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Chapter 11

AREAS OF POLYGONAL REGIONS

11-1. Polygonal Regions.

A triangular region is a figure that consists of a triangle

plus its interior, like this:

A polygonal region is a figure in a plane, like one of these;

that can be "cut up" into triangular regions. To be exact:

Definitions: A triangular region is the union of a triangle

and its interior. A polygonal region is the union of a finite

number of coplanar triangular regions, such that if any two of

these intersect the intersection is either a segment or a point.

The dotted lines in the figures above show how each of the

two figures can be cut up in this way. Here are more examples:

9
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In the last two examples the figures have "holes" in them. This

possibility is not excluded by the definition, and these figures

are perfectly good polygonal regions.

On the other hand, the region APDFQC cannot be "cut up" into

regions ABC and DEF even though it is the union of these two

triangular regions. The intersection of the two triangular

regions is the quadrilateral region EPBQ, which is certainly

not a segment or a point. This does not mean that APDFQC' is

not a polygonal region, but merely that its description as a

union of triangular regions ABC and DEF is not enough to

[sec. 11-11
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show this. APDFQC is in fact a polygonal region, as is shown

below.

A

The polygonal regions form a rather large class of figures.

Of course, there are simple and important figures that are not

polygonal regions. For example, the figure formed by a circle

together with its interior is not of this type.

If a figure can be cut up into triangular regions, then this

can be done in a great many ways. For example, a parallelogram

plus its interior can be cut up in many ways. Here are three of

these ways.

N

In this chapter we will study the areas of polygonal regions,

and learn how to compute them. The sixteen postulates that we have

introduced so far would enable us to do this, but the treatment

would be extremely difficult and quite unsuitable for a beginning'

geometry course like this one. Instead we shall introduce measure

of area in much the same way we did for measure of distance and

angle, by means of appropriate postulates.

1 1

[sec. 11-1]
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Postulate 18. If two triangles are congruent,

then the triangular regions have the same area.

320

Postulate 71. To every polygonal region there

corresponds a unique positive number.

Definition: The area of a polygonal region is the number

assigned to it by Postulate 17.

We designate the area of a region R simply by area R. In

the following postulates, when we speak of a region, for short, it

would be understood that we mean a polygonal region.

Our intuition tells us that.two regions of the same shape and

size should have the same area, regardless of their positions in

space. This fundamental fact is the motivation of the next

postulate.

If a region is cut into two pieces it is clear that the area

of the region should be the sum of the areas of the pieces. This

is what our next postulate says. Let us state the postulate and

then consider its meaning.

Postulate 19. Suppose that the region R is

the union of two regions R1 and R2. Suppose that

R
1

and R
2

intersect at most in a finite number of

segments and points. Then the area of R is the

sum of the areas of R
1

and R
2'

The three figures below show examples of the application of

this Postulate.
12

[sec. 11-1]



R 1

R2
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In each figure the intersection is heavily marked, and consists of

a segment in the first figure, three segments in the second, and

two segments and a point in the third.

On the other hand, the next figure is the union of two tri-

arigular regions, R1 and R2, but their intersection is not made

up of a finite number of segments and points. Instead it is the

quadrilateral region in the middle. Thus Postulate 19 cannot be

applied to this case. If we tried to calculate the area of the

whole region by adding the areas of Ri and R2 the area of the

quadrilateral region would be counted twice. It was in anticip-

ation of this situation that we insisted, in the definition of

polygonal region, that the triangles determining the region must

not overlap.

As was the case with distance and angle, the "unit of area"

can be specified at will. However, it is convenient and customary

to choose this unit to be closely associated with the unit of

distance. If we are to measure distance in inches, we measure

area in square inches; and in general, whatever unit of distance

we use, we use the corresponding square unit to measure area. One

way to ensure this would be to state as a postulate that the area

of a square is to be the square,of the length of an edge.

13
(sec. 11-1]
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F

(By the "area of a square" we mean, of course, the area of the

polygonal region which is the union of the square and its interior.

We will speak in the same way of the area of any quadrilateral,

meaning the area of the corresponding polygonal region.)

The statement A = e2 is, however, a little too special to

be convenient. The difficulty is that if we establish our unit of

area by the postulate A = e2 , then we would have the problem of

proving that the corresponding formula holds also for rectangles.

That is, we would have to prove that the area of a rectangle is

the product of the length of its base and the length of its

altitude. Of course, if we know that this holds for rectangles,

then it follows immediately that for squares we have A = e2 ,

because every square is a rectangle. The converse can also be

proved, but the proof is harder than one might think. The most

convenient thing to do, for the present, is to take as a postulate

the more general formula, that is, the one for rectangles:

Postulate 20. The area of a rectangle is the

product of the length of its base and the length of

its altitude.

[sec. 11-1]
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Notice that in the previous paragraph and in Postulate 20 we

were very careful to say, "length of its base" and "length of its

altitude". In using Postulate 20 from now on, we will just say,
. . S .

"The area of a reetangle is the product of its base and its

altitude". This means that we use "base" and "altitude" sometimes

to indicate line segments and sometimes to indicate th, 'engths.

From now on we will do this fairly generally, trust

ability to tell from the context which meaning of a Lntend.

If we "bisect a side of a triangle" the word "side" will have its

original meaning, as a set of points. If we "square the side of

a triangle" we are using the word "side" as an abbreviation for

"length of the side". Such abbreviations will be very convenient

in this and later chapters.

On the basis of the four area postulates we can calculate the

areas of triangles, parallelograms, and a variety of other figures.

Problem Set 11-1

1. Show that each of the regions below is polygonal by indicating

how each can be cut into triangular regions such that if two

of them intersect their intersection is a point or segment of

each of them. Try to find the smallest number of triangular

regions in each case.

a. b.

I 5

[sec. 11-1]
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C. d. e .

10

2. Find the area of a rectangle 50 ft. long and 1 ft. wide.

3. a. If you double the altitude of a rectangle and leave the

base the same, how is the area changed?

b. If both the altitude and the base of a rectangle are

doubled, how is the area changet7

4.. How many tiles, each 6 inches square, does it take to cover a

rectargular floor 37 ft. 6 in. by La ft.?

5. The figure shown is a face

of a certain machine part.

In order to compute the cost

of painting a great number

of these parts it is necessary

to know the area of a face.

The shaded regions are not

to be pnalted. ?Ind the area

to be pniTted.

[sec. ll -1]
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*6. Are the following stdtements true or false? Give a reason for

.

each answer.

..a, JoglygoW

b. Postulate 17 says that for every positive number A

there corresponds some polygonal region R.

c. Every polygonal region has an unique area.

d. If two triangles are congruent, then the trinngular

regions have the same area.

e. The union of two polygonal regions has an area equal to

the sum of the areas of each region.

f. Postulate 20 assures ua. that the area of a square having

-side e is A = e
2

.

g. The interior of a trapezoid is a p -gonsl region.

h. A triangular region is a polygonal n_-gAgn-

A rectangular region having base 6 and Fiatit 4 can be

divided up into squares having a base 2, -:=Figure 1.

Notice that a square with base 2 is the 14r&!8t square pos-

sible which will divide the rectangular .771,ot.i into an exact

number of congruent sqzares.

4

6

Figure 1.

I. 7

[sec. 11-1]
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Similarly, a square with base is the largest square

possible which will exactly divide a rectangular region with

bass 4 andjltitude ap in, Figure 2.,
.

4

Figure 2.

Determine the side of the largest square which will exactly

divide rectangular regions having the following measures:

a. b = 4; h = 12. d. b = 1.7; h 1.414.

b. b 5; h 3
e. b = 2.0; h N/7-c?".

c. b = 3.5; h = 1.7. f. b = ..4T; h =

What difficulty do you find in parts (e) and (f)? Do you see

that this relates to the discussion of the text preceding

Postulate 20?

*8. In the following figure, A, B, C, D, E, F, G are

called vertices, the segments AB, BC, CD, DE, EG, GA,

EF, FD, FB are called edges, and the polygonal regions

ABE, FED, BCDF are called faces. The exterior of the

figure will also be considered as a face.

t 8

[sec. 11-1]



327

Let the number of faces be f, the number of vertices be v,

and the number of edges be e. In a theorem originated by a

famous m4;thematJ,pian, Euler,.the followin14 formula ocdpursj

f - e + v, which refers to figures of which the above figure

is one possibility. Using the figure, letls compute

f e + v. You should see that f = 4, v = 7, e = 9, and

this gives us f - e + v = 2.

Using the two figures below, compute f - e + v. Notice that

the edges are not necessarily segments.

a.

C.

b. Suppose this figure to be a

section of a map showing

counties:

What pattern do you observe in the results of the three

computations?

d. In part (a) take a point in the interior of the quadri-

lateral and draw segments from each of the four vertices

to the point. How does this affect the computation of

f - e + v? Can you explain why?

e. Take a point in the exterior of the figure of part (a)

and connect it to the two nearest vertices. How does

this affect the computation?

f. If you are interes-4ed in thinroblem and would like to

pursue it further, you will flnd it discussed in "The

Enjoyment of Mathematics" by Rademacher and Toeplitz and

in "Fundamental Concepts of Geometry" by Meserve.

[sec. 11-1]
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11-2. Areas of Triangles and Quadrilaterals.

Let us now compute some areas, on the basis of our postulates.

Theorgn 11-1. The gtrea.gi a.right.tx:iangle.is half the pro-

duct of its legs.

2A = ab.

Proof: Given A PQR, with a right angle at R. Let A be

the area of A PQR. Let RI be the intersection of the parallel to

PR through Q and the parallel to QR through P. Then QRIPR

is a rectangle, and APQR atA QPRI. By Postulate 18, this means

that the area of A QPRI is A. By Postulate 19, the area of the

. rectangle is A + A, because the two triangles intersect only in

the segment PQ-,. By Postulate 20,-the area of the rectangle is eh

Therefore

and

2A = ab,

1
A = ab,

which was to be proved.

From this we can get the formula for the area of any triangle.

Once we get this formula, it will include Theorem 11-1 as a

special case.

Theorem 11-2. The area of a triangle is half the product of

any base and the altitude to that base.

2 0

[see. 11-2)
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1A = -bh.
2

Proof: Let A be the area of the given triangle. The three

figures show the three=ases that need to be considered.

(1) If the foot cf the altitude is between the two end-points

then the-altt=de divides the given triangle into two
_

right-triangles,

By the preceding
1 17b1h and 7b2h.

with bases b
1

and b
2'

as indicated.

theorem, these two triangles have areas

By Postulate 19, we have

1A = ;b1h + e2h.

Since b
1
+ b

2
= b, we have

A = ir.(b
1
+ b

2
)h

1
= -2bh,

which was to be proved.

(2) If the foot of the altitude is an end-point of the base,

there is nothing left to prove: we already know by the

preceding theorem that A = ;Ph.

(3) In the third figure, we see the given triangle, with area

A, and two right triangles (a big one and a little one.)

We have

+ A = ;-(b1 + b)h.

The student should supply the reason for this step.
1

Solving algebraically for A, we get A . 710h, which

was to be 7ra7red. 2 1

[sec. 11-2]
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Notice that Theorem 11-2 can be applied to any triangle in

three ways, because any side can be chosen as the base; we then

muatiply by the corresponding altitude and divide by 2, to 'get the

areL 'The Pigure.below gholgs . the three choices for a single'

triangle.

1
The three formulas
1 1

and -eD3h3 must give

the same answer, because all

three of them give the right

answer for the area of the

triangle.

h2

Notice also that once we know how to find the area of a

triangle, there is not much left of the area problem for polygonal

regions: all we need to do is chop up the polygonal regions into

triangular regions (which we know wp can do) and then add up the

areas of the triangular regions.

For parallelograms and trapezoids this is fairly trivial.

Theorem 11-3. The area of a parallelogram is the product of

any base and the corresponding altitude.

Proof: Draw diagonal SQ. By Theorem 9-14 SQ divides the

parallelogram into two congruent criangles. Postulate 18 tells us

that congruent triangles have equal area. Now the area of
1

PSC1 = --bh. Hence the area of parallelogram PQRS = bh, which
2

was to be proved.

[sec. 11-23
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Notice that Theorem 11-3 can be applied to any parallelogram

in two ways, because any side can be taken as the base, and can

then be multiplied by the correaponding altitude.

z

In the first case we get A = bh, and in the second case we get

A = blhl. These two expressions bh and blhl must give the

same answer, because both of them give the right answer for the

area of the parallelogram.

The area of a trapezoid can also be obtained by separating it

into two triangles.

Theorem 11-4. The area of a trapezoid is half the product of

its altitude and the sum of its tases.
b2

b,

1
A = + b2)

Proof: Let A be the area of the trapezoid. Either diagonal

divides the trapezoid into two triangles, with areas ;b1h and
1
.1)

2
h. (The dotted lines on the right indicate why the second

2
triangle has the same altitude h as the first.) By Postulate 19

1 1
A = -fblh

Algebraically, this is equivalent to the formula

1 /

A -p0p1 + b2).

[sec. 11-2]
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The formula for the area of a triangle has two useful con-

sequences, both of which are easy to see:

Theorem 11-.5. If two triangles have equal altitudes, then

the ratio of their areas is equal to the ratio of their bases.

Given: A ABC and DEF with equal altitudes.

Area of A ABC
b
1

Area of A DEF 2
Prove:

1
This is easy to establish once we have the formula A = 7bh

2 h b
2 1 1

because it simply means that - 1 = which is true,
b '

2b2h 2

Theorem 11-6. If two triangles have equal altitudes and

equal bases, then they have equal areas.

1
The proof of this is clear because the formula A = -eh gives

the same answer in each case.

[sec. 11-2]
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Problem Set 11-2

1. In right triangle ABC, with.right angle at C, AC = 7,
BC = 24, .AB = 25.

a. Find the area of p ABC.

.b. Find the altitude to the hypotenuse.

2. The hypotenuse of a right triangle is 30, one leg is 18, and
the area of the triangle is 216. Find the length of the

altitude to the hypotenuse and the length of the altitude to

the given leg.
4-> ,

3. In A ABC, CD ± AB and
, 4->

AE ± BC.

a. If AB = 8, CD = 9,

AE = 6, find BC.

b. If AB = 11, AE 5,

BC = 15, find CD.

c. If CD = 14, AE = 10,

BC = 21, find AB.

d. If AB = c, CD = h,

BC = a, find AE.

4. In this figure CQ = QD.

Prove that the

Area A ABC = Area A ABD.

2.5

(sec. 11-2]
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5. If ABCD is a square, find

the area of the star pictured

here in terms of s and b.

The segments forming the

boundary of the star are

congruent.

6. In parallelogram ABCD,
4->

AE 1 DC, AF ± BC, and

BG I DA.

a. If AE = 7, DC 12,

BC = 14, then

AF =

b. If AE = 10, AB = 18,

GB = 15, then

AD =

c. If AF = 6, DC = 14,

AE = 8, then

AD =

d. If GB 16, AD = 20,

AF = 16, then

AE =

7 Prove that the diagonals of

a parallelogram divide it

into four triangles which

have equal areas.

A

[sec. 11-2)



8. Find the area of trapezoid

ABCD,

a. If AB = 12, DC . 6,

DE = 4.

b, If AB . 9 AD = 4,

DC 5, CF = 3.

c. If AE 4, FB 6,

DE . 5, DB 13,

DC . 6.

d. If AB 27, DE mg 7,

AE = 3, EF = FB.

e. If AE 12, EF = 3,

FB 9, CF FB.

335

9. Find the area of a trapezoid if its altitude has length 7 and

its median has length 14. (Hint: See Problem 10 of Problem

Set 9-6.)

10. A triangle and a parallelogram have equal areas and equal

bases. How are their altitudes related?

11. Compare the areas of

a. Parallelogram ABCD

and triangle BCE.

b. A BCF and A BCE.

c. A ABF and A FCD, if

F is the mid-point of

AD.

d. A CFD and A BCE and

parallelogram ABCD,

if F is the mid-point

of AD.

2 7
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12. In surveying the field shown

here, a surveyor laid off

north-and-south line NS

through B and then located
4->

the east-and-west lines CE,
4-> 4->
DF, AG. He found that

CE = 5 rods, DF = 12 rods,

AG = 10 rods, BG = 6 rods,

BF = 9 rods, FE = 4 rods.

Find the area of the field.

13. Prove the theorem: If

quadrilateral ABCD has

perpendicular diagonals,

its area equals one-half

the product of the lengths

of the diagonals.

14. Write a corollary to the theorem of Problem 13 relating to

the area of a rhombus.

15. The area of a quadrilateral is 126 and the length of one

diagonal is 21. If the diagonals are perpendicular, find

the length of the other diagonal.

16. The diagonals of a rhombus have lengths of 15 and 20. Find

its area. If an altitude of the rhombus is 12, find the

length of one side.

*17. Would the theorem of Problem

13 still be true if the poly-

gonal region ABCD was not

convex, as in this figure?

2 8
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18. Prove that a median of a triangle divides the triangle into

two triangles each having an area equal to one-half the area

of the original triangle.

19. a. If AD and BE are

two medians of A ABC

intersecting at G,

prove that Area A AEG =

Area A BDG.

b. Determine what part

Area A BDG is of

Area A ABC. (Hint:

Use other median CF.)

20 If AB is a fixed segment

in plane E,, what other

positions of P in plane E

will let the area of A ABP

remain constant? Describe

the location of all possible

positions of P in plane E

which satisfy the condition.

Describe the location of all

possible positions of P in

space which satisfy the

condition.

[sec. 11-2]
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*21. The., =re at-the right

is from f'cmr right

-ri:i-AL&L and rect-

Iotice --tat there

Jua..ce ho1 e,. me unit

a. _ the areas of

eight parts.

(r...it the hole.)

b. S.,low that the same

result is obtained

by taking one-half

the product of the

length of the base

and the length of

the altitude to it.

c. Explain why

the results

in (a) and

(b) come out

the same in

spite of the

hole.

*22. A line cuts a rectangular

region into two regions

of equal area. ,Show that

it passes through the

intersection of the

diagonals of the rect-

angle.

30
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11-a. The Pythagorean Theorem.

Now that we know how to work with arec.1, agorean
Torem is actually rather easy to prove.

Theorem 11-7. (The Pythagorean Theorem), In triangle,

t7..e. square of the hypotenuse is equal to the :77,v-1 squar'as cf
the legs.

C = a+b
2

Proof: We take a square for which the lel.fh :;1' each side is

a b. In this square we draw four right 'friar_ with legs
and b, like this:

then

a

a

a

(1) Each of the four right triangles is congrtzent, to the

given triangle by the S.A.S. Postulatil-t. Tbefore
their hypotenuses have length c, as _ndtcated in the

figure above.

[sec. 11-3]
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(2) The quadrilateral formed by the four hypotenuses is a

square. We can show this in the following way:

z z -Ls a right angle because m/ y + 111,Z z + mL x 180, and

m/ y + mL x = 90. (The acute angles af a right triangle are

complementary). Since all four sides are each equal to c, the

cuadriLateral is a square.

-
.;) The area of the large square is equal to the area of the

small square, plus the areas of the four congruent right

triangles.

Therefz,re

(a + b)2 = c2 412-abN
2 /*

Therefore

a
2 + 2ab + b

2 = c
2 + 2ab,

and finally, a
2 + b 2

= c
2

, which was to be proved.

The converse of the Pythagorean Theorem is also true.

Theorem 11-8. If the square of one side of a triangle is

equal to the sum of the squares of the other two sides, then tke

triangle is a right triangle, with a right angle opposite the

first side.

Proof: Given A ABC, as in the figure with c2
a2 b2.

Let A AlB,C1 be a right triangle with legs a and b.
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Let d be the hypotenuse of the sec=ad triangle. By the
Pythagorean Theorem,

d2 a
2 + .

Therefore d
2

c
2

. Since c and L_ are both positive, this
means tat d = c. By the S.S.S. Theorem, we have P A'B'C,

Therefore z c v.. z cf. Therefore C is a right angle, which
was to be proved.

Problem Set 11-3a

1. A man walks due north IC miles and then due east 3 miles.

How far is he from his starting point? ("As the crow flies".)

2. A man walks 7 miles due north, tE-miles due east and then 4
north. How far is he fram his starting point?

3. A man:travels 5 miles north, 2 miles east, 1 mile north, then.

4 miles east. How far is he from his atarting polint?

4. In the rectangular solid indicated in the diagram, find the

length of AC; of AD.

A 4

5. Which of the following sets of numbers oould he the lengths of

the sides

a. 10,

b. 8,

C. 7,

of a right triangle2

24, 26. d.

14, 17. e.

24, 25. f.

9

_L.5,

2
17,

-o, 41.

3.6, 3.9.

2 127, as..

[sec. 11-31
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6. a. Show by tte converl:e of tne Pyzciagorean Theorem tlott

integers Abich reT-7esent Leni, of sides of ritn, tri-

angles c7z-7-:. be foun.71 in tr.. fa:::nwing manner.

Choce any positive L-77775 m and n,

m > ,I. Then m2 - n- ± 2mn will be tr.r.- lengths

of tne legs of a rigr.t 7::::iangle and m
2 +7,f- will

be tlae length of its d.T.....A..enuse.

b. Use the:method of part (a, to list integral lenvmhs of

sides of right triangles with !Iwpotenuse less tnan or

equal to 25. There are a,ix such triangles.

7. a. With right angles and

lengths as marked in the

figure, find AY, AZ

and AB.

b. If you continue the

pattern established in
-

this figure making

BC 1 and mL CBA = 9), \\

what would be the lenzt±_'

of AC? What would b.

the length of the ney-

segment from A? You

should. find an intereat-

ing cattern

8. In the rectangular

the right AW = 1, AB

AD = 2. Find AY.

3 4
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*9. In A ABC,

AC = 13.

= 14, BC . 15,

a. Find the length of the

altitude, he, to AB.

b. Find the length of the

altitude, ha, to BC.

*ID. has obtuse angle Z:B,

and AB = 6, BC AC . 18.

Fint the length of the altitude,
44.

he, to AB.

343

11, One angle of a hombus has a measure of 60 and c=e side has
length 8. Find the length of eac.'" dfagonal.

12, In rhombus ABCD, AC = 6

and BD = 4. Find the

length of the p=rpendicular

fran any vertex to either

ormoLlte side.

13. In the figure BC I CA,

BC = 5, CA = 12, CD I AB.

Find CD.

3 5
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14. The lengths of the legs of

right triangle ABC are 15

and 8. Find the length of

the hypotenuse. Find the

length of the altitude to

the hypotenuse.

15. If the lengths of the legs

of a right triangle ABC

are a and b, find the

length of the altitude to

the hypotenuse.

16. AABC is isosceles with

CA = CB. Medians AP and

BQ are perpendicular to

each other at S. If

SP n, find the length of

each segment and the areas

of polygonal regions ASQ,

ASB, ABC and QSPC in

terms of n. (Do not change

radicals to decimals.)

17. A proof of the Pythagorean Theorem

making use of the following figure

waa discovered by General James A.

Garfield several years before he

became President af the United

States. It appeared about 1875 in

the "New England Journal of Education."

.2rove that a
2

+ b
2 = c

2 by stating

lgebraically that the area of the

trapezoid equals the sum of the areas

nf the three triangles. You must in-

clude proof that Z EBA is a right

angle.
[sec. 11-3]
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*18. ABCD is a three-dimensional

"pyramid-like" solid.

Note that points A, B, C,

and D are not coplanar.

We are told that F1D = BC = BA

= AC = CD = DA = 2.

a. R and S are mid-

points of BA and CD,

respectively. Prove

RS is perpendicular to

both BA and CD.

b. Find the length of RS.

*19. In ABD, ABD is a right

angle, AB:=-BC = 1, AC = CD.

Find. AD. Find mL ADC and

mL DAB

3 7

3 45
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The Pythagorean Theorem also gives us information about the

shapes of certain simple triangles. Two very useful relationships

are stated in the following two theorems. We give figures which

suggest their proofs.

Theorem 11-9. (The 30-60 Triangle Theorem.) The hypotenuse

of a right triangle is twice as long as a leg if and only if the

measures of the acute angles,are 30 and 60.

a a

Theorem 11-10. (The Isosceles Right Triangle Theorem.) A

right triangle is isosceles if and only if the hypotenuse is IT
times as long as a leg.

Problem Set 11-3b

1. The lengths of two sides'of a triangle are 10 and 14 and the

measure of the angle included between these sides is 30.

What is the length of the altitude to the side 14? What is

the area of the triangle?

2. The measure of the congruent angles of an isosceles triangle

are each 30 and the congruent sides each have length 6. How

long is the base of the triangle?

38
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3. The measure of one acute angle of a right triangle is double

the measure of the other acute angle. If the length of the

longer leg is 5,/, what is the length of the hypotenuse?

4. Show that in any 300 - 60° right triangle with hypotenuse s

the length of the side opposite the 60° angle is given by

h

5. In parallelogram ABCD, AB = 2

and AD = 3, m,L B = 60. Find

the length of the altitude from
4E->

A to DC.

6. If an altitude of an equilateral triangle is 15 inches long,

how long is one side of the triangle?

7. In a right triangle with acute angles of 30° and 60°, what is

the ratio of the shortest side to the hypotenuse? Of the

hypotenuse to the shortest side? Of the shortest side to the

side opposite the 600 angle? Of the side opposite the 600

angle to the shortest side? Of the side opposite the 600

angle to the hypotenuse? Of the hypotenuse to the side

opposite the 600 angle? Are these ratios the same for every

300 - 600 right triangle? If you have done this problem

carefully, you should find the results very helpful in many

of the following problems.

8. What is the area of the isosceles triangle whose congruent

sides have lengths of 20 inches each and whose base angles

have measures of:

a. 30? b. 45? c. 60?

9 What is the area of the isosceles triangle whose,base has a

length of 24 inches and whose base angles each have measures

of:

a. 45? b. 30? c. 60?

[sec. 11-3]
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10. Use the iinformation given :n the figures to determine the

numerical values called fc: below:

C.

a =

2a =

3a =

a =

2a =

x =

y =

X =

Y =

b.

d.

4 0
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e. f.

X =

Y =

g. h.

3

a =

x =

11. In this figure AB plane E.

A BFH lies in plane E.

HF FB. AB = BH = 6.

mL FHB = 30.

Give the measures of as

many other segments and

angles of the figure as

you can.determine.

8

8

X =

a =

X =

349

*12. In AABC, mdZ A = 30, AC = 4,

AB = Find BC. Is LC

a right angle?

[sec. 11-3]
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*13. In LS, ABC as shown in the figure,

find BC. (Hint: Draw the

altitude from C.)

14. The base of an isosceles triangle is 20 inches and a leg is

26 inches. Find the area.

15. In this figure FD = FC,

DB = CA, DF I FB, and

CF I FA. Prove LS, FAB

is isosceles.

16. DA and CB are both

perpendicular to AB in

this figure. AE = FB

and DF =-CE. Prove

z x z y.

17. Prove the theorem: The area

of an equilateral triangle

with side s is given by
2

Area =

4 2

(sec. 11-3)
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18. Find the area of an equilateral triangle having the length of

a side equal to:

a. 2. c.

b. 8. d. 7.

19. The area of an equilateral triangle is 9.4. Find its side

and its altitude.

20. The area of an equilateral triangle is 16 Nr3-. Determine its

side and its altitude.

21. A square whose area is 81 has its perimeter of length equal

to the length of the perimeter of an equilateral triangle.

Find the area of the equilateral triangle.

22. This figure represents a

cube. The plane determined

by points A, C and F

, is shown. If AB is 9

inches, how long is AC?

What is the measure of

FAC? What is the area

of FAC?

23. In trapezoid ABCD, base

angles of 60° tnclude a

base of length 12. The

non-parallel side AD has

length 8. Find the area

of the trapezoid.

24. Find the area of the

trapezoid.

4 3
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*25. In the figure, plane E and

plane F intersect in AB,

forming dihedral angle

F-AB-E. CG J plane E,

DG I AB, and CD I AB. D

is the mid-point of AB.

BC V AC. If AB =

AG = 6, mL CBG = 45, and

mL CAG = 45, find CG and

mL F-AB-E.

*26. Figure ABCD is a regular

tetrahedron (its faces are

equilateral). Let any edge

be e. NM AB and

NM 1. DC.

a. Show that the length

of a bi-median, that

is, the segment, NM,

joining the mid-points

of opposite edges, is

e.

(Hint: Draw AM.)

b. Show that the length of the altitude, AH, of the

tetran 4edron is e. (Hint: Draw HC and HD.

Does H lie on BM? Recall that the medians of a

triangle are concurrent at a point of the distance

from each vertex.)

4 4
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2 . ABXY is a square. AB = 6.

mZ X-AB-E = 60.

Rectangle ABCD is the

projection of square_ ABXY

on plane E. What is the

area of rectangle ABCD?

353

*28. Given any two rectangles anywhere in a plane, how can a

single line be drawn which will separate each rectangular

region into two regions of equal area?

Review Problems

1. If the side of one square is double the side of another

square, then the area of the first equare is times

the area of the second square.

2. In ABC, tt It AB = 8, CD = 9 and AE = 6.

Find BC.

4 5
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3. A man walks 5 miles north, then 2 miles east, then 1 mile

north, then 6 miles east. How far will he be from his

starting point?

4. If the diagonal of a square is 15 feet long, how long is

each side?

5. Find the area of an isosceles triangle in which the base is

12 and each congruent side is 10.

6. In the figure,. PQRS is a

parallelogram, QT SR,

and SV I QR.

a. If SV = 7 and PS = 5/

find the area of PQRS.

b. If SV = 8, QT = 4 and

SR = 10, find QR.

7. In an equilateral triangle the length of the altitude is

6 inches. What is the length of each side?

8. Tho side of a rhombus is 13 and one of its diagonals is 24.

Find its area.

9. In A ABC base AB = 12, median CD = 8, and mL ADC = 30.

The area ofA ABC is

10. Derive a formula for the

area of the figure at the

right in terms of the in-

dicated lengths.

4



11. Find the area of the shaded

region of the Figure at the

right.

12. Diagonal AD of the pentagon

ABCDE shown is 44 and the

perpendiculars from B, C,

and E are24, 16, and

respectively. AB = 25

and CD = 20. What is the

area of the pentagon?

13. Given: Parallelogram ABCD

with X and E mid-__
points of AB and AD

respectively.

To prove: Area of region
1AECX = 7 area parallelogram

ABCD.

A

355

14. Prove that the area of an isosceles right triangle is equal

to one fourth the area of a square having the hypotenuse of

the triangle as a side.

*15. An equilateral triangle has one side in a given plane. The

plane of the triangle is inclined to the given plane at an

angle of 600. What is the ratio of the area of the triangle

to the area of its projection on the plane?

4 7
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*16. Explain how to divide a trapezoid into two parts that have

equal areas by a line through a vertex.

*17. Find the length of the diagonal of a cube whose edge is 6

units long.

*18. In this rectangular solid

AE = 5, AB = 10 and

AD = 10.

a. Find AC.

b. Find AG.

*19. Given: Square ABCD with

points E and F as

shown, so that EC IFC.

Area ABCD = 256 sq. ft.

Area of .6, CEF = 200 sq. ft.

Find BE.

*20. If W, X, Y and Z are

m1d-point5 of sides of

square ABCD, as shown in

the figure, compare the area

of this square with that of

square RSPQ.

4 8
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*21. The figure shows two isosceles right trianglet. The firat of

these.has a horizontal side of length 10 units and the second

tes a horizontal hypotenuse of length 14 units.

a. Draw two such triangles on graph paper. Cut out the

second one and place it on the first to show that

their areas are apparently equal.'

b. In the first figure count the number of small squares

and the number of small half squares (right isosceles

triangles). Use these numbers to compute the area.

c. Do the same for the second figure.

d. Explain the discrepancy.

4 9



Chapter 12

SIMILARITY

12-1. The Idea of a Similarity.

Proportionality. Roughly speaking, two geometric figures are
similar if they have exaatly the same shape, but not necessarily
the,same size. For example, any two circles are similar; any two
squares are similar; any two equilateral triangles are similar;
and any two segments are similar.

o0 A A-
Below are two triangles, with the lengths of the sides as

indicated:

These; figures stand in a very special kind of relation to each
other. One way to describe this relation, 'speaking very roughly,

:is to say that the triangle on the left can be "stretched", or the

one on ale right can be "shrurik", so as to match up with the other
triangle, by the correspondence

ABC4-4A'B'C'.

5 0
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Of course, this correspondence is not a congruence, because each

side of the right-hand triangle is twice as long as the corres-

ponding side of the other. CorreEpondences of this type are

called similarities. The exact definition of a similarity will be

given later in this chapter.

Notice that the lengths ofthe sides of our two triangles

form two sequences of positive numbers, a, b, c and a', b',

c', standing in a very special relation: each number in the

second sequence is exactly twice the corresponding number in the

first sequence; or, said another way, each number in the first

sequence is exactly half the corresoonding number in the second

sequence. Thus

a' = 2a,

b' =

c' = 2c;

or

Another way of putting this is to write

a' b' c' a b c 1
or

Sequences of positive numbers which are related in this way are

called proportional.

Definition: Two sequences of numbers, a, b, c,

and p, q, r, none of which is zero', are proportional if

= = or
p q r a o c

The simplest proportionalities are those involving only four

numbers, and these have special properties that are worth noting.

We list some of them for later reference.

5 1
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Algebraic, Properties of a Simple Proportion.

a cIf

with a. b, c, d all different from zero,

then (1) ad = be,

(2)
a b

(3)
a + b c + d

(4) a - b c - d

Proof: Taking the original equation §

(1) Multiply both sides by bd to get ad = bc;

(2) Multiply both sides by .1:61 to get =

+ +(3) Add 1 to both sides to get a b c d;

--(4) Subtract 1 from both sides to get a b c d

Other relations can be derived, but these are the most useful.

a bDefinition: If a, b, c are positive numbers and B.

then b is the geometric mean between a and c.

From Property (1) above, it follows that the geometric mean

between a and c is

Problem Set 12-1

1. Complete each statement:

a 3
a. If B. = 7 then 7a = .

x 1
b. If 7 = q then 4x = .

6 4
c. If = then 6y .

5 Y

[sec. 12-1]
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2. Ih eaCh cf the following proportionalities, find x.

x 3
a . =

b. . 4.

3. Complete each statement:

a
a. If 3a = 2x, then 17

h. Tf = .
4 m, then

4

c.

d.

If

If

7b = 4a,

5.9 = 6x,

then

then

§

=

=

=

=

c.
xrs

2 11
=d.

and SI =

and =

and
a

and =

4. In each of the following proportionalities, express the

number a in terms of the numbers b, c and d.

2a 4c
a

2b 7c
b. 7 =

c.

d.

3b
76'

b 6d
2c 5a'

*5. Complete each statement:

a 3
a. If E. = T , then a -I- b . ---, and a - b ______.

b. If i' = i ) then Y 1- 2 , and 2
2 '

.

a + c 11
c. If

i

- ----7, then § = , and a - c .

c

d. If t = 4 , then b 1 a _ ---, and =b - aa.
6. Here are three sequences of numbers. Are any two pairs of

sequences proportional?

a. 3, 7, 12.

b. 9, 21, 36.

c. -i, 462, 10.

53
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One can tell .at a glance that the sequencea a and b are

proportional since each number in b is 3 ttmes the
corresponding number in a. The comparison of a and c

is not sUch a simple matter.' An efficient way to make such
a comparison might be to change each to a.-newmroportional

sequence beginning with 1, that is,

7a. 1, 7, 4.

b.

c.

7 In the following list of sequences of numbers, which pairs

of sequences are proportional? Make a complete list of

these Pairs of sequences.

1 2 ,a. 5, 7, 9. f.
""

b. 1, 2, 3. g. 27, 21, 51.

C. 9, 7, 17. h. 15, 30, 45.

1 1 1
d. ff, 37, 4-2.. i. 10, 14, 18.

e. 18, 14, 34.

8.
w v 20If what are the values of w and v?

3 4 11 4
9 If 3c- =7 = 1, what are the values of x, y and z?

10. Which of the following are.correct for all values of the

letters involved assuming that no number in any sequence

shown is zero?

d.
a + b 1

a
2 + b 2 .57-7-7

z w
e.

1 c - d
f° 77477 c2 d2°

5 4
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11. If
28

5 0 = 77, what are the values of P, q and t?

12. The geometric mean of two positive numbers a and c is

b .,/E,Y. The arithmetic mean of a and c is d
a + c

0

Find the geometric mean and the arithmetic mean of the follow-

ing pairs:

a. 4 and 9. d. 2 and 24.

b. 6 and 12. e. 2 and 3.

c. 8 and 10.

12-2% Similarities between Triangles.

-We can now state the definition of a similarity between two

triangles. Suppose we have given a correspondence

ABC4-*A1B,C,

between two triangles

AV C

As indicated in the figure, a is the length of the side opposite

A, b is the length of the side opposite B, and so on. If

corresponding angles are congruent, and

a b c

= '

then the correspondence ABC4->A1B,C1 is a similarity, and we

write

A ABC- AA,B,C1.

5 :3
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Definition: Given a correspondence between the vertices of

two triangles. If corresponding angles are congruent and the

corresponding sides are proportional, then the correspondence is

a similarity, and the triangles are said to be similar.

Notice that this definition requires two things: (1) corres-.

ponding angles must be congruent, and (2) corresponding sides must
be proportional. In putting both of these requirements into the

definition, we are making sure that the definition may be applied

to polygonal figures of more than three sides. To see what the

possible troubles might be, if we used only one of our two require-
ments, let us look at the situation for quadrilaterals.

A

CI

DI

First consider the correspondence ABCD4-*A'B'C'D', between the

two rectangles in the figure. Corresponding angles are congruent,

because all of the angles are right angles, but the two rectangles

don't have the same shape, by any means.

Now consider a square and a rhombus, with edges of length 1

and 2, like this:

ATD

Under the correspondence ABCD4-*A'B'C'D', corresponding sides

are proportional, out the shapes are quite different.

56
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We shall see later that for the case of correspondences

between triangles, if either one of our conditions holds, then so

does the other. That is, if corresponding angles are congruent,

then corresponding sides are proportional; and conversely, if

corresponding sides are proportional, then corresponding angles,

are congruent. These facts are given in the A.A.A. Similarity

Theorem and the S.S.S. Similarity Theorem, which will be proved

later in this chapter.

Problem Set 12-2

1. Given a similarity ABC DEF,

write down the proportionality between corresponding sides,

using the notation AB, AC, and so on. Then:

a. Express AB in terms of AC, DE and DF.

b. Express BC in terms of AB, DE and EF.

c. Express AC in terms of BC, EF and DF.

d. Express AB in terms of BC, DE and EF.

e. Express BC in terms of AC, EF and DF.

f. Express AC in terms of AB, DE and DF.

5 7
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2. Below are listed five sets of 3 numbers. Point out which

pairs of sets of numbers (not necessarily in the order given)

might be lengths of sides of similar triangles. Write out
the equal ratios in each case. For example, a, b;

12, 18.

4, 4.

3. Two prints of a negative are made, one a contact print and

one enlarged. In the contact print an object has a length

of 2 inches and a height of 1.6 inches. In the enlarged

print the same object has a length of 7.5 inches. Find its

height in the enlargement.

3 4 6

a. 3, 4, 6. d. 9,

b. 8, 6, 12. e. 2,

c. 3, 4, 9.

4. If A ABC A AIBICI, does it follow that A ABC A A1B'C'?
Why or why not?

D5. Prove: The triangle whose vertices are the mid-points of the

sides of a given triangle is similar to the given triangle.

12-3. The Basic Similarity Theorems.

Consider a triangle A ABC. Let D and E be different

points on the sides AB and AC, and suppose that DE and BC
are parallel.

It looks as if the correspondence

ABC<->ADE

(sec. 12-31
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ought to be a similarity, and it is, as we,shall presently see.

We prepare the way with a series of theorems.

Theorem 12-1. (The Basic Proportionality Theorem.) If a

line parallel to one side of a triangle intersects the other two

sides in distinct points, then it cuts off segments which are

proportional to these sides.

Restatement: In A ABC let D and E be points of AB and

AC such that DE H BC. Then

c

Proof: (1) In A ADE and 'A BDE think of AD and BD as

the bases and the altitude from E to lg as their common

altitude. Then by Theorem 11-5,

area A BDE BD
area L ADE WE'

(2) In A AED and ACED think of AE and CE as

the bases and the altitude from D to AC as their common

altitude. Then by Theorem 11-5,

area A CDE CE
area LADE AE*

(3) A BDE and A CDE have the same base, DE, and

congruent altitudes, since the lines and 155 are parallel.

Hence by Theorem 11-6,

area A BDE = area A CDE.

5 9
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(4) It follows from (1), (2) and (3) that

BD CE
--A15

Applying Algebraic Property ( 3), from Section 12-1,

AB AC
115

The converse of Theorem 12-1 is also true (and is easier to
prove). That is, we have:

Theorem 12-2. If a line intersects two sides of a triangle,
and cuts off segments proportional to these two sides, then it is
parallel to the third side.

Restatement: Let ABC be a triangle. Let D be a point
between A and B, and let E be a point between A and C. If

AB AC
1r'

then BC and DE are parallel.

A

CI

Proof: Let BC' be the line through B, parallel to DE,
and intersecting AE in C'. By Theorem 12-1,

so that

AB AC'
Tr"'

ABAC' = AE 0.

But the equation given in the hypothesis of the theorem means that

ABAC = AE .15.

(sec.-12-3]
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Therefore AC, = AC. Therefore Ct = C, and BC is parallel to

which was to be proved.

Problem Set 12-3a

1. In thi.:1 .P.gure the lengths

of sc.8;:r are a, b, x

and y shown.

a + b a

a

a + b x + a =

a + b
x + y x

2. In this figure if HT H AB,

FA TB
FH FT

FA FT
Fir

FH BT
HA AH

3. In the figure,

a. If RH = 4, HF = 7,

BF = 10, then AB =

b. If RH = 6, HF = 10,

AB = 3, then BF =

c. If RH = 5, RF = 20,

AF = 18, then BF =

6 1
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4. In the figure, DE H AB.

A

371

a. If AC = 12, CD . 4, CE = 8,

b. If AD = 6, BE 10, CD = 4,

c. If BC = 22, EB = 6, CD = 8,

d. If AD = 5, CD = 7, BC = 18,

e. If AC = 15, CE = 6, BC = 18,

5. In the figure let the segments

have measures as indicated.

Can MN H KL? Justify your
answer.

6. Which of the following sets of

data make FG 11 BC?

a. AB = 14, AF . 6, AC = 7,
AG = 3.

b. AB = 12, FB , AC 8,

AG = 6.

c. AF = 6, FB = 5, G ,

GC = 8.

d. AC . 21, GC . 9, AB 14,

AF = 5.

e. AB = 24, AC = 6, AF 8,

GC 4.

6 2
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7. If, in the figure, DF II AB,

prove

DA FB
a'

Hint: Use Theorem 12-1

and subtract 1 from each

fraction.

CA CB
b. 15K, FE

CA CD
c.

8. Given the figure, one person

handled the problem of finding

w in this way:

7 19 - w
w

Propose a more convenient

equation. Do you get the

same result?

9. Place conditions upon x such

that, DE IIAB, given that

CD = x - 3, DA = 19,

CE = 4, and EB = x 4.

A

10. In this figure if EF fi AB, FG R, and GH DC, prove

ifl a. Must the figure be planar?

[sec. 12-3]
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11. Prove: If three or more

parallels are cut by two

transversals, the intercepted

segments on the two transver-

sals are proportional.

Restatement: If the lines

1
and L

2
are transversals

4--*
of the parallel lines AD,

BE, and CF, then

AB DE
Eer MT.

12. Three lots extend from Packard

Street to State Street as shown

in this drawing. The side

lines make right angles with

State Street, and the total

frontage on Packard Street is

360'. Find the frontage of

each lot on Packard Street.

13. Given:AABC, XYZ, such that

XA, YB, ZC meet in 0 and

AB II XY, BC II YZ.

4-*
Prove: AC lilt

6 4
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60' 120'

k.r

90'
State Street
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14. A printer wishes to make a card

6 inches long and of such width

that when folded on the dotted

line as shown it will have the

same shape as when unfolded.

What should be the width?

6

3

Theorem 12-3. (The A.A.A. Similarity Theorem.) Given a

correspondence between two triangles. If corresponding angles

are congruent, then the correspondence is a similarity.

Res tatement : Given a correspondence

ABC <----->DEF

between two triangles. If LA D, LB v-ZE and Z C F,

then

A ABC DEF .

Notice that to prove that the correspondence is a similarity,

we merely need to show that corresponding sides are proportional.

(We don't need to worry about the angles, because corresponding

angles are congruent by hypothesis). The proportionality of the

sides means that

AB AC BC
15E DF EF'

It will be sufficient to prove that the first of these equations

always holds. (Exactly the same proof could then be repeated to

show that the second equation also holds).

6 5
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AB ACThus we need to prove that nR
A

A.
4111111111111111L

B .

--> --->
Proof: Let E' and Fl be points of AB and AC, such

that AE, = DE and AF' = DF. By the S.A.S. Postulate, we have

AAE'F' sf.ADEF.

Therefo're .2 A E'Ft v 2, B. Therefore E'F' and BC are parallel,_ .

or coincide. If they coincide then AAE'F' = AABC, and so
AABC slADEF; in this case,

375

or

AB = DE and AC = DF,

AB ACDr = DDT = 1.

E-P
If EIF1 and BC are parallel, then by Theorem 12-1, we have

AB AC
Tr'

But AEI = DE and AF = DF. Therefore

AB AC
1YE

which was to be proved.

The theorem just proved allows us to prove a corollary which,

it turns out, we quote oftener than the theorem in showing that
two triangles are similar. Recall from Corollary 9-13-1 that if

two pairs of corresponding angles of two triangles are congruent,

the third pair must be also. Thus from Theorem 12-3 we immediate-

ly get the following corollary:

6 6

[sec. 12-3]



376

Corollary 12-3-1. (The A.A. Corollary.) Given a correspond-

ence bauween two triangles. If two pairs of corresponding angles

are congruent, (then the correspondence is a similarity.

For example, if L A L D and L B L E, then

A ABC A DEF.

If z A L D and z C 11.4z F, then the same conclusion follows.

And similarly for the third case.

We can now justify our statement at the beginning of this

section by proving the following corollary:

Corollary 12-3-2. If a line parallel to one side of a tri-

angle intersects the other two sides in distinct points, then it

cuts off a triangle similar to the given triangle.

.4-* 4-*
For if DE II BC then by corresponding angles z ADE z B and

z AED alz C. Also z A al L A. Hence ADE is ABC, by

Theorem 12-3 or Corollary 12-3-1.

Theorem 12-4. (The S. A. S. Similarity Theorem.) Given a

correspondence between two triangles. If two pairs of correspond-

ing sides are proportional, and the included angles are congruent,

then the correspondence is a similarity.

67
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and

then

Restatement: Given ABC.4-4.DEF.

Z.A=ILD
AB AC
DE DT'

A ABC A DEF.

F1

377

Proof: Let El and F1 be points of AB and AC, such

that AE, DE and AF1 = DF. Then

AB AC
rft TS! 4

By Theorem 12, 2, this means that EtF, and BC are parallel.

When two parallel lines are cut by a transversal, corresponding

-angles are congruent. Therefore

LB 6'Le
and LC=4Lf-
But we know, by the S. A. S. Postulate, that

Therefore

and

Therefore

and

AAEIFI A DEF.

Le="LE

LfLF.
LB=LE

==-1 F.

We already knew by hypothesis that

z A D.

Therefore, by the A.A.A. Similarity Theorem, We have

AABC ADEF ,

which was to be proved.

[sec. 12-3]
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We have one more basic similarity theorem for triangles.

Theorem 12-5. (The S. S. S. Similarity Theorem.) Given a

correspondence between two triangles. If corresponding sides arc;

proportional, then the correspondence is a similarity.

If

Restatement: Given ABC*-*DEF.

AB AC BC
DE. EY'

then A ABC A DEF.

Proof: As 1)fore, let EI and FI be points of AB and

AC, such that AEI = DE and AFI = DF.

Statements' Reasons

1.

2.

AB AC

AB AC
7E1

3. EIFI and BC are parallel

4. e Z B and Z f Z C.

5. AABC AE'FI.

EIFI AEI
BC

6.

AE DE
7. EIFI BcTrI BC-0.

8.
AB BC DEnr = Er or EF = BGNs.

1. Hypothesis.

2. Substitution.

3. Statement 2 and Theorem 12-2.

4. Theorem 9-9.

5. A. A. Corollary.

6. Definition of similar tri-
angles.

7. Statement 6 and substitution.

8. Hypothesis.

(sec. 12-3]
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9. E,Ft = EF.

10. AE'F' ADEF.

11. LeLE and LfLF.
12. LBs=LE and LC'-2=-LF.

13. ABC DEF.

9. Statements 7 and 8.

10. The S.S.S. Theorem.

11. Corresponding parts.

12. Statements 4 and 11.

13. The A.A. Corollary.

Problem Set 12-3b

1. Given a correspondence ABC4--4.DEF between two triangles.

Which of the following cases are sufficient to show that the

correspondence is a similarity?

a. LALD, L B L E.
AB DE

b . =

c. Corresponding sides are proportional.

d. Both triangles are equilateral.

e. Both triangles are isosceles, and m,L A = mZ D.

f. mL C = mL F = 90, and AB = DE.

2. Which of these similarity theorems do not have related con-

gruence theorems: S.A.S., S.S.S., A.A.A., A.A.?

3. Is there any possibility of A I being similar to A II if:

a. two angles of A I have measures of 60 and 70 while two

angles of A II have measures of 50 and 80?

b. two angles of A I have measures of 40 and 60 while two

angles of A II have measures of 60 and 80?

c. AI is a right A , while A II is isosceles with one

angle of measure 40?

d. AI has sides whose lengths are 5, 6, 7, while II

has a perimeter of 36,000.

7 0
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4. Here are six pairs of triangles. In each case tell whether

the two triangles are similar. If they are, state the theorem

you would quote as proof.

5. Given the figure shown with

AC BC and CX i AB.

a. Name an angle which is

congruent to Z ACB.

b. Name an angle with the

same measure as LB.

c. Name a triangle which

is similar to tiACB.

6. If the lengths of DX, XE,

and FX are p, q and r

respectively, what length

of XG will assure similar-

ity of the triangles? If

p = 3q, must mL D = 3mL E?

(sec. 12-3]
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7. Below is a series of statements giving the lengths of sides

of a number of triangles. Decide for each pair whether the

triangles are similar and then make a statement as follows:

A is similar to A , or

A is not similar to A

For each pair that are similar write a statement showing the

proportionality of the sides.

a. AB = 5, AF = 3, FB = 7. QR 5, QS = 9, RS = 21.

b. MT = 2, MW = 5, TW = 6. RS = 4, LS = 9, RL = 3.

c. AB = 5, BC = 2, AC = 4. XY = ai, xz 2, YZ = 3.

d. AB = 6, AC = 7, BC = 8. RS = 40, RT = 35, ST = 30.

e. AB = 1.8, BC = 2.4, AC = 3.

XW = 0.4, XT = 0.5, WT = 0.3.

8. Given: LELD.
CD = 4AB.

Prove: BD = 5BL.

9..

Fig. a. Fig. Fig. c Fig. d

In each figure a segment has been drawn parallel to the base

of a triangle, and the lengths of certain segments have been

indicated.

7 2
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a. Prove that x = -!-; (Hint: Write a proportion.)

b. Prove that x = mp.

c. Prove that x

1
d. Prove: x .-E.

e. Part c is a special case of which other part?

f. Part d is a special case of which other part?

g. Do the results depend on the size of the vertex angle?

10. Explain how two triangles can have five parts (sides, angles)

of one triangle congruent to five parts of the other triangle,

but not be congruent triangles.

11. Given: In the diagram

OD H 01D1.

OB OD
Prove: --K--

0 n -575-1 1

*12. a. If ER, U§ and are

perpendicular to sr,

name the pairs of

similar triangles.

b. Which is correct:

, or .
Y q y p + q

c. Which is correct:

. or A
x p x p + q

1 1 1
d. Show that x y z

73
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e. The problem, "How long does it take two men to complete

a task which one alone can complete in 6 hours and the

other alone in 3 hours?" can be answered by,solving

1 1 1+ = Solve this equation geometrically. (Hint:

see part (d) and the figure.)

13. Given parallelogram ABRQ

with diagonal QB and

segment AF intersecting

in H as shown.

Prove: QH HF = HB AH.

14. In this figure if DB 1 AC
1and DQ = BQ = 2AQ = 7 QC.

Prove: a. A AQD DQC.

b. A BQC A AO.
c. AD 1 DC.

15. Prove the following theorem:

the bisector of an angle of

a triangle divides the

opposite side into segments

proportional to the adjacent

sides.

Given: A &BC, AD the bi-

sector of Z A meeting BC

in D.

CD CA
Prove: rs .

(Hint: Make BE H AD.)

7 ,1
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*16. Given AABC. Let the bisectors of the internal and external

angles at A meet 11 in points D and DI respectively.
CD' CDProve that rrE =IT. (Hint: Make BF II DIA.)

*17. If we have an electrical circuit consisting of two wires in

parallel, with resistances R1 and R2, then the resistance

R of the circuit is given by the equation

1 1

(--;vn
The following scheme has been used to find R, given R1

and R
2'

12

10

2 4 Cf, 13 10
RI

Fig, 1

[sec. 12-3]
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Numerical scales are marked off on three rays as in Figure 1.

A straight-edge is placed so as to pass through R1 and R2
on the two outer scales, and R is read off on the third
scale. Using the scales of the f.igure, select values for

R
1,

R
2'

find R from the figure and check your result to

see that the equation above is satisfied.

a. Prove that the method really works. See Figure 2.

b. Could the same diagIsm be used to find R in the

1 1 19equation rl -

18. In this figure WS

and LQ are medians

RW RT WSand
AL

Prove that

RWT A ALM.

19. Given in this figure that

RA 1 AB, FB 1 AB and

RH 1 AF.

Prove that A HRA ,,, A BAF

and HRBF = BA.HA.

'7 ti
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210. A method of enlargement.

The figure A1B101D1 has been enlarged by introducing from
----> --> ---->

an arbitrary point P, the rays PA1, PB1, PCI and PD1;

locating A2, B2, 02 and D2 so that PA2 = 2PA1,

PB2 = 2PB1, etc.; and finally drawing segments A2B2,

A
2
D, etc.

4:

a. Draw a simple object, a block or a table, for example,

and enlarge it by the method shown. Is it necessary

that PA
l'

PB
l'

etc. be doubled?

b. How could the method be modified to draw a figure with

sides half the length of those of A1B101D1?

A
2
B
2

PA
2

c. Prove: A PA1B1 -v A PA2B2 and

d. Prove: AA1B1D1 4, A A2B2D2.

e. Could the enlargement be carried out if P were

selected on or inside the given figure?

7 7
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*21. Given: Quadrilateral

as in the figure with

and A QXR ATXS.

Prove: QR . TS.

22. Given: AW MW.

BFRQ is a square with

Q. on AW and R on

WM as shown in the

figure,

Prove: AB.WR

and ABFM = RF"l3Q.

RSTQ

HZ,

387

23. Prove the following thebremt In similar triangles corres-

ponding medians have the same ratio as corresponding sides.

A B H

24. Prove the following theorem: In similar triangles corres-

ponding altitudes have the same ratio as corresponding sides.

[sec. 12-3]
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2 . Prove that if the sides of two triangles are respectively

parallel, the triangles are similar.

Given: A13 H .

I .

FT I I RV..

Prove: ABF HRW

Case I

26. Given: ZAZ-.'ZB and AC = BD.

Show n 11

7 9
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*27. It is known (see Chapter 5) that if two triangles correspond

.so that two sides and the angle opposite one of them in one

triangle are congruent respectively to two sides and the

angle opposite the corresponding side of the other (S. S. A.),

the triangles need not be congruent. (See diagram.)

Is the following statement true or false? Explain.

If two triangles correspond such that two sides of one tri-

angle are proportional to two sides of the other, and the

angles opposite a pair of corresponding sides are congruent,

then the triangles are similar.

*28. A EDF is isosceles with

DE = DF. AABC is such that

E and F lie between A and

C., CB ED, and A, B, D

are collinear.

a. What true statements con-

cerning similarity and

proportions can be made

concerning

1. A ABC and A ADE?

2. A ABC and A ADF?

b . Is the following statement true or false? Fxplain.

Given A ABC with D on segment AB, X on segment

AC, such that g = 114, then BC and I55t must be

parallel.

8 0
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*29. A tennis ball is served from a height of 7 feet to clear a

net 3 feet high. If it is served from a line 39 feet behind

the net and travels in a straight path, how far.from the net

does it hit the ground?

*30. In the parallelogram ABCD

shown in the figure the line

BF intersects AC at E,

'66 at G, and n at F.

Prove that EB is the

geometric mean of EG and

EF.

*31. .Given ZliABC and XyZ such

that AX, BY and CZ are

parallel and also AC H
-*
BA and YX meet in D and

1-Ta* and YZ meet in E.

Prove: V' H DE H xz.
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*32. The angles in the figure

marked with small squares

are right angles.

BF AD
a. Show that 17u = Au.

b. Then show that

BE CD AC , AD BC
AC -AT -1- -AU -A-r*

12-4. Similarities in Right Triangles.

Theorem 12-6. In any right trian1e, the altitude to the

hypotenuse separates the triangle into two triangles which are

similar to each other and to the original triangle.

Restatement: Let A ABC be a right triangle with its right

angle at C. Let CD be the altitude from C to the hypotenuse

AB. Then

A ACD A ABC A CBD.

Notice that the restatement is more explicit than the first

statement of the theorem; it tells us exactly how the vertices

should be matched up to give the similarities. Notice also what

the scheme is in matching up the angles: (1) The right angles

match up with each other, as they have to in any similarity of

[sec. 12-4]
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right triangle9. (2) Each little triangle has an angle in common

with the big triangle,, and so the angle matches itself. (3) The

remaining angles are then matched.

Proof: In the proof, the notation for the angles will be as

shown in the figure.

Since Z C is a right angle, we know that Z a and L b

are complementary. That*is,

mZ a + mL b 90.

Also, since Z d is a right angle,

mL a + mL bl. 90.

Therefore L b =-2L bl

Trivially, La a;

and L C

because Z d is a right angle. By the A.A.A. Similarity Theorem,

we have

A ACD A ABC .

The proof of the other half of the theorem is.precisely

analogous, with the point B behaving like the point A.

Corollary 12-6-1. Given a right triangle and the altitude

from the right angle to the hypotenuse:

(1) The altitude is the geometric mean of the segments into

which it separates the hypo'6enuse.

(2) Either leg is the geometric mean of the hypotenuse and

the segment of the hypotenuse adjacent to the leg.

83
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Restatement: Let A ABC be a right triangle with its right

angle at C, and let D be the foot of the altitude from C to

Kb. Then

(1)
AD CD
CD Er*

(2)
AD AC
AC AB and BD BC

BC BA'

Proof: (1) By Theorem 12-6, ADC CDB .

AD CD
Hence,

(2) By Theorem 12-6, p ADC ACB .

AD AC
Hence,

AC AB

Also, BDC p BCA ,

BD BCand so .

BC BA

Problem Set 12-4

1. Given right A ABC with

altitude drawn to the

hypotenuse and lengths as

shown, find the unknown

l.engths.

2. Follow the directions in.

Problem 1.

8 .4

[sec. 12-4]



394

3. In this right triangle with

the altitude drawn to the

hypotenuse it is possible

to find a numerical value

for each segment a, x, y.

Find them.

U. In a right triangle if the altitude to the hypotenuse is 12

and the hypotenuse is 25, find the length of each leg and of

the segments of the hypotenuse.

5 In right A ABC, with right

angle at C and altitude CD,

a. if AD = 2 and DB = 8,

find AC, CD an0 CB.

b. if CD = 9 and AD = 3,

find AC, CB and AB.

c. If CB = 12 and AD le,

what are the lengths of

the other segments?

d. if AC = 8 and DB 12,

what are the lengths of

the other segments?

8.)
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12-5. Areas of Similar Triangles
Given a square of side a,

easy to see that the area of the
of the first. (This is because
squares have sides a and ka,
k2 , because

395

and a square of side 2a, it is
second square

(2a)
2
= 4a2 .)

/

then the ratio

(ka)2 k2a2

a a
2

is 4 times the area
In general, if two
of the areas is

An analogous result .Lolds for similar triangles:
Theorem 12-7. The ratio of the areas of two similar tri-angles is the square of the ratio of any two corresponding sides.

B'

Proof: Given AABC A AIBIC1. Then

a' b' c'

I.;et k be the common value of these ratios, so that a'= ka,b' = kb, c' = kc. Let BD be the altitude from B to AC, andlet B,D! be the altitude from B' to 17(5r. Since AABD andtiAIBID, are right triangles, and ZAvLA', we have

ABD AAIBID'.
h' clTherefore
h

Let A
1 and A

2 be the areas of the two triangles. Then

and

A = 1bh
1 2

A2

= 4;(kb)(kh)

/1= k2 k7bh).

[sec. 12-5]
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Therefore
k2 (1)P2 . 4!-)2 el(-6)A

A
1

which was to be proved.

Problem Set 12-5

2

1. What is the ratio of .the areas of two similar triangles whose

bases aro 3 inches and 4 inches? x inches and y inches?

2. A side of one of two similar
triangles is 5 times the corres-

ponding side of the other. If the area of the first is 6,

what is the area of the second?

3. In the figure if H is the

mid-point of AF and K is

the mid-point of AB, the

area of ABF is how many

times as great as the area of

AAKH? If the-area or

'AABF is 15, find the area

of A AKH

4. The area of the larger of two similar triangles is 9 times

the area of the smaller. A side of the larger is how many

times the corresponding side of the smaller?

5. The areas of two similar triangles are 225 sq. in. and 36

sq. in. Find the base of the smaller if the base of the

larger is 20 inches.

6. The areas of two similar triangles are 144 and 81. If a dide

of the former is 6, what is the r,orresponding. side of the

1 ar?

7. In A ABC, the point D iS on side AC, and AD 'is twice

CD. DraW DE parallel to
intersecting BC at E, and

compare the areas of triangles ABC and DEC.

8 'I
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8. The edges of one cube are double those of another.

a. What is the ratio of the sums of their edges?

b. What is the ratio of their total surface areas?

9. How long must a side of an equilateral triangle be in order

that its area shall be twice that of an equilateral triangle

whose side is 10?

10. If similar triangles are drawn on tb., side and on the altitude

of an equilateral triangle, so that the side and altitude are

corresponding sides of the triangles, prove that their areas

are to each other as 4 is to 3.

11. Two pieces of wire of equal length are bent to form a square

and an equilateral triangle respectively. What is the ratio

of the areas of the two figures? (.

12. A triangular lot has sides

with lengths 130 ft., 140 ft.,

and 150 ft. The length of the

perpendicular from one corner

to the side of 140 ft. is 120

ft. A fence is to be erected

perpendicular to the side of

140 ft. so that the area of

the lot is equally divided.

How far from A along AB A
should this perpendicular be

drawn?

13. Prove the theorem: The mid-

point of the hypotenuse of a

right triangle is equidistant

from the .:,rtices.

88
(sec. 12-5)
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14. Prove Theorem 11-9 by using

the following diagram and

problem 13.

15. In this triangle AR = RC = RB.

Prove that AABC is a right

triangle.

*16. Prove: The geometric mean of two positive numbers is less

than their arithmetic mean, except when the two numbers are

equal, in which case the geometric mean equals the arith-

metic mean. (Hint: Let the two given numbers be the

tances AH and HB, let HC

be perpendicular to AB,

with HC =,./A.}fiB, and let

M be the mid-point of AB.

Prove Z ACB is a right

angle and use the preceding

two problems.)

17. Given: P-ABC is a triangular

pyramid with a section RST

parallel to the base ABC. PY

is perpendicular to the plane

of the base, and X is the

intersection of PY with the

plane of A RST.

Prove:
area A RST f PX\

2

area p ABC 1571

8 ;)

dis-

[sec. 12-5]



*18. In the figure, A ABC is a

right triangle, with hypot-

enuse AB, and CH is the

altitude from C.

Let the areas of A ABC,

A ACH, CBH be K K
1' 2'

1(3 respectively.

399

The following sequence of statements constitutes a different
proof of the Pythagorean Theorem. Give a reason for each of
the following statements:

1. K1 = K2 + K3.

K
2

K
32. 1 +

3. A ACH A ABC A CBH.

4. . (Ac)2
4- `

(BC12
'AB- AB'

5. (AB)2. (Ac)2 + (BC)2.

Preamble. In the following problems, the lengths of two sides

and the included angle of a triangle are given, and it is required

to find the length of the third slde. By the S.A.S. congruence

theorem, the third side is uniquely determined, so there should be

a method of finding it numerically. Another way of giving the

included angle is to give a represehtative right triangle in which

the angle (or its supplement) is one of the acute angles. Actuany,
RSonly the number k = ITT is needed. For numerical work, this'

number, which depends on z R, has been tabulated', and if this

table is readily available the comrutation of the length of the

third side is quite straightforward. The number k is called the
cosine of Z R, abbreviated k = cos z R, and the table is called
a table of cosines. For this reaBon the formula for a

2
that we

find is caned the law of cosines. You will meet it again in

trigonometry.

9 0
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*lg. In the twc :32.1angles shown in

the diagram, Z A r=1* L R, AC = b,

, AB = c, RS = k and Z S is a

right angle. Find a in terms

of b,. c, and k.

(Hint: Let D be the foot of

the altitude to AB, and let

x, y, h be as indicated in

the figure. Express a
2 in

terms of h and y; express

h and y in terms of x, b,

and (;; then, from the similar-

ity A ADC , A RST, express

x in terms of b and k.)

A

*20. In the two triangles shown in h!

the diagraM, Z BAC is-the

supplement of Z R, and AC' = b,
D

x

AB = c, RS = k and Z S is a A ,

right angle. Find a in terms

of b, c and k.

=?

(Hint: Let D be the foot of

the perpendicular to AB from

C. Then A ADC A RST.)

*21. a. Let ma be the length of the median to the.side BC of

AABC, and let BC = a, CA = b, AB = c. Prove that

m2 ltb2 c2 a2 \

a 7, 2

b. Let ma, 50, mc be the lengths of the medians of

A ABC, with sides of length a, b, c. Prove that

2 2 2
ma mb mc

3(_2 b2 c2).

[sec. 12-5]



Review Problems

1. In the figure HQ II AB.

a. If FA . 11, FQ = 4,

FH = 2, FB = ?

b. If FB = 6, FH = 1,

HA = 4, FQ = ?

c. If FA = 9, FB = 7,

FH = 27, FQ = ?

d. If HA = 6, FB = 12,

FH = 3, 0 = ?

2. a. Are the tWo triangles

pictured here, similar

if AB = 4, AF = 9,

QF = 3, and AT = ?

b. If AB = 5, AT = 3,

4
AQ = 4-5, what must AF

be to make Li TAQ m, A BAF?

4oi

3. Give the geometric mean and the arithmetic mean for each of

the following:

a. 8 and 10 b. 6,n and 3127.

4. Sketch two figures which are not similar, but which have the

sides of one proportional to the corresponding sides of the

other.

5. In right A ABC, if FC is

the altitude to the hypotenuse,

AF = 12 and BF = 3, find

AC, FC and BC.

A

9 2
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6. If CD = x + 3, DA = 3x + 3,

CE = 5 and EB = x + 5,

what must be the value of x

to assure that DE 11 AB?

7. Given in this figure,

B D, CD = i[AB.

Prove BD = 5BE.

8. A side of one equilateral triangle is congruent to an altitude

of another equilateral triangle. What is the ratio of their

areas?

9 In A ABC, AC BC, CF I AB,

AB = 20 and FC = 8. Find

a, b, x, and y.

10. If A ABC A. DEF and A ACB A DEF, show that AB = AC.

11. Given rectangle ABFQ as

shown in the figure with

WX 1 AF.

Prove:

a. AF.XW = AW.QA.

b. QF.XW = AX.QA.

C. AF.AX = AW.U.

9 3
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12. The tallest trees in the world are the redwoods along the

coast of northern California. To measure one of these giants

you move some distance from the tree and drive a stake in the

ground. Then you hold a small mirror at ground level and

sight it in, moving away from the stake until the top of the

stake and the top of the tree, are in a direct line.

If your stake is 5 feet tall and is 520 feet from the base of

the tree, and if your mirror is 8 feet from the stake when

the top of the stake and the top of the tree are in a straight

line, how tall is the tree?

13. In right A ABC with CF

the altitude to the hypotenuse,

and lengths as indicated in the

figure, find x, y, and w.

*14. Join the vertices of A ABC to a point R outside the tri-

angle. Through any point X of AR draw XY
JI

AB meeting

BR at Y. Draw YZ H BC meeting RC at Z. Prove

AXYZ ABC.

15. When we photograph a triangle, is the picture always similar

to the original triangle? When can we be sure that it isZ
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Chapters to 12

REVIEW EXERCISES

Write (1) if the statement is true and (0) if it is false. Be

able to explain why you Irwr;c a statement false.

1. An exterior angle of a triangle is larger than any interior

angle of the triangle.

2. In space there is only one perpendicular to a given line

through a 6iven external point.

3. The angle opposite the longest side of a triangle is always

the largest angle.

4. In PABC., if mL k < mL B, then AC < BC.

5. If AB BC, then. AB < AC.

6. A triangle can be formed with si_des of lengths 351,'513, and

135.

7 If an angle of one triangle larger than an angle of a

second triangle, then the side opposite the angle in the

first is longer than the side opposite the angle in the

second.

8. Two lines in space are parallel if they are both perpendicu-

lar to the same line.

9. Through every point in a plane there is a line parallel to a

given line in the plane.

10. Given tro lines and a transversal of them, if one pair of

alternate interior angles are congruent, the other pair are

also congruent.

11. If two lines are cut by a transversal so that one of two

alternate interior angles is 900 larger than the other, the

two lines are perpendicular.

12. If two:1,ines are cut by a transversal,

pairs,LOS corresponding angles.

9.)

a are exactly four
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13. If two intersecting lines are cut by a transversal, no pair

of corresponding angles are congruent.

14. If the alternate interior angles formed by two lines and a

transversal are not congruent, the two lines are perpendicu-

lar

15. Given two parallel lines and a transversal, two interior

angles on the same side of the transversal are complementary.

16. If L, M and N r're three lines such that L II M and

M IfN, then L H N.

17. If L, M and N are three lines such that L j M and

M I N, then L I N.

18. Since the sum of the measures of the angles of any triangle

is 3 times 60, the sum of the measures of the angles of any

quadrilateral is 4 times 6o.

19. If two angles of one triangle are congruent to two angles of

a.nother triangle, then the third angles are congruent.

20. If two angles and a side of one triangle are congruent to two

angles and a side of another, the triangles are congruent.

21; The acute angles in a right trf.angle are complementary.

22. An exterior angle of a triangle-is the supplement of one of

the interior angles of the triangle,

23. If a diagonal of a quadrilateral separates it into two con-

gruent triangles, the quadrilateral is a parallelogram.

24. If each two opposite sides of a quadrilateral are congruent

the quadrilateral is a parallelogram.

25. Opposite angles of a parallelogram are congruent.

26. A diagonal of a parallelogram bisects two of its angles.

27. A quadrilateral with three right angles is a rectangle.

28. The perimeter of the triangle formed by joining the midpoints

of the sides of a given triangle is half the perimeter of the

given triangle.

9 6



29. If the diagonals of a quadrilateral are perpendicular and

congruent, the quadrilateral is a rhombus.

30. A set of parallel lines intercepts congruent segments on any

transverSal.

31. The area of a right triangle is the product of the hypotenuse

and the altitude to the hypotenuse.

32. The area of a parallelogram is the product of the lengths of

two of its adjacent sides.

33. The area of a trapezoid is half the product of its altitude

and the sum of its bases.

34. If two triangles have equal area and equal bases, then they 1.

have equal altitudes.

35. If the legs of a right triangle have lengths a and b and

the hypotenuse is of length c, then b2 = (c a)(c + a).

36. If the lengths of the sides of a triangle are 20, 21 and 31,

it is a right triangle.

37. Two right triangles are congruent if the hypotenuse and a leg

of one are congruent respectively to the hypotenuse and a leg

of the other.

38. If one of the angles of a right triangle contains 30°, then

one leg is twice as long as the other leg.

39. The length of the diagonal of a square can be found by

multiplying the length of a side by

40. If a line intersecting two sides of a triangle cuts off a

triangle similar to the larger one, the line is parallel to

the third side of the triangle.

41. If each of two triangles have angles of 36° and 370, the two

triangles are similar.

42. If two triangles have an angle of one congruent to an angle

of the other, and two sides of one proportional to two sides

of the other, the triangles are similar.

9 7
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43. If the sides of one triangle have lengths 6, 12, and 10, and

the sides of another have lengths 15, 9 and 18, then the tri-

angles are similar.

44. Any altitude of a right triangle separates it into similar

triangles.

45. A triangle whose sides measure 4, 6 and 8 will have an area

more than half the area of a triangle whose sides measure

6, 9 and 12.

46. If A, B, X, and Y are coplanar and if AX = BX and

AY = BY, then

47. If three non-collinear points of a plane are each equidistant
<-*

from points P and Q, then PQ is perpendicular to the

plane.

48. If a line not contained in a plane is perpendicular to a

line in a plane,then it is perpendicular to the plane.

49. A line perpendicular to each of two lines in a plane is per-

pendicular to the plane.

50. If a. plane bisects a segment, every point of the plane is

equidistant from the ends of the segment.

51. If a plane is perpendicular to each of two lines, the two

lines are ccplanar.

52. There are infinitely many planes perpendicular to a given

line.

53. At a point on a line there are infinitely many lines per-

pendicular to the line.

54. Through a point outside a plane there is exactly one line

perpendicular to the plane.

55. If a plane intersects two other planes in parallel lines,

then the two planes are parallel.

56. Two planeWc-perpendicular to the same line are parallel.
4->

57. If plane E is perpendicular to AB and AB II CD, then

E

9 8
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58. If each of two planes is parallel to a line, the planes are

parallel to each other.

59. If a plane intersects the_faces of a dihedral angle, the

intersection is called a plane angle of the dihedral angle.

6o. The projection of a line into a plane is always a line.

9



Chapter 13

CIRCLES AND SPHERES

13-1. Basic Definitions.

In this chapter we commence the study of point sets not made

up of planes, half-planes, lines, rays and segments. The simplest

such curved fd&ures are the circle and the sphere and portions of

these. As usual in starting to talk about new figures we begin

with some definitions.

Definitions: A sphere is the set of points each of which is

at a given distance from a givenPoint. A circle is the set of

points in a given plane each of which is at a given distance from

a given point of the plane. In each case the given point is called

the center and the given distance the radius of the sphere or

circle. Two or more spheres or circles with the same center are

said to be concentric.

Q4

Circle Sphere

PQ1 = PQ2 = PQ3 = PQ4 = radius.

100
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Theorem 13-1. The intersection of a sphere with a plane

through its center is a circle with the same center and radius.

Proof: Since the sphere includes all points at a distance of

the radius from the center, its intersection with a plane throuE'l

the center will be the set of all points in the plane at this

distance from the center; that is, the circle in this plane with

the same center and radius.

Definition: The circle of intersection of a sphere with a

plane through the center is called a great circle of the sphere.

There are two types of segments that are associated with

spheres and circles.

Definitions: A chord of a circle or a sphere is a segment

whose end-points are points of the circle or the sphere. The line

containing a chord is a secant. A diameter is a chord containing

the center. A radius is a segment one of whose end-points is the

center and the other one a point of the circle or the sphere.

The latter end-point is called the outer end of the radius.

The use of the word "radius" to mean both a segment and the

length of that segment follows the convention introduced in

Chapter 11. In the same way we use "diameter" to refer also to

the length of a chord through the center as well as to the chord

itself.

We may refer to a circle as circle C, or simply C. (C is

most often used.) In stating problems it is convenient to use the

convention that circle P denotes the circle with center P,

provided there is no ambiguity as to which circle we mean. Similar

remarks apply to spheres.

I t
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Problem Set 13-1

1. Study Section 13-1 to help you decide whether the following

statements are true or false:

a. There is exactly one great circle of a sphere.

b. Every chord of a circle contains two points of the circle.

c. A radius of a circle is a chord of the circle.

d. The center of a circle bisects only one of the chords of

the circle.

e. A secant of a circle may intersect the circle in only one

point.

f. All radii of a sphere are congruent.

g. A chord of a sphere may be longer than a radius of the

sphere. %

h. If a sphere and a circle have the same center and inter-

sect, the intersection is a circle.

2. Using your previous understanding of circles and spheres as

well as your text, decide whether the following statements

are true or false:

a. If a line intersects a circle in one point, it intersects

the circle in two points.

b. The intersection of a line and a circle may be empty.

c. A line in the plane of a circle and passing through the

center of the circle has two points in common with the

circle.

d. A circle and a line may have three points in common.

e. If a plane intersects a sphere in at least two points,

the intersection is a line.

f. A plane cannot intersect a sphere in one point.

102
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g. If a plane intersects a radius of a sphere at its Mid-

point, the intersection of the plane and the sphere is a

circle.

h. If two circles intersect, their intersection is two

points.

3. A city is laid out in square blocks 100 yards on a side.

Neglect the width of the streets -in the following problems.

a. Describe the location of the points which are 200 yards

(as the crow flies) from a given street intersection.

b. Describe the location of the points a taxi might reach

by traveling 200 yards from a giver, street intersection.

(City law prohibits U-turns.)

4. Prove the theorem: A diameter of a circle is its longest

chord.

13-2. Tangent Lines. The Fundamental Theorem for Circles.

Definitions: The interior of a circle is the union of its

center and the set of all points in the plane of the circle whose

diBtances from the center are less than the radius. The exterior

of the circle is the set of all points in the plane of the circle

wnose distances from the center are greater than the radius.

From these definitions it follows that a point in the plane

of a circle is either in the interior of the circle, on the circle,

or in the exterior of the circle. (We frequently use the more

common word "inside" for "in the interior of", etc.)

103
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Definitions: A tangent to a circle is a line in the plane of

the circle which intersects the circle in only one point. TLis

point is called the point of tangency, or point, of contact, and

we say that the line and the circle are tangent at this point.

In the figure, L is tangent to the circle at Q.

We now want to find out what"the possibilities are for a line

and a circle in the same plane. It looks as if the following

three figures ought to be a Complete catalog of the possibilities:

In each case, P is the center of the circle, and F is the foot

of the perpendicular from P to the line. We shall soon see that-
this point F -- the foot of the perpendicular -- is the key to

the whole situation. If F is outside the circle, as in the first

figure, then all other points of the line are also outside, and

the line and the circle do not intersect at all. If F is on the

circle, then the line is a tangent line, as in the second figure,

and the point of tangency is F. If F is inside the circle, as

in ihe third figure, then the line is a secant line, and the points

of intersection are equidistant from the point F. To back all of

this up, we need to prove the following theorem:

[sec. 13-21
10'1
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Theorem 13-2. Given a line and a lArcle in the same plane.

Let P be the center of the circle, and let F be the foot of

the perpendicular from P to the line. Then either

(1) Every point of the line is outside the circle, or

(2) F is on the circle; and the line is tangent to the

circle at F, or

(3) F is inside the circle, and the line intersects the

circle in exactly two points, which are equidistant from

This theorem is long, but its length is worthwhile, because

once we have proved it, the hard part is over: all of the elemen-

tary theorems on secants, tangents and chords are corollaries of

it.

Proof: To prove the theorem, we shall show that if F is

outside the circle, then (1) holds; if F is on the circle, then

(2) holds; and if F is inside the circle, then (3) holds.

If F is outside the circle, then ill holds.

Let r be the radius of the circle. Then PF > r. By Theorem 7-6,

the segment PF is the shortest segment joining P to the line.

If Q is any other point of the line, then PQ > PF. Therefore,

PQ > r, and Q is outside the circle.

105
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If F is on the circle, then (2) holds.

Here we have IT = r. If Q is any other point of the line, then

PQ > r. (Why?) Therefore the line is tangent to the circle, and

the point of tangency is F.

If F is inside the circle, then (3) holds.

The proof is as follows. If Q is on both the line and the circle,

then A PFQ is a right triangle with a right angle at F. By the

Pythagorean Theorem,
pF2 =5.2,

so that FQ
2
= r

2
- PF

2
,

and FQ =,ir 2 - PF
2

.

(The number under the radical is positive, because PF < r.) Thus

any point Q common to the line and the circle must satisfy this

last equation.

Conversely, any point Q. ,lying on the line and satisfying

this equation will be at distance r from P, as can be seen by

going backwards through the algebra above. The equation

FQ =,42 - PF
2

[sec. 13-2]
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is therefore the characterizing feature of the points Q which are

intersections of the line and the circle.

By the Point Plotting Theorem there are exactly two such points,

one on each of the two rays with end-point F. Obviously, they are

equidistant from F.

This reasoning does not apply when the line passes through P,

but in this case we have P = F, PQ = FQ = r, and there are two

points Q as before.

Now we can proceed to our first basic theorems on tangents and

chords which are all corollaries of Theorem 13-2. In all of these

corollaries, it should be understood that C is a circle in a plane

E, with center at P. To prove them, you merely need to refer to

Theorem 13-2 and see which of the three conditions in the conclusion

of the theorem applies to the case in hand.

Corollary 13-2-1. Every line tangent to C is perpendicular

to the radius drawn to the point of contact.

Here it is Condition (2) that applies; and this means that the

tangent and radius are perpendicular.

Corollary 13-2-2. Any line in E, perpendicular to a radius

at its outer end, is tangent to the circle.

Since the outer end of the radius must be F, Condition (2)

applies, and we have tangency..

Corollary 13-2-3. Any perpendicular from the center of C to

a chord bisects the chord.

Here Condition (3) applies. (In Cases (1) and (2) there is no

chord.)

Corollary 13-2-4. The segment joining the center of C to

the mid-point of a chord is perpendicular to the chord.

Use Corollary. 13-2-3 or Condition (3).

Corollary 13-2-5. In the plane of a circle, the perpendicular

bisector of a chord passes through the center of tile circle.

Use Corollaries 13-2-4 or 13-2-3, or Condition (3).

[sec. 13-2]
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Corollary 13-2-6. If a line in the plane of a cirCle inter-

sects the interior of the circle, then it intersects the circle in

exactly two points.

Here also, Condition (3) applies. (In Case (1) and (2), the

line doesn't intersect the interior of the circle.)

Definition: Circles of congruent radii are called congruent.

By the distance from a chord to the center of a circle we mean

the distance between the center and the line containing the chord,

as defined in Section 7-3. The proofs of the following two theorems

are left to you:

Theorem 13-3. In the same circle or in congruent circles,

chords equidistant from the center are congruent.

Theorem 13-4. In the same circle or in congruent circles,

any two congruent chords are equidistant from the center.

The following additional definitions are useful in talking

about circles and lines.

Definitions: Two circles are tangent if they are each tangent

to the same line at the same point. If tangent circles are coplanar

they are internally or externally tangent according as their centers

lie on the same side or on opposite sides of the common tangent

line.

Internally tangent
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PDcblem Set 13-2

1. State the number of the theorem
. . -

or corollary which justlfies

each conclusion below, (C is

the center of the cirele in the

plane figure.)

a. If TA = TB, thWI CK I AB.

b. If RS
,

CK, thW1 RS is

tangent to the ctrcle.

Alb*

c. If T is in the Ulterior of tho circle, then KC Will

intersect the circle in exactly one point other tbab

point K.

d. The perpendicular bisector of contains C.

e. If AB and FH are equidistanV from C, then FH.

f. If RS is tangent to circle Gy then CK RS.

g. If CK I. AB, thyn AT TB.

h. If AB 0 FH, thyn AB and i are equidistant ePom C.

2. Prove Corollary 13-24: Any perpendl.eular from the cellter,

C, of a circle to a ohord bisects tile chord.

3. Use this figUre to proVe

Corollary 13-2-5: In the

plane of a circle, the

perpendicular bisector of

a chord passes throuW the

center of the circle.

41

4. Given a circle, how cAA its center Da located?

1 0 9

(see. 13-2]



5. In circle C, KN = 40, and

MN = 24. How far is MN from

he center of the circle?
4. 411P

419

6. In a circle whose diameter is 30 inches a chord is drawn per-

pendicular to a radius. The distance from the intersection of

chord and radius to the outer end of the radius is 3 inches.

Find the length of the chord.

7. Given: The figure below, with C the center of the circle

and KT RS. In the ten problems respond as follows:

Write "A" if more numerical information is given than is

needed to solve the problem.

Write "B" if there is insufficient information to solve the

problem.

Write "C"

unnecessary

Write "D"

(You do not

if the information is sufficient and there is no

information.

if the information given is contradictory.

need to solve the problems.)

KP = 4, PC = 1, CT = 6, KT = ?

RP = 5, RS = ?

CT = 13, CP = 5, RS = ?

KP = 18, RS = 48, KC = 25, RK = ?

PC = 3.5, RS = 24, RK = ?

KT = 40, RP = 16, CS = ?

CS = 8, TK = 16, PC = ?

RK = 20, RS = 32, KP = 13, KT = ?

RS = 6, KC = 5, PT = ?

PT = 5, CS . 6, RS = ?

1 1 0

(sec. 13-21
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-8. In a circle with center P a chord AB is parallel to a

tangent and intersects the radius to the point of tangency

Apits alid-eoint.. If AB 12, firld.the radius of the circle.
0.

9. Prove that the tangents to a circle at the ends of the diameter

are parallel.

*10. In circle 0 with center at

0, AB is a diameter and

AC is any other chord from

A. If CD is the tangent

at C, and DO h AC,

prove that ig is tangent

at B.

11. For the concentric circles

of the figure, prove that

all chozds of the larger

circle which are tangent to

the smaller circle are

bisected at the point of

contact.

Restatement: In each circle

the center is O. AB, a

chord of the larger circle,

is tangent to the smaller

circle at R.

Prove: AR = BR.

f-

I I.

[sec. 13-2]



12. One arrangement of three

circles so that any one is

tangent to the other two

is ihown hdre. 'Make setches

to show three other arrange-

ments of three circles with

each circle tangent to thr,

ther two.

*13. Prove: The line of centers of

421

two tangent circles contains

the point of tangency. (Hint: Draw the common tangent.)

Case I

14. In the figure, A, B snd

C are the centers of

the circles. AB =

BC = 10, AC = 18.

Find the radius of

each circle.

Case II

112
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15. Prove Theorem 13-3: In the same circle or congruent circles,

chords equidistant from the center are congruent.

*16. Given: In the figure P is

the center of the circle,

and m,L AEP = m,L DEP.

Prove: AB al CD.

17. In circle R, RD AB

and RE BC, RD = RE.

Prove that DA = EC.

18. Prove: The mid-points ..;ongruent chords in any circle

lie on a circle concentz= vh the original circle and with

a radius equal to the di;O:aace of a chord from the center;

and the chords are all tarivot to this inner circle.

*19. Given:- AB is a diameter

of clzttle O. ee is
tangent to 0 at T.
<--). 4-*
AC I CD. BD I CD.

Prove: CO DO.



423

13-3. Tangent Planes. The Fundamental Theorem for Spheres.

Once you have studied and understood the last section, you

should have very little trouble with this one. We shall see that

spheres and piwieve in space behave in very much the same way as

circles and lines in a plane, and the analogy between the theorems

of the last section and the theorems of this section is very close

indeed.

Definitions: The interior of a sphere is the union of its

center and the set of all points whose distances from the center

are less than the radius. The exterior of the sphere is the set

of all points whose distances from the center are greater than the

radius.

Definitions: 'A plane that intersects a sphere in exactly one

point ie.celled a, tangent plane to the spher. If the tangent

plane'intereets'the sphere in the point Q then we say that the

plane is tangent to the ephere at Q. Q is ,called the point of

tangency, or the point of contact.

The basic theorem relating spheres and planes is the following:

11 I
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Theorem 13-5. Givenva plane E and a sphere S with center

P. Let F be the foot of the perpendicular segment from P to

E. Then either

(1) Every point of E is Olitside S, or

(2) F is on .S, and E is tangent to S at F, or

(3) F is inside S, and E intersects S in a circle

with center F.

Proof: If F is outside S then (1) holds.

The proof follows almost word for word the corresponding

proof for the circle in Theorem 13-2. The only significant change

is the use of Theorem 8-11 (shortest segment from point to plane)

instead of Theorem 7-6.

If F is on S then (2) holds.

Here, again, the proof is almost identical with that of

Theorem 13-2.

1 :5
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If F is inside S then (3) holds.

Let Q be any point which lies on both E and S. Let

-r be the radius of S, and let x = PF.

Then Z PFQ is a right angle, because every line in E, through

F, is perpendicular tu W. Therefore

FQ2 + x2 = r2 ,

and

FQ .NA 2 - x
2

.

Since Q is any* point of the intersection of E and S,

then every point Q of the intersection is such that FQ is

constant. Therefore every point of the intersection lies on the

circle wtth center at F and 'radius
NA,2 x2.

Althcugh we have shown that every point of the intersection

is on the circle, we have not-=:iown that this set of points is

the circle. That is, there comceivably could be some points of

the circle which are not points of the intersection. We now

prove that this is not posSible by showing triat if Q lies on

[sez: 13-3]
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the circle, then it must be a point of the intersection.

Suppose that Q lies on the circle with center F and

radius' %Ix, 2 -'x
2

.
Theft- L-PFQ- is a right angle, .as.11efore,

so that

(
pc12 x2 ..\4,2 x2 2 r2,

PQ = V7 = r, since 7 > O.

Therefore Q lies on the sphere. Therefore every point af the

circle lies in the intersection. Therefore the circle is precise-

ly thE_intersection, which was to be proved.

tar first basic theorems on tangents to a sphere are all

corollaries of Theorem 13-5. In all of these corollaries, it

shoul..-.. be understood that S is a sphere with center at P.

Jorollary 13-5-1. A plane tangent to S is perpendicular

to the radius drawn to the point of contact.

Corollary 13-5-2. A plane perpendicular to a radius at its

outer end is tangent to S.

Corollary 13-5-3. A perpendicular from P to a chord of S

bisects the chord.

Given: PQ J AB.

Prove: AQ = BQ.

Corollam. 13-5-4. The segment joining the center of S to

the mid-point of a chord is perpendicular to the chord.

117
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Problem Set 13-3

1. Sphere 0 is tangent to

iplane. E. at A. FB and

are lines of E

through A. What is the
<>

relationship of OA to

FB and RT?

2. In a sphere having a radius of 10, a segment from the center

perpendicular to a chord has length 6. How long is the

chord?

3. In a sphere whose radids is 5 inches, what is the radius of

a circle made by a plane 3 inches from the center?

4. Prove that circles formed on a sphere by planes equidistant

from the center of the sphere are congruent.

. In the figure, plane E

intersects the sphere

, having center O. A and

B are two points of the

intersection. F lies in

plane E. OF 1 E. AF I BF.

If KB = 5 and OF AF,

find the radius of the

sphere and mL AOB. If G

is the mid-point of AB,

find OG.

Given a sphere n.nd three points on it. Explain how to deter-

mine the center and the radius of the circle which the points

determine. Explain how to determine the center and radius of

the sphere.

118
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*7. Given that plane E is tangent to a sphere S at point T.

Plane F is any plane other than E which contains T.

Prove (a) that plane F intersects sphere S and plane

E 'in a cir&16 and a line respectively; and (b) that the

line of intersection is tangent to the circle of intersection.

8. Show that any two great circles of a sphere intersect at the

end-points of a diameter of the sphere.

*9. Two great circles are said to be perpendicular if they lie in

perpendicular planes. Show that, given any two great circles,

there is one other great circle perpendicular.to both. If

two great circles on the earth are meridians (through the

poles), what great circle is their common perpendicular?

*10. In the figure, A and B

are the centers of two

intersecting spheres.

Briefly describe the inter- ,

section.

M and N are points of

the intersection. 0 is a

point in the plane of the

intersection and is collinear

with A and B.

If the radius of.sphere A

is 13, the radius of

sphere B is .5,17Z' and

MB I NB, find the distance

between the centers of the

spheres.

11.9
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13-4. Arcs of Circles.

So far in this chapter we have been able to treat circles

and spheres in similar manners. For the rest of this chapter we

will confine ourselves exclusively to circles. The topics we will

discuss have their corresponding analogies in the theory of spheres

but these are too complicated to consider in a beginning courde.

Definition: A central angle of a given circle is an angle

whose vertex is the center of the circle.

Definitions: If A and B are two points of a circle with

center P, not the end-points of a diameter, the union of A, B,

and all the points of the circle in the interior of z APB is a

minor arc of the circle. The union of A, B, and all points of

the circle in the exterior of z APB is a major arc of the circle.

If AB is a diameter the union of A, B, and all points of the

circle fn one of the two half-planes lying in the plane of the

circle with edge AB is a semi-circle. An arc is either a minor

arc, a major arc or a semi-circle. A and B are the end-points

of the arc.

120
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An arc with end-points A and B is most easily denoted by

AB. This simple notation is always ambiguous, for even on the

same circle there are always two arcs with A and B as end-

points. Sometmes it will be-plain from th9-contextwhich.aro

is meant. If not, we will pick another point X somewhere in

the arc AB, and denote the arc by AXB.

For example, in the figure, AXB is a minor arc; AYB is the
e.

corresponding major arc; and the arcs CAB and CYB are semi-

circles.

The reason for the names "minor" and "major" is apparent when

one draws several arcs of each kind. A major arc is; in an

intuitive sense, "bigger" than a minor arc. This relation will be

made more explicit in our next definition.

Definition: The degree measure mAXB of an arc AXB is

defined in the following way:

(1) If AXB is a minor arc, then mia is the measure of

the corresponding central angle.

(sec. 13-4]
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(2) If AXB is a semi-circle, then ma = 180.

(3) If AXB is a major arc, and AYB is the correspondinge
minor arc, then mAXB = 360 - mAYB.

101. o ep dr or el a

In the figure, rnL APB is approximately 60. Therefore

is approximately 66'T, and mag is approximately 300.

Hereafter, ma will be called simply the measure of the
arc AXB. Note that an arc is minor or major according as its

measure is 16ss than or greater than 180.

The following theorem is simple and reasonable, but its proof

is surprisingly tedious. We will state it without proof, and

regard it, for practical purposes, as a postulate:

Theorem 13-6-. If and-2 are arcs of the same circle

having only the point B in common, and if their union is an arc
Ka, then mAB +

[sec. 13-4]
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Notice that for the case in which AC is a minor arc, the

theorem follows from the Angle Addition Postulate. The proof in

the general case is more troublesome.

In each of the figures below, the angle x is said to be

inscribed in the arc a.

Definition: An angle is inscribed in an arc if (1) the two

end-points of the arc lie on the two sides of the angle and (2)

the vertex of the angle is a point, but not an end-point, of the

arc. More concisely, z ABC is inscribed in a.
In the first figure, the angle is inscribed in a major arc,

and in the second figure the angle is inscribed in a semi-circle.

In each of the figures below, the angle shown is said to

intercept PQR.

123
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In the first case, the angle is inscribed; in the second case, the
vertex is outside the circle; in the third case, the angle is a
central angle; and in the last case, one side of the angle is
tangent to the circle. In the second case, the angle shown
intercepts not only the arc PQR but also the arc a.

These figures give the general idea. We will now give the
definition of what it means to say that an angle intercepts an
arc. You should check very carefully to make sure that the
definition really takes care of all four of the above cases.

Definition: An angle intercepts an arc if (1) the end-points
of the arc lie on the angle, (2) each side of the angle contains
at least one end-point of .the arc and (3) except fcr its end-
points, the arc lies in the interior of the angle.

The reason why we talk about the arcs intercepted by angles
is that under certain conditions there is a simple relation between
the measure of the angle and the'measure of the arc.

.121
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In the figure above we see three inscribed angles, L x, L Y,

z, all of which intercept the same arc a It looks aS- if

these three angles are congruent. Indeed, it is a fact that this

is what always happens. This fact is a corollary of the following

theorem:

Theorem 13-7. The measure of an inscribed angle is half the

measure of its intercepted arc.

Restatement: Let z A be inscribed in an arc of a circle,

intercepting the arc 2. Then

m,L A . ma

In order to prove this from our previous theorems we first

consider an angle inscribed in a special way.

125
[sec. ]3.-4]



Ira-5

Proof: Case 1. Sur7osee that one side of cor=ains a

diameter of the circle, :L_Ze th1s:

Let 2:x and z y be as in the figure. Then

TriL A + mL x = 111,L YY

by Corollary 9-13-3. PA = PB, because A and B lie on the
circle. Since the base angles of an isosceles triangle are

congruent, we have m,Z A = mL x.

Therefore 2(mL A) = 111Z y,

lfand
111,Z A = (111,Z Y) = 7k

which was to be proved.

Now we know that the theorem always holds in Case 1. Using

this fast, we show that the theorem holds in every case.

Case 2. Suppose that B and C are on opposite sides of

the diameter through A, like this:

[sec. 13-4]
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Then

and

mL .,... v... 7 4.51/ W,

Ige

(Why, in each case?) By Case 1
, we ,7.7,.ow that

/11,Z v

and raZ

Putting these equations toget. , get

1
rnZ + 7 niv1/4;

which was to be proved.

Case 3. Suppose that B C are on the same side of the

diameter through A, like tilt.

The proof here is very much like that for Case 2, and we state it

in condensed form:

MLBAC = t m2:s - mL u.

1 ma e.7:mCv=

(la -=

1
56= 7

.You should check carefully to 11a1,:.e sure that you see why each.of

these equations is correct.
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From this theorem we get two very important corollaries:

Corollary 13-7-1. An angle inscribed in a semi-circle is a

right angle.

This is so because slzah an angle intercepts a semi-circle,

which has measure 180.

Corollary 13-7-2. Angles inscribed'in the same arc are

congruent.

The proof of this is fairly obvious because all such angles

intercept the same arc.

Problem Set 13-4a

1. The center of an arc is the

center of the circle of

which the arc is a part.

How would you find the

center of ITT?

2. Given: P is the center of

mL C = 45.

Prove: BP ± AP.

3. In the figure, mAll . mg.

a. Prove A AHK A BHF

b. What other triangle

is sfm1lar to A BHP?
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4. The two circlee in this figure

are tangent a:: A and the

smaller circl masz5 through

0, the center of --tme larger

circle. Prove-that any chord

of the larger circle with end-

point A is tiseated by the

smaller circle.

. Prove: Any three non-collinear

points lie on a circle.

Restatement: A, B, and C

are non-collinear. Prove

that there is a circle contain-

ing A, B, end C.

(Hint: Draw AB and BC.

Can you find the center of

the circle?)

6. An tnscribed quadrilateral is

a quadrilateral having all of

its vertices on a circle.

Prove the theorem: The

opposite angles of an

inscribed quadrilateral

are supplementary.

7. In circle P, let m.Z R = 85,

= 40, . 90. Find

the measures of the other

arcs and angles in the fig
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8. -XII is the ormnon ciacrd -C two

in=rsectinT: circ1z.. and.

DC are two segmen7::: c:777.ing
thE.' circles as sho-o=
fig;lre and contain and

Y -7espectiveLy.

Prc,fe: AD II BC.

See Problem -6.i

9. Prove: .A diameter i-oerpendic-

ular to a chord of a circle

bisects both arzs determined

by the chord.

10. In the figure, A"-C-3 is

semi-circle and 0

Prove that CD -ill the

geometric mean cf AD and

BD.

'11. Prove the ftllowLng verse

o.f Corollart aa

.angle inscOcTd

arc is a=ight, ramEre,. 'then

the arc a serML--,--".:1-e.

439
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*12. If .a pair of opposite angles

of-a quadrilateral are

supplementary, the quadri-

lateral can be inscribed in

a circle.

(Hint: Use Prblems 5 and 6

in an indirect proof.)

*13. In this figure, AB is a

dtameter of the smaller of

two concentric zfrcles,

both with center 0, and

AC and BD are tangent

to the smaller circle.

CO and DO are radii of

the larger circle.

Prove tha': CD is a diameter

of the larger cirale.

(Hint: Drem AL md GE.)
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[sec. 13-4]



Definition: In the same circle, or :1.7.1 congruent air:1es,

two arcs are called congruent if they have the same measure.

Just as in the definition of congruent segments, Engles,

triangles br circles, the intuitive idea :La that one ar= can

be moved so as to coincide with the other_

Theorem 13-8. In the same circle or -Lin congruent cizcles,

if two chords are congruent, then so alma a:re the correaponding

minor arcs.

Proof: We need to show, In the above-. L47,ure, 'Lmit

AB = AIBI, then 2=4 By the S.S.S, 777-torem, we

A APB A AIIPPI.

Therefore Z. L P'. Since Mi2 = niL Pethis means that AB P.' AIIP, which was -b.= be proved-

d mAP71 = mL 2.1 ,

The converse is also true, and th:lt provf is very z-417r71-5-7;=-7"..

Theorem 13-9. In the same circle, _in =ongrui,

if two arcs are congruent, then so are carre4pone_t7=-chbrds.

'That is, in the figure above, if .'47;71.!, tbla= EB A13,1

And if it is the,major arcs that are known to be aonlpacem, then

the same conclusion holds.

3 2
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Theorem 13-10. Given an angle with vertex on the circle

formed by a secant ray and a tangent ray. The measure of the

angle is half the measure of the intercepted arc.

Proof: By the angle formed by a secant ray and tangent ray

we mean the angle as illustrated in the figure above. We prove

the theorem for the case in which the angle is acute, as in the

figure. We use the notation of the figure for the measures of

the various angles. In A PQR, L R and L Q. have the same

measure y, as indicated, because A PQR is isosceles. Since

ma . mL QPR, what we need to prove is that x

By Corollary 13-2-1, L PQS is a right angle. Therefore

x = 90 - y.

By Theorem 9-13, z + y + y = 180,: so that

z 180 - 2y.

1Therefore x = 7z, which was to be proved.



Problem Set 13-41)
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1. Prove Theorem 13-9: In the same circle or in congruent

circles, if two arcs are congruent, then so are the corre-

sponding chords.

2. In the figure AF = BH.

Prove: a. a .

b . A AMH A BMF .

3. ABCD is an inscribed square.

E is any point of S'a, as

shown in this figure.

Prove that AE and BE
trisect L DEC.

4. In the llgure, A, B, C, D

are on the circle and EF

is tangent to the circle at

A. Complete the following

statements:

a. LBDC

b. LADC PI

c. ACB

d. L EAD is supplementary to

e. L DAB is supplementary to

f. L ABC is supplementary to

[sec. 13-4]
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g. LDAE

h. L DBA is supplementary to

ADB is supplementary to

J. LDc V.

5. In the figure -CP and AQ

are tangents, PQ is a

diameter of the circle. If

mfg . 120 and the radius

of the circle is 3, find

the length of AP.

*6. Two circles are tangent, either internally or externally, at

a point H. Let u be any line through H meeting the

circles again at M and N. Prove that the tangents at

M and N are parallel.

4-*
*7. Given: Tangent PT and

4-*
secant PR. -B is the mid-

point of fft.

Prove: B is equidistant

from PT and PR.

[sec. 13-4]



8. Prove the thecr-em: The

measure of an :,ngle formed

by two secants of a circle

intersecting in the interior

of a circle is one-half the

sum of the measures of the

arcs intercepted by the angle:

and its vertical angle.

Given: A circae with4-
secants AB and CD

intersecting at E.

Prove:

(Hint: Draw BC.)

9. Prove the theorem: The

measure of an angle formed

by two secants of a circle

meeting in the exterior of

the.circle is one-half the

difference of the measures

of the intercepted arcs

(Hint: See Problem 8.)

10. Verify ttat the theorem of :Problem 9 holds

secants" are replaced by "a eecant and a tangent"

tangents..."

11. In the figure, let ma 7G,

ma = 80, n . 150, ant

mL BFC . 55.

Find MR, ra, mL K,
mL E, mZ BAD, mL AGE,

mL DGE, mLADIK.

445

if the words "two

or by "two

[sec- 11.3-4]



446

12. In the figure, EF is tangent

to the cirdle at D and AC

bisects Z BCD. If ma = 88
and ma) = 62, find the

measure of each arc and each

angle of the figure.

13. Given inscribed quadrilateral

ABCD with diagonals inter-

secting at P.

Prove: a. A APD v A BPC.

b. AP. PC = PD. PB.

14. Given 153. tangent to the

circle at A and secant
4->
BD intersecting the circle

at B and C.

Prove: . a. A ABD A CAD.

b. BD CD = AD2.
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*15. In the figure, quadrilateral ABCD is inscribed in the

circle; lines 11 and BC intersect in P, lines AB and
4--->

DC intersect in Q; PV and QS are the bisectors of

z APB and z AQD respectively.
<> ,

Prove: PV 1 QS.

(Hint: Show mL PRQ = mL QRV. Use theorems developed in

this Problem Set.)

*16. Prove the theorem: If two parallel lines intersect a circle,

they intercept congruent arcs.

Case I

(One tangent -
one secant)

Case II

(Two secants)

[sec. 13-4]
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13-5. Lengths of Tangent and Secant Segments.

Definition: If the line QR is tangent to a circle at R,

then the segment QR is a tangent segment from Q to the circle.

Theorem 13-11. The two tangent segments to a circle from an

external point are congruent, and form congruent angles with the

line joining the external point to the center of the circle.

Restatement: If- QR is tangent to the circle 'C at R,

and QS is tangent to C at S, then QR QS, and

z PQR z PQS.

Proof: By Corollary 13-2-1, A PQR and A PQS are right

triangles, with right angles at R and S. Obviously PQ = PQ

and PR = PS because R and S are points of the circle. By

the Hypotenuse-Leg Theorem (Theorem 7-3), this means that

A PQR PQS.

Therefore QR QS, and L PQR L PQS, which was to be proved.

1 3 9

[sec. 13-5]
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The statement of the following theorem is easier to under-

stand if we look at.a figure first:

Theitheorem says that given any two secant lines through Q, as

in tila figure, we have

QR Q,S = QU QT .

Theorem 13-12. Given a circle C and an external point Q,

let L
1

be a secant line through Q, intersecting C in points

R and 8; and let L2 be another secant line through Q,

intersecting C in points T and U. Then QRQ5 = QU QT.

Proof: Consider the triangles A SQU and A TQR. These

triangles have ZQ in common. And LS 2.4ZT, as indicated

in the figure, because both of these angles are inscribed in the

major arc O. By the A.A. Corollary (Corollary 12-3-1), this

means that

A SQU 4, A TQR.

Therefore corresponding sides are proportional. Hence

and

which was to be proved.

QS QU
747 Ziff

QR QS F QU QT,

[sec. ;3-5]
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Notice that this theorem means that the product QR.QS is

determined merely by the given circle and the given external

point, and is independent of the choice of the secant line.

(The theorem tells us that any other secant line gives the same

product.) This constant product is called the power of the point

with respect to the circle.

The following theorem is going to say that in the figure

below, QR QS = QT2.

Theorem 13-13. Given a tangent segment -0 to a circle,

and a secant line through Q, intersecting the circle in points

R and S. Then

QB . Q5 = QT2.
-

The main steps in the proof are as follows. You should find

the reasons in each case.

(1) mL S 2f- ra.

(2) mL RTQ =

(3) L3LRT.
(II) A OT A qrs .

(5) g=g.
( 6) QB . QS = T2 .

141
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The following theorem is a further variation on the preceding

two; the difference is that now we are going to draw two lines

through a point in the interior of the circle. The theorem says

that in the figure below, we always have

QR 'QS = QU. QT.

The main steps in the proof are as follows: You should find the

reason in each case:

(1) zs z T.

(2) LsQuLTQn.

(3) tSQUTQB.
(4)

QSQU

(5) QR. QS QU.QT.

For purposes of reference, let us call this Theorem 13-14.

Write a complete statement of the theorem. That is, write a

statement that can stand alone, without a figure.

142
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Problem Set 13-5

1. AC, CE and EH are

tangent to circle 0 at

B, D, and F respectively.

Prove: CB + EF = CE.

4-*
2. Secants CA and CE

intersect th circle at

A, B, and D, E, as

given in this figure.

If the lengths of the

segments are as shown,

find x.

3. In this figure AB is

tangent to the circle at

A and secant BW inter-

sects the circle at K

and W. If AB = 6 and

WK . 5, how long is BK?

4 '3

[sec. 13-5]



Given a circle with Inter-

secting chords as shown and

with x < w, if AB = 19,

find x and w.

4*
5 AB and BC are tangent to

circle 0 at A and C,

respectively, ar:d mL ABC = 120.

Prove that AB + BC = OB.

6. Given: The sides of quadri-

lateral CDRS are tangent

to a circle at L, M, N,

P as in the figure..

Prove: SR + CD = SC + RD.

453

7. In a circle a chord of length 12 is 8 inches from the

center of the circle. Using Theorem

of the circle.

8. Secants and segments are

as indicated. Find the

length of AB.

13-14, find the radius

[sec. 13-5]
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9. In the figure, CD is a

tangent segment to the circle

at D and AC is a segment

of a secant which contains

the center of the circle.

If CD 12 and CB 4,

find the.radius of the circle.

10. If two tangent segments to a circle form an equilateral tri-

aigle with the chord having-the points of tangency as its

end-points, find the measure of each arc of the chord.

11. Show that it is not possible

for the lengths of the segments

of two intersecting chords to

be four consecutive integers.

*12. Prove that if two circles

intersect, the common

secant bisects either

common tangent segment.

13. If a common tangent of two circles meets the line of centers

at a point between the centers it is called a common internal

tangent. If it does not meet the line of centers at a point

between the centers it is called a common external tangent.

[sec. 13-5]
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In the figure AB is a common internal tangent and. CD is

a common external tangent.

a. In the figure above, how many common tangents are

possible? Specify how many of each kind,

b. If the circles were externally tangent, how many tangents
of each kind?

c. If the circles were intersecting at wo points.

-d. If the circles were internally tangent?

, e If the circles were concentriO

*14. Prove: The common internal

tangents of two circles

meet the line of centers

at the same point.

(Hint: Use an indirect

proof.)

*15. Prove that the common tangent segments of common internal

tangents are congruent. Use figure of Problem 14.

[sec. 13-5]
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16. The radii of two circles

have lengths 22 and 8

respectively and the

distance between their

centers is 50. Find the

length of the common

external tangent segment.

(Hint: Draw a perpendicu-

lar through Q to A2.)

17. Two circles have a common external tangent segment 36

inches long. Thelr radii are 6 inches and 21 inches

respectively. Find the distance between their centers.

18. The distance between the

centers of two circles

having radii of 7 and 9

is 20. Find the length

of the common internal

tangent segment.

*19. Standing on the bridge of

a large ship on the ocean,

the captain asked a new

young officer to determine

the distance to the horizon.

The young officer took a

pencil and paper and in a

few moments came up with an

V

answer. On the paper he had written the formula d = .2rvh

miles. Show that this formula is correct approximately

where h is the height in feet of the observer above the

water and d is the distance in miles to the horizon.

(Assume the diameter of the earth to be 8000 miles.)

1 4 7
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Review Problems

. For circle 0,

a. BC is a

b. AD is a

c. AC is a

d. OA is a

e. AX is a

f. a is a

g. a is a

h. z BCA is an

i. COD is a

2. Given: In the figure,

circle 0 has diameter

AB. AF II OH, mL. A = 55.

Find MR and 116P.

3. Given: AB is a diameter
-->

of circle C. XY bisects

z AXE.

Prove: CY I AB.

(Hint: Find 111,L AXY.)

457
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4. Indicate whether each of the following statements is true

or false.

a. If a point is the mid-point of two chords of a circle,

then the point is the center of the circle.

b. If the measure of one arc of a circle is twice the

measure of a second arc, then the chord of the second

arc is less than twice as long as the chord of the first

arc.

c. A line which bisects two chords of a circle is

perpendicular to each of the chords.

d. If the vertices of a quadrilateral are on a circle,

then each two of its opposite angles are supplementary.

e. If each of two circles is tangentto a third circle,

then the two circles are tangent to each other.

f. A circle cannot contain three collinear points.

g. If a line bisects a chord of a circle, then it bisects

the minor arc of that chord.

h. If PR is a diameter of circle 0 and Q is any

point in the interior of circle 0 not on PR, then

PQR is obtuse.

i. A tangent to a circle at the mid-point of an arc is

parallel to the chord of that arc.

It is possible for two tangents to the same circle to

be perpendicular to each other.
c-->

5. Given: In the figure BX

is tangent to circle 0

at B. AB = AC. ma = 100.

Find mL C and mL AMC.



6. Given: Circle C with

EC PQ, HN H PQ, and

T1 tangent to circle C

at H.

Prove: mHE = mL RHN.

(Note: The circle may

be considered to represent

the earth, with tt the

earth's axis, L RHN the

angle of elevation of the

North Star, and mill the

latitude of a point H.)

7. A hole 40 inches in diameter is cut in a sheet of plywood,

and a sphere 50 inches in diameter is set in this hole.

How far below the surface of the board will the globe sink?

8. A wheel is broken so that only a portion of the rim remains.

In order to find the diameter of the wheel the following

measurements are made: three points C, A, and B are

taken on the rim so that chord AB :41 chord AC. The chords

AB and AC are each 15 inches long, and the chord BC

is 24 inches long. Find the diameter of the wheel.

9. Diameter AD of circle C contains a point B which lies

between A and C. Prove that BA is the shortest segment

joining B to the circle and BD is the longest.
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*10. Assume that the earth is a

sphere of radius 4,000

miles. A straight tunnel

AB 200 miles long connects

two points A and B on

the surface, and a ventilation

shaft CD is constructed at

the center of the tunnel.

What is the length (in miles)

of this shaft?
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11. Given: Circles C and D

internally tangent at P

with common tangent AP.

11 is tangent to circle C
E->

at X and AY is tangent

to circle D at Y.

Prove: AY = AX.

*12. In the figure, AP is

tangent to the circle at

A. AP = PX = XY. If

PQ = 1 and QZ = 8

find AX.

*13. Given: a, '13. and a
are 1200 arcs on a circle

and P is a point on PATS.

Prove: PA + PB = PC.

(Hint: Consider a parallel

to. PB through A inter-

secting PC in R and the

Circle in Q.)
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Chapter 14

CHARACTERIZATION OF SETS. CONSTRUCTIONS.

14-1. Characterization of Sets.

In Chapter 6 we showed how a certain figure, the perpendicu-

lar bisector of a segment, could be specified in terms of a

characteristic property of its points, namely, that each of them

is equidistant from the end-points of the segment.

In Chapter 13 a circle (and a sphere) was defined in terms

of a characteristic property of its points, namely, that each of
them is at a given distance from the center.

Such characterizations or descriptions of a point set

(geometric figure) in terms of a common property of its points

are often very useful, and we shall spend some time discuzsing

them.

What do we mean when we say that a set is characterized by

a condition, or a set of conditions, imposed on its points? In

the first place, we certainly mean that every point of the set

satisfies the conditions. But this is not enough, as we can

readily see from an example. Suppose the condition is "in plane
E at distance 4 from boint Q in E". A semi-circle in E
with center Q and radius 4 has all its points satisfying

this condition. So does any other suitable arc.

EVery point in a is 4

units distant from Q, but

not every point 4 units

distant.from Q is in AB.
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The obvious trouble with such examples is that they leave

out some points that satisfy the conditions. We want the whole

circle, not just a part of it. In general, we want our set to

contain all points that satisfy the conditions. Another way of

saying this is that every point that satisfies the conditions is

a point of the set. This is the second part of the meaning of

characterization.

Let us put the two parts together for future reference:

(1) Every point of the set satisfies the conditions,

(2) Every point which satisfies the conditions is a point

of the set.

If you refer to Theorem 6-2, you will see that the restate-

ment of this theorem is worded in exactly this form.

Problem Set 14-1

These problems are proposed for discussion. No proofs'are

expected. In some of the problems in this set we speak of the

distance from a point to a figure. This is defined as the

shortest distance from the point to any point of the figure.

Illustrative example: Describe and sketch the set of points

which are one inch from a given line.

a. In a plane.

b. In space.

Answer: e-

a. The set consists of

two lines, each one 4

inch from the given

line and parallel to 4

it.

b. The set consists of

all points of a cylin-

drical surface with

one inch radius and

the given line as axis.

lin
Given line

to.

[sec. 14-1]
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1. What set of points P is characterized by the condition
that CP = 3 inches, where C is a given point?

2. What set of points P in a given plane E is characterized
by the condition that CP = 3 inches, where C is a given
point of E?

3. Describe and sketch the set of points in a plane E which

are equidistant from each of two parallel lines in E.

4. E is a plane and C is a fixed point 3 inches from the

plane. What is the set of points im E whose distance from

C is

a. 5 inches? c. 2 inches?

b. 3 inches?

5. E is a plane. L and M are two intersecting lines in E.

a. How many points of E are 2 inches from L and 2

inches from M?

b. Sketch the set of points of E whose distances from

L and M are each at most one inch.

6. E is a plane. A and B are two points in E which are

4 feet apart. What ts the set of points of E which are

a. 4 ftet from A and 4 feet from B?

b. At most 4 feet from A and at most 4 feet from B?

c. 2 feet from A and 2 feet from B?

d. 1 foot from A and 1 foot from B?

7 AB is a segment of length 3 inches in a plane E.

Describe and sketch the set of those points of E which are

one inch from AB.

t

[sec. 14-1]



464

14-2. Basic Characterizations. Concurrence Theorems.

For convenience in reference we restate here some of the

characterizations we have already met. Some of these are

definitions and some are theorems.

1. A sphere is the set of points at a given distance from

a given point.

2. A circle is the set of points in a given plane at a

given distance from a given point of the plane.

3. The perpendicul,ar bisecting plane of a given segment

is the set of points equidistant from the end-points

of the segment.

4. The perpendicular bisector, in a given plane, of a

given segment in the plane, is the set of points in

the plane equidistant from the end-points of the segment.

Problem Set 14-2a

1. Describe the set of points at a given distance from

a. a given point.

b. a given line.

c. a given plane

d. each of two intersecting planes.

e. each of two given points.

f. a segment.

2. Describe the set of points in a plane equidistant from

a. two points.

b. two parallel lines.

c. two intersecting lines.

d. three non-collinear points.

IL 5 5

[sec. 14-2]
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3. Describe the set of points equidistant from

a. two given points.

b. two parallel lines.

c. two parallel planes.

d. two intersecting planes.

e. a plane and a line perpendicular to it.

4. Indicate whether each statement is true or false.

a. Given a line u and a plane E there is always a plane

1. containing u and perpendicular to E.

2. containing u and parallel to E.

b. Given two non-intersecting lines in space, there is
always a plane containing one and

1. parallel to the other.

2. perpendicular to the other.

5. The Smiths, the Allens and

the Browns live in homes

represented by these three

points. They plan to erect

a flagpole, at a point which

will be equidistant from

their back doors. Tell how

to find the point where

they should place the pole.

A

g

6. Describe the set which consists of the vertices of all

isosceles triangles having AB as base.

[sec. 14-2]
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7. Find a point in the plane equally distant from three non-

collinear p6ints. Why must the points be non-collinear?

8. What is the set of points which are equidistant from two

given points and at the same time equidistant from two

glven parallel planes? (Hint: Consider the intersection

of the set of points representing the separate conditions.

There may be more than one solution depending on the positions

of the given elements.)

What is the set of points in a plane which are within four

centimeters of one or the other of two points in,a plane

which are four centimeters apart?

10. Let L and M be any two intersecting lines. Choose any.

two coordinate systems on these lines (not necessarily with

0 at the point of intersection). Draw a number of lines

through corresponding points; that is, points with the same

coordinates. For example, see Figure A.

If you put in enough lines, the figure should appear to

include a nearly smooth curve. Experiment with this con-

struction, trying different pairs of lines and different

coordinate systems.

The construction is quite general, but some choices of co-

ordinate systems on the two lines will lead to more satis-

fying results on your paper than others.

Figure A.

[sec. 14-2]
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11. What is the set of points in a plane at a given distance

from a square of side 2 in the plane? Consider the three
cases d > 1, d = 1, < 1.

*12. F and G are two points in a plane E. FG = 4. Sketch
the set of those points P of E, such that PF + PG = 5.

Another characterization you can include in the above list

is the following theorem:

Theorem 14-1. The bisector of an angle, minus its end-pOint,

is the set of points in the interior of ,11.e angle equidistant from

the sides of the angle.

Restatement: Let 70:6 bisect z BAC..

(1) If P is on AD but P / A, then P is in the

interior of L,BAC and the distance from P to

AB equals the distance from P to AC.

(2) If P is in the interior of z BAC and the

distance from P to AB equals the distance

from P to 1Rr, then P lies on Z and
P / A.

[see. 14-2]
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P / A,

interior

) Given: P is on AD,

To prove: P is in the

PM I AB, PN I AC.

of 2:BAC; PM = PN.

1. P is in the interior

of Z BAC.

1. P is on AD, P / A, and
definition of bisector of
an angle.

2. AP =11 AP. 2. Segment is congruent to
itself.

3 Z PAM =4, Z PAN. 3. Definition of bisector.

Z PMA PNA. 4. Right angles are congruent.

5. A PMA A PNA. 5. S.A.A. Theorem.

6. PM = PN. 6. Corresponding parts.

C N

(2) Given: P is in the interior of Z BAC, PM AB,

PN I AC, PM = PN.

To prove: P / A; P lies on AD.

1. P / A.

2. PM PN.

3. PA PA.

Z PMA and Z PNA are
right angles.

5. PMA A PNA.

6. LPMLPAN.
7. P lies on Z.

1. Definition
an angle.

2. Definition
segments.

3. Segment is
itself.

4. Given.

5.

6.

7.

1 5 9

[sec. 14-2]
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As a first application ofqbt characterization we will prove

three concurrence theorems analogous to Theorem 9-27 on con-

currence of medians.

Theorem 14-2. The perpendicular bisectors of the sides of a

triangle are concurrent in a point equidistant from the three

vertices of the triangle.

Proof: Let L
1,

L
2

and L
3

be the perpendicular bisectors

of the three sides AB, AC and BC. If L1 and L2 were

parallel then AB and tt would be parallel. (Why?) Therefore,

L
1

and L
2

intersect in a point P.

By Theorem 6-2, AP BP, because P is on Ll. And AP = CP,

because P is on -L
2'

Therefore BP = CP. By Theorem 6-2,

this means that P is on L
3'

Therefore P is on all three of

the perpendicular bisectors and AP = BP = CP, which was to be

proved.
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Corollary 14-2-1. There is one and only one circle through

three non-collinear points.

Corollary 14-2-2. Two distinct circles can intersect in at

most two points.

Suggestion for proof: If two circles could intersect in

three points, the three points could be either collinear or non-

collinear. Use Theorem 13-2 and Corollary 14-2-1 to show that

this is impossible in each case.

Theorem 14-3. The three altitudes of a triangle are con-

current.

Up to now, we have been using the word altitude mainly in

two senses: It means (1) the perpendicular segment from a vertex

of a triangle to the line containing the opposite side or (2) the

length of this perpendicular segment. In Theorem 14-3, we are

using the word altitude in a third sense: It means the line that

contains the perpendicular segment.

Theorem 14-3 is easy to prove - if you go about 1t in exactly

the right way.

.X5z X

N I

N
1

/
N /

>< 1

N 1 /
N /'N/
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Given A ABC, we draw through each vertex a line parallel to the

opposite side. These three lines determine a triangle A DEF.

Opposite sides of a parallelogram are congruent. Therefore

BC = AE and BC = DA. Therefore DA = AE. Therefore the altitude

from A, in A ABC, is the perpendicular bisector of DE. (This

is L
1

in the figure.) For the same reasons, the other two

altitudes of A ABC are the perpendicular bisectors of the sides

of A DEF. Since the perpendicular biSectors are concurrent, so

also are the three altitudes.

Theorem 14-4. The angle bisectors of a triangle are con-

current in a point equidistant from the three sides.

A

Proof: Let P be the intersection of the bisectors "Aid5'---->
and BE. By Theorem 14-1, P is equidistant from AB and AC,

because P is' on the bisector of

from BA and BC, because P is

Therefore P is equidistant from

z A. And P is equidistant

on the bisector of Z: B.

AC and BC. Therefore, by

Theorem 14-1, P is on the bisector of z C. Therefore, the

three bisectors have the point P in common and P is equidistant

from AB, AC and BC, which was to.be proved.
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Problem Set l4-2b

1. A line intersects the sides of Z ABC in P and Q. Find

a point of PQ which is equally distant from the sides of

the angle.

2. Imagine this figure.as a

city park. The park

commission plans to place

a drinking fountain at a

point which shall be
<-4

equidistant from AB and
<-4
BC and also equidistant

from D and C. EXplain

how to find this point.

3. Prove the following theorem:

Given Z DAE and B, C

points on AD, AE, between

A and D and A and E

respectively, then the

bisectors of the angles

BAC, DBC, BCE, are

concurrent.

4. Given the three lines determined by the sides of a triangle,

show that there are exactly four points each of which is

equidistant from all three lines.
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5. Mark points M and N 2 inches apart and draw circles with
1

radii inch, 1 inch, 2 inches and 3 inches using

both M and N as centers each time.

Note that some of the circles with center at M intersect

circles with center at N, but that there are two Lrinds of

situations in whiCh they do not. Describe these twa

situatians.

6. Sketch several different quadrilaterals, and in each sketch

the bisectors of each of the four angles. From your sketches

does it appear that these angle bisectors are always con-

current? Can you think of any special type of quadrilateral

whose angle bisectors are concurrent? Can you think of a

general way of describing those quadrilaterals whose angle

bisectors are concurrent? (Hint: If the angle bisectors

are concurrent, the point of concurrency is equidistant from

all four sides.)

7. A quadrilateral is cyclic if its four vertices lie on a

circle. Prove that the perpendicular bisectors of the four

sides and the two diagonals of a cyclic quadrilateral are

concurrent.

. What is the set of points which are the vertices of right

triangles having a given segment AB as hypotenuse?

14-2. Intersection of Sets.

Consider the following problem:

many points are there which are at a

given point A of E and which are

given points 13 and C of E?

Such a point P is required to

(1) AP = r,

In a given plane E how

given distance r from a

alsb equidistant from two

satisfy two conditions;

(2) BP = CP.

Consider these conditions one at a time. If P satisfies (1)

then P can be anywhere on the circle with center A and radius

r. In other words, the set of points satisfying (1) is this circle.

[sec. 14-3]
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Similarly, by Theorem 6-2, the set of points satisfying (2) is a

line, the perpendicular bisector of BC. If P is to satisfy

both conditions it must lie on both sets; that P must be a

point of the intersection of the two sets. Since the intersection

of a line and a circle can be two points, one point, or no points,

the answer to our problem is two, one, or none, depending on the

relative positions of A, B and C and the value of r. The

method illustrated here is a very useful one, since it enables us

to consider a complicated problem a piece at a time and then put

the pieces together as a final step. If you refer to the proofs

of Theorems 14-2 and 14-4 you will see that this was the basic

method of the proof. In Theorem 14-2, for example, we found the

point P as the intersection of the set L1 defined by PA = PB

and the set L
2

defined by PA = PC.

of thF, nonsuctions which are to be discussed in the

v,..ixt sections are based on the method of intersection of sets.

Problem Set 14-3

1. AB is a segment 6 inches long in a plane E. Describe

the location of points P in E, 4 inches from A, and

5 inches from B.

2. AB is a segment 4 inches long in a plane E. C and D

are points of E such that D is on AB, CD 1 AB and

CD is 3 inches long. Describe the set of points P which

are equidistant from A and B, and 5 inches from C.

*3. On a circular lake there are

three docks, A, B, C.

Draw a diagram indicating

those points on the lake

Which are closer to A

than to B or C.

(sec. )4-3]
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Are there any points in a plane that satisfy the following

conditions? If there are, tell how many such points and how

each is determined. Make a sketch to illustrate your answer.

Given BC = 6 inches.

a. 4 inches from B and 3 inches from C.

b. 10 inches from B and 10 inches from C.

c. 10 incheS from B and equidistant from C and B.

d. 2 inches from B and 4 inches from C.

14-4. Constructions with Straight-edge and Compass.

A practical problem of some importance is that of drawing a

figure with accuracy. This is the job of a draftsman, and he uses

many instruments to facilitate his work, such as rulers, compasses,

dividers, triangles, T-squares, and a host of other.devices.

The corresponding geornetric process is generally called
" constructing" rather than "drawing", but the idea is the same.

We allow ourselves the use of certain instruments, and the basic

problem is to show how, with these instruments, we can construct

various figures.

Of course our constructions will depend on the instruments

we use. Thus far in our text we have been considering the ruler

and the protractor as our fundamental instruments, although we

would have had to introduce a compass in Chapter 13 to construct

circles. Various other combinations of instruments have been

considered, but the most interesting is still the combination

used by the ancient Greeks, the straight-edge and compass. We

shall devote the rest of this chapter to constructions with these

instruments.

A straight-edge is 'simply a device to draw lines. It has no

marks on its edge and so we cannot measure distances with it.

With a compass we can draw a circle with a given center and a

given radius. We have no means of measuring angles.Iti
[sec. 14-4)
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Most pf our constructions will depend on the intersection

properties of two lines, of a line and a circle, or of two circles.

The first of these three cases has been considered in such places

as Theorem 3-1, the Plane Separation Postulate and the Parallel

Postulate. The case of a line and circle was taken care of by

Theorem 13-2. But we still have the case of two circles to

consider. As might be expected this is.the most complicated of

the lot, both to state and to prove. In faqt, the proof is so

complicated that we do not give it here at all, but put it in

Appendix IX. Here is the theorem:

Theorem 14-5. (The Two Circle Theorem.) If two circles have

radii a and b, and if c is the distance between their centers,

then the circles intersect in two points, one on each side of the

line of centers, provided each one.of a, b, c is less than

the sum of the other two.

Some of the situations in which the inequalities stated in

the theorem are all satisfied and the circles intersect are

illustrated below:

0 7

[see. 14-4]
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That the inequality condition imposed on a, b, c is important

is shown by these cases in which one of the inequalities stated

in the theorem is not satisfied and the circles do not intersect:

c > a + b b > a + c a > b + c.

14-5. Elementary Constructions.

In this section we show how to do various simple constructions

which will be needed as steps in the more difficult ones. All

these constructions will be in a given plane. Constructions will

be numbered in the same way as theorems.

Construction 14-6. To copy a given triangle.

Suppose we have given A ABC. We want to construct a tri-

angle A DEF, congruent to A ABC, with the side DF lying on

a given ray with D as end-point.

1 6 6

(sec. 14-5]
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Step 1. With the compass, construct a circle with center at

D and radius AC. This intersects the given ray in a point F,

and DF = AC. In the figure, we show only a short arc of the

circle.

Step .2. With the compass, construct a circle with center

at D and radius AB.

BC.

Step .3. Construct a circle with center at F and radius

1 0 9

[sec. 14-5]
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These two circles seem to intersect; and by the Two Circle

Theorem they must intersect, because each of the numbers AC, AB,

and BO is less than the sum of the other two, by Theorem 7-7.

Either of the points E, E' will do as the third vertex of

our triangle. We draw ,the sides with our straight-edge, and we

know by the S.S.S. Theorem that A DEF === A ABC.

You may remember that in proving the S.S.S. Theorem we had

the problem of copying a triangle. It is worth while to review

the old metilod and compare it with the new one. (In the proof

of the S.S..S. Theorem we copied the triangle with ruler and

protractor, using the S.A.S. Postulate to verify that the con-

struction really worked.)

Construction 2.4-7. To copy a given angle.

Here we have given an angle with vertex at A, and we have

given a ray with end-point at D. We want to construct the two

angles, having the given ray as a side, congruent to the given

angle.

With A as center, we construct an arc of a circle inter-

secting the sides of the angle in points B and C. With D as

center construct a sufficiently large arc of a circle of the same

radius, intersecting the given ray in F. With F as center and

BC as radius construct arcs of a circle, intersecting the circle> ---->
with center D in E and El. Construct ray DE and ray DE'.

By S.S.S. Theorem A DEF A ABC, and hence L EDF al L BAC.

Similarly, Z EIDE+ BAC.

1 '7 ()

[sec . 1.11-5]
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Problem Set 14-5a

1. For your convenience, we give AB 9 cm. long.

Construct a triangle wAh sides of the following lengthS:

a. 5 cm., 6 cm., 8 cm.

b. 7 cm., 5 cm., 3 cm.

c. 3 cm., 3 cm., 3 cm.

d. 4 cm., 7 cm., 3 cm.

2. Make a triangle ABC on your paper and construct AABtC

congruent to A ABC using AC as a side in each and the

A.S.A. Theorem as your method.

3. Draw on your paper a triangle ABC and a segment MH about

twice as long as AB. With M as vertex construct

HMQ L A. With H as vertex construct L QHM L B.

(c1 '14

AB
MH

4. a. Prove that it is always possible to construct an

equilateral triangle having a given segment as one of

its sides.

b. Under what conditions is it possible to construct an

isosceles triangle having one given segment as its side

and another given segment as its base?

5. a. Construct an equilateral

triangle with x as the

length of one side.

b. Construct an isosceles

triangle with y as

the ]ength of the base

and x as tY- length

of one of the congruent sides.

X

[sec. 14-5] \...
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Construction 14-8. To construct the perpendicular bisector

of a given segment.

Given a segment AB.

Step 1. Using ah appropriate radius r, construct a circle

with center at A and a circle with center at B. If r is

chosen in a suitable way, these two circles will intersect in

two points P and Q, lying on opposite sides of

(Qgestion: What condition should r satisfy, to ensure that

the circles will intersect in this way? Can you think of a

particular value of r that is sure to wo lc? df course, only

one value of r is needed for the construction.)

Step 2. Construct the line .PQ, intersecting AB at R.

We need to show that this line is the perpendicular bisector of

AB. By Theorem 6-2, R and S, being each equidistant from A

and B lie on the perpendicular bisector of AB. Since two
4C--->

points determine a line, PQ is the perpendicular bisector.

Corollary 14-8-1. To bisect a given segment.

l2
[sec. 14-5]
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Construction 14-9. To construct a perpendicular to a given

line through a given point.

4 "SR( 73 )

Step 1% Given P and L. Let Q be any point of L.

Draw a circle with center P and radius r, where r is greater

than PQ. L then contains a point of the interior of the circle

(namely, Q) and by Corollary 13-2-6 intersects the circle in

two points R and S.

1
Step 2. With R as center and radius greater than 7 RS

construct a suitable arc of a circle. With S as a center and

the same radius, construct an arc of a circle intersecting this

in T. Then, as in Construction 14-8, P and T are each

equidistant from R and S, and hence, PT RS.

1 i 3
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Problem Set 14-5b

. Construct an isosceles right triangle.

2. Construct a square in which

a diagonal is congruent to
AF

AC.

3. Construct a rhombus whose

diagonals are congruent

to AB and CD.

Al-

4. Construct a triangle given

any altitude h and the

segments d and e of

the side it intersects.

5. Construct a parallelogram

whose diagonals are con-

gruent to AB and CD

and which determine a 600

angle.

A

Ci D

483

6. Construct a segment whose length is the geometric mean of

AB and CD in Problem 5. (Hint: Refer to Problem 10 of

Problem Set 13-4a.)

4

[sec. 14-5]
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Construction 14-10. To construct a parallel to a given line,

through a given external point.

P.

Step 1. Take any point Q of the line, and join P to Q

by a line.

Step 2. Now construct L QPS, congruent to L PQR, with

S and R on opposite sides of Step 2 is an example of

Construction 14-7. Then PS is parallel to QR, as desired.

Construction 14-11. To divide a segment into a given number

of congruent segments.

[sec. 14-5]
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Given AB, we want to divide AB into n congruent segments.

(In the figure, we show the case n = 5.)

Step 1. Draw any ray starting at A, not on the line t

Starting at A, lay off n congruent segments AP1, PiP2,

Pn - 1Pn'
end to end, on the ray. (The length does not matter,

as long as they have the same length; we simply choose P1 at

random, and then use the compass to lay off P1P2 = AP1, and so

on.)

Step 2. Juin Pn ,to B by a line. Through the other

points Pl,
P2 Pn - 1

construct lines parallel to PnB.
'

(This can be done; it is Construction 14-10.)<>
These lines intersect AB in points Qi, Q2, ..., Qn

The points Q1, Q2, Qn 1 divide AB into n congruent

segments. (See Corollary 9-26-1.)

Problem Set 14-5c

1. Construct a parallelogram
A

with two sides and included

angle congruent to AB, FH, F IH

and L.

13
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2. This drawing shows how Bob

Langford used a sheet of

ruled paper to divide a

segment AO in 9 parts

of equal length. Explain

how he could have divided

it into other numbers of

congruent parts. (Assume

that the lines of paper

are evenly spaced.)

3. This figure illustrates

still another method for

dividing a segment into

any number of congruent
c-->

parts. Here AC is any

convnient line, and
<-->-
BD is drawn parallel to4>
AC. The same number of

congruent segments is

marked off on each, and

the corresponding points

are joined. Prove that

the method is correct.

4. If the length of AB is

the perimeter of an

equilateral triangle,

construct the triangle.

A 0

A

i'i

[sec. 1.4-5]
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Given AB, construct an

isosceles triangle in which

AB is the perimeter and

in which the length of

one of the congruent

sides is twice the length

of the base.

6. This figure illustrates

another method of making

one line parallel to

another which is useful

in outdoor w6rk. Mxplain

the method and show that

it is correct.

AI

487

7. Divide a e:J.:ven line segment

AB into two segments whose

ratio is that of liNo given

segments of lengths a and

b. (Hint: Use a construction Al

similar to that of Construction

Construct a triangle ABC,

given the lengths of AB,

AC, and the median from

A to BC.

Given: Lengths c, b, m.

To construct: A ABC so

that AB = c, AC = b,

median AT = m.

a

I B

1 7 8

[sec. 3.4-5]
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*9. Given x as the median to

one of the congruent sides

of an isosceles triangle in

which the medians to these

sides are perpendicular to

each other. Construct the

triangle.

*10 Given a circle C tangent

to a line :1 at K.

Construct a circle tangent

to C and also tangent to

m at a given point M.

(Hint: Analyze the diagram

below in which P is the

center of the required

circle, N the point of

tangency and LN the

common tangent at N.)

9

[sec. 14-5]
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*11. Construct a common external tangent to two given circles.

*12. Given a triangle ABC in which each angle has measure less

than 120, construct a point P in the plane of the triangle

such that rrIL APB = mL BPC = mL APC.

*13. The figure shows how a segment can be bisected using a line

parallel to it, by means of a straight-edge only. That is,

given line m 11E0, take Q as any point not on BC or m,

and draw V and le meeting m at A and D. Then draw

BD and AC, which meet at P. Then V bisects BC at

M. Prove this.

(Hint: The proof will include these three proportions:

MB ND MB MC
an

MB MC
MC NA' NA ND

d
MC MB"

*14. Given two parallel lines m and n, at a distance d from

each other, find the set of all points P such that the

distance from P to m is k times Lhe distance from P

to n, where k is a:given positive number.

180

[sec. 14-5]



490

14-6. Inscribed and Circumscribed Circles.

Definitions: A circle is inscribed in a triangle, or the

triangle is circumscribed about the circle, if each side of the

triangle is tangent to the circle. A circle is circumscribed

about a triangle, or the triangle is Inscribed in the circle if

each tiertex of the triangle lies on the circle.

In this figure A ABC is inscribed in C2 and circumscribed

about Cl. C1 is inscribed in A ABC and C2 is circumscribed

about A-ABC.

In this section we will learn how to construct with straight-

edge and compass the inscribed circle and the circumscribed

circle, for any triangle.

131
[sec. 14-6]
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Construction 14-12. To circumscribe a circle about a given

triangle.

Step 1. Construct the perpendicular bisectors of two sides

of the triangle. This can be done by two applications of

Construction 14-8. The two lines meet at a point P. By

Theorem 14-2, P also lies on the perpendicular bisector of the

third side: By Theorefi 6-2, this Means that P -is equidistant

from the three vertices A, B, and C; that is, AP = BP CP.

Construct the circle with center at f, passing through A.

Then the cirele also passes through B and C.

ConstruCtion 14-13. To bisect a given angle.

A

Step 1. Construct any circle with center at A, intersecting

the sides of the givell angle in points -B and C. Then AB = AC.

[sec. 14-6]
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Step 2. Construct circles with centers at B and at C,

and with the same radius r, where r > BC. By the Two-Circle

Theorem these circles intersect in two points, one on each side of

BC. Let P be the point on the side opposite to A.

Step 3. Construct the ray AP: By the S.S.S. r1)rem,

A BAP 24A CAP. Therefore Z BAP :=Z CAP, as desi.

Construction 14-14. To.inscribe a circle in a given triangle.

Step 1. .Bisect Z A and Z B, and let P be the point

where the bisedtors intersect. By Theorem 14-4, P also lies

on the bisector of Z C.

Step 2. Construct a perpendicular PD, from P to BC.

Construct a circle with center at P, passing through D. We

need to show that the circle is tangent to all three sides of

A ABC.

(I) The circle is tangent to BC, because BC is per-

pendicular to the radius PD. (See Corollary 13-2-2.)
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(2) By Theorem 14-1, P is equidistant from AB and BC.

Therefore the circle contains the point E which is the foot of

the perpendicular from P to AB. Therefore the circle is

tangent to AB.

The proof of tangency for the third side is exactly the same.

Notice.that if all you want is a fairly convincing drawing

you can merely construct the two bisectors, put the paint of the

compass at P, and then adjust the compass so that its pencil-

point will barely reach BC. You have to drop the perpendicular

PD, however, to get a construction which is theoretically exact.

14-7. The Impossible Construction Problems of Antiquity.

The ancient Greeks disrovered all Of the straight-edge-and-

compass constructions that you have studied so far, together with

a large number of more difficult ones. There were some con-

struction problems, however, which theY tried long and hard to

solve, with no success whatever.

(1) The angle-trisection probleM.

A

Given an angle L BAC, we want to construct two rays AD

and AE (with points D and E in the interior of L BAC)

hich trisect L BAC. That is, we want L BAD f.'-= DAE EAC.

o

[sec. 14-7]
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Nobody has found a way to do this with straight-edge and

compass. The first thing that most people try is to take AB = AC,

draw BC, and then trisect BC with points D and E.

But this doesn't work; in fact, nothing has been found that

works.

(2) The duplication of the cube. A cube of edge a has

volume a
3

.

Suppose we have given a segment of length a. We want to con-

.struct a segment of length b, such that a cube of edge b has

exactly twice the volume of a cube of edge a.
b

(Algebraically, of course, this means that b
3 2a3 , or -5.- = 2.

This problem was attacked, over a long period, by the best

mathematicians in Greece, who were very brilliant men indeed, but

none of them had any success with this problem.

[sec. l4-7)
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There is a curious myth in connection with this problem.

A plague threatened the population of a certain Greek town,

and the inhabitants consulted the oracle at Delphi to find out

which god was angry and why. The answer they got from the oracle

was that Apollo was angry. There was an altar to Apollo, in the

town, consisting of a cube of solid gold, and Apollo wanted his

altar to be exactly twice as big. The people went home from

Delphi and built a new altar, twice as long along an edge as the

old one. The plague then got worse instead of better. The neople

thought again, and realized that the new altar was eight times as

big as the old one, that is, it had eight times as much volume.

This raised the problem of the duplication of the cube, but the

local mathematicians were unable to solve the problem. Thus the

first attempt to apply mathematics to public health was a total

failure.

(3) Squaring the circle.- Suppose we have given a circle.

We want to construct a square whose area is exactly the same as

that of the circle.

A = ya
2

Algebraically, this means that b =

8 )

[sec. 14-7]
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These three problems occupied many people for more than two

thousand years. Various attempts were made to solve them with

straight-edge and compass constructions. Finally itWda dis-

covered, in modern times, that all three of these problems are

impossible. Imposaibility in mathematics does not mean the same

thing as "impossibility" in every day life, and so it calls for

some explanation.

Ordinarily, when we say that something is "impossible,"

mean merely that it is extremely difficult,.or that we don't

happen to see how it can be done, or that nobody has found a way

to do it -- so far. Thus people used to say that it was

"impossible" to build a flying machine, and people didn't stop

this until the first airplane was built. It is supposed to be

"impossible" to find a needle in a haystack, and so on.

Mathematical iMpossibility is not like this. In mathematics,

there are some things that really can't be done, and it ia

possible to prove that they can't be done.

(1) A very simple example is this: No matter how clever

and persistent you may be, you can't find a whole

number between 2 and 3, because there isn't anY

such whole number.'

(2) If the above example seems too trivial to take seriously,

consider the following situation. We start with the

integers, positive, negative and 0. We are allowed to

perform additions, subtractions, multiplications, and

divisions. A number is called constructible if we can

get to it, starting from the integers, by a finite

number of such steps. For example, the following number

is constructible:

5 17 1 37-7 71-5
3 7 + -7-77

To get to it requires 15 steps.

[sec. 14-7]
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Now suppose that the problem before us is t.o construct the
3r--

number v(2. This problem is impossible of solution just as the

old Greek problems are. The point is, the numbers that can be

constructed according to the rules that we have agreed to are all

rational numbers. And 31T just isn't this kind of a number.

There is no use in hunting for J.Z: among the constructible numbers,

because that isn't where it is.

Problems of constructibility with straight-edge and compass

are closely analogous to this second illustration. Starting with

the integers, there are certain numbers that we can "construct" by

elementary arithmetic, but these numbers do not happen to include

Starting with a segment, AB, there are certain figures that

we can construct with straight-edge and compass, but these figures

do not happen to include any segment CD for which CD3 = 2

This is what we mean when we say that the duplication of the cube

with straight-edge and compass is impossible of solutitn.

The angle-trisection problem deserves some further discussion.

(1) Some angles can be trisected with straight-edge and

compass. For example, a right angle can be so trisected.

When we say that the angle-trisection problem is impossi-

ble of solution, we mean that there are some angles for

which no trisecting rays can be constructed.

(2) The angle-trisection problem becomes solvable if we

change the construction rules very slightly, lay allowing

ourselves to make two marks on the straight-edge. Once

the two marks are thi.de, we proceed as follows:

[sec. 14-7)
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Given an anglb with vertex B, we draw a circle with center at

B and radius r equal to the distance between the two marks on

the straight-edge. The circle intersects the sides of the given

angle in points A and C. We want to construct an angle whose

measure is 4,(mL ABC).

Place the straight-edge so that (1) it ,sses through C.

Now manipulate the straight-edge by slidinE rotating it about

C so that (2) one marked point Q lies on the circle and (3)
--->

the other marked point P lies on the ray opposite to BA. We

1
will show that ITIL BPC = 7(mL ABC). In terms of the angle-

measures indicated in the figure, the main steps in the proof are

as follows; you shou2,1 find the reasons in each case:

(1) v u.

(2) w = u v = 2 u.

(3) x w 2 u.

(4) z x u = 3 u.

Equation (4) is, of course, what we wanted to prove. Once we

have Z 131)C
it is easy to draw the trisecting rays in the

interior of L ABC, by two applications of Construction 14-7.

1 9
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Problem Set 14-7

1. Find the set of points which are the intersections of the
bisectors of the base angles of parallelograms that have a
fixed segment as base.

2. Explain how to construct an angle of

a.

b.

c.

d.

45°;

300;

1°22-
2

135°;

'

e.

f.

h.

120°,

750;

_050;

bri

Mention three other angles you could construct.

3. In dealing with triangles it is helpful to be able to

designate the parts by brief symbols. A notation frequently
used is as follows:

A, B, C, for the three vertices;

a, b, c, for the lengths of the opposite sides;
<>

h
a

h
b'

h
c

for the altitudes to BC, CA, AB;

t
A'

tB t for bisectors of angles A, B, C;
' C

4-*
ma, mb, mc for medians to sides BC, CA, AB.

In each of the following problems, we wish to construct a

triangle satisfying certain conditions. For example, we
might give two segments RS and TQ and an angle, say X,

and require that a triangle ABC be constructed
so that AB RS, BC PI TQ, and ZBV--Z X.

190

[sec. 14-7]

R I IS



500

For brevity, we shall state such a problem in the form,

"Construct a triangle given two sides and the included angle"

or "Construct A ABC, given c, a, and L B." The student

should do several problems of this type, rephrasing them in

the more exact language used above, until he is sure that he

undersf,ands the meaning of the shorter statement.

Construct A ABC having given:

a. a, m
a'

B.

b. a, b,- and L X

such that

mL A + 111L B = mL X.

a, b, hb.

e. ma, ha, B.

f. h8 lB. LC.

g. La, hc, tc

h. LA, b, tc

d, c, LA, tA

(Suggestion: Bach time begin by sketching a figure showing

the relationz,h1,12 of the given parts to help you in your

analysis of t3 problem.)

4. Given a square ABCD with

M and N the mid-points of

BC and CD. If AM and

AN meet the diagonal BD

at P and Q, prove that

P and Q trisect BD,

but that 111L BAM /4.90.

[sec. 14-7]
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5. Show that the angle-trisecion method mentioned in the text

on page 504 never works, by using one of the following methods:

a. Suppose that for some

angle it did work. Then

in the diagram,

AD is both the angle-

bisector and the median

from A in A BAE.

TY? triangle is then

isosceles and AB = AE

(Why?). But AB = AC by construction, so the circle

with center at A and radius AB is intersected by
the line BC in three points. This is impossible.

b. Suppose it did work.

Then in the diagraM,

let the circle with

center A and radius

AB intersect rays
-->

AD and AE in R

and S. Then D and E will be inside the circle.

(Why?) Now RS II BC. (Consider the bisector of

Z RAS.) Also RS > DE (Why?) Triangles ABE, ADE,

and AEC all have the same area. (Why?) Now compare

the areas of BDR, DRSE, and SEC to arrive at a

contradiction.

192

(sec. l4 -7]



502

6. We hereby define a geometer's square as an instrument, made

of a flat piece of cardboard or similar material, of the

following shape.

1
The angles are all right angles and EF = CD = -2. AB.

To trisect angle PQR with a geometer's square one first

uses the long side to

construct ST fl QP at distance EF. Then place the

geometer's square so that 4r0? passes through Q, A lies
--* 1.

on ST, and B lies on QR. Then mL PQA = -3-011L PQR).

Prove this.

iO3
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503

Review Problems

1. For what integral values of x is there a triangle whose

sides have lengths 4, 6, x?

2. Construct a rhombus in which the perimeter has a given

length AB and one angle has measure 45.

Al

3. a. Given AB, construct the set of points P in the plane

such that 111,Z APB = 90.

b. Prove that the set you have constructed fulfills the

conditions.

4. Given line L and point P in plane E. Describe the set,

of points in E which are a given distance d from L and

a given distance r from P.

5. Sketch several quadrilaterals and, in each, sketch the

perpendicular bisectors of the four sides. In general,

you will find that these do not appear to be concurrent.

If you can think of any special quadrilaterals whose per-

pendicular bisectors are concurrent, list them. Think of

some general way of describing the set of quadrilaterals

with this property.

6. By construction find the center

of the circle of which 'ATS is

an arc.

7. Given a segment representing the difference between the

diagonal and side of a square. Construct the square.
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8. it A be the center of a circle of radius a, and B the

center of a circle of radius b. If a + b > AB, do circles

A and B always intersect?

9. ABCD is a parallelogram in a plane E. P is a point of E

which is equidistant from A, B, C, and D. Prove that the

parallelogram is a rectangle.

10. ABCD is a trapezoid with AB H CD. Under what circumstances

will there be a point P, in the plane of the trapezoid,

equidistant from_ A, B, C, D? Can there ever be.more than

one such point?

*11. Given two parallel lines 9. and m and a transversal n,

are there any points which are equidistant from A, m and n?

Prove that your answer is correct.
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Chapter 15

AREAS OF CIRCLES AND SECTORS

15-1. Polygons.

A polygon is a figure like this:

But not like this:

The idea of a polygon can be defined more precisely as follows:

_Suppose that we have given a sequence

P
1'

P
2'

P
n

of distinct points.in a plane. We join each point to the next one

by a segment, and finally we join Pn to Pl.
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n-I

In the figure, the dots indicate other possible points and

segments; because we don't know how large n is. Notice that

the point just before Pn is Pn -
as it should be.

Definitions: Let P p P P Pn
be n

l' 2' 3' ' n - 1'

distinct points in a plane (n > 3). Let the n segments

P
1
P
2

P
2'

P
3' ... ' Pn- 1Pn' P 1P 1

have the properties:

(1) No two segments intersect except at their end-points,

as specified;

(2) No two segments with a common end-point, are collinear.

Then the union of the n segments is a polygon.

The n given points are vertices of the polygon, the n

segments are sides of the polygon. By (2), any two segments with

a common vertex determine an angle, which is called an angle of

the polygon.
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Notice that triangles are polygons of 3 vertices and 3

sides, and quadrilaterals are polygons of 4 vertices and 4

sides. Polygons of n vertices and n sides are sometimes -

called n-gons. Thus a triangle is a 3-gon and a quadrilateral

is a 4-gon (although the terms 3-gon and 4-gon are almost

never used.) 5-gons are called pentagons, 6-gons are hexagons.

8-gons are octagons, and 10-gons are decuons. The other

n-gons, for reasonably small numbers n, also have special names

taken from the Greek, but the rest of these special names are not

very commonly used.

Each side of a polygon lies in a line, which separates the

plane into two half-planes. If, for each side, the rest of the

polygon lies entirely in one of the half-planes having that side

on its edge, then the polye;on is called a convex polygon.

Below iS a convex polygon, with the lines drawn in to indicate

why it is convex:

4-

P
5 `,

to/

/

198
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This is a natural term to use, because if a polygon is convex, it

turns out that the polygon plus its interior forms a convex set

in the sense that we defined long ago in Chapter 3. Just before

the definition of a polygon, there are five examples of polygons.

You should check that the first, second and fourth of these

examples are convex polygons, but the third and fifth are not.

You should check also that in the first, second and fourth cases,

the polygon plus its interior forms a convex set, but that in the

third and fifth cases this is not so.

In this chapter we shall use polygons in the study of circles,

to learn to calculate circumferences and areas. In the next

chapter we shall calculate the volumes of prisms, pyramids, cones,

and spheres. The basic procedure consists in approximating

lengths and areas of curved figures with lengths and areas of

polygonal figures, and seeing what happens as the approximations

become better and better. A complete treatment of this last

stage of the process is well beyond the subject matter of this

course, but we will explain the logic of the situation as clearly

as we can, and as completely as seems practical.

Problem Set 15-1 .

1. In the figure at the right,

no three end-points are

collinear and no two segments

intersect except at their

end-points. Nevertheless

the figure is not a polygon.

Why not?

iL\7



2. Is the figure at the right

a polygon? How many sides

has it? How many vertices:

What can you say about the

relative lengths of the sides?

About the measures of the

angles?

509

*3. a. State a,definition of the interior of a convex polygon.

(Hint: Consider the definition of the interior of a

triangle.)

b. Make a sketch to illustrate that the union of a convex'

polygon and its interior is a polygonal region. (See

.definition of polygonal region in Chapter 11.)

4. A segment connecting two vertices of a polygon which are not

end-points of the same side is a diagonal of the polygon.

a. How many diagonals has a polygon with 3 sides?

4 sides? 5 sides? 6 sides? 103 sides? n sides?

b. Sketch a pentagon for which only two of the diagonals

pass through its interior.

5. Use the figure at the right

to show that the sum of the

measures of the angles of a

convex polygon of n sides

is S = (n - 2)180.

6. Verify the statement in the

preceding problem, using this

figure.
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15-2. Regular Polygons.

Suppose we start with a circle, with center Q and radius

r, and divide the circle into n congruent ar, end to end.

The figure shows the case n = 8.

7

For each little arc, we draw the corresponding chord. This gives

a polygon with vertices Pl, P2, ..., Pn. The arcs are

congruent, and so the chords (which are the sides of the polygon)

are also congruent. If we draw segments from Q to each vertex

of the polygon, we get a set of n isosceles triangles. In each

36o
triangle, mz: Q -

369because is the measure of the

intercepted arc in each case. Therefore all of the isosceles

triangles are congruent. It follows that all of the angles of

the polygon are congruent; the measure of an angle of the polygon

is twice the measure of any base angle of any one of the isosceles

triangles.

Thus the polygon has all of its sides congruent and all of

its angles congruent.
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Definitions: A convex polygon is regular if all its sides

are congruent and all its angles are congruent. A polygon is

inscribed in a circle if all of its vertices lie on the circle.

It is a fact that every reigular polygon can be' inscribed in

a circle, but we will not stop to prove this, because we will not

need it. We will be using regular polygons only in the study of

circles, and all of the regular polygons that we will be talking

about will be inscribed in circles by the method we have just

described.

If P
1'

P
2' ' Pn

circle, then the triangles

congruent and they have the

a. These are shown, in the

is a regular polygon inscribed in a

A P
1
QP

2'
A P

2
Qp

3'
are all

same base e and the same altitude

figure below, for A P3QP4.

1The area of each triangle is -ffae, and therefore the total area

of the regular n-gon is
1 1A

n
= n 7ae = ene

2
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Definition: The number a is called the apothem of the

polygon. The sum of the lengths of the sides is called the

perimeter.

We denote the perimeter by p. Thus, for a regular polygon,

we have
p = n -e.

In this notation, the area formula becomes

1
An 7 a p.

Problem Set 15-2

1. What is the ratio of the apothem of a square to its perimeter?

2. a. What size angle would be determined by drawing radii to

the end-points of a side of a regular inscribed octagon?

b. Use protractor and ruler to construct a regular octagon.

c. Use compass and straight-edge to construct a regular

octagon.

3. Use protractor and ruler to construct a regular pentagon.

4. A formula for,the sum of the measures of the angles of any

convex polygon of n sides is (n - 2)180. (See problem- 5

of Problem Set 15-1.) What would be a formula for the measure

of each angle of a regUlar n-gon?

5. Is the polygon of Problem 2 in Problem Set 15-1 a regular

12-gon? Justify your answer.

203
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6. The figure representE part of a regular polygon of which

AB and BC are sides, and R is the center of the circle

in.rwhich the polygon is inscribed. Copy and complete the

table:

of
mber
sides

mLARB
or

mLBRC

mLABR
or

mL0BR mLABC

3

4

5

6

45

9
-
70 14040

144

12

15

18

20

24

7. A plane can be covered by

congruent square regions

placed four at a vertex

as shown.

a. How many equilateral

triangles must be

placed at a vertex to

cover a plane?

b. What other class of regular polygonal regions can be

used to cover a plane? How many would be needed at

a vertex?
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c. Two regular octagons and one

square will completely cover

the part of a plane around a
. . - . - .

point without any overlappings,

as shown. What other combi-

nations of three regular poly-

gons (two of which are alike)

will do this?

(Hint: Consider possible

angle measures such as those

listed in the last column of

your table for Problem 6.

Find solutions of the equation 2x y = 360 where x

and y are angle measures for regular polygons having

different numbers of sides. In the illustration

x = 135 and y = 90.)

d. Investigate the possibility of other coverings of a

plane around a point by regular polygons.

8. Show that the sum of the

measures of the exterior

angles of any convex

polygon is 360.

(Hint: Count the supplements

of the interior angles.).

IP

2 '135 4. 90 = 360

a. A convex polygon of n sides (n is a positive even

integer greater than 3) can be separated into how

many quadrilateral regions by drawing diagonals from a

given vertex?

b. Derive a formula for the sum of the measures of the

angles of a convex polygon from your answer to part (a).

20')
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10. Let S be the sum of the measures of the angles of a polygon

with n sides. If the polygon is convex, then

S (n - 2)180. In the following three figvest..which are
. . ,

not convex, show that the formula is still correct if we

regard S as the sum of the measures of the angles of the

triangles into which each can be divided, assuming that no

new vertices are introduced.

(a) (b)

11. Show that in any polygon if an

"artificial vertex" is inserted

on one of the sides as shown so

that the number of "sides" is

increased by one, the formula

for the angle sum still holds.

(c)

//
B 6

12. The sides of a regular hexagon are each 2 units long. -If

it is inscribed in a circle, find the radius of the circle

and the apothem of the hexagon.

*13. A regular octagon with sides 1 unit long is inscribed in a

circle. Find the radius of the circle.
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15-3. The Circumference of a Circle. The Number r.

In this section and the next one we shall consider regular

.n-gons for various.values of. u. As.usual, we denote ;the sj.dp,

apothem, perimeter, etc. of a x'egular n-gon inscribed in a

circle of radius -r by e, a, p, etc.

Let C be the circumference of the circle we have been

discussing. It seems reasonable to suppose want to

measure C approximately, you can do it by a regular

polygon with a large number of sides and then measuring the

perimeter of the polygon. That is, the perimeter p ought to be

a good_approximation of C when n is large. Putting it another

.
way, if we decide how close we want p to be to C, we ought to

be able io get p to be this close to C merely by making n

large enough. We describe this situation in symbols by writing

p-->C,

and we, say that p approaches C as a limit.

We cannot prove this, however; and the reason why we cannot

prove it is rather unexpected. The reason is that so far, we have

no mathematical definitdon of what is meant Ly the circumference

of a circle. (We can't get the circumference merely by adding the

lengths of certain segments, the way we did to get the perimeter

of a polygon, because a circle doesn't contain any segments.

Every arc of a circle, no matter how short you take the arc, is

curved at least slightly.) But the remedy is easy: we take the

statement

as our definition of C, thus:

Definition: The circumference of a circle is the limit of

the perimeters of the inscribed regular polygons.
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We would now like to go on, in the usual way, to define the

number r as the ratio of the circumference of a circle to its

diameter. But to make,sure that this definition

we first need to know that the ratio --a-; is the

circles, regardless of their size. Thus we need

following.

Theorem 15-1.. The ratio
'

of I,
2r

diameter, is thu ame for all circlL

jnakes good.seklse,

same for all

to prove the

Aference to the

The proof is by similar triangles. Given a circle with

center Q and radius r, and another circle, with center Q1

and radius ro, we inscribe a regular n-gon in each of them.

(The same value of n must be used in each circle.)

In the figure we show only one side of each n-gon, with the

associated isosceles triangle. Now z AQB z AlQ1B1, because

each of these angles has measure
360

. Therefore, since the

adjacent sides are proportional,

A AQB A iiiq'S1

by the S,A.S.. Similarity Theorem. Tharafore,

e e1

Fr
and so

2. = 2i..r r

(sec. 15-3]
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where p is the perimeter ne of the first n-gon, and ID' is

the perimeter ne' of the second n-gon. Let C and C' be

the circumferences of the two circles. Then by

definition, and by definition. Therefore

C C'

r
and-

C C'

2r

which was to be proved.

The number 7-6, which is the same for all circles, is

designated by y. We.can therefore express the conclusion of

Theorem 15-1 in the well-known form,

C = 2yr.

r is an irrattonal number and cannot be represented exactly

in fractional form. It can however, 1;..e Apprcximated aE closely

as we please by rational numbers. So - ratclr'Al approximations

to y are

22 355 -
3, 3.14, -7,, 3.1416, 14,T65358979.

Problem Set

1. A regular polygm is inscribed in a cika1e, then another with

one more side than the first is .J.1.,ttrioed., and so.on endless-

ly, each time increasing the numbtrot sides by one.

a. What is the limit of the lecWth: f the apothem?

b. What is the limit of the length r a side?

C. What is the limit of the me7,bure ;:.if an angle?

d. What is the limit of the pez71.mz of the polygon?

2. A certain tall person takes steps a yard long. He walks

around a circular pond close to the ec*, taking 628 steps.

What is the approximate radius of t-41,e. Irmd? (Use 3.14

for r.)

2109
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22
3. Which is the closer approximation to r, 3.14 or -74

4. The moon is about 240,000 miles from the earth, and its

path around the earth is early circular. Find the cir-

cumference of the circle which the moon describes every month.

5. The earth is about 93,000,000 miles from the sun. The path

of the earth around the sun is nearly circular. Find how far

we travel every year "in orbit". What is our speed in this

orbit in miles per hour.

6. 4The side of a square is 12 inches. What is the circumference

of its inscribed circle? Of its circumscribed circle?

*7. In the figure, square XYZW

is inscribed in circle 0,

and square ABCD is cir-

cumscribed about the circle.

The diagonals of both squares

lie in 7i! and ire. Given

that a square PQRS is

formed when the mid-points

P, Q, R and S of AX, BY, CZ, and DW are joined, is

the perimeter of this square equal to, greater than, or less

than the circumference of circle 0? Let OX = 1 and

justify your answer by computation.

8. The radius of a circle is 10 feet. By how much is its

circumference changed if its radius is increased by 1 foot?

If the radius were originally 1000 feet, what would be the

change in the circumference when the radius is increased by

1 foot?
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15-4. Area of a Circle.

In Chapter 11 we considered areas of polygonal regions,

defined in terms of a basic region, the triangular region, which

is the union of a triangle and iis interior: In talking about

areas associated with a circle we make a similar basic definition.

Definition: A circular region is the union of a circle and

its interior.

In speaking of "the area of a triangular region" we found

it convenient to abbreviate this phrase to "the area of a triangle".

Similarly, we shall usually say "the area of a circle" as an

abbreviation of "the area of a circular region".

We shall now get a formula for the area of a circle. We

already have a formula for the area of an inscribed regular

n-gon; this_is
1

aP

where a is the apothem and p is the perimeter.

p3
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In this situation there are three quantities involved, each

depending on n. These are p, a and An To get our formula

for the area of a circle, we need to find out what limits these

quantities approach as n becomes very large.

(1) What happens to A., An is always slightly less than

the area A of the circle, because there are always some points

that lie inside -ahe circle but outside the regular n-gon. But

the difference between An and A is very small when n is

very large, because when, n is very large the polygon almost

fills up the interior of the circle. Thus, we expect that

An

But just as in the case of the circumference of the circle, this

can never be proved, since we have not yet given any definition

of the area of a circle. Here also, the way out is easy:

Definition: The area of a circle is the limit of the areas

of the inscribed regular polygons.

Thus, An4A by definition.

(2) What happens to a. The apothem a is always slightly

less than r, because either leg of a right triangle is shorter

than the hypotenuse. But the difference between a and r is

very small when n is very large. Thus,

a

(3) What happens to 2. By definition of C, we have

p --a.C.

Fitting together the results in (2) and (3), we get

1 17ap .

1Therefore

But we knew from (I) that An Mherefore

1
A = -2FC.

[sec. 15-4]

2 1.2



522

Combining this with the formula C = arm gives

A

Th1-1 the formula that you have known for years finally

a the_

Theorem 15-2. The area of a circle of radius r is rr
2

.

Problem Set 15-4

1. Find the rrcumference and area of a circle with radius

a. 5. b. 10.

2. Find the c1rcumference and area of a circle with radius

a. n. b. 10n.

3. a. Find the area of one face

of this iron washer if its

diameter is 4 centimeters

and the diameter of the

hole is 2 centimeters.

b. Would the area be changed

if the two circles were

not concentric?

4. The radius of the larger of two circles is three times the

radius of the smaller. Compare the area of the first to

that of the second.

5. The circumference of a circle and the perimeter of a square

are each equal to 20 inches. Which has the greater area?

How much greater is it?

6. Given a square whose side is 10 inches, what is the area

between its circumscribed and inscribed circles?
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7. An equilateral triangle is inscribed in a circle. If the

side of the triangle is 12 inches, what is the radius of

the circiG? The circumference? The area?

8. The cross inside the circle

is divisible into 5 squares.

Find the area which is inside

the circle and outside the

cross.

9. Given: Two concentric circles

with center P, AC is a A

chord of the larger and is

tangent to the smaller at B.

Prove: The area of the ring

(annulus) is 7TBC
2

.

10. In a sphere whose radius is

10 inches, sections are made

by planes 3 inches and 5

inches from the center. Which

section will be the larger?

Prove that your answer is

correct.

*11. In the figure, ABCD is a

square in which E, F, G

are mid-points of AD, AC,

and CB, respectively. AF

and ga are circular arcs

with centers E and G

respectively. If the side

of the square is s, find

the area of the shaded portion. A

i 4 [sec, 15-4]
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*12. In the figure, semi-circles

are drawn 'wltn each side of

right triangle ABC as

diaMeter. Areas Of eadli

region in the figure are

indicated by lower case

letters.

Prove: r + s = t.

*13. A special archery target, .

with which an amateur can

be expected to hit the

bulls-eye as often as any

ring, is constructed tn

the following way. Rays

OM and PN are parallel.

A circle with center 0

and radius r equal to the

distance between the rays,

is drawn intersecting OM

at Q. QA I QM. Then a

circle with center 0 and

radius OA, or r1 is drawn. This process is repeated by

drawing perpendiculars at R and at S, and circles with

radii OB and OC. Note that we arbitrarily stop at four

concentric circles.

a. Find r r
2'

r
3

in terms of r.

Show that the areas of the inner circle and the three

"rings", represented by a, b, c, and d, are equal.
b.

14. An isosceles trapezoid whose bases are 2 inches and 6

inches is circumscribed about a circle. Find the area of

the portion of the trapezoid which lies outside the circle.
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15-5. Lengths of Arcs. Areas of Sectors.

Just as we define the circumference of a circle as the limit

of the perimeters of inscribed regular polygons, so we can define

the length of a-circular arc as a suitable limit.
en.. or do gi0

If a .is an arc of a circle with center Q, we take points

P
l

P
2

Pn - 1 on a so that each of the n angles LAQP
1,' '

1z p1u2, zPn 1QB has measure E7.mAB.

Definition: The length of arc FLI is the limit of

AP
1
+ P

1
P
2
+ + Pn - 1B as we take n larger and larger.

It is convenient, in discussing lengths of arcs, to consider

an entire circle as an arc of measure 360. Any point of the

circle can be considered as the coincident end-points of the arc.

The circumference of a circle Can then be considered to be simply

the length of an arc of measure 360.

The basic theorem on arc length is the following:

216
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Theorem 15-3,. If two arcs have equal radii, then their

lengths are proportional to their measures.

length 0 length A,B1

mAB mAlBI

The proof of this theorem is very hard,

for a beginning geometry course. We make no

here, but, like Theorem 13-6 (to which it is

treat it as if it were a new postulate.

Theorems 15-1 and 15-3 can be combined to give a general

formula for the length of an arc.

Theorem 15-4. An arc of measure q and radius

length igiiqr.

Proof: If C is the circumference of a circle of radius r

we have, by Theorem 15-3,

40111.

and quite unsuitable

attempt to prove it

closely related),

r has

L C

By Theorem 15-1, C = 2rr. Substituting this value of C above

and-solving for L gives

L - mgr.
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A sector of a circle is a region bounded by two radii and

an arc, like this:

OP.

More precisely:

Definitions: If AB is an arc of a circle with center Q
and radius r, then the union of all segments QP, where P is

any point of AB, is a sector. AB is the arc of the sector
and r is the radius of the sector.

The following theorem is proved just like Theorem 15-2.

Theorem 15-5. The area of a sector is half the product of

its radius by the length of its arc.

Combined with Theorem 15-4, we get

Theorem 15-6. The area of a sector of radius r and arc
measure q is qr

2
....

Problem Set 15-5

1. The radius of a circle is 15 inches. What is the length
of an arc of 600? of 90°? of 72°? of 36°?

2. The radius of a circle is 6. What is the area of a sector

with an arc of 900? of 10?

3. If the length of a 60° arc is one centimeter, find the

radius of the arc. Also find the length of the chord of

the arc.
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4. In a circle of radius 2, a sector has area r. What is

the measure of its arc?

5. A selsevt of a circle is the

region bounded by a chord

and an arc of the circle.

The area of a segment is found

by subtracting the area of the

triangle formed by the chord

and the radii to its end-points

from the area of the sector.

In the figure, rilL APB = 90. If PH = 6, then

1
Area of sector PAH = -4-qr

62

Area of triangle. PAB = 62 = 18.

Area of segment = 9r - 18 or approx. 10.26.

Find the area of the segment if:

a. mL APB = 60; r = 12.

b. mL APB = 120; r = 6,

c. mL APB = 45; r = 8.

6. If a wheel of radius 10 inches rotates through an angle of

36°,

a. how many inches does a point on the rim of the wheel

move?

b. how many inches does a point on the wheel 5 inches

from the center move?
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7. A continuous belt

and 30 inches.

apart. Find the

529

runs around two wheels of .radius 6 inches

The centers of the wheels are 48 inches

length of the belt.

8. In this figure ABCD is a

square whose side is 8

inches. With the mid-points

of the sides of the square

as centers, arcs are drawn

tangent to the diagonals.

Find the area enclosed by

the foUr arcs.
A
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Review Problems

1. Which of the figures below are polygons? Which ones are

convex polygons?

2. Does every regular polygon have

a. each side congruent to every other side?

b. each angle congruent to every other angle?

c. at least two sides parallel?

3. What is the measure of an angle of a regular

a. pentagon? c. octagon?

.b. hexagon? d. decagon?

4. If the measure of an angle of a regular polygon is 150,

how many vertices does the polygon have?

a. If both a square and a regular octagon are inscribed in

the same circle, which has the greater apothem?

the greater perimeter?

b. Answer the same questions for circumscribed figures.

6. From what formula relating to regular polygons is the formula

for the area of a circle derived?

If C is the circumference of a circle and r is its radiiis .

what is the value of r*

221



531

8. If-hoircumference of a cire:e 12 inches, the laZ.gth

of --Ls radius will lie betweer whalt two consec,:;!:

9. -Df an extericr-z__,,_;. ,7 of

a. t regular --3ntagon. regular n-gon

10. J'1. the radius of a cir_ .s circumference is equal

71-tz rea?

11. If -idius of one circle is lc times the radius of

ancther give the ratio of

a. eir diameters. c. their areas.

b. their circumferences.

12. If a regular hexagon is inscribed in a circle of radius 5,

what is the length of each side? What is the length of the

arc of each side?

13. Show that the area of a circle is given by the formula
1 2

A , where d is the diameter of the circle.

14. A wheel has a 20 inch diameter. How far will it roll if
it turns 2700?

15. The angle of a sector is 10° and its radius is 12 inches.

Find the area of the sector and the length of its arc.

16. Prove that the area of an equilateral triangle circumscribed

about a circle is four times the area of an equilateral

triangle inscribed in the circle.

*17. This problem came up in a college zoology course: Two

woodchucks dig burrows at a distance r from each other,

and each of them is the nearest neighbor of the other. If

a third woodchuck moves into the region, how large is the

area in which he can settle so that he will become the

nearest neighbor of each of the original woodchucks?

18. One regular 7-sided polygon has area 8 and another

regular 7-sided polygon has area 18. What is the ratio

of a side of the smaller to a side of the larger?
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Chapter 16

VOLUMES OF SOLI1J7

16-1. Prisms. ,

Here are some pictures of prisms:

A prism can be thought of as the solid swept n movin.l.. a

polygonal region parallel to itself from one7moo=ion to another.

In this process each point of the region deacrta a linezegment,
and these segments are all .parallel to one ampthe12. The prism

itself can be thought of as just the set of all such line segments;

as if it were made up of a bundle of parallel wires.

These considerations lead us to the following precise

definition.
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Definitions. Let E
1

and E
2

be two parallel planes, L

a transversal, and K a polygonal region in El which does not

intersect L. For each point P of K let PP' be a segment

72arallel to L with P' in E2. The union of all such segments

is called a prism.

2 2 1
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Definitions. The polygonal 77egion K is called the lower

base, or just the base, of the p:iam. 7he set -af all z:-Ie points

PI, :hat is, the part of the pr.:1m th.=, lies in E2, calitt:d

the 1;74)er base. The distance h beteen El and E2 is the

altitude of the prism. If L is.-Der7:endicular to El and

the 7nrism is called a right/prism.

Prisms are classified according to their bases a triangniar

prism is one whose base is a triangular 'region, a rectanular

prism is one whose base is a rectangular region, and so on.

Definition. A cross-section of a prism is its intersection

with a plane parallel to its base, provided this intersection is

not empty.

Theorem 16-1. All cross-sections of a triangular prism are

congruent to the base.

Proof: Let the triangular-ron ABC batt base of a
prism, and let a cross-section plane intersect E5B,, CC'

-in D, E and F. AD MBE by definitfon of a prf.sm, and
AB 11 DE by Theorem 10-1. Henae, AEED is a Tnarallelmismrm,

.and so DE = AB, because opposites16.-s of a parallelqgramare

congruent. Similarly, DF AC ar..,d. EF . BC. By the Z.Z.S.

Theorem, A DEF Z; A ABC.

2 _5
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Corolla v 16-1-I. The up-7)e7 er:77.1 lower bases of a L:-.7iangular

prism are cong=,uent.

Theorem 1--2. (Prsm CrcT-ton Theorem.) cross-

sections of a ,,ism have the .

Proof: By definition c a polygonal. region, the base can be

cut up into triangular regf:m-,7. Thus the prism La zut up into

triangular prisms whose bases are the trfangulaegions .

By Theorem 16-1, each 7.77.fangle in tts bas congruent to

the correszonding trianzle the cross-b=utia:. 'Thus, in the

figure, A PAB =.4 A PI , RFC === A PISt C, , arttl so on.) The

area of the, base is t LEE .11-_tf t,t, areas of ttF.- tmiangular

regions in the base; yind: t:e ar.',11e.zi of the arcassection is the sum

of the areas of the -correar.nnitEml.. trtartiar faii the cross-

section . Since co=ruent tr-rz-in-res hare the same- areFe.:, the

theorem fa:lows

22 6
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Corollary 16-2-1. The two bases of a prism have eauaL areas.

(Note Since we have not defined congruence for fizuraa more

complicated than triangles, Theorem 16-2, while intiAttvel7 clear,

must be proved using our available definitions. However, is

evident that with any reasonable general definition of c,..gruence

between geometric figures the the=rem should hold for an-r- prism.

In Aprendix VIII such a definitiam of congruence is given, and

then ..te proof of Theorem 16-1 needs only a slight modiftuation

to p=ve that a cross-section of ,44ny prism is congruent -to the

base-

:rdinarily we are concerned only With convex prisms, that is,

prisms whose bases are convex polygonal regions. Wa can-therefore

anealcof a "side" or a "vertex" of the base.

.an the following definitions the notation is -the same as that

for the original definition of a prism..

:Definitions: A lateral edge of a prism is a_zegment AA',

where A is a vertex of the base of the prism. 4a lateral face

is the union of all segments PP! r whLr.r_ P a point in a

given aide of the base. The lateral surface of a :.!rl_sm is the

union of its lateral faces. The total surface of ;rism is the

union of its lateral surface and its baaes.

Theorem 16-3. The lateral faces of a prft parn771,3gram

regions, and the lateral faces of a right. orf!;sz are feetargular

!megians.

Jk_formal pronf involves a diacuaaion of sepprrztian properties

and.Asrather long and tedious. WhileTyou may want to wark.out a

formal proof, you can convince yourself of tha correctness of the

theorem by applying the definitions of prtsm and lateral face to

the a-Ingram for-Theorem 16-1 or 16-2.

2 2
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Definitions: A parallelepiped is a prism whose base is a

parallelogram region. A rectangular parallelepiped is a right

rectangular prism.

Parallelepiped Rectangular ParaIleleptped

Note: While in. the preceding theorem and aeftr&tr'ons 7we

have been careful to refer to the base and the amss-sect±=n of a

prism as regions, we will often use base and crossae=tionte mean

the polygon which bounds the region and conversely, the cam.

will make clear the intended use.

Problem Set 16-1

1. Prove that two non-adjacent

lateral edges of a prism are

coplanar, and that the inter-

section of their plane and

the prism is a parallelogram.

(Hint: For the figure shown,

prove ABFH is a parallelo-

gram.)

228
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2. Find the area of the lateral surface of a right prism whose

altitude is 10 if the sides of the pentagonal base are

3, 4, 5, 7, 2.

3. Find the area of the total surface of a right triangular

prism-if the base is an equilateral triangle '8 inches

on a side and the height of the prism is 10 inches.

4. Prove that the lateral area (area of the lateral surface)

of a right prism is the product of the perimeter of its base

and the length of a lateral edge.

5. If the sides of a cross-section of a triangular prism are

3, 6, and 3171, then any other cross-section will be a

triangle whose sides are 1 and

whose angles measure y and whose

area is

The length of a lateraledge of a right prism is 10 inches

and its lateral area is 52 square inches. What is the

perimeter of its base?

229
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16-2. Pyramids.

pyramids are quite similar to prisms in some respects. In

particular many of the terms carry over, and we shall use some of

them without formal definition.

Definitions: Let K be a polygonal region in a plane E,

and V a point not in E. For each point P in K there is a

segment W. The union of all such segments is called a pyramid

with base K and vertex V. The distance h froth V to E is

the altitude of the pyramid.

V

The next two theorems are analogous to Theorems 16-1 and

16-2.

Theorem 16-4. A cross-section of a triangulnr pyramid, by a

plane between the vertex and the base, is a triangular region

similar to the base. If the distance from the vertex to the

cross-section plane is k and the altitude is h, then the

ratio of the area of the cross-section to the area of the base
, 2

is C*) .

Restatement: Let A ABC be in plane E and point V a

distance h from E. Let plane E', parallel to E .and at

distance k from V, intersect VA, VB, VC in A', B', C'.

Then A A'B'C' A ABC, and

area A A'B'C' k 2

area A ABC (F)

230
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Proof: Let VP E and let VP intersect E' in P'.

Then h VP, k . VP'.

(1) AP H A'P' by Theorem 10-1.

A VA'P' A VAP by Corollary 12-3-2.

VA' VP' kv77- vp- = 1-.7 by definition of similar triangles.

(2) A,B, II AB by Theorem 10-1.

A VA'B' A VAB by Corollary 12-3-2.

A'B' VA' k by (1) and definition.VA

(3) Similarly,

B'C' k C'A' k
BC ' TT'

',(4) From (2) and (3)

AIB' B'C' CIA' k

Therefore A A'B'C' A ABC by the S.S.S. Similarity Theorem,

and area A A'B'C' (k 2

area ABC
,Dy Theorem 12-7.

p, 'TP

231
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Theorem 16-5. In any- pyramid, the ratio c.T7 the area of a

cross-section and the area of the base is (TT) , where h is

the altitude of the pyram_d and k ia the dist771ce from the

vertex to the plane of the cross-section.

Proof: Let us cut up the base IntD triangular regions with

areas A
1,

A
2'

- A (In the fizure, n = 4.) Let
n

A1 t' A2
'

t Atbe the areas of the morreaponding triangular
n

regions in the crasection. Let .A Ite the area of the base,

and let At be the area of the cross-selion. Then

A = Al + A2 + -4- An ,

and
Al = Alt + A21 Ant

By the result which we have just proved for triangular pyramids,

k 2 1 r 2

we know that Alt = (H) 11, A2I = (t) A2, and so on. Therefore

kN2
At == (H) (Al + + An)

1, 2
= (±*- ) A.

232
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Theorem 16-5 has the following consequence.

Theorem 16-6. (The Pyramid Cross-Section Theorem.) Given

two pyramids with the same altitude. If the bases have the same

area, then cross-sections equidistant from the bases also have

the same area.'
V

In the figure, for the sake of simplicity, we show triangular

pyramids, but the proof does not depend on the shape of the base.

Let A be the area of each of the bases, and let Al and

A
2

be the areas of the cross-sections. Let h be the altitude

of each of the pyramids, and let d be the distance between each

cross-section and the corresponding base. Then the vertices of

the two pyramids are at the same distance k = h - d from the

planes of the cross-sections. Therefore

A
1 k 2 A2

by the previous theorem. Since the denominators on the left and

right ara equal, so also are the numerators. Therefore, Al = A2,

which was to be proved.

233
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Problem Set 16-2

1. If the base of a pyramid is a square, each cross-section will

be a . If the'base of a pyramid is an equilateral

triangle whose side is 9, each cross-section will be

and the length of a side of the cross-sectiun

one-third of the distance from the vertex to the base will

be A

2. Given two pyramids, one triangular, one hexagonal, with equal

base areas. In each the altitude is 6 inches. The area

of a cross-section of the triangular pyramid, 2 inches from

the base, is 25 square inches. What is the area of a

cross-section 2 inches from the base of the hexagonal

pyramid?

3. A regular pyramid is a pyramid whose base is a regular

polygonal region having for its center the foot of the

perpendicular from the vertex to the base.

Prove that the lateral faces of a regular pyramid are

bounded by congruent isosceles triangles.

*4. Given a triangular pyramid with vertex V and base ABC,

find a plane whose intersection with the pyramid is a

parallelogram.

5. Show that the lateral area of a regular pyramid is given by

1
A = ap in which p is the perimeter of the base and a

is the altitude of a lateral face.

(sec. 16-2]
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. FGHJK is parallel to base

ABCDE in the pyramid shown

here, with altitude VS = 7

inches and altitude VR = 4

inches. If the area of

ABCDE is 336 square

inches, what is the area

of FGHJK?'

545

A regular pyramid has a square base, 10 inches on a side,

and is one foot 'tall. Find the lateral area of the pyramid

and the area of the cross-section .3 inches above the base.

*8. Prove: In any pyramid, the

ratio of the area of a

cross-section to the area
2aof the base is (E) ,

where a is the length of

a lateral edge of the

smaller pyramid and b is

the corresponding lateral

edge of the larger pyramid.

(Hint: Draw altitude PS.)
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16-3. Volumes of Prisms and Pyramids, Cavalieri's Principle.

A vigorous treatment of volumes requires a careful definition

of something analogous to polygonal regions in a plane (polyhedral

regions is the name) and the introduction of postulates similar

to the four area postulates. We will not give such a treatment,

but instead will rely on your intuition to a considerable extent,

particularly when it comes to cutting up solids or fitting them

together. Nowever, we will state explicitly the two numerical

postulates we neee One of them is the analog of Postulate 20,

which gave the area of a rectangle.

Postulate 21. The volume of a rectangular

parallelepiped is the product of the altitude and the

area of the base.

To understand what is going orrin our next postulate, let us

first think of a physical model. We can make an approximate model

of a square pyramid by forming a stack of thin cards, cut to the

proper size, like this:

The figure on the left represents the exact pyramid, and the

figure on the right is the approximate model made from cards.

236
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Now suppose we drill a narrow hole in the model, from the top

to some point of the base, and insert a thin rod so that it goes

.through every card in the model. We can then tilt the rod in any

way we want, keeping its bottom end fixed on the base. The shape

of the model then changes, but its volume does not change. The

reason is that its volume is simply the total volume of the cards;

and this total volume does not change as the cards slide along

each other.

The same principle applies more generally. Suppose we have

two solids with bases in a plane which we shall think of as

horizontal. If all horizontal cross-sections of the two solids

at the same 'level have the same area then the two solids have the

same volume.

A A'

The reason is that if we make a card-model of each of the solids,

then each card in the first model has exactly the same volume as

the corresponding card in the second model. Therefore the volumes

of the two models are exactly the same. The approximation given

by the models is as close as we please, if only the cards are thin

enough. Therefore the volumes of the two solids that we started

with are the same.

237
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The principle involved here is called Cavalieri's Principle.

We haven't proved it; we have merely been explaining why it is

reasonable. Let us therefore state it in the form of a postulate:

Postulate 22. (Cavalieri's Principle.) Given

two solids and a plane. If for every plane which

intersects the solids and is parallel to the given

plane the two intersections have equal areas, then

the two solids have the same volume.

Cavalieri's Principle is the key to the calculation of

volumes, as we shall soon see.

Theorem 16-7. The volume of any priam is the product of

the altitude and the area of the base.

238
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Proof: Let h and A be the altitude and the base area of

the given prism. Consider a rectangular parallelepiped with the

same altitude h and the base area A, and with its base in the

same plane as the base of the given prism. We know by the Prism

Cross-Section Theorem that all cross-sections, for both prisms,

have the same area A. By Cavalieri's Principle, this means that

they have the same volume. Since the volume of the rectangular

parallelepiped is Ah by Postulate 21, the theorem follows.

Theorem 16-8. If two pyramids have the same altitude and the

same base area, then they have the same volume.

Proof: By the Pyramid Cross-Section Theorem, corresponding

cross-sections of the two pyramids have the same area. By

Cavalieri's Principle, this means that the volumes are the

same.

239
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Theorem 16-9. The volume of a triangular pyramid is one-

third the product of its altitude and its base area.

Proof: Given a triangular pyramid with base PQR and vertex

S, we take a triangular prism PQRTSU with the same base and

altitude, like this:

We next cut the prism into three triangular pyramids, one of

them being the original one, like this:

Think of pyramids I'and II as having bases PTU and PRU,

and common vertex S. The two triangles A PTU and A ppm lie

in the same plane and are congruent, since they are the two

triangles into which the parallelogram PTUR is separated by the

diagonal UP. Hence pyramids I and II have the same base area

and the same altitude (the distance from S to plane PTUR),

240
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and so by Theorem 16-8 they have the same voluM:s. In the same

way, thinking of pyramids II and III as having '.-)ases SUR and

SQR and common vertex P, we see that II and _III have the same

volume. Therefore the volume of all three pyramids is the same

number, V, and the volume of the prism is 3V. If

area A PQR = A Srd the altitude of SPQR = h, then

3V = Ah,

1
whence V = Ah which was to be proved.

The same result holds for pyramids in genemal:

Theorem 16-10. The volume of a pyramid is one-third the

product of its altitude and its base area.

Proof: Given a pyramid of altitude h and base area A.

Take a triangular pyramid of the same altitude and base area, with

its base in the same plane. By the Pyramid Cross-Section Theorem,

cross-sections at the same level havd the same area. Therefore,

Ly Cavalieri's Principle, the two pyramids have the same volume.
1

Therefore the volume of each of them is Ah, which was to be

proved.
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Problem Set 16-3

1. A-rectangular tank 51 x 41 is filled with water to a depth

of 9". How many cubic feet of water are in the tank? How

many gallons? (1 gallon = 231 cubic inches.)

2. A lump of metal submerged in a rectangular tank of water 20

inches long and 8 inches wide raises the level of the water

4.6 inches. What is the volume of the metal?

3. If one fish requires a gallon of water for good health, how
1

many fish can be kept in an aquarium 2 feet long, 17
1

feet wide, and 17 feet deep? 0

4. If one edge of the base of a

regular hexagonal pyramid is

12 inches and the altitude

of the pyramid is '9 inches,

what is the lateral area?

What is the volume?

A

5. The volume of a pyramidal tent with a square base is 1836

cubic feet. If the side of the base is '18 feet, find the

height of the tent.

6. A plane bisects the altitude

of a pyramid and is parallel

to its base. What is the

ratio of the volumes of the

solids above and below the

plane?

242
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. A monument has the shape of an

obelisk -- a square pyramid cut

off at a certain height and

capped with a second square

pyramid. .The vertex of the

small pyramid is 2 feet

above its base and 32 feet'

above the ground. If the base

pyramid had been continued to

its vertex it would have been

60 feet tall. Find the volume

of the obelisk if each side of

the base, at the, ground, is 4

feet long.

553

*8. State and illustrate a principle, corresponding to Cavalierils

Principle, having the conclusion that two plane regions have

equal areas.

0-4. Cylinders and Cones.

Note that in the definition of a prism, and of associated

terms in Section 16-1,it is not necessary to restrict K to be a

polygonal region. K could in fact be any point,set in El.

Such tremendous generality is not needed', but we certainly can

consider the case in which K is a circular region, the union

of a circle and its interior. In this case we call the resulting

solid a circular cylinder. You should write out a definition of

a circular cylinder for yourself. You can use the following

figure to help you.
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We can have cylinders with other kinds of bases, such as

elliptic cylinders, but the circular cylinder is by far the most

common and the only one considered in elementary geometry.

Just as the definition of a circular cylinder is analogous

to that of a prism, the definition of a circular cone is analogous

to the definition of a pyramid. Check your understanding of this

by writing out a definition of a circular cone. You can use the

notation of the following figure to help you.

2 4
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Defitatiqft: If thg center of the base circle is the foot of

.bile perpendicular i"rom V to E, the cone is called a right

circular cone.

The following analogs of the theorems on prisms and pyramids

are provable by the same general methods. We omit the details.

Theorem 16-11. A cross-section of a circular cylinder is a

circular region congruent to the base.

Idea of proof: Let C be the center and r the radius of

the base. Then, by parallelograms, P1C1 = PC = r.

Theorem 16-12. The area of a cross-section of a circular

cylinder is equal to the area of the base.

Theorem 16-13. A cross-section of a cone of altitude h,

made by a plane at a distance k from the vertex, is a circular
/kN2region whose area has a ratio to the area of the base of kv .
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[sec. 16-4]



556

Idea of proof: Let VU = h.

(1) A VQT A VPU.

VQ k
1715 11'

(2) A VQR VPW.

QR k

k'
(3) QR 1.7 PW..

Since PW has a constant value, Tegardless of the
position of W, then QR has a constant value. Thus, all
points R lie on a circle. The corresponding circular
region is the cross-section.

(4) area of circle with center Q tkN2
area of circle with center P H/

2 6
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We can now use Cavalieri's Principle to find the volumes of

cylinders and cones.

Theorem 16-14. The volume of a circular cylinder is the

product of the altitude and the area of the base.

Proof like that of Theorem 16-7.

Theorem 16-15. The volume of a circular cone is one-third

the product of the altitude and the area of the base.

Proof like that of Theorem 16-10.

Problem Set 16-4

1. Find the volume of tlOs right

circular cone.

2. Find the number of gallons of water which a conical tank will

hold if it is 30 inches deep and the radius of the circular

top is' 14 inches. (There are 231 cubic inches in a
22 22gallon. Use -pr- as an approximation of r. Why is -7-

a more convenient approximation than 3.14 in problems

containing the number 231?)

3. A drainage 'tile is a cylindrical shell 16 inches long.

The inside and outside diameters are 5 inches, and 5.6

inches. Find the volume of clay necessary to make the tile.

4. A certain cone has a volume of

27 cubic inches. Its height

is 5 inches. A second.cone is

cut from the first by a plane

parallel to the base and two

inches below the vertex. Find

the volume of the second cone.

[sec. 16-4]
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5. On a shelf in the supermarket stand two cans of imported

olives. The first is twice as tall as the second, but the

second has a diameter twice that of the first. If the second

costs twice as much as the first, which is the better buy?

6. In this figure we are looking

down upon a pyramid, whose base

is a square, inscribed in a

right circular cone. If the

altitude of the cone or

pyramid is 36 and a base

edge of the pyramid is 20,

find the volume of each.

7. Figure 1 represents a cone

in a cylinder and Figure 2,

two congruent cones in a

cylinder. If the cylinders

are the same size, compare

the volume of the cone in

Figure 1 with the volume of

the two cones in Figure 2.

Would your conclusion be

changed if the cones in

Figure 2 were not congruent?
Fig. 1. Fig. 2.

8. A right circular cone stands inside a right circular cylinder

of same base and height. Write a formula for the volume of

the space between the cylinder and the cone.

248
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*9. If a plane parallel to the base

of a cone (or pyramid) cuts

off another cone (or pyramid)

then the solid between the

parallel plane and the base

is called a frustum.

A frustum of a cone has a

lower radius of 6 inches,

an upper radius of 4

inches and a height of 8

inches. Find its volume.

559

16-5. Spheres; Volume and Area.

By the volume of a sphere we mean the volume of the solid
which is the union of the sphere and its interior.

Theorem 16-16. The volume of a sphere of radius r is

Proof: Given a sphere of radius r, let E be a tangent
plane. In E take a circle of radius r and consider a right
cylinder with this circle as base, altitude 2r, and lying on
the same side of E as the sphere.

249
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Finally, consider two cones, with the two bases of the cylinder as

their bases, and their common vertex V at the mid-point of the

axis of the cylinder.

Take a cross-section of each solid by a plane parallel to E

and at a distance s from V. The cross-sections will look like

this:

The area of the section of the sphere is

Ai = rt2 r(r2 - s
2

)

by the Pythagorean Theorem. We wish to compare this with the

section of the solid lying between the cones and the cylinder,

that is, outside the cones, but inside the cylinder. This section

is a circular ring, whose outer radius is r and whose inner

radius is s. (Why?) Hence, its area is

A2 = rr2 - rs 2 . r(r2 - s
2
).

Thus, Al = A2, and by Cavalieri's Principle the volume of the

sphere is equal to the volume between the cones and the cylinder.

Therefore the volume of the sphere is the difference of the

volume of the cylinder and twice the volume of one cone, that is,

1 2 4 3
rr
2.

2r - 2 .11TT, r .sgT .
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Using the formula for the volume of a sphere, we can get a
formula for the area of the surface of a sphere. Given a sphere
of radius r, form a slightly larger sphere, of radius r + h.

The solid lying between the two spherical surfaces is called a

spherical shell, and looks like this:

Let the surface area of the inner sphere be S. The volume V of
Vthe shell is then approximately hEl. Thus, approximately, S =IT.

As the shell gets thinner, the approximation gets better and
better. Thus, as h gets smaller and smaller, we have

V
S .

VBut we can calculate pc exactly, and see what it approaches
when h becomes smaller and smaller. This will tell us what S

is. The volume V is the difference of the volumes of the two
spheres. Therefore:

v = Err (r + h)3 - 4rr3
3

4 r N3 3,
= 77L(r + h) - r j

= 4.71-[r3 + 3r2h + 3rh2 + h3 - r3]

= 4,Tr[3r2h + 3rh2 + h3].

(You should check, by multiplication, that (r + h)3

r
3
+ 3r 3

h + 3rh 2 + h3 .)

Therefore .1RT, =4,1r[3r2 + 3rh + h2]

= kirr2 + + 4qh].

Here the entire second term approaches zero, because 11---4.0..

VTherefore -5. krr2, and so .S = 4rr2. Thus we have the theorem:

[sec. 16-5]
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Theorem 16-17. The surface area of a sphere of radius r is

S 411-1,2.

Thus we end this chapter with the interesting fact that the

surface area of a sphere of radius r is 471-r2. Have you noticed

that the surface area is exactly 4 times as great as the area

of a great circle of the sphere?

Problem Set 16-5

1. Compute the surface area and the volume of a sphere having

diameter 8.

2. The radius of one sphere is twice as great as the radius of a

second sPhere. State a ratio expressing a comparison of their

surface areas; their volumes. If the radius of one sphere is

three times as great as the radius of another sphere, compare

their surface areas; their volumes.

3. A spherical storage tank has a radius of 7 feet. How many

gallons will it hold? (Use r

4. A large storage shed is in the

shape of a hemisphere. The

shed is to be painted. If the

floor of the shed required 17

gallons of paint, how much

paint will be needed to cover

the exterior of the shed?

5. It was shown by Archimedes (287-212 B.C.) that the volume of
2a sphere is -3- that of the smallest right circular cylinder

which can contain it. Verify this.

6. An ice cream cone 5 inches deeP and 2 inches in top

diameter has placed on top of it two hemispherical scoops of

ice cream also of 2 inch diameter. If the ice cream melts

into the cone, will it overflow?
252
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7. a. Show that if the length of a side of one cube is four

times that of another cube the ratio of their volumes
is 64 to 1.

1b. T1-1 moon has a diameter about that of the earth.

II'mg do their volumes compare?

8. i. figure, the sphere,.with

iac5, c, is inscribed in the

cone, Thi: measure of the angles

betw6t1n the altitude and the

radii to points of tangency are

as shwer. Find the volume of

the cone in terms of r.

*9. The city engineer who was six feet tall walked up to inspect
the new spherical water tank. When he had walked to a place
18 feet from the point where the tank rested on the ground
he bumped his head on the tank. Knowing that the city used
10,000 gallons of water per hour, he immediately figured

how many hours one tank full would last. How did he do it
and what was his result?

*10. Half the air is let out of a rubber balloon. If it continues
to be spherical in shape how does the resulting radius
compare with the original radius?

*11. Use the method by which Theorem

16-17 was derived to show that

the .lateral area of a right

circular cylinder is 27Tra

where a is its altitude and

r the radius of its base.
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Review Problems

1. If the base of a pyramid is a region whose boundary is a

rhombus with side 16 and an angle whose measure is 120,

then

a. any cross-section is a region whose boundary is a

and whose angles measure and

b. the length of a side of a cross-section midway between

the vertex and the base is

c. the area of a cross-section midway between the vertex

and the base is

2. A spherical ball of diameter 5 has a hollow center of

diameter 2. Find the approximate volume of the shell.

3. Find the altitude of a cone whose radius is 5 and whose

volume is 500.

4. A pyramid has an altitude of 12 inches and volume of 432

pubic inches. What is the area of a cross-section 4 inches

above the base?

5. Given two cones such that the altitude of the first is twice

the altitude of the second and the radius of the base of the

first is half the radius of the base of the second. How do

the volumes compare?

6. A cylindrical can with radius 12 and height 20 is full of

water. If a sphere of radius 10 is lowered into the can

and then removed, what volume of water will remain in the

can?

7 A sphere is inscribed in a right circular cylinder, so that

it is tangent to both bases. What is the ratio of the volume

of the sphere to the volume of the cylinder?

25i



*8. The altitude of a right circular

cone is 15 and the radius of

its base is 8. A cylindrical

hole of diameter 6 is drilled

through the cone with the center

of the drill following the axis

of the cone, leaving a solid as

shown in the figure. What is

the volume of this solid?

565

9. Prove: If the base of a pyramid is a parallelogram region,

the plane determined by the vertex of the pyramid and a

diagonal of the base divides the pyramid into two pyramids
of equal volume.

*10. Prove that a sphere can be circumscribed about a rectangular
parallelepiped.
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Chapter 17

PLANE COORDINATE GEOMETRY

17-1. Introduction.

Mathematics is the only science in which practically nothing

ever has to be thrown away. Of course, mathematicians are people,

and being people, they make mistakes. But these ml.stakes usually

get caught pretty quickly. Therefore, when one generation has

learned something about mathematics, the nexZ., generation can go on

to learn some more, without having to stop to correct serious

errors in the'work that was supposed to have been done already.

One symptom of this situation is the fact that nearly every-

thing that you have been learning about geometry, so far in this

course, was known to the ancient Greeks, over two thousand years

ago.

The first really big step forward in geometry, after the

Greeks, was in the seventeenth century. This was the discovery

of a new method, called coordinate geometry, by Rene Descartes

(1596-1650). In this chapter we will give a short introduction

to coordinate geometry -- just about enough to give you an idea

of what it is like and how it works.

17-2. Coordinate Systems in a Plane.

In Chapter 2 we learned how to set up coordinate systems on

a line.

I
3

-1 0 X I IT 2 37e-T

Once we have set up a coordinate system, every number describes

a point, and every point P is determined when its coordinate--x

is named.
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In coordinate geometry, we do the same sort of thing in a

plane, except that in a plane a point is described not by a single

number, but by a pair of numbers. The scheme works like this:

First we take a line X in the plane, and set up a coordinate

system on X. This line will be cal1ed the x-axis. In a figure

we usually use an arrow-head to emphasize the positive direction

on the x-axis.

Next we let .Y be the perpendicular to the x-axis through

the point 0 whose coordinate is zero, and we set up a coordinate

system on Y. By the Ruler Placement Postulate this can be done

so that point 0 also has coordinate zero on Y. Y will be

called the y-axis. As before, we indicate the positive direction

by an arrow-head. The intersection J of the two axes is called

the origin.

We can now describe any point in the plane by a pair of

numbers. The scheme is this. Given a point P, we drop a

perpendicular to the x-axis, ending at a point M, with co-

ordinate x. We drop a perpendicular to the y-axis, ending at

_a point N, with coordinate y. (In accord with Section 10-3

we ban call M and N the proSections of. P into X and Y.)

257
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Definitions: The numbers x and y are called the

coordinates of the point P; x is the x-coordinate and y

is the y-coordinate.

In the figure x = 4 and y 2-2.. The point P therefore

1 1has coordinates Iff and aff. We write these coordinates in the

form (4,4), giving the x-coordinate first. To indicate

that point P has these coordinates we write P(14,4) or

258
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Let us look at some more examples.

We read off the coordinates of the points by following the dotted

lines. Thus the coordinates, in each case, are as follows:

P1(2'1)

p2(1,2)

p3(-1,3)

p4(-3,1)

p5(-2,-3)

P6(2'-2)

259
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Notice that the order in which the coordinates are written

makes a difference. The point with coordinates (2,1) is not the

same as point (1,2). Thus, the coordinates of a point are really

an ordered pair of real numbers, and you can't tell where the

point is unless you know the order in which the coordinates are

given. The convention of having the first number of the ordered

pair be the x-coordinate, and the second the y-coordinate, is

highly important.

Just as a single line separates the plane into two parts

(called half-planes) so the two axes separate the plane into four

parts, called suadrants. The quadrants are identified by number,

like this:

irt

We have shown that any point of our plane determines an

ordered pair of numbers. Can we reverse the process? That is,

given a pair of numbers (a,b) can we find a point whose coordin-

ates are (a,b)? The answer is easily seen to be "yes". In fact,

there is exactly one such point, obtained as the intersection of

the line perpendicular to the x-axis at the point whose coordinate

is a and the line perpendicular to the y-axis at the pOint whose

coordinate is b.

'Thus, we have a one-to-one correSpondence between points in

the plane and ordered pairs of numbers. Such a correspondence is

Called a coordinate system in the plane. A coordinate system is

specified by choosing a measure of distance, an x-axis, a y-axis

perpendicular to it and a positive direction on each. As long as

[sec. 17-2)
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we stick to a specific coordinate system, which will be the case

in all our problems in this book, each point P is associated

with exactly one number pair (a,b), and each number pn,-!r with

exactly one point. Hence, it will cause no confusion if we say

the number pair is the point, thus enabling us to use such con-

venient phrases as "the point (2,3)" or "P = (a,b)".

17-3. How to Plot Points on Graph, Paper.

As a matter of convenience, we ordinarily use printed graph

paper for draWing figures in coordinate geometry. The horizontal

and vertical lines are printed; we have to draw everything else

for ourselves.

I I I I
1 1 I I I

---1- -II- -II- -II--3- -I- -11- --{ -II-411112 I 1

I 1 1

I I 1
1 1 1

I I I

I
I I 1

I I

1 j 1

r- .4. ..i. I. .4-. -I- L 1... L. r 1 ---, -1

I

1 1

1 I

1 1

I

I II

I I I

I I
i I
1 -3 -21

I

-II 0 III

12
3 i I

I

1

I 1 I

I

i 1 -1 -I --1 -1 ""4

I 1

T + T 1 4.
I H J

I I
1 1

I I 1

1
1

1,___,___,__
1 1

1
I

.

I

_H
II

I I

1 I

-2
1 1

1 1
I

1

I I 1

I I I 11-3 1 I 1 I 1

I

- -I- -4- - - - -4.1
1 1

I 1 I I I I I 1

I ! I 1 I 1 1 , 1 ,L
-L 1 L L L L 1 1 1 ..L 1 -1.

In the figure above, the dotted lines represent the lines that are

already printed on the paper. The x-axis and the y-axis should be

drawn with a pen or a pencil. Notice that the x-axis is labeled

x rather than X; this is customary. Here the symbol x is not

the nnme of anything, but merely a reminder that the coordinates

on this axis are going to be denoted by the letter x. Similarly,

(sec. 17-3]
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for the y-axis. Next, the points with coordinates (1,0) and

(0,1) must be labeled in order to indicate the unit to be used.

This is the usual way of preparing graph paper for plotting

points. We could have indicated a little less or a lot more.

For your own convenience, it is a good idea to show more than this.

But if you show less, then your work may be actually unintelligible.

Note that we could draw the axes in any of the following

positions:

X

and so on. There is nothing lo5ica1ly wrong with Any of these

ways, of drawing the axes. People find it easier to read each

other's graphs, however, if they agree at the outset that the

x-axis is to be horizontal, with coordinates increasing from

left to right, and the y-axis is to be vertical, with coordinates

increasing from bottom to top.

2 6 2
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Problem Set 17-3

1. Suggest why the kind of coordinate system used in this chapter

is sometimes called "Cartesian".

2. What are the coordinates of the origin?

3. What is the y-coordinate of the point (7,-3)?

4. Name the point which is the projection of (0,-4) into the

x-axis.

5. Which pair of points are closer together, (2,1) and 1,2)

or (2,1) and (2,0)?

6. In which quadrant is each of the following points?

a. (5,-3).

b. (-5,3).

c. (5,3).

d. (-5,-3).

7. What are the coordinates of a point which does not lie in

any quadrant?

8. The following points are projected into the x-axis. Write

them in such an order that their projeCtions will be in

order from left to right.

B:(-2,5). c:(0,-4). D:(-5,0).

9. If the points in the previous problem are projected into the

y-axis arrange them so their projections will be in order

from bottom to top.

10. If s is a negative number and r a positive number, in

what quadrant will each of the following points lie?

a. (s,r). e. (r,$).

b. (-s,r). f. (r,-s).

c. (-s,-r). g. (-r,-8)-

d. (8,-r). h. (-r,$).

2c3.3
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11. Set up a coordinate system on riaph paper. Using segments

draw some simple picture on the paper. On a separate paper

list in pairs the coordinates of the end points of the

segments in your picture. Exchange your list of coordinates

with another student, and reproduce the picture suggested

by his list of coordinates.

*12. A three dimensional coordinate system can be formed by

considering three mutually perpendicular axes as shown. The

y-axis, while drawn on this paper, represents a line per-

pendicular to the plane of the paper.

The negative portions of the

x, y and z axes extend to

the left, to the rear, and

down respectively. Taken in

pairs the three axes determine (0,0))

three planes called the yz-

plane, the xz-plane, and the
(0,1,0)

xy-plane. A point (x,y,z)

is located by its three co-

ordinates: the x-coordinate

is the coordinate of its projection into the x-axis; the

y and z coordinates are defined in a corresponding manner.

a. On which axis will each of these points lie?

(0,5,0); (-1,0,0); (0,0,8).

b. On which plane will each of these points lie?

(2,0,3); (0,5,-7); (1,1,0).

c. What is the distance of the point (3,-2,4) from the

xy-plane? from the xz-plane? from the yz-plane?

[sec. 17-3]
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17-4. The Slope of a Non-Vertical Line.

The x-axis, and all lines parallel to it, are called

horizontal. The y-axis, and all lines parallel to it, are called

vertical. Notice that these terms are defined in terms of the

coordinate system that we have set up.

y

A L
2

Li

0 a

On the horizontal line Li, all points have the same y-coordinate

b, because the point (0,b) on the y-axis is the foot of all the

perpendiculars from points of 141. For the same sort of reason,

all points of the vertical line L
2

have the same x-coordinate

a. Of course, a segment is horizontal (or vertical) if the line

containing it is horizontal (or vertical).

Consider now a segment P1P2, where P1 = (x1,y1) and

P2 = (x2,y2), and suppose that P1P2 is not vertical.

Y2 P (x21 y2)
I

2

0

[seb 17-4]
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Y2 YlDefinition: The slope of PiP2 is the number m x - x
2 1

This really is a number: since the segment is not vertical,

P
1

and P
2

have different x-coordinates, and so the denominator

is not zero. Some things about the slope are easy to see.

(1) It is important that the order of naming the coordinates

is the same in the numerator as in the denominator. Thus, if we

wish to find the slope of PQ, where P = (1,3) and Q = (4,2)

we can either choose P1 = P, xl = 1, yl = 3, P2 = Q, x2 = 4,

y2 -
2, giving slope of PQ = 4 - 1 7,orp=
1
=Q x1

,
:v.

1 2' P2 P' x2 = y2 3'

giving slope of PQ = =

What we cannot say is

3 - 2slope of PQ = or
2 - 3
-17-=T.

Notice that if the points are named in reverse order, the

slope is the same as before. Algebraically,

Y1 Y2 Y2 Yl.
xi - x2 x2 - xi

Thus the value of m depends only on the segment, not on the orde

in which the end-points are named.

(2) If m = 0, then the segment is horizontal. (Algebraical-

ly, a fraction is zero only if its numerator is zero, and this means

that y2 . yl.)

(3) If the segment slopes upward from left to right, as in

the left hand figure on page 578, then m > 0, because the numerator

and denominator are both positive (or both negative, if we reverse

the order of the end-points.)

266
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(4) If the segment slopes upward from right to left as in

the right hand figure below, then m < 0. This is because m

can be written as a fraction with a positive numerator y2 Yi

and a negative denominator x2 - xi (or equivalently, a negative

numerator yi - y2 and a positive denominator xi - x2).

ly2)

0

(5) We do not try to write the slope of a vertical segment,

because the denominator would be zero, and so the fraction would

be meaningless.

In either of the two figures above, we can.gomplete a right

triangle A PiP2R, by drawing horizontal and Vertical lines

through 131 and like this:

4y y

Y2

X X2

M > 0

x

Y2

YI

*X

Since opposite sides of a rectangle are congruent, it is easy to

see that
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RP,
(1) if m > 0, then m = ,-r4 and

RP,
(2) if m < 0, then m -

1

Once we know this much about slopes, it is easy to get our

first basic theorem.

Theorem 17-1. On a non-vertical line, all segments have the

same slope.

Proof: There are three cases to be considered.

Case (1): If the line is horizontal all segments on it have

slope zero.

Case (2)

In either of the other cases illustrated above, L a v-Z al,

and since the triangles are right triangles, this means that

A P
1
P2R A P

1
IP

2
IR,

Therefore, in either case,

RP
2

RIP
2

7-17 P R
1 1
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In Case (2), these fractions are the slopes of P1P2 and PlIP21

and therefore the segments have the same slope. In Case (3), the

slopes are the negatives of the same fractions, and are therefore

equal.

Theorem 17-1 means that we can talk not only about the slopes

of segments but also about the slopes of lines: the slope of a

non-vertical line is the number m which is the slope of every

segment of the line.

Problem Set 17-4

1. Replace the "?" in such a way that the line through the two

points will be horizontal.

a. (5,7) and (-3,?).

b. (0,-1) and (4,?).

c. (x1,y1) and (x2,?).

2. Replace the "?" in such a way that the line through the two

points will be vertical.

a. (?,2) and (6,-4).
0

b. (-3,-1) and (?,0).

c. (x1,y1) and (?,y2).

3. By visualizing the points. on a coordinate system in parts (a),

(b), and-(c), give the distance between:

a. (5,0) and (7,0).

b. (5,1, and (7,1).

c. (-3,-4) and (-6,-4).

d. What is alike about parts (a), (b) and (c)?

[sec. 17-4]
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e. State a rule giving an easy method for finding the

distance between such pairs of points.

f. Does your rule apply to the distance between (6,5) and

(3,-5)?

4. By visualizing the points named in parts (a), (b), (c) and

(d) on a coordinate system, give the distance between the

points in each part.

a. (7,-3) and (7,0).

b. (-3,1) and (-3,-1).

c. (6,8) and (6,4).

d. (x1,y1) and (x1,y2).

e. What is alike about parts (a), (b), (c) and (d)?

f. State a rule giving an easy method for finding the

distance between such pairs of poihts.

5. With perpendiculars drawn as shown below, what are the co-

ordinates of A, B and C?

t

6. Determine the distances from P and Q to points A, B

and C in Problem 5.

7. Compute the slope of PQ for each figure in Problem 5.

8. A road goes up 2 feet for every 30 feet of horizontal

distance. What is its slope?

[sec. 17-4]
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9. Determine the slope of the segment joining each of the follow-

ing point pairs.

a.

b.

c.

d.

e. (-5,7) and (3,-8).

f. G';') and

g. (-2.8,3.1) and (2.2,-1.9).

and (0,4).

10. Replace the "?" by a number so that the line through the two

points will have the slope given. (Hint: Substitute in the

slope formula.)

a. (5,2) and (?,6). m = 4.

13, (-3,1) and (4,?). m

4->
*11. PA and PB are non-vertical lines. Prove that PA . PB

if and only if they have the same slope; and consequently

if PA and PB have different slopes, then P, A and B,

cannot be collinear.

(0,0) and (6,2).

(0,0) and (2,-6).

(3,5) and (7,12).

(0,0) and (-4,-3).

12. a. Is :the point B(4,13) on the line joining A(1,1) to

C(5,17)? (Hint: is the slope of ATA the same as that

of go?)

b. Is the point (2,-1) on the segment joining (-5,4)

to (6,-8)?

2 7 1.
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13. Determine the slope of a segment joining:

a. (0,n) lnd (n,0).

b. (2d,-2d) and (0,d).

c. (a +b,a) and (a- b,b).

14. Given A:(101,102), B:(5,6), C:(-95,-94), determine
whether or not lines AB and BC coincide.

15. Given A:(101,102), B:(5,6), C:(202,203), D:(203,204).
Are AB and CD parallel? Could they possibly coincide?

16. Draw the part of the first quadrant of a coordinate system

having coordinates less than or equal to 5. Draw a segment

through the origin which, if extended, would pass through

p(80000000,60000000).

17-5. parallel and Perpendicular Lines.

It is easy to see the algebraic condition for two non-vertical

lines to be parallel.

y

If the lines are parallel, then A PQR A PIQIR, and it follows,

as in the proof of the preceding theorem, that they have the same

slope.

2 7 2
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Conversely, if two different lines have the same slope, then

they are parallel. We prove this by the method of contradiction.

Assume as in the figure above that L
1

and L
2

are not parallel.

If as shown in the figure P1 is their point of intersection,

and P
2

and P
3

have the same x-coordinate x 2'
the slope of

Y2 Y1
Yq Y1

L
1

is m
1

and the slope of L
2

is m
x2 - 2 x2 - x1'

Since y3 / y2, the fractions cannot be equal, and hence

ma. / m2. Thus our initial assumption that the two lines L
1

and L
2

were not parallel has led us to a contradiction of the

hypothesis that ma. = m2. Hence the two lines L1 and L2 must

be.parallel.

Thus we have the theorem:

Theorem 17-2. Two non-vertical lines are parallel if and

only if they have the same slope.

2/3
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Now turning to the condition for two lines to be perpendicular,

let us suppose that we have given two perpendicular lines, neither

of which is vertical.

Let P be their point of intersection. As in the figure, let Q.

be a point of one of the lines, lying above and to the right of

P. And let Q; be a point of the other line, lying above and to

the left of P, such that PQI = Pq. We complete the right

triangles FU and A QIPRI as indicated in the figure. Then

6 PQR 6 GP PRI . (Why?)

Therefore QIRI = PR and RIP = RQ.

and hence QIRI PR
11717- R7P

Let m be the slope of .PQ, .and let m, be the slope of PQI.

RQ
m PR'

QIR' PRand mi _
RIP

1Therefore int

m'

Then

That is, the slopes of perpendicular lines are the negative

reciprocals of each other.

274
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1
Suppose, conversely, that we know that m' =---. We then

construct A PQR as before, and we construct the right triangle

A Q1PR, making R'P = RQ. We can then prove that Q1111 = PR;

this gives the same congruence, A PQR --'14 A Q'PR', as before, and

it follows that Z Q1PQ is a right angle and hence PQ PQ'.

These two facts are stated together in the following theorem:

Theorem 17-3. Two non-vertical lines are perpendicular if

and only if their slopes are the negative reciprocals of each

other.

Notice that while Theorems 17-2 and 17-3 tell us nothing

about vertical lines, they don't really need to, because the whole

problem of parallelism and perpendicularity is trivial when one

of the lines is vertical. If L is vertical, then L' is parallel

to L if and only if L' is also vertical (and different from L.)

And if L is vertical, then LI is perpendicular to L if and

only if L' is horizontal.

Problem Set 17-

1. Four points taken in pairs determine six segments. Which

pairs of segments determined by the frAlowing four points

are parallel? A(3,6); B(5,9); C(8,2); D(6,-1). (Caution:

Two segments are not necessarily parallel if they have the

same slope!)

2. Show by considering slopes that a parr411elogram is formed by

drawing segments joining in order A(-1,5), B(5,1), C(6,-2)

and D(0,2).
2 1

3. Lines,1 Li, L2, L3 and L4 have slopes 7, -4, -17

and respectively. Which pairs of lines are perpendicular?

I .)
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4. It is asserted that both of the quadrilaterals whose vertices

are given below are parallelograms. Without plotting the

points, determine whether or not this is true.

(1) A:(-5,-2), B:(-4,2), C:(4,6), D:(3,1).

(2) P:(-2,-2), Q:(4,2), R:(9,1), S:(3,-3).

5. The Vertices of a triangle are A(16,0), B(9,2) and

C(0,0).

a. What are the slopes of its sides?

b. What are the slopes of its altitudes?

6. Show that the quadrilateral joining A(-2,2), B(2,-2),

C(4,2), and D(2,4) is a trapezoid with perpendicular

diagonals.

7. Show that a line through (3n,0) and (0,n) is parallel to
a line through (6n,0) and (0,2n).

8. Show that a line through (0,0) and (a,b) is perpendicular
to a line through (0,0) and (-b,a).

*9. Show that if a triangle has vertices X(r,$), Y(na+r,nb+s)
and Z(-mb+r,mas) it will have a right angle at X.

10. Given the points P(1,2), Q(5,-6) and R(b,b); determine
the value of b so that L PQR is a right angle.

11. P = (a,1), Q = (3,2), R = (b,1), S = (4,2). Prove that
PQ / RS, and that if PQ H RS then a = b - 1.

2 7
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17-6. The Distance Formula.

If we know the coordinates of two points P1 and P2 then

we know where the points are, and so the distance P1P2 is

determined. Let us now find out how the distance can be calculated.

What we want is a formula that gives P1P2 in terns of the co-

ordinates xl, x2, yl and y2.

MIL M2

x2
---opx

0

Let the projections M1,.. M2, Ni rd N2 be as in the figure.

By the Pythagorean Theorem, (P1P2) = (P1R)2 + (RP
2
)2.

also P1R = M1M2 and RP
2

= N
1
N
2'

because opposite sides of a rectangle are congruent.

Therefore (P1P2)2 = (M1M2)2 + (N1N2)2.

But we know that M1M2 1x2 x11

and N1N2 = 1Y2 3r11.

Therefore
(p1/32)2 x112 y112.

Of course, the square of the absolute value of a number is the

same aS the square of the number itself.

2 Ti
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Of course, if we plot the points, as above, we can get the

same answer directly from the Pythagorean Theorem; the legs of

the right triangle A P1RP2 have lengths 3 and 7, so that

P12
=.13 2 4. 7

2
, as before. If we find the distance this way,

we are of course simply repeating the derivation of the 0!:-.

formula in a specific case.

Problem Set 17-6

1. a. Without using the distance formula state the distance

between each pair of the points: A(0,3), 8(1,3),

c(-3,3) and D(4.5,3).

b. Without using the distance formula state the distance

between each pair of the points: A(2,0), 8(2,1),

C(2,-3) and D(2,4.5).

2. a. Write a simple formula for the distance between (xl,k)

and (x2,k). (Hint: The points would lie on a

horizontal line.)

b. Write a simple formula for the distance between (k,y1)

and (k,y2).

3. Use the distance formula to find the distance between:

a. (0,0) and (3,4). e. (3,8) and (-5,-7).

b; (0,0) and (3,-4). f. (-2,3) :and (-1,4).

c. (1,2) and (6,14). g. (10,1) and (9,81).

d. (8,11) and (15,35). h. (-6,3) and (4,-2).

4. Write a formula for the square of the distance between

the points (x1,y1) and.

D. Using loordinates e and simplify the statement:

square of the di.cance between (0,0) and (x,y)

is 25. 2 i
[sec. 17-6]
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5. Show that the triangle with vertices R(0,0), s(3,4) and
T(-1,1) is isosceles by computing the lengths of its sides.

6. Using the converse of the Pythagorean Theorem show that the

triangle joining D(1,1), E(3,0) and F(4,7) is a right

triangle with a right angle at D.

7. Given the points A(-1,6), B(1,4) and C(7,-2). Prove,

without plotting the points, that B is between A ard C.

8. Suppose the streets in a city form congruent square blocks

with avenues running east-west and streets north-south.

a. If you follow the sidewalks, how far would you have to

walk from the corner of 4th avenue and 8th street to

the corner of 7th avenue and 12th street? (Use the

length of 1 block as your unit of length.)

b. What would be the distance "as the crow flies" between

the same two corners?

9. Vertices W, X and Z of rectangle WXYZ have coordinates

(0,0), (a,0) and (0,b) respectively.

a. What are the coordinates of Y?

b. Prove, using coordinates, that WY = XZ.

*10. a. Using 3-dimensional coordinates (see Problem 12 of

Problem Set 17-3), compute the distance between (0,0,0)

and (2,3,6).

b. Write a formula for the distance b6tw,..len (0,0,0) and

(x,y,z).

c. Write a formula for the distance between P1(x1,y1,z1)

and P2(x2,y2,z2).

280
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17-7. The Mid-Point Formula..

In Section 17-8 we will be proving geometric theorems by the

use of coordinate systenn. In some of these proofs, we will need

to find the coordinates of the mid-point of a segment PiP2 in

terms of the coordinates of P
1

and P
2.

First let us take the case where P
1

and P
2

are on the

x-axis, with xl < x2, like this:

P2

0 x x
21

aLd P is the mid-point, with coordinate x. Since xl < x < x2,

we know that P1P = x - xl and PP2 = x2 x.

Since P is the mid-point, this gives

x - xl = x2 - x,

X
1

4. X
2

or x - .

In the same way, on the y-axis,

Yl Y2
Y 2

Now we can handle the general case easily:

[sec. 17-7]
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Since P is the mid-point of P1P2, it follows by similar tri-
angles that R is the mid-point of .P

1
S. Since opposite sides

of a rectangle are congruent, U is the mid-point of TV.

Therefore

2

In the same way, projecting into the y-axis, we can show that

Y1 Y2
Y - 2

Thus we have proved:

Theorema:2. (The Mid-Point Formula.) Let P1 = (x1,y1)

and let P2 = (x2,y2). Then the mid-point of P1P2 is the point

X
1

4. X
2 y

1
4. y

2
P

Problem Set 17-7

1. Visualize the points whose coordinates are listed below and

compute mentally the coordinates of the mid-point of the
segment joining them.

a. (0,0) and (0,12),

b. (0,0) and (-5,0)..

c. (1,0) and (3,0).

d. (0,-7) and (0,7).

e. (4,4) and (-4,-4).

2. use the mid-point formula to compute the coordinates of the

mid-point of the segments joining points with the following

coordinates.

a. (5,7) and (11,17).

b. (-9,3) and (-2,-6).

c. (44 and (44).

[sec. 17-7]
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d. '.51,-1.33) and (0.65,3.55).

e. (a,0) and (b,c).

f. (r+s,r -s) and (-r,$).

3. a. One end-point of a segment is (4,0; the mid-point

is (4,1). Visualize the location of these points and

state, without applying formulas, the coordinates of

the other end-point.

b. One end-point of a segment is (13,19). The mid-point

is (-9,30). Compute the x and y coordinates of

the other end-point by the appropriate formulas.

4. A quadrilateral is a square if its diagonals are congruent,

perpendicular, and bisect each other. Show this to be the

case for the quadrilateral having vertices, A(2,1), B(7,4),

C(4,9), and D(-106).

5. If the vertices of a triangle are A(5,-1), B(1,5) and

C(-3,1), what are the lengths of its medians?

6. Given the quadrilateral joining A(3,-2), B(-3,4), 0(1,8)

and D(7,4), show that the quadrilateral formed by joining

,3a
its mid-points in order is a parallelogram.

Y

7. Using coordinates, prove that

two of the medians of the tri-

angle with vertices (a,0),

(-a,0) and (0,3a) are per-

pendicular to each other.

(3,0

8. Relocate point P in the figure preceding Theorem 17-5, so

1
that PP1 = 71,11,2 and find formulas for the coordinates of

P in terms of the coordinates of P
1

and P
2'

(P is

between P
1

and P
2'

and x
2
> x

1'
)

(sec. 17-7j
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*9. a. Prove: If P1 = (x1,y1), P2 = (x2,y2) and P = (x,y)

and if P is between P1 and P2 such that

PP rx + sx 172 + "11 r .,,,,
...

2 17, .n =
r + s

and y .
r + srr2

b. Use the result of part (a) to rind a point P on the

segment joining P1(5,11) and P2(25,36) such that

PP
1 3

pp
2

17-8. 'Proofs of Geometric Theorems.

Let us now put our coordinate systems to work in proving a

few geometric theorems. We start with a theorem that we have

already proved by other methods.

Theorem A. The segment between the mid-points of two sides

of a triangle is parallel to the third side and half as long.

Restatement: In A ABC let D and E be the mid-points of

AB and AC. Then DE H BC and DE = ;BC.

Proof: The first step in using coordinates to prove a

theorem like this is to introduce a suitable coordinate system.

That is, we must decide which line is to be the x-axis, which the

y-axis, and which direction to take as positive along each axis.

We have many choices, and sometimes a clever choice can greatly

simplify our work. In the present case it seems reasonably

nple to take BC as our x-axis, with BC as the positive

direction. The y-axis we take to pass through A, with OA .as

the positive direction, like this:

[sec. 17-8]
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The next step is to determine the coordinates of the various

points of the figure. The x-coordinate of A is zero; the

y-coordinate could be any positive number, so we write A -= (0,p),

with the only restriction on p being p > O. Similarly,

B = (q,0) and C = (r,0), with r > q. (Note that we might

have any of the cases q < r < 0, q < r = 0, q < 0 < r,

0 = q < r, 0 < q < r. Our figure illustrates the third case.)

The coordinates of D and E can now be found by the mid-point

formula. We get

D = E

Therefore the slope of DE is

0 0
-

r

,

2

(since q / r the denominator is not zero).

Likewise, the slope of BC is

and so DE BC.

DE

and BC

1
so that DE . -BC.

2

=

Finally, by

=1 4)2

the distance formula,

3.)2 r

-.4(r - q)2 + (0 - 0)2 = r - q,

:3
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The algebra in this proof can be made even easier by a simple

device. Instead of setting A .= (0,p), B = (q,0), C = (r,0) we

could just as well have put A = (0,2p), B = (2q,0), C = (2r,0);

that is, take p, q and r as half the coordinate6 of the.points

A, B and C. If we do it this way, then no fractions arise when

we divide by 2 in the mid-point formula. This sort of thing

happens fairly often; foresight at the beginning can take the place

of patience later on.

Theorem B. If the diagonals of a parallelogram are congruent,

the parallelogram is a rectangle.

Restatement: Let ABCD be a parallelogram, ana let AC = BD.

Then ABCD is a rectangle.

y D

A 8

Proof: Let us take the axes as shown in the figure. Then

A = (0,0), and B = (p,0) wtth p > 0. If we assume nothing

about the figure except that ABCD is a parallelogram D could

.be anywhere in the upper half-plane, so that D = (q,r) with

r > 0, but no other restriction on q or r. However, C is

now determined by the fact that. ABCD is a parallelogram. It

is fairly obvious (see the preceding proof for details) that for

DC to be parallel to AB we must have C = (s,r). s can be

determined by the condition BC AD, like this:

slope of BC = slope of AD,

r - 0 r - 0
s - p q - 0

, or
s - p q'

rq = r(s - p),

q = s - p, (since r / 0)

s = p + q.

[sec. 17-8]
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(The coordinates (p + q,r) for C can be written down by

inspection if one is willing to assume .;arlier theorems about

parallelograms, for example, that ABCD is a parallelogram if

AB H CD and AB = CD.)

Now we finally put in the condition that AC = BD. Using

the distance formuln, we get

\/(p + q - 0)2 + (r - 0)2 - p)2 + (r - 0)2.

Squaring gives

or

(p 02 r2 (q p)2 r2,

p
2

+ 2pq + q
2 + r2 = q

2
- 2pq + p

2 + r
2

,

4pq = 0.

1. ,w 4 / 0 and p / 0; hence, q = 0. This means that D lies .

on the y-axis, so that L BAD is a right angle and ABCD is a

rectangle.

Probli Set 17-8

Prove the following theorems using coordinate geometry:

1. The diagonals of a rectangle home equal lengths.

(Hint: Place the axes as shown.)

P.X
A(010) B c,0)

2. The mid-point of the hypotenuse of a right triangle is

equidistant from its three vertices.

3. Every point on the perpendicular bisector of a segment is

equidistant from the ends of the segment. (Hint: Select

the axis in a position which will make the algebraic com-

putation as simple as possible.)

2 T-1
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4. Every point equidistant from the ends of a segment lies on

the perpendicular bisector of the segment.

5. The diagonals of a parallelo-

gram bisect each other. (Hint:

Give the vertices of parallelo-

gram ABCD. the coordinates

shown in the diagram. Show

that both diagonals have the

same mid-point.)

DU) c) C(o-fb,c)

A (0,0) 13(0,0 ) X

6. The line segment joining the mid-points of the diagonals of

a trapezoid is parallel.to the bases and equal in length to

half the difference of their lengths.

In the figure R and S are mid-points of the diagonals
Ad- and BD of trapezoid ABCD.

The segments joining mid-

points of opposite sides

of any quadrilateral bisect

each other. (The Os in

the diagram are suggested

by the fact the mid-points

of segments joining mid-

points must be found.)

[sec. 17-8]
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8. The area of A ABC is

a(t -s)+b(r-t) +c(s-r)
2

where A = (a,r), B = (b,$)
o,r)

and C = (c,t). (Hint:
A(

1

Find three trapezoids in

the figure.)

B(b,$)

9. Given: In A XYZ, z x is

acute and ZR is an altitude.

Prove: ZY
2
=ICZ

2 +XY2 - 2XY XR.

X

Z(b,c)

X(0,0) Y(0,0) R(b,0)--).
X

10. If ABCD is any quadrilateral with diagonals, AC and BD,

and if M and N are the mid-points of these diagonals,

h
then AB2 + BC

2 + CD
2
+ DA

2
= AC

2
+ BD2 + 410

2
.

11. In A ABC, CM is a median to side AB.

2 2 AB2 2
Prove: AC + BC = + 2MC .

17-9. The Graph of a Condition.

By a graph we mean simply a figure in the plane, that is, a

set of points. For example, triangles, rays, lines and half-

planes are graph. We can describe a graph by stating a condition

which is satisfied by all points of the graph, and by no other

points. Here are some examples showing a condition, a description-

of the graph, and the figure.for each:

239
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Condition Graph

1. Both of the coordinates 1. The first quadrant.

of the point P are

positive.

2. The distance OP is 2. 2. The circle with center at

the origin, and radius 2.

3. OP < 1. 3. The interior of the circle

with center at the origin

and radius 1.

4. x = 0. 4. The y-axis.

5. y = O. 5. The x-axis.

-->
6. x > 0 and y = O. 6. The ray OA, where

A = (1,0).

--*
7 x = 0 and y < O. 7. The ray OB, where

B = (0,-1).

The seven graphs look like this:

1.

290
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3.

NO,

7.

[see. 17-9]
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You should check carefully, in each of these cases, that the graph

is really accurately described by the condition in the left-hand

column above. Notice that we use diagonal cross-hatching to

indicate a region.

If a graph is described by a certain condition, then the

graph is called the graph of that condition. For example, the

first quadrant is the graph of the condition x > 0 and y > 0;

the circle in Figure 2 is the graph of the condition OP = 2; the

y-axis is the graph of the condition x = 0; the x-axis is the

graph of the condition y = 0; and so on.

Very often the condition describing a gra0 will be stated in

the form of an equation. In these cases we naturally speak of the

graph of the given equation.

If you remember Chapter 14, you have probably noticed that

we are doing the same thing here that we did in Sections 14-1 and

14-2, namely, characterizing a set by a property of its points.

The fact that here we use the word "graph" instead of "set" is

not important; it is simply customary to use the word "graph"

when working with coordinate systems.

Problem Set 17-9

Sketch and describe the graphs of the conditions stated below:

1. a. x = 5.

b. lxi 5.

2. a. y > 3.

b. Ii < 3.

3. 0 < x < 2.

4. -1 < x < 5.

5. -2 < y < 2.

6. x < 0 and y > O.
292
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7. x > 3 and y < -1.

8. a. x is a positive integer.

b. y is a positive integer.

c. Both x and y are positive integers.

9. x > 0, y 0, and y x.

10. 1 < x < 3 and 1 -< y < 5.

*11. !xi < 4 and IA < 4.

*12. Ix! < 4 and IA = 4.

*13. y = Ix!.

*14. lxi =

*15. lxi + lyl = 5.

17-10. How to Describe a Line la an Equation.

We are going to show that any line is the graph of a simple

type of equation. We start by considering the condition which

characterizes the line.

Consider a non-vertical line L, with slope m. Let P

be a point of L, with coordinates (x1,y1).

293
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Suppose that Q is some other point of L, with coordinates

(x,y). Since PQ lies in L the slope of PQ must be m,

and the coordinates of Q must satisfy the condition

Y1 = m.
X - x1

605

Notice that this equation is not satisfied by the coordinates of

the point P, because when x = xi and y = yi, the left-hand
0

side of the equation becomes the nonsensical expression zr,

which is not equal to m (or to anything else, for that matter).

If we multiply both sides of this equation by x - xi with

x / x
l'

we get Y1 m(x xl).

This equation is still satisfied for every point on the line

different from P. And it is also satisfied for the point P-

itself, because when x = xi and y = yi, the equation takes

the form 0 = 0, which is a true statement.

This is summarized in the following theorem:

Theorem 17-6. Let f be a non-vertical line with slope m,

and let P be a point of L, with coordinates (x1,y1). For

every point Q. = (x,y) of L, the equation y - yi = m(x - xi)

is satisfied.

You might think at first that we have proved that the line

L is the graph of the equation y - yi = m(x - x1). But to know

that the latter is true we need to know that (compare with

Section 14-1):

(1) Every point on L satisfies the equation;

(2) Every; point that satisfies the equation is on L.

We have only shown (1), so we have still to show (2). We shall

do this indirectly, by showing that if a point is not on L

then it does not satisfy the equation.

294
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Suppose that Q = (x,y) is not on L. Then there is a

point Q1 = (x,y!) which is on L, with yl y, like this:

By Theorem 17-1,

hence

Since yl y, this means that

y yi + m(x - xi).

Therefore y Y1 m(x xl).

YI Y1
- m;

x xi

Y1 = Y1 m(x xl).

Therefore the equation is satisfied only by Pdints of the line.

We have now proved the very important theorem:

Theorem 17-7. The graph of the equation

Y1 m(x xl)

is the line that passes through the point (x1,y1) and has

slope m.

295
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The equation given in Theorem 17-7 is called the point-slope,

form of the equation of the line. Let us take an example:

5

4

3

2

Q(4,6)

Here we have a line that passes through the points P = 1,2)

and Q = (4,6). The slope is

6 - 2 4
m - 1 -1r

Using P = (1,2) as the fiXed point, we get the equation

y -'2 ='231.(x - 1).

and m =4.) In an equivalent form;

3y - 6 = 4x - 4, (How?)

4x - 3y = -2.

Notice, however, that while Equation (3) is simpler to look at

if all we want to do is look at it, the Equation (1) is easier to

interpret geometrically. Theorem 17-7 tells us that the graph of

the Equation (1) is the line that passes through the point

P = (1,2) and has slope 4.

The student can readily verify that we will get the same or

an equivalent equation if we had used Q as the fixed point

(1)

(Here yl = 2,

this becomes

xl = 1,

(2)

or (3)

instead of P.

296
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Given an equatiOn in the point-slope form, it.is easy to see

what the line is. For example, suppose f,..d.t we have given the

'equation y - 2 =-3(x - 4).

The line contains the point (4,2), and has slope m = 3. To

draw a line on graph paper, we merely need to know the coordinates

of one, more point. If x = 0; then

y - 2 = -12,

and y = -10.

Therefore, the point (0,-10) is on the line, and we can complete.-

the graph:

Logically speaking, this is all that we need. As a practical

matter, it is a very good idea to check the coordinates of one

more point. This point can be selected anywhere along the line,

but to serve a8 a good check it should not be too near the other

two points. If we take x = 2, we get

y - 2 = -6, or

7As'well as we canAudge from the figure, the-point- 2,-4) lies--

on the line.
297
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At the beginning of this section we promised to show that

any line is the graph of a simple type of equation. We have

shown this for any non-vertical line, but we must still consider

a vertical line. Suppose a vertical line crosses the x-axis at

the point with coordinates (a,0), as in the figure.

Since the vertical line is perpendicular to the x-axis, every

point of the line has its x-coordinate equal to a. Furthermore,

any point not on the line will have its x-coordinate not equal

to a. Hence, the condition which characterizes the vertical

line is x = a, certainly a very simple type of equation.

298
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Problem Set 17-10

In each of the following problems, we have given the co-

ordinates of a point P and the value of the slope m. Write

the point-slope form of the equation of the corresponding line,

-and draw the graph. Check your work by checking-the coordinates

of at least one point that was not used In plotting the line.
-

It is all right to draw several of these graphs on the sameset

of axes, as long as the figures do not become too crowded.

1. P = (-1,2), m = 4.

2. P = (1,-1), m = -1.

3. P = (0,5), m =

4. P = (-1,-4), m =

5. P = (3,-2), m = 0.

By changing to a point-slope form where necessary, show that

the graph of each of the following equations is a line. Than

draw the graph and check, as in the preceding problems.

6. y - 1 = 2(x - 4).

7. y = 2x - 7.

8. 2x - y - 7 = 0.

9. y + 5 = ..3(x + 3).

10. x 3y = 12.

U. y = x.

12. y = 2x.

13. y = 2x - 6.

14. y = 2x + 5.

15. x = 4.

16. x = 0.

17. 7 = 0. 299
[sec. 17-10]
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18. Thinking in three-dimensional coordinates, describe in words

the set of points represented by the following equations.

For example, y = 0 is the equation of the xz-plane, that

is, the plane determined by the x and z- axes. (Refer

to Problem 12 of Problem Set 17-3.)

a. x = O. . c. x = 1.

b. z =,0. d. y = 2.

17-11. 'Various Forus of the Equation of a Line.

We already knoW, how to write an equation for a non-vertical

line if we know the slope m and the coordinates (x1a1) of

one point of the line. In this case we know that the line is the

graph of the equation

y - yl = m(x -

in the point-slope form.

Definition: The point where the line crosses the y-axis is

called the y-intercept. If this is the point (0,14, then the

point-slope equation takes the form

y - b = m(x 0),

y = mx + b.

This is called the slop-intercept form. The number b is also

called the y-intercept of the line. (When we see.the phrase

y-intercept, we will have to tell from the context whether the

number b or the point (0,b) is meant.) Thu3 we have the

following theorem:

Theorem 17-8. The graph of the equation

y = ffix + b

is the line with slope m and y-intercept b.
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If we have an equation given in this form, then it is eaiy to

draw the graph. All we need to do is to give x any value other

than 0, and find the corresponding value of y. We then have

the coordinates of two points on the line, and can draw the line.

For example, suppose that we have given

y = 3x - 4.

Obviously the point (0,-4) is on the graph. Se:,

we get y = 6 - = 2.

Therefore the point (2,2) is on the line, and the line therefore

looks like this:

As a check, we find that for x = 1,

y = 3 - 4 = -1,

and the point (1,-1) lies on*4the graph, as well as we can judge.

210
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Notice that once we have Theorem 17-8, we can prove that

certain equations represent lines, by converting them to the

slope-intercept form. For example, suppose we have given

(1) 3x + 2y + 4 0.

This is algebraically equivalent to the equation

2y = -3x - 4,

or (2)
3y = -7x - 2.

Being equivalent, Equations (1) and (2) have the same graph. The

graph of (2) is a line, namely, the line with slope m = -4 and

y-intercept b . -2. The graph of (1) is the same line.

17-12. The General Form of the Equation of a Line.

Theorem 17-8, of course, applies only to non-vertical lines,'

because these are the ones that have slopes. Vertical lines are

very eimple objects, algebraically speaking, because they are the

graphs of simple equations, of the form

x = a.

Thus we have two kinds of equations (y = mx + b and x = a) for

non-vertical and vertical lines respectively. We can tie all this

together, including bo'oh cases, in the following way.

Definition: By a linear equation in x and z we mean an

equation of the form

Ax + By + C = 0,

where A and B are not both zero

The following twp theorems describe the relation between

geometry and algebra, as far as lines are concerned:

Theorem 17-9. Every line in the plane is the graph of a

linear equation in x and y.

Theorem 11:10. The graph of a linear equation in x and y

is always a line.

Now that we have got this far, both of these theorems are

very easy to prove.

3 0 2
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Proof of Theorem 17-9: Let L be a line in the plane. If

L is vertical, then L is the graph of an equation

x = a,

or x - a = O.

This has the form Ax + By + C = 0, where A = 1, B = 0, C = -a.

A and B are not both zero, because A = 1, and so the equation

is'linear.

If L is not vertical, then L has a e m and crosses

the y-axis at Some point (0,b). Theref the graph ot

the equation y = mx b,

or mx y + b = O.

This has the form Ax + By + C = 0, where A = m, B =. -1; C = b.

A and B are not both zero, because B = -1. Therefore the__

equation is linear. (NOtice that it can easily happen that m = 0;

this holds true for all horizontal lines. Notice also that the

equation is not unique: e.g. 2Ax + 2By + 2C = 0 has the same

graph as Ax + By + C = O.)

Proof of Theorem 17-10: Given the equation Ax + By + C = 0

with A and B not both zero.

Case 1. If B = 0; then the equatIon has the form

Ax = -C.

Since B = 0, we know that A / O. Therefore we can _divide by

A, getting x =

The graph of this equation is a vertical line.

Case 2. Suppose that B / 0. Then we can divide by B,
A

getting
A C

or

The graph of this equation is a line, namely, the line with slope
Am and y-intercept b

To make sure that you understand what has been proved, in

Theorems 17-9 and 17-10, you should notice carefully a certain

thing that has not been proved. We hay: not proved that if a

3 3
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given equation has a line as its graph, then the equation is

linear. And in fact thiG latter statement is not true. For

example, consider the equation

2
x = O.

Now the only number whose square is zero is the number zero itself.

Therefore the equation x2 = 0 says the same thing as the equation

x = O. Therefore the graph of the equation x2 = 0 is the y-axis,

which is of course a line. Similarly, the graph of the equation

Yl

is the x-axiL

The same sort of thing can happen in cases where it is not so

easy to see what is going on. For example, take the equation

2x + y 2 = 2xy.

This can be written in the form

x2 - 2xy +

or (x - y)2 = O.

The graph is the same as the graph of the equation

x - y = 0,

or y = x.

The graph is a line. -

Notice that the proof :I' Theorem 17-10 gives us a practical

procedure for getting information-zbout the line from the general

equation. If B = 0, then we heat- the vertical line given by

the equation X =
Otherwise, we solve for y, getting

A Cy -

where the slope is m = A

and the y-intercept is b =

4T7)
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Problem Set 17-12

Sketch the graphs of the following equations:

1. 2x + 5y = 7.

1
2. ffy - 2x + 3 = 0.

3. x + 4 = 0.

4. y + 4 = 0.

Describe the graphs of the following equations:

5. 0 x + 0 y = 0.

6. 0 .x + 0 . y = 2.

7. x2 + y2 = 0.

8. x2 = -1.

Sketch the graphs of the following zonditions:

9. 3x + 4y = 0 and x < 0.

10. 5x - 2y = 0 and 5 < y < 1C

11. (x + y)2 = 0.

12. (y - 1)54 = 0.

Find linear equations (Ax * By + rC," = 0) of which the

following 2Ines are the graphs. State the values for A,

B , 0 in :Tour answer.

13 . The line through (1,2) wi_ , slope 3 .

14. The line through (1,0) and (0,l).

15. The line with slope 2 and z. -Intercept -4.

16. The x-axis.

17. The y-axis.

18. The horizontal line through

lg. The vertical line through

20. The line through the origin old t.tlit; mid-point of the segment

with end-points ( 3,2) and

[sec. 17- L2
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17-13. Intersections of Lines.

Suppose that we have given the equations of two lines, like

this:

L 2x + y = 4,

L2: x - y = -1.

These lines are not parallel, because the slope of the first is

ml = -2, and the slope of the second is m2 = 1. Therefore,

they intersect in some point P = (x,y). The pair of numbers

(x,y) must satisfy both equations. Therefore the geometric

problem of findine the point P is equivalent to the algebraic

problem of solvine a system of,two linear equations in two unknowns.

To solve the system is easy. Adding the two equations, we

get 3x = 3;

or x = 1.

Substituting 1 for x in the second equation, we get y = 2.

The values x = 1, y = 2 will also satisfy the first equation.

Do they?

Therefore P = (1,2). The graph makes this look plausible:
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This method always gives the answer to our problem, whenever. .

our problem has an answer, that is, whenever the graphs of the two'

equations intersect. If the lines are parallel, then the Corre-

sponding system of equations will be inconsistent, that is, the

solution of the system will be the empty set. This will be plain

enough when we try to solve the system.

Problem Set 17-13

1. Find the common solution of the followIng pairs of equations'

and draw their graphs.

a. y = 2x and x + y = 7.

b. y = 2x and y - 2x = 3.

c. x + y = 3, and 2y = 6 - 2x.

2. a. The graphs of which pairs of the equations liSted below

would be.par lel lines?

b. Intersecting .but not coincident lines?

c. Coincident lines?

The equations are

(1) y = 3x + 1.

(2) y = 4x + 1.

(3) 2y = 6x + 2.

(4) y - 3x 2.

3. Suppose the unit in our coordinate system is 1 mile. How

many miles from the origin is the point where the line
1y = nue - 4 crosses the x-axis?

3 07
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. Find the intersection of the

graphs of the following pairs

of conditions: .

a. y = 2x and y = 4.

b. y = 2x and .57. > 4.

c. y < 2x and y > 4.

d. What pair of cohditiong

will. determine the

interior of the angle

shown in the figure?

a. Sketch the inters-ection. of the graphs of all three

conditions x + y > 3, y < 4, x < 2-

b. State the three conditions

which would determine the

interior of the triangle

shown.

(0,3)

619 :1

6. Find an equation for the perpendicular bisector

segment with end-points (3,4) and

7. Find equations for the

perpendicular bisectors

of the sides of

A (3,4)(5,8)(-1,l0),

and show that they inter-

sect in a point.
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8. The following instructions were found on an ancient document.

"Start from the crossing of King's Road and Queen's Road.

Proceeding north on King's Road, find first a pine tree,

then a maple. Return to the crossing. West on Queen's Road

there is an elm and east on Queen's Rand there 1 a spruce.

Ono magical point is where the elm-pine line meets the

map...-spruce line. The other magical point is where the

spruce-pine line meets the elm-maple line. The line joimbig-

the two magical points meets Queen's Road where the tresmmre

is buried."

A search party found the elm 4 miles from the cross-Ing,

the_zoruce 2 miles from the crossing, and the pine 3 miles

fron=he crossing, but there was no trace of the maple.

Nevt-,.heless they were able to find the treasure from the

instructions. Show how this was done.

ane man in the party remarked on how fortunate they

were to have found the pine still standing. The leader

laugmed and said, "We didn't need the pine tree either."

Show that he was right.

*9. One of the altitudes of the A ABC, where A = (-4,0),

B = (7,0), C = (0,8),' is the y-axis. Why? Prove, using

coordinate methods, that the altitudes from A and B

meet on that axis. (Hint: Find the intersections of those

altitudes with the y-axis.)

Do the same for the triangle with vertices (a,0), (b,0),

(0,c).

3 0 Ci
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*10. The centroid of a triangle is def" the intersection

the three medians. Prove that iz1riates of the

centroid are just the averages of -Lie oc, -linates of the

vertices.

*11. Find the distance from the point (1,2) to the line

x + 3y + 1 = O.

*12. Find the distance from the point (a,b) to the line y = x.

*13. In the general case of the triangle of Problem 9, let H be
the point of concurrence of the altitudes, M the point of

,concurrence of the medians, and D the point of concurrence

of the perpendicular bisectors of the sides. Prove, using

Problems 9 and 10 that these three points are collinear,

and that M divides DH in the ratio two to one (refer to

Problem 8 of Problem Set 17-7).

17-14. Circles.

Consider the circle with center at the origin and radius r.

This figure is defined by the condition

OP = r.

sec. 17-14]
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Algebraically, in terms of the distance formula, this says that

\/((x - 0)2 + (Y 0)2 = rs

or x2 + y
2 = r

2
.

That is, if P(x,y) is a point of the circle then
x2 y2 r2.

We still have to show that if x2 + y2 = r2 then P(x4) is a

point of the circle. This we do by reversing the algebraic stepst

If X2 4- y
2 = r2

then .\//(x - 0) 2 + (y - 0)
2 = r,

since r is a positive number. This equation says that OP = r,

and so P is a paint of the circle.

Consider, more generally, the circle with center at the point:

= (a,b) and radius r.

X
This is defined by the condition QP = r,

or Vf(x a)2 + (y - b)2 = r,

or
(x a)2 (y b)2 r2.

In this case, also, the algebraic steps can be reversed, and so

we can say that

(x a)2 b)2 r2

is the equation of the circle.

311
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This is the standard form of the equation of the circle, with

I,oenter (a,b) and radius r. For future reference, let us state

this'result as a theorem.

Theorem 17-11. The graph of the equation

(x - a)
2
+ (y - b)

2 = r2

is the circle with center at (a,b) and radius r.

If an equation is given in this form, we can read off

Immediately the radius and the coordinates of the center. For

'example, suppose that we have given the equation

(x - 2)2 + (y + 3)2 = 4. ,

The center is the point (2,-3), the radius is

circle looks like this:

and the

So far, this is'easy enough. But suppose that the standard

form of the equation has fallen into the hands of someone who

likes to "simplify" formuIas algebraically. He would have

"simplified" the equation like this:

x2 - 4x + 4 + y2 + 6y + 9 . 4

x2 + y2 - 4x + 6y + 9 O.

[sec. 17-14]
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From his final form, it is not at all easy to see what the graph

is. Sometimes we will find equations given in forms like this.

Therefore we need to know how to "unsimplify" these forms so as

to get back the standard form

(x - a)
2 + (y - b)2 = r2 .

The pmcedure is this. First we group the terms in x together,

and the terms in y together, and write the equation with the

constant term on the right, like this:

x2 - 4x + y
2 + 6y . -9.

Then we see what constant should be added to the first two terms

to complete a perfect square. Recall that to find this constant

take half of the coefficient of x, and square the result. Here

we get 4. The same process, applied to the third and fourth

terms, shows that we should add 9 in order to make a perfect

square. Thus we are going to add a total of 13 to the left-

hand side of the equation. Therefore we must add 13 to the

right-hand side. Now our equation takes the equivalent form

x2 - 4x + 4 + y2 + 6y + 9 . -9 + 13,

or
(x 2)2 (y 3)2 4,

as before.

If we multiply out and simplify in the standard form, we get

x2 + y2 - 2ax - 2by + a2 + b2 - r2 = 0.

This has the form

x2 + y2 + Ax + By + C = 0.

Thus we have the theorem:

Theorem 17-12. Every circle is the graph of an equation of

the form

x2 + y
2 + Ax + By + C = 0.

It might seem reasonable to suppose that the converse is also

true. That is, we might think that every equation of the form

that we have been discussing has a circle as its graph. But this

is not true by any means. For example, consider the equation

2x2 + y = 0.

[sec. 17-14]
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. Here A, B and C are all zero. If x and y satisfy this

equation, then x and y are both zero. That is, the graph of

.the equation.is a single point, namely, the origin.

Consider next the equation

x2 + y2 + 1 = O.

Here A = B = 0 and C = 1. This equation is not satisfied by

the coordinates of any point whatsoever. (Since x2 ) 0 and

y2 > 0 and 1 > 0, it follows that x + y + 1 > 0 for every

pair of real numbers x and y.) For this equation, the graph

has no points at all, and is thziefore the empty set.

In fact, the only possibilities are the circle that we would

normally expect, plus the two unexpected possibilities that we

have just noted.

Theorem 17-13. Given the equation

x2 + y2 + Ax + By + C = 0.

The graph of this equation is (1) a circle, (2) a point or

(3) the empty set.

Proof: Let us complete the square for the terms in x, and

complete the square for the terns in y, just as we did in the

particular case that we worked out above. This gives

2 A2 B2 A2 B2x + Ax + + y2 + By + -rjr- = -C + 7r. + 717,

2 A2 B2
or (x + 4)2 + (y + ip

4.0

4

If the fraction on the right is positive, equal to r2 with

r > 0, then the graph is a circle with center at (-4,4 and

radius r. If the fraction on the right is zero, then the graph

is the Single point 44. If the fraction on the right is

negative, then the equation.is never satisfied, and the graph

contains no points at all.
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Problem Set 17-14

1. The circle shown has a

radius of 5 units. Find

the value of:

2 2
a. xi + yi .

2 2
b. x2 + y2 .

2 2 (x,y
c. x3 + y3 .

2 2
d. alt

2
e. V

2

2. a. Which of the following eight equations have graphs which

are circles?
t/

b. Which of the circles would have centers at the origin?

c. Which would have centers on an axis, but not at the

(1)

(2)

(3)

(4)

origin?

x2 + (y 1)2

y = x2.

x2 + y2 = 7.

1 x2 y2,

= 9. (5)

(6)

(7)

(8)

(x 2)2 - (y - 9)2

(x -
2)2 (y 3)2

3X2 y2 4.

x2 y2

= 16.

16.

3. Determine the center and radius of each of the following

circles. '

a. x2 + y2 = 32. f. - 4)2 + (3i- 3)2 = 36.

b. x2 + y2 = 100. g. (x + 1)2 + (Y 5)2 = 49.

(x 1)2 y2 16. h. x2 - 2x + 1 + y
2 = 25.

d, x2 + y2 = 7. x2 - 2x + y
2
= 24.

e. y2 = 4 x2 . j. x2 + 6x + y2 - 4y = 12.

31.5
[sec. 17-14]



627

A circle has the equation: x
2

- 10x + y
2

= 0.

a. Show algebraically that the points (0,0), (1,3) and

(2,4) all lie on the circle.

b. Find the center and radius of the circle.

c. Show that if (1,3) is joined to the ends of the

diameter on the x-axis, a right angle is formed with

vertex at (1,3).

a. Find the points where the circle (x -
3)2 y2

is .intersected by the x- and y-axes.

b. Considering portions of the x- and y-axes as chords

of the circle in part a., prove (as you should of course,

expect from Theorem 13-14) that the products of the

lengths of the parts into which each chord is divided

by the other, are equal.

6. Draw the four circles obtained by choosing the various

possible sign combinations in

(x + 1)
2
+ (y + 1)

2
= 1.

Then write the equations of the circle tangent to all four

and containing them. Is there another circle tangent to all

four. What is its radius?

7. Draw the 4 circles given by

x2 + y2 = +10x, x
2
+ y

2
= +10y

and write the equation of a circle tangent to all of them.

8. Given the circle x2 + y2 = 16 and the point K(-7,0).

a- Find the equation (in point-slope form) of the line Lm

with slope m passing through the point K.

b. Find the points (or point) of intersection of Lm and

the circle.

c. For what values of m is there exactly one point of

intersection? Interpret this result geometrically.
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9. Find an equation for a circle tangent externally to the circle ,

x2 + y2 - 10x - 6y 4- 30 = 0

and also tangent to the x- and y-axes.

MIEN PROBLEMS

1. What are the coordinates of the projection into the x-axis

of the point (5,2)?

2. Three of the vertices of a rectangle are (-1,-1),, (3,

and (3,5). What is the fourth vertex?

3. An isosceles triangle has vertices (0,0), (4s,0) and

(2a,2b). What is the slope of the median from the origin?

of the median from (2a02b)?

4. In Problem 3 what is the slope of the altitude which contains

the origin?

What is the length of each of the medians of the triangle.in

PrCblem 3?

6. What is the slope of a line that is parallel to a line which

passes through the origin and through (-2,3).

7. The vertices of a quadrilateral are (0,0), (5,5), (7,1)

and (1,7). What are the lengths of its diagonals?

8. What are the coordinates of the mid-points of segments joining

the pairs of points in Problem 7?

9. The vertices of a square are labeled consecutively, P, Q,

R and S. T is the mid-point of QR and .17. is the mid-
__

point of RS. PT intersects QU at V.

a. Prove that PT fig QU.

b. Prove that PT I QU.

. Prove that VS = PQ.

(Hint: Let P = (0,0) and Q = (2a,0).)
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10. 1 9 coordinate geometry to_prcve the theorem: The median of

:rapezoid bisects a diag=ra.L.

11. Wat is the equation whose gmph is the y-axls?

12. -hombus 41:),D has attf:-1, arigin ant kz3 the

200r3tive rilL A = 3 = 6. *C is L.:: first

quadrant. 'hat is the squ f U? lei la

13, '4:L, c)ordimates of the --a=1- of a trapezoid are, con-

tively, (0,0), (a,0), (,c) and (d,c). Find the

of the trapezoid in to7XM of these coordinates.

14. 9715,, graphs of the equations y = -3f-x and y = 4- 5 are

pf,7pendicu1ar to each other a7:- what point?

15. Name the set of points such t-at the sum of the squares of

the distances of each point from the two axes is 4.

16. Write the equation of the circle which has

a. its radius 7 and center at the origin.

b. its radius k and center at the origin.

c. its radius 3 and center at (1,2).

*17. Prove that the line x y = 2 is tangent to the circle

x2 + y2 = 2.
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Chapteffs

REvIEw 7,1,1zr,zo

Write (1) if the statement Ln axc (0) if it is false.

Be able to explain why you mark a E -temr: -false.

1. If a line through the center of a elIrA-Le is perpendicular to

a chord of that circle, it bisp-ts t chord.

2. If AB is a radius of a cir017 le is tangent to the

circle, then AB ite

3. A line which bisects two chori c=cle is perpendicular

to both of them.

4. The intersection of the interie g, W4 Tao circles

interior of a circle.

5. Every point in the interior of 1 c4,rzle is the mid-point of

exactly one chord of the circlt

6. The longer an arc is, the longe= its chord is.

7. If a line intersects a circle, ie ntersection consists of

two points.

8. If a plane and a sphere intersec.t, snd if the intersection

is not a circle, it is a point.

9. If a plane is tangent to a sphere, s line pernendicular to

the plane at the point of tangenrT zmntains the center of

the sphere.

10. On a given circle, rn5 + mi =ma.

11. A 900 inscribed angle will always intercept,a 45° arc.

12. Two angles which intercept the same arc are congruent.

13. Congruent chords drawn in each of two concentric circles

have congruent arcs.

may be the
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If a triangle inscribed im a circle has no side intersecting

a given diameter then the triangle contains an obtuse angle.
.

1 . If two chords in a circle intersect, the ratio of the segments

of one chord is equal to the ratio of the segments of the

other chord.

2:6. If AB is tangent to a circle at B and if AC intersects

the circle at C and D, then AB2 = AC. AD.

L. In a plane, the set of points equidistant from the ends of a

segment is the perpendicular bisector of the segment.

18. The set of points one inch from a given line is a line

parallel to the given line.

19. Any point in the interior ofian angle which is not equidistant

from the sides of the angle does not lie on the bisector of

the' angle..

20. The three altitudes of any right triangle are concurrent.

21. Two circles intersect if the distance between their centers

is less than the sum of their radii.

22. The three angle bisectors of a triangle are concurrent at a

point equidistant from the vertices of the triangle.

23. The perpendicular bisectors of two sides of a triangle may

interseet outside the triangle.

24.. Using straight-edge and compass, it is possible to trisect

a segment.

25. In bisecting a given angle by the method shown in the text,

it is necessary to draw at least four arcs.

26. The ratio of radius to circumference is the same for, all

circles.

127: The area of a circle of diameter d is
2

.

28. A plane seCtion of a triangular prism may be a parallelogram:

29. A plane section of a triangular pyramid may be a parallelogram;
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30. The volume of a triangular :prism is half t =:.,produt t. ofthe...

area of its base antlits altitude,

31. In any pyramid a amction made by a plane:Which blsz=ts the

altitude and is pamael tm the base has alf the area of:.-

the base.

32. Two pyramids with tile same volume and the same bmmeerea

have congruent altitudes.

33. The volume of a pyramid:with a square base is equal to. -one,7

third uf its altitude multiplied by the square of a base

edge.

34. The area of the base of a cone can be found by dividing

three times the volume by the altitude.

35. The radius uf the base of a circular cylinder is given the

formula -77? where V is the volume of the cylinder and

h its altitude.

36. The volume of a sphere is Blven by the formula fir
3 where-

d, is its diameter.

--37. The slope of a segment depends on the quadrant or quadrants

in which the.segment lies.

38. If two segments have the same slope they are parallel.

39. If the slopes of two lines_are -2 and .5 the limes are

perpendicular.

40. If the coordinates ot two Tmlnts are (a,b) and c,d), the

distance between them iE (45. - b) + c - a).

41. If a segment Joins (:,r,$) to (-r,-4e), then its mid-point

,is the origin.

42. The point (-2,-1) ales on the gpm;:h of xy - 2x - y + 2 =

43. The distance between. 0,,o) and. (4,0) is 5.

44. If two vertices ut.la.7ritrt-triangle have co-ordinates (0,10)

and (8,0) the th±rd_vex is at the artgin.
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45. If three vertices of a r.tangle have coordirateI3 (0,m),

(r,O) a=d (r,m) the f===th vertex is at tha ortgin.

46. The equal:don of a line witt-elTpe

is 4y 3x = 2.

2 and contaamng (3,4)

-47. y = 3x + 9 -3.The x-1n7ercept the

48. The intey.aection of the.7=4,s. of

is a slnEde point.

y 3x + 2 y = 3x + 1

49. The graph: of x2 + 72
- is a circle.

50. The gra.._ of every conditlo= az either a line rr.a

322
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Appendix VII

HOW.ERATOSTHENES MEASURED THE EARTH

The cirtumference of the earth, at the equator, is. about

40,000 kilometers, or about 24,900 miles. Christopher aolumbus

alppears to have thought that the earth was much smalIe ':! than thffl

At any rate, the West Indie$ got their name, bcp=duse when Columbus

reached them, he thought that. he was.already_in India. Eis margin

-,tferror, therefore, was somewhat greater than the width of the-

iBbnific Ocean.

In the third.century B.C-, however, the circumference of the

Wearth was -measured, by a Greet:mathematician; with en error. of

4may One or two per cent. The man was Eratosthenes, and his

method was as follows:

3 3
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It was observed that at Assuan on the Nile, at noaa on the

Summer Solstice, the,sun was exactly overhead. That is, atmon

of this particular day, a vertical pole cast no shadow at all,

and the bottom of a .deep well was completely lit up.

In the figure, C is the center of the earth. =can on

the Summer Solstice, in Alexandria, Eratosthenes measuret. the

angle marked a on the figure, that is, the angle between a

vertical pole and the line of its shadow. ae found that tris
1

angle was about 7 12,, or about -56. of a. complete circumference.

Now the sun's rays, observed on earth, are very close to

being parallel. Assuming that they are a.atually parallel, It

follows when the lines L
1

and L
2

in the figure are cut by

a transversal, alternate interior angles are congruent. Therefore,

a Z b. Therefore, the distance from Assuan to Alexandnia must
1

be about 7 of the circumference of the eErth.

The distance from Assuan to Alexandria was known to be: about.

5,000 Greek stadia. (A stadium was an anaient unit of disrance.)

Eratosthenes concluded that the circumference of the earthmnmtt be

about 250,000 stadia. Converting to miles, acing-to wbat

ancient sources tell us about whatEratosthemes ireant by a :stadium, .

we get 24,662 ,miles.

Thus Eratosthenes' error was well under 'tliaTermmxt- Later,

he changed his estimate to an even closer ont,, .252,0=

but nobody seems to know on whatbasis:he mr-e the nee.. On

the basis of the evidence, some historians ..b.LIeve 1t he was

not only very clever and very careful, but aJ. very lucky',



Appendix-VIII

RIGID MOTION

171II-1. The General Idea of a Rigid Motion.

In Chapters 5.and 13 we have defined congruence in a number

of different ways, dealing with various kinds of figures. The

reomplete list looks like this:

(1) AB a uD if the two segments have the same length, that-

'if AB = CD.

(2)-. A.a; LB if the two angles.have the same measure,

that is, if In A.= mL: B.

(3) A Apd &DEB" if, under the correspondence :ABC4-tDEF;

every two corresponding sides are congruent and every-two corre.-7

sponding angles are ccmgruent.

(4) Two cirdles are-dongruent'if they.have:the same:radius';-:

.(5) Two:diraular arcs AB and CD are congruentif the)
.

_

Taircles that contain than. are Congruent and the tWO:arcahave:the:

same degree measure.

The intuitive idea of congruence is-the same in all five of

these cases. In eadh case, roughly speaking, two figures dre

congraent if one of them can be moVed so as to coincide with the

other; and in the case of triangles, a congruence is a way of

'moving the first figure ao as to make it coincide With'the second.

At the beginning of our study of congruence, the scheme used.

in Chapters 5 and 13 is the easiest and probably the:best. It is:

a pity, however, to have five different special ways of describ4

ing the same basic idea in five special eases. And, in a'Way,'At,

is a pity for this basic idea to be limited tO these five special-
.

cases. For example, as a matter of common sense it is _plain'that:

'.7two squares, each of edge 1, must be congruent in some.valid

'sense: 1

A
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The same ought to be true for parallelograms, if corresponding

sides and angles are congruent, like this:

C B'

A b D A
It is plain, however, that none of our five special definitions of

congruence applies to, either of these cages.

In this appendix, we shall explain the idea of a rigid motion.

This idea is defined in exactly the same way, regardless of the

type of figure to which we happen to be applying it. We shall

show that for segments, angles, triangles, circles and arcs it

means exactly the same thing as congruence. Finally, we will

show that the squares and parallelograms in the figures above can

be made to coincide by rigid motion. Thus, first, the idea of

congruence will be unified, and second, the range of its appli-

cation will be extended.

Before we give the general definition of a rigid motion, let

us look at some simple examples. Consider two opposite sides of

a rectangle, like this:

P' a
The vertical sides are dotted, because we will not be especially

concerned with them. For each point P, Q, ... and so on, of

the top edge let us drop a perpendicular to the bottom edge; and

let the foot of the perpendicular be PI, Q, .. and so on.

32.6
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Under this procedure, to each point of the top edge there corre-

sponds exactly one point of the bottom edge. And conversely, to

each point of the bottom edge there corresponds exactly one point

-of the top edge. We can't write down all of the matching pairs

Q<-->QI, and so on, because there are infinitely

many of them. We can, however, give a general rule, explaining

what is to correspond to what; and in fact, this is what we have

done. Usually we will write down a typical pair

p.eappt

and explain the rule by which the pairs are to be formed.

Notice that the idea of a one-to-one correspondence is

exactly the same in this case as it was when we were using it for

triangles in Chapter 5. The only difference is that if we are

matching up the vertices of two triangles, we can write down all

of the matching pairs, because there are only-three of them.

(ABC.-->DEF means that A<--)'D, 134(--*E and C<--*F.) At

present we are talking about exactly the same sort of things,

only there are too many of them to write down.

It is very easy to check that if P and Q are any two

points of the top edge, and P, and Q' are the corresponding

points of the bottom edge, then'

PQ = P'Q'.

This is true because the segments PQ and PIQI are opposite

sides of a rectangle. We express this fact by saying that the

correspondence 10.E-4p preserves distances.

The correspondence that we have just set up is our first and

simplest example of a rigid motion. To be exact:

Definition: Given two figures, F and Ft, a rigid motion

between F and Ft is a one-to-one correspondence

between the points of F and the points of Ft, preserving dis-

tances.

32 7
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If the correspondence P4-4.F, is rigid motion between

F and F', then we shall write

F F1.

Thismotation is lLke the notation A ABC A A,B1C, for con-

gruences between trangles. We :can read F Fl as "F is

isometric to F,." ("Isometrie means "Edual measure.")

Problem. Set 7111-1

1. Consider triangles: A ABC amt-j.A .and suppose that

A ABC A'B'C'.'

Let F be the set consisttniz :,af the vertices of the first

triangle, and let F' be17.71e set consisting of he vertices'.

of the second triangle. Show that there is a rigid motion

2. Let F be the set consie,r7 ,cf -the vertices of a square of

edge 1, and. let F' be tte,set consisting of the vertices

of'another square of edge 2, asinthe figure at the

beginning of this Appendtm. Show that there is a rigid

motion

(First you have to explaim' Ntaat corresponds to.what, and

second you have to verify that distances are preserved.)

3. Do the Eame for the verces 3:Er the two parallelograms in the:

figure at the start af this AmTendix.

4. Show that if F consists of three collinear points, and F'

consists of three non,00ilinear points, then there is no

:rigid motion between F and If'. (What you will have-to do

is to assume that such a.gd. motion exists, and then show

that this assumption leads to a contradiction.)

5. Show that th'ere is never a rig2d motion between two segments

of differentiengths.

. Show that the-is never a -I-1E1d motion between a line and

an angle. (ant: Apply Prdblem 4.)

[A-Nmil]
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Show that given any two rays, there is a rigid motion between

them. (Hint: Use the Ruler Placement Postulate.)

Show that there is never a rigid motion between two circles

of different radius.

VIII-2. Rigid Motion of Segments.

Theorem VIII-1. If AB = CD, then there is a rigid motion

AB CD.

Proof: First we need to set up a correspondence P+-..-*P1_-
between AB and CD. Then we need to check that distances are

preserved.

4--ob -

By the Ruler Postulate, the points of the line AB can be

given coordinates in such a way that the distance between any two

points is the absolute value of the difference of the coordinates.

And by the Ruler Placement Postulate, this can be done in such a

way that A has coordinate zero and B the positive coordinate

AL
A P 1;1

Y AB

In the figure, we have shown typical points P, Q with their
coordinates x and y.

In the same way, the points of CD can be given coordinates:

P a
AB

Notice that D has the coordinate AB, because CD = AB.

It As now plain what rule we should use to set up the corre-

spondence

P4>P1
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between the points of AB and.the points of CD. The rule is that

P corresponds to PI if P and P' have the same coordinate.

(In particular, to*--1.0 because A and C have coordinate zero,

and BIE--D because B and D have coordinate AB.)

It is easy to see that this correspondence is a rigid motion.

If P4--*PI and Q4.--3.QI, and the coordinates are x and y,

as in the figure, then PQ = P'Ql, because

PQ = 1Y - xl = PIQI,

We therefore have a rigid motion

AB al CD,

and the theorem is proved.

Notice that this.rigid motion between the two segments is

completely described if we explain how the end-points are to be

matched up. e therefore will call it the rigid motion induced

jaz the corres ondence

Theorem VIII-2. If there is a rigid motion AB % CD between

two segments, then AB = CD.

-The proof is easy. (This theorem was Problem 5 in the pre-

vious Problem Set.)

Problem Set VIII-2

1. Show that there is another rigid motion between the congruent

segments AB and CD, induced by the correspondence

B C .

2. Show that there are two rigid motions between a segment and

itself. (One of these, of course, is the identity corre-

spondence P*-->P,, under which every point corresponds to

itself; this is a rigid motion because PQ = PQ for every

P and Q.) 330
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VIII-3. Rigid Motion of Rays, Angles and Trian$les.

Theorem VIII-3. Given any two rays -fig and -dr, there is

a rigid motion

AB a: CD.

The proof of this theorem is quite similar to that of

Theorem VIII-1, and the details are left to the reader.

Theorem VIII-4. If Z ABC Z DEF, then there is a rigid

motion

Z ABC % ,Z DEF

between these two angles.

Proof: We know that there are rigid motions

BA R; ED

and

BC % EF

between the rays which form the sides of the two angles.

Let us agree that two points P and PI (or Q and Q') are

to correspond to one another if they correspond under one of these

two rigid motions. This gives us a one-to-one correspondence

between the two angles. What we need to show is that this corre-

spondence preserves distances.

Suppose that we have given two points P, Q of Z ABC and

the corresponding points PI, QI of Z DEF. If P and Q are

on the same side of Z ABC, then obviously

PIQI = PQ,
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because distances are preserved on each of the rays that forni

z ABC. Suppose, then, that P and Q are on different sides o'

z ABC, so that P' and Q1 are on different sides of z DEF,

like this:

BZ--
QI

By the S.A.S. Postulate, we have

PBQ a A PIEQ,.

Therefore PQ = P'Q', which was to be proved.

Next, we need to prove the analogous theorem fqr triangles:

Theorem VIII-5. If

A ABC a A AIBIC',
then there is a rigid motion

6 ABC AtH,Ct ,

under which A, B and C correspond to A', B' and C'.

Proof: First we shall set up a one-to-one correspondence

between the points of ABC and the points of A'B'C'. We

have given a one-to-one correspondence

for the vertices. By Theorem VIII-1 this gives us the induced

rigid motions

and

'AB % AIB',

AC R.' A'C'

111,
BC R.' BIC'

between the sides of the triangles. These three rigid motions,

taken together, give us a one-to-one correspondence 134.--*P'

between the points of the two triangles. We need to show that

this correspondence preserves distances.

332
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If P and Q are on the same side of the triangle-, then,

we know already that

PIQI = PQ.

-Suppose, then, that P ahd. Q are on different sides, say, AB

and AC, like this:

A

We know that

AP MP!,
because AB::: MB! is a rigid motion. For the same reason,

AQ = A% Q,'

and L A 2: , because A ABC gi A AIBICI . By the S.A.S.
Postulate,

Therefore,

A PAQ, ai A .

PQ = P'Ql,

t.

which was to be proved.

Notice that while the figure does not show the case P = B,

the proof takes care of this case. The proof is more important

than the figure, anyway.

Problem Set VIII-3

1. Let

ABC --*MBICI

be a rigid motion, and suppose that A, B and C are

collinear. Show that if B is between A and C, then

13' is between A' and CI.

[A=VIII]
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. Given a rigid motion

F % Fl.

Let A. and B be points of F, and suppose that F

contains the segment AB. Show that F1 contains the

segment A1B/.

3. Given a rigid motion

F Fl.

Show that if F is convex, then so also is Fl.

4. Given a rigid motion

F % F1.

Show that if F is a segment, then so also is Ff.

Given a rigid motion F F'. Show that if F is a ray,

then so also is F'.

6. Show tbat there is no rigid motion between a segment and a

circular arc (no matter how short both of them may be).

V111-4. Rigid Motion of Circles: and Arcs.

Theorem VIII-6. Let, C and Cl be circles of the same

radius r. Then there iS a rlztd motion

C Cl

between C and C'.

334
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Proof: Let the centers of the circles be P and P'. Let

AB be a diameter of the first circle, and let AIBI be a diameter

of the second. Let H and H
2

be the half-planes determined by
1

the line AB; and let H', and H'
2

be the half-planes deter-

mined by the line A,B,.

We can now set up our one-to-one correspondence Q*--*Qt, in

the following way: (1) Let A' and B' correspond to A and

B,, respectively. (2) If Ql is a point of C, lying in H1,

let Q'
1

be the point of O', lying in H'
1,

such that

W11"33' "I" Z Q1111.

(3) If Q2 is a point of C, lying in H2, let Q'2 be the

point of C2, lying in H'2, such that

W.21"33' Z (12193'

We need to check 'that this correspondence preserves distances,.
CY

Thus, for every two points Q, R of C, we must have

Q'R' = QR.

If Q and R are the end-points of a diameter, then so are Q1

and R', and' Q,R, = QR = 2r. Otherwise, we always have

A QPR A WPIRI, so that Q'R' = QR. (Proof? There are two

cases to consider, according as B is in the interior or the

exterior of L QPR.)

You should prove the following two theorems for yourself.

They are not hard, once we have gone this far.

335
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Theorem.VIII-T. Let C

as,in Theorem VIII-6
,

:Congruent central angles of

and CI be

. Let z xpB
C and C',

circles with the same

and 'L X1PJB1Hbe

respectivelY.

Then a rigid motion 5Inbe chosen tm such a way thate-
X4i---4.X1, and BX BIXI.

Theorem VIII-8. Given any two congruent arcs, there is a

tigid motion between them. The proof is left to the reader.

,VIII5. Reflections.

The definition or rigid motion given in Section VIII-1 is a

perfectly good mathematical definition, but we might claim that

from an intuitive viewpoint it does not convey any idea of "motionl.'

We, will devote this section to showing how a plane figure can be

"moved" into coincidence with any isometric figure in the same,

plane.

Throughout this section all figures will be considered as

lying in a fixed plane.

336
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Definitions. A one-to-one correspondence between two figures

is a reflection if there is a line L, such that for any pair .of

corresponding points P and P!, eithOi. (1) P = PI and lies

on L or (2) L is the perpendicularsector of PP'. L is

called the axis of reflection, and each figure is said to.be the

reflection, or the image, of the other figure in L.

In the pictures below are shown some examples of reflections

of simple .figures.

P B

Theorem A reflection is a rigid motion.

Proof: We must show that if P and Q are any two points,

and Pt and Qt their images in a line L, then PQ = PIQI.

There are four cases to consider.

Case (1)

IQ Q' 0'

L.

Case (2) Case (3) Case (4)

337
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:Case 1. 12 and Q are amthe same side of. L- Iet

Aitersect L at A and QQ, intersect L at B. -By the

definition of reflection PP, L and PA = P,A, and QQ'..1.

= W.B. Hence A. PAB a A P'AB, and pB =

'PBA-MZ P,BA. By,subtraction, L PBC1.01 PBQI. We then have

.(by S.A.S.)' A PBQ A PI BQI , and so PQ = P'Q' .

Case 2. The proof is the same, except that in proving

PBQ M Z PBQ, we add angle measures instead of subtracting.

Case 3.. Q is on L. Then' Q = and PQ = since

Q is.on.the perpendicular bisector of PP'. The case P cn

and Q not on L is just the same.

Case 4. P and ,C1 both on L. Stace P = pl ahd Q =

we certainly have NI =

Starting with a figure F we can reflect it in some line to

'get a figure Fl, F1 can be reflected in some line to get a

-figure:F2, and so on. If we.ehd uP with a figUre .FI atter

n such steps we shall say that F has beencarried into Fm

by a chain of n reflections.

Corollary 17111-9-1. A Chain of reflections carrying LB"' into

determines a rigid motion between F and

Coming.back to our opening discussion_In -this section, a

reflection can be thought of as a physical motion, obtained_liy

rotating the whole plane through 1800 about the axis of re-

-Jlection. The above corollary says that a certain type of rigid

motion, namely, those obtainable as a chain of reflections, can

be.given a physical interpretation. What we shall.noW Show ia

that every rigid motion is of this-type.

The proof will be given in two stages, the first stage in-

volVing only a very simple figure. For convenience we will use

the notation F I
F' if F and F' are reflections of each

other in some axis.
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Theorem VIII-10. Let A, B, C, A', B', C' be six points

such that AB = A'B', AC = A'C', BC = B'C'. Then there is a

chain of'at most three reflections that carries A, B, C into

A', Br,

Proof:

Step 1.

Let L
2

be the perpendicular bisector of AA', and let B
2

and

C2 be the reflections of B' and Cr in L2. Then A, B2,C2
I

A',B,,C1.

Step 2.

Let L1 be the perpendicular bisector of BB2. Since AB = AIBI

and since by Theorem VIII-9, A'Br = AB2, it follows that

AB = AB
2'

Therefore A lies on L
1

and is its own image in the

reflection in L. Thus, the image of A, B2, C2 in L1 is

A, B, Cle

339
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By arguments similar to the one above we see that AC = ACi

= BC1. Hence, lar is the perpendicular bisector of CC1,

and the image A, B, C1 in Is is .A, B, C.

We thus have,

A,B,C 1 A,B,C1 1 A,B2,C2 1.AI,BI,CI,

as was desired.

Any one or two of the three steps may be unnecessary if the

pair of points we are working on (A in step 1, B instep 2,

C in step 3) ,happen to coincide.

We are now ready for the final stage of the proof.

Theorem VIII-11. Any rigid motion is the result of a chain

of at most three reflections.

Proof: We are given a rigid motion F Fl. Let A, B,

be three non-collinear points in F, and AI, BI, CI, the corre-

sponding points in FI.

(If all points of F are collinear a separate, but simpler,

proof is.needed. The details of this are left to the student.)

By Theorem VIII-10 we can pass from AI, BI, CI to A, B, C

by a chain of at most three reflections. By corollary 17111-9-1

this chain determines a rigid motion FI % FI I, and by the.con-

struction of the reflections we have AII = A, B" = B and

CI' = C. SchematicallY the situation is something like this:

3 40
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e:shalI.show-that for:every pOint P., of F we have

ThifOrilhow that 01.491.4eswith F, andthatthe
rigid Motion-R,%',Ft: -is identical Withthe onedetermined

,chaimbf reflections.

..Let:iip consider, then, any point P of F, ::itE(Corre

sponding point ,PI in_ Ft determined by the rigidMotin:::
FI, and the point Plt in F" determined frot PI by,

=the chain Of reflections. We recall that Aut = B,

Ctl = C.

A'

Since all our relationships are rigid motions we have

AP" = = AP. Sizpilarly, BP" = BP and CP" = CP. From

the first two of these, and AB = AB, we get that

&ABP a' A ABP", and so Z: BAP = Z: BAP". If P and P" are'
4->

on the same side of AB then by the Angle COnstruction postulate

-.Al= AP", and since' AP = AP" it folloWs from the Point

Plotting Theorem that P = P", which is what we wanted to prove.

3,4
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Suppose then that P and P" lie on opposite sides of

1

A . f

Pu

Since PA =.P"A and PB = P"B it Ibllows that A and B lie

on the perpendicular bisector of PP". Since PC = P"C, C

also lies on this line, contrary to the choice of A, B and C

as non-collinear. Hence, this case does not arise, and we are

left with P = P", thus proving the theorem.

Problem Set VIII-5

1. In each of the following construct, with any instruments

you find convenient, the image of the given figure in the

line ,L.

a.

2. Find a chain of three or fewer reflections that will carry

ABCD into AtBIC'D/.
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3. a. Carry A ABC through the chain of four refleciions in'

the axes Ll, L2, L3, 1,11.

L4

b. Find a shorter chain that will give the same rigid

motion.

Definitions: A figure is symmetric if it is its own image in

some axis. Such an axis is called an axis of symmetry of the

figure.

4. Show that an isosceles triangle is symmetric. What is the

axis?

5, A figure may have more than one axis of symmetry. How many

do each of the following figures have?

a. A rhombus.

b. A rectangle.

c. A square.

d. An equilateral triangle.

e. A circle.

6. The rigid motion defined by a chain of two reflections in

parallel axes has the property that if P4--*P1 then PP'

has a fixed length (twice the distance between the axes)

and direction (perpendicular to the axes). Prove this.

Such a motion is called a translation.
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The rigid motion defined by a chain of two reflections in

axes which intersect at Q has the property that if P4-0.1"

then L PQPI has a fixed measure (twice the measure of the

acute angle between the axes). Prove this.

Such a motion is cSlled a rotation about Q.

8. Show how by using the results of Problems 6 and 7 the

FUndamental Theorem VIII-11 can be restated in the following

form:

Any rigid motion in a plane is either a reflection, a trans-

lation, a rotation, a translation followed by a reflection,

or a rotation followed by a reflection.

[A-VIII3
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Appendix IX

PROOF OF THE TWO-CIRCLE THEOREM

-The validity of the Two Circle Theorem, stated in Chapter 14,

rests on the existence of a certain triangle and the proof is

easier to follow if we establish this first.

Triancat Existence Theorem. If a, b, c are positive

numbers, eac:h of which is less than the sum of t7le other two,

then there ic a triangle whose sides have lengths a,)a, c.

Proof: The hard part of the proof is algebraic rather than

geometric. First, let us suppose, as a matter of notation, that

the three numbers a, b, c are written in order of magnitude, so

that

a < b < c.

Let us start with a segment AB, with AB = c. Our problem is

to find a triangle A ABC, with BC = a and AC = b, like

this:

In a sense we are going to tackle this problem backwards. That

is, we are going to start off by assuming that there is such a

triangle. On the basis .of this assumption, we will find out

exactly where the third vertex C must be. This procedure in

itself will not, of course, prove that the above statement is

true, because we started by assuming the very thing that,we.are

supposed to be proving. But once we have found the exact location

of the points that might wo.k, it will be very easy to check that

these points really do work. (Of course, there are two possible

places for C, on the two sides of the line -AB.)
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(This procedure is just what we use in solving equations.

To solve 3x -; 7 . x 3 we firbt assume that there is an x

which satisfies this equation. For this x we find successively
that

3x x + 10,

2x 10,

x = 5.

Then we reverse our qteps and show that 5 actually does satisfy

the given equation.)

Suppose, then, that there is a triangle A ABC of the sort

that we are looking for. Let us drop a perpendicular from ,C to'

V, and let D be the foot of the perpendicular. Then D is

between A and B, because AD < b < c and BD < a < c.

Let y = CD, and let x = AD, as in the figure. Then DB = c- x,
as indicated. We want to find out what x and y are equal to,

in terms of a, b and c.

By the Pythagorean Theorem, we have

(1) x
2
+ y2 b2

(2) y2 + (c x)2

y2 . b2 x2

and

Therefore

and
y2 a2

(c x)2.
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Equating the two expressions for y
2 we see that

2 2 a2 (c x)2,

b2 x2 = a
2

- c2 + 2cx - x
2

2cx = b
2
+ c

2
- a

2
,

and

(3) x - b2 c2
2

2C

A-53

What we have found, so far, is that if x and y satisfy

(1) and (2), then x satisfies (3). We shall check, conversely,

that if x and y satisfy (1) and (3), then x and y also

satisfy (2). For if (1) and (3) hold, then we have from (1) that

y2 = b2 - x2 .

Adding (c - x)2 to both sides we get

y2 (c 2 (b2 x2) x)2

= b2 - x2 + c 2 - 2cx + x2

= b2 + c
2

- 2cx.

Substituting for x from (3) gives

y2 (c x)2 b2 c2 (b2 c2 a2)

2
= jp

so that (2) holds.

Now that we know what triangle to look for, let us start all

over again. We have three positive numbers, a, b, c. Each of

them is less than the sum of the other two, and a < b < c. Let

b2 + c 2 - a
2

4 = 20
Then x > 0, because b2 > a2 and c

2
> 0. We want to set

y =,v/b2 - x2,

so that x2 + y2 b
2

, but to do this we must first make sure

that x < b, that is, that b - x > 0. We have
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2 2 2
bb - x + c - a= b -

- b
2

- c
2
+ a2

2c
2 , 2a - te - 2bc + b2 )

/ fc
.

a
2 - (c - b)

2

2c

Now we are given that 113 < a + b. Hence, c - b < a and so

(c - b)
2

< a
2

. It follows from the equation above that

b - x 0, or x < b.

We are now ready to construct our triangle. Let AB be a

segment of length c.

14.11,,,,se
,2 ,2

Let D be a point on AB such that AD x -
2c

Such a point exists since we know x < b < c. Let C be a poir

on the perpendicular to AB through D, such that

DC = y = 1177- x2.

Then

AC
2
. x

2
+

and

BC2
y2 (c x)2 a2.

=

Therefore AC = b and BC = a, which is what we wanted.

The proof of the Two Circle Theorem is now fairly easy.
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Theorem 14-5., (The Two Circle Theorem.)

If two circles have radii a and b, and if c is the

i.distance between their centers, then the two circles intersect
in two points, one on each side of the line of centers, provided
each one of a, b, c is less than the sum of the other two.

Proof: Let C
1,

the circle with radius b, have center A,

and 0,y the circle with radius a have center B. Then AB =.C.

C2

We know by the Triangle Existence Theorem that there is a

triangle A XYZ whose sides have lengths a, b, and c, like
this:
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Using the S.A.S. Postulate, we are going to copy this triangle on .

4-314
each side of the line AB, in the following way. On each side of
<>
AB we take a ray starting at A, in such a way that the angles

formed are congruent to angle X.

On these rays we take points P and Q, such that AP = AQ =

Therefore circle C
1

passes through P and Q. By the S.A.S.

Postulate,
A APB a XYZ a A AQB.

.Therefore PB = a = QB, and hence circle C2 passes through P

and Q.

This shows that P and Q are at least part of the inter-

section of C1 and C. To show that they are the intersection

we must prove that no third point, R, can lie on both C1 and

C
2'

If there were such a point R we would have, by the S.S.S.

Theorem

A ABR a ABP, and so, m2: BAR = mIZ: BAP.

But in the given plane there are only two such angles, one on

each side of W, and hence, either -ig=7:? or 711..-Te Since

AR = AP = AQ = b this means that either R = P ,or R = Q, and

so there can be no third point on both- C1 and C2.



Appendix X

TRIGONOMETRY

X-1. Trigonometric Ratios.

.
The elementary study of trigonometry is based on the follow.-

ing theorem.

Theorem X-1. If an acute angle of one right triangle is

congruent to an acute angle of another right triangle, then the

two triangles are similar.

Proof: In A ABC and A A'B'C' let z C and L CI be

right angles and let 111Z A = 111,Z AI. Then A ABC A AIBIC' by

A.A. Similarity Corollary 12-3-1.

We apply this theorem as follows: Let r be any number

between 0 and 90, and let A ABC be a right triangle with

mL C = 90 and mdL A = r. For convenience set

AB = c, AC = b, BC = a.

(The Pythagorean Theorem then tells us that c2 = a2 + b2.)

If we consider another such triangle A AIBICI with

mL CI = 90 and mL AI = r, we get three corresponding numbers

al, lot, cl, which would generally be different from a, b, c.

However, we always have

a' a

To see this, note that it follows from Theorem X-1.....that

al jot

If we multiply both sides of this equation by tr we get the

desired result.
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Thus the ratio 11,.. does not depend on the particular triangle

we use, but only on the measure r of the acute angle. The value

of this ratio is called the sine of r°, written sin r° for

short. The reason we specify that we are using degree measure is

that in more advanced aspects of trigonometry a different measure

of angle, radian measure, is common.

Let us see what we can say

about sin 300. We know from

Theorem 11-9 that in this case

if c = 1, then a =4. Hence,

sin 30° = let =4. A
It is evident that the ratio

can be treated in the same way
a

as The ratio is called
c'

the cosine of rs-', written
1

cos r
o

.
From the Pythagorean Theorem we see that if a = ln and

c = 1, then b = 12. Hence, cos 30
0 = 12

Of the four other possible ratios of the three sides of the

triangle, we shall use only one, §. This is called the tangent

of r°, written tan r°. We see that tan 300 = (This use
Ne/T

of the word "tangent" has only an unimportant historical connection

with its use with relation to a line and a circle.)

These three quantities are called trigonometric ratios.
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Problem Set X-1

In each of the following give the required information in

termB of the indicated lengths of the sides.

a. sin A = ?, cos A = ?, tan A = ?.

b. cos r = ?, tan r° =

c. in P = ?, cos P 7 ?,

d. sin A = ?, sin B = ?,

tan A = ?, tan B = ?.

tan Q = ?.

In each of the following find the correct numerical value

for x.

a. cos P = x.
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3,. Find: sin 600, cos 60°, tan 60°.

Find: sin 45°, cos 45°, tan 45°.

5. By making careful drawings with ruler and protractor

determine by measuring

a. sin 22, cos 20°, .tan 200;

b. sin 530, cos 530, tan 53°.

X-2. Trigonometric Tables and Applications.

Although the trigonometric ratios can be'computed exactly

for a few angles, such as 300, 600 _and 450, in most cases we

have to be content with approximate values. These can be worked

out by various advanced methods, and at the end of this Appendix

we give a table of the values of the three trigonometric ratios

correct to three decimal places.

Having a "trig table", and a device for measuring angles,

such as a surveyorls transit (or strings and a protractor) one

can solve various practical problems.

Example X-1. From a point 100 feet from the base of a

flag pole the angle between the

horizontal and a line to the top

of the pole is found to be 23°.

Let x be the height of the

pole. Then

tan 23
0
= .425.

1770

Hence, x = 42.5 feet. An angle like the one used in this example

is frequently 'called the angle of elevation of the object.
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Example X-2. In a circle of radius 8 cm. a chord. AB has

Iength 10 cm. What is the measure of an angle inscribed in the

ymajor arc 2? We have AC = 8,

= 2ff' .10 = 5. Hence,

sin 2: ACQ = = .625,

mitACQ = 390 ,

rii(minor arc a) = mZ: ACE =

2(mL ACQ) = 780 .

-Hence, mdZ APB = 4rit(arc 57) =

39° to the nearest degree.

Problem Set X-2.

From the table find: sin 1 7°, cos 46°, tan 820, cos 330 ,

sin 600. Does the last value agree with the one found in

Problem 3 of Set X-1?

2. From the table find x to the nearest degree in each of the

following cases:

cos x = .731, sin x = .390, tan x . .300

1
sin x = .413, tan x = 2, cos x = .3

3. A hiker climbs for a half mile up a slope whose inclination

is 17°. How much altitude does he gain?

4. When a six-foot pole casts a four-foot shadow what is the

angle of elevation of the sun?

5. An isosceles triangle has a base of 6. inches and an

opposite angle of 30°. Find:

a. The altitude of the triangle.

b. The 'lengths of the altitudes to the equal sides.

c. The angles these altitudes make with the base.

d. The point of Intersection of the altitudes.
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6. A regular decagon (10 sides) is inscribed in a circle of

radius 12. Find the length of a side, the apothem, and the

area of the decagon. o

7. Given, mZ A = 26°, mZ CBD

BC = 50; find AD and AB.

X-3. Relaticns Among, the Trigonometric Ratios.

Theorem X-2. For any acute Z A, sin A < 1, cos A < 1.

Proof: In the right triangle A ABC of Section Xl,

a < c and b < c. Dividing each of these inequalities by c

gives

< 1, < 1,

which is what we wanted to prove.

Theorem X-3. For any acute angle A,

sin A = tan A, and (sin A)2 + (cos A)2 = 1.
cos A

Proof: a
sin A F a ,, A
cos A

= = r = U0.11 no

2 2
(sin A)2 + (cOs A)2 = + )2n.

c c

a
2 + b

2
c
2

= 1 .

c
2 c`
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Theorem X-4. If z A and ZB are complementary acute
1angles, then sin A = cos B, cos A = sin B, and tan A =

tan

Proof: In the notation of the figure we have

sin A = = cos B,

cos A = = sin B,

tan A = = 1
Y

Problem Set X-3

Do the f.ollwing problems without using the tables.

1
1. If sin A = -3. what is the value of cos A? What is the

value of 'tan A? (Use Theorem X-3.)

2. With ruler and compass construct Z A, if possible, in each

of the following. You are allowed to use the results bf

earlier parts to simplify later ones.

a. cos A = .8.

[A-X]
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Solution: Take AC

CQ I AC. With center A

secting CQ at B. Then

2
b. cos A

c. cos A

d. s in A

e. sin A

f. tan A

g. tan A

3

3

any convenient segment and construct
ACand radius construct an arc inter-

cos(Z BAC) = .8.



:Table of Trigonometric Ratios

Tan-,
Angle Sine Cosine rent An:le

o 0.000 1.000
1 .017 1.000
2 .035 0.999
3 .052 .999
4 .070 .998
5 .087 .996

6 .105 .995
7 .122 .993
8 .139 .990
9 .156 .988

10 .174 .985

11 .191 .982
12 .208 .978
13 .225 .974
14 .242 .970
15 .259 .966

16 .276 .961
17
18

.292

.309
.956
.951

19 .326 .946
20 .342 .940

21 .358 .934
22 .375 .927
23 .391 .921
24 .407 .914
25 .423 .906

26 .438 .899
27 .454 .891
28 .469 .883
29 .485 .875
30 .500 .866

31 .515 .857
32 .530 .848
33 .545 .839
34 .559 .829
35 .574 .819

36 .588 .809
.602 .799

38 .616 .788
39 .629 .777
4o .643 .766

41 .656 .755
42 .669 .743
43 .682 .731
44 .695
45 .707 .;.?

0.000
.017 46
.035 47
.052 48
.070 49
.087 50

.105 51

.123 52

.141 53

.158 54

.176 55

.194 56

.213 57

.231 58

.249 59

.268 60

.287 61

.325 63

.306 62

.344 64

.364 65

.384 66

.404 67

.424 68

.445 69

.466 70

.488 71

.510 72

.532 73

.554 74

.577 75

.601 76

.625

.649 77;

.675 g.700

.727 81

.781 83

.754 82

.810 84

.839 85

.869 86

.900
E.933

.966 89
1.000 90

[A-x]
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Sine Cosine
Tan-
ent

0.719 0.695 1.036
.731 .682 1.072
.743 .669 1.111
.755 .656 1.150
.766 .643 1.192

.629 1.235
.77;; .616 1.280
.799 .602 1.327
.809 .588 1.376
.819 .574 1.428

.829 .559 1.483

.839 .545 1.540

.848 .530 1.600

.857 .515 1.664

.866 .500 1.732

.875 .485 1.804

.883

.891
.4 69

44.5
1.881
1.963

.899 .438 2.050

.906 .423 2.145

.914 .407 2.246

.921 .391 2.356

.927 .375 2.475

.934 .358 2.605

.940 .342 2.747

.946 .326 2.904

.951 .309 3.078

.956 .292 3.271

.961 .276 3.487

.966 .259 3.732

.970 .242 4.011

.974 .225 4.331

.978 .208 4.705

.982 .191 5.145

.985 .174 5.671

.988 .156 6.314

.990 .139 7.115

.993 .122 8.144

.995 .105 9.514

.996 .087 11.43

.998 .070 14.30

.999 .052 19.08

.999 .035 28.64
1.000 .017 57.29
1.000 .000
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1.

d.
x z x z

SF' x
2 1277.2. a. b.

.152

4/75. 1
3.

-P

1 1
4. 1.

a.

b.

C.

3

5
17,

3

3

4

3'
12
17,

4

3'

Solutions to Appendix

Problem Set X-1

3

-4.*

5
Tff.

4

7.

5., a. .34, .94, .36.

b. .80, .60, 1.33.

Problem Set X-2

2.
43o, 23o, 17, 24o, 63o, 710

.

3. sin 17° = x x = .292 2640 = 771 feet.
.ff .5280

4.
6

tan x = -4. = 1.5. x = 560.

5. mL A = 30, mL B = mL c = 75°.

a.
ADmy = tan C. AD = 3.732 *3 = 11.196.

b.
CEn = sin B. CE = .966.6 . 5.796.

c. In,/ ECB = 90° - 1114/ B = 15°.

DF
d. .615 = tan 15°. DP = .268. 3 = .804.

[A-X]
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sin 18° =

b = 3.71, 2b = 7.42

cos

a = 11.41.

1area = .10.7.42 .11.41 . 423.

CDtan 42o = 35, CD = 45.0.

tan 26° = , AC = 92.2, AB = 42.2.

sin 26° = AD = 103.

Problem Set X-3

1. (sin A)2 + (cos A)2 = 1, + (cos A)2 = 1,

_18- 2 VT
cos A . .

tan A = sin A 1

cos A
2,./7 21-2-

2. (c) is impossible.

(d) A here is.congruent to B of part (a).

(g) A here is the complement of the A of part (f).



Appendix XI

REGULAR POLYHEDRA

A polyhedron is a solid whose boundary consists of planar

-regions -- called faces -- which are polygonal regions. 'The sides

and vertices of the polygons are, called the edges and vertices'of.

the polyhedron. PrismB and pyramids are examples of special kinds

of polyhedrons. A regular polyhedron is a convex polyhedron (see

Section.3-3 for definition of convexity) whose faces are bounded

by regular polygons all with the same number of sides and such

that there are tlie same number of faces (and edges) at each vertex.

We shall determine all the regular polyhedra, using Ruler's famous

formula connecting the number of vertices, edges, and faces of a

convex polyhedron (more generally, one without any holes). An

excellent exposition of this formula can be found in Rademacher

and Toeplitz, "The Enjoyment of Mathematics." Strictly speaking,

we show that there are only five possibilities-for the numbers of

vertices, edges, and faces, but omit the proof that each of these

possibilities is.realized in essentially one and only one way by

a regular polyhedron.

Suppose we have a regular polyhedron with V vertices, E

edges and F faces, mid with r faces about each vertex and n

aides (and vertices) for each face. If the E edgeR were all

shrunk slightly, so as to pull away from the vertices, we would

have E segments, each with two end-points, and so 2E end

points altogether. Now there are r of these end-points near

each of the V vertices, and hence rV end-points in all. We

. must therefore have the relation rV 2E, or

2E
(1) .

Similarly, imagine each face shrunk and count the resulting

sides of the polygonal regions. There are 2 sides near each

edge, and so 2E sides. There are n sides on each face, and

so nF sides. Thus nF = 2E, or

(2)
2E
n '
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Now Eulerts formula tells us that

V - E + F = 2.

Substituting for E and F from Equations (1) and (2),

we get

Dividing by 2E

(3)

Hence

or

-2E
g

1

- 1

1

+

-2E

gives

1

1

n

1

1 > o ,

1

Now r > 3, os 47 < 13-.t > - 4; > .3 - 4,

so n < 6. Thus, n = 3, 4, or 5, and the only possibilities

for the faces are triangles, squares, or regular pentagons. By

the same argument we see that r = 3, 4, or 5 are the only

possibilities. E can be found from (3), and then V and F

from Equations (1) and (2).

For n 3, r = 3, we get V . 4, E = 6, F 4.

For n = 3, r = 4, we get V = 6, E 12, F = 8.
For n = 3, r 5, we get V = 12, E = 30, F = 20.

Trying n = 4, we see that the only possibility for r is

3, in which case V = 8, E = 12, F = 6. Finally,, for n = 5,

the only possibility is r . 3, which yields V . 20, E = 30,

F 12.

These five possibilities are realized'in essentially one way

for each choice of F, E, and V (more precisely, two regular

polyhedra with the same values for F, E, and V are "similar"),

although we do not prove this. They are exhibited in the follow-7

ing table:

3 43 '3
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Regular
Polyhedron

Boundary
of

Face

Number
of

Faces

Number
of

Edges

Number
of

Vertices

DiumDer clI
Faces (or
Edges) at
a Vertex

Tetrahedron Triangle 4 6 4
.3

Octahedron Triangle 8 12 6 -4

Icosahedron Triangle 20 30 12 5

Cube Square 6 12 8 3
(Hexahedron)

Dodecahedron Pentagon 12 30 20 3

Tetrahedron

Dodecahedron

Hexahedron

Icosahedron

Octahedron

We observe a curious duality between the octahedron and the

cube and between the icosahedron and the dodecahedron, obtained by

interchanging F and V, n and r, and leaving E _unchanged.

The tetrahedron is self-dual. This duality can be established by

atarting-with one of the solids and forming a new one whose

vertices are the centers of the faces of the original one, and

whose edges are the segments Connecting the centers of adjacent

faces. These and other relations among the regular polyhedra and

related semi-regular polyhedra are discussed in various books;.

for examPle, "Mathematical Snapshots," by Steinhaus; "Mathematical

Models," by Cundy and Rollett.

[A-XI]
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The Meaning and Use of Symbols

General.

A = B can be read as "A equals B", "A is equal to B",

"A equal B" (as in "Let A = B"), and possibly other

ways to fit the structure of the sentence in which the

symbol appears. However, we should nOt use the symbol,

=, in such forms as "A and B are ="; its proper use is

between two expressions. If two expressions are connected

by "=" it is to be understood that these two expressions

stand for the same mathematical entity, in our case either

a real number or a point set.

"Not equal to". A B means that A and B do not

represent the same entity. The same variations and

cautions apply to the use of as to the use of =.

Algebraic.

+, +. These familiar algebraic symbols for operating with

real numbers need no comment. The basic postulates about

them are presented in Appendix II.

<, >, . Like = , these can'be read in various ways in

sentences, and :A < B may stand for the underlined part

of "If A is leas.than B", "Let A be less than B",

"A less than B implies", etc. Similarly for the other

three symbols, read "greater than", "less than or equal

to", "greater than or equal to". These inequalities apply

only to real numbers. Their properties are mentioned

briefly in Section 2-2, and in more detail in Section 7-2.

NT, lAl. "Square root of A" and "absolute value of A". Discussed

in Sections 2-2 and 2-3 and Appendix IV.

Geometric.

Point Sets. A single letter may stand for any suitably described

point set. Thus we may speak of a point P, a line m, a

half-plane H, a circle C, an angle x, a segment b, etc.

a
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11 The line containing the two points A and B (P. 30):

A. The segment having A and B as end-points (P.45).

The ray with A as its end-point and containing

point B (P. 45).

LUC -The angle having -B as vertex and BA and --g-:as

sides (P. 71).'

. ,LABC. The triangle having A, B and C as vertices (P. 72).-
e>

z A-BC-D.- The dihedral angle having BC as edge and with sides

containing A and D (P. 299).

Real Numbers.

AB. The positive number which is the distance between the two

points A and B, and also the length of the segment AB

(P. 34).

rr&BC. The real number between 0 and 180 which is the

degree measure of LABC (P. 80).

Area R. The positive number which is the area of the polygonal

region R (P. 320).

Relations.

I.

Congruence. A !--11 B is read "A is congruent to B", but

with the same possible variations and restrictions as

A = B. In the text A and B may be two (not necessarily

different) segments (P. 109), angles (P. 109), or

triangles (P. 111).

Perpendicular. A i B is read "A is perpendicular to B",

with the same comment as for .11. A and B may be either

two lines (P. 86), two planes (P. 301), or a line and a ,

plane (P. 229).

Parallel. A II B is read "A is parallel to B", with the

same comment as for A and B may be either two lines

(P. 241), two planes (P. 291) or a line and a plane

(P. 291).
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List of Postulates

Postulate 1. (P. 30) Given any two different points, there

-is exactly One line which contains both of them.

----Postulate 2.. (P. 34) (The Distance Postulate.)- To every

7-pair of different points there correspondS:a Unique poditive

number.

Postulate 3. (P. 36) -(The Ruler Postulate.) .The.points

of a line can be placed in correspondence with the real numbers

in such.a way that

(1) To every point of' the line there corresponds exactly

one real number,

(2) To every real number there corresponds exactly one point

Of the line, and

(3) The distance between two points is the absolute Value

of the difference of the corresponding numbers.

Postulate 4. (P. 40) (The Ruler Placement Postulate.)

r0iven_two points P and Q of a line, the,000rdinate systeM

can be chosen in such a way that the coordinate of P is zero

. and the coordinate of Q iS positive.

Postulate 5. (P. 54) (a) EVery plane contains at least

three non-collinear points.

(b) Space contains at least four non-coplanar points.

Postulate 6. (P. 56) If two points lie in a plane, then

'the line containing these points lies in the same place:

Postulate 7. (P. 57) Any three points lie in at least one

plane, and any three non-collinear points lie in exactly one

_plane. More briefly, any three points are coplanar, and any .

three non-collinear points determine a plane.

Postulate 8. (P. 58) If two different planes intersect,

then their intersection is a line.
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Postulate 9. (P. 64) (The Plane Separation Postulate.)

Given a line and a plane containing it, the points of the plane

that do not lie on the line form two sets such that

(1) each of the sets is convex and

(2) if P is in one set and Q is in the other then the

segment PQ intersects.the line.

Postulate 10. (P. 66) (The Space Separation Postulate.)

The points of space that do not lie in a given plane form two

sets such that

(1) each of the sets is convex and

(2) if P is in one set and Q is in the other then

the segment PQ intersects the plane.

Postulate U. (P. 80) (The Angle Measurement Postulate.)

To every angle LpAc there corresponds a real number between

0 and 180.

Postulate 12. (P. 81) (The Angle Construction Postulate.)

Let be a ray on the edge of the half-plane H. For every

number r between 0 and 180 there is exactly one ray AP,

with P in H, such that mZPAB = r.

Postulate 13. (P. 81) (The Angle Addition Postulate.)

If D is a point in the interior of LpAc, then

mLBAC = mLBAD + mLDAC.

Poctulate 14. (P. 82) (The Supplement Postulate.) If two

angles form a linear pair, then they are supplementary.

Postulate 15. (P. 115) (The S.A.S. Postulate.) Given a

correspondence between two triangles (or between a triangle

and itself). If two sides and the included angle of the first

triangle are congruent to the corresponding parts of the second

triangle, then the correspondence is a congruence,

Postulate 16. (P. 252) (The Parallel Postulate .) Through

a given external point there is at most one line parallel to a

given line.

Postulate 17. (P. 320) To every p lygonal region there

corresponds a unique positive number.
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Postulate 18. (P. 320) If two triangles are congruent,

then the triangular regions have the same area.

Postulate lg. (P. 320) Suppose that the region R is the

union of two regions R1 and R2 . Suppose that R1 and R2

intersect at most in a finite number of segments and points.

Then the area of R is the sum of the areas of R and R21

Postulate 20. (P. 322) The area of a rectangle is the

product of the length of its base and the length of its altitude.

Postulate 21. (P. 546) The volume of a rectangular

parallelepiped is the product of the altitude and the area of

the base.

Postulate 22. (P. 548) (Cavalierils Principle.) Given two

solids and a plane. If for every plane which intersects the

solids and is parallel to the given plane the two intersections

have equal areas, then the two solids have the'same volume.
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List of Theorems and Corollaries

Theorem 2-1. (P. 42) Let A, B, C be three points of a

line, with coordinates x, y, z. If x < y < z, then B is

between A and C.

Theorem 2-2. (P. 43) Of any three different points on the

same line, One is between the other two.

Theorem 2-3. (P. 44) Of three different points on the same

line, only one is between the other two.

Theorem 2-4. (P. 46) (The Point Plotting Theorem) Let AB

be a'ray, and let x be a positive number. Then there is exactly

one point P of Kg such that AP = x.

Theorem 2-5. (P. 47) Every segment has exactly one

mid-point.

Theorem 3-1. (P. 55) Two different lines intersect in at

most one point.

Theorem 3-2. (P. 56) If a line intersects a plane not

containing it, then the intersection is a single point.

Theorem 3-3. (P. 57) Given a line and a point not on the

line, there is exactly one plane containing both of them.

Theorem 3-4. (P. 58) Given two intersecting lines, there

is exactly one plane containing them.

Theorem 4-/. (P. 87) If two angles are complementary, then

both of them are acute.

.Theorem 4-2. (P. 87) EVery angle is congruent to itself.

Theorem 4-3. (P. 87) Any two right angles are-congruent.'

Theorem 4-4. (P. 87) If two angles are both congruent and

supplementarY, then each of them is a right angle.

Theorem 4-5. (P. 87) Supplements of congruent angles are

congruent.

370



Theorem 4-6. (P. 88) Complements of congruent angles are

congrnt.

Thecrem 4-7. (P. 88) Vertical angles are congruent.

Theorem 4-8. (P. 89) If two intersecting lines form one

right angle, then they form four right angles.

Theorem 5-1. (P. 109) Every segment is congruent to itself.

Theorem 5-2. (P. 127) If two sides of a triangle are

congruent, then the angles opposite these sides are congruent.

Corollary 5-2-1. (P. 128) Every equilateral triangle is

equiangular.

Theorem 5-3. (P. 129) Every angle has exactly one bisector.

Theorem 5-4. (P. 132) (The A.S.A. Theorem.) Given a

correspondence between two triangles (or between a triangle and

itself),. If two angles and the included side of the first

triangle are congruent to the corresponding parts of the second

triangle, then the correspondence is a congruence.

Theorem 5-5. (P. 133) If two angles of a triangle are

congruent, the sides opposite these angles are congruent.

Corollary 5-5-1. (P. 133) An equiangular triangle is

equilateral.

Theorem 5-6. (P. 137) (The S.S.S. Theorem.) Given a

correspondence between two triangles (c.n, between a triangle and

itself). If all three pairs of cormsponding sides are congruent,

then the correspondence is a congruence.

Theorem 6-1. (P. 167) In a giv er. plane, through a given

Point of a given line of the plane, there passes one and only one

line perpendicular to the given line.

Theorem 6-2. (P. 169) The perpendicular bisector of a

segment, in a plane, is the set of all points of the plane that

are equidistant from the end-points of the segment.



Theorem 6-3. (P. 171) Through a given external point there

is at most one line perpendicular to.a given line.

Corollary 6-3-1. (P. 172) At most'one angle of a triangle
can be a right angle.

Theorem 6-4. (P. 172) Through a given external point there
is at least one line pe.2pendicular to a given line.

Theorem 6-5. (P. 183) If M is between A and C on a
line LI then M and A are on the same side of any other line .

that contains C.

Theorem 6-6. (P. 183) If M is bctween A and C, and
4-+B is any point not on line AC, then M is in the interior of

z ABC.

Theorem 7-1. (P. 193) (The Exterior Angle Theorem.) An
exterior angle of a triangle is larger than either remote
interior angle.

Corollary 7-1-1. (P. 196) If a triangle has a right angle,
then the other two angles are acute.

Theorem 7-2. (P. 197) (The S.A.A. Theorem.) Given a
correspondence between two triangles. If two angles and a side
opposite one of them in one triangle are congruent to the
corresponding parts of the second triangle, then the correspon-
dence is a congruence.

Theorem 7-3. (P. 19E) (The Hypotenuse - Leg Theorem.)
Given a correspondence between two right triangles. If the
hypotenuse and one leg of one triangle are congruent to the
corresponding parts of the second triangle, then the correspondence
is a congruence.

Theorem 7-4. (P.200) If two sides of a triangle are not
congruent, then the angles opposite these two sides are not
congruent, and the larger angle is opposite the longer side.
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Theorem 7-2. (P. 201) If two angles of a triangle are not

congruent, then the sides opposite them are not congruent, and

the longer side is opposite the larger angle.

Theorem 7-6. (P. 206) The shortest segment joining a point

to a line is the perpendicular segment.

Theorem 7-7. (P. 206) (The Triangle Inequality.) The sum

of the lengths of any two sides of a triangle is greater than

the length of the third side.

Theorem 7-8. (P. 210) If two sides of one triangle are

congruent respectively to twb sides of a second triangle, and

the included angle of the first triangle is larger than the

included angle of the second, then the opposite side of the

first triangle is longer than the opposite side of the second.

Theorem 7-9. (P. 211) If two sides of one triangle are

congruent respectively to two sides of a second triangle, and

the third side of the first triangle is longer than the thirds,

side of the second, then the included angle of the first

triangle ie larger than the included angle of the second. .

Theorem 8-1. (p. 222). If each of two points of a line is

equidistant from two given points, then every point of the line

is equidistant from the given points.

Theorem 8-2. (P. 225) If each of three non-collinear

points of a plane is equidistant from two points, then every

point of the plane is equidistant from these two points.

Theorem 8-3. (P. 226) If a line is perpendicular to each

of two intersecting lines at their point of intersection, then

it is perpendicular to the plane of these lines.

Theorem 8-4. (P. 230) Through a given point on a given

line there passes a plane perpendicular to the line.

Theorem 8-5. (P. 231) If a line and a plane are perpen-

dicular, then .the plane contains every line perpendicular to the

given line at its point of intersection with the given plane.
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Theorem 8-6. (P. 232) Through a given point on a given

line there is at most one plane perpendicular to the line.

Theorem 12. (P. 232) The perpendicular bisecting plane of

a segment is the set of all points equidistant from the end-points

of the segment.

Theorem 8-8. (P. 234) Two lines perpendicular to the same
plane are coplanar.

Theorem 8-9. (p. 235) Through a given point there passes

one and only one saane perpendicular to a given line.

Theorem 8-10. (P. 235) Through a given point there passes

one and only one line perpendicular to a given plane.

Theorem 8-11. (P. 235) The shortest segment to a plane

from an external point is the perpendicular segment.

Theorem 9-1. (P. 242) Two parallel lines lie in exactly
one plane.

Theorem 9-2. (P. 242) Two lines in a plane are parallel

if they are both perpendicular to the same line.

Theorem 9-3. (P. 244) Let L be a line, and let P be a
point not on L. Then there: is at least one line through P,

parallel to L.

Theorem 9-4. (P. 246) If two lines are cut by a transversal,

and if one pair of alternate interior angles are congruent, then

the other pair of alternate interior angles are also congruent.

Theorem 9-5. (p. 246) If two lines are cut by a transverasl,

. and if a pair of alternate interior angles are congruent, then

the lines are parallel.

Theorem 9-6. (P. 252) If two lines are cut by a transversal,

and if one pair of corresponding angles are congruent, then the

other three pairs of corresponding angles have the same property.

Theorem 9-1. (P. 252) If two lines are cut by a transversal,

and if a pair of corresponding angles are congruent, then the

lines are parallel. 374
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Theorem 9-8. (P. 253) If two parallel lines are cut by

a transversal, then alternate interior angles are congruent.

Theorem 9-9. (P. 254) If two parallel lines are cut by a

transversal, each pair of corresponding angles are congruent.

Theorem 9-10. (P. 254) If two parallel lines are cut by a

transversal, interior angles on the same side of the transversal

are supplementary.

Theorem 9-11. (P. 255) In a plane, two lines par

the same line are parallel to each other.

Theorem 9-12. (P. 255) In a plane, if a line is

perpendicular to one of two parallel lines it is perpendicular

to the other.

Theorem 9713. (P. 258) The sum of the measures of the

angles of a triangle is 180.

Corollary 9-13-1. (P. 259) Given a correspondence between

two triangles. If two pairs of corresponding angles are congruent,

then the third pair of corresponding angles are also congruent.

Corollary 9-13-2. (P. 260) The acute angles of a right

triangle are complementary.

221121Ila_2=LI:l. (P. 260) For any triangle, the measure

of an exterior angle is the sum of the measures of the two

remote interior angles.

-Theorem 9-14. (P. 265) Either diagonal divides a

parallelogram into two congruent triangles.

Theorem 9-15. (P. 265) In a parallelogram, any two

opposite sides are congruent.

Corollary 9-15-1. (P. 266) If Li
I

L2 and if P and Q

are any two points on Ll, then the distances of P and Q

from L
2

are equal.

Theorem 9-16. (P. 266) In a parallelogram, any two

opposite angles are congruent.
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Theorem 9-17. (P. 266) In a parallelogram, any two

consecutive angles are supplementary.

(p. 266) The diagonals of a parallelogram

bisect each other.

Theorem 9-19. (P. 266) Given a quadrilateral in which both

pairs of opposite sides are congruent. Then the quadrilateral

is a parallelogram.

Theorem 9-20. (P. 266) If two sidesof a quadrilateral are

parallel and congruent, then the quadrilateral is a parallelogram.

Theorem 9-21. (P. 266) If te diagonals of a quadrilateral

bisect each other, then the quadrilateral is a parallelogram.

Theorem 9-22. (P. 267) The segment between the mid-points

of two sides of a triangle is a parallel to the third side and

half as long as the third side.

Theorem 9-23. (P. 268) If a parallelogram has one right

angle, then it has four right angles, and the parallelogram

is a rectangle.

Theorem 9-24. (P. 268) In a rhombus, the diagonals are

perpendibular to one another.

Theorem_9-2. (P. 268) If the diagonals of a quadrilateral

bisect each other and are perpendicular, then the quadrilateral

is a rhombus.

Theorem 9-26. (P. 276) If three .parallel lines intercept

congruent segments on one transversa4 then they intercept

congruent segments on any other transversal.

Corollary 9-26-1. (P. 277) If three or movc.1 parallel lines

intercept congruent segments on one transversal, then they

intercept congruent segments on any other transversal.

Theorem 9-27. (P. 279) The medians of a triangle are

concurrent in a point two-thirds the way from any vertex to

the mid-point of the opposite side.
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Theorem 10-1. (P. 292) If a plane intersects two parallel

planes, then it intersects them in two parallel lines.

Theorem 10-2. (P. 292) If a line is perpendicular to one

of two parallel planes it is perpendicular to the other.

Theorem 10-3. (P. 293) Two planes perpendicular to the

same line are parallel.

Corollary 10-3-1. (P. 294) If two planes are each parallel

to a third plane, they are parallel to each other.

Theorem 10-4. (P. 294) Two lines perpendicular to the

same plane are parallel.

Corollary 10-4-1. (P. 294) A plane perpendicular to one

of two parallel lines is perpendicular to the other.

Corollary 10-4-2. (P. 294) If two lines are each parallel

to a third they are parallel to each other.

Theorem 10-5. (P. 295) Two parallel planes are everywhere

equidistant.

Theorem 10-6. (P. 301) Any two plane angles of a given

dihedral angle are congruent.

Corollary 10-6-1. (P, 302) If a line is perpendicular to

a plane, then any plane containing this line is perpendicular

to the given plane.

Corollary 10-6-2. (P. 302) If two planes are perpendicular,

then any line in one of them perpendicular to their line of

intersection is perpendicular to the other plane.

Theorem 10-7. (13 307) The projection of a line into a

plane is a line, unless the line and the plane are perpendicular.

Theorem 11-1. (P. 328) The area of a right triangle is

half the product of its legs.

Theorem 11-2. (P. 328) The area of a triangle is half the

product of any base and the altitude to that base.
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Theorem 11-3., (P. 330) The area of a parallelogram is the

product of any base and the corresponding altitude.

Theorem 11-4. (P. 331) The area of a trapezoid is half the

product of its altitude and the sum of its bases.

Theorem (P. 332) If two triangles have the same

altitude, then the ratio of their areas is equal to the ratio

of their bases.

Theorem 11-6. (P. 332) If two triangles have equal

altitudes and equal bases, then they have equal areas.

Theorem 11-7. (P. 339) (The pythagorean Theorem.) In a

right triangle, the square of the hypotenuse is equal to the sum

of the squares of the legs.

Theorem 11-8. (P. 340) If the square of one side of a

triangle is equal to the sum of the squares of the other two,

then the triangle is a right triangle, with a right angle

opposite the first side.

Theorem 11-9. (P. 346) (The 30 - 60 Triangle Theorem.)

The hypotenuse of a right triangle is twice as long as the

shorter leg if and only if the acute angles are 30° and 60°.

Theorem 11-10. (P. 346) (The Isosceles Right Triangle

Theorem.) A right triangle is isosceles if and only if the

hypotenuse is 1/2 times as long as a leg.

Theorem 12-1. (P. 968) (The Basic Proportionality Theorem.)

If a line parallel to one side of a triangle intersects the other

two sidea' in distinct points, then it cuts off segments which are

proportional to these sides.

Theorem 12-2. (P. 369) If a line intersects two sides of

a triangle, and cuts off segments proportional to these two

sides, then it is parallel to the third side.
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Theorem 12-3. (P. 374) (The A.A.A. Similarity Theorem.)

Given a correspondence between two triangles. If corresponding

angles are congruent, then the correspondence is a similarity.

xr...ollary 12-3-1. (P. 376). (The A.A. Corollary.) Given

a correspondence between two triangles. If two pairs of

corresponding angles are congruent, then the correspondence is

a similarity.

Corollary 12-3-2. (P. 376) If a line parallel to one side

of a triangle intersects the other two sides in distinct points,

then it cuts off a triangle similar to the given triangle.

Theorem 12-4,. (p. 376) (The S.A.S. Similarity Theorem.)

Given a correspondence between two triangles. If two

corresponding angles are congruent, and the including sides are

proportional, then the correspondence is a similarity.

Theorem 12-5. (P. 378) (The S.S.S. Similarity Theorem.)

Given a correspondence between two triangles. If corresponding

sides are proportional, then the correspondence is a similarity.

Theorem 12-6. (P. 391) In any right triangle, the altitude

to the hypotenuse separates the triangle into two triangles which

are similar both to each other and to the original triangle.

Corollary.12-6-1. (P. 392) Given a right triangle and the

altitude from the right angle to the hypotenuse:

(1) The altitude is the geometric mean of the segments

into which it separates the hypotenuse.

(2) Either leg is the geometric mean of the hypotenuse

and the segment of the hypotenuse adjacent to the leg.

Theorem 12-7. (P. 395) The ratio of the areas of two

similar triangles is the square of the ratio of any two

corresponding sides.

Theorem 13-1. (P. 410) The intersection of a sphere with

a plane through its center is a circle with tlie same center and

radius.
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Theorem 13-2. (P. 414) Given a line and a circle in the

same plane. Let. P be the center of the circle, and let F be

the foot of the perpendicular from P to the line. Then either

(1) Every point of the line is outside the circle, or

(2) F is on the circle, and the line is tangent to the

circle at F, or

(3) F is inside the circle, and the line intersects the

circle in exactly two points, which are equidistant from F.

Corollary 13-2-1. (P. 416) Evely line tangent to C is

perpendicular to the radius drawn to the point of contact.

Corollary 13-2-2. (P. 416) Any line in E, perpendicular

to a radius at its outer end, is tangent to the circle.

Corollary 13-2-3. (P. 416) Any perpendicular from the

center of C to a chord bisects the chord.

Corollary 13-2-4. (P. 416) The segment joining the center

of C to the mid-point of a chord is perpendicular to the chord.

Corollary 13-2-5. (P. 416) In the plane of a circle, the

perpendicular bisector of a chord passes through the center of

the circle.

Corollary 13-2-6 (P. 417) If a line in the plane of a

circle intersects the interior of the circle, then it intersects

the circle in exactly two points.

Theorem 13-3. (P. 417) In the same-circle or in congruent

circles, chords equidistant from the center are congruent.

Theorem 13-4. (P. 417) In the same circle or in congruent

circles, any two congruent chords are equidistant from the center.

Theorem 13-5. (P. 424) Given a plane E and a sphere S

with center P. Let F be the foot of the perpendicular segment

from P to E. Then either

(1) Every point of E is outside S, or

(2) F is on S, and E is tangent to S at F, or

(3) F is inside S, and E intersects S in a circle

with center F.
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Corollary 13-5-1. (P. 426) A plane tangent to S is

perpendicular to the radius drawn to the point of contact.

Corollary 13-5-2. (P. 426) A plane perpendiular to a

radius at its outer end is tangent to S.

Corollary 13-5-3. (P. 426) A perpendicular from P to a

chord of S bisects the chord.

Corollary 13-5-4. (P. 426) The segment joining the center

of S to the midpoint of a chord is perpendidular to the chord.

Theorem 13-6. (P. 431) If a and BC are arcs of the

same circle having only the point 3 in common, and if their

union is an arc a, then ma + mBC = mA0.

Theorem 13-7. (P. 434) The measure of an inscribed angle

is half the measure of its intercepted arc.

Corollary 13-7-1. (P. 437) An angle inscribed in_a semi-

circle is a right angle.

Corollary 13-7-2. (P. 437) Angles inscribed in the same

arc are congruent.

Theorem 13-8. (P. 441) In the same circle or in congruent

circles, if two chords are congruent, then so also are the

corresponding minor arcs.

Theorem 13-9. (P. 441) In the same circle or in congruent

circles, if two arcs are congruent, then so are the corresponding

chords.

Theorem 13-10. (P. 4)2) Given an angle with vertex on the

circle formed by a secant ray and a tangent ray. The measure of

the angle is half the measure of the intercepted arc.

Theorem 13-11. (P. 448) The two tangent segments to a circle

from an external point are congruent, and form congruent angles

with the line joining the external point to the center of the

circle.
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Theorem 13-12. (P. 449) Given a circle C and an external

point Q, let L1 be a secant line through Q, intersecting C

in points R and S; and let L2 be another secant line through

Q, intersecting C in points T and U. Then gill QS = QU QT.

Theorem 13-13. (P. 450) Given a tangent segment QT to a

circle, and a secant line through Q, intersecting the circle in

points R and S. Then QR QS = QT2.

Theorem 13-14. (P. 451) If two chords intersect within a

circle, the product of the lengths of the segments of one equals

the product of the lengths of the segments of the other.

Theorem 1471. (P. 467) The bisector of an angle, minus its

end-point, is the set of points in the interior of the angle

equidistant from the sides of the angle.

Theorem 14-2. (P. 469) The perpendicular bisectors of the

sides of a triangle are concurrent in a point equidistant from

the three vertices of the triangle.

Corollary 14-2-1. (P. 470) There is one and only one circle

through three non-collinear points.

Corollary 14-2-2. (P. 470) Two distinct circles can

intersect in at most two points.

Theorem 14-3. (P. 470) The three altitudes of a triangle

are concurrent.

Thecrem 14-4. (P., 471) The angle bisectors of a triangle

are concurrent in a point equidistant from the three sides.

Theorem 14-5. (P. 476) (The Two Circle Theorem.) If two

circles have radii a and b, and if c is the distance

between their centers, then the circles intersect in two points,

one on each side of the line of centers, provided each one of a,

b, c is less than the sum of the other two.

Construction 14-6. (P. 477) To copy a given triangle.

Construction 14-7. (P. 479) .To copy a given angle.
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Construction 14-8. (P. 481) To construct the perpendicular

bisector of.a given segment.

Corollary 14-8-1. (P. 481) To bisect a given segment.

Construction 14-9. (P. 482) To construct a perpendicular

to a given line through a given point.

Construction 14-10. (P. 484) To construct a parallel to a

given line, through a given external point.

Construction 14-11. (P. 484) To divide a segment into a

given number of congruent segments.

Construction 14-12. (P. 491) To circumscribe a circle about

a given triangle.

Construction 14-13. (P. 491) To bisect a :iven angle.

Construction 14-14. (P. 492) To inscribe a circle in a

given triangle.

Theorem 15-1. (P. 517) The ratio , of the circum-

ference to the diameter, is the same for all circles.

Theorem 15-2. (P. ..)22) The area of a circle of radius r

is wr2

Theorem 15-3. (P. 526) If two arcs have equal radii, their

lengths are proportional to their measures.

Theorem-15-4. (P. 526) An arc of measure q and radius r

has length 10qr .

Theorem 15-5. (P. 527) The area of a sector is half the

product of its radius by the length of its arc.

Theorem 15-6. (P. 527) The area of a sector of radius r

r
and arc measure q is -Inv2 .

Theorem 16-1. (P. 535) All cross-sections of a triangular

prism are congruent to the base.

Corollary 16-1-1. (P. 536) The upper and lower bases of

a triangular prism are congruent.
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Theorem 16-2. (P. 536) .(Prism Cross-Section Theorem.) All

cross-sections of a,prism have the same area.

.Corollary 16-2-1. (P. 537) The two bases of a prism have

equal areas..

Theorem 16-3. (P. 537) .The lateral faces of a prism are

parallelogram regions, and the lateral faces of a right prism

are rectangular regions.

Theorem 16-4. (P. 540) A cross-section of a triangular

pyramid, by a plane between the vertex and the base, is a

,triangular region similar to the base. If the distance from the

vertex to the cross-section plane is k and the altitude is h,

then the ratio og the area of the cross-section to the area of

the base is E) .

Theorem 16-5. (P. 542) In any pyramid, the ratio ?f the

area of a cross-section and the area of the base is 6.10 , where

h is the altitude of the pyramid and k is the distance from

he vertex to the plane of the cross-section.

Theorem 16-6, (P. 543) (The Pyramid Cross-Section Theorem.)

Given two pyramids with the same altitude. If the b-ases have the

same area, then cross-sections equidistant from the bases also

have the same area.

Theorem 16-7. (P. 548) The volume of any prism is thc

product of the altitude and the area of the base.

Theorem 16-8. (P. 549) If two pyramids have the same alti-

tude and the same base area, 'then they have the same volume.

Theorem 16-9. (P. 550) The volume of a triangular pyramid

is one-third the product of its altitude and its base area.

Theorem 16-10. (P. 551) The volume of .a pyramid is oneL-third

the product of its altitude and its base area.

Theorem 16-11. (P. 555) A cross-section of a circular

cylinder is a circular region congruent to the base.
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Theorem 16-12. (P. 555) The area of a cross-section of a

circular cylinder is equal to the area of the base.

Theorem 16-13. (P. 555) A cross-section of a cone of

altitude h, made by a plane at a distance k from the vertex,

is a circulag region whose area has a ratio to the area of the
k.'

base of (.E) .

Theorem 16-14. (P-; 557) The volume of a circular cylinder

is the product of the altitude and the area of the base.

Theorem 16-15. (P. 557) The volume of a circular cone is

one-third the product of the altitude and the area of the base.

Theorem 16-16. (P. 559) The volume of a sphere of radius r

4 3
is .

Theorem 16-17. (PI. 562) The surface area of a sphere of

radius r is S

Theorem 17-1. (P. 579) On a non-vertical line all segments

have the same slope.

Theorem 17-2. (P. 584) Two non-vertical lines are parallel

if and only if they have the same slope.

Theorem 17-3. (P. 586) Two non-vertical lines are Rerpen-

dicular if and only if their slopes are the negative reciprocals

of each other.

Theorem 17-4. (P. 589) (The Distance Formula.) The

distance between the points (x1,y1) and (x2,y2) is equal to

V(x2 - x1)2 + (y2 - y1)
2

.

Theorem 17-5. (P. 593) (The Mid-Point Formula.)

Let P1 = (x1,y1) and let P2 = (x2,y2). Then the mid-point

xl + xo yl + yo
of P1P2 is the point P = ( -)
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Theorem 17-6. (P. 605) Let L be a non-vertical line

with slope m, and let P be a point of L, with coordinates

(x1,y1). For every point Q = (x,y) of L, the equation

y - yl = m(x - xl) is satisfied.

Theorem 17-7. (P. 606) The graph of the equation

y - yi = m(x - xl) is the line that passes through the point

(x1,y1) and has slope m.

Theorem 17-8. (P. 611) The graph of the equation y = mx + b

is the line with slope m and y-intercept b.

Theorem 17-9. (P. 613) Every line in the plane is the graph

of a linear equation in x and y.

Theorem 17-10. (P. 613) The graph of a linear equation

in x and y is always a line.

Theorem 17-11. (P. 623) The graph of the equation

(x a)2 (y b)2 r2

and radius r.

is the circle with center at (a,b)

Theorem 17-12. (P. 624) Every circle is the graph of an

equation of the form x
2

+ y
2

Ax + By + C = 0.

Theorem 17-13. (P. 625) Given the equation

x2+ y2 + Ax + Ey + C = 0. The graph of this equation is

(1) a circle, (2) a point or (3) the empty set.
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Index of Definitions

For precisely defined geometric terms the reference is to
the formal definition. For other terms the reference is to en
informal definition or to the most prominent discussion.

absolute value, 27
acute angles, 86
alternate interior angles, 245
altitude

of prism, 535
of pyramid, 540
of triangle, 214, 215

angle(s), 71
acute, 86
alternate interior, 245
bisector of, 129
central, 429
complementary, 86
congruent, 86, 109
consecutive, 264
corresponding, 251
dihedral, 299
exterior, 193
exterior of, 73
inscribed, 432
intercepts an arc, 433
interior of, 73
measure of, 79, 80
obtuse, 86
of polygon, 506
opposite, 264
reflex, 78
remote interior, 193
right, 85
right dihedral, 301
sides of, 71
straight, 78
supplementary, 82
vertex of, 71
vertical, 88

apothem, 512
arc(s), 429

center of, 437
congruent, 441
degree measure of, 430
end-points of, 429
length of, 525
major, 429
minor, 429
of sector, 527
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area, 320
circle, 521, 522
parallelogram, 330
polygonal region, 320
rectangle, 322
right triangle, 328
sphere, 562
trapezoid, 331
triangle, 328
unit of, 321

arithmetic mean, 364
auxiliary sets, 176
base of pyramidt 540
between, 41, 182
bisector of an angle, 129
bisector of a segment, 169
bisects, 47, 129
Cavalierils Principle, 548
center of

arc, 437
circle, 409
sphere, 409

central ansle, 429
centroid, 280, 621
chord, 410
circle(s), 409

area of, 521, 522
circumference of, 516
congruent, 417
equation of, 623, 624, 625
exterior of, 412
great, 410
interior of, 412
segment of, 528
tangent, 417

circular
cone, 554
cylinder, 553
reasoning, 119
region, 520

area of, 521
circumference, 516
circumscribed

circle, 490
triangle, 490

collinear, 54
complement, 86
complementary angles, 86

concentric__ .

circles, 409
spheres, 409

conclusion, 60
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concurrent sets, 278, 469
cone,

circular, 554
right circular, 555
volume of, 557

congruence, 97'

congruent,
angles, 86, 109
arcs, 441
circles, 417
segments, 109
triangles, 98, 111

consecutive angles, 264
consecutive sides, 264
constructions, 477
converse, 202
convex polygon, 507
convex sets, 62
coordinate system, 37, 571
coordinates of atpoint, 37, 569
co-planar, 54
corollary, 128
correspondence, 97
corresponding angles, 251
cross-section

of a prism, 535
of a pyramid, 540

cube 229
cylinder

circular, 553
volume of, 557

diagonal, 264, 509
diameter, 410
dihedral angle, 299

edge of, 299
face of, 299
measure of, 301
plane angle of, 300

distance, 34
distance between

a point and a line, 206
a point and a plane, ..235
two parallellines, 266

distance formula, 589
edge of half-plane, 64
end-point(s)

of arc, 429
of ray, 46
of segment--,-- 45

empty set, 18

389



equation
of circle, 623
of line, 605, 611

equiangular triangle, 128
equilateral triangle, 128
Euler, 327
-existence proofs, 165
-exterior angle, 193
exterior

of an angle, 73
of a circle, 412
of a triangle, 74

face of half-space, 66

frustum, 559
Garfield's Proof, 344
geometric mean, 361
graph, 600
great circle, 410
half-plane, 64

edge of, 64
half-space, 66

face of, 66
horizontal lines, 576
hypotenuse, 172
hypothesis, 6o
identity congruence) 100, 109
if and only if, 203
if-then, 60
inconsistent equations, 618
indirect proof, 160
inequalities, 24
infinite ruler, 37
inscribed

angle, 432
measure of, 434

circle, 490
polygon, 511
quadrilateral, 438
triangle; 490

integers, 22
Intercept, 275, 433
interior

of angle, 73
of circle, 431
of triangle, 74.1-::

intersect, 18
intersection of sets, 16, 18, 473
irrational numbers, 23

-----izosteles-triangle,- -127,-128-
kite, 272
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lateral
edge, 537
face, 537
surface, 537

lemma, 196
length

of arc, 525
of segment, 45

'-'1inear equation, 613
linear pair, 82
line(s), 10

oblique, 216
parallel, 241
perpendicular, 86
skew, 241
transversal, 244

major arc, 429
mean

arithmetic, 364
geometric, 361

measure
of angle, 79, 80
of dihedral angle, 301
of distance, 30, 34, 36

median
of trapezoid, 272
of triangle, '130

mid-point, 47
formula of, 593

minor arc, 429
Non-Euclidean geometries, 253
negative real numbers, 191
numbers

irrational, 23
negative, 191
positive, 191
rational, 22
real, 23
whole 22

oblique lines, 216
obtuse angle, 86
on opposite sides, 64
on the same side, 64
one-to-one correspondence,. 97
opposite

angles, 264
rays, 46
sides, 264

prder, 24
77661-er'postulates, 191, 192-
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ordered pair, 571
origin, 568
parallel

lines, 241
slopes of, 584

liner; and planes, 291
plaases, '291

parallelepiped,,-538_
parallelogram, 265

-'-area of, 330
perimeter

of triangle, 287
of polygon, 512

perpendicular
lines, 86

slopes of, 586
line and plane, 219
planes, 301

perpendicular bisector, 169

pi, r, 518
plane(s), 10

parallel, 291
perpendicular, 301

plane angle, 300
point, .10
point-slope form, 605
point of tangency

of circles, 413
spheres4-423

polygon, 506--
angle of, 506
apothem of.,__512
convex,_ 507
diagonal of, 509
inscribed, 511
perimeter of,- 512
regular, 511
sides of, 506
vertices of, 506

polygonal region, 317
polyhedral regions, 546
positive real numbers, 191
postulate(s), 9

of order, 191, 192
power of a point, 450
prism, 534

altitude of, 535
cross-section of, 535
lateral-edge,_537___
lateral face, 537
lateral surface, 537
lower base, 535
rectangular, 535



prism (Continued)
right, 535
total surface, 537
triangular, 535
upper base, 535

projection
.

of a line, 306
of. a point,_306

proof _

converse, 202
double-column form of, 118
existence,- 165
indirect, 160
uniqueness, 165
writing of, 117

proportional sequences, 360
pyramid, 540

altitude of, 540
base of, 540
regular, 544
vertex of, 540
volume of, 551

Pythagorean Theorem, 339
quadrant, 571
quadrilateral, 263

consecutive angles of, 264
consecutive sides of, 264
cyclic, 473
diagonal of, 264
inscribed, 438
opposite angles of, 264

radius, 409, 410
. of sector, 527

rational numbers, 22
ray, 46

end-point of, 46
opposite, 46

real numbers 23
-rectangle, 268

area of, 322
rectangular parallelepiped, 538
reflex angle, 78
region

circular, 520
polygonal, 317
polyhedral, 546
triangular, 317

regular
_511

pyramid, 544
remote interior angle, 193
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rhombus, 268
right angle, 85
right dihedral angle, 301
right prism, 535
right triangle, 172
scalene triangle, 128
sector, 527

arc of, 527
radius of, 527

segment(s), 45
bisector, 169
congruent, 109

segment of a circle, 528
semi-circle, 429
separation, 182
set(s), 15

auxiliary, 176
concurrent, 278
convex, 62
element of, 15.

empty, 18
intersection of, 16, 473
member of, 15
union of, 17

side(s)
consecutive, 264
of angle, 71
of dihedral angle, 299
of polygon, 506
of triangle, 72

-opposite, 264
similarity, 365
skew lines, 241
slope, 577

of parallel lines, 584
of perpendicular lines, 586

slope-intercept form, 611
space, 53
sphere, 409

exterior of, 423
interior of, 423
surface area of, 562
volume of, 559

square, 268
square root, 25
straight angle, 78
subset, 15
supplement, 82
supplementary angles, 82
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tangent
circles, 417
common external, 454
common internal, 454
externally, 417
internally, 417
line and circle, 413
plane and sphere, 423
segment, 448

theorem, 9
total surface of a prism, 537
transversal, 244
trapezoid, 265

area of, 331
triangle(s), 72

altitude of, 214
angle bisector of, 130
area of, 328
centroid of, 280
congruent, 98, 111
equiangular, 128
equilateral, 128
exterior of, 74
interior of, 74
isosceles, 127, 128, 346
median of, 130
overlapping, 123
perimeter of, 287
right, 172
scalene, 128
sides of, 72
similar, 365
300-60°, 346
vertex of, 72

triangular region, 317
undefined terms, 9, 10
union of sets, 17
uniqueness proofs, 165
vertex

of angle, 71
of polygon, 506
of pyramid, 540
of triangle, 72

vertical angles, 88
vertical linq, 576
volume

of cone, 557
of cylinder, 557
of prism, 548
of-pyramid, 551
of sphere, 559

whole numbers, 22
x-axis, 568
y-axis, 568
y-intercept, 611
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