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Chapter 11
AREAS OF POLYGONAL REGIONS

11-1. Polygonal Regions.

A triangular region is a figure that consists of a ftriangle
plus its interior, like this:

A polygonal region is a figure in a plane, like one of these:

that czn be "cut up" into triangular regions. To be exact:

Definitions: A triangular region is the union of a'triangle

and 1ts interior. A polygonal region 1s the union of a finite
number of coplanar triangular regilons, such that if any two of
these intersect the intersection 1s either a segment or a point.

The dotted lines in the figures above show how each of the
two figures can be cut up in this way. Here are more examples: .

9



318

In the last two examples the figures have "holes" in them. This
possibility is not excluded by the definition, and these figures
are perfectly good polygonal regions.

On the other hand, the region APDFQC cannot be "cut up" into

C F

A D

- reglons ABC and DEF even though it is the union of these two
triangular regions. The intersection of the two triangular '
regions 1s the quadrilateral region EPBQ, which is certainly
not a segment;pr a point. This does not mean that APDFQC" is

not a polygonal region, but merely that its description as a
union of triangular regions ABC and DEF 1s not enough to

[sec. 11-1]

10
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show this. APDFQC is in fact a polygonal region, as 18 shown
below. '

The polygonal regions form a rather large class of figures.
Of course, there are simple and important figures that are not
polygonal regions. For example, the figure formed by a circle
together with its interior is not of this type.

If a figure can be cut up into triangular regions, then this
can be done in a great many ways. For example, a parallelogram
plus its interior can be cut up in many ways. Here are three of
these ways.

N
// ™ \v//\\
- . ~N P \
-7 N -

In this chapter we will study the areas of polygonal regions,
and learn how to compute them. The sixteen postulates that we have
introduced so far would enable us to do this, but the treatment
would be extremely difficult and quite unsuitable for a beginning’

~ geometry course like this one. Instead we sHall introduce measure
of area in much the same way wé did for measure of distance and o

angle, by means of appropriate postulates.

11

[sec. 11-1]
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Postulate 17. To every polygonal region there
corresponds a unique positive number.

Definition: The area of a polygonal region is the number
assigned to it by Postulate 17.

We designate the area of a region R simply by area R. 1In
the following postulqtes, when we speak of a region, for short, it
would be understood that we mean a polygonal region.

Our intuition tells us that two regions of the same shape and
size should have the same area, regardless of their positions in
space. This fundamental fact 1s the motivation of the next
postulate.

Postulate 18. 1If two triangles are congruent,
then the triangular regions have the same area.

If a region 1s“éut into two pieces it 1s clear that the area
of the region should be the sum of the areas of the pileces. This
is what our next postulate says. Let us state the postulate and
then consider its meaning.

Postulate 19. Suppose that the region R 1s
the union of two regions R1 and Rg. Suppose that
;Rl and R2 intersect at most in a finite number of
segments and points. Then the area of R 1s the

sum of the areas of R1 and R2.

The three figures below show examples of the application of
this Postulate. ' S
12

[sec. 11-1]
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R

, In each figure the intersection is heavily marked, and consists of
a segment in the first figure, three segments in the second, and
two segments and a point in the third. )

On the other hand, the next figure is the union of two tri-

R =

angular regions, R, and R,, but their intersection 1s not made
up of a finite number of segments and points. Instead it is the
quadrilateral region in the middle. Thus Postulate 19 cannot be
applied to this case. If we tried to calculate the area of the
whole region by adding the areas of Rl and R2 the area of the
quadrilateral region would be counted twice. It was in anticip-
ation of this situation that we insisted, in the definition of
polygonal region, that the triangles determining the region must
not overlap. '

As was the case with distance and angle, the "unit of area"
can be speclfled at will. However, 1t is convenlent and customary
to choose thls unit to be closely associated wlith the unit of
distance. If we are to measure distance in inches, we measure
area in square inches; and in general, whatever unit of distance
we use, we use the corresponding square unit to measure area. One
way to ensure this would be to state as a postulate that the area
of a square is to be the square.of the length of an edge.

13

[sec, 11-1]
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(By the "area of a square" we mean, of course, the area of the
polygonal region which is the union of the square and its interior.
We will speak in the same way of the area of any quadrilateral,
meaning the area of the corresponding polygonal region.)

The statement A = e2 is, however, a little too special to
be convenient. The difficulty is that if we establish our unit of
area by the postulate A = e2, then we would have the problem of
i proving that the corresponding formula holds also for rectangles.
That i1s, we would have to prove that the area of a réctangle'is
the product of the length of its base and the length of its
altitude. Of course, if we know that this holds for rectangles,
then it follows immediately that for squares we have A= e2,
because every square is a rectangle. The converse can also be
proved, but the proof is harder than one might think, The most
convenient thing to do, for the present, is to take as a postulate
the more general formula, that is, the one for rectangles:

Postulate 20. The area of a rectangle is the
product of the length of its base and the length of
its altitude.

b

14



. 323

Notice that in the previous paragraph and in Postulate 20 we
were very careful to say, "length of its base" and "length of its
altitude". In using Postulate 20 from now on, we will Jusu say,

"The area of a rectangle is the product of 1ts base énd its
altitude". This means that we use "base" and "altitude" sometimes

- &

to indicate line segments and sometimes to indicate th~ engths.
From now on we will do this fairly generally, trust 3 i. .
abllity to tell from the context which meaning of a . ~ intend.

If we "bisect a side of a triangle" the word "side" will have its
original meaning, as a set of points. If we "square the side of
a triangle" we are using the word "side" as an abbreviation for
"length of the side". Such abbreviations will be very convenient
in this and later chapters. '

On the basis of the four area postulates we can calculate the
areas of triangles, parallelograms, and a varlety of other figures.

Problem Set 1ll-l

1. Show that each of the regions below 1s polygonal by indicating
how each can be cut into triangular regions such that 1f two
of them intersect their intersection is a point or segment of
each of them. Try to find the smallest number of triangular
regions in each case.

a. ~ b.

£o

[gec. 11-1]
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2. Find the area of a rectangle 50 ft. lohg and 16% £t. wide.

3. a. If you double the altitude of a rectangle and leave the
base the same, how 1s the area changed?

b. If both the altitude and the base of a rectangle are
doubled, how 1s the area chang=Z?

y, How many tiles, each 6 inches square. does it take to cover a
rectar gular floor 37 ft. 6 in. by 12 £t.?

5. The figure shown 1s a face o 33"

of a certain machine part. i — o ¥

In order to compute the cost 77 ¥ 9"

of painting a great number CZZ?V 9" |

of these parts 1t 1s necessary 9"

to know the area of a face. r__|5tf_*__L

The shaded reglons are not T“

to be ranted. ind the area ?

to be palnted. v T"

VI, |

e 22"

16

[seec. 11~1]
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*6, Are the following stdtements true or false? Glve a reason for
each answer. )
- - - a-'\ QA .tria‘lgle ‘1& @' PQ]‘Y&O]’@J r-egvioll' ow o v e e - - -
b. Postulate 17 says that for every positive number A
there corresponds some polygonal region R.

c. Every polygonal region has an unique area.

d. If two triangles are congruent, then the trinngular
regions have the same area.

e. The union of two polygonal reglons has an area equél to
the sum of the areas of each region.

f. Postulate 20 assures us. that the area of a square having
- gide e is A = e°.

g. The interior of a trapezoid is a p '@ -gounsl reglon.
h. A triangular region is a polygonal = Ziam.

- A -ectangular regilon having base 6 and altit=z 4 can be
divided up into squares having a base 2, ax = Flgure 1.
Notice that a square with base 2 1s the largest square pos-
sible which will divide the rectangular reglon into an exact
number of congruent stlares.

6

Figure 1.
17

[Bec . 11“1 ]
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Similarly, a square with base % is the largest square

possible which will exactly divide a rectangular region with
base 4 and _altitude ;@%L as in Figure 2.,

e »

4

NI—

Figure 2.

Determine the side of the largest square which will exactly
divide rectangular regions having the following measures:

a. b = 4; h = 12. d. b =1.7; h = 1.414%,
b. b = 53 h=2%. e. b=2.0; h= 2.
¢c. b=23.5 h=1.7T. f. b= +/2; h= /3.

What difficulty do you find in parts (e) and (f)? Do you see
that this relates to the discussion of the text preceding
Postulate 207

*8, In the following figure, A, B, C, D, E, F, G are
called vertices, the segments AB, BC, CD, DE, BEG, GA,
EF, FD, FB are called edges, and the polygonal regions
ABE, FED, BCDF are called faces. .The exterior of the

figure will also be considered as a'face.

>

1§

[sec. 11-1]
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Let the number of faces be f, the number of vertices be v,
and the number of edges be e. In a theorem originated by a
famous mgthematigian, Euler, the following formula ocgurs;

f - e + v, which refers to figures of which the above figure
is one possibility. Using the figure, let's compute

f -e+ v. You should see that £f =4, v=7, e=9, and
this gives us f - e + v = 2.

Using the two figures below, compute f - e + v, Notice that
the edges are not necessarily segments.

a. b. Suppose this figure to be a
section of a map showing
counties:
c. What pattern do you observe in the results of the three

computations?

da. In part (a) take a point in the interior of the quadri-
lateral and draw segments from each of the four vertices
to the point. How does this affect the computation of
f - e + v? Can you explain why?

e. Take a point in the exterior ot the figure of part (a)
and connect it to the two nearest vertices. How does
this affect the computation?

f. If you are interesfted in thiz problem and would like to
pursue it further, you will =ind it discussed in "The

Enjoyment of Mathematics” by Rademacher and Toeplitz and

in "Fundamental Concepts of Geometry" by Meserve.
[sec., 11-1]
19
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11-2. Areas of Triangles and Quadrilaterals.

Let us now compute some areas, on the basis of our postulates.

Theorgm J1-1. The grea of a right triangle is half the pro-
duct of its legs.

Q
o} \\
R
5 P
A = %- ab. 27 = ab.

Proof: Given A PQR, with a right angle at R. ILet A De
the area of A PQR. Let R! be the intersection of the parallel to
$8 through Q and the parallel to QR through P. Then QR'PR
is a rectangle, and APQR = A QPR!'. By Postulate 18, this means
that the area of A QPR' is A. By Postulate 19, the area of the
_rectangle is A + A, because the two triangles intersect only in
the segment fﬁ. By Postulate 20, the area of the rectangle is ah
Therefore

' 27 = ab,
and
A =3 ab,
which was to be proved.

From this we can get the formula for the area of any triangle.
Once we get this formula, it will include Theorem 1l1l-1 as a
special case.

Theorem 11-2. The area of a triangle is half the product of
any base and the altitude to that base.

[sec. 11-2]
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/s
|
b, b,
b b
Az-%bh.

. Proof: Let A Dbe the area of the gilven triangle. The three
figures show the three —ases that need to be considered.

(1)

(2)

'ri@ht!tfianglss, with pases b, and b

If the foot c< the altitude 1s between the two end-points
then the.altizude divides the given triangle into two

os 28 indicated.

By the prececing theorem, these two triangles have areas

%blh and %beh. By Postulate 19, we have

1 1
A = §b1h + -é'beh.
Since b1 + b2 = b, we have

1

A=3

o)h

(b1 + b

= bh,
which was to be proved.

If the foot of the altitude is an end-point of the base,
there 1s nothing left to prove: we already know by the
preceding theorem that A = %bh.

In the third figure, we see the given triangle, with area
A, and two right triangles (a big one and a 1little one.)
We have

Zb.h + A = 5(b; + b)h.
The student should supply the reason for this step.
Solving algebralcally for A, we get A = %bh, which
was to be nrowed.

[sec. 11-2]
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Notice that Theorem 1ll-2 can be applied to any triangle in
three ways, because any side can be chosen as the base; we then
multiply by the corresponding altitude and divide by 2, to get the
area. 'The rigure below shows thé three choices for a single ~
triangle.

The three formulas %blhl,
1 1 t el
Ebzhe and §b3h3 must glve
the same answer, because all
three of them give the right
answer for the area of the

triangle.

/
hE
/

Notice also that once we know how to find the area of a
triangle, there is not much left of the area problem for polygonal
regions: all we need to do is chop up the polygonal regions into
triangular regions (which we know we can do) and then add up the
areas of the triangular regions.

For parallelograms and trapezoids this 1s fairly trivial.

Theorem 11-3. The area of a pérallelogram is the product of
any base and the corresponding altitude.

b

A = bh

Proof: Draw dlagonal EEZ By Theorem 9-14 'Ea divides the
parallelogram into two congruent criangles. Postulate 18 tells us
that congruent triangles have equal area. Now the area of
APSQ = %bh. Hence the area of parallelogram PQRS = bh, which
was to be proved.
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Notice that Theorem 11-3 can be applled to any parallelogram
in two ways, because any slide can be taken as the base, and can
then be multiplied by the corresponding altitude.

In the first case we'get A = bh, and in the second case we get
A =Db'h'. These two expressions bh and b'h'! must give the
same answer, because both of them give the right answer for the
area of the parallelogram. )

The area of a trapezold can also be obtained by separating it

into two triangles.

Theorem 11-4%. The area of a trapezoid is half the product of

its altitude and the sum of 1its Lases.
b 4 :

b,
A = Zh(by + by)

Proof: ILet A be the area of the trapezoid. Either diagonal
divides the trapezoid into two triangles, with areas %blh and
%beh. (The dotted lines on the right indicate why the second
triangle has the same altitude h as the f;rst.) By Postulate 19

1 L1

Algebrailcally, this is equivalent to the formula
A = 3n(

sh(Db +b2).

1
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The formula for the area of a triangle has two useful con-

sequences, both of which are easy to see:
If two triangles have equal altitudes, then

Theorem 1ll-5.
the ratio of their areas is equal to the ratio of their bases.

E

Ih
l
|
D 5 F
Given: A ABC and A DEF with equal altitudes.
b
. Area of A ABC _ "1
Prove: Area of & DEF - by’
formula A = %bh

This 1s easy to establish once we have the

1
=b.h b
el . Bl’ which is true-.

because it siniply means that ;)
§-b2h 2

altitudes and

Theorem 11-6. If two trilangles have equal
equal bases, then they have equal areas.

|
lh

The proof of this 1s clear because the formula 5

the same answer in each case.
O A
214

[sec. 11-2]
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Problen Set 11-2

In right triangle ABC, with right angle at ¢, AC = 7,
BC = 24, ‘AB = 25, - . .

a. Find the area of A ABC.
‘. Find the altitude to the hypotenuse.

The hypotenuse of a right triangle is 30, one leg is 18, and
the area of the trlangle is 216. Find the length of the
altitude to the hypotenuse and the length of the altitude to
the given leg.

: <> <>

In AABC, CD | AB and

<> <>

AE | BC. c

a. If AB =28, ¢CD =9,
AE = 6, find BC.

b. . If AB =11, AE = 5, E
BC = 15, find CD.

c. If CD = 14, AE = 10,

BC = 21, find AB. A D B
d. If AB=¢, CD =nh,

‘BC = a, find AE.

C
In this figure €Q = QD. B8
Prove that the
Area A ABC = Area A ARD.
A D

25

[sec. 11-2]
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5. If ABCD 1is a square, find
the area of the star plctured

here in terms of 8 and bD.

O

The segments forming the

—TTTTTT 0

lo

boundary of the star are

P

congruent.

-7

D —— ———
m e e e ——— —

6. In parallelogram ABCD,
<> <> <>
% | D¢, &F | BE, and
<> <>
BG | DA.
a. If AE =T, DC =12,
BC = 14, then c
= N 7~
AF ’/\/\\\\
b. If AE = 10, AB = 18, A,’ TS
L N |
GB = 15, then S~ =
AD = } \\\\
! F
¢c. If AF =6, DC = 14, }
AE = 8, then }
AD = . H
D E C

d. If GB = 16, AD = 20,
AF = 16, then
AE =

7. Prove that the diagonals of
a parallelogram divide it
into four triangles which
have equal areas.




10.

11.
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Find the area of trapezoild

ABCD,
a. If AB =12, DC = 6,
DE = 4.
D C
b.' If AB =9. AD =4, !
DC = 5) CF = 3' :
. I
c. If AE =14, FB =6, ‘
DE = 5, DB = 13, m! h
DC = 6. A E F
=d, If AB =27, DE = 7,

AE = 3’ EF =FB.

e. If AE =12, EF = 3,
FB = 9, CF = FB.

Find the area of a trapezoid 1f“1ts altitude has length 7 and
its median has length 14. (Hint: See Problem 10 of Problem
Set 9-6.)

A triangle and a parallelogram have equal areas and equal
bases. How are their altitudes related?

Compare the areas of

a. Parallelogram ABCD
and triangle BCE.

c. A ABF and A FCD, 1if
F 1is the mid-point of
EI

d. ACFD and A BCE and
parallelogram ABCD,
if F 1s the mid-point
of KB:

27
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12.

13.

14,

15.

16.

*17.

In surveying the fleld shown
here, a surveyor laid‘ggf
north-and-south line NS
through B and then locaggﬂ
the east-and-west lines CE,
<> <>

DF, AG. He found that

CE = 5 rods, DF = 12 rods,
AG = 10 rods, BG = 6 rods,
BF = 9 rods, FE = 4 rods.

Find the area of the field.

Prove the theorem: If D

quadrilateral ABCD has /////\\\\\\\\‘\~\\\\\s
perpendicular dlagonals, A 5 C
its area equals one-half

the product of the lengths

of the diagonals. ' B

Write a corollary to the theorem of Problem 13 relating to
the area of a rhombus.

The area of a quadrilateral is 126 and the length of one
diagonal is 21. If the diagonals are perpendicular, find
the length of the other diagonal,.

The diagonals of a rhombus have lengths of 15 and 20. Find
its area. If an altitude of the rhombus is 12, find the
length of one sgide.

Would the theorem of Problem

13 still be true if the poly- D
gonal region ABCD was not
convex, as in this figure?

28
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Prove that a medlan of a triangle divides the triangle into
two triangles each having an area equal to one-half the area
of the original triangle.

a. If AD and BE are
two medians of A ABC
intersecting at G,
prove that Area A AEG =
Area A BDG.

b. Determine what part C
Area A BDG 1is of D
Area A ABC. (Hint: B
Use other median CF.)

If AB 1s a fixed segment
in plane E,- what other

positions of P in plane E P

wlll let the area of A ABP
remailn constant? Describe
the location of all possible
positions of P 1n plane E
which satisfy the condition. A B
Describe the location of all

possible positions of P in

space which satisfy the

condition.

29
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*21.

*22,

The 7'{.;zre at the right

angle.

is o0 w4 from four right
—riaglér and fo..r rect-
zng'as ,  Jotice -hat there
L& qua~e holsz one unit
;. 32 8.
a. = . _ the areas of
tlwe 21ight parts.
(r .1t the hole.) A
b. Suow that the same
result is obtained
by taking one-half
the product of the
length of the base 8
and the length of
the altitude to 1it. 5 5 s 5 0
¢c. Explain why 41/2 ¢ Sve 2
the results 3 RLt H G
in (a) and p ! ‘ k
(b) come out 2 Q 3
the same in 3 51/2 41/2 3
spite of the N M L F
hole.
A line cuts a rectangular
region into two reglons
of equal area. -Show that o 0 S///’b c
it passes through the
intersection of the
diagonals of the rect- h

30
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11-z. The Pythagorean Theorem.
Now that we know how to work with arecs, he P agorean
Thecorem is actually rather easy to prove.

Theorem 11-7. (The Pythagoreaﬁ Theorem) . Lu = --ight triangle,
.2 square of the hypotenuse is equal to the w1+ ¢ k& squaras of
the legs.
c
t
/ a+b’
b

Proof: We take a square for which the le: :tr £ each side is
a + b. In this square we draw four right triar -z with legs a
and b, 1like this:

then

(1) Each of the four right triangles is congruwent to the
given triangle by the S.A.S. Postulats. Therefore
their hypotenuses have length ¢, as .ndicated in the
figure above.

[sec. 11-3]
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(2) The quadrilateral formed by the four hypotenuses 1s a
square. We can show this in the following way:

/ = <s a right angle becauss m’y+m/z+m/x= 180, and
n/ y +n/ x=90. (The acute angles =f a right triangle are
complementary). Since all four sides are each equal to c, the

guadril.zteral is a square.

.2) The area of the large square 1s equal to the area of the
small square, plus the areas of the four congruent right
triangles.

Therefcore
(a +‘“b)2 =c® 4 4(%ab).

Therefare

a2 + 2ab + b2 = 02 + 2ab,

and finally, a2 + b2 = 02, which was to be proved.

The converse of the Pythagorean Theorem is also true.

Theorem 11-8. If the square of one side of a triangle is
equal to the sum of the squares of the other two sides, then t™e
triangle is a right triangle, with a right angle opposite the
first side. o] :

A c B

Proof: Given A ABC, as in the figure with o2 = a® + b2,
Let A A'B'C' be a right <riangle with legs a and b.

Cl

@

d

[sec. 11-3]
32
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Let d Dbe the hypotenuse of the secrmd triangle. By the
Pythagor=an Theorem,

Therefore d2 = c2. Since ¢ and < ar=z both positive, this

means that 4 ¢. By the S.S5.S. Th=z=orem, we have A A'B!C! =A ABC.
Therefore / C = / C'. Therefore , C is a right angle, which
was to be proved.

Problem Set 11-3a

1. A man walks due north 10 miles and then due east 3 miles.
How far is he from his starting point? ("As the crow flies".)

2. A man walks 7 miles due north, © miles due east and then 4
mile®™ north. How far is he framr his starting point?

3. A mzzz-travels 5 miles morth, 2 miles east, 1 mile north, then
4 miles east. How far is he from his starting point?

y, In the rectangular soliid indicatad in the diagram, find the
length of AC, of AD.

D
|
|
|
e
E //,/
//
_-"13 2
//
//
A 4 B

5. Which of the following sets of nimbers could b= the lengths of
the sides of a right triangle?

a. 10, 24, 26. d. 9, =0, bu1.
b. 8, 14, 17. e. .5, 3.6, 3.9.
c. 7, 24, 25. r. l%, 2%, 3%.

[sec. 11-3]
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6. a. Show by the converze of tne Pytmagorean Theorem Thut
integers +hich rer—esent Iengtzs of sides of rizn+t tri-
angles cz be fouri in thx foiZoswing manner.

Choc~e any pesitlve =rm=zerss m and n, I==re

m > 1. Then m2 -n~ a2 2mn will be tpg‘lehgths
of +tne legs of a rigr: zriangle and m2+Tf2 will
be zhe length of 1ts iycTtz=nuse.

b. Use the m=thod of part (a  to list integral lenzths of
sides of right triangles with nypotezuse less thzn or
equal to 25. There are =ixX such trtangles.

T. a. With right angles and
lengths as marked in the
figure, find AY, AZ
and AB.

b. If you continue thxe
pattern established in
this figure making
BC =1 and m/ CBA = &,
what would be the lenz==
of AC? What would b=
the length of the nex™

segment from A? You
should find an interezft-
ing rattern devei-mini..

8. In the reczangular sc. .l &%
the right AW = 1, AB =
AD = 2. Find AY.

Ny

VA Y
1
| o
- ;
WY ‘X_"______
- ) C
- -~
A B

34
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13.

c 343

In A ABC, AB = 14, BC = 15,
AC = 13. 13 15
=. Find the length of the he N
altitude, h,, to AB. //’ \\
b. Find the length of the A D 14 B
altitude, h_, to BC.
A3 has obtuse angle / B, ,E
and AB = 6, BC = 24, AC = 18. ////
Fin: the length of the altitude, '
KE 18
hc, to . 4

One angle of a rhombus has a measurs of ©C ané cxze side has
length 8. Find the length of each Giagonzl.

In rhombus ABCD, AC = 6
and BD = 4. Find the
length of the psrpendicular
from any vertex to either

oroo&lte side.

In the figure E_I_ CA, B ‘
BC =5, CA =12, CD | BB. D
Find CD. 5 d
C 12 A
35
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14. The lengths of the legs of
right triangle ABC are 15 15 n \s
and 8. Find the length of
the hypotenuse. Find the A - D B
length of the altitude to
the hypotenuse.

15. If the lengths of the legs c
of a right triangle ABC
are a and b, find the
length of the altitude to
the hypotenuse.

16. A ABC 1is isosceles with
CA = CB. Medilans AP and
E@ are perpendicular to
each other at S. If
SP = n, find the length of
each segment and the areas
of polygonal regions ASQ,
ASB, ABC and QSPC 1in
terms of n. (Do not change
radicals to decimals.)

17. A proof of the Pythagorean Theorem
making use of the following figure
was discovered by General James A.
Garfield several years before he
became President of the United
States. It appeared about 1875 in
the "New England Journal of Education."
Prove that a2-+ b2 = c2 by stating
=1gebraically that the area of the
“rapezoid equals the sum of the areas
cf the three triangles. You must in-
clude proof that / EBA 1s a right

angle.

[sec. 11-3]
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*18. ABCD 1is a three-dimensional B
"pyramid-like" solid.

Note that points A, B, C,

and D are not coplanar. c A
We are told that BRD = BC = BA

= AC =CD = DA = 2.

) D
a. R and S are mid-
points of BA and CD,
respectively. Prove
RS 1is perpendicular to
both BA and CD.
b. Find the length of RS.
B8
R
A
c ,
S o

*#19. In AABD, / ABD is a right
angle, AB.="BC =1, AC = CcD.
Find AD. Find m/ ADC. and
m/ DAB.

37
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The Pythagorean Theorem also gives us information about the
shapes of certain simple triangles. Two very useful relationships
are stated in the following two theorems. We give figures which
suggest thelr proofs.

Theorem 11-9. (The 30-60 Triangle Theorem.) The hypotenuse
of a right triangle is twice as long as a leg 1if and only if the

measures of the acute angles are 30 and 60.

\

of 3
3030\ -

(-]
g0 5 —— 80°)\

Theorem 11-10. (The Isosceles Right Triangle Theorem.) A
right triangle 1s isosceles 1f and only if the hypotenuse 1s 2
times as long as a leg.

Problem Set 11-3b

I3

1. The lengths of two sides’of a triangle are 10 and 1% and the
measure of the angle included between these sides is 30.
What is the length of the altitude to the side 14? What is
the area of the triangle?

2. The measure of the congruent angles of an-isosceles triangle
are each 30 and the congruent sides each have length 6. How
long is the base of the triangle?

38
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The measure of one acute angle of a right triangle is double
the measure of the other acute angle. If the length of the
longer leg is 5./3, what is the length of the hypotenuse?

Show that in any 30° - 60° right triangle with hypotenuse s

the length of the side opposite the 60° angle 1s given by
h =3/3.

In parallelogram ABCD, AB = 2 A 3 D
and AD = 3, m/ B = 60. Find
the length of the altitude from 2 F
A to 5_5 60°

B C

If an altitude of an equilateral triangle is 15 inches long,
how long 1s one side of the triangle?

In a right triangle with acute angles of 30° and 60°, what 1is
the ratio of the shortest side to the hypotenﬁse? of thev
hypotenuse to the shortest side? Of the shortest side to the
side opposite the 60° angle? Of the side opposite the 60°
angle to the shortest'side? Of the side opposite the 60°
angle to the hypotenuse? Of the hypotenﬁse to the side
opposite the 60° angle? Are these ratios the same for every
30° - 60° right triangle? If you have done this problem
carefully, you should find the results very helpful in many -
of the following problems.

What is the area of the lsosceles triangle whose congruent
gides have lengths of 20 inches each and whose base angles
have measures of:

a. 30? ’ b. 457 c. 607

What is the area of the 1sosceles triangle whose.base has a
length of 24 inches and whose base angles each have measures
" of:

a. L5? b. 307 c. 60?

[sec. 11-3]
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10. Use the information given .n the figures to determine the
numerical values called fc: below:

b.
a = X = a2 =
23. = ‘.!.‘/':: T =
Ja = o=
c. d.
a =
2a = x =
X = s,-___
y:

49
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£, 8
90°
X
8 8
X
8
X =
y':
h.
2
X X
2a
(M a
X
a = a =
X = X =

11, In this figure AB | plane E.
A BFH 1ies in plane BE.
HF | FB. AB = BH = 6.

m/ FHB = 30.

Glve the measures of as
many other segments and
angles of the figure as
you can. determine.

¥12, In AABC, m/ A =30, AC =4, <
AB = 3./3. Find BC. Is /C 4
a right angle?
30°
A 3vV3 B

[sec. 11-3]
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%13, In A ABC as shown in the figure, C
find BC. (Hint: Draw the

altitude from C.) 10

A

14, The base of an isosceles triangle is 20 inches and a leg is

26 inches. Find the area.
F

15. In this figure FD = FC,
DB = CA, DF | FB, and
ﬁ'_l_ﬁ Prove A FAB D A B C
is isosceles. |

16. DA and CB are both
perpendicular to AB 1in
this figure. AE = FB y
and DF = CE. Prove

Lx8 /Y. .

17. Prove the theorem: The area
of an equilateral triangle
with side s 1is given by

82
Area = V3.

42
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19.
20.

21.

22.

23.

24,

. 18 shown. If AB 1is O

351

Find the area of an equllateral triangle having the length of
a side equal to:

a. 2. c. /3.
b. 8. d. 7.

The area of an equilateral triangle is 9 /3. Find i1ts side
and its altitude.

The area of an equllateral triangle is 16 /3. Determine its
slde and 1ts altitude.

A square whose area is 81 has its perimeter of length.equal
to the length of the perimeter of an equilateral triangle.

Find the area of the equilateral triangle.
‘ H G

This figure represents a
cube. The plane determined
by points A, C and F

|

|

|

|

}

inches, how long is AC? :D

What 1s the measure of /L— ""::“ c
/ FAC? What 1s thé area / I
of A FAC? /i

-

\

In trapezoid ABCD, base
angles of 60° include a
base of length 12. The
non-parallel side AD has
length 8. Find the area 60° 607

o
(@]

of the trapezoid. A B
Find the area of the D c
trapezoid.
4
45° 60°
A B

43
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*#25. In the figure, plane E <_ia)nd
plane F intersect in AB,
forming dihedral angle
/ F-AB-E. EE_L plane E,
DG | AB, and CD | AB. D
is the mid-point of iB.

BC X AC. If AB = 48,

AG = 6, m/ CBG = 45, and
m/ CAG = 45, find CG and
m/ F-AB-E.

*26. FPFigure ABCD 1s a regular
tetrahedron (its faces are
equilateral). Let any edge
be e. WM J_KE ‘and
W | 6.

a. Show that the length
of a bi-median, that
is, the segment, ﬁﬁ;
Joinihg the mid-points
of opposite edges, is

(Hint: Draw AM.)

b. Show that the length of the altitude, AH, of the

N

tetranedron is *x e. (Hint: Draw HC and HD.
Does H 1lie on BM? Recall that the medians of a
triangle are concurrent at a point % of the distance

from each vertex.)

a4
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*28.

553

ABXY 1s a square. AB = 6.
m/ X-AB-E = 60.

Rectangle ABCD 1s the
projJection of square ABXY
on plane E. What is the
area of rectangle ABCD?

Given any two rectangles anywhere in a plane, how.can a
single line be drawn which will separate each rectangular
region into two regions of equal area?

Review Problems

If the side of one square is double the side of another
square, then the area of the first square is times
the area of the second square.

In aasc, CD | KB, ZE 1 3¢, aB =8, oD =9 and AE = 6.

Find BC.
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3. A man walks 5 miles north, then 2 miles east, then 1 mile
north, then 6 miles east. How far will he be from his
starting point? '

y, If the diagonal of a square 1s 15 feet long, how long 1is
each side?

5. Find the area of an isosceles triangle in which the base 1s
12 and each congruent side is 10. '

6. In the figure,- PQRS 1is a )
<>

<> Q
parallelogram, QT | SR, H
> | <>
and SV ] QR. =
a. If SV =7 and PS = 5, !
find the area of PQRS. }
- - ——d
b. If SVv=28, QI =4 and &< 7R T
SR = 10, find QR. \\\ /’
\\ /
\\vd/

T. In an equiiateral triangle the lengih of the altitude is
6 inches. What is the length of =ach side?

8. Thr: side of a rhombus is 13 and one of its diagonals is 24,
Find its area.

9. In A ABC base AB = 12, median CD =8, and m/ ADC = 30.

The area of & ABC 1is

lo0. Derive a formula for the

' ‘area of the figure at the

right in terms of the in-
dicated lengths.

i

46
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Find the area of the shaded
region of the Figure at the
right.

Diagonal AD of the pentagon
ABCDE shown is 44 and the
perpendiculars from B, C,
and E are 24, 16, and 15
respectively. AB = 25

and CD = 20. What is the
area of the pentagon?

Given: Parallelogram ABCD
with X and E mid-
points of AB and AD

B c
respectively.
To prove: Area of region
AECX =-% .area, parallelogram X
ABCD.
A D
E

Prove that the area of an isosceles right triangle is equal
to one fourth the area of a square having the hypotenuse of
the triangle as a side.

An equilateral triangle has one side in a given plane. The
plane of the triangle is inclined to the given plane at an
angle of 60°. What is the ratio of the area of the triangle
to the area of its projection on the plane?

4'7
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- %16, Explain how to divide a trapezcid into two parts that have
equal areas by a line through a vertex.

#17. Find the length of the diagonal of a cube whose edge 1s 6
units long.

H G
*18. 1In this rectangular solid . } ,
: !
AE =5, 4iB = 10 and E /____Fj C
AD = 10. , s D
; 7/
a. Find AC. A~ B
b. Find AG.
*19. Given: Square ABCD with A B - E
points E and F as
shown, so that EC | FC.
Area ABCD = 256 sq. ft. F
Area of ACEF = 200 sq. ft.
Find BE.
D C
*20., If W, X, Y and 2 are b y e
mid-points of sides of
square ABCD, as shown in
the filgure, compare the area a ,P
of this square with that of
square RSPQ. z . X
S
R
A w B

48
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*21l. The figure shows two isosceles right triangler. The first of .
these has a horizontal side of length 10 units and the second
has a horizontal hypotenuse'of length 14 units.

l

a. Draw two such triangles on graph paper. Cut out the
second one and place it on the first to show that
thelr areas are apparently equal.’

b, In the first figure count the number of small squares
and the number of small half squares (right isosceles
triangles). Use these numbers to compute the area.

c. Do the same for the second figure.

da. Expléin the discrepancy.

4\.
1 o




Chapter 12
SIMILARITY

12-1. The Idea of a Similarity.

Proportionality. Roughly speaking, two geometric figures are
similar if they have exactly the same shape, but not nécessarily
the same size. For example, any two circles are similar; any two
squares are similar; any two equilateral triangles are similar;
and any two segments are similar.

Q@ A /N\—

Below are two triangles, with the lengths of the sides as
indicated:

Bl

AT b c

These; figures stand in a very special kind of relatlion to each
other. One way to describe this relation, speaking very roughly,
‘1s to say that the triangle on the left can be "stretched", or the
one on the right can be "shrunk", so as to match up with the other
triangle, by the correspondence

ABC<>A'B!C! .,

50
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Of course, this correspondence is not a congruence, because each
side of the right-hand triangle 1s twice as long as the corres-
ponding side of the other. Corre:spondences of this type are
called similarities. The exact definition of a similarity will be
given later in this chapter.

Notice that the lengths of- the sides of our two triangles
form two sequences of positive numbers, a, b, ¢ and a', Db',

¢', standing in a very special relation: each number in the
second sequence 1s exactly twice the corresponding number in the
first sequence; or, sald another way, each number 1ln the first
sequence is exactly half the corresponding number in the second
sequence. Thus

al = 2a, a _.-_-%.a_!’
bt = 2b) or b = Zb',
ct = 2¢; c = %c'.

Another way of putting this is to write
a' b! c! a b c 1

=P =% - % °F agrTpTTerT?
Sequences of positive numbers which are related in this way are
called proportional.

Definition: Two sequences of numbers, a, b, C, ¢

and p, 49 T, ..., none of which is zero', are proportional if
a_b_c¢._ P_a.-*.
p——q—r—oo- ora—%—c—ott

The simplest proportionalities are those involving only four
numbers, and these have special properties that are worth noting.
We list some of them for later references

51
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Algebraic Properties of a Simple Proportion.

1f 2=5
with a, b, ¢, d all different from zero,
then (1) ad = be,
| (2) a_%,
(3) aA; b_oc gﬁdf
(4) 202249,

Proof: Taking the original equation %-='%,

(1) Multiply both sides by bd to get ad = be;

(2) Multiply both sides by % to get % = 3
a+b c+d,
b - d

a-b_c¢-d
(4) Subtract 1 from both sides to get 5 =

(3) Add 1 to both sides to get

Other relations can be derived, but these are the most useful.

Definition: If a, b, ¢ are positive numbers and ~% = b

then b 1s the geometric mean between a and c.

From Property (l) above, it follows that the geometric mean
between a and c¢ 1is _/ac. '

Problem Set 12-1

1. Complete each statement:

a. If then Ta .

c. If

a 3
P57
b. If % =-% then  4x
6_4
5 y

then 6y .

[sec. 12-1]
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*5.

In eaeh of the following proportionalities, find x.

x _ 3 _ X
a. "2"—"4'. C. %—-n—.
5_14 2 _ 11
p. g =7 d T
Complete each statement:
a. If 3a = 2x, then % = ——, and %:.__.
b. If 5'3 = 4m, then %:-——, and 7 = —
C. If Tb = 4a, then % = ——, and 2.—_ —
d. If 5°'9 = 6x, then % = —, and % = —

In each of the following proportionalities, express the
number a 1in terms of the numbers b, ¢ and d.

2a _ ke c 3b_%
a. -56—5(1. . '[I_'E—— .
b, 26 Tc 4. Lb._&
* Ba ~ Tid- : 2c ~ Ba-
Complete each statement:
a. If % ='% , then E*; L , and & 5 b _
X _ v+ 2 y - 2 _
b. If $=%, then = = , and L=<
c. 1Ir 22 oI then 8-, and 28 - -
b b -
d. If 8.2, then 2228 -, ana 222~

Here are three sequences of numbers. Are any two pairs of
sequences proportional?

a. 3, T, 12,
b. ’ 21, 36.
3
)

9
c. g, 10.

53
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‘One can tell -at a glance that the sequences = and b are

propdrtional since each number in b 1s 3 +<fmes the
corresponding number in a. The comparisan of a and ¢
is not such a simple matter.” An efficient way to make such
a comparison might be to change each to & new mroportional
sequence beginning with 1, that is,

a. 1, %, 4,
. .
b. 1, T

c. 1, —) —.

2

In the following list of sequences of numbers, which béirs
of sequences are proportional? Make a complete list of
these bairs of sequences,

1 2

a. 5: 7: 9- f. '3': §': 1.
b, 1, 2, 3. g. 27, 21, 51.
c 9, 7, 17 h. 15, 30, 45,
d L, 3%, ul 1 10, 14, 18

3 2’ 2 . 3 3 .
e 18, 14, 34,
If ~ﬁ% = g% =-%g, what are the values of w and v?

i

If %-: §-= %%-: Ts what are the values of x, y and 2z?

Which of the following are correct for all values of the
letters involved assuming that no number in any sequence
shown 1is zero?

a 3 _ 4 q a+b _ 1
3~ 1Ir 22, p2 a+b
K X Y -Z _¥
P. 157 = Tok e. Fy=ly-F ok
X y w
e r _s _ ¢t £ 1 ¢c - d
2 s s% c+d 2_ &
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11. If %% =-£% = é% = %g, what are the values of p, q and t?

12. The geometric mean of two positive numbers a and ¢ 1is

b =./ac. The arithmetic mean of a and c¢ 18 d = E—%—E.

o

Find the geometric mean and the arithmetic mean of the follow-

ing pairs:
a. 4 and 9. d. . 2 and 24,
b. 6 and 12. e. 2 and 3.

c. 8 and 10.

12-2. Similarities between Triangles.

‘We can now state the definition of a similarity between two
triangles. Suppose we have glven a correspondence

ABC<—>A'B'C!

between two triangles

B

A - C A 5 C'
As indicated in the figure, a 1s the length of the side opposite
A, b 1s the length of the side opposite B, and so on. If
corresponding angles are congruent, and

a _b _c¢
'3‘"1 Y =72

then the correspondence ABC<>A'B'C' 1is a similarity, and we
write

A ABC~ AA'B'C'.

3
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Definition: Given a correspondence between the vertices of
two triangles. If corresponding angles are congruent and the
corresponding sides are proportional, then the correspondence is
a similarity, and the triangles are said to be similar.

Notice that this definition requires two things: (1) corres-
ponding angles must be congruent, and (2) corresponding sides must
be proportional. In putting both of these requirements into the
definition, we are making sure that the definition may be applied
to polygonal figures of more than three sides. To see what the
possible troubles might be, if we used only one of our two require-
ments, let us look at the situation for quadrilaterals.

B'————c!

A D A D!

First consider the correspondence ABCD<>A'B!'C'D', between the
two rectangles in the figure. Corresponding angles are congruent,
because all of the angles are right angles, but the-two rectangles
don't have the same shape, by any means.
Now consider a square and a rhombus, with edges of length 1
and 2, like this:

Under the correspondence ABCD<—>A'B'C‘D‘, corresponding sides
are proportional, put the shapes are quite different.

50
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We shall see later that for the case of correspondences
between triangles, if elther one of our conditions holds, then so
does the other. That is, if corresponding angles are congruent,

then corresponding sides are proportional; and conversely, if
corresponding sides are proportional, then corresponding angles
are congruent. These facts are glven in the A.A.A. Similarity
Theorem and the S.S.S. Similarity Theorem, which will be proved
later in this chapter.

Problem Set 12-2

1. Given a similarity A ABC ~ A DEF,

B

write down the proportionality between corresponding sides,
using the notation AB, - AC, and sO on. Then:

D F

a. Express AB in terms of AC, DE and DF.
b. Express BC 1in terms of AB, DE and EF.
c. Express AC in terms of BC, EF and DF.
d. Express AB in terms of BC, DE and EF.
e. Express BC in terms of AC, EF and DF.
f. Express AC 1in terms of AB, DE and DF.
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2. Below are listed five sets of 3 numbers. Point out which
pairs of sets of numbers (not necessarily in the order given)
might be lengths of sides of similar triangles. Write out
the equal ratios in each case. For example, a, b;

3 _4 6
5 -8~ 12
a. 3, 4, 6. d. 9, 12, 18.
b. 8, 6, 12. e. 2, 45 b
c. 3, &, g.
3. Two prints of a negative are made, one a contact print and

one enlarged. In the contact print an object has u length
of 2 inches and a height.6f 1.6 inches. In the enlarged
print the same object has a length of 7.5 inches. Find its
height in the enlargement.

y, If AABC = A A'B'C', does it follow that A ABC ~ A A'B'Q'?
Why or why not?

5. Prove: The triangle whose vertices are the mid-points of the
sides of a given triangle is similar to the given triangle.

12-3. The Basic Similarity Theorems.

Consider a triangle AABC. Let D and E be different
points on the sides AB and EEE and suppose that Tﬁ?-and EE
are parallel,

A

/ N

B C

It looks as if the correspondence

ABC<> ADE

[sec. 12-3]
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ought to be a similarity, and it is, as we shall presently see.
We prepare the way with a serles of theorems.

Theorem 12-1. (The Basic Proportionality Theorem.) If a
line parallel to one side of a triangle intersects the other two
sides in distinct points, then it cuts off segments which are
proportional to these sides.

Restatement: In A ABC let D and E bhe points of AB and
—_ => <>
AC such that DE || BC. Then

AB = AC
o I

Proof: (1) In AADE and A BDE think of AD and BD as
the bases and the altitude from E to ﬁ as theilr common
altitude. Then by Theorem 11l-5,

area A BDE _ BD
area A ADE *
(2) In A AED and A CED think of AE and CE as
. <>
the bases and the altitude from D to AC as thelr common
altitude. Then by Theorem 11-5,

area ACDE _ C

area A ADE AE®

(3) A BDE and A CDE have the same base, DE, and
congruent altitudes, since the lines ﬁ and ﬁ aire parallel,
Hence by Theorem 11-6,

area ABDE-= area A CDE.

r
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(4) It follows from (1), (2) and (3) that

BD _ CE
| aD = %
'“Applying Algebraic Property (3), from Section 12-1, X
’ AB _ AC

iD T AE°

The converse of Theorem 12-1 is also true (and is easier to
" prove). That 18, we have:

Theorem 12-2. If a line intersects twe sides'of a triangie,
and cuts off segments proportional to these two sides, then it is
parqllel to the third side. -

Restatement: ILet A ABC be a triangle. Let D be a point
between A and B, and let E be'a point between A and €. If

AB _ AC
AD T B
; <> <«>
then BC and DE are parallel.
A

B oy

1

<> _ T >
. Proof: Let EE: be the line through B, parallel to DE,
and intersecting AE in C'. By Theorem 12-1,

AB _ AC!
RD T RE

so that

AC'. = AE -%g.

But the equation given in the hypothesis of the theorem means that

AC = AE - %%.
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TE,

<>
Therefore AC' = AC. Therefore C' =C, and BC 1s parallel to
which was to be proved. !
Problem Set 12-3a
In thiw [igure the lengths
; a, b, x
and y a3 shown. a
a+ b _ a _ o
a b §0
y
a+b _ X + a _ __ b o
b i X 60
a+ b _ X+y _ ¥ '
X +y X a+ b
In this figure if HT || AB, ,F
FA_ ___ IB_ / |
FH ~ : FT —
H U
FA _ FT _
AR ~ ot FH ~ e
FH _ BT _
m=—— ™" A B
In the filgure,
a. If RH =14, HF =T,
BF = 10, then AB =
b. If RH =6, HF = 10,
AB = 3, then BF =
c. If RH =5, RF = 20,
AF = 18, then BF =
o1
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4. In the figure, DE || AB.

a. If AC =12, CD =14, CE=8, rind BC.
b. If AD=6, BE =10, CD =4, find CE.
c. If BC =22, EB=6, CD =28, find AC.
d. If AD=5, CD=17, BC=18, find BE.
e. If AC =15 CE=6, BC =18, find AD.

5. In the figure let the segments
have measures as indicated.
Can MN || KL Justify your

answer.
6. Which of the following sets of A

data make FG || BGC?
a. AB =14, AF =6, AC =7, > G

AG = 3. |
b. AB =12, FB =3, AC = 8,

AG = 6. B C
C. AF = 6, }?B = 5,. AG= 9’

GC = 8.
d. AC =21, GC =9, AB =14,

AF = 5,
e. AB =24, AC =6, AF =8,

GC = b4, .

62

[sec. 12-3]




372

10.

If, in the figure, DF | AB,

prove
a DA _ FB
- TD ~ CF
Hint: Use Theorem 12-1 D E
and subtract 1 from each
fraction.
L. CA _CB A . B
+ Dk T ¥
c CA _CD
- ©CB ~ TF

Given the figure, one person
handied the problem of finding
w in this way:
7 .19 -w
W
Propose a more convenient
equatibn. Do you get the

same result?

Place conditions upon x such
that- DE || AB, glven that

CD = x - 3, DA =3x <19,

CE = 4, and EB = x - 4,

il

A

In this figure if EF || AB, FG ||BC, and GH || DC, prove
AE || DA. Must the figure be planar?
C
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1l. Prove: If three or more
parallels are cut by two A/ \D
transversals, the intercepted \\
Segments on the two transver- B E
sals are proportional. ]/ \\
Restatement: If the lines C F
Ll and L2 are transversals /L, \Lz

«—>
of the parallel lines AD,
<> >
BE, and CF, then
AB _ DE
BEC ~ EF
12. Three lots extend from Packard ' 95’,//’/A

: e
Street to State Street as shown o\‘°vd St
in this drawing. The side o 5

lines make right angles with "’//ﬂ
State Street, and the total
frontage on Packard Street is I I IIT
360'. Find the frontage of
each lot on Packard Street.

60’ 120’ 90’
State Street

13. aiven:/A\ABC, X¥Z, such that x/
“~—> > <>
XA, YB, 2C meet in O and A
> <> <> &y
AB || XY, BC || ¥z.
' L d
Prove: AC ||3Ei : B Y
o}
C
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i4. A printer wishes to make a card T

6 inches long and of such wldth

that when folded on the dotted

line as shown it will have the X
same shape as when unfolded.

What should be the width?

| ————— — —

Theorem 12-3. (The A.A.A. Similarity Theorem.) Given a
correspondence between two triangles. If corresponding angles

are congruent, then the correspondence is a similarity.
Restatement: Given a correspondence

ABC «—>DEF

/D, /B=/E and [C=/F, |

w

between two triangles. If /A
then

A ABC ~ A DEF.

Notice that to prove that the correspondence is a similarity,
we merely need to show that corresporiding sides are proportional.
(We don't need to worry about the angles, because corresponding
angles are congruent by hypothesis). The proportionality of the
sides means that

AB _ AC _ BC
PE ~ DF - EF’

Tt will be sufficient to prove that the first of these equations
always holds. (Exactly the same proof could then be repeated to
show that the second equation also holds).
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Thus we need to prove thaﬁ %% = BF
A D

E’ Fl

B C
— —>
Proof: Let E' and F' be points of AB and AC, such
that AE' = DE and AF' = DF. By the S.A.S. Postulate, we have

A AE'F' = A DEF.

A . -
Therefore ./ A E'F- ¥ / B. Therefore E'F' and BC are parallel,
or coincide. If they coincide then A AE'F' = A ABC, and so

AABC ¥ ADEF; 1in this case, '

- AB = DE and AC = DF, :
or ’
AB _ AC _
PE " DF ~
<> <>

If E'F' and BC are parallel, then by Theorem 12-1, we have

AB _ AC
EET T Efv
But AE' = DE and APF' = DF. Therefore
~AB _ AC
DPE T DF °

which was to be proved.

The theorem just proved allows us to prove a corollary which,
it turns out, we quote oftener than the theorem in showing that
two triangles are similar. Recali-from Corollary 9-13-1 that if
two pairs of corresponding angles of two triangles are congruent,
the third pair must be also. Thus from Theorem 12-3 we immediate-
ly get the followlng corollary:
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Corollary 12-3-1. (The A.A. Corollary.) Given a correspond-
ence beuvween two triangles, If two palrs of corresponding angles

are congruent, chen the correspondence is a similarity.
For example, if /A =2/D and /B=/E, then
A ABC ~A DEF.

iIf /A=2/D and /C=/F, then the same conclusion follows.
And similarly for the third case. _ '

We can now justify our statement at the beginning of this
section by proving the following corollary:

Corollary 12-3-2. If a line parallel to one side of a tri-
angle intersects the other two sides in distinct points, then it
cuts off a triangle similar to the glven triangle.

i o~

B c

«> <>
For 1f DE || BC then by corresponding angles / ADE = / B and
/AED 2 / C. Also /A= /A. Hence AADE ~ A ABC, by
Theorem 12-3 or Corollary 12-3-1.

Theorem 12-4. (The S. A. S. Similarity Theorem.) Given a
correspondence between two triangles. If two palrs of correspond-
ing sides are proportional, and the included angles are congruent,
then the correspondence is a similarity.‘
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Restatement: Given ABC<—>DEF.

If , LA=/D
AB _ AC
and DE = D’
then A ABC ~ A DEF.
D
E F

—> —>
Proof: ILet E' and F' be points of AB and AC, such
that AE' = DE and AF' = DF. Then

AB _ AC
AE' = R

By Theorem 1% 2, this means that E!'F' and BC are parallel.
When two parallel lines are cut by a transversal, corresponding
" angles are congruent. Therefore

/B=/e
and /cs/ f.‘
But we know, by the S. A. S. Postulate, that
AAE'F' 2 A DEF,

Therefore /e=/E
and /ft=/F.
Therefore /B&/E
and /Cc=/F.

We already knew by hypothesis that

/A=/D. )
Therefore, by the A.A.A. Similarity Theorem, We have
A aBC ~ A\DEF
which was to be proved. '
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We have one more basic similarity theorem for triangles.

Theorem 12-5. (The S. S. S. Similarity Theorem.) Given a
correspondence between two triangles. If corresponding sldes arc
proportional, then the correspondence is a similarity.

Restatement: Given ABC<«->DEF.
AB _ AC _ BC

ir E = OF ~ BF
then A ABC ~ A DEF.
D
£ F

' —>
Proof: As Lefore, let E' and F!' be points of AB and
AC, such that AE' = DE and AF' = DF.

Statements ' Reasons
1. B2 = pe 1. Hypothesis.
2. B2 =I%. 2. Substitution.
3. E'F' and BC are parallel| 3. Statement 2 and Theorem 12-2.
4, Je=/B and /f ¥ /C. | 4. Theorem 9-9.
AABC ~ AAE'F!, 5. A. A. Corollary.
-E-C—E'F' = AE! 6. Definition of similar tri-
AB angles.
AE! DB .
T. E'F!' = ch— = BC’KF' 7. Statement © and substitution.
8. %g = .E.% or EF = BC-K%. 8. Hypothesis.

[sec., 12-3]
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<

E'F' = EF. 9. Statements 7 and 8."*““l
AAE'F' = ADEF. 10. The S.S.S. Theorem.

/e=/E ad /f
/B=/E and /C¥ /F. |12. Statements 4 and 11.
AABC ~ ADEF, 13. The A.A. Corollary.

n

/ F. |11. Corresponding parts.

n

Problem Set 12-3b

Given a correspondence ABC<«—>DEF between two triangles.
Which of the following cases are sufficient to show that the
correspondence is a similarity?

a. /JA«®/D, /B=/E.

b AB _ DE
* &K T DR
c. Corresponding sides are proportional.

d. Both triangles are equilateral.
e. Both triangles are isosceles, and m/ A = m/ D.
f. m/C=m/F =90, and AB = DE.

Which of these similarity theorems do not have related con-
gruence theorems: S.A.S., S.S.S., A.A.A., A.A.?

Is there any possibility of A I beling similar to A II if:

a. two angles of A I have measures of 60 and' 70 while two
angles of A II have measures of 50 and 80?

b. two angles ot A I have measures of 40 and 60 while two
angles of A II have measures of 60 and 802?

c. AI 1s a right A, while A II 1is isosceles with one
angle of measure %0?
d. AI has sides whose lengths are 5, 6, 7, while A II
has a perimeter of 36,000.
70
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y, Here are six pairs of triangles. In each case tell whether
the two triangles are similar. If they are, state the theorem
you would quote as proof. '

5. Given the figure shown with
AC | BC and CX ] AB.

a. Name an angle which 1is
congruent to / ACB.

b. Name an angle with the
same measure as LB.

¢. -Name a triangle which
is similar to A ACB.

/c
A X
—_ = D
6. If the lengths of DX, XE, G
and FX are. p, @ and r
respectively, what length
of XG will assure similar-
1ty of the trlangles? If <
p = 3q, must m/ D = 3m/ E? A e
17

7L F
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Below is a series of statements giving the lengths of sides
of a number of triangles. Decide for each palr whether the
triangles are similar and then make a statement as follows:

A is similar to A , Or
A is not similar to A

For each pair that are similar wfite a statement showing the
proportionality of the sides.

a. AB=5, AF=3, FB=27 QR = 35, QS =9, RS = 21.
b. M =2, Mi=5 TW=6. RS =75 LS=9, RL=a3.
c. AB=05, BC =2, AC =4. XY= 2%, XZ =2, YZ = 3.
d. AB =6, AC =17, BC =28 RS = 40, RT = 35, ST = 30.
e. AB = 1.8, BC = 2.4, AC = 3.
XW = 0.4, XT = 0.5, WT = 0.3
Given: /B = Z D.
CD = 4 A
Prove: BD = 5BL.
C
1 p
m X
Fig. a. Fig. b, ~ Flgec Fig.d

In each figure a segment has been drawn parallel to the base
of a triangle, and the lengths of certaln segments have been
indicated.

72
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10.

11.

*12.

a. Prove that x

% (Hint: Write a proportion.)

b. Prove that x = mp.

c. Prove that x = ke.

d. Prove: x = %. _

e. Part ¢ is a specilal case of which other part?

f. Part d is a special case of which other part?
g. Do the results depend on the size of the vertex angle?

Explain how two triangles can have five parts (sides, angles)
of one triangle congruent to five parts of the other triangle,
but not be congruent triangles.

Given: ’In the diagram i A
S oo 0
171
0B oD .
Prove: = . D
08 " 0.0y | B X/B'
' 1
D
O,
i

a. If BR, @S and DT are
perpendicular to BD,
name the pairs of R d

similar triangles.
b. Which is correct: T
§of or Fepiqt X s
c. Which is correct: 2 y
% =~% or % =5 E—a ? - = P 2 q .
d. Show that %+%=%—.
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e. The problem, "How long does it take two men to complete
a task which one alone can complete in 6 hours and the
other alone in 3 hours?" can be answered by solving

%-+ %-: %. Solve this equation geometrically. (Hint:

see part (d) and the figure.)

13. Given parallelogram ABRQ Q R
: with diagonal QB and =
~ segment AF intersecting
in H as shown.
Prove: QH . HF = HB . AH. A . - B
14. 1In this figure if DB J_ AC D
and DQ = BQ = 2AQ = -§ QC.
Prove: a. AAQD ~ A DQC. )
. b. ABQC ~ A AQD. A Q —>C
c. AD 1_55' /////////////////r
) B
15. Prove the following theorem:
" the bilsector of an angle of
a triangle divides the E
opposite side into segments ,,17
proportional to the adjacent ‘,// //
/

sides. //
Given: A ABC, AD the bi- _ //
sector of / A meeting BC /
/
in D. /
CcD CA

Prove: o5 = 5"
(Hint: Make BE || AD.)

7.4
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*16. Given AABC. Let the bisectors of the internal and external

angles at A meet ?ﬁ? in points D and D!

respectively.
1
Prove that ehL . &R

T'5 = 75 (Hint: Make BF || D'A.)
E

C

D B o T T

*17. If we have an electrical circult consisting of two wires in

parallel, with resistances Rl anéthe, then the resistance

R of the circult is given by the equation
1 1 1
== + = .
R™ R, "R, R
I R,
R,
The following scheme has been used to find R, given R1

[sec, 12-3]
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Numerlcal scales are marked off on three rays as in Figure 1.
A straight-edge is placed so as to pass through Rl and R
on the two outer scales, and R 1is read off on the third
scale. Using the scales of the figure, select values for
Rl’ RE’ find R from the figure and check your result to
see that the equation above 1s satisfied.

2

a. Prove that the method really works. See Figure 2.
b. Could the same diagram be used to find R 1in the

1 1 1
equation = == ~ % ?
R Rl R2
In this figure WS R A
and LQ are medians
RW _ RT _ WS
and 3T AW T IY- Q
Prove that S L
A RWT ~ A ALM. vy M
T
Given in this figure that
RA | AB, FB | AB and
RH | AF.
Prove that A HRA ~ A BAF
and HR°*BF = BA-HA.
R
F‘
H
X
A B
70
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20. A method of enlargement.

The figure AlBlchl has been enlarged by introducing from

an arbitrary point P, the rays PAl, PBl, PC1 and PDl;
locating A2, ~32’ 02 and D2 so that PA2 = 2PA1,

PB2 = 2PB1, etc.; and finally drawing segments A2B2,

A2D2 etc.

a. Draw a simple object, a block or a table, for example,
and enlarge it by the method shown. 1Is it necessary
that PAl, PBl’ etc. be doubled?

b. How could the method be modified to draw a figure with

sides half the length of those of AlBlchl?
| - A_B, PA
c. Prove: APAB. ~ APAB, and comd = o
‘ ' 171 272 KlE PAl'
d. Prove: A AlBlD1 ~ A A2B2D2.
e. Could the enlargement be carried out if P were

selected on or inside the given figure?

7
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_ *21. Given: Quadrilateral RSTQ
as in the {igure with RS || QT
and A QXR ~ ATXS.

»Prove: QR = TS.

22. @iven: AW l_ﬁﬁ. W
BFRQ 1s a square with
Q on AW and R on Q

WM as shown in the
figure.

il

Prove: AB'WR
and AB*FM

QW -BQ,
RF-BQ. A B F M

il

23. Prove the following theorem: 1In similar triangles corres-
ponding medians have the same ratio as corresponding sides.

: F
Q .
W Z N
A B H R

24, Prove the following theorem: In similar triangles corres-
ponding altitudes have the same ratio as corresponding sides.

F'
///;]\\\\\\\\\\\ //////[\\\\\\\\\\\\\
x—%4 w A o B
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25. Prove that if the sildes of two triangles are respectively
parallel, the triangles are similar.
Given: 1B || HR .
AF || HW .
BF || RW..
Prove: /\ ABF ~ /\ HRW
W
/f%\ . :
H / R
N
e/ AT B
/5\ \R\‘\é“'
A B W
Case I Case Il
E
26. Given: /A= /B and AC = BD.
Show CD || 7B
C D
S N B
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*27, It 18 known (see Chapter 5) that if two triangles correspond
.80 that two sides and the angle opposite one of them in one
triangle are congruént respectively to two sides and the
angle opposite the corresponding side of the other (S. S. A.),
the triangles need not be zongruent. (See diagram.)

o

Is the following statement true or false? Explain.

If two triangles correspond such that two sides of one tri-
angle are proportional to two sides of the other, and the
angles opposite a pair of corresponding sides are congruent,
then the triangles are similar.

*28, A EDF 1s isosceles with
" DE = DF. AABC is such that
E and PF 1lie between A and B
¢, GB ||ED, and A, B, D D
are collinear.

a. What true statements con-
cerning similarity and E F

proportions can be made
concerning

1. A ABC and A ADE?
2. AABC and A ADF?
b. Is the following statement true or false? Fxplain.

Given A ABC with D on segment AB, X on segment
—— : P .
AC, such that 2B = B, then BC and DX must be

parallel.
80

[sec. 12-3]




390

*29, A tennis ball is served from a height of 7 feet to clear a
net 3 feet high. If it is served from a line 39 feet behind
the net and travels in a straight path, how far from the net

does it hit the ground?

geometric mean of EG and

F‘
*30., In the parallelogram ABCD
shown in the figure the line
<> <>
- BF intersects AC at E, .
EB' at G, and XB at F. -
Prove that EB 1s the o MC

EF.
Y
A B
*31. Given AABC and XYZ such
> <> <>
that AX, BY and CZ are
parallel and also il . A %

<> <>

BA and Y¥X meet in D and
“—>

Ba and YZ meet in E.

<> | <>
Prove: AC || DE || XZ.

81
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*32. The angles in the figure
marked with small squares
are right angles.

.. BF _AD
a. Sh?w .that B = o
b.  Then show that

BE _ CD  AC , AD BC
AB T RC'AB T AC "B

12-4. Similarities in Right Triangles.

Theorem 12-6. In any right triangzle, the altitude to the
hypotenuse separates the triangle into two triangles which are
similar to each other and to the original triangle.

- Restatement: Let A ABC be a right triangle with its right
angle at C. Let CD be the altitude from C to the hypotenuse
AB. Then

A ACD ~ A ABC ~ A CBD.

Notice that the restatement is more explicit than the flrst
statement of the theorem; 1t tells us exactly how the vertices
should be matched up to gilve the similarities. ©Notlce also what
the scheme is in matching up the angles: (1) The right angles
match up with each other, as they have to in any similarity of

[sec., 12-%]
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right triangles. (2) Each little triangle has an angle in common
with the big triangle, and so the angle matches 1ltself. (3} The
remaining angles are then matched.

Proof: In the proof, the notation for the angles will be as
shown in the filgure.

Since / C 1is a right angle, we know that /a and /D
are complementary. That 1s,

m/ a+m/ b= 90.
Also, since / d 1is a right angle,
: ) m/ a + mZAb'= 90.
Therefére Lb=/b.

Trivially, /as/a;
and B /C=/a,

because Z d 1is a right angle. By the A.A.A. Similarity Theorem,
we have

A ACD ~ A ABC.

The proof of the other half of the theorem is .precisely
analogous, with the point B behaving like the point A.

Corollary 12-6-1. Given a right triangle and the altitude
from the right angle to the hypotenuse:

(1) The altitude is the geometric mean of the segments into
which 1t separates the hypotenuse.

(2) Either leg 1s the geometric mean of the hypotenuse and
the segment of the hypotenuse adjacent to the leg.

83
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Restatement: ILet A ABC be a right triangle with its right
angle at C, and let D be the foot of the altitude from C to

AB. Then
AD _ CD
(1) &5 = B
AD AC BD BC
@ zc =15 2 3¢ = B

Proof: (1) By Theorem 12-6, /\ ADC ~ /\ CDB

AD _ CD
Hence, TS = BD -
(2) By Theorem 12-6, /\ ADC ~ /\ ACB .
AD _ Ac

Hence, i 5 -

Also, /\ BDC ~ /\ BCA ,

BD BC
andso.-B—c--——K.

Problem Set 12-4

1. Given right A ABC with
altlitude drawn to the

hypotenuse and lengths as x 5
shown, find the unknown
lengths . v
4
2. Follow the directions in. "
Problem 1. Y| /8
8 i z
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In this right triangle with 4
the altitude drawn to the

hypotenuse i1t is possible 6
to find a numerical value Y X

for each segment a, x, V.
Find them.

In a right triangle if the altitude to the hypotenuse is 12
and the hypotenuse is 25, find the length of each leg and of
the segments of the hypotenuse.

In right A ABC, with right
angle at € and altitude CD,

A
a. if AD =2 and DB = 8, D
find AC, €D and CB.
b. if CD =9 and AD = 3,
find AC, CB and AB. .
B C

c. If CB = 12 and AD = 1C.
what are the lengths of
the other segments?

d. if AC =8 and DB = 12,
what are the lengths of
the other segments?

[sec. 12-4]



12-5, Areas of Similar Triangles.

Given &z Square of side &, and a square of slde 2a, it is
€asy to see that the area of the second Square is 4 times the area
of the first. (This is because (2a)2 = 4a2.) In general, if two

Squares have sides g and ka, then the ratio of the areas is
ke, because

An analogous result ..olds for similar triangles:

Theorem 12-7. Tne ratio of the areas of two similar tri-
angles is the Square of the ratio of any two corresponding sides,

Proof: Given A ABC ~ A A'Bigr, Then

at bl 1

a "% T
Let k be the commor value of these ratios, so that al= ka,
P! = kb, ¢! = ke, Let BB pe the altitude from B +to %G, ana
let BiD be the altitude from B!' o W Since A ABRD and
AA'B'D'  ape right triangles, and LA ¥/ A', we have

A ABD ~ AprBipr

h'! ¢t
Therefore A= = k.
Let Al and A2 be the areas orf the two triangles. f%hen
1
Al = -2-bh,
nd Ay = i
a 2 =3P

2

= k% + (Hon).

[sec. 12-5]

- 846




396

A 2 2 2
' 2 _ 2 . Ay = b! (el
Therefore rels k= () = (S—) =" (3 )
which was to be proved.
Problem Set 12-5
1. what is the ratio of the areas of two similar trisngles whose

pases are 2 inches and 4 inches? x 1nches and y inchesa?

2. A side of one of two similar triangles 1s 5 times the corres-
ponding side of the other. If the area of the first is 6,
what 18 the area of the second?

3. In the figure if H is the
mid-point of AR and K 1s
the mid-point of AB, the
area of A ABF 18 how many
times as great as the area of

A AKH? If the area of
“AABF is 15, find the area A K B
of A AKHe

4. The area of the larger of two similar triangles is 9 times
the area of the smaller. A side of the larger 1s how many
times the corresponding side of the smaller?

5. 'The areas of two similar triangles are 225 sq. in. and 36
sq. in. Find the base of the smaller if the base of the
larger is 20 inches. o

6. The areas of two gimllar triangles are 144 and 81. If a cide
of the former is 6, what 18 the morresponding side of the
1 zr?

7. In A ABC, the point D 18 on side AC, and AD 'is twice
¢D. Draw DE parallel to .5 intersecting BC at E, and
compare the areas of triangies ABC and DEC.

31
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11.

12.

13.

397

The edges of one cube are double those of another.
a. What 1s the ratio of the sums of their edges?
b.  What is the ratio of their total surface areas?

How long must a side of an equilateral triangle be in order
that its area shall be twice that of an equilateral triangle
whose side is 107

If similar triangles are drawn on the side and on the altitude
of an equilateral triangle, so that the side and altitude are
corresponding sides of the triangles, prove that their areas
are to each other as 4 is to 3.

Two pieces of wire of equal length are bent to form a square
and an equllateral triangle respectively. What 1is the ratio
of the areas of the two figures? C

A triangular lot has sides
with lengths 130 ft., 140 f%.,
and 150 ft. The length of the
perpendicular from one corner
to the side of 140 ft. is 120
f£. A fence is to be erected
perpendicular to the side of
140 ft., so that the area of
the lot 1s equally divided.
How far from A along 'Kg- A
should this perpendicular be 140!
drawn?

b e e e s —— —————

Prove the theorem: The mid-
point of the hypotenuse of a
right triangle 1s equidistant
from the vartices.

A

88
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14.

15.

*16.

17.

B
c
27 60°
Prove Theorem 11-9 by using K
the following dlagram and c
problem 13. 2
. 3 L]
AL C
In this triangle AR = RC = RB. A
Prove that AABC 1s a right R
triangle.
C! B

Prove: The geometric mean of two positive numbers 1is less
than their arithmetic mean, except when the two numbers are
equal, in which case the geometric mean equals the arith-
metic mean. (Hint: Let the two glven numbers be the dis-
tances AH and HB, let HC C

be perpendicular to AB,

with HC =+AH-HB, and let
M be the mid-point of AB.
Prove / ACB 1is a right
angle and use the preceding B
two problems.) M H

Given: P-ABC 18 a triangular
pyramid with a section RST
parallel to the base ABC. PY
is perpendicular to the plane
of the base, and._E_ is the R T
intersection of PY with the

plane of A RST.

2 A C
. area A RST _ (PX
Prove: area A ABC (?Y) .
B

&)
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<

*18. 1In the figure, A ABC 1is a
right triangle, with hypot-
enuse Kﬁ; and CH 1s the
altitude from C.

AY

Let the areas of A ABC,
A ACH, A CBH be K
respectively.

X A H B

1’ T2

K3
The following sequence of statements constitutes a different
proof of the Pythagorean Theorem. Give a reason for each of

the following statements:

1. K =K, + Ky,
K, K
o K3
2. 1 =243,
LOR
3. A ACH ~ A ABC ~ A CBH.
2 2
AC BC
4 . 1 = ("—‘AB) + ('A"B"') .
5. (aB)%= (aC)? + (BC)Z.

Preamble. 1In the following problems, the lengths of two sides
‘and the included angle of a triangle are given, and it is required
to find the length of the third s'de. By the S.A.S. congruence
theoren, the third side 1s uniquely determined, so there should be
& method of finding it numerically. Another way of giving the
included angle 18 to give a represehtative right triangle in which
the angle (or its supplement) 1s one of the acute angles. Actually,
only the number k = %% is needed., For numerical work, this" '
pumber, which depends on / R, has been tabulated, and if this
table 18 readily avallable the comrutation of the length of the
third side is quite straightforward. The number k 1s called the
cosine of / R, abbreviated k = cos / R, and the table is called
a table of cosines. For this reason the formula for a2 that we
find 1is called the law of cosines. You will meet it again in
. trigonometry.

90
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*19.

*20.

*21.

In the %w¢ iriangles shown in
the diagram, / A = /R, AC =D,
AB=c, B =k and /S 1is a
right angle. Find a in terms
of b,.c, and k.

(Hint: Let D be the foot of

the altitude to AB, and let 1 T
X, ¥y, h Dbe as indicated in
the figure. Express a® 1in R ” S

terms of h and y; express

h and y in terms of X, b,
and ¢; then, from the similar-
ity OADC ~ A RST, express

x in terms of b and k.)

In the two triangles shown in
the diagram, / BAC 1s the
supplement of / R, and AC =D,
AB=c, RS =k and /S 1is a
right angle. Find 'a in terms
of b, ¢ and k.

(Hint: Let D be the foot of
<>
the perpendicular to AB from
C. Then A ADC ~A RST.) STk R

a. Let m, be the length of the median to the side BC of
AABC, and let BC =a, CA =Db, AB = c. Prove that

2
2 1,.,.2 2 a
ma = E(b + C - “2‘ ).

b. Let m,, my, m, be the lengths of the medians of

A ABC, with sides of length a, b, c¢. Prove that

2 2. 2 3,2 .2 2
mg ok my +om, o= F(a® + d" + ¢ )

01
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Review Problems

In the figure HQ || AB.

FH =2, FB = ¢

|
=
-n

b. If F‘B = 6) FH l! \
. H Q

. HA =4, PFPQ= ¢ \\\\\
c. If FA=9, FB=7, i \
1 2 , '

FH = 85, FQ = A 5
d. If HA =6, FB =12,

FH =3, QB = ?

. ' A

a. Are the two triangles

pictured here, similar c e

if AB =14, AF =9, L

QF = 3, and AT = 2% ?
b. If AB =5, AT = 3, B Q

AQ = 4%, what must AF F

be to make A TAQ ~A BAF?

Give the geometric mean and the arithmetic mean for each of
the following: '

a. 8 and 10 b. 6+2 and 3/2.

Sketch two figures which are not similar, but which have the
sides of one proportional to the corresponding sides of the

other.
In right A ABC, if FC is /B
the altitude to the hypotenuse, F
AF = 12 and BF = 3, find
AC, PC and BC.
A o
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10.

11.

C
If CD =x+ 3, DA =3x+ 3,
CE=5 and EB = x + 5, E
what must be the value of Xx o
to assure that DE | AB?
A B

Given in this figure,
/B® /D, CD= LUAB.
Prove BD = 5BE.

A side of one equilateral trlangle 1s congruent to an altitude
of another equilateral triangle. What is the ratio of their '
aréas?

In A ABC, AC | BC, CF | AB,
AB = 20 and FC = 8. Find A B
a, b, x, and V.

If AABC ~ A DEF and A ACB ~ A DEF, show that AB = AC.

Given rectangle ABFQ =as
shown in the figure with

wx | AF.
Prove: Q F
a. AF-XW = AW-QA. X
b. QF-XW = AX.QA.
c. AF.AX = AW.QF.
A w B
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13.

*1h,

15.

Lo3

The tallest trees in the world are the redwoods along the
coast of northern California. To measure one of these giants
you move some distance from the tree and drive a stake 1n the
ground. Then you hold a small mirror at ground level and
sight 1t in, moving away from the stake until the top of the
stake and the top of the tree are in a diregct line.

If your stake 1s 5 feet tzll and is 520 feet from the base of
the tree, and i1f your mirror is 8 feet from the stake when

the top of the stake and the top of the tree are in a straight
line, how tall is the tree? ‘

In right A ABC with CF A
the altitude to the hypotenuse, 3 E
and lengths as indicated in the .
figure, find X, y, and w. ° y
¥ . ,
c w B

Join the vertices of A ABC to a point R outside the tri-
angle. Through any point X of AR draw XY H AB meeting
BR at Y. Draw YZ || BC meeting RC at Z. Prove

AXYZ ~ A ABC.

Wheﬁ we photograph a triangle, 1s the picture always similar
to the original triangle? When can we be sure that it is?
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Chapters 7 to 12

REVIEW EXERCISES

Write (1) if the statement is true and (0) 1f it is false. Be
able to explain why you mzrit a statement false.

1. An exterlor angle of a triangle 1s larger than any interior
angle of the trilangle.

2. In space there is only one perpendicular to a given line
through a given external point.

3. The angle opposite the longest side of a triangle is always
the largest angle.

b, In AABC, if m/ A <m/ B, then AC < BC.
If AB | BC, then AB < AC.

A triangle can be formed with cides of lengths 351, ‘513, and
135.

7. If an angle of one triangle .3 larger than an angle of a
second triangle, then the side opposite the angle in the
first is longer than the side opposite the angle in the
second.

8. Two lines in space are parallel if they are both perpendicu-
lar to the same line.

g. Through every point in a plane there is a line parallel to a
given line in the plane.

10. Given tie lines and a transversal of them, if one pair of
"alternate interior angles are congruent, the other palr are
also congruent.

11. If two lines are cut by a transversal so that one of two
alternate interior angles 1s 90o larger than the other, tThe
two lines are perpendicular.

1

12. If two 11nes are cut by a transversal. " 2 are exactly four
pai;s,qf corresponding angles.
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16.

17.

18.

19.

20.

21.
22.

23.

24,

ko5

If two intersecting lines are cut by a transversal, no pair
of corresponding angles are congruent.

If the alternate interior angles formed by two lines and a
transversal are not congruent, the two lines are perpendicu-
lar.

Given two parallel lines and a transversal, two interior
angles on the same side of the transversal are complementary.

If I, M and N rre three lines such that L || M and
M |IN, then L ||N.

If L, M and N are three lines such that L | M and
M | N, then L ] N. o

Since the sum of the measures of the angles of any triangle

_is 3 times 60, the sum of the measures of the angles of any

quadrilateral is 4 times 60.

If two angles of one trizngle are congruent to two angles of

-, another triangle, then the third angles are congruent.

If two angles and a side of one %triangle are congruent to two
angles and a side of another, the triangles are congruent.

The acute éngles in a right triangle are complementary.

An exterior angle of a triangle is the supplement of one of
the interior angles of the triangle.

If a diagonal of a quadrilateral separates 1t into two con-
gruent triangles, the quadrilateral is a parallelogram.

If each two opposite sides of a quadrilateral are congruent
the quadrilateral 1s a parallelogram.

Opposite angles of a parallelogram are congiruent.
A diagonal of a parallelogram bisects two of its angles.
A quadrilateral with three right angles is a rectangie.

The perimeter of the triangle formed by Jjoining the midpoints
of the sides of a given triangle is half the perimeter of the
given triangle.
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29, If the diagonals of a quadrilateral are perpendicular and
congruent, the quadrilateral is a rhomous.

30. A set of parallel lines intercepts congruent segments on any

\.:
transversal. !

31. The area of é“right triangle is the product of the hypotenuse
and the altitude to the hypotenuse. '

32, The area of a parallelogram is the product of the lengths of
two of its adjacent sides.

33. The area of a trapezoid is half the product of its altitude
and the sum of its bases.

34, If two btriangles have equal area and equal bases, then they ~

have equal altitudes.

35. If the legs of a right trilangle have lengths a and b 2and
the hypotenuse is of length ¢, then b2 = (¢ - a)(ec + a).

36. If the léngths of the sides of a triangle are 20, 21 and 31,
it 1s a right triangle. '

37. Two right triangles are congruent if the hypotenuse and a leg
of one are congruent respectively to the hypotenuse and a leg
of the other.

38. If one of the angles of a right triangle contains 300, then
one leg 1s twice as long as the other leg.

39. The length of the diagonal of a square can be found by
multiplying the length of a side by +~2.

40. If a line intersecting two sides of a trlangle cuts off a
triangle similar to the larger one, the line is parallel to
the third side of the triangle.

41, If each of two triangles have angles of 36° and 370, the two
triangles are similar.

42, 1If two triangles have an angle of one congruent to an angle
of the other, and two sides of one proportional to two sides
of the other, the triangles are similar.




43.

By,

45.

46.

47.

48.
49.
50.
51.
52.
53.
54,
55.

56.
57.

Lo7
If the sides of one triangle have lengths 6, 12, and 10, and
the sides of another have lengths 15, 9 and 18, then the tri-
angles are similar.

Any altitude of a right triangle separates it into similar
triangles.

A triangle whose sides measure %, 6 and 8 will have an area
more than half the area of a triangle whose sides measure
6, 9 and 12.

If A, B, X, and Y are coplanar and if AX = BX and
AY = BY, then <A_§_|_<X_Y>

If three non-collinear points 929? plarne are each equidistant
from points P and Q, then PQ 1s perpendicular to the
plane.

If a2 line not contained in a plane is perpendicular to a
line in a plane, then 1t 1is perpendicular to the plane.

A line perpendicular to each of two lines in a plane 1is per-
pendicular to the plane.

If a plane bilsects a segment, every point of the plane is
equldistant from the ends of the segment.

If a plane is perpendicular to each of two lines, the two
lires are ccplanar,

There are infinitely many planes perpendicular to a gilven
line.

At a point on a line there are infinitely many lines pér—
pendicular to the line. B

Through a point outside a plane there 1s exactly one line
perpendicular to the plane.

If a plane intersects two other planes in parallel lines,
then the two planes are parallel.

Two planes*ﬁerpendicular to the same line are parallel.

<> «> = <>
If plane E 1s perpendicular to AB and AB | CD, then
E | TB.
93
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58.

59.

60.

If each of two planes is parallel to a line, the planes are
parallel to each other.

If a plane intersects the faces of a dihedral angle, the

intersectlion 1s called a plane angle of the dihedral angle.

The projection of a line into a plane 1s always a line.

99
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Chapter 13

CIRCLES AND SPHERES

\
13-1. Basic Definitions.

In this chapter we commence the study of point sets not made
up of planes, half-planes, lines, rays and segments. The simplest

such curved figures are the circle and the spheré and portions of

these. As usual in starting to talk about new figures we begin
with some definitions. -

Definitions: A sphere is the set of points each of which is
at a given distance from a given point. A circle is the set of
points in a given plane each of which is at a given distance from

a glven point of the plane. In each case the given point is called
the center and the given distance the radius of the sphere or
circle. Two or more spheres or circles with the same center are
sald to be concentric.

Qy Q,
Q
2 K
Q 4
Circle . Sphere

PQl = PQ2 = PQ3 = PQ4 = radius.

100



410

Theorem 13-1. The intersection of a sphere with a plane
through its center is a circlé with the same center and radius.

Proof: Since the sphere includes all points at a distance of
the radius from the center, its intersection with a plane throug'
the center will be the set of all points in the plane at this
distance from the center; that is, the circle in this plane with
the same center and radius.

Definition: The circle of intersection of a sphere with a
plane through the center is called a great circle of the sphere.

There are two types of segments that are assoclated with
" spheres and circles.

Definitions: A chord of a circle or a sphere 1s a segment
whose end-points are points of the circle or the sphere. The line

containing a chord is a secant. A diameter is a chord contalning
the center. A radius is a segment one of whose end-points 1s the
center and the other one a point of the circle or the sphere.

The latter end-point is called the outer end of the radius.

The use of the word "radius" to mean both a Segment and the
length of that segment follows the convention introduced in
Chapter 11. In the same way we use "3iameter" to refer also to
the length of a chord through the center as well as to the chord
1tself. ' |
" We may refer to a circle as circle C, or simply C. (c 1is
most often used.) In stating problems it is convenient to use the,
convention that circle P denotes the circle with center P,
provided there is no ambiguity as to which circle we mean. Similar

remarks apply to spheres.

10t
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Problem Set 13-1

1. Study Section 13-1 to help you decide whether the following
statements are true or false:

a. There 18 exactly one great circle of a sphere.
b. Every chord of a circle contains two polnts of the circle.
c. A radius of a circle is a chord of the circle.

d. The center of a circle bisects only one of the chords of
the circle.

e. A secant of a circle may intersect the circle in only one
point.

f. All radii of a sphere are congruent.

g. A chord of a sphere may be longer than a radius of the
sphere. »

h. If a sphere and a circle have fthe same center and inter-

sect, the intersection is a circle.

2. Using your previous understanding of circles and spheres as
well as your text, decide whether the following statements
are true or false:

a. If a line intersects a circle in one point, it intersects
the circle in two points.

b. The intersection of a line and a circle may be empty.

c. A line in the plane of a circle and passing through the
center of the circle has two points in common with the
circle.

d. * A circle and a line may have three points in common.

e. If a plane intersects a sphere 1n at least two points,
the intersection is a line.

f. A plane cannot intersect a sphere in one point.

102
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g. If a plane intersects a radius of a sphere at its mid- .

point, the intersection of the plane and the sphere is a
- circle.
h. If two circles intersect, their intersection is two
points.

3. A city 1s laid out in square blocks ;00 yards on a side.
Neglect the width of the streets in the following problems.

a. Describe the location of the points which are 200 yards
(as the crow flies) from a given street intersection.

b. Describe the location of the points a taxi might reach
by traveling 200 yards from a givern street intersection.
(City law prohibits U-turns.)

y, Prove the theorem: A diameter of a circle is its longest
chord.

13-2, Tangent Lines. The Fundamental Theorem for Circles.

Definitions: The interior of a circle is the union of its
cepier and the set of all points in the plane of the circle whose
distances from the center are less than the radius. The exterior
of the circle is the set of all points in the plane of the circle
whose distances from the center are greater than the radius.

From these definitions it follows that a point in the plane
of a circle is either in the interior of the circle, on the circle,
or in the exterior of the circle. (We frequently use the more
common word "inside" for "in the interior of", etc.)
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Definitions: A tangent to a circle is a line in the plane of
.the circle which intersects the circle in only one point. This
point 1s called the point of tangency, or point of contact, and
we say that the line and the circle are tangent at this point.

In the figure, L 1s tangent to the circle at Q.

(o]

We now want to find out what the possibilities are for a line
and a circle in the same plane. It looks as if the following
three figures ought to be a complete catalog of the possibilities:

A A A

Q

i)

In each case, P 1is the center of the circle, and F 1is the foot
of the perpendicular from P to the line. We shall soon see that
this point F -- the foot of the perpendicular -- 1is the key to
the whole situation. If F 1is outside the circle, as in the first
figure, then all other points of the line are also outside, and

‘the line and the circle do not intersect at all. If F 1s on the -

circle, then the line is a tangent line, as in the second figure,
and the point of tangency is F. If F 1is inside the circle, as
in the third figure, then the line is a secant line, and the pdiﬁts
of intersection are equidistant from the point F. To back all of-
this up, we need to prove the followlng theorem:

- [seec. 13-2]
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) Theorem 13-2. Given a line and a vircle in the same plane.
Let P Dbe the center of the circle, and let PF be the foot of
the perpendicular from P to the line. Then either

(1) Every point of the line is outside the circle, or

(2) F is on the circle, and the line is tangent to the
circle at F, or

(3) F 1is inside the circle, and the line intersects the
circle in exactly two points, which are equidistant from
F.

This theorem is long, but ite length is worthwhile, because
once we have proved it, the hard part 1s over: all of the elemen-
tary theorems on secants, tangents and chords are corollaries of
it.

Proof: To prove the theorem, we shall show that if F 1s
outside the circle, then (1) holds; if F 1s on the circle, then
(2) holds; and if F 1s inside the circle, then (3) holds.

If F 1is outside the circle, then (1) holds.

A
AQ

r~

v
Let r Dbe the radius of the circle. Then PF > r. By Theorem 7-6,
the segment PF 1s the shortest segment Joining P to the line.

If Q . 1s any other point of the line, then PQ > PF. Therefore,
PQ > r, and 'Q is outside thé circle.
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If F 1is on the circle, then (2) holds.

/

v

Here we have PF = r. If Q 1s any other point of the line, then
PQ > r. (Why?) Therefore the line is tangent to the circle, and
the point of tangency 1is F.

If F 1is inside the circle, then (3) holds.

v

The proof is as follows. If Q 1s on both the line and the circle,
then A PFQ 1is a right triangle with a right angle at F. By the
Pythagorean Theorem, PF2 + FQ2 = ?2’

so that FQ2 = r2 - PF2,
and FQ =«/r2 - PF2.

(The number under the radical is positive, because PF < r.) Thus
any point Q common to the line and the circle must satisfy this
--last equation.
Conversely, any point Q +lying on the line and satisfying
this equation will be at distance r from P, as can be seen by
going backwards through the algebra above. The equation

FQ =~/r° - PF°

[sec. 13-2]
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is therefore the characterizing feature of the points Q which are
intersections of the line and the circle.

By the Point Plotting Theorem there are exactly two such points,
one on each of the two rays with end-point F. Obviously, they are
equidistant from F.

This reasoning does not apply when the line passes through P,
but in this case we have P = F, PQ = FQ = r, and there are two
points Q as before.

Now we can proceed to our first basic theorems on tangents and
chords which are all corollaries of Theorem 13-2. -In all of these
corollaries, it should be understood that € 1s a circle in a plane
E, with center at P. To prove them, you merely need to refer to
Theorem 13-2 and see which of the three conditions in the conclusion
of the theorem applies to the case in hand.

to the radius drawn to the point of contact.

Here it is Condition (2) that applies; and this means that the

tangent and radius are perpendicular.

Corollary 13-2-2. Any line in E, perpendicular to a radius
at its outer end, is tangent to the circle.

Since the outer end of the radius must be F, Condition (2)
applies, and we have tangency.

Corollary 13-2-3. Any perpendicular from the center of C ¢to
a chord bisects the chord. '

Here Condition (3) applies. (In cases (1) and (2) there is no
chord.)

Corollary 13-2-4. The segment joining the center of C to
.~ the mid-point of a chord is perpendicular to the chord.

Use Corollary. 13-2-3 or Condition (3).

Corollary 13-2-5. In the plane of a circle, the perpendicular
bisector of a chord passes through the center of tue circle.

Use Corollaries 13-2-4 or 13-2-3, or Condition (3).

{sec. 13-2]
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Corollary 13-2-6. If a line in the plane of a circle inter-
sects the interior of the circle, then it intersects the circle in
exactly two points.

Here also, Condition (3) applies. (In Case (1) and (2), the
line doesn't intersect the interior of the circle.)

Definition: Circles of congruent radii are called congruent.

By the distance from a chord to the center of a circle we mean
the distance between the center and the line containing the chord,
as defined i1n Section 7-3. The proofs of the following two theorems
are left to you:

Theorem 13-3. In the same circle or in congruent circles,

chords equidistant from the center are congruent.

Theorem 13-4. In the same circle or in congruent circles,
any two congruent chords are equidistant from the center.

The following additional definitions are useful in talking
about circles and lines.

Definitions: Two circles are tangent if they are each tangent
to the same line at the same point. If tangent circles are coplanar
they are internally or externally tangent according as thelr centers
lie on the same side or on opposite sides of the commoﬂ tangent
line.

I

— — =
<

Internally tangent Externally tangent
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1.

‘Problem Set 13-2

R
-

State the number of the theorem
or corollary which Justlfies
each conclusion below. (C 1is
the center of the cirecle in the
plane figure.)

a. If TA = TB, then CK | AB.

> K — <>
b. If RS | CK, then RS is
tangent to the clrcle.

' €A
c. If T 1is in the interior of the circle, then KC Wwill
intersect the civele in exactly one point other thsn
point K.

d. The perpendiculay bisector of ‘Fﬁ contains C.

e. If 'KE and 'ﬁﬁ are equidistany from C, then Kﬁ g'ﬁﬁ
> : — >

f. If RS dis tangemt to clrele C, then CK | RS.

g. If CK | AB, then AT = TB. ‘

h. If AB ® FH, thyn AB and FH are equidistant fyom C.

Prove Corollary 13-2-3: Any perpendicular from the center,
C, of a circle to a cvhord blsects tne chord.

Use this filgure to prove

Corollary 13-2-5: In the

plane of a circle, the

perpendicular bisectoy of

a chord passes through the

center of the circle. B

@iven a circle, how can its center bha located?
109
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In circle C, KN = 40, and
MN = 24, How far is MN from
the center of the circle?

In a circle whose diameter is 30 inches a chord is drawn per-
pendicular to a radius. The distance from the intersection of
chord and radius to the outer end of the radius is 3 inches.
Find the length of the chord.

Given: The figure below, with C the center of the circle
and .Ei_Liii In the ten problems respond as follows:

Write "A"™ if more numerical information is given than is
‘needed to solve the problem.

Write "B" if there is insufficient information to solve the
problem.

Write "¢" if the information is sufficient and there is no
unnecessary information.

Write "D" if the information given is contradictory.

You do not need to solve the problems.)

—~

a. KP=4, PC=1, CT =6, KT =?
b. RP =5, RS =2 K
¢c. OT =13, CP =5, RS = 2
d. KP? = 18, RS = 48, KC = 25, RK = ?
e. PC =23.5 RS =24, RK =2 R P 5
f. KT = 40, RP = 16, CS = ? C
‘g. €S =8, TK = 16, PC = ?
h.' RK = 20, RS = 32, KP = 13, KT = ?
1. RS =6, KC =5, PT =2 T
J. PP =5, C3 =6, RS =2
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‘8. In a circle with center P a chord AB 1is parallel to a
tangent and intersects the radius to the point of tangency
at its mid goint If AB = 12, find the radius of the circle.

- L - - L d .
9. Prove that the tangents to a circle at the ends of the diameter
are parallel. .

#10., In circle O with center at r
0, AB is a diameter and
AC 1is any other chord from
>
A, If CD 1is the tangent
<> <>
~at €, and DO || AC,
prove that Tﬁ; is tangent
at. B.

.“iil .For the concentric circles
of the figure, prove that
all chords of the larger
circle which are tangent to Az///’;;\‘\\\\B
the smaller circle dre
bisected at the point of )
contact. o
Restatement: In each circle
the center is O. AB, a
chord of the larger circle,
is tangent to the smaller
circle at R.
Prove: AR = BR.
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*13.

14,

421

One arrangement of three
circles so that any one 1is
tangent to the other two
is shown here. Make sKetches
to show three other arrange-
ments of three circles with
each circle tangent to the
ther two.

Prove: The line of centers .of two tangent circles contains
the point of tangency. (Hint: Draw the common tangent.)

©

Case 1 Case II

In the figure, A, B =nd
C are the centers o?

the circles. AB 1-

BC = 10, AC = 18.

Find the radius of

each circle.
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i5.

*16.

17.

18.

*19.

Prove Theorem 13-3: In the same circle or congruent circles,
chords equidistant from the center are congruent.

Givgn: In the figure P is G B
the center of the circle,
and m/ AEP = m/ DEP. P '
Prove: AB = CD. A b
' c

In circle R, 'EB'l AB B

and RE | BC, RD = RE.
Prove that DA = EC.
R
A

Prove: The mid-points v¥ z - :zongruent chords in any circle
lie on a circle concentzuz +:th the original circle and with .

a radius equal to the digtzace of a chord from the center;
and the chords are all fangisi to this inner circle.

Givenz KE- is a diameZer
of cirele O. CB is
tangent to O at T.

> | €> > <> //////’—_—Q\\\\\\\
AC | cD. BD ] CD. A 2 B
Prove: CO & DO.
C
T
D
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13-3. Tangent Planes. The Fundamental Theorem for Spheres.

Once you have studied and understood the last section, you
should have very little trouble with this one. We shall see that
spheres and pianés in space behave in very much the same way as

circles and lines in a plane, and the analog& between the theorems
of the last section and the theorems of this section is very close
indeed.

Definitions: The interlior of a sphere is the union of its
center and the set of all points whose distances from the center
are less than the radius. The exterior of the sphere is the set

of all points whose distances from the center are greater than the
radius.

~Definitions: "A plane that intersects a sphere in exactly one
point is called a tangent plane to the sphers=. If the tangent
‘plane‘intensegﬁsathe sphere in the point Q then we say that the
plane 1s tangent to the sphere at Q. Q 1s called the point of
tangency, or the point of contact.

The basic theaorem relating spheres and planes 1is the following:
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Theorem 13-5. Givensa plane E and a sphere S with center
P. Let F Dbe the foot of the perpendicular segment from P to
E. Then eilther

(1) Every point of E 1s outside S, or

(2) F is on S, and E 1is tangent to S at F, or

(3) F 1is inside S, and E intersects S 1in a circle
with center F.

-

Proof: If F 1is outside S then (1) holds.

The proof follows almost word for word the corresponding
proof for the circle in Theorem 13-2. The only significant change

is the use of Theorem 8-11 (shortest segment from point to plane)
instead of Theorem 7-6.

If F is on S then (2) holds.

Here, again, the proof is almost identical with that of
Theorem 13-2.

LD
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If F is inside S +then (3) holds.

—

) Let Q be any point which lies on both E and S. Let
r be the radius of S, and let x = PF.

Then ‘é PFQ 1is a right angle, because every line in E, through
F, 1s perpendicular to PF. Therefore )

FQ = .\/r2 - xe.

Since Q 1s anyv point of the intersection of E and S,
then every point Q of the intersection is such that FQ 1is
constant. Therefore every point of the intersection lies on the

¢circle with center at F and radius r° - x°,

Although we have shown that every point of the intersection
i1s on the clrcle, we have not-=hown that this set of points 1is
the circle. That is, there comcelvably could be some points of
the circle which are not points of the intersection. We now

and

prove that this 1s not possible by showing Tnat if Q 1lies on
[sec. 13-3]
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the circle, then it must be a point of the intersection.
Suppose that Q lies on the circle with center F and

radtug ° r2 -'xz. Then'~Z~PFQ» is a righ% angle, .as hefore,

so tnat
g2 = x2 4 < [z ‘x‘é)z _ 2
PQ = \/;5 =

Therefore Q 1lies on the sphere. Therefore every point af the
circls lies in the intersection. Therefore the circle is preclse-
ly th=.intersection, which was to be proved.

fur first basic theorems on tangents to a sphere are all
coroliaries of Theorem 13-5. In all of these corollaries, it
shouls be understood that S 1s a sphere with center at P.

r, since = > 0.

Zorollary 13-5-1. A plane tangent to S 1is perpendicular
to the radius drawn to the point of contact.

Corollary 13-5-2. A plggg%perpendiculafmtoAa radius at its
outer end 1s tangent to S.

Corollary 13-5-3. A perpendicular from P to a chord of S
bisects the chord.

Given: PQ | AB. S
Prove: AQ = BQ.

Corollary 13-5—4. _The segment joining the center of S to
the mid-point of a chord is perpendicular to the chord.
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1. Sphere 0 1is tangent to
Ce . . . >

plane E at A. FB and
E? are lines of E
throughh A. What is the
relationship of O0A ¢to
= “—>
FB and RT?

2. In a sphere having a radius of 10, a segment from the center
perpendicular to a chord has length 6. How long 1is the
chord?

\ ‘
3. In a sphere whose radius is 5 inches, what 1s the radius of
a circle made by a plane 3 inches from the center?

y, Prove that circles formed on a sphere by planes equidistant
from the center of the sphere are congruent.

*5, In the figure, plane E
intersects the sphere
. having center 0. A and
B are two points of the’

intersection. F 1lies in /// Gié%;;"‘- /;]uwM
plane E. OF | E. AF | BF. A

If AB =5 and OF = AF,
find the radius of the
sphere and m/ AOB. If G
is the mid-point of AB,
find 0G.

'*6. Given a sphere =and three points on it. Explain how to deter-
mine the center and the radius of the circle which the points
determine. Explain how to determine the center and radius of
the sphere.
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*7. Given that plane E 18 tangent to a sphere S at point T.
Plane F is any plane other than E which contains T.
Prove (a) that plane F intersects sphere S and plane
E ‘in a cIréle and a line respectively; and- (p) that the
line of irtersection is tangent to the circle of intersection.

8. Show that any two great circles of a sphere intersect at the
end-points. of a diameter of the sphere.

*9, Two great circles are said to be perpendicular if they lie in
perpendicular planes. Show that, given any two great circles,
there is one other great circle perpendicular.to both. If
two great circles on the earth are meridians (through the
poles), what great circle is their common perpendycular?

*10. In the figure, A and' B
are the centers of two
intersecting spheres.
Briefly describe the inter- |
section.

M and N are points of
the intersection. © 1s a
point in the plane of the
intersection and 1s collinear
with A and B.

If the radius of sphere A
is 13, the radius of
sphere B 1s 542,  and
MB | NB, find the distance
between the centers of the
spheres.
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13-4. Arcs of Circles.

50 far in‘this chapter we have been able to treat circles
..and spheres in similar manners. For the rest of this chapter we
will confine ourselves exclusively to circles. The topics we will
discuss have their corresponding analogies in the theory of spheres
but these are too complicated to consider in a beginning course.

Definition: A central angle of a given circle is an angle

whose vertex is the center of the circle.

Definitiongs: If A and B are two points of a circle with
center P, not the end-points of a diameter, the union of A, B,
and all the points of the circle in the interior of A APB 1is a
minor arc of the circle. The union of A, B, and all points of
the circle in the exterior of A APB 1s a major arc of the circle.
If AB is a diameter the union of A, B, and all points of the
circle in one of the two half-planes lying in the plane of the .
circle with edge ﬁﬁ? is a semi-circle. An arc is either a minor
arc, a majJor arc or a semi-circle. A and B are the end-points
of the arc.
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An arc with end-points A and B 1s most easlly denoted by
Kg. This simple notation is always ambiguous, for even on the
game circle there are always two arcs with A and B as end-
- points. Sometimes it will be- plain from tha context which. arc
is meant. If not, we will pick another point X somewhere in
the arc Kﬁ, and denote the arc by Kiﬁ.

' A

~ For example, in the figure, 2XB is a minor arc; AYB is the
corresponding major arc; and the arcs EKB and 6&% are semi-
circles.

The reason for the names "minor" and "major" is apparent when
one draws several arcs of each kind. A major arc 1s; in an
intuitive sense, "bigger" than a minor arc. This relation will be
made more explicit in our next definition.

Definition: The degree measure miiﬁ of an arc ﬁiﬁ is
defined in the following way:
(1) 1f AXB is a minor arc, then mAix® 1is the measure of
the corresponding central angle.

[sec. 13-4]
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(2) 1r AXB 1s a semi-circle, then mAXB = 180.

(3) If AXB is a major arc, and AYB is the corresponding
minor arc, then mAXB 360 - mAyB.

e - -~ » - - & v - @ S o & S *» > . . »

In the figure, m/ APB 1s approximately 60. Therefore
mAYB is approximately 60, and mAXD is approximately 300.

Hereafter, mﬁiﬁ will be called simply the measure of the
arc AXB. Note that an arc is minor or major according as its
measure 1s 1leéss than or greater than 180.

The following theorem is simple and reasonable, but its proof
“”Is"surprisingly tedious. We will state it without proof and
regard it, for practical purposes, as a postulate:

Theorem 13-6. If AB and-BC are arcs of the same circle
having only the point B in common, amd if their union 1is an arc

AC, then mAB + mBQ = mAC. —
B

mAXE "+ mBYC = mABQC.

[sec. 13-4]
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Notice that for the case in which ﬁa is a minor arc, the
theorem follows from the Angle Addition Postulate. The proof in
the general case 1is more troublesome.

In each of the figures below, the angle x 1s said to be
inscribed in the arc KEB.

C .

Definition: An angle is inscribed in an arc if (1) the two
end-points of the arc lie on the two sides of the angle and (2)
the vertex of the angle is a point, but not an end-point, of the
arc. More concisely, L ABC 1is inscribed in ,Nb.

In the first figure, the angle 1s inscribed in a major arc,
and in the second figure the angle is inscribed in a semi-circle.

In each of the figures below, the angle ghown 1s said to
intercept Eaﬁ.

P
Qi\
- >
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v

v

In the first case, the angle is inscribed; in the second case, the
vertex is outside the circle; in the third case, the angle 1§'a

~ central angle; and in the last case, one side of the angle is
tangent to the circle. In the second case,‘the angle shown
intercepts not only the arc §5ﬁ but also the arc KEB.

These figures give the general idea. We will now give the
definition of what it means to say that an angle intercepts an
arc. You should check very carefully to make sure that the
definition really takes care of all four of the above cases.

Definition: An angle intercepts an arc if (1) the end-points
, of the arc lie on the angle, (2) each side of the angle contains ‘
at least one end-point of .the arc and (3) except fcr its end-
points, the arc lies in the interior of the angle.

The reason why we talk about the arcs intercepted by angles
is that under certain conditions there is a simple relation between
the measure of the angle and the measure of the arc.
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B
In the figure above we see three inscribed angles, L X LY,
/ z, all of which intercept the same arc BC. It looks as if

these three angles are congruent. Indeed, it is a fact that this

is what always happens. This fact is a corollary of the following
theorem: o

Theorem 13-7. The measure of an inscribed angle is half the
measure of its intercepted arc.

Restatement: ILet Z A Dbe inscribed in an arc of a circle,
intercepting the arc BC. Then

.mé A= % mBC .

B

AF\\\\\§_—_”/////C
In order to prove this from our previous theorems we first
consider an angle inscribed in a special way.
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Proof: Case 1. Surroses that one side of [ i cor—ains a
diameter of the circle, __re this:

4

Let /x and /y be as in the figure. Then

m/ A+m/x=m/y,
by Corollary 9-13-3. PA = PB, because A and B 1lie on the
clrcle. Since the base angles of an isosceles triangle are
congruent, we have m/ A = m/ x.
Therefore 2(m/ ) =m/ y,

1

and m/ A = %(mé y) = §(m§§),
which was to be proved.

Now we know that the theorem always holds in Case 1. Using
this fact, we show that the theorem holds in every case.

“Case 2. Suppose that B and C are on opposite sides of
the diameter through A, 1ike this: ' '

[sec. 13-%]
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Then m/ o T 23/ W,

and . mBe - D +- IC.

(why, in each case?) By Case |, we -~<ow that
m/ v = %-ﬁﬁf

and my/ < é-mbﬁ.

Putting these equations togeti«~, me gt

which was to be proved.

Case 3. Suppose that B zani: C are on the same side of thé
diameter through A, 1like thi..:

The proof here is very much like that for Case 2, and we state it
in condensed form:

m/ BAC = m/ &t = m/ s - m/ u
1@ kalD

= 3(nBD - mfD)

You should check carefully to maie sure that you see why each of
these equations is correct.

[sec.. 13-14]
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From this theorem we get two very important corollaries:

Corollary 13-7-1. An angle inscribed in a semi-circle is a
right angle.

This 1s so because such an angle intercepts a semi-circle,
which has measure 180.

Corollary 13-7-2. Angies inscribed in the same arc are

congruent.

The proof of this is fairly obvious because all such angles
intercept the same arc.

Problem Set 13-4a

1. The center of an arc is the '
centerr of the circle of v A//////——“—\\\\\\B
which the arc is a part.

How would you find the

center of AB?
e, N B

2. Given: P 1s the center of

iz, m/ C = 45,

Prove: BP | AP. A
’ “-....’P ‘kC
3. In the figure, mAB = mBF. -

a. Prova A AHK ~ A EHF.

b. What other triangle
is s*milar to A BHF?
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.*5’

The two circl= in this figure
are tangent =- & =d the
smaller circl: pas==s through
0, the center of —z= larger
circle. Provs tha:t any chord
of the larger circle with end-
point A is Tisected by the
smaller circle.

Prove: Any three non-collinear
points lie on a circle.

Restatement: A, B, and C

are mon-collinear. Prove \
that there is a circle contain- \
ing A, B, =nd C. \
(Hint: Draw AB and BC.
Can you- find +the center of
the circle?)

An inscribed gquadrilateral is
a quadrilateral having all of

its vertices on a circle. C

Prove the theorem: The ' 8
opposite angles of an
inscribed quadrilateral
are supplementary.

In circle P, 1let m/ R = 85,

mRS = 40, mV = 90. Find
the measures o= the other
arcs and angles in the figuo=.
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8. XY is the :ommon chord -f two
inT=rsectin: circles. :i= and
DC are two segmen=i cuTing
thz clrcles as showx - -.oe
figure and containiziz 7 and
Y —espectivel_y.
Prcve: AD || BC.
(Ez=t: See Problerm 6.;

9. Prove: .A diameter o=rpendic- :
ular to a chord of a circle y A
bisects both arcs desterminsd 8
by the chord.

10. In the figure, ACB is =z
semi-circle and G _LE
Prove that CD Iz the
geometric mean ¢ AD and

-BD.

11, Prove the fcllowing cznverse
of Corollarz Z3~-~2: IZf an
angle inscribed — = Toreulars
Frce is a Tignt =gfe. Then

the arc == a semi-—«ircle,

RN
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*12, If & pair of opposite angles
of = quadrilateral are
supplementary, the quadri-
lateral can be inscrived in
a circle.

(Hint: Use Prcblems 5 and 6
in an indirect proof.)

*13. In this figure. AB 1is a
dimmeter of the smaller of
twe concentric zircles,
both with center O, and
AC and BD are tangent
te the: smaller circle.

CO and DO are radii of

the larger circle.

Prove thas CD is a diameder
of the laiger clrclie.

(Hint: Drew - AD =16 CB.)
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Definition: In the same circle, or iz congruent cirzles,
two arcs are called congruent i1f they have the same mezsure.

Just as in the definition of congruent segments, angles,
triangles or circles, the intuitive idea ~s that one ar— zan
be moved so as to coincide with the other.

Theorem 13-8. In the same circle or :in congruent circles,
if two chords are congruent, then so als:z are the correspsnding

minor arcs.

<

Proof: We need to show, in the abovs . zure, -Hat if
AB = A'B', then AB = £'B'. By the S.S5.S. Tr=orem. we h=we

A APB = A A'B'P'.

Therefore /P % / P'. Since midB =m/ P and mA'B' =m/ 2!,

this means that AP = A'B', which was t= be proved.

The converse is also true, and th2 proo? is very sSmiils—:

Theorem 13-9. In the same circle =% in TongEruert =ircles,
1f two arcs are congruent, then so are =r= correspondicz chords.

'That is, in the figure above, if AB = A'B', thex £B = A'B!.
And if it is the major éfcs that are kmowr to be congrmexnt:, then
" the same conclusion holds.
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Theorem 13-10. Given an angle with vertex on the circle
formed by a secant ray and a tangent ray. The measure oOf the
angle 1is half the measure of the intercepted arc.

~N

Pz

{
]
1
!
|
!
]
[

B /

Proo®: By the angle formed by a secant ray and tangent ray
we mean the angle as i1llustrated in the figure above. We prove -~
the theorem for the case in which the angle is acute, as in the
figure. We use the notation of the flgure for the measures of
the various angles. In A PQR, /R and / Q have the same
measure Yy, as indicated, because A PQR 1s isosceles. Since
m@R = m/ QPR, what we need to prove is that x = %z.

By Corollary 13-2-1, / PQS 1s a right angle. Therefore
X = 90 - V.

By Theorem 9-13, z + y + y = 180 so .that
z = 180 - 2y.

Therefore Xx = %z, which was to be proved.

[sec. 13-U4]\
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Problem Set 13-U4b

1. Prove Theorem 13-9: In the same circle or in congruent
circles, if two arcs are congruent, then so are the corre-
sponding chords.

2. In the figure AF = BH,.
Prove: a. AR & FB.

b. A AMH & A BMF.

3. ABCD 1is an inscribed square.
E 1s any point of ‘6&, as

D C
shown in this figure.
Prove that AE and BE
trisect / DEC.

A B

4, In the figure, A, B, Eéap
are on the clrcle and EF
is tangent to the circle at
A. Complete the following
statements:

a. [/ BDC =
b. [/ ADC = .
c. [ ACB & =

d. [/ EAD is supplementary to .
e. [/ DAB 1is supplementary to .
f. [/ ABC 1s supplementary to .

[sec. 13-4]
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%7,

/ DAE = =

g

h. / DBA is supplementary to
i .Z ADB 1s supplementary to
J

/ DAC = . c p
<> <>
In the figure TCP and AQ
are tangents, PQ is a
diameter of the circle. If
mPE = 120 and the radius
of the circle is 3, find 8
the length of AP.

A

Two circles are tangent, either internally or externally, at
a point H. Let u be any line through H meeting the
circles again at M and N. Prove that the tangents at

M and N are parallel.

M

<> -

Given: Tangent PT and ' P
<> -

secant PR. ‘B 1is the mid-

point of iﬁ?.

Prove: B 1is equidistant
> <>
from PT and PR.
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11.

- the circle is one-half tixe

45

Prove the tnecr-2m: The
measure of an ..agle formed

by two secants of a circle
intersecting in the interior
of a circle is one-half the
sum of the measures of the
arcs intercepted by the angle
and its vertical angle.
Given: A circile with

secants Kﬁ and Eﬁ
intersecting at E,

Prove: m/ DEB = %(mﬁﬁ + mhC).

(Hint: Draw BC.)

Prove the theorem: The

measure of an angle formed
by two secants of a circle
meeting in the exterior of

differerce of the measurss

of the intercepted arcs.

(Hint: See Problem 8.) ¢

Verify that the theorem of Procblem 9 holds if the words "two

"

secants" are replaced by "a m=cant and a tangent" or by "two

tangents.."

In the filgure, let miB = 70,
mAE = 80, mED = 150, ang
m/ BFC = 55.

Find mﬁa, mcD, m/ K,

m/ E, m/ BAD, m/ AGE,

m/ DGE, m/ 4DX.

80|
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12. In the figure, EF 1s tangent
" to the ciréle at D and AC
bisects / BCD. If mAB = 88
and mCD = 62, find the
measure of each arc and each
angle of the figure.

13. Given inscribed quadrilateral
ABCD with diagonals inter-
secting at P.

Prove: a., A APD ~ A BPC.
b. AP+« PC = PD*+ PB.

14. @iven AD tangent to the
ggfcle at A and secant
BD 1intersecting the circle
at B and C.

Prove: .a. A ABD ~ A CAD.
b. BD.CD = AD®.

<

[sec. 13-4]
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#15. In the figure, quadrilateral ABCD 1is inscribed in the
circle; lines AB and BC intersect in P, 1lines AB and
<> —

DC intersect in @Q; PV and EE> are the bisectors of
/ APB and / AQD respectively.
<>  T«>
Prove: PV | @S.

P

N 3

Vv

'
(Hint: Show m/ PRQ = m/ QRV. Use theorems developed in
this Problem Set.)

*16. Prove the theorem: If two parallel lines intersect a circle,
they intercept congruent arcs.

Q

: e,

|

|

|
A ' B

Nzl
‘f‘
Case I Case II Case III

(One tangent - (Two secants) (™'wo tangents)

one secant)
[sec. 13-U4]
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'13-5. Lengths of Tangent and Secant Segménts.

<> ’
Definition: If the line QR 18 tangent to a circle at R,
then the segment QR 1is a tangent segment from Q to the circle.

Theorem 13-11. The two tangent segments to a circle from an
external point are congruent, and form congruent angles with the
- 1line Joining the external point to the center of the circle.

Restatement: If‘-aﬁ is tangent to the circle C at R,
and QS is tangent to C at 8, then R®R g'§§’ and
/ PQR & / PQS.

Proof: By Corollary 13-2-1, A PQR and A PQS are right
triangles, with right angles at R and S. Obviously PQ = PQ
and PR = PS because R and S are points of the circle. By
the Hypotenuse-Leg Theorem (Theorem 7-3), this means that

| A PQR ® A PGS.
Therefore QR = @5, and / PQR & / PQS, which was to be proved.
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‘ The statement of the following theorem 1s easier to under-
~ stand if we look at a figure first:

-

The(theorem says that given any two secant lines through Q, as
in tﬁeafigure, we have

i QR* QS = QU * QT.

Théorem 13-12. @Glven a circle C and an external point Q,
let le 'be a secant line through Q, 1ntersecting C 1in points
R and S; and let L2 be another secant line through Q,
intersecting C 1in points T and U. Then QR- QS = QU - QT.

Proof: Consider the triangles A SQU and A TQR. These
triangles have [ Q 1in common. And l S = A T, as 1lndicated
in the figure, becayse hboth of these angles are 1lnscribed in the
major arc RU. By‘ﬁhe A.A. Corollary (Corollary 12-3-1), this

means that
A SQU ~ A TQR.

Therefore corresponding sldes are proportional. Hence

QS _ QU
QT T AR’
and
QR * QS = QU * QT,

which was to be proved.

[sec. ;3-5]
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Notice that this theorem means that the product QR QS 1is
determined merely by the given circle and the given external
point, and is independent of the choice of the secant line.

(The theorem tells us that any other secant line gives the same
product.) This constant product is called the power of the point
with respect to the circle. - . ‘

The following theorem is going to say that in the figure

below, QR-.QS = QT".

T . Q
Theorem 13-13. Given a tangent segment QT to a circle,
and a secant line through Q, intersecting the circle in points
R and S. Then

QR - @S = Qr°.
The main steps in the proof are as follows. You shodld find
the reasons in each case.

(1) m/S = % mTR.
2) m/ RTQ = % mTR.
3) /S & /RIQ.
4) A QRT ~ A QTS.

5 &L
T~
(6) QR- @ = Qr2. 141
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The following theorem i1s a further variation on the preceding
two; the difference is that now we are going to draw two lines
through a point in the interior of the circle. The theorem says
that in the figure below, we always have

QR * QS = QU QT.

. The main steps in the prooZ are as follows: You should find the
reason in each case:

(1) /s =/T. |
(2) [/ SQU = / TaeR.

(3) ASQU ~ A TQR.

» & - &

(5) QR*QS = QU -Qr.

For purposes of reference, let us call this Theorem 13-14.
Write a complete statement of the theorem. That 1s, write a
‘Statement that can stand alone, without a figure.
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Problem Set 13-5 ) -

—> <> <>
1. AC, CE and EH are

tangent to circle O at
B, D, and F respectively.

Prove: CB + EF = CE.

2. Secants GE.R) and %—E’:)
intersect th= circle at
A, B, and D, E, as
given in this figure.
If the lengths of the
segments are as shown,
find X.

>
3. In this figure AB 1s
tangent to the circle at
<>
A and secant BW inter-
sects the circle at K
and W. If AB =6 and
WK = 5, how long is BK?

143
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AB and BC are tangent to

453

Given a circle with inter-
secting chords as shown and
with x < w, 1if AB = 19,
find x and w.

circle O at A =and C,
respectively, =z=i m/ ABC = 120.
Prove that AB +-BC = OB.

\

Given: The sides of quadri- S N
lateral CDRS are tangent
to a circle at L, M, N,
P as in the figure.

Prove: SR + CD = SC + RD.

D
In a circle a chord of length 12 is 8 inches from the

center of the circle. Using Theorem 13-14, find the radius

of the circle.
o 8 °NC 6 R

Secants and segments arée
as indicated. FIind the
length of AB. 7

141 A
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10.

11.

*12.

13.

In the figure, cD is a

tangent segment to the circle

at D and AC 1is a segment

of a secant which contains

the center of the circle. .
If CD =12 and CB = 4, A

find the radius of the circle.

If two tangent segments to a circle form an zquilateral tri-
a.1gle with the chord having-the points of tangency as its
end-points, find the measure of each arc of the chord.

Show it is t possibl

that not poss e m+2mm+N
for the lengths of the segments
of two intersecting chords to

be four consecutive integers. m+3

Prove that 1f two circles
intersect, the common
Ssecant bisects elther
common tangent segment.

If a common tangent of two circles meets the line of centers
at a point between the centers it 1is called a common internal

tangent. If it does not meet the line of centers at a point
between the centers 1t is called a common external tangent.

[sec. 13-5]

145



455

*1h,

“*15,

<> <>
In the figure AB 1s a common internal tangent aaxd €D is
a common external tangent.

a. In the figure above, how many common tangents are
possible? Specify how many of each kind.

b. If the circles were externally tangent, how many tangents
of each kind?

c. If the circles were intersecting at two points.

-d. If the circles were internally tangent?

. e If the circles were concentric?

Prove: The common internal
tangents'of two circles
meet the line of centers

at the same point.

(Hint: Use an indirect
proof.)

Prove that the common tangent segments of common internal
tangents are congruent. Use figure of Problem 14.

[sec. 13-5]
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16.

17.

18.

*19.

" respectively ard the

The radii of two circles
have lengths 22 and 8

distance between their
centers is 50. Find the
length of the common

external tangent segment.
(Hint: Draw a perpendicu-
lar through Q to AP.)

Two circles have a common external taﬁgent segment 36
inches long. Thefr radii are 6 inches and 21 inches
respectively. Find the distance between their centers.

The distance between the
centers of two circles
having radii of 7 and 9
is 20. Find the length
of the common internal
tangent segment.

Standing on the bridge of

a iarge ship on the ocean,

the captain asked a new =

young officer to determine !

the distance to the horizon. i

The young officer took a :

pencil and paper and in a v

few moments came up with an

answer. On the paper he had written the formula d = %w/ﬁ
miles. Show that this formula is correct approximately
where h 1s the height in feet of the observer above the
water and d 1s the distance in miles to the horizon.
(Assume the diameter of the earth to be 8000 miles.)
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Review Problems

3 1. For circle O,

a. BC 1is a

b. AD is a

. <>
c. AC is a

d. OA is a

>
e. AX 1is a

oy

f. CD 1is a
g. @ is a

h. / BCA 1is an

A
i. /COD 1is a
2. Given: In the figure,
| circle 0 has diameter F
AB. AF || OH, m/ A = 55.
0
Find mBR and mAR.
H
B

3. Given: AB 1is a diameter
—>
of circle C. XY Dbisects
/ AXB. -
: Prove: CY | AB. 4 |
A < B
(Hint: Find m/ AXY.) Q
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4. Indicate whether each of the following statements 1s true
or false.

a. If a point is the mid-point of two chords of a circlé,
then the point 1s the center of the circle.

b. If the measure of one arc of a circle 1s twice the .
measure of a second arc, then the chord Qf the second
arc is less than twice as long as the chord of the first
arc.

c. A line which bisects two chords of a circle is
it perpendicular to each of the chords.

d. If the vertices of a quadrilateral are on a circle,
then each two of its opposite angles are supplementary.

e. If each of two circles is tangent to a third circle;
then the two circles are tangent to each other.

£, A circle cannot contain three collinear points.

g. ‘If a line bisects a chord of a circle, then 1£ blsects
the minor arc of that chord.

h. If PR 1is a diameter of circle O and Q 1is any
point in the interior of circle O not on PR, then
/ PQR 1s obtuse. :

i. A‘tangent to a circle at the mid-point of an arc 1s
parallel to the chord of that arc. .

J. It is possible for two tangents to the same circle to
be perpendicular to each other.

5. Given: In the figure B ¢
is tangent to circle O
at B. AB = AC. mCB = 100.
Find m/ C and m/ ABX.

(@) ]
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*10.
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Given: Circle C with

— > —> , <> A
EC | ¥4, EV || $8, ana L
HR tangent to circle C ' R N
at H. '

N
Prove: mHE = m/ RHN. H

(Note: The circle may

be considered to represent
the earth, with PQ the
earth's axis, / REN the
angle of elevation of the
North Star, and mHE the
latitude of a point H.) \

Q

A hole 40 inches in diameter is cut in a sheet of plywood,
and a sphere 50 inches in diameter is set in this hole.
How far below the surface of the board will the globe sink?®

A wheel is broken so that only a portion of the rim remains.
In order to find the diameter of the wheel the following
measurements are made: three points C, A, and B are.
taken on the rim so that chord AB & chord AC. The chords
AB and AC are each 15 inches long, and the chord BC
is 24 inches long. Find the diameter of the wheel.

Diameter AD of circle C contains a point B which lies
between A and C. Prove that BA is the shortest segment
Joining B to the circle and BD is the longest.

Assume that the earth is a

sphere of radius 4,000 C

miles. A straight tunnel A B

AB 200 miles long connects

two points A and B on

the surface, and a ventilation ;

shaft CD 1s constructed at .
the center of the tunnel.

What is the length (in miles)

of this shaft?

1590
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11. Given: Circles C and D
internally tangent at P
with common tangent 7ﬁ?.
fﬁ? is tangent to circle C
at X and K? is tangent
to circle D at Y.

Prove: AY = AX.

! <>
#12, In the figure, AP 1s

tangent to the circle at
A. AP = PX = XY. If
PQ =1 and QZ =8

find AX.

%13. Given: AB, BC and TR Y
are 120° arcs on a circle
and P 1is a point on %AB.

Prove: PA + PB = PC.

(Hint: Consider a parallel
to . PB through A inter-
secting PC in R and the
circle in Q.)
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Chapter 14
/ CHARACTERIZATION OF SETS. CONSTRUCTIONS.

14-1. Characterization of Sets.

In Chapter 6 we showed how a certain figure, the perpendicu-
lar bisector of a segment, could be specified in terms of a
characteristic property of its points, namely, that each of them
1s equldistant from the end-points of the segment.

In Chapter 13 a circle (and a sphere) was defined in terms
of a characteristic property of 1ts points, namely, that each of
them is at a given distance from the center.

Such characterizations or descriptions of a point set
(geometric figure) in terms of a coﬁmon property of its points
are often very useful, and we shall spend some time discusSing
them.

What do we mean when we say that a set 1s characterized by
a condltion, or a set of conditions, imposed on 1its points? 1In
the first place, we certainly mean that every point of the set
satlisfies the conditions. But this 1s not enough, as we can
readily see from an example. Suppose the condition 1s "in plane
E at distance ! from point Q in E". A semi-circle in E
with center Q and radius 4 has all its points satisfying
this condition. So does any other suitable arc.

— ) B
Every point in AB 1s 4 4 \
units distant from Q, but \
not every point 4 units Q
distant from @Q 1s in Kﬁ. /
NN 4
~
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The obvious trouble with such examples is that they leave
out some points that satisfy the conditions. We want the whoie
circle, not Just a part of it. 1In general, we want our set to
contain all points that satisfy the conditions. Another way of
saying this is that every point that satisfies the conditions is
a point of the set. This is the second part of the meaning of
characterization.

~ Let us put the two parts together for future reference:

(1) Every point of the set satisfies the conditilons,

(2) Every point which satisfies the conditions is a point

of the set.

If you refer to Theorem 6-2, you will see that the restate-
ment of this theorem 1s worded in exactly this form.

B : Problem Set 14-1

These problems are proposed for discussion. No proofs’ are
expected. In some of the problems in this set we speak of the
distance from a point to a figure. This 1s defined as the
shortest distance from the point to any point of the figure.

Tllustrative example: Describe and sketch the set of points
which are one inch from a given line. ‘ '

a. ;n a plane.
b. In space.
Answer: - 3 - —>
a. The set consists of lin
two lines, each one < * Given line >
inch from the gilven lin
line and parallél to - v - —>

it.
b. The set consists of

all points of a cylin- \

drical surface with <E;E%'*——'——'——_<}:>
one inch radius and

the given line as axis.

[sec. 14-1]
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What set of points P 1s characterized by the condition
that CP = 3 inches, where C 1is a given point?

What set of points P 1in a given plane E 1is characterized
by the condition that CP = 3 inches, where C 1is a given
point of E? .

Describe and sketch the set of points in a plane E which
are equldistant from each of two parallel lines in E.

E 1s a plane and C 1is a fixed point 3 inches from the
plane. What is the set of points in. E whose distance from
C 1is

a. 5 inches? c. 2 inches?

b. 3 inches?

E 1is a plane. L and M are two intersecting lines in E.

a. How many polnts of E are 2 inches from L and 2
inches from M? '

b. Sketch the set of points of E whose distances from
L and M are each at most one inch.

E 1s a plane. A and B are two points in E which are
4 feet apart. What is the set of points of E which are

4 feet from A and 4 feet from B?

v

At most U4 feet from A and at most U4 feet <from B?

o

c. 2 feet from A and 2 feet from B?
d. l foot from A and 1 foot from B?

AB 1is a scgment of length 3 inches in a plane E. _
Describe and sketch the set of those points of E which are
one inch from AB.
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14-2. Basic Characterizations. Concurrence Theorems.

For convenience in reference we restate here some of the
characterizations we have already met. Some of these are
definitions and some are thecorems.

1. A sphere 18 the set of points at a given distance from
a glven point.

2. A circle is the set of polnts in a given plane at a
given distance from a given point of the plane.

3. The perpendicular bisecting plane of a given segment
is the set of points equidistant from the end-points
of the segment.

y, The perpendicular bisector, in a given plane, of a
given segment in the plane, is the set of points in
the plane equidistant from the end-points of the segment.

Problem Set”14—2a'

1. Describe the set of péints at a glven distance from
a. a given point.

b. a given line.

c. a glven plane.
d. each of two intersecting planes.
e. each of two given points.

f£. a segment.

2. Describe the set of points in a plane equidistant from

a. two points.

b. two parallel lines.

c. two intersecting lines.

d. three non-collinear points.

155
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Describe the set'of points equidistant from
a. two given points.
b. two parallel lines.
c. two parallel planes.
d. two intersecting planes.’
e. a plane and a line perpendicular to it.
Indicate whether each statement is true or false.
a. Given a line w and a plane E there is always a plane
1. containing u and perpendicular to E.
2. containing uw and parallel to E.

b. Given two non-intersecting lines in space, there is
always a plane containing one and

1. parallel to the other.
2. perpendicular to the other.

The Smiths, the Allens and [
the Browns 1live in homes ¢
represented by these three

points. They plan to erect

a flagpole. at a point which

wlll be equidistant from

thelr back doors. Tell how

to find the point where

they should place the pole.

®B

> e

Describe the set which consists of the vertices of all
isosceles triangles having AB as base.
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7. Find a point in the plane equally distant from three non-
collinear poéints. Why must the points be non7COllinear?

8. What is the set of points’ which are equidistant from two
given points and at the same time equidistant from two
@iven parallel planes? (Hint: Consider the intersection
of the set of points representing the separate conditions.
There may be more than one solution depending on the positions
of the glven elements.)

©3, What 1s the set of points in a plane which are within four
centimeters of one or the other of two points in, a plane °
which are four centimeters apart?

10. Let L and M be any two intersecting lines. Choose any’
two coordinate systems on these lines (not necessarily with
0 at the point of intersection). Draw a number of lines
through corresponding points; that is, points with the same
coordinates. For example, see Figure A.

If you put in enough lineé, the figure should appear to
include a nearly smooth curve. Experiment with this con-
struction, trying different pairs of lines and different
coordinate systems. '

The construction is quite general, but some choices of co-
ordinate systems on the two lines will lead to more satis-
fying results on your paper than others.

Figure A.
[sec. 14-2]
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11. What 1is the set of points in a plane at a given distance
from a square of side 2 in the plane? Consider the three
cases d > 1, d=1, 4 < 1.

*12. F and G are two points in a plane E. FG = 4. Sketch
the set of those points P of E, such that PF + PG = 5.

Another characterization you can include in the above list
is the following theorem:

Theorem 1lU4-1. The bisector of an angle, minus its end-point,
1s the set of points in the interior of “he angle equidistant from
the sides of the angle.

Restatement: Let D bisect / BAC.

—>
(1) If P is on AD but P £ A, then P is in the
interior of / BAC and the distance from P to

<> : <>

AB equals the distance from P to AC.

(2) If P 1is in the interior of / BAC and the
<>
distance from P to AB equals the distance
from P to XE, then P 1lles on 'KB and

P # A.

2
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—_— — <> —_— <>
(1) Given: P 1s on AD, P # A, PM | AB, PN | AC.

To prove: P 1s in the interior of / BAC; PM = PN.

—_—>
1. P 1is in the interior 1. P ‘ison AD, P # A, and
of / BAC definition of bisector of
: an angle.
2. AP = AP. 2. Segment is congruent to
itself.
3. [/ PAM = / PAN. 3. Definition of bisector.
4, / PMA & / PNA. y, Right angles are congruent.
5, O PMA € A PNA. 5. S.A.A. Theorem.
6. PM = PN. 6. Corresponding parts.

\

\
P

—
—

|
I
: l -~
c N
(2) Given: P 1is in the interior of / BAC, PM | AB,
—_— <>
PN | AC, PM = PN.

—>
To prove: P # A; P 1lies on AD.

1. P #£A. 1. Definition of interior of
_ . an angle.

2. PM = PN. 2. Definition of congruent
segments.

3. PA 2 PA. 3. Segment is congruent to

S itself.

4, / PMA and / PNA are 4k, Given.

right angles. '

5. A PMA = A PNA. 5. Hypotenuse-Leg Theorem.

6. [/ PAM & / PAN. 6. Corrésponding parts.

7. P 1lies on AD. 7. Definition of bisector of
an angle.
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As a first application of*Skt characterization we will prove
three concurrence theorems analogous to Theorem 9-27 on con-
currence of medians,

Theorem 14-2. The perpendicular bisectors of the sides of a

triangle are‘concurrent in a point equidistant from the three
vertices of the triangle.

Proof: Let Ll’ L2 and L3 be the perpendicular bisectors

of the three sides AB, AC and BC. If L, and L, were

<>
parallel then AB and AE would be parallel. (Why?) Therefore,
L1 and L2 intersect in a point P.

£l

A vou o c

By Theorem 6-2, AP = BP, Dbecause P 1is on L,. And AP = CP,
because P is on ‘L2. Therefore BP = CP. By Theorem 6-2,
this means that P 1is on L3. Therefore P 1is on all three of

the perpendicular bisectors and AP = BP = CP, which was to be
proved.

1690
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Corollary 14-2-1. There is one and only one circle through

three non-collinear points.

Corollary l4-2-2. Two distinct circles can intersect in at
most two points.

Suggestion for proof: If two circles could intersect in
three points, the three points could be either collinear or non-
collinear. Use Theorem 13-2 and Corollary 14-2-1 to show that
this 1s impossible in each case.

Theorem 14-3. Thé three altitudes of a triangle are con-
current.

Up to now, we have been using the word altitude mainly in
two senses: It means (1) the perpendicular segment from a vertex
of a triangle to the line containing the opposite side or (2) the
length of this perpendicular segment. In Theorem 1l4-3, we are
using the word altitude in a third sense: It means the line that
contains the perpendicular segment.

Theorem 14-3 1s easy to prove - if you go about it in exactly
the right way.

151

[sec. 14-2]



—n )471

Given A ABC, we draw through each vertex a line parallel to the
~opposite side. These three lines determine a triangle A DEF.
Opposite sidee of a parallelogram are congruent. Therefore

BC = AE and BC = DA. Therefore DA = AE. Thereforec the altitude
from A, in A ABC, 1s the perpendicular bisector of DE. (This
is L1 in the figure.) For the same reasons, the other two
altitudes of A ABC are the perpendicular bisectors of the sides
of A DEF. Since the perpendicular bisectors are concurrent, so
also are the three altitudes.

Theorem 14-4. - The angle bisectors of a triangle are con-
current in a point equidistant from the three sides.

Proof: Let P be the intersection of the bisectors 7&?
—_—> <> <>
and BE. By Theorem 14-1, P 1is equidistant from AB and AC,
because P 1s' on the bisector of / A. And P 1is equidistant
<> . <>
from BA and BC, because P 1is on the bisector of / B.
<> <>
Therefore P 1s equidistant from AC and BC. Therefore, by
Theorem 14-1, P 1is on the bisector of A C. Therefore, the
three bisectors have the point P in common and P 1s equidistant
<«>»r > <>
from AB, AC and BC, which was to be proved.
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.respectively, then the

Problem Set 14-2b

A line intersects the sides of / ABC in P and Q. Find
a point of PQ which is equally distant from the sides of

the angle.
D

Imagine this figure as a
city park. The park C
commission plans to place

a drinking fountain at a
point which shall Ef; A
Egpidistant from AB and

BC and also equidistant
from D and C. Explain
how to find this point.

Prove the following theorem:

Given / DAE and B, C
—_—_— >

points on AD, AE, between

A and D and A and E

bisectors of the angles
BAC, DBC, BCE, are

concurrent. A

Given the three lines determined by the sides of a triangle,
show that there are exactly four points each of which is
equidistant from all three lines.

[sec. 14-2]
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5. Mark points M and N 2 inches apart and draw circles with
radii % inch, 1 inch, 2 inches and 3 inches using
both M and N as centers each time.

Note that some of the circles with center at M intersect
circles with center at N, but that there are two lrinds of
situations in which they do not. Describe these two
situations.

6. Sketch several different quadrilaterals, and in each sketch
the bisectors of each of the four angles. From your sketches
does 1t appear that these angle bisectors are always con-
current? Can you think of any special type of quadrilateral
whose angle bisectors are concurrent? Can you think of a
general way of describing those quadrilaterals whose angle
bisectors are concurrent? (Hint: If the angle bisectors
are concurrent; the point of concurrency is equidistant from
all four sides.)

.7. A quadrilateral is cyclic if its four vertices lie on a
circle. Prove thet the perpendicular bisectors of the four
sides and the two diagonals of a cyclic quadrilateral are
concurrent.

48. What 1s the set of points which are the vertices of right
triangles having a given segment AB as hypotenuse?

14-2. 1Intersection of Sets.

Consider the follbwing problem: 1In a given plane E how
many poilnts are there which are at a given distance r from a
given point A of E and which are alsb equidistant from two
given points B and C of E?

Such a point P 1s required to satisfy two conditions;
(1) AP = r, - (2) BP = cP.

Consider these conditions one at a time. If P satisfies (1)
then P can be anywhere on the circle with center A and radius
r. In other words, the set of points satisfying (1) is this circle.

[sec. 14-3]
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Similarly, by Theorem 6-2, the set of points satisfying (2) 1s a
line, the perpendicular bisector of BC. If P 1is to satisfy
both conditions it must lie on both sets; that iz, P must be a
point of the intersection of the two sets. Since the intersection
of a line and a circle can be two points, one point, or no points,
the answer to our problem is two, one, or none, depending on the
relative positions of A, B and C and the value of r. The
method illustrated here is a very useful one, since 1t enables us
to consider a complicated problem a piece at a time and then put
the pieces together as a final step. If you refer to the proofs
of Theorems 14-2 and 14-4 you will see that this was the basic
method of the proof. In Theorem 14-2, for example, we found the
point P as the intersection of the set L1 defined by PA = PB
and the set L2 deflned by PA = PC.

vos s of the constiructions which avre to be discussed in the
pext sections are based on the method of intersection of sets.

Problem Set 14-3

1. AB 1is a segment 6 inches long in a plane E. Describev
the location of points P in E, U4 inches from A, and
5 inches from B.

2. AB 1is a segment 4 inches long in a plane E. C and D
are points of E such that D is on AB, CD | AB and
TD 1is 3 1inches long. Describe the set of points P which
are equidistant from A and B, and 5 inches from C. '

*3, On a circular lake there are
three docks, A, B, C.
Draw a diagram indlcating
those points on the lake
which are closer to A
than to B or C.

[Rop
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R Are there any points in a plane that satisfy the following
" conditions? 1If there are, tell how many such points and how

each 1s determined. Make a sketch to illustrate your answer.
Given BC = 6 inches.
‘a. 4 inches from and 3 inches from C.
b. 10 inches from and 10 inches from C.

¢. 10 inches from and equidistant from ¢ and B.

W W W W

d. 2 inches from and 4 inches from C.

14k, Constructions with Straight-edge and Compass.

A practical problem of some importance is that of drawing a
figure with accuracy. This 1s the Job of a draftsman, and he uses
many instruments to facilitate his work, such as rulers, compasses,
dividers, triangles, T-squares, and a host of other devices.

The corresponding geoﬁetric process is generaliy called
"constructing" rather than "drawing", but the idea is the same.

We allow ourselves the ugse of certain instruments, and the basic
problem is to show how, with these instruments, we can construct

various figures.

Of course our constructions will depend on the instruments
we use. Thus far in our text we have been considering the ruler
and the protractor as our fundamental instruments, although we
would have had to introduce a compass 1n Chapter 13 to construct
circles. Varlous other combinations of instruments have been
considered, but the most interesting is still the comblnation
used by the ancient Greeks, the straight-edge and compass. We
shall devote the rest of this chapter to constructions with these
instruments.

A straight-edge is 'simply a device to draw lines. It has no
marks on its edge and so we cannot measure distances with it.
With a compass we can draw a circle with a giveﬁ center and a
given radlius. We have no means of measuring angles.

1ou
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Most of our constructions will depend on the intersection
properties of two lines, of a line and a circle, or of two circles.
The first of these three cases has been considered in such places
as Theorem 3-1, the Plane Separation Postulate and the Parallel
Postulate. The case of a line and circle was taken care of by
Theorem 13-2. But we still have the case of two circles to
consider. As might be expected this is the most complicated of
the lot, both to state and to prove. Iﬁ fact, the proof is so
complicated that we do not give it here at all; but put it in
Appendix IX. Here 1s the theorem:

Theorem 14-5. (The Two Circle Theorem.) If two circles have
radil a and b, and if c¢. is the distance between thelr centers,
then the circles intersect in two points, one on each side of the
line of centers, provided each one of a, b, ¢ 1s less than
the sum of the other two.

Some of the situations in which the lnequalities stated in
the theorem are all satisfied and the circles intersect are
1llustrated below:

/7

YR
\*/

[N
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\That the inequality condition imposed on a, b, ¢ 1is important
is shown by these cases in which one of the inequalities stated
in the theorem is not satisfied and the circles do not intersect:

c >a+b b>a+c a>b+ c.

14-5. Elementary Constructions.

In this section we show how to do various simple constructions
which will be needed as steps in the more difficult ones. All
these constructions will be in a given plane. Constructions will
be numbered in the same way as theorems.

Construction 14-6. To copy a given triangle.

Suppose we have given A ABC. We want to construct a tri-
angle A DEF, congruent to A ABC, with the side DF 1lying on
a given ray with D as end-point.

ioB
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Step 1. With the compass, construct a circle with center at
D and radius AC. This intersects the given ray in a point F,

and DF = AC. In the figure, we show only a short arc of the
circle.

Step 2. With the compass, construct a circle with center
at D and radius AB.

Step .3. Construct a circle with center at F and radius
BC.

RS
[sec. 14-5]



479

These two circles seem to intersect; and by the Two Circle
!uTheorem they must intersect, because each of the numbers AC, AB,
and BC  1s less than the sum of the other two, by Theorem 7-7. R

Either of the points E, E!' will do as the third vertex of
our triangle. We draw the sides with our straight-edge, and we
know by the S.S.S. Theorem that A DEF = A ABC.

You may remember that in proving the S$.S5.S. Theorem we had
the problem of copying a triangle. It is worth while to review
the o0ld method and compare it with the new one. (In the proof
of the S.5.S. Theorem we copied the triangle with ruler and
protractor, using the S.A.S. Postulate to verify that the con-
struction really worked.)

Construction 14-7. To copy a given angle.

E

v

EI

Here we have given an angle with vertex at A, and we have

given a ray with end-point at D. We want to construct the two
~angles, having the given ray as a side, congruent to the given
angle.

With A as center, we construct an arc of a circle inter-
gsecting the sides of the angle in points B and C. With D as
center construct a sufficliently large arc of a circle of the same
radius, intersecting the given ray in F. With F as center and
BC as radlus construct arcs of a circle, intersecting the circle
with center D in E and E!'. Construct ray 'EE? and ray BE?.
By S.S.S. Theorem A DEF & A ABC, and hence / EDF & / BAC.
Similarly, / E'DF & / BAC.

170
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Problem Set 14-5a

For your convenience, we give 1B 9 cm. long.

AL 1 . 1 1 L 4 4 i B
Construct a triangle with sides of the following lengthé:
a. 5ecm., 6 cm., 8 cnm. '
b. 7T em., 5 cm., 3 cm,
c. 3 em., 3 cm., 3 cm.
d. 4 em., 7 cm., 3 cm,

Make a triangle ABC on your paper and construct A AB'C
congruent to A ABC using AC as a side in each and the
A.S.A. Theorem as your method. '

Draw on your paper a triangle ABC and a segment MH about
twice as long as AB. With M as vertex construct
/ HMQ = / A. With H as vertex construct /[ QHM = / B.

o AB _ -

AQ'— . MH—‘ - -

a. Prove that it is always possible to construct an
equilateral triangle having a given segment as one of
its sides.

b. Under what conditions is 1t possible to construct an

isosceles triangle having one given segment as 1its side
and another glven segment as its base?’

a. Construct an equilateral
triangle with x as the X
length of one side.

.
. ®

b. Construct an isosceles y
trlangle with y as
the length of the base
and X as tr~ length
o’ one of the congruent sides.

[sec. 1U4-5] \\\
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Construction 1l4-8. To construct the perpendicular bisector
~of a given segment.

Given a segment AB.

Step 1. Using anh appropriate radius r, construct a circle
with center at A and a circle with center at B. If r is
chosen in a suitable way, these two circles will intersect in
two points P and Q, 1lying on .opposite sides of 73;

(Question: What condition should r satisfy, to ensure that
the circles will intersect in this way? Can you think of a
particular value of r that is sure to wo %? Of course, only
.one value of r 1s needed for the construction.)

Step 2. Construct the line jﬁi intersecting 7&? at R.
 We need to show that this line is the perpendicular bisector of
AB. By Theorem 6-2, R and S, being each equidistant from A
and B 1lie on the perpendicular bisector of AB. Since two
points determine a line, PQ 1is the perpendicular bisector.

Corollary 14-8-1. To bisect a given segment.

172
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Construction 14-9. To construct a perpendicular to a glven
line through a given point.

D \
R & P st

_Step . Given P and L. Let Q. be any point of L.
Draw a circle with center P and radius r, where r 1is greater
than PQ. L then contains a point of the interior of the cilrcle

(namely, Q) and by Corollary 13-2-6 intersects the circle in
two points R and S.

X -
A

Step 2. W1th, R as center and radius greater than % RS
_construct a suitable arc of a circle. With S as a center and
the same radius, construct an arc of a circle intersecting this
in T. Then, as in Construction 14-8, P and T are each
equidistant from R and S, and hence, PT | RS.
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Problem Set 14-5b

;l. Construct an isosceles right triangle.

2. Construcf>a square in which
a diagonal is congruent to
AC.

3. Construct a rhombus whose
diagonals are congruent Ct —iD

to AB and Eﬁi

k, Construct a triangle given h-
any altitude h and the
segments d and e of

T

the side it intersects. | e .

N
.

Construct a parallelogram
whose diagonals are con-
gruent to AB and CD Ct D
and which determine a 60° '
angle.

6. Construct a segment whose length 1s the geometric mean of
AB and CD in Problem 5. (Hint: Refer to Problem 10 of
Problem Set 13-%4a.) '

i74
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~ Construction 1l4-10. To construct a parallel to a given line,

through a given external point.

A
L

| Step 1. Take any point Q of the line, and join P to Q
by a line.

7a :

Step 2. Now construct / QPS, congruent to / PQR, with
S and R on opposite si@gi of fii. Step 2 %za?n'example of
Construction 14-7. Then PS 1is parallel to QR, as desired.

Construction 14-11. To divide a segment into a glven number
of congruent segments.
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Given ‘Eii we want to divide AB into n congruent segments.
(In the figure, we show the case n = 5.)

<>
Step 1. Draw any ray starting at A, . not on the line AB.

Starting at A, 1lay off n congruent segments APl, P1P2, ooy

Pn - an’

as long as they have the same length; we simply choose P

end to end, on the ray. (The length does not matter,

1 at
random, and then use the compass to lay off P1P2 = APl, and so
on.)

Step 2. Join P, to B by a line. Through the other

, —>
points Pl’ P2, ey Pn -1 construct lines parallel to PnB.
(This can be done; it is Congfuction 14-10.)

These lines intersect AB 1in points Ql’ Q2, eees Qn 1
The points -Ql’ Q2, ey Qn -1 divide AB into n congruent

segments. (See Corollary 9-26-1.)

Problem Set 14-5c¢

1. Construct a parallelogram

} {8
with two sides and included
angle congruent to AB, FH, F} {H
and / Q.
Q >

170
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2. This drawing shows how Bob A 9]
N Langford used a sheet of { //
ruled paper to divide a 44&‘* //
segment A0 in 9 parts }S, //
of equal length. Explain \Y’ //
how he could have divided E;(\
=

it into other numbers of

congruent parts. (Assume
that the lines of paper
are evenly spaced.)

3. This figure illustrates
8t1ll another method for
dividing a segment into
any number of congruent

<>
parts. Here AC 1s any
convanient line, and
>
Eﬁ; 18 drawn parallel to
AC. The same number of
congruent segments 1is

marked off on each, and
the corresponding points
are Jjoined. Prove that
the method is correct.

y, If the length of AB is
the perimeter of an
equilateral triangle,

construct the triangle.




*8.

Given Kﬁ; construct an
1sosceles triangle in which
AB is the perimeter and

in which the length of
one of the congruent
sides 1s twice the length
of the base.

This figure illustrates

AN

another method of making
one line parallel to
another which is useful

A

W

v

in outdoor wurk.  ‘-Explain
the method and show that
it is correct.

Divide a given line segment
AB intoAtwo segments whose
ratio is that of {wo given , b
segments of lengths a and
b. (Hint: Use a construction Al

487

B

similar to that of Construction
14-11.)

Construct a triangle ABC,
given the lengths of KE:
KE] and the median from
A to 3§i

Given: Lengths ¢, b, m.

To construct: A ABC so

that AB = ¢, AC = b,
median AT = n.

178
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*G, Given x as the median to
one of the congruent sides
of an isosceles triangle in
which the medians to these
sides are perpendicular to
each other. Construct the
triangle.

T
4

*10. Giveﬁ a circle C tangent
to a line m at K.
Construct a circle tangent c
to C and also tangent to
m at a given point M.

(Hint: Analyze the diagram

below in which P 1s the

center of the required

circle, N the point of <

—
tangency and LN the
common tangent at N.)

v

i7y
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[

Construct a common external tangent to two glven circles.

Given a triangle ABC in which each angle'has measure less
than 120, construct a point P in the plane of the triangle
such that m/ APB = m/ BPC = m/ APC.

The figure shows how a segment can be bisected using a line

parallel to it, by means of a straight-edge only. That is,
— <>

given line m IIBC, take Q as any point not on BC or m,

and draw iﬁ? and 5&' meeting m at A and D. Then draw

<73 <> fﬁ? <>

B and AC, which meet at P. Then bisects BC at

M. Prove this.

Q
., m A N D S
P
. N
~ B M [ 4

1

(Hint: The proof will include these three proportions:

MB ND MB MC MB MC

MG = WA’ WA - W0 ¢ ¥o < WB)

Given two parallel lines m and n, at a distance d from
each other, find the set of all points P such that the
distance from P to m 1is k times ithe distance from P
to n, where k 18 a glven positive number.

130
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14-6. Inscribed and Circumscribed Circles. ' '

Definitions: A circle is inscribed in a triangle, or the
triangle is circumscribed about the circle, if each side of the
. triangle is ﬁéngent to the circle. A circle is circumscribed
about a triangle, or the triangle is 1nscribed in the circle 1if
each vertex of the triangle lies on the circle.

In this figure A ABC 1is inscribed in 02 and circumscribed
about Cl' Cl is inscribed in A ABC and 02 is circumscribed
about AABC.

In this section we will learn how to construct with straight-
edge and compass the inscribed circle and the cilrcumscribed

circle, for any triangle.

131
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Construction 14-12, To circumscribe a circle about a given
triangle.

Step 1. cConstruct the perpendicular bisectors of two sides
of the triangle. This can be done by two applications of
Construction 14-8, The two lines meet at a point P. By
Theorem 14-2, P alsO lies on the Perpendicular bisector of the

/third side. By Theorem 6-2, this means that P -is equidistant
from the three vertices A, B, and C,; that 1g, AP = BP = CP,
Congtruct thé circle with center at I, passing through A.
Then the circle also passes through B and C.

Construction 14-13, To bisect a given angle.

A IC —~
Step 1. cConstruct any circle with center at A, intersecting
the sides of the given angle in points "B and C. Then B = AC.

[sec. 14-6]
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Step 2. Construct circles with centers at B and at G,
and with the same radius r, where r > % BC. By the Two-Circle
ngorem these circles intersect in two points, one on each side of
BC. Let P Dbe the point on the side opposite to A.

B
Step 3. Construct the ray AP. By the S.5.S. Tk yrem,
A BAP A CAP. Therefore / BAP & / CAP, as desi.: "

Construction 14-14, To.inscribe a circle in a given triangle.

/

\ /
g 4

\Kp

|

|

D

Step 1. Bisect / A and /B, and let P be the point
where the biseétors intersect. By Theorem 14-4, P also lies
on the bisector of / C.

Step 2. Construct a perpendicﬁlar’ PD, from P to 'BC.
Construct a circle with center at P, passing through D. We
need to show that the circle is tangent to all three sides of
A ABC.

(1) The circle is tangent to BC, because BC 1s per-
pendicular to the radius PD. ({See Corollary 13-2-2.)

Pl
cL
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(2) By Theorem 14-1, P 1is equidistant from AB and BC.
Therefore the circle contains the point E which 1s the foot‘of
the perpendicular from P to AB. Therefore the circle is

tangent to AB.
The proof of tangency for the third side is exactly the same..

Notice'thét if all you want is a falrly convincing drawing
you can merely construct the two bisectors, put the point of the
compass at P, and then adjust the compass so that i1ts pencil-
point will barely reach 'EE. You have to drop the perpendicular
55} however, to get a construction which 1s theoretically exact.

14-7. The Impossible Construction Problems of Antiquity.
The ancient Greeks disrovered all of the straight-edge-and-
compass constructions that you have studied so far, together with

a large number of more difficult ones. There were some con-
struction problems, however, which they tried long and hard to
solve, with no success whatever.

(1) The angle-trisection problem.

A

—>
Given an angle Z BAC, we want to construct two rays AD

—
and AE (with points D and E in the interior of / BAC)
wnhich trisect ,/ BAC. That is, we want / BAD = / DAE = / EAC.
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Nobody has found a way to do this with straight-edge and
compass. The first thing that most people try is to take AB = AC,
draw BC, and then trisect BC with points D and E. '

But this doesn't work; in fact, nothing has been found that

works.

(2) The duplication of the cube. A cube of edge a has
3

volume a

Suppose we have glven a segment of length a. We want to con-
_struct a segment of length b, such that a cube of edge b has
‘exactly twice the volume of a cube of edge a.
. - 3 3 b 3
(Algebraically, of course, this means that b 2a”, or 7 = v 2.
This problem was attacked, over a long period, Dby the best

mathematicians in Greece, who were very brilllant men indeed, but

il

none of them had any success with this problem.
125
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There 1s a curious myth in connection with this problem.
A plague threatened the population of a certain Greek town,
and the inhabitants consulted the oracle at Delphl to find out
which god was angry and why. The answer they got from the oracle
was that Apollo was angry. There was an altar to Apollo, in the
town, consisting of a cube of solid gold, and Apollo wanted his
altar to be exactly twice as blg. The people went home from
Delphi and bullt a new altar, twice as long along an edge as the
old one. The plague then got worse instead of better. The people
thought again, and realized that the new altar was eight timeq as
blg as the old one; that 1s, 3t had eight times as much volume:.
This raised the problem of the duplication of the cube, but the
local mathematicians were unable to solve the problem. Thus the
first attempt to apply mathematics to public health was a total
failure.

(3) Sgquaring the cibcle.™ Suppose we have given a circle.
We want to construct a square whose area 1s exactly the same as
that of the circle.

A=7T3.2 A=b2'

Algebraically, this means that b = a /7.

139

[sec. 14-7]



496

These three problems occupied many people for more than two
thousand years. Various attempts were made to solve them with
straight-edge and compass constructions. Finally it 'was dis-
éovered, in modern times, that all three of these problems are
impossible. Imposéibility in mathematics does not mean the same
thing as "impossibility" in every day life, and so 1t calls for
some explanation.

Ordinarily, when we say that something is "ympossible," We
mean merely that it is extremely difficult,.or that we don't
happen to see how it can be done, or that nobody has found a way
to do it -- so far. Thus people used to say that it was
"1mpossible"” to build a flying machine, and people didn't stop
this until the first airplane was built. It is supposed.to be
"impossible" to find a needle in a haystack, and so on.

Mathematical impossibility is not like this. In mathematics,
there are some fhings that really cant't be done, and it is
possibls to prove that they can't be done.

(1) A very slmple example is this: No matter how clever
and persistent you may be, you can't find a whole
number between 2 and 3, because there isn't any
such whole number. '

(2) 1If the above example seems too trivial to take seriously,
consider the following situation. We start with the
integers, positive, negative and C. We are allowed to
perform additions, subtractions, multiplications, and
divisions. A number ig called constructible if we can
get to it, starting from the integers, by a finite
number of such steps. For example, the following number
is constructible:

' 5 17 1,3
537 .. 7*%
3,7 T3
T+3 10~ ¥7
To get to it requires 15 steps.

[sec. i4—7]
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Now suppose that the problem before us is' %> construct the
number ~/—T This problem is impossible of solution Just as the
old Greek problems are. The point is, the numbers thaut can be
constructed according to the rules that we have agreed to are all
rational numbers. And %fE- Just isn't this kind of a number.
Tﬁere is no use in hunting for it among the constructible numbers,
because that 1lsn't where it is.

Problems of constructibility with straight-edge and compass
are closely analogous to this second illustration. Starting with
the integers, there are certain numbers that we can "construct" by
elementary arithmetic, but these numbers do not happen to include
N |

Starting with a segment, Kﬁ: there are certain figures that
we can construct with straight-edge and compass, but these figures
do not happen to include any segment CD for which CD° = 2 - ABS.
This 1s what we mean when we say that the duplication of the cube
wlth strailght-edge and compass is impossible of solution.

The angle-trisection problem deserves some further dilscussion.

(1) Some angles can be trisected with straight-edge and
compass. For example, a right angle can be so trisected.
When we say that the angle-trisection problem 1s impossi-
ble of solution, we mean that there are some angles for
which no trisecting rays can be constructed.

(2) The angle-trisection problem becomes solvable if we
change the construction rules very slightly, by allowing
ourselves to make two marks on the straight-edge. Once
the two marks aré'mﬁaé, we proceed as follows:

© 138
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Given an anglé with vertex B, we draw a circle with center at

B and radius r equal to the distance between the two marks on
the straight-edge. The circle intersects the sides of the given
angle in points A and C. We want to construct an angle whose
measure 1s %(mé ABC) .

Place the straight-edge so that (1) it sses through C.
Now manipulate the straight-edge by sliding rotating it about
C so that (2) one marked point Q 1lies on the circle ﬂ (3)
the other marked point P 1lies on the ray opposite to BA. We
will show that m/ BEC = 3(m/ ABC). In terms of the angle-
measures indicated in the figure, the main steps 1n the proof are
as rollows; you should find the reasons in each case:
(1) v = u.
(2) w=u+
(3) x=w=2u.
X
(

I

2 u.

<
i

(1) z =
Egquation

have / BPC, 1t is easy to draw the trisecting rays in the

interior of / ABC, by two applications of Censtruction 14-T.

139
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Problem Set 14-7

Find the set of points wﬁich are the intersections of the
bisectors of the base angles of parallelograms that have a
fixed segment as base.

Explain how to construct an angle of

a. 450, ' e. 120°;
b. 30°; f. 75%;
c. 28}’ g. 05%
d. 135°; h. 67-50.

Mention three other angles you could construct.

In dealing with triangles 1t is helpful to be able to
designate the parts by brief symbols. A notation frequently
used is as follows:

A, B, C, for the three vertices;

a, b, ¢, for the lengths of the opposite s{ggf;

<> <«
ha’ hb, hc for the altitudes to BC, CA, AB;

tA, tB’ tC for bisectors of angles A, B, £;
“—> <> <>

m,, My, m, for medians to sides BC, CA, AB.
In each of the following problems, we wish to construct a
triangle satisfying certain conditions. For example, we
might give two segments H®S and TQ and an angle, say /X,
and require that a triangle ABC be constructed
SO that AB ® RS, BC ®TQ, and /B & /X.

B ¢ 1990
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For brevity, we shall state such a problem in the form,
"Gonstruct a triangle glven two sides and the included angle"
or "Construct A ABC, glven ¢, a, and / B." The student
should do several problems of this type, rephrasing them in
the mrre exact language used above, until he is sure that he
understands the meaning of the shorter statement.

Construct A ABC having given:

a. a, m, [/B. e. m, h, /B.
b. a, b,- and /X £. h,, /B, [C.
such that
m/ A+ m/B=m/X. g [Cs by T

c. a, b, hy. h. /A b, ¢t
d. c, /A, 7%

(Suggestion: ‘Each time begin by sketching a figure showing
the relationsinin of the given parts to help you in your
analysis of th2 problem.)

Given a square ABCD with

M and N the mid-points of B c
%El and CD. If AM %EE P

AN meet the dlagonal BD qQ AN
at P and Q, prove that

P and Q trisect BD, A D

but that m/ BAM £ 7 - 90.

[sec. 14-7]
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5. Show that the angle-triseciion method mentioned in the text
on page 504 never works, by using one of the following methods:

a. Suppose tlhiat for some
angle it did work. Then
in the diagram,

AD 1is both the angle-
bisector and the median
from A in A BAE.

Tr 2 triangle is then
isosceles and AB = AE
(Why?). But AB = AC by construction, so the circle
with center at A and radius AB is intersected by
the line ﬁi? in tﬁree points. This is impossible.

b. Suppose 1t did work.
Then in the diagram,

let the circle with
center A and radius
fﬂ; 1ntepi§pt rays

AD and AE in R
and S. Then D and E will be inside the circle.
(Why?) Now RS || BC. (Consider the biscctor of

/ RAS.) Also RS > DE (Why?) Triangles ABD, ADE,
and AEC all have the same area. (Why?) Now comgpare
the areas of BDR, DRSE, and SEC %o arrive at a
contradiction.

192
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6.

 We hereby define a geometer's square as an instrument, made

of a flat plece of cardboard or similar material, of thg
following shape.

E A

The angles are all right angles and EF = CD = % AB.

To trisect angle PQR with a geometer's square one first
uses the long side to

< | o

—> —

construct ST || at distance EF. Then place the
geometer s square so that ‘Bﬁ> passes through Q, A 1lies
on ST, and B 1lies on GR. Then m/ PQA = g(mé PQR) .
Prove this.

193
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Review Problems

1. For what integral values of x 1s there a triangle whose
sides have lengths 4, 6, x?

2. Construct a rhombus in which the perimeter has a given
length AB and one angle has measure 45,

3. a. Given KE; construct the set of points P in the plane
such that m/ APB = 90.

b. Prove that the set you have constructed fulfills the
conditions.

y, Given line L and point P in plane E. Describe the set-
of points in E which are a given distance d from L and
a given distance r from P.

5. Sketch several quadrilaterals and, in each, sketch the
perpendicular bisectors of the four sldes. In general,
you will find that these do not appear to be concurrent.
If you can think of cny special quadrilaterals whose per-
pendicular bisertors are concurrent, list them. Think of
some general way of describing the set of quadrilaterals
with this property.

A
6. By construction find the center
of the circle of which Kﬁ is
an arc.
8
7. Given a segment representing the difference between the

diagonal and side of a square. Construct the square.

194




504

10.

*11.

Lot A be the center of a circle of radius a, and B the
center of a circle of radius b. If a + b > AB, do circles
A and B always intersect?

ABCD 1s a parallelogram in a plane E. P 13 a point of E
which 1s equidistant from A, B, C, and D. Prove that the
parallelogram 1is a rectangle.

ABCD 1s a trapezoid with AB || CD. Under what circumstances
will there be a point P, in the plane of the trapezoid,
equidistant from _ A, B, C, D? Can there ever be -more than
one such point?

Given two parallel lines ,Q and m and a transversal n,
are there any points which are equidistant from ,Q m and n?
Prove that your answer is correct.




Chapter 15
AREAS OF CIRCIES AND SECTORS

.. 15-1. Polygons.
A polygon is a figure like this:

ANA

/

But not like this:

The idea of a polygon can be defined more precisely as follows:
_Suppose that we have given a sequence

Pl, P2’ e s ey Pn

of distinct polnts  in a plane. We Join each point to the next one
by a segment, and finally we join P, to P,.

196
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n-i

In the figure, the dots indicate other possible points and
segments; because we don't know how large n is. ©Notice that

the point Just before Pn is Pn _ 1> @s it should be.

Definitions: Let Pl’ P2, P3, ooy Pn -1 Pn be n

distinct points in a plane (n > 3). Let the n segments
P1P2, P2’P3’ ey Pn__an, PnP1 have the properties:

(1) No two segments intersect except at their end-points,
as specified; “

(2) No two segments with a common end-point are collinear.

' Then the union of the n segments is a polygon.

The n given points are vertices of the polygon, the n
segments are sides of the polygon. By (2), any two segments with
a common vertex determine an angle, which is called an angle of
the polygon.

197
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Notice that triangles are polygons of 3 vertices and 3
sides, and quadrilaterals are polygons of 4 vertices and 4
sides. Polygons of n vertices and n sides are sometimes .-

called n-gons. Thus a triangle is a 3-gon and a quadrilateral
is a h-gon (although the terms 3-gon and UY4-gon are almost
never used.) 5-gons are called pentagons, 6-gons are hexagons.
8-gons are octagons, and 10-gons are decagons. The other
n-gons, for reasonabiy small numbers n, also have special names
taken from the Greek, but the rest of these special names are not
very commonly used.

Each side of a polygon lies in a line, which separates the
plahe into two half-planes. If, for each side, the rest of the
pol&gon lies entirely in one of the half-planes having that side
on its edge, then the polygon is called a convex polygon.

Below is a convex polygon, with the lines drawn in to indicate
why it is convex: '

®
P ol S Pa
e e +
q
’/
® /
\\\ \?3
P, N
6,/ \\
b’, a
- ~--= s
\
P5 AN /’, Bl-
b »
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This is a natural term to use, because if a polygon 1s convex, it
turns out that the polygon plus 1ts interior forms a convex set
in the sense that we defined long ago in Chapter 3. Just before
the definition of a polygon, there are five examples of polygons.
You should check that the first, second and fourth of these
examples are convex polygons, but the third and fifth are not.
You should check also that in the first, second and fourth cases,
the polygon plus its interior forms a convex set, but that in the
third and fifth cases thié is not so. .

In this chapter we shall use polygons in the study of circles,
to learn to calculate circumferences and areas. In the next
chapter we shall calculate the volumes of prisms, pyramids, cones,
and spheres. The basic procedure consists in approximating
lengths and areas of curved figures with lengths and areas of
polygonal figures, and seeing what happens as the approximations
become better and better. A complete treatment of this last
stage of the process i1s well beyond the subject matter of this
course, but we will explain the loglc of the situation as clearly
as we can, and as completely as seems practical.

Problem Set 15-1

1. In the figure at the right,
no three end-points are
collinear and no two segments
intersect except at their
end-points. Nevertheless
the figure is not a polygon.
Why not?

[sec. 15-1]
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2. Is the figure at the right
a polygon? How many sides
has 1t? How many vertices*
What can you say about the
relative lengths of the sides?
About the measures of the
angles?

*3. a. State a.definition of the interior of a convex polygon.
(Hint: Consider the definition of the interior of a
triangle.)

b. Make a sketch to illustrate that the union of a convex
polygon and its interior .is a polygonal region. (See
_definition of polygonal region in Chapter 11.)

k. A segment connecting two vertices of a polygon which are not
end-points of the same side is a diagonal of the polygon.

a. How many diagonals has a polygon with 3 sides?
4 sides? 5 sides? 6 sides? 103 sides? n sides?

b. Sketch a pentagon for wnich only two of the diagonals
pass through its interior. i

5. Use the filgure at the right
to show that the sum of the
measures of the angles of a
conﬁex polygon of n sides
iss 8 = (n - 2)180.

6. Verify the statement in the
preceding problem, using this (2 D
figure.

2090
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15-2. Regular Polygons.
Suppose we start with a circle, with center Q and radius

r, and divide the circle into n congruent arc., end to end.
The figure shows the case n = 8,
"5

‘FPor each little érc, we draw the corresponding chord. This gives
a polygon with vertices Pl, P2, cees Pn' The arcs are

_ congruent, and so the chords (which are the sides of the polygon)
are also congruent. If we draw segments from Q to each vertex
of the polygon, we get a set of n 1isosceles triangles. 1In each

360 - 36
o

triangle, . mé Q = - because is the measure of the

intercepted arc in each case. Therefore all of the 1sosceles
triangles are congruent. It follows that all of the angles of
the polygon are congruent; the measure of an angie of the polygon
is twice the measure of any base angle of any one of the isosceles
triangles.

’ Thus the polygon has all of its sides congruent and all of = °
its angles congruent.

2901
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Definitions: A convex polygon is regular if all its sides
are congruent and all its angles are congruent. A polygon is
inscribed in a circle if all of its vertices lie on the circle.

It is a fact that every reéular polygon can be inscribed in
a circle, but we will not stop to prove this, because we will not
need it. We will be using regular polygons only in the study of
circles, and all of the regular polygons that we will be talking
about will be inscribed in circles by the method we have Jjust
described.

If Pl’ P2, cees Pn is a regular polygon inscribed in a
circle, then the triangles A PlQPe’ A P2QP3, ...y are all
congruent and they have the same base e and the same altitude

a. These are shown, in the figure below, for A P3QP4.

" 'The area of each triangle is %ae, and therefore the total area

of the regular n-gon is
— L1 31
A =n xae = zane,

202
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Definition: The number a is called the apothem of the
polygon. The sum of the lengths of the sides is called the
perimeter

We denote the perimeter by p. Thus, for a regular polygon,
we have B -

P=n-e.
In this notation, the area formula becomes

- X a.
An =5 a-.p.

Problem Set 15-2

1. What is the ratio of the apothem of a square to its perimeter?

2. a. What size angle would be determined by drawing radii to
the end-points of a side of a regular inscribed octagon?

b. Use protractor and ruler to construct a regular octagon.
c. Use compass and straight-edge to construct a regular
octagon. '
3. Use protractor and ruler to construct a regular pentagon.
4. A formula for the sum of the measures of the angles of any

convex polygon of n sides is (n - 2)180. (See Problem 5
of Problem Set 15-1.) What would be a formula for the measure
of each angle of a regular n-gon?

5. Is the polygon of Problem 2 in Problem Set 15-1 a regular
12-gon? Justify your answer.
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[sec. 15-2]



513

6. The figuré represents part of a regular polygon of which
AB and BC are sides, and R 1s the center of the circle
intwhich the polygon is inscribed. Copy and complete the

table:
m/ARB | m/ABR
number or or
of sides | m/BRC | m/CBR | m/ABC
3 A
4 L - -
5 R
6 :::: B
—_— 45
9 4o 70 140
o . . 14y c
12
15 R
18
20
24 .
7. A plane can be covered by

congruent square regions

placed four at a vertex

as shown.

a. How many equilateral
triangles must be

placed at a vertex to
cover a plane?

b. What other class of regularwpolygonal regions can be
used to cover a plane? How many would be needed at
a vertex?. '

2014

[sec. 15-2]




514

*g.

da.

Two regular octagons and one
square will completely cover
ghg pa‘rt gi;:a. plgne a;*ound_ a .
point without any overlé;piﬁgs, -
as shown. What other combi-
nations of three regular poly-
gons (two of which are alike)
will do this?

(Hint: Consider possible
angle measures such as those
listed in the last column of
your table for Problem 6.

Find solutions of the equation 2x + y = 360 where x
and y are angle measures for regular polygons having
different numbers of sides. In the illustration

x = 135 and y = 90.)

2 +135 + 90 = 360

Investigate the possibility of other coverings of a
plane around a point by regular polygons.

Show that the sum of the
measures of the exterior
angles of any convex

polygon is 360.

(Hint: Count the supplements
of the interior angles.)

a.

A convex polygon of n sides (n is a positive even
integer greater than 3) can be separated into how
many quadrillateral regions by drawing diagonals from a
given vertex?

Derive a formula for the sum of the measures of the
angles of a convex polygon from your answer to part (a).

200
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11.

12.

*13.
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Let S ©be the sum of the measures of the angles of a polygon
with n sides. If the polygon is convex, then

8= (n_-2)180. In the following three figures, which are

not convex, show that the formula is still correct if we
regard S as the sum of the measures of the angles of the
triangles into which each can be divided, assuming that no
new vertices are introduced.

VAN

(a) (b) (e)

Show that in any peclygon if an
"artificial vertex" 1s inserted

A E
on one of the sides as shown so
that the number of "sides" is / . \

B G D

increased by one, the formula
for the angle sum still holds.

The sides of a regular hexagon are each 2 units long. If
it is inscribed in a circle, find the radius of the circle
and the apothem of the hexagon.

A regular octagon with sides 1 wunit long is inscribed in a
circle. Find the. radius of the circle.
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15-3. The Circumference of a Circle. The Number .

In this section and the next one we shall consider regular
n-gons for varipus.values Qf. n. As .usual, we denote the silde, .
apothem, perimeter, etc. of a regular n-gon inscribed in a
circle of radius 'r by e, a, p, ete.

Let C be the circumference of the circle - we have been
discussing. It seems reasonable to suppose RN VI want to
measure C approximately, you can do it by Ll n Z a regular

polygon with a large number of sides and then measuring the
perimeter of the polygon. That 1s, the perimeter p ought to be
a good.approximation of ¢ when n is large. Putting it another
. way, if we decide how close we want D to be to €, we ought to
be able to get p to be this close to C merely by making n
large enough. We describe this situation in symbols by writing

p—>C,
and we, say that p approaches C as a limit.

We cannot prove this, however; and the reason why we cannot
prove it is rather unexpectrd. The reason is that so far, we have
no mathematical definition of what is meant Ly the circumference
of a ciréle. (We can't get the circumference merely by adding the
lengths of certain segments, the way we did to get the perimeter
" of a polygon, because a circle doesn't contain any segments.

Every arc of a circle, no matter how short you take the are, is
curved at least slightly.) But the remedy is easy: we take the
statement

p—>»C
ag our definition of €, thus:

Definition: The circumference of a circle is the 1limit of
the perimeters of the inscribed regular polygons.

20
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We would now like to go on, in the usual way, to define the
number T as the ratio of the circumference of a circle to 1its
diameter. But to make. sure that this definition makes good,senpse,

we first need to know that the ratio %% is the same for all
circles, regardless of their size. Thus we need to prove the
following.

Theorem 15-1. The ratio é%, of ™ AR il'erence to the

diameter, is the ..ame for all circle

The proof 1s by similar triangles. Given a circle with
center Q and radius 7r, and another circle, with center Q!
and radius r', Wwe inscribe a regular n-gon 1in each of them.
(The same value of n must be used in each circle.)

In the figure we show only one side of each n-gon, with the
associated isosceles triangle. Now / AQB & / A'Q'B', because
each of these angles has measure égg. Therefore, sincs the
adjacent sides are proportional,

A AQB ~ A ATQ!'B!
by the S.4.5. Similarity Theorem. Thavafore,

e_¢g!
r
and so
2 ]
r° T
[sec. 15-3]
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where p 1s the perimeter ne of the first n-gon, and p' 1s
the perimeter ne!' of the second n-gon. Let C and C' De
the circumferences of the two circles. Then p—>C, Dby
definition, and p'—>» C', by definition. Therefore

c _C!
TS T"
and-
, c _ ¢
2r = 2pr'’

which was to be proved.

The number 4=, which is the same for all circles, 1is
designated by w. We can therefore express the conclusion of
Theorem 15-1 in the well-known form,

C = 2mr.

m 18 an irrational number and cannot be represented exactly
in fractional form. It can however, ™2 apprcximated as closely
as we please by rational numbers. So .. raziacal approximations
td T are

W

3, 3.14, -27"1 3.1416, TI%‘ 3. 14355358979 .

Problem Set 13-3

1. A regular polygmm 1s inscribed 1n a cliicle, then another with
one more side than the first is ...serimed, and so on endless-
ly, each time increasing the numbe:r of sldes by one.

a. What 1s the limit of the lenwth of the apothem?

b. What 1s the limit of the lengsh «r a side?

¢c. What is the limit of the mezzure v an angle?

a. What is the limit of the perimezax of the polygon?

2.. A certain tall person takes steps a yard long. He walks
around a circular pond close to the eci: taking 628 steps.
What 1is the approximate radius of %he }nnd? (Use 3.14
for w.)

209
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3. Which is the closer approximation to w, 3.14% or 22?

4, The moon is about 240,000 miles from the earth, and its
path around the earth is nearly circular. Find the cir-
cumference of the circle which the moon describes every month.

5. The earth is about 93,000,000 miles from the sun. The path
of the earth around the sun is nearly circular. PFind how far
we travel every year "in orbit". What is our speed in this
orbit in miles per hour.

6. ~The side of a square is 12 inches. What is the circumference
of its inscribed circle? Of its circumscriﬁfd circle?

*7, In the figure, squarzs XYZW
is inscribed in circle O,
and sqQuare ABCD 1is cir-
cumscribed about the circle. A
The dlagonals of both squares
lie in fﬁ and <_B__D) Given
that a square PQRS 1is
formed when the mid-point{__ B
P, Qo R and S of AX, BY, CZ, and DW are jolned, is
the perimeter of this square equal to, greater than, or less
than the circumference of circle 0? Let O0X =1 and
Justify your answer by computation.

8. The radius of a circle is 10 feet. By how much is its
circumference changed if its radius 1s increased by 1 foot?
If the radius were originally 1000 feet, what would be the
change in the circumference when the radius is increased by
1 foot?
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15-4. Area of a Circle.

In Chapter 11 we considered areas of polygonal regions,
defined in terms of a basic region, the triangular region, which
is the union of a triangle and its interior. In talking about
areas assoclated with a circle we make a similar basic definition.

Definition: A circular region is the union of a circle and

its interior.

In speaking of "the area of a triangular region" we found

it convenient to abbreviate this phrase to "the area of a triangle'

Similarly, we shall usually say "the area of a circle" as an
abbreviation of "the area of a circular region".

We shall now get a formula for the area of a circle. We
already have a formula for the area of an inscribed regular
n-gon; this 1s

| h =5 P

where a 1s the apothem and p is the perimeter.

211
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In this situation therzs are three quantities involved, each
depending on n. Tbese are P, a and An. To get our formula
for the area of a circle, we need to find out what limits these
quantities approach as n becomes very large.

H

(1) wWhat happens to A - A, is always slightly less than

n

the area A  of the circle, because there are always some points
that lie inside —he circle but outsides the regular n-~gon. But
the difference between An and A is very small when n is
very large, because when n 1s very large the polygon almost
£1l1ls up the interior of'the clrcle. Thus, we expect that

An-——>A.

But Just as in the case of the circumference of th= circle, this.
can never be proved, since we have not yet given any definition
of the area of a circle. Here also, the way out 1s easy:

Definition: The area of 2 circle is the limit of the areas
of the inscribed regular polygons.

Thus, An-——>A by definition.

(2) What happens to a. The apothem a is always slightly
less than 1r, because either leg of a right triangle is shorter
than the hypotenuse. But the difference between a and r is
very small when n is very large. Thus,

a ——>»Ir,

(3) What happens to p. By definition of C, we have
p —>C.

Fitting together the results in (2) and (3), we get

%ap-——;%rc.

Therefore A —"*Z?C'

But we knew from (1) that An.'“—>A' Therefore
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Combining this with the formula C = 2wr glves

A=7TT2~

Thi*+ the formula that you have known for years finally
. a the. =m:
2

Theorem 15-2. The area of a circle of radius r 1is wr-.

Problem Set 15-4

Find the .c“rcumference and area of a circle with radius
a. 5. b. 10.
Find the circumference and area of a circle with radius
a. n. - b. 10n.

a. Find the area of one face
of this iron washer if 1ts
diamster is 4 centimeters
and the diameter of the
hole is 2 centimeters.

b. Would the area be changed
if the two circles were

" not concentric?

The radius of the larger of two circles 1s three times the
radius of the smaller. Compare the area of the first to -
that of the second. '

The circumference of a clrcle and the perimeter of a square
are each equal to 20 inches. Which has the greater area?
How much greater is 1t?

Given a square whose side is 10 inches, what 1s the area
between its circumscribed and inscrilbed circles?
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An equilateral triangle is inscribed in a circle. If the
side of the triangle is 12 inches, what is the radius of
the circie? The circum{grence? The area?

The cross inside the circle - 4
i1s divisible into 5 squares. r
Find the area which i1s inside 4
the circle and outside the
cross.

Given: Two concentric circles = n =\
with center P, AC 1is a Ly = =:-C
chord of the larger and is
tangent to the smaller at B.
Prove: The area of the ring
(annulus) is 7BC2.

In a sphere whose radius is

10 inches, sections are made
by planes 3 inches and 5
inches from the center. Which
section will be the larger?
Prove that your answer is
correct.

In the figure, ABCD 1is a
square in which E, P, G

are mid-points of 'Kﬁ; KE,

and EE, respectively. Ar
and ﬁB are circular arcs

with centers E and G
respectively. If the side

of the square is s, find

the area of the shaded portion.

Z:id[sem, 15-4]
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*12,

*13 *

14,

indicated by lower case

In the. figure, semi-circles
are drawn withn each side of
right triangle ABC as

diameter. Areas of =ach =

region in the figure are

letters.
Prove: r + s = t.

A special archery target,
with which an amateur can
be expected to hit the
bulls-eye as often as any
ring, is constructed in

the following way. Rays
Eﬁ? and Eﬁ? are parallel.
A circle with center O

and radius r equal to the
distance between the rays;
is drawq_}ntgzigcting 'aﬁ
at Q. QA ] QM. Then a
circle with center O and
radius OA, or 1y is drawn. This process 1is repeated by
drawing perpendiculars at R and at S, and circles with
radii OB and OC. Note that we arbitrarily stop at four
concentric circles.

a. Find Ty, r2, r3 in terms of r.

b. Show that the areas of the inner circle and the three
"pings", represented by a, b, ¢, and d, are equal.

An isosceles trapezoid whose bases are 2 1inches and 6
inches is circumscribed about a circle. Find the area of
the portion of the trapezoid which lies outside the circle.
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15-5. Lengths of Arcs. Areas of Sectors.

| Just as we define the circumference of a circle as the limit
of the perimeters of inscribed regular polygons, so we can define
the length of a. circular arc as a sultable limit.

e e ww - w ‘Y. o - - - & - . * v - L4 . -

If AB .is an arc of a circle with center Q, we take points
Pys Ppy ... Py _ 4, oOn 2B so that each of the n angles AAQPI,

7~

/ P1®Pps ..., [P, _ QB has measure %--mAB.

Definition: The length of arc AB 1is the limit of
APy + P{P, + ... + P _ ;B as we take n larger and larger.

It is convenient, in discussing lengths of arcs, to consider
an entire circle as an arc of measure 360. Any point of the
circle can be considered as the coincident end-points of the arc.
The circumference of a circle can then be considered to be simply
the length of an arc of measure 360.

.The basic theorem on arc length is the following:

210
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Theorem 15-3. If two arcs have equal radii, then their
lengths are proportional to thelr measures.

7~
length AB _ length A'B!

~~ N
mAB mA'B!

The proof of this theorem is very hard, and quite unsuitable
for a beginning geometry course. We make no attempt to prove it
here, but, like Theorem 13-6 (to which it is closely related),
treat it as if it were a new postulate. '

Theorems 15-1 and 15-3 can be combined to give a general
formula for the length of an arc.

Theorem 15-4. An arc of measure q and radius r has

length Igaqr.
Proof: If C 1s the circumference of a circle of radius r
we have, by Theorem 15-3,
. L c
q = 360"
By Theorem 15-1, C = 2rr. Substituting this value of C above
eﬁaksplving for L gives ‘

.‘1T
L=-I8-6qr'.
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A sector of a circle is a region bounded by two radii and .
an arc, like this:

More precisely:

Definitions: If AB 1is an arc of a circle with center @
and radius r, then the union of all segments af, ‘where P is
any point of Kﬁ, is a sector. Kﬁ is the arc of the sector
and r 1s the radius of the sector.

The following theorem is proved just like Theorem 15-2.

Theorem 15-5. The area of a sector is half the product of
its radius by the length of its arc.

Combined with Theorem 15-4, we get

Theorem 15-6. The area of a sector of radius r and arc
measure q 1is 7£6 qrer '

Problem Set 15-5

1. The radius of a circle is 15 inches. What is the length
of an arc of 60°2 of 90% of 72°? or 36°¢2

2. The radius of a circle 1s 6. What is the area of a sector
with an arc of 90°? of 1°¢2

3. If the length of a 60° arc is one centimeter, find the
radius of the arc. Also find the length of the chord of
the arc.
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b, In a circle of radius 2, a sector has area w. What 1s
the measure of its arc?

5. A segment of a circle 1s the
region bounded by a chord
and an arc of the circle.
The area of a segment is found
by subtracting the area of the
triangle formed by the chord
and the radii to its end-points
from the area of the sector.
In the figure, m/ APB = 90. If PB = 6, then

Area of sector PAB = %W - 62 = or.
Area of triangle PAB =~%' 62 = 18, oo

Area of segment = 97 - 18 or approx. 10.26.
Find the area of the segment if: .

a. m/ APB = 60; r = 12.
b. m/ APB = 120; r =6
' c. rn/ APB = L5; r =8,
6. If a wheel of radius 10 inches rotates through an angle of
36°,
a. how many inches does a point on the rim of the wheel
move? )
b. how many inches does a point on the wheel 5 1inches

from the center move?
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7. A continuous belt runs around two wheels of radius 6 inches
and 30 inches. The centers of the wheels are 48 inches
apart. Find the length of the belt.

: D S C

8. In this figure ABCD 1is a K// \\
square whose side is 8 X “AH
inches. With the mid-points T’// \\\
of the sides of the square ‘\\ /"R
as centers, arcs are drawn \ ,'/
tangent to the diagonals. é\\ S F
Find the area enclosed by A ;; B
the four arcs.
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Review Problems

1. Which of the figuree below are polygons? Which ones are
convex polygons?

2. Does every regular polygon haye

a. each side congruent to every other side?
b. each angle congruent to every other angle?
c. at least two sides parallel?
3. What is the measure of an angle of a regular
a. pentagon? c. octagon?
‘b. hexagon? d. decagon? '
y, If the measure of an angle of a regular polygon is 150,

how many vertices does the polygon have?

5. a. If both a square and a regulur octagon are inscribed in j]
the same circle, which has the greater apothem°
the greater perimeter?

b. ‘Answer the same questions for circumscribed figures

6. ' From what formula relating to regular polygons 1is the formula B
for the area of a circle derived? :

"r 7. If C is the circumference of a circle and r is its radius,
what is the value of 7 : R
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11.

1l2.

13.

14,

15.

16.

*17.

18,

531

If ¥hr=circumference of a circZe f= 12 inches, the lemgth
of g radius will lie betweer whait two consec:tiz ‘itagers?

Fisd ¢-2 measu'- of an exteric-=z_''+ of
2. & ragular -=ntagon. regular n-gon
Wi s ! the redius of a circx 3 circumference is equal

1o LXe rea?

If -~ .3dius of one eircle is 15 +times the radius of
ancther give the ratio of

a. “1elr diameters. c. thelr areas.
b. theilr circumferences.

If a regular hexagon is inscribed in a circle of radius 5,
what is the length of each side? What is the length of the
arc of each side?

Show that the area of a circle is given by the formula
A = %wdz, where d 1is the diameter of the circle.

A wheel has a 20 inch diameter. How far will it roll if
it turns 2700?

The angle of a sector is 10° and its radius is 12 inches.
Find the area of the sector and the length of its arc.

Prove that the area of an equilateral triangle circumscribed
about a circle is four times the area of an equilateral
triangle inscribed in the circle.

This problem came up in a college zoology course: " Two
woodchucks dig burrows at a distance r from each other,
and each of them is the nearest neighbor of the other. If
a third woodchuck moves into the region, how large is the
area in which he can settle so that he will become the
nearest neighbor of each of the original woodchucks?

One regular T-sided polygon has area 8 and another
regular T-sided polygon has area 18. What is the ratio
of a slde of the smaller to a side of the larger?
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Chapter 16
VOLUMES OF SOLIL”

16-1. Prisms.
Here are some pictures of prisms:

A prism can be thought of as the solid swept == in moving a
polygonal region parallel to itself from one mm=*zion to =mother.
In this process each point of the region descrizsz a line segment,
and these segments are all parallel to one :zmothez. The prism
itself can be thought of as just the set of all such line segments,
as if it were made up of a bundle of parallel wires.

These considerations lead us to the followlng precise
definition. '



‘=3

Definitions. Let Eq and E2 be two parallel planes, L
a transversal, and K a polygenal region in E; which does not
intersect L. For each point P of K 1let PP' be a segment

marallel to L with P' in =,. The union of all such segments

is called a prism.
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Definitions. The polygonal —egion K 1s called “h= lower
base, or just the base, of the p:rism. The set of all vae poinss
P', chat 1s, the part of the pri:za tr=z lies in EQ, ~3 called
the =oper base. The distance h Dbetw==n E1 and E2 is ths
altitude of the prism. If L ‘is perpendicular to El and
the prism is called a right prisc.

1

[:3

Prisms are classified accorcing to their bases: & triangmlar
prism is one whose base is a triangular region, a rectanzular
prism is one whose base 1s a rectangular region, and so on.

Definition. A cross-section cf a prism is 1ts intersection
with a plane parallel to its base, provided this intersection is

not empty.

Theorem 16-1. All cross-sections of a triangular prism ar=
'congruent to the base.

Proof: Let the triangular rezion ABC be == bas= of a
prism, and let a cross-section pl=zme intersect &, =B, CCO!
in D, E and F. AD ||BE by definition of a prism, and
2B || DE by Theorem 10-1. Hence, AEED is a paralleZogram,
and so DE = AB, Dbecause opposite sid=s of a parallelczram are
congruent. Similarly,' DF = AC ard EF”: BC. By the B.S.S.
Theorem, A DEF & A ABC.
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Corollary 16-1-1. The upver ax= lower bases o = :"riangular

prism are cong-uent.

Theorem 1--2. (Pro.sm Creiz-Zec=ion Theorem.) <17 cross-
sections of 2 ~rism havs the s=m= =

Proof: By definition o a polygonal reglon, the base can be
cut up into triangular regio=s. Thus the prism 1= cut up into
triangular prisms whose bas== are the trizngulas ~=glons.,

By Theorem 16-1, each +=¥angle in tiz= base i congruent to
the correstonding triargle “in the cross-s=ctiox. ' Ttus, in the
figure, A PAB = A P'i'B*, A P=C = AP'E'C', =nL 30 on.,) The

£

area of the base 1s &2 sur =2 = areas of tkEe t=iangular
regions in the base; znd time === of the crcss-section is the sum
of the arezs of the corresrormcimg triangzlar rexzions Zin the cross-

mzies have the same arss, the

section. Since comzruent =
theorem foIlows.
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Corollary 16-2-1. The two bases of a prism have ecual .areas.

(Note: Since we hz=ve not defined congruence for fizur=s more
complicated than triangles, Theorem 16-2, while intultivelr zlear,
must be proved using our available definitions. Howevsr, .7 1s
evident that with any reasonable general definitior. of :zurzruence
between geometric figures the thezrem should hold for any prism.
In Aprendlx VIII such a definitioz of congruence is glver. and
then “zme proof of Thearem 16-1 nesds only a slight modifization
to pr=ve that a cross-section of zmy prism is congruent to the
base. -

Zrdinarily we are concerned oaly with convex prisms., that is,
prisms whose bases are convex polygonal regions. U= can Therefore
speak of a "side" or a "vertex" of the base.

In the following definitions the notation is the sa== as that
for the original definition of a prism.

Definitions: A lateral edge of a prlsm is a sSegment Eﬁﬁ,
where A 1s a vertex of the base of the prism. & lateral face
is th= union of all segments PP' “orwhizz. P 3 a point in a
glven side of the base. The lateral surface of a urism is the
union of its lateral faces. The total surface of : grism is the
union of its lateral surface and its bases.

Theorem 16-3. The lateral faces of a pri m are perailelogram
reglons, and the lateral faces of a Tight pritsr are rcectargular

regiomms.

A_formal proof involves a discussion of separ=tion properties
and  is-rather long and tedidus. While you may want to wark.out a
formal proof, you can convince yourself of the correctness of the
theorem by applying the definitions of prEsm and lateral face to
the diagram for Theorem 16-1 or 16-2. -
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Definitions: A parallelepiped is a prism whose base is a

parallalogram region. A rectangular parallelepiped is a righs

rectangular prism.

‘ |
\ |
\\ |
b ———X - 1
7 yd
Parallelepiped Rectangular Parallelepiped

Note: While in ‘fthe preceding theorem and JefimiZons we
have been careful to Tefer to the base and the crvss-sectimn of a
prism as regions, we will often use base and cross-~section tc mean
the polygon which bounds the region and conversely, the cont=ss
will make clear the intended use.

Problem Set 16-1

1. Prove that two non-adjacent
lateral edges of a prism are
coplanar, and that the inter-
section of their plane and
the prism is a parallelogram.
(Hint: For the figure shown,
prove ASFH 1is a parallelo-
gram. )
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Find the area of the lateral surface of a right prism whose
altitude is 10 1f the sides of the“ﬁéﬁfagonal base are
3, &4, 5, 7, 2.

Find the area of the total surface of a right triangular

prism-if the base 18 an equilateral triangle 8 inches
on a side and the height of the prism is 10 inches.

Prove that the lateral area (area of the lateral surface)
of a right prism is the product of the perimeter of its base
and the length of a lateral edge.

If the sides of a cross-section of a triangular prism are
3, 6, and 343, then any other cross-section will be a

triangle whose sides zre s , and ,

. Wwhose angles measure R s » and whose

area 1is .

The length of a lateral :==ige of a right prism is 10 inches
and its lateral area 1is 52 square inches. What is the
perimeter of its base=?
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16-2. Pyramids. ‘

Pyramids are quite similar to prisms in some respects. In
partlcular many of the terms carry over, and we shall use sbme of
them without formal definition.

Definitions: ILet K be a polygonal region in a plane E,
and V a point not in E. For each point P in K. there ig a
segment PV. The union of all such segmeuts is called a pyramid
with base K and vertex V. The distance h from V to E is
the altitude of the pyramid.

The next two theorems are analogous to Theorems 16-1 and
16-2.

Theorem 16-4%. A cross-section of a triangulsr pyramid, by a
plane between the vertex and the base, is a trlangular region
similar to the base. If the distance from the vertex to.the
cross-section plane is Kk and the altitude is h, then the
ratio of the area of the cross-section to the area of the base

s (°

Restatement: Let A ABC be in plane E and point V a
distance h from E. Let plane E!', parallel to E‘.and at
distance k from V, 1intersect -VK, -VE, VC in A', B', C'.
Then A A'B'C' ~ A ABC, and

area A A'B!C! _ (k)2
area A ABC R/
2390
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B
Proof: Let VP | E and let VP intersect E' 4in P',
Then h = VP, k = VP',

(1) AP || A'P' by Theorem 10-1.
A VA'P' ~ A VAP Dby Corollary 12-3-2.
%%L = %%L = %- by definition of similar triangles.
(2) A'B' || AB by Theorem 10-1.
A VA'B' ~ A VAB by Corollary 12-3-2,
t
Ae - %,’-f{— = £ by (1) and definition.
(3) Similarly,
B'C' _k C'A' _k
BC " h* CK T wm
. (&) From (2) and (3)” . »
A'B' _ B'C' _C'A' _k
A8 T "BC " CR "W’
Therefore A A'B'C' ~ A ABC by the S.S5.S. Similarity Theorem,

~area A A'B'C'
area A ABC

: 2
~and = (%) by Theorem 12-7.
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Theorem 16-5, In any pyramid, the ratio ¢f the area of a
cross-section and the are: of the base is (%) , where h is

the altitude of the pyram.d and k 1= the distemce from the
vertex to the plane of the cross-sectiion.

- — ot emmemE e, w0 w— awiwm.

e i b e e . —— o o
=2

Proof: Let us cut up the base into t—langular regions with
areas Ay, Ayy ... - Al (In the figure, n = 4.) Let
Al', Ae', cee An' be the areas of the zorresponding triangular
regions in the cro=s-section. Let A Ie the area of the base,
and let A!' Dbe the area of the cross—-ssxiion. Then

A

A1 + A2 . *’An s
and

At

Al' + AE‘ F omes An'.
By the result which we have just prov=i for triangular pyramids,
k2 Ey2
we know that A' = (H) 4, At o= 05) A, and so on. Therefore
2
k .
At = (g) (A1+A2—:—...+'An)
I\ 2 -

- &% .
BTy

[sec. 16-2]




543

2
L t
- Therefore %— = (%) s which was to be proved,

Theorem 16-5 has the following consequence.

Theorem 16-6. (The Pyramid Cross-Section Theorem.) Given
-~ two pyramids with the same altitude. If the bases have the same
area, then cross-sections equidistant from the bases also have
the same area.’ vV

In the figure, for the sake of simplicity, we show triangular
pyramids, but the proof does not depend on the shape of the base.

, Let A be the area of each of the bases, and let Ay and
A2 be the areas of the cross-sections. Let h be the altitude
of each of the pyramids, and let d be the distance between each

cross-gsection and the corresponding base. Then the vertices of

the two pyramids are at the same distance k =h - d from the

planes of the cross-sections. Therefore

2 Ao
= 5

by the previous theorem. Since tﬁe denominators on the left and
right ar? equal, so also are the numerators. Therefore, Al = Ae.
whlch was to be proved.
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*4.

Problem Set 16-2

If the base of a pyramid is a square, each cross-section will R

be a . If the base of a pyramid is an equilateral
triangle whose side is 9, each cross-section will be
and the length of a side of the cross-section

one-third of the distance from the vertex to the base will
be . o 3

Given two pyramids, one triangular, one hexagonal, with equal
base areas. In each the altitude is 6 inches. The area

of a cross-section of the triangular pyramid, 2 inches from
the base, is 25 square inches. What is the area of a
cross-section 2 inches from the base of the hexagonal
pyramid? '

A regular pyramld is a pyramid whose base 1is a regular

polygonal region having for its center the foot of ‘the
perpendicular from the Vvertex to the base.

Prove that the lateral faces of a regular pyramid are
bounded by congruent isosceles trilangles.

Given a triangular pyramid with vertex V and base ABC,
find a plane whose intersection with the pyramid is a
parallelogram. ‘

Show that the lateral area of a regular pyramid is given by
A =-% ap in which p 1s the perimeter of the base and a
is the altitude of a lateral face.

[sec. 16-2]
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6. FGHJK 1s parallel to base
ABCPE 1in the pyramid shown
here, with altitude VS = 7
inches and altitude VR = 4
inches. If the area of
ABCDE is 336 square
inches, what 1s the area
of FGHJK?

1.

7. A regular pyramid has a square base, 10 inches on a gide,
and 1s one foot tall. Find the lateral area of the pyramid
and the area of the c¢ross-section .3 1inches above the base.

*8, Prove: In any pyramid, the
ratio of the area of a )
cross-section to the area

. a 2
of the base is (B) s

where a 1s the length of
a lateral edge of the
smaller pyramid and b 1is
the corresponding lateral
edge of the larger pyramid.
(Hint: Draw altitude PS.)

[sec. 16-2]
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16-3. Volumes of Prisms and Pyramids, Cavalieri's Principle.h

A vigorous treatment of volumes requires a careful definition
of something analogous to polygonal reglons 1n a plane (Eolzhedral
regions is the name) and the introduction of postulates similar ‘
to the four area postulates. We will not give such a treatment,
but instead will rely on your intuition to a considerable extent,
particularly when it comes to cutting up solids or fitting them
together. liowever, we will state expliclitly the two numerical
postulates we need> One of them is the analog of Postulate 20,
which gave the area of a rectangle.

Postulate 21. The volume of a rectangular
parallelepiped is the product of the altitude and the
area of the base.

To understand what is going on*in our next postulate, let us
first think of a physical model. We can make an approximate model
of a square pyramid by forming a stack of thin cards, cut to the
proper size, like this:

The figure on the left represents the exact pyramid, and the
figure on the right 18 the approximate model made from cards.
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Now suppose we drill a narrow hole in the model, from the top

to some point of the base, and insert a thin rod so that it goes
"through every card in the model. We can then tilt the rod in any

way we want, keeping its bottom end fixed on the base. The shape
of the model then changes, but its volume does not change. The
reason is that its volume is simply the total volume of the cards;
and this total volume does not change as the cards slide along
each other. ‘

The same principle applies more generally. Suppose we have
two 80lids with bases in a plane which we shall think of as
horizontal. If all horizontal cross-sections of the two solids
at the same level have the same area then the two solids have the

N S—4

same volume.

A= A

The reason is that if we make a card-model of each of the solids,
then each card in the first model has exactly the same volume as
the corresponding card in the second model. Therefore the volumes
of the two models are exactly the same. The approximation given
by the models is as close as we please, if only the cards are thin
enough. Therefore the volumes of the two solids that we started
with are the same.
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. The principle involved here is called Cavalieri's Principle.
We haven't proved 1it; we have merely been explaining why it is

reasonable, ILet us therefore state it in the form of a postulate:

Postulate 22. (Cavalieri's Principle.) Given
two solids and a plane. If for every plane which
intersects the solids and is parallel to the given
plane the two intersections have equal areas, then
the two solids have the same volume,

Cavalieri's Principle is the key to the calculation of
volumes, as we shall soon see.

Theorem 16-7. The volume of any prism is the product of
the altitude and the area of the bzse.

m »
|
|
i
|
|
[}
_____ [T
\
i L h
l r’ \~‘\
: <:;\\¢v//;>
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Proof: Let h and A be the altitude and the base area of
the given prism. Consider a rectangular parallelepiped with the
same altitude h and the base area A, and with its base in the
same plane as the base of the given prism. We know by the Prism
Cross-Section Theorem that all cross-sections, for both prisms,
have the same area A. By Cavalileri's Principle, this means that
they have the same volume. Since the volume of the rectangular
parallelepiped is Ah by Postulate 21, the theorem follows.

Theorem 16-8. If two pyramids have the same altitude and the
same base area, then they have the same volume.

|

===

"Proof: By the Pyramid Cross-Section Theorem, corresponding
cross-sections of the two pyramids have the same area. By
Cavalierit's Principle, this means that the volumes are the
same.
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Theorem 16-9. The volume of a triangular pyramid is one-
third the product of its altitude and its base area.

‘ Proof: Given a triangular pyramid with base PQR and vertex
S, we take a triangular prism PQRTSU with the same base and
altitude, like this:

S

We next cut the prism into three triangular pyramlds, one of
them being the original one, like this:

I

P Think of pyramids I 'and II as having bases PTU and PRU,

and common vertex S. The two triangles A PTU and A PRU 1lle
in the same plane and are congruent, since they are the two
triangles into which the parallelogram PTUR 1is separated by the
diagonal UP. Hence pyramids I and II have the same base area
and the same altitude (the distance from S to plane PTUR),
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and so by Theorem 16-8 they have the same volums. In the same
way, thinking of pyramids II and III as having 2ases SUR and
SQR and common vertex P, we see that II and III have the same
volume. Therefore the volume of all three pyramlids is the same
number, V, and the volume of the prism is 3v. If
area A PQR = A ard the altitude of SPQR = h, then

' 3V = Ah,

whence vV = % Ah which was. to be proved.
The same result holds fér pyramids in general:

Theorem 16-10. The volume of a pyramid is one-third the
product of 1ts altitude and its base area.

]

v = 7 Ah.
Proof: Given a pyramid of altitude h and base area A.

Take a-trlangular pyramid of the same altitude and base area, with
its base in the same plane. By the Pyramid Cross-Section Theorem,
cross-sections at the same level have the same area. Therefore,
Ly Cavalieri's Principle, the two pyramids have the same volume.
Therefore the volume of each of them is % Ah, which was to be
proved.
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‘ratio of the volumes of the

Problem Set 16-3

A ‘rectangular tank 5' X 4' is filled with water to a depth
of 9". How many cubic feet of water are in. the tank? How
many gallons? (1 gallon = 231 cubic inches.)

A lump of metal submerged in a rectangular tank of water 20
inches long and 8 1inches wide raises the level of the water
4.6 inches. What is the volume of the metal?

If one fish requires a gallon of water for good health, how
many fish can be kept in an aquarium 2 feet long, l%
feet wide, and l% feet deep?

If one edge of the base of a
regular hexagonal pyramid is
12 inches and the altitude
of the pyramid is "9 inches,
what is the lateral area?
What is the volume?

The volume of a pyramidal tent with a square base i1s 1836
cublc feet. If the side of the base is “18 feet, find the
height of the tent.

A plane bisects the altitude
of a pyramid and is parallel
to its base. What i1s the

solids above and below the
plane? '
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.- *7. A monument has the shape of an
| obelisk ~-- a square pyramid cut

off at a certain height and '
capped with a second squzre
pyramid. The vertex of the
small pyrémid is 2 feet
above its base and 32 feet
above the ground. If the base
pyramid had been continued to
its vertex it would have been
60 feet tall. Find the volume
of the obelisgk if each side of
the base, at the ground, s &
feet long.

*8, State and illustrate a principle, corresponding to Cavalieri's
Principle, having the conclusion that two plane regions have
equal areas.

" 4644, Cylinders and Cones. _ _

Note that in the definition of a prism, and of assoclated
terms in Section 16-1, it is not necessafy to restrict K to be a
polygonal region, K could in fact be any point‘set in El‘
Such tremendous generality 1s not needed; but we certainly can
consider the case in which K 1s a circular region, the union
of a circle and its interior. In this case we call the resulting
solid a circular cylinder. - You should write out a definition of
a circular cylinder for yourself. You can use the following
figure to help you.
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We can have c¢ylinders with other kinds of bases, such as
elliptic cylinders, but the circular cylinder is by far the most
common and the only one considered in elementary geometry.

Just as the definition of a circular cylinder is analogous
to that of a prism, the definition of a circular cone 1s analogous
to the definition of a pyramid. Check your understanding of this
by writing out a definition of a circular cone. You can use the
notation of the following figure to help you. |
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Definttion: If bhe center of the base circle is the foot of
the perpendicuiar from V to E, the cone is called a right
circular cone.

The following analogs of the theorems on prisms and pyramids
are provable by the same general methods. We omit the details.

Theorem 16-11. A cross-section of a circular cylinder is a
" e¢ircular region congruent to the base.

i

Idea of proof: TILet C Dbe the center and r the radius of
the base. Then, by parallelograms, Plcl = PC = r,

Theorem 16-12. The area of a cross-section of a circular
cylinder is equal to the area of the base.

Theorem 16-13. A cross-section of a cone of altitude h,
made by a plane at a distance k from the vertex, is a circular
region whose area has a ratio to the area of the base of (%)2.
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Idea of proof: Let VU = h.

(1) VQT ~ A VPU.

(2)

g A% > 45 v

(3)

Since PW has a constant value, regardless of the
position of W, then QR has a constant value. Thus, all
points R 1lie on a circle. The corresponding circular
region is the cross-section. '

(4) 2rea of circle with center Q _ (k)2
area of circle with center P ~ ‘R’ °
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, We can now use Cavalieri's Principle to find the volumes of
cylinders and cones.

Theorem 16-14. The volume of a circular cylinder is the
product of the altitude and the area of the base.

'Proof like that of Theorem 16-7.

Theorem 16-15. The volume of a circular cone is one-third
the product of the altitude and the area of the base.

Proof like that of Theorem 16-10.:

Problem Set 16-4

1. Find the volume of thi!s right
circular cone.

2. Find the number of gallons of water which a conical tank will
’ hold if it is 30 inches deep and the radius of the circular
top is’ 14 inches. (There are 231 cubic inches in a
gallon. Use %3 as an approximation of w. Why is %E
& more convenlent approximation than 3.14 in problems

~containing the number 231%)

3. A drainage tile is a cylindrical shell 16 inches long.
The inside and outside diameters are 5 inches, and 5.6
inches. Find the volume of clay necessary to make the tile.

4, A certain cone has a volume of
27 cubic inches. Its height
is 5 inches. A second .cone is
cut from the firét by a plane
parallel to the base and two
Inches below the vertex. Find
the volume of the second cone.

[sec. 16-4]
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On a shelf in the supermarket stand two cans of imported
olives. The first 1s twice as tall as the second, but the
second has a dlameter twice that of the first. If the second
costs twice as much as the first, which 1s the better buy?

In this flgure we are looking
down upon a pyramid, whose base
is a square, inscribed in a
right circular cone. If the
altitude of the cone or

pyramid is 36 and a base

edge of the pyramid is 20,
find the volume of each.

Figure 1 represents a cone
in a cylinder and Figure 2,
two congruent cones in a
cylinder, If the cylinders
are the same size, compare
the volume of the cone in
Figure 1 with the volume of
the two cones in Figure 2.
Would your conclusion be
changed if the cones in
Figure 2 were not congruent?

Fig. 1. Fig. 2.

A fight circular cone stands inside a right circular cylinder
of same base and height. Write a formula for the volume of
the space between the cylinder and the cone. '
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*Qg, If a plane parallel to the base
of a cone (or pyramid) cuts
off another cone (or pyramid) I
then the solid between the /:
parallel plane and the base : / { \
is called a frustum. :

. A frustum of a cone has a !
lower radius of 6 inches,
an upper radius of &
inches and a height or 8
inches. Find its volume.

16-5. Spheres; Volume and Area.
By the volume of a sphere we mean the volume of the solid
which 1s the union of the sphere and its interior.

Theorem 16-16. The volume of a sphere of radius r 1is

Proof: Given a sphere of radius r, let E be a tangent
plane. In E take a circle of radius r and consider a right-
cylinder with this circle as base, altitude 2r, and lying on
the same side of E as the spheve.
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Finally, consider two cones, With the two bases of the cylinder as
their bases, and their common vertex V at the mid-point of the
axls of the cylinder.

Take a cross-section of each solid by a plane parallel to E
and at a distance s from V. The cross-sections will look like
this:

The area of the section of the sphere 1is
Ay = Tt° = 1r(r2 - 32)

by the Pythagorean Theorem. We wish to compare this with the

section of the solid lying between the cones and the cylinder,

that is, outside the cones, but inside the cylinder. This section

is a circular ring, whose outer radius is r and whose inner

radius 1s s. (Why?) ience, 1ts area is

2 2

Ay = mrS - 78 = 1r(r2 - s2).

Thus, Al = A2, and by Cavalieri's Principle the volume of the

sphere 1s equal to the volume between the cones'and the cylinder.
Therefore the volume of the sphere is the dirference of the
volume of the cylinder and twice the volume of one cone, that is,

vr2- er - 2 -%wr?- r = %wr3.
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Using the formula for the volume of a sphere, we can get a
formula for the area of the surface of a sphere. Given a sphere
of radius r, form a slightly larger sphere, of radius r + h.
The solid lying between the two spherical surfaces is called a
spherical shell, and looks like this:

Let the surface area of the inner sphere be S. The volume vV of
the shell is then approximately hS. Thus, approximately, S = %u
As the shell gets thinner, the approximation gets better and
better. Thus, ae h gets smaller and smaller, we have

%——98.

But we can calculate %- exactly, and see what it approaches
when h becomes smaller and smaller. This will tell us what S
is. The volume V is the difference of the volumes of the two

spheres. Therefore:

V = %W(r + h)3 - %wra
= drl(r +n)% - 13
- %w[ra + 3r°h + 3rh® + B3 - £

- %w[3r2h + 3rh® + n3], |
(You should check, by multiplication, that (r + h)3

= r3 +.3r3h + 3rh2 + h3.)
Therefore %-: %w[3r2 + 3rh f h2]

= brr° + hilrr + %Wh].

Here the entire second term approaches zero, because h—>0,

Therefore %—~a~4wr2, and so S = 4vr2. Thus we have the theorem:

[sec. 16-5]
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Theorem 16-17. The surface area of a sphere of radius r is

S = 4wr2.

Thus we end this chapter with the interesting fact that the
surface area of a sphere of radius r 1is 4vr2. Have you noticed
that the surface area is exactly 4 times as great as the area

of a great circle of the sphere?

Problem Set 16-5

1. Compute the surface area and the volume of a sphere having
diameter 8.

2. The radius of one sphere is twice as great as thelfadids of a
second sbhere. State a ratio expressing a comparison of their
surface areas; their volumes. If the radius of one sphere is
three times as great as the radius of another sphere, compare
their surface areas; their volumes.

3. A spherical storage tank has a radius of 7 feet. How many

gallons will 1t hold? (Use 7 = 37"1.)

ey

4, A large storage shed is in the
shape of a hemisphere. The
shed is to be painted. If the
floor of the shed required 17
gallons of paint, how much
paint will be needed to cover
the exterior of the shed? .

5. It was shown by Archimedes (287-212 B.C.) that the volume of
a sphere is A§ that of the smallest right circular cylinder
which can coqtain it. Verify this.

6. An ice cream cone 5 inches deep and 2 inches in top
diameter has placed on top of it two hemispherical scoops of
ice cream also of 2 inch diameter. If the ice cream melts
into the cone, will it overflow?

c""z
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a. Show that i1f the length of a side of one cube is four
times that of another cube the ratio of their volumes
is 64 to 1.

b. Th2 moon has a diameter about % that of the earth.
How do thelr volumes compare?

T s Plgure, the sphere, with
radive v, 1s inscribed in the
cene . The measure of the angles
betwéen the altitude and the
radii 1.0 points of tangency are
as shown. Find the volume of
the cone in terms of r,

The city engineer who was six feet tall walked up to inspect
the new spherical water tank. When he had walked to a place
18 ' feet from the point where the tank rested on the ground
he bumped his head on the tank. Knowing that the city used
10,000 gallons of water per hour, he immediately figured
how many hours one tank full would last. How did he do it
and what was his result?

Half the air 1s let out of a rubber balloon. If it continues
to be spherical in shape how does the resulting radius
compare with the original radius?

Use the method by which Theorem
16-17 was derived to show that
the lateral area of a right
circular cylinder is 27ra
where a 1s its altitude and

r the radius of its base.
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Review Problems

1l. If the base of a pyramid is a region whose boundary is a
rhombus with side 16 and an angle whose measure is 120,
then '

a. any cross-section is a region whose boundary is a
and whose angles measure and

b. the length of a side of a crogs-section midway between
the vertex and the base is '

c. the area of a cross-section midway between the vertex .
and the base is

2. A spherical ball of diameter 5 has a hollow center of
diaméter 2. Find the approximate volume of the shell,

3. Find the altitude of a cone whose radius is 5 and whose
" volume is 500.

y, A pyramid has an altitude of 12 inches and volume of 432
cubic inches. What is the area of a cross-section 4 inches
above the base?

5. Given two cones such that the altitude of the first is twice
the altitude of the second and the radius of the base of the
first is half the radius of the base of the second. How do
the volumes compare?

6. A cylindrical can with radius 12 and height 20 1is full of
water. If a sphere of radius 10 1s lowered into the can
and then removed, what volume of water will remain in the
can? ‘ '

7. A sphere is inscribed in a right circular cylinder, so that
it is tangent to both bases. What is the ratio of the volume
of the sphere to the volume of the cylinder?
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*8. The altitude of a right circular
cone is 15 -and the radius of
its base is 8. A cylindrical : 2
hole of diameter 6 is drilled
through the cone with the center
of the drill following the axis
of the cone, leaving a solid as
shown in the figure. What is
the volume of this so0lid?

9. Prove: If the base of a pyramid is a parallelogram fegion,
the plane determined by the vertex of the pyramid and a
diagonal of the base divides the pyramid into two pyramids
of equal volume. : '

*10. Prove that a sphere can be circumscribed about a rectangular
parallelepiped.

S
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Chapter 17
PLANE COORDINATE GEOMETRY

17-1. Iatroduction.

Mathematics is the only science in which~practieally nothing
ever has to be thrown away. Of course, mathematicians are people,
and beling people, they make mistakes. But these mistakes usually
get'caught pretty quickly. Therefore, when one generation has
learned something about mathematics, the nex: generation can go on

to learn some more, without having to stop to correct serious
errors in the’work that was supposed to have been done already.

One symptom of this situation is the fact that nearliy every-
thing that you have been learning about geometry, so far in this
course, was known to the ancient Greeks, over two thousand years
ago. o

The first really bilg step forward in geometry, after the
Greeks, was 1in the seventeenth century. This was the discovery
of a new method, called coordinate geometry, bty Rene Descartes
(1596-1650). In this chapter we will give a short introduction
to coordinate geometry -- Just about enough to give you an idea
of what i1t is like and how it works.

17-2. Coordinate Systems in a Plane.
In Chapter 2 we learned how to set up coordinate systems on
a line.

4
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Once we have set up a coordinate system, every number describes
a point, and every point P is determined when its coordinate " x
is named,
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In coordinate geometry, we do the same sort of thing in a
plane, except that in a plane a point is described not by a single
number, but by a pair of numbers. The scheme works like this:

_2.( .

First we take a line X in the plane, and set up a coordinate
system on X. This line will be called the x-axis. In a figure
we usually use an arrow-head to emphaéize the positive direction
on the Xx-axis.

Next we let .Y Dbe the perpendicular to the x-axis through
the point O whose coordinate is zero, and we set up a coordinate
system on Y. By the Ruler Placement Postulate this can be done
so that point O also has coordinate zero on Y. Y will be
called the y-axis. As before, we indicate the positive direction
by an arrow-head. The intersection O of the two axes is called
the orlgin.

' We can now describe any point in the plane by a pair of
numbers. The scheme is this. Given a point P, we drop a
perpendicular to the x-axis, ending at a point M, with co-
ordinate x. We drop a perpendicular to the y-axis, endipg at
‘a'point N, with coordinate y. (In accord with Section 10-3
we can call M and N the projections of P into X ‘and LY;)
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Definitions: The numbers x and ¥y are called the
coordinates of the point P; X 1s the x-coordinate and N
i1s the y-coordinate.

I o e e et e i e e e
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In the figure x = l% and ¥y =¢2%. The point P therefore

has coordinates l% and 2%. We write these qoordinates in the

form (l%,a%), giving the x-coordinate first. To indicate

that point P has these coordinates we write P(l%,zé) or
1 -1 g
P: (15,25) .
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Let us look at some more examples.

{
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We read off the coordinates of the points by following the dotted
lines. Thus the coordinates, in each case, are as follows:

P,(2,1)
P2(1,2)
P4(-1,3)
P,(-3,1)
P5(-2,-3)
Pg(2,-2)
P7(4,;4)

259

[sec. 17-2]




571

Notice that the order in which the coordinates are written
makes a difference. The point with coordinates (2,1) 1is not the
same as point (1,2). Thus, the coordinates of a point are really
an ordered pair of real numbers, and you can't tell where the
poilnt is unless you know the order in which the coordinates are

‘given. The convention of having the first number of the ordered
pair be the x-coordinate, and the second the y-coordinate, is
highly important. )

‘ Just as a s8ingle lin= separates the plane into two parts
(called half-planes) so the two axes separate the plane into four
parts, called guadrants. The quadrants are identified by number,
like this:

Y
4

----- - We have shown that any point of our plane determines an
ordered pair of numbers. Can we reverse the process? That is,
gilven a pair of numbers (a,b) can we find a point whose coordin—.
ates are (a,b)? The answer 1s easily seen to be "yes". 1In fact,
there is exactly one such point, obtained as the intersection of
the line perpendicular to the x-axis at the point whose coordinate
is a and the line perpendicular to the y-axis at the péint vhose
coordinate is b. '

'Thus, we have a one-to-one correspondence between points in
the plane and ordered pairs of numbers. Such a correspondence is
called a coordinate system in the plane. A coordinate system is
specified by choosing a measure of distance, an x-axis, a y-axis
perpendicular to i1t and a positive direction on each. As long as

[sec. 17-2]
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we stick to a specific coordinate system, which will be the case
in all our problems in this book, each point P 1is associated
with exactly one number pair (a,b), and each number p:'r with
exactly one point. Hence, it will cause no confusion if we say
the number pair 1is the point, thus enabling us to use such con-
venient phrases as "the point (2,3)" or "P = (a,b)".

17-3. How to Plot Points on Graph Paper.

As a matter of convenience, we ordinarily use printed graph
paper for drawing figures in coordinate geometry. The horizontal
and vertical lines are printed; we have to draw everything else

for ourselves.
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In the figure above, the dotted lines represent the lines that are
already printed on the paper. The x-axls and the y-axis should be
drawn with a pen or a pencll. Notice that the x-axls 1s labeled
X rather than X; thls is customary. Here the symbol X 1is not
the nname of anything, but merely a reminder that the coordinates
on this axis are going to be denoted by the letter x. Similarly,
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for the y-axis. Next, the points with coordinates (1,0) and

(0,1) must be labeled 1n-order to indicate the unit to be used.
This is the usual way of preparing graph paper for'plotting

points. We could have indicated a little less or a lot more.

For your own convenience, i1t is a good idea to show more than this.
But if you show less, then your work may be actually unintelligible.
Note that we could draw the axes in any of the following

positions: )

Ay X

X ¢ o y

v X
X ) y

and so on. There is nothing logically wrong with any of these
ways gg drawing the axes. People find it easier to read each
other's graphs, however, if they agree at the outset that the
x-axis 18 to be horizontal, with coordinates increasing from
left to right, and the y-axis 1s to be vertical, with coordinates
increasing from vottom to top.
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Problem Set 17-3

1. Suggest why the kind of coordinate system used in this chapter
is sometimes called "Cartesian".

2. What are the coordinates of the origin?
3. What is the y-coordinate of the point (7,-3)?

4. Name the point which is the projection of (0,-4) into the
x-&XiS L]

5. Which pair of points are closer together, (2,1) and l(l,2)
or (2,1) and (2,0)?

6. In which quadrant is each of the following points?
a. (5,-3). ' c. (5,3).
b. ("'5:3)° d. (‘5:"3)‘

7. What are the coordinates of a point which does not lie in
any quadrant?

8. The following points are projected into the x-axis. Write
them in such an order that their projebtions will be in
order from left to right.

A:(6,-3). B:(-2,5). c:(0,-4). D:(-5,0).

9. If the points in the previous problem are projected into the
y-axis arrange them so their projections will be in order
from bottom to top.

10. If s is a negative number and r a positive number, in
what quadrant will each of the following points lie?

a. (s,r). e. (r,8).
b. (-s,r). £ (r,-s).
c. (-s,=-r). g. (-r,-s).
d. (s,-r). ‘ h. (-r,s).

2903
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Set up a coordinate system on graph paper. Using segments
draw some simple picture on the paper. On a separate paper

.1ist in pairs the coordinates of the end points of the

segments in your picture. Exchange your list of coordinates
with another student, and reproduce the picture suggested
by his 1list of coordinates.

A three dimensional coordinate system can be formed by
considering three mutually perpendicular -axes as shown. The
y-aXis, while drawn on this paper, represents a line per-
pendicular to the plane of the pzper.

The negative portions of the .
X, y and 2z axes extend to

the left, to the rear, and

down respectively. Taken in /
pairs the three axes determine oony
three planes called the yz- /
plane, the xz-plane, and the 76163' (lop)
xy-plane. A point (x,y,z)

is located by its three co-

cerdinates: the x-coordinate

is the coordinate of its projection into the x-axis; the

y

'y and 2z coordinates are defined in a corresponding manner.

a. On which axis will each of these points lie?
(0,5,0); (-1,0,0); (0,0,8).

b. On which plane will each of these points lie?
(2,0,3); (0,5,-7); (1,1,0).

c. What is the distance of the point (3,-2,4) from the
Xy-plane? from the xz-plane? from the yz-plane?
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17-4, The Slope of a Non-Vertical Line.

The x-axis, and all lines parallel to it, are called
horizontal. The y-axls, and all lines parallel to it, are called
vertical. Notice that these terms are defined in terms of the
coordinate system that we have set up.

tY

the

Iy
'
—

v

On the horizontal line Ll’ all points have the same y-coordinate
b, because the point (0,b) on the y-axis is the foot of all the
perpendiculars from points of Ll‘ For the same sort of reason,
all points of the vertical line L2 have the same x-coordinate
a. Of course, a seément is horizontal (or vertical) if the line
containing it is horizontal (or vertical).

Consider now a segment P,P,, where P, = (xl,yl) and

P, = (x2,y2), and suppose that PP, 1s not vertical.
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| = Jo = 9N
Definition: The slope of PP, 1is the number m = EE—:—EI-

This really 1is a number: since the segment is not vertical,
P1 and P2 have different x-coordinates, and so the denominator
is not zero. Some things about the slope are easy to see.

(1) It is important that the order of naming the coordinates
is the same in the numerator as in the denominator. Thus, if we
wish to find the slope of ;a: where P = (1,3) and Q = (4,2)
we can elther choose Py =P, X, =1, y; =3, P, =Q, X;= y,
Vo = 2, giving slope of -PTQ_= %—E—% =--§-;

or P1=Q) x1=4, y1=2, P2=P, x2=1, y2=3’

giving slope of PQ = %——_‘_—%— =-%-.

What we cannot say is

slope of PQ = %—E—% or %—E—%.
Notice that if the poilnts are namea in reverse dfder, the
slope is the same as before. Algebraically,
V1 = Vo Yo~ ¥y
X) - %y Xy - X

Thus the value of m depends only on the segment, not on the order
in which the end-points are named.

(2) If m= 0, then the segment is horizontal. (Algebraical-
ly, a fraction 1s zero only 1f 1its nunerator 1is zero, and this means
that y, = ¥;.)

(3) If the segment slopes upward from left to right, as in
the left hand figure on page 578, then m > 0, because the numerator
and denominator are both positive (or both negative, if we reverse
the order of the end-points.) '
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(4) If the segment slopes upward from right to left as in
" the right hand figure below, then m < O. This 18 because m
can be written as a fraction with a positive numerator Yo = Y1
and a negative denominator Xo = Xq (or equivalently, a negative
numerator y; - ¥, and a positive denominator x; - x2).

4y
3y By (%,,Y,)
Pz(xz,yz)
P (x),y)

Rlxs))

—p X - X

(5) We do not try to write the slope of a vertical segment,
because the denominator would be zero, and so the fraction would
be meaningless. N

Tn either of the two figures above, we can complete a right
triangle A PIPQR, by drawing horizontal and vertical lines

through Pl and Pé, like this:

|
|
|
|
3
L]

m>0 ' m<O0

Since opposite sides of a rectangle are congruent, it 1s easy to
see that

[sec. 17-4]
207



579

(1) -
I (o § if m> 0, then m= <= and
3 Pl
(2) if m< 0, then m= --P-l—ﬁ.

Once we know this much about slopes, it is;easy to get our
first basic theorem.

Theorem 17-1. On a non-vertical line, all segments have the
same slope.

Proof: There are three cases to be considered.

Case (1): If the line is horizontal all segments on it have
8lope zero.

Ay A y

N "
Case (2) Case (3)

In either of the other cases illustrated above, A a g‘é at,
and since the triangles are right triangles, this means that

Therefore, in elther case,

RP2 R‘P2'

PR = P, 'RV
1 1l
[sec. 17-4]
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In Case (2), these fractions are the slopes of f;?; and -51755'
and therefore the segments have the same slope. In Case (3), the -
slopes are the negatives of the same fractions, and are therefore
equal. ‘

Theorem 17-1 means that we can talk not only about the slopes
of segments but also about the slopes of lines: the slope of a
non-vertical line is the number m which 1s the slope of every
segment of the line.

Problem Set 17-4

1. Replace the "?" in such a way that the line through the two
points will be horizontal.

a. (5,7) and (-3,2?).
b. (0,-1) and (4,2?).
c. (xi,yl) and (x2,?).
2. Replace the "?" in such a way that the line through the two
points will be vertical. :
" a. (2,2) and (6,-4).
b. (-3,-1) and (?2,0).
c. . (xl,yl) and (?,yg).
3. By visualizing the points. on a coordinate system in parts (a),
(b), and.(c), give the distance between:
a. (5,0) and (7,0).
b. (5,1} and (7,1).
c. (-3,-4%) and (-6,-4).
d. What is alike about parts (a), (b) and (c)?

20V
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e. State a rule giving an easy method for finding the
e distance between such pairs of points. - o

f. Does your rule apply to the distance between (6,5) and
(3"5)?

4. By visualizing the points named in parts (a), (b), (c) and
(d) on a coordinate system, give the distance between the
points in each part.

a. (7,-3) and (7,0).

b. (-3,1) and (-3,-1).

c. (6,8) and (6,4).

d. (xl,yl) and (xl,y2).

e. What is alike about parts. (a), (b), (c) and (d)?

f. State a rule giving an easy method for finding the
distance between such pairs of points.

5. With perpendiculars drawn as shown below, what are the co-
ordinates of A, B and C?

P(2,5) A .
, ' t Q(3,2)
! |
1AL __\Q(4,3) A/////iL -
ch > Q(-1,-2) by " ‘PZ—-—-EP-—-——-}-&——
(-4,~1) '

6. Determine the distances from P and Q to points A, B
and C in Problem 5.

7. Compute the slope of -Ea- for each figure in Problem 5.

A road goes up 2 feet for every 30 feet of horizontal
distance. What 1is its slope?

[sec. 17-4]
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10.

*11.

12.

Determine the slope of the segment joining each of the follow-
ing point pairs.

a. (0,0) and (6,2)

b. (0,0) and (2,-6).

c. (3,5) and (7,12).

d. (0,0) and (-4%,-3).

e. (-5,7) and (3,-8).

f. (%—,%‘-) and (‘llr"'ls) .

g (-2.8,3.1) and (2.2,-1.9).
h. (575,0) and (0,55) -

Replace the "?" by a number so that the line through the two
points will have the slope given, (Hint: Substitute in the
slope formula.)

]

a. (5,2) and (%,6). m= 4,
b. (-3,1) and (4,2). m=3.
?K and ?E? are non-vertical lines. Prove that ﬁﬁ?:=<§§>
if and only if they have the same slope; and consequently

if ?ﬁ? and ?E? have different slopes, then P, A and B,

cannot be collinear.

a. Is the point B(4,13) on the line joining A(1,1) ¢to
c(5,17)? (Hint: 1is the slope of AR the same as that
of BC?)

b. Is the point (2,-1) on the segment joining (-5,4)
to (6,-8)°

271
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13. Determine the slope of a segment joining:
a. (o,n) and (n,0).
b. (2d4,-2d) and (0,d).
c. (al+b,a) and (a-b,b).

14. Given A:(101,102), g;gp,G), ﬁi;(‘95"94)’ determine
whether or not lines AB and BC coincide.

15. Given A:(101,102), B:(5,6), C:(202,203), D:(203,204).
<> <>
Are AB and CD parallel? Could they possibly coincide?

16. Draw the part of the first quadrant of a coordinate system
having coordinates less than or equal to 5. Draw a segment
through the origin which, if extended, would pass through
P(80000000,60000000) .

17-5. Parallel and Perpendicular Lines. ’
It is easy to see the algebraic condition for two non-vertical
lines to be parallel,

4y

o

If the lines are parallel, then A PQR ~ A P'Q'R', and it follows,
as in the proof of the preceding theorem, that they have the same
slope.

\ 4

A
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Conversely, if two different lines have the same slope, then

they are parallel. We prove this by the method of contradiction.. .

e e ——

| 2

Assume as in the figure above that L1 and L2 are not parallel.
If as shown in the figure P1 is their point of intersection,
‘and P2 and P3 have the same x-coordinate Xos the slope of

2™ N 1 Y3 - V1
1 is ml = X2 — —I, and the slope of L2 is m2 = ;2——_—}{;

Since ¥y, # ¥, the fractions cannot be equal, and hence

L

m) # m,. Thus our initial assumption that the two lines L,

and L2 were not parallel has led us to a contradiction of the

hypothesis that my = my. Hence the two lines L

o and L2 must

1
bes parallel.

Thus we have the theorem:

Theorem 17-2. Two non-vertical lines are parallel 1f and
only if they have the same slope.

213
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Now turning to the condition for two lines to be perpendicular,
let ue suppose that we have given two perpendicular lines, neither -
of which is vertical.

p Y

B
|
|
i
f
i
]
i

v
x

Let P be their point of intersection. As in the figure, let Q
be a point of one of the lines, lying above and to the right of
P. And let Qf be a point of the other line, lying above and to
the left of P, such that PQ!' = PQ. We complete the right
triangles A PQR and A Q'PR' as indicated in the figure. Then

A PQR = A Q'PR!. (Why?)
Therefore Q'R* = PR and R'P = RQ.
Q'R' _ PR
and hence 10 -
<> >
Let m be the slope of -PQ, .and let m' be the slope of PQ!'.
- RQ
Then m = $R?
v __Q'R' _ _PR
and m =- ey = ok
Therefore m' =- %.

That 1g, the slopes of perpendicular lines are the negative
reciprocals of each other.

274
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Suppnse, ccnversely, that we know that m! =--%. We then
construct A PQR as before, and we construct the right triangle
A Q'PR' making R'P = RQ. We can then prove that Q'R' = PR;
this gives the same congruence, 4 PQR & 4 Q'PR', a%erf?EEg and
1t follows that / Q'PQ is a right angle and hence PQ | FQ'.
These two facts are stated together in the following theorem:

Theorem 17-3. Two non-vertical lines are perpendicular if

and only if their slopes are the negative reciprocals of each
other. '

Notice that while Theorems 17-2 and 17-3 tell us nothing
about vertical lines, they don't really need to, because the whole
problem of parallelism and perpendicularity is trivial when one
of the lines is vertical. If L is vertical, then L' 1s parallel
to L if and only if L' 1is also vertical (and different from L.)
And if L is vertical, then L' 1is perpendicular to L if and
only if L' 1is horizontal.

Problem Set 17-5

3

1.  Four points taken in pairs determine six segments. Which
pairs of segments determined by the rnllowing four points
are parallel? A(3,6); B(5,9); c(8,2); D(6,-1). (Caution:
Two segments are not necessarily parallel if they have the
same slope!l)

2. Show by considering slopes that a parsllelogram is formed by
drawing segments joining in order A(-1,5), B(5,1), c(6,-2)
and D(0,2).

2 1
3. Linesh Ll’ L2, L3 and LM have slopes s -4, -lg

and ~% respectively. Which pairs of lines are perpendicular?

Q4D
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It 1is asserted that both of the gquadrilaterals whose vertices
are given below are parallelograms. Without plotting the
points, determine whether or not this is true.

(1) A:(-5,-2), B:(-Q,e), C:(n:6): D:(3,l).
(2) p:(-2,-2), Q:(4,2), R:(9,1), S:(3,-3).

The vertices of a triangle are A(16,0), B(9,2) and
c(0,0).

a. What are the slopes of i1ts sides?
b. What are the slopes of its altitudes?

Show that the quadrilateral joining A(-2,2), B(2,-2),
c(4,2), and D(2,4) 1is a trapezoid with perpendicular
diagonals. .

Show that a line through (3n,0) and (O0,n) is parallel to
a line through (6n,0) and (0,2n).

Show that a line through (0,0) and (a,b) 1is perpendicular
to a line through (0,0) and (-b,a).

Show that if a triangle has vertices X(r,s), Y(na+r,nb+s)
and Z(-mb+r,ma+s) it will have a right angle at X.

Given the points P(1,2), Q(5,-6) and R(b,b); determine
the value of b so that / PQR 1is a right angle.

P=(a,1), @=(3,2), R=(b,1), S =(4,2). Prove that

> <> —_ —_— L
PQ # RS, and that if PQ || RS then a =b - 1,
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17-6. The Distance Formula.

If we kngw the coordinates of two points Pl and P2 then
we know where the points are, and so the distance PlP2 is
determined. Lét us now find out how the distance can be calculated.
What we want is a formula that gilves PlP2 in terms of the co-
ordinates X15 Xos ¥y and Voo

Ay

N

|
|
|
|
|
|
|
|
I
—————————— +4R

I

|

{
M2
X2
Let the projections M,,, Me, Ny and N, be as in the figure.
By the Pythagorean Theorem, (P1P2)2 = (PlR)2 + (RP2)2.

—» X

also PlR = M1M2 and RP2 = N1N2,
because opposite sides of a rectangle are congruent.
Therefore (P1P2)2 = (M1M2)2 + (N1N2)2.

But we know that MM, = |x2 - xll

and NiN, = Iy2 - yll.

Therefore (P1P2)2 = |x2 - xli2 + |y2 - ylle.

Of course, the square of the absolute value of a number is the
same as the square of the number itself.

27
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Therefore (P1P2)2 = (x2 - xl)2 + (y2 - yl)e,
and since P1P2 2 0, this means that

’ 2 2
PPy = N/?xe - %)+ (v - )"
This 1s the formula  that we are looking for. Thus we have the
. theorem:

Theorem 17-4. (The Distance Formula.) The distance between
the points (xl,yl) and (xe,yg) is equal to

‘\[(Xe - x1)2 + (ye s y1)2 .

For example, take P, =.(-1,-3) and P, = (2,4).

By formula, PP, = V/?2 + 1)2 + (4 + 3)2
= /9 + 19
= «/ 58,
Ay
44 P
i
/-|
/|
3t /o
/
/ |
/ |
2+ S
/ '
/ |
1 / |
t / |
/ 17
+ - ‘} 'r/ ‘} : } P X
/ |
/ |
— 14 !
/ |
/ |
// !
72T |
/ [
/
L3 1
p -3 R
!
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Of course, if we plot the points, as above, we can get the
same answer directly from the Pythagorean Theorem; the legs of
the right triangle A PlRP2 have lengths 3 and 7, so that
P1P2'=«/ 32 + 72, ags before. If we find the distance this way,

we are of course simply repeating the derivation of the ¢is ™ ¢
formula in a specific case.

Problem Set 17-6

1. a. Without using the distance formula state the distance
between each palr of the points: 4A(0,3), B(1,3),
¢(-3,3) and D(%4.5,3).

b. Without using the distance formula state the distance
between each pair of the points: A(2,0), B(2,1),
c(2,-3) and D(2,4.5).

5. a. VWrlte a simple formula for the distance between - (x,k)
and (xe,k). (Hint: The points would lie on a
horizontal line.)

b. Write a simple formula for the distance between (k,yl)
and (k,ye).

3. Use the distance formula to find the distance between:

a. (0,0) anda (3,4). e. (3,8) and (-5,-7).
b. (0,0) and (3,-4). f. (-2,3) .and (-1,4).
c. (1,2) and (6,14). g. (10,1) and (49,81).
d. (8,11) ana (15,35). h. (-6,3) and (4,-2).
h, 1. Write a formula for the square ol the distance between

the points (xl,yl) and. (x2,y2).

0. U;ing soordinates w e and simplify the statement:
fie square of the di.uance between (0,0) and (x,¥)

1s  25. )i
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Show that the triangle with vertices R(0,0), S(3,4) and
T(-1,1) 1s isosceles by computing the lengths of its sides.

Using the converse of the Pythagorean Theorem show that the
triangle joining D(1,1), E(3,0) and F(4,7) is a right
triangle with a right angle at D.

Given the points A(-1,6), B(1,4) and C(7,-2). Prove,
without plotting the points, that B 1is between A ard C.

Suppose the streets in a city form congruent square blocks
with avenues running east-west and streets north-south.

a. If you follow the sidewalks, how far would you have to
walk from the corner of U4th avenue and 8th street to
the corner of 7th avenue and 12th street? (Use the
length of 1 ©block as your unit of length.)

b. What would be the distance "as the crow flies" between
the same two corners?

Vertices W, X and Z of rectangle WXYZ have coordinates
(0,0), (a,0) and (0,b) respectively.

a. What are the coordinates of Y29
b. Prove, using coordinates, that WY = XZ.

a. Using 3-~dimensional coordinates (see Problem 12 of
Problem Set 17-3), compute the distance between (0,0,0)
and (2,3,6).

b. Write a formula for the distance betwwen (0,0,0) and
(x:Y:Z) .

c. Write a formula for the distance hetween Pl(xl,yl,zl)
and P2(x2,y2,z2). -

234
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17-7. The Mid-Point Formula.-:

In Section 17-8 we will be proving geometric theorems by the
use of coordinate systeriz. In some of these proofs, we will need
to find the coordinates of the mid-point of a segment P1P2 in
terms of the coordinates of Py and P2.

First let us take the case where P1 and: P2 are on the
x-axis, with X < Xo» like this:

v
x

T-0
x 4+ U
x 1+ 0

~n

0

»
n

_ard P is the mid-point, with coordinate x. Since Xy < x £ %o)
we kpow that PlP =X -~ Xy and PP2 = X5 = X.

Since P 1is the mid-point, this gives

X - X =X, =~ X,
or X = Xl M Xe.
In the same way, on the y-axis,

3 * Y2
y‘:———-————-'e .

Now we can handle the general case easily:

y 3

|
|
|
|
|
|
Jls
[ |
| | }
| | |
| | ||
| [ |
| ! I
T! J vV X
X, X X,
[sec. 17-T7]
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Since P 1s the mid-point of Pl o it follows by similar tri-
angles that R 1s the mid-point of 'Pls' Since opposite sides
of a rectangle are congruent, U is the mid-point of TV.
Therefore
X, + x5
5 .

X =

In the same way, projecting into the y-axis, we can show that

Vi + ¥
y = .

Thus we have proved:

Theorem 17-5. (The Mid-Point Formula.) Let P, = (xl,yl)

and let P, = (xe,ye). Then the mid-point of PP, is the point

P_(xl+x2 Yy + Vo
- 2 ! 2

Problem Set 17-7

1. Visualize the points whose coordinates are listed below and
compute mentally the coordinates of the mid-point of the
segment Joining them.

a. (0,0) and (0,12).
b. (0,0) énd (-5,0)."
c. (1,0) and (3,0).

d. (0,-7) and (0,7).
e. (4,4) ana (-4,-4).

2. Usé the mid-point formula to compute the coordinates of the
mid-pcint of the segments Joining points with the following
coordinates.

a. (5,7) and (11,17).
t. (-9,3) and (-2,-6).
c. (%,%) and (%‘-,é) .

BT 4 [sec. 17-7]
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d. 1.51,~1.33) and (0.65,3.55).
e. (a,0) and (b,c).
f. (r+s,r -s) and (-r,s).

a. One end-point of a segment is (4,0); the mid-point
1s  (%,1). Visualize the location of these points and
state, without applying formulas, the coordinates of
the other end-point.

b. One end-point of a segment is (13,19). The mid-point
is (-9,30). Compute the x and y coordinates of
the other end-point by the appropriate formulas.

A quadrilateral is a square if its diagonals are congruent,
perpendicular, and bisect each other. Show this to be the
case for the quadrilateral having vertices, A(2,1), B(7,4),
c(4,9), and D(-1,6).

If the vertices of a triangle are A(5,-1), B(1,5) and
¢(-3,1), what are the lengths of 1ts medlans?

Given the quadrilateral joining A(3,-2), B(-3,4%), €(1,8)
and D(7,4), show that the quadrilateral formed by Jjoining

its mid-points in order is a parallelogram. AY
0,3a
Using coordinates, prove that !

two of the medians of the tri-
angle with vertices (a,0),
(-a,0) and (0,3a) are per-
pendicular to each other.

X

-0,0 mO'
Relocate point P 1in the filgure preceding Theorem 17-5, so
that PP1 = %PlPe and find formulas for the coordinates of
P in terms of the coordinates of P, and Py. (p is :
between P, and Py, and X, > xl.) '

2343
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*9. a. Prove: If P, = (xl,yl), P, = (x2,y2) and P = (x,y)
and if P 18 between Pl and P2 such that

PP rX, + 8Xx ry, + Sy
l_r _ 2 1 _ 2 1
PFE =3g» then x = —— 55 and y = —

b. Use the result of part (a) to find a point P on the
‘'segment joining P1(5,11) and P2(25,36) such that

PP, 4
PP, T T

17-8. ' Proofs of Geometric Theorems.

Let us now put our coordinate systems to work in proving a
© few geometric theorems. We start with a theorem that we have
already proved by other methods.

Theorem A. The segment between the mid-points of two sides
of a triangle is parallel to the third side and half as long.

Restatement: In A ABC let D and E be the mid-points of
AB and AC. Then DE || BC and DE = %BC.

A

/D E\
B C
Proof: The first step in using coordinates to prove a
theorem like this is to introduce a sultable coordinate system.

That is, we must decide which line is to be the x-axis, which the
y-axis, and which direction to take as positive along each axis.

We have many choices, and sometimes a clever choice can greatly
simplify our wozﬁéh‘ln the present case %E€§eems reasonably

L nple to take BC as our x-axis, with BC as the positive
direction. The y-axis we take to pass through A, with Eﬂ?-~as
the positive direction, like this:

[sec. 17-8]
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D////\\\\\\\\\E
- T~

B 0 ¢ -

The next step is to determine the coordinates of the various
points of the figure. The x-coordinate of A 1s zero; the
y-coordinate could be any positive number, so we write A = (o0,p),
with the only'restriction on p being p > 0. Similarly,

B = (q,0) and C = (r,0), with r > q. (Note that we might
have any of the cases q < r< 0, q<r=20, q <0<Kr,
0=q<r, 0<q<r. Our figure illustrates the third case.)
The coordinates of D and E can now be found by the mid-pdint
formula. We get

D = (%:%): E = (%:%) .
Therefore the slope of DE 1is
5-% __0_ _
r r -
5-3 =
(since q # r the denominator is not zero) .
Likewise, the slope of BC is

0,

) 0~ 0 _
r
z-3
and so DE |] BC. Finally, by the distance formula,

e =/ (5-9%+ B-B° -

0;

{

]
"
1
2

and BC =.V/(r - q)2 + (0 - o)2 =
1

gso that - DE = EBC'

e
o
%
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The algebra in this proof can be made even easier by a simple
device. Instead of setting A = (0,p), B = (q,0), C = (r,0) we
could Just as well have put A (0,2p), B = (2q,0), ¢ = (2r,0);
that i1s, take p; q and r as half the coordinates of the points
A, B and C. If we do it this way, then no fractions arise when
we divide by 2 in the mid-point formula. This sort of thing
happens fairly often; foresight at the beginning can take the place
of patience later on.

Theorem B. If the diagonals of a parallelogram are congruent,
the parallelogram i1s a rectangle.

Restatement: Let ABCD be a parallelogram, ana let AC = BD.
Then ABCD 1s a rectangle.

y 4D C
™~

—P X

A B

Proof: Let us take the axes as shown in the figure. Then

A = (0,0), and B = (p,0) with p > 0. If we assume nothing
about the figure except that ABCD is a parallelogram D could
. be anywhere ir. the upper half-plane, so that D = (q,r) with

r > 0, but no other restriction on g or r. However, C 1is
now determined by the fact that ABCD is a parallelogram. It
is fairly obvious (see the precéding proof for details) that for
DC to be parallel to AB we must have C = (s,v). s can be
determined by the condition BC || AD, 1ike this:

slope of BC

slope of AD,

r
"g-o T s-3CQ

r - 0 r -0
S %

rq = r(s - p):
a=s -p, (since r # 0)

S =p+ Q.




598

(The coordinates (p + q,r) for C can be written down by
inspection if one 1s willing to assume :arlier theorems about
parallelograms, for example, that ABCD 1is a parallelogram if
aB || cD and AB = CD.)

Now we finally put in the condition that AC = BD. 1Using
the distance formula, we get

«/(p+q—0)‘?+(r~0)2=«/(q-p)2+(r-O)e-

Squaring gives

2, .2
(p+ )2+ 1% =(a-p)%+ s,

P2+2PQ+Q2+I'2 q2-2pq+p2+r2,

or 4kpq 0.

l.w 4 #0 and p # 0; hence, q = 0. This means that D 1ies.
on the y-axls, so that / BAD 1is a right angle and ABCD 1is a
rectangle.

Propiczm Set 17-8

Prove the following theorems using coordinate geometry:

1. The diagonals of a rectangle huve equal lengths.
(Hint: Place the axes as shown.)

¢ C(a,b)

D(o,b)

A(0,0) B (a, 0) > X
2. The mid-point of the hypotenuse of a right triangle is
equidistant from 1ts three vertices.

3. Every point on the perpendicular bisector of a segment 1s
equidistant from the ends of the segment. (Hint: Select
the axls in a position which will make the algebraic com-
putation as simple as possible.)

231
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Every point equidistant from the ends of a segment lies on

the perpendicular bisector of the segment.
F
The diagonals of a parallelo- A

gram bisect each other. (Hint:
Give the vertices of parallelo-
gram ABCD. the coordinates

shown in the dlagram. Show >
that both diagonals have the A|t0,0) Bla,0) X
same mid-point.)

Dib,c) Clatbc)

The line segment ,0lning the mld-points of the diagonals of
a trapezoid 1s parallel -to the bases and equal in length tc
half the difference of their lengths.

In the figure R and S are mid-points of the diagonals
Kaﬁvand BD of trapezolid ABCD.

F .
A
D(i,c) cd,c)
//// "~
RAQ
A(0,0) - B(a,0)

The segments Jjoining mid-
points of opposite sides y

of any quadrilateral bisect Qoun%4c)_’;T
each other. (The #4's in

the diagram are suggested
by the fact the mid-points
of segments joining mid-
points must be found.)

C (4d.4e)

A1(0,0) R B (40,0)

[sec. 17-8]
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Y
8. The area of A ABC is B(b,s)
a(t ~s)+b(r-t) +c(s ~-r)
e ’ clc,t)
where A = (a,r), B = (b,s) - =
and C = (c,t). (Hint: Al qrﬁ ; I
Find three trapezoids in ] I
e gure. X Y 7 X
9. Given: In A XY2, /X 1s Y z(b,c)
acute and ZR 1s an altitude. ;
Prove: ZYZ=Xz°+ XY - 2XY - XR. |
|
|
1 >x
X(00) Yd0) R(bO)

10. If ABCD 1s any quadrilateral with diagonals, KE and 55;
and 1f M and N are the mid-points of these diagonals,

2 2 2 2 2

then AB® + BC2 + CD° + DAZ = AC® + BD® + 4MN©.

11. In A ABC, CM is a median to side AB.

. 2
Prove: A02 + B02 = Ag— + 2M02.

17-9. The Graph of a Condition.

By a graph we mean simply a figure in the plane, that is, a
set of points. For example, triangles, rays, lines and half-
planes are graph8. We can describe a graph by stating a condition
which is satisfied by all points of the graph, and by no other
points. Here are some examples showing a condition, a description-
of the graph, and the figure.for each:

239
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Condition . Graph
1. Both of the coordinates 1. The first quadrant.
of the point P are
positive.
2. The distance OP 1is 2. 2. The circle with center at

the origin, and radius 2.

3. OP <€ 1. 3. The interior of the circle
with center at the origin
and radius 1.

4k, x =0. 4, The y-axis.

5. y=0. . 5. The x-axis,
. —3
X>0 and y = 0. 6. The ray OA, where
A = (1,0).
: —>
7. x=0 and y < O. 7. The ray OB, where
B = (0,-1).

The seven graphs look like this:

y
3
y 4
4
2
I IT
X
> > X 5
0 |
1 2.

- 2990
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20
3.

y

&

iy )
0 l >X
50

of

Y
A
|
! — X
(0]
l‘.
y
A
|
A& —ﬁ_ ey i
4)
6.

v
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You should check carefully, in each of these cases, that the graph
is really accurately described by the condition in the left-hand
column above. Notice that we use dliagonal cross-hatching to
indicate a region,

If a graph is described by a certain condition, then the
graph is called the graph of that condition. For example, the
first quadrant is the graph of the condition x > 0 and y > 0O;
the circle in Figure 2 1is the graph of the condition OP = 2; the
~ y-axis is the graph of the condition Xx = 0; the x-axis is the
graph of the condition y = 0; and so on.

Very often the condition describing a graph will be stated in
the form of an equation. In these cases we naturally speak of the
graph of the given equation. _ .

If you remember Chapter 14, you have probably noticed that
we are doing the same thing here that we did in Sections 14-1 and
14-2, namely, characterizing a set by a property of its points.
The fact that here we use the word "graph" instead of "set" is
not important; it is simply customary to use the word "graph"
when working with coordinate systems.

Problem Set 17-9

Sketch and describe the graphs of the conditions stated below:
1. a. x =5,
b. |x| = 5.

b. |y| <3
3 0<<x<Ke
4 -1<x<5
5. -2<y<e
6 x <0 and y > O.

292

J [sec. 17-9]



60k

7. x >3 and y < -1.
a. x 1s a positive integer.
b. y 1s a positive integer.
c. Both x and y are positive integers.
9. x>0, y>0, and ¥y > X. |
10. 1<x<3 and 1Xy<L5.
*11. |x] <4 and |y| < .
*12,  |x|] < 4 and |y| = &.
*13. y = |x].
«14, x| = |yl.
*15.  |x| + [y]| = 5.

17-10. How to Describe a Line by an Equation.

We are going to show that any line is the graph of a simple
type of equation. We start by considering the condition which
characterizes the line.

Consider a non-vertical line L, with slope m. Let P
be a point of L, with coordinates (xl,yl).

y4

P
V::::;?ﬁfipyp

)\
£

993
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Suppose that Q 1s some other point of L, with coordinates
(x,¥). Since PQ 1ies in L the slope of PQ must be m,
and the coordinates of Q must satisfy the condition

y-v

T = .
X—Xl

Notice that this equation is not satisfled by the coordinates of
the point P, because when X = Xq and ¥ = ¥q, the left-hand
side of the equation becomes the nonsensical expression '6’
which is not equal to m (or to anything else, for that matter).
If we multiply both sides of this equation by X - X4 with
x # %Xy, we get ¥y -y, =mlx - x;).

This equation is still satisfied for every point on the line
different from P. And it is also satisfied for the point P’
itself, because when X = Xq and y = ¥y the equation takes
the form O = 0, which 1s a true statement.

This -is summarized in the following theorem:

Theorem 17-6. Let I, be a non-vertical line with slope m,
and let P be a point of L, with coordinates (xl,yl). For '
every point @ = (x,y) of L, the equation y -y, = m(x - xl)'
is saticfied.

You might think at first that we have proved that the line
L 1is the graph of the equation y -y, = m(x - xl). But to know
that the latter is true we need to know that (compare with
Section 14-1): |

(1) Every point on L satisfies the equation;

- (2) Every point that satisfies the equation is on L.

We have only shown (1), so we have still to show (2). We shall
do this indirectly, by showing that if a point is not on L
then 1t does not satisfy the equation.

294
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Suppose that Q = (x,y¥) is not on L. Then there is a
point Q' = (x,y') which is on L, with y' #y, 1like this:

v

0 X

, v -7
By Theorem 17-1, _EFT:?EI = m;
hence y' o=yt m(x - xl).

Since y' # y, this means that
y £y +mlx - xq).
Therefore | y -y #mlx - xl).
Therefore the equation is satisfied only bymféints of the line.

We have now proved the very important theorem:

Theorem 17-7. The graph of the equation
y -y =mx -xq) ..

is the line that passes through the point (xl,yl) and has
slope m.

295
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The equation glven in Theorem 17-7 18 called the point-slope
form of the equation of the line. Let us take an example:
'S -

Here we have a line that passes through the points P = (1,2)
‘and Q = (4,6). The slope is

m = 6 -2 4 i
._.-E—T_ —--3'.
' Using P = (1,2) as the fixed point, we get the equation i -
(1) y -2 =‘%(x -~ 1), -
(Here ¥y = 2, X, = 1, and m ="%.) In an equivalent form,
this becomes (2) 3y - 6 = Ux ~ 1, (How?)
~or : (3) hx - 3y = =2.

- Notice, however, that wﬁilglEquation (3) is simpler to look at

"if all we want to do is look at 1t, the Equation (1) is easiler to~

interpret geometrically. Theorem 17-7 tells us that the graph of
~ the Equation (1) is the line that passes through the point =

P = (1,2) and has slope lg.

The student can readily verify that we will get the same or

an equivalent equation if we had used Q as the fixed polnt

Tinstead GF U EL T T o o e
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Given an equation in the point-slope form, it is easy to see
what the line is. For example, suppose .t we have giveﬁ the
equation : v y - 2’=‘3(x - u) v . R,
The line contédins the point (4,2), and has slope m = 3. To -
draw a line on graph paper, we merely need to know the coordinates
of one more point. If x = 0, then o

y -2 = -12,
and y = -10. .
Therefore, the point (0,-10) 1is on the line, and we can complete -

the graph:
4y

Loglcally speaking, this is all that we need. As a practilcal
matter, 1t is a very good idea to check the coordinates of one
more point. This point can be selected anywhere along the. line,.
~but te serve as$ a good check 1t should not be too near the other
two polnts. If we take x = 2, we get
: y-2=-6, or y=-4
A8~ well as we can- Judge from the figure, the polnt-: (2,-4) 1lies— -~
on the 1ine
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At the beginning of this section we promised to show that
any line is the graph of a simple type of equation. We have
shown this for any non-vertical line, but we must still consider.
a vertical line. Suppose a vertical line crosses the x-axis at

the point with coordinates (a,0), as in the figure.

y
Iy

(a,0)

v
Since the vertical line is pérpendicular to the x-axis, every
point of the line has its x-coofdinate equal to a. Furthermore,
any point not on the line will have its x-coordinate not equal
to a. Hence, the condition which characterizes the vertical
line is x = a, certainly a very simple type of equation.

’2538‘
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Problem Set 17-10

In each of the following problems, we have given the éo-
ordinates of a point P and the value of the slope m. Write
the pofnt-slope form of the equation of the corresponding line,

~and draw the graph. Check your work by checking the coordinates. -
of at least one point that was not used in plotting the line.
It 1s all right to draw several of these graphs on the same - set
of axes, as long as the figures do not become too crowded.

1. P = (-1,2), m=4,

2. P=(1,-1), m= -1.‘

3. P=(0,5), ‘n = -7

b, P (-1,-4), m = 2.

5. P = (3,-2), m = O. '

By changing to a point-slope form where necessary, show that
the graph of each of the following equations is a line. Then .
draw the graph and check, as in the preceding problems.

6. y-=-1=2(x-14).
T, y=2x-T.

8. 2% -y -7 = 0.

9. y+5 =-%(x + 3).

10. x - 3y = 12.
11. ¥y = X. -
12. ¥y = 2x.
13. y = 2x - 6.
14, y =2+ 5.

- 15. v x =h, . . . BT
16. x =0,

17, y=o. 299
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18. Thinking in three-dimensional coordinates, describe in words
the set of points represented by the following equations.
For example, ¥y = 0 1is the equation of the xz-plane, that
is, the plane determined by the X and z- axes. (Refer
to Problem 12 of Problem Set 17-3.)

a. x = 0.. C. x = 1.

b. Z —"—"00 do y = 2.

17-11. Various Forms of the Equation of a Line.

We already know, how to write an equation for a non-vertical
line if we know the slope m and the coordinates (xl,yl) of
one point of the line. In this case we know that the line 1is the
graph of the equation

y—yl =m(x -xl)’
in the point-slope form.

.Definition: The point where the line crosses the y-axis 1s
called the y-intercept. If this is'the point (0,b), then the
point-slope equatian takes the form

| y - b=nm(x-0),

y = mx + b.

This 1s called the slope-intercept form. The number b 1s also
called the y-intercept of the line. (When we see .the phrase
y-intercept, we will have to tell from the context whether the
number b or the point (0,b) is meant.) Thus we have the
following theorem:

Theorem 17-8. The graph of the equation
y =mx + b
is the line with slope m and y-intercept b.

-
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If we have an equation given in this form, then it is easy to
draw the graph. All we need to do is to give Xx any value other
than O, and find the corresponding value of y. We then have
the coordinates of two points on the line, and can draw the 1ine.
For example, suppose that we have given

; y = 3x - 4,
Obviously the point (0,-4) 1s on the graph. Sei. C 2y
we get y=6-~14 =2,
Therefore the point (2,2) 1is on the line, and the line therefore
looks like this:

AY
2..
14
¢ + 4— >
{ 2 3 q
-4
-2...
-3
-4

As a check, we find that for x = 1,
y=3-u="l’
_ and the point (1,-1) 1lies on* the graph, as well as we can Jjudge.

3491
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Notice that once we have Theorem 17-8, we can prove that
certaln equations represent lines, by converting them to the
~8lope-intercept form. For example, suppose we have given

(1) 3x + 2y + 4 = 0.
This is algebraically equivalent to the equation
| 2y = -3x - 4,
or (2) ¥y = -%x - 2.

Being equivalent, Equations (1) and (2) have the same graph. The
“graph of (2) is a line, namely, the line with slope m = —%- and
y-intercept b = -2. The graph of (1) is the same line.

17-12. The General Form of the Equation of a Line.

Theorem 17-8, of course, applies only to non-vertical lines, '
because these are the ones that have slopes. Vertical lines are
very simple obJects, algebraically speaking, because they are the

graphs of simple equations, of the form

X = a.
Thus we have two kinds of equations (y =mx + b and x = a) for
non-vertical and vertical lines respectively. We can tle all this
together, including both cases, in the following way.

Definition: By a linear equation in X and y we mean an
equation of the form

where A and B are not both zero.

The following two theorems describe the relation between
geometry and algebra, as far as lines are concerned:

Theorem 17-9. Every line in the plane is the graph of a
linear equation in X and Y.

Theorem 17-10. The graph of a linear equation in x and y
is always a line. :

Now that we have got this far, both of these theorems are
very easy to prove. '
302
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Proof of Theorem 17-9: Let L be a line in the plane. If
I, is vertical, then L is the graph of an equation
X = a,
~or X -a =0,
This has the form Ax + By + C = O, where A =1, B=0, C=-

A and B are not both zero, because A = 1, and so the equation'
is linear.

If L 4is not vertical, then L has a - e m and crosses
the y-axis at some point (O,b). Theref - . “he graph of
the equation y = mx + b,
or mx -y + b =0.

This has the form Ax + By + C = O, where A=m, B=-l, C=D.

A and B are not both zero, because B = -1. Therefore the
equation is linear. (Notice that it can easily happen that m = O,
this holds true for all horizontal lines. Notice also that the
equation is not unique: e.g. 2Ax + 2By + 2C = O has the same

1

graph as Ax + By + C = 0.) | =t

_ _Proof of Theorem 17-10: Given the equation Ax + By + C =
w1th A and B not both zero.

Case 1. If B = 0, then the equation has the form
Ax = -C.

Since B = 0, we know that A # 0. Therefore we can divide by
A, getting : X = %u
The graph of this equation is a vertical line.

Case 2. Suppose that B # 0. Then we can divide by B,

getting %# +y+ % = 0,
or y —--%g - %

The graph of this equation 18 a line, namely, the line with slope
--B- and y-intercept b ~-§

To make sure that you understand what has been proved,.in
Theorems 17-9 and 17-10, you should notice carefully a certain
thing that has not been proved. We hav: not proved that if a
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given equation has a line as its graph, then the equation is
©linear. And in fact this latter statement is not true. For
._example, consider the equation
: x2 = 0. .
. Now the only number whose square is zero is the number zero itself.
~ Therefore the equation x2 = 0 says the same thing as the equation
x = 0. Therefore the graph of the equation x2 = 0 1is the y-axis,
which is of course a line.’> Similarly, the graph of the equation

v -

is  the x-axi.
The same sort of thing can happen in cases where it is not so
easy to see what is going on. For example, take the equation

x2 + y2 = 2Xy.
This can be written in the form
x2 - 2Xy + y2 = 0,
or T (x - v)2 = o.
The graph is the same as the graph of the equation
x -y =0,
or y=x.

The graph is a line, - -
Notice that the proof ¢f Theorem 17-10 gives us a practical

procedure for getting informatior .about the line from the general

equation. If B = 0, then we hz=== the vertical line given by

2%

the equation X =- -K-
Otherwise, we solve for y, getting

where the slope 1is m=-§ .
and fhe y-intercept is b =-—%.
$43).
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10.
11,
12.

13.
14,
15.
16.
17.
18.
19.
20.

Froblem Set 17-12

Sketch the graphs of the following equatlons:
X + 5y =1T7.

y -ex+3=0.

X+ 4 =0.

v+ 4=0. ot

Describe thé“‘gr“aphs of the following equations:
0+x+0-y = O.

O-x+0.y =2,

x2+y2=0.

x2 = -1,
Sketch the graphs of the follcwing conditions:

3x + 4y = 0 and x £ O.

5x - 2y =0 and 5<y < 1C.
(x+y)2=o.
(v - 1) = o.

Find linear equations (Ax + By + © = 0) of which the
following lines are the graphs. Stzte the values for A,
B, 'C 1in your answer.

The line through (1,2) wix: slope 3.,

The line through ' (1,0) ani (0,1).

The line with slope 2 and y-finuercept =i,
The x-axis.

The y-axis.

The horizontal line through (-3,-3).

The vertical line through (-5,=F).

The line through the origin amd té&w mld-polnt of the segment
with end-points (3,2) and (7,8}.
[sea. 17-i%&:
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17-13. Intersections of Lines. ,
‘ Suppose that we have given the equations of two lines, like

;,this:

2
These lines are not parallel, because the slope of the first is
my = -2, and the slope of the second is m2 = 1. Therefore,
they intersect in some point P = (x,y). The pair of numbers
(x,y) must satisfy both equations. Therefore the geometric '
' problem of finding the point P ;g‘equivalent to the algebraic v
problem of solving a system of two linear equations in twbeunkh0wns;:f
To solve the system is eaéy. Adding the two equations, we .
get 3x =3,
or . x=1.
Substituting 1 for x in the second equation, we get y = 2.
The values x =1, y =2 will also satisfy the 2irst equation.
Do they?
Therefore P = (1,2). The graph makes this look plausible:

X
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This method always gives the answer to our problem, whenever .
our problem has an answer, that is, whenever the graphs of the two
~ equations intersect. If the lines are parallel, then the cOrré-}
©  sponding system of equations will be inconsistent, that is, the
" solution of the system will be the empty set. This will be plain
enough when we try to solve the system. k

Problem Set 17-13

1. Find the common solution of the follbwbng pairs of equations
and draw their graphs. ' -

a. y = 2X and X +y=171T.
b. Yy = 2x and y - 2x = 3.

2. a. The graphs of which pairs of the equations listed below
would be.par. 1lel lines? i

b. Intersecting but not coincident lines?
c. Coincident lines?

The equations are

(1) y=3x+ 1.
(2) vy =U4x+ 1.
(3) 2y = 6x + 2.

(4) y - 3x = 2.

3. Suppose the unit in our coordinate system is 1 mile. How
many miles from the origin is the point where the line
y = Té%ﬁx - It crosses the x-axis?

307

[sec. 17-13]



619

Find the intersection of the
graphs of the following pairs

of conditions: y
'y
a. y=2x and y = 4, n (2,4)
b. y=2x and ¥y > 4.
> X

c. ‘y < 2x and y > 4.

X

d. What pair of conditions
wil! determine the
interior of the angle
shown in the figure?

a. Sketch the intersection of the graphs of all three

conditions x+y > 3, y< 4, x<o°2. y

4

b. State the three conditions r
which would determlne the

interior of the triangle (0,3)

shown.

@0
Find an equationvfor the perpendicular bisector of the
segment with end-points (3,4) and (5,8).

Find equations for the
perpendicular bisectors
of the sides of

A (3:4) (5:8) (‘1:10):

and show that they inter-
sect in a point.
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*8, The following instructions were found on an ancient documenf.
"Start from the crossing of King's Road and Queen's Road.
Proceeding north on King's Road, find first a pine tree,
then a maple. Return to the crossing. Westrbn Queen's Road
there is an elm and east on Queen's Rond there i: a spruce.
One maglcal point is where the elm-pine line meets the
map.e-spruce line. The other magical point 1s where the
spruce-pine line meets the elm-maple line. The line joiming ™
the two magical points meets Qneen's Roéd:uhere the tresgzmre
is burted." -

A search party found the elm 4 miles from the crosas®ng, .:
the .=pruce 2 miles from the crossing, and the pine 3 miles
 from—the crossing, but there was no trace of the maple.
Nevertheless they were able to find the treasure from the
instructions. Show how this was done.
Jne man in the party remarked on how fortunate they
were to have found the pine still standing.  The leader
laugned and said, "We didn't need the pine tree either."
Show that he was right.

%9, Ope of the altitudes of the A ABC, where A = (-4,0),
B = (7,0), ¢ = (0,8)," is the y-axis. Why? Prove, using
coordinate methods, that the altitudes from A and B
meet on that axis. (Hint: Find the intersections of those
altitudes with the y-axis.) '
Do the same for the triangle with vertices (2,0}, (b,0),

(0,c).
Y &ct0,8)
N M
A(-40) K B(7.00
399
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*#10. The centroid of a triangle is def” the intersection
the three medians. Prove that : - «:-iinates of the
centroid are Just the averages of il.ie coc. iinaztes of the
vertices. ’

~#11. Find the distance from the point (1,2) +to the line
X +3y+1=0. ‘

*12. Find the distance from the point (a,b) to the line ¥y = x.

*#13. In the general case of the triangle of Problem 9, let H be
the point of concurrence of the altitudes, M the point of
_concurrence of the medians, and D the point of concurrence
of the perpendicular bisectors of the sides. Prove, using '
Problems 9 and 10 that these three points are collinear,
and that M divides ‘DH in the ratio two to one (refer to
Problem 8 of Problem Set 17-7). '

17-14. Circles.
Consider the circle with center at the origin and radius r,

aY

P(x,y)

(-r,0) ‘ 0 (ry0),

This figure is defined by the condition
OP'= r.
" [sec. 17-14]
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N

Algebraically, in terms of the distance formula, this says that

\/(x-0)2+.(y-0)2=r,

or - x2 + y2 = r°,

That is, if P(x,y) 1s a point of the circle then x° + y2 = r2,
We still have to show that if x° + y = r° then P(x,¥) 1s a -
point of the circle. This we do by reversing the algebraic steps:

If x2 + y2 = rQ '
then \//(x - 0)2 + (y - 0)2
since r is a positive number. This equation says that OP =
and so P 1is a polnt of the circle.
Consider, more generally, the circle with center at the point

Q = (a,b) and radius r.
y

A

P(x,y)

This is defined by the condition QP = r,

or Vo(x-2)2+ (y - b)*F

or (x - a)2 + (y - b)2 re.

T,

In this case, also, the algebraic steps can be reversed, and so
we can say that

(x - a)2 + (y - b)°

il
H

is the equation of the circle.
3i1
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This is the standard form of the equation of the circle, w1th"‘

center (a,b) and radius r. For future reference, let us state
"this result as a theorem.

Theorem 17-11. The graph of the equation
(x -2)2+ (y - b)2 = 22

:‘is the circle with center at (a,b) and radius r.

, If an equation is given in this form, we can read off

: lmmediately the radius and the coordinates of the center., For

‘example, survose that we have given the equation

| (x - 2)%2 4+ (y+3)2 =4, | .
The center is the point (2,-3), the radius is 2, and the
circle looks like this: ‘

Y

—

nN 4+
(¢ ]

So far, this is easy enough. But suppose that the standard
form of the equation has fallen into the hands of someone who
1ikes to "simplify" formuiéémaigebraically. He would have

"simplified" the equation like this:

x° - bx 4+ U 4+ y2 +6y+9=14

x° + y2 - 4x + 6y + 9 = 0.

[sec. 17-14]
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 From his final form, it 1s not at all easy to see what the graph
‘45. Sometimes we will find equations given in forms like this.

- Therefore we need to know how to "“unsimplify" these forms so as
. to get back the standard form

(x - a)2 + (y - b)2 = r°.
The procedure is this. First we group the termg in x together, _:
and the terms in y together, and write the equation with the
" constant term on the right, like this:

x2 - bx + y2 + sy = =0,

;Then we see what constant should be added to the first two terms
- to complete a perfect square. Recall that to find this constant
" gake half of the coefficient of x, and square the result. Here -
- wWe get 4. The same process, applied to the third and fourth
" terms, shows that we shoq}d add 9 -in order to make a perfect
square. Thus we are going to add a total of 13 to the left-
hand side of the equation. Therefore we must add 13 to the
right-hand side. Now our equation takes the equivalent férm

x2 - 4x + 4+ y2 + 6y +9 = -9 + 13,
or - (x - 2)2 + (y + 3)2 = U,
as before.
If we multiply out and simplify in the standard form, we get

x2 + y2 - 2ax - 2by + a2 + b2 - r2 = 0.

This has the form
' x° + y2 + Ax + By + ¢ = 0.
Thus we have the theorem:

Theorem 17-12. Every circle 1s the graph of an equation of
the form '
x2 + y2 + Ax + By + C = 0.

It might seem reasonable to suppose that the converse is also
true. That is, we might think that every equation of the form
that we have been discussing has a circle as its graph. But this
is not true by any means. For example, consider the equation

x2 + y2 = 0.

[sec. 17-14]
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.Here A, B and C are all zero. If x and y satisfy this

‘equation, then x and y are both zero. That is, the graph of

. the equation.is a single point, namely, the origin. ‘
Consider next the equation

x2 + y2 + 1 =0,

' Here A =B =0 and C = 1. This equation is not satisfied by
the coordinates of any point whatsoever. (Since 'xQ 20 and

"y2>0 and 1> 0, it follows that X+ y + 1 > O for every

- pair of real numbers x and Y. ) For this equation, the graph

- has no points at all, and is thsirefore the empty set.

In fact, the only possibilities are the circle that we would

normally expect, plus the two unexpected possibilities that we
have Jjust nocted.

Theorem 17-13. Given the equation

%2 4 y2 + AX + By + C = 0.

The graph of this equation is (1) a circle, (2) a point or
(3) the empty set.

’ Proof: Let us complete the square for the terms in x, and
complete the square for the terms in y, Just as we did in the
particular case that we worked out above. This gives

a2 2 2 2
x2 + Ax + %— + y2 + By +. ﬂ-'" -C + %— ?-’
, A2
or (x+%) + (y+-§) = +E iC

If the fraction on the right is positive, equal to r2 with

_f > 0, then the graph is a circle with center at (‘%w'g) and
radius r. If the fraction on the right 1s zero, then the graph
'isvthé single point (—%5-2). If the fraction on the right is
negative, then the equation is never satisfied, and the graph
contains no points at all.
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Problem Set 17-14

1. 'The circle shown has a
radjus of 5 units. Find
the value of:

2 2
a. x1 + yl .

h 2 2
b. Xo + Vo -

2 2 (x ,v,)
C. x3 + y3 . 4 4
’ y
d. b4 2 + ¥ 2. 5 X .
4 4 5
. . H (xa,y3)

e. x5 +y5.

2. a. Which of the following eight equations have graphs which
are circles? -

b. Which of the circles would have centers at.th:'origin?

c. Which would have centers on an axis, but not at the'.
origin? i

(1) 2+ (y-12=0. (5) (x-2°2-(y-09)°=16.

(2) ¥ = =% (6) (x-2)2+ (v -3)%=16.

(3) x° + y2 = 7. () 3x° + y2 = 4, .

(4) 1 - x°=y°. (8) =% + y° =o0.

3. Determine the center and radius of each of the following
circles. °

a. X° + y? = 3°, f. (x = 4)2 + (y - 3)2 = 36.
2, 2 2 2
b. x° + y© = 100. g. (x+ 1)+ (y + 5)° = 49.
c. (x-1)2+y2=16. h. x2-2x+1+y° =025,
4. x2+y° =T. | 1. %2 - 2% + y° = 2k,
e. y2 = 4 - x°, J. x° + 6x + y2 - 4y = 12.
)
Lo
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2

'A circle has the equation: x2 -10x + y~ = 0.

a. Show algebraically that the points (0,0), (1,3) and
(2,4) all lie on the circle.

b. Find the center and radius of the circle.

c. Show that if (1,3) 1is Joined to the ends of the
diameter on the x-axis, a right angle is formed with
vertex at (1,3).

a. Find the points where the circle (x - 3)2 + y2 = 25 .
is intersected by the x- and y-axes.

b. Considering portions of the x- and y-axes as chords
of the c¢ircle in part a., prove (as you should of course,
expect from Theorem 13-14) that the products of the
lehgths of the parts into which each chord is divided
by the other, are equal. ’

Draw the four circles obtained by choosing the various
possible sign combinatlons in '

(x + 1)2 + (y + 1)2 = 1.
Then write the equations of the circle tangent to all four

and containing them. Is there another circle tangent to all
four. What 1is its radius?

Draw the 4 circles given by

x2 + y2 = +10x, x2 + y2 = +10y
and write the equation of a circle tangent to all of them.

@Given the circle X° + y° = 16 and the point K(-7,0).

~a. Find the equation (in point-slope form) of the line L,

with slope m passing through the point K.

b. Find the points (or point) of intersection of Lm. and
the circle.

c. For what values of m 18 there exactly one point of
intersection? Interpret this result geometrically.

- 316 -
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Find an equation for a circle tangent externally tQ the circlé:H

x2 4 y2 - 10x ~ 6y + 30 = 0

and also tangent to the x- vand y~-axes.

BEVIEW PROBLEMS

What are the coordinates of the projection into the x-axis
of the point (5,2)% i

Three of the vertices of a rectangle are (-1,-1),. (3,-1) c
and (3,5). What is the fourth vertex? ' 5

s

An isosceles triangle has vertices (0,0), (%a,0) and
(22,2b). What is the slope of the median from the origin?
of the median from (2a,2b)?

In Problem 3 what is the slope of the altitude which contains -
the origin?

What 1s the length of each of the medians of the triangle 1n
Problem 3?

What is the slope of 2 line that is parallel to a line which
passes through the origin and through (-2,3).

The vertices of a quadrilateral are (0,0), (5,5), (7,1)
and (1,7). What are the lengths of its diagonals?

What are the ccordinates of the mid-points of segments Joining
the pairs of p01nts in Problem 7?2

The vertices of a sguare are labeled consecutively, P,  Q,
R and S. T is the mid-point of QR and U is the mid-
point of RS. PT intersects QU at V.

a. Prove that PT & QU.
b. Prove that PT | QU.

" *c., Prove that VS = PQ.

(Hint: Let P = (0,0) and Q = (22,0).)
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11.
12!

o
7
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14,

15.

16.

*17.
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" 2 coordinate geometry to pr—ve the theorem: The median of
& srapezold bisects a diagm=i:..

ln#izt is the equé.tion whose grasph is the y-axls?

.% ~hombus #RZD has & &= i srigin anc EZ 7. the

Dositive =-axis. m/ A =T 3 =6, C 1is ir =2 firss
iaacrant. hat is the equi_ui. of ﬁ? §(?‘> =

W . goordinates of the -r=—<:- of a trapezoid zre, con-
8¢ sively, (0,0), (a,0). (R,¢) and (d,c). Find the
w4, of the trapezoid in terms: of these coordinates.

Tt graphs of the equatlions v = -éx and y = -ixx + 5 are
perpendicular to each other z:- what point?

Name the set of points such t-at the sum of the squares of
the distances of each point from the two axes is &,

Write the equation of the circle which has
a. its radius 7 and center at the origin.
b. its radius k and center at the origin.
c. 1its radius 3 and center at (1,2).

Prove that the line X + y = 2 1is tangent to the circle

x2+y2=2.
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Chapters < #o 177
REVIEW EFSFHE1S

Write (1) if the statement :s <rue zmi- (0) if it is false.
Be able to explain why you mark a s Lianpenent - false.

1. .If a line through the center of a elixie 1s perpendicular to
a chord of that circle, it bime~ts ‘+*~ chord.

2. If AB 1is a radius of a cirels i S is tangent to the
circle, then AB | CB. ‘

'3. A line which bisects two chor: 7 & erele is perpendicﬁlar
- to both of them. ' -

4. The intersection of the interts = of iwo circles may be the
interior of a circle. ’ o

5. Every point in the interior of a cirzle is the mid-point of'
exactly one chord of the circl:.

6. The longer an arc is, the longer its chord is.

7. If a line intersects a circle, =ne fntersection consists of
two points. ‘

8. 1If a plane and a sphere intersecs, znd if the intersection
is not a circle, it is a point.

9. If a plane 18 tangent to a sphere, = iine perpendicular to
the plane at the point of tangenzy =montains the center of
the s»phere.

10. On a given circle, Xy + mY2 = mi.
ii. A 90° inscribed angle will always intercept a 45° .ar¢. 
12. Two angles which intercept the same arc are congruent.,

13. Congruent chords drawn in each of two concentric circles
have congruent arcs. '
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23.

24, -

25.

26.

27,

8.,

29,
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_If a trilangle inscribed in: a circle has no side intersecting

a given diameter then the Triangle contains an obtuse angle.

If two chords in a circle intersect, the ratio of the segments
of one chord is equal to the ratio of the segments of the
other chord.

—_— >
If AB 1s tangent to a cizcle at B and if AC intersects
the circle at € and D, then AB2 = AC* AD.

In a plane, the set of points equidistant from the ends of a
segment is the perpendicular bisector of the segment.

The set of points one inch from a given line is a line
parallel to the given line.

Any point in the interior of an angle which is not equidistant
from the sides of the angle does not lie on the bisector of
the' angle._

The three altitudes of any right triangle are concurrent.

Two circles intersect if the distance between their centers
i1s less than the sum of theilr radii.

The three angle bisectors of a triangle are concurrent at a.
point equidistant from the vertices of the triangle.

The perpendicular bisectors of two sides of a triangle may
intersect outside the triangle.

Using straight-edge and compass, it is possible to trisect
a segment.

In bisecting a glven angle by the method shown 1ﬁ the téxt,
it is necessary to draw at least four arcs.

The ratio of radlus to circumference is the same for all
circles.

The area of a circle of diameter d is %wdz.

A plane section of a triangular prism may be a parallelogram.“

A plane section of a triangular pyramid may be a parallelogramt"“
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30. The volume of a trizagular prism is half t = .produgs Gf’the5_“ﬁ
7" apea of its base anc its altitude.

31. In any pyramid a s==tion made by a plane waich Tilsza=ts the
altitude and is parzilel =o the bese has =:zlf ths area of =
the base. "

32. Two pyramids with the sams volume and the same == zrea
have congruent altitades. ’

33. The volume of a pyrzmid with a square base is equzal tcrone;l_ff
third of its altitude multiplied by the square of a base .
edge. o

34, The area of the base of a cone can be found by dividing
three times the volume by the altitude. ’

. ‘ | .
35. The radius of the base of a circular cylinder 1s given the - .

formula / %E’ where V 1s the volume of the cylinder_gnd;;‘
h 1its altitude. e

3

d® where -

qgﬁ

36. The volume of a sphm=re is given by the formula
d 1is 1ts diameter.

-.37. The slope of a segment depends on the quadrant or quadrants
in which %the segment lies. '

38, If two segmehts have the same slope they are parallel.

39. 1If the slopes of two lines .are -2 and .5 the Iines are
perpendicular. '

4L0. TIf the coordinates of two points are (a,b) and ﬁc,d); the
distance between them iz (d - b) + (¢ - a).

41, If a segment joins fr,s) to (-r,~s8), then its mid-point
is the origin. . ‘

42. The point (-2,-1) I1ies on the g==zh of xy - &X -~y + 2 = 0.
43, The distance between (3,0) and (%&,0) 1s 5.

44, If two vertices of :a Tight triangle have coordinzi=s (0,10) -
and (8,0) the third vertex is at the arigin. s
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If three vertices »f a rsutangie have coordirates (O,m),
(r,0) ez=d (r,m! the fxz—th vertex 1s at the origin.

The equaticn of & line witk sliope
is 4y + 3x = 2.

The x-imercept o: the gm=pk = ¥

The intersectlion of the Z—=mms aof
1s a single point.

The grapt. of x2

2

y

and contzining (3,4)

3x+9 iz -3,
=3x+2 ==d y=3x+1

+ y2 -4 =2 18 a circle.

The grap= of every condition is elther a line = a curve.



Appendix VII
HOW :ERATOSTHENES MEASURED THE EARTH

~ The circumfer=nce of the earth, at the equator. is about
440,000 kilometers, or about 24,900'm11és. Christopnier Columbus
-appears to have thought that the earth was much smaller <han this.
:At any rate, the West Indies got their name, berause when Columbus
;reached them, he thought that he was already. in Indiz=. Hls margin
céf-error, therefore, was somemhat greater than the wigth of the
Peific Ocean.

In the third century B.C.., however, the circumference of the
éznnth wag measured, by a Greeimathematician, with am error of
oy one 6r two per cent. The man was Eratosthenes, and his
method was as follows:
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It was observed that at Assuan on the Nile, at noow on the
Summer Solstice, the sun was exactly overhead. That is, &t moon
of this particular day, a vertical pole cast no shadow a% ail,
and the bottom of a deep well was completely 1it up.

Tn the figure, C is the center of the earth. At —2czn on
the Summer Solstice, in Alexandria, Eratosthenes measurez the
angle marked a on the figure, that is, th= angle betwezﬁ a
vertical pole and the line of its shadow. Be found that =xi
angle was about 7 12', or about —5 of a complete clrcumf=rence.

Now the sun's rays, observed on earth, are very close to
being parallel. Assuming that they are actmally parallel, 1t
follows when the lines L1 and L2 in th= figure are cut by
a transversal, alternate interior angles z=Te congruent. Therefore,
/ a = / b. Therefore, the distance from Assuan to Alexand=!a must
be about J%- of the circumference of the eaxth.

The distance from Assuan to Alexandria was known to b= about
5,000 Greek stadia. (A stadium was an ancient unit of discance.)
Eratosthenes concluded that the circumizrence of t*he =artk mmst be
about 250,000 stadia. Converting to miles, pexmrding to whaet
ancient sources tell us about what Eratostheres meant by 2z stadium,
we get 24,662 miles. '

Thus Eratosthenes' error was well under itwo perczen. lLater,
he changed his estimate to an even clos=r on:. 252,000 ==la,
but nobody seems to know on what basis he meis the c=mg=.. On
the basis of the evidence, some historians bzlfeve trmt he was
not only very clever and very careful, but also very lueky .
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Appendix VIII
RIGID MO'I‘ION'

:VIII -1. The General Idea of a Rigid ‘Motion. A
' In Chapters 5 and 13 we have defined congruence in a number
f}of different ways, dealing with various kinds of figures The
b'f';complete list looks like this: - S
(1) & CD if the two segments have the same 1ength, that
if AB CcD : o
. (e) L A A B if the two angles have the same measure,
thatis,if m/ A = m/ B. - - : L e
e (3) & ABC & A DEF 1if, under the correspondence _ ABC<-——>DEF, T
‘every two corresponding sides are congruent and every two corre—,gfﬁf
‘sponding angles are congruent. ' Vo o ',,g
- (4) Two circles are congruent if they have the same radius.."vV
: (5) Two circular ares AB and CD ,are congruent if the ygﬁp-
-circles that contain them are congruent and the two arcs have the

iis,

ame degree measure. 4 s
"~ The intuitive idea of congruence is “the same in all five of
i{these cases. In ezch case, roughly speaking, two figures are '
ﬁfcongruent if one of them can be moved So as to coincide with the
fﬂother, and in the ‘cazse of triangles, a congruence is a way of
"“moving the first figure so as to make it coincide with' ‘the second
‘ At the beginning of our study of congruence, the scheme used.
©*in Chapters 5 and 13 is the easiest and probably the best. It is:
ﬁfa pity, however, to have five different speclal ways of describ—
%ﬂing the same basic idea in five special cases. And, in a way, it
15 a pity for this basic idea to be limited to these five special
3cas°s For example, as a matter of common. sense it is plain that

wo squares, each of edge 1, must be congruent in some valid
| P R
.1

ense: : 1 C B
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The same ought to be true for parallelograms, 1f corresponding
sides and angles are congruent, like this:

B b c B b c! -
A 5 D A 5 D v

It is plain, however, that none of our five speclal definitions of
congfuence applies to either of these caSes. ’
In this appendlx, we shéll explain the idea of a rigid motion.

This idea is defined in exactly the same way, regardless of the -
type of figure to which we happen to be applying it. We shall
"show that for segments, angles, triangles, circles and arcs it
means exactly the same thing aslcongruence. Finally, we will

shbw that the squares and parallelograms in the figures_above can'“
be made to coincide by rigid motion. Thus, first, the idea of
congruence will be unified, and second, the range of its appli-
cation will be extended. ' S

. Before we give the general definition of a rigid motion, let
us look at some simple examples. Consider two opposite sides of

a rectangle, like this: T

P Q B
[ o | I
| ' | |
| i I
| | l |
| | | |
| | ]
p! Q!
The vertical sides are dotted, because we will not be especially_
concerned with them. For each point P, Q, ... and so on, of
the top edge let us drop a perpendicular to the bottom edge; and
let the foot of the perpendicular be P!, Q' ... and so on.
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”Under this procedure, to each point of the top edge there corre-
sponds exactly one point of the bottom edge. And conversely, to
each point of the bottom edge there corresponds exactly one point

of the top edge. We can't write down all of the matching pairs.

"Pe—>P', Qe—>Q', ... and so on, because there are infinltely-
‘many of them. We can, however, glve a general rule, explaining

what is to correspond to what; and in fact, this is what we have
"done. Usually we will write down a typical pair

: ' " PeP!,

and explain the rule by which the pairs are to be formed.'

’ Notice that the idea of a one-to-one’ correspondence is

exactly the same in this case as it was when we were. using it forf.p‘

triangles in Chapter 5. The only difference is- that if we. are
matching up the vertices of two triangles, we can write down all
" of the matching pairs, because there are only,three of them.
(ABC<—>DEF means that A<—D, B<>E and C<—>F.). At
present we are talking about exactly the same sort of things,
“only there are too many of them to write down. o

It is very easy to check that if P and Q are any two
points of the top edge, and P' and Q' are the corresponding
' points of the bottom edge, then:
‘ PQ = P'Q'. '
This is true because the segments PQ and P'Q' are opposite
sides of a rectangle. We express this fact by saying that the
correspondence P<«—>P' preserves distances.

The correspondence that we have just set up 1s our first and
' simplest example f a rigid motion. To be exact:

L Definitlion: Given two figures F‘ and F', a rigid motion .
‘between F and F' 1is a one-to-one correspondence '

| P <—>P! o
. between the points of F and the points of F', preserving dis-
“tances. ’ ‘
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. If the correspondence P<«—F' 18 = rigid motion between
F and F', then we shall write
Fx F,
This notation is 1iie the notation A ABC & A A'B'C' for con-
gruences between tr_.angles. We zamn read F X F' as "F is
isometric to F'." ("Isometric® means "ezual measure.") ‘

Problem Set TilI-1l

1. Consider triangles- A ABC and:A AB'C', -and suppose that
: A ABC =X aA'B'C!',

P Let F be the set consistimz .af the vertices of the first
triangle, and let F' be ti= set consisting of the vertices
of the second triangle. Show fthat there is a rigid motion

FazF.

2. Let F be the set consisimg of the vertices of a square of
edge 1, and let F' b= if= ==t consisting of the vertices .
of another square of edge I, as i1n the figure at the '
beginning of this Appendfxz. Show that there is a rigid
motion

R R.
(First Fou have to explain wmhat corresponds to what, and
second you have to verify that distances are preserved.)

3. Do the same for the vertie=s nf the two parailelograms in thg 
figure =t the start of thils Appendix.

4y, Show th=t if F consists of three collinear points, and F!
consists of three non-collim==r points, then there is'no
rigid motion between F =znd F'. (What you will have .to do .
is to assume that such a =gid motion exists, and then show B
that this assumption leads to a contradiction.)

5. Show that there is never = rigid motion between two segments -
of different 3Fengths. ‘ .

6. Show that thezre is never a migid motion between a 1line and“”ff
an angle. (Etnt: Apply Broblem 4.) .
[A-vIzT]
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'7. Show that given any two rays, there is a rigid motion between

them. (Hint: Use the Ruler Placement Postulate.)

‘8. Show that there is never a rigid motion between two circles
of different radius. '

VIII-2. Rigid Motion of Segments.
Theorem VIII-1, If AB = CD, then there is a rigid motion
AB % CD.

Proof: First we need to set up a correspondence P <«—>P!

between AB and .65; Then we need to check that distances are
preserved.

By the Ruler Postulate, the points of the line <K§> can be
given coordinates in such a way that the distance between any two
points is the absolute value of the difference of the coordinates.
And by the Ruler Placement Postulate, this can be done in such a
way that A has coordinate zero and B the positive coordinate
AB.

A P Q B
0 X Y AB

In the figure, we have shown typical points P, @Q with their
coordinates x and Y.
In the same way, the points of CD can be given coordinates:

o} P Q D
0 X Yy AB
Notice that D has the coordinate AB, because €D = AB.

It ‘is now plain what rule we should use to set up the corre-
spondence

P «—»P!
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between the points of AB and.the points of CD. The rule is that
P corresponds to P' if P and P' have the same coordinate. :
(In particular, A<—>C because A and C have coordinate zero,
and B<€—>D because B and D have coordinate AB.) _
It is easy to see that this correspondencehis a rigid motion.

If P<«>P' and Qe—>»Q', and the coordinates are x and ¥,

as in the figure, then PQ = P'Q', because

PQ = |y - x| = P'Q'.

We therefore have a rigid motion

AB ~ CD,

v

and the theorem is proved.

Notice that this rigid motion between the two segments is
completely described i1f we explain how the end-points are to be
matched up. We therefore will call it the rigid motion induced
by the correspondence )

A<—>C
B<—>D,

Theorem VIII-2. If there is a rigid motion AB % CD between
two segments, then AB = CD.

‘The proof is easy. (This theorem was Problem 5 in the pre-
vious Problem Set.)

Problem Set VIII-2

1. Show that there is another rigid motion between the congruent
segments 2B and CD, dinduced by the correspondence
A<—>D
B<>C,
2. Show that there are two rigid motions between a segment and

i1tself. (One of these, of course, is the identity corre-
spondence P<—>P', under which every point corresponds to
itself; this is a rigid motion because PQ = PQ for every
P and Q.) 33
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'VIII-3. Rigid Motion of Rays, Angles and Triangles.
Theorem VIII-3. Given any two rays B and CD, there is
- & rigid motion

— —
AB ~ CD.

The proof of this theorem is quite similar to that of
Theorem VIII-1l, and the details are left to the reader.

Theorem VIII-4. If / ABC & / DEF, then there is a rigid
motion ' i
/ ABC %/ DEF

between these two angles.
Proof: We know that there are rigid motions
_ _— =
BA & ED

and
—_—  —>
BC % EF

between the rays which form the sides of the two angles.

A D

B' o > E F‘>
Let us agree that two points P and P! (or Q and Q') are
to correspond to one another if they correspond under one of these
two rigid motions. This gives us a one-to-one correspondence
between the two angles. What we need to show is that this corre-
spondence preserves distances.

Suppose that we have given two points P, Q of A ABC and
the corresponding points P', Q' of /DEF. If P and Q are
on the same side of / ABC, then obviously

P'Q! = PQ,
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because distances are preserved on each of the rays that form -
/ ABC. Suppose, then, that P and Q are on different.sides of
/ ABC, so that P' and Q' are on different sides of / DEF, L
like this: '

.\,\
Z >
B Q-

By the S.A.S. Postulate, we have
. A PBQ & A P'EQ'.
Therefore PQ = P'Q', which was to be proved.
Next, we need to prove the analogous theorem for trianglesf

~ Theorem VIII-5. If
A ABC & AA'B'CY,
then there is a rigid motion
A ABC R AA'B'C',
under which A, B and C correspond to A', B' and C'.

Proof: First we shall set up a one-to-one correspondence
between the points of A ABC and the points of A A'B'C'. We
have given a one-to-one correspondence

ABC<—> A'B'C'
for the vertices. By Theorem VIII-1 this gives us the induced
rigid motions

g &l
2 &
=_>_>
al@

and

BC % B'C'
between the sides of the triangles. These three rigid motions,
taken together, give us a one-to-one correspondence P<—>P'
between the points of the two triangles. We need to show that
this correspondence preserves distances.
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by If P and Q are on the same side of the triangle, .then
*'we know already that

i . P'Q! = PQ.

-f“Suppose, then, that P and Q are on different sides, say, AB
and AC, 1ike this:

| We know that

AP = A'P},
because AB X A'B' 1s a rigid motion. For the same reason,
AQ = A'Q},

and /A& /A', because A ABC & AA'B!C!'. By the S.A.S.
Postulate, |
. A PaQ &A PAYQY.
Therefore,
PQ = P'Q',

which was to be proved.

Notice that while the figure does not show the case P = B,
the proof takes care of this case. The proof is more important
than the figure, anyway. o :

Problem Set VIII-3

1. Let
ABC —> A'B!'C!
be a rigid motion, and suppose that A, B and C are
collinear. Show that if B 1s between A and C, then
B' 1s between A' and C!'. '
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Given a rlgid motion

- F % F'. .
Let A and B be points of F, and suppose that F = =
contains the segment AB. Show that F' contains the P
segment KTE;. '
3. Given a rigid motion

‘ FR F'. C

Show that if F 1is convex, then so also is F'.
k, Given a rigid motion
FX F'.

Show that if F 1is a segment, then so also is F!.

5. Given & rigid motion F X F'. Show that if F 1is & ray, -
then so also is F!'.

6. Show that there is no rigid motion between a segment and a
circular are (no matter how short both of them may be).

VIII-4. Rigid Motlon of Circles and Ares.
Theorem VITI-6. Let C and C' be circles of the same

" radius r. Then there is a rimtd motion

cC =~ C

.. between C and Ct!',
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Proof: Let the centers of the circles be P and P', Let
'AB be a diameter of the first circle, and let A'B' be a diameter .
of the second. Let H1 and H2 be the half-planes determined by
<«—> ,
the line AB; and let H! and H' be the half-planes deter-
. —> 1 2
mined by the line A'B!,

We can now set up our one-to-one correspondence Q€«—>Q', in
the following way: (1) Let A' and 3' correspond to A and
B, respectively. (2) If Q; is a point of 'C, lying in Hy,
let Q'l be the point of €', 1lying in H'l, such that

[ Q' {P'B' & / QFB.

(3) If Q, 1s a point of C, lying in Hy, let Q', be the
point of 02, lying in H'a; such that ’

L Q. P'B! & / QPB.

We need to check That this correspondence preserves distances..
t

Thus, for every two points Q, R of C, we must have
’ Q'R' = QR.

If Q@ and R are the end-points of a diameter, then so are @
and R', and Q'R' = QR = 2r. Otherwise, we always have
A QPR & A Q'P'R', so that Q'R' = QR. (Proof? There are two
cases to consider, according as B 1s in the interior or the
exterior of / QPR.)

You should prove the following two theorems for yourself,
They are not hard, once we have gone this far,
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" Theorem VIII-7. Let C and C' be circles with the same
radius, as in Theorem VIII-6. ILet / XPB and '/ X'P'B' “be
congruent central angles of C and ¢!, respectively '

Then a rigid motion C'% C' q/n\Pe chosen i such a way that
B«>B', X<—>X', and B w BIX'.

Theorem VIII-8. Given any two congruent: arcs, there is a
‘rigid motion between them. The proof is left to the reader.

. VIII-5. Reflections. S
o The definition of rigid motion given in Section VITI-1 is a -
.. perfectly good mathematical definition, but we might claim that . .~
.. from an intuitive viewpoint it does not convey any idea of motion .
‘ We will devote this section to showing how a plane figure can be 'ff?
"moved" into coincidence with any isometric figure in the game,
plane. 1
Throughout this section all figures will be considered as
lying in a fixed plane.
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Definitions. A one-to-one correspondence between two figures :
1s'a reflection if there is a line I, such that for any pair of
corresponding points P and P!, either (1) P =P' and lies
on L or (2) I is the perpendicular *tisector of PP'. L is
called the axis of reflection, and each figure is said to. be the
reflection, or the image, of the other figure in L.

In the pictures below are shown some examples of reflectionéf:
of simple flgures. :

Theorem VIII-Q, A reflection ls a rigid motion.

Proof: We must show that if P and Q are any two points,
and P! and Q' +their images in a line L, <then PQ = P'Q'.
*here are four cases to consider.

case (2)



‘ Case l P.and Q are o the same side of L. Let 'PP! L
,intersect L at A and QQ interéect L at B. By the'.j;‘“"““
1def1n1tion of reflection PP! 1l L and PA = P'A, and ‘Eﬁi-J;IL
'a.nd ‘QB = Q'B. Hence A PAB & A P'AB, and PB = P'B,
'/ PBA % / P'BA. By subtraction, / PBQ.& / PBQ'. We then have
(by s A.S.) A PBQ % AP'BQ', andso PQ=P'Q. o

" o Case 2. The proof is the same, except that in proving |
fi'[ PBQ & L PBQ' we add angle measures instead of subtracting.

» Case 3. Q 1s on L. Then Q=Q' and PQ = P'Q' since -
' Q 1s on the perpendicular bisector of PP'. .The case P on L'
-~ and Q not on L is just the same. o

S Case 4. P and Q both 6n L; Since P = P' ahd Q =5Q!MT?
' we certainly have PQ = P'Q'. ‘ S , “,ﬁ ;;

, Starting with a figure F we can reflect it in some line to
 J'éet'a figure F,, F, can be reflected in some line to get a
_l“figure Fps and so on. If we.end up with a figure F' after
~,*n such steps we shall say that F has been carried into F*

by a chain of n vreflections.

- Corollary VIII-O- l A chain of reflectlons carrying F into
P! determines a rigid motion between F eamd F'. "

Coming back to our opening discussion in -this sectdon, a
,‘reflection can be thought of as a physical motion, obtained. Wy
,ﬂﬁfrotating the whole plane through 180° about the axis of re-
-“‘’flection. The above corollary says that a certain type of rigid
;5-'motion, namely, those obtainable as a chain of:reflections,:aan‘
‘' be glven a physical interpretation. What we shall now show s
" “that every rigid motion is of this-type. ,
L The proof will be given in two stages, the firSt‘stage in-
. .volving only a very simple figure. For convenience we will use

1ﬂ"the notation F | F'* if F and F' are reflections of each
other in some axis.
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Theorem VIII-10. Let A, B, C, A', B', C' be six points
such that AB = A'B', AC = A'C', BC = B'C'. Then there is a
chain of ‘at most three reflections that carries A, B, ¢ into

A', B', C'. T

Proof:
Step 1.
B
Let L be the perpendicular bisector of KK7, and let B2 and

2
C, be the reflections of B' and C' in L,. Then A, B,,C, |

A',B!',C!.,
Step 2.

Let L1 be the perpendicular bisector of Bﬁé. Since AB = A'B!

and since by Theorem VIII-9, A'B! = AB2, it follows that

AB = ABQ. Therefore A lies on L1 and is 1ts own image in the
reflection in L. Thus, the lmage of A, B2, 02 in L1 is

A, B, Cl.
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" as was desired.

f:By arguments similar to the one above Wwe see that AC . ACi and :.
.Z‘BC BCl. Hence, Tﬁ? is the perpendicular bisector of CC1
" and the image A, B, C; in AB 1is A, B, C.

| We thus have, '

A,B,C | A,B,c; | A,B,,Cy |AY,BY,CY,

Any one .or two of the three steps may be unnecessary 1if the~”1

~ pair of points we are Working on (A 1in step 1, B in step 2,"
~..C  in step 3)  happen to colncide. " ' -
We are now ready for the final stage of the proof.

‘ Theorem VIII-1l. Any rigid motion is the result of a chainf: .
- of at most three reflections. ' : : o

s Proof: We are given a rigid motion F % F'. Let A, B, &
.- be three non-collinear points in F, and A', B', C'. the corre- -
?  sponding points in F'. : ‘

(If all points of F are collinear a separate, but simpler,f;f
proof is.needed. The details of this are left to the student )
\ By Theorem VIII-10 we can pass from A', B', C' %o A B,, .
. by a chain of at most three reflections. By Corollary VIII- 9 1 _.'f
3 ~this chain determines a rigid motion F' X F'', and by.theﬂoon-
struction of the reflections we have A'! = A, B'!' =B and |
C'' = C. Schematically the situation is something like this:.
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G‘ven

Fleapr
Constructed .

'e,shall show that for evegz point P. of F we. have P ' :
This will show that F''" “coincides. with F ‘and- that the;gi
igid ‘motion  F X'F' -ig identical with the one determined by
chain of reflections.,w" , : : o Do
. Let ‘us consider, then, any point P of“ F; its corre—;
:f'sponding point .P' in F? determined by the rigid motion
©F % F', and the point P'' in F'' determined from P! by'_
" the chain of reflections. We recall that A'' = A, B'' =B,
g = C. ' e e e

. Since all our relationships are rigid‘motions we have

_AP'' = A'P' = AP, Simpilarly, BP'' =BP and CP'' = CP. From

. the first two of these, and AB = AB, we get that e

. A ABP = A ABP'Y, and_so / BAP = / BAP'', If P and P!'' are

. on the same side of AB then by the Angle Construction Postulate -
A8 = AP'7, and since’ AP = AP'' 1t follows from the Point
Plotting Theorem that P = P'', which is what we wanted to prove.":

1
R}
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"~ Suppose then that P and P'!' 1lie on opposite sides of.
c 5

" Since PA ='P''A and PB = P''B fit follows that A and B 1lie
- on the perpendicular bisector of pP''. Since PC = P''C, C
also lies on this line, contrary to the choice of A, B and ' C
as non-collinear. Hence, this case does not arise, and we are

left with P = P'', thus proving the theorem.

Problem Set VIII-5

1. In each of the following construct, with any instruments
~you find convenient, the image of the given figure in the
line L. '

a. b. , : . C.

A <
L L c

5. Find a chain of three or fewer reflections that will carry
ABCD into A'B'C!D'.
8
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3. a. Carry A ABC through the chain of four reflections in -

La
A , L,
Lg |._4

b. Find a shorter chain that will glve the same rigid
motlon. ‘

Definitions: A flgure is symmetric if it 1s its own image in
some axis. Such an axls 1s called an axis of symmetry of the
figure. :

4, Show that an 1sosceles triangle is symmetric. What 1s the
axis?

5. A filgure may have more than one axis of symmetry. How many
do each of the following figures have?

a. A rhombus.

b. A rectangle.

c. A square.

d. An equllateral triangle.
e. A circle. |

6. ~The rigid motion defined by a chain of two reflections in
parallel axes has the property that i1f P<—>P' then PP!
has a fixed length (twilce the distance between the axes)
and direction (perpendicular to the axes). Prove this.
Such a motion 1is called a translation.
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: Thé rigid motion defined by a chain of two reflections in

axes which intersect at Q has the property that if P<—>P!
then / PQP' has a fixed measure (twice the measure of the
acute angle between the axes). Prove this.

Such a motion is called a rotation about Q.

Show how by using the results of Problems 6 and 7 the
Fundamental Theorem VIII-1ll can be restated in the following
form:

Any rigid motion in a plane is either a reflection, a trans-
lation, a rotation, a translation followed by a reflection,
or a rotation followed by a reflection.

[A-vIII]
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Appendix IX
PROOF OF THE TWO-CIRCLE THEOREM

‘The validity of the Two Cirele Theorem, stated in Chapter 14,
‘rests on the existence of a certain triangle, and the proof is
‘easier to follow if we establish this first.

, Triangle Existence Theorem. If a, b, ¢ are pbs;tive
'numbers, each of which 1s less than the sum of the other two,
‘then there ir a triangle whose sides have lengths a,,b, c..

Proof: The hard part of the proof is algebraic ‘rather;thahJ”:gﬁ

ﬁgeometric. First, let us suppose, as a matter of notation,fthat,
‘the three numbers a, b, ¢ are written in order of magnitude, so-
‘that -

. i ‘ a<b<e. . C
‘Let us start with a segment AB, with AB = ¢. Our problem is
to find a triangle A ABC, with BC =a and AC = b,  like
this:

AS— S ——B

In a sense we are going to tackle this problem backwards. That
'is, we are going to start off by assuming that there is such a
triangle. On the basis of this assumption, we will find out
exactly where the third vertex C must be. This procedure in
itself will not, of course, prove that the above statement is
tfue, because we started by assumling the very thing that we are
,supposed to be proving. But once we have found the exact location
~of the points that might wo.k, 1t will be very easy to check that
these points really do work. (Of course, there are two possible
 p1aces for C, on the two sides of the line " AB.)
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Y (This procedure is just what we use in solving equations. -
To gsolve 3x <= 7T =X+ 3 we first assume that there is an X e
which satisfies this equation. For this x we find successively

that
3x = x + 10,
2x = 10, .
X = 5. !

Then we reverse our steps and show that 5 actually does satisfy
the given equation.) , :

Suppose, then, that there is a triangle A ABC of the sort
that we are looking for. Let us drop a perpendicular from C to -
iﬁi and let D be the foot of the perpendicular. Then D 1is
between A and B, because AD<b<c and BD < a £ c.

Let y = CD, and let Xx = AD, as in the figure. Then DB = c- X,
as indicated. We want to find out what x and y are equal to,
in terms of a, b and c.

By the Pythagorean Theorem, we have

(1)  x°2 + y© = b°
and :
(2) y2 + (c - x)2 = aZ,
Therefore
y2 - b2 . x2
and
y2 = a2 . (c - x)z
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-Equating the two expressions for y2 we see that

b2 - x° = 82 - (e - x)2,

b2 - x? = a2 - 02 + 2¢x - x2,

and b2
+ ¢ - a
(3 =x-= T .

What we have found, so far, is that if x and y satisfy
(1) and (2), then x satisfies (3). We shall check, conversely,
that if x and y satisfy (1) and (3), then x and y also
‘satisfy (2). TFor if (1) and (3) hold, then we have from (1) that

y2=b2 - xe.

Adding (c - x)2 to both sides we get
y2 + (e - x)2 = (b2 - x2) + (¢ - x)2

= b2 - x2 + c? - 2ex + x?
= b2 + 02 - 2¢x. |
Substituting for x from (3) gives
v+ (e - x)2 =102 + ¢? - (b2 + ¢ - a?)
= a2,

so that (2) holds.

Now that we know what triangle to look for, let us start all
over again. We have three positive numbers, a, b, ¢. Each of
them is less than the sum of the other two, and a < b < c. Let
' b2 + 02 - a2

2¢
and c2 > 0. We want to set

5 o y=a,/b - X,

so that x~ + v° = b2, but to do this we must first make sure
that x < b, that is, that b - x > 0. We have

A =

Then X > 0, because b2 Z,ae
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b~ + ¢~ - a
b-Xx=D>b = 5
_ 2bc - b2 - ¢2 + a2
- 2¢
_a? - (e? - 2be + b3
T 2¢c

_ a® - (c - )2
\ 2¢c
Now we are given that ‘¢ < a +b. Hence, ¢ - b < a and so

(¢ - b)2 < a2. Tt follows from the equation above that
b-x>»0, or x<b,

“ We are now ready to construct our triangle. Let AB be a
segment of length ec¢.

C
b a
y
X c-%
A D B
-~ >4
. ©

- 2 2 2
Let D be a point on BB such that AD = x = 2 fei -2,

Such a point exists since we know x < b { c¢c. Let C be a poin*
on the perpendicular to AB through D, such that '

- DC =y =4/ D™ - x%,
- Then
ac? = x2 + y° = b2,

and

Bc? = ya + (¢ - x)2 = a2,

Therefore AC =b and BC = a, which 1s what we wanted.
The proof of the Two.Circle Theorem is now falrly easy.
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Theorem 14-5. (The Two Circle Theorem. )
If two circles have radii a and Db, and if ¢ is the
“distance between their centers, then the two circles intersect
“in two points, one on each side of the line of centers, provided
each one of a, b, ¢ 1s less than the sum of the other two.

Pirroof: Let Cl, the circle with radius b, have center A,
and .. fthe circle with radius a have center B. Then AB =C.

We know by the Triangle Existence Theorem that there is a

triangle A XYZ whose sides have lengths a, b, and e, 1like
this:
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Using the S.A.S. Postu%&ﬁs, we are going to copy tbis triangle on-f
each side of the line AB, in the following way. On each side of
7&? we take a ray starting at A, in such a way that the angles
formed are congruent to angle X. |

p N

On these rays we take points P and Q, such that AP = AQ = D.
Therefore circle C1 passes through P and Q. By the S.A.S.
Postulate,

A APB = A XYZ & A AQB. :
~Thefefore PB = a = QB, and hence circle 02 passes through P
and Q. _

This shows that P and Q are at least part of the inter-
section of €, and Cy,. To show that they are the intersection
we must prove that no third point, R, can lie on both Cy and
02. If there were such a point R we would have, by the S.S.S.
Theorem

A ABR & A ABP, and so, m/ BAR = m/ BAP.
But in the given plane there are only two such angles, one on
each side of ‘A_]—B: and hence, either ﬁ=ﬁ> or I?=7\3> Since
AR = AP = AQ = b this means that elther R=P or R = Q, and
so there can be no third point on both-.c1 and 02.




Appendix X
TRIGONOMETRY

.X-l. Trigonometric Ratios.
_ The elementary study of trigonometry is based on the follow-
.‘ing theorem.

' Theorem X-l. If an acubte angle of one right triangle is
_congruent to an acute angle of another right triangle, then the
two triangles are similar,

‘ "Proof: In A ABC and A A'B'C' 1let [/ ¢ and /[ C' be
. right angles and let m/ A =m/ A'. Then A ABC ~ A A'B'C' by.
" A.A. Similarity Corollary 12-3-1. ‘

: We apply this theorem as follows: Let r be any number.
‘between O and 90, and let A ABC be a right triangle with
Tmé C =90 and m/ A =r, For convenience set

. AB=c, AC=b, BC =

(The Pythagorean Theorem then tells us that c2 = a2 + b2.)
B
c
a
A= —0b c

If we consider another such triangle A A'B'C!' with

m/ C' =90 and m/ A' = r, we get three corresponding numbers
.a'y, b', c¢', which would generally be different from a, b, c.
-However, we always have

a' _a
et ¢
To see this, note that it follows from Theorem X-1-that
al ‘¢!
a ¢

_If we multiply both sides of this equation by 2 we get the

rdesired result.
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Thus the ratio %- does not depend on the particular triangiefl
we use, but only on the measure r of the acute angle. The value. -
of this ratio is called the sine of r°, written sin r° for
short. The reason we specify that we are using degree measure is
that in more advanced aspects of trigonometry a different measure
of angle, radian measure, is common. B

Let us see what we can say
about sin 30°. We know from
Theorem 11-9 that in this case e a

if e =1, then a ='%. Hence,
o _a _ 1 /€O°

It is evident that the ratilo
can be treated in the same way
a

The ratio ~% is called
o)
3

O

b

b
c
as .
the cosine of r written . )

cos r°. From the Pythagorean Theorem we see that if a = %. and

V) 3

¢ =1, then b="35. Hence, cos 30° = 5

- Of the four other possible ratios of the three sides of the
triangle, we shall use only one, . This is called the tangent
of r°, written tan r°. We see that tan 30° = 'l. (This use

3

of the word "tangent" has only an unimportant historical connection
with its use with relation to a line and a circle.)
These three quantities are called trigonometric ratios.
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Problem Set X-1

In each of the following give the required information in
terms of the indlcated lengths of the sldes.

a. sln A =19, cos A =1%, tan A = ?.

5
3

AT

b. sinr® =12, cos r’ =72, tan r° =2,
?2, tan Q = ?.
P

12 ) 5 L
r° ‘ C o
A3 . SRR
s
12 Q
G S
-z | B

e, “8in P = ?, cos P

‘d. sinA =%, sinB =2,
tan A = 7, tan B = ?.

i

A

?§; i In each of the following find the correct nuﬁerical'ﬁalué
- for x. '

a. cos P =x,

353 ™




3., Find: sin 60°, cos 60°, tan 60°.
i : [o]
4577 Find! sin 45°, cos 45°, tan 45°.

5. By making careful drawings with ruler and protractor
determine by measuring

a. sin Sgo, cos 20°, .tan 20°;

b. sin 53°,' cos 53°, _tan 53°.

X-2. MTrigonometric Tables and Applications.
Although the trigonometric ratios can be computed exactly
for a few angles, such as . 30°, 60° and 45°, 1in most cases we k

have to be content with approximate values. These can be worked
out by various advanced methods, and at the end of this Appendix
‘we give a table of the values of the three trigonometric ratios:
correct to three decimal places.

Having a "trig table", and a device for measuring angles,
such as a surveyor's transit (or strings and a protractor) one
can solve various practical problems. ' '

Example X-1. From a point 100 feet from the base of a
flag pole the angle between the '
horizontal and a line to the top
of the pole is found to be 23°

Tet x be the height of the , X
23° 100’

pole. Then
T%ﬁ = tan 23° = 425 |
" Hence, x = 42.5 feet An angle like the one used in this example

is frequently called the angle of elevation of the object.
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 Example X-2. In a circle of radius 8 cm. a chord AB has

%?Iength 10 cm. What 1s the measure of an angle inscribed in the
“major arc AB?  We have AC = 8,

I?AQ =-% +10 = 5. Hence,
j’i_:Bin A ACQ = 'g' = .625,

m/ ACQ = 39°,

“m(minor arc AB) = m/ ACB =

~'Hence, m/ APB

2(m/ ACQ) = T78°.
%m(arc KB) =
399 to the nearest degree.

Problem Set X-2,

From the table find: sin 17°, cos 46°, tan 82°, cos 33°,
sin 60°. Does the last value agree with the one found in
Problem 3 of Set X-19?

From the table find x to the nearest degree 1n each of the
following cases:

cos x = .T731,; sin x = .390, tan x = .300
sin x = 413, tan X = 2, cos X ='%.

A hiker climbs for a half mile up a slope whose inclination
1s 17°. How much altitude does he gain? :

When a six-foot pole casts a four-foot shadow what 1s the
angle of elevatlon of the sun?

An isosceles triangle has a base of 6. inches and an

opposlte angle of 30°. Find:

W]

The altitude of the triangle.

b. Thé‘lengtns of the altitudes to the.equal sides.
c. The angles thege altlitudes make with the base.
d. The point of intersection of the altltudes.
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6. A regular decagon (10 sides) is inscribed in a cirele of
radius 12. Find the length of a side, the apothem, and the -
area of the decagon.

D

7. Given, m/ A = 26°, wm/ CBD = 42°,
BC = 50; find AD and AB.

X-3. Relaticns Among the Trigonometric Ratios.

Theorem X-2. For any acute /A, sin A <1, cos A< 1.

Proof: In the right triangle A ABC of Section X-1,
a<c and b < c. Dividing each of these inequalities by ¢
gives

<13,

oo

which is what we wanted to prove.

Theorem X-3. ‘For any acute angle A,

sin A 2 2
Sos & = tan A, and (sin A) + (COS A) = 1.
Proof: a
sin A _ ¢ _ & _
co8 A = b = E tan A.
c

(sin A)2 + (cés A)?
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Theorem X-4. If /A and / B are complementary acute

1
angles, then 8in A = cos B cos A =s8in B and tan A = Tan B°
» B ) ta

Z

Proof: In the notation of the figure we have

sin A = % = cos B,
cos A = % = 8in B,
X 1 1
tanA=-§=E=-ta—nE.
X

Problem Set X-3

Do the rollowing problems without using the tables.

1. If sin A =-% what 1s the value of cos A? What is the
value of ‘tan A? (Use Theorem X-3.)

2. With ruler and compass construct [ A, 1if possible, in each
of the following. You are allowed to use the results of
earlier parts to simplify later ones.

. = .8.
a cos A 2Q
\
A C

(A-X]
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Solution: Take AC any convenlent segment and construct '
—  — .
CQ ] AC. With center A and radius AC  construct an are inter-
secting CQ at B. Then cos(/ BAC) = .8. ‘

b. cosA=-§-.
C. cos A =%

a. sin A = .8.
e. sin A = .T.

f. tan A =-§-.
3
7

g. tan A = 3

I
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_Table of Trigonometric Ratios

A Tan- ‘ Tan-
Angle Sine Cosine gent Angle Sine Cosine gent
e 0.000 1.000 0.000
1 017 1,000 017 | 46 10.719 0.695 1
TR 1,035 0.999 .035 47 .731 .682 1.072
-3 .052 .999 .052 48 S.T43 .669 1.111
4 .ogo .998 .070 49 .755 .656 1.150
5 .087 .996 .087 50 .T66 .643 1.192
6 .105 .995 .105 51 .7gg .629 1.235
7 .122 .993 .123 52 T .616 1.280
8 .139 .990 L1411 53 .799 .602 1.327
9 .156 .988 .158 54 .809 .588 1.376
10 174 .985 .176 55 .819 .574 1.428
11 .191 .982 .194 56 .829 .559 1.483
12 .208 .978 .213 5 .839 .5l45 1.540
13 .225 9T7h .231 5 .848 .530 1.600
14 y-2%-) .970 .29 59 .857 .515 1.664
15 .259 .966 .268 60 .866 .500 1.732
16 .276 .961 .287 61 .855 L1485 1.804
1 .292 .956 .306 62 .883 .469 1.881
1 .309 .951 .325 63 .891 454 1.963
19 .326 .9U6 L3414 64 .899 L1438 2.050
20 .342 940 .364 65 .906 423 2.145
21 .358 .934 .384 66 .914 o7 2.246
22 .375 .927 N 1o} ) 67 .921 .391 2.356
23 .391 .921 Lok 68 .927 .375 2.475
24 4ot 914 L4455 69 .934 .358 2.605
25 423 .906 .466 70 .9%0 .32 2.TU7
26 .438 .899 . 488 71 946 .326 2.904
o7 A5y .891 .510 72 .951 .309 3.078
28 469 .883 .532 73 .956 .292 3.271
29 .485 875 .554 T4 .961 .276 3.487
30 .500 .866 STT 75 .966 . 259 3.732
31 .515 .85g .601 76 .970 242 4,011
32 .530 e .625 7 974 .225 4,331
"33 .545 .839 .649 7 .978 .208 4,705
34 .559 .829 .675 9 .982 .191 5.145
35 574 .819 .T00 0 .985 LTh 5.671
36 .588 .809 727 81 .988 .156 6.314
-3 .602 . 799 LT54 82 .990 .139 7.115
3 .616 .788 .781 83 .993 .122 8.144
39 .629 177 .810 84 .995 .105  9.514
4o .643 .766 .839 85 .996 .087  11.43
41 .656 .T55 .869 86 .998 .070 14,30
4o .669 LTU43 .900 8 .999 .052 19.08
43 .682 .731 .933 8 .999 .035 28.64
Ly .69 .;1; .966 89 1.000 017 57.29
45 .70 .70 1.000 90 1.000 .000
[A-X]
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Solutions to Appendix
Problem Set X-1

3 4 3
I - L
b 5 12 5
- I3 I3 17
3 4 y
c. ‘5" '5“’ 3’
x' 4 x Z
d F’ 'i’ "Z': 'E-
2 12
2. a. - b .
J5 5
J3 1
3. Ve 3 VB
i 1
JZ ST

Problem Set X-2

2. 143°, 23°, 17°, 24°, 63°, T1°.

3. sin 17° = 17—5——- X = .292 . 2640 = TT1l feet.
- % + 5280

y, tan x = 16;' = 1.5. x = 56°.

5. m/ A =30, m/B=m/C="75.

a. gp=tanC. AD = 3.732°3 = 11.196.

b. g% = 8in B.. CE = .966 * 6 = 5.796.

¢c. m/ ECB=290° -m/B=15°.

d. g% = tan 15°. DF = .268.3 = .80k,

[A-X]
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g ) b
6. 8in 18 = 15

. 12
b = 3.71, 2b = T7.42 36— |b

(o] a
‘cqg 18" = ™
a = 11.41.
area = % <10 - 7.42 -11.41 = 423,
- o _CD -
7. tan 42° = =5 OD = 45.0.
tan 26° = %g-, AC = 92.2, AB = 42.2.

sin 26° = %g, AD

-

i

103 .

Problem Set X~3

1. (sin A)2 + (cos A)2 = 1, %+ (cos A)2 = 1,

cos A =¢(g.=-ggﬁi

1
sin A ki 1
tanA= = = .
cos A 2/2 2.2
2=

2. (c) is impossible.
(d) A here is.congruent to B of part (a).
(g) A here is the complement of the A of part (f).




Appendix XI
REGULAR POLYHEDRA

: A polxhedron is a solid whose boundary consists of planar
ff?égions -- called faces -- which are polygonal regions. The sides
.. the polyhedron. Prisms and pyramids are exampies of special kinds
" of polyhedrons. A regular polyhedron is a convex polyhedroh (see
. Section 3-3 for définition of convexity) whose faces are bounded
by regular polygons all with the same number of sides and such
. that there are the same number of faces (and edges) at each vertex.
" We shall determine all the regular polyhedra, using Euler's famous
formula connecting the number of vertices, edges, and faces of a
convex polyhedron (more generally, one without any holes). An
excellent exposition of this formula can be found in Radermacher
“and Toeplitz, "The Enjoyment of Mathematics." Strictly speaking,
we show that there are only five possibilities” for the numbers of
.. vertices, edges, and faces, but omit the proof that each of these-
i possibilities is realized in essentially one and only one way by
a regular polyhedron.
Suppose we have a regular polyhedron with V vertices, E
edzes and F faces, and with r faces about each vertex and n
sides (and vertices) for each face. If the E edges were all
shrunk slightly, so as to pull away from the vertices, we would
have E segments, each with two end-points, and so 2E end-
points altogether. Now there are r of these end-points near
~ each of the V vertices, and hence rV end-points in all. We
_ must therefore have the relation rV = 2E, or

W Ve

Similarly, imagine each face shrunk and count the resulting
sides of the polygonal regions. There are 2 sides near each
.edge, and so 2E sides. There are n sides on each face, and
so nF s8ides. Thus nF = 2E, or

(2) F =25,
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Now Euler's formula tells us that
" V~E+F=2,
Substituting for E and F from Equations (1) and (2),

we get
e MBS g
,,,,, e . T-E+T=2'
Dividing by 2E gives
1 1 1 1
(3) FrEtACE
Hence
1 1 1
F-3*ta> %
or
1 1 1
FTtn’2 3T
Now r > 3, 8o %—_(_%-, %>%_%2%_%___%,

so n< 6., Thus, n=3, 4, or 5, and the only possibilities
for the faces are triangles, squares, or regular pentagons. By
the same argument we see that » =3, 4, or 5 are the only
possibilities. E can be found from (3), and then V and F
from Equations (1) and (2).

For n=3, r=3, weget V=4, E=6, F=214,
For n=3, r=14, weget V=6, E=12, F = 8.
For n = 3, r =25, we get V=12, E =30, F = 20,

Trying n = 4, we see that the only possibility for r 1is
3, in which case V=8, E =12, F = 6. Fingliy,.for n=25,
the only possibility is r = 3, which yields V = 20, "E = 30,
F = 12, :

These five possibilities are realized in essentially one way
for each choice of F, E, and V (more precisely, two regular
polyhedra with the same values for F, E, and V are "similar"),
although we do not prove this. They are exhibited in the follow-

ing table:
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Number of
. Boundary | Number | Number Number Faces (or
.- Regular of of of of Edges) at
- Polyhedron Face Faces Edges Vertices | .a Vertex
Tetrahedron |Triangle it 6 b 3
‘Octahedron |Triangle | 8 - 12 {6 - i}
~Icosahedron |Triangle 20 30 12 ‘ 5
Cube Square 6 12 8 3
(Hexahedron)
Dodecahedron|Pentagon 12 30 20 3
Tetrahedron Hexahedron Octahedron
Dodecahedron Icosahedron

We obsgrve a curious duality between the octahedron .and the
cube and between the icosahedron and the dodecahedron, obtained by
‘1nterdhanging F and V, n and r, and leaving E . unchanged.
The tetrahedron is self-dual. This duality can be established bj
‘starting with one of the so0lids and forming a new one whose
vertices are the centers of the faces of the original one, and
whose edges are the segments connecting the centers of adJacent'
faces. These and other relations among the regular polyhedra and
related semi-regular polyhedra are discussed in various books;.
for example, "Mathematical Snapshots," by Steinhaus; "Mathematical
Models," by Cundy and Rollett.

[A-X1]
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The Meaning and Use of Symbols

General.

=, A =B can be read as "“A equals B", "A is equal to B",
“A equal B" (as in "Let A = B"), and possibly other
ways to fit the structure of the sentence in which the
symbol appears. However, we should not use the symbol,
=, in such forms as “A and B are ="; 1its proper use is
between two expressions. If two expressions are connected
by "=" 1t is to be understood that these two expressions
stand for the same mathematical entity, in our case either
a real number or a point set.

¥ . "Not equal to". A # B means that A and B do not
represent the same entity. The same variations and
cautions apply to the use of # as to the use of =.

Algebraic.

+, *y =y +. These familiar algebralc symbols for operating with
real numbers need no comment. The baslc postulates about
them are presented in Appendix II.

<, >, <, >. Like = , these can be read in various ways in
sentences, and A ¢ B may stand for the underlined part
of "If A is less than B", "Let A be less than B",
"A less than B implies", etc. Similarly for the other
three symbols, read "greater than", "less than or equal
to", "greater than or equal to". These inequalities apply
only to real numbers. Thelr properties are mentioned
briefly in Section 2-2, and in more detail in Section T7-2,
AA, |A]. "Square root of A" and "absolute value of A". Discussed
in Sections 2-2 and 2-3 and Appendix 1IV.

Geometric.

Point Sets. A single letter may stand for any suiltably described
point set. Thus we may speak of a point P, a line m, a
half-plane H, a circle C, an angle x, a segment b, etc.

(U
)
st




The 1line containing the two points A ‘and B (P. 30). oo

The segment having A and B as end-points (P.45). -

The ray with A as its end-point and containing

point B (P. 45). .

/ABC -The angle having B as vertex and BA and BC. a8 i
. gides (Pf 71). o — _ : I

/\ABC. The triangle having A, B amg__> C as vertices (P. 72).

/ A-BC-D." The dihedral angle having BC as edge and with sides -

containing A and D (P. 299). |

BB B

)

Real Numbers.

AB. - The positive number which is the distance between the two
points A and B, and also the length of the segment AB
(p. 34%).

m/ABC. The real number between O and 180 which is the
degree measure of /ABC (P. 80). _'

Area R. The positive number which is the area of the polygonal
region R {P. 320).

Relatlions.

B 4

Congruence. A = B is read "A is congruent to B", but

with the same possible variations and restrictions as

A =B, In the text A and B may be two (not necessarily

different) segments (P. 109), angles (P. 109), or

triangles (P. 111). ‘

1. Perpendicular., A ] B is read "A 1is perpendicular to B",
with the same comment as for =. A and B may be either
two lines (P. 86), two planes (P. 301), or a line and a .
plane (P. 229). _ o

|| . Parallel. A || B 4is read "A 1is parallel to B", with the

same comment as for =. A and B may be either two lines

(P. 241), two planes (P. 291) or a line and a plane

(P. 291). ' :




List of Postulates

Postulate 1. (P. 30) Given any two different points, there :
.is exactly one 1line which contains both of them. B .

w"F-w'Postt.llza.te 2. (P, 34) (The Distance Postulate. )+ To every—
pair of different polnts there corresponds a unique positive
Lynumber.

_ Postulate 3. (P. 36) (The Ruler Postulate.) . The points

" of a line can be placed in correspondence with the real numbers

" in such a way that ~ | ' |

‘ (1) To every point of the line there corresponds exactly _

" one real number,

- (2) To every real number there corresponds exactly one point

" of the line, and ' o
(3) The distance between two points 1s the absolute value

of the difference of the corresponding numbers.

Postulate 4. (P. 40) (The Ruler Placement‘Postulateo)
" Given two points P and Q of a line, the coordinate system
can be chosen in such a way that the coordiﬁate of P 1is zero
“and the coordinate of @ 1s positive.

Postulate 5. (P. 54%) (a) Every plane contains at least
three non-collinear points. ;
(v) Space contalns at least four non-coplanar points.

Postulate 6. (P. 56) If two points lie in a plane, then
‘the 1line contailning these polnts lies in the same place.

Postulate 7. (P. 57) Any three points lle in at least one
~ plane, and any three non-collinear points lle in exactly one
.. plane. More brlefly, any three points are coplanar, and any
three non-~colllnear polnts determlne a plane.

Postulate 8. (P. 58) If two different planes intersect,
then thelr intersectlon 1s a line. -
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Postulate 9. (P. 64) (The Plane Separation Postulate.)
Given a line and a plane containing it, the points of the plane
that do not lie on the line form two sets such that

(1) each of the sets is convex and ‘

(2) if P 1s in one set and Q is in the other then the
segment 5@ intersectg‘the line.

Postulate 10. (P. 66) (The Space Separation Postulate.)
The points of space that do not lie in a given plane form two
sets such that '

(1) each of the sets is convex and

(2) if P 1is in one set and Q 1is in the other then
the segment PQ intersects the plane.

Postulate 11. (P. 80) (The Angle Measurement Postulate.)
To every angle /BAC there corresponds a real number between
0 and 180. '

Postulate 12. (P. 81) (The Angle Construction Postulate.)
Let’ AB be a ray on the edge of the half-plane H. For every
number r between O and 180 there is exactly one ray AP,
with P in H, such that m/PAB = r.

Postulate 13. (P. 81) (The Angle Addition Postulate.)
If D 1is a point in the interior of /BAC, then
m/BAC = m/BAD + m/DAC,

Postulate 14. (P. 82) (The Supplement Postulate.) 'If two
angles form a linear pair, then they are supplementary.

Postulate 15. (P. 115) (The S.A.S. Postulate.) Given a
correspondence between two triangles (or between a triangle
and itself)., If two sides and the included angle of the first
_ triangle are congruent to the corresponding parts of the second
triangle, then the correspondence 1is a céngruence,

Postulate 16. (P. 252) (The Parallel Postulate .) Through
a given external point there is at most one line parallel to a
given line.

Postulate 17. (P. 320) To every p lygonal region there

corresponds a unique positive number.
d
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i Postulate 18. (P. 320) If two trlangles are congruent,
;'then the triangular regions have the same avea.

Postulate 19. (P. 320) Suppose that the region R 1s the
'~union of two regions Rl and R2 . Suppose that R1 and R2
“intersect at most in a finite number of segments and points.

_ Then the area of R is the sum of the areas of R, and R,.

Postulate 20. (P. 322) The area of a rectangle is the
product of the length of its base and the length of its altitude.

Postulate 21. (P. 546) The volume of a rectangular
parasllelepiped is the product of the altitude and the area of
the base. ’

Postulate 22. (P. 548) ({(Cavalieri's Principle.) Given two
solids and a plane. If for every plane which intersects the
solids and is parallel to the given plane the two intersections
have equal areas, then the two solids have the same volume.
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List of Theorems and Corollaries

- Theorem 2-1., (P. 42) Let A, B, C be three points of a
- 1line, with coordinates X, ¥, 2. If x<y<z, then B 1s
fxbetween A and C. ' ’ D h

Theorem 2-2., (P. 43) Of any three different points on the
same line, one is between the other two.

Theorem 2-3, (P. 44) Of three different points on the same
line, only one is between the other two.

Theorem 2-4. (P, 46) (The Point Plotting Theorem) ILet AB
. be a'ray, and let x be a positive number, Then there is exactly
. . —
one polnt P of AB such that AP =

Theorem 2-5. (P. 47) Every segment has exactly one
mid-point.

Theorem 3-1. (P. 55) Two different lines intersect in at
~most one polnt, .

Theorem 3-2. (P. 56) If a line intersects a plane not
contalning 1t, then the intersection 1s a single point.

Theorem 3-3. (P. 57) GUiven a line and a point not on the
line, there is exactly one plane contalning both of them.

Theorem 3-4, (P. 58) Given two intersecting lines, there
1s exactly one plane contalning them.

Theorem 4-1, (P, 87) If two angles are complementary, then
both of them are acute.

 Theorem 4-2. (P. 87) Every angle is congruent to itself.

~ Theorem 4-3, (P. 87) Any two right angles are congruent, =

Theorem 4-4. (P, 87) If two angles are both congruent and
supplementary, then each of them is a right angle.

Theorem 4-5. (P. 87) Supplements of congruent angles are
congruent.
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Theorem 4-6, (P. 88) Complements of congruent angles are
congrisnt,

Thecrem 4-7. (p. 88) Vertical angles are congruent.

Theorem 4-8. (P. 89) If two intersecting lines form one
right angle, then they form four right angles.

Theorem 5-1. (P. 109) Every segment is congruent to itself.

Theorem 5-2. (P. 127) If two sides of a triangle are
congruent, then the angles opposite these sides are congruent.

Corollary 5-2-1. (P. 128) Every equilateral triangle 1s
equiangular.

Theorem 5-3. (P. 129) Every angle has exactly one bisector.

Theorem 5-4. (P. 132) (The A.S.A. Theorem.) Given a
correspondence between two triangles (or between a triangle and
1tself). If two angles and the included side of the first
triangle are congruent to the corresponding parts of the second
triangle, then the correspondence is a congruence. '

Theorem 5-5. (P. 133) If two angles of a triangle are
congruent, the sides opposite these angles are congruent,

Corollary 5-5-1. (P. 133) An equiangular triangle is
equilateral.

Theorem 5-6. (P. 137) (The S.S.S. Theorem.) Given 2
correspondence between two triangles {c» between a triangle and
itself). If all three pairs of corr:sponding sides are congruent,
then the correspondence 1s a congruence.

Theorem 6-1. (P. 167) 1In a given plane, through a glven
point of a glven line of the plane, there passes one and only one
line perpendicular to the given line,

Theorem 6-2. (P. 169) The perpendicular bisector of a
segment, in a plane, 1s the set of all points of the plane that
are equidistant from the end-points of the segment.
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Theorem 6-3. (P. 171) Through a given external point there
is at most one line perpendicular‘to’a given line.

Corollary 6-3-1. (P. 172) At most one angle of a triangle
- can be a right angle. ‘

Theorem 6~4. (P. 172) Through a given external point there
is at least one line perpendlcular to a given line. .

Theorem 6-5. (P. 183) If M 18 between A and C on a
line L, then M and A are on the same side of any other line
that contains C.

Theorem 6-6. (P. 183) If M 1s between A and C, and
<
B 1is any point not on line AC, then M is in the interior of
/ ABC.

Theorem 7-1. (P. 193) (The Exterior Angle Theorem.) An
exterior angle of a triangle is larger than either remote °
interior angle. ‘

Corollary 7-1-1. (P. 196) 1If a triangle has a right angle,
'then the other two angles are acute.

Theorem 7-2. (P. 197) (The S.A.A. Theorem.) Given a
correspondence between two triangles. If two angles and a side
opposite one of them in one triangle are congruent to the
corresponding parts of the second triangle, then the correspon-
dence 1s a congruence.

Theorem 7-3. (P. 198 (The Hypotenuse - Leg Theorem, )
Given a correspondence between two right triangles. If the
hypotenuse and one leg of one triangle are congruent to the
corresponding parts of the second triangle, then the correspondence
is a congruence,

Theorem 7-%. (P.200) If two sides of a triangle are not
congruent, then the angles opposite these two sides are not
congruent, and the larger angle is opposite the longer side.




Theorem 7-5. (P. 201) If two angles of a triangle are not
congruent, then the sides opposite them are not congruent, and
the longer side is opposite the larger angle.

Theorem T=6. (P. 206) The shortest segment Joining a point
to a line is the perpendicular segment. :

Theorem 7-7. (P. 206) (The Triangle Inequality.) The sum
of the lengths of any two sides of a triangle is greater than
the length of the third side.

Theorem 7-8. (P. 210) If two sides of one triangle are
congruent respectively to two sides of a second triangle, and
the included angle of the first triangle is larger than the
included angle of the second, then the opposite side of the
first triangle is longer than the opposite side of the second.

Theorem 7-9. (P. 211) If two sides of one triangle are
congruent respectively to two sldes of a second trianglé, and
the third side of the first trlangle is longer than the thirdﬁ
side of the second, then the included angle of the first
triangle ies larger than the included angle of the second. -

Theorem 8-1. (P. 222). If each of two points of a line is
equidistant from two given points, then every point of the line
is equidistant from the given points.

Theorem 8-2. (P. 225) If each of three non-collinear
points of a plane is equidistant from two points, then every
point of the plane is equidistant from these two points.

Theorem 8-3. (P. 226) If a line is perpendicular to each
of two intersecting lines at their point of intersection, then
it is perpendicular to the plane of these lines.

Theorem 8-=4. (P. 230) Through a given point on a given
line there passes a plane perpendicular to the line.

Theorem 8-5. (P. 231) If a line and a plane are perpen-
dicular, then the plane contalns every line perpendicular to the
given line at its point of intersection with the given plane.
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Theorem 8-6. (P. 232) Through a given point on a given
~line there is at most one plane perpendicular to the line.

v Theorem 8-7. (P. 232) The perpéndicular bisecting plane of
 a segment is the set of all points equidistant from the end-points
- of the segment.

Theorem 8-8. (P. 234%) Twc lines perpendicular to the same
plane are coplanar.

Theorem 8~9. (P. 235) Through a given point there passes
one and only one plane perpendicular to a givan line.

Theorem 8-10. (P. 235) Through a given point there passes
one and only one line perpendicular to a given plane.

Theorem 8-11. (P. 235) The shortest segment to a plane
from an external point 1is the perpendicular segment.

Theorem 9-1. (P. 242) Two parallel lines lie in exactly
one plane.

Theorem 9-2. (P. 242) Two lines in a plane are parallel
if they are both perpendicular to the same line.

Theorem 9-3. (P. 244) -Let L be a line, and let P be a
point not on L. Then therc is at least one line through P,
parallel to L.

Theorem 9-4%. (P. 246) If two lines are cut by a transversal,
and if one pair of alternate interior angles are congruant, then
the other pair of alternate interior angles are also congruent.

Theorem 9-5. (P. 246) 1If two lines are cut by a transverasl,

- and 1f a pair of alternate interior angles are congruent, then

the lines are parallel. -

Theorem 9-6. - (P; 252) If two lines are cut by a transversal,
and if one pair of corresponding angles are congruent, then the
other three pairs of corresponding angles have the same property.

Theorem 9-7. (P. 252) If two lines are cut by a transversal,
and if a pair of corresponding angles are congruent, then the
lines are parallel. 317[1
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Theorem 9-8. (P. 253) If two parallel lines are cut by
a transversal, then alternate interior angles are congruent.

Theovem 9-9. (P. 254) If two parallel lines are cut by a
transversal, each pair of corresponding angles are congruent.

' Theorem 9-10. (P. 254) If two parallel lines are cut by a
transversal, interior angles on the same side of the transversal
are supplementary.

Theorem 9-11. (P. 255) In a plane, two lines par > : . toO
the same line are parallel to each other.

Theorem 9-12. (P. 255) In a plane, 1f a line is
perpendicular to one of two parallel lines it is perpendicular
to the other.

Theorem 9-13. (P. 258) The sum of the measures of the
angles of a triangle is 180.

Corollary 9-13-1. (p. 259) Given a correspondence between
two triangles. If two pairs of corresponding angles are congruent,

then the third pair of corresponding angles are also congruent.

Corollary 9-13-2. (P. 260) The acute angles of a right
triangle are complementary.

Corollary 9-13-3. (P. 260) For any triangle, the measure
of an exterior angle is the sum of the measures of the two
remotevinterior angles.

“Theorem g-14, (P. 265) Either diagonal divides a
parallélogram into two congruent triangles.

Theorem 9-15. (P. 265) In a parallelogram, anywtwo
opposite sides are congruent.

Corollary 9-15-1. (P. 2066) 1If L, | L, and if P and Q
are any two points on Ll’ then the distances of P and Q
from ,L2 are equal.

Theorem 9-16, (P. 266) 1In a parallelogram, any two
opposite angles are congruent.
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Theorem 9-17. (P. 266) In a parallelogram, any two
. consecutive angles are supplementary.

Theorem 9-18. (P. 266) The diagonals of a parallelogram
- bisect each other,

Theorem 9-19. (P. 266) Given a quadrilateral in which both
. pairs of opposite sides are congruent. Then the quadrilateral
i1s a parallelogram,

Theorem 9-20. (P. 266) If two sides or a quadrilateral are
parallel and congruent, then the quadrilateral is a parallelogram,

Theorem 9-21. (P. 266) If the diagonals of a quadrilateral
bisect each other, then the quadrilateral is a parallelogram.

Theorem 9-22. (P. 267) The segment betwéen the mid-points
of two sides of a triangle is a parallel to the third side and
half as long as the third side.

Theorem_9-23. (p. 268) 1If a parallelogram has one right
angle, then 1t has four right angles, and the parallelogram
is a rectangle.

Theorem 9-24. (P. 268) In a rhombus, the diagonals are
perpendfcular to one another,

Theorem 9-25. (P. 268) If the diagonals of a quadrilateral
bisect each other and are perpendicular, then the quadrilateral
is a rhombus.

Theorem 9-26. (P. 276) If three parallel lines intercept
congruent segments on one transversal,, then they intercept
congruent segments on any other transversal.

. Corollary 9-26-1. (P. 277) If three or moce parallel lines
intercept congruent segments on one transversal, then they
Intercept congruent segments on any other transversal.

Theorem 9-27. (P. 279) The medians of a triangle are
concurrent in a point two-thirds the way from any vertex to
the mid-point of the opposite side.

376

m



Theorem 10-1. (P. 292) If a plane intersects two parallel
planes, then it intersects them in two parallel lines.

Theorem 10-2. (P. 292) If a line is perpendicular to one
of two parallel planes 1t is perpendicular to the other,

Theorem 10-3. (P. 293) Two planes perpendicular to the
same line are parallel.

Corollary 10-3-1. (P. 294) If two planes are each parallel
to a third plane, they are parallel to each other.

Theorem 10-4. (P. 294) Two lines perpendicular to the
same plane are parallel.

Corollary 10-4-1. (P. 29%) A plane perpendicular to one
of two parallel lines is perpendicular to the other.

Corollary 10-4-2. (P. 29%) If two lines are each parallel
to a third they are parallel to each other.

Theorem 10~5. (P. 295) Two parallel planes are everywhere
equidistant.

Theorem 10-6. (P. 301) Any two plane angles of a given
dihedral angle are congruent.

Corollary 10-6-1. (P. 302) If a line is perpendicular to
a plane, then any plane containing this line is perpendicular
to the given plane.

Corollary 10-6-2. (P. 302) If two planes are perpendicular,
then any line in one of them perpendicular to their line of '
intersection is perpendicular to the other plane.

Theorem 10-7. (P. 307) The projection of a line into a
plane is a line, unless the line and the plane are perpendicular.

Theorem 11-1. (P. 328) The area of a right triangle is
half the product of its legs.

Theorem 11-2. (P. 328) The area of a triangle 1s half the
product of any base and the altitude to that base.
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Theorem 11-3.. (P. 330) The area of a parallelogram is the
- product of any base and the corresponding altitude.

Theorem 11-4%. (P. 331) The area of a trapezoid is half the
product of its altitude and the sum of its bases.

Theorem 11-5. (P. 332) If two triangles have the same
altitude, then the ratio of their areas is equal to the ratio
of their bases.

Theorem 11-6. (P. 332) If two triangles have equal
altitudes and equal bases, then they have equal areas,

Theorem 11-7. (P. 339) (The Pythagorean Theorem.) 1In a
right triangle, the square of the hypotenuse is equal to the sum
of the sqguares of the legs.

Theorem 11-8. (P. 340) If the square of one side of a
triangle is equal to the sum of the squares of the other two,
_ then the triangle is é right triangle, with a right angle
opposite the first side.

Theorem 11-9. (P. 346) (The 30 - 60 Triangle Theorem.)
The hypotenuse of a right triangle is twice as long as the
shorter leg if and only if the acute angles are 30° and 60°,

Theorem 11-10. (P. 346) (The Isosceles Right Triangle
Theorem.) A right triangle is isosceles if and only if the
hypotenuse is 1/2 tlmes as long as a leg.

Theorem 12-1. (P. 368) (The Basic Proportionality Theorem.)
If a line parallel to one side of a triangle intersects the other
- two sideétin distinet points, then it cuts off segments which are
proportional 4o these sides.

Theorem 12-2. (P. 369) If a line intersects two sides of
a triangle, and cuts off segments proportional to these two
sides, then it is parallel to the third side.
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Theorem 12-3. (P. 374) (The A.A.A. Similarity Theorem.)
Given a correspondence between two triangles. If corresponding

angles are congruent, then the correspondence is a similarity.

ovollary 12-3-1, (P. 376)  (The A.A. Corollary.) Given
a correspondeilce between two triangles., If two pairs of
corresponding angles are congruent, then the correspondence is
a similarity. -

Corollary 12-3-2. (P. 376) If a line parallel to one side
of a triangle intersects the other two sides in distinct points,
then it cuts off a triangle similar to the given triangle.

Theorem 12-4. (P. 376) (The S.A.S. Similarity Theorem.)
Given a correspondence between two triangles. If two
corresponding angles are congruent, and the including sides are
proportional, then the correspondence is a similarity.

Theorem 12-5. (P. 378) (The S.S.S. Similarity Theorem.)
Given a correspondence between two triangles. If corresponding

sides are proportional, then the correspondence is a similarity.

Theorem 12-6. (P. 391) 1In any right triangle, the altitude
to the hypotenuse separates the triangle into two triangles which
are similar both to each other and to the original triangle.

Corollary 12-6-1. (P. 392) Given a right triangle and the
altitude from the right angle to the hypotenuse:

(1) The altitude is the geometric mean of the segments
into which it separates the hypotenuse.

(2) Either leg is the gecmetric mean of the hypotenuse
and the segment of the hypotenuse adjacent to the leg.

Theorem 12-7. (P. 395) The ratio of the areas of two
gimilar triangles is the square of the ratio of any two
corresponding sides.

Theorem 13-1. (P. 410) The intersection of a sphere with
a plane through its center 1s a circle with the same center and
~radius. '
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Theorem 13-2. (P. 414) Given a line and a circle in the
same plane. Let. P be the center of the circle, and let F be
the foot ¢f the perpendicular from P to the line. Then either

(1) Every point of the line is outside the circle, or

(2) F 4is on the circle, and the line is tangent to the
circle at ¥, or

(3) F 1s inside the circle, and the line intersects the
circle in exactly two poiggsl which are equidistant from F.

. Corollary 13-2-1. (P. 416) Evesy line tangent to C is
perpendicular to the radius drawn to the point of contact.

Corollary 13-2-2. (P. 416) Any line in E, perpendicular
to a radius at 1its outer end, is tangent to the circle.

Corollary 13-2-3. (P. 416) Any perpendicular from the
center of C +to d chord bisects the chord.

Corollary 13-2-4. (P. 416) The segment joining the center
of C to the mid-point of a chord is perpendicular to the chord.

Corollary 13-2-5. (P. 416) 1In the plane of a circle, the
perpendicular bisector of a chord passes through the center of
the circle. ~

Corollary 13-2-6 (P. 417) If a line in the plane of a
circle intersects the interior of the circle, then it intersects
the circle in exactly two points.

Theorem 13-3. (P. 417) In the same-circie or in congruent
circles, chords equidistant from the center are congruent.

Theorem 13-4. (P. 417) In the same circle or in congruent
circles, any two congruent chords are equidistant from the center.

Theorem 13-5. (P. 424) Given a plane E and a sphere S
with center P. ILet I be the foot of the perpendicular segment
from P to E. Then either

(1) Every point of E is outside S, or

(2) F ison S, and E 1s tangent to S at F, or

(3) F 1is inside S, and E intersects S 1in a circle
with center F. oo
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Corollary 13-5-1. (P. 426) A plane tangent to S 1is
perpendicular to the radius drawn to the point of contact.

Corollary 13-5-2. (P. 426) A plane perpendicular to a
radius at its outer end is tangent to S.

Corollary 13-5-3. (P. 426) A perpendicular from P to a
chord of S bisects the chord. '

Corollary 13-5-4, (P. 426) The segment Joining the center
of S to the midpoint of & chord is perpendidular to the chord.

Theorem 13-6. (P. 431) " If AB and BC are arcs of the
same circle having only the point ‘B in common, and if their
— — ~~

union is an arc AC, then mAB + mﬁa = mAC.

Theorem 13-7. (P. 434) The measure of an inscribed angle
is half the measure of its intercepted arc.

Corollary 13-7-1. {P. 437) An angle inscribed in.a semi-
circle is a right angle. '

Corollary 13-7-2. (P. 437) Angles inscribed in the same
arc are congruent.

Theorem 13-8. (P. 441) 1In the same circle or in congruent
circles, if two chords are congruent, then so also are the

corresponding minor arcs.

Theorem 13-9. (P. 441) 1In the same circle or in congruent
circles, if two arcs are congruent, then so are the corresponding

chords.

Theorem 13-10. (P. 442) Given an angle with vertex on the
circle formed by a secant ray and a tangent ray. The measure of

. the angle is half the measure of the intercepted arc.

Theorem 13-11. (P. 448) The two tangent segments to a circle
from an external point are congruent, and form congruent angles
with the llne Joining the external point to the center of the
circle.
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Theorem 13-12. (P. 449) Given a circle C and an external
point Q, 1let L1 be a secant line through Q, intersecting ¢
in points R and S; and let L2 be another sgecant line through
Q, intersecting C inpolnts T and U, Then QR « QS = QU . QT.

Theorem 13-13. (P. 450) Given a tangent segment QT to a
circle;, and a secant line through Q, intersecting the circle in
points R and S. Then QR . QS = QTQ.

Theorem 13-14. (P. 451) If two chords intersect within a
clrecle,; the product of the lengths of the segments of one equals
the product of the lengths of the segments of the cther.

Theorem 14-1. (P. 467) The visector of an angle, minus its
end-point, is the set of polnts in the interior of the angle
equldistant from the sides of the angle.

Theorem 14-2. (P. 469) The perpendicular bisectors of the
sldes of a trilangle are concurrent in a point equidistant from
the three vertices of the triangle,

Corollary 14-2-1., (P. 470) There is one and only one circle
through three non-collinear points.

Corollary 14-2-2., (P. 470) Two distinct circles can
intersect in at most two polnts.

Theorem 14-3, (P. 470) The three altitudes of a triangle
are concurrent.

~ Thecrem 14-4, (P. 471) The angle bisectors of a triangle
are concurrent in a point equildistant from the three sides.

Theorem 14-5. (P. 476) (The Two Circle Theorem.) If two
circles have radil a and b, and 1f ¢ 1is the distance
between their centers, then the circles intersect in two points,
one on each side of the line of centers, provlided each one of a,
b, ¢ 41s less than the sum of the other two. '

Construction 14-6. (P. 477) To copy a given triangle.

Construction 14-7. (P. 479) To copy a glven angle.
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Construction 14-8. (P. 481) To construct the perpendicular
bisector of.a given segment.

Corollary 14-8-1. (P. 48l) To bisect a glven segment.

Construction 14-9. (P. 482) To construct a perpendicular
to a given line through a given point.

Construction 14-10. (P. 484) To construct a parallel to a
given line, through a given external point.

Constructinn 14-11. (P. 48%) To divide a segment into a
'given number of congruent segments.,

Construction 14-12. (P. 491) To circumscribe a circle about
a given triangle.

Construction 14-13. (P. 491} To bisect a siven angle.

Construction 14-14%. (P. 492) To inscribe a circle in a
given triangle.

TPheorem 15-1. (P. 517) The ratio g% , of the circum-
ference to the diameter, 1s the same for all circles.

Theorem 15-2. (P. 322) The area of a circle of radius r
2
is wr™

Theorem 15-3. (P. 526) If two arcs have equal radii, their
lengths are proportional to their measures. :

Theorem 15-%. (P. 526) An arc of measure q and radius r
has length Tgaqr .

Theorem 15-5. (P. 527) The area of a sector 1s half the
prcduct of its radius by the length of its arc.

Theorem 15-6. (P. 527) The area of a sector of radius r
and arc measure q 1s 3%6qr2 .

Theorem 16-1. (P. 535) All cross-sections of a triangular
prism are congruent to the base.

Corollary 16-1-1. (P. 536) The upper and lower bases of
a triangular prism are congruent.
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Theorem 16-2. (P. 536) (Prism Cross-Section Theorem. ) A1l
cross-sections of a prism have the same area.

-Corollary 16-2-1., (P. 537) The two bases of a prism have
- equal areas.

Theorem 16-3. (P. 537) The lateral faces of a prism are
' parallelogram regions, and the lateral faces of a right prism
- are rectangular regions. ’

Theorem 16-4%. (P. 540) A cirross-section of a triangular
pyramid, by a plane between the vertex and the base, is a
~triangular region similar to the base. If the distance from the
vertex to the cross-section plane is k and the altitude is h,

then the ratic 05 the area of the cross-section to the area of
the base is (%) .

Theorem 16-5. (P. 542) 1In any pyramid, the ratio Qf the
area of a cross-section and the area of the base is (%) s Where
h 1is the altitude of the pyramid and k 1is the distance from
“he vertex to the plane of the cross-section.

Theorem 16-€. (P. 543) (The Pyramid Cross-Section Theorem.)
Given two pyramids with the zame altitude., If the bases have the
same area, then cross-sections equidistant from the bases also
have the same area.

Theorem 16-7. (P. 548 ) The volume of any prism is the
product of the altitude and the area of the bvase.

Theorem 16-8. (P. 549) If two pyramids have the same alti-

tude and the same base area, then they have the same volume.

Theorem 16-9. (P. 550) The volume of a triangular pyramid
is one-third the product of its altitude and its base area.

Theorem 16-10. (P. 551 ) The volume of ‘a pyramid is one-third
the product of its altitude and its base area.

Theorem 16-11. (P. 555) A cross-section of a circular
cylinder is a circular region congruent to the base.
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Theorem 16-12. (P. 555) The area of a cross-section of a
circular cylinder is equal to the area of the base.

Theorem 16-13. (P. 555) A cross-section of a cone of
altitude h, made by a plane at a distance k from the vertex,

is a circulaE region whose area has a ratlo to the area of the
base of (%) .

Theorem 16-14. (P: 557) The volume of a circular cylinder
is the product of the altitude and the area of the base.

Theorem 16-15. (P. 557) The volume of a circular cone 18
one-third the product of the altitude and the area of the base.

Theorem 16-16. (P. 559) The volume of a sphere of radlus T
is %Wra. :

Theorem 16-17. (R. 562) The surface area of a sphere of
radius r 1s S = Urp?

Theorem 17-1. (P. 579) On a non-vertical line, all segments

have the same slope.

Theorem 17-2. (P. 584) Two non-vertical lines are parallel
if and only if they have the same slope.

Theorem 17-3. (P. 586) Two non-vertical lines are perpen-
dicular if and only if their slopes are the negative reciprocals

of each other.

Theorem 17-%. (P. 589) (The Distance Formula.) The
distance between the points (xl,yl) and (x?,yg) is equal to

w/zie - x1)2 + (v, - V1)2 .

Theorem 17-5. {P. 593) (The Mid-Point Formula;)
Let Py = (xy,y;) and let P, = (x55¥5). Then the mid-point
xl + x2 yl + y2 ’
2 ’ 2 )

of PPy 18 the point P = (
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Theorem 17-6. (P. 605) Let L be a non-vertical line
with slope m, and let P be a point of L, with coordinates
(xl,yl). For every point Q = (x,y) of L, the equation
¥y -~y =m(x - x;) 1is satisfied.

, Theorem 17-7. (P. 606) The graph of the equation
y-¥y = m(x - xl) is the line that passes through the point
(xl,yl) and has slope m.’

Theorem 17-8. (P. 611) The graph of the equation y = mx + b
is the line with slope m and y-intercept b.

Theorem 17~9. (P. 613) Every line in the plane is the graph
of a linear equation in x and Yy.

Theorem 17-10. (P. 613) The graph of a linear equation
in X and y 41s always a line. .

Theorem 17-11. (P. 623) The graph of the equation

(x - a)2 + {y - b)2 = r° 1s the circle with center at (a,p)

and radius r.

Theorem 17-12. (P. 624) Every circle is the graph of an

equation of the form x2 + y2 4+ Ax + By + C = 0.

Theorem 17-13. (P. (G25) Given the equation

X2+ y2 + Ax + By + C = 0. The graph of this equation is

(1) a carcle, (2) a point or (3) the empty set.
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Index of Definitions

For precisely defined geometric terms the reference is to
the formal definition. For other terms the reference is to an
informal definition or to the most prominent discussion.

absolute value, 27
acute angles,
alternate interior angles, 245
altitude
of prism, 535
of pyramid, 540
of triangle, 214, 215
angle(s), 71
acute, 86
alternate interior, 245
bisector of, 129
central, 429 ,
complementary, 86 T
congruent, 6, 109
consecutive, 264
corresponding, 251
dihedral, 299
exterior, 193
exterior of, 73
inscribed, 432
intercepts an arc, 433
interior of, T3
measure of, 79, 80
obtuse,
of polygon, 506
opposite, 264

reflex, 78
remote interior, 193
right, 85

right dihedral, 301
sides of, 71
straight, 78 -
supplementary, 82
vertex of, T1
vertical, 88

apothem, 512

arc(s), 429
center of, 437
congruent, U441
degree measure of, 430
“end-points of, 429
length of, 525
minor, 429
of sector, 527




area, 320
circle, 521, 522
parallelogram, 330
polygonal region, 320
rectangle, 322 v
right triangle, 328
sphere, 562
trapezoid, 331
triangle, 328
unit of, 321
arithmetic mean, 364
auxiliary sets, 176
base of pyramid, 540
between, 41, B2
bisector of an angle, 129
bisector of a segment, 169
bisects, 47, 129
Cavalieri's Principle, 548
center of
arc, 437
circle, 409
~ sphere, U09
central angle, U429
centroid, 280, 621
chord, 1§10
circle(s), 409
area of, 521, 522
circumference of, 516
congruent, 17
equation of, 623, 624, 625
exterior of, 412 '
great, 410
interior of, 412
segment of, 528
tangent, ﬁl7
circular
. .cone, 55k
cylinder, 553
reasoning, 119
region, 520
area of, 521
circumference, 516
circumscribed
circle, 490
triangle, U490
collinear, 5&
complement, 86
complementary angles, 86
e megONCENELIC
circles, 409
spheres, %409
conclusion, 60




concurrent sets, 278, U469
.cone,
circular, 554
right circular, 555
volume of, 557
congruence, 97
congruent,
- angles, 86, 109
arcs, 441
circles, 417
segments, 109
triangles, 98, 111
consecutive angles, 264
consecutive sides, 264
constructions, U477
converse, 202
.convex polygon, 507
convex sets, 62
coordinate system, 37, 571
coordinates of a:point, 37, 569
co-planar, 54
corollary, 128
correspondence, 97
corresponding angles, 251
~cross-section
of a prism, 535
.of a pyramid, 540
cube, 229
cylinder
circular, 553
~volume of, 557
diagonal, 264, 509
diameter, 410
.dihedral angle, 299
edge of, 299
face of, 299
measure of, 301
plane angle of, 300
distance, 34
.distance between e
a point and a line, 206
a polint and a plane, . 235
two parallel -lines, 266
distance formula, 589
edge of half-plane, 6l

“end-point(s)
’ of arc, 429
of ray, 46

mwof~s egrnent_’,_-,)_I.S...,. ert i e e e S e e it aie i omoneA s < e e e e e 21 s e+ s e a0

_empty set, 18
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equation ,

of circle, 623

of line, 605, 611
equiangular triangle, 128
equilateral triangle, 128
Euler, 327
‘existence proofs, 165
-exterior angle, 193
exterior

of an angle, '3

of a circle, U412

of a triangle, T4
face of half-space,
frustum, 559
Garfield's Proof, - 34k
geometric mean, 361

graph, 600
great circle, 1410
half-plane,

edge of, 64

half-space,
face of, 66
horizontal lines, 576
hypotenuse, 172
hypothesis, 60
identity congruence, 100, 109
if and only if, 203
if-then, 60 :
inconsistent equations, 618
indirect proof, 160
inequalities, 24
infinite ruler, 37
inscribed
angle, 432
measure of, 434
circle, U490
polygon, 511
quadrilateral, 438
triangle, U490
integers, 22
intercept, 275, 433
interior
of angle, 73
of circle, U413
of tfiangle, Th
intersect, 1 ‘
intersection of sets, 16, 18, 473
irrational numbers, 23
”“““iSOScelesmtriangle;~~127;~128n~
kite, 272
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~lateral
edge, 537
face, 537
v surface, 537
lemma, 196
length .
of arc, 525
R of segment, 145
“linear equation, = 613
linear pair, 82
line(s), 10
oblique, 216
parallel, 24l
perpendicular, 86
skew, 241
transversal, 244
ma jor arc, U429
mean
arithmetic, 364
geometric, 361
measure
of angle, 79, 80
of dihedral angle, 301
of distance, 30, 34, 36
median ’
of trapezold, 272
of triangle, 130
mid-point, 47 : T
formula of, 593
“minor arc, 429
Non-Euclidean geometries, 253
negative real numbers, 191
numbers ,
irrational, 23
negative, 191
positive, 191
rational, 22
real, 23
whole, 22
oblique lines, 216
obtuse angle, v
~on opposite sides, 64
_on the same side, _
. .one=to-one correspondence,. 97

K

. opposite
: angles, 264
rays,
: sides, 264
~.order, 2k

jﬁSﬁdéf”ﬁbgtulaﬁes,”“191;'192“
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ordered palr, 571
~origin, 568

_ parallel _ .
' lines, 241

slopes of, 584
lines and planes, 291
plaiwes, 291

parallelogram, 265
- —area of, 330
perimetex ‘
of triangle, 287 -
of polygon, 512

" perpendicular

lines, 86
slopes of, 586
line and plane, 219
“planes, 301
~ perpendicular bisector, 169
pi, v, 518
plane(s), 10
parallel, 291
- perpendicular, 301
plane angle, 300 -
point, .10
point-slope form, 605
polnt of tangency
' of circles, U413
-~-of spheres,--423
polygon, 506~ .
angle of, 506
apothem of,._...512
convex,. 507._ .
diagonal of, 509
inscribed, 511
perimeter of, - 512 . -
regular, 511
sides of, 506
vertices of, 506
polygonal region, 317
polyhedral regions, 546
positive real numbers, 191
postulate(s), 9 '
of order, 191, 192
power of a .point, ﬁSO
prism, 534
altitude of, 535
cross-section of, 535

lateral edge; . 53T oo oo

lateral face, 537
lateral surface, 537
lower base, 535
rectangular, 535
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prism (Continued)
right, 535
total surface, 537
triangular, 535
upper base, 535
proJjection
‘ of a line, 306
n of a point, _306
proof —~
converse, 202
double-column form of, 118
existence, . 165
indirect, 160
uniqueness, 165
writing of, 117 -
proportional sequences, 360
pyramid, 540
altitude of, 540
base of, ﬁo
regular, 5#4
vertex of, 540
volume of, 551
Pythagorean Theorem, 339
quadrant, 571
quadrilateral, 263
consecutive angles of, 264
consecutive sides of, 264
cyclic, 473
diagonal of, 264
inscribed, 438
opposite angles of, 264
radius, 409, 4
. of sector, 527
rational numbers, 22
ray,
end-point of, 46
opposite, 46
real numbers 23
“‘rectangle, 268
area of, 322
~ rectangular parallelepiped, 538
‘reflex angle, 7
- region '
circular, 520
polygonal, 317
polyhedral, 546
triangular, 317
regular
R polygon, .. 511 .
' pyramid, 544
remote interior angle, 193
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rhombus, 268
“right angle, 85
right dihedral angle, 301
right prism, 535
right triangle, 172
scalene triangle, 128
sector, 527 )
.arc of, 52T
radius of, 5’27
segment(s), 45
bisector, 169
congruent, 109
segment of a circle, 528
semi-circle, 429
separation, 182
set(s), 15
auxiliary, 176
‘concurrent, 278
convex, 62
element of, 15
empty, 18
intersection of, 16, 473
member of, 15
union of, 17
side(s) :
B consecutive, 264
of angle, 71
of dihedral angle, 299
of polygon, 506
of triangle, T2
- opposite, 264
similarity, 365
skew lines, 241
slope, 577 :
of parallel lines, 584
of perpendicular lines, 586
slope-intercept form, 611
space, 53
sphere, 409
exterior of, 423
interior of, ¥23
surface area of, 562
volume of, 559
square, 268
square root, 25
straight angle, 78
subset, 15 '
supplement, 82 .
__supplementary angles, 82
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tangent
circles, U417
common external, 454
common internal, U454
externally, 417
internally, U417
line.and circle, 413
plane and SEhere, 423
segment, 448
theorem, 9O
_total surface of a prism, 537
transversal, 244
trapezoid, 265
area of, 331
triangle(s), 72
altitude of, 214
angle bisector of, 130
area of, 328
centroid of, 280
congruent, 98, 111
equiangular, 128
“equilateral, 128
exterior of, T4
interior of, T4
isosceles, 127, 128, 346
median of, 130
overlapping, 123
perimeter of, 287
right, 172
scalene, 128
sides of, T2
similar, 365
300-60°, 346
vertex of, T2
triangular region, 317
undefined terms, 9, 10
union of sets, 17
uniqueness proofs, 165
vertex
of angle, 71
of polygon, 50C
of pyramid, 540
of triangle, T2 ——

vertical angles, 88 .
vertical line, 576
volume

of cone, 557
of cylinder, 557
of prism, 54 »
[ _ofﬂ pyramid’ 551 e e e et e emm e e e = o et s S e Lt S a8 s i
v of sphere, 559
whole numbers, 22
x-axis, 568
y-axis, 568
y-intercept, 611
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