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FOREWORD

The increasing contribution of mathematics to the culture of
the modern world, as well as its importance as a vital part of
scientific and humanistic education, has made it essentlial that the
mathematics in our schools be both well selected and well taught.

With this in mind, the various mathematical organizations in
the United States cooperated in the formation of the School .
'Mathematics Study Group (SMSG). SMSG includes college and univer-
sity mathematicians, teachers of mathematics at all levels, experts
in educatlon, and representatives of science and technology. The
general obJjective of SMSG 1s the improvement of the teaching of
mathematics in the schools of this country. The National Science
Foundatlion has provided substantial funds for the support of this
endeavor.

One of the prerequisites for the improvement of the teaching
of mathematics in our schools i1s an improved curriculum--one which
takes account of the increasing use of mathematics 1in science and
technology and in other areas of knowledge and at the same time
one which reflects recent advances in mathematics itself. One of
the first projects undertaken by SMSG was to enlist a group of
outstandéing mathematicians and mathematics teachers to prepare a
series of textbooks which would illustrate such an improved
curriculum,

The professional mathematicians in SMSG believe that the
mathematics presented in this text 1s wvaluable for all well-educated
citizens in our society to know and that it is important for the .
precollege student to learn in preparation for advanced work in the
field, At the same time, teachers in SMSG believe that it is
presented in such a .form that it can be readily grasped by students.

In most instances the material will have a familiar note, but
the presentation and the point of view willl be different. Some
material will be entirely new to the traditional curriculum. This
is as it should be, for mathematics 1s a living and an ever-growing
subJect, and not a dead and frozen product of antiquity. This
healthy fusion of the old and the new should lead students to a
better understanding of the basic concepts and structure of
mathematics and provide a firmer foundation for understanding and
use of mathematics in a scientific society.

It 1is not intended that this book be regarded as the only
definitive way of presenting good mathematics to students at this
level. Instead, it should be thought of as a sample  of the kind of
improved curriculum that we need and as a source of suggestions for

“the authors of commercial textbooks. It 1s sincerely hoped that ... -
these texts will lead the way toward inspiring a more meaningful
"teaching of Mathematics, the Queen and Servant of the Sciences.
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PREFACE

This hook 1s designed for the one-year introductory course
in geometry which is usually taught in the tenth grade. Students
in this grade normally have learned a fair amount of informal
geometry, including the calculation of areas and volumes for
various elementary figures, the Pythagorean relation, and the use
of similar right triangles to calculate unknown helghts and dis-
tances. Students who have not learned this material may have to ..
be given some extra attention, but the book should still be
teachable, at a sultably adJusted pace. In algebra, no specilal
preparation 1s required beyond the knowledge and skills normally
acquired in the ninth grade. 1

The book 1s devoted mainly to plane geometry, with a few
chapters on solid geometry, and a short introduction to analytic
geometry at the end. It seems natural, in a preface, to glve an
account of the novel features in the treatment. We are aware, of
course, of a danger in so dolng. A long string of noveltles,
offered for the reader's special attention, may very well convey
the impression that the authors have been engaged in an unhealthy.
pursuit of innovation for 1ts own sake. This is by no means the
way in which we have conceived our task. We began and ended our
work with the conviction that the traditional content of Euclidean
geometry amply deserves the prominent place which it now holds
in high-school study; and we have made changes only when the need
for them appeared to be compelling.

The basic scheme in the postulates 1s that of G. D, Birkhoff.
In this scheme, it is assumed that the real numbers are known, and
they are used freely for measuring both. distances and aagles.
This has two main advantages.,

In the first place, the real numbers give us a sort of head
start. It has been correctly pointed out that Euclid's postu-
lates are not logically sufficient for geometry, and that the
treatments based on them do not meet modern standards of rigor.
They were improved and sharpened by Hilbert. But the foundations
of geometry, in the sense of Hilbert, are not a part of elementary
mathematics, and do not belong in the tenth-grade curriculum. If
we assume the real numbers, as in the Birkhoff treatment, then
the handling of our postulates becomes a much easier task, and we
need not face a cruel choice between mathematical accuracy and in-
telligibility.

In the second place, it seems.a good idea in itself to con-
nect up geometry with algebra at every reasonable opportunity, so
that knowledge in one of these fields will make its natural con- ‘
tribution to the understanding of both. Some of the topics
~usually studied in geometry are essentially algebraic. This 1is
true, for example, of the proportionality relations for similar
triangles. In this book, such topics are treated algebraically,
80 as to bring out the connections with the work of the ninth and
eleventh grades.” ].0



We hope that the statements of definitions and theorems are
exact; we have tried hard to make them so. Just as a lawyer needs
to 1earn to draw up contracts that say what they are supposed to
say, 30 a mathematics student needs to learn to write mathemati-
cal statements that can be taken literally. But we are not under
the illusion that this sort of exactitude is a substitute for in-
tuitive insight. We have, therefore, based the design of both
the text and the problems on our belief that intuition and 1ogiﬂ
-should move forward hand in hand.

11




. Chapter 1

COMMON SENSE AND ORGANIZED KNOWLEDGE

1-1. Two Types of Problems.
Consilder the following problems: ‘
- 1. A line segment- 14 inches long is broken into two segments,mj
If one of the two smaller segments is 6 inches long, how 1ohg is
the other one?
_ 2. In a certain recténgle, the sum of the length and the
wldth 1s 14 (measured in inches). A second rectangle is three
times as long as the first, and twice as wide. The perimeter of
the second rectangle is 72, What dre the dimensions of the first
rectangle?
The answer to Problem 1, of course, is 8 inches, because
6 + 8 = 14, We could solve this problem algebraically, if we
wanted to, by setting up the equation
6 + x = 1,
and solving to get x = 8. But this seems a 1ittle silly, because —-
it is so unnecessary. If all algebraic eduations were as super-
fluous as this one, then no serious-minded person would pay any
attention to them; in fact, they would probably never havé_been
invented.
Problem 2, however,'is quite another matter. If the length
and width of the first rectangle are¢ x and,y,'then the 1ength:and
width of the sécond rectangle are 3x and 2y. Therefore,

3x + 2y =% . 72 = 36 |
because the sum of the length and width 1s halfﬂthe perimeter, We .

already know that x + ¥y = 1k. Thus we have a system of two linear
equations in two unknowns: o
X+ y =14

3x + 2y =‘36.

12
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fTo solve, we multiply each term in the first equation by 2, getting
e . 2x + 2y = 28,

and then we subtract this last equation, term by term, from the
Z:second. This gives '

, x = 8,
:_Since X+ Yy =14, we have y = 6, which comp” ution of
.our problem. It is easy to check that a 1 ( a width

 of 6 satisfy the conditions of the probleni.
- In a way, these two problems may seem similar, But in a very
- important sense, they are different. The flrst is what you might'
'lcall a common-sense problem. It 1s very easy to guess what| the
1answer ought to be, and it 1s also very easy to check that the
‘fnatural guess 1is actually the right answer. The second problem
Lﬁis.entirely another matter. To solve the second problem, we need
. to know something about mathematical methods.

There are cases of this kind in geometry. Consider the
- following statements: ‘

1. If a triangle has sides of length 3, % and 5, then it is

a right triangle, with a right angle opposite the longest side,
2, Let a triangle be given, with sides a, b and ¢. If

a2 + b2 = 02,

.then the triangle is a right triangle, with a right angle opposite
~the longest side.
The first of these facts was knoWh to the anclent Egyptlans.
They checked it by experiment. You can check it yourself, with
a ruler and compass, by drawing a 3-4-5 triangle, and then
measuring the angle opposite the longest side wlth a protractor,
You should bear in mind, of course, that this check is only
approximate, For example, if the angle were really 89° 591 59",
instead of 90o exactly, you would hardly expect to tell the
difference by drawlng your figure and then taking a reading with
your protractor, Nevertheless, the "Egyptian method" is a sound
common-sense method of verifying an experimental fact.

[sec. 1-1]
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The Egyptians were extremely skillful at making physical
" measurements. The edges of the base of the great pyramid ave about
" 756 feet long; and the lengths of these four edges agree, with an
error of only about two~thirds of an inch. Nobody seems to know,
today, how the bullders got such accuracy.

Statement 2 above was not known to the Egyptians; it was.
discovered later, by the Greeks. This second statement 1is very
different from the first. The most iImportant differen.. | Jhat
there are infinitely many possibilities for a, b and c¢. Vor
instance, you would have to construct triangles, and take readings
with a protractor, for all of the following cases, .

! a b c
1 1 Ve
2 1 V5
2 2 /5
3 1 /I0
3 2 /13

3 3 /I8

and so on, endlessly. It seems pretty hopeless to try to verify
our general statement by experiment, even approximately. Therefore,
a reasonable person would not be convinced that Statement 2 was
true in all cases until he had seen some logical reason why 1t
should be true in all cases,

In fact, this 1s why it was the Greeks, and not the Egyptians,
who discovered that our second statement is true. The Egyptians
had lots of common-sense knowledge of geometry. But the Greeks
found something better, and much more powerful: they discovered
the science of exact geometrical reasoning. By exact reasoning,
they learned a great deal that had not been known before thelr
time. The things that they learned were the first big step toward
modern mathematics, and hence, toward modern science in general.

14
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Problem Set 1-1

1. Try the following experiment. Take a piece of string, about
six feet long, and put it on the floor in the form of a loop
with the ends free:

.

Then pull the ends of the string apart, making the loop
gradually smaller, and stop when you think that the loop is
the size of your own waist. Then check the accuracy of your
guess by wrapping the string around your walst. After you
have checked, read the remarks at the end of this set of
problems.

2, In this pair of questions, the first can be answered by
"common sense.'" State only its answer. The second requires
some arithmetic or algebralc process for its solution. Show
your work for 1t. '

a, What 1s half of 27
b, What is half of 135,790°?

3, Answer as in Problem 2: .

a. One-=third of the distance between two cities is 10 miles.
What 1s the entire distance? _

b. The distance between two cities is 7 miles more than one-
third the distance between them. What 1s the distance
between them?

15
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Answer as in Problem 2:

a. If a 5-inch plece of wlre 18 cut lnto two parts so that
one part 1s U4 times as long as the other, what are the
lengths of the parts?

b. If a 5-inch plece of wire 1s cut into two parts suéh that
a square formed by bending one pilece will have four times
the area of a square formed by bendlng the other, what
are the lengths of the parts?

If the sldes of a trlangle are 5, 12, 13, 1s it a right

trilargle?

If two students o~ v independently measure fhe width .

of a classroom wlt,. .uierd, one measuring from left to right '

and the other from right to left, they are 1ikely to get
different answers. You may check thils with an experiment,

Vhich of the“following are plausible reasons..for thls?

a. The rulers have different lengths. ‘

b. One person may have lost count of the number of.feet 1in
the width, ' a

c. Things are longer (or shorter) from left to right than
right to left. '

d. The errors made in changlng the position of the ru:®
accumulate, and the sum of the small errors makes -
discernable errox.,

Show that n‘c ~-2n-+ 2 =n 1f n =1, I8 the equatlon tr.:

when n = 22 Is irszrue when n = 3% Is 1t always true?

bl
a, If 32, 52 and 7~ are divided by 4, what 1s the remai der

in each case?

b. How many odd lntegers would you have to square and dlvide
by 4 to guarantee that the remainder would always be the
same? '

16
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polnts

connected ] 2 3 L 5 6
Number of -

reglons formed 2 I 8 16 ?

Replace the question mark by the number you think belongs
there. Verify your answer by making a drawing In which six

_ points on a clrele are conneced in all possible ways.

10, The following optical 1lluslons show that you cannot always
trust appearances. "Things are seldom what they seem; skim
milk masquerades as cream.” From "H.M.S. Pinafore” by
Gilbert and Sullivan. ' ‘

a. Is CD a continuation of AB?

Test your answer with & ruiii;//’/,,z* _ —an
A B c D |

S
b, Are RS and ST equa: :in iength?
Compare the lengths wifh your
ruler or compasst.
R / T

¢c. Which figure has ‘:n& greater
area?

S
S

[Ber 1-1)
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d. Which is longer, AB or CD?
Check with your ruler,

#11. Use a ruler to check the accuracy of the measurements of the
figure. Show that if these measurements are correct the sum
of the areas of the four pieces of the rectangle 1s more than
the area of the rectangle., 0dd, isn't 1t? 3

4 ‘ 5

*12. A trip of 60 miles is to be done at an average speed of 60
m.p.h. The first 30 miles are done at 30 m.p.h. At what
rate must the remaining 30 miles be covered?

Remarks on Problem 1. Nearly everybody makes a loop about
twice as big as it should be. You can get mucl. better results
by the following method, The circumference of a circle is equal
to vbtimes the diameter, and T 1s'approximate1y equal to 3.
Therefore, the diameter is about one-third of the circumference.

[sec. 1-1]
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T-If your waist measure 1s, say, 21 inches, this means that the loop
. .on the floor should Be;abbut;7 inches across, This will look
" unbelievably small, but if you have thought the problem out
mathematically, you will have the courage of your convictions,
This 1s one of a large number of cases in which even a very
~crude mathematical approach to a problem is better than an outright .
leap in the dark.

'1-2. An Organized Logical Development of Geometry.

| If you stop to think, you will realize that by now you kriow a

- great many geometrical facts, For example, you know how to find

7 the area of a rectangle, and of & right triangle, and perhaps of
a triangle in generai, and you know the Pythagorean relation for
right triangles. Some of the things that you know are so simple
and obvious that it might never occur to you to even put them into
words, let alone to wonder whether or why they are true. The
following 1s a statement of this typer

Two strais £ lines cannot cross each other in more than one

point
‘ But some of them, like the Pythagorean: relation, are not
obvious at all, but rather surprising. We would like to organize
our knowledge of geometry, in an orZerly way, in such a way that
these more complicated statements can be derived from simple
statements. This suggests that we sught to be able to make a list
of the facts of geometry, with the simplest and easiest statements
coming first, and the hard ones coming later. We might try to
arrange the statements in such an order that each statement in
the list can be derived from the preceding statements by logical
‘reasoning, , -
Actually, we shall carry out a program that 1s very much like
this. We will state definitions, as clearly and exactly as we canj;
and we will estabiish the facts of geometry by glving logical proofs.
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The statements that we prove will be called theorems. (The

'  ‘proving of theorems is not a spectator-sport, any more than
“ﬂ”.arithmetic is: the best way to learn about it is by doing 1t.

- Therefore, in this course, you will have lots of opportunitiés to
prove lots of theorems for yourself )

While nearly all of the statements that we make about geom-
etry are going to be proved, there will be some exceptions. " The
simplest and most fundamental statements wlll be given without
proofs., These statements will be called postulates. and will oo
the foundation on which we will bulld. In the same way, we will
us= the simplest and most fundamental terms of geometry without
defining them; these wlll be called the undefined terms. The
definitions of the other terms that we use will be based on them.

At first glance, it might 'seem better to define every term :
that we use, and to prove every statement that we make. With a .
1ittle reflection, we can convince ourselves that this can't be

done.

Consider first the question of 'the postulates. Most of the
+ime, when we prove a theorem, we do so by showing that it follows
logically from theorems that have already been proved. But 1t
is clear that proofs of theorems cannmot always work this way. In -
particular, the first theorem that we prove cannot possibly be
<provéd this way, because in this case tkhere aren't any previously’
proved theorems. But we have to start somewhere. This means

that we have to accept some statements without proof. These un-
) broved statements are the postulates.

The purpose of stating postulates is to make 1t clear Just
where we are starting, and just what sort of mathematical objects B
we are studying. We.can then build up a solid, organized body of s
facts about these mathematical obJjects. -

Just as we start with some unproved statements, so we start
with some undefined terms. Most of the time, when we give a
definttion of a new geometric term, we define it by means of other
geometric terms which have already been defined. But it 1is clear

[sec. 1-2]
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;.that detf'initions cannot always work this way. In particular, the

- first definition that we state cannot possibly be stated in this
way, because in this case there aren't any previously defined
geometric terms. But we have to start somewhere. This meéns that

we introduce some geometric terms without defining them, ané - -en
use these basic terms in our first Aefinitions. We shall use v
simplest and most fundamental geometric terms without making any
uttempt to glve definitions for them. Three fundamental undefined
terms will be point, line and plane.

Postulates, of course, are not made up at random. (If they

wer=, geometry would be of no interest ¢r importance., Postulates

. desecribe funda 3ntal properties of space. 1In the same way, the

- undefined terms point, line and plane are suggested by physical
orjects. To get a reasonably good picture of a point, you méke a
‘d—= on paper with a pencil. To get a better approximation of the

- mzthematical idea of a point, you should first sharpen your pencil.

Ti== picture is still approximate, of course: a dot on paper must

~ cover some area, or you couldn't see 1t at all. But if you think
oz dots made by sharper and sharper pencils, you will have a good
1dea of what we are driving at when we use the undefined term,
point.

When we use the term line, we have 1n mind the idea of a
straight line. A straight line, however, 1s supposed to extend
infinitely far in both directions. Usually, we shall indicate
this in pictures by arrowheads at the ends of the portion of the
line that we draw, like this: |

~ —

‘We shall have another term, segment, for a figure that looks like
this:

A thin, tightly stretched string is a good approximation of a
segment. An even thinner and more tightly stretched string is a

~petter approximation. And so on. ~

[sec. 1-2]

21




11

Think of a perfectly flat surface, extending in  ltely far
in every direction, and y " ood idea of a pl.

You should remember thu. e ~7 the above staiueits are
definitions. They are merely explanctions of the ideas that
people had in the back of their minds when they wrote the postu-
lates. When we are writing proofs the information that we claim
to have about points, lines and planes will be the information
given by the postulates.

We have said that theorems are going to be proved by 1ogicai
reasoning. Ve have not explalned what logical reasoning is, and
in fact, we don't know how to explain this in advance. As the
course proceeds, you will get a better and better idea of what
logical reasoning is, by seeing it used, and best of all by using
it yourself. This is the way that all mathematicians have learned
to tell what is a proof and what isn't.

At the beginning of the next chapter, we shall give a short
account of the idea of a set, and a short review of the funda-
mentals of algebra for real numbers. Sets and algebra will be used,
throughout this course, and our study of geometry will largely
be based on them. We shall think of them, however, as things that
we are workihg with. They will not be an actual part of our
system of postulates and theorems. They are supposed to he avail-
able at the start; some of our postulates will involve real
numbers; and elementary algebra will be used in proofs. In fact,
geometry and algebra are very closely connected, and both of them
are easier to learn 1f the connections between them are brought
out as soon aé possible.

22
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Problem Set 1-2

1. A student wanting to find the meaning of the word "dimension"
went to a dictionary. This diétionary did not give definltions
as we have them in geometry but did glve syncenyms of words.

He made the following chart.

size

extent - <::: or
length - longest
dimension

dimension
size - <:::or
measurement

dimension - measurement -{ or

a. Point out from the above chart a circular list of three
terms each of which has 1ts following term as a synonym.
(In a circular 1ist, the first term is assumed to follow
the last.)
b. Make a circular list which contains four such terms.
*#2., Make a chart similar to that in Problem 1, starting with some
word in your dictionary.

3. John convinced his mother that he dld not track mud onto the
l1iving room rug by point%ng out that it did not start raining
until & oteclock and that he had been in his room studying
since k:30. He mentioned that a person cannot do something
if he is not there.- The thing he was proving (that he did not

“track mud) might be regarded as a theorem and the statement
about a person not being able to do something if he 1s not
there might be regarded as a postulaté. Make another example
of such a convinecing argument and point out what corresponds
to the theorem, what t» the proof, and what to postulates.
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Janie:

Mother:

Janie:

Mothexr:

Janie:

Mother:
Janie:::
"Mother:

Janie:

Consider the above discussion. What weré basic'undefinéd termé :
as far as Janie was concerned? ' o

s

The Stuarts have three children. Joe is a senior in high ,
school. Karen is a seventh grader, and Beth is four. At the -
dinner table: '

Joe:

Karen:

Joe:

Beth:
Joe:

"In the above discussion what basic, undefined terms did Joe

-13 :
What's an architect?
An architect? An architect is a man who designs
buildings. g
that's "designs"o
Well--plans.
Like we plan a picnic?
Yes, quite like that.
What are bulildings?

Oh, Janie, you know -- houses, churches, schools.
Yes, I see,

We learned a fumy rew word 1n geometry class
today -~ parallelepilped.

What in the world i1s 1t°? S
Well, it's a solid. You know what I mean by a solid ';
figure -- it takes up some spéce. And it's boundeq‘-f#
by planes. You know what a plane is, donh't you?
Like a windowplane?

The word is a windowpane, but that!'s the idea. A 5
parallelepiped is a solid bounded by barallelograms; ;}
A candy box 1s one, but 1t's a special one because ,:
the six faces are all rectangles. If you had avcénd&f$ﬁ
box and could shove it at one corner you'd get a = =
parallelepiped. Got the idea?

use in his description?
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*7.

h

. Vhat do you think is wrong with the followlng faulty

definitions?

a.
b-

e.

A square 1s something that 1s not round.

A right triangle is a triangle each of whose angles has

a measure of 90°,

An equilateral triangle 1s when a triangle has three sides
the same length. '

The perimeter of a rectangle 1is where you find the sum of
the lengths of the sides of the rectangle.

The circumference of a circle is found by multiplying the
diameter by w,

Indicate whether the following are true or false:

a'

It 1s possible to define each geometric term by using
simpler geometric terms. ‘ -

Exact geometric reasoning leads us to geometric truths
that cannot be deduced from measurement. i
Theorems are proved only on the basis of definitions and
undefined terms.

If you are willing to write in all the steps, each
theorem can be deduced from postulates without méking
recourse to previous theorems.
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Chapter 2

SETS, REAL NUMBERS AND LINES

2-1l. Sets _ -
| You may not have heard the word set used in mathematics be-
fore, but the idea 13 a very familiar one. VYour family is a set-.
of people, consisting of you, your parents, and your'brdthers'and:
 sisters (if any). These people are the members of the set. " Your:
‘ geometry class is a set of students; its members are you and your:
clissmates. A school sthletic team is a set of students. A |

‘member of a set is said to belong to the set. For example,*yOuf
belong to your family and to your geometry elass, and'seuen;f%The:
members of a set are often called its elements; the two;terms;‘ ‘
members and elements, mean exactly the same thing. Welsay‘thatf
a set contains each of its elements. For example, both your'
family and your geometry class contain you. If one set contains
every element of another set, then we say that the first set ‘
contains the second, and we say that the second set 1s a subset
of the first. For example, the student body of your schoolvcon-l
tains your geometry class, and your geometry class is a subset _
of the student body. We say that the subset. lies in the set that
contains it. ©For example, the set of all violinists lies in the
set of all musicians. '
. - Throughout this book, lines and planes will be regarded as . »
- gets of points., In fact, all the geometric figures that we talkir
about are sets of points. (You may regard this, if you like, as
a postulate.) _ v ,
. " When we say that two sets are equal, ,or when we write an .
‘equality A = B between two sets A and B, we mean merely that the
two sets have exactly the same elements. For example, 1et A be
the set of all whole numbers between-§ and 55, and let B be the

set of all whole numbers between-g-and 53. Then A = B, because
each of the sets A and B has precisely the elements 1, 2, 3, 4.
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- and 5. In fact, 1t very often happens that the same set can be
fﬁdescribed in two different ways; and if the descriptions look
ﬁ*different, this doesn't necessarily mean that the sets are
' different.
| Two sets intersect if there are one or more elements that
"belong to both of them. For example, your family and your
jf\ge_ometr'y class must intersect, because you yoursélf belong to
' both of them. But two different classes meeting at the same hour
. do not intersect. The intersection of two sets 1s the set of all
objects that belong to both of them. For example, the inter-
ffséétion of the set of all men and the set of all musicians is the
"gset of all men musicians. l ' |
Passing to mathematical topics, we see that the get of all

6dd numbers 1is the set whose members are :
: 1, 3, 5, 7, 9, 11, 13, 15,

- and so on. The set of all multiples of 3 4s the set whose

- members are.

3’ 6) 9’ 12’ 15)
. and so on., The intersection Qf these two sets is
3, 9, 15, 21,
and so on; its members are the odd multiples of 3.
In the figure below, each of the two rectangles is a set
of points, and their intersection contalns exactly two points.

.-
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Similarly, each of the corresponding rectangular regions is a set
of points, and their intersection is the small rectangular region
in the middle of the figure. 1In the next figure, each of the two
lines 1s a set of points, and thelr intersection consists of a
single point: //

Below, we see two sets of points, each of which is a flat rec-
tangular surface. The intersection of these two sets of points
i1s a part of a straight line.

The union of the two sets 1s the set of all obJects that
belong to one or both of them. For example, the union of the set
of all men and the set of all women 1s the set of all édults.

The intersection, or the union, of three or more sets 1s defined

28
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similarly. Thus a trlangle 1ls the unlon of three sets, each of
whilch 1s a subset of a line.

3

The flgure below l1ls the unlon of five sets, each of which 1s a
subset of a lilne.

B

In some situatlons, 1t 1s convenilent to use the i1dea of the
empty set. The empty set 1s the set that has no members at all.
This 1dea may seem a little peculilar at first, but it is really
very much like the ldea of the number 0. For example, the
followlng three statements all say the same thing:

(1) There are no married bachelors in the world.

(2) The number of marrled bachelors in the world is zero.

(3) The set of all marrled bachelors Iln the world 1s the

empty set.

Once we have Introduced the empty set, then we can speak of
the intersection of any two sets, remembering that the lnter-
sectlon may turn out to be the empty set.

For example, the intersection of the set of all odd numbers
;ﬁwgnd the set of all even numbers 1ls the empty set.

A word of warning: If you compare the deflnltlions of the
terms intersect and intersection, you wlll see that these two
terms are not related in qulte the simple way that you mlght ex-

pect. When we speak of the intersectlon of two sets, we allow

[sec. 2-1]
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the possibility that e _intersection may be empty. But if we say .
.that the two sets intersest, thils always means that they have an’
belément in common, |

Another word of warming: Statements (2) =nd (3% above mmean
the same thing. But tals ¢nes not mefin T+ 2. set tiat contains

only = number O is ===%,. For examrig, =r:r 2quatiecn x + 3 = 3
has O zs 1ts only roc: == so the set of ~s: ¥z 18 not the emDty
get; irz set of roots == . (actly one elemez:, namely, the

number- 0, On the cite: + d, the set of all roots of the equ*
tion x + 3 = x + 4 ree s i3 the empty set, because the equat--- .
X + 3 =X+ 4 has no 100t : at all.

_ ~roblem Set 2-1

1. Let A be the set (3, 5, 6, 9, 11, 12) —=hat is, the set w. se
members are 3, 5, € 9, 11, 12) and E be the set '
(4, 5, 7, 9, 10, 11].
What 1s the intersection of sets A and B? What 1s the union
of A and B? ' o

2. Consider the following sets:

‘ is the set of all students in your school.

S, 1s the set of all boys in your student body.

is the set of all girls in your student body.

34 i1s the set of all members of the faculty of your school,

S_. 1s the set whose only member is yourself, a student in
your school,

a, VWhich palrs of sets intersect?

b. Which set 1is the union of 82 and 83?

¢c. Which set 1s the union of S1 and 85
d. Describe the union of S1 and Su.

e, Which of the sets are sub-sets of Sl?

?
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In the following fig;.:r2i:, cwusider the line and the circle as

two sets

of points. -e2c* cage, what 1s their irnte~¥iection?

Case I. “sE I Case IZI.
Consider a set of thr: -vms, A, B, C}. Any set of boys

sélected

from these thr .: +111 be called a committee.

a. How many different wo-mgmper committees can be formed

from the three boy *

b. Show
What
Conslider

that any two [ tiz committees in (a) intersect.

does the worcé 'irtsersect" mean?
the set of al. 'ositive even integers and the set

of all positive odd integiers. Describe the set which 1s the

union of
Describe

these two sets.
the intersectim= oI the tiwo sets given in Problem 5.

In the figure, what is the intersection of the triangle ABC
and the segment BC? Wha: 1s their unlon?

Let A be
equation
Let B be
equation
Find the

ol
=

A B

the set of pairs of numbers (m,n) which satisfy the.---—

bm+ n = 9,

the set of pairs of numbers (m,n) which satisfy the
2m + n = 5,

intersection of %Y= sets A and B.

[SeC... 2—1]
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9. Let A be the set of palrs (x,y) for which x + y

= 7.

Let B be the =et of pairs (x,y) for which x - y = 1.
What 1s the imtersection of A and B?

10. Let A be the set of pairs (x,y) for which x + y = 3.

Let B be the set of pairs (x,y) for which 2x + 2y = 7.
Vhat 1s the intersection of A and B?
1l. Consider the =zet of all positive integers divisible by =,
"Consider the =et of all positive integers divisible by 3.
a. Describe the intersection of these two sets. Give its
first four members.
b. Write an algebralc expression for the intersection.
¢. Describe the union of the two sets. Give its first
eight members.
12, a. How many straight lines can be drawn through 2 points=v
b. If three points do not lie in a straight line, how mamy
straight lines can be drawn through pairs of the points?
¢. If four points are given and no set of three of them lie
in a straight line, how many straight lines can be drawn
contalning sets of two of the points? Answer the same
question if five points are given. o
*d. Answer Question ¢ if n points are given.

2-2. The Real Numbers
The first numbers that you 1eafned about were the "counting
numbers" or "natural numbers",
1, 2, 3, 4, 5, ...
and so on. (You knew about these before you learned to read or
write. And ancient man learned to count long before the inven-
tion of writing.) The: counting numbers never end, because start-—

ing with any one of them, we can always add 1, and get another
one. We may think of the counting numbers as arranged on a line,,.

[see. 2-2]
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starting at <ome point and continuing the =igat, 1like this:

~ +
1

- 3 4 5.

To the lef- »>f 1, we put in the nr.mber 0, like this:

- And the next sten is to put in the negative wrole numbers, like
this:

1 P

]
4 5-

i
U
&
-4
N 1
|
o+
N
w-—

The numbers that we have so far are called the integers or
whole numbers (positive, negative and zero). The counting
numbers: are the positive integers, and are often referred to by

this name.
Of course, ‘there are Lots of points of tke line that have no
numbers attachez to them so far. Our next st=p 1s to put in the

fractions ,-%, 2 - 1 -§, --g and so on. The new numbers
that we want to put in include all numbers that can be expressed
as the ratilo g of any two integers (with q not equal to zero).

We cam indicate a few of these, &s samples:

. &]©

R
+ols

b o
N =4
W
>

The numbers that we have so far are called the rational
numbers., (This term is not supnnsed to mean that they are in a
better state of mental health timmn other and less fortunate
numbers. It mecely refers to == fazi that they are ratios of

33
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The +~atiorl numsers form a v~y c:.rge set. Between any two
of them there . : a chird one; and there dre infinitely many of
them between ar: two whole numbers. It =s a fact, however, that

the ratisnal numbers still do not fill Li" the line completely.
Tor examule, /T is nzs rational; 1t zaryiot be expressed as the
ratio of any twe int==zers yet it does rorrespond to a point on the
line. (Zor a prooil. :ee Appendix ITI.  The same 1s true for /3
and+/5, and alst Uzr such "peculiar' ~mmbers as 7. Such none
ratlonal numberc =z - 2alled irrationail. If we insert all these
extra numb=rs, =1 such a way that everry point of the line has a
number attached “x =%, then we have tik= real numbers. We indicate
some samples, lige thig:

DS S SR

-3 =2 —~1 0 1

v I
T— T

{ }
2 3 4

=i

You should check that these numbgns appear on the scale in
approximately the positions where they velong. ( /2 is
approximately 1.41. How would you findw/g-?) ,

The real numbers will form part of the foundation of almost
all that we are going to do in zeometrr. And it will be important
throughout for us to think of the real numbers as being arranged
on a line.

A number : 18 less them= a number y if x lies to the left .
of y.

] 1
1 |

f _ +—1
-2 - o x 2 ¥y 3 4

We abbreviate iXiz by wrltlmz x ¢ y. We notice that every negative

number 1igx tr =he Jwe=ft of every positive number, Therefore,»every

negative numkser 2= Tiess then ewery. posfitive number. For example,
~1,,000,007 < 1.

even “toough the: xomber -1,000, 000 may Im a way look "bigger".

[sec. 2-2]
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Zxpressions of the form x £ ¥ are =alled inequalities. Any
4nequellity can be written in reverse. For example,
' 1> -1,000,000; o

- and in general, ¥y > X means that x ¢ ¥-

The expresslon

. x S 3‘

means that x is less than or equal to y. TFor example, 3 £ 5 ber~

cause 3 ¢ 5, and 5 £ 5 becauge 5= 5.

In your study of algebré, you have ¥y now learned qulte a
lot about how th= real numbers behave urder addition and multi-
plication, All <he algebra that you knzw can be derived froma
few trivial-looking statements. Thesefsxatements are the postni~
lates for additizm and multiplication af” real numbers. You will

. f4nd them listed in Appendix IT. You mezy not have studled algebra

on the basis of the postulates; and we @re not golmg to start such
a proceeding now. In this course, we @xe simply Zing to use the. -

‘methods. of elementary algebra,'without'nomment.

We.:should be a little more carefu-. however, abous imsqual-

" ities and square roots. The reiation ¢ defines an order for, the

real numbers. The fundamental roperties of thils order refatlon
are the followlng:

0-1. (Uniquemess of Order! For every x and y, one ang’ only
one of the following conditions wids: X <Y, X =7, X > T

0-2. (Transitivity of Order~ If x < ¥, and ¥ «£ z, then
X'¢ g

0-3. (Addition. for Tnesuaiities) If w <y, thex
X + z ¢y + z for every z. ' )

0-4, (Multipiicaiio: fur Iraqualizies) If x ¢y and = >0,
+then Xz ¢ yz. :

~ The statements 0-2. ens 0-3. have an important consequ=nce,

which is‘worthtmentﬂbning szparately:

0-5. If a ¢ band x < y, then a+ x < b+ ¥.~
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This 1is true for the following reason: By 0-Z, we know that
a+x<<b+x
and also that
b+x<b+ y.
(That is, a= inequality is preserves if we add tne same number on
each side.) By 0-2, these last two inequalities =t together to
give us
a+x<¢<b~-y,
which 1s what we wanted.

Finally, we are going to need the following property of the
real numbers: :

R-1. (Existence of Square Fozts.) Every positive number has
exactly one positive square root.

There 1s one rather tricky point in connectior with square
roots. When we say, in words, that x is a square rzot of g, thiz
means merely that x2 = a., For example, 3 is a sguars root of 9,
and -3 1s a square root of 9. But whan we write, im symbols,
that x =42, we mean that x is the positive scuare root of a.
Thus, the following statements are true cx false, &= Indirs=ted:

True: -5 1s a square ot = O,
False: -3 =.j§;_

True: +/9 = 3.

False: /9 = + 3.

The reason for this wsage iz simnls, on= ymu <hink of 4.
If /a were allowed to denote elther tzs posit—ve ~octi or the meg-
ative root, then we would have no way =t all to wri== the pogzie-
tive square root of 7. (Putting a plus sign in froms oi' the
expression /7 gets us nowh=re, because 2 plus sign never changes
the walue of an expression. If\fT_were negative, then + /7
would also be negative).

3% P
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Problem Set 2-2
" 1. 1Indicste whether each of the following 1s true or false.
a. The real number scale has no end points.
b. There exists a point on the real number scale which
represents /2 exactly. : 4
¢. The point corresponding to Vi on the real number scale

lies between the points correspondlng to g and'%.

d. Negative numbers are real numbers.
o, Restate the following in words:

a. AB ¢ CD. e. Oc¢lca.
b. x> V. f. 5> % > =5.
c. XY > YZ. g. x>0,

d. ng 3.

. 3. Write as an lnequality:

is a positive.number.l

is a negative number,

1s a number which 1s not positive.

-has a value between 2 and 3.

k
r
t
d. s is a nbn—negative number,
g
w has a value between 2 and 3 inclusive.
W

£ has a value between a and b,
4. Tor which of the following is it true that v&§—= x?
a. X =5, e. X = =1,
b. x = =5, f. x> 0.
c. x=0. - g. x ¢ 0.
d. x =T. h. 2> O.

How would the points corresponding to the following sets of
numbers be arranged from left to right on a number scale in
which the positive numbers are to the right of 0?

'

a. 3.1, 3.05, 3.009. c. 2, 1'—;53 , 18 .
b, -2.5, =3, =1.5. a. 2, 1-% , -1 8.
[sec. 2-2]
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'*6. If r and s are real numbers, other than zero, and r > s,
indicate whether the following are always true (T), sometimes
true (S), or never true (N).

a. s ¢ r.

b. r-s8 > 0.

Ce. T =2<8 - 2,
r

do '§>lo

e. r2 > se.

*7. Follow the instructions of Problem 6 for the following:

1 1

a. -f>-s-. -
1 1

b. -é-?<-§r

c. |Ir| > |s|

d r3 > s3

2-3. The Absolute Value

The idea of the absolute value of a number is easily under-.
stood from a few examples:

(1) The absolute value of 5 is 5.

(2) The absolute value of -5 is 5.

(3) The absolute value of 7 is 7.

(%) The absolute value of -7 is 7, and so on,
Graphically speaking, the -absolute value of x is simply the
distance between O and x on the number scale, regardless of
whether x lies to the left or to the right of 0., The absolute
value of x 1s written as |x|.

J:—th—ﬂ o | X | ]
1 T i +

X o ' : o) X
x<o X>0
The two possibilities for x are indicated in the figures. 1In

~each of the two casés, |x] 1is the distance between 0 and x.
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If a particular number is written down arithmetically, it 1s
easy to see how we should write its absolute value. The reason
is that in arithmetic, the positive numbers are written as i, 2,
3, 4, and so on. A way to write negative numbers is to put minus
signs in front of, the positive numbers. This gives -1, -2, -3,
-4, and so on. Therefore, in arithmetic, 1f we want to write the
absolute value of a negative number, we merely omit the minus
sign, thus, |-1] = |-2] = 2, and so on.

We would like to give an algebraic definition for |x|, and we
would like the definition to apply both when x is positive and
when x 1s negative. In algebra, of course, the letter X can
represent a negative number. In working algebra problems, you
have probably written x = -2 nearly as often as you have written
x = 2. If x is negative, then we can't write the corresponding
positive number by omitting the minus sign, because there 1isn't
any minus sign to omit. There is a simple device, however, that
gets around our difficulty: if x is negative, then the correspond-

ing positive number is -x. Here are some examples: |

x = -1, -x = -(-1) = 1; that 1s, 1f x = -1, then -x = 1.
x = -2, -x = -(-2) = 2; that 1s, if x = -2, then -x = 2.

X = -5, -x = -(-5) = 5; that is, if x = -5, then -x = 5.

In each of these cases, x 1s negative and -x 1s the corre-
sponding positive number. And in fact, this 1s what always
happens. Since we knew all along that |x| = x when x 18 positive
or zero, it follows that the absolute value is described by the
following two statements: '

(1) If x is positive or zero, then le = X.

‘2) If x is negative, then |x| = -x.

If this still looks doubtful to you, try substituting various
numbers for x. No matter what number X you pick, one of the con-

ditions above will apply, and will give you the right answer for
the abgolute value.

39
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Problem 3et 2-~3

1. 1Indicate which of the fallowing are always true:
a. [|-3] = 3.
b 13] = -3.
c. |2 -7 =|7-~2l.
d. |0 -5]=15- 7.
e In] = n.
*2. Indicate which of the follmuirg are always true:
a. |—D| = N,
b. |n?| = n°.
c. |y - x|% =32~ 2my 4 %2,
d. |la~-2] = |2 - al.
e. |d| +1=]d+ 1.
3. Complete these statemerts:
a. If O¢ r, then || = .
b. If O > r, then {r = .
c. If 0=r, ther {r| =
4, The following threz =zzmnles give a geometric interpretation
to algebraic statems==is. '
X < 2.
- I
All points of the scale to the left of 21
- I 7 T _ T T —
-2 -1 @) 1 2
Ix] < 2.
i
The set of points between 2 and -2. l
. — T T T T T
-3 -2 - o) 1 2 3
Ix]. = 2.
. T WO “p o1 n t S
~T r"//s T T T ™
-3 ) - 0 1 2 3
[sec. 2-3]
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;»Continue as above for the followlng problems:

a, x.¢0,
b, X = 1,
c. X > 1,
d, x £ 1.
5. a.

e.
f.

g.
h,

Izl = 1.
x| < 1.
x| > 1.
x| > o.

How would the set of polnts represented by x > 0

differ from the set represented by x > 0?
b. How would the set of points represented by 0 ¢ x ' 1
differ from the set represented by O ¢ x < 1°?

2-h,

Measurement of Distance

The first step in measuring the distance between two points
P and Q 1s to lay down a ruler between them, lilke this?

P

Q

RULER

Of course we want to use a stralght ruler, since we cannot expect
to get conslstent results i1f our rulers are curved or notched.

4 straight ruler has the property that however 1t 1s placed
between P and Q the line drawn along i1ts edge 1s always the

same,
two glven points,
first geometrlc postulate:

In other words, this line is completely determined by the
We express thils basic property of lines as our

Postulate 1.

Given any two dlfferent points,
there 1s exactly one line whilch contains both of them.

We shall often refer to this postulate, brlefly, by saylng

that every two points determine a llne,

abbreviated way of statlng Postulate 1,
To designate the llne determined by two points P and Q we use

the notation'$§. (The double arrow willl recall our plcture of

the 1ine.) Of course we can always abbreviate by introducing

[sec. 2-4]
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& new letter and calling the 1line L, or W, or anything else.
Now-let us consider the marks on the ruler and the actual
"dilstance between P and Q. The easlest way to measure the

distance 1s to place the ruler 1llke this:
P Q

T

1 2 3 4 5 6 7 8 9 10 1N 1©@

- This glves 7". Of course, there 1s no need to put one end of the

ruler at P, We mlght put 1t 1like this:
o P Q

| R
7

1 2 3 4 5 6 8 o 10 11 12

In thls case, the dlstance between P and Q, measured in inches,.
1s 9 - 2 = 7, as before, .
On many rulers that are sold now, one edge 1s lald off in
inches, and the other edge in centimeters. Using the centimeter
scale, we can measure the'distance between P and Q llke this:

Q
[ T 1T T 1T T T T 1T T T1

|
8 10 12 14 16 18 20 22 24 26 28 30
cl 1l Ol 6 8 L 9 s ¢ e |

e
I I A N (N (N N N I

This glves the distance as approximately 18 cm., where cm,
stands for centimeters.

S A foot 1s, of course, 12", and a yard 1s 36". A meter is
a hundred centlmeters; m. stands for meters. A millimeter 1is
a tenth of a centimeter (or'IU%UOf a meter); mm. stands for
millimeters. We can therefore measure the distance between

N —o
H
(o))
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 P'and Q in at least this many ways: 18 cem,, 180 mm., ,18 m.,

T in., T% ft., 3% yds.

.That 1s, the number we get, as a measure of the distance, depends
‘on the unit of measure. We can use any unit we like, as long as

iWe use 1t consistently, and as long as we say what unit we are
-using.

Problem Set 2-4
1. What common fractions (or in%egers) are needed to
complete the following table?

a. 2 1In, = ft., = yd.
b. in. = 4% ft. = yd.
c. in., = ft, =-% yd.

2. What numbers are needed to complete the following table?
a. 500 mm. = cm. = __m, '
b. mm., = 32.5 cm, = m.
c. mm, = cm, = 7.32 m,

3. a. Suppose you decide to use the width of an 8-% in. by 11 in.
sheet of paper as a unit of length. What is the length
and the width of the sheet in terms of -this unit?

b, Repeat the problem with the length of the sheet as your
new unit. RIS _

4, If the lengths of the sides of a triangle are 3 ft., 4 ft.,
and 5 ft., it is a right triangle because 32 4 42 = 52.
Verify that the Pythagorean relationship still holds 1if the
lengths above are expressed in inches.

5. If the length of each side of a square 1s 4 ft., 1ts perimeter
is 16 ft. and its area is 16 sq. ft. Observe that the
numerical value of the perimeter is equal to the numerical
value of the area.

a. Show that the numerical values of the perimeter and .
area will no longer be equal to each other if the length
of the side 1s expressed in inches.

5 [sec. 2-4]
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b. In yards. :

' #6. (Generalize Problem 4. Given that the numbers a, band c are
the number of units in the sides of a triangle. if gome
particular unit of length is used and that a2 + b2 = o2, - |
Show that the Pythagorean relationship will still hold if the:
unit of length is multiplied by n. (Hint: The lengths of
the sides will become'%, % and % . If a, b and c seem too
abstract use 3, 4 and 5 at first.)

*7, Generalize Problem 5. Show that if the numerical values of
the area and perimeter of a square are equal for'some
particular unit of measure, then they will not be equal for
any other unit. (Hint: Start by letting the number s be
the length of the side of the square for some unit and

equating the area and perimeter formulas.)

2-5. A Choice of a Unit of Distance

We have noticed that the choice of a unit of distance 1is
merely a matter of convenience. Logically speaking, one unit
works as well as another, for measuring distances. Let us there~
fore choose a unit, and agree to talk in terms of this unit in
all of our theorems. (It will do no harm to think of our unit as
being anything we like. If you happen to like inches, feet,
yards, -centimeters, cubits, or furlongs, you are free to _consider
that these are the units that we are using. All of our theorems
will hold true for any unit.) '

Thus, to every pair of points, P, Q there will correspond a
number which is the measure of the distance between P and Q in
terms of our unit, Such numbers will be used extensively in our
work, and it would be very inconvenient to have to be continually’
repeating the long phrase "measure of the distance between P and
Q in terms of our unit". We shall therefore shorten this phrase
to "distance between P and Q", trusting that you will be able
to £ill in the remaining words if it should ever be necessary.
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: We can now describe this situation in the following precise
- form:

Postulate 2. (The Distance Postulate.) To every
pair of different points there corresponds a unique positive
number. ’

Definition. The distance between two points is the positive
number given by the Distance Postulate. If the poihts are P and
~ Q, then the distance 1s denoted by PQ.
It will sometimes be convenient to allow the possibility
P =Q, that 1s, P and Q are the same point; in this case, of
course, the distance is equal to zero. Notice that distance 1s-
defined simply for a pair of points, and does not depend on the
order in which the points are mentioned. Therefore PQ is always
the same as QP. ‘ .
Some of the problems you will be asked to do will involve
various units of distance, such as feet, miles, metex 2te. As
" noted above, our theorems will be appllcable to any of these units,
provided you consistently use Jjust one unit throuéhout.ggx one -

theorem. You can use inches in one theorem and feet in another,
if you wish, but not both in the same theorem.

45
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'2-6. An Infinite Ruler .
“‘, At the beginning of this chapter we laid off a number-scale
.. on a line, like this:

) y F
] ] T
-3 -2 =1 0 1 2 3

We could, of course, have compressed the scale, like this:

1 | 1 1 l !
I T T ] T T
-4 =3 -2 -1 0 1 2 3 4
or stretched 1it, like this:

3 1
I Bl

-2 -1

o+
N -

But let us agree, from now on, that every number-scale that we
lay off on a line 1s to be chosen in such a way that the point
labeled x lies at a distance |x| from the point labeled 0. For
example, consider the ;points P, Q, R, S, and T, labeled with the
numbers 0, 2, -2, -3, @and 4, as in the figure below:

S R P Q T
] § - | | H ) | | ——
I I =T ] ] I J I

-3 -2 =1 o 1 2 3 4

Then PQ = 2, PR=2, PS = 3 and PT = 4,

If we examine various pairs of points on the number-scale,
it seems reasonable to find the distance between two points by
taking the difference of the corresponding numbers. For

46
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;exemple, ,
o PQ =2, and 2 = 2 = 0; -

QT =2, and 2 = 4 - 2;

sQ =5 and5 =2 - (~3);

: RT = 6, and 6 = 4 - (-2).

Notice, however, that if we look at the pairs of polnts An reverse
order, and perform the subtractions in reverse order, we will get
the wrong answer every time: 1instead of getting the distance

(which is always positive), we will get the corresponding negative_tf ;

number. This difficulty, however, 1is easy to get around. All we
need to do is to take the absolute value of the difference of the
numbers. If we do this, then all of our positive right answers

'will still be right, and all of our negative wrong answers will
»become right.

Thus we see that the distance: between tuo points is the
absolute valus: of the difference ©f the corresponding numbers.

Surely &Il thls seems reasonzble, But surely 'we hawve not
‘proved 1t on whe basis of the only postulatesthat we have written
down so far. (And, in fact, it cannot be proved on the basis of
the Distance Fostulate.) We therefore sum up the “bove discussion
'in the form of a new postulate, like this:

Postulate 3. (The Ruler Postulate.) The points of
'a line can be placed in correspondence with the real
numbers in such a way that

(1) To every point of the line there corresponds
exactly one real number,

(2) To every real number there corresponds exactly
one point of the line, and

(3) The distance between two points is the abso-
lute value of the‘difference of the corresponding
numbers.

47
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'We call thls the Ruler Postulate.because in effect 1t fur-
nishes us with an infinite ruler, with a number-scale on 1t, wlth
which we can measure distances on any line.
Definltions. A correspondence of the sort descrilbed 1n
Postulate 3 1s called a coordinate system for the 1line. The

number corrésponding to a given polnt 1s called the coordinate
of the point.

Problem Set 2-6

1. Slimplify:

a. |3 - 67, d. |-4 - (~2)].
b. |6 - 3}. e. |a ~ (-a)].
c. |-2 -1]. . lal - |-al.

2. Uslng the kind of coordlnate system discussed in the text,
find the :distance between poizt pairs wlth the following

coordlnatss:

a. 0 and. l2, f. =5.1 and 5.1.

b. 12 and C. g.. v @ and / 3.

c. O and 712. h, X, and Xge

d. =12 and 0. 1. 2a and -2a.

e. —3~% and -5. }J. r -« S and r + S.

3.

Pete -5 -4 Q W =
F——— 1 =

Jim 90 1 2 3 45 6 78 n r

The lower numberlng on thls scale was put there by Jim.

Pete began the upper numbering but quit.

a. Copy the scale and wrlte in the rest of Pete's numbering.

b, Show how to find the distance from P to Q, first by
using Jim's scale and then by using Pete's scale.

¢c. Do the same for the dilstancé from W to P,

4. Suppose 1n measuring the distance between two points P and Q
you intended to place the zero of the number-scale at P and
read a posltive value at Q. However, you happen to place the
number-scale so that P 1s at % and Q 1s farther to the right.

48
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'c. Show that the formula ’ i

.. Show that this correspondence i1s also a coordinate system fof;

- How 1s 1t still possible to measure the distance PQ?
 Consider a ccordinate system of a line. Suppose 2 is added

to the coordinate of each point and this new sum is assigned .
to the point. | v
a. Will each point then worrespond to a number and each .
- number to a point? - S
b, If two points of the line had coordinates P and<; in. the
coordinate system given, what numbers are assigned to them
in the new numbering° ' ‘

| (Number assigned to one point) (Vumber assigned to
other- point) I gives the distance between the two points

d. Does the new correspondence - ‘between points and’ numbers ;
satisfy each of the three conditions of Postulate 39 |

(If 1t does it may be -called a coordinate system ) N
Suppose a coordinate system is set up on a line so that each :~95
point P corresponds to a real number n. If we replace each ff
n by =-n, then the point P will correspond to a number L

the 1ine. (HINT: It is apparent that each point will: have a :
number associated with it and each number: a point ' You must
show in addition that the absolute value of -the difference
of thevnumbers assigned to the two points will remain un-
changed when the numbering is changed. ) ’

In a certain county the towns of Alpha, Beta and Gamma -are-
collinear (on a line) but not necessarily in that order. It

1s 16 miles from Alpha to Beta and 22 miles from Beta to

Gamma. .
a. Is it possible to tell which town 1is between the other
" two? Which .town is not between the other two? '
b. There might be two different values for the.distance
from Alpha to Gamma, Use a sketch to determine what
these are.

4
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c. If you are glven the additional information that the dis-
tance from Elpha to Gamma 1s 9 miles, then whlch towm.-1s
between the other two? ‘ o ,

d. If the distance between Alpha and Beta were T miles, the
dlstance from Alpha to Gamma s miles, and the distarme:
from Beta to Gamma r + 8 mlles, which clty would be
between the other two?

8. A, B, C are three colllnear points, A and B are 10" apars,
and C 1s 15" from B, Is there just one way to arrange
these pcints? Explain. ’

9. Three different’ coordinate systems are assigned to the zame
line. Three fixed pointsA, B, C of the line are assigned
values as follows: o

| With the first system the coordinate of A 1s -6 and
that of B 1s -2. ‘
With the second the coordinates of A and C are U4
and -3 respectively.
Wilth the thlrd the respectlve coordinates of C and B
are 7 and U,
What polnt 1s between the other two?
Evaluate AB + BC + AC.

2-7. The Ruler Placement Pogstulate - Betweenness-— Segments
And Rays . : .
The Ruler Postulate (Postulate 3) tells us that on any line,
we can.set up a coordinate system by laying off a number-scale.
This can be done 1n lots of different ways. For example, given.
a polnt P of the llne, we can start by making P the: :zero-point.
And we can then lay off the scale in elther direction, 1like this:

P
- | ] I | l 1 l -
o { 1 ] ) | i |
-3 -2 -1 0 1 2 3
-—— | | | Pl H | |
| 1 ! 1 i | LI
3 2 1 o) -1 -2 -3
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f}This means that given another point Q of the line, we can always
iphoose the coordinate system in such a way that Q corresponds to
‘fé'positive number, 1ike this:

P Q
- I | 1 | L 1 1 _

o ] L 1 ] ] I 1

‘ -3 -2 —1 0 1 2 3

"‘op this:

? ' | \ T L | | _

—-— { i ! j ] { —

3 2 1 0 -1 -2 -3

. Let us write this down, for future referénce, in the form of a

ﬁjpostulate.

Postulate 4., (The Ruler Placement Postulate.)
' Given two points P and Q of a line, the coordinate
system car be chosen in such a way that the coordinate
_of P is zero and the coordinate of Q 1is positive. '

. Everybody knows what it means to say that a point B ic
= between -two points A and C. It means that A, B and C lie on
- the same line, and that they are arranged on the line 1like this:

| | S L ———
- T 1 T o
: A B C
or like this:
. . | | 1 A
= T I 1 g
C B A

If we are goling to use betweenness as a mathematical idea, however,
we had better give a mathematical definition that states exactly
what we mean, because the feelings that we have in our bones are
not necessarily reliable. To see this, let us look at the
corresponding situation on a circle, In-thg figure on the left,

'
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c? c?

1t seems reascnable to say that B ls between A and C, But C can '
be mbved around the circle 1ln easy stages, wlthout passing over
A or B, so as to lle Just to the left of A, as in the right- .
hand flgure. In the final positilon, indicated by the exclamation
polnt, 1t looks as 1f A 1s between E_and C. In this respect,
circles are tricky. Given any three points of a circle, it is
quite reasonable to consider that each of them 1s between the
other two.
" Betweenness on a line is nct at all tricky. It is easy to
say exactly what it means for one point of a line to be between
two others., We can do thls in the followlng way:

Definition. B 1s between A and C if (1) A, B and C are
distinct points on the same line and (2) AB + BC = AC.

It 1s easy to check that thls definitlon really expresses
our common-~sense ldea of what betweennéss ought to mean. It may o
be a good 1dea to explain, however, the way in which language is
ordinarily uéed in mathematlcal definitlons, In the definition
of betweenness, two statements are connected by the word if.
What we really mean 1s that the statements before and after the
word if are completely equivalent. Whenever, in some theorem or
problem, we are glven or can prove that conditions (1) and (2)
both hold, then we can conclude that B 1 between A and C. And
whenever we find that B 1s between A and C then we can conclude
that (1) and (2) both hold. This 1s not a strictly logical use

thls way in postulates, theorems or problems, In definitions,
however, 1t 1s common,

, The followlng theorem describes betweenness in terms of
coordinates on a 1lilne,

[sec. 2-7]
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S ‘Theorem 2-~1. lLet A, B, C be three polnts of a line, with
. coordinates x, y, z. If

: X<K<¥<K 32

then B 1s between A and C. '
Proof: Since x < ¥y <€ 2, we know that the numbers y - X,

Z -y, and z - X are all positive. Therefore, by definltion of

‘ the absolute value,

ly - x| =y - x,
Iz-y|=z-y,
- lz - x| = z - x.
Therefore, by the Ruler Postulate,
' AB =y - X,
BC =2z -y,
AC = z - X.
Therefore
AB+ BC = (y - x) + (2 - ¥)
= =X + 2
=2 ~-X
= AC,

Therefore, by the definition of betweenness, B 1s between A and C,
which was to be proved. )

Problem Set 2-7a
1. a. A number-scale 1s placed on a line wlth -3 falllug at R
and 4 at 8. If the Ruler Placement Postulate 1ls applied
with O placed on R and a positive number on S, what willl
this number be? ,
b, Same questilon i1f -4 falls at R and -10 at S.
c. Same questlion 1f 8 falls at R and -2 at S.
d. Same question if -} 2 falls at R and 4 at S,
e. Same question if 5.2 falls at R and 6.1 at S.
f. Same question 1f X4 falls at R and X5 at S.
2. Explain briefly how the Ruler Placement Postulate simplifies
the procedure glven by the Ruler Postulate for computatlon of
distance between two polnts. 52}
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3. Suppose R, S and T are collinear points. What must be true i
of the lengths RS, ST and RT if S is to be between R and T? -

(See definition of between.) #
oA c B

™ AC and BC each equals 8.
The coordinate of C iz 6. The coordinate of B 1s greater
than the coordimate of C. What are the coordinates of -

A and B?

5. If a, b and c¢c are cocrdinates of collinear points, and if
la = ¢c| + |c -] = |a - b|, what 1s the coordinate of the
point wnich lies between the other two? Be able_to Justify
your answer. '

6. 1If Xy Xp and X5 are ccoordinates of points on a line euch
that Xq > Xy and X5 < Xq5 which point 1s between the other
two? Which theorem would be used to prove your answer?

7. Consider a coordinate system in which A is assigned the
number O,-B is assigned the positive number r, E the number

% r, and F the number-% r.

Prove that:
a. AE = EF = FB
b. E is between A and F.

#*8, Prove: If A, B and C are three points of a.line with
coordinates x, y and z respectively and if x > ¥ > 2, then
B is between A and C.

Theorem 2-2, Of any three different points on the same line,
one 1is between the other two. ‘
. Proof: Let the points be A, B and C. By the Ruler Postulate, -
% there 1s a coordinate system for the line. Let the coordinates
of A, B, and C be x, y, and z. There are now six possibilities:

54
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(1) x<y <z
(2) x<z<V,
(3) y<x<z,
(4) y<z<x
(5) z<x<V,
(6) z<vy<x.

‘ in each of these cases, Theorem 2-2 follows by Theorem 2-1,
fIn cases (1) and (6), B is between A and C. In cases (2) and.
?(u), C 1s between A and B. . In cases (3) and (5), A 1s between
w'-:'B';and Cc.
;"J Theorem 2.3, Of three different points on the same line,,only
ione 1s between the other two.
l, Restatement. If A, B and C are three different points on the
]éamé‘line, and B is between A and C, then A is not between B and
¢, and C is not between A and B. :
‘ (It often happens that a theorem is easier to read and
ﬁeasier to refer to, if it is stated in words. But to prove
ﬂtheorems, we usually need to set up a notation, giving names to
7the objects that we will be talking about. For this reason, we
1sha11 often give restatements of theorems, in the style that we
~have just used for Theorem 2-3. The restatement gives us a sort
‘of-head-start in the proof.)
" Ppoof: If B is between A and C, then
AB 4+ BC = AC,
If A is between B and C, then .
. BA + AC = BC.
: ',HWhat we need to prove is that these two equations cannot both
Z;hold at the same time, ‘
| If the first equation holds, then
AC - BC = AB,

If the second equation holds, then
: AC - BC = -BA = -AB.
ZﬁNow AB is positive, and -AB 1s negative. Therefore, these
ﬂiequations ‘cannot both be true, because the number AC -~ BC cannot
" be both positive and negative.
. [sec. 2-7]
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fIn an- entirely glmllar manner we can show that C is not between A

‘and B,

) ; Definitions. For any two points A and B the segment AB 1is
the set whose polnts are A and B, together with all points that

;.are between A and B The points A and B are called the_eng-

; points of AB.

Notlice that there i1s a big difference between the segment AB
and the dlstance AB. The segment 1s a geometrical figure, that
1s, a set of points. The distance 1s a number, which tells us
how far A 1s from B,

Definltion. The distance AB 1s called the length of
the segment AB,

A ray 1s a figure that looks 1like this:

®- A4 o

The arrow~headAon the righg 1ls meant to indicate that the ray in-
. cludes all polnts on the 1line to the right of the point A, plus
- the point A itself. The ray 1s denoted by AB. Notice that when
we wrilte KE we slimply mean the ray that starts at A, goes through '
B, and then goes on in the same direction forever.. The ray mlght
look 1like any of thz following:

Wy

~That 1s, the arrow in the symbol KE always goes from left to
" right, regardless of how the ray is pointed in space.
Having explained informally what we are driving at, we proceed
to glve an exact definition.

[sec. 2-7]
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Definitions. Let A and B be points of a line L. The ray AB
.. 1s the set which is the union of (1) the segment AB and (2) the
' get of all points C for which it is true that B is between A and
C. The point A is called the end-point of AB.
These two parts of the ray are as indicated:
(1) (2)
Nl R -

A B c
If A is between B and C on L, then the two rays AB and AG

"go in opposite direction," like this:

> =
R _AB
= R N .

— =

C A B -
Definition. If A is between B and C, then K% and AC are

called oppocsite rays.
Note that a palr of points A, B determines six geometric

figures:
gures: o A B
The line AB, v hd -
The segment Eﬁ, - —
The ray K%, ' -~ * -
> - -& -
The ray BA, d o
The ray opposite to ﬂ%, : N °
[ e ]

..}
The ray opposite to BA.

‘The Ruler Placement Postulate has three more simple and
useful congequences. _

Theorem 24, (The Point Plotting Theorem) Let EE be a ray,
and let x be a positive number. Then there 1s exactly..one
point P of ﬂ% such that AP = x.

Proof: By the Ruler Placement Postulate, we can choosgse the
coordinate system on the line 5B in such a way that the coordinate -
'of A is equal to O and the coordinate of B is a positive '

%

number r:
P A B P
-0 r X
57
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(In the figure, the labels above the line represent points,
and the labels below the llne represent the corresponding numbers.)
Let P be the point whose coordinate 1s x. Then P belongs to
Kg, and AP = |x - 0| = |x| = x, because x 1s positive. Since only
one polnt of the ray has coordinate equal to X, only one polnt of
the ray 1iés at a distance x from A, A
Definitlon. A polnt B 1s called a mid-point of a segment
AC if B 1s between A and C, and AB = BC,

A B e

r -~

Thedrem,g:§. Every segment has exactly one mid-point.

Proof. On the segment AC we want a point B such that AB = BC,
We know, by definitlon of a segment, that B is between A and C.
Therefore, AB + BC = AC. From these two equations we conclude
that 2AB = AC, or AB = %_i\c. Since B 1s to 1lie on segment AC
it must also 1lle on ray AC, and Theorem 2-4 tells us that there
1s exactly one such point B. '

Definitlon. The mld-polnt of a segment 1s sald to bisect the . °
segment, More genérally, any filgure whose Intersectlon with a
segment 1s the mld-point of the segment.is sald to bisect the
segment, '

Problem Set 2-7b
1. If three points are on a line, how many of them are not
between the other two?
2. Each of the followlng 1s a particular case of what definition
or theorem?
If three collinear points R, S and T have coordinates
respectively 4, 5 and 8:
a, S 1s between R and T because 4 ¢ 5 and 5 ¢ 8,
b. R cannot be between S and T since S is between
R and T.
¢c. S 1s between R and T because RS + ST = RT,
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x|

*5,

Describe in mathematical language what points are included in:
a. XY b, X¥
Show that the restriction "between A and C" in the definition

of the midpoint of AC is unnecessary by proving the

fdllowing theorem:
If B is any point on the line EE such that AB = BC, then
B is between A and C. (Hint: Show that A cannot be
between B and C nor C between A and B.  Use algebra in
showing this. Use Theorem 2-2 to finish the proof.)
Suppose that P is a point on a line M and r is a positive
number. Which of the previous theorems shows that there
are exactly two points on M whose distance from P is the
given number r? .
Prove that if B is between A and C, then AC > AB.
a. Copy the following paragraph. Supply the appropriate
missing symbol, if any, over each letter pair.
X7 contains points Y and R, but XZ contains neither
points Y nor R. R belongs to XZ but ¥ does not.
Y7 + ZR = ¥R. ‘
b. Make a drawing showing the relative position of the
four points.

Review Problems
Consider the following sets:
S. 1s %the set of all boys in the 10th grade.
S 1s the set of all girls in the 10th grade.
3 i1s the set of all 10th grade geometry 3tudents.
Sh is the set or all students in high school.
S_ 1s the set of all 10th grade students.

5
a. What is the intarsection of Sland 85?
b. What is the union of S5 and S)?

c. Whgt is the intersection of S3 and Su?

[sec. 2-7]

59



49

. What is the union of S:L and 82?

d
e. What 1s the intersection of S, and SE?
a How many squares does a given posltive number have?
b. How many square roots?
c. TIs+/3 ever negative?
a Draw a line and locate the following points on it.
(The coordinate of each point is given in parentheses.)
Use any unit of measure you choose, but use the same
unit throughout.
P (2), @ (-1), R (0), s (-3), T (¥).
b. PFind PQ, RT, TR, PT, QS.
a, If a > b, thena - b is
b, If 0 < k and K2 < 4, then k is
c. If a < b thena - b 1is
- A B < .
- T 1 i >
a. Write an equation that describes thelrelative‘positions
of these three points.
b. Under what condition would B be the midpoint '6f AC?
Four points A, B, C, D are arranged along a line so that
AC > AB and BD ¢ BC. Picture the line with the four points
in place. 1Is there more than one possible order? Explain,
The letter pairs contained in the following paragraph are
either numbers, lines, line segments, or rays. Indicate
which each is by placing the proper missing symbol, if any,
above each letter pair. -
"AB + BC = AC. DB contains points A and C, but DB con~
tains neither point A nor point C. A belongs to DB
but C does not." Draw a picture that illustrates your
response, ‘
A is the set of all integers x and y whose sum is 13, B is
the set of all integers whose difference 1z 5, What is the
intersection of A and B?

[sec. 2-7]
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10,

N

12.

13.

14.

John said, "My house 1s on West Street hélfway between Bill's
house and Joe's house." Pete said, "So 1is mine!" What can
you conclude concerning John and Pete?

N men sit on a straight bench. Of how many may it be said,
"He sits between two people?"

Use the figure below to answer questions a. through e.:

D E c

A — F_Jg
a. Describe the intersection of triangle AEF and
rectangle ABCD.
b. Describe the intersection of segment EF and
rectangle ABCD.
c. Describe the union of segments AF EF and AE.
d. Describe the intersection of segments AE and BC,

e. Deseribe the union of triangle AEF and segment AE.

“Given a group of five men (Messrs. Andrews, Brown, Crawford,

Douglas, and Evans). a. From the group, how many different
4-man committees can be formed? b, 2-man? c. 3-man?
Given that A, B and C are collinear and that AB = 3 and

BC = 10, can AC = 6? Give a plecture to explain your answer.
Indicate which of the following statements are true and
which are false. For any that are false, give a correct

answer.,

a. |-13+7| = 20. e. |-4] - [-11] = -7,

b. |-8-9| = 17. £. |(3a~6) - (a-7)| = |2a+1].
c. |sa-6al = lal. g. |71 - 19| = -

d. |o+2| = 11. ' h., |-11] - [-4] = -7.
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16,

*17.

51

R

). |
T LI

‘46 0 X

Looking at this number-scale, Jack said, "The length of RQ

1s |x-y|." Sam maintained that when giving the length of

RQ it would be Just as correct to use simply y-x.

Do you agree with Sam? Explain.

The first numbering of the points on the line below represents
a coordinate system., Which of the other numberings are not
coordinate systems according to Postulates 2 and 3?

P I 3 N it —_
T

-3 =2 -1 0 1 2 3

< 10
L

I
i

¥y 5 6 7
a, =T -6 <5 4 -3 .2 -1 0 1 2 3
b. ~ 0 1 2 3 ] 5 4 3 2 1 0

c. 11 12 13 14 15 16 17 18 19 20 21

d, =11 <12 -13 =14 <15 =16 -17 -18 =19 =20 =21

e, -3 =2 1 0 =1 2 3 4 5 6 7
Consider the points of a line whose coordinates are described
as follows: ‘

a. x < 3. _ e. X = -3,
b. x = 1. r. x| ¢ 3.
c. x> 2. g. Ix| > 2.
d. x £ 1. ~ h. |xl > 0. o

Which of the above sets 1s a ray? A point? A line?
A segment? '
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Chapter 3
LINES, PLANES AND SEPARATION

‘- 3-1. Lines and Planes in Space. . :
In the last chapter;'we were talking only about lines and the
-measurement of dlstance. We shall now proceed to the study of

. - planes and space. We recall that our basic undefined terms are
- point, line and plane. Every line is a set of points, and every

“'"plane is a set of points.

Definition. The set of all points i1s called space. v
In this section we will'explain some of the terms we are go-"

. ing to use in talking about points, lines and planes, and state

‘some of the basic facts about them. Most of these basic facts w111 
be statéd as postulates. Some of them will ‘be stated as theorems.
These theorems will be so simple that it would be reasonable to
accept them without proof, and call them postulates. We do not dq
*-this, however; the first of them is going to be“pfoved in this sec-
pion, and the rest of them will be proved, on the Basis of the
postulates, in a later chapter. For the present, howevér,‘let us
not worry about this question, one way or another; let us simply
try to get these basic facts straight.

Problem Set 3-la

1. On a piéce of paper, or on the blackboard, place two marks to
represent points A and B. How many different lines can you
draw through both A and B? What happens if you consider "1line"

‘ in a sense other than "straight"? ;

2. Take a piece of stiff cardboard or your book. Can you support
it in a fixed position on the ends of two pencils? What is
the minimum number of pencils needed to support it in this
way? ’ i

3. Think of one cover of your book as part of a plane. How ‘many
points are needed to determine this plane?

4. How many end-points does a 1line have? How many end-points does
a line segment have? ‘
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Definition. A set of points 1s collinear if there is a line
which contains all the points of the set.

Definition. A set of points is coplanar if there 1s a plane
which contains all the points of the set.

A

C

For example, in the above figure of a triangular pyramid, A,
E and B are collinear, and A, F and C are collinear, but A, B and
C are not collinear. A, B, C and E are coplanar, and A, C, D, F
and G are coplanar, but A, B, C and D are not coplanar.

One of the properties wé desire for the sets of points which
we call 1lines, planes and space is that they should contain lots
of points. Also, a plane should in some sense be "pigger" than a
line and spacé should be "bigger" than any plane. The existence
of plenty of points on a line is insured by the Ruler Postulate;.
for planes and space the following postulate will give us the pro-
perties we want: ‘ - '

Postulate 5. (a) Every plane contains at least
three non-collinear points. '

(b) Space contains at least four non-coplanar points.

For convenience in reference we repeat Postulate 1.

Postulate 1. Given any two different polnts, there
is exactly one line which contains them.
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Theorem 3-1. Two different lines intersect in at most one
point. ,

The proof of this follows frcm Postulate 1. It is impossible
for two different lines to intersect in two different points P and .
@ because by Postulate 1 there is only one line that contains P and
Q.

Problem Set 3-1b

1. Given: 1. Ll'and L, are different lines.
2. Point P lies on L1 and L2.
3. Point Q lies on L1 and L2‘
What can you say must be true about P and Q2
2. How many lines can contaln one given point? two glven points?
any three given points? . '
o : <> <> «—>
3. The diagram shows three different lines AB, CD, and EF, whose
view 1s partially obstructed by a barn. -If'ﬁgiand Egbintersect
to the left of the barn, which postﬁlate says that they cannot
also intersect to the right of the barn?

B

B
/
/s

A P D
<::>..<:_ ] >
c \\ BARN .
B \}\ \ N

o w| ¥

£ B e =9 —

\K A

., Draw a dlagram to illustrate each part of this problem and jus-
tify your answers in terms of Postulate 1.

a. How many lines can be drawn through both of two fixed
points?
- 65
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b. How many lines can be drawn through three poihts taken two
~at a time? _
5. a. How many lines can be drawn through four coplanar points,
taken two at a time, if no three of the polnts are collin-
ear? (Hint: Call the points A, B, C, D.)
b. How many lines would there be if points A, B, and C were

collinear?
c. Draw a dlagram for (a) and (b).
*6. "A point lies on a line" and . "a 1line contains a point" are two

forms of saying the same thing.

a. The definitionc of collinear and coplanar are phrésed using
the second form. Rephrase these definitions using the
first form.

b. The first part of Postulate 5 is phrased using the second
form. Rephrase this part of Postulate 5 using the first
form.

*7. As in Problem 6, Postulate 1 is written in one of the two forms.

Which form? Restate Postulate 1 in the other form.

By Postulate 5 a plane contains at least three points. Does
it contain any more? On the basis of our present postulates we
cannot conclude that it does, so we introduce

Postulate 6. If two points lie in a plane, then
the 1line containing these points lies in the same plane.

This postulate essentially says that a plane is fiat, that is,
that if it contains part of a 1line it contains the whole line.

Theorem 3-2. If a line intersects a plane not containing 1t,
then the intersection is a single point.

This follows from Postulate 6 in the same way that Theorem
. 3-1 follows from Postulate 1..

66
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The figure shows line L, intersecting a plane E in a point P,
~You are going to see lots of drawings like this, of figures in »
space, and to learn to draw them yourself. You should examine them fg
'carefully to see how they work. We usually indicate a plane E by" '
drawing a rectangle in E. Seen in perspective, the rectangle looks
somewhat like a parallelogram. The line L punctures E at P. Part :
of L is dotted. This 1s the part that you "can't see", because the f
rectangular piece of E gets in the way. (Eor a discussion on draw-
ing'3-dimensinna1*figures see Appendix V.)

We have seén that two points determine a line. The next
postulate specifies a similar determination of a plane.

Postulate 7. Any three points lie in at least one
plane, and any three non-collinear points lie in exactly
one plane. More briefly, any three points are coplanar,
and any three non-collinear poihts determine a plane.

Theorem 3-3. Given a line and a point not on the line, there
1s exactly one plane containing both of them.

87 .
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1

e

- _7 The figure shows a plane E determined by the line L and the”‘p
"point P. R
a Theorem 3-4. Given two intersecting lines, there is exactly

- one piane containing them. o

L

The figure shows two lines Ll and pza_intersecting in a point
P, E 1is the plane that contains both lines.
Finally, we state one more postulate:

Postulate 8. If two different planes intersect,
then their intersection is a line, ' :

Problem Set 3-lc¢

~1. How many planes can contain one given point? two»givén pdiﬁts? 

" “three given points? - C
68
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2. On a level floor, why will a four-legged table sometimes rock,
while a three-legged table 1s always steady? '

3. Complete: Two different lines may intersect in a s
and two different planes may intersect in a .

4, Can two points be non-collinear? three points? four points?
n points?

5. Write a careful definition of a set of non-collinear points.
6. Given: 1. Points A, B, C 1lie in plane E.
2. Points A, B, C lie in plane F.
Can you conclude that plane E is the same as plane F? Explain.
7. Complete the following statements using the

accompanying diagram. C

a. Points D, C, and ____ are collinear.

b Points E, F, and ____ are collinear. D

¢. Polnts B, __, and A are collinear.

d Points A, B, C, D, E, F, are A 5 B

8. Examine the following figure of a rectangular solid until you
see how it lcooks as a three-dimensional drawing. Then close
the book and draw a figure like this for yourself., Practice
until you are satisfied with the results.

H G

|
|
)E_— F

9, After doing Problem 8, draw a figure that represents a cube.
10, Draw a plane F, using a pangllelogram to indicate the plane,

[sec. 3-1]
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Draw a line segment which lies in the plane E. Draw a line

that intersects the plane E but does not intersect the line seg-
ment. Use dashes to represent the part of the line hidden'by
the plane.

11. The accompanying figure is a triangular D

pyramid, or tetrahedron. It has four

vertices: A, B, C, D, no three of

which are collinear.

a. Make a definition of an edge
of this tetrahedron. Use the
l1deas of the text to help you A C
form the definition.

b. How many edges does the tetrahedron B

have? Name them.

¢c. Are there any pairs of edges that do not intersect?
A face 1s the triangular surface determined by any three
vertices. There are four faces: ABC, ABD, ACD, BCD. Are
there any pairs of faces that do not intersect? Explain,

12. How many different planes (determined by D C
triplets of labeled points) ére\there in T~ -
"the pyramid shown? Make a complete 1list. ~‘j: E
(You should have seven planes,) _- -~
/’/
v A B

'3-2. Theorems in the Form of Hypothesis and Conclusion.

Nearly every theorem i1s a statement that if a certain thing is
true, then something else is also true. For example, Theorem 3-1
states that if L, and L, are two different lines, then L, intersects
L2 in at most one point. The i1f part of a theorem 1s called the |

__hypothesis, or the given data, and the then part is called the con-
clusion, or the thing to be proved. Thus we can write Theorem 3-1
in this way: ,

Theorem 3-1. Hypothesils: Ll and L2 are two different lines.

Conclusion: L1 Intersects L2 in at most one
point.

Postulates, of course, are like theorems, except that they are
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o not going to be proved., Most of them can be put in the same if

then form as theorems. Postulate 1 c¢an be stated this way:
Hypothesis: P and Q are two different points.
Conclusion: There 1s exactly one line containing P and Q.
There are cases in which the hypothesis-conclusion form does :
not seem natural or useful. For example, the second part of Postu-'w

" late 5, expressed in this form, looks awkward:

Hypothesis: S is space.

Conclusion: Not all points of S are coplanar.
Such'cases, however, are very rare.

It is not necessary, of course, that all theorems be stateu in
the hypothosis-conclusion form. It ought to be clear, regardless
of the form in which the theorem is stated, what part of it is the
hypothesis and what part is the conclusion. It is very important,
however, that we be abLe to ctate a theorem in this form if we want
to, because if we cannot, the chances are that we do not understand
exactly what the theorem says.

Problem Set 3-2

1. Indicate which part of each of the following statements is the
hypothesis and which part is the conclusion If necessary,
rewrite in if-then form first.

If John is 111, he should see’ a doctor k

A person with red hair is nice to know‘éi

Four points are collinear if they lie on one line.

If I do my homework well, I will get a good grade,

If a set of polnts lies In one plane, the points are coplanar.

Two intersecting lines determine a plane, "

2. Write the following statements in conditional, or if-then, form:
a. Two different lines have at most one point in common.

b, Every geometry student knows how to add integers.

¢. When it rains, it pours.

d A line and a point.not on the llne are contained in
exactly one plane. 7‘1
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e. A dishonest practice is unebhical.
f. Two parallel lines determine a plane.

3. Using the words "if" and "then", write Postulate 1 and Theorem
3-1 in conditional form. Indicate the hypothesis and the con-
clusion for each case. :

4, a. Does the following statecment mean the same thing as Theorem
‘ 3-42 "Two lines always intersect in a point, and there is
exactly one plane containing them." Why or why not?

b. Write Theorem 3-4 in the "hypothesis and conclusion" form.

3-3. Convex Sets.

Definition. A set A is called convex 1f for every two points
P and Q of A, the entire ca2gment P§ lies in A.
For example, the three sets pictured below are convex.

Q
P P
~ Q
A B c

Here each of the sets A, B and C consists of a reglon of the plane.
We have illustrated their convexity by showing a few segments PQ.

None of the sets D, E and F below is convex:
P?::
Q
D E
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We have shown why not, by showling pairs of points P, Q for which
the segment PQ does not lie entirely in the given set.
A convex set may be very large. For example, take a line L~

in a plane E and let Hl and H2 be the sets lying on the two sides
of L, like this: '

E

The two sets H1 and H2 are called half-planes or sides of L, and
the line L 1s called an edge of each of them. (Notice that L does
not lie in either of the two half-planes; L is not on either slde
' of itself.) _

If two points P and Q are in the same half-plane, say Hl’ thgn }
the segment PQ also lies in Hl’ and so does not lntersect L. '

__Thus H) 1s convex. And in the same way, H, 1s convex;j this 1s
11lustrated by the points R and S in the figure.

We notice, however, that if T and U are points belonging to
different half-planes, then the segment TU intersects L, because
you cannot get from one side of L to the other side without crosaingb
the edge. We express this fact by saylng that L separates H1 from
H2 in the plane, or that L separates the plane into two half-planes

Hl‘ and H2. ’ | 73
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This discussion is a fair account of the facts, but it is not
very good mathematical form, because it is based on a postulate
" that we haven't even stated so far. We shall therefore state the

pdstulate that is needed, and then state the definitions that are’

‘based on it.

‘Postulate 9. (The‘Plane Separation Postulate.)
Given a line and a plane containing it. The points of
the plane that do not lie on the line form two sets such
that (1) each of the sets is convex and (2) if P is in
one set and Q is in the other then the segment PQ inter-
sects the line.

Definitions. Given a line L and‘a plane E containing it, the
two sets determined by Postulate 9 are called half-planes, and L
is called an edge of each of them. We say that L separates E into

~the two half-planes. If two points P and Q of E lie in the same

half-plane, we say that they lie on the same side of L; if P lies
in one of the half-planes and Q in the other they 1lle on opposite
sides of L,

We see that the Plane Separation Postulate says two things
about the two half-planes into which a line separates s plane:

o (1) If two points lie in the same half-plane, then the seg-
ment between them lies in the same half-plane, and so never inter~
sects the line.

(2) If two points 1lie in different half-planes, then the
segment between them always intersects the line.
If we do not restrict our attention to a single plane we can

.. have many half-planes with the same edge. The picture

74
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1llustrates five of the infinitely many possible half-planes having
line L for edge. Note that points P and Q, although they lie in
different half-planes, cannot be said to be on opposite sides of L.
This can only be sald of points like P and R which are coplanar E
with L.

A plane separates space, in exactly the same way, into two
convex sets called half-spaces.

P
HI ,
\\\\Q\\:> E
/J/
X \“ //
R H2

In the figure, H1 is the half-space above E and H2 is the half-
space below E, P and Q lie in Hlf and so also does the segment FQ.
P and S are in different half-spaces, so that the segment PS inter-
sects E in a pointbx. R and S are in the same half-space H2, and
so also 1s the segment RS.

.“ 5
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This situation is described in the following postulate.

Postulate 10. (The Space Separation Postulate.)
The points of space that do not lie in a given plane
form two sets such that (1) each of the sets is convex
and (2) if P is in one set and Q is in the other, then
the segment PQ intersects the plane.

Definitions. The two sets determined by Postulate 10 are
called half-spaces, and the given plane is called the face of each
of them. ' s

Note that while a 1ine is an edge of infinitely many half-
planes, a plane is a face of oniy two half-spaces,

Problem Set 3-3

In answering the following questions use your intuitional
understanding of planes and space in situations not covered by our
postulational structure.

1. Be'prepared to discuss the following questions orally.

a. Is a line a convex set? Explain.

b Is a set consisting of only two points convex? Why?

c. Is a ray a convex set? ,

d If one point is removed from a line, do the remaining
points form a convex set? Why?

e. Is the set of points on the surface of a sphere convex?
Why?

£f. 1Is the space enclosed by a sphere a convex set?
Does a point separate a plane? space? a 1ine?

h. Does a ray separate a plane? Does a 1ine? Does a line
segment? .

1. Can two lines in a plane separate the plane into two re-
gions? Three reglons? Four regions? ive regions?

J. Into how many parts does a plane separate space? What are
these parts called?
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i1.

- 12,

6

Every point on PQ is contained in the set
shown. Does this mean that the set is
convex? Explain,

Which of the regions indicated by

Roman numerals are convex sets? I ¢

Give reasons for your choice.

Is every plane a convex set? Explain. Which postulate is
essential in your explanation?
The interiors of circles A and B
are each convex sets.
a. Is .their intersection a convex

set? Illustrate.
b. Is their union a convex set? Illustrate.
If one point 1s removed from a plane, 1s the set formed con-
vex? Why? ‘ .
If L is a line in a plane E, is the set of all points of E on
one side of L a convex set?
Draw a plane quadrilateral ( a figure with four sides ) whose
interior is convex. Draw one whose interior 1s not convex.
Is the set of points containing all points on the surface and

- all points in the interior of a sphere convex?

Is the set of points in a torus (a doughnut shaped figure)
convex? _
Is the union of two half-planes which are contained in a plane
the whole plane if ~

a. the half-planes have the same edge?. Explain. .

b. the edge of one half-plane intersects the edge of the
other half-plane in exactly one point? Explain,'using a
diagram 1f necessary.

a. Into how many parts does a point on a 1line separate the
1ine? What name would YOu suggest giving to each of these
parts? :

b. Using the terminology you developed 1n part (a), write out
a Liné Separation Statement similar to Postulates 9 and 10.

[sec. 3-3]
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13.
b,

15.
16.

*17.

*18.

)

How does a ray differ from a half-line?

Can three lines in a plane ever separate the plane into three
regions? four regions? five regions? six regions? seven
regions?

Into how many parts do two intersecting planes separate space?

‘Two parallel planes?

What 1s the greatest number of parts into which space can be
separated by three distinct planes? What 1s the least number?
Write a careful explanation of why the following statement 1is
true. The intersection of any two convex sets which have at
least two points in common 1s cdnvex. (Hint: ILet P and Q be
any two points belonging to the intersection.)

Sketch any geometrical solid bounded by plane surfaces such
that the set of points in the interior of the figure is not

- convex,

'Review Problems

Fach of 3 planes intersects each of the others, May they
intersect in one 1lilne? Must all three intersect in one 1line?
Explain.

How many planes will contain the three given points A, B, and
C if no line contains them?

Write each of the following statements in the "if-then" form.
a. Zebras with polka dots are dangerous.

. Rectanpgles whose sides have equal lengths are squares,
There will be a celebration if Oklahoma wins.

A plane is determined by any two intersecting lines.

o & Q0 T

Cocker spaniel dogs are sweet tempered.

Supply the following informatlon about the postulates in the

chapter.

What property of each of the half-planes 1s mentioned in the
Plane Separatlon Postulate?

Do the half-spaces of the Space Separation Postulate have
the same property? 78
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Criticize the following statement :
"The top of the table is a plane."

Iist all the situations we have studied which determine a sin-

gle plane,

A set is convex 1if for every pair of points in it, all points

of the segment Joining the two points lie

Given that plane E separates space into half-spaces R and S, .
and that point A is in R and point B is in S, does AB have to
intersect E?

L, intersects plane E in P but does not lie.in E. L, lies.in
plane E but does not contain point P, 1Is it possible for Ly
and L2 to intersect? Explain,

a. A set of points is collinear if

b. A set of points is coplanar if

May 5 points be collinear?

Must 2 points be collinear?

May n points be collinear?

Must 5 points be coplanar?

May n points be coplanar?

Poinpg*P and Q lie in both planes E and F which intersect in
line AB. Would it be correct to say that P and Q lie on AB°
Explain. o

Is the union of a half-plane and a ray on its edge'coﬁvex?

GQH:(DQ-O
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| Chabter y
ANGLES AND TRIANGLES

4.1, The Basic Definitions.
An angle 1s a figure that looks like one of these:

To be more_exact:

Definitions. An angl ' 1s the union of two rays which have
the same end-point but do not 1lile in the same line. The two
rays are called the sldes of the angle, and their common end-
point 1s called the vertex. " -

The angle which 1is the union of AB and AC is denoted by
/_BAC, or by / CAB, or simply by / A if it is clear which rays
are meant. Notice that / BAC can be equally well described by

means of A and any two points on different sides of the angle.
) b L

A - C E

=

In the above figure / DAE is the same as /_BAC, because AD 1is the
same as KE and KE is the same as AC

- Notice that an angle goes out infinitely far in two direc=
tions, because its sides are rays, rather than segments. The
figure on the left, below, determines an angle uniquely, but is
~not all of the angle, to get all of the angle, we have to extend

the segments AB and AC getting rays AB and AC as on the right.

B B
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%#nd is denoted by AABC; the points A, B and C are called its
iVertices, and the segments AB, BC and AC are called its sides.
;;Every triangle determines three angles; AABC determines the
.angles / BAC, / ABG and / ACB, which are called the angles
:;gg AABC. For short, we will often write them simply as

‘LA, /B, and / C.

Note that while AABC determines these three angles, it does

53not actually contain them. Just as a school does not
- 1ts own graduates, so a triangle does not contain its
jbecause the sides of a triangle are segments, and the
‘an angle are rays. To draw the angles of a trilangle,
~have to extend the sides of the triangle to get rays,

w

~% o~

contain
own angles,
sides of
we would
like this:

, There usually is not much point in doing this, however,
- because it is plain what the angles of a trlangle are supposed

to be,

81.
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The interior of an angle consists of all points that lie

'”7éif

inside the angle; and the exterior of an angle consists of all
the points that lie outside, like this:

Exterior

Exterior

Interior

O

Exterior

We can state this more exactly as follows:
Definitions. Let / BAC be an angle lying in plane E.
A point P of E 1lies in the interior of / BAC if (1) P and

B are on the same side of the line AC and also (2) P and C are
<>
on the same side of the line AB.

set of all points of E that do not 1lie in the interior and do

not lie on the angle itself.

You should dheck carefully to make sure that this really says -
In the figure, P is 'in the interior,

what we want it to say.

The exterior of / BAC is the .. ..

<>
because P and B are on the same side of AC and also P and C are

on the same side of AB

are not on the same side of AB

R is on the "wrong side"

_ the exterior because it 1s on the "wrong side"
wy

Q is in the exterior, because Q and C
R is in the exterior, because
S is in

of both of the lines AB and AC
of AC

Notice that we have defined the interior of an angle as the

- intersection of two half-planes,
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Here one of the half-planes 1is cross-hatched horizontally, the

other 1s cross-~-hatched vertically, and the interior of ZLBAC is
cross-hatched both ways.

The interior of a triangle consists of the points that lie
inside it, like this:

Exterior

Interior

More precisely:

Definitione., A point liss In the interior of a triangle 1if
i1t lies in the interior of each of the angles of the triangle.
A point lies in the exterior of = triangle if it lies in the

plane of the triangle but 1is not a polnt of the triangle or of
its interior.

You should check carefully to make sure that this really
says what we want it to say.

83
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Problem Set 4-1

Complete this definition of angle: An angle 1s the
of two ‘ which have the same end-
point, but do not lie in the same .
Complete *“his definition of triangle:- A triangle is the
of the three Joining each
pair of three points. C
Are the sides AC and AB of
A ABC the same ag the sides

of / A? Explain,

A B
Is the union of two of the angles of a triangle the same
as the trlangle itself? Why?
Into how many regions do the angles of a triangle separate
the plane of the triangle?
Complete:

/P =/ NPS = / MPR

How many angles are determined D C

by the figure? Name them. How
many may be named using the
vertex letter only?

[sec. U4-1]
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9. Name the angles i1n the flgure. D
(There are more than six.)

10. Name all the triangles in the D C
figure.(There are more than
eight).
F'
G
A E B
D
11. a. Name the points of the
figure which are in the in- e
terior of / CBA.™ * oM
b. Name the points of the N
* figure in the exterior o A .
H

of / B. _
12. Is the vertex.of an angle in the interior of the angle?
in the exterior? Explain. '
©13. Is the interior of an angle a convex set? 1s the exterior?
14, 1Is a triangle a convex set?
15. 1Is the interior of a triangle a convex set? is'thé'exterior?
16, a. Can a point be in the exterior of a triahgle ana in the
interlor of an angle or the triangle? Illustrate.
b. Can a point be in the exterior of a triangle and not
in the interior o? any angle of the triangle? Illustrate.
17. Given AABC, and a point P. P is in the interior of /_BAC
and also in the interior of / ACB. VWhat.can you conclude
about point P? '
18. Given AABC and a point P. P and A are on the same side of
ﬁE. P and B are on the same side of Ka.

[sec. 4;1]
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a. Is P in the interior of / ACB?
v b. Is P in the interior of AABC? :
- 19. Carefully explain why the following statement 19 tfue:
If a line m intersects two sides '
of a triangle ABC in points

D and E, not the vertices of the
triangle, then line m does not
intersect the third side.

(Hint: Show that A and B are

in the same half-plane.)

4-2. Remarks On Angles.

What we have presented 1iIn this chapter 1s the simplest form
of the idea of an angle, According to our-.defirnition, an angle
is simply a set which is the union of two non-~collinear rays,
like this:

o

Angles, in this sense, willl be quite good enough for the purposes
of this course. ILater, you will see the idea of an angle in var-
ious other forms., Here we explain these other forms briefly,
merely in order to avoid confusion in case you may have heard of
them already. ‘ A
(1) 1In the first place, we sometimes think of an angle as
being obtained by rotating a ray from one position to another.
In this case, one ray 1s the initial side, and the other is the
terminal side. Thus we would consider the two angles below as
being different, because the rotations are in two different

directions: /////////

86 ~
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The first 1s called a positive angle; the rotation 1s counter-
ciqckwise. The second is a negative angle; the rotation 1s
clockwise.

(2) People sometimes speak of straight angles, which look
1ike this: o

Here the rays ﬂﬁ and E% are considered to form = .:3le, even
though A, B, and C are colllinear.

(3) Finally, we sometimes distinguish between an ordinary
angle and a reflex angle having the same rays as its sides. 'The
double-headed arrow below 1lg supposed to indicate a reflex angle:

‘These. complications, and various others of the same sort,"
will ndt be uzed in this book, because they will not be needed.
For example, the angles of a triangle are never reflex angles,
and there is no reasonable way to decide in which direction they
should be considered to go, Not until we get to trigonometry do
these fancy angles become necessary and important.
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4-3. Measurement Of Angles. ,
Angles are usually measured in degrees, with a protr@ctor.

With the protractor placed as in the figure below, with its edge

on the edge of the half-plane H, we can read off the measures of

a large number of angles,

A B
Figure A.
The number of degrees in an angle 1s called 1ts measure., If
there are r degrees in the angle Z;XAY, then we write
m__/__XAY: r.
For example, in the figure_wé read off that
) UIZ;PAB = 10,
m_{_QAB: 4o,
m / RAB = 75,
m / SAB = 90,
' m / TAB = 105,
and so on, Of course, the rays kit are drawn'féfmAmore angles
than this. By subtraction, we can see that

m ZLQAP = 40 - 10 = 30,
m / SAR = 90 - 75 = 15,
and so on,
[sec. W-3]
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Since m / QAB = 40, we speak of / QAB as a 40° angle, and
.. we indicate its measurein a figure 1like this:

Q

40°
L A S
But we don't need to use the degree sign when we write m/ QAB = 40,
"because as we explained at the outset, m ZLQAB means the number
'of degrees in‘the angle.

Notice that in Figure A there is no such thing as the angle
ZLCAB, becausg}the rays &E and Kﬁ are collinear. But we notice
that the ray AC corresponds to the number 180 on the number~scale
of the protractor, and the ray KE corresponds to the number O.
Therefore we can find m_Z_CAU by writing

m / CAU = 180 - 130,
= 50.
Similarly, -
m / CAQ = 180 - 40,
= 140,

The following postulates merely summarize the facts about
protractors that we have Just been discussing. Each of them 1is
i1lilustrated by a figure.

Postulate 11. (The Angle Measurement Postulate.)
To every angle Z;BAC there corresponds a real number
between O and 180.

mLBAC=r

A e -

Definition. The number specified by Postulate 11 1is
called the measure of the angle;-and written as m / BAC.

39
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Postulate 12. (The Angle Construction Postulate.)
let AB ve a ray on the edge of the half-plane H. For
every number r between O and 180 there 1s exactly one
ray AP, with P in H, such that m / PAB = r.

B

Postulate 13. (The Angle Addition Postulate.)
If D is a point in the interior of / BAC, then
m / BAC = m / BAD + m / DAC.

In was on this basis that we computed the measures of angles
by subtraction, with a protraétor placed with its edge on the
ray AB. (r/DAC = m/ _BAC - m/ BAD.)

Two angles form a linear pair if they look like this:

D

e
>
XD e
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. That is:
- ->
Definition. If K% and AC are opposite rays, and AD 1is
another ray, then / BAD and / DAC form a linear pair.
Definition. If the sum of the measures of two angles is 180,

then the angles are called supplementary, and each is called a
supplement of the other.

Hence the name of the following postulate.

Postulate 14%. (The Supplement Postulate.)
If two angles form a linear palir, then they are
supplementary.

r+s=180

91
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Problem Set 4-3

C ' ' A B
1. Using the figure, find ‘he value of each of the following:
""" a. m / FAB. g. m / EAD.
b. m / EAB. h. m / FAG + m / GAH,
c. m / MAC. i. m / GAF + m / FAE,
d. m / FAE. J. m/MAB -~ m / FAB
e. m / GAE. k. m / HAB - m / DAB,
f. m / MAN. 1. m / NAE - m / NAH,

2. With continued practice you should be able to estimate the
size of angles falrly accurately without using a protractor.
Do not use a protractor to decide which of the angles shown
have measures within thé indicated ranges.

92
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Match the corresponding pairs:

m. 15 ¢ x ¢ 35.

p. 80 ¢ x < 100,

q. 45 ¢ x < 60.

N ,
b ///¥ n. 70 < x < 90.
AL

A

3. Using only a straightedge and not a protractor, sketch angies
whose measures are approximately 30, ‘150, 45, 60, 135, 90.
Then use your protractor to check your sketches.

4, On the edge of a half-plane, take a segment AB about 3 inches
long. A%t A draw ray AC in the half-plane forming /_BAC of
58°. At B draw ray BD in the same half-plane forming ./ _ABD
of 720; Measure the remaining angle of the triangle formed.

5. In the figure, B
a. m/ BHF + m /_GHF
b. m / GFH + m / BFH

m/_ ? ,
m/ __C G

6. In the figure,
a. m/ XZK + m/ KZR + m/ YZR = m/_ 2
t. m/ XZR - m/ RZK =m/__2
c. m/ XZY - m/ X2ZK =m/__?_
d. If Y, R, K and X are collinear,
then m/ YRZ + m/ ZRX = _?

[sec. 4-3]
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7. In the figure, AB and CD 3 B
—— a
intersect forming four angles., A & P
Using the 1indicated measure,

find a, b and c. ' D

8. Determine the supplement of each of 'the following:
110°, 90°, 36°, 15.5°, n° (180 - n)°, (90 - n)°,

9. If one of two supplementary angles has a measure 30 more“
than the measure of the other, what ig the measure of each
angle?

10. If the measure of an angle 1is twice the measure of its

supplement, find the measure of the angle.

11. The measure of an angle 1is four times the measure of its

supplement., ¥ind the meaSure of each angle.

12. a. Given a ray EE lying on t..» a2dge of a half-plane H, and
a number r between O and 180. 1In how many ways can you
construct a ray AB in H such that m/ BAC = r? Why?

b. Gilven a ray EE lying in 2 plane E, and a number r between
0 and 180. 1In how many ways can you construct a ray'KE
in E such that mé;BAC = r? VWhy?

L.4, Perpendicularity, Right Angles, and Congruence of Angles,

Definitions. If the two angles of a linear pair have the
same measu~2, then each of the angles is a right angle.

A

[sec. 4-4]
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Since r - r = 180, by the Supplement Postulate, we see that
a right angie 1is an angile of 900. This can be regarded as an
alternative definition of a right angle; it 1s equivalent to our
“first definition.

In terms of right angles it 1s easy to define perpendicularity

of any combination of 1line, ray or segment. In applying the

following definition remember that a ray or a segment determines =

"5 unique line which contains 1t.
Definition. Two intersecting sets, each of which 1s elther
a 1line, a ray or a segment, are perpendicular if the two iines
which cuntain them determine a right angle,
Definition. If the sum of the measures of two angles 1s
90, then the angles are called complementary, and each of them
is called a complement of the other, (Compare this with the
definition of supplementarJ angles, Just “efore the statement
of the Supplement Postulate. )
An angle with measure iess than 90 1g called acute, and an
angle with measure greater than 90 1s called obtuse.

|
|
]
Obtuse !

l Acute

Dafinition. Angles with the same measure apre called
congruent angles.

That is, / BAC and / PQR are congruent if m/ BAC = m/_PQR.
In.this case we write

/ BAC = / PQR.
Notice that the edquation mZ;BAC = mZ:PQR and the congruence
/_BAC = / PQR are completely equivalent; we can replace one by
the other any time we want to. ' )
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The following theorems are easy to prove, 1f we remember
clearly what the words mean:
Theorem 4-1, If two angles are complementary, then both

of them are acute. _
Theorem 4-2, Every angle is congruent to itself,
Theorem 4-3. Any two right angles are congruent,

Theorem 4.4, If two angles are both congruent and supple-
mentary, then each of them 1s a right aigle.
(Hint: Let r be the number which 1s the measure of each of the
two angles, and then find out what r must be.)

Theorem 4;5, Supplements of congruent angles are congruent.

Restatement: If (1) /B = /D, (2) /A and /B are
supplementary and (3) / C and / D are supplementary, then

(8) LAa=/c0

re ///}’ | ;;.:>////, ii o
J— O 7 —— e
B A ] C

Proof: The statement that / B = / D means that m/ B and
m/ D are the same number r, as in the rigure. Since Z_A and
Z;B are supplementary, 1t follows that
) m/ A =180 - m/ B = 180 - r.
For the same reason,

m/ C =180 - m/ D = 180 ~ r.

Therefore m/ A = m/ C, which means “hat / A ¥ / C.

You must not conclude from the above picture that supplement-

ary angles must necessarily be placed beslde one another in a way
that makes 1t evident that their measures add up to 180,
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The following picture also serves to illustrate Theorem 4=5.

P

"In drawing pictures to 1llustrate theorems or problems you should
realize that the figure in the book is not the only correct one,
and you should try to make your picture different from the one

given in the book.
Theorem 4-6. Complements of congruent angles are congruent.

. The proof of the theorem 1s exactly analogous to the pre-
ceding proof, and you should write it out for yourself.

When two lines intersect, they form four angles, like this:
™~ 2

, 4
/.1 and / 3 are called vertical angles, and / 2 and / } are also

called vertical angles. More precisely:

Definition, Two angleé are vertical angles 1f their sides
form two pairs of opposite rays.

It looks as if these pairs of vertical angles ought to be
congruent, and in fact this is what always happens:

Theorem 4-7. Vertical angles are congruent.

D : E

> B
Proof: @Given that AC and Kﬁ are opposite rays, gnd KE and KB are
opposit¢ rays, so that / 1 and / 2 are vertical angles., Then
/.1 and / 3 are supplementary, and / 2 and /_3 are supplementary.

lsec. u4-4]
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Since / 3 1s congruent to itself, this means that / 1 and /2
have congruent supplements. By Theorem 4-5, / 1 = / 2, which
was to be proved.

Theorem 4-8., If two intersecting lines form one right
angle, then they form four right angles.

s
o~/

You should be able to supply the proof,

Problem Set U4-4.

l. &. In a plane, how many perpendiculars can be drawn to a

line at a given point on the line?

b. In space, how many'perpendiculars can be drawn to a line

. at a gilver. point on the line?

2. If 6% and 6% are opposite rays and 6ﬁ i1s a .ray such that
m'Z;RON = mlz;SON, what can you conclude about 6% and ﬁ%?
Explain.

3. 1In half-plane H, f% and fi are
opposite rays, m / RXB = 35 and
m LRXS = 90,

a. Name a palr of perpendicularp
rays, 1f any occur in the
figure.

b. Name a palir of complementary
angles, if any occur in the
figure,

¢, Name a pair of vertical angles,

if any occur in the figure.
d. Name two pairs of supplementary
angles in the figure.

[sec. 4-4]
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4, Determine the measure of a complementary angle for each of
the following:

a., 10°. - a. x°.
b. 80°. e. (90 - x)°,
c. u4,5°, £. (180 ~ x)°.

.5, a. If two angles wlth the same measure are supplementary,
what 1is the measure of .each?
b. If two angles with the same measure are complementary,
what 1s the measure of each?
6. a. If two lines intersect, how many palirs of vertical angles
are formed?
b. TIf the measure of any one of the angles in (a) is 70,
what 1is the measure of edach of the others?
c. TIf all of the angles in (a) are congruent, what is the
measure of each?
7. If one of a pair of vertical angles has a measure of r,
''''' write the formulas for the measures of the other three
angles formed.
8. 1In half-plane H, GE and GA are opposite rays,
m / AGB m / _BGC, and

'm / CGD = m / DGE.

it

it

Find m /_BGD. . H
9. Prove Theorem 4-1. A
10. Prove Theorem 4-4, *

> > > >
11. Given: In the figure for Problem 8, GB_ L GD and GA and GE

are opposite rays.
Prove: /_AGB and / DGE are complementary.

<
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12. Given: In plane E, lines Kﬁ,
«» <>
PR, ﬁa, MT intersect at O,
<> <>
™ L AB,
Prove: b+ g+ d = a,

13. If 33 and 6% and 5E are three different rays in a plane,
no two of them opposite, indicate true or false for each
of the following statements and explain your answer.
a. m/ AOB + m / BOC = m / AOC.
b. m /AOB + m / BOC + m / AOC = 360.
14. The measure of an angle is nine times that of its supplement.
What 1s the measure of the angle?
15. A layout drawing is a plane drawing which can be folded to
form the boundary of a given solid. Below 1s pictured a
cube and a layout drawing for 1t.

B

(Dotted lines indicate folds.)
Use your imagination, your ruler and your protractor to
make a layout drawing for each of the figures below. Then
cut out your drawing, fold on dotted lines, and tape to-
gether. Use cardboard or héavy paper for a rigid figure.
a. A pyramid whose base 1is
a square with 2".sides
and whose other faces
are isosceles triangles
with 60° base angles.

2" -

1900
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10,
11.
“12.

13.

'14.

(Problem 15 continued)

b. A prism whose bases are
pentagons with 1 inch
sides an¢ 108° angles,
and whose height is
2 1nches. .

Review Problens

What tool is used to measure angles?
To every angle there corresponds a real number between
and ; called the measure of the angle,

An angle with a measure of less than 90 is .
Two angles formed by the union of two opposite rays and a
third ray all with the same end polint are a

of angles,

If the sum of the measure of two angles is 90, then each is
called a of the other.

An angle with a measure greater than 90 is called

Angles with the same measure are )

If two angles are both congruent and supplementary, then each
of them is a .

Supplements of congruent angles are .

If two angles are complementary, then each of them is

An angle 1is the of two which have a common
end point. :
If X, ¥, Z are three points, the union of the three
segments connectiﬁénthem in pairs 1is a .
A point X is in the interior of é%RST if points R and

lie on the same side of ST and if points X and

lie on the same side of .

If the sum of the measures of two angles is " they are
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called complementary and if the sum 1s they are
called .

15. Two opposite angles formed by two intersecting lines are

angles. They are always congruent.

16. Ag and ﬂ% are opposite rays. The points E, F, and H are
on the same side of j%. Points E and H are on opposite
sides of 5%, Points A and H are on the same side of
$%. B 1s.L 10 and BE_L Bi. m/ FBE = 20. Draw the
figure and find:

a. m / EBA. b. m / FBH. c. m / EBC.
17. Given: Find: ‘
m / BCD = 90, a. m / DOC.
m / BOC = 50, b. m / BCO.
m / DCO = 25, c. m / DOA.
m / DAO = L5, d. m / AOB.
D
A B

18. If one of two supplementary angles has a measure of 50 more
than the measure of the other, what is the.measure of each
angle?

19. The measure of an angle is five times that of its complement.
Find the measure of .each angle,

20, Under what conditlons are the angles of a linear pair:
congruent? | ’

21, Is there a point in the plane of a triangle such that the
point is neither in the exterior nor the interior-of a
triangle and neither in the interior nor the exterior
of any of its angles? '

20, Is the measure of an angle added to the measure of an angle
the measure of an angle? Explain,
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23. Could the interior of a triangle be considered as the
) intersection of three half planes? Illustrate,

‘2u. How many triangles are in this figure?
25. Does m / BAC = m / BAE?

26.  Does / BAC = / BAE? |

”27. Is / ABE supplementary to / EBC?

28. How many angles are indicated in the
drawing?

Problems 2% - 28,

29. Explain carefully why the following statement is true:

‘ If a line m intersects 2 sides of a triangle ARST in
points U and V, not the vertices of the triangle, then
line m does not intersect the third side.

30. Given in the figure /x = /y. Prove: [z =/ s.
' A

N 74 YN\S_

31. If you were given that /a = /b ang that / x 1s supplementary
to / a and that /y is supplementary to / b, what theorem or
postulate would you use to prove that_[_x g.ZLy? o

32. The Angle Measurement Postulate places what limltation on
angle measures?

.33, Is the following a.correct restatement of the Angle
Construction Postulate: Given a ray X¥ and a number k
between O and-180 there is exactly one ra&‘f?-such that
m / PXY = k? Explain.
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34, By giving its name, or by stating it in full, give the
postulate which seems to you to be most appropriate in each
of the following cases, as a4 reason for the statement.

a. 5 b. B
<D B
A r s
c _ \ .
A 0 C
m / DAC = m / BAC - m /_BAD, r + 8 = 180,

35. Is the following statement always true?
Ir 58 and 3 intersect at O, then / AOC ¥ / BOD.

' 1904




Chapter 5
CONGRUENCES

5-1. The Idea of a Congruence.
Roughly speaking, two geometric flgures are congruent if
they have exactly the same size and ~+'jape. For example, in the

"~ figure below, all three triangles are congruent. -

B F

One way of describing the situatilon is to say that any one of
‘thése triangles can be moved onto any other one, in .such a way

that it fits exactly. Thus, to show what we mean by saying that

two triangles are congruent, we have to explain what points are
supposed to go where. For example, to move A ABC onto ADFE,
we should put A on E, B on F, and C on D. We can .
write down the pairs of corresponding vertices like this
: A +«—F
Be—F
C =— D.

To describe‘the congfuence of the first triangle and the third,

. we should match up the vertices like this:

A+—G
B-~—H
c —1I.

How would you match up the vertices to describe the‘congruence

. of the second triangle with the third?

A matching-up scheme of this kind is called a one-to-one
"correspondence between the vertices of the two triangles: CIf -
the matching-up scheme can be made to work -~ that 1s, 1if the
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triangles can be made to fit when the vertices are matched up in
the prescribed way -~ then the one-to-one correspondence 18
called a congruence between the two triangles. For example, the
correspondences that we have just given are congruences. On the
other hand, if we wrilte

A+~——"F

B+——D

C~—E,

this does give us a one-to-one correspondence, but does not give
us a congruence, because the first and second triangles cannot be
made to coincide by this particular matching-up scheme.
We can write down one-to-one correspondences more briefly, in

‘one 1line. For example, the correspondence

A -——E

Be——sTF

C =—D,

which 18 the filrst example tnat we gave, can be written 1in one
l1ine 1ike this: :
. ABC «— EFD,

Here it should be understood that the first letter on the left
corresponds to the first letter on the right, the second corres-

ponds to the second, and the third to the third, like this:
ABC EFD

{# ! 4{j1

ILet us take one more example.

A B E F

106 '
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These two figures are of the same size and shape. To show how one
can be moved onto the other, we should matcn up the vertices like
this:

A ~—— H

Be—m23G

C =——F

D ~—E.

These two figures are congruent, because the correspondence tnat
we have written down 1s a congruence, that is, the figures can be
made to fit if the vertices are matched in fhe given way. For
short, we can wrilte the congruence in one line, 1like this:

ABCD -— HGFE.

Notice that the order in which the matching pairs are written
does not matter, We could nhave written our list of matching
pairs this way:

D~—E

B ~—G

C ~—F

A H;

and we could have described our one-to-one correspondence in one
line, l1like this:
DBCA ——= EGFH.
All that matters is which point is matched with which.
It is quite possible for two figures to be congruent in more
than one way.

A
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‘Here the correspondence
ABC — FDE
is a congruence, and the correspondence
| ABC -— FED
is a different congruence between the same two filgures.
Obviously AABC coincides with itself. If we agree to match
every vertex with itself, we get the congruence
' ABC =— ARC.
Tais is called the identity congruence. There 1s another way of
matching up the vertices of this triangle, however. We can use
the correspondence
ABC -~ ACB.
Under this correspondence, the figure 1s made to coincide with 1it-
self, with the vertices B and C interchanged. This 1s not
possible for all triangles by any means; it won't work unless at
ljeast two sides of the triangle are of the same length.

Problem Set 5-1

In the problems of this section, there are no tricks in the
way that the figures are dravn. That 1s, correspondences that
1ook iike congruences when the figures are mgasured with reason-
able care really are supposed to be congruaences. In this section
we are not trying to prove things. We are merely trying to 1earn,
informally, what the idea of a congruence is all about.

1. Below there are six figures. Write down as many congruences
as you can, between these figures. (Do not count the iden-
tity congruence between & figure and itself but recall that
there 1s a congruence between a triangle having two congruent
sides and itself that is not the identity.) You should get 6
congruences in all. (One congruence 1s DEF =——SUT.)

ra
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-

v

2. Answer as in Problem 1: X P Z
/\ : Q; G i




. 4, Apnswer as in Problem 1:

P N

E

K_J
.
H
1
L M |
P—R

| o 7

5. Name the figures that do not have a matching figure.

110
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Wnich pairs of the following figures are congruent?

* | \ Ko

111
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7. The trlangle belcw 1s egurlateral. That 1s, AB = AC = BEC.

B

112
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For the trlangle on the preceding page, write down all
congruences between the triangle and itself, starting /ith
the identity congruence - ABC <— AEC. (You should get more

than four congruences.)
8. Write down all of the congruences between a square and itself.:

D c

A B

9. a. If two figures are each congruent to a third, are they
congruent o each other? | )

Is a figure congruent to 1tself?

Can a triangle be congruent to a square?

Are the top and bottom faces of a cube congruent?

Are two adjacent fac- - of 2 cube congruent?

H 0O 0 T

Are the top and botteczr facss of a rectangular block, such
as a brick, congruent?

g. Are two adjacent face. af = brick congruent?
10. Pick out the palrs of comgr-=mt [lgures.

00
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11. Write down the four congruences of this figure with itself.

D C

A— — —B

~12. Suppose A, B, and C are three points of a line as shown with
AB = BC. '

L 1
1 T
B

+

A C
a. Describe a motion of the line that takes A to where B

was. Does 1t necessarily take B to C7? ' .

b. Describe a motion of the line that interchanges A and C,

13. Under what conditions can the following pairs of figures be
made to coincide by moving one in space without cﬁanging its
size and shape? (It is understood that this moving is done
abstractly in the mind. One figure can move through another
so that a solid can be moved onto another solid of the same
size and shape. For example, one segment can be moved to
coincide with another if they have the same length. One
sphere can be moved to coincide with another if thelr radii
are the same length.)

a. Two segments.
b. Two angles.
¢c. Two rays.

d. Two circles.
e. Two cubes.

f. Two points.
g.

Two lines.

114

[sec. 5-1]




107

14, Given a circle containing three points A, B, C as shown, with
the arc from A to B the same length as the arc from B

to C.
B

a; Describe how the circle may be moved to take A to where
B was and B to where C was.
b. Describe how the circle may be moved to leave B fixed
but to interchange A and C.
15. Suppose that the following ornamental frieze extends infin-
itely in both directions, as a line does.

S S S L L S S L
NN N N N N NN

a. Describe motions of two different types that induce con-
gruences of the frieze with itself. How many such con-
gruences are there altogether?

b. Do the same for this frileze.

115
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7%6,2‘Which of the following figures can be fitted onto each othef?;f?“
" For each matched pair, tell whether you must turn the figure

over in space as well as slide and rotate it in a plane to
make it fit on the other so that all segments fit.

L

Tl B

T

d- ‘ é. | . f'..

17. The flgure below 1s a five-polnted star.
B

E D o |
Write down all of the congruenceé between the star and'itself{A_

To save time and paper, let us agree that a congruence for
this figure 1s sufflclently descrlbed 1f we say where the
points A, B, C, D, E of the star are supposed to go. 'For-ex-f
ample, one of the congruences that we are looklng for'can be
written as ABCDE =—BCDEA.
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" 5-2. Congruenceg between Triangles,

In the preceding section, we have explained the basic idea of
what a congruence 1s. Let us now give some mathematical defini-
tions so that we can talk about congruence in a careful way, in
terms of distance and angular measure, instead of having to talk
loosely about things falling on each other.

For angles and segments, 1t is easy to say exactly what we
mean:

Definitions. Angles are congruent i1f they have the same

measure. Segments are congruent if they have the same length.-
The first definition above 1is merely a repetition from Section
§-3, |
Anzlogous to Theorem 4-2 for angles we have a theorem for -
segment=x: .
4 Tr=orem 5-1. Every segment is congruent to itself.

We scmetimes refer to these two theorems by the term identity
congruemce. L
Jz3t as we ind;cate that £ A and £ B are congruent, by
writing ZA Y 4B, so we may write
iB = CD .
to indicate that the segments AB and CD are congruent. In the
table below, the equation on the left and the congruence on the

LN

right in each line may be used interchangeably:

1. m ZA =m ZB. 1. LA = ZB.
2.. AB = CD. 2. AB= TD.

Each of the equations on the left is an equation between numbers.
The first says that m LA and m . B are exactly the same
number. The second says that the distance AB and the distance
CD are exactly the same. number.

Bach of the congruences on the right is a congruence between

geometric figures. We do not write = between two geometric fig-

ures uniess we mean that the figures are exactly the same, and

C 117
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- occasions when we mean this are rare. One example is thina:

~

|9
Me \
,‘i._u

Oe

A/

Here it is correct to write

o LBAC = LEAD, ‘
because LBAC and ZEAD are not merely congruent, they are ex- -
actly the same angle. Similariy, AB and BE are always exactlyt;
the same segment, and so it is correct to write AB = BA. o

ansider.now a correspondence
o . ABC~— DEF
between the vertices of two triangles AABC and ADEF.

B8 E

A C D F

This automatically gives us a correspondence between the sides of
the triangles, like this: '
AE~—DIE
AC =— DF
B ~—EF
and it gives us a correspondence between the angles of the two
triangles, like this: .

LA=—= LD

LB=—> LE

LC = LF,

118 .
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WYe can now state the definition of a congruence between two
triangles.

Definition. Given a correspondence

ABC =— DEF
between the vertices of two triangles. If every pair of corres-
ponding sides are congruent, and every pair of corresponding
angles are congruent, then the correspondence ABC-~—=DEF 1s a
congruence betwsen the two triangles.

You should read this definition at least twice, very care-
fully, to make sure that it says what a definition of the idea of .
a congruence between triangles ought to say.' o o

There 1is =z shorthand for writing congruences between triangles.
When we write

ZA T D,
this means that the two angles ZA and 4D are congruent. (That
is, m<Z A =mZ< D.) Simiiarly, when we write
‘ AABC = ADEF,

this means that the correspondence

ABC =—— DEF
is a congruence. Notice that this 1s a Very efficient shorthand:
the single expression AABC = ADEF tells us six things at once;

namely,
AB = DE : AB £ TE
AC = DF AC = TF
BC = EF B = EF
mZA =m4D ZA S ZD
mZB = mLE 4B = _E
m£ZC = m<PF, ZC = ZF.

In each of these six lines, the equations on the left and the con- -
_gruences on the right mean the same thing, and we can choose
either notation at any time, according to convenlence. Usually

we will write AB = DE, instead of AB = DE, simply because 1t is
easier to write. For the same reason, we will usually write

ZA = 2D instead of m<A = m.D.
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o "1t is sometimes convenient to indicate a congruence graph-
“ 1cally by making marks on the corresponding sides and angles,
‘1ike this:

B - E

, AABC £ ADEF o :
if We can also use this method to indicate that certaln corréspondingf’
_ ‘parts of two figures are congruant, whether or not we know. about
. other parts. S

B , | E

A # C =~

The marks in the figure indicate that (1) AB = DE, (2) AC = DF
~ and (3) m4A = m£D. .

' Question: Would it be correct to write AB = DE, or

ZA = £D? Why or wny not?

It seems pretty clear, in the above figure, that the congbu-
ences we have indicated are enough to guarantee that the corres-‘
pondence ABC-—=DEF is a cdngruence. That 1is, if these three
pairs of corresponding parts are congruent, the triangles must
also be congruent. In fact, this is the content of the baslc con-
gruence postulate, to be stated in the next sectilon.
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Problem Set 5-2 -

1‘
F ‘ ' Q
| AI//////\\\\\\\\\\\\B rv‘///////\\\\\\\\\\\\R
O ABF = A MRQ. Complete the following list by telling what
should go in the blanks. AB— M-Q
ZA T ZM. AF = . tlku 1
4B = AB = .
ZF = TB = .
2.
R
A B : F
- AABR ¥ AFBR. List the six pairs of corresponding, con-
gruent parts of these two triangles. ‘
3. /SMRK‘E AFHW. List the six pairs of corresponding, con-

gruent parts of these triangles. (It is not necessary to have
a picture but you may make a sketch if you wish,)

b, ARQF ¥ AABX. List the six pairs of corresponding congruent
parts of these triangles. Do not use a figure.

121

[sec. 5-2]




:1_11#

5. .AAZW ¥ ABZW. List the six pairs of corresponding, con-

, gruent parts of these triangles.

6. Here 1s a 1list of the six pairs of corresponding parts of two
congruent triangles. ‘Give the names of the two triangles that
would fit in the blanks below..

— e

AB = VK. LA = £ZM,

" BW = KF. LB T LK.

W = MF. ZW = LF.
A_._%: A

7. If AABC ¥ AXYZ and ADEF = AXYZ, what can be said about
the relationship of AAB. to ADEF? State a theorem gener-
alizing thils situation.

8 AC

50

A B

3in

a. Using ruler and protractor, draw a triangle ABC 1in which
AB is 3 inches long, BC 1s 2 inches long and angle
B 1is 500. Compare your triangle with those of other mem-
bers of the class. '

b. Draw AABC in which AC 1is 3 inches long, BC 1s 4
inches long and angle C 1is 700. Compare triangles.

c. Draw AABC with AB 3 .inches long and BC 2 inches
long. Make 4£B any siée that suits your fancy. Compare
triangles. '

d. If these three exercises suggest to you an ldea concerning
a congruence between two triangles, try to state or write

this idea for triangles in general.
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9, a. Glven that AABC and ADEF do not intersect, and that
X 1s a point between B and C. Tell which of the sym-
bols =, ¥ may be iilled in the blanks to make the state-
ments meaningful and possibly true.

1. AABC ___ ADEF.
2. m LA ____m ZLD.
3. KB __ TE.
4. BC _ EF.
5. 4B ___ 4C.
6. <ZABX __ ZARC.
7. m/Z ABX ___ m £ EDF.
b. Which of the blanks could have been filled with either =
or = 2

c. If AB had been the same segment as DE but if C were
a different point than F, which blank could have been
~filled by = that should otherwise have been filled by = ?

5-3. The Basic Congruence Postulate.

To get at the facts on congruences of triangles, we need one
new postulate. In the name of this postulate, S.A.S. stands for
Side Angle Side.

Postulate 15. (The S.A.S. Postulate.) Given a
correspondence between two triangles (or between a
triangle rand itself). If two sides and the included
angle of the first triangle are congruent to the
corresponding parts of the second triangle, then the
correspondence 1s a congruence. '

To 1llustrate this, we repeat. the previous figure.

B : =

A H C | F
123
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‘The postulats means that if

iE = TE,
A6 X OF
and .
o ZA 2 £D,

~ as indicated in the figure, then
AABC £ ADEF;
that is, the correspondence ABC-—DEF 1s a congruence. o
It is very important to notice that in the S,A.S. Postulate, .

" the given angle is the angle lincluded between the two given_sidés,’ 
 1ike this: ‘

Under these conditions, the S.A,S. Postulate says that the corres-
pondence ABC-—~DEF 1s a congruence. If we knew merely that some .
one angle and some two sides of the first trlangle were congruent

""to the corresponding parts of the second triangle, then it would
not necessarily follow that the correspdndence was a congruence.
For example, consider this figure:

B E

A C D F

Here AB = DE, £ZA = 4D, BC = EF. Note that Z4A and £D are -

not included by the pairs of congruent sides. This'correspondende
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LB with ZE, and Z£C with Z£F, Since these are not congruences,
;fhé~definition'of congruence between triangles is not satisfied. -

5- -4, Writing Your Own Proofs. o , o

v You now have enough basic material to be able to write real
geometric proofs of your own. . From now on, writing your own
~proofs will be a very important part of your work, and the chances
‘are that it will be more fun than reading other people's proofs.

' Let us take a couple of examples, to suggest how we go about
finding proofs and writing them up. ‘ o
Example 1. If two segments bisect each other, the segments Join- Cn
ing the ends of the given segments are congruent.

Given: BR and BH bisect each other at F.
To prove: AB = RH. H

-rlb

. B L
Starting to work on a problem like this, we should first draw

a figure and letter it, using a capital letter for each vertex.

Then, state the hypothesis and conclusion in terms of the lefter-.

ing of the figure.

Next, we divide the page into two columns as shown, and write

- in the headings Statements and Reasons.

‘ All this, of course, isn't going to do us a bit of good- un-"va
nless we can think of a prooil to write down.
. ‘Since our object is to prove two segments congruent, we must o
,mrecall what we know about . congruent segments. Looklng back we can -
;_find the definition of congruent segments, of congruent triangles,

jtand the S.A.S. Postulate. These are the avallable weapons aggut
R A vl

. congruent segments in our arsenal, and at this point the search: 1s‘”
nshort, because our arsenal is small.

fhywnkl _ S ,]¥253”
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To apply the postula:a,-We have to set up a correspondence
cetween two triangles, ir suzh a way that two sides and the in-
~duded angle of the first iz~zangle are congruent to the corres-
~onding parts of the seccnd “rlangle. From the fZgure, *hils
correspond=nce looks as 1= it qught to b« . ‘

[ iFE-—=RFH,
Tvs pairs »f sides are c-+. = ¢, because we Iz~ from the glven
d@sa anc¢ cne definition -« 0dt ct that
AY = - and BF = HF. '

~ about the included an.--3. ZAFB and ZRFH? We need to kno
.t they are congruent, oo And they are, because they are verryli
~=.. angles. Therefore, by -2 S.A.S.'Postulats, our correspondes~
.S a congruence. The sidezr. BB and RH are:-orresponding side:
and so they are congrueﬁt. This is what we wanted to prove.
Written down in the do. nle-column form, our proof would look
like this:

Given: BR and BH Dbisect each other ' /////ﬂ\\\\
- E
at F, . A\/ » R
RH.

To prove: AB =
) : 5
Statements Reasons

1. AF = RF 1. Definition of bisect.

2. BF = HF, 2. Definition of bisect.

3 ZAFB = ZRFH, 3. Vertical angles are
congruent .

4, AAFB £ ARFH, 4, The S.A.S, Postulate.

5. AB = FRH. 5. Definition of a congruence
between triangles.

. This is given merely as a sample of how your work might look.
There 1s a limit to how "standard" we can expec: the form of a
proof to be. For example, in this proof we haVe indicated con-
gruences between segments by writing AF = RF and BF = HF, and

so on. We éould Just as well have written AF ¥ RF, BF = HF, and
so on, because 1n each case the congruence between the segments
and the equation between the distances mean the same thing.

126
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There are only two real. 7y ‘wmoxtant things in writing nroofs.
. First, what you write shoxl¥’ .y what wvou really mean. Secordy
~_the things that you nsaliy mear etouw.ld form a complete logiw:::
‘explanation of why the thec-a - tiru:.

By now, you should havi; %2 Ade=z and so We give our secuad
example in an incomplete form Zosr— roblem is to £1i11l in the
- blank spaces in such a way as %u get, - - proof, H
Example 2.
Given: AH = FH.

EB-bisects ZAHF.

To prove: ZA = /ZF.

e

A B F
Statements . Reasons

1. BH = FH. . Given.

2. ; 2 Definition of the bisector
of an angle. :

3. HB X HE. “.. Every segment is congruent
to 1tself.

b, z,

5. LAY P, ’ 5.

A mistake often made. in proofs is that the student assumes as
true the very thing he 1s trying <o prove to be true. Another
common mistake 1s to use as a res3on in his proof a theorem which
is actually a consequence of the Zact that he 1s trying to prove.
Such arguments are called circular srguments, 2nd are worthless
. as logical proofs.

A particularly bad kind of cirw—:ar argument 1is the use of
the theorei Wwe are trying to prowe .zz a reason .for one Qf the
. steps in its "proof". ’
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Problem Set 5-4
(gggg: In some of the fnllowing problems we make use of a square.
A square ABCD 1is a plame figure that is the union of four con-
- gruent segments AB, BC, CD, DA such that Z£ABC, <£BCD, <£CDA,
ZDAB are right angles. The square will be discussed in a later
chapter of the text.)
1. In each pair of triangles, if like markings indicate congruent

.parts, which triangi=s could be proved congruent by S,A.S.?

) /\3\
Nl

1

AN

Dubb
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In the figure it is Z—+en

Copy and complete the foilowling proof.

that AE intersscts D at
C, that AC = DC and BC = EC.
Show (i.e., prove) that
LB = LE. Cop7 the follow- B
- Ing proof and supply the missing reasons.
St_atements Reasons
1. AC = CD. 1. Given.
2. BC = EC. 2. .
3. ZACB £ ZICE. 3. L angles ‘are
' congruent. ] T
4., AACB T ADCE. Y, [Note tha_”“
Statement 3 Tefers to angles
Y and Statememt 4 to.. triangles,.
so that you= reason here .
should refez to triangles]
5. IB = /LE. 5. Corresponding partsof. con-
gruent triangles are
R | . H,
3. Suppose in this figure : ‘

RB=ZHB, «4x = /y and
E is the midpoint of AF.
Show that «R = «H.

Statements - - Reaé‘on‘s .

1. ‘ﬁ'E':“'H"‘ I
2. «x Y. Zy. T, Given.
3. ” = 3 From the def_‘iuition of mid-
‘poimu. :
ke . | & s.as.
5 . 129 5
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4. a. If AETT 1is  square and
E 1s the widpoir ' of 1B,
p-ove that RC = D. 3See +
note precering Problam 1.) \

k. What pzirs of cong—uent
z-ute angl:s appezr in the A -+ + B

Z.zure? PTove ycuT ExmweDl.

-5, I this figure A= = Z= and \
m<Lx=m £Z. B/Cy“‘ : H
Swow that m £ A =m £ 7, \g/

F

. ' H
6. = thils figure 1t is given
that m £ ABH = m £ F&Bi,
AB = FB. Prove i = FH.
, ___ A B F
7. Prove that if segments AH, RB bisect ezch other at point F,
then AFAB = AFHR, c D
8. Prove: If the lime segments
2D and BC Dbisect each other,
then AB = IX and AC = DB. A B

9. a. Given: Sguars ARCD, R is ,
the midpoint of BB, F is = D ' c
point between = and D,
is a point bems=sn C and 3,
DF = CQ. To ——we: RF = Ew.

b. Are twere pwe other polr—s
F', Q' ol sgusme =8CD nct an
D or = so— mzs RF' = RQ'T
Where are ‘taer?”

10. Suppo== in this Tigtre thzi
AB = == and =h= AF bisecss
ZHA=, Prov=a —oat TFH = FE.

130
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5-Z. Ovsrlapping Triangles. Using the Fizure in Statsments.
Fregzently in geometric figures, the =riangles that we need
to work with are not entirely separate but ovsrlap, 1like AAFM
and AFAH 1n the figure below.
R

A B F

The easiest way to avoid getting mixec¢ up, &nd making mistakes, in
dealing with such cases, 1s to write d—wn crmgruences In a stand-
ard form, like this,

AAFM = AFAH,
Check that the correspondence AFMe—FAH r=ally is a zongruence,
and then later_refer back to AAFM = AFAH when we want to con-
clude that two corresponding sides [z~ corresponding angles) are
congruent.

Of course, if you dcm't s=e the cesrgruences between the over-
lapping triangles, you will have noth-'.g tc check and mothing to
apply later. To practice up, write =1 the congruences tixzt ycu
can vetween triangles ccntained in t:re fEgure azove, 1f It is
given that AR = FR amd M, H, = arez £he midpoints of tix= res-
pective sides. '

Let us now look atia case ':z whi-h Thils sort of thing comes
up in the proof of a theorem. H
Given: HA = HF,

HM = HQ.
To prove: FM = AQ.
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A very common way to prove that two segments are congruent is
to. show that the segments are corresponding sides of zongruent
‘triangles. If this way can be used successfully here, thk=n the
first thing to do is locate the triangles which contain ¥M and
EG. These are AHMF and AHQA, and thess triangles overiap
quite a bit. Now the problem becomes. one of proving the triangles
congruent. The proof in the double-columm form goes like this:

Statements Reasons
1. ‘HA = HF. 1. Giwv=n.
2 ZH = H. 2. An mngle 1s congri=mt to
- : itmalf,
3. HM = HQ, 3. WEy?
4, AHMF ¥ AHQA, : b, Wes?
5.. FM = AQ. 5. Wmy?

A strictly logical proof must not depend on a figurs bt must
follow from the postulates, the definitions, ané the prewviously
proved theorems. But geometers in practice use figures 2= a mattex
of convenience, and readlly accept many observable facts without
a tedious restatement in words, unless such z restatemert s esE=m-
tial to clarifying the problem at hand.

To illustrate, let us look at a resizfemsnt of Exzmple 1 used
previously.

Example 1. Let- A, B, F, H and R e five non-zellinsar
points lying in a plane. If (1) F is betmssm A =md . (2) F
is between B and H, (3) AF = FR, and (& BF = FHE, tmem (5)

AB = RH.
This conveys alllthe inforﬁaticn conveyed by the figure «n the
1eft and the notation on the right below.

H Given: AR and BE bissct each.

AK/A\\\\\> sther at F.
A E R To meove: AS Y HL.

132
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Notice that (1) tells us that_ FA and FR are opposite rays, and
(2) tells us that FB and FH are opposite rays. These two
things, taken together, mean that ZAFB and ZRFH are vertical
angles. (See definition of vertical angles.) This is the sort of
information that we normally read from a figure.

In stating problems in this text we will frequently avoid
tedious repetition by referring to a figure: You can use the fig-
ure to give the collinearity of points, the order of polints on a
line, the location of a point in the interior or exterior of an
angle or in a certain half-plane, and, in general, the relative
position of points, lines, and planes. Things you cannot assume
because '"they look that way" to you are the congruence of segments
or angles, that a certain point 1s a midpoint of a segment, that
two lines are perpendicular, nor that two angles are complementary.

Problem Set 5-5

1. If in this f_gure F ' E

AC = DB,

ZACF T /ZFE and

FC = EB, A

prove that AF = DE. B ¢ - D
2. In this figure BC = ED B

AC = AD and c
ZACE =  ZADB.
Prove OAACE =AADB. A
Proof: (Fill in the blanks.) D
. Statements : Reasons

1. BC = ED. 1. Given. E

2. CD = IC. 2. .

3. BD = EC. | 3. Addition, from statements.

1 and 2.

L, AC = AD. L,

5. ZACE T  ZADB. ) 5.

6 6

133
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- H F
f3,‘ Prove that the dlagonals of a i
' square are of equal length.
~ (See note preceding Problem 1
of Problem Set 5-4.)
Given: ABFH 1s a square. |V N\
To prove: AF = BH. | A B
h, In this figure ZAEW £ ZRHQ
’ and F 1s the mi point of BH.
Can you prove AWBF - AQHF?
| Explain. '
5. a. If - ABFH 1s a square and &%, A

BY are congruent segments on . , ,
the rays AH BF respectively,, Y . \

show that . AY, BX are congruent. H
Restatement: ' N ..
Given: ABFH 1s a square. XK - qY
. > > ,
X, Y are points of AH, BF,
respectively. | ‘
X ¥ BY. _ | Al Ng

To prove: AY = BX.
b. In the figure, X 1is between A and H, and Y is between

B and F. Would the proof be affected if H were between . .-

A and X, and F were between B and Y?

6. Suppose it is given in this . - H
figure that AH = BF, r = m
and x =Y. Prove that HB = FA.

~7.  If in the figure AR | WX,
- BE_| RY, AR = RX and BR = RY,
prove that AB = XY.

134
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4’5-6. The Isosceles Triangle Theorem The Angle Blsector Theorem.E}f
o At the end of Section 5-1 we mertioned the case of matching .
'fup‘the vertites of a triangle AABC in which at least two sides.ﬁ\*4
f'of the triangle are of the same length. This, in fact, is the
N case that we deal with in our first formally stated congruence
“theorem: _ o
Theorem 5-2. If two sides of a triangle are congrﬁent, then
the angles opposite these sides are congruent.
Restatement: Given a triangle AABC. If AB = AC, then
4B = ZC.

Abs.

B C

Proof: Consider the correspondence
‘ ABC =— ACB, ;
between A ABC and itself. Under this correspondence, we see that -~
' EB+—1C,
AC = TA-E:
LA -~ LA,
Thus two sides and the included angle of A ABC are congruent to
" the parts that correspond to them. By the S.A.S. Postulate, this
‘means that
' AABC = AACB,
- that is, the correspondence ABC<—~ACB is a congruence. By the =
definition of a congruence between triangles all pairs of corres-A'q
- ponding parts are congruent. Therefore ' '
‘ ZB = = «c,
" because these angles are corresponding parts.
We now show how the above proof looks in two- column form.

. Phe same figure is used.

185 |
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Theorem 5-2.

If two slides of a triangle are congruent,

then

- the angles opposite these sides are ccmgruent.

Given: AABC with EB = .
To prove: L3 =
- Proof:
Stat: 1ents 'Reasons
1. &B = TC. 1. E&ven
‘AC X AEB.
2. LA T «A 2. Identity congruence.
3 AABC £ AACB 3. Steps 1 and 2 and the S.A.S.
: Postulate -~ .
4. «£BT cc. k. Definition of a cohgmience

5 between triangles.

‘ Usually, we will state tk=crems in words, as we have-stated."sﬁ

Theorem 5-2, and then restate iiz=m, using notation which will be
" the notation of the proof. -

‘ -Definitions. A triangle with two congruent sides 1s called
isosceles. The remaining sif= i3 the tase. The two angles that
include the base are base zmEpl=s.

‘ In these terms, we can Si=t= Theorem 5-2 in this form:

"The base angles of an Ismsceles triangle are congruent.”

Definitions. A triangie whose Three sides are congruenf is
called equilateral. A trimngle no two of'whese sides are congru-
ent is called scdlene. "

Definition. A triangie Zs equiangular if all three of its
angles are congruent.

Using the term equianzular we state a thecrem which readily

We d=mote this theorem as Corollary

. follows from Theorem 5-2.

5-2-1. A zorollary is a theor=m which is an easy consequence of
another theorem. The proof of Torollary 5-2-1 1is left for you to
 do.

Corollary 5-2-1.
In proving theorems for yourself, you will need to make your
-~ own figures. It is importar= to draw figures in such a way that
i'they remind you of whet you ¥mow, Wwithout suggesting more than'you»
¥ know. For ex=mple, the figure given in the proof of Theorem 5-2 _‘?

136
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- looks like an lsosceles triangle, and this is as it should be,
" because the hypothesis of the theorem says that the triangle has
:'two congruent sides. In the flgure for the S,A.S. Postulate, it
looks as if AABC = ADEF, and this 1s as it should be, because
" this is the situation dealt with in the postulate. But it would
not have been good to draw isosceles triangles to l1llustrate the
S.A.S. Postulate, because this would suggest things that the pos-
- tulate doesn't say.
Definition. A ray KB bisects, or is a bisector of, an
angle 4£BAC ir D 1s in the interior of £BAC, and <£BAD S ZDAC.

A C

Note that 1f KB bisects 4ZBAC, then m ZBAD = m ZDAC
. =‘% m ZEAC.
Theorem 5-3. Every angle has exactly one bisector.
Proof: Given ZA. By the Point Plotting Theorem we can find
B and C, points on the sides of 4£A, such that (1) AB = AC.

A

Let D be the mid-point of BC, so that (2) DB = DC. Since
AB = AC, it follows by Theorem 5-2 that (3) <B = £C. (This
follows even though the isosceles triangle & ABC is "lying on 1lts
side.") From (1), (2) and (3), and the S.A.S. Postulate it
follows that AABD ¥ AACD.
[sec. 5-6]
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‘Therefore, <BAD ¥ ZCAD, and so m £BAD = m ZCAD. By the defi- .
 nition of bisector of an angle, this means that AB bisects ZBAC.

To justify our use of the word "exactly" we must prove that
KB i1s the only ray having thils property. Suppose there 1s a ray
f&ﬁ also a bisector of ZA, Then m ZCAD = mZCAE, since each of
 these equals % m <£BAC. Applying the Angle Construction Postu-
‘late to the half-plane with KE as edge shows that we must have
KE = Afi that is, EE and KB stand for the same ray. Hence,
‘there 1s exactly one bilsector. .

The following definitions are useful in discussing properties
of triangles.
| Definition. A median of a triangle is a segment whose end-
points are one vertex of the triangle and thé"mid-point of the
opposite side. '

Definition. An angle bisector of a triangle is a segment
whose end-points are one vertex of the triéngle and a point of the
‘opposite side which lies in the ray bisecting the angle at the
given vertex.

Note that every triangle has three medlans and. three angie
bisectors. The figure shows one median and one angle bisector of

AABC. BM is B

A T M C
 the median from B, and BT is the angle blsector from E.

Problem Set 5-6

A

1. In the figure AB = AC. We
start the proof that
Zm ¥ 4n. Complete this
proof supplying reasons.

188
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. Proof:

-

Statements

 1315;

Reasuns

e

ZABC

Zm 1s
ZARC,

Zn 1s supplementary to

£ ACB.
Zm

Zn.

Given:
and AB = DC.
AAFB
AFEBEC

Prove:

~
~

If in the figure
prove that

If AB = AC and
the plane figure,
ZABD =

If AC AB and
the plane figure,
ZACD =  ZABD.

ZACB.
supplementary to

In the figure

AFCB.,

ZEBA

ZACD, .

FA

FD

ADFC,

o

DB = DC in
show that

CD = BD in
show

[sec. .5-6)



".Give a paragraph proof rather

'than a two-column proof of the
ffollowing:

"Given: X and Y are the mid-

; boints of the congruent sides

" AC and BC of the isosceles

. triangle ABC. A
i, To prove: ZCXY = ZCYX. ’ -
57{{ Prove CorQllary 5-2-1., (Every equilateral triangle is
L eQuiangular.)' , A

—B8

'8, . Given equilateral triangle

' ABC with Q, R and P, the mid-
points of the sides as shown.

»Prove'that APQR 1is equilateral.

; : c R B o
9. Prove the following: If median FQ of AFAB is perpendicular
’ to side BB, then AFAB is isosceles. : o

:_5-7. The Angle Sicde Angle Theorem.

“_ -Theorem 5-4. (The A.S.A. Theorem.)_ Given a correspondence S
‘ betweenvtwo triangles, (or .between a triangle and itself). If two
‘angles and the included side of the first triangle are congruent _
ifto the corresponding parts of the second triangle, then the corres-

“pondence is a congruence.
‘ Restatement: Let ABC<+—DEF be a correspondence between two

. triangles. If _ ZA T 2D,
AB = DE,
| ZB = (E,
then AABC =  ADEF.
C
[
A ' B140°
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“Proof: Statements ' Reasons

1. On the ray DF there is a 1. The Point Plotting Theorem.
point F!' such that DF!' = AC. ‘
‘2. AB=DE and m£A = m&D, 2. Given.
3. AOABC = ADEF!, 3. The S.A.S. Postulate.
L, LABC = £DEF!. 4, Definition of a congruence
between triangles.
5. ZABC = ZDEF. 5. Given.
6. LDEF' = ZDEF. 6. Steps ¥ and 5, and the
. definition of congruent
angles.
—
7. EF and ﬁg' dare the same 7. Step 6 and Postulate 12.
ray. <>
8. F =F', 8. Two lines (EF and DF) in-
tersect in at most one
} point.
9. AABC = ADEF. . 9. Statements 3 and 8.
The proofs of the following theorem and corollary left

to the student. The proofs are analogous to those of Theorem 5-2
and Corollary 5-2-1. _
Theorem 5-5. If two angles of a triangle are congruent, the
sldes opposite these angles are congruent.
Corollary 5-5-1. An equiangular triangle 1s equilateral.

Problem Set 5-7

1. In some parts of this exercise there is not enough information
to enable you to prove the two triangles are congruent even if'you
use all other facts that you know, for example, that "vertical
angles are congruent". If it can be proved that the two triangles
are congruent, name the statement (A,S.A, or S.A.S.) supporting
your conclusion; 1f there 1s not enough information given to prove .
the triangles are congruent, name another pair of congruent parts
that would enable you to prove them congruent. If there are twd '
possibilities, name both.

141
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” a. Given only that. AH
b. Given only that <£c

¢c. Given only that <Za
and Zc ¥ Zd.

e fe e

Given only that AR
e. Given only that ZA

e ue

f. Given only that <ZXFY
Given only that JZXYF

. X K
2. In accordance with the specifications at the left, 1ist the
data which would correctly fi1l1 the blanks.
a. Side, angle, side of AABH:

A®, _, ®B.
b. Angle, side, angle of AABH: ,
c. Angle, side, angle of ABFH:
ZF, ___, L HEF. B F
d. Side, angle, side of ABFH: A
B, __, |
3. Follow the directlons of Problem 2.
‘a. Angle, side, angle of AABF:
__L B, . |
t. Side, angle, side of ARAF: R :
. 4R, __
c. Side, angle, side of ARAB:
s 4B, __. F
d. Side, angle, side of ARAB: ’
BR, ___, RA. ' A B
e. Angle, side, angle of ARAF:
£ZR, ___, L RFA,
f. Angle, side, angle of AAFB:

ZFAB, BF, ___ L
- 142
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"4, Follow the directions of Problem 2. .
7 a. B8ide, angle, side of AHFB:
., ZHBF, ___
b. Angle, side, angle of AABH:
— -HE’ — |
c. Side, angle, side of AHFB:
HB, ___, BF.
d. Angle, side, angle of AHFB:
L
“e. Side, angle, side of AABH:
AH, __, AB. c

5., If CB bisects GF andéa"-‘-—-' LD
in the figure, prove that GF G
bisects CB.

; B .
6. Prove Theorem 5-5,(If two angles.of a triangle are congruent,

g the sides orposite these angles A
are congruer=.) '
Restatement: If in AABC,
LBY LC, then AB = AC.
Hint: Use congruency of the
triangle with itself.

B~ c ~
7. Prove Corollary 5-5-1. (Every equiangular triangle is equil-
lateral.) Use a paragraph proof. : '

8. If AABC is equilateral, prove AABC = ACAB.

If the bisector of £G in A FGH 18 perpendicular to the -
opposite side at K, then triangle FGH is isosceles.

10. Given: The figure with F
Zx = Zy and
HB ¥ HM.
Prove: HF = HR.

[sec. 5-T)
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©11. 1In the figure, MK bisects M

S0 ZRMS and ZRWK ¥ ZSWK.

.Can 1t be proved that.
ZR T 4£s? If so, do so.

tJlQ. ‘Prove that AN = FH ir AF = RB
ZA = 4R and 4x = ¢y in
the figure. '

+*13. a. If, in the figure, X 4is
~ the midpoint of 7B,
ZA = /B:and JZAXR Y ' £BXF,
 show that AF = ER.
b. Do you need as a part of the
hypothesisTthat the figure
lies in a plane?

- 14%. Given: Za = /b and
Zw = Z£s in the figure.
Prove: GR = KH.

- 15. Can the following be proved A
o on the basis of the informa-
tion given? . P
Given:  ZAOB with OA = OB
o and P, Q, points on rays

ok, OB with AQ = BP.
Prove: OP = 0Q.

*16. Prove that RX = RY if it is
given that in the figure: BQ = TS,
m ZB=m 4T and m £Q =m £8S.

144
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 5-8. The Side Side Side Theorem.

, Theorem 5-6. (The S.S.S, Theorem.) Given a correspondence
- between two triangles (or between a triangle and itself). If all
“”.three pairs of corresponding sides are congruent, then the corres-

pondence is a congruence.
Restatement: Let ABC<+—=DEF %Tte a correspondence between two

triangies. If AB = DE,

AC = DF,

BC = EF,
B then AABC £ ADEF.
]
| E
|
|
1H

D mwr ] F
"~ Proof: Statements Reasons

-
1. There is a ray AG such that 1. The Angle Construction
ZCAG ¥ L FDE, and such that Postulate.
B a . G are on opposite sides
of

' —
2. There is a point E!' on AG 2. The Point Plotting Theorem.
such that AE!' = DE.

3. AAE'C T ADEF. 3. The S.A.S. Postulate.

What we have done, so far, 1s to duplicate ADEF on the
under side of AABC, using the S,A.S, Postulate.

-4, AB = AE!', 4., AB = DE by hypothesis;
and DE = AE!', from State-
ment 2.
5. BC = E'C. 5. BC = EF, by hypothesis;
and EF = E'C from State-
ment 3.
6. The segment BE' intersects 6. By Statement 1, B and E!
the 1ine AC in a point H. are on oppogsite sides of
the line ’

[sec; 5-8]
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ZAE'H,
£CE'H,

ZABH Statement 4 and Theorem 5-2.
ZCBH Statement 5 and Theorem 5-2.
mZABH + mZCBH = m ZAEC. The Angle Addition Postulate.

iﬁd. mZAE'H + mZCE'H = m £AE'C. |10. The Angle Addition Postulate.

e ue

O O

11. ZABC = ZAE'C. 11. Statements 7, 8, 9 and 10.
12, ZABC = ZDEF. | 12. Stateménts 3 and 11.
©13. OAEC =

ADEF.. 13. Statement 12, the hypothesis;,.
, and the S.A.S. Postulate.

e This completes the proof for the_case7in which H lis begggen
A and C. Ve recall,tgit H 1s the point in which the line ~BE'

" "intersects the line AC. If H = A, then B, A and E' are col-.

" linear, and the figure looks like this: | :

B E

2

A > C

|
|
!
I
} -
EIL/

In this case 4B X ZE', because the bmse angles of ‘an isos-

"celes triangle are congruent. Therefore «£B = ZE, because
ZE X ZE'. The S.A.S. Postulate applies, as- before, to show

. ‘that AABC ¥ ADEF. :

If A 1is between H and C, then the figure looks llke this:

B E
HI_\A C D F
/ //’
/ ,a/”
|/ /’/
1 |
1 -
E 146 -

[sec. 5-8]
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@i}and we show that ZABC ¥ ZE by subtracting the measures of
" angles, instead of by adding them. That is,

o , m ZABC = mZ HBC - m £HBA

and m£AE'C = mZHE'C - mZHE!'A,

. so that ZABC ¥ ZAE'C = ZDEF,
a8 before. The rest of the proof is exactly the same as in the
first case.

The two remaining cases, H=C and C 'between A and H,
" are similar to the two above. '

-’

Problem Set 5-8

1. Given: AABF and AAHF with A
AH = AB and HF = FF.
Prove:  <ZHAF ¥ ZBAF.
A F

2. In the figure, AB = FH and

~

B0 ¥ FB. Show that <4r = Zs.

3. In the figure, BH = BR and H R
BH ¥ BR. Prove that £4H = Z£R.

147
[séc: 5-8]



1% -
R Consider the pairs of tfiangles pictured below. If on the

basis of our information to date they can be proved corigruent,
tell which congruency statement you would use. '

a. H b.

A

h. Consider: 1. ARMW and AQMH.

A j. AWMX and AHMK.




BN

'

5. A Supplier wishes to telegraph a manufacturer for some parts . .
** in the form of triangul?r metal sheets. In addition to the
_ thickness, kind of metal, and number of pleces wanted, what
‘ls the least he can say in order to épecify the size and .
Bliapa ol the triangles? (Consider the possibility of more 1
. than one choice.) ' R '
- 6. Prove the following theorem: : C
If the blsector of the angle

opposite the base 1in an isos-

celes triangle intersects the
base, it is perpendicular to

the base,
Restatement: A “H B
Given: AABC with AC = BC and
H a point on AB such that c
ZACH = ZBCH. . /
To prove: CH_| AB.
7. Prove the theorem that the
median from the vertex of an
lsosceles triangle 1s the bi- ,
sector of the vertex angle. A D B ..

8. Prove the theorem: The bisector of the vertex angle of an
~isosceles triangle 1s the perpendicular bisector of the base.
Restatement:
Given: A ABF wilth AF = BF and

H a point on BB such that FH X
bisects ZAFB.
To prove: AH = BH and
FH | AB.
A H B

149
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9. a. Given: In the flgure,

AF = BR and ' , .
Prove:  ZARF ¥ ZBFR. R . o
(The gap in TRE was left there ' ‘;::::::;,4::::::;7 K
so that the figure would not =)

reveal whether or not B
intersects AF.)

b. Do you need as part of The
hypothesis that the figtmre
lies in a plane?

10. a. Given: In the figure,
AH = FB, AB = FH, and
RQ bisects HE in K.
Prove: QK = RK.
b. Is the figure necessarily

planar?
.11. Given: square ABCD with P, A S D
Q, R, S the midpoints of BB,
TC, CD, DA, respectively.
Prove: APQS = ARQS. = R

150
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12. Polnt out why the followiﬁg argument 1s circular, and there-

by invalid.
. A

B C

Theorem: The base angles of an 1lsosceles trilangle ave congruent.'
Given: AABC with BB = AC.
To prove: <£B = ZC.

Proof: Statements Reasons

1. AB = IC 1. Given.

2. BC = AB. 2. Given.

3. EC = TB. 3. Identity.

L, AABC = AACB. L, s,8,8.

5. «£BZ ZcC. 5, Definition of congruent.
triangles,

\

151
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*13. Point out why the followlng argument is clrcular.
Theorem: Glven a correspondence betweeh two triangles (or be-
tween a triangle and itself). If two sides and the included
angle of the filrst trilangle are congruent to the corresponding
parts of the second triangle, then the correspondence is a

congruence.
Given: ABC<~DEF, BB = DE, BC = EF, <ABC = ZDEF.
Prove: AABC £ ADEF.
E
D F
Proof': Statement Reasons
1. Let ﬂ%' be the ray on 1. Angle-Construction
the same side of KE as Postulate.
AC such that £BAC! ¥ ZEDF,
intersecting BC 1in C',
2. ZABC' = ZAEC. 2, C' 1s on ray ﬁE, from
step 1.
3. ZABC = LDEF. 3. Given.
4, ZABC' £ LDEF. 4, Steps 2 and 3.
5. BB T DE. 5. Given.
6.  £BAC' = LEDF. 6. Step 1.
7. O ABC' £ ADEF. 7. A.S.A.
8. E' = EF. 8. Corresponding parts.
9. E = EF. 9. Given.
10. EC' = EC. 10. Steps 8 and 9.
11. C' =C. 11. Step 10 and the reason
for Step 2.
12, OABC £ ADEF. 12. Steps 7 and 11.
152
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15.

16.

17.

8.

If in the figure FQ_| AR, A B F H R
FQ bisects ZAQR,
B bisects ZAQF and
HQ bisects LFOR, alb
. prove that BQ = HQ.
- Q

- In AABC and AHRV, AB = HR,

145
H
If Za = 4b and 4m = Zw

in the figure, prove that /F

EF_| WB. A

If in the figure TBF | ¥

at F, ﬁf\__]__ﬁ at A, and
mZa =m 4 b; can you prove
that FB = AB? If so, do so,

2 -K
X :
M

In A HAF, points B and W are on H
sides AF and AH, respectively, W,
and FW_| AH, HB | AF, and
AW = AB., I ’
Prove: FW HB.
rove A B F

- B

~

AC = HW and median AF ¥ median Q.
On the basis of theorems you have
had so far, can you show that

vy -
i ~Q
AABC ¥ AHRW? h C R _

If so, do so,.
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?j*i9,"Usé the dlagram for Problem 18 and suppose now it is giVenlf' 
' that AB = HR, BC = RW, and median AF = median HQ. Can you

- prove that AABC ¥ AHRW? If so, do so.

720. ,Given: Points A, R, S, and C 1lie on Line L.
R 1lies between’ A and S.
S 1lies between R and C,.
B and D do not lie on L.

AR = CS,

AB = CD.

BS = DR. »

a. Prove that: «£BSA ¥ ZDRC.

b. Need the points A, R, 5,°C, B, D be coplanar?

"21. 1In this figure D is the midpoint
" of &G, BE, and CF.
Prove that AEFG = ABCA.

. E - N
22. Does the proof for Problem 21 hold even if the segments BD,
AD, CD are not coplanar? '

23. Given: In the figure, BQ_| RS.

m = 5.
RC = SC.

Prove that: «£RCA = ZSCA.~
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*
a5.

26.

‘u147 

A tripod with three legs of
equal lengths VA, VB,'VC

stands on a plane.

a. What can you say, if any-
thing, about the distances

AB, AC, BC? About the six
angles JZVAB, 4VAC, 4£VBA, etc?

b. Answer part (a) if you are
given also that the tripod legs make congruent angles with

each other; that is, ZAVB = 4ZBVC = ZAVC.

a. Let AR and B3 bilsect each other at M. Prove that

= RQ and AQ =

b. Now let CX also be bisected at M. How many palrs of
congruent segments, as in (a) can you find?

¢, You probably thought of CX as lying in the same plane as

AR and BQ. 1Is this necessary, or do your conclusions in (b)

hold even i1f CX sticks out of the plane of AR and BEQ?
Try to visualize tne figure in the latter case, and either
draw a plcture or make a model.
Let AAEC Dbe any triangle and D a point not in the plane of
this triangle. The set consisting of the union of six seg-
ments 7AB, AC, BC, AD, BD, CTD we shall call a skeleton of a
tetrahedron. Each of the six segments 1s called an edge of
the tetrahedron, each of the four points A, B, C, D 1s a
vertex, each triangle formed by three vertices is a face,
each angle of a face is a face angle. Edges and faces of a
tetrahedron were consldzsred in Problem 11 of Problem Set 3-lc. -
a. How many faces are there? How many face angles?
b. Two edges of a tetrahedron are opposite edges if they do
not intersect. They are adjacent if they do intersect
If each pair of opposite edges are congruent, are any of
the faces congruent? If each palr of adjacent edges are
congruent, what kind of triangles are the faces?
¢c. Construct an equilateral skeleton of a tetrahedron with
toothpicks and quick drying glue or with soda straws by

threading string through them.

[sec. 5-8]
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Review Problems for Chapter 5

1. Complete: _
If the vertices of two triangles correspond So that every P?%EUQ

of corresponding angles are and every pair of cor-
responding are congruent, then the correspondence
is a between the two triangles.

2. Consider the set of abbreviations A,.S.A., S.S.A., S.A.S.,
S.5.5., A.A.A,
a. Which subsets are abbreviations of postulates in this
chapter?
b. Which Subsets are abbreviations of theorems proved in
this chapter? . . '
3. If ARST 1s isosceles with RT = ST, what correspondences

are congruenceS between T
the triangle and itself? ,////////A\\\\\\‘\\,
R S
4, Given AF = BF and DF = EF, C

what would be the final reason
in the most direct proof that

~

AAFD ¥ ABFE? That AAEC £ ABDC? D E

5. Given: In the figure AR = RH
and AF = BH. ' R
Prove: RB = RF.

A H
8 , F

6. In the figure Cor Problem 5, if RB = RF and AB = HF, prove
that AR = HR.




T

A person wishes to

find the distance
across a river. He
does this by sighting
a tree, T, on the other

side opposite a point P,
such that PQ_| PT,
Harking the midpoint, M,
of P4, he paces a path
porpendicular to P& at Q until

iz determines the point X where his
peth meets line %ﬁ. What other segment
111 tre flgure has the same length as TP?
¥hat 1s the principal theorem used in show-
ing that: ATPM = AXQM ? - : X

Napoleon's forces, marching into enemy territory, came upon a
stream whose width they did not know. Although the engineers
were in the rear, nevertheless, the impetuous commander de-
manded of his officers the width of the river. A young
officer immediately stood erect on the bank and pulled the
visor of his cap down over his eyes until his line of vision
was on the opposite shore. He then turned and sighted along
the shore and noted the point where his visor rested. He then
paced off this distance along the shore. Was thls distance
the width of the river? What two triangles were congruent?
Why?




“'g, In ARST: Point X lies between : R

" 'S and T, and SX = SR. Point
Q 1liles between R and T, and
8@ Dbilsects 4£S. &K i1s drawn
Find an angle congruent to

£ZR, and establish the con- S X T
gruence. :
:10. Glven: The flgure with A : R

AB | B, RA_| BH,

Zx =2y, @B = WH and F,
the midpoint of EH. : Q ' W
Prove: ABFQ = AHFW. X ‘

'11. Given: In the figure,
AB = AR and
£4BAH = ZRAH.
Prove: FB = FR.

R
12. In thls flgure glven that:
AB = HF and
RB = RF.

Prove: AAFR = AHER.
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-13.

14,

15.

16.

17.

*Trisect means to separate : .

A F 151

Given: 1In the figure, B
AB = FB and MB = RB,
Prove: A AQR = A FQM.

In this figure glven R _ Q
that B and F trisect* FH,

LAZLH and AR = HQ.
Prove: BW = FW.

into three congruent parts. A B F H

In this figure, glven that
HA = HB,

—

éﬁ bisects 4 HAB and

BF Tbisects L HBA.

Prove: AF = BF.

A polygon ABCDE has five sides D
of equal length and five angles
of equal measure., Prove that E C

(. DAB = £ DBA.

Prove: If two medians of a triangle are perpendicular to
their respective sides, then the triangle is equilateral.
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18. In this figure

.. BBZHB and
Prove: ZA 2 /H and
M = M.

'19. Prove that the bisectors of a pair of corresponding angles of
' two congruent triangles are congruent.

0. 1In this figure it ~N a R Q
~1s glven that: '
XW = QR,
Za Zb,
LX £Q.
Prove: KA = KM.

e ne

21. In this figure 1t
| is given that
21 Y 42, 43 = L4,
and JT = JB.

Prove: Z5 = £6.

22, If PA PB and QA = QB then
- ZAPQ £ZBPQ. Will the same
proof hold regardless of whether

e u

A 1is in the same plane as P, Q,
and B ? o

¢
/




:faa;

2L,

25,

.a.  Prove: If PA = PB, QA = QB

"In this figure, points F and

: Construction: Take a point F

153

and R 1s on ?5 las shown in
the figure, then RA = RB.

b. Must the five points be
coplanar? Will the proof hold
whether or not A 1is in the
same plane as B, R, P, and Q?

H trisect KE; and points F
and B trisect MR. If AF = FB,
is A ABT ¥ A MHR? Prove your
answer.

E; ﬁ% is perpendicular to each of three different rays, o
RA, RB RC at R and RA = RB = RC, prove that SA = SB = SC,
{Draw your own figure.) ' -
. Q
Let A PAB and A QAB 1ie in
different planes but have the .
common side AB. Fet A PAB = A QAB.
Prove that if X 1is any point in
AB then A PQX 1s isosceles. P

Complete Buclid's proof of the
theorem thgt the base angles
of an 1sosceles trianile are
congruent.

Given: AB = AC.

Prove: L ACB = L ABC.

with B Dbetween A and F, and
a point H with C between A
and H so that AH = AF. Draw

CF and BH.
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',*28. Given: The plane figure ABCD 0 C
o AB = CD, AD = BC. |
Prove: AC and BD bisect
.each other. E

. *¥29, @Given: The figure ABCD with
AB = AC, DB = DC, and
ZBAX T ZXAY T £CAY.
Prove: AX = AY,.
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Review

Chapters 1 to 5
REVIEW EXERCISES

Write the numbers from 1 to 80. Follow each with a "M op

a "-" to indicate whether you corisider the statement true or false.
True will mean "true under all conditions". '

1.

U & W N

-J

10.

11.
12.

13.
14,

16.
S 17.

18.

Every two rays intersect.

AB desigiates a line.

If m<£ Q = 100, then £Q has no -complement.

A line and a point not on it determine a»plane,
If a point is in the interior of two angles of a triangle it

is in the interior of the triangle.

If a line intersects a plane not containing it, then the inter-
section is one point. '

The union of two half planes is a whole plane.

A point which belongs to the interior of an angle belongs to
the angle.

If BB = CD, then either A =C or A = D.

The intersection of every two half planes is the interior of:
an angle,

The interior of every triangle is convex.

It is possible to find %wo sets, neither of them convex, which
have a union which is convex.

A ray has two end-points.

Experimentation is always the best way of reaching a valid
conclusion.

Given four different points, no three of which are collinear, .
there are exactly six different lines determined by pairs of -
these points. ‘
If m £ZRST = m £ XYZ, then £ RST = £ XYZ.

In the figure the be;ﬁ}Way to name. D
the angle formed by DA and DC is £ D.

—B
A

In this text "between" for points on a line is an undefined
term. o
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19.
. 20.

22.
23.

24,
25,

26.
27.

28.

29.
3C.

31.
32.
33,
3y,
35.
36.

38.
39.

The vertices of a triangle are non-collinear.

The intersection of two sets is the set of all elements that
belong to one or both of them.

Every statement about geometric figures which 1s not a defini-
tion can be proved.

If AXYZ = A CAB, then L A = LX

It is possible for two lines to intersect in such a way that
three of the angles formed have measures <20, 7O, and 20.
Each side of an angle is a ray.

A1l nouns which the text uses that relate to geometry are
defined in the text.

The interior of an angle 1s a convex set.

If m LABC = 37 and m{ DEF = 63, then & ABC and L DEF are
complementary. A
If A 1is not between B and C, then C 1is between A and B.
|m| i1s never a negative number.

If point Q 1s in the exterior of £ ABC, then Q@ and C are
on the same side of K%.

The distance between two points 1s the absolute value of the
sun of their coordinates.

The 1ongest side of any triangle is called 1ts hypotenuse

If AELJ_QD at point P (different from points A, B, C, D),
then m £. APC + m L CPB + m LBPD + m £ DPA = 360.

Given a line, there is one and only one plane containing it.
A rational number is one which 1s the ratio of two integers.
Given two points on a line, a coordinate system can be chosen
so that the coordinate of one point is zero and the coordinate
of the other one 1is negative.

Two triangles are congruent if two sides and an angle of one
are congruent to two sides and an angle of the other.

A collinear set of points 1is a line.

x < 2x.
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‘ 40!

41,
b2,
43,
R

45,
L6,
47,
U8,
)49.
50.
51.

- 52,
53.

5.
55.

56.
57.
58.
29
60.

61,

157 -

The absolute value of every real number except zero 1is
positive.

If CD+ CE = DE, then D 18 between C 4dnd E.

If in AABC, m£ L A=m/LB=md4LC, then AB = BC = AC.

If, in a plane 2, F%_L_ line L, 53_1_ line L, and P 1is on
L, then F% = ;3.

From the statements (1) If q 1is false, then p 1s false,
and (2) p 1is true, we can conclude that gq 1is true.

The Ruler Postulate states that any unit can be treduced to
inches. '

If R is a point in the interior of £ XYZ, then m L XYR

+m L ZYR = m L XYZ. | .
There are certaln points on a number scale which afe hot,in
correspondence with any number.

Every line 1s a collinear set of points.

|-n] = n.

The distance between two points is a positive number.

From the facts that m £ AOB = 20 and m<& BOC = 30 1t can
we concluded that m £ AOC = 50.

4 7olnt on the edge of a half-plane belongs to that half-plane.
A line L "in a plane E separates the plane into two convex
sets.

The median of a triangl bisects the side to which it 1s drawn.
If two points 1ie in the same half-plane, then the line deter-
mined by them does not intersect the edge of that half-plane.
If two supplementary angles are congruent, each is a right
angle.

The interior of an angle includes the angle itself.

Verticél angles have equal measures,

The sides of an angle are rays whose intersection is the ver-
tex of the angle. '
If L C is supplementary to LA and m <L A = 67, then

m LC = 113.

If two lines intersect, there are exactly two points of each
which are contained by the other.
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62.
63.

6h.

65.
66.
67.

68.
69.
7C.
1.
72.
73.
7h.

75.
76.
7.
78.

79.
80.

If two angles have equal measures the angles must be congruent,
From the statement (1) if p 1s true, then q 1s true, and
(2) p 1is not true, we can conclude that q 1s false.

It has been proved in the first five chapters of this text
that the sum of the measures of the angles of a triangle 1is
180.

" The sides of a triangle are lines.
_The midpoint of a segment separates it into two rays.

If two lines intersect so that the vertical angles formed are
supplementary, then the measure of each angle is 90.

If m L B = 93, then £ B 1s acute.
For all numbers - x, |x| = x.
The Intersection of K% and iﬁ is AB. .

In A ABC all points of EE are in the interior of L A.

If AABC = A BCA, then A& ABC 1s equilateral.

It |x| = |yl, then x° = y°,

A ABC and & RFH which are in different planes are conggggnt
if AB = RF, BC = FH and AC = RH.

A ARC ANMQT if AB =QM, BC = TQ and £4Q
Median AB 1in A ACE Dbisects £ A,

It x° = y°, then |x| = |yl.

Il three points are on three different lines, the points are

~

L B.

e

)

non-collinear.

There is no A ABC in which £ A = L B.

Two points not on a plane are in opposite half-spaces deter-
mined by the plane if and only if the segment Jjolning them
intersects the plane.



Chapter 6
A CLOSER LOOK AT PROOF

 6-1. How A Deductive System Works.
In Chapter 1 we tried to explain in general terms how our

study of geometry was going to work. After the experience that
you have had since then, you ought to be in a much better position
to understand the explanation.

The idea of a set, the methods of algebra, and the process
of logical reasoning, are things that we have been working with.
The geometry itself 1s what we have been working on. We started
with point, line and plane as undefined terms; and so far, we
have used fifteen postulates. Sometimes, new terms have been
defined by an appeal to postulates. (For example, the distance
PQ was defined to be the positive number given by the Distance
Postulate.) Sometimes definitions have been based only on the
undefined terms. (For example a set of points 1s collinear if
all points of the set lie on the same ;ggg.) But at every point
we have bullt our definitions with terms that were, in some way,
previously known. By now we have piled definitions on top of
each other so often that the 1list is very long. And 1in fact,
the length of the 1list 1s one of the maln reasons why we had to
be careful, at the outset, to keep the record straight.

In the same way, all the statements that' we make about
geometry are based ultimately on the postulates. Sometimes we
have proved theorems directly from postulates, and sometimes we
have based our proofs on theorems that were already proved. But

in every case, the chain of reasoning can be traced backward to
the postulates.

You might find it a good idea, at this point, to reread the
second half of Chapter 1. It will seem much clearer to you now’
than it did the first time. It 1s much easier to look back,
and understand what you have done, than to understand an ex-
planation of what you are about to do. '
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'6-2. Indirect Proof.
L ~ We remarked in Chapter 1 that the best way to learn about
;logical reasoning is by doing some of it. There 1is one kind of

fbroof, however, that may require some additional discussion. For
fTheorem 3-1, we used what is called an indirect proof. The
“theorem and its proof were as follows:

" "Pheorem 3-1. Two different lines intersect in at most
fone point. ' .

; ~ Proof: It is impossible for two different lines to inter-
“sect in two different points P and Q. This is impossible .
f:because by Postulate 1 there is only one line that contains both
P and Q."

©" 7 probably this was the first time that you had seen this kind

l,of reasoning used in mathematlcs, but you must have encountered B

" 'the same sort of thing, many times, in ordinary conversation.
. Both of the following remarks are examples of 1lndirect proofs:
(15 "It must be raining outside. If it were not rainirg,
then those people coming in the door would be dry, but they '
“are soaking wet." : , o
(2) "Today must not be the right day for the football game.”
'If the game were today, then the stadium would be full of people,
but you and I are the only ones here."
In each of these cases, the speaker wants to show that his
. first statement is true. He starts his proof by supposing that
the thing he wants to prove is wrong; and then he observes that
this leads to a conclusion which contradicts a known fact. In
the first case, the supposition is that it is not raining; this
leads to the conclusion that the people coming in would be dry,
which contradicts the known fact that these peoplé are wet; and
_therefore it is raining, after all. Similarly, in the second
case the assumption that the game 1s today leads to a contradiction
" of the known fact of the empty stadium.
In the proof of Theorem 3-1, the supposition 1s that some
_ two different lines intersect in two points. By Postulate 1,
this leads to the conclusion that the lines aren't different
“after all. Therefore the supposition ié wrong, and thls means

[sec., 6-2]
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that the theorem 1s right.

Problem Set 6-2a

1. For the sake of argument accept each of the following assump-
tions 'and then give a logical completion for each conclusion.f“i
‘a. Assumption: Only men are color blind. T
Conclusion: My mother ~—-wcee--,
b. Assumption: All men are left-handed.
Conclusion: My brother ---—-----, _
¢. Assumption: The only thing that makes Jane 111 is hot
chocolate. Jane is 111. ' o
Conclusion: Jane --=-=---,
2. Which of the following arguments are indirect?
a. The temperature outside must be above 320 F. If the
temperature were not above 320; then the snow would
not be melting. But it 1is melting. Therefore, the
temperature'must be above 320.
b. That movie must be very entertaining. If 1t were not

o

very entertaining, then only a few people would go to
see 1t. But large cfowds are going to see it. There-
-’ fore, it must be very ‘éntertaining.

¢. The air-conditioning in this building must not be
working correctiy. If it were working correctly,
then the temperature would not be so high. But the
temperature 1is uncomfortably high. Therefore, the
air-conditioning is not working cbrrectly.

%, Mrs. Adams purchased a set of knives, forks, and spoons
advertised as a stainless steel product. After uéing the
set for several months, she found that the set.was beginning
to rust. She thereupon decided that the set was not stain-
less steel and returned it for refund.

In this example of indirect proof identify (1) the
statement to be proved, (2) the supposition made, (3) the
conclusion resulting from the supposition, and (4) the
known fact contradictory to (3).

[sec., 6-2]
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4, _What conclusions can you draw from the following hypothesis
in which x, y and 2z stand for different statements?
If x 1s true, then Yy 1s true,.
If y 1s true, then 2z 1s true.
x' 1s true.

o 5. Suppose you have the following data:

If w 1is true, then v 1s true.
If u 1is true, then w 1s true.
If x 13 true, then u 1s true.

v 1s not true. )
What conclusions can you draw? Did you use indirect reason-

ing at any point?
6. What conclusion follows from the following data?

(1) Nobody 1s allowed to Join the swimming club unless he
can play the piccolo.

2) No turtle can play the piccolo.

(3) Nobody 1s allowed to wear striped trunks in the club
pool unless ne i1s a member of the swimming club.

(%) I always wear striped trunks in the club pool.
(Hint: This problem becomes easier if you convert it
to if-then form, as in several preceding problems. For
example, let A be "someone is a member of the swimming
club", let B be "someone can play the piccolo", etec.)

7. If A 1is green, then B is red.
~ If A 1is blue, then B is black.
If B 1s red, then Y 1s white.
a. A 1s green, so B 1is and Y 1s
b. B 1is black. Is it possible to draw a conclusion con-

cerning A? If so, what conclusion?
8. Prove that the bisector of any angle of a scalene triangle
cannot be perpendicular to the opposite side.

Let us now prove the other theorems of Chapter 3. For
convenience, we first restate the postulates on which these

proofs are based:

Postulate 1. Given any two different points, there 1s
exactly one line which contains both of them.
[sec. 6-2]
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" Postulate 5. a. Every plane contains at least three non-
collinear points. b. Space contains at least four non-
coplanar points.

Postulate 6. If two points lie in a plane, then the line
containing these points lies in the same plane. -

Postulate 7. Any thfée points 1lie in at least one plane,
and any three non-collinear points lie in exactly one
plane. More briefly, any three points are c¢oplanar, and
any three non-collinear points determine a plane.

Theorem 3-2. If a line intersects a plane not containing

1t, then the intersection 1s a single point. .
Proof: By hypothesis, we have a 1line 1L and a plane E, and
(1) L intersects E in at least one point P, and

(2) E does not contain L.
L

/
/ E

We are golng to give an indirect proof of the theorem and
therefore we start by supposing that the conclusion is false.
Thus our supposition 1s that

(3) L intersects E in some other point - Q.

. .. To give an indirect proof, we need to show that our suppo-.
sition contradicts a known fact. And 1t does: If P and @Q
lie in E, it follows by Postulate 6 that the line containing
them lies in E. Therefore

(*} L 1ies in E,

This contradicts (2)., Therefore the supposition (3) is
impossible. Therefore Theorem 3-2 is .rue.
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Notice that the figures that we use to illustrate indirect

' proofs look peculiar. In the figure for Theorem 3-2, we have

indicated a point Q, merely to remind ourselves of the notation
of the proof. The proof itself shows that no such point @ can
possibly exist. In fact, the figures for indirect proofs always
look ridiculous, for a goocd reason: they are pictures of - impos-

sible situations. If we had drawn a figure for Theorem 3-1, it

would have looked even worse,. perhaps like this:

%

This is a plcture of an impossible situation in which two
different lines interseect in two different points.

Theorem 3-3. Given a line and a point not on the line,
there is exactly one plane containing both of them.

Proof: By hypothesis we have a line L and a point P
not on L. By the Ruler Postulate we know that every line
contains infinitely many points, and so L contains two points
Q@ and R. "By Postulate 7 there exiéts a plane E which contains
P, Q, and R. Since by Postulate 6, E contains L, we have '
shown that there exists a plane E containing both L and P.

At this point we actually have proved only half of the
theorem, since Theorem 3-3 says there 1s exactly one such plane.
It remains to prove that no other plane containing L and P

[sec, 5-2]
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exlsts. We do this by indirect proof
. Suppose that there 15 another plane E'!' containing L and
P. Since by Postulate 1' L 1s the only line containing Q and
' R, we know that Q and R, as well as P, lie in E!'. This
contradicts Postulate 7 which says that exactly one plane contains
"“three non-collinear points. Since E was established as a plane“w
'w“containing P, Q and R; E!' can not exist, and E 1s the -
only plane containing L and P.

The two parte of the proof of Theorem 3-3 bring up the
distinction between existence and uniqueness. The first half
of the proof shows the existence of a plane E containing L
and P. This leaves open the possibility that there may be more
than one such plane. The second half of the proof shows the
uniqueness of the plane. When we prove exlstence, we show that
there 1s at least one obJect of a certain kind. When we prove
uniqueness we show that there 1s at most one. If we prove both
exlstence and uniqueness, thls means that there 1s exactly one.

For example, for the fleas on a stray dog, we can usually
prove existence, but not uniqueness. (It is a very lucky dog
that has only one flea.) For the eldest daughters of a given

- woman, we can obviously prove uniqueness, but not necessarily

“

exlstence; some women have no daughters at all. For the poilnts
common to two different segments, we don't necessarily have
elther existence or uniqueness; the intersection may contain
many points, or exactly one'point, or no polints at all.

The phrase "one and only one" is often used instead of
"exactly one" since 1t emphasizes the double nature of the
statement.

The following theorem breaks up into two parts 1n exactly
the same way:

" Theorem 3-4, Given two intersecting lines, there 1s exactly

one plane containing them.

For variety we gilve the proof in double-column form. Note
the “wo parts and the way we handle the indirect proof in the
second part,
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Proof: We have given the lilnes L1 and L2, intersecting
~ in the point P.

~Statements Reasons
1. L., contains a point Q, 1. By the-Ruler Postulate,
d}fferent from P. every line contailns in-
o : finitely many .points. .
— 2. Q 1s not on L2' 2. Theorem-3-1.. .-
3. There 1ls exactly one : 3. Theorem 3-3.
plane E, contalning L2
... and Q. ;
4, E contains L. i 4, By Postulate 6, since E

contains P and Q.

- 5. 'Suppose'that another plane F also contalns L1 and L2.

6. F contains Q. 6. Q is on L. '

7. E and F each contaln 7. Steps 3 and 4, and 5 and 6.
L2 and Q. ,

-~ 8. E 1is the only plane con-~ 8. Step'7 contradicts Theorem
talning L1 and L2. 3-3.

Problem Set 6-2b“

1. Is a triangle necessarily a plane figure? Explailn.

b K
v

Theorem 3-4 says, in effect, "Two intersecting lines
determine a plane'. How many different planes are deter-
mined by pairs of intersecting lines in this figure?
Assume that the three lines are not all in the same

[sec. 6-2)
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plane. List each plane by naming the two intersecting
lines that determine it.

3. How many different planes are determined by pairs of the
four different lines ,53, 53, 'E“E?,), and T)—Q: no three of
which lie in the same plane? List the planes by naming
for each the two intersecting lines that determine -it.-

4, If, in a plane 2, '56 1 1ine 1T and fga L 1ine .L,

" what conclusion can you draw regarding ?i? and ?ﬁ%

/
P 's./

As indicated in this figure, A and B 1lie in plane P.
Q 1lies above plane P, Does line ﬁg’ lie entirely in P?
Quote a postulate or theorem to support ydur conclusion,
There 1s a second plane implicit in the situatlon. Name
it By the three points which determine 1t. What is the
igpersection of these two planes? At what point will
QB intersect plane P? :

6. If A, B, C, D are four non-collinear points, 1list
all the planes determined by subsets of A, B, C, D.

5. ’ e Q

e

-

6-3. " Theorems about Perpendiculars.
Some, of the basic theorems about perpendicular lines are
good examples of exlstence, unigueness, and indirect proofs.
Theorem 6-1. In a glven plane, through a given point of.
a given line of the plane, there passes one and only one line

.perpendicular to the‘given line. o
Given: E 1s a plane, L 'a line in E, and P a point
of L. .
To prove: (1) There is a 1line M in E, such that M
contains P and M] L;
(2) There is at most one line in E,'containing

P and perpendicular to L.
[sec. 6-3]
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Proof of (1):

™
Let H be one of the two half-planes in E that have L

Lhés an edge, and let X be a point of L, different from P. By

f‘the Angle Construction Postulate, there 1s a point Y of H,

- such that LXPY 1s a right angle. Let M be the line ‘jﬁi
Then M L L. Thus we have proved that there is at least one
liné satisfying the conditions of the theorem.

Proof of (2): We now need to prove that there is at most
one such line. Suppose that there are two of them, M and -

. 1
'Me. ‘Let X Dbe a point of L, different from P.
Y| YZ
H
- P
M

[ |

Then the lines Ml and M, contain rays E@Z and _§§; lying
in the same half-plane H having L as its edge. By definition
of perpendicular lines, one of the angles determined by L and
'Ml is a right angle, and by Theorem 4-8 all four of these
mgngles are right angles. Thus mZ.XPYl = 90. Similarly,

mL.XPY2 = 90. But this contradicts the Angle Conizzgction
Postulate, which says that there is only one ray PY, with Y

in H, such that mLXPY = 90. This contradictlion means that

our assumption of two perpendiculars Ml and M2 must be

false, which proves the second half of the theorem.

[sec. 6-3]
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_ ‘The condition "in a given plane" is an important part
of the statement of this theorem. If this condition were
omitted the first (existence) part of the theorem would still
be  true but the second (uniqueness) part would not. This 1is
easlly seen by thinking of the relation between the spokes of
a-wheel and the axle. Thus leaving out this condition would .

- - glve us an example of a geometric existence theorem with no .. ...
corresponding uniqheness theorem. The opposite situation, a
.uniqueness theorem with no corresponding exlstence theorém,
has already been considered in this chapter. Can you identify
1t? ,
Definition. The perpendicular bisector of a segment, in a

plane, is the line in the plane which 1s perpendicular to the
segment and contains the mid-point. '

Every segment has exactly one mid-point, and through the
mid-point there is exactly one perpendicular line in a given
plane. Thus, for perpendicular bisectors 1n a glven-plane,
we have both exlstence and unlqueness. '

The following theorem gives a useful characterization of
the points of a perpendicular blsector: .

. Theorem 0-2. The perpendicular bisector of a segment, in
a plane, 1is the sét of all points of the plane that are equi-
distant from-the end-points of the segment.
A Restatement: Let L be the perpendicular bisector of the
segment AB in a plane E and let C be the mid-point of
AB. Then : :

(1) If P is on L, then PA = PB, and

(2) If P is in E, and PA = PB, then P is on L.

Notice that the restatement makes it plain that the proof
of the theorem will consist of two parts. In the first part we "~
prove that every point of the perpendicular bisector satisfiles

' the characterization, that is, is equidistant from the end-points”
of the segment. But the theorem says that the perpendicular
bisector is the set of all such points. To prove this, then, we
must also show that every such point, characterized by being
equidistant from the end-points of the segment, is on the
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perpendicular bisector. This last is the second part of the
restatement.

Proof of (1): Given a point P of L. If P 1lies on
Kfi then P = C, and this means that PA = PB bj-the definition

of mid-point of a segment. If P 1s not on the line iﬁi then

et e

AL . 1‘.1

PC = PC by identity, and, by hypothesis, CA = CB and
LPCA = LPCB. Hence by the S.A.S. Postulate,

A PCA = APCB,

Therefore PA = PB, which was to be proved.

Proof of (2): Given that P 1lies in the plane E and
PA = PB. If P is on 5B, then P 1is the mid-point C of
B, and sq@e? ison L. If P 1s not on ,Efi let L' be
the line PC:

Ll

.....
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‘then PC = PC, CA =CB, and PA = PB. (Why?) By the S.S.S.
Theorem, : :
APCA = A PCB. i

R

L PCB. Therefore, by definitié%wme'_L iB

fherefore L PCA
end so L' is the perpendicular bisector of KﬂbﬁkTherefore,
by Theorem 6-1, L' =L, and P 1s on L, which§was to be
proved. ' P ,
‘Next we prove the analog of Theorem 6-1 for the case in
which the given point is not on the given line. Since the
proof 1s considerably more complicated than that of Theorem 6-1,
"we wlll state and prove the existence and the unliqueness parts )
as separate theorems.. Because 1t 1s the simpler, we atart with
unigueness.

Theorem 6-3. Through a given external point there is at
most one line perpendicular to a given line,

Proof: Like most uniqueness proofs, this 1s an indirect
. one. Supposé L1 and L2 are distinct lines through point
P, each perpendicular to L.

A
v
r

Q

L ' L2
Let L1 intersect L in A and L2 intersect L in B. v

Since the lines are distinct aud both go through P we must
have A # B (Theorem 3-1). .

On the ray opposite to AP take AQ = AP (Point Plotting
Theorem). Then AQ = AP, AB - AB, mLPAB = mLQAB = 90, and
so AQAB = A PAB by the S.A.S. Postulate.

‘It follows that

mLQBA = m /LPBA = Q0 ,
[sec. 6-3]
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and so Ea L L. This contradicts Theorem 6-1, which says that
there i1s only one perpendicular to L at B 1ying in the plane
containing L. and Ll' Hence our supposition that there could
be two perpendiculars to L through P 1s false. ‘
Corollary 6-3-1. At most one angle of a triangle can be
a right angle.
For 1f in A ABC, L A and LB were both right angles we
would have two perpendiculars from .C to ifi
Definitions. A right triangle is a triangle one of whose
angles 1s a right angle. The side opposite the right angle 1is
: the hypotenuse; the sides adjacent to the right angle are the

‘ legs.

Theorem 6-4%. Through a given external point there 1is at
least one line perpendicular to a given line.

Restatement: Let L be a line, and let P be a point not
on L. Then there 1s a line perpendicular to L and containing
P.

sl
(9]

i

First we will explain how the perpendicular can actually be
constructed, on paper, using a ruler and a protractor. From the
method of construction, it will be clear how the theorem can be
proved from the postulates.

Step 1. Let Q and R be any two poilnts of the line L.
Measure the angle L PQR.

[sec. 6-3]
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..-Step 4.

Step 2.
with the same measure as L PQR, taking S
of the 1line - L from P.
- Steg 5. Measure the'distance
- @S, such that QT = QP.

173

Using the protractor, construct an angle [/ RQS,

on the opposite side

Take a point T on

<> ‘
Now draw the line TP. This is the perpendicular

that we were looking for. For the reasons, see the proof belbw.

First, however, you should try this construction with your ruler

and protractor, and try to see for yourself why 1t works.

Let us now write down the proof in the double~column form.
Each of the first few statements on the left corresponds to one
of the things that we were doing with. our drawing instruments.

Statements

Reasons

Theorem (Thedrem 5-6).

L contains two points @
and R.

There is an angle /[ RQS,
congruent to L RQP, with
S and P on different

sides of L.

There is a _point T of
the ray QS, such that

QT = QP. :

T and P are on opposite
sides of L.

TP intersects L, in a
point U,

APQU = A TQU.

L QUP = L QUT.

LQUP is a right angle.
<>
PT 1 L.

The Ruler Postulate.

The Angle Construction
Postulate.

The Point Plotting
Theorem.

P and S are on opposite
sides of L, and S and
T are on the same side of
L.

Definition'of opposite
sides. :

Statement 2, statement 3,
and the S.A.S. Postulate.

Definition of a congru-
ence between triangles.

Definition of right angle.

Definition of perpendicu-
larity.

This proof somewhat resembles the proof of the S.S.S.

Like this earlier theorem it has seve-

ral cases, only one of which (that in which U and R 1lie on
the same side of Q) is completely covered by the above proof.

[sec. 6-3]
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The modifications necessary for the o%her two cases (U =@ and
Q 1s between R and U) are left as exercises for the student.

Problem Set 6-3

‘ B
1. If BC =DC and EC 1 B3, :
prove wlthout the use of
congruent triangles that E

EB = ED.

2. If AE L TH at’ B as
shown in the figure, with
lengths of segments as
indicated, find x, y and

Z.

K
i

the,figure.

Prove: QA = QB.
(Use paragraph proof.)

3. @Given: PA = PB, M 1is the
midpointg_f_; A8, and Q is
on line PM as shown in ‘
Px\\\w

L. Given: The line m 1s the perpsndicular bisector of the

segment QF. P 1s on the same side of m as
the intersection of m and 7P7.

: T
Prove: PT = PR + RQ. . j///////
— R dM

Q. R 1is

P

Q
[SeCO 6’3]
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Copy the figure below. Following the steps outlined in the

text construct perpendiculafs from A, B and X to line L.

*X
€ 'A

v

L€
*B
Copy the figure. Using ruler and protractor construct
perpendiculars from A and F to HB.
H F

AL B

Does Theorem 6-4 state the exlstence of a unique perpendicular
to a line from a point off the line? If we confine our
thinking to a plane, does Theorem 6-1 state the existence
of a unigue perpendicular to a line through a point on the
line? _
giyen isqigeles triangle ABC Hith AC fLBC and bisectors -
AD and BE of LA and £ B. AD and BE intersect at
point F. Prove that F s perpendicular to AB. (It is
not necessary to use any congruent triangles in your proof.)
One diagonal of a quadrilateral bisects two angles of the )
gquadrilateral. Prove that it bisects thes other diagonal.
In this figure given: R -

RC = SC,

Q is midpoint of RS,

. LRca = L sca.

Prove: AQ Ll RS.

[sec. 6-3]
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6-"%. Introducing Auxilliary Sets into Proofs.

You probably noticed that in proving some theorems, most
recently, Theorems 6-2 and 6-4, we introduced certaln points,
rays and segments into the figure in addition to those speci-
fied in the theorem. Possibly two questions concernéd you:

1. How can we Justify introducing such additional sets
into proofs on the basis of our postulates?

2. How do we know which of these sets, if any, should be
introduced into the proof of a theorem?

The first question 1s easy to onswer. In working with
theorems we usually are concerned with various relationships
among certain points, lines, planes and subsets ol these, and
as a practical matter in wproving theorems, we choose certain
planes or lines and certain points on them. Frequently we do
not concern ourselves with Justifying this procedure. For
example, if we are given a line we may immediately name it ﬁii
Wﬁen asked to glve a reason, however, we can refer to the Ruler
Postulate, which says that a line contains infinitely many
points, and thereby the two points P and Q qﬁift. Similarly,
given two points A and B we may talk about AB with complete
confidence since 1t stands for a line whose existence and unique-
ness are guaranteed by Postulate 1. (See Section 6-2.)

The careful concern over justifying existence and uniqueness
becomes especially important when we introduce into the proof
certain points, lines, segments, and so on, not accounted for by
the theorem being proved. Certainly we can not have these sets
in our proofs 1f they do not exlist under the conditions of our
geometry, except, of course, in an indirect proof, where the
obJject 1s to show they can't exist.

184
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In the table below we list the postulates and theorems
occurring so far which may be used, appropriately, to introduce
auxillary sets into proofs.

Geometric Set Existence Uniqueness

1. Point. Postulates 3 and 5. Theorems 2—4, 3-1, 3-2.
a. Midpoint. Theorem 2-5. Theorem 2-5.

2. Line. Postulates 1 and 8. Postulates 1 and 8.
a. Perpendicular|Theorem 6-1. Theorem_é—l.

at point on
line, in a

plane.

b. Perpendicular Theorems 2-5 and Theorems 2-5 and
bisector, in |{6-1 6-1.
a plane.

c¢. Perpendicular |Theorem 6-14, Theorem 6-3 .

from point
not on line.

3. Plane. Postulate 7. Postulate 7.
Theorems 3-3 and Theorems 3-3 and
3.0, 3.4,
I, Ray as used in Postulate 12. Postulate 12.
angle measure. -
a. Bilsector of Theorem 5-3. Theorem 5-3.
an angle. _
5. Segment. Postulate 1 and Postulate 1 and
Definition of Definition of
segment . segment.

From this table you may see that you already know a lot about
the nature of our three basic undefined terms.

The answer to the second question presents a problem quite
different from the answer to the first. Gefting to know when to
introduce auxiliary sets into a proof is largely part of the
process of learning to reason logically. It requires consider-
able Rractice. Let's try an example to see how this works.

135
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Example 1.

Given: The plane figure with AD = AE and CD = CE.

To prove: L D= LE, A

C ¥
Since all of our postulates and theorems, concerning con-
gruence have dealt with triangles, 1t seems reasonable that our
figiire should show some triangles. We can accomplish this easily

by introducing either AC or DE.
Suppose we introduce DE so that our figure looks 1like this:

<
</

This allows us t-~ complete the proof, since m/LADE = m L AED
and mLCDE = mLCED gives us mLADC = m/LAEC by the Angle
Addition Postulate. .

[sec. 6-4]
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Had we introduced AC instead of DE, our proof, in two-
column form this time, would have looked l1like this:

A
D E
c
Proof:
Statements ' Reasons
1. Introduce AC. 1. Postulate 1 and Definition
of segment.
AC = AC. Identity.
AD = AE and_CD = CE. Given.

's.s.s. Theorem.

. Definition of congruent
triangles.

A ADC 2 AAEC.
LD = LE.

g o4& W
Ul W

Each of the solutions to Example 1 is correct. The choice-
of which one you use 1is up to you. But it 1is worth noting that
in many problems where a cholce exists, the choice you make will
determinéhthe.degree of difficulty of the proof. It is helpful
to think through each solution before writing one down formally.

An important aspect of learning what to introduce in a
proof can -be illustrated if we remove from the hypothesis of

. Example 1 the condition that the figure is a plane figure. If
D 1is not coplanar with A,' E, and C, at least one of the
solutions does not hold. Does either solution hold? If one
Adées, which one? ‘

One final word of warning before you begin to introduce
auxiliary sets into your proofs, In answering Question 1
we were careful to say that each such step rust be justifiable,
that 1s, that every point, line, plane, and so on must exist

[sec. 6-14]
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under our postulates. Students often make the mistake of not
recognizing this. For example, you might think you could prove
the statement "All angles are congruent" by the following argu-

ment. A
Example 2.
Given any A ABC, prove that

LB = LC.

Proof: In A ABC 1ntroduce
AD, bisecting L A and perpendi-
cular to BC.

Then L BAD 2 L CAD Dby defi-
nition of the bisector of an
angle, AD = AD by identity, and L BDA & LCDA by the definition

" of perpendicular and the fact that all right angles are congruent.

Therefore A BAD & ACAD by A.S.A., making LB &L C.

It does not take long to see the serious error of this so-
called proof. The segment AD, as angle bisector ggg_the per-
pendicular to the base, does not exist under our postulates.
Moreover, the filgure makes A ABC appear to be lsosceles and
thus makes AD appear as introduced above. Were the figure
like this, |

\

B D c

you certainly would not consider using AD as it is used. This
leads us once more to say that the figure is merely a convenience
to aid you in thinking through your reasoning in logical and
carefully chosen words.

1838
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Problem Set 6-4

Given: A, B, C and D are . D
coplanar. AD = CD.
mlLA =m/lC. A c

Prove: AB = CB.
Does the proof work if A,
B, C, D are not coplanar? B

Given: XY = AB, AY = XB. ? '''''
Prove: AXOY & A AOB.

e A
Given: E, A, S and Y are
coplanar. L E & LA, y S
YE = SE.
Prove: LY 2 L S.
E A

Devise a second solution to Problem 3 above by introducing
auxiliary segments different from the ores you used 1n

the solution of Problem 3. A

If AC =AB and CD = BD 1in

the plane figure, show L ACD = L ABD

Devise a proof that works if the

figure does not 1lie in the plane.

139
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6-5. Betweenness and Separation.

Critical students may have discovered two places in
Chapter 5 where the gilven proofs are not quite complete. These
defects occur in Theorems 5-3 and 5-6, and are similar in the
,ﬁiwo places, consisting of a failure to show why a certain point

lies in the interior of a certain angle. In Theorem 5-3 we
must know that _Ei is in the interior of L BAC .before we can
conclude that AD bisects this angle. And in steps 9 and 10
of Theorem 5-6 we must know that H 1s in the interior of

/L ABC and of L AE'C before we can apply the Angle Addition
Postulate. ' '

In these places 1t is not enough to ohserve that 1n the
figure the points lie in the proper places. Remember first
that a drawing 1s only an approximation to the true geometrical
situation, and secondly that this 1s cnly one figure and the
theorem 1s supposed to be proved for a.i cases.

You probably wonder why an incomplete proof should be
presented in a text-book. The reason 1s that the prdofs'of"
of such separation properties as this one are often long, comp-

- llcated, and uninteresting, and that they contribute little or
nothing to the essential idea of the proof. If you understand
the proof of these theorems as given but did not notice the
incompleteness of these particular steps, you need not worry

about‘your competence in geometry. For many centuries lédarned
men disputed whether steps like these needed any Justification.
However, mathematicians now agree that even such "obvious"
steps. require a logical proof, and so we present here two
theorems and some problems to fill the gaps in these (and_}gter)
proofs. h
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Theorem 6-ﬁ. If M 1s between A and C on a line L,
then M and A are on the same side of any other line that
contains C.

Proof: The proof will be indirect. If M and A are on
opposite sides of L' (in the plane that contsins L and L')
then some point D of L' 1lies on the segment BM. Therefore
D 1s between A and M, by definition of a segment. But D
lies on both L and L'. Therefore D = C. Therefore C 1is
between A and M. This is impogsible, because M 1s between
A and C. (See Theorem 2-3.) | e

We can now prove - thegorem which completes the proof of
Theorems 5-3 and 5-&:

Theorem 6-6. If EL;is between A and C, and B 1is any
point not on the line AC, then M 1s in the interior of [ ABC.

P

A M c

Proof: By the preceding theorem, we know that M and A
are on the same side of ?ﬁ?, By another application of the

[sec. 6-5]
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preceding theorem (interchanging A and C) we know that M

and C ere on the same side of B»B. By definition of the interior
of an angle, these two statements tell us that M is in the
interior ofAL.ABC, which was to be proved.

Problem Set 6-5
Note: On this problem set no information is to be read from a

figure.

1. A

e Q

Given A ABC with F between A and C, X between A

and B and Q in the interior of & AEC. Complete the

following stateirents, and give reasons to Justify your

answers.

a. F 1lles in the interior of /

b. X 1ies in the interior of

c. Q 1lies in the interlor of / s L ' ,
and £

192
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2. The following faulty argument that an obtuse angle is con-
gruent to a right angle emphasizes the importance of knowlng

the side of a 1%Pe cn which a point 1iles.
c I
c

E!

X

Suppose that ABCD 1s a rectangle as shown and that the
side BC 1s swung outward so that BC' = BC and L ABC!' is
obtuse. Let the perpendicular bisector of AB intersect the
perpendicular bisector of DC' at X. If X 1s below B
as shown, we have A AXD = A BXC' Dby the S5.5.S. Theorem, and
hence m/L DAX = mLC'BX. Also, A EAX = AEBX by S.S.S., and
50 mLEAX = mLEBX. It follows by subtraction that
mlL DAE = mL C'BE.

In case X 1lies above EE, as 1n the figure below,

D C
E' c

' A E B
we get, exactly as before, mLDAX = mLC'BX, mLEAX = mLEBX,

and the decired equality, mLDAE = m LC'BE follows by
addition.. '
What 1s wrong with the above argument?

[sec. 6-5]
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.*3'

*

Suppose ABC 1s a trilangle H, -

and D i1s a polnt between B

and C. Show that if L  1s D

a line in the plane of A ABC < > L
which intersscts BC at D,

then L intersects AC or AB. H,
(Hint: If L contains B, A B

then L intersects AB. If L

does not contain B, then let

Hl’ H2 be the two half-planes into which L separates the
the plane of A AEC, Hl being the one that contains B.
Since A belongs to either L, Hl’ or Hg, there are
threce cases to consider.)

A theorem whose truth appears obvious 1s often difficult

to prove. The following such theorem is assumed in the

proot of Theorem 7-1 of the next chapter.

Suppose ABC 1s a triangle, _2; i1s a point between

A and C anq_aﬁ is a point of BC beyond C. Then each

point F of BD beyond D 1is in the interior of [_ACE.
_The thing to be proved is that F 1is on the sagf;side

of BE as A and that F 1s on the same side of AC as E.

a. How do we know that A and A
D are on the same side of
Ei% What theorem implies
that D and F are on
this same side?

b. Prove that 1if Hl’ H2 are
the two(gglf planes into
which AC separates the
plane of the figure and B

em

v

8 c

belongs to Hl’ then each

of E, F belong to H2. This shows that E and F
«>

are on the same side of AC.

194
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Another theorem whose truth 1s frequently accepted without
proof is the following: If D 1is a point in the interior
of L ABC, then BD intersects AG.

We suggest below a "tricky" proof in which we consider
A EAC, where E 1s a point of A8 beyond B. This
enables us to apply the results of Problem 2. Parts a and
b below are used to show that ?ﬁ? does not intersect EC.
a. Suppose Hl’ H2 are the
two half-planes into which
ﬁig divides the plane of
A EAC' with A in Hy.
Why is D in Hl? What .
theorem implies that each

—
oint of BD other than E
p H, C‘\\\\\a
B 1s in Hl? Why is E
9
in H2.

What theorem implies that each point of EC other than
C is in H,? Why does EC fall to intersect ‘§§§_>
b. VWhy does EC fail to intersect the ray opposite BD?
¢. Why does BD intersect qu§ '
d. Why does the ray opposite BD fall to intersect AC?

The following theorem may be used instead of Parts a and
b of Problem 5 to show that A and C 1lie on different
sides of %ﬁ;
Theorem: If point D 1is in the interior of [ ABC,
then A 1is not in the interior ¢f L DBC nor is C
in the interior of L ABD. |
Prove this theorem.
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7.

There are studies of geometry that use other systems of
postulates than the ones we have adopted. A postulate
taken from one such system is the following:

If A, B, C, D, E are points such that A, B and C
are non-collinear and B 1s between A and E and D 1s
between B and C, then there is a point X such that X
is between A and C while D 1s between E and X.

This statement can be proved in our system of postu-

lates. - C
a. Why are A, B, C, D, E
coplanar?

b. Show from the Plane
Separation Postulate
>

that ED intersects . - |D
AT at a point X be- \\
tween A and C. A B £

¢. It can be shown that D .
is between E and X by showing that E and X are
on opposite sides of some line. What 1line?

Given points P and Q on p
opposite sides of plane E

with PQ intersecting E 1n /* /
M. Identify the following E M

statements as true or false.

Q

a. If L is a line in E p2rpendicular to <§ai then P
and Q are on opposite sides of L in the plane
determined by P and L. )

b. If L 4is a line in E through M, then P and Q are
on opposite sides of L 1n the plane determined by
P and L.

ec. If L is a 1line in E, then P and Q are on opposite
sides of L in the plane determined by P and L.

d. P and Q are on opposite sldes of every plane through
M not containing ?ﬁi

- [sec. 6-5]
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Chapter 7
GEOMETRIC INEQUALITIES |

7-1. Making Reasonable Conjectures.

Up to now, in our study of the geometry of the triangle, we
have been dealing only with conditions under which we can say that
two segments are of equal length, or two angles are of equal
measure. We will now proceed to study conditions under which we
can say that one segment 1s longer than another, (that is, has a
‘greater length), or one angle is larger than another, (that is, has
a greater measure).

We shall not start, however, by proving theorems. Let us
start, rather, by making some reasonable conjectures about the
sort of statements that ought to be true. (These statements
should not be called theorems unless and until they are proved.)

An example: Glven a triangle with two sides of unequal
length, what can we say about the angles opposite these sides?

Notice that this problem is naturally suggested by Theorem
5-2, which says that if two sides of a triangle have the same
length, then the angles opposite them have the same measure.

You can investigate this situation by sketching a triangle
with two sides of obviously unequal lengths, like this:

B

A C

Here BC 1is greater than AB, and m L A 1is greater than md{i C.
After sketching a few more triangles, you will become pretty well
convinced that the followlng statement ought to be true:

it ————  — a—_—— —

angles opposite them are of unequal measure, and the larger angle

1s opposite the longer side.
Now try the same sort of procedure with the following prob-

lems.
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Problem Set T7-1

Here are some experiments for you to try.

1. Consider triangles with two angles of unequal measure. Write
a statement which you think may be true concerning the sides
opposite those angles.

2. Consilder several triangles ABC. How does AB + BC compare
with AC? BC + AC compare with AB? AB + AC compare with
BC? These responses suggest a general conclusion. If you
think thils conclusion is true for all triangleS, wrlte 1t as
a proposition.

3. Consider a quadrilateral RSTQ. How does RS + ST + TQ com-
pare with RQ? Write a proposition suggested by your answer,

I, braw several triangles in which the measure of one angle 1s
successively greater but the adjacent sides remain unchanged
in length. What happens to the length of the third side?

5. Draw A DEF and A XYZ such that DE = XY, FE = ZY, and
m/l DEF > m L XYZ. Compare. DF and XZ.

6. Regarding A PDQ and A JUN such that m LPDQ = mLZ: JUN,

PD > JU, and QD = NU, a hasty person might conclude that
PQ > JN. Draw a figure showing that the conclusion 1s not

Justified.
7. A 1is a point in plane E, iB : B
is a ray not lying in E, and ’

—>
AC is a ray lying in E. Con- ' /////

sidezipg different positions A{f/
of AC, describe as accuratq&g
as you can the position of AC

which makes L BAC as small as possible; as large as possible.
No proof i1s expected but you are asked to guess the answer on
the pasis of your knowledge of space.

193
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., 8. On the basis of drawings declde whether or not an angle can be
trisected by the following procedure: A

Let A ABC be an isosceles triangle

with congruent sides AB and AC.

Trisect side BC with points D,

E s0 that BD = DE = EC.

Is L BAD ¥ L DAE = L EAC?

7-2. Algebra of Inequalities.

Before considering geometric inequalities we review some of
the facts concerning inequalities between real numbers. Note first
that a < b and b > a are merely two ways of writing the same
thing; we use whichever 1s more convenient, e.g. 3 < 5 or 5 > 3.

Definlitions. A real number is positive if it is greater than
zero; 1t is negative if it 1s less than zero,

We now restate the order postulates, giving examples of thelr

use.
0-1. (Uniqueness of order) For every x and ¥y, one and
only one of the following relations holds: x < ¥V, X =Y, X >V.
0-2. (Transitivity of order.) If x <y and ¥y < 2, then
x < z. .
Example 1. 3 ¢ 5 and 5 < 9, hence, 3 < 9.
Example 2. If we know that a < 3 and b > 3, we can
conclude that a < b. Proof: If a <3
and 3 < b, then a < b,
Example 3. Any positive number'is greater than any
negative number,. _
Gilven: p 1s positive, n 1s negative.
To prove: p'> n.

Proof:
1. p 1s positive. 1. Given, .
2. p > 0. 2. Definition of positive.

[sec. 7-2]

199



192

3. 0<p. 3 Relation between < and - >.
L, n < 0. b Definition of negative.

5. n < p. 5. Postulate 0-2.

6. p > n. 6. . Relation between < and >.

0-3. (Addition for inequalities.) If x <y, then
xX+2z2<y+ z, for every 2. '

Example 4. Since 3 < 5 it follows that 3 + 2 < 5 + 2,
or 5< 7; that 3 + (-3) < 5+ (-3), or
0 < 2; that 3 + (-8) < 5+ (-8), or -5 < -3.

Example 5. If a < b then -b < -a. Proof: a + (-a-b)<
b + (-a-b), or -b < -a.

Example 6. If a+ b =c¢ and b- 1s positive, then

a < c.

Proof: .

1. b 1is positive. 1. Why?
2. b > 0. 2. Why?
3. 0< Db, 3. Why?
4, a < a + b, b, Why?
5 a < ¢, 5. Why?

Example 7. If a+ b c then a<c¢c - b. Proof left

to the student.
Example 8. If a < b, thenc--a >c¢ - b for every c.
Proof left to the student.

0-4, (Multiplication for Inequalities.) If x <y and
z > 0, then xz < yz.
Example 9. From 3 < 6 we can conclude that 3000 <
. . 1 1 1 1
6000; also, tnat _T-B— 3 <« -_1-8' . 6, or B < 3

|

Example 10. If x <y and  z < 0, then Xz > yz.
Proof left to the student.

0-5. (Addition of Inequalities.) If a < b and x <y, then
at+x<b+y.
- This is not a postulate but a theorem; 1ts proof is given
in Sestion 2-2. However, it is convenient to 1list it, for

reference, along with the postulates.

[seec. 7-2]
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7-3. The Basic InequalitM_Theorems.
In. the figure below, the angle L BCD is called an exterior
angle of A ABC. More precisely:

B

A C D

Definition. If C 1is between A and D, then L BCD is an
exterior angle of A ABC.

Every triangle has six exterior angles, as indicated by the
double-headed arrows 1n the figure below:

These six angles form three pairs of congruent angles, because
they form three pairs of vertical angles.

Definition. LA and LB of the triangles are called the
remote interior angles of the exterior angles L BCD and L ACE.

Similarly, L A and L C of A ABC are the remote interior
angles of the exterior angles L ABF and L CBG.

Theorem 7-1. (The Exterior Angle Theqrem,) An exterior
angle of a triangle is larger than either remote interior angle.

Restatement: Note first that the two exterior angles at
vertex C, above, have equal measures (vertical angles), and so it

[sec. T7-3]
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doesn't matter which of them we compare with L A andl B. It
turns out to be easiest to compare m L BCD with mL B and

m L-Acﬁ with m/. A. Since the proofs of these two cases are |
exactly similar we need prove only one.

_ Given triangle A ABC. If C 1s between A and D, then
m L BCD > mLl B.

Proof: \
Statements Reasons

1. Let E be the mid-point of BC.| 1. By Theorem 2-5 there is
such a mid-point.

2. Let F be a polnt of the ray 2. By Theorem 2-4, there is

opposite to EA, such that such a point.

EF = EA.
3. L BEA T L FEC. 3. Vertical angles are con-

. gruent.
4L, A BEA = A CEF. 4, Statements 1, 2, 3 and
the S8.A.S, Postulate.
5. ml B=m/lL ECF. ~ 5. Corresponding parts of
: congruent triangles.

6. mlL BCD = m/L ECF + m L FCD. 6. Postulate 13 (The Angle

Addition Postulate.)
mli BCD=m/ B+ mL FCD. Statements 5 and 6.

8., mLl BCD >mL B. 8. By algebra from step 7.

(Since m L FCD is a
positive number, Example
6 of Section T7-2 applies.)

-3
i
-3
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Problem Set 7-3a

l. a. Name the remote interior’
angles of the exterior C
angle L ABE in the figure.

b, L ABC and L BAC are the D A ~—
remote interior angles of E
which exterior angle?

2. a. In the flgure, which angles
are exterior angles of the
triangle?

b. What 1s the relationship of
m LDBC to m L A? Why?

c. What is the relationship of

" m LDBC to m LC? Why? .

d. What 1s the relationship of A B\ D
m L DBC to mL CBA? Wny?

E
3. Using the figure, complete the following:

a. If x = 40 and y = 30, then m L BCE.>

b, If x =72 and y = 73, then
m L BCE '

c. If y =54% and z = 68, then
m L BCE

d. If mL BCE = 112, then x___

e. If mdli BCE = 150, then z _

f. If x =25 and z = 90, then
m L BCE ' N

"E

g. If x = 90 and y = 90, then

m L ECE
203
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4, The accompanying figure 1s an
illustration.of this statement:
An exterior angle of a guadri-
lateral 1s greater than each of
the remote interlor angles. Is

this a true statement? Explain.

*5, Prove the following theorem:
The sum of the measures of any
two angles of a triangle is (ond
less than 180.

Given: A ABC with angle
measures as in the
figure. a° 0
Prove: a + b < 180. QAN°
b + ¢ < 180.
a + ¢ < 180.

o [

*6. Prove the following theorem: The base angles of .an isosceles
triangle are acute. (Hint: Base your proof on the statement
of the previous problem.)

Theorem 7-1, while perhaps not very exciting in itself, is
extremely useful in proving other theorems. (A theorem of this
type is sometimes called a lemma.) For example, the following is
a useful corollary.

Corollary 7-1-1. If a triangle has a right angle, then the
other two angles. are acute. '

[sec. 7-3]
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A c

Proof: If m LA = 90, then m L BCD > 90, and therefore,
mdi BCA € 90. In a simllar way we can prove m L ABC < 90.

We next use Theorem 7-1 to prove two more congruence theorems.

Theorem 7-2. (The S.A.A. Theorem) Given a correspondence
between two triangles. If two angles and a side opposite one of
them in one triangle are congruent to the corresponding parts of
the second triangle, then the correspondence 18 a congruence.

Restatement: Let ABC<>DEF be a correspondence between two

triangles. If

LAZL D,
LBZ LE,
and iC 2 TF,
then A ABC = A DEF.
8 E
A H c D/< " T F
Proof': »
Statements Reasons
-
1. On AB. take X so that 1. Point Plotting Theorem.
AX = DE.
2. A AXC = A DEF. 2. S.A.S. Postulate.
3. mdl AXC = m{ DEF. 3. Definition of congruence.
H;“ m L AXC = m/L ARC. 4, Step 3 and given.

Now suppose that X 1s not the same point as B.

[sec. 7-3)
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\n

5. Either X 1s between A Step 1 and definition of ray.
and B or B 1s between

A and X.

> \
A

n
(@]

6. In either case one of L AXC | 6. Definition of exterior angle
and L ABC 1is arn exterior and remote interior angle.
angle of A BXC and the
other is a remote interior

angle.
7. m L AXC # m L AEC. 7. Step 6 and Theorem T-1.
8. X = B. 8. Step 7 contradicts Step 4.
9. A ABC = A DEF. 9. Steps 2 and 8.

Although it was pointed out in connection with the S.A.S.
Postulate that éh S.S.A. theorem cannot in general be proved,
there 1s one specilal case; namely, the case 1n which the angle 1s
a right angle, that follows from Theorem T7-2.

Theorem 7-3. (The Hypotenuse-lLeg Theorem.) Given a corres-
pondence between two right triangles. If the hypotenuse and one
leg of one triangle are congruent to the corresponding parts of
the second triangle, then the correspondence is a congruence,

Restatement: In AABC andA DEF let mi A =mi D= 90.
Let ABC <> DEF be a correspondence such that

‘ BC = EF and ARB = DE.
Then A ABC = A DEF.

200
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/EN
Q D F

Cc
—
Proof: 'On the ray oppo: n DF take @ such that
DQ = AC. Then ADEQ =A & by . S.A.S. Postulate, and so
EQ = BC. A EQF 1is thus an .. ..es triangle, and sol EQD =L EFD,

In ADEQ and A DEF we thus have
EQ ¥ EF, L QD = L EFD and L EDQ = L EDF.

Hence, by the S.A.A. Theorem, A DEF =A DEQ. Since we have already
established A DEQ = A ABC we conclude that A DEF =A ABC, which
is what we wanted.

Problem Set 7-3b

1. If in this figure AQ = BQ and

LH 2L F, prove that FB = H

2. Given that &K | -@, m

AB = HF, A
3. If AX = FH in thils figure,
prove that FB = AB,
207 ‘H

Prove that KF
[sea. 7-3]
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4, If two altitudes of a triangle are congruent, the triangle 1s
isosceles.

5. In this figure: Lc = La.

Prove: QB = FK.

6. In this figure 1L a = L c,
BB|FH and FB|FE, s e

prove that AH = FH.

Theorem 7-4. If two sides of a triangle are no: ' ngruent,

then the angles ~n»posite these ‘wo sides are not con. ' nt, and
the larger angle .3 opposite the longer side.
Restatemen-: Given A ABC. It AB > AC, then mi-. > mL B.

A
B< C
~ \
\_\\\ \\
\\\\ \
~— \
\\\ \
D
Proo?: L= D be a point of 'Kg, such that AD = AB.
(By the Point 37w ting Theorem, there 1s such a point.) Since the
base angles of =z 1sosceles triangle are congruent, we have

204 [see. T-3]
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(1) mL ABD = mL D.
Now AD > AC, since AD = AB and AB > AC, and so C 1s between
A and D by Theorem 2-1. By Theorem 6-6, C 1s in the interior
of ABD, and so

(2) ml ABD = mL ABC + mL CBD
by the Angle Addition Postulate. Since m L CBD > O it follows
that

- (3) m/l ABD > mL ABC.

Therefore

(4) mlL D>mL ABC, from (1) and (3).
~Since L ACB 1s an exterior :.gle of A BCD, we have

(5) m/, ACB >m[. D.

By (4) and (5), |
mL ACB > m L ABC,
that 1is,
m{ C>mL B,
" which was to be pro..-:.

Theorem 7-5. -. :wc z=zles of a trlangle are not congruent, .
then the slides oppos.=:z %1eor are not congruent, and the longer
side is opposite the === angle.

o

@
0O

Restatement: 1+ .+ (riangle A ABC, if mL C > mL B, then
AB > AC,

Proof: We wan: "<« ~=r-ve that AB > AC. Since AB and AC
are numbers, there & ¢ nl: three possibilities: () AB = AC,
(2) AB < AC and (3) AB > £3. The method of the prcof 1s to show
that the first two of the . 'possibilities" are in fact impossible. .

The only remaining possiti_ity will wve (3), and this will mean

[sec. T-3]
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that the theorem 1is true,

, (1) 1If AB = AC, then by Theorem 5-2 it follows that
"LBZEL C; and this is false. Therefore, it is impossible that
AB = AC. .

(2) If AB < AC, then by Theorem 7-4 it follows that
mi C <¢<ml B; and this 1is false. Therefore, it 1s impossible
that AB < AC.

%he only renaining possibility is that AB > AC, which was
to be proved.

The proof of Theorem 7-5, as we have gilven 1t, 1s merely a
-handy way of stating an indirect proof. It could have been
written more formally, like this:

"Suppose that Theorem 7-5 is false. Then either AB = AC .or‘

AB ¢ AC. It is impossible that AB ='AC, because . . . . And it
is impossible that AB < AC, because . . . . Therefore, 7-5 is
not false."

The proof is probably easier to read, however, .the way we
gave 1t the first time. We will be using the same sort of scheme
again. That 1s, we will 1list the possibilities, in a given situ-
ation, and then show that all but one of these "possibilities" are
in fact impossible; it will then follow that the last remalning
possibility must represent what actually happens,

"That process starts upon the supposition that when you have
eliminated all which is impossible, then whatever remains, however
improbable, mus: be the truth." (Sherlock Holmes in "The Adventure
of the Blanched Soldier".)

Theorems 7-4 and 7-5 are related in a special way; they are
called converses of one another. To get one from the other, we
interchange the nypothesls and the conclusion. We can exhibit
this fact by restating the theorems this way:

Theorem 7-4. Given A ABC. If AB > AC, then mL C >mLl B.

Theorem 7-5. Given A ABC., If mil C >ml B, then AB > AC.

We have seen lots of pairs of theorems that are related this

way. TFor example, we showed that if a triangle is isosceles, then
its base angles are congruent; and later we showed that if the
base angles of a triangle are congruent, then the triangle 1s

[sec. T7-3]
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isosceles. Each of these theorems 1s the converse of the other.
We showed that every equllatera’. triangle is equlangular; and
later we proved the converse, which states that every equiangular
triangle is equilateral.

It is very important to remember that the converse of a true
theorem is not necessérily true at all. For example, the theorem
"vertical angles are congruent'" 1s always true, but the converse,
"econgruent angles are vertical" is certainly not true in all cases.
If two triangles are congruent, then they have the same area, but
if two triangles have the same area, it does not follow that they

are congruent. If x =Yy, then it follows that x2 = ye; but if

x2 = ye, it does not follow that x = y.. (The other possibility
is that x = —y.) It is true that every physicist is a sclentist,
but it is not true that every sclentist 1s a physilcist.

If a theorem and its converse are bnth true, they can be con-
veniently combined into a single statement by using the phrase "if
and only if". Taus, if we say:

Twc .ngles of a triangle are congruent if and only if the

opposite sides are congruent;
we are including in one statement both theorems on 1sosceles tri-
angles. The first half of tils double statement:

Two angles of a triangle are congruent if the opposite sides

are congruent; |
1s Theorem 5-2; and the second half:

Two angles of a triangle are congruent only if the opposite

sldes are congruent;’
1s a restatement of Theorem 5-5.

Problem Set 7-3c

1. In AGHK, GH = 5, HK = 14, KG = 11. Name the largest angle.
Name the smallest angle.

2. InA AR, mL A=36, mL B= 74, and mL C = 70. Name the
longest side. Name the shortest side.

[sec. T7-3]
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3. Given the figure with HA = HB, R
m/ HBK = 140, and m/ AHB = 100, H
£111 in the blanks below: :
a. mL A= _ _ .
b. mL RHB = _ .
A B K

¢. _ _ _ 1s the longest side
of A ABH.

4, What conclusilon can you reach about the length of ML 1in

A KLM if: ‘ M
mJlL M?
m L L2 -
mi K>mlL L?
m L L?
mlL M and '
ml L? .

mLlL K
m/i L and

mli K
mi M
m/, L?

mLiL ™
mi K
mLl X
f. mL K
mL M

© & 0 T P

NIV V V V VAV

5. If the figure were correctly
drawn which segment would be
the longest?

6. Name the sides of the flgure
in order of increasing length. 40° 50°

7. 1If in the figure AF 1s the

A 'C
- G |
shortest side and CB 1is the
“longest side, prove that
mL F >mlL B. (Hint: use F
diagonal TFB.) )y

212
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205

If the base of an isosceles triangle is extended, a segment
which Jjoins the vertex of the triangle with any point in this
extension 1s greater than one of the congruent sides -- the
triangle.

l_

. Write the converse of each statement. Try to deciée whether

each statement, and each converse, is true or false.

a. If a team has some spirit, it can win some games.

b. If two angles are right angles, they are congruent.

c. Any two congruent angles are supplementary.

d. The interior of an angle is the intersection of two
half-planes.

e. If Joe has scarlet fever, he 1is serlously il1l.

f. If a man lives in Cleveland, Ohlo, he lives in Ohilo.

g. If the three angles of one triangle are congruent to the
corresponding angles of another triangle, the triangles
are congruent,

h., If two angles are complementary, the sum of thelr measures
is 90. .

Wnhen asked to glve the converse of this statement, "If I hold

a lighted match too long, I will be burned", John said, "I

will be burned if I hold a lighted match too long." Was

John's sentence the converse of the original statement?

Discuss.

a. 1Is a converse of a true statement always true? Which
parts of Problem 9 illustrate your answer?

b. May a converse of : lalse statement be true? Wnich parts
of Problem ¢ illustrate your answer?

[sec. 753J;
213



206

Theorem 7-6. Th . & segment Joining - 5 to a line
is the perpendicular segm.iic.

ne
D)
Py

Restatement: ILet Q be the foot of the perpendicular to
the line L through the point P, and let R be any other point
on L. Then PQ < PFR. ‘ .
Proof: ILet S be a point of L, such that Q 1s between
S and R. Then L PQS 1s an exterior angle of A PQR. Therefore,
mlL PQS > m/. PRQ. But mlL PQS = mL PQR = 90, and so m{ PQR >
ml PRQ. By Theorem 7-5 1t follows that PQ < PR, which was to be
proved. ‘

Definition. The distance between a line and a point not on
it 1s the length of the perpendicular segment from the point to the
line. The distance between a line and a point on the line 1s de-
fined to be zero.

Theorem 7-7. (The Triangle Inequality.) The sum of the <
lengths of any two sides of a triangle 1s greater than the letigth’
of the third side.

Restatement: In any triangle A ABC, we have AB + EC > AC.

214
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' —>
Proof: Let D be a point of the ray opposite to BC such
that DB = AB. Since B 1s between C and D

DC = DB + BC.
Toen (1) DC = AB + EC.
Also (2) m L DAB < m L DAC,

because B 1s in the interior of L DAC.
Since A DAB 1s isosceles, with AB = DB, it follows that

(3) mL ADB = m L DAB.

By (2) and (3) we have
mi ADB < m/{ DAC.

Applying Tneorem 7-5 to A ADC, we see that
(4) DC > AC.

By (1) and (4) it follows that
AB + BC > AC,

wnleh was to pe proved.

Problem Set 7-3d

1. Here AH < and AH < .
BT < and BT < . State
the theorem involved.
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H
2. With angle measures as shown
in the figure, insert HA, HF,
HB below in correct order.
< < .
80 90 46
State theorems to support A ) F

your conclusion. ‘

3. Suppose that you wish to draw a,triangle with 5 as the length
of one side and 8 as the length of a second- side. Your third
side must have a lengtn greater than , and less than .

4, Suppose that you wish to draw a‘triangle'with J as the

' length of one side and k as the length of a second side.
It is known that J < k. Indicate, as efficiently as you can,
the restrictions on the length, x, of the third side.

— c B

5. Prove that the sum of the lengths

of the dlagonals of this quadril-

lateral is less than the sum of

the lengths of its sides.
D
Given: Quadrilateral AECD.

To prove: DB + CA < AB + BC + CD + DA.
A

*6, Let A, B, C, be points, not necessarily different. Prove
that AB + BC > AC and that AB + BC = AC if and only 1if
B 1is on the segment AC.

[sec. T7-3]
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*7. Prove that the shortest polygonal path from one point to
another 1s the segment joining them.

A, As

”~
3 //’/
”~
//
//
//
Ab
Glven: n points Al, A2, ...... s An
Prove: A1A2 + A2A3+ ..... + An-lAn > AlAn

*8. Given two segments A&C and BD intersecting at P.

Prove that if X 1s any point in the plane of ABCD other
than P, then XA + XB + XC + XD > PA + PB + PC + PD.
W1ill this result be true if X 1is not in the rlane of ABCD?

*9, éisén a line m and two points P, @ on the same side of m,
Find the pcint R on m for which PR + RQ 1s as small as
possible.

‘Q

. ‘,,..§;-g*;; : : [SeC- 7-3]
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We will now prove a theorem which 1s a 1ittle 1like Theorem T7-5,
except that it deals wilth two triangles instead of one.

Theorem 7-8. If two sides of one triangle are congruent
respectively to two sides of a second triangle, and the included
angle of the first triangle is larger than the included angle of

the second, then the opposite side of the first triangle is longer
than the opposite side of the second. ,

Restatement: Given A ABC and A DEF. 1f AB = DE, AC = DF
and ml A>mL L, then BC > EF.

B

Proof: - Step 1. We construct. A AKC, with K 1in the interior
of L BAC, such that A AKC = A DEF, 1ike this:

B

To do this, we use the Angle Construction Postulate, to get a ray
i, with Q on the same side of AC as B such that L QAC L D.
On A we take a point K such that AK DE. By the S.A.S.
Postulate, we now have A AKC ~ A DEF, which is what we wanted.

218
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Step 2. Now we bisect L BAK, and let M be the point where
the bisector crosses BC, like this:

B

The marks on the figure indicate that AK = AB, and this 1s true,
" because AK = DE and DE = AB.
Vle are now almost done. By the S.A.S. Postulate, we have
A ABM = A AKM. Therefore, MB = MK, By Theorem 7-7, we know that

CK < CM + MK.
Therefore,

CK < CM + MB,

because MB = MK. Since CK = EF and CM + MB = BC, we get
EF < BC, which 1s what we wanted.

The converse of thlis theorem 1s also true.

Theorem 7-9. If two sides of one triangle are congfuent
respectively to two sides of a second trilangle, and the third side
of fhe first triangle 1s longer than the third side of the second,
then the included angle of the first triangle 1s larger than the
included angle of the second.

The proof is similar to that of Theorem 7-~5, use beling made
of Theorem 7-6 and the S.S5.S. Theorem to eliminate the two unwanted
cases. The student should f1ll in the detalls.

[sec. 7-3] *
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Problem Set T7-3e

1. State the combination of Theorems 7-8 and 7-9 in the "if and

only if" form.

B
2. In this figure AC = BC,

and BD < AD.
Prove: mL x >m/l V.

3. 1In isosceles triangle RAF wilth

- :
. RA = RF and B a point on AF R )
such that m L ARB ¢ m L BRF.
Prove: AB < BF. ' // ‘
A B F

4, Glven A ABF with median RB
. and mL ARB = 80.
Prove: m/l A >m/L F.

5. In AABC, BC > AC and Q 'is the midpoint of AB. Is L CQA
obtuse or acute? Explain.

[sec. 7-3]
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6. In this figure FH = AQ.
AH > FQ.
Prove: AB > FB.

7. A non-equilateral quadrilazeral has two pairs of congruent
adjacent sides. Prove that the measure of the angle included
between the smaller sides is greater than the measure of the
angle between the larger sides.

8. Prove the following theorem: H

If a median of a triangle is

not perpendicular to the side

to which it is drawn, then the
lengths of the other two sides

of the triangle are unequal, A

n

9. Given AB > AC and FC = DB
in this figure. Prove that
FB > CD.
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7-4. Altitudes.

Definitior. ~n altitude of a tria=gle 1is the peemendicular
segment Joinin: a vertex of th:: *imrcies to tim line aat -ntalins

.iie opposits si-=.

— <>
In the figure BD 1s called the altitude from B to AC, or
simply the altitude from B. (Notice that we say the altitude
from B 1nstead of an altitude from B, because Theorem 6-3 tells

us that there is only one.)

Notice that the foot of the perpendicular does not necessarily
lie on the side 7C of the triangle. The figure may look 1like
this:

242
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Notice also ~hat e+ . irlzn "2 has tiores altitude: -ne from each
of the three vert_:: - .ike. :6 iis:

T
i
Here AF 1s the alti =+ :mm A, BD 1s the altitude from B

and CE 1is the altit e : =m C.

It 1s customary t .o the same word "altitude" for two
other difrerent, but

(1) The number whkich is the length of the perpendicular seg-
ment 1s called altitude:; thus one may say "The altitude from B
is 6", meaning that BD 6.

(2) The 1line contzining the perpendicular segment 1s also

-.. ted, concepts,

kst

called altitude; a property of the above figure can be expressed
by saying that the three zizitudes o the triangle intersect in

one point. (This proper=— _: true for all triangles and will be
proved in Chapter 14.)
This triple use of ci:: :3:e word could cause trouble but gen-

erally does not, since 1% is usually easy to tell in any particular
case which usage 1s being made.

Preblem Set 7-4

1. Defilne: a. Altitude of a triangle.
' b. Median of z triangle.
2. Draw an obtuse triangle (a triangle having an obtuse angle)
and its three alti- des.
[sec., T7-4]
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3. In an equilateral triangie a median and an altituds =t drawr
to the szme side. Compare the lengths of these tws susgments.,

. Prove that the perimeter of a triangle is greater tagx the
sum of tks three altitudes.

5. Prove ths followlng theorem: The altitudes of an ¢l ateral
triangle are congruent.

Review Problems

1. Three guy wires of equal length are being used to swzzmt a
newly planted tree on level ground. If they are all fzstened
to the tree at the same height on the tree, will .thzy be
pegged to the ground at equal distances from the foct of the
tree? Why? '

2. If this figure were drawn
correctly, which segment in
the figure would be the shortest?
Explain your reasoning.

3. Prove the following theorem:

If two obligue (not perpendicular) line segments are
drawn to a line from a point on a perpendicular to that 1line,
the one containing the point more remote from the foot of the
perpendicular is the longer.

s

. In this plamar flgure, A K
AK = HQ, AF = HB, KB|AH, QF|AH.
Prove LQ =L K. '
Does K@ bisect BF?

224
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In £ .AEZ, AC > AB. Prove thz any 1ine segment from A to a2
point c= BC between P anc C ig zherter than AC.

Segment= drawc from a point I, the interior of a triangls o
the thr=2 ver—ices have lengt-< r, =. %. Prove that
r + s + T iz greater than hai: the rzrimeter of tThe trizngi..

In this nlanzr figure FH is
the shc—test side and AB is
the lonzest side. Prove
mLF>mLa,

A

Prove the following theorem: The length of the longest zids
of the triangle is less than half lts perimeter, H

Given isosceles A ABF with

Eg_= F=, AB ¢ AF, and H on

AF, so that F 1s between A

and H. Prove no two sides of
A ABH are equal in length.

On the basis of the assumptions we hav= accepted and tﬁe
theorems we hawve proved in this coursz we are not able at
present to prove that tk= sum of the m=asures of the three
angles of a triangle is 180 (an idea wtth which you have been
familiar fo~ some time): But, we can easily construct a tri-
angle and prove that th= sum of the measures of the angles of
this tri=ngle is less =man 121,

Let L FTG have meast—= 1 (&ngle A
Construction Jostulazte). On CF C G

=z . < : B 6
and CG tzx= points A and B

so that CA = CB (Point Plot=ing Theor=n).
Why 1s the sum of the measures of the =ngles of this triamgle
less than 1819

225
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%¥11, e sum I ths measures of tie three angles of a triangle is
r=8s thzm Z7C.

#12, I.. this [igurs: A
L C 4is 2 rizmat angle.

il B= m_.

Prove: .= - =z CB

(Hint: == xtuce auxiliary

segments.. )
mn
¢ B

%13, Prove th:s theorem: The sum of %he distances from a point
within a triangi=s to the ends ol one side is less than the
sum of the lengths of the other two sides.

> <>
%14, Suppose AC intersects BD at a point B bet@sgp A and C.

perpendiculars-are dropped from A and C to BD striking
it at P and Q respectively. Show that P and Q are not
on the same side of B.

Do
[\




Chapter 8
PERPENDICULAR LINES AND PZANES IN SPACE

8-1. The Basic Definition.

In this chaister we shall e sp=2ciiically conc-erned wi®h prop-
erties of figures t.aat do not  ie ir zlngle zlame. The I inda-
mental properties o' such figu es i« ctated in TFostulates b, 6.,
7, 8 and 10, and in Theorems 3-2, 5-: ard 3-4. It would be worth
your while t— review these.

Definition. A line and a plany are perpendicular 1f they
intersect and if every line lying in the plane and passing through
the point of intersection is perpemdicular to the given line.

=3

If 1ine L and plane E ar o»errendicular we write LIE or E|L.
Wie have indicated, in th: {igure, three lines in E caszing

through P. Notice that ! & v€>snectivs drawing, perperdiiculz=—
lines don't nec=ssarily .ok aecpsndicular. Notize alsc thas IT

we merely requirsd s E contiin onz line through P perpendicular
to L, this would mean =.Ty liztle; you can fairly easily convince

yourself that every plan: through P contains such a line.

‘7-5)
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!

Problem Set 8-1

The figure at the right
rcpresents plane E.

a. Do any points outside the ‘ E
guadrilateral shown '
belong to plane E ? [/

b. Is plane E Intended t: include
every point outside the quadri-

lateral?

a. Sketch a plane perpencicular to a vertical line. (See
Appendix V.)

b. Sketch a plane perpendicular to a horizontal line.

¢. Does each of your seetcmes represemt :. line perpendicular
to a plane?

a. Repeat the sketch of Problem 2b. Add To the szk=teh Thomse
lines in.the plane which pass through the 'point of inter-
_sectior. What 1s the relztionship betwesn eachr of *the
three lines and the origima: liz=?

Reread the definition of perrendicularizy between a Iim= and
a plane and decide whether tiz fcllowizz statement 'Zs e if
that definition is acceptuc.

"I a line is perpendic..z2r to . pizme, then it 1s perpen-
dicular to every line lyinr .n the plane zmd passing thzough
the point of intersection.”

Given that B, R, S and T are TA
in plane E, and that AB | E, /' =
which of the followins amgles _!,;‘3 /
“must be right angles: ; N\Tnf
L ABR, L AES, L RBT, L "BA, /‘5 s/
L SBR? -
[sec. 8-1)}
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6. If LPQH is a right angle and Q ‘ .
and H are in E, should you infer P
from the definition of a line and H
a plane perpendicular that EE;_L E?
Why or why not?
7. In the figure plane E contains AT
‘ points R, 8, and P, but not T,
a. Do points R, S and T determine
a plane? E
k. If-g; is perpendicular to the S
plane of R, S and T, which ‘(B/////// \p |
angles in the figure must be /
»ight angles?

8. &a. Zf a point i1s equidistant from each of two other points,
are the three points coplanar?
b. TIf two points are each equlidistant from each of two other
points, are the four points coplanar?

*g, a. Siven: B P A Q
Collinear points A, B and X
as in the figure; B equidis-
tant from P and Q; and A
equidistant from P and Q. B
Prove: X is equidistant
from P and Q.

b. Does the proof require that
Q be in the plane of A, B, X , A
and P?

10. Look ahead to Theorem 8-1 and make a model for it from sticks,
' wire coat rangers, or straws.

[sec. 8-1]
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8-2. The Basic Theorem.

The basic theorem on perpendicularity in space says that 1if a
plane E contalns two lines, each perpendicular to a line L at the
same point of L, then L l E. The proof of this is easier if we
prove two preliminary theorems (lemmas).

Theorem 8-1. If each of two points of a line 1s equidistant

from two given points, then every point of the line is equildistant
from the given points.

L

Restatement: If P and Q are two points and L 1s a line such

that two points A, B of L are each equidistant from P and Q, then
every point X of L 1s equidistant from P and Q. (The above figure
shows three possible positions for X. Of course, X might be at
A or B.)

Proof: Ttfirst we considér the case where X 1s on .the same
side of A as B. X might be at Xl’ B, or X2 »ut for convenlence
in the filgure we show it beyond B at Xl’ in this case L PAB =L PAX
‘and L QAB = L QAX. Ve treat this case 1in 3 steps.

2390
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Q

1. Since AP = AQ (given), BP = BQ (given), and AB = AB (identity),
AABP A ABQ (S.S.S.). Hence, L PAB = L QAB.

2, L PAX YL QAX. This is because L PAB = [ QAB by Step 1.
(We are considering the case where L PAX =/ PAB and
L QAX =L QAB.,)

3., Using Step 2 and the facts that AP = AQ (given), and AX = AX
(1dentity) we find that A PAX = A QAX (S.A.S). Hence PX = QX,

—>
The case where X lies on the ray oppo§ibe AB is proved 1in a
similar fashion.

231
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Probiem Set 8-2a

1. A piece of paper AXBQ, a3
pic ~ured here, Zs folded along
QX. Imagine A z=nd 3 as both
being in the foregrcund of the
picture and QX in the baclground.
Under these ccnditions wifl a
point K of QX be equidistant
from A and B? Stzt= a theorem

to support your =Z—uwer. If
AF = 6, BF = .

2. Here imagine miz=r= LT3 obscur-
ing part of pl=m= A¥3. It is
given that XA = Z5 and YA = YB.
T, W and Z ars three other
points of §§i Dces TA = TR?
Does WA = WB? TIa=s ZA = ZB?
State a theorsm iThat supports
each conclusion.

[sec. 8-2]
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Pheorem 8-2. If each of three non-collinear polnts of a

plane is equidistant from two points, then every point of the
plane 1s equidistant from these two polnts.
Given: Three non-collinear

o P

points A, B and C each equl- o C
distant from P and Q.

Prove: Every point of the oA *B
plane determined by A, B and
C 1s equidistant from P and Q. °Q

Proof: The proof 1s given in three steps.
P
1. Since A and B are each given

equidistazg_from P and Q, each c
point of AB is equidistant from
P and Q. This follows from B //
Theorem g;l. Similarly each

point of BC 1s equidistant from °Q

P and Q. ‘ '

2. Let X be any other point ogephe
plane, If X is on elther AB or
E§; X is equidistant from P and
Q by Step 1. If X 1s on one
side of‘EE, choose Y, some point
of Kg'oﬁ the other side of 63.
The Plane Separation Postulate

oP

*Q
assures us that Qggye is such a
point Y and that XY willl inter- °
<> P

sect CB in some point Z.

<>
3. Since Z i1s on CB 1t is equl-

distant from P a Q by Step 1.
Since Y 1s on it is equi-

distant from P and Q by Step 1.

Therefore by Theorem 8-1 every *Q
polnt of YZ is equldistant from P and Q. X 1s one of these
points.

[sec. 8-2]
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Since we have shown that each point X of the plane determined
by A, B, C is equidistant from P and Q, Theorem 8-2 is established.
We are now ready to prove the basic theorem.

Theorem 8-3. If a l1line is perpendicular to each of two inter-
secting lines at thelr point of intersection, then it is perpen-
dicular to the plane of these lines.

Restatement: Let L1 and L2 be lines in plane E intersecting
at A and let L be a line through A perpendicular to L1 and L2.
Then any line L3 in E through A 1s perpendicular to L.

E
Ly
Proof:
Statement Reason
1. Let P be a point on L, 1. By the Ruler Postulate, each
B1 a pointlon Ll’ B2 a of these lines has an

point on Lé, and B3 a point infinite number of points.

on L3, none of these points
coinciding with A.
2. Let Q be the point on the ray|2. Point Plotting'Theorem.

opposite to such that
AQ = AP.

3. In the plane containing L and|3. Definition of perpendicular
Ll’ L1 i1s the perpendicular bisector (Section 6-3).

bisector of PQ.

, B, is equidistant from P . I, Theorem 6-2.
and Q.

[sec., 8-2])
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10.

B2 is equidistant from P and 5. Similar to 3 and 4.
Q.

A is equidistant from P and Q. 6. Step 2.

B3 is equidistant from P 7. Steps 4%, 5 and 6, and
Theorem 8-2.

and Q.

In the plane containing L 8. Theorem 6-2,

and L3, L3 1s the perpen-
dicular bisector of FQ.

L l L3. ’ 9. Definition of perpendicular
bisector, .-
L 1 E. 10. Definition of perpendicular-

ity of line and plane, since
L3 is any 1line in E through

A.

Problem Set 8-2b

c
Suppose A, B and C are each P
equidistant from P and Q. ,//// oX
Explain in terms of a defi- 1///////
nition or theorem why each A ] B

point X of plane ABC is equi-
distant from P and Q.

Explain the relationship between the line of intersection L of
two walls of your classroom and the plane of the floor. How
many lines perpendicular to L could be drawn on the floor?

Is L perpendicular to every line that could be drawn on the
floor?

235
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Figure FRHB is a square. AB | FB. A is not in plane FRHB.

a. How many planes are determined by pairs of segments in
the figure? Name them. '

b. At least one of the segments in this figure 1is perpendicular
to one of the planes asked for in Part (a). Which segment?
Which plane? A systematic approach to such a problem is
to write down every palr of perpendicular segments you see
in the figure. Then you can observe whether you have one
line perpendicular to two intersecting lines.

[

A ABF is isosceles with B as vertex. AH = FH. RH | HB.
R 18 not in piane AFB. ‘
a. How many different planes are determined by the segments
in the figure? ©Name them.
b. Do you find a segment that is perpend;cular to a plane?
If so, tell whut segment and what plane and prove your
statement. ’

230
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5. In this figure, FB | plane P, and in A RAB, which lies in
plane P, BR = BA. Prove A ABF = A RBF and L FAR = /[ FRA.

#*6, Given the cube shown, with BR = BL. Does KR = KL? Prove that

your answer 1is correct,.

K H
A\
'é\ M
[N
Q B
(N \
oy o\
b -
Ve - F
// \\\‘\\ \
’ \ky T
A R B

(Since we have not yet given a precise definition of a cube
we state here, for use in your proof, the essentlial properties

of the edges of a cube:
The edges of a cube consist of twelve congruent segments,

related as shown in the picture, such that any two Intersecting

segments are perpendicular.)

[sec, 82)
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<>
7. In the accompanying figure WX is a line in plane E. Plane F l

¥X at Q. 1In p&gne F, ﬁ&_[_ 3B. 2B is the intersection of E
and F. Prove RQ | E.

For all we know up to now the conditlons specified in the
definition of a line and a plane perpendicular might be impossible
to achieve,  To reassure us, we need an existence theorem. The
next theorem enables us to see that we are not talking about things

that cannot exist in speaking of perpendicularity between lines and
planes. '

[sec. 8-2]
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Theorem 8-4. Through a given point on a given line there
passes a plane pérpendicular to the line. '

Proof: 1Let P be a poirz-on a line . We show 1in s*x st=ps
that there is a plane E through P perpendicular to L.

1. Let R be a point ncz on L. That there 1s such a point
follows from Postulzte 5a,

2. Let M be the plane determined by L and R. Theorem 3-3
zells us there 1s such a plane.

3. Let Q be a point not on M. Postulate 5b assures us that
there i1s suth a point.

4, TLet N be the plane determined by L and Q.

5. In plane M there is a 1line L1 perpendicular to P at P
(Theorem 6-1), and in plane N there is a line L, perpen-
dicular to L at P. '

6. By Theorem 8-3, the plane E determined by L, and L, 1s
perpendicular to L at P.

If E l L at P then every line in E and through P is perpendic-
ular to L, by definition. May there be some lines not in E but
still perpendicular to L at P? The next theorem says, "No".

Theorem 8-~5, If a lins and a plane are perpendicular, then
the plane contains every line perpendicular to the given line at
its point of intersection with the given plane.

Restatement: If line L 1s perpendicular to piane E at point
P, and if M is a 1line perpendicular to L at P, then M lies in E.

[sec. 8-2]
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7 [

Proof': Statements o Reasons

1. L anc M determine a plane F. 1. Theorem 3-4.
2, Planes T and E intersect in 2, Postulate 8.
a line N. :
3. N ] L. 3. Definition of perpendicu-
larity of line amd plane.
v, M ] L. 4, Given.
5. M= N. (This means M and N 5. M and N both lie in plane F
are the same line.) by Steps 1 and 2, are both
. 1 L by Steps 3 and %, but
Theorem 6-1 says there is
. only one such perpendicular.
6. M lies in E, 6. M =N by Step 5 and N 1ies
in E by Step 2.

This theorem enables us to prove the uniddeneés theorem_that
goes with Theorem 8-14,

Theorem 8-6. Through a given point on a given line there is

at most one plane perpendicular to the line..

Proof: Since a perpendicular plane contains all perpendicular
lines through the point, and sihce two different planes have only
one line in common (Theorem 3-4), there cannot be two such planes.

Just as in a plane where the characterization Theorem 6-~2
followed the existence and uniqueness Theorem 6-1, so now we can
prove a simllar characterization theorem for space.

Theorem 8-7. The perpendicular bisecting plane of a segment
is the set of all points equidistant from the end-points of the

[sec. 8-2]
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segment. Note that this theorem, 1like Theorem 6-2, has two parts.
Restatement: Iet E be the perpendicular bisecting plane of
AB. Let C be the mid-pozat of AB. Then
(L) If P is in E, then PA = PB, and
(2) If PA = PB, then P is in E.
The proof is left to the student.

Problem Set 8-2¢

1. a. At a point on a line how many lines are perpendlcular to
the 1ine?

b. At a point on a line how many planes are perpendicular to
the line?

2. ;Eianes E and F inters=ct in
shown in this 1 .
E&e as 10w Tigure

AB | E. BR lies in plane E.
<>
Plane ABR intersects F in BC.

<>

1s 38 | BR®
<«> T €>
Is AB | KQ.
<> <>
Is AB | BC?

<> <> <>
3. ILQP | E 2t P and QP 1 PR,

why does PR lie in E?

e Q.
R
E
4, Assuming here that

AX = BX,

AY = BY,

AW = BW,

AZ = BZ,

why are W, X, Y and Z coplaq?r?

41
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5. Plane E is the perpendicular
bisecting plane of AB, as shown
in the figure.
a. AW

AK
AR
m L AFW

L AKF

te e ue

e U

b. Does FW = FK = FR? Explain.

*6, Prove this theorem: If L is a line intersecting plane E at
point M, there is at least one 1line L' in E such that L! l L.

~ The next theorem is a lemma which 1s useful in proving later
theorems,
Theorem 8-8. Two lines perpendicular to the same plane are

coplanar.

Proof: Let lines L1 and:2 be perpendicular to plane E at
the points A and B respectively. Let M be the mid-point of AB,
let L be the 1line in E which is the perpendicular bisector of AB,
and let P and Q be two points on L such that PM = QM. Let C be

a point on L1 distinet from A.

+

r
[

[sec. 8-2]
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1. By the S.A.S. Postulate, A AMP = A AMQ, and so AP = AQ.
Since L, | E, L CAP and L CAQ are right angles, and the S,A.S.
Postulate gives A CAP ¥ A CAQ, so that CP = CQ.

3. From :P = AQ and CP = CQ it follows, by Theorem 8-7, that C
and A doth 1ie in the bisecting plane E' of PQ. Hence, L, lies
in E'.

4, 1In exactly the same way we prove that L2 lies in E!'. Hence,
L1 and L2 are coplanar.

8-3. Existence and Unlgueness Theorems.

The following theorems cover all possible relations between
a point, a line and a perpendicular plane. They are stated here
for completeness and for convenience in reference.

Theorem 8-9. Through a given point there passes one and only
one plane perpendicular to a given line.

‘Theorem 8-10. Through a given point %here passes one and only
one line perpendicular to a given plane.

The proof of each of these theorems has two cases, depending
on whether or not the given point lies on the given line or plane,
and each case has two parts, one for proving existence and one for
proving unigueness. This makes a total of eight proofs required.
Theorems 8-4 and 8-6 are two of ‘these eight; the remaining six,
some of which are hard and some easy, are given in Appendix VI.

Theorem 8-10 assures us of the existence of a unique perpen-
dicular to a given plane from an external point. Heﬁce, we are
Justified in gilving the followlng definition, analogous to the one
following Theorem 7-6.

Definition. The distance to a plane from an external point 1s
the length of the perpendicular segment from the point to the plane,

Theorem 8-11. The shortest segment to a plane from an ex-

ternal point is the perpendicular segment.
The proof 1s similar to that of Theorem 7-6.

[sec. 8-3]
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Review Problems

1. Use a drawing if necessary to help you decide whether each

statement 1s true or false.

a. The intersection of two planes may be a segment. .

b. If a line intgrsects a plane in only one point, there are
at least two lines in the plane perpendicular to the line.

c¢c. For any four points, there 1s a plane containing them all.
If three lines intersect in pairs, but no point belongs
to all three, the lines are coplanar. )

e. It is possible for three lines to intersect in a point, so
‘that each 1s perpendicular to the other two.

f. Only one line can be drawn perpendicular to a given line
at a given point.

g. At a point in a plane there is only one line perpendicular
to the plane.

h. The greatest number of regions into which three planes can
separate space is eight.

2. From a point R outside plane E, RE | E and RB intersects the
plane in B. RA is any other segment from R, intersecting E
in A. Compare the lengths AR and RB. Compare the measures

of L A and L B.
R

A B

3. If the goal posts-'at one end of a football field are perpen-
dicular to the ground, then they are coplanar even without a
brace between them. Which theorem supports this conclusion?
Can the goal posts still be coplanar even if they are not
perpendicular to the ground? Could they fail to be coplanar
even with a brace between them?
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4., Do there always exist

a. two lines perpendicular to a gilven line at a given point
on the line?

b. two planes perpendicular to a given 1line at a given point
“6n the line?

c. two lines perpendicular to a given plane at a éiven point
on the plane? o

d. two planes perpendicular to a given line?
two intersecting lines each perpendicular to a given plane°

5. The assumption that two lines
L, and L, are perpendicular p )
to plane E and L1 and L2 inter- : E
sect in point P not in plane E

can be shown to be false by ,/ \
proving thaf the assumption -
leads to a contradiction of a /{i \\Lz
theorem about figures in a
plane., Wnich theorem?

<> C >
6. Given MQ | plane E, and WF |
to plane E. How many different
planes are determined by WQ, Q . F
“—> <> <> E .
MW, WF and QF? Explain.

=y

A ABF is isosceles with vertex at B. . RH | BF.
R is not in the plane AFB.
a. How many different planes are determined by the segments
in the Tigure? Explain.
b. Locate and describe a line that 1s perpendicular to a
planec.
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8. Given: P is in plane E which
contains A, B, C; P 1s equi~
distant from A, B, C; line L | E
at P,

Prove: Every point, X, In L 1is
equidistant from A, B, C.

9. Glven: Line L | plane ABC at
" Q; point P of L is equidistant
from A, B, C.
Prove: Every point of L 1s
equldistant from A, B, C.
(Hint: Consider any point
X #Q on L and show XA = XB = XC.)

10. Given: AP | PQ and AP | TC; A
® ] B at Q.
Prove: AQ } . -
(Hint: Take R on QC so that
QB = QR. Draw PB, PR.) P
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Prove the following theorem: If from a point A outside a

plane, a perpendicular AB and oblique (non-perpendicular)

segments AF and AH are drawn, meeting the plane at unequal
distances from B, the segment which meets the plane at the
greatef distance from B has the greater length.

A

F

Given: AB | plane E. F and
H are points of E such that
BF > BH.

Prove: AF > AH.

— > —> —>
Prove that each of four rays AB, AC, AD and AE cannot be

rerpendicular to the other three.

<> <> >
Given: XB and YB are two lines in plane E; m is a plane l XB

<> <>
at B; n 1is a plane l ¥B at B; AB is the intersection of m and
n.
“—>
Prove: AB | E.




Chapter 9

PARALLEL LINES IN A PLANE

9-1. Conditions Which Guarantee Parallellsm.
Thus far in our geometry we have been mainly concerned with

what happens when lines and planes intérsect in certain ways. We
are now going to see what happens when they do not intersect. It
will turn out that many more interesting things can be proved.

We first consider the case of two lines. Theorem 3-3 gives
-us some information right away, since it says that 1f two' lines
intersect they lle in a plane. Hence, 1if two lines are not
coplanar they cannot intersect.

Definition: Two lines which are not coplanar are said to be
skew. |

You can easily find examples of skew lines in your classroom.

This still leaves open the question as to whether two
coplanar lines must always intersect. In Theorem 9-2 we shall
prove the existence of coplanar lines that do not 1ntersect, but

are parallel, like this:
/ E
L

Let us first make a precise definition.

Definition: Two lines are paralliel if they are coplanar and
do not intersect. '

Note that for two lines to be parallel two conditions must be
satisfied: they must not intersect; they must both lie in the
same'plane.

243



-7

Theorem 9-1. Two parallel lines lle in exactly one plane.

Proof: If L1 and L2 are paralliel lines it follows from
the above definition that there 1s a plane E containing L1 and
L2. If P 1s any point of L2 it follows from Theorem 3-3 that
there is only one plane containing L1 and P. Hence, E 1is the

only plane containing L1 and L2.

We will use the abbreviation L; || L, to mean that the
lines L1 and L2 are parallel. As a matter of convenience
we will say that two segments are parallel if the lines that
contain them are parallel. We will speak similarly of a line and
a segment, or a line and ray, and soc on. For example, supposé we
have given that L, Il Ly, in the figure below:

A B B

O

- < L,

—_— —  —> —_ —> —_—
Then we can also write AB ||c¢D, AB || Ly, Iy || ¢cb, BA || ¢D,
and so on. Each of these statements is equivalent to the state-
ment that L, || L,.

It does not seem easy to tell from the definition whether
two lines which seem to be parallel really are parallel. Every
line stretches out infinitely far in two directions, and to tell
whether two lines do not intersect, we would have to look at all
of each of the two lines. There is a simple condition, however,
which is sufficient to guarantee that two lines are parallel. It
goes like this:

Theorem 9-2. Two lines in a plane are parallel if they are

both perp adicular to the same line.

[sec. 9-1]
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Proof: Suppose that L1 and L2 are two lines in plane E,
each perpendicular to a line L, at points P and Q.

There are now two pissibilities:

(1) L, and L, intersect in a point R.
(2) L; and L, do not intersect.
|
- P "L,

In Case (1) we would have two lines, L, and L,, each
perpendicular to L and each passing through R. This is
impossible by Theorem 6-1 1f R 1lies on L, and by Theorem 6-3
Af R 'is not on L. Hence, Case (2) is the only possible one,
and so, by definition, L, 1 L, '

Theorem 9-2 enables us to prove the following important
existence theorem.

250
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.Theorem 9.3, Let L be a line, and let P Dbe a point not
on L. Then there is at least one line through P, parallel to

| L1

50¢ L

S0°
- S .

Proof: Let L1 be a line through P, perpendicular to L.
(By Theorem 6-1, there 1s such a line.) Let L, be a line
through P, perpendicular to L1 in the plane of L and P.

By Theorem 9-2, L, I L.

It might seem natural, at this point, to try to prove that
the parallel given by Theorem 9-3 1s unique; that 1s, we might try
to show that in a plane through a given point not on a given line
there 1s only one parallel to the given line. Astonishing as it
may seem, this cannot be proved on the basis of the postulates
that we have stated so far; 1t must be taken as a new postulate.
We will discuss this in more detaill in Section 9-3. In the mean-
time, before we get to work on the basis of this new postulate we
shall prove some additional theorems which, 1like Theorem 9-2, teli
us when two lines are parallel.

We first glve some definitions.

Definition: A transvergsal of two coplanar lines 1s a line
which intersects them 1in two different points. '

We say the two lines are "cut" by the transversal.

[sec. 9-1]
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Definition: ILet L ©be a transversal of Ll and L2,
intersecting them in P and Q. Let A be a point of L1 and
B a point of L2 such that A and B are on opposite sides of
L. Then / PQB and / QPA are alternate interior angles formed
by the transversal to the two lines.

Notice that in the definition of a transversal, the two lines
that we start with may or may not be parallel. But 1f they inter-
sect, then the transversal 1s not allowed to intersect them at
their common point. The situatibn in the figure below is not

allowed:

That is, in thisﬁfiguré L 1is not a transversal to the lines L1

and 7L2.
Notice also that a common perpendicular to two lines in a
plane, as in Theorem 9-2, 1s always a transversal.

[sec. G-1]
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Theorem 9-4. If two lines are cut by a transversal, and if
one pair of alternate interior angles are congruent, then the

other pair of alternate interior angles are also congruent.

- L,

-

L.

B

That is, 1f /a = /a', then /b= /b'. Andif /Db = /DI,
then / a & / a'. The proof is left to the student.

The following theorem 1s a generalization of Theorem 9-2,
that 1s, it includes Theorem 9-2 as a speclal case:

Theorem 9-5. If two lines are cut by a transversal, and if

a palr of alternate interior angles are congruent, then the lines
are parallel.

€)
[*]

573

o

- | [sec. 9-1)
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Proof: Let L be a transversal to L1 and L2, inter-

secting them in P and Q. Suppose that a pair of alternate:
interior angles are congruent. There are now two possibilities:

(1) L, and L
(2) 1 Il Ls.
In Case (1) the figure looks 1like this:

o intersect in a point R.

Let S Dbe a point of L1 on the opposite side of L from R.
Then / SPQ 1s an exterilor angle of A PQR, and / PQR 1s one
of the remote interior angles. By Theorem 7-1, this means that

m / SPQ > m / PQR.

But we know by hypothesis that one pair of alternate interior
angles are congruent. By the preceding theorem, both pairs of
alternate interior angles are congruent. Therefore,

m / SPQ = m / PQR.

- Since Statement (1) leads to a contradiction of our hypothesis,
Statement (1) is false. Therefore Statement (2) is true.

254
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Problem 3et 9-~1

1. a. Does the definition of parallel lines state that the
lines must remain the same distance apart?

b. If two given l1ines do not lie in one plane, can the
lines be parallel?

2. Two lines 1in a plane are parallel if s Or if ’
or if
3. If two lines in a plane are intersected by a transversal,

are the alternate interlor angles always congruent?

4, In space, 1f two lines are perpendicular to a third line, are
the two lines parallel?

5. a. If the 80° angles were
correctly drawn, would

< 80° ~ L
L1 be parallel to L2
according to Theorem
8-57? Explain. P 80° L
. - kg 2
b. How many different jr

measures of angles
would occur ;n the
drawing? What measures?

6. In the figure, if the angles
were of the size indicated,
which lines would be parallel?

[sec. 9-1]
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Given a line " L- and a point P not on L, show how pro-
tractor and ruler can be used to draw a parallel to L

-through P.

Suppose the followlng two definitions are agreed upon:

A véftical line 1s one containing the center of the
earth.

A horizontal line is one which 1s perpendicular to some
vertical line.

a. Could two horizontal lines be parallel?

b. Could two vertical lines be parallel?

c. Could two horizontal lines be perpendicular?

d. Could two veptical lines be perpendicular?

e. Would every vertical line also be horizontal?

f. Would every horizontal line alsoc be vertical?

g. Could a horizontal line be parallel to a vertical line?

h. Would every line be horizontal?

Is 1t possible to find two lines in space which are neither

parallel nor intersecting?

D C

Given: m / DAB =m / CBA = 90, ~ -
and AD = CB. N ///
N
Prove: m / ADC.= m / BCD. PN
Can you also prove m / ADC /// N
~
=m / BCD = 90? A B
[sec. 9-1]
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11. Gilven the figure wlith
AR = RC = PQ,
AP = PB = RQ,

b R
BQ = QC = PR. P
Prove:
m/A+m/B+m/C =180 B o

(Hint: Prove m /a =m /A,

m/b=m/B,m/c=m/C.)

12. Given: AB = AC, AP = AQ.
< <>
Prove: PQ | BC.
(Hint: ©Let the bisector of
/ A intersect PQ at R
and BC at D.)

13. Given: The figure with

LA=/B,
AD = BC, D S C
AT = TB,
SD = 3C.
Prove:
5T .| TC.
BC || AB. T '

2517
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o-2. Corresponding Angies.

In the figure below, the angles marked a and a' are
called corresponding angles:

_ v f @
o/ q’

C

b/ a
c’//d . i

Similarly, b and b' ‘are corresponding angles; and fhe pairs
¢, ¢' and d, d4' are also corresponding angles.

Definition: If two lines are cut by a transversal, 1if Z X
and /y are alternate interior angles, and if /y and [/ z
are vertical angles, then Z Xx and [ z are corresponding
angles.

You should prove the following theorem.

258
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Theorem 9-6. If two lines are cut by a transversal, and 1if.

one pair of corresponding angles are congruent, then the other
three pairs of corresponding angles have the same property.

The proof is only a little longer than that of Theorem 9-4,

Theorem 9-7. If two lines are cut by a transversal, and if
a palr of corresponding angles are congruent, then the lines are
parallel. The proof is left to the student.

It looks as though the converses of Theorem 9-5 and Theorem
9-7 ought to be true. The converse of Theorem 9-5 would say that
if two}parallel lines are cut by a transversal, then the alter-
nate interior angles are congruent. The converse of Theorem 9-7
would say that {f two parallel lines are cut by a transversal,
then corresponding angles are congruent. These theorems, however,
cannot be proved on the basis of the postulates that we have
stated so far. To prove them, we shall need to use the Parallel
Postulate, which will be stated in the next section.

The Parallel Postulate 1s essential to the proofs of many
other theorems of our geometry as well. Some of these you are
already familiar with from your work in other grades. For example,
you have known for some time that the sum of the measures of the
angles of any triangle is 180. Yet, without the Parallel
Postulate it is impossible to prove this very important theorem.
Let us go on, then, to the Parallel Postulate.

9-3. The Parallel Postulate.

Postulate 16. (The Parallel Postulate.) Through
a given extepnal point there 1s at most one line

parallel to a given line.

Notlice that we don't need to sayjnzn the postulate, that there
is at least one such parallel, because we already know this by
Theorem 9-3.

[sec. 9-3]
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It might seem natural to suppose that we already have enough
postulates to be able to prove anything that 1s "reasonable"; and
since the Parallel Postulate is reasonable, we might try to prove
it instead of calling it a postulate. At any rate, some very
clever people felt this way about the postulate, over a period of
a good many centuries. None of them, however, was able to find a
proof. Finally, in the last century, 1t was discovered that no
such proof is possible. Th= point is that there are some mathé—
matical systems that are almost like the geometry that we are
studylng, but not quite. In these mathematical systems, nearly
azl of the postulates of ordinary geometry are satisfied, but the
Parallel Postulate is not. These "Non-Euclidean Geometries" may
seem strange, and in fact they are. (For example, in these
"geometries" there 1s no such thing as a square.) Not only do
they lead to interesting mathematical theories, but they also have
important applications to physics.

Now that we have the Parallel Postulate we can go on to prove
numerous important theorems we could not prove without it. We
start by proving the converse of Theorem 9-5.

Theorem 9-8. If two parallel lines are cut by a transversal,
then alternate interior angles are congruent.

Proof: We have given parallel lines Ll and L2, and a
transversal L3, intersecting them in P and Q.

o/ L

260
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Suppose that Z a and Z b are not congruent. Let L be a line
through P for which alternate interior angles are congruent,

(By the Angle Construction Postulate, there 1is such a line.)

Then L # L,, because /b and /¢ are not congruent.

Now let us a=e what we have. By hypothesis, L, Il L,. And
by Theorem 9-5, we know that L || L2. Therefore there are two
lines through P, parallel to L2. This is impossible, because it
contradlcts the Parallel Postulate. Therefore / a = /b, which
was to be proved.

The prcofs of the following theorems are short, and you
should write them for yourself:

Theorem 9-9. If two parallecl lines are cut by a transversal,

each palr of corresponding angles are congruent.

Theorem 9-10. If two parallel lines are cut by a trans-
versal, interior angles on the same salde of the transversal are

supplementary.

Restatement: Given L, || L, and T intersects L, and
L,. Prove that / b 1s supplementary to /d and /[a 1is
supplementary to [/ e.

[sec. 9-3)
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Theorem 9-11. In a plane, two lines parallel to the same

line are parallel to each other.

Theorem 9-12. In a plane, if a line 1is perpendicular to one

of two parallel lines 1t is perpendicular to the other.

Problem Set 9-3

1. Given: D C
m/A=m/B=m/C = 90.
Prove: m / D = 90.
A B
2. Prove that a line parallel to the base of an lsosceles tri-

angle and intersecting the other two sides of the triangle
forms another 1sosceles triangle.

R
3. Given: 1In the figure,
RT = RS, b& || 8. 5
Prove: PQ = PT.
S Q T

[sec. 9-3]
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L, Review indirect proof as illustrated by the nroof of
Theorem 9-8. Give an indirect proof of each of the following
statements, showlng a contradiction of the Parallel Postulate.

a. In a plane, if a third
line M intersects one

L P///'
of two parallel lines 1,f/—”’,’//’ﬂ
M
intersects the other
P/

L1 at P, 1t also
L2.

b. In a plane, if a line
R 1ntersects only one

of two other lines Ll ‘ - R
and L,, then the ",,//”//////"

lines L1 and L2

Intersect.

- —~L2
Gilven: R 1lntersects L.l at P.
R does not intersect L2.

Prove: Ll Intersects L2

5. a. Prove: '"wo angles in a plane whlich have their sides
reapectively parallel and extendling both in the same
(or both in opposite) directlons are congruent.

. A
Glven: BA || ¥X ,
BC || vZ .
Prove: JABC ¥ /xv7 C_Qr
é B _&/
Pd
X
Y Z

203
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b. Prove: Two angles in a plane which have their sides
respectively parallel but have only one palr extending
in the same direction are supplementary.

Given: BA || ¥X , P___.Y X
BE || ¥YZ . A
Prove: In (a) /ABC = /XYZ.

In (b) m/ABC + m/XYZ = 180.

(Note: Only certain cases are illustrated and proved
here. All other cases can also be proved easily. The
term "direction" is undefined but should be understood.)

Make drawings of various pairs of angles ABC and DEF such
—> —> —>» —>

that BA | ED and BC ] EF. State a theorem that you think

may be true about the measures of such angles.

If Theorem 9-8 is assumed as a postulate, then the Parallel
Postulate can be proved as a theorem. (That is, it must be
shown that there cannot be a second parallel to a line
through a point not on 1t.)

Given: L, and L2 are Ls
two lines containing P, L P -

— q\
and L, Il ™. b

Prove: L2 not parallel
to M.
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9-4,

Show that if Theorem 9-12 (If a transversal is perpendicular
to one of two parallel lines, it is perpendicular to the
other.) i1s assumed as a postulate,. the Parallel Postulate
can be proved as a theorem.

Given: L, I M and L, and

L, contain P. (LE'% L;.) t?~ 4P
Prove: L, not parallel to ! T
M.
t
M__
Triangles.

Theorem 9-13. The sum of the measures of the angles of a

trlangle 1s 180.

Proof: Given O\ ABC, 1let L Dbe the line through B,

parallel to AC. Let /X%, /x', [y, [y and [z be as
in the figure.

[sec. 9-4)
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Let D be a point of L on the same slde of Kg' as C.
Since AC H ?ﬁg, A is on the same side of 555 as C. Therefore
C is in the interior of / ABD (definition of interior of an
éngle), and so, by the Angle Addition Postulate, we have

m/ABD =m/z+m/y'.
By the Supplement Postulate,

m / x' + m / ABD = 180.

Therefore .
m/x'+m/z+m/y" = 180.
But we know by Theorem 9-8 that m /x=m / x' and m/y =
m Z y!, because these are alternate interior angles. By sub-
stlitution we get
m/x+m/z+m/y =180,
which was to be proved.

From this we get a number of important corollaries:

Corollary 9-13-1. Given a correspondence between two
triangles. If two pairs of corresponding angles are congruent,
then the third pair of corresponding angles are also congruent.

Bl

The corollary says that 1f /A & /A' and /B=/B',
then /C =/ C'. As the figure suggests, the corollary applies
to cases where the correspondence given 1s not a congruence, as
well as to cases where A ABC & A A'B'C'.

[sec. 9-4]
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Corollary 9-13-2. The acute angles of a right triangle are
complementary.

Corollary 9-13-3. For any triangle, the measure of an
- exterior angle is the sum of the measures of the two remote

interior angles.

Problem Set 9-4

1. If the measures of two angles of a triangle are as follows,
what is the measure of the third angle?

a. 37 and 58. d. r and s.
b. 149 and 30. e. 45+ a and U5 - a.
c. n and n. - f. 90 and %k.

2. To find the distance from
a point A to a distant
point P, a surveyor may
measure a small distance
AB and also measure / A P
and / B. From this in-
formation he can compute
the measure of / P and-
by appropriate formulasi:
then compute AP. If
m/A=287.5 and m / B = 88.3,
compute m / P.

- 3. Why is the Parallel Postulate essential to the proof of
Theorem 9-137

267
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b, On a drawing like the one
on the right fill in the
values of all of the angles.

5. Given: J/ A = /X and
/B& /Y, can you S va
correctly conclude that: .
a. JcE/2? v
b. AB = XY?

fie

(14

—>
6. Given: BD bisects / EBC,
. <> <>
and BD || AC. E

Prove: AB = BC.

7. The bisector of an exterior angle at the vertex of an
isosceles triangle is parallel to the base. Prove this.

20

[sec., 9-4]
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.*9.

*10.

Given: The figure.
Prove: S +r =t + u.

(Hint: Draw DB.)

Given: In the figure,
/ BAC 1s a right angle
and QB = QA.

Prove: QB = QC.

Given: In /ABC, /C
is a right angle,
AS = AT and BR = BT.

Prove: m / STR = 45,

(Hint: Suppose m / A = a.
Write formulas in turn for
the measures of other angles

in the figure in terms of a.)

v

[sec. 9-4]
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9-5. Quadrilaterals in Plane,.
A quadrilateral is a plane figure with four sides, like one
of the following:

B C
C
A ' D A D
B— C B
/ J A<>C
A C D /
B
B
A D C
A D

The two flgures on the bottom i1llustrate what we might call
the most general case, 1in which no two sides are congruent, no
two sides are parallel, and no two angles are congruent,
. We can state the definition of a quadrilateral more precisely,
in the followlng way.

Definition: Let A, B, C and D be four points lylng in
the same plane, such that no three of them are collinear, and such
that the segments AB, BC, CD and DA intersect only in their
end-points. Then the union of these four segments is a quadri-
lateral.

For short, we will denote this figure by ABCD. Notice that
in each of the examples above, with the exception of the last one,
the quadrilateral plus 1ts interior forms a convex set, in the
sense which was defined in Chapter 3. This is not true of the
figure at the lower right, but this figure 1s still a quadrilater-
al under our definition. Notice, however, that under our
definition of a quadrilateral, figures like the followlng one are

ruled out.
[sec. 9-5]
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Here_Ehe figure is not a quadrilateral, because the segments
56' and DA intersect in a polnt which is not an end-point of
elther of them. Notice also, however, that a quadrilateral can
be formed, using these same four points as vertices, like this:

Here ABDC 1s a quadrilateral.

, Definitions: OQpposite sides of a_quadrilaterallare two sides
that do not intersect. Two of its angles are opposite if they do
not contain a common side. Two sides are called consecutive if
they have a common vertex. Similarly, two angles are called

consecutive 1r they contain a common side. A dlagonal is a
segment Joining two non-consecutive vertices.
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In a quadrilateral ABCD, AB and CD are opposite sides,
'as are BC and AD. AD and CD or ED and AB are con-
secutive sides. AC and BD are the diagonals of ABCD.
‘Which angles are opposite? Which consecutive?

Definition: A trapezoid is a quadrilateral in which two, and
only two, opposite sides are parallel.

B C

Definition: A parallelogram is a quadrilateral in which both
pairs of opposite sides are parallel.

You should not have much trouble in proving the basic
theorems on trapezoids and parallelograms:

Theorem 9-14. Either diagonal separates a parallelogram
into two congruent triangles. That 1s, if ABCD 1s a parallel-
ogram, then , ABC = /| CDA.

Theorem 9-15. In a parallelogram, any two opposite sides
are congruent.

272
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Corollary 9-15-1. If L, [[L, and if P and Q are any
two points on Ll’ then the distances of P and Q from L
are equal. : P

2

This property of parallel lines 13 sometimes abbreviated by
saying that "parallel lines are everywhere equidistant".

Definition: The distance between two parallel lines 1is the
distance from any point of one line +o the other line.

Theorem 9-16. In a parallelogram, any two opposite angles

are congruent.

Theorem 9-17. In a parallelogram, any two consecutive
angles are supplementary. ’

Theorem 9-~18. The diagonals of a parallelogram bisect each
other.

In Theorems 9-1Y4 through 9-18 we are concerned with several
properties of a parallelogram; that is, if we know that a quadri-
lateral 1s a parallelogram we can conclude certaln facts about it.
In the following three theorems we provide for the converse
relationship; that 1s, if we know certain facts about a quadri-
lateral we can conclude that it is a parallelogram. ‘

Theorem 9-19. G@Given a quadrilateral in which both pairs of
opposite sides are congruent. Then the quadrilateral is a

parallelogram.

Theorem 9-20. If two sides of a quadrilateral are parallel

and congruent, then the quadrilateral is a parallelogram.

Theorem 9-21. If the diagonals of a quadrilateral bisect
each other, then the quadrilateral 1s & parallelogram.

The followlng theorem states two useful facts. The proof of
this theorem is given in full.

[sec. 9-5]
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Theorem 9-22. The segment between the mid-points of two™
sides of a triangle is parallel to the third slde and half as
long as the third side.

A C

Restatement: Given /\ABC. Let D and E be the mid-
points of AB and BC. Then DE || AC, and DE = 3 AC.

Proof: Using the Point P}g}ting Theorem, let; F be the
point of the ray opposite to ED such that EF = DE. We give
the rest of the proof in the two-column form. The notation for
angles is that of the figure.

Statements Reasons
l. EF = ED. 1. F was chosen so as to make
this true.
2. EB = EC. 2. E is the mid-point of 3BC.
3. Z X = Z y. 3. Vertical angles are congruent.
4. /\EFC = /\EDB. 4. The S.A.S. Postulate.
5. /v &/w. 5. Corresponding parts of con-
: . gruent triangles.
> <>
6. AB || CF. 6. Theorem 9-5.
7. AD = FC. 7. AD = DB, by hypothesis, and
DB = FC, by statement 4.
8. ADFC 1s a parallelogram. 8. Theorem 9-20.
9. DE || AC. 9. Definition of a parallelo-
gram. ‘
10. DE =3 AC. 10. DE = % DF, by statement 1,
and DF = AC,' by Theorem
7 9-15.
N
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9-6. Rhombus, Rectangle and Square.

Definitions: A rhombus 1s a parallelogram all of whose sides
are congruent,

D C

A B

A rectangle 1s a parallelogram all of whose angles are
right angles.

B C

A : D

Finally, a square is a rectangle all of whose slides are cohgruent.

As before, we leave the proofs of the following theorems for
the student.

Theorem J-23. I a parallelogram has one right angle, then
it has four right angles, and the parallelogram 1s a rectangle.

Theorem 9-24. In a rhombus, the diagonals are perpendicular

to one another.

Theorem 9-25. TIf the diagonals of a quadrlilateral bisect
each other and are pe.pendicular, then the quadrilateral is a

rhombus.

215
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Problem Set 9-6

For which of the quadrilaterals -- rectangle, square,
rhombus, parallelogram -- can each of the following proper-
tles pe proved?

a. Both pairs of opposite angles are congruent.

b. Both pairs of opposite sides are congruent.
c. Each diagonal bisects two angles.

d. The dlagonals bisect each other.
e. The dilagonals are perpendicular.
f. Each palr of consecutive angles 1s supplementary.

Each pair of consecutive sides 1s congruent.

" h. The figure is a parallelogram.
i. Each pair of consecutive angles 1s congruent.
J. The dlagonals are congruent;

With the measures of the angles as gilven in parallelogram
ABFH, glve the degree measure of each angle.

m/A =
H F
2x-60
%+30
A B
In this figure ABHQ and

m /B
m/F
m / H
AFRM are parallelograms. M R
What 1s the relationship of ////—
/M to /H? of /R to Q ,H
/ H? Prove your answer. 1/// ///

A B F

I

L

i

i

[sec. .9-6]
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4, Would the following infbrmation about a quadrilateral be
sufficient to prove 1t a parallelogram? a rectangle? a
rhombus? a square? Conslider each item of information
separately.

a. Both palrs of 1ts opposite sides are parallel.
b. Both pairs of its opposite sldes are congruent.
c: Three of 1ts angles are right angles.

d. Its dlagonals bisect each other.

e, Its dlagonals are congruent,
f. Its diagonals are perpendicular and congruent.
g. Its diégonals are perpendicular bisectors of each other.

h. It is equilateral.

i. It is equiangular.

J. It is equilateral and equlangular.

k. Both pairs of its bpposite angles are congruent.

1. Each pair of its consecutive angles is supplementary.

5. Given: ABCD 1s a parallelo-

gram with diagonal AC. D c
AP = RC. '

Prove: DPBR 1s a parallel- 4
ogram. A A

6. Given: Parallelograms AFED
and FBCE, as shown in this
plane figure. D

Prove: ABCD 1s a parallel-
ogram.
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;f lines arec drawn parallel to the legs of an 1lsosceles
triangle through a point in the base of the triangle, then a
parallelogram is formed and 1ts perimeter 15 equal to the sum
of the lengths of the legs. '

R.
Given: In the figure
RS = RT, PX || RT,
BY || RX. N
Prove: a. PXRY 1s a X
. Parallelogram.
b. PX + XR + RY + YP S P T
= RS + RT.
In this figure, if ABCD 1s D £ C
a parallelogram with dlagon-
als AC and BD intersect- \
ing in Q and EF 1is drawn : Q
through @, prove that EF
. A F B
is bisected by Q.
Given the 1sosceles trapezold
ABCD in which AD = CB and D
cD || AB. \
Prove / A 2/ B. X
\
A X B

e
-

Do
-
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10. The median of a trapezoid is the segment Joining the mid-
points of its non-parallel sides.

a. Prove the following theorem: The medlan of a trapezoid
is parallel to the bases and equal in length to half
the sum of the lengths of the bases.

Given: Trapezoid ABCD
with CD || AB, P the
midpoint of AD and Q
the midpoint of BC.

Prove: PQ || AB

1 A
PQ = 5 (AB + CD). D C
<>
(Hint: Draw DQ meeting \&
<>
AB at K.) i , Q
b. If AB = 9in. and /7 \
DC = 7in, then A B
‘PQ =
C. If DC = 3% and
AB = 7, then
PQ =

11. A convex quadrilateral with vertices labeled consecutively
ABCD 1is called a kite if AB = BC and CD = DA. Sketch
some kites. State as many theorems about a kite as you can
and prove at least one ol them.

12. Given: Quadrilateral ABCD ©
with P, ‘Q, R, S the
midpoints of the sides.

Prove: RGPQ 1s a parallel-
ogram, and PR and S9
bisect each other.

(Hint: Draw RQ, RS, SP,
DB a-. PQ.)




13.

*1h,

%15,

16.
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C
Given: In the figure Dﬂsz:::::]c.
AD < BC, DA | AB,
3B | iB. ,
Prove: m / C <m / D. A B

Prove that the sum of the
lengths of the perpendiculars
drawn from any point in the
base of an l1sosceles triangle
to the lego is equal to the
length of the altitude upon
either of the legs.

(Hint: Draw 5511455. Then
the figure suggests that PX

and 55 are congruent, and
that PY and 'ﬁﬁ are
congruent. )

Prove that the sum of the lengths of the perpendiculars drawn

"from any point in the interior of an equllateral triangle to

the three sides 1s equal to the length of an altitude.

(Hint: Draw a segment, perpendicular to the altitude used,
from the interior point.)

Given a hexagon as in the
figure with AB || 0OC,

BC || 0D, CD || OE,

DE || OF, EF || OA.

| F A
) i E:///////Y\\\\///////\\\\\B
Prove: FA || ¢D. Y:\\///////a\\\\///////l
D C

[sec. 9-6]
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17. a. Given KK‘, ﬁﬁ', ce!
are parallel and
AB || A'B', EC | B'C!
as in figure.

A
Prove: AC ||A'C'. B‘////7 B

b. Is the figure necessarily
a plane figure. Will
your proof apply if it C c’
isntt?
b L a
18. Given ABCD is a square B C
and the points K, L, M a
N divide the sides as b
shown, a and b being K
lengths of the indicated
segments. b ‘M
_Prove: KLMN 1s a square. a
AT g N b D

%*19, Show that if ABCD is a parallelogram then D 1is in the
interior of / ABC.

*20. Show that the diagonals of a parallelogram intersect each
other.

231
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9-7. [Transversals To Many Parallel Lines.

Definitions: If a transversal intersects two lines Ll’ L

'in points A and B, then we say that Ll and L2 intercept
the segment AB on the transversal.

| T
- af

2

_L‘

— B ‘ L,

Suppose that we have given three lines Ll’ L2, L3 and a trans-
versal intersecting them in points A, B and C. If AB = BC,

then we say that the three lines intercept congruent segments on
the transversal.

T
- A4 —L,
. B L,
— c — L
/ 3
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We shall prove the following:

Theorem 9-26. If three parallel lines intercept congruent

segments on one transversal, then they intercept congruent seg-
ments on any other transversal.

Proof: Let Ll’ L2 and L3 ‘be parallel lines, cut by a
transversal T1 in points A, B and C. Let T2 be another
transversal, cutting these lines in D, E, and F. We.have
given that

AB = BC;
and we need to prove that
DE = EF.

We will first prove the theorem for the case in which T1
and T2 are not parallel, and A % D, as in-the figure:

. \‘/ N —L

w

- BX G : E _L2
y
Y% 1 \H \\F V=L.3
N W

Ty

T, 2

Let T3 pe the 1ine through A, parallel to T2, inter-
sectling L2 and L3 in G and H; and let TM be the line
through B, parallel to T2’ intersecting L3 in I. Let
/% [y, [/w and /z be as indicated in the figure.

[sec. 9-T7]

283



277

Statements Reasons

1. /Jx= /2. 1. Theorem 9-9.

2. AB = BC. 7. Hypotheslis.

3. Tyl Ty 2. Theorem 9-11.

b, fw= Z y. 4, Theorem 9-9.

5. AAB = A BCI. 5. A. 3. A.

6. AG = BI. 6. Definition of congruent
triangles.

7. AGED and BIFE are 7. Definition of parallelograms.

parallelograms.

8. AG = DE and BI = EF. 8. Opposite sides of a parallel-
ogram are congruent.

9. DE = EF. 9. Steps 6 and 8.

This proves the theorem for the case 1n which the two trans-
versals are not parallel, and intersect L1 in two different
points. The other cases are easy.

(1) 1If the two transversals are parallel, like T, and T,
in the figure, then the theorem ho;ds, because opposite s’:les of a
parallelogram are congruent. (Thus, if AG = GH, 1t follows that

DE = EF.) :

(2) If the two transv¢rsals intersect at A, 1like T
T3 in the figure, then th
proved that 1f AB = BC,

1 and

theorem holds; in fact, we have already.
then AG = GH.

The followlng corollary generalizes Theorem 9-76.

ol

Corollary 9-26-1. If three or more parallel lines intercept

congruent segments on one transversal, then they intercept con-
gruent segments on any other transversal.
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- A4/]

@
\
v

3>--
\
[ve)
¥

That 1is, given that

Bohs

il

A1A2 A3A4 = ...,

it follows that

L |

B1B2 = B2B3 = B3B4 = ..

and 'so on. This follows by repeated applications of the theorem
that we have just proved.

Definition: Two or more sets are concurrent i1f there is a
point which belongs to all of the sets.

In particular, three or mo: tnes are concurrent if they all
pass through one point.

The following theorem is an interesting application of
Corollary 9-256-1.

235
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Theorem 9-27. The medians of a triangle are concurrent in a
point two-thirds the way from any vertex to the mid-point of the

opposite side.

Given: In /\ABC, D, E
and F are the mild-points
of EE,_ EK and KE re-
spectively.

To Prove: There is a point

which lies on AD, BE and

CF; and AP = % AD,
_ 2 -2
BP = £ BE, CP = £ CF.

Sketch of proof:
(1)

“A —F  _—&

<>
Let Ll’ L2, L3, Ei and L5, with L3 = AD be five
parallel lines dividing CB into four congruent segments. Then

(a) Lys Iy, L5 divide AC into two congruent segments,
and so E 1lies on Lu.

(b) Ly, Ly, Ly, L, divide BE intc three congruent
segments, and so if P 1is the point of intersection of
AD and BE, then BP = 5 BE,

(sec. 9-7]
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N WA N

In the same way, with lines parallel to E?, we find that -
1f P' 1is the interseation of BE a3d CF, then BP' = % BE.

(3) From (1) and (2) and Theorem 2-4% it follows that P' =P,
and therefore the tl.ree medians are concurrent.
(4) Since we now know that CF passes through P we can easily
" . get CP = % CF from the figure in (1), and similarly get

AP = % &) from the figure in (2).

Definition: The centroid of a triangle is the point of con-

currency ¢! tne medians.

Problem Set 9-7

1. Given: AB = BC.
AR || BS || cT.

TR T 4 .
a. Prove 2ZY = YX. R\- \\\\:\\;?\\\A{:
g ANAVA
)L//b

> <> >
b. Do AC, TR and 2ZX g(
have to be coplanar to

CY
carry out the proof? 4l

[sec. 9-7]
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2. The procedure at the right
can be used to rule 2 sheet

of paper, B, 1into columns
of equal width. If A 1is
an ordinary sheet of ruled

paper and B is a second
sheet placed over it as
shown, explain why

OP1 = P1P2 = P2P3 = P3P4

= PILP = P Qo

5 5

Divide a given segment AB into five congruent parts by the
following method:

L)

— —_—
(1) Draw ray AR (not collinear with AB.)

(2) Use‘your ruler to mark off congruent segments Kﬁi,

N.N N2N3, N3N4 and Nl‘_N5

L of any convenient length.

(3) Draw ﬁ;ﬁ.

(4) Measure / AN5B and use your protractor to:draw corre-
sponding angles congruent to é AN5B with vertices at

NH’ N3, N2 and Nl‘

Explain why Kg is divided into congruent parts.

4.  The medians of /\ABC meet
at @, as shown in this
figure.

If BF = 18, AQ = 10,
CM 9, then BQ = ,
QH = , CQ = _

2398
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5. In equilateral Z)ABC if one median is 15 inches long,
what 1s the distance from the centroid to A? To the mid-
point of AB? To side AC?

*6, Given: CM bisects AB at
M. BQ bisects CM at P.

Prove: @Q 1s a trisection
coint of AC; +that is,
AQ = 2QC. ) ‘ M

(Hin;. On the ray opposite P
to CB take point E such
that CE = CB and show
that Eﬁ is contained in a
median of /\ABE.)

*7, What 1s the smallest number
of congruent segments into .
which AC can be divided by < A — R
some set of equally spaced
parallels which will include
the paralleis Kﬁ; §§ and

<> .

CT if: . 8 e
a. AB =2 and BC = 1? ) \c X
b. AB =13 and BC =17 < > T
c. AB = 21 and BC = 6?

d. AB = 1.414 and BC = 1?

e. AB = /2 and BC = 1?

L 28Y
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Prove that the lines through opposite vertices of a
parallilelogram and the midpoints of the opposlite sides
trisect a diagonal.

(Hint: Through an extremity of the diagonal, consider a
parallel to one of the lines.)

Given: ABCD 1is a parallelogram.
X and Y are midpoints.

Proye: AT = TQ = QC.

Review Problems

Indicate whether each of the following statements is true in
ALL cases, true in SOME cases and false in others, or true
in NO case, using the letter A, S or N:

a. Line segments 1in the same plane which have no point in
common are parallel.

b. If two sides of a quadrilateral ABCD are parallel,
then ABCD 1s a trapezold.

c. Two'angles in a plane which have their sides respective-
1y perpendicular are congruent.

d. If two parallel lines are cut by a transversal, then a
palr of alternate exterior angles are congruent.

290 -
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If two llnes are cut by a transversal, then the rays

Abisecting a pair orf alternate interior angles are

parallel.

In a plane, if a line 1s parallel to one of two parallel
lines, it is parallel to the other.

In a plane two lines are either parallel or they
intersect.

In a parallelogram the opposite angles are supplementary.
The diagonals of a rhombus bilsect each other.
All three exterior angles of a triangle are acute.

A quadrilateral having two opposite angles which are
right angles is a rectangle. '

The diagonals of a rhombus are congruent.

If a quadrlilateral is equllateral, then all of its
angles are congruent. ' , '

If two opposite sides of a gquadrilateral are congruent
and the other two sides are parallel, the quadrilateral
is a parallelogram. '

Tge dlagonals of a rhombus bisect the angles of the
rhombus .

If the diagonals of a parallelogram are perpendicular,
the parallelogram is a square.

If a median to one side of a triangle s not an altitude,
the other two sides are unequal in length.

Either dlagonal of a parallelogram makes two congruent
triangles with the sides. '

If a diagonal of a quadrilateral divides 1t into two
congruent triangles, the quadrilateral is a parallelogram-

If two lines are intersected by a transversal, the
alternate interior-angles are congruent.

291
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u, All four sides of a rectangle are congruent.
v. A1l four angles of a rhombus are congruent.
W. A square is a rhombus.

X. A square 1s é’rectangle.

2. Would the following information about a quadrilateral be
sufficient to prove 1t a parallelogram? A square? A
rhombus? A rectangle? Consider each litem of information

separately.

a. Its diagonals bisect each other.

b. Its diagonals are congruent.

c. It is equlilateral.

d. It is equilateral and equlangular.

e. A diagonal biseétéuéwo angles.

. Every two opposite sides are congruent.

g. Some two consecutive sides are congruent and perpendicu-
lar.

h. The diagonals are perpendicular.

1. Every two opposite angles afe congruent.

Each dlagonal bisects two angles.
k. Every two consecutive angles are supplementary?
1. Every two consecutive sides are congruent.
3. /A and /B have their sides respectively parallel.

a. If only one pair of correspcnding sides extend in the
same direction the angles are

b. If corresponding sides extend in opposite directions,
then the angles are

.

292
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*6.

In Problems 4, 5 and 6 below select the one word or phrase
that makes the statement true.

The bisectors of the opposite angles of a non-equilateral
parallelogram (a) colneide, (b) are perpendicular,
(¢) intersect but are not perpendicular, (d) are parali:l.

The figure formed by joining the consecutive mid-points of
the sides of a rhombus is (a) a rhombus, (b) a rectangle,
(¢) a square, (d) none of these answers.

The figure formed by Jjoining the consecutlve mid-points of
the sides of quadrilateral ABCD 1s a sduare (a) 1if, and
only if, the dlagonals of ABCD are congruent and perpen-
dicular, (b) 1if, and only if, the diagonals of ABCD are
congruent, (c¢) 1if, and only if, ABCD is a square,

(d) 1if, and only if, the diagonals of ABCD are perpen-
dicular. ‘

In the left-hand column below, certain conditions are speci-
fied. In the right-hand column, some deducible conclusions
are left for you to complete.

Glven: .ﬁﬁ and Eﬁ- are
diagonals of MKWR.

293
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Conditions: Conclusions:
MKWR 1s a parallelogram, m/d = and m/RWK = _
m/a = 30, and
m/WKM = 110.
MKWR 1s a rectangle and m/d = _and m/b =
m/a = 30.
MKWR 1s a rhombus, m/b = and RK =
m/a = 30 and MK = 6.

A

Given: In the figure
AE = EB, GF = 8, D E

<> <>
CF = FB, DE || CB.

Find: DG. C F 8

If the perimeter (sum of lengths of sides) of a triangle is
18 inches, what is the perimeter of the triangle formed by
Joining the mid-points of sides of the first triangle?

a. If m/A =30 and c
m/ C = 25, what 1s
the measure of
/ CBD?

b. If m/A =a and
m/ C = %u what 1s

m/ CBD? m/ ABC? A B

GV

Show that the measure of
/ E, formed by the
bisector of / ABC and
the bisector of exterior
/ ACD of /A ABC, 1is

equal to % m/ A.
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12.

13.

14,

15.

*16.

17.

€« > >

In the figure AB || CD, EG c NE >B
bisects [/ BEF, m/ G = 90, G
If the measure of / GEF = 25,
what i1s the measure of / GFD? c 0

| \F .
Given: AB and CD which A D
bisect each other at 0.
Prove: AC || BD. s

c B

Given: ABCD 1s a

parallelogram with D C
diagonals AC and
DB. AP = RC < 3 AC.

Prove: DPBR 1is a
parallelogram. 5

Prove or disprove:

If a quadrilateral has one pair of parallel sides and one
pailr of congruent sides, then the quadrilateral is a
parallelogram. ‘

In /\ABC, median AM is congruent to MC. Prove that
Z}ABC is a right triangle.

Prove: If the bisectors of two consecutive angles of a
parallelogram intersect, they are perpendicular to each other.
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*18. G@Given: ABCDE is a pentagon
< |, <>
as shown. AE || CD. AE = CD.
P 1is mid-point of AB.
K 1s mid-point of BC.
1

EM = 5 ED

Prove: EE bisects §M.

C D

[y

19. When a beam of 1light 1s reflected from a smooth surface, the
angle between the incoming beam and the surface is congruent
to the angle tetween the reflected beam and the surface.

In the accompanying figure, mé ABC = 90, m ZIBCD = 75, and
the beam of light makes an angle of 350 with AB. Copy

the figure and complete the path of the light beam as 1t
reflects from Kﬁ, from EE, from .56, and from AB again.
At what angle does the beam reflect from AB the second

time?

)\ 4
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20. G@Given triangle ABC with AR and CS medians . If AR 1is
extended its own length to D, and CS 1is extended its own
length to F, prove that ¥, B and D as shown are
collinear.

297




Chapter 10
PARALLELS IN SPACE

10-1. Parallel Planes.
Definition: Two planes, or a plane and a line, are parallel
if they do not intersect. ‘
If planes E; and E, are parallel we write E,; Il Ey; Af
line L and plane E are parallel we write LJ|] E or E ||
As we will soon see, parallels in space behave 1n somewhat the
same way as parallel lines in a plane. To study them we do not

need any new postulates.

However, in spite of the similarities it 1s necessary, in
studying theorems and their proofs in this chapter, to distinguish
carefully between parallel lines and parallel planes. Two
parallel planes such as E and F 1in the first Figure below
~contain lines such as L1 and L2 which are not parallel. And
the second Figure shows parallel lines M1 and M2 lying in
intersecting .planes G and H.

///’7
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The following theorem describes a common situation in which

parallel planes and parailel lines occur in the same Figure.

Theorem 10-1. If a plane intersects two parallel planes,
then it intersects them in two parallel lines.

-

L
/
/ /

A

Ly

N

Proof: Given a plape E, intersecting two parallel planes
E, and E,. By Postulate 8, the intersections are lines L; and
L2. These lines are in the same plane E; and they have no point
in common because E1 and E2 "have no point in common. There-

fore, they are parallel by the definition of parallel lines.

Theorem 10-2. If a line is perpendicular to one of two
parallel planes, it is perpendicular to the other.

[sec. 10-1]

299



293

Proof: Let planes E] and E2 be parallel and let 1ine L
be perpendicular to El' In E2 take a point A not on L, and
let E Dbe the plane determined by &L and A. By the preceding
~theorem E intersects E1 and E2 in parallel lines L1 and
L,. L | L, since L 1 E{, and so by Theorem 9-12 (look it up)

L | L,. Now take a point A' in E, not on L, and repeat the
process. We thus obtain two lines in E2 each perpendicular to

L, and so L | E,, by Theorem 8-3.

Theorem 10-3. Two planes perpendicular to the same line are
parallel.

Proof: The figure on the left shows what happens when
E, /L at P and E, | L at Q: we wish to show E, |l E,.
If E1 and E2 are not parallel, Eggy integgect. Let R be a
common point. Consider the lines PR and QR. Then L | ?ﬁ and
L l 53 because 1L is perpendicular to every line in E1 through
P and every line in E2 ~through Q. Thls gives two perpendicul-
ars to a line from an external point, which 1s impossible, by
Theorem 6-3. :

300
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Corollary 10-3-1. If two planes are each parallel to a third
plahe, they are parallel to each other.

Proof: Let E; Il Ey, E, [ Ej. Let L be a line perpen-
dicular.to Ej. By Theorem 10-2 L 1 E ar? 1. ] ™ . fThus 'El
and E2 are each perpendicular to L - by the
Theorem 10-3.

Theorem 10-4, Two lines perpendicular to the same plane are

parallel.

Proof: By Theorem 8-8 two such lines are coplanar. Since
they are perpendicular to the given plane, say at points A and
B, they are perpendicular to KE: Hence by Theorem 9-2 they are
parallel.

Corollary 10-%-1. A plane perpendicular to one of two
prarallel lines is perpendicular to the other.

Proof: Let L [ Ly, Iy L E. Let Ly Dbe a line perpendi-
cular to E through any point A of L2. L3 exists by Theorem
8-9. Then by Theorem 10-# L1 || L3. Hence, by the Parallel
Poetulaee Ly = L,, and so L, [ E.

Corollary 10-4-2. If two lines-are each parallel to a third
they are parallel to each other.

Proof: Let I, | Ly, Iy Il Ly. Let E Dbe a plane per-
pendicular to L,. By the above corollary E 1 L, and E 1 Ly,
and so by the above theorem Lo || Lg.

[sec. 10-1)
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Theorem 10-5. Two parallel planes are everywhere equidistant.
That 1s, all segments perpendicular to the two planes and having
theilr end points in the planes have the same length.

Ey
/ QNR

E2

Z e s

Proof: Let 55 and Eg be perpendicular segments between
the parallel planes El and EQ. By Theorem 10-2, each of the
segments 1s perpendicular to each of the planes. By Theorem 10-4,
1) 1} %S, and this means, in particular, that P and R lie
in the same plane E3. By Theorem 10-1; 6; H ;g. Therefore,
PQRS 1is a parallelogram. Opposlite sides of a parallelogram are
congruent. Therefore, PQ = RS, which was to be proved.
(Obviously PQRS 1is a rectangle, but this fact does not need to

be mentioned in the proof.)

302
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Prohlem Set 10-1

|
1. Draw a small sketch to lllustrate the hypothesis of each of
the following statements. Below each sketch indicate whether
.« JXhe statement ls true or, false. . - - e s

a. If a line ls perpendicular to one of two parallel planes
it is perpendicular to the other.

b. Two lines parallel to me plane may be perpendicular
to each other.

c. Two planes perpendicular Lo the same line may intersect.

d. If a plane intersects two intersecting planes, the lines
of intersection may be parallel.

e. If two planes are both perpendicular to each of two
parallel lines, the segments of the two lines intercepted
between the planes are congruent. |

f. If two planes, perpendicular to the same line, are
intersected by a third plane, the lines of 1lntersection
are parallel.

g. If a line lies in a plane, a perpendicular to the line
is perpendlcular to the plane.

h. If a line lies in a plane, a perpendicular to the plane
at some point of the line is perpendicular to the line.

1. If two lines are parallel, every plane containing only
one of them 1s parallel to the other line.

3. If two lines are parallel, every line intersecting one
of them intersects the other.

. If two planes are parallel, any line in one of them 1is
parallel to the other.

1. If two planes are parallel, any line in one of them is
parallel to any lire in the other.

3U3
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2. Given lines L, and L, /Ld L2

intersecting parallel

planres m, n, and p
at points A, B, C,

and” X, Y, 2Z, with ) // .

-*
/
<

.

¢ — S
B the mid-point of AC.
Prove: XY = YZ.

3. Given: plane s || plane r,

AB | r. CX =CY in - 5
plane s, |
Prove: AX = AY. X ' Y

4, Given: A, C in m;
B, D in n, -~_|AB,
n i.Kﬁ, m | cT
Prove: nlaf.

304
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5. Given: In the figure m || n, Qi Cc
AB | n, CD | n. :

Prove: AD = CB. /)<\

c D E
*6, Planes E and F are KT
<> 13 4 !
perpendicular to AB. | ‘A |
<> 1

<>
Lines BK and BH, in I

© plane <£b determine
with AB +two planes
which intersect E in
<> <>
AD and AC. Cert: - //
lengths are given, .z. :
in the figure.

s

Z

Are= BKDA and BACZ miwllelograms? Can you give a further
d=scription of then? Is /ABHK & /\CAD? Can you glve the
l=ngth of CD?

*T, In the figure half ..ianes
n and m have a zomuied
edge Kg and inters=mt
parallel planes s «»nd F

<> e

<>
“in lines AD, AE, 4,
and ﬁ? as shown.

Prove that / DAE & / 3F.

. 10-1]
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*8. Show how to determlne a plane containing one of two skew
lines and parallel to the other. Prove your construction.

*9, Given: PL and PM 1ie

in plane E. RL 1 1P, R . S
= N wp. REsm. T — % -
— — P
Prove: RL | E, SM | E.
(Hint: At P draw

10-2. Dihedral Angles, Perpendicular Planes.

We have consldered perpendicularity between two 1lines, and
between a line and a plane. We have yet to define perpendicular-
ity between two planes. This can be done 1n various ways, and
we choose the one that has the closest analogy with the definition
of perpendicular lilnes.

Definitions: A dihedral angle 1s the union of a line and
two non-coplanar half-planes having this 1line as their common edge.
(Compare with the definition of angle in Chapter 4.) The line is
called the edge of the dihedral angle. The union of the edge and
either half-plane is called a face, or slde, of the dihedral
angle.

> :
If PQ 1s the edge, and A and B points on different
sides, we denote the dihedral angle by /A-PQ-B.

g

-

Q *B

[sec. 10-2]
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Analogous to the discussion on page 88 we see that two
intersecting planes determine four dihedral angles.

Terms such as vertical, interior, exterior, etc. can be applied to
dihedral angles. Definitions of these terms can be considered an
exercise for the student.

To define right dihedral angles, however, we need to talk
about the measure of a dihedral angle. One might at first think
that we must introduce four new postulates, analogous to those in

Section 4-3. However, this 1s not necessary, for we can relate
each dihedra 2angle with an ordinary angle, as follows:

Definition: Through any point on the edge of the dihedral
angle pass a plane perpendicular to the edge, intersecting =ach
of the sides in a ray. The angle formed by these rays is called
a plane angle of the dihedral angle.

The sides of the plane angle are perpendicular'to'the edge
of the dihedral angle, so another way of defining the plane angle

would be the angie formed by two rays, one in each slde of the
dihedral angle, and perpendicular to its edge at the same roint.

39
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‘ It is natural at this point to usé the measure of the plane

~ angle as a measure of the dihedral angle, but before we do this

. we must prove that any two plane angles of a dihedral angle have
the same measure. '

~ 'Theorem 105, Any two pZXane-<angles-of a glven dihcdral'anglé
are congruent.

V\ ,

Figure A. : Flgure B.

froof: Let V and S Dbe the vertices of two plane angles
of J/A-PQ-B. (Figure A.) On the sides of /V take points U
and W distinct from V. On the sides of /S take points R
and T such that SR = VU, ST = VW. ({Figure B.) VU and SR
are coplanar and perpendidﬁiar to“§§; hence they are parallel
by Theorem 9-2. Hence by Theorem 9-20 (look it up) VURS 1is.a
parallelogram and UR = vS and UR || VS. Similarly, WT = VS
and WT || VS. Hence UR = WP and UR || WT, the latter fact
following from Corollary 10-4-2. URTW 1is thus a parallelogram,
and UW = RT. It foliows from the S.S.S. Theorem that
AUVW = A RST, and so m/ UVW = m/ RST.

Thus we can make the following definitions,

Definitions: The measure of a dihedral angle is the real
numb=r which is the measure of any of its plane angles. A dihedral
angls is a right dihedral angle if its plane angles are right
anglss. Two planes are parpendicular if they determine right

_dihedral angles. - L '

[(sec. 10-2]
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The following are some immediate consequences of these
definitions. Thelr proofs are left as exercises,

Corollary 10-6-1. If a line 1s perpendicular to a plan=z.
then any plane containing this line 1s perperiicular to the gi n

'plan@. L - v ® 1 e v -

Given: Kgil E, P contains
<>
AB.

Prove: F | E.
>

<>
(Hint: Take BC | PQ in
E.)

Corollary 10-6-2, If two planes are perpendicular, then any
" 3ine in one of them perpendicular to their line of intersection,
iz perpendicular to the other plane. '

- (Hint: Iqeghe above‘figure; given F | E, iﬁg_l ﬁéﬁ prove
AB | E. Take BC as before.)

Problem Set 10-2

D
1. Name the six dihedral angles
in this three dimensional
figure.
A c
B

309
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Each of KE, BP and
is perpendicular to the
other two. a =b = ¢ = U5,
What is the measure of
ya C-PA-B? of 4»01{.13_? _

Draw a small sketch to illustrate the hypothesis of each of
the following statements. Then indicate whether each 1is
True (1) or False (0).

a. If a plane and a line not in 1t are both perpendicular to
the same line, they are parallél to each other.

b. If a plane and a line not in it are both parallel to the

same line they are parallel to each other.

c. If parallel planes E and ‘F are cut by plane Q, the
lines of intersection are perpendicular.

d. If two planes are parallel to the same line they are
parallel to each other.

e. Two lines parallel to the same plane are parallel to
each other.

f. Segments of parallel lines intercepted between two
parallel planes are congruent.

' <>
g. If planes E and F are perpendicular to AB, then
they intersect in line ?&3 EE

h. Two planes perpendicular to the same plane are parallel
to each other.

i. Two lines perpendicular to the same line at the same
point are perpendicular to each other.

J. A plane perpendicular to one of two intersecting planes
must lntersect the other.

[sec. 10-2]
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k. If two Intersecting planes are each perpendicular to a
third plane, their line of intersection is perpendicular
to the third plane.

b, Prove: If two intersect-
-« « ing planesg. are .eacCh pen--
pendicular to a third
plane, their intersection
1s perpendicular to that

third plane.

Given:z Planes r and s

intersect in PQ (P being

chosen for convenience on

plane E). r | E and

s | E.

Prove: QP | E. (Hint: 1In plane E, draw XP | DC and
YP 1 AB, and use Corollary 10-6-2.)

<> <>
5. CD and FH are perpendicu-
lar to plane E. Other

given information is as c £
shown in -the figure. m

. -]
X= 2?2 ; m= 2?2 ; DFL\:gg E
y = T, ! H

| i

Which two segments have
the same length? l

31t
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Prove the following theorem: If three planes E
Eq
and L23, then either the three lines are concurrent or each

1° E2 and
intersect in pairs and determine three lines L;,, L;,

pair of the lines are parallel.

(Hift% ~The Pigure shows * = = - = ¢ . e s s -
E1 and E2 meeting in L12'
If Eq Il L,, will the three
lines L12’ L13 and L23,
be concurrent or parallel?
Give proof. If E3 inter-
sects le in some point P
will the three lines be con-
current or parallel? Give

proof.)

Desargues' Theorem. If two triangles lying in non-parallel

planes are such that the lines Jolning corresponding vertices
are concurrent, then if corresponding side-lines intersect,
their points of Intersection are colllnear.

312
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Restatement. Given the triangles /\ABC and A'B'C' in

‘ <> <>
non-parallel planes such that AA', BB' and CC' 1ntersect

<>

at U. Let the lines cﬁ and E'B' meet at X, CA and
> » > . <>
C'A' meet at Y, and AB and A'B' meet at Z. Prove
that the points X, Y, 2 1lie on a line.

*»

3 . v » »-

10-3. Projections.

You are-familiar with a slide projector which projects each
point of a slide onto a screen. Each figure in the slide 1s pro-
jected as an enlarged figure on the screen. In this section you

will notice certain differerces and certain similarities between
" this familiar kind of projection and the kind of geometric pro-
jection which is presented.

~ Lefinition: The projection of a point into a plane 1is the
foot of the perpendlcular from the point to the plane. (By
Theorem 8-10 this perpendicular exists and 1s unique.)

In the figure, Q is the projection of P into .E.

P

Definition: The projection of a line into a plane 1s the set
of points which are projections into the plane of the points of
the 1line.

P
& | o
}. ~7s=5" P Q
el
~ R

[sec. 10-3]
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In the figure, P' 1s the projection of P, Q' 1s the pro-
Jection of Q, and so on. It looks as if the projection of the
~1ine is a line; and in fact this is what always happens, except
when the line and the plane are perpendicular.

., »Theogem 10s7,.. . The. projection af.a.line into A.plane 1s.a. .
line, unless the line and the plane are peii.andicular,

Proof: Let L be a line not perpendicular to plane E.

Case 1. L 1lies in E. Then each point of L 1liles in E
and 1s 1ts own projection. (That 1s, a line through such a point b,
P, perpendicular to E, 1intersects E 1in P.) Thus, the pro-
jection of L is Just L 1tself, and so is certainly a line.

Case 2. I, does not 1lie in E. Let P Dbe a point of L
that is not in. E, 1let ©P' ©be the projection of P ‘into E, and
isg F be the plane determined by the intersecting lines L and
PP'. F and E have point P' in common, and so, they intersect '
in a line which we call L'. (Postulate 8.) We want to show that
L' 1s the projection of L.

To do this we must show two things:

(1) If R 1s a point of L, then itsgpféjection i1s a point
of L', This will show that the projection of L 1lies
‘on L', but it will not assure us that the projection
of L constitutes all of L'. To show the latter we
must prove '

(2) If S' 1s any point of L' there is a point S of
I, whose projection is 8!,

[sec, 10-3]
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We can prove these two parts of Case 2 as follows:

Proof of (1): If R =P, then R' =P' and so R' 1lies on
L'. So suppose R 1s different from P. Then ?Q?' and
§{13’ are coplanar, by Theorem 8-8. Since F 1s the only
plane containing P, R and P' (Postulate 7.), R' 1is

in F., R' is also in E. Therefore R' 1s on L', since
L', belng the intersection of E and F, contains all
points common to E and F.

Proof of (2): If S' is any point of L', then the ;igg
M through S! perpendicular to E 1s coplanar with P P!
(or coincides with it 1f S' = P') and so lies in F. .
Therefore M intersects L (why?) at some point S.

S' 1s the projection of S. This completes the proof of
Theorem 10-7.

If a line 1is perpendicular to a plane 1ts proJjection into
the plane is a single point.

The idea of projection can be defined more generally, for
any set of points. If A 1s any set of points, then the pro-
Jection of A 1into the plane E 1is simply the set of all pro-
Jjections of points of A. For example, the projection of a tri-
angle is usually a trianéle, although 1n certain exceptlonal cases
it may be a segment.

Q

/

'U
A
/0

m
—
m

.
Au
S .

N\
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On the left, the projection of APQR is ASTU. On the right,
the plane that contains ZXPQR is perpendicular to E, so that
the projection of APQR 1is simply the segment ST.

Problem Set 10-3

1. Using the kind of proJection explained in Section 10-3
answer the following:

a.

b.

Is the proJection‘of a point always a polint?
Is the proJection of a segment always a segment?

Can the projection of an angle be a ray? A line?
An angle?

Can the projection of an acute angle be an obtuse angle?
Is the projection of a right angle always a right angle?

Can the length of the projection of a segment be greater
than the length of the segment?

If two segments are congruent will their projections be
congruent?

If two 1lines intersect can thelr projections be two
parallel lines?

If two lines do not intersect can theilr projections be
two intersecting lines?

If two segments are parallel and congruent, will their
projections be congruent?

316
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Given the flgure with AB A
not in plane m, XY the
projection of AB into
plane m, .M the mid-

polnt of KE: and N the
projection of M, prove X
N 1s the mid-point of XY.

e il

Front

/

317 Top View

[sec. 10-3]
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In mechanical Zireicing the top view or "plan" of a sciid may
be considered the r—=j<ctlion of the various segments of tre solid
into a horizontal r.ans= m, as shown in pe-=xpectlie at tye Le™i.
The %op view as it .ou’ld actually 7~ -*i=w .3 shown at the ri;y:t.

(N¢ .uvempt is mads —=:° -0 glve dime_si= - to the segment. .}
1, Sketer a o .+ riew of the sol.:.. .iown apove - tizt is,
sketenr T - 1t of projectin; the segments of .
solid int: . plane parallel to its front face.

b. Sketch th:s " :nt side view of the solid.

5. The projection c: a tetrahedron
(triangular pyrar.d) into the
plane of its base may look like
the figure at the right. How
else may it appear?

6. Given: BD 1is the projection

— — c

of BC into plane m. AB

lies in plane m and / ABC - -
is a right angle. 5
Prove: / ABD 1s a right )

angle, B A

(Hint: Let BE be perpendicu-
lar to plane m.)

318

[sec. 16—3]




312

—>

*T, Glven: AQ has ;3wmfuti~X
9 —
AR in plane m. n¥ i3

any other ray from = I
plane m. (Note: _ CAR /31/1
is called the angle ~hatr T

53- makes with pla-- .,
Prove: m/ QAR < m/
(Hint: Let Q' b:

projection of Q =2 Tr.
On AP choose X s ‘=t
AX = AQ'.

—

Draw QQ', Q'X an &

*8. 7If the dlagonal of z . .22 is perpendicular to a given plane,
sketch the projectior in-o the plane of all the edges of the
cube. (No proof required.)

R=riew Problems

1. Suppose / R-AB-8 1is ux
acute dihedral angle W=t
P a point on its edgs.. R
—> —
Can rays PX and EY &=

chosen in the two faces A
so that
a. [ XPY 1is acute? r\\W
S
b. / XPY 1s obtuse? b ///)
c. [ XPY 1is »igh%? -
8

- 319




2. Plaqgi r and 8 1intersect
in TQ. B isg a2 point between
T and Q. AB is in »r.

m/ TBA = 0. FB 1s in s.
m/ FBQ = 90. Is / ABF a

plane angle of dihedral
/ TQ? Can you determine
m/ ABF? If so, state a
theorem to support your
conclusion.

3. Planes x and r intersect
<>
in QK. B 1s a point between
—>
K and Q. BA is in r. BE
is in x. m/ ABK = 90.

m/ QBF = 90. Is / FBA a q ) K
plane angle of dihedral / /
/ K? If your answer is Fy //
"Yes", state a theorem or ————\A

definition to support your
conclusion. If m/ ABF = 80,
is r | x? If r‘] x, what
is m/ ABF?

L, Indicate whether each of the following statements is true in
21l cases (A), true in some cases and false in others (8),
or true in no case (N).

a. Two lines paralleiwto the same plane are perpendicular
to each other.

b. If a plane intersects each of two intersecting planes,
the lines of intersection are parallel.

c. If a line liss in a plane, a perpendicular to the line
1s perpendicular to the plane.

320
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v 1lin® in one of them is

line they are

the same lin= at the same

are each perpendicular to a
intersection is perpendicular

a plane zngle of the dlhedral

d. If wwo planes are parallel,
parall=l to the other.

e. If twc planes are parallel t- the same
paraliz: to -==ach other.

f. Two lines p=—pendicular to
point ==e perpendicular to each othk=r.

g. If two intersecting planes
third--lane, their line of
to the third plane.

h. The proJjection of a segment is a segment.

i. The projection of a right angle is a right angle.

. Congruent segments have congruent projections.

k. Two lines are parallel if they are both perpendicular
to the same line.

1. If a rlane is perpendicular to each of two lines, the
two lines are coplanar.

m. If a plane intersects two other planes in parallel
lines, then the two planes are parallel.

n. If a plane intersects the faces of a dihedral angle,
the intersection 1s called
angle.

Given: F 1is tk= projection

of point A into plane E.

BH 1lies in plane E. [/ FBE

is a right-zngle.

Prove: / A=3 is a right ,

angle.

A 3
' E
. .
B8
L H

i
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*9.

Prove: BD =

315

Give=: Plem== 1, Y and A X
] Sq ,/ ,/\\ /
7 a—e parzilel == shown, « =N ¥
witt CE in Z. and A ////;2{:—25\0 /////,

in . AC z2uts Y in B
and AE cu== < in D. C/- E/
AB = BC. £7 = T

Ly

Given: R, Z, I, X are
the mid-points of the re-
spective sid=s Eg, ﬁ:,

E, DC of the non-planar

quadrilateral CBiD.

Prove: RZYX 1s =z parallelo-
gram. '

In the fc_owing incorDlete stzzement it is possible to fill
in the s==%d blanks w-=h "liz=" or "plane" and the dottsd
blanks w=:=t || or | :n eign® says so as to make the complet-
ed s+atemext true: Gime five I These ways.

Iz A is_ Tc C, and B 1is
te T. =hen % and 3 are__

- . - V- . -

Siven: <=0 is a pazallels~

Zram. ZFEc = AE, E, XY,

DH and [ =re perpsnditmlar

<o L, T Zm=En the Flane =f
paralle_agram ABCD.

vIrr

Prove: AE + CG = BF < DH.




Appendix I

A CONVENIENT SHORTHAND
There was a time when algebra was zll written out 1n words.

way:

"If you square a certain number, zid five times the number,
and then subtrac- six, the result 1s zezz. What are possibllities
for this number?’

This problem can be more briefly stated in the following form:

"Find the roots of the equation z° 4 5x - 6 = 0."

‘The notation of algebra is a ~ery convenient shorthand. A
similar shorthand nas been inventsd for talking akbout sets. It
‘séves a lot of time and space, once you get used = it, and it is
all right to use it in your written wordz, unless your teacher
objects. '

TLet us start with a picture. and say various things about 1t

first in words and then 1n shorirznd. - L
n R
/Q
P ,f/;é
,// ‘
// = H

e :

Here we see a line L. whicn separates the plane E into

‘two half-planes H, @nd H Now let us-say .some things in Two

1 2°
ways.
In Words In Shorthand
1. The segment PQ li=s in H,. | 1. ] C H,).
©. The intersection of RS and RSN L=r1.
L 1is T.



A-2

The shorthand expression PQC H, 1is pronoumced in exactly
the same way as the expression on the left of it. Iz general,
when we write A C B, this means thzt the set £ Zies in the
set B.

An expression of theltype AN B denotes th: intersection af
the sets A and B. The symbol " " is pronounced "cap," be-
cause it looks a little like a cap. UWotice that tr= sets PQ and
RS do not intersect. If we agree %> write O for <he empty set,

then we can express this fact by writing

PQ N RS = 0.

Similarly, s
RN L=2¢

and
PQ N H2 = 0.

Of course, PQ 1is a set which liss in Hy. Et the point P

above is a member of Hl' We write =his in shorthant 1iike tiisz
re Hl'

This 1is pronounced - "P belongs to H. ."

The mnion of two Sets A and B Is writzen s AU B, =
is pronourmced "A cup B." In the sems way, we write AU T UT
" for the union of three sets. For examgle, in the fizure ahovs, T=
plane E 1s the union of Hy, H and L. We zar tmrefore write

E = H U K, L

Notice that here (as everywhere = ==), a formuiiz involving
the sign "=" means that the things or tme left and rdizht of "="
are the same thing. The sign "=" is simply an aboreviacion of th:
word "is", as in the expression 2 + 2 = 4, which says that two
- plus Two 1s four.

Problem =t 1

Consider the sets, A, B, C, == So on, defir=sd in the forl low-—
ing way:

A is the set of all doctors.

B i1s the set of all lawyers.

C 1s the set of all tall pecple.

[A-I]
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D is the set of all people who can play the violin.

E is tha set of all people who make a lot of money.

F is the set of all basketball players.

Write shorthand expressions for the following statements:

1.

U W

o

All basketball players are tall.

No doctor is a lawyer.

No violinist makes a lot of money, unless he is tall.
No basketball player 1is a violinist.

Everyone who is both a doctor and.a lawyer can also play
the violin.

Every basketball player who can play the violin makes a
lot of money.

The man X is a tall violinist.

The man Y 1is a prosperous lawyer.

The man 2 1is a tall basketball player.

325
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‘Appendix II
POSTULATES OF ADDITION AND MULTIPLICATION

The methods of manipulating real numbers by means of the oper-
ation of addition and multiplication, and the related operations
of subtraction and division, are all determined by the following
eleven postulates. In the statement of these postulates and the
proofs of the following theorems 1t is to be understood that all
the letters are real numberc.

A-1. (Closure under Addition.) x + y 1is always a real
number.

A-2. (Associative law for Addition.) x + (y + 2z) =(x + ¥)+z.

A-3. (Commutative Law for Addition.) x +y =y + X.

A-4. (Existence of 0.) There is a unique number O such
that x + 0 = x for every X.

A-5. (Existence of Negatives.) For each x there 1s a
unique number -x such that x + (-x) = O.

M-1. (Closure under Multiplication.) xy 1is always a real

number.
M-2. (Associative Law for Multiplication.) x(yz) = (xy)z.
M-3. (Commutative Law for Multiplication.) xy = yx.
M-4%. (Existence of 1.) There is a uniqgue number 1 such
that x-1 = x for every X.

M-5. (Existence of Reciprocals.) For each number X other
than O there 1s a unique number % such that x-% = 1.
D. (Distributive Law.) x(y + 2) = xy + xz.
The following basic theorems will illustrate how these pos-
tulates are used in simple cases.
Theorem II-1. If b = -a,then =-b = a.
Proof: By A-5, b = -a means the same'as a + b = 0. By
A-3 this is the same as b + a = 0. By A-5, this is the same as
. a = -b. '
- Another way of stating this theorem 1is that -(-a) = a.
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Theorem II-2. For any a, a.-0 = 0.
Proof: a=a-] (M-u)
= a(l + 0) (A-1)
= a.l + a.0 (D)
=a+ a0 (M-1)
Hence by (A-4), a.0 = 0.
Theorem II-3. a(-b) = -(ab).
Proof: ‘
ab + a(-b) = al[b + (-b)]° (D)
=a.0"" (A-5)
=0 (Th. I1I-2)
Hence by A-4, a(-b) = -(ab).
As a specilal case of this theorem we have a(-l) = -a,.

Definition. X - y shall mean x + (-y). Note that by this
definition a - a = 0. ’
Theorem II-4#. If a + b =c¢, then 2a = ¢ - b.

Proof: If a + b = ¢, then
(a + b) + (-b) = ¢ + (-Db)
(a + b) + (-b) = a + [b+ (-b)] (A-2)
=a+ 0, (A-5)
= a (A-4

Hence a =c¢ + (-b) =c¢c - b by definition.

Theorem II-5. If ab = 0, then either a =0 or b = O.

Proof: To prove the theorem it willl be enough to show that
"1f a #0 then b = 0. So suppose a # O. Then % exists, by
M-5. fTherefore,

1 (op) = Lo = -II-
3 (ab) =50=0 (Th. A-II-2)
also,
1 = (L. -
- (ab) = (a a) b (M-2)
= 1sb (M-5)
= b1 (M-3)
=b (M-4)
- Therefore b = 0.
[A-II]
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Theorem II-6. (Cancellztion Law.) If ab = ac and a # 0O
then b =

Proof: If ab = ac then ab - ac = 0. By Theorem A-II-3
this is the .ame as ab — al-c) = C, or, by D, as a(b - ¢) = O.
Since a # 0 we get, by =pplying Theorem II-5, that b - ¢ = O.
. Hence b = c.

These are just a f=w ez=mples of the use of the postulates in
proving basic algebraic theors=ms. Ordinarily we don't use the
postulates directly but melz use of such propertles as those
stated in Theorems II-4 a—= II-6 in our algebraic work.

Frublem Set IT

1. Prove each of the following theorems.
a. (-a) (-b) = ab.
b. &a(b-c) = ab - =x=.
c. If a-Db-= c, Tt a=D>b + ¢.
d. (a + D) (¢ + d] ==z +=2d + be + bd. (Hint: As a first
step apply D, reggrding’(a + b) as a single number. )
2. Given the definitions:

2
X" = X%,
2 =1+1,
prove that
(a + b) - af + pap g e,
3. P-ove: (a + b) (a-b) =a" - b°.
4 Definition: %<= ab™L_
Prove each of the follsw1ng
a. (ab) ¥ =a b T,
b, 2.8 _ ac
* bd” bd’
@ _ ac
¢ % = e '
- ~1
d. (=a) 1 = -(a %).
a - a
e. _F= -—b=—B
a k& ¢ a+ ¢
3T % 328
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) Appendix III
R ATTONAL AND IRRATIONAL NUMBERS

“q11I-1. How to Show That a Number is Rational.

By definition a number is rational if 1t is the ratio of two
“integers. Therefore, it we want to prove that a number x 1s
rational, we have to produce two integers D and q, such that
P - x. Here are some examples:

(1) The number X = % <% is rational, because

1.3 _7+6_13
§+7-Z’ﬂ+—-

Therefore X = %, where p =13 and Q= 14,
(2) - The number Xx = 1.23 is rational, because
1.23 = 223
T00’
hich is the ratio of the two integers 123 and 100.
(3) If the number Xx 18 rational, then so is the number 2x.

(That 1is, twice a rational number is always rational.) For if

H

x = %,
where p and g are integers, then
2x = ?2

1
where the numerator 2p and the dgnominator q are bvoth integers.
(4) If the number X is rational, then so 18 the number
x + %. For if
R,
then e

< + 3 2_+ % 3 + 2

where the numerator and denominator are both integerg
(5) If x is a pational number, then so 1s X + x. For if
Y

X = = 5
a
then o 2,
. 2 P+ B i
X +x__q2 - 3 R_ggm

where the numerator and denominator are integers.

\
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o

10.

11.

12,
13.
1h,
15.
16.

17.

Problem Set III-1

Show that .2351 is a rational number.
2

Show that T+ ? is rational.
Show that 1f x 1is a rational number, then so is x - 5.
Show that if x is rational, then so is 2x - 7.
1 1 . .
Show that 3 + NV 1s rational,

Show that the sum of any two rational numbers is a
ratlional number, '

Show that (%%) (%%) is rational.

Show that the product of any two rational numbers is a
rational number, .

Show that T% 4-2% is rational.

Show that the quotient of any two rational numbers is a
rational number, as long as the divisor is not zero.
Given that +/2° is irrational, show thatvcg. is also
irrational. (Hint: This problem is a lot easier, now
that you understand about indirect proofs,)

Given that 7 1is irrational, show that % is also
irrational. ,
Show that the reclprocal of every rational number dif-
ferent from zero is rational,

Show that the reciprocal of every irrational number dif-
ferent from zero is irrational,

Is it true that the sum of a rational number and an ir-
rational number is always irrational? Why or why not?
Is it true that the sum of two irrational numbers is
always irrational? Why or why not?

How about the product of a rational number and an ir-
‘rational number?

330
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ITI-2. Some Examples of Irrational Numbers.

In the previous section, we proved that under certain condi-
tions a number must be rational. In some of the problems, you
showed that starting with an irrational numober we could get more
irrational numbers in various ways. In all this we left one very
important question unsettled:. are there any irrational numbers?
We shall settle this question by showing that a particular number,
namelyvr§: cannot be expressed as the ratio of any two integers.

To prove this, we first need to establish some of the facts
about squares of odd and even integers. Every integer is either
even or odd. If n 1is even, then n 1s twice some integer k,
and we can write

n = 2k.
If n 1is odd, then when we divide by 2 we get a quotient k and
a remainder 1, so that
-k_|.

s
]
nOj

Therefore, we can write

)

2k + 1.
These are the typlcal formulas for even numbers and odd numbers
respectively. TIor example,

n

6 = 23 n=26, k=23
7T =23 + 1 n="%, k=3
8 = 24 n=28, k==%4
9 =.2:% + 1 n=9, k=14,

and so on. The followlng theorem is easy to prove:
Theorem III-1. The square of every odd number is odd.
Proof: If n 1s odd, then we can write
n=2k +1,
where k 1s an integer. Squaring both sides, we get
n® = (2k)° + 2.2k + 1
M? o+ Mk 4 1.
The right-hand slide must be odd, because 1t 1s written in the form
2-[2k® + 2k) + 1;
that 1s, it 1s twice an integer, plus 1. Therefore, n

1}

i

2 4s odd,

which was to be proved.
[A-III)
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From Theorem III-1 we can quickly get another theorem:

Theorem III-2. If n2 ls even, then n 1s even.

Proof: If n were o0dd, then n2 would be odd, which is
false. Therefore n 1s even.

Notice that this is an indirect proof.

We are now ready to begin the proof of

Theorem III-3. /2 1is irrational.

Prbof: The proof «will be indirect. We begin by making the
assumption that v@? is rational. We will show that thls leads to
a contradiction.

Step 1. Supposing that /2 1s rational, it follows that 2

can be expressed as

/~_D
2 = 2
q

A

where the fraction £ 1s in lowest terms.

The reason is that i1f v/2 can be expressed as a fraction at
all, then we can reduce the fraction to lowest terms by dividing
out any common factors of the numerator and denominator.

- We therefore have

VE-1,

in lowest terms. This glves o
e =&,

which in turn gilves !
p2 = 2q2.

Step 2. p2 is even.

Because p2 is twice an integer.

Step 3. p 1s even.

By Theorem III-2.

We therefore set p = 2k. Substituting in thke formula at the
end of Step 1, we get

(2K)% = 292,
which means that
| 4e® = 2q2
Therefore
0° = 2x° |
[A-III]
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" Step 4. q2 is even,
Because q2 is twice an integer.
Step 5. q 1s even,
By Theorem III-2. _
We started by assuming that‘JET was rational. From this we’
got Z = %, in lowest terms. From this we have proved that p
and q were poth even. Therefore R yas not in lowest terms,
after all. This contradiction showsqthat our initial assumption
must have been wrong, that 1s, /2 must not be rational.

Problem Set III-2

These problems are narder than most of the problems in the
text. '

1. Adapt the proof that VET is irrational, so . o get a
prooﬁ_that~/§- is irrational. (Hint: Start with the fact that
every integer has one of the forms

n = 3k
n =23k + 1
n =3k + 2,

and then prove a theorem corresponding to Theorem III-2.)

2. _Obviousiy nobody can prove that~fE- is irrational, be-
cause V% = 2. If you try to "prove" this by adapting the proof
for +/2, at what point does the "proof" break down?

3. Show that %/5 is irrational.

Actually, the square root of an integer is either another
integer or an irrational number; that is, /i either "comes out
very even" or "comes out very uneven." The proof of this fact,
however, requires more mathematical technique than we now have at
our disposal. Problems like this are solved in a branch of mathe-
mnatics called the Theory of Numbers,
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Appendix IV
SQUARES AND SQUARE ROOTS

Everybody knows what it means to square a number: you multiply
the number by itself. The facts about square roots, however, are
considerably trickier, and the language in which most people talk
about them 1s very confusing. Here we will try to state the facts
and point out the pit-falls.

To say that x 1s a square root of a means that

x~ = a.
For example,

is a square root of 4,
3 1is a square root of 9,
-2 1s a square root of 4,
-3 1s a square root of 9,

and so on. You may wonder why we did not abbreviate these state-
ments by using radical signs. The reason (as we shall soon see)
is that radical signs mean something slightly different.

The following is :a fundamental fact about the real number
system: '

Every positive number has exactly one positive
Sguare root.

For example, 22 = 4, and no other positive number 1s a root
of the equation x° = B, 42 o 16, and no other posiﬁive number
is a root of the equation x2 = 16. And so on.

Of course, 1f x 1s a square root of a, then so is -x,
because (-x)2 = x2. Therefore every positive number has exactly
two square roots, one positive and the other negative. The mean-

ing of the radical sign 1s defined this way:

If a 1s positive, then,/a denotes the positive
square root of a.
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?5We provide further that+/0 = O.
“ For example,

Jh o= 2,

V3 =3,

/B = 1,
~and so on: To indicate the other square root -- that is, the
“negative one -- we simply put a minus'sign in front of the radical

sign. For example:
4 has two square roofs, 2 and -2,
3 has two square roots, +/3 and -Vﬁf
7 has two square roots, /7 and -./7.

The followlng two statemsnts look alike, but in fact they are
different:

‘1) x 1s a squzze root of a.
(2) x =J/7.

The first statement means mer=ly that x2 = a, The second
statement mearxs not only that x2 = a, but also that x > O.
Therefore the second statement 1is not simply & short-hand form of
the first. .

Let us now investigate the expression x2, where x 1s not
equal to zero. There are two possibilities:

I. If x > 0, then Xx 1s the positive square root of x2,

and we can write .
‘\/X2 = X,
2

IT. If x < 0, then x 1s the negative square root of x~,
and it 1s -x that 1is the positive square root of x2. Therefore,

for x < 0, we have
A

The equation\/gé = X looks so appealing that 1t seems almost
like a law of nature. In fact, hawever, thls equation holds true
only half of the time: it 1s always true when x 2 O, and it is
never true when x < O.
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' Fitting togethér cases I and 1II, we see that for éﬁery b
- without exception we have

x® = |x]. |
bTo see this, you should check it against thz definition of !xI, in

'Section 2-3.

Problem Set IV

Which of the following statememts are true? Why or ﬁhy not?

1. /9 = 3.

2. JI = -3.

3. /2 =T 114 (Approximately.)
L, /2 = 1.k14, (Approximately.)
5. /25 =t &,

6. /25 = 5.

For what values of the unknowns (if any)‘do the following
"equations hold true? Why?

7. af(x - 1)2 =x - 1.

8. x - 1):E =1 - x.

9. fx - 1) = |x - 1].

10. (x - 1) = -|]x - 1].

11. f(x + 3) = (x + 3)2.

12. fix + 3)7 = -(x + 3)2 .

13. Sx+3) = 1=+ 3)2],

1. Ax +3)F = - |(x + 3)2].
336
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Appendix V
HOW TO DRAW FIGURES IN 3-SPACE

- V-1. Simple Drawing.

A course in mechanical drawing is concerned with precise rep-
resentation of physical objects seen from different positions in
space. 1In geometry we are concerned with drawing only to the ex-

- tent that we use sketches to help us do maﬁhematical thinking.

" Trere 1s no one correct way to draw plctures in geometry, but
there are SOme techniques helpful enough to be in rather general
use. Here, for example, 1s a technically
ccorrect drawing of an ordinary pyramid,
for & person can argue that he is looking

- at the pyramid from directly above. But
careful ruler drawing 1s not as nelpful

- as this very crude free-hand sketch. The
first drawing does not suggest 3-space;
»the second one does.

The flrst part oi this discussion offers suggestions for
slmple ways to draw 3-space figures. The second part introduces
the more elaborate technique of drawing f'rom perspective, The
difference between the two approaches is suggested by these two
drawings of a rectangular box,

In the first drawlng the base is shown by an easy-to-draw parall-
elogram. 1In the second drawing, the front base edge and the back
base edge are parallel, but the back base edge 1s drawn shorter
under the belief that the shorter length will suggest "more remote'.
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No .matter now a rectangular box 1s drawn, some sacrifices
~must be made, All angles of a rectangular solid are right angk=s,

but in each of the drawings shown above two-thirds of the angle=
do not come close to indicating ninety degrees when measured with
a protractor.  We are willing to give up the drawing of right
angles that look like right angles 1n order that we make the
figure as a whole more suggestilve.
You already know that a plane is generally pictured by a

parallelogram, .
It seems reasonable to f / \ E

draw a horizontal plane in either
of the ways shown, and to draw a vertical plane like this,.

If we wént to indicate two parallel planes, however, we can not
pe effective i1f we just draw any two "horizontal" planes. Notice
now the drawing to the right below Inproves upo:i Zl¢ one to the
left. Perhaps you prefer still another kind of drawing.

NN A
[/ L)

Various devices are used to indicate that one part of a fig-
ure passes behind another part, Sometimes a hldden part is
simply omitted, sometimes it is indicated by dotted lines. Thus
a line piercing a plane may be drawn in elther of the two ways:

EVANVA
o TN

(A-V]
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ﬂfTWO intersecting planes are illustrated by each of these dréWings;}f

ho Aok
v v U

The second 1s better than the first because the line of inter-
section 1s shown and parts concealed from view are dotted. The
third and fourth drawings are'petter yet because the line of in-

" tersection is visually tied in with plane P as well as plane Q
by the use of pzrzllel lines in the drawing.

Here is a drawing which has the advantage

of simplicity and the disadvantage of

suggesting one plane and one half-plane.

"In any case a line of intersection is a
pafticularly important part of a figure,.

Suppose that we wish to draw two intersecting planes each
perpendicular to a third plane. An effective procedure ls shown
~ by this step-by-step development.

Notice how the last two planes drawn are built on the line of
intersectioﬁ A complete drawing showing all the hidden lines is
Just too involved to handle pleasantly. The plcture below 1is much

more suggestive. /F:;
.J,_---;r‘
S

i
/\




A dime, from different angles, looks like this:

(O O ©

~.Neither the first nor the last is a good picture of a circle 1n
 f3-space. Either of the others is satlisfactory. The thinner oval
 ‘is perhaps better to use to represent the base of a cone.

5 4

Certainly nobody should expect us to interpret the figure shbwn
below as a cone.

A few additional drawings, with verbal descriptions, are

/L /

A cylinder cut by a plane F::q
parallel to the base.

shown.
A line parallel to a plane.

A cylinder cut by a plane E
not parallel to- the base.

340
(a-v]



. A-23

A pyramid cut by a plane : Jé%yt\L
parallel to the base. , ,/’///, ’Agt::jPQ\\l/,//”

It 1s important to remember that a drawing is not an end in
itself but simply an aid to our understanding of the geometrical
situation. We should choose the kind of pilcture that will serve
us best for this purpose, and one person's choice may be different
from another. "

V-2. Perspective.

The rays a, b, ¢, 4, e, £ 1in the left-hand figure below
suggest coplanar lines intersecting at V; the corresponding rays
in the right-hand figure suggest parallel lines in a three-dimen-
sional drawing. Think of a railroad track and telephone poles as

you look at the right-hand figure.
b c d9

C

e - f e f
The right-hand figure suggests certain principles which are useful

NN

in making perspective drawings.

1) A set of parallel l1lines which recede from the viewer are
drawn as coricurrent rays; for example, rays a, b, ¢, d, e, f.
The point, on the drawing, where the rays meet 1s known as the
"vanishing point".

2) Congruent segments are drawn smaller when they are
farther from the viewer. (Find examples in the drawing.)

\
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3) Parallel lines which are perpendicular to the line of
sight of the viewer are shown as parallel 1ihes in the drawirg.
(Find examples in the drawing.)

- A person does not need much =rtistic ability to make use of these
three principles.

The steps to follow in sketching a rectangular solid are
shown below.

Draw the front face as a

rectangle.
P/
PR
,/’/'//’/ Select a vanlshing point and
~ / draw segments from it to the
/ vertices. Omit segments that
/ cannot be seen.

Draw edges parallel to those of
the front face. Finally erase
lines of perspective.

Under this technique'a single horizontal plane can be drawn

=

A single vertical plane can ve represented by the front face or
the right-hand face '
of tne solid.

" as the top face of the solid shown above.

After tnis brilef account of two approaches to the drawing of
figures in 3-space we snould once again recognlze the fact that
there 1s no one correct way to picture geometric ldeas. However,
the more ”feal" we want our picture to appear, the more attention
we should pay to perspective. Such an artlst as Leonardo dz Vinci
pald great attention to perspective. Most of us find this done for
us when we use ordlnary cameras.

See some books on drawing or look up "perspective" in an en-
cyclopedia if you are Interested in a detalled treatment.

[A-V]
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Appendix VI
PROOFS OF THEOREMS ON PERPENDICULARITY

In Section 8-3 two theorems are stated, which, between them,
i cover all cases of existence and uniqueness involved in the per-
pendicularity of a line and a plane. As stated there, eight
separate items must be proved tc establish the proofs of these
two theorems. Here we will state these items and prove those
which have not already been proved.
We first restate the two theorems.

Theorem 8-2. Through a given point there is one and only
one plane perpendicular to a given line.

Theorem 8-10. Through a given poinﬁ there is one and only
one line perpendicular to a given plane.

We now consider the eight proofs, in a systematic order.
Read the statements carefully, for there are only slight differ-
ences in their wording: the presence or absence of a "not", the
substitution of "most" for "least", or the interchange of "line"
and "plane"

Theorem VI-1. Through a given point on a given line there is
at least one plane perpendicular to the line.

This 1s Theorem 8-4, which 1s proved in the text.

Theorem VI-2. Through a given point on a given line there is
at most one plane perpendicular to the line.

This 1s Theorem 8-6, which is proved in the text.
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Theorem VI-3. Through a given point not on a given line
there is at least one plane perpendicular to the given line.

Given: Line L and point P not on L.
To prove: There is a plane E through P, with E | L.

Proof':

(1) There is a line M through P perpendicular to L
(Theorem 6-4). Let M and L intersect at Q, and

lie in the plane F (Theorem 3-4).

(2) There is a point R (Figure 2) not in F (Postulate 5b).
Let G be the plane containing L and R (Theorem 3-3).

(3) In G there is a 1line N perpendicular to L at Q
(Theorem 6-1).

(4) Let E be the plane containing M and N. Then E | L
by Theorem 8-3.

Theorem VI-4. Through a given point not on a given line there

is at most one plane perpendicular to the given line.

Proof: Suppose that there are two planes E1 and E2, each

perpendicular to iine L and each containing_point P. If E1

intersect L 1in the same point Q, we have two planes

and E2
I at Q, and this contradicts Theorem VI-2.

perpendicular to




A-27
On the other hand, if E1 and E2 Intersect L 1in distinct
<> >
points A and B, ,then PA and PB are distinct lines thrc.agh
P perpendicular to L, contradicting Theorem 6-4. Either way,
we get a contradictlon, and so we cannot have two planes through
P perpendicular to L.

This finishes the proof of Theorem 8-9. The next four
theorems, which read like the previous four with "line" and
"plane" interchanged, will prove Theorem 8-10.

Theorem VI-5. Through a given point in a given plane there
is at least one line perpendicular to the plane.

Proof: Let P be a point in plane E. By Postulate 5a
there is another point Q in E. ©Let plane F be perpendicular
to P4 at P (Theorem VI-1). .

Since F intersects E (at P) their intersection is a
line M, Dby Postulate 8. Let L be a line in F, perpendicular
to M (Theorem 6-1).

Since F | P&, and I 1ies in F and contains P, we
have, from the definition of a line perpendicular to a plane, that
L_Lﬁii Also, from above, L 1l M. Hence L | E, by Theorem 8-4.

Theorem VI-6. Through a given point in a given plane there
is at most one 1line perpendicular to the given plane.

Proof: Suppose L1 and L2 are distinct lines, each per-
pendicular to plane E at point P, L, and Ly determine a
plane F (Theorem 3-4) which intersects E in a line L. 1In F,
we then have two perpendiculars to L at the same point P, con-
tradicting Theorem 6-1. .

[a-vI]
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Theorem VI-7. Through a given point not in a given plane

there is at least one line perpendicular to the given plane.
L

A

z

Proof: Let P Dbe a point not in plane E. Let A Dbe any
point of E, and M a 1line through A perpendicular to E
(Theorem VI-5).

If M contains P 1t is the desired perpendicular.

If M does not contain P 1let F Dbe the plane containing
M and P (Theorem 3-3), and N the line of intersection of F
and E. In F 1let B Dbe the foot of a perpendicular from P
to N (Theorem 6-4). '

Let 1ine L be-perpendicular to E at B (Theorem VI-5).
By Theorem 3-8, L and M are coplaﬁar, and hence, L 1ies in
F since M and B determine F.

In F, L | N, since L | E and N 1ies in E. Since by
Theorem 6-~1 there is only one line in F perpendicular to N at
B, L and ?ﬁ? must coincide. That is, I contains P and so
is the desired perpendicular.

Theorem VI-8. Through a given point not in a given plane
there is at most one line perpendicular to the given p;ane.

The proof 1is word for word the same as that of Theorem Vi-6,
except for the replacement of "at point P" by "from point P"
and of "Theorem 6-1" by "Theorem 6-3".
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Tne Meaning and Use of Symbols

General.

=, A =B can be read as "A equals B", "A is equal to B",
""A equal B" (as in "Let A = B"), and possibly other
ways to fit the structure of the sentence in which the
symbol appears. However, we should not use the symbol,
=, 1n such forms as "A and B are ="; its proper use is
between two expressions. If two expressions are connected
by "=" 1t 1s to be understood that these two expressions
stand for the same mathematical entity, in our case either
a real number or a point set.

#. "Not equal to". A £ B means that ‘A and B do not
represent the same entity. The same variations’and
cantions apply to the use of # as to the use of =,

Algebraic.

4+, *; -, +. These familiar algebraic symbols for operating
with real numbers need no comment. The basic postulates
about them are presented in Appendix II.

<, >y £ 2. Like =, these can be read in Vé}ious ways in
sentences, and A < B may stand for the underlined part
of "If A 1is less than B", "Let A be less than B",
"A less than B implies ", etc. Similarly for the other
three symbols, read "greater than", "less than or equal
to", "greater shan cr equal to". These inequalities apply
only to real numbers. Their properties are mentioned
briefly in Section 2-2, and in more detail in Section

' 7-2. v

W/K, |A]l.  "Square root of A" and "absolute value of A",

Discussed in Sections 2-2 and 2-3 and Appendix IV.

N
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Geometric,

Point Sets. A single letter may stand for any‘suitably described

HEH

point set. Thus we may speak of a pcint P, a line m, a.
half-plane H, a circle C(C, an angle x, a segment b, etc.
The line containing the two points A and B (P. 30).

The segment having A and B. as end-points (P. 45),

The ray with A as its end-point and containing

point B (P. 45). ’

ZABC. The angle having B as vertex aad BR and BC as

sides (P. T1).

ZBABC. The triangle having A, B and C as vertices (P. 72).
/ A-BC-D. The dihedral angle having BC as edge and with sides

containing A and D (P. 299).

Real Numbers.

AB.

The positive number which 1s the distance between the two
points A and B, and also the length of the segment 4B
(p. 34).

mZABC. The real number between 0O and 180 which 1s the

degree measure of /ABC (P. 80).

Area R. The positive number which is the area of the polygonal

Rel
&

region R (P. 320).

ations.

Congruence. A % B 1is read "A 1s congruent to B", but
With the same possible variations and restrictions as

A =B. Inthe text A and B may be two (not necessarily
different) segments (P. 109), angles (P. 109), or
triangles (P. 111).

Perpendicular. A | B 1is read "A 1s' perpendicular to B",
with the .same comment as for =. A and B may be either two
lines (P. 86), two planes (P. 301), or a line and a plane

(p. 219).
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|| . Parallel., A || B is read "A 1is parallel to B", with the
same comment as for =, A and B may be elther two lines
(p. 241), two planes (P. 291) or a line and a plane
(p. 291).
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List of Postulates

Postulate 1. (P. 30) @iven any two different points,
there is exactly one line which contains both of them.

Postulate 2. (P. 34) (The Distance Postulate.) To every
pair of different points there corresponds a unique pdsitive
number, .

Postulate 3. (P. 36) (The Ruler Postulate.) The points
of a line can be placed in correspondence with the real numbers _
in such a way that

(1) To every point of the line there corresponds exactly
one real number,

(2) ‘To every real number -the»e corresponds exactly one
point of the line, and

(3) The distance between two points is the absolute value
of the difference of the correspoﬁding numbers,

Postulate 4. (P. 40) (The Ruler Placement Postulate.)
Given two points P and Q of a line, the coordinate system
can be chosen in such a way that the coordinate of P 1s zero
and the coofdinate‘of Q 1s positive. . '

Postulate 5. (P. 54) (a) Every plane contains at least
three non-collinear points.

() Space contains at least four non-coplanar points.

postulate 6. (P. 56) TIf two points lie in a plane, then
the line containing these points lles in the same place.

Postulate 7. (P. 57) Any three points lie in at least one
plane, and any three non-collinear points lie in exactly one
plane. More briefly, any three points are coplanar, and any
three non-collinear points determine a plane,

Postulate 8. (P. 58) 1If two different planes intersect,
then their.intersection is a line.

Postulate 9. (P. 64) (The Plane Separation Postulate.)
Given a line and a plane containing 1t, the points of the plane
that do not lie on the line form two sets such that

(1) each of the sets is convex and
(2) 1f P 1s in one set and Q 1s in the other then the
segment PQ intersects the line.
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Postulate 10. (P. 66) (The Space Separation Postulate.)
The points of space that do not lile in a gilven plane form two
sets such that
(1) each of the sets is convex and
(2) 1f P 1is in one set and Q 1s in the other then
the segment PG intersects the plane.
Postulate 11. (P. 80) (The Angle Measurement Postulate.)
To every angle ZBAC there corresponds a real number between
0 and 180.
Postulate 12, (P. 81) (The Angle Construction Postulate.)
Let BB be a ray on the edge of the half-plane H, For every
number r between O and 180 there is exactly one ray iﬁt
with P in H, such that m/PAB = r.
“Postulate 13. (P. 81) (The Angle Addition Postulate.)
If D 1is a point in the interior of /BAC, then
m/BAC = m/BAD + m/DAC. y
Postulate 14. (P. 82) (The Supplement Postulate.) If two
gﬂgles form a linear pair, then they are supplementary.
Postulate 15. (P. 115) (The S.A.S. Postulate.) Given a
correspondence between two triangles (or -between a triangleE
and itself). If two sides and the included angle of the first
triangle are congruent to the corresponding parts of the secongd
triangle, then the correspondence is.g“congruence.
Postulate 16. (P. 252) (The parallel Postulate.) Through
a given external point there is at most one 1lilne parallel to a
given line,. . A
Postulate 17. (P. 320) To every polygonal region there
corresponds a unique positive number,
Poctulate 18. (P. 320) 1If two triangles are congruent,
then the trilangular regions have the same area.
‘ Postulate 19. (P. 320) Suppose that the region R 1s the
aunion of two regilons R1 and 'R2 .  Suppose that Rl and R2
intersect at most in a finite number of segments and points.
Then the area of R 1s the sum of the areas‘of R1 and R2’
Postulate 20. (P. 322) The area of a rectangle is the
product of the length of its base and the length of 1ts altitude.

\

f
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Posctulate 21. (P. 546) The volume of a rectangular
parallelepiped is the product of the altitude and the area of
the base,

Postulate 22. (P. 548) (Cavalierits Principle.) Given two
solids and a plane. If for every plane which intersects the
solids and 1s parallel to the given plane the two intersections
have equal areas, then the two solids have the same volume.

w
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List of Theorems and Corollaries

Theorem 2-1. (P. 42) Let A, B, C be three points of a
line, with coordinates x, y, 2. If x <y < z, then B is

between A and C.

Theorem 2-2. (P. 43) Of any three different, points on the
same line, one 1s between the other two.

Theorem 2-3. (P. 44) Of three different points on the same
iine, only one is between the other two.

Theorem 2-4%. (P. 46) (The Point Plotting Theorem.) Let
—>
AB bDe a ray, and let x be a positive number. Then there is
—>
exactly one point P of AB such that AP = x.

Theorem 2-5. (P. 47) Every segment has exactly one mid-

point.

Theorem 3-1. (P. 55) Two different lines intersect in at
most one point.

Theorem 3-2. (P. 56) If a line intersects a plane not
containing it, then the intersection is a single point.

Theorem 3-3. (P. 57) Given a line and a point not on the
line, there is exactly one plane containing both of them.

Theorem 3-4. (P. 58) Given two intersecting lines, there
. 1s exactly one plane containing them.

Theorem 4-1. (P. d87) If two angles are complementary, then

both of them are acute.

Theorem 4-2. (P. 87) Every angle 1s congruent to itself.

Theorem 4-3. (P. 87) Any two right angles are congruent,

Theorem 4-4. (P. 87) If two angles are both congruent and
supplementary, then each of them 1s a right angle.

Theorem 4-5. (P. 87) Supplements of congruent angles are

congruent.
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Theorem 4-6. (P. 88) " Complements of congruent angles are

congruent.

Theorem 4-7. (P. 88) Vertical angles are congruent.

meorem 4-8. (P. 89) 1If two intersecting lines form one
right angle; then they form four right angles.

Theorem 5-1. (P. 109) Every segment is congruent to itself.

Theorem 5-2. (P. 127) If two sides of a triangle are
congruent, then the angles opposite these sides are congruent.

Corollary 5-2-1. (P. 128) Every equilateral triangle 1is
equlangular. '

Theorem 5-3. (P. 129) Every angle has exactly one bisector.

Theorem 5-4%. (P. 132) (The A.S.A. Theorem.) Given a
correspondence between two triangles (or between a triangle and
itself). If two angles and the included side of the first tri-
angle are congruent to the corresponding parts of the second
triangle, then the correspondence 1s a congruence.

Theorem 5-5. (P. 133) If two angles of a triangle are
congruent, the sides opposite these angles are congruent.

, corollary 5-5-1. (P. 133) An equiangular triangle is
equilateral.

Theorem 5-6. (P. 137) (The S.S.S. Theorem.) Given &
correspondence vetween two triangles (or between a triangle and
itself.) If all three pairs of corresponding sides are congruent

then the correspondence is a congruence.

_ Theorem 6-1. (P. 167) 1In a given plane, through a given
point.of a given line of the plane, there passes one and only one

line perpendicular to the given line.

Theorem 6-2. (P. 169) The perpendicular bisector of a
segment, in a plane, 1s the set of all points of the plane that
are equidistant from the end-points of the segment.
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Theorem 6-3. (P. 171) Through a glven external point there
1s at most one line perpendicular to a giveq line.

Corollary 6-3-1. (P. 172) At most one angle of a triangle
can be a right angle.

Theorem 6-4. (P. 172) Through a given external point there
1s at least one line perpendicular to a given line.

Theorem 6-5. (P.183) If M 1is between A and C on a
line L, then M and A are on the same side of any other line
that contains C.

Theorem 6-6. {(P.183%) If M 1is between A and C, and
<>
B 1s any point not on line AC, then M 1is in the interior of
/ ABC. '

Theorem 7-1. (P. 19%) (The Exterior Angle Theorem.) An
exterior angle of a trilangle is larger than either remote interior

angle.

Corollary 7-1-1. (P.196) 1If a triangle has a right angle,
then the other two angles are acute.

Theorem 7-2. (P.19/) (The S.A.A. Theorem.) Given a .
correspondence between two triangles. If two angles and a side

opposite one of them in one triangle are congruent to the corres-
ponding parts of the second triangle, then..the correspondence is
a congruence.

Theorem 7-3. (P. 198) (The Hypotenuse - Leg Theorem.)
Given a correspondence between two right triangles. If the

hypotenuse and one leg of one triangle are congruent to the
corresponding parts of the second triangle, then the correspondence
is a congruence.

Theorem 7-4%. (P. 200) If two sides of a triangle are not
congruent, then the angles opposite these two sides are¥hot '

Theorem T7-5. (P. 201) If two angles of a triangle are not

congruent, then the sides opposite them are not congruent, and
the longer side 1s opposite the 1arger angle.
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Theorem 7-6. (P. 206) The shortest segment Jjoining a point
to a line is the perpendicular segment.

Theorem 7-7. (P. 206) (The Triangle Inequality.) The sum
of the lengths of any two sides of a triangle 1s greater than the
of the third side.

Theorem 7-8. (P. 210) If two sides of one triangle are
congruent respectively to two sZdes of a second triangle, and
the included angle of the first trlangle is larger than the
included angle of the second, then the opposite side of the
first triangle is longer than the opposite side of the second.

Theorem 7-9. (P. 211) If two sides of one triangle are
congruent respectively to two sides of a second triangle, and
the third side of the first triangle is longer than the third
side of the second, then the included angle of the first trlangle
is larger than the included angle of the second.

Theorem 8-1. (P. 222) If each of two points of a line is
equidistant from two given points, then every point of the line
is equidistant from the given points.

Theorem 8-2. (P. 225) If each of three non-collinear
points of a plane is equidistant from two points, then every
point of the plane is equ;distant from these two points.

Theorem 8-3. (P. 226) If a line is perpendicular to each
of two intersecting lines at their point of intersection, then
it is perpendicular to the plane of these 1ines,

Theorem 8-4. (P. 230) 'TThrough a given polnt on a given’
line there passes a plane perpendicular to the line.

Theorem 8-5. (P. 231) If a 1line and a plane are perpendicu-
lar, then the plane contains every line perpendicular to the
given line at its point of intersection with the given plane.

Theorem 8-6. (P. 2320 Through a given point on a given
line there is at most one plane perpendicular to the line.
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]
Theorem 8-7. (P. 232) The perpendicular bisecting plane of
a segment 1s the set of all points equidistant from the end-
points of the segment.

Theorem 8-8, (P. 23%:) Two lines perpendicular to the same
plane are coplanar.

Theorem 8-9. (P. 235) Through a given point there passes
one and only one plane perpendicular to a given line.

Theorem 8-10. (P. 235) Through a given point there passes
one and only one line perpendicular to a given plane,.

Theorem 8-11, (P. 235) The shortest segment to a plane
from an external point is the perpendicular segment.

Theorem 9-1. (P. 242) Two parallel lines lie in exactly
one plane.

Theorem 9-2. (P. 242 Two lines in a plane are parallel
i7 Lhey are both pevrpendicular to the same line.

Theorem 9-3. (P. 244)' Let L be a iine, and let P be a
pcint not on L. Then there is at least one 1line through P,
parallel to L.

Theorem 9-4, (P. 246) 1If two lines are cut by a transversal,
and 1f one pair of alternate interior angles are congruent, then
the other pair of alternate interior angles are also congruent.

Theorem 9-5. (P. 2%0) 1If two lines are cut by a transversal,
and if a pair of alternate interior angles are congruent, then
the lines are parallel.

Theorem 9-6. (P. 252) If two lines are cut by a transversal,
“"and if one palr of corresponding angles are congruent, then the
other three pairs of corresponding angles have the same property.

Theorem 9-7. (P. 252) 1If two lines are cut by a transversal,
and 1f a pair of corresponding angles are congruent, then the

lines are parallel.

Theorem 9-8. (P. =03) If two parallel lines are cut by a
transversal, then then alternate interior angles are congruent.
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Theorem 9-9. (P. 254) If two parallel lines are cut by a
transversal, each pair of corresponding angles are congruent.

Theorem 9-10. (P. 254) If two parallel lines are cut by a
transversal, interior angles on the same side of the transversal

are supplementary.

Theorem 9-11. (P. 255) 1In a plane, two lines parallel to
the same line are parallel to each other.

Theorem 9-12. (P. 255) 1In a plane, if a line is perpendicu-
lar to one of two parallel lines 1t is perpendicular to the other.

Theorem 9-13. (P. 258) The sum of the measures of the
angles of a triangle is 180. ‘

Corollary 9-13-1. (P. 259) Given a correspondence between
two triangles. If two palrs of corresponding angles are congruent,
. then the third pair of corresponding angles are also congruent.

Corollary 9-13-2., (P. 260) fThe acute angles of a right
triangle are complementary.

" Qorollary 9-13-3. (P. 2060) For any triangle, the measure of
an exterior angle is the sum of the measures of the two remote
interior angles.

Theorem 9-14. (P.265) Either diagonal divides a parallelo-
gram into two congruent triangles.

Theorem 9-15. (P.265) 1In a parallelogram, any two opposite

sides are congruent.

Corollary 9-15-1. (P.266) If L, || L, and if P and Q
are any . .two points on Ll’ then the distances of P and Q from

L2 are equal.

Pheorem 9-16. (P.266) 1In a parallelogram, any two opposite

angles are congruent.

Theorem 9-17. (P. 266) In a parallelogram, any two
consecutive angles are supplementary.
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Theorem 9-18. (P. 266) The diagonals of a parallelogram
bisect each other.

Theorem 9-19. (P. 266) Given a quadrilateral in which both
pairs of opposite sides are congruent. Then the quadrilateral is

‘a parallelogramn.

Theorem 9-20. (P. p46) If two sides of a quadrilateral are
parallel and congruent, then the quadrilateral is:- a parallelogram.

Theorem 9-21. (P. 266) If the diagonals of a quadrilate;al
blsect each other, then the quadrilateral is a parallelogram.

Theorem 9-22. (P. 267) The segment between the mid-points
of two sides of a triangle is parallel to the third side and half
as long as the third side.

Theorem 9-23. (P. 268) 1If a parallelogram has one right
angle, then it has four right angles, and the parallelogram is a

~ ‘rectangle.

Theorem 9-24. (P. 268) 1In a rhombus, the diagonals are
perpendicular to one another.

Theorem 9-25. (P.268) 1If the diagonals of a quadrilateral

'bisect each other and are perpendicular, then the quadrilateral

1s a rhombus.

Theorem 9-26. (P.276) If three parallel lines intercept
congruent segments on one transversal, then they intercept

- congruent segments on any other transversal.

Corollary 9-26-1., (P.277) 1If three or more parallel lines
intercept congruent segments on one transversal, then they

"'intércept congruent segments on any other transversal.

Theorem 9-27. (P.279) The medians of a triangle are
concurrerit in a point two-thirds the way from any vertex to the
mid-point of the opposite side.

Theorem 10-1. (P. 292) 1If a plane intersects two parallel
planes, then it intersects them in two parallel lines,
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Theorem 10-2. (P. 292) If a line 1s perpendicular to one of
two parallel planes 1t 1s perpendlcular to the other.

Theorem 10-3. (P. 293) Two planes perpendlcular to the
same llne are parallel.

Corollary 10-3-1. (P. 29%) If two planes are each parallel
to a third plane, they are parallel to each other.
Theorem 10-4%. (P. 29%) Two 1ines perpendicular to the same
plane are parallel. l

Corollary 10-4-1. (P. 29%) A plane perpendicular to one of
two parallel 1lines is perpendlcular to the other.

Corollary 10-4-2. (P.29%) If two 1lines are each parallel
to a third they are parallel to each other.

Theorem 10-5. (P.295) -Two parallel planes are everywhere
equldistant.

Theorem 10-6. (P.301) Any two plane angles of a glven
dlhedral angle ‘are congruent. - e

Corollary 10-6-1. (P.302) 1If a line 1s perpendicular to a
plane, then any plane contalning this line 1s perpendicular to the -

glven plane.

Corollary 10-6-2. (P. 302) 1If two planes are perpendlcular,
then any line in one of them perpendlcular to thelr line of
Intersectlon 1s perpéndicular to the other plane.

Theorem 10-7. (P.2307) The projection of a line into a
plane 1s a line, unless the 1llne and the plane are perpendlcular.

Theorem 11-1. (P. 328) fThe area of a right triangle is half
the product of 1ts legs.

Theorem 11-2. (P. 328) The area of a triangle 1s half the
product of any base and the altltude to that base.

Theorem 11-3. (P. 330)' The area of a parallelogram i1s the
product of any base and the corresponding altltude.

Theorem 11-4. (P. 33) The area of a trapezold 1s half the
product of i1ts altitude and the sum of 1ts bases. .
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Theorem 11-5. (P. 332) If two triangles have the same
altitude, then the ratio of thelr areas 1s equal to the ratio
of thelr bases.

Theorem 11-6. (P. 332) If two triangles have equal altitudes
and equal bases, then they have equal areas.

' Theorem 11-7. (P. 339) (The Pythagorean Theorem.) In a
right trliangle, the square of the hypotenuse is equal to the sum
of the squares of the legs.

Theorem 11-8. (P. 3%0) TIf the square of one side of a
triangle 1s equal to the sum of the squares of the other two,
then the triangle is a right triangle, with a right angle opposite
the first side.

Theorem 11-9. (P.3%€) (The 30 - 60 Triangle Theorem.) The
hypotenuse of a right triangle 1s twice as long as the shorter
leg if and only if the acute angles are 30° and 60°.

Theorem 11-10. (P.346) (The Isosceles Right Triangle
Theorem.) A right triangle is isosceles if and only if the
hypotenuse is VG; times as long as a leg.

_ Theorem 12-1. (P.368) (The Basic Proportionality Theorem.)
If a 1line parallel to one side of a triangle intersects the other
two sldes in distinct points, then it cuts off segments which are
proportional to these sides.

Theorem 12-2. (P.309) 1If a 1ine intersects two sides of a
triaﬁgle, and cuts off segments proportional to these two sides,
then 1t 1s parallel to the third side.

Theorem 12-3. (P.37%) (The A.A.A. Similarity Theorem.)
Given a correspondence between two triangles. If corresponding

angles are congruent, then the correspondence is a similarity.

Corollary 12-3-1. (P.376) (The A.A. Corollary.) Given a
correspondence between two triangles. If two palrs of correspond-
ing angles are congruent, then the correspondence is a similarity.
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Corollary 12-3-2. (P. 376) If a line parallel to one side
of a triangle intersects the other two sides in distinct points,
then 1t cuts off a triangle similar to the given triangle.

| Theorem 12-4%. (P. 376) (The S.A.S. Similarity Theorem.)
Given a correspondence between two triangles.  If two corfeépond- )
ing angles are congruent, and the including sides are proportional,
then ﬁhg correspondence 1s a simllarity.

k]

Theorem 12-5. (P. 378) (The S$.5.S. Similarity Theorem.)

‘ .

“Given a correspondence between two triangles. If corresponding
sides are proportional, then the correspondence is a similarity.

Theorem 12-6. (P. 391) In any right triangle, the altitude
to the hypotenuse separates the triangle into two triangles which
are similar both to each other and to the original triangle.

‘ Corollary 12-6-1. (P. 392) Given a right triangle and the
.altitude from the right angle to the hypotenuse: )

(1) The altitude 1is the geometric mean of the segments into
which 1t separates the hypotenuse.

(2) Either leg is the geometric mean of the hypotenuse and
the segment of the hypotenuse adjacent to the leg.

{ Theorem 12-7. (P.>Y>) The ratio of the areas of two
© similar triangles is the square of the ratio of any two corres-
ponding sides.

Theorem 1%-1. (P. 410) The intersection of a sphere with
a plane through its center is a circle with the same center and

radius.

Theorem 13-2. (P. 414) Given a line and a cirecle in the
samg plane. Let P be the center of the cirecle, and let F be
\the foot of tne perpendicular from F to the line. Than elther

(1) Every point of the line is outside the circle, or

(2) F is on the cirecle, and the line 1s tangent to the
¢irecle at If, or

(3) F is inside the cirele, and the line intersects the
élrole in exactly two polnts, which are equidistant from F.
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Corollary 13-2-1. (P. 416) Every line tangent to C is
perpendicular to the radius drawn to the point of contact.

Corollary 13-2-2. (F. 416) Any 1line in E, perpendicular
to a radius av 1ts outer end, is tangent to the circle.

Corollary 13-2-3, (P. 416) ‘Any perpendicular from the
center of C to a chord bilsects the chord.

Corollary 13-2-4. (P. 416) The segment Jjoining the center
of C to the mid-point of a chord 1s perpendicular to the chord.

Corollary 13%-2-5, (P. 416) 1In the plane of a circle, the
perpendicular bisector of a chord passes through the center of
the circle.

Corollary 13-2-6. (P. 417) 1If a line in the plane of a
circle intersects the interior of the circle, then 1t intersects
the circle 1n exactly two points,

Theorem 13-3, (P. 417) In the same circle or in congruent
circles, chords equidistant from the center are congruent.

Theorem 13-4, (P. 417) In the same circle or in congruent
circles, any two congruent chords are equidistant from the center.

Theorem 13-5. (P. 424) Given a plane E and a sphere S
with center P. Let F be the foot of the perpendicular segment
from P to E. Then either

(1) Every point of E is outside S, or

(2) F is on S, and E is tangent to S at F, or

(3) F 1s inside S, and E intersects S in a circle
with center [,

Corolliry 13-5-1, (P. 426) A plane tangent to S is
perpendicular to the radius drawn to the point of contact.

Corollary 13-5-2., (P. 426) A plane perpendicular to a

radius at its outer end 1s tangent to S.

Corollary 13-5-3, (P, 4#2€' A perpendicular from P to a
chord of S bisects the chord.
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Corollary 13-5-4. (P. 426) The segment joining the center
of S to the midpoint of a chord is perpendicular to the chord.

Theorem 13%-6. (P. 431) If 4B and BC are arcs of the
. same circle having only the point B in common, and 1f thelir
union 1s an arc KB, then mAB + mBC = mhAcC.

Theorem 13-7. (P. 434) The measure of an inscribed angle
is half the measure of its intercepted arc.

Corollary 13-7-1. (P. 437) An angle inscribed in a seml-
circle is a right angle.

Corollary 13-7-2. (P. 437) Angles inscribed in the same
arc are congruent. :

Theorem 13-8. (P. 441) In the sarms circle or in congruent

circles, if two chords are congruent, then so also are the
corresponding minor arcs.

Theorem 13-9. (P. 441) 1In the same circle or 1in congruent
circles, if two arcs are congruent, then so are the corresponding

chords.

Theorem 13-10. (P. 442) Gilven an angle with vertex on the
circle formed by a secant ray and a tangent ray. The measure of
the angle is half the measure of the Intercepted arc.

Theorem 13-11. (P. 448) The two tangent segments to a

circle {rom an external point are congruent, and form congruent
angles with the line joining the external point to the center
of the circle.

Theorem 13-12. (P. 449) Given a circle C and an external
point Q, let Ll be a secant line through q, intersecting C
in points R and S; and let L, be anotier secant line through
Q, intersecting C in points T and U. Then QR - QS = QU - QT.

Theorem 1%-13. (P. 450) Given a tangent segment QT to a
circle, and a secant line through Q, intersecting the clrcle in
points R and S. Then QR * QS = QT2.
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‘ Theorem 1%-1/. (P. 451) If two chords intersect within a
circle, the product ol the lengths of the segments of one equals

the product of the lengths of the segments of the other.

Theorem 14-1. (P. 467) The bisector of an angle, minus its
end-point, is the set of points in the interior of the angle

equldistant from the sides of the angle.

Theorem 14-2. (P. 469)- The perpendicular bisectors of the
sides of a triangle are concurrent in a point eqguidistant from

~the three vertices of the triangle.

Corollary 14-2-1. (P. 470) There is one and only one circle

through three non-collinear points.

Corollary 14-2-2. (P. 470) Two distinct circles can
intersect 1in at most two points.

Theorem 14-3. (P. #70) The three altitudes of a triangle
are concurrent.

Theorem 1%-4. (P. 471) The angle tisectors of a triangle

are concurrent in a polnt equidistant from the three sides.

Theorem 14-5. (P. 476) (The Two Circle Theorem) If two
circles have radii a and b, and if c¢ 1is the dilstance
tetween thelr centers, then the cilrcles intersect in two points,

one on each side of the line of centers, provlded each of of a,
b, ¢ is less than tne sum of the other two.

Construction 14-6. (P. 477) To copy a given triangle.

Construction 14-7. (P. 479) To copy a glven angle.

Construct on 14-8. (P. 481) To construct the perpendicular

bisector of a glven segment.

.

Corollary 14-8-1. (P. 481) To bilsect a given segment.

Constructlion 14-9. (P. 482) To construct a perpendicular

to a gilven line tarough a glven polnt.

Constructlion 14-10. (P. #8%) To construct a parallel to a

given line, thiough a given external polnt.



Constructlon 14-11. (P. 48%4) To divide a segment into a
given number of congruent segments.

Construction 14-12. (P. %91) To circumscribe a circle about
-~ a given triangle,

Construction 14-13. (P. %91) To bisect a given angle.

Construction 14-14., (P. 492) To inscribe a circle in a
glven triangle.,

Theorem 15-1. (P. 517) The ratio 5%—, of the circumference
to the dlianeter, is the same for all cirecles.

Theorem 15-2. (P. 522) The area of a circle of radius r

i

is wr .

Theorenm 15-%. (P. 526) If two arcs have equal radii, their
lenzths are progortional to their measures.

- Theorem 15-4. (P. 526) An arc of measure g and radius r
has length Tg% gqr .

Theorem 15-5. (P. 527) The area of a sector ls half the
product of lts radius by the length of 1its arc.

_ . Theorem 15-6. (P. 527) The area of a sector of radius r
. and arc measure g 1S gé%qre .

Theorem 16-1. (P. 535) All cross-sections of a triangular
-prism are congruent to the base.

Corollary 16-1-1. (P. 536) The upper and lower bases of
a triangular prism are congruent.

Theoven 15-2. (P, 5%36) (Prism Cross-Section Theorem.) All
cross-sectlons oi' a prism have the same area.”

Corollary 16-2-1. (P. 537) The two bases of a prism have
equal areas.

Theorem 16-3. (P. 537) The lateral faces of a prism are
parallelogram regions, and the lateral faces of a right prism
are rectangular regions,
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Theorem 16-4. (P. 540) A cross-section of a triangular
pyramid, by a plane between the vertex and the base, 1s a
triangular region similar to the base. If the distance from the
vertex to the cross-section plane is k and the altitude 1s h,
then the ratio og the area of the cross-section to the area of

the base 1s (%) .

Theorem 16-5. (P. 542) In any pyramid, the ratio gf the
area of a cross-section and the area of the base 1is (%J s Where
h is the altitude of the pyramlid and k 1s the distance from

the vertex to the plane of the cross-scction.

Theorem 16-6. (P. 543) (The Pyramid Cross-Section Theorem.)
Given two pyramlids with the same altitude. If the bases have the

same area, then cross-sections equidistant from the bases also
have the same area.

Theorem 16-7. (P. 548) The volume of any prism is the
product of the altitude and the area of the base.

Theorem 16-8. (P. 549) If two pyramids have the same alti-
tude and the same base area, then they have the same volume.

Theorem 16-9. (P. 550) The volume of a triangular pyramid
is one-third the product of 1its altitude and its base area.

Theorem 16-10. (P. 551) The volume of a pyramid is one-third
the product of its altitude and 1its base area.

Theorem 16-11. (P. 555) A cross-section ol a circular

cylinder is a circular region congruent to the base.

Theoren 16-12. (P. 555) 'Me area of a cross-section of a

circular cylinder is egual to the area of the base.

Theorem 16-13. (P. 555) A cross-section of a cone of

altitude h, made by a plane at a distance k ftrom the vertex,
is a circulag reglon whose area has a ratio to the area of the

base of (%) .

Theorem 16-1/. (P. 557; "The volume of a clreular cylinder

"is the product of the altitude and the area ol the base,

w
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Theorem 16-15. (P. 557) The volume of a circular cone 1is
one-third the product of the altitude .and the area of the base,

Theorem 16-156. (P. 559) The volume of a sphere of radius r

I -
15 311-1'3 .

Theorem 16-17. (P. 562) The surface area of a sphaere of
radius r is S = lpp°

Theorem 17-1. (P. 579) On a non-vertical line, all segments
have the same slope. '

Theorem 17-2. (P. 584) Two non-vertical lines are parallel

if and only irf they have the same slope.

Theorem 17-3. (P. 586) Two non-vertical lines are perpen-
dicular if and only if their slopes are the negative reciprocals

of each other.

Theorem 17-%. (P. 589) (The Distance Formula.) The
distance tetween the points (xl,yl) and (xe,ye) is equal to
2 2
'\/(X2 - xl) + (ye - yl) .
Theorem 17-5. (P. 593) (The Mid-Point Formula.)

Let P, = (xl,yl) and let = (xe,ye). Then the mid-pcint
—_— 1 =+ X2
of P1P2 is the point P = (— 5 ,

Theorem 17-6. (P. 605) Let L be a non-vertical line with
with slope m, and let P bhe a point of L, with coordinates

Py
X

vy + V2,

(xl’yl)‘ For every point 9 = (x,y) of L, the equation
y -y = m(x - x;) 1is satisfied.
Theorem 17-7. (P. 607) The graph of the equation
y -y =m(x - X,) 1is the 1line that passes through the point

(xl,yl) and has slope m.

Theoren 17-8. (F. ©11) The graph of the ejuation ¥ = mx + b
is the llne with slope m and y-intercept b.

Taeoren 17-9. (F. 613) Every line in the plane is the graph

of a linear equation in x and y.

x
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Theorem 17-10. (P. 613) The graph of a linear equation
in x and y 1s always a line.

Theorem 17-11. (P. 623) The graph of the equation
2

v(x -a) s (y - b)2 =7
and radius »r.

is the circle with center at (a,b)

Theorem 17-12. (P. 624%) Every circlie is the graph of an

equation -of the form x2 + y2 + Ax + By + C = 0.

Theorem 17-13. (P. 625) Given the equation

x2 + y2 + Ax + By + C = 0. The graph of this equatlon 1is
(1) a circle, (2) a point or (3) the empty set.
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Index of Definitions

For precisely defined geometric terms the reference 1is to
the formal definition. For other terms the reference is to an
informal definition or to the most prominent discussion.

absolute value, 27

acute angles, 86

alternate interior angles, 245

altitude
of prism, 535
of pyramid, 540
of triangle, 214, 215

angle(s), 71
acute, 86
alternate interior, 245
tisector of, 129
central, 429
complementary, 86
congruent, 86, 109
consecutive, 264
corresponding, 251
dihedral, 299..*
exterior, 293
exterior of, 73
inscribed, 432
intercepts an arc, 433
interior o:i, 73
measure of, /3, 80
obtuse, 80
o1 polygon, 500
opposite, 264
reflex, 78
remote interior, 193
right, 85 '
right dihedral, 301
sldes of, 71
straight, 78
supplementary, 82
vertex of, 71
vertical, 88

apothem, 512

arc(s), 429
center of, 437
congruent,, 441
degree measure of, U430
end-polints of', %29
Jength of, 525
major, 29
minor, 429
of sector, 527



area, 320 .,
circle, 521, 522
parallelogram, 330
polygonal region, 320
rectangle, 322
right triangle, 328
sphere, 562
trapezoid, 331
triangle, 328
unit of, 321
arithmetic mean, 364
auxiliary sets, 176
base of pyramid, 540
between, 41, 182 .
bisector »f an angle, 129
bisector of a segment, 169
bisects, 47, 129
Cavalierits Principle, 548
center of
arc, 437
circle, 409
sphere, 409 . |
central angle, 429
centroid, 280, 621
chord, 410
circle(s), 409
area of, 521, 522
circumfereiice of, 516
congruent, 417
equation of, 623, 624, 625
exterior of, 412
great, 410 '
interior of, hl2
segment of, 528
tangent, 417
circular
cone, 554
cylinder, 553
reasoning, 119
region, 520 -
area of, 521
circumference, 516
circumscribed
circle, 490
triangle, 490
collinear, 54
complement, 86
complementary angles, 86
concentric
circles, 409
spheres, 1409
conclusion, 60

i
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concurrent sets, 278, 469
cone, '

cirecular, 554

right circular, 555

volume of, 557
congruence, 97
congruent

anglen, 86, 109

arcs, 441

circles, 417

segments, 109

triangles, 98, 111
consecutive angles, 26}
consecutive sides, 26u4
constructions, 477
converse, 202
convex polygon, 507
convex sets, 62
coordinate system, 37, 571
coordinates of a point, 37, 569
co-planar, 54
corollary, 128
correspondence, 97
corresponding angles, 251
cross-section

of a prism, 535

of a pyramid, 540
cube, 229
cylinder

circular, 553

volume of, 557
diagonal, 264, 509
diameter, 410
dihedral angle, 299

edge of, 299

face of, 299

measure of, 301

plane angle of, 300
distance, 34
distance between

a point and a line, 206

a point and a plane, 235

two parallel lines, 266
distance formula, 589
edge of halfl plane, 6%
end-point(s)

of arc, 429

of ray, 46

of segment, U5
empty set, 18
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equation

of cirecle, 623

of 1ine, 605, 611
equiangular triangle, 128
equilateral triangle, 128
Euler, 327
existence proofs, 165
exterior angle, 193
exterlor

oi' an angle, 73

of a eircle, #12

oi' a triangle, T4
face of half-space, 66
frustum, 559
Garfield's Proof, 344
geometric mean, 361
graph, 600
great cirele, U410
half-plane, 6

edge of, 54
half-space, 66

face of, 66
horizontal 1ineu, 576
hypotenuse, 172
hypothesis, 60
identity congruence, 100, 109
if and only if, 203
if-then, 60
inconsistent eguations, 618
indirect proof, 160
inequalities, 24
infinite ruler, 37
inscribved

angle, i32

measure of, 43l

circle, %90

polygon, 511

guadrilateral, 438

triangle, 490
Integers, 22
intercept, 275, 433
interior

of angle, 73

of circle, 412

of triangle, T4
Intersect, 18
intersection of sets, 16, 18, 473
irrational numbers, 23
isosceles triangle, 127
kite, 272



lateral
edge, 537
face, 537
surface, 537
lemma, 196
length
of arc, 525
of segment, U5
linear eguation, 613%
linear pair, 82
line(s), 10
oblique, 216
parallel, 241
perpendicular, 86
skew, 241
transversal, 244
major arc, U429
mean
arithmetic, 364
geometric, 361
measure
' of angle, 79, 80
of dihedral angle, 301
of distance, 30, 34, 36
median
of trapezold, 272
of triangle, 130
mid-point, 47
formula of, 593
minor arc, 129
Non-~Euclidean geometries, 253
negatlve real numbers, 191
numbers
irrational, 23
negative, 191
positive, 191
rational, 22
real, 23
whole, 22
oblique lines, 216
obtuse angle, 86
on opposite sides, 64.
on the same side, 64
one-to-one correspondence, 97
opposite
angles, 26"

rays, 6
sides, 264
order, 2/

order postulates, 191, 192
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ordered pailr, 571
origin, 568
parallel
lines, 2#1
- slopes of, 584
lines and planes, 291
planes, 291
parallelepiped, 538
parallelogram, 265
area of, 330
perimeter
of triangle, 287
of polygon, 512
perpendicular
lines, 86
slopes of, 586
line and plane, 219
planes, 301
perpendicular bisector, 169
pi’ TT: 518
plare{s), 10
purallel, 291
perpendicular, 301
‘plane angle, 300
point, 10
point-slope iorm, 605
poins oI Langency
of eirecles, 413
of spheres, U423
polygon, 506
angle of, 506 .
apothem of, 512
convex, 507
diagonal of, 509
inscribed, 511
perimeter of, 512
regular, 511
sides of, 506
vertices of, 506
polygonal region, 317
polyhedral ‘reglons, 546
positive real numbers, 191
postulate(s), 9
of order, 161, 192
power of & point, 451
prism, 534
altitude of, 535
cress-section of, B35
lateral edge, 537
lateral lace 537
lateral sur: .. , 537
Lower vase, -,__
rectangular, 535



prism (Continued)
right, 535
total surface, 537
triangular, 535
upper base, 535
projection
of a line, 306
of a point, 306
proof
converse, 202
double~column form of, 11f
existence, 165
indirect, 160
uniqueness, 165
writing of, 117
proportional sequences, 360
pyramid, 540
altitude of, 540
base of, 540
regular, 54l
vertex of, 540
volume of, 551 ‘
Pythagorean Theorem, 339
quadrant, 571
quadrilateral, 263
consecutive angles of, 264
consecutive sides of, 264
cyclic, U473
diagonal of, 264
inscribed, 438
opposite angles of, 264
radius, 409, 410
- of sector, 527
rational numbers, 22
ray, 46
end-point of, u46
opposite, 146
real numbers, 23
rectangle, 268
area of, 322
rectangular parallelepiped, 538
reflex angle, 78
region
circular, 520
polygonal, 317
polyhedral, 546
triangular, 317
regular
polygon, 51l
pyramid, 544
remote interior angle, 193

o
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rhombus, 268
right angle, 85 ‘
right dihedral angle, 301
right prism, 535
right triangle, 172
scalene triangle, 128
sector, 5.7
arc of, 527
radius of, 527
segment(s), 45
tisector, 169
congruent, 109
segment of a circle, 528
semi-circle, 429
separation, 182
set(s), 15
auxiliary, 176
concurrent, 278
convex, 62
element of, 15
empty, 18
intersection of, 16, 473
member of, 15
union of, 17
side(s)
consecutive, 364
of angle, 71
of dihedral angle, 299
of polygon, 506
of triangle, 72
opposite, 264
similarity, 305
skew lines, 241
slope, 577
of parallel lines, 584
of perpendicular lines, 586
slope-intercept form, 611
space, 53
spnere, %09
exterior of. 423
interior of, 423
surface area of, 562
volume ofl', 559
square, 268
square root, 25
stralght angle, 78
subset, 15
supplement, 32
supplementary angles, 82



tangent
: circles, 417
common external, 454
common internal, 454
externally, 417
internally, 417
line and circle, 413
plane and sphere, 423
segment, 448
theorem, 9
total surface of a prism, 537
transversal, 244
trapezold, 265
area of, 331
triangle(s), 72
altitude of, 214
angle bisector of, 130
area of, 328
centroid of, 280
congruent, 98, 111
equiangular, 128
equilateral, 128
exterior of, 74
interior of, 74
isosceles, 127, 128, 346
median of, 130
overlapping, 123
perimeter of, 287
right, 172
scalene, 128
sides of, 72
sipilap, 365
30 "60 ’ 3”’6
vertex of, 72
triangular region, 317
undefined tc™ms, 9, 10
union of sets, 17
uniqueness proofs, 165
vertex
of angle, 71
of polygon, 506
of pyramid, 540
of triangle, 72
vertlical angles,
vertical 1line, 576
volume
of cone, 557
of cylinder, 557
of prism, 548
of pyramid, 551
cf sphere, 559
whole numkers, 22
x-axls, 568 ,
v-axls, 568 378
y-intercept, 611



