DOCUMENT RESUME

ED 135 388 IR 004 499

AUTHOR Kirby, Faul J.; Gardner, Edward M.

TITL?f Microcomputer Controlled, Interactive Testing
Terminal Development.

INSTITUTION Air Porce Human Resources lab., Lowry AFB, Colo.

SEONS AGENCY

Technical Training Div.
Air Force Human Resources Lab., Brooks AFB, Texas.

REPCRT NO AFHE1I-TR-76-66

PUB DATE Oct 76

NOTE 27p.

EDRS PRICE MF-$0.83 HC-$2.06 Plus Postage.

DESCRIFTOES Autcinstriuctional 2ids; Computer Programs; *Computer
- Science; *Individual Tests; Man Hachine Systems; Self

Pacing Machines; *Testing; *Test Scoring Machines

IDENTIFIEERS Microcomputers

AESTRACT

The evoiution of a self-contained test scoring
terminal is presented. The rationale for the designm is presented
along with an evolutionary description of the requirements for the
system. The sequence of software and hardware tools, which were
developed in order to build the device, are also described in this
report. The resulting device, which contains an imbedded
nicrocomputer is functionally described and the testing strategies
which it currzntly supports are presented. (Author)

**********}****»***
* D#icuiblents acquired by ERIC include mary informal unpublished *
* paterials not available from other sources. ERIC makes every effort *
* to cbtain the best copy available. Nevertheless, items of marginal *
* reproiducibility are often encountered and this affects the quality *
* of the microfiche and hardcopy reproductions ERIC makes available *
* yia the EEIC Document Reproduction Service (EDRS). EDRS is not *
* responsible for the quality of the original document. Reproductions *
* *
* *

supplied by EDRS are the best that can be made from the original.
3 koK ok ok ok 3 sl ok ok ok 3k o 5 ok ok ok ke o sk ok Sk ok sk ook stk ool ke e ok ok ok ok e o ok ok ok ook Sk ok ok ok ok ok 3 sk ok sk ok ok ke ok ok kok ke ok

US. DEPARTMENT OF HEALTH.
EDUCATION L WELFARE
NATIONAL INSTITUTE OF

AFHRL-TR-76-66 EDUCATION

. THIS OOCUMENT HAS BEEN
P HUCEOD EXACTLY AS RECEIVE
THE PERSON OR ORGANIZATION ORIGIN.
ATING IT POINTSOF VIEW OR OPINIONS

NECESSARILY REPRE-

. . \ .
STATEO DO NOT
“ SENT OFFICIAL NATIONALINSTITUTE OF
t). EOUCAT'ON POSITION OR POLICY
: .‘”-'. .’w
' .

MICROCOMPUTER CONTROLLED, INTERACTIVE
TESTING TERMINAL DEVELOPMENT

REPRO.
0 FROM

By

~ = «Pauld. Kitby, 1st Lt, USAF ~
Edward M. Gardner :

TECHNICAL TRAINING DIVISION
Lowry Air Force Base, Colorado 80230

ED135388

October 1976
Final Report for Period February 1975 — June 1976

Approved for public release: distribution unlimited.

NMOTVCONM=IT ZDHZCT

LABORATORY

Ff

2

€ 00 4499

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE,TEXAS 78235

2

O

ERIC

Aruitoxt provided by Eic:

NOTICE

When US Government drawings, specifications, or other data are used
for any purpose other than -a definitely related Govemment
procurement operation, the Government thereby incurs no
responsibility nor any obligation whatsoever, and the fact that the
Government may have formulated, fumished, or in any way supplied
the said drawings, specifications, or, other data is not to be regarded by
implication or otherwise, as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to
manufacture, use, or sell any patented invention that nuy in any way
be related thereto. '
) .

This final repori was submitted by Technical. Training Division, Air
Force Human Resources Laboratory, Lowry Air Force Base, Colorado
80230, under project 1121, with HQ Air Force Human Resources
Laboratory (AFSC), Brooks Air Force Base, Texas 78235. '

L
Gt

This report has been reviewed ‘and cleared for open publication and/or
public release by the appropriate Office of Information (01) in
accordance with AFR 190-17 and DoDD 5230.9. There is no objection
to unlimited distribution of this report to the public at large, or by
DDC to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved.
MARTY R. ROCKWAY, Technical Director

Technical Training Division

Approved for publication.

DAN D. FULGHAM, Colonel, USAF
Commander-

E

O

RIC

‘Unelassified
SECURITY CLASSIFICATION OF THIS PAGE (Vien Dara Entered)
SRRy

; REPORT DOCUMENTATION PAGE R R TN RM
« REPORT NUMBER 2. GOVT ACCESSION NO. 31, RECIPIENT'S CATALOG NUMBER
. AFHRL-TR-76-66
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVEREO
MICROCOMPUTER CONTROLLED, INTERACTIVE Final
TESTING TERMINAL DEVELOPMENT February 1975 - June 1976 “

6. PERFORMING ORG. REPORT NUMBER

7. AUYHOR(w) B. CONTRACT OR GRANT NUMBER(s)

Paul J. Kirby
Edward M. Gardner

9. PERFORMING ORGANIZATION NAME AND AOORESS 10. PROGRAM ELEMENT. PROJECT, TASK

Technical Training Division AREA & WORKUNIT NUMBERS
Air Force Human Resources Laboratory 6270317
Lowry: Air Foree Base, Colorado 80230 11210217 and 11210218
11. CONTROLLING OFF!CE NAMI ANO AODRESS 12. REPORT DATE
HQ Air Foree Human Resources Laboratory (AFSC) October 1976
Brooks Air fForce Base, Texas 78235 13. NUMBER OF PAGES
24

T4, MONITORING AGENCY NAME & AOORESS(if ditlerent from Controlling Qflice) 1S. SECURITY CLASS, (af this report)

Unclassified

1Sa. DECL ASSIFICATION OOWNGRADING
SCHEDULE

16. OISTRIBUTION STATEMENT (ol this Report)
Approved for public release; distribution unlimited.

17. OISTRIBUTION STATEMENT (af the ahstract enterod tn Block 20, il ditteront from Report)

18. SUPPLEMENTARY NOTES

19, KEY WORDS (Continue on reverse side it necessary and identify by block number)
microcomputer
microcomputer assembly language
microcomputer hardware emulation
‘microcomputer software simulation
- self-paced testing

20. ABSTRACT (Continue on reverse side 1l necessury and identily by block number)
The evolution of a self-contained test scoring terminal is presented. The rationale for the design is presented
alo g with an evolutionary description of the requirements for the system. The sequence of software and hardware
~ tools, which were developed in order to build the device, are also described in this report. The resulting device,
~which contains an imbedded microcomputer is functionally described and the testing strategies which it cnrrently
supports are presented. ‘
4

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

1 JAN 7

DD FORMa 1473 EDITION OF 1 NOV 6515 OBSOLETE

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

SUMMARY

Problem

The instructional environment created by sel-pacing of mediated, materials” requires continual
evaluation of student progress. This has been previously accomplished by explicit or embedded tests items
presented to students who have recorded their responses on paper answer sheets. In the Advanced’
Instructional System (A1S), these sheets are currently read hy 4 “management terminal” which is connected
to a central computer that records student responses and makes appropriate instructional prescriptions. The
operation of the reading devied with marked sense forms has resulted in a very high rejection rate of lorms,
due 1o ineorrect or unreadabie information. The problent is to achicve the desirable aspects of this system
while climinating the many problems resulting from the use of paper forms.

Approach

The approach investigated under work units 112102-17 and 1121-02-18 has heen to develop an
clectronie equivalent to the paper forms used in the current system. In this system the student responds to
questions on a smail device called a “microterminal™ which consists externally of a keyboard und several
display devices. Internally, this device contains an entirc, miniature, programmahle computer. This
computer contains five different testing strategies and 900 random test answer patterns, and is capable of
conducting an entire testing operation without intervention hy any other computer. Provision is mude for
presenting the resulting data to a central computer through the AIS managemeny terminal or to manually
remove data from the device. '

"

In order to produce this product, it was necessary to develop several software and hardware tools
with which the microcomputer was simulated, pragrammed, and constructed. The development tools are
described in this report along with the sequence of steps necessary ta reach the final product which is the
microterminal.

Results

The microterminal works as designed and offers a highly reliable alternative to the forms reader. The
tools developed 1o build the microterminal are avaitable to support modification of this device or
construction of families of related devices. ,

Conclusions

The microterminal offers a solution to the problems of using the AIS manugement terminal and affers
many further possibilities for low-cost, reliable testing systems within the Air Force.

O

ERIC

Aruitoxt provided by Eic:

PREFACE

Wwe would like 1o acknowledge clectronic technician Mr. Lyle McKnight's
contribution for wiring and assembling both the hardware emulator and the
microterminal, and for his continued assistance and support during the project. Mention
should also be given to Mr. Juseph Lamos for some of his original conceptional idcas
regarding a fow-cost student terminal and for his role in the experimental testing of the
device with SO students from the Logistics Training School at Lowry AFB, Colorado,
while using the first prototype of the present microterminal., Finally, mention should be
given to Li1Col Roger Grossel for providing managerial support and freedom in fetting us
pursue an idea which we believe could have significant impact on military training
methodologies.

TABLLE OF CONTENTS

. Page

I Introduction . . o 0 0 v i oo e e e e e e e 5
. Product Evolution . v .« .« v 0 0 Lo e e e e e e s e e e S
. The Microcomputer Software/Hardware Development System . . o 0 o 0o 0000 8

The PIMPL Programming Language and Compiter . . o o 0 0 00 000000000 8
Debugging the Initial Program - Software Simulation . . 0 . o 0o oo oo oo o I
Hardware Development System « . o0 v o v o v 00 v o e e s e e v . 3

1V. Description of the Student Microterminal .« . . 0 . 0 0o 00000 o o oo 19
V. Conclusion e e e e e e e e e e e e e e e e e e e 21

Figure Page

I Student microterminal . . . L. JE 6

2 Student microterminal . .o o 000 e e e e e e e 9

3 Sumple of PIMPL programmingcode . . . o o 0o 0o oo oo oo i

4 Hardware development system .. L . e e e e e e e e 14

S Hardware developmentsystem 0 0 0 L0000 s c e s e 1o
7

Q

ERIC

Aruitoxt provided by Eic:

MICROCOMPUTER CONTROLLED, INTERACTIVE
" TESTING TERMINAL DEVELOPMENT

L INTRODUCTION

The device described in this report is a prototype based upon experiences, both positive and negative,
with the use of self-paced instructional materials in a military technical training classroom. The work was
accomplished under two work units, 1121:02-17 and 1121-02.18. This report describes the evolution of a
device and the technology which made it possible. It is the intent of this report to emphasize why the
device has assumed its current characteristics, rather than to document its intemal enginecring in detail
since these internal details could change significantly due to the incredible rate of change of microcomputer
technology. However, since a special type of engineering environment is neccssary for the development of
devices of this kind, several sections of the report outline the tools which had to be built in order to
develop the prototype hardware and software.

In order to accommodate a wider audience for this report, the product evolution is desctibed in the
first scction, the devclopment technology is described in the sccond scction, and the resulting

microterminal product in the third (Figure 1).

A 1I. PRODUCT EVOLUTION

The concept of self-paced instructional materials is not new to either the military or civilian
community. Such materials have been in use for a number of years in the form of programmed instructional
texts, student operated media devices, and in limited applications in the form of computer assisted
presentations at computer terminals. Due to the historically high cost of developing and validating
instructional materials in all of these forms, the additional cost of the p.¢sentation media has often forced
the actual materials to be presented in the cheapest of these forms, which is usually the printed format. As
a corollary of this growth of paper materials, the need to manage students with widely differing learning
rates has placed additional burdens upon ‘the instructional staff. Because self-paced instruction
accommodates these learning rates by altering student learning schedules, the group-paced, easy-to-manage
conventional classroom has become the “leaming center” with many different topics and techniques in use

simultancously by students proceeding at their own pace.

The attempts to automate management of the instructional process have been far more limited than
the application of setf-paced instructional materials. The most operational of these attempts has been at
Memphis- Naval Air Station, Tennessee, where sclf-paced materials have been presented with printed
materials and student performance monitored with self-administered tests scored and recorded by
computer. The use of the computer has enabled the frequent use of evaluation without imposing heavy
burdens upon the instructional staff. A similar approach was the design basis for instructional management
of the Advanced Instructional System (AIS) being developed for the United States Air Force at Lowry Air

Force Base, Colorado.

The hardware and materials used in thi* concept consist of a “management terminal” and differing
test answer forms which are filled in by students as instructional materials are cxccuted. The terminal
houses a forms- reader, printing device and interface minicomputer in a carrel designed for student
self-operation. In this instructional scenario, the student is expected to study materials, take a self-test, and .
present the resulting answer form to the management terminal. The terminal reads the form, transmits the
information to the AIS central computer, and presents the test results and an instructional prescription to
the student on the terminal printer. The central computer records the student’s performance, produces
periodic progress reports o his instructor, and retains information for instructional materials cvaluation.

While ‘this may sound like »n ideal situation for a technical training classroom, there have been
problems in practice, centering around the paper forms and reader. In order to provide response feedback
to enhance leaming, special chemically treated forms are used which darken upon the application of a
special chemical crayon. It isintended that these marks be read by the reader and provide data for materials
evaluation.and for evaluation of the student’s performance. In practice, the forms have proven difficult to
read accurately, even when filled out properly by the students. This problem is accentuated by the fact that

-pencil marks used to identify the student and the test are spectrally different from the marks produced by

the crayon.

Aruitoxt provided by Eic:

Q

ERIC

Aruitoxt provided by Eic:

This problem led to the belief that an electronic approach to the problem might resolve these physleal
difficulties and possibly improve student performance by increasing the intensity of the student's
interaction. The solution took the form of a device called a “student responder.” In this device, @ keyboard,
several hexadecimal display clements (numbers 0.9 and letters A.F) and a column of Individual display
lamps were connected directly to a central computer through an interactive computer terminal. The device
was driven by a program-in the central computer which read the keyboard and flluminated the appropriate
displays. This technique, while not satisfactory for a large number of responders, was udequate for
experimental evaluation of the punel design and potential usefulness of the device.

“To use the responder, the student would present his student L.D. number and his test booklet number
to the device which would then tell him which items in the booklet to answer, and provide him with
response feedback if appropriate. The program ullowed several adaptive testing techniques and feedback
modes.

In order to determine whether this device could function effectively with existing instructional
materials, a programmed instructional text which was currently being used in an inventory management
(supply) specialist course at Lowry was administered to a group of 50 students using the responder device,
This text contains imbedded questions used to “‘exercise” the student and to determine whether he is
mastering the waterial as he reads it. While no significant gains were noted in performance, the students
were observed to cover the material about 30% faster on the average than students using chemically treated
forms. In addition, 90% of the students favored the responder device over the chemical forms, suggesting
that their acceptance of the device would pose no problem. All students Guestioned felt that the responder
was casy to use and none required detailed personal instruction on its use.

Our initial plari was to produce an adequate number of these devices to allow for testing a larger
group of students: in fact a printed circuit for the device was developed, along with an interface controller,
to interface sixteen of the responders through a single access point to the central system. It was our
intention to use a PDP-11 family 'minicomputer to perform the connection to the AIS terminal network
hardware, primarily because this was the type of minicomputer used in the existing management terminal,
but also because its manufacturers had announced inexpensive versions of this computer based on large
scale integration electronics. Due to rapid advances in the technology of microprocessors, this approach wis
not followed. In the course of investigation of microprocessors to determine whether one could be used
instead of the more costly PDP-11 to perform the interface task, we discovered that a vastly different
approach to the responder was technologically cost feasible. We will now describe the steps taken in the
design of the next version of the responder which (because of its stand-alone abilities) was renamed the
microterminal.

Throughout the development of the original responder, a major concern was that the student would

‘become dependent upon the central computer for many hours of continuous, erorfree hardware ard

software operation, since he would be using the responder intermittently for most of the instructional day.
Thus, if the computer failed even once during, for example, a two-hour instructional module, the student
would stand a good chance of being affected unless the central site were recording each minute interaction
on disk: such an 1/0 usage at the central site would be detrimental if a large number of responders were
employed. Also, the very infrequent rcquests encountered in individual responder usage would tie up more
space at the central site than would be justified for the level of interaction which would be realized in a
typical instructional situation. While thiz may seem paradoxical, it is typical of the instructional computer
where peak to average processor requirements may vary by ratios larger than 1,000,

The solution to this problem, and prelude to many other possibilitics, was to incorporate a complete
microcomputer into the responder. Due to the large production potential of these devices, manufacturers
had alrcady begun to discount their piices to the point where a complete processor could be assembled for
several hundred dollars in parts. The future promised decreases in these prices by at least a factor of four,
thus suggesting that production prices of no more than the parts cost of the prototype might be realizable.
It appeared that such a device could be deployed immediately since it would be unaffected by the
reliability of the ccntral site for its normal operation.

The first step in the design of the stand-alone terminal was to determine its design limit. based not

~only upon its instructional 1cquircments, but also upon the capabilitics of existing technology to efficiently

support these requirements. This is a delicate art of Knowing where to draw the line between what is

11

Q

ERIC

Aruitoxt provided by Eic:

wanted (which usually has no liwits) and what cun be costeffectively achleved with the optimum
combination of statesof-thesart compunents, In the time frame in which this work was comploted, w¢
benefited from the timely introduction of a series ol microcomputer components by Motorola known os
the MGS0O family of parts. This enabled the construction of the microprocessor within a box which wus
nearly identical to the responder hox in éxtemal dimenslons. The extemal design of this box is indicated In
Figures 1 and 2. ‘

The remainder of this report is divided into several sections dealing with the charasteristics of the
responder and ¢ach i’ the tools which had to be developed to produce the prototype device. Because the
microterntdnal is a sell-contained computer, it must be programmed o perform the tasks associated with
the identification of the student and the administration of the test or Instructlonal material, This program
had to be developed for a computer which did not yet exlst: i.c., the one to be contained in the terminal,
This *“target” computer would have »r facilitles jor the dovelopment of software since its normal function
would be to score i test, so a more cupable computer had to be obtained wr built on which the software
could be developed and tested. It is i2commended that readers not interested in the details of this
development process turn to Section V.

1. THE MICROCOMPUTER SOFTWARE/HARDWARE DEVELOPMENT SYGTEM

The PIMPL Programming Language and Compiler

The snecific microprocessor to be vsed in the microterminal was chosen for a nuraber of reasons
relating to « 4t, case of use, case of programming, and its ability to be constructed into a small physical
container. At the initiation of this phase of the project, the Motorola M6800 microprocessor was the best
choice considering all aspects of the design problem. Its weakest feature at the time, however, was that very
little software ¢existed to assist in the production of M6800 programs. Of the available software, all was
incompatible with the development computers available to support the project. For this reason, we
undertook the development of in-house software to aid in the programming of the microcomputer we were
planning to build. Because of the background of the people involved in the project, it was decided thata
large portion of the manpower involved would be spent in building good software tools, followed by a
relatively shor: usage of these tools to program the prototype. Our reasoning was that the final product
time would be about the same regardless of how much time was invested in the tools. By emphasizing tools
rather than end product, we would be much better prepared for future modifications and developments in
the microterminal or in related systems requiring a microprocessor for implementation,

A sather unique assembly language was developed, because the design constraints of size and cost
mandated a highly compact progran:, while future needs suggested modifiability and versatility as
important factors. The assembler program used to translate this language into M6800 machine code was
written to run on the AIS CDC CYBER 73 central site computer, thus making it available to any Air Force
installation having AIS terminals, The assembler is written in the PASCAL language which is excellently
implemen’ed on the central site computer. Because PASCAL is an ideal language for the construction of
compilers and assemblers, the actual manpower required to write this program was about cight man-weeks,.
The acronym PIMPL stands for

P rogrammable
I nstructional
M icroprocessor
P rogramming
L anguage

A primary advantoge in this implementation is that PIMPL programs may be edited using the powerful AlS
program editor, submitted to the assembler for translation in a few seconds, and the resultant program
transferred to the M6800 development processor for esting in a matter of minutes. Thus once these tools
were available, the complete responder program was written in a matter of days and can be modiiied now in
a matter of minutes. _

The notion of an algorithmically formatted assembly language is attributable to Niklaus Wirth, who
designed the assembly language PL360 for the 1BM 300 series of full size computers. Previous experience

with this language suggested that such an approacl might be quite suitable for the programming of
microcomputers. The language also bears some similarity in purpose to the PL/M language

12

BT
o THS ESTIN, .

TOR SORE 1S
FLPED THE HS WS

~ Figure . Student microterminal.

14

implemented for the Intel 8080 microcomputers, although it was intended that PIMPL would relate closely
to the capabilities and limitations of the M6800 microprocessor. By including such language structures as
procedures, IF-THEN-ELSE statements, and WHILE-DQO statements such as found in high level

programming languages, the flow of the resulting PIMPL program is much more transparent to the

programmer. We feel that this significantly enhances the readability of the resulting program as well as
reducing the number of logic errors in the program. Detailed statements, however, allow the efficiency
which only most assemblers achieve and erable the resulting program to be small, thus reducing the cost,
size, and power requirements of the finished product. :

The assefnbler can be characterized as a top-down recursive descent translator, and appears to
translate PIMPL at a rate of about 130 to 180 lines per second on the CYBER 73 computer. It requires
approximately 40,000 octal words of machine storage for execution and is currently merged with the
' M6800 simulator program (described in the next section). This merger allows the immediate translation and
simulation of PIMPL programs. ‘

The PIMPL language allows the user to describe the storage of the target microcomputer with
descriptive names of variables and constants used in the program. It uses attributes of these descriptions to
check the syntax of the program as it is being compiled, and the feasibility of its execution in the target
computer. For example, it will not allow storage allocated in a “read only” type of memory to be used in
such a way that its value would be assumedly changed as the program runs. The bulk of executable
statements are the assignment or function type, such as ’ -

A < 5+B AND BITMASK or

CALL TIMER ‘ ‘
These are translated directly into machine code for the M6800 microprocessor. When an iterative condition
is needed to express an idea requiring repeated test or looping, a statement such as

WHILE A<5 DO e
BEGIN LIGHT+« —LIGHT; A<A+1 END:

might be used to express the concept. If the user wishes to make a conditional execution he might use a
form such as B

IF A=0 THEN B<«5 ELSE CALL SOMEFUNCTION or

IF A<B THEN BEGIN A<B;B«<0 END .

Statements may be grouped ytogether into procedures such as

SOMEFUNCTION: PROCEDURE;
A<l; B<5;
WHILE A<BDO .
'BEGIN A<A+2; B«B+1 END;
RETURN; ‘

which may be called by statements such as
CALL SOMEFUNCTION;

“In- the event that an error is detected in the program by the compiler, it produces an error message of the ’

form:

X« X+1 CALLTIMER;
______ _ — _ — SEMICOLON EXPECTFD

notifying the progrmhmer where the error was deiected, and, if possible, what caused the error. In this way
 the time consumed correcting typographical or feasib:ity errors is minimized. :

By maintaining a policy of only implementing capabilities which are directly supported by the M6800
microprocessor, we kept the compiler small, fast, and easy to write and debug. We feel that the resulting
small size of the responder program in relation to what it does verifies the correctness of this approach for
the M6800. A section of the responder program is included in Figure 3 to demonstrate how well the
language can- describe the flow of the microprogram when propery used. The éxample was the first
program written by one of the authors, who is not a professional programmer. Without being familiar with

15
10

“.[THI'S SQUTTN. HaNT=ATTY FEASTION OF 4 SECANY (LOCKS FroM
A e MILLTIZOONT a2 3dass INTIRRPT TLCTX)

SLICKTUT ZR2019T 32000120 8
IF DZLAY>D THEM QZLAYE=DILAY-12(C0R CALLZD CaLAY]
MSCIONT s =MSOINNT =18 {FQ2 3OFTHAPZ CLOCK]
IF MSCTailT=. TH-N
A:GIN [OLICK JIN- CONLY ZVI®Y ({TH © _
Ae=11j0 MSCOYNTi=ar (27577 10TH tEC CT=)
TZNTHOC)NT =T INTHEDYNT -1 ¢
At=93 TF A<>Aly=5 THON
IF TOSTFLAGe>. THIM
[F TENTHCOUMT=g THIN
PUGTN S [3L0NK O0NI ONCZ PTR 5:2C)

-

Br=qat TINTHOJUYNT $=AL
SIOOMDSt=IICONIS+1] At=35CCNDSS
IF A=oR THIH
RIGIM
SECONAST=a MINUTES:=MINyTES+HLR
THO
Ae=4IM)TZ308
IF A=h3 THEIW
NTRIN
ATMTES =0t HIOYRS I=HIYR T+ L
SHne
T '
ENDe
Ai=PAS [<ZSETS IRNA FLAG IN 2IA]
RITYRMI:

Figure 3. Sample of PiMl_’L programming code. -

anything about the program, you could probably determine what this routine does from the information in
the listing. This desirable trait is called “self-documentation” and is not commonly found in assembly
language programs. :

When the compiler has finished translating the program into M6800 machine instructions, it records
these instructions in the disk system of the CYBER computer for later transfer to the microcomputer at the
request of the programmer. It then prints a readable listing of what the contents of the target computer will’
be, so that this information may be used while debugging the program or for purposes of ordering read only
memory circuits if desired. The microcomputer can also store this information in field programmable read
only memories if desired. Normally, at this point, control will be transferred to the simulator program for
trial execution.

_Debugging the Initial Program — Software Simulation

When a PIMPL program has been successfully compiled into' machine language, it may still contain
logic errors which would not be revealed until it begins to execute. At the normal time of execution,.
however, th¢ program will exist in a miniature, minimally configured box designed to perform a ‘speciﬁc

R

~ limited function, which does not include the development and debugging of computer programs. In order

to debug the program, all of the features of large scale, high-speed computers would prove beneficial. To
obtain these benefits, the microcomputer to be built is “simulated” by a computer program running on the
AIS CYBER computer. This simulator program can perform monitoring and checking tasks which would be
-~ infeasible to build into hardware devices specially desigued to debug microprograms. .

In order to minimize the user tin.e required by the simulation step, the simulator program should
contain very prolific information which.is not obtainable in the high-speed execution environment of the
actual hardware, but which is useful in determining whether the program is operating correctly. The
simulator written for this project includes the following features:

1. contro! of maximum simulation run time

full display of microprocessing unit (MPU) internal registers
assignment to program counter

simulation traces initiated by accessing within a range of addressés
simulation traces initiated by MPU clock tires

simulation traces controlled by opcodes executed

timed interrupts to write or alter data in memory

timed external MPU hardware interrupts

© PN YA WD

timed controls for partial memory and variable listings during simulation.

During simulation, a trace is printed for each machine instruction. Each line of trace lists the line
number, program counter, index register, stack pointer, A register, B register, six condition code flags,
cumulative MPU clock time, and new program counter. By correlating the trace listing with the program
listing, it is quickly possible to analyze and debug logical errors in the source code.

Each simulation feature is controlled by a one-line data card ‘attached at the end of the PIMPL source
program. The first number of the line selects the type of simulation command (i.e., one of the features
listed above). The remaining one to four numbers give the parameters of that command, such as designating
at what time the interrupt should occur, or identifying at what program address the simulation listing
should begin. Following is an explanation of each type of control card. ‘

~ Simulation Run Time: command designator number 0 followed by one number for the maximum
desired run time, expressed in microseconds. For example, a simulation data card (i.e., one line of data
attached to *h: end of the PIMPL program) with 0 2000 will permit the simulation to run for 2,000
cumulative >L*U! {microprocessing unit) microseconds before terminating the simulation run.

Initiatization of Program Counter: command designator number 1 followed by one number for the
decimal value of the new desired program counter. If this command is not used, the program counter is
established by the normal hardware convention of using the microprocessor startup vector which points to
the starting address of the program.

Simulation Trace by Address: command designator number 2 followed by two numbers for the.
beginning and ending program counter addresses for tracing and listing the simulation. Any program code
executed between these two addresses will be shown in the simulation trace. For example, a control data

‘line with 2 64000 64200 will provide a simulation trace whenever that part of the program beinggxecuted
is between program addresses 64,000 and 64,200. R

Simulation Trace by Clock: command designator number 3 followed. by two :numbers -for the

beginning and ending cumulative MPU time for which the simulation trace should be listed. For instance, a
data line with 3 2000 5900 would allow a simulation trace to bé listed when the MPU is running between
2,000 and 5,000 mizroseconds of the total simulated real-time run. -

Simulation Trace by Opcode: command designator number 4 followed by one number for the
opcode: Whenever the microprocessor instruction with that opcode is executéd, a one-line simulation trace
is provided. As with all the simulation commands, more than one may be used by having multiple data lines
attached at the end of the PIMPL program deck.

17

12

Timed Interrupts: command designator number 6 followed by four numbers. There are four types of
interrupts used, a hardware interrupt of the MPU, a nonmaskable hardware interrupt of the MPU, an
interrupt that will write or alter a byte of data in memory, and an interrupt that will list a designated page
of memory at a predetermined time. This last type is transparent to the actual simulated program, but
..provides- the -user with a current list. of memory and.-stored source program variables. Each of these
interrupts is designated by the fourth parameter number, numbered 0 to 3.

The first of the four numbers designates at what time the interrupt is to occur, expressed in
microseconds accumulated from ihe start of the run. The second number tells the memory address location.
The third number is the data that is to be written into the memory address of the second number when the
fourth number is a 2, which specifies a wiite intc memory. And the fourth number, O to 3 in value,
designates the type of interrupt. ‘

An example of a hardware interrupt would be 6 2000 0 0 0. Here the first number, 6, indicates an
interrupt. The number 2,000 indicates the interrupt is to occur at a time of 2,000 microseconds into the
simulation. The next two zeros are ignored while the last 0 indicates this is to be a hardware interrupt as
opposed to a nonmaskable, write memory, or page dump of memory interrupt,

An example of a nonmaskable interrupt would be the same except for the last number, 6 200000 1.
Here the 1 distinguishes a nonmaskable interrupt from a normal interrupt. ;

An example of writing data into memory at a given time would be 6 2000 65000 77 2. This is
interrupted by the simulator as, “at a cumulative MPU time of 2,000 microseconds write into memory
location 65,000 the value 77.” 4 ‘

The fourth type of interrupt is the page dump. Here 6 2000 255 0 3 is interrupted by the simulator
to mean, “at a cumulative MPU run time of 2,000 microseconds, print the contents of the 256th page
(pages numbered from zero) of memory and then continue with the simulation.” This is a transparent
interrupt with the result that all rnemory locations between hexadecimal FF00.and FFFF will be printed at |
that point of time in the simulaticn listing.

As mentioned, each, type of cemamand card may be used many times. As an example, suppose a
program is quite extensive and involves a large amount of simulation time. Simulation traces controlled by
address, time, or opcode may be discriminately furned on and off, listing only those portions of the
simulation the author is concerned with. A simulation representing a microprocessor controlled sequence of
events or interactions with the external world could conceivably take several real-time seconds or minutes.
The program trace can easily be configured to follow only those interactions the author is presently
concemed with. Software delays and wait loops may be skipped and counters may be changed—jumping to

‘new segments of executable code. Interrupts may be interjected to simulate extemal interactions with
switches, controls and signals. : ‘

Upon rompletion of the simulation, a listing is provided of all declared random access memory
(RAM), read only memory (ROM) and I/O (input/output) ports. This is given by page number, byte
number, decimal and hexadecimal value, and designates whether it is RAM, ROM, or an 1/O port, and
loaded or unused space. This type of listing is useful for a number of reasons. It shows the amount of object
code generated by the assembly, the final value of all the program variables stored in RAM, the location i
-memory of specific procedures, the actual object code generated by the assembler, an overall mapping of
memory and [/O ports which is useful for correlation with actual hardware addressing schemes, and a means
of verifying object code placed in ROMs or PROMs (programmable ROMs).

Hardware Development System

Once a good language, assembler and simulator have been established, the final component necessary
for a complete microcomputer Gevelopment system is a hardware emulator (Figure 4). It should be a
working, self-contained microcomputer that not only duplicates the microcomputer (proposed in the final
hardware design) but also inzides many features to facilitate program development and debugging.

It may initially-take longer to develop such a system, but once completed it will pay for itself many
times in time saved during the microcomputer development process. The capability to “look inside” the
microcomputing process, halt and display information, read or write memory data, and continue running
becomes an invaluable aid. With this tool, if properly designed and used, development efficiency increases

significantly.
18

13

ALt

S

"‘1 il DV]‘,\?O
i

Q

ERIC

Aruitoxt provided by Eic:

The basic concept is to write and simulate your microprocessor application program until it
approximates the final product. Then the assembled program is loaded into the hardware system. The
hardware emulates the propused hardware design and executes the object code as it would be done with the
final version.

At this point it is possible to test the ‘micro-controlled hardware. If carefully designed, all is near
completion. However, this is when the hardware may reveal some logic errors in the software or when the
author’s notions of the system design and implementation in his program fail to meet the actual physical
requirements. However, using the hardware development system. with its many front panel controls, one
can quickly and easily remove any remaining bugs from a program.

The development hardware includes three integrated circuit boards, a front panel with hexadecimal

"~ displays and switches, power supplies and a Plexiglas cover. The three large boards are functionally divided

into a central processor board, memory board, and control panel board (Figure 5).

The central processor boa:d includes the Motorola M6800 microprocessor, a crystal-controlled. one
microsecond system clock, a one millisecond clock derived from this clock, a bootstrap loader, three
peripheral interface adapters (PIAs), input and vutput buffering of the 16 bit address bus and 8 bit data
bus, 768 bytes of random access memory (RAM) with a read/write protect switch, and a resident
programmable read-only memory (PROM) programmer and socket for 4k and 8Kk Intel ultra-violet erasable
PROMs.

The memory board has 3k bytes of random uccess memory arranged in three rows. [k by 8 bits per
row. with room on the board for another row. There is sufficient buffering of bus and data lines, and
decoding logic for an additional 4k bytes of memory to be added by conrecting another board. The
memory board has a protect switch that disables the write function of the memory, thus rtaking it into a
psuedo ROM.

The third board is the control board. As compared to the MPU and memory boards, which are
inherently clear as to the functions they perform, the control board should contain all the “bells and
whistles” and development aids necessary to dacilitate development and debugging of hardware and
software. Initially, it is not always clear what these features are and which are best to have, but the
neeessity for a powerful and flexible control board with panel will manifest itself during the development
process. .

With this brief overview of the developnzint hardware. a chronological description of a development
process will show how the system is used, sorue ot its authoring and debugging features, and the power and
efficiency with which one person can develop an elaborate, microcontrolled, interactive, hardware/software
system.

The development cycle is a continuous process of authoring software, editing, assembling, simulating.

and emulating in hardware, with implied debugging throughout. This sequence is repeated in one form or

another.until a final product is produced. A program is interactively wriiten in 'IMPL at an AIS terminal.
When assembled, the program is stored in the disk system for transfer to the hardware emulator. To seriatly
transter the object code. an AIS CAMIL (Computer Assisted/Managed Instructional Language) program
called TRANSPORT is run at the AIS terminal.

TRANSPORT will automatically scan the PIMPL program data for declared ROM starting at address
0000 and scanning to the full addressing width of 65,535. For each contiguous segment of code, nonnatly
divided into 256 byte pages, TRANSPORT will serially output the high and low byte starting address and
the number of bytes to be transmitted, followed by the actual object code data. The CAMIL language has a
unique feature incorporated into its compiler and interface software for outputting data through an
external output jack at the rear of the AIS terminal. The CAMIL software command, when executed,
serially outputs a 20 bit word. with a timing puse for each bit, and a sync signal tor the end of each
transmitted word. The output data rate is sixty, 20 bit words per second with the last 8 bits of each word
serving as the actual data byte. Thus, in one minute about 3,600 words of PIMPL program may be
transferred to the hardware emutator.

While TRANSPORT is running, the AIS terminal displays cach page number and page length being
sent. When the serial output of all PIMPL object code is complete. a message will appear at the terminal’s
screen stating that the output operation is finished. The operator then sets the memory protect switch
located on the memory board of the hardware emulator. This has the effect of muking the random access
memory rray of the hardware emulator appear as if it were now read only memory and nondestructive.

15

21 -

CONTROL DATA CORP.

CYBER 7316 COMPUTER

y

CENTRAL PROCESSING BOARD PSUEDO ROM MEMORY BOARD
WITH: Bootstrap lcader & interface WITH: 3K x 8 RAM.
to CYBER 7316. Write disable switch.
PROM programer.
Peripheral Interface g&—%;
Adapters.
Bus drivers.
Auxillary RAM.

FRONT CONTROL PANEL
ADDRESS BUS DISPLAY DATA BUS DISPLAY
O O ' @) @)
SINGLE RESET Go/ SWI

CYCLE HALT CONTINUE
PROGRAM COUNTER STACK POINTER INDEX REG. A REG. B _REG. CON?iXégN CODE

000000

ADDRESS DISPLAY , DATA DISPLAY

OOOO 0000 0000 O00O O000000O0 O,: O

ADDRESS SWITCKES DATA SWITCHES LOAD NMI
ENABLE

Figure 5. Hardware development system.

22

16

In order to receive data from the AIS computer, the hardware emulator uses a program called a
bootstrap loader. One of the three PlAs on the central processing board is used for this interface. Coaxial
lines are used between the terminal and emulator with SN75451 line drivers and SN7414 Schmitt receivers.
Because this technique is good for frequencies to 20 MHz over distances of 100 feet, no parity is sent and
no error detection or correction is used. As it tums out, several dozen transfers, with 24 thousand bits per
transfer, failed to produce one error during emulation. ‘

The bootstrap loader, once loaded ‘and tumed on, causes the emulator MPU to sit in a wait mode
until interrupted by an extemal interrupt from the PIA. As the datais serally received at the emulator, the
receipt of each full word causes a serial to parallel 8 bit shift into the PIA and an MPU interrupt. The MPU
stores the byte in the next appropriate, sequential location of memory and.then waits for another byte.
Initially, at the beginning of each transfer the loader expects the high and low address and length to be sent,
followed by the data. The MPU is fast enough to service each interrupt and byte sent to it through the PIA,
and yet stay well ahead of the data transfer rates. ' ‘

The bootstrap loader may be hand toggled into RAM by using the address and data switches on the
front control panel, or a ROM version residing on the MPU board may be used after its starting vector is
toggled in at the highest two addresses of memory.: ‘

The entire process of recompiling a large PIMPL program, transferring it by using TRANSPORT and
the bootstrap loader, and running a new version of the program in the emulator, takes on the average .
between three and five minutes. A three to five minute tum-around time becomes an invaluable
developmert aid. The programmer’s output increases manyfold and complex microcomputerized systems
are not only realizable, but with minimal time and effort. :

Features and controls of the hardware development terminal or emulator that facilitate user
development of software and hardware include:

1. complete microcomputer emulation

2. resident bootstrap loader for swapping programs from the CDC Cyber computer

psuedn ROM via RAM read/write protect switch

rese., halt and run switches

single cycle with hexadecimal display for address and data bus

software controlled breakpoints with display of all intemal MPU registers
address controlled breakpoints with display of all intemal MPU registers

breakpoint continue/run switch from trap

16 address and 8 data switches with read/load control

S ©®NoO ;AW

10. peripheral interface adapters for emulation of prototype hardware R

11. automatic PROM progranmumer with socket’ -

The thought process by which an author debugs his program is unique unto himself. The intent of the
type of controls provided, is to give him enough flexitility and capability to perform any type of logical
debugging he desires. Normally, an assembled program listing (showing the address of each line of program
code) is used in conjunction with the emulator. The program logic flow is followed on the listing while
emulating. When' something goes astray, the control panel switches and display “windows”. enable the
designer to “look inside™ his program to leam what is specifically happening during execution.

After a program is first loaded into the emulator by the bootstrap, the RESET switch is pressed,
followed by the RUN switch. Then while running, the MPU may be halted at any time by flipping the RUN
switch to the HALT position. Once halted, control of the bus is given to the front control panel. The
address display (4 hexadecimal digits) will show the last address on the address bus prior to halting the

MPU. Likewise, the data display (2 hexadecimal digits) will display the last data to appear on the data bus
prior to halting. If the MPU is not halted, the address and data are still displayed, but change.at the
processing speed of the MPU, causing the display to appear as a blur to the human cye.

‘When in the halt quc, cach successive' depression of the single<cycle switch will permit the MPU to
exccute the next program command. This action also updates the address and data displays. With this

17

23

teature, the author may “walk"” through his program one step at a time while comparing the address and
data displayed with the logic of his program listing.

If additional-information is necessary for debugging, the intemal registers and condition codes of the
MPU may be displayed on the front panel. Display of this information is initiated in two ways. The author
may insert the PIMPL command SW1 (software interrupt) in his program at the point the display of
information is required or he may toggle the appropriate program address on the front panel and enable the
NMI (nonmaskable interrupt) switch (also on the front panel). ‘

Both the SWI and NMI cause the MPU to display the value of its registers at *he point in the program
where the command is encountered, and then halt the MPU and emulation process. Information displayed
includes the program counter, stack pointer, index register, A register, B register, and condition code flags
for carry, overflow, zero, negative, interrupt, and half carry. This information may be correlated with the - -
program listing for possible bugs. When complete, the MPU may be restarted by hitting the SWI/NMi
continue switch on the front panel. ‘

This information is normally not available to designers because of no access provisions on the MPU
integrated circuit. However, the SWI/NMi feature of the emulator causes the MPU to jump into a “priority
display and halt™ mode. When a software or nonmaskable hardware interrupt is encountered by the MPU, it
places its internal contents in the memory stack while processing the interrupt. The emulator copies the .
information stored in the stack, displays it on the front panel in a hexadecimal format, restores the MPU
from the stack, and then halts the MPU. This entire process is transparent to the program running in the
hardware etnulator, but provides a powerful aid to the developer. !

When the hardware and software development process using the simulator and emulator is complete,
the designer should have a smoothly running system that is a version of the machine he eventually hopes to
build. All the logic design for the microprocessing. unit, input/output interface, extemal signals and
software should be complete. All that remans for the designer is to reconfigure his hardware as a
stand-alone system (i.c., no longer using the emulator, but instead, the actual integrated circuits) and to
transform his assembled software code from the psuedo read only memory of the memory board to ROM
or PROMs.

Since the emulator served as a hardware prototype, the reconfiguration to a stand-alone
microcomputerized system from the emulator is a straightforward process. The electronic schematic

diagrams and circuits used during emulation are the same for the final product. ,

Programming PROMs may be done quickly and automatically using the hardware development
terminal. The assembled code already resides in the pr.iedo ROM area of the memory board. The bootstrap
loader in conjunction with the program, TRANSPORT, loads the PROM programmer program from the
AIS computer into the hardware development terminal at a predesignated and reserved part of memory.

The program’s listing of the memory map; provided at the end of cach PIMPL assembly, is used to
divide the object code into sequential sections of 512 or 1024 bytes of code. These sections provide the
code for each PROM to be programmed.

To program a PROM, an ultraviolet crasable 4k or 8k PROM (Intel’s 2704 or 2708) is placed in the
socket located on the MPU board. The 16 bit starting address (high and low order byte) for the section of
code to be programmed is toggled into memory, at location 0000 and 000 using the front panel controls.
The PROM programmer program is RESET and RUN. A snull red light next to the PROM socket will be lit
during the programming cycle. When the cycle is complete, approximately 2 1/2 mir.utes for a 4k PROM, |
the light turns off, the PROM may be removed, and the next PROM may be progrimined using the same
process.

It becomes a simple process to reprograin the PROMs for a new version of software. To do this, Intel
PROMs are exposed one inch from an ultraviolet light source for 20 to 30 minutes. This erases the old bit
pattern stored in the PROM, and readies the PROMs for a new programming cycle.

24 !

18

Q

ERIC

Aruitoxt provided by Eic:

IV. DESCRIPTION OF THE STUDENT MICROTERM.HAL

The following scction will give a description of the final version of the student microterminal
explaining its physical kayout. resident controlling program and microcomputer electronics.

‘ Refer to Figure 1 for an illustration of: the microterminal. The boy shown measures approximately 10
by 5 by 3 inches. vet contains the entire electronics and memory for a stand-alone computer that has five
testing strategies and 900 multiplechoice answer patterns.

Messages used in o diglog with the student are conveyed by means of lighting a small red light
adjrcent to cach printed message on the front panel. The cnrrent version has fourteen small lights for
messages. Six of these are used for messages with the student while administering a test, two more are for
yes/no feedback, four are used when extracting data cohiected while in the instructor mode, and the lust
two lights are unused. 1t is possible to add more lights or to have more than one light on at u time, if
multiple messages are desired simultaneously.)

The display located in the middle has four light emitting diode (LED), hexadecimal displays which
display the numbers between 0 und 9 and the characters A through E for multiple-choice response
feedback. Larger numbers. such s a nine digit social seceurity number, ure displayed by stepping the
numbers across the four-digit display from right to left as they are entered.

The heyboard's sixteen keys include the numbers 0 through 9, CLEAR, SEND, und four blanks. Th
keys numbered between 1 oand § also have the tetters A through E printed on them for multiple-choic:
responses. Several different manufactured keyboards were tested until one was tound which had a positive
actite feel and whose key caps could be altered for messages appropriate to our testing scenario.

The prototype hox is made from one-eighth inch and threessixteenth inch white opaque Plexiglas.
This has proven to be an ¢asy material to work with and has withstood a lot of rough handling.

The PIMPL program that controls the box resides in six 512 by 8 bit, ultra-violet erasuble PROMs,
four of which are for the program and two more for test answer patterns. If the testing pattern is ever
compromised. the two PROMs holding the answer pattern may be casily exchanged for two new ones
without atfecting ar altering the other four PROMs.

.

The PIMPL program is sequentially arranged in the order of declarations, answer arrays, procedures,
program body, und initialization of hardware vector pointers. Logieally the program is executed by first
initiatizing variables. then by reeciving the user’s social sceurity number and test booklet number, followed
by administration of the test. and concluding with the cateulation-and display of the final test score.

The type of test sirategy to be used, the answer pattern for the test administered and the length of
the test are all derived from the five digit test booklet number that the student enters.

Extensive software was developed to prevent the student from entering erroneous data, such as a
nonexistent or invalid booklet pumber, and to preveat hime from accessing proprietary information. In
every case, the microterminal box has not been difficuft to use by students attempting to use it for the first
time. The lights and messages and natural progression through a testing strategy, seem to be well human
factored and not confusing to new users.,

Because of the nature ot the PIMPL tanguage and the extensive use of procedures in developing the
microtermunal program, the actual amount of code generated s yuite compact. All together, 29 separate
procadures are used. with nesting of called procedures several levels deep. This approach makes software
development that controls and replaces hardware much easier and more togical 1o the developer. The actual
body- of the program is refatsvely ~hort compared to the rest of the program listing, but it visibly contains
the entire outline and structure of she prewram,

When tasks are requircd, such s receiving 9 keyed inputs tfrom the student for his social security
number followed by a SEND kev, a procedure called ACCEPT is simply called with the varable., LENGTI,
initialized 1o nine prior to the call. ACCEPT (in turn) uses other procedures. which in turn call other
segients of code. In this way. code is-used very efficiently.

It is important to note thar when designing a hardware/software, system, simple trade-off studics are
necessary to determitie if u control signal. electricul pulse or some function is more efficiently implemented
in software or in hardware. With the current availability of large read only memories at low prices combined

19

 \W]
i

Q

ERIC

Aruitoxt provided by Eic:

st

- with the power, speed and flexibility of the microprocessor it becomes very cost-fiective to implement as.

much of the control hardware in software (also referred 1o as firmware) as possible.

This approach was used in the design of the microterminal. A good example of this is in how the
keyboard is handled. Scanning of the keyboard for depressed keys, encoding of the keys, debounce of Keys
during depression, and key lockout it more than one key is pressed at the same time is all handled by the
microprocessor and firmware.

For the prototype microterminal, five ‘testing strategies were implemented and reside in the “box.”
The first strategy is merely a lincar progression through a test, with no correct response feedback. The
second strategy is a linear progression with yes/no response feedback. The third strategy is similar to the
second, except that when a test item is missed the student must remain at that item until he gets it correct.
The fourth strategy is the same as the third except that at the end of the test, tlic student loops back
around and continues taking each question he missed, until he has answered them correctly.

The fifth strategy implements a form of adaptive testing, called flexilevel. The intention of adaptive
testing is to determine a student’s comprehension level of the subject matter by using an algorithm that asks
as few questions as necessary during the test, but which maintains as high a correlation as possible to the
test score that would have been derived had all the test questions been asked.

In a flexilevel adaptive test, the questions are ranked from the first to the last item according to
increasing degrees of difficulty. In the strategy implemented, the first question administered is the middle
question of the test. Each successive question asked is based on whether the preceding question was
answered correctly or incorrectly, a higher numbered question for correct and a lower numbered question
for incorrect. In this manner the test continues until the student finishes at the last question or the first
numbered question of the test. The fifth strategy uses this technique, using any variable fength test and
always starting with the numerically middie guestion.

At the present time, a hardware interface is being developed which. will enable the nmicroterminal to
swap its gathered student test data into the central computer-managed system at the completion of a test.

For the present time, until the central interface is complete, information may be manually retricved
from the terminal while in an instructor mode. To log on as an instructor a special sequence of keys is
5
pressed. Once this is done a red light will appear next to the message that says *“Instructor Mode.

To retrieve information while in instructor mode, a key corresponding to the same number of a light
with appropriate message is depressed. For instance, if when in instructor mode a 1 is depressed, the nine
digit social sccurity number nuy be stepped across the display. A 2 will display the booklet number. A 4
will display the student’s score, while a 5 will display the clapsed time taken during the test, as expressed in
hours and minutes. Key 6 depressed (used in conjunction with the SEND key) will display cach missed
uestion and all the incorrect responses given for that question. For each of these instructor functions,
appropriate lights and messages ure used to facilitate the retrieval process. The microterminal is reset for a
new student by depressing the blank key under the CLEAR key while 1n the instructor mode.

It was mentioned previously that the elapsed time during a test was measured. This capability is
performed by an interesting combination of hardware and software. The microprocessor uses a one
microsccond crystal-controfled system clock. From this frequency, a millisecond clock is. derived .in
hardware by using three successive decade counters. This millisecond clock interrupts the microprocessor
cach one-thousand of a second. Slower clock periods are derived from this interrupt. Each interrupt
increments a software millisecond counter which in tum affects one-tenth second, second, minute and hour
software variable clocks.

Not only is this timing mechanism used for measuring test durations, but it scrves many other
purposes, such as for short time delays in key debounce routines, strobe pulses for latching data to the
microterminal displays. and for timed pauses when displaying messages such as the yes/no test item
feedbuck. ’

The microterminal hardware consists of 1 Motorola M6800 microprocessing unit, a 128 x 8 bit
random-access memory chip, six 4096 bit programmable read only memories, a 1. megahertz clock, one
peripheral interface adapter, fourteen discrete light emitting diodes. four hexadecimal displays, a sixteen
key keyboard, and a few discrete transistor-transistor tocic (TTL) integrated circuits. Except for the
keyboard, all these “urts fit on 4.5- by 6.0-inch board that mounts against the underside of the top panel

26
20

* of the microterminal box. By maintaining a compatible family of microcomputer integrated circuits, such
as the Motorola 6800 family, and by performing many of the hardware controt functions in software the
total parts count was Kept low thus enabling the building of the entire microcomputer with appropriate
student interactive displays on one small board. Refer to Figure 6 for a functional block diagram of the

. complete microterminal.. :

V. CONCLUSION

The stand-alone testing terminal, described in this report, is the tip of an iceberg which could greatly
change the manner in which testing is performed in the armed services. Specific systerns may be relatively
casily developed which cmphasize testing technique, test item security, learning during testing, or
automated entry of test results for item or response analysis by a larger system. The greatest difficulty will
be obtaining asscrubled devices such as these in small quantity without losing the low-cost potential of the
imbedded microcomputer, and in attaching families of these devices to current inappropriately designed
central systems. 1f solutions to these problems can be found, the full potential of reliable, automated,
self~puced learning centers may be realized.

2t +rU.S. GOVERNMENT PRINTING OFFICE: 1977-771-057/29 .

ERIC

Aruitoxt provided by Eic:

