
y:-x"+‘?x+3

246
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9. 5x<2-3x2f“ y
3% + Bx - 2 < 0

{x: -2 < x<%'-]

X
-2,0 (4,0) .
‘ymdb(q+£ﬁl'i?
(‘5."/4
10. 3(x +1) < 5x° |
_5x2+3x+3<0
- Y
[x:x<:3—_§o—)/;6—2 or x?%6—62] 85

247
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11. 6(-x° + 1) > 13x (:A? 313

-6x° -
X 13x + 6 > 0 yg.—gx"-/gxi-J

13 + 313] ”
G RS ¢ (65 o) B o)
X
12, ~x2-4x-5<0 Y
X 1s sebt of all real
numbers
=2 X
P4
\y:—x ~gxX-5
13. Bx° + 1 > bx Y
§x? . bx +1 >0 y=4)(2—4x+/
[x:x<%‘ or x>%) \ f
g9 X

248
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14, ~x2 + x>0
C x x < 1Y 4
{x: 0<x <1} (2‘;4-
X
3 \(/,
y:-xz*x
15. X +x-150
x2 + X + % -1 - % >0
(x+3%-2>0
{(x: x < :l—é%lgi or x > :l;%%lzi] Y
y=x2+x-/
~/-V5
( 2 la) X
(55,9

16. (a) x°+hx+9=0
a=l,b=h,0=9
62 - hac = h® - 36

For no roots h° - 36 < 0. The solution set 1s

{h: -6 < h <6},

For one root n° - 36 = 0. The solution set 1is (-6, 6}.
For two roots h° - 36 > 0. The solution set is

{h: h< -6 or h > 6}

249
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( 9
a=1l,b=nh, ¢c =5

b2 - Hac = n® - 36h

For no roots h° - 36h < 0. The solutlon set is

{h: 0 < h < 36}. '

For one root h°% - 36h = 0. The solution set 1s {0, 36}.
For two roots h® - 36h > 0. The solutlion set is

{h: h< 0 or h > 36}.

4.15, Applications.

Mathematlcs 1s often thought of as a means to an end -~ the
end being to solve problems which arise in other areas of inquiry.
This is an undesirable point of view. While it is true that
mathematics can be so applied, it 1s a valuable body of knowledge
in its own right. Morecver, the people who are most successful
in applying mathematics to these external problems are those who
have the best grasp of pure mathematics.

At the eleventh grade the applications of mathematics appear
in "word problems." Solving word problems can be a rewarding
experience if

(a) the problem is realistic and its solutlon is of some

interest to someone,

(b) 1its algebraic formulation is reasonably obvious,

(c) the algebraic techniques that the student recently

learned contribute significantly to solving the problem, - --

Unfortunately most interesting problems require for their
solution some technical scientific information as well as
algebraic skill. It is unfair to expect a student to tackle such
a problem.

Some teachers keep a record of interesting problems that they
run across in textbooks, magazines and in discussion with other
teachers, Our Example L4-15 (b) is an example of a reasonably
interesting problem, Our Example 4-15 (a) is not.

250
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Suggestions for Section 4-15

Some students in your class may know of word problems of
general interest, or may even have'themselves met situations in
which rathematics could be usefully appllied. Problems which come
from 1living students are more interesting than those which come
from dead physilcists.,

Answers to Exercises 415 -

1., Width 1s 3 feet.
h. ~Length 1s 7 feet.
2, 3 dinches is width of frame.
3. 20, 21.
L, (a) 2 seconds.
(b) 10 seconds,
(¢) During 8th second: 320 ft.
During 10th second: 384 ft.

5. 12, 10.
6. Let x = number of oranges in bag
1%9 = price of each orange
lgg + 2 = new price of each orange

X - 4 = new number of oranges 1n bag

(600 + S5x)(x - 4) _
2= = 100

from which
(a) 24 oranges per bag
() * .50 per dozen
7. Let x = speed of 1lst trailn
X + 5 = speed of 2nd train

140 200 _
x TXF+5 " 9

from which
x = 35, X = -5 (not acceptable).

251
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8. Solve equation

Y2x = 3 =1+ Y2+ x
for x
X = 14,
9. Width is 6 1inches.
Length 1s 8 inches.

1
10. x+$=1

x2 -X+1=0

discriminant is -3
hence no real solution,
11. Yes 13 width
‘ 20 length,
12. 7, 8 and -8, -7,

13, (100 + x)2 + x2 = (500)°
x = 300
X + 100 = %00
14, 7, 28,
15. Width 25 yd. : ,
Length 25 yd. S

Answers to Exercises 4-16

1. 2.
:X2+2
Y y=x2+/ : Y ; ‘y . L
_2
\(o,f) ly=x’ o R A
X | \\\\' X
©0) 29
1
l
. |
x=0 i’<q2

[pages é&é;éh7}
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ST y=x2-4x+3 VA
y=x - 4x 4+ 4 443 I
y=(x-2)2%-1 \Q

2 '
Yy=x"+4x+ 4 -4 43 Wﬂ

y = (x + 2)2 -1 |
|
Xz-2
8. y = --2(:(2 + 2x -l‘-.l) )(|=-'I
v = -2(x + 1)° |
. l M
y = 2(x2 - 2x + 1) 1'/’40)
y = 2(x - 1)° :
2
=22 E
2 9 9
9., ¥y = x4 3x + -
BTE y:xaf.?x

y=(X+%)'2—%

254
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10, ¥y = 2(x2 - %x + T%)E - %'+ 1 2 \(
_ 3,2 _ 1 y=ﬁ<*/) Cl
Yy = E(X - Il_) - '8‘ . ' " :3 +~/
P\l |
fﬂ?: 4:ﬁ£ﬁéﬂ
( o
|
Hz2 =/ X = 2
- 4
Number of real roots Sum  Product Discriminant
11. 0] ' — ;— -3
12. 1 -3 T 0 Note: . We are
13. 2 -2 -2 12 presently confined‘ _
14. 0 —_ — -31 to real roots. If
3 } there are no regadl
15. 2 - 89
2 5 5 roots, 1t makes ho
16. 2 7 -18 121 genge to talk zPout
17. 2 %% - T%' 289 thelr sum or
18 o ___ _ -16 product .
- 19. 2 -8 6 40
- 20. 2 -7 0 49
3
21. {"2, + 5} 27- {- % + y‘z—i’ - % - K%i}
5
22, (-3, + =2) 3 YL 3, Ym
; 18 8. g-=g» 5+
23. (- % =3}
11 145 11
29. (- + E; y - ~ T~
24, (-3+y5, -3-)T5) F A |
25, Empty set. 30. (-2}
26, (-5 -1) 31. (-1 + Y10, -1 - Y10
255
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s, 3+ X, 3 -V

33. Empty set. Discriminant = -3(

b, (A +3yT, a-3ym)

1 Y73 1 Y73
35. 33 *+ 15 T3 - 13
36. {0, 6)

37, (33, -7

8. (2+5)Y 7, 2-3)7)
39. Empty set. Discriminant = -60

Yo, (1 + Y7, 1-)YTT}

2

41, b° - bac =0
900 - 36k = 0O
36k = 900
k = 25
b2, 36 + 16k = 0O
16k = -36
-3
43, 64 -8k =0
-8k = -64
k=28

B4, 9x° - Bkx + 4 = 0
6UKE - 14k = O

k=2x3
45, k° - bk =0
k(k - 4) =0
k = 0 (not acceptable)
k =14
46, (x - 3)(x+2) =0
' X -x-6 =0

S 255(3
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¥7, (x+5)(x -5) =0
X2 - 25 = 0

]

48, [x - (2+YB)x-(2-y2)] =0
2 - (2-)YD)x~(2+)Bx+2=0
xE - lx+2=0
b9, (x - %)(x -‘%) =0
x2 - %x + % =0
8x° - 1bx + 3 = 0
1
50. (x-g)(x-B) =0
x2 - l%x +1 =20
3x° - 10x + 3 = 0
51, x -YBXxF¥ 9 -1=0
x-1=Y5x+9
x2 -2x+1=5x+9
x° - 7x -8=0
(x +1)(x-8) =0 Check
>l <1 - Y B(-I) +9 -1#0

x = 8 (checks) 8-Yy5+-8+9-1=0
52. sz +3 + Ly

2

X~ + 3

X2+ 3+ Ub=1 2 4 3

x° & 7 = H)xz + 3

xF e 1k 4 by = 16(x2 + 3)

xu ~2x2 4+ 1 =0

(x° - 1)(x° - 1) =0
XE =1
x=+lsﬁﬂ’257
X = =1
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53, /3x - & +:W/2x +3 +1=0

249

V3x - 5§ = =1 - 2x 4+ 3 .

3x - 5=1+2V2x + 3 + 2x + 3

X -9 =2V2x + 3

x° - 18x + 81 = 4(2x + 3)

x2 - 26x + 69 = 0

(x - 3)(x -23) =0

Emptymgét.

Note: It was evident from the beginning that the sum of
one and two non negative numbers cculd not be zero.

54, 2xt - 17x2 - 9 = 0
(2x° + 1)(x° - 9) = O
{3, -3}
2x% ¢ x + 1 =2
2x2 + x -1 =0
(ex -1)(x+ 1) =0
(5)

56. Let t = x° - 3x + 1

=5
t = -1
£ = x2 -3x+1=5
x2 - 3x -~ 4 =0
t = x2 - 3x + = -1
2

+ 258
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57, (x+ T(x -7 - 2(x -1) = 12x
x2 - 49 - 2x 4+ 2 = 12x
x° - 1lix - 47 =0
(7 - »Ve, 7+ 46

58, (a + b)zx2 - (a + b)zx -ab =0

(a + b)z s W/(a + b)4 - W{a + b)Eab
2(a + b)°

- _ b -
X=3%50 or T Y

-
59. Vx+ 4+ Vx-1=Vx -4
X + 4+ 2\[(% + 8)(x-1)+x-1+x -4
2 V(x + ¥)(x - 1)
b(x + W) (x - 1)

x2 + lix + 49 = 4x® 4 12x - 16

X =

X+ 7

1

x2 + lUx + 49

1

-3x2 +2x + 65 =0

3x° - 2x - 65 = 0

(3x + 13)(x - 5) =0

X = 5
Empty set. Why should this result have been anticipated?
60. 3x' -ux2 -7 =0
(3x2 - 7)(x° + 1) =0 '
[1/21 Ve,
3’ 3

1259
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Y
61. y=x2—4
(x: -2 < x< 2) X
(20 (20)
(0-4)
62. y=x2-x-2 | Y
y=(x2—x+%r)—2—-%; 2
| ¥
oo bR -3 . 7 x
x° - x-2<0 A9 20
(x: -1 < x< 2} 2
(F-7)
Y
63. 2x° + 5% - 12 > 0
v = 2x° + 5% - 12
y=2(x2+-g-x+%g)--12-'j
ootes -2
(x: x < =4 or X>%}

260
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64, 3x“ +1lx -5<¢ 0 Y
vy = 3x2 |

Yy = 3(x2 + l%x + %;) -5 - %?

+ 1lix - 5
y=3ng'/4X"5
X

y=3x+H%- & (59)

(x: -5< x< %) (154

65. ox2 - 3x - 8 >0

y=2(x -3+ -8-3

. r) 3 2 73
o= :..(x - ‘1]') - 8 (:?__'"”:70)

{x: x < §—ﬁlfz§ or X >»§L4}ICE§]

66, Let x = the number
3%x° - 9x = 120
x2 -3x -0 =0

[8, "5}
261
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68.

69.

70.

T1.

Let x = width
2x + 6 = length

x° + (2x + 6)2 = 392

%2 + Ux2 4+ 2bx + 36 = 1521

 B5x2 4 2lx - 1485 = 0

Width: 15
Length: 36

YEF¥ T2 =)y x+ 4
x+T72=x+8)yx+16

8 Y% = 56

yx =17

x = 49

x(50 ~ x)

-x2 + 50x

= —(x° - 50x + 625) + 625

= —(x - 25)2 + 625

Maximum at x = 25
25

b2 - ldac <O

42 - 36 ¢ 0

kS - 9<0

Plot y = k° - 9

{k: -3 < k € 3}

N

N

d d 99

y = 3x2 -6x + 5
y = 3(x? -2x+ 1) +5~3
y=3(x-1)%+2

(y: v 2> 2)

n

262
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72, kx° - 8x+ 3 =0

(a) 64 - 12k =0 (b) 3+ X = % OR
12k = 64 3 Ok - 24 + 3 =0
3k = 16 3% =% I
K = 16 o -1 T3
3 1~k
3+1]é=€-
3k +1 =28
3k = 7
2 k =1
‘73, kx® - 2x+3=0 3
L - 12k >0
1 -3k >0
3k < 1

k< Fand k £0

T4, Use the formula for the sum and the product of the roots of
a guadratic equation.-
' r+s=-(r -1)
rs = 28
From the last equatlion elther s O or r=2, If 8 =20
then, from the first equation r -(r - 1), so r = %.
If »r =2 then 2+ 8 =-(2 -1), s0 8 = -3,

i

r = %, 8 =0

answers
I‘ = 2’ S = "'3

CB _ AC
20 -x __X

X _ 20
x° = 20(20 - x)
x? = 400 - 20x
x° + 20x - 400 = O
« = -20 % Y2000

—_— 263
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x = -10 + 10y 5
X = 12.36
20 - x = T.6h4

4.17. Illustrative Test Questions.

1.

*5‘

Sketch the graphs of each of the following using a single set
of axes. 0 -
(a) ¥ = -2x

(p) y=- %Xe
2

(¢) v = %X

(d) y = 2x2

Find any maximum or minimum values of the funotions whose
values are glven by )

(a) £(x) = X2 + 3
(b) £(x) =5 - 2x°
(¢) £(x) = 2(3x° - %)

Find the minimum value of the function whose values are given
by y = ox° - 12x + 14,

Sketch the graphs of the followlng equations, using a single
set of axes. Specify the coordinates of the vertex and the
equation of the axis of each.

(a) y = -2(x - 6)2

(b) v =8 - 2(x - 6)2

A ball is thrown upward from a vertical cliff, Its distance
s 1in feet above ground is given by s = 200 + 100t - 16t2,
where t denotes time (in seCOHQSJ: Find |

(a) the time at which the ball 1s 336 above the ground.

(b) the time at which the ball reaches a maximum height.
(¢) the maximum height. -
What is the solution set of (x - 1)(x + 2) = U2

Al
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7. Which of the followlng equations are equivalent to the equation{
2x -1 = 0°? B

(a) x = %

(v) 4x® -1 =0 , o
-~ (e) 4x° - bx + 1 =0 ‘ S

(@) 12x° - bx -1 = 0

8. Find the value of k for which the equation x2 - 3kx + k =2 f
has 4 as a root, ’
" 9. Show that the expression

a(-b +Y bE - 4ac)2 + b("b +) b2 . hac
2a 2a

equals zero (a) by calculation (b) by an argument using
no calculation.
10. Sketch the graph of y = 3 + x - 2x2. Specify the coordinates
- of the vertex and the equation of its axis,
11. Find a quadratic equation with Integral coefflcients whose
roots are 3 and - %.

) + ¢

12, Find a quadratic equation whose roots are the negatilive
reciprocals of the roots of 6x° + 11lx - 10 = 0.

13. Find the sum and product of the roots of the equation
3x2 + 5x -7 =0,

' 2
2X _ 2
14, Find the solution set of the equation 1+l = 3T -

15. Solve the inequality

2x2 < x + 15,
"16, Find the solution set of the equation

|x + 1|2 + |x + 1| = 6.

17QN Solve the equation Yx + 5 +yx -4 =9,

18, Solve the equation (x> - 5x)2 + 2(x2 - 5x) - 2l = O..

19. Solve the equation xl1L - 10x2 + 9 =0,

20. Determine k 8o that the equation 9x2 - 8kx = -4 has only
one root,
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21, Which of the following quadratic equations has the roots r

and s¢? .
2

(a) x° = rs (a) x° - (r+s8)x+rs =0
2 2.2

(b) x° - r“s“ =0 (e) x° - psx + rg =0

(e) x° - psx + r°s® = 0

22, lhich of the following 1s the axis of the graph of the

~equation y = ox° + Bx - 32

(a) x= -4 (@) x =2
() x = -3 (e) x=14
(¢) x = -2

23, Which of the following equations has a graph which lles
entirely below the x-axis?

(a) y =2x° - bx =5 (d) v = -x°+5
(b) vy = _22 + bx (e) v = -2x2 4+ Ubx < &
(¢) ¥y =x°-10

o, For each of the following quadratic equations find the set of
all values of k for which the equation has two roots.
(a) 3x° + kx + 3 = 0
(b) X2+ 6x -k =0
(c) kx® - bx + 2 =0
(d) 3x° + 6x + k =0
25, 1If (xl, yl), (x5, ¥,) and (x3, y3) are the coordinates of

3 non-collinear points, how many quadratic functions can be
found whose graphs pass through these three polnts?

(a) © (d) Infinitely many
(b) 1 (e) It cannot be determined
(¢) 2 from the information given,

26, Let X1s X5 Xg Dbe distinct real numbers and V., Vo, V3
be any real numbers. Prove that there is a quadratic function
which palrs v to Xy5 Yo to X5 and V3 to X3 if and

only 1f (yl - yE)(XE - X3) - (xl - xz)(Yz - y3) 74 0.

2606
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Answers to Illustrative Test Questions

\ :
2. (a) f£(x) = x> + 3; minimum, 3
(p) f£(x) = ~2x2 4 5; maximum, 5
. [»)
c) f£(x) = 6x° - 8; minimum, -8
= 2x2 - 12x + 14

(
y
vy = 2(x% - 6x + 9) + 14 - 18
y=2(x-37%-1

minimum, -4

y, y = -2(x - 6)2
Vertex is (6, 0).

Equation of axis is x = 6.
¥ = -2(x - 6)2 + 8
Vertex is (6, 8).
Equation of axis is x = 6.

267
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5. (a) 336 = 200 + 100t - 16t°
16t% - 100t + 136 =
h® - 25t + 34 = 0

(4t - 17) (¢ - 2) -
seconds, T seconds (answer).
-16t + 100t + 200
16(2 - 52t 625) 2 + 200
1425

I

il

2
s
s
s = -16(t - 3;)2

%5— seconds (answer).
(¢c) the maximum helght is 356% Tt.

6. (-3, 2}
7. (@), (o)
14
8. T
9. (a) The given expression equals

a y 2 2
7.2(% - 20 Y% - hac + b2 _ hac) - 2ap® + £2R 1D = hac , Ya c

4a® ha
which reduces to zero.
. (p) Follows from quadratic formula.
10.y=-2x2+x+3 Y
. y=-2(x2-—%-x+—l%)+3+%
' 1,2 , 2 ' V21 25
y = -2(x - 1;) + ’85' '{4-,3)
2
Vertex is (+ 'llr: —285-). y"_‘?x Xt

Equation of axls 1s X

—1
]

]

+
=+

>

n.(x-mm+§)=

5%x2 _ 13x - 6 =

268
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12,

13.

14,

15.

16.

N3 =

6x2 + 11x - 10.= O

(3x - 2)(2x + 5) =0

X = % X = - %

O

i
(@]

(2x + 3)(5x - 2)
10x° + 11x - 6 = 0

Sum of roots = -

o

Products of roots
1

[g]

2x% - x .~ 15 < 0

2

¥y =2Xx" -~ x - 15

i

2(x ~ P° - 35

i

¥y
: -2
[X.-2<X<3}

Let |x+ 1| ==z

22 + 2z -6

(z + 3)(z - 2
z =-3, 2

N~ O |
i
(@]

|x + 1| = -3 Impossible
|x + 1] =2

i

i

W~

Y :
,:2,//:(,/5;

2(x® - 3x + 1) - 15 - § X

%9 J( on

-5

269
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17. yx+5=9-yx—11

X +5=81L-18yx -5 +x -4
-72 = =18 yx - &
b= yx = F
16 = x - 4
x = 20

18, (x2 - Sx)2 + E(x2 - 5x) - 24 =0

Let 2z = x2 - Bx

z2 + 2z - 24 = 0O

(z + 6)(z -‘4) =0
z=-6, z =24
x° - 5x = -6, x2 - 5x =14

(2, 3, 26 YM, 5 -1,

19, x' -10x° + 9 =0

(x2 - 9)(x® - 1) =0

It

{3: "'3: 1: "1]
20, 9x2 -8kx + 4 =0
6uK® - 1bi

=0
2 144 g
K="y =%
% or - % (answer).
21. (a)
22, (c)
23, (e)

o, b2 - bka >0

(a) 3%° + kx + 3 = 0
k% - 36 > 0

(k: k< -6 or k >6}

270
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(p) x° +6x -k =0
36 + 4k >0
b > 36
k> -9

(c) kxS - Ux + 2
16 - 8k > 0
k ¢2

(a) 3x° + 6x + k
36 - 12k > O
k ¢ 3

)]
(@

)]
(@

25. (p)

26, Proof:
Ve see from the slope formula that the gilven polnts are

not collinear if and only 1f

Y~ Y2 Vz Yp = 93
xl x - x3 *
Therefore the points are not collinear if and only if

(yl - yE)(XE - X3) - (xl - X2)(y2 - Y3)‘% 0.
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Chapter 5
COMMENTARY FOR TEACHERS

THE COMPLEX NUMBER SYSTEM

5-0. Introduction.

The complex number system is one of the supreme achieve-
ments of the human intellect. Compelling reasons for extending
the real number system are easy to find. In the context of the
real number system the theory of quadratic equations 1s most
unsatisfactory, for some quadratic equations with real coeffi-
cients have real solutions, while others have no real solutions.
The desire to vemedy this situation 1s surely reasonable and
modest. What is remarkable 1s the fact that this modest aim,
once attained, yields a system so rich that no further exten-
sions are necessary to capture the roots of any algebraic equa-
tion of whatever degree. However, the solution of algebrailc
equations is only one of the achlevements of the complex number
system. It is surely lamentable that we are unable, at this level
of the students'! development, to indicate the profusion of im-
portant and beautiful results to be found in the theory of
functions of a complex variable. We can only state -~ with all
the enthusiasm we can muster -- that this field of mathematics
(and others closely related to it) is probably the most in-
tensively cultivated at the present time, and that its applica-
tions in the sclences and engineerlng seem to grow daily.

The extension of the real number system to the complex
number system can be regarded as the solution of a probiem -
the problem of constructing a number system with certain
properties. The solution of any problem generally proceeds in
three stages (the solution of an equation 1s typical): 1. statement
of the problem; 2. identification of a possible solution, assuming
that a solution exists; 3. verification that the possible solution
actually is a solution. Accordingly in Section 5-1 we state

272
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the properties that the system 1s required to have; in Sections
5-2, 5-3, 5-U we identify the system by finding its elements and
the rules for operating with them, assuming that such a system
exists; and in Section *5-11 we verify that the system construct-
ed with these elements and rules of operatlon has”thé required"
propertiles.

In the complex number system, classical algebra -- the
theory of equations -- finds 1ts proper setting. The role of
the complex number system in the theory of equations 1s discussed
in Sections 5-5 and 5-8.

The connection between the complex number system and
geometry 1s of great lmportance for geometry and analysis as
well as for algebra. This connection is introduced in Sections
5-6 and 5-7 and further explored in Chapter 12.

5-1. Comments on the Introduction to Compiex Numbers.

In Section 5-1 we review the inadequacy of the real number
system with respect to the solution of quadratic equations and
announce our intention to attempt a remedy by extending the real
number system. We state that we will find a system in which
every quadratic equation with real coefficients has a solution
if we seek one in which the equation ‘x2 + 1 =0 has a solution.
This is so, of course, because every quadratic equation

ax2 + bx + ¢ =0

with negative discriminant can be transformed into the equivalent

equation 2

x+é%
2
Jaec - Db

Ua

This is not discussed in the text until Section 5-6, but a brief
informal class discussion might be appropriate at this time.

The Properties C-1, C-2, and C-3 which we require our new

[page 251]
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number system to possess are Just explicit statements cf the
simple and natural requirements that the system have all the

algebralc properties of the real number system, include the real

“number system, and contain a solution of the equation x° + 1 = 0.

'In Section 5-2 we shall impose a fourth requirement -- also
simple, but not so natural (see 5-2).

It should be observed that in past extensions of the number
system the extended system was required to have many of the
order properties of the original system, but this is not done
here. It is not done because it cannot be done. If the complex
nunber system had the order properties of the real number system
the theorem that the square of every number 1s non-negative would
have to hold, but thils contradicts 12 = —l;

Problems 1 and U4 of Exercises 5-2 can be assigned after
Section 5-1, if desired: Problem 1 reviews the reasons for pre-
vious extensions of th» number system; Problem 4 is intended to
gtimulate discussion of the fact, mentioned above, that the order
properties of a number system may not be preserved when the

system is extended.

5-2. Complex Numbers, -

In the preceding section we stated a problem which we
tacitly assumed had a unique solution. It does not -- as we
will see later. An additional condition is needed to make the

problem definite, that 1is, to insure that 1t has a unique solu-
tion.
274
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To expose this difficulty let us consider 1t in a more
frmiliar setting. Suppose that our number system is the system
~f retional numbers and that we wish to extend it to a system in
which the equation x2 = 2 has a solution. Explicitly, we seek a
system which has Properties C-1; Properties C-2 with the word
"real" replaced by "rational" wherever it occurs; and which has
the third property -- corresponding to C-3 -- that it contains a
number Y72, such that ( YE)E = 2. Let us call these Properties
S-1, S-2 and S-3, respectively.

We know that the system of real numbers has these properties,
but looking ahead, so does the system of complex numbers. Our
problem does not have a unique solution; it has at least two
solutioﬂs, and possibly more. ’

It would seem foolish to extend the system of rational
numbers to the system of complex numbers Just to achleve
Properties S-1, S-2 and S-3; the system of complex numbers 1is
too large -- it contains a number system (the real numbers)
which already has all the properties we require. Pursuing this
objection, the system of real numbers might be larger _than we
require. It seems natural to add to our conditions the require-
ment S-U4 that the system be as small as possible. With this con-
dition added our problem has a unique solution S: The elements
of S are those real numbers which can be written in the form
a+ b VE: where a and b, are rational :..umbers; and the
operations in S are addition and multiplication of real

numbers . 5275
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It 1s obvious that 'S has Propertlies S-2 and S-3. That 1t
has all the Properties S-1 except (i), (iv) and (vii) follows
immediately from the fact that the system of real numbers has
these broperties, and from S~2, It can be verified by calcula-
tion that the sum, product, opposite and reciprocal of real
numbers which can be expressed in the form a + b Y2, a and b
rational, can also be expressed in this form, so that S has
properties S-1(i), (iv) and (vii). Thus, S 1is a solution of
our problem. Notice that in this argument the only statements
whose proofs were not immediate are those asserting that the
sum, product,additive inverse and multiplicative inverse of num-
bers in S are in 8.

It is easy to see that S 1is the smallest system which
solves our problem. Consider any other set of real numbers which,
with addition and multiplication of real numbers as operations,
forms a system S! which is a solution of the problem. Then S'
contalns all rational numbers and f@: and is closed with respect
to addition and multiplication. Hence it must contain all real
numbers which can be expressed in the form a + b VE: a and b
rational -- that is, 1t must contain 8.

We summarize the salient features of this discussion: The
properties we have required do not determine a unique number
system; The natural additional condition tc impose to determine
a unique system 1s that the system be the smallest possible one
having the given properties; This additional condition 1s logic-
ally equivalent to the condition that every number in the system
be expressible in a certain form; The essential part of the
proof of the equivalence of the two conditions is the proof
that the sum, product, additive and multiplicative inverses of
numbers which can be expressed in the stated form can also be
expressed in that form.

The problem of exfending the system of r -1 numbers to the
system of complex numbers is entirely analogous to the problem
we have Jjust discussed.- Each of the summary statements we have
Just made holds also for the extension from the real numbers to

[page 253]
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the complex numbers. : :

We could have presented a discussion analogous to that given

here i the text. Such a discussion, however, would have been

’ an extensive and sophisticated preliminary to & program whose
first objective 1s the introduction of complex numbers and the
rules for calculating with them. Instead we have adopted a
middle course.

In Section 5-2 we add Property C-4 to our requirements in-
stead of the more natural condition that the system be the small-
est possible system having Properties C-1, C-2, and C-3. The B
connection between these two conditions 1s suggested through

“brief discussion. However, in the discussion of addition, multi-
plication, additive inverse and multiplicative inverse in
sections 5-3, 5-4% and 5-5 we make no essential use of Property
C-4; we use it only as a gulde. Thus, at the end of Section 5-5
one can look back and See that Property C-4 1s not necessary,
but that to find a system having Properties C-l, C-2 and C-3 1t
is sufficient to consider the system with Property C-4. Better
students should be encouraged to do this, and all students
should be aware of the need to check at each stage the compati—
bility of Property C-4 with the other properties of the system.

We have still to present an example of a system larger than
the system of complex numbers which has properties C-1, C-2, and
C-3. The simplest example is the following. Let H contain
the complex numbers, an element J which 18 not a complex
number, and all expressions of the form

n n-1 .o
aoj + alj + + an_lj + an

m m-1
boj + blj + eee 4 bm-lj + bm

where n and m are non-negative integers, ags 8py°ccay and
b,sbys***,b, are any complex numbers, and a, # 0, b # 0. Thus
H 1is the set of all quotients of polynomials in j with com-
plex coefficients. Addition and multiplication are defined
according to the usual rules for operating with polynomials.
Then H has all the desired properties.
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Problem 2 of Exercises 5-2 1s intended to point out that in
previous extensions of the number system the system sought was
the smallest one having the desired properties. Problem *5 pro-
vides an opportunity for the student to carry through for himself
the discussion presented above. |

Exercises 5-2. Answers.,

1. (a) The system of integers has an additive identity element,
and each integer has an additive inverse.
(b) In the rational number system each element except zero
has a multiplicative inverse.
(¢c) In the real number system every non-negative number has
two real even roots, and every negative number has one real
odd root.
(d) The complex number system contains an element 1 which

" has the property 12 = -1,

2. (a) System of integers.
(b) Rational number system.
(c) Rational number system.
3. (a) 1 + ot (e) 3 + 01
(b) 0 + 01 (f) 0+ 21
(c) -1 + 01 (g) -1 + 01
(d) 0 + (1)1
y, (a) The natural number system has the Well Order property.

Every subset has a least element. ‘
(b) The real number system has an order relation. No order
relation has been defined for the complex number system.
5. (a) If Y3 were in S we could write '

f5‘= a+b YE?
where a and b are rational. If we square both sides of

this equation we get

3=2a2+ 2aby2 + 2b°

or 2 2

3 -a~ - 2b" _
2ab - f?z
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Since a and b are rational, the left side of the last
equation is rational, #nd the equations says that Y§.is
rational. Since we know this is false, the assumption

that V3 belongs to S must be false.

(b) (a+b ¥2) + (c+d ¥Y2)=(a+c)+ (b+4d){y3,
and if a, b, ¢, d are rational so are a + ¢ and b + d,
since the rational numbers are closed with ieespect to
addition.

(a+by2)(c+dy2) = (ac + 2bd) + (bec + ad) Y2
and if a, b, c, d are rational so are ac + 2bd and
bc + ad, since the rational numbers are closed with
respect to addition and multiplication.
(¢) The additive inverse of a + b Y2 in the real number
system is -(a + b y2). But
~(a + b Y2) = (-a) + (-b) V2
and 1f a and b are rational so are -a and -b.
The additive identity in S is 0 =0 + 0O Yﬁj If

a+b fﬁ—ié not zero it has a multiplicative inverse

in the real number system. But

1 (

— a ~-b

a+b YET

a”~ - 2b
and 1if a and ‘b are rational so are~—§—£L——2 and
a~ - 2b

—g—:E——g » since the rational number system 1s closed
a®~ - 2b
with respect to addition, multiplication,; subtraction

and division.
(d) Property (1) of C-1 was established in part (b) of
this problem.

Property {ii) is estublished by observing that
addition in S 1s addition of real numbers and additlon
of|real numbers 1s assoclative and ccmmutative. To be
more explicit, addition is commutative since

X+y=y+x1if x and ¥y are any real numbers, and
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hence, in particular if x =a + b y2, y = ¢ + d Y2. Properties
(v) and (viii) are established in the same way.

Property (iii) 1s established by observing that 0 = O + 0 Y2
is in S, and x + 0 = x for any real number. Thus, in particular,
ifx=a+by2, x +0=2x, and O 1s an additive identity in 8.
0 1s the only additive identity in S since any other additive
ldentity ¢ in S would be a real number which satisfied x + ¢ =
for all x in S. But, taking x = 0, this becomes O + ¢ = O or
¢ = 0. Property (vii) is established in a similar way.

Since O 1is the additive identity in S, an additive in-
verse of a number a + b Yﬁ_in S 1is a solution x 1in S of
the equation x + (a + b YE) = 0. There is one and only one real
number -(a + b ¥2) which satisfies this equation. We showed in
part (c) that -(a + b ¥2) is in S, and since this is the only
real number which satisfies the equation, it is the only number
in S which satisfies the equation. This establishes pfoperty
(iv). Property (vii) is established in a similar way.

(e) S has the stated properties. Let S!' be another part
of the real number system with the stated properties, and let a
and b be any rational numbers. Then a, b and Y2 are in S:t.
Since S!' 1s closed with respect to multiplication it contains
b Y§'and since 1t is closed with respect to addition it contains
a + bY2. Thus every number in S 1is in S!', and S!' contains
the system S.

5-3. Addition, Multiplication and Subtraction.

In thils section we begin the discussion of operations with
complex numbers. It should be emphasized that our objective is

to perform operations with complex numbers in terms of operations

with real numbers. The discussion of addition and multiplication

is straightforward, but that of subtractlion deserves some comment.
Subtraction is, as usual, defined as the inverse of

addition. We show that the equation

+ 2z

[

Z1 %2
has at least one solution z = z, + (-z;). Notice, however, that
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in order to define Zy - 2Zq 88 the solution of this eqﬁation, and
to assert

2o - 27 = Zp + (-27), '
it is essentlal to show that the equation has at most one solution
-- a unique solution. The teacher may find it desirable to
present the proof of uniqueness to the class.

The additive inverse -z of 2z 1is defined by the equation.

z + (~2) 0.
According to Property C-4,-(a + bi) = x + yi where x and ¥y
are real. Substituting in the equation defining -(a + bi) we
obtaln two real equations in x and y which have the solution

]

Xx =-a and ¥y = -b, We therefore conclude that
-(a + bi) = -a + (-b)i.

Notice however that here we have been using Property C-4 only as a
guide. To prove the last equation it is only necessary to verify
that A
sla + bi] + [(-a) + (-b)i] = 0O,
and this is done without using C-l4.
Exercises 5-3 provide practice in addition, multiplication
and subtraction of co%plex numbers .

Exercises 5~3. Answers.

1. (a) & + 91 (f) -1+ 71
(b) 4 + ot (g) 8 + (1)1
(c) 3 + 71 (h) o0+ 71
(@) (% + 7) + 71 (1) 15 + (1)1
(e) (Y2 + 1) + 51 (3) (3 + y2) + (9 +Y3)i.
2. (a) 51 Yes, any real number might have been
(b) yi added to the answer given here.
(¢) Y31
(a) 5i
3. (a) -13 + 261 ‘
(b) 24 + (-10)i 281
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5+ 51

-5 + 31

2+ 2Y21

(8 -Y6) + (83 +y2)1
-7 + 21

2 + 01

273

-18 + 01
14+ (-84)1
70 + 401

‘Note:

Part (1) was
omitted in text
so 1s omitted
here.

-106 - 831
02 - 181

(ex - dy) + (cy + dx)i, if c¢,d,x,y are real numbers
(x2 - xy) + (xy - y2)¥, if X, y are real numbers.

-3 + 01

0+ (-1)1

-1+ (-1)1

-2 + (-3)1

-5 + U1

L+ 31

-a + bi, if a,b are real numbers

-x + (-y)i, if x,y are real numbers.
5 + 81

-2 + 21

0 + 101
-1 + Oi
(Y3 -2)
1+ 1

T+ (-m)i
0 + 61

1+ (-3)1

-3
13 = 1° 0+ (-1)1
.2

|
it

1+ 01

i

I

0+ (1)1
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T
6. (@) 115 =% 1= (-1)"1 = 0+ (-1)1
(e) 11 = (12)20.y = [(-1)%1%1 =0 + (1)1
(£) 179 = (19391 = (-1)%9%1 = o+ (-1)1
7. General rule: the values of the powers of 1 recur in

cycles of 4. |
To explain the general rule first note that

iT =1,
12 = -1,
13 = 12,4 = (-1)i = -1,

i o (19 = (-1)% = 1.

Making use of the first four powers we have

i =171 = (1)(-1)
T=1%4% = () ()
18 - 1Mt - (1) =

In general, if n and m are natural numbers such that
n = 4m, we have

..l’

e
|

—i,'

=

oo gtm ol ghymo g g
Thus, 1L - M0 o ()5 =g

14m+2 B ile_iE - (1)(-1) = -1,

s dme3 _ g bm 3 (1)(-1) = -1,

ium+u _ ium.iu - (1)(1) =

These possibilities are all there are, for if n 1is a
natural number and we divide it by U4, the only non-negative
remainders less than U4 which we can eget are 0,1,2,3.

8. (a) 1+ (-1)1 (£) 11 + 201
(b) 0+ (-1)1 (g) 2abc + [-a3 b3 -3
(¢) 0 + 1071 - (b +¢c)(c+ a)(a+b)lL
(d) -7 + 841 (h) -1 + 0%
(e) -1 + (-1)i (1) -10 + oi.
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3+ [T 1)2 5-3 & vT i L2
S sl R R o
2+ 67T 1 9.4+ 3/T 1
R I
24+ 67 L - 18 - 67 1

= 5]
= -2+ 2 =0

+ 2

i

+ 2

5-4. Standard Form of Complex Numbers.

Section 5-4 1s devoted to proving Theorem 5-4 and to defin-
ing some important~terms. Theorsm 5-4 asserts that each complex
number 2z may be written in the form a + bi (2 and b real)
in only one way. (C-4 asserts that 2z may be written in this
form in at least one way.) This theorem Justifies the definite
article in the expression "the standard form" used to describe
this way of writing complex numbers. (One advantage of
Theorem 5-4 is that it shows us we can have only one answer for
exerclses like those in Section 5-3 where the student 1s asked
to express certain complex numbers in what we now call "standard
form".) The double-barrelled way in which Theorem 5-4 1is
stated gives the teacher'an opportunity to refresh the students!
minds on the distinction between "if" and "only if", a distinc-
tion which cannot be overemphasized. However, the statement con-
taining "only if" is the only part that requires a proof.

Any tendency to regard Theorem 5-4 as obvioﬁs can be over-
come by emphasizing . -that the requirement in the hypothesis that
a,b,c,d be real is egsential; without this requirement the con-
clusion is false. Example 5-Ua demonstrates this.

It 1is worth observing that the proof of Theorem 5-4 can be
based on the following special case of the theorem: If a and
b are real, thena + bi = 0 (= O + O1) if and only if a =0
and b = 0. Let us suppose this has been proved and show how
the general case follows from it. ILet a,b,c,d be real. Then

a+ bl =c¢+ di

if and only if
(2 - c)+ (b -ad)L =0.

The equéfibn in the last ling holds if and only if a - ¢ = 0 and
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b - d = 0. This proves Theorem 5-1.
‘A word (or two) about the terms defined in Section 5-4 may

be in order ."Standard form" should cause no trouble; though one
must emphasize that the a and b appearing in the standard
form are real numbers. (Throughout the rest'of the chapter we
sometimes say "a + bi, in standard form" and sometimes "a + bi,
where a and b are real numbers"; these expressions have
identical meanings.) "Real part" is straightforward and should
‘cause no trouble. Mathematicians have used the éxpression
"imaginary part" as defined in the text for many years: The
imaginary part.of a complex number is a real number. This
terminology may be unfortunate, but it is standard. Writers of
many elementary books havegdeparted from the mathematiclans!
usage, saying that bi 1is the "imaginary part" of a + bi.
Students reading other books will notice that they are not all
in agreement. (This experience is a valuable part of anyone's
education.) A student who goes on in mathematics has to learn
sooner or later that in advanced work b 1is called the imaginary

~part of a + bl. Since it seems a shame to teach him something
he must later unlearn, we stick to the mathematicians' standard
terminology: The imaginary part of a complex number is a real
number.

Observe that O 1s both real and pure 1maginary, but that
1t is not imaginary. This may be momentarily disconcerting; but
it should be so only momentarily. One has only to remember that
everyday connotations and relations of : and phrases are
irrelevant to their technical use: A tecnnicéi %Frm means only
what its definition says it means.! =~

Problems 1 - 5 of Exercises 5—4 are practice problems.
Problem 6 refers to the special case c¢ = d = 0 of Theorem 5-4
discussed above, and emphasizes again the necessity of the con-
dition that a and b be real. Problem 7 generalizes

Theorem 5-4: Theorem 5-4 is the special case obtained by Setting
z; = 1, z, = 1. 285
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'Exercises 5-4, Answers.

1. Real part Imaginary part
(a) 0 ‘ 2
() 0 0
(c) 0 1
(@) 5 -1
(e) 2x 3
(£) a -2
(2) 1 -2 Y2
(h) -2 -2 Y3
(1) -3 1
(3) 2 0
(k) 0 3
(1) 1 2
2. (a) -3
(b) 0’
(c) 5
(d) -5
There is only one way in each case.
3. (a) x =3, y=-6 (f) x=1U4, y=2
(b) x=3,y=0 (8) x=2,y=6
(¢) x=0,y=-4 (h) x=0,y=0
@) x=%,y=-3 (1) x =41, y =0
(e) x = - % . ¥y =2 (3) x=0, y = -1,
4, (a) 8 + 31
(b) -2 + o1
(c) 6 + 121
(d) 4 + 81
(e) 11 + (-16)1
(f) 10 + (-11)1
(g) 18 + 141
(h) (a2 + 2ab + b2 + ¢?) + o1
(1) (= - 3y®) + (3% - ¥,
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Let z2 = (x + y1)2 = 8 + 61.

Then (x2 - yz) + 2xyl = 8 + 61.
Since x and y are real we must have

(1) x& - yE = 8,

: (11) 2xy = 6.
Squaring both members of the last two equations, we obtaln

n

(111) x* - 2x%2 + ¥t = 64,

(1v)  mx%y® = 36.
Adding the last two equations, we get
(v) (x2 + yz)2 = 100.
Since x2 + y2 must be positive, it follows that

(vi) x° + y2 = +10.

Adding (1) and (vi), we get

2x° = 18, oy° = 2.
Hence
X = i’_3, vy = ;*‘_1.
X =3 X = -3
From (11) x and y have the same sign so -{? -1 and{; - 1

Note. In & sense the problem appears to be that of finding
the squarzs root of the complex number 8 + 6i; however, we
have nct defined the symbol'{_'for complex numbers.

let a=x+yl and b =u + vi .where X,y,u, and v are
all real. ‘ . ’

(a) If a=0 and b=0 , then a+ bi and a - bi
are both zero.

(b) Suppose a + bl =0, then

i
o

x +yl + (u + vi)i
or

i
(@]

(x -v) + (y + wi
By Theorem 5-U4, we have
Xx -v=0 and y+u=20

or,
(1) Xx =vand y = -u
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i.e. 1f a =v - ul and b =u + vi, a + bl = 0 with neither
a or b zero. »
Since a - bl = 0 also, we have x + v + (y - u)i
(2) x = -vand y = u,
Both (1) and (2) can be satisfied only if x =u

¥y =V =0, In this case a =0 and b = O,

0, or

it

Il

0 and

T. Let z =x + yi and 2) =X + 1y, y; £ O.

2 = a + bzl
if and only if
X = a+ bxl, Yy = byl
that is, if and only if

b = <L , a=x - 91
Yl YI

5-5. Division,

The discussion of division in this sectlon parallels that
of subtraction in Section 5-3. The comments made about subtrac-
tion hold also, with obvious modifications, for divisioni Once
again it should be emphasized that our objective is to express
calculations with complex numbers in terms of calculations with
real numbers.

The central problem of this section 1s to express the mul-
tiplicative inverse % of z =a+ bl In terms of a and b.
Since % 1s defined by the equation

%-oZ:l’
and since, by the Property C-i, % =X +yl, x and y real,
the problem reduces to solving the equation

(x + yi)(a + bi) = 1

for real values of x and ¥y. This equation can be transformed

into the equation
(ax - by) + (bx + ay)i = 1.

Now, 1f x and y are real then the expressions in parentheses

are real; here we are using Property C-2. Hence, by the theorem
on standard form, the equation above 1s satisfied if and oniy
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if
B.X-by 1,

and bx + ay = 0.
The problem has thus been reduced to that of solving a palr of
linear equations with real doefficients for the real unknowns
x and y. The solution of this system proceeds in the familiar
way, and we conclude
L a + -b 1
R

To find this result we used Property c-4. However, to

establish the resu}t we have only to verify that
Kgg i =+ i = i) (a + b1) =1,
and this verification makes no use of Property C-4.

Now looking back over the discussion in Sections 5-3, 5-4 -
and 5-~5 we see that, as promised in Sectilon 5-2, we have proved
that the sum, product, and additive and multiplicative inverses
of numbers given in the form a + bl can again be expressed in
this form. Thus, if we had required that the system we sought
be the smallest possible system having Properties C-1, C-2, and
C-3, we could have established Property Cc-4 as a theorem.

I

Of equal importance is the fact that we have achleved our
objective of expressing all operations with complex numbers in
terms of operations with real numbers.

Exercises 5-5 either provide practice 1n operations with,_.qi
complex fractions, or require the proof of statements made in
the text without proof.

Exercises 5-5. Answers.

1. (a) 1+ o0t
(b) % + 01
(¢) 0+ (-1)1
(@, 0+ (1)1
(&) 3 + (- 31 289

[page 267]
S

BRI




281

(g) None
(h) s+ ok 1.
2. Zero does not have a multiplicative inverse.
v
5. () E+ (- &)1
(v) 0 + (- 5)1
() - g5+ (- &t
(@) 2+ (-3
(e) % + % 1
(r) B+ (-3
(e) —§’5+§€-.1
(h) E+gei
. ) -5 (-

(3) - gz+545
0 2 Y5, VE-2

(1) a® - b2 " 2ab 1
a® + b= a® + b-
2 2
28 - 2b gab
(m) r i
ha® + b ha® + b
2 2
- 2mn
(n) & .+ i
m2 + n27 m2 + n2
2 2
(o) 3x~ - QE + Sxy 1
X" +y X~ +y
6. Let ) and 2y be two solutions of the equation 212 = 2py 80
that

le3 = 2o and 212) = 2p.
Multiply both members of each of the last two equations by

Ei. .
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Then

é;(leB) =\zr A
=
“1
Therefore z5 = zy.
Alternate solution
u and

i
—

212)) 21

for 6:

Suppose Zz are

zlu =
le =

- z)
happen

and zl(u

Ry (5-5f) this can
Z3 # 0,

a + bi.
a

Zero.
Let z

u -z
(Note th
b‘.

solutions of the equation.

it

)2

)Zu l'Zu

Zu-

Then
Z2

Zo

0.

only if -one of the factors 1s

O oru-= 2.
at a2 + b2 £'0.)
1.

1
Then > % 5 -

a“ +b e

a + b
Thus, the real part of %
and

2a

(a) If b =0, then a
be zero); and z = a + bi

(b) If b =% , then 2a
Hae
and a =

a

So there are two possible

Il

zq =(1 +-Y7§-)+ %i; Zo
(c)

(

Il

If b 1, then 2a

a2

a

Hence 1
The "if" part of the proo

2

2]

—F'_——'ga =
ad + b

a2 + bz.

2 (since
=2 4+ 0i.

a2

Il

>

1
2

a and b cannot both

1
+Tl:’
-8a +1=0;

1+ Jgi s Or

numbers

1 --%§§4-%1.
a® + 1,

2a + 1

z:

0,

1.

+ 1.

f follows immediately from the fact
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that 0-z = 0. To prove the "only if" part of the statement

suppose that z

! 12p = 0. If z; #0, then C contains a number

S~ Multiplylng by Z-, we get Zy = 0+~ = O,

z
1 1 1 .
Thus if z,z, = 0, and z; # 0, we have zo, = 0. Similarly if

2,12, = 0 and z, # 0, then we have z; = 0. Thererore

2125 = O implies that either z, = 0 or Zy = 0, or possibly
both (since 0.0 = 0). 2

Let W, be the unique solution of ZoW = 2 ; then W, = Eiiand

ZoW, = Zq. Similarly let wq be the unique solution of
z

- . = 3 =
ZyW = 23; then Wy = EZ and ZyW, = z3. Also l;tzw2 be the
unique solution of (zezu)w = z,z4; then w, = EEE% . We
2

must show. that wowl = Wo. From zzwo = zl and zuwl = z3

we get (zzwo)(zuwl) = Z1Z3 OT (2224)(wow1) = 21Z3. Thus
wow, satisfies (z,2z))w = z;2z5. But w, is the only solution
of this equation. Hence WoW, = Woe

z z

let w_ = L and w, = 3 , and let w, be the unique solution
o} Z 1 z), 3

of (zzzu)w = 212) + ZpZ3. TO show w_ + w; = wy. From
Z,W, = zq and z)w; = z5 we get zu(zzwo) = z,2) and
zz(zuwl) = 2,Z4; SO, adding,zezu(wo + Wl) = 2,2) + 252,
Thus wy + wq satisfies the equation whose only root is
LEE Hence Wy twy o= Wi

(a)§+oi
(b) - o+ (- 39)1
(c) 8 + 01
() - 5 + o1
L 2 2 L ‘
22 - 12a"b~ + 2b
e - + Oi.
(e) (a27+ b )g

Whether or not a and b ‘are real numbers, provided that

a? + b2 # 0, we can multiply the factors a + bi,

2 2

a - bi and get (a + bi)ae' bL2-= a2 + b2 + ag - ag 1 =1

a“ + b a“ + b a“ + b a + b
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12. (for there is nothing in the proof of Theorem 5-3b which

requires a and b to be real). Thus gif;élg is an
a“ + b
inverse of a + bi, if a® + b2 # 0. But we know already

that no complex number can have more than one inverse, for
if it did Property C-1-(vii) (as stated in the text) would
be false.

5-6. Quadratic Equations.

Section 5-6 extends the theory of quadratic equations with
real coefficients by treating the case of a negative discrimin-
ant. Since the guadratic formula involves the expression

Vbé - tac and we are interested in tiie case b2 - lac < o,
we are obliged to precede our discussion of the formula by a
definition of Y* for r real and negative., Hence we begin with
the examples z2 = -1 and z2 =r, r < 0, and lead up to the ex-
tended definition of YT (Definition 5-6). With the definitlon
of YF'available, we summarize our results on the special quad-
ratics (those having no first degree term) in Theorem 5-6a, a
result we need in the proof of Theorem 5-6b, Theorem 5-6b is
proved by the usual, process of completing the square, and then
using Theorem 5—6a to solve )

(z + jL)E =D

2a

2 _ Jac

kg
Since Yuaz = 2|a|, the square roots of the right member are

b= - lac - Vb2 - bac
a ’ 2lal ’
b2 - lac - b2 - lac
One of these is = , the other is = (which is

which depends on whether a > 0 or a < 0). Theorem 5-6b solves
the problem of finding the solutions of the general quadratic

equation with real coefficients. We find that every quadratid
with real coefficients 1s one of three types: (1) It has one
root -- which is real -- if its discriminant is zero; (2) 1t
has two (different) real roots if its discriminant is
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positive; (3) It has two (different) non-real complex roots if
its discriminant 1s negative.

Exercises 5-6, Problems 1-3 provide practice in calculating
with the square root symbol., It should be emphasized that when
a varlable appears in the radicand it 1s in general necessary to
distinguish several cases. One reason for this is that the state-
ment Yr ¥s = Yrs which holds for r > O, s > O is not true in
general. Problem 5 requires a proof of the extension of this
statement to the case in which r and s are not both negative;
‘Problem 4 1is intended to show why the statement is not true when.
r and s are both negative.

Problems 6 - 17 provide practice in the solution of quad-
ratic equations. Problem 16 deserves particular comment. Al-
though we have established the "quadratic formula" only for the
case of real coefficients, it continues to hold when the co-
efficients are complex provided the discriminant is real; in
this case the formula can bz established exactiy as 1t was for -
the case of real coefficients. Thus the quadratic equation

z2+/9z+oc =0

with complex coefficientsfg s ¢ can be solved by means of the
guadratic formula if .
' A2 _pa =,
where r is a real number. We can construct quadratic equations
for which this is true by choosing the complex number/g and the
real number r arbitrarily, and determining « from

B2 . p
o« = —F— . |
The equation of Problem 16 is determined by choosing & = -i,
r = -9, In Chapter 12 we shall discuss quadratic equations with

complex coefficients without the restriction that the discrimin-
ant be real. ,
Problems 18 - 24 provide an opportunity for the student to
investigate by himself questions which will be discussed in de-
tail in Section 5-9 and Chapter 12. We mention in particular
Problems 19 and 20, which state important results of algebra;
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these will be stated more generally in Section 5-9. The approach
suggested in the hint for Problem 22 could be used for the solu-
tion of quadratic equations with complex coefficients in general,
but the method is too cumbersome to be useful. Some students
might be interested in pursuing this point, however,

Exercises 5-6. Answers.
1. (a) 0+ 71
(b) 0 + (-13 Y5)i
() O+ (4Y2)1
(d) -2Ys5 + 0Oi
(e) 0+ (-4y3)1
(£) 0+ 31
(g) 42 +o01
(h

6 .
--§—'+ 01

)

) o0+ 2i

) 2+ 0i

) 0+ 21

) Je| + 01

) |c| + 01

) 0+ |cli

) 0+ Jeli

) 0+ (a + b)i
) _2a° y3_+ 01i

) -(a + Yab) + 01
) 2L+ 01

) 0+ (-a Y2)i

) -a® + o1

g) O+ 2(a + D)L

4. Proof that Yab = Ya yb if a and b are non-negative
real numbers:
By the definition of the square root of a non-negative
number we know that 25)5

[page 2731
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2
(Ya)© =
(YB)? = b
Thus ( Ya ¥5)° =
and we know that ( ya Yb) 1s a square root of ab. Since
ya and YD are both non-negative by definition, it follows

that ( ya Yb) is non-negative. Hence ( Ya yB) must be the
gquare root of ab; that is,

yab = Y Yb.
Now if a and b are negative, then
Y:; = 1J:E:
ﬁ:iﬁ—b‘;
and »”Y’)= 1)"35)(1 y-b) = - Yab.

Again (ya-YB)2 = (y&)?(¥B)® = ab
but as we have Jjust seen
an YE'= - /EB, a negative number
which cannot be the square root of ab,
5. r< 0and s > 0, then
| YFYS =1 YTYs =1 Y755 ;
also yrs = 1 y(-r)(s) =1 YTFEZ
. O+ 1i, 0+ (-1)1

6
7. :ﬂ;ié-ii + o1, :;-E-J£§-+ o1
8
9

. -1+ (1)1, -1+ (-1)4
R A Jg:)i
0. -3+ -%;1 1, - l + (- Y_—)i

1. 2421, -2+ 2)1

12, 2+ 21, 2+ (-2)i.- .

13, - +-%;fi, - F+ ;-%;51 o

14, Ifa ) -m(2+2 {E’I—EE) +01, (2 -2Y1 + 2a) + 0Ot
 Ifac< - %; 2 + zyr_——_I_EEY 1, 2+ [-2Y-(1 + 2a) 11

15, - 5=t —ég 1, -t (- Y—31

[page 274]
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16.
7.

18,

19.

20.

2el.

*22,

0+ 2i, 0+ (-1)1

I $£>0: 0+ yr‘j_’ 0+ (- /r_

If £< 0: }/- £y o1, ]/— £ +o1

z3 -8

23 -8 =0 if and only if z - 2 =0 or z° + 22 + 4 =

The solutions are 2, -1 + y3 1, -1+ (-y3)1.

Using Theorem 5-6b we obtain the following solutions for
the gliven equation:

-b + Vbe-lmC

1

(z - 2)(z + 2z + U4)
2

% = 2a
I y b> - lbac
2 = - .
Thus, yr*——————' 5
g + 27 - lac -Yb® -4ac _-b-b_ _b
i 2 = 2a . 2a - T a
and . :
2. 7. = b+ Yp2 - bac \[-b - Y b2 - lac _ b° - (b2 - lac)
172 23 2a ua2
- bac _ ¢
uaz a

az® + bz + ¢ = a(z2 + g z + %)

By making use of the results of Problem 19, the right side
can be written as '

a[z2 - (zl + 22)2 + 2122]‘

8z° + bz + ¢ = a(z - zl)(z - 22),

or alternately, multiplying out the right side of the last
equation, the left may be obtalned directly.
(a) 2° - 2z + 2 = 0

Hence,

(b) 22 - (2 + 21)z -1+ 2L =0
(c) 22 = 0 _ .
(@) 2% - [(a; + ap) + (by + by)ilz

4
+ [(ala2 - b b2) + (a + aebl)i] =0
let z = x + yl, where x and y are real.
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Then z° = x° - y° + oxyi.

But z° = 1, so

(i) XE., =¥
(11) Xy

2

1

0,
1.

1

‘Squaring both sides of (1) and (1i) and adding, we have

(111) (x2 + y®)2 = 1.

Since x2 + y2 > 0, taking square roots of both members of

(111) we have :
(iv) x° & y2,= 1.
Adding (i) and (iv) we obtain

From whence
X =

From (ii) the corresponding values of ¥y are '
Note that from (ii) x and y
+ Y2 (have the same sign.)

. ( y=t¥2
Therefore z = ..42:4. _Z;é_-i, _ _g_{_ (- %’__E)i

Employing the method displayed in the solution of Problem
*22, we obtain '

V2 Y3
z =3+ (- )1,
Extending the idea of Problem 20, we have
[z -(1+21)) [z - (2 -1)] [z - (1+1)] =0,
or, multiplylng out the left member, we obtain

23 - (3 + Ei)z2 + (% + M)z - (2 + 41) = 0.
There is no quadratic equétion having all three solutions,
for the formula in Problem 20 shows that no quédratic equa-
tlon may have more than two solutions: If az2 + bz + ¢ =
a(z - z;)(z - z5) = 0, a # 0, then either z - zy = 0 cor
Z -2, = 0; 1.e., 2z =Ez1 or z = z,. Moreover no quadratic
expression such as az” + bz + ¢ can be written as a product
of three first degree factors, say (z - z¢)(z - z,)(z - z3),
times a constant:. For any such product produces a z3 term
and no quadratic can have such a term. -
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5-T. Graphical Representation -- Absolute Value.

The representation of complex numbers by points in the plane
had a great effect historically on the acceptance of the complex
number system by mathematicians. ‘This geometric representation
overcame the feeling that the complex number system was not con-
crete; the employment of the complex number system in the solution - -
of geometric problems, which it permitted, promoted an apprecia---
tion of the usefulness of the system. The discussion in Section
5-T,and its continuation in Section 5-8 and Chapter 12, may be
expected to have a similar effect upon students.

The discussion in the text calls for little comment. We
mention only that the notion of absolute value is a purely alge-
braic one, even though its definition 1s geometrically notivated;
ali of the properties of absolute value can be established alge-
braically. In particular, the relations |ziz,| = |2z;[]z5[,
izl + z2| < |z1| + |z2| can be established algebraically. It is
remarkable that although the geometric interpretation of the
first relation is obscure and that of the second very clear, the
algebraic proof of the first is relatively simple while that of
the second is quite difficult. Because of this difficulty the
algebraic proof is not presented in the text. The interested
teacher can find such a proof in almost any text on the theory
of functions of a complex variable. (See, for example,

R.V. Churchill, Introduction to Complex Variables and Applieatioég.)

Exercises 5-7, Problems 1 - 4 provide practice in the graph-
ical representation of complex numbers and the graphical inter-
pretation of addition and subtraction. Problems 5 - 7 involve
the calculation of absolute values. Problems 8 - 10 require the
proof of statements made in the text without proof. Problems
11 - 12 refer to the geometric interpretation of operations with
complex numbers in special cases.

299
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Exercises 5-7. Answers.

1. |
y
2} 12
4
2y
[ 4 .237
2, | ||
» 8 _ -z#r
Er N
-l!l 1!‘3 ' [
K 2 .
| |
3. (a) [ %]
: 7. + 2, = 3 + 21
>+ 2# 1 2 ;
i' Zl - Z2 = "1 + O‘i
= . .
2 z %
R {
v_} I
[page 280]

300




292

3. (b) l Zl+22=5+51
‘.Y Zl-ze__l_i
1
4
¥
1; L,
Z.é/
A V15 e
}/
L
A
y
(c) - ,
L Z- + 2, =1+ 1
B+, 1 2
2 . 2p - 25 =-3+31
£
. " |
(a) - |
FARYN Z) + Zp = b+ 1
k \k. Z) ~2p=-2+T1
JARN
ARAWY;
N >iX.
\ .
\\ /
Y4
LI
[page 280]
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3. (o) ey
/ 24 + 25 = -2 + 51
/ [
2 / Zy - 25 = -4 - 31
~ X
/ /
/
2-2| |/
~~
2
(£) 2, + 2, =2 - 61
AR Y 2y mZp =2t
SNk
»tk—
By
+
302
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i
3. (&) gy
NIk
\ \\
N
\ N\
E|
N
TS
\\
N
| Z ,=!-~
(h) y
2, Z2
z\'l
2 ’l Z
308

- [page 280]
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Zy - 2 = 6 - 51
Zg + 2o =4 - 41
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LAy
. 2o ; A (g + 1) 141 'ﬂ%js
23 ; %6 _ -1 + é-u - 2i) _ _ % . (-1 ;*‘ - e
< 5!
Zy * 27 14 (Y2-1) _ Yo (-1)1. [°8 N LE:;’
2 2 2 ) 3Vt — +z
5. (a) 5
(b): 2
(¢) ©
(a) Y2

(e) YWE + 2

6. Let z =x + yi

then-]—-r 7%4" i
+ ¥

= | - - N S,

"1"}' 2 )

x© + y X +y

7. (a) The single poinn ’1,0).
(b) Let z = x + yi, x =2nd y  real.

Then X + yl1 = Yx~ + y2 .
Hence y = 0, and X = J 2.

Therefore, the set of points 1s the non-negative x-axis.
(c) Since z cannot be zero, the given equatlon may be
transformed into the equation |z| = 1, and this 1s the
equation of the unlt circle.

304
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8. Let zy =x) +y;1 and 2z, = X, + ¥l

lzgl = I(xl“‘yli)(xg'*‘ygi)l = l xlxg"ylyg) + (xly2+x2yl)il

2, 2 . 22 2.2 2.2
X)X = 2X)Xo¥ Vot Y Vot X Vo + 2X YoXo¥q + Xo¥)

2, .2 2,.2
xq (x5 + ye? + yg (x5 + yg)

2 2 2 2
/xl + ¥y )/x2 + Y5
Iz« lz,l.

9. Let z) =x) +y;1 and 1z, = x, + y,l.

29 (xp+ ¥L)(x5 = ¥ol)  (aqxp + ¥9¥5) + (x5y7 - %q¥p)1

e, T Zrye B
and _;_1_ =)/x§xg+2x1x2y1y2+y§3’§; xgyi 2%, %p¥1Vp + X5¥5
2 X5 + y2
) xg +
| W68 v - o
) xp + V3
Y
Y& + ¥
NN
- T -

10. Using the fact that the swam of the lengths of two sides of
a triangle is greater thzn o> egual to the length of thwe
third side, we have

Iz = zo] + lz5] 2 |z | =2 i - 250 + 2] 2 l2,]
or '
Izl - 22| 2 lzll lzgl i ‘5 - 22| 2 |22| - lzll-
From this we conclude '
l?l - 22| 2 =l - lzgl .
[page 28:]
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If O, z, = a + bi, and z, = ¢ + di are collinear, then the

slope of the segment Jolining O and zq is the same as
the slope of the segment joining O and Zo. Thus,
b d

(1) z=7¢-
If Zg = 27 t 25 .
then z5 = (a + c) + (b + d)i.
The slope of the segment joining O and Zg is

..y b+ d

(11) 5= -

But (1i) 1s equal to both members of (1); that is

b_d b_a b+d_a+ec b+d_4a
a ¢ d ¢ d c a+c ¢
Hence, the slope of the segment joining O and Z4 is the

same as the slopes of the segments Joining 0 and the points
z, and z, respectively, and since all three segments pass
through 0, the points O, Z1s 2o and z. are collinear,

The triangle with vertices \Y
0,1,z is shown in the flgure z
at the right. The lengths of 1zl

the sides of the triangle are
1, lz|, lz - 1f.

If we multiply each of 0 |
these lengths by |z|, we
obtain ¥ %§?
l2l+1, lzllzl, lzllz - 1] = |2% - 2].
These are the lengths of the \&
sides of a triangle whose

vertices are O,z,z2 as the

second flgure clearly shows.
The two triangles are |

similar because corresponding /

sldes are proportional. |

To obtaln a geometric

construction for 22, one must
[page 281]
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choose a unit of length on the x-axis, draw a triangle with
vertices O, 1, 2z, and then construct a second triangle similar
to the first one by making each side of the second triangle |z]
times as long as the sides of the first. The vertex of the
secogd triangle which corresponds to z of the first triangle
is z~.

5-8. Complex Conjugate.

The introduction of the notion of complex conJugate.has
- Several important consequences. Lt makes possible: the simplifi-'v
" cation of computations involving absolute values and multiplica-
tive inverses; the algebraic representation of the geometric
operation of reflection in a line; the algebraic formulation and
manipulation of statements involving the real and imaginary parts
of complex numbers; and the algebraic representation of all.
geometric relations in terms of complkex numbers.

In connection with the last of these features it should be
observed that only zeometric conditions which are satisfied by
a finite number oi oints can be expressed in terms of the com-
plex variable 2z alone, since an equation in =z has only a
finite number of solutions. The solution set of an equation in
z alone is, in general, a finite set of points; the solutlon

. 8et of an equation in 2z and z 1is, in general, a curve,

The examples and exercises of Section 5-8 illustrate the
statements made above, In particular, Problems 2, 9 and 1l are
concerned with computations lnvolving absolute value and mul-
tiplicativebinverse; Problems 6 and 14 are concerned with
reflection in lines; Problems 7, 8 and 10 are concerned with the
algebraic formulation of statements about the real and lmaginary
parts of complex numbers; and Problems 3,4,12,13,15 are con-
cerned with the complex algebraic formulation of geometric con-
ditions. Problem 1 provides practlse in computing conjugates,
and Problem 5 requires the4proof of statements made in the text

307
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Exercises 5-8, Answers.
1. (a) 2 + (-3)1

b) -3 + (-2)1i

c) 1 + (1)1

) -5 + ot

O+ 21

)
Y1+ (1)1
)
)

(1) 5+51
(m) (Ea2 + 3b2) + ( -ab )1
haz + 922 haz + 9b2
ex” - 3x
o G T E
(0) - %5 + (-9t
4+ 01
(p) £+ 308
[pag=: 287]
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3. (a) (v) \
AY 1y
a
/
/l
{ > X
7| | [
A
b, (a) (b) )2
A
|
T E;x 44>x‘

(¢) There is no complex number 2z which satisfies the
given equation. Hence the set 1s empty.

5. (a) z) + 2y = + x2) + (yl“+’y2)i.

(xl
(xl + X2) - (yl + Ye)i
(xq

1

ZI+22

It

- Yli) + (X2 - yei)
=7, + Zpe

(b) Z)*Zp = (xlx2 - ylye) + (xly2 + xeyl)i

21725 = (X% = ¥195) - (x9p + x¥))1
But the expression in the right member is equal to the
following:

309
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225 = (% = ¥;1) (%, - ¥t

|
~~
»
=
no
<
=
<
no
S
\
~~
»
=
<
no
+
}
¢

Hence

21022 = Zl ZE .

(e) ﬁzz) = (-x2 - yzi) = =X, + yEi; 4
~(z5) = -0 + ¥0) = ~(x5 - ypl) = =x, yzig;

hence i-zzj = _(‘2'2' . A {

Since zl + 2z, = EI + Z,, We can now write

= 29 +T—z2)-—z1+ Z5) = 27 = 2.

Xy + y2
- = - = 5
z2 X2 Vei x2 + y2
hence (--]'z—-> = -1_-_-— .
2 2z,

Since z;-z, = 2zy°Zy, We can now write

21\ _ — — /1\_ %A
Z T % \z) TR (=) .
2 2 Zg

6. The reflection of any point w in the y-axis 1s -W. Hence

N
no

the reflection of z3 - (3 + 21)z° + 51z - 7 1is

(23 - (3 + 21)z2 + 51z - T) = =[(2°) - (3 + 21)(z°)

FBT(Z) -T1 = -1(3)°3 - (38 - 21)(F)? - 5L(7) - 7]
= 2% + (3 - 21)3° + 51Z + 7.
7. If 22 = Z° theno—zz-_z'2=(z+2)(:—?), so elther

z+Z=00rz -2z =0. In the first case 2z 1s pure
imaginary, in the second case 2z 1s real.

310
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8. A number w 1s pure imaginary if and only if w = -W. Thus
2152 is pure imaginary if and only if

2125 = - (212)
212 = - % Zp
o 2122 = = ZlZE.

Dividing this last equation by zéEE we obtain

i R §
25 Z ’
and 2, ' zl>
S e
2o Zo ,

which holds if and only 1if Ei is pure imaginary.
2

9. lay - 2pl% = (2 - 2)) (T 25) = (2 - 2) (7 - F)

= lel + 2222 - 2122 - 2122

Il

2 2 — —
Izll + |251% - 2]z, - 2,75,

|z + 2% = (20 + 2,) (T F 23) = (21 + 2,) (7 + %5
= 27 + 2p%; * B)%p * 217,
= lzll2 + |22|2 + 225 + 2125,
Thus |z, - 22|2 + |z, + 22|2 = 2l21l2.+ 2]22|2 .
10. Let z2) = X + yli and let z2, = X, + ygi.'

2, *+ 2o s real if ¥y + ¥ = 0, and

21 2o is real if X1¥o + Xp¥q = 0.

But if y, + y, = O, then elther y; =y, = 0, or y, # 0 and
¥y = =¥p- In the first case z| and z, are both real, and

in the second case we have xl(yg) + x2(-y2) = 0, or

x1 = x2. So 1n the second case z, = 2

1 2*

[page 288]
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2]
2 | 1zl°
-11. It 1s sufficilent to show that E = — ,
. 2 |z,

2 — — 2

But 2 = f.].;> <f_];> _ (& (_Z_J_..> _ A% lzl'
Z z z - Z, ] - o]

2 2 2 o /\"2/  Zyz,  |z,]

12, If y = 3x + 2 then since x = %(E +2), ¥ = %(E - z) we have

3(Z- z) = 3:3(Z + 2) + 2,
or simplifying
(-3 + 1)z + (-3 - 1)z = &,
which may also be written _
(-3 +1)Z+ (-3 + 1)z = 4.
13, Let z =x + yl and K = A + Bl where X,y and A,B are real.
Substituting in

Kz+Kz=¢
we get
(A+BL)(x+y1) + (A +BL)(x+yi) =¢C
(A+Bi)(x -yi1) + (A -Bl)(x+yi) =¢C-

[(Ax + By) + (Bx - Ay)i] + [(Ax + By) + (-Bx + Ay)i]l =C

2(Ax + By) = C.
If B # 0 then

y = C - 2Ax

which 1s the equation of a straight line. If B = 0 then
x = g |

‘which is the equation of a straight line parallel to the

y-a}cis .

14, The points z) = Xy + 1y; and z, = X, + 1y, are symmetric
with respect to the line y =x if and only if y = X is
the perpendlcular bisector of the segment jolning zq and
Zoe This 1s equlvalent to two conditions: the midpoint of
. the segment Jjolining zq and Zo is on the 1line y = x; the
segment jolning Zq and Zo is perpendicular to the line
¥y = x. The first of these conditions is algebralcally

[page 288]
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Xt Xy YtV
- >
2 2
the second condition is

Yo = ¥
=% = L.
2 1

Thus for symmetry with respect to ¥y = x the following
palr of equations must be satisfiled: '

X ¥ X ¥+ Y

Yo = ¥y =%y - X .
Multiplying the second equation by 1 and adding-the'
result to the first we obtain

X) + %5 + 1y, - ¥y) =y + vo * 1(x, - x2)
(xl - iyl) + (x2 + iyz) = (ixl + yl) - (ixz - yz)
(% = 1y9) + (x5 + 1y,) = 1(x; - 1y,) - 1(x, + 1y,)

i

E-

2 + 22 = 1 1 - 122
(1 -1)zy + (1 + 1)z, =0

which was to be proved.
15. Let z; = x; + ¥11, 2Zp = X5 + Yol (We assume Zq # 0,

Z5 # 0 since otherwise the problem has no geometric meaning.),
Then

ziEE (x1 + yli)(x2 + yzi) = (x1 + yli)(x2 - yei)

(X1X2 + ylyz) + (ylxz - xlyz)i’

so that if 2125 is real

V%o = Xq¥p = 0.
If x, = O then since y, # 0 it Tollows from this equation
that X, = 0, so that both Zq and 2z, are on the y-axis
and the segments Joining them to the origin are parallel.
The same conclusion is obtained in the same way if Xy = 0.

In the general case X, # 0 and X # 0 so that we may
divide our last equation by X1%5 to obtain

[page 2881
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Yy, Yo
x "%
or 1 2
i Yo
X %

Thus the slopes of the segments Jdining z, and 2z, to the
origin are equal and the'sggments are parallel. In every

..........

the origin are parallel.

 5-9, Poiynomial Equations.

, In this section we discﬁss the ultimate significance of the
-;system of complex: numbers for algebra. We state without proof
~.the Fundamental Theorem of Algebra, and consider simple examples
. in which 1t applies. “

Properly speaking, the Fundamental Theorem of Algebra states
:‘that every polynomial equation of positive degree with complex
coefficients has at least oﬁe complex solution. The theorem we
have stated as the Fundamental Theorem is obtained by combining

. the preceding statement with the Factor Theorem which asserts
that if r 1s a solution of the polynomial equation P(z) = 0
then 2z - r 1s a factor of P(z). According to the Fundamental
 Theorem if P(z) 1is a polynomial of degree n > O then the
equation P(z) = 0 has a complex solution r;. By the Factor
 Theorem then, P(z) = (z - rl)Pl(z) where Pl(z) ig a polynomial
of degree n -1, If n -1 > 0 then applying the same argu-

' ment to Pl(z) we conclude that Pl(z) = (7 - r2)P2(2) or

- P(z) = (z - ry)(z - r2)P2(z). Continuing in this way we obtain

. the theorem stated in the text.

The teachef may wish to present the preceding discussion and
. a proof of the Factor Theorem to the class. The following simple
proof of the Factor Theorem is based on the factoring identity

B T,
Let
- n n-1 .o
P(z) = a z + a;z + +a 12+ a,
be a polynomial and let r be a solution of P(z) = O, that is,
[page 289]
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= 0. Then,

P(z) - P(r)
1Zn
ao(zn -

ao(z—r)(z

et +a ,(z - 1)

n—l+zn'2r+---+rn'l)+'al (zn'2+zn'3r+;=.+rn'2)

v W

—~ o~
N B

~— N
i |

n-1
r oo
o0 ot n

)]

et
n)'

. N n
(a z +a z+ao) -(aor +a :+ao)

1
) NIRRT

-1
z - 1)

n-1
n-1

I

+ al(z
n—l+zn-2

n-1
r+---+rn’l)4-al(z—r)(zn'2+zn'3r+---+rn'2)

it

]

(z—r)[ao(z
#oeeeba ] .
(z - r) Q(z).

Exercises 5-9. Answers.

i

1. (a) 1, multiplicity 1
-2, multiplicity 3
(b) 0, multiplicity 4

- % , multiplicity 2
3, multiplilecity 1

(¢) 3 - 2i, multiplicity 2
-1, multiplicity 5

2. (a) Since z° + zLL + 32° = z3[

we have the following zeros:
0, multiplicity 3
-1 - Y11
=

2

(A=Al ), - L JIILy,

» multiplicity 1

éLJt7£CE££ » multiplicity 1 .
(b) Since z' + 222 + 1 = (z + 1)%(z - 1)2, we have the
following zeros:
-1, multiplicity 2
i, multiplicity 2
(c) Since 23 + 32° + 3z + 1
-1, multiplicity 3
3. (a) Example 1: (z - 1)(z - 2) = 0,
Example 2: a(z - 1)(z - 2) = 0, where a 18 real,

[page 294]
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non-zero, and not equal to 1.
(b) Example 1: (z ~ 1)(z - 2) = 0. This equation is of
degree 2 and each zero 1s of multiplicity 1.
Example 2: (z ~ 1)(z - 2)2 = 0. This equation is of
degree 3 and hag zeros which are of multiplicity 1 and
2 respectively.
An equation of degree U4t can have either one, two, three,
or four solutions. The number which 1t has depends on the
multiplicity of the zefbs of the polynomial associated with
the equation. The following examples are illustrative,

One solution: (z - 1)1L = 0.

The polynbmial (z - 1)4 has the zero 1 of multiplicity
four. Hence the solution of the équation is the single
value z.= 1,

Two solutions: (z - 1)(z - 2)3 = 0.
The zeros of the polynomial (z - 1)(z - 2)3 are 1
(multiplicity one) and 2 (multiplicity three). The
solutions of the equation are z = 1,2. Another example
is (z2 + 1)2 = 0; its solutions are z = 1, -i. Each
solution is a zero of multiplicity two of the polynomial
(z2 + 1)2. Note that here we have two palrs of con-
Jugate complex numbers.

Three solutions: (z - 1)(z ~ 2)(z - 3)2 = o.
The zeros of the polynomial are 1 (multiplic;ty one),
2 (multiplicity one), and 3 (multiplicity two). The
solutions of the equation are z = 1,2,3.

Four solutions: (z - 1)(z - 2)(z - 3)(z - 4) = 0.
The zeros of the polynomial are 1,2,3,4; each is of
multiplicity one. The solutions of the equation are
z = 1,2,3,4,

316
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23 +1 = (z + l)(z2 -z+1) =0

Hence z = -1 1s one solution,

To obtain the remaining solution, put
z2 -2z + 1 =0,

Then 1+ Y31
2=

The solutions of the given equation are

. L1+ V311 - Y31
» T » T

(a) Since z = U4 is one solution, (z - 4) is a factor of the
polynomial in the left member of the given equation.
Dividing the polynomial in the left member by (z - 4),

we find that the given equation can be rewritten in the form

(z - 4)(32% - 8z + L) = 0O,
Factoring again, we have
(z - 4)(3z - 2)(z - 2) = 0.
The solutions of the equation are 4, % s 2.
() 2,1 +1,1 -1 '
. - i
() -1, -2, 1%, y3i 1 . Y31

(b) 4, 1, -1 + Y21, -1 - yo2i,

(a) (z - 1)(z + 21) or z° + (21 - 1)z - 2i.

The polynomial is of degree 2, ‘
(b) In order for the polynomial to have real coefficients
it must have the conjugate of -21 as a zero because it has
~-21 as a zero. Hence the polynomial must be of degree 3;
the required polynomial is
(z - 1)(z + 21)(z - 21) or 23 - 2% & bg -1,
(c) The polynomial of lowest possible degree must contain
the square of a polynomial of degree 2 which has both
-21 and 21 for lts zeros. Thus, the required polynomial
is of degree 5; 1t is

(z - 1)[(z + 21)(z - 2'1)]2 or z° - 2" + 82% - €22 4 16z - 16
- [page 294]
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5-10.

1.

309

Since 3 + Y21 is a soluti-m of the equation so is 3 - V21i.
Thus
{([z - (8 + VY21)][z - (T - y21)1} = (2° - S= + 11
is a factor of the poly—mial 1n the 1l¢~ remil=r of the
given er.xtlon, By lor= 3l v'ilon it can jse = zxd that the
zther fz=tor is"(z2 - < - ice the solutic-: .* the
¢guaticn are ,
3+ V21, . /21, 3, -3.
)/g-i, 1+ )/_é_i: y,‘j‘\_)/'g.
a) (z -r)(z-ry)(z- ") = | .
3 - Y2 . - - :
B4 o) r(rp) (2 152+ [(-rp) (=rp) (== ) (=rg)+(~rp) (-rg)
+ [(=r) (-rp) (~r2s] =

) i ‘
r) + Ty + rg)z° + (1.1, + r\ry + rprgjz - (ryrora).

(b) z - r)(z - rz)(z - r3)(z - 1y) =
r.+r 2+r3+ru)z +(rqrytr 3P Ty T, 3+r2rn4r3ru)z
(c) z—rl)(z—re)---(z-r.?) =

- (

(

- (ry

(rlr2 3 * TyTpry + TTgry + ror 3ru)z + (rlr2r3r4).

(

(r + ry 4 sve 4+ 1 )z6 (r + PPy + eee + DT )z5
2 7 T %2 1°3 67

- (r

rzr + ryrory + ottt 4 r5r6r7)zu + oo +

+ (‘l) ( lrE "'P7).

Answers to Miscellaneous Exercises.
-(2 - 31) = -2 + 31
(2 -31) =2 + 31
[2 - 31] = Y4 + 9 = Y13
|27=31| = |2 - 31} = Y13

1 __7-3T _2+31_2,3,
A P 13 137 13
[2 - 31]% = ( V13)? = 13
[(2 - 31)%| = |2 - 31]2 = 13

[page 295]
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)i

]

4 4+ 51 L
7—_—% (4 + 51 rr_‘_“-‘

. .2 I
) (-w + = (Tg + i3 .x)

5]

7 22
‘—“——-fg--*-ﬁi.
[z - (¢ +ai)]llz - (¢ . ¢} =
Z2 - [(ec +d1) + (c.-di .2 +- +di)(c - dai) =0

Z2 - 2¢cz *+ (02 + dz) = C.
Tt is closed with respect < ¢ - ’'iplicatior, but not with

respect to addition sinec -1 13 not in the set.

2
y

x2 + yE 2

N
Ix + 1iy] > [x] . ~
lz] > =

(a) circle of radius 3 =t. center at (2,0).
(b) set of points exteric = zircle of radius 3 with
center at (-2,0).
(c) set of points interior to circle of radius 4 with
center at (0,2).
(d) set of points interior To, or on, circle of radius 5
with center at Zoe l

v
o

v
™

|x + y1 - (2 + 381} =5

[(x=2) + (y -8zl =5
Yx-22+(y -z~ =5
(x - 2%+ (y - 3% = 25

x° + y2 - Ux .- 6y - 12 =0,
The set of points satisfying the given equation is the circle
of radius 5 with center at (2,3).

(a) the distance from the origin of z; is less than that of

Zne
2
(b) z 4is on the circle of .radius 5 with center at the

origin.

[peze 295]
319



311

c 2, and z, are symmetric with resmect to the origin,

(c)
(a) 2, and z, are symr=tric with respect to the y-axis.
(e)

e) z, and z, are symmetric with respect to the x-axis,

3. If z = x + y1l the stated conditions become

X =Yy, YXE'+ y2 =1

1 1
The solutions of this pailr of equations are x = V-F = e

1
and X = = ===~ , ¥ = ~ == , The solutions of the problem
ye Ye
1

1 .
are therefore z = V%F. + 7§r i, - 7%F - 7%~ i,

9. If the coefficients are real and 3 + 21 1s a solution then
3 - 21 must also be a solution. If the equation is Quad-
ratic 1t can have no more than these two solutions. Thus
the equation must be

alz - (3 +21)][z - (3 -21)] =0
‘or
) az® - 6az + 13a = 0
where a # 0 is any real number,
10. We show generally that if z = x + yi1 is any complex number
(not zero) the quadrilateral with vertices z, iz, 12z, 13z
is a square. The midpoints of the diagonals ¢f this quad-

rilateral are o
z+ 17z _2z -2 _ 0
2 2 -
iz + 13z _iz - iz _ 0
T2 2 -

so that the dlagonals bisect each other at the origin. Thus
the guadrilateral is a parallelogram., The slope of the
segment Jodining the origin to 2z = x + yi is % ; the slope
of the segment Joining the origin to iz = i(x + yi) = -~y +xi
is - % . <Zince these slopes are negative reciprocals the
diagonals =re perpendicular. Thus , the parallelngram is

a rhbmbus. Finally, each diagonal is equal to 2]|z| and
hence the rhombus, having equal diagonals, is a square.

320

[page 296]




312

11.

12,

13.

If z is & s»lu“ion then EB is also & _lutilon, siace the
coefficients ars- real. By the Fundamsz cal Theorer

2 . 3 =
az + bz = ¢ = a(z - zo)(z zo)
- =2 - (z_+Z )z ~ 2.2 _.
T 0 o] 0 c”
= =7 - alz, + Fy)z + azgz
= =" - alz, 2,)Z - az,z..
Equating coeffi-‘entz we obtain
b = -a(z + zo), c = az zg
or
-_— _ b > =L
Zo+'_'.o———-é', zozo—'a-
The curve z + z = - 2 ig the straight 1line x = - %% .
The curve zz =~§-1s the circle x2 + y2 = gi. Since 2z 1lles

on both curves it is one of the points of intersection of
these two curves (the other is E'o)2 Thus to constrgct the
roots of the quadratic equation az + bz + ¢ = 0 (b“-lac < 0)
draw a circle of radius % about the origin =nd draw the
straight line rarallel to the y-axis.through (- é% ,» 0).

The solutions =f the eguation are the points of intersection
of th=se curves. ‘

a(z% -z + b4) = » a real a £ o
If z = x + yl then 22 = x° - yz + 2xyl so that the real part
of z& 1s O if and only if x° - y© = 0. Since

2 2
X2 -y = (x+y)x -¥), x° - ¥ 0 if and only if

X+y=00r x -y =0. Thus the set of points satisfying
the given condition is the set cf points on ths lines of
slope 1 and -1 through the"c:igin.

2 2 2

2

We have (Z) = (12193 = = . If the real part of
'z o
z2 is zero then the real part ol Zz° is zero, siance z2 and
2 _ 1,2 1 =2 1
z = z are confugates. Sincs fz) =‘7;TE z_, =znd T;—E is

[page 296]

~ 321



14,

15'

16.
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The -diserimi:int of +the =scuation is

(1 = :’)2 - vZer =12 - 6p + 1.
The equation n1as on.y one real root when thz ulscriminant

is o, that i:, when r == one of the zems - 3 - 2Y2,

34 2Y2 -~ 27 the Z-sgcr==inant. The equz:i.n has complex
rooc- ; when ti2 disc——mim=r% is negative. I . very large

valiess of r the dizcrmomimant 1s positive. 30 that it will
be neagative if and c=; = r 1s between =3 zeros --
3-2yY2<r< 3+ 2vVil

If = =1, b=1, then e +bi =1+ 1+1=0C a + bl = 0 = O;

a -bl=1-ii=2. Tousa+ bl #a -1 1n this case.

The set of points eguidistant from z, and z.. 1s the set of
points =z which satisfy thes egnation

lz - z,] = |z - z5].
Squaring this equation we have
2 2
lz - 2,1 = |z - 25|
from which we get
(z - zl)!z -2z, = (z - 22) z - Zg

(z - zl)(_i -z) = (z - ,22)(—5- z,)

2Z - 2% - Z|E + 3] = ZZ - ZpZ - S5 + 2%,
(Z, - Z5)z + (2 - 25)Z =23 - 2.7 «

The last eguation iz the equation «f th= psrpendicular
bisector of thes sam==zt.
The point = ber—=x® =v the set if zné only 1if

lz - Eol ¢ i - ls Szat is, if znd only I the distance

from z O —z—o' ix Iass thax The distanceZrom z to zg.
This wil~ be trus *7 =nd only iT the point =z 1lies on the
same side as 2z, ¢ <m= perpencicriayr bissctor of the
sSegment Tolning z, Bxuiiel ?; This perpenti—mular bilsector
is the x-axis. Thus the set ix the set of =l1 points =z

which lie: on the same side of the x-axis a= o+ This can
ipage 296]
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1&.

a::o be established by calculation.

Les z, = a + bl and zZ, = ¢C + di wh=re a, b, ¢, and d

arz real.
(1) 21 _a-+bi ¢ -di ac+ t:  ce - ad iy
- - = ¥ - - ‘* 'y .
2y, C di c di e 4 - 22 4 dé
21
Hencé —= is real ii and only . I L¢ - ad = .
> -
It can be shcwn that be - ad = 0 17 ard only if 2, and

Zz~ are on a ciraight line through the origin. To establish
tgis we must prove two if-then statements,
(a) If 2, =znd =, are on a straight line through the
origin then bc -~ ad = 0, anc
(b) If bc - ad = O then =z

line through the origin.

. anc z, are on a straight

Proof of (a): If the line is tne y-=xis then == 0 and
¢c =0 and we have at once b-0 - 0-4 = 0., If the line is
not the y-axis then the slope of this line joinmimg the
origin to :2q is equal to ti= slope of the line jolning
the origin to 2, i.e.

Hence bc = ad on
Proof of (b): e have (2) e =ad. If 2z, 1s on the
y-axis then a =0 and by (' bc=0. But b £0
because z = a + bl # 0 by hy,othesis. Hence c =0 axd
25 is also on the y~-axis., Thls proves that 25 I on inte
y-axis 1f 2z, Is and the two pcir=s zre on a straight lzme
through the origzin.

If 2z, is nct on t= -~—axi: then a # 0. From this we
see that ¢ # O becauss if c =0 and a # O we must
conclude from (2) <that 4 = 0 &and this would mean that
2y = C + di = 0 in violation of our hypothesis that Zs s
a non-zero complex number. Hence ac # 0 and we may divide
both mgmbegs of (2) by ac to obtain

=7 which ir precisely the condition that

2y lie on a straight line through the origin.

3243

ncé
z, a

{oage 297]



315

We summarize our argument:
z

El is real 1if and'only if be - ad =0 and bc - az =0
2
if and only 1if zy and Z5 lie on = straight lime through

the origin. Therefore El is real if and only if =. and

4
lie on a straight lige through the origin.

22
19, zu = -1 or z4 +-1 =0
(22 + 1)(z% - 1) =0
Hence 2z~ = -i or z2 = 1. The solution set 1is evicd=at by

the union of the solution sets of th= eguations solvexz in
problems 22 and 23 of Exercise 5-6,

1 1 1 i 1 i . 1 i
—+t =, —=-=, -~ =4+= ané = -=
V2 V2 ' Ve e e Ve Va2 \2
20. It will be sufficient to show that tns lzw ol trichotzuny

is inconsistent wich 04 for the element 1. Certainiy
1 # 0. Then either i > 0 or 1 < O. In either case
by Oy we have 12 > 0 and we are confrontec by <he
contradiction -1 > 0.

namely

21. If x and vy are real it is evident <imat the conjugate
of x+yl is x - yi. Moreover, it ca:m b= shown bzt
if X+ yL =% -yl then = and y ave r=al.
et x=a+4+ bl and y = ¢+ 41 wherm =, b, c. a2 &

are real.
X+ yl=(a-4d) + (b+c¢c)z
X+yl=(a~-4d)-(b+c)i
X -yl =(a+d)+(b-c)t

Since X ¥ yi = x - yi we have
(a -d) - (b+c)i = (a2 +2) + (b -c)t
According to Theorem 5-4
a-d=a+4d and
-(b+c)=b-c
From these equations we conclude that d =0 amdi b= 0,
.2 X=a and y = ¢ wher= =2 and ¢ :=re r=2al.
Hence, X + yl = x - yi _if and only if x and y =ze real.

[page 297]
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22, The propcsition stated is true provided x and Yy are
real. In this event we have
x| + |yl ngElzI if and only if

2 2 .

(Ix] + ly1)? < 21z1%.

Now |z |© = x° + y2 and we have

2 2 2
1x12 + 2lx|Iy] + Iv12 < 21| + 2ly|®.
This reduces to O < |x|2 - 2lx]|lyl + |y|2 or

0< (I1x] - ly])® wnich is
true because the square of any real number 1is non-
negative. Q.E.D,

The proposition is not true for all complex values of x
and v as the following counter example will show.

et x=8+ 214 and y = -1+ 41

then |x] =68 = 24/17 and ly| = \17.

x| + lyl = 3317 |

z =x 4+ iy = (8 + 21) + 1(-1 + 41) = 4 + 1.

lz| =V17. It is false thatV/27V17 > 3V17 ,

henc= in this case |x| + |y| is not equal to

or less than V2 lz|.

3295
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#5-11, Construction of the Complex Number System.

Section *5-11 outlines Gauss's construction of the complex
number system. As a source of historical information we suggest
The Development of Mathematics, by E.T. Bell (McGraw-Hill, 1945,
Second Edition): Wessell and Argand, p.l77; Gauss, p.179;
Cauchy, p.194.

5-12, Sample Test Questions for Chapter 5.

Note: In the questions included in this section a,b,c,d,
X,y are real numbers and z 1is a complex number.

Part I: True-False.

Directions: If a statement 1s true, mark it T ; 1f the state-
ment is false, mark it F,.

o The imaginary part of a + bl is bi,

. The discriminant of the equation x2 + 2 =0 1is -8.
Every complex number has an additive inverse,

= w N
*

. A one-to-one correspondence can be established between
points of the xy-plane and the elements of C.
5. The product of a complex number and its conjugate is a
complex number. ‘
6. The sum of a complex number and its conjugate is a pure
imaginary number.
7. If the coefficlents of a quadratic equation are real numbers,
then the roots of the equation are real numbers.
8. |z| 1s a non-negative real number.
9. The sum of z and -z 1s a real number.
10, If =z 1is a complex number, 2z and Z correspo.d to points
' in the xy-plane which are symmetric with respect to the
y-axis,

11. The multiplicative inverse of (x - yi) is 5?:—115 .
x“ +y
12. If (a + bi)(x + yi) = 1, thén ax - by = 1.

- 13, z + Zy = 29 ~ Zpe
[page 298]
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14, (a + bi)Ta ¥ bI) = a® + b2,

15. If |z| = 1, then z 1s its own multiplicative inverse.

16. The set of numbers (1, -1, i, -1} is closed under multiplic-
ation, '

17, zql + lzp] € 12y + Zo| .

18. The reflection ¢ Z in the y-axis is -z.

Part II: Multiple Choilce.

Directions: Select the response which best completes the state-
ment or answers the question.
19. Which one of the following equations does not have a solution
in the real number system?

A. x+5=5 D. x2-5=0

B. (x+5)2=09 B, YX+5=0

- . x2+5=0

20. What ordered pair of real numbers (x,y) satisfies the
equation x - Uyl = 201?

A. (20,0) : D. (0,5)
B. (0,-5) ) E. (0,0)
c. (0,20)
21, If z = (5 - 61) - (3 - 41), then the standard form of =z
1s -
A, 2 - (10)1 D. 2+ (-2)1
B. 2+ (2)1 E. 2+ (10)1

C. 2+ (-10)1 .
22. The additive inverse of ¢ - di 1is

A, «c + di D. 1
1

B. 'é‘-_—‘a‘i- E. 0

C. c + di

23. If the complex number 5 4+ 51 1s represented by the point
P in an Argand diagram, then the slope of the line segment
Joining P and the origin is

2 3 :
A. Kl B. = C. 5 D. 1 E. O
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24, Which one of the following express:ons does notl represent
a real nurber?
A. 12+ Y2 D. 6+ 21

B, 31t E. (21)° - y3.

c. Y (-3)°

25. The multiplicative inverss of 1 1=

A, 1 B, -1 c. 1 D. -1 E. -

Fe

26. Which one of the following eguations has non-real solutions?
A, x -4 =6 v exf _1lx + 3 =0 .

0 . x2 = YEE.

B. ux° - 3z + 6

C. 6x° + 5% - 8
27. The conjugate of -4 written in standard form 1s

it
(@]

A, U4+ 01 . -4+ 0i
B, - % - 01 .. HNone of these.
c -4 _d

- 16 T 16

28. Which one of the follow:irg 1s nod equivalent to each of the
' other four?

A, Y(2)2 : D. y-(e1)?

B. Y(-2)° E. y&.
C. -(2)

29. The product of (2 + 3i) and (5 - 31) 1is
A, I3 + o1 D, 1 - 211
B, 12 + 2li E. 10 - 9i.
C. 1+ 91

30. When written in standard fcrm the real part of (2 - 1)% is
A. 1 B. -1 c. = D, -3 E. 3.

31. Given z = -31, then 7z In standard form is
A, 31 B. O+ 3i Z. 131 D. O + (-3)i E. -3i.

co
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32. The smallest set which contains the absolute value of every
complex number is the set of
A, Natural numbers D. Rational numbers
B. Integers E. Complex numbers.
C. Real numbers
33. The additive inverse of 1 1is
A, 1 B, -1 c. 1 D. -i E. O
3%, Which one of the following palrs of complex numbers can be
represented by points which are symmetric with respect to
the origin in an Argand diagram?
A. 3+2i, 3-21 D. 3+ 2i, -3 + 21
B, 3+ 2i, 2 + 31 E. 3+ 21, -2 - 31,
c. 3+ 2i, -3 - 21
35. In an Argand diagram the set of points defined by the
equation |z|2 =5 1ig
A. A point D. A circle
B. A straight line E. Two parallel lines,
C. Two perpendicular lines
36. If z 1is a complex number such that-£~= -1 and zz = 1, then

z 1is 2

A, 1 D. 1 or -1

B, -1 E. 1o0or -1ior1lor -l.
C. 1or -1

37. .Which of the following ordered pairs of real numbers (x,y)
satisfies the equation 3x + 5yl -~ 8 = 5x - yi + 6129
A. (-4,1) B. (-1,0). c¢C. (0,-1) D. (4,1) E. (-4,-4).
38. Which of the following equations has the solutions 2 - i
and 31°?

A, zZ - bz + 5=0

B. z° - (2+41)z + (3+61) =0

c. z° - (2 +21)z + (3+61) =0
D, z° - (2 + 21)z + (-3 + 61) = 0
E. z° - (2 - 21)z + (6 -~ 31) = 0,
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3 2

- 22+ z -2 =0has 1 as one of its
solutions. The other solutions of the equation are

A, -1,2 B, -i,-2 C. =-1,1 D. -i,2 E. 0,-1i.

Which one of the following complex numbers is the reflection
of 2 - 31 in the y-axis?

The equation 2z

A, -2 - 31 D. -3 - 21

B, -2 + 31i E. 3 - 21,

C. 2+ 31i

The solution set of the equation 22 + all = 0, where a 1is
a real number, is

A. [a2, -a2} D. {aei, -a21]

B. {a, -a, ai, -al} E. {-a2, aei, -a21},

c. f{a, -a, 1, -1}~
The length of the line segment which Joins the points
representing 3 + 41 and -4 + 51 is

A. Y2 B. 2Y2 ¢. 5Y2 D. 8 E. 50.
III: Matching.

Directions: 1In questions 43 - 49 choose the point on the Argand

43, .
by,
45.
46,
47,
48,
kg,

diagram which represents the given number. Write
‘the letter which identifies the point of your choice
on an answer sheet. Any cholce may be used once,
several times or not at all.

2 - 31
3 -o01
TF o ,I'\y
I3 + 41 H
(2 +31) + (1 - 1) M B K
(3 +21) - (5 + 51) F s
z, such that |z;]| = 2 = RI_ QL
-
N L
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Part IV: Problems,

50.

51.
52.

53.

5”’.

55.

56.

57.

58.

59.

60.

Express the quotient %—i—%ﬁ in standard form.

If z =4 + 21 - 16, find the standard form of =z,

Find the ordered pair of real numbers (x,y) that satisfies
the equation x - 151 = 5yi, ,

Find the real values of X and y Wwhich satisfy the
equation x - y + (x + y)i =2 + 61,

Solve the equation (x + yi)(2 + 1) + 3x - 11 = O for real
values of x and Y.

For what real values of k does the equation z> + kz + 1 = O
have solutions that are not real? ' '
Write a quadratic equation with real coefflcients which has

5 + 1 as one of its roots. :

If z; = -2 + 1 and zp = 1 + 41, find z; + 2, in standard form
and exhibit the sum graphically.

Describe the set of points in the plane which satisfy the
condition |z| = the real part of =z.

Solve each of the following equations and express the
solutions in standard form:
(a) 3z2 +z+1=0

(b) 22 + z + ¢ = 0, c¢ 1s a positive integer

(c) P82 +q=0, p<0,q>0, and p and q are real.
Given the following numbers: 2, -12, 4i, %, - Y16, 0, m,

V—_’ )/:-é—’ {_O’i)/—__ 5’2y—_— r q—_
1.74,  Y<3, 33’7,-1/7?1,%»/—,2-4:_-

(a) Classify the given numbers into two lists,real numbers
and imaginary numbers.

(b) Reclassify the real numbers into rational and irration-
al numbers.
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iéﬁnswers Lo Sample Test Questions.

A“Part I: True-False.

1. F 10, F
2, T 11, F
3. . T 12, T
L, T 13. F
5. T 4, T
- 6. F 15, F
7. F 16, T
8. T 17. F
9. F 18, T
Part II: Multiple Choice,
19. C 37. B
20. B 38. ¢
21. D 39. D
.22, A Lo, A
23. D 4b1. D
24, D 42, ¢
25, B
26, B
27. D
28. ¢
29. A
30. E
31. B
32. C
~33. D
3%, ¢
.8%.D
36. C
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Part III: Matching
43,
Ly,
45,
46,
b7,
ug.
49.

Part IV: Problems

50. % + % i
51. 5+ 21

52. (0,-3)

53. x = 4, y =
54, x = 2, ¥y = =1
55. lk| < 2

56. z° - 10z + 26
5T7. Z) + 25 = =1l + 51

%—h Y

H2Zwno =239

!
n

1
(@]

m

x

58. Non- negative part of x-axis

I
59. (a) =z = -'5 3-/51—5 1, -%+ (- 11)i
() z=-p+ie =Ly 1y (-'\/.T;cé'_l)i

=-\/:_-g-—+ o1, "\/“F%-““ o1
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60. The table shows the answers to both parts (a) and (b).

REAL IMAGINARY
RATIONAL IRRATIONAL
2
-12
B
5
- Y16
0
™
| Y-9
y-27
Y50
1Y3
-3
y5
2 Y16
Y23
Joe
1,74
y-3
3.37
| e
42
2+ Y3

334.
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Commentary for Teachers

Chapter 6

EQUATIONS OF THE FIRST AND SECOND DEGREE IN TWO VARIABLES

+6-0,  Introduction

In Chapter 6 we again take up the study of analytic geometry.

f~Chapter 2 was designed as a very general Introduction to the sub-
~.Ject, 1In this chapter we systematically study equations of the
. first and second degree and thelr graphs.

Sections 6~1 and 6-2 are devoted to linear equations and the

straight lines which are their graphs. -#alle the last four sec-
ﬁvtions are concerned wilth the conic sectirms. A few words need to
aibe sald about the approach we have adopted toward the conics. The
. parabola 1is discusse® in rather great det=il, While much work has
“ been donz in Chapter -4 with parabolas, the emphasis was on the
ﬂLnumerical properties of the quadratic function and the graph was
used iInformally as a visual aid. In this section we aie not inter-
‘ested in the quadratic function, but the parabola -- that is, the,
. set of points, P, which are equldistant from a fixed point and
a fixed line. This definition naturally follows the sections 1n
wahich we have been considering the straight line -- the set of

- points P equldistant from two fixed points.

In the following Section 6-3 we generalize the definition of

ifthe parabola to ask for the equation of the set of points P whose
¢ldistance‘from a fixed point is a constant times 1its distance from
--a fixed line. This, the general definition of a conic, has the
_~virtue of unifying the study of second degree equations in a way
:5which~the plecemeal definitions which are sometlimes used can not.
i“Introducing the definition after, and nof before, the parabola,

" was by design. Generallzing is one of the most characteristic and
1‘most powerful devices of the mathematician. It can't be pointed

* out too often.

335
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The general deflnitlon is used to derive the standard forms
for the equation of the ellipse and the hyperbola, the specilal
case of the parabola having been discussed in the preceding sec-
tion, The detalled study of these curves 1s reserved for the next
several sectlons. .

The fact that the general equation of the second degree

Ax2 + Bxy + Cy2 +Dx +Ey + F =0

always has .-or 1its graph either a conlc, or a so-~called degenerate
form of one of these curves, is only memtioned. While the exer-
cises indicate kow this can be seen, tas full story can only be
told after the student knows enough trigonometry to be able to use
the formulas for ratzting the coordinawz axes. The fact 1s that
by rotating the ax=s through an acute angle such thaf

cot 26= A é C, the xy term can alsays be eliminated. Then.a

translation of the axes which moves the origin to the vertex of a
parabola or to the center of an ellipse or hyperbola, will put the
equation in one of the standard forms. So, while we have not been
able to carry out the program of showlng that every second degree »
equation has for its graph a conic, the main ideas are indicated.:
(For reference, the translation formulas for moving the origiﬁ to
the point Po(xo,yo) are

Il

x!' = x =~ Xg X

1 - - or
y Yy = Yo y

1

X +Xo
!

y' + ¥,

The formulas for rotating the axes through the angle © are

x! =xcos ® +ysin® . Xx=x'cos® -y'sin?® .

y! -x 8sin 6 + y cos O y = x! sin 6 + y! cos O, i

The problem of finding the equation of a conic with the focus_é

and directrix in general positions was not undertaken either. We
began by taking the axes of the conlcs to be one of the coordinate

axes and the directrix perpendicular to one. of the coordlnate axes.

We moved by easy stages to the case in which the axes were parallel.
to the coordinate axes, but the directrix still perpendicular to
one of the coordinate axes. For the case in which the directrix

I
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is a line in general poslition, we would have needed the formula for
the distance from a point to a line, This formula really follows
from the normal form for the equationrn «f a straight line--

X cos © +y sin ©® - p =0, where p is the distance Qf the line
from the origin and © 1s the angle the perpendicular from the
origin to the line makes with the positive x-axls. To derive this
‘equation we need trigonometry again. For reference the formula for
the distance from the point ?o(xo,yo) to the line L:

' ' ‘Axo + Byg + C‘
AX + By +C =0 1s d ="-

2% 4 B2
For the few difficult problgms in the text where the directrix 1s
the line y = x, we simply expect the student to’'use an argument
by similar triangles to determine the distance from the point to
the line. '

The last two sections develop more fully the specific detalls
about the equations and graphs of the ellipse and the hyperbola.
The standard forms are extended to include cases in which the cen-
ter 1s not the origin in the problem sets.

The idea of inverse variation is introduced in connection with
the hyperbola, This union 1s not the happiest one. The tle 1s
simply that if one quantity varies inversely as a second, the graph
.of this relation 1s an equilateral hyperbola. What needs to be
done with inverse variation 1is to stress the definition which
| allows us to translate the words into mathematical equations. One
qQuantity may vary inversely as the square of another, the product
of two others, etc, In all of these, the graph 1is really irrele-
vant and certainly is not a hyperbola. Hoﬁevef, thlis seemed as
good a place to mention inverse variation as any other,

The real purpose of this chapter, then, 1s to develop the de-

" taills of the relation between linear and quadratic equations in two o

variables and thelr graphs, the straight line and the conic sec-
tions. These results are not ends in themselves, but a thorough
grounding in these details and in the methods used to derive them,
will be helpful for most further work in mathematics. These re-
sults do have applications, but their importance derives not from
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the physical applications, #ut from their fundamental role in
analytic geometry -- one of the most useful tools in all mathe-
matics.

. COMMENTS ON SECTIONS
6~1. The Straight Line

The proof given in this section that the equation of the line
through Pl(xl,yl) with slope m 1s y - ¥, =m(x - xl), is

‘deceptively simple. While line is a basic undefined term of geom-
etry, we assume certain properties of this undefined term in order
to derive its equation. We assume in this proof that any two dis--
tinct points do determine a line and further that the slope of a
line is constant. ' (Another property of a line which we do not use
in this proof is the property that for three distinct pdints

P,Pp, and Py ona line d(Pl,Pe) + d(Pg,PB) = d(Pl,PB).) This

assumption about the slope really means that we are asmuming what
we pretend to prove in Chapter 2 -- namely, that the slaope 1is the
same regardless of the pair of points picked to determine: the line.
The proof we gave in that chapter depencs on the geometric pilcture
that the line is really "straight"; that 1is, the slope 1Is constant.
The remainder of the section 1s concernad with developing various
useful forms for the equations of non-vertical lines. These forms
should be looked on as useful devices for determining the equation
of straight lines. We derive more than one so that we can easily
write down the equation no matter what information is given to de-
_termine the line. For instance, we could always find the equation
of a non-vertical line from the slope-intercept form y =mx + b,
- Whether we are givén two points on the line, a point and the slope,
or the two intercepts, we could use any of these to determine m
and b and thus determine the equation of the line. However, in
each case a special form makes it easier to write the equation .
directly. Probably the most useful form 1s the slope~intercept
form ¥ = mx + b. It would be more profitable for the student to
be able when asked, to derive all the other forms rather than for
him simply to memorize them.

' [page 303]
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Exercises 6-1 - Answers.

- ]
%—:—% = %, slope formula.

vy - L = -%-(x - 2), substituting for m,xl and Yl in
¥y - vy =m(x - x,).

1. (a) m

y=5%+3
(b) m=-1
y-Ub==-1(x - 2)
y=-X+6
(¢) m=5
y - 0=5(x-0)
y = 5%
(@) m=%
=1
Y'O_S(x"o)
-1
y=5x
(&) m=3
=1
y-5_5(x+8)

2. (a) Slope is 2 and the
‘ coordinates of the S
y-intercept are (0,1). /
Plot (0,1), then -(d)
locate a second point /
(1,3) by going to the \
right 1 and up 2.
Or, plot (0,1), then 71T\
plot the point (-3,0),
which 1s the x-intercept.

|
(c)

(a)

> v

[page 307]
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(v) Slope is 4 and the coordinates of the y-intercept are
(0,1). |
(c) Slope is -3 and the same y-intercept as the preceding
graphs. Plot (0,1), then locate a second point (-1,%)
or (1,-2) by going to the left 1 thenup 3 or by
going to the right 1 and down 3.
(d) Slope is -1 and the same y-intercept.
Use the slope-intercept con- i;f){
cept to draw these graphs, Yy ‘ﬁ?/ /)
, &
However, the x and y in- i /
tercepts may be found and qf 7
plotted. YT
7 o
o/
L]
a
X
(a) yAl
\
4V
/
(3)
X
p, (2)
+(a
(# (0
(5)
—
[
340
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(v) Slope Equation
(1) -2 v = -2x +6
(2) -1 y=-x +4
(3) -0 y=2
(3 1 y=x
(5) 2 y=2x - 2

333

The equation of thils vertical line is x = 3.

The equation y = mx + 3 1s satisfied by the coordinates

(-1,-2), hence,

-2 =m(-1) +3
m=5
In y =mx + b, the x-intercept 1s,
O=mx +D The line
- %’1. = x, ' hence, through
$—-2; b=1 ¥ -
-2
1
' The equation is ¥ =-§-x +1 or
m = %I'__% ~ -3, Substituting in
¥ - y; =m{x - x;) we have, v
0
¥ -3 ==3(x + 1) o
y = -3x ¥
3
-3
y
1
m= —= s Substituting for m
X1
¥y - y; =m(x - x;) we have,
7 L . .
y-y1=q(X-x1)
71
y=5=X
X1

841

[page 308]

Alternate Solution
with slope. -.% passes
.(2,0). Hence,

1
- 'g(x - 2)

-%x+1

0]

y
2y +x =2

Alternate Solution
=mk + b
=m(0) + b
=b
= mx
= m(-1)
=m .
= -3x
in
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10. y - 0 = m(x - 0)

When written in the above form, we may say that m 1s the
constant of proportionality.

11, (a) P=ks, k=3, .. E=3s
(b) S = kt®
(¢) I =kE

12. x = ky X = %5 *10
8 = k‘15 16
=S x=73

- 15

13. V = kT 2500 = 5T
1500 = k.300 T = 500° (absolute) -
5 =k

14, y = k(x + 1), Since the point (- %, -3) 1is on the line,
we write -3 = k(-'% + 1) '
k = -6

15, Slope of line ¥y 2x + 2 18 2. Slope of a line parallel to
this line is 2.
vy -4 =2(x - 3) the equation of a line || ¥y = 2x + 2

y =2 - 2 and passing through point (3,4)

i

i

' 16. Slope of line y = %x + % is %, Slope of a line perpendil-
cular to this line 1s -4, since mym, = -1 ——

-4(x - 0)
y = =Ux

y -0

i

7. Slope of 5x - 2y =2 1s 2; slope of a line perpendicular
to this one 1s -

2
)
y-5=-E&x+2)
the required equation
o= .21 |
V=B T5

342
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'18. The slope of the perpendicular line is -~ -

3.
]
y +12 = - 3(x - 8) (d)'ﬁ%uao)
__ho
y =-3 -3
(e) \
19. 5Xx + 3y - ¢ =0 N\
= 2x + &
e \ \
5 \\ N
ms= - =
5 ~t(c) T
C . 1 I N L. N
(a) $=-2 c=-% P EEEAN
o\df \
(b) $=-1 c=-3 ~(b) \ 9 X
(C) % = o, ¢c =0 (a) \\
N (o0 Y A
() $=5 =15 TN A\ X
c _ T 21 \ NA \\
(e) 3=195 c=7 \\ (0-3)
- The slope, -~ i, may be used \ \\ “‘
) \
to plot the second point, or A ‘\\
the x-intercept may be found Y
&(0\"'!?)
and used instead. | 0

20. (a) Since the line parallel to the y-axis and passing
- - through the point (-5,7)} 1s a vertical line which
contains points (-5,y), 1its equation is x = - 5,
(b) When the line through the point (-5,7) is parallel to
the y-axis, 1t contains points (x,7) and has slope O.
its equation is, ¥y = 7. Thls may be derived by using
the point-slope, y - 7 = O(x + 5).

21. ‘Slope of the line whose equation 1s 2y + X =5 1s - % its
point of intersection with the y-axis is (0, - 2); with the

x-axis is (5,0); the slope of a line perpendicular to this
‘line 1is 2,

34:3

RN
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(a) y - % = 2(x - 0) equation of line through (O,- %)
= 2x + % with slope 2.
(b) y -0=2(x - 5) equation of line through (5,0)
' y = 2x - 10 with slope 2.
22, Equation of line OP 1is y = %x
Equation of tangent to OP is - y
N o= e B(0,6% )
y-b=-qlx-3 o NN
’% ) /C\\\ |
23 3 P(3,4)
= - &X + + ;
Y o+ P /AN
Alternate solution: , L LY ~
L4 / 44 S
% =93 What geometry theorem? \ _ R
1 o] 13 d |x
i B ;— 3 : AB¥, O)-f—
7 ¢
c =2 %

Coordinates of A are (8 %, 0); of B are (0,6 %); slope
is - %. Use the point-slope form to wrlite equation

y-0=- %(x - 8 %)

341
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23, 3¢ = 16
: 1
©=23 . y T 1] n
d(A,B) =3 +5 2 =8 % BT
- E 2 el LT
a (O,A) =5 — | M N .
(AB)2 = (OA)2 + (OB)2 Pythagorean Theorem. 3 :
(8)? = 5% + (08)° | \ s
- ol 5] 11 Y
(0B)2 = 490 A(5,0) 4
9 Lt
20 [
d(0,B) = 5
Use slope-intercept, B(O,%?), and slope
20 .
- 7;—— = - —% to write the equation,
‘y' = e %x 4 -%o—. /\y
24, The 1line intersects the x-axis at
the noint A(- 92-,0) and the y-axis y= 2 x
at the point B(0, - %). The mid-
point of AB 1is M(- %, - %). m°ﬂ)mc“ﬁﬁ* X
<> 2
Slope of linev oM 1is 3> hence,
the equation of this line 1is,
2
y=3 %
_ > . Y T/
25, Intercepts are: A(-5,0), B(0,10) 8(0,10)
m=2
oP L AB glven
<>
Equation of line OP 1is,
1
y=-75%X
\ —P(x,y,)
= >
345, A150) %0.0) X
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338

6-2. The General Linear Equation Ax + By + C =0

The main idea in 6-2 is to show that any linear equation has
for 1ts graph a straight line and conversely. This is slightly
more general than the preceding section, since vertical lines are
included in the general form of the equation of the line as well
as all non-vertical lines. Given the general equation, the student
should be able to transform the equation into slope-intercept form
and read off the slope and the y-intercept. Another good exercise .
in algebraic manlpulation is to ask that the student put the equa-
tion in intercept form. Many students find this difficult, but,
it is a ﬁealthy algebralc exercise,

Exercises 6-2., - Answers

1. Substitute for m and (xl,yl) in,
Yy - ¥y =m(x - xq)
vy +2 = %(x + 1)

5y + 10 = 3x + 3
3% + (-5)y + (-7) = 0 which is in the form
AX + By + C = 0, '

2. Substitute for a and b in,

X
z*tg=1
X
z+5=1

346
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Transform each equation into the slope-intercept form,

slope

¥y =mx + b,

y-intercept

(=) %
(b) %
() 2
(a) y
(e) 4
(£) y

(a) 3x + 2y

(®) 3+ =
() 3+L-
X
5

(d)

=
)

(£) —F— +
3

[pages 313-314]

-5
1
T
1
5
-7
- L
2
-28
X~-intercept y-intercept
(a) 2 3
(b) 3 -4
(c) 2
| (@) 5 22
()| F 2
(| 3 3
1
347
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(a)

(b)

{e)

(a)

(£)

(g)

Since % = f%—— = ;% =-%, the equatlons represent the

same line.
' 2 -2 47
Since 3-% 5 % T the equations do not represent the

same line.
Since the slopes are different (mj =1 and m, = ;21_),

the lines are not parallel.

Since % # :% #A fg, the lines are not the same. Since
the slopes are different (m1 =1 and my = -1), the
lines are not parallel.

Since % 7~ % # %, the lines are not the same. Since
the slopes are not the same, they are not parallel.

Rewrite the equations in the form Ax + By + C = O,
- X +6y+3=0 ’

-3 5% +2ly +2=0

-1 6
Since —gfI o vale %, the lines are not the same.
2

Since the slopes are the same, %, the lines are
parallel.
Rewrite the equations,

3% 43 - 1 =0
6x + 2y - 2 =0

" Since % =% =33=%, the lines are the same.

Rewrite the equations,

2X -y +1=0
2Xx -y -5=0
1

2 -1, 1
‘Since 7 = = # 5 »  the lines are not the same.

Since the slopes are the same, 2, the lines are
parallel, '

3438
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Slope of the line of 2x -y -5 =0 is 2, Slope of the
line parallel to this line is 2. The equation of the line
through point (0,0) and a slope 2 1is, y = 2x.

X _
5-§=1
6x - 5y = 30
v=6x-6
=
m-.:"g)'—"

)

dlope of a line perpendicular to this line is - %. Eguation
a7 fthe line through (-2, 3) with slope - 2 1s,

. "~% 5 = %(x + 2)

5 + 6y +7 =0

The Parabola. No comments.

Exercises 6-3 ~ Answers.

1.

(a) Select point P(x,y) any point which is equidistant
from the line (directrix) whose equation is x = -3
and the point (focus) whose coordinates are (3,0). Let
Q be the point of intersection of the perpendicular
from P to the line x = -3, Then ?Ef is horizontal,
Q has coordinates (-3,y). Since P is equidistant
from F(3,0) and the line x = -3,
d(p,F) = da(p,Q)

\/f;-B)e + (y-0)2 =«/QX+3)2 + (y-y)2 ye

%2

- 6x + 9 + y2

x° + 6x + 9 (-3.4)
o -+ + L[ P(X,y)
yo o= 12x 19 SR

x=-3|

349
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(p) P = (x,y) directrix x = 4 F(-14,0)
-\ 2
Sr 2 (g -02 = Vlx-12+(y-v)
X% +8x + 16"+ y° -  x° -8 +16
y2 = - 16x
y 3
___P(X'y” b e - = —HQ (4,Y)'
F(-4,0) X
A
;

(c.) Sx - 0)2 + (y +5)% = «/(:t—X)2+(y-5)2

X2 +y2 420y +25 =  y° - 10y +25
2 = - 20y
| L1 e | |
Q(x,5) y =5
t
i
:
'.
P(X,Y) X
<1 ~
S
\‘
N
A)
035
F(JI iI)
3549
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(4) v/(x - 0)2 + (y - 6)2
2 2

il

2

Mix - )2 + (v +6)2

X" +ym - 12y +36 =  y© 4+ 12y + 36
x2 = 24y
y A il
F(0,6)
\‘
N\
\
A .
A\ P(x|)'_~
N
e LA >
N X
1
t
1
—'L
y=-6 |
Q(x,6)
T 1 1
2. (a) From the Equation 6-3a,
2
x = hey Y4 L]
The given equation, y=1
x2 o uy | e x’
FIOAIPN——
x° - b(-1)y /
. ... C = "'1 . 1{‘ .l
[ R T i !
F = (O,C) = (0,-—1)
directrix the line y = -c =1
351
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() %% =y (c)

From the Equation 6-3b
y2 = Bex

For y2=6x, c=_%

Hence, the focus F(-%,o)
and the directrix x = %

ya
ylu ’
A
FlO,1) r=(--§-.0)\\;]L
- P, x
ye-l X VAN
|
........ I
(@) %2 -6y (e) x =38
c = - % y2 =X
F = (0,- %): y = % c = %‘
F = ('):,II_:':O) X == ']Ii‘
T T T y l| !
YT y=3 || ) ]
T 1] . X ] F (,0)
[ FIO,-3) 1 - . | X
" .
x AN
|

352
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(£) x° +y =0 (g) 2x° - by = O
XE = -y 2X2 = 4y
2
c = - -I]f - X" =2y
1 1 ¢ =%
F(O,- ), ¥ =7 1
F(O,%—), y = - =)
Yy y=o
yA I
/1
N JEES
= > >
X <] -
-l y=—-—= X
|
ﬁ(oftl b’
-
' Y 4
(h) - 2
3 + U4y© =0 N
Myz = - 3X
P - \
cC = - —]% F(-'E.O)// i:
P (- 150, x =g AuEp
4

353
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3. Cross section of an automobile headlight reflector, crc:s
section of a radar antenna, trajectories of missiles, and
cables of a suspension bridge are a few examples which may be
mentioned. A chain or rope suspended from two supports appear
to be parabolas; however, these are catenaries whose equation

is
ax - ax
y =8 g e
4. Equation of Coordinates of
axis directrix vertex focus - |
(a) x=0 y=-3 (0,0) - (0,3)
(b) x=0 y = i (0,0) (0,-4)
(c) y=0 x=-5 (0,0) A (5:0)
(@ v=0 X =g (0,0) (- §0)
() y=0 x = (0,0) (- 0)
(£) =x=0" y=-7F (0,0) (0,%)
(a) (b)
: v |
A y=
1 fi0,3) 3 -
NS = ua
\\\ /r - |
X >
— =
y=-3 N A
| F(0,-4) =~
-
354
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(c)

(d)
y
y4
X=-5 s 2
waREE N
< re
F(5,00_* F=(-%:0) r'e
W
\ ,/,
/,
L]
\ -
(e) v () v
N\ '
< T N
b T N F(O,%)
N S X
- F(-570) X - | X
e Ny=-+_1
yd
, .
' L
.l

_After completing #1, #2, and #U4 in this set of exercises, the
student should be expected to have a general notion of how the

graph will appear before he starts to sketch it.

355
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P(x,y) satisfies y2 = 8x

adding - 4x to each member, -lx + y2 = - Ux + 8x
~Ux 4+ y2 = Ux
adding x2 + 4 to each member, x2 - Ux + 4 + y2 =
x2 4 bx + 4
2 2 2
which can be written as, (x - 2)° +¥° = (x + 2)

or as, (x - ‘2)2 + (y - 0)2 = (x + 2)2 + (v - Y)E

taking the square root %;2)2 + (y-0)2 = »\/(x+2)2‘ + (y-¥)°2

Since the left member gives the distance from the point (2,0)
and the right member gives the distance from the point (-2,¥),
the proof is complete.

(a)

(p) A=Y r® or r2‘=!',i,:-A ‘ A‘:-r
(e) rf = 1—]; A N /
.
¢ =i mumnnanna
Aot
Focus at (O,-lf—'f).» ;A_! f f
Directrix: A = - 'El'f’
(d) A =7 p° A = 63
a=m ()P 4(63) = w d°
A o %2 052 =W g°
ba = ™ a° ¥o-oe
22 - a
2 /252 = d
356"
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() x =+ ST (b) x

= - J7
y4 ya
/ \
X X
(c) v=+vX (d) v=- /%
y4 l y
e 4 X | X
1 1 ] ~
——+

No! Notice that every solution of Xx = + J¥ 1s a solution
of x2 = y, Notice also that the solution of X = =~ JY is

a solution of ,x2 = y. Now, every solution of x2 =y 1s a
solution of either x = - /y or x = + /¥, but not of both
(except (0,0}) + We can say that the graph of x2 =y 18 the
union of the graph of x = - ,/¥ and the graph of x = - /7.
In other words, we might say that the solution sgt of

x = + /¥ 1s a subset of the solution set of x~ =y. A
similar discussion can be given for the other parts of the
problem,

357
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8. (a) Vix-024(y-22 = /(% -%°+ (v - 0)2

x2+y2-4y+4 = ¥y

XV

) Vix-02+ (7 +22 = V(x-02 1 (y - 0)

x? + y2 + by + 4 = y2
X2 = by -y
yl\
y=0 o
X
/]

/ F(0:2) \

358
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(c) /(x - x)Z + (y +4)2 Vix - 02 4+ (y - 2)°

It

y2 +8y +16 = x2 + y2 - 4y + 4
12y + 12 = x°
x2 = 12y + 12
y
—4-F(0,2) ——
Sa. . 4P
yoa
5 : 2
@) ix-02+(y-3°2 = S(x-22+(y -0
x2 = x2—4x+’¥+y2
y2 = ll»x - 4

x=0

359
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n

(e) W(x +2)2 + (y-02 = /(x-024+ (y-y)?

x2 4 hx o+ ko4 y2 = x2
y2 = - 4x - 4
y“
™
(-20) N
X
=t o
,4T’ x

() AV (x+2)2 +(3-02 = V(x-1) + (v - 52

1l

x2 4+ 4+ b +y° = x2 - 2x + 1
vy = -6x-3
y“
\
)\ >
F(-20)]] X
/ -
x
360
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(&) /(x- 12+ (y-2)2 = /(x+2)2 4+ (y-7)°

X2 - 2x + 1 + (y - 2)2 = x2 44X + 4 +0
(v - 2)% = 6x - 3

or y2-4y= 6x - 1

y
b
— { F(1,2)

Xv

(h) V/(x -2)2 + (v + 1)2 = V(x- 12+ (3 - )?

x° - bx + 4 + (y + 1)2 = x% - 8x + 16
(v +1)% = - bx + 12
y?

- <
"
»

(2-1) X

f3£31
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Vix - x)2 + (v +3)2

Il

(1) V(x + 1)2 + (v - 2)°

(x + 1)2 R " ¥° + 6y + 9
(x +1)%2 = 10y +5
y\
F

N V

\\ //
X

y=-3

(D Vx-12+@F+2)2° = V(x-x24+ (v -2)°

(x - 1)2 + yQ + 4y + 4 = y2 - by + 4
(X— 1)2 = —8y
yl\
Y=2
P ~ v
F(i,-2)

362
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Vx - 23)2 + (3 - 0)

i

W (x- 2P (y - )P

x° - 2ax + a® = x2 - hax + 4a® + y2
y2 =  2ax - 3a°
y 1
/
,
7 Fl2ap) N
\ x |
HIRN
» N

i

DS (x-2)2+ (3 -932 = (x-2)2+ (y - a)

x° - 2ax + a? = x2 - uax.+ 4 + (y ~ a)2
(y - a)2 = 2ax - 3a° ‘
yk

A
/
F(2aa)
N X

o

I,I(

363
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9. (a) x% =14y - 16 . y4
(b) (4,8) and (-4,8) y-820
48 4,8)
(¢) The line whose equa- 'f*‘\ i 7

tion is y - 3 = O
does not intersect the
curve. The intersec-
tlion may be described
as the empty set, (g).

10. (a) y2 +2y -5x +11 = 0

1l

A
y2 42y +1=5x-11 +1 Ak

(y + 1)2

5x - 10

(v +1)2

Y

5(x - 2) X

V= (2:‘1) axls y = -1

V=(2"|)

x
1
>
=
+
P
n
e«
1

(o)

+

-
L

—
=
1
'_.I
-
n
|
o
1
—q

V= (1Q7) axis x =1 (1,7)

*v

364
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(e) 2y2 + 28y -~ x +101 =0

y2+14y+49=%—x-—1%l+2§- X
e+ =3x-3 L
(y +7)% =% (x - 3) ooy
' 3-7)
vV = (3,-7) axis v o= =T (
y A
(a) 3y2 - 24y - x + 47T =0
y=4
y2_8y+16=%-x-531+-l-‘3§- ha)
(v - 1% =3 (x + 1)
X
V= (-1,4) axis y =1
yl
(e) 140y° + 140y - 80x - 20 = O
y2+y+11r=-,17ix+%—+% T X5,
(r+ 32 =B+ B (SR N L
Ve B b was y--3
(£) l&azy2 + 8a3y - x + kat +a=0 a>o0
2 2 1 2 1 2
y- + 2ay + a~ = X - a° - + a
R A
(v +2)2 =Ly x - & — [x
ha ta (070} [(y=-a)
(v + a)% = g5(x - a) -
V= (a, - a) axls y = -a
[page 324]
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11. ° Latus Rectum is PS ,
Show that d(P,S) = 2-d(F,R) ol A o |
Select the coordinate axes “Ta by (a.b)
such that the x-axis passes /
through the vertex and the R o /7 F <
focus; the y-axis passes GO0} [ @00 "
through the vertex. Note the \
coordinates of the points - ; \
P,F,S, and Q on the drawing. f I f ;16%

d(o,F) = d(0,R) = la] by Definition 6 3a :

.*. d(F,R) =2 |a]

da(p,F) = d(P,Q) by Definition 6-3a.

da(p, Q) =2 |a|] = d4(F,R)

.*. d(p,F) = d(F, R)
But d(P,S) = 2.d4(P,F) by symmetric property of the parabola.
d(p,S) = 2.4(F,R) substitution.

This proof appears to be made for a particular parabola with
vertex at the origin and axis the x-axis. It 1s important to
emphasize to the student that the coordinate axes may always
be conveniéntly chosen. Some inquisitive student may want to
tackle the problem when the axes are not so convenlently
chosen, such as those in 6-3c.

12. (a) y2 =X ¢ = % F = (%,O) directrix x = - %

latus rectum é

1 1
- E) - F‘ =1
Note that the absolute value is used here since distance
is always positive

(b) x° = y ¢ = % F = (O,%) directrix | vy = - %
latus rectum 2(%) =1
(c) & (e) 6 e
(d) 12 (£) 3
366
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14,

15.

16.

359

d(P,s) = 4
Since d(p,s) = 2-d(F,R)
b =22 ¢
1=
.°. the equation is, yz =Ulx, ¢>0
* The equation is, y2 = - Ulx, ¢c<O
| A |
y y
al
n
—x /T X N T&?
Rcp) F(cP) ix Ftc,0 X
Ny L/ ?2)
¥

Refer to 6-3c in the text and,
F(h + ¢, k) = F(2, -3)

V(h,k) = v(1, -3)
.. the equation is,
(v +3)% = 4-1(x ~ 1)
(y +3)% = #(x - 1)

The equation may be found by using the Definition 6-3a.

Since the vertex of the parabola is at (0,0) and it is
symmetric with respect to the x-axis, the equation is,
y? = lex. Since the parabola passes through the point whose

coordinates are (-3,-2), they must{ satisfy ya = lex;

hence, (..2)2 = he(-7)
1
c=-3 _
1 2 4
The focus (-3,0); the equation y° = ~5X.

Notice that this problem is the same as Problem 15, except
that the axils s the y-axis. The equation is, x° = 4+ 2y

or Xx° = gy.
[page 324]
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17. With the vertex at the origin and the endpoints of the latus
rectum being at (4,8) and (4,-8), we know that the parabola -
1s symmetric with respect to the x-axis. Hence, the problem
i1s essentially the same as Problem 15. The equation is,

y2 = 16x.
18. d(p,P!) = 2.d4(F,R) = 8 Y
d(F,R) =4 i\ |
Since F(0,-2), then R(0,2) R
and the vertex of the parabola o T y
is V(0,0). The axis is the -~
y-axis. Hence, the equation /1."_1 \P'(‘h-?)
%2 = _ 8y I r(e4,-2) F(IO-.’Z‘)‘_F*

19. (a) a =2
(b) a = -___)2 Any point (xo’yo)’ x, # O.

X2+X+5

il

20. y

y-F

v(-3, %?), F(—%,S), directrix y = % [6-3c]

1

(x +£)°

‘(a) Replacing x by x - 2,

the equation becomes, ! 7
—_ = -
y = (x..z)2 + (x-2) + 5 ,,“!?;‘ -15 | ":::‘:Ll
1 2y2 [y T T
y -7 = (x-2%) ‘
T v S veE § el
1 —
v(Z,3), F(Z, 5), v=E
directzjix Yy = % R
| _E :
i t— ! Ll {7\
2 -] R
[page 325]
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(c) Replacing x by x +2 in y = x% 4 x + 5.
The equation is, ¥y - %? = (x + 5-)‘“’

v( "%‘: }‘1%') »  F( ’%‘: 5) 3 d’iré’.étrix V= %

(a) Replacing x by x-2 moves the graph of the parabola
two units to the right and replacing x by x + 2
moves the curve two units to the left. '

BN
BN

21. Choose the axes as shown, clet2 }yh
d(F,T) = £4(F,C) by property QtEY) MY foome
(<]
of right triangle. A :
. O
.d(F,1) = F(¥x107) = 2x107, N
|
d(C,F) = d(C,Q) . (-CQ) sun ‘ 60° ¢ N
4><107 = |_c| +c + 2><1o7 F(c,0) T X
7 . 7 2xi0’
ux10! = 2¢ + 2X10
107 =¢

22. d(P,p') =16, d{o,T) =8
da(p,T) =8, P(8,8)
.....The equatign of this para- ) AY P 8,8)
bola is y° = lUex. Since d

the parabola passes
through (8,8),
then 82 = Le(8)

c =2 0 E&ﬁo) T K4
.. 4(0,F) = 2
i\ :
Pl
369
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23. By éonvenient choice of the

: o
coordinate axis, the equa- VA 3
tion. of the parabola is, c———4200"° ‘g
2 N |
c = 2100 c 8 :
550) e = 17
.2 _ (2100)® © ¥ x
¢ - 5 v t?- 'IllLllllg_l_Llll MM EDTTIETEETNERIIRIEL
(equation of parabola)
The length of the first -
support is 6! L i

The length of the second
1
support is (6 + yl) .

The second support will meet the parabola at (1oo,y1)'

2 o |

. 2 _ (2100) 2 540 540
. (100)° = — ¥ y, = 100° - =

4 5540 1’ Y1 212.1002 YT

So, the léngth of the second suﬁport is,

540
To find the lengti: of the second support, proceed in a similar
manner, but using the coordinates of the point (200,y2).

Continue in this manner until the lengths of 22 supports are
obtained. (The length of the first and the last are known;
hence, there are only 20 left to compute. ). '

The measures are: '

= 02220 6=

(21) :

¥y = 12-%59-2 +6 = 7.2

21)

«
O .
1

=22, 5% __ L6 = 10,9
(21)°

>
o
|

2 0]
52 e 0 370
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By leaving in the above form, the students will observe the
pattern. Some may want to find the approximate answers;
however, this 1s not necessary in this problem.

6~4. The General Definition of the Conic

The emphasis in this section is on deriving equations of
'cohics from the definlition., We would like for the student to be
able to do thls in many cases for himself. The importance of the
value of e 1n determining the kind of conic should be stressed.
The actual graphing of the resulting equations, and finding coord-
inates of the vertex, focus, etc. wlill be covered more thoroughly
in the next two sections.

Exercises 6-4 - Answers

l. Since e <-1, (e =%), the cocaic is an ellipse.

Vix-22 4+ (y-02 =3 Vix-x2+ (v - 3)2
I (y-3)°

W

(X-2)2+y2 =9
ox® - 36x + 36 + 9y° = y° - 6y + 9

1

9x2 + 8y2 - 36x + 6y +27 =0

371
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2. (a) Hyperbola, since e = 2 e>1

2
() v/ (x =02 +(y-02=2/(x -2+ (v +2)°
x2 + y° ='% (y2 + by + 1)
4% 4 4y2 = 9y2 + 36y + 36

1x% . 5y° - 36y ~ 36 = 0

3. (a) Parabola, since e =1

it

Vix-12 s (y - v)@

x° - 8x + 16

(6) /(x +2)% + (v - 3)°
X%+ hx + b o+ (v - 3)?

(y - 3)°

L, (a) Hyperbola, since e = /2, e > 1,

n

- 12x + 12

(b) = 9%x° + 9y° + 78x + 73 = O
5. (a) Hyperbola, since e =2 /5, e > 1.

2

(b) -19x° + yo +22x - 6y +5 =0

6. (a) (x+2)2 + (y-3)2 = 24/(x-x)2 + (y+2)°
X2 +Ux + 4 4y° -6y +9 = 4(y2+4y+4)

x2 - 3y2 + Ux - 22y - 3 =0

B AL
_— F(2,3)
L\; j/
S~ POGY) >
X
y=-2
i Q(XQ"Z) [__
- T

[pages 331-332]
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(0) &/ (x-1)2+(y-1%=3hx-224(y-y)°

]
(x - 1) + (y - 1)% = §x - 2)°
x2—8x+1+y2-2y+1=%‘-(x2—4x+4)
bxZ- 8x + 4 + UyS- By + 4 = x° - bx + 4

3x° + 4y2 -kx -8y +4 =0
y

Yy

3 V1 27y

!;'

| L
X

32,

() V& -1Z 4 (v +2° =3/ (x - 22 + (v - B)°
(x - 1)2+(Y+2)2¥'252(Y—'§-)2
x° - 2x + 1 + y2 + 4y + U4 = %?(ye - %y + %5 )

4x2-8x+4+4y2+16y+16 =25y2—20y+4

4x° - Ely2 - 8x.+ 36y + 16 =0
yl\
\\ /'
_iy=%
- X

F(12)

! [
373
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(@) v/ (x + 1)2 & (3 +3)°

1

Vix - 02+ (y - 9)?

x2 +2x + 1+ (y+ 3)2 = x°
(v +3)2 = -2x -1
y4
X

(e) 5x° + 9y° - 5hx + 90y + 306 = O

LAY
" >
I T D et Bty o
wa _ N
C N
e (9,-5)
e N\ (3,-5) // _
374
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(a)

(b)

(c)

ellipse

hyperbola

ellipse

parabola

clircle

parabola

367

! yA
.
AR
/] X
L,
yh
™. L~ _
Ty / f
1
7
= T~
y4 |||
X
A
X
/ N
y4
SN
-1 |
X
L/
) A
| -
/
X
[page 332]
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2

Ax° + Cy° +F =0

Ax® + cy® = - F

sz + Cy2 = M, replacing -~ F by M.
When A*C > O

Case 1: M =0 Now, when M =0 and A and C have
the same signs, the graph of (ii) consists of
a single point (0,0).

Case 2: M #£ 0 © Hence, (ii) can be written as,

2 2
T g— = 1

M
R T

Now, when A and C have the same sign, then M must
have the same sign as A and C; (if M has the
opposite sign, there will be no real palrs (x,y) which'
satisfy the equation and consequently no graph), hence,
% and % willl have the same sign, and the graph will
be an ellipse.

When A-C € O

Case 1: M =0

When M =0 and A and C have opposite signs
(11) 1is factorable, and the graph consists of
two straight lines. This 1s called a degenhe™ate

conic.
Case 2: M # O Hence, (ii) can b= written as,
% XE XE_ |
5 -+ M = 1]
A C

Now, when A and C have opposite signs, %

and % wlll have opposite signs, and the graph

of the equation 1s a hyperbola.
376
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(c) When A:C =0

(11)

Case 1: M = 0
When either A or C is 0, the graph is
elther the x-axis or the y-axis. This‘is an-
other instance of the degenerate conic.

Case 2: M #£ 0
Suppose we choose A = 0, then (i1) becomes,

Cy" =M

M
vy =3

2 E oy /E

Hence, the graph of the equation is two 1lines
-parallel to the x-axis, provided % > 0. If

we choose € = 0, then the graph is two lines
parallel to the y-axis, provided % > 0. This

1s another instance of the degenerate conic.

Axe...nL”»Cy2 +Dx + Ey +F=0

Completing the square on x and on Yy,

D°C + E°A - LACF

D.,2 B2
Alx +g7)° + Cly +39)° = TRC
D°C + EPA - LACF _D -E |
et M = - = s, h = BR? k = lo) [h, k, and

M real numbers,;, then
A(x - h)2 + C(y - k)2 = M, where h, k, and M are real
numbers depending on the coefficients of (i).

When A°C > O

Case 1: M =20
With M =0 and A and C with the same sign,
the graph of (11) 4is the single point (h, k).

377 .
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Case 2: M #£ 0
Then (11) can be written,
2 2 )
(x - h) (v = k)= _
= + =1

A C

When A and C have the same sign, then M
must have the same sign as A and C; hence,

% and % will have the same sign, and the

graph will be an ellipse.
(b) When A:C <O

Case 1: M =0
With A and C haviing opposite signs and
M =0, (ii) 1is factorable..

[ VA (x - h) & VB (v - k)] = 0, hence, the-

grapp consists of two straight lines. This 1s
called a degenerate conilc.

Case 2: M #£ 0
Then (1i) can be written in the form,

2 2
_(Ll-\-l_hl_JrLy__p-rliL:l

A C
When A and C have opposite signé, then %
and M have opposite signs, and the graph will

o]
be a hyperbola.

(¢) When A<C =0 [either A or C 1Is 0]

Case 1: M =0 y
When A is O, then (ii) is, c(y - k)2 = 0
y = k, hence, the graph is a line k units
from the x-axls and parallel to it. When C
is 0, then the graph is a line h units from
the y-axis and parallel to 1t.
Tnis 1s another instance of a degenerate conic.
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Case 2: M # O
Suppose we choose A = 0, then (i) becomes

Cy2 + Dx + Ey + F = O completing the square on y
2
Ey2 D - UCF + E
(Y+§a) +6x=——-—££52——
2
_ E _ D _ = 4CF + E
tet k=-5p P=g M=— o

Hence, the equation, (y - k)2 +pX =m

The graph of this equation is a parabola.

In the case where A =C =0, (1) becomes,
Ix + Ey + F = 0, and its graph is a straight
line.

Note to Teacher: After completing these two exercises, one
might wish to use these to ldentify the
equations given in Problem 7. Others may
be found in the Supplementary Set.

*10, Ellipse, since e < 1, (e = %).

da =x7,zl" : d d
E d S
%;-2)2+ (v +1)2 =-32-ix—'—x‘ ' X-y [
2 fd
, 2
(x - 2)% + (y + 1)° = % CE—%-X) g;l) |
2 ‘ 2 _4x2-2x +r2) co v
X% - bx + 4 +y° 4+ 2y + 1_.9(__72J£;L_

2

x° - Ux + 4 4+ y2 + 2y + 1= %(x -2xy+y2)

9x2 - 36x + 36 + 9y2 + 18y + 9 = 2x° - Uxy + 2y
7x2 + Uxy + 7y2 - 36x + 18y + 45 =0

379
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84+ The circle and the Ellipse

The somewhat backwards introduction of the circle before the
Q111ipse was an expedient for reviewing the results about the circle
Which we derived in Chapter 2. The way in which the circle is a
lylting form of an ellipse 1s difficult to explain from the focus-
Qirectrix definitlon and it is only after we have the property that
the ellipse is the set of points the sum of whose distances from
tyo rixed points is constant, that this can be satisfactorily ex-
Ryz2ined. The fact is that as e approaches zero, the two focl con-
Ve¥Be tO the center and the directrices recede to infinity. The
Refieral definition a(F,p) = e-d(P,Q) then degenerates into the
\tatement r =0 ‘@ . This statement is really meaningful and
dpd in a sense true, but it certainly would be confusing to try to
pPlain to a high school student..

To'aid in solving the problems which ask for the coordinates
of the verteXx, center, focus, equations of the directrix and the
ey, 1t may be helpful to stress the relations between a, b, c,

and e. These are |
a2 = b2 + c2 ,lb = a4/1 - e2 , and c = ae

41580 a word about our use of 2a for the major axis 1is in order.
We developed the equation for the ellipse with the focus at the
polnt F(ae,0) and the directrix, the line x = %. The motivation

toF using the letter a for the abscissa of the vertex was that we
hs8 used this notation for the X-intercept for the straight line
ad we might as well call the X-intercept of the ellipse by the
s letter. However, once the notation is set that the major
a#ls has lenght 2a, 1t scemed inadvisable to change this if tre
PoCus was on the y-axls or at some other point in the plane. Con-
seQuently although our standard form may be

2-c;i-)-r—§'=].OI"E-C—:'-*-l§=l,

a b b a
q¢Pending on the position of the focus, 2a is always the length
of the major axis. With this agreement a 1s always greater than
oither b.or c¢. The major axis with length 2a 1s always great-
¢ 1n length than the minor axls of length 2b. Hence, 1f w2 see
" [page 333]
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the equation for an ellipse in standard form the greater of the

numbers under the squared terms is a°,

Exercises 6-~5. -~ Answers

2

1, (a) (x-n)%+ (y -k)° =1r® by 6-52
h=0,k=0,r=3 ' _
S (x - O)2 + (y - O)2 = 32 by replacing h, k and r.
%%+ 3% =9 ‘
(b)) (x - O)2 + (y - 2)2 =9 i y 4 Lo
% P
ey oy -5=0 DaaERS UM ,
() (x-2)%+3"=09 A Ose
x° +y2 - bx -5 =0 YARV4 N1
° 5 AL L
(@) (x-3)"+((+1)"=9 . TINIIT .
x2 - 6x + y2 2y +1 =0 E} Y A //d.
Te) (x+1)%+(y-2%=09 L LEIN T LA
x° + 2% % yz - by -4 =0

2. Solutlions of this kind of problem depend solely on transform-
ing the equation of the circle to the form

(x - h)2 + (y - k)2 = r°,

This 1s done merely by completing the square in both x and y.

Center Rad

(a) (0,0) 5

(b) (2,-3) 3

(c) (-56) /5
(d) (0,-5) VI ooor ‘/53———1—

(e) (-4,0) 2

| ’ -

(£) (5,0) 331 7

(g) (3,4) 4
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(h) (1,-2) T
(1) (2,~3) . W1k
(3) (1,6) 5
1 J B2
(k) (3~ %) 2
(4) (-2, 2) 3
Sample solutions for,
(@) 3x® +3(y +5)2 =7
(x + 02+ (y+5)% =1
n=o k=-5 =1
Center (h,k) = (0,-5) radius = VC%i-
(J) 3x2 + 3y° - 6x - 36y + 36 = 6
x4y L2 - 12y +12=0
(x2 -2 )+ (¥ -1lzy ) =-12
(x2 - 2x + 1) + (y2 - 12y +36) = - 12 + 1 + 36
(x - 12+ (y-6)°=25

h=1 k=06, r? = 25

Center (1,6) Radius 5.

332
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3.
coordinates of Length of Equation of
a b c vertices Foci e Major |Minor | i actrix
axis Qaxis

o | 4 3 |VT | (xa,00 | (£4/7,00 | L 8 6 x='6;(7
b 4 2 [2/3] (0, £4) (0,t2./3) ‘/T? 8 4 y= 35/3
¢c| 5 | 3| «|(xs,00 |(xa,00| & |10 | 6 x= 2>
d | s 2 | V21| (0,£5) | (0,£/2T) ‘¢%} Xe) 4 yuggﬁéz[
e | 3 2 | /5 | (£3,0) | (£/5,0) Yé} 6 4 x=2 %??
f |5+/2| 5 | 5 | (0,25/2)] (0,£5) ’%Z 0/2! 10 | y=10
gl s I | /35| (0,£6) | (0,%./35) {65 12 2 y 285680
h eV | VB | VZ | (t2/70)| 4VE.0) | 5 |4vE |2VE | x=a/F
i [2V/F |VE /B | (x2/30)| &vB,0| L |ayT 27 | x-8L0
i |2vE| V2 | /B | (0k2v3)| (0.t/10) YO |4y3 |2v7 | y-0Y0

6 |2 6 | (+.5 /6 1 a./3 . 3./6
G (B et | o] 3 [vE [ SE] 35

In order to solve tne ellipse completely, first transform to
the form 2 2

The larger denominator will always be a® and its numerator will

indicate which axis 1s parallel to the major axis of the ellipse.

Since a2 = b + 02, ¢ 1s readily found, e = % to glve e, and

length of the major axis 1s 2a and length of the minor axis is
2b,

383
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Exariple solution for,

(&)

y2 = 36(1 - x°)
y2 = 36 - 36x2
36x2 + y2 = 36
<2 2
vy =1
a = V36 = 6
p=+1 =1

Major axis|| y-axis
Center at (0,0)

Vertices (0,#6) and (+1,0)

2 - a2 - p° =36 -1
c= V35
Foei (0,+ v 35)
e.—_-ci
a
oo B
Directrix y = Eg
e
%2
_36_+ 35
y =
55
[page 338]
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, c =ae =1 — i ('O,Qﬁ. j j
p° =a? - c® =25 -1=24 ' N |
"2 2 4 ™
e thr =1 //ﬁ \\
F(1,0); F'(-1,0) ' (-5,0) F-,0) | F(1,0) Y (5.0)
\
Directrix x = Sx = ~%—— or x = 25 ,
-e—g 100 \\\ ///
S N 7
b =+24 =2 V6 K
. (0-2/6
(b) a=5 e = .4

ae = 5x.4 =2

n
n
Q
oo
(o]
~r—

b =a° - ¢ =25 - 4 =21 1 vE
2 2 - S
X N
75 + %I =1 4 ’ N
‘ / - \
F(2,0); F1(-2,0) [ F?-Z,C) F(2,0) | )
| 5 {-50] /its,0)
. e 2 _ 200 _ 2 h
Directrix; x = A = s~ 15 = 52 \\ //
€ T00 N\ /
\\ 4
w'u-‘\/lz'l
(C) a = 5 e = .6
c =ae = 5.6 =3
2 2 2 (0,4)
b% = a% - ¢” =25 -9=16
2 .2 /
X
=" %6 - (-5,0) /F'( 3g) F(3,0) | \ (5,0)
F(3,0); F!'(-3,0) ' -3, 3,0 \
"Directrix x = -:-é- = I%% = ggo
(0,-4)
x = 22 385
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(d) a=5 e = .8
c = ae = 5%,8 = 4
b2 = a2 -¢° = 25 - 16 = 9 (0,3)
g2 P .
%
75+ %’ =1 719944)) F(4,0)\\
. (-5,0) 1667
F(4,0); F'(-4,0) " | N %
c 4 400 L, d
Directrix x = ;§ = 51~ = "B T0.3)
T00

b2 = a2 - 02 =25 - 4 =21
XE+2'=1
25 T 21
(b) b=2, a="U

5%
+

RS
1
i_l

e =7- 224t
c =ae =7 3 =3
2 _ 196 _ 441 - 196 _ 245
pm =49 - = = 9 -9

[page 338]




(e)

(£)

o
Hi
3
(]
n
o~

= U
= 2
2 2
I+ %T =1
c =6 e=§-
¢c = ae :
6=a.%
a =28
b2 = a2 _ o2
b2 = 64 - 36 = 28
2 2
tr + &g =1

a = % ;3 a = 1lOe
8

10e=-e-
e = 2/5

5
a=10'.2—5*/-5= ll“\/g
b =a 1-82=4
2 2
X
‘86-*-%6=1

387
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()

(a)

(b)

f

2 2 -
X by~ _

5+ - 1
As d(F,F') approaches O, ae approaches 0. Since
the sum of the distances from F(ae,0) and F'(ae,0) to
any point on the ellipse 1is constant and equal to 2a,
then a 1is constant. So, as ae approaches O and

with a a constant, then e must approach 0. Now,
when e 1is very close to 0, then
2 2
P =a 1 - e2 is very close to a. So, §§ + I§ = 1
2 2 2 a” b
becomes x° + y< = a“, a circle with center,

c(0,0) and radius a.

As d(F,F') approaches 2a, ae approaches a. Hence,

e approaches 1. Consequently, b = a 1 - e2 approach-
’ 2
es O. Since, Xg has no meaning when b = 0, we look
b .

at 5; + 1; =1 in this form,
a b
p2x2 + a2y2 = 222
Ox2 + a2y2 = a2 0
y2 =0
y =0

Hence, the ellipse approaches a 1line segment of length
2a, 1its major axis.

338

Ipage 339]



381

T, Glven,
Ellipse, center: (0,0) ' y \(0|b|)
Length of % minor axis is b B Ul
1 ] > ™
Length of 5 major axis is a (/ \di \\
\ X
T : d = >
o Prove (P,F) = a | \ FicO Jvia.0)
Proof: N //
T~ ]
a(e,F) = V(b - 0)2 + (0 - ¢)?
= b2 + 02
For the ellipse
b=aa1- e2
b2 = a2 - a2e2
since c = ae
b2 - a2*‘_?1f%2
or a.2 = b2 + c.2
or a = b2 + 02 .
Therefore d(P,F) = a ‘
2 2
X
8. Given Ip + {—é- =1
2 2
. 2 x 192 - 12x
Then, y~ = 12(1 - 3¢) = 122 12X
By the distance formula, | I/_J_ B
Y1 0,/72
(1) d4(p,F) = «/(x-e)2 + y2 / A | -
: : Pix,y) -
e D /%\ !
(11) a(e,F) = +/(x + 224 ¥® L L=
a » {
Since P(x,y) must be on the ﬂ_ﬂ( F'(-2,0) F( .0)/ (40) ?
ellipse whose equation is A
2 .2 . <]
’FIB. + %g = 1, replace y2 in (1) +— V?\-f\/il—‘

2
and (11) with 59-2—-1-62"—,

- 339
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a(p,F) =\/[ix -'é)z + lﬁgig—lgﬁg =\/ffi_:_§3§-= §—§—5, since
%1 </ (- B =4 - % and not |
d(P,F1) =\/?x +2)2 4 123—565353 =\/r§§i:7:;§_= Xy

- b,

v £

8-x , x+8_16_g

.*. d4(p,F) + d(P,F!) = 5 + =5 = % Q.E.D
<2 2
*9. Given Zy + L5 =1 F(e,0); Fi(-c,0)
a b
Show that d4(P,F) + d(P,F!') = 2a
2 2
(1) a(B,F) =+/(x - ¢)% +y
(11) a(B,F") =/(x + c)? + 5
2 2
- From the equation of the ellipse, y2 = b2(1 - -xa—) = 9.2.(32 - x2)
a

b2, 2 .2 2.
Replacing —x(a” - x°) for y° in (1) and (ii)
a

_4(p,F) =‘V/4x - ¢)? + E;
/;ﬁ )2 + 2o(a? | 22)
. a

i

d(p,F!)

but b = a /1 - e°

N 2y, 2 .2
Hence, d(P,F) = \/; c)2A+ a’(1l - e %La - x7)
: a
2 2 2 2
a(e,51) = o v 0)? + 0= )" = )
) : a
d(p,F) = \/;2 - 2cx +c2 + a° - x2 - afe® + e°x°
d(p,F!) = ﬁz + 2cx +¢° +a® - x° - a%® 4 e%%°

3990
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But ¢ = ae

383

d(p,F) ='v/x2f 2aex + a2e2 + a2 - x2 - a2e2 + e2x2

a(p,F') =‘V/;2'+~2aex + a2e2 + a2 - x2 - a2e2 + e2x2

d(p,F) =«/[;2 - 2aex + %% -

)

)

i

d(p,r!
~ Then d(p,F)
, d(p,F!
. d(P,F) + d(B,F')
10. ae =1 and %
... e=%
Use 6 - U4

d(p,F)= e-d(P,Q)

Vx-02 4 (y - 12 =3V (x - 02+ (v - )P -/
2 +y% -2y +1=¢ (y° - 8y + 16)

4x? + by

4x2 + 3y
2 2

%T + %r =

11, Use a

1

8y + 4 = y° - 8y + 16

12

='\/a2 + 2aex + e2x2
= (a - ex)

a + ex

i

a - ex'¥mé + ex = 2a. Q.E.D,

i

Eloyd L]
= Q(x,4)

y= 4
—

F(o,1)

—t

>* v

L

similar procedure to that used in Problem 9. The equa-

2

2 .
tion for these conditions 1is %7 + %~ =1, This equation may

)

obtained from that in1Prob1em 9 by merelj interchangling the
coordlnate axes. '

391
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12. Use 6 - 4, ILet a®(l - e?) = b°
a(P,F) = e-d(P,Q)

V(x - 02+ (y - ae)?

i

e/ (x - %)% +y - 2)2

2
2 2 22 2 2 a
x5 + y© - 2aey + a"e® = e° (y -2%T+7;)
& e
x2 + y2 - 2aey + a2e2 =‘82Y2 - 2aey + 32
2 242 24 2
X" + (1 -¢e = (1 - e )a
( )y© = ( ) ax )
2 2
‘xg +(1-e2)y=1
(1 - e%)a? (1 - e9)a” P(X,y)
S ' 2 L
since 1 - e2 = Eg : F(O,qe)
N .
2 2
b a
—* a
2
2 2
x .
+ e =1
iy o

2a 18 still the major axis (the axis containing the focus) and
2b 1s called the minor axis.

392
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*#13, d(P,F) ='e-d(P,Q)

Vix - (hte))? + (y-k)? = e./[x - (hi@)]e + (v-y)2
(x - (h0) 1%+ (y-K)% = e®lx-(nep) 1
e

(x-n)2(1-€®) + (y-k)% = Sp(1-e

Pix,y) c
2) _ /-Y—_<,o(h+?»y)

thk)  F(h+ok)

.2
Let s = 3% and b°
e

]
)
n
Cannd
'_.I
'
[0

\ 4

A follow-up of this problem for
the better student would be to

suggest finding the equation of x=h+£%
the ellipse if the coordinates of ¢

the focus are (h,k+c) and the

equation of the directrix is

y=k+22'o
. e

14. (a) Find the coordinates of
the midpoint of segment VV',
M(vv') = (1,2), the center of the ellipse.

% major axis = a = 5-1 = U

4 Length of segment from center to focus

= ¢ = ll- -1 = 3 y“
.2 2 2
bP™ = a" -c¢ “W-3,2] (1,2) V(5,2)
. b2 _ 42 _ 32 -7
° e F4,2)
Hence, the equation, o

2 2
| -(55-61-)—+11:f—2-)— =1 Problem 12. l

393
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(b)

(a)

(e)

Coordinates of center (4,1)
c=3-1=2
c = ae

2 = a-%s a =26

2 2
(x - 1)° | (y - 1)
37 + 36 = 1

Coordinates of center (-5,2)
a=3-2=1

c = ae = 1°

2 _5
b =3

2 2 2 2
Qc_+_21+mi_e)_=1 or;@lx_;é_LJr,LLi_EL_:l

W
uino

5
9

Coordinates of center (-2,-1)
a=5 and b =3

2 2
+ 2 + 1) _

Coordinates of center (_3,-%)

(o] ‘= 6; b = %; ‘az = _2_22 . - ‘
1.2 . 1
2 (y +%) 2 Ky + %)
X + 3) 2 _ b(x + 2/
( %5~ t I =t oF 55—t —TIT -~ 1

Coordinates of center (-5,-3)
a="7T;¢c=5; b2 = 2l

2 2
X +5 (y +3)° _
( 9 s ekl

394
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*(8) a=3 _C_2=7 c =3% h=20 k =2
e
x =h+3
e
%=1
e
e=%
c = J%e = %
b2=a2—02=9-%
b = 610
7 x2 o 2
Equation = §-+£Lg—o——L=l
7o

*(h) Given h [k can be any real number

< 4],
c
Then c¢ = U ;2 =_5

I
N
o
n
g
(0]
~
I
(@]

5='l£'2

e

e2=—;-

e =2Y5
5

c = ae

4= a.g_ggii

- 20 = 2J5
2 /5

2 2 2

2 2 This gives a famlly of ellipses
X - + ]% =1
with every assigmrent of k.

[page 340]
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*(1) I. Assume axis || the x-axis and h = 0, k =2 then
c =5 e=%—

c = ae

5

oo
noon
oot
nooe
Q v .
o |
e}
1
o
n
V)
1
N
§:

‘ §;5-+ ixE%ﬁglE =1

This gives a family of éllipses according to the
value of h.

II.  Assume axis|| the y-axis and k = O,h = -5

c =2 e=%—

c = ae
2 = a*F

a = 10
b2 = a° - ¢ =100 - 4 = 96
X + _
X—Tﬁﬁil‘ Xt’
This gives a family of ellipses according to the
value of k.

-

15. (a) Coordinates of the center (h,k) are (3,5); a =5;
b = 3;

I
=

c =ae; 4 =D5e; e —‘5, eccentricity

< (Esg. 7;, directrix

”
]
=3
+
no
]

F(h + c,k) = (3 + 1,5) = (7 5), coordinates of the focus

V. (h + a,k) and (h - a k) = (8,5) and (-2,5) coordinates

- vertiées.
. ‘ [page 341]

396




389

For problems beginning with (c), change each to the form,

2 2
(x 5 h) + (v 5 k)® _ 1. The results are in the table.

a b
Coordinates of Eguation of | Treentrtaity
Vertices Focus Directrix
(a) (8:5)(-2,5) |  (T,5) x=3 z
() (-2,5)(-2,-3)| (-2,1+v/7) |y =1+ M 4
() (1,0)(-7,0) | (-3+2 ¥/3,0) |x = -3 + .8_3/_3 /5
2
(@) (3,0)(3,-8) | (3,-b+ v7F) |y =-b+38XLT ST
(e) (2,2)(-4,2) | (-1 + +/5,2) |x = -1+ _2%2_ 5
(a) (bz_yLLJwJ .
y t !(3!)' n ! Jl' —p g =1
1 (38 Ly 3 t
AT T b1 //;(;2.\5)
I 1A X ! " L
[N GER) -L F(75) \ [} ;"Z‘I"‘f?
B (35) A(8,5) -
NC : P4l esnd Ll .,}.“-_”“_,
N ' — ! = T
B s N 27
= t NP
(-2,3)

397
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(c) | (a)
N4
A T 1= —y-::?—.-"4—7--:
; x._3l+l~ 3 | f
('3|2) ‘% - (3'0)
NP EunEe N AN
O a2 /300 3p) [N(,O) 7/ ’(3[‘.‘,‘7( 7
T ! X . \
— ol b {0.-4 -
_, ] 3+2/30) oot 3r4)
-3 )
(3-4-/7
I TINLY
'l (3|.-8)
(e)
Bl
-5, 2 [et/82) T
420\ (;@) J2,2)]_
NS =l
L0 i
“y
16. Foci: (0,4000), (0,-4000)
Center: (0,0) -3.4) 7
¢ = 4000, b = 4200. - 47;-~-- f

—

2 g &
—
2 2 4

a2 = (4200)2 + (4000)2 = 3364 « 100 "

2

2
X -
m— + 3—3'%1r = 10000
When x = 0, y = 100 +/3364 & 5800
.*. satellite wlll be 1800 miles above North Pole.

398
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17. Equation of the curve 1s

2 2
X
- i =1
2 2
st x=8, Zr=1-%:v-8v5
_ 2 2 16
at x—u,%ﬁ—l—ﬁu,y——?«/S

/ - [ (‘2'0) .

@,0) (80)

*18. Let (X, ¥) be coordinates of one of the vertices of the
square. Since ellipse 1s symmetric with respect to both
axes and the origin, then 2X = 2y = length of side of the
square. Hence, %2 = ie and from the equation of the ellipse

5% = 80 or X = + 4 =7y. Required coordinates are
(24, 24).

' 6~6. The Hyperbola.

In this section we develop the detalls of the graph of the
hyperbola in much the same way that we did in the previous section
for the ellipse., The new complication here 1is asymptotes. Students
should be encouraged to use the asymptotes to get a qulck accurate
.sketch of the curve. The proof that the diagonals of the rectangle
mentioned in this section are actually asymptotes 1is hinted at but
not carried out in detall. The proof involves limlts and is best
discussed informally at this point. The relation between the con-~

stants 1n thls case are

a2 + b2 = 02 c = ae and |b = a /e - 1

[page 342]
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Again the same sort of discussion about the notation for the
constants a and b 1s relevant. The notation was devised in
the beginning so that a 1is the x-intercept. However, 1f we
allow the focus to be on the y-axis, we still let 2a be the
length of the transverse axis (the segment Joining the vertices)
in spite of the fact that this forces us to wrlte the equatlon

2 2
XE - Eg =1 and a 18 no longer the x-intercept (in fact the
a b
curve doesn't have one). The equation for the more general posi-
tion for the hyperbola - .1+ to the exercises.

when the chapter 1i: wpiketeu, 1t 18 to be hoped that the
student can quickly identify a conic by looking at its equation
(provided the xy term is missing) and that he can also draw a
good sketch of any of these curves quickly.

Exercises 6-6. Answers

1. (a) y = %x and ¥y = - %x (c)
(b) (3,0) (-3,0) 1
\\ ,/
~ /]
\BRNZaN N
P NES
A N
2. 3xy = 36 y 4
(a) x=0 y=0 (c) ' ‘
(b) (2. ‘\/—_p 2 ﬂ/_3)("2 */-3:"2 \/—3) \\
| (
‘\; 11
4090
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(c)
(a)
(e)

(£)

ERIC

Full Tt Provided by ERIC.

393

Coordinates Of Equation Of Eccen-
Vertices Focus Directrix | Asymptotes tricity
(1,0)3(-4,0) | (VTL,0) | x = BYE |y -5y | B
(5,0)5(-5,0) | (VIL,0) | x - Bk |y _ by B | LA
(6,0)5(-6,0) | (6+/2,0) | x =342 v = X,y=-x Ve
(0,6);(0,-6) | (0,6v2) |y =32 £ = 7ox = -y /3
(0,3)5(0,-3) | (0,v7) |y =242 |2 - %« /2

2= - %2y
(2v/3,0); (v/21,0) |x _37_@ y=~_~§z, LT
(-2+/3,0) , ﬁ_@
401
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(a) (b)
i Lo ya ! i
i y y
\\ / A\ A, .
N7 RS T
N[V ANEEY
s ,><\ X
/r \\ ] // \\
yd A Vi N
/ N\
(e) ) (a)
A N y
/
\
\
\ /T
2 >
/ \
/ \
A N
7 A
(e) (£)
y ) yA |
- = N
o N
‘\\ // > . \ 1 S
=t / X
1/, \\\ /, \
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x2 2
4, Given the hyperbola T - %r = 1

Where a =1, b = 2; b™ = a

F(+/5,0) and F'(-y/5,0) e =5
Naene) - amp) | <V (x +v B2 452 - V(x /B2 4 7|
(éince 'y2 = l&(x2 - 1))
R o Br 45+ uxP -k - AP - 2B 45+ x -
=| 5x° + 2./5x + 1 - \/gxe - 2/5x + ll

Note:
<;Since X 1in Quadrant I is greater than lj>

5x% - 2v/5x +1 <|V/Bx - 1| = V/Bx - 1
=| ¢Bx +1) - (VBx - 1)

-1 2|

= 2

403
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A |d(F',P) - d(F,P)

2|=‘ ;\/(x+ae)2 +y2 - «/(x- ae)2 +y2‘
Since y- = % (52- - 1)
a

2 2
="\/;c+ae)2+%x2-b2-ﬁ-ae)2+%x2-b2‘
a a

2 2 ’ 2.2 . A
=| ﬁ—;—b— x° + 2aex + a%e? - b2 -\/9—-5-"— x° - 2z.n 4 P
a .

a
=‘ .\Azxz + 2aex + a2 - ﬂxe - 2aex + a2 |
=‘ A/ (ex +.a)2 - Af(ex - a)zl

(«/‘(ex +a)2 = ex-a Since |x| >a and e >1)

=| (ex +a) - (ex - a)|
= ‘ 2a |
= 2a
(2) |a(@r) - a(e,F)| =ea
2a =6
a =23
a® = 9
c =4 b2 = a%(e? - 1)
c = ae b2=9(-1§6-_1)
I} = 3e -
. . &
3 b2 = 7
.
(5) %E ) 5; o1 4.0‘.4
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7. a(F,P) = 24(p,Q)

Mx)® 4 (v - 2)

i

2 /(x - %)% + (v - )°

ey by b =uGE oy )

x° + Jg -4y + 4 = Hya - by + 1 Yyt | bl

‘ (0,2) (x x.i

x2 - 3y% =3 ‘ I
%3 2 L

-==1 \Q'(XI:J'-) .
2 N
ST
8. d(EP) = ed(P,Q)

Vix 202 4+ (y - ae)®

2
%2 = ya - 2aey + afe® ea(y2 -2 -Z'-y + ?‘-é)
e

e /(x-x)2+ (v - B®

i

;ca + ya - 2aey + aae2 = eay2 - 2ae_y + a2
K2 R 4 42 o _a2e2 ., 2
aae2 - a2 = ya(e2 -1) - x2
a®(e? - 1) = ¥2(e? - 1) - #F
1 = -
a a“(e” - 1)
let b° = aa(e2 - 1) 5 o
X
22
405
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9. (a) F(48,0); c = 8; vertir f15,0); a =5
c = ae b’ @ - l)
2 o4 .
2 = 5e bo = 25(—2-5~ - 1)
z=e be = 25(%%)
b2 = 39
2 2
x ——
75 -5 - 1
(b) vertices (+3,0) a = 3;
distance between focl equal to 8 ¢ =4
c = ae be = a2(e2 - 1)
y = 3e b2 = 9 (%6— - l)
L o
3 ° b = 9(%)
b2 = 7
2 2
x ——
S ol
(c) vertices (43,0) e =2
a=>53
b2 = a2(e2 - 1)
b? = 9(4 - 1) o o
2 ' XL =1
b" = 27 9 T
(d) directrix x =2 vertex (4,0)
%-: 2 a = 4
e
c = ae .
2 2
g—=2 c = le S = a%(e® - 1)
c = 4.2 b2 =16(4 - 1)
2=ce C = 8 b2 - 48
2 2
x
s-fg=1
[page 350]
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_(e)'F('r,O) e =3

c =17

c = ae

7 =3a

21

a=—,_T—

b2 = a®(e? - 1)

2 441,16

0% = (5 - )

2 4417 2 - 2
A o

2 l +
b" = 352

(£) y =13 vertex (2,0)

y = iﬁ* a =2

b
a =2

b 2 .2

= X

7 T - %6 =1
b =6

(g) 3 +2y =0 and 3x -2y =0 ' F = (0,3)
Since the asymptotes are given by ¥y = + gx ’
we have b

o o o)
i
I+
nww noj e

Hence a = £ and b = 2~ and the required equation is
Y13 12 '
£
1~ 36
I3 13
[page 350]
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10. Equation of Asymptotes Coordinates of Vertlces
(2) y=-1%x (+ 2,0)
(b) y =% 2x (+ 1,0)
2
(¢) v =1+ 3x (+ 3,0)
1 .
() v = s X (_‘_*'_ 2,0) )
(e) vy =43x (+ 1,0)
(f) coordinate axes, x = 0, (2,2), (-2,-2)
y=0
(g) v =4#23x (0,+ 3)
(h) X = O, y = O . (1’1)’ (-1,-1)
(1) x=0,y=0 (-2,2), (2,-2)

(5) vy=2%x, y=-2+10 (4,5), (0,5)

11. (a) y =4/36 + x° '

y can not be less than O.

408
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(5) y=-+v36 - x

¥y cannot be greater than O.

401

yA
x’
— ]
: L~
(¢) x =4/36 + y°
X cannot be less than O, N
_ y
/
/
[
X>
v \\
N\
(d) X = = af 36 + Yy
X cannot be greater than O,
See Problem 7, Exerclses 6-3 Answers
| y 4
\
A\
X
/
/

[page 350]
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12,

15.
14,

15.

Since asymptotes given by 3x - 5y = 0 and 3x + 5y =0,
then they are also given by (3x - 5y)(3x + 5y) = 0, or

9x2 - 25y2 = 0. Reversing the procedure used to find the
asymptote equations gives the hyperbola equation as

9x2 -'25y2 = k, where k 1is the right member constant. But

the hyperbola passes through the point -f (2,3) SO by use
of the locus property 9(2)2 - 25(3)2 =k and k 1s fourd

to be ~189. .Hence, the required equation 1s 9x2 - 25y2 =
-189,

9x° - 25y° = 200.

16x° - y2 = -4, [Sketch; hyperbola with center (0,0),
asymptotes y = + Ux, vertices (0, + 2)].

\ v4 |
/
\

/
A
/1\
/N
A\

xw

[ \
16x° - y2 = 64, [Sketch; hyperbola with center (0,0),
asymptotes y = + 4x, vertices (+ 2,0)].

\iyp 1/
/

/*/
[e—

<y

-
e

i
I ) 1\
[page 351}
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*16,
A
y —o|
[+
+
P(x,y) |*
/ mh+%-‘()
/
C I:lﬂ,k) F(h'i'ﬂ_trﬂ)
¢ f
d(Fr,P) = ed(P,Q)

V(= - (n +2e))2 + (v - k)2

.((x - h) - ae)2 + (y - k)2

]

2

(x-h)? - 2ae(x-h) + a%2 4 (y-k)2

e/ (x - (h + 2T 4 (v - 9

e? ((x - h) +-2—)2

]

(x--h)2 - 2ae{x-h) + a%e? + (y-k)2 = e2(Jc-h)2 - 2ae(x-h) + a?

a%e? _ a° = e2‘(x-h)2 - (x-—h)2 - (y-—k)2
a®(e?-1) = (x-0)%(e® - 1) - (y-k)?

1 _(xzh)?  (y.x)2

a® a2(e2-1) -
b2 = a®(e® - 1)
- {x-h 2 - -k 2
411
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2
e <(x--h)2 - 2-2-(x-~h) + 2‘-2- ) c
o .




~r
W
+
ke
]
]
3
n
]
[

18, h=3 k=214 ae = 24/2 ?e-= 2

- J2ef _2J“' . e=+2 and a=2

b—aﬁ —2/_——

(x - 3)2 - w2

AL
NN\

412
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19,

Vertices

[ § [ == § |

Center Pocus Directrix Asymptotes
(8) | (-2,5) (LE)5,5) | (-24/3,5) | x= w2t 3(y-5)=ie(x+2)£’.
V13 )
(b) | (1,4 (1,0)(1,8) (LUAT) | = 4+Ji_g y - b= h(x-1) 4
(@] | oo 0 e g |
(A) | (3,72) |(34%6,-2)(3-v6,-2)| (34415,-2) | 'x=3 ?-g-_-f (y+2)=¢3<x~3)£2
e ) | 00 | ewEY | xe2l |ysegen |
® ‘1
{é(f) (1,-3) (4,-3)(-2,-3) | (1+342,-3) x=1+§~/_ yrd=4(x-1) |V
B B2 | 0B | ) | e $ byl | 5
Wy | Ped [eefd il |milead |4
W] Ep) | GO | R xee T 3(y.1)=i2(x+,§,)£§
A(§) | Degenerate contec consisting of two lines 2x - hy = -13 and 2% + Gy = -3 -
ERIC 413
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22.

23.

*2h,

(a) xy=k; y=5 == % so k =8
- | A !
(®) xy~8 sy=3% z=2 PRI
j C N\
,‘;\x
' \\-
| X
IR = k — %
20.15 = k I(50) = 300 ‘ X
.K=300 I=6
_ K _ T
3 = §5 y = ‘I?'
K = 75
Ms2 = K M(4,200)2 = 800,000,000
50(4000)? = K . _ 89{9.,000,000
50(16,000,000) = K _ 45’:35 ’
800,000,000 = = K )

Suppose that the dilstance G ‘
from the gun to the target OGun d T Target
is d feet. The speed of
the bullet 1s a feet per
second and the speed of
sound is b feet per second.
P is the point where the P
report of the gun and the sound Person
of the bullet hitting the
target are heard simultaneously.

414
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d 8 t
Then P
d_t _ s _¢t-s
a ‘b~ b Tt
Since % is constant, the: ng constant. Hence, ¢t -

is constant. The person wil:} Lig:li -2n one branch of an

hyperbola whose focli are the g ‘nd the guzm.
Exercises 6-7 Supplementary Exe~ =03, - Answers
1. (a) 3y -2x - 15 =0 ?: v intercept + 5
3y = 2x + 15 Z Intercept = - 1
y=—32-X+5
3°0 - 2x - 15 =0
-2x + 15 =0

x-intercept = value of % wren y = 0 = - Y-intercept

m
m y=inter:snt X~intercept
20

(v) - % 10 2
(c) + % 4 - %
(d) not defined every rez. Timber 0
(e) % -2 6
(f) 0 5 none
(g) - —g— 3 %

8 4
(n) 5= 3 - %

415
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2, y=mx +Db (6,0) and (0,—%)
O =mb +D
- % = Qem+ b
O=6m-g-
- 2
m=1iz
3. y=mx +D ('1:"5) and (%: -5)
Since ordinate is -5 for both points, line is y = -5.
4, (a) y=3x+2
(b) y=-x +1U
(¢) v =2x-3
5. " (a) (b) (e)
' slope y-intercept directlon
1. + 1 + 6 rise
2. + 3 0 rise
3, +..§. - b rise
L, + % 0 - rise
5. —% +2 Sink

(d) Steepest line is # 2
(e) Slope of 1 1s +1 Intercept of 3 1is - L

y=x -4
6., y=3x+Db
3 =3(-2) +D
b =G
y=3x+9

416
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7. y = 5X+D
2

-2_—563’!-13}_‘

b=-2+5=-~

.2}

ye=-5 -3

8. A(5,10) B(10,-7.

AB 10 = 5m + b
- 7:10m+b
17 = -5m
m=-—157-

10 = 5(- 30) + b
b =27

AC 10 = 5m + b
-5 =-5m + D
5 = 2b
b =2
10 = 5m + £
5m = %?
m=%

BC -7 =10m + b
_5=-5m+b
_2:15!3
m=—T5
-7 = 10(- &) +3

17 1
b=-—3—

ko9

€i-5,-5)
y=- %z x + 27
y -=;;-x +% -._‘Q
y= - %5 X - %;
417
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9. (a) 2x -3y = "or ¥y = %x -2

3

Sizze mym, = ={ - %) = -~ 1 thzs< are perpendlicular.
b) Neizher _ == ||.

¢) Perpendicul=

(
(
(d) Parallel
(e) Parallel
(f) - Neither
(g) Neither
(h) Neither
10. Given | 10(b).

(1) 2x-2y-%4=0 y=gx -2

(11) 3x + 4y +12 = 0

(a) y-intercept slope ] b o
. h”
(1) -2 + 2 57
(11) -3 -7 ¥
= \\\ /
() my =+= N
_ = - // .
R N4 A Fx
= = /c"e
mm,. = (#(-2 4 -1 LI Npe
o 4
L. ;_Aj —_— - - 2. —

Limes i g==rpendlcular.

419
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2
12. m= -

1

i

n
—

(C’{:‘

N

+

o

_ 2
=3X -3
13, y =mx + 4
l1=-5m+ 4
m o= -1 + 4
m = %
= &x + U
vy =5 +
14, x-inte—cept =3
slope = —3]:
&'—1‘”—1-1‘-'—‘3%3991—;- = x~intercept
b =3
-3
b=-1
y = %x - 1
ba-ty
5. s=2 °©
100-20
S =2 10 = 28 = P56 timas as geesEs &5 100° or az 20°

16. (z) Given A

1

klc; B = ICEZ

A+ B= le-t-kEC

A+ B = C(ky + ky)
A-B=0(k - kg)

{pages 355-356]
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17.

18.

(e)

(a)
()
(c)
(a)

(e)

(£)
(a)
(v)
(e)
(a)
(e)
(£)
(8)

it
»

by

Lx y2
circle
edlipse
hyperbola
ellipse
parabola
parabola

clrcle

25x° + 16y
2 2

x —

T-%=1
2 2

r-F-t

(n)
(1)
(3)

(0
(m)

429
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El-igse

100 Elli=se
Hyperbola
Hypextola
Peraiols
Parebmla

ellipses

parzmela

mrperbola

el lps=

perebola

hommerbola
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19,
(2) Y

- (e)
><*

(g) Simplifying to
(x+PE w0

R, SN
AN

.-4.2,\)(
Y
- (h)

X2
(a)

&’

N

Simplifying to
(2x + 3y)% - 9 = 0

(e)

421
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(J)

(k)

(1)

(m) | Y

\Vi 1/ J///// .

G

u/ﬁ,%/ Wy

) ' =
| AT

() //////

il x
N
& .
122
. [pég%%Sﬂ.



(r)

(s)

(a)

Simplify to (x - 2)% «+

(y + 3)2 £ 0. The only
element of the solution
set is (2,-3), so the
graph consists of this
single point

Simplify to (y - 2)2
< 4(x + 1). The graph
of (y'- 2)% = i(x + 1)
1s a parabola with ver-
tex at (-1,2) opening
to the right

(2,-3)

(t)

4
doooch

[page

3571
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20.

2l.

22.
23.
2k,

y2 = 16x
y2 = lex
‘. e =1

Latus rect m = lc = 16.
Radius of :irele is 8. center =t (4,0).

Equazion: (x - 4)2 +::,‘2 = 82,
Equation is evidently

of the form 3x2 - SyE = .
Since (2,3) is on this
hyperbola we have

88
3.22—5"32=K="33- \ O) ? /
. A P (2,3)
.« required equation i= \\\\\\\\\\\\\__

5y2 - 3x° = 33 e T, /33
2 .2 _a VA
| - ‘
or Sy -3r =1 b
—5- . —t + -+ + + ‘;,

2X2 - 7y2 = 18.
a®x? - b2y2 - a%p?

Sketches of hyperbola= as indicated. Each has asymptotes

.¥ = +x =2nd vertices at a. (+4,0). b. (3,0). c. (x2,0)"

d. (+1,0) e. (0,+1) £.(0,+2) g. The curve consists of
the two IInes of the asymptotes. h. (C,+4) :

pagss 357-358]
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(a)

(e)

(e)

(e)

v (b)
/
x>
y 4 (a)
x>
y A (f)
7]
y 4 (h)
x>
425
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2
25. The coordinates are (c:.i %T)' The development follows the

same pattern as for the ellipse, The length of the focal

2 2 2 .
- chord 1s 22.. Tt applies also to the hyperbola Zg P S
a a ;E
26, /%2 + 32 = 2/%2 + (y - 2)2
x° + y2 = )-l(x2 +y2 - by + b)
x2+y2=4x2+4y2—16y+16 N (xy) -
O ij; y
& ly-2
3% + 3y° - 16y + 16 = 0 ezl Y

27. The equatlion of the paraboia,

o (0,0)4Y
x° = Yey through (20,-10)

glves ¢ = - 10 Hence, the

equation is, x2 = - 4Oy

The helight of the arch at
each Interval is given by

10 - Iynl .

At (0,0), ¥, = 0. Hence, 10 - 0 = 10!

At (5:Y1): (5)2 = - 40y1
. .
. 10 - |- gl = 2 the height at (5,y;)
At (1o’y2)’ 102 _ 40y2 v o S e
2
10
Y2 =" %0 T~ g
.10 - |- 2| =32 the hetgnt at (10,y,)
[page 358]
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At (15,y3), the height is %? .

At (20,y4), the height is 0.

X -a+ec

n

28. «//(y -0)2 4+ (x - a - c)2
(y -0)2 + (x - a - ¢)?

i

(x - a + 0)2

(y - b)2 +x° +a° + ¢2 - 2ax - 2cx + 2ac =
x2 + a2 + 02 - 2axX + 2¢x - 2ac w
)
(y - b)2 = lex - Yax — X .
alV X
(y - b)2 = be(x - a) — "~ j—A—F
29, Similarly (x - a)2 = he(y - b) ly
c
30. Identical to ¥#28, . >
F J D X
; . PA
Note on Translation of Axes. 'b
‘We know that the equation of N
a parabola with vertex at the ™~
origin and focus at (c,0) is L]/ N
. [}
y° = lex. From this and a 0 Xt

process known as the trans-

lation of axes we can derive

the equatlon fequired in

Exercise 28. If the co-

ordinate of 'O with respect

to the translated axes (origin O) are a and b, we have
(see drawing) x =x' - a .and y = y' - b. Substituting these
new names for x and ¥y we obtain (y' - b)2 = be(x' - a) as
the equation of a parabola whose vertex 1ls at (a,b) and whose
.focus is at (a + c,b) with respect to the new coordinate system.

This "translation of axes" process can be used to derive

many other formulas in this chapter.

427
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Challenge Problems - Answers

1. y2 = lax a positive, open to right.

a negative, open to left.
2. When x = a
y2 = lax
becomes y2 ~ 4a®
Y=+ 2a-
Points are (a,2a)(a,-2a).

5. (x-1)2+ (y-1)2 x_ﬁ___u ./

'x2~2x+1+y2—2y+1= ' (xy/
. ]
2 (1l ,

x2+2_xy+y

2 , y
2%x° - bx + 2 + 292 - by + 2 =
x2 + 2xy + y° X{

x2+y2—2xy—ltx-lly+4

i
(@]

*3 Let P(x,y) be a point on the
parabola, then PC‘pé“rpendicular
to the x-axis determines point y
B having coordinates (x,-x)
since B 1lies on the line of
Y = ~X. These coordinates
indicate that A OCB is right
isosceles, so 3 B= 45°,
Then A ABP 1s also right
isosceles and is similar to
right lsosceles triangle ODF.

B(x,~x)

[page 3591
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From proportlonal sides of these similar trlangles, _E = %
‘ PB 2
and since PB =y - (-x) =x +y, then d = %Y From the
V2
locus definition of the parabola,
2 X +
Mx-1)2 v (y - 12 =E22Y
v2
Simplifying ylields the equation
| x° - oxy + y2 - bx - by + 4 =0
An alternate solution determines PA = d from coordinates

of A and P by use of the distance formula. The coordinates
of A can be found by simultaneous solution of the equations for
the lines of PA and y = -x. Let P(xc,yc) be the coordinates

of point P' on the parabola. The slope of the line of y = -Xx
is -1, So the slope of PA 1g 1 and the equation of PA has
the form ¥y =X +Db

Since P(xc,yc) lies on this 1line,

then

Vo =X, + b y

b =7, - X y==x
The equation of PA 1s then F(,N P(}cn)’c)
y=x+(y. - x_) when (x,y) are ° <//

c c v 2
the coordinates of any point on PA. d/
Solving the system Jy = -x /
= A
Y =x + (y,-%,)

determines the coordinates of A as

(Pe = Ye Yo ~ %

c
2 ’ 2 )

429
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Applying the distance formula,

- - 2 - 2
ﬁ=d=/[x0¢39—25’i1 Ly, - Je 2%,

c
y A
(xc -chjd_*- X, ¥, 2 y
h 2 7 2
(*c t Vo
c('lIL/
_ X, + ¥, \ .
= X
v
“'\\
The equation of the parabola then +

follows as in previous solution,
4, Problem: Given ¥y = %x + 2,
Find the line || to this line

A,
2 units away. /
Solution: y /

/ A
- <40 o X
In the drawing A 1s the graph of the line whose equation 1is
y = % x + 2 andf, 1s the required line which lies above e
(another, /2, not shown lies below 4 ). 0OC 1is perpendicular
to/ and ./ 1 and hence EC = 2, In A AOB we have
|A0| = 4JOB| = 2 and by the Pythagorean Theorem AB = 2.5,

The area of A AOB =542 = 4 = 3|4B| - |oE| = %-2V/5 -|0B|.

. u 4 5
.. OE = & = 3¥2, 1t 1s clear that A EOB ~ A COD
| =5 '

4390
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- 45
n OE OB 2
ence m —_— .

g
»
g

2 +4/ 5.

We seek the equation of a line whose slope is % and whose

oD

it

=

y-intercept is 2 ++// 5. Our equation is
¥ =.% X + 2 +J/5.
Evidently for ¥4 5 the y-intercépt 1s 2 -4'5 and the equation

is 'y = % X + 2 -+/5. We can write the equations of /l or //2
in the form y =%x+ 2 +4/5.

5.

Glven: y2 = 4cx and line from Pl(xl,yl) through F to

Pe(xa,ya).. Also line from Pl(xl,yl) through vertex to R  on
directrix.
431
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Find: Coordinates of Pz(xz,yz) in terms of
Prove: RP ” axis y = O,
y2 = bex
'3 2 —
. Vo = l&cxz
2
Io
or  Xo =TI
y =mx +Db
m
v5
Yo = ~2 T Te

ET
_1\Te - ¢ .
Yo = (xl- c)

V1 (ﬁ - ‘*"2)

Yo = (x; - cJ¥c

2 2
volxg - c)ie = yy5 - yylte

2 CHE
y1¥p - kelxy - e)y, - BeTyy =0

A quadratic in Yo

Xqs¥7> and c,

be(xy - c) + '\ﬁ6c2(xl - c)2 + 16c2ﬁ

Yo = 2y,
EC(xl -c) + 2 '\Axl ~ 0)2 + Y?_
Yo = yl )
432
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Substitute yj = hex,

2c(x1 -c) + 204V/x1g 2cx, + e + ucxl

¥y = -
Y 2c(xy - ¢c) % 2c(xl‘+ c)

2 Yl
. - 2c(xq - ¢ + X, +¢) . EC(xl -c - X - c)

2 AT ¥i
g = ucxl o = 402

2N v1

bhex

- Examination of these two values indicates that Vo = 7
1

cannot be possible, The sign of Yo must be different ffom that
of AR

g, == 4e? . v = 16"
2 . 2 2
Y1 v
Hence, yg = hex,
1
16¢
T = hexy
1
o
or Xy = =5 X always positive.
J1
3 2
Coordinates of P, 525, ’30
. i N1

-- Where line from Pl passes through vertex to R. o
Now consider m as the slope of the line RP.

433
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{

y I
m = -f]—' = :—2—
1
cyq
y T o S———
3 X,
x3 = =C
. c¥,
Coordinates of R =}~ ¢, =~ =
1
Prove RP2 || X-axis
Prove Vo = y3
. <7,
YB = "'—xl
: yi |
. v. = ! _ 402
[ 2 - — - —“—é‘-—— -_— - —————
> ¥ I3
Tc
2
- U
Since ¥, = §1

434
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. 6-8

Lot

Illustrative Test Questions

Find an equation of the lline parallel to the line whose
equatlion is y = 2x - 3 and passing through the'point

(5, ~2).

Write an ejuation of the line perpendicular to the line
whose equation 1s y =3 - 2x and intersecting it on:

(2) the y-axis.

. (b) the x-axis.

Write an equation of the line With,
(a) slope ~2 and x-intercept 2.
(b) intercepts (4,0) and (0, -3).
(a) Sketch the graphs of,
(1) 2x +y = 4
(11) . x + 3y = -3

(b) What are the coordinates of the point of intersece
tion? ’

(¢) Give the slope of each.
(d) Give the x and y intercepts of each.

Determine, without sketchling graphs, whether each of the
following palrs of equations represent lines which are -

. the same, are parallel, are perpendicular, or none of

these.
(a) y = %x + 2 (p) 5x +2y =6
y=—%x+2 y+5x =1
(e) 3x - y_+'1 =0 (d) -3x + U4y -3 =0
bx ~ 2y +1 =0 8y +6x +6 =0
(e) e3x ~Ty -2 =0 (f) x=-3
=0

10x - 28y - 4 =0 x
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10.

11.

12.

I
(@]

o  (h) 3x -5y
0] Vv =

it

(g) v +6
X -3

]

1
O

(1) x+2y ~-1=0
Xx=3

Find the slope-intercept form of the line through the
point (2,1) perpendicular to the line

2. -
Given line L, with equation 2y = 3x + 2. What is the -

y-intercept of line L2 if the slope of L2 is twice

that of L1 and if the two lines intersect on the

X-axls?

Given the line whose equation is 2y = 3x + 2,

(a) Find the equation of the line whose slope is twice
that of the given line and whose  y-intercept is
two units above that of the given line.

(b) How many unlts apart are the x-intercepts of the
two lines?

. Find the equation when x 1s replaced by x +a in the

eqiition -y° = 4ex. Discuss the "family" of curves of

the equations for a > O and a < O, E
The graph of the hyperbola 4x2 -‘9y2 = 36 has no pointé?
in the vertical strip between what two lines? P

Find the center and the radius of the circle

x° + y2 + 2 - 4y -1 = 0.

Given the line whose equation 1s 3x - 4y-+'12>;_0.
Find the equation of,

(a) The line parallel to the given line with the

x-intercept 3 units closer to the origin.

(b) The 1line through the origin perpendicular to the
gilven line, '

; ';..4.36
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14,

15.

16.

429

(¢) The line with slope that intersects the given

1
2

line on the y-axis, _
(d) The line through the point (1,2) with the same

slope as the glven line,
2

' . 2
The graph of the hyperbola X . = 1 has no points 1in
9 ,

the vertical strip between the lines,

(a) x=U8andx =-1
(b) x=2andx =-2
(¢) x=9andx=-9
(a) x=3andx=-3
(e) x=6andx =-56

What are the coordinates of the center of the cilrecle
whose equatlon 1s,

ox? + 2y2 + Ubx - by - 5 = 0?

(a) (- 1,1)
(b) (1, -1)
(e) (-2,2)
(@) (2,-2)

(e) none of these
What 1s the axls of the parabola defined by,
y = 3x° + 6x - 42 '

(a) x=-7
(b) = =-14
(¢) x=-3
(@) x=-1
(e) x=1

Which of the followlng equatlons has the same graph as - -
2y - 3x + 2 = 0?

(a) 2y =3x + 2 | (@) y+1-=- %x
(b) 6x -ly +4 =0 (e) 3y-2x+2=0
(e) y+1 =2

-4.37
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17. If y varies inversely as x, which of the followlng

could be the graph of y as a function of x?
. A

(2) Y4 T N O B
X 4 x

\

~

18, An ellipse with center at the origin has its focus at
(4,0) and its directrix the line whose equation is
x = 16. Find, :

(a) 1Its eccentricity.

(b) The length of its major axis.
(¢) The length of its minor axis.
(d) Its equation.

19. For each of the following, identify the conic section oij
which it is the equation, o

(2) 4x° + 4y® - 16 = 0
(b) x° + 4y - 2x - 3 =0

_ 3 N N

(e) x v ’ . , . S

2 : . i

(d) x“ +4y =0 g

20. Find the equation of the parabola with vertex at (0,1) g

and x-intercepts at x =2 and x = - 2,
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21, .Given the ellipse N
» pse whose equatlon 1s x f T - 2x = 0,
find,
(a) Its center
(b) 1Its x-intercepts
(¢) 1Its vertices.

Directions: Select the response which best completes the
statement or answers the question.

22. The graph of y° = (2x - 1)2 is
(a) A clrcle
(b) An ellipse which is not a circle
(¢) A hyperbola
(d) Two intersecting straight lines
(e) Two parallel stralght lines

23. The parabola at the right has the focus (2,0) and the
line x = -2 for 1its directrix. The equation of the
parabola 1s, yA

(a) y2=x=2 ,
(v) y2 =x 4+ 2 .

(e) (x-2)°%=y NS X
(@), = = 8y j '
(e) ¥° = 8x

24k, The y-intercepts of the graph of the equation
9x° + Uby® = 36 are,

(a) 2 and -2.
(b) 3 and -3
(¢) 6 and -6
(d) 4 and -4
(e) 9 and -9
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25,

26.

27.

28.

If the foci of the hyperbola are (-2,2) and (8,2), and
one vertex is (6,2), what is the length of the trans-
verse axis?

(a) & (@) 10
(v) 6 . (e) None of these
(¢) 8

Write the equation.of the ellipse which has foeci (0,3)
and (0,-3) and vertices (0,6) and (0,-6).

2 2 2 2
(a)x-§-+%6=1 (d)1;-6+ =1
(b) x2 +6y% =216  (e) x° + 3y° = 108

(c) J2<—7-+3 =1

Write the equation of the hyperbola which has foei (3,0)

and (-3,0) and vertices (1,0) and (-1,0)

() B-Bp=1 (@) &P -ifad
2 2 2 2

(®) -5 =1 (e) -5 =1
2 2

() T -f5=1

Which of the following stat:.ients about the conic scction

which has the equation,_: 2 2 P
15;5—i1— +§ =1 1s true?

3

(a) It has the point (0,1) for its center. %

(b) It is symmetric with respect to the line x;= 1.
(¢) It has the point (3,0) as a focus. :

(d) It has the point (1,2) as a vertex.

(e) It does not cross the y-axis.
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29, If x varles 1nverseiy as y, and x =8 when y = 2,
what is the value of x when y = 57

(a) 80 (@)
(b) 20 (e) 25
(c) X

30. Which equation expresses the following fact? "The cen-
tral angle C of a regular polygon varies inversely as
the number of sides n." (Assume k is a constant.)

(a) ¢ ='E (d) ¢ = kn
(b) Cn =k (e} n = kC
Cc _
L (C) H-—k
31. The graph of y2 - x2 =0 1is
“(a) an ellipse (d) a circle
(b} a hyperbola (e) two parallel lines
- (e¢) two perpendicular lines
32. The graph of 9x2 + Hye =0 1is
(a) a circle (d) a parabola
(b) an ellipse (e) two straight lines
(¢) a point
33. The figure ABCD 1is a c

"twisted parallelogram"

in which - AB = CD, CB = AD
and AB < BC. If we hold

A and B fixed and allow
the figure to rotate so that
C and D describe circles
with centers B and A
respectively, the point T — e AN
will move on - A B S

(a) a strailght line (d) ‘an ellipse
(v) a hyperbola (e) a circle
(¢) a parabola
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34. Refer again to the drawing for Problem 33. Let S be
the intersectibn of AB and CD extended. If we
hold B and C fixed and allow the figureﬂto rotate
so that D and A describe circles with centers C
and B respectively, the point S will move on

(a) a parabola - (d) a cirecle
(b) a hyperbola (e) an ellipse
(¢c) a straight line

35. The line segment AB is 10 wunits long. If the mid-
point M of AB moves on the circle

x2 + y2 = 25 while A moves on the x-axis, then
B moves on ' .
(a) an ellipse (d) a parabola

(b) a lirie parallel to (e) the y-axis
the x-axis 7

(¢c) a hyperbola
*36, Which of the following sbtatements is false?

(a) If AB and A'B' are the focal chords of any
two parabolas whose vertices are respectively,
V and V' then A VAB ~ A V'A'B!',

(b) If A and B are any two points on an ellipse
then the perpendicular bisector of AB will
pass through the center of the ellipse.

(¢) If a line.4/ intersects the hyperbola xy = 12
and its asymptotes in the "four points A, B,
C, D, then AB = CD.
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(d) The hyperbolas whose equations are xy = 18 and

x° - y2 = 36 are congruent.

(e) If P moves in such a way that the ratio of its
distances to the fixed points A ‘and B is a
constant not equal to 1, then P moves on a
circle.

37. If a hyperbola has the lines ¥y =”i_%x as asymptotes
and passes thru the point (5,3) then 1ts conjugate
axis is
() 241X @V
(b) V/IT (e) V22
(o) AL

38. The graph of x2 - 25 = ~y(y + 2x) is

~(a) a hyperbola (d) a circle
(b) an ellipse (e) two perpendicular lines

(c¢) two parallel lines

- 443
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Part II

Matehing

Directions: Mateh each equation on the left with a locus on

the right, a locus may be used once, more than
‘once, or not at all.

39. 9x® + 4Y2 = 36 (a) Circle
40, Xy = 20 -~ (p) Point
Bl. x° + uy2 - Ux - 8 - 8 (c) Two strailght lines.
=0
42, y° =x - 2 (d) Ellipse
b3, ¥ -9 =0 (e) Hyperbola
By, y2 +9=0 (f) Parabola
(g) No locus in the real number
. plane.
Part III: Problems
u5, Write an equation for the locus of points equidistant
from the line x = -4 and the point (-2,2).
46, Write an equation for the locus of points the sum of
whose distances from (0,3) and (0,-3) is 10. -
“47. Write an equation for the conic section whose foci are
~ F(2,0) and F'(-2,0) and every point on the curve
_satisfies the condition d(PF) - d(PF!') = 2.
48. Rewrite the equation x2 + 2y2~- 8x + 8y + 16 =0 1in

the form 2 2 r
ﬁﬁLiilll_ + ﬁILiilil; =1 |

a b

444
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Sketch the graphe of the equations in the following
system and label the intersection points of the two
curves with the letters Pl’ P2, P3, «e. o Use

as many letters as there are intersection points.

You need not find the coordinates of the inter-
section points,

{:x = y2 + 1

x? + y2 = 25

445
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6-8 Illustrative Tgst'Quest"ions - Answers

-2 =25 +Db

b=~ 12

y =2x - 12
2. y=%x+b

(a) ¥

{b) ©

O=%.%'+b

| |
W
.
+
R ow

r-b-3
3, (a) 0=-2'2+0D
b=54 .
¥y = -2x + U4
(b) m=%and b = =3

Hence y = %x - 3
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b, (a)

(b) 2x +y =14

X +3y = -3
6x + 3y = 12
X +3y =-3
5x = 15
X =3
343y =-3
3y = -6
y = -2
Intersection (3,-2)
(¢) (1) m=-2 ~ and (11) m = - %
(@) (1) (2,0) and (11) (-3,0)
(o,4) (0,-1)




1o

(a) .Perpendicular
(b) None

(c) Parallel

(a) sSame ‘

(e) Parallel

(£) Parallel

(g) Perpenciicular

(h) . None
(1) None
%x + gy +2= 0
%y = - %x -2
y 4

Y—--§x—3
1=%'2+b
b=1--g-=—%

=9 '
Y-ﬁ-%

L, x-intercept 1s (_g, 0)

L2 y= 3% +Db
2
= -=) + b
0 = 3(-3)
b =2
Yy =3% + 2

(a) y=3x+3
(v) distance is |1 -(-%)|= %
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10.
11.

12,

13,
14,
15,
16,

17.

18.

Bl

¥° = be(x + a)

y2 = bex + bea

The curves are parébolas whose vertices are on the
x-axlis, open to the right, and symmetric about the
x-axis. When a > O the vertlces are to the right of
the y-axls by the amount U4ca, When a < O the vertices
are to the left by the amount kea,

a = 3 so there are no points such that -3 < x < + 3.
(x2 +2x + 1) 4+ (Yo -~ By +4) -1 =0+ 1+ 4

(x + 1)2 + (y - 2)2 =6

Center (-1,2) radius 6.

(a) original x-~intercept is -4
new x-intercept is -1

P
(b) ¥ == 3x
(c) y=%~X+3
(@) 2=%1+0

b =g

M S
(d) Same as 10
(a) (-1,1)
(a) x=~-1

(c) y+1=2x

(d) equilateral hyperbola

...... e
(a) ¢ =4 x = =5

e
16 = 32' e2 =-% e =

o =
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(b) ¢ = ae
4 = Za
a=8

Major axls = 2a = 2:8 = 16
(c) b2 = a° - c°

b2 = 64 - 16 = 48

b =U4./3

Minor axis = 2b = 8 v/ 3

(a) x® + %; =1
5 =

19. (a) circle
(b) ellipse
(¢) hyperbola
(d) parabola
20, (y-1) = ax®
0 -1=a°l
a1
=~ F
1.2
(y = 1) = X
Yy = - %xe + 1

of<,,
&
Il

21, x +¢

(a) center is at (1,0)
(b) x-intercepts are O and 2.
(¢) a=1 b=3

v, = (0,0) and (2,0)
vy = (1,43)




22,
23.
2k,
25,
26.
27.
28.
29.
30.
31.
32.
33.
34,
35.
36.
37.
38.
39.
Lo,
u1.
42,
43.
by,

T T o

o

L TR © T ¢} (21

Q

ITII.

46.

47.
48.

k9.

443

2 2
X
-t
2 2
X
T-%5=1
2 2
{x 41*111.2) -1
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Chapter 7
SYSTEMS OF EQUATIONS IN TWO VARIAﬁLES

7-0. Introduction.

In this Chapter we take advantage of the opportunity to
discuss sSeveral ideas which have been igpentioned indirectly and
used without any explanation at various points in the text --
these ideas are the ideas of solution s=t of an equat¥on
(inequality) and eduivalent equations and Systems of equations.

We try tc define the terms and to collect the information we

‘have about op=rations which yileld equivalent equations. The

important thing to stress here is the meaning of the "solutilon
set of an equation" and later on "the solution set of a system
of equations". In connection with this latter idea, the solution
set 18 derived by substituting an equivalent equation in a system
to obtain an equivalent system of equations.

The purpose of Section 7-1 and 7-2 is simply to establish
the framework for talking about solutions of systems of equations
and inequalities. We are content with merely stating and illus-

trating the definitions. The exercises for the sectlons are

designed simply to clarify these definitions. Ways of determining
the solution sets will be treated in succeeding sections. In the

‘last part of Section 7-2 we state principles which allow us to

replace a system of equations with an equivalent system. The

~ point 1s that in solving systems we want to be sure without check-

ing, if possible, that when we arrive at a solutibn, it really is

a solution. This is certain if we deal only with equivalent
systems. This gets cumbersome at times, but the point is important
-~ to be sure that you have the solution, the intermediate systems

~you work with must be equivalent to the original system.
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The method of solving systems by using the principle of
linear combination (7-2b) to obtain equivalent systems is actually
the method which is sometimes called "elimination by addition and
subtraction". The discussion of Case III in Section T7-3 is
actually a Jjustification of the fact that this method ylelds an . .
equivalent system of linear equations and leads inevitably to the
solution set, 1f this set consists of a single ordered pair.

The geoqetric interpretation of the linear combination
principle shows how a system consisting of two intersecting lines
can be converted into an equivalent system consisting of two lines
with equations x =8 and y = t. We have really sald that the
family of lines passing through the intersection of the lines
a;x + bly +cp = 0 and asX + b2y + Cy = 0 1is given by the

equation kl(aix + by + ¢q) + ke(aex + by + 02) = 0, where
kl and k2 are two parameters. If kl 18 not zero we can

write the equation in the form Kk
(rlx + by + cl) + k(aex + by + 02) =0 with k = Eg'
1
Sim:ardy if k2 is not zero we could have obtained the form
: k
1
k(alx + iy +cq) + (a2x + Doy + 02) =0 with k = K,

So there is really only one parameter in the equation for the
family of lines. _

We have taken the view that students have seen a thorough
discussion of systems of linear equations in the first course in
algebra., The methods of solving such systems by the usual elimin-
ation by addition and subtraction and elimination by substitution
must be familiar to them. What we have tried to do in this
Chapter is to look at the problem from a slightly more sophisticat-
ed point of view and stress the importance of dealing with equiva-
lent systems at all times. The idea of the linear combination of
two expressions 1is an important one and will be met in many other
phases of the student's mathematical life.
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As for solving other systems, we can settle completely the
problem of solving systems consisting of one linear and one
quadratic equation. The method we have used in the examples 1is
of course the familiar method usually called substitution. We

_have refrained from using this word in the text preferring'to
~concentrate on using the definition of the solution set of a

system. The solutilons are derived in such a way that there 1is

no doubt that the number pairs we get are actually solutions. Of
course what we really are doing 1is to solve the linear equation
for one variable and substitute this expression in the quadratic
equation. The resulting quadratic equation in one variable is
then solved and the two solutions are again substituted in the
linear equation, ylelding two, one, or no real number palrs as
the solution set. The reason for nol using this straight forward
substitution, but rather talking about number pairs (a,f(ao or
(g(b),ﬁ) 1s that these pairs are first of all members of the
solution set of the linear equation: then necessary and sufficient
conditions that they also be members of the solution set of the

quadratic equation are obtained. When these conditions are met
we know that, the pailrs are then members of the solution set of
the system. There is no confusion between our solution set and
points (x,y) which may well be on one or the other of the two
curves, but not both.

While we are able to completely settle the problem of solving

.systems of two linear equatlions and systems of one -linear and one

quadratic, when we consider systems of quadratics, we are unable
to finish the job. No mention was made of systems which only
contained variable terms which are squared, symmetric systems;

J"homogeneous systems, etc. While the methods used on linear

systems also suffice for systems containing only variable terms
involving squares and similarly the method of linear combination
together with the Principles 7-2a and 7-2b suffice to reduce many
other systems to manageable form, the fact is that, short of solving
equations of the fourth degree, we cannot devise methods which will
golve every system of two quadratlec equations.
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We therefore resort to the graphs of the equations. From
these we are able to get approximate solutions and to find out
how many elements there are in the solution set. This method
glves us a good chance to review and use the analytic geometry of
. Chapter 6 as well. o

Thils then completes the program for Chapter 7. We seek to
derive solution sets of equations, inequalities, and systems of
equations. We re-examine the solution of systems of linear
equations and systems of one linear and one quadratic equation
from a more sophisticated polnt of view and we solve some systems
of two quadratlc equations. A chance to employ our new skills in
analytic geometry ls offered in considering systems of inequalities.
Much time or 1little time can be devpted to these problems depend-
ing on the interests of the teacher and his students and the
limitation of time.

T-1. Solution Sets of Systems Qg Equations and Inequalltiles.

The terms inconsistent, consistent, and dependent are intro-
duced in this Section solely as terms describing the solution N
set of a system. The student at this polnt 1s not expected to
solve the system to find out about the solution set. He is to be
encouraged to see what we mean by a point belonging to the solutlon
set. He may also be able simply to look at the palr of equatilons
and see that no palr (x,y) could satisfy both at once. While
some of the problems ask him to draw the graphs of the component
equations, the explicit relation between the various kind of .
gsystems and their graphs will be stated in Section T7-3.
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‘ 7]
Exercises T7-~1. - Answers ' ly JIJ;/
v N
1. Yes. 1Is {2(2) 4+ 3(0) = 4 true? K. A
¥/
S L)
8(2) - 7(0) = 16 \\l/ 'x.-
&
b=k RO x5t
16 = 16. Yes. Sl
/ TN
The graphs lntersect at the point 7 ! 171
(2,0). This may be described in
the followlng way,
) [(x:Y):ex + 3y = u]n{(x:Y):8x - 7y = 16] = [(2:0)]-
2. Yes. Is{ B(1) -2 =2 true?
12(1) ~ 3(2) = 6
yh ‘DI
b - 2=2 3
12 - 6 = 6 ‘\\I*} (’2 —
2 = 2 l X +
6 = 6. Yes. o~
L]
The graph of each 1s the same ?;/
x
line. Any solutlon of one 1is .VL/
a solution of the other. There o
is an Infinite number of these
number pairs in the solution set
of the system.
3. No. Is 1+ 4(3) = 13 true?
2(1) + 8(3) = 1k y )
0,3
1+ 12 =13 ] \“2 My
X:’}bﬁ'\}\"f
2.+ 24 =14, No. \\\Squ ‘
.
The graphs of the two equations X
"are parallel lines. The solution

set of thils system 1s the empty
set. A
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u'lso

u, (a) If b 1is any real number except b = 44 the solution
set 1s empty.

(b) b = bh.
(c) b = Uk,
5. The solution set can be empty, (no solution) or contain at

least one member (at least one common solution) or be the
same as the solutlion set of one of the component equations
(an infinite number of number pairs).

6. The following systems are consistent, but not dependent: -
b, ¢, e, f, g, h, 1, k,f . The following systems are also
dependent: c¢, k,.£ . g

7. Yes, i
Yes. (—l,l). AN
Two. : ) an +—
TR

8. Dotted lines are used to sﬁow that points belonging to these
lines are not included in the solution set; g21id lines are
used to show that the polnts belong to the solution set.

(a) (®) %

v

The solution set 1s the set The solution set 1is the Béf of

of ordered palrs whilch are ordered pairs which are co-
coordinates of points on ordinates of points in the
the ellipse. shaded region.

457
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(c) y (d) Y]
/]
X X
(e) (1) .
yA- y
x"
The solution set is the set of ordered

pailrs of the x-axls and the y-axis,

(g) \ (h)

¥

Y

(1) (3

XV

[page 368]
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v

(m) The solution set consists
of the ordered pairs which
are coordinates of the
points in the entire shaded

RN
\\\\\\\\\\\
N, \ N \ \

N

region and the x-axis. NRN \f
Suggest to the students that Q§§§§§
they consider the problem \\\\%;
with the union symbol U NWNIWN

be replaced with the inter-

seetion symbol (. The

solution set of the new problem is the ordered pairs
which are coordinates of the points in the "dotted"

region.
9. Yes. When the graphs are A\ y
sketched, the lines inter-
sect at the point whose -
+x -
coordinates are (3,2). J’\o /
\\o /j
(3,2)
W
a4
0
3] _oj//
-E* o:
¥ N
mn
R4
Co o/
450" T
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NP
10. No. The graphs of two of the \ Z
equations, 55X - y = 3 and : \\ (fZ)
16x + 2y = 20 pass through !
the point whose coordinates / N >
are (1,2); however, the T / \ N %
graph of the equation m \o— ‘;r
3x + 2y = 5 "does not. N Wc‘xls \ S,
s N [
/ ¥
| o
T

11. The graphs of the components of the system must intersect at
a common point. ' '

*12. One would probably expect the solution set of
m(ax + by - ¢) + n(dx + ey - £) = 0 to alsv contain the
single element in the solution set of the given system.
In Problem 9, it was found that (3,2) was an element of

the solution set [2x - 3y =0
X+ y~-5=0
Sx - 3y - 9 = 0.

Forany m#0 and n#0 suchas m=3, n = 2,
3(2x - 3y) +2(x +y - 5) =0 has (3,2) as an element of
its solution set.

Is 3(2.3-3:2) +2(3+2-5) =0 true?
3(0) + 2(0)
0 =0 yes.

In Prdblem 12, if (xl,yl) is any solution of the given

system, then dxl +ey, -£f=0 and ax; + byl - c¢c = 0.

Hence (xl,yl) satisfies m(ax+by-c) + n(dx + ey - f) =0

because, m(axl + by, - c) + n(dxl + ey, - f) =m.0+n.0=0
13. [ 1+é~/1_5’¥74%~/1—5 ;1= éJﬁ -7 -2155]

4. (3 + 31,3 - 31)}. 460
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T7-2. Equivalent Equations and Equivalent Systems of Equations.

The important ideas here are equivalent equations, systems of

equations, and the two principles which'give equivalent systems.

~ These roles stated as principles allow us to proceed from one
.gystem to an equivalent one until we'reach one for which the
solution set is obvious. The idea of linear combination is worth
some time. Here we use it to justify the elimination method of
solving systems of linear.equations. However, 1t is a very use-
ful mathematical 1dea, and is used in many different branches of
mathematics.

Exercises T7-2. - Answers

1. (a) No, since the solution sets X =2 and X = % are not
the same, since the solution set of x =2 1is ({2}
and. that of x =~% is {%]. '

(b) No, since {(%&,%%)} is the solution set for both
equations. . '

(c) Yes, since {3} 1s the solution set for both equations.

(d) Yes, since every ordered pair of numbers which belong to
the solution set of 8x - 10 = 2y belong to the solution
set of 4x -y = 5.

(e) No, since the solution sets are not the same.

(f) No, since the solution set of X = -4/y + 3 contains
only negative values of x while the solution set of
x2 =y + 3 contains positive and negative values of x.

(g) No, since the solution set of x =/ y - 6 contains only
positive values of x while the solution set of

x2 =y - 6 contains positive and negative values of X.

(h) No, 8ince the solution set of y = |x - 2| has only
positive values of y and y =X - 2 has positiveAand
negative values of y.

[pages 370-376]
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(k)

Yes,

Yes,

(]

=
— N

455

No, since the solution sets of the equations are not
the same. Notice that the only ordered pairs whiqh
belong to both solution sets are (0,0), (1,1), (-1,1).

No, since the solution sets are‘not the same.
Xy + x2 has the solution set ((0,a), (a,-a))
X = -y  has the solution set {(a,-a))

v v

No, since the solution set of the first eduation is
(6,-2) while that of the second equation is ({6].

since ((3,5)) satisfies both systems.
since ((6,2)) satisfies both systems. .
Yes, since ({(8,2)) 1s the solution set of both systems.

Yes, since ({(3,-3)) is the solution set of both systems.

Yes, since {(3,-2)]) is the solution set of both systems.

Yes, since ((-4,3)) is the solution set of both systems.

Yes, since ((1,3)) 1is the solution set of both systems.

Yes, since the solution fets are the same.

Yes, since {(l,-%)] is the solution set of both systems,

No, since the first system has the {(710,2)] as its

solution set and the second system has ‘{(—lO{2),(-lO,2),
(10,-2),(10,2)} as its solution set.

No, since the solution sets are not the same.

No, since the solution sets are not the same.

yl

N

A \

—

4

[pages 376-378]
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6 y TN
N
\ v
/|
(5,0) 5 : . - ZE PR
X ' (5,0)
.Yes. Another system could Yes.
be - 5y = X - 5
7.
.| h |1 t y/\
| y
e - 1 - o -
> N X |
L x .
N4

Since the graphs of the equations in system (i) do not inter-
sect, the solution set when restricted to real number pairs

is the empty set. This is also true for the solution set of -
system (1i). The empty set is equivalent to the empty set.
Hence, the two'syﬁt&ms are equivalent. Note: when not
restricted to the real numbers, the solution set of each
system contains complex number palrs which are not the same
for both systems. So systems (i) and (il1) are not equivalent.

8. (a) a=1, b=-1; a=2, b=-2; aequal to the opposite
of b.

(b) a =3, b= -T.
(¢) a=3, b=2.
(d) a=2, b=09, 464

[page 378]




10.

11.

a = 1,
a = 5,
a = 11,
a = -11
a = -2,
a = 3,
a=>5,
a=1,
X +y=

1

o o v o o o o o
Il

457

will eliminate x.

will eliminate Xx.

Il
(VSIS R A

will eliminate y.

= -2 will eliminate y.

2X -y = y
a(x+y-1)+b(2x-y-4) =0 |a(x+y-1)+Db(2x-y-4) =0

if a=2, b=3 a=3, b=2
XxX+y=1 °x -y = U
8x -y - 14k =0 7x +y - 11 =0
if a=1, b =1 if a =2, b=1
X +y=1 2x -y =14
3x - 5=0 -3y - 2=0
yAL L] y
W
|
ol [If
0|
x|
® X
-3y-2:0 I~
|
+
| oL
vf?l \9
RNV R N
Ry \ N
To ";""‘0\
@ "y
[ 1=
LI >
|
o Ll |
[page 379]
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13.

(a) a=5b=1; a=1, b=-1
(b)
S rea
SO ~
TN i
y=0 >
~~§ﬂ’6*£A \\\\;;

(¢) {(2,0)) \
() (2x -y -4 =0 1(ex -y - 4) + (-2)(x -2y +7) =0

{x-2y+7=0, {2x-y-h=o,

y-6=0 vy-6=0

{zx—y—u-=o, {l(2x4y-“)+1(y-6)=0: '

v -6=0 ¥ =6 -

{x - 5=0, {x =‘5.
(6) (3,-2) |
(c) (25,7.5) :
(d) 4inconsistent. Solution set is the empty set.
(e) (-2,5)
(£) (3,8 |
(g) dependent. Solution set is every real ordered pair (a, %a -~ 5)
(h) (-5,0)
(1) ¢3,-2)
(1 (B,-= 465
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14, If System (1) is equivalent to System (2) then (xl,yl) will
satlsfy both systems and if System (2) 1s equivalent to
System (3) then (xl,yl) will satisfy both systems. There-
fore, System (1) and System (3) are satisfied by (xl,yl).
Since System (1) and System (3) have the same solution set
they are equivalent systems.

15. We must prove that any solution f(x,y) =0
of (1) le(xy) =0
1s a solution of (i1) [af(x,¥y) + bg(x,y) = O
- { g(x,y) =0

and any solution of (1ii) is a solution of (1).
If (x,,y;) satisfies (i) then £f(x,,y;) = 0 and

g(xl,yl) = 0. Hence, by 7-2b af(xl,yl)'+ bg(xl,yl) =0
which means that (xl,yl) satisfies the component equations
of (1ii).

If (xl,yl) satisfies (ii) we have af(xl,yl) + bg(xl,yi) =0
and g(xl,yl) = 0, Since a # 0 1t follows that

f(xl,yl) = 0 which means that (xl,yl) satisfies the
component equations of (1),

16. Suppose (xl,yl) is a pair of values satisfying
(1) Je(x,y)
g(x,¥)

Then it will follow that af(xl,yl) + bg(xl,yl) =0 and

0]
0 so that f(x,,y;) =0, g(xy,¥,) = 0.

cf(xl,yi) + dg(xl,yl) = 0, so that each solution of (i) is
a solution of
(11) {af(x,y) + bg(x,y) = 0
cf(x,y) + dg(x,y) = 0.
Conversely, suppose that ad - bc # 0 and that (xl,yl) is
a pair satisfying (ii). Then

{af(xl,yl) + bg(xy,¥,)

i

Il

0]

0. .

cf(xy,y,) + dg(xy,¥,)

[pages 380-381]

466




460

~ Thus d(af(xl,yl) + bg(xl,ylb—b(cf(xl,yl) + ds(xl,y1)> =0
which reduces to (ad - be) -f(xl,yl) = 0. Since ad - bc # Q
it follows that f(xl,yl) = 0.

Similarly, we may show that g(xl,yl) = 0. Hence, each
solution of (ii) is a solution of (1) and we conclude that
(1) and (i1) are equivalent.

7-3. Systems of Linear Equations.

This is the time to review the methods students have seen
for solving systems of linear equations. Much facility in solving
such systems is necessary in many applications of mathematics.
While the text concentrates on the geometric interpretation of
the various possible solution sets, it is important also to review
‘the algebraic methods of solution.

In the discussion of Case III, the teacher may want to intro-
duce determinants simply as a way of remembering the solution.

a. b -c- b )
i 71 171 _
i b = a;,by - asbq, e b "'%P2+Cfl
2 72 2 72
a. -c
1l 1. _
" = =240, + asCy
2 2 '
Then, the solution set can be written,
cl bl al -cl
s by a5 ~Cp
> .
2y by a3 by
a2 b2 a2 b2

We did not think it advisable to try to define determinants and
develop their properties at this point. However, they are a very
useful device for remembering this general solutilon.

467
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ixercises 7-3. - Answers

1. (a) Since if a;by - agby # 0, by Case III the lines intersect
" and if a, = 5, bl = U, ap = 2, and b2 = =7 wWe have

AL
5(-7) - 2(4) #0
-35 -8 A0
43 £ 0
and the graphs of the component equations of the system
5% + by + 7 =0
{2x - Ty + 5 = 0 1intersect in one point, and therefore
the system is consistent.

(v) If albe - a2bp = 0 the lines are parallel

3(2) - 2(3) = 0 and the graphs of the system

3x +3y+1=20
{2x + 2y + 1 = 0 are parallel. : .
If the graphs are parallel the system is inconsistent.

(c) The system [3x =1 - 2y
%x - 6y = 3 1is equivalent to the

system |3x+ 2y -1=0
9x - 12y -6 = 0 and
a,b, - agb) = 3(-12) - 9(2) =-54-¥ 0 and therefore

the lines intersect and the system is consistent.
(d) parallel and inconsistent
(e} intersect and consistent
(f) intersect and consistent
(g) parallel and inconsistent
(h) parallel and inconsistent
(1) same line and dependent

(3) parallel and inconsistent

468
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2. (a)

(k)
(1)

0
O since a;b, - agb; = -3 -3 = -6 #0

]

i

x+ 3y -9
x -3y + 3

the system 1s consistent and the solution set

b,c - bac a~c - a-Cn
al‘b2 - aebl’ aebl'- alb2 by Case III.
172 2”1 172 2°1

(a2 29
((3,2)}

It is expected that at this point, the students will use
the results discussed in Case III. However, the solution
set may be found by the method used in 7-2 by using

the principle of linear combination and equivalent

systems.

b + y - 5
2x - 3y - 13

(4,5)
[(‘2:‘1)]
((1,-2)}
[(‘%: ‘%)]
((o,4)}

{(8,-12)}
Since by Case II a;b, = agb; 1.e. 1(4) = 4(1), the

0
O consistent ((2,-3)]}

i

system is inconsistent, and the solution set is the
empty set.

{(160,-110)}
((3,2)}

Since the corresponding coefficients are proportional,
k =4 (or %), by Case I, the system is dependent.

[pages 387—388j
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(m) {(ox'g)]
(n) ( 148 112]

() (2559
2 2 ’
(p) (B2

We consider four cases, (I) b; # O and b, # 0;

(II) b; #0 and b, = 0; (III) o

(Iv) b, =0, b, =0,

1 =0 and b, # 0;

Case I

v b
o _ 1
Since alb2 - a2°l = 0, we have a) = EE ay. Define

b
1 .
k = 35 #0, then a, = ka,, by = kb, and since

2
b102 - b2cl = 0 we also have c, = kce.
Case II
Since alb2 - a2bl = 0 and b2 = 0 we have a2bl = 0.
But b, # 0, hence a, = 0. But this is impossible
since a22 + b22 > 0. Thus Case (II) is impossible.
Case III

The same argument as used in Case (II) shows this case 1s
also impossible. "

Case IV ’ .

Since b, = b, = 0 we must have afzf O and a, # 0.
Defining k = ;é # 0 and using a;b, - asb; =0 ana
apsCy - alc2 = 0 we see that a, = kae, bl = kb2’ and
cy = k°2'

470
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miles per hour in still water

miles per hour (rate of stream)

I\)TI—' l\)ﬁ—'

5. Width, 60 rods
| Length, 80 rods
6. 52° and 33°
7. A's rate 6% miles per hour

B's rate 3% miles per hour

8. 12 pounds of 1lst. alloy

2 pounds of 2nd. alloy

it
=
O
(o)}
U
O

10. 8

-50 ft./sec.

<
il

(Note: The negative velocity should be interpreted as a
body which is falling at the rate of 50 ft./sec.).

11. Every line which passes through the point of intersection of
the lines whose equations are 4x +y =2 and 2x - 3y =8
will have the equation a(dx +y - 2) + b(2x -~ 3y - 8) =0
so if the equation must also pass through the origin (0,0)
we have a(%(0) + (0) - 2) + b(2(0) - 3(0) - 8) =0

-2a - 8b

a = =4b
~4o(bx +y - 2) + b(2x - 23y -8) =0
-16x - by + 8+ 2x -3y -8 =0

it
(@]

-1bx - Ty= 0
-7y = 1lix
: y = -2x
471
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12, Every line which passes throﬁgh the point of intersection
will have-the equation a(x + 4y - 2) + b(2x + 3y + 1) =0
so if it must also pass through the point (5,4) we have

a(5 + 16 - 2) + b(10 + 12 + 1) =0
19a -+ * 23b =0
' b = =192
. 23
a(x + by - 2) - %%a(2x + 3y +1) =0
23x + 92y - 46 - 38x -~ 5Ty -~ 19 = O
© -15x + 35y - 65 = 0
3 - Ty +13 =0

~ 7-4. Systems of One Linear and One Quadratic Equation,

The method used in this Section is really substitution. We
use the letter a to represent the first element of an ordered
pair which satisfies the linear equation. The second element will
then be a linear expression such as 23 + 3 as in Example T7-Ua.
After the values of a have been found, we obtain the correspond-
ing second elements by substituting in the linear expression
(2a + 3 1in this example). Thus, for each first element a, we
obtain exactly one second element to complete an ordered pair
which will satisfj the linear equation. This eliminates the
possibility of getting "extraneous solutions". These "solutions",
may be encountered if we substitute in the second degree equation.
Such substitution will assign two second elements for each first
element and some y the resulting "solutions" may not check.

The procedure we want students to avoid is illustrated by the
following discussion of the system

x? + y2 = 25
¥y =X+ 1.

472
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The solution set for the linear equation is (a,a + l).
By the usual method, we obtain a = 3 or -4. If we substitute
-4 in the quadratic equation we obtain

y2 =9-—>y =3 or y = -3.

Thus we have the "solution", (-4,3) and (-4,-3). Clearly the
first of these 1s not a member of our solutlon set because it

does not satisfy the linear equation. Hence, the solution (-4,3)
is "extraneous" and 1s in fact a solution of the system

x2 + y2 = 25

y2

i

(x + 1)2

which is not eqguivalent to the original system.

Exercises 7-4. - Answers
1. (a) x° + y2 = 50
X -y = 0. If (x,y) belongs to the solution

set of the system then it must be of the form (a,a)
for some real number a, 1in order to belong to the
solution set of the second equation. The palr will
satisfy the first equation if and only if

a?'+ a2 = 50 .
‘a2 = 50
a2 = 25
a =+ 5.

Hence, the solution set of the system is {(5.,5),
(-5,-5)1.
(b) X2 - 4x + 3 =0
X - y+1 0. The elements of the solution set of

the second equation must have the form (a,a + 1). The
pair will satisfy the first equation also if and only if

[page 396]
4773



Lé7
a® - ha + 3
(a - 3)(a - 1)
a=3 a=1.
Hence, the solution set of the system is ([(3,4),(1,2)}.
((-3,2))
X2 - y2 = 0
X +y = 0. The elements of the solution set of the
second equatior must have the form (a,-2). The pair

will satisfy the first equation if and only if

a2 _ a2 _¢

Since this equation is satisfied by every real number
2, 1ts solution set is the set of all real numbers,
Therefore, the solution set of the original equation
1s the set of all pairs (a,-z) where a 1is any real
number,

[('%:-4),(2:3.)}

y = 2x2
Y+ 1= 2x, The elements of the second equation must
have the form (a,2a - 1). The pair will satisfy the
first equation also, if and only if

I n
o O

2a - 1 < 232

2a° - 2a + 1 = 0
a - 2% v =4
H .

But this equation is not satigfied by any real number
2. Hence the solution set of the system is the empty
set. (Note: When the solution set is not restricted
to real number a, it is not the empty set, and the
solution set contains complex number palrs.)

(=12 + VB1,-2 + /F1),(-12 = V41,-2 - V/11))
{(4,6),(-4,-6))
((-2,6),(-12,1))

[pages 396-39?]
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(b)

g\ po1UtyOn set s the set of all pairs (a,a) where

5 gy TRgl pumber.
2 e vy R

{(\2;3) /‘, )}

fflf\ 503Ut4°n set is the set of all pairs (a,a + 1)

WﬁQ{e A 1y any real number.

((\ﬁ’s)] A Lo
2 ! ! (3,9)
¥y 7 X — m
Q% < ¥ 7 <3 hag the i /.{
s O\ytion g8 ((339),(-1,1)) T s
N /
1 ZES
e |
X
xJ = S
x Y9 < 3 has the i N
%Nbbv s8¢ Tor the j:j,,__is y ‘k~L4__
é%lution 8%¢ when ~— N '\
/é}\% memhef& are re- T
?tr¢Qb6Q o peal :::,pa—_/ A
MyPars . Ogherwise, 4 L 1 Xy=9
Phg doluplon set is S ]
WA PR Wss Rl 5
i(&/\/e\\&\\, 2 2 ) ’ .~: R 43(_3_(_
GABR 524 ) NS <
’ ~+—fxy=9 N
TN
B s SR S
\M/N‘:E . ,
475 1T a L
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(d)

(1)
(&)

k69

x2 4 uy° = o5 RN 5 y4 | ¥ |
- ~-3(x - L R A I |
Y 2 -_ -B-(X 3) x+4’1;25 g ‘.‘y\J §~*
has the solution set _ 7 . 51“§£f\3
(3,2) ‘\“\J"”
((3,2)]. ~Llo
X
N //
Xy - 2x + 2y + 4 =0 B v o
x -2=0 1t:I\IJ
220 |k
has the solution set y
{(2,b))] where b is - — {{(22) —
any real number. >
I S T e ol_l_l_ X
_____ — ) S N S
- I -
*

The line intersects the cirele in two points.
The line intersects the pair of lines in two points.
The line intersects the parabola in one point.

The graph of the first equation x° - y2 = O 1is the
grabh of x +y =0 and X - y = 0., Hence, the graph
of the second equation is the same as the graph of
x+y =0 of the first equation.

The line intersects the hyperbola in two points.
The line and the parabola do not intersect.

The line and the parabola intersect in two points.
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‘will satisfy x2 = y + 3,

(h) The line intersects the circle in two points.
(1) The line intewrsects the hyperbola in two points.

(j) The line is the same as one of the palir of intersecting
lines,

(k) The line intersects the byperbola in two points.
(1) The two graphs have infinite many points in common.
(m) The line intersects the parabola in one point.

An equation of a line through
the point whose coordinates 4 7

{
t

—

are (0,-5) 1is, TbeY e

-y =mx - 5. \ /lq,/f
The solution set of this : \ / o
equation is (a,ma - 5) N
for some real _a and m, \ 7
the coordinates (a,ma - 5)

&

Y

if and only if,
a® = (ma - 5) + 3

A q
[

i\d\{

a2 -ma + 2 = 0.
The condition for the line ¥ =mx - 5 to be tangent 1s that
the roots of a2 -ma + 2 =0, a quadratic equation for a
must be equal. Hence, the discriminant must be 0. Then,

m® - 8 =0
m® = 8
m =+ 2/2.
There2w111 be two lines passing through (0,-5) and tangent
to X =Yy + 3, namely, '

y=2«/—§'x-5
y=—2~/_2—X—5
477
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5. An equation of a line whose
Slope Is 2 is y =2x+ b
the solution set of this
equation is (a,2a + b) for
some real a and m.

The coordinates of (a,2a + b)

will satisfy x2 y2 = 16, \ AL
if and only if _u““_‘?_ ______ Y| x*+y*=16 1
a® + (2a + b)2 =16 w AT TR T 1Y
e N “'“'Z‘r—“
a2+~4a24-4ab-+b2 = 16 “'bf""""“““'“'\{‘7
5a 4 bab + b2 -16 = 0. > /
The coordinates for the N B 171 /%%"5‘"
line y = 2x + b to be i;\\ 1L a4l
tangent i1s that the roots -f,*<¥f§§>>_,f<f{;a(.w
of 5a® 4+ kab + b2 - 16 = 0 : iv
must be equal. Hence, the B e s el et et 2 B e
" discriminant must be O. “
‘Then
16b2 - 20(b2 - 16) = 0
b2 = 80
y b =+ 4 /57
There will be two lines with slope 2 tangent to
x° + y2 = 16, namely,
v =2x + 45
v =2x - /5,
6. If the line 1s tangent to the circle, then the system
y=mx + k

x2 + yz = r2 must have a single element in its solution °
set. The elements of the solution set of y = mx + k must
have the form (a,ma + k). The puir will satisfy

x2 + y2 = rz, if and only ir,

a® 4+ (ma + k)2 = r°
a2 + mEa2 + 2mka'¥ k2 - r2 = 0.
478
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(1) (1 + m2)a2 + 2mka + (k2 - r2) = 0.
The condition for the line whose eguation 1s ¥y = mx %
be tangent to the circle whose equation is x2 + y2 - r2
is that the roots of the quadratic equation for _a must
“be equal. Hence, the discriminant of the quadratic equation

must be zero.
(2mk)@ - 4(1 + m?) (k2 -

r2)
42K - 4(k2+-m2k2— 2 - mer®

j= 0

24 =ir'\/l + m2.

7-5. Other Systems.

The time spent on this Section 1s probably best spent in
using graphical methods for finding the solution sets ~nf both
systems of equations and inequalities. This affords a wonderful
review of Chapter 6 and is usually quite enjoyable for both N
students and teacher. Here the teacher might suggest that Ehe

students write systems of equations ¥ A '

whose solution sets will gilve a

------------ Christman tree, a Jjzck-0'-lantern,
aﬂboat, and many oiher interesting
figures. Another suggestion is to
sketch a solution set (as show here),
then ask the student to set up the
equations (inequalities)of the system.

479
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7 .
Exercises ‘\$/ - W
1. ”KQ/\,«loo\o 24 x -20 =0
bx 7 ' 4 20 ~ is e2quivalent to [ux - y2 + 20 = 0.

This sff\ﬁ‘n £yy Py written as, (x+5)(x - 4) =0
| | bx - y2 4 20 = O,
The soﬂ-\\h}gn %eb QAf the first

equatj,pk\ #re Of the forpy s S S Yt S TR e S
(-S,b) N y(li,v) for gome h -
real P\ Tb@% e elepents T 5\ o

7
Y aupdyy, 8 * Zs
of the% WIRe7 0 Seg of INRyny B
Ux -~ y \ QO N Os if and ‘“(_50) 42 _4_‘:#\
N

only jf* Y78) ~p2 + 20 = 0 =
R B\
or u(’”/bﬁJ(%,o i \ \ET‘(“(—‘}'T&T:
S AN /%“_
Hence, \/ sty set of . 4 1
the s/ Y 15 ((55,0),(4,6),(%,-6)).
2. %2 l{\/ ~ o0 x? 4 uy® = 100
2V2 = S“ b %*2 is equivalent to x2 4+ uye = 100

' 2
hence, §1\:7/ of Aereq palr paving tiie form (a,y 100 - a )

will S/Eiffy boﬁh equations for any real number a. Two
ellipg/§ Jhiﬁh 09 yeide, | .
3 22 W0 x2 4+ y? = 20
%x:) 2% %y? is €quivalent to x2 + ye = 6
\
by 111/\ toyp8tion a =1 b= -1
2
X%\yg‘zo~x ~y2+6§0
. 1% =0
hence, J“V leimh set is the empty set. Two circles which
are CQ/Q\/ytb&Q,
480
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x2 + y2 -25=0

y2 - x2 -2x -1 =0 if a=1 b =-1 1is equivalent to

x° & x-12 = 0 (x + 4)(x - 3) =0
2 2 . 2 2

X +y -25=0 is equilvalent to X +y -25=0

hence, the solution set ((-4,3),(-%4,-3),(3,4),(3,-4))
geometrically this is two intersecting 8traight lines,
intersecting the circle at four distinct points.

x2 - 5xy + 4y2 0
Xy 1. Since no ordered pair with first
element zero satisfies the second equation, this system is
equlvalent to the system x2 - 5Xy + 4y2 = 0

Il

y =%

1

The solution set of y = Z is of the form (a,%), therefore,

it 1s a member of the solution.set of the system, if and only

Il

ir a® - 5a(%) + EE 0
a

a.)‘L - 5a2 + 4 =0
(a® - 1)(a® - 1)

(a-2)(a+2)(a-1)(a+1) =0
hence, the pair (a,%) belongs to the solution set, if and

Il

0

only if a =2, a=-2, a=121, or a = -1. Hence, the
solution set is ((2,3),(-2,-3),(1,1),(-1,-1)).

(a) ((+10,V8),(v10,-8),(-v10,v6),(-V10,-vE))
() {(/3T7,5),(~/37,5), (4,2),(-4,2))

() ((H,/B),(1,-/B), (=4, /5), (-4,-vB))

(@) ((1,-2),(-1,2), 3422 (- 2B, ¥8))

(e) Empty set if considering only real roots.

((2’31)’(2"31)ﬁ('2:3i)s('2,-31)]
(f) {(1,0),(-1,0)) 181
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475

(&) (3,-1), -3 102,45) (- v2,503))

(h) ((4,1),(-k,-1),(2,2),(-2,-2))

(1) ((5,3),(5,-3),(-5,3),(-5,-3)}
(3) Uz2,-2),(-2,2), (33,143, (23, 43,

(k) ((2,-2)(3,-3)}

(1) ((1,2),(-4,2),(4,-2),(-1,-2))
(m) ((6,0),(-6,0),(0,6),(0,-6))
(n) ((1,1),(~1,-1),(1,0),(-1,0)}

T. The solution set of each system is the intersection of the
solution set of each of the component equations.

(a) (b)

¥y
7 KX
/’47'/’/§7 KX B
P e K
A N 22
A \\\ > {/ /7/ . >
4 NN GLPY X
4 QI ] .
/] A oy
A, //Arz// , 4//I >9‘ B
XA
(c) (d)
WY aa
1AL
4 D \\ N AN /'////,, i “'I?"L‘Qm
v, \\\\\ \\\\\Q\/ ,/'/S}//oj.ution ae N
77 NN\ NN\ 70 - N
I SNNNNNNNNWN\54 ,
YZNNNNNWNNNNNN\Z28 :
:7//\\\ NN Z ] X
17 NNNNNNNNWNV AR N WIS
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Y N\ 2280 ~
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7-6. Supplementary Exercises - Answers
1. (a) [(%-1)]

(0) (1515

() ((22.20))

(a) ((3:8))

(e) 'Empty set ' e

d+3b_2d - 3b 4

(£) {(%(2 + a)’3(2 + af)}

\;“T(QV +-3rw 2vs - 3W)}
ST + 1 7 sr + 1

ed - fb af - ce
(n) {(ad - cb’ad - cb)]

¢
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2. The solution set of each of the systems are the number pairs
which are coordinates of the points in the dotted region.
This is the intersection of the solution sets of the component

inequalities.
(a) (b) -

y 4 y ¢ . J l/
NN \
SRR g
}E\ 'Qk\'& \::\

NN o N
Q‘\ Q\\ 4 . :‘ QX
T N
12274 A
1A% NN
A
VAN VASY.
(c) " (a)
y By
L1
\ =
> N 4 tH 11
AV k:
’/ A AE
- > A //'[5:
Va4 V. ViV
4 4 N V1 | 44
/ h .e B pe Yy
» a7 NN ' /ﬁ::__ tee b4
N ' t/t-;
f’/rllllllj i = g = ] e S g
e ; £) 1 z
(e) Ly [ | ( NJsitizbigud 1 /1
\l I f_‘;‘:.;.. SO B
S : HRANED|
‘ N .
L ! H
| 1 fe3t
—
1
> -
N
o " '» £ ! \
T 1T 11
[page 40T7]
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(1) ,
Y /
of
:/ Solution set
;./‘ is null set.
?,\« ! | R
\I7}'+/I v"‘-} X_ —bO*OK
S / L6347
~L |/ 2k
- v
// —
[
7l
(3) | Null set. Complex roots:((21V6,-1V6),(-21V6,1V6))

(k) | Null set. Complex roots:(( 31V 15 4\/ 0) 31\/ ; 41\[ 0y,

R o

)

1) (R, 0, (30, ﬁ) (- V30,330, (. 3133_—0,-‘1@)1

(
(m) ((5,-5),(0,-10)]

(n) ((2,3),(-2,-3),(1,-1),(-1,1)}
(

(

o) ((0,-5), (+2\/€1) 2\/_1)]
p) ((2,8)5(-2,- ),(V2,V2),(-Ve,-V2))

[page 408]
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*3.

‘ 1
((I) {(1:‘4):("1:4):‘(7?:'3\/—2_):("_‘\/—;21:—3\‘/_5)]
(I‘) {(01'6):(‘\/-1'-_1:5):(“"\/1_:[:5)]' ’

() 1(5.5),¢5,-5),(5-5),¢55)
(8)  €(1,4),(k,1)) |

(u) ((-1,1)]
(v) t(-;—f 12f) - BV3,3E V), (BY5-EVE),
¢ B V5.-3/5)) “

(W) {( '\/EE:%'\/ '3%):(‘ A/ '3'32?:'%'\/%)}
(=) ((1,-4), (2.8))
() ((4,2),(3R-3)

The solution set of =
k. The pair belongs to the solution

for real _a, _m, d
set of the systen, Yy = x2
y=mx+k
if and only 1f,
ma + k =
a® - ma - k = O. u
For the line whose equation is ¥ ; mx 4 k to be tangent to

the conic whose equation is ¥y = x%, the discriminant of the

equation .a2 -ma -~k =0 for a must be O. Hence,

m2+llk==0

m2 = -luc

=+ 2+/-k, for real m, k <O.

y=+2+/-kx+k, k<O, is tangent to y=x2.

4381
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Tllustrative Test Questions

Find all the ordered psirs (x,y) such that the square of
the first 1s one more than three times the second while the
square of the second minus the square of the first is one
less than five times the second.

Find the solution set of the system |x2 + 2y = 19
2x - y = 1.

The ordered pair (6,0) belongs to the solution set of the
statements;

(a) x? + y2 = 25, (&) x=y - 6.
(b) x° y2 < 25, (e) x+y= -§.
(e) x2 + y2 > 25,

Which of the followlng systems has no real number pairs in
its solution set?

(a) x2 - y@ =16 (a) x=0
| 9x° - 25y°= 0 x2 2 y° =1
(b) | x =y (e) [x% -y%= 36
x2 4+ y2 =25 . x2 4+ y2 =

(e) 4x2 + Hye = U
ox2 + Uy? = 36
A choice of a and b which will eliminate y2 from the

equation a(x2 - 2y2 + 2x -;§2'+ b(3x2 + y2 -X ~-2) =0 1is:
(a) a= 3, b= 2, (d) a=7, b= 2.
(b) a=-1, b=-2 (e) a=0, b= -2,

b = -2,

(c.) a= 1,
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6. Which of the following systems are equivalent to the system
{5x+14-y—3=0

X + 2y = 0,
(a) | -6y =3 () [v=-3
X+ 2y =0 x= 1
(b) Bx + 4y - 3 =0 (a) x(5% + by - 3) - 2x(x +2y)=0
(5x+ 4y -3)+ 2(x+ 2y)= 0 T+ 2y =0
7. Determine whether or not the following systems are consistent:
(a) X = y2 (a) x° + by® =
x+1=0 x° - y2 =9
W) [y =x° (e) [x®- g2 =1
v = x° + 6 x = 2y°
(¢) 4x2 & 2y2 =0
2x2 + y2 =0

8. Show graphically the region in the Xy-plane which satisfies
both of the following-inequalities: '

2

2 2
%6 + %6-3 1, and x" + y2 2 9.

9. Sketch the graphs of the equations in the following system
and label the intersection points of the two curves with the
letters Pl, P2" P3, cee o Uée as many letters as there
are intersection points. You need not find the coordinates
of the intersection points.

2
X=y +1

x2 + y2 = 25.

439




lo.

. ll.

12.

483

For what values of k will the system of equations
3x + by = 12
bx + ky = 16  be dependent.
i

(a) None (a) T
(v) 3 ‘ (e) All values.

16
(c) 5
The solution of the system of inequalities, x2 + y2 < 5

2
2" <y
is represented by which of the numbered regions in the
accompanying figure? o JII I
. 3
‘ y

I
(2) (-1,2) (1,2)
b II
(b) ¥ o/ _X¥

I I

(¢) 1III —r p—rt >

| =50 ) X
(a) 1v
(e)" R x

Which of the following systems 1is equivalent to any system
of equations in two variables whose solution set is the single
ordered pair (p,q)? '

,

(a) X+y=p (a) Jx-vy=p
xX-y=gq (x+y =24
() [=x=0p () [x®=p°
= q y2 = o
(c) x=9q ‘ b
{ y=p

490
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13.

14,

15.

16.

An ordered pair of numbers with first element equal to p 1s
in the solution set of the system X -y=0

{x +"2y2 -3=0
if and only 1if,

(a) 25B=p? (@) /3-7p=2
(0) ~/25E =0 (e) 3p2 -3=0

(¢) 6 -2p=0p

For what value of k will the lines whose equations are
X+ 2y=3 and (k+ 1)x+ (k- -1)y = U
be parallel?

(2) 2 () 2
(v) 121 (e) 3
(c) 2

If a system of equations consists of a linear equation and a
quadratic equation, how many pairs (x,y) does the solution
set contain?

(a) O or 1 or 2 (d 1 or 2 or 3

(b) 1 or 2 () 0 or 1 or 2 or
infinitely many.

(¢) 2

Which of the following describes the graph of the solution
set of the system |xy =0
x = 07

(a) The point (0,0)

(b) The x-axis

(c) The y-axis

(d) The x-axis and the y-axis.

(e) There 1s no graph because the solution set 1s the empty
set. S
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What are all ordered pairs (x,y) 1in the solution set of
the system x2 + 4y2 = 16
y2 = Ix 4+ 4
(-16,-21 V/15), (-16,21/15), (16,21 +/15) , (16, -21 V/15)
(0,2),(0,-2).
b) (-16,21/15),(-16,-2i./15),(16,21 ,/1I5),(16,-21./15).
(-

(
(c 16,21/15),(-16,-21 /15),(0,2),(0,2).
(
(

(a)

S

a) (o0,2),(0,-2).
e) (0,2),(O,—Q),(Q,O),(—?,O)

How many ordered pairs of real numbers are there in the

solution set of the system {x2 + y2 =T

x2 - y2 = 17
(a) © (d) 4
(b) 1 (e) Infinitely many.
(e) 2 '
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7-8. Illustrative Test Questions ~ Answers
1. ((1,0),(-1,0),(5,8),(-5,8)]
2. ((-7
3. c
4. (C): V) \“-‘)
5. (D)
6. (a), (v), (c)
7. (a) inconsistent "over the reals"; consistent "over the
complex".
(b} inconsistent
(c) dependent
(d) inconsistent "over the reals"; consistent over the
complex".
(e) consistent.
8. 9.
\
.1J y
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ey
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10.
11.
12.
13.
14,
15.
16.
i7.
18.

(c)
(e)
(b)
(a)
(e)
(e)
(e)
(e)
(a)
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Chapter 8

SYSTEMS OF FIRST DEGREE EQUATIONS IN THREE VARIABLES

8-0. Introduction

Systems of flrst degree equations arise in many branches -of

mathemati- 1d science as well as in many modern theories of
econon ' 3 & business problems, partlicularly those concerned
with 1in : and production questions. The geometrical signifi-

cance of the subject 1s emphasized by our presentation of the
geometry along with the algebra of the problem.

With the current use of computing machines to solve engineer-
ing and.scientific problems, this subject has become one of the
most important branches of applied mathematlics, Every day, indust-
rial and research organizations must solve systems of first degree
equationsg, -some of them with hundreds of equations and hundreds of
variables. A thorough understanding of the simpler cases 1s there-
fore a necessity for any one hoping to take almost any kind of
mathematical Job in industry or scientific research.

T'.e central problem studied in thls chapter 1s an algebrailc
one: under what cilrcumstances do two or more equations in three
variables with real coefficients have common solutions, and if
there are common solutions, how many are there and how are they
related to one another? Because we restrict our attention to
first degree equations with real coefficients having only three
variakles, we are able to translate the problem into geometric
language. This translation makes it possible to cast our results
in the form of statements about planes in three dimensilional space
in such a way that statements about common solutions of the equa-~
tions become statements about configurations of planes and their
intersections. The inslghts gained 1n this way are perhaps most
strikingly illustrated by the diagrams in Figure 8-9b where the
many types of intersection and parallelism of planes are used to
de ‘cribe the typetc of solution sets that may be expected when a
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system of three first degree equations in three variables is
studied. In this presentation, Section 8-9 gives cases where
there are solutions, and also gives cases where the solution
gset is empty. Although it is not essential that the student
sinderstand all these cases, some students will enjoy the
opportunity to see a classification of this kind. Thus, thcse
students who learn to handle the ideas presented in discussing
the correspondence between the geometry and algebra of these
(o uther) systems of equattlons will benefit from the abillity
i walize the geometry. If they go on to the study of mathe-
matics at college, they will find that the development of this
ability gives them real advantages.

Degrees of Freedom

One-of. the basic ideas that will throw light on the approach
to the problems studied in this chapter is the concept of degrees
of freedom. An understanding of this concept will improve the
teacher's intuitions about all the problems discussed here. (For
a more sophisticated treatment &f this question and of linear
dependence, see Birkhoff-MacLsti¥:, Survey of Modern Algebra,

p. 166ff.)

A point in space has 3 ¢ rdinates (x, ¥y, z). It is said
to have 3 degrees of freedo:- since each of the variables may be
assigned arbitrary values. Ag -ach of x, ¥, and 2z assumes all
possible rzal values, the poin: (x, ¥, z) assumes all pussible
positions in space. If, howeve., the values of the variables are
consStrained to satisfy a single equation (nere an equatior of first
degree - the equation of a plane), the number of variables that
may be assigned arbitrary values is reduced to 2. The point now
has only 2 degrees of freedom and 1s constrained to remain in
the plane whose equation 18 given. We say that the number triples
in the solution set of the eguation can be described in terms of
2 parameters. (This case 1s treated 1n the first part of Section
8-%, but the word parameter is not used in the text.)
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If 2 first degree equations are given, there are 3 possibil-
ities: ‘

1. In the most interesting case there are points (x,y,z) whose
coordinates satisfy the 2 -equations; the 2 equations im-
pose 2 independent conditions on the point, and only one

variable may be assigned arbitrarily. The point (x,y,z) now
has only one degree of freedom. The number triples in the
solution set of the system of 2 equations can be described
in terms of a single parameter. The point is constrained to
remr 't on & line--the line of intersection of the 2 given
planes. -

Section 8-8 develops methods for describing the line of
intersection in different ways, depending on whicn variable is
assigned arbitrarily (which variable serves as parameter).

2. In the second case, the 2 equations are inconsistent. They

represent pz-allel planes (discussed below and in starrsd
gection 8-7), and no number triple can satisfy both equations.
fwere there 13 no point that 1s common to both planes.

3, 2. the third case, the 2 equatlions represent the same plane,
=nd we have actually only 1 condition on the coordinates of
palnts in this plane. Again, the number triples in the solu-
t.ion set are described in terms of 2 parameters. (This
cese 18 also discussed below and in Section 8-7.)

It a third first degree equation, consistent with the first
~tvo an¢ independent of them, is'given, an additional condition
‘i@ lmposed on the number.triple (X,y,z). In this case, no variable
fEEZ,EE chosen arbitrarily. Tiw# coordinates (x,y,z) are completely
Jeteérmined, and the point (x,;;z) is the single point of inter-
yeCct’..n of the three planes. T™ils 1s one of the cases studied in
Secticon 8-~9. The cases in whi.n the systems are dependent reduce
tc ans: of the two cases studiec above: a line of intersection (one

degmee of freedom)--one parameter, or a plane of intersection (two
degewis of freedom)-—two parameters. If the system is inconsistent
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(and this can happen in a variety of ways, as illustrated in
Figure 8-9b), then there is again no point that is common to
the three planes.

Throughout Chapter 8 the manipulations that enable us to find
the solution set for a system of equations are justified by the
fact that the glven system 1s consistently replaced by an equiva-
lent system. The new system 1s equivalent to the old because the
new equations are derived by taking linear combinations of the
expressions defining the given equations. Hence, the planes defined
by the new equations pass through the intersection of the given
planes; when we have descrilbed the solution set of the new equations,
we have also described the solution set of the given equations.

General Comments: An Outline of our Procedure --Suggestions to

the Teacher.

We give here an outline of our procedure in this chapter and
an indication, in certain parts, of teaching techniques that may
make the presentation easier or of aspects of the problem that are
not developed in the text but may be useful for the teacher to knopw.

The Purpose of the First Three Sections (Sections 8-1, 8-2, 8-3).

The first three sections are included in order to establish
our basic geometric-algebraic correspondence; nanely, the theorem
_that the equation of a plane is always of first degree, and that
a first degree equation always represents a Plane. There are
several points that should be made here:

8-1. Comments. T:e Coordinate System (Section 8-1)

The coordinate system used is a "right-handed" one. This is
an arbitrary choice that 1s made throughout this book because of
the widespread use of this system in physics, vector analysis, and
other courses in mathematics and its applications.

What do we mean by a "right-handed" or a "left-handed" system?
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The difference between these systems may be expressed some-
what picturesquely perhaps, as follows: In a right-handed
coordinate system, a person impaled on the positive Z-axis and
looking towara the XY plane views'it Just as he always did in
plane geometry--the positive X axis positive to the right of the
positive Y axis. In a left-handed system our observer on the

positive 7 axis, on looking toward

the XY plane sees the positive X Y
Y axis extending to the left of the

positive Y axis.

N /~

X

The following sketches i1llustrate a varlety of the views an
observer may have of each type of system.

Left
Handed
System

[pages 409-411]
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Exercises 8-1. - Answers.
1. ‘See graph.
2 Point not plotted.
3 Seeﬁgraph.
4, Point not plotted.
5 See graph,

Point not plotted.
See graph.
Point not plotted.

See graph.

2 W o N O

"~ 4 not plouied.

’ 500
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11. (a) On the yz plane
(b) On a plane || to the yz plane cutting the x axis

gt 2.
(¢c) On a vlane || to the ; plane -utting tin x axis
at -3.

12. (a) On the xz plane

(b) On a plane || %2 the xz plane and cutting the ¥
axils at 3.

13. (a) ©On a plane || =o the xy plane and cutting the =z
axis at 2.

(b) On a plane || to the xy plane and cutting the =z
axis at -2.

14. A plane || to the 2z axis and cutting the x and ¥ s
axis at 4. :

8-2. Comments. The Distance Formula in Space.

In teaching the distance formula in space, many teachers have
found that a box or other model constructed with pieces of hard-
ware, cloth, window screen, or ordinary cardboard is very helpful.
Even the corner of a room can be used to assist the student to
visualize this, an? other parts of geometry in space. The indus-
trial arts teacher can be very helpful in providing large drawings
for display purposes; and it may be possible to secure film strips
that will show figures in three dimensions.

Exercises 8-2. - Answers.

1. 4J/2 6. 29

2. 13 7. 3

3. 8. 129
I, - . Vi1
5. 12 1c. V1IF

[pages 4I1-414]
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£ “wmments. The Cory. -ondence Be'ween Planes and First
segree Equations ir - . Variaples. '

In p:.+ving the theorem establishing the correspondence between
planes in space and first degree equations in 3 variables (Sec-
tion 8-3), we did not have available the customary techniques of
solid analytic geometry for deriving the equation of a plane. Thus,
instead of viewing the plane as the locus of polints on lines per-
pendicular to a given line through a point on that line, we have
adopted a different definition., We have viewed the plane as the
~locus of points equidistant from two given points. This defini-
tion enables us to derive the equation of the #iapé with no analy-
tic machinery beyond the distance formula. éfﬁée“gur defini~
tion embodies a property that characterizes a plane, the.
equation we derive represents precisely the plane with all the
properties studied in geometry. 1In particular, a pair of distinct "...
planes are either'parallel or they intersect in a line.

If the teacher is pressed for time, it 1s suggested that the
proof in Section 8-3 be omitted. The student should then accept
without proof the theorem that every plane in three dimensions
can be represented by an equation of the form

AXx + By + Cz + D=0

where A, B, C, D, are real constants, énd A, B, C, are not all
zero; and the converse theorem, that every equation of this form
represents a plane.

Exercises 8-3. - Answers.
1. (a) 10x - 10y - 8z - 10 =20
(2) 2x - 6y- 12z + 6 =0
(c) - 20x + 4y - 82 =0
5%
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(a)
(e)
()
(a)

()

(c)

(a)

bx + by - 16z = 32
6x + 8y - 6z = -1k
bx - 8y + 12z = O

(4,0,0), (-2,0,0).
Plane has equation
x =1

Plane is parallel to -

e

YZ plane and cuts the
X axis at 1.

(0,3,0), (0, -1,0).

Plane has equation -
y=1.

Plane 1s parallel to

Xz blane and cuts the

Y axis at 1.

(0,0,0), (4,2,0).
Plane has equation
8x + by = 20
x + y= 5
Plane is parallel to
the

the X axis at %
and the

(0,0,0), (0,5,3).
Plane has equation

or

Z axls, and cuts

10y + 6z = 34
or 5y + 3z =17
Plane is parallel to
the X axils, and cuts
the Y axis at %;
and the Z axis at
17
T .

X

Y axis at 5.

k97

X =1

v

S5y+3z=17

©5,3

X

[page 417]
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3. Let P(x,y,z) be any point on the plane that is the locus
of points equidistant from R(A,B,C) and S(-A,-B,-C).
Since these polnts are symmétric with respect to the origin,
we would expect the required plaqe to pass through the

origin.
PR = PS
(x -8)2 4 (3 -B)2 + (z-0)% = (x+a)2+ (y+B)®
+ (z + 0)2
2 2 2 ‘
-2Ax - 2By - 2Cz + A€ + B + C°= 2Ax + 2By + 2Cz
+ A2 4 B2 + ¢°
4ax + UBy + 4Cz = O
Ax + By +. Cz = O

Since (0,0,0) 1is a point ‘in the solution set of this
equation, the plane passes through the origin. :

8-4, 8-5. Comments. The Graph of a First Degree Equation in Three
Variables.

The correspondence between a plane and a first degreé equation
is introduced to throw light on the algebraic problem. The ability
to draw the graph of an equation will enable the student to gain
insight into some of the speclal situations that may occur when,
in the later sections, we study the solution sets of systems of two
or three equations. In Sections 8-4 and 8-5 we try to develop
this ability to draw graphs, first for the special planes that are
parallel to an axls but not parallel to a coordinate plane (one
variable has a zero coefficient, e.g., X + ¥y = 4); second for
planes parallel to a coordinate plane (tWo variables have zero
coefficients--the equation gives a constant value for one coor-
dinate, e.g., x = 3); and last for planes that have equations with
no coefficients equal to zero. In all these casés, we consider
the trace of the plane in each of the coordinate planes.

501
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(The trace 1s the intersection of the given plane with a coordinate
' plane.) The trace, like every line, is described by two first,
degree equations, but one of these is the equation of a coordinate
plane, i.e., x =0 or Yy = O- or z = 0.

Some Generalizations About Planes and Their Equations--Suggestions

for Constructing Problems.
We are now 1in a pcsition to make certain general observations:

1. Any plane has infinitely many equations.

I1f a gilven plane 1is represented by the equation
Ax + By + Cz + D = 0,
it 1s also represented by
k(Ax + By + Cz + D) = 0,

where k 1s any non-zero constant.
The proof of this may be elther algebraic or geometric:

(a) every number triple satisfying either equation
satisfies the other; or

(b) the traces of the two planes are 1dentical.

The converse 1s also true. Equations in which the coefficients
are proportional represent coincident planes.

For if two planes have equations

Alx + Bly + Clz + Dl =0

and T=-B~=-€—=F=l{

then the first equation is k times the second, and the
equations represent the séme plane.

These results are useful throughout our algebrale study.
For example, if we have a system of two equations in which
one equation 1s a multiple of the other, we know that the
second equation contributes no information not already given
by the first. Thus, a point whose coordinates satisfy the two

[pages U417-U421]
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equations still has the two degrees of freedom that character-
ize the point whose coordinates satisfy a single equation.

This is the third case described under Degrees of Freedom for
two equations.

If two planes have equations that can be reduced to the form

Ax + By + Cz =D
where D # F

]

Ax + By + Cz F

the planes-are parallel, and there is no common solution.

Again, the proof may be algebralc or geometric:

(a) If (x5, ¥, Zp) is any number triple, it cannot
satisfy both these equations since

Axo + Byo + CzO
cannot be equal to both D and F if D # F; or
(p) the traces of the planes are parallel lines.
These two cases.are summarized in the following rule:

If corresponding coefficients of two first degree

equations are proportional, then thelr graphs

(a) are the same plane if the constant terms have the
same ratlo as the coefficients,

(b) are parallel planes if their constant terms are

not in the same ratio as the coefficients.

This information gilves us a way to recognize at a glance two
equations that are inconsistent or dependent. It &lso gives
the teacher the ablility to make up problems with great ease.
He need merely put down any left member of filrst degree and
any constant term for the first equation. For tne [irst case,
double the first equation, triple it, or transpose some terms.

: HJO
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For example:
Start with the equation 3x + 5y - 2 =7
Double the equation and transpose the y term
6x - 2z = 14 - 10y. '
The resulting equations represent the same plane.
 For the second case, copy down the same left member for the
equation but make its constant term different:

3x + 5y -~ 2 = 12.

This equation represents a plane parallel to the first.
A more sophisticated version of this procedure involves doubl-
ing, trebling, or changing the sign of the left member while
taking care to do something else with the constant.

4. Conversely, two planes meet in a line if and only iﬁ their
corresponding co=2fficients are not proportional.
Again, examples of this sort can be invented in the time it
takes to write them down: take any first dégree equation as
the first, and change the coefficients for the second one
somehow, so that they are not proportional to the first ones.
Having accomplished this much one is safe. Any constant term
whatever will do. New coefficients not porportional to the
first ones can be obtained in many ways. For example: Kkeep one
of them the same and change some other oné; or add one to each

of them; or change some of the signs, but not all, etc. We gilve
a collection of such equations:

3x + 5y -~ 2z 7
3x + 5y + 2z 7
kx - 5y + 22 = 5, etc.

The four results stated above may ve made the basis of a pre-
liminary examination of a system of equations. If we can tell by
inspection that two of the given equations are inconsistent, we
know immediately that the system has no solution. If we can tell

" by inspection that one of the given equations is dependent on the
..others, we know that the number of degrees of freedom is larger
:than would be in the case 1f all the equations were independent.

[pages 417-421]
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+

Exercises 8-4. Answers. z

1.a) (b)

/ x - 2y=0

X
tc) d)
5 (
X v
y+2z=8
X
YA
Y
2x-2:=0 ' -
X
508
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2x +:y =6

A(3,0,0). Also on the Z
graph are :
(3,0,1), (3,0,2), (3,0,4).
* B(1,4,0). Also on the
graph are
(1,4,1), (1,4,3), (1,4,4).
c(2,2,0). Also on the
graph are
(2,2,1), (2,2,3), (2,2,4).
D(0,6,0). Also on the
graph are
(0,6,1), (0,6,2), (0,6,3).

50_9
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Exercises 8-5. - Answers.

1.(a) tdy

/1
7"/..—-'—~><+z=5
Vil
L4 Y
AR
Xx=-2y=5
x-2y+z=5
X
(b) Z (e) Z
Z2=5
© =0
) Y
*
B / Y
X X =5
X+ Z=5
4x-2y+z=0
() z (f) Z
x -2y=5
Y
X =4
—-2y-z=5
X +\
i <:3 « 5X+4Y =20
x-2y-25 510
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Q¥ (i)

Y
4 l
o
e NN
;’ : 5 =0 N \\
P 3X‘-2Y+TZ‘ \\
¢ Ny X-2y-2:0
'n) (n
Z
=
Y
— Y %
(0,3,0) P
x \\o
X, Y, 2. .
“s5*t3tSs

511
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8-7. Comment.

The geometric information pressested in Section 8-4 and 8-5
is sufficient for the minimal purposes of thz= chapter. Section 8-7
presents additionel geometric inTormation toat will throw light on
the later work and will be of in: :rezt to those students who enjoy
three-dimenslonal studies. If ti:z izacher finds time to include
this material, and if some students ZInd the graphing of space
figures excessively difficult, i mix— be helpful if such assign-
ments are made to groups of 2 e [ students. If Section 8-7
1s omitted, the teacher should be == to teach the material pre-
Sented in Examples 2 and 3 of the z=ction. This is covered by the
discussion summarized in point (3 above. (Sees page 491.)

Parametric Representation of the Line of Intersection of Two
Intersecting Planes.
(a) The line intersects all the coordinate planes.

Once we have disposed of systems of 2 equations in 3
variables in which the planes are coincident or parallel.
we must undertake the more formidable problem of repre-
senting the line of intersection of planes that do inter-
sect. Actually this line 1s represermted by the two
equat’ons of the given intersecting planes; but since
we know from our discussion above that the point describ-
ing the line has a single degree of freedom, we Seek a
represSentation of the line in which the three coordinates
of the point are described in terms of a single parameter.
We seek to describe the coordinztes of any point on the
llne a8 functions of a single wErisble--this 18 the vari-
able to which we can assign =zbrtrary values in finding
as many points as we want in the solution set. Our mani-
pulation of the given equatioms is zimed at expressing
all three variables in terms of one of them So that the

512
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variat. that 1o arolitrary 1ls clearly indicated. In the
nori sr. lLal case, ““hen the line of . .—z2rsectlon cuts =1l
three cordinzz-~ —lanes, any one o. = = threce variables
may be -nosen arbitrarlly, so that . =ve are three <ifier.
ent par:metri:c rTztresentations of th. ilne, one in whi:zh
x 1s wuroitrzry, one 1in which y 1: _rbitrary, anc one
in which 2z <= arditrary. To derive =ach of these, ws
find the equazion: of a pair of plames through the line,
each equatlion having in 1t one variable with a zero co
efficient. Tiis is achieved by eliminating each variable
in turn “rom the given equatlons, and comblining the re-
sulting three equations, two by two. TFor example, an
equation containing only x and v (the coefficient of
z 1s zero) 1s combined with an ecuatlicn containing only
X and 2. ©8Since x and y are Iz -»o first equation,
¥y can be expressed 1n terms of x. S:nce x and =z

are in the second equation, 'z can be expressed in terms
of x. 1In this case, x serves as parameter. (Note
that geometrically the planes correspanﬁing to equations
that have a single zero coefficlent are parallel to an
axis, e.g., Eguation 8-84 is x + 3z + 1 = 0; this plane
1s parallel to the y-axis.)

The line 1s perpendicular to one of the coordinate planes.
iIf the line w= seek to describe 1s perpendicular to one
0 the coordinate planes,the situation 1s special. For -
example, 1f the 1ine 1s perpendicular to the XY¥Y-plane,
the plane that pmsses through 1t and 1s parallel ©z the
Xx-axls 1s also marallel to the XZ-plane. Simile* ir,. the

r.ane that passes through the given Iine, paraliz2l to the
7-axis, 1s also parallel to the YZ plane. Iné==d any
=Zane That passes through the given line 1is parzilel to
thoe z-axls. Thuas the coordinates of a point on~the line
hazve & uwery special parametric representation, —amely,

x = afy and = have zero cosfficiemts]

y = b(x and = have zero ccefficients)

z 1Is arbitrery '

[pages 444-448]
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(¢c) Trne line is parallel to one of the coordinate planes.
Ir & simiiar way, we find that if the line we seek to
d=: ribe 1s parallel to one coordinate plane, but inter-
s 55 the other two, the situation is special. Here,
-me variabie will be constaat, but either of the others
- be expressed in terms of the third. This case is
z=scussed in Example 2 of Section 8-8.

The Methc— of Elimination

The j:z-cification for the familiar procedure used in =limina-
ting one ‘-zriable from the given equations 1s the theorem that is
1llustrate- for a special case in starred Section 8-1C. This
argument 1. the same as that given in Chapter 7 for ecuations in
two variab_=s. It establishes the fact that the solution set for
any glven system

fl = 0,
f‘2=0;
is the sar= as for a new system
’ £, =0,
S
a,f; + ayf, = 0. (al and a, not soth zero)
or £ z second system
. i -
Eq. . aifl +oasly = o,
<
Eg. (= b f, + byf, = 0. (v, and b, not both zero)

\
The Twc hew systems are thus equivalent to the glven sysT=m.

The =xpre=siors in the left members. of Equations (1) and (2) zre
limesr cozminations of f; and f,. Equations (1) and (2) represent
mlznes through the line of intersection of the planes of the given
‘cy==em 1f Zhese intersect; they represent planes parallel to the

giwven plaz=s if these are parallel; they represent the same plane

514
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if the ariginzl equations did.

planes that
8-10. (The
not coverad

509

It 1s the case for intersecting

15 studied for a specizl pair of équations in Section
teacner 1s urged to study this section, even 1f it is
1 c.ass, to gailn some familiarity with these ideas.)

Exercise- &- . - Answers.
1. X - Zu0 - 5Z = c
Inter-=2pts: (l0,0,0)
(0,—5,Q)
(0,0,2)

7 =

> Parallel to

mlans..

Line of
Intersection

[page ~+8]
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2. X - 2y + 3z = 10
x =4

Line of
Intersection -

/
NS

it
fara
(@]

[page =48]




y = -2

Line of
Intersection

X -2y+5z=10

517
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4, x+y=5
X -y=1T

Line of 5
Intersection

518
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5. X +y =5 7
X+y+2z=10
10
X+y=5
~ 4—1
1T {
- N

Line of AT L7
Intersection / A7)

x+y+z=10

6. 3y + z
x + by

[
+= O

lLine of
intersection

3X+y=g

519
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X+ by =4

%;m of
/ Intersection
X

8. 3x+y-~-2z=2

Same plane
2z = 6x + 2y - 4 '

9. z-x= 0
Ay + 2z =9

529

[page 448]




515

Line of
Intersection

24— f////

X=z-2

11. x+ 2y +2z =5
, X 42y + 2z = 5

521
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12, x+ 2y +z =8.
x -2y =0
Z
8
x-2y=0 ‘
X+2y+z2=8
4
Line of
Intersaction
8
X

' 8-8. Comments.

In Section 8-8 the equations we obtain represent planes through
the '1ine of intersection we seek to describe. Therefore when we
use the new equdations to write in parametric form the coordinates
of a point on the line of intersection, we have actually described
a point on the line of intersection of the given planes as well as
on the 1line of intersection of the planes represented by the new ‘
equations.

522
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Exercises 8-8. - Answers.

l,. x -3y -2 =11

) X -2 6 14 22
X ~5y+2z= 1
2x - 8y = 12 , y -2 0 2 4
-2y + 2z = -10 z || -7 | -5 | -3 | -1
X =14y + 6 B

¥y arbitrary

2=y -5
Check by substituting in given equations,
by + 6 -3y -y + 5 2 11

by + 6 -5y +y -5 1
2. x+2y—z='8, % ] )-L 1 -2 v_5
X+y+ 2z =0.
v 0] 2 L 6
y -2z:=8
ox + 3y = 8 z ) -3 -2 -1
A % (-3y + 8)
¥ arbitrary
!
2= §(Y - 8)
Check by substituting in the given equations.
3y +8+h4y ~y+8216
By+8+2y+y-82 ¢
523
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3.

1}.

x+y-2=5 x % 1| 2] -5
x +2y +2 =0
y+2=-5 v 0 1 3 5
2x + 3y = 5
x=2-ay+5) |z 3 |-3] | -5

y arbitrary
z ='%(—y - 5). .
Check by substituting in the glven equations.

lf+2

By +5+2y+y+5 10
By +5+by-y-52 0
ox + Uy - 5z =T 3 1 B
b4 - - -
bx + 8y - 5z = 14 %l 2 2 2
ox + by =7 ¥ 0 1 5 3
z =0
y arbitrary z 0 0 0 0
- - L
X 2y + 5
Check by substituting in the given equations.
9
by + 7 + 4y - 5(0) =T
8y + 14 + 8y - 5(0) % 14

2% +y + 3z =0,
“bx + 2y + 62 = O.

Since the second equation 1s twice the first, the two
planes coincide. Thus there 18 no line of intersectlon.

[page<426]
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6. 2x + 6z - 18y

b'd -15 0 15 30
X -32 -y = -3
2x - 10y = O ¥y -3 0 3 6
6z - 8y = 6
. x =5y z -3 1 5 9

¥ arbitrary
z = (4y + 3)
Check by substituting in the glven equations.

6
-3

10y + 8y + 6 - 18y

S5y - ¥y -3 - ¥y
7. 3x - Uy + 2z =6

6x - 8y + 4z = 14,

2 1o

519

If we divide both members of the second equation by 2;

we obtain

3x - by + 2z = 7

We can see by inspectlon that no number triple can be in
\ the solution set of both these equations. Therefore the

corresponding planes have no point in common. The planes
are parallel.
8. Sx+ly+8z=o0 x || 20 | o | -20 -40
-3X + 5y + 152 = 0 .
13x + 20z = O y 51 0 -51 -102
13y + 51z = O 6
_ 20 z -13 0 13 2
*=-13%
v = - 252

Zz arbitrary
Check by substituting in the glven equations

100 204 ?
3% - 13e b s

%%z - %%?z + 15z g 0

0]
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9. Ux - 7y + 6z = 13, 55 13 | A2 _ 3
5x + 6y -z = T. * 3% 17 17 3T
-59y + 34z = 37 v o N R
34x + 29y = 55
1 2 37 48 -11 _13%?
X = 31(-29Y + 55) 3T 17 17
y arbitrary
z = (59 + 37)

10. -10x + U4y - 5z = 20
I
2% - =y + =
x - =Y 2z 4 |
If we multiply both members of equation 2 by -5, we obtain
-10x + by - z = -20 -

We can see by inspection that no number triple can be in
the solution set of both these equaitions. Therefore, the
corresponding planes have no poixrt im common. The planes
are parallel.

8-9. Comments. Application of the Method of Elimination

The same ildea dominates Sectlon 8-9, Consider an example
studied there. We discussed the system (Example 1)

x+2y -32 =9
2x -y + 2z = -8
-x + 3y - 4z =15

and converted into the equivalent system

x + 2y - 32 =9
- By + 8z = -26
z = -2

by repeated application of exactly the same technique used in
Section 8-8: selecting two of our equations and playing them

off against one another to get rid of variables one at a time.

526
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. Even the final stage of the discussion of Example 1 is an instance
of the same process. We arrive eventually at the system

X = -1
y= 2
zZ = -2

by subtracting appropriate multiples of the last equation from the
first two, eliminating 2z, and then using the second equation to
get y out of the first. This leaves us with the last system

- given above which is equivalent to the original system. The last
system is so extraordinarily simple that we can read ou.. its sol-
ution set at a glance. ‘

A Systematic Method for Studying Three Equations in “Three Variables

The~problem discussed in Section 8-9 is the most complicated
case we conslder with three variabples--the case in waich there
are as many equations as variables. Figure 8-9b illustrates the
elght essentially different configurations formed by three planes
in space. These pictures are included only for thei— interest.
It is not important at this point that the student understand all
the detaills, '

With three planes there are four different types of solution
sets (there were only three in the case of two planes):

1. The empty set 3. A line
2. A single point L. A plane

The main business of Section 8-9 1s the presentation of a systema-
tic algebraic method for determining everything there is to know
about systems of first degree equations: whether there are any
solutions and how to find all of them. This method, "elimination",
.is applirmable to systems having any number of equations and any
number af variables. It 1s spelled out in detail only for three
equations in three variables, since this case is probably the
smallest one complicated enough to be of any real interest.

527
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Restricting ourselves to this case, we gilve examples to 1llustrate
the application of the method not only to the type of system in
whicn the solution set consists of a single number triple, but
also to several types in which the systems are inconsistent or
dependent.

This method (sometimes called triangulation) 1s attributed to
Gauss (1777-1855), the greatest mathematician since Newton. It
gives the student the basic point of view he will need if he goes
on to work in a large computing center. Its popularity reflects
the fact that it glves an orderly procedure for handling systems
of linear equations which, for many important cases, involves
substar=ially fewer arithmetic operations than other methods.
Using tm.ls method, we have the"systemlessentially solved by the
time we discover whether or not the solution 1s unique.

Relation of Method of Elimination to Cramer's Rule.

Those familiar with Cramer's rule (this is discussed in many
of the older texts on College Algebra; 1t is usually not included
in the newer texts) may be interested in 1ts relation to the method
of Gauss that we have presented. Observe flrst that, i1f the glven
equations are

Alx + Bly + Clz

1
O

A

[
=

2x + Bgy -+ 02z

A3X + B3y + C3z =D

then our "triangulation" method replaces the given system by

<Alx + Bly + Clz = Dl
A By AiCy| A Dy
y + z =
] AoBo AxCo AoDo
AyBy ACq A Dy
y + z =
L A3By A3Cs A3D3

[pages 426-1435]
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"and then by

Alx + Bly + Clz =D
AyBy £,C4 A Dy
‘ y + z =
AyBy ALy A;Dy
A,By A;64 A1By A4,D)
Ao B, ALy AoBy AoD,
z = |
AyBy ACq A B, AD)
A4B, AsCy AyBy A3D,

. The lz=st equatlion can be shown to be equivalent to

A1B,Cy A B D)
Ay [AsBx0o| z = A, [AB.D,
A3B3C, . |A3B5D;

This is one of the equations derived by applying Cramer's rule.
But for practicsl computing, the "eliminatioa™ or “triangulation"
method has the great advantage that the nature of the solution
" becomes clear at this point; if it is unique, we find the solu-
tion with a minimum of additional computation. The mastery of
" this method should be a principal obJective in teaching the chapter.

- Exercises 8-9, - Answers

1. (3, 4, 5)
2. (2, 3, 3)
3. (2, -1, 1)

529
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10.

11.
12.
13.
14,
15.
16.

The thre= planes have a lirs: in common. The solution set.
is an infinite set of tripl=s corresponding to the points
on this line, and describec by the equations.

x=22+5

y =2z + 4

Z arc.rary

(l: -1, l)
(l: 'l{ 2)

The three planes coincide. The solution set is an infinite
set of.tpviples corresponding to all the points in the plane.

('l: '2: 3)
The system is inconsistent. The solution set 1s empty.

The three planes have a line in common. The solution set
is an infinite set of triples corresponding to the points
on this lirn=, znd describ=d by the equations,

X = 22

17
y = z“

Z groitrary
(4, 6, 3)
(1, 2, -1)
The system is inconsistent. The solution set is empty.
The system is inconsistent. ‘The solution set 1is empty.
(3 3 1)
The three planes have a line 1n common. (The second equa-
tion represents the same plane as the first equation.)
The solution set is an infinite set of triples correspond-

ing to the points on this l1ine, and described by the
equations,

<=2 -7

y arbitrary
- _ 3

z2=-%

[page 436]
530 .



525

7. & % 09)
'18. The three planes have a line in common. The solution set .

is an infinite set of tfiples corresponding to the points
on this line, and described by the equations,

=1
x = (-T2 + 17)

y = #(z - 1)

z arbltrary
(%‘: - '2": l)
5 2
20. The three planes have a line in common. The solution
set is an infinite set of triples correspondlng to the
points on this line, and described by the equations,

19.

i

X (6z - 5)

+ (162 - 11)

i

y

B TS

z arbltrary

21. The three planes have a line in common. The solution set
418 an infinite set of triples corresponding to the points
on this line, and described by the equatlons,

X = %(tz + 2)
= 1.
y = 7(-52 + 17)

z arbitrary

22. The three-planes have a line in common. The solution
- set 1s an infinite set of triples corresponding t> the
points on this line, and described by the equations,
X = -7z - 10

-5z - 6

Il

y

z arbltrary

[page 437]
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23. Vitamin Content
Food A B c
I 1 3 b
Ix 2 3 5
ITT 3 0] 3
Requirements 11 9 20

If we buy x wunits of I, y of II, z of III, we want

X + 2y + 32 = 11, X + 2y + 3z =11,
3x + 3y = 0O, or x+y= 3,
bx + 5y + 3z = 20; 4x + 5y + 3z = 20,

Eliminate x:

X + 2y + 3z = 11, X + 2y + 32z = 11,
-y -3z = -8, . or v + 3z = 8,
- 3y - 9z = -24; . vy + 32 =

Answer for (af: No--Our conditions are dependent.
for (b): Conslder the system,

x + 2y + 32 = 11,
1 v + 3z =8,
6x +y + 2 = 10,
Eliminate x: X + 2y + 3z = 11,
¥ + 3z = 8,
11y + 17z = 56.
Eliminate ¥y: X +2y + 3z = 11,
v+ 32 =28,
16z = 32,

Thus z = 2, y =8 - 32 =2, x =11 - 2y — 32 =1
Answer for (b): Yes. 1 unit of I and 2 each of IIL,III.

532
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24, x+y - 5=0,
-x + 3z -2 = 0,

x+2y+z-1=

l
O

vy +2z+ 4=0.

Suppose we apply the standard procedure given in Section
8-9, if only to see what happens. We eliminate x by
subtracting apprdpriate multiples of the first equation
from others:

X+ Yy 5
y+3z -7=0,
y+z+ b
v+ 2z + 4 =0.

We have found that, in our ofiginal system, the first, third
and fourth equations are dependent; indeed

x+y-5=1(x+2y +2z -1) -1y +z+ by,

These three therefore all meet in a line. Since we were
given the fact that the system has only one solution triple,
this line must pierce the second plane in a single point.
Hence any one of the four equations except for the second
may be omitted, the line being determined by any pair of
the three planes containing 1it.

533
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Exercises 8-10. - Answers.

xX==-2
1. (a) a(x +2) + b(z-4)=0 z J‘
A-z=4
a=1, b =1; - 7

] |
X+ 2z2~-2=0 : i :
I

x+y-2:=0

(b) a(y+%4) + b(z~5)=0
a=1, b =1;

y+2z2-~-1=20

2. (a) a(x + 2y - 3z) + b(x - & +2z-1) =0
Substituting (1, 2, 1) for (x, y, z):
a(l+4-3)+b(1-2+1-1)=0

22 - b =0 ; b = 2a

Take a =1, b = 2;

(x +2y-32)+2(x-y+2-1)=0

or 3x -z =2

534
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a(2y - 32 - 2) +b(x+y+2z)=0

Substituting (3, -1, 0) for (x, y, 2):

a(-2+ 0 -2)+Db(3-1+0)=0
-ba + 2b = 0O
2a = b
Take a = 1, b = 2
(2y -3z - 2) +2(x+y +2) =0

2x + by -z -2 =0
a(x +z) +b(x -y +2z -8) =0
Substituting (0,0,0) for (x, y, z):
-83b =0 ; b=o0.
The equation 1s x + z = 0.

This shows that the plane represented by the first
equation 1s the only plane through the given line of

" intersection that also passes throligh'the origin.

a(2x -y +2 -3) +b(x-3y+U4)=0
Substituting (2,2,1) for (x,y,2)

a(l -2+1-3)+b(2-6+14)=0

0=0
For all values of a and b the plane
a(éx -y +2 -3) +b(x-3y+4)=0

passes through the point (2,2,1). ' This is Because
the glven point 1lies on the line of intersectlion of
the given planes.
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*#3. Since the second equation can be written
3(2X "_y + 3Z) = 5,

it is clear that any triple in the solution set of the first
equation (and therefore reducing the parenthesis to 1)
will not be in the solution set of the second equation.
Similarly for any triple in the solution set of the second
equation. Thus the planes have no point in common and are
parallel. '

The equation 8-10e

a(2x - y+ 3z -1) + b(6x - 3y + 92 - 5) =0
can be written
(a + 3b) (2x -y + 3z) + (-a - 5b) =0

1If this plane passes through a. point on the first plané,
we know that

2% -y + 3z =1

Therefore a+3b-a-5b=020
- 2b =0
b =0

Thus, any plane represented by (8-10e) that passes through
a point in the first plane must colncide with the first
plane. Similarly, if a plane represented by (8-10e)
passes through a point of the second plane, we nhave

(2 + 3b) (3) + (-a - 5b) = O
| 2a = 0
a=20

Therefore the plane coincides with tﬁé second plane.

We conclude that if a # 0 and b # 0, any plane
represented by (8-10e) has no point in common witn either
of the given planes. It is therefore parallel to these

la . - iy
pranes.. 536
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*4, a(x +y -3) +b(z-4)=0
Substituting {1,-1,1) for x,y,z
a(-3) + b(-3) = 0; a = -b.
Take a =1, b = -1
x+y-2+1=0 Line of

The trace of this plane Intersection
in the XZ plane is
X ~ 2+ 1 = 0. This 1line (304)
intersects the X2 trace
of

xX+y -3=0

which 18 x - 3 = 0. The

point of intersection is X////
(3,0,4). Similarly the trace

of the plane, x +y - 2z + 1 = 0, in the YZ plane inter-
sects the trace of x +y - 3 =0 1in the YZ plane in
the point (0,3,4). These points are both in the plane

Z = 4, Thus the 1line joining these 2 points is the line
of intersection of the three planes.

Exerclses 8-11. Miscellaneous Exerclses - Answers.

1. The number is 364,

2., 3x + by + 5z = a,
Ux + 5y + 6z = b,
5x + 6y + Tz = c.
Eliminate x: 3x 4+ 4y + 5z = a,
vy + 2z = 4 - 3D,
2y + 2z = 5a - 3c.
Condition: 5a - 3¢ = 2(l4a - 3Db)

or a +c¢c = 2b

3. The number is U456 or 654,
537
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4. $6500, $1300, $2200.

X=-2y + 7

5. a = T; the line is given by ¥ arbitrary
zZ=y -1

6. 5 cu. yds., 6 cu. yds., 8 cu, yds,

7. 12 dimes, 8 nickels, 20 penniegS.

8. 75 units, 80 units, 50 units,

9. 12 days, 8 days, 6 days.

10. 8 hours, 4 hours, 8 hours,

11. AS = AR = 43 BS = BT = 5% ©F = CR = 23

12, y = —x2 + 2x + 4

13. ¥y 3x2 + 2x -1

il, 160 elementary school pupils
80 high school pupils
80 adults

15, K= -8; A =50, B=20

16. Rewrite the given equation
wiT + WoQ + WaE = (wl + Wy o+ W3 )A
as

wy (T ~ A) + wy(Q - A) + w3(E - 4) = 0,

Uslng the table of scores we »onstruct the following table:

T-A Q - A E-A
e
Frank -l -h R
Joyce -2 18 -6
Eunice 3 -17 5

from which we write our system

538
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Wy oW, - Wq = 0,

: W, - 9W2 + 3wy = 0,

3w, - 17w, + 5wy = 0.
Eliminate x:

' Wyl Wy +wy - wy =0,

—10w2 + Hwa = Q,
-20w, + 8w3 = 0.
Each of the last two equatiOns reduces to
5wy - 2wy = 0
So W,y = g-=W and w, = w
2 573 173
(Equivalently, WitoWotowg s 3:2:5)

For W) + Wy + Wy = 1, we can write

10w, = 5 so wa = 0.5, Wy = 0.2’,,wl = 0.3.
Let a = number of air mail stamps purchased
f = number of U4 cent stamps purchased

g

number of one cent stamps purchased

.07a + .O4f + .01ls = 10
a = 2f

obgerve that there are only 2 equations in 3 unknowns.
However, s must be an integer less than 18 (the price of
one U} cent stamp and 2 air mail stamps) since only

the change 1s spent for 1 cent.stamps.

539
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18.
*19,

Substituting a = 2f 1n

Ta + 4f + s = 1000
we have 18f + s = 1000
s = 1000 - 18f

f = 55 1s,the largest integral value that leaves s
positive. Therefore

f =55, s =10, a = 110

Note that the problem can be soi#éd‘simply by observing
that we are to buy the largest number\bossible of 18
cent units consisting of 2 air mail and 1 four cent
stamp), and speni the change on 1 cent stamps.

Actual score is 8l1. Reported score is 63. Par is 60.
If A, B, ¢, D are the coefficients of our desired plane,
Ax + By + Cz + D=0,

we obtain three equations for the four "unknowns" A, B,
C, D by demanding that the coordinates of the three given
points shall satisfy this equation:

A-(-1) + D=0,

Al + B-(-1) + D=0,

A-(-i) + B3 +C:2 4+ D=0;

or -A + D=0,
A-B+D-=0,

-A+3B+2C + D=0,

Eliminating A from the second and third:

~-A+D=20
-B + 2D = 0,
3B + 2C = 0.
540

[pages 4U41-442]



535

Eliminating B from the thirad:

-A + D=0,
-B + 2D = 0,
2C + 6D = 0.

Hence A

Il

D, B=2Dh, C = -3D,
an answer being X + 2y - 3z +1 =0 (D = 1)

Since any other choice of D will give an equation with
coefficients proportional to these, only one plane 1is
determined.

20. A. (a) Ag + (b) HNO; —>(c) Ag NO4 + (d) NO + (e) H,,0

Ag:a = c; H:b = 2e; N:tb =c¢ + d; 0:3b =3¢ +d + €
~ 3Ag + HHN03-—~>3AgNO3 + NO + 2H,0 - ;

B. (a) AuCly + (b) KI —(c) AuCl + (d) KC1l + (.e) I,

Au:a = ¢; Cl:3a = ¢ + d; K:b = d; I:b = 2¢

AuCl, + 2KI —> AuCl + 2KC1 + 12

3
c. (a) HNO5 + (b) HI —> (c) NO + (d) I, + (e) H,0.
H:a + b = 2e; N:ia =¢; 0:3a =¢ +e; I:tb = 24
2HNO, + 6HI —> 2NO + 3, + 4H,0
D. (a) MnO, + (b) HCl —>(c) MnCl, + (a) Cl, + (e) HYO
Mn:a = c; 0:2a = e; H:b = 2e; Cl:b = 2¢ + 24
MnO, + 4HC1 —> MnCl, + Cl, + 2H,0
E. (a) Cr(OH)3 + (b) NaOH + (c) H,0, —> (d) Na,Cr0, + (e) H,0.
Cria = d; 0:3a + b + 2c = Ud + e; H:3a + b + 2¢c = 2e;
Na:b = 24

2Cr(OH)5 + 4NaOH + 3H,0, —> 2NayCr0y + 8H,0
SR

[pages>442-443]
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Part I:

.

Illustrative Test Qﬁestions

Multiple Choice.

Directions: Select the response which best completes the
the statement or answers the question.

The set of points in space equidistant from two given points
is . .

(a) a cylinder.

(v) a plane.

“(e¢) a straight line.

(d) the midpoint of the line segment which joins the two
points.

(e) two parallel straight lines.

The point whose coordinates are (4,0,4) 1is

(a) A, ‘ ' lz
(v) B A E
(¢) ¢ T
CF B
(d) D.
+
(e) E —t >y
D
X

Which of the following 1s an ordered triple of real numbers
that corresponas to a point in the xz-plane

(a) (0,2,0). (d) (2,3,2)
(b) (0:3)'2)- (e) (‘2:0:3)
(c) (3,2,0).
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L, The distance between the points (2,3,%) and (4,3,2) is
' .

(a) oO. (d4) 8.
(b) 4. (e) 3.J2.
(c) 2J2.
5. Which one of the following points is 5 wunits from the
origin?
(a) (-%,3,0). (@) (v/2,3, 0).
(b) (1,2,0). (e) (5,3,4).

(C) (‘\/_2-: 1:@-

6. The equation ax + by + cz + d = 0, where a, b, ¢, 4 are
' real constants, represents a plane 1f and only if

(a) all four constants are'differeht from zero.
(b) 4 # o.
(c) a, b, ¢ are all different from zero.

(d) at least one ‘of the constants a, b, ¢, is different
from.zero.

(e) at least one of the constants a, b, ¢, d, is different
from zero.

7. Which of the following statements about the plane whose
equation is x 4+ y + z = 0 1is not true?

(a) It is the perpendicular bisector of the line segment
joining (1,1,1) and (-1,-1,-1).

It passes through the origin.
It contains the point (0,1,-1)
d) It intersects the xy-plane in the line x + y = O.

e) It intersects the z-axis in the point (1,-1,0)

543




538

8. The set of points in space defined by the equation y = 5 1s
(a) a plane parallél to the y-axis.
(b) &z plane perpendicular to the y-axis.
(c) a plane containing the y-axis.
(d) a line intersecting the y-axis.
(e) a point on the y-axis.

9. What is the equation of the plane -whose graph 1s sketched
" at the right? z

a)- x +y=3.
b) x+y-2z=3.

d) x -y +2 = 3.

(
(
(¢) -x -y +2z=3.
(
(

e) x -y -z =3.

10. Which‘one of the following points lies in the plane whose
equation is x - 2y = 6?

(a) (0,-3,9). (d) (0,3,-6)."
(b) (2,2,7). (e) (12,-3,6).
(c¢) (0,6,0).

11. The solution set of the equation px + qy + rz = 0 contains
the element

(a) (p,a,-v). (d
(b) (r,-p,aq)- (e
(c) (0,0,r).

(0,r,q).
(I‘,O,-p) .

)
)
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12. Which of the following number triples is in the solution

X -2y +z =14,
2 =2 )

set of the system {
I. (2,0,2).
II. (0,-2,0).
III. (4,1,2).
(a) I.only (¢) III. only (e) I., II. and III

(b) II. only (d) I. and III. only

13. How many number triples are in the soluticn set of three
equations which represent three coincident planes?

(a) © (d) 3
(b) 1 (e) Infinitely many
(¢) 2

14. The trace of the graph of the equation x - 2y + z =5 1n
" the xy-plane 1is

(a) -2y + z = 5. (a) x - 2y = 0.
(b) x - 2y = 5. . (e) x+ 2z =0.
(c) x+ 2z = 5. '

15. The'trace or the graph of the equation ax + by + cz = 4

3
)

in the xz-plane 1s given by

) . _ 4
(a) by = d. | (d) x + 2z = g
(b) {a; : 8y +cz = d. (e) none of the above,

(¢) ax + cz = 0.
i

16. Which of .the following represents a straight line in a
three dimensional coordinate system?

(2) {§2éiz++3l (c) ;:8" (e) x =3
ORG-S 20
{ ! (@) x=y
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17.

18.

19.

. In each of the following systems the three equations re-

present three planes. In which system do the three planes

intersect in a line?

z =0 X -2y =0

(a) y=0 (d) x -2y = U
z +y =2 z =5
X =2 X+y+z=1U

(b) y = U (e) 2x + 2y + 2z = 8
2x -y =0 ¢ 3x + 3y + 3z = 12
x =0

(¢) ¢ ¥y=0
z =0

Which statement is true of the solution set of the follow-
ing system of equations?

3x -y +2z =6
6x - 2y + bz =T

a) The solution set has an infinite number of elements.
The graph of the solution set 1s a straight line.
The solution set is empty.

d) The solution set contains exactly one element.

e) None of the above statements 1s true.

Which one of the following systems of equatilons represents
a pair of parallel planes?

(a) {EX + 3y + Uz

2x + 3y - Uz
x + 2y + 3z (d) {

bx + 6y - 8z

@ {3

|}
no

o

n
3

2x + 3y + Uz

2x - 3y - Uz
(c) {EX - 6y - 8z

(b) {2x I 3y - Uz

aw K OO0

23220 N
b




20.

21.

Part II1:
22.

e3.

2k,

25.

541

The solution set of the system §x+-y3; i
X+y -2

2

I Wi

2
= 9

6

4

{a) 1is empty.

(b) contains a single number tfiple.

(¢) contains an infinite set of number triples which
correspond to points of a straight line. ‘

(d) contains an infinite set of number triples which
correspond to points of a plane.

(e) contains exactly three number triples.

. X+y+z=1U
What is the solution set of the X +y=o2
followling system? y = -3
(a) (-1,3,2). (d) (5,-3,-4).

(b) (13”3:6)° . (e) ('5:'3:12)°
(C) (5:‘3:2)-
Problems.
If the X, ¥, and . z axes ?x
are chosen as shown 1in the T
figure, what triple of real p T
numbers (x,y,z) are the —d+H 2
coordinates of P?
Find the distance between y

the points (3,4,2) and
(-3,4,0).

Find an equation for the
locus of points equidistant
from the points (2,4%,-1) and (0,5,6).

Make a free-hand drawing of the graphs of the following
equations 1in a three dimensional coordinatse system.

(a) x+y =2, _A(p) 3x +y + 2z = 6.
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26,

n
-3

28.

29.

30.

If the planes whose equations are glven in the following
system intersect in a line, express two of the variables
of the solution set in terms of the third variable. If
the planes do not intersect in a line, describeAtheir
position with‘respect to each other.

x + 3y -2z =6
X -2y + z =14

i

Find the solution set of the following system of equations.

2x - by + 3z = 17
0]
6

Find a three digit number such that the sum of the digits
is 19; the sum of the hundreds digit and the units digit
is one more than the tens digit, and the hundreds digit
is four more than the units digilt.

X+ 2y -2

i

i

bx -y - 2

Three tractors, A, B, and C, working together can plow

a field in 8 days. Tractors A and B can do the

work in 14 days. Tractor A can plow the entire fileld
in nalf the time that it takes Tractor C. Write a system
of equations which could be solved to find the number of
days 1t would take each tractar to do the work alone.

(You need not solve the system).

Give the coordinates of the point which is symmetric to
the point (1,-2,3) with respect to

(a) the origin. (e) the yz-plane
(b) the x-axis (f) the zx-plane
(c) the y-axis (g) the xy-plane
: A

d) the z-axls
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Answers to Illustrative Test Questions

Part I Multiple Choice:

1. B 12. D
2, ¢ 13. E
3. E 14, B
T 15. B
5. A- 16. A
6. D 17. B
7. E 18. ¢
8. B 19. D
9. B 20. B
10. A 21. C
11, E
Part II Problems:
22, (3,4,-2)
23", 2410
2h, 2x -y ~ Tz +15=0
25. (a) (b)
z Z
y y
¥
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x=z+24 y = 3x - 14
26. 5 or 1z=5x—24
( y + 14
X =
y=32+2 or ¢
5 Z='§L§_2_

27. (3,1,5)

28 793,
E NN
EEEEE.
1_2
LA C
30. (&) (-1,2,-3) (e) (-1,-2,3)
(b) (1:2:"3) (f) (1:2:3)
(¢) (-1.-2,-3) (g) (1,-2,-3)
(d) ("l: )3) -

- P
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