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Chapter 9

LOGARITHMS AND EXPONENTS

9-1. A New Func’.on: y = log X.
Consider the shaded rectangle in y
Fig. 9-1la; 1t is bounded by the
x-axis, the line y =2, and the
vertical lines erected at x = 2 4

and at the point whose abscissa ‘ T —
is x. If x > 2, the length of
the base of the rectangle is

X - 2; if x <2, then x -2
is the negative of the length of
the base. In all cases the alti-

tude of the rectangle 1s 2, Thus gﬁgﬁgg 2;éién Egeused to
2(x - 2), or 2x - 4, is an define a linear function.

expression whose value is the area
of the rectangle if x > 2, whose
value is 0O 1if x = 2, and whose
value 1s the negative of the area y
of the rectangle if x < 2. Set
y = 2x - 4. The shaded rectangle
has been used to define a corr-

espondence between x and vy
which is a linear function. The
graph of y = 2x - 4 1s shown
in Fig. 9-1b.

Figure 9-1b. Graph
of y=2x -4

Y
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Consider the shaded trape-
zoid in Fig. 9-1c; 1t 1s bounded
by the x-axis, the 1line
Yy = -2x + 4, and the vertical
lines erected at x = 1 and at
the point whose abscissa is x.

For the purposes of this
1llustration only those values
o8 x tn tne tnterval T 2 haeais Shages
0 {x <2 will be considered. a quadratic function.

If 1< x <2, the length of the

altitude of the trapezoid is

Xx-1; 1if 0 x <51, then

X -1 1s the negative of the

length of the altitude. The base of the trapezold at x =1 1is
2, and the base at x 1s (-2x + 4). One-half the sum of these
(-2x g k) + 2

bases is or (-x + 3). Since the area of a trape-

zoid 1s the product of the altitude and one-half the sum of the

.bases, we have (-x + 3)(x-1) = -x° 4 bx - 3 as the expression
whose value is the area of the trapezoid if 1 < x £ 2, whose

value 18 0 if x =1, and whose value is the negative of the
area of the trapezoid if 0 ¢ x < 1.

Set y = -x2 + 4x - 3. The T
shaded trapezoid has been used to /////
define a correspondence between

X and y which is a quadratic
function. The graph of

o4+
x

o]
Y = -x" 4+ 4x - 3 1s shown in
Fig. 9-1d.

%

Figure 9-1d4. Graph of

-x2 + 4x - 3 for
x <2,

O
In 0

[sec. 9-1]
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The functions obtalned in the two foregolng examples are the
familiar linear and quadratic functions which were studled in
Chapters 3 and 4. Other functions can be obtalned by considering
the areas under other curves, and some of these functions are en-
tirely new and unfamiliar.

Consider the shaded region
in Flg. 9-1e; 1t 1s bounded by
the x-axls, the hyperbola y = k/x,
and the vertical lines erected at

X = 1 and at the point whose

abscissa 1s x. Restrict x

arbitrarily to have only values Figure 9-le. The shaded

greater than zero. reglon 1s used to define
There 1is no simple formula the logarithm of x.

that gilves the area of the shaded

reglon; however, the shaded region

wlll be used to define a function

Just as in the two previous examples. The new function 1s known

as the logarithm of x; 1t 1s denoted by y = lbg X. )
The following definition describes the logarithm function as a

correspondence between X and Y.

Definition 9-1. The logarithm function 1is defined for all
x > 0O by the following correspondence between X and vy.

(a) For each x 5.1, the corresponding value of y 1is the
area of the region bounded by the x-axls, the hyper-
bola y = k/x, and the vertical lines at 1 and x.

(b) For x = 1, the value of y 1s O.

(¢) For each x such that O < x < 1, the value of y 1s
the negative of the area bounded by the x-axis, the
hyperbola y = k/x, and the vertical lines at 1 and

at x.

11

[sec. 9-1)




456

Flg. 9-1f. shows the graph b
of y = log x. It follows from
the definition that the graph
lies below the x-axis for

X
0< X <1, crosses the x-axis //ﬂ
at x =1, and lies above the //'
X-axils for x > 1. Furthermore,

the curve rises as x increases.
For each fixed value of k,
¥ = k/X 18 a hyperb-la and the Figure 9-1f. Graph
correspondence described in of y = log x.
Definition 9-1 defines a logarithm
function. Thus 1t 1is clear that
a logarithm function can be de-
fined for each fixed value of k. However, 1in this course only
those logarithm functions which arise from positive values of k
will be considered. Flg. 9-le shows a hyperbola for k = 1, and
Flg. 9-1f shows the graph of the corresponding logarithm function.
The properties cf ail logarithm functions will be derived
simultaneously. Two of the logarithm functions are especlally
important in mathematics and in applications to other subjects.
If k =1, the corresponding logarithm function is known as the
natural logarithm function. It is denoted by ¥ = ln x. The
natural logarithm function has special properties which make 1t
useful in theoretical work in mathematics and 1ts applications.
Another special choice of k gives a logarithm function whose
value is 1 at x = 10. This logarithm function 1is called the
common logarithm function. It is denoted by y = log g%  The
common logarithm function is exceedingly useful in numerical cal-
culations, due to the ract that our number system makes use of
base ten. Tables of values of natural logarithms and common log-
arithms are included in most standard books of tables.
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Fig. 9-lg shows the graph of y = 1/x from Xx = 0.65 to
x = 1.00, and Fig. 9-1h shows the graph of the same hyperbola
from X = 1.00 to x = 1.35. These figures can be used to com-

pute a rather accurat® 1tural logaritims. Observe first
of all that each sr . these figures has an area ¢
0.0001. A good ap)-. ' to the area under the hyperb an

be obtained by counting squares. As an example, compute' 1n 1.05.
Fig. 9-1h shows that the number of whole squares under the curve
from x =1 to x = 1.05 is 485; thus, 1n 1.05 is approxi-
mately 0.0435. A more accurate value can be obtained by adding
on the areas of the parts of squares that lie under the hyperbola.
In this case the curve crosses five squares, and the graph indi-
cates that the parts of their areas that lle under the hyperbola
amount to slightly more than two whole squares. Thus, a more acc-
urate value for 1n 1.05 1s 0.0487. Tables show that the value
of 1n 1.05 correct to five decimal places is 0.04879. (See
Mathematical Table from Handbook of Physics and Chemistry.) A

" similar calculation for Fig. 9-1lg shows that the approximate value
of 1n 0.95 is -0.0513%; the value given by five-place tables is
-0.05129.

The graph of ¥y = 1ln x 1s shown in Fig. 9-~1i. It contains
the two points (0.95, -0.0513) and (1.05, 0.0487) whose coord-
inates were computed from Figs. 9-1lg and 9-1lh. It is obviously
necessary to extend the graph of y = 1/x both to the left and to
the right in order to obtain enough points to plot the graph of
y = 1ln x shown in Fig. 9-11.

14

(sec. 9-1]
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It can be shown by counting squares that 1n 10 1s approxi-
mately 2.3 ({(a five-place table glves this value as 2.30259).
Experience has shown that one of the most useful logarithms 1is the
common logarithm loglox; its value 1s 1 at x = 10. To show
how points needed to draw the graph of y = loglox can be obtalned
let us consider once more the hyperbola y = k/x. (See Fig. 9-1}).
Every ordinate on the graph of this equation 1is k times the
corresponding ordinate on the graph of y = %. (Notice that the
height at each x f.r y = 1ln x 1s approximately 2.3 times
the height of th. ordinate for the graph y = loglox).

Figure 9-1}

Tr. -=Fr=a_ for any interval 1 to x (x > 0), the area

under i, y+v.nn of oy = % is k time: the corresponding area
under t -+ grapt of y = %. In Fig. 6~ thils means that the-area
under a-: 't 1s k times the area tnder are PQ.

L

[sec. 9-1]
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But, by our definition, these areas are log x and 1ln X respec-
tively, therefore we can write ‘
9-1 log x = k 1n x,

where k 1s the constant in the equation of the hyperbola used in
defining log x. Clearly, the value of log x depends on k. To
find an approximate value of k which makes 1log 10 equal to one,
. we substitute x = 10 in (9~1) and make use of the fact that

In 10 s approximately 2.3 as shown in Fig. 9-1i:

1%k x2.3 or k ~ 513;

Of course, 1 is a better approximation because it is based
2.30259 .

on the more accurate value of 1n 10 given above. The exact
value is '

1
In 10°

This number is denoted by M; 1t is an irrational number (simi-
lar toT). Its value, correct to 20 decimal places, is
9-la M X 0.43429 44819 03251 82765.

The common logarithm of x, denoted by loglox, is thus the

area under the hyperbola

X=

9-lb y =

from 1 to x. The values of loglox can be computed in the

same way that the values of 1n x were computed. TFig. 9-1k con-
tains the graphrof y = M/ from x = 1.00 to x = 1.35. Areas
under this curve can be computed by counting squares. The graph
of y = loglox is shown in Fig. 9-11i, and Table 9-1 contains a

brief table of values of loglox. It follows from the definition
of common logarithms that
9-1c loglox = M 1ln x.

19

[sec. 9-1]
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As a matter of notation, y = log x will be used to denote
the general logarithm function obtained from the hyperbola
y = k/x, where the value of k 1s general and unspecified except

that k > O,

e i
L Y
RSN iR i
. il il
i 1 i
N 1
_f mass
R '
v l —.
F { A1
1.20 1.30
Figure 9-lk. Graph of y = %
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Table 9-1. A Brief Table of Common Logarithms.

X loglox X loglox
0.00001 -5 8.50 0.9294
0.0001 -4 9.00 0.Gnk42
0.001 -3 Y. 0.9777
0.01 -2 10.00 1.0000
0.10 -1 10.50 1.0212
1.00 0.0000 11.00 1,041k

’ 1.50 | 0.1761 12.00 1.0792
2,00 0.3010 13.00 1.1139
2.50 0.3979 14.00 1.1461
3.00 0.4771 15.00 ~1.1761

3.50 0.5441 16.00 1.2041
4,00 0.6021 17.00  1.230%
k.50 0.6532 18.00 1.2553
5.00 0.6990 19.00 1.2788
5.50 0.Th40k 20.00 1.3010
6.00 0.7782 o 25.00 1.3979
6.50 0.8129 30.00 1.4771
7.00 0.8451 35.00 1.5441
7.50 0.8751 40,00 1.6021
8.00 0.9031 | 45.00 1.6532
50,00 1.6990

20 |

[sec. 9-1]
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Exercises 9-1

Use the graphs in Figs. 9-1lg and 9-1h tc =-timate t! - value
of 1n x for those valu's of x 1listed 1 ‘*he firzt rolumn
of the following table. Compare your estimated values with
the correct values given in the last column. It should be
observed that these logarithms ar= natural logarlithms rather
than the common logarithms given im Table 9-1.

X Estimated 1n x Correct 1ln x
0.70 -0.35667
0.82 -0.19845
0.90 -0.10536
1.12 0.11333
1.18 0.16551
1.23 0.20701
1.24 0.21511'
1.26 $.23111
1.28 | 0.24686
1.29 0.25464
1.31 0.27003
1.32 0.27763
1.33 0.28518
1.34 0.29267

2

[sec. 9-1]
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2. Use 'n i1 Fig. 9-1k to e:  a*e the aiu of log,
for thos. /~lu:. >0 x 1isted in the first column of the
- followlng table., Compare your sstimated values with the
correct values given in the last column.
X Estimated loglox Correct loglox
1.12 0.0492
1.16 0.0645
1.18 0.0719
1.21 0.0828
1.23 6.0899
1.24 0.0934
1.26 « , 0.1004
1.28 0.1072
1.29 . 0.1106
1.31 0.1173
1.32 0.1206
i.}} 0.1239
1.34 0.1271
3. Draw an accurate graph of the common logarithm function

y = loglox on a large sheet of graph paper. Use Table 9-1

as the table of values for drawing the graph. Compare your
graph with the graph of y = loglox in Fig. 9-11.
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Use sheets of graph paper similar to those in Fig. 9-1lg and
9-1h to extend the graph of y = 1/x both to the right and
to the left. The class might undertake a cooperative project
of drawing the graph from x = 0.1 to X = 10. This graph
can be used to make a table of logarithms for all numbers
from x = 0,1 to x = 10. Observe that the logarithms ob-
tained are natural logarithms and not common logarithms as
given in Table 9-1.

Usg sheets of graph paper similar to those in Fig. 9-1g and
9-1h to extend the graph of y = M/x in Fig. 9-1k both to
the right and to the left. The class might undertake as a
cooperative project the task of drawing the graph from

x = 0.65 to x = 10. This graph can be used to make a table
of common logarithms for all numbers from x = 0.65 to

X = 10. Compare the values of logiox obtained with the

values given in Table 9-1.

If 1In x 1s the natural logarithm of Xx, then M ln X =
loglox. Show that this relation can be used to compute a

table of common logarithms from a table of natural logarithms,
Determine k 1in the equation of the hyperbola y = % so that

log 2 = 1. We call this log function 1032X. Find the

value of log, 1, 1log, 3, log, 4, log, 8, leg, %’ and

1
1032 T
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9-2. An Important Formula For Log X. The purpose of this section
is to prove a theorem which states an important property of 1log x.

Theorem 9-2. If y = log x 1s the logarithm function de-
rived from the hyperbola y = k/x, and if a and b are any two
positive numbers, then

9-2a log ab = log a + log b.

Before we undertake to prove Theorem 9-2 let us verify Equa-
tion 9-2a in a number of special cases. Table 9-2a gives the
values of log;nab and (logloa + loglob) for a number of diff-

erent values of a and b. In three cases the two numbers differ
by one in the fourth decimal place. A small difference of this
8ize 1is to Dbe expecfed‘occasionally since the logarithms in our
table are correct to only four decimal places.

Table 3-2a. Comparison of logloab and logloa + loglob.

a b logldab ~ logyy3 * logyyb
1.50 2.00 0.4771 0.4771
2.50 3.00 0.8751 0.8750 ’
1.50 3.00 0.6532 0.6532
2.00 2.50 0.6990 0.6989
3.00 i.00 1.0792 1.0792
6.50 2.00 1.1139 1.1139
3.00 5.00 1.1761 1.1761
4,00 4,00 1.2041 1.2042
24
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y:

x|

Figure 9-2a

Fig. 9~2a. The area under the hyperbola y = k/x from x = a to
x = ab 1s equal to the area under the hyperbola from x =1 to
x = b,

Consider the proof of Equation 9-2a. The graph on the left in
Fig. 9-2a shows that the area under the hyperbola from x =1 to
x = ab 1is log ab, dnd that this area is equal to the area from
x =1 to x =a plus the area from x =a to X = ab. Since
the area from x =1 to x =a 1s. log a by definition, the
proof of Equation 9-2a will be complete if we can show that the
area under the hyperbola from x =a to X = ab 1s the same as
the area from x =1 to x =Db. This fact will be proved in a
special case; the proof in the general case can be given in the
fsame way. .

The proof will be given for a =2 and b = 3. In this case
we are asked to prove that the area under the hyperbola y = k/x
from x =2 to x =6 1s equal to the area from x = 1 to
X = 3. Approximate the latter area by four rectangles as shown in

N
n
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y y
1
— Lﬁ-‘,\ X | | X
| 23 45 6 I 2 3
Figure 9-2b. Approximate Figure 9-2c. Approximate area
area under the hyperbola under the hyperbola vy = % )
Yy = % from x = 2 to x = 6, from x =1 to x = 3.

Fig. 9-2¢, and approximate the former area by four corresponding.
rectangles as shown in Fig. 9-2b. The altitude of each rectangle
can be found by calculatlng y from y = k/x for the appropriate
value of x. The calculations are shéwn in Table 9-2b. Observe
that the area of each rectangle in Fig. 9-2b is exactly equal

Table 9-2b. Computation of the Areas in Figs, 9-2b and 9-2¢,.

Fig! 9"2b Fig. 9_20
Rec- Length Rec- Length
tangle | of Base Altitude | Area tangle | of Base Altitude | Area
k k k
' . 2 £ 2 05 | 5 | B
k k k| k
1 — — . it
‘ 3 3 2 0.5 5 3
k k
’ ! 5 5| 3 05 | w5 | ¥
k k k k
! £ L s &
b 1 5 5 Y 0.5 = 5
(sec. 9-2]
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to the area of the corresponding rectangle in Fig. 9-2c. Thus the
sum of the areas of the rectangles in Fig. 9-2b is equal to the
sum of the areas in Fig. 9-2c. The same result will be found re-
gardless of the number of rectangles used to approximate the areas.
If a large number of rectangles is used, the sum of thelr areas is
very close to the area under the curve. From these considerations
it follows that the area under the hyperbola y = k/x from x =€
to x =6 1is equal to the area from x =1 to x = 3.

A proof of Equation 9-2a for-the general case can be given in
exactly the same way.

Equation 9-2a has many applications. For example, Table 9-1
does not glve log1028, but it does give loglou and 1og,,7.

Therefore, by Equation 9-2a,
,log1028 = loglou + log, 7
' 0.6021 + 0.8451

l.4472,
Observe also that 11 = ( Jvll)( + 11). Therefore,

22 ¢¢

logloll = logloJll + loglo /11
so that

loglo~/IT = % log, o1l

22

2 (1.0u14)

22

0.5207.

27
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Exercises 9-2.

1. Verlfy Equation 9-~2a in a number of special cases by complet-
Ing the following table. Use the common logarithms given in
Table 9-1.

a b ab logloab “logloa + loglob
3.00 3.00 |
3.00 2.00
4.00 2.50
5.00 4.00
5.00 7.00
3.00 6.00
6.00 5.00
5.00 8.00
5.00 10.00
I, 00 3.50
5.00 9.00

n

Use Equatlion 9-2a and Table 9-1 to calculate the values of
the followling logarithms:

(a) log)y21 (&) log y32 (m) log, 4t
b) loglo2h (h) logy 33 (n) loglo48

(s) ‘log,@57
(t)

log,522 (1) log 3% (o) log,,49 (u) log,y225
(
(
(

loglo63
)
) log 26 (J) logy36  (p) logyp51  (v)  log, 1t
e) log g2T (k) 1leog,y38  (q) logy 54
) log,28 (0) logig#2  (r) log,,56

w) log, ;250
x) log,1000.

29
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3. Prove that 1log a2 =2 log a. Use this fact to compute the
following logarithms:

(a) logyyv2 (£) logy,2.25 (k) 1log,,256
(b)  log,,v3 - (8) logyg6.25 (f) loslouﬁl
(c) loglovff (h) | log, 464 (m) log,,196
() 1oglo;ﬁf (1) logy481 (n) log,,289
(e)  logyuv10 (3)  logyy169 (0) 1logy 576
L, Prove that 1log abc = log a + log b + log ¢ and thus that
log a°b = 2 log a + log b and
log a3 = 3 log a.
Use these facts to compute the following logarithms:
(a) log,yh2 (£) log,y147 (k) logy, /10
(b) 1log,,1001 (8) log,y126.75 (f) 1logy, i?@?ﬁ?
(¢) 1ogyy255 (h) logyp343  (m) logy, 3/20°
(d) 1log;y26.25 (1) 1logyy1728  (n) log;, 2/1000

(e) 1ogy(3.5)%x7 () logq /5 (o) log, 2/T10.25

5. Use the definition of 1log x as an area to show that
k(x-1)
=~ < log x < k(x-1) where k> 0 and x > 1.

Is this inequality true when O < x < 1°?

[sec. 9-2]




#=-_. Properties of log x.

Correspording to “=a hypsbola % = : =~ there is a logenithm
Swnttlon y = . 5 . Tmls fun:tion wis ¢ -“ned in Section 9-1,

=2 ~ilng to Defdy . .it 9-1, iog x fwr wacn k > 0 has the
ring properties '

o log 1 = 0,
log x > 0, x > 1.
log x <0, 2 "x< ..

Furthermore, i- was shown in Sect- 9-z that

G- log(x1 . xg) = log x; + log Xy
In this section some additional properties of the logarithm
function will be established.

In Equation 9-3b let x, be x, and let x, be L. Then

1 bd

1, 1
log x(i) = log x + log Z.
But since x(3) =1, and log 1 = O by Equation 9-3a, the last
equation becomes

0 = log x + log .

Thus it follows that

9-3¢ log % = - log x.

X
Next, consider the logarithm of fl. This quotient can be
2

thought of as a product. Thus,

Then by Equations 9-3b and 9-3c,

X1 1
logig = log Xy + log ig'

or
X

l— -
9-3d logz= = log 3 log X5



It =, 3°. 1 next that Zf n 1. .. positive integwr.

9-3e log x" = n log X,
1
log = = - n. log x.
X
"The f:- il ient in Eguation 9-3e follows from repezted
applicatior ~uatlon 9-3b, for
log x° = log(x - x)

log x + log x«

2 log x;

log x log(x2 © Xx)

log x2 + log x

2 log x + log X

3 log x.

‘ The firs: statement in Equation 9-3e can be established by
continuing iz ~ulz fashion. The second statement -follows from the
first statemer= zxd from Equation 9-3c¢, for

log Aﬁ = - log x"

= - n log X.
The symbo. N}‘ij where x > 0 and q 1is a positive integar
means a positil. s number whose q‘Ch power is x. Thus

( )9 = x. For example, YE = 2, %/16 = 2, §/6u =2,
3v’lE = 5, It wlil now be shown that if P and q are any pos-
itive integers, =nen
9-3¢ log(/x)? = £ 10g x.
31
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1t will be shown first that log /X = =; ‘58 x. By the first
statement in Equation 9-3e,

log( ¥%)? = q 10g ¥,
or

log x = q log %/_EZ

By solving this equation for log ?/x, we o ~=in

log q./x = (—]1‘- log x.
From this result and the first statement 1r Zguation $-3e 1t
follows that

log ( Y/ %)P = % log x,

and the proof of Equation 9-3f is complete.

The next property of 1log x to be established 1s the
following:

9-3g If Xy < Xo, then log xl< log Xye

This property follows from the definition of log x (Definition
9-1); for, 1if Xy < X5, the area under the hyperbola y = %

from 1 ¢to Xy 1s less than the area under the curve from 1 to
Xy
A similar argument establishes
g-3g1? If log Xy < log Xps then Xy < X5e
Note that statements 9-3g and 9-3g! can be =rpressed as one
statement as follows:

Xy < x5, 1f and only if 1log x; < loy z

[sec. 9-3]
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The next proper - of 1l2ofg :. to be establiz:: - 3 the follow-
-7 If og x = log ... <hen Xy = X5
Tho~z are only three rossit’_“tles: elther x. < .. Xy > Xo)

or &y = X, But the firs: Twc are impossible, sirnce X < x2

implies log Xy < 1oz x

o =nd %y > X5 implies 1log Xq > log X5
b;r Equation 9-3g. Thus, xq < %o and x4 > X5 must be rejected
since both lead to corntradictions. Therefore, Xy = ¥o, and the
prcof 1is complete,

Again, a simllar argument establishes

9-3h'! If Xy = X, then 1log X, = log X,
The fZnal zroperty of log = which is desired is the following:
9-31 The graph of y = log x 1is a continuous curve.

This follows from the fact that the graph hds no oreaks or Jjumps
in it. An important consequence of this property is the following:
Ir Xy < X5 and ¢ 1s any number such that 1log %y < ¢ < log X5,

then there 15 a number Xg such that x4, < xo < x2 and
log Xy = C.

The following 1s a summary of the properties of log x:

9-Z2 log 1 = O,
| log x>0 x> 1,
logx <O 0<x < 1.
9-3b ~- %- and X, are any two positive numbers, then
l.ggzl-xg) = log xq + log x,.
9-7 - ing == - Loz X,

33
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o~ It Xy and X, ave any two positive numbers, then

logw;f = log xy - log x2.

— If n iz .. y positive integer, then
~og > =n log x,
~0g——= = -n log X.

=37 I p an. q are any two positive integers, then
log %‘—i)p = % log x.

S-3g if X; < Xz. ‘then log Xy < log X5

9-3g? If 1log X < log Xps then X; < X5

[ﬁl < Xp if and only 17 1log Xy < log xé]
9~3h If log X; = log Xy, then xy = Xpe

=3h! If X; = X5, then log Xy = log X5

Z. o= X5 if and only if 1log Xy = log xé]

9-31 The ... . of ¥y = log x 1s a continuous curve.
Some arr-lizz-iom: of these properties of the function 1log x
w... be i1iliustraz=d -y examples:

Exampls =—3z. Us= Table 9-1 to find the following

~2xarlthmsz

(2l 1og 5o L (0)  logya( ¥TB)
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Solution: (a) 12090 T%— = logloll2 - 108,17 (9-34)
o)
loiqe—=" = 2210gloll (9-3e)
. 11

1290 7 = 2 logloll - loglol7
~Z.1.0414) - 1.2304
< C.8524

(b} Acczoding to (9-3f),

log, 4(¥/5)° = %— 1log, 05

X 2(0.6990)

~ 7.1650
3
Example 9-3b. If I = 349, ezoress log N in terms of the
]

logarithms of a, b, arnzt c.

>
Solution: loz &2 = 1og a”b = log /T
c

3

log a’ + log b - log ~ ¢

—

5 loga+1logb -~ % log ©

[l

-

Example 9-3c. Jolve for x: iog x = log 3 = log 5

Solution: log K + 3 log 3 =3 log =

5 log 3
loz 1 = log 53 - log 33
3

log = =3 Zog 5

loz x = loz 23
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Example 4-3d. Solve for :: log (x-3) + _ag .. = log 28

solutdon: Note that log a Lz not defined when a < 0. This
means that we must nave (x - 3) > 0 for our equation to be mean-
ingful. We can wrize log[(%-3)x = log 28, Sirce Xy = X, 1if log
Xy = log X5, We have (x-3)x = 22 or x° . 3X - 23 = 0. The roots

of this quadratic zz= found to bz ~ and -4. We ob-
serve that 7 =satizfies the origir=l equation and that -4 must
be rejected for thz reason we have .indicated.

Exercises 9-3,

1. Use Table 9-_ ari the propert:i:s of log : ::ated in this.
sectlon to ' .nd Zhe following .oZ=rithms:

5 . (2.5)-7(=.8 E
(a) 1log.~ = (g}  log e
10 7 1C ‘\/-7—
P e - e o P W ==Y
(b) logygi x 7.2° (&) 10g, 5t i
= >
1 N - X .
(c) log) (f = 7] \=)  loggq 2 I (5.5)
Z.20 » 3.%0 -
( d) log > .__,‘) — 3} log _—
lo &L TN l:) 2V/._
(e) 10510 (15/1 ._[ J_ogm (3:2 - 42)
= - w
(£) 1og (—- (f, 1og,, —=—o
o\ -3 1o =3, e
2 v

[
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2.  Find the value of 2 X 7 by the use of logarithms.
Solution: - By Equation 9-3b and Table 9-1,
logyn(2 x 7)

i

loglo2 + log 107

0.3010 + 0.8451
1.1461.
Table 9-1 shows that
TR
loglol 1.1461.

It follows from Equation 9-3h that 2 x 7 = 14,

3.  Find the value of 2t50Hx538.00 by using logarithms.

b, If N = 1§—§—§ , find N by means of logarithms.

5. Express the logarithms of each of the following expressions
in terms of the logarithms of the letters involved as in

Example 2:
(a) PGR (). v 32
2
oy BVE 0 /%
Q 1
(c) ) (g) T
(a) % () 3+/2

[sec. 9-3]
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Solve each of the following logarithmic equations for x:
(a) log, x = 3 logy, 7

(b) logyq x + logyy 13 = logy, 182

(c) = logyy % - logyy 7 = logy, 112

(d) log, (x-2) + logy 5 = 2

(e) log,o % + logyg, (x +3) =1

X = - loglo 64

(g) logy, (x-2) + logy, (x +3) = logy oy 14

Write without "log":

]

(a) logy, V = logyy 4 + logyy M. +3 logy, T - }oglo 3

ki

1 1
(b) loglo P 5 loglo t o+ 5 loglo g
1
{ - =
(c) logyy S = 3 [loglo s + logy, (s-a)
+ logy (s-b) + logy (s-cﬂ

Show by logarithms that, if a > 0, and p, q, and n are
natural numbers,  then :

(a) %V/§5'= <%/7§>p

(b) M4 /a0 brzr Hint: Use Property 9-3f

38
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9. Express as a single logarithm:
(a) logyo x + logyg ¥ - logyy 2
(b) logyy (x +3) - log,, (x-2)

(c)

4=

loglo t -3 loglo s

1 2
(d) 5 logyg X - 3 logloiy
(e) logyn 2 + logyy X + 3(loglo x - logy, V)

1 2
(£) - logyq X + 4 logyq (x-2) + 3 logyq X
*10. Suppose.we denote the area under the curve y = 3x2 in the
first quadrant between the ordinates at 1 and x as "lug x"
Are there any properties of 1log x which are also true for
"lug x"?.ﬂln'particular is 1%t true that 1lug ab = lug a +

lug. b? -

9-4. The Graph of y = log X.
Fig. 9-11 contains graphs of y = lInx and y = logIOX.

These graﬁhs exhibit many of the characteristic features and im-
portant properties of all logarithm functions. This section will
be devoted to a study of the properties of the graph of the general
logarithm function y = log x.

The first important property of the graph of y = log x 1is
this: The ordinate y always increases as X 1ncreases., It was
proved in 9-3g that, if Xq < Xos then log Xy < log Xoe The fact

that y aiways increases as X increases on the graph of
y = log X 1s a consequence. . v
It follows from the definition of log x 'that log 1 = 0 (see
also Equation 9-3a). Thus the graph of y = log x crosses the
x-axis at (1,0). The graph does not cross the x-axls at any other
point ‘because y always Increases as x increases.
39
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- It haz t=z=n exzplalned already that the graph of y = log x
1s a continucus cuzvz (see Property 9-31i). The graphs of
X 1in Fig. 9-11 are continuous curves, and
rithm function y = log x has this same

y=1nx and y = lsglo
the graph =T zvery l-za
property.

Anozhar lmporzar= property of the graph of y = log x 1s the
following: £u X  Increases wlthout 1limit, y also increases
without Iimit. By 9-3g, we know that if X1 < X5, then log

X, < log %x,. Zince 1< 2, log 1< log2, and O < log 2.

1
Consider T 2P, Since log 2% = n log 2, 1t follows that

log 2% incrz:. -z without 1limit as n - increases without 1limit.
Thus, the p=_.: (2%, n log 2) 1s on the graph of y = log x,
‘and the ordiz=7s of this point 1s arbitrarily large if n 1s suffi-
clently larz=. Since y always increases as x increases, it

~
=4
3

follows tz=T s ZIncreases without limit as x increases on the
graph of = = Ia1z X,
A cl-z27y oelated property is the following: As X decreases
toward ze-z., ¥ dacreases without limit on the graph of y = log x
Another way to stzate this property is the following: the graph of
y = log = 15 asymptotlc to the negative y-axis. It follows from
Equation 9-3= that 1log éﬁ = - n log 2.

Thus, the siint' (=%, - n log 2) y

m:J b

is on th2 srapn of y = log x.

. . 200t
As n increasss without limit, . 4//1i9

EC
the abscissz z=f this point de- —L
creases towsrI zerc, and the //////

ordinate dzcozases without 1limit.

Since y =lways decreases as x

decreases. tThe graph of y = log x

is asymptcTic to> the negative

Flgure 9-4a., The graph
of y = log > crosses
The flnal property of the every line ¥y = ¢ once
and only once.

y-axls as ztated,

graph of y = log x 1s the
following: Z—f ¢ 1is any real
number, then the graph of

[sec. 9-4]
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y = log x crosses the line y = c¢ at one and only one point.
This property 1s an important consequence of the fact that the
graph of y = log x 1s continuous, and Fig. 9-4a gives a
graphical proof of it. The figure shows the graphs of y = log X
and y = c¢. If the graph of y = log X crosses the gréph of y=c¢
once, then the curved line cannot cross the straight line a second
time because the ordinate y or. the graph of y = log x always
increases as X increases, Thus, the proof will be complete if
it can be shown that the graph of y = log x crosses the line at
least once. It has been chown already in this section that there
is a point on the graph of y = log X above the line y =c¢ and
another polnt below this line. Since the graph of y = log X 1is
continuous, the graph crosses the line in passing from the point
below the line y = c¢ to the point above this line. The proof 1is
complete,

Another statement of the property proved in the last para-
graph is the followlng: If c¢ 1s any real number, then there 1is
exactly one positive real number X5 such that 1log Xq = C.

The following is a summary of the properties of the graph of
y = log x established in this section.

9-4a On the graph of y = log x, the ordinate y always
increases as the abscissa x increases,

9-4b The graph of y = log X crosses the Xx-axis at x =1
and at no other point.

9-lic The graph of y = log x is a continuous curve.

9-44d As £ 1increases without limit, y also ilncreases with-
out limit on the graph of y = log X.

9-le As x decreases toward zero, Yy decreases without 1limit
on the graph of y = log X.

g-hf If ¢ 1is any real number, then the graph of y = log X

crosses the line y = ¢ at one and only one point.

41
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Exercises 9-4

Find the coordinates of a point P on the graph of

Y = lqglox which satisfles each of the following conditions:

(a)’ Ehe crdinate of P 1s greater than 100,
(b) The ordinate of P 1s less that -5.

(¢) The ordinate of P 1s greater than 1 and less than 2,
Hint for (a): Recall that 10g1010 = 1 and that

loglolon =n 1og1010.

Draw an accurate graph of y = loglox on a large sheet of

graph paper (see Exercise 9-1-3). Use this graph to find the

~approximate solutions of the followlng equations: (Note that

graph must extend to at least x = 100).

(a) o8 gk = .5 (£) log px = 1.2
(b) logyyx = .8 | (g) log % = 2

(¢) logypx = -1 (h) logyyx = V2
(d) logyyx =0 (1) logygx = “/__g—_
(e) logygx = -2.5 (3) log yx = ~C§:

We label the log function whose value at 10 1s 1 with the

‘8symbol loglo X. Simllarly, the log function whose graph

passes through the point (t,1) 1s called log, x. Find the
value of k assoclated with logt X. Show also that

log t? = n, where n 1s any positive integer.
t
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4, If the graph of y = log x passes through the point (t,s)

where t > 1, show that 1log t" = ns for any positive
integer n.  Also find the value of k such that the graph
of y = log x passes through (t,s).

5. Show that there exists a number x such that loglo x =T
Show also that thils number 1s greater than 1000 and less
than 1000 + 10.

6. Sketch a curve which has the property that it 1s symmetric to
the graph of y = log x with respect to the line y = X.
Suppose tnat the equation of this new curve is y = E(x).

(a) Re-state properties 9-4a, 4b, 4c, 4d as they apply
to the graph of y = E(x).

(b) Which of the following are true?
(1) The functions 1log x and E(x) are so related

that the domaln of either function 1is the range of
the other.

(2) 1r P(a,b) 1lies on either graph, then the point
Q(b,a) 1lies on the other.

9-5. Tables of Common Logarithms; Interpolation.

It was shown in Table 9-1 that the common logarithms of a few
numbers are integers; for example, loglo0.0l = -2, loglol = 0,

and loglolo = 1. The common logarithms of some numbers Are

rational fractions; for example, loglo ~ 10 = % (see Equation

9-3f). The common logarithms of many numbers are irrational

J2

numbers; ‘for example, the number- 10 will be defined later,

Je

and 1t will be shown that 1081010 1s the irrational number

v 2. The usual tables of logarithms express approximate values
of the logarithms of numbers in decimal form correct to four,
five, or seven decimal places.

[sec. 9-5]
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Four-place tables will be used in this section and the next.

Table 9-5a. Approximations to a Few Common Logarithms and Their
Representation in Standard Form,

X loglox 10810x in Standard Form
0.00231 ~ 2.6364 - 3 + .3636
0.0231 - 1.6364 - 2 + .3636
0.231 - 0.6364 -1+ .,3636
2.31 0.3636 0 + .3636
23.1 1.3636 1 + .3636
231.0 2.3636 2 + .3636
2310.0 3.3636° 3 + ,3636
23100.0 4.3636 b + .3636

It has been shown that the logarithms of numbers greater than
1 are positive, and that the logarithms of numbers less than 1
are negative. The second column of Table 9-5a gives the common
'1ogar1thms of numbers listed in the first column. The third
column shows the logarithms written in standard form. It will be
observed that loglox, when written in standard form, 1s the sum

of an integer (positive, negative or zero) and a non-negative
decimal fraction less than 1. The integer is called the charac-
teristic of the logarithm, and the decimal fraction 1s called the
mantissa. Thus, the standard form for writing the common log-
arithm of a number a 1is

Definition 9-5a. log a =n +m, where
n 1s a positive or negative integer or
zero, and
O m< 1,

We 1llustrate the meaning of this definition with some eXamples:

Example 9-5a. Find the characteristic n and the mantissa
m of loglo a for each of the following values:

(a) log,ya = .4829
[sec. 9-5]
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Solution: It 1s important to observe that the characteristic
n can be zero as it is in this case. We can write:

logyna = 4829 = 0,4829 = 0 + 4829 where
n=0 and m = .4829. Note O ¢ m < 1.
(b) log gd = 3.3122 + 1.5040

Solution: Clearly logy e = 4,8162 = 4 + ,8162, therefore,
n=4 and m= .8162. Again, 0 < m < 1.
(c) log,pa = -2.4163

Solution: If we write log,ya = -2 + (-.4163), we observe
that the decimal fraction 1s negative and therefore cannot be re-
garded as a mantissa which, by defir®“ion, is a non-negative number
less than one. In this case log a 15 larger than -3 and less
than -2. This means that logloa can be exXxpressed as -3 ?lus

some positive number less than one. This positive number is our

mantissa m.
logypd = -3 +m or -2.4163 = -3 +m., m = .5837. This
gives logyna = -3 + .,5837. We see that n = -3 and that

0 m< 1. Note that we could have obtained this result more
quickly by adding and subtracting 3:

logyga = -2.4163 = -2,4163 + 3 - 3 = 5837 - 3 = -3 + .5837.

Example 9-5b. Find the characteristic n and the mantlssa

m for
logloa it 5 logloa =2 loglox -3 logloy, where

logy ¥ = 0.1962, and logyoy = 0.7343 - 2.-

45
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Solution: 5§ logip2 = 2 X (0.1962) - 3(0.7343 - 2)
0.3924 -~ 3(-1.2657)
= 0.3924 + 3,7971
4,1895
0

.8379. n =0 and m = .8379.
0 L£m<g1l

logloa =

Exercises 9-5a

Find the characteristic and the mantissa for logloa in Exercises

l-.12:

1. logiqa = 3.8383

2. logloa = ,5332

3. logloa = -, 4h3] Hint: logloa =-1-2

L, 1og o2 = -2.2136

5.  logyga = -5

6. logyga = -1.3166

7. logloa = 2727 - 3.8122

8. logyna = .417T7 + 1.7832 - 5
9. logypa = -.0926

10. 3 logloa = -4

11. 2.6183 + logipa = 1.2336

12. logysa = % [3 log yx + log,yy - %-loglo z] where
log,px = 0.3163, log oy = -.8887, logy2z = - T.4175
40
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13. Let n represent the characteristic and m the mantissa for
logloa, a > 0. 1Is the following statement true?: If

logloa =0, then m=0 and n = 0.

14, Are these statements true?
(a) 1If log,pa and log, P have the same mantissas, then
they differ by an 1integer.
(b) 1If log,,2 and log,ob differ by an integer, thoi: .aelr

mantissas are equal.

Let us ncw consider —wo positive numbers wnose decimal
representatiors differ oniy in the position of the decimal -point.
Wwe see that ~2.18 and .07318 are a palr of numbers of thls type.
In this case, e note that 73.18 = .07318 x 10°. |

The sampls of logarithms given in Table 9-5a suggests zhat the
common logarithms of any two numbers whose decimal represencations
differ only in the positions of the decimal points have the same
mantissas. This fact will be proved in the following theorem:

Theorem 9-5a. If a and b dre any two positive numbers
wnose decimal representations differ only in the positions of the
decimal polints, then logloa and loglob have the same mantissas.

The proof employs the properties of logarithms established in
Section 9-3. For convenience, assume that a > b; a similar proof
can be given if b > a. Then there exists a positive integer n
such that

a = 10™.

Recall that _og (xg - x2) S

i,

= log Xy + log %5, log M =n log x, and

loglolO =1,

4.!
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Then,

ft

log)pa = logy,(10"b)

loglolon + loglob

it

it

n log,410 + log, b
=n + loglob.
Thus, 1log,~a is obtzined by adding the integer n to loglob,

€10
“ard the mantissas of logloa and 1oglob are the same, The proof

is complete. '

It follows from Theorem 9-5a that the logarithms of all num-
~k=rs can be obtained from a table which gives the logarithms of
‘mumbers from 1 to 12, Common logarithms are preferred to nat-
Aral logarithms for ordinary computation because of Theorem 9-5a.
The mantissas of commorn logarithms are obtained from a table, and
characteristics are- obtained by inspection as indicated in the
next Theorem (9-5b). _

Before we consider this theorem, let us recall the meanings
that have been assigned to such expressions as lOo and 1077
and 10°M wheré n 1s a positive integer. We have long known
that 10° x 10% = (10 x 10 X 10) (10 x 10) = 10° and, more gener-
ally, that

=1 om+n

(1) 10™ x 10" » where m and n are positive integers

called exponents when used in this way.

Zero and negative integral exponents were defined so that this law
(1) remains true. Suppose n = 3 and m =0, We have

10° x 10° = 1050 = 103, Evidently 10° must be assigned the
value 1 in order for the statement to be true. We can write

109 - 1,

43
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Suppose next that m =3 and n = -3. According to our ru.e,
we have

10 x 1073 = 1027(-3) = 100 - 1.

But lO3 X A = 1. Therefore, 1072 must be interpreted as
1l
1 in order for (1) to remain true for negative integral ex-
;63 !
ponents. We have then 10~ = —13 and, in general,
10 .
-n 1 :
10 = =5 where n 1is a positive
10

integer. In fact, for any real number X # 0, we have

x™n —%— where n 1s a positive integer.

4 X

We note that Equations 9-3e can now be written as a single equation:

9-5b log M =n log X for any integral value of n provided
x > 0,

The use of zero and nepative integerns ns exponents will be
11llustrated by examples:

Example 9-5¢. Express in decimal foxm:
(a) 1072

(b) 10° x 1072

(¢) 416.2 x 1072

Solutions:

-5 _ 1 _ 1 -
(a) 1077 = =5 = T00,000 0.00001

0 =3 1
(b) 107 x 107 =1 x 5555 = 0.001

) -5 _ ____l___‘ = )
(¢) #416.2 x 1077 = 416.2 x 106,000 = 0.00M162
49
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Zxample 9-5d. Supply the appropriate er—onent:
(a) 0.00001 = 10%

(0) 10° x 10" x 1077 = 10¥

(¢) 0.0512 = 5,12 x 102

Solutions: The definitions indicate that :zhe answers are
X==-5, y=0 and z = ~-_.

This brief discussion of integral exponexts is sufficient for
our present purpose. A more complete discussion of exponents is
found in Section 8 of this Chapter along with a number of practice
exercises,

We are now in a position to establish
Theorem 9-5b. If N 1is a positive number expressed in the

form 10" X k, where n 1s an integer and 1 { k< 10, then n
is the charactsristic of loglcj.

Proof':

1. N = 10" x - Hypothesis

2. logygN = 1lsg, (107 x k) ' (9-3h)

3. log N = logyq 10" + 1og ok (9-3b)

U, logioN = n -+ log, ok ' (9-3e) and

loglolo = 1 by definition

5. 1 <k< 10 Hypothesis
logyg 1 < logy gk < logy 410 (9-3g)

7. 0 loglo k¢l ;oglol = 0 and loglolo = 1

8. n 1s the characteristic of logloN by definition (9-5a)

Q.E.D.
59
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Examples will show how this Theorem can be applied as well as
ignificance of our preliminary note on zero as an exponent.

Example 9-5e. Find the characteristic n of logloN for

of the following values of N:

(a) N = 4513

(b) N = 0.00847

(¢) N =T7.418

Solutions:

(a) N = 4.513 x 10°, therefore n =3 by Theorem 9-5b.
(b) N = 8.47 x 1072; .°. n = -3.

(¢) N =7.418 x1 = 7.418 x‘1o°; .. n =0,

i

Example 9-5f. If we know that the characteristic of

logoN 1s 2, and that the sequence of digits in N is 4821,

locate the decimal point in N,

and

Solution: In our formula N

10" x k, we have k = 4#.821

2 _ u82.1

n=2. .'.N=4‘821X10

Exercises 9-5b §Oral}
Give the characteristic for logloN for each of the follow-

ing values of N:

(a) 43.16 () 1078 x 6.32

(o) 763,900 (g) 471.5 x 10"

(¢) T7.732 (h) 0.0063 x 10°

(d) 0.7732 (1) 6315 x 1077

(e) 0.000085 (3) 10° x 10° » 1072
51
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2. In each of the following cases we are given the sequence of
digits in N--and the characteristic of - logloN. Locate the

decimal point (find N) 4in each case.

Sequence of Digits in N Characteristic of 1ogloN
(a) 77113 5
(b) 63192 .0
(c) 2083 -3
(a) 5331 _ -7
(e)7-29003 2

3, A number in decimal form is said to have its decimal point in
standard position if the decimal point is located just to the
right of the first non-zero digit. Use this 1dea along with
Theorem 9-5b to obtain a rule for finding the characteristic
of the logarithm of any number which has been expressed in
decimal form.

I, Apply the rule you obtained in Exercise 3 to find the charac-
teristic of log N when N 1is given as follows:

(a) %17800 _ (d) 0.001 x 0.0002
(b) 0.0031 (e) vetween 0.001 and O. 009
(¢) 731 x 1072 (£) 4 x 10° + 273

(g) 2.16 x 10° x 3.19 x 10~7

P
A
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It 1s now possible to explain how the logarithm of a number
Table 9-5b shows a small portion of a
standard four-place table of common logarithms. The first two

digits of the number are given in the column on the left which is
headed N;

is obtalned from a table.

the third digit appears at the tops of the columns on

Table 9-5b. Sample Entries from a Four-Place Table of
Common Logarithms

N 0 1 2 3 4 5 6 7 8 9
60 | 7782 7789 7796 7803 7810 | 7818 7825 7832 7839 7846
61 | 7853 7860 7868 7875 7882 | 7889 7896 7903 7910 7917
62 | 792% 7931 7938 7945 7952 | 7959 7966 7973 7980 7987
63 | 7993 8000 8007 8014 8021 | 8028 8035 8041 8048 8055
61 | 8062 8069 B8OT5 8082 8089 | BO96 Bl02 8109 8116 8122
65 | 8129 8136 8ik2 8149 8156 | 8162 8169 8176 8182 8189
66 | 8195 8202 8209 8215 8222 | 8228 8235 8241 8248 8254

the right. A complete four-place table appears at the end of this

These tables gilve only mantlssas, and all
decimal polnts are omitted. Characteristics are obtained by apply-
ing Theorem 9-5b., Table 9-5¢ gives a number of logarithms that
have been obtained in the manner indicated.

’ If the logarithm of a number is known, the digits of the
number can be found by looking in a table of logarithms. If the
glven logarithm is a common logarithm, look for the mantissa in the
body of a table of common logarithms and read the digits of the
nunber at the left margin and at the top of the column in which the
mantlssa is found. The characteristic indicates where the decimal
point should be placed. Table 9-5¢ can also be interpreted as
giVing examples of how to find the number a

Section (Table 9-5d).

when logloa is
given.

3
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able 9-Zc. Jome Common Logarithms Obtained from Table 9-5b.

a logloa
Cizn, 3 + .7910
6220 3 + .7896

£2.1 1+ .7931
6.15 0 + .7889
6.18 0 + .7910
0.619 -1 + .7917
0.0619 _ -2 + .7917
0.00619 =3 + .7917

619, 2 + .7917
6190. 3+ .7917
61900. 4L o+ 7917
$17000. 5 + .7903
6.21 0 + .7931

The discussion of tables of logarithms will be complete as
soon as interpolation has been described. Consider the problem
of finding loglo62l.6. Inspection of the tables shows readily

2

that loglo62l.0 ~ 2.7931,
loglo622.0 ~ 2.7938, ey
but the digilts 6216 do not occur in a standard four-place
table. Since log Xy < log X5 if Xy < Xp,
2.7931 < log,,621.6 < 2.7938,

but further Information is needed %to find log1062l.6. An examina-
tlon of the graph of y = loglox in Fig. 9-11 shows that short

sections of the graph are almost straight. More preciselytilet

[sec. 9-5]
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Pl and PE be two polnts on the graph of y = loglox which 1lie

close together; then the segment of a straight line that joins
these two points lies very close to the graph of y = loglox.

Thus, in order to find loglo621.6, the graph of y = log)yx will

be approximated by the straight line through the points (621.0,
2.7931) and (622.0, 2.7938).

Fig. 9-5a gives a schematic drawing which explains how the:
straight line is used to obtain an approximate value for
loglo621.6.

\i B \09\0*

¢ 0007
z AD=|

B

>
Q

2793l
27938

Y
y:

62,0 621.6 622.0

Fig. 9-5a. Explanation of Linear Interpolation.

Observe from the figure that the logarithm increases by .0007
(the number 7 is usually called the tabular difference) when x
increases by 1.0. The triangles ABC and ADE are similar,

Therefore, - o5
m(BC) _ m(DE) z__ .0007
m(AB) ~ m(AD) _~ 0.6 - 1.0

and 2z = ;00042. This number must be rounded off to .0004 since
it 1s not possible to obtain five-place accuracy by interpolating
in a four-place table. Finally, add .000% to 2.79%31 to obtain
loglo621.6 ~ 2.7935,

[sec. 9-5]
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The process of finding the mantilssa tor the logarithm of a
number whose digits occur between two entries in the table is
called linear interpolation because a stralght line is used to
approximate the graph of y = loglox.

The problem of finding 1oglo62l.6 can also be solved very

simply by finding the equation of the line through the two points
A and E in Fig. 9-5a. The figure shows that A and E have
the coordinates (621.0, 2.7931) and (622.0, 2.7938) respect-
ively. The equation of the line through A and E is

L7938 - 2.79%1
¥ - 2.7931 = 2622{8 =£5E220(x - 621.0),

or
¥y = 2.7931 + .0007 (x - 621.0).

The value of y when x = 621.6 1is the approximate value of

i

loglo62l.6. If x = 621.6, the last equation gives y = 2.7935.

Hence, loglo621.6 ~ 2.7935.

It is often necessary to interpolate in order to find a
number when .i*s logarithm is known. For example, consider the
problem of finding x if

loglox = 1.7940.

Table 9-5b sﬁows that
1.7938

2?

log,,62.2

loglo62.3 ~ 1.7945,
but the mantissa 0.7940 does not occur in the table.
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Fig. 9-5b gives a schematic diagram which indicates how the graph
of y = loglox can be approximated by a straight line in such a

way as to give a solution to the problem. Similar triangles give
the equation

Ta%@' = T%é%'r?', or 2 = ;(0.1)-

AD=0.

1.7938
y=1.7940
y=1.7945

y=i

X
62.2 7 623

Fig. 9-5b. Explanation of linear interpolation
for finding a number when its loga-
rithm is given.
Thus, 2z 1s approximately .03, and the number whose common loga-
rithm is 1.7940 is approximately 62,23.

The problem just explained can be solved also by finding the
equation of the straight line AE 1in Fig. 9-5b. This line passes
through the points whose coordinates are (62.2, 1.7938) and
(62.3, 1.7945). The equation of this line is

y - 1.7938 = .007 (x - 62.2).

If y = 1.79%0 on this line, then x = 62.23, Thus, if
log g% = 1.79%0, then x X 62.23.
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Table 0-5d. FOUR-PLACE TABLE OF COMMON LOGARITHIS

b o 2 2 3 y 5 6 7 8 9
10 0000 0043 0086 0128 0170 0212 0253 0294 0334 0374
11 0414 0453 0492 0531 0569 0607 Ools 0682 0719 0755
12 0732 0828 0864 0899 0934 0969 100% 1038 1072 1106

15 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430
14 1461 14%92 1523 1553 1584  161%F 164k 1673 1703 1732

15 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014
16 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279
17 230F 2330 2355 2380 2405 2430 2455 2480 2504 2529
18 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765
19 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989

20 3010 3032 3054 3075 3096 3118 3139 3160 3181 3201
el 3222 3243 3263 3284 3304 3321 3345 3365 3385 3404
22 sheh 3huk 34E4 3483 3502 3522 3541 3560 3579 3508
23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784
2k 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962

25 3979 3997 4014 4031 Lo48 1065 4082 4099 4116 4133
26 #150 4166 4183 1200 4216 h2z2 4ouhg 4265 4281 4298,
27 W31k 4330 4346 4362 4378 4393 4409 hu25 4440  Yu56
28  4h72 4487 4502 4518 U533 4548 4564 4579 U594 4609
29 ho24 4639 u654 4669 4683 4698 . 4713 4728 UuThe 4757

30 4771 4786 4800 4814 4829 4843 4857 4871 u4886 4900
321 491k 4928 Lgh2 4955 496G 4983 “4997 5011 5024 5038
J2 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172
35 5185 5198 5211 5224k 5237 5250 5263 5276 5289 5302
Sh 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428

35 ShhL Shy3 5465 5478 5490 5502 5514 5527 5539 5551
3% 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670
57 5682 569F 5705 5717 5729 5740 5752 576> 5775 5786
38 5798 5809 5821 5832 5843 5855 5866 5877 5888 5899
39 5911 5922 5933 5944 5955 5966 5977 5988 5999 6010

li¥e) 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117
41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222
I 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325
M5 6335 6345 6355 6365 6375 6385 6395 6hos 6415 6hos
Hyll 6435 644L 6454  ELEL 6UT7h U84 6493 6503 6513 6522

he 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618
Lo 6628 6637 6066 6656 6665 6675 6684 6693 ‘6702 6712
Y 6721 6730 6739 67hk9 6758 6767 6776 6785 6794 6803
3 6812 6821 6830 6839 6818 6857 6866 6875 6884 6893
49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981

D 6990 6998 7007 7016 7024 7033 7042 7050 7059 7067
i 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152
oe 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235
> 7245 7esl 7259 7267 7275 7284 7292 7300 7308 7316
P T3eh T332 7340 738 7356 7364 7372 7380 7388 7396
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0
ThOoh
Th82
7559
7634
7709
7782
7853
7924
1993
8062
3129
8195
8261
8325
8388
8451
8513
8573
8633
8692

8751
8808
8865
8921
8976

9031
9085
9138
9191

- gels

929k
9345

19395
oukE

949l
9542
9590
9638
9685
9731
9777
9323
9868
9912

1 9956

1

7412
7490
7566
7642
7716

7789
7860
7931
8000
8069

8136
8202
8267
8331
8395
8457
8519
8579
8639
3698
8756
8814
8871
8927
8982

9036
9090
9143
9196
9248

9299
9350
9400
9450
9499

9547
9595
9643
9689
9736

9 82
9827
g872
9917
9961

2

7419
7497
7574
7649
7723
7796
7868

7938
8007

8075

8142
8209
8274
8338
8401

8463
8525
8585
8645
8704

8762
8820
8876
8932
8987

9042
9096
9149
9201
9253

9304
9355
9405
9455
9504

9552
9600
96U7
9694
97h1
9786
9832
9877
9921
9965

3

7427
7505
7582
7657
7731

7803
7875
7945
8014
8082

8149
8215
8280
8344
8ho7

8470
8531
8591
8651
8710

8768
8825
8882
8938
8993

9047
9101
9154
9206
9258

9309
9360
9410
9460

9509

9557
9605
9652
9699
9745

9791
9836
9881
9926
9969

4 5
T435 7443
7513 7520
7589 7597
7664 7672
7738 7745
7810 7818
7882 7889
7952 7959
8021 8028
8089 8096
8156 8162
8222 8228
8287 8293
8351 8357
8414 8420
8476 8482
8537 8543
8597 8603
8657 8663
grLG  8ree
8774 8779
8831 8837
8887 8893
8943 8949
8998 9004
9053 Q058
9106 9112
9159 9165
g212 9217
9263 9269
9215 9320
9365 9370
gl15 gL420
9465 g469
9513 9518
g562 9566
9609 = 9614
9657 9661
9703 Q708
9750 9754
9795 9800
9841~ 9845
0886 9890
9930 9934
9974 9978
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7459
7536
7612
7686
7760

7832
7903
7973
8041
8109

8176
8241
8306
8370
8432

2494
555
8615
8675
8733

8791
8848
8904
8960
9015

9069
9122
9175
9227
9279

9330
9380
9430
9479
9528

9576
9624
9671
9717
9763
9509
9854
9899
9943
9987

8

T466
7543
7619
7694

T767

7839
7910
7980
8048
8116

8182
8248
8312
8376
8439
8500
8561
8621
8681
8739

8797
8854
8910

8965

9020

9074
9128
9180
9232
9284

9335
9385
9435
9u8L
9533

9581
9628
9675
9722
9768

9814
9859
9902
9948
9991
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9

T4Th
7551
7627
7701
e

7846
7917
7987
8055
8122

8189
8254
8319
8382
845

8506
8567
8627
8686
8745

8802
8859
8915
8971
9025

9079
9137
9186
9238
9289
9340

9390
9410

o489
9538
9586
9633

. 9680

9727
9773
9818
9863
9908
9952
9996
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Exercises 9-5¢,

Use Table 9-5d with the following exercises.

Find the logarithm of each of the followlng numbers:

(a) 342.0 (h) .59
(b) 38.4 , (1) .00684
(e) 735 (3) 734000
(d) .0945 (k) 9450
(e) 58900 ) 73.2
(£) 21.4 (m) .00065k
() 349.0 . (n) 7.68
(o) 8.62

Find the logarithm of each of the following numbers.
polation 1s required.

(a) 684,2 (g) 38.74

(0) 9.u84 (h) 495500.
(c) .06254 (1) .05879

(d) .7328 . (J) .0006237
(¢) 271.6 (k) 788600000.
(£) 1.647 (/> 8.589

Pind _the numbers that have the following logarithms}
(2) 2 + .uues (£) 0 + .3522
(b) 2.4u25 (g) 1+ .2330
(c) -2 + .827% (h) -3 + .6839
(d) -2.7167 (1) -3.2924
(e) 4 + .6646 (3) 3.7135

Find the numbers that have the following loéarithms.
polation 1s required.

(a) 2 + .4505 (£) -2.4748

(b) -1 + .9156 (8) -2 + .7592

() % + .1320 (h) 1 + .8487

{a) 5.35328 (1) -1 + .6329

(&) -2 « 4743 (3) 3 + .4279
64U

[sec. 9-5]
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5. Draw an accurate graph of ¥y = loglox on a large sheet of

" graph paper. Usé Table 9-5d as a table of values fcr plott-
ing the graph.

9-6. Computation With Common Logarithms.

Computation with .common logarithms rests on two simple facts:

(a) A number can be found (by using tables) if its logarithm
is known.

(b) By using the properties of logarithms established in

Section 9-~3, it is frequently possible to find the
logarithm of a complicated expression quite simply from
the logarithms of the individual numbers in the express-
ion.
The procedure is best explained by means of examples. Since all
logarithms in this section are common logarithms, the subscript 10
has been omitted from the symbol logloa in order to simplify

writing. .
Example 9-6a. Find the value of 27.43 X 71.64.

Solution:

Let a denote the value of the expression. Then by the
properties of logarithms established in Section 9-3,

log a ~ log (27.43 X 71.64)
% log 27.43 + log T1.6L4.

In order to make the addition easy, the work may be arranged 1n

tabular form as follows:
log 27.43 <~ 1.4383
log 71.64 = 1.8551

log (27.43 x 71.64)x 3.2934 .
27.43 x 71.64 T 1965.

[sec. 9-6]
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Example 9-6b. Find the value of ;-g#

Solution: By the properties or logarithms egtablished in
Section 9-3,

log EEfEE log 71.64 . log 25.64.

log 71.64 X 1.8551
log 25.64 X 1.4089

log ~ 0.4462

25. ~ 2.794.

2743 x (71.64)°

Example 9-6¢c. Find the value of
(25,64)3

Solution: Let a denote the valu€ of the eXpression. Then
by the properties of logarithms establiShed 1in Section 9.3,

log a = log [27.43 x (72+64)2] - log (25.64)>
= log 27.43 + 2 108 71.64 _ 3 10g 25.64

In order to make the additions and subtTactions easy, the work
should be arranged in tabular form as fOllows:

log 27.43 X 1.4383

2 log 71.6% X 3.7102 log 71.64 Y 1.8551

" logle7.43 x (71.64)2) X5.1485 2 log 71.64 %3.7102

3 log 25.64 X 4,2267 log 25.64 X 1.4089

g 27.43 (71, 61)° ~0.9218 3 log 25.64 X 14.2267
(25.64)7

2753 (11.64)%  ng 5,
(25.64)° .

[
DO

[sec. 9-6]
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Example 9-6d. PFind the value of +/ %%ﬁ%.
Solution: It was :hown in Sectiqn 9-3 that log\ﬁg = % log a.

Also, 1log —= = log X, - log x,. Thus,

log \/%%—'—g = % (log 25.8 - log 64.8)

log 25.8 ~ 1.4116
log 64,8 X~ 1.8116

log %%% X -.4000
log /2%_% x%.(-.uooo) = -0.2000.

Again, we observe that the number -0.2000, being negative, cannot
be regarded as the mantissa of a logarithm, because all mantissas

are, by definition, non-negative numbers less than one. Moreover,
we have no negative entries in our table of mantissas (9-5d).
Therefore, we must write the number -0.2000 in standard form,
where the decimal fraction part 1s positive, as we did in some of
the exercises following Definition 9-5a.

We have -0,2000 = -0,2000 + 1 - 1 = 0.8000 - 1

.. log A/ %%:—88 R -1 + .8000
and %ﬁ-—% X 0.6310

L Example 9-6e. Find the value of (0.08&32)5.

Solution: t was shown 1n Section 8-3 that log (0.08432)5=
5 log (0.08432), From the Table 8-5d and the rules for
characteristics,
log (0.08432) ~ - 2 + ,9259.
log (0.08432)°% - 10 + 4.6295
~ -6+ 0.6295

‘Then (0.08432)7 ~ 0,00000261.

{sec. 9-6]
63




Jdove that 1t 1s often advantageous to keep the decimal frac-
tion part of the logarithm positive. For this reason we did not
express log 0.08432 in the equivalent form -1.0741 alchough it
would not have been wrong to do so. 1In fact, if we use this value,
we have

log (0.08432)2 X -5,3705
wnich is correct, but, because the decimal fraction part is nega-
tive, 1o not useable with our table. If we add and subtract 6;

we have : ‘
-5.3705 + 6 - 6 = 0.6295 - 6 as shown above.

Example 9-6. Find the value of 2/ (0.07846)"

§olution: The calculation 1ls carried out as follows:

log 2/ (0.07846)% = & (4 10g 0.07816)

3.~
=

log 0.07846 ~ - 2 + 8947 = -1.1053
" log 0.07846 ~ -4.4212

% (4 log 0.07846]~ -1.4737 = -1.4737 + 2 - 2
N O.5263 - 2

-

log 2 (o.o78u6)u ~ -2 + ,5263

2/ (0.07846)" ~ 0.03360

Exercises 9-6,

Use Table 9-5d to compute the value of the unknown in each of
the Uollowing expressions:
1. X 05,89 % 0073598

2.y o= (1%1.6)(0.299) .
98,17

k) 8o A
o LL[_);)- f

. . A1l
* 7 0,000738Bz - 61
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0.0693
5. x = g9l

6. X = 2;§12~§_19-4
9.753 x 10"

;. 5 _ 640 x (0.849)
. = “3T.7 :
8. y = (0.0315)°
9. x = (0.008976)" |
10, t = (6.432)7 x (8.595)"
| - 1
11, 2z = Y -
(1.23)°
3
12. X = MB-
(8.954)
13. y = /005107 .
1. t = [/ (0.09562)"

3
15. If d = 2%5 , find H when d = 2.166 and R = 1200

16. I tl=1¥«/-é,‘ find ¢t when/ = 95.8, and g = 980.
Use ™ = 3.14,

_ /0.07324 x (232.8)°
7. x = > 2
© (0.8954)° x (735.7)
18 X = —_l_o-s-—gu_?E
. log 134.

19. r = / §321 .
81.25 2/ 0.16

_ (6.385)7 x (8.438)°

. 20. vy
2/ (0.6359)5
21, 4 o (6.385)° + (8.438)°

R/ (0.6359)°

[sec. 9-6]
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1
0o, x = | Y8453 (0.004954) |3
: - 695.06 )

23. 2 log x + log (%?) =6

b, If A= (1 + r)", find

]

(a) A when n =30 and r = 0.03,

]

(b) r when A =3 and n = 40 ,

(¢) A when r = -0.05 and n = -20 .

i

9-7 Logarithmg with an Arbitrary Base.

In Section 9-1, there was defined for each 'k > 0 a loga-
rithm function as the area associated with the hyperbola vy k

X

i

For particular values of k 1like k =1 and k = M = IH;TU =

0.43429 , . . (see 9-la), we ohtain the natural logarithm func-

tion and the common logarithm function respectively. 1In general,
as stated in Equation 9-1, the logarithm function associated with
a particular positive value of k has the property that

log x =k Inx, x > 0.

If a 1is any positive number which is not equal to one, then
the ratio '

log x _k1n x _1nx
log a It In & iIn a

is independent of the particular k used to defihe'the log func-

tion. In other words, the ratioc of the values log x to log a

depends only on the numbers x and a and not on the particular

logarithm function used. Thus, the function f defined. by

a
9-7a - £, (x) = %%g"g’ x>0
is independent of k. For example
loglox
£10 (x) = TSEZSIO = 1og, 5%,
since loglolo = 1,
(sec. 9-7]
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Definition 9-7a. For a > 0 and a # 1, the function £,

defined by (9-7a) is called the logarithm function with base a.
We write f_ (x) as log x. Thus

9-7b log X' =

Hence, for each positive a # 1, we have assoclated a loga-
rithm function wlth base a. 1In particular, the equation preced-
ing Definition (9-7Ta) tells us that this new logarithm function
with base 10 1s our old friend the common logarithm function. If
we denote that value x for whick 1In x =1 by the letter e,

.then, by Definition (9-Ta), the logarithm function with base e

is given by
loge X = l.o-g-—ic-

Jog e’
. sina log x _ ln x
But since Tog @ Ine for any logarithm function,
9-7c log, x = ln X,

That 1s, the natural logarithm function is precisely the logarithm
function with base e. The number e therefore, takes on a
special significance, It 1s an irrational number whose value,
Eorrect to 10 decimal places is given by

e ~ 2.7182818285,

Notice that logarithms with base 1 are excluded from De-
finition (9-7a) because 1log 1 = O.

The motivation for defining logax as that ratio %%g—% is

that this ratio depends only on X and a, and not on the partic-
ular positive number k used to define log x. As a matter of

lOgbx

fact, the ratio Tom = 1s independent of b. Note that

b

log X _ log a
logyX = TB%"E’ and log.a = TBE—F

so that their ratlo is precilsely %%g}g which, by definition is
logax.
[sec. 9-7]
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This simple relation,

9-.7d log, x =

for positive a and b different from one, is called the change
of base law for logarithms.
Two particulzr bases are interesting. Let x = b in (9-7d);

sinze logbb= %gg—% = 1, we have
1
9-Te loggb = Togga“

Agaln, 1f we let b = = 1n (9-7d), then

(1) log; x
_ a
logyx = ISEI_a
a
But. log,a = log i = }O%OZ a = -1 and (1) becomes
. —_ log oy
a a
9-7f logax = - loglx.
a

We write down several simple properties of the logarithm
functions with arbitrary bases. The proofs of these properties

follow immediately from the fact that logax = %gg—g. The proofs

are left as exercises,

9-Tg log, 1 = 0.
9-Th log, a = 1.
9-71 loga a® = n, for any-integer n,
9-74 loga(xl-x2)= loga Xyt loga x2.

83

[sec. 9-7]
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Two other properties which will play an important part in the
next section are

9-Tk loga Xy = 1oga X5 if and only if Xy = Xge

9—74’ For each real number 8, the equation loga X =5
has a unique solution.

To prove (9-7k), we observe that

log Xy log Xo
if and only

loga X, = loga X5 or Tog a = T5g &

if log x; = log x,. Moreover, according to (9-3h) and (9-3h'),

log Xy = log X5 if and only if Xx and our proof is complete.

1 *2
To prove (9-7/), we observe that log, x = s 1s equivalent

to the equation log x = 8 log a, which has a unique solution
according to (9-4f) if we consider c¢ to be the real number
s log a.

The following examples 1llustrate the applications of some of
the relations developed in this section.

First, we compute some logarithms with various bases
(Examples 9-Ta to 9-Te).

Example 9-7a. Compute log, 8.

log 8 _ log 22 _ 3 log 2 _ 3
jog 2 Tog 2 ~ log2

Solution: log, 8 =

Example 9-7b. Compute log4 22.

Solution: log, 32 = IfjifL' “Jiizi %—%%é'z %

GO

(sec. 9-T]
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Example 9-7c. Compute log5 10.

Solution: This time we use (9-7d) instead of using (9-7b)
as we dld in the first two examples.
log, ~10
_ 100 1 . 1 )
log5 10 = To8; 5 = Tog 5 ~ 5590 ~ 1.4306,

Note that it 1s poSsible to avoid this long division by using

logarithms. Let t = 5§%6—' Then,

log t = -log .6990 ¥ -(-1 + .8445)
~ 1 - 8445 = ,1555
‘.t X 1,431,

-Example 9-7d. Compute logllo.
5

log 10 - log 10 -
log 5—l - log 5

f

solution: log, 10 = -logg 10X -1.431,
5

Of course this answer could have been obtained by applying (9-7f)
to the results of Example 9-Tc,

Example 9-7e, Find N if log3 N =14,

Solution: logy N = %%g-% = U

4 log 3 = log 34 = log 81

i

log N
c.o N =81.

Example 9-7f. Show that log, x" = n log, x if n 1s an
integer.

solutlon: We know that log M =n log x by (9-3e). By

log X2 . n log x

Definltion 9-7a, log;a Prabi. Tog a~ = Toga
- logt x
= n TE%‘E = n log;a X.
71)

[sec. 9-7]
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Example 9-T7g. The logarithm function corresponding to
k = 2 coincides with the logarithm function with what base?

Solution: We know that logb X 1s that logarithm function
whose value at b 1is 1. According to Equation 9-1,

log x = k In x, Since 1log b = 1, we have
1=21Inb for k = 2.

. 1

. . in b = 2'0 But’ by (9—70) »

e = log /€ (9-3f, p=1, q=2)

.« b= /€& , because Xy = X, if log x.= log Xo.

1

Exercises 9-Ta

1. Find the value of the following logarithms without the use

of tables:
(a) logg 81 (£) logy g 27
(b)  logs, % (g) log 1
(c) 1log,32 (h) log,, 0.01

"
(a) log27 % | (1) log J3 8
(e) 1og§§f- (3) logyg ( V7)°

[sec. 9-7]
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Findi b, x, or
(a) lOSb 5 = %
( b ) 10827 9 = x

(c) log9 N = %

N =

(d) l°%/j;

N:

-4

(h)

log, 64 = x
T
log, 9 V3 =5
logl N = —0-75
16
logb %; = 1,5

Make use of Table 9-5d to compute the following ldgarithms
correct to the nearest thousandth:

(a)
(b)
(c)

Show that:
(a)

1 1
‘083 7
1 200
Og7

logo.u 10

Solve for x:

(a)

1085 X

log5 2 x log2 5

= 1.17

(a)

=1

(v)

Prove the following statements:

(a) 9-7g log,

(b) 9-7h log,

If logx N = g,

1l =

a

i

and

0. (c)

1. (d)

logx b =t,
72

[sec. 9-7]

1og,, 5
log2 10

1085 0.086

log5 2 + lo;l 2=0
5
logl X = -0,301
5

9-71 loga a = n
integer n.

9-7J

n

loga XqXo
logaxl + logaxe.

find logb N.

for any
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8. Complete the following table:
el s sl s |6l ]ols |

E
we,n |1 1T T

G. The logarithm function corresponding to k = 5 colncides
with the logarithm functlion with what base?

10. Compare the results of the preceding exerclse with Example 7
and find the base of the logarithm functlon coinclding with
the logarithm function corresponding to any k > O.

11. Show that the solutlon of-the equation loga X =8 1s the

same as the solutlon of the equation 1ogb X 8 logb a

provided a and b are positive numbers not equal to one,
and s 1s a real number.

Let us examine the graphs ol several logarlithm functlons
defined by y = loga X.

If a = 10, we have the famlliar graph of the common loga-
rithm function shown in Figure 9-11. If a = 100, we can sketch
the graph of logloo X by comparing it with the graph of loglo X.

To do this, we let a =10 and b = 100 in Equation 9-7d4 and
write

logloo X = logloo 10 X loglo X.

’ 1 1
Now, logloo 10 = Y, so we obtaln logloo X = Pl loglo X, From

this we see that every ordinate of the graph of y = l°8loo X 1s
one-half the corresponding ordinate of the graph of y = loglo X.

Similarly, each ordinate of the graph of y = logl X 1s the neg-
10
ative of the corresponding ordinate of the graph of y = 1oglo X;

and each ordinate of y = log 1 X is the negative of the corres-~
' 100
ponding ordinate of the graph of y = logloo X. All four of these

graphs are sketched in Flg. 9-Ta.
(sec. 9-71
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Fig. 9-Ta
These graphs indicate that:

[ (1) 1If a> 1, log, X <O 1f x < 1 and log, X > O 1f
x > 1.

J (11) 1ra <1, log,x > 0 1if x < 1 and log, x < 0 if
x> 1,

9-Tm
(111) For a > 1, log, X4 < log, X, if and only if

xl < X5

‘ (v) Por a <1, loga x, < log, X, if and only if
Xy > Xoo
These statements are indeed true and they follow directly

from (9~7b) and the corresponding properties of the log function
given in Section 9-3,
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Exercises '9-7b.

1. Sketch the graphs of y = log X and y = logy x on the

v 10
/10
same set of axes,
2, If n 1is a natural number, show that each ordinate of the

graph of y = log n X is % times the corresponding ordinate
a . .
of the graph of y = log  X.

3. Prove:
(a) If 1< a and, a<b then logb > 1.
(bp) If 0<a<l, and a<b then logb < 1.

4, Prove properties (1), (ii), (iii), (iv) for log, X Dy

making use of the corresponding properties of 1log x and
without reliance on the graphs shown in Figure 9-Ta.

5. Show that if 1 ¢ a ¢<b and x > 1 then logax > logbx.
If, however, O < x ¢ 1 then logax < logbx.

The following is a swummary of properties of logarithm. func-
tions with an arbitrary base:

Definitilon 9-fa. For a > 0O and a # 1, the logarithm
functlon with base a 1s defined by the function

log x
log a’

£ (x) = log x = x> 0,

a-Tc log, X = Pnx , x>0,

log,x .
9-7d. log, X = TBEEE—’ aftl, b #1, x>0, a>0,b>

) 1 ) '
Q-Te, lOGab mb—a— , a 7/ 1, b 7 1, a > 0O, b > O.
a-7f. o, X = - logy X, a ¥ 1, a >0, x >0.
a

=78 logal =0, a#1l, a>o0.

[Beco 9"7]




9-Th, logaa =1l,a#¥1, a>o.

9-7L. logaan =n, for any integer ps» a ¥ 1, a » 0.

9-Tk. 1ogax1 = logax2 1f and only 1if X, = X2,a¢1, a>0,x,>0,%,>0.

9-74. For each real number s, the eduation lOgax =3
has a unique solution, a > 0, a ¥ 1.

9-71! logaxn = n log x, for any inte£er n, a#l, a>0, x>0.

9-Tm log,xy < log X, if and only if Xl < %y, 84, a>o0, -x;>0.

9-8. Exponential Functions --Laws of E#ARonents

Let us look once agaln at the graph of the function defined
by y = log, X, (a>0, a#1, x>0).

y*s

Fi@- 9"83

The domaln of this function consigtS of 811 positive numbers
and 1ts range consists of all real numbeXS. We have geen that any
horizontal lin. y =38 will intersect tNls graph in ope and only
one .point (Figure 9-8a). In other words the eduation logax = 3

[sec. 9-0)
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has a unique solution. According to our discussion of inverse
functions in Chapter 3, Section 8, the logarithm function has an
inverse function which we will call, for the moment, Ea' This

inverse function 1s ﬁﬁén defined by the equation,

y = E (x).
We should note that Ea(x) is not defined for a =0 or 1 be-
cause loga X 1is not defined for these values of a.

Again drawing on Chapter 3, we recall that inverse functi-as
have the property that their graphs are symmetric in the line
Yy = X. This fact enables us to sketch the graph of y = Ea(x).

This could be accomplished by drawing the graph of y = log x 1n

ink and then folding the paper along the line y =X 5o that an
impression is made while the ink is sti1ll wet. The resulting graph

of y = Ea(x) is shown in Figure 9-8b.

(0,s)

y=|og0x
(o, '
Y'Eg(_x_)>/
P X
/

Figure 9-8b
From thre graph it 1s clear that the domain of Ea is all real

numbers and the range of Ea 1s all positive numbers.

t
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Since Ea and logq are inverse functions, we know from our
C

discusslon in Chapter 3, Section 8, that each of them "undoes" what
the other one does. This means that

9-8a Ea[logas] =35 or (1) log, s 1is the unique solution of
Ea(x) = s, and
9-8b loga[Ea(u)] = u or (ii) Ea(u) is the unique solution of

logax = u,

This latter fact, (ii), enables us to compute Ea(n) when n is
an Integer. We ask for the solution of

loga(x) = n, where n 1is an integer.
Since Ea and loga are inverse functions, we know that

loga[Ea(n)] n. However, according to (9-7i),

[t}

n .
logaa =1, where n 1s an integer, Therefore,

y . n . . .
9-8¢ méOn) = a, Dbecause Xy = Xy if log, x, = log, X,

according to (9-Tk).
In particular, {f n = 0, we have

0-8dd. £,(0) =1, and if n =1

9-8e, Ea(l) = a.

] Equation 9=3c furnishes us wlth a compelling and permanent
notation for the function Ea’ The function is called the exponen-

tial functlon with base’'a, and Ea(s) 1s written a®, where a

1s called the base and s 1is called the exponent., The symbol a°
Ls read as  "a to the stP power", or simply "a to the g".

73
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Let us now review what we know about the function Ea:

(1) Ea(s) 1s defined for all real numbers s.

(11) E_(s) 15 'the unique solution of log X = s.
(111) Ea(s) has the same value as a° when s 1s an
integer n.
The first two statements follow directly from the fact that E_

‘was defined as the inverse of loga; the third statement is another

way of saying Equation 9-8c.
These statements, (i), (i1), (iii) suggest that a®
might be defined in terms of Ea(s), i.e. as a unique solution

of the equation logax = 8. JIf this is done, we will have a serv-

iceable definition for a° when s 1s any real number, whereas
until now a® has been defined only for the case when 8 1s an
integer. Moreover, the new definition, while much broader, agrees.
with our previous interpretation of an.

Accordingly, we adopt the following definition:

Definition 9-8a. If a > 0, a #1, and s 1s & real
number, 22 1s that real number x which 1s the unique positive

solution of the equation logax = S,

3ince we now write a® for Ea(s), Equations 9-8a and 9-8b

become respectively

Jor u
Jy-ot a &, u for all u > 0. (loga u is the unique
solution of a* = u)
- 9-8g logaaS = s for all real s. (as is the unique solution

of log x = s)

fquatlcns (0-8f) and (9-8g) together are equivalent to this

X

statement: rp 5 5 0 and a £ 1 then a° and log,x are

inverse functlons.

[sec. 9-8])
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The meaning of our new definition (9-8a) and the equivalence

of Ea(s) and a® are 1llustrated by the following examples and

exerclses: "

Example 9-8a. Evaluate 33.

1
Solution: According to our definition, 33, or E3(%)’ is
the unique positive solution of the equation logjx = %. But,
log., ~x
- 210
10g3X = Eg—l; . (9"7d)
log, \x
10 1 1 ~ 1 ~
R T 3 or log;nx = 5log, 3 ~-3-(o.u771) ~ 0.1590,
and x N 1.4k2.
Example 9-8b. Use common logarithms to approximate the
value of NEY
. 57 .

Solution: EB( V3) or 3¥2 is defined as the positive
solution of

log.x =+/'3 . Applying (9—7d) we have

log., %
10
Tog,3 -V 2 -

. .. loglox = 3 log103

)

logyox ~ 0.8267,

and X ~ 6,710 1
Example 9-8¢c. Find the value of 2° by sketching the graph
of EQ(X)‘

34

[sec., 9-8]
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Solution: Ve seek Ee(%). We can obtéin an approximate
value from the graph of (A). We know that Ee(x) is the in-
verse of the function IOgex. Therefore, we can obtain the graph
of Ez(x) by first graphing y = logzx and tne:n reflecting this

graph in the line y = x, as we did in Figure (y-8b). First, we
make a table for y = 1og2x.

no
(6]

AENENEY
Tne corresponding tavle for Yy = E2( x) 1is obtainedﬁpy interchang-

ing x and y. Therefore,. points A(- ’16) B(-BT%), C(«2,%),

etc., lie on the graph of y = E5(x). Since, logyx has a con-
tinuous graph, its inverse function E,(x) also has a continuous

graph., We obtain this graph by drawing a smooth curve through

A, B, C, ... as shown in Figuwre (9-8c), The ordinate correspond-

ing to x = % is approximately 1.4,

AY
+
0,
1.4
\_é:::§:::§:’/A//// |
e S e e S
Figure 9-8¢
[sec. 9-8)
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Exercises 9-8a.

1. Evaluate the following by means of Dexinition 9-8a and Equa-
tions 9-8f and 9- 8g

(b) 4 g (n) 10-1.4444
(c) 4 (1) loglolou'1623
(@) (1.5)~2 (1) 1og,72+%
(e) 1024163 () 71og7 0.0813
. C.2718 -3 ,
(r) 10 2 log5 3
(1) s

2. Use common logarithms to find the approximate value of each
of the expressions listed below. It will be necessary to
make certaln approximations and the answer you obtaln will be
only an approximate answer. This approximate answer should
be as accurate as the use of a four place logarithm table

will permit,

(a) 3172 (1) (vo)V2
(b) 40-48 () (2.54)Y3
(¢) 2 V2~ (k) 10Vr§—

(a) 3725 (£) (1.25)70-48
(e) 3V2 (m) 107

(r) 2v3 (n) 10%:5%

(8) 5v> (o) 1070-%2
() V2 (p) (2.75)"3+2

32

[ QU
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2. Draw the graphs of the functions defined by
b 4
(a) v =3 (b) ¥ = logyx

on the same set of axes. How are these graphs related? From
the graphs read the appiroximate values of 31'7 and
log3 1.7.

4, praw tne graph of the function defined by y = lo%VTﬁ X,

Write the equation which defines the inverse of this function.
Draw the graph of the inverse function.

5. Follow the instructions given in Exercise 4 above for the
functions defined by:

1yx
(a) ¥y = logy x (b) v = (5)
/10
§
b.  Suppose C,» C, and 03 are the graphs of three functions,

£f., £, and f. and suppose further that (a) C, and C, are

17 e 3 1 2
symmetric with respect to the y-axis, (b) C, and 03 are

symme s5ric with respect to y = x. ULf fl is defined by

1\x
y = (£)7.
.

(a> 0, a £1l). Write the equation which defines

3

We are now in a position to prove a very important relation

which 1s based on (9-8g) and two formulas from the preceding
section, (9-7d) and (9-Te).
According to (9-7d)
'y

b S t 1
logax = TS@xa = 1ogxx ’ IEE;E_ .

t

But log x’ =t for t any real number by (9-8g),
1 B \ \
and E—Ex‘a_— = loga,{ by (9-76) .
9-8h .. log x% =t log_X.
a a
[sec. 9-8]
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In dealing with positive integral exponents in our previous
studles in algebra, the number asl was 1nterpreted to mean the
product obtained when a 1s used as a factor s times. It was
then a simple matter to verify that, 1f s and t are positive
Integers, and a and b are real numbers,

Q-0 aS X a‘C = aS +t
9-8 (a%)% = 2% ®
9-8k (ab)® = aSp®

Later we defined a° and a™®, where s 1is'a positive

Integer, so that (9-81i) remained valid, and we were led to con-
clude that '

9-8,/ ao = 1, and
9-8m a™® = ls are appropriate definitions provided
a

a # 0. In fact, it is readily shown that (9-81), (9-83), and
(9-8k) are yalid when s and t are any integers if definitions
(9-84) and (4-8m) are accepted.

llow we have assigned a meaning to a® for any real exponent
5, provided a > O and a # 1. Do the relations (9-81) through
(9-8m) remain valid when s and t ave any real numbers and a
and b any positive numbers not egual to one? The answer is yes,
and we snall prove it directly. But let us first give a name to
the relatlons (6-81) through (9-8m) -- call them the laws of
exponents. Moreover, to dispose of the case a =1 which is not
covered 1n our definitlon, let us agree that 1° shall equal 1

for all real s. It 's then easily seen that for a =1 and
b > 0 the laws of exponents are valid.
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Theorem 9-8a. Let a and b be any positive numbers, then
for all real numbers 8 and ¢ the laws of exponents (9-8i)
through (9-8m) are satisfied.

Proof of 9-81: asa‘C = as + T
(1) log, a%a® = log, a® + log,_ a® (9-7J)
(2) loga a® = s, loga a® = ¢ (9-8f)
(3) log, a%a% =5 + t From (1) and (2)
log, a° * C os st (9-8¢f)
(4) log, a® * © = log a®a’ (3)
5) a8 * © = a%a® (9-7k)
(5)
Proof of 9-8j: (a%)% = a®%
(1) 1log,(a®)® = ¢t log, a° (9-8n)
(2) 1og, a° = s (9-8¢f)
(3) .7. log (a®)% = 5t
(4) But, loga aSt = st (9-6¢)
(5) .. log,(2%)" = log, a°° (3) and (4)
(6) (a%)% = aS°® (9-7k)
Proof of 9-8k: . (ab)® = a®v°®
(1) log,,(ab)® = s (9-8r)
(2) logabasbS = (log,y a®) + (Loggy, v°) (9-7J)
(3) log, a® = s log,y, a and
log,y, b = s log,, b ‘ ' (9-*h)

i

(u4) . log,y, a®p® s(log,y a) + s (logy, b)

i

s(logab a + 108, b)

[sec. 9-8]
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(5) log,, a + log, b = log, ab =1 (9-7k) and (9-7h)
6) ‘logab a%® = s x1=s (4) and (5)
(7) logab(ab)S = log_y a®p® (1) and (6)
(8) (ab)® = a®p® (9-7k)
Proof of 9-8.0: a0 -1
(1) log, 1 =0 (9-7g)
(2) log, a% - o (9-8f)(set s = 0)
(3) %=1 (9-7k)
Proof of 9-8m: a~® = ;é

a
(1) a®a™% . a9 .1 (9-81) and (9-8/)
(2) But, a® x -1
(3) ..oa% - L

a

Ir. Section 7 we developed a "change of base" formula for the
logarithm function, Equation (9-7d) can je written in the form

logb x = log, x - log, a

which enables us to express the logarithin of. x to the base b
as 2 multiple of the logarithm of Xx to thc base a. We now de-
velop a similar change of base equation for the exponential func-
tlon. '

For example, we might ask: "What power of three 1is equal tc
the third power of nine?" To answer this wc must solve the equa-
tlon 3* = 9, 1In this case 1t is readily seen that the value of
x ds b, :0rdinarily the solution of the equation a* = b% 1is
more difficuit, =

8Y

[sec. 9-8]
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We have learned that if two numbers are equal, then their

logarithms to any base are equal (9-Tk'). Therefore, loga at =

log, b® and this equation is equivalent to x = s log, b accord-

ing to (9-7h) and (9-8h). Accordingly,

5 S logab

9-8n | b = a (e . b>0, s any real number).

A specilal case of this”formula which is frequently used in
mathematics 1is obtained by letting a = e, the base of natural
logarithms:

] 5 logeb

9-80 bS = e s s 1ln b.

or b” =e

At this point 1t is appropriate for us to consider the rela-
tion between radical expressions such as

V5, vz, Ye

and expressions involving positive rational exponents such as

11 1
52, 23 anaad,
1
Consider first ?/ a and a @ where qQ 1s a natural number.
1
a

According to Definition 9-8a, a 1s defined as the unique

positive solution of logax = %. That 15,

1
(1) Jog, a Q.

Q=

In Section 3, %/a 1s defined as the positive number whose

qth power 1s a. That 1s

(11) ( Va)%<a
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If two positive numbers are equal then their logarithms to bése a
are equal (9-Tk). Hence,

(111) log, (93)9 - log.a , or
(iv) q log, Uz -1 (9-8h) and (9-7h;
U7 . L
(v) log,  a - 3 _
(vi) log, 97 = log a a (1) and (v)
1 .
(vii) . Y7 a9, (9-7k)
We have thus established
) 1
9-8p ‘ 3/ a2 =a 3 where a>0 and q 4is a natural
number, 1
-q—,

Now that we have established the equality of 9/ and a
1t 1s readily seen that )

R
9-8q 3/ xP = (Q/ x)p = x 9 where p and q are posi-
tive integers.

The proof requlres our new equality and the "power of a power" law,
(9-83). We have 1 p '

(1) kP = (xP)T . x @ and

1 D
(11) (/2P < (x P L K9,

Equations (1) and (11) together are equivelent to (9-8q).
We close thls sectlon with the statement of a theorem which
summarizes the relation between loparithms and cxpononts:
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Theorem 9-8b. a° = N 4if and only if s = log. N, provided

a

g 1o positive ¥ 1 and s is real,

Proof.:

(1) a® = Hypothesis
(2) log, a® = log, N (9-Tk)
(j) but, log, a® = g (9-8g)
")y Jtou o= log, N

/

The proof of the second part ol thls theorem, 1f s = log_ N,

then a° = Y%, 1z left to the student,
The followlng is a summary of the properties of the exponeri-
tial function:

Definitlon 9-8a. If a > 0, a #1, and s 1s a real num-

.

ber, a iz that real number x which is the unique positive

solutlon of the cquation logax = 5,

, log u
9-8f a “ =u lorallu>0,a>0, ay 1.

~

9-8g log, @~ = 5 for all real 3, a > 0, a ¥ 1.

ot
tquations (9-8f) and (9-8g) together are equivalent to
thic ctatement: I a > O and a £ 1, then a° and
logqx are lnverse functions.

9-Th .logjxt = b logax for a>0 and a #£1 and
x > 0, t real.
e t .8 + ¢t s I
9-81 a” xa’ = a ,a>0, s and t real.
9-8J (a':’)t - a®% , a >0, 5 and t© real. '
9-8k (1b)? - 2%, a >0, b >0, s real.




9-8m. a~® = ig , a >0, s real

a

s s logab

9-8n b~ = a » a>0,b>0,axl, =z real

s log b
9-8o 6% = e & - e s in b, b >0, s real.

el

9-8q q /xt = X q’ x>0, p and q are

positive integers.

Theorem 9-8b a° = N if and only if s = log_ M.

The following examples show some applications of the

laws of exponents:
s
Example 9-8d4. Show that (%)S =2 where a and b are

o

positive real numbers, and s 1s real.

¥irst Solution:

s
log, (%) = 5 log, (%) = s(logca - logcb)
a® s s
Also, log, —— = log, a~ - log b~ = s log.a - s log D
C p® c (¢} [¢] (¢}
= s(logca - logcb)
s
S (%)S = 3§ because x; = x5 if log x; = log Xy-
b

Second Solution: We learned in Chapter 1, Section 6, that

1 - 1 -1
% = a X g. DMoreover, g 1s written as b™ -,
. 48
cL(B)° - (e x l)s = (a x b“l)s =a® xp™S 2 &
b b 0E

99

[sec. 9-8]
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Exampl2 9-ce. Zxpressions involving radicals may be express-
ed Ln equivalent {orms involving positive rational exponents.
t

Jerily tne Cfollowing:
3 11 1
, 5 53 _ T Oba and AlE 1
(2) /& =f{a~-)’ =a (9-8q and 9-8J)
1 1 15
7 1 5 LT 115 _a”?
('J) a = {a B = =1
z ' — -

Exampls 2-Z7. An expression involving rational exponents

may be converted Into an equivalent radical form. Verify the

followlng:
1 1 5 4 5 + 4
F_ .3 % .70 20
(a) 3 x3° =30 x3 = oV
-l 1
-3 ) lrd t 2 ! S
(6) (777) F =77 =77 TE =49 T
. 2
1 2 L 1 2 1+ (- =)
= = T -= T 3
(¢) a +a’ =a X 1? = aE Xa-  =a
a ’
2.8 2
1z T2 T 12 1 1
= & = a = = = r——

e 12
ald '\L/ a5

wtample J-og. Expressions involving negative integral ex-

nay be changed to equivalent expressions in which all ex-

,3"'

ponents
" pcnents are positive, Verify the following:
(o) (570 .o i .E
SRR B R
() £
(= =
(c) 2 oTr _ (aT*pTh) ab 1
a-loo1 (alio*)yap  ©° T2

(sec. 9-8])
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Example 9-8h. Scrae expressions involving radicals and
rational exponents are easlly evaluated. Verify the following:

1
(a) 49° = Vi5 =7 .

1

(A F7)° = 3% = 9

—~
o’
~—
N
N
I

(c) /) = (19)% =72 - ug,

(@) (2773 = 212 . uog6
Exam 7h-13
nple 9-81. Express 7 as a power of 13,
s S logab
Solution: We apply (9-8n), b° = a . Let b =7,
h,13 log,.7
s = 4.13 and a = 13, We have 74'13 = 13 3. 13%
- 108y o7
where x = 4,13 log137' log137 = ISEEBIB (9-7d)
and 105137 ~ g:?ijé
~ 4,13 x 0.8451 _
4.13 log137 ~ l-ll&ﬁr = X
and log x = log 4.13 + log 0.8451 - log 1.114 .

X

it

3.134

and 7413 o 143,134

Example 9-8j. Equations in which at least one exponent 1s a
function of the unknown are called exponential equations.

5 1

(a) 3% - 6. 9EQC
1
X + =

() 3 2 . 5x




Solution:

() 9 = (3

logarithm of each member, we obtain
x2 -6 =x, or

X - x -6 =0,

‘. X =3 or x = - 2. Each result checks.

(b) Find the common logarithm of each member:

(x + %) logyp3 = x log 45

(x + %)(0.4771) ¥ x(0.6990)
X~ 1.075 .

Exercises 9-8b.

Evaluate the following.

(a) 7 () (77
(b) 11° (&) (0'027)%1
(c) 5% (h) (0.0001)1*-
(d) o' (1) (%;)'%
(e) = (3) <%>’%

[sec. 9-8]
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) (373)73 (o) (5V3)Y?

) Sve7 (q) 7886 x 7174
(m) (v (r) (5V2 . 7V2)VZ
(n) 233 . 531°g8u (s) (WBJ7)O

(0) [(0.2)%)7"

2. Write each of the following as an equivalent expression in
which all expor:nts are positive.

(a) (ab)~t (e) (x~* +y 1?2
-2, =3 : X
(b) (a™“p) (£) S S
. -1 -1
(e) ("t +y hHt oy () —"g—;—%—
x -
o _1 x—3 + -3
(d) ab (h) x—_-l—+—yL_I

-2 -2
(1) (x™ +y)
3. Write each of the following as an equivalent expression
for (a) - (1) 1in radical form.
1

101
(a) 261 (1) 57 - 57
(b) ax® @) (@3
21 " 1\
7
() ()7 (n) (S
(@) (12 3 a?’
L 1 1 1 o
(e) a2 +a? (1) éé;ﬁE‘I
a-l,x?—
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»(J) Express with a single radical sign.

i1 2 11 271
(%2 + y2) (0 - Xy + yf) 2
b, Use common logarithms to compute the value of each o the

followihg expressions.,

(a) (z-.80)72 (a) (356.8)7%-1

() (276.3)

\nf

(e) (0.06581)-1
(0.9816) ~1-1

_1
(82671) 3

Vi~

(c) (0.8412)7° (£) 16 (0.0071234)

5. Show that x° = y® 1if and only if x

are pogitive ¥ 1 and s 1s real.

It

y provided x and ¥y

6. Solve the following equations for x.

(a 257 6 _ 32 (a) 252x - X -12
2
(6) 9% = 7% ~ ¥ (e) 8 = 4% . 5%
2 .
i) X7+ 4x - é (£) X, 5 = 10%

Te Solve tne following equations for x,.
(a) 10%% -3 -3 (e) (1.03)% = 2.500

(b) e>* = 16 (£) e - 2e¥ +1=0

f

(c) 2% 32x +1 (g) 1og3 (x + 1) + log3(x+3) =1

log,g (7Tx - 12)

2 X - 2
(@) 5% T <. h =2
(1) logyV r‘—x-;—“ = 0
05

(sec. 9-8]
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L
3 prove tnet x°  and x°  are inverse functions. (x > O,s ¥ O,
1

3

and y = x” on the same set of axes.

O
rg
o]
(9}
5
m
it
et

if s = log,N. (a>o0, a1, Nreal, N> 0.)

1. Draw the graphs of (1) y = 2% and (2) v = 4* on the
" axes, Iv will be found that each abscissa on the
(1) is twice the corresponding abscissa on the

(2). Can you generalize this statement for the

rapns of (1) y =a” and (2) y = ™% (a>0, >0, x real).

1—

fon

. I O < a <o compare a and ©" ' when

(¢) x<O.
i-y Golve each of the following equations as indicated.
(a) 3olve v =c x* for n.
(v) Solve u=2ae "°Y ror v. (Use natural logarithms.)

{c) Zolve

U
it
fat]

P
1S B
Pt
+y "Ss
N~
-y
(@]
i}
=

(d) 3Boive w = log.y for .

(=) solve f ar? ~ L op

!

3
Lol
o
)3
=

L) Solve for  x: loglo(x - k) - 1oglo(x +3) = 1og; ;0.

{i7) Jolve the followlng equations for x and y.

[sec. 9-8]
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15.
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Solve for Xx.

(a) e +e* =02
(b) e . e* =2
According to the law of radiloactlive decay, the mass m re-

malning t years from now 1s given by the formula:

m = moe'Ct, where e 1s the base of the natural log-

arithm, m, 1s the present mass and ¢ 1s a constant de-
pending on the particular radioactive substance involved.

The half-l1ife of a radloactlve substance 1s the time elapsed
when m = %mo. Find the half-l1life of a radloactlve substance
for which ¢ = 2,

If an amount of money P 1s Invested at an lnterest rate of
r (expressed as a decimal) per year, the amount A accumu-
lated at the end of n years, when interest 1s compounded.
annually, is given by the formula: A = P(1 + r)®. This
statement 1s known as the compound inﬁérest law.

(a) Find the amount A to which an investment of $1,000
will accumulate in 20 years if interst 1s compounded
annually at 6%.

(b) How long will it take for an lnvestment to double itself
if interest 1s compounded annually at &4 % %2

(c) If one dollar grows to 3 dollars in 30 years when
interest 1s compounded annually, find the approximate
rate of interest.

97

[sec. 9-8]
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9-9 Miscellaneous Exerclses

1. Find the value of:

10&255 - 105%68 (@) 105381 - log, 1
(a) log 8 - log,~0.001
log9 2}( + logql eﬁ 10%

log2166u“— 103279

(v) log5l + logg L, 2/ 16 (e)
log 1+ log°8
/3 ]

%

log, 7T + log.-9 log 81T
(e) 1 u964 1 -l s (£) = 2 5

og - log, & £

% 37’ logyg7> - loggy v 1g
2. Find the value of Xx: ‘ .
(a) x = log381 (£) log,8 = x
2

(b)  logpx = -5 (8) loggx = - 3
(c) logB = % (n) log 0.0k = -2
(&) log50.2 =% (1) log, Jb = %
(e) log b9 = 4 (3) logy 410 =

3. Complete the following statements:

. £
(a) log a

log _x
(b) a 2 =

i

(c¢) logyx + logb
(d) 1ogb§ * logb =

(e) The inverse of the function defined by the equation

y = a% is defined by the equation y = ?

9Y
[sec. 9-9]
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y, Solve for x:

(a) log.x =3

(b) log7 X -3 _o

X

(¢) log27 =2

- :
(a) log X~ - logygx = 2
X logeb X logec

‘e = (bc)2

(e)
5. Write with positive exponents and simplify:

o

-1 : =\ -3
(a) &4 (£) <d7e">
-
-k -2 -2
(®) (§) (g) -21'9—%_72—
2
(¢) (h) x*+y*
s
-3 -1 -1
(d) cd (i) a " +b
4a'§ (cd)'l
3 0
(e) x_ ) (3) a'2 + b_2
S * ¥ a~l + vt

6. Solve for x. (N and a are positive real numbers).

X
(a)a=N,
(b).xa=N, x > 0,
(¢) N =1logx . a#l, x>0

99
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7. Find the value of X Dby means of the laws of exponents:

2.

z
[] 2 = 2 u

(a) 2

(0) 3*=3°3 . Y3 (&) x- 16?r _ 40 4 (g; :

it

o

(c) 643 = X (£)

8. Find the numerical value of x for each of the following.
Base necessary computations on Table 9-5d.

(a) 10* = 41.63 (8) logyx = 2.4

(v) 3* =733 (h) 10g,700 = x

(¢) x> =972 (1) x =327

(a) x% = 400 (3) 5% = 0.083

(e) e* =35 (k) logy 5 0.03 = x
(£) x = (4.17)9°9° () 2.13° = o.,0u17

(m) (0.5)* =70

9. Solve for x. Assume that all other letters represent
positive real numbers. Express all logarithms to base 10.

(a) &% =0 (e) m =ar®

(6) %% =1 (£) A = P(1 +x)5
(c) b = logyx (g) A =P +r)*
(d) m = ax® kn) L

#10, Compare the graphs of y = loglo2x and y = 10™", Are these
inverse functions? :

[sec. 9-9]
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%11, How to construct a logarithmic scale: On a sheet of paper
draw a line 10 inect.es long. Mark off in tenths and hund-
redths. Fold the sheet of paper on the line so you can use
it as a ruler., On another sheet of paper draw a line equal
to 10 dinches. Align the ruler with this line. Because the
log of 1 1is ¢, place 1 on your new scale opposite O
on you ruler. Because 0.3010 is the log of 2, place 2
opposite 0.30 on your ruler. Proceed similarly until you
have placed 10 opposite 1 on your ruler.

LOG SCALE

| 2 3 4 5 6 7 8 9 10
1 [] L 1 1 ] 1 L S P
| S 1 | ¥ 1) 1 1) | 1 v
0 A 2 3 4 5 6 e 8 .9 10
RULER
Questions:

(a) Using two of these log scales, can you make a slide

rule? Can you explain how a slide rule multiplles and
divides?

(b) Construct a coordinate system using logarithmic scales
on the coordinate axes instead of the normal linear
scales. On this coordinate system plot ¥y = x2. Can
you explain the result?

(¢) Construct a coordinate system using a logarithmlc scale
on the axes of ordinates and the normal linear scale on
the axis of absclssas. On this system plot ¥y = o*.
Can you explain the result?




Chapter 10
INTRODUCTION TO TRIGONOMETRY

10-1. Arcs and Paths. , Q
Let P and Q Dbe any two

distinct points on a circle with ; P

radius 1r. These two points

separate the circumference of a

circle into two arcs, the sum of

whose lengths is 2wmr. The

length of any arc of a circle 1s

equal to or less than 2wr. Argégggealgiigie.
et P be a point on a .

given circle as in Figure 10-1b. -

Let a point R start at P and

move, without reversing its P

direction, a distance d along
the circle to a final position

Q (observe that d may be great-
er than the clrcumference of the
circle). This motion will ve

(/ NS

called a path, and it will be Figure 10-1b.
denoted by the symbol (P,+d) A path on a circle.

1f the motion is in the counter-clockwise direction, and by the
symbol (P,-d) 1f the motion is in the clockwise direction around
the circle. The symbol (P,0) corresponds to the path in which
Q does not move from P. The -point P 1is the initial point of
of the path, and the final position of Q 1s the terminal point
of the path.

Observe that every path is described by a symbol (P,c),

where ¢ 1s some positive or negative real number. Conversely,
1f ¢ 1s any real number, there 1is a unique path on the gliven
circle corresponding to the symbol (P,c).

1032




Two paths (Pl’cl) and (Pe,ce)
Pl = P2 and Cy = Coe Two paths are equivalent if and only if
¢y = Co. Observe that two paths are equivalent 1f they are equal,
but that two equivalent paths need not be equal.
If (P,c) 1is any
path on a given circle,

are equal if and only 1if

there is a unique path
(Po;c) on this circle
which has 1ts initial
point at a given point
Po and which 1s equiva-
lent to (P,c).

We shall now define c

the addition of paths. Figure 10-1lc.

The unique equivalent path
If (Pysey) and (Pgcp) with initial point at Pg.
are any two paths on the

same circle, then

(Pl,cl) + (P2,02) = (Pl’cl + 02).
Since (P2’°2) + (Pl,cl) = (P2’°2 + cl), we see that (Pl’cl)
+ (Pg’cg) and (Pg,cg) + (Pl,cl)' are not equal unless P, = P,.
Nevertheless, (Pg,cg) + (Pl’cl) is equivalent to (Pl,cl)

+ (Pe,cg), since ¢, + ¢y =cy + ¢ by the commutative property .

1
of the addition of real numbers.

2

c2
Figure 10-1ld. Graph of (Pl,cl) + (P2’°2)‘

[sec. 10-1]
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Exercises 10-1

Let Pl and P2 be
points on a circle of
radius 5 as .hown 1in
Figure 10-le. Draw
diagrams to show the
following paths:

(a) (py,m)

(v) '(P2,10v)

(e) (Pl,-v) Figure 10-le.

(a) (pe,_1ov) Figure for Exercises 10-1.
(e) (Py,25m)

(£) (py,-25m) .

(g) (p,,30m)
(h) (Pp,-30T)

Draw dlagrams to i1llustrate the following additions of paths:
(a) (£, 2F) + (P (@) (py,-5m) + (Pp,10m)
(b)  (Bys2E) + (Py, ) (e)  (p,280) + (P D)
(¢) (y,10m) + (Py,=5m)  (£)  (Ppy=3F) + (Py,=5")

Which ones of the sums in Exerclse 2 above are equlvalent?

194
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10-2. Signed Angles. ’ Q P
The rays AP and AQ form '
an angle in the elementary sense
(see Figure 10-2a). It will now
be shown that paths on a circle

A
can be used to extend the

-elementary notion of angle. Figure 10-2a.
Consider a circle with An angle in the elementary sense.
radius 1 whose center is the
vertex of the angle formed by rays
— —>
AP and AQ. Figure 10-2b shows
a path (P,8) on this ecircle
that can be associated with this
angle. It is immediately clear,
however, that other paths could
be associated with the elementary
angle. To overcome this difficulty
we introduced the notion of signed
angle. There is a one-to-one
correspondence between the set of
signed angles and the set of paths
on the unit circle.
Let a path (P,8) on the
unit circle be given (see Figure
10-2c). The ray AP is the
initial side of the corresponding
signed angle. If Q 1is the
terminal point of the path (P,9),
the ray KE? is the terminal side
of the signed angle, The path
(P,0) specifies how the signed
angle is generated, in the follow-
ing sense. The ray AR 1s placed in the initial position N
and then rotated about A So that R traces the path (P,0).
The terminal position of AR 1s then K@i The signed angle is
the triple (A%, mQ, (P,0)); it is completely determined by the

Figure 10-2b.
Angles and paths.

Figure 10-2c¢c.
Generation of angles.

[sec. 10-2]
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path (P,0) and the vertex A 1in the sense that the signed angle
can be constructed when A and (P,9) are given. It 1s thus
appropriate to denote the signed angle {aPp, AQ, (P,9)} by

(4,P,0).

A signed angle has a direction ~ Q P
assoclated with 1t. If © > O, / '
the angle (A,P,9) 1s generated by \\\
rotating AR 1in the counter-clock- f
wise direction, and we say that the A :
angle 1s positive; if 0 < 0, the \\_’/////
angle (A,P,0) 1s generated by
rotating AR 1n the clockwise Figure 10-2d.

direction, and we say that the Signed'angle.

angle 1s negative.

Example 10-2a. Construct the angles (A,P;%), (A,P,-T),
(a,P,5), and (A,P,-10), where P 1s a given fixed point on a
unit circle with center A. :

Solution: The angles are shown in Figure 10-2e.

F;gure 10-2e. Construction of the four angles indicated.

1006
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We say that two angles (Al,Pl,Ol) and (A2,P2,92) are

equal if and only if Al =_A2, Pl = P2, and Ol = 92. If two
angles are equal, they clearly have the same vertices, the same
~initlal sides, and the same terminal sides. It is not true, how-
ever, that two angles with the same vertices and initial and
terminal sides are equal. If (Al,Pl,Ol) and (A2,P2,92) have

the same initial and terminal sides, then Al = A2 and
10-2a. 91 = 92 + 2nT,

where n is O or a positive or negative integer. Furthermore,
angles with the same initial and terminal sides are called
co-terminal angles. Two co-terminal
angles are shown in Figure 10-2f.
Two angles (A P50 and

1’ l)
. (Aé’PE’QE) are equivalent if and

only if Ol = 92. If the signed

angles (Al,Pl,Ol) and (A2,P2,02)

are equiValent, then the geometric

Pigure 10-2f.
Two co-terminal angles.

angles PlAlQl and P2A2Q2 are
congruent in the sense of geometry.

Example 10-2b. The two angles (Al’Pl’%) and (A2,P2,g)

shown in Figure 10-2g are equivalent, but the two angles
; T ™

(Al’Pl’ﬁ) and (A2,P2,-§) shown in Figu#e\lO—Eh are not

equivalent.

107

{sec. 10-2]



553

An angle is sald to be in standard position in a coordinate
system 1f and only if 1its vercex 1s at the origin and 1ts initial
side extends along the positive x-axis., Every angle is equivalent
to one and only one angle in standard position. It will be
convenient to denote an angle in standard position by (O,X,O).

T |P

T
< 9% 9

Ay P

Figure 10-2g. Equivalent angles.

=T
3

T
Figure lO—2h.Tr The angles (Al,Pl,g)
and (A2,P2,~§) are not equivalent.

Example 10-2c. Construct the angles 1n standard -position

denoted by the symbols (o,x,}[—), (‘o,x,-l%’l), and (o,x,-%’ﬁ).
Construct two other angles which are co-terminal with each of
these angles.

food
oo

[sec. 10-2]
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Solution: The solutions are shown in Figure 10-2i. Recall
that the length of the circumference of the unit circle is 2r.

%%%;;};—x
T

e_ll'rr T
Bl ca ///’4 9=-5
%X Q/éx'

' Y4qr 2T

X s X X

NZEAN Y "

F}gureilo—ei. The angles (0,X,7), (o,x,%%ﬂ),
(O,X,w%m), and two angles which are co-terminal with each.

)
N

The addition of paths suggests how angles are to be added.
The following statements define the addition of two angles and
the multiplication of an angle by a real number c:

| (0,X,8,) + (o,x,oe) = (o,x,o1 + 6,)
10-2b. c-(0,X,0) = (0,X,c0).

The properties of these operations follow from the properties of
the corresponding operations on the real numbers. '

It is now clear that an angle (O,X,O) in standard position
is completely determined by the single real number ©. Hence-
forth, we shall speak of the angle © and mean thereby he
angle (0,X,0). The sum of the angles ©, and O, 1is 0, + 0,;
the addition of angles has all of the properties of the addition
of real numbers. Furthermore, ¢ times the angle © 1s the
angle c¢O; the multiplication of angles by a real number has all

of the properties of the multiplication ol real numbers.
. [sec., 10-2]
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Exerclses 10-2

1. Given a unit circle with center A and a point P on 1t.
Construct the angles.

(a) (A,P,m) (d) (a,P,2)
(®) (A7) (e)  (A,B,-H)
(c) (A,P,lg) (£)  (a,P,-1.5).
2. Construct the followlng angléé&inmifandard position.
(2) (0,X,%) | (d!’)"' ('o,x,-Ig-)
(b) (0,X,m) (&) (0,x,-)
(c) (0,%,-3P) Ce) - (0,3

3. Find two posltive angles and two negative angles which are
co-terminal with each of the angles 1in Exerclse 2.

4. Construct the followlng angles in standard positlon and find
one negative angle which 1s co-terminal with each one of

them.

() O (3) 7&'-
() (k) =F
(c) I VO
(@) % (m)
(e) % (n) F
(¢) 3F (o) IF
(2) 3 (p) A~
(h) 2F () 2w
(1) = (r)

110
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10-32. Radian Measure.

We have defined the signed angle (A,P,0) in terms of the
path (P,0) on the unit circle whose center is 'A. The real
number © 1s called the radlan measure of the angle (A,P,0).
It follows from the definition of equivalent angles given in '
Section 10-2 that any two equivalent angles (Al,Pl,Ol) and

(A P2,92) have the same radian measure ©, where 0 = 6, = 6,.
The statement "the angle ©" wusually ns "the signed angle ‘
in standard position whose radian m~ ... e", Of course there
are infinitely many other angles th: = hn ;he same radian

measure O.

' The radian measure of angles
1s especlally useful because there
exists a simple relation between

the length of an arc of a circle

: Q lII!!lI..I
‘and the radian measure of the angle : ’ P
subtended at the center of the
circle. Figure 10-3a shows an “
arc P'Q" of length 5 on a
circle of radius r, and the ///
corresponding arc [2Q of length

© on a circle of radius 1. Figure 10-3a.
a theorem on similar sectors of Arc s on a circle of radius

circles, we have

t
arcl PQ _ af?r P'Q or ©

= S
T r

But © 1is the radian measure of the angle formed by the rays
—_—
AP!' and AQ' Thus, the formula

10-3a 0 =

1 (4]

glves the radian measure of the angle in terms of radius of the
circle and the length of the 1ntercepted arc. Formula 10-3a can
be stated also in the form

10-3b S = ro.

111

T.



557

formula 10-3b gives the length of an arc in terms of the radius of
1 circle and the radian measure of the subtended angle.

‘ Example 10-3a. Find the radian measure of the angle subtend-
ad at the center of a circle of radius r by one-fourth of the

sircunference.

Solution: The length of the circumference of a circle of
radius r is 2rr, and one-fourth of the circumference is %;.

(Y
By Equation 10-3a, © =—-§:—= _1§r
E;ﬁggle 10-3b. An arc o ~f padius 10 subtends an

anglé of 2.5 radians at the cuuter. Find the length of the arec.

Solution: By Equation lo-3b, g = 10 X 2.5 = 25. The reader
should draw a figure.

Exercises 10-3

1. Compute the radian measures of the angles determined by the
following values of s and r.

(a) s =17, 1r=>5 () 's=2, 1r=5

"(b) s=10, r =5 (£) s=3r, r=5

(¢c) s.= 8 r=1] () s =6r, 1r =10

(d) s = bm, r =14 (h) s= T, ©r=1

2. Compute the lengths of the arcs determined by the following

values of r and 6.

(a) r =5, 6 = 0.2 (e) r =10, © = 2.7

(b) r =5, 6 =T (£) r=10, ©6=7%

(¢) r =5, 6 =2 (e) » =10, © = 3.2

(d) r=5  ©=¢% (h) =10, o =3

112
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3. On a circle of radius 24 inches, find the 1ength“6f an are
subtended by a central angle of':

(a) % radians . (¢) 4 radians .
(b) %g radians .

i, Find the radius of a circle for which an arc of 15 inches
long subtends an angle of:

(a) 1 radian . (¢) 3 radians ,
(v) % radians .

10-4. Other Angle Measures.
The radian measure of angles was treated in the last Section.

The size of an angle {A,P,0), is determined by the length of the

path (P,O). In the radian system of measure, the unit of length

used in measuring the length of the path is the length of the

radius of the circle (see ®Equatics 10-3a).
The circumference of .2

circle contains 27 of the:s» q s=r
units.

Another system of measurs P
can be obtained by using the ’

length of the circumference as
the unit length for paths. Th=
angle suxtended by an arc one
circumference in length is egzlisaé

one revolution. Since one-clircum-
Figure 10-4a.

ference subtends an angle off 2T An angle © of one rasdian

radians or 1 revolution, wm=
have 1 revolution = 27 rat¢.ang

[sec. .0-4)
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A third system of measure results from using 3%5 of the
circumference of the circle as the unit of length. The angle
subtended by 3%5 of the circumference is called one degree.
Since one circumference subtends an angle of 360 degrees or 1
revolution or 2mr radians, we have the following basic statement
of equivalents:

10-4a. 1 pevolution = 27 radians = 360 degrees.
Pl

The degree is further subdivided into 60 equal parts called
minutes (abbreviated min. and denoted by ', as in 10'); the
minute finally is divided into 60 equal parts called seconds.
(abbreviated sec. and denoted by " as in 20"). Thus,

10-4b 1° = 60', 1' = 60".

. It is customary to measure angles in degrees, minutes, and
seconds in surveying and in the solution of triangles. The radian,
however, is the simplest unit for measuring angles in those
problems which involve the differential and integral calculus.

Example 10-lta. Find the measure of each of the following
- angles in the other two systems: % radians, % rev., 150°.

Solution: From Equation 10-la,

T radilans = 180°, T = % rev.
or % radians = 30°, % = {% rev.
Similarly,

1 rev. = 2r radians,. 1 rev. = 360°

% rev. = 3r radians, % rev. = 540°;

and 1° = 5%5 rev., 1° = Tgﬁ radians
150° = P rev., 150° = 2L radians .

114
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Exercises 10-4

Express the following in degrees.

(a) 3 revolutions (e) .125 revolution
(b)—'% revolution (£) .833 revolution
(c) g revolution (g) -1.5 revolutions
(a)— g revolution (h) -2% revolutions

»

Express the following in revolutions.

(a) 135° (e)  67°30
(v) -60° (£) 930°
(e) 210° (g)  -u85°
(d) -150° (h) 360°
Express the angle as a multiple of 7 radians.
(2) 30° (g) ~-112%0!
(b) 25 (n)  -315°
(¢) -160° ‘ (1)  -180°
(d)  135° (3)  300°
(e) 36° (k) -90°
(£)  75°30! (f)  880°
Express the following in degrees.
@ I (8) ¥
() I () 15
(e) =g (1) ==
@) & (3) 3"
(e) =¢% (k) 2
(£) Ir (L) -3.6
15

[sec. 10-4]
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5. In a triangle, one angle 1is 360 and another 1s % o radlans.
Find the third angle in radians. '

6. Through how many radians does  the minute hand of a clock
revolve in 40 minutes?

10-5. Definitions of the Trigonometric Functions.
We shall define the trigonometric functions in this sectic

Some functions, such as the logarithmic and exponential functions,
have m=mes; the trigonometric functions also have names. The

" situation 1is sometimes confusing because several different but
closely related functions have been given the same name. . First
we shall define the trigomometric functicns of angles in standard
position. Next, we shall define the trigonometric functions of
.érbitrary angles, and finally we shallldafine certain additional

~ trigonometric functions which .are closely related to the trigono-
metric functions of angles.

Definition 10-5a. Let (0,X,0) be any angle in standard
position, and let (x,,¥,) be the intersection of its terminal
side with the standard unit circle. Then

sine of (0,X,0) = Yo sin © =y,
cosine of (0,X,0) = Xq cos © = X,
Y0 Yo

tangent of (0,X,0) = = tan © = provided X, #£0
0 (O]

o) *0 ‘
cotangent of (0,X,0) = §5 cot © = 53 provided vy, A0
secant of (0,X,0) = % sec 0 = %' provided X, #£0

-0 0

: 1 1
cosecant of (0,X,0) = = csc © = = provided y. # O.
Yo Yo . 0
[=ec.. 10-5]
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where the statements on the right are abbreviations for the state-
ments on the left.

These definitions do not enable us to calculate these six
functions except in a few special cases since it is usually not
possible to find the coordinates of a point on the terminal side
of the angle (O;X,G). In certain impourtant special cases, how-
ever, the calculation 1s possible as shown in the following
examples,

Example 10-5a. Find all six trigonometric tunctions of 30°.

- Solution: Figure. 10-5a shows y
the angle (0,X,30°). The terminal <z,
side of this angle intersects the « .3
stantz=rd unit circle in the point X

~ 3 1
(—2? 5). Then
sin 22° = % cot 30° = V3

Figure 10-5a,
~~0 _ /3 o_2 +3
cos 07 = T5- sec 307 = =3 me angle (0,X,30°).
tan 20° = l-: ggj esc 30° = 2 .
v 3

Example 10-5b. Find all six trigonometric functions of 120°.

Solution: Figure 10-5b shows

the angle (0,X,120°). The terminal y
side of this angle intersects the P 3)
standard unit circle in the point 2.0

1 /3 : , 120
(-2-, 72-). Then v '\' y
sin 120° = “—% cot 120° =- ‘/—g
cos 120° = - 5 sec 120° = -2

e Figure 10-5b,

tan 120° = -3 esc 120° = 2 3

37 " The angle (0,X,120°).

117
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Example 10-5¢c. Find all six frigonometric functions ~f 270°.
y

Solution: Figure 10-5¢ i N
the angle (0,X,270°). The termiial

side of this angle intersects the /;707//ﬂ~\\\ \\
d

standard unit circle in (0,-1).
Tan 270° and sec 270° are not
defined since x = C. The other
values are

270° 1 270° = 0 o)
sin 270" = - cot B Figure 10-5c.
cos 270° = O cse 270° = -1 . The angle (0,X,270°).

Definition 10-5b. Let (A,P,8) be any angle, and let
(0,X,0) be the unique angle in standard position to which 1t is
equivalent. Then ’

sin (2,P,8) = sin (0,X,96) cot (A,P,0) = cot (0,X,0)
cos (A,P,0) = cos (0,X,6) sec (A,P,0) = sec (0,X,0)
tan (A,P,8) = tan (0,X,0) csc (A,P,0) = csc (0,X,0).

If we pailr with each signed angle (A,P,8) the real number
sin (A,P,0), we define a function whose domain 1s the set of all
signed angles. It follows from Definition 10-5a that 1ts range
1s (x: -1 < x < 1}. This function 1is denoted by 8in @, and ©
is most commonly measured in degrees. Pairing cos (A,P,0) with
(A,P,6) defines a function whose domain 1is the set of all signed
angles and whose range is {x: -1 <x <1}; 1t is denoted by
cos ©. The functions tan @, cot ©, sec O, and c¢sc © are
defined in a similar manner. The functions sin 6, ---, cSC o
are called the six trigonometric functions.

Theorem 10-5a. Let © be any angle in standard position

whose terminal side does not iie along one of the axes, and let
P(x,y) Ve any point on its terminal side. Then
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- =X
sin € = m cot O = 7
‘ J 2 2
cos @ = X sec 0 = X +y
N 2 x
X" +vy v,________
2 2
tan @ = % ¢sc 0 = §—§i—x—
Proof: ILet r be the
distance frem O to P. Then
P(x,y) .y
2 2 ,
r =4/ % + y©. The equation \
of the lipe through 0 and P (Xo,yo) |
is v v o :
y =¥-Qx’ \ ’ X
o .
) 0 |
where (xo,yo) is the point at
which this line intersects the
standard unit circle.
The point P(x,y) 1is one
Figure 10-5d.
of the 1ntersectiogs ofethiseline The figure For .
with the circle x~ + y© = r~. Theorem 10-5a.

The two intersections are found
by svlving the following system:

x2 4+ y2 o 2
Yo
¥ = — X,
X0

The two solutions are (rxy,ry,) and (-rxo,-ryo) (remember that

2 2 1).

Xg t Yy = Since a ray lies entirely in one quadrant, the

signs of the coordinates of P are the same as the signs of the
coordinates of (xo,yo). It follows that the coordinates of P

are (rxo,ryo). Thus
119
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X X
X = e =
0 r
'\/x2+y2
yo=La —L—.
0 r > >
X +Y¥y

Then, by Definition 10-5a,
' sin @ = Vo = L,
X+ Yy

and the other statements in the conclusion of the theorem are
obtained in the same way.

Remark: 1In the course of the proof of the last theorem, we
proved the following important fact: If (xo,yo) is one point

on the terminal side of an angle, then all points on this terminal
side have coordinates of the form

10-5a ' (rxgory,) T > 0.

We shall now define a second set of trigonometric functions.
‘This second set is highly important in more advanced mathematics
and also in this course. -This second set of functions 1s so
closely related to the first set that the two are often confused.

Let (C,X,6) be an angle in standard position, and let ©
be its radian measure. If we pair with the real number ©, the
real number sin (C,X,0) as defined in Definitlon 10-5a, we
define a function whose domain is the set of all real numbers and
whose range is (x: -1 < x £1). This function is obviously quite
distinct from the function defined in Definition 10-5b.. .The '
domain of the former function is the set of all signed angles, butl
the domain of the present function 1is the set of all real numbers.
It would be appropriate to denote the former function by
sin (A,P,0) and the latter function by sin 6. Unfortunately,
both are denoted by sin 6, but 1t will usually be clear from the
context which is intended. It will usually be true that sin 60°
means the sine of the angle whose measure 1s 60°, whereas,.

[sec. 10-5]
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sin % means the sign of the number %.

In the same way, we define the functions cos 6, tan O,
cot ©, sec ©, and c¢sc O, whose domains are the set of all
real numbers. If © 1s the measure of (O,X,O) in degrees,
and 1f we associate with the real number AO, the real number
sin(0,X,8), we have another function whose domain i3 the set of
all real nﬁmbers. This function is closely related to the one
already defined, and it will not be considered further in this
course.

The definitions of the six
trigonometric functions can be
stated in a special way'that is
highly useful for an acute angle
in a right triangle. Let A4,B,C
be a right triangle as shown in

A Figure 10-5e, and let & denote

the angle at the vertéx A. ' ) Figure 10-5e.
Functions of an acute angle.

B

C

Theorem 10-5b. If & is the angle at the vertex A of the
right triangle shown in Figure 10-5e, then

e 3 stfanemt i
e - & - spaste sl
cove - & - saiseent s
se¢a = % - ad?ggggin:ige :
s - § - RS,
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Proof: In order to find the . P(b,a)
trigonometric functions of « , y

we must first take an equivalent
angle in standard position.
Figure 10-5f shows such an angle.
The point P(b,a) 1s one point A«
on the terminal side of this angle.
The statements in the conclusion

of the theorem now follow from An z;g&geigogggﬁdard
Definision 10-5b and Theor=m 10-5a position equivalent to AA.

(remember that c¢ =4/ a® +‘b2).

Exercises 10-5

1. Sketch the angle © 1in the standard position and find sin ©,
cos © and tan © when the following points are on the
terminal side of the angle ©.

(a) P(-4,3) (e)  B(-2,4)
(v) p(5,-12) (£)  P(-7,-24)
(¢) p(-1,-1) (8)  P(3,-5)
v(di P(2,3) (h) P(4,1)

2. In each of the following sketch the angle © and find the.
other flve functions of 6.

(a) tan 6 = 3,’ @ 1in quadrant I
T

(b) cos © %, 6 1in quadramt IV :

]

(¢) sin e = ~§, 6 1in quadrant IV
(d) tan e =-2, © in quadrant II
(e) cos @ === © 1in quadrant III

(f) sin o6 = g @ 1in quadrant II

.[sec. 10-5]
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3. Let P Dbe the set (a, b, ¢} and let Q be the set
(sin«, cosa, tana, tang, coss, sing). It can be proved
that if any 2 members of set P are given, then all the
other members of P and Q can be expressed in terms of
these glven members.

(a) If a =3 (¢) If a=>5
b =4 c =11

tan@g = ? : b=2?

cos € = 7 cos = ?

c =2 tan<s = ?

sina = ?

(b) 1If b = 12 (a) 1Ir a =12
¢ =13 b=7

a =29 c =7

8ine = 7 sina = 7

tan o« = ? cos& = ?
tan« = 7

L, Let P and Q Dbe the sets given in Problem 4. It can be
proved that if a member of set P. is given and if a member
of set Q 1s given, then all other members of P and Q can
be expressed in terms of the given members.

(a) If a = 12 (v) b =15 (c) c = 20
cos =% .. sin« = %‘ tan = 2

b=2 c =7 a=79

c =27 a =29 b =29

tan& = ? cos s = cosa« = 9

sing = ? tan = sind« = 2

(a) 1If c =8 (e) a=2 (£) b = 10
sin « =-g- tana = 1.8 cos & = .8

b=2 b =92 a=29?

a =27 c =? c = ?

COS,& = ? sins = 7 sin« = ?

tan 0 = ? cos & = ? tanf = 2

[sec. 10~5]
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10-6. Some Basic Properties of the Sine and Cosine.

In order to simplify the statements of some of the results in
this section, it will be convenient to introduce the notion of
primary angle.

Definition 10-6a. An angle (0,X,0) in standard position i8
called a primary angle if and only if .0 £ © < 360° (or the
equivalent condition in other units of measure) .

Theorem 10-6a. Let (A,P,0) be any angle. Then

(sin 0)2 + (cos 0)2 =1,

Proof: Let (0,X,0) be the unique equivalent angle in -
standard position. Let (xo,yo) be the point where the terminal
side of (0,X,0) intersects the standard unit circle. Then

2 2
X, + ¥y = 1

X, = cos e, Yo = sin ©

(sin 0)2 + (cos 0)2 =1,
and the proof is complete.
Theorem 10-6b. (Conﬁerse of Theorem 10-6a.) Let xy and Y,

be any two numbers such that xo2 + y02 = 1, Then there is one

and only one primary angle (0,X,0) such that cos @ = Xys

sin @ = y,.

Proof: The point P(xo,yo) is on the standard unit circle.

Let (0,X,0) be the primary angle whose terminal side passes
through the point P(xo,yo). Then cos © = X, and sin @ = y,.

ir (0,X,0') 1is any other primary angle, then its terminal side
does not pass through P(xo,yo). Thus, 1t is not true that

cos @' = X

0 and sin Q' = Yo- The proof of the theorem 1s

complete.

12
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Theorem 10-6a emphasizes the following corollary, which has
already been observed from the definitions in Section 10-5,

Corollary 10-6a. For all angles (A,P,0Q)

-1 <{s8sin©6 <1
-1 < cos‘é < 1.

Corollary 10-6b, If y’o 1s any number such that -1 < y, < 1,

there are exactly two primary angles (0,X,0) such that 'sin ©

= Yo These angles have 4/ 1 - yo an -4/1 - yo for their
respective cosines. y
N

Prcof: The line y = Yo

intersects the standard unit Y*=Yo

o
circle in the two distinct points ¢ <]

il
Pl(V 1 - yoe:yo) ) 0
PQ("V 1 - yoe:yO) .

There are two primary angles

©, and 6, whose terminal Figure 10-6a.
sides pass through P, and P,. wgyghangiisefgry

= ¥o-
Then

./ 2 _ / 2
cos Ql = 1l - Yo and cos 92 = - 1 - Yo -

Corollary 10-6¢c. If xy 1s any number such that -1 < x4 < 1,

there are exactly twe primary sngles (90,X, ©) _such that

cos @ = Xq: The sines of these angles are A/ 1 - X5
-a/1 - x02 respectively.

125
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Proof: The line x ==x~ Iintersects the circle x2 + y2 =1

1 the two distinct pointe ‘
/ _ 23, A . 2y
Pl(xo’ l - ‘“O ),:),’ P2(Xo, l xo' e

Therw =*¢ two primar.
arzgles iltx,gl) and

(0¢X,92) vhose terminal

- aes pass through P,
P2. Then

|
]
'

»

= 0l Ql =

sih 2]

'
|

i
)
b
1
»
(@)
n

2 ‘
Figure 10-6b.
Two angles for

which cos © = Xo*

Corollary 10-6d. There is exactly one primary angle whose
sine is 1, and 1t is 900; there 1is exactly one primary angle
whose cosine is 1, and 1t 1is 0°. There 1is exactly one primary
angle whose sine 1s -1, and 1t is 27005 there is exactly one

primary angle whose cosine is -1, and 1t 1s 180°.

Let © and © + n<360°, where n is an integer, De two
angles in standard position. These two angles have the same '
terminal side (they are called co-terminal angles), and hence,

the six trigonometric functions of 0 + n-360° are equal respece
ti#ely to the six trigonometric functions of ©. Hence, 1if

sin @ = Yo cos @ = Xy
then "
sin (0 + n-360°) = y,, cos (6 + n+360°) = x,

fOl" n':o, -rl’-i-e,
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Ceoplesss 10-6

1. Sketch all trk= ang.:s -~~‘yee- 0° and 360° 4in stz. . nd

position which sat -1y e :I:..lowing conditions and g e the

values of the othe. fu»% :znn Zor these angles.
(a) s8in @ = %% =) tan @ = g%
(b) cos © =-% 2) sin e =V%}
(¢) tan @ = -2 () cos © = =2
34
(d) sin-e =J—B: ) sin © =‘/-.3§
/5

12nal side of © 1lie if:

2. In what quadrant will -
a 5in 8 and cos & ire uoTh positive?
b tan © 1s positiv an- :-os 6 1is negative?

(a)
(b)
(¢) sin © is positiv: z-.. tan 6 is negative?
(d)
(e)

d cos © and tan & ...z both negative?
e) sin 6, cos © and 8. @ are all negative?
3. Find the value of cos2 2 - sin2 6 when tan © =-%
and cos © 1s negative.
| 2 ter & 3
i, Find the value of —— when cos © == and tan ©
1l - tan™ 9 "

is positive,

provided © # (2k+1)90°

5. Prove the relation tan & :~?;:
where k 1s an integer.

6. Use the relation sin® & - cos® 6 = 1 to prove:

(a) 1+ tan® 6 =sec® @ [0 4 (2 + 1)90°] .

(b) 1+ cot? 6 =csc?o [6#£Kk- 180°] .

7. Prove that the range of the tangent functlon is the set of
all real numbers.

[ ¢. 10-6]
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10-7. Trigonometric Functions of Special Angles.

The values of the trigonometric functions can be obtained r g
simple geometrical conmiderations for certain special angles.
These are the angles for which the coordinates of the point
(xo,yo), where the terminal side intersects the unit circle, can
be computed. We list fhese angles © 1in a table which shows th:=
degree measure of ©, the radian measure of ©O, the coordinates
(xo,yo), and the values of the six trigonometric functions.

[sec. 10-~7]
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Table 10-7z. Irigonometric function. Of spmelal angles.
- =
7
o ® o ®©
25 &z (Xe.  Yo) CoOS®e | SINe| Tcne|se: ! Csc 6} Cot @
- 0 =
25| 289
§E o =
1 o ~ | 0 0 S b el
0 -0 | defined |defined
i T 3 I 1 2
S -l I - Y O O B
s| T | (2 v2Zy| 2 | &2 s 2 2 ,
4> 4 g1 2 2 2 2 JZ
™ VN R BV 2 |
60 3 (z, 2) 2 2 V'3 2 S5 | 3
T un- un-
0 — o, I 0 i ‘ ‘ l 0
° 2 ¢ ! ) defined |defined
20 | L VEy| L | V32| . 2 | L
120 3 ( PR 2) ) 2,‘\/-3— 2 ﬁ - .,/3.
135 | 31 (:/_:-_- ~/__2_) 2 | JZ » 2 | 2 -
4 T 2 2 2 2 JZ
s | (Y2 4| /3 oL 2 -
150 s |55 2 Y3 z |\ A | & 2 /3
un- Un-
180 T - 0) -l 0 0 - . .
¢ ) ‘ defined|defined
a1 N V4 I VS R L.l _2 | _ _
210 s (=3 ‘ >) 5 2 | ea 2 JE
sos | 50 | (¥2 2| Y2 | .2 L2 | -2 |
~ a 2 v 2 2 2 V2 J2
47T | ﬁ | -—«{'g ' 2 |
240 | —= -5 V)| -+ = 3 - -2 L
O R I A B Vel
37T {un- un-
270 | =~ {o ,-1) 0 - R 0
2 . defined |defined
51T LV/E L SE | -
3001 73 (2 72 =z 2 V3 2 Vs | Fm
s |10 | (V2 ~2y| vEZ |VE D L | o2 |-z |
315 3 2, = 2 2 gz /2
N (/3 _y | VO] L L = - -
330 = (V3 ‘ > : |=5 | B 2 |~/E
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Tt is no> neces ry t- memorize the res-iits in Takble 10-Ta,
but -t is imp.-rtant 'z lez=n the methods 3y wrich these results
are cbtained.

Consider Tirst ths zr..les (0,1 y
0°, 30°, 1& °, anc 27C7. o
Figw-: 10-Ta =a0ws & 3oizs // g "
(%557 ;) on the term—=l = de | ‘5{/’::§§°
j [dh

of ezch of thesz angiz  The : (-1,03 2 -l (1,0)
entr:=g 1n Tablzs 10-7Tz. Zz=r these
angl=s are obtained v =cnlying S

the zZefinitions in Seztion 10-5. T
Observe that certain oI t:e
trigonometric functicms of thase

(0,"1)

T=gure 10-Ta. o
The sp=2clal angles 07,
.. angles are undefined. o

A0 (o]
The angle 2250, shown: in 907, 1507, ;nd 270~
' Figure 10-Tb, will be used to
1llustrate the method of finding
the trigonometric functions of >
the special angles u5°, ,:350, C f’—\\ X
225°, and 315°. The triangle ‘
OPD 1s an 1sosceler right tri-
angle. Since the IZsmigth |OP|

\J

of 1ts hypotenuse #= 1, we . F
find |OD| = |DP{ = ‘“%, and
Figure 10-7D.
the coordinates = P are The zmecial angle 225°.

-?ég,-”(gs. Ar arglicstion of ime éefiniions leads to the results

given in the tals. D= trigcnometriz functions of 45°, 135°,

axd 315o cz. pde IZEdred in & similer manTer.

139
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T=e angle 1200, snown in y
Figure 10-Tc, will be used to
21lustrate the method of finding

. N o
specia> angles 60%, 120°, 240°,

the trigonometric functions of the / 120

ond 300°, The triangle OPD 1is
a right triangle whose azute angles v ; ;

are 30° and 60°. Since |OP| = _, N e
1:, [ l | //

we find |OD| = £°OP| = 3. Then \\\\\‘__’//,

|DP | =‘¢%, and trme coordinates

of P are (mé,"i%}. An Figure 10-Tc.

TR o
application of the definitions T2 special angle 120°.

leads to the results gliven 1n the
able. The trigonmometric functions
of 60°, 240°, and 300° can be
obtained in a similar manner,

The angle 330°, shown in
Figure 10-7d, will be used to

illustrate the method of finding y
the trigonometric functicns of
30°, 150°, =210°, ar= 330°.
The triangle OPD is again a tri- '
angle whose acute angles are 30° J/ﬂ;\\\ D
and 60°. Then |ODi =“€§ an- i 335\\\_ '

)

|oP| = %, and the oordinati:: " | '
: P
cf P are ( ‘/g, -% An —/

epplication of the dsfilnition:
leads to the result giwven in

Table 10-T7a. The trigonometric
sunctions of 30°, 150°, and
10° can be obtalned in = similar

nanner.

Figure 10-7d.
The special angle 330°.

13i
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Exercises 10-7

1. Evaluate the following:
() sin 150° tan 210° - cos 135 sin 240°.
(b) cos 90° - sin 300° + tan 225° - cos 150°.
(¢) sin 270° + tan 180° cos 90°.

2. Find all the functions of the follmwing angles wiZihout using

a table.
(a) 210° (¢} 315°
(b) -135° (¢) -225°.

3,  Show that 0032 e + sin2 6 =1, Tor:
(a) o = 45° (@ & =T radimns
(b) © = 150° (e) © = IT radiams
(¢) o = 330° (f) @ = 3L racians.

4., Show that:
(a) sin (60° + 60°) # sin 60° + sin &0°
(b) cos (90° + 60°) # cos 90° + cos 60°
(¢) sin (180° + 60°) # sin 180° ~ w==n 60°
(d) cos (150° - 60°) # cos 150° - ~ms 60°
(e) sin (300° - 120°) # sin 300° - sin 120°.
5. Verify the following:
(a) 1 - cos? 60° = sin® 60°

f
-

(b) sin 60° cos 30° + cos 607 =ir 30°
(¢) cos 60° cos 30° - sin 60 =zin 0° =0

(0]
(d) cos 300 =,\/li%_s.6—o

' o)
(e) sin 30° =«/Fii- cgs 60

(f) 2 sin 450 cos 450 =1 |
[sec. 10-7]
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6. Which of th= following statements are correct? Justify your

answer.
(a) sin 6 =3
) 228~ an s

(¢) sin 30° + sin 60° = sin 90°

(d) cos? 45° + sin® 45° = sin 90°

1

(e) cos 45° = 5 cos 90°

(£) sin 45° cos 45° = %-sin 90°
(g) sin 30° = % sin 90°
(h) sir> 30° + cos?® 330° =1

sin 45°

(i) tan ’450 = E—o—s-—s-i-so

(j) cos 30% + 2 cos 60° = cos 150°

10-8. Tables of Trigonometric Functions.

In Section i0-7, we explained how to find sin 6, =---, c¢sc ©
for certain special values of ©. There 1s no elementary method
for computing the six trigonometric functions of an arbitrary
angle ©. In a typical case, the six trigonometric functions of
© are irrational numbers which would be represented by non-
terminating decimals. These values can be calculated to any
desired degree of accuracy by methods developed in calculus.

Tables of the trigonometric furictions are available, Table 10-8a
gives sines, cosines, and tangents for the angles 10, 20,
., 90°.

We shall now describe certain characteristics of trigonometric
tables. ‘

(l)‘ Since the values of the trigonometric functlions are

usually/irrational numbers, and since the tables give these values
only to three (or four, or five) decimal places, the values in the
tables are usually not exact. Table 10-8a 1is correct to three

[sec. 10-8]
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decimal places, but tables correct to five, seven, or more declmal
places are available for calculations which require greater
accuracy.

(2) Table 10-8a gives sines, cosines, and tangents of
the angles Oo, lo, v 900, but it does not give these
functions for other angles such as 37.80. It will be shown that
the approximate values of the functions of these angles can be
obtained by interpolation.

(3) Table 10-8a does not contain any angles © such that
0 <0° or 0> 90°. We shall show that the approximate values
of the .sines, cosines, and tangents of all angles can be
obtained from Table 10-8a.

First, we shall give some examples which involve interpolation.
Linear interpolation has been explained already in Chapter 9 on
logarithms and exponents, and the theory will not be repeated here.

Example 10-8a. Find cos 37.8°.

Solution: From Table 10-8a we find

.799
.788

o~
cos 37 ~
~s
~s

cos 38°

:%T = 4% or x = -8.8
cos 37.8° % .790.

It is important to observe that cos © decreases as ©
increases.

134
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Table 10-8a.
De- . Tan-~ |De- Tan-
grees Radians Sine Cosine gent |grees Radians Sine Cosine gent
0 ,000 0.000 1.000 0.000
1 .017 ,018 1.000 ,018| 46 0.803 0.719 0.695 1.036
2 .035 .035 0.999 .035| 47 .820 .731 .682 1.072
3 .052 .052 .999 .052| 48 .838  .743 669 1.111
) .ogo .070 .998 .ogo 49 .855 .755 .656 1.150
5 087 .087 .996 .088{ 50 .873 .766 643 1.192
6 .1o05 « .105 .995 .1051 51 .890 77 .629 1.235
7 .122 .122 .993 .123| 52 .908 .788 616 1.280
8 .140 .139 .990 - 141} 53 .925 .799 602 1.327
9 157 .156 .988 .1581 54 .942 .809 .588 1.376
10 175 174 .985 1761 55 .960 .819 574 1.428
11 .192 .191 .982  .194| 56 977 .B29  .,559 1..483
12 .209 .208 .978 213 57 .995 .839 545 1.540
13 227 .225 97k .231{ 58 1,012 .848 .530 1.600
14 .2y .242 .970 249l 59 1,030 .857 .515 1.664
15 .262 .259 .966 .268| 60 1.047 866 .500 1.732
16 .279 .276 .961  .,287| 61. 1.065 .875 .485 1.80%4
17 .297 .292 .956 306 62 1.082 .883 470 1.881
18 .314 .309 .951 .325| 63 1.100 .891 454 1.963
19 .332 .326 .946 344 64 1,117 .899 438 2.050
-20 .349 ©.342 .940 3641 65 1.134 .906 423 2.145
21 .367 .358 .934 3841 66 1.152 .914 U407 2.246
22 .384 .375 .927 Jhos| 67 1.169 .921 .391 2.356
23 .4o1 .391 .921 JAos| 68 0 1,187 .927 .375 2.475
24 419 .Lo7 .914 45| 69 1.204 .934  .358 2.605
25 436 .423 .906 .466| 70 1.222 .940 .32 2,747
26 sy .438 .899 U488 71 1.239 946 .326 2.904
27 471 .45y .891 510 72 1.257 .951 .309 3.078
28 489 470 .883 .532| 73 l.274 .956 .292 3.271
29 .506 .485 .875 554 74  1.292 .961 .276 3.487
30 .524 .500 .866 ST71 75 1.309 .966 .259 3.732
31 . .541 .515 .857 .601{ 76 1.326 .970 .242 14,011
32 .559 .530 848  .625| T7 1.34%4 974,225 4.331
33 .576 .545  .839  .,6u9| 78 1.361 .978 .208 4.705
34 .593 .559 .829 .675| 79 1.379 .982 191 5.145
- 35 611 574 .819 .700| 80 1.396 .985 A7 5,671
36 .628 .588 .809 7271 81 1.414 .988 .156 6.31%4
37 .646 602  .799 .754| 82 1.431 .990 .139 7.115
38 .663 .616 .788 781 83  1.449 .993 122 8.144
39 .681 .629 777 .810] 84 1.466 .995 .105 9.51%4
40 .698 .643 .766 .839| 85 ..1.484 .996 ,087 11.43
41 .716 658 .755 .869| 86 1.501 .998 .070 14.30
42 .733 .669 743 900/ 87 1.518 .999 .052 19.08
43 751 .682 .731 .9331 88 1.536 .999 .035 28.64
Ly .768 .695 .719 .966| 89 1.553 1.000 .018 57.29
45 .785 .707 .707 1.000( 90 1.571. 1.000 .000 unde-
. fined
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Example 10-8b. If sin 6 = .602, what is ©7?

Soluticn: From Table 10-2z we Zind

-0 .
sin 36° ~ .88
o~

N

sin 37 602
x _ A= w 2O
T="T or = .9,

Thus, if sin ¢ = .600, ¢tk=n & % 26.3°. From Corcllary 10-6b

we know that there is anotirer mrimaTy angle © such that

sin © = .600. A 1little lzter we= shall show how to find this
second primary angle. All other solutions of the equation

sin @ = .600 can be obtainsd ffrom the two primary solutions by
the method explained at the = of Section 10-6. :

We shall now explain how —he trigonometric functions of any
angle can be obtained from z w=ble which gives the trigonometric
functions c¢f angles. from 0° o 90°. We observe first that the
functions of any angle are =cz@l to the functions of a co-terminal
angle which lies between 0® =znd 360°. For example, sin 1473°
= sin 113°. The problem iz tim= wreduced to finding the functions
of all angles between o° =3 360°. If © 1is one of the special
angles 0°, 90°, 180°, =& 270°, it's functions can be obtain-
ed from Table 10-T7a. For each angle @, where 0°< o < 360°
and © 1is not one of th= sps=clal zngles, an angle QR called the
reference angle of © is d=fined by Table 10-8b. '

Table 10-8b. The reference angle of 6

The reference angle
) o of ©
o0° <o < 907 6y = ©
90° < & < 1Bc” oR=1800-9
180° < 6 < =0° 6, =0 - 180°
R
270° < 0 < =56° 9R=36o° -0
136
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y y y
Pl-xe,y ke, i T Lixaye)
(] (2] o) (%)
°r R o X ® 4 'R::\
¢ X 0
D o, » o , D | e\ o 77
Pxiyd PIX,=Y,)

Figure 10-8a. Reference angles for the angle 6.

Figure 10-8a shows the reference angle oy for angles O 1in
quadrants II, III, and IV. The circles in this figure are the
standard unit circles. Let P(xo,yo) be the point where the
terminal side of the reference angle OR intersects the unit
circle, and let P! be the corresponding point on the terminal
side of ©. The triangle OP'D' 1s congruent to the triangle
OPD 1n every case. Thus, the coordinates of P! are
(* Xqo I ¥o) -

Theorem 10-8a. Let © be any angle such that 0° £6 < 360°
and such that @ 1s not an integral multiple of 90°, and let
OR be the reference angle of ©. Then

sin 0 = ¥ sin OR cot 0 =+ cot OR
+ _+

co8 0 = - co8 OR sec 0 = -~ gec OR
+ +

tan @ = 2 tan OR c8c © = -~ c8sc OR

137 .
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Proof: Examine Figure 10-8a. For every angle © of the
kind specified in the theorem, sin 6 = Yo or sin @ = -¥o*

But sin OR = Yo Thus, elther sin @ = sin OR or sin ©

= - 8in OR. The other statements in the conclusion of the theorem

can be established in the same way.

Table 10-8c shows the signs of the six trigonometric functions
for angles in the four quadrants. The results given in this table
follow from the definitions in Section 10-5.

Table 10-8c. Signs of the Trigonometric Functions
‘—

Quadrants
Trigonometric -

Functions I IT IIT IV
sin , + + - -
cos + - - +
tan + - ' + -
cot + - + -
sec + - - +
csc + + - -

Theorem 10-8a and Table 10-8c enable us to find the six
trigonometric functions of any angle from tables for all angles
from 0° to 90°. The method will be explained by means of
examples. '

Example 10-8c. Find sin 603° by using Table 10-8a.

13y
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Solution: The angles 603°
and 243° are co-terminal; hence,
sin 603° = sin 243°, .By Table
10-8b, the reference angle of
243° is 63°. Thus, by Theorem °
10-8a, sin 243° = ¥ g1in 63°, 603(/,.
From Table 10-8a, sin 63° ~ .891. yd
Since 243° 1s an angle in the .
third quadrant, sin 243° is: 63
negative by Table 10-8¢c. Thus,
sin 603° = sin 243° = - sin 63°
~ - .891. The entire solution,
except for finding sin 63° 1in Figure 10-8b.
the table of sines, should be ; _Graph of 603°
geometrically obvious from a and its reference angle.
Figure 10-8b. ;

o
63

Example 10-84. Find tan 328°,

Solution: The reference angle is 320, and the tangent is
negative in the fourth quadrant. Thus, tan 328° = - tan 32°

~

~ - .625, The reader should draw a figure.

Example 10-8e. Find cos %g.
T

Solution: Since is the radian measure of the angle, the
reference angle is E radians. Also, %T is an angle in the
second quadrant, where the cosine is negative. Thus, cos %g
= - cos %:x - .866. The reader should draw a figure.

Example 10-8f. Find sin 1046°.

Solution: Since 1046° = 2(360°) + 326°, the angles 1046° -
and 326° ‘are co-terminal. Thus, sin 1046° = sin 326°. fThe
reference angle of 326° 1s 34°, and sin 326° 1is negative
since the angle is in the fourth quadrant. Thus, sin 1046°
= sin 326° =.- sin 34° & - .559 .,
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Example 10-8¢. Find cos(-150°).

Solution: The angles -150° and 210°

= hence, cos(-150°) = cos 210°. The reference angle for 210° 1is
30°, and the cosine is negative in the third quadrant. Thus,

cos(-150°) = cos 210° = - cos 30° ¥ - .866

are co-terminal;

‘Witii our tables availablie we are now equlpped to discuss some
examples of a simple and important application of the trigonometric
functions — the indirect measurement of distances by triangulation.

Example 10-8h. At a point 439 feet from the base of a
brilding the angle between the horizontal and the line to the top
of the bullding (angle of elevation) is 31°. What 1is the height
of the bullding? )

Solution: In the right
triangle ABC we have 7 = 90

= 31° and b = 439 feet.

In this drawing we seek the
height a of the building.
According to the formula for the
tangent of an acute angle of a
right triangle we have

o _ side opposite _ _a
tan 317 = side adJjacent

our Table 10-8a gives

o}

w=3"

A c
tan 31° ¥ .601 . b= 439 fi.
Combining these two equations
we have | Figure 10-8c.
ﬂ%§ ~ .601

Therefore a ~ 439(.601) X 264,
so that building is approximately
264 feet high.

14
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Example 10-8i. To measure the width of a river a stake was
driven into the ground on the south bank directly south of a tree
on the opposite bank. From a point 100 ft. due west of the
stake, the tree was sighted and the angle between the line of sight
and the east-west line measured. What is the width of the river
1f this angle was 60°?

Solution: The point from
which the tree was sighted was

taken due west of the stake so T

that the angle RST (Figure T~—

10-8d) would be a right angle. = S

From the formula for the tangent _— s r —————

of an acute angle in a right -

triangle (Section 10-5) and - \ —_

Table 10-8a we have T%ﬁ = tan 60° 60 d —
R t S

= /3 where r 1s the required —— 100 ft—>

width of the river.

v = 10043 ~ 173 Figure 10-8d.

The river 1s approximately 173
feet wide.

Example 10-8j. At the instant when the moon is exactly at
half phas2 the angle between the line from the earth to the moon
and the line froa the earth to the sun is between 89o and 900.
Show that the distance from the earth to the sun is at least 50
times the distance from the earth to the moon,
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Solution: From Figure 10-8e
we see that if the moon is. exactly
at half-phase the angle SME 1is a
right angle. Since angle SEM =&

and 89° <& < 90°, we have m E
0° <a < 1°. Then the distance m BN S
m of the earth to the sun and e

the distance s from the earth : S M

to the moon are related thus
Figure 10-8e.

sino::-n-;

and from Table 10-8a

sin @ < sin 1° % .018

so that
s 18 20 1
m < 018 = 1505 < 1600 = 50
m > 50s.

Thus the distance from earth to the
sun is at least 50 times: the dis-
tance frcm earth to moon.

The essential step in these examples 1is the discovery and
construction of a right trlangle one of the sides of which 1s the
length to be measured. In Sectiors10 and 11 we will learn some
further theorems about the trigonometric functions which will
permit us to use more general triangles in a similar way. Before
this we must discuss the trigonometric functions in more detail.
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Exerclses 10-8

What is the reference anglé of each of the following?

(a) 150° (£) -98°
(b) 260° (g) -235°
(¢) 4L radians (h) -781-': radians
(a) 308° (1) %g radlans
(e) 615° (J) -l-g—"-': radians

Express the following in terms of the same function of the
reference angle. '

(2) sin 165° (k) sin(-133°)
(b) tan 290° (£) sin 305°
(¢) cos z12° ‘m) tan(-378°)
(d) sin-% (n) sin —]-‘-EE-
(e) cos(-%r-) (o) COS(-%”')
(£) tan(-m) (p) tan(-=f)
(g) sin 340° (a) sin 335°
(h) sin 98° _ (r) cos(-37)
(1) tan 462° (s) sin 600°
(3) cos(-160°) (8) tan T

A wire 35 feet long 1s stretched from level ground to the
top of a pole 25 feet high. Find the angle between the
pole and the wire.

A kite string 200 yards long makes an angle of 70o with
the ground. How high 1s the kite?
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From the top of a rock which rises vertically 326 feet out
of the water, the angle between the line of sight of a-boat
and the horizontal (angle of depression) is o4, Find the
distance of the boat from the base of the rock.

The edge of the Great Pyramid 1s 609 feet and makes an
angle of 52° with the horizontal plane. What 1s the helght
of the pyramid? ‘

A gun G shoots at T at a range of 5400 yards, and the
shot h.ts at § so that angle TGS = 3°. Assume that angle
GTS = 900. How far from T 1is &7

Find the rsdius of a regular decagon, each side of which 1s
8 1inches.

From a mountain top #000
feet above & .Fort the angle
of depression of the fort
is 170. Find the airline:
distance from the mountain F

top to the fort.

At a point 185 feet from the base of a tree, the angle of
elevation of the top 1s 550. How tall 1s the tree?

From an observation point the angles of depression of two
boats in line With this point are 18° and 28°. Find the
distance between the two boats 1f the point of observation
is 4000 feet high.

A building stands on a horizontal plane. The angle of
elevation at a certain point on the plane 1s 30o and at a
point 100 feet nearer the bullding it 1is 45°, How high is
the building?

Find the angles of intersection of the diagonals of a rect-
angle 8.3 feet wide and 13.6 feet long.

[sec. 10-8]
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14. The area of an equilateral A is 300 square inches. What
is the area of the inscribed circle? ’

15. A circle is divided into 7 equal parts. Find the length of
all possible chords whosg end-points are these division points
if the radius of the circie is 7 1inches.

16. The minute hand of a clock is 9 inches long. At 7 minutes
after 3 the line Jjoining the ends of the hands is per-
pendicular to the hour hand. How long is the hour hand?

17. If the hands of a clock are 7.4 inches and 4.8 inches,
at what time between 2:00 and 2:10 1s the line Joining
the ends of the hands perpendicular to the hour hand?

18. Given A ABC with A, & and
7 known. Let h be the ¢ h b
altitude to a. ///
. (il 7
a

Prove: h = cot & + cot »

19. A chord 6 inches long subtends a certain angle at the center
of a circle whose radius is 5 inches. Find the length of ‘
the chord which subtends an angle twice as large.

20. The area of trapezold ABCD is 4800 square feet. Lower
base AB 1s 150 feet long, side AD is 47 feat long
and angle A is 570. Find the other base.

-

10-9. Graphs of the Trigonometric Functions.

We have found it heipful in the past to draw the graphs of the
functions under study. Recall that the graph of y = f(x)
consists of the set of points (x,y) in the coordinate plane such .
that y = f(x). But it 1s clearly impossible to draw the graphs
of those trigonometric functions whose ‘domains are the set of all
signed angles, because we have no scheme for exhibiting graphically
the set of all pairs ((A,P,O), sin(A,P,O)). Notice that the first
element in this pair is a signed angle (A,P,9), which is a
geometric object - not a real number.

[sec. 10-9]
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We now recall that a second set of trigonometric functions
was defined in Section 10-5. The domains of th=se functions are
the set of all real numbers, ‘and 1t is thus possible to draw their
graphs "in the usual way. For example, the graph of ¥y = 8in X
consists of all points (x,¥), where y = sin(0,X,x) and x 'is
considered to be the radian measure of the angle (0,X,x).
Similar statements hold for the graphs of the other five trigono-
metric functions of real numbers.

It is important to observe that the following statements are
true for every X.

(1) sin(x + 2m) = sin X .
(11) cos(x + 2m) = cos X
(111) sec(x + 27) = sec X
(1v) csc(x + 2m) = csc X
(v) tan(x + T) = tan X
(vi) cot(x + m) = cot x

Statements (1) to (iv) follow from the fact that, if x 1is
the radian measure of an angle, X + or 1s the radian measure of
a coterminal angle. Statements (v] and (vi} follow from the facts
that the angles having radian measures of x and x+ T
respectively, have the same reference zngle and thelr tangents
(or cotangents) have the same algebrai:z sign.

If for a function f(x) there exists a number p such that

(vi1) f£(x + p) = £(x)
for all x the funcfion f 1s sald to be periodic. If p 1is
the smallest positive number for which (v11) is true, the function
is sald to be periodic with period p. Since 2r 1s the smallest
positive number for which statements (1) to (iv) are truwe for all
x, we conclude on the basis of our definition that the functions
sin, cos, séc and csc are all periodic with period 2.
Similarly, the tan and cot functions are periodic with perilod
T.
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Notice that the curve in Figure 10-9b is congruent to the
gragP of y = sin x in Figure 10-9a and is obtainable by shiftin
that curve % units to the left.

Figure 10-9c shows the graph of y = tan X.
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Flgure 10—9b.

Notice that it is composed’ of congruent pleces which have the

vertical lines X = t %, X = b %} as asymptotes.
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Exercises 10-9

1. Draw the graphs of each of the following sets of equations
using a single set of axes.

(a) y =sin x (8) y= sinx
¥y = 8in 2x ¥y =2s8inx
(b) y = cos x y =3 sinx
¥y = 2cos x ¥y = % sin x
(c) y = tan lx (h) ¥ =sin x
y = tan xx y = sin 2x
¥y = sin 3x
(d) y = sin %x 1
1 ¥y = sin =X
y = cos »x
(1) ¥y =sinx
(e) ¥y = sec x T
¥ = cseixe y = sin(x + 50
(f) ¥y = sin x () vy =sin(x +3)
¥y = cos x

¥y = cos(x - %)

10-10. The Law of Cosines.
One of the most famous of all mathematical theorems 1s the
Theorem of Pythagoras, which states that in a right triangle ABC,

02 = a2 + b2.

ct< 4+ b? &= 0% b® c?>at+ bt

Figure -10-10a.

[sec. 10-10]
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' It is plausible that if 7 1is less than a right angle, then c?

is less than a2 + b2; and if 7’ 18 greater than a right angle,

- then 62 is gréater than a2 + b2. Our next theorem covers all
three possibilities in a single formula. It refers to any triangle
ABC and uses the notation of Pigure 10-10b.

B’_‘

Figure 10-10Db.

Theorem 10-10a. (The Law of Cosines.) In triangle ABC

c” = a2 + b2 - 2ab cos 7’

b2 = a2 + ¢® - 2ac cos”

2 2 2

b + ¢© - 2bc co8 «

o
il

Proof: We introduce a cc-  Blx,y)

ordinate system in such a way
that 7° is in standard position.
In this coordinate system, C
has coordinates (0,0), A has
coordinates (b,0), and B has
coordinates which we denote by
(x,y). (See Figure 10-10c).
Using the distance formula we have

2 o (x -b)2+ 32 =x"+ 3" +b° - 2xb and

c
a® = x° + y2.

It follows that

o (b,O)‘
C |(o,0) b A X

Figure 10-10c.

c® = a? + b2 - 2xb.
[sec. 10-10]
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We also know from Theorem 10-5a that cos 7"= —X—— , which

is 'g. Therefore, x = a cos?’. Substituting a cos 7" for x
glves us c® = a® 4+ p? - 2ab cos?7’.

The other two relations in the theorem can be proved similarly

Eirample 10-10a: In triangle ABC, a = 10, b =17, and
7 = 32°, PFind c.

Solution: By the law of cosines

¢® = 100 + 49 - 140 cos 32°.

Using Table 10-8a cos 32° ¥ .848 and

therefore, L 6% 149 - 140(.848)
~ 30

Hence, c~ 5,48

Example 10-10b! 1In triangle ABC, a = 10, b =7, and
¢ =12, Find a .

Solution: By law of cosines
2 2 2

a~ = b~ 4+ ¢~ - 2bc cos .
I"'I"' - lo ~y
Hence, cos @ = 49 ; % 15 Q.23 X .554,
Thus, €~ 56° to the nearest degree.

Suppose triangle ABC 18 a right triangle with right'angle
at C, 1l.e., 7 =90°. 1In this case, ¢ 1s the hypotenuse of the
right trlangle,and since cous 90° = O, the law of cosines becomes
02 = a2 + b2. But this 1s fust the Pythagorean Theorem. There- .
fore the law of cosines can be viewed as the generalization of
the Pythagorean Theorem to arbitrary triangles. However, we do
not have a new proof of the Pythagorean Theorem here, because our
proof of the law of cosines depends on the distance formula which
was established on the basls of the Pythagorean Theorem !

It 1s worth noting, though, that the law of cosines can be
used to prove the converse of the Pythagorean Theorem. If, in

triangle ABC we know that 02 = a2 + b2, then we must show that

[sec. 10-10]

151



597

7 = 90°. By the law of cosines c2 = a2 + b2 - 2ab cos 77 and,
combining this with 02 = a2 + b2, we obtain cos 7 = O, We know
that 0 < 7" < 1800, and the only angle in this range whose cosine

is zero 1is 900. Therefore, 7/~ = 90o as was to be proved.

Exercises 10-10

1. Use the law of cosines to solve the following:
(a)x = 60°, b=10.0, ¢ =3.0, find a.
(b) a =261, b=8, c =10, find 77 .

(c) 2= 4,0, b=20.0, ¢ =18.0, finda ,» , and 7.

2. Find the largest angle of a triangle having sides 6, 8,
and 12.

3. In the following problems find the length of the side not

given.

(a) b =38, c =12, ¢ = 25°

(b) a=2.5, b=13,7 = 140°

(c) a=60, ¢=230,4 = 40°

L, Find all three angles of the triangle in each of the following:

(a) a =15 Db =16, c =17

(b) a =2 ©b=22 c=25

(c) a=60, b=230, c-= Yo}

(d) a =4.5, b=11, c¢c = 8.5

5. Two sides and the included angle of a parallelogram are 12
inches, 20 inches and 100° respectively. Find the
length of the longer diagonal.
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10-11. The Law of Sines.
The following theorem expresses the area of a triangle in
terms of its sides and angles.

Theorem 10-1la. 1In triangle ABC

area of triangle ABC %ab sin 77

i

1
-gbc sin «

i

%ac Sing .

Proof: Introduce a coordinate system so that s” is in
standard position. (See Figure 10-11a).

B(x,y)

7
‘\3 (a,0)

C lo,0) A

Figure 10-11la.
Then by Theorem 10-5a

sinz’ - —¥_ _ ¥,

a
Vx4 y?

but y 1is also equal to h, the altitude of the triangle, so
h = a sin7”. Since the base of the triangle is b, 1its area is

%ab sin 7.
'The other formulas follow similarly.
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Theorem 10-11b. (Law of Sines). In triangle ABC,

sine _ 8in® _ sin?
a P T ¢ -

Proof: According to Theorem lO-ila we have

%ab siny’ = %bc sina = %ac sing .

If we divide each member of these equations by 3%9 we

obtain

sin7’ sin« _ sin&
c -~ a b
Example 10-1la. If, in triangle ABC, a = 10,4 = 42°,
77 = 51°, find b.

~ Solution: Since « + +77= 180° we have ¢ = 87°.
By the law of sines
sin &« _ sin/~
a b’

2 o
or b=a:ig&=lo sin l&g 36:68 R 6.7 .
sin 87

Example 10-11b. Find the area of triangle ABC if a = 10,
b=7,7‘d=680.

Solution: According to the formula in Theorem 10-~11a, thg_a
area of triangle ABC = %ab sin 7’ = 35 sin 68° &~ 35(.927) ~ 32.4

Example 10-1llc. Are there any triangles ABC such that
b=5 c=10, and 7 = 22°7

oy
C
P

[sea. 10-11]
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Solution: Before attempting to solve Example 10-1lc let us
try to construct a triangle ABC geometrically, given b, ¢,
and 7. Lay off side AC of length b, and construct angle 7?7
at C. Now with A as center strike an arc of radius c¢. There
are A number of possibilities depending on b, ¢, and 7~ which
are Illustrated in Figure 10-11b.

B
}\ c
Y
A b C A b C

(i) (i

(v)

Figure 10-11b.

[y
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In case (1
"in case (11) there 18 one triangle;
in case (111) there are two triangles;
in case (1v) there 1s one triangle;
in case (v) there 18 no trilangle;
in case (v1i) there i1s one triangle.

Thus to solve Example 10-1llc, we attempt to find & keeping
in mind that there may be zero, one, or two solutlions. If such a

triangle exlsts, then by the law of sines

=

sins _ sin 22°
5~ 710

or sin® = %-sin 229 ¥ 187 .

Recall that sin & 1s positive in the second qanrant and 1if
& =180° - @ where 0< 0< 90°, then sine = sin 6. Thus from
sin,) X .187 we conclude that & =~ 11° or,« ~ 169° to the
nearest degree. Are both of these values of & possible? If
& = 169°, then 7° + & = 191° which is impossible. Why?
Therefore, there 1s one triangie with the glven data. We are in
case (1v). !

Example 10-1ld. Are there ény ffiangles ABC with b = 10,
¢ =15, and 77 = 105°2 :

Solution: We attempt to find,67 . If there 18 such 2 5ri-
angle, we have, from the law of sines,

sin~~ _ sin 77
10 ~ 15"

But sin 7 = sin 105° = sin(180° - 75°) = sin 75° ¥ .966. Hence, -
sin & x<§(.966) ~ .64t and this implies & ~ 40° ore” % 140°.

, Clearly & can not be 140° and there is one triangle with the
glven data. This 1s an example of case (vi).
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Example 10-1lle. Are there any triangles ABC such that
b =50, ¢ =10, and 7 = 22°?

Solution: We attempt to find & . If there is Such a tri-
angle we have, from the law of sines,

sin® _ sin 22°
50 — 10 ’

sin & ~ 5(.375) > 1.
man we khow that the sine never exceeds one, and therefore our
assumption that a triangle with the given data exists leads to a

contradiction. Thus there are no such triangles. This is an
illustration of case [1).

Exercises 10-11

1 Use the law of sines to solve the following:
(a) & = 68°, 7’ = 30°, ¢ = 32.0, find a
() a = 45°, 7 = 60°, b = 20.0, find ¢
(¢) « = 26°, 7y = 43°, ¢ =21.3, find b
(d) , = 126°,  « = 33°, b =23.71, find a
(e) » =113.2°, « = 46°, ¢ = 17.5, find b
(

103.2°, ¢ = 51.3, find a

i

£) @ = 68.5°, «
2. Solve completely the following triangles:

(a) @ =27°, y =4°, b=k

(b) 77 =129.5°, & =1U48.5°, ¢ =8.4
(¢) « =132°, o =24°, a = 135
(d) a = 5.8, « =50°, & = 73°
(é) « = 102°, @ - 41°, c = 52.8
(f) « = 48.5°, », =67.8°, b =287

[sec. 10-11]
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3. In each of the following, without solving, determine the
number of solutions.

(a)ax =110°5 a= 5 b= 4

(v)e = 60° b=12, c=10
(c), =110°, ¢ =36, b =36
(d)a = 30°, a= 8, b= 7
() = #5°, a =14, b=16
(f)e =120°, a=12, b= 8
L, In the following, determine nﬁmber of solutions and solve
completely.
(a)a =69°, a=5.2, ©b=6.2
(b)g =13.3°, b= 80, a=143
(c)g =142°, a =8.4, Db =3.7
(d) » =59.6°, a= 39, c= 37
(e), = 5.8%, ¢ =08.3, a=23.2
5. Find the area of the triangle in each of the following.
(a) b = 12, c =14, o = 42°
(b) a=8.6, b=7.9, 7 =67°
(¢) a =141, ¢ = 27.4, @ = 112°
(d) ¢=5.5 b=8.0, « =103.5

6. One diagonal of a parallelogram is 24.8 and it makes an
angle of 42.3° and 27.6° with the sides. Find the sides.

7. Two points A and B8 on a side of a road are 30 feet
apart. A point C across the road is located so that angle
caB is 70° and angle ABC is 80°. How wide is the
road? . '

[sec. 10~11]
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10,

11.

12.

Two observers, one at C

A  and the other at

B, were 1760 yards

apart when they observed

the flash of an enemy A 1760 yords B
gun at C. 1If angle A

was 38° and angle B

was 61°, how far was

each observer from the

enemy gun?

~

From the top of a cliff, the angles of depression of two
Successive mileposts on a horizontal road running due north
are T4° and :250, respectively. Find the elevation of
the cliff above the road.

A tower at the top of an embankment casts a shadow 125 feet
long, straight down one side, when the angle of elevation of
the sun is 48°. If the side of the embankment is inclined
33° from the horizontal, find the height of the tower.

A triangular lot has frontages 90 feet and 130 feet on
two streets which intersect at an angle of 82°. Find the
area of the lot.

The lengths of two sides of a triangular lot are 240 feet
and 300 feet and the angle opposite the longer side is
equal to 75°. Find the third side and the area.
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10-12. The Addition Formulas.

Angle measures and trigonometric functions have a common
feature, namely, they both are schemes for attaching numbers to
angles. One important difference between them has to do with
addition of 'angles. If « and‘f? are any angles, the measure
of their sum € + & 1s the same as the sum of the measures of «
and of & . The corresponding statement is not true for trigono-
‘metric functions. For instance sin(30° + 60°) =1 and

=1
=2

section we derive the correct expreasion for sin(« +#) and

' related expressions. We need a preliminary theorem.
Note: 1In what follows the expression (cosoc)2 and (simx)2
are‘hritten as cos2 « ahd siﬁzlr'(instead of as cos«(X and
sinu:2 which could mean cos(a)2 and sin(a)er)

sin 30° + sin 60° -+¥qg, which does not equal 1. 1In this

Theorem 10-12a. Let C be a circle of radius 1, let 7
be any angle whose vertex is the center of C, and let' P and Q
be the respective intersection of the initial and terminal sides
of y with C. Then

|PQ|® = 2 - 2 cos .

Proof: Introduce a coordinate system in which the initial
side of 7 1s the positive x-axis (See Figure 10-12a).

y

2 2
x+y =l

A

Q
//?cos{,
sinT)

Figure 10-12a.
Length of the chord PQ.

[sec. 10-12]
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‘Then the coordinates of P are (1,0), and those of Q are
(cos 77,sin7"). The distance formula gives

|PQ,|2 = (cos 7" - 1)2 + (sin 77 )2
IPQ,l2 =1 -2 cos” + cos_2/’+ sin® 7
or since cos® 7 + 8in°7 = 1,

|PQ,|2 =2 - 2 cos?”.
Theorem 10-12b. For all angles « and&

cos(# -a) = cos,& cos €« + sins sinc«.

Proof: We first use Theorem 1l0-12a to -evaluate |PQ|2,
obtaining (see Figure 10-12b) IPQ,I2 =2 ~2cos(# -« ). We
" then re-evaluate |PQ|2, using the distance formula. We have

P y

*(cos.,sin o %+l . \xh =
AT 72n AT
\\: «

3

~

Q

Q (tosg,sind) (cos.&
sin&)
" Figure 10-12b. The difference of/& and « .

|PQ|2 (cosz - cosot)2 + (sin® - s:anc)2

Ll

cose,e - 2 cos € cos + cos® + sin2/€

- 2 sin « sine + sin®a

2cc + sinecc

il

il

cosgg + singg + cos

-~ 2cos cosd - 28ina sing .

Since cos?g + sine,é' = coseo: + sin®q = 1, we have
IPQ,I2 =2 - 2(cos & cos# + sina sing).

161
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By equating this expression for |PQ,|'d with the one given at the
beginning of this proof, we have

cos(@ -« ) = cosF cos « + sin& sind .,
Example 10-l2a. Find cos 150.

cos (45° - 30°)
cos 45° cos 30° + sin 45° sin 30°
L2./3 + 2 V2 1
=73 7 "2
VB + 2
= e
We next derive similar formulas for sin(d -« ), cos(ax +¢),
sin(c +,é). First we need some preliminary theorems.

Solution: cos 15°

i

Theorem 10-12¢c. For all angles «

cos( - _'rér) sina |

sin(a - g-) - cosa .

Proof: By Theorem 10-12b

cos(a - -g) = COS ¢ cOS 12[ + sina sin g-
Since cos g = 0 and sin g =1, 1t follows that

cos(a - 125) = sinc .

Since this relation holds for any angle o, we can use it for

o - % itself. It then reads

cos <(cx - %) - %) = sin(e - %).
The left hand side of this equation is cos(a - 7), which equals

cos« cos ™+ sina« sin w. Since cos T = -1 and sin T = 0, we
conclude that '

sin(a« - _'rér_) = -CcOS &

1672
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Theorem 10-12d. For all angles « and/&

sin(@ -a ) = sin& cosa - cos,& sina.
Proof: By Theorem 10-12¢c, we have
sin(@-«) = cos ((@-a) - §
cos ((ﬂ- %) -(I).

Using Theorcm 10-12b, we can write

cos ((/g— -T-2r- -a) = cos(A&- 12r_) cos « + sin(z - %) sina .

T T
We substitute sin,& for cog(,é- —2-) and -cos & for sin(&- 'E)
in this last relation to obtain
sin(@ -a) =sing cosa - cosz sina
Example 10-12b. Find sin 15°.

sin(45° - 30°)

Solution: sin 15o

sin 45° cos 30° - cos 45° sin 30°
Ve /3 . 2 1
T2 T2 22

B

= 2
Theorem 10-12e. For all angles«

cos(-a) = cos «

sin(-«) = -sin«
Proof: cos(-a) = cos(0 -a)

cos 0° cos @ + sin o° sina

Since cos 0° = 1, sin O = 0, we conclude that
cos(-a) = cos a .

Since sin(-a) = sin(0 -« )

(sin 0)(cos a) - (cos O)(sina )

O.cos o - 1-sin «

il

we have sin(-a)
= -sin « .

[sec. 10-12]
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Theorem 10-12f. For all angles « and &

cos(ﬂ+cr)
sin(/g+cr)

Proof: cos(@+a)

cos/év cosa - sin//‘sin o

sin g cos &« + cos,& sin «
cos(,&- (—cr))
= cos & cos{-a ) + sin & sin(-a)

LI

= cos,& cos - sin g sin a .
sin(g+a) = sin( :r)>
= sin& cos(-a) - cos& sin(- «)

sin& cos € + cos & sin « .

Example 10-12c. Find cos 75° and sin 75°.

Solution: cos 75° = cos(45° + 30°)

cos 45° cos 30° - sin 45° sin 30°
V2 B v§ 1

5 ' 3~

V2
= ——-’JT—

il

&

sin 75°

il

sin(45° + 30°)

sin 45° cos 30° + sin 30° cos 45°
- '\_/_é\'\._/_é 4 -]—' '\/é

-2 2 22

V6 4+ B

= _T-

Notice that sin 75° = cos 15° and cos 75° = sin 15°. This
1llustrates Theorem 10-12c.

Theorem 10-12¢. For all angles «

sin 2 = 2 sina cosd

2 2

-cos 2« cos“ & - sin~ «

TN
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Proof: sin 2 « = sin(« +a)
= 8ln & cos € + slna cosa
= 2 8ln« cos « .
cos 2 & = cos(a +a)
= cosS X cos & - sina sina

= cosecc - sine o .

Summary of Formulas

cos(X +/) = cos & cos,& -~ sin & sing?
sin(¢ +¢) = sin« cos& + cos &« sinG
cos{(X -&) = cos & cos& + sin & sin/S
sin(a -&#) = sin « cos,& - cos & sin .
cos{a - %) = sin«
sin(« - -g) = -coS «

cos(-x) = cosa

sin(-a) = -sina

8in 2a = 2 sing cosc

cos 2 = cosecc - sinea

Exercises 10-12

1, Let &« Dbe an angle in the third quadrant whose cosilne 1is
b

-3 and & Dbe an angle in second quadrant whose tangent 1is
~y3. Find

(a) sin(a +39) (d) cos(a -&)

(v) cos(«+4) (e) tan(« +a)

(¢c) sin(a ~@) 0 (t) tan(a -@)

N [sec. 10-12]
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2. Use the addition formulas to compute the exact value of the

following:
(a) sin 75° , (d) sin 15°
(b) cos 75° (e) cos 105°
| (c) tan 75° (f) sin 195°
3. "Use the addition formulas to find the exact value of the
following: '
(:a) cos(mT - %) (c) cos(mr + %)
(b) sin(mr - -g-) (a) sin(% + -E)
4. Show that cos(x - 12r_) = sin o for
(a)‘I = ’450 (d) QL = %
(b = 210° (e) d = %
(¢)e = 180° | (f) « =-§2’£
5. Show that sin(a« - g) = -cosq for
(a)a = 60° () x = .2371
(b)) = 150° (e) x = 3f
(e)ax = 300° (f) « =-l-é-1£

6. Prove cos 2« = 2 cos®¢ - 1, and deduce from this equation
°]

the half angle formula cos x = '_*_‘,\/}_%E_Q .

T. Prove cos 2« =1 - 2 sinact , and deduce from thls equation

the half angle formula sin % =t =08 6

[sec. 10-12]
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8. Compute the exact value of sin 2« , cos 2a& and tan 2«
for the following:

(a) cos «

%, « in duadrant I

(b) tan « %, « in quadrant IIIX

(¢) sina = %, ® in quadrant IIX
(d) cos & = %, @ in quadrant IV

9. Compute the exact value of sin %, cos %, and tan 9:2- for
the following:

(a) cos a = %-, a« in quadrant IV

(b) sin« -%, « in quadrant III

(¢) cos « = "i%-' o in quadrant II

(d) sina = %-g—, « in quadrant I
10. Use the formulas from Problems6 and 7 to compute the exact
value of .
(a) cos 15° (c) sin 11.25°
(b) cos 22.5° (d) sin 7.5°

10-13. Identlties and Equations.
Equations® such as

sin 2'a¢ = 2 sin@ cos

8
are known as identities. They yield true statements no matter
what angle or real number is substituted for ®. 1In a slightly
generalized sense, the following equation is an identity.

167
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- an o = 308 ™
10-13a tan 0 = I35 0 £ (2k + 1)
since, by Theorem 10-5a,

sin © %' Y
550 = X =% = tan ©.
T

This identity has one peculiarity which should be observed care-

sin ©
cog ©

not defined for © = (2k + l)% since "cos(2k + l)% = 0, Thus,

fully; tan © is not defined for 6 = (QK + l)% and is

the two sides of equation 10-13a are equal for ever& value of ©

sin ©

o0S i1s also

for which the two sides are defined, and tan © =
called an identity.
The equation

sin 2« =2 sin «
ylelds a true statement 1f « 18 replaced by 2nm, n an integer,
but it ylelds a false statement for every other value of o« . An
“equation of this type is called a conditional equation. We have
mathematical responsibilities toward each of these types of
equations. We shall be asked to prove identities, that. is, prove
that the solution set consists of all values of the variable.
More precisely, to prove an ldentity means to prove that the
solution set consists of all values of the variable for which the
two sides of the equation are defined. To solve a conditional

equation means to find the solution set.

There are no standardized methods for proving identities or
solving equations. To prove an identity or to solve an equation
often requires ingenuity and perseverance, and many methods must
be devised to handle all the problems that arise. The procedures
are best explained by a variety of examples.

188
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Example 10-13a. Prove the identity
2 tan «
1l - tan™¢

tan 2 ¢ =

Solution: Observe that neilther side of this equation 1is
defined for

Q= % + k"% » k an integer,

for, on the left, 2 a 1s an angle co-terminal with —’25 and the

tangent 1s undefined; on the right, tanecx = 1- and the denomin-

ator vanishes. We are thus asked to prove

2 tan «

@ £ T+ kL.
l - tan“a ¥ 2

tan 2 @ =

By the proof at the beginning of this Section,
sin 2 @

tan 2a = S5m0 X AT kF
= 2231n « coga (by the formulas from
cos“a - sin“a Section 10-12)
o sin a
= cos;g (divide the numerator
] . 8in« and denominator by
cos~a 0082 « )
2 tan « T T
= ﬁ‘ a % + k. L]
1 - tan®ax FTT2

Example 10-3b. Prove the identity

tan(6 + ) = tan @ , © £ (2k + 1)%

169
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Solution: By Equation 10-13a,

tan(e + )

Example 10-13c.

8in «
+ cos«

=

sin(0 + T T
cos(0 + T ’ 0 # (2 + 1)'2'

-sin © (
=55 o by the formulas in
-cos Section 10-12)

sin ©
cos 0O

tan o.
Prove the following identity

o

= tan % ’ « £ (2k-+ 1)7.

Solution: The key to the s.olution is the observation that

« = 2(%-) . Thus

sin

sin 2(%)

1l + cos

Example 10-13d.

sin a« +

’ «# (2k + )7
1 + cos 2(%)

2 sin % cos -%' ‘
-(by the identities in

"1 4 cos® % - sin“ % Section 10-12)

8

2 sin % ¢os

MR

Prove the following identity:

in®g = 2 8in m—-—"é—é cos E—é—-é.

179
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Solution: The simplest proof of this identity employs a
device. Observe that

A 4
« = 2+ I3
a+F a-A -
AR s Yy STy o

Then by the addition formulas in Section 10-12

sin « =bsin[G£€¥f)_+ (EiEQOJ
sing = sin| (B2 - (& =

[}

sin® + sing = sin azﬂ)cos(a;’é) + cos(a 'é"é’)sm(fi f)
| + sin(g—é*"é-)cos'(-a_é:‘i - Cos(g-%/f-)sin(a '7€)

2 s1n(25)oos(L2Z) .
Example 10-13e. Find all solutions of the following equation:-

8sin X = 2 cos x.
Solution: Observe first that x = (2k + l)% is not a

solution of the given equation. Then cos x # 0 for a value of
X which 1is a solution of the equation, and the given equation is
equivalent to the equation

sin x _ o

s = s cos Xx #0 ,

or tan x = 2.

Interpolation in Table 10-8a, shows that x is 1.107 radians
approximately. From Example 10-13b above, it follows that

T + 1.107 radians, or 4.249 radians, is also a solution. Finally,’
since the trigonometric functions are periodic with period 2m,

all solutions of the given equation gre

X ~ 1.107 + 2kr radians

~
~
~
~

x ~ 4.249 + 2kT radians

where k 1is an integer.

[sec. 10-13]




617

Example 10-13f. Find all solutions of the following equation:

2 8in? 0 - 3sin 6 4+ 1 = 0.

Solution: It should be observed first that the glven equation
is a quadratic equation in sin 6. It would be possible to solve
for sin © Dby using the formula for the roots of a guadratic -
equation, but it is simpler in the present case to solve by
factoring. The given equation is equivalent to

(2 sin © - 1)(sin 6 - 1) = 0,
and all solutions can be found by solving the two simpler equations -
2s8in 6 -1=0, sing -1 =0,

‘The solutions of the glven equation are thus,

0= F+ 2km
0 = 2L + 2kr
0= %+ 2r

where k 18 an integer.
Example 10-13g. Solve the equation
tan X = 2x.

Solution: By scanning the entries in Table 10-8a, we see
Lolut 1l :
that for small values of X,

tan x < 2x,
whereas for large values of X,
tan X > 2x.

The change in the direction of the inequality occurs between
x = 1.152 and x = 1.169, that is,

2.246 = tan-1-152 < 2(1.152)
2.356 = tan 1.169 > 2(1.169)

2.304,

|
1

2.338.

[sec. 10-13]

172




- 618

“Since 2x and tan x are continuous, 1t follows that there is a
solutlon of the equation between x = 1.152 and x = 1.169
radians . Méthods are glven in more advanced courses for approxi-
mating this soiution to as many decimal places as may be desired.
There are graphical methods which are useful in finding the
approximate values of the solutions of trigonometric equations. -
The graphical solution in the present case shows that the given
equation has an infinite number of solutions.>'Figure 10~13a shows
the graphs of y = 2x and y = tan x. If (xo,yo) is a point of
intersection of the graphs of these two equations, then

Yo =  2xq

yo tan Xo,

and 2xo = tan Xg* Thus Xy 18 a solution of the given equation.

: , b P
! } { y / y=2x 1
Pl ! ;Z
i ; ! ‘i Xo!”& i /
, ] L/ /
| /
i //y‘T.u
: |
L] V4 /
! i
T l | (o) 15 ] EALD
Zj; ! 7/ 2 / 3
Pl i/ /
/A / i
/4 i
Vi / :
{ 1 P
/
Vo P i I

Figure 10-13a. Graphical solution of tan x = 2x.
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It is clear from the figure that the line y = 2x intersects the
graph of y = tan x 1n infinitely many points. For large values
of x the intersections are almost on the lines x = (2k + l)g,
and x = (2 + l)g is approximately a solution if k 1is an
integer whose absolute value is large.

Exercises 10-13a

Prove the following identities:

1. tan © cos © = sin O

2. (1 - cos 0)(1 + cos @) = sin® @
3' cos © _ 1 - s8in ©
* 1 + sin 0 — cos ©
_ gin 2 ©
by, tan 9 = T cos
5 2 =1 - 1
) cscE x B sec 2x

6. 2 csc 2 9 = sec O csc ©

7. tan © sin 2 O = 2 sin® @

8. 1 -2 sin® @ + sinu 0 = cosu (o]

2 2
2 cos® 0 - 8in” 0 + 1 _

g. 555 0 = 3 cos O
10. sin © tan @ + cos Q@ = 33%—5
1. —F—+ tan® 0 + 1 = —=2

cos~ O cos” O
12. sinu e - sin2 2] cos2 0 - 2 cosu 0 = sin2 0 - 2 0032 (4]
13. cosu 0 - sinu e _ cosu 0
1 - tan" ©

14, sec® 0 - csc® @ = (tan 6 + cot ©)(tan @ - cot 9)

sec x sec y sin(x - y)
[sec. 10-13]
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16. sin 4 © = & sin © cos © cos 2 O
sin(« -&)
cos( - )

17. sin(a +&

sin°« - sin°&

18. cos(a +@ cos?da - sin’e

19. sin(« +& J+sin(a -)

2 sina cos &

2 cosa sine

21. cos(a +& 2 cos & cos &

)
)
)

20. sin{c +¢) - sin(« -.@)
) + cos(a -)
) )

22, cos(ax+g) - cos(a -@) = -2 sin« sin <
sin © 2]

23. T+ cos 6~ r8l 5

oL, 3sin9-sin,39=usin3é‘

25. Prove that none of the following s an identity by counter
example. See Section 10-7, Problem 6.

(a) cos(a -&)

i

cos & - cos&

(b) cos({a +&) = cosa + cos
(¢) sin(« -g) = sina - sin &
(d) sin(a +¢) = sin« + sin&
(e) cos 2« = 2 cos«

“(f) sin 2« = 2 sina

o6 sin(a +4)

Cos & COS/ & tan € + tan,«&

o7 sin 2 6 _ 1l ~cos 290
' 1l +cos 20 ~ sin 2 @
o8 csc @ - 1 _ cot O
: cot @ T csc O + 1

29, If A+ B+ C = 180°, prove

(a) sin A = sin(B + C)

(b) cos A = -cos(B + C)

[sec. 10-13]
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Exercises 10-13b

Solve the following equations for 0 £ © Sor

1. 2sin©e-1=0

- ‘B cos® @ - 3=0

'3, 3tan®e-1=0
b, sin© @ - cos® 0+ 1 =0
5., 2cos® 0 - 3 cos =0
6. sec® © - 4 sec 6 + b =0
T. 3 sec 6 + 2 = cos ©
8. b sin3 0@ -sin 6 =20
9.

28in® 0 - 58in 0+ 2 =0
10. 2 8in © cos @ + 8ln @ =0

11, v3 csc2 @ +2csc 0 =0

12, 28in® 0+ 3cos 0-3=0 -
13. cos 2 @ =0

14, 4_tan2 w -3 sec? 6 = 0

15. cos 2 6 - sin 6 =0

16. 2 cosc 0+ 2cos 20 =1
2

o
]
]

17. cos 2 0 + 2 cos

|
O

18. sec® o - 2 tan 6 =
19. sin 2 6 - cos> 0 + 3 8in° © = 0
20. cos 2 @ -cos @ =0

21, cos 2 6 cos © + sin 2 0 8in 6 =1
22. co0s2 6 - sin® 6 = sin ©

23. 2 sin2 © -3 cos ©-3=0

2
21},. cos @ = -]:—-i-_CO_S—__-Q_

e
[sec. 10-13]
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25. cot 6 + 2 sgin © csc O

H

26. cos © + 81in @ = 0
27. 38in ©+ % cos 6 =0

28. Prove that if k 1is any real number then the equation
" 8in x = k cos X has a solution. ’

29. tan 0 = @
30. T sin 6 = 20

10-14, Miscellaneous Exercises.

1. Convert each of the following to radians:

(&) ¢° (h)  -100°
(b) 90° (1) -1000°
o 12°
(c) 60 (3) —=
' (o]
(d) 100° (x) 2
. O
(e) 390° )
' o
(£)1000° (m) 185
(8) 1° |
2. Convert each of the following to degrees:
(2) 0 radians (h) 2 radians
(b) = radians (1) -10 radians
(c) Z radians (J) €% radians
(d) % radians (k) 1%9 radians
(e) 10w radians W) gy radians
(f) 1 radian (m) 90 radians
(g) -1 radian 177
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Angles are sometimes measured in revolutions, wheré 1
revolution is 27 radians, and also in mils where 3200
mils is 7 radians. For each of these units, find the
radius of a circle for which a unit angle corresponds to a
unit distance on the circumference? '

Using the definitions in Problem 3, convert:
(a) 10,000 mils to revolutions
(b) 108 degrees to mils
(¢) 10,000 mils to degrees
(d) 108 degrees to revolutions
e) 10,000 degrees to mils

f) .8 revolutions to degrees

(
(
(g) 80 degrees to revolutions
(h) .8 radians to degrees

(1) 80 mils to radians

(

j) 800 mils to revolutions

Find sin 6, cos © and tan 6 1f the terminal side of 6,
in its standard po:slition, goes through the given point.

(a) (-3,4) (d) (-3,-2)
(b) (-2,0) » (e) (3,-5)
(¢) (2,5)

Sketch in standard position all the angles between 0° and
360° which satisfy the following conditlons, and give
values of the other functions of these angles.

1
(a) sin 6 (¢) tan 0 = - 3

]
U+

(b) cos ©

il
1
~Jw

178
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T. - Express the following as functions of positive acute angles.

(a) cos 170° (f) cos 305°
(v) sin 160° (g) cos(-100°)
(¢) cos(-130°) (h) sin g— T
(d) sin 6140° ' (1) cos - 12—5- T
(e) tan’( -459) (J) tan % T

8. If sinc« =%‘- and sing@ = -1]-;-, (a and & each are acute
angles) find

(a) sin(« +,4 ) (d) cos(e - )
(b) sin(x - ) (e) sin 2¢
(¢) cos(e +,2 ) (f) cos 2

9. Find the value of the following:
(2) sin 90° + cos 120° + tan 225° + cos 180°
(b) sin 30 cos 150 - sin 60 cos 45
(¢) sin 330° tan 135° - sin 225° cos 300° tan 180°

10, Solve the following triangles for the indicated parts. Given:

(a) a = 3, b =2, 7= 60°, find c.

(b) a =5, b = 6, c =7, find & .

(¢) c = 16, & = 84°, 7= 54°, find a.

() ¢ = 5v6 o« = 4s°, a = 6, find b.

(e) a = 20, b = 21, 7= 43°35', find c.

(f) b =5, «=75", & =30°, find ¢ and a.
(g) a« = 60° a=8v3, ¢=15, find 4 .

(h) b = 15, c = 2, x = 307, find Area.

(1) a = 12, b = 35, c = 37, find 7’ .

(J) a =21, b = 17, ¢ = 10, find Area.

[sec. 10-14]
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11. Prove that tan(-6) = - tan ©

PROVE
12. cos(g - 9) = sin ©

13. sin(2r - ©) =-8in ©

14, cos P cos 2 © - 8in © 8in 2 6 = cos 3 ©
15. cos 2 © ¢co3 © + 8in 2 © sin © = cos ©
16. 2 cos® % - cos © =1
17. 28in 6 + 8in 2 6 = %—%332395-
18. (cos © - sin 0)2 =1 -sin 26
19. 4 sin2 o] cos2 6 =1~ cos2 20
20. -cos® @ = cos? 2 g =1 g
4 sin“ o
cos 2X

21. cos X + sin x =

cos X - sin x

Find all primary angles which are solutions of the following
equations.

22. sin x -~ tan x =0

23. 1l - sin2 X = CcOS X

24, cos x 1 - cos x
25. sin 26 -sin® =0

2 - 2 cos2 g

26. cos 2 ©
27. cos 30 ~cos =0
8. 2cos2 26 -2s8in°26=1
29. 2 cos2 @ ~-sin© ~-1=20

1 - cos 0 _
30. —_sﬁ—é—" sin ©

31. cot2 0 -+ csc © = 1

e [sec. 10-14]

1890




626

32. Let a and b Dbe any non-zero real numbers and let © be
any angle, prove that there is an angle ® such that

a cos © + b sin 0 = q/a2 + b° cos(® ~a)-

33. In a triangle, one angle 1is 36° and another is %g radians.
Find the third angle in radians.

34, Through how many radians does the minute hand of a clock
revolve in 40 minutes,

35. Find the three angles of a triangle ABC, given a = 200,
b = 300, and ¢ = 400. '

36. Find the remaining parts of the triangle ABC, gilven
b =128, ¢ =145 and@ = 21°.

37. A man standing 152 feet from the foot of a flagpole, which 1is
on his eye level, observes that the angle of elevation of the
top of the flagpole is 48°., Find the height of the pole.

38. Two points A and B are on the bank of a river are 40
feet apart. A point . C across the river is located so
that angle CAB 1is 70o and angle ACB 1is 700. How wide
is the river? '

39. The adjacent sides of a parallelogram are 20 and 15 inches,
respectively, while the shorter diagonal is 17 inchés. What
is the length of the longer diagonal.

4o, A flagstaff known to be 20 feet high stands on top of a
building. An observer across the street observes that the
angle of elevation of the bottom of the flagstaff is 69o
and that the angle of elevation of the top of the flag 1is
76°. Find the height of the building.

41. AB- 1s a tower which stands on a vertical cliff BC. At a
point P 310 feet from the foot of the cliff, the angle of
elevation of B is 21° and the angle of elevation of A
1s 35°. Find the height of the tower.
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h2, Use the figure below to find c
the following:
a. R
’ 90"
b. r, |40"
c. / BAO. 0
r
A 150" B
132
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Chapter 11
THE SYSTEM OF VECTORS

11-1. Directed Line Segments.

It is assumed in this chapter that you are familiar with;_,
plane geometry. We review some of the symbols of geometry. AB
means the 1line which contains the distinct points A and B .
AE? means the ray whose vertex is A and which also
contains the point B . |AB| means the distance fron. = ‘0 B
(and from B to A). It is & positive real number if A and B
are distinet. It is zero if A and B are the same,

We need one further idea which is not ordinarily covered in
geometry--that of parallel rays. Rays are said to be parallel if
they 1lie on lines which are either parallel or coincident, and if
they are similarly sensed. Figure 1ll-1a shows typical instances
of rays which are parallel and of rays which are not parallel,
and is supposed to take the place of a fcrmal definition.

D A B AB D G

A B . A B C D, -
= > > <
A B o
A B - "
. N ¢
C D "
— —_ — —> .
rays AB and CD are || rays AB and CD are not ||

Fig. 1l1i-la
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Definition 11-la: A line segment is sald to be a directed
line segment i1f one of 1ts endpoints is designated as its initial
point and the other_gpdpoint is deslignated as its terminal point.
We use the symbol AB to denote the directed line segment whose
initial point 18 A and whose terminal point is B . We say that
directed line segments KEL and 'CD are equivalent if it is true
that thelr lengths are the same and also that the rays Kg and“
CD are parallel, We write AB uD to denote the fact that AB
and CD are equlvalent.

Note: We consider that a single point can be hoth initial
and terminal polnt of tne same directed line segment and we
conslder that all such directed line segments are equivalent to
one another.

g © D
A B A >
A
N B
S 4
D
5P B
2B = CD
Fig. 11-1b

Figure 11-1b shows some pairﬁ of equivalent directed line segments,
It uses the convention that the endpolint of a segment which has an
arrow 1s the terminal point of the segment Notice that if A, B,
C, D are not collinear, then AB CD if and only if ABDC 18 a
parallelogram. We need the fact tnat f Eg 1s any directed line
segment and if C 1is any point then there 18 one and only one
point D such that AB = CD . We do not prove this fact, but
assume that 1t 18 known from the study of geometry.

134
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— ——,

Definition 11-1b: Let AB and CD be any two directed line
segments. Then by their sum AE + CD we mean the directed line
segment AX where X 1s the unique point such that Bx
We call the operation which assigns their sum to each pair of
directed line segments the addition operation for directed line
segments. Flgure 11-1c¢ shows some sums of directed line segments,

D
X
c
A A >
B B
— —  — ——— — —
AC = AB + BC AX = AB + CD

° X A/ , 6

—_— — —_
AB = AB 4+ CD

A B:
(o
—2 el e
CX = CD + AB
Fig. 11-1c

Directed line segments can be added and multiplied by real
numbers in a useful way. We give the formal definition of these
operations here. Their properties are studied and applied through-
out the rest of the chapter.

— '
pefinition: Let AB be any directed line segment and let r
be any real number. Then the product rAB 1s the directed line
— .
segment AX , where X 1is determined as follows:

135
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(L) If r >0, then X 18 on the ray AB and jax] = r|AB].
(2) If r ¢ 0, then X 1is on the ray opposite to AB and.
" |AX] = - r|AB|. |
(3) If r=0, then X = A .
(4) If B=A, then X = A .

Figure 11-1d shows some typical products.

F E A D B c
— —
0 AB = AA
— —
1 %B = AB
— ——
2 B =
1-—-& ———
% iB = D
— _—).
-1 iB = AE
—t ——
-2 AB = AF
Fig. 11-1d

It is useful to know that 1f equlvalent directed line seg-
ments are added to equivalent directed line segments the sums are
equivalent, and that if equivalent directed line segments are
multiplied by the same number the products are equivalent. We
now state ther: facts formally as theorems and 1llustrate them.

—

. — — —
Theorem ll-la: If AB = CD and 1f PQ = RS then

— el emeedn

2B + PQ = CD + RS .

[sec. 11-1]
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___________ Q S
_________ \\
P R
_____________ c
— et e— — — e
AX = AB + PQ ’ CY = CD 4+ RS
— em—
AX = CY.
Fig. ll-1le

Figure ll-le shows a typical instance of this theorem. It 1is
equivalent to the fact that 1f ABDC 1is a parallelogram and 1if
XYDB 1s a parallelogram, then AXYC 1s a parallelogram. This
is a specilal case of a famous theorem of geometry known as
Desargues ! Theorem,

— em—
Theorem 11l-1b: If AB = CD and if r 1s any real number,

—— —
then ©rAB = rCD .,
Y
—
///
0 —
c __-o
o
X
—
//
8 ——T
A -
|

— —
AX = rAB; CY = rCD; AX ¢ CY .

Flg. 11-1°f

[sec. 11-1]
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Figure 11-1f 1llustrates a case in which A, B, C, D are not
collinear. It also illustrates the geometric version of the

—

statement, that if ABDC 1s a parallelogram and if AX = CY
then AXYC 1s a parallelogram.

Exercises 11-1
1. A and B are distinct points., List all the directed line
segments they determine,

2. A, B and C are distinct points, List all the directed 1ine
segments they determine.

3. A, B, C and D are vertices of a parallelogram. List all
the directed 1line segments they determine, and indicate which
—_—n s
AB + BC = ?

pairs are equlvalent, //;/r ///7,9
D c

a) ' B

b) BA + ? = BC . .

c) ? + BA =BC .

— ——

d) ? + AB = AA .

e) (AB + BC) + CA = ¢

£ ) A C

g) -

L., In triangle ABC

it
N

e e -

BA + (AC + CB) = ?
- et
? + AC = CB .

5. s B and X are collinear points, Find r such thu*
— ——
AX = rAB H
and s such that
— ——
BX = sBA 9
183
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ir

(a) X 1is the midpoint of segment AB ,
(b) B 1is the midpoint of segment AX .
(¢) A is the midpoint of segment BX
(d) X 1is two.thirds of the way from A to B .
(e) B 1is two-thirds of the way from A to X
(f) A 1is two-thirds of the way from B to X .
6. In triangle ABC , X is the midpoint of AC and Y 1s the
midpoint of segment BX . B
- 3 — ——
(a) BX = BA + ?AC
— —
(b) BX = ?BY .
. - ——
(¢) BX =BC + ? .
—_ —_— 1 Y
(d) BX=BC+§?

(e) BY = ?BX .
— —
(f) BY = ?2(BA + AX) .
2 — ———
(g) BC = ?BY + XC

b

|
>
x
(@]

11-2. Applications to Geometry.

It is possible to use directed line segments to prove
theorems of geometry. These proofs are based on algebraic
properties of directed line Segments. They are quite different
from proofs usually given in geometry which appeal to such matters
as congruent triangles and the like.

We state and 1llustrate the necessary al aic properties of -
directed line segments here. We prove these statements ia
Section 11-3.

I. Commutative Law:

— e eem
AB + CD = CD + AB .

139
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‘Figure 11-2a shows an instance of the commutative law for
addition in which the directed line segments AB and CD have
a common initial point.

A=C

-_—

Kg + CD = CD + AB = AX

Fig. 11l-2a

II. Associative Law:

— SR e — e e
AB + (CD + EF) = (AB + CD) + EF .

—— e e
Figure 11-2b shows sums AB + (CD + EF) 1in which B and
are the sarme and D and E are the same,

D=E

——

— — —_— - —, — —
AB + (CD + EF) = (AB"+ CD) + EF = AF

Fig, 11-2b

1II. Existence of Zero Elements.

——

Every directed line segment of the type AA 1is a zero
—_— et e
element because PQ 4+ AA = PQ .

[sec. 11-2]
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IV. Existence of Additive Inverses.

—

BA 1s the additive inverse of AB , because AB - oA = AA

We use a minus sign to denote the additive inverse of a
—— r—— —
directed iine segment AB , and write - AB for BA ., We write
——— —

—

—
PQ - AB for PQ + BA
Tnis operation of subtraction is illustrated in Figure 11-2c.

C
n»niﬁ ¢ — ey
AC = ABE + BC
— a—— —
AC - AB = BC
— — —
AC + BA = BC
A >B

Fig. 11-2c

V. The Associative Law,
— —
r(sAB) = (rs)AB ,

[ 1o
[ 19

u
1
ol
N
gl
h

1
=1
o

- Z(4 B}
(-3 - 4)AB = - 2AB = AD

Fig. 11-2d

Figure 11-2d shows an instance of the associative law in
which r = _‘% , 8 =14,

[sec. 11-2]
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VI. The Distributive lLaws:

—— — — en
- r(AB + CD) = rAB + rCD,

— e —
(r + S)AB = rAB + SAB .
‘1;—;’; Pl P
— — — — — —
AQ = IH&B, QP = 4CD, AP = 4AD

—_— et N

AP = AQ + QP
e — — D
4AD = 4AB + UCD
— — — —
L(AB + £D) = 4AB + 4CD A =C Q

A B D . c
— — —
AD = AC - I
—— — ——
24B = AC + CD

(4 + (~2))AB = U4AB + (-2)AB

Fig. 1ll-2e

Figure 1i-22 illustrates the distributive laws for
r=4,s=-2. . .

The combined effect of all these laws z&n be summed up
briefly as follows: '

Directed line segments obey the
familiar rules of algebra with
respect to addition, subtraction,
and multiplicaticn by real numbers.

We now show how this algebra of directed line segments can be
applied to proving theorems of geometry.
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Example 11-2a: Show that the midpoints of the sides of any
quadrilateral are vertices of a parallelogram.

Proof: Let ABCD be the quadrilateral (see Figure 11-2f)

8 Y c

T

Fig. 1l1-.2f

and let X, ¥, Z, T be the midpoints of its sides as indicated,
——— —— .
It 1s sufficlent to show that XY = TZ since this implies both

<> <>
that XY || T2 and that |XY| = |T2] .
. —— l—é l——é
We have XY = ?AB + ?BC
and TZ = EQD + ?DC .

Since DC = DA + AB + BC , we also have
TZ 2 HAD +~§(DA + AB + BC)
= 3D - ZAD + #AB + 7BC
——y —
= éﬁB + %BC .

—_—

This shows that XY = TZ .

Example 11-2b: Prove that the dlagonals of a parallelogram
bisect each other.

193
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Solution: Let ABCD be the parallelogram (see Figure 11-2g).

Fig. 11-2g
Then the midpoint of AC 1s the endpoint of -E(AB + BC) The
midpoint of DB 1is the endpoint of 7B + ?(BA + AD) which equals
AB - EAB +-§AD or —AB + EAD . We show that this is the same as
EAB + EBC . Since ABCD is a parallelogram AD BC ’ so the
last sum 1is certainly equivalent to §AB + @BC . We conclude that

these directed line segments are the same by noticing that in
addition to being equivalent they also have the same initial point.

Example 1l-2¢: Prove that the medians of a triangle meet 1in
a point which trisects each of them.

Solution: Let ABC be the triangle. (See Figure 11-2h.)

A | Y c
Fig. 11-2h
Let X, ¥, Z be the midpoints of its sides. Then, the point two-

2/ 1=
thirds the way from A to X 1is the endpoint of g(AB + @BC).
ivl
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The point two-thirds the way from B to Y is the endpoint of
AB +_§(§K + 1—8)
3 AC) -
The point two-thirds the way from C to 2 1s the endpoint of
AC + g(c;\ + #AB) .

We show that these three directed line segments are one and the
same. We use the fact that BC = BA + AC .

Then the first 1s equal to

2(RE + Bk + BAC)

2 —_— 1= 11—
which' 1s equal to -3-(AB - AB + ~§AC)
‘ — —
or FPB + 3AC .

* — [ o 8 ——
The second 1s equal to AB - éAB + %AC whilch also equals
-~ l_>

178 + ia
-§B+-§C .

a— 2-.> l—>
The third 1s equal to AC - EAC + EAB which also equals

1= . 1=
-§AC + -gAB .

Example 11-2d: Prove that the line which Joins one vertex of
a parallelogram to the midpoint of an opposite slde 1s trisected
by a dlagonal. Prove also that 1t trisects this diagonal. ”

Solution: Let ABCD be the parallelogram (see Figure 11-21).
Let A be the glven vertex and let X be the midpoint of cD .

D C

Fig. 11-21
[sec. 11-2]
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We are to show that the point two-thirds of the way from A to
is the same as the point two-thirds of the way from D to B .

The first point is the endpoint of
——— —
%(AB + -]E‘;BC)

The second point 18 the endpoint of
AD + =(DA + AB) .

This latter equals
2-—L

AD - BAD + %AB
— D
or - %AD + §AB .
—— —
Since AD 1s equivalent to BC we sSee that these two
directed line segments are equivalent; that they are in fact the

same follows from the additional fact that they have the same
initial point. '

Fxercises 11-2

ey
1. If ABCD 1s a parallelogram, express DB .
— —
(a) 1in terms of DC and DA . 0 ¢
* PUes. —
(p) 4in terms of DC and CB .
— —
(¢) in terms of AB and BC .
(d) 4in terms of AB and AD..
( — A B

s
e) 4in terms of BA and BC .
2. If A and B are distinct points, identify the set of all
terminal points of the directed line segments of the form
t AB for which '

(a) t>0. (¢) ¢ >1
(p) o <tgl. (d) -1t
196
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If A, B, C are non-collinear points, find the set of all
terminal points of directed line segments of the form

— a—
r AB + 8 AC

_ for which
(2) .r =0, s arbitrary.
(b) s =0, v arbitrary. ,
(¢) 0<¢r ¢l , s arbitrary.
(d) 0< s 2 1, r arbitrary.
() 0<re¢<l,o0<s<l.
(£) r =1 ? s arbitrary.
(g8) s =1, r arbitrary.

#*(h) r+s8 =1,

#(1) r-s=1.

*(3) p+3=1.

#(k) 6r + 78 =28 .
#(1) ar + bs + ¢ = 0, where a, b, ¢ are real numbers and
where not beth a and b are zero.
Show by an example that subtraction of directed line segments
(2) 1is not commutative,
(v) 1s not associative.
In the following figure

il

ABCD, EOGB, and HDFO are each parallelograms. Prove that
their respective diagona}s KE, ﬁa, ﬁf, extended if necessary,

meet in a single point X .
»
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6. ABCD is a parallelogram and P, Q, R, S are the midpoints of

the sildes.
A P ' 8

S
A

For each of the following directed line segments, find an
— e
equivalent directed line segment of the form r 0Q + 8 OP ,

(2) 0B (e) DB
— —
(v) ocC (£) Ac
(c) oD (g) caA
(a) OA ' (h) ED
7. Show that the four diagonals of a parallelepiped bisect one
another.

11-3. Vectors and Scalars; Components.

Directed line segments acquire new properties when algebraic
operations are defined for them, so it 1s proper to give them a
new name. Real numbers also acquire new properties when .they
multiply directed line segments, so it 18 proper to rename them.
also. From now on we shall call a directed line segment a vector.
We shall call a real number a scalar if and when it multiplies a
vector. This 1s a refinement which 1s not absolutely necessary
for logical thinking, but it helps.

"We are going to discuss equivalence of vectors, addition of
vectors and multiplication of vectors by scalars in terms of
coordinates. The following theorem is the basic tool in this
discussion.

2

w

1
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Theorem 11-3a: Let A, B, C, D have respective coordinates
(a‘l’ae).! (bl.!bz)! (01!02)1 (dl.!de)' Then ‘

AB = CD

if and only if
bl-al=dl-Clandb2-32=d2-02.

Proof: Figure 11-.3a illustrates Theorem 11-3a.

M\(ir' y ' y LA
§(2|4) B(g.4)
D@, : Ao A
a 2 ]
“lag2) V1 - L ALL2)
' JEEEN) ‘ ¢(3,D
o] | 2 X of { 2 X
IR 5B # 6D
AB = CD ,
ho24£4 -1
- — h -
2-1227%  Fg 11-3

We give only a few indications of its proof.

If bl -a; = dl - Ccq and 1f b, - 85 = d2 - Cp

then
2 2 2 ' 2
(by - 3;)" + (by - a5)° = (d - c1)" + (dp = ¢p)
and
b2 - a2 d2 - Co
by - &y by - 85

provided that

1 -8 4 0 and by, - 2, $ 0.

[sec. 11-3]
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We conclude that |AB| = |cD] and that 7E?||'33 . This
makes plausible the fact that if the given equatlonc. hold then
AB = CD . Tt doesn't completely prove this (we need B N CD)
and it doesn't contribute at all to the proof of the converse.

Corollary: If OFP 4is the vector equivalent to -Eg , where
O 1s the origin, then P has coordinates (bl -a; , by - ay) .

Definition 11-3a: If A 4is the point (al,az) and B 1is
the point (b,,b,), we call the number b, - a the x-component
s 1’72 1 1 3
of AB , the number b2 - a, the y-component of AB .

In most discussions'of"yectors the initial and terminal polnts
of the vectors are not as lmportant as thelr x and y-components.
We shall thereiore often specify a vector by giving its x and Yy
component. We use square brackets [,] to do this; [p,q] means
.any vector whose Xx-component is p and whose y-component is q .
We shall sometimes denote vectors by single letters, with an arrow
above, like -Kh, when the specific endpoints are not important.

We also write 7?::?? to assert that two vectors are equivalent.
The equal sign should properly connect not the vectors themselves
but their components. Thus Theorem 11-3a can be restated as

follows:
—n —
If X is [xl,xe] and Y 1s [yl,yz] , then
X=X
if and only if
Xy, =" and Xp = Yo -

-‘We use the symbol |X] to denote the length of X . We have

[ 2 2
I[xl:xgll =4/X] + Xo .

299
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We turn now to the addition and multiplication operations for
vectors, show how they can be effected in terms of components and
prove the basic algebraic laws stated for them in Section 11..2.

Theorem 11-3b: If X 1is [xl’le and if Y 1s [yl,yz]
then X + ¥ 1s [(x; + yl), (x, + ¥o)1.

Proof: By definition of addition for vectors (see

Figure 11-3b) ZOxty,, X+ ¥
y
yUyy,)
X (XuX,)
o) X
Fig. 11-3b

— e

— — ——
0Z is OX + OY 1if and only if XZ = OY . According to
Theorem 11-3a, this will be so if and only 3if the point %ihisl;

(xl + ¥y s Xp* y2) . It follows that the components of X + ¥

are X, + yl and Xp + Vo o

Corollary: Addition of vectors 15 commutative.
a— — — —

X+Y=Y+X.

) ~?~§’E’.ﬁ .

Corollary: Addition of vectors is associative.““‘
- — — o —— — —
(X+Y)+2=X+(Y+2).
201
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Corollary: There is a zero vector {0,0] .

—

Corollary: Every vector _fh has an addltlve inverse - X .,
If X is [xy,x5] , then’ - X 1is [-xl,-xe]

Theorem 1ll-3c: If X 1is [xl,xe] , then rX 1is [rxl,rxz].

Proof: Let Y be the point (rxl,rxe) (see Pigure 11-3c).

yirx,rx) y
X(%,x,)
0 X
Fig. 11-3c

Then

IrI«/xl2 + x22

|r|. |Jox]| .

joy| =\/er1)2 + (rx2)2

I

Also 0, X, ¥ are collinear, since they are on the line whose
equation 18 XX - X;¥ = O . We must show that the ray ok is

—>
parallel to the ray O0OY ¢to complete our proof. We omit this
part of the proof.

Corollary: Multiplication by scalars 1is associatlve.

r(gf) = (rsﬁh .

[sec. 11-3]
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Corollary: Multiplication by scalars obeys the distributive

laws,
— R —. Y
r(X + Y) = rX +r¥
— -_— -
(r+ 8)X =rX+rX .

——

Corollary: (-1)X = -X .

Corollary: If X 1s [xl,xe] and if Y s {yl,ye] then

— T
rX + sY 1is [rxl + 8yy , Xy + sy2] .

— — :

Definition 11-3b: Non zero vectors X and Y are saild to
be parallel if and only if the directed line segments O0X and OY
equivalent to them are collinear,

X s
- X
k/:;/// .
z/////o
Y
FPig. 11-3c¢
Theorem 11-3d: Non zero vectors X and Y are parallel if
and only if
—_— —
Y =rX

for. some non-zZero real number 1r .

—_ —_ '
Proof: Let X be [xl,xe] and Y be [yl,ye], let X Dbe
the point (xl,xe) and Y be the point (yy,¥p) .

[sec. 11-3]
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— B e

Then OX =X, 0Y=Y. Then X || Y if and only if 0, X and
Y are collinear. But

6; =7 6;
if and only if"

Xy = Ty,

Xp = Ty,

which holds if and only if O, X, Y are collinear.

! i : I -~ P +—
xl X / ! X
d { curd, A : (6‘4)._
b G T X
e L4 X >
L Y \ v
/Ié3 Fr ) \Y/' y e
Y - Y L
. i
[ XY oo b
' ! X not parallel to Y
Flg. 11.3d

v

Theorem 11-3e: Let X and Y be any pair of non-zero, non-
—
parallel vectors., Then for each vector 2 there are numbers r
and 8 such that '

. .

Z =1rX 4+ sY .

— e

Proof: Let X, ¥, Z be [x3,x5], [¥1,¥p] » [21,25] . Ve

are to show that the equations for r , s
2y = IXy + sYy

[sec. 11-3]
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— —
have a unique solution (r,s) . Since X 18 not parallel to Y,
it follows from Theorem 11-3d that

X)¥p - YyXp + 0 .
Our conclusion now follows from the result of Chapter 7, Section 3
on the existence and uniqueness of solution of equations.

— e

Corollary: If rX + sY -0 (where 0 is a zero vector)
then * = 8 = 0 , '

Definition 11-3c: Any two non-zero, non-parallel vectors 1n
the plane are sald to be a base for all the vectors of the plane,
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y
(3,5)
ye1,3) =
//
~
- /27
y -
x "
- 2\
X —_
2%
\ —
5 ozZ=2X+y
\ 0T=2x-3y
\
\
\
\
\
\
\ —
-3
\ y
\
¥
\
(7u’7)
T
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— ————
Figure 1l-3e shows two base vectors X and Y and vectors
wmatity — e

07 and OT expressed in the form rX + sY .

[1,0] and [0,1] form a base which 1s frequently used.
The vector [1,0] 4s denoted by 1 and the vector [0,1] 1is
—
denoted by J .

— — — —
Theorem 11-3f: X = ai + bJ 4if and only if .X 1s [a,’
and (a,b) 4is the point P for which

— —

x=OP-.

-—
Proof: If X 1is [a,b] , then, since
[a’b] = 3[1,0] + b[O,l]
it follows that
: — — —
X =al+bj .
— — —
If X = ai + bJ , then

X = a[1,0] + b[0,1] = [a,b] .

Y
(0|2) T (3|2)
-s(,. . =
.0 X=31+2]
j i n i . L
Tuo G x
Fig. 11-3f

—

Figure 11-3f shows an example of a vector X expressed'as a
- —
sum 31 + 2] .
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Exercises 11-3

1. If A, B and C are respectively (1,2), (4,3), (6,1) find

X so that

(a) 7ﬁ;£=3§‘.
(b) X =B .
(c) XA + CB .

(a) ¥i = BC .
2, Same as Problem 1, if A, B, C are respectively (-1,2), (%,-3),
(-6,-1).
3. Pind the components of
(a) [3,2] + (4,1] .
(b) [3,-2] + [-4,1] .
(c) 4[5,6] .
(d) -4[5,6] .
(e) -1{5,6] .
(£) - [5,6] .
(g) 3{4,1]1 + 2[-1,3] .
(h) 3[4,1] - 2[-1,3] .
4, Determine x and y so that
(a) x[3"‘l] + y[3’l] = [5’6] .
(v) x[3,2] + ¥(2,3] = [1,2] .
(c) x(3,2] + ¥[-2,3] = [5,6] .
(@) x([3,2] + y[6,4] = [-3,-2] (Infinitely many solutions),
5. Determine a and b so that
(a) [3,1] = al + b] .
(b) [1,-3] = al + b] .
(¢) 1 =a[-3,1) + b[1,-3] .
(d) T= a[-3’l] +'b[l"‘3] .
6. Determine a and b so that 3?- 23‘-.-. a(3?+ uT) + b(u_f+ 3?) .
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11-4, Inner Product.

Our algebra of vectors does not yet include multiplication of
one vector by another. We now define such a product.

We first say what we mean by the angle between two vectors
X and Y which do not necessarily have a common initial point.

Definition 1ll-4a: Let 'i? and -§? be any non-zero vectors
and let 'Bf and 3§' be vectors whose initial point is the origin
0 and which are equivalent respectively to -f‘ and '§?. Then by
.the angle between x and Y we mean the angle between OX and

, St

oY .

_— F

Definition ll Lo Let X and Y be any vectors. Then the
inner product of X and Y is the real number

|

—

| |Y| cos ©

L=<l >

where . lxlis the 1enbth of X, f?j {i.the length of Y and 9 is
the angle between X and Y. (If X or Y is a ...7o wacTor
then © 1is not defined. We interpret the definitions - o m®an
that the inner product is zero, in this case.)

The inner product has important properties. Befum= «%
investigate these properties of the inner product we relace the
inner product to a familiar mathematical relation--the I of

- cosines.

— oy
If our glven vectors X and T are not parall=l thayy

~determine a triangle O0XY , where O is the originAcnd ¥here X

and Y are endpoints of the vectors OX and OY reszpeiblvely

- equivalent to x and Y . We can find at least one =zriier

appearance of the inner product by applying the law &+ ¢ozines to

the triangle. It asserts (Figure 11-4a)

209
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y
y .
\ —_—
Xy
X
—
—
y o X
0 X
Fig. 1l-%4a
Ix¥|< = |ox|© + |o¥|< - 2]ox| . |o¥| cos e

so that

-, 2 -2 o2
Jox| * [0¥| cos o - JOXI=+ [O¥|" - |XV|
Thus' the expression we have called the ™nner product” is
suggested by the law of cosines.

—

——
We sometimes denote this product by the symbols X - Y
{read ’Y dot Y") and sometimes call it the "dot product.

Usually, in algebra, a multiplication operation for a set of
Objects assigns a member of this set to each pair of its members.
The inner product is not an operation of this type. It does not
assign a vector to a pair of vectors but rather it assigns a
real number to each pair of vectors. '
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B - Example ll-ua:' Evaliate X . Y if ]—j = s [?ﬁ = 3 and
(a) ©=0, (b)e =152, (c)e =90°, (d) =180°.
Solution:
— o
(a) X.¥=2.3cos0°=2.3.1=6
— e
(b) X - Y < 2°300$ll5°=2°3"%-.=3«/2“
(c) X .i? 2.3co890°=2.3.0=0
— e B
(d)X.Y=2-300818O=2-3-(-l)=-6

The inner product has many applications. One of these 13 a test
for perpendicularity.

&

— N !
Theorem 1li-4a: If X and Y are non-zero vectors, then

they are perpendicular if and only if

X*¥=0.

Proof: According to the definit >n of inner product
X . Y = IXI |Y| cos ©

This product of real numbers is zero if and only if one of 1its
factors 1§;Eero. S{Ege X and Y are non-zero vectors, the

numbers |X| and |Y| are not zero. Therefore the product 1s
zero if and only if cos & = O , which 1s the case if and only if
? " and ? are perpendicular.

The following theorem supplies a useful formula for the
inner pfoduct of vectors,

— —
Theorem 11-Ub: If X = [Xy,X5] , ¥ = [¥;,¥,]

then

211
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Proof': According to the law of cosines (see Figure 1ll-4b)

y
yly,,y,) w
x(x,,%,)
; K3
y )
0 }(0,0) X
Fig. 11-4b

loX| * [o¥| cos o o 1XI=+ [O¥] - |X¥]|

2 2 2 2 2 2
X7+ X" + Y17+ ¥ = (%7-¥7)° - (x5-¥5)
2

— c—
‘Since, by definition, the left member of this equation 18 X . Y,
our theorem is proved.

— ——
__Example 31-4b: If X 1s [3,4] ana Y 1s [5,2] , find
X .Y. _

—
Solution: X . Ym 3 .5+ 4 .2

= 23 .

[sec. 11-4]

212




659

— - —_
Example 1ll-4¢c: If X 1is [3,7] and Y is [-7,3) , show
that X and Y are perpendicular.

Solution: X Y= 3(-7) +7 -3=0.

- —
The conclusion follows from Theorem ll-%a, and the fact that X

——
and Y are ron. - ~r

A useful ract about inner products 1s that they have some of
the algebraic properties of products of numbers., The following
theorem gives one such common property.

Theorem ll-l4c: If X , Y,

. — — — - ——e
X (¥Y+2)=X.Y+X.2
- —— — —
(X) - = = t( Y) .
— , —_— L= ’
Proof: Let X = [Xl,X-—g] y ¥ = [y]_:YQ] y & = [21,22] . Then

— P ~—
x (x + Z) = {“1’x2] [yl + zl s y2 + 22]

]

x1(¥y + 29) + x5(yp + 25)

XYy + X¥p + X127 + X2
—_ — ’

—_
=X - Y¥Y4+X 2

(tX) '—Y;=‘ [txlxtxgl . [ylxygl

]

txlyl + tx2y2

it

t(xyyqy + Xp¥p)

Il

t(X - ¥)

[sec. 11-14]
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. — — — — -
Corollary: ‘i?- (a¥ +'02) = a(X . ¥Y) + b(X -

In certain applications of vectors to physics the notion oi a
component of a vector in the direction of another vector is
important. We now define this concept.
— —_
Definition 1ll-4¢c: Let X De any_ggn-zero vector and let_ay
be any vector., Then the component of Y in the direction of X
is ‘the number given by each of the following equal expressions:

— - o
. . qumal
—x—_,Y= ﬁl}rﬂ cos O |¥l cos e.
[x1 X|

NOTE: The component of Y in the direction of 'f' can be
described geometrically (see Figure 1l-kc).

- |
y |
—_ | \
y | |
|
| | |
| | I
- | - | |
LI R T x| R
P Q Q. P

‘In both parts of the figure P 18 the foot of thi_perpen_
dicular from the initial point of -i? to the line of X , anqa;Q
is the foot of the perpendicular from the termigi} point of Y ¢to :
this line. In the first part the component of Y 1in the dlrection
of .i? turns out to be the distance from P to Q . In the
second part this component turns out to be the negative of “<he
distance from P to Q .
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The inner product 1s used frequently in applications of
vectors to physics., For the moment we consider inner products
from a purely mathematical standpoint.

—
Example 11-4d: Iet X be any vector parallel to the
_positive x- axis, let Y be any vector parallel to the positive
y-axis and let Z be the vector [p,q]. Show that p and q are -

the components of ?T in the direction of X and Y respectively.,

Solution: According to Theorem 10-53

/p2'+ q2

S0 p = cos © . p2 + q2 .

Since |2} =./p2 + qz , we conclude that

—
|Z| cos o
r T
The angle between 2 and the y-axis 1s = - ® . Conse-~

— -—
quently the component of 2 1in the direction of Y 1is

cos(% - © Yo% + q°

Since cos(% -9 ) =-sin © and since s8in & = -,

we conclude that this component is, in fact,

. -:) + q ’ Or

Vectors in Three Dimensions: Much of our discussion of
vectors in the plane can be carried over to three dimensions
with only minor modifications.
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The portions about directed line segments require no modifi-

cation.
clusions

1.

When we come to coordinates and components, the con-
are as follows:

The components of a vector in three dimensional space
are an ordered triple ([a,b,c] of real numbers,

Two vectors [a,b,c] and [p,q,r] are equal if and
only 1f a=p , b=q and ¢ =r .

The addition of vectors ([a,b,c] and [p,q,r] 1is
given by the rule

(a,b,c] + [p,q,r] = [2 + P, D+ 4, c + r} .
Scalar multiplication of vectors is given by the rule

r[a,b,c] = [ra,rb,rd].
The unit base vectors assoclated with the coordinate
axes are

1 = [1,0,0]
* J = [0,1,0]
k = [0,0,1] .

Figure 11-4d shows these base vectors.

z
4I_k>
> — y
XA )
t
!
Fig. 11-4ad
2L6
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The vector V = U4i 4+ 83 + 8k is illustrated in
Figure ll-le.

'4.

Fig. ll-le

— —
6. The inner product of V and W 1s still given by

- — —
V* W= |V]IW| cos ©

——t

In component form if ?7 is [vl,ve,v3] and W 1is

[wl,we,w3] , then

—

——
V-'-W= ViWy + VoW, + VaWg

also _ ) =*/612 + v22 + v32

Exercises 1l-U4

b
b

'xj
[y
S
.
e
o
[
+

(a) X =-ET, ??==—3
) X=1,¥=1
() X=73,Y¥=1
(@) X=7,¥=7

217
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() X=1+3,Y=1-7
(£) X=21+3],Y=141-55
(8) X =-81-3],Y¥=-41+5],

(h) X=ai+bj, Y=ol +4dj.

(i) X=a1+bj y Y=4X .
— — - a—— —
(J) X=al +bj, Y =sX,

— — ——
2. Find the angle between. X and ¥ if |X) =2, [¥| = 3

— e

and X * Y is
(@) o, (p) 1, (¢) -2, (a) 3, (e) -4, (£) 5, (g) 6,

(h) -6 .
i —r — —
3. If X = 31 + 4) , determine a so that Y is perpendicular
to X, if Y is |
(a) al + 43, (c) 41 +ay,
(b) al - 43, (a) ai - 33 .

L, PFind the angle between _§. and -i? in each part of Exercise 1
| above, v
5. If a2;-+»b2 4 0 prove that. éf'+ Sj. is perpendicular to
cZ&+ d}b ir énd only if a3?+-b3; is parallel to -d1;+ JT'N

6. Find the component of Y in the direction of X if

(@) X =1, Y¥=231+4) . (e) X =31+ 41, Y¥=2304+47.

() X=3,Y=3L+84]. (£) X=o3L +U7,Y¥=524+27.

(C) ?:r 3?+ ’4?, ?: i, (S) 3?: 3?-!- ’4.3‘, ?: a.j_:.+ bT

(d) Y= 3T+ u—Jh, ?=T. (h) ?: p?+ QT)?= a.—ihh+ b._‘
[sec. 11-4]
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11-5. Applications of Vectors in FPhysics.

The notion of "ferce" 18 one of the important concepts of
physics. This 18 the abstractlon which physicists have invented
to describe "pushes" and "pulls" and to account for the effects
that pushes and pulls produce.

The student who knows something about vectors can readily
Jearn about forces. The connecting links between the concepts of
"porce" and "vector" can be stated as follows:

1. Every force can be represented as a vector. The
direction of the force 1s the same as the directlon
of 1ts representatlive vector. The magnitude of the
force determines the iength of 1ts representing
vector, once a "scale" has been selected,

Example 1l-5a: A red-headed man 1s standing on top of a hill,
staring into space., He welghs 200 pounds. Represent &s a vector
each of the following:

(a) the downward pull of the earth's gravity on him,
(b) the upward push of the hill on him.

Solution: (a) : (b) $

—
X _—

Scale: 1 inch = 200 lbs. Scale: 1 inch = 200 lbs,

2. Any collection of forces which act on a single body
is equivalent to a single force, called thelr
resultant. If all the forces are represented as
vectors on the same scale, then the vector which
represents the resultant of the forces 1s the sum
of these vectors. '

[sec. 11-5]
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- Example 1ll-5b: Represent each of the following forces as a,
vector, and find the vector which represents their resultant: A
force F; of 300 pounds directed to the right, a force F, of

400 pounds directed at an angle of 45° with the x-axis and a force
of 500 pounds directed upward.

Solutlon: (graphical) Using the 30§£9 1 inch = 400 pounds

X represents Fl s Y represents F2 s 2 represents F3 .
—

Z
A

5&
Y Z&
7x
———
y
% X

— — -

X+ Y+ 2 represents the resultant of Fl » Foy F3 .
Its length is a little less than 5/2 1nchés; its direction is
about 54° . ‘

3., If F and G are two forces which have the same ‘
direction, then they have a numerical ratio and
there i1s a number r such that r timegdforce F
is equivalent to force G. Moreover if F 1is the
- vector which represents force F , then ff' is
thé vector which represents force G , where r 1is
the ratlo of force G to force P .

229
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Example 11-5c¢c: Emily and Elsie are identical twins., They are
sitting on a fence. If 7? represents the total force Emily and
Elsie exert on the fence and if 7; represents the force the
fence exerts on Emily alone, express

— —
(a) F in terms of @G .
(b) G 4in terms of F .

Solution:

(a) -I-;a -2-6:}.‘

(b) G =- ¥ .

A body at rest is said to be 1in equilibrium. It is a fact of
physics that if a body is at rest the resultant of all the forces
‘acting on the body has magnitude zero. (Note: The converse of
this is not true, since the resultant of all the forces which act
on a moving body can also be zero. According to the laws of
physics, if the sum of all the férces which act on a body is zero,
then  the body must be either at rest or-it must move in a straight
‘1ine with constant speed.)
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Exercises 1l-5a

1. A weight .» =spended by ropes as showz 1. the figure,

Ad
8’| as

J

If the weigli:. 2ighs 10 pounds, what i; ¢ .2 force exerted
- on the Juacti 4« C by the rope CB ?

\\\\

2. A weight of ~,000 pounds is suspended fr-= wires as shown
in the figure,

-—— horizontal

L

N T SSH

/{////////{ /

The distance AB 1s 20 feet, AC is 10 feet, and CB is
10 v/ 3 feet. What force does the wire AC exert on the
Junction C ? What force does wire BC exert on C ? If
all three wires are about equally strong, which wire 1is %
most likely to break? Which wire is leas% likely to break?

Wy
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3. A 5000 pound weight is suspended ac shgwri. - ke Zigure.
‘#i{r? the tension in each of the ropes CA - T ind W,
A

7T

(HA

OO NCUSNSNNNNN
////'///’////ﬁ{;///

4, A barrel is held in place on an inclined plane =F by a
fdrce OP operating parallel to the plane and amother
operating perpendicular to it. (See diagram.)

F

W

If the weight of the barrel is 300 pounds, (|6ﬁ| = 300)
and the plane makes an éhgle of 23° .with the horizcntal
find AIB?] and ]65]. (Hint: Introduce a coordlngte system
with origin at O and OW as negative y-axis.) ‘
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5. ‘i-cwebgmt 1 suspended by ropes as shown im the figure, =f
the w#=ight welghs 20 pounds, what 1is the orce exerted on
tne janetlon C by the rope CB? By the rope AC? If AC
and CB are equally strong, which one 1s more likely to break?

}\
~5

a—-horizontal

4
i
-
|
l
l
l
|
\
(
|
i
!
I

\\ \X\\ \\\\>

6. A 500 pound weight is suspended as shown in the figure. Find
each of the forces exerted on point C .

>

Y

30N¢
) 500 b, weight

NN\ W\\\X\\

. hinge
7. A 2,000 pound weight 13 1ifted at constant speed, &8s shown in

the diagram. Find edch of the forces exerted on point ¢ ,

W - 2000 1b. weight

hinged strut

[sec. 11-5]
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'l propeller thrust-

force of gravity

L The motion of airplanes provides arother applicz=tion of
vectors. Scme technical terms involved 2re listed and illustrated
in the figuz=,

Lift: iFr--a force perpendicular to the direction of motion,

This is the "liftimg force" of the wing.
Gravity: '?g-..a force directed downward.

S

Propeller thrust: Fpt--a forward force in the direction of
Eptiop.

Drag: Fd--a backward force parallel to the motion. This

force is due to wind resistance.
Effective bropeller thrust: F --tke rropeller thrnst minus
the drag.

ept

The physical principle we shall use sStates that & iy i=n
motion will continue to move in a straigks line with czmsZtant
speed if and only if the resultant of all the Zorces actling on
the body 1s zero.

[sec. 11-5]
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8. An airplane weighing 9,000 pcinds cl.nhs steadily upwards
at an angle of 30°. Find the 2ffectuve propeller thrust
and the lift. '

G. An aizplane weighing 10,000 p-unds climbs =t an angle of l?z
with zonstant speed. Find th.. effecve rropeller thrust
and tne 1lift,

10. A motorless glider dsscends at an angi=s 2 10° with constan=
speed. If the glide:r and occupznt tom=iurer weigh 500 pouncés,
find the drag and ths 1ift.

The term "work" as tme physicists use it =130 provides an
example of a concept which can be discussez in t=rms of vectors.
Consider for instance a tractor pulling a box-car along a track.

~

Fig. 1l-5a

-

The effect of the tractor?ts force deper=s on the ang:is €6 . .I&
also involves the force itself and the:iisﬁiacement =roduce The
term "work, " as used n physics, 1s glwem in this ca== by

P . E?, where F 1s the force-vectcr of tme tractor &nd we=re 5
25 the displacement of the box car .

More generally, 12 a force * acz=E Tz = body @&nd r—ocuces 2
‘displacement S while it acts, then toz wcr: done Wy the Zorce =
defined to be F - S , where = 1s the =mctor whizf regresents
the force and where -§> is the vector whizz represents zhe dis-

placement.
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Exampie 11-5e: If she tractor of Figure 11-5a exerts a
force of 1,000 pounds at an angle of 30° to the track, how much
work does the tractor do in moving a string of cars 2,000 feet?

— —
__  Solution: Evaluate the expression |F||S| cos 6 where
|IF| = 1,000 pounds, |S| = 2,000 feet, cos @ X .856. The va_ue of
this product is approximately 1,732,000 foot pcunds,

Exercises 11-5b

1. A sled i: pulled a distance of d fest by 2 force of p
pounds w=ich makes an angle of 8 witt: the horizontal. Find
the work done if

(2) d = 10 feet, p = 10 pounds, 6 = 10° .
¢5) d = 100 feet, p = 10 pounds, 6 = 20° .
{z) G = 1,000 feet, p = 10 pounds, & = 30° .

‘How far can the.sled be dragged if the number of availéble
foot pounds of work is 1,000 and if

(d) p = 10 pounds, 6 = 10° .
() p = 100 pounds, 9 20° .
#) p = 100 pounds, @ = 0° .
(g) p = 100 pounds, & = 89° .

i

1}

2. The drawing shows a smooth incline d feet long whien
makes an angle © with the horizontal.

[sec. 11-5]
227



67h

How much work is done in moving an object weighinz p poundév
from R to S 1if

(a) d = 10 feet, p = 10 pounds, & = 10°
(b) d = 100 feet, p = 10 pounds, 8 = 20° .
(¢) d = 100 feet, p = 10 pounds, & = 30° .

How far can the weight be moved if the number of availziple
foot pounds is 1,000 and if

(d) p = 10 pounds, & = 10° .,
(e) p = 10 pounds, 6 = 20°
(f) p = 100 pounds, & = 1°
(g) p = 100 pounds, & = 89° .

Velocity is another concept of physics that can be representad
by means of vectors., In ordinary languag:® the words “"speed" and
"velocity" are used as synonyms. In physics the word "speed”
refers to the actual time rate of change of distance (the kind of
information supplied by an automobile speedometer), and "velcicity™
refers to the vector whose direction is the d%rection of the
motion and whose length represents the speed on same given sczle,
When velocities are represented by vectors, the lengths of them=
vectors give the corresponding speeds, o

Flgure 11-.5b shows vectors which represent some of the
velocities of a body moving around a circle with constant spe=i.

Fig. 11-5b
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It 1s easy to imagine situations in which velocities are

" compounded out of other velocities. For instance, a man walking
across the deck of a moving boat has a veloclty relative to the
water which 1s compounded out of his velocity relative to the boat
. and out of the boatts velocity relative to the water. It is a
principle of physics that the vector which represents such a
compound velocity is the sum of the vectors which represent the
individual velocities.

-~ .  Example 11-5f:- A ship salls east at 20 miles per hour, A
man walks across its deck toward the south at 4 miles per hour.
" What is the man's velocity relative to the water?

——

Solution: In the figure, X
represents the shipts velocity
relative to the water, ??
represents the man's veloclty

relative ?g'mgiship. Conse- =
quently, X + Y represents

the man's velocity relative to

the water. Its length is

202 + 42 X 20,4

and its direction is approximately 22° south of east.

Exercises 11-5c¢ B H A

\ 1. A river 1 mile wide flows at the rate
of 3 miles per hour. A man rows
across the river, starting at A and
aiminé his boat toward B the nearest
point on the opposite shore as shown in
the diagram. If it took 30 minutes for
him to make the trip, how far did he row?

[sec. 11-5]
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A river is % mile wide and flows at the rate of 4 miles
per hour. A man rows across the river in 25 minutes, landing
1.3 miles farther downstream on the opposite shore. How far
did he row? 1In what direction did he head?

A river one mile wide flows at a rate of 4 milesAper hour.

A man wishes to row 1n a straight line to a point on the
opposite shore two miles upstream. How fast must he row

in order to make the trip in one hour?

A body starts at (0,0)sat the time t =0 . It moves with
constant velocity, and 20 seconds later it 1s at the point
(40,30). Find its speed and its velocity, if one unit of
length of vector corresponds to 100 feet per second.

A body moves with constant velocity which 1s represented by
the vector V = 101 + 10j . If the body is at the polnt
(0,1) at time ¢t = 2, where will it be when t = 15 ? The
scale 1s: One unit of length of vector corresponds to 10
miles per hour; the time ¢t 1s measured in hours.

Ship A starts from point (2,4) at time t = 0 . 1Its
veloclity 1s constant, and represented by the vector

— -— —
V, =41 - 3) . Ship B starts at the point- (-1,-1) at time

a
t =1 ., Its veloclity is also constant, and is represented

— P .
" by the vector V, = 74 + J . Will the ships collide?

‘(Assume that a consistent scale has been used in setting up

the vector representation.)

Ship A starts at point (2,7) at time t =0 . 1Its
(constant) velocity is represented by the vector

— - —-— .

V, = 31 - 2J. Ship B starts at point (-1,-1) at time ¢t = 1.
Its (constant) velocity is represented by the vector

—

V, = 51 . Will the ships collide?

A river is 1/2 mile wide and flows at the rate of 4 miles per
hour. A man can row at the rate of 3 miles per hour. If he
starts from point A and rows to the.opposite shore, what is
the farthest point dpétream at which he can reach the
oprosite shoré? 1In what direction should he head?
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Exercises 11-5d

1. Show eacn of the following graphically:

(a) 31 + 63 + 5% . (£) 2% - 25 .

(b) 37+ % . (g) Tk

(c) Ui+ 43 . (n) 53

(@) 5L +73 . (1) 71 .

() 5L + 53 +X% . (j) 61 + 87 + 3k
2, Find A + B, if

(a) 2 = 3T+ 2T+ lﬁ:,g— 2?4- T+ X .

(b) Ao di s 83 -K;B=al+2]+X.

(c) A=231 +3k; B=0j

(@) A=Ul+ 4] ;B=7k.

(e) 2= Mjb4- 5 ; B = st.

w

— —
Find the cosine of the angle between vectors A and B 1in
each part of Problem 2. '
—— —
4. Find the cosine of the angle between the vectors A and B
— — —
1if A=31+2]-K
— — —
and B=)41-3J+6k.

#*5 A lighting fixture 1s suspended as shown:

v
LTSN

//// perspective view

vervical view

View from top

Side View

(the angle is
shovin in its
true shape;
isoan angle of 1/
60~.) v

The fixture welghs 15 pounds. Find the tension in each of
.the supporting cables.
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6. An airplane is climbing at an angle of 30°. Its clZmbing
speed is 100 m.p.h. Althouzgh a wind is blowing from west
to east with a velocity of 30 m.p.h., the pilot wiskes to
climb while heading due north. What is the ground speed
of the airplane?

7. Suppose that in Problem 6 the pilot climbs at an angis= of
300, but does not insist on heading north. What 1s the
fastest ground speed that he can achieve? Which way should
he head to achieve this speed? What is the le=st ground speed
that he can achieve? Which way should he hezd %o achieve
this?

8. Prove that

a(x - d) + by -e)+c(z-°r) =0

1s the ‘equation of a plane through the point ¢{d,e,f) with
the normal vector

-_—

N=ai+ b} + ck .
9. Find a vector normal to the plane

T7x - 3y + 52 = 12 .
10. Find the distance from the point (0,0,0) To the plane
Sx + 12y - 2 = 1
11. PFind the distance from the plans
k + 2y - 32 = 1

to the origin.

11-6. Vectors as a Formal Mathematical System.

In our discussion of forres and velocities »y means of
vectors we made a few assumptions which we did ot Justify. We
applied vector methods to tiie solution of force and velocity
problems in a fashion which turns out to be corw=ct but which we
have not backed up with a convincing argument. Our Thinking was
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something like this. "Some of the rules that forces obey are very
much like the rules that vectors obey. Therefore we can talk
about forces as though they were vectors." This 1s not really a
sound argument, and if it were trusted in all cases it could lead
to chaos. For lnstance, some of the rules-that real numbers obey
are the rules that integers obey, and it is not the case that real
numbers can be regarded as integers.

Nevertheless, it really was correct to treat forces as
vectors and we now explore a point of view which glves convincing
evidence for this statement. The key fact in this examination is
that every mathematical system which obeys certain of the laws
which vectors obey must be essentially the same as the system of
vectors itself.

We now formulate three goals:

1. To list the rules in question.

2.‘ To give a precise specification of what we mean by saying that
a mathematical system is "essentially the same" as a system
of vectors.

3. To prove that systems which obey the stated rules are
essentially the same as the system of vectors.

I. We state certain rules which vectors have been shown to
obey. We have a set S , two operations () , © , for which;
for all €, , v , in S and for all real numbers r , 8

(1) « @A 1s in S .

(2) x B2 = ® « . N

Nae @EEr)=(c @A) ®7.

(4) There is a zero element P in S such that

o« C) ¢)= o,

(5) Each « has an additive inverse -« for which

(I@(—C[):(p.

l.) vy

S0 \'}
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(6) r @ ais in S .

(7) rOBQa)=(rs) Q.

8) (r+s8)Qa=(rQa)®GEQa) .

(9) r Qe PB) =(r O« )@ (rOo2) .

(10) l@([-f-[.

(11) There are two members y and W of S such that
each « has a unique representation

“=(a@y) ® (bOW) .

II. We have already shown that vectors satisfy such rules,
where S 18 interpreted as the set of vectors, ® 1is interpreted.
as ordinary + for vectors and where (9 1s interpreted as
scalar multiplication. We take it as given (by physicists ;
presumably) that forces also satisfy these rules, where S 18 the
set of forces, € () 7 means the resultant of € and & and
means scalar multiplication. ‘We are to show that forces are
essentially the same as vectors. What do we mean by "essentially
the same?" We mean that the system of forces is isomorphic to
the system of vectors. What do we mean by "isomorphic"? That
there 1s a one-to-one correspondence between the set of forces
and the set of vectors such that, if force « corresponds to
vector Y and if force & uorresponds to vector B then

cr @Ky’ corresponds to vector A + B and force r (5 « corresponds
to vector rA .

III. We now state and prove the promised theorem.

Theorem: Any system S which satisfies Rules 1-.11 is
Isomorphic to the system of vectors in a plane.

Proof: We first set up a one-to-one correspondence between
the members of S and the vectors. For each « of 8 we invoke
Item 11 to write

«=(a@Qy)® (EOw)
231
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The pair (a,b) which figures in this expressioh determines a
unique vector s , namely [a,b] , vwhich we pair with « . This
process assigns to each a‘of S a vector 2 as its image. Ve
must show that if [a,b] 1is the image of « and 1f [c,d] 1is
the image of <, then [a + ¢, b + d] 1s the image of a + L7
and that ([ra,rb] is the image of r © « . To prove the first,
write

]

«=(2y)@0@Ow)
AB=(oy)®@Ow) .
Therefore « @S= (2O Yy )@ (PO W )@ (cO vy )@ @O w )
which'equals using Rules 2 and 3,
(c@y)®ECOyN@ (O w)D@O w)) .
This in turn equals '
((x +c)Oy)® (b +d)O w )

by virtue of Rule 8. We see then that our one-to-one correspond-
ence assigns [a + ¢, b+ d] to « + & .

]

We now examine r(® « . We write
r@® « =rQ® ((2QY)@D (PO W ))-
which by Rule 9 can be written as
r@ (aQy)®r © (PO W) .
According to Rule 7, this last equals

((ra)QY )@ ((rb) O W) ,
whence the image of r () « is indeed [ra,rb] .

This completes our proof. Notice that we did not use all the
rules given. They are in fact redundant. If the last rule is
left out, the remaining set of rules 1is not redundant, and is
the set of axioms which defines a vector space. The Rules 1-11 o

235
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are axioms for a more special mathematical system..a
two-dimensional vector space.

We have shown that every system which satisfies Rules 1-11
is isomorphic to our system of vectors. We have not shown that
the system of forces satisfies these rules. We take the
physicist!s word for this. We have not shown that to be
"isomorphic" really means to be "essentially the same." Let us
meditate a little on this and then take the mathematician's word
for 1it.

Exercises 11-6

1. Let S be the system of complex numbers. Does S satisfy
© Rules 1-11 if @ 4s interpreted as ordinary addition of
complex numbers and ) as ordinary multiplication of a real
number by a complex number. (Hint: In checking Rule 11
“try 1 for Yy and 1 for w ),

2. Let S be the set of all prdered pairs (a,b) of real
numbers, let (P be defined by (a,b)@ (c,d) = (a + ¢, b + d)
and 12t ©® be defined by

ra rb
I'O (a)b) = (T » "Q‘) .
Which of the Rules 1-11 does this system obey?

3. Let S be the set of all ordered pairs (a,b) of real
numbevs, let (P be defined by (a,db)@ (c,d) = (a_-E_c_,_b__-E__c_i_),

and let (O be defined by r ®(a,b) = (ra,rb) . Which of
the Rules 1.11 does this system obey?
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Chapter 12

POLAR FORM OF COMPLEX NUMBERS

12-1, Introductilon.

In Chapter 5 we introduced complex numbers 2 = X + 1y,
x and y real numbers. We found (Theorem 5.4) that each complex
number 2z 1s uniquely determined by its "real" and "ymaginary"
parts, X and Yy, respectively; 1.e.,

z2, = X + 1yl and Z, = Xy + 1y2 are equal

if and only 1f Xy = Xg and y; =V¥o -

We also discussed the addition and multiplication of complex
numbers given by the formulas:

12-la o (xg 4 1yp) # (xp + 1Y¥p) = (x; + xp) + 1(y; + ¥2) s

~12-1b (x; + 1y, )(xp + 1¥5) = (xy%5 = ¥1¥p) + (x5 + Xo¥p)

We found in Section 5-7 that the addition of complex numbers
may be descrlbed geometrically by means of a parallelogram. 1In
Section 12-2 we discuss a geometrical description of the product
of two complex numbers.

The remainder of this section points out some similarities
between the work in Chapters 5 and 11. Ixerclses 12-1 provide-a
review of some of the work in Chapter 5.
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Complex Egmbers and Vectors, We call attention to the
important case of Formula 12-1b in which ¥y, = O:

12-1c , Xy (x5 + 1y,) = (xlxe) + 1(x1y2) .

In view of Chapter 11, thls special case appears in a new light.
Note the similarity between Theorem S5-4 and Formulas l2.1a, 12-1c
and the statements in Chapter 11 concerning equality, Sum, and
scalar multiple of vectors in a plane.

Just as two complex numbers are equal if and only 1f their
real and imaglnary parts are the same, two vectors in a plane are
equal if and only if their x and y components are the same.
This simllarity 1s more than a coincidence: our geometrical
representation of complex numbers 1is exactly the same 2s our
plctures of vectors in a plane.

Fig. 12-1a
Moreover we add complex numbers Just as we add vectors and we use
the same picture (a parallelogram) to represent sums in each case.

Multiplication of complex numbers by real'numbers, as in
Formula 12-1lc, corresponds exactly to the multiplication of
vectors in a plane by Scalars: we multiply each "component" by
the real multiplier,

238

[sec. 12-1]



o™
o
Ut

We thus recognize a kind of identity between these toplics,
It i1s true that we have used a different set of words in what we
,have'said on these two subJects, but our formulas show that even
with this difference in the words we have actually been saying
precisely the same things in two different contexts.

Two mathematical systems which are the same in this sense are
often called abstractly identical or isomorphic. (The word

"{somorphic" has the Greek roots "iso," meaning "same, " and
"morphos, " meaning "shape" or "form." See page ' £80.)

- It must be emphasized that our isomorphism 1s between frag-
_ments of these two subjects. The theory of complex numbers and
fthe theory of vectors in & plane have the same form only whan we

restrict our attention to the notion cf equality and the opz=rations
“of addition and multiplication by a resl number (scalar), =ad to '
-ideas depending solely on these.

Isomorphism--like analogy--1is not -necessarily complete
_identity. Our two systems--vectors in & plane and complex
numbers--differ remarkably, and in two very important respects..
"They differ when 1t becomes a matter of discussing an operation of
"multiplication" between elements of the two systems: product of
two complex numbers, and product of two vectors. Perhaps the most
startling difference between the producﬁs in our two systems 1is
- the matter of closure. The product of two complex numbers is a
complex number, the product of two vectors in a plane is not a
- vector in the plane. In the case of the inner product, it is not
‘a vector of any kind, it is a scalar, Multiplication of complex
; numbers 1s associative. The question of assoclatlvity for the
_inner product of vectors is ludicrous; the very expressions

- -— edm - emDh e

A-(B.0), R.B).C _
. whose equality is presumably at issue do. not make sense since the
factors in parentheses, being scalars, cannot be "dotted" onto a

~vector. Only a vector can be "dotted" onto another vector.

[sec. 12-1]
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In Chapter 13, we discussed the geometric interpretation of
the inner product of vectors. In Section 12-2 we pursue the
analogous question for the product of complex numbers. Such an
interpretation will serve to emphasize the differences we have
been discussing.

The two systems also differ fundamentally if one attempts to
extend them from a plane to a space of three or more dimensions.
Vectors in spaces having 3, 4, ... . 6 N, » . dimensions have
very lmportant applications in physics, chemistry and engineering.

(No is Avogadro s number, 6.025 x<1023.) On the other hand, ex-

~ tensions of the system of complex mumbers are a bit bizarre and,
in any case, are another matter entirely. They are beycnd the
scope of this bcok,

Exercises 12-1. (Review of Chapter 5.)

l. Write the following in standard form:

(a) 1 () 14 12
(b) 1 (e) /-IB
(c) =5-v5t (£) V=7
2. Write the conjugate for each of the following complex numbers:
(a) 2 - 31
(b) 5+1
(c¢) -2+ 31

If 2=2a+ bl , express z - Z 1in standard form.

4, Express the quotilent -%{E-%% in standard form.

2440
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5. Find the absolute value of:

(a) 4% + 31
(b) -2 - 51
(¢) - 31

6. Solve the equation 222 4z 4+1=0 .

7. Plot each of the following complex numbers in an Argand

Diagram:

(a) 241 @ s

(b) -3 + 21 (e) -5 - 31
(¢) 31

8. Find the sum, difference, or product as indicated:
(a) (2 -31) + (-4 +1) (e) 5+ (2-1)
(b) (-3 + 21) + (1 -1) (£) 3(2- 31)
(¢) (2+31) - (4-21) (g) (2+31)(1-1)
(a) 5 - (4 - 21) () (1 + 21)(2 - 21)
9. If a and b are real numbers, under what conditions will
a +bi="Db+al?
10. Solve each of the following for the real numbers x and ¥ :
(a) (x+1y) +(2-31) =4 -1
() 2(x + 1y) - (3 - 21) = 1

(c) .’g_f-%=-1+21

(d) (2x + 1)(8 - 1x) = 34

S .
11. Find.the value of =gy bV the following alternate methods:
. . 1 *
(a) T 5T is a number X + yi suc}? that

(x + yL)(a + bi) = 1 . Prom this, obtain two equations

for x , ¥, and solve them.
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(b) E‘%’ET may be expressed as a number X + yi in

standard form by making use of the conjugate of
a + bl

12, simplify: =r(z 7 - 3 i T)

-

12-.2, Products and Polar Form.

In this section we consider the problem of a geometrical
representation for the product of two complex numbers. We shall
find some of the ideas and methods in Chapter 10 very useful in
solving this problem. Moreover the introduction of trigonometrical
notions enables us to write complex numbers in a form particularly
convenient for the study of powers and roots given in the ‘
remaining sections of this chapter.

We know from Chapter 5 that the absolute value of a product
of two complex numbers is the product of their absvlute values:

1z 2,1 = |21 - 1z, . |
In view of Formula 12-1b, this follows easily from the lLfentity

2 2

2 2 2 2
(%125 = ¥192) 7 + (x3¥p + x¥7)% = (%7 + ¥;7) (%" + ¥57)

—

This fact alone tells us something
rather interesting about the product.

Suppose zl represents a point on

the circle with center O and
radius r, . Then ry = lz,] . I

Z, represents a point on the
circle with center O and radius T'ns

then r, = |z,| , and the product

2,2, represents a point on the
circle with center O 2and radius Fig. 12-2a
1"11"2 « 8ince I'lr'?z ‘legl .\ 242
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Given that 2,25 represents some point on the circle, our
problem is now to locate which point on the circle.

We discussed questions of this

y
kind in Chapter 10. In Figure 12-2b
'we reproduce the fundamental dlagram z=x+y
from Chapter 10, drawn in an Argand
diagram. As in Chapter 10 we have r
i = r cos o , : e y
Yy =1rsin o , X X
Fig. 12-2b

so, iIf z = x + 1y 1s in standard form we can write

12-2a z=r(cose +1sine ).

where r = |z| =\/X? + y2 .

Formula 12-2a, expressing 2z 1in terms of r and © enables
us to solve our problem, Indeed, suppose

zq rl(cos e, +1sine l) R

Zg r2(cos ®,+1siné 2) .

If we form the product of these expressions, we obtain

Z,2o5 = rlrz(cos @, +1=ine 1)(cos & 5 + 1 sin ® o)
12-2b ‘ = rlrz[(cos ©,cos® 5, - sin 6, sin e 2)

+ 1(sin @ ; cos 6 5 + cos © ; sin 8 )]

Using the addition theorems for cosine and sine (Chapter 10),
cos(6, + © 2) = cos @, cos 8, - 51n@, sin 6,

| »8in(e, + o 2) = sine, cos @, + cos e, siney,
we can simplify 12-2b.

[sec. 12-2]
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Thus

12-2¢ 2,2, = ryro(cos(6 ) + 65) + 1 sin(e ; + 6,)]

Formula 12-2c gives the following geometrical description of
the product of a pair of complex numbers: to multiply two complex
numbers one multiplies their absolute values and adds their angles.

Fig. 12-2¢c

Formula 12-2a, expressing the complex number 2z 1in terms of
r and © , is called the polar form »f 2z . We have seen that
. Formula 12-2c gives us a way to describe a product in geometrical
terms. We shall also see that the algebraic consequences of
these formulas are extremely important.

Example 12-2a: Multiply 31 and 1 + 1 , plot the product
and the factors, and check the result using polar forms of the
" numbers involved.

A R e
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Solution: 31(1 + 1)

31 - 3 = -3 + 31
3, 11 +1] =/, |-3+ 31l =3/2.

Bolap foris: 31 = 3(cos -’g' + 1 sin _1§r)

|31]

1 + 1

J/Z(cos T + 1 sin )

-3 4+ 31

il
i

3/2 cos(% + -g_-) + 1 sin(% + -.E)

3./2(cos -347—r + 1 8sin -347!-) .

Example 12-2b: (1. + 1)(1 - 1) = 2.

1+ 1 =y2(cos T+ 1 sin %) s
1 -1 =./2[cos(- -}E) + 4 sin(- %)] s
(ﬂ)e[cos(% - %) + 1 Sin(% - -145)]

2(cos 0 + 1 sin 0)

(1 + 1)(x - 1)

- = 2.

Let us examine the relation between the standard form of =z
and the polar form of z , (z £ 0) . PFor the standard form we
write

Z = X + 1y (x and y real) ;
for the polar form we write
z = |z|(cos 6+ 1 s8ine ) .

Since

X X
co8 8- = =T—-'—,sine-.; ='2|
R R «/-X +y a1’

the polar form, expressed in terms of x and y , is simply
i X
2 = lellgr+ t o) -
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The polar form of z may be described by saying that it
resolves 2z 1Into a product of two factors: the flrst factor
being |z| , a non-negative real number, the second factor

cosS 9 + i sin e = TgT + 1 T%j-, which 1s complex, has absolute

value 1:

[cos @ + 1 sin © ! =%cose)2 + (Sine')g =1

Exémile 12-2c: The polar form of 1 + 1 1s

ﬂ(ylf"" 17-3’5) =./2(cos -&r + 1 sin -TEr) ,

1 T T
slnce 7-2-—= cos f » ﬂ = 8ln T -

Example 12-2d: The polar form of 3 + 41 1s

5(%+1—);-)=5(cose+1sine),
where ¢o03 6 = % , 8ln 6 = %

These examples 1llustrate the fact that one does not have to
refer to a table of trigonometric functions in order to wrilte the
polar form of a complex number when it is glven 1in standard form.
Reference to a table 1s necessary only for determining, or estima-
ting, the value of © . We shall see that for many calculations
1nvolVing the polar form 1t 1s not necessary to find 6 itself
--knowing only cos @ and sin © belng sufficient.

It is clear, on geometrical grounds, that there are many
values of 8 corresponding to each glven non-zero complex number - 2
However, these values of © are related to each other in a very
simple way since each of them measures an angle from the posltive
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x-axis to the ray from O through the point representing =2z. Such
angles differ by some number of complete revolutions about O , so
the values of © measuring these angles differ by integral
multiples of 27w . Each ray from O 18 terminal slde of one
angle, having the positive x-axis as initial side, which is

less than one complete revolution. If © 18 the radian measure of
such an angle then 0 ¢ 6 ¢ 27 ; we shall say that 6 1s the
argument of each non-z;fo complex number 2z corresponding to a
point on the ray. We write ¢

arg 2z . Thus © = arg z means

z=r(cose +1sine ), r>0, and 06 < 2r .

Since |cose + 1 sin e | = (coae)2+ (sine)2= 1, the
complex number cos & + 1 sin @ represents a point on the "unit
circle”--1.e., the circle with center O and radius 1
Consider two such complex numbers: cos @ + 1 sin @ and
cos 6 + 1 sin 6 . By the remarks in the previous paragraph, we
have the following theorem.

Theorem 12-2a: cos @ + 1 sin @ = cos @ + 1 sine

if and only 1if

g =0 + 2km , for some integer k .

This theorem may be proved directly from the perilodicity
properties of the cosine and sine functions without appeal to
geometrical i1deas. See Exercise 12-2.
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Exercises 122

1. Express each of the following complex numbers in polar form
and determine arg 2z :

(a) z =2+ 21 (a) z=-‘ég—+-]§‘1
(b) z =-3+ 31 (e) z =4

(o) z=p-G (£) =

2. FExpress each of the following complex numbers in standard
form a + bi :

]

i
fi

- 21

(a) 3(cos % + 1 sin -":E) (a) 5(cos v + 1 sin w)

(b) 2(cos % + 1 sin %"I) (e) cos % + 1 sin %

(c) ilw T () 2(cos 0 + 1 sin 0)

3. Find the indicated products in polar form and express them
in standard form: '
(a) 2(cos § + 1 sin'g) - 3(cos % + 1 sin 251-)
(b) (cos %’r— + 1 sin %) « (cos _16r_+ i sin -g-)
(¢) (3(cos -E + 1 sin %)]2

4., Prove that {r(cos ® + 1 sin © )]2 = re(cos 29 +1sin26e6),
where 1r 1s a real number.

5. Prove that, if =z ri(cos @ { + 1 sin e 1) » rp real,

l -

and Z, = re(cos ® ,+ 1sin ® 2) # 0, r, real,
S

then =5 " -r.-e—-[cos(e 1 -9p) +1sin(e ; -90,)]

6. Show that Z =2 if |[z] =1 .
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T.  Show that two non-zero complex numbers lie on the same ray
from O 1if and only if their ratio is a positive real number.

8. Prove Theorem 12-2a without appealing to geometry; i.e., show
that

(a) cos #+1sin@ =cos e + 1 sine
if and only if @ = e + 7T , where k 1s some integer .

[Hint: Prove first that (a) holds if and only if

cos g+ 1 singd
(v) cos ® + 1 slne — 1.

Rewrite (b) using Exercise 5; equate real and imaginary
parts and show that the two conditions you get hold if
and only if cos(f - @) =1 . But the last condition
holds if and only if @ - 8 = 2kr-, for some integer k .
Why?]

12-3. Integral Powers; Theorem of deMoivre.

We saw in Section 12-2 that if

z = r(cos & + 1 sine )
and z? = r?(cos © ' + 1 sin & '),
then zz? = rr*{cos( 6 + © ') + 1 sin(e + © ')} .

We now turn to the case where 2z and 2! are equal and
obtain for the square of a complex number

22 - r2(cos 29+ 1isin2e) .

We can extend the idea_to
23=ZQZ
= (r%(cos 20 + 1 sin 2 o ))(r(cos @ + 1 sin o )}
~r3(cos 30+ 1 sin3e ).
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Continuing in this way, we may derive, one after the other,
similar formulas for 2z, z5, 27, vy z" , for each natural

number n . The theorem of de Molvre states the general result.

Theorem 12-3a: (de Moivre) If z = r(cos @ + 1 sin o)
and n 1s a natural number, then

z" = r(coshe+1sinne) .

Let us turn now to some special instances of this theorem
to see what it has to tell us about the geometry of the complex
plane,

Example 12-3a: TPFind all positive integral powers of 1 .

Solution: We have |i| =1 and arg i = % . Thus

12=1(cos1r+1sin7r)=_1+01=-1.
13=1(;os%+1s1n%)=o_1=,1.
TR 1(cos 2r + 1 sin 27) =1 + 01 = 1 .
From here on the powers repeat: 15 = 1“1 =1, 16 = 1412 = -1,
17 = 1“13 = -1, 18 = 1“1“ =1, etc. We can explain this

repetition in geometrical terms by noting that each time the

n

expohent !8 increased by 1 , 1 steps through a quadrant of the

unit circle, We can express these facts compactly by writing

14n -1, 1lm+l -1, 1lm+2 -1 1lm+3 -

-1,

b

.where n 1s 0 or any natural number.
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2 .6 10
b by

a
N

Fig. 12-3a

ib' i7, l", L

Example 12-3b: Let 2z = cos 1 + 1 sin 1 . (The angle with

radian measure 1 has degree measure 1%2 , which 1s approxi-
mately 57.3 degrees.) Plot the first ten powers of z . Which
quadrant contains the point represented by leO ?

Solution: Since

4 cos 1 + 1 sin 1 , de Moivre!'s Theorem gives

2zl = cosn+1isinn,n=1, 2 3, ... .

'Thése numbers all have absolute value 1 and hence represent
points on the unit circle. The length of arc along the circle
between successive powers of 2z 1s 1 unit. To determlne the

quadrant containing zloo ve may first determine how many complete

51
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circults occur as n steps from O to 100 . Dividing 100 by

2r we obtain 15.915... . Thus 2z steps through 15 complete
+ revolutions and over 'i% of another as n . steps from 0O to 100,
Therefore, ZlOO represents a point in the fourth quadrant,

Example 12-3c¢c: Calculate and plot the first five powers of

Z=l+i\/§.
Solution: Here |z = V1 + 3 =2, arg z = % . So

z=2(0033+131n-§) 1+1./3,
_ 2 : or ?
and z =4(cos—3-+1sin-3-) 4(--§+1\£g—)—-2+21\/'3';
23 = 8(cos T+ 1 sin7) =8(-1+0 - 1) =8 .
Zu = 16(005 % +. 1 sin %) = 16(— ']é —1@) = —8 —81~/§
T Ty 1 - Fi
z” = 32(cos %—+ 1 sin %—) = 32(3 - ig—) = 16 - 161,,/3'1

252
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20

Fig. 12-3c

Using the theorem of de Moivre (Theorem 12-3a) and the
formulas .
2 2
2

‘(a + b)2 a“ + 2ab + b

]

a3 + 3a2b + 3ab2 + b3 s

]

(a + b)3

(2 + b)u = a* 4 1% 4+ 6a%2 4+ 1ab® 4+ 1" R

we may derive an endless'list of identitles of the followirg kind:

253
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12-3a cos 26 = (cos8)° - (sine)?,

12-3b sin 2 & = 2(cos ©) sin o ,

12-3c cos 3 0 = (cos e)3 - 3 cos © (sin )2 s

12-3d sin 3 6 = 3(cos e)2 sin & - (sin )3 ,
12-3e cos 4 8 = 8(cos e)u - 8(cos e) +

12.3f sin 4 6 = 8(cos 6)3 sin 6 - Y4(cos e) sin e ,

and corrésponding formulas for cos 56, sin 56, cos 6 6,
sin6e, ... , cosne, sinn ©, where n 1s any natural
number. We call such identities multiplication formulas.

We may prove the ldentities 12-3c and 12-3d as follows:

cos 3 8+ 1 sin 36 3

(cose + 1 sine)
2

(cos 8 )3 + 3(cose)? (1 sine)

+ 3(cos @) (1 sin6)2 + (1 sin e)3
)3 - 3(cos 8 )(sin 6)2]
%

{(cos e

s

1(3(cos ® )2 sin © - (sin®©)
and, equating real and imaginary parts,

cos 36 = (cose)3 - 3 cos & (sin 6)2

sin 36 3(cos 6)2 sin & - (sin 6)3 .

We leave the proofs of the other multiplication formulas as an
exercilse.

Exercises 12-3

In each of the exercises 1 through 5,
(a) Find J|z| , arg z , and express =z 1in polar form.

(b) Using the polar form found in Step (a), calculate

[sec. 12-3] o o
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(c) cCheck the results obtained in Step (b) by calculating
2 3 b

z“ , z%, z  uslng the standard form.
. 2 b
(d) Show in a diagram each of the points 1, z , z° , z3, z*.
1. z=1+1. B, oz = 3+ 81 .
2. 2 = :2_%%3;xfi_ . 5. z = :2;€?J;u£§. .
1
3.Z='§',

6. Deduce de Moivre!s .heorem for negative integral exponents
‘from the version stated in the text for exponents which are
natural numbers.

7. Prove the multiplication formulas 12-3a, 12-3b, 12-3e, 12-3f.

12-4, Square Roots.

The theorem of de Molvre in Section 12-3 provides a compact
formula for any integral power of a non-zero complex number:
If z =r(cos © + 1 sine) , r >0, and
n 1s any integer, then z" = r’(cosn e + 1 sinne)
In Sections 12-4 and 12.6, we consider the converse problem:
Given a complex number 2z and a natural number
n , to find all comrlex numbers w satlsfylng
the equation wh =z

Section 12-4 1s devoted to the case n = 2 . Section 12-6 contains
the general theorems,

We recall that every non-zZero real number has two square

roots. If x 1s a posltive real number, 1ts square roots are
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real; we have denoted them by ./X and -VGE(VGE> being the one
which 1s positive, -./x the negative one). 1In Chapter 5, we
extended this notation to cover square roots of negative real
numbers, Thus for x ¢ 0,

=L ST . -/F= -1 /T,

Let us consider the equation

2
W=Z,

where z 1s a given non-zero complex number (which We may suppose
is not real). We are interested in the solution set of this
equation. Let us assume that the solution set is not empty ang
write

w = |lw| (cos # + 1 sin @)

for one of its elements. If 2z = |z| (cos g + 1 sing ), we have,
by de Moivre's theorem and the assumption w2 =2z ,

|wl? (cos 2@ + 1 sin 2 @) = |z| (cos @ + 1 sing) .
Equating absolute values we have
lal® < 21 ;
so that
lwl =T2T .
Note that |w| 1s uniquely determined: |z| is a positive real
number and |w| , being a positive real number, is 1ts positive

square root. Knowing |w| , we must sti1ll find @ in order to
get w . We have

cos 2@ + 1 sin 2@ = cos @ + 1 sin o ;
hence, by Theorem 12-2a,

2@ =0 + 2 kv, for some integer ¥k »
or
g = é»e + k7 , for some integer k .
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Now 2z was given, and if © = arg z then we know © too. Moreover,
0O<®©<2r . If we suppose @ = arg w , the restriction

0 g;ﬂ ¢ 2r 1limits the possible values of the integer k . Indeed
k can only be either O or 1 ; for, with O < @ ¢ 2r , wWe have

0« % e < m™ and if
1 1
k=0 @g= 50 + O.m7, 8 0<fg-= 50<TL 2T,
k=1: &= %-e +1 7, 80 0K g = % 6+ T L T+ T = 2u;
but if
1 1
k<~l:¢=-§9+k1r<-§9-1r<1r-1r=0 y
k > 2:¢=-l§-e +k1r>-]ée+27r>21r.

We therefore find precisely two candidates for elements of
the solutlon set of the equation

w2 =2 , z given, not zero.

They are w, =./12] [093(']59 +0 7 +1 sin(-]ée + 0 + m)]
Wy =/TzT [cos(%e +1 . 7)+1 sin(-]ée +1 . m)]

The question still remains whether or not the solution set is '
empty. As a matter of fact it 1s not, and both of our
candidates are members of it. To see thls we have to show that
they satisfy the equation. We use de Molvre's theorem:

wo? = UTET [cos(ho + 0+ m) 1 stn(ze + 0 mM]°

|z| (cos(e + O - 27r) + 1 sin(e + 0 - 2m))

|z} (cos e + 1 sin®)

= 2 ;
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n

_and wl2 (/1z1] [cos(-le-e +1 7))+ 1 sin(-]é e+1. 1r)]}2
[z] {cos(® +1 - 2r) + 1 sin(® + 1 - 27))

= |z| (cose + 1 sin ¢)
= 2Z

These conclusions are summarized in the following theorem.

Theorem 12-4a: The solution set of the equation

2
W =2 ,

where 2z 1s a given non-zZero complex number, is

[wo K wl'} ’
where

o =./]|z] [cos(%e +0 7)) + 1 sin(%e +0 -7}
Wy =/1z] [cos(%-e +1 7)) +1 sin(% e +1 - 7))}
and & = arg z

Three observations:

1. If =z happens to be real, this theorem agrees with the
results in Chapters 1 and 5. If 2z > O , then |z| = z and
arg z = 0 , so that

Wy =121 [c;os(o +0-7)+1s8in(0+0 . 7)) =47
wy =/T2T [éos(o +1 7)) +1s8in{0+1 - m] =-JZ.
If z2<0, then |z = -z and arg z = T, so that
Wy =J/Tz] [cos(% T+ 0. 7) + 1 sin(% T+ 0+« 7] =/Tz] (1)
wy =/Tz] [éos(% T+1 .7 +1 sin(% T +'1 -] =~[:Z (-1)

29
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2. The roots Wy » Wy are additive inverses of each other:

Wy —varil [cos(gé &+ m) + 1 sin(-]ée + )]
= /TZT [~ cos(38) - 1 sin(50)]

=—Wo.
(However, it would not be correct to say that one
of them has to be negative. Why?)
3. If z = 0, the solution set contains only one element.

That element is O , for We = 0 if and only if w = 0 .

Example 12-4a: Find the square roots of 1

Solution: Since Ji| =1 and arg i = % , the theorem give

1 i
Wy = cos(% + 0 7)) + 1 sin(% +v0 cow) = ==,
A ) T -1 - 1
Wy = cos(E +1.7)+1 sin(ﬂ'+ 1 .7) =222
Check: o
(l + 1)2 1l + 21 44" 21 1
JE = 2 =72 =
-1 ~ 1,2 2 /1 + 1,2
(=== = (-1)° ( ) =1 -1=1.
JZ
i
wO
) w 2
/AT
|
W,
Fig. 12-4a
289
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Note that 2 arg w

!
X
_r_;lj
]
ol
]
3
o
[N

0 =

2 arg wl

Example 12-4b: Find the square roots of AELE_EL .

Solution: Let

= 12 4+ 51

i = ——%—2= ; then lz] = and the polar form of z 1is

5 L

%§(¥E%%%Jil) (cos @ + 1 sine ) .

[e»)

Since cos 8 = %% > 0 and sin 6 = f% > 0 , © measures an angle

in the first quadrant. W: may get an estimate of © by consulting
a table of cosines or sines. Dividing this estimate by two we

would have an estimate for the argument of wo .

table we could get estimates for cos % and sin % and using
them we could obtain an approximation to w

Re-entering the

0 and hence also an
approximation to Wy = = Wy . The fact of the matter 1s that we
need not settle for such approximations to square roots. We can
calculate them exactly! For this purpose we use the "half-angle"

formulas of Chapter 10.

coS .g - _./__.é_._.—_hcose , sin = = _,,/.__r_i-cose .

(Recall that the choice of signs in these formulas is determined
by the quadrant containing % )

6 = arg l@_%_él lies in the first.quadrant; hence % i1s also in -

[e»)

Returning to our example

the first guadrant. Thus cos g and sin% are both positive.

We get
cos 0 1l + cos © + 1 5
2N ¢ 75
1

- - cos 0 - /1 13 2 -
Ve A VE 7%

28690
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Hence

(cos % + 1 sin %)

R B

El

(

% 1in standard form.
+ are therefore é%—i and - -i—"é—i- .

) in polar form,

+

_ 5
=7
The two sqQuare roots of 1

{

Exercises 12-4

In each of Exercises 1, .,. , 6 find the square roots of the
given complex number 2z . Check your answers by squaring. Plot
z and 1its square roots in an Argand diagram.

1. z =4, b, z2=/3-1.

2. z =24+ 21 , 5. 2z =3 4 41 .

3. 2z = .9 . 6. z=4/T+1./3.

T. Let w. =/1z] [003{% 3 4 kmw) + 1 sin(% ® + kmw)]. Show that

Wo = Wy agd_ w2k+l = Wy for any natural ﬁumber k .

12.5. Quadratic Equations with Complex Coefficients.

We announced in Chapter 5, Section 5-9, that each quadratic
equation with complex coefficients has complex roots. In this
sectlion we prove that this 1s the case,

Conslder the equation
12-5a Az2 +Bz+C=0,

where A, B, C are given complex numbers (some or all of which may
be real), and A ¥ 0 ., Completing the square, we have

2
12-5b (z + 4)2 = ET;-EM

[sec, 1l2-5]
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In Chapter 5, where A, B, C were real, the right-hand member of
Equation 12-5b was a real number. In the present case, it 1is a
complex number (perhaps real, perhaps not). Let us write

2
E = B - 4AC
ba
and
W= 2 4 %% o
Then Equatlon 12-5b becomes
12-5¢ Wwe = E .

There are two cases: (1) E=0, and (2) E£Z0 . If E =0,
which means B® - LAC = 0 , the solution set of Equation 12-5¢ 1is

the set (0} . Since 2z = - é% + W , the solution set of Equations

12-5a and 12-5b is the set (- &¢) . Thus in Case (1),

B2 - 4AC = 0 , Equation 12-5a has just one solution, = %% .

In Case (2), BZ - 4AC # 0, Equation 12-5¢ has two solutions,
say W, and LI We know, however, from Section 12-4, that

Wy o= - Wj . Thus we may write [wo y = wo} for the solution

set of Equatlon 12-5¢. The solutlon set of Equation 12-.5a is then
| B B
-k +v» -2 Y,

Wg belng one of the solutions of

2
W2 = E = B - uAC .

LA
We state these results as a theorem.
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Theorem 12-5a: The solutlon set of the equation

Az2 4+ Bz+C=0, AZLO,

1s (- -2) if B - BAC =0 ; if B2 - 4AC £ O , the solution
- set 1is
B : B
(- gp+vo s = 2% - Yol »
where ws is either of the solutions of_the equation

2
w2=B - UAC .

LA

Example 12-5a: Solve 2% . (2 + 41)z + 41 = 0,

Sclutlon: Here

Aol,B=-(2+51),C=01, 8% bac=b(1+ 21)°
-3, Let wj = 1./3 ; then ;

Boiwg=la2041/T=14+ (2401

)
-
(o)
rl
il
]
[
n
-

=1
il

N
]
\

22=-'Bg—wo l+2i—i~/§-=l+(2-\/§)i.‘

Example 12-5b: Solve 2% 4 (1 +1)z+1=0.

Solution: Here
A=l,B=l+i,B2-4AC=(1+1)2-41=21-41
= - 21, E= - é ='%(cos %} + 1 sin %}) .

Hence w, =ﬁ(cos %TL + 1 sin %T-r-) =--]-‘v§t-—i- » and

B 141, 1-1

zy = -px + Y =+ g~ = -1
B 1+ 4 1 -1

Zp = = BE - Wo= =T p—= -1 .

Example 12-5¢c: Solve the equation

22 4 (1 - 51)z - (12 + 51) =0 .

[sec. 12-5]
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sSolution: tHere

A=1,B=1-5,C=-12 - 51 2

, B - baC = (1 - 51)°
+ 4(12 + 51) = 24 + 101, E = }fﬁ%%_ﬁi . 1in Example 12-4b, we
iound wnat the solutions of w2 = H-"é—i are —5—5—1 ,y - é%—i-

Taking Wy = 2L§-l , We have

B -1 + 51 + 1
2= - gp by s 2t e 25 o243,
_ B _ -1 + 51 5+ 1
Ze_aqﬂ-awo_ 7 - 2——_—3‘-}-21'

(Compare with Section 5-9 of Chapter 5, where this quadratic
equation was mentioned,)

Exercises 12-5
Solve the following equations:

1. z% . 1z +2=0. ¥, 2°. (2 +21)z + 21 =0,
2 122 +(1-1)z -1=0. 5. z3 + 21z2 + 31z = 0 .
3. 22 . 2z -1 =0 . 6. zu + 4./2 1z° - 8 = o .

*7. 2z - 122 41 _ 31 = 0 . (Use half-angle formulas to obtain

z2, tables to get approximations for z .)

8. (22 -12%) - (1 4+ 21)(2%-12) - (1z +1) =0 .

12-6. Roots of Order n.

In Section 12-4 we discussed the solution of the equation
w2 = 2 , where 2z 1s a given complex number. In this section we
consider the equation wh =z , Where 2z 1is a given complex
number and n 1s a natural number. First we consider the case
n =3, and later we extend our results to an arbitrary natural
number n

2464
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For z =0 , the equation w" = 2z has only one solution,

which is 0 . (Why?) We shall find that there are n distinct
roots when z # 0 .
. Cube roots.

Consider the equation
12-6a | W3 = 2 ,

where 2 1is given. Suppose =z £0 . ‘We proceed as we did in
Section 12-4, when we discussed the equation w2 =z , If

w = |w| (cos g + 1 sin @)

is in the solution set of Equation 12-6a, then

|w|3 (cos 3@ + 1 sin 3 @) = |z| (cos e + 1 sin @)
80 |w|3 = |z| , cos 3 g+ 18in3 @ ==cose+ 18ine;
and |w| = %/TET', 3g=6 +k + 2r, for some integer k ,
or lwl=YTET, #=3e+k -5 ,xe¢ 1.

Note that %/TET'is the (real) cube root of the positive
real number |z| ; it is therefore positive. We propose to show
that, 1f 0 < © ¢ 2r , we have 0_<_¢<21r if and only if

k =0, 1, 2:“ (Compare this to the analogous situation in
Section 12-4,) Indeed, for

k=0: @ -% ® » 80 0( g < %g <°r,
k= 1: ¢=-§-e + 5, 80 0_<_¢<-§-1r+—§-n'=%1r<21r,
p=3

& +=, 8 0K g < %w + %} = 2r .

205
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But 1if k > 3: 2 ='% o + 3%3 >0 + %F = 2r ,

and 1f k< -1: ¢=3e+?-3k1<? Fao.

As with square roots, de Moivre!s theorem shows that each. . ..
of the numbers '

( |
Wy = 3./|z| [cos(%‘ 8 +0 . %) + 1 sin(?l;-e +0 . _231_r)]

12-6b  { w; = 3Tz] [cos(%-e + 1. %F) +1 sin(% o+ 1. %g)]

W, = 3J|z| [cos(%- 0+ 2 . %) + 1 sin(%‘ 0+ 2 . -23"5)] '

~

really is a member of the solution set., We summarize these
results as a theoren,

Theorem 12-6a: The Solution set of the equation

W3=Z,

where "z 1s a glven non-zero complex number, is

(wg » Wy, w5l ,

where _
W = s/rz_l—[cos(%'e + 0 . -%71)+1 sin(%'e +0 . %r)]
wy = Wz] [cos(F e + 1 &) + 1 sin(Fe + 1 . 5
Wy = 3M=T [cos(% 8+ 2. %g) + 1 sin(% 0+ 2 . %;)]

and & = arg z .

2066
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Example 12-6a: Find the cube roots of 1 =1+ 0 - 1

Solution: Here |z] =1 and arg z = 0 . Our formulas give
. er . em
Wy = cos(0 + O 1;).+ 1.8in(0 + O -3—)
[ L . = ¢cos 0O 4+18in0=1; .. o -
or Tooer
Wy o= cos(0O + 1 - -3—) + 1 sin(0O + 1 T)

or -1 + 1v3.
=

o o
Wy = cos(0 + 2 7;) + 1 sin(0 + 2 * =)
br -1 - 143
=cos—3--+181n-§=_-_1.____. .
W
2
o3
\ Wo
l
L ]
W,
Fig. 12-6a

S L -3 e 3 1/3) - 3 1D+ (F 1y
=%3[_-1+9+1(1' 3/3%3/3)1=1.

There is a very important connection between the results
_obtained in Example 12-6a and the Formula 12-6b. Let us give
names to the special numbers

1 =i+ 1./3 -1-1./3
’ 2 ’ 2 3
the three cube roots of 1., If we puﬁ

wa2pid3 ‘
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~ then w?® = (:-lﬁ*‘é_lﬁ)e =31 - 21 /7. 3)
%.(_2 - 21./3) = i_a_iﬁ_

Wwandad is the other non—real complex cube root of 1 . The three
""Eﬁbe roots of 1 are, therefore,;u ,&ye ,503'; sincew3 = T
5 ‘The connection between the cube roots of 1 and the cube roots of

,vany_complex number 2z 1is given in the following theorem.

’

Theorem 12-6b: If 2z _is not zero and w is any one
solution of the equation w = 2z , then the other two solutions
are w i and w2w .

We gilve two proofs of Theorem 12-6b. The first proof,
which involves less computation, accomplishes all that is
actually required. The second proof exhibits explicitly the
. relationship between the Formulas 12-6b and the much more compact
.expresqions W, &, a?w

First Proof. Our first assertion is that the three numbers
1 ,w, s are distinct. This is evident on the grounds that no
pair of“them have the¢ same real and imaginary parts. Moreover,
it 1s impossible for any two of the numbers w s W ,4¢2w to be

equal if W -z # 0 . For, on the contrary, we should have
W =WwW

(say) or 1 = ¢¢ since ,w cannot be zero. This contradicts the

fact that 1 and «/ are distinct. We know then, that w ,cvw ,
‘and gy 2w are three different numbers, We propose to prove that
__each of these numbers satisfies the equation 'w3'= z . Since they

are three different numbers they must be the three elements of the
solution Jet, for that set contains only three elements altogether,

203
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By hypothesis w° = z . Now, in addition,
(e w)3 = a73w3 =wd =z , for e = 1 s
__and  (wwW)d = Hud < 1233 o wd=2z,
2

Soe«/w and ¢ w also satlsfy the equatlon.

Second Proof:; We show that

w Wo = Wy and g 0= Wo s

®

and leave the other possibilitiéé as an exercise for the student.
Recall that

‘wy = VT2l [eos(30) + 1 sin(z0)],

27 21 2 b 4
w = cos =+ 1 sig S, w =cos -y +1sin —% .

We have, then,
1 1 o 2
Wy = 3-./|z! [cos(-é-e) + 1 sin(ge)] (cos =+ 1 sin —31"-)

= 3Tz [cOS(—é—s+ %I) + 1 sin(% e + —2371)]

wy o

wewo - 3-,/|z| [cos(%e) + 1 sin(%-e)] (cos %7—"+ i sin 5371-—)

3../|z| [cos(%‘- o + %’—r) + 1 sin(-]j-é + %’I)]

w2 .

This theorem tells us a great deal about the geometry of cube
roots. It is the analogue for n = 3 of the fact that w, = - W,
when n = 2 . We know that the cube roots of 2z 1lle on the

"circle with center at O and radlus %/lzl . One of them, the
one we call Wo o has argument one-third of the argument of 2z .
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Since the other two are W W and;ofewo , We can s€e at once that

the three cube roots are equally spaced around thiS circle, This

is clear when 2z = 1 and the roots are 1 s & s ﬂ/2 . For any

" other value of 2z we have merely to add %ﬁ e , or %.arg z , to =

the arguments of 1 , &, aﬁ to get the argumentgs of Wo s w, o,

W, , respectively. Since we add the same quantity to each of these

arguments we turn the whole configuration around O by the
amount added.

Fig. 12-6b

Roots of order n .

We now extend the results obtained for square Yoots and cybe
roots, We gilve theorems for the roots of the equation

12-6c wr=2z2,2 40,

whereé n 18 any natural number. The student will hote that sub-
stituting 2 and 3 for n 1in the theorems and their proofs

20
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gives us the theorems obtained for square roots and cube roots as
well as their proofs. Thus there is no new idea in the remainder
of this sectlon; we merely carry over what we did before to the
general case,

Theorem 12-6c: If n 1is a natural number and z 1is a
given non-zero complex number, the solution set of the equation

W =232,

is [wo s Wy s vee wn_l] , where

n/Tz [cos(%-e + k - %F) + 1 sin(% e + k - %g)] ,

k=0,1, ..., n-1, and 8 = arg z

Proof: By de Moivre!s theorem, each of the numbers
Wi s k=0,1, ... ,n-1, belongs to the solution set since

1 2 1 2
: wkn ("/Tz1 [cos(H 0 + k - 1%) + 1 sin(ﬁ-e + k - -—r;-r-)]]n

|z| [cos(® + k - 2r) + 1 sin( & + k - 2m)]

|z] (cos & + 1 sin © )

]

= 2

Moreover, they are all distinct for no two have the same argument.
On the other hand, suppose W Dbelongs to the solution set and
that @ = arg w . We must show that each element of the solution

set 1s one of the numbers Wy , Wy , ..., ¥ We assune,

1.
n-1

then, that w? = z . This implies

w|™ = |z] and ng=e + k - 21,

for some integer , k . Thus

lw| = %/TZT and £ = % 0+ k - %g .
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Now 0¢®©<¢2r and 0<¢ck¢n -1 give

0<¢=%—e+k-3—g<%§+k- (k+l)---<n 2n7r=21r;f'

 While 0< 8 <2r and k >nTglve

¢="'9+k '—-n->0+n- -2r-11£>21r,

and 0« 9 ¢2r and k ¢ -1 give
1 .21 2r _ 2 _
g = n o+ k n<Tm-hn =0

This theorem shows that each non-zero complex number 2 has
th

n distinet complex n roots, where n 1s any natural number.
The complex number O has only one nth root for each natural
number n . It is O .

th

The n complex n roots of the number 1 are called the
th

n__ roots of unity. Let

w=008(%;0+1°—2;,15)'+181n(%;0+1-3-g)

= cos(ZL) + 1 sin(ZL)

S0 that «w 1s a parﬁicular one of the nth roots of unity.

De Moivre's theorem shows us that the n - 1 other nth
unity are

roots of

2 3 n
24 y W y o y ¢/ ’
Since
w¥ = [cos( Ty + 1 sin(ev)]
= cos(k - %F) + 1 sin(k - %F) R

thus fer k=1, 2, 3, ... , n we obtain precisely the same
roots given by Theorem 12-6c on putting z =1, =0 .
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The next theorem generalizes a result we found in the cases

Theorem 12-6d: If w 1is any one of the roots of the
n

-eduatibn w' =2 , where 2z # 0, then the solution set of the --
equation may be described as ’
2 - n-1
[W:WW:WW:”':&(/ w}:

where w/ ='cos(%¥) + 1 sin(%g) .

. ' 2 n-1

Proof: No two of the numbers 1 , o, & » +:+ 5 ce/

can be equal because their arguments are, respectively, O ,
"%g y 2 - %F , 3 - %F y vee y (n=1) %F and no two of these

arguments are equal, Hence no two of the numbers

12-6d l *w ,w:* W ;éuew ’ ---': aVn-lw

can be equal; for otherwise w would have to be zero, which 1is
impossible. We know, by Theorem 12-6c, that Equation 12-6¢ has
exactly n roots; we complete the proof by showing that each of
the numbers 12-6d is a solution of wn_= z . But this is easy,
since

(k)P = Pt = 1%z = 2,

for any integer k

This theorem extends to the general case the results we found
for cases n=2, 3 on the location of the roots. All the roots
1ie on the circle with center O and radius Izl . If
® = arg z , one of these roots has argument % ©® ; the other
roots are located at equal distances around the circle. For
nS> 2, the n roots, therefore, represent the vertices of a
regular polygon of n sides lnscribed in the circle. It there-
fore suffices to locate one of them--say wO ; after this the

positions of all the others are determined.

[sec. 12-6]
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Exercises 12-6

In each of Exercises 1, ,,. , 7 find the cube roots Of‘ﬁﬁe
given complex numbers.
1., z =2,
2., z = .2
3. z =1
b, z = -1,
5. 2 =1 -1
6. z =3 + 41 , (Use tables to obtain approximations to the cube
roots, ) '

*7. 2 =1+1 . (Do not use tables.)

Solve the equations

(a) xu=-l

(v) X .1-0

(c) x3 4 (6 + 6/3 1) =0 .
uth

w

9. Using tables find the roots of

16(cos 164° + 1 sin 164°) |
10. Show that the sum of the n n‘Ch roots of unity is zero,

¥11. Find n complex roots of each of the following equations:

(a) 2™ 4 gN-1 4 g0-2 cer b 234 2% +2+1=0,

where n 1s a natural number;
(b) 0 . gh-1 + -2 _ - 23 + z2 -z +1
where n 1s an even natural number.

i
O
-

Section 12-7. Miscellaneous Exercises

2
1. Prove that wy = (»S and wy = Wy, where ful and uJ2
are the two non-real cube roots of unity.

2. Express in polar form:
(a) -3 +/3 1. (¢) cos 217° - 1 sin 217°,
(b) -2 - 21, (d) 0.5592 -~ 0.8290 1.

[sec. 12-7]
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'

'
'
: f
‘o, '
‘ 4
]
v

(e) fhe conjugate of r(cos @ + 1 sin @) .
(£) “7(~ cos 25 51 + 1 sin 25° 351)
()

¢

(h) cos 23° + 1 sii 32° . (Use tables.)
3. Express in polar form and perform the indicated operations:

Ha) (1+ 1) -vT1) .
s 3-1%1
4 (v) 5~ 5 )
(c) (cos 137° + 1 sin 763°)(cos 317° + 1 sin 223°)
cos (-30°) - 1 sin 330°

cos 182° 4+ 1 sin 358°

(d) (] - .'Lle
(1-/31)°°
(e) (cos 10° + 1 sin 15°)(cos 15° - 1 sin 10°) .

k., Simplify the product 1 - - & 2 -7 3 « .4un—l 3

(a) when n 18 even.
(b) when n 1is odd.

5. Let z Dbe a complex number and & a non-real cube root of
unity. Show that the points 2 ,wz ,4;2z formvan equi.-
lateral tyiangle on the Argand diagram;

6. Express as a function of z and n fﬁhe length of one side
of a regular n-sided polygon 1nscribéd in a circle ¢f
radius |z| , where z  1is a compléx number.

7. Finé all the roots of each of theffollowing equations:

(@) xte2-20-0. '
(b) 820 4 F=0
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Chapter 12
APPENDIX

i) 1 1
- #12-7. The Functions EE ’ 53 PN 2" .

We have seen that if 2z 18 any non-zZero complex number,
©=arg 2 , and m 1is any intaeger, then

zZ" = |2|® [cos(me) + 1 sin(me)) .

In Section 12-6 we studied the equation w" = z , where 2z is a

gilven non-zero complex number and n 1s a given natural number;
we found that the solution set consists of the n distinct numbers

n 1 2 1 2
W = VTz1 [cos(-ﬁ e +k . —:l-r-) + 1 sin(-ﬁ- e + k. -F;'I)] ,
k=0,1,2,3, ..., n«1

The results in Chapter 9 tell us that if a is a positive
real number, there is a unique positive real number b such that

P =a . We write, in this case, b = al/n . Moreover

(al/n)m = (aLm)l/n , entitling us to write a™™ s denote either
of these numbers. We also know from Chapter 9 that- the familiar
"laws" of integral exponents carry over entirely to these
M"fractional" exponents.

In this section we propose to consider the question of
"fractional” powers of complex numbers. It should be apparent
at the outset that our task is much more involved in the complex
case than it was in the real case--if only because we have n
roots of order n here instead of Jjust one.



T2k

The first step in any study of ratlional powers is to give a

meaning to expressions of the form -zl/n . We cannot simply say,
as we could in the real case, that it is the solution of the

equation W" = z ; for there are too many solutions (more than 1

if n > 1) . To put the matter rather bluntly, the relation

w? = z does not define w as a function of 2 . In order to

construct some sort of function in this context, we are therefore
forced to shift our point of view. We have a correspondence here,
but in order to obtain a function we must first settle the
questions of what are its domain and range.

Let us take the simplest case first; we therefore consider

the equation w2 = 2z . We hope eventually to find how w can be
considered to depend on z . In order to understand this relation,
however, we shall first turn it around and investigate in some

detail how z = w2 depends on w . By shifting our attention to
this more familiar situation we can learn much that will help us
in discussing the more complicated "inverse" relation. We now
have a function 2z = w2 to work with., For our study of this
function let us draw two pictures.

Imaginary Imaginary

} Real + Real

v

Fig. 12-T7a
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In the first we shall plot the complex number W and 1n the
second we shall plot z . The functlonal relationship between
these variables can be described by determining which polnts 1n
our "z-plane" correspond to given points in our 'w-plane."

Let us trace some of the palrs in this correspondence., For
instance, 1f w = 1 , the corresponding poilnt in the z-.plane 1s 1 .
If w 18 real and greater than 1 (on the "real" axis in the
w-plane to the right of 1), so 1s 1its "image" in the z-plane;

indeed 1t 1is further away from 1 since |z| > |w| 1f

Z = w2 and |w| > 1 . The image of any point 1n the w-plane

outside of the unit circ.e lles outside the unit circle 1n the
z-plane for |z| > |w|] >1 1if |w| > 1 . Also each polnt in

the' w-plane and 1nside the unilt circle corresponds to a point
,1nsid§ the unit circle of the z-plane. Flnally each polnt on the
unit circle of the w-plane corresponds to a point on the unit
circle of the z-plane. Our discussion of the correspondence has
taken into account only the absolute values of w and 2z 8o far,
and may be considered the geometrical verslon of the statements:'

If 2z = we , then lz| > |w] for |w|>1,
|z |
z] ¢ |w] for |w| <¢1.

lw] for |w| =1,

i
i

To complete our plcture, we consider arg w and arg z

We may do thls by tracing the lmage in the z-plane of a point

moving around the unit clrcle of the w-plane. The 1image peolint

moves meantime on the unilt circle of the z-plane. Note that as

w makes the trip through the first quadrant on 1ts unit circle,

golng from 1 to 1 , 2z manages to travel through both the flrst
~ and Second quadrants, golng all the way from 1 through 1 and

on to -1 (Figure 12-Tb) .
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R

+

Fig. 12-Tb
Let w continue, passing through the second quadrant on its

unit circle. When this happens, 2z 8shoots on around its unit
" circle completing a full circuit (Figure 12-Tc) .
i i

O N
N

—_—
—

@ Fig. 12-Tc @

What happens next is a good question., It depends on how you
_ _choose to describe it. If w keeps goling, passing through the
third quadrant, 2z willl shoot along through its first and
second quadrants again, And finally as w passes through its

[sec. 12-T7]
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fouruvn quadrant, 2z will race through 1ts third and fourth
quadrants; and, lapping w , they will come into theilr respective
points 1 together. This is the trouble. If 2 went through
each of the points‘on its unit circle exactly once as w makes
its full circuit there would be no problem; there would be Jjust
one value of W corresponding to each of these values of =z ,
and we would have a function w = f(z) to talk about. As it 1is
we have not yet got such a function since each 2z gives rise to
a pair of wlis |

We can get around this difficulty by a trick--at least it
was a trick when it was introduced about a hundred years ago.
But no trick can remain a trick for a hundred years--certainly
not one as good as this. It has become quite a respectable method
since it was introduced and has come to be considered one of the
most important methods for treating questions of this sort,

Our trouble amounts to the fact that we have to use the
points in the z-plane twice to describe a tour such as the one
considered. Suppose then that we use two z "planes' going
through each of them just once. Can we do this somehow? The
famous @German mathematician Bernhard Riemann féund that we can,
provided we are sufficlently ingénious about it. He visualized
the "rwo" z "planes" arranged as follows: We "cut" each of them
along the positive real axis and then "glue' them together in
criss-cross fashion as shown (Figure 12-7d). The resulting
configuration 1s an example of what we call 2 Riemann Surface.

Fig. 12-74
[sec. 12-7]
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Our object in all this is to obtain w as a functlion of z
1f w® =z . Can we do 1t now? Again let w traverse its unit
circle. This time, however, let us imagine 2z as moving on the
Riemann Surface. Very well, when w is 1, 2z 1is 1 . As w
moves through the first Quadrant on its unit circle we imagine =z
as moving halfway around its univ circle in one of the sheets of
its Riemann Surface. As w passes through its second quadrant,
z comes completely around and réturns to 1 . Now--here is the
trick--as W goes into 1ts third quadrant, 2z will pass over to
its other sheet and go through two quadrants of the unit circle on
that sheet. (Remember the sheets cross each other along the

- positive real axis.) When w finishes its circult, so does z ,
But, by introducing this way of looking at the matter 2z has
gone through no point‘twice, except that it ends at 1 where it
starts. This statement must be interpreted with care. There
would appear to be a duplication since our "gluing" seems to
identify the two points 1 of the two sheets. Let us imagine

that z = 1; (in the first sheet) for w=1, 2 = 1, (in the

second sheet) for w = -1, and 2z =1, when W =1 again.

We need all the points of each sheet--we cannot afford to throw
any away by allowing some points to be in both sheets. We look
on these points as distinct although it is hard to make a con-
vincing drawlng; the pleces are connected cross-wise but we

think of them as not touching anywhere other than O .

Hence, corresponding to each point on the unit "circle" in
the Riemann Surface, there is one and only one point in the
w-plane, Here 1s our function! Its domain is the two-sheeted

~Riemann Surface, 1ts range 1s the w-plane. - This function~1§
denoted by W = zl 2 .

2381
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The same theme, with variations, runs through the discussions

n
of W = 2 for other natural number values of n

Thus for n =3 , the function 2z = w3 opens each of the

"fans "

0-F<Z, FepciL, L cpcar \

'in the sense the images in the z = w? ‘{%:
plane of the points in each of them ,}
£111 out the z-plane. ' ®

Thus the z-plane is covered three times by the images of
points in the w-plane. In this case we replace the z-plane with
a three-sheeted Riemann Surface shown in Flgure 12-7e. As before,
we then obtain a function w = z1/3 whose domain 1s this surface
and whose range is the w-plane.

The idea is analagous for a general n . The function

W o= zl/n has an n-sheeted Riemann Surface for its domaln; its
range, as before, i1s the w.plane.

4/

Fig. 12-Te
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Chapter 13
SEQUENCES AND SERIES

13-1. Introduction.

It is a common exXperience to be confronted with a set of
numbers arranged in some order, The order and arrangement may be
glven us, or we may have to discover a law for 1t from some data.
For example, the milkman comes every other day. He came on
July 17; will he come on August 12?2 Ve might consider that we are
gilven the set of dates

17, 19, 21,

arranged from left to right in the order of lncreasing time. We
wish to know how to continue the set. In this simple case the
scheme 1s trivial; we have

17, 19, 21, ..., 29, 31, 2, 4, ..., 28, 30, ...,

and the answer to the original question i1s yes. Any such ordered
arrangement of a set of numbers i1s called a sequence.

Definition 13-la: A finite sequence of n terms is a
function a whose domain is the set of numbers {1, 2, ..., n}
The range is then the set {a(1), a(2), ..., a(n)) , usually
written [al, Aoy «eey an} . ?he elements of the range are called

the terms of the sequence,

An infinite sequence 1s a function & whose domaln 1s the
set {1,2,3,...,n,...} of all positive integers. The range of a
1s then the set [a(l)) a(2)) a(3)) ey a(n)) ---] , usually

.written (a,, a,, a4, ..., a,, ...} . The elemen? a, of the

range 1s called the n‘Ch term of the sequence.

C 283



732

The terms of a finite or infinite sequence may be arbitrary
objects of any kind, but in this course they will be real or
complex numbers.

Example 13-la:

(a) 1, 2, 3, ..., 17
(b) 17, -23, 15, 5280
(¢) 17, 12, 7, 2, -3, -8
(d) 3, 6, 9, 12,

(e¢) w, w5, 7°, ...

(f) sin m, sin-% , sin % . sin~%, .

The first three sequences are finite; the last three are
infinite. 1In all but (b) a definite law governing the formation
of successive terms is easlly discernible.

Suppose now that in the sequences above we replace the commas
between successive terms with plus signs. The resulting expressions
are called series. (The noun "series" is both singular and plural.)

Definition 13-1b: Let [al, 8oy +ees an] be a gilven
finite sequence of real or complex numbers; then the indicated sum

a; + a5 + ... 4 A,
is called a finite series. The numbers al, a2, ey an are-
called the terms of the series.

let [al, a2, ey 8p ...)] Dbe a given infinite sequence of

real or complex numbers. Then the indicated sum

a, -+ a e e
l* 2+ +an+

is called an infinite series. The number a, 1s called the nbh
term of the infinite series.

[sec. 13-1]
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According to the definition, the expression
1+ 44+ 74+ 10 + 13 + 16

1s an example of a serles. It 1s a finite series having six terms,
Note that the operation of addition suggested by the plus signs is
not actually involved in the definition. Of course, we shall
eventually want to perform the addition in order to find the sum
of a series, but 1t is wrong to confuse a series wilth 1ts sum.

Example 13-1b:

1 1
l+95+ =3+
10 10

This 1s an infinite series. Note the plus sign

before the dots. Tie lO‘Ch term of the series 1is —l§
10

The student 1s warned against referring to the "last term" of an

=109 .

infinite series; there is none!}

Example 13-1c: Find the 11°0

term of the infinite series

1 -2+3-445-6+7-8+...,
where the dot between the two integers of each term indicates
multiplication,. '

Solutlon: The second factor of each term 1s evidently twilce
the number of the term. Thus,

the 11°" term 1s 21 - 22 = 462 .

It 1s frequently desirable to use letters for the terms of a
sequence or a serles, and often a subscript is attached to
indicate the number of the term counting from the beginning, or
from some fixed point. Thus, the most general infinlite sequence
may be written in the form
13-1a ay, 8py 83, ...,
and the most general infinite seriles as
13-1b a1 +ag+ az + ...

[sec. 13-1]
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The use of dots may turn out to be ambiguous, because the
composition of the sequence (or serles), 1f complicated, may not
be evideht from a few initial terms. To avoid this difficulty,

- mathematicians frequently write just the general term. This 1s
the kP term, starting from any fixed point. Of course, any
letter may be used instead of k ; the letter used 1s called the
dummy variable. Thus in place of Sequence (13-la), we use set
notation and write

(13-1c) (a

This symbel means that if we replace k 1in turn by 1, 2, 3, ...
we will have the Sequence (13-la). The upper and lower symbcls
appearing outside the braces are called upper and lower indexes.

If a sequence is finite, say with n terms, then the upper index
1s n rather than o , and the last term 1s a, .. In the case of
an infinite sequence such as (13-1la), there is no last term such as
a_ because o is not a number. We use « as the upper ilndex

in this case simply to indicate that the sequence 1s infinite.

v

A similar shorthand notation is used to represent a series.
Since a series 18 an indicated sum we use what 1s called
"summation notation" and represent Series (13-1b) by the symbol

E: a -

k=1

The symbol I 1s the Greek letter "sigma" which corresponds in
English to the first letter of the word "sum". The indexes mean
the same thing here that they do in the sequence notation. Thus
if a series 1s finite, say with n terms, we write instead

n

> e .
. k=1

[sec. 13-1]
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Example 13-1d: Write out the finite series
8
k=5

Solution: To obtain the terms of the series we have only to
substitute the sequence of values 5, 6, 7, 8 for k 1in the
general term EL ., Ve get

254 0y a7, B

32 + 64 4+ 128 4+ 256

or

Example l1l3-le: The following symbol 18 merely another
notation for the infinlte series of Example 13-1lc:

o0

) (e - 1)(=)
k=1

You have only to write out the first four terms to assuré
yourself of this. Try it.

Wle conclude thils section by defining the sum of a finite
series,

- Definition 13-l¢: The sum 'Sn of a finlt series 1s the
sum obtalned by adding all of its terms.

The subscript n  in the symbol Sn for the sum bf a finite
series Ilndicates that n terms are added. By definition,

Sn =8y + a5+ ...+ d, The symbol

(5 N
29

.

[sec. 13-1]
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1s also used to denote the sum of an infinite series. It should be
emphasized that each of the symbols

n
a1 +asg+ ...+ a, Z: a,
k=1

has two meanings as follows: each symbol denotes not only the
finite series but also its sum. It will always be clear from the
context which meaning is intended.

It should be observed that Definition 13-1c does not define
the sum of un infinite series. YWe must postpone the statement of
such a definition until the concept of the limit of a sequence
has been introduced in Section 13-4,

Example 13-1f: What 1s the sum of the following series if
n 1is odd? If n 1is even?

> ¥

k=1

Solution: We obtain the Lirst term of this seriles by
substituting k=1 for the dummy variable k 1in the general term
(-«l)k . We obtain the second term by substituting k=2, etec.
Thus the series is

1+ 1-1+1- .4 (-1

'If n 1s odd, the sum 1is -1 ; 1f n 1s even the sum is O .

Exercises 13-1

1. Complete each of the followlng sequences through 7 terms:
(a) -1, -4, -7, -10, .

(b) 3/4, 6/7, 9/10, 12/13, ...

(¢) /2, 2, 2./2, b,

(d) 2x 5, ¥ x 10, 8 x 20, 16 x 40,
)

(e) a, /&, 2/& /3,

[sec. 13-1])
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In the previous problem find the kth term of each sequence.

Repeat Problem 1 using the abbreviated notafion for a
sequence. Thus Part (a) is

(-3k + 2} 7
k=1

Complete each of the following series through 7 terms:
(a) 7-2+7T-~-2+ ...

(b) 7+0-T7+ 0+

(¢) a+ 2a + 3a + ba + ...

(d) 1-2+3-%4+...

Find the sum of the first 7 terms of each series in
Problem 4,

Write each of the following series using the Z notation:
(a) =1+ 1+ 3+ 5+ ...+ 17

(b) 2-4%+8-16+ ... -~ 256

(¢) 1 -3+2 4 +3 5+ ...

(d) (T +41)+1+(1- 1) + (1 - 21) + ...

Wiite all terms for each of the following:

(a) (elle 4 1))

k= -2

2
(b) Z (-k3)3
k=

+
+

(c) 3
k(k 1
é": (k + 1)

(a) ((-2)k))2

[sec. 13-1]
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3. Show by writing out all of the terms that the following
symbols all represent the same series:

2 k
(2) t+T
k= -3
-15
+ 17
(®) ) :
j= -20
19
() Y m- 2T
m=lli
9. Write the n®? term of the series
o0 ) N
E: (k2 - 1bk) .
ko2

10. Admitting that the sequence

[k(k + 1) ) ®
k=1

has 1its first two terms odd numbers, its next two even, etc.,
find the general term of the seriles

l1+5«9«13+ 17+ 21 - 25 - 29 +
11. Show that

n n
(a) E: ¢ .a =c E: a
k=1 k=1
() §
C = nc ’

299
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739

o L n
(c) E: (ak + bk) = >~ a, + ) b,
k=1 k=1 k=1
(d) If 1 ¢cmgn ,
n m n
Z B = Z e + Z ay
k=1 k=1 k=m+1

'12. Is it true that

n n n.‘
(a) Z By = {Z ak) . ( . bk) ?

k=1 =1 k=1
1
n . 1
1
(o) E: = = a, ?
kel 2k ko1 X '
If n>m>1 |,
n n-m4-1
() Z B = Z qem-l
k=m k=1

13-2, Arithmetic 3equences and Seriles.

Certain sequences and series are of such fréquent occurrence'
that they have been given special names.

Definition 13-2a: An arithmetic sequence is a sequence in
which the difference obtained by subtracting any term from its
successor 1s always the same. This difference is called the
common difference of the arithmetic sequence and 1s designated by
the letter 4d .

[sec. 13-2]
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An ariﬁhmetic sequence 1s also called an arithmetic progression
and we say that the terms of the sequence are "in arithmetic A
progression." The common difference of an arithmetic sequence 1is

obtained by subtracting any term from its Successor. Thus 1if al,
ap, a3, cees 8p 1, Ay e -are the terms of an arithmetic ‘
sequence, then

a2 - a; = a3 - a5 = ..; = ak - ak_1 = +.. = d ,

Following are examples of arithmetic sequences:
(a) 1, 2, 3, ey, 17; d = 1,
(b) 17, 12, 7, 2, -3, -8; d = -
(¢) 3,6, 9 12, ...; 4 =23 .

w

The sequence 1, -1, 1, -1, .., 1is not arithmetic because
the differences between successive terms are alternately .2,2;
this sequence has no common difference.

From Definition 13-2a 1t follows that if ay is the first
term of an arithmetic sequence, then

a1 + d ,

n
[

as =a; + d +d = a; + 24 ,

13-2a a, =a; + (n-1)4a.

The last line provides us with an easy formula for finding
the n‘Ch term of an arithmetic sequence whenever the first term
and the common difference are known. We illustrate an application
of Formula 13-2a by means of an example. ‘

2nd

Example 13-2a: If the term of an arithmetic
th st

sequence 1s O and the 9 term 1s 14 , what are the 1 and

100" terms?

Solution: Using Formula 13-2a with a,=0 and ag = 14,

we see that

pere
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1ls=al+(9-l)d,
and
0=a1+(2-1)d
Whence d=2,a =-2, and a5 = 196

From the definition of a serles gilven in Section 13-1
(Definition 13-1b) it follows that an arithmetic series is the
indicated sum of the terms of an arithmetic sequenée. The most
important arithmetic series is the one whose terms are the
positive integers. The common difference of this series is 1 ,
and the sum Sn of the first n terms is given by the equation

13-2b Sy =142+ ... 4 (n - 1) +n .

Since the sum S = 1s not affected by the order of addition, we
can reverse the order of the terms on the right side and also
write ’

13-2¢ S, =n+ (n-1)+ ... +2+1

4

Adding Equations 13-2b and 13-2¢ , we obtain
28 = (n+1) + (n+1)+ ...+ (n+1)+ (n+1),

and dividing both members by 2 , we have

S=9.Lr%_l.)_
n

Making use of the £ notation introduced in Section 13-1, the
Jast equation can also be written as

n 2
z: n- 4+ n
' K =—7—.
k=1
The result we have obtained can be stated as 2 theorem.
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Theorem 13-2a:

: n
2
13-2d 1+2+3+ ...+4n-= }: K = E__%%E.,

where n 1s a positive integer. .

One could almost have guessed this result. Since the differ-
ence between successive terms 1s the same, it is reasonable to
suppose that the average term of this series is half the sum of
Lhe first and last terms, or half the sum of the second and next-
to-last, etc. The sum of n terms, each of which has the average

2
value ig—%}lj- , 1s 2——%%2- as stated in Equation 13-2d . We

shall soon see that this is a general rule for all finite arith-
metic series; that is:

Sum = (number of terms) x (average of first and last terms).

Theorem 13-2a may be used to find the sum of any arithmetic
series. The following examples are illustrative.

Example 13-2a. FPind the sum of the series
3+ 7+ 11 + 15+ 19 + 23 ,

Solution: Subtracting the first term from each of the six
terms of the series and compensating by adding an equal quantity,
the sum is equal to '

6(3) + [(3~3) + (7 -3) + (11 - 3) + (15 - 3)
+ (19 - 3) + (22 - 3)]

6(3) + (0 + 4 + 8 + 12+ 16 + 20)

6(3) + B(1L+ 243+ 4+ 5)

Applying Theorem 13-2a to the expression within parerthesis, we
find that the sum is e

52
6(3) + 4(2—$—=) = 78 .
[sec. 13-2]
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Example 13-2b: Find the sum of 500 terms of the arith-
metic series

) + (-1 7 o+ (-1 %) + e

Solution: To find the sum of this series we need to know
the last term. Using Formula 13-2a with a; = - % and
d = - % , we see that '

asoo = (“ 'lar) + 499(“ ']é)
Thus the series can be written in the form
-2+ -3+ 1= 9]
3 1 3 1
s l-g+ 230+ o0+ [- 3+ B9 5T .

Whence we see that the sum 1s

500(- 2) + (- ) (1 + 2+ 3+ ... 499)

2
- a7 - {499) _+ 499 . _62750 .

Example 13-2c¢: If the sum of the first n positive
integers is 190 , what 1s n ?

Solution: EE—%—E = 190
(n - 19)(n + 20) = O
n = 19 .
The solution n = -20 has no meaning in the present context

because n 1s a positive integer,

Although it is possible to find the sum of any arithmetic
series by employing the scheme used in the preceding examples, it
will be helpful to have formulas that can be applied directly.

We can obtain two useful formulas by applying the method of
Examples '13-2a and 13-2b 1in the general case. Thus, consider

[sec. 13-2]
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the arithmetlic series of n terms, having first term a

l ’
common difference d , and n°’ term [a; + (n - 1)d] :

al+ (al+d)+(al+2d)+...+ (al"‘(n'l)d]

If we let Sn r¢ ,resent the sum, then

Sy=mna; + [1+2+3+ ...+ (n-1)]d.

Applying Theorem 13-2a to the quantity within brackets, we have

2
S, =nay + ((B=2)" 4 (n-1)y,

n{n - 1)d
n = “al‘*'j——z—-L--

Combining terms in the right member of 13-2¢ we get
2na; + n(n - 1)d

, or

13-2e S

{

Sy = 2
_nay + na, + n(n - 1)d
- 2
na; + nfa; + (n - 1)a)
= 2
But by Formula 13-2a , a, =a; + (n - 1)d; so
n
13-2f 8, =-§(al + an) .

Equations 13-2¢ and 13-2d gilve us useful formulas for finding
the sum of any arithmetlc serles. Whlch one we use 1n a given
case depends on what facts we are glven. Using these formulas
will greatly simplify the work in Examples 13-2a and 13-2b .,

Example 13-2d: Find the sum of the serles
16

Y (k- 15) .

k=2
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Solution: Noting that the lower and upper indexes are
respectively 2 and 16 , we see that the series has 15 terms,
Substituting k = 2 and k = 16, we find that a; = -13,
a15 = 1 . Using Formula 13-2d we get

S, = %(-13 +1) = -90 .

~ Note. Occasionally the last line is written as

16

Z (k—15)=—90.
k=2

When mathematiclans use the z' notation in this way, they havé
in mind the sum of the serles rather than the series 1tself.
Although we introduced the £ notation as a symbol for a series,
the dual usage of this notation should cause no aifficulty,
pecause 1t will usually be clear from context which usage 1s
intended.

Example 13-2e: A body falling from rest in a vacuum falls
approximately 16 ft. the first second and 32 ft. farther 1n
each succeeding second. How far will it fall in 11 seconds?
In t seconds? B

Solution: The series 1is

* 16 + 48 + 80 + ...

Using Formula 13-2e with a; = 16 , 7 = 32, and n = 11 (or t),
we see that for 11 terms :
11 - 10 - 32

Sn =11 - 16 + 7 = 1936 ;

and for t terms
S, =16t + t(t ‘211—' 32 _ 16 t°

¥ "7
i

o
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Exercises 13-2

1. Determine which of the following series are arithmetic. Find
d and the next three terms for those that are. o

(a) 4 +10 + 16+ 22 + ...

) 5+ 9+ 12+ 18 + ...

) 2.0+ 2.5 +.3.0+ 3.5+ ...

) 2+3 - 2+5+-2+7 -2+ ...

) -10-6-24+ 2+ ...

2. Find the sum of the series

16
Y (k- 17)
k=1 ,

3. Find the sum of the series

5]
Yo (- )
k=0

4, Write the first 5 terms of an arithmetic series in which
the second term is m and the third term is p .

5. Write the first five terms of an arithmetic series in which
the second term 1s m and the fourth term is p .

6. If the third term of an arithmetic sequence is -1 and the

loth is %l , what is the first term?

a
b
c
d
e

T. If 2 - n 1is the nth term of an arithmetic series, write
the first term. '

8. Find the indicated term in each of the following series:
(a) 1sth termin 3 + 5 + ...
(b) 1lth term in -2 + 1 + ...

(¢) 9th term in %+-12§4

9. How many integers are there between 35 and 350 which are
divisible by 23 ¢

[sec. 13-2]
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a+b

10. The arithmetic mean between @ and b 1is —5— . Find
its value if -
(a) a=5, b=2565.
(b) a=-6,b=2,
(¢) a=3-/3,b="7+5/3.
(d) a = (¢ + d)2 , b= c? - a?.

11. Take every 5th term from an arithmetic sequence and form a
.néew sequence. 15 the new sequence arithmetic?

12. If 3 712 and 8 % are the first and elghth terms of an

arithmetic sequence, find the six terms that should appear
between these two so that all eight terms will be in arith-
metic progression. (The six terms you are asked to find are
called the six arithmetic means between 3 % and 8 %.)

13. Find the sum of the following series by using Theorem 13-2a.
(a) 1 +2+ 3+ ...+ 10
(b) 1+ 2+ 3+ ...+ 999
(¢) -3-6-9-12-15

14%. On a ship, time 1is marked by striking one bell at 12:30, two
bells at 1:00, three bells at 1:30, etc. up-to a maximum of
8 bells. The sequence of bells then begins anew, and it 1s
repeated in each successive interval of four hours throughout
the day. How many bells are struck during a day (24 hours)?
How many are struck at 10330 p.m.?

15. Find the sum of the series

n .
E: (ak '+ D)
k=1
16. Find n 1if
1+2+3+ ...+n=153.
[sec. 13-2]
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17. Find a and b if

4 4
z: (ak + b) = 10 ; 2: (ak + b) = 14 |
k=1

k=0
18. Find the sum of the series

m
Z kK, m>0,n>0 .
: k= -n
Show that the sum is the number of terms multiplied by the
average of the first and last terms, (Here k runs through
all integers from- -n to m inclusive,)

19. The digits of a positive integer having three digits are in
arithmetic progression and their sum is 21 , If the digits
are reversed, the new number is 396 more than the original
number. Find the original number, , "

20. Find formulas for a; and Sn when d, n and a  are

given,
2l. Find x if (3 -x), -X ,+/9 < 2 are in arithmetic
progression,

22. The sum of three numbers which are in arithmetic progression
i1s -3 and their product is 8 . Find the numbers.

23. Find the sum of all positive integers less than 300 which
(a) are multiples of 7 ,
(b) end"dm 7

13-3. Geometric Sequences and Series,

Another very important special sequence is the geometric
sequence,

Definition 13-3a: A geometric sequence is a sequence in
which the ratio of any term to its predecessor is the same for
all terms. . )
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Thus if the first term of a geometric sequence is a, and
the commorn ratio is r , then

ay = a,r,
2
a, = a,r°,
n-1
13-3a a, = ar s, Where - ssitive

integer.
The last line gives us a formula for the nth term., QGeometric
sequences are also referred to as geometric progressions, and the
terms of the sequence are said to be "in geometric progression".

From the definition of a series given in Section 13-1
(Definition 13-1b) it follows that a geometric serles 1is the
indicated sum of the terms of a geometric sequence. For the
sequence introduced above we have the geometric series

‘ n-1 n-1
13-3b a; + a;r + alr2 + .. + alrn‘l = E: alrk
k=0 k=0

I
o
[
™1
e}
~
-

which is finite and has n terms, or the infinilte seriles

00 o0
2 X k
13-3c a; + air + 4T+ ... = 2: a;r = 8, X: r,
k=0 k:o

As with all infinite series, (13-3c) has no last term.
Following are examples of geometric series'

(a) 1 +2+ 4 4+8+16+ ... r= 2.

(b) 1 -1 -14+1+1-...
(c) VE+/B+3/2+3/6+ ... ;r=3
(a) %? +14+ .34+ .09+ .027 3 = .3 .

(e) m - T+ - vu e R S

(£) 3(20) + 3(10)° + 3(10)~ & 3(10)"2 + 3(20)™3 ; r = 5 -

“we ‘we

r=1.

[sec. 13-3]
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The last series is finite so we know that it has a sum.
Interestingly enough its sum is 33,333 . This illustrates that
any number all of whose digits are identical i1s really the sum of
a geometric series with common ratio

gl

The series
14+1«1«la414+1-14-7214..,.

1s not geometric because it has no common ratio. The raviu are
alternately 1l and -1 .,

To obtain a formula for the sum of the finite geometric
Series 11-3b recall the following formulas from Chapter 1 for
factoring polynomials: .

1l - r2
3

(1+1)(1-71),

1l -r (L+r+ re)(l -r).

1

n

An extension of these formulas to the form 1 - r suggests that

13-3d v 1-er® = (14+r+ r2 4 ...+ rn’l)(l - 1) .
The equality in the last line can be checked by multiplication.

l+r + r2 + .. .+ rn"l

- - r2 _ r3’_... _ r,n--l_ oD

140 4+r2ard 4., 41
14+04+0 +0 4...4 0=-121

If r # 1 we may divide both sides of Equation 13-3d by (1 - r)

to get

n
1L+ + r2 e+ rn'l = i—:—é— .

Multiplying both members of the last equation by a, we obtain
the sum of Series 13-3b . We have proved the following theorem:

RN
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Theorem 13-3a:

2 n-1 K
13-3e a; + a;r + a3 + ... 4+ ar = E: ajr
k=0
a; (1 -r")
= ——T-_——r— if r 4‘ 1 N
= nal if r =1 ’
where n =1, 2,
Note that 1f r = 1 , the series S i ..ms8 all equal to
a; , so that the sum 1is na; . Equatio.n . can be used as a

formula for application problems in which r 41 . In this
.connection, however, we usually represent.the left member of

Equation 13-3e by S, and employ the shorter form

al(rn - 1)
13-3f Sn = ———rT-l——

Another useful formula for the sum of a finite gcometric
series 1s

13-3g 5, = ——%—:-jff .

This formula can be easily obtained by making use of Formula 13-3Aa.

Since .
a, = alr-n"1 ’
ra = alrn
Rewriting 13-3f 1in the form
Sn = E;;;;;;;iL' '

and substituting ra - alrn we have 13-3g .

[sec. 13-3]
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Example 13-3a: Ir the 4™ term or a geometric series is

6 ‘and the Q" term is 1458 , find the 1%Y term, the 10%M
term, and the sum of the first ten terms.

Solution: Use Formula 13-3a twice: first with n = 4 ,
ay = 6; then with n=9 , a

g = 1458 . We get two equations:
6 = alr3
1458 = alr8
Solving, we obtain r = 3 - <. I'rom which a)o = 4374, Using
Form..ta 13-3f with n = ., wWe guu
10
2,3 - 1 8 1 8
Example 13-3b: If a finite geometric series has the last

term 1296 , ratio 6 , and a sum of ‘1555 , find the 15% term.

Solution: Using Formula 13-3g with a = 1296 , r = 6,
and 8, = 1555 , we have

6(1296) - a,
1555" 5 - 1

Hence al =1 .,

“xercises 13-.3

1. Write the next thres terms in each of the following geometric
sequences:
(a) -2, <10,

() =g, 2, «vns
(¢) 7,1, ...

2, If a+ b+ ¢ is a g=ometric series, express b 1in terna
of a and ¢

Ji
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3. Find the sum of the following series:

2
(a) 1 +2+ 27+ ... + 22 s

() 1-3+3%-3%43%,
(¢) 1 -1+1-1+...+1-1 (100 terms) .
4. Find the sum of the series
99
Y,
k=5 n
5. Find n if Z K- 63,
k=0
6. Find n 1if 3+32+33+...+3n=120

7. Can two different geometric series have the same sum, the
same first term, and the same number of terms? (Try

l14+r+ r2 =7 .)
8. Find “he sum of the series

n+r :

E: r , both whex. ~ =1 and when r #1
k=n

g, Find the sum of the serirs

n

}: ook+l
k=0
10. Find twe numbers x to make tre following series geometric:

(a) _%+x-—2§7-+

(b) /2 - X +/20 = X 4478 = O + ...
11. How many terms are there im <=he geometric serles

32+_16+8+...+§l§5 :
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12, PFind, 1f possible, the ISt and 2nd terms of a geometric
serles with 3rd term = -4, 5th term = -1 , 8th term =’-~é .

13. Find all sets of 3 1integers in geometric progression whose
product 1s -216 and the sum of whose squares 1s 189 .

14, If M 1is the foot of a perpendicular drawn from a point P
of a semicircle to the diameter AB , show that lengths AM ,
MP , MB are in geometric progression.

15. The terms of a finlte geometric series between the first and
the last are called geometric means between the first and
last. If the serles has only three terms, the middle term
1s called the geometric mean between the other two. Insert
(a) 3 geometric means between 1 and 256 ,

(b) 2 geometric means between /5 and 5

8

(c) the geometric mean between a- and 16bu s
(d) the geometric mean between a and b .

’

13-4. Limit of a Sequence.

Recall agaln the definition of a sequence of numbers stated
in Section 13-1 (Definition 13-la). We will find 1t convenient
to plot the numbers ay 5 8p, a3 s eee 84
To avold confusion we will label the points assoclated with the

nunbers of the seduence by the symbols which represent them in the

sequence,
a

3 41 22 %n
0

In thils way we can establish a correspondence between the terms of
a sequence of numbers and a set of polnts on the rumber line.

To study the behavior of a sequence of numbers and the poilnts
corresponding to them let us look briefly at several examples.

[sec. 13-4)
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Example 13-4a:

1 1 1 1
(a) 1 s BT » 8 » TB »
a, o, a, a, q,
Lo L ) \
°% T W A :

Points corresponding to successive terms of the sequence get
closer and closer to the point 0 as n becomes large; that is,
a approaches zerc a8 n becomes large,

n
1 2 3 L5 §
(b) - -2

? y - 3‘: T - » 6 ) »
% % . % %%,
$ $ } —— $—t—t
-1 8.4 2 0 L 3 8 1
78 - I ’ 2 4 8

If n 1is odd, the points corresponding to a, ‘get closer and
closer to 1 as n becomes large; if n 1s even, the points
corresponding to a, approach -1 . Hence a, alternately
approaches 1 and -1

1 1 1 1 1
(C) 1 » =P § s =T » 3 » - F »
o 9% %% 2
R '
) s O 8 3 |

Points corresponding to a, are alternately to the right and left
of 0 ; however, as n becomes large successive points get closer

and closer to 0O . Hence, a, approaches zero as n Dbecomes large.

(d) 1 ’ -1 ) 1 ’ -1 1 1 ’ -1 ’
In this case an is alternately equal to 1 and -1

(e) 1, V/z ’N/E ’ e ’V/— :Vﬂsx

In this case it is easy to see that as n Dbecomes large so does

a. .
n

[sec. 13-4]
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The foregoing examples show clearly that there are two kinds
of sequences which differ according to the way in which an
behaves as n becomes large. In both (a) and (c) we see that as
n becomes large an approaches some fixed number A , and we
say that an approaches a limit A as n becomes large. Such
sequences are sald to be convergent. On the other hand, in (b),
(d), and (e), there is no fixed number that a  approaches.

Sequences of this kind are said to be divergent.

The notion of limit may be familiar to you. In geometry, for
example, you learned that the aréa of a regular polygon inscribed
in a circle approachés the area of the circle as the_number of
sides increases. JIn Section 6-6 of this text i1t was shown that
the distance between a point on a branch of a hyperbola and an
asymptote approaches zero-as the point moves out indefinitely far
on the curve.

To make the notion of the limit of a sequence preclse, ve
state the following definition.

Definition 13-4a: The sequence 3y 5 85 5 83, ... has
a ldmit A if a) becomes and remains arbitrarily close to A
as n gets larger and. larger. A sequence that has a 1li.it is

sald to be convergent,

Under the conditions of the definition we also say that "the
limit of a, as n becomes infinite is A ," ‘and we write the
statement which appears in quotation marks with the symbol

n—»w

The following examples illustrate the definition. The limilt
in each case 1s glven. Write enough additional terms 1in each
example to satilsfy yourself that the glven sequence has the
indicated limit.
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Example 13-4b:

1 1 1 1
l;'g;’g:'[})-°°;ﬁ‘:---;A=o-
Although 1t may seem obvious that the 1limit of the given sequence
should be zero, this example is not trivial and wil. be useful
later, Symbolically we ordinarily write

1
n]:—i>mco(ﬁ)—o
Exanple 13-4c:
1 3
l:'g:l:‘lf:l;%.,l,...;l\=l.
n
Here a_ =1 when n 1s odd, and an =1 - 2‘5 when n 1is even.

It is == ruled out by the definition that a, may be equal to its

limit for some values of n , or even for infinitely many values
of n .,

Example 13-4d:

(2+3) , (2-3), (2+3), (2-%) , (2+3),

(2 -"F) , vov s A=2Z.

Note that a is alternately larger and smaller than A .,
Sequence (c) in Evample 13-4a behaves similarly.

Note: A fact which deserves mention at this point is that a
sequence cannot have two different limits, because it 1s not
possible for a to be arbitrarily close to each of two different
numbers for all n sufficiently large. What is meant here is
illustrated by sequence (b) in Example 13-4%a . This sequence, as
already stated, is not convergent; it is dlvergent,
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.

-In the preceding exampl -» i1t for each sequen wag
given and it was relatively eus, .» so¢ that the indicaivu iimit
was indeed the limit of the given seque..ce., On the other hand,
determining whether a given sequence has a limit and finding its
value when there is one calls for some specialized knowledge of
the properties of limits., In advanced courses 1n mathematics
these properties are usually stated as theorems. Before stating
such theorems we first observe that the sequences

8) , 8o B35 s By, ees s

oo 0 3

bl)b2Jb3"°'bn)
can be used to form many new sequences; for example,

a; + b1 y 8o + b2 R a3 + b3 P bn 3 cee 3

alb1 R a-2b2 , a3b3 s eee 3 anbn ey

a a a a

1 2 3 n

BI,EE,FE, ....,!5;1', . e (if each bn*O),

lall': lagl ’ _"a3| y e lanly.v see

ete. ) -

We conclude this section by stating without proof the
following theorems involving limits. The student will find these
useful in finding the limit of a sequence.

.. Theorem 13-4a: The constant sequence ¢ , C , € , ...
has ¢ as its limit; that 1s

lim ¢ = ¢ ,
N —»00
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Theorem 13-4b: If lim a = A, and 1lim b =B, then

n—»>ow n-—»ow

(1) 1im (can) = ¢ lim a, = ch;

n—yrow nN—->»om
+ + + .
(2) 1lim (an =z bn) = lim a_ - lim b, = AZB;
n—y» oo n—>ow n—>ow
(3) 1im (2b ) = (1im an)( lim bn),= AB ;
n—»w n—»om n->cw ’
a lim a '
n NS0 n _ A
(4) 1tm (52) = PPEgt =g b, 40, B40.
n—y o n——>» o

Example 13-Ze: Find the limit of the sequence for which
8n = ;ér

Solution: Since

the given sequence 1s the product of two sequences having nth

terms % and % . Thus, by Theorem 13-4b(3) and Example 13-4b,

1n 4= (1m 3)(am ) -o0-0=0.

N —>0 n n—>o n—>c
Example 13-4f: Find the limit of the sequence for which
a - D
n~n+1
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Solution: Dividing the numerator and denominator by n we

‘see that
n _ 1
n+ 1 1

145

Thus, the given sequence 1s the quotient of two sequences whose
nth terms are 1 and 1 + % respectively.

By Theorem 13-4b(d) we see that

1im
' n 1 n—>ew 1
n—>cw n N—>»cw + n
But 1im (1 +2) =1im 14 lim £=1+0=1

N —>»wx N—>» o Ne—>on

by Theorem 13-4b(b), 13-4a, and Example 13-lkb,

Therefore, lim 2 T = 1.

Nn—»x

1+ 20+ 500
n°

Example 13-l4g: Find 1im
Ne—>»own

Solution: Dividing the numerator and denominator by n- ,

we note that
A+ 545
3 3 T2

1+ 20+ 5n” _
Tn” {
" 3
Hence, 1im % 2n3+ 5n” _ 0+ $ t 3 . % .
n—>»cw ™
Example 13-lh: ind the 1imit of the sequence
s 4 7 6 9 8 11
3'7“3")'1:;'}'[’5:'5’1’6':--- .
912
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Solution: If n 1is an odd integer, say 2k + 1 , then

_ _ 2% +
a, = an, +1 " TT% . Also k—)oo as n~->w,

. 2 + E
- _ & + 5 _ ‘ =
Clima, = 1im agy 4 = lim _Frifg =lim ——p = 2.

?vn-bw k—> o K—> o k——)wl *k
" If n 1is an even integer, say 2k , then

2k + 2 .,
an = a2k = -m o Again k-0 as n-ow,

2
.. 2 +
' _ 2k + 2 k _
n:-lﬁ.{: an = 1lim a2k = 1lim X+ 3= 1im -]T-E = 2,
B k—>o k—>w k—>o k

" The novel feature of this example is that as n 1increases a,
alternately gets closer to and farther from its limit. But the
a, does, noné the less, "become and remain arbitrarily close"” to
2 . An appreciation of what happens when n becomés infinite

xmay be visualized by plotting successive values of a, ona

number line.

a, 0‘ (Jl Oy
I — Il 4 Il 1
T LN T ¥ T T
| 3 s 2 r 2
3 4 3 4

Exercises 13-4

1. Evaluate the limit for each sequence that 1s convergent.

k ® 1 2 3
(a) [m}kﬂ (¢) 5, 7-3>
K+ 1y, * 12
(b) ["'—r(‘—'+ ] kel *(d) 3 ’ 2 ’ % » "7" ’
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2. Make use of Definition 13-4a to decide which of the
following sequences converge. Make a guess as to the limit
for those that converge.

() 0,1,0, 2,0, 3,0, %4,

(.b)l:"']é:':[]i':‘

)

oq+

(¢) 1,%,%, %,
(a) -1 , 2 b, -5,
(e) 1 2 3

(£) (1+3), Q+3+3), Q+d3+3+8,
(E) l,-]é,-l,g,i,%r,-l,—]é-,
(h) 0.6, 0.66 , 0.666 , 0.6666 ,

2

1 2,%,8, 4
(3) 1,ﬂ,fs;ﬁ,

11

2 2 2 2
(k) 1, 2, 3¢, 4=,
3. Find the following limits:
3n - 1
(a) lim AR ’
n—w +
n2 2n + 1
(b) 1im By- =t 2,
"n—>»on- +n -1
3
(C) lim Sn~ - n s

n—swo 5n° + 17

(¢) 1im 30 ,
n—eo n + 1

: 8 ((n-1)n (2n - 1)
(e) nﬂnw ;3 [ ° ]

[sec. 13-4]
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4, Show that

(a) lim —}g =0 ,

n—>»m n ' | -
(b) Itm E-%)=0 . - \ - e
ne—»wx n o
5. Prove ‘that
2 .
2n- -~ 3n
lim —-ﬁ-ﬁ-—-——r

'doe§ not exist. it
6. Prove that

does not exist.
7. Prove that

2 R
1im &n_+ bn + ¢ _ %4 ,
‘ n—s»w dn_ +€n 4 £
Compare with results in 3(a) 3(b) and 3(c) .
8., If d=0 1in Exercise 6, -can the limit stil)l exist for

certain values of the constants? ' Compare with resﬁ;t§ in

if td £ 0 .

Exercises 5 and 6.

#9, Prove that for any positive integer r k N
- l ) e ‘ ~r—-~'."’*-~,,_vv’@~\“v_,”:
aonru+ a1nr' + ..+ af” “ab _
lim b T = T = S—- ’
n—w byn" + bln + e+ br 0
1f by #0 . |
10. Admitting that lim r" =0 (|r] < 1), find
n—>»>wm '
n 13
lim 1- g
n-—so0 - .
[sec. 13-4]
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11. Find

1im o5 - 30+ 5)(30° - 1)
N—»c0 n(n - 1Tn + ll)

Do‘not expand the products,
12, Find the following 1ini¥s if convergent.
(a) 1im 1
Il >0

(b) 1lim O
n—>o0m

(¢) lim 7
n—>»m

13-5. Sum of an Infinite Series.

‘In this section we will make use of the concept of the limit
of a sequence developed in the last section to formulate a
definition for the sum of an infinite series,

Recall that the definition given in Section 13-1 for the sum
of &.series applies only to finite series. Even so you may have

example, if you meet the number .3 , you may feel quite sure
that the number %ﬁ is intended. The infinite decimal is, of-
course, equivalent to the series. ‘

3 3 3
13-5a + + + ...
107 1527 163 ’

and presumaﬁly the sum of an infinite series should be defined in
such a way that this series will have the sum % . We emphasize
that we have the right to make definitions as we like, if only we
agree, to stick to the terminology we adopt. However, we also want
to keep things reasonable and consistent. For example, 1f we have
a finite series

[sec. 13-5]



765

13-5b 8, = a; +a,+ ...+ a, »

then the sum has already been defined. But S, in 13-5b can
also be regarded as an infinite series all of whose terms are
zero after a certain point. A definition of the sum of an
infinite series must certainly not conflict with our previoué

definition in this special case.

Suppose that we are confronted with a special infinite series,
say

1 1 1
13-5¢ g4 tE It ISRt o tEmRI I ;o

= z: k(k + 1)

and are asked to guess what its sum is, Ve might pfoceed as
follows. Denoting the sum of the first n terms by 8, » we
observe that

i

Cw
S
]

/5]
n
"
ul+E Hw W -

w
=
]

’

n
Sh=n v I

The numbers S, listed above are called partial sums; they

are partial sums of Serles 13-5¢ . If you look carefully at them

you may have the feeling that as n increases 3, approaches

some number A which ought to be called the sum of infinite

317
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jeries 13-5c. Thus we -rs faced with the task of determining

auch a number A if it exiz—s, Recall that in Section 13-4 you
.2arned how to find the 1“mlft: of a sequence, Let ns make use of
tZnils fact. Clearly the s.eccwcssive partiel sums ¢ Seriex 13-5¢
“orm a swénwence; 1t 1s ez Iz’ the sequenc. &7 It jartla. sums,

aid we wrote Lt down as i i

1 2 3 : n

13-5d T Joe T - s TET Y v
Definition 13-%a thi: S=:uence has a limit and by Example

'-U4f we know that its .{m.: 1s 1 . We propose that this
-umiting value be the sum =f 3erles 13-5c.

Consider the following .nfilnlte series:

o0
13-5e 1-14+1-14 ... = E: (-l)k .
k=0

Its sequence of partial sums 1is
i,0,1, 0, ...

Clearly this sequence has no limit, and it does not seem reasonable
to call any number the sum of the infinlte series,

The last two examples show us that there are two kinds of
series which differ according to the way 1n which thelr partial
sums behave. The first type 1s sald to be convergent, the second

divergent.

We are now in a position to define the sum of an infinlte
seriles.

Definition 13~5a: The sum of an infinite series 1s the
1imit of the sequence of its partial sums if this 1limit exists.
A series which has a sum is called convergent. If no 1limit exlsts,
the sum of the infinite series 1s not defined, and the serles 1s
sald to be divergent.

[sec. 13-5]
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Let us review the argumer .. 32d irv the Int—oductory examples
which precede the defi-itien
(1) 1In each case we 8.uf+‘ . nun’-:r which we might call i
sum of an infinite %.p.ic:3 SSuzr as
[+
13-5f a) + as + e e z: ak .
k=1
(2) We used Definition IZ.le Jor the sum of a finite
series to generate a . .ue. of partdial sums of the
given infinite series +at .3, we used
n
13-5g 8, =23 + a R S z: a,
k=1
to obtain the sequenzs . ..:+tial sums
[~]
13-5h sl ) 32 ) SE : = [sn} .
n=1

(3) PFinally, we examined =t = .»:guence of partial sums for
convergence, By the definition .. _.z& we have just stated
(Definition 13-5a) we know that “f t-e sequence of partial sums
of a given infinite series has a limlc, this 1limit is the sum of
the 1nf1n1té series. If the sequznc¢e of partial sums has no
limit then the series does not hare & sum.

At first thought one might .conclude that we are now equipped
with a general method for investigating any inlinlte series and
obtalining its sum, if 1t has one. ==z 1s true, bdt the method
outlined above is not generally us=Zu” because of technical
difficulties. Except for some easy ss#zlal cases the method 1is
hard to apply. The difficulty li=s 1in determining an expression

for S, whose 1limit can be calculated,

Thus, mathematiclans rely on far more powerful techniques.
Unfortunately, the background on which these depend has not been
developed in this text so we shall ngt introduze them. Thus, 1in
this text, the work of finding sums <f infinite series is limited
to series that can be handied with thre methods presented.

[sec 13-5]

341



768

Example 13-5a: Find the partial sums of the series

o X
14+ 2434 .. = Zk.
k=1

Solution: Using Definition 13-lc we obtzin the sequence

k2 k ”
113:6:10:---=['—r+}
k=1

Example 13-5b: Find the sum (if there is one) of the series

(-]
1 1 1 1
l+('§-l)+('3--§)+...=l+z('k—}_—'r-l'{')
_ k=1
Solution: 8y = 1, 8= % s 8q = %-, cee 5 By = % .

By Example 13-4b the desired limit is O . Hence the
series converges and has the sum O .

Example 13-5c: Find the sum (if there is one) of the series

+(l+%-—]§)+...=2+}: (l'*'k—%-"'f"]]%) .
k=1

rof -

2+

Solution: The general term of this series is a unit more
than the general term of the previous series.

Si-

Hence sn =n +

~—

But 1lim (n+%—
N—>»o00

does not exist; that is, the serles diverges and

has no sum.

320
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Example 13-5u=: The harmonic series ° +

S 2
+

s
+

=+
+

can be proved to be tivergent.
Solution: The m=rtlz” sums ars

)

Wil

Sl =1 = E

|}

S2
sy = (1+3)+ G+5)>H3)

sg= (L4345 4 Gr o +3) > 57
1

816 (l+%+“.+@+(%+“.+ﬁ)>ﬂﬁ,

Starting at some point %-, where n is some power of 2,
(n = 2%) , examine the next bleck of 2" terms,

S S T o S
ez -l o, 2t
1

Each of thsse is certainly greater than or equal to Eﬁr"_7§5
Hence, this block of terms +

52 .1
2R, AT

Since we can find an infinite number of such blocks, the sum has
no limit; that is, the series is divergent.

Example 13-5e: On the other k=nd the alternz=ting series

1 -'% + %‘- %'+ ... 3is convergent, aund comparison with Problem 19

in the exercises will indicate that ==is is the series for
loge2 .

321
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«“e conclusse this z=ctiosn by conslderiag = problem which
arises as an irteresting sifelight to the conzemts that have been
deveizped. Sugpose that ws are glven any seguence of numbers, Can
we ccmstruct ¢ serieg such zhat the glven s=musnce 1is a sequence
of pz—tial sum: for tize s=rzes? The answer = yes, and we shall
make -he matter clear :i.z. i example.

Zxample 13-5f: GConstruct a series wkos:z partial sums

correspond to the sequiexws given in Example T3-4h:

5 4 7 6 8 11
"3' » '3' T2 7T % 2 3 » QT
Solution: Let s- =.% » Sp = % s s3 = %‘; cee

Since 8, =23 ,
Sp =8 + 8y =85; +85,
cen
Sy =8y +a8y+ ...+ 8, 48, =3 ,+a,

we see that

Thus the fequi:edsseries can be rrtainzd Zrox
s, o+ (ig = 2) + coo & (5, -5 ) + .00 .

Maiing the propwr .—=titutions for s- , 3, , etc., we have the

5 . —— — - "; - — y -
3 3 v _‘"§ 16 ol E‘ Y R " *_O - -

5 I = 1 5 1 .7
=¥~z 3IE-~FrEs-=tBET oo

The last line sugg=sws how to comtinue the s==tfes,
3272
[sec. 13-5]
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Infinite series are one of the most important tools of
advanced mathematics. For example, it can ne shown that

.2 n
'ex=l+x+%—r+...+2{n—r+..."n,=l-2-3...n,
x> x2 . -G g
8in X = x - 77 + YT occe 0 X1 rediacs
x© xu
cos X =1l -+ gy~ o0, X in radians .

Furthermore, these s=ries converge for everw value of x , and the
sum of each series for any x 1is the value of the function on the
left for that value of x . Infinite series are also important in
the calculation of tzbles of logarithms ani zables of trigonometric
functions,

Example 13-5g: Finé the value of =& correct to four
decimal places.

Solution: As indicated above,

1

n!+~... .

e=l+l+']é'—."+‘3];:"+ ee s
The partial sum s, =5 & good appre—imation to the sum of an
infinite series if n 15 large, We "17z:d

1l = 1.00000L
1= 1,00000%

1/2! = ,57-200C
1/3t = | Lmb6T
/Y = 66T

1/58 = ..0833c
1/63 = ' .C:31389
1/7% = .000198
i/8% = .000025

Sg - 2.718279

If Sg 1is rounded off to fcur decimal places, we obtain 2.7183
which is the value of e <ccrrect to four decimal places.

[mee., 13-5]
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Exerclses 13-5

1. Pind the partlal sum for the first n terms of th: serles
24+ 7T+ 12+ 17T+ ...

2. PFind the partial sum for the first n terms of tie series

7 + 7 + 7 +

T00 ™ T000 10, 000 tee

3. PFind the partial sum for the first
15 + 12+ 9 + 6 + ...

4. Pind the partial sum for the first

%+3+%+%Z+...

8]

terms of thx= series

]

terms of the =2rles

5, Find a series whose partial sums ars= 2, 6, 12, 20, 30, ...
6. Find a serles whose partial sums =2rs 2, 6, 14, 30, 62,
7. Find a series whose partial sums ars 2, -2, 6, -10, 22,
8. Find a series whose partial sums are 3, 8, 15, 2%, ...
9. Find a series whose partial sums are 2, 8, 20, 40, "T,
10. Find the sum of the seriles
> 3
Y TmEEm -
n=1

11. Find a serles whose partla’ sums Sk =re glvexz by the faormmla

12. PFind the suﬁwa the series

[+ ]
, 12 2
13. Show that the series E: ( 4; Ek - ﬁ ¢>:J civeErges,
k=1
'14. Determine whether the series 1 - '+ 3 - 4% +5 -0 3% ...

diverges or converges.

P!

[sec. 13-5]
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15. The area under y = x from X =0
to X =1 , approximated by n

rectangles is the sum
n-1 4
1,0 1 n.l1 1 }:
-r—l-(n+n+...+-———n)=';l-§ k.
k=0

n-1
Find the 1im - Z K .
k=0

n—»w n
Ll
16. The area under y = x° from
Xx =0 to x =1, approxi-
mated by n rectangles- is
the sum
n-l,2
10,1 . 4, n-1)%, & )
2T 22T A2 n
n-1
1 2
e T n
n n-1
2 n(n+l)(2nsl) , find the 1lim -2 Z k° .
If kS = 3 g 3
n—»w n :
k=0 k=0

17. Find the 1imit of the sum (if there is one) of

2 2 2
37,5-!-5.,7-!-7,9-!-...

2 1 1
Hint: top T+ 3) " F+ 1~ X ¥ 3

18. With the series given for e¥ , find the approximation for.e .

19. An approximation for the natural logarithm is given by the
following series for -1 <x (1

log, (1 +x)=x - %xe + %x3 -

Use this series to estimate 1logg 1 ° 1 to h-place decimals,
Compare this result with the appropriate area under the curve

y = = in Chapter 9.

[sec. 13-5]
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13-6. The Infinite Geometric Series.

No infinite arithmetic series converges unless all of its
terms are zero; hence, the convergence of infinite arithmetic
series will not be considered further. On the other hand, we have
_already'seen that certain infinite geometric series may converge.
For example, the. infinite decimal .3 mentioned at the beginning
of Section 13-5 has the value 3 , and -this is equivalent to
sayilng that a certain geometric series converges and has the sum 3

By Theorem 13-~3a the nth partial sum s, of the infinite
‘geometric series
13-6a a; + ajr + alr + ... E:
k=0
is '
1 .- " .
S = al (-I-—:-r—) ) if r * 1

‘Can this partial sum have a 1imit as n becomes infinite? It

depends on r’ . If r = 2, then re = 4 , r3 =8, etc., and

" increases rapldly as n increases. No limit exists for rn_,

nor for s . If r = -2, then re o 4 s, T = -8, etc., and
again no limit exists On the other hand, if r = * 1/2 , then
=1/4 , rd - ¥ 1/8, etc., and r" approaches zero. That is,
sn wlll have the limit T flr * The result 1s evidently going
to depend on the absolute value of r . The above argument shows
that 1f |r| > 1 then Series 13-6a diverges if |r| < 1 then
Serles 13-6a converges and has the sum I————- . Finally, 1if

r =% 1 the series reduces to

a; +a; +a; + ...,
or a; - a; +a; -
These certainly diverge unless a, = 0 . We summarize our results
by stating a thecrem.
320
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Theorem 13-6a: The inginite geometric Series 13-6a
converges and has the sum I_:l? if |r| ¢1 . It diverges if
Ir] >1 (unless a; =0, vwhen it converges).

Example 13-6a: Find the sum of the series

1

1 ‘ - 1.k
1l - +F-_l;5+“.= Z (-'q‘) .
k=0

e

Solution: a; =1, r = - % , Irl ¢ 1 . The series converges
- and has the sum ——l—I-=-% .
l+-n'

Example 13-6b: Find the value of. the repeating decimal
.l 2 57 ) ;".:“:A '

Solution: This”ié“eqpivalent to the geometric'series

b b - b :
+ + + ... ‘ b = 142857 .
100 1042 10°° . ' Ehe

a, ;‘b(10"6) ,r=10%¢a

The series converges and has the sum

b(1o'6) - b 142857 _ 1
1- 1070 100 - 1 999999 © 7

Example 13-6¢: A train is approaching a point P 30 miles
away, at 30 miles pér hour. A fly with twice the speed leaves
P , touches the train, returns to P and repeats the process
until the train reaches P . How far does the fly travel?

(W
[N
e

~
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Solution: To simplify matiers Zet v represent the velocity
of the train, even though we kmow that v = 30 , and let 2v
represent the welocity of the fly. 3Suppose the first meeting is
Ktl hours afte - the start. Thus after tl hours the fly will be
vty miles from P and tez traln will be 30-vt, miles from P .

3 2 vt A& Vi ——»
L .
P

1G 20 30
Hence 30-vt; = 2vt; , vt; = I8 ; and since Vv = 30, t, = % .

So the fly has traveled 20 m:Ides and the train 10 miles when

trip 1s 2(2v)(%) = %l miles. The train is now 10 miles from

P , and we repeat the computzzion. Lat t2 be the time required
for the fly to go from P +o the train the second time. Thus

= 1
lO—Vt2 = 2‘7t2 I Vte = %9' » a2 sinoce v = 30 ) t2 = -BT . The

fly's second round trip s EKEr)Gjﬁ) ='i%», etc. ‘The answer, in
series form, 1s 3 3

by &y Ly

=+ 3:2-!-"31'4- cee g

where 2; = %; , T = %-(_l.. By Theorem 13-6a the sum is

(E%)(1 L) = 2v =60 .
-3

The fly travels 60 miles. This result can be checked directly
ﬁithout using series. We hzv= only to note that the trainmqgeds
one hour to get to P , amZ 37 the fly wastes no time 1t can do
60 miles in that time., 7#= have deliberately done this example
the havd way to 1llustratz= Theorem 13-6a for a case in which we
know the answer in advance.

SR EW]
328
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Exercises 13.6

1. PFind the sum of the series

(a) 1+ % + % + ey,
(b) 9-3+1.- ... .
2. Find the sum of the series
() r+re+rda ..., (Irl <1) ,
() (1 -a)yt+(@-a)0+(- a)1 + (1 - a)2 + o

For what values of a 1s the series convergent?

3. Write each of the following repeating decimals as an equlva-
lent common fraction,

(a) 0.5

(b) 0.062
(¢) 3.297
(d) 2.69

4, What distance will a golf ball travel if it is dropped from a
height of 72 1inches, and 1if, after each fall, it rebounds
9/10 of the distance it fell,

5. Solve the following equation for x :

2 2
-§=1+x+x + s

6. Solve the following equation for x :

X e x®faxdae .

7. Solve for a1 and r 1if

. 2 ’ 3
a; + 8T+ ar + .= 3, and
2 3
dy:= @0 + AT - Lo =T .
[sec. 13-6]
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. lo.

11.

An equilateral triangle has a perimeter of 12 inches. By
Joining the midpoints of 1its sides with 1line segments a
second triangle is formed. Suppose this operation is
continued for each new triangle that is formed. Find the
sum of the perimeters of all triangles 1nclud1ng'the
original one. .
A hare and a tortoise have a race, the tortoise having‘a'
5000 yard handicap. The haret's speed 1s V = 1000 yards
per minute; the tortolse's speed 18 Vv = 1 Yyard per minute.
It is sometimes said that the hare can never catch the
tortolse because he must first cover half the distance
between them. Detect the fallacy.
A regular hexagon has a perimeter of - 36 inches. By
Joining the consecutive midpoints of its sides with line
segments, a second hexagon is formed. Suppose this 1is
continued for each new hexagon. Find the sum of the
perimeters of all hexagons including the original one.
A square has a perimeter of 12
inches. Along each side, a point
is located one-third the distance
to the right of each vertex. By
Joining consecutive points, a new
square 1s formed. Supbose this
process 1s continued for each new
square,
(a) Find the sum of the perimeters
of all such squares.
(b) Find the sum of the areas of
all such sqQuares,

339
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13-7. Miscellaneous Exercises.

1. Find the sum of the series

3
> ((-2)% - &) .
k=0

2. The following series are either arithmetic or geometric;
continue each through 6 terms:
(a) 8+ b+ 24+ ...,
(b) 34+6+9 + o,

(c) %-+ f% + g%'+ che

(a) o143+ ... ,

3
(e) a® 4 at + a6 S
(f) 1 -1 -1+ ..., 1=./-T.
3. PFind the sum of the series
4
> (- .
k=1

‘4, Use the identity
k =~%[k(k +1) - k(k - 1)] to give a new proof of

Theorem 13-2a,
5. By use of the identity

% + 1= (k + 1)2 - k2 , prove that

1+3+54+ ...+ (2n-1)= n? .

331
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10.

11,

By use of the equation

1 1 1

il e I et U show that

1 1 1 1 n
'2+2.3+3.4+0--+n(n+1)=n+10

Show that the geometric mean between two positive integers
is not greater than the arithmetic mean between them.

The harmonic mean between two numbers a and Db 1is a
number h whose reciprocal is the arithmetic mean between
the reciprocals of a and b

1 1,1 1 2ab

F=3&G+%) s h=p1za -
Show that in the series

1+ % + %'+ % + ...
each term after the first is the harmonic mean betvween its
two meighbors.
Show that the number of vertices of a cube is the harmonic
mean between the number of its faces and the number of its
edges.
Show that geometric mean between two numbers is also the
geometric mean between their arithmetic and their harmonic
means, First try the result for 2 and 8 .
Find the sum of the following series correct to 2-place
decimals.

Qﬁz (3?{ 2+ 1) s, where 2/3'3 3.464

e
C’.:
0O
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(N

12, Twenty-five stones are placed on the ground at intervals of
5 yards apart. ' A runner has to start from a basket 5 yards
from the first stone, pick up the stones and bring them back
to the basket one at a time. How many yards has he to run
altogether?

13. Find the sum of n terms of the series whose rth term is

% (3r + 1) .

14, Tuo hikers start together on the same road. One of them
travels uniformly 10 miles a day. The other travels 8
miles the first day and increases his pace by half a mile each.
succeeding day. After how many days will the latter overtake
the former?

15, How many terms of the sum~ 1 + 3 + 5+ ... are needed to
give 12321 ?

16. Find s,y if a5 =5, and a4 = 82 .,

17. (a) Find the sum of all even integers from 10 to 58
inclusive. '

(b) Find the sum of all odd integers from 9 to 57 in-
clusive. ' ‘

18. A person saved thirty cents more each month than in the

preceding month and in twelve years all of hils savings
amouiited to $9,424.80 ., How much did he save the first
month? The last month?

19. If four quantities form an arithmetic sequence, show that

(a) The sum of the squares of the extremes is greater
than the sum of the squares of the means,

(b) The product of the extremes 1s less than the product
of the means, ‘

20. (a) A constant ¢ 1is added to each term of an arithmetic
progression. Is the new serles also an arithmetic
progression; if so, what is the new difference and how
is the new sum related to the original sum?

[sec. 13-7]
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21,

22,

23.

2k,

* 25,

(b) If each term of an arithmetic progression is multiplied
by a constant ¢ 1is the new series an arithmetic
progression; if so, what i1s the new difference and how
is the new sum related to the original?

(¢c) A new series 1s obtained by adding a constant ¢ to
each term of a geometric progression. Is the new
series a geometric progression; if so, what is the new
ratio and how is the new sum related to the old?

(d) A new series is obtained by taking the reciprocal of
each term of an arithmetic progression. I8 the new
serles an arithmetic progression? What 18 the new
difference? ’

(e) A new series is obtained by taking the reciprocal of
each term of a geometric progression. I8 the new series
a geometric progression? What is the new ratio?

(f) Do the negatives of each term of a geometric progression
form a geometric progression? If so, what 18 the new

ratio?
2n+l
Find tke value of Eﬁli_T E: k
k=1
Prove that if 1 1 1 are in arithmetic
b+c ?c+a?’?a+hb

progression, then a2 ’ b2 , and c2 are in arithmetic

progression. (The'converse is also true.)

Find the sum of 1 + 3 1 < +—3 4+ ... to n terms.
1+ /X = 1 -J/%

Hint: rationalize the denominators,

If the sum of an arithmetic progression is the same for m
terms as for n terms, m £ n , show that the sum of

m+ n terms 1s zero. .

The sum of m terms of an arithmetic progression is n ,
and the sum of n terms 1s m . Find the sum of m + n
terms, (m £ n) .

'

[sec. 13-7]

- 344



Chapter 1l
PERMUTATIONS, COMBINATIONS, AND THE BINOMIAL THEOREM

14-1. Introduction, Counting Problems.

The process of counting involves three fundamental ideas,.

(Il) The first is that of a pairing, or one-to-one corre-
spondence. Thus we count our fingers, or our guests at dinner,
by associating with each one of the things being counted one of
the natural numbers beginning with 1 and taking them "in order".
We stop this process when we run out of fingers, guests, or what-
ever 1t 1s we are counting.

(I,) The second idea is that underlying addition. Given two
finite sets sharing no elements, the number of =lements in their
union is the suonf'the'number of e=s=ments in each. Thus he
number of people: at a swimming paft? is the sum of the number in
the pool and th= number not in the rwool. '

,(13) The zcird idea is that underlying multiplication.
Given n sets {where n 1s a natural number) no pair of which
share any elements and each one of which may be paired with the
set {1, 2, ..., m} of all natural numbers not exceeding the
natural number m , the number of elements in the union of the n
given sets is n x m ., Thus We may count the students (or the
seats) in a classroom by multiplying the number of rows by the ‘
number in each row (provided each row has as many as any other row).

To i1llustrate these ideas we present a method (involving all
three of them) for proving

l+2+...+n=.ll_(£_-£__l_l.

(This formula was discussed in Chaptier 13.)

335



78y

Let us consider a collection of dots arranged in n rows,

each containing n + 1 dots (Figure 14-la). We pair the n

rows to the natural numbers 1 , 2, ... , n and the n + 1
columns to the natural numbers 1, 2, ... , n, n+ 1 ; and
write the number associated with each row at its left, that associ-
~ated with each column above. This 1s a2 use of the first idea, Il'
Now we draw a line across the array of dots as shown, dividing it
into two parts,

n n+l
[} [ ] [

3 4 5
.

Fig. li-1a

In that part below the line, we find that

the lst row has 1 dot ,

the 2nd rov has 2 dots ,
the 3rd row has 3 dots ,

the n Trow has n dots .,

" Thus, since no two rows share any dots, our second fundamental
idea, I2 , asserts that there are

l+2+ ...4+n
dots below the line. Call this number s . Then
S =14+2+ ... +n,
339
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Now, above the line, we find that

the 2nd column has 1 dot ,
the 3rd column  has 2 dots ,
the 4% column has 3 - dots ,

the (n + l)Stcolumn has n dots .
Hence there are also 8 dots above the diagonal.

Now, applying our second idea to these two parts of our array
we find that s + 8 1s the total number of dcts 1in 1it.

However, our third idea, I3 , tells us that the total number
of dots is n(n + 1) , the number of rows times the number of
columns. Combining the results of our two counting methods, we
have

28 = n(n+ 1)

or s=ﬁ'n_+2-_l_l,
Thus 142+ ... 4+n = Eiﬂ—%rll .

In this chapter we study a number of counting problems--i.e.,
problems whose solution may be made to depend on the three funda-
mental ideas of counting. Such problems ocuur frequently in
mathematids, science, soclal studies and many other fields. One
of the richest sources of these problems 18 the theory of games
of chance. How many ways may one draw. a straight flush or a full
house from a falr deck, or roll a seven with a pair of dice? A
water molecule (HQO) has three atoms, and therefore it 1s planar.
But a sugar molecule (012H22011) has 45 . _How many ways may
these 45 atoms be arranged in space, and, how many of these
arrangements are chemically feasible? We won't answer all of
these questions--certainly not the last one-;but we shall study
ways to handle a great many of thls sort.

1
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[sec. 14-1]



. 786

o

Relatively few of the =xamples we shall glvz and the
exercises we shall set can be considered earth-shaking. The
interest will always be in the theory, in the methods, and 1in
the ideas they illustrate, and only very rarely, in the "practical
value" of thelr answers.

One of our objects in developing this theory 1s to obtain
results which are "general" in the sense that the numbers involved
are arbitrary. Of course, when one uses any of our results--for
example, to answer questions about batting orders, snake-eyes,

- molecular structure, royal flushes, or how to llne up a firing
squad--he 1is dealing with a problem which comes with deflnite
numbers of the things involved. The value of our general theory
is that it can cope with any number of such problems, no matter
what numbers may be involved in each of them.

Given enough time (in some cases, millions of years) and a
large, fast, computer (some of which cost millions of dollars,
plus upkeep) one could solve many of these specific zounting
problems by listing all the possibilities and tallying ‘them. Our
object 1s Just the opposite. We set for ourselves the "task of
working such problems without actually listing all the possi-
bilities. For example, in Section 1lh-4, we determine the numter
of Senatorial "committees" that are theoretically possihle. This
number 1s so monstrous it would be entirely out of the question
even to contemplate making a list of the committees. Very likely,
there isn't enough paper in the world. But the answer to the
question of the Senatorial committees--which depends on the
number of Senators (100)--1s little or nothing compared to the
numbers in some of the counting problems which arise in connectlon
with, say, a mole of gas, for there are 6.025 x 10%2% mclecules
in‘a mole. -Indeed the number of possible committees whilch can be
formed among any group of people in the world is a t-iviallity
cbmpared to the number of possibilities for the chemical reactions
which might occur in a toy balloon. '

338
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Many counting problems are actually infinitely many problems
expressed as one. Examples are how many ways may a natyral number
n be written as 2 sum of four squares, or as a product of natural
numbers. The answers depend on n , which may be any natural
number. Thus specific cases like n =3 or n =10, etc., may
be handled by enum=ration. But getting a formula good for
arbitrary n 1is another matter entirely. Many such problems are
beyond all methods known at present. . In this chapter we discuss
a few of the known<ones., ~ o '

Exercises 14.1

1. Consider the following array

L
LO

. LO0G

LOGA

LOGAR
LOGARTI
LOGARIT
LOGARITH
LOGARITHM
LOGARITHMS

Determine the number of ways one may spell LOGARITHMS start-
ing with any one of the L?'s and moving either down or to
the right to an 0, then either down or to the right to a @,
etc., ending with the S. (Hint: begin with the top two or
three lines, and determine the number of ways to spell 'LO
and ,LOG , then work with the first four lines, first five,
etc., until you recognize a pattern in your answers. ) ’

339
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2. (a) Write an addition table for the numbers from 1 to 6 .
(v) Using this table answer the following questions about
honest dice games: |
(1) What number is one "most likely" to roll?
(11) Is one "more likely" to roll a power of 2 or a
multiple of 3 ? '
(111) Is one "more likely" to roll a prime or a non-prime?

14.2. Ordered m-tuples.

Suppose we wish to count the number of routes from A to C
via B in Figure 14-2a, There are three paths from A to B ‘
(denoted by a,b,c) and four paths from B to C (denoted by w,x,y,z)

Fig. 14-2a

Now a route is completely described by naming a pair of these
ietters, provided we choose one from the set ({a,b,c¢c} and the
other from the set (w,x,y,z} . Thus (a,x) , (b,w) , (c,2)
describe such routes. We tabulate all the possibilities in
Table 14-2a,

‘ W X N z

a (a,w) (a,x) (a,y) (a,z)

b (b,w)  (b,x) (b,y) (b,2)

c | (e,w) (e,x) . (c,y) (e,2)

Table 1h-2a

[sec. 14-2]
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Each entry in the body of the table describes one of the
possible routes. We see there are twelve of them.

Although we have enumerated all the cases in arriving at our
ansWer, we may now see that this 1s quite unnecessary.

Our problem can be described as determining the number of
ordered pairs which can be formed using an element of the set
{a,b,c} as first member and an element of {w,x,y,2} as second
member. (The body of Table 14-2a exhibits all of these pairs,) ’
Since we are interested only in the number of pairs here we are
interested merely in the product of the number of members in each
of our sets--the number of rows in the table times the number of

columns,

We may state the fundamental idea involved in a general way
as follows. '

Given a pair of finite sets Al and A, with,
respectively, ny and Ny members each, there are
n; X ny ordered pairs, or couples, which may be formed
with a member of Al as first member and a member of A2
" as second member. For our "route" problem, A, = (a,b,c],

Ay = (w,x,y,2) , and n; =3, n, = b,

_ We illustrate this general principle by turning to a number
of examples in which it may be used.

Example 14-2a: A quarter and & dime are tossed, How many
head-tail pairs are possible?

Solution: There are two possibilities for the quarter {H,T)
and two for the dime {(h,t)

| h t
H (H,h) (K, T)
T (T,h) (T,t)

~The number of pairs 18 4 , the product 2 X 2.

[sec. 14-2]
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Example 14.2b: A library contains 7 geometry books and
13 algebra books. How many ways may a student select two books,
one of them a geometry and the other an algebra?

Solution: Here we are interested in the number of couples
(geometry, algebra). According to our principle the number of
such couples 1s T x 13, or gl .

Example 14-2¢c: How many fractions may be formed whose
numerator 1s a natural number not exceeding 10 and whose
denominator is a natural number not exceeding 15 ? (Ignore the
fact that some of these fractions represent the same rational
number, )

Solution: 10 x 15 = 150 .

Example 14-2d: G@Given a hundred men and a hundred women, it
1s possible to form 10,000 different couples--although not
simultaneously!

Let us now extend our "route" problem by supposing there are
five paths Joining C to a fourth point D .

Fig. 14-2b

Let {m,n,o,p,q} be the set of paths joining C and D . Now
how many routes are avallable for a trip from A to D via B
and C , using only the paths pictured?

[sec. 14-2]
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We have already fouhd there are twelve routes from A to C
via B :

(a’w) 3 (a’x) 3 AL (b’w) 2 ¢ 2 (C,Z)

Taking advantage of this knowledge, we may describe any route
from A to D via B and C Dby couples such as

((a’w)!m) ’ ((a;x)’n) , ete,

As before, we make a table.

m_ n 0 P q
(a;w) ((a:w):m)
(a,x) ‘
(a,¥) ((a,¥),p)
(a,z)
(b,w)
(b,x)
(b,y) ((b,¥),n)
(b,2)
(c,w)
(c,x)
(c,¥)
(c,2) ({c,z),q)
Table 14-2a

We have indicated only a few of the entries in the body of the
table. Using our principle we see at once that there are 12 x 5,
or 60 , possibilities.

Since each of our new '"couples' describes a route made up of
three paths, we may drop the extra parentheses, writing simply
(a,w,m) for ((a,w),m) , etc,, and refer to (a,w,m) as an
ordered triple. Thus each route from A to D via B and C
in Figure 14-2b may be described by an ordered triple. Some more

[seec. 14-2]
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of these routes are (a,x,n) , (c,y,p) , (b,z,p) . Our principle
tells us there are 60 ordered triples whose first component 1isg
an element of (a,b,c} , whose second component 1s an element of
[w,x?y,z] , and whose third component is an element of (m,n,o,p,q}.

We may make further extensions to ordered quadruples,

quintuples, etc.:
(al ’ a2 ’ a3 ’ au) = ((al ’ a2 ’ a3) ’ au)

(al ’ a2 ’ a3 ’ au ’ a5) = <(al ’ a2 ’ a3 ) au) ’ a5) ’

and generally to ordered m-tuples:

(al!aEJ °°°!am)
with m components, Here m 1s any natural number,

As we saw 1n the case of ordered triples we may extend our
general principle to covered ordered m-tuples:

If A , Am are finite sets having,

10 A
respectively, Ny » Npy ove , N elements, there

are n; X Ny X ... x'nm ordered m-tuples of the form
(al » 8y, «.. , 8y) where a; 1s a member of Ay,
a5 a member of A2 » eee 8, @ member of Am .

Example 14-2e: In a certain club no member may run for more
than one office at the same time. If in one election there are 8
candidates for president, 7 for vice-president, 4 for secretary,
and. 1 for treasurer, how many ways may these offices be filled?

Solution: We want the number of ordered quadruples
(al » 8p , 84, ay) where A, has 8 elements, A2‘ has 7,

A3 has 4 , and Au has 1 , Our princiﬁle tells us the answer

1s 8x 7x b x 1, or 224

344
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Example 14.2f: Consider & club having 4 members, 3
'offices, and a rule permitting any member to hold any number of
these offices at the same time. How many wayc may the offices be
filled?

Solution: The number of ways of filling the offices 1s the
number of ordered triples, each of whose components is any one of
the members of the club. Here m = 3, Ay = Ay = A3 and

Ny =Ny =ng4 = 4 . Our principles tells us the ansvier is
b x 4 x4, or 64 . -

Extending the result in Example 14-2f to cover the possibili-
ties for m-tuples each of whose components are members of a set
having n elements, we find there are n™ such m-tuples. For,
in this case, we have

1 2" n
and nl = n2 = L. = nm =n .
Thus
n, X xn_ =n"
nl X ng ce m

- gives the number of all possible m-tuples which can be formed,
each of whose components belongs to a given set having n elements.

Exercises 14-2

1, A furniture company has twelve designs for chalrs and five
designs for tables. How many different pairs of table and
chair designs can the company provide?

2. How many pltcher-catcher pairs may be formed from a set of
four pitchers and two catchers?

3. How many pitcher-mug pailrs may be formed from a set of elght
plitchers and eleven mugs?

345
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10.

11.

12,

13.

14,

15.

How many different committees consisting of one Democrat and
one Republican may be formed from twelve Democrats and elght
Republicans?

How many ways may a consonant-vowel palr be made using the
letters of the word STANFORD ?

How many consonant-vowel palrs may be formed from the letters
of the word COURAGE ? )

How many numerals having two digits may be formed using the
digits 1, 2, 3, ... , 8, 9°?

Ten art students submitted pésters in a contest which was to
promote safety., How many ways could two prizes be awarded

i1f one prize was to be given on the basis of the art work and
the other on the basls of the safety slogan chosen?

There are four bridges from Cincinnati to Kentucky. How many
ways may a round trip from Cincinnati to Kentucky be made if
the return 1s not necessarily made on a different bridge?

How many ways may a two-letter 'word" be formed from a twenty-
six letter alphabet? (A "word" need not have meaning.)

How many different triples of Ace-King-Queen can be
selected from a deck of 52 cards?

How many three digit numerals representing numbers less than
600 may be formed from the digits 1, 2, 3, ..., 8, 9 2
Using the digits 1, 2, 3, 4, 6, 8, how many three
digit numerals may be formed 1f the numbers they represent
are even?

At a club election there are four candidates for president,
four for vice-president, six for secretary, and six for
treasurer. How many ways may the election result?

A freshman student must have a course schedule consisting of
a forelgn language, a natural sclence, a soclal sclence, and
an English course. If there are four cholces for the foreign
language, six for the natural science, three for the soclal
science, and two for English, how many different schedules
are avallable for freshmen?

349
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17.

18.

19.

20.

»21.

»22,

*23.

14.3.
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The Super-Super Eight offers twelve body styles, three
different engines, and one hundred twenty color schemes.

How many cars will a dealer need in order to show all
possible cars?

Iinw many duadruples Ace-King-Queen-Jack may be formed
f.rom a bridge deck?

From twelve masculine, nine feminine, and ten neuter words,
how many ways are there to select an example consisting of
one of each type?

In the decimal system of notation, how many numerals are
there which have flve digits?

A psychologist has rats running a maze having ten points at
which the rat may turn left or right. How many ways could a
rat run the maze if he followed a different route each’time?
Using the.digits 3, 5, 6, 7, 9 how many three digit
numerals representing numbers greater than 500 can be
formed if (a) repetition of digits is allowed; (b) no
repetition of digits 1s allowed?

How many committees consisting of a Democrat and a Republican
may be formed from five Democrats and eight Republicans if a
certain Democrat refuses to work with elther of two
Republicans?

There are five boys and eight girls at a dance. If Hepsibah
and Prunella refuse to dance with either Hezy or Zeke, and -
Obediah will not dance with either Hepsibah or Cillisue, how
many ways may dancing couples be palred? ‘

Permutatlons.

Let A be the set (a,b,c} . We examine the ordered couples

which may be formed using elements of A . We see there are two

347
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kinds: (1) those in which duplications occur, (ii) those without
duplications.  Thus (a,a) , (b,b) , (c,c) are of the first kind;

a b C
a (a,a) (a,D) (a,c)
(b:a) (b,b) (b,C)
(c,a) (c,D) (c,c)

Table 14.3a

the others of the second. There are 3 of the former--one for
each element of A --and 6, or 3% _ 3 , of the latter,

In general, given a set having n elements we may form n2

ordered couples whose components are members of the given set. oOf
these n° couples, there are n (one for each element) which
have duplications, Hence there are n2 - n without duplication.

Those ordered m-tuples of elements of a set having n
eléments which have no duplications are called permutations of the
n elements taken m at a time or, for brevity, m - permutations
of the set. Of course, m < n . Thus the number of 2-permutations

of a set having n elements is n2 - n

The n-permutations of an n-element set are called simply
permutations of the set.

There are many problems in mathematics, science, and other
fields-~-including gambling--which may be solved with a knowledge
~of the number of m-permutations of an n-element set. We have
determined this number for m = 2 ., We proceed to larger values
of m. '

As a preliminary, let us look again at the couples. We con-
sidered a table with n rows and n columns. To avoid dupli-
cations we omitted one couple from each row. Since we want only

o
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s
ey, ¢

lv.’//

the number of 2-permutations, and not a 1ist of them, it makes no
_difference in our counting problem if we simply remove 2 whole
column from the complete table, rather than just one couple here-
and-there in each row. Deleting one of the columns glves us a
"reduced" table with n rows, n - 1l'columns, and hence n(n - 1)
entries. This number checks with our previous "eount " n° - n

and san be made to appear "plausible" if we think of the formation
4% opidered couples without duplication as a pair of "choices". We
ane {ree vo choose any of the n elements as first component and
gry «<f the remaining n - 1. elements as second component. Since
our Yseduced" table has n(n - 1) entries we can say that this
wily of shoices may be made in n(n - 1) ways,

Moving on to 3-permutations of a set having n elements
{(1.:., ordered triples without duplication) we can imagine a table
listing the 2-permutations on the left (there are n(n - 1) of
them) and the n elements of the set across the top. (For
example, Table 14-3b, where n = 3 .)

a b . c
(a,Db) (a,b,c)
(a,c) (a,c,D)
~“(v,c) (b,c,a)
(v,a) (b,a,c)
(c,a) (c,2,b)
(c,b) (c,ﬁ,a) » '

Pable 1L-3b

To avold duplications in the triples we must omit 2 triples

from each of the n rows. As there are (n2 - n)n spaces in
i . :

349

[sec.>14-3] _ &§>\



798

the table (number of rows times number of columns) and 2 blanks
in each row, there are

(n2 - n)n - 2(n2 -n),

or (n2 -n)(n-2), or n(n - 1)(n - 2) , entries in the table.

As with the couples, we are only, interested in the number of
triples. The same result may be obtained by simply deleting 2
columns, leaving n(n - 1) rows and n - 2 columns. Hence we
have another way of seeing that n(n - 1)(n - 2) is the number of
3-permutations of a set having n elements.

Carrying on the same reasoning we may move to quadruples,
quintuples, ... , m-tuples, and we get

n{n-1)(n - 2)(n - 3)
n(n - 1)(n - 2){(n - 3)(n - 4)

n(n - 1)(n - 2)(n - 3)...(n = (m - 1) ,
respectively, for the number of each having no duplication.

A great variety of symbols 1s used to denote the number of
m-permutations of a set having n elements, Some of the more
popular ones are

n(m) P P, P(n,m) .

sn'm?* n
We shall use the last of these in this bcok.

Writing P(n,m) for the number of m-permutations of an n
element set, our result may be expressed by the formula
P(n,m) = n(n - 1)(n - 2)...(n - m + 1) .
When m = n , We have
P(n,n) = n(n - 1)(n - 2)...(n = n + 1)

n(n - 1)(n - 2)...2 - 1 , .

1

it
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The last product occurs so frequently in these and other
problems, a special notation has been -introduced for it:

n! =n(n-1)...3 -2 "1

The expression n! " is read "n rfactorial .

As examples of "factorials" we have

3' =3 xXx 2%x 1 = 6

by = b x 3 x 2x 1 =24

5! = 5 X 4 x 3 x 2x1=120
10! = 3,628,800

Observe the following property of factorials:
n! =n(n - 1)} or (n+ 1)!= (n+ 1)(n!)

With this formula we may calculate n! for each natural number n
by a step-by-step process. However, since the numbers grow so

fast these calculations soon get too involved. Recourse to tables
18 recommended. - (At the end of Section 1k-4 we give a table of

the common logarithms of n! for n up to 100 . This table will
be useful for many of the computations arising in the next section.
But it may also be used, in conjunction with the logarithm table
following it, to get approximations to n! for n up to 100 )

The equation
(n + 1) = (n + 1)n!

suggests the possibility of extending the definition of n! to
»-include n = O:.

1! = 1(o!) ,
i.e. o' = 1

We shall find that doing this will enable us to simpiify many of
the problems we consider in this chapter.

[sec. 14-3]
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Using factorial notation, our formula for P(n,m) may be
erpressed quite compactly:

P(n,m) = n(n - 1)(n - 2)...(n - m + 1)

.

A(n - n - 2t ) R

nt

T -omT

» Interpreting 0! to be 1 , this expression holds even when m = r
for then '

n,n) =m--b—.r=n. ’

which agrees with our previous expression for P(n,n) .

Example 14-3a: In a contest with twelve entries, how many
ways can a first and a second prize be awarded if no enpry is

entitled to more than one prize?

Solution: Our problem calls for the number of couples of the
form (one entry, another entry) without duplication, where the
first entry wins first prize and the other wins second prize. The
number of such couples is P(12,2) , so the answer is 12 x 11
or 132 ,

Example 14-3b: A map of four countries is to be colored with
a different color for each country. If six colors are available,
how many different ways may the map be colored?

Solution: We want the number of 4-permutactions of a set
having six elements, Each quadruple has the form (color of first
country, color of second, color of third, color of fourth). The
answer i1s P(6,4) , wvhich is 6 x 5x 4 x 3 or 360 ways,

1

ey
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Example 14-3c: Suppose a class of twenty students decides to
leave the room in a different order each day, How many days would
be required for the class to leave the room in all possible orders? -

‘Answer: 20! days. If they work at it 365 days a year, it
will take.approximately 6.7 quadrillion years. (20! X 2.4329 x 10
Even if they went through the door in a different order every second,
it would take over 7O billion years.

1t

Example 14-3d: How many ways may the numbers be arranged on
a roulette wheel? (There are 38 'numbers": 00,0, and the
natural numbers 1, 2, 3, ... 36 .)

First Solution: If it is an honest wheel we cannot distinguish
any one place from any other. Thus no matter wvhere 00 may be

placed, there are 37! ways of arranging the numbers
‘0,1, 2, ..., 36 . (If 1t is not an honest wheel, so that the
places are distinguishable, the number is 38!.)

Second Solution: Let us consider the set of all 38-permuta-
tions of (00, 0,1, 2, 3, ..., 36) = Their number is
P(38,33) = 38! . Corresponding to each such 38-permutation,

(al ’ a2 ) v a38) ’

there are 37 other permutations
(a2 ) a3 ) au y v a38 ’ al) ’
(a3 ’ au y s a38 » al ’ a2) ’
(a38 s 81 5 -+ 5 835 836 a37) ’

which cannot be distinguished from it on the (honest ) wheel.

o
at
&S
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Thus 1f N 1S the number of "distinguishable" permutations of

(oo, 0, 1, ..., 36}, we have
38N = P(38,38) = 38!,
SO N = 371!

In *he general case, there are (n - 1)! circular permuta-
tions of a set having n elements.

Exercises 14.3

1. How many five letter "words" may be formed from the letters
A, B, C, D, E, F, and G ? How many if no letter is repeated?

2. How many ways may a president, vice-president, and secretary
be elected from a club of twehty-five members if any member
may hold any one of the three offices, but no member may hold
more than one office simultaneously?

3. How many three digit numerals may be formed using the digits
1,2, 3, 4% 5, 6 if no digit is repeated in a numeral?
Hou many 1f repetitions are allowed?

4. How many four digit numerals may be formed using the digits
1,2,3, %4, 5, 6 1if no digit is repeated in a numeral?
How many 1f repetitions are allowed?

U

How many four digit numerals may be formed using the digits

2, 4, 6, 8 1if no digit i1s repeated in a numeral? How

many if repetitions are allowed?

6. How many seven letter "words" may be formed using the letters
of the word STANFORD ? How many 1f no letter is repeated?

7. How many different arrangements may be made for seven books
on a shelf 1f the boocks are each of a different size?

8. Four persons are to ride in an alrport limousine having six

empty seats, How many different ways could they be seated?

35
[sec. 14-3]
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11.
12,
13.

1k,

15.
16,

17.

18.

19.
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Three traveling salesmen arrived at a town having four hotels.
How many ways could they each ghoose a different hotel?

How many different combinations may be set on a lock having
twenty numerals if the combination is a 3-permutation?

How many different batting orders may a baseball team manager
form if he does not consider changing any but the last three
places in the order?

How many different ways may the letters a, b, ¢, d, e, f

be arranged with no repetitions so as to begin with ab in
each case?

How many three digit numerals having no repeated digits may
be formed from the digits 1, 2, 3, 4 , 5 so that the
middle digit is 3 ?

How many S-permutations including the letter C may be
formed from the letters A, B, C, D, E, F, G ?

How many ways may a photographer arrange four women and five
men in two rows if women must stand in the first row and men
in the second?

How many license plates may'be made using two letters of a
twenty-six letter alphabet followed by a four digit numeral?
(Zero may be used at any place in the numeral.) :
How many ways are there for eight children to form a ring
around a May Pole? '

If the number of ways to lay a set of tire weights in a line
is six times thé number of ways they may be placed on the o
tire rim, how many weights are there?

How many ways could King Arthur and eight of his.knights sit
at the Round Table if one of the seats was a throne chair for
King Arthur only and there are eight other seats?

o
o
it
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20. Find the exact numerical value of each of the following:

@ B @) 5 () o
(») 24 (e) =rby (h) =35
(c) 187 (£) 1335y (1) 5(5! + 1)

21, Solve for the natural number o :

(a) 1325‘577 =930, 2<n. (c) 2(n+ 2,4 - 72.P(n,2) =0.

() P(n,5) =20 - P(n,3) . (d) P(n + 1,3) - 10+ P(n=-1,2)=

22. Simplify (n and m are natural numbers):

O R
(0) iy (a) {p=2)

(e) (n-m-2)¥n-m=-1)(n - m) , m<n .

(f) n[n!+ (n-1)4], l¢n.

(6) m=1yr+ars 1<n. s
(h) nin.'+ (n- l).'l

o+ 1)I - n!

(1 Lo f‘%%!-+1§?(3 i){)(n 1), 1<

23. Prove each of the following for natural numbers m -and n :
(a) P(n,3) + 3 * P(n,2) + P(n,1) = nd .

(b) (n+1)n - n!+ (2n - 1)(n - 1)+ (n - 1)(n - 2)1]
= (n+ 2)!, l<¢<n .

(¢) P(n+1,m)=(n+1) - P(n,m- 1), m<n+ 1.,

(a) P(n,m

(e) P(

=m* P(n-1, m-1) + P(n - 1,m) , m<n o,
=P(n-2m)+2m-Pn-2m-1)+mm-1)
n-2,m-2), m<n - 2.,

350
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1k.4, Combinations.

In this section we consider the following counting problems:
(1) Given a finite set having n elements, how many subsets
does it have? )

(11) Given a finite set having n elements, how many

l-element, 2-element, 3-element, , m-element subsets does 1t

have? (Here m 1s any natural number not exceedi-: n L)

Problem (i), being the easier, we consider first. Suppose
our set has the elements

81 » 8 ey By

The various subsets of (al y Bp s een an] may be formed by

going down the 1list of members and for each member elther taking
it or not taking it. The process of forming a subset of
[al » 8o 5 eee an] can therefore be described by giving an

ordered n-tuple, each of whose components is either T (meaning
"t:%e¢ 'y or D (meaning "Jon't take').

Fo» example, with n = 4 , our set is '[al ) 85, 84 . au]
and the quadruple (T , T, D, D) yields the subset [al,ae]:
{al » 8o 5 83, au]

(r, T, D, D)

{dl ’ a2 ]
The quadruple (D, T, D, T) gives (a,, ayl:

{al ’ a2 ’ a3 ) au]
(b, T, D, T)

( 85 au]

307
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That each subset 1s described by such a "list of instructions" is
1llustrated by the following scheme. Given the subset [a3 R au]
we have '

(al 2 a2 » a3 ’ au}
[ | a3 2 au}
(b,p, T, T)

Since each subset corresponds to exactly one of these ordered
n-tuples, the number of subsets of [al » 80y cee an) is the -
same as the number of ordered n-tuples one can form from the
elements of the set (T , D} . At the end of Section 14.2, we
found that the number of such ordered n-tuples 1s 2% . Thus we
have the followling theorem.

Theorem 14-%a: There are 2%  subsets of a fiunlte set whilch
has n elements.

Note, in particular, two "subsets" which have been counted.
They are the extreme cases in which the n-tuple has all T's
(the "subset" corresponding to this n-tuple 1s the whole set); and
the case in which the n-tuple has all D's (the "empty" or "void"
subset, contalning none of the members of the glven set).

Example 1li4-4a: Since there are 100 Senators, the total
number of Senate Committees which can be formed 1s 2100 -1, 1if
we include the committee of the whole but exclude the committee
with no members. This number 1is

1,267,650,6oo,228,229,401,496,703,205,375'.

We now consider Problem (11): Given a finite set having n
elements, how many m-element subsets does it have, where m 1s
any natural number not exceeding n ? An m-element subset of a
set having n elements ls often called a combination of the n
elements taken m at a gggg.

{sec. 1h-4]
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Let us look at some examples. Given the set (a,b,c} with
three members, we have the following non-empty subsets

(a} , () , (e)
(b,e} , (a,e} , (a,b]
(a,b,c}

~ This example is rather simplé, but 1t tells us a good déal
about the general question. Thus a set having n elements has -n-..
subsets each with 1 element (one such subset corresponding to each
element--the one in the subset), A set having n elements has n
subsets each with n - 1 elements (one such subset corresponding
to each element--the one not in the subset). And, of course,
there is only one n-element subset of a sct having n elements;
it 1s the whole set,.

There are many different ways in use to denote the number of
m-element subsets of a set having n elements. Some are

n m
(m) ’ ncm ’ C n’ C(n!m) .

The last one of these we adopt in this book.
We have Jjust seen that
¢(n,1) =n, C{ny,n -1) =n, C(n,n) =1 .

Now let us consider the subsets of (a,b,c,d} . Here n = 4 .
We already know C(4,1) , C(4,3) , C(4,4) . We have only to
determine C(4,2) . The following scheme exhlbits the 2-element
subsets of (a,b,c,d}):
(a, b, ¢, d)

(a , b)

(a , c)
(a, d)

(o, c)
(b, d)
(c , d)

There ure six. Thus C(4,2) = 6 .
[sec. 14-4]
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We may detect a connection between our current problem and
the permutation protlems considered in Section 14-3 if we compare
our last 1list with Table 14-4a exhibiting the ordered couples
which may be formed with elements of {a,v,c,d} .

a b . c 4

(2,a) (2,b) (a,c) (a,q)
b | (v,a) ()  (b,e) (b,d)
(c,a)  (c,b) (c,c) (c,d)

(

d- (d:a) ' (d:b) (d:c)

d,d)
Table 1l4-la
The subsets
(a,p} , (a,c} , (a,d},
{v,e} , (b,d), .
{c,d)

are represented in Tablé 1l4-L4a by the couples
(a’b) 3 (a’c) ) (a’d) ?
(v,e) , (v,4) ,

(c,d)

appearing in the upper right-hand corner. But they are also
represented by the couples in the lower left of Table 1ld-ka:

369
‘[sec, 1h-4]
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Let us match these couples to the subsets as follows

(a,b}: (a,p) , (b,a)
{a,c]): (a,c) , (c,a)
{b,c): (b,c) , (c,D)
{(a,d}: (a,d) , (d,a)
{v,d}: (b,d) , (d,Db)
(c,d): | (e,d), (d,c)

Examing this arrangement, we see that each ordered couple to the
right of the line 1s a 2-permutation of the set at the left of 1its
row. For each such 2-element subset, there are therefore P(2,2).
2.permutations. Hence P(2,2) 1s the number of columns to the
right of the line. C(4,2) 4s the number of rows. Since the
total number of 2-permutations we can form from (a,b,c,d} 1is
P(4,2) , we have

C(’-l,?) X P(Q,?) = P(’-l,?) ’
and hence '

c(4,2) = £ ‘*,2 =33 =6.

We now consider a set having n elements. C(n,m) denotes
the (ﬁnknown) number of 1its m-element subsets. Let us imagline a
table in which each of these m-element subsets determlnes a row.
In each of the rows we write the P(m,m) m-permutations of the
subset which identifies the row. The total number of entries in
this table is P(n,m) , the number of all m-element permutations
of the given set. Multiplying the number of rows and the number
of columns we have ' '

or c(n,m) =

(n - m) s n!

[sec. 1lh-U4]



810

Example 14-4b: Two cards are dealt from a deck of 52 cards,
How many ways may this be done?

Solution: We want the number of 2-element ‘subsets of a

52-elemen€ set, e R

' !
c(52,2) = Eé%%%?? - igfﬁigll - (26)(51)/a 1326 .

Example l4-4c: How many 5-card poker hands tontaining the
ace of spades are possible with a 52-card deck?

1! .
Answer:  C(51,4) = ET%E$TT . Using the table for 1log n!
(following these examples) we find

log 4! = 1,3802 log 51! = 66.1906
log 47! = B9.h127 log 41(47!) = 60.7929
log bM(U71!) = 60.7929 log C(51,4) = 5.3977
hence c(51,4) ¥ 2.5 x 10°

Example 14-4d: Show that C(n,m) = C(n,n - m) and interpret
this formula in terms of the subsets of a gilven set,

n!

M
n -‘ﬁ)!%n - (n-m))T " T - mm’
C(n,m) |

Solution: C(n,n - m) =

!

C(n,m) 1is the number of m-element subsets of a set having n
elements. Each of these subsets may be paired with an (n - m)-
element subset of the same set; namely, the subset containing none
of the members of the original subset. This palring shows that the
m-element subsets and the (n - m)-element subsets of a gilven set
are equally numerous; and that is exactly what the formula states,

4

304
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Example li4-4e: How many ways may an arbitrary natural number
n be represented as a sum of m natural numbers if we regard sums
differing in the order of their terms as different '"representations™

- - Solution: We look first at a special case: n=5, m= 3 .,
‘Let us consider 5 "tallies" in a row

Our problem is equivalent to splitting this row of tallies into
three parts. Thus

o1 1%l |
yields the éum l1+24+ 2;
yields 1+3+ 1, and l*l ll*l
A I B B

yields 1 + 1 + 3 . Splitting the row of tallies into three parts
is accomplished by selecting 2 of the four spaces between adjacent
tallies. This can be done in C(4,2) , or 6 ways.

In the general case we have n tallles with n - 1 spaces:

| | I
| T 2 | 3 - n-2 n<-1

Each representation of n as a sum of m terms corresponds to a
selection of an (m - 1)-element subset of the set of n -1
spaces, The number is therefore

C(n -1, m-1) .,

Example 14-U4f: 1If a class has 20 students and the class-
room has 2 doors and 3 windows, how many different ways may the
teacher and the students leave in case of a fire if at least one
person goes through each of these exits?

L
o
N

303
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Solution: Since it's "every man for himself", we treat all
21 souls on an equal basis. The natural number 21 may be
written as a sum of 5 natural numbers (one term for each of the
exits) in C(21 - 1, 5 - 1) ways, regarding as distinct such
répreéentations differing in the order of their terms.

c(21 - 1,5 - 1) = C(20,4) = 4,845 .,

(The size of the answer Justifies having a plan of egress ahead of
time, obviating numerous hasty decisions.) '

Example li-lg: How many bridge hands of 13 cards contain
exactly 5 spades?

Solution: We want the number of ordered couples (A,B) ,
where A i1s a set of 5 spades and B 1s a set of 8 non-spades.,
There are c(13,5) possibilities for A aud C(39,8) possi-
bilities for B . Hence there are C(13,5) x C€(39,8) such
couples.,

c(13,5) x ¢(39,8) X 7.92 x 10%?

[sec. 1h=4]
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n log n! n log nl n log n! n log n!
0 0.0000 25 25.1907 50 64,4831 75 109.3946
1 0.0000 26 26.6056 51 66.1906 76 111.2754
2 0.3010 27 28.0370 52 67.9067 77 113.1619
3 0.7782 28 29,4841 53 69.6309 78 115.0540. .
it 1.3802 29 30.9465 54 71.3633 79 116.9516
5 2.0792 30 32.4237 55 73.1037 80 118.8547
6 2.8573 31 33.9150 56 74.8519 81 120.7632
7 3.7024 32 35.4202 57 76.6077 82 122.6770
8 4,605% 33 36.9387 58 78.3712 83 124,.5961
9 5.5598 34 38.4702 59 80.1420 84 126.5204
10 6.5598 35 4o.0142 00 81.9202 85 128.4498
11 7.6012 36 41.5705 61 83.7055 86 130.3843
12 8.6803 37 43,1387 62 85.4979 87 132.3238 .
13 9.7943 38 44,7185 63 87.2972 88 134, 2683
14 10.9404 39 46,3096 64 89.1034 89 136,2177
15 12.116% 4o 47,9117 65 90.9163 ‘90 138.1719
16 13.3206 41 49,5244 66 92.7359 91 140.1310
17 1k.s8511 42 51.1477 67 gl , 3620 92 142.0948
18 15.8063 43 52,7812 68 96.3945 | 93 14,0633
19 17.0851 4y sl h2h6 69 98.2333 94 146.0364
20 18.3861 45 56,0778 70 100.078% 95"  148.01M1
21 19.7083 46 57.7406 71 101.9297 96 149.9964
22  21.0%08 47 59,4127 72 103.7870 97 151.9831
23  22.4125 48 61.0939 73 105.6503 98 153.97k4
24 23.7927 49 62.7841 T 107.5196 99  15%.9700
[sec. 14-U4]}
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10

12
13
S 14

15
16
17
18
19

20
21

23

24

25
26
27
28
29

30
31
32
33
34

35
36
37
38
39

40
42
43
4y
P
47
48
49
50
52
53
54

0]

0000
ou1y
0792
1139

1461

1761
2041
2304
2553
2788

3010
3222
3424
3617
3802

3979
4150
4314
72
4624

4771
491k
5051
5185
5315

5411
5563
5682
5798
5011

6021
6128
6232
6335
6435

6532
6628
6721
6812
6902

6990
7076
7160
7243
7324

'FOUR-PLACE TABLE OF COMMON LOGARITHMS

1

oou3
o453
0828
1173
1492

1790
2068
2330
2577
2810

3032
3243
34hy
3636
3820

3997
4166
4330
4u87
4639

4786
4928
5065
5198
5328

5453
5575
5694
5809
5922

6031
6138
6243

6345

Ul

6542
6637
6730
6821
6911

©998
7084
7168
7251
7332

2

0086
o4g2
0864
1206
1523

1818
2095
2355
2601
2833

3054
3263
3464
3655
3838

4ol
4183
4346
4502
4esh

4800
4942
5079
5211
5340

5465
5587
5705
5821
5933

ou2
6149
6253

6355

6454

6551
6646

6739
6830
6920

7007
7093

3

0128
0531
0899
1239
1553

1847
2122
2380
2625
2856

3075
3284
3483
3674
3856

ko3l
4200
4362
4518
k669

4814
4955
5092
5224
5353

5478
5599
5717
5832
5944

6053
6160
6263
6365
616k

6561
6656
6749
6839
6928

7016
7101
7185
7267
7348

304

Y

0170
0569
0934
1271
1584

1875
2148
2kos
2648
2878

3096
3304
3502
3692
3874

4ou8
4216
4378
4533
14683

4829
4969
5105
5237
5366

5490
5611
5729
5843
5955

6064
6170
6274
6375
647l

6571
6665
6758
6848
6937

TO2U
7110
7193
7275
7356

5

o212
0607
0969
1303
1614

1503
2175
2430
2672
2900

3118
3324
3522
3711
3892

Lob5
4232
4393
4548

4698

1843
1983
5119
5250
2378

5502
5623

6075
6180
6284
6385
6484

6580
6675
6767
6857
6946

7033
7118
7202
7284
7364

[sec. 14-4)
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0253
0645

1004.

1335
1644

1931
2201
2455
2695

2923 -

3139
3345
3541
3729
3909

koB2
42hg
huo9
4564
4713

4857
hg997
5132
5263

5391

5514
5632
575

5866
5977

6085
6191
6294
6395
6493

6590
6684
6776
6866
6955

T0U2
7126
7210
7292
7372

7
029l
0682
1038
1367
1673

1959
2227

2480
2718
2945

3160
3365
3560
3747
3927

kogg
4265
hh25
4579

4728

4871
5011
5145
5276
5403

5527
5647
5763
2877
5988

6096
6201

6304

6405
6503

6599
6693
6785
6875
6964

7050
7135
7218
7300
7380

8

0334
0719
1072
1399
1703

1987
2253
2504
27h2
2967

3181
3385
3579
3766
3945

4116
4281
Lyho

450}

172

4886
5024
5159
5289
5416

5539
5658
5775
5888
5999

6107

6212
6314
6415
6513

6609 -

6702
6794
6884
6972

7059
7143
7226
7303
7388

9

0374
0755
1106
1430

1732

2014
2279
2529
2765
2989

3201
3404
3598
3784
3962

4133
4298
Lys6
4609
b7s7
4500
5038
5172
5302
5428

5551
5670
5786
5899
6010

6117
6222
6325
olas
6522

6618
6712
6803
6893
6981

7067
7152
7235
7316
7396



0
TL0L
7482
1559
7634
7709

7782

7853
7924

. 7993

8062

8129
8195
8261
8325
8388

8Ls1
8513
8573
8633
8692

8751
8808
8865
8921
8976

9031
9085
9138
919l
9243

9294
9345
9395
9khs
9koh

g542
9590
9638
9685
9731

o777
9823
0868
go12
9956

9201
9253

9304
9355
940%5
9455
950k

9552
9600
o647
o694
9741

9786
9832
9877
9921
9965

9745

9791
9836
0881
9926
9969

367

9053
9106
9159
9212
9263

9315
9365
9u15
9465
9513

9562
9609
9657
9703
9750

9795
9841

9886
9930
997+

5

7443
7520
1597
7672
T745

7818
7889
7959
8028
8096

8162
8228
8293

- 8357

8420

8482
8543
8603
8663
8722

8779
8837
8893
89k9
ook

9058
0112
9165
9217
9269

9320
9370
9420
oL69
9518

566
961k
9661
9708
9754

9800
9845
9890
9934
9978

[sec. 1b4-4]

6

T451
7528
7604

7679
7752

7825 7T
7896
7966

8035
8102

8169
8235
8299
8363
8426

8488
8549
8609
8669
8727

8785
83u2
8899
8954
9009

9063
9117
9170
9222
927k

9325
9375
gl25
QuTh
9523

9571

9666
9713
9759

9805
9850
9894
9939

9983

8

7466
7543
761
769
7767

7839
7910
7980
8048
8116

8182
8248
8312
8376
8439

815

9
ThTY
7551
7627
7701
TTTY

7846

7917
7987
8055
8122

8189
8254
8319
8382
8llsg

8506
8567
8627
8686
38745

8802
8859
8915
8971
9025

9079
9133
9186
9238

9289

9340
9390
9hho
9489
9538

9586

9680
9727
9773

9818
0863
9908
9952
9996
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10,

Exercises 14-4
Using the set ({a, b, ¢, d}:
(a) Find the number of subsets.

(b) List the 3-element subsets.

(¢) List the 3-permutations for each of the 3-element
subsets.

(d) Find the value of C(4,3)

Evaluate each of the following:

(a) c(10,2)  (d) c(25,24) (8) £843)
(v) ¢(8,3) (e) c(12,10) o6
(¢) c(12,5) (f) c¢(100,98) (h) 2525,2%

Calculate the value of log 100} to four decimal places.

A student-is instructed to answer any eight of ten questions
on an examination. How many different ways are there for him
to choose the questions he answers?

There are ten entries in a round-robin tennis tournament.
How many matches must be scheduled?

How many distinct lines are determined by fifteen points on
a plane if no three of the points are collinear?

How many triangles are determined by eight points on a plane
if no three of the points are collinear? .

A seed company tests its tulip bulbs in sets of sixteen.
Four bulbs are selected for planting from each set. If all
four grow, the remaining twelve are sold with a guarantee
that at least eight of them will grow. How many ways can
the four bulbs be selected for test planting from a set of
sixteen?

How many committees of four members may be formed from a set
of nine possiblie members?

How many committees consisting of two Democrats and two
Republicans may be formea from a set of seven Democrats and
six Republicans?
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19.

20.
21.

22.
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How many parallelograms are determined by a set of elght
parallel lines intersecting another set of five parallel
lines?

A basketball squad consists of four centers, five forwards,
and six guards. How many different teams may the coach form
if players can be used only at their one position?

From a set of twenty consonants and the five vowels, how

many "words" may be formed consisting of three different
vowels and two different consonants if one of the vowels

must be a ?

How many five letter "words" containing two vowels and three
consonants may be formed from the letters of the word
LOGARITHM °?

Referring to the array given in Exercise 1h4-1, 1, determine
the number of ways one can spell LOGARITHMS starting from a
given one of the L's, going right or down for the next letter
each time, and ending at S. (Suppose the given L 1ies in
the mth
down m - 1 times between successive letters.) Check your
result by using the formula you obtain to solve Exercise
14-1, 1 "again."

row from the bottom; then 1t is necessary to move

Using the table for 1log n! find approximate answers for
Exercises 16, 17, ... , 22.

A sample of five items is to be selected from a set of one
hundred. How many different samples may be formed?

How many different poker hands of five cards each can be
formed from a deck of fifty-two cards?

How many samples of ten units may be formed from a set of
one hundred 1light bulbs?

How many subsets of five cards containing exactly three aces
may be formed from a deck of fifty-two cards?

How many bridge hands can have two six-card sults?

How many bridge hands have one seven-card sult and three
two-card suits?

Row mahy bridge hands have a "5-4-3-1" distribution?

[sec. 14-4]
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23. If ¢(n,12) = C(n,8) , find the value of C(n,17)

24, If c(18,4) - C(18,m + 2) = 0 , find the value of C(m,5)

25. Prove Pascal's Theorem: C{n,m) =C(n - 1, m - 1)
+Cn-1,m) ,1l<¢mgn-1

26, Show that Pascal's Theorem may be illustrated by the fdllow;MMV

ing table (called Pascalfs Triangle), where entries in the
table are of the form C(n,m) for 1 ¢ m¢ n, and extend
the table through the line for n = 10 .

m

n 0 1 2 3 L
1 1 i
2 1 2 1

3 1

27. Prove that C(n,n - 2) = C(n - 1,n - 2) + C(n - 2,n - 3)
+ ... + 0(2,1) + C(2,0), if 3 <¢n

14-5, The Binomial ‘‘hecrem.

We are all familiar with the formula

2 _ 2 2
) .

(x +y)" =x“"+ Xy +y

Higher powers of the binomial x + y may be expressed as poly-
nomials in x and y by multiplying each result in turn by
X + Yy . Thus

(x +y)3

(x + y)% (x + ¥)

(x® + 2xy + y2)(x + y)

x3 + 2x2y + xy2 + x2y + 2xy2 + y3

x3 + 3x2y + 3xy2 + y3 ’

5,

379
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1

(x + )3 (x + )

3. 3x2y + 3xy2 +'y3)

(x + ¥y

(x

xu + 3x

(x +y)

3y + 3x2y2 + xy3 + x?y

+‘3x2y2 + 3xy3 o yu

2
2y

i

M

= X + 4x3y + 6x + nyB + yu .

Proceeding thié way, we may derive the expansion of each higher
power, (x + y)? , in a step-by-step fashion.

However, it 1s possible to apply our theory of combinations
to obtain the expansion of (x + y)* where n 1s an arbitrary
natural numbar. Thus we may avoid the step-by-step process and
write out the entire expansion for any given n without first
determining the expansion for each smaller value of n . The
saving, therefore, in calculation is very great. Suppose, for
example, that you need to know the first 6 coefficients in the
expansion of (x -+ y)loo

such questions often arise in sclentific and sociological problems. )

(For reasons we cannot explain here,

Using the formula we shall derive, you would not have to find first
all the coefficients in all the expansions up to (x + y)loo ; the
6 coefficients you wanted could be written down without any

preliminary caleulations. “

Before we attack the general problem, we vecast it in a
simpler form. Note that

(x + )" = [x(1 + D7 = @+ DT .

If we set 2z = % , our problem amounts to determining the expansion

of x™(1 + 2)® . This can be done if we determine the coefficients
in the expansion of (1 + z)® . For all we need do with this ex-
pansion is multiply each term by x" . Finally replacing 2 by

% we can obtain the expansion of (x + y)n .

871

[sec. 14-5]




820

We turn now to the expansion of (1 + 2z)® . In order to
obtaln the coefficients in this expansion, we shift our attention
to the product

(l 4o Zl)(l + 22)°°-(l +lzn)

Note that when

2] =25 = ... =2, =2 the product reduces to

n )
(1 + 2)" since it has n factors.
We look first at some examples. For n = 2 , we have

(1 +29)(1 + 25) =1+ (27 + 25) + 2.2, .

For n= 3 :
(1 + 29)(1 +25)(1 +23) =1+ (2 + 25+ 23) + (2,24 + 2124
+ 2325) + 292524
For n = 4
(1 +23)(1 + 25)(2 + 23)(1 +2y) =1+ (27 + 2,5+ 2y + zy)

+ (2125 + 2023 + 22y + 2923 + 22y + 232y)
+ (222324 + 29252y + Z 252y + 212223)'
+ 2,2,Z,Zy .
l 2 3 u . 9/
Studying these examples gives the clue to the general pattern.
For n = 2, conslder the set [2122} . Its non-empty subsets are

(zl} ’ {22} , and {2122} H
each of which corresponds to a term in the expansion:
[zl} ’ [22] ’ [zlz2] H

Zl ) wze s Z122

[sec. 14-5]
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Similarly for n = 3 . We 1list the non-empty subsets of
[zl s 2o, 23] and the terms appearing 1n the expansion which

correspond to them:

(2, (25) , (25) , (223) 5 (21,25) » (2,20) 5 (21,2p073) »

2z 2z 2z

1%3 » %1%

zy o s Z3 s ZpZ3 o s %y Zp Z3 .
The expansions themselves (at least for n = 2, n=3) are the
sums of the terms listed, plus the extra term "1" , The same

pattern holds in the case n = 4 |

What happens 1n these cases, when Zy 5 Zg Z3 s etc., are
all replaced by 2z ? '

The terms contributing the flrst power of 2 to the sum are
those corresponding to l-element subsets; those contrlbuting the
second power of 2z to the sum are those correspondlng to 2.element
subsets; etc. Thus the number of z's (and hence the coeffilclent

of z in the expansion) 18  C(n,1); the coefficlent of 22 1is

¢(n,2) ; and for n > 2, the coefficient of 23 1s c(n,3) .
These observatlions are valid at least when n=2, n=3, n= ho,
The binomial theorem asserts that thils is the case for n an

arbltrary natural number.
In the general case, expanding the product

(1 + zl)(l + ze)...(l + zn)

yields terms of the followlng forms:

1

Zl B Z2 3 eee 3 Zn C(n,l)

leéh"éléS » wre s Zn1®n ?(n,e)

292523 5 +-+ s Zn_2%n.1%n ¢(n,3)

Z9Z2p ¢+ Zp C(n,n)
373
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At the right of each line we give the number of terms in the line.
Replacing z, , Zy, ... , 2 each by z yields the terms

n
1
Z,Z, ... , Z ¢(n,1)
22,22, ... , z° . C(n,2)
z3,z3, s 23 C(n, 3)
z" ¢(n,n)

Adding these terms we have our expansion:

(1+2)" =1+ C(n,1)z + ¢(n,2)z° + 6(n,3)z% + ... + c(n,n)z"
or, nore compactly, n
(1 +2)" = E: C(n,m)z™ ,
m=0 .

if we agree to write C(n,0) =1 .

Returning to our original question regarding the expansion
of (x + y)", we have, putting % in place of =z

(x+ y)" = x"(1 + &7

2 n
= x(1 + C(n,l)% + C(n,2)z? 4 e, + C(n,n)zﬁ
X X
= x" + C(n,l)xn"ly + C(n,2)xn'2y2 + «o. + C{n,n)y" ,
or
(x +3)% = x"(1 + L)°
n
n ¥
= X E: C(n,m)
m=0 X a
n
= }: c(n,m)x""My™
m=0

This 1s the binomial theorem.

'S T

(_) " Ii
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Theorem 14-5a: If n 1is any natural number, and if X and

y are any real (or complex) numbers, then

Note

Thus

of a
seaen

n
5 c(n,m)x"y"

)
m=0

X7+ C(n,l)xn'ly + ... + C(n,n)y

(x + )"

i

Example 1b4-5a:

x2 + 0(5,l)xuy + C(5,2)x3y2 + C(5,
+ 0(5,4)xyu + C(5,5)y" .

)
x5 + 5xuy + le3y2 + leEy3 + 5xyu + y5 .

i

(x + y)°

]

Example 1U4-5b:

(% - 30" = D)+ 4D N-8v7) + 6(x%)2 (-347)°
s 5(x3) (37 + (3D
= x8 - 12x6,f37+ 5ux4y - 108x2yﬁ_+ 81y2 .

that if we take x =y = 1 ' in Theorem ll-4a, we obtain
n n

o1+ 1) = Z C(n,m)1" ™™ = Z C(n,m.

m=0 m=0

the sum of the number of

O-element subsets (c(n,0))
l-element subsets (C(n,1))
2_element subsets - (c(n,2))
n-element subsets (c(n,n))

set having n elements 1s o7 . Note that we have already
that 27 1s the totazl number of subsets (including the empty

3i5

[sec. 14-5]



824

set and the whole set) of a set with n elements. Thus the
binomial theorem ties together our solutions of the two problems
we considered in Section 14-4. (Cf. The solutions of Exercises
14-1,1 and 14-4,15 .)

Exercises 14-5

1. .  Find the expansion for each of the following:

(@) (x - y)* (8) (5 +2)°

(b) (x - )3 () (x - 3)°

(¢) (a + )3 (1) (24 x)8

(4) (a+ )T (3) (c® - 2ca)?
(e) (2u+ v)° () (x~1 4 2y3)P
(£) (r - 2s)® 1) (%-3)°

2. (a) What is the sum of the a,b exponents in the k! term

~ in the expansion of (a + b)? , n,k in N and k <n ?
(b) How many terms are there in the expansion of (a + b)73 ?
" In (a + b)", n in N ?
(¢) Which term in the expansion of (a + b
middle term?
(d) For which values of n will the expansion of (a + b)n ,
n in N , have no middle term?
(e) - Give the C(n,m) form of the coefficient of the twenty-
first term in the expansion of (a + b)35 |
(f) Which terms in the expansion of (a + b)72 have their
coefficients equal to the coefficient of the thirty-
first term?
(g) If the coefficlents of the sixth and sixteenth terms in
the expansion of (a + b)? , n in N, are equal,

)32 is the

what 1s the value of n 2
3740
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(h) If the coefficients of the fourth and sixteenth terms in
the expansion of = (a + ) , n in N, are equal, find

the middle term in the expansion,

3. (a) Find the seventh term in the expansion of (a + b)15 .
(b) Find the fourth term in the expansion of (x - 5)L3
(¢c) Fisd the twelfth term in the expansion of (x - l)13
(d) Find the middle term in the expansion of (% + %)10

(e) Find the middle term in the expansion of (l - xe)12 .

2

(f) Find the eighth term in the expansion of (1 - %?)14

(g) Find the term having b/ as a factor in the expansion
of (a + 1)t .
(h) Find the term having y5 as a factor in the expansion
o]
of (x~ - y)9 .

i
(1) Find the term having xI* as a factor in the expansion

2 2,10
of (E" x) .
(j) Find the term having y3 as a factor in the expansion
1

of (x - 2&2)9 .

(k) Find the term NOT having a factor of X in the

expansion of (x2 - %)12 .

.+ 4. Find the numerical value for each of the following to four
decimal places:

(a) 1.024 (Hint: 1.02 =1 + 0.02) (e) 1.98lo

(b) 1.02%2 (£) (1-1)8
(¢) 0.98% (g) (2-1)°
(a) 2.01%° () (5 +51)7

S
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14_-6. Arrangements and Partitions.

lle have considéred the permutations and combinations of
elements of a given finite set. 1In this section we consider
another type of countlrg problem, one whose solution can be based
on our previous results,

Example 14-6a: How many distinguishable arrangements are
there of the letters in the word "loon" ?

Solution: If the word were "loan" instead of "loon", the
methods discussed in Section 14-3 would apply directly and give
the answer PR(4,4) , 1i.e., 24 . However, we may expect that the
answer to the present problem is much smaller, since we have
duplications. Thus the permutations "loan" and "laon" correspond
to the indistinguishable arrangements "loon'" and ™oon" in our
current problem. Suppose, indeed, that we consider a compléte
1ist of the l-permutations of the set (1l,0,a,n} . These pérmuta-
tions may be paired with one another as follows:

loan , laon; olan , alon; oaln , aoln;
nloa , nlao; nola , nalo; noal , naol;
anlo , onla; anol , onal; lnoa , 1lnao;
canl , aonl; lano , lona; alno , olna

In each of these pairs the letter "1" occuples the same place, the
letter "n" occupies the same place, but the letters "o" , "a" are
interchanged. Replacing each "a" here by an "o" iie see that each
of these pairs yfelds a pailr of indistinguishable arrangements of
the letters of "loon". Thus the number of arrangements of the
letters of "loon" is just half the corresponding number for "loan".

Qur answer 1s therefore 12 .

-

This example provides the Key to the solution of the general
problem of determining the number of arrangements of a 1ist con

taining repetitions.

[sec. 14-6]
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Corresponding to each arrangement of the letters of "loon"
we have P(2,2) permutations of (1,0,a,n} arising from permuta-
tions of (o,a)} . '

Consider the problem of counting the number of arrangements
of the 12 letters of "divisibility'". Here the letter "{" occurs
5 times, but each of the other 7 letters occurs just once. Now
p(12,12) 1s the number of arrangements of the elements of a set
having 12 elements such as {d,a,v,e,s,i,b,0,1,u,t,y} . Let us
write A for the (unknown) numbef of different arrangements of the
letters of "divisibility". Corresponding to each of these arrange-
ments are P(5,5) permutations of the letters d,a,v,e,s,1,b,0,1,

u,t,y . ,

Hence A x P(5,5) = P(12,12)

and A = Pé%g’%§l = l?{ =12x 11 x 10 X 9 x 8 .
H 0

Suppose, in general, we have a list,of n 1ltems, m of
which are the same but no two of the remaining n - m are the .
same. For example

X,X,y,Z,X,u,x,v. (n=8,m=ll~)
Corresponding to the given list, let us consider a second 1list in

which tne duplicated items are distingulshed (say, by subscripts).
In our example,

Xy 5 Xp s ¥, 2, X3, U Xy, V .
The number of arrangements of the second 1ist is P(n,n) . Each
arrangement of the first list corresponds to P(m,m) arrangements

of tne second. If A is the number of distinguishable arrange-~
ments of the original list,

A - P(m,m) = P(n,n)

3

1
S0 8 = —

3

2

[sec} 14-6]
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Consider the corresponding problem for a list of n items,

my of one kind, m, of a second my  of a third kind, etc.,
n=m1+m2+-o-+mk.
If A 1is the number of distinguishable arrangements, then
_.n1!n2! ce nk! A =n?!,
nt
SO A = - .
m1! mej e mk!
This number is written as
( n )= n!
R R P my P ms mk! :
We note two special cases. If my = m and My = ... =m
as in the previous examples, we have
n! n!
A=mmr o TIT R
50 that our earlier formulas are Special cases of the general
formula. If k =2 and m =m, then my =n -m and
/ s _ n! _ _¢n
‘ml s oMy eee n&) “mMn - m)t = ¢(n,m) = (m) :
‘ Example 1l4-6b: How many distinguishable arrangements are
there of the letters in MISSISSIPPI 2
Solution: There are 11 letters, U of one kind (1) s

of another (S) , 2 of a third (P), and 1 other (M) .
formula gives
11!
(11)° (25)(11)

= 34,650 ,

: 339

[sec. 14-6]
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Exercises l4-6a

1. How many different six digit numerals may be written using
the digit 5 once, a 4 three times, and a 3 twice?

2. How many five symbol code "words" may be formed using three
dots and two dashes?

3. How many distinct "words" may be formed as arrangements of
the letters of PARALLELEPIPED ?

4, Suppose that on one dark day in a certain hospital, four
sets of ldentical male twins, two sets of ildentical female
twins, nine males (single births), and eleven females

(single births) are born, and cheap ink is used on their
name-tags. The next day (even darker) the ink fades away,
How many ways 1s it possible to mix *the children up? (Use
log n! table of Section 1l4-5 to approximate the answer. )

5. How many different ways may the letters of QUARTUS be
arranged so that the letter u follows the letter q ?

. How many different arrangements of the letters of PALLMALL

~may be formed so that all of the 1's are not together?

7. How many different ways may the letters of QUISQUIS be
arranged so that each q 1s followed by a u ?

8. How many three letter arrangements of the letters of SNOOP
may be formed? (Hint: consider cases as ;o the three letter
word having 0, 1, or 2 Ots.)

9, How many different arrangements of fdur letters may be made
from the letters of SPOOL ?

Partitions of a Set.

By a partition of a set A we mean a collection of subsets
of A having the properties

(1) no pailr of the subsets share any members,

(11) the union of all the subsets 1s A

Thus each element of A 1s in one and only one of the subsets.
The subsets themselves are called cells of the partition.

[cec. 14-6]
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Example 14-6c: The two sets:

(1) the set of even natural numbers,
(2) the set of odd natural numbers,

form a partition of the set of natural numbers. Its cells are the
two sets listed. The three sets:

(1) the set of positive real numbers,
(2) the set of negative real numbers,
(3)» the set whose only member 1is zero,

form a partition of the set of real numbers.

Example 14.6d: The set ({a,b,c} has the following partitions
(and no others without empty cells): . '

((a} , (v}, (e}}; (fa,p} , (c}}; ((a,c} , (®});
({e,p} , (a}}; ((a,b,c}} .

Since a partition is a collection, or set, whose members are
themselves sets, vwe are obliged to be rather generous with our
brackets when writing partitions. In the interests of economy (of
ink) and ease of reading, we introduce an alternate notation and
write, for the partitions listed in Example 14-6d:

(a;b;c] - [a,b;c] , [a,c;b} , [c,b;a], (a,b,c] ,

respectively. If we need speak only of the cells; without
exhiblting the elements in them, we shall write--as usual--

[Al ’ A2 ) LRI ] Ak}
for the partition of A uwhose cells are Ay s Ay oo, A
(Here Ay » Ay, ..., A are certain subsets of f .)

Vhen we consider k-permutations of the set

(A A A

1’ 2’ L k}

0

(i
i
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we deal with ordered k-tuples such as
(Ay » Ay e s Byd s
(Ao s Ay v s A
(A » Ay s oev s AQ)

Each of the k-permutations of a given partition of a set into k
cells will be called an ordered partition of the set., If in the
ordered paitition (Ay , Ay, ..., Ak) there are n; elements

in Al » Do elements 1n A2 s eee s Dy elements in Ak , we
shall call this partition an (nl; Np o oeee s 3 nk) partition,
The problem we now put 1é this: Given a finite set A ,
having n elements, how many (nl; Nps coves nk} partitions
(Ay 5 Apy ven sy Ak) of A are there? Since A; has n,
elements, A2 has ny, ..., Ak has n, . We have, 1in view

of the defining properties (i) , (ii1) of a partition
ny + Ng + ... +.nk =n .
‘We shall see that we have really solved this problem already.

All we must do tc see this is to rephrase 1t appropriately. First,
however, we look 2! uan example.

Example 14-6e: Some of the (3;2;2) partitions of
(a,b,c,d,e,f,g) aré '

(a,b,c;d,e;f,g] , [a,b,d;c,e58,8] , [a,b,d;c,f5e,g] .
There are, of course, many more. Notlce, however, that
T [a:c:b;_d:eif:g] ’ [a,b,d;e,c;g,'f] , [d,a,bsc,f;8,e]

are, respectively, simply dther ways of writing the same three
partitions as before. Consider, for example, the first in each of
these 1ists. Using the more elaborate notation, these are

({a,b,c} , (d,e} , (f,g)) and {{a,c,b} , (d.e}, (f,g}] .
383
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But the sets {a,b,c} and (a,c,b} are equal for they have the
same elements., Similarly for the other sets in each of these
partitions.

This example glves away the secret! The various cells are
unchanged 1f their elements are rearranged..-sc far as thelr
relationship to the partition 1tself 1s concerned, elements 1n the
same cell are "alike". Thus permuting the elements in a given
cell has no effect on the partition itself. Hence each ordered
partition '

[a,b,c;d,e;f,g]

corresponds to 3! x 2! x 2! permutations of the whole set,
Since there are 7! permutations of the given set there are
71

. . -

(3;2;2) partitions of it.

"We may explain this result another way. We want an ordered
triple of subsets where there 1s no duplicatioh of elements., We
can "choose" the first cell (which has 3 elements) in ¢C(7,3)
ways. Since no palr of cells may share any members, we have only
c(4,2) "cholces" for the second cell (which has 2 elements).
Finally there are C(2,2) ‘'choices" for the third cell,.
Altogether, such an ordered partition may be formed 1in

Cc(7,3) x C(4,2) x c(2,2)

7! 41 o
or FTOT X 75T X 3167
7t
or TTETET

n{ays .

In the general case, the number of (nl;ne; el nk)
partitions of an n-element set (where n = Ny + Do + ... + nk) is
n!
nl! ne! e nk7~‘
331
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Example 14.6f: There are ten entries in an elimination '
tennis tournament, How many ways may the first round of matches
be scheduled?

Solution: We want the number of (2;2;2;2;2) partitions
of a set with 10 elements (the 10 entries) . This number 1is
10! . 5
P— or, approximately, 1.1 x 10- .

(21)

Example 14_6g: Given a set having n elements, how many

(m;n - m) partitions does it have?

J
Ansvier: Eﬁ‘i{?TTTEYT . This i1s C(n,m) . That it should be

C(n,m) may be seen if we note that the first cell has m elements,
and all the other elements--if any--are in the second. Thus the
(m;jn - m) partitions of an n-element set are paired with the

subsets of the gilven set.

Exercises 1li-6b

1. Eight men attend a sales convention and find they are to be
in four double rooms. How many ways may they be assigned to

these rooms?
2. How many *subcommittees of two, three, and three members may
be formed from a committee of elght members i1f each committee

member can be on one and only one subcommittee? ‘

3. In how many ways can 10 1indistinguishable blue ﬁickets and
30 indistingulshable red tickets be distributed among 40
people if each person 1s to receive exactly one ticket? (Use
log n! table of Section 1l4-4 to approximate the answer, )

4, How many ways are there to arrange eight coins in a row so
there will be three heads and five talls showlng?
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5. How many sets of bridge hands can be dealt to four players
from a fifty-two card deck? (Use log n! table.)

6. (a) In how many ways can 6 people be partitioned into
three teams each consisting of two people? ‘
(b) In how many ways can 12 people be partitioned into
four teams each consisting of three people?
(c) Generalize.

14.7. Selections with Repetition.

Suppose you are in a store having n kinds of items and
more of each kind than you can afford to buy. How many different
selections of m items can you make?

This problem differs in two ways from the "arrangement
questions. we have considered. For one thing, we no longer take
account of the order in which the items are "selected". For
another, we suppose that--from the point of view of our resources
--the supply of each kind is unlimited. The last supposition 1is
for the sake of simplicity; without i1t the problem is much more
difficult, :

We begin with m = 1 . The answer here is just n , for if
we may select only one item our selection reduces to selecting one
of the n kinds. The number of ways is then C(n,1).

For m = 2 , the question is more interesting. The two items
may be alike or they may be different. But in either case, their
"order" of selection is irrelevant.

Let us pair each of the kinds (of which there are n ) with
the numbers 1, 2, 3, ..., n . Our problem is then to determine
the number of unordered couples of the numbers 1, 2, ... , n
We look at the table of the ordered couples of pairs of elements
of (1, 2, ... , n}

3390
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1 2 3 . l n
1l (LY (L2 (1,3 @) . (L)
2 (2,1) (2,2) (2,3) 7 (2,4) cos (2,n)
3 (3,1) (3,2)  (3,3) (3,2) (3,n)
n (n,1) (n,2)‘ (rn,3) (n, 1) “oo (n,nf

The couples on the diagonal are those representing the
gelection of 2 1tems of the same kind; those not on the dlagonal,
the selection of 2 1items of different kinds. But each couple
below the dlagonal represents the same selectlon as one above the

"dilagonal. Suppose we erase all couples below the dlagonal, Then
 we have just one couple for each of the selectlons we want to

n(n+1)
3

count. Their number 1s given by

1+2+4 3+ ... +n

i

and is therefore C(n+l, 2){

Before vie go on to the case m 3 , let us observe that we
have counted the number of ordered couples (a,b) of the form
l1¢ac¢bg¢n, 1.e., whose first component does not exceed 1ts

i

second component. This 1s another way of saylng we count the un-
ordered couples which may be formed from a set of n elements.

For m = 3 , we want the number of ordered triples (a,b,c)
with 1 ¢a<bc¢ecgn . Asvhen m= 2, the chain of inequali-

—

ties rules out each of the permutations of these triples but one,.
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Suppose we have made one selectlion, say a, 1< a < n. Ve
have stlll to make two more, with a { b {c {n . Selecting
b,c 1s equivalent to selecting two numbers from the set

(a, a+1, ... , n}

which has (n - a) + 1 members. Thus for each selection of a,
1 <agn, there are " - 3 + 2) ways to select b and ¢
satisfying a < b < ¢ < n. Since no péir of triples with
different first components can be the same (the first component
being the least component), our second fundamental 1dea (Section

14-1) tells us the total number of selections 1s gilven by

S(n,3) = ¢(n+1,2) + C(n,2) + C¢(n-1,2) + ... + C(4,2)
+ ¢(3,2) + ¢(2,2). "

Using Pascal's Theorem (Exercise 14-4, 25)
c(3,2) + ¢(3,3) = c(4,3)
and the fact that ¢(2,2) = C(3,3), we have
c(3,2) + c(2,2) = c(4,3) .

|

Hence S(n,3)

¢(n+1,2) + C(n,2) + C¢(n-1,2) + ... + C(4,2) + C(4,3)
= ¢(n+1,2) + C(n,2) + ... + C(5,3)

= C(n+1,2) + C(n+1,3)
= C(n+2,3)

The pattern emerges:

S(n,1) = C(n,1)

S(n,2) = ¢(n+1,2)

S(n,3) = ¢(n+2,3) .
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In general,
S(n,m) = C(n+mel,m) .

The general formula may be obtained by carrying on the same line
of reasoning we have used in the cases m=1 , m=2 , m= 3 .

Example 1:-7a: Suppose you have 5 apples to give to 3
teachers. How many ways can you do this?

Solution: Here m =5 and n = 3 , for you are to select
the teachers receilving the 5 1tems. The answer is gilven by

5(3,5) = 6(7,5) = (3) = g =21 .

Example l4-7b: Suppose a millionaire has 50 helrs and
legatees. If he cuts none of them off without a cent and- has Jjust
one million dollars to bequeath (after taxes and legal fees), how

many different wills could he write? L
Solution: n = 50 , m = lO8 (cents) . The number of wills is
therefore (100’280’0“9) which 1s approximately 7.9 X 10196 .

This represents quite a few declsions.

Example 14-7c: How many ways may the natural number n be

written as a sum of m non-negative integers, if we distinguish

between sums differing in the order of thelir terms. (Compare
Example l4-4e.)

Solution: when we considered the problem of representing n
as a sum of m natural numbers we selected (without repetition)'
m - 1 ospaces betueen n tallies arranged in éwaQ; Extending
this idea, selecting these spaces with repetitions will give us

sums with O as a term. Thus, for n =5, m = A4

I_l_l?l_gl.b_l'

the selection (1l;1,3) gives % =1+ 0+ 2+ 2 , However to

[sec. 14-7]
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allow for the first and last terms being zero, we should introduce
2 more spaces: one before the first tally and another after the
last:

I|§l§l1rl |

il
ai

Thus, now, (1,1,3) represents
5=0+0+ 2+ 3
and (1,3,6) represents
5=0+2+ 3+ 0.

With these extra spaces, we now have n + 1 spaces in the
general case, of which we are to select m - 1 allowing
repetitions. The number of such selections 1s given by

S(n +1, m-1) = C[(n+l) + (m-1) - 1, m-1] = C(n+m-1, m-1) .

Exercises 14-7

1. A post office has ten types of stamps. How many ways may a
person buy twelve stamps?

2. How many ways are there to select five packages of cheese
from & bin containing ten kinds? - ..~

3. A piggy vbank 1s passed to five people who place in it one
coln each. If the-colns are pennles, nickels, dimes,
quarters, half dollars, or sillver dollars, how many sets of
colins might there be 1n the bank,. assuming 1t to be empty at
the start?

Y, TIf the faces of two dice are numbered O , 1, 3, 7, 15, 31,
how many different totals can be cast?

il

How many dominces are there in a set ranging from double
blank to double twelve?

6. Delete the last eleven words of Example l14-4f and answer the
question thus formed. ’

[sec. 14-7]
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14.8, Miscellaneous Exercises,

1. How many different arrangements may be formed from the letters
of the word MADAM ?

2., How many committees of seven persons may be formed from a set
of ten persons?

3. How many distinct lines are determined by twelve polnts on a
plane if no three of the points are collinear?

4, How many diagonals can be drawn in a convex polygon of
n-sides?

5. -How many permutations of the letters of COMPLEX will end
in X ? ' S

6. How many of the 5-permutations of the letters A, B, C, D, E,
‘F, G will have A at the beginning or at the end?

7. How many different ways may exactly three heads show in a
toss of five coins?

8. How many ways are there to seat ten persons around a table,
if a certain pair of persons must sit next to each other?

9. How many four digit numerals may be formed from the set
(1, , 3, «.., 8, 9} 1if no digits may be repeated and
the numbers they represent are odd. .

10. How many "words" containing three consonants and two vowels
‘may be formed from a set of ten consonants and the five
vowels? ’ "

11. How many five letter "words" may be formed from a twenty-six
letter alphabet 1if the flrst letter is not repeated, but
repetitions may occur in the other four places?

12, How many arrangements of three men and three women may be
made at a round table if the men and women must sit
alternately?

13. If all poseible pairs of numbers, repetitions of digits not
permitted, are selected from the set (1, 2, 3, 4, 6}
how many cases will the sum be even?
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14,

L5.

16.

17.

18.

19.

20.
2l.

22,

23.

24,

26.

er.

A bag contains five red balls, four white balls, and three
black bélls. How many different ways may three balls be
drawn 1f each ball is to be a different color?

How many different hands containing three queens and a pair
may be formed from a deck of fifty-two cards?

How many different signals may be formed from two red flags
and three blue flags if any four of the flags are hoisted on
a flagpole in a vertical line and the flags differ only in
color?

How many ways may three boys and three girls stand in 1line if
no twé boys stand next to each other and no two girls stand
next to each other?

How many ways are there to arrange a set of fifteen different
books by size on a shelf if five of them are large, seven are
medium size, and three are small?

How many three digit numerals are there that do not contain
the digits 8 or 0 ?

How many ways may nine hooks be clipped onto a steel ring?
How many ways are thgre to seat seven persons-in a row if two
of them will not sit next to each other?

If a set of six different books is used, how many ways could

three or more of them be arranged on a shelf?

How many ways are there to form a dinner party for seven
persons from a set of ten persons 1f a certain pair of the
ten will not attend the same dinner party? ’
How many ways may four boys of unequal heights stand 1n a
line if no boy stands between two taller ones?

How many S5-permutations of the letters a,b,c,d,e,f,g do
not contain b ?

How many ways are there for a man to invite one or more of
his six friends to his home?

Find‘the number of arrangements of the letters of BOULDER .

if no two vowels are together. - e

o973
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28. How many three digit numerals representing even numbersa
greater than 234 may be formed using the digits 1, 3, L,
5,6, 8, 9 with no repetitions of digits permitted? '
#29., How many three digit numerals representing even numbers
greater than 234 may be formed using the digits 1, 3 ,
b,5,6,8,9°?

#30. How many three digit numerals representing even numbers

greater than 234 may be formed using the digits 2, 3, b,
5, 6, 8, 9 if repetitions of digits are permitted? If
repetitions of digits are not permitted?

31. Suppose n tickets, numbered serially, are printed for a
raffle. Suppose they are all sold and each purchaser
counterfeits (m - 1) copies of hls stub and sneaks Them
into a bowl (so that each of tne n numbers appears on m
tickets in the bowl). Two prizes are to be awarded and hence
two stubs must be drawn. . ’

(a) How many ways is i1t possible to draw two stubs?

(b) How many of these ways result in both numbers being the
same? :

(¢) The ratio of the answer in (b) to that in (a) indicates
the chances of exposing one of the counterfeiters.
Compute this ratio for each pair (n,m) with n,m in
the ranges 1 ¢ n < 5, 1l«¢m < 5, mn in N .

(d) What conclusions do you draw concerning the risk of
being caugnu if
(1) n increases fcr fixed m,

(11) m increases for fixed n ?
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Chapter 15
ALGEBRAIC STRUCTURES

15-1. Introduction.

During our course df study of this book, we have met several
number systems: the systems of the natural numbers, the integers,
the rational numbérs, the real numbers and the complex numbers.

In each of these systems we saw that our concern was with the
following:

(1) oObjects or elements, here numbers;

(2) Two operations, addition and multiplication;

(3) Laws satisfied by these operations, such as the

commutative and associative laws of addition and
multiplication and the distributive law,

If we stop and reflect for a moment, we see that many of the
algebraic computations which we carried out were independent of
the nature of the numbers with which we were operating and
depended solely on the fact that the operations in question were
subject to laws respected in each system. Thus, for example, if
we consider the identity )

1%-1a al _ v - (a + b)(a - b)

and think df this assertion as applying to a and b taken as
(1) 4integers,
(2) rational numbers,
(3) real numbers,
(4) complex numbers,
we see that, if we éstablished the Identity 15-la at the earliest
stage for integers and observed '
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(1) ¢that the verificétion depended only on the distributive
law, the assocliative laws and commutative laws and
properties of the additive inverse, and

(2) that each of the laws and properties invoked were in
force for the complex number system,

then 1t would be unnecessary to repeat the verification for the
case where a and b are complex numbers.

Without such laws algebraic computation as we know it would
cease to exlst., The whole source of algebralc computation is to
be found 1in these laws,

We can, if we like, seek to abstract what is algebraically
essential and common to several specific number systems and
develop algebraic results which hold for each of these systems
- Wwilthout having to repeat our work in each specilal case., This
approach 1s of great importance 1in many parts of modern mathe-
matics, especlally in modern higher algebra which 1s sometimes
also called abstract algebra.

What 1s the nature of the fundamental algebralc operations
which we have met? Let us take the addition of real numbers. We
are given real numbers, say a and b , in order, or, 1f we
like, the ordered pair (a,b) . The operation of addition assigns
to the ordered pair (a,b) a unique real number which we desig-
nate a + b . The words "assigns'" and "unique" give the secret
away. The operation of addition (of real numbers) is a function
defined for each ordered pair of real numbers which assigns to
each such ordered pair (a,b) of real numbers a real number, the
sum a + b . It should be observed that while most of the
functions which we have met assigned real numbers to real numbers,
the function concept 1s an extremely general one and we may
certalnly consider a function f which assigns to each element
a of a given class A a unique element (labelled f(a)) of a
given class B ., 1In the example of addition of realé, the class A
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is the set of ordered pairs of real numbers and the class B 1is
the set of real numbers itself. There 1s a polnt concerning
notation that should be made. Instead of writing the real number
associated with the ordered pair (a,b) 1in function notation, say
S[(a,b)] , where S (standing for "sum") is the function Jjust
described, we use the usual notation and write a + b .

15-2. Internal Operation.

Let us try to abstract what 1s algebraically essential in the
example of addition of real numbers. Suppose that A 1s an
arbitrary non-empty set of elements, the nature of which need not
‘concern us. Suppose further that there is given a function which
1s defined for the ordered pairs (a,b) , where a€ A and beg A s
which assigns to each such ordered pair a member of A ., Such a
function is called an internal operation in A . (It 1s called '

"nternal’ because the components a and b of the input (a,Db)
are drawn from A 'and the output assigned by the function is also
a member of A . Hence, the operation in question does not involve
data taken outside of A .)

There 1s also a notion of an external operation and, indeed,

an example 1s to be found in the algebra of vectors when one
considers real multiples of a given vector so that input 1s an
ordered pair of the form (real number, vector) and output is a
vector. Here we go outside the domain of vectors to specify the
input--hence "external'.

However, in this chapter we shall consider only internal
operations and for that reason we shall henceforth simply say
"operation" rather than "internal operation". As it is customary,
we shall usually denote an operation by a multiplication sign -
and the element assigned to the ordered pair (a,b) by a b
" when we are concerned with a single operation. We shall also write
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"ab n for lla

. b" when there is no doubt about the meaning.

We

- shall have occasion later to deal with two operations and then we

shall usually use + and -

If we are concerned with fir-
the aid of a multiplication ¢

the same way that we listed -

. ar

to denote the two operations,

"+ A , we may specify with
ven operation acts in
pe0duct of certain im.

portant pairs of natural numbers with the ald of addition and

multiplication tables in elementary arithmetic,

The procedure 1is

to use a square table marking rows by the elements of the set A

and columns by the elements of the set A .,

The row markings are

indicated at- the left of the body of the table and the column

markings are indicated above the body of the table,

Glven

a,b€ A , in the space in the body of the table belonging to the

row marked "a

associated with

Here i1s a simple example:
conventiocnal multiplication in
may be tabulated as follows:

operation .

Suppose that we consider a set A
and b and we ask in how many ways can we specify an
This amounts to constructing in all possihle

elements a

operation in A ,

the real number system.

and the column marked "o" , we record the element
(a,b) by the operation - , '
Let A = (0,1} and let . denote

Then the

b

a 0 1
0 0 0
1l 0 1.

consisting of two distinct

ways two-by-two square tables in each space of which 1s recorded

an element of A

Here are some:

b b b b

;\\\\ a b a a b a a b a a b
al a a alb b aja a aja b
hia a, bifbh h, blja b, b{ib a,

There are 16 such operations in A .,

[sec. 15~
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Exerclses 15-2

1. List the remaining 12 operatlions in A .

2, Let A= (1, 1, -1, -1} and let . denote conventional
multiplication for complex numbers, Show that . 18 an
operation in A and construct the table for -

It is of 1nterest to note that, if, is a finlte set con-
taining n elements, then there are n" distinct operations in
A, (For n= 2, we have 2“ = 16 distinct operations in A ;

for n = 3, we have 39 - 19,683 distinct operations in A )

We shall be interested in studying the composite object
consisting of a non-empty set A and one or two operations in A,
Precisely, the term "composite object" is to be taken here to mean
elther an ordered palr of the form (A, . ) where . 18 an
operation in A or an ordered triple of the form (A, + , . )
where + and + are operations in A . Such a composite object
is called an algebralc structure wlth one operation (or two

operations respectively). An example of a structure with one
operation is given by taking A as the set of integers'and . as
the customary addition. An example of a structure with two
operations is glven by taking A as the set of real numbers and

+ and - respectlvely as the customary addition and multiplication
for the reals. Another example of a structure wilth two operatlons
is glven by taking A as the set of real numbers, - as the
customary multiplication for the reals, and + as the customary
addition for the reals,

Now it turns out that the interesting structures are those
which are subject to varlous laws. We saw that the number
systems which we studied earlier were structures with two opera-
tions which respected such laws as the commutative laws, the
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assoclative laws, and the distributive law. If we wished to take
into account structures which are not subject to any restrictions
or laws, we would be faced with many different Kinds of structures
having very few properties in common. We cannot hope to find
interesting results which would be valid for all structures with

a given set A and with a given number of operations.

On occasion, inst~nd of referring to the structure "(A, - )"

or "(A, +, ¢ )" - 11 use the.less formal "A together with
the operation *+ ' or together with the operations + and
" respectively, wu. 1l as "A and the operation : " , etc.

We shall concentrate on two important structures which
permeate elementary algebra--the group and the field. Our
interest will center principally on the notion of a field which
embraces three of the important number systems which we have met
so far--the systems of the rationals, the reals, and the complex
numbers.

15-3. Group.

Suppose that we consider a structure with one operétion
(A, * ) . The example which we cited above, where A 1s the set
of integers and + 1s the customary addition, has the following
two properties: ’
(1) The associative law for addition is satisfied.
(2) Given integers a,b, there exists a unlque integer x
satisfying a + X = b and there exists an integer Yy
satisfying y +a =b .

(We ignore deliberately the quéstion of the equality of x
and y for a reason which will become clear presently.) If we
ask for structures with one operation which share these listed
properties with this speclal structure, we are led to the very
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important structures with one operation called groups. They
appear throughout mathematics 1n many different guises. The study
‘of groups as such 1s an instance of algebra EE its purest.

Specifically (A, -« ) 1is said to be a group provided that the
following two conditions are satisfied:

G 1. The operation - 1is assocliative. That is, glven
elements a, b, ¢ 1in A , we have
(a b)) -c=a-+ (b c).
G 2. Glven elements a, b in A , each of the equations

a . x b

and
y-a=b
has a unique solution in A .,

It isto be observed that we have not required that the
operation + be commutative. In fact, we shall meet examples
where - does not satisfy the commutative law which asserts that
a .b=Db-.a forall a, b€ A ., This is ../ 1t was important
in defirwing the notion of operation to have < our input an
ordered pair of elements of A . The order . Which the components
are aszizned may very well be essential, If rhe operation -
satisf=s the commutative law, the group is c..iled commutative or,
as 1s more usual, abelian, in honor of the gr it Norwegian
mathematician N. H. Abel (1802-1829) who did pioneer work in the
theory of groups.

Let us consider some examples of groups drawn from our
eariier experience. In these examples the operations are the
standart¢ ones of the number systems so that the groups 1n question
are nec=ssarily abelian, We shall consider &n example of & non-
abelimn group later (Section 15-5).
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Example 15-3a. A = set of integers; the operation . is the
conventlonal addition + . The second
postulate states that the equation a + x = b,
where a and b are integers,'has a unique
integral solution.

Example 15-3b. A = set of real numbers different from zero}

' + 1s the conventional multiplication.

Example 15-3c. A = set of vectors in 3-space; - is the

addition 0 ,

Exercises 15-3

Verify that each of the cited examples satisfles the group

postulates G 1 , G 2 ., Show that the following are also

examples of groups:

Example ’H-3d. A 1s the set of nth roots of 1, where n 1is
a positire integer, and + 1s the conventilonal

multiplication for complex numbers. Here it 1is

to be observed that A has Just n elements.
Example 1%-.= A 1s the set of positive rational numbers;

- 1s the conventional multiplication.

In what say dées the following fail to yleld an example of a
group: .A = 32t of all complex numbers and + 1is the con-
ventliorazl mltiplication?

Let A demi.» the set of real numbers of the form _
a+ b -7 wnere a and b are integers and let - be the

conven::i an:l aiddlition, Verify that * 1s an operation in A
and thz% tTh2 group postulates are satiafled.

Let A ¢nvze the set of real number< different from zeros of

the for~ : . b./2 where a and b are rational and let -
be the :unver:ional multiplication. V:rify that - 1s an
operat:. + L1 A and that the group po:z:ulates are satisfled.
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15-4, Some General Properties of Groups.

We have. seen in our earlier work with number systems Qbat an
important role was played by the notions of additive 1dentity,
additive inverse, multiplicative identity, multiplicative inverse.
The counterparts of these notlons appear in general group theory as
we shall now see. We must not forget that the commutative law
need not be in effect for an arbitrary group?!

Identity element. Here we are concerned with the question
whether there is an element e 1in A which has the property that
a+e=e - a=a forall elements a€ A . In each of the
cited examples of Section 15-3 there 1is precisely one element with
this property. Thus in Example 1, the integer O 1s the unlque
element having tﬁe stated property; in Example 2, it 1s 1 ; in
Example 3, it is the zero vector (0,0,0); in Example 4, 1t is 1;
in Example 5, it is 1. We now turn to the situation for an arbitrary.
group and a proof of tha following theorem:

Theorem 15-4a: Given the group consisting of the set A
and operation - , there is a unique element e of A
which satisfies the following condition:

for all a € A .

(The element e 1s called the ildentity element of the group.
Note how this 1s in agreement with earlier usage.)

Proof: We fix an element b € A . That
there 1s at most one element e having the stated property
follows from the fact that e 1s a solution of the equation
b - x = b which has preclaely one solution.

Now let e denote the solution of b - X = b and let us
verify that a e =a forall a 1n A . Glven a€ A, let c
satisfy c¢ - b =a , That 1s, c¢ 18 the unigue solution of
'y » b=a . Our reason for introducing c¢ 1s that, if we write
a as ¢+ b, we are in a position to relate the product ae
(which we should like to show is equal to a ) to the product

[sec. 15=-U4]
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b . e about which we have information. Specifically,

a2 +e=f(c +b) e

.—.c-(b-e)
=cCc¢ + Db
= 4a .,

The proof of the theorem will be complete when we show that
we also have e . a =a forall a in A ., Given a€ A, let
d denote the unique solution of the equation y . a=a . In -
order to relate d and e , we introduce f the unique 8o} i~y
of the equation a . x = e (thereby linking the dements a and

e) . From d -.a=a and a . f =e , we have

a . rf -

(@ . a) . ¢

From the associlative law and af = e , we have
(d -a) - f=d:. (a . rf)
=d * e
Taken together these equalities yield
d -e=¢€

Now e satisfies the equation y * e = e . (Recall that
ae =a for all a in A, in particular for a = e . This’
ylelds e . e=e ,) Since e and d both satisfy the
equation y .- e = e and since this equation has a unique solution,
e = d . Hence on taking account of the relation 4 ' a =a , we

have e * a = a , The proof of the theorem is now complete.

The notation "e" will be reserved for the identity element,

Inverse element, Given a € A, let us consider the two

equations
a « X =-¢e and Yy - a=-=2
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Since we do not have the commutative law at our disposal, it
is not obvious that the soluticns x and y of these respective
equations are equal. Let us see whether, in spite of the non-
avallability of the commutative law, X =Y . Let us. multiply
each side of a * X = e on the left by y . We obtain

y.-(a.-x)=y-¢e.

Using the assoclative law and the basic proper'v of t~ identity,
we obtain

(y -a) x=y.
Hence
e + X =Y . '
Since
e « X =X,
e conelude that X =y . The common solution of a - x=¢€
and y + a = e 1s cailed simply the 1nverse of a . It 1s

denoted a‘l .

Exercises 15-14

1. Determine the inverse element of 7n arbitrary element for
each of the groups .examined in Section 15-3. The answer
{s to be stated in terms of the speclal interpretation of a
group given by the example. Thus in Example 15-3a, the answer

1s "the inverse of a 1s -a' .

5. Show that a~! . b 1is the solution of a + x = b and that

b . a~} 1is the solution of y - a=Db .

3. Vhich of the multiplication tables considered in Sectilon 15-2
satisfy the group requirements? In case of failure, state
the reason. In the case(s) vhere a group 1is specified,
exhibilt the identity element and the inverse of each element.

4. Let A denote a non-empty set, and - &n operation in A .
Sho. that there 1s at most one element e € A such that

a.e=e . .a=a forall a€A.
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5. Let A denote a non-empty set, and + an Qggggtion in A
Suppose that . satisfies the assoclative iaw: Suppose that
there exists an element e € A such that a - e=¢ - a = a
for all a €A . (The element e 1s uniguz by Exercise 4.)
Suppose that for each a € A , there exizv. x € A such that
a « X = e and Lhat there exists y € A such that y - a = e .
Show that A together with - 1s.a group. Hint: With x
satisfylng a « x = e and y satdsfylng ¥ - a = e , show
that a - z = b 1is satisfied by =z « b’, and, by multiplying
each side by y , that the only pcssible solution is y * b .
Hence conclude that there 1s precisely one soclution. Treat
the remaining case similarly. '

6. Construct multiplication tables for operations in a set A
of three elements so that the group postulates G 1 and @ 2
are satisfied, Hint: We may assume that one of the elements
is e , the identity, and we may call one of the remaining
elements a and the other b . The construction of a
multiplication table can be carried out 1in only one way when
account is taken of the nature of the ldentity element and
the group postulates.

15-5. An Example of a Non-Abellan Group.

It 1s not hard to glve an example of a group which 1s not
abellan by means of a specifically constructed multiplication
table, However, there 1s greater interest in constructing an
example which is meaningful in terms of our earlier experience and
which at the same time 1s important in terms of our future study
of mathematics. The elements which we consider are the non-
constant linear functions; that is, the functions ./ defined for
all real numbers by the formulas of the form

L(x) =« x +3 ,

where « and (& are real numbers and « # O . Our set A 1is
taken to be the set whose elements are the furctions ./
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It should '~ ohserved that a give linear function 1is
defined by . . one formula of th pm 15-5 . ™oat is, 1if

x4+ E =R+ d

for all real x , theng = 77 and & =4 . This is seen by first
setting x = 0 and inferring that <& = and then that « = 7.

Composition. Suppose that we are given non-constant linear
functions ./ and m where .#(x) =« x +,& and n(x) =7 x +o .
It is often of interest to construct a function from the gilven
functions .# and m in the following manner. Starting with
input x our first function — ylelds output - (x) . Suppose
that we now use -# (x) as input with the function m . The output
1s m(f (x)) . We see that for each real x the quantity
m(.7(x)) 1is unambiguously specified. Thus we have a function
determined by the requirement that to each real x there is
assigned m(./(x)) . This function is called the composition of
m and .# . It 1s denoted by m o _/. Let us determine
m(.7(x)) explicitly. We have

1550 a( A (x)) =7 (A(x)) +
=7 x +2) +d
=arx + (B3I ) .

This computation shows that the function me _# 1is a non-
constant linear function; for the coefficient of x 1n the last
l1ine of Formula 15-5b is not zero. The rule which assigns to the
ordered pair (m,./) of non-constant linear functions the composi-
tion function m o ./ 1s an operation in A . By analogy with
what we did with sum andproduct, we denote the operatilon of

~composition by o . Let us pause to consider a numerical example
before we continue our study of the structure we have Just intro-
duced.

406
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Thus, suppose
A(x) = 2+ 1 and m(x) = -2¢ + 3
We have fcr . m :
A m(x)) = 2m(x) + 1 = 2(-2x + 3) + 1 = -Ux + 7
- We have for mo e
| M(A(x)) = -2//kx) +3=-2(20+ 1)+ 3 = -lbx +1

This example shows that with the specific choices made for
/and m’, we have

SomAm, A .

- ¥Ye recall that two functions which have the same input sets (1.e.,
domain) are different if they assign different outputs for some
member of their common input set. In our example _4’0 m and

mo _/ assign different outputs for each real x . Hence they are
distinct functions.

This example shows us that the commutative law does not hold
for the operation of composition of (non-constant) linear
functions. '

How do we show that the structure consisting of the non-
constant linear functions together with the operation of composi-
tion is a group? We simply verify that G 1 and G 2 are
fulfilled with the operaticn of composition,

G 1l . Suppose that./, m, and n are three given (non-
constant) linear functions. Given x as input, _/# . (mon)
assigns as output EEE"/VQMEDEL for input men(x) , i.e., the
.output for input m(n(x)) .. .Given x as input (_Z.m). n
assigns as output the Aeom output for input n(x) , that is,

Aem(n(x)) .

4907
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But fom(n(x)) 1s the ./ output for input m(n(x)) . Hence for
each real x as input, .# e (men) and (Aom)e n aSéign the
same output. Hence the functions A . (men) and (£sm)on are
equal. The assoclative law G 1 1is verified for composition.

G 2. Glven two members or A ,.# and m , we ask:
Is there a member n satisfying

15-5¢ ‘ Aon =m;

is there just one such member? Let us try to approach the
question in an exploratory way. Let '

F(x) =ax +&, m(x) =7 x+<S
Suppose that '
n(x) =X x + ¢ (A£0)
satisfies 15-5¢. From 15-5b w2 have
//i'n(i)miﬁf AX + (@ + ) .

Hence if ./ o n = m , we have, using the fact that a linear
function may be represented by only one formula of the form 15-5&,

aAN=7 , @ +a g =d

Hence
15-5d N Vg, v = L=£
o
We conclude that there is at most one such member n . On

the other hand, if we take ) and 4 as gilven by 15-5d, the
function n defined by
n(x) = A x + &«
does satisfy 15-5c¢. Hence 15-5¢ has a unique solution.
The treatment of the other equation, no,/7= m, where.A”
and m are given members of A , 1s similar. Thus we see that

the set of non-constant linear functions together with the
operation of composition is a non-abelian group.
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Exerclses 15-5

1. PFurnish tée detalls concerning the equation no./ = m
where'// and m. are given members of A .,

2. Determine the identity element of the group which we have
studled in this section,

3. Determine the inverse of ¥ if x{(x) =dX +45, «£0.

4, Show by direct computation that n =./"lom satisfies
Aon = m and that n = mo,/’l satisfies n,./=m where
A (z) =ax + 4 and mx) =" X+g4 ,d £0,7 #£0.

5. Show that /o m = mo.# for the functions of Exercise 4 1if
and only if (« - 1)of = (7 - 1) & .

6. Let A denote the set of ordered pairs of real numbers with
non-zero first components. Given (a,b) , (c,&) in A,
let (a,b) : (c,d) be defined as (ac, ad + b) . Show that
(A, . ) is a group.. What is the identity element? What is
the inverse of the element (a,b) of A ? Is there any
relation between this group and the group of ﬁon-constant
linear functions treated in this section? Hint: Use No. 5
of Exercises 15-4,

7. Suppose that A 1s the set of ordered pairs of rational
numbers with non-zero first components and that « 1is
defined as in Exercise 6. Show that (A, :+ ) 1s a group.
Show that a corresponding result holds when A 1s the set

b

of ordered palrs of complex numbers with non-zero first
components and agailn «is defined as in Exercise 6.

15-6. Field.

We now turn to the consideration of an algebraic structure
which 1is present in very many areas of mathematical study. We
refer to the notion of a field. Once the definition of a field
1s stated, it will be clear that each of the following number
systems 1s a fileld:
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(a) The rationals with the usual addition and multiplication.

(b) The reals with the usual addition and multiplication.

(c) The.complex numbers with the usual addition and
multiplication.

Let A denote a set containing more than one member. Let - +
and - denote two operations in A . Then (A, +, - ) 1is called
a field provided that the following postulates are satisfied:

F 1. The structure (A, +) 1s an abellan group.
(The identity element of this group is called "zero",
‘and is denoted by "O" in accordance with the usage
eniployed for the number systems which we have studied
earlier; the inverse of the element a 1s denoted by
-a , and the solution of a + x =Db by b - a).

F 2. Let B denote the set obtained from A by the
removal of the element O ., It is required
(1) that - be an operation in B--i.e., if

b, , b2€'B , then b1 . b2€B ; and

(2) that the structure (B, - ) be an abelian group.
(The identity element of this group 1s called
"one" and is denoted by " " . When we®speak of

as an operation in B , we actually refer,
not to the full operation - in A , but rather
to the, function obtained from . by restricting
attention to inputs of the form (bl’bz) where

b, and b, are members of B .)

F 3. The two distributive laws

a - (b+c)
(b +c)-a

a.b+a-.c,

b-a+c - a,
hold, a, b, and c¢ belng arbitrary elements of A .

Some remarks are in order.
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Given a field (A, +, * ) , 1t is sometimes convenient in
order to avoid unnecessarily clumsy modes of expression to use the
phrase "the field A" and to mean either

(1) the set A, or

(2) the field in the strict sense (A, +, * ) .

Which meaning-is intended will be clear from context. When we
-speak of the elements of the field, we mean of course the elements
of A ,

We shall also agree to write, as is usual, "ab" for
i H
a - b,

Of course, it 15 possible to state the required postulates
in alternative form and in detail, The group concept, however,
permits us to separate off in individual compartments a description
of the action of each of the given operations + and . ., It is
now clear that 1f the two operations are to be interrelated in a

serious sort of way, some condition pertaining to both + and -
must be in effect. In the postulates which we have listed, it is

F 3 which links + and * , 1In particular, it is natural to
turn to F 3 'to see how 0 acts in multiplication,

We have
O+0=20,

and hence if a 1s an arbitrary element of A ,

a(0 + 0) = a0 ,

and

(0 + 0)a = 0a .

Applying the distributive laws, we obtain
a0

ao + ao
and

Oa + Oa Oa ,

relations which state that éo and 0Oa are each the zero of A ;

l.e.,
a0 = 0a = 0 , a €A,

[sec. 15-6]
411



861

Postulate F 2 'pertains only to B . Are the commutative
and associative laws in effect for - 4in A ? The only case that
need concern us is when one of the given elements is zero, but
then we see that the two laws are in effect, for each side is
zero if one of the glven elements is,

Since 1 *0=0 and 1 *a=a, a#0, we see that 1
is an identity element for - in A . The element 1 1s the
only element in A with this property. If e €A satisfies

a*e=a forall a €A, we have

l] e =1
and

Hence

Consider equation a . x =b . If a=0 and b # 0, then
there is no solution. If a =0 and b = 0 , then every element
of A 1s a solution. Suppose that a ¥ O . Here we see, using
the same argument that we used in the study of a group, that if
a £ 0 , the equation has the unique solution a=l . b . Again,
following our earlier practice for number systems, we shall aenote

the solution of a . x=b, af£0, by =

We now see that the identities and theorems which were ob-
tained for the rational number system, the real number system, or
the complex number system, and whose proofs depended only on the
structural laws which hold for an arbitrary field, continue to hold

" for an arbitrary field. Thus, if a, b, ¢, d are members of an
arbitrary fileld and b # O and d # O , then

a c ad 4 bc
15—63. S +4- a = —Fd-—-—.‘- R
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Exercises 13-6

1. Verify that Equation 15-6a holds for an arbitrary field.
Glven that a, b, ¢, d are elements of a field and that
b#0, c#£0,d#£O0. show that (a/b)/c = a/bec and that
(a/b)/(e/d) = ad/be ‘ |

3. Show that 1f a, b, ¢, d, e, f are arbitrary elements of a
fleld and ae - bd # 0 , then the system of equations

ax + by = ¢
dX + ey = f

has a unique solution (x,y) :hose coﬁponents are elements
of the fleld., Give expliclt formulas for the solution.

4, Let A consist of the numbers 0, 1, 2 . Let an operation
+ be defined in A by the requirement that if a, b € A ,
then a + b 1s to be the remainder obtained when the number
a + b (+ being the conventional addition) is divided by 3 .
Thus 1f a = 2 and b =2, then a + b 1s the remainder
obtained when 4 = 2 + 2 1s divided by 3 ; i.e., 1
Similarly, let an operation « be defined in A by the
requirement that, if a, b € A, then a - b 1s to be the
remainder when the number ab (reference being made to
conventlonal multiplication) is divided by 3 . Display the
‘tables for + and - . Verify that the structure (A, +, - )
is a field. This exercise ylelds an example of a field which
has preclsely 3 ealements. ‘

5. Let A consist of two distinct elements a, b . Let + and

be the operations in A given by the following tables.

]l a b [C]}a v

a a b a a a
b b a b a b

4 i 13
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Snow —hat the structure (A, +, °* ) 1s 1 field.
imecs 7y the additive identity and the mzltiplicative identity

c™ thds fileld.

- -

15-7. w=rrocld.

G_rn  fleld whose elsments constitute & =2t A . It is
natuTal - .onsider subsets B of A which t " :n together with
+ and * '™ke up a field; that is, subsets = ‘hich hawe the

follow:ng :wo properties:
(13 'hen + and - a2 restricted to or- red pairs (bl’be)
+shose components —re in B , they de ne operations in B
(2) B together with + and - So restricted is a fleld.
Such a sucset B of A 1is called a subfield of A . Of course,
one can also call suchﬂa B taken together with its two operations

be clear from context.

With this notion we can proceed to find out something about
the architecture of the complex number system. Let Q denote
the set of rational numbers; let R denote the set of real
numbers, and let C denote the set of complex numbers. We know
that Q 1s a subset of R and that R 1s a subset of C; in
the notation of the theory of sets,

QCRCC

We may ask whether there are any intermediate subfields between
R and C or between Q and R , and whether there is any sub-
field of the complex number System which is a proper part of Q .

Suppose that A is a subfield of the complex number system
which contains R . Suppose that A contains an element not
already in R . Then such an element must be of the form a + bi

414
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where a - : 2 aregreal and b £0 . Mr.2 a A,

(a—+Dv1 - =317 . Since b€A, if. Hence given
arbitrar- -, osuxisrs ¢ and d& , we have 41 €A and therefcre
¢ +di€. , Th:.=. CCA . Hence A=C Vie are led tc =:e

following ~r-wlusis -

Theorem :5-7a- If A 1is a subfield of the complex numpz=
system conti ing .., then elther A =R or A =2C .

This theorer ““m5+ s ‘hat there is no subfie:d of che complex
number syst-. ~zxno contains R as a prope: subset and at the
same time 1: Dr-spegr subset of C .

A secow. =&, 17 that 1s easy to obtain is the following:

Theorem
contains Q

.oz Every subfield of the complex number system

,-
A
\

Proof: 3Iext 4 denote a subfield of the complex number
system., Ve ncwe tnat if a and b belong to A and b £ 0,
then %. €A . Xuv 1€A ., It is a consequence of the additive
closure of A and the well order property of the natural number
system that every natural number is a member of A . Suppose that
there are one or more natural numbers not in A and let m be

~ the minimal memiie=r T the sev of natural numbers not in A (the
well order propsr—; issures us there is such a minimal member).
Then m - 1 s = 7=enber of A , but our hypothesis tells us m
is not. Since m—=(m~1)+1 and m-1 and 1 are in A ,
it follows from the additive closure of A that ﬁ itself is in
A . This contradiction proves that the set of natural numbers
not in A 1is empty. It now follows that every integer is a
member of A , since for each natural number n , -n 1is a member
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of A . Since A comtains the quotients of 1its matiers, iz
follows that A contains every quotient of the vTia %
where p and q are integers and q £ 0 . This s&ys that every
rational number is a member of A . In other womds, QCA .

The thsorem 1s established.

Subfields intermediate to Q@ and R . Ther» . a vast
hierarchy of subfields between Q and R . Their rzudy is a
large undertaking. We shall content ourselves tz 8ts that certaln v
intermediate filelds can be exhibited in a simple way.

Let A denote the set of real numbers of thk =rm

a+ b2

where é and b are both rational. What can be .szid about sum
and product of elements of A ? Given a, b, ¢, d rational, we
see that

(a+bﬁ)+(c+d/§)=(a+c)+-(b+d)/§,

and since a + ¢ and b + d are rational, we have

(a + b/2) + (c + d/2)€EA .

Similarly,
(a2 +b/2). (¢ +dy7) = (ac + 2bd) + (ad + be) /2,
and since ac + 2bd and ad + bc are rational, we have

(a.+ b/2)(c + d/2) €A

Suppose that a + b/2 =0 where a and b are rational.

Then b = O , otherwise ./2 would be rational. It follows that
also a = 0 . Therefore, a member a + b2 of A (a and b

rational) ds equal to zero if and only 1f a = 0 and t=0.
This implies that Af a + b2 £ O, then a2 - 22 £0 . Other-
wilse we should have '

0=2a%.2°=(a+bdyB(a+ (-d)JB),
so that either a + by/2 =0 or a + (-b)/2=0 . From

a+ (-b)yZ =0, wehave a =0 and -b = 0 and conseguently
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5 +by/F=0. That 1, f =~ -25° =0, then . + 0 /3 =0 .

We now have by a f:z..iliar ratiznalization meth—:. “or

2+by (a=+o/T(c-da/3)

c+dyT (¢ —-3.2)(c - dSI)

(ac = Zxz) | (be - ad) /=
> -I =
c” - 2¢ ¢ - 24~

1]

This telis us that the quutient of two members of 4 1s also
a member of A

It is now easy to verify that A 1s a subfileld of the real
number system. We leave the detalls as an exercise.

Exerclses 15-7

1. Show that A 1s a subfleld of the real number syst=m,

2, Let B denote the set of real numbers of the form a + b./3
where a and b are ratiaznal. Show that B is a. subfleld
of the real number system.

#3, Show that the only real numbers belonging to both A and B
are rational. In particuiar, /3 does not belong to A .
Hence, A 1s intermediate in the strict sense tc @ and R .
That 1s, 3 18 a proper part of A, and A 1s a proper part
of R.

References.;

1. Birkhoff, Garrett and Saznders MacLane, A Survey of
Modern Algebra (rev. ed.), Macmillan Company.
2. Books cilt=d in the bibliography of Reference 1 above.
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commutative law for, =I5
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constant functiax, 167. 200
convergent sequezmice, 750
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cooréinate axes, 1i9
coordinate geomet:v:, 19
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distributive law for multiplicatizn of a vector by a scalar, 638

distributivity, 21, 41, 64, 76

divergent sequence, 757

division, s 15

domain, 165, 166, 170, 173, 176, 28z, 183, 184

dot product, 656

double root, 231

dummy variable, T34

e, base of natural logarithms, 51

element,
identity, 851
inverse, 852

elimination, 266

ellipse, 330
center, 335
major axis, IZ=
minor axis, IZ=
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equality, 5

equations,
trigonometric. 612

equation xB =a, 77

euation y = ax2 + bx + ¢, 222, i3
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extraneous roots, 233, 234

factoring, solutiom by, 228

factors, 86-89

field, 858
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function, 165, 166, Ixz, 183, 84L
composition, 183
invers=, léB, 522
linear, 189,8191, 193, 196, 201, 220

l :
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notation,

¥ = ax2 + bx + =, 217
y = a(x - k;§  =50

vy =a(x - k)< + p, 21%
y = ax® + ¢, D9

y = axe, 206

N x2,-"20¢
fundamental theorem of algebra, 290




general term, T34
geometric progressilons 749
geometric sequence, 7&8
geometric series, 748
golden rectangle, 2U5
graph, 140, 141, 173, 420
graphs of the trigenometric functions,
group,
harmonic mean, 780
horizontal llne, 197
hyperbola, 330, 342

asymptotes, 345

center, 351

conjugate axis, 343

transverse axis, 343
identities, 612
. 1dentity,
additive, 24
: . ‘multiplicative, 6
identity element, 851
identity function, 167
imaginary, 254

part, 262

unit, 253
inconsistent sgstems, 364
inequality, 1 ,

graph of, 140, 145
infinite decimal, 72, 774
infinite geometric seriles, 774
initial point, 630
inner product, 6SE
integers, 1, 24, 42
intercept form, 313
intercepts, 1&5
internal operation, 845
interpolation, 498-501; 579
inverse,

additive, 25

multiplicative, 48

. of _.a linear function, 190, 191

inverse element, 852
inverse functions, 183, 184
inverse variation, 348
irrational, 73

decimal, 73, T4
isomorphic, 680, 685
law of cosines, 594, 658
law of sines, 598
1imit of a sequence, 754
1imits - theorems on, 758
linear combination, 374, 449
" linear equation, 310 :
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logarithm function, U55
graph of, U456
properties of, U4T4
logarithm function wilth base a, 511
logarithms of n!', 813 '
major axis, 334
mantissa, U488
mathematical system, 678
maximum point, 210
mid-point formula, 127, 128
minimum p>int, 209
minor axis, .334
‘multiplication, 20, 40, 55, 64, 75
multiplication by scalars,
multiplication formulas,
identities for, 700
multiplicative inverse, U8, 264, 266
natural logarithm function, U56
natural nunbers, 1, 4, 22, 33
. n factorial, 799
non-abelian group, B854, 857

n® roots of unity, 718

nth term of a geometric sequence, 749

nth term of an arithmetic sequenceé Th0
9,

one-to-one correspondence, 120, 1 680, 783
ordered m-tuples, 788, 792
ordered pairs, 789
ordered partition of a set, 831
ordered triple, 791
order property, 13, 31, 53
ordinate, 120, 125
.origin, 119
parabola, 205, 221, 315
‘ axis, 315

directrix, 315

focus, 315

latus rectum, 324

standard form, 318

vertex, 315
parallel, 133, 134
parallel rays, 629
partial sums, 765
partitions, 826
Pascal's Theorem, 818
permutations, 7@3, 795
plane, equation of, 415
point-slope form, 305
polar form, 683, 692
polynomials, 86, 87, 88, 289
prescribed values, 196, 220
product,

dot, 656 ‘

inner, 655 4 29




projection, 120

properties of groups, 851

Pythagorean Theorem, 125

quadrant, 122

quadratic equation, 203, 243, 252

quadratic equations with complex coefficients,

quadratic formula, 228

quadratic inequalities, 238

qQuotient, 43

radian measure, 556, 559

range, 165, 166, 173 176, 183, 184

rational expressions, 95
numbers, 1
number system, 43, 65
solution, 79

real number system, 1

reflection, 146, 283

reflexivity, 6, 20, 40, 63, 75

repeating decimal, 67, 69

resultant, 665

Riemann, Bernhard, 727

Riemann surface, 727

root, 224, 229

roots of order n, T10

scalars, OU4

selections with repetition, 834

sequences and series, 731
arithmetic sequence, 739
convergent sequence, 756
divergent sequence, 757
finite sequence, 731
finite series, 732
geometric sequence, 748
geometric series, T48
infinite geometric series, 774
infinite sequence, 731
infinite series, 732

nth term of a geometric sequence, T49

nth term of an arithmetic sequence, TUO

series for,

cos X, T71 P
e*, 1M
sin x, 771

sets satisfying geometric conditions, 156
sigma notation, "=", T45
signed angles, 550, 551
" sine function, 561, 566, 569
- slope, 130, 132, 192, 303
' of parallel lines, 133
of perpendicular lines, 134
slope - intercept form, 306

423
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solution of an equztion, 224
solution set,
of equatian or inequality, 361
of a system, 363
of three first degree equations, ~ U417, 422, 426
special anzles,
trigamometric functions of, 573, 5T4
square rocw=s, (01
standard form, 262
standard form for 1cg x, 488
standard pesition,
the decimal point, 496
straight lin=. 303 ,
structure, I, 2 P
subfield, 863
subfields intesrmediate to Q and R, 865
subsets of = “inite set, 806
subtractior, 75
sum of a fimite= geometric seriles, 751
sum of an irfinite series, 764, 766
sum of arittm=tic series, TU3
sum of cubes, 89
summation motztion, T34
sum s, af = finite series, 735

symmetriz. 283
symmetry, &, 2G, 40, 64, 75, 146-148
system of ezmzsions, 361, Bél, 389, 398, 422
table of caommon. logarithms, 464, 502, 503
table of irzomom=tric functions, 57é, 580
tangent function, 561, 566 .
terminal point, 630
terminasing decimal, 66, 67
Theorem of deMoivre, 695
trace, U420
transitivity, 6, 13, 20, 40, 55, 64, 75
triangl=s imeqmality, 62, 280
trianguiation,

meitnod ©f solution, 432
trichotomy, 13, 16, 55, T4
trigonometriz functions, 561, 566, 583
two-Gimensirmal vector space, 682
variation,

direct., 308
vectors Iz %<aree dimensions, 661
vector sz=ce, 681
velocity. ©OTE
vertex, 205, 213, 220
vertical Tine, 133, 176, 197
well ords= property, 20, 40
work, 672
zero element Tor vector,
‘ addition, 636
zero factorial, 799
zero of = molynomial, 291
zero vectior, 648 424




