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FOREWORD

The increasing contribution of mathematics to the culture of
the modern world, as well as its importance as a vital part of
scientific and humanistic education, has made it essential that the
mathematics in our schools be both well selected and well taught.

With this in mind, the various mathematical organizations in
the United States cooperated in the formation of the School -"

Mathematics Study Group (SMSG). SMSG includes college and univer-
sity mathematicians, teachers of mathematics at all levels, experts
in education, and representatives of science and technology. The
general objective of SMSG is the improvement of the teaching of
mathematics in the schools of this country. The National Science
Foundation has provided substantial funds for the support of this
endeavor.

One of the prerequisites for the improvement of the teaching
of mathematics in our schools is an improved curriculum--one which
takes account of the increasing use of mathematics in science and ,

technology and in other areas of knowledge and at the same time
one which reflects recent advances in mathematics itself. One of
the first projects undertaken by SMSG was to enlist a group of
outstanding mathematicians and mathematics teachers to prepare a
series of textbooks which would illustrate such an improved
curriculum.

The professional mathematicians in SMSG believe that the
mathematics presented in this text is valuable for all well-educated
citizens in our society to know and that it is important for the
precollege student to learn in preparation for advanced work in the
field. At the same time, teachers in SMSG believe that it is
presented in such a form that it can be readily grasped by students.

In most instances the material will have a familiar note, but
the presentation and the point of view will be different. Some
material will be entirely new to the traditional curriculum. This
is as it should be, for mathematics is a living and an ever-growing
subject, and not a dead and frozen product of antiquity. This
healthy fusion of the old and the new should lead students to a
better understanding of the basic concepts and structure of
mathematics and provide a firmer foundation for understanding and
use of mathematics in a scientific society.

It is not intended that this book be regarded as the only
definitive way of presenting good mathematics to students at this
level. Instead, it should be thought of as a sample"of the kind of
improved curriculum that we need and as a source of suggestions for
the authors of dommercial textbooks. It is sincerely hoped that
these texts will lead the way toward inspiring a more meaningful
teaching of Mathematics, the Queen and Servant of the Sciences.
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PREFACE

This hook is designed for the one-year introductory course
in geometry which is usually taught in the tenth grade. Students
in this grade normally have learned a fair amount of informal
geometry, including the calgplation of areas and volumes for
various elementary figures, the Pythagorean relation, and the use
of similar right triangles to calculate unknown heights and dis-
tances. Students who have not learned this material may have to
be given some extra attention, but the book should still be
teachable, at a suitably adjusted pace. In algebra, no special
preparation is required beyond the knowledge and skills normally
acquired in the ninth grade.

The book is devoted mainly to plane geometry, with a few
chapters on solid geometry, and a short introduction to analytic
geometry at the end. It seems natural, in a preface, to give an
account of the novel features in the treatment. We are aware, of
course, of a danger in so doing. A long string of novelties,
offered for the reader's special attention, may very well convey
the impression that the authors have been engaged in an unhealthy
pursuit of innovation for its own sake. This is by no means the
way in which we have conceived our task. We began and ended our
work with the conviction that the traditional content of Euclidean
geometry amply deserves the prominent place which it now holds
in high-school study; and we have made changes only when the need
for them appeared to be compelling.

The basic scheme in the postulates is that of G. D. Birkhoff.
In this scheme, it is assumed that the real numbers are known, and
they are used freely for measuring both.distances and angles.
This has two main advantages.

In the first place, the real numbers give us a sort of head
start. It has been correctly pointed out that Euclid's postu-
lates are not logically sufficient for geometry, and that the
treatments based on them do not meet modern standards of rigor.
They were improved and sharpened by Hilbert But the foundations
of geometry, in the sense of Hilbert, are not a part of elementary
mathematics, and do not belong in the tenth-grade curriculum. If
we assume the real numbers, as in the Birkhoff treatment, then
the handling of our postulates becomes a much easier task, and we
need not face a cruel choice between mathematical accuracy and in-
telligibility.

In the second place, it seems.a good idea in itself to con-
nect up geometry with algebra at every reasonable opportunity, so
that knowledge in one of these fie],ds will make its natural con-
tribution to the understanding of both. Some of the topics
usually studied in geometry are essentially algebraic. This is
true, for example, of the proportionality relations for similar
triangles. In this book, such topics are treated algebraically,
so as to bring out the connections with the work of the ninth and
eleventh grades.''
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We hope that the statements of definitions. and theorems are
exact; we have tried hard to make them so. Just as a lawyer needs
to learn to draw up contracts that say what they are supposed to
say, so a mathematics student needs to learn to write mathemati-
cal statements that can be taken literally. But we are not under
the illusion that this sort of exactitude is a sUbstitute for in-
tuitive insight. We have, therefore, based the deSign of both
the text and the problems on our belief that intuition and logic
should move forward hand in hand.

11.



Chapter 1

COMMON SENSE AND ORGANIZED KNOWLEDGE

1-1. Two Types of Problems.

Consider the following problems:

1. A line segment 14 inches long is broken into two segments.

If one of the two smaller segments is 6 inches long, how long Is

the other one?

2. In a certain rectangle, the sum of the length and the

width is 14 (measured in inches). A second rectangle is three

times as long as the first, and twice as wide. The perimeter of

the second rectangle is 72. What are the dimensions of the first

rectangle?

The answer to Problem 1, of course, is 8 inches, because

6 + 8 = 14. We could solve this problem algebraically, if we

wanted to, by setting up the equation

6 + x = 14,

and solving to get x = 8. But this seems a little silly, because

it is so unnecessary. If all algebraic equations were as super-

fluous as this one, then no serious-minded person would pay any

attention to them; in fact, they would probably never have been

invented.

Problem 2, however, is quite another matter. If the length

and width of the first rectangle are x and y, then the length and

width of the second rectangle are 3x and 2y. Therefore,

13x + 2y = . 72 = 36

because the sum of the length and wldth is half the perimeter. We

already know that x + y = 14. Thus we have a system of two linear

equations In two unknowns:

x + y = 14

3x + 2y = 36.

12



:To solve, we multiply each term in the first equation by 2, getting

2x + 2y 28,

'and then we subtract this laet equation, term by term, from the

second. This gives

x = 8.

since x + y = 14, we have y = 6, which comp"' ation of

our problem. It is easy to check that a 1 a width

of 6 satisfy the conditions of the problem.

In a way, these two problems may seem similar. But in a very

important sense, they are different. The first is what you might

call a common-sense problem. It is very easy to guess whatthe

answer ought to be, and it is also very easy to check that the

natural guess is actually the right answer. The second problem

is entirely another matter. To solve the second problem, we need

to know something about mathematical methods.

There are cases of this kind in geometry. Consider the

following statements:

1. If a triangle has sides of length 3, 4 and 5, then it is

a right triangle, with a right angle opposite the longest side.

2. Let a triangle be given, with sides a, b and c. If

a
2 + b2 = c 2 0

then the triangle is a right triangle, with a right angle opposite

the longest side.

The first of these facts was known to the ancient Egyptians.

They checked it by experiment. You can check it yourself, with

a ruler and compass, by drawing a 3-4-5 triangle, and then

measuring the angle opposite the longest side with a protractor.

You should bear in mind, of course, that this check is only

approximate. For example, if the angle were really 890 591 59",

instead of 900 exactly, you wou]d hardly expect to tell the

difference by drawing your figure and then taking a reading with

your protractor. Nevertheless, the "Egyptian method" is a sound

common-sense method of verifying an experimental fact.

[sec. 1-1]
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The Egyptians were extremely skillful at making physical

measurements. The edges of the base of the great pyramid alie about

756 feet long; and the lengths Of these four edges agree, with an

error of only about two-thirds of an inch. Nobody seems to know,

today, how the builders got such accuracy.

Statement 2 above was not known to the Egyptians; it was

discovered later, by the Greeks. This second statement is very

different from the first. The most important differen, alat

there are infinitely many possibilities for a, b and c, or

instance, you would have to construct triangles, and take readings

with a protractor, for all of the following cases,

a b

1 1 1/7
2 1 I/5-
2 2 /8--
3 1 tin
3 2 i/T7
3 3

and so on, endlessly. It seems pretty hopeless to try to verify

our general statement by experiment, even approximately. Therefore,

a reasonable person would not be convinced that Statement 2 was

true in all cases until he had seen some logical reason why it

should be true in all cases.

In fact, this is why it was the Greeks, and not the Egyptians,

who discovered that our second statement is true: The Egyptians

had lots of common-sense knowledge of geometry. But the Greeks

found something better, and much more powerful: they discovered

the science of exact geometrical reasoning. By exact reasoning;

they learned a great deal that had not been known before their

time. The things that they learned were the first big step toward

modern mathematics, and hence, toward modern science in general.

[sec. 1-1]



Problem Set 1-1

1. Try the following experiment. Take a piece of string, about

six feet long, and put it on the floor in the form of a loop

with the ends free:

Then pull the ends of the string apart, making the loop

gradually smaller, and stop when you think that the loop is

the size of your own waist. Then check the accuracy of your

guess by wrapping the string around your waist. After you

have checked, read the remarks at the end of this set of

problems.

2. In this pair of ouestions, the first can be answered by
n common sense." State only its answer. The second requires

some arithmetic or algebraic process for its solution. Show

your work for it.

a. What is half of 2?

b. What is half of 135,790?

3. Answer as in Problem 2:

a. One'-third of the distance between two cities is 10 miles.

What is the entire distance?

b. The distance between two cities is 7 miles more than one-

third the distance between them. What is the distance

between them?

1.5

(set,. 1-1]



5

*h. Answer as in Problem 2:

a. If a 5-inch piece of wire is cut into two parts so that

one part is 4 times as long as the other, what are the

lengths of the parts?

b. If a 5-inch piece of wire is cut into two parts suäll that

a square formed by bending one piece will have four times

the area of a square formed by bending the other, what

are the lengths of the parts?

5. If the sides of a triangle are 5, 12 13, is it a right

triarigle?

6. If two students 0 independently measure Ole width

of a classroom witi, ..ulerS, one measuring from left to right

and the other from right to left, they are likely to get

different answers. You may check this with an experiment.

Which of the following are plausible reasons for this?

a. The rulers have different lengths.

b. One person may have lost count of the number of_feet in

the width.

c. Things are longer (or shorter) from left to right than

right to left.

d. The errors made in changing the position of the

accumulate, and the sum of the small errors makes

discernable erzr.

7. Show that n` - 2n 2 = n if n = 1. Is the equation tr-,

when n = 2? Is i-.7-7;rue when n = 31 Is it always true?

8. a. If 3
2

, 5
2 and 7 are divided by 4, what is the remal der

in each case?

b. How many odd integers would you have to square and divide

by 4 to guarantee that the remainder would always be the

same?

16
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Number of
points
connected 2

Number of
regions formed 2 4 8 16

6

Replace the question mark by the number you think belongs

there. Verify your answer by making a drawing in which six

points on a circle are connered in all possible ways.

10. The following optical illusions show that you cannot always

trust appearances. "Things are seldom what they seem; skim

milk masquerades as cream." From "H.M.S. Pinafore" by

Gilbert and Sullivan.

a. Is CD a continuation of AB?

Test your answer 143.th a ruler.

A

b. Are RS and ST eve; :271 length?

Compare the lengths vtitill your

ruler or compass.

c. Which figure hal I.Me greater

area?

[bc- 1-1]
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d. Which is longer, AB or CD?

Check with your ruler.

A

7

*11. Use a ruler to check the accuracy of the measurements of the

figure. Show that if these measurements are correct the sum

of the areas of the four pieces of the rectangle is more thin

the area of the rectangle. Odd, isn't it?

7

5 4

*12. A trip of 60 miles is to be done at an average speed of 60

m.p.h. The first 30 miles are done at 30 m.p.h. At what

rate must the remaining 30 miles be covered?

Remarks on Problem 1. Nearly everybody makes a loop about

twice as big as it should be. You can get much better results

by the following method. The circumference of a circle is equal

to r times the diameter, and 7 is approximately equal to 3.

Therefore, the diameter is about one-third of the circumference.

[sec. 1-1]
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' If your waist measure is, say, 21 inches, this means that the loop

on the floor should beabout:7 inches across. This will look

unbelievably small, but. if you have thought the problem out

mathematically, you will have the courage of your convictions.

This is one of a large number of cases in which even a very

crude mathematical approach to a problem is better than an outright .

leap in the dark.

1-2. An Organized Logical Development of Geothetry.

If you stop to think, you will realize that by now you know a

'great many geometrical facts. For example, you know how to find

:...the area of a rectangle, and of a right triangle,,and perhaps of

,atriangle in general, and you know the Pythagorean relation for

right triangles. Some of the things that you know are so simple

and obvious that it might never occur to you to even put them into

words, let alone to wonder whether or why they are true. The

following is a statement of this type:

Two strair t lines cannot cross each other in more than one

point.

But some of them, like the Pythagorean:relation, are not

obvious at all, but rather surprising. We would like to organize

our knowledge of geometry, in an orderly way, in such a way that

these more complicated statements can be derived from simple

statements. This suggests that we ought to _be able to make a list_

of the facts of geometry, with the simplest and easiest statements

coming first, and the hard ones coming later. We might try to

arrange the statements in such an order that each statement in

the list can be derived from the preceding statements by logical

reasoning.

Actually, we shall carry out a program that is very much like

this. We will state definitions, as clearly and exactly as we can;

and we will establish the facts of geometty-by giving logical proofs.

19
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The statements that we prove will be called theorems. (The

.proving of theorems is not a spectator-sport, any more than

arithmetic is: the best way to learn about it is hy doing'it.

.Iberefore, in this course, you will have lots of opportunities to

prove lots of theorems for yourself.)

While nearly all of the statements that we make about geom-

etry are going to be proved, there will be some exceptions. 'The

simplest and most fundamental statements will be given without

proofs. These statements will be called postulates, and will

the foundation on which we will build. In the same way, we will

use the simplest and most fundamental terms of geometry without

defining them; these will be called the-undefined terms. The

definitions of the other terms that we use will be based on them.

At first glance, it might Seem better to define every.term

that we use, and to prove every statement that we make. With a

little reflection, we can convince ourselves that this can't be

dona.

Consider first the question of,the postulates. Most of the

time, when we prove a theorem, we do so by showing that it follows

logically from theorems that have already been proved. But it

is clear that proofs of theorems cannot always work this way. In-

particular, the first theorem that we prove cannot possibly be

proved this way, beaause in this case there aren't any previously

proved theorems. But we.have to start somewhere. This means

that we have to accept some statements without proof. These un-

proved statements are the postulates.

The purpose of stating postulates is to make it clear just

where we are starting, and just what sort of mathematical objects

we are studying. We.can then build up a solid, organized body of,

facts about these mathematical objects.

Just as we start with some unproved statements, so we start

with some undefined terms. Most of the time, when we give a

definition of a new geometric term, we define it by means of other

geOmetric terms which have already been defined. But it is clear-

20
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10

that definitions cannot always work this way. In particular, the

first definition that we state cannot possibly be stated in this

way, because in this case there aren't any previously defined

geometric terms. But we have to start somewhere. This means that

we introduce some geometric terms without defining them, and

use these basic terms in our first r1efinit1uh3. We shall use LAIL

simplest and most fundamental geometric terms without making any

..t;tempt to give definitions for them. Three fundamental undefined

terms will be point, line and plane.

Postulates, of course, are not made up at random.. (If they

wene, geometry would be of no interest cr Importance., Postulates

desuribe funda natal properties ofspace. In the same way, the

undefined terms point, line and plane are suggested by physical

abljects. To get a reasonably good picture of a point, you make a

dr= on paper with a pencil. To get a better approximation of the

maihematical idea of a point, you should first sharpen your pencil.

rri-1, picture is still approximate, of course: a dot on paper must

erver some area, or you couldn't see it at all. But if you think

of do'ts made by sharper and sharper pencils, you will have a good

idea-of what we are driving at when we use the undefined term,

point.

When we use the term line, we have in mind the idea of a

straight line. A straight line, however, is supposed to extend

infinitely far in both directions. Usually, we shall indicate

this in pictures by arrowheads at the ends of the portion of the

line that we draw, like this:

We shall have another term, segment, for a figure that looks like

this:

A thin, tightly Stretched string is a good apprOximation of a

segment. An even thinner and more tightly stretched string is a

7better approximation. And so on'.

[sec. 1-2]
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Think of a perfectly flat surface, extending in litely far

in every direction, and y Lood idea of a pl

You should remember tha Dnk the above sta-, ,iits are

definitions. They are merely explan_tions of the ideas that

people had in the back of their minds when they wrote the postu-

lates. When we are writing proofs the information that we claim

to have about points, lines and planes will be the information

given by the postulates.

We have said that theorems are going to be proved by logical

reasoning. We have not explained what logical reasoning is, and

in fact, we don't know how to explain this in advance. As the

course proceeds, you will get a better and better idea of what

logical reasoning is, by seeing it used, and best of all by using

it yourself. This is the way that all mathematicians have learned

to tell what is a proof and what isn't.

At the beginning of the next chapter, we shall give a short

account of the idea of a set, and a short review of the funda-

mentals of algebra for real numbers. Sets and algebra will be used

throughout this course, and our study of geometry will largely

be based on them. We shall think of them, however, as things that

we are working with. They will not be an actual part of our

system of postulates and theorems. They are supposed to be avail-

able at the start; some of our postulates will involve real

numbers; and elementary algebra will be used in proofs. In fact,

geometry and algebra are very closely connected, and both of them

are easier to learn If the connections between them are brought

out as soon as possible.

2 2
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Problem Set 1-2

1. A student wanting to find the meaning of the word "dimension"

went to a dictionary. This dictionary did not give definitions

as we have them in geometry but did give synonyms of words.

He made the following chart.

dimension - measurement - or

size
extent - or

length - longest
dimension

size -
dimension
or
measurement

a. Point out from the above chart a circular list of three

terms each of which has its following term as a synonym.

(In a circular list, the first term is assumed to follow

the last.)

b. Make a circular list which contains four such terms.

*2. Make a chart similar to that in Problem 1, starting with some

word in your dictionary.

0 John convinced his mother that he did not track mud onto the

living room rug by pointing out that it did not start raining

until 5 otclock and that he had been in his room studying

since 4:30. He mentioned that a person cannot do something

if he is not there. The thing he was proving (that he did not

track mud) might be regarded as a theorem and the statement

about a person not being able to do something if he is not

there might be regarded as a postulate. Make another example

of such a convincing argument and point out what corresponds

to the theorem, what to the proof, and what to postulates.

2 3
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Janie: Whatls an architect?

Mother: An architect? An architect is a man who designs

buildings.

Janie: Whatls "designs"?

Mother: Well--plans.

Janie: Like we plan a picnic?

Mother: Yes, quite like that.

Janie:, . What are buildings?

Mother: Oh, Janie, you know -- houses, churches, schools.

Janie: Yes, I see.

Consider the above discussion.

as.far as Janie was concerned?

5. The Stuarts have three children. Joe is a senior in high

school. Karen is a seventh grader, and Beth is four. At the

dinner table:

Joe: We learned a funrgyrew word in geometry class

today -- parallelepiped.

Karen: What in the world is it?

Joe: Well, itls a solid. You know what I mean by a solid

figure -- it takes up some space. And itls bounded

by planes. You know what a plane is, dor:It you?

Beth: Like a windowplane?

Joe: The word is a windowpane, but thatls the idea. A

parallelepiped is a solid bounded by Parallelograms.

A candy box is one, but itls a special one because

the six faces are all rectangles. If you had a candy

box and could shove it at one corner yould get a

parallelepiped. Got the idea?

'In the above discussion what basic, undefined terms did Joe

use in his description?

What were basic undefined terMs

2 4

[sec. 1-2]



6. What do you thinK is wrong with the following faulty

. definitions?

a. A square is something that is not round.

b. A right triangle is a triangle each of whose angles has

a measure of 900.

c. An equilateral triangle is when a triangle has three sides

the same length.

d. The perimeter of a rectangle is where you find the sum of

the lengths of the sides of the rectangle.

e. The circumference of a circle is found by multiplying the

diameter by r.

'47. Indicate whether the following are true or false:

a. It is possible to define each geometric term by using

simpler geometric terms.

b. Exact geometric reasoning leads us to geometric truths

that cannot be deduced from measurement.

c. Theorems are proved only on the basis of definitions and

undefired terms.

d. If you are willing to write in all the steps, each

theorem can be deduced from postulates without making

recourse to previous theorems.

2 5
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2-1. Sets

You may not have heard the word set used in mathematics be-

fore, but the idea is a very familiar one. Your family is a set..:'

of people, consisting of you, your parents.; and your brethers and:

sisters (if any). These people are the members of the set..: Your

geothetry class is a set of studentss.its members are you and your

classMates. A school Fi%thletic team is a set of students. A

member of a set is said to belonE to the set. For examPle,.you.

belong to your family and to your geometry class., and soori.--..-The.

members of a set are often called its elements's the twe terms,

members and elements, mean exactly the same thing. We say that

a set contains each of its,eleMents. For example,'both your

family and your geometry class contain you. If one set contains..

every element of another set, then we say that the first set

contains the second, and we say that the second set is a subset

of the first. For example, the student body of your school eon.!

tains your geometry class, and your geometry class is.a subset--

of the student body. We say that the subset.lies in the set that

contains it. For example,. the set of all violinists lies in the'.

set of all musicians.

Throughout this book, lines and planes will be regarded as

sets of points. In fact, all the geometric:figures that we talk..

about are sets of points. (You maY regard this, if you like as

a postulate.)

When we say that two sets are equal or when we write an

equality A = B between two setsiA and B, we mean merely:that:the'

two sets have exactly the same elements: For example, let A be..

the set of all whole numbers between and 522', and let B be the

1 1
set of all whole numbers between-7 and 57. Then A = B, because

each of the sets A and B has precisely the elements 1, 2, 3 4

Chapter 2

SETS, REAL NUMBERS AND LINES
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and 5. In fact, it very often happens that the same set can.be

described in two different ways; and if the descriptions look

different, this doesn't necessarily mean that the sets are

different.

Two sets intersect if there are one or more elements that

belong to both of them. For example, your family and your

geometry class must intersect, because you yourself belong to

both of them. But two different classes meeting at the same hour

do not intersect. The intersection of two sets is the set of all

objects that belong to both of them. For example, the inter-

section of the set of all men and the set of all musicians is the

set of all men musicians.

Passing to mathematical topics, we see that the set of all

odd numbers is the set whose members are

1, 3, 5, 7, 9, 11, 13, 15, ...

and so on. The set of all multiples of 3 Is the set whose

members are

3, 6, 9, 12, 15, ...

and so on. The intersection of these two sets is

3, 9, 15, 21, ...

and so on; its members are the odd multiples'of 3.

In the figure below, each of the two rectangles is a set

of points, and their intersection contains exactly two points.

2 7
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Similarly, each of the corresponding rectangular regions is a set

of points, and their intersection is the small rectangular region

in the middle of the figure. In the next figure, each of the two

lines is a set of points, and their intersection consists of a

single point:

Below, we see two sets of points, each of which is a flat rec-

tangular surface. The intersection of these two sets of points

is a part of a straight line.

The union of the two sets is the set of all objects that-
belong to one or both of them. For example, the union of the set

of all men and the set of all women is the set of all adults.

The intersection, or the union, of three or more sets is defined

28
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similarly. Thus a triangle is the union of three sets, each of

which is a subset of a line.

3

The figure below is the union of five sets, each of which is a

subset of a line.

In some situations, it is convenient to use the idea of the

empty_ set. The empty set is the set that has no members at all.

This idea may seem a little peculiar at first, but it is really

very much like the idea of the number 0. For example, the

following three statements all say the same thing:

(1) There are no married bachelors in the world.

(2) The number of married bachelors in the world is zero.

(3) The set of all married bachelors in the world is the

empty set.

Once we have introduced the empty set, then we can speak of

the intersection of any two sets, remembering that the inter-

section may turn out to be the empty set.

For example, the intersection of the set of all odd numbers

and the set of all even numbers is the empty set.

A word of warninG: If you compare the definitions of the

terms intersect and intersection, you will see that these two

terms are not related in quite the simple way that you might ex-

pect. When we speak of the intersection of two sets, we allow

[sec. 2-1]
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the possibility that t'.:le_Intersection may be empty. But if we say

....that the two sets intemsemt, this always means that they hare an'

.el'ement in common.

Another word of wa "g: Statements (2) ,and (3 abovernmn

-the same- thing. But t:aisi does not me4n ttaka; set that contaibt

only number 0 is em.7.,t_ . For exampt.t equation X + 3 - 3

has 1:Yas- its only roc7 7-7, so the.set of 7.71 is not the erafts.

set; set of ropts 3 actly one eleme,=., namely, the

number:O. On the , the set of ail .roots of the equ

tion x + 3 .... x + Tea 4, -A the empty set, because the equat4

x + 3 = x + 4 has no ioot at all.

1. Let A be the set

members are 3,

2roblem Set 2-1

(3,, -5, 6, 9, 11, 12) -zhat is, the set se

5, 6 9, 11, 12) and E: be the set

(4, 5, 7, 9, 10, 11].

What is the intersection of sets A and B? What is the union

of A and B?

2. Consider the following sets:

S
1

is the set of all students in your school.

S
2

is the set of all boys in your student body.

53 is the set of all girls in your dtudent body.

S
4

is the set of all members of the faculty of your school.

S
5

is the set whose only member is yourself, a Student in

your school.

a. Which pairs of sets intersect?

b. Which set is the union of S
2

and S 9
3'

c. Which set is the union of S
1
and S 9

5'
d. Describe the union of S1 and S4.

e. Which of the sets are sub-sets of S ?
1

[sec. 2-1]
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In the following the line and the circle as

two sets of ppintg. -etat:lcase, what is their ir_-Iection?

Case I.

4. Consider a set of thr, B, C). Any set of boys

selected from these th: - .4_11 be called a committee.

a. How many differert wo,...tmerber committees can be formed

from the three bozi

b. Showthat any two f committees in (a) intersect.

What does the word 'irmersect" mean?

Consider the set of al:. :s'sltive even integers and the set

of all positive odd integers. Describe the set which is the

union of these two sets_

6. Describe the intersect of the two sets given in Problem 5.

7. In the figure, what is the Intersection of the triangle ABC

and the segment BC? Wha-. is their union?

L2

IZ.- Case

8. Let A be

equation

Let B be

equation

Find the

the set of pairs of

km + n = 9.

the set of pairs of

2m + n . 5.

intersection inf the

numbers (m,n) which satisfy the----17-

-numbers (m- n) which satisfy the

sets A and B.

[sec- 271]
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9. Let A be the set of pairs (x,y) for which x + y 7.

Let B be the set of pairs (x,7) for which x - y = 1.

What is the fTtersection of A and B?

10. Let A be the set of pairs (x,y) for which x + y = 3.

Let B be the set of pairs (x,y) for which 2x + 2y = 7.

What is the intersection of A and B?

11. Consider the set of all positive integers divisible by ._,

Consider the aet of all positive integers divisible by 3.

a. Describe the intersection of these two sets. Give Its
first four members.

b. Write an algebraic expression for the intersection.

c. Describe the union of the two sets. Give its first
eight members.

12. a. How many straight lines can be drawn through 2 point7-"
b. If three points do not lie in a straight line, how many

straight lines can be drawn through pairs of the points?
c. If four points are given and no set of three of them lie

in a straight line, how many straight lines can be drawn
containing sets of two of the points? Answer the same
question if five points are given.

*d. Answer Question c if n points are given.

2-2. The Real Numbers

The first numbers that you learned about were the "counting
numbers" or "natural numbers",

1, 2, 3, 4, 5, ...

and so on. (You knew about these before you learned to read or
write. And ancient man learned to count long before the inven-
tion af writing.) Tha-cdunting numbers never end, because start-.

ing with any one of them, we can Always add 1, and get another
one. may think of the counting numbers as arranged on a lina

[sec. 2-2]
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starting at -ome point and continuing the z,iptit, like this:

+1.--
1 3 5 .

To the left Df 1. we put in the r.....mber 0, like this:

0 1

And the next step is to put in the negative whole numbers, like

this:

1 . 1 1 1

. -5 -4 -3 -2 -1 0 1 2 3 4 5

The numbers that we have so far are called the lattosa or

whole numbers (positive, negative and zero). The counting

numbera are the positive integers, and are often referred to by

this name.

Of course, there are lots of points of tte line that have no

numbers attacheaL to them so far. Our next step is to put in the

1 1 2 1 1 2
fracttnns T!, 7, - -7, -7 and so on. Me new numbers

that we want to put in include all numbers that can be expressed

as the ratio of any two integers (with q not equal to zero).

We cam indicate a few of these, as samples:

3 0 1 14

4 3 10

-2 -1 0 1 2 3 4

The numbers that We have so far are called:, the rational

numbers. (This term-Is not suppnsed to mean that they are in a

better state ofmental health than other and Less fortunate

numbers. It-m.ezely refers to e fart that they are ratios of

whole numbera).
33
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The 7ation_ numers form a ve-i ._rge set. Between any two
uf them here a zra_Lrd one; and there' are infinitely many of
them bet4een tmo vahole numbers. It ffs a fact, however, that

the ratiznal numbers still do not fill Lc the line completely.
'For examJ;le, NAT-is n=-J.. rational; it taznot be expressed as the
ratio, of any twe inte.,-s7ers yet it does rcrrespond to a point on the
Line. (.1.or a p c.ee Appendix III. The same is true for A/7-
nd A/75-, and alT :17..r such "peculiar" 7.==mbers as r. Such non-

'rational number:. , called irrationa, - If we insert all these
extra numbers, .E.-ch a way that every point of the line has a
number attached :it, then we have real numbers. We indicate
some samples, like tlals :

\f5 - ir 1

-2 4T
Tr
2+4

i 1 1

1 7
-3 -2 -1 0 1 3 4

You should heck that these numbers appear on the scale in
approximately the -poaitions where they belong. (

approximately 1. 41. How would you find ? )

The real numhers -wila form part of the foundation of almost
all that we are gairm to do in geometry . And it will be important
throughout for us to think of the real numbers as being arranged
on a line.

A number 1 is lesm the= a number y if x lies to the left
of y.

-2 0 x 2 Y 3 4

We abbre7late i±i by wriong: x < y. We notice that every negative
number 1:Lea of' every -:notive number. Therefore, every
negative nmt -tm Less erj PDFri ve. number. For example,

<
even -ttrough the:minth er may in a way look "bigger" .

[sec. 2-2]
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71:xpressions of the form x < y are zalled inequalities. Any

dnequality can be written in reverse. 'For example,

1 > -1,000,000;

and in general, y > x means that x < y,

The ekpre az ion

x

means that x is less than or equal to y. ?or extqlple, 3 . 5 be-

cause 3 < 5, and 5 5, because 5 5

In your study of algebra, you have ty now learned quite a

lot about how the real numbers behave =der-addition andmulti-

plication. All the algebra that you knmw can be derived fromaa .

few trivial-loong statements. These_ ntateMents are thepostu-

lates for addittanand multiPlication mf'real numbers. You will

H tint:them listed in Appendix II. You mav not have ztudied.algebra

on-the basis of the postulates; and we:ere not_goIng to start such

a proceeding now, in this course, weleme simply g to-use the_

siethods..of elementary algebra,'withoutrmmment.

Weshould be a little more:zarefu:, however, aboUG inequal,

tties and square roots- The'reIation < defines an order itathe'

real numbers. The fundamental ;nroperties of this order .relation

are the following:

0-1. (Uniqueneen Order FOT every x and y, one and:only

one of the following conditions ':Q.1.ds: x < y, x =7y, x

0-2. (Transitivity of Order' If x < y, and 7 < z, then

x <

0-3. (Additi-nn. for IneualltI ) If t < y, the=

+ z < + z for every z.

074. (MulttpiicaJ-lu_ far InIqualities) If x < y and.2:> 10,

then xz< yz.
The, statementn 0-2_ any 0-3. have ,an important consequence,

which is worthmenttoning separately:

0-5. If a < b.and x < y, then a-f x < b + y.

3 5
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This is true for the following reason: By 0-3, we know that

a +x<b+ x
and also that

b + x < b + y.

.(That is, an inequality is preservef if we add tne same number on
each side.) By 0-2, these last two inequalities _f_tt together to
give us

a + x < b y,

which is what we wanted.

Finally, we are going to need the following p:-Jperty of the
real numbers:

R-l. (Existence of Square Romtz.) Every positive number has
exactly one positive square root.

There is one rather tricky point in connectior. with square
roots. When we say, in words, that x is a square rzot of a, this

means merely that x2 = a. For example, 3 is a sollio.e root of 9,

and -3 is a square root of 9. But when we write, .irr. symbols,

that x =1/57 we mean that x is the positive smiare roct of a.

Thus, the following statements are true ar false, am- indimEmed.

True: -3 is a square rvot mf 9.

False: -3 =,/917.

True: A/7= 3.

False: v/7".=+ 3.

The reason for this'usage IE s1=-1e, on-e yr..-J_hink of am_

Ifl/gwere allowed to denote either tra posit=ve 7act or the-neg-
ative root, then we would have no wa.7 all to wrizza the posa
tive square root of 7. (Putting a sign in from7 of the

expression1/7gets us nowhere, because a plus sign never changes
the value of an expression. If,/7were negative- then +i17
would also be negative).

[sec.
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Problem Set 2-2

1. Indicaze whether each of the following is true or false.

a. The real number scale has no end points.

b. There exists a point on the real number scale which

representsi/rexactly.
6

c. The point corresponding to 7 on the real number scale

lies between the points correspondlng to.; and;

d. Negative numbers are real numbers.

2. Restate the following in words:

a. AB < CD. e. 0 < 1 < 2.

b. x y. f. 5 x -5.

c. XY YZ. g. x > 0.

d. n 3.

3. Write as an inequality:

a. k is a positive number.

b. r is a negative number.

c. t is a number which is not positive.

d. s is a non-negative number.

e. g has a value between 2 and 3.

f. w has a value between 2 and 3 inclusive.

w has a value between a and b.

4. 7or which of the following is it true that vicri= x?

a. x = 5. e. x = -1.

b. x = -5. f. x>0.
c. x = 0. g. x < O.

1
d. x = 7. h.

5. How would the points corresponding to the following sets of

numbers be arranged from left to right on a number scale in

which the positive numbers are to the right of 0?

a. 3.1, 3.05, 3.009. c. , 1 , 1 .

b. -2.5, -3, -1.5. d. , 1 ,

[sec. 2-2)
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*6. If r and s are real numbers, other than zero, and r > s,

indicate whether the following are always true (T), sometimes

true (S), or never true (N).

a. s < r.

b. r s O.

c. r 2 < s - 2.

d. > 1.

e. r
2
> s

2
.

*7. Follow the instructions of Problem 6 for the following:
1 I

a.

1 1
b. s <ff r.

C. In > Isl.

d. r
3

> s 3
.

e. 1 - r < 1 - s.

2-3. The Absolute Value

The idea of the absolute value of a number is easily under-

stood from a few examples:

(1) The absolute value of 5 is 5.

(2) The absolute value of -5 is 5.

(3) The absolute value of r is r.

(4) The absolute value of -r is r, and so on.

Graphically speaking, the.absolute value of x is simply the

distance between 0 and x on the number scale, regardless of

whether x lies to the left or to the right of O. The absolute

value of x is written as 'xi.

x o o x
x<o x >0

The two possibilities for x are indicated in the figures. In

each of the two cases, lxi is the distance between 0 and x.

[sec. 2-3]
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If a particular number is written down arithmetically, it is

easy to see how we should write its absolute value. The reason

is that in arithmetic, the positive numbers are written as 1, 2,

3, 4, and so on. A way to write negative numbers is to put minus

signs in front of, the positive numbers. This gives -1, -2, -3,

-4, and so on. Therefore, in arithmetic, if we want to write the

absolute value of a negative number, we merely omit the minus

sign, thus, 1-11 = 1 1-21 = 2, and so on.

We would like to give an algebraic definition for 1x1, and we

would like the definition to apply both when x is positive and

when x is negative. In algebra, of course, the letter x can

represent a negative number. In working algebra problems, you

have probably written x = -2 nearly as often as you have written

x = 2. If x is negative, then we can't write the corresponding

positive number by omitting the minus sign, because there isn't

any minus sign to omit. There is a simple device, however, that

gets around our difficulty: if x is negative, then the correspond-

ing positive number is -x. Here are some examples:

x = -1, -x = -(-1) = 1; that is, if x = -1, then -x = 1.

x = -2, -x = -(-2) = 2; that is, if x = -2, then -x = 2.

x = -5, -x = -(-5) = 5; that is, if x = -5, then -x = 5.

In each of these cases, x is negative and -x is the corre-

sponding positive number. And in fact, this is what always

happens. Since we knew all along that 1x1 = x when x is positive

or zero, it follows that the absolute value is described by the

following two statements:

(1) If x is positive or zero, then 1x1 = x.

;2) If x is negative, then lx1 = -x.

If this still looks doubtful to you, try substituting various

numbers for x. No matter what number x you pick, one of the con-

ditions above will apply, and will give you the right answer for

the absolute value.

3 9
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Problem Set 2-3

1. Indicate which of the followftng are always true:

a. 1-31 =. 3.

b. 131 = -3.

c. 12 71 = 17 - 21.

d 51 = 15 - 71
e. Inl = n.

*2. Tniicate which of the following are always true:

a. 1-nI = n.

b. 1n21 = n2.

c. ly - x12 . y2 .- 21-T +
2

.

d.

e.

- 21 = 12 - al_

Idl + 1 = Id + 1.11_

3. Complete these stateins'

a- If 0 < r, then 1=1

b. If 0 > r, then

c. If 0 = r, them

29

4. The fallowing three emerinIem give a geometric interpretation

to algebraic statememta.
x < 2.

All pointm or the acale to the left of 21

-2 0 1 2

lx1 < 2.

1 The set of points between 2 and -2. I

1 2 3-3 -2 -1 0

ba= 2.

-3 -2 -1 0

[sec. 2-3
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Continue as above for the following problems:

a. x < 0. e. Ix) = 1.

b. x = 1. 1, Ix1 1,

c, x > 1. g. lx, > 1.

d. x 1. h. !xi O.

a. How would the set of points represented by x 0

differ from the set represented by x > 0?

b. How would the set of points represented by 0 x I

differ from the set represented by 0 < x < 1?

2-4. Measurement of Distance

The first step in measuring the distance between two points

P and Q is to lay down a ruler between them, like this':

RU LER

Of course we want to use a straight ruler, since we cannot expect

to get consistent results if our rulers are curved or notched.

straight ruler has the property that however it is placed

between P and Q the line drawn along its edge is always the

same. In other words, this line is completely determined by the

two given points. We express this basic property of lines as our

first geometric postulate:

Postulate 1. Given any two different points,

there is exactly one line which contains both of them.

We shall often refer to this postulate, briefly, by saying

that every two points determine a line. This is simply an

abbreviated way of stating Postulate 1.

To designate the line determined by two points P and Q we use

the notation 'M. (The doutae arrow will recall our picture of

the line.) Of course we can always abbreviate by introducing

[sec. 2-4]
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a new letter and calling the line L, or W, or anything else.

Now-let iii-consider the marks on the ruler and the actual

distance between P and Q. The easiest way to measure the

distance is to place the ruler like this:
a11111 111 1 I

1 2 3 4 5 6 7 8 9 10 11 12

This gives 7". Of course, there is no need to put one end of the

ruler at P. We might put it like this:II I 1 1 1 1 I 1

1 2 3 4 5 o 7 8 9 10 11 12

In this case, the distance between P and Q, measured in inches,.

is 9 - 2 = 7, as before.

On many rulers that are sold now, one edge is laid off in

inches, and the other edge in centimeters. Using the centimeter

scale, we can measure the distance between P and Q like this:

1111'1111111111
10 12 14 16 18 20 22 24 26 28 302 4 6 8

3l 1.1. ca 6 91. 9SVCZL
I I I L 1 I I I I

This gives the distance as approximately 18 cm., where cm.

stands for centimeters.

A foot is, of course, 12", and a yard is 36". A meter is

a hundred centimeters; m. stands for meters. A millimeter is
1a tenth of a centimeter (or

1000of a meter); mm. stands for

millimeters. We can therefore measure the distance between

4 2
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P and Q in at least this many ways: 18 cm., 180 mm., .18 m.,

7 in., - ri ft., 57 yds.

That is, the number we get, as a measure of the distance, depends

on the unit of measure. We can use any unit we like, as long as

we use it consistently, and as long as we say what unit we are

using.

Problem Set 2-4

1. What common fractions (or integers) are needed to

complete the following table?

a. 2 in. = ft. = yd.

1
b. in. = 4 -2- ft. = _yd.

c. in. = ft. yd.

2. What numbers are needed to complete the following table?

a. 500 mm. = cm. = m.

b. mm. = 32.5 cm. = m.

c. = cm. = 7.32 m.

3. a. Suppose you decide to use the width of an 84 in. by 11 in.

sheet of paper as a unit of length. What is the length

and the width of the sheet in terms of this unit?

b. Repeat the problem with the length of the sheet as your

new unit.

4. If the lengths of the sides of a triangle are 3 ft., 4 ft.,

and 5 ft., it is a right triangle because 32 + 42 = 52.

Verify that the Pythagorean relationship still holds if the

lengths above are expressed in inches.

5. If the length of each side of a square is 4 ft. its perimeter

is 16 ft. and its area is 16 sq. ft. Observe that the

numerical value of the perimeter is equal to the numerical

value of the area.

a. Show that the numerical values of the perimeter and

area will no longer be equal to each other if the length

of the side is expressed in inches.

[sec. 2-4]
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b. In yards.

. Generalize Problem I. Given that the numbers a, b and c are

the number of units in the sides of a triangle if some

particular unit of length is used and that a2 + b = c
2

.

Show that the Pythagorean relationship will still hold if the

unit of length is multiplied by n. (Hint: The lengths of
a bthe sides will become

'
and . If a, b and c seem toonn

abstract use 3, 4 and 5 at first.)

. Generalize Problem 5. Show that if the numerical values of

the area and perimeter of a square are equal for some

particular unit of measure, then they will not be equal for

any other unit. (Hint: Start by letting the number s be

the length of the side of the square for some unit and

equating the area and perimeter formulas.)

2-5. A Choice of a Unit of Distance

We have noticed that the choice of a unit of distance is

merely a matter of convenience. Logically speaking, one unit

works as well as another, for measuring distances. Let us there-

fore choose a unit, and agree to talk in terms of this unit in

all of our theorems. (It will do no harm to think of our unit as

being anything we like. If you happen to like inches, feet,

yards,.centimeters, cubits, or furlongs, you are free to.consider

that these are the units that we are using. All of our theorems

will hold true for 2122 unit.)

Thus, to every pair of points, P, Q there will correspond a

number which is the measure of the distance between P and Q in

terms of our unit. Such numbers will be used extensively in our

work, and it would be very inconvenient to have to be continually

repeating the long phrase "measure of the distance between P and

Q in terms of our unit". We shall therefore shorten this phrase

to "distance between P and Q", trusting that you will be able

to fill in the remaining words if it should ever be necessary.

[sec. 2-5]
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We can now describe this situation in the following precise

form:

Postulate 2. (The Distance Postulate.) To every

pair of different points there corresponds a unique positive

number.

Definition. The distance between two points is the positive

number given by the Distance Postulate. If the points are P and

Q, then the distance is denoted by PQ.

It will sometimes be convenient to allow the possibility

= Q, that is, P and Q are the same point; in this case, of

course, the distance is equal to zero. Notice that distance is

defined simplY for a pair of points, and does not depend on the

order in which the points are mentioned. Therefore PQ is always

the same as QP.

Some of the problems you will be asked to do will involve

various units of distance, such as feet, miles, meter :Ito. As

noted above, our theorems will be applicable to any of these units,

provided you consistently use just, one unit throughout Api one .

theorem. You can use inches in one theorem and feet in another,

if you wish, but not both in the same theorem.

4 5
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At the beginning of this chapter we laid off a number-scale

on a line, like this:

We could, of course, have compressed the scale, like this:

4 3 2 1 0 1 2 3 4

or stretched it, like this:

2 1 0 1 2

But let us agree, fromnow on, that every number-scale that we

lay off on a line is to be chosen in such a way that the point

,labeled x lies at a d-19tance lxi, from the point labeled 0. For

example, consider the:points P, Q, R, S, And T, labeled with the

numbers 0, 2, -2, -3, and 4, as in the figure below:

3 2 1 0 1 2 3 4

Then PQ = 2, PR = 2, PS = 3 and PT . 4.

If we examine various pairs of points on the number-scale,

it seems reasonable to find the distance between two points by

taking the difference of the corresponding numbers. For

4
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,example,

PQ = 2, and 2 = 2 0;-

QT = 2, and 2 = 4 - 2;

= 5, and 5 = 2 - (-3);

RT = 6, and 6.= 4 - (-2).

llotice, however, that if we look at the pairs of points in reverse

lorder, and perform the subtractions in reverse order, we will get

tlhe wrong answer every time: instead of getting the distance

which is always positive), we will get the corresponding negatiVe

nmmber. This difficulty, however, is easy to get around. All we

Awed to do is to take the absolute value' of the difference of the
_

:numbers. If we do this, then all of our positive right answers

will still be right, and' all of our negative wrong ansWers will

'become right.

Thus we see that the distancebetween ticopoints is the

absolute valueof-the difference7ar the corresponding numbers.

Surely z.121 this seems reasonable. But surely *we have not

'proved it on *5he basis of the only':postulatesthat we have:written

doWnsO far. (And, in fact, it cannot be proved on the tasip of

.the Distance Pbstulate.). We therefore sum up the :..:bove discussion,

ln the form of a new postulate, like this:

Postulate 3. (The Ruler Postulate.) The points o

a line can be placed in correspondence with the real

numbers in such a way that

(1) To every point of the line there corresponds

exactly one real number,

(2) To every real number there corresponds exactly

one point of the line, and

(3) The distance between two points is the abso-

lute value of the difference of the corresponding

numbers.

47
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We call this the Ruler Postulate,because in effect it fur-

nishes us with an infinite ruler, with a number-scale on it, with

which we can measure distances on any line.

Definitions. A correspondence of the sort described in

Postulate 3 is called a coordinate system for the line. The

number corresponding to a given point is called the coordinate

of the point.

1. Simplify:

a- I3-6.
b. 16 - 31-

c . 1-2_ -11.

Problem Set 2-6

d. 1-4 - (-2)1.

e_ la - (-a)1.

r. 1,a1 - 1-al.

Using rhe kind of coordinate system discussed in the text,

find the distance between poi= pairs with the following

coordinates:

a. 0 ana 12- f. -5.1 and 5.1.

b. 12 and 0. g. andl/-1.

c. 0 and -12. h. xl and x
2

.

d. -12 and 0. i. 2a and -2a.

e. -3 and -5. J. r s and r + s.

3.

Pete-5 -4liii I II- I I

Jim 0 1 2 3 4 5 6 7 8

The lower numbering on this scale was put there by Jim.

Pete began the upper numbering but quit.

a. Copy the scale and write in the rest of Pete's numbering.

b. Show how to find the distance from P to Q, first by

using Jim's scale and then by using Pete's scale.

c. Do the same for the distance from W to P.

4. Suppose in measuring the distance between two points P and Q

you intended to place the zero of the number-scale at P and

read a positive value at Q. However, you happen to place the

numben-scale so that P is at and Q is farther to the right.

4 8
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-How is,it still possible to measure the Aistance PQ?

*5. Consider a coordinate system of a line. Suppose 2 is added

to the coordinate of each point and this new sum is assigned

to the point.

a. Will each point then,vorrespond to a number and each

number to a point?

b. If two points of the line had coordinates p and q in the

coordinate system given, what numbers are assigned-to them

in the new numbering?

c. Show that the formula

1
(Number assigned to one point)-(Number assigned to

other point) 1
gives the distance between the two points.

d. Does the new correspondence between points and numbers

satisfy each of the three conditions of Postulate 39

(If it does it may be called a coordinate system.)

*6. Suppose a coordinate system is set up on a line so that each

point P corresponds to a real number n. If we replace each

n by -n, then the point P will correspond to a number -n.

Show that this correspondence is also a coordinate system for

the line. (HINT: It is apparent that each point will have a,

number associated with it and each number a point. You must'

show in addition that the absolute value of the difference

of the numbers assigned to the two points will remain un-

changed when the numbering is changed.)

7. In a certain county the towns of Alpha, Beta and Gamma are

collinear (on a line) but not necessarily in that order. It

is 16 miles from Alpha to Beta and 25 miles from Beta to 1

Gamma.

a. Is it possible to tell which town is between the other

two? Which town is not between the other two?

b. There might be two different values for the distance

from Alpha to Gamma. Use a sketch to determine what

these are.

[sec. 2-6]
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c. If you are given the additional information that-thedis-'

tance from Llpha to Gamma is 9 miles, then which townAe

between the other two?

d. If the distance between Alpha and Beta were r

distance from Alpha to Gamma s miles, and 'the distance:

from Beta to Gamma r + s miles, which city would be

between the other two?

8. A, B, C are three collinear points. A and B are 10" apart,

and C is 15" from B. Is there just one way to arrange

these pcints? Explain.

Three different"coordinate systems are assigned to the 'same

line. Three fixed point3A, B, C of the line are assigned

values as follows:

With the first system the coordinate of A is -6 and

that of B is -2.

With the second the coordinates of A and C are 4

and -3 respectively.

With the third the respective coordinates of C and B

are 7 and 4.

What point is between the other two?

Evaluate AB + BC + AC.

2-7. The Ruler Placement Postulate -1Betweenness--Segments

And Rays

The Ruler Postulate (Postulate 3) tells us that on any line,

we can.set up a coordinate system by laying off a number-scale.

This can be done in lots of different mays. For example, given.

a point P of the line, we can start by making P themero-point.

And we can then lay off the scale in either direction, like this:

-3 -2 -1 0 1 2 3

al111.
3 2 1 0 -2 -3

[sec. 2-7]
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-This means that given another point Q of the line, we can always

choose the coordinate system in such a way that Q corresponds to

positive number,like this:

P

1 I 1 1

-3 -2 -1 0

or this:

3 2 1 0 -1 -2 ...3

Let us write this down, for future reference, in the form of a

-:postulate.

Postulate 4. (The Ruler Placement Postulate,)

Given two points P and Q of a line, the coordinate

system can be chosen in such a way that the coordinate

of P is zero and the coordinate of Q is positive.

Everybody knows what it means to say that a point B iE

between-two points A and C. It means that A, B and C lie on

the same line, and that they are arranged on the line like this:

or like this:

A

If we are going to use betweenness as a mathematical idea, however,

we had better give a mathematical definition that states exactly

what we mean, because the feelings that we have in our bones are

not necessarily reliable. To see this, let us look at the

corresponding situation on a circle. In the figure on the left,

5 1
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C? C?
it seems reasonable to say that B is between A and C. But C can

be moved around the circle in easy stages, without passing over

A or B, so as to lie just to the left of A, as in the right-

hand figure. In the final position, indicated by the exclamation

point, it looks as if A is between B and C. In this respect,

circles are tricky. Given any three.points of a circle, it is

quite reasonable to consider that each of them is between the

other two.

Betweenness on a line is not at all tricky. It is easy to

say exactly what it means for one point of a line to be between

two others. We can do this in the following way:

Definition. B is between A and C if (1) A, B and C are

distinct points on the same line and (2) AB + BC = AC.

It is easy to check that this definition really expresses

our common-sense idea of what betweenness ought to mean. It may

be a good idea to explain, however, the way in which language is

ordinarily used in mathematical definitions. In the definition

of betweenness, two statements are connected by the word if.

What we really mean is that the statements before and after the

word if are completely equivalent. Whenever, in some theorem or

problem, we are given or can prove that conditions (1) and (2)

both hold, then we can conclude that B is between A and C. And

whenever we find that B is between A and C then we can conclude

that (1) and (2) both hold. This is not a strictly logical use

of the word if, and in particular the word if is never used in

this way in postulates, theorems or problems. In definitions,

however, it is common.

The following theorem describes betweenrwss in terms of

coordinates on a line.

C?

ki
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Theorem 2-1. Let A, B, C be three points of a line, with

coordinates x, y, z. If

x < y < z,

then B is between A and C.

Proof: Since x < y < z, we know that the numbers y - x,

z - y, and z - x are all positive. Therefore, by definition of .

the absolute value,

ly - xl = y - x,

iz - yl = z y,

1z - xl = z - x.

Therefore, by the Ruler Postulate,

AB = y - x,

BC = z - Y,

AC = z - x.

Therefore

AB + BC = (y - x) + (z - y)

= -x + z

= ,z - x

= AC.

Therefore, by the definition of betweenness, B is between A and C,

which was to be proved.

Problem Set 2-7a

1. a. A number-scale is placed on a line with -3 falliLAg at R

and 4 at S. If the Ruler Placement Postulate is applied

with 0 placed on R and a positive number on S, what will

this number be?

b. Same question if -4 falls at R and -10 at S.

c. Same question if 8 falls at R and -2 at S.

d. Same question if -44 falls at R and 4 at S.

e. Same question if 5.2 falls at R and 6.1 at S.

f. Same question if xl falls at R and x2 at S.

2. Explain briefly how the Ruler Placement Postulate simplifies

the procedure given by the Ruler Postulate for computation of

distance between two points. 53
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3. Suppose R, S and T are collinear points. What must be true

of the lengths RS, ST and RT if S is to be between R and T?

(See definition of between.)

4 . A
AC and TIC each equals 8.

The coordinate of C is 6. The coordinate of B is greater
than the coordinate of C. What are the coordinates of
A-and B?

5. If a, b and c are coordinates of collinear points, and if
la - ci + 1c - 131 = la - bi, What is the coordinate of the

point which lies between the other two? Be able to justify
your answer.

6. If x x
2

and x
3 are ',coordinates of points on a line such

that x3 > xi and x2 < xi, which point is between the other
two? Which theorem would be used to prove your answer?

7. Consider a coordinate system in which A is assigned the

number 0, B is assigned the positive number r, E the number
1 2r, and F the number r.

Prove that:

a. AE = EF = FB

b. E is between A and F.
*8. Prove: If A, B and C are three points of a line with

coordinates x, y and z respectively and if x > y > z, then
B is between A and C.

Theorem 2-2. Of any three different points on the same line,
one is between the other two.

Proof: Let the points be A, B and C. By the Ruler Postulate,

there is a coordinate ayatem for the line. Let the. coordinates

of A, B, and C be x, y, and z. There are now six possibilities:

54
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(1) x < y < z,

(2) x < z < y,

(3) < x < z,

(4) y < z < x,

(5) z < x < Y,

(6) z < y < x.

In each of these cases, Theorem 2-2 follows by Theorem 2-1,

Zfl cases (1) and (6), B is between A and C. In cases (2) and

C is.between A and B. In cases (3) and (5), A is between

13:and C.

Theorem 2-3. Of three different points on the same line only

one is between the other two.

Restatement. If A, B and C are three different points on the

same line, and B is between A and C, then A is not between B and

.C, and C is not between.A and B.

.(It often happens that a theorem is easier to read, and

easier to refer to, if it is stated in words. But to prove

theorems, we usually need to set up a notation, giving names to

.ihe objects that we will' be talking about. For this reason, we

shall often give restatements of theorems, in the style 'that we

,have jUst used for Theorem 2-3. The restatement gives us a sort

of-head-start in the proof.)

Proof: If B is between A and C, then

AB + BC = AC.

If A is between B and C, then

BA + AC = BC.

.

What we need to prove is that these two equations cannot both

,hold at the same time.

If the first equation holds, then

- BC = AB.

If the second equation holds, then

AC - BC = -BA = -AB.

Now;AB is siositive, and -AB is negative. Therefore, these

_equations'cannot both be true, because the number AC - BC cannot

,be both positive and negative.
[eec. 2-7]
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In an entirely similar manner we can show that C is not between A
and B.

Definitions. For any two points A and B the segment AB is

the set whose points are A and B, together with all points that
are between A and.B. The points A and B are called the end-

points of AB.

Notice that there is a big difference between the segment AB
and the distance AB. The segment is a geometrical figure, that

is, a set of points. The distance is a number, which tells us

how far A is from B.

Definition. The distance AB is called the length of

the segment K.

A ray is a figure that looks like this:

A
The arrow-head on the right is meant to indicate that the ray in-

cludes all points on the line to the right of the point A, plus

the point A itself. The ray is denoted by K. Notice that when
we write it, we simply mean the ray that starts at A, goes through

B, and then goes on in the same direction forever. The ray might
look like any of the following:

1B

A
rn A A.

173

TB

That is, the arrow in the symbol AB always goes from left to

right, regardless of how the ray is pointed in space.

Having explained informally what we are driving at, we proceed

to give an exact definition.

[sec. 2-7]

56



4 6

Definitions, Let A and B be points of a line,L. The _jar it

is the set which is the union of (1) the segment AB and (2) the

set of all points C for which it is true that B is between A and

C. The point A is called the end-point of K.
These two parts of the ray are as indicated:

r-----S11--------
al

.-

;
.-

B
.

C
-------400-

If A is between B and C on L, then the two rays At and A
"go in opposite direction," like this:

At AB
N. ,,---------

A 4
Definition. If A is between B and C, then AB and AC are

called omosite ran.
Note that a pair of points A, B determines six geometric

figures: A
The line AB,

The segment a,

The ray

The ray BA,

The ray opposite to

The ray opposite to BA.

-0

-0

The Ruler Placement Postulate has three more simple and

useful consequences.

Theorem 2-4 (The Point Plotting Theorem) Let AB be a ray,

and let x be a positive number. Then there is exact1y_one

point P of AB such that AP = x.

Proof: By the Ruler Placement Postulate, we can choose the

coordinate system on the line It in such a way that the coordinate

of A is equal to 0 and the coordinate of B is a positive

number r:
A B

P
0 r

5 7
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(In the figure, the labels above the line represent points,

and the labels below the line represent the corresponding numbers.)

Let P be the point whose coordinate is x. Then P belongs to
Kg, and AP = lx - 01 = lx1 = x, because x is positive. Since only

one point of the ray has coordinate equal to x, only one point of

the ray lies at a distance x from A.

Definition. A point B is called a mid-point of a segment

AC if B is between A and C, and AB = BC.

A E3 5
Theorem 2=5. Every segment has exactly one mid-point.

Proof. On the segment AC we want a point B such that AB = BC.

We know, by definition of a segment, that B is between A and C.

Therefore, AB + BC = AC. From these two equations we conclude
1

that 2AB = AC, or AB = AC. Since B is to lie on segment 0

it must also lie on ray At, and Theorem 2-4 tells us that there

is exactly one such point B.

Definition. The mid-point of a segment is said to bisect the

segment. More generally, any figure whose intersection with,a

segment is the mid-point of the segment.is said to bisect the

segment.

y.t.oblem Set 2-713,

1. If three points are on a line, how many of them are not
between the other two?

2. Each of the following is a particular case of what definition

or theorem?

If three collinear points R, S and T have coordinates

respectively 4, 5 and 8:

a. S is between R and T because 4 < 5 and 5 < 8.

b. R cannot be between S and T since S is between

R and T.

c. S is between R and T because RS + ST = RT.

5 8
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3. Describe in mathematical language what points are included in:

a. XY b. XY

*4. Show that the restriction "between A and C" in the definition

of the midpoint of AC is unnecessry by proving the

fdllowing theorem:

If B is any point on the line It such that AB . BC, then

B is between A and C. (Hint: Show that A cannot be

between B and C nor C between A and B. Use algebra in

showing this. Use Theorem 2-2 to finish the proof.)

*5. Suppose that P is a point on a line M and r is a positive

number. Which of the previous theorems shows that there

are exactly two points on M whose distance from P is the

given number r?

*6. Prove that if B is between A and C, then AC > AB.

7. a. Copy the following paragraph. Supply the appropriate

missing symbol, if any, over each letter pair.

XZ contains points Y and R, but XZ contains neither

points Y nor R. R belongs to XZ but Y does not.

YZ + ZR = YR.

b. Make a drawing showing the relative position of the

four points.

Review Problems

1. Consider the following sets:

S is the set of all boys in the 10th grade.
1

S
2

is the set of all glrls in the 10th grade.

S
3

is the set of all 10th grade geometry students.

S is the set of all students in high school.

S
5

is the set of all 10th grade students.

a. What is the intersection of S 1 and S 5
9

b. What is the union of S
3
and S ?

c. What is the intersection of S 3 and S ?

[sec. 2-7)
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d. What is the union of S
1
and S 9

2'
e. What is the intersection of S

1
and 32 ?

2. a. How many squares does a given positive number have?
b. How many square roots?

C. Isi/rever negative?

3. a. Draw a line and locate the following points on it.

(The coordinate of each point is given in parentheses.)

Use any unit of measure you choose, but use the same
unit throughout.

P (2), Q. (-1), R (0), S (-3), T (4).

b. Find PQ, RT, TR, PT, QS.

4. a. If a > b, then a - b is

b. If 0 < k and k2 < 4, then k is

C. If a < b then a - b is

5.

tb-

a. Write an equation that describes the relative positions

of these three points.

b. Under what condition would B be the midpoint of AC?
6. Four points A, B, C, D are arranged ilong a line so that

AC > AB and BD < BC. Picture the Line with the four points
in place. Is there more than one possible order? Explain.

7. The letter pairs contained in the following paragraph are
either numbers, lines, line segments, or rays. Indicate

which each is by placing the proper missing symbol, if any,

above each letter pair.

"AB + BC = AC. DB contains points A and C, but DB con-

tains neither point A nor point C. A belongs to DB
but C does not." Draw a picture that illustrates your
response.

8. A is the set of all integers x and y whose sum is 13. B is

the set of all integers whose difference is 5. What is the
intersection of A and B?

[sec. 2-7]
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John said, "My house is on West Street halfway between Bill's

house and Joe's house." Pete said, "So is mine!" What can .

you conclude concerning John and Pete?

10. N men sit on a straight bench. Of how many may it be said,

"He sits between two people?"

11. Use the figure below to answer questions a. through e.:

A
a. Describe the intersection of triangle AEF and

rectangle ABCD.

b. Describe the intersection of segment EF and

rectangle ABCD.

c. Describe the union of segments AF, EF, and AE.

d. Describe the intersection of segments AE and BC.

e. Describe the union of triangle AEF and segment AE.

12. diven a group of five men (Messrs. Andrews, Brown, Crawford,

Douglas, and Evans). a. From the group, how many different

4-man committees can be formed? b. 2-man? c. 3-man?

13. Given that A, B and C are collinear and that AB = 3 and

BC . 10, can AC = 6? Give a picture to explain your answer.

14. Indicate which of the following statements are true and

which are false. For any that are false, give a correct

answer.

e. 1-4[ 1-ill . -7.

f. 1(3a-6) - (a-7) = 12a+11.

g. 171 - 191 = -2.

h. 1-111 - 1-41 = -7.

a. 1-13+71 = 20.

b. 1-8-91 = 17.

c. 15a-6a1 = lal.

d. 19+21 = 11.

6 1
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-10 0

Looking at this number-scale, Jack said,"The length of RQ

is Ix-yl." Sam maintained that when giving the length of

411-4 it would be just as correct to use simply y-x.

Do you agree with Sam? Explain.

16. The first numbering of the points on the line below represents

a coordinate system. Which of the other numberings are not

coordinate systems according to Postulates 2 and 3?

-3 -2 -1 0 1 2 3 11- 5 6

a. -7 -6 -5 -4 -3 -2 -1 0 1 2 3

b. 0 1 2 3 4 5 4 3 2 1 0

c. 11 12 13 14 15 16 17 18 19 20 21

d. -11 -12 -13 -14 -75 -16 -17 -18 -19 -20 -21

e. -3 -2 1 0 -1 2 3 4 5 6 7

*17. Consider the points of a line whose coordinates are described

as follows:

a. x < 3. e. x = -3.

b. x = 1. f. IxI 3.

c. x > 2. g. lxI > 2.

d. x 1. h. Ix! O.

Which of the above sets is a ray? A point? A line?

A segment?

2
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Chapter 3

LINES, PLANES AND SEPARATION

3-1. Lines and Planes in Space.

In the last chapter, we were talking only about lines and the

measurement of distance. We shall now proceed to the study of
planes and space. We recall that our basic undefined terms are
point, line and plane. ,Every line is a set of points, and every

plane is a set of points.

Definition. The set of all points is called space.

In this section we will explain some of the terms we are go-
ing to use in talking about points, lines and planes, and state
some of the basic facts about them. Most of these basic facts will
be stated as postulates. Some of them will'be stated as theorems.

These theorems will be so simple that it would be reasonable to

accept them without proof, and call them postulates. We do not do

this, however; the first of them is going to be proved in this sec-
tion, and the rest of them will be proved, on the basis of the
postulates, in a later chapter. For the present, however, let us
not worry about this question, one way or another; let us simply
try to get these basic facts straight.

Problem Set 3-la

1. On a piece of paper, or on the blackboard, place two marks to
represent points A and B. How many different lines can you
draw through both A and B? What happens if you consider "line"
in a sense other than "straight"?

2. Take a piece of stiff cardboard or your book. Can you support

it in a fixed position on the ends of two pencils? What is

the minimum number of pencils needed to support it in this
way?

3. Think of one cover of your book as part of a plane. How many
points are needed to determine this plane?

4. How many end-points does a line have? How many end-points does
a line segment have?
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Definition. A set of points is collinear if there is a line

which contains all the points of the set.

Definition. A set of points is coplanar if there is a plane

which contains all the points of the set.

For example, in the above figure of a triangular pyramid, A,

E and B are collinear, and A, F and C are collinear, but A, B and

C are not collinear. A, B, C and E are coplanar, and A, C, D, F

and G are coplanar, but A, B, C and D are not coplanar.

One of the properties we desire for the sets of points which

we call lines, planes and space is that they should contain lots

of points. Also, a plane should in some sense be "bigger" than a

line and space should be "bigger" than any plane. The existence

of plenty of points on a line is insured by the Ruler Postulate;

for planes and space the following postulate will give us the pro-

perties we want:

Postulate 5. (a) Every plane contains at least

three non-collinear points.

(b) Space contains at least four non-coplanar points.

For convenience in reference we repeat Postulate 1.

Postulate 1. Given any two different points, there

is exactly one line which contains them.

6 4 [sec. 3-1]
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Theorem 3-1. Two different lines intersect in at most one

The proof of this follows from Postulate 1. It is impossible

for two different lines to intersect in two different points P and

Q because by Postulate 1 there is only one line that contains P and

Q.

point

Problem Set 3-lb

1. Given: 1. L
1

and 1,2 are different lines.

2. Point P lies on L and L
2'1

3. Point Q lies on L and L
2'1

What can you say must be true about P and Q?

2. How many lines can contain one given point? two given points?

any three given points?
4-21. 4->

The diagram shows three different lines AB, CD, and EF, whose
<->

view is partially obstructed by a barn. If AB and CD intersect

to the left of the barn, which postulate says that they cannot

also intersect to the right of thr. barn?

A P

Draw a diagram to illustrate each part of this problem and jus-

tify your answers in terms of Postulate 1.

a. How many lines can be drawn through both of two fixed

points?
6 5
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b. How many lines can be drawn through three points taken two

at a time?

a. How many lines can be drawn through four coplanar points,

taken two at a time, if no three of the points are collin-

ear? (Hint: Call the points A, B, C, D.)

b. How many lines would there be if points A, B, and C were

collinear?

c. Draw a diagram for (a) and (b).

"A point lies on a line" and "a line contains a point" are two

forms of saying the same thing.

a. The definitionz,Z collinear and coplanar are phrased using

the second form. Rephrase these definitions using the

first form.

b. The first part of Postulate 5 is phrased using the second

form. Rephrase this part of Postulate 5 using the first

form.

*7. As in Problem 6, Postulate 1 is written in one of the two forms.

Which form? Restate Postulate 1 in the other form.

By Postulate 5 a plane contains at least three points. Does

it contain any more? On the basis of our present postulates we

cannot conclude that it does, so we introduce

Postulate 6. If two points lie in a plane, then

the line containing these points lies in the same plane.

This postulate essentially says that a plane is flat, that is,

that if it contains part of a line it contains the whole line.

Theorem 3-2. If a line intersects a plane not containing it,

then the intersection is a single point.

This follows from Postulate 6 in the same way that Theorem

3-1 follows from Postulate 1.

6 6
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The figure shows line L, intersecting a plane E in a point P.

You are going to see lots of drawings like this, of figures in

space,.and to learn to draw them yourself. You should examine them

carefully to see how they work. We usually indicate a plane E by'

drawing .a rectangle in E. Seen in perspective, the rectangle looks

somewhat like a parallelogram. The line L punctures E at P. Part

of L is dotted. This is the part that you "can't see", because the

rectangular piece of E gets in the way. (For a discussion on draw-

ing 3-dimensional'figures see Appendix V.)

We have-seen that two points determine a line. The next

postulate specifies a similar determination of a plane.

Postulate 7. Any three points lie in at least one

plane, and any three non-collinear points lie in exactly

one plane. More briefly, any three points are coplanar,

and any three non-collinear points determine a plane.

Theorem 3-3. Given a line and a point not on the line, there

is exactly one plane containing both of them.

6 7
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The figure shows a plane E determined by the line L and the

.ipoint P.

Theorem 3-4. Given two intersecting lines, there is exactly

-one plane containing them.

The figure shows two lines Li and L2, intersecting in a point

P." E is the plane that contains both lines.

Finally, we state one more postulate:

Postulate 8. If two different planes intersect,

then their intersection is a line.

Problem Set 3-lc

How many planes-can contain one given point?. two given points?

three given points?

6 8
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2. On a level floor: why will a four-legged table sometimes rock,

while a three-legged table is always steady?

3. Complete: Two different lines may intersect in a

and two different planes may intersect in a

I. Can two points be non-collinear? three points? four points?

n points?

5. Write a careful definition of a set of non-collinear points.

6. Given: 1. Points A, B, C lie in plane E.

2. Points A, B, C lie in plane F.

Can you conclude that plane E is the same as plane F? Explain.

7. Complete the following statements using the

accompanying diagram.

a. Points D, C, and are collinear.

b. Points E, F, and are collinear.

c. Points B and A are collinear.
d. Points A, B, C, D, E, F, are A

8. Examine the following figure of a'rectangular solid until you

see howHit looks as a three-dimensional drawing. Then close

the book and draw a figure like this for yourself. Practice

until you are satisfied with the results.

9. After doing Problem 8, draw a figure that represents a cube.

10. Draw a plane E, using a parallelogram to indicate the plane.

[sec. 3-1]
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Draw a line segment which lies in the plane E. Draw a line

that intersects the plane E but does not intersect the line seg-:

ment. Use dashes to represent the part of the line hidden by

the plane.

11. The accompanying figure is a triangular

pyramid, or tetrahedron. It has four

vertices: A, B, C, D, no three of

which are collinear.

a. Make a definition of an edge

of this tetrahedron. Use the

ideas of the text to help you

form the definition.

b. How many edges does the tetrahedron

have? Name them.

c. Are there any pairs of edges that do not intersect?

d. A face is the triangular surface determined by any three

vertices. There are four faces: ABC, ABD, ACD, BCD. Are

there any pairs of.faces that do not intersect? Explain.

12. How many different planes (determined by D

triplets of labeled-points) are there in

the pyramid shown? Make a complete list.

(You should have seven planes.)

A
3-2. Theorems in the Form of Hypothesis and Conclusion.

Nearly every theorem is a statement that if a certain thing is

true, then something else is also true. For example, Theorem 3-1

states that if L1 and L2 are two different lines, then L1 intersects

L
2

in at most one point. The if part of a theorem is called the

hypothesis, or the given data, and the then part is called the con-

clusion, or the thing to be proved. Thus we can write Theorem 3-1

in this way:

Theorem 3-1. Hypothesis: L1 and L2 are two different lines.

Conclusion: L
1
intersects L

2
in at most one

point.

Postulates, of course, are like theorems, except that they are

70
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not going to be proved.. Most of them can be put in the same if ...

then form as theorems. Postulate I Can be stated this way:

Hypothesis: P and Q are two different points.

Conclusion: There is exactly one line containing P and Q.

There are cases in which the hypothesis-conclusion form does

not seem natural or useful. For example, the second part of Postu-

late 5, expressed in this form, looks awkward:

Hypothesis: S is space.

Conclusion: Not all points of S are coplanar.

Such cases, however, are very rare.

It is not necessary, of course, that all theorems be stateu in

the hypothesis-conclusion form. It ought to be clear, regardless

of the form in which the theorem is stated, what part of it is the

hypothesis and what part is the conclusion. It is very important,

however, that we be able to state a theorem in this form if we want

to, because if we cannot, the chances are that we do not understand

exactly what the theorem says.

Problem Set 3-2

1. Indicate which part of each of the following statements is the

hypothesis and which part is the conclusion. If necessary,

rewrite in if-then form first.

a. If John is ill, he should see a doctor.

b. A person with red hair is nice to know:

C. Four points are collinear if they lie on one line.

d. If I do my homework well, I will get a good grade.

e. If a set of points lies la one plane, the points are coplanar.

f. Two intersecting lines determine a plane,

2. Write the following statements in conditional, or if-then, form:

a. Two different lines have at most one point in common.

b, Every geometry student knows how to add integers.

c. When it rains,it pours.

d. A line and a point not on the line are contained in

exactly one plane.
7 1
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e. A dishonest practice is unehical.

C. Two parallel lines determine a plane.

3. Using the words "if" and "then", write Postulate 1 and Theorem

3-1 in cOnditional form. Indicate the hypothesis and the con-

clusion for each case.

4. a. Does the following statement mean the smething as Theorem

3-4? "Two lines always intersect in a point, and there is

exactly one plane containing them." Why or why not2

b. Write Theorem 3-4 in the "hypothesis and conclusion" form.

3-3. Convex Sets.

Definition. A set A is called convex if for every two points

P and Q of A, the entire Eagment Trq lies in A.

For example, the three sets pictured below are convex.

A

Itere each of the sets A, B and C consists of a region of the plane.

We have illustrated their convexity by showing a few segments rq.

None of the sets D E and F below is convex:

7 2
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We have shown why not, by showing pairs of points P, Q for which

the segment 13-Q- does not lie entirely in the given set.

A convex set may be very large. For example, take a line L

in a plane E and let H1 and H2 be the sets lying on the two sides

of L, like this:

The two sets H
1
and H

2
are called half-planes or sides of L, and

the line L is called an edge of each of them. (Notice that L does

not lie in either of the two half-planes; L is not on either side

of itself.)

If two points P and Q are in the same half-plane, say H1, then

the segment 15-4 also lies in H1, and so does not intersect L.

H2

Thus H
1
is convex. And in the same way, H

2
is convex; this is

illustrated by the points R and S in the figure.

We notice, however, that if T and U are points belonging to

different half-planes, then the segment TU intersects L, because

you cannot get from one side of L to the other side without crossing

the edge. We express this fact by saYing that L separates H1 from

H
2

in the plane, or that L separates the plane into two half-planes

H
1

and H
2. 7 3
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This discussion is a fair account of the facts, but it is not

very good mathematical form, because it is based on a postulate

that we havenot even stated so far. We shall therefore state the

postulate that is needed, and then state the definitions that are

based on it.

Postulate 9. (The Plane Separation Postulate.)

Given a line and a plane containing it. The points of

the plane that do not lie on the line, form two sets such

that (1) each of the sets is convex and (2) if P is in

one set and Q is in the other then the segment 157 inter-

sects the line.

Definitions. Given a line L and a plane E containing it, the

two sets determined by Postulate 9 aA called half-planes, and L

is called an edge of each of them. We say that L separates E into

the two half-planes. If two points,P and Q of E lie in the same

half-plane, we say that they lie on the same side of L; if P lies

in one of the half-planes and Q in the other they lie on opposite

sides of L.

We see that the Plane Separation Postulate says two things

about the two half-planes into which a line separates 9 plane:

(1) If two points lie in the same half-plane, then the seg-

ment between them lies in the same half-plane, and so never inter-

sects the line.

(2) If two points lie in different half-planes, then the

segment between them always intersects the line.

If we do not restrict our attention to a single plane we can

have many half-planes with the same edge. The picture

7 4
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illustrates five of the infinitely many possible half-planes having

line L for edge. 14ote that points P and Q, although they lie in

different half-planes, cannot be said to be On opposite sides of L.

This can only be said of points like P and R which are coplanar

with L.

A plane separates space, in exactly the same way, into two

convex sets called half-spaces.

H
2

In the figure, Hl is the half-space above E and H2 is the half-

space below E. P and Q. lie in H1, and so also does the segment 7q.

P and S are in different half-spaces, so that the segment Trg inter-

sects E in a point X. R and S are in the same half-space H2, and

so also is the segment RS.

it)
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This situation is described in the following postulate.

Postulate 10. (The Space Separation Postulate.)

The points of space that do not lie in a given plane

form two sets such that (1) each of the sets is convex

and (2) if P is in one set and Q. is in the other, then

the segment 77 intersects the plane.

Definitions. The two sets determined by Postulate 10 are

called half-spaces, and the given plane is called the face of each

of them.

Note that while a line is an edge of infinitely many half-

planes, a plane is a face of only two half-spaces.

Problem Set 3-3

In answering the following questions use your intuitional

understanding of planes and space in situations not covered by our

postulational structure.

1. Be'prepared to discuss the following questions orally.

a. IR a line a convex set? Explain.

b. Is a set consisting of only two points convex? Why?

c. Is a ray a convex set?

d. If one point is removed from a line, do the remaining

points form a convex set? Why?

e. Is the set of points on the surface of a sphere convex?

Why?

f. Is the space enclosed by a sphere a convex set?

g. Does a point separate a plane? space? a line?

h. Does a ray separate a plane? Does a line? Does a line

segment?

i. Can two lines in a plane separate the plane into two re-

gions? Three regions? Four regions? Five regions?

j. Into how many parts does a plane separate npace? What are

these parts called?

7 6
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2. Every point on 154- is contained in the set

shown. Does this mean that the set is

convex? Explain.

3. Which of the regions indicated by

Roman numerals are convex sets?

Give reasons for your choice.

6'(

4. Is every plane a convex set? Explain. Which postulate is

essential in your explanation?

5. The interiors of circles A and B

are each convex sets.

a. Is their intersection a convex

set? Illustrate.

b. Is their union a convex set? Illustrate.

6. If one point is removed from a plane, is the set formed con-

vex? Why?

7. If L is a line in a plane E, is the set of all points of E on

one side of L a convex set?

8. Draw a plane quadrilateral ( a figure with four sides ) whose

interior is convex. Draw one whose interior is not convex.

9. Is the set of points containing all points on the surface and

- all points in the interior of a sphere convex?

10. Is the set of points in a torus (a doughnut shaped figure)

convex?

11. Is the union of two half-planes which are contained in a plane

the whole plane if

a. the half-planes have the same edge? Explain.

b. the edge of one half-plane intersects the edge of the

other half-plane in exactly one point? Explain, using a

diagram if necessary.

12. a. Into how many parts does a point on a line separate the

line? What name would you suggest giving to each of these

parts?

b. Using the terminology you developed in part (a), write out

a Line Separation Statement similar to Postulates9 and 10.

[sec.'3-3]
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13. How does a ray differ from a half-line?

14. Can three lines in a plane ever separate the plane into three

regions? four regions? five regions? six regions? seven

regions?

15. Into how many parts do two intersecting planes separate space?

Two parallel planes?

16. What is the greatest number of parts into which space can be

separated by three distinct planes? What is the least number?

*17. Write a careful explanation of why the following statement is

true. The intersection of any two convex sets which have at

least two points in common is convex. (Hint: Let P and Q be

any two points belonging to the intersection.)

*18. Sketch any geometrical solid bounded by plane surfaces such

that the set of points in the interior of the figure is not

convex.

Review Problems

1. Each of 3 planes intersects each of the others. May they

intersect in one line? Must all three intersect in one line?

Explain.

2. How many planes will contain the three given points A, B, and

C if no line contains them?

3. Write each of the following statements in the "if-then" form.

a. Zebras with polka dots are dangerous.

b. Rectangles whose sides have equal lengths are squares.

c. There will be a celebration if Oklahoma wins.

d. A plane is determined by any two intersecting lines.

e. Cocker spaniel dogs are sweet tempered.

4. Supply the following informatLon about the postulates in the

chapter

What property of each of the half-planes is mentioned in the

Plane Separation Postulate?

Do the half-spaces of the Space Separation Postulate have

the same property?
7 8
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5. Criticize the following statement:

"The top of the table is a plane."

6. List all the situations we have studied which determine a sin-

gle plane.

7. A set is convex if for every pair of points in it, all points

of the segment joining the two points lie

8. Given that plane E separates space into half-spaces R and S,

and that point A is in R and point B is in S, does WIC have to

intersect E?

9. L1 intersects plane E in P but does not lie.in E. L2 lies.in

plane E but does not contain point P. Is it possible for L
1

and Lo to intersect? Explain.

10. a. A set of points is collinear if

b. A set of points is coplanar'if

c. May 5 points be collinear?

d. Must 2 points be collinear?

e. May n points be collinear?

f. Must 5 points be coplanar?

g. May n points be coplanar?

11. Points P and Q lie in both planes E and F which intersect in
<4.

line AB. Would it be correct to say that P and Q lie on AB?

Explain.

12. Is the union of a half-plane and a ray on its edge convex?

7 9



Chapter 4

ANGLES AND TRIANGLES

The Basic Definitions.

An angle is a figure that looks like one of these:

To be_more_exact:

Definitions. An angle is the union of two rays which have

the same end-point but do not lie in the same line. The two

rays are called the sides of the angle, and their common end-

point is called the vertex.

The angle which is the union of AB and AC is denoted by

LBAC, or by LCAB, or simply by LA if it is clear which rays

are meant. Notice that LBAC can be equally well described by

means of A and any two points on different sides of the angle.

In the above figure LDAE is the same as LBAC, because AD is the

same as it and it is the same as AC.

Notice that an angle goes out infinitely far in two direcT

tions, because its sides are rays, rather than segments. The

figure on the left, below, determines an angle uniquely, but is

not all of the angle; to get all of the angle, we have to extend

the segments AB and AC getting rays AB and AC, as on the right.

A

8 0



Definitions. If A, B, and C are any three non-collinear

.:.p.oints, then the union of the segments 5, BC and AC is called

triangle,

'and is denoted by AABC; the points A, B and C are called its

tVertices, and the segments AB, BC and AC are called its sides.

:Every triangle determines three angles; AABC determines the

',angles LpAc, LABC and LACB, which are called the angles

of AABC. For short, we will often write them simply as

.2LA, LB, and Lc.

Note that whileAABC determines these three angles, it does

not actually contain them. Just.as a school does not contain

its awn graduates, so a triangle does not contain its own angles,

because the sides of a triangle are segments, and the sides of

Ei.n angle are rays. To draw the angles of a triangle, we would

Thave to extend the sides of the triangle to get rays, like this:

VP

There usually is not much point in doing this, however,

because it is plain what the angles of a triangle are supposed

to be.
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The interior of an angle consists of all points that lie

inside the angle; and the exterior of an angle consists of all

the points that lie outside, like this:

ExteHor

Exterior
Exterior

We can state this more exactly as follows:

Definitions. Let LBAC be an angle lying in plane E.

A point P of E lies in the interior of 2:BAC if (1) P and

B are on the same side of the line 16 and also (2) P and C are

on the same side of the line AB. The exterior of Lstic is the

set of all points of E that do not lie in the interior and do

not lie on the angle itself.

You shodiddileck carefully to make sure that this really says
IN

what we want say. In the figure, P is in the interior,
<->

because P and B are on the same side of AC and also P and C are

on the same side of AB. Q is in the exterior, because Q and C

are not on the same side of AB. R is in the exterior, because
4-> 4->

R is on the "wrong side" of both of the lines AB and AC. S is in
4->

the exterior because it is on the "wrong side" of AC.

Notice that we have defined'the interior of an angle as the

intersection of two half-planes. The half-planes-look

8 2
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Here one of the half-planes is cross-hatched horizontally, the

other is cross-hatched vertically, and the interior of LBAC is

cross-hatcr.ad both ways.

The interior of a triangle consists of the points that lie

inside it, like this:

More precisely:

Definitions. A point lies in the interior of a triangle if

it lies in the interior of each of the angles of the triangle.

A point lies in the exterior of triangle if it Iies in the

plane of the triangle but is not a point of the triangle or of

its interior..

You should check carefully to make sure that this really

says what we want it to say.

8 3
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Problem Set 4-1

1. Complete this definition of angle: An angle is the

of two which have the same end-

point, but do not lie in the same

2. Complete *This definition of triangle: A triangle is the

of the three joining each

pair of three

3. Are the sides AC and AB of

4ABC the same as the sides

of LA? Explain.

A
4. Is the union of two of the angles of a triangle the same

as the triangle itself? Why?

5. Into how many regions do the angles of a triangle separate

the plane of the triangle?

6. Complete:

Lp = LNPS =LMPR

7. Name the angles in the figure.

8. How many angles are determined

by the figure? Name them. How

many may be named using the

vertex letter only?

[sec. 4-1]
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9. Name the angles in the figure.

(There are more than six.)

10. Name all the triangles in the

figure.(There are more than

eight).

11. a. Name the points of the

figure which are in the in-

terior of LCBA.- K M
b. Name the points of the

figure in the exterior

of L.B.

12. Is the vertex of an angle in the interior of the angle?

in the exterior? Explain.

13. Is the interior of an angle a convex set? is the exterior?

14. Is a triangle a convex set?

15. Is the interior of a triangle a convex set? is the exterior?

16. a. Can a point be in the exterior of a triangle and in the

interior of an angle of the triangle? Illustrate.

b. Can a point be in the exterior of a triangle and not

in the interior of any angle of the triangle? Illustrate.

17. GivenzNABC, and a point P. P is in the interior of LBAC

and also in the interior of LACB. What can you conclude

about point P?

18. Given AABC and a point P. P and A are on the same side of

gZ. P and B are on the same side of itt

D

H

[sec. 4-1]
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a. Is P in the interior of LACE?

b. Is P in the interior of AABC?

19. Carefully explain why the following statement is true:

If a line m intersects two sides

of a triangle ABC in points

D and E, not the vertices of the

triangle, then line m does not

intersect the third side.

(Hint: Show that A and B are

in the same half-plane.) ,

4-2. Remarks On Anles.

What we have presented in this chapter is the simplest form

of the idea of an angle. According to ourdefinttion, an angle

is simply a set which is the union of two non-collinear rays,

like this:

Angles, in this sense, will be quite good enough for the purposes

of this course. Later, you will see the idea of an angle in var-

ious other forms. Here we explain these other forms briefly,

merely in order to avoid confusion in case you may have heard of

them already.

(1) In the first place, we sometimes think of an angle as

being obtained by rotating a ray from one position to another.

In this case, one ray is the initial side, and the other is the

terminal side. Thus we would consider the two angles below as

being different, because the rotations are in two different

directions:

8 6
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The first is called a positive angle; the rotation is counter-

clockwise. The second is a negative angle; the rotation is

clockwise.

(2) People sometimes speak of straight angles, which look

like this:

Here the rays it and Kt are considered to form ..yje, even

though A, B, and C are collinear.

(3) Finally, we sometimes distinguish between an ordinary

angle and a reflex angle having the same rays as its sides. The

double-headed arrow below is supposed to indicate a reflex angle:

These complications, and various others of the same sort,

will not be o...2;ed in this book, because they will not be needed.

For example, the angles of a triangle are never reflex angles,

and there is no reasonable way to decide in which direction they

should be considered to go. Not until we get to trigonometry do

these fancy angles become necessary and important.

87
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1-13. Measurement Of Angles.

Angles are usually measured in degrees, with a protractor.

With the protractor placed as in the figure below, with its edge

on the edge of the half-plane H, we can read off the measures of

a large number of angles.

.A

Figure A.

The number of degrees in an angle is called its measure. If

there are r degrees in the angle 2:XAY, then we write

m / XAY = r.

For example, in the figure. we read off that

m.L.PAB = 10,

m / QAB = 40,

m / RAB = 75,

m / SAB = 90,

m / TAB . 105,

and so on.

than this.

Of course, the raya U.:-t are drawn form_more angles

By subtraction, we can see that

m / QAP . 40 - 10 = 30,

m LSAR = 90 - 75 = 15,

and so on.

[sec. 4-3]
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Since m / QAB = 40, we speak of LQAB as a 400 angle and

we indicate its measure-ln a figure like this:

A
But we don't need to use the degree sign when we write mLQAB = 40,

_because as we explained at the outset, m LQAB means the number

of degrees in the angle.

Notice that in Figure A there is no such thing as the angle

LCAB, because the rays it and Kt are collinear. But we notice
-->

that the ray AC corresponds to the number 180 on the number-scale

of the protractor, and the ray it corresponds to the number 0.

Therefore we can find m LCAU by writing

m LCAU = 180 - 130,

= 50.

Similarly,

m LCAQ = 180 - 4o,

The following postulates merely summarize the facts about

protractors that we have just been discussing. Each of them is

illustrated by a figure.

Postulate 11. (The Angle Measurement Postulate.)

To every angle LBAC there corresponds a real number

between 0 and 180.

A

mLBAC=r

Definition. The number specified by Postulate 11 is

called the measure of the angleand written as m LBAC.

8 9
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Postulate 12. (The Angle Construction Postulate.)

Let Kt be a ray on the edge of the half-plane H. For

every number r between 0 and 180 there is exactly one

ray Al., with P in H, such that m LPAB = r.

Postulate 13. (The Angle Addition Postulate.)

If D is a point in the interior of LBAC, then

mLBAC = m LEAD + m

A
In.was on this basis that we computed the me9.sures of angles

by subtraction, with a protractor placed with its edge on the
-->

ray AB. (r/ DAC = m/ BAC - mLBAD.)

Two angles form a linear pair if they look like this:

[sec. 4-33
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That is:

Definition. If Et and AC are opposite rays, and AD is

another ray, then LBAD and / DAC form a linear pair.

Definition. If the sum of the measures of two angles is 180,

then the angles are'called supplementary, and each is called a

supplement of the other.

Hence the name of the following postulate.

Postulate 14. (The Supplement Postulate.)

If two angles form a linear pair, then they are

supplementary.

[sec. 4-3]
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Problem Set 4-3

A
1. Using the figure, find the value of each of the following:

0

a. m /FAB.

b. m LEAB.

c. m LMAC.

d. m LFAE.

e. m LGAE.

f. m LMAN.

g. m LEAD.

h. m LFAG + m LGAH.

3. m LGAF + m /FAL

J. m LMAB - m LFAB

k. m LHAB m /DAB..

1. m LNAE - m LNAH.

2: With continued practice you should be able to estimate the

size of angles fairly accurately without using a protractor.

Do not use a protractor to decide which of the angles shown

have measures within the indicated ranges.

9 2
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Match the corresponding pairs:

a .

b.

c .

d.

m. 15 < x < 35.

n. 70 < x < 90.

p. 80 < x < loo.

q. 45 < x < 60.

3. Using only a straightedge and not a protractor, sketch ang].es

whose measures are approximately 30, 150, 45, 60, 135, 90.

Then use your protractor to check your sketches.

4. On the edge of a half-plane, take a segment Kifi about 3 inches

long. At A draw ray n in the half-plane forming LBAC of

58°. At B draw ray Tilt in the same half-plane forming LABD

of 720. Measure the remaining angle of the triangle formed,.

5. In the figure,

a. m LBHF + m LGHF

b. m LGFH + m / BFH = mL.

6. In the figure,

a. mLXZK + mLKZR + m/ YZR = m/

b. m/ XZR m/ RZK = 111L

c. m/ XZY - mt...XZK

d. If Y, R, K and X are collinear,

then m/ YRZ mLZRX = ?

[sec. 4-3]
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7. In the figure, AB and CD

intersect forming four angles.

Using the indicated measure,

find a, b and c.

8. Determine the supplement of each of the following:
1100, 90°, 36o, 15.5o, no, (180 -

n)o, (90 n)o.

9. If one of two supplementary angles has a measure 30 more

than the measure of the other, what is the measure of each

angle?

10. If the measure of an angle is twice the measure of its

supplement, find the measure of the angle.

11. The measure of an angle is four times the measure of its

supplement. Find the measure of each angle.

12. a. Given a ray AC lying on t adge of a half-plane H, and

a number r between 0 and 180. In how many ways can you
-->

construct a ray AB in H such that mLBAC = r? Why?

b. Given a ray AC lying in a plane E, and a number r between

0 and 180. In how many ways can you construct a ray a

in E such that mLBAC = r? Why?

4-4. Perpendicularity, Right Arales, and Congruence of Angles.

Definitions. If the two angles of a linear pair have the

same measu, then each of the angles is a right angle.

[sec. 4-4]
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Since r r = 180, by the Supplement Postulate, we see that

a ray-Lb. angle is an angle. of .90°. This can be regarded as an

alternative definition of a right angle; it is equivalent to our

first definition.

In terms of right angles it is easy to define perpendicularity

of any combination of line, ray or segment. In applying the

following definition remember that a ray or a segment determines

a unique line which contains it.

Definition. Two intersecting sets, each of which is either

a line, a ray or a segment, are perpendicular if the two lines

which cvntain them determine a right angle.

Definition. If the sum of the measures of two angles is

90, then the angles are called complementary, and each of them

is called a complement of the other. (Compare thit with the

definition of supplementary angles, just before the statement

of the Supplement Postulate.)

An angle with measure less than 90 is called acute, and an

angle with measure greater than 90 is called obtuse.

Obtuse

/7-
Acute

Definition. Angles with the same measure are called

con ruent angles.

That is, / BAC-andLPQR are congruent if m/ BAC = m/_PQR.

In,this case we write

/ BAC I'LPQR.

Notice that the equation m/ BAC = m/'PQR and the congruence

/ BAC / PQR are completely equivalent; we can replace one by

the other any time we want to.

9 5
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The following theorems are easy to prove, if we remember*

clearly what the words mean:

Theorem 4-1. If two angles are complementary, then both

of them are acute.

Theorem 4-2. Every angle is congruent to itself.

Theorem 4-3. Any two right angles are congruent.

Theorem 4-4. If two angles are both congruent and supple-

mentary, then each of them is a right eagle.

(Hint: Let r be the number which is the measure of each of the

two angles, and then find out what r must be.)

Theorem21=5,. Supplements of congruent angles are congruent.

Restatement: If (1) LB I'LD, (2) LA and LB are

supplementary and (3) Lc and / D are supplementary, then

( 4 ) LA =

r°

B A DC
Proof: The statement that LB ..LD means that mLB and

m.L.D are the same number r, as in the figure. Since LA and
LB are supplementary, it follows that

.mLA . 180 - mLB . 180 - r.

For the same reason,

mL.0 . 180 - 11ILD = 180 r.

Therefore m/ A = m/ C, which means Mat LA t4Z._.C.

You must not conclude from the above picture that supplement-

ary angles must necessarily be placed beside one another in a way

that makes it evident that their measures add up to 180.

9 6
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The following picture also serves to illustrate Theorem 4-5.

In drawing pictures to illustrate theorems or problems you should

realize that the figure in the book is not the only correct one,

and you should try to make your picture different from the one

given in the book.

Theorem 4-6. Complements of congruent angles are congruent.

The proof of the theorem is exactly analogous to the pre-

ceding proof, and you should write it out for yourself.

When two lines intersect, they form four angles, like this:
2

4
Ll and L3 are called vertical angles, and L.2 and LA are also

called vertical angles. More precisely:

Definition. Two angles are vortical 2ales if their sides

form two pairs of opposite rays.

It looks as if thess. pairs of vertical angles ought to be

congruent, and in fact this is what always happens:

Theorem 4-7. Vertical angles are congruent.

3

Proof: Given that AC and it are opposite rays, and it and a are

oppositc rays, so that LI and L2 are vertical angles. Then

LI and L3 are supplementary, axid L.? and L3 are supplementary.

[sec. 4-4]
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SinceL3 is congruent to itself, this means that Ll and 2:2

have congruent supplements. By Theorem 4-5, Li ;" L2, which

was to be proved.

Theorem 4-8. If two intersecting lines form one right

angle, then they form four right angles.

You should be able to supply the proof.

Problem Set 4-4

1. a. In a plane, how many perpendiculars can be drawn to a

line at a given point on the line?

b. In space, how many perpendiculars can be drawn to a line

at.a given point on'the line?
-*

2. If OR and OS are opposite rays and a is a ray such that
**

m LRON = mi....SON, what can you conclude about It and RS?

Explain.
-a

In half-plane H, Rt and XA are

opposite rays, m L.RXB = 35 and

mZ_RXS = 90.

a. Name a pair of perpendicula:o

rayc, if any occur in the

figure.

b. Name a pair of complementary

angles, if any-occur in the

figure.

c. Name a pair of vertical angles,

if any occur in the figure.

d. Name two pairs of supplementary

angles in the figure.

[sec. 4-43
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4. Determine the measure of a complementary angle for each of

the following:

a. 100. d. x

b. 80°. e. (90 - x)°.

c. 44.5°. f. (180 - x)°.

5. a. If two angles with the same measure are supplementary,

what is the measure ofeach?

b. If two angles with the same measure are complementary,

what is the measure of each?

6. a. If two lines intersect, how many pairs of vertical angles

are formed?

b. If the measure of any one of the angles in (a) is 70,

what is the measure of each of the others?

c. If all of the angles in (a) are congruent, what is the

measure of each?

7. If one of a pair of vertical angles has a measure of r,

write the formulas for the measures of the other three

angles formed.

8. In half-plane H, a and GA are opposite rays,

m LAGB = m LBGC, and

m LCGD = m LDGE.
Find m LBGD.

9. Prove Theorem 4-1.

10. Prove Theorem 4-4.
->

11. Given: In the figure for Problem 8, GBa_ GD and GA and GE

are opposite rays.

Prove: LAGB and LDGE are complementary.

9 9
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12. Given: In plane E, lines 41.3, T Q
R,
4* lk 4*
P hQ, MT intersect at O. E
TM...L.. AB. A a°

Prove: b + g + d = a.

9 1

13. If OA and OB and OC are three different rays in a plane,

no two of them opposite, indicate true or false for each

of the following statements and explain your answer.

a. m LAOB + m LBOC = m LAOC.

b. m LAOB + m LBOC + m LAOC = 360.

14. The measure of an angle is nine times that of its supplement.

What is the measure of the angle?

15. A layout drawing is a plane drawing which can be folded to

form the boundary of a given solid. Below is pictured a

cube and a layout drawing for it.

T-
1

(Dotted lines indicate folds.)

Use your imagination, your ruler and your protractor to

make a layout drawing for each of the figures below. Then

cut out your drawing, fold on dotted lines, and tape to-

gether. Use cardboard or heavy paper for a rigid figure.

a. A pyramid whose base is

a square with 2".sides

and whose other faces

are isosceles triangles

with 60° base angles.

[sec. 4-4]
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(Problem 15 continued)

b. A prism whose bases are

pentagons with 1 inch

sides and 108° angles,

and whose height is

2 inches.

II

Review Problems

1. What tool is used to measure angles?

2. To every angle there corresponds a real number between

and , called the measure of the angle.

3. An angle with a measure of less than 90 is

4. Two angles formed by the union of two opposite rays and a

third ray all with the'same end point are a

of angles.

5. If the sum of the measure of two angles is 90, then each is

called a of the other.

6. An angle with a measure greater than 90 is called

7. Angles with the same measure are

8. If two angles are both congruent and supplementary, then each

of them is a .

9. Supplements of congruent angles are

10. If two angles are complementary, then each of them is

11. An angle is the of two

end point.

12. If X, Y, Z are three points, the union of the three

segments connecting them in pairs is a .

13. A point X is in the interior of RST if points R and

ilie on the same side of S and if points X and

lie on the same side of

14. If the sum of the measures of two angles is they are

which have a common

101
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called complementary and if the sum is they are

called

15. Two opposite angles formed by two intersecting lines are

angles. They are always congruent.

16. At and AC are opposite rays. The points E, F, and H are

on the same side of It. Points E and H are on opposite

sides of g. Points A and H are on the same side of

g. g is _L AC and BE _L BH. m/ FBE = 20. Draw the

figure and find:

a. m / EBA. b. m / FBH. c. m LEBC.

17. Given:

mLBCD . 90,
mLBOC = 50,

m LDCO = 25,

m LDA0 = 45.

Find:

a. m LDOC.

b. mLBCO.
c. m LD0A.

d. m LA0B.

18. If one of two supplementary angles has a measure of 50 more

than the measure of the other, what is the measure of each

angle?

19. The measure of an angle is five times that of its complement.

Find the measure of_each angle.

20. Under what conditions are the angles of a linear pair.

congruent?

21. Is there a point in the plane of a triangle such that the

point is neither in the exterior nor the interiarof a

triangle and neither in the interior nor the exterior

of any of its angles?

22. Is the measure of an angle added to the measure of an angle

the measure of an angle? Explain.

102



23. Could the interior of a triangle be considered as the

intersection of three half planes? Illustrate.

24. How many triangles are in this figure?

25. Does m LBAC = mLBAE?

26. Does LpAc = LBAE?

27. Is LABE supplementary to LEBC?

28. How many angles are indicaed in the

drawing?

Problems 24 - 28.

29. Explain carefully why the following

If a line m intersects 2 sides of a

points U and V, not the vertices of

line m does not intersect the third

statement is true:

triangle ARST in

the triangle, then

side.

30. Given in the figure Lx Ly. Prove: Lz Ls.
A

z x

31. If you were given that La Lb and that / x is supplementary

to La and that / y is supplementary to Lb, what theorem or

postulate would you use to prove that Lx =Ly?

32. The Angle Measurement Postulate places what limitation on

angle measures?

-33. Is the following a-correct restatement of the Angie'

Construction Postulate: Given a ray xl and a number k

between 0 and.180 there is exactly one raY-XP such that

m LPXY = k? Explain.

103
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34. By giving its name, or by stating it in full, give the

postulate which seems to you to be most appropriate in each

of the following cases, As a reason for the statement.

A

m / DAC m / BAC - m LBAD. r + s = 180.

35. Is the following statement always true?

If It and n intersect at 0, then LAOC LBOD.

101



Chapter 5

CONGRUENCES

5-1. The Idea of a Congruence.

Roughly speaking, two geometric figures are congruent if

they have exactly the same size and For example, in the

figure,below, all three triangles are congruent.

One way of describing the situation is to say that any one of

these triangles can be moved onto any other one, insuch a way

that it fits exactly. Thus, to show what we mean by saying that

two triangles are congruent, we have to explain what points are

supposed to go where. For example, to move CiABC onto A DFE,

we should put A on E, B on F, and C on D. We can

write down the pairs of corresponding vertices like this:

.A E

B F

C D.

To describe ,the congruence of the first triangle and the third,

we should match up the vertices like this:

A

B

C

How would you match up the vertices to describe the congruence

of the second triangle with the third?

A matching-up scheme of this kind is called a one-to-one

correspondence between the vertices of the two triangles. If

the matching-up scheme can be made to work -- that is, if the

105
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triangles can be made to fit when the vertices are matched up in

the prescribed way -- then the one-to-one correspondence is

called a congruence between the two triangles. For example, the

correspondences that we have just given are congruences. On the

other hand, if we write

A F

B D

C E,

this does give us a one-to-one correspondence, but does not give

us a congruence, because the first and second triangles cannot be

made to coincide by this particular matching-up scheme.

We can write down one-to-one correspondences more briefly, in

one line. For example, the correspondence

A

B. F

C D,

which is the first example that we gave, can be written in one

line like this:
ABC EFD.

Here it should be understood that the first letter on the left

corresponds to the first letter on the right, the second.corres-

ponds to the second, and the third to the third, like this:
ABC EFD

L 4 i

Let us take one more example.

106
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These two figures are of the same size and shape. To show how one

can be moved onto the other, we should match up the vertices like

this:

A H

B G

C F

D ---- E.

These two figures are congruent, because the correspondence that

we have written down is a congruence, that is, the figures can be

made to fit if the vertices are matched in the given way. For

short, we can write the congruence in one line, like this:

ABCD HGFE.

Notice that the order in which the matching pairs, are written

does not matter. We could have written our list of matching

pairs this way:

B G

C F

A --- H;

and we could have described our one-to-one correspondence in one

line, like this:

DBCA EGFH.

All that matters is which point is matched with which.

It is quite possible for two figures to be congruent in more

than one way.

107
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Here the correspondence

ABC ---- FDE

is a congruence, and the correspondence

ABC FED

is a different congruence between the same two figures.

Obviously LSABC coincides with itself. If we agree to match

every vertex with itself, we get the congruence

ABC ABC.

This is called the identity congruence. There is another way of

matching up the vertices of this triangle, however. We can use

the correspondence
ACB.

Under this correspondence, the figure is made to coincide with it-

self, with the vertices B and C interchanged. This is not

possible for all triangles by any means; it won't work unless at

least two sides of the triangle are of the same length.

Problem Set 5-1

In the problems of this section, there are no tricks in the

way that the figures are drawn. That is, correspondences that

look like congruences when the figures are measured with reason-

able care really are supposed to be congruences. In,Mais section

we are not trying to prove things. We a:,,e merely trying to learn,

informally, what the idea of a congruence is all about.

1. Below there are six figures. Write down as many congruences

as you can, between these figures. (Do not count the iden-

tity congruence between a figure and itself but recall that

there is a congruence between a triangle having two congruent

sides and itself that is not the identity.) You should get 6

congruences in all. (One congruence is DEF

108
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2. AnsWer as in Problem 1:

3. Answer as in Problem 1:

Y H

109
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4. Answer as in Problem 1:

5. Name the figures that do not have a matching figure.

a .

d.

1 10

(see. 5-1]

f.



, Which pairs of the following figures are congruent?

e.

A

111
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f.

h.

7. The triangle below is equLlateral. That is, AB = AC = BC.

112,
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For the triangle on the preceding page, write down all

congruences between the triangle and itself, starting ,rith

the identity congruence ABC (You should get more

than four congruences.)

8. Write down all of the congruences between a square and itself.

A

9. a. If two figures are each congruent to a third, are they

congruent TA) each other?

b. Is a figure congruent to itself?

c. Can a triangle be congruent to a square?

d. Are the top and bottom facez of a cube congruent?

e. Are two adjacent fac- of s cube congTuent?

f. Are the top and bottom faces, of a rectangular block, such

as a brick, congruent?:

g. Are two adjacent face... cri: brick congruent?

10. Pick out the pairs of cong.7-,7-:t figures.

a.

[sec. 54)

C.

g.
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11. Write down the four congruences of this figure with itself.

12. Suppose A, B, and C are three points of a line as shown with

AB = BC.

7

a. Describe a motion of the line that takes A to where B

was. Does it necessarily take B to C?

b. Describe a motion of the line that dnterchanges A and C.

13. Under what conditions can the following pairs of figures be

made to coincide by moving one in space without changing its

size and shape? (It is understood that this moving is done

abstractly in the mind. One figure can move through another

so that a solid can be moved onto another solid of the same

size and shape. For example, one segment can be moved to

coincide with another if they have the same length. One

sphere can be moved to coincide with another if their radii

are the same length.)

a. Two segments.

b. Two angles.

c. Two rays.

d. Two circles.

e. Two cubes.

f. Two points.

g. Two lines.

111
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14. Given a circle containing three points A, B, C as shown, with

the arc from A to B the same length as the arc from B

to C.

a. Describe how the circle may be moved to take A to where

B was and B to where C was.

b. Describe how the circle may be moved to leave B fixed

but to interchange A and C.

15. Suppose that the following ornamental frieze extends infin-

itely in both directions, as a line does.

a. Describe motions of two different types that induce con-

gruences of the frieze with itself. How many such con-

gruences are there altogether?

b. Do the same for this frieze.

FFPFPF
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16. Which of the following figures can be fitted onto each other?'

For each matched pair, tell whether you must turn the'figure:

over in space as well as slide and rotate it in a plane to

make it fit on the other so that all segments fit.

a. b.

d . e.

17. The figure below is a five-pointed star.

Write down all of the congruences between the star and itself;

To save time and paper, let us agree that a congruence for

this figure is sufficiently described if we say where,the .

points A, El, C, D, E of the star are supposed to go. For ex-

ample, one of the congruences that we are looking for can be

written as ABODE -----BCDEA.

1 1
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5-2. Congruences between Triangles.

In the preceding section, we have explained the basic idea of

what a congruence is. Let us now give some mathematical defini-

tions so that we can talk about congruence in a careful way, in

terms of distance and angular measure, instead of having to talk

loosely about things falling on each other.

For angles and segments, it is easy to say exactly what we

mean:

Definitions. Angles are congruent if they have the same

measure. Segments are congruent if they have the same leng=h.'

The first definition above is merely a repetiion from Section

4_3

Analogous to Theorem 4-2 for angles we have a theorem for

segment-7.:

Ti-r=orem 5-1. Every segment is congruent to itself.

We sometimes refer to these two theorems by the term identity

congrue-n-e

Jr:Ye as we indicate that L A and L B are congruent, by

writing LA LB, so we may write

to indicate that the segments AB and CD are congruent. In the

table below, the equation on the left and the congruence on the

right in each line may be used interchangeably:

1. m LA = m LB. 1. LA

2. AB = CD. 2. AB-= CD.

Each of the equations on the left is an equation between numbers.

The first says that m LA and m L B are exactly the same

number. The second says that the distance AB and the distance

CD are exactly the same. number.

Each of the congruences on the right is a congruence between

geometric figures. We do not write = between two geometric fig-

ures unless we mean that the figures are exactly the same, and

117
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occasions when we mean this are rare. One example is thin:

Here it is correct to write

LEAC = LEAD,

because LBAC and LEAD are not Merely congruent, they are ex-

actly the same angle. Similarly, AB and 13-K are always exactly7-

the same segment, and so it is correct to write AB = BA.

Consider now a correspondence

ABC-.-+-DEF

between the vertices of two triangles AAEC and ADEF.

This automatically gives us a correspondence between the sides of

the triangles, like this:

AC-DF
BC ---EF

and it gives us a correspondence between the angles of the two

triangles, like this:

Z. A LD
LB -4-4- LE
LC ----I- LF.

118 .
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We can now state the definition of a congruence between two

triangles.

Definition. Given a correspondence

ABC DEF

between the vertices of two triangles. If every pair of corres-

ponding sides are congruent, and every pair of corresponding

angles are congruent, then the correspondence ABC---DEF is a

congruence between the two triangles.

You should read this definition at least twice, very care-

fully, to make sure that it says what a definition of the idea of

a congruence between triangles ought to say.

There is a shorthand for writing congruences between triangles.

When we write

LA LD,

this means that the two angles LA and LD are congruent.'(That

is, mLA=mLD.) Similarly, when we write
AABC ADEF,

this means that the correspondence

ABC DEF

is a congruence. Notice that this is a very efficient shorthand:

the single expression AABC ADEF tells us six things at once;

namely,

AB = DE

AC = DF

BC = EF

inL. A = mLD
raLB = mLE
mLC =

AC DF

LA 2-.."

LB
LC 7...=" LF.

In each of these six lines, the equations on the left and the con-

gruences on the right mean the same thing, and we can choose

either notation at any time, according to convenience. Usually

we will write AB = DE, instead of AB If DE, simply because it is

easier to write. For the same reason, we will usually write

LA I-fLD instead of m.r.A =

119
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It is sometimes convenient to indicate a congruence graph-

ically by making marks on the corresponding sides and angles,

like this:

AAEC ADEF

We can also use this method to indicate that certain corresponding

parts of two figures are congruant, whether or not we know.about

other parts.

The marks in the figure indicate that (1) AB = DE, (2) AC = DF

and (3) mLA =

, Question: Would it be correct to write AB 1.1 DE, or

LA = el)? Why or why not?

It seems pretty clear, in the above figure, that the congru7

ences we have indicated are enough to guarantee that the corres-

pondence AEC,...---.-DEF is a congruence. That is, if these three

pairs of corresponding parts are congruent, the triangles must

also be congruent. In fact, this is the content of the basic con-

gruence postulate, to be stated in the next section.

120
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ABF MRQ. Complete the following list by telling what

should go in the blanks.

LA 2=- LM.

LF FB

AB- MQ

AABR AFBR. List the six pairs of corresponding, con-

gruent parts of these two triangles.

3. AMRK 2. AKIW. List the six pairs of corresponding, con-

gruent parts of these triangles. (It is not necessary to have

a picture but you may make a sketch ir you wish.)

4 ARQF AABX. List the six pairs of corresponding congruent

parts of these triangles. Do not use a figure.
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5. AAZW ABZW. List the six pairs of corresponding, con-
.

gruent parts of these triangles.

6. Here is a list ot the six pairs of corresponding parts of two

congruent triangles. Give the names of the two triangles that

would fit in the blanks below..

AB LA M.

B K.

1-17 TT. z z F.

A = L .
7. If AABC AXYZ and ADEF AXYZ, what can be said about

the relationship of AAB(;' to ADEF? State a theorem gener-

alizing this situation.

a. Using ruler and protractor, draw a triangle ABC ln which

AB is 3 inches long, BC is 2 inches long and angle

B is 500 Compare your triangle with those of other mem-

bers of the class.

b. Draw AABC in which AC is 3 inches long, BC is 4

inches long and angle C is 700 . Compare triangles.

c. Draw AAEC with AB 3 ,_inches long and BC 2 inches

long. Make LB any size that suits, your fancy. Compare

triangles.

d. If these three exercises suggest to you an idea concerning

a congruence between two triangles, try to state or write

this idea for triangles in general.

1 2.2

[sec. 5-2]



115:

9. a. Given that AABC and ADEF do not intersect, and that

X is a point between B and C. Tell which of the sym-

bols =, 1. may be iilled in the blanks to make the state-

ments meaningful and possibly true.

1. AABC ADEF.

P. m LA m L D.

3. II DE.

4. BC EF.

5. L B

6. LABX L Al3C .

7. m ABX m 2:EDF.

b. Which of the blanks could have been filled with either

or = ?

c. If AB had been the same segment as DE but if C were

a different point than F, which blank could have been

filled by = that should otherwise have been filled by 1. ?

5-3. The Basic Congruence Postulate.

To get at the facts on congruences of triangles, we need one

new postulate. In the, name of this postulate, S.A.S. stands for

Side Angle Side.

Postulate 15. (The S.A.S. Postulate.) Given a

correspondence between two triangle6 (or between a

triangleband itself). If two sides and the included

angle of the first triangle are congruent to the

corresponding parts of the second triangle, then the

correspondence is a congruence.

.To illustrate this, we repeat.the previous figure.
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The postulat- means that if

AC Id DT

and

LA Id LD,

as indicated in the figure, then

ZIAEC LOEF;

that is, the correspondence ABC.0-4-DEF is a congruence.

It is very important to notice that in the S.A.S. Postulate,

the given angle i3 the angle included between the two given sides,

like this:

Under these conditions, the S.A.S. Postulate says that the corres-

pondence ABC---DEF is a congruence. If we knew merely that some

one angle and some two sides of the first triangle were congruent

to the corresponding parts of the second triangle,.then it would

not necessarily follow that the correspondence was a congruence.

For example, consider this figure:

Here AB = DE, LA 1! LD, BC = EF. Note that LA and LD are
not included by the pairs of congruent sides. This'correspondence

'is certainly not a congruence,,becaupe it matches. AC with DF,.

(sec. 5-31
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d!B with LE, and LC with LF. Since these are not congruences:,

.thS definition'of congruence between triangle's is nOt satisfied.

5-4. Eating. Your Own Proofs.

You now have enough basic material to be able to write real

geometric proofs of your own. .From now on, writing your own

proofs will be a very important part of your work, and the chances

are that it will be more fun than reading other people's proofs.

Let us take a couple of examples, to suggest how we go about

finding proofs and writing them up.

Example 1. If two segments bisect each other, the segments Join-

ing the ends of the given segments are congruent.

Given: AR and BH bisect each other at F.

To prove: AB .q.-2 RH.

Starting to work on a problem like this, we should.first draw

a figure and letter it, using a capital letter for each vertex.

Then, state the hypothesis and conclusion in terms of the letter-.

ing of the figure.

Next, we divide the page into two columns as shown, and write

in the headings Statements and Reasons.

All this, of course, isn't going to do us a bit of good un-

less we can think of a proof to write down.

Since our object is to prove two segments congruent, we must

reca11 what we know about,congruent segments. Looking back we can

.find the definition of congruent segments, of congruent triangles,

and the S.A.S. Postulate. These are the available weapons ..4bout

congruent segments in our arsenal, and at this point the search is

short, because our arsenal'is small.

125
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To apply the postul=a, we have to set up a correspondence

:etween two triangles, in-su.th a way that two sides and the'in-

luded angle of the irst ta:.--4:angle are congruent to the corres-

-7onding parts of the secmad triangle From the fIgure, this

correspondence looks as Lf it Qught to

Tw

;777_-m.RFH.

pairz Df sides are C7 t, because we from the given

cWa and ;:ie definition J1 ct that

AT and BF = HF.

about the included an,L,;0 LAFB and LRFH? We need to kna:,

they are congruent, toe And they are, because they are vev-,;:kI

,2.angles. Therefore, bz,--t,::e S.A.S. Postulate, our correspondet.:.

a congruence. The sidez. AB and RH are::orresponding

and so they are congruent. :his is what we wanted to prove.

Written down in the dople-column form, aur proof would look

like this:

Given: AR and BH bisect each other

at F.
A

To prove: AB RH.

Statements

1. AF = RF 1.

2. BF = HF. 2.

3 LAFB LRFH. 3.

4. AAFB 2=1 ARFH. 4.

5. AB =1..' RH. 5.

Reasons

Definition of bisect.

Definition of bisect.

Vertical angles are
congruent.

The S.A.S. Postulate.

Definition of a congruence
between triangles.

This is given merely as a sample of how your work might look.

There is a limit to how "standard" we can expect the form of a

proof to be. For example, in this proof we have indicated con-

gruences between segments by writing AF = RF and BF = HF, and

so on. We could just as well have written AF =2-1. RF, BF 1= HF, and

so on, because in each case the congruence between the segments

and the equation between the distances mean the same thing.

126
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There are only two real,* nont things in writing proofs.

First, what you write shoIL:fIT Nhet 7vou reanymean. Secon.

,the things that yoU really MFT-MOIOLLIC form a complete logi=i,

...explanation of why the thecik

By now, 'you Should ha e :.-tdmL_ and so we- give -our seccad

example in an incomplete form Icar roblem is to fill in the-

blank spaces in such a way as %.c, get; ,proof. H
Example 2.

Given: AH = FH.

HB.bisects LAHF.

To prove: 4!A LF.

Statements

1. AH TTL

2.

3 .

4.

5. LA -1= LF.

Uven.

Definition of the bisector
of an angle.

Every segment is congruent
to itself.

A mistake often made. in proofs is that the student assumes as

true the very thing he is tryilpg 40 lorove to be true. Another

common mistake is to use as a ITE:SOM.ln his proof a theorem which

is actually a consequence of the fact that he is trying to prove.

Such arguments are called circular arguments, and are worthless

as logical proofs.

A particUlarly bad kind of Of==.Lar argument is the use of

the theoreff-we are trying to prove a reason_for one of the

steps in its "proof".

1 47
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Problem Set 5-4,

(Note: In some of the fallowing problems we make use of a square_

A square ABCD is a plame figure that is the union of four con-

'gruent segments AB, BC, CD, DA such that LABC, ZICD, LCDA,

Z DAB are right angles. The square will be discussed in a later

chapter of the text.)

1. In each pair of triangles, if like markings indicate congruent

-parts, which triangLas could be proved congruent by S.A.S.?

a.

e.

f.

g.

128
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2. In the figure it fs

that AE intersezts 3.D at

C , that AC = DC and BC = EC.

Show '(i.e., prove) that

LB LE. Cor7 the follow-

ing proof and supply- the missing

Statements Reasons

1. AC = CD. 1. Given.

2. BC = EC. 2.
3 LACB LDCE. 3. angles are

congruent.

4. AACB 6.DCE. 14. . [Note that
Statement 3 -refers to angles'
and Statement 4 to. triangles,
so that yo =. reason here
should ref, to triangles].

5. -LB LE. 5. Corresponding parts of con-
gruent triangles are

Suppose in this figure

RB HB, Lx y and

B is the midpoint of AF.

Show that ZR LH.

Copy and complete the following proof.

Statements

A

Reasons

3.

Lx Ly. Gi

3. From the definition of mid-.

4.

129 s
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4. a If AET is square and

R is the iit.idpoir of 1.T3,

prnve that RC =

nate preceng

b- What r:71-rs of con=7.1tent

aaute angl:as appea-r In -the

gure? P=ove yc=

5. L this figure A= EE and

m Z x m L.
.3.-7Bow that ra A = in 3.

6. 2.-m. this figure it is given

that m ABH = m FEti,

AB = FB. Prove =

A

7. Prove that if segments AH, R.B bisect e,--r-rth other at point F,

then AFAB AMR.

8. Prove: If the 1-1-rre seg:sers

AD and BC bisect each other,

then AB = DC and AC = DB.

9. a. Given: Squ-e ABaD, R -Ls

the midpoint r-f AB, F is a.

point between and D, C

is a Doint be7h---aen C and -3,

DF = CQ. To RF = E.

b. Are t;....ere -cwc cther poi=s

F' , Q' trz_77e CD net C:In

AD or Jac: RF' = RQE7

Where are rie

10._ Suppo :-... in ttr.::_1--;

AB = and 1-rz. oisec.

ZHA-52. Prove i. p = FE.
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5-17_ Overlappinz Triangles. Using the Fi=e in Statements.

Frequently in geometric figures, the '.7.riangles that we need

to work -with are not entirely separate but overlap, like AAFM

and AFAH in the figure below.

The easiest way to avoid getting mixed up, and making-mistakes, in

dealing with such cases, Is to write dcywn =Ingruences in a. stand-

rd form, like this,

AAFM -2" LOAH.

Check that the correspondence AFMFAH really is a zongruenae,

and then.later,refer back to AAFM:=2-: AFAH when we want to Gan-

clude that two corresponding sides 1-77 corresponding angles)

congruent.

Of course, if yo-c_ dan't see the c',,c7gruences between the over-

lapping triangles, you will have noth-.g to check and =thing to

apply later. To practice up, write aT.L the congruences ttat you

can between triangles c=ntained Jn t.,17 figure atove, if Lt is

given that AR = FR and M, H, are tne. midpoints of the res.-

pective sides.

let us now look .at::a aase..= whih this sort of thing comes

up the proof of a ti-morem.

Given: HA = HF..

HM = HQ.

To prove: FM = AQ.

5-51
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A very common way to prove that two segments are connruent is

to. show that the segments are,corresponding sides of T;ongruent

triangles. If this way can be used successfully here, then the

first thing to do is locate the triangles which contain FM and

A. These are 11:MF and AHQA, and these triangles overlap

quite a bit. Now the problem becomes. one of proving the triangles

congruent. The proof in the double-column form goes Ifke this:

Statenents Reasons

1. HA = HF. 1. Gi7en.

2. LH LH. 2. An Engle is congruent to
It-71=if

3. HM = HQ. 3. Why2

4. A HMF AHQA . 4. wt57?

5. FM = AQ. 5. 'Why?

A strictly logical proof must not depend on a figure hut must

follow from the postulates, the definitions, and the pre'vlously

,proved theorems. But geometers in practice use figures az a matter

of convenience, and readily accept many observable facts without

.a tedious restatement in words, unless sur.h a restatement i eseem,--

tial to clarifying the problem-at hand.

To illustrate, let us lodkat a restatement afExam0e-l.used

previously.

Example 1. Let A, B, F, H and R 11e five mon-amilinear

points lying in a plane. If F is. betrac== A =I a, (2) y

is between B and H, (3) AF = FR, and (/!-': _BF = ET, the= (5)

.

AB = RH. -

This conveys all the information conveyed U1 the figure.= the

left and the notation on the right below.

Given= AR and BE bisect each
:Ither at F.

To 1-nrave: 1" 77

132.
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Notice that (1) tells us that PI and FR are opposite rays, and

(2) tells us that FB and FH are opposite rays. These two

things, taken together, mean that GAFB and LRFH are vertical

angles. (See definition of vertical angles.) This is the sort of

information that we normally read from a figure.

In stating problems in this text we will frequently avoid

tedious repetition by referring to a figure. You can use the fig-

ure to give the collinearity of points, the order of points on a

line, the location of a point in the interior.or exterior of an

angle or in a certain half-plane, and, in general, the relative

position of points, lines, and planes. Thingsyou cannot assume

because "they look that way" to you are the congruence of segments

or angles, that a certain point is a midpoint of a segment, that

two lines are perpendicular, nor that two angles are complementary:

Problem Set 5-5

1.. If in thfs f_Lgure

AC . DB,

LACF -14 /77RE and

FC =:EB,

prove that AF = DE.

2. In this figure BC = ED

AC = AD and

LACE 1: GADB.

Prove 6ACE Z6ADB.

Proof: (Fill in the blanks.)

Statements Reasons

1. BC = ED. 1. Given.

2. CD = DC. 2.

3. BD = EC.

4. AC = AD.

5. LACE LADE.

6.

133

3. Addition, from statements.

5.

6.
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Prove that the diagonals of a

square are of equal length.

(See note preceding Problem 1

of Problem Set 5-4.)

Given: ABFH is a square.

To prove: AF = BH.

4. In this figure LAEW LRHQ.

and F is thc midpoint of BH.

Can you prove 06WBF 06Q141,1M

Explain.

5. a. If ABFH is a square and Wif,

rlY are congruet segments on

the rays AH, BF respectively,

show that 7, BX are congruent.

Restatement:

Given: ABFH is a square.

X, Y are points of AH, ;BF,

respectively.

AX 11! BY.

To prove:

b. In the figure, X is between A and H, and Y is between

B and F. Would the proof be affected if H were between

A and X, and F were between B and Y?

6. Suppose it is given in this ,

figure that AH =, BF, r m

and x = y. Prove that HB = FA.

If in the figure AR J_Rx,

EiRj_RY, AR = RX and BR = RY,

prove that AB = XY.

134
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5-6. The Isosceles Triangle Theorem. The Angle Bisector Theorem..

At the end of Sedtion 5-1 we mentioned the case of matching

up the vertices of a triangle AABC in which at least two .sides

of the triangle are of the same length. This, in fact, is the'

case that we deal with in our first formally stated congruence

*theorem:

Theorem 5-2. If two sides of a triangle are congruent, then

the angles opposite these sides are congruent.

Restatement: Given a triangle AABC. If AB = AC, then

LB 21: LC.

Proof: Consider the correspondence

between AABC and itself. Under this correspoildence, we see that

AB--- AC,

AC

LA ----- LA.

Thus two sides and the included angle of AABC are congruent to

the parts that correspond to them. By the S.A.S. Postulate, this

means that

AABC AACB,

that is, the correspondence ABC-aPACB is a congruence. By the

definition of a congruence between triangles all pairs of corres-..

-.ponding parts are congruent. Therefore

LB 12 LC,

because these angles are corresponding parts.

We now show how the above proof looks in two-column form.

The same figure is used.
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Theorem 5-2. If two sides of a triangle are congruent, then

the angles opposite these sides are congruent.

Given: AABC with

To prove:

Proof:

LB LC.

Stateaents Reasons

1. 1. a:wen

AC 1-1-'

2. LA 2. Identity congruence.

3. LABC ACB. 3. Steps 1 and 2 and the S.A.S.
Postulate.

4. LB If 4. Definition of a congruence
between triangles.

Usually, we will state th=orems in words, as we have stated

Theorem 5-2, and then restate =nem, using notation which will be

the notation of the proof.

Definitions. A triangle with two congruent sides is called

isosceles. The remaining F"-r-i= the base. The two angles that

include the base are base pnET=

In these terms, we ca Jorem 5-2 in this form:
"The base angles of an. ."-e-z-les triangle are congruent."

Definitions. A trianzle whose three sides are congruent is

called equilateral. A triangle no two of whose sides are congru-

ent is called scalene.

Definition. A triangle fs equiangular if all three of its

angles are congruent.

Using:the term equianaz-we state a theorem which readily

follows from Theorem 5-2. Me denote this theorem as Corollary

5-2-1. A morollary is a theorem which is an easy consequence of

another theorem. The proof of :brollary 5-2-1 is left for you to

do.

Corollary 5-2-1. Ever7-eoullatera1 triangle is eqUiangular,

,
In proving theorems for yourself, you will need to make your

own figures. It is imports,r-, to draw figures in such a way that

they remind yau of what you Inow, without suggesting more than you

know. For examTile, the figure given in the proof of Theorem 5-2

13.6
[sec. 576]



129

looks like an isosceles triangle, and this is as it should be,

because the hypothesis of the theorem says that the triangle has

two congruent sides. In the figure for the S.A.S. Postulate, it

looks as if AAEC ADEF, and this is as it should be, because

this is the situation dealt with in the postulate. But it would

not have been good to draw isosceles triangles to illustrate the

S.A.S. Postulate, because this would suggest things that the pos-

t:date doesn't say.

Definition. A ray AD bisects, or is a bisector of, an

angle GBAC if D is in the interior of LBAC, and 4!BAD ZDAC.

-4
Note that if AD bisects LBAC, then m LBAD = m ZDAC

1 m LEAC.

Theorem 5-3. Every angle has exactly one bisector.

Proof: Given LA. By the Point Plotting Theorem we can find

B and C, points on the sides of LA, such that (1) AB = AC.

A

Let D be the mid-point of BC, so that (2) DB = DC. Since

AB = AC, it follows by Theorem 5-2 that (3) LB ;.." GC. (This

follows even though the isosceles triangle AABC is "lying on its

side.") From (1), (2) and (3), and the S.A.S. Postulate it

follows that AABD AACD.

[sec. 5-6)
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Therefore, LBAD LCAD, and so m ZBAD = m LCAD. By the defi-

nition of bisector of an angle, this means that At bisects LBAC.

To justify our use of the word "exactly" we must prove that

is the only, ray having this property. Suppose there is a ray

At also a bisector of LA. Then m LCAD = mLCAE, since each of
1

these equals m LBAC. Applying the Angle Construction Postu-
2

'late to the half-plane with It as edge shows that we must have

= ar, that is, At and Kt stand for the same ray. Hence,

there is exactly one bisector.

The following definitions are useful in discussing properties

of triangles.

Definition. A median of a tria.ngle is a segment whose end-

points are one vertex of the triangle and the.mid-point of the

opposite side.

Definition. An angle bisector of a triangle is a segment

whose end-points are one vertex of the triangle and a point of the

opposite side which lies in the ray bisecting the angle at the

given vertex.

Note that every triangle has three medians and, three angle

bisectors. The figure shows one median and one angle bisector of

&ABC. BM is

A

the median from B, and BT is the angle bisector from B.

Problem Set 5-6

1. In the figure AB = AC. We

start the proof that

Ln. Complete this

proof supplying reasons.

138
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Proof: Statements Reasons

. LABC LACB.

2. Lm is supplementary to
AEC .

n is supplementary to
ACB.

3. Lm= Zn.

1.
2.

3.

2. Given: In the figure FA = FD

and AB = DC .

Prove: AAFB -2= ADFC,

AFEC AFCB.

3. If in the figure EB EC,

prove that LEBA LECD.

4. If AB = AC and DB = DC in

the plane figure, show that

LABD LACD.

5. If AC . AB and CD = BD in

the plane figure, show

LACD LABD.

1 3 9
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Give a paragraph proof rather

than a two-column proof of the

following:

Given: X and Y are the mid-

points of the congruent sides

AU and TU of the isosceles

triangle ABC.

'To prove: LCXY LCYX.

Prove Corollary 5-2-1. (Every equilateral triangle is

equiangular.) A

2Given equilateral triangle

ABC with Q, R and P, the mid-

points of the sides as shown.

Prove that /SPQR is equilateral.

A

Prove the following: If median Fq of &FAB is perpendicular

to side AB, then AFAB is isosceles.

.5-7. The Angle. Side Angle Theorem.

Theorem 5-4. (The A.S.A. Theorem.) Given a correspondence

between, two triangles, (or apetween a triangle and itself). If two

'angles and the included side of the first triangle are congruent

to the corresponding parts of the second triangle, then the corres-

pondence is a congruence.

Restatement: Let ABC-4PDEF be a correspondence between two

triangles. If

then

L A al LD,

AB = DE,

LE,

ABC '=": DEF .



Proof: Statements Reasons
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1. On the ray DF there is a

point F1 such that DF1 = AC.

2. AB = DE and mLA=mL D.
3. AABC ;LI ADEF1.

ABC 24 DEF ' .

5. LABC ZDEF.

6. Z DEF1 DEF .

. EF and Are the same

. F = Fl. ray.

9. AABC ADEF.

1. The Point Plotting Theorem.

2. Given.

3. The S.A.S. Postulate.

4. Definition of a congruence
between triangles.

5. Given.

6. Steps 4 and 5, and the
definition of congruent
angles.

7. Step 6 and Postulate 12.

8. Two lines (EF and DF) in-
tersect in at most one
point.

9. Statements 3 and 8.

The Proofs of the following theorem and corollary left

to the student. The proofs are analogous to those of Theorem 5-2

and Corollary 5-2-1.

Theorem 5-5. If two angles of a triangle are congruent, the

sides opposite these angles are congruent.

Corollary 5-5-1. An equiangular triangle is equilateral.

Problem Set 5.2.

1. In some parts of this exercise there is not enough information

to enable yov to prove the two triangles are congruent even if you

use all other facts that you know, for example, that "vertical

angles are congruent". If it can be proved that the two triangles

are congruent, name the statement (A.S.A. or S.A.S.) supporting

your conclusion; if there is not enough information given to prove

the triangles are congruent, name another pair of congruent parts

that would enable you to prove them congruent. If there are two

possibilities, name both.

141
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a. Given only that. AH AB.

b. Given only that Lc Zd.

c. Given only that
and Lc =`.4 Zd.

La Lb

d. Given only that AR

e. Given only thatLA LM.

f. Given only that LXFY LKFY.

g. Given only that LKYF LKYF.

X

2. In accordance with the specifications at the left, list

data which would correctly fill the blanks.

a. Side, angle, side of AABH:

, HB.

b. Angle, side, angle of AABH:

, HB,

c. Angle, side, angle af ABFH:

, L. HBF. B F
d. Side, angle, side of ABFH: A

BF,

3. Follow the dimctions of Problem 2.

a. Angle, side, angle of AABF:

BF,

b. Side, angle, side of ARAF:

LR,

c. Side, angle, side of ARAB:

,

d. Side, angle, side of ARAB:

BR, ,

e. Angle, side, angle of ARAF:

L R L RFA.

f. Angle, side, angle of AAFB:

LFAB, AF,
14'2,

[see. .5-7)

the



Follow the directions of Problem

a. Side, angle,

ZHBF,

b. Angle, side,

, HB,

c. Side, angle,

HB Ur.
d. Angle, side,

, BF,

e. Side, angle,

AH AB.

side T0f AHFB:

angle of AABH:

side of AHFB:

angle of AHFB:

side of AABH:

If CB bisects GF

in the figure, prove

bisects CB.

2.

and La = Lb

that -G-P

Prove Theorem 5-5.(If two angles:of

4 the sides armosite these angles

are congruert.)

Restatement: If in AABC,

LB LC, then AB = AC.

Hint: Use congruency of the

triangle with itself.

135

A
a triangle

A

ai.e congruent,

B .

7. Prove Corollary 5-5-1. (Every equiangular triangle is equi-

lateral.) Use a paragraph proof.

a. IA' wilic is equilateral, prove AABC ACAB.

9. If the bisector of LG in A FGH is perpendicular to the

opposite side at K,.then triangle FGH is isosceles.

10. Given: The figure with

Lx Ly and

HB HM.

Prove: TIP 114 HR.

143



In the figure, 1711 bisects

LRMS and LRWK LSWK.

.Can it be proved that

LR LS? If so, do so.

1 . Prove that AN 11 RH if AF 24 RB,

LA 2-= LR and Lx zy in

the figure.

a. ,If, in the figure, X is

the midpoint. of AB,

LA _LBEand LAXR 24 LENF,

show..that AF = BR.

b. Do you _need as a part of the-

hypotheaLs7that the figure

lies.in.a plane?

14. Given: La = LI) and

Lit; Ls in the figure.

Prove: GR =.4f. KH.

41
Can the following be proved

on the basis of the informa-

tion given?

Given: LAOB with OA = OB

and P, Q, points on rays

(51, at with AQ = BP.

Prove: OP = O.

16. Prove that RX = RY if it is

given that in the figure: BQ = TS,

m LB = m LT and m LIZ = m LS.

144
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_5-8. The Side Side Side Theorem.

Theorem 5-6. (The S.S..S. Theorem.) Given a correspondence

between two triangles (or between a triangle and itself). If all

three pairs of corresponding sides are congruent, then the corres-

pondence is a congruence.

Restatement: Let ABC40-4.DEF be a correspondence between two .

triangles. If

B then

AB = DE,

AC = DF,

BC = EF,

AABC 2= AlEF.

\
I

Proof:

I

I

E'\
IG

Statements Reasons

-*
1. There is a ray AG such that 1. The Angle Construction

4:CAG sY. 4:FDE, and such that Postulate.
B aQ4 G are on opposite sides
of AC

2. There is a point El on A-C1

such that AE! = DE.
2. The Point Plotting Theorem.

3. AAEtC ADEF. 3. The S.A.S. Postulate.

What we have done, so far, is to

under side of AABC, using the S.A.S.

4. AB = AE!.

duplicate ADEF on the

Postulate.

4. AB = DE by hypothesis;
and DE = AEI, from State-
ment 2.

5. BC = EIC. 5. BC = EF, by hypothesis;
and EF = EIC from State-
ment 3.

6. The segment BEI intersects
the line "AU in a point H.

6. By Statement 1, B and El
are on oppuite sides of
the line AC,

[sec. 5-8]
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We shall now complete the proof for the case in which, H ia

between A and C, as in the figure. The other:Possible cases

:will be discussed later.

.

LABH

ZCBH

LAEIH.

ZCEIH.

7.

8.

Statement 4 and Theorem 5-2.

Statement 5 and Theorem 5-2.

mLABH m.LCBH = mLABC. 9. The Angle Addition Postulate.

= mCAEIC. 10. The Angle Addition Postulate'.

LAIIC LAEIC. 11. Statements 7, 8, 9 and 10.

LABC ZDEF. 12. Stateffiants 3 and 11.

AABC ADEF. 13. Statement 12, the hypothesia.
and the S.A.S. Postulate.

This completes the proof for the.case,in which H is between

A arid C. We recall that H is the point in which the line -BEI
4-,

intersects the line AC. If H = A, then B, A and EI are col--

linear,'and the figure looks like this:

A

In this case LB 1.1 LEI, because the base angles oT:an isos-

-celes triangle are- congruent. Therefore ZB 11 LE, beaause

LE 11 LEI. The S.A.S. Postulate applies, as before, to show

:that ESABC ADEF.

If A is between H and C, then the figure looks Like this:



171.nd we show that LAX 1' LE by subtracting the measures o

angles, instead of by adding them. That is,

mLABC m.LHBC - m.LHBA

and mLAEIC = mLHEIC - m.LHE'A,

so that LAW LAEIC LEIEF,

as before. The rest of the proof is exactly the same as in the

first case.

The two remaining cases, H = C and C 'between A and H,

are similar to the two above.

139

Problem Set 5-8

1. Given: AABF and AAHF with
AH AB and HF BF.

Prove: LHAF LBAF.

2. In the figure, AB FH and

AH FB. Show that Lr Ls.

3. In the figure, AH 24 BR and

AR. Prove that LH 11 LR.

147
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.
Consider the pairs of triangles pictured below. If on the

_-
basis of our information to date they can be proved congruent,

tell which congruency statement you would use.

a.

C. d.

b.

e.

f. Consider ARM and &Zilvi. g.

a
h. Consider: i. ARMW and &ZKH.

j. AWMX and 6MM1C.

WaQ

AW = XM, AB = XR, LA 11,Lx.

148
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A supplier wishes to telegraph a manufacturer for some parts

in the form of triangular metal sheets. In addition to the

thickness, kind of metal, and number of pieces wanted, what

is the least he can say in order to specify the size anq

4HEIN or the triangles? (Consider the possibility of more

than one choice.)

Prove the following theorem:

If the bisector of the angle

opposite the base in an isos-

celes triangle intersects the

base, it is perpendicular to

the base.

Restatement:

Given: AABC with AC = BC and

H a point on AB such that

LACH LECH.

To prove: CH I AB.

7. Prove the theorem that the

median from the vertex of an

isosceles triangle is the bi-

sector of the vertex angle.

. Prove the theorem: The bisector of the vertex angle of an

isosceles triangle is the perpendicular bisector of the base.

Restatement:

Given: CiABF with AF = BF and

H a point on AB such that FH

bisects LAFB.

To prove: AH BH and

FH I AB.

149.
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a. Given: In the figure,

AF 1. BR and

T3F.

Prove: LARF LEUR.

(The gap in RB was left there

so that the figure would not

reveal whether or not RB

intersects AF.)

b. Do you need as part of the

hypothesis that the fig=e

lies in a plane?

10. a. Given: In the figure,

AH = FB, AB = FH, and

RQ bisects HB in K.

Prove: QK = RK.

b. Is the figure necessarily

planar?

.11. Given: square ABCD with P,

Q, R, S the midpoints of WE,

RC, CD, IT, respectively.

Prove : PQS ERQS.

A
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12. Point out why the followihg argument is circular, and there-

by invalid.

Theorem: The base angles of an isosceles triangle are congruent.

Given: ESABC with AB AC.

To prove: LB If LC.

Proof: Statements Reasons

1 . 1. Given.7CE AC.

2. 2. Given.

3. BC CB. 3. Identity.

k. A ABC If AACB. 4. S.S.S.

5 . LB I' LC. 5. Definition of congruent
triangles.

151
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*
13. Point out why the following argument is circular.

Theorem: Given a correspondence between two triangles (or be-

tween a triangle and itself). If two sides and the included

angle of the first triangle are congruent to the corresponding

parts of the second triangle, then the correspondence is a

congruence.

Given: ABC.,-..DEF, EF, LABC LDEF.

Prove: AAEC ADEF.

Proof: Statement Reasons

1. Let AC' be the ray on 1. Angle-Construction

the same side of AB as Postulate.
-is

AC such that LBAC1 LEDF,
4c-s

intersecting BC in CI.
-s

2. LAEC1 LAEC. . C' is on ray BC, from

step 1.

3. LABC LDEF. 3. Given.

4. LABC1 LDEF. 4. Steps 2 and 3.

5. AB DE. 5. Given.

6. LEM' LEDF. 6. Step 1.

7. AABCI ADEF. 7. A.S.A.

8. BcI EF. 8. Corresponding parts.

9. BC EF. 9. Given.

10. ITC' EU. 10. Steps 8 and 9.

11. CI C. 11. Step 10 and the reason

for Step 2.

12. 6ABC ADEF. 12. Steps 7 and 11.

152
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14. If La -2--f Lb and Lm = Lw
in thefigure, prove that

15. If in the figure BF 1 'Fft

at F, BA_LAR at A, and

mLa = m Z b, can you prove

that FB = AB? If so, do so.

1145

16. In HAF, points B and W are on

sides Tri and AH, respectively,

and FW HB 1 AF, and

AW = AB.

Prove: FW = HB.

17. If in the f

Ira bisects

RT bisects

.7g1 bisects

prove that

igure FQ 1i01,

LAQR,

LAU and
LFQR,

BQ 24 HQ.

18. In. AABC and AHRW, AB = HR,

AC = HW and median AF Z.-1 median H.

On the basis of theorems you have

had so far, can you show that

AABC 2,1 AHRW?

If so, do so.

153
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19. Use the diagram Tor Problem 18 and.suppose nowlt is given

that AB = HR, BC -= RW, and median AF = median HQ. Canj*ou--

prove, that AABC AHRW? If po, do so.

. ,Given: Points A, R, S, and C lie on Line L.

R lies between' A and S.

S lies between R and C.

B and D do not lie on L.

AR = CS.
1

AB = CD.

BS = DR.

a. Prove that: LBSA LDRC.

b. Need the points A, R, S, C, B D. be coplanar?

21. In this figure D is the midpoint

of AG, BE, and CF.

Prove that AEFG AECA.

E

. 22. Does the proof for Problem 21 hold even if the segments 135,

115, CD are not coplanar?

23. Given: In the figure, AS

RQ 24 SQ.

Prove that: d!RCA ZSCA.'

154
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24. A tripod with three legs of

equal lengths VA, VB, VC

stands on a plane.

a. What can you say, if any-

thing, about the distances

AB, AC, BC? About the six

angles LVAB, LVAC, LVBA, etc?

b. Answer part (a) if you are

given also that the tripod legs make congruent angles with

each other; that is, LAVE LBVC LAVC.

a. Let AR and BQ bisect each other at M. Prove that

AB = RQ and AQ = RB.

b. Now let CX also be bisected at M. How many pairs of

congruent segments, as in (a) can you find?

c. You probably thought of bx as lying in the same plane as

WIT and IQ. Is this necessary, or do your conclusions in (b)

hold even if CX sticks out of the plane of AR and 787?

Try to visualize the figure in the latter case, and either

draw a picture or make a model.

26. Let &AEC be any triangle and D a point not in the plane of

this triangle. The set consisting of the union of six seg-

ments AB, AC, BC, AD, BD, CD we shall call a skeleton of a

tetrahedron. Each of the six segments is called an edge of

the tetrahedron, each of the four points A, B, C, D is a

vertex, each triangle formed by three vertices is a face,

each angle of a face is a face angle. Edges and faces of a

tetrahedron were considered in Problem 11 of Problem Set 3-1c.

a. How many faces are tnere? How many face angles?

b. Two edges of a tetrahedron are opposite edges if they do

not intersect. They are adjacent if they do intersect.

If each pair of opposite edges are congruent, are any of

the faces congruent? If each pair of adjacent edges are

congruent, what kind of triangles are the faces?

c. Construct an equilateral skeletoh of a tetrahedron with

toothpicks and quici't-drying glue or with soda straws by

threading string through them.

147
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Review Problems for Chapter .2

1. Complete:

If the vertices of two triangles correspond so that every pair

of corresponding angles are and every pair of c6r-

responding are congruent, then the correspondence

is a between the two triangles.

2. Consider the set of abbreviations A.S.A., S.S.A., S.A.S.,

S.S.S., A.A.A.

a. Which subsets are abbreviations of postulates in this

chapter?

b. Which subsets are abbreviations of theorems proved in

this chapter?

3. If ARST is isosceles with RT = ST, what correspondences

are congruences between

the triangle and itself?

4. Given AF = BF and DF = EF,

what would be the final reason

in the most direct proof that

LlAFD ABFE? That &AEC AEMC?

5. Given: In the figure AR = RH

and AF = BH.

Prove: RB - RP.

6. In the figure for Problem 5, if RB = RF and AB = HF, prove

that AR = HR.

156



A person wishes to

find the distance

across a river. He

does this by sighting

a tree, T, On the other

side opposite a point P,

such that FUJI.
'Is.rking the midpoint, M,

of YZ*) he paces a path

p5rpendicular to PQ at Q until

?:2e determines the point X where his
4-AN.

path meets line TM. What other segment

in the figure has the same length as TP?

What is the principal theorem used in show-

lng that: ATPM AXQM ?

1149

3. Napoleon's forces, marching into enemy territory, came upon a

stream whose width they did not know. Although the engineers

were in the rear, nevertheless, the impetuous commander de-

manded of his officers the width of the river. A young

officer immediately stood erect on the bank and pulled the

visor of his cap down over his eyes until his line of vision

was on the opposite shore. He then turned and sighted along

the shore and noted the point where his visor rested. He then

paced off this distance along the shore. Was this distance

the width of the river? What two triangles were congruent?

Why? A

157
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In ARST: Point X lies between R

17

S and T, and SX = SR. Point

bisects LS. ZU is drawn

Q lies between R and T, and

Find an angle congruent to

Q

LR, and establish the con- S X T

gruence.

10. Given: The figure with

AB_LBH, RH_LBH,

x Ly, QB = WH and F,
the midpoint of BH.

Prove: ABFQ AHFW.

11. Given: In the figure,

AB = AR and

LBAH LRAH.

Prove: FB = FR.

12. In this figure given that:

AB = HF and

RB = RF.

Prove: AAFR AHBR.

1 5 8



-13. Given: In the figure,

AB = FB and MB = RE.

Prove: AQR 4,KM.

14. In this figure given

that B and F trisect* IR,

L A L H and AR=H.
Prove: BW = FW.

Trisect means to separate

into three congruent parts.

15. In this figure, given that

HA = HB,
-3*
AF bisects L. HAB and

BF bisects L. HBA.

Prove: AF = BF.

151

16. A polygon ABCDE has five sides

of equal length and five angles

of equal measure. Prove that

4.DAB 12 LAMA.

17. Prove: If two medians of a triangle are perpendicular to

their-respective sides, then the triangle is equilateral.

159
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18. In this figure

.=..."ffig and

Prove: LA 2:2 LH and

Artl 21:

A

'19. Prove that the bisectors of a pair of corresponding angles of

two congruent triangles are congruent.

20. In thia figure it

is given that:

XW = QR,

La = Lb,
LX .LQ.

Prove: KA = KM.

21. In this figure it

is given that

Ll =-L! L2, L3 Z4,

and JT = JB.

Prove: L5 L6.

22. If PA = PB and QA = QB then

LAPQ 4!BPQ. Will the same

proof hold regardless of whether

A is in the same plane as P, Q,

and B ?

160



23 a. Prove: If PA = PB, QA = QB

and R ie on 11.as shown in

the figure, then RA = RE.

b. Must the.five points be

coplanar? Will the proof hold

whether or not A is in the

same plane as B, R, P, and Q?

*
24'. In this figure, points F and

H trisect AT, and points F

and B trisect MR. If AF = FB,

is A ABT a' A MHR? Prove your

answer.

153

4->
25. If RS is perpendicular to each of three different rays,

--> *
RA, RB, RC at R and RA = RB = RC, prove that SA = SB = S

(Draw your own figure.)

1215. Let A PAB and A QAB lie in

different planes but have the

common side AB. tet APAB LiQAB.

Prove that if X is any point in

AB then A PQX is isosceles.

27. Complete Euclid's proof of the

theorem that the base angles

of an isosceles trianLae are

congruent.

Given: AB = AC.

Prove: L. ACB L. ABC.

Construction: Take a point F

with B between A and F, and

a point H with C between A

and H so that AH = AF. Draw

0-7 and Mr.
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*28. Given: The plane figure ABCD

AB = CD, AD = BC.

Prove: AC and BD bisect

each ather.

-9'29. Given: The figure ABCD with

AB = AC, DB = Dp, and

4fBAX LXAY 2-f ZCAY.

Prove: AX = AY.

162



Review

Chapters 1 to 5

REVIEW EXERCISES

Write the numbers from 1 to 80. Follow each with a "+" or

a "-" to indicate whether you consider the statement true or false.

True will mean "true under all conditions".

1. Every two rays intersect.

2. AB designates a line.

3. If mL Q = 100, then 4:Q has no complement.

4 A line and a point not on it determine a plane.

5. If a point is in the interior of two angles of a triangle it

is in the interior of the triangle.

6. If a line intersects a plane not containing it, then the inter-

section is one point.

7. The union of two half planes is a whole plane.

8. A point which belongs to the interior of an angle belongs to

the angle.

9. If AB = CD, then either A = C or A = D.

10. The intersection of every two half planes is the interior of

an angle.

11. The interior of every triangle is convex.

12. It is possible to find two sets, neither of them convex, which

have a union which is convex.

13. A ray has two end-points.

14. Experimentation is always the best way of reaching a valid

conclusion.

15. Given four different points, no three of which are collinear,

there are exactly six different lines determined by pairs of

these points.

16. If m 4: RST = m 4: XYZ, then L RST L XYZ.

17. In the figure the best way to name,
--->

the angle formed by DA and DC is L D.

18. In this text "between" for points on a line is an undefined

term.
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19. The vertices of a triangle are non-collinear.

20. The intersection of two sets is the set of all elements that

belong to one or both of them.

21. Every statement about geometric figures which is not a defini-

tion can be proved.

22. If AIXYZ CAB, then L_ A 1-1.= L. X.

23. It is possible for two lines to intersect in such a way that

three of the angles formed have measures 20, 70, and 20.

24. Each side of an angle is a ray.

25. All nouns which the text uses that relate to geometry are

defined in the text.

26. The interior of an angle is a convex set.

27. If m L. ABC = 37 and m L. DEF = 63, then L ABC and L DEF are

complementary.

28. If A is not between B and C, then C is between A and B.

29. 1ml is never a negative number.

30. If point Q is in the exterior of L ABC, then Q and C are

on the same side of AB.

31. The distance between two points is the absolute value of the

suM of their coordinates.

32. The longest side of any triangle is called its hypotenuse.
<-31.

33. If AB I CD at point P (different from points A, B, C, D),

then m L.APC m L. CPB + m LBPD + m L DPA = 360.

34. Given a line, thtire is one and only one plane containing it.

35. A rational number is one which is the ratio of two integers.

36. Given two points on a line, a coordinate system can be chosen

so that the coordinate of one point is zero and the coordinate

of the other one is negative.

37. Two triangles are congruent if two sides and an angle of one

are congruent to two sides and an angle of the other.

38. A collinear set of points is a line.

39. x < 2x.
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40. The absolute value of every real number except zero is

positive.

41. If CD + CE = DE, then D is between C and E.

42. If inAABC,mLA=mL.B=mL.C, then AB = BC = AC.
,

43. If, in a plane Z, PT 1 line L, PQ_L_ line L, and P is on

L, then PT = PQ.

44. From the statements (1) If q is false, then p is false,

and (2) p is trup, we can conclude that q is true.

45. The Ruler Postulate states that any unit can be reduced to

inches.

46. If R is a point in the interior of L.XYZ, then m L XYR

+ m L.ZYR = m L. XYZ.

47. There are certain points on a number scale which are not,in

correspondence with any number.

48. Every line is a collinear set of points.

49. 1-n1 = n.

50. The distance between two points is a positive number.

51. From the facts that m L AOB = 20 and mL BOC = 30 it can

be (....-,ncluded that m t AOC = 50.

52. A NInt on the edge of a half-plane belongs to that half-plane.

53. A line L in a plane E separates the plane into two convex

sets.

54. The median of a triang3e bisects the side to which it is drawn.

55. If two points lie in the same half-plane, then the line deter-

mined by them does not intersect the edge of that half-plane.

56. If two supplementary angles are congruent, each is a right

angle.

57. The interior of an angle includes the angle itself.

58. Vertical angles have equal measures.

59. The sides of an angle are rays whose intersection is the ver-

tex of the angle.

60. If L.0 is supplementary to LA and m L A = 67, then

m LC = 113.

61. If two lines intersect, there are exactly two points of each

which are contained by the other.
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62. If two angles have equal measures the angles must be congruent.

63. From the statement (1) if p is true, then q is true, and

(2) p is not true, we can conclude that q is false.

64. It has been proved in the first five chapters of this text

that the sum of the measures of the angles of a triangle is

180.

65. The sides of a triangle are lines.

66. The midpoint of a segment separates it into two rays.

67. If two lines intersect so that the vertical angles formed are

supplementary, then the measure of each angle is 90.

68. If m L B = 93, then L B is acute.

69. For all numbers x, IXI = x.

70. The intersection of AB and BA is AB.

71. In A AEC all points of BC are in the interior of L A.

72. If &ABC AECA, then A AEC is equilateral.

73. If !xi = iyi, then x2 = y2

74. A ABC and A RFH which are in different planes are congruent

if AB = RF, BC = FH and AC = RH.

75. A AEC A MQT if AB = QM, BC = TQ and L.Q LB.

76. Median AB in AACE bisects L.A.

77. If x
2

= y
2

, then ixi =

78. If three points are on three different lines, the points are

non-collinear.

79. There is no &ABC in which L A = L B.

80. Two points not on a plane are in opposite half-spaces deter-

mined by the plane if and only if the segment joining them

intersects the plane.
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Chapter 6

A CLOSER LOOK AT PROOF

6-1 How A Deductive System Works._
In Chapter 1 we tried to explain in general terms how our

study of geometry was going to work. After the experience that

you have had since then, you ought to be in a much better position

to understand the explanation.

The idea of a set, the methods of algebra, and the process

of logical reasoning, are things that we have been working with.

The geometry itself is what we have been working on. We started

with point, line and plane as undefined terms; and so far, we

have used fifteen postulates. Sometimes, new terms have been

defined by an appeal to postulates. (For example, the distance

PQ was defined to be the positive number given by the Distance

Postulate.) Sometimes definitions have been based only on the

undefined terms. (For example a set of points is collinear if

all points of the set lie on the same line.) But at every point

we have built our definitions with terms that were, in some way,

previously known. By now we have piled definitions on top of

each other so often that the list 1.6 very long. And in fact,

the length of the list is one of the main reasons why we had to

be careful, at the outset, to keep the record straight.

In the same way, all the statements that we make about

geometry are based ultimately on the postulates. Sometimes we

have proved theorems directly from postulates, and sometimes we

have based our proofs on theorems that were already proved. But

in every case, the chain of reasoning can be traced backward to

the postulates.

You might find it a good idea, at this point, to reread the

second half of Chapter 1. It will seem much clearer to you now

than it did the first time. It is much easier to look back,

and understand what you have done, than to understand an ex-

planation of what you are about to do.
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6-2. Indirect Proof.

We remarked in Chapter J. that the best way to learn about

logical reasoning is bN doing some of it. There is one kind of

proof, however, that may require some additional discussion. For

Theorem 3-1, we used what is called an indirect proof. The

theorem and its proof were as follows:

"Theorem Two different lines intersect in at most

one point.

Proof: It is impossible for two different lines to inter-

sect in two different points P and Q. This is impossible

because by Postulate 1 there is only one line that contains both

P and Q."

Probab* this was the first time that you had_seen this kind

of reasoning used in mathematics, but you must have encountered

the same sort of thing, many times, in ordinary conversation.

Both ofthe following remarks are examples of indirect proofs:

(1) "It must be raining outside. If it were not raining,

then those people coming in the door would be dry, but they

are soaking wet."

(2) "Today must not be the right day for the footba).1 game.-

If the game were today, then the stadium would be full of people,

but you and I are the only ones here."

In each of these cases, the speaker wants to show that his

first statement is true. He starts his proof by supposing that

the thing he wants to prove is wrong; and then he observes that

this leads to a conclusion which contradicts a known fact. In

the first case, the supposition is that it is not raining; this

leads to the conclusion that the people coming in would be dry,

which contradicts the known fact that these people are wet; and

therefore it is raining, after all. Similarly, in the second

case the assumption that the game is today leads to a contradiction

of the known fact of the empty stadium.

In the proof of Theorem 3-1, the supposition is that some

two different lines intersect in two points. By Postulate 1,

this leads to the conclusion that the lines arenIt different

after all. Therefore the supposition is wrong, and this means

[sec. 6-2j
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that the theorem is right.

Problem Set 6-2a

1. For the sake of argument accept each of the following assump-

tions and then give a logical completion for each conclusion.

a. Assumption: Only men are color blind.

Conclusion: My mother

b. Assumption: All 'men are left-handed.

Conclusion: My brother

c. Assumption: The only thing that makes Jane ill is hot

chocolate. Jane is ill.

Conclusion: Jane

2. Which of the following arguments are indirect?

a. The temperature outside must be above 320 F. If the

temperature were not above 320, then the snow would

not be melting. But it is melting. Therefore, the

temperature must be above 320 .

b. That movie must be very entertaining. If it were not

very entertaining, then only a few people would go to

see it. But large crowds are going to see it. There-

foee, it must be'very dntertaining.

c. The air-conditioning in this building must not be

working correctly. If it were working correctly,

then the temperature would not be so high. But the

temperature is uncomfortably high: Therefore, the

air-conditioning is not working correctly.

3 Mrs. Adams purchased a set of knives, forks, and spoons

advertised as a stainless steel product. After using the

set for several months, she found that the set was beginning

to rust. She thereupon decided that the set was not stain-

less steel and returned it for refund.

In this example of indirect proof identffy (1) the

statement to be proved, (2) the supposition made, (3) the

conclusion resulting from the supposition, and (4) the

known fact contradictory to (3).

[sec. 6-2)
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4. What conclusions can you draw from the following hypothesis

in which x, y and z stand for different statements?

If x is true, then y is true.

If y is true, then z is true.

x is true.

Suppose you have the following data:

If w is true, then v is true.

If u is true, then w is true.

If x ia true, then u is true.

v is not true.
What conclusions can you draw? Did you use indirect reason-

ing at any point?
6. What conclusion follows from the following data?

(1) Nobody is allowed to join the swimming club unless he

can play the piccolo.

(2) No turtle can play the piccolo.

(3) Nobody is allowed to wear striped trunks in the club

pool unless he is a member of the swimming club.

(4) I always wear striped trunks in the club pool.

(Hint: This problem becomes easier if you convert it

to if-then form, as in several preceding problems. For

example, let A be "someone is a member of the swimming

club", let B be "someone can play the piccolo", etc.)

7. If A is green, then B is red.

If A is blue, then B is black.

If B is red, then Y is white.

a. A is green, so B is and Y is

b. B is black. Is it possible to draw a conclusion con-

cerning A? If so, what conclusion?

8. Prove that the bisector of any angle of a scalene triangle

cannot be perpendicular to the opposite side.

Let us now prove the other theorems of Chapter 3. For

convenience, we first restate the postulates on which these

proofs are based:

Postulate 1. Given any two different points, there is

exactly one line which contains both of them.

[sec. 6-2]
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Postulate 5. a. Every plane contains at least three non-

collinear points. b. Space contains at least four non-

coplanar points.

Postulate 6. If two Points lie in a plane, then'the line

containing these points lies in the same plane.

Postulate 7. Any three points lie in at least one plane,

and any three non-collinear points lie in exactly one

plane. More briefly, any three points are coplanar, and

any three non-collinear points determine a plane.

Theorem 2z?.. If a line intersects a plane not containing

it, then the intersection is a single point.

Proof: By hypothesis, we have a line L and a plane E, and

(1) L intersects E in at least one point P, and

(2) E does not contain L.

We are going to give an indirect proof of the theorem and

therefore we start by supposing that the conclusion is false.

Thus our supposition is that

(3) L intersects E in some other point Q.

To give an indirect proof, we need to show that our suppo-.

sition contradicts a known fact. And it does: If P and Q

lie in E, it follows by Postulate 6 that the line containing

them lies in E. Therefore

(4) L lies in E.

This contradicts (2). Therefore the supposition (3) is

impossible, Therefore Theorem 3-2 is rue.

.(sec. 6-21
171



164

Notice that the figures that we use to illustrate indirect

proofs look peculiar. In the figure for Theorem 3-2, we have

indicated a point Q, merely tO remind ourselves of the notation

of the proof. The proof itself shows that no such point Q can

possibly exist. In fact, the figures for indirect proofs always

look ridiculous, for a good reason: they are pictures of impos-

sible ,situations. If we had drawn a figure for Theorem 3-1, it

would have looked even worse:perhaps like.this:

This is a picture of an impossible situation in which two

different lines intersect in two different points.

Theorem 3-3. Given a line and a point not on the line,

there is exactly one plane containing both of them.

Proof: By hypothesis we have a line L and a point P

not on L. By the Ruler Postulate we know that every line

contains infinitely many points, and so L contains two points

Q. and R. ' By Postulate 7 there exists a plane E which contains

P, Q, and R. Since by Postulate 6, E contains L, we have

shown that there exists a plane E containing both L and P.

At this point we actually have proved only half of the

theorem, since Theorem 3-3 says there is exactly one such plane.

It remains to prove that no other plane containing L and P

[sec. 5-2]
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exists. We do this by indirect proof

Suppose that there is another plane El containing L and

P. Since by Postulate 1 L is the only line containing Q and

we know that Q and R, as well as P, lie in El. This

contradicts Postulate 7 which says that exactly one plane contains

three non-collinear points. Since E was established as a plane
containing P, Q and R) El can not exist, and E is the

only plane containing L and P.

The two parts of the proof of Theorem 3-3 bring up the

distinction between existence and uniqueness. The first half

of the proof shows the eXistence of a plane E containing L

and P. This leaves open the possibility that there may be more

than one such plane. The second half of the proof shows the

uniqueness of the plane. When we prove existence, we show that

there is at least one object of a certain kind. When we prove

uniqueness we show that there is at most one. If we prove both

existence and uniqueness, this means that there is exactly one.

For example, for the fleas on a stray dog, we can usually

prove existence, but not uniqueness. (It is a very lucky dog

that has only one flea.) For the eldest daughters of a given

woman, we can obviously prove uniqueness, but not necessarily

existence; some women have no daughters at all. Fur the points

common to two different segments, we don't necessarily have

either existence or uniqueness; the intersection may contain

many points, or exactly one point, or no points at all.

The phrase "one and only one" is often used instead of

exactly one" since it emphasizes the double nature of the

statement.

The following theorem breaks up into two parts in exactly

the same way:

Theorem -4. Given two intersecting lines, there is exactly

one plane containing them.

For variety we give the proof in double-column form. Note

the two parts and the way we handle the indirect proof in the

second part.

[sec., 6-2]

173



166

Proof: We have given the lines

n the point P.

Statements

L1 and L2, intersecting

Reasons

1.

.

Ll contains a point
dtfferent from P.

Q is not on L2.

There is exactly one
plane E, containing
and Q.

E contains L
1.

Q,

L2

1.

2.

3.

4.

By the-Ruler Postulate,
every line contains in-
finitely many points.

Theorem 3-1.
Theorem 3-3.

By Postulate 6, since
contains P and Q.

5.

6.

Suppose that another plane F

F contains Q.

also contains L1 and L2.

6. Q is on Ll.

7. E and F each contain 7. Steps 3 and 4, and 5 and 6.

L
2

and Q.

8. E is the only plane con-
taining L1 and L2.

8. Step 7 e.ontradicts Theorem
3-3.

Problem Set 6-2b..

1. Is a triangle necessarily a plane figure? Explain.

2.

Theorem 3-4 says, in effect, "Two intersecting lines

determine a plane". How many different planes are deter-

mined by pairs of intersecting lines in this figure?

Assume that the three lines are not all in the same

[sec. 6-2]
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plane. List each plane by naming the two intersecting

lines that determine it.

3 How many different planes are determined by pairs of the

four different lines .AQ, BQ, 'CQ, and DQ, no three of

which lie in the same plane? List the planes by naming

for each the two intersecting lines that determine it.-

4. If, in a plane Z, _L line L and PQ _L_ line

what conclusion can you draw regarding PQ and PT?

5.

A

As indicated in this figure, A and B lie in plane P.

Q lies above plane P. Does line AB lie entirely in P?

Quote a postulate or theorem to support your conclusion.

There is a second plane implicit in the situation. Name

it *by the three points which determine it. What is the

intersection of these two planes? At what point will

QB intersect plane P?

6. If A, B, C, D are four non-collinear points, list

all the planes determined by subsets of A, B, C, D.

6-3. -Theorems about Perpendiculars.

Some, of the basic theorems about perpendicular lines are

good examples of exLAence, uniqueness, and indirect proofs.

Theorem 6-1. In a given plane, through a given point of.

a given line of the plane, there passes one and only one line

perpendicular to the given line.

Given: E is a plane, L a line in E, and P a point

of L.

To prove: (1) There is a line M in E, such that M

contains P and MI L;
(2) There is at most one line in E, containing

P and perpendicular to L.

[sec. 6-3]
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Proof of (1):

X

Let H be one of the two half-planes in E that have L

as an edge, and let X be a point of L, different from P. By

the Angle Construction Postulate, there is a point Y of H,

such that LXPY is a right angle. Let M be the line T5r.

Then M 1 L. Thus we have proved that there is at least one

line satisfying the conditions of the theorem.

Proof of (2): We now need.to prove that there is at most

one such line. Suppose that there are two of them, M, and

M
2'

Let X be a point of L, different from P.

--*
Then the lines M1 and M2 contain rays PY1 and PY2 lying

in the same half-plane H having L as its edge. By definition

of perpendicular lines, one of the angles determined by L and

M
1

is a right angle, and'by Theorem 4-8 all four of these

angles are right angles. Thus mLXPY1 = 90. Similarly,

mLXPY
2

= 90. But this contradicts the Angle Construbtion
--*

Postulate, which says that there is only one ray PY,, with Y

in H, such that mLXPY = 90. This contradiction means that

our assumption of two perpendiculars M1 and M2 must be

false, which proves the second half of the theorem.

[sec. 6-3]
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The condition "in a given plane" is an important part

of the statement of this theorem. If this condition were

omitted the first (existence) part of the theorem would still

be.true but the second (uniqueness) part would not. This is

easily seen by thinking of the relation between the spokes of

a wheel and the axle. Thus leaving out this condition would

give us'an example of a geometric existence theorem with no

corresponding uniqueness theorem. The opposite situation, a

.Luniqueness theorem with no corresponding existence theorem,

has already been considered in this chapter. Can you identify

it?

Definition. The'perpendicular bisector of a segment, in a

plane, is the line in the plane which is perpendicular to the

segment and contains the mid-point.

Every segment has exactly one mid-point, and through the

mid-point there is exactly one perpendicular line in a given

plane. Thus, for perpendicular bisectors in a given.plane,

we have both existence and uniqueness.

The following theorem gives a useful characterization of

the points of a perpendicular bisector:

Theorem 6-2. The perpendicular bisector of a segment, in

a plane, is the set of all points of the plane that are equi-

distant from-the end-points of the segment.

Restatement: Let L be the perpendicular bisector of the

segment Tr in a plane E and let C be the mid-point of

Wg. Then

(1) If P is on L, then PA = PB, and

(2) If P is in E, and PA = PB, then P is on L.

Notice that the restatement makes it plain that the proof

of the theorem will consist of two parts. In the first part we

prove that every point of the perpendicular bisector satisfies

the characterization, that is, is equidistant from the end-points-

of the segment. But the theorem says that the perpendicular

bisector is the set of all such points. 'To prove this, then, we

must also show that every such point, characterized by being

equidistant from the end-points of the segment, is on the

[sec. 6-3]
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perpendicular bisector. This last is the second part of the

restatement.

Proof of (1): Given a point P of L. If P lies on

AB, then P = C, and this means that PA = PB by the definition

of mid-point of a segment. If P is not on the line Iar, then

PC = PC by identity, and, by hypothesis, CA = CB and

LPCA LPCB. Hence by the S.A.S. Postuiate,

A PCA A PCB.

Therefore PA = PB, which was to be proved.

Proof of (2): Given that P lies in the plane E and

PA = PB. If P is on 11r, then P is the mid-point C of

ig; and so P is on L. If P is not on let LI be

the line PC:

[sec. 6-3]
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then PC = PC, CA = CB, and PA = PB. (Why? ) By the S.S.S.

Theorem,

APCAa.-' A PCB.

Therefore LPCA L PCB. Therefore, by definitiO-LI j Wr

end so LI is the perpendicular bisector of Wr,TTherefore,

by Theorem 6-1, LI = L, and P is on L, which;was to be
5

proved.

Next we prove the analog of Theorem 6-1 for the case in

which the given point is not on the given line. Since the

proof is considerably more complicated than that of Theorem 6-1,

'we will state and prove the existence and the uniqueness parts

as separate theorems; Because it is the simpler, we qtart with

uniqueness.

Theorem 6-3. Through a given external point there is at

most one line perpendicular to a given line.

Proof: Like most uniqueness proofs, this is an indirect

one. Suppose L1 and L2 are distinct lines through point

P, each perpendicular to L.

4-

Li Lz
Let L

1
intersect L in A and L

2
intersect L in B.

Since the lines are distinct and both go through P. we must

have A B (Theorem 3-1).
--*

On the ray opposite to AP take AQ = AP (Point Plotting

TheOrem). Then AQ = AP, AB AB, mLPAB = mLQAB = 90, and

so AQAB APAB by the S.A.S. Postulate.

It follows that

mLQBA = rn LPBA = 90 ,

[sec. 6-3]

\.:17



172,

and so BQ 1 L. This contradictis Theorem 6-1, which says that

there is only one perpendicular to L at B lying in the plane

containing L, and Ll. Hence our supposition that there could

be two perpendiculars to L through P is false.

Corollary 6-3-1. At most one angle of a triangle can bP

a right angle.

For if in 6 ABC, L A and LB were both right angles we

would have two perpendiculars from .0 to a
Definitions. A right Irlangle is a triangle one of whose

angles is a right angle. The side opposite the right angle is

the hypotenuse; the sides adjacent to the right angle are the

Theorem 6-4. Through a given external point there is at

least one line perpendicular to a given line.

Restatement: Let L be a line, and let P be a point not

on L. Then there is a line perpendicular to L and containing

P.

First we will explain how the perpendicular can actually be

constructed, on paper, using a ruler and a protractor. From the

method of construction, it will be clear how the theorem can be

proved from the postulates.

Step 1. Let Q and R be any two points of the line L.

Measure the angle L PQR.

[sec. 6-3]
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Step 2. Using the protractor, construct an angle L RQ50

with the same measure as L PQR, taking S on the opposite side

bf the line L from P.

Step_). Measure the distance QP. Take a point T on
-->
Q5, such that QT = QP.

Step 4. Now draw the line TP. This is the perpendicular

that we were looking for. For the reasons, see the proof below.

First, however, you should try this construction with your ruler

and protractor, and try to see for yourself why it works.

Let us now write down the proof in the double-column form.

Each of the first few statements on the left corresponds to one

of the,things that we were doing with our drawing instruments.

Statements Reasons

1. L contains two points Q
and R.

2. There is an angle LRIO,
congruent to LRQP, with
S and P on different
sides of L.

3. There is ajoint T of
the ray Qg, such that
QT = QP.

4. T and P are on opposite
sides of L.

5. TP intersects L, in a
point U.

6. LPQU LTQU.

7. LQUP L QUT.

8. LQUP is a right angle.

9. PT 1 L.

1. The Ruler Postulate.

2. The Angle Construction
Postulate.

3. The Point Plotting
Theorem.

4. P and S are on opposite
sides of L, and S and
T are on the same side of
L.

5. Definition of opposite
sides.

6. Statement 2, statement 3,
and the S.A.S. Postulate.

7. Definition of a congru-
ence between triangles.

8. Definition of right angle

9. Definition of perpendicu-
larity.

This proof somewhat resembles the proof of the S.S.S.

Theorem (Theorem 5-6). Like this earlier theorem it has seve-

ral cases, only one of which (that in which U and R lie on

the same side of Q) is completely covered by the above proof.
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The modifications necessary for the other two cases (U = Q and

Q is between R and U) are left as exercises for the student.

Problem Set 6-3,

1. If BC,= DC and V.I. le,

prove without the use of

congruent tPiangles that

EB = ED.

2. If AE I Pff at B as

shown in the figure, with

lengths of segments as

indicated, find x, y and

z.

3. Given: PA = PB, M is the

midpoint of Tr, and Q is
->

on line PM as shown in

the,figure.

Prove: QA = QB.

(Use paragraph proof.)

4. Given: The line m is the perpendicular bisector of the

segment U. P is on the same side of m as Q. R is

the intersection of m and 151.

Prove: PT = PR + RQ.

[sec. 6-3]

182



175

5. Copy the figure below. Following the steps outlined in the

text construct perpendiculars from A, B and X to line L.

X A

B

6. Copy the figure. Using ruler and protractor construct

perpendiculars from A and F to HF.

7. Does Theorem 6-4 state the existence of a unique perpendicular

to a line from a point off the line? If we confine our

thinking to a plane, does Theorem 6-1 state the existence

of a unique perpendicular to a lino through a poInt on the

line?

*8. Given isosceles triangle ABC with AC = BC and bisectors
-->

AD and BE of LA and L B. AD and BE intersect at

point F. Prove that t-P is perpendicular to Ir. (It is

not necessars to use any congruent triangles in your proof.)

*9. One diagonal of a quadrilateral bisects two angles of the

quadrilateral. Prove that it bisects the other diagonal.

(-10. In this figure given:

RC = SC,

Q is midpoint of P.'S',

L RCA f4. L SCA.

Prove: AQ.1. RS.
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6-4. Introducing Auxiliary Sets into Proofs.

You probably noticed that in proving some theorems, most

recently, Theorems 6-2 and 6-4, we introduced certain points,

rays and segments into the figure in addition to those speci-

fied in the theorem. Possibly two questions concerned you:

1. How can we justify introducing such additional sets

into proofs on the basis of our postulates?

2. How do we know which of these sets, if any, should be

introduced into the proof of a theorem?

The first question is easy to onswer. In working with

theorems we usually are concerned with various relationships

among certain points, lines, planes and subsets of these, and

as a pPactical matter in 1,7oving theorems, we choose certain

planes or lines and certain points on them. Frequently we do

not concern ourselves with justifying this procedure. For

example, if we are given a line we may immediately name it

When asked to give a reason, however, we can refer to the Ruler

Postulate, which says that a line contains infinitely many

points, and thereby the two points P and Q. exist. Similarly,

given two points A and B we may talk about AB with complete

confidence since it stands for a line whose existence and unique-

ness are guaranteed by Postulate 1. (See Section 6-2.)

The careful concern over justifying existence and uniqueness

becomes especially important when we introduce into the proof

certain points, lines, segments, and so on, not accounted for by

the theorem being proved. Certainly we can not have these sets

in our proofs if they do not exist under the conditions of our

geometry, except, of course, in an indirect proof, where the

object is to show they can't exist.
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In the table below we list the postulates and theorems

occurring so far which may be used, approprlately, to introduce'

auxiliary sets into proofs.

Geometric Set Existence Uniqueness

1. Point.

a. Midpoint.

2. Line.

a. Perpendicular
at point on
line, in a
plane.

b. Perpendicular
bisector, in
a plane.

c. Perpendicular
from point
not on line.

3. Plane.

4. Bay as used in
angle measure.

a. Bisector of
an angle.

5. Segment.

Postulates 3 and 5.

Theorem 2-5.

Postulates 1 and 8.

Theorem 6-1.

Theorems 2-5 and
6-1

Theorem 6-4.

Postulate 7.
Theorems 3-3 and
3-4.

Postulate 12.

Theorem 5-3.

Postulate 1 and
Definition of
segment.

Theorems 2-4, 3-1, 3-2.

Theorem 2-5.

Postulates 1 and 8.

Theorem 6-1.

Theorems 2-5 and
6-1.

Theorem 6-3 .

Postulate 7.
Theoremu 3-3 and
3-4.

Postulate 12.

Theorem 5-3.

Postulate 1 and
Definition of
segment.

From this table you may see that you already know a lot about

the nature of our three basic undefined terms.

The answer to the second question presents a problem quite

different from the answer to the first. Ge.tting to know when to

introduce auxiliary sets into a proof is larg.ely part of the

process of learning to reason logically. It requires consider-

able practice. Let's try an example to see how this works.

135
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Example 1.

Given: The plane figure with AD = AE and CD = CE.

To prove: LD L E.

Since all of our postulates and theorems,concerning con-

gruence have dealt with triangles, it seems reasonable that our

figure should show some triangles. We can accomplish this easily

by introducing either AU or UM

Suppose we introduce DE so that our figure looks like this:

This allows us t complete the proof, since m LADE = mLAED

and mi_CDE = mALCED gives us mALADC = m LAEC by the Angle

Addition Postulate.
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Had we introduced WU instead of DE, our proof, in two-

column form this time, would have looked like this:

A

Proof:

Statements Reasons

1. Introduce TU. 1. Postulate 1 and Definition
of segment.

2. AC = AC. 2. Identity.

3. AD = AE and CD = CE. 3. Given.

4. P ADC p AEC . 4. '5.5.5. Theorem.

5. LD L E . 5. Definition of congruent
triangles.

Each of the solutions to Example 1 is correct. The choice.

of which one you use is up to you. But it is worth noting that

in many problems where a choice exists, the choice you make will

determine the degree of difficulty of the proof. It is helpful

to think through each solution before writing one down formally.

An important aspect of learning.what to introduce in a

proof can.be illustrated tf we remove from the hypothesis of

&cample 1 the condition that the figure is a plane figure. If

D is not coplanar with A, E, and C, at least one of the

solutions does not hold. Does either solution hold? If one

,.does, which one?

One final word of warning before you begin to introduce

auxiliary sets into your proofs,. In answering Question 1

we were careful to say that each such step must be justifiable,

that is, that every point, line, plane, and so on must exist
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under our postulates. Students often make the mistake of not

recognizing this. For example, you might think you could prove

the statement "All angles are congruent" by the following argu-

ment.

Example 2.

Given any A ABC, prove that

LB =,=1 LC.

Proof: In LABC introduce

AD, bisecting LA and perpendi-

cular to BC.

Then L BAD a' LCAD by defi-

nition of the bisector of an

angle, AD = AD by identity, and LBDA LCDA by the definition

of perpendicular and the fact that all right angles are congruent.

Therefore A BAD a= &CAD by A.S.A., making LB Q;L C.

It does not take long to see the serious error of this so-

called proof. The segment AD, as angle bisector and the per-

pendicular to the base, does not exist under our postulates.

Moreover, the figure makes A ABC appear to be isosceles and

thus makes AD appear as introduced above. Were the figure

like this,

A

you certainly would not consider using -Ar as it is used. This

leads us once more to say that the figure is merely a convenience

to aid you in thinking through your reasoning in logical and

carefully chosen words.

188
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Problem Set 6-4

1. Given: A, B, C and D are

coplanar. AD = CD.

mALA = mALC.

Prove: AB = CB.

Does the proof .mrk if A,

B, C, D are not coplanar?

2. Given: XY = AB, AY = XB.

Prove: A XOY A AOB.

3 Given: E, A, S and Y are

coplanar. L E L A ,

YE

Prove: LY L S .

181

4. Devise a second solution to Problem 3 above by introducine

auxiliary segments different from the or.es you used in

the solution of Problem 3.

5. If AC = AB and CD = BD in

the plane figure, show LACD LABP

Devise a proof that works if the

figure does not lie in the plane.

[sec. 6-4]

A



182

6-5. Betweenness and Separation.

Critical students may have discovered two places in

Chapter 5 where the given proofs are not quite complete. These

defects occur in Theorems 5-3 and 5-6, and are similar in the

two places, consisting of a failure to show why a certain point

lies in the interior of a certain angle. In Theorem 5-3 we

must know that D is in the interior of LBAC before we can

conclude that AD bisects this angle. And in steps 9 and 10

of Theorem 5-6 we must know that H is in the interior of

LABC and of LAE'C before we can apply the Angle Addition

Postulate.

In these places it is not enough to observe that in the

figure the points lie in the proper places. Remember first

that a drawing is only an approximation to the true geometrical

situation, and secondly that this is only one figure and the

theorem is supposed to be proved for ail cases.

You probably wonder why an incomplete proof should be

presented in a text-book. The reason is that the proofs of

of such separation properties as this one are often long, comp-

licated, and uninteresting, and that they contribute little or

nothing to the essential idea of the proof. If you understand

the proof of these theorems as given but did not notice the

incompleteness of these particular steps, you need not worry

about your competence in geometry. For many centuries learned

men disputed whether s.teps like these needed any justification.

However, mathematicians now agree that even such "obvious"

steps. require a logical proof, and so we present here two

theorems and some problems to fill the gaps in these (and later)

proofs.
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Theorem 6-5. If M is between A and C on a line L,

then M and A are on the same side of any other line that

contains C.

A

Proof: The proof will be indirect. If M and A are on

opposite sides of LI (in the nlane that contfains L and LI)

then some point D of LI lies on the segment AM. Therefore

D is between A and M, by definition of a segment. But D

lies on both L and Lt. Therefore D C. Therefore C is

between A and M. This is impossible, because M is between

A and C. (See Theorem 2-3.)

We can now prove , thorem which completes the proof of

Theorems 5-3 and 5-6:

Theorem 6-6. Tf M is between A and C, and B is any

point not on the line AC, then M is in the interior of L ABC.

Proof: By the preceding theorem, we know that M and A

are on the same side of 'lit, By another application of the
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preceding theorem (interchanging A and C) we know that M

and C ere on the same side of By definition of the interior

of an angle, these two statements tell us that M is in the

interior of L ABC, which was to be proved.

Problem Set 6-5

Note: On this problem set no information is to be read from a

figure.

1.

Given A ABC with F between A and C, X between A

and B and Q in the interior of A ABC. Complete the

following statements, and give reasons to justify your

answers.

a. F lies in the interior of L

b. X lies in the interior oft_

c. Q lies in the interior of / $ L
and L

192
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2. The following faulty argument that an obtuse angle is con-

gruent to a right angle emphasizes the importance of knowing

the side of a line on which a point lies.

Suppose that iniBCD is a rectangle as shown and that the

side BC is swung outward so that BCI = BC and LABCI is

obtuse. Let the perpendicular bisector of AB intersect the

perpendicular bisector of DC' at X. If X is below AB

as shown, we have A AXD caf A BXCI by the S.S.S. .Theorem, and

hence mL DAX = m LVBX. Also, A EAX A EBX by S.S.S., and

so mLEAX = mLEBX. It follows by subtraction that

mLDAE = mL CIBE.
In case X lies above AB, as in the figure below,

A

we get, exactly as before, mLDAX = mLCIBX, mLEAX = mLEBX,
and the dezAred equality, mLDAE = mLCIBE follows by

addition.

What is wrong with the above argument?
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Suppose ABC is a triangle

and D is a point between B

and C. Show that if .L ,is

a line in the plane of A ABC

which intersects BC at D,

then L intersects TT or WS.

(Hint: If L contains B,

then L intersects WE. If L

does not contain B, then let

H
1,

H
2

be the two half-planes into which L separates the

the plane of ABC, H1 being the one that contains B.

Since A belongs to either L, H1, or H2, there are

three cases to consider.)

2

A theorem whose truth appears obvious is often difficult

to prove. The following such theoreM,is assumed in the

proof of Theorem 7-1 of the next chapter.

Suppose ABC is a triangle, D. is a point between
-->

A and C and E is a point of BC beyond C. Then each
- --->

point F of BD beyond D is in the interior of LACE.

The thing to be proved is that F is on the same side

of BC as A and that F is on the same side of AC as E.

a. How do we know that A and

D are on the same side of

B C? What theorem implies

that D and F are on

this same side?

b Prove that if H
1,

H
2

are

the two half planes into

which AC separates the

plane of the figure and B

belongs to H1, then each

A

of E, F belong to H2. This shows that E and F

are on the same side of AC.

19.1
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Another theorem whose truth is frequently accepted without

proof is the following: If D is a point in the interior

of L ABC, then le intersects AC'.

We suggest below a "tricky" proof in which we consider

A EAC, where E is a point of -A-1r beyond B. This

enables us to apply the results of Problem 2. Parts a and

b below are used to show that BD does not intersect EC.

a. Suppose H1, H2 are the

two half-planes into which

BC divides the plane of

A EAC' with A in Hl.

Why is D in H1? What .

theorem implies that each

point of BD other than

B is in H
1*

9 Why is E

in H 9
2*

What theorem implies that each point of EC other than>
C is in H 9 Why does EC fail to intersect BD?

2' .

Why does EU fail to intersect the ray opposite BD?
-->

c. Why does BD intersect AC?>
d. Why does the ray opposite BD fail to intersect AC?

*6. The following theorem may be used instead of Parts a and

b of Problem 5 to show that A and C lie on different

sides of BD.

Theorem: If point D is in the interior of LABC,

then A is not in the interior oP LDBC nor is C

in the interior of L ABD.

Prove this theorem.
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47. There are studies of geometry that use other systems of

postulates than the ones we have adopted. A postulate

taken from one such system is the following:

If A, B, C, D, E are points such that A, B and C

are non-collinear and B is between A and E and D is

between B and C, then there is a point X such that X

is between A and C while D is between E and X.

This statement can be proved in our system of postu-

lates.

a. Why are A, B, C, D, E

coplanar?

b. Show from the Plane

Separation Postulate

that ED intersects

AC at a point X be-

tween A and C.

c. It can be shown that D

is between E and X by showing that E and X are

on opposite sides of some line. What line?

8. Given points P and Q on

opposite sides of plane E

with PQ intersecting E in

M. Identify the following

statements as true or false.

4--*
a. If L is a line in E ry)rpendicular to PQ, then P

and Q are on opposite sides of L in the plane

determined by P and L.

b. If L is a line in E through M, then P and Q are

on opposite sides of L in the planesdetermined by

P and L.

c. If L is a line in E, then P and Q are on opposite

sides of L in the plane determined by P and L.

d. P and Q are on opposite sides of every plane through
**

M not containing PQ.
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Chapter 7

GEOMETRIC INEQUALITIES

7-1. Making Reasonable Conjectures.

Up to now, in our study of the geometry of the trianbie, we

have been dealing only with conditions under which we can say that

two segments are of equal length, or two angles are of equal

measure. We will now proceed to study conditions under which we

can say that one segment is longer than another, (that is, has a

greater length), or one angle is larger than another, (that is, has

a greater measure).

We shall not start, however, by proving theorems. Let us

start, rather, by making some reasonable conjectures about the

sort of statements that ought to be true. (These statements

should not be called theorems unless and until they are proved.)

An example: Given a triangle with two sides of unequal

length, what can we say about the angles opposite these sides?

Notice that this problem is naturally suggested by Theorem

5-2, which says that if two sides of a triangle have the same

length, then the angles opposite them have the same measure.

You can investigate this situation by sketching a triangle

with two sides of obviously unequal lengths, like this:

Here EC is greater than AB, and m L A is greater than m L C.

After sketching a few more triangles, you will become pretty well

convinced that the following statement ought to be true:

If two sides of a triangle are of unequal length, then the

angles opposite them are of unequal measure, and the larger angle

is opposite the longer side.

Now try the same sort of procedure with the following prob-

lems.
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Problem Set 7-1

Here are some experiments for you to try.

1. Consider triangles with two angles of unequal measure. Write

a statement'which you think may be true concerning the sides

opposite those angles.

2. Consider several triangles ABC. How does AB + BC compare

with AC? BC + AC compare with AB? AB + AC compare with

BC? These responses suggest a general conclusion. If you

think this conclusion is true for all triangles, write it as

a proposition.

3. Consider a quadrilateral RSTQ. How does RS + ST + TQ com-

pare with RQ? Write a proposition suggested by your answer.

I. Draw several triangles in which the measure of one angle is

successively greater but the adjacent sides remain unchanged

in length. What happens to the length of the third side?

5. Draw A DEF and A XYZ such that DE = XY, FE = ZY, and

m L DEF > m L XYZ. Compare DF and XZ.

6. Regarding A PDQ and A JUN such that m LPDQ = mL JUN,

PD > JU, and QD = NU, a hasty person might conclude that

PQ > JN. Draw a figure showing that the conclusion is not

justified.

7. A is a point in plane E,

is a ray not lying in E, and

AC is a ray lying in E. Con-

sidering different positions

of AC, describe a,s accurately
--> C C

-->
as you can the position of AC

which makes L BAC as small as possible; as large as possible.

No proof is expected but you are asked to guess the answer on .

the basis of your knowledge of space.
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,8. On the basis of drawings decide whether or not an angle can be

trisected by the following procedure: A

Let A AEC be an isosceled triangle

with congruent sides AB and AC.

Trisect side BC with points D,

E so that BD = DE = EC.

Is L BAD L DAE L EAC?

7-2. Algebra of Inequalities.

Before considering geometric inequalities we review some of

the facts concepning inequalities between real numbers. Note first

that a < b and b > a are merely two ways of writing the same

thing; we use whichever is more convenient, e.g. 3 < 5 or 5 > 3.

Definitions. A real number is positive if it is greater than

zero; it is negative if it is less than zero.

We now restate the order postulates, giving examples of their

use

0-1. (Uniqueness of order.) For every x and y, one and

only one of the following relations holds: x < y, x = y, x > y.

0-2. (Transitivity of order.) If x < y and y < z, then

x < z.

Example 1. 3 < 5 and 5 < 9, hence, 3 < 9.

Example 2. If we know that a < 3 and b > 3, we can

conclude that a < b. Proof: If a < 3

and 3 < b, then a < b.

Example 3. Any positive number is greater than any

negative number.

Given: p is positive, n is negative.

To prove: p > n.

Proof:

1. p is positive.

2. p > 0.

1. Given.

2. Definition of positive.
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3. 0 < P.

4. n < 0.

5. n < P.

6. p > n.

3. Relation between < and ,>.

4. Definition of negative.

5. Postulate 0-2.

6. Relation between < and >.

0-3. (Addition for inequalities.) If x < y, then

x + z < y + z, for every z.

Example 4. Since 3 < 5 it follows that 3 + 2 < 5 + 2,

or 5 < 7; that 3 + (-3) < 5 + (-3), or

0 < 2; that 3 + (-8) < 5 + (-8), or -5 < -3.

Example 5. If a < b then -b < -a. Proof: a + (-a-b)<

b + (-a-b), or -b < -a.

Example 6. If a + b = c and b is positive, then

a < c.

Proof:

1. b is positive.

2. b > 0.

3. 0 < b.

4 a < a + b.

5. a < c.

1. Why?

2. Why?

3. Why?

4. Why?

5. Why?

Example 7. If a + b < c then a < c - b. Proof left

to the student.

Example 8. If a < b, then c,- a > c - b for every c.

Proof left to the student.

0-4. (Multiplication for Inequalities.) If x < y and

z > 0, then xz < yz.

Example 9. From 3 < 6 we can conclude that 3000 <
1

6000; also, that -8-11 3 < h- 6, or -,- <
1

o

Example 10. If x < y and z < 0, then Xz > yz.

Proof left to the student.

0-5. (Addition of Inequalities.) If a < b and x < y, then

a + x < b + y.

This is not a postulate but a theorem; its proof is given

in Section 2-2. However, it is convenient to list it, for

reference, along with the postulates.
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7-3. The Basic Inequality Theorems.

In the figure below, the angle L BCD is called an exterior

angle of' A ABC. More precisely:

Definition. If C is between A and D, then L BCD is an

exterior angle of /..\ ABC.

Every triangle has six exterior angles, as indicated by the

double-headed arrows in the figure below:

These six angles form three pairs of congruent angles, because

they form three pairs of vertical angles.

Definition. LA and LB of the triangles are called the

remote interior angles of the exterior angles L BCD and LACE.

Similarly, L A and L C of A ABC are the remote interior

angles of the exterior angles L ABF and LCBG.

Theorem 7-1. (The Exterior Angle Theorem.) An exterior

angle of a triangle is larger than either remote interior angle.

Restatement: Note first that the two exterior angles at

vertex C, above, have equal measures (vertical angles), and so ft
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doesn't matter which of them we compare with L.A andLB. It

turns_out to be easiest to compare m L BCD with mLB and

m L -ACE with mL A. Since the proofs of these two cases are

exactly similar we need prove only one.

Given triangle A ABC. If C is between A and D, then

m L BCD > mL B.

Proof:

Statements Reasons

1. Let E be the mid-point of BC.

2. Let F be a p4nt of the ray
opposite to EA, such that
EF = EA.

3. L BEA L FEC.

4. A BEA CEF.

5. mL B=mL ECF.

6. m L BCD = m L ECF + m L FCD.

7. mLBCD =mLB+ niL FCD.
8. m L BCD > mL B.

1. By Theorem 2-5 there is
such a mid-point.

2. By Theorem 2-4, there is
such a poJ.nt.

3. Vertical angles are con-
gruent.

4. Statements 1, 2, 3 and
the S.A.S. Postulate.

5. Corresponding parts of
congruent triangles.

6. Postulate 13 (The Angle
Addition Postulate.)

7. Statements 5 and 6.

8. By algebra from step 7.
(Since m L. FCD is a
positive number, Example
6 of Section 7-2 applies.)
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1. a. Name the remote interior'

angles of the exterior

angle L ABE in the figure.

b. L. AEC and L. BAC are the

remote interior angles of

which exterior angle?

2. a. In the figure, which angles

are exterior angles of the

triangle?

b. What is the relationship of

m L DEC to m L A? Why?

c. What is the relationship of

m L DEC to m L C? Why?

d. What is the relationship of

m L DEC to mL CBA? Why?

195

3. Using the figure, complete the following:

m L BCE >a. If x = 40 and y = 30, then

t. If x = 72 and

m L BCE

y = 73, then

c. If y = 54 and

m L BCE

z = 68, then

d. If m L BCE = 112, then x

e. If m L BCE = 150, then z

f. If x = 25 and

m L BCE

z = 90, then

g., If x = 90 and y = 90, then

m L BCE
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4. The accompanying figure is an

illustration of this statement:

An exterior angle of a quadri-

lateral is greater than each of

the remote interior angles. Is

this a true statement? Explain.

*5 Prove the following theorem:

The sum of the measures of any

two angles of a triangle is

less than 180.

Given: A ABC with angle

measures as in the

figure.

Prove: a + b < 180.

b + c < 180.

a + c < 180.

*6. Prove the following theorem: The base angles of.an isosceles

triangle are acute. (Hint: Base your proof on the statement

of the previous problem.)

Theorem 7-1, while perhaps not very exciting in itself, is

extremely useful in proving other theorems. (A theorem of this

type is sometimes called a lemma.) For example, the following is

a useful corollary.

Corollary 7-1-1. If a triangle has a right angle, then the

other two angles are acute.

[sec. 7-3]
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A

Proof: If m L.A = 90, then m LBW) > 90, and therefore,

m L BCA < 90. In a similar way we can prove m L ABC < 90.

We next use Theorem 7-1 to prove two more congruence theorems.

Theorem 7-2. (The S.A.A. Theorem) Given a correspondence

between two triangles. If two angles and a side opposite one of

them in one triangle are congruent to the corresponding parts of

the second triangle, then the correspondence is a congruence.

Restatement: Let AEC4-4,DEF be a correspondence between two

triangles. If

LA -1- L D,

LB L E,

and AC 15F,

then A ABC .%! A DEF.

Proof:

Statements Reasons

1. 1. Point Plotting Theorem.On AB take X so that
AX = DE.

2 . A AXC A DEF. 2. S.A.S. Postulate,

3. m L AXC = mt. DEF. 3. Definition of congruence.

4. m L AXC m L ABC. 4. Step 3 and given.

Now suppose that X is not the same point as B.

[sec. 7-3]
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5. Either
and B
A and

X
or
X.

is between A
B is between

5. Step 1 and definition of ray.

OR

6. In either case one of L AXC
and L ABC is an exterior
angle of A BXC and the
other is a remote interior
angle.

6. Definition of exterior angle
and remote interior angle.

7 . m L.. AXC m L ABC. 7. Step 6 and Theorem 7-1.

8. X = B. 8. Step 7 contradicts Step 4.

9. A ABC A DEF. 9. Steps 2 and 8.

Although it was pointed out in connection with the S.A.S.

Postulate that an S.S.A. theorem cannot in general be proved,

there ls one special case; namely, the case in which the angle is

a right angle, that follows from Theorem 7-2.

Theorem 7-3. (The Hypotenuse-Leg Theorem.) Given a corres-

pondence between two right triangles. If the hypotenuse and one

leg of one triangle are congruent to the corresponding parts of

the second triangle, then the correspondence is a congruence.

Restatement: In AABC andA DEF let mL A = mL D = 90.

Let ABC.*--ioDEF be a correspondence such that

Then P ABC lf P DEF.

BC = EF and AB = DE.

2 0
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--*
Proof: On the ray oppo DF take Q such that

DQ = AC. Then A DEQ -1! A A 1:1; S.A.S. Postulate, and so

EQ = BC. A EQ,F is thus an . les triangle, and soL EQD L EFD.

In A DEQ and A DEF we thus have

EQ EF, L 1,QD L EFD and L EDQ L EDF.

Hence, by the S.A.A. Theorem, A DEF A DEQ. Since we have already

established A DEQ A ABC we conclude that A DEF ;1.46, ABC, which

is what we wanted.

Problem Set 7-3b

1. If in this figure AQ = BQ and

L. 11 L F, prove that FB = HA.

2. Given that -a 1 KF,
AB = HF, AK = HQ.

Prove that KF = QB.

3. If AX = FH in this figure,

prove that FB = AB.
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4. If two altitudes of a triangle are congruent, the triangle is

Liosceles.
0

5. In this figure: L c L a.

AQ, = AF.

Prove: QB

6. In this figurt iiL a = L c,

ABIAH and FBIFH,

prove that AH = FH.

Theorem 7-4. If two sides of a triangle are no: mgruent,

then the angles :Inposite these -t,wo sides are not corvr nt, and

the larger angle 1_3 opposite the longer side.

Restatemen:: Given A AEC. If AB > AC, then > mi_B.

A

Proof: D be a point of 7Z, such that AD = AB.

(By the Point Theorem, there is such a point.) Since the,

base angles of-7.77.- isosceles triangle are congruent, we have

208 (sec. 7-3)
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(1) m L ABD = mL D.

Now AD > AC, since AD = AB and AB > AC, and so C is between

A and D by Theorem 2-1. By Theorem 6-6, C is in the interior

of ABD, and so

(2) mL ABD = mL ABC 4- mL CBD

by the Angle Addition Postulate. Since mL CBD > 0 it follows

that

(3) mL ABD > mL ABC.

Therefore

(4) mL D >mL ABC, fitom (1) and (3).

Since L ACB is an exterior igle of A BCD, we have

(5) mL ACB > mL D.

By (4) and (5),

that is,

mL ACB > taL ABC,

mL C >mL B,
which was to be pro--

Theorem 7-5. L.: :wc a=gles of a triangle are not congruent;

then the sides oppos. tle._r are not congruent, and the longer

side is opposite the angle.

Restatement: It triangle A ABC, if mL C > m, L B, then

AB > AC.

Proof: We want that AB > AC. Since AB and AC

are numbers, there a e :r11:: three possibilities: (L.) AB = AC,

(2) AB < AC and (3) AB > P.a. The method of the praaf is to show

that the first two of tbe- lpossibilities" are in fact impossible. .

The only remaining pot/s1,:-.L.2.Lty will te (3), and this will mean

[sec. 7-3]
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that the theorem is true.

(1) If AB = AC, then by Theorem 5-2 it follows that

*LB L C; and this is false. Therefore, it is impossible that

AB = AC.

(2) If AB < AC, then by Theorem 7-4 it follows that

mLC<mL B; and this is false. Therefore, it is impossible

that AB < AC.

The only renaining possibility is that AB > AC, which was

to be proved.

The proof of Theorem 7-5, as we have given it, is merely a

handy way of stating an indirect proof. It could have been

written more formally, like this:

"Suppose that Theorem 7-5 is false. Then either AB = AC or

AB < AC. It is impossible that AB ='AC, because . . . . And it

is impossible that AB < AC, because . . . . Therefore, 7-5 is

not false."

The proof is probably easier to read, however, the way we

gave it the first time. We will be using the same sort of scheme

again. That is, we will list the possibilities, in a given situ-

ation, and then show that all but one of these "possibilities" are

in fact impossible; it will then follow that the last remaining

possibility must represent what actually happens.

"That process starts upon the supposition that when you have

eliminated all which is impossible, then whatever remains, however

improbable, must be the truth." (Sherlock Holmes in "The Adventure

of the Blanched Soldier".)

Theorems 7-4 and 7-5 are related in a special way; they are

called converses of one another. To get one from the other, we

interchange the hypothesis and the conclusion. We can exhibit

this fact by restating the theorems this way:

Theorem 7-4. GivenA AEC. If AB > AC, then mL C >mL B.

Theorem 7-5. Given A AEC. If mL C > mL B, then AB > AC.

We have seen lots of pairs of theorems that are related this

way. For example, we showed that if a triangle is isosceles, then

its base angles are congruent; and later we showed that if the

base angles of a triangle are congruent, then the triangle is

[sec. 7-3]
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isosceles. Each of these theorems is the converse of the other.

We showed that every equilateral triangle is equiangular; and

later we proved the converse, which states that every equiangular

triangle is equilateral.

It is very important to remember that the converse of a true

theorem is not necessarily true at all. For example, the theorem

"vertical angles are congruent" is always true, but the converse,

congruent angles are vertical" is certainly not true in all cases.

If two triangles are congruent, then they have the same area, but

if two triangles have the same area, it does not follow that they

are congruent. If x = y, then it follows that x2 = y2; but if

x
2

= y
2

, it does not follow that x = y. (The other possibility

is that x = -y.) It is true that every physicist is a scientist,

but it is not true that every scient'ist is a physicist.

If a theorem and its converse are both true, they can be con-

veniently combined into a single statement by using the phrase "if

and only If". TAUS, if we say:

Twc .ngles of a triangle are congruent if and only if the

opposite sides are congruent;

we are including in one statement both theorems on isosceles tri-

angles. The first half of tis double statement:

Two angles of a triangle are congruent if the opposite sides

are congruent;

is Theorem 5-2; and the second half:

Two angles of a triangle are congruent only if the opposite

sides are congruent;'

is a restatement of Theorem 5-5.

Problem Set 7-3c

1. In AGHK, GH = 5, HK = 14, KG = 11. Name the largest angle.

Name the smallest anf4,1e.

2. In A AZ3C, mL A = 36, mL B = 74, and m L C = 70. Name the

longezt side. Name the shortest side.

[sec. 7-3]

211



204

3. Given the figure with HA = HB,

mL HBK = 140, and mL AHB = 100,

fill in the blanks below:

a. m L A

b. mL RHB =

c . is the longest side

of A ABH.

4. What conclusion can you reach about the length of ML in

A KLM if:

a. m L .K > mL M?

b. m L K < L?

c. mLM>mLK> mL L?

d. mLM>mL L?
e. mLK>mLM and

mLK >mL L?
f. mLK>mLL and

mLM<mL, L?

5. If the figure were correctly

drawn which segment would be

the longest?

6. Name the sides of the figure

in order of increasing length.

7. If in the figure AF. is the

shortest side and CB is the

-longest side, prove that

mL F > mL B. (Hint: use

diagonal FB.)

2 1.
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*8. If the base of an isosceles triangle is extended, a segment

which joins the vertex of the triangle with any point in'this

extension is greater than one of the congruent sides 7- the

triangle.

9. Write the converse of each statement. Try to decide whether

each statement, and each converse, is true or false.

a. If a team has some spirit, it can win some games.

b. If two angles are right angles, they are congruent.

c. Any two congruent angles are supplementary.

d. The interior of an angle is the intersection of two

half-planes.

e. If Joe has scarlet fever, he is seriously ill.

f. If a man lives in Cleveland, Ohio, he lives in Ohio.

g. If the three angles of one triangle are congruent to the

corresponding angles of another triangle, the triangles

are congruent.

h. If two angles are complementary, the sum of their measures

is 90.

10 When asked to give the converse of this statement, "If I hold

a lighted match too long, I will be burned", John said, "I

will be burned if I hold a lighted match too long." Was

John's sentence the converse of the original statement?

Discuss.

11. a. Is a converse of a true statement always true? Which

parts f Problem 9 illustrate your answer?

b. May a converse of false statement be true? Which parts

of Problem 9 illustrate your answer?
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Theorem 7-6. Th,

is the perpendicular segn_.1.6.

segment joining to a line

Restatement: Let Q be the foot of the perpendicular to

the line L through the point P, and let R be any other point

on L. Then PQ < PR.

Proof: Let S be a point of L, such that Q is between

S and R. Then L PQS is an exterior angle of A PQR. Therefore,

mL PQS > mL PRQ. But mL PQS = mL PQR = 90, and so,mL PQR >

mL PRQ. By Theorem 7-5 it follows that PQ < PR, which was to be

proved.

Definition. The distance between a line and a point not on

it is the length of the perpendicular segment from the point to the

line. The distance between a line and a point on the line is de-

fined to be zero.

Theorem 7-7. (The Triangle Inequality.) The sum of-the

lengths of any two sides of a triangle is greater than the letigth-

of the third side.

Restatement: In any triangle A ABC, we have AB + BC > AC.

214
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Proof: Let D be a point of the ray opposite to EC such

that DB = AB. Since B is between C and D

DC = DB + BC.

Then (1) DC = AB + BC.

Also (2) m L DAB < m L DAC,

because B is in the interior of L DAC.

Since DAB is isosceles, with AB = DB, it follows that

(3) mL ADB = mL DAB.

By (2) and (3) we have

mL ADB < mL DAC.

Applying Theorem 7-5 to ADC, we see that

(4) DC > AC.

By (1) and (4) it follows that

AB + BC > AC,

which was to be proved.

Problem Set 7-3d

1. Here AH < and AH < .

BT < and BT < : State

the theorem involved.

2 1 5
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2. With angle measures as shown

in the figure, insert HA, HF,

HB below in correct order.

State theorems to support

your conclusion.

3. Suppose that you wish to draw a,triangle with 5 as the length

of one side and 8 as the length of a second-side. Your third

side must haVe a length greater than , and less than

4. Suppose that you wish to draw a triangle with j as the

length of one side and k as the length of a second side.

It is known that j < k. Indicate, as efficiently as you can,

the restrictions on the length, x, of the third side.

5. Prove that the sum of the lengths

of the diagonals of this quadri-

lateral is less than the sum of

the lengths of its sides.

Given: Quadrilateral ABCD.

To prove: DB + CA < AB + BC + CD + DA.

Let A, B, C, be points, not necessarily different. Prove

that AB + BC > AC and that AB + BC = AC if and only if

B is on the segment AC.

(sec. 7-3]
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*7. Prove that the shortest polygonal path from one point to
another is the segment joining them.

A

209

Given: n points A
l'

A
2'

, A.

Prove: A1A2 + A2A3+ + An_lAn AlAn.

*8. Given two segments AC and BD intersecting at P.

Prove that if X is any point in the plane of ABCD other
than P, then XA + XB + XC + XD > PA + PB + PC +-PD.'

Will this result be true if X is not in the plane of ABCD?

*9. Given a line m and two points P, Q on the same side of m.

Find the point R on m for which PR + RQ is as small as
possible.

[sec. 7-3)
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We will now prove a theorem which is a little like Theorem 7-5,

except that it deals with two triangles instead of one.

Theorem 7-8. If two sides of one triangle are congruent

respectively to two sides of a second triangle, and the included

angle of the first triangle is larger than the included angle of

the second, then the opposite side of the first triangle is longer

than the opposite side of the second.

Restatement: Given A AEC and A DEF. If AB = DE, AC = DF

and mL A>mLD, then BC > EF.

Proof: Step 1. We construct A AKC, with K in the interior

of L BAC, such that A AKC DEF, like this:

To do this, we use the Angle Construction Postulate, to get a ray

--At with Q on the same side of AC as B suc4 that L QAC L D.

On re we take a point K such that AK = DE. By the S.A.S.

Postulate, we now have A AKC A DEF, which is what we wanted.

218
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Step 2. Now we bisect L BAK, and let M be the point where

the bisector crosses BC, like this:

The marks on the figure indicate that AK = AB, and this is true,

because AK = DE and DE = AB.

'Ide are now almost done. By the S.A.S. Postulate, we have

A ABM AKM. Therefore, MB = MK. By Theorem 7-7, we know that

Therefore,

CK < CM + MK.

CK < CM + MB,

because MB = MK. Since CK = EF and CM + MB = BC, we get

EF < BC, which is what we wanted.

The converse of this theorem is also true.

Theorem 7-9. If two sides of one triangle are congruent

respectively to two sides of a second triangle, and the third side

of the first triangle is longer than the third side of the second,

then the included angle of the first triangle is larger than the

included angle of the second.

The proof is similar to that of Theorem 7-5, use being made

of Theorem 7-6 and the S.S.S. Theorem to eliminate the two unwanted

cases. The student should fill in the details.

[sec. 7-3]
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Problem Set 7-3e

1. State the combination of Theorems 7-8 and 7-9 in the "if and

only if" form.

2. In. this figure AC = BC,

and BD < AD.

Prove: m.L x>mL Y.

3., In isosceles triangle RAF with

RA RF and B a point on AF

such that mL ARB < m L BRF.

Prove: AB < BF.

4. Given A ABF with median RB

and m L ARB = 80.

Prove: mLA >mL F.

5. In A ABC, BC > AC and Q 'is the midpoint of AB. Is L CQA

obtuse or acute? Explain.

[sec. 7-3]
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6. In this figure PH = AQ.

AH > FQ.

Prove: AB >

213

7. A non-equilateral quadrila7eral has two pairs of congruent
adjacent sides. Prove that the measure of the angle included
between the smaller sides is greater than the measure of the
angle between the larger sides.

8. Prove the following theorem:

If a median of a triangle is

not perpendicular to the side

to which it is drawn, then the

lengths of the other two sides

of the triangle are unequal.

9. Given AB > AC and FC . DB
in this figure. Prove that

FB > CD.

221
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7-4. Altitudes_

Definition_ ;;b-altitude of a tria=1141e is the pen:zoaQicular

segment joinim. a 'vertex of th t to th line ilat 7...vntairrz

ie opposite sL_La,

In the figure BD is called the altitude from B to AC, or

simply the altitude from B. (Notice that we say the altitude

from B instead of an altitude from B, because Theorem 6-3 tells

us that there is only one.)

Notice that the foot of the perpendicular does not necessarily

lie on the side AC of the triangle. The figure may look like

this:
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Notice also That p e has three altitude: .71-le from each

of the three vert_ dke

r\

Here AP is the alti r..71In A, BD is the altitude from B
and CE is the altit e 7, C.

It is austomary t the same word "altitude" for two

other different, but 1..%;ed, concepts.

(1) The number wkicc Ls the length of the perpendicular seg-

ment is called altitud_e; thus one may say "The altitude from B
is 6, meaning that BD 6.

(2) The line contaInLng the perpendicular segment is also

aalled altitude; a prwperty of the above figure can be expressed

by saying that the three ai7itudes of the triangle intersect in
one point. (This propert7 true for all triangles and will be

proved in Chapter 14.)

This triple use of .71_e word aould cause trouble but gen-

erally does not, since Lt. is usually easy to tell in any particular

case which usage-is being made.

Prcblem Set 7-4,

1: Define: a. Altit:Ide zf a triangle.

b. Median of a triangle.

2. Draw an obtuse triangle: (a triangle having an obtuse angle)

and its three alti' Ana.

[sec. 7-4]
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3. In an equ_iilateral triangle a median and an altitud-z. :;7.T.- drawn_

to the sEme side. Compare the lengths of these twr.,

4. Prove that the perimeter of a triangle is greater tlaal the

sum of the three altitudes.

5. Prove th-a following theorem: The altitudes of an f:--7.11L_ateral

triangle are congruent.

Revlew Problems

1. Three guy wires of equal length are being used to s7.7..Lut a

newly planted tree on level ground. If they are aLlt fastened

to the tree at the same height on the tree, will.thay be

pegged to the ground at equal distances from the foot of the

tree? Why?

2 If this figure were drawn

correctly, which segment in

the figure would be the shortest?

Explain your reasoning.

A

3 Prove the following theorem:

If two oblique (not perpendicular) line segments are

drawn to a line from a point on a perpendicular to that line,

the one containing the point more remote from the foot of the

perpendicular is the longer.

In this plamar figure,

AK = HQ, AF = HB, KBIAH, W1AH.

Prove L =1; L K.

Does KQ bisect BF?

2 2
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5. In LA3, AC > AB. Prove thi any line segment from A to a.

point-an' EC _between P ant C is.shnmter than A.

6. Segment.= drawr from a point frl the interior of a triangl:+:

the thre verrices have iengt7:'3 r, a, t. Prove that

r + s greater than half the pelrineter of the tria

7. In thiE alanar figure FH is

the shortest aide and AB is

the lor-,est side. Prove

m L F > mL.A.

8. Prove the following theorem: The length of the longest aide

of the triangle is less than half its perimeter.

. Given isbsceles A ABF with

FA = FE, AB < AF, and H on
4c-->

AF, so that F is between A

and H. Prove no two sides of

AABH are equal in length.

A

*10. On the basis of the assumptions we have accepted and the

theorems we have proved in this course we are not able at

present to prove that the sum of the mmasures of the three .

angles of a triangle is 180 (an idea W.7...th which you have been

familiar for same time) But, we can easily construct a tri-

angle arrri prove that the sum of the measures of the angles_cf

this trfangle is lesrz-..ri 1E1

Let L FM have meab 1 (Angle

Conatruction ?ostulate)_ On CF

and CG 't-a:1,,a points A and B-

so that CACB (Point Plot=ing Theomara).

Why is the sum of the measures of the mngles of this- triangle

less than 181?

225
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*11. 7lie sum ,f tne measures of the three angles of a triangle is

ss than 27.C.

*12. I_ this fItgur.,

LC is a ri==t angle.

r L B = _m,

Prove: I CB.

(Hint: 72= atl-ace auxiliary

segmenta,)

*13. Prove thie theorem The aum of the distances from a point

within a triangle to the ends of one side is less than the

sum of the lengths 'of the other-two sides.

4-*

*14. Suppose AC intersects BD at .a point B between A and C.

Perpendiculara7are dropped frOM A and C to BD striking

It at P and Q. respective. Show that P -and Q are not

on the same aide of B.
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Chapter 8

PERPENDICULAR LINES AND PLANES IN SPACE

&=1. The Basic Definition.

In this chapter we,shall L.e Epectiically concerned wit prop-

erties of figures 'b.:at do not _ie Jingle n2ane. The fanda-

mental properties aL' such fig:L-0 stated in Tostulates 5b, 6,

7, 8 and 10, and in Theorems 3-2, an..d 3-4. It would be worth

your while t7.) review these.

Definition. A line and a plam: are perpendicular if they'

'intersect and if every line lying in the plane and passing through

.the point of Interaection is perperrlicular to the given line.

If line L and Diane E perrendicular we. 7cTrite 1_,E or

We have indicated, in th- ff:zare, three line5: in E =asEing

through P. Notice that ! a ye-p..esT.ecti& drawing, merperr'riatilar

lines donit necaaaarily Notie also that .ff

we merely required L11, = cantiin one line through P perpendicular

to L, this woul1_mean7t.:77. liftle; you can fairly easily convince

yourself that every blan through P contains such a line_

7



220

Problem Set 8-1

1. The figure at the right

represents plane E.

a. Do any points outside the

quadrilateral shown

belong to plane E ?

b. Is plane E intended t: include

every point outside tte quadri-

lateral?

2. a. Sketch a plane perpenfiaular to a vertical line. (See

Appendix V.)

b. Sketch a plane perpendioular to a horizontal lihe

c. Does each of your stctes represent line perpendicular

to a plane?

3. a. Repeat the sketch of problem 2b. Add -3a the siceren

lines in the plane which paas th=ugt 'the point of inter-

seotio,". What Is the .-elarLonship betwn eacs af the

three lines and the oripina line?

4. Reread the defirition of pe=endicuLari.77 between a ltaa and

a plane and dealde whether the fallowlag atatement =ue if

that definition is accepti:a

"If a line is pergendar to pinne, then ir Ls cerpen-

dicular to every line lyinr a the plane --Id passinE tsugh

the point of Intersection."

5. Given that B, R, S and T are
4c>

in plane E, and that AB i E.

which of the following..., a-gies

-must be right angles.:

ABR, L ABS, L RBT, L. :BA,

SBR?

[sec. 8-1J
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6.. If I_PQH is a right angle and Q.

and_11 are in E, should you infer

from the definition of a line and

a plane perpendicular that PQ I E?

Why or why not?

In the figure plane E contains

points R, S, and P, but not T.

a. Do points R, S and T determine

a plane?

C. If SP is perpendicular to the

plane of R, S and T, which

angles in the figure must be

night angles?

221

8. a. _11-C a point is equidistant from each of two other points,

are the three points coplanar?

b. af two points are each equidistant from each of two other

,points, are the four points coplanar?

*9. a. Given:

Collinear points A, B and X

as in the figure; B equidis-

tant from P and Q; and A

equidistant from P and Q.

Prove: X is equidistant

from P and Q.

b. Does the proof require that

Q be in the plane of A, B, X

and P?

10. Look ahead to Theorem 8-1 and make a model for it from sticks,

wire coat hangers, or straws.

[sec. 8-11
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8-2. The Basic Theorem.

The basic theorem on perpendicularity in space says that if a

plane E contains two lines, each perpendicular to a line L at the

same point of L, then L J E. The proof of this is easier if we

prove two preliminary theorems (lemmas).

Theorem 8-1. If each of two points of a line is equidistant

from two given points, then every point of the line is equidistant

from the given points.

p

Restatement: If P and Q are two points and L is a line such

that two points A, B of L are each equidistant from P and Q, then

every point X of L is equidistant from P and Q. (The above figure

shows three possible positions for X. Of course, X might be at

A or B.)

Proof: First we consider the case where X is on the same

side of A as B. X might be at X
1

, B, or X
2

]:.ut for convenience

in the figure we show it beyond B at Xl. In this case LPAB =L PAX

and L QAB = L QAX. We treat this case in 3 steps.

230
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1. Since AP = AQ (given), BP = BQ (given), and AB = AB (identity),

A ABP ABQ (S.S.S.). Hence, L PAB L QAB.

L FAX QAX. This is because L PAB L QAB by Step 1.

(We are considering the case where L FAX =L PAB and

L QAX =L QAB.)

3. Using Step 2 and the facts that AP = AQ (given), and AX = AX

(identity) we find that A FAX A QAX (S.A.S). Hence PX = QX.

The case where X lies on the ray oppostte AB is proved in a

similar fashion.

231
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Protaem Set 8-2a

1. A pece of paper AXBQ, as

pic-ured here, f...s folded along

U. Imagine A =id. 3 as both

being in the foreground of the

picture and U.i.n the background.

Under these condi-J:1:ms will a

paint K of QX be eaaldistant

from A .and B? .Statie a theorem

to support -your zr.:,...wer. If

AF = 6, BF

2. -Here imagine "71.=Ec obscur-

ing part of pm=rT1=- AYH. It is

.given that XA= =and YA = YB.

T, W and Z are three other

points of XY. Does TA = TB?

Does WA = WB? Zees ZA = ZB?

State a theorem: tat supports

each conclusion.
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Theorem 8-2. If each of three non-collinear points of a

plane is equidistant from two points, then every point of the

plane is equidistant from these two points.

Given: Three non-collinear

points A, B and C each equi-

distant from P and Q.

Prove: Every point of the

plane determined by A, B and

C is equidistant from P and Q.

Proof: The proof is given in three steps.

1. Since A and B are each given

equidistant from P and Q, each
4->

point of AB is equidistant from

P and Q. This follows from

Theorem 8-1. Similarly each
<->

point of BC is equidistant from

P and Q.

2. Let X be any other point of the

plane. If X is on either AB or
4->
CB, X is equidistant from P and

Q by Step 1. If X is on one

side of BC, choose Y, some point

of nori the other side ()fn.

The Plane Separation Postulate

assures us that there is such a
4->

point Y and that XY will inter-

sect C B in some point Z.
4-*

3. Since Z is on CB it is equi-

distant from P aakQ by Step 1.
Since Y Is on Arit is equi-

distant from P and Q by Step 1.

Therefore by Theorem 8-1 every

IQ

p

Q

P

Q

point of YZ is equidistant from p and Q. X is one of these
points.

(sec. 8-2)
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Since we have shown that each point X of the plane determined

by A, B, C is equidistant from P and Q, Theorem 8-2 is established.

We are now ready to prove the basic theorem.

Theorem 8-3. If a line is perpendicular to each of two inter-

secting lines at their point of intersection, then it is perpen-

dicular to the plane of these lines.

Restatement: Let L
1

and L
2
be lines in plane E intersecting

at A and let L be a line through A perpendicular to L1 and L2.

Then any line L3 in E through A is perpendicular to L.

Proof:

Statement Reason

1. Let P be a point on L,
B
1

a point on L
1,

B
2

a

point on L2, and B3 a point

on L
3'

none of these points

coinciding with A.

2. Let Q be the_ppint on the ray
opposite to AT-such that
AQ AP.

3. In the plane containing L and
L
1,

L
1

is the perpendicular

bisector of 7,k.

1. By the Ruler Postulate, each
of these lines has an
infinite number of points.

2. Point Plotting.Theorem.

3. Definition of perpendicular
bisector (Section 6-3).

4. B1 is equidistant from P 4. Theorem 6-2.

and Q.

[sec. 8-2)
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5. B
2

is equidistant from P and

Q.

5. Similar to 3 and 4.

6. A is equidistant from P and Q. 6. Step .2.

7. B3 is equidistant from P 7. Steps 4, 5 and 6, and

and Q.
Theorem 8-2.

8. In the plane containing L
and L

3'
L
3

is the perpen-

dicular bisector of 77.

8. Theorem 6-2.

9. L L
3'

9. Definition of perpendicular
bisector.

10. LIE. 10. Definition of perpendicular-
ity of line and plane, since
L is anline in E through
3

y,

A.

Problem Set 8-2b

1. Suppose A, B and C are each

equidistant from P and Q.

Explain in terms of a defi-

nition or theorem why each

point X of plane AEC is equi-

distant from P and Q.

2. Explain the relationship between the line of intersection L of

two walls of your classroom and the plane of the floor. How

many lines perpendicular to L could be drawn on the floor?

Is L perpendicular to every line that could be drawn on the
floor?

235
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3,

4.

A

>177E

3

Figure FRHB is a square. AB j FB. A is not in plane FRHB.

a. How many planes are determined by pairs of segments in

the figure? Name them.

b. At least one of the segments in this figure is perpendicular

to one of the planes asked for in Part (a). Which segment?

Which plane? A systematic approach to suCh a problem is

to write down every pair of perpendicular segments you see

in the figure. Then you can observe whether you have one

line perpendicular to two intersecting lines.

A ABF is isosceles with B as vertex. AH = FH. TaTilTE.

R is not in plane AFB.

a. How many different planes are determined by the segments

in the figure? Name them.

b4 Do you find a segment that is perpendicular to a plane?

If so, tell what segment and what plane and prove your

statement.

236
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5. In this figure, FB 1 plane P, and in A RAB, which lies in

plane P, BR = BA. Prove A ABF A RBF and L FAR =t"- L FRA.

*6. Given the cube shown, with BR = BL. Does KR = KL? Prove that

your answer is correct.

(Since we have not yet given a precise definition of a cube

we state here, for use in your proof, the essential properties

of the edges of a cube:

The edges of a cube consist of twelve congruent segments,

related as shown in the picture, such that any two intersecting

segments are perpendicular.)

37
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7. In the accompanying figure WX is a line in plane E. Plane F

at Q. In plane F, ii A is the intersection of E

and F. Prove RQ E.

For all we know up to now the conditions specified in the

definition of a line and a plane perpendicular might be impossible

to achieve. To reassure us, we need an existence theorem. The

next theorem enables us to see that we are not talking about things

that cannot exist in speaking of perpendicularity between lines and

planes.

[sec. 8-2]

238



231

Theorem 8-4. Through a given point on a given line there

passes a plane perpendicular to the line.

Proof: Let P be a poi= on a line L. We show in stx steps

that thEre Ls a plane E through P perpendicular to.L.

1. Let R be a point nc7, on L. That there is such a point

follows from Postul:rte 5a.

2. Let M be the plane determined by L and R. Theorem 3-3

7:ells us there is such a plane.

3. Let Q be a point not on M. Postulate 5b assures us that

there is sun a point.

4 Let N be the plane determined by L and Q.

5. In plane M there is a line L1 perpendicular to L at P

(Theorem 6-1), and in plane N there is a line L2 perpen-

dicular to L at P.

6. By Theorem 8-3, the plane E determined by L1 and L2 is

perpendicular to L at P.

If E 1 L at P then every line in E and through P is perpendic-

ular to L, by definition. May there be some lines not in E but

still perpendicular to L at P? The next theorem says, "No".

Theorem 8-5. If a line and a plane are perpendicular, then

the plane contains every line perpendicular to the given line at

its point of intersection with the given plane.

Restatement: If line L is perpendicular to plane E at point

P, and if M is a line perpendicular to L at P, then M lies ln E.

. [sec. 8-2]
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Proof: Statements Reasons

1.

2.

L and_ M determine a plane F.

Planes 7 and E intersect in
a line N.

1.

2.

Theorem 3-4.

Postulate 8.

3. N 3. Definition of perpendicu-
larity of line aRd plane.

4 M L. 4. Given.

5. M = N. (This means M and N 5. M and N both lie in plane F
are the same line.) by Steps 1 and 2, are both

L by Steps 3 and 4, but
Theorem 6-1 says there is
only one such perpendiculan

6. M lies in E. 6. M N by Step 5 and N lies
in E by Step 2.

This theorem enables us to prove the unicidene6s theorem that

goes with Theorem 8-4.

Theorem 8-6. Through a given point on a given line there is

at most one plane perpendicular to the line..

Proof: Since a perpendicular plane contains all perpendicular

lines through the point, and since two different planes have only

one line in common (Theorem 3-4), there cannot be two such planes.

Just as in a plane where the characterization TheoreM -6-2

followedthe existence and uniqueness Theorem 6-1, so now we can

prove a similar characterization theorem for space.

Theorem 8-7. The perpendicular bisecting plane of a segment

is the set of all points equidistant from the end-points of the

(sec. 8-2]
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segment. Note that this theorem, like Theorem 6-2, has two parts.

Restatement: Let E be the perpendicular bisecting plane of

K. Let C be the mid-po.f2t of A. Then

(1) If P is in E, then PA = PB, and

(2) If PA = PB, then P is in E.

The proof is left to the student.

Problem Set 8-2c

1. a. At a point on a line how many lines are perpendicular to

the line?

b. At a point on a line how many planes are perpendicular to

the line?

2. Planes E and F intersect in

KQ, as shown in this figure.

AB i E. BR lies in plane E.
4->

Plane ABR intersects F in BC.
, 4-*

Is 111 BR?
4->

Is AB i KQ.

Is AB I BC?

4-*
3. If QP I E at P and QP i PR,

4->
why does PR lie in E?

4. Assuming here that

AX = BX,

AY = BY,

AW = BW,

AZ = BZ,

why are W, X, Y and Z coplanar?
241
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5. Plane E is the perpendicular

bisecting plane of AB, as shown

in the figure.

a. AW

AK 2'

AFW =

LAKY

b. Does FW = FK = FR? Explain.

*6. Prove this theorem: If L is a line intersecting plane E at

point M, there is at least one line LI in E such that LI L.

The next theorem is a lemma which is useful in proving later

theorems.

Theorem 8-8. Two lines perpendicular to the same plane are

coplanar.

Proof: Let lines L
1

and be perpendicular to planeE at
-2

the points A and B respeotivelT-. Iet M be the mid-point af !AB,

let L be the line in E which 1F.. -the perpendictlar bisector of 71.13,

and let P and Q be two points on L such that PM = QM. Let C be

a point on L1 distinct from A.

[sec. 8-2]
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1. By the S.A.S. Postulate, A AMP A AMQ, and so AP = AQ.

2. Since L
1

E, L CAP and L CAQ are right angles, and the S.A.S.

Postulate gives A CAP A CAQ, so that CP = CQ.

3. From = AQ and CP = CQ it follows, by Theorem 8-7, that C

and A both lie in the bisecting plane El of Fq. Hence, L1 lies

in El.

4. In exactly the same way we prove that L2 lies in El. Hence,

L
1

and L
2

are coplanar.

8-3. Existence and Uniqueness Theorems.

The following theorems cover all possible relations between

a point, a line and a perpendicular plane. They are stated here

for comp1ct7,ness and for convenience in reference.

Theorem 8-9. Through a given point there passes one and only

one plane perpendicular to a given line.-
Theorem 8-10. Through a given point there passes one and only

one line perpendicular to a given plane.

The proof of each of these theorems has two cases, depending

on whether or not the given point lies on the given line or plane,

and each case has two parts, one for proving existence and one for

proving uniqueness. This makes a total of eight proofs required.

Theorems 8-4 and 8-6 are two of these eight; the remaining six,

some of which are Hard and some easy, are given in Appendix VI.

Theorem 8-10 assures us of the existence of a unique perpen-

dicular to a given plane from an external point. Hence, we are

justified in giving the following definition, analogous to the one

following Theorem 7-6.

Definition. The distance to a plane from an external point is

the length of the perpendicular segment from the point to the plane.

Theorem 8-11. The shortest segment to a plane from an ex-

ternal point is the perpendicular segment.

The proof is similar to that of Theorem 7-6.

[sec. 8-3]
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Review Problems

1. Use a drawing if necessary to help you decide whether each

statement is true or false.

a. The intersection of two planes may be a segment.

b. If a line intersects a plane in only one point, there are

at least two lines in the plane perpendicular to the line.

c. For any four points, there is a plane containing them all.

d. If three lines intersect in pairs, but no point belongs

to all three, the lines are coplanar.

e. It is possible for three lines to intersect in a point, so

that each is perpendicular to the other two.

f. Only one line can be drawn perpendicular to a given line

at a given point.

g. At a point in a plane there is only one line perpendicular

to the plane.

h. The greatest number of regions into which three planes can

separate space is eight.

2. From a point R outside plane E, RB 1 E and -0 intersects the

plane in B. RA is any other segment from R, intersecting E

in A. Compare the lengths AR and RB. Compare the measures

of L A and L B.

3. If the goal posts.at one end of a football field are perpen-

dicular to the ground, then they are coplanar even without a

brace between them. Which theorem supports this conclusion?

Can the goal posts still be coplanar even if they are not

perpendicular to the ground? Could they fail to be coplanar

even with a brace between them?

2 4 t
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4. Do there always exist

a'. two lines perpendicular to a given line at a given point

on the line?

b. two planes perpendicular to a given line at a given point

on the line?

c. two lines perpendicular to a given plane at a given point

on the plane?

d. two planes perpendicular to a given line?

e. two intersecting lines each perpendicular to a given plane?

5. The assumption that two lines

L
1
and L

2
are perpendicular

to plane E and L
1

and L
2

inter-

sect in point P not in plane E

can be shown to be false by

proving that the assumption

leads to a contradiction of a

theorem about figures in a

plane. Which theorem?

6. Given MQ plane E, and WF

to plane E. How many different

planes are determined bytt,
4E-->
MN, WF and QF? Explain.

7.

W

Q F II /

AABF is isosceles with vertex at B. HF = HA. RH 1. AF.

R is not in the plane AFB.

a. How thany different planes are determined by the segments

in the figure? Explain.

b. Locate and describe a line that is perpendicular to a

plane.

245
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8. Given: P is in plane E which

contains A, B, C.; P is equi-

distant from A, 3, C; line L E

at P.

Prove: Every point, X, in L is

equidistant from A., B, C.

9. Given: Line L piRne AEC at

Q; point P of L is equidistant

from A, B, C.

Prove: Every point of L is

equidistant from A, B, C.

(Hint: Consider any point

X Q. on L and show XA = XB = XC.)

10. Given: AP I PQ and AP I PC;

PQ I BC at Q.

Prove: 1.44:.1.7.

(Hint: Take R on QC so that

QB = QR. Draw PB, PR.)

2 4
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11. Prove the following theorem: If from a point A outside a

plane, a perpendicular AB and oblique (non-perpendicular)

segments AF apd AH are drawn, meeting the plane at unequal

distances from B, the segment which meets the plane at the

greater distance from B has the greater length.

A

Given: AB j plane E. F and

H are points of E such that

BF > BH.

Prove: AF > AH.

* * -->
12. Prove that each of four rays AB, AC, AD and AE cannot be

perpendicular to the other three.

13. Given: XB and YB are two lines in plane E; m is a plane ± XB
4-*

at B; n is a plane YB at B; AB is the intersection of m and

n.
4-* ,

Prove: AB ± E.

247



Chapter 9

PARALLEL LINES IN A PLANE

9-1. Conditions Which Guarantee Parallelism.

Thus far in our geometry we have been mainly concerned with

what happens when lines and planes intersect in certain ways. We

are now going to see what happens when they do not intersect. It

will turn out that many more interesting things can be proved.

We first consider the case of two lines. Theorem 3-3 gives

us some information right away, since it says that if two lines

intersect they lie in a plane. Hence, if two lines are not

coplanar they cannot intersect.

Definition: Two lines which are not coplanar are said to be

skew.

You can easily find examples of skew lines in your classroom.

This still leaves open the question as to whether two

coplanar lines must always intersect. In Theorem 9-2 we shall

prove the existence of coplanar lines that do not intersect, but

are parallel, like this:

Let us first make a precise definition.

Definition: Two lines are parallel if they are coplanar and

do not intersect.

Note that for two lines to be parallel two conditions must be

satisfied: they must not intersect; they must both lie in the

same plane.

248



2142

Theorem 9-1. Two parallel lines lie in exactly one plane.

Proof: If L
1

and L
2

are parallel lines it follows from

the above definition that there is a plane E containing L1 and

L2. If P is any point of L2 it follows from Theorem 3-3 that

there is only one plane containing L1 and P. Hence, E is the

only plane containing L1 and L2.

We will use the abbreviation L
1

L
2

to mean that the

lines L
1

and L
2

are parallel. As a matter of convenience

we will say that two segments are parallel if the lines that

contain them are parallel. We will speak similarly of a line and

a segment, or a line and ray, and so on. For example, suppose we

have given that L1 II L
2'

in the figure below:

A

L2

--> --> -
Then we can also write AB 11CD, AB H L

2'
L II CD, BA H CD,

and so on. Each of these statements is equivalent to the state-

ment that L
1 II L2'

It does not seem easy to tell from the definition whether

two lines which seem to be parallel really are parallel. Every

line stretches out infinitely far in two directions, and to tell

whether two lines do not intersect, we would have to look at all

of each of the two lines. There is a simple condition, however,

which is sufficient to guarantee that two lines are parallel. It

goes like this:

Theorem 9-2. Two lines in a plane are parallel if they are

both perp ldicular to the same line.

[sec. 9-1]
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Proof: Suppose that L1 and L2 are two lines in plane E,

each perpendicular to a line L, at points P and Q.

There are now two 1,)ssibilities:

(1) L
1

and L
2

intersect in a point R.

(2) L1 and L2 do not intersect.

In Case (1) we would have two lines, L1 and L2, each

perpendicular to L and each passing through R. This is

Impossible by Theorem 6-1 if R lies on L, and by Theorem 6-3

if R 'is not on L. Hence, Case (2) is the only possible one,

and so, by definition, Li H L
2.

Theorem 9-2 enables us to prove the following important

existence theorem.

250
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Theorem 9-3. Let L be a line, and let P be a point not

on L. Then there is at least one line through P, parallel to

L.

L,

990°

10° "

Proof: Let L
1

be a line through P, perpendicular to L.

(By Theorem 6-1, there is such a line.) Let L2 be a line

through P, perpendicular to Li in the plane of L and P.

By Theorem 9-2, L2 m L.

It might seem natural, at this point, to try to prove that

the parallel given by Theorem 9-3 is unique; that is, we might try

to show that in a plane through a given point not on a given line

there is only one parallel to the given line. Astonishing as it

may seem, this cannot be 2E2191 on the basis of the postulates

that we have stated so far; it must be taken as a new postulate.

We will'discuss this in more detail in Section 9-3. In the mean-

time, before wP get to work on the basin' of this new postulate we

shall prove some additional theorems which, like Theorem 9-2, tell

us when two lines are parallel.

We first give some definitions.

Definition: A transversal of two coplanar lines is a line

which intersects them in two different points.

We say the two lines are "cut" by the transversal.

[sec. 9-1]
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Definition: Let L be a transversal of L
1

and L
2'

intersecting them in P and Q. Let A be a point of L1 and

B a point of L2 such that A and B are on opposite sides of

L. Then z PQB and z QPA are alternate interior angles formed

by the transversal to the two lines.

. 0 R

Notice that in the definition of a transversal, the two lines

that we start with may or may not be parallel. But if they inter-

sect, then the transversal is not allowed to intersect them at

their common point. The situation in the figure below is not

allowed:

That is, in this figure L is not a transversal to the lines L
1

and L
, 2.

Notice also that a common perpendicular to two lines in a

plane, as in Theorem 9-2, is always a transversal.

[sec. 9-1]
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Theorem 9-4. If two lines are cut by a transversal, and if

one pair of alternate interior angles are congruent, then the

other pair of alternate interior angles are also congruent.

That is, if a , then b bl . And if b bl,

then Z a a.= Z al . The proof is left to the student.

The following theorem is a generalization of Theorem 9-2,

that is, it includes Theorem 9-2 as a special case:

Theorem 9-5. If two lines are cut by a transversal, and if

a pair of alternate'interior angles are congruent, then the lines

are parallel.

2 5 3
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Proof: Let L be a transversal to L
1

and L
2'

inter-

secting them in P and Q. Suppose that a pair of alternate .

interior angles are congruent. There are now two possibilities:

(1) L1 and L2 intersect in a point R.

(2) L1 11 L2.

In Case (1) the figure looks like this:

Let S be a point of Ll on the opposite side of L from R.

Then Z SPQ is an exterior angle of 6PQR, and Z PQR is one

of the remote interior angles. By Theorem 7-1, this means that

m L SPQ> m L PQR.

But we know by hypothesis that one pair of alternate interior

angles are congruent. By the preceding theorem, both pairs of

alternate interior angles are congruent. Therefore,

m LSPQ = m L KR-

Since Statement (1) leads to a contradiction of our hypothesis,

Statement (1) is false. Therefore Statement (2) is true.

254
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Problem Set 9-1

1, a. Does the definition of parallel lines state that the

lines must remain the same distance apart?

b. If two given lines do not lie in one plane, can the

lines be parallel?

2. Two lines in a plane are parallel if

or if

, or if

3. If two lines in a plane are intersected by a transversal,

are the alternate interior angles always congruent?

4 . In space, if two lines are perpendicular to a third line, are

the two lines parallel?

5 a. If the 800 angles were

correctly drawn, would

L1 be parallel to L2

according to Theorem

9-5? Explain.

b. How many different

measures of.angles

would occur in the

drawing? What measures?

6. In the figure, if the angles

were of the size indicated,

which lines would be parallel?

[sec. 9-1]
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7. Given a line L- and a point P not on L, show how pro-

tractor and ruler can be used to draw a parallel to L

through P.

8. suppose the following two definitions are agreed upon:

A ve'rtical line is one containing the center of the

earth.

A horizontal line is one which is perpendicular to some

vertical line.

a. Could two horizontal lines be parallel?

b. Could two vertical lines be parallel?

c. Could two horizontal lines be perpendicular?

d. Could two vertical lines be perpendicular?

e. Would every vertical line also be horizontal?

f. Would every horizontal line also be vertical?

g. Could a horizontal line be parallel to a vertical line?

h. Would every line be horizontal?

9. Is it possible to find two lines in space which are neither

parallel nor intersecting?

10. Given: m Z DAB = m Z CBA = 90,

and AD = CB.

Prove: m Z ADC = m Z BCD.

Can you also prove m Z ADC

= m Z BCD = 90?

C
..,... ,,"', //. /. /.. /..,...

...... N. .



250

11. Given the figure with

AR = RC = PQ,

AP = PB = RQ,

BQ = QC = PR.

Prove:

ITIZA+171Z13+mLC= 180.
(Hint: Prove nila=mZ A,
rriLb=:mLB, triLc =n1LC.)

12. Given: AB = AC, AP = AQ.

Prove: PQ II BC.

(Hint: Let the bisector of

z A intersect PQ at R

and BC at D.)

13. Given: The figure with

z A B,

AD = BC,

AT = TB,

SD = SC.

Prove:

ST.I DC.

ST I AB.

DC 11 AB.

A

257
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9-2. Corresponding Angles.

In the figure below, the angles marked a and a' are

called corresponding angles:

Similarly, b and b' are corresponding angles; and the pairs

c, c' and d, d' are also corresponding angles.

Definition: If two lines are cut by a transversal, if L x
and z y are alternate interior angles, and if z y and z z

are vertical angles, then z x and z z are corresponding

angles.

You should prove the following theorem.

258
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Theorem 9-6. If two lines are cut by a transversal, and if

one pair of corresponding angles are congruent, then the other

three pairs of corresponding angles have the same property.

The proof is only a little longer than that of Theorem 9-4.

Theorem 9-7. If two lines are cut by a transversal, and if

a pair of corresponding angles are congruent, then the lines are

parallel. The proof is left to the student.

It looks as though the converses of Theorem 9-5 and Theorem

9-7 ought to be true. The converse of Theorem 9-5 would say that

if two parallel lines are cut by a transversal, then the alter-

nate interior angles are congruent. The converse of Theorem 9-7

would say that if two parallel lines are cut by a transversal,

then corresponding angles are congruent. These theorems, however,

cannot be proved on the basis of the postulates that we have

stated so far. To prove them, we shall need to use the Parallel

Postulate, which will be stated in the next section.

The Parallel Postulate is essential to the proofs of many

other theorems of our geometry as well. Some of these you are

already familiar with from your work in other grades. For example,

you have known for some time that the sum of the measures of the

angles of any triangle is 180. Yet, without the Parallel

Postulate it is impossible to prove this very important theorem.

Let us go on, then, to the Parallel Postulate.

9-3. The Parallel Postulate.

Postulate 16. (The Parallel Postulate.) Through

a given external point there is at most one line

parallel to a given line.

Notice that we don't need to say; in the postulate, that there

is at least one such parallel, because we already know this by

Theorem 9-3.

[sec. 9-3]
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It might seem natural to suppose that we already have enough

postulates to be able to prove anything that is "reasonable"; and

since the Parallel Postulate is reasonable, we might try to prove

it instead of calling it a postulate. At any rate, some very

clever people felt this way about the postulate, over a period of

a good many centuries. None of them, however, was able to find a

proof. Finally, in the Iast century, it was discovered that no

such proof is possible. The point is that there are some mathe-

matical systems that are almost like the geometry that we are

studying, but not quite. In these mathematical systems, nearly

aLl of the postulates of ordinary geometry are satisfied, but the

Parallel Postulate is not. These "Non-Euclidean Geometries" may

seem strange, and in fact they are. (For exaMple, in these

n geometries" there is no such thing as a square.) Not only do

they lead to Interesting mathematical theories, but they also have

important applications to physics.

Now that we have the Parallel Postulate we can go on to prove

numerous important theorems we could not prove without it. We

start by proving the converse of Theorem 9-5.

TheOrem 9-8. If two parallel lines are cut by a transversal,

then alternate interior angles are congruent.

Proof: We have given parallel lines L1 and L2, and a

transversal L
3'

intersecting them in P and Q.

260
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Suppose that Z a and Z b are not congruent. Let L be a line

through P for which alternate interior angles are congruent.

(By the Angle Construction Postulate, there is such a line.)

Then L / L
1,

because Z b and Z c are not congruent.

Now let ur ,-tee what we have. By hypothesis, L1 11 L2. And

by Theorem 9-5, we know that L II L
2'

Therefore there are two

lines through P, parallel to L2. This is impossible, because it

contradicts the Parallel Postulate. Therefore Z a =Z b, which

was to be proved.

The prcofs of the following theorems are short, and you

should write them for yourself:

Theorem 9-9. If two parallel lines are cut by a transversal,

each pair of corresponding angles are congruent.

Theorem 9-10. If two parallel lines are cut by a trans-

versal, interior angles on the same side of the transversal are

supplementary.

Restatement: Given L
1

L
2

and T intersects L
1

and

Lo. Prove that Z b Is supplementary to Z d and Z a is

supplementary to Z e.

(sec. 9-3)
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Theorem 9-11. In a plane, two lines parallel to the same

line are parallel to each other.

Theorem 9-12. In a plane, if a line is perpendicular to one

of two parallel lines it is perpendicular to the other.

Problem S t 9-3

1. Given:

friZA=mZI3=mZC= 90.
Prove: m z D = 90.

A

2. Prove that a line parallel to the base of an isosceles tri-

angle and intersecting the other two sides of the triangle

forms another isosceles triangle.

3. Given: In the figure,

RT = RS, H

Prove: PQ = PT.

[sec. 9-3]
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4. Review indirect proof as illustrated by the proof of

Theorem 9-8. Give an indirect proof of each of the following

statements, showing a contradiction of the Parallel Postulate.

a. In a plane, if a third

line M intersects one

of two parallel lines

L
1

at P, it also

intersects the other

L2

b. In a plane, if a line

R intersects only one

of two other lines L
1

and L
2'

then the

lines L
1

and L
2

Intersect.

Given: R intersects L
I

at P.

R does not intersect L2.

Prove: L
1

intersects L2

5 a. Prove: Two angles in a plane which have their sides

respectively parallel and extending both in the same

(or both in opposite) directions are congruent.

A
Given: BA II YX ,

ho II YZ .

Prove: LABC LXYX

2 ti
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b. Prove: Two angles in a plane which have their sides

respectively parallel but have only one pair extending

in the same direction are supplementary.

Given: 3-1 II YX ,

f6 11 .

Prove: In (a) L.ABC ZXYZ.

In (b) mLABC + mLXYZ = 180.

(Note: Only certain cases are illustrated and proved

here. All other cases can also be proved easily. The

term "direction" is undefined but should be understood.)

6. Make drawings of various pairs of angles ABC and DEF such
, --> -->

that BA 1 ED and BC I EF. State a theorem that you think

may be true about the measures of such angles.

*7 If Theorem 9-8 is assumed as a postulate, then the Parallel

Postulate can be proved as a theorem. (That is, it must be

shown that there cannot be a second parallel to a line

through a point not on it.)

Given: L
1

and L
2

are

two lines containing P,

and L
1

n M.

Prove: L
2

not parallel

to M.

261
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*8. Show that if Theorem 9-12 (If a transversal is perpendicular

to one of two parallel lines, it is perpendicular to the

other.) is assumed as a postulate, the Parallel Postulate

can be proved as a theorem.

Given: L1 H M and L1 and

L2 contain P. (L2 / L1.)

Prove: L
2

not parallel to

M.

9-4. Triangles.

Theorem 9-13. The sum of the measures of the angles of a

triangle is 180.

Proof: Given 2..N ABC, let L be the line through B,

parallel to AC. Let z x, z xi, z y, z yl and Z z be as

in the figure.

mt.

[sec. 9-4]
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Let D be a point of L on the same side of AB as C.

Since AC h A is on the same side of BD as C. Therefore

C is in the interior of Z ABD (definition of interior of an

angle), and so, by the Angle Addition Postulate, we have

mZABD
By the Supplement Postulate,

m x'
Therefore

m Z ABD = 180.

mZx' 1-mLz+mL Y1 = 180.
But we know by Theorem 9-8 that m Z x = m Z xl and m z y

m z y,, because these are alternate interior angles. By sub-

.
stltution we get

mZxmZzi.mZy. 180,
which was to be proved.

From this we get a number of important corollaries:

Corollary 9-13-1. Given a correspondence between two

triangles. If two pairs of corresponding angles are congruent,

then the third pair of corresponding angles are also congruent.

The corollary says that if ZA L A' and ZB Z 131)

then ZC =LC'. As the figure suggests, the corollary applies

to cases where the correspondence given is not a congruence, as

well as to cases where 4 ABC A,BIC,.

(sec. 9-h)
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Corollary 9-13-2. The acute angles of a right triangle are

complementary.

Corollary 9-13-3. For any triangle, the measure of an

exterior angle is the sum of the measures of the two remote

interior angles.

Problem Set 9-4

1. If the measures of two angles of a triangle are as follows,

what is the measure of the third angle?

a. 37 and 58.

b. 149 and 30.

c. n and n.

d. r and s.

e. 45 + a and 45 - a.

1
f. 90 and -2k.

2. To find the distance from

a point A to a distant

point P, a surveyor may
A

measure a small distance

AB and also measure z A

and Z B. From this in-

formation he can compute

the measure of z P and-

by appropriate formulas

then compute AP. If

m Z A 87.5 and m z B = 88.3,

compute m Z P.

. Why is the Parallel Postulate essential to the proof of

Theorem 9-13?

2 6 ri

[sec. 9 ..4]



4. On a drawing like the one

on the right fill in the

values of all of the angles.

5. Given: z A L X and

z B Y, can you

correctly conclude that:

a. L C ;14 z z?

b. AB XY?

261

6. Given: BD bisects z EBC,

and BD u AC.

Prove: AB . BC.

7 The bisector of an exterior angle at the vertex of an

isosceles triangle is parallel to the base. Prove this.

2 6
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8. Given: The figure.

Prove: s + r = t + u.

(Hint: Draw DB.)

*9. Given: In the figure,

z BAC is a right angle

and QB = QA.

Prove: QB = QC.

*10. Given: In AABC, C

is a right angle,

AS = AT and BR = BT.

Prove: m ZSTR = 45.

(Hint: Suppose m Z A = a.

Write formulas in .6urn for

the.measures of other angles

in the figure in terms of a.)

[sec. 9-4]
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9-5. Quadrilaterals in Plane.

A quadrilateral is a plane figure with four sides, like one

of the following:

A

AOC
B

D

A./Db.0

The two figures on the bottom illustrate what we might call

the most general case, in which no two sides are congruent, no

two sides are perallel, and no two angles are congruent.

We can state the definition of a quadrilateral more precisely,

in the following way.

Definition: Let A, B, C and D be four points lying in

the same plane, such that no three of them are collinear, and such

that the segments AB, BC, CD and DA intersect only in their

end-points. Then the union of these four segments is a quadri-

lateral.

For short, we will denote this figure by ABCD. Notice that

in each of the examples above, with the exception of the last one,

the quadrilateral plus its interior forms a convex set, in the

sense which was defined in Chapter 3. This is not true of the

figure at the lower right, but this figure is still a quadrilater-

al under our definition. Notice, however, that under our

definition of a quadrilateral, figures like the following one are

ruled out.
[sec. 9-5]
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Here the figure is not a quadrilateral, because the segments

BC and DA intersect in a point which is not an end-point of

either of them. Notice also, however, that a quadrilateral can

be formed, using these same four points as vertices, like this:

Here ABDC is a quadrilateral.

Definitions: Opposite sides of a quadrilateral are two sides

that do not intertect. Two of its angles are opposite if they do

not contain a common side. Two sides are called consecutive if

they have a common vertex. Similarly, two angles are called

consecutive if they contain a common side. A diagonal is a

segment joining two non-consecutive vertices.

2 71
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In a quadrilateral ABCD, AB and CD are opposite sides,

as are BC and AD. AD and CD or AD and AB are con-

secutive sides. AC and BD are the diagonals of ABCD.

.Which angles are opposite? Which consecutive?

Definition: A trapezoid is a quadrilateral in which two, and

only two, opposite sides are parallel.

Definition: A parallelogram is a quadrilateral in which both

pairs of opposite sides are parallel.

You should not have much trouble in proving the basic

theorems on trapezoids and parallelograms:

Theorem 9-14. Either diagonal separates a parallelogram

into two congruent triangles. That is, if ABCD is a parallel-

ogram, then Z1ABC j CDA.

Theorem 9-15. In a parallelogram, any two opposite aides

are congruent.

272
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Corollary 9-15-1. If L1 m L2 and if P and Q. are any

two points on Ll, then the distances of P and Q. from L2

are equal.

This property of parallel lines is sometimes abbreviated by

saying that "parallel lines are everywhere equidistant".

Definition: The distance between two parallel lines is the

distance from any point of one line to the other line.

Theorem 9-16. In a parallelogram, any two opposite angles

are congruent.

Theorem 9-17. In a parallelogram, any two consecutive

angles are supplementary.

Theorem 9-18. The diagonals of a parallelogram bisect each

other.

In Theorems 9-14 through 9-18 we are concerned with several

properties of a parallelogram; that is, if we know that a quadri-

lateral is a parallelogram we can conclude certain facts about it.

In the following three theorems we provide for the converse

relationship; that is, if we know certain facts about a quadri-

lateral we can conclude that it is a parallelogram.

Theorem 9-19. Given a quadrilateral in which both pairs of

opposite sides are congruent. Then the quadrilateral is a

parallelogram.

Theorem 9-20. If two sides of a quadrilateral are parallel

and congruent, then the quadrilateral is a parallelogram.

Theorem 9-21. If the diagonals of a quadrilateral bisect

each other, then the quadrilateral is a parallelogram.

The following theorem states two useful facts. The probf of

this theorem is given in full.

[sec. 9-5)'
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Theorem 9-22. The segment between the mid-points of two-

sides of a triangle is parallel to the third side and half as

long as the third side.

A

Restatement: Given \ABC. Let D and E be the mid-

points of AB and BC. Then DE 11 AC, and DE = . AC.

point

the

angles

Proof: Using the Point Plotting Theorem, let.,F be the

that EF = DE. We give

form. The notation for

Reasons

of the ray opposite to ED such

rest of the proof in the two-column

is that of the figure.

Statements

1. EF = ED. 1. F was chosen so as to make
this true.

2 . EB EC . 2. E is the mid-point of BC.

3. LxLy. 3. Vertical angles are congruent.

/:,EFC -24 AEDB . 4. The S.A.S. Postulate.

5. LvLw. 5. Corresponding parts of con-
gruent triangles.

6. AB II CF. 6. Theorem 9-5.

7. AD FC . 7. AD = DB, by hypothesis, and
DB = FC, by statement 4.

8. ADFC is a parallelogram. 8. Theorem 9-20.

9. DE 11 AC. 9. Definition of a parallelo-
gram.

10.
1

DE = 7 AC. 10. DE DF, by statement 1,

and DF . AC,' by Theorem

/ I
9-15.
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9-6. Rhombus, Rectangle and Square.

Definitions: A rhombus is a parallelogram all of whose sides

are congruent.

/C

A rectangle is a parallelogram all of whose angles are

right angles.

A

Finally, a square is a rectangle all of whose sides are cohgruent.

As before, .we leave the proofs of the following theorems for

the student.

Theorem 9-23. If a parallelogram has one right angle, then

it has four right angles, and the parallelogram is a rectangle.

Theorem 9-24. In a rhombus, the diagonals are perpendicular

to one another.

Theorem 9-25. If the diagonals of a quadrilateral bisect

each other and are pcl.pendicular, then the quadrilateral is a

rhombus.

2 7 :3
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1. For which of the quadrilaterals -- rectangle, square,

rhombus, parallelogram can each of the following proper-

ties-be proved?

a. Both pairs of opposite angles are congruent.

b. Both pairs of opposite sides are congruent.

c. Each diagonal bisects two angles.

d. The diagonals bisect each other.

e. The diagonals are perpendicular.

f. Each pair of consecutive angles is supplementary.

g. Each pair of consecutive sides is congruent.

h. The figure is a parallelogram.

i. Each pair of consecutive angles is congruent.

j. The diagonals are congruent.

2. With the measures of the angles as given in parallelogram

ABFH, give the degree measure of each angle.

m A =

m B

m z F =

m z H =

3. In this figure ABHQ and

AFRM are parallelograms.

What is the relationship of

M to H? of R to

H? Prove your answer.

[sec.,.9-6]
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4. Would the following information about a quadrilateral be

sufficient to prove it a parallelogram? a rectangle? a

rhombus? a square? Consider each item of information

separately.

a. Both pairs of its opposite sides are parallel.

b. Both pairs of its opposite sides are congruent.

c: Three of its angles are right angles.

d. Its diagonals bisect each other.

e. Its diagonals are congruent.

f. Its diagonals are perpendicular and congruent.

g. Its diagonals are perpendicular bisectors of each other.

h. It is equilateral.

i. It is equiangular.

J. It is equilateral and equiangular.

k. Both pairs of its opposite angles are congruent.

1. Each pair of its consecutive angles is supplementary.

5. Given: ABCD is a parallelo-

gram with diagonal AC.

AP = RC.

Prove: DPBR is a parallel-

ogram.

6. Given: Parallelograms AFED

and FBCE, as shown in this

plane figure.

Prove: ABCD is a parallel-

ogram.
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7 If lines are drawn parallel to the legs of an isosceles

triangle through a point in the base of the triangle, then a

parallelogram is formed and its perimeter is equal to the sum

of the lengths of the legs.

Given: In the figure

RT, PX RT,

FY- II 17-X.

Prove: a. PXRY is a

Parallelogram.

b. PX + XR + RY + YP

= RS + RT.

8. In this figure, if ABCD is

a parallelogram with diagon-

als AC and BD intersect-

ing in Q and EF is drawn

through Q, prove that EF

is bisected by Q.

C-; Given the isosceles trapezoid

ABCD in which AD = CB and

CD II AB.

Prove L A --'z4 z E.

2 7 8
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10. The median of a trapezoid is the segment joining the mid-

points of its non-parallel sides.

a. Prove the following theorem: The median of a trapezoid

is parallel to the bases and equal in length to half

the sum of the lengths of the bases.

Given: Trapezoid ABCD

with CD H AB, P the

midpoint of AD and Q

the midpoint of BC.

Prove: PQ AB

PQ. = (AB CD).

(Hint: Draw DQ meeting

AB at K.)

b. If AB = 9in. and

DC = 7in, then

,PQ =

1
c. If DC = a- and

2
AB = 7, then

PQ =

11. A convex quadrilateral with vertices labeled consecutively

ABCD is called a kite if AB = BC and CD = DA. Sketch

some kLtes. State as many theorems about a kite as you can

and prove at least one of them.

12. Given: Quadrilateral ABCD 0

with P, .Q, R, S the

midpoints oC the sides.

Prove: RSPQ is a parallel-
__

ogram, and PR and SQ

bisect each other.

(Hint: Draw RQ, RS, SP,
--
DB

A
[sec. 9-6]
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13. Given: In the figure

AD < BC, DA I AB,

CB AB.

Prove: mLC<mL D.

*14. Prove that the sum of the

lengths of the perpundiculars

drawn from any point in the

base of an isosceles triangle

to the lego is equal to the

length of the altitude upon

either of the legs.

(Hint: Draw PQ i BT. Then

the figure suggests that PX

and QT are congruent, and

that PY and BQ are

congruent.)

.+,15. Prove that the sum of the lengths of the perpendiculars drawn

'from any point in the interior of an equilateral triangle to

the three sides is equal to the length of an altitude.

(Hint: Draw a segment, perpendicular to the altitude used,

from the interior point.)

16. Given a hexagon as in the

figure with AB 11 OC,

BC ILo, CD 11 0E,

DE OF, EF H OA.

Prove: FA H CD.

A

273
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17. a. Given AA', BB', CC,

are parallel and

AB p A'B', BC fi B'C'

as in figure.

Prove: AC HA'C'.

b. Is the figure necessarily

a plane figure. Will

your proof apply if it

isn't?

18. Given ABCD is a square

and the points K, L, M

N divide the'sides as

shown, a and -b being

lengths of the indicated

segments.

Prove: KLMN is a square.

*19. Show that if ABCD is a parallelogram then D is in the

interior of L ABC.

*20. Show that the diagonals of a parallelogram intersect each

other.

2 d
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9-7. Transversals To Many Parallel Lines.

Definitions: If a transversal intersects two lines L
1,

L
2

in points A and B, then we say that L1 and L2 intercept

the segment AB on the transversal.

Suppose that we have given three lines Ll, L2, L3 and a trans-

versal intersecting them in points A, B and C. If AB = BC,

then we say that the three lines intercept congruent segments on

the transversal.

2 2
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We shall prove the following:

Theorem 9-26. If three parallel lines intercept congruent

segments on one transversal, then they intercept congruent seg-

ments on any other transversal.

Proof:

transversal

transversal,

given that

Let L
1,

L
2

and L
3

be parallel lines, cut by a

T1 in points A, B and C. Let T2 be another

cutting these lines in D, E, and F. We have

and we need to prove that

AB = BC;

DE = EF.

We will first prove the theorem for the case in which Tl

and T
2

are not parallel, and A / D, as in-the figure:

Let T3 be the line through A, parallel to T2, inter-

secting L2 and L3 in G and H; and let T4 be the line

through B, parallel to T2, intersecting L3 in I. Let

z x, z y, z w and Z z be as indicated in the figure.

[sec. 9-7]
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1. LxLz.
2. AB = BC.

3. T
3

11 T .

5. A ABG BCI.

6. AG = BI.

7. AGED and BIFE are
parallelograms.

8. AG = DE and BI = EF.

9. DE = EF.

1. Theorem 9-9.

2, Hypothesis.

3. Theorem 9-11.

Theorem 9-9.

5. A. S. A.

6. Definition of congruent
triangles.

7
. Definition of parallelograms.

1

8. Opposite sides of a parallel-
ogram are congruent.

9. Steps 6 and 8.

This proves the theorem for the case in which the two trans-

versals are not parallel, and intersect L1 in two different

points. The other cases are easy.

(1) If the two transversals are parallel, like T2 and T
3

in the figure, then the theorem holds, because opposite s:'.,Aes of a

parallelogram'are congruent. (Thus, if AG = GH, it follows that

DE = EF.)

(2) If the two transv rsals intersect at A, like T1 and

T
3

in the figure, then th theorem holds;. in fact, we have already

proved that If AB = BC, then AG = GH.

The following corollary generalizes Theorem 9-6.

Corollary 9-26-1. If three or more parallel lines intercept

congruent segments on one transversal, then they intercept con-

gruent segments on any other transversal.

281
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That is, given that

AA =AA =AA=1 2 2 3 3 4

it follows that

B1B2 = B2B3 = B3B4

and-80 on. This follows by repeated applications of the theorem

that we have just proved.

Definition: Two or more sets are concurrent if there is a

point which belongs to all of the sets.

In particular, three or mo: ,.nes are concurrent if they all

pass through one point.

The following theorem is an interesting application of

Corollary 9-26-1.

2 3
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Theorem 9-27. The medians of a triangle are concurrent in a

point two-thirds the way from any vertex to the mid-point of the

opposite side.

Given: In L\ABC, D, E

and F are the mid-points

of BC, CA and AB re-

spectively.

To Prove: There is a point P

which lies on AD, BE and

CF; and AP = 4 AD,

2 2BP = 7 BE, CP = 7 CF.

(1)

Sketch of proof:

Let L
1,

L
2'

L
3'

L
4

and L5' with L
3
= AD be five

parallel lines dividing CB into four congruent segments. Then

(a) L3, L11, L5 divide AC into two congruent segments,

and so E lies on L
4'

(b) Ll, L2, L3, L4 divide BE into three congruent

segments, and so if P is the point of intersection of

AD and BE, then BP = BE.

(sec. 9-71
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(2)

In the same way, with lines parallel to n, we find that
2

if PI is the interserttion of BE a:'Id CF, then Bp! = 7 BE.

(3) From (1) and (2) and Theorem 2-4 it follows that PI = P,

and therefore the three medians are concurrent.

(4) Since we now know that CF passes through P we can easily

' . get CP = CF from the figure in (1), and similarly get

2 ')

AP = 7 A) from the figure in (2).

Deftzition: The centroid of a triangle is the point of con-

currency c the medians.

Problem Set 9-7

1. Given: AB = BC,

AR H BS H CT.

RX fl H Y.2.

a. Prove ZY = YX.

b. Do AC, TR and ZX

have to be coplanar to

carry out the proof?

(sec. 9-7)
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2. The procedure at the right

can be used to rule a sheet

of paper, B, into columns

of equal width. If A is

an ordinary sheet of ruled

paper and B is a second

sheet placed over it as

shown, explain why

OP, = PiP2 = P2P3 = P3P4

3.

= P4P5 = P5Q.

281

Divide a given segment AB into five congruent parts by the

following method:
-->

(1) Draw ray AR (not collinear with AB.)

(2) Use your ruler to mark off congruent segments A N1,

N1N2, N2N3, N3N4 and N4N5 of any convenient length.

(3) Draw N B.

(4) Measure Z AN 5B eand use your protractor to,draw corr-

sponding angles congruent to / AN5B with vertices at

NIL, N3, N2 and N1.

Explain why AB is divided into congruent parts.

4. The medians of AABC meet

at Q, as shown in this

figure.

If BF . 18, AQ = 10,

CM = 9, then BQ =

QH , CQ. =

2

A

288
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5. In equilateral &BC if one median is 15 inches long,

what is the distance from the centroid to A? To the mid-

point of AB? To side AC?

*6. Given: CM bisects AB at

M. BQ bisects CM at P.

Prove: Q is a trisection

point of AC; that is,

AQ = 2QC.

(Hint: On the ray opposite
-->

to CB take point E such

that CE . CB and show

that BQ is contained in a

median of LABE.)

*7. What is the smallest number

of congruent segments into

which AC can be divided by

some set of equally spaced,

parallels which will include

the parallels II, n and
CT if:

a. AB.= 2 and BC = 1?

b. AB 4 and BC . 1?

c. AB = 21 and BC = 6?

d. AB = 1.414 and BC . 1?

e. AB .AF and BC = 1?

289
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*8. Prove that the lines through opposite vertices of a

parallelogram and the midpoints of the opposite sides

trisect a diagonal.

(Hint: Through an extremity of the diagonal, consider a

parallel to one of the lines.)

Given: ABCD is a parallelogram.

X and Y are midpoints.

Prove: AT = TQ = QC.

Review Problems

1. Indicate whether each of the following statements is true in

ALL cases, true in SOME cases and false in others, or true

in NO case, using the letter A, S or N:

a. Line segments in the same plane

common are parallel.

b. If two sides of a quadrilateral

then ABCD is a trapezoid.

c. Two angles in a plane which have

ly perpendicular are congruent.

d.

which have no point in

ABCD are parallel,

their sides respective-

If two parallel lines are cut.by a transversal, then

pair pf alternate exterior angles are congruent.

290
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e. If two lines are cut by a transversal, then the rays

bisecting a pair of alternate interior angles are

parallel.

f. In a plane, if a line is parallel to one of two parallel

lines, it is parallel to the other.

In a plane two lines are either parallel or they

intersect.

h. In a parallelogram the opposite angles are supplementary.

i. The diagonals of a rhombus bisect each other.

j. All three exterior angles of a triangle are acute.

k. A quadrilateral having two opposite angles which are

right angles is a rectangle.

1. The diagonals of a rhombus are congruent.

m. If a quadrilateral is equilateral, then all of its

angles are congruent.

n. If two dpposite sides of a quadrilateral are congruent

and the other two.sides are parallel, the quadrilateral

is a parallelogram.

o. The diagonals of a rhombus bisect the angles of the
?

rhombus.

p. If the diagonals of a parallelogram are perpendicular,

the parallelogram is a square.

q. If a median to one side of a triangle is not an altitude,

the other two sides are unequal in length.

r. Either diagonal of a parallelogram makes two congruent

triangles with the sides.

s. If a diagonal of a quadrilateral divides It into two

congruent triangles, the quadrilateral is a parallelogram

t. If two lines are intersected by a transversal, the

alternate interior-angles are congruent.

291
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U. All four sides of a rectangle are congruent.

V. All four angles of a rhombus are congruent.

W. A square is a rhombus.

X. A square is a'rectangle.

2. Would the following information about a quadrilateral be

sufficient to prove it a parallelogram? A square? A

rhombus? A rectangle? Consider each item of information

separately.

a. Its diagonals bisect each other.

b. Its diagonals are congruent.

c. It is equilateral.

d. It is equilateral and equiangular.

e. A diagonal bisects two angles.

f. Every two opposite sides are congruent.

g. Some two consecutive sides are congruent and perpendicu-

lar.

h. The diagonals are perpendicular.

1. Every two opposite angles are congruent.

j. Each diagonal bisects two angles.

k. Every two consecutive angles are supplementary.

1. Every two consecutive sides are congruent.

3. Z A and z B have their sides respectively parallel.

a.

b.

If only one pair of corresponding sides extend in the

same direction the angles are

If corresponding sides extend in opposite directions,

then the angles are

292
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In Problems 4, 5 and 6 below select the one word or phrase

that makes the statement true.

4. The bisectors of the opposite angles of a non-equilateral

parallelogram (a) coincide, (b) are perpendicular,

(c) intersect but are not perpendicular, (d) are parard.

5. The figure formed by joining the consecutive mid-points of

the sides of a rhombus is (a) a rhombus, (b) a rectangle,

(c) a square, (d) none of these answers.

*6. The figure formed by joining the consecutive mid-points of

the sides of quadrilateral ABCD .is a square (a) if, and

only if, the diagonals of ABCD are congruent and perpen-

dicular, (b) if, and only if, the diagonals of ABCD are

congruent, (c) if, and only if, ABCD is a square,

(d) if, and only if, the diagonals of ABCD are perpen-

dicular.

7 In the left-hand column below, certain conditions are speci-

fied. In tfie'right-hand column, some deducible conclusions

are left for you to complete.

Given: MW and KR are

diagonals of MKWR.

293



Conditions: Conclusions:

a. MKWR is a parallelogram, mLd = and mLRWK =
mia = 30, and
m4WKM . 110.

b. MKWR is a rectangle and mLd . and m2:b .
mZa = 30.

c. MKWR is a rhombus, mLb . and RK .
mZa = 30 and MK = 6.

8. GiVen: In the figure

AE = EB, GF = 8,

CF FB, DE 11 CB.

Find: DG.

A

287

9. If the perimeter (sum of lengths of sides) of a triangle is

18 inches, what is the perimeter of the triangle formed by

Joining the mid-points of sides of the first triangle?

10. a. If mL A = 30 and

mL C = 25, what is

the measure of

z CBD?

b. If mL A . a and
a

what is

mL CBD? mL ABC?

11. Show that the measure of

z E, formed by the

bisector of z ABC and

the bisector of exterior

z ACD of A ABC, is
1 /

equal to mL A.

294
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** 4-> -*
12. In the figure AB 11 CD, EG

bisects L BEF, mL G = 90.

If the measure of L GEF = 25,

what is the measure of Z GFD?

13. Given: AB and CD which

bisect each other at 0.

Prove: AC II BD.

14. Given: ABCD is a

parallelogram with

diagonals AC and

DB. AP = RC < AC.

Prove: DPBR is a

parallelogram.

15. Prove or disprove:

If a quadrilateral has one pair of parallel sides and one

pair of congruent sides, then the quadrilateral is a

parallelogram.

*16. In ZABC, median AM is congruent to MC. Prove that

&BC is a right triangle.

17. Prove: If the bisectors of two consecutive angles of a

parallelogram intersect, they are perpendicular to each other.

295



*18. Given: ABCDE is a pentagon

as shown. AE II CD. AE = CD.

P is mid-point of AB.

K is mid-point of BC.

EM = 1 ED
2

Prove: KE bisects PM.

289

19 When a beam of light is reflected from a smooth surface, the

angle between the incoming beam and the surface is congruent

to the angle between the reflected beam lnd the surface.

In the accompanying figure, mL ABC = 90, m Z: BCD = 75, and

the beam of light makes an angle of 350 with AB. Copy

the figure and complete the path of the light beam as it

reflects from AB, from BC, from DC, and from AB again.

At what angle does the beam reflect from AB the second

time?

296
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20. Given triangle ABC with AR and CS medians. If AR is

extended its own length to D, and CS is extended its own

length to F, prove that F, B and D as shown are

collinear.

A

297



Chapter 10

PARALLELS IN SPACE

10-1. Parallel Planes.

Definition: Two planes, or a plane and a line, are parallel

if they do not intersect.

If planes El and E2 are parallel we wrsite El '1E2; if

line L and piane E are parallel we write L. E or E H L.

As we will soon see, parallels in space behave in somewhat the

same way as parallel lines in a plane. To study them me do not

need any new postulates.

However, in spite of the similarities it is necessary, in

studying theorems and their proofs in this chapter, to distinguish

carefully between parallel lines and parallel planes. Two

parallel planes such as E and F in the first Figure below

contain lines such as L
1

and L which are not parallel. And
2

the second Figure shows parallel lines M, and 1V12 lying in

intersecting planes G and H.

298
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The following theorem describes a common situation in which

parallel planes and parallel lines occur in the same Figure.

Theorem 10-1. If a plane intersects two parallel planes,

then it intersects them in two parallel lines.

Proof: Given a plane E, intersecting two parallel planes

E
1

and E
2'

By Postulate 8, the intersections are lines L
1

and

L
2'

These lines are in the same plane E; and they have no point

in common because E
1

and E
2

have no point in common. There-

fore, they are parallel by the definition of parallel lines.

Theorem 10-2. If a line is perpendicular to one of two

parallel planes,it is perpendicular to the other.

[sec. 10-1]
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Proof: Let planes E3 and E2 be parallel and leb line L

be perpendicular to El. In E2 take a point P. not on L, and

let E be the plane determined by L and A. By the preceding

theorem E intersects E
1

and E
2

in parallel lines L
1

and

L2. L 1 L1 since L I El, and so by Theorem 9-12 (look it up)

L L2. Now take a point At in E2 not on L2 and repeat the

process. We thus obtain two lines in E2 each perpendicular to

L, and so L 1 E2, by Theorem 8-3.

Theorem 10-3. Two planes perpendicular to the same line are

parallel.

Proof: The figure on the left shows what happens when

E
1
1 L at P and E

2
1 L at Q: we wish to show E

1 II E2.

If E
1

and E
2

are not parallel, they intersect. Let R be a

common point. Consider the lines PR and QR. Then L 1 PH and

L V. because L is perpendicular to every line in El through

P and every line in E2 through Q. This gives two perpendicul-

ars to a line from an external point, which is impossible, by

Theorem 6-3.

3qo

[sec. 10-1]
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Corollary 10-3-1. If two planes are each parallel to a third

plane, they are parallel to each other.

Proof: Let El H E3, E2 H E3. Let L be a line perpen-

dicular to E3. By Theorem 10-2 L E
1

aro T, . Thus E
1

and E
2

'are-each perpendictilar by tlieL -

Theorem 10-3.

Theorem 10-4. Two lines perpendicular to the same plane are

parallel.

Proof: By Theorem 8-8 two such lines are coplanar. Since

they are perpendicular to the given plane, say at points A and

B, they are perpendicular to AB. Hence by Theorem 9-2 they are

parallel.

Corollary 10-4-1. A plane perpendicular to one of two

parallel lines is perpendicular to the other.

Proof: Let L1 H L2, L1 E. Let L3 be a line perpendi-

cular to E through any point A of L2. L3 exists by Theorem

8-9. Then by Theorem 10-4 L1 H L3. Hence, by the Parallel

Postulate L
3

= L
2'

and so L
2

E.

Corollary 10-4-2. If two lines.are each parallel to a third

they are parallel to each other.

Proof: Let L
1

H L
2' 11 H L3 . Let E be a plane per-

pendicular to Ll. By the above corollary E L2 and E L3,

and so by the above theorem L2 11 L3.

[sec. 10-1]
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Theorem 10-5. Two parallel planes are everywhere equidistant.

That is, all segments perpendicular to the two planes and having

their end points in the planes have the same length.

Proof: Let PQ and RS be perpendicular segments between

the parallel planes El and E2. By Theorem 10-2, each of the

segments is perpendicular to each of the planes. By Theorem 10-4,
*->
PQ H RS, and this means, in particular, that Vi and ES 'lie

*->
in the same plane E3. By Theorem 10-1, QR 11 PS. Therefore,

PQRS is a parallelogram. Opposite sides of a parallelogram are

congruent. Therefore, PQ 'FS, which was to be proved.

(Obviouuly PQRS is a rectangle, but this fact does not need to

be mentioned in the proof.)

302
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Problem Set 10-1

1. Draw a small sketch to illustrate the hypothesis of each of

the following statements. Below each sketch indicate whether

:t1-1,e statement ls true or.f,alse.

a. If a line is perpendicular to one of two parallel planes

it is perpendicular to the other.

b. Two lines parallel to mo plane may be perpendicular

to each other.

c. Two planes perpendicular uu the same line may intersect.

d. If a plane intersects two intersecting planes, the lines

of intersection may be parallel.

e. If two planes are both perpendicular to each of two

parallel lines, the segments of the two lines intercepted

between the planes are congruent.

C. If two planes, perpendicular to the same line, are

intersected by a third plane, the lines of intersection

are parallel.

g. If a line lies in a plane, a perpendicular to the line

is perpendicular to the plane.

h. If a line lies in a plane, a perpendicular to the plane

at some point of the line is perpendicular to the line.

i. If two lines are parallel, every plane containing only

one of them is parallel to the other line.

j If two lines are parallel, every line intersecting one

of them Intersects the other.

k. If two planes are parallel, any line in one of them is

parallel to the other.

1. If two planes are parallel, any line in one of them is

parallel to any lire in the other.

',:ro
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2. Given lines L
1

and L
2

intersecting parallel

planes m, n, and p

at points A, B, C,

and' X, Y, Z, with

B the mid-point of AC.

Prove: XY = YZ.

3. Given: plane s fl plane r

AB I r. CX = CY in

plane s.

Prove: AX = AY.

4. Given: A, C in m;

B, D in n,

n AB, m CET

Prove: n j CD.

To 4

['sec. 10-1]
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5. Given: In the figure

AB I n, CD I n.

Prove: AD = CB.

*6. Planes E and F are
<-->

perpendicular to AB.

Lines BK and BH, in

plane F, determine

with AB two planes

which intersect E
4-*
AD and AC. Cert,

lengths are given,

in the figure.

m

Are BKDA and BACH mtrallelograms? Can you give a further

ii=.rcription of thee Is ,/..'BHK ZNCAD? Can you give the

lemgth of CD?

*7. In the figure halflanes

n and m have a tua

edge AB and interzt
parallel planes s

<4. <-4.

in lines AD, AE,

and as shown.

Prove that Z DAE /

,A.A0
.1.00

10-1]

305



*8.

299

Show how to determine a plane containing one of two skew

lines and parallel to the other. Prove your construction.

*9. Given: PL and PM lie

in plane E. RL LP,r . Riflsii.
Prove : RL E, SM I E.

(Hint: At P draw

QP IIL at P.)

10-2. Dihedral Angles, Perpendicular Planes.

We have considered perpendicularity between two lines, and

between a line and a plane. We have yet to define perpendicular-

ity between two planes. Thi.s can be done in various ways, and

we choose the one that has the closest analogy with the definition

of perpendicular lines.

Definitions: A dihedral angle is the union of a line and

two non-coplanar half-planes having this line as their common edge.

(Compare with the definition of angle in Chapter 4.) The line is

called the edge of the dihedral angle. The union of the edge and

either half-plane is called a face, or side, of the dihedral

angle.

If PQ is the edge, and A and B points on different

sides, we denote the dihedral angle by LA-PQ-B.

*A
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Analogous to the discussion on page 88 we see that two

intersecting planes determine four dihedral angles.

Terms such as vertical, interior, exterior, etc. can be applied to

dihedral angles. Definitions of these terms can be considered an

exemise for the student.

To define right dihedral angles, however, we need to talk

about the measure of a dihedral angle. One might at first think

that we must introduae four new postulates, analogous to those in

Section 4-3 However, this is not necessary, for we can relate

each dihedra angle with an ordinary angle, as follows:

Definition: Through any point on the edge of the dihedral

angle pass a plane perpendicular to the edge, intersecting each

of the sides in a ray. The angle formed by these rays is called

a plane angle of the dihedral angle.

The sides of the plane angle are perpendicular to the edge

of the dihedral angle, so another way of defining the plane angle

would be the angle formed by two rays, one in each side of the

dihedral angle, and perpendicular to its edge at the same point.

304
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It is natural at this point to use the measure of the plane

angle as a measure of the dihedral angle, but before we do this

we must prove that any two plane angles of a dihedral angle have

the same measure.

'Theorem 10-°5. Any two plane.angles.of a given dihedral-angle

are congruent.

A

sz

Figure A. Figure B.

Proof: Let V and S be the vertices of two plane angles

of ZA-PQ-B. (Figure A.) On the sides of Z V take points U

and W distinct from V. On the sides of ZS take ,..)oints R

and T such that SR . VU, ST = VW. Figure B.) VU and SR

are coplanar and Perpendicular to. PQ; hence they are parallel

by Theorem 9-2. Hence by Theorem 9-20 (,pok it up) VURS is,a

parallelogram and UR . VS and UR H Vg. Similarly, WT = VS

and VIT. 11 VS. Hence UR = WT and UR H WT, the latter fact

following from Corollary'10-4-2. URTW is thus a parallelogram,

and UW RT. It follows from the S.S.S. Theorem that

AUVW == A RST, and so mL UVW = mZ RST.

Thus we can make the following definitions.

Definitionsl The measure of a dihedral angle is the real

number which is the measure of any of its plane angles. A dihedral

angle is a right dihedral angle if its plane angles are right

angles. Two planes are perpendicular if they determine right

dihedral angles.

[sec. 10-2]
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The following are some immediate consequences of these

definitions. Their proofs are left as exercises.

Corollary 10-6-1. If a line is perpendicular to a plan,

then any plane containing this line is porpo-licular to the gi ,n

. plane.

Given: ni E, F contains

AB.

Prove: F 1 E.

(Hint: Take BC PQ in

E.)

Corollary 10-6-2. If two planes are perpendicular, then any

JAne in one of them perpendicular to their line of intersection,

perpendicular to the other plane.
Er.4. , <7?

(Hint: In the above'figure; given F _LE, AB ; prove

_AB 1 E. Take BC as before.)

Problem Set 10-2

1. dame the six dihedral angles

in this three dimensional

figure.

[sec. 10-2]



2. Each of AP, BP and '

is perpendicular to thu

other two. a = b = c = 45.

What is the measure of

z C-PA:B?. of 4(_,CAB?

303

3. Draw a small sketch to illustrate the hypothesis of each of

the following statements. Then indicate whether each is

True (1) or False (0).

a. If a plane and a line not in it are both perpendicular to

the same line, they are parallel to each other.

b. If a plane and a line not in it are both parallel to the

same line they are parallel to each other.

C. If parallel planes E and F are cut by plane Q, the

lines of intersection are perpendicular.
-----

d. If two planes are parallel to the same line they are

parallel to each other.

e. Two lines parallel to the same plane are parallel to

each other.

f. Segments of parallel lines intercepted between two

parallel planes are congruent.

g.

E->
If planes E and F are perpendicular to AB, then

they intersect in line H

h. Two planes perpendicular to the same plane are parallel

to each other.

I. Two lines perpendicular to the same line at the same

point are perpendicular to each other.

A plane perpendicular to one of two intersecting planes

must intersect the other.

[sec. 10-2]
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k. If two Intersecting planes are each perpendicular to a

third plane, their line of intersection is perpendicular

to the third plane.

4. Prove: If two intersect-

. .ing plane$.ape.each.pel;-.

pendiclaar to a third

plane, their interseCtion

is perpendicular to that

third plane.

Given: Planes r and s

interaect in PQ (P being

chosen for convenience on

plane E). r E and

s I E.

,

Prove: Q13 E. (Hint: In plane E, draw XP ± DC and

YP I AB, and use Corollary 10-6-2.)
<-

5. CD and FH are perpendicu-

lar to plane E. Other

given information is as

shown in-the figure.

x = ? ; ra ? ;

Y=
Which two segments have

the same length?

3 I
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*6. Prove the following theorem: If three planes El, E2 and

E3 intersect in pairs and determine three lines L12' L13
and L23'

then either the three lines are concurrent or each

pair of the lines are parallel.

4 (Hfntl -The fiAure shawa

*7.

El and E2 meeting in L12.

If E
3

11 L
12

wi 1 the three

lines L
12'

L
13

and L
23'

be concurrent or parallel?

Give proof. If E3 inter-

sects L
12

in some point P

will the three lines be con-

current or parallel? Give

proof.)

L12

Desargues1 Theorem. If two triangles lying in non-parallel

planes are such that the lines joining corresponding vertices

are concurrent, then if corresponding side-lines intersect,

their points of intersection are collinear.

3 2
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Restatement. Given the triangles ZABC and AIB'C' in

non-parallel planes such that AA', BB' and CC' intersect

at U. Let the lines 11 and C'B meet at X, CA and
er->

C'Al meet at Y, and AB -and A'B' meet at Z. Prove

that the points X, y, Z lie on a line.
. . 6 6 s . V IP IP

10-3. Projections.

You are-familiar with a slide projector which projects each

point of a slide onto a screen. Each figure in the slide is pro-

jected as an enlarged figure on the screen. In this section you

will notice certain differences and certain similarities between

this familiar kind of projection and the kind of geometric pro-

jection which is presented.

Definition: The projection of a point into a plane is the

foot of the perpendicular from the point to the plane. (By

Theorem 8-10 this perpendicular exists and is unique.)

In the figure, Q is the projection of P into E.

Definition: The projection of a line into a plane is the set

of points which are projections into the plane of the points of

the line.

[sec. 10-3]
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In the figure, 13, is the projection of P, Q1 is the pro-

jection of Q, and so on. It looks as if the projection of the

line is a line; and in fact this is what always happens, except

when the line and the plane are perpendicular.

.Theoem .The. projection clf.a.line ihto A,plane is.a.

line, unless the line and the plane are pea.-1,,3ndicular.

Proof: Let L be a line not perpendicular to plane E.

Case 1. L lies in E. Then each point of L lies in E

and iS its own projection. (That is, a line through such a point '

P, perpendicular to E, intersects E in P.) Thus, the pro-

jection of L is just L itself, and so is certainly a line.

Case 2. L does not lie in E. Let P be a point of L

that is not in E, let P, be the projection of P into E, and

let F be the plane determined by the intersecting lines L and

P PI. F and E have point P in common, and so, they intersect

in a line which we call LI. (Postulate 8.) We want to show that

LI is the projection of L.

To do this we must show two things:

(1) If R is a point of L, theh its projection is a point

of LI. This will show that the projection of L lies

on LI, but it will not assure us that the projection

of L constitutes all of LI. To show the latter we

must prove

(2) If SI is any point of LI there is a point S of

L whose projection is SI.

[sec. 10-3]
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We can prove these two parts of Case 2 as follows:

Proof of (1): If R = P, then RI = P1 and so RI lies on
*-->

LI. So suppose R is different from P. Then P P' and

R RI are coplanar, by Theorem 8-8. Since F is the only

plane containing P, R and PI (Postulate 7.), RI is

in F. PI' is also in E. Therefore RI is on LI, since

L', being the intersection of E and F, contains all

points common to E and F.

Proof of (2): If S' is any point of L', then the line

M through SI perpendicular to E is coplanar with P PI

(or coincides with it lf 8' = P') and so lies in F.

Therefore M intersects L (why?) at some point S.

S' is the projection of S. This completes the proof of

Theorem 10-7.

If a line is perpendicular to a plane its projection into

the plane is a single point.

The idea of projection can be defined more generally, for

any set of points. If A is any set of points, then the pro-

jection of A into the plane E is simply the set of all pro-

jections of points of A. For example, the projection of a tri-

angle is usually a triangle, although in certain exceptional cases

it may be a segment.

[sec. 10-31
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On the left, the projection of ZNPQR is ZSTU. On the right,

the plane that contains ZVQR is perpendicular to E, so that

the projection of ZNPQR is simply the segment ST.

Problem Set 10-3

1. Using the kind of projection explained in Section 10-3

answer the following:

a. Is the projection of a point always a point?

b. Is the projection of a segment always a segment?

c. Can the projection of an angle be a ray? A line?

An angle?

d. Can the projection of an acute angle be an obtuse angle?

e. Is the projection of a right angle always a right angle?

f. Can the length of the projection of a segment be greater

than the length of the segment?

2. a. If two segments are congruent will their projections be

congruent?

b. If two lines intersect can their projections be two

parallel lines?

c. If two lines do not intersect can their projections be

two intersecting lines?

. If two segments are parallel and congruent, will their

projections be congruent?

316
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3. Given the figure with AB

not in plane m, XY the

projection of AB into

plane m, 111 the mid-

point of AB, and N the

projection of M, prove

N is the mid-point of XY.

U.

[sec. 10-31
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In mechanical _tim7tng the top view or "plan" of a saLid may

be considered the 1.7i.j,:-ction of the various segments of fre solid

into a horizontal rianee m, as shown in pez7apectie at t7iFT,

The top view as it'.:ou-Id actually s shown at the

(Nc itempt is '71ad e]. give dim e. to the segment

1. Sketc1-, a 7iew of the so own above - tt ia,

sketch t:-1. at of projectinz; the segments of t"-

solid nt: c plane parallel 'to its front face.

b. Sketch th.: r .zht side view of the solid.

5. The projection cl-a tetrahedron

(triangular pyrar_d) into the

plane of its base may look like

the figure at the right. How

else may it appear?

6. Given: BD is the projection

of BC into plane m. AB

lies in plane m and z ABC

is a right angle.

Prove: ABD is a right

angle.

(Hint: Let BE be perpendicu-

lar to plane m.)

318
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*7. Given: AQ has ;:,00,:,,

AR in plane m.

any other ray from LIT

plane m. (Note: L AR
is called the. aa62.4.. :hat

Et makes with plar

Prove: triL QAR < my

(Hint: Let QI b:

projection of Q t

On AP choose X E

AX = ACP..

Draw QQ,, Q1X an.

*8.--tf the diagonal of a e is perpendicular to a given plane,

sketch the projectioa :into the plane of all the edges of the

cube. (No proof required.)

Riew Problems

1. Suppose Z R-AB-S ls

acute dihedral angle Ettt.

P a-point on its edg-
--).

Can rays PX and PY

chosen in the two faces

so that

a. L XPY is acute?

b. z XPY is obtus-e?

C. Z XPY is ::,ight.7
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2. Planes r and_ s intersect
4->

in TQ. p iss. point between

T and Q. AB' is in r.

m,L TBA = 40. FB is in s.

mL FBQ = 90. :s ABF a

plane angle of dihedral

TQ? Can you determine

mL ABF? If so, state a

theorem to support your

conclusion.

3. Planes x and r intersect

in QK. B is a point between

K and Q. BA is in r. BF

is in x. mL ABK = 90.

mL QBF = 90. Is FBA a

plane angle of dihedral

QK? If your answer is

"Yes", state a theorem or

definition to support your

conclusion. If m,Z ABF = 80,

is r x? If r x, what

is mZ ABF?

4. Indicate whether each of the following statements is true in

all cases (A), true in some cases and false in others (s),

or true in no case (N).

a. Two lines parallel to the same plane are perpendicular

to each other.

b. If a plane intersects each of two intersecting planes,

the lines of intersection are parallel.

c. If a line lies in a plane, a perpendicular to the line

is perpendicnlar to the plane.
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d. If 7W0 planes are parallel, -y line in one of them is

parallel to the other.

e. . If twc TilPn f. are parallel t- the same Line they are

parali_L to -Each other.

f. Two Lines peTbendicular to the same :Ins at the same

point are perissendicular to each oth=.

If two intersecting planes are each perpendicular to a

third7n1ane, their line of intersection Ls perpendicular

to the third plane.

g.

h. The projection of a segment is a segment.

i. The projection of a right angle is a right angle.

j Congruent segments have congruent projections.

k. Two lines are parallel if they are both perpendicular

to the same line_

1. If a nlane is perpendicular to each of two lines, the

two lines are coplanar.

m. If a plane intersects two other planes in parallel

lines, then the two planes are parallel.

If a plane intersects the faces of a dihedral angle,

the intersection is called a plane angle of the dihedral

angle.

5. Given: F is th.s projection

of point A into plane E.

BH lies in =lane E. z FEi-T

is a right-angle.

Prove: LAL.-----1 is a

angle .
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Y and

Z a:7e parallel a7s shown,

with. CE in and A

in .
AC Tut:: Y in B

and AE cuz.7 T" in D.

. AB BC. AT

Prove: BD =

7. Given: R, Z, :1 X are

the mid-points of the Te-_ _
spective sidas CB, BA,

AD, DC of the nom-planar

quadrilateral MILD.

315

Prove: RZYX is a parallelo-

gl-,....m.

*8 In the fciLlowing incor.zlete stamement it is possible to fill

in the s.11:-.:fd blanks w2.7.1-1 or "plane" and the dotted

blanks H ar

ed rtate7lezt true:

lays so as to make the aamplet-

GI7B f1.7 czf these ways.

C, and

tc 7Lh.en 1 and 3 are

-*9. Ziven: .-,E7D is a g

zram. AE,

-.311 and e perpend±=alar

-to L, L 2= the :tlane

para1le=7:qgram ABCD.

Prove: AE CG = BF - DH.

B is
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Appendix I

A CONVENIENT SHORTHAND.

There was a time when algebra waE al: written out in words.

In words, you might state an a1geb7a.i7 .zr _Lem in the following

way:

"If you square a certain number, a_.:a ive times the, number,

and then subtrac= six, the result is zern. What are possibilities

for this number?

Xhis problem aan be more briefly stated in the following form:

"Find the rnbts of the -equation =2 + 5x - 6 O."

The notation of algebra is a -fery aanvenient shorthand. A

similar shorthand has been invented far talking about sets. It
-
saves a lot of time and space, once yau Eet used it, and it is

all right to use it in your written wanlc, unless roux teaater

objects..

Let us start with a picture, and say various things 'about it

first in words and then in short=and.

H

Here we see a:line L. whThn separates the plane E into

-two half-planes Ha and H2. Now let us-say some things in two

ways.

In Words In Shorthand

1.

2.

The segment PQ lies

The intersectlan of

L is T.

in

and

1.

2.

PQ CI

RS fl
H1.

L =RS

3 2 3



A-2

The shorthand expression PQC: H
1

is pronoumcet in exactly

the same way as the expression on the left of it. In general,

when we write A C:B, this means th at. the set A Lies in the

set B

An expression of the type An 3 denotes the intersection of

the sets A and B. The symbol " n " is pronamnced "cap," be-

cause it looks a little like a cap. Notice that sets PQ and

RS do not intersect. If we agree to write 0 for the empty set,

then we can express this fact by writ±ng

PQ n RS = O.

Similarly,

and

Fan H2 = 0.

Of course, PQ is a set which lies in Hl Eu the po±nt F

above is a member of H1. We write -this in shorthanf like tn3a

Pf= H
1.

This is pronounced "P belongs to H...

The union of two seta A and B Ls -written ss-, AU E.
is pronounced "A cup B. In the aame- way, we wrfte A 1,..) E

for the union of three sets. For eram-Jle, in the figure shays,

plane E is the union of H1, H2 and L. We aan marefore write

E = H L) H
1 2

Notice that here (as everywhere s :as), a _A)rmuL,1 invo1vi=

the sign "=" means that the things on left and rtz:ht of

are the same thing. The sign "=" is simply an abtre7ia'cion of ths:

word "is", as in the expression 2 + 2 = 4, whiah says that two

plus two is four.

Problant

Consider the sets, A, B, C, so on, deffr=ri in the.

ing way:

A is the set of all doctors_

B is_ the set of all lawyera.

C is the set of all tall people._

[A-1j
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D is the set of all people who can play the violin.

E is the.set of all people who make a lot of money.

F is the set of all basketball players.

Write shorthand expressions for the following statements:

1. All basketball players are tall.

2. No doctor is a lawyer.

3. No violinist makes a lot of money, unless he is tall.

4. No basketball player is a violinist.

5. Everyone who is both a doctor and a lawyer can also play

the violin.

6. Every basketball player who can play the violin makes a

lot of money.

7. The man X is a tall violinist.

8. The ran Y is a prosperous lawyer.

9. The man Z is a tall basketball player.



Appendix II

POSTULATES OF ADDITION AND MULTIPLICATION

The methods of manipulating real numbers by means of the oper-

ation of addition and multiplication, and the related operations

of subtraction and division, are all determined by the following

eleven postulates. In the statement of these postulates and the

proofs of the following theorems it is to be understood that all

the letters are real numberc.

A-1. (Closure under Addition.) x + y is always a real

number.

A-2. (Associative Law for Addition.) x + (y + z) = (x + y) +z.

A-3. (Commutative Law for Addition.) x + y = y + x.

A-4. (Existence of O.) There is a unique number 0 such

that x + 0 = x for every x.

A-5. (Existence of Negatives.) For each x there is a

unique number -x such that x + (-x) = O.

M-1. (Closure under Multiplication.) xy is always a real

number.

M-2. (Associative Law for Multiplication.) x(yz) = (xy)z.

M-3. (Commutative Law for Multiplication.) xy = yx.

M-4. (Existence of 1.) There is a unique number 1 such

that x.1 = x for every x.

M-5. (Existence of Reciprocals.) For each number x other
1 1

than 0 there is a unique number such that x = 1.

D. (Distributive Law.) x(y + z) = xy + xz.

The following basic theorems will illustrate how these pos-

tulates are used in simple cases.

Theorem II-1. If b = -a,then -b = a.

Proof: By A-5, b = -a means the same'as a + b = O. By

A-3 this is the same as b + a = O. By A-5, this is the same as

a = -b.

Another way of stating this theorem is that -(-a) = a.
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Theorem 11-2. For any a, a.0 = 0.

Proof:
a = a.1 (m-4)

= a(1 + o) (A-4)

= a.1 + a.0 (D)

= a + a0 (m-4)

Hence by (A-4), a.0 = O.

Theorem 11-3. a(-b) = -(ab).

Proof:

ab + a(-b) = a[b + b)) (D)

= a.0 (A-5)

= 0 (Th. 11-2)

Hence by A-4, a(-b) = -(ab).

As a special case of this theorem we have a(-1) = -a.

DefinitiOn. x - y shall mean x + (-y). Note that by this

definition a - a = 0.

Theorem II-4. If a + b = c, then a = c - b.

Proof: If a + b = c, then

(a + b) + (-b) = c + (-b)

(a + b) + (-b) = a + [b + (-b)] (A-2)

(A-5)

= a (A-4)

Hence a = c + (-b) = c - b by definition.

Theorem 11-5. If ab = 0, then either a - 0 or b = 0.

Proof: To prove the theorem it will be enough to show that

if a / 0 then b = 0. So suppose a / 0. Then -it exists, by

M-5. Therefore,

(ab) = i.0 = 0 (Th. A-II-2)

also,

(ab) = (1.a) b (M-2)
a a

= 1.,b (M-5)

= b.1 (M-3)

= b (m-4)

Therefore b = 0.

[A-II]
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Theorem 11-6. (Cancellation Law.) If ab = ac and a / 0

then b = c.

Proof: If ab = ac then ab - ac = O. By Theorem A-II-3

this is the ::ame as ab a(-c) = 0, or, by D, as a(b - c) = 0.

Since a / 0 we get, by- applyinz 71heorem 11-5, that b - c = O.

Hence b = c.

These are just a few e:7amp1es of the use of the postulates in

proving- basic algebraic theorems. Ordinarily we don't use the

postulates directly but iir1 use af such properties as those

stated _in Theorems 11-4 Fr-r=' 21-6 in our algebraic work.

Em-olblem Set II

1. Prove each of the follow_ing theorems.

a. (-a) (-b) = ab_

b. a(b-c) = ab -

c. If a - b = c, 17-im.=.7r a b + c.

d. (a + b) (c + d) = ac -+ ad + bc + bd. (Hint: As a first

step apply D, reu--7-d1ng (a + b) as a single number.)

2. Given the definitfons:
2

x = x.x,

2 = 1 + 1,

prove that

(a + b)2 = a2 + 2ab + b2.

3. P=ove: (a + b) (a-b) = a2 - b2.

4. Definition: 11= ab-1_

Prove each of the folanwing:

a_ (oh) 1 = a-1b-1.
a c ac
b d bd"
a ac

c . =

d. (-a)-1 = -(a-1).

a -a =
a
To- .

a.+_o a+c
b b b

c ad + bc
g" 17+ d bd

328
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Appendix III

RATIONAL AND IRRATIONAL NUMBERS

III-1. How to Show That a Number is Rational.

By definition a number is rational if it is the ratio of two

integers. Therefore, it we want to prove that a number x is

rational, we have to produce two integers p and q, such that

= x. Here are some examples:
1 3

(1) The nUmber x = + -7 is rational, because

1 3 7 6 13
TT

Therefore x = 2. where p = 13 and q = 14.

(2) The number x = 1.23 is rational, because

123
1.23 100'

which is the ratio of the two integers 123 and 100.

(3) If the number x is rational, then so is the number 2x.

(That is, twice a rational number is always rational.) For if

x R
q'

where p and q are integers, then

2x = ,

where the numerator 2p and tht denominator q are both integers.

(4) If the number x is rational, then so is the number

2
x + 7. For if

then

x ,

2 2 22_±_2g.
x 3q '

where the numerator and denominator are both integers.

(5) If x is a rational number, then so is x
2

+ x. For if

x = ,

then 2

X2 + X =
P2ppg-

q
2 q

where the numerator and denominator are integers.

329



A-10

Problem Set III-1

1. Show that .2351 is a rational number.
2 52. Show that + is rational.3 7

3. Show that if x is a rational number, then so is x - 5.
4. Show that If x is rational, then so is 2x - 7.

15. Show that -7 + is rational.
6. Show that the sum of any two rational numbers is a

rational number.

7. Show that (N) (p) is rational.
8. Show that the product of any two rational numbers is a

rational number.
3 239. Show that 7 is rational.

10. Show that the quotient of any two rational numbers is a
rational number, as long as the divisor is not zero.

11. Given that Nr2-. is irrational, show that is also
irrational. (Hint: This problem is a lot easier, now
that you understand about indirect proofs.)

12. Given that iv is irrational, show that 1T- is also
5irrational.

13. Show that the reciprocal of every rational number dif-
ferent from zero is rational.

14. Show that the reciprocal of every irrational number dif-
ferent from zero is irrational.

15. Is it true that the sum of a rational number and an ir-
rational number is always irrational? Why or why not?

16. Is it true that the sum of two irrational numbers is
always irrational? Why or why not?

17. How about the product of a rational number and an ir-
'rational number?

330
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111-2. Some Examples of Irrational Numbers.

In the previous section, we proved that under certain condi-

tions a number mUst be rational. In some of the problems, you

showed that starting with an irrational number we could get more

irrational numbers in various ways. In all this we left one very

important question unsettled:, are there any irrational numbers?

We shall settle this question by showing that a particular number,

namely-Tr, cannot be expressed as the ratio of any two integers.

To prove this, we first need to establish some of the facts

about squares of odd and even integers. Every integer is either

even or odd. If n is even, then n is twice some integer k,

and we can write

n = 2k.

If n is odd, then when we divide by 2 we get a quotient .k and

a remainder 1, so that
1

-g = k + .ef .

Therefore, we can write

n = 2k + 1.

These are the typical formulas for even numbers and odd numbers

n = 6, k = 3

n = 7, k = 3

n = 8, k = 4

n = 9, k = 4,

and so on. The following theorem is easy to prove:

Theorem III-1. The square of every odd number Is odd.

Proof: If n is odd, then we can write

n = 2k + 1,

where k Is an integer. Squaring both sides, we get

n2 = (2k)2 + 2.2k + 1

= 4k2 + 4k + 1.

The right-hand side must be odd, because it is written in the form

2.(2k2 ± 2kj + 1;

that is, it is twice an integer, plus 1. Therefore, n2 is odd,

which was to be proved.

respectively. For example,

6 = 2.3

7 = 2.3 + 1

8 = 2.4

9 =.2.4 + 1

[A-III]
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From Theorem III-1 we can quickly get another theorem:

Theorem 111-2. If n
2 is even, then n is even.

Proof: If n were odd, then n
2 would be odd, which is

false. Therefore n is even.

NotiCe that this is an indirect proof.

We are now ready to begin the proof of

Theorem 111-3. .4./T is irrational.

Proof: The proof will be indirect. We begin by making the

assumption that is rational. We will show that this leads to

a contradiction.

Step 1. Supposing that 1-2 is rational, it follows that 2

can be expressed as

where the fraction is in lowest terms.

The reason is that if../T can be expressed as a fraction at

all, then we can reduce the fraction to lowest terms by dividing

out any common factors of the numerator and denominator.

We therefore have

=

in lowest terms. This gives
n2

2 =
2 '

which in turn gives
2

= 2q2p .

Step 2. p
2

is even.

Because p
2 is twice an integer.

Step 3. p is even.

By Theorem 111-2.

We therefore set p = 2k. Substituting in the formula at the

end of Step 1, we get

which means that

Therefore

(2k)2 = 2q2 ,

4k2 = 2q 2 .
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Step 4. q2 is even.

Because q
2

is twice an integer.

Step 5. q is even.

By Theorem 111-2.

We started by assuming that 472- was rational. From this we'

got 47= 2 ) in lowest terms. From this we have proved that p

and q were both even. Therefore 2 was not in lowest terms,

after all. This contradiction shows that our initial assumption

must have been wrong, that is, 4/7F must not be rational.

Problem Set 111-2

These problems are harder than most of the problems in the

text.

1. Adapt the proof that .12-- is irrational, so o get a

proof thatf3--- is irrational. (Hint: Start with the fact that

every integer has one of the forms

n = 3k

n = 3k 1

n = 3k 2,

and then prove a theorem corresponding to Theorem 111-2.)

2. Obviously nobody can prove that'll-7 is irrational, be-

cause %/TT= 2. If you try to "prove" thisloy adapting the proof

forJ at.what point does the "Proof" break down?
3,-

3. Show that ."2 is irrational.

Actually, the square root of an integer is either another

integer or an irrational number; that is, Vir either "comes out

very even" or "comes out very uneven." The proof of this fact,

however, requires more mathematical technique than we now have at

our disposal. Problems like this are solved in a branch of mathe-

matics called the Theory of Numbers.
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Appendix IV

SQUARES AND SQUARE ROOTS

Everybody knows what it means to square a number: you matik,

the number 'by itself. The facts about square roots, however,oare

considerably trickier, and the language in which most people talk

about them is very confusing. Here we will try to state the facts
and point out the pit-falls.

To say that x is a square root of a means that

x2 = a.

For example,

2 is a square root of 4,

3 is a square root of 9,

- 2 is a square root of 4,

- 3 is a square root of 9,

and so on. You may wander why we did not abbreviate these state-

ments by using radical signs. The reason (as we shall soon see)

is that radical signs=ean something slightly different.

The following is;,..a fundamental fact about the real number

system:

Every positive number has exactly one positive

square root.

For example, 2
2
= 4, and no other positive number is a root

of the equation x
2

= 4. 4
2

= 16, and no other positive number

is a root of the equation x2 = 16. And so on.

Of course, if x is a square root of a, then so is -x,

because (-x)
2

= x
2

Therefore every positive number has exactly

two square roots, one positive and the other negative. The mean-

ing of the radical sign is defined this way:

If a is positive, then,./57 denotes the positive

square root of a.
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: We provide further that,/-(5 = 0.

For example,

vni = 2,

= 3,
= 4,

and so on; To indicate the other square root -- that is, the

negative one -- we simply put a minus sign in front of the radical

sign. For example:

4 has two square roots, 2 and -2.

3 has two square roots,IT and

7 has two square roots,yrr and -fr.

The following two statements_look alike, but in fact they are

different:

'1) x is a square root of a.

(2) x

The first statement means meraly that x = a. The second

statement meanz not only that x
2

= a, but also that x > 0.

Therefore the second statement is not simply a short-hand form of

the first.

Let us now investigate the expression.17, where x is not

equal to zero. There are two possibilities:

I. If x > 0, then x is the positive square root of x
2

,

and we can write

N/2-= x.

II. If x < 0, then x is the negative square root of x
2

,

and it is -x that is the positive square root of x
2

. Therefore,

for x < 0, we have

The equationNA7= x looks appealing that it seems almost

like a law of nature. In fact, hawever, this equation holds true

. only half of the time: it is always true when x 0, and it is

never true when x < 0.
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Fitting together cases I and II, we see that for every

without exception we have

14(7= lx1.
To see this, you should check it against th2 definition of 1x1, in

Section 2-3.

A-17

Problem Set IV

Which of the following statements are true? Why or why not?

1.

2. vr3 = -3.

3. ./2 = t 1.414. (Approximately.)

4. = 1.414. (Approximately.)

5. v-3 = ±

6. NTZ = 5.

For what values of

'equations hold true? Why?

7.

the unknowns (if any), do the following

= x - 1.- 1)2

8. Vlx - 1)2 = 1 - x.

9. - 1)2 = Ix 11.

10. vfx - 1) = - 11.

11. .."(x ± 3)1. = (x 3)2.

12. ,\./4(x + 3)14. = -(x + 3)2

13. .V1x + 3) = 1(x 4. 3)21.

14. .."(x + 3)4 = - 1(x + 3)21.
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Appendix V

HOW TO DRAW FIGURES IN 3-SPACE

V-1. Simple DrawinK.

A course in mechanical drawing is concerned with precise rep-

resentation of physical objects seen from different positions in

space. In geometry we are concerned with drawing only to the ex-

teat-that we use sketches to help us do mathematical thinking.

There is no one correct way to draw pictures in geometry, but

there are some techniques helpful enough to be in rather general

use. Here, for example, is a technically

correct drawing of an ordinary pyramid,

for a person can argue that he is looking

at the pyramid from directly above. But

careful ruler drawing is not as helpful

as this very crude free-hand sketch. The

first drawing does not suggest 3-space;

the second one does.

The first part of this discussion offers suggestions for

simple ways to draw 3-space figures. The second part introduces

the more elaborate technique of drawing from perspective, The

difference between the two approaches is suggested by these two

drawings of a rectangular box.

In the first drawing the base is shown by an easy-to-draw parall-

elogram. In the second drawing, the front base edge and the back

base edge are parallel, but the back base edge is drawn shorter

under the belief that the shorter length will suggest "more remote".
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No,matter how a rectangular box is drawn, some sacrifices

must be made. All angles of a rectangular solid are right angIas,

but in each of the drawings shown above two-thirds of the angle,-

do not come close to indicating ninety degrees when measured witt

a protractor. We are willing to give up the drawing of right

angles that look like right angles in order that we make the

figure as a whole more suggestive.

You already know that a plane is generally pictured by a

parallelogram.

It seems reasonable to

draw a horizontal plane in either

of the ways shown, and to draw a vertical plane like this.

If we want to indicate two parallel planes, however, we can not

be effective if we just draw any two "horizontal" planes. Notice

how the drawing to the right below Impnoves upo:. -1.2e one to the

left. Perhaps you prefer still another kind of drawing.

Various devices are used to indicate that one part of a fig-

ure passes behind another part. Sometimes a hidden part is

simply omitted, sometimes it is indicated by dotted lines, Thus

a line piercing a plane may be drawn in either of the two ways:

[A-v]
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Iwo intersecting planes are illustrated by each of these dra:Wings

The second is better than the first because the line of inter-

section is shown and parts concealed from view are dotted. The

third and fourth drawings are better yet because the line of in-

tersection is visually tied in with plane P as well as plane Q

by the use of Tarallel lines in the drawing.

Here is a drawing which has the advantage

of simplicity and the disadvantage of

suggesting one plane and one half-plane.

In any case a line of intersection is a

particularly important part of a figure.

Suppose that we wish to draw two intersecting planes each

perpendicular to a third plane. An effective procedure is shown

by this step-by-step development.

/ ZIP7
Notice how the last two planes drawn are built on the line of

intersection. A complete drawing showing all the hidden lines is

just too involved to handle pleasantly. The picture below is much

more suggestive.



A dime, from different angles, looks like this:

C.D MMMM=WW

Neither the first nor the last is a good picture of a circle in

3-space. Either of the others is satisfactory. The thinner oval

is perhaps better to use to represent the base of a cone.

Certainly nobody should expect us to interpret the figure shown

below as a cone.

A few additional drawings, with verbal descriptions, are

shown.

A line parallel to a plane.

A cylinder cut by a plane

parallel to the base.

A cylinder cut by a plane

not parallel to,the base.

340

[A-V]



A pyramid cut by a plane

parallel to the base.

A-2S

It is important to remember that a drawing is not an end in

itself but simply an aid to our understanding of the geometrical

situation. We should choose the kind of picture that will serve

us best for this purpose, and one person's choice may be different

from another.

V-2. Perspective.

The rays a, b, c, d, e, f In the left-hand figure below

suggest coplanar lines intersecting at V; the corresponding rays

in the right-hand figure suggest parallel lines in a three-dimen-
sional drawing. Think of a railroad track and telephone poles as

you look at the right-hand figure.

d a

The right-hand figure suggests certain principles which are useful

in making perspective drawings.

1) A set of parallel lines which recede from the viewer are

drawn as concurrent rays; for example, rays a, b, c, d, e, f.

The point, on the drawing, where the rays meet is known as the

vanishing point".

2) Congruent segMents are drawn smaller when they are

farther from the viewer. (Find examples in the drawing.)
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3) Parallel lines which are perpendicular to the line of

sight of the viewer are shown as parallel lines in the drawing.

(Find examples in the drawing.)

A person does not need muchartistic ability to make use of these

three principles.

The steps to follow in Bketching a rectangular solid are

shown below.

Draw the front face as a
rectangle.

Select a vanishing point and
,. / draw segments from it to the

vertices. Omit segments that
cannot be seen.

Draw edges parallel to those of
the front face. Finally erase
lines of perspective.

Under this technique a single horizontal plane can be drawn

as the top face of the solid shown abov'e.

A single vertical plane can be represented by the front face or

the right-hand face

of the solid.

After this brief account of two approaches to the drawing of

figures in 3-space we should once again recognize the fact that

there is no one correct way to picture geometric ideas. However,

the more "real" we want aur picture to appear, the more attention

we should pay to perspectfve. Such an artist as Leonardo da Vinci

paid great attention to perspective. Most of us find this done for

us when we use ordinary cameras.

See some books on drawing or look up "perspective" in an en-

cyclopedia if you are interested in a detailed treatment.

[A-V]
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Appendix VI

PROOFS OF THEOREMS ON PERPENDICULARITY

In Section 8-3 two theorems are stated, which, between them,

; cover all cases of existence and uniqueness involved in the per-

pendicularity of a line and a plane. As stated there, eight

separate items must be proved tc establish the proofs of these

two theorems. Here we will state these items and prove those

which have not already been proved.

We first restate the two theorems.

Theorem 8-9. Through a given point there is one and only

one plane perpendicular to a given line.

Theorem 8-10. Through a given point there is one and only

one line perpendicular to a given plane.

We now consider the eight proofs, in a systematic order.

Read the statements carefully, for there are only slight differ-

ences in their wording: the presence or absence of a "not", the

substitution of "most" for "least", or the interchange of "line"

and "plane".

Theorem VI-1. Through a given point on a given line there is

at least one plane perpendicular to the line.

This is Theorem 8-4, which is proved in the text.

Theorem VI-2. Through a given point on a given line there is

at most one plane perpendicular to the line.

This is Theorem 8-6, which is proved in the text.
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Theorem VI-3. Through a given point not on a given line

there is at least one plane perpendicular to the given line.

Given: Line L and point P not on L.

To prove: There is a plane E through P,

Proof:

with E I L.

(1) There is a line M through P perpendicular to L

(Theorem 6-4). Let M and L intersect at Q, and

lie in the plane F (Theorem 3-4).

(2) There is a point R (Figure 2) not in F (Postulate 5b).

Let G be the plane containing L and R (Theorem 3-3).

(3) In G there is a line N perpendicular to L at Q.

(Theorem 6-1).

(4) Let E be the plane containing M and N. Then E L

by Theorem 8-3.

Theorem VI-4. Through a given point not on a given line there

is at most one plane perpendicular to the given line.

Proof: Suppose that there are two planes El and E2, each

perpendicular to line L and each containing point P. If E
1

and E
2

intersect L in the same point Q, we have two planes

perpendicular to L at Q, and this contradicts Theorem VI-2.



A-27

On the other hand, if E, and En intersect L in, distinct
c

points A and B, ,then PA and PB are distinct lines thrcgh
P perpendicular to L, contradicting Theorem 6-4. Either way,

we get a contradiction, and so we cannot have two planes through

P perpendicular to L.

This finishes the proof of Theorem 8-9. The next four

theorems, which read like the previous four with "line" and

"plane" interchanged, will prove Theorem 8-10.

Theorem VI-5. Through a given point in a given plane there

is at least one line perpendicular to the plane.

Proof: Let P be a point in plane E. By Postulate 5a
there is another point Q in E. Let plane F be perpendicular

.1E->
to PQ at P (Theorem VI-1).

Since F intersects E (at P) their intersection is a
line M, by Postulate 8. Let L be a line in F, perpendicular
to M (Theorem 6-1).

Since F. J PQ, and L lies in F and contains P, we

have, from the definition of a line perpendicular to a plane, that
L j PQ. Also, from above, L i M. Hence L J E, by Theorem 8-4.

Theorem VI-6. Through a given point in a given plane there

is at most one line perpendicular to the given plane.

Proof: Suppose L1 and L2 are distinct lines, each per-

pendicular to plane E at point P. Ll and L2 determine a
plane F (Theorem 3-4) which intersects E in a line L. In F,

we then have two perpendiculars to L at the same point P, con-

tradicting Theorem 6-1.

CA-VIi
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Theorem VI-7. ThrOugh a given point not in a given plane

there is at least one line perpendicular to the given plane.

Proof: Let P be a point not in plane E. Let A be any

point of E, and M a line through A perpendicular to E

(Theorem VI-5).

If M contains P it is the desired perpendicular.

If M does not contain P let F be the plane containing

M and P (Theorem 3-3), and N the line of intersection of F

and E. In F let B be the foot of a perpendicular from P

to N (Theorem 6-4).

Let line L be-perpendicular to E at B (Theorem VI-5).

By Theorem 8-8, L and M are coplanar, and hence, L lies in

F since M and B determine F.

In F, L N, since L E and N lies in E. Since by

Theorem 6-1 there is only one line in F perpendicular to N at

B, L and BP must coincide. That is, L contains P and so

is the desired perpendicular.

Theorem VI-8. Through a given point not in a given plane

there is at most one line perpendicular to the given plane.

The proof is word for word the same as that of Theorem VI-6,

except for the replacement of "at point P" by "from point P"

and of "Theorem 6-1" by "Theorem 6-3".
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The Meaning and Use of Symbols

General.

=. A = B can be read as "A equals B", "A is equal to B",

"A equal B" (as in "Let A = B"), and possibly other

ways to fit the structure of the sentence in which the

symbol appears. However, we should not use the symbol,

., in such forms as "A and B are ."; its proper use is

between two expressions. If two expressions are connected
by ".", it is to be understood that these two expressions

stand for the same mathematical entity, in our case either
a real number or a point set.

)1. "Not equal to". A / B means that .A and B do not

represent the same entity. The same variations'and

cautions apply to the use of / as to the use of

Algebraic.

These familiar algebraic symbols for operating

with real numbers need no comment. The basic postulates
about them are presented in Appendix

<, >, <, ;>. Like =, these can be read in Various ways in

sentences, and A < B may stand for the underlined part

of "If A is less than B", "Let A be less than B",
"A less than B implies ", etc. Similarly for the other

three symbols, read "greater than", "less than or equal
to", "greater *;han or equal to". These inequalities apply
only to real numbers. Their properties are mentioned

briefly in Section 2-2, and in more detail in Section
7-2.

la, 1AI. "Square root of A" and "absolute value of A".

Discussed in Sections 2-2 and 2-3 and Appendix IV.
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Geometric.

Point Sets. A single letter may stand for any suitably described

point set. Thus we may speak of a point P, a line m, a

half-plane H, a circle C, an angle x, a segment b, etc.

rg. The line containing the two points A and B (P. 30).

TS. The segment having A and B. as end-points (P. 45).

xg. The ray with A as its end-point and containing

point B (P. 45).

&BC. The angle having B as vertex and T31 and vr as
sides (p. 71).

LABC. The triangle having A, B and C as vertices (p. 72).

z A-BC-D. The dihedral angle having 1r as edge and with sides

containing A and D (P. 299).

Real Numbers.

AB. The positive number which is the distance between the two

points A and B, and also the length of the segment 1ff

(P. 34).

mLABC. The real number between 0 and 180 which is the

degree measure of LABC (P. 80).

Area R. The positive number which is the area of the polygonal

region R (P. 320).

Relations.

Congruence. A '-1,1 B is read YA is congruent to B", but

with the same possible variations and restrictions as

A = B. In the text A and B may be two (not necessarily

different) segments (P. 109), angles (P. 109), or

triangles (P. 111).

Perpendicular. A 1.B is read "A is,perpendicular to B",

with the same comment as for A and B may be either two

lines (P. 86), two planes (P. 301), or a line and a plane

(P. 219).
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II . Parallel. A II B is read "A is parallel to B", with the

same comment as for =. A and B may be either two lines

(p. 241), two planes (P. 291) or a line and a plane

(p. 291).
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List of Postulates

Postulate 1. (P. 30) Given any two different points,

there is exactly one line which contains both of them.

Postulate 2. (P. 34) (The Distance Postulate.) To every

pair of different points there corresponds a unique positive

number.

Postulate 3. (P. 36) (The Ruler Postulate.) The points

of a line can be placed in correspondence with the real numbers..

in such a way that

(1) To every point of the line there corresponds exactly

one real number,

(2) To every real number-there corresponds exactly one

point of the line, and

(3) The distance between two points is the absolute value

of the difference of the corl'esponding numbers.

Postulate 4. (P. 4o) (The Ruler Placement Postulate.)

Given two points P and Q of a line, the coordinate system

can be chosen in such a way that the coordinate of P is zero

and the coordinate of Q is positive.

Postulate 5. (p. 54) (a) Every plane contains at least

three non-collinear points.

(b) Space contains at least four non-coplanar points.

Postulate 6. (p. 56) If two points lie in a plane, then

the line containing these points lies in the same place.

Postulate 7. (p. 57) Any three points lie in at least one

plane, and any three non-collinear points lie in exactly one

plane. More briefly, any three points are coplanar, and any

three non-collinear points determine a plane.

Postulate 8. (P. 58) If two different planes intersect,

then their intersection is a line.

Postulate 9. (p. 64) (The Plane Separation Postulate.)

Given a line and a plane containing it, the points of the plane

that do not lie on the line form two sets such that

(1) each of the sets is convex and

(2) if P is in one set and Q is in the other then the

segment PQ intersects the line.
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Postulate 10. (P. 66) (The Space Separation Postulate.)

The points of space that do not lie in a given plane form two

sets such that

(1) each of the sets is convex and

(2) if P is in one set and Q is in the other,then

the segment PQ intersects the plane.

Postulate 11. (P. So) (The Angle Measurement Postulate.)

To every angle ZPAC there corresponds a real number between

0 and 180.

Postulate 12. (P. 81) (The Angle Construction Postulate.)

Let "Te be a ray on the edge of the half-plane H. For every

number r between 0 and 180 there is exactly one ray

with P in H, such that mLPAB = r.

'Postulate 13. (P. 81) (The Angle Addition Postulate.)

If D is a point in the interior of LBAC, then

mLBAC = mZtAAD mLDAC.

Postulate 14. (P. 82) (The Supplement Postulate.) If two

angles form a linear pair, then they are supplementary.

Postulate 15. (P. 115) (The S.A.S. Postulate.) Given a

correspondence between two triangles (or .between a triangle

and itself). If two sides and the included angle of the first

triangle are congruent to the corresponding parts of the secon.d

triangle, then the correspondence is a congruence.

Postulate 16. (P. 252) (The Parallel Postulate.) Through

a given external point there is at most one line parallel to a

given line..

Postulate 17. (P. 320) To every polygonal region there

corresponds a unique positive number.

Postulate 18. (P. 320) If two triangles are congruent,

then the triangular regions have the same area.

Postulate 19. (P. 320) Suppose that the region R is the

union of two regions R1 and R2 . Suppose that R, and R2

intersect at most in a finite number of segments and points.

Then the area of R is the sum of the areas of R and R
2.1

Postulate 20. (P. 322) The area of a rectangle is the

product of the length of its base and the length of its altitude.
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Posculate 21. (P. 546) The volume of a rectangular

parallelepiped is the product of the altitude and the area of

the base.

Postulate 22. (P. 548) (Cavalierifs Principle.) Given two

solids and a plane. If for every plane which intersects the

solids and is parallel to the given plane the two intersections

have equal areas, then the two solids have the same volume.
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List of Theorems and Corollaries

Theorem 2-1. (P. 42) Let A, B, C be three points of a
line, with coordinates x, y, z. If x < y < z, then B is

between A and C.

Theorem 2-2. (P. 43) Of any three different.points on the

same line, one is between the other two.

Theorem 2-3. (P. 44) Of three different points on the same

line, only one is between the other two.

*
AB be a rayo and let x be a positive number. Then there is
exactly one point P of AB such that AP x.

Theorem 2-5. (P. 47) Every segment has exactly one mid-

point.

Theorem 3-1. (P. 55) Two different lines intersect in at
most one point.

Theorem 3-2. (P. 56) If a line intersects a plane not

containing it, then the intersection is a single point.

Theorem 3-3. (P. 57) Given a line and a point not on the

line, there is exactly one plane containing both of them.

Theorem 3-4. (P. 58) Given two intersecting lines, there

is exactly one plane containing them.

Theorem 4-1. (P. 67) If two angles are complementary, then

both of them are acute.

Theorem 4-2. (P. 87) Every angle is congruent to itself.

Theorem 4-3. (P. 87) Any two right angles are congruent.

Theorem 4-4. (P. 87) If two angles are both congruent and

supplementary, then each of them is a right angle.

Theorem 4-5. (P. 87) Supplements of congruent angles are

congruent.

Theorem 2-4. (P. 46) (The Point Plotting Theorem.) Let
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Theorem 4-6. (P. 88) Complements of congruent angles are

congruent.

Theorem 4-7. (P. 88) Vertical angles are congruent.

Tlieorem 4-8. (P. 89) If two intersecting lines form one

right angle; then they form four right angles.

Theorem 5-1. (P. 109) Every segment is congruent to itself.

Theorem 5-2. (P. 127) If two sides of a triangle are

congruent, then the angles opposite these sides are congruent.

Corollary 5-2-1. (P. 128) Every equilateral triangle is

equiangular.

Theorem 5-3. (P. 129) Every angle has exactly one bisector.

Theorem 5-4. (P. 132) (The A.S.A. Theorem.) Given a

correspondence between two triangles (or between a triangle and

itself). If two angles and the included side of the first tri-

angle are congruent to the corresponding parts of the second

triangle, then the correspondence is a congruence.

Theorem 5-5. (P. 133) If two angles of a triangle are

congruent, the sides opposite these angles.are congruent.

Corollary 5-5-1. (P. 133) An equiangular triangle is

equilateral.

Theorem 5-6. (P. 137) (The S.S.S. Theorem.) Given a

correspondence between two triangles (or between a triangle and

itself.) If all three pairs of corresponding sides are congruent,

then the correspondence is a congruence.

Theorem 6-1. (P. 167) In a given plane, through a given

point of a given line of the plane, there passes one and only one

line perpendicular to the given line.

Theorem 6-2. (P. 169) The perpendicular bisector of a

segment, in a plane, is the set of all points of the plane that

are equidistant from the end-points of the segment.
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Theorem 6-3. (P. 171) Through a given external point there

is at most one line perpendicular to a given line.

Corollary 6-3-1. (P. 172) At most one angle of a triangle

can be a right angle.

Theorem 6-4. (P. 172) Through a given external point there

is at least one line perpendicular to a given line.

Theorem 6-5. (P. 183) If M is between A and C on a

line L, then M and A are on the same side of any other line

that contains C.

Theorem 6-6. (P. 183.) If m is between A and C, and

B is any point not on line AC, then M is in the interior of

Z ABC.

Theorem 7-1. (P. 193) (The Exterior Angle Theorem.) An

exterior angle of a triangle is larger than either remote interior

angle.

Corollary 7-1-1. (P. 196) If a triangle has a right angle,

then the other two angles are acute.

Theorem 7-2. (P. 19() (The S.A.A. Theorem.) Given a

correspondence between two triangles. If two angles and a side

opposite one of them in one triangle are congruent to the corres-

ponding parts of the second triangle, then-the correspondence is

a congruence.

Theorem 7-3. (P. 196) (The Hypotenuse - Leg Theorem.)

Given a correspondence between two right triangles. If the

hypotenuse and one leg of one triangle are congruent to the

corresponding parts of the second triangle, then the correspondence

is a congruence.

Theorem 7-4. (p. 200) If two sides of a triangle are not

congruent, then the angles opposite these two sides are not

congruent, and the larger angle is opposite the longer side.

Theorem 7-5. (P. 201) If two angles of a triangle are not

congruent, then the sides opposite them are not congruent, and

the longer side is opposite the larger angle.
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Theorem 7-6. (P. 206) The shortest segment joining a point

to a line is the perpendicular segment.

Theorem 7-7. (P. 206) (The Triangle Inequality.) The sum

of the lengths of any two sides of a triangle is greater than the

of the third side.

Theorem 7-8. (P. 210) If two sides of one triangle are

congruent respectively to two sfdes of a second triangle, and

the included angle of the first triangle is larger than the

included angle of the second, then the opposite side of the

first triangle is longer than the opposite side of the second.

Theorem 7-9. (P. 211) If two sides of one triangle are

congruent respectively to two sides of a second triangle, and

the third side of the first triangle is longer than the third

side of the second, then the included angle of the first triangle

is larger than the included angle of the second.

Theorem 8-1. (P. 222) If each of two points of a line is

equidistant from two given points, then every point of the line

is equidistant from the given points.

Theorem 8-2. (P. 225) If each of three non-collinear

points of a plane is equidistant from two points, then every

point of the plane is equidistant from these two points.

Theorem 8-3. (P. 226) If a line is perpendicular to each

of two intersecting lines at their point of intersection, then

it is perpendicular to the plane of these lines.

Theorem 8-4. (P. 230) Through a given point on a given"

line there passes a plane perpendicular to the line.

Theorem 8-5. (P. 231) If a line and a plane are perpendicu-

lar, then the plane contains every line perpendicular to the

given line at its point of intersection with the given plane.

Theorem 8-6. (P. 231 Through a given point on a given

line there is at most one plane perpendicular to the line.
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Theorem 8-7. (P. 232) The perpendicular bisecting plane of

a segment is the set of all points equidistant from the end-

points of the segment.

Theorem 8-8. (P". 231L) Two lines perpendicular to the same

plane are coplanar.

Theorem 8-9. (P. 235) Through a given point there passes

one and only one plane perpendicular to a given line.

Theorem 8-10. (P. 235) Through a given point there passes

one and only one line perpendicular to a given plane.

Theorem 8-11. (P. 235) The shortest segment to a plane

from an external point is the perpendicular segment.

Theorem 9-1. (P. 242) Two parallel lines lie in exactly

one plane.

Theorem 9-2. (P. 242 Two lines in a plane are parallel

i' ',hey are both perp.,ndicular to the same line.

Theorem 9-3. (P. 244)' Let L be a line, and let P be a
point not on L. Then there is at least one line through P,

parallel to L.

Theorem 9-)4 (13. 246) If two lines are cut by a transversal,

and if one pair of alternate interior angles are congruent, then

the other pair of alternate interior angles are also congruent.

Theorem 9-5. (P. 246) If two lines are cut by a transversal,

and if a pair of alternate interior angles are congruent, then

the lines are parallel.

Theorem 9-6. (P. 252) If two lines are cut by a transversal,

and if one pair of corresponding angles are congruent, then the

other three pairs of corresponding angles have the same property.

Theorem 9-7. (P. 2'.)2) If two lines are cut by a transversal,

and if a pair of corresponding angles are congruent, then the

lines are parallel.

Theorem 9-8. (P. 233) If two parallel lines are cut by a

transversal, then then alternate interior angles are congruent.
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Theorem 9-9. (P. 254) If two parallel lines are cut by a

transversal, each pair of corresponding angles are congruent.

Theorem 9-10. (P. 254) If two parallel lines are cut by a

transversal, interior angles on the same side of the transversal

are supplementary.

Theorem 9-11. (P. 255) In a plane, two lines parallel to

the same line are parallel to each other.

Theorem 9-12. (P. 255) In a plane, if a line is perpendicu-

lar to one of two parallel lines it is perpendicular to the other.

Theorem 9-13. (P. 258) The sum of the measures of the

angles of a triangle is 180.

Corollary 9-13-1. (P. 259) Given a correspondence between

two triangles. If two pairs of corresponding angles are congruent,

.
then the third pair of corresponding angles are also congruent.

Corollary 9-13-2. (P. 260) The acute angles of a right

triangle are complementary.

Corollary 9-13-3. (P. 260) For any triangle, the measure of

an exterior angle is the sum of the measures of the two remote

interior angles.

Theorem 9-14. (P. 265) Either diagonal divides a paralle16-

gram into two congruent triangles.

Theorem 9-15. (P. 265) In a parallelogram, any typ opposite

sides are congruent.

Corollary 9715-1. (P. 266) If L1 II L2 and if P and

are any two points on Ll, then the distances of P and Q from

L
2

are equal.

Theorem 9-16. (p.266) In a parallelogram, any two opposite

angles are congruent.

Theorem 9-17. (P. 266) In a parallelogram, any two

consecutive angles are supplementary.
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Theorem 9-18. (P. 266) The diagonals of a parallelogram

bisect each other.

Theorem 9-19. (P. 266) Given a quadrilateral in which both

pairs of opposite sides are congruent. Then the quadrilateral is

a parallelogram.

Theorem 9-20. (P. 266) If two sides of a quadrilateral are

parallel and congruent, then the quadrilateral iaa parallelogram.

Theorem 9-21. (P. 266) If the diagonals of a quadrilateral

bisect each other, then the quadrilateral is a parallelogram.

Theorem 5-22. (P. 267) The segment between the, mid-points

of two sides of a triangle is parallel to the third side and half

as long as the third side.

Theorem 9-23. (P. 268) If a parallelogram has one right

angle, then it has four right angles, and the parallelogram is a

rectangle.

Theorem 9-24. (P. 268) In a rhombus, the diagonals are

perpendicular to one another.

Theorem 9-25. (P. 268) If the diagonals of a quadrilateral

bisect each other and are perpendicular, then the quadrilateral

is a rhombus.

Theorem 9-26. (P.276) If three parallel lines intercept

congruent segments on one transversal, then they intercept

congruent segments on any other transversal.

Corollary 9-26-1. (P.277) If three or more parallel lines

intercept congruent segments on one transversal, then they

intercept congruent segments on any other transversal.

Theorem 9-27. (P. 279) The medians of a triangle are

concurrent in a point two-thirds the way from any vertex to the

mid-point of the opposite side.

Theorem 10-1. (P. 292) If a plane intersects two parallel

planes, then it intersects them in two parallel lines.
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Theorem 10-2. (P. 292) If a line is perpendicular to one of

two parallel planes it is perpendicular to the other.

Theorem 10-3. (P. 293) Two planes perpendicular to the

same line are parallel.

Corollary 10-3-1. (P. 294) If two planes are each parallel

to a third plane, they are parallel to each other.

Theorem 10-4. (P. 294) Two lines perpendicular to the same

plane are parallel.

Corollary 1074-1. (P. 294) A plane perpendicular to one of

two parallel lines is perpendicular to the other.

Corollary 10-4-2. (p. 294) If two lf.nes are each parallel

to a third they are parallel to each other.

Theorem 10-5. (P. 295) Two parallel planes are everywhere

equidistant.

Theorem 10-6. (P.301) Any two plane angles of a given

dihedral angle axe congruent.

Corollary 10-6-1. (P. 302) If a line is perpendicular to a

plane, then any plane containing this line is perpendicular to the

given plane.

Corollary 10-6-2. (13.302) If two planes are perpendicular,

then any line in one of them perpendicular to their line of

intersection is perpendicular to the other plane.

Theorem 10-7. (P.307) The projection of a line into a

plane is a line, unless the line and the plane are perpendicular.

Theorem 11-1. (p. 328) The area of a right triangle is half

the product of its legs.

Theorem 11-2. (P. 328) The area of a triangle is half the

product of any base and the altitude to that base.

Theorem 11-3. (P.330) The area of a parallelogram is the

product of any base and the corresponding altitude.

Theorem 11-4. (P. 33) The area of a trapezoid is half the

product of its altitude and the sum of its bases. .
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Theorem 11-5. (P. 332) If two triangles have the same

altitude, then the ratio of their areas is equal to the ratio

of their bases.

Theorem 11-6. (P. 332) If two triangles have equal altitudes

and equal bases, then they have equal areas.

Theorem 11-7. (P. 339) (The Pythagorean Theorem.) In a

right triangle, the square of the hypotenuse is equal to the sum

of the squares of the legs.

Theorem 11-8. .(P. 340) If the square of one side of a

triangle is equal to the sum of the squares of the other two,

then the triangle is a right :triangle, with a right angle opposite

the first side.

Theorem 11-9. (P.346) (The 30 - 60 Triangle Theorem.) The

hypotenuse of a right triangle is twice as long as the shorter

leg if and only if the acute angles are 30° and 60°.

Theorem 11-10. (P.346) (The Isosceles Right Triangle

Theorem.) A right triangle is isosceles if and only if the

hypotenuse is IT times as long as a leg.

Theorem 12-1. (P.368) (The Basic Proportionality Theorem.)

If a line parallel to one side of a triangle intersects the other

two sides in distinct points, then it cuts off segments which are

proportional to these sides.

Theorem 12-2. (P.369) If a line intersects two sides of' a

triangle, and cuts off segments proportional to these two sides,

then it is parallel to the third side.

Theorem 12-3. (P.374) (The A.A.A. Similarity Theorem.)

Given a correspondence between two triangles. If corresponding

angles are congruent, then the correspondence is a similarity.

Corollary 12-3-1. (P.376) (The A.A. Corollary.) Given a

correspondence between two triangles. If two pairs of correspond-

ing angles are congruent, then the correspondence is a similarity.
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Corollary 12-3-2. (P. 376) If a line parallel to one side

of a triangle intersects the other two sides in distinct points,

then it cuts off a triangle similar to the given triangle.

Theorem 12-4. (P. 376) (The S.A.S. Similarity Theorem.)

Given a correspondence between two triangles. If two correspond-

ing angles are congruent, and the including sides are proportional,

then fihe correspondence is a similarity.

Theorem 12-. (P. 378) (The S.S.S. Similarity Theorem.)

iGiven a correspondence between two triangles. If corresponding

sides are proportional, then the correspondence is a similarity.

Theorem 12-6. (P. 391) In any right triangle, the altitude

to the hypotenuse separates the triangle into two triangles which

are similar both to each other and to the original triangle.

Corollary 12-6-1. (P. 392) Given a right triangle and the

,altitude from the right angle to the hypotenuse:

(1) The altitude is the geometric mean of the segments into

which it separates the hypotenuse.

(2) Either leg is the geometric mean of the hypotenuse and

the segment of the hypotenuse adjacent to the leg.

Theorem 12- . (P.)) The ratio of the areas of two

similar triangles is the square of the ratio of any two corres-

ponding sides.

Theore-1 13-1. (P. 410) The intersection of a sphere with

a plane through its center is a circle with the same center and

radius.

Theorem 13-2. (P. 414) Given a line and a circle in the

same plane. Let P be the center Of the circle, and let F be

the foot of the perpendicular from P to the line. Th2n either

(1) Every point of the line is outside the circle, or

(2) F is on the circle, and the line is tangent to the

circle at F, or

(3) F is inside the circle, and the line intersects the
\

circle in exactly two points, which are equidistant from F.
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Corollary 13-2-1. (P. 416) Every line tangent to C is

perpendicular to the radius drawn to the point of contact.

Corollary 13-2-2. (P. 416) Any line in E, perpendicular

to a radius at its outer end, is tangent to the circle.

Corollary 13-2-a. (P. 416) Any perpendicular from the

center of C to a chord bisects the chord.

Corollary 13-2-4. (P. 416) The segment joining the center

of C to the mid-point of a chord is perpendicular to the chord.

Corollary 13-2-5. (P. 416) In the plane of a circle, the

perpendicular bisector of a chord passes through the center of

the circle.

Corollary 13-2-6. (P. 417) If a line in the plane of a

circle intersects the interior of the circle, then it intersects

the circle in exactly two points.

Theorem 13-3. (P. 417) In the same circle or in congruent

circles, chords equidistant from the center are congruent.

Theorem 13-4. (P. 417) In the same circle or in congruent

circles, any two congruent chords are equidistant from the center.

Theorem 13-5. (P. 424) Given a plane E and a sphere S

with center P. Let F be the foot of the.perpendicular segment

from P to E. Then either

(1) Every point of E is outside S, or

(2) F is on S, and E is tangent to S at p, or

(3) F is inside S, and E intesects S in a circle

with center F.

Corollary 13-5-1. (P. 426) A plane tangent to S is

perpendicular to the radius drawn to the point of contact..

Corollary 13-5-2. (P. 426), A plane perpendicular to a

radius at its outer end is tangent to S.

Corollary 13-5-3. (P. 42C' A perpendicular from P to a

chord of S bisects the chord.
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Corollary 13-5-4. (P. 426) The segment joining the center

of S to the midpoint of a chord is perpendicular to the chord.

Theorem 13-6. (P. 431) If ra and BC are arcs of the

same circle having only the point B in common, and if their

union is an arc 2, then ma

Theorem 13-7. (P. 44) The measure of an inscribed angle

is half the measure of its intercepted arc.

Corollary 1,3-7-1. (P. 437) An angle inscribed in a semi-

circle is a right angle.

Corollary 1,3-7-2.. (P. 437) Angles inscribed in the same

arc are congruent.

Theorem 13-8. (P. 441) In the sam:.i circle or in congruent

circles, if two chords are congruent, then so also are the

corresponding minor arcs.

Theorem 13-7_9. (P. 441) In the same circle or in congruent

circles, if two arcs are congruent, then so are the corresponding

chords.

Theorem 13-10. (P. 442) Given an angle with vertex on the

circle formed by a secant ray and a tangent ray. The measure of

the angle is half the measure of the intercepted arc.

Theorem 13-11, (P. 448) The two tangent segments to a

circle from an external point are congruent, and form congruent

angles with the line joining the external point to the center

of the circle.

Theorem 13-12. (P. 449) Given a circle C and an external

point Q, let Li be a secant line through Q, intersecting C

in points R and S; and let L, be another secant line through

Q, intersecting C in points T and U. Then QR QS = QU QT.

Theorem 13-13. (P. 450) Given a tangent segment QT to a

circle, and a secant line through Q, intersecting the circle in

points R and S. Then QR QS = QT
2

.



Theorem 15-14. (P. )151) If two chords intersect within a

cirCle, the product of the lengths of the segments of one equals

the product of the lengths of the segments of the other.

Theorem 14-1. (P. )67) The bisector of an angle, minus its

end-point, is the set of points in the interior of the angle

equidistant from the sides of the angle.

Theorem 14-2. (P. 469). The perpendicular bisectors of the

sides of,a triangle are concurrent in a point equidistant from

.the three vertices of the triangle.

Corollary 14-2-1. (P. 4/0) There is one and only one circfe

through three non-collinear points.

Corollary 14-2-2. (P. 470) Two distinct circles can

intersect in at most two points.

Theorem 14-5. (P. 470) The three altitudes of a triangle

are concurrent.

Theorem 14-4. (P. 471) The angle bisectors of a triangle

are concurrent in a point equidistant from the three sides.

Theorem 14-5. (P. 476) (The Two Circle Theorem) If two

circles have radii a and b, and if c is the distance

between their centers, then the circles intersect in two points,

one on each side of the line of centers, provided each of of a,

b, c is less than the sum of the other two.

Construction l4-6. (P. 477) 'To copy a given triangle.

Construction 14-7. (P. 479) To copy a given angle.

Construct:on 14-8. (P. 481) To construct the perpendicular

bisector of a given segment.

Corollary 14-8-1. (P. 481) To bisect a given segment.

Construction 14-9. (P. 482) To construct a perpendicular

to a given line through a given point.

Construction 14-10. (P. 484). To construct a parallel to a

given line, though a given external point.
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Construction 14-11. (P. 484) To divide a segment into a

given number of congruent segments.

Construction 14-12. (P. 491) To circumscribe a circle about

a given triangle.

Construction 14-13. (P. 491) To bisect a given arigle.

Construction 24-14. (P. 492) To inscribe a circle in a

given triangle.

Theorem 15-1. (P. 517) The ratio of the circumference
2r '

to the dia:aeter, is the same for all circles.

Theorem 15-2. (P. 522) The area of a circle of radius r

is Tr.72

.

Theorem 15-3. (P. 526) If two arcs have equal radii, their

lengths al-,e proportional to their measures.

Theorem. 15-4. (P. 526) An arc of measure q and radius r

has length iTA qr

Theorem 15-5. (P. 527) The area of a sector is half the

product of its radius by the length of its arc.

,Theorem 15-6. (P. 527) The area of a sector of radius r
y

, and'arc measure q is 360gr
2

Theorem 16-1. (P. 535) All cross-sections of a triangular

-prism are congruent to the base.

Corollary 16-1-1. (P. 536) The upper and lower bases of

a triangular prism a2e congruent.

Theorem 16-2. (P. 536) (Prism Cross-Section Theorem.) All

cross-sections of a prism have the same area."

Corollary 16-2-1. (P. 537) The two bases of a prism have

equal areas.

Theorem 16-3. (P. 537) The lateral faces of a prism are

parallelogram regions, and the lateral faces of a right prism

are rectangular regions.
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Theorem 16-4. (P. 540) A cross-section of a triangular

pyramid, by a plane between the vertex and the base, is a

triangular region similar to the base. If the distance from the

vertex to the cross-section plane is k and the altitude is h,

then the ratio 01' the area of the cross-section to the area of
2

the base is (pi) .

Theorem 16-5. (P. 542) In any pyramid, the ratio pf the
k'

area of a cross-section and the area of the base is (F) , where

h is the altitude of the pyramid and k is the distance from

the vertex to the plane of the cross-section.

r Theorem 16-6. (P. 543) (The Pyramid Cross-Section Theorem.)

Given two pyramids with the same altitude. If the bases have the

same area, then cross-sections equidistant from the bases also

have the same area.

Theorem 16-7. (P. 548) The volume of any prism is the

product of the altitude and the area of the base.

Theorem 16-8. (P. 549) If two pyramids have the same alti-

tude and the same base area, then they have the same volume.

Theorem 16-9. (p. 550) The volume of a triangular pyramid

is one-third the product of its altitude and its base area.

Theorem 16-10. (P. 551) The volume of a pyramid is one-third

the product of its altitude and its base area.

Theorem 16-11. (P. 555) A cross-section or a circular

cylinder is a circular region congruent to the base.

Theore.T1 16-12. (P. 555) Me area of a cross-section of a

circular cylinder is equal to the area of t4le base.

Theorem 16-13. (p. 555) A cross-section of a cone of

altitude h, made by a plane at a distance k from the vertex,

is a circu1ax3 region whose area has a ratie to the area of the
k `

base of (71) .

Theorem 16-14. (p. 557) The volume of a'circular cylinder

is the product of the altitude and the area of the base.



Theorem 16-15. (P. 557) The volume of a circular cone is

one-third the product of the altitude,and the area of the base.

Theorem 16-16. (P. 559) The volume of a sphere of radius
4 r3

is 3,
Theorem 16-17. (P. 562) The surface area of a sphere of

radius r is S = 47r2 .

Theorem 17-1. (P. 579) On a non-vertical line, all segments

have the same slope.

Theorem 17-2. (P. 584) Two non-vertical lines are parallel

if and only if they have the same slope.

Theorem 17-3. (P. 586) Two non-vertical lines are perpen-

dicular if and only if their slopes are the negative reciprocals

of each other.

Theorem 17-4. (P. 589) (The Distance Formula.) The

distance between the points (x1,y1) and (x2,y2) is equal to

*\/(x2 x1)2 + (Y2 Y1)2

Theorem 17-5. (P. 593) (The Mid-Point Formula.)

Let P1 = (x1,y1) and let P2 = (x2,y2). Then the mid-point

x + x2 yl + y
2of P

1
P
2

is the point P = (

2 2 /

\

Theorem 17-6. (P. 605) Let L be a non-vertical line with

with slope m, and let P be a point of L, with coordinates

(x1,y1). For every point c.,1 = (x,y) of L, the equation

y - yl = m(x - xl) is satisfied.

Theorem 17-7. (P. 607) The graph of the equation

y - yl = m(x - xl) is thE line that passes through the point

(x1,y1) and has slope m.

Theorem 17-8. (P. 611) The Ea-aph of the equation y = mx + b

is the line with slope m and y-intercept b.

Theorem 17-9. (P. 613) Every line in the plane is the graph

of a linear equation in x and y.
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Theorem 17-10. (P. 613) The graph of a linear equation

in x and y .is always a line.

Theorem 17-11: (P. 623) The graph of the equation

(x - a)2 (y b)2 = r2 is the circle with center at (a,b)

and radius r.

Theorem 17-12. (P. 624) Every circle is the graph of an

equation.of the form x2 + y
2 + Ax + By + C = 0.

Theorem 17-13. (P. 625) Given the equation

x
2
+ y

2 + Ax + By + C = O. The graph of this equation is

(1) a circle, (2) a point or (3) the empty set.
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Index of Definitions

For precisely defined geometric terms the reference is to
the formal definition. For other terms the reference is to an
informal definition or to the most prominent discussion.

absolute value, 27
acute angles, 86
alternate interior angles, 245
altitude

of prism, 535
of pyramid, 540
of triangle, 214, 215

angle(s), 71
acute, 86
alternate interior, 245
bisector of, 129
central, 429
complementary, 86
congruent, 86, 109
consecutive, 264
corresponding, 251
dihedral, 299._.
exterior, 293
exterior of, 73
inscribed, 432
intercepts an arc, 433
interior oi, 73
measure of, 80
obtuse, 86
or polygon, 506
opposite, 264
reflex, 78
remote interior, 193
right, 85
right dihedral, 301
sides of, 71
straight, 78
supplementary, 82
vertex of, 71
vertical, 88

apothem, 512
arc(s), 429

center of, 437
congruent, 441
deRree measure of, 430
end-points of, 429
length of, 525
major, 429
minor, 429
of sector, 527
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area, 320
circle, 521, 522
parallelogram, 330
polygonal region, 320
rectangle, 322
right triangle, 328
sphere,.562
trapezoid, 331
triangle, 328
unit of, 321

arithmetic mean, 364
auxiliary sets, 176
base of pyramid, 540
between, 41, 182
bisector of an angle, 129
bisector of a segment, 169
bisects, 47, 129
Cavalierils Principle, 548
center of

arc, 437
circle, 409
sphere, 409 .

central angle, 429
centroid, 280, 621
chord, 410
circle(s), 409

area of, 521, 522
circumference of, 516
congruent, 417
equation of, 623, 624, 625
exterior of, 412
great, 410
interior of, 1;12
segment of, 528
tangent, 417

circular
cone, 554
cylinder, 553
reasoning, 119,
region, 520 '

area of, 521
circumference, 516
circumscribed

circle, 490
triangle, 490

collinear, 54
complement, 86
complementary angles, 86
concentric

circles, 409
spheres, 409

conclusion, 60

3 7



concurrent sets, 278, 469
cone,

circular, 554
right circular, 555
volume of, 557

congruence, 97
congruent

angle*, 86, log
arcs, 441
circles, 417
segments, 109
triangles, 98, 111

consecutive angles, 264
consecutive sides, 264
constructions, 477
converse, 202
convex polygon, 507
convex sets, 62
coordinate system, 37, 571
coordinates of a point, 37, 569
co-planar, 54
corollary, 128
correspondence, 97
corresponding angles, 251
cross-section

of a prism, 535
of a pyramid, 540

cube, 229
cylinder

circular, 553
volume of, 557

diagonal, 264, 509
diameter, 4lo
dihedral angle, 299

edge of, 299
face of, 299
measure of, 301
plane angle of, 300

distance, 34
distance between

a point and a line, 206
a point and a plane, 235
two parallel lines, 266

distance formula, 589
edge of half plane, 64
end-point(s)

of arc, 429
of ray, 46
of segment, 45

empty set, 18
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equation
of circle, 623
of line, 605, 611

equiangular triangle, 128
equilateral triangle, 128
Euler, 327
existence proofs, 165
exterior angle, 193
exte2ior

of an ansls, 73
of a circle, 12
of a trianL:le, 14

face of half-space, 66
frustum, 559
Garfield's Proof, 344
geometric mean, 361
graph, 600
great circle, 410
half-plane, 64

edge of, 64
half-space, 66

face of, 66'
horizontal lines, 576
hypotenuse, 172
hypothesis, 60
identity congruence, 100, 109
if and only if, 203
if-then, 60
inconsistent equations, 618
indirect proof, 160
inequalities, 24
infinite ruler, 37
inscribed

angle, 432
measure of, 434

circle, 490
polygon, 511
quadrilateral, 438
triancrle, 490

4ntegers, 22
intercept, 275, 433
interior

of angle, 73
of circle, 412
of triangle, 74

intersect, 18
intersection of sets, 16, 18, 473
irrational numbers, 23
isosceles triangle, 127
kite, 272
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lateral
edge, 537
face, 537
surface, 537

lemma, 196
length

of arc, 525
of segment, 45

linear equation, 613
linear pair, 82
line(s), 10

oblique, 216
parallel, 241
perpendicular, 86
skew, 241
transversal, 244

major arc, 429
mean

arithmetic, 364
geometric, 361

measUre
of angle, 79, 80
of dihedral angle, 301
of distance, 30, 34, 36

median
of trapezoid, 272
of triangle, 130

mid-point, 47
formula of, 593

minor arc, 429
Non-Euclidean Geometries, 253
negative real numbers, 191
numbers

irrational, 23
negative, 191
positive, 191
rational, 22
real, 23
whole, 22

oblique lines, 216
obtuse angle, 86
on opposite sides, 64,
on the same side, 64
one-o-one correspondence, 97
opposite

angles, 264
rays, 46
sides, 264

order, 24
order postulates, 191, 192
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ordered pair, 571
origin, 568
parallel

lines, 241
- slopes of, 584

lines and planes, 291
planes, 291

parallelepiped, 538
parallelogram, 265

area of, 330
perimeter

of triangle, 287
of polygon, 512

perpendicular
lines, 86

slopes of, 586
line and plane, 219
planes, 301

perpendicular bisector, 169
pi, r, 518
plane(s), 10

parallel, 291
perpendicular, 301

'plane angle, 300
point, 10
point-slope form, 605
point of 'ah:ency

of circles, 413
of spheres, 423

polygon, 506
angle of, 506
apothem of, 512
convex, 507
diagonal of, 509
inscribed, 511
perimeter of, 512
regular, 511
sides of, 506
vertices of, 506

polygonal region, 317
polyhedral'regions, 546
positive real numbers, 191
postulate(s), 9

of order, 191, 192
power of a point, 451
prism, 534

altitude of, 535
cross-section of, 535
lateral edge, 537
lateral face 537
lateral sur:,_-, 537
Lower base,
rectangular, 535
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prism (Continued)
right, 535
total surface, 537
triangular, 535
upper base, 535

projection
of a line, 306
of a point, 306

proof
converse, 202
double-column form of, 11E
existence, 165
indirect, 160
uniqueness, 165.
writing of, 117

proportional sequences, 360
pyramid, 540

altitude of, 540
base of, 540
regular, 544
vertex of, 540
volume of, 551

Pythagorean Theorem, 339
quadrant, 571
quadrilateral, 263

consecutive angles of, 264
consecutive sides of, 264
cyclic, 473
diagonal of, 264
inscribed, 438
opposite angles of, 264

radius, 409, 410
- of sector, 527

rational numbers, 22
ray, 46

endrpoint of, 46
opposite, 46

real numbers, 23
rectangle, 268

area of, 322
rectangular parallelepiped, 538
reflex angle, 78
region

circular, 520
polygonal, 317
polyhedral, 546
triangular, 317

regular
polygon, 511
pyramid, 544

remote interior angle, 193
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rhombus,.268
right angle, 85
right dihedral angle, 301
right prism,.535
right triangle, 172
scalene trtangle, 128
sector, 5.;

arc of, 527
radius of, 527

segment(s), 45
bisector, 169
congruent, 109

segment of a circle, 528
semi-circle, 429
separation, 182
set(s), 15

auxiliary, 176
concurrent, 278
convex, 62
element of, 15
empty, 18
intersection of, 16, 473
member of, 15
union of, 17

side(s)
consecutive, 364
of angle, 71
of dihedral. angle, 299
of polygon, 506
of triangle, 72
opposite, 264

similarity, 365
skew lines, 241
slope, 577

of parallel lines, 584
of perpendicular lines, 586

slope-intercept form, 611
space, 53
sphere, 409

exterior of, 423
interior of, 423
surface area of, 562
volume of, 559

square, 268
square root, 25
straight angle, 78
subset, 15
supplement, 82
supplementary angles, 82
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tangent
circles, 417
common external, 454
common internal, 454
externally, 417
internally, 417
line and circle, 413
plane and sphere, 423
segment, 448

theorem, 9
total surface of a prism, 537
transversal, 244
trapezoid, 265

area of, 331
triangle(s), 72

altitude of, 214
angle bisector of, 130
area of, 328
centroid of, 280
congruent, 98, 111
equiangular, 128
equilateral, 128
exterior of, 74
interior of, 74
isosceles, 127, 128, 346
median of, 130
overlapping, 123
peTimeter of, 287
right, 172
scalene, 128
sides of, 72
siwila, 365
30-60u, 346
vertex of, 72

triangular region, 317
undefined t(-ms, 9, 10
union of sets, 17
uniqueness proofs, 165
vertex

of angle, 71
of polygon, 506
of pyramid, 540
of triangle, 72

vertical angles, 88
vertical line, 576
volume

of cone, 557
of cylinder, 557
of prism, 548
of pyramid, 551
of sphere, 559

whole numbers, 22
x-axis, 568
y-axis, 568
y-intercept, 611
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