
DOCUMENT RESUME

ED 135 376
IR 004 484

AUTHOR Burtcn, Richard R.
TITLE Bemantic Grammar: An Engineering Technique for

Constructing Natural Language Understanding

Systems.
INSTITUTION Bolt, Beranek and Newman, Inc., Cambridge, Mass.

SPONS AGENCY Naval Personnel Research and Development Lab.,

Washington, D.C.
REPORT NO BEN-E-3453; ICAI-E-3
PUB DATE Dec 76
CONTRACT MDA903-76-C-0108
NOTE 145p.

EDRS PRICE MF-$0.83 HC-$7.35 Plus Postage.
DESCRIPTORS *Artificial Intelligence; Computer'Assisted

Instruction; *Computer Programs; Computer Science;

*Man Machine Systems; *Programing Languages;
*Semantics

IDENTIFIERS SOPHIE

ABSTRACT
In an attempt to overcome the lack of natural means

of communication between student and computer, this thesis addresses

the problem of developing a system which can understand natural

language within an educational problem-solving environment. The

nature of the env.ircnment imposes efficiency, habitability,
self-teachability, arid awareness of ambiguity upon such a system. The

major leverage points that allow these requirements to be met are

limited domain, limited activities within that domain, and known

conceptualization of the domain. Semantic grammar is introduced as a

paradigm for crganizing-the knowled4e required to understand and

permit efficient phrasing. The need for succinct formalism for

expressing semantic gramzars led to the use of the Augmented
Transition Networks (AIN) . This led to the design and implementation

of a general AIN compiling system which in turn translates an ATN

into a program in a runnable computer language (LISP). The ATN

compiler is also capable cf producing programs which have been

optimized to the features used by a particular ATN. The ability of

AIN-based semantic grammars to perform satisfactorily in an

educational environment is demonstrated in the natural language

front-end for the SOPHIE system. (Author/WBC)

Docume7:,ts acquired by ERIC include many informal unpublished

* materials Lcz available from other. sources. ERIC makes every effort *

* to obtain the best oopy available. Nevertheless, items of marginal *

* reproducibility are often encountered and this affects the quality *

* of the microfiche and hardcopy reproductions ERIC makes available *

* via the ERIC Document Reproduction Service (EDRS). EDRS is .not

* responsible for the quality of the original document. Reprcductions *

* supplied by EDES are the best that can be made from the original.

*******************************1(***************************************

BBN ReporL No. 053
TCAI Report No. 3

U S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
NATIONAL INSTITUTE OF

EDUCATION

THIS DOCUMEI4T HAS BEEN REPRO.
DUCED EXACTLY AS RECEIVED FROM

THE PERSON OR ORGANIZATION ORIGIN
ATINO IT POINTS OF VIEW OR OPINIONS

STA1 ED DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL

INSTITUTE OF

EDUCATION POSITION OR POLICY

SEMANTIC GRAMMAR: AN ENGINEERING TECHNIQUE

FOR CONSTRUCTING NATURAL LANGUAGE UNDERSTANDING SYSTEMS
*

By

Richard R. Burton

December 1976

Acknowledgements

I would like to thank Dr. John Seely Brown for his technical contributions
throughout the course of this research and Dr. William. Woods for fruitful
discussions about ATN compilation.

The instructional and psychological aspects of this research were supported,

in pert, by the Advanced Research Projects Agency, Air Force Human Resources

Laboratory, Army Research Institute, and Naval Personnel Research and
Development Center under Contract No. MDA903-76-C-0108. The development of

the ATN compiler was supported, in part, by Bolt, Beranek and Newman, Inc.

*A modified version of this report will appear as a technical report under

the above mentioned contract.

The views and conclusions contained in this document are those of the author

and should not be interpreted as necessarily representing the official policies,

either expressed or implied, of the U.S. Government.

2

ABSTRACT

One of the major stumbling blocks to more effective educational uses

of computers is the lack of natural means of communication between the
st-udent and the computer. Thi, thesis addresses the problem of developing
a system which can understand natural language (English) within an

educational problem-solving environment. The nature of the environment
imposes the following requirements on a natural language understanding
system: (1) efficiency, (2) habitability, (3) self-teachability, and (4)

awareness of ambiguity. The major leverage points that allow these
requirements to be met are: (1) limited domain, (2) limited activities
within that domain, and (3) known conceptualizations of the domain. In

other words, we know the problem area, the type of problem the student is

trying to solve and the way he should be thinking about the problem in
order to solve it.

The notion of semantic grammar is introduced as a paradigm for

organizing the knowledge required to understand language which permits
efficient parsing. In semantic grammar, non-terminal categories are formed
on conceptual rather than syntactic bases. This allows semantic knowledge
to be integrated into the parsing process whenever it is beneficial to do

so. The semantic grammar also lends itself to a simple yet powerful method
of handling pronominalizations, ellipses and other sentence fragments which
arise naturally in a dialogucl situation.

The need for a succinct formalism for expressing semantic grammars led

to the use of the Augmented Transition Networks (ATN). This, in turn, led
to the design and implementation of a general ATN compiling system which
dramatically increases the speed of executing an ATN by translating it into
a program in a runnable computer language (LISP). The ATN compiler is also
capable of producing programs which have been optimized to the features
used by a particular ATN. The ability of ATN-based semantic grammars to

perform satisfactorily in an educational environment is demonstrated in the
natural language front-end for the SOPHIE system.

3

Table of Contents

Chapter 1: Requirements for a Natural Language Interface

Requirements
. .

Chapter 2: Related Systems
7

Keyword Sehemes
7

PARRY
8

NLPQ
10

CONSTRUCT
10

RENDEZVOUS
11

LUNAR
12

Discussion
13

Chapter 3: Sample Dialogue
16

Chapter 4: Semantic Grammar
23

Introduction
23

Representation of.Meaning
25

Result of the Parsing
25

Use of Semantic Information During Parsing 29

Prediction
29

Simple Deletion
30

Ellipsis
31

Using Context to Determine Referents
33

Pronouns and Deletions
33

Referents for Ellipses
35

Limitations of the Context Mechanism 35

Relationship-to Other Semantic Systems 36

Fuzziness
37

Preprocessing
38

Implementation
39

Chapter 5: Limitations of the LISP Implementation 41

Chapter 6: A Compiling System for Augmented Transition Networks . 46

Introduction
46

Augmented Transition Networks
47

Developments to the ATN Formalism 50

The General Notion of ATN Compilation 51

Areas of Optimization
52

A Grammar Compiling qystem
54

A Version of the Gr.,.mmitr Compiling System 56

Features of the ATN Machines
56

Lexical Preprocessing
57

Configurations
q9

Control Structure
60

An Overview of an ATN Machine 61

Anatomy of an ATN Machine
63

ii

Cody for the Arcs 64

WRD Arcs 65

CAT Arcs 66

PUSH Arcs 68

POP Arcs 69

Special Actions 70

Compiling the Compiled ATN 71

Results 71

Extensions to the Initial Version 72

The Well Formed Substring Table 73

Alternative Control Strategies 76

Chapter 7: Semantic ATN 77

Fuzziness 80

Comparison of Results 80

Chapter 8: Concluding Discussion 84

Impressions, Experiences and Observations 85

Research Areas in Semantic Grammar 86

Feedback - When the Grammar Fails 88

Future Research Areas in ATN Compilation 91

Conclusions 93

References 94

Appendix A: BNF Description of Part of the SOPHIE Semantic Grammar . 98

Appendix B: A LISP Rule from the Semantic Grammar 100

Appendix C: Sample Parses and Parse Times tor the LISP Implementation 102

Appendix D: Examples ofTN Compilation 104

Version I 107

Version II 111

Trace of Version I Parsing a Sentence 117

Appendix E: Grammar Compiler Declarations 121

Specification of Features 121

Declarations for Arc Tests and Actions 121

Appendix F: Debugging Features 124

Tracing 124

Breaks 124

How to Get into a Break 125

Grammar Break Commands 125

Appendix G; ATN Description of Part of the SOPHIE Semantic Grammar . 127

Graphic Form of Semantic ATN 128

Input Form of Semantic ATN 131

5

Chapter 1

likQUIHEMENTS FON A NATUHAL
LANGUAGE INTERFACE

Since the inceptien of computing machines, a major problem has been

facilitating man's communication with the machine. Much of the work which

has been done in the areas of programming languages, natural language

processing and automatic programming has been directed towards developing

more natural man-machine interaction. This report discusses a paradigm for

constructing efficient and friendly man-machine interface systems involving

subsets of natura/ 4anguage for limited domains of discourse. As_such this

work falls somewhere between highly constrained formal language query

system and unrestricted natural language understanding systems. The

primary purpose of this research is not to advance our theoretical

understanding of natural language but rather to put forth a set of

techniques for embedding both semantic/conceptual and pragmatic information

into a useful natural language interface module. Our intent is to produce

a front end system which enables the user to concentrate on his problem or

task rather than making him worry about 'how to communicate his ideas or

questions to the machine.

Although there are many application areas for which our techniques

apply, the principal motivation for this research arose from the pressing

need for natural language interfaces to complex instructional systems

Underlying reactive educational environments. The term "educational

environment" as used here refers to flexible problem solving,

laboratory-like situations which have been implemented on a computer. The

environment is reactive in tne sense that the computer can (in addition to

implementing the laboratory) monitor the student's activities and provide

tutorial feedback at critical times during the solution of problems. Such

systems have the characteristic that the computer naive users (students)

are involved in a problem solving situation in which the computer is merely

tne medium. Most certainly these students (users) are not interested in

state-of-art man-machine communication; they are interested in solving

tneir problems and learning from their solution paths and ,,rrors.

1

6

,,h10:11lonNI environment places constraints on a natural language

dnuerntandinr syutem which exceed the capabilities of all existing systems.

These eonstrdints include: (1) efficiency (2) habitability (3)

self-teachability and (4) the ability to exist with ambiguity. In the

reMainder of this chapter we will explore why these are important and then

provide an overview of the remainder of this report.

Requirements

A primary requirement for a natural language processor

solving situation is speed. Imagine the following setting;

at his terminal actively working on a problem. He decides

another piece fnformation to advance his solution so

in a problem

the student is

that he needs

he formulates a

query. From the time he finishes typing his Question, he has nothing to do

until the system rives him an answer so that he can continue working. The

time the systev. .Tends parsing his query, the student is apt to spend

forgetting pertinent information and losing interest. Psychological

experiments nave shown that response delays longer than -two seconds have

serious effect:, Jrt tht; performance of complex tasks via terminals (Miller

66). In tnese two seconds, the system must understand the query; deduce,

infer, lookup or calculate the answer; and generate a response.
1

Ine second requirement for a natural languaFe front-end is

habitability. Any natural lanFuaFe system written in the forseeable future

is not going to bt. able to understand all of natural language. What it

must do is to enaraeterize and understand a useable subset of the language.

Watt defines "nlbitable" sub-language as "one in which its users can

express -themselves without straying over the language boundaries into

1 Another effect of poor response time which is critical to intelligent.

monitoring systems is that more of the,student's searching for the answer

is done internally (i;e. without using the system). This decreases the

amount of information the system receives and increases the amount of

induction that Must. be performed, making the problem of figuring out what

the student is doing much harder (e.g. the student won t "show his work"

when solving a problem; he will just give you the answer).

7

2

unallowed ncntenoes" (19Ws "i38). Very intbitively, for a system tu be,

hobitable 0 must, ;mom other things, allow the uner to make local or

minor modifications to an accepted sentence and get another accepted

sentence. Exactly how much modification consitutes a minor change has

never been specified. Some examples may provide more insight into the

notion.
2

i

2 f: NWeliralgynPng?i g wrung?
3 Is there something wrong?
4 Is there anything wrong with section 3?
(5) Does it look to you like section 3 could have a problem?

If a problem solving system accepts sentence 1, it should also accept the

modifications given in sentence 2 and 3. Sentence 4 presents a minor

syntactic extension which may have major repercussions in the,semantics but

which should also be accepted. Sentence 5 is an example of a possible

paraphrase of sentence 4 which is beyond the intended notion of

habitability. based on the acceptance of sentences 1-4, the user has no

reason to expect that sentence 5 will be handled.

Any sub-language which does not maintain a high degree of habitability

is apt to be worse than no natural language capability at all because the

student will be forced to expend problem'solving energies discovering how

to formulate his question. That is, in addition to the problem he is

seeking information about, the student is faced, sporadically, with the

problem of getting the system to understand his query. This second problem

can be disastrous both because it occurs seemingly randomly and because it

2 Similar examples are given in (Coles 1972) p. 262.

3 In an informal experiment to test the habitability of a system the

author asked a group of four students .to write down as many ways as

possible of asking a particular question. The original idea was to

determine how many of the various paraphrasing would be accepted. The

students each came up with one phrasing very quickly but had tremendous
difficulty thinking of any others, even though three of the first,phrasings

were different! This experience demonstrates the lack of student s ability

to do "linguistic" ,problem solving and points out the importance of
accepting the student s first phrasing.

3

3
in an ill-qtefined problem.'

An equally Important (and more challenging) aspect of the habitability

problem is the problem of multi-sentence (or dialogue) phenomena, When

students use a system which exhibits "intelligence through its inference

capabilities, they quickly start ,to assume that the system must also be

,intellIgent In its conversational abilities as well. For example, they

will frequently delete parts of their statements which they felt would be

obvious gi'ven the context of the preceding statements. Often they are

totally unaware of such deletions and show surprise and/or anger when the

,system fails to utilize contextual information as clearly as they

(subconsciously) do. The use of context manifests itself in the use of

such linguistic phenomena as pronominalizations4 anaphoric deletions and

ellipsis. The following sequence of questions exemplifies these problems:

6) What is the population of Los Angeles?
7) What is it for San Francisco?
d) What about San Diego?

The third reouirement for a natural language processor is that it be

self-teaching (not learning, teaching). As the student uses the system, he

should begin to feel the range and limitations of the sub-language. When

the student does use a sentence that the system can't understand, he should

receive insightful feedback which will enable him to figure out why. There

are at least two kinds of feedback. The simplest (and most often seen)

merely provides some indication of what parts of the sentence caused the

problem (e.g. unknown word or phrase). A more useful kind of feedback

aoes on to provide a response based on those parts of the sentence that did

make sense and then indicate (or give examples of) possibly related,

ar,:eptable sentences. It may even be advantageous to have the system

recognize common sentenceS which would otherwise have been outside the

sub-language and in response to them, explain why, they are not in the

sub-language. 9

toovlh voouivemool io: n natural language system is ttmt it be

aware ol amb,rully. Natural language gains a good deal of flexibility and

power by not forcing every meaning into a different surface structure.

This means that the program which interprets natural language sentences

must be aware that its interpretation may not be the only one. For

example, when asked:

(9) Was John believed to have been shot by Fred?

one of the most potentially disastrous responses is "Yes". The user may

not be sure whether Fred did the shooting or the believing or both. More

likely, the user, being unaware of any ambiguity, assumes one

interpretation which may be different than the system's. If the system's

interpretation is different, the user thinks he has the answer to his query

when in fact he has the answer to a completely independent query. Either

of the followinc is a much better response:

(10) Yes, it is believed that Fred shot John.
(11) Yes, Fred believes that John was shot.

Notice that the requirement is not that the system necessarily have

tremendous disambiguation skills, but at least that it be aware that

mis-interpretations are possible and inform the user oV its interpretation.

In those cases where the system makes a mistake the results may be annoying

but should not be catastrophic.

This report presents the development of a technique, that we have

named "semantic grammars", for building natural language processors which

satisfy the above constraints. Chapter 2 discusses other systems which

attack some of these problems. Chapter 3 presents a dialogue from the

"intelligent" CAI system SOPHIE, which we used to refine and demonstrate

this technique. This dialogue provides concrete examples of the kinds of

k'llnguistic capabilities that can be achieved using semantic grammars.

Chapter 4 describes semantic grammars as they appear in SOPHIE, tind points

out how it allows semantic information to be used to handle dialogue

constructs_ and to allow the directed ignoring of words in the input.

Chapter 5 disct 1 the limitations which were encountered in the

implementation of semantic grammars in the SOPHIE natural language

I()

5

proropaor mut how these might be overcome by using a different formalism --

aumenled transition networks, Chapter 6 describes a compilinv system

developed to improve the efflelency of the aupmented transition network

grammars by mnpillnp Ihem into runnable programs. Chapter 7 reporta on

the conversion 1)1 Ihe SOPHIE semantic grammar to an ATN and the extensions

to the AIN formalism which were necessary to maintain the solutions

presented in chapter 4, Chapter 7 also includes comparison timing between

the two versions of the natural language processor. Chapter 8 presents the

conclusions of' 10:s research and -supgests directions for further work.

11

6

Chanter 2

RELATED SYSTEMS

Mch work hns been done in the area of natural language underatanding,

and a number of different techniques have evolved from this research. For

the purposes or this report, we shall limit the discusaion of these syatema

to ones attempting to do question anawering, and chooae aeveral aystems

that are most relevant to the problema with which we will be ooncerned.

This chapter is not an attempt, to review the entire field of natural

language question answering systems (which has been done fvom many points

of view (Simmons 1965,1959), (Wilks 1974), (Rates 1975), (Bruce 1975)),

but, instend, to provide examples of practical systems throughout a range

of complexity.

KEYWORD SCHEMES

Perhaps the oldest and simplest method of dealing with unrestricted

natural language was through keyword parsing. The technique was introduced

by Weizenbaum (1966a) and has been used and extended by others (see for

example (Weizenbaum 1966b), (Brown et al 1973), (Shapiro et al 1975) (Colby

et al 1974)). UsinR this parsing scheme, an input sentence is searched for

"key" words. With each keyword is associated a collection of patterns

which are tested against the complete input. If a pattern matches, an

action associated with that pattern (typically a reassembly rule which

constructs an output sentence by reassembling pieces of input) is executed.

This action represents the "meaning" of the sentence to the system (i.e.

the sentence's semantics).

Keyword analysis schemes have the advantage of being fast. and of

allowing the user great freedom of ex)ression since any number of

extraneous words can be included as long as the keywords appear. A

particular parser can also be changed ea:A.1y (by adding new rules) until

such time as the rules begin interacting, at which point it is unclear

which rule to use. When interactions do begin to occur, keywords can be

assigned an "importance" number and the rule with the highest number can be

1 2

7

used. However, conflicts may still arise when different keywords of the

same importance appear in the same sentence.

Keyword techniques work well in situations where the actions that the

system wishes to take in response to a sentence correspond in a simple way

to the words (i.e. the concepts are not typically expressed as multiple

word phrases, and words do not have multiple interpretations). ,However,

they are weak in ..ituations in which concepts are complex enough to require

embedding or in which quantification
1

is required, since their semantic

interpretation is essentially one level. In these cases, keyword patterns

become more cumbersome and inefficient to use than more structural

techniques. For example, consider the sentence:

(1) I think Q5 has an open emitter and a shorted base collector junction.

To recognize this sentence requires a very detailed keyword pattern which

could 'be "keyed" equally well (equally poorly) off any of the words:.

think, 05, open, emit.ter, shorted, base or collector. The main failing of

the keyword technioue is not being able to capture any of the structure of

the language it is tryinF to characterize.

PARRY

PARRY is a onFoing project to develop a dialogue system that simulates

paranoid behavior (Colby 1973), (Colby et al 1974). The system responds to

any possible question and "understands" the questions well enough to

exhibit paranoid behavior. To these ends, Colby has extended the keyword

parsing techniques introduced by Weizenbaum by adding of a second level of

matching. After a preprocessing phase collapses compound words,

canonicalizes similar words, performs minor spelling correction and deletes

1 Quantification refers to the problem of having a noun phrase which can

range over a set of values, e.g. "some cars have engines", "all cars have

engines". One of the problems with quantification is determining the scope

of the aliantification with respect to the rest of the sentence, especially

when the rest of the sentence contains another quantifier.

13

8

unrecognized words, the input is segmented at certain keyword

boundaries.-Each segment is then matched against a collection of segment

patterns. The resulting list of recogniZed segments is then matched to

collection of complex patterns. Patterns have reassembly rules associated

with them which construct the response.

Two important restrictions that should be placed'on'the application of

keyword schemes to avoid .mis-understandings (i.e. to avoid patterns

applying when they...shouldn't) have arisen from Colby's work. One is that

at most one element should be ignored at each level of matching. Segment

m'atches should account for all but one word. Complex patterns .should

account for all but one segment. The other restriction is that patterns

should require that their elements occur in a particular order. The

following exampleS(from (Colby et al 1974)) demonstrates the usefulness of

ignoring words (e.g. "well" in sentence 3), and the importance of word

order (e.g. without word order restrictions, any pattern which matched 2

would also match 3).

(2) Are you well?
(3) Well, are you?

PARRY has deMonstrated the capability of dealing wifh a relatively

large number of concepts at a shallow level. The power in PARRY's approach

lies in its ability to tolerate unknown words. As mentioned, this

fuzziness is implemented by allowing the deletion of single elements from

both levels of matching. Unfortunately the underlying semantics of PARRY's

task, indeed the goals of the task itself, are vague, which makes

attributes such as scope and habitability hard to evaluate. In addition,

the two-level pattern matching technique lacks the precision required in a

problem solving situation in which many regularities cannot be captured by

one-level embedding.

2 The fragmentation technique was developed by Wilks working in machine

translation (1973a) (1973b). The list of segmentation words includes
punctuation marks, subjunctives, conjunctions and prepositions.

14

9

NLPL),

Heidorn (Heidorn 1972,1974,1975) developed an automatic programming

system, called NLPO which allows users to describe simulation problems in

English. The system takes an English partial description of a problem and

fits it into an internal description language, building pieces of the

problem. From the partial internal description, Questions are generated

which reauest missing pieces of information. When the description is

complete, the system can generate a GPSS program or an English description

of the model it has built from the user's description. The user can also

ask questions about the present model, and make changes and additions to

it. The EnRiish processina is done using augmented phrase structure rules

(discussed later). The phrase structure Component is syntax-based (i.e.

looks for things like noun phrases) with semantic restrictions being

carried along in features which are tested in conditions on the phrase

structure rules. The structure building augmentations create

semantic/conceptual network structures, called segments, which represent

the semantics of the phrase. Much of the system's success appears to be

its close match between the structure of segments and the way English is

used to describe modellinF problems. No information on the use of NLPQ by

naive users has been published, so it is difficult to evaluate the system's

habitability.

CONSTRUCT

CONSTRUCT is a general system to do natural language processing

developed at the Institute for Mathematical Studies in the Social Sciences

(Smith et al 1974). Its major application is in a text-based, question

answering system for elementary mathematics (Smith, N.W. 1974). The

system answers auestions such as:

(4) Are there any even prime numbers that are greater than 2?

(5) Is the sum of 5 and 2 less than the product of 5 and 2 but greater

than the difference of 5 and 2?

The semantic basis of the system is a collection of procedures for

15

1 0

generating and manipulating sets and numbers. The semantics of question 4

would be "are there any elements in the set created by intersecting the set

of even . numbers, the set of prime numbers and the set of numbers greater

than 27" As all of the sets in the example are infinite, the procedures

know about dealing with intensicnal as well as extensional descriptions of

sets.

The meaning of a sentence is determined by the following process.

First a preprocess phase occurs during which (1) abbreviations are

expanded, (2) synonyms are canonicalized, (3) compound word and common

phrases are collapsed to a single word representation, (4) noise words are

eliminated and (5) each word is replaced by its lexical category. The

input is then parsed with a context free grammar with the semantic

interpretntion occurring in parallel via semantic construction functions

associated with each grammar rule. Whereas this procedure is clearly

inadequate if a traditional syntactic grammar is used, (e.g. no reasonable

semantic function could be associated with the rule S := NP VP) the

CONSTRUCT grammar is built around the semantic rules using categories

capture concepts in the application domain. For example, the grammar

contains the grammatical category SUBST which corresponds to the semantic

concept of a constructive set. This cuts across traditional category

boundaries as seen in the sentences (from (Smith et al 1974)):

6 Is 2 a factor of 4?
7 How many factors of 12 are even?
8 Give me the factors of 12 fERare between 1 and 6.

The underlined portions would all be parsed into the SUBST category,

although their traditional categories would be noun phrase, adjective,'and

prepositional phrase.

RENDEZVOUS

Codd is designing a natural language system, called RENDEZVOUS, to

support 'he needs of casual users of data bases (Codd 1974). One problem

that Codd has addressed, which has been neglected in previous systems, is

16

11

what action to take if a user's query is beyond the restricted language

understood by the system. A central notion to Codd's proposed solution to

this problem is that of a "clarification dialogue" -- a system initiated

dialogue that includes queries about an unacceptable utterance which

attempts to arrive at the user's meaning. Codd points out that a

clarification dialogue must be embarked upon very carefully. For example,

if the system encounters the unknown word "concerning", one of the worst

possible responses is "What do you mean by the word 'concerning'?" Almost

any response to such a question would be beyond the capabilities of the

system. Any clarification dialogue must be of "bounded scops" and guided

by those parts of the query which the system can understand. RENDEZVOUS

also cmploys re-statement of a user's query to confirm the intent of the

query and to point out ambiguities. The range of language accepted by

RENDEZVOUS, indeed even the method used to extend the range, is unclear.

The aspect of RENDEZVOUS which is of interest here is the extent to which

it has been designed as a "friendly" system.

LUNAR

The LUNAR system (Woods 1973a) (Woods et al 1972) is a natural

language understanding implementation which combines a general semantic

interpretation mechanism (Woods 1967,1968) with a large scale grammar of

English (Woods 1970) (Woods et al 1972). LUNAR was designed to allow a

lunar geologist to use English to query the chemical analysis data

collected from the moon missions. Typical questions the system answers

are:

(9) What is the average concentration of aluminium in high alkali

rocks?

(10) Which samples have greater than 20% modal Plagioclase?

The processing of a query occurs in three major phases. During the

first, the syntactic component derives the "deep structure" of the

3 This is the linguistic deep structure hypothesized by Chomsky (Chomsky

1965) which has a central role in the theory of transformational grammar.

17

12

sentence.3 The syntactic component uses a general transformational grImmar

of English syntax expressed as an augmented transition network (see Chapter

6). In the second phase a general, ruledriven semantic interpretation

procedure produces the repreSentation of the meaning of the sentence as a

4
program in a formal retrieval language. The semantic interpretation rules

are treestructured pattern matching rules which are used in groups to

extract the meaning of different pieces of the syntax tree. The third

phase is the execution of, the form1 expression to produce the answer to

the request. The formal query lanRuage is a generalization of the

predicate calculus which has been carefully designed to allow natural

translation from English. The strength of the LUNAR system lies in its

mechanisms .to deal with quantification, conjunction, and relative clauses,

and these are direct results of the carefully designed formal query

language.

Discussion

The notion of an augmented phrase structure grammar provides a useful

.base for comparison between these systems.
5 An augmented phrase structure

grammar contains two components. One is a set of context free phrase

structure rules. The other is a corresponding set of functions (sometimes

arbitrary, sOmetimes restricted) augmenting each of the rules which can be

used to block the application of the context free rules and to maintain

structures. While the paradigm of augmenting phrase structure grammars is

followed by a large number of natural language systems, important

differences exist with respect to what type of information is encoded in

the grammar. For example, the LUNAR system uses a purely syntactic grammar6

4 The notion that the meaning of a sentence is a program is generally

called "procedural stmantics". Procedural semantics is in general use for
question answering applications. It does not, however, constitute a

complete theory of meaning. In particular it does not account or such
phenomena as declaratives, uses .of temporal references, and belief

structures.

5 The idea of associating additional information with a phrase structure

grammar has appeared in various forms since early compiling systems (Irons

1961).

1 8

13

and uses the augments to perform syntactic operations such as

subject-verb agreement and to maintain the structure of the syntactic tree.

ULPO uses a syntactic grammar restricted by (usually semantic) features and

uses the augments to perform parallel semantic interpretation. CONSTRUCT

performs the semantic interpretation in parallel with a set of context free

rules which are semantically oriented. PARRY's patterns, if viewed as

limited .phrase structure grammar rules, are directly, linked to the

semantics of the system. The decision about how much semantic information

to encode in the grammar is a trade-off betvieen efficiency and generality.

Each of the systems presented here represents a defensible position along

this spectrum.

When we began developing the SOPHIE system,
7

we explored the

possibility of using intact the syntactic component of the LUNAR system.

Since the LUNAR syntactic component was building a linguistically motivated

description as opposed to the task oriented descriptions being built by the

other systems, we feltits transferability to other domains would be high.

We found the grammar to be very adequate Parsing many of the most

complicated sc,f.tences we felt SOPHIE would ever need to understand.

Unfortunately, on simple sentences it provided more information about the

sentence than we needed. For example, tense information was not needed or

could be extracted from the relationships between concepts. The

quantification and relative clause mechanisms were oPiented towards Woods'

formal query language which was not natural for our use. The'use of

conjunction in our domain is straightforward and relatively predictable,

unlike its use in the LUNAR domain. All in all we had the feeling of using

a microscope where we only needed a magnifying glass! The underlying

6
The augmented transition network is an extension of a recursive

transition network which has the power of a phrase structure grammar. For

this reason we can classify it here as using an augmented phrase structure

grammar. We will argue later that the transition network has conceptual

advantages over phrase structure rules, but this does not affect this

discussion which poidts out the difference in the kind of information

captured in the grammar.

7
A SOPHisticated Instructional Environment for teaching electronic

troubleshooting. Chapter 3 provides examples of SOPHIE's language

requirements.

19

14

semantic structure of our system just could not take advantaRe of such

detail. Added detail is acceptable (it can always be ignored) except that

the perception of such detail takes time which is a scarce commodity. At

the time when we considered the LUNAR system, it was taking 2 or 3 seconds

to syntactically parse a sentence and another 5 to semantically interpret

it.
8

This experience led us to explore ways in which the semantics of the

system could be used to speed the understanding process.

The teehnique we developed (described in Chapter 4) has much in common

with both NLPQ and CONSTRUCT. However, significant differences arise from

the emphasis we have placed on dealing with dialOgues and on the

construction of a friendly system. This has caused us to exploit two uses

of semantics during parsing not found in these other systems. One is the

insight provided into the nature of ellipsis and deletion in dialogues.

The other is the basis provided for.characterizing a habitable language.

In Chapter 4, we shall discuss our concept of a semantic grammar and how it

--
allows exploitation of these two advantages. Before we get into the

details of how this s accomplished, we present in the next chapter an

example of what has been accomplished.

8 In Chapter 6 we will describe a techniqu which reduces the parse time

by an order of magnitude making this approach more viable.

"0

15
..... -^

Chapter 3

SAMPLE DIALOGUE

Before delving into the structural aspects and technical details of

the semantic grammar technique, we would firot like to provide a concrete_

example of the dialogues it has supported. This chapter presents an

annotated dialogue of a student using the "Intelligent" CAI system SOPHIE.
1

The dialogue is intended to demonstrate SOPHIE's linguistic capabilities

and, while it touches upon the major features of SOPHIE, it is not meant to

exhibit the logical or deductive capabilities the system.
2 In the dialogue,

the student's typing is underlined. Even though the dialogue necessarily

deals with electronic jargon, the linguistic issues it exemplifies occur in

all domains. The annotations (lower case, indented) attempt to point out

these problems and should be understandable to the non-electronict; oriented

reader.

WELCOME TO SOPHIE - A SIMULATED ELECTRONICS LABORATORY.

The circuit (Figure 3.1) is based on the Heathkit IP-28 power supply.

The IP-28 is a reasonably sophisticated power supply with both current

limiting and voltage limitArIg behavior. These two interrelated

feedback loops make troublesnuoting this circuit non-trivial.

>>INSERT A FAULT

The student tells SOPHIE to give him a fault which he can

troubleshoot. SOPHIE randomly selects a fault, inserts it into a

1
SOPHIE was developed to explore the use of artificial intelligence

techniques to provide tutorial feedback to students engaged in problem

solving activities. The particular problem solving activity involved is

that of troubleshooting a malfunctioning piece of electronic equipment.

SCPHIE models the piece of equipment ancL answers the student s requests for

measurements and other information to aid him in debugging. More

important, throughout the problem,solving session, SOPHIE has evaluate the

logical consistency of a student s hypothesis or generate hypotheses which

are consistent with the behavior the student has thus far observed.

2 The reader is encouraged to see (5rown and Burton 1975) for further

examples and descriptions of SOPHIE s tutorial and inferential

capabilities.

21

16

22 21 50V

NODE NUMBERS

504

'CURRENT

'CURRENT CONTROL

wan: TR1MPOT'\

.730 7

01

37

VAC

Pa

2,611

514

03

R11

c

'CURRENT 'VOLTAGE

\ E PITCH"r- RANGE SWITCH" RANG

41A LUI 304/1 alOV

9 11 1

24 25

R13 R14 RII

Iowa 2f1 4 A

RI6

5g

R6 15 R5
14X11 122511

R4

NMA
4

R3

1500[1
IVI

03

150011 16

06

37

23

+ +

C3 C4

500,14 504

75V 754

0

R9

330011

02

4
200F

boo,

10

06

-
OOPUT

72VAC

(500011

0

"VOLTAGE

WNW

II

C2

Ri 50V +

36V

R1b

-
el44

14

56V

05

36V

X)01,

4

Figure 3.1

Circuit Schematic of Heathkit IP-28 Power Supply

12

23

model of the instrument ard tells the student how the front panel
controls are presently set.

THE INSTRUMENT HAS A FAULT AND ITS PRESENT CONTROL SETTINGS ARE:
CC 1.0 CURRENT CONTROL-FROM 0.0 (MIN CURRENT) TO 1.0
CR HIGH CURRENT RANGE SWITCH, HIGH=1 AMP, LOW=.1 AMP
LOAD 1000 LOAD RESISTANCE.IN OHMS
VC 1.0 VOLTAGE CONTROL-FROM 0.0 (MIN VOLTAGE) TO 1.0
VR HIGH VOLTAGE RANGE SWITCH, HIGH=30, LOW=10 VOLTS

>>WHAT IS THE OUTPT?
ouTITT-=5-MTPVT---
THE OUTPUT VOLTAGE IS 1.2 VOLTS.

SOPHIE corrects the student's typing mistake.
Notice that "the output" was disambiguated as the output voltage.

IF YOU ARE NOT SURE WHETHER A VALUE IS CORRECT, YOU CAN ASK "IS THAT
VALUE CORRECT?"

The system points out a feature that the student may not otherwise be
aware of. "Correct" here means what it is in a working instrument.

>>IS THAT RIGHT
IN-T WITIO-MicuIT THE OUTPUT VOLTAGE IS 30.1 VOLTS.
THAT VALUE IS INCORRECT.

"That" here refers to the value of the previous measurement. SOPHIE,
in addition to the faulted instrument, has a working circuit which can
be used to take reference measurements.

>>WHAT IS THE VOLTAGE BETWEEN THE CURRENT LIMITING TRANSISTOR
.7-TRD-THE-70NSTANT CURRENT SOURCE?

THE VOLTAGE AT NTIS 2.46 VOLTS.

In addition to specific part names, SOPHIE recognizes references to
parts by their section. Notice that even though the sentence says
"voltage between x and y", and it really me3ns "iioltage at z with
respect to ground". The output routines rephrase the input in a
simpler form (i.e. between x and y reduces to N4).

>>WHAT IS IT BETWEEN THERE AND THE BASE OF g6
THE VOLTIGE-BETWEEN N4 AND 173-I3-T.28 van.-

Here "it" refers to "the voltage" and "there" refers to N4.
Also notice that "between" has to be treated differently,
i.e. two nodes are explicit now.

>>IS THERE ANY RIPPLE IN THE VOLTAGE AT THE BASE OF Q4Z
I'7-SORRY, r-To NOT HOULE-IC CHARACTEITITITCM

SOPHIE recognizes that the student is moving into an area which it is
unable to handle. This is currently done by keyword recognition (e.g.
ripple) but points out a technique which should be incorporated in
other aspects of the system as well.

2 4

18

WHAT IS THE BASE CURRENT OF qa
THE BASE-CURITENT-UF 01-IS 1,-MICROAMPS.

SOPHIE can answer questions about current, resistance, and power
dissipation as well as voltage. The output and input routines know
about unit prefixes.

>>THRU THE EMITTER?
THE-ERVITER CURRENT OF Q3 IS -.26 MILLIAMPS.

This is a type of sentence fragment which occurs frequently in

dialogues which we will refer to as an ellipsis. Rather than
specifying a complete thought, an ellipsis only gives that .piece of
the thought which contrasts an earlier thought. Notice that the
referknt cannot be figured out on syntactic grounds (as is possible
with the ellipsis "the emitter current"; yet this is the sort of
statement a student might make if the last answer had caused a slight
shifting of his thinking.

>>COULD THE PROBLEM BE THAT Qa IS BAD?
PLEASE 13E71ORE SPECIFICASUUT-OW Q5 IS FAULTED.

The student develops an idea about what is wrong and asks to have it

evaluated.

>NCOULD IT BE SHORTED?
THE SHORTErRODES oF A TRANSISTOR CURRENTLY IMPLEMENTED ARE: ALL
JUNCTIONS SHORTED OR ONE JUNCTION SHORTED WITH THE OPPOSITE
TERMINAL MODELLED OPEN.

A hypothesis must be completely (or non-ambiguously) specified before

evaluation can take place. Even though the last statement generated
an error condition, it is still used to determine possible pronoun
referents.

SHOULD Q5 HAVE ALL JUNCTIONS SHORTED?
> NO
WST7H TERMINAL SHOULD BE MODELLED OPEN?
> THE BASE
OKT-T'LL LET Q5 HAVE ITS EMITTER COLLECTOR JUNCTION SHORTED AND ITS BASE

OPEN

At this point, SOPHIE looks back over the student's measurements to

determine if he should have "known better". See (Brown and Burton
1975) or (Brown et al 1975) for further description.

HIMMM, LET ME COMPUTE ON THAT FOR A MINUTE.

When the system knows there may be a long wait, a "delaying" message is
printed to let the student know something is happening.

WHEN THE SETTINGS WERE:
CC=1.0, CR=HIGH, LOAD=1000, VC=1.0, VR=HIGH,

THAT FAULT CONFLICTS WITH THE FOLLOWING MEASUREMENT.
YOU OBSERVED THAT THE VOLTAGE BETWEEN N4 AND N5 WAS 1.28 VOLTS.
IF 05 HAD ITS EC SHORTED AND ITS BASE OPEN IT WOULD BE 1.1 MILLIVOLTS.
IN A WORKING CIRCUIT IT IS 1.43 VOLTS.

t.)

19

BUT THAT FAULT DOES EXPLAIN THE VALUES YOU OBSERVED FOR
THE OUTPUT VOLTAGE, THE VOLTAGE AT N4, THE VOLTAGE BETWEEN N4 AND N10,
THE EMITTER CURRENT OF Q3 AND THE BASE CURRENT OF Q3.

>>WHAT COULD BE WRONG

The student becomes stuck and asks for assistance. SOPHIE proposes'

some possiule hypotheses for the student to explore.

THERE ARE LOTS OF FAULTS WHICH WOULD EXPLAIN THE MEASUREMENTS YOU
HAVE TAKEN. HERE ARE SOME POSSIBILITIES:
THE RESISTANCE OF R8 CHANGES
THE LEAKAGE RESISTANCE OF C4 CHANGES
THE BETA OF Q3 CHANGES
R15 IS OPEN
Q6 IS FAULTED

>>IF R8 WERE OK, WHAT WOULD THE OUTPUT VOLTAGE BE?
IF-nE7VALUE OF R8 WERE. 30000
UNDER THE PRESENT SETTINGS, THE OUTPUT VOLTAGE WOULD BE .904 VOLTS.
IN A WORKIK; CIRCUIT IT IS 30.1 VOLTS.

The student doesn't believe one of the possiblities so he checks it

using a hypothetical statement. Even though the voltage in this case
and that in the case of a faulted circuit are not the same, they

qualitatively agree.

>>REPLACE 96
The student guesses maybe Q6 is bad and tries to replace it. When the

student replaces a part SOPHIE queries him to insist that he know how

it is faulted.

I AM GOING TO ASK YOU SOME QUESTIONS ABOUT HOW Q6 IS FAULTED.
ARE ANY JUNCTIONS SHORTED?
> YES
WHICg JUNCTIONS ARE SHORTED?
> ALL

If the response to a query is not understood, further specification of

the expected response is given.

PLEASE SPECIFY THE JUNCTIONS AS EC EB AND CB (SEPARATED BY SPACES).
WHICH JUNCTIONS ARE SHORTED?
> EC EB AND CB
Q6-15-170T-FAUUTED IN THAT MANNER.

The part would be replaced if any of the junctimp had been shorted.

SOPHIE would normally have critiqued the student s hypothesized fault.
This was not included in the dialogue to save space.

Q6 NOT REPLACED.

>>VOLTAGE DROP ACROSS 13.5.
THE VOLTAGE ACROSS R5 IS -.028 MILLIVOLTS.

Some noun phrase utterances are recognized as questions.

2 6

20

)>WHAT ABOUT ti3?
TIN VOLTAGE ACROSS H3 IS 71h VOLTS.

Another ellipPis. The context of the previous question is used t.o

determine "what" about R3.

>>REPLACE El
IS R3 OPEN -CM SHORTED OR DOES IT HAVE THE WRONG VALUE?
> IT IS OPEN
R3-118/TACED

>>IS THERE ANYTHING ELSE WRONG
NO--

After fixing the fault, the student uses SOPHIE to explore other
aspects of the circuit s b,ehavior.

>>IF C2 WERE LEAKY WHAT WOULD THE VOLTAGE ACROSS IT BE?

The referent to "it" in this case occurs earlier in the same sentence.

IS IT OKAY IF I USE 10000 FOR THE LEAKAGE RESISTANCE OF C2?
> YES
Ir-TRE LEAKAGE RESISTANCE OF C2 WERE 10000
UNDER THE PRESENT SETTINGS, THE VOLTAGE ACROSS C2 WOULD BE 26.3 VOLTS.
IN A WORKING CIRCUIT IT IS 28.9 VOLTS.

>>WHAT HAPPENS IF Cl SHORTS?
UNDER THE SETTIMS:

CC=1.0, CR=HIGH, LOAD=1000, VC=1.0, VR=RIGH,
IF Cl WERE SHORTED, D3 WOULD BECOME OVERLOADED.

In the case where nothing more interesting happens, "wtiat happens"
questions default to the output voltage.

>>IF 416 HAS AN OPEN EMITTER AND A SHORTED BAE COLLECTOR JUNCTION
..-.171-1171iAPPYTTS-TO-TRY-VOLTAMMEnTEN-17S-ETSE AND THE JUNCTION OF
...THE VOLTAGE LTMITING SECTION' AND TR-VULTGEA 7r757EACE SOURCE?
BAE => EASE
VOLTGEA => VOLTAGE

Several examples of the use of conjunction. Imagine the student's

frustration if he is forced to type this query over because of
spelling mistakes.

IF Q6 HAD ITS BASE COLLECTOR JUNCTION SHORTED AND ITS EMITTER OPEN,
UNDER THE PRESENT SETTINGS:

CC=1.0, CH=HIGH, LOAD=1000, VC=1:0, VR=HIGH
THE VOLTAGE BETWEEN N5 AND N13 WOULD BE THE SAME, I.E. 28.9 VOLTS.

A hypothetical question is first tried under the present settinas. If

no difference is noted, other settings are tried.

27

2 1

LET ME TRY ANOTHER CASE WHICH USUALLY POINTS OUT PROBLEMS IN THAT

SECTION OF THE CIRCUIT.
UNDER THE SETTINGS:

CC=.9, CR=LOW, LOAD=10, VC=1.0, VR=LOW,

THE VOLTAGE BETWEEN N5 AND N13 WOULD BE 8.94 VOLTS.
IN A WORKING CIRCUIT IT IS 9.57 VOLTS.

>>WHAT IS THE OUTPUT VOLTAGE WHEN THE VOLTAGE CONTROL IS SET TO .2.51

wIn-T8E-VULTAGE CONTROL NOV SET g7-75
THE OUTPUT VOLTAGE IS 15.6 VOLTS.

A hypothetical question can involve the changing of a control. If

this happens the control is left at the new setting and the student is

told so.

>>IF IT IS SET TO 0.1
WITH TR VOLTAGECONTROL NOW SET AT .7
THE OUTPUT VOLTAGE IS 21.4 VOLTS.

Context determines which measurement should be taken and which control

should be set.

>>.9?
WITH THE VOLTAGE CONTROL NOW SET AT .9
THE OUTPUT VOLTAGE IS 27.2 VOLTS.

>>WHAT IS THE CURRENT THRU THE CC WHEN THE VC IS SET TO 1.0?

WITH THEVUETAMIZTATROL NOIrgerATT:0--
THE CURRENT THRU THE CURRENT CONTROL IS 30 MILLIAMPS.

CC and VC are abbreviations. Notice that controls are also "parts"

which can be used in measurements.

>>WHAT IS IT WITH IT SET TO .8?
WITITHEVULTAGE ORTROL NUW-EET AT .8

THE CURRENT THRU THE CURRENT CONTROL I. 24 MILLIAMPS.

Here the system must correctly instantiate two occurrences of "it".

The referent to the second "it" could be either CC or VC since these

are both controls.

>>GOODBYE
GOODBYE

28

22

Chapter 4

SEMANTIC GRAMMAR

INTRODUCTION

In Chapter 1 we described the requirements for a natural language

processor in a learning environment. Briefly, they are efficiency and

friendliness over the class of sentences which arise in a dialogue

situation. The major leverage points we have that allow us to satisfy

these requirements are (1) limited domain, (2) limited activities within

that domain, and (3) known conceptualizations of the domain. In other

words, we know the problem area, the type of problem the student is trying

to solve, and the way he should be thinking about the problem in order to

solve it. What we are then faced with is taking advantage of these

constraints in order to provide an effective communication channel.

Notice that all of theSe constraints relate to concepts underlying the

student's activities. In SOPHIE, the concepts include voltage, current,

parts, transistors, terminals, faults, particular parts (e.g. R9, Q5,

etc.), hypotheses, controls, settings of controls, and so on. The

(dependency) relationships between concepts include things like voltage can

be measured at terminals, parts can be faulted, controls can be set, etc.

The'student, in formulating a query or statement, is requesting information

or stating a belief about one of these relationships, e.g. "What is the

voltage at the collector of 05" or "I think R9 is open". It occurred to us

that the best way to characterize the statements used for this task was in

terms of the concepts themselves as opposed to the traditional syntactic

structures. The language can be described by a set of grammar rules which

characterize, for each concept or relationship, all of the ways of

expressing it in terms of other constituent concepts. For example, the

concept of a measurement requires a quantity to be measured and something

to measure it with respect to. A measurement is typically expressed by

giving the quantity followed by a preposition followed by the thing that

specifies where to'measure, e.g. "voltage across C2", "current thru D1",

2 9

23

n power dissipation of R9",

grammar rule:
1

etc. These phrasings are captured in the

<MEASUREMENT> := <MEASUREABLE/QUANTITY> <PREP> <PART>

The concept of a measurement can, in turn, be used as part of other

ooncepts, e.g. to request a measurement "What is the voltage across C2?";

or to check a measurement "Is the current thru D1 correct?". We will call

this type of grammar a "semantic grammar" because the relationships it

tries to characterize are semantic/conceptual as well as syntactic.

Semantic grammars have two advantages over traditional syntactic

grammars. They allow semantic constraints to be used to make predictions

during the parsing process, and they provide a useful characterization of

those sentences which the system should try, to handle. The predictive

aspect is important for four reasons. (1) It reduces the number of

alternatives which must be checked at a given time; (2) it reduces the

amount of syntactic (grammatical) ambiguity; (3) it allows recognition of

ellipsed or deleted phrases; and (4) it permits the parser to skip words

at controlled places in the input (i.e. it enables a reasonable

specification of control). These noints will be discussed in.detail in a

later section.

The characterization aspect is important for two reasons. (1) It

provides a handle on the problem of constructing a habitable sub-language.

The system knows how to deal with a particular set of tasks over a

particular set of objects. The sub-language can be partitioned by tasks to

accept all straightforward ways of expressing those tasks, but does not

need to worry about others. (2) It allows a reduction in the number of

sentences which must beaccepted by the language while still maintaining

habitability. There may be syntactic constructs which are used frequently

with one concept (task) but seldom with another. For example, relative

clauses may be useful in explainina the reasons for performing an

experimental test but are an awkward (though possible) way of requesting a

1 This is not actually a rule from the grammar but is merely intended to

3 0be suggestive.

24

'measurement. Hy separating the processing along semantic grounds, one may

gain errieieney by not having to accept the awkward phrasing.

Representation of Meaning

Since natural language communication is the transmission of concepts

via phrases, the "meaning" of a phrase is its correspondent in the

conceptual space. The.entities in SOPHIE's conceptual space are objects,

relationships between objects, and procedures for dealing with objects.

The meaning of a phrase can be a simple data object (e.g. "current

limiting transistor") or a complex data object (e.g. "C5 open", "Voltage

at node 1") . The meaning of a question is a Call to a procedural

specialist which knows how to determine the answer. The meaning of a

command is a call to a procedure which performs the specified action.
2

For

example, the procedural specialist DOFAULT knows how to fault the circuit

and is used to represent the meaning of commands to fault the circuit (e.g.

"Open R9", "Suppose 02 shorts and R9 opens")-. The concept (argument) that

DOFAULT needs in order to perform its task is an instance of the concept of

faults which specifies the particular changes to be made, e.g. "R9 being

open". These same concepts of particular faults also serve as arguments to

two other specialists: HYPTEST which determines the consistency of a fault

with respect to the present context, e.g. "Could R9 be open"; and

SEEFAULT which checks the actual status of the circuit, e.g. "Is R9

open?".

Result of the Parsing

Basing the grammar on conceptual entities allows the semantic

interpretation (determination of the concept underlying a phrase) to

proceed in parallel with the parsing. Since each of the nonterminal

categories in the grammar is based on a semantic unit, each grammar rule

2 Declarative statements are treated as reauests because the pragmatics of

the situation imply that the student is asking for verification of his
statement. For example, "I think 02 is shorted" is taken to be a reauest

to have the hypothesis "02 is shorted" critiqued.

2 5

can specify the semantic description of a phrase that it recognizes in much

the same way that a syntactic grammar specifies a syntactic description.

The construction portion of the rules is procedural so that each rule has

the freedom to decide how the semantic descriptions, returned by the

constituent items of that rule, are to be put together to form the correct

"meaning".

For example, the meaning of the phrase "05" is the data base object

Q5. The meaning of the phrase "the collector of Q5" is (COLLECTOR 05)

where COLLECTOR is a function which returns the data base item wIlich is the

collector of the given transistor. For a more complicated example,

consider the non-terminal <MEASUREMENT> shown in Figure 4.1. The goal for

this non-terminal is to capture all of the ways that a student can specify

a measurement (voltage across D3, output current, etc.). To specify a

measurement, there must be a quantity to be measured <MEAS/QUANT> (voltage,

current, resistance, power dissipation), and something to measure with

respect to (e.g. a part, <PART/SPEC>; a transistor junction, <JUNCTION>;

Figure 4.1-
A Semantic Grammar Rule

<MEASUREMENT> :::: output <MEAS/QUANT> [of '<TRANSFORMER>] !

<TRANSFORMER> <MEAS/QUANT> !

<MEAS/QUANT> between <NODE> and <NODE> !

<MEAS/QUANT> <PREP> <PART> !

<MEAS/OUANT> between output terminals !

<MEAS/QUANT> <PREP> <JUNCTION> !

<MEAS/QUANT> <PREP> <NODE> !

<JUNCTION/TYPE> <MEAS/QUANT>
of <TRANSISTOR/SPEC> !

<TRANSISTOR/TERM/TYPE> <MEAS/QUANT>
of <TRANSISTOR>

3 The rule is expressed in a BNF-like notation which is an abstraction of

the actual rule (see next section). Non-terminals are in capital letters
and enclosed in angle brackets. Terminal are in lower case. Brackets

enclose optional elements. Alternative right hand sides are separated by a

"!".

2

26

or ponsiblv a point in the circuit, <NOM). The rule for <MEA'SUREMENT>

exprwl:lo:; all or the ways that the student can give a measurable quantity

and also supply its required arguments. The structure which results from

<MEASUREMENT> is a function call tc the function MEASURE which supplies the

quantity being measured and other arguments specifying where to measure it.

Thus the meaning of the phrase "the voltage at the collector of Q5" is

(MEASURE VOLTAGE (COLLECTOR Q5)) which was generated from the control

structure:

measurement

meas/quant node

terminal

terminal/type part

Q5

voltage

collector

A careful examination of Figure 4.1 reveals that <MEASUREMENT> also

accepts "meaningless" phrases such as "the power dissipation of Node 4." In

addition, it accepts some meaningful phrases such as "the resistance

between Node 3 and Node 14" which SOPHIE does not calculate. This results

from generalizing together concepts which are not treated identically in

the surface structure. In this case voltage, current, resistance and power

dissipation were generalized to the concept of a measurable quantity.

Allowing the grammar to accept more statements and having the argument

checking done by the procedural specialists has th: advantaye of allowing

the semantic routines to provide the feedback as to why a sentence cannot

be interpreted or "understood". It also keeps the grammar from being

cluttered with special rules for blocking meaningless phrases. Carried to

the limit, the generalization strategy would return the grammar to being

"syntactic" again (e.g. all data objects are "noun phrases"). The trick

is to leave semantics in the grammar when it is beneficial to do so (i.e.

to stop_extraneous parsings early or tighten the range of a referent for an

c)
0 0

27

ellipsis or deletion). This is obviously a tas-opecific trade-off.
4

The relationship between a phrase and its meaning is usually

straightforward. However, it is not limited to simple embedding. Consider

the phrases "the base emitter of 05 shorted" and "the base of Q5 shorted to

the emitter". The thing which is "shorted" in both of these phrases is the

"base emitter junction of Q5." The rule which recognizes both of these

phrases, <PART/FAULT/SPEC>, can handle the first phrase by invoking its

constituent concepts of <JUNCTION> (base emitter of Q5) and <FAULT/TYPE>

(shorted) and combining their results. In the second phrase, however, it

must construct the proper junction from the separate occurrences of the two

terminals involved. Figure 4.2 gives the rules used to recognize these two

situations. The situations are distinguished by the occurrence of the

optional constituent in the second phrase. (As will be discussed later,

the rules are procedurally encoded which provides a natural way of building

separate semantic forms for the two cases.) Notice that the parser does

some paraphrasing, as the "meaning" of the two phrases is the same.

The discussion has been presented as if the concepts were defined a

priori hy the capabilities of the system. Actually, for the system to

remain at all habitable, the concepts are discovered in the interplay

between the statements that are made in the domain and the capabilities of

the system. When a particular English construct is difficult to handle, it

is probably an indication that the concept it is trying to express has not

Figure 4.2
Grammar Rules

<PART/FAULT/SPEC> := <FAULTABLE/THING> is <FAULT/TYPE>
[to <TRANSISTOR/TERMINAL/TYPE>]

<FAULTABLE/THING> := <JUNCTION> ! <TERMINAL> ! <PART>

<FAULT/TYPE> := open ! shorted

<TRANSISTOR/TERMINAL/TYPE> base ! emitter ! collector

4 Bohrow and Brown (1975) describe an interesting paradigm from which to

consider this trade-off.

28

been recormized properly by the system. In our example "the base of 05 is

ghorted to the emitter", the relationship between the phrase and its

meaning is awkward because the present concept of shorting requires a part

or a junction. The example is getting at a concept of shorting in which

any two terminals can be shorted together (e.g. "the positive terminal of

R9 is shorted to the anode of D6"). This is a viable conceptual view of

"shorting", but its implementation requires allowing arbitrary changes in

the topology of the circuit which is beyond the efficiency limitations of

SOPHIE's simulator. Thus, the system we were working with led us to define

the concept in too limited a way.

USE 01. SEMANTIC INFORMATION DURING PARSING

Prediction

Having described the notion of a semantic grammar, we now describe the

ways it allows semantic information to be used in the understanding

process. One use of semantic grammars is to predict the possible

alterlatives that mist be checked at'a given point. Consider for example

the phrase "the voltage at xxx" (e.g. "the voltage at the junction of the

current limiting seation and the voltage reference source"). After the

word "at4 is reached in the top-down, left-to-right parse, the grammar rule

corresponding to the concept "measurement" can predict very specifically,

the conceptual nature of "xxx", i.e. it must be a phrase which directly or

indirectly (e.g. the junction of the current limiting section and the

voltage reference source) specifies a location'(e.g. node, terminal, etc.)

in the circuit.

Semantic grammars also have the effect of reducing the amount of

grammatical ambiguity. In the phrase "the voltage at xxx", the

prepositional phrase "at xxx" will be associated with the noun "voltage"

without considering 'the potentially ambiguous parse which associates it

someplace higher in the tree.
) ro:P

,:))

2 9

Predictive information is also used to aid in the determination of

referenis for pronouns. If the above phrase were "the voltage at it", the

grammar Would he nble to restrict the class of possible referents to

locations. By taking advantage of the available sentence context to

predict the semantic class of possible referents, the referent

determination process is greatly simplified. For example:

Set the voltage control to .8?
lb What is the current thru R9?
lc What is it with it set tc .9?

In (1c), the grammar is able to recognize that the first "it" refers to a

measurement (that the student would like re-taken under slightly different

conditions). The grammar can also decide that the second "it" refers to

either a potentiometer or to the load resistance (i.e. one of those things

which can be set). The referent for the first "it" is the measurement

taken in (lb), "the current thru R9". The referent for the second "it" is

"the voltage control" which is an instance of a potentiometer. The context

mechanism which selects the referents will be discussed later.

Simple Deletion

The semantic grammar is also used to recognize simple deletions. The

grammar rule for each conceptual entity knows the nature of that entity's

constituent .concepts. When a rule cannot find a constituent concept, it

can either

i) fail (if the missing concept is considered to be obligatory in the

surface structure representation) or

ii) hypothesize that a deletion has occurred and continue.

For example, the concept of a TERMINAL has (as one of its realizations) the

constituent concepts of a TERMINAL-TYPE and a PART. When its grammar rule

only finds the phrase "the collector", it uses this information to posit

that a part has been deleted (i.e. TERMINAL-TYPE gets instantiated to "the

collector" but nothing gets instantiated to PART). The natural language

processor then uses the dependencies between the constituent concepts to

determine that the deleted PART must be a TRANSISTOR. The "meaning" of

36

30

thin phrase is then "the collector of some transistor". Which transistor

is determined when the meaning is evaluated in the present dialoFue

context. In particular, the semantic form returned is the function PREF

and the classes of possible referents; in our example the form would be

(COLLECTOR (PREF '(TRANSISTOR))).5 The operation of PREF will be disoussed

later.

Ellipsis

Another use of the semantic grammar allows the processor to recognize

elliptic utterances. These are utterances which do not express complete

thoughts (i.e. a completely specified question or command) but only give

differences between the intended thought and an earlier one.
6
For example,

2b, 2c and 2d are elliptic utterances.

/

(2a What is the voltage at Node 5?
(2b At Node 1?
(2c and Node 2?
(2d What about between nodes 7 and 8?

Ellipses can begin with introductory phrases such as "and" in 2c or "what

about" in 2d; however this is not required as can be seen in 2b. Part of

Figure 4.3

Ellipsis Rule

<ELLIPSIS> := [<ELLIPSIS/INTRODUCER>] <REQUEST/PIECE>
[<ELLIPSIS/INTRODUCER>] if <PART/FAULT/SPEC>

<REQUEST/PIECE> := [<PREP>] <NODE> !

[<PREP>] <PART> !

between <NODE> and <NODE> !

[<PREP>] <JUNCTION> !

etc.

5 The language LISP will be used in examples throughout this thesis. In

LISP, a function call is expressed in Cambridge-Polish notation: as a

parenthesized list of the function name followed by its arguments.

6 The standard use of the word "ellipsis" refers to any deletion. Rather

than invent a new word, we shall use the restricted meaning here.

3 7

31

the ellipsis rule is given in Figure 4.3. The grammar rule identifies

which concept or class of concepts are possible from the context available

in the elliptic utlerance.

While the parser is usually able to determine the intended concepts

from the context available in an elliptic utterance, this is not always the

case. Consider the following two sequences of statements.

RI) It& is the voltage at Node 5?

Mt is the output voltage if the load is 100?

In (3b), "10" refers to node 10, while in (Lib) it refers to a load of 10.

The problem this presents to the parser is that the concepts underlying

these two elliptic utterances have nothing in common except their surface

realizations. The parser, which operates from conceptual entities, does

not have a concept which includes both of these interpretations. One

solution would be to have the parser find all parses (concepts) and then

choose between them on the basis of context. Unfortunately, this has the

unacceptable property that time is ipent looking for more than one parse

for the large percentage of sentences in which it is unnecessary. A better

solution would be to allow structure among the concepts so that, the parser

would recopnize "10" as a member of the concept number, and then the

routines which find the referent would know that numbers can be either node

numbers or values. This type of recognition could profitably be performed

by a bottom-up approach to parsing. However, its adVantages over ,the

present scheme are not enough to justify the expense incurred by a

bottom-up parse finding all possible well-formed constituents. At present,

the parser assumes one interpretation and a message is printed to the

student indicating the assumed interpretation. If it is wrong, the student

must supply more context in his request. In fact, "10?" is taken as a load

specification and if the student meant the node he would have to use "at

10", "N10" or "Node 10". Later we will discuss the mechanism that

jetermines to which complete thought an ellipsis refers.

3 2

1i81NQ CSATEXT TO PETERgWREFERENTS

ammla anA Delet ions

Once the parser has determined the existence and class (or set of

classes) of a pronoun or deleted object, the context mechanism is invoked

to determine the proper referent. This mechanism has a history of student

interactions during the current session which contains, for each

interaction, the parse (meaning) of the student's statement and the

response calculated by the system. This history list provides the range of

possible referents and is searched in reverse order to find an object of

the proper semantic class (or one of the proper classes). To aid in the

search of the history list, the context mechanism knows how each of the

procedural specialists appearing in a parse uses its arguments. For

example, the specialist MEASURE has a first argument which must be a

quantity and a second argument which must be a part, a junction, a section,

a terminal or a node. Thus when the context mechanism is looking for a

referent which can .either be a PART or a JUNCTION, it will look at the

second argument of a call to MEASURE but not the first. Using the

information about the specialists, the context mechanism looks in the

present parse and then in the next most recent parse, etc. until an object

from one of the specified classes is found.

The significance of using the specialist to filter the search instead

of just keeping a list of previously mentioned objects is that it avoids

mis-interpretations due to object-concept ambiguity. As an example,

consider the following sequence from the sample dialogue in Chapter 3:

5) What is the current thru the CC when the VC is 1.0?
6) What is it when it is .8?

Sentence (5) will be recognized by the following rules from the semantic

grammar:

I

1 <REQUEST> := <SIMPLE/REQUEST> when <SETTING/CHANGE>
2 <SIMPLE/REQUEST> := what is <MEASUREMENT>
3 <MEASUREMENT> := <MEAS/QUANT> <PREP> <PART>
4 <SETTING/CHANGE> := <CONTROL> is <CONTROL/VALUE>
5 <CONTROL> := VC

3' 9

33

with a resulting semantic form of:

(RESETCONTHOL (STQ VC 1.0)
(MEASURE CURRENT CC))

RESETCONTROL is a function whose first argument specifies a change to one

of the controls and whose second argument consists of a form to be

evaluated in the resulting instrument context. STQ is used to change the

setting of the one of controls. The first argument to MEASURE gives the

quantity to be measured. The second specifies where it is to be measured.

To recognize sentence (6), the application of rules $2 and $5 are changed.

There is an alternative rule for <SIMPLE/REQUEST> which looks for those

anaphora which refer to a measurement. These phrases, such as "it", "that

result" or "the value", are recognized by the non-terminal

<MEASUREMENT/PRONOUN>. The alternative to $2 which would be used to parse

(6) is:

<SIMPLE/REQUEST> := what is <MEASUREMENT/PRONOUN>

The semantics of <MEASUREMENT/PRONOUN> indicate that an entire measurement

has been deleted. The alternative to rule $5:

<CONTROL> := it

recognizes "it" as an acceptable way to specify a control. The resulting

semantic form for sentence (6) is:

(RESETCONTROL (STQ (P,REF °(CONTROL)) .8)
(PREF (MEASUREMENT)))

The function PREF searches back through the context of previous semantic

forms to find the most recent mention of a member one of the classes. In

the above example, it will find the control VC tut not CC because the

character imposed on the arguments of MEASURE is that of a "part" not a

7 The character imposition as described is too strong. For example:

$1) What are the specs of Q5?
$2) What is the voltage at its emitter?

The character imposed on Q5 in $1 is that of a part which means that tDe

context mechanism invoked by $2 which is looking for a transistor won t

find it. This example is handled by relaxing the restrictions the

procedural specialist in $1.puts on its argument (i.e. it can be either a

PART or a TRANSISTOR). In spite of this weakness in the argument

limitation approach, we have found it to be a useful means of reducing the

search time and avoiding some obvious mis-interpretations.

40

34

"control".
7

The presently recognized classes for deletions are PART,

TRANSISTOR, FAULT, _CONTROL, POT, SWITCH, DIODE, MEASUREMENT and QUANTITY.

(The members of the classes are derived from the semantic network

associated with a circuit.)

Referents for Ellipses

If the problem of pronoun resolution is looked upon as finding a

previously mentioned object for a currently specified use, the problem of

ellipsis can be thought of as finding a previously mentioned use for a

currently specified object. For example,

(7) What is the base current of Q4?
(8) In Q5?

The given object is "Q5" and the earlier function is "base current". For a

given elliptic phrase, the semantic grammar identifies the concept (or

class of concepts) involved. In (7), since Q5 is recognized by the

non-terminal <TRANSISTOR/SPEC>, the class would be TRANSISTOR. The context

mechanism then searches the history list for a specialist in a previous

parse which accepted the given class as an argument. When one is found,

the new phrase is substituted into the proper argument position and the

substituted meaning is used as the meaning of the ellipsis.

Limitations to the Context Mechanism

The method of semantic classification to determine reference is very

efficient and works well over our domain. It definitely does not solve all

the problems of reference. Charniak has pointed out the substantial

problems of reference over a domain as seemingly simple as children's

stories (1972). One of his examples demonstrates how much world knowledge

may be required to determine a referent (1972 p. 7).

'Janet and Penny went to the store to get presents for Jack. Janet

said "I will get Jack a top" "Don't get Jack a top" said Penny. "He

has a top. He will make you take it back."

Charniak argues that to understand to which of the two tops "it" refers,

41

35

requires knowing about presents, stores and what they will take back, etc.

Even in domains where it may be possible to capture all of the necessary

knowledge, classification may still lead to ambiguities. For example,

consider the following:

9) What is the voltage at Node 5 if the load is 100?
10) Node 6?
11) 7?

In (11) the user means Node 7. In (10), he has reinforced the use of

ellipsis as referring to node number. (For example, leaving out (10),

sentence (11) is much more awkward.) On the other hand if (11) had been

"1000" or if (10) had been "10?", things would be more problematic. When

(11) is "1000", we can infer that he means a load of 1000 because there is

no node 1000. If (10) had been "10?", there would be genuine ambiguity

slightly favoring the interpretation as a load because that was the last

number mentioned. The major limitation of the current technique, which

must be overcome to tackle significantly more complicated domains, is its

inability to return more than one possible referent. That is, it considers

each one at a time until it finds one which is satisfactory. It cannot

hold off on one to see if there are any better. At present it has no

metric to measure "better". The work involved in developing such a

technique has not been justified by our experience.

RELATIONSHIP TO OTHER SEMANTIC SYSTEMS

The relationship between semantic grammars. and purely semantic systems

(Quillian 1969) (Schank et al 1975) and to some extent Wilks (1973a, 1973b)

parallels the distinction between procedural and declarative knowledge.

The relationship that exists between nodes in the semantic network

structure contains little or no information about how these relationships

might be expressed in language. An interpretation mechanism must decide

where the information is useful. While this is, in some sense, more

general (the same information can be used for several purposes given the

proper interpreters), it is necessarily less efficient. (Wilks has

extracted some expressive information, primarily concept order, into his

42
36

templates.) A semantic grammar, on the other hand, is written for the

process of recognizing concepts as they are expressed in the surface

structures.

FUZZINESS

Having the grammar centered around semantic categories allows the

parser to be sloppy about the actual words it finds in the statement. This

sense of having a concept in mind, and being willing to ignore words to

find it, is the essence of keyword parsing schemes. It is effective in

those cases where the words that have been skipped are either redundant or

specify gradations of an idea,which are not distinguished by the system.

For example, in the sentence Insert a very hard fault", "very" would be

ignored which is effective because the system does not have any further

structure over the.class of hard faults. In the sentence, "What is the

voltage across resistor R8?" resistor can be ignored because it is implied

by

One advantage that a procedural encoding of the grammar (discussed

later) has over pattern matching schemes in the implementation of fuzziness

is its ability to control exactly where words can be ignored. This

provides the ability to blend pattern matching parsing of those concepts

which 'are amenable to it with the structural parsing required' by more

complex concepts. The amount of fuzziness (i.e. how many (if any) words

in a row can be ignored) is controlled in two ways. First, whenever a

grammar rule is invoked, the calling rule has the option of limiting the

number of words that can be skipped. Second, each rule can decide which of

its constituent pieces or words are required and how tightly controlled the

search for them should be. In SOPHIE, the normal mode of operation of the

parser is tight in the beginning of a sentence but more fuzzy after it has

8 The first of these examples could be handled by making "very" a noise
word (i.e. deleting it from all sentences). Resistor however is not a
noiSe word in all cases (e.g. "What is the current through the current
sensing resistor?") and hence'cannot be deleted.

4 3
3 7

made sense out of something.

Fuzziness has two other advantages worth mentioning briefly. It

reduces the size of the dictionary because all known noise words don't have

to be included. In those cases where the skipped words are meaningful, the

mis-understanding may provide some clues to the user which allow him to

restate his query.

PREPROCESSING

Before a statement is parsed, three operations are performed on the

statement by a pre-processor. The first expands abbreviations, deletes

known noise words, and canonicalizes similar words to a common form. The

second operation is a cursory spelling correction. The third operation is

a reduction of compound words.

Spelling correction is attempted on any word of the input string which

the system does not recognize. The spelling correction algorithm
9

takes

the (possibly) misspelled word and a list of correctly spelled words and

determines which (if any) of the correct words is close to the-misspelled

word (using a metric determined by number of transpositions, doubled

letters, dropped letters, etc.). During the initial preprocessing, the

list of correct words is very small (approximately a dozen) and is limited

to very commonly misspelled words and/or words which are critical to the

understanding of a sentence. The list is kept small so that the time spent

attempting spelling correction, prior to attempting a parse, is kept to a

minimum. Remember that the parser has the ability to ignore words in the

input string so we do not want to spend a lot of time correcting a word

which won't be needed in understanding the statement. But notice that

certain words can be critical 'to the correct understanding of a statement.

For example, suppose that the phrase "the base emitter current of Q3" 'was

incorrectly typed as "the bse emitter current of Q3". If "bse" were not

9 The spelling correction routines are provided by INTERLISP and were

developed by Teitelman for use in the DWIM facility (Teitelman 1969, 1974).

4 4

38

recopnized as being "base" the parser would ignore it and (mis-)understand

the phrase as "the emitter current of Q3", a perfectly acceptable but much

different concept.
10

Because of this problem, words like "base", which if

ignored have been found to lead to misunderstandings, are considered

critical and their spelling is corrected before any parse is attempted.

Note that there are a lot of words (e.g. "capacitor", "replace", "open",

etc.) which if misspelled would prevent the parser fr.om making sense of the

statement but would not lead to any mis-understandings. These words are

therefore not considered to be critical and would be corrected in the

second attempt at spelling correction which is done after a statement fails

to parse.

Compound words are single concepts which appear in the surface

structure as a fixed series of more than one word. Their reduction is very

important to the efficient operation of the parser. For example, in the

question "what is the voltage range switch setting?", "voltage range

switch" is rewritten as the single item "VR". If not rewritten, "voltage"

would be mistaken as the beginning of a measurement (as in "what is the

voltage at N4") and an attempt would have to be made to parse "range switch

setting" as a place to measure voltage. Of course after this failed, the

correct parse dan still be found, but reducing compound words helps to

avoid backtracking. In addition, reduction of compound words simplifies

the grammar xules.by allowing them to work with larger conceptual units.

In this sense, the preprocessing can be viewed as a preliminary bottom-up

parse that recognizes local, multi-word concepts.

IMPLEMENTATION

Once the dependencies between semantic concepts have been expressed in

the BNF form, each rule in the grammar is encoded (by hand) as a LISP

procedure. This encoding process imparts to the grammar a top-down control

10 To minimize the consequences of such mis-interpretation, the system
always responds with an answer which indicates what question it is
answering, rather than just giving the numeric answer.

4 5

3 9

structure, specifies the order of application of the various alternatives

of each rule, and defines the process of pattern matching each rule. The

resulting collection of LISP functions constitutes a goal-oriented parser

in a fashion similar to SHRDLU (Winograd 1973) (but without the

backtracking ability of PROGRAMMAR).

As has been argued elsewhere (Woods 1970) (Winograd 1973), encoding

the grammars as procedures (i.e. including the notion of process in the

grammar) has advantages over using traditional phrase structure grammar

representations. Four of these advantages are:

i) the ability to collapse common parts of a grammar rule while still
maintaining the perspicuity of the grammar.

ii) the
SENDR)

ability to collapse similar rules by passing arguments (as with

.

iii) the ease of interfacing other types of knowledge (in SOPHIE,

primarily the semantic network) into the parsing process.

iv) the ability to build and save arbitrary structures during the

11
parsing process.

In addition to the advantages it shares with other procedural

representations, the LISP encoding has the computational advantage of being

compilable directly into efficient machine code. The LISP implementation

is efficient because the notion of process it contains (one process doing

recursive descent) is close to that supported by physical machines, while

those of ATNs and PROGRAMMAR are non-deterministic and hence not directly

translatable into present architecture. (In Chapter 6 we shall see how it

is possible to minimize this mismatch.) Appendix B describes the details of

the LISP implementation and provides an example of a rule from the grammar.

In terms of efficiency, the LISP implementation of the semantic

grammar succeeds admirably. The grammar written in INTERLISP (Teitelman

74) can be block compiled. Using this technique, the complete parser takes

about 5K of storage and parses a typical student statement consisting of 8

to 12 words in around 150 milliseconds! Appendix C preSents parses and

timings of some of the sentences used in the dialogue.

11 This ability is sometimes provided by allowing augments on phrase

structure rules.
46
40

Chapter 5

LIMITATIONS OF THE LISP IMPLEMENTATION.

Using the techniques described in Chapter 4, a natural language

front-end was constructed capable of supporting the dialogue presented in

Chapter 3 and requiring less than 200 milliseconds bpu time per question.

In addition, these same techniques were used to build a front-end for

NLS-SCHOLAR (Grignetti et al 1974) (Grignetti et al 1975) (built by C.

Hausmann), and an interface to an experimental laboratory for exploring

mathematics using attribute blocks (Brown et al 1975). In the construction '

of these varying systems, the notion of semantic grammar was found to be '

useful. The LISP impaementation, however, was found to be a bit unwieldy.

While expressing the grammar as programs has benefits in the area of

efficiency and allows complete freedom to explore new extensions, the

technique is lacking in perspicuity. The lack of perspicuity has three

major drawbacks. (1) One is the difficulty encountered when trying to

modify or extend the grammar. (2) The second is the problem of trying to

communicate the extent of the grammar to either a user or a colleague. (3)

The third is the problem of trying to re-implement the grammar on a machine

which does not support LISP. These difficulties have been partially

overcome by using a second, parallel representation of the grammar in a

BNF-like specification language. (This is the representation which we have

been presenting throughout this report.) This, however, requires supporting

two different representations of the same information and does not really

solve problems (1) or (3). The solution to this problem is a better

formalism for expressing (and thinking about) semantic grammars.

The ATN formalism was seriously considered at the beginnina of the

SOPHIE project, but rejected as being too slow. In the course of

developing the LISP grammar, it became clear that the primary reason for a

significant different in speed between an ATN grammar and a LISP one is due

to the fact that processing the ATN is an interpreted process whereas LISP

is compilable. The next chapter describes an ATN compiling system which

was developed to speed up the ATN approach.. In this chapter we will

4 7,
41

discuss the advantages we hoped to gain by using the ATN formalism.

The advantages of using the ATN formalism fall into three general

areas: (1) conciseness, (2) conceptual effectiveness and (3) available

facilities. By conciseness we mean that writing a grammar as an ATN takes

less characters than LISP. The ATN formalism gains conciseness by not

requiring the'specification of details in the parsing process at the same

level required in LISP. Most of these differences stem from the fact that

the ATN assumes it has a machine whose operations are designed for parsing,

while LISP assumes it has a lambda calculus machine. For example, a lambda

calculus machine assumes a function has one value. A function call to look

for an occurrence at a non-terminal while parsing (in ATN formalism a PUSH)

must return at least two values: the structure of the constituent found

and the place in the input where the parsing stopped. A good deal of

complexity is added to the LISP rules to maintain the free variable which

has to be introduced to return the structure of the constituent. Other

examples of unnecessary details include the binding of local variables and

the specification of control structure as ANDs, ORs and CONDs.

The conciseness of the ATN results in a grammar which is easier to

change, easier to write and debug, and easier to understand (and hence to

communicate). We realize that conciseness does not necessarily lead to

these results (APL being a prime example in computer languages, mathematics

in general being another), however this is not a problem. The

correspondence between the grammar rules in.LISP and ATN is very close.

The concepts which were expressed as LISP code can be expressed in nearly

the same way as ATNs but in fewer symbols.

The second area of improvement deals with conceptual effectiveness.

Conceptual effectiveness is, informally, the degree to which a language

encourages one to think about problems in the right:way. One example of

conceptual effectiveness can be seen by considering the implementation of

1

See (Bruce 1975) for a discussion of case systems).

48
4 2

case structured rules.
1

In a typical case structure rule, the verb

expresses the function or relation name and the subject, object and

prepositional phrases express the arguments of the function or relation.

Let us assume for the purpose of this discussion that we are looking at

four different cases (agent, location, means, and time) of the verb GO

(e.g. John went to the store by car at 10 o'clock). In a phrase structure

rule oriented formalism one would be encouraged to write:

<statement> := <actor> <action/verb> <location> <means> <time>

Since the last three cases can appear in any order, one must also write 5

other rules:

<statement> := <actor> <action/verb> <location> <time> <means>

In an ATN one is inclined towards:

pUSH actor

PUSH location

PUSH t frac

PUSH means

SH oct/ver

POP

which expresses more clearly the case structure of the rule. There is no

reason why in the LISP version of the grammar one couldn't write loops

which are exactly analogous to the ATN (the ATN compiler after all produces

such code!) but a rule oriented formalism does not encourage one to think

this way. An alternative rule implementation is:

<action>:= <actor><action/verb><actionl>
<actionl>:= <action1><temporal>
<action1>:= <action1><location>
<actionl>:= <action1><means>

this'is easier (shorter) to write but has the disadvantage of being

left-recursive. To implement it, one is forced to write the LISP

equivalent of the ATN which creates a difference between the rule

representation and the actual implementation. This method also has the

4 9

4 3

disadvantage of introducing an unmotivated non-terminal.

Another conceptual advantage of the ATN framework is that it

encourages the postponing of decisions about a sentence until a

differential point is reached, thereby allowing potentially different paths

to stay together. In the rule oriented SOPHIE grammar there are top level

rules for <set>, a command to change one of the control settings and

<modify>, a command to fault the instrument in some way. Sentence (1) is a

<set> and sentence (2) is a <modify>.

(1) Suppose the current control is high.
(2) Suppose the current control is shorted.

The two parse paths for these sentences should be the same for the first

five words, but they are separated immediately by the rules <set> and

(modify>.
2 An ATN encourages structuring the grammar so that the decision

between <set> and <modify> is postponed so that the paths remain together.

It could be argued that the fact that this example occurred in SOPHIE's

grammar is a complaint against top-down parsing or semantic grammars or

just our particular instantiation of a semantic grammar. We suspect the

latter but argue that rule representations encourages this type of

behavior.

Another conceptual aid provided by ATNs is their method of handling

ambiguity. Our LISP implementation uses a recursive descent technique

(which can alternatively be viewed as allowing only one process). This

requires that any decision between two choices be made correctly because

.there is no way to come back and try out the other choice after the

decision is made. At choice points, a rule can, of course, "look ahead"

and gain information on which to base the decision (similar to the

"wait-and-see" strategy used in (Marcus 1975)) but there is no way to back

2The degree to which the separation of paths is a problem can be greatly

reduced using a preprocessing "compilation" stage <Klovstad 1977> which
(among other things) collapses rules with the same initial parts. In our

example, however this may not work since the phrase "the current control"

may be parsed as the non-terminal <CONTROL> in (1) and as the non-terminal

<PART> in (2). Of course this would be a poor choice of grammar rules, and

no one aware of sentences (1) and (2) would handle it this way. The

problem is recognizing where situations such as this occur.

5 0

4 4

up and remake a decision once it has returned.

The effects of this can be most easily seen by considering the lexical

aspects of the parsing. A prepass collapses compound words, expands

abbreviations, etc. This allows the grammar to be much simpler because it

can look for units like "voitage/control" instead of have to decode the

noun phrase "voltage control". Unfortunately without the ability to handle

ambiguity, this rewriting can only be done on words which have no other

possible meaning. So for example, when the grammar is extended to handle:

(3) Does the voltage control the current limiting section?

the compound "voltage/control" would have to be removed from the prepass

rules and included in the grammar. This reduces the amount of bottom-up

processing which can be done and results in a slower parse. It also makes

compound rules difficult to write because all possible uses of the

individual words must be considered to avoid errors. Another example is

the use of the letter "C" as an abbreviation. Depending on context, it

could possibly mean either current, collector or capacitor. Without

allowing ambiguity in the input, it could not be allowed as an abbreviation

unless recognized explicitly by the grammar.

The third general area in which ATNs have an advantage is in the

available facilities to deal with complex linguistic phenomena. While our

grammar has not exparded to the point of requiring any of the facilities

yet, th6 availability of such facilities cannot be ignored as an argument

favoring one approach over another. A primary example is the general

mechanism for dealing with coordination in English described in (Woods

1973a).

4 5

Chapter 6

A COMPILING SYSTEM FOR AUGMENTED TRANSITION NETWORKS
*

INTRODUCTION

The augmented transition Tletwork (ATN) formalism was developed as a

conceptually and computtlonally efficient representation for natural

language grammars, and tas been used successfully .in several natural

language processP!!g systems (Woods et al 1972), (Simmond 1973), and (Bees

1975). Its advntages over other formalisms have been argued elsewilcce

(Woods 1969, 1970) and can be characterized as (1) perspicuity (2)

generative power, (3) efficiency of representation, (4) flexibility for

experimentation and (5) efficiency of operation.

In all of the above natural language systems, the ATN grammar has been

viewed as a data structure which is interpreted by a program (called a

parser). The LUNAR parser (Woods 1973a) provides a good example of such an

interpretive program. This paper describes a system which views the

augmented transition network as a virtual machine description and compiles

into a program executable on a physical machine, thereby eliminating the

"parser")

The major significance of compiling an ATN is the dramatic reduction

in the amount of time required to process a sentence. The reduction is

sufficient to challenge the view that a general scheme for natural language

processing is too impractical to be seriously considered in the design of

information management, CAI, and numerous other kinds of computer systems.

Results indicate that the programs produced by the compiler parse sentences

about 10 times faster than the LUNAR parser (using the LUNAR grammar,(Woods

et al 1972)). Also significant is that the ATN compiling system provides a

testbed to explore the trade-off between the benefits of features in the

abstract ATN machine and their implementation on a particular physical

machine.

1 This is also the viewpoint taken by Kaplan (1973) and Kay (1973), who

have developed a somewhat different ATN compiler and with whom we have

shared ideas in the course of this work.

*This chapter is a revised version of an earlier paper written with William

Woods and presented at the International Conferences on Computational

Linguistics, Ottawa, Canada, 1976. 5 2

AUGMENJED TRANSITION NETWORKS

Some years aRo, Chomsky (1957) introduced the notion that the

processes of language generation and language recognition could be viewed

in terms of a machine. One of the simplest of such models (machines) is

the finite state machine. This machine starts off in its initial state

looking at the first symbol (or word) of its input sentence and then moves

from state to state as it gobbles up the remaining input symbols. The

sentence is accepted if the machine stops in one of its final states after

having processed the entire input string; it is rejected otherwise. A

convenient way of representing a finite state machine is as a transition

graph, in which the states correspond to the nodes of the graph and the

transitions between states correspond to its arcs. Each arc is labelled

with a symbol whose appearance in the input can cause the given transition.

In an augmented transition network the notion of a transition graph

has been modified in three ways. One is the addition of a recursion

mechanism which allows the labels on the arcs to be non-terminal symbols

which themselves correspond to networks. The second is the addition of

arbitrary conditions on the arcs which must be satisfied in order for an

arc to be followed. The third is the inclusion of a set of structure

building actions on the arcs, together with a set of registers for holding

partially built structures.2 Figure 6.1 is a specification of a language

for representing augmented transition networks. The specification is given

in the form of an extended context free grammar in which alternative ways

of forminR a constituent are represented on separate lines and the symbol

+ is used to indicate arbitrarily repeatable constituents.
3 The

non-terminal symbols are lower case Enalish descriptions enclosed in angle

2 This discussion follows closely a similar discussion in Woods (1970) to
which the reader is referred. If the reader is familiar with the ATN
formalism he/she may wish to skip to the section "Developments to the ATN
Formalism".

3 "+" is used to mean 0 or more occurrences. While the accepted usage of
is 1 or more, the accepted symbol for 0 or more, "*", has not been used

to avoid confusion with the use of the symbol * in the ATN formalism.

5 3
47

brackets. All other symbols except "+" are terminals. Non-terminals not

given in Figure 6.1 have names which should be self-explanatory.

FIGURE 6.1
A Language for Representing ATNs

<transition network> := (<arc set> <arc set>+)
<arc set> (<state> <arc>+)

I

<arc> := CAT <category name> <test> <action>+ <term act>)
WRD <word> <test> <action>+ <term act>)
PUSH <state> <test> <action>+ <term act>)
TST <arbitrary label> <test> <action>+ <term act>)

POP <form> <test>)
VIR <constituent name> <test> <action>+ <term act>)
(JUMP <state> <test> <action>+)

<action> := SETR <register> <form>)
SENDR <register> <form>)
LIFTR <register> <form>)
HOLD <constituent name> <form>)
SETF <feature> <form>)

<term act> :: (TO <state>)
<form> := (GETR <register>)

LEX
*

GETF <form> <feature>)
BUILDQ <fragment> <register>+)
LIST <form>+)
APPEND <form> <form>)
QUOTE <arbitrary structure>)

The first element of each arc is a word indicating the type of arc.

For CAT, WRD and PUSH arcs, the arc type together with the second element

correspond to the label on an arc of a stafe transition graph. The third

element is an additional test. A CAT arc can be followed if the current

input symbol is a member of the lexical category named on the arc (and if

the test on the arc is satisfied). A PUSH arc causes a recursive

invocation of a lower level network beginning at the state indicated (if

the test is satisfied). The WRD arc can be followed if the current input

symbol is the word named on the arc (and if the test is satisfied). The

TST arc can be followed if the test is satisfied (the label is ignored).

The VIR arc (virtual arc) can be followed if a constituent of the named

type has been placed on the hold list by a previous HOLD action (and the

constituent satisfies the test). In all of these arcs, the actions are

structure building actions and the terminal action specifies the state to

which control-is passed as a result of the transition. After CAT, WRD and

4 8

TST arcs, the input is advanced; after VIR and PUSH arcs it is not. The

JUMP arc can be followed whenever its test is satisfied; control being

passed to the state' specified in the second element of the arc without

advancing the input. The POP arc indicates the conditions under which the

state is to be considered a final state and the form of the constituent to

be returned.

The actions, forms and tests on an arc may be arbitrary functions of

the register contents. Figure 6.1 presents a useful set which illustrates

major features of the ATN. The first three actions specified in Figure 6.1

cause the contents of the indicated register to be set to the value of the

indicated form. SETR causey this to be done at the current level of

computation, SENDR at the next lower level of embedding (so that

information can be sent down during a PUSH) and LIFTR at the next higher

leVel of computation (so that additional information can be returned to

higher levels). The HOLD action places a form on the HOLD list to be used

at a later place in the computation tiy a VIR arc. SETF provides a means of

settinR a feature of the constituent being built.

GETR is a function whose value is the contents of the named register.

LEX is a form whose value is the current input symbol. * is a form whose

value depends on the context of its use: (1) in the actions of a CAT arc

the value of * is the root form of the current input word; (2) in the

actions of a PUSH arc, it is the value of the lower computation; and (3)

in the actions following a VIR arc, the value of it is the constituent

removed from the HOLD list. GETF is a function which determines the value

of a specified feature of the indicated form (which is usually *). BUILDQ

is a general structure building form which places the values of the given

registers into a specified tree fragment. Specifically, it replaces each

occurrence of + in the tree fragment with the contents of one of the

registers (the first register replacing the first occurrence of +, the

second register the second, etc.). In addition BUILD() replaces

occurrences of * by the value of the form *. The remaining three forms

make a list out of the specified arguments (LIST), append two lists

5 5

4 9

together to make a single list (APPEND) and produce as a value the

(unevaluated) argument form (QUOTE). A sample augmented transition network

is given in Appendix D.

Developments to the ATN Formalism

A new version of any system affords an opportunity for redesign,

allowing one both to overcome noticed shortcomings and to build in handles

for possible future developments. In this section we will describe the

differences which have evolved between the ATN formalism described in

Woods' original paper (1970) and that used by the compiling system.

Several of the conventions were developed before work on the compiler was

begun*and we shall note the first occurrence of each. This discussion is

intended to bring these modifications together in one place,

The modifications were relatively minor and indicate the strength of

the ATN formalism as a language for expressing grammars. The changes made

were with the intention of aiding the grammar writer in building more

structured grammars. One change was the addition of "feature" registers.

.

Many tests of grammaticality rely on feature information associated with

structured constituents: for example, the test of person-number agreement

requires feature information from both the subject noun phrase and the

verb. In the original formalism, features were only recognized as being

associated with words the structure associated with constituents had to

have feature information built into it. This caused two undesirable

results: tests which used the features had to look inside structures to

find information and the job of changing structures was made fairly

difficult. Feature registers provide the means to separate the

information-saving role from the structure-saving role, resulting in

cleaner, more efficient grammars.

Another difference is the inclusion of the JUMP arc type and the

removal of the JUMP termination action.
4 The JUMP termination action in the

4

1

The JUMP arc was originally included in the LUNAR system (Woods et al

972).

5 6

50

original formalism allowed an arc to be taken without advancinR the input.

Since POP, PUSH and VIR arcs never advance the input, to decide whether or

not an arc advanced the input required knowledge of both the arc type and

termination action. The introduction of the JUMP arc (which is equivalent

to a TST arc with a JUMP termination action in the old format) means that

the input advancement is a function of the arc type alone. This is a minor

conceptual improvement which simplifies programs which use the grammar to

crate for example, cross references or "grammar indexes" (Bates 1975).

5
The third difference comes from extending WRD arcs to check for

either: (1) a given single word; (2) an explicit list of words, thereby

subsuming the MEM Arc; or (3) a list of words which is the value of a

given variable. The latter feature is mainly useful as a simple method of

exploring new categories without modifying the dictionary.

THE GENERAL NOTION OF ATN COMPILATION

The "compiling" of an augmented transition network grammar refers to

the . process of translating the ATN into machine runnable language

instructions. The ATN is a description of "what sentences the machine

should accept" while the compiled ATN must additionally be a description of

"how the machine should accept them". The compiling process requires

decisions about characteristics of the parsing process which are left

unspecified by the ATN formalism. The additional decisions needed by the

ATN compiler fall roughly into two classes. The first is what constitutes

a configuration of the ATN machine. A configuration is the amount of

information needed to completely characterize the status of the machine at

the moment in time on one of its computation paths during the processing of

5 This extension of WRD arcs was developed in the BBN speech system (Bates

1975). .

6 One of the characteristics of the ATN is that the machines specified can
be non-deterministic. This means that from a given configuration, there
may be more than one possible next configuration (more than one of the arcs
leaving a state can be followed). Since any implementation of an ATN
machine on a serial computer will not be able to follow these paths

simultaneously, it must have a mechanism for remembering alternative
possible configurations.

f-r

51

a sentence.
6 For example, a Configuration of a simple finite-state network

consists of only the name of the state of the machine and input string

remaining to be parsed. A configuration for the ATN used in the LUNAR

system (Woods et al 1972) needs a state, a string pointer, a recursion

stack, registers, a hold list and a path. The second kind of decision

unspecified by the ATN formalism is the control structure that the ATN

machine is to have. That is, in what order should the alternative paths

through the grammar be tried, e.g. should the search strategy be

depth-first or breadth-first. These details must be added to the details

specified in the ATN in order to define a machine (program) in a runnable

computer language.

Once the details about the structure of the configuration have been

7
decided upon, the compiler can translate each arc in the ATN grammar into

statements in the object language which (when executed) test the conditions

on that arc and if successful will carry out the desired changes to the

configuration in the compiled machine. Once a control structure has been

gpecified, the compiler can put the code from the arcs together in a way

wnich manifests that control structure. By changing the details of these'

decisions the compiler can generate, from a single ATN, many different

machines all of which will give the same parses for the same sentences but

whose internal structure and efficiency are quite different.
8

Areas of Optimization

Since the primary reason for compiling an otherwise interpreted

process is speed, care has been taken to isolate those areas of the process

which can be optimized. There are three general areas in which the ATN

machines can be optimized independent of the particular computer

7 Decisions about internal details are made either explicitly as a

declaration to the compiler or implicitly by technical license of the

designer of the compiler. This will be discussed further later.

8 Those readers familiar with LISP may find it useful to refer to Appendix

D which contains a simple ATN grammar together with annotated examples of

the programs which were compiled from it under different specifications.

5 8

52

implementation. One concerns the amount of information which must be saved

in a configuration (an active state of the processing of a 'sentence by the

ATN).
9The information required in a configuration to implement the ATN as

described 'earlier in this chapter includes (1) the state, (2) the input,

(3) the list of untried arcs, (4) the stack of higher level arcs which are

waiting for completion of this level of the computation, (5) a list of

registers and their contents, (6) a list of features and.their contents and

(7) a hold list. If, for example, a particular ATN grammar does not use

the hold list (i.e. contains no VIR arcs), or if this facility is not

needed for a particular application of the grammar, the hold list need not

be includel in the configuration. Other possible ATN mechanisms like

"weight" information (see Woods (1973a) or Bates (1975)) require additional

information to be associated with a configuration. If most configurations

have the same weight, it is possible to implement this feature so that it

is not part of every configuration (e.g. via hash links (Bobrow 1975)).

The less information a configuration requires, the less storage it uses and

the less time it takes to create.

The AIN machine can also be optimized with respect to the number of

configurations which must be created. If the view that making an arc

transition creates a new configuration is taken literally, then each arc

would be compiled into code which if taken creates two new configurations.

One would be created to continue at the state at the other end of the arc,

and another one would be needed to remember the remaining arcs of the

present state. In most cases, however, the current configuration does not

need to be saved, allowing one or the other of these two new configurations

to be made by destructively modifying the old one. In a depth-first

strategy, the arc can be compiled so that it changes the curmnt

configuration after creating a new alternative one to examine the other

arcs. In a breadth-first strategy, the arc can be translated to create a

new configuration to continue processing at its tail, and the current

configuration can be changed to examine the other arcs leaving the current

9 In this discussion, we will mean by configuration the data structure
which contains the information necessary to represent a state in the
virtual machine. Thus the creation and modification of configurations are

data structure operations. 5 9

5 3

state.

The third major area of optimization deals with taking advantage of

features of the target language to produce code which runs efficiently on a

physical machine (assuming the target lauuage runs efficiently on a

physical machine). For example, in most object languages, an arc can be

represented by a sequence of statements in a program associated with a

label identifying it. If the arc succeeds, it can GO to the first arc of

the next state. If it fails, it can "fall through" to the next arc leaving

the state. In languages which allow the direct use of accumulators, it may

be possible to set aside accumulators for those parts of the configuration

which are accessed most often and thereby reduce the time spent accessing

the configuration.

GRAMMAR COMPILING SYSTEM

Having described the general notion of ATN compilation, we now

consider the construction of a system to perform such c:ompilations. We

will describe a general compiling system which will take an ATN grammar

plus user specifications of desired features, and produce an optimal

compiled ATN machine. The ceneral structure of the compiling system is

shown in Figure 6.2, It consists of the following pieces:

1) An ATN grammar - provided by the user.

2) A set of user arc actions - the function definiti.ons for arc actions
which are not part of the basic ATN formalism.

3) Grammar declarations a set of declarFtions to the grammar compiler

which Specify the control structure and features of the ATN formalism
that this grammar usco and tell the compiler how to compile the user

arc actions in the grammar. These declarations all.ow the grammar
compiler to optimize the program produced from the user s grammar.

4) The grammar compiler - a program which takes the user's ATN grammar

and grammar declarations and produces a LISP program. This LISP
program will be referned to as the "object" codc of the grammar.

5) The lexical routines - includes the dictionary-, ,dictionary retrieval

routines, lexical analysis routines and the substitution and
compound word testing routines. It may also include routines to

correct spelling mistakes or recognize domain depr,ndent words such as

30014.

6 0

54

USER
ARC

ACTIONS

AT N
RUNTIME

ROUTI NES

CGRAMMAR COMPILER

AT N OBJECT
CODE

AT N
GRAMMAR

1ATN COMPILATION
DECLARATIONS

Sentence
ATN

RUNTIME
ENVIRONMENT

OBJECT LANGUAGE
ENVIRONMENT

(INTERLISP)

LEXICAL
ROUTINES

AT N
DEBUGGING
PACKAGE

FIGURE 6.2

(::(I ATN

MACHINE

Overview of the ATN Compiling System

61

55

Parse (s)

6) The runtime,,ATN functions - the functions which perform the actionp

and tests described in the ATN formalism (e.g. SETR, GETF, etc.) and

which maintain the configurations.

7) The debugging package - a set of functions useful for tracing and

debugging the grammar object code.

These pieces are used in the following manner: The ATN grammar (1) and the

grammar declarations (3) are input to the grammar compiler (4) which

produces the ATN grammar object code. The user's arc actions (2), the

lexical routines (5), the runtime ATN functions (6), and the debugging

package (7) are loaded together to create a runtime environment for the

grammar object code. The grammar object code is then loaded into the

runtime environment, which results in an ATN machine (i.e. a program which

takes sentences as inputs and produces parses as outputs).

The central issue in the compiling system is the form of the object

code produced by the grammar compiler.. Once the form of the object code

has been decided, the tasks of generating it and developing a runtime

environment for it become straightforward. For this reason we will

describe the ATN object code in some detail.

A VERSION OF THE GRAMMAR COMPILING SYSTEM

As a first step in building the general compiling system, a version

was written which produced ATN machines with a particular set of features.

Since then, the first version has been extended to allow choices in a

number of areas, but the general implementation has not yet been completed.

In this section we shall describe this first version of the ATN compiling

system and the class of machines it builds. The first version will provide

a concrete basis from which we can consider changes and extensions.

Features of the ATN machines

The first ATN compiler was designed to produce machines in INTERLISP
10

which had all of the facilities of the LUNAR parser except the

10 This object language was chosen partially because the LUNAR parser is

written in INTERLISP and many of the lexical routines and arc actions could

be borrowed. 62

56

well-formed substring table and SYSCONJ facility (Woods et al 1972). In

addition to the standard arc types (CAT, WRD, TST, JUMP, PUSH, POP, and

VIR) and arc :lotions, these facilities include RESUME, SUSPEND and ABORT

actions; lexir,al alternatives and the accessing of registers from higher

levels. The control strategy compiled into the ATN machinR is the same as

that normally used by th6 LUNAR parser, searching the paths through the

grammar in a depth-first manner. As will be seen, the actual task of

compiling an ATN is fairly straightforward once one knows the form the

oompiled ATN will have and the run-time environment in which it resides.

For this reason, 1 larger portion f this section will con.otrate on the

result of the ATN oompiler rather than on the compiler itself. Before we

describe the structure of resulting ATN machines, we shall describe in some

detail, decisions in three areas which determine aspects of the ATN machine

and its run-time environment4 These areas are: lexical analysis,

configuration make-up and control structure.

Lexical Preprocessing

In most implementations of ATN parsers, some amount of processing is

done before the input is passed through the grammar. This processing

includes the operations of dictionary look-up, morphological analysis, and

substitution and compound word checks.
11

in the LUNAR parser, this analysis

is done as the parser "needs" the next word in the input and the

ambiguities which arise from any or all of these operations are handled by

allowing the lexical processor to create alternative configurations. In

the compiled implementation, the lexical operations are done during a

prepass. To capture some of the ambiguities, the input is converted into a

chart rtpresentation (Kay 1964). For example the phrase "United States Air

Force" would result in the chart structure given in Figure 6.3 (assuming

there were compound rules for United States and United States Air Force).

In Figure 6.3, the circles represent nodes of the chart and the arrows

11 Substitutions allow a word to be replaced by another word or series of

word*.:, (e.g. "can't" replaced by "can not"). Compound rules allow a
series of words to be replaced by a single word (e.g. "United Stated Air

Force" replaced by "United/States/Air/Force").

6 3
57

represent edges between them, Ambiguities, which are represented in the

chart as more than one edge leaving a node, result only from possible

substitutions and compound words. Alternative interpretations of a word as

different categories are all stored on the same edge, which preserves the

ordering of arcs coming out of a state with respect to alternative

categories of a word. (Multiple interpretations of a word under the same

category will be discussed later.)

Figure 6.3
Example of an input chart

UNITED/STATES/AIR/FORCE

UNITED/STATEs

UNITED STATES AIR FORCE

There are two motivations for changing the input string into a chart.

One is that it recognizes the ambiguities before parsing begins. This

removes the burden of lexical processing from the machine and allows the

machine to be independent of any particular lexical analysis scheme.

Creating the chart also means that any unknown words are identified before

any time is spent processing the sentence. The other motivation for using

the chart is that it may later be extended to include well-formed

constituents as well as terminals (i.e. it could subsume the role of the

well-formed substring table). This would allow bottom-up parsing keyed off

lexical items and permit experimentation with combinations of bottom-up and

top-down parsing. In fact the substitution and compound word mechanisms

presently allow bottom-up parsing, but it is not very interesting because

the resulting constituents must be terminal symbols.
12

12 Since the distinction between terminals and non-terminals is maintained

in the grammar by distinguishing between CAT and PUSH arcs, one way to

overcome this limitation is to combine CAT arcs with PUSH arc9. This new

arc type would be defined as "look for an x and if one isn t found, PUSH

for one".

6 4

5 P

Confirurations

r-- montioned earlier, the information required to completely

characterize a state of the syntactic processing is called a configuration.

A configuration for the class of machines generated by the initial

implementation has the following parts:

CONFIGURATION number: a number unique to a configuration which is
used to identify it, e.g. on alternative configuration lists, in
traces or in paths.

STATE: the 6'tate of the grammar currently being examined. In a
compiled grammar this is the label (index) of the code compiled from
some particular arc of a state. That is, in addition to specifying
the state in the ATN, it also indicates which arc of that state is
under consideration.

NODE: a pointer into the input. The input is viewed as a set of
edges because the lexical prepass can create alternative word
substitutions or compound'words.

STACK: a pointer to higher levels of ATN's which PUSHed to the
current level.

REGS: a pointer to the list of registers available to this
configuration. The registers are stored in a "forked stack" format
which allows maximal sharing between configurations (Woods 1973a).

FEATS: a pointer to a list of feature registers.

HOLD: the hold list of as yet unassigned constituents.

A good deal of efficiency can be gained or lost creating and accessing

configurations. To allow experimentation with different implementations,

the code produced by the ATN compiler is written in terms of data accessing

functions. In one of the possible implementations, a configuration is

represented as a 3 word block out of an array (see Figure 6.4).

Figure 6.4
A Configuration

1

arc/state node' .

!

.

I stack registers

I

.

features hold Usti
,

65

5 9

Control Structure

One of the reasons that the compiled grammar is more efficient than an

interpreted one is that the decision about what arc and edge to try next

can be fixed at compile time and integrated intO the grammar code. For our

first version of the compiler, we chose a depth-first Control structure.

The reasons for this are: (1) depth first search takes advantage of the

natural way provided by the ATN to order the arcs (i.e. the order in which

they are given on the state) and for some applications of a natural

language front-end, the first parse may be all that is required; (2) by

using a well-formed sUbstring table, a lot of the work done during an

unsuccessful depth-first attempt can be used by later attempts; (3) a

depth-first strategy is conceptually simple and easy to produce code for;

and (4) while many systems have allowed a areat variety of control

structures, none has been shown to work consistently better than others.

Using a depth-first control structure, the arcs are tried one at a

time in the order specified in the grammar. The first arc which succeeds

from each state is taken and an alternative configuration which will try

the remaining arcs in the state is pushed, onto the alternatives stack. If

a configuration blocks (none of the arcs leaving its state succeed), the

top configuration on the alternatives stack is started. If there is any

ambiauity in the input chart, the first lexical edge is applied to all of

the arcs coming out of the state before any of the other lexical edges is

tried. Note that the edges of the input chart are not .1:led to represent

alternative lexical interpretations of a word but are us0 to represent

compound words and substitution expansions. The different lexical

categories of a word are grouped together on the same edge and the desired

category is chosen by a CAT arc. This method has the advantaae that a WRD

arc succeeds only once instead of once for each interpretation. It also

provides a natural wav for the Frammar to order the interpretations of a

word as say an N or a V. If the N interpretation is more likely at this

13
If the user really does want the word itself to favor one

interpretation over another, the substitution mechanism can be used to

create an alternative edge in the chart.

6 6
60

state the CAT N are is ordered 'ahead of the CAT V arc.
13

It is possible that a word has more than one interpretation in the

same category. For example "saw" can be either present tense as in "saw

off the right corner" or past tense as in "I saw the man in the park".

This type of ambiguity is handled by allowing the CAT arc to create an

alternative configuration (called a CATALT) which will try the other

possible interpretations of the word within the same category. This CATALT

will be attempted before the alternative which tries the other arcs in the

state.

An Overview of an 1111 Machine

The task of the grammar compiler is to transform an ATN grammar into a

runnable program. This program realizes one of the machines specified by

the grammar, parsing sentences in a way dictated by the grammar under a

particular control structure. Some of the basic operations of this machine

are choosing an alternative configuration from the list of those pending,

activating the configuration, and exploring arcs which leave the state of

the active configuration. This section is meant to familiarize the reader

with the form of a compiled ATN, by analyzing it in terms of these basic

operations.

Figure 6.5 presents a flow chart of the logical operations Of the ATN

machine. The abstraction does not directly reflect the program structure

of the compiled ATN (;; will become apparent in the next section which

examines an actual machine); however, it should act as a "useful myth"

toward understanding the operations required of the object code. When

called, the machine combines its input (a chart created by the leXical

prepass described earlier) with a STATE which is the starting state of the

grammar (e.g. S/) to create the initial configuration. (The other parts

of the configuration are enpty.) The next step is to set Up the

configuration (i.e. put the machine into the configuration). This

operation may be viewed as getting a configuration "ready to run." When the

configuration is started, it tests the arc condition on the first arc. If

6 7
61

AIN MACHINE

CRCATE INITIAL
CONFIGURATION

INI'UT THE CHART OF A SENTENCE

SET UP
CONFIGURATION

YES YES

TRUE TEST ARC
CONDITION

ANOTHER
LEXICAL

EDGE

LTERNATIVE
ONFIGURATIO

FALSE

ANOTHER
ARC

PUSH YES
ARC

SAVE CURRENT LEVEL
ON STACK,
CREATE LOWER LEVEL
CONFIGURATION

POP

ARC

TOP
LEVEL

NO RESTORE HIGHER
LEVEL FROM STACK

NO

--- YES
(RETURN

OUTPUT:
PARSE

INPUT

EMPTY

CAT

ARC

PERFORM ARC
ACTIONS

ANOTHER
INTERPRETATION

AS CAT

NO

CREATE AND SAVE
CONFIGURATION
FOR ALTERNATIVE
INTEPRETATION

ADVANCE STATE
AND LEXICAL NODE

FIGURE 6.5

Logical Control Flow of a Depth First ATN Machine

the condition fails, the next arc is tried. If there are . no other arcs,

the next lexical interpretation (i.e. next edge of the input chart) is

tried. tr there are no other edges, an alternative configuration must be

selected. In the depth-first scheme, the list of alternatives i51

maintained as a stack and the top configuration' is used. If the

alternatives list is empty, the input failed to parse.

If the condition on the arc succeeds, an alternative configuration is

created which will try the remaining arcs of the present state, and special

actions are performed dependent upon the arc type. For PUSH arcs, the

current level of processing is saved in a configuration and stored on the

stack. A configuration is then created beginning at the state being pushed

fpr. For POP arcs, the configuration on the top of the stack is restored.

If the stack is empty and the input chart is empty, the sentence has

successfully parsed. If the input is not empty, this path has failed and

a.n_alternatiYe is 1.ried, For CAT arcs, if the chart edge currently under'

consideration has an alternative interpretation under the same category, a

configuration is saved which will try the other interpretation. Regardless

of the arc type, the actions on the arc being taken are performed and the

next configuration is created by changin.g tbe state and/or advancing the

chart. We realize that this description leaves many critical details

unspecified. These details are addressed in the next section.

Anatomy of an ATN machine

14
A compiled ATN has the following form:

(LAMBDA (ACF)
(PROG (special variable, etc.)
SPREAD-ACF code to set up ACF, the current configuration)

GO EVAL-ARC)
NEXTLEX if (another lex?) then (advance NODE) (GO EVAL-ARC))
DETOUR if (another alt?) then (ACF4-alt) (GO SPREAD-ACF))

else (RETURN failure))
EVAL-ARC (BRANCH STATE arclabell arclabel2 arclabeln)
arclabel1 arc1 code
arclabel2 arc2 code
444
arclabeln arclabeln code))

14 For this implementation, INTERLISR is used as the object language for

the compiler. All of the examples given here will be dn CLISP (Teitelman
1975), an ALGOL-like dialect of INTERLISP. In LISP, a function call is

expressed in Cambridge-Polish notation: as a parenthesized list of the
function 'name followed by its arguments.

69
63

It is a LISP function of one argument, ACF,. which is the Active

ConFiguration.
15

The code by the label SPREAD-ACF sets the proper variables

(by variable assignments from the fields of ACF) to establish an active

configuration, ending with a jump to EVAL-ARC. For this implementation,

the parts of the active configuration are stored in the variables STATE,

NODE, STACK, REGS, FEATS and HOLD. The BRANCH statement associated with

EVAL-ARC will cause the code associated with the STATE of the active

configuration to be executed (i.e. by passing control to the label

indicated by the value of STATE). The arc code portion of the machine will

be described in the next section. The code by the label NEXTLEX checks to

see if there is another lexical alternative in the current configuration

(i.e. another edge on NODE). f If there is, it changes the NODE of

configuration to the next interpretation and jumps to EVAL-ARC. The code

by the label DETOUR picks an alternative from the list of alternatives and

jUmps to SPREAD-ACF to establish it as the active configuration. If there

are no more alternatives, the machine returns failure. The pieces of the

ATN which we have described so far are independent of the. particular ATN

grammar being compiled. The bulk of the ATN machine consists of the

separate pieces of code which have been compiled, one piece from each arc

in the grammar. The following section describes this code.

CODE FOR THE ARCS

An arc in the grammar has three parts: (1) conditions which must be

satisfied in order for-the arc to be taken; (2) actions which are to be

performed if the arc is taken; and (3) a termination action which moves to

a new state in the grammar.
16

code compiled from each arc first

'checks the conditions required by c. arc. If the conditions are met, an

alternative configuration is created to try the remaining arcs in the state

and the code corresponding to the actions on the arc is executed. The last

15 The initial configuration (which has a STATE which is the starting
state of the grammar (e.g. S/) and a NODE which is the first node of the
input chart) is created before this function is invoked.

16 This code is similar in many ways to General Syntactic Processor code

of Ronald Kaplan (1973) and Martin Kay (1973).

7 0
64

action of the arc will be the termination action which jumps to the first

arc of the next state.

If the tests for an arc are not met, the next arc needs to be tried

(or if there are no more arcs, an alternative needs to be chosen). This is

implemented by allowing control to "fall through" to the next arc. At the

end of the code for all of the arcs in a state, control is sent to the

label DETOUR which starts an alternative.
17

The form of code produced from each arc in the grammar is determined

by its arc type. In this implementation we have allowed for seven

different types: WRD, CAT, JUMP, VIR, 'TST, PUSH, and POP. (As mentioned

earlier, the MEM arc type used in the LUNAR grammar has been subsumed under

a more comprehensive WRD arc.) In the following sections, we will describe

briefly the code produced from WRD arcs, CAT arcs, PUSH arcs, and POP arcs.

The code produced for the TST arcs, JUMP arcs and VIR arcs is similar to

WRD arcs (differing only in the test which is implied by the arc type and

whether or not the terminating action advances the input) . Each section is

prefaced with the given arc type as it appears in an uncompil0 ATN

grammar, 30 that its relationship to the resulting compiled code is made

clear.
18

WRD arcs

(WRD <word> <tst> <action>+ (TO <state>))

The WRD arc provides a means of testing for a particular word. <Word>

can be (1) a word, (2) a list of words (in which case this is similar to

the LUNAR MEM arc), or (3) a variable whose value is a list of words (in

the current implementation, a variable is distinguished from a word by

requirina that it begins with a "/", e.g. /MONTH/). Depending on the

17 If there are lexical alternatives, control will be sent to the label
NEXTLEX which will advance to the next lexical alternative.

18
The examples have been taken from the ATN grammar in Appendix D.

Appendix D 'also presents the complete program which results from its
compilation.

7 1

65

instantiation of <word>, the test condition of the WRD arc compiles into

either (1) ARCWRD, (2) ARCMEM or (3) ARCMEME, all of which check the word

on the current edge of the input chart. This implied test is then embedded

within the explicit test <tst> and made the test condition of a conditional

statement. The consequence clause of the conditional statement is made up

of the compiled versions of <action>+ and (TO <state)). For example, the

first arc of the grammar state Q4/ in the sample grammar from Appendix D:

[Q4/
(WRD BY (GETR AGFLAG) (SETR AGFLAG NIL) (TO Q7/))]

compiles into:

Q4/ (if (ARCWRD BY) and (GETR AGFLAG)
then ALTARC Q4/-2)

1

SETR AGFLAG NIL)
DOTO Q7/)
GO Q7/))

Q4/-2
al

If the word test (ARCWRD BY) and the arc test (GETR AGFLAG) are both

successful, the function ALTARC sets up an alternative configuration to try

the other arcs of this state (beginning at Q4/
19

-2) and the actions on the

arc are executed. After the setting of the AGFLAG register, the function

DOTO changes the state o the next state Q7/ and advances the input. The

function GO jumps to the label Q7/ which begins applying the first arc of

the state Q7/. If either of the tests on this arc fail, control "falls

through" to the code for the second arc Q4/-2.

CAT Arcs

(CAT <category) <test> <actions>+ (TO <state)))

19 ALTARC is the primary means of creating alternative configurations. It

creates, and saves on the alternatives list, a copy of the current

configuration which has had its arc/state changed. The new arc/state is

the argument passed to ALTARC. The two functions, ALTCAT and NEXTLEXALT,

which also create configurations will be discussed later.

7 2

6 6

The CAT arc type provides a means of restricting an arc to words of a-

particular syntactic category. <Category> is the syntactic category being

tested for. In this implementation, the set of syntictic classes to which

a word belongs is stored with its dictionary entry and is included in the

chart by the prepass. In addition the dictionary includes an ASSOC list of

lexical features of the input word under this interpretation.
20

The code produced for a CAT arc is complicated by the need to generate

CATALTs (alternative interpretations of a word in the same category). In

particular, CATALTs require creating a second arc/state (label) for each

CAT arc which will process all but the first interpretation. This second

arc/state is the same as the first CAT arc without the action which creates

the next arc alternative (so that the next arcs will not be tried again for

each of the other interpretations). .For example the first arc from state

VP/ in the Appendix D grammar:

[VP/
(CAT V (GETF * UNTENSED) (SETR V *) (TO Q3/)]

compiles as:

VP/

VP/-1-CONT

(NOT (ARCCAT V)) then (GO VP/-2))
ALTARC VP/-2)
ALTCAT VP/-1-CAT)

1

if (NOT (GETF * 'UNTENSED)) then (GO DETOUR))
SETR V *)
DOTO Q3/)
GO Q3/)

VP/-2

VP/-1-CAT (ARCCAT V)
(GO VP/-1-CONT)

The interpretation of the code is as follows. If the current word is not a

V, immediately try (the code compiled from) the next arc (VP/-2).

Otherwise create an alternative configuration which will try the next arc

(ALTARC). ALTCAT checks for other interpretations of the input word as a V

20
The LUNAR grammar also supports a different notion called features

which is a list of atoms contained in the dictionary entry for each word
under the property FEATURES and which is global to all interpretations.

7 3

67

and if there are any, creates an alternative with an arc/state which redoes

only this arc (VP/-1-CAT).
21 If the test on the arc (GETF * -UNTENSPD) is

not true, DETOUR will start the next alternative which will be eithr the

next interpretation (the configuration created by ALICAT) if there is on::

or the next arc (the one created by ALTARC),If the tcst on the are is true,

the arc actions are executed, the input is advanced (DOTO), and the next

state is processed (GO Q3/).

The code beginning at the label VP/-1-CAT performs an ARCCAT test

(which sets up *) and rejoins the first arc immediately after the ALTARC

(label VP/-1-CONT). By rejoining here, the alternative which tries the

next arc in this state does not get created a second time; however, the

alternative to try the third (or more) alternative interpretations does get

created (as it should).

PUSH Arcs

(PUSH <state> <test> <action>+ (TO <state>))

The PUSH arc provides a way of recursively invoking the grammar to

find a complex constituent. The <test> condition-is checked before the

PUSH. The PUSH arc gets compiled into two arc/states: one which performs

the pre-actions
22 and does the PUSH; and one which is returned to after

the POP by the lower network, which does the arc actions and moves to the

next state. For example the third arc of state Q3/.:

21 The phenomenon of multiple interpretations within the same category is

rare and has only occurred in applications for verbs (e.g. "put" which can

be either present tense as in "put the book on the table", or a past

participle "the book was put on the table"). (In much more general
applications it may arise in noun plurals such as "axes" or "bases.") Since

its implementation so greatly complicates the code generated for a CAT arc
(without it, a CAT arc would be similar to the WRD arc described earlier),

the compiler allows the user to specify which categories can have multiple

interpretations. For example, a CAT ADJ arc may be compiled to execute

more efficiently than a CAT V arc.

22 SENDRs, SUSPENDs and any actions which are embedded in "!" as in 0
(F00)) will be done before the push.

68 .

[Q3/ ...
(PUSH NP/ (GETR V))

SETR OBJ *)
TO Q4/))]

compiles into:

Q3/-3 (if (TRANS (GETR V))
then Q3/-4)

DOPUSH NP/ Q3/-3-PUSH)
GO NP/))

Q3/-4 I

Q3/-3-PUSH 'OBJ *)
DOPTO Q4/)
GO Q4/)

If the test (TRANS (GETR V)) is not true, the next arc is tried

immediately. If the test is true, ALTARC creates and saves an alternative

configuration to try the other arcs beginning at Q3/-4. The function

DOPUSH performs the operations necessary to recursively call the lower

level. These consist of saving the currently active configuration on the

stack (after changing its state to restart at the return arc/state

Q3/-3-PUSH), and then changing the state to the lower level (NP/) and

changing the registers and features to those being sent down. FollOwing

the DOPUSH, the lower state is started immediately (GO NP/). The code by

Q3/-3-PU5H is the return arc/state which will be executed when (if) the

lower network (NP/) finishes. The structure returned by the lower network,

*, is saved in the OBJ register. The function DOPTO changes the state but

does not advance the input. The GO begins processing at the state Q4/.

POP Arcs

(POP <form> <test>)

The POP arc identifies a final state in a network and specifies the

structure that is to be returned. The state NP/3:

[NP/3
(POP (BUILDQ (NP (NPR +)) NPR) T)]

compiles into:

NP/3 (NEXTLEXALT NP/3)
(DOPOP (BUILDQ (NP (NPR +)) NPR))
(GO EVAL-ARC)

69

The function DOPOP re-establishes the next higher level by restoring the

state and the registers from the configuration on the top of the stack.

DOPOP also sets * to the proper structure. After DOPOP has established the

higher level configuration, EVAL-ARC will activate it.

There are two other.points exemplified by the code for NP/3. One is

that since the test on the arc is always true, there is no need for a

conditional statement. The other is that since the arc is the last arc in

the state, it does not need to create an alternative to examine the

remaining arcs. What the last arc does need to do however, is to check to

see if there is an alternative lexical interpretation (e.g. try "united

states" as two words after the compound "United/States" fails as in 'the

sentence "He united states to create a smaller grammar"). This is done by

the function NEXTLEXALT. If there is another lexical alternative (another

edge on the input chart) NEXTLEXALT creates an alternative configuration

which has the next lexical alternative as an input .and has an arc/state

which restarts it at the first arc of 'the current grammar state (NP/3).

Special Actions

Certain of the actions allowed by the ATN formalism affect the form of

the comp::led code. These are the actions RESUME and SUSPEND which change

the standard control flow. SUSPEND provides a means of setting the weight

(likelihood of success) of a configuration. When the weight of a

configuration is changed, it temporarily stops in favor of other

configurations which have a better weight. This is done by putting the

current configuration and its weight on a list of suspended configurations

and then aborting. The alternative configuration with the best weight

(possibly this one again) will then be chosen. RESUME allows a lower level

network which has already popped to resume processing input words from a

later place in the input (for conveniently handling certain extraposition

phenomena in natural English). This is implemented by allowing RESUME to

7 6

70

simulate a PUSH. Both SUSPEND and RESUME require the creation of a new

state (label) in the object program.

Compiling the Compiled ATN

The result of compiling an ATN is a program in a computer language;

in our examples, a LISP program. This program can be executed by a LISP

interpreter or, more likely (since the primary reason to compile the ATN is

efficiency), compiled by a LISP compiler to produce machine level code.

Major gains in efficiency can be made through judicious use of compiler

-,cros and hand coding of oft used functions.
23 For example, the arc action

BUILDQ which fills a fixed template with specified register contents can be

expanded via macros at compile time to be direct calls on the primitive

functions CONS, LIST, etc. Another good example is the use of machine

language macros for the functions which access the parts of a configuration

(see Figure 6.4). The indexing address mode of the hardware can then be

used to access any part of a configuration in a single machine instruction.

Implementing the machine language definitions as macros does not effect the

debugging facilities which can use the normal LISP definitions. While

techniques at this level are machine dependent (and therefore interfere

with the transferability of the program), the functional nature of the

object code delimits the range of this dependence.

Results

For purposes of comparing the ATN compiling system with the LUNAR

parser, the ATN grammar from LUNAR was com using the'compiling system.

The control structure of the LUNAR parser and the compiled version are the

same (depth-first) so that traces could be compared to ensure that both

systems were performing.the same task. The ATN machine was then block

compiled (Teitelman 1975) and used to parse some of the example sentences

-y
taken from Woods (1973b) and the appendix of Woods et al (1972). (In this

23
The examples presented deal with the INTERLISP compiler, however,

sim5.1ar compiling features are available in many other versions of LISP.

7 7
71

r

initial version of the. ATN compiler, the LUNAR conjunction-handling

facility SYSCONJ is not supported. However, we plan to include it, or some

modified version of it, in future implementations.) All of the parses were,

run on a PDP KA10 which has a cycle time of approximately two microseponds.

The times listed for the compiled version are "lexical prepass" +

"parsing". As can be seen, the compiled version required less than

one-tenth the time of the LUNAR version.

1) Give me all analyses of S10046

LUNAR - 3.05 seconds
Compiled - .045 + .200 = .245 seconds

2) How many breccias contain olivine?

LUNAR - 1.65 seconds
Compiled - .050 + .125 = .175 seconds

3) What are they?

LUNAR - 2.25 seconds
Compiled - .030 + .150 = .180 seconds

4) List modal plag analysis for lunar samples that contain olivine.

LUNAR - 2.9 seconds
Compiled - .065 + .200 = .265 seconds

5) What is the average composition of olivine

LUNAR - 3.1 seconds
Compiled - .040 + .235 = .275 seconds

6) References on tritium prod:action

LUNAR - 1.6 seconds
Compiled - .030 + .095 = .125 seconds

7) How many breccias do not contain Europium

LUNAR - 2.5 seconds
Compiled - .075 + .165 = .240 seconds

EXTENSIONS TO THE INITIAL VERSION

Since the initial implementation of the ATN compiler, many of the

features of the ATN have been made optional. That is, the user,can specify

the features he needs and the compiler will produce programs optimized to

7 8

72

those features. This allows a user to build a natural language front-end

incrementally, adding new features as his subset of the language becomes

sophisticated enough to use them. If the user wants to start with a

finite-state, keyword ATN, the compiler will produce a very fa'st finite

state machine. If his ATN develops to the point that he needs recursive

networks, alternative lexical interpretations and a mechanism for

remembering well-formed constituents, the compiler will produce a machine

which ha3 these capabilities. The point is that the user can work through

the entire development in the same formalism using "upward compatible"

grammars and has the opportunity to evaluate the benefits and the costs of

each new addition. This also provides a metric when trying to decide

between two different methods of handling the same construct. In the next

section, we will. describe one of the major options which has been

implemented, and in the subsequent section describe optional control

structures which have not been implemented. Appendix E provides a complete

specification of the options which are available in the present

implementation.

The Well-Formed Substring Table

The Well-Formed Substring Table (WFST) allows some of the work

performed by the first attempt to parse a sentence to be re-used by the

later attempts. It does this by keeping track of the complex constituents

which are found as a result of PUSH arcs. Care,must be taken to ensure

that a PUSH which uses the result of an earlier PUSH has the same context.

Por this reason, the entries (called buckets) in the WFST are keyed on the

following information: (1) the state that is pushed for; (2) the lexical

edge that is being considered;
24

(3) the list of SENDR registers; and (4)

24 If the state and edge were the only keys necessary, the WEST would be

enuivalent to the chart as used by Kay (1964). Kaplan has extended the
chart in GSP to include SENDRs and hold lists (1975). The LUNAR parser
WEST (Woods 1973a) used all of these keys (except that the input string was
used instead of the edge as the LUNAR parser did not use a chart).

More collapsing of processing is possible but only with considerably
greater complexity. Note that the sending of features is not permitted.
It could be supported by making the list of sent features another key in

the well-formed substring table.

7 9

73

the hold list.
25

Each bucket in the WFST contains two pieces of

information: the open configurations (OPENCFs) which have pushed and are

waiting for a constituent to be popped, and the well-formed substrings

(WFSs) resulting from POPs.

A bucket is created by the first push arc whose configuration keys to

it. When this occurs, a new configuration is set up to start processing at

the lower level. Whenever another configuration keys to the same bucket,

(i.e..--pushes for the same constituent at the same place in the input with

the same hold list and SENDR registers), it attaches itself to the list of

OPENCFs in the bucket and creates POPped configurations for each WFS

already stored there. Whenever a configuration POPs to a bucket (this will

be discussed further later), it creates a well-formed substring (WPS),

attaches it to the list of WFSs and creates configurations which start each

of the OPENCFS using the found WFSs. In this way each configuration which

is waiting for a POP gets started once and only once for each alternative

POP. In a strictly depth-first situation, the configurations which arrive

after the first one would not need to attach themselves because all

possible alternatives at the lower level will have been exhausted.

However, SUSPEND actions can result it, later POPs which must know all of

the configurations to continue.

An OPENCF has the following pertinent information: the configuration

state which is the label of (the code compiled from) the arc actions and

termination action of the PUSH arc, a stack, a list of registers, a list of

features, and a HOLD list. A WFS has: the structure being POPped together

with its features, a node which indicates how much of the input was

accepted during the PUSH, a list of lifted registers, a list of lifted

features and a hold list. An OPENCF and a WFS are joined together to get a

continuation configuration in the following manner. The state of the new

confi6uration is the state specified by the OPENCF which continues the

parse at the higher level. The node is taken from the WFS which indicates

where in the input parsing it is to continue. The stack is taken from the

OPENCF. The register and feature lists are the result of merging the

8

74

lifte.d registers and featuces in the WFS with the registers and features

from the OPENCF. The hold list is the result of removing from the HOLD

list of the OPENCF, all of the elements which are not on the HOLD list of

the WFS (i.e. all of the elements which were removed by VIR arcs in the

lower level).

The well-formed substring table determines the structure of the stack.

Without a WFST, the stack is a list of configurations the first of which is

waiting to be continued as soon this level pops. With a WFST, the stack is

a pointer to a bucket in the WFST which contains all of the configurations

which a're waiting for this level. Notice that a bucket in the WFST is a

refinement of a "state set" in the Earley parsing algorithm (1970). In

particular, it utilizes the same collapsing of the stack which allows

parsing of left recursive Frammars.

The accessing of information in registers at a higher level (to

determine, for example, 'the top-level verb during the recognition of a

relative clause) is not allowed .using this scheme of a well-formed

substring table because there may be multiPle higher levels (OPENCFs), soMe

of which haven't been created yet. Equivalent effects in the grammar can

be generated by using SENDR's which will create different buckets for

differing information in the sent registers.

It is useful to examine the differences which result in the ATN

machine as a result of the well-formed substring table. The only

difference in the object code is a change in where control is transferred

after a PUSH arc. Without the WFST, control is passed directly to the

first arc of the lower state (see the section on code for PUSH arcs) . With

the WFST, an ear'lIer PUSH midy have already started a configuration at the

lower level so control is Fassed to the place which starts the next

configuration. The major difference between the WFST and the non-WFST

versions is in the runtime functions DOPUSH and DOPOP which actually

maintain the WFST and perform the operations described above.

81

75

Alternative Control Strategies

Some of the most exciting developments in the study of syntactic

processing have been in the area of alternative control strategies. Kaplan

(1974) has done an excellent job of factoring out the scheduling aspects of

the control component of a syntactic processor from its analytic aspects

while Marcus (1975) is exploring general heuristics to guide the scheduling

process. While the present implementation only produces programs which do

depth-first search, the compilation process in no way requires this

particular control strategy and alternative strategies are planned. One

control strategy which looks very interesting has been named "burst" mode.

To process a particular state, all of its arcs are applied and the ones

which could be taken generate configurations. This list of configurations

is then passed to a (possibly user provided) selection function which picks

one or more to be continued while the rest are placed on the alternative

list. This would provide the user with dynamic control over the selection

of configurations and permit explorations of various strategies for

semantically and pragmatically guided parsing.

"0 2

Chapter 7

SEMANTIC ATN

For the reasons discussed in Chapter 5, the SOPHIE semantic grammar

was re-written in the ATN formalism. We wish to stress here that the

re-writing was a process of changing form only. The content of the grammar

remained the same. Since a large part of the knowledge encoded by the

Rrammar continues to be semantic in nature, we call the rasulting grammar a

semantic ATN". Figure 7.1 preSents the graphic ATN representation of a

semantic grammar non-terminal. This is the same rule presented in Figure

4.1 which recognizes the phrases for specifying measurements in a circuit.

The actions and structure building operations on the arcs (which are not

shown in Figure 7.1) save the recognized constituents and construct the

proper interpretation when sufficient information has been collected.

Appendix G provides more examples of the semantic ATN used in SOPHIE.

Figure 7.2 presents a simple example of how the recognition of

.anaphoric deletions can be captured in ATN formalism. The network in

FiRure 7.2 encodes the straightforward way of expressing a terminal of a

part in the circuit (e.g. the base of Q5,.the anode of it, the collector.)

By the state TERMINAL/TYPE, both the determiner and the terminal type (e.g.

base, anode) nave been found. The.first arc leaving TERMINAL/TYPE accepts

the preposition which begins the specification of the part. The second arc

(JUMP arc) corresponds to hypothesizing that the specification of the part

has been deleted (as in "The base is open"). The action on the arc builds

a place holding form identifying the deletion and specifying (from

information associated with the terminal type which was found) the classes

of objects which can fill the deletion. The method for determining the

referent of the deletion remains the same one described in Chapter 4.

83

77

Figure 7.2

An ATN which recognizes deletio,

The SOPHIE semantic ATN is then compiled using the general

compiling system described in Chapter 6. The SOPHIE grammar provides the

compiling system with a good contrast to th?. 1TTAP grammar as it does not,

use many of the potential features. In a bench mark, of sorts,

was available from the LISP implementation of grammar which could be

used to determine the computational cost of using the ATN formalism.

There wer two modifications made to the compiling system to improve

its efficiency for the SOPHIE application. In the SOPHIE grammar, a large

number of the arcs check for the occurrence of particular words. When

there is more than one arc leaving a state, the ATN formalism requires that

all of these arcs be tried, even if more than one of these is a WRD arc and

an earlier WRD arc has succeeded. This is especially costly since the

taking of an arc requires the creation of a configuration to try the

remaininp arcs. In those cases when it is known that none of the other

arcs can succeed, this should be avoided. As a solution to this problem,

the GROUP arc .ty'pe was added. The GROUP arc allows a set of contiguous

arcs to be designated as mutually exclusive. The form of the GROUP arc is

(GROUP arcl arc2 arcn). .The arcs are tried one at a time until the

conditions on one of the arcs are met. This arc is then taken and the

remaining arcs in the GROUP are forgotten (not tried). 1r a PUSH arc is

included in the GROUP, it will be taken if its test is true and the

remaining arcs will not be tried even if the PUSHed for constituent is not

found, For example, consider the following grammar state:

(S/1
(GROUP (CAT A T (TO S/2))

78

n:

/ vu4,04° 6,........ ..j..i,,,yL.,,,

c; vi

.`,1 .1.7

L)/ .,:v

i

,l':/ .''';'

k /

' \

1

..WEAS/1/0

5;1_,------,-..,6
. y,EASedU40.

PREP

CAT

C47 rt34,),,spc,,,

C41* scrioi?

.,/ JU,'AP

lik,43/1/0
QUANT dipo

mEaS/%4Nr
cAT PREp

MEASUREMEN7/
mEAVTERM

JgCTI

MEAS/TEN/

WANT

CAT PART

p,E4s /7ERW

PREP

MEASIEND

POP

C4i

PE4S/C;(14NT

85

CAT PREP

;E4S/WANT MEASOREP

wi7)

TV,EEN

FROw,)

PUSH NODE n:TwEEN;

isii PRCNOto/
rc"

nr \ (AND To)

,...----
--.

mE4s/8E711EEN
1,1,E4S/ET/N1

USq C1RCUIII

PLACE/

PRONOuN/

PLACE/

PoP

86

(WRD X T (TO S/3))
(CAT B T (TO S/4))))

At most one of the three arcs will be followed. Without GROUPing them

together, it is possible that all three might be followed (i.e. if the

word X had interpretations as both category A and category B).

The GROUP arc also provides an efficient means of encoding optionnl

constituents. The normal method of allowing options in ATN is to provide

an arc which accepts the optional constituent and a second arc which jumps

to the next state without accepting anything. For example, if in state S/2

the word "very" is optional, the following.two arcs would be created:

(S/2
(WRD VERY T (TO REST-OF-S/2))
(JUMP REST-OF-S/2 T))

The inefficiency arises here when the word "very" does occur. The first

arc is taken but an alternative configuration must be created (and possibly

later explored) which will try the second arc. By embedding these arcs in

a GROUP, the alternative will not be created (thus saving time and space)

and hence won't have to be explored (possibly saving more time). A warning

should be included here that the GROUP arc can cause sontences which might

otherwise be aeceptetl to be rejected. In our example, viewing "very" as a

member of a category may be the only way out of the state REST-OF-S/2. In

this respect the GROUP arc is a departure from the original ATN philosophy

that arcs s)0.0 .12 independent and for this we apologize. However, for

some applicatio.:s, t'le increased efficiency can be critical.

The other (:h'mve to the compiling system for the semantic grammar

appiication deal WiA the preprocessing operations. The preprocessing

facilitie5 described in the chapter included lexical analysis to

ey.traot word endings, a substitutior mechanism to expand abbreviations,

r-ise words, and canonicalize synonyms, dictionary retrieval

routines az:et a nnmpeund word mechanism to collapse multi-word phrases. For

the SOPHIE applicatiOn we added the ability to use the INTERLISP spelling

correction routines and the ability to derive word definitions from

7

19

SOPHIE's semantic net. The extraction of definitions from the semantic

network for part names and node names reduces the size of the dictionary

and simplifieP tr Iperations of changing circuits. In addition, a

mechanism (c MULTIPLES) was developed which permits string

substitutic in the input. This is similar to the notion of

compAnding differs in that a compound rule creates an alternative

lexical item while multiple rule creates a different lexical item. After

the application of a compound rule, there is an additional edge in the

input chart while after a multiple rule, the effect is the same as if the

user had typed in a different string.

Fuzziness

The one aspect of the LISP implementation which has not been

incorporated into the ATN framework is fuzziness, the ability to ignore

words in the input. While we have not worked out the details, the

non=determinism provided by ATNs lends itself to an interesting approach.

In a one-process (recursive descent) implementation, the rule which checks

for a word must decide (with information passed down from higher rules)

whether to try skipping a word or give up. The critical information which

is not available when this decision has to be made is whether or not there

is another parse which would use that word. In the ATN, it is possible to

suspend a parse and come back to it after all other paths have been tried.

Fuzziness could be implemented so that rather than skip .a word and

continue, it can skip a word and suspend, waiting for the other parses to

fail or suspend. The end effect may well be that sentences are allowed to

get fu7zier because there is not the danger of missing tte correct parse.

Comparison of Results

The original motivation for changing to the ATN was its perspicuity.

Appendices A and B which show the BNF/LISP vern can be compared with

Appendix G which shows the ATN version. We suspect that the reader finds

neither of the two particularly readable, hut then there is no reason to

8 8

4

expeot thal 2,hould be the cane. As Winograd has pointed out Mil),

simple grammars nre perspicuous in almost any formalism; complex grammars

are still complex in any formalism. In our own experience, we found the

Al, formalism much easier to think in, to write in and to debug. The

examples or redundant processing which were presented in chapter were

discovered while converting to ATN. For a gross comparison on conciseness,

the ATN grammar reauires 70% less characters to express than the LISP

version.

The efficiency results were surprising. Table 7.1 gives comparison

timings between the LISP version and the ATN compiled version. As can be

seen, the LISP version is less, than twice as fast. This was pleasantly

counter-intuitive as we expected the LISP version to be much faster due to

the amount of hand optimization which had been done while encoding the

grammar rules. In presenting the comparison timing, it should be mentioned

that there are three differences between the two sy_tems which tended to

favor the ATN version.
1 One difference was the lack of fuzziness in the ATN

version. The LISP version spent time testing words other than the current

word (looking ahead to roe if it were possible to skip this word) which was

not done in the ;TN ve,siiin. The second is the creation of categories for

words durin the iressing in the ATN version which reduced the amount

of time spent t: the :emantic net and hence reduced the time

required to perform a category membership test in the ATN system. The

:is the simplification of the grammar and increase in the amount of

bottom-up processing which could be done bc..ause of the ambiguity allowed

in tile input chart. In our estimation, the lack of fuzziness is the only

difference which may have had a significant effect and this can be included

explicitly in the ATN in places where it is critical (using TST arcs and

suL,pend actions) without noticeable increase in processing time. In

conelion we are very pleased the results of the compiled semantic ATN and

1

The exact extent to which each of these differences contributed is

difficult to gather statistics on due to tno block compiler which gains
efficiency by hiding internal workings. The exact contribution of each
could certainly be determined but was not deemed worth the effort.

o n
o

81

Table (,1

Comparison of ATN vs LISP Implementation

Times (in seconds) are "prepass" + "parsing"

1) What is the output voltage?

LISP - .024 + .018 = .042
ATN - .048 + .033 = .081

2) What is the voltage between there and the base of 06?

LISP - .038 + .039 = .077
ATN - .09C + .046 = .136

3) Q5?

LISP - .010 + .046 = .056
ATN - .013 + .060 = .073

4) What is the output voltage when the voltage control is set to .5?

LISP - .045 + .038 = .083
ATN - .096 + .048 = ,144

5) If Q6 has an open emitter and a shorted base collector junction what

happens to the voltage between its base and the junction of the voltage
limiting section and the voltage reference source?

LISP - .206 + .188 = .394
ATN - .259 + .090 = .349

9 0

82

feel that the ATN compiler makes the ATN formalism computationally

efficient ennui* to be used in real systems.

83

Chapter 8

CONCLUDING DISCUSSION

When we began developing a natural language processor for an

educational edvironment, we knew it had to be (1) fast, (2) habitable, and

(3) self-teaching. The basic conclusion that has arisen from the work

presented here is that it is possible to satisfy these constraints. The

notion of semantic grammar (presented in Chapter 4) provides a paradigm for

organi?'ng the knowledge required in the understanding process which

permits efficient parsing. In addition, semantic grammar aids the

habitability by providing insights into a useful class of dialogue

constructs and permits efficient handling of such phenomena as

pronominalizations and ellipsis. The need for a better formalism for

expressing semantic grammars led to the use of Augmented Transition

Networks (presented in Chapter 6), This, in tur, led to the design and

implementation of a general ATN compiler which drastically increased the

speed of executing an ATN by translating it into an optimized object

program. The increased efficiency makes practical the use of the ATN

formalism for writing semantic grammars. The ability of the ATN-expressed

semantic grammar to satisfy the ahove stated rtquirements is demon3trated

in the natural language front-end for the SOPHIE system.

A point which needs to be stressed is that the SOPHIE system has been

(and is being) used by uninitiated students in experiments to determine the

Pedagogical effectiveness of the SOPHIE environments. While much has been

learned about the problems of using a natural language interface, these

experiments were not "debugging" sessions for the natural language

component . The natural language component has unauestionably reached a

state at which it can be conveniently used to facilitate learning about

electronics. In the remainder of the chapter, we will describe experiences

of students using the natural language component and present research areas

in which further work is necessary.

9 2

8 4

iMtrtlosi_onsi_EIDerignous and Observations

Prior le day exposure to SOPHIE, a group of four students were asked

to write down all of the ways (they could think of) of requesting the

voltage at a particular node. Although the intent of the experiment was to

determine the range of paraphrases which students might be inclined to use

before they were aware of the system's linguistic limitations, a more

interestina result emerged. Each student wrote down one phrasing very

quickly but had a difficult time thinking of a second, even though the

initial phrasing by three of the students were in fact different! One

student even gave up exclaiming."But there is only one way to ask that!"

This same inability to perform linguistic paraphrase carried over to the

actual interaction with SOPHIE via terminal. Whenever the system did not

accept a query, there was a marked delay before the student tried again.

Sometimes the student would abandon his line of questioning completely. At

the same time, data collected over many sessions indicated that there was

aothina like a standard (canonical) way to phrase a question. Table 8.1

provides some -examples of the range of phrasings used by students to ask

(or the voltage at a node.

Table 8.1
Sample Student Inputs

The followina are some of the input lines typed by students with the intent
of discovering the voltage at a node in the circuit.

What is the voltage at node 1?
What is the voltage at the base of Q5?
How much voltage at. N10?
And what is the voltage at N1?
.N9?
V at the ner side of 06?
V11 is?
What is the voltage from the base of transistor Q5 to ground?
What V at N16?
Coll. of Q5?
Node 15 Voltage?
What i. the voltaae at pin 1?
Output?

As Tabl 5.1 shows, students are likely to conceive of their questions in

many ways and to express each of these conceptions in any of several.

phrasings. Yet other experiences indicate that they lack the ability to

easily convert to another conceptualization or phrasing. Since the

9 3

8 5

non-acceptance of questions creates a major interruption in the student's

thought process, the acceptance of many different paraphrases is critical

to maintaining flow in the student's problem solving,

Another interesting phenomenon which occurred during sessions was the

change in the linguistic behavior of the students as they used the system.

Initially, queries were stated as complete English questions, generally

stated in templates created by the .,Ludents from the written examples of

sessions which we had given them. If they needed to ask something which

did not exactly fit one of their templates, they would try a inor variant.

As they became more familiar with the mode of interactinn, they began to

use abbreviations, to leave out parts of their questions and, in general,

to assume that the system was following their interaction. After five

hours of xperience with the system, almost all of one student's queries

contained abbreviations and one in six depended on the context established

previous statements.

RESEARCR AREAS M. SEMANTIC GRAMMAR

The SOPHIE semantic grammar system is designed for a particular

context (trouble shooting) within a particular domain (electronics). It

represents the compilation of those pieces of knowledge which are general

(i.e. linguistic) together with specific domain dependent knowledge. In

its present form, it is unclear which knowledge belongs to which area. The

development of semantic grammars for other applications and e::tensions to

the semantic grammar mechanism to include other understood linguistic

phenomena will clarify this distinction.

While the wL ;ented in this report has dealt mostly on one area

of application, the notion of semantic grammar as a method of integrating

knowledge into the parsing process has wider applicability. Two

alternative applications of the technique have been completed. One deals

with simple sentences in the domain of attritute blocks (Brown et al 1975).

While the sublanguage accepted in the attribute blocks environment is very

simple, 't is noteworthy that within the semantic grammar paradigm a simple

91

8 6

grammar was quickly developed whieh greatly improved the flexibility of the

input language. Tho other completed application deals with questions about

the editing system NLS (Grignetti et al 1975) . In this application most

nuestions dealt with editing commands and their arguments, and fit nicely

into the case frame notion mentioned in Chapter 9. The ease frame use of

semantic grammar is being considered for (and may have its greatest impact

on) command languages. Command languages are typically case centered

around the command name which requires additional arguments (its cases).

The combination of the semantic classification provided by the semantic

grammar and the representation of case rules permitted by ATNs should go a

long way towards reducing the rigidity of complex command langoages such as

'aose required for message processing systems. The combination should also

be a good representation for natur a! anguage systems in domains where is

it possible to develop a strong underlying conceptual space, such as

management information systems (Malhotra 1975).

The extension of the semantic grammar to incorporate existing

linguistic processing techniques is another potentially fruitful research

area. One of the ways semantic grammar gains efficiency is to separate

processing of syntactically similar sentences on semantic cr Jds when

useful to do so. However, this prevents the uniform incorporation of, for

example, Woods' (1973b) solution to the problems of relative clause

modification, quantifiels and conjunction. One means of integrating these

techniques would be to develop an intermediate target language which

maintains tne advantages of the semantic grammar approach while allowing

uniform solutions to other problems. It may even be possible to adopt

Woods' query language, allowing the semantic grammar to dictate the

functions within the "propositions" and "commands". An alternative attack

would be to use 1 "syntactfic" proce7tsing phase, incorporating the desired

te,hniques which canonicalizes rhe input before it is processed by the

semantic grammar. In this method, the semantic grammar would be viewed as

an interpretaticq phase of the understanding process, but which wOrks on a

much less structured syntactic parse than, for example, the LUNAR system.

9 5

T

FEEDBACK - When Lha grammar Wiz

A much neglected research area in natural language systems is the

problem of providing feedback to unacceptable inputs (i.e. what to do when

the system doesn't understand an input). While it may appear that in a

completely habitable system all inputs would be understood, no system has

ever attained this goal and none will in the foreseeable future. To be

natural to a naive u4'er, an intelligent system shoufd act intelligent when

it fails tco. The first sten towards having a system fail intelligently is

the identification of possible areas of error. In student's use of the

SOPHIE system, we have found the following types of error common:

(1) Spelling,errors and mis-typings - "Shortt the CE og Q3 and opwn its

base"; 'What isthe VBE Q5?u

(2) Inadvertent omissions - "What is the BE of Q5?" (The user left out the

quantity to measure. Note that.in other contexts thits is a well formed

question.)

(3) Slight misconceptions which are preditable - "What is the ouLput of

transistor Q3?" (The output of a tr, 'istor is not defined); "What is

the current thru node 1?' (Nodes r- 'f..1 where voltage is measured

and may have numerous wires assc ; ;4ith them); "What is R9?" (R9

is a resistor); "Is Q5 conductinct laboratory'section of SOPHIE

gives information which is direct enable from a real lab such as

currents and voltages.)

(4) Gross misconceptions whose underlying meaning'is well beyond designed

system capabilities - "Make the output voltage 30 volts"; "Turn on the

power supply and tell me how the 'mit functions"; "What time is it?".

The best technique for dealing with ,:ach type of error is an open problem.

In the remainder of this section, we will describe the solutions used in

the SOPHIE system and present their shortcomings.

The use of spelling correction algorithm (borrowed from INTERLISP) has

proven to be a satisfactory solution to errors of type 1. During one

student's session, spelling correction was required on (and resulted in

proper understanding of) 10% of the questions. The major failings of the

INTERLISP algorithm are the restriction on the size of the target set of

correct words (time increases linearly with the number of words) and its

failure to correct run-on words. (The timc required to determine if a word

may be two (possibly misspelled) words run together increases very quickly

with the length of the word and the number of possibly correct words. With

9 6

88

no context to restrict the Possible list of words, the computation involved

is prohibitive.) A potential solution to both shortcomings would be to use

the context of the parser when it reaches the unknown word to reduce the

possOilities. Because of the nature of the grammar, this would elloW

semantic context as well as syntactic context to be used.

Of course, the use of any spelling correction procedure has some

dangers. A word which is correctly spelled but which the system doesn't

know may get spelling corrected to a word the system does knoW. For

example if the system doesn't know the word "top" but does know "stop",

user s command to "top everything" ci= be disastrously misunderstood. For

this reason, words like "stop" are not spelling corrected.

Our solution to predictable misconceptions (type 3 errors) is to

recognize them and Five error messages whigh are directed at correcting the

mi3conception. We are currently using two different methods of

recognition. One is to loosen up the grammar so that it accepts plausible

but meaningless sentences. This technique provides the procedural

specialists called by the plausible parse enough context to make relevant

comments. For example, the concept of current through a node is accepted

by the grammar even though it is meaningless. The specialist which

performs measurements must then check its arguments and provide feedback if

necessary:

>> WHAT IS THE CURRENT THRU NODE 4?

The current thru a node fi-Tiot meaningful since by Kirchoff's law
the sum of the currents thru any node is zero. Currents can be
measured thru parts (e.g. CURRENT THRU C6) or terminals
(e.g. CURRENT THRU THE COLLECTOR OF Q2).

Notice that the response to the question presents some examples of how to

measure the currents along wires which lead into the mentioned node.

Examples of ,uetions which will be accepted and are relevant to the

student's necjs are among the best possible feedback.

9 7

8 9

The second method of recognizing common misconceptions is to "key"

feedback off single words or groups of words. In the following examples,

the "keys" are "or" and "turned on". Notice that the response presents a

general characterization of the violated limitations as well as suggestions

for alternative lines of attack.

>> COULD Q1 OR Q2 BE SHORTED?

I can only handle oir question, hypothesis, etc. at a time. The fact
that you say OR indicates that you may be trying to express two
concepts in the same sentence. Maybe you can break your statement in
two or more simple ones.

>> IS THE CURRENT LIMITING TRANSISTOR TURNED ON?

The laboratory section of SOPHIE is designed to provide the same
elementary measurements that would be available in a real lab. If you
want to determine the state of a transistor, measure the pertinent
currents and voltages.

These methods of handling type 3 errors has proven to be very helpful.

However, they have_the major drawback that all of the misconceptions must

be predicted and programmed for in advance. This limitation makes them

inapplicable to novel situations.

The most severe problems a user has stem from type 2 (omissions) and

type 4 errors (major misconceptions). (Type 3 errors which haven't been

predicted are considered type 4 errors.) After a simple omission, the user

may not see that he has left anything out and may conclude that the system

doesn't know that concept or phrasing of that concept. For example when the

user types "What is the BE of Q5" instead of "What is the VBE of Q5?", he

may decide that it is unacceptable because the system doesn't allow "VBE"

as an abbreviation of "base emitt'er voltage". For type 4 errors, the user

may waste a lot of time and energy attempting several rephrasings of his

query, none of which can be understood because the system doesn't know the

concept the user is trying to express. For example, no matter how it is

phrased the system won't understand "Make the output voltage 30 volts"

because measurements aren't things which can be directly changed, only

controls and specifications of parts can be changed.

9 8

90

The feedback necessary to dorrect both of these classes-of errors must.

identify any concepts in the statement which are understood and suggest the

range of things which can be done to/with these concepts. For type 2

errors, this will help the user see his omission. For type 4 errors, it

may suggest alternative conceptualizations which allow the user to get at

the same information (for example, to change the output voltage indirectly

by changing one of the controls) or at least provide him with, enough

information to decide when to give up.

The notion of semantic grammar may be useful in developing a general

solution along the following lines: A bottom-up or island parsing scheme

could be used to identify well-formed. constituents. 1 Since the grammar is

semantically based the constituents which are found represent "islands" of

meaningful phrases. The ATN representation of the semantic grammar can

then be inspected to discover possible ways of combining these islands. If

a good match is found, the grammar can be used to generate a response which

indicates what other semantic parts are required for that rule. Even if no

good matches ahe found, a positive statement may be made whicti'explains the

set of possible ways the recognized structures could be understood. Much

more work is required in the area of unacceptable inputs before natural

language syetems will feel really natural to naive users.

FUTURE RESEARCa AREAS a ATN COMPILATION

There are several directions in which the ATN compilation system could

be extended. One which was mentioned in Chapter 6 is the implementation of

alternative control strategies. One example is the burst mode strategy.

The burst mode strategy creates all possible configurations which could

follow the current one and provides for user selection of which alternative

to process next. This allows the user to discover the selection function

which best serves his usage. The implementation of burst mode within the

1

William Woods and Geoff Brown are presently refining such a bottom-up
parsing techniaue for ATN grammars for use in the BBN Speech project (Woods
1976).

9 9

91

compiling sistem fraMework should not be very difficult. The c8(le from a

state would create a list of the possible configurations which result from

that state. That is, for all arcs in a state, if the arc condition is

satisfied, a new configuration is made by copying the present one, and the

code compiled from the arc actions is executed. The arc action Code

changes the new configuration and the code from the arc termination action

adds the changed configuration to the possible-next configurations list.

After all of the arcs have been tested, control is passed to a (possibly

state dependent) selection function which chooses one or more

configurations to continue and places the remainder on the list of

alternatives. When compared to depth-first, this strategy has the

disadvantage that configurations cannot be cannabilized. However, it has

the advantage that configurations are only created for possibly successful

paths. (In depth-first, a configuration is needed to remember the

alternative arcs from a state even if none of them will succeed.) Burst

mode also allows dynamic selection of search strategy.

At present, the ATN compiler produces only LISP object code, however,

the ATN object code does not place heavy restrictions on the choice of

object language. The necessary constructs are: conditional statements, a

function calling mechanism and list processing routines. The generation of

ALGOL, BCPL or even machine language code would present no major technical

difficulties. A large effort would have to be expended, however,

implementing the necessary runtime environment (lexical routines,

configuration management routines, arc actions, etc.) for the resulting ATN

machine. 'For production environments or situations where more speed was

essential, this effort mnt, prove worthwhile. An advantage of this method

of implementing, say, a command scanner is that the development and

debugging can be done in the INTERLISP programming environment at very

little cost to the efficiency of the final product. This technique could

also be used to develop parsing programs for mini-computers or

"intelligent" terminals.

100
92

,`

CONQLUSIONS

In the course of this report, we have described the evolution of a

natural language front-end from keyword beginnings to a system capable of

using complex linguistic knowledge. The guiding strand has been the

utilization of semantic information to produce efficient natural language

processors. During the evolution of the system, there are several

highlights which represent noteworthy points in the spectrum of useful

natural language systems. Toward the keyword end of the scale, the

procedural encoding technique with fuzziness (Chapter 4 and Appendix B)

allows simple natural language input to be accepted without introducing the

complexity of a new formalism. Encoding the rules as procedures allows

flexible control of the fuzziness and the semantic nature of the rules

provides the correct places to take advantage of the flexibility. As the

language covered by thesystem become more complex, the additional burden

of a grammar formalism will more than pay for itself in terms of ease of

development and reduction in complexity. The ATN compiling system allows

the consideration of the ATN formalisMAly reducing-its runtime cost making

it comparable to a direct procedural encoding.'-,7he natural language front

end now used by SOPHIE is constructed by compiling a semantic ATN. As the

linguistic complexity of the language accepted by the system fitcreases, the

need for more syntactic knowledge in the grammar becomes greater.

Unfortunately, this often works at cross purposes with the semantic\

character of the grammar. It would be nice,to have a general grammar for

English syntax which could be used to preprocess sentences, however one is

not forthcoming. A general solution to the problem of incorporating

semantics with the current state of incomplete knowledge of syntax remains

an open researgh problem. In the foreseeable future, any system will have

to be an engineering trade-off between complexity and generality on one

hand and efficiency and habitability on the other. We have presented

several techniques which are viable bargains in this trade-off.

101

9 3

References

Bates, M. "Syntactic Aualysis in a Speech Understanding System:" 'BBN
Report No. 3116, Bolt Beranek and Newman Inc., Cambridge,

Massachusetts, 1975.

Bates, M. and W. Woods, "The Syntactic Component." in "Speech

Understanding Research at BBN." BBN Report No. 2976. Bolt Beranek
and Newman Inc., Cambridge, Massachudetts, December 1974.

Bobrow, D.G. "A Note on Hash Linking." Comtunications of the ACM.

18(1975), 413-415.

Bobrow, D.G. and A. Collins, Eds. Representation and Understanding:.
Studies in Cognitive Science. New York: AcEdiggrE Press, 1975.

Bobrow, R.J. and J.S. ..i,Srown, "Systematic Understanding: Synthesis,

Analysis, and Contingent Knowledge in Specialized Understanding
Systems." pepresentation and Understandiggi Studies in Cognitive

Science. Eds. D. Bobrow NO A. Collins. --New York: Aegffemie Press,

1975.

. Brown, J.S. and R.R. Burton, "Multiple Representations of Knowledge for

Tutorial Reasoning." Representation and Understanding: Studies in

Cognitive Science. Eds. D. Bobrow TO. A. Collins. New YorRT
Academic Press77975.

Brown, J.S., R.R. Burton, and A.G. Bell, "SOPHIE: A Sophisticated

Instrbetional Environment for Teaching Electronic Troubleshooting (An

Example of AI in CAI)." BBN Report No. 2790, Bolt Beranek. and Newman
Inc., Cambridge, Massachusetts, March 1974.

Brown, J.S., R.R. Burton, and A.G. Bell, "SOPHIE: A Step Towards a

Reactive Learning Environment." International Journal of Man Machine

Studies. 7(1975), 675-696.

Brown, J.S., R.R. Burton, M. Miller, J. DeKleer, S. Purcell, C.

Hausmann and R.J. Bobrow, "Steps Toward a Theoretical Foundation for
Complex Knowledge-Based CAI." Final Report, Bolt,-Beranek and Newman
Inc., Cambridge, Massachusetts, 1975.

Brown, J.S. R.R. Burton, and F. Zdybel, "A Model-driven Question

Answering System for Mixed-initiative Computer Assisted Instruction."
IEEE Transactions on Systems, Man and Cybernetics. 3(1971).

, Brown, J.S., R. Rubinstein, and R.R. Burton, "Reactive Learning
Environment for Computer Assisted Electronics Instruction." BBN Report

No. 3314, Bolt Beranek and Newman Inc., Cambridge, Massachusetts,

October 1976.

Bruce, B.C. "Case Systems for Natural Language." Artificial Intelligence.

December 1975. 327-360.

Charniak, E. "Toward a Model of Children's Story Comprehension."

MIT-=TR-266, Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, Massachusetts, 1972.

Chomsky, N. Syntactic Structures. The Hague: Mouton and Co., 1957.

Chomsky, N. Aspects of the Theory of Syntax. Cambridge, Massachusetts:

The MIT Press, 1765.

Codd, E.F. "Seven Steps to Rendezvous With the Casual User." Proceedings

of the IFIP TC-2 Working Conference on Data Base Management Systems.

Amsterdam, 1974.

102

914

Colby, K.M., "Simulation of Belief Systems." Computer Models of Thought and
Language. Eds. R.C. Schank and K.M. Colby. --7FH7FFinc sco: W7177
l.'reeman and Company, 1973.

Colby, K.M., R.C. Parkinson, and B. Fraught, "Pattern Matching Rules for
the Recognition of Natural Language Dialogue Expressions." American
Journal of Computational Linguistics. Microfiche 5, 1974.

Coles, L.S. "Syntax Directed Interpretation of Natu 1 Language."
Representation and Meaningi Experiments With Infora. on Processing
Systems. Eds. ATT. -grion and L. Siklossy. ng 7111T577-6T4
Jersey: Prentice-Hall, 1972.

Earley, J. "An Efficient Context-Free Tarsing Algorithm." Communications
of the ACM. 13(1970), 94-102.

Goldberg, A. "Computer-assisted Instruction: The Application of Theorem
Preying to Adaptive Response Analysis." Technical Report No. 203,
Institute for Mathematical Studies in the Social Sciences, Stanford,
University, 1973.

Goldstein, I.P. "Understanding Simple Picture Programs" MIT-AI-TR-294,
Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 1974.

Grignetti, M.C., L. Gould C.L. Hausmann, A.G. Bell, G. Harris and J.
Passafiume. "Mixed-Initiative Tutorial System to Aid Users of the
On-Line System (NLS)." BBN Report No. 2969, Bolt Beranek and Newman
Inc., Cambridge, Massachusetts, November 1974.

Grignetti, M.C., C. Hausmann, and L. Gould, "An 'Intelligent On-line
Assistant and Tutor - NLS-SCHOL-AR." National Computer Conference.
1(175. -775-781.

Heidorn, G.E. "Natural Language In'Outs to a Simulation. Programming
System." Technical Report NTS-55HD72101A, Naval Postgraduate School,
Monterey, California. 1972.

Heidorn, G.E. "English as a Very High Level Language for Programming."
Proceedings of the Symposium on Very, High Level Languages. SIGPLAN
Notices 9, 197, TT=100.

Heidorn, O.E. "Augmented Phrase Structure Grammars." Proceedings of a
Workshop on Theoretical Issues in Natural Language Processing. -Eds.
R. Schenk and 0.1- Nash-17566F. 19757--T-5.

Irons, E.T. " A Syntax Directed Compiler for ALGOL 60." Communications of
the ACM. 4(1961), 51-55.

Kaplan, R.M. "A.Oeneral Syntactic Processor." Natural Language Processing.
Ed. Randall- Rustin. New York: AlgorithmiTE-P7FEs, 1973.

Kaplan, R.M. "Transient Processing Load in Relative Clauses." Doctoral
Dissertation, Psychology Department, Harvard University, 1974.

Kaplan, R.M. Personal communication. 1975.

Kay, M. "Experiments With a Powerful Parser." RM-5452-PR. The Rand
Corporation, Santa Monica, California. 1967.

Kay, M. Personal communication. 1973.

103

95

Klovstad, J.W. CASPERS, Computer Automated Speech Peroeption System,
Doctoral Dissertation, M.I.T., 1977.

Malhotra, A. "Design Criteria for a Knowledge-Based English Language
System for Management: An Experimental Analysis" Doctoral
Dissertation, Sloan School of Management, Massachusetts Institute of
Technology, Cambridge, Massaohusetts, February, 1975.

Marcus, M. "Diagnosis as a Notion of Grammar." Proceedings of a Workshop
on Theoretical Issues in Natural Language Prooessiffg. 1;ds. R.
SEhank and ILL. Nash-Webtier. 1975. b-10.

Miller, R.B. "Response TiMe in Man-oomputer Conversational Transaotions."
AFIPS Conference Proceedings. Fall Joint Computer Conference.
Washington: Thompson book Company, 1968, 267-278.

Quilliun, M.R. "The Teachable Language Comprehender: a simulation program
and theory of language." Communications of the ACM. 12(1969),,
459-476.

Rustin, R. Ed. Natural Language Processing. New York: Algorithmics
Press, 1973.

Schank, R.C. and K.M. Colby, Eds. Computer Models of Thought and
Language. San Francisco: W.H. Freeman and Company, 173.

Schank, R.C., M.N. Goldman, C.J. Reiger, and C.K. Riesbeck, "Inference
and Paraphrase by Computer." Journal of the ACM. 3(1975), 309-328..

Shapiro, S.C. and S.C. Kwasny, "Interactive Consulting via Natural
Language." Communications of the ACM. 18(1975), 459-462.

Simmons, R.F. "Natural Language Question-Answering Systems: 1969."
Communications of the ACM. 13(1970), 15-30.

Simmons, R.F. "Semantic Networks: Their Computation and Use for
Understanding English." in Computer Models of Thou ht and Language.
Eds. R.C. Schank and K.M. Ci.by. SaR-FFNEcil-co: W.H. -FFeeman and
Company. 1973.

Simon, H.A. and L. Siklossy, Eds. Representation and Meaning:
Experiments with Information Processing Systems. Engiel7ood Cliffs,
New Jersey: Predrice-Hall7-172.

Smith, N.W. "A Question-answering System for Elementary Mathematics."
Technical Report No. 227, Institute for Mathematical Studies in the
Social Sciences, 3tanford University. 1974.

Smith, R.L., N.W. Smith, and F.L. Rawson, "CONSTRUCT: In Search of a
Theory of Meaning." Conference of the Association for Computational
Linguistics. Amherst, Massachusetts. 1974.

Teitelman, W. "Towards a Programming Laboratory." International Joint
Conference on Artificial Intelligence. Ed. D. Walker. May 1907-

Teitelman, W. "Automated Programming - The Programmer's Assistant."
Proceedings of the Fall Joint Computer Conferene. December 1972.

Teitelman, W. "CLISP-Conversational LISP." Third International Joint
Conference on Artificial Intelligence. AugUEY-7973.

Teitelman, W. INTERLISP Reference Manual. Xerox Palo Alto Research
Center, Palo Alto, California, 19777

104
96

Watt, W.C. "Habitability." American Documentation. 19(1968), 338-351.

Weizenbaum, J. "ELIZA -- A Computer Program for .the Study of Natural
Language Communication Between Man and Machine." Communications of the
ACM. 1(1966), 36-43.

Weizenbaum, J. "Contextual Understanding by Computers." Communications of
the ACM. 10(1967), 474-480.

Wilks, Y. "The Stanford Machine Translation Project." Natural Language
Processino'. Ed. Randall Rustin. New York: AlT)FITHFics Press,
1973a.

Wilks, Y. "An Artificial Intelligence Approach to Machine Translation."
_Computer Models_of Thought and Language. Eds. R.C. Schank and K.M.
Colby. SanTFTricrEco: W.H. -FFeeman and Company, 1973b.

Wilks, Y. "Natural Language Systems Within the AI Paradigm: A Survey and
Some Comparisons." tanford Artificial Intelligence Laboratory Memo
AIM-237, Computer Science Department, Stanford. 1974.

Winograd, T. Understanding Natural Language. New York: Academic Press,
1972.

Woods, W.A. "Semantics for a Question-Answering System." Doctoral
Dissertation, Harvard University, Cambridge, Massachusetts, 1967.

Woods, W.A. "Procedural Semantics for a Question-Answering Machine." AFIPS
Conference Proceedings: 33(1968).

Woods, W.A. "Augmented Transition Networks for Natural Languare Analysis."
Harvard Computation Laboratory Report No. CS-1, Harvard University,
Cambridge, Massachusetts. 1969.

Woods, W.A. "Transition Network Grammars for Natural Language Analysis."
Communications of the ACM. 13(1970), 991-606.

Woods, W.A. "An Experimental Parsing System for Transition Network
Grammars." Natural Language Processing. Ed. Randall Rustin. New
York: Algorithmics Press, 1-9-71a.

Woods, W.A. "Progress in Natural Language Understanding - An Application
to Lunar Geology." National Computer Conference. 1973b. 441-450.

Woods, W.A. "What's In'a Link: Foundations for Semantic Networks." in

Representation and Understanding: Studies in Cggnitive Science. Eds.
D. Bobro arid A. Collins. New York: ademic-10-ftss, 1975.

Woods, W.A., R.M. Kaplan, and B. Nash-Webber, "The Lunar Sciences Natural
Language Information System: Final Report." BBN Report 2378, Bolt
Beranek and Newman Inc., Cambridge, Massachusetts,,1972.

Wocds, W. Personal communication. 1976.

105

97

Appendix A

BNF Descriptien of Part of the
SOPHIE Semantic Grammar

This appendix gives a BNF-like description of part or the language
accepted by SOPHIE. Included are all of the rules necessary to parse a
"measurement". Examples of "measurements" are "voltage at NI", "base
emitter current of Q5", and "output voltage". The grammar is implemented
as LISP. functions and an example is listed in Appendix B.

In the description, alternatives on the right-hand side are separated
by ! or are listed on separate lines. Brackets [J enclose optional
elements. An asterisk * is_used to mark notes about a particular rule.
Non-terminals are designattd by names enclosed in angle brackets <>.

The Grammar

<circuit/place>:= <terminal> ! <node>

<diode/spec> := <diode> ! <zener/diode>
<section> diode ! <section> zener/diode

<junction> := <jUhdtion/type> [of] <transistor/spec>
<transistor/term/type> and <transistor/term/type> [of]

[<transistor/spec>]
' <transistor/term/type> to <transistor/term/type> [of]

[<transistor/spec>]

<junction/type> := eb ! be ! ec ! ce ! cb ! bc

<meas/quant> := voltage ! current ! resistance* ! power
*means measured resistance

<measurement> := <section>foutput*ll<meas/quant>]
output* <meas/quant> [of] <section>
output* [<meas/quant>i [of <transformer>]
<transformer> <meas/quant>
<meas/quant> between** <circuit/place> and*

<circuit/place>
<meas/quant> of*** <part/spec>
<meas/quant> between output terminals
<meas/quant> of <junction>
<meas/quanc> of <circuit/place>
<meas/quant> from <junction>
<meas/quant> of <section>
<meas/quant> of <pronoun>
<junction/type> <meas/quant> [of <transistor/spec>]
<transistor/term/type> <meas/quant> of

f<transistor/spec>]
*input also
**from-to also works
***at, thru, in, into, across and through also work

<node> := junction of <part/spec> and <part/spec>
node between <section> and <section>
[point] between <part/spec> and <part/spec>
<node/name> ! [node] <node/number>
<pronoun>

<num/spec> := "any positive number" [k] ! one

<part/spec> := <part/name> ! <load/spec> ! <section> <part/type>
<pronoun>

lou

<pot/speo> :11 co 1 vc 1 oct

<pronoun>:: it 1 [that] "type"

<terminal> :: output [terminal]
1 center/tap

positive terminal <part/spec> 1 positive one
negative terminal <part/spec> 1 negative one
anode f<diode/speg>) 1 cathode [<diode/spec>)
wiper [<pot/spec>j

<trannistor/spec> :2 <transistor> 1 <section> transistor 1 <pronoun>

<tranststor/term> ;...- <transistor/term/type> ktransistor/spec>]

<transistor/term/type> :: base 1 collector 1 emitter

<transistor>, <capaoitor>, <diode>, <resistor>, <transformer> and
<zener/diode> all check the semantic network and parse correct part names,
e.g.. r9, 0.

<section> uses the semantic network to determine if a word is a section of
the unit, e.g. current/limiter.

<part/name> uses the semantic network to see if a word is the name- of a
part e.g. r6, 04, t2.

<node/name> checks semantic network for node names.

'Appendix B

A LISP Rule from the Semantio Grammar
,

This appendix describes the methud of encoding the grammar aa LISP

procedures. The ways of expressing a non-terminal are embodied in a

grammar function. Each grammar function takes at least two argumenta;

STR, 4.he list of words to be recognized, und N, the degree of fuzziness

allowed, The grammar function, in effeot, must determine whether the

beginning of the, string STR contains an ocourrence of the corresponding
non-terminal. There are generally two types of checks that a grammar

function performs. One is a cheuk for the ocourrenoe of a word or words

which satisfies certain predicates. This checking is done with two

functions -- CHECKLST and CHECKSTE. CHECKLST looks for a word in the
string matching any of a list of words. CHECKSTE lonks 'for a word in the

string satisfying an arbitrary predicate. It is through these functions
that the parser implements its fuzziness. For example if CHECKSTR is

called with the string "resistor R9" and a predicate whioh determines if a
word is the name of a part (e.g. "R9"), CHECKSTR will suooeed by skipping
the .word "resistor", which in this phrase, is a noise word.

.
The other usu.1 type of operation performed by the grammar functions

is to check for the occurrence of other non-terminals. This is'done by
calling the .proper function (grammar rule) and passing it the correot

position in the input string.

If a grammar rule is successful, the function passes back two pieces

of information. First, it returns some indication of how much of the input

string is accepted (i.e. where it spopped). The convention adopted is

'that the grammar rule returns as its value a pointer to the last word in

the string accepted by the rule. Second, the function passes back a

structural description of the phrase that was parsed. Thls,structure is
passed back in the free variable RESULT (analogous to an ATN s "*" upon

return from a PUSH.

Listed below is the grammar rule for the concept of a .junction of a

transistor. This rule accepts phrases such as "baae cmitter junction of

Q5", "BE of the current limiting transistor", or "collector emitter

junction".

(<JUNCTION>
[LAMBDA (STR N)
(PROG (TS1 El)

(RETURN
(AND

(* COMMENT A)

(OR (AND SETG TS1 (<JUNCTION/TYPE> STR N))

i

SETQ R1 RESULT))
(AND SETQ TS1 (<TRANSISTOR/TERM/TYPE> STR N))

SETQ R1 RESULT)
SETQ TS1
(<TRANSISTOR/TERM/TYPE>

(CDR (CHECKLST (CDR TS1)
(QUOTE (AND TO]

(SETQ R1 (JUNCTION-OF-TERMS R RESULT]

(* COMMENT B)

(COND
USETQ STR (<TRANSISTOR/SPEC>

(CUR (GOBBLE (GOBBLE TS1 (QUOTE (JUNCTION)))
(QUOTE (OF))
1]

(SETQ RESULT (LIST R1 RESULT))
STR)

108
100

CUMMENT A:

(lL:ETU 'RESULT (LIST R1 (LlST (QUOTE PREF)
(QUOTE (TRANS1S1uR]

The first thing that is looked for Is either a <junction/type> (BE, emitter
collector, etc.) or two <transistor/terminal/type>s -(base, emitter or
collector) separated by the words "and" or "to": If two terminals 'e
foundr the function JUNCTION-OF-TERMS is called to determine the proper
junction In either case, the place where the successful subsidiary rule
left off is saved in TS1 and the meaning of the accepted phrase is saved in
R1.

COMMENT b:

The next thing needed for a junction is a transistor <TRANSISTOR/SPEC>.
<TRANSISTOR/SPEC> looks for an occurrence of a transistor, e.g. "Q5" or
"current limitinv. transistor". GOBBLE is a function for skipping
relational words when they are not used to restrict the remaining part of
the phrase. If a transistor is not found, a deletion is hypothesized and a
call to PREF is constructed. If the transistor has been pronominalized as
in "the base emitter of it", <TRANSISTOR/SPEC> would recognize "it". In
either case the semantics of the recognized phrase (something like (EB Q5))
is put into RESULT and a pointer.to the last recognized word is returned as
the value of <JUNCTION>.

There are approximately'80 grammar rules in SOPHIE's grammar.

109

101

Appendix C

Sample Parses and Parse Times for the LISP Implementation

This appendix presents some examples of sentences handled by the
natural language processor together with their parse times. Under each
statement, the semantic interpretation returned by the parser is given.
The semantic interpretation is a function call which when evaluated
performs the processing required by the statement. Parse times are given
in milliseconds.

Insert a fault.
(INSERTFAULT NIL)
85 ms

What is the output voltage?
(MEASURE VOLTAGE NIL OUTPUT)
40 ms

What is the voltage between the current limiting transistor
and the constant current source?
(MEASURE VOLTAGE (NODE/BETWEEN

(FINDPART CURRENT/LIMITER TRANSISTOR)
CURRENT/SOURCE))

335 ms

What is the voltage between there and the base.of Q6?
(MEASURE VOLTAGE (PREF (NODE TERMINAL)) (BASE Q6))
80 ms

59
11EFERENCE ((TRANSISTOR) Q5))
0 ms

Could the problem be that Q5 is bad?
(TESTFAULT Q5 BAD)
100 ms

Could it be shorted?
(TESTFAULT (PREF (PART JUNCTION TERMINAL)) SHORT)
75 ms

If R8 were 30k what would the output voltage be?
(IFTHEN (R8 30000.0 VALUE)

(MEASURE VOLTAGE NIL OUTPUT))
220 ms

If C2 were leaky what would the voltage across it be?.
(IFTHEN (C2 LEAKY)

(MEASURE VOLTAGE (PREF (PART JUNCTION)))
120 mp

What is the output voltage when the voltage control is set to .5?
(RESETCONTROL (STQ VC .5)

(MEASURE VOLTAGE NIL OUTPUT))
85 ms

What is it with it set at .6?
(RESETCONTROL (STQ (PREF (POT LOAD SWITCH)) .6)

(REFERENCE NIL))
110 ms

If it is set to .9?
(RESETCONTROL (STQ (PREP (POT LOAD SWITCH)) .9)

(REFERENCE NIL))
135 ms

110
102

What is the current thru the cc when the vc is set to 1.0?
(RESETCONTHOL (STQ VC 1.0)

(MEASURE CURRENT CC))
190 ms_

If Q6 has.an open emitter and a shorted base collector
. junction, what happens to the voltage between its base and
the junction of the voltage limiting section and the voltage
.reference source?
'(IFTHEN

(MULT ((EMITTER Q6) OPEN)
((BC (PREF (TRANSISTOR))) SHORT))

(MEASURE VOLTAGE
(BASE (PREF (TRANSISTOR)))
(NOPE/BETWEEN VOLTAGE/LIMITER REFERENCE/VOLTAGE)))

400 ms.

111

103

Appendix D

Examples of ATN Compilation

This appendix presents s simple augmented transition network grammar

along with two different programs compiled from it and a trace of the hrst

program parsing a sentence. The ATN grammar was taken from (Woods 1970),

Both compiled versions of the grammar assume a depth-first search strategy

and use configurations which include the state, node, stack, registers,

features and hold list.

The first program does not support lexical ambiguity (neither that

caused by compound rules nor that caused by multiple interpretations under

the same category). In addition, it neither keeps a well-formed substring

table, tests for input before pushing nor returns features with popped

constituents. The second program, on the other hand, has all of these
..

capabilit The listing of the second program also includes tracing

functions the compiler includes in the program to allow the user to follow

its operation. Both programs are given in CLISP (Teitelman 1974).

The final section of the appendix contains a trace of the first

program (using a version which did include tracing functions) di8coveric.

all possible parses of the sentence "John was believed to have been shot by

Fred". Shown in the trace are all of the arc transitions taken by the

parser together with all register setting operations. (The reader may

compare this with the analysis of this sentence given in (Woods 1970).)

112

104

The grammar

(S/
(CAT AUX T

(SETR V *)
(SETR TNS (LIST (GETF * TENSE)))
(SETRQ TYPE Q)
(TO Q10)

(PUSH NP/ T
rTETR SUBJ *)
SETRQ TYPE DCL)
O Q2/)))

(Q1/
(PUSH NP/ T

(SETR SUBJ *)
(TO Q3/)))

(Q2/
(CAT V T

rTETR V *)
SETR TNS (LIST (GETF * TENSE)))
O Q3/)))

(Q3/
(CAT V (AND (GETF * PPRT)

(EQ (GETR V)
(QUOTE BE)))

HOLD (GETR SUBJ))
SETR SUBJ (BUILDQ (NP (PRO SOMEONE))))
SETR AGFLAG T)
SETR V *)
TO Q3/))

(CAT V (AND (GETF * PPRT)
(EQ (GETR V)

(QUOTE HAVE)))
(SETR TNS (APPEND (GETR TNS)

(QUOTE (PERFECT))))
(SETR V *)
(TO Q3/))

(PUSH NP/ (TRANS (GETR V))
(SETR OBJ *)
(TO Q4/))

(VIR NP (TRANS (GETR V))
OBJ *)

TO Q4/))
(POP UILDQ (S + + (TNS +) (VP (V +)))

TYPE SUBJ TNS V)
(INTRANS (GETR V))))

113

105

(Q4/
(WRD BY ;GETR AGFLAG)

(SETR AGFLAG NIL)
(TO Q7/))

(WRD TO (S-TRANS (GETR V))
(TO Q5/))

(POP (BUILDQ (S + + (TNS +) (VP (V +) +))
TYPE SUBJ TNS V OBJ)

T))
(Q5/

(PUSH VP/ T
SENDR SUBJ (GETR OBJ))
SENDR TNS (GETR TNS))
SENDRQ TYPE DCL)
SETR OBJ *)
TO Q6/)))

(Q6/
(WRD BY (GETR AGFLAG)

(SETR AGFLAG NIL)
(TO Q7/))

(POP (BUILDQ (S + + (TNS +) (VP (V +) +))
TYPE SUBJ TNS V OBJ)

T))
(Q7/

(PUSH NP/ T
(SETR SUBJ *)
(TO Q6/)))

(VP/
(CAT V (GETF * UNTENSED)

(SETR V *)
(TO Q3/)))

(NP/
(CAT DET T

(SETR DET *)
(TO NP/1))

(CAT NPR T
(SETR NPR *)
(TO NP/3)))

(NP/1
(CAT ADJ T

(ADDL ADJS *)
(TO NP/1))

(CAT N T
(SETR N *)
(TO NPI2)))

(NP/2
(POP (BUILDQ (NP (DET +) (ADJ +) (N +))

DET ADJS N)
T))

(NP/3
(POP (BUILDQ (NP (NPR +))

NPR)
T))

114

106

(PARSER
(LAMBDA
(PROG

Version I

ACF)
STATE NODE STACK REGS HOLD * LEX)

The current status r:f the machine is kept in five globe
variables; (1) STATE, the state/arc in the grammar, (2
NODE, the pointer into the inpyt,T (3) tREGS, the tlist c

MinN, uTiWrsistItlins Nie,maggin:tnos
configuration involves assignfng values of these fiv
variables.

SPREAD-ACF
pTATE4-(CF.STATE ACF))
REGS4J-CF.REGS ACF))
(STACK4-(CF.STACK ACF))
(HOLD4j-CF.HOLD ACF))
(NODET(CF.NODE ACF))
(LEX+TEDGE.WORD (FIRST.EDGE NODE)))

BRANCH dispatches control to the label specified by STATE
This is the method of executing an arc.

EVALARC
(BRANCH STATE SUCCESS DETOUR S/ S/-2 S/-2-PUSH Q1/

Q1/-1-PUSH Q2/ Q3/ Q3/-2 Q3/-3 Q3/-4 Q3/-5
Q3/-3-PUSH Q4/ Q4/-2 Q4/-3 Q5/ Q5/-1-PUSH.Q6/
Q6/-2 Q7/ Q7/-1-PUSH VP/ NP/
NP/-2 NP/1 NP/1-2 NP/2 NP/3)

SUCCESS checks to make sure all of the input has bee
processed. If not it detours.

SUCCESS
(if (EMPTYP.NODE NODE)

then (RETURN *)
else (GO DETOUR))

DETOUR decides which alternative to try next. In this cas
the alternatives list is a stack.

DETOUR
(if ALTS

then ACF4-(ALTS.FIRST)
(ALTS.BUTFIRST
(GO SPREAD-ACF

else (RETURN (FAILUREL

This is the beginning of the code which is compiled from till
arcs. The first arc of each state has a label which is th;
same as the state name in the ATN. The other arcs have ;

label which is the state name followed by "-" and the ar;
number. Labels which end in "-PUSH" indicate the action:
and termination action of PUSH arcs.

S/ (if (ARCCAT AUX)
then (ALTARc S/-2)

(SETR V *)

1

SETR 'TNS <(GETF * 'TENSE)>)
SETRQ TYPE Q)
DOTO Q1/)
GO Q1/))

107

S/-2(DOPUSH NP/ S/-2-PUSH)
(GO NP/)

S/-2-PUSH ,

(SETR 'SUBJ *)
SETRQ TYPE DCL)

i

DOPTO Q2/)
GO Q2/)

Q1/ DOPUSH NP/ Q1/-1-PUSH)
GO NP;) -

Q1/-1-PUSH
SETR 'SUBJ)

i

DOPTO Q3/)
GO Q3/)

Q2/ if (ARCCAT V)
then (SETR :V *)

(SETR "TNS <(GETF * 'TENSE)>)
(DOTO Q3/)
(GO Q3/))

(GO DETOUR)
Q3/ (while (ARCCAT V) and (GETF * 'PPRT)

and (GETR V)='BE
do ALTARC Q3/-2)

I

HOLD (GETR SUBJ))
SETR ,SUBJ (BUILDQ (NP (PRO SOMEONE))))
SETR "AGFLAG T)
SETR 'V *)
DOTO Q3/))

Q3/-2
(if (ARCCAT V) and (GETF * '1",PRT)

and (GETR V)=-HAVE
then ALTARg Q3/-3)

SETR TNS <! (GETR TNS) ! '(PERFECT)>)
SETR 'V *)
DOTO Q3/)
GO Q3/))

Q3/-3
(if (TRANS (GETR V))

then Q3/-4)

GO NP/))
DOPUSH NP/ Q3/-3-PUSH)

Q3/-4
(if HOLDSCAN HOLD 'NP "(TRANS (GETR V)))

I

then ALTARC Q3/-5)
PREVI4ACTS)
SETR OBJ *)
DOVIRTO Q4/)
GO Q4/)).

Q3/-5
(if (INTRANS (GETR V))

then (DOPOP (BUILDQ (S + +(TNS +) (VP (V +)))
TYPE SUBJ TNS V))

(GO EVALARC))
(GO DETOUR)

Q3/- -PUSH
SETR 'OBJ *)
DOPTO Q4/)
GO Q4/)

Q4/ if (ARCWRD BY) and (GETR AGFLAG)
then ALTARg Q4/-2)

i

SETR AGFLAG NIL)
DOTO Q7/)
GO Q7/))

cir (ARCWHIJ TO) and (S-TRANS (GETR V))
then Q4/-3)

DOTO Q5/)
GO O5/))

Q4/-3 ..

(DOPOP (BUILDQ (S + +(TNS +) (VP (V +)+))
TYPE SUBJ TNS V OBJ))

I

GO EVAIIARC)
Q5/ SENDR SUBJ (GETR OBJ))

SENDR 'TNS (GETR TNS))
SENDRQ TYPE DCL)
DOPUSH VP/ Q5/-1-PUSH)
SREGS NIL)
GO VP/)

Q5/-1-PUSH
SETH 'OBJ *)
DOP 26/)
IGO ,,,,)

Q6/ if (ARCWRD BY) and (GETR AGFLAG)
, then Q6/-2)

SETH 'AGFLAG NIL)
. DOTO Q7/)

(GO Q7/))
/-2

(DOPOP (BUILDQ (S + +(TNS +)
(VP (V +)+))

TYPE SUBJ TNS V OBJ))
GO EVALARC)

Q7/ DOPUSH NP/ Q7/-1-PUSH)
GO NP/)

Q7/-1-PUSH
rGETR 'SUBJ *).
DOPTO Q6/)
O Q6/)

VP/ (if (ARCCAT V) 4nd (GETF * 'UNTENSED)
then V *)

DOTO Q3/)
GO Q3/))

(GO DETOUR)
NP/ (if (ARCCAT DET)

then (ALTARg NP/-2)
(SETR DET *)
(DOTO NP/1)
(GO NP/1))

NP/-2
(if (ARCCAT NPR1

then NPR *)
DOTO NP/3)
GO NP/3))

(GO DETOUR)
NP/1(while (ARCCAT ADJ) do (ALTARg NP/1-2)

(ADDL ADJS *)
(DOTO NP/1))

NP/1-2
(if (ARCCAT N) ,

then N
DOTO NP/2
GO NP/2))

(GO DETOUR)
0/2(DOPOP (BUILDQ (NP +)

ADJ +)
N +))

DET ADJS N))
(GO EVALARC)

NP/3(DOPOP (BUILDQ (NP (NPR +))
NPR))

(uO EVALARC))))

117
109

Version II

(PARSER -------
(LAMBDA (ACF)

(PROG (STATE NODE'STACK REGS FEATS HOLD * LEX SREGS
SFEATS FEATURES TEMP)

If the function is called with an argument of 'GO, -it looks
for another parse. This allows the user to get out more
than the first parse. .

(if ACF='GO
then (GO DETOUR))

The current status of the machine is kept in five global
variables: (1) STATE, the state/arc in the grammar, (2)
NODE, the pointer into the inout, (3) REGS, the list of
register name-value pairs, (4) Si, ACK, the return stack, and
(5) HOLD, the hold list. Putting the machine into a given
configuration involves assigning values to these, five
variables.

SPREAD-ACF

1

CHANGESTATE (CF.STATE ACF))
REGS(-(CF.REGS ACF))
FEATS.4.(CF.FEATS ACF))
STACKT(CF.STACK ACF))
HOLDiTCF.HOLD ACF))
LEX.,(EDGE.WORD (FIRST.EDGE NODWCF.NODE ACF))))

TRACEALTSTART is one of the tracing functions provided to
allow the user to follow the operations of the parser, The
others are TRACEARC and ABORT. None of these result in any
code when a fast version of the parser is produced.

(TRACEALTSTART)
(GO EVALARC)

NEXTLEX

If the current node has more than one lexical interpretation
(BUTFIRST.EDGE), the code sets NODE to try the next one.

(if (BUTFIRST.EDGE NODE)
then LEX*-(EDGE.WORD (FIRST.EDGE

NODWBUTFIRST.EDGE
NODE)))

(GO EVALARC))

BRANCH dispatches control to the label specified by STATE.

EVALARC
(BRANCH STATE SUCCESS DETOUR S/ S/-1-CONT S/-2

S/-1-CAT S/-2-PUSH Q1/ Q1/-1-PUSH Q2/'
Q2/-1-CONT Q2/-1-CAT Q3/ Q3/-1-CONT
Q3/-2 Q3/-2-CONT Q3/-3 Q3/-4 Q3/-5
Q3/-1-CAT Q3/-2-CAT Q3/-3-PUSH Q4/ Q4/-2 Q4/-3
Q5/ Q5/-1-PUSH Q6/ Q6/-2 Q7/ Q7/-1-PUSH
VP/ VP/-1-CONT VP/-1-CAT NP/ NP/-1-CONT
NP/-2 NP/-2-CONT NP/-1-CAT NP/-2-CAT
NP/1 NP/1-1-CONT NP/1-2 NP/1-2-CONT
NP/1-1-CAT NP/1-2-CAT NP/2 NP/3)

SUCCESS
(RETURN NODE)

DETOUR chooses an alternative from the ALTS list. In this
version the ALTS list is a stack. The detouring mechanism
could be changed by redefining ALTS.FIRST and ALTS.BUTFIRST.
If there are no more alternatives, the first alternative
from the list of SUSPENDED alts is taken. The suspended
alternatives are maintained in order by weight.

,.-

ABORT
(ABORT) ABORT is a tracing function.

DETOUR
(if ALTS

then ACF4-(ALTS.FIRST)
(ALTS:BUTFIRST)
(GO SPREAD-ACF)

elseif SUSPENDEDALTS
then ACF4r(SUSPEND.POP)

(GO-SPREAD-ACF)
else (RETURN (FAILURE)))

S/ (if (ARCCAT AUX)
else (GO S/-2))

(CTARC S/-2)
(TKCEARC CAT AUX S/-1)

S/-1-CONT

1

ALTCAT S/-1-CAT)
SETR ,V *)
SETR TNS <(GETF * 'TENSE)>)
SETRQ TYPE Q)
DOTO Q1/)
GO Q1/)

S/-2 if (STRINGLEFTP)
then S/)

TRACEARC PUSH NIL S/-2)
DOPUSH NP/ S/-2-PUSH)
(GO DETOUR))

(CHANGESTATEQ S/)
(GO NEXTLEX)

S/-1-CAT
(ARCCAT AUX)
(TRACEARC ALTCAT AUX S/-1)
(GO S/-1-CONT)

S/-2-PUSH
SPREAD/WFS)
SETR 'SUBJ *)
SETRQ TYPE DCL)
DOPTO Q2/)
GO Q2/)

Q1/ if (STRINGLEFTP)
then NEXTLEXALT QV)

i

TRACEARC PUSH NIL Q1/-1,
DOPUSH NP/ QV-I-PUSH)
GO DETOUR))

(CHANGESTATEQ Q1/)
(GO NEXTLEX)

QV-I-PUSH
SPREAp/WFS)
SETR SUBJ *)
DOPTO Q3/)
GO Q3/)

Q2/ if (ARCCAT V)
else (CHANGESTATEQ Q2/)

(GO NEXTLEX))
(NEXTLEXALT Q2/)

.

(TRACEARC CAT V Q2/-1)

Q2/-1-CONT
ALTCAT Q2/-1-CAT)
SETR ,V *)
SETR -TNS <(GETF * 'TENSE)>)
DOTO Q3/)
GO Q3/)

Q2/-1-CAT
ARCCAT V)
TRACEARC ALTCAT V Q2/-1)
GO Q2/-1-CONT)

Q3/ if (ARCCAT V)i

else (GO Q3/-2))
(ALTARC Q3/-2)
(TRACEAK CAT V Q3/-1)

Q3/-1-CONT
(ALTCAT Q3/-1-gAT)
(if "((GETF * PPRT) and (GETR V)BE)

then (GO ABORT))
IHOLD (GETR SUBJ))
SETR ,SUBJ (BUILDQ (NP (PRO SOMEONE))))
SETR -AGFLAG T)
SETR 'V *)

GO Q3/)
DOTO Q3/)

Q3/-2
(if (ARCCAT V)
else (GO Q3/-3))

(ALTARC Q3/-3)
(TRACEARC CAT V Q3/-2)

Q3/-2-CONT
(ALTCAT Q3/-2-gAT)
(if "((GETF * PPRT) and (GETR V):'HAVE)

then (GO ABORT))
(SETR 'TNS <! (GETR TNS) !

. (PERFECT)>)
SETH 'V *)
DOTO Q3/)
GO Q3/)

Q3/-3
tif (STRINGLEFTP) and (TRANS (GETR V))

then (ALTARC Q3/-4)

Q3/-4
(if TEMP

1

TRACEARC VIR NP Q3/-4)
PREVI13ACTS)
SETR OBJ *)
DOVIRTO Q4/)
GO Q4/))

:::NS (GETR V)))rHROALCDES::: :::: N'INLP 7(

DOPUSH NP/ Q3/-3-PUSH)
GO DETOUR))

then ALTARC Q3/-5)

Q3/-5
. (if (INTRANS (GETR V))

then Q31)
TRACEARC POP NIL Q3/-5)
DOPOP (BUILDQ (S + +(TNS +)

(VP (V +)))
TYPE SUBJ TNS V)

(GETR POPFEATS))
(GO DETOUR))

(CHANGESTATEQ Q3/)
(GO NEXTLEX)

120

113

Q3/-I-CAT
ARCCAT V)
(TRACEARC ALTCAT V Q3/-1)
(GO Q3/-1-CONT)

Q3/-2-CAT
rGRCCAT V)
TRACEARC ALTCAT V Q3/-2)
O Q3/-2-CONT)

I

Q3/- -PUSH)

SPREAVWFS)
SETR OBJ *)
DOPTO Q4/)

.

GO Q4/)
Q4/ if (ARCWRD BY) and (GETR AGFLAG)

then (ALTARC Q4/-2)

1

TRACE4RC WRD BY Q4/-1)
SETR AGFLAG NIL)
DOTO Q7/)
GO Q7/))

Q4/-2
(if (ARCWRD TO) and (S-TRANS (GETR V))

I

then ALTARC Q4/-3)
TRACEARC WRD TO Q4/-2)
DOTO Q5/)
GO Q5/))

Q4/1

NEXTLEXALT Q4/)
TRACEARC POP NIL Q4/-3)
DOPOP (BUILDQ (S + +(TNS +)

(VP (V +)+))
TYPE SUBJ TNS V OBJ)

(GETR POPFEATS))
(GO DETOUR)

Q5/ (if (STRINGLEFTP)
then Q5/)

TRACEAI3C PUSH NIL Q5/-1)
SENDR SUBJ (GETR OBJ))
rDENDR 'TNS (GETR TNS))
SENDRQ TYPE DCL)
OPUSH VP/ Q5/-1-PUSH)

SREGS±NIL
SFEATS4-NIL
(GO DETOUR))

(CHANGESTATEQ Q5/)
(GO NEXTLEX)

Q5/-1-PUSH
SPREAp/WFS)
SETH OBJ *)
DOPTO Q6/)
GO Q6/)

Q6/ if (ARCWRD BY) and (OUR AGFLAG)
then ALTARC Q6/-2)

TRACE4RC WRD BY Q6/-1)
SETR AGFLAG NIL)
DOTO Q7./)
GO Q7/))

Q6/-2
NEXTLEXALT Q6/)
TRACEARC POP NIL Q6/-2)
DOPOP (BUILDQ (S + +(TNS +)

(VP (V +)+))
TYPE SUBJ TNS V OBJ)

(GETR POPFEATS))
(GO DETOUR)

121

114

Q7/ (if (STHINGLEFTP)

I

then NEXTLEXALT Q7/)
TRACEARC PUSH NIL Q7/-1)
DOPUSH NP/ Q7/-1-PUSH)
GO DETOUR))

(CHANGESTATEQ Q7/)
(GO NEXTLEX)

.

Q7/-1-PUSH
SPREAfil/WFS)
SETR SUBJ *)
DOPTG Q6/)
CO Q6/)

VP/ if (ARCCAT V)
else (CHANGESTATEQ VP/)

(GO NEXTLEX))
(NEXTLEXALT VP/)
(TRACEARC CAT V VP/-,1)

VP/-1-CONT
(ALTCAT VP/-17CAT)
(if -(GETF * UNTENSED)

tNn (GO ABORT))
rGETR V *)
DOTO Q3/)
O Q3/)

VP/-1-CAT

1

ARCCAT V)
TRACEARC ALTCAT V VP/-1)
GO VP/-1-CONT)

NP/ if (ARCCAT DET)
else (GO NP/-2))

(ALTARC NP/-2)
(TRACEARC CAT DET NP/-1)

NP/-1-CONT

1

ALTCAT NP/-1-CAT)
SETR DET *)
DOTO NP/1)
GO NP/1)

NP/-2
(if, (ARCCAT NPR)
else (CHANGESTATEQ NP/)

(GO NEXTLEX))
(NEXTLEXALT NP/)
(TRACEARC CAT NPR NP/-2)

NP/-2-CONT

1

ALTCAT NP/-2-CAT)
SETR NPR *)
DOTO NP/3)
GO NP/3)

NP/-1-CAT

rGONP/-1-CONT)

RCCAT DET).
TRACEARC ALTCAT DET NP/-1)

NP/-2-CAT
ARCCAT NPR)
TRACEARC ALTCAT NPR NP/-2)
GO NP/-2-CONT)

NP/1 if (ARCCAT ADJ)
else (GO NP/1-2))

(ALTARC NP/1-2)
(TRACEARC CAT ADJ NP/1-1)

NP/1-1-CONT

1

ALTCAT NP/1-'-CAT)
ADDL ADJS 1
DOTO NP/1)
GO NP/1)

NP/1-2
(if (AICAT N)
else CRANGESTATEQ NP/1)

GO NEXTLEX))
(NEXTLEXALT NP/1)
(TRACEARC CAT N NP/1-2)

NP/1-2-CONT
iALTCAT NP/1-2-CAT)
SETR N *)
DOTO NP/2)
GO NP/2)

NP/1-1-CAT
ADJ)

TRACEARC ALTCAT ADJ NP/1-1)
, O NP/1-1-CONT)

NP/1-2-CAT

1

ARCCAT N)
TRACEARC ALTCAT N NP/1-2)
GO NP/1-2-CONT)

NP/2 NEXTLEXALT NP/2)
TRACEARC POP NIL NP/2-1)
DOPOP (BUILDQ (NP +)

ADJ +)
N +))

DET ADJS N)
(GETR POPFEATS))

i

GO DETOUR)
NP/3 NEXTLEXALT NP/3)

TRACEARC POP NIL NP/3-1)
DOPOP (BUILDQ (NP (NPR +))

NPR)
(GETR POPFEATS))

(GO DETOUR))))

123
116

Trace of Version 1 Parsing a Sentence

PARSE((JOHN WAS BELIEVED TO HAVE BEEN SHOT BY FRED))

Starting alternative 0
At arc S/
Node = (((JOHN NPR (&)) ((WAS V & AUX &) (& &))))

The sentence is eonverted into a chart format. The Chart
contains information About the possible parts of speech of each
word. Notice that "was" can be either, a verb (V) or an auxiliary
verb (AUX). (An "&" is used to indicate a further structure.)

Taking PUSH arc S/-2

The trace indicates the arc type and its location in the grammar.
No alternative is stored because S/-2 is the last arc in the
state S/ and there are no lexical alternatives.

PUSHing for NP/
. _

Taking CAT NPR arc NP/-2
Setting NPR to JOHN

The trace also indicates where registers get set. ,

Entering state NP/3
Node = (((WAS V (&) AUX (&)) ((BELIEVED V &) (& &))))
Taking POP arc NP/3-1
Trying to POP

(Continuing arc SI-2-PUSH)
Setting SUBJ to (NP (NPR JOHN))
Setting TYPE to DCL

Entering state Q21
Node = (((WAS V (&) AUX (&)) ((BELIEVED V &) (& &))))
Taking CAT V arc Q2/-1

Setting V to BE
Setting TNS to (PAST)

Entering state Q3/
Node = (((BELIEVED V (&)) ((TO PREP &) (& &))))

The alternative configuration to try the second arc leaving Q3/
(Q3/2) is created and saved after the test has succeeded on the
first arc but before the arc is taken. This is alt 2 because
configuration 1 was created during the earlier PUSH arc (i.e.
the number is a configuration number).

Storing alt 2 for arc Q3/-2
Taking CAT V arc Q3/-1
HOLDing (NP (NPR JOHN))

Setting SUBJ to (NP (PRO SOMEONE))
Setting AGFLAG to T
Setting V to BELIEVE

Entering state Q3/
Node = (((TO PREP (&)) ((HAVE V &) (& &))))

Storing alt 3 for arc Q3/-4
Taking PUSH arc Q3/-3
PUSHing for NP/
BLOCKED

1.

Starting alternative 3
At arc 03/-4

124
117

Node = (UTO PREP (&)) ((HAVE V &) (A: &))))
Storing alt 5 for arc Q3/-5

Taking VIR NP arc Q3/-4
(NP (NPR JOHN)) removed from HOLD list

Setting OBJ to (NP (NPR JOHN))

Entering state Q4/
Node = (((TO PREP (&)) ((HAVE V 0 (& &))))

Storing alt 6 for arc Q4/-3
Taking WRD TO arc Q4/-2

Entering state Q5/
Node = (((HAVE V (&)) ((BEEN V &) (& &))))
Taking PUSH arc Q5/-1

SENDing SUBJ value of (NP (NPR JOHN))
SENDing TNS value of (PAST)
SENDing TYPE value of DCL

PUSHing for VP/
Taking CAT V arc VP/-1

Setting V to HAVE

Entering state Q3/
Node = (((BEEN V (&)) ((SHOT V &) (& &))))

Storing alt 8 for arc Q3/-3
Taking CAT V arc Q3/-2

Setting TNS to (PAST PERFECT)
Setting V to BE

Entering state Q3/
Node = (((SHOT V (&)) ((BY PREP &) (& NIL))))

Storing alt 9 for arc Q3/-2
Taking CAT V arc Q31-1
HOLDing (NP (NPR JOHN))

Setting SUBJ to (NP (PRO SOMEONE))
Setting AGFLAG to T
Setting V to SHOOT

Entering state Q3/
Node = (((BY PREP (0) ((FRED NPR &) NIL)))

Storing alt 10 for arc Q3/-4
Taking PUSH arc Q3/-3
PUSHing for NP/
BLOCKED

alternative 10
At arc 3/-4
Node = ((BY PREP (&)) ((FRED NPR &) NIL)))

Storing alt 12 for arc Q3/-5
Taking VIR NP arc Q3/-4
(NP (NPR JOHN)) removed from HOLD list

Setting OBJ to (NP (NPR JOHN))

Entering state Q4/
Node = (((BY PREP (0) ((FRED NPR 0 NIL)))

Storing alt 13 for arc Q4/-2
Taking WRD BY arc Q4/-1

Setting AGFLAG to NIL

Entering state Q7/
Node = (UFRED NPR (&)) NIL))
Taking PUSH arc Q7/-1
PUSHing for NP/
Taking CAT NPR arc NP/-2

Setting NPR to FRED

125
118

Entexing state NP/3
Node = (NIL)
Taking POP arc NP/3-1
Trying to POP
(Continuing arc Q7/-1-PUSH)

Sett.ing SUBJ to (NP (NPR FRED))

Entering state Q6/
Node = (NIL)
Taking POP aro Q6/-2
Trying to POP,
(Continuing arc Q5/-1-PUSH) ,

Setting OBJ to (S DCL (NPR FRED))
TNS (PAST PERFECT))
VP

(V SHOOT) (NP (NPR JOHN))))

Entering state Q6/
Node = (NIL)
Taking POP aro Q6/-2
Trying to POP
Trying to SUCCEED

S DCL
NP PRO SOMEONE
TNS PAST
VP V BELIEVE

S DCL
NP NPR FRED
TNS PAST PERFECT
VP V SHOOT

NP NPR JOHN

One successful parse. Parser continues
because it was being run in a mode which
returns all possible parses.

Starting alternative 13
At arc Q4/-2
Node = (((BY PREP (if()) ((FRED NPR &) NIL)))
Taking POP arc Q4/-3
Trying to POP

(Continuing arc Q5/-1-PUSH)
Setting OBJ to (S DCL (PRO SOMEONE))

TNS (PAST PERFECT))
VP

(V SHOOT) (NP (NPR JOHN))))

Entering state Q6/
Node = (((BY PREP (&)) ((FRED NPR &) NIL)))

Storing alt 15 for arc Q6/-2
Taking WRD BY arc Q6/-1

Setting AGFLAG to NIL

Entering state Q7/
Node = (((FRED NPR (if()) NIL))
Taking PUSH arc Q7/-1
PUSHing for NP/
Taking CAT NPR arc NP/-2

Setting NPR to FRED

Entering state NP/3
Node = (NIL)
Taking POP arc NP/3-1
Trying to POP
(Continuing arc Q7/-1-PUSH)

Setting SUBJ to (NP (NPR FRED))

Entering state Q6/
Node = (NIL)
Taking POP arc Q6/-2
Trying to POP
Trying to SUCCEED

S DCL
NP NPR FRED
-TNS PAST
VP V BELIEVE

S DCL
NP PRO SOMEONE
TNS PAST PERFECT
VP V SHOOT

NP NPR JOHN

alternative 15
At arc 6/-2
Node = ((BY PREP (&)) ((FRED NPR &) NIL)))
Taking POP arc Q6/-2
Trying to POP
Trying to SUCCEED
BLOCKED

alternative 12
At arc 3/-5
Node = ((BY PREP (&)) ((FRED NPR &) NIL)))
BLOCKED

alternative 9
At arc 3/-2
Node = ((SHOT V (&)) ((BY PREP &) (& NIL))))
BLOCKED

alternative 8
At arc 3/-3
Node = ((BEEN V (&)) ((SHOT V &) (& &))))
BLOCKED

alternative 6
At arc 4/-3
Node = ((TO PREP (&)) ((HAVE V &) (& &))))
Taking POP arc Q4/-3
Trying to POP
Trying to SUCCEED
BLOCKED

alternative 5
At arc 3/-5
Node = ((TO PREP (&)) ((HAVE V &) (& &))))
BLOCKED

alternative 2
gd:re 3/ 2

((BELIEVED V (&)) ((TO PREP &) (& &))))
BLOCKED
NIL

Second possible parse.

Appendix E

Grammar Compiler Declarations

Specification of Features

Some features of the general ATN parser require a good deal of

bookkeeping. For example, SYSCONJ requires a parser to save the path that

it takes through the grammar. This more than doubles the amount of storage

overhead. To relieve the burden of those features, such as SYSCONJ, which

increase the overhead, and which a particular application may not require,

the user can specify which features his grammar uses. The compiler will

then tailor the object code to those needs. The user specifications

consist of a collection of flags which are set at compile time. A

description .of each flag together with its default setting is given below.

HOLDFLG.: If the grammar does not use the HOLD facility, setting this flag
to NIL will eliminate one field in a configuration. Default is T.

FEATURESFLG: If the grammar doesn't use the feature facility, setting this
flag to NIL will eliminate one field in a configuration. Default is T.

WFSTFLG: If the grammar uses the well-formed substring feature, WFSTFLG
should be non-NIL. Default is NIL.

ALTCATSFLG: If this flag is NIL., the compiler will not compile the ability
to handle multiple interpretations of a word within a single category. If
ALTCATSFLG is a list, it will compile this atitERT-into those CAT arcs
whose categories are members of the list. If T, it will compile this
ability into all CAT arcs. Default is T.

SYSCONJFLG: If the grammar uses the LUNAR SYSCONJ conjunction-handling
facility SYSCONJFLG should be non-NIL. Default is NIL. (SYSCONJ has not
been implemented yet.)

STARTSTATE: This should be the start state of the grammar. Default value
is S/.

NULLPUSHFLG: If NULLPUSHFLG is non-NIL, a PUSH arc will never be taken if

there is no input left.
1

Default setting is T.

UNAMBIGUOUS-CHART: If the input chart is never ambiguous, setting this
flag to a non-NIL value will avoid the checking for an alternative lexical
interpretation. Default is NIL.

1

This begins to legislate out PUSHes which do not use any of the
inputs. In practical terms, this means that a PUSHed to network has to do
more than just take constituents off the hold list. In theoretical terms,
it closes one. of the holes which may allow an ATN grammar to be
undecidable.

128
121

Declarations for Arc Tests ond Actions

The tests and actions on an arc can be arbitrary LISP expression3. To

compile these function calls, the grammar compiler must know which

arguments get evaluated. In general the grammar compiler gets this

information from the same declarations about functions that the LISP

compiler uses (NLAMA, NLAML, FNTYPE, etc.). In addition a facility is

provided which allows the user to tell the grammar compiler how to compile

the individual arguments to particular functions. Using this facility it

is possible to write function calls in the grammar which implicitly QUOTE

some of their arguments and evaluate others or even which call another

function to decode their arguments. The compiler is told how to compile

the arguments to a function by putting a specification as the value of the

property GRAMMARARGINFO on the property list of the function name. The

value of GRAMMARARGINFO property should be one of the following:

1) LAMbDA: the function evaluates all of its arguments. (This is the
default case.)

2) NLAMbDA: tne function doesn't evaluate any of its arguments. This
can also be done by putting the function on either of the lists NLAMA
or NLAHL (see INTERLISP compiler).

3) A list which specifies how each argument should be treated. Each
element of the list can be:

I) E or NIL - This argument position will be evaluated. This is the
usual case where the action expects its argument to be evaluated and
tells the grammar compiler to scan the argument for embedded calls.

2) QUOTE - This argument is embedded in QUOTE. This provides a

convenient way of automatically quoting certain argument positions
in a function call.

3) * - The argument is not compiled'by the grammar compiler but is
merely copied. Note: Arguments which occur in this position should
not have any embedded functions as these will not be scanned by the
compiler.

4) Any other atom - The atom is the name of a -unction which when
APPLYed to the argument returns the compiled form.

Examples: The grammar function SETR which sets the value of a register

could be compiled by having a GRAMMARARGINFO property of (QUOTE E).
2
The

arc action (SETR ANAPHORFLG T) would compile into (SETR (QUOTE ANAPHORFLG)

T). SETR is defined as a LAHBDA function (i.e. the interpreter evaluates

2 SETR is, in fact, recognized specially by the grammar compiler so
that it can keep track of the registers which are used in the grammar.

129
122

its arguments) which avoids the explicit call to EVAL which resuits from

having SETH be a NLAMBDA function (i.e. the interpreter doesn't eValuate

its arguments).

In the LUNAR grammar, many of the arc functions use EV4LLOC to

evaluate one or more of their arguments. EVALLOC has three options: (1)'

if its argument is "*" or NIL, it gets the value of the current thing - *;

(2) if the argument is atomic, it is a register whose value is retrieved;

and (3) if the argument is a list, it is evaluated. This allows the

grammar to be clearer and less cluttered with predictable function calls.

To accomplish the same results using the compiler, a version of EVALLOC

(CEVALLOC) is provided which returns the form for the decoded argument.

The functions which use it are then given GRAMMARARGINFO property of

CEVALLOC for those argument positions which need decoding. This means that

the decoding process takes place once at compile time instead of each time

the arc is tried. For example, in the LUNAR grammar the function MARKER

has a GRAMMARARGINFO property of (CEVALLOC QUOTE). This allows the grammar

to have (MARKER N MASS) as an action which compiles into

(MARKER (GETR N) (QUOTE MASS)) and avoids an explicit call to EVAL by

MARKER. Notice that by using this technique, the grammar writer can easily

specify default arguments to actions in his grammar (at very little

computational cost) and greatly improve the readability of the grammar.

130

123

Appendix F

Debugging Features

Since the compiler transforms the grammar into a program, the grammar

writer can use the debugging features of the object language to aid in

debugging his grammar. These should, of course, be augmented by some

features particular to grammars, but these are best integrated into an

existing framework. The following section describes a collection of

grammar debugging tools that have been integrated into the INTERLISP

system.

The debugging facilities can be grouped into two major categories;

tracing and breaking. The trace will show all grammar transitions and

reptster-changing operations. In debugging mode, the system will even keep

a complete history of the parse so that the user can back up. In addition,

the user has the ability to stop the parser at the end of each line of the

trace in nrder to look around in and/or change the current environment.

TracinK

The trace package causes the functions in the object language program

to print out what they are doing. There are three types of actions which

may be in:Auded in the trace: (1) arc transitions, storing of alternatives

and hold list operations; (2) setting of registers; and (3) sending of

raji...ters to a PUSH configuration. The latter two of these can be turned

off independently. In addition, the debugging system allows the user to

trace to a disk file and not to TTY. (If the user wants both TTY and disk

copies, he can use the INTERLISP DRIBBLE facility.)

Breaks

The break package allows the user to stop the parser .at any time;

check the states of the current configuration, or any of the alternative or

previously blocked configurations; or backup to previous points in the

parse to examine more closely the path taken. The break package exec is

131

124

BHEAK1 (the LISP Break executive) augmented with some special functions and

)1HEAKMACHUS. Since the user is talking to MAKI, he can use any of the

LISP break commands or execute any LISP functions as well as the special

commands described below. He can also use the special commands while

inside of a break caused by having broken one of his functions or typing_

Control-H or Control-B.

How to Get into a Break

Whenever the trace package prints a line of tracing information, and

the variable PAUSEFLAG has a non-NIL value, the trace package will wait for

the user to indicate whether to continue or break. A break is caused by

typing PAUSECHAR (initially ","). Continuation is caused by typing

CONTINUECHAR (initially "."). All other characters are ignored. If

PAUSECHAR is typed, BREAK1 is entered. The parsing is resumed by using one

of the Break exiting commands, or by using one of the special commands

described below. Note: "." is equivalent to the Break command "OK".

Grammar Break Commands

Printing Out Parsing Information:

The following commands and functions are provided to print out

information associated with a configuration.

1) CF - a Break command which prints out the present status of the
currently active configuration.

2) PPCF(n) - prints out the status of configuration number n.

Note: Both CF and PPCF only print non-NIL information about a
configuration. Also PRINTLEVEL is set to 4 when debugging. It can be
reset to a higher (or lower) number if the user wants more (or less)
information printed.

3) PT - a Break command which tree prints (PPTT - see below) the current
_structure (*). This is most useful after a POP to examine the
structure which was POPped.

4) PPTT(x) - prints the structure x in a tree format without parentheses.

5) CFARRAYDUMP(ST END) - dumps the contents of the configuration array
from configuration number ST to configuration number END. If ST is
NIL, 0 is used. If END is NIL, the largest configuration FREECF#, is
used.

132

Commands to Back up the Parser

The following commands are used to change the flow of control of the

parser while debugging. In order to use AGAIN or BACKUP, the parser must

be run in PATH mode, which saves a new configuration each time an arc is

taken.

1) AGAIN - a break command which restarts the current configuration,
i.e. goes back to the most recent arc transition and starts again.
The effect is to redo the current arc. If the user discovers that
this did not back up far enough, he can use the command BACKUP.

2) BACKUP - a break command which restarts the configuration which led
to the current one. BACKUP may be invoked successively to back up
more than one arc transition.

3) ABORT - a break command which ABORTs the current configuration. The
next active configuration will be taken from the ALTS list.

Note: AGAIN and BACKUP are useful if an arc is taken (or not taken) when
it should not have been (or should have been). The predicates or functions
involved in the offending arc test can be broken (using the LISP function
BREAK) and then AGAIN or BACKUP can be called to redo the arc.

4) FIRE(n) - aborts the current configuration and starts the
configuration n. If n is on the ALTS list, the ALTS list is POPped
to the configuration before n.

5) PARSER(n) - recursively invokes the parser on configuration n. This
provides a way of exploring one of the configurations on the ALTS
list or returning to a (much) earlier configuration. Note: After
PARSER returns, the user is still in the same place with respect to
the current parse (except that he -may have fewer configurations
left, his alternative lists may have been altered and his WFST may
contain more entries.)

Appendix G

ATN Description of Part of the SOPHIE Semantic Grammar

This appendix gives an ATN description of the same subset of

language as presented in Appendix A. Of the 24 rules listed in Appendix A,

15 became "syntactic" categories, 3 were incorporated into other networks

and 6 remained non-terminals. The first section presents the ATN in its

graphic form. The second section presents the ATN as it is input to the

compiler.

134

MEAS/SECTION

JUMP

CAT

PREP

MEAS/1/Q

JUMP

MEAS/1/0

QUART

cAT PREP
4e 00EAS/040.

c
TERMIType

MEAS/TERM ,MEAS/TERM/

WANT
JUMP

MEAS/TERM/

PREP

tAT PART

JUMP

CAT

MEAS/QUANT

MEAS/QUANT MEAS/PREP

MEAS/BETWEEN MEAS/BET/N1 MEASADANO

PLACE/

PUSH CIRCU5

PLACE/

CIRCUIT/
PLACE/

JUMP

WRD
THERE

RD (NODE Nj

/Pt

POP

WRD (BETWEEN

JUNCTION)

NODE/1'

NODE/BETWEEN

cAY SECTI0

RUSH PART/

cAT NODE
CAT

E

47: INTEGER

WRD
OF)

JUMP

IPE
TERM/TYPE

(PREP(NODE
TERMINAL))

TERM/ITS

r TERwriP

NODE/END

P SH PART/

POP

Sit

TERM/ITS/
TERM

NODE/
BET/II

NODE/
BET/AND

TERM/END
POP

CAT PART

WRO TST
THAT TYPE/CHECK

WRD ITS WRO(JUNCTION(OF)
CIRCUIT

1RANSISTOR

CAT JUNCTION JUMP JUMP

139

Input Form of Semantic ATN

(MEASUREMENT/
(GROUP

(CAT SECTION T

1

SETR WHERE *)
TO MEAS/SECTION))

(WRD INPUT OUTPUT T
SETR I/0 LEX
TO MEAS/I/O)

(CAT MEAS/QUANT T
(SETR QUANT *)
(TO MEAS/QUANT))

(CAT JUNCTION T
(SETR TERM *)
(TO MEAS/TERM))

(CAT TERM/TYPE T
(SETR TERM *)
(TO MEAS/TERM))

(CAT TRANSFORMER T
(SETR WHERE *)
(TO MEAS/SECTION))))

(MEAS/SECTION
(GROUP

(WRD (INPUT OUTPUT) T
(SETR I/0 *)
(TO MEAS/SECT/I/O))

(JUMP MEAS/SECT/I/O T)))

(MEAS/SECT/I/O
(GROUP

(CAT MEAS/QUANT T
(SETR QUANT *)
(TO MEAS/END))

(JUMP MEAS/END (GETR I/0))))

(MEAS/I/O
(GROUP

(CAT MEAS/QUANT T
(SETR QUANT *)
(TO MEAS/I/O/QUANT))

(JUMP MEAS/I/O/QUANT T)))

(MEAS/I/O/QUANT
(GROUP

(CAT PREP T
(TO MEAS/I/O/QUANT))

(CAT TRANSFORMER T
(SETR WHERE *)
(TO MEAS/END))

(CAT SECTION T
(SETR WHERE
(TO MEAS/END)

(JUMP MEAS/END T))

(MEAS/TERM
(CAT MEAS/QUANT T

(SETR QUANT *)
(TO MEAS/TERM/Q)))

(MEAS/TERM/Q
(GROUP

(CAT PREP T
(TO MEAS/TERM/PREP))

(JUMP MEAS/TERM/PREP T)))

140

(MEAS/TERM/PREP
(GROUP

(CAT PART T
(SETR WHERE (BUILDQ (+ *)

TERM))
(TO MEAS/END))

(JUMP MEAS/END T
(SETR WHERE (BUILDQ (+ (PREF))

TERM
(PART/RANGE TERM))))))

(MEAS/QUANT
(GROUP

(WRD (ON OF) T
(SETRQ CLASSES (PART TERMINAL JUNCTiON NODE SECTION))
(TO MEAS/PREP))

(WRD AT T

1

SETRQ CLASSES (NODE TERMINAL))
TO MEAS/PRET

(WRD BETWEEN FROM T
TO MEAS/BETWEEN))

(WRD ACROSS T
(SETRQ CLASSES (PART JUNCTION))
(TO MEAS/PREP))

(WRD IN T
CLASSES (PART TERMINAL JUNCTION SECTION))

SETRQ I/0 INPUT)
- O MEAS/PREP))
(WRD THROUGH T

1

SETRQ CLASSES (PART TERMINAL JUNCTION SECTION))
TO MEAS/PREP))

(WRD OUT FROM) T
SETRQ CLASSES (SECTION))
SETRQ I/0 OUTPUT)
TO MEAS/PREP))

(JUMP MEAS/PREP T))
(POP (BUILDQ (REFERENCE ((QUANT)

+))
QUANT)

T))

(MEAS/PREP
(PUSH CIRCUIT/PLACE/ T

rTENDRQ NOPRO T)
SETR WHERE *)
O MEAS/END))

(PUSH JUNCTION/ T
rTENDRQ NOPRO T)
SETR WHERE *)
O MEAS/END))

(PUSH PART/ T
SENDRQ NOPRO T)
SETR WHERE *)
'11:) MEAS/END))

(CAT SECTION T
rTENDRQ NOPRO T)
SETR WHERE *)
O MEAS/END))

(PUSH PRONOUN/ (GETR CLASSES)
rTENDR TYPES CLASSES))
SETR WHERE *
O MEAS/END))

(MEAS/END
(POP (BUILDQ (MEASURE + + +)

141

QUANT WHERE I/O)
T))

(MEAS/BETWEEN
(PUSH PRONOUN/ T

(SENDRQ TYPES (NODE TERMINAL))
(SETR NODE1 *)
(TO MEAS/BET/N1))

(PUSH CIRCUIT/PLACE/ T
(SETR NODE1 *)
(TO MEAS/BET/N1))

(PUSH NODE/BET T
(SETR WHERE *)
(TO MEAS/END))

(WRD OUTPUT T
(TO MEAS/BET/OUT)))

(MEAS/BET/N1
(WRD (TO AND) T

(TO MEAS/BET/AND)))

(MEAS/BET/AND
(PUSH CIRCUIT/PLACE/ T

(SETR NODE2 *)
(TO MEAS/BET/END)))

(MEAS/BET/END
(POP (BUILDQ (MEASURE + + +)

QUANT NODE1 NODE2)
T))

(CIRCUIT/PLACE/
(JUMP TERMINAL/ T)
(JUMP NODE/ T)
(WRD THERE T

(SETR POPVAL (BUILDQ (PREF (NODE TERMINAL))))
(TO POP/VAL/)))

(NODE/
(GROUP
AWRD (NODE N) T

(TO NODE/1))
(JUMP NODE/1 T)))

(NODE/1
(GROUP

(WRD (BETWEEN JUNCTION) T
(TO NODE/BET))

(CAT NODE T
(SETR NODE *)
(TO NODE/END))

(CAT INTEGER (AND (IGREATERP * -1)
(ILESSP * 27))

(SETR NODE (PACK (LIST (QUOTE N)

(TO NODE/END))))
*))

(NODE/BET
(GROUP

(WRD OF T
(TO NODE/BET))

(CAT SECTION T
(SETR PART1 *)
(TO NODE/BET/P1)))

(PUSH PART/ T

142

(SETR PART1 *)
(TO NODE/BET/P1)))

(NODE/BET/P1
(WRD AND T

(TO NODE/BET/AND)))

(NODE/BET/AND
(PUSH PART/ T

(SETR NODE (BUILDQ
PART1))

(TO NODE/END))
(CAT SECTION T

(SETR NODE (BUILDQ
PART1))

(TO NODE/END)))

(NODE/END
(POP (GETR NODE)

T))

(TERMINAL/
(GROUP

(CAT TERM/TYPE T
(SETR TERM/TYPE
(TO TERM/TYPE))

(WRD ITS T
(TO TERM/ITS))

(WRD OUTPUT T
(TO TERM/OP))))

(NODE/BETWEEN + *)

(NODE/BETWEEN + *)

11)

(TERM/TYPE
(GROUP

(WRD TERMINAL T
(TO TERM/TYPE/2))

(JUMP TERM/TYPE/2 T)))

(TERM/PREP
(PUSH PART/ T

(SETR PART *)
(TO TERM/TERM))

(WRD ONE T
(SETR PART (BUILDQ (PREF)

(PART/RANGE TERM/TYPE)))
(TO TERM/TERM))

(JUMP TERM/TERM T
(SETR PART (BUILDQ (PREF)

(PART/RANGE TERM/TYPE)))))

(TERM/TERM
(POP (BUILDQ (+ +)

TERM/TYPE PART)
T))

(TERM/ITS
(CAT TERM/TYPE T

(SETR TERM/TYPE *)
(TO TERM/ITS/END)))

(TERM/ITS/END
(POP (BUILDQ (+ (PREF))

TERM/TYPE
(PART/RANGE TERM/TYPE))

T))

143

(PART/
(GROUP

(CAT PART T
SETR PART *) ,

TO PART/END))
(WRD Q R D C) T

SETR TYPE *)
TO PART/ABBEIO)

(WRD LOAD T
(SETRQ PART LOAD)
(TO PART/END))

(CAT SECTION T
(SETR SECTION il)--,
(SETRQ CLASSES (CAPACITOR DIODE RESISTOR TRANSISTOR

ZENER/DIODE TRANSFORMER))
(TO PART/SECTION))

(JUMP PRONOUN/ T
(SETRQ TYPES (PART)))))

(PART/ABBEY
(CAT INTEGER T

(SETR PART (PACK (LIST (GETR TYPE)
*)))

(TO PART/END)))

(PART/SECTION
(TST RIGHT/TYPE (MEMB LEX (GETR CLASSES))

(SETR PART (BUILDQ (FINDPART +)

SECTION LEX))
(TO PART/END)))

(PART/END
(POP (GETR PART)

T))

(PRONOUN/
(GROUP

(WRD IT T
(TO PRO/END))

(WRD THAT T
(TO PRO/THAT))))

(PRO/THAT
(TST TYPE/CHECK (MEMB LEX (GETR TYPES))

(SETR TYPES (LIST LEX))
(TO PRO/END)))

(PRO/END
(POP (BUILDQ (PREF +)

TYPES)
T))

(JUNCTION/
(GROUP

(CAT JUNCTION T
(SETR JUNCTION *)
(TO JUNC/JUNC))

(WRD ITS (NULLR NOPRO)
(TO JUNCTION/))))

a.

(JUNC/JUNC
(GROUP

(WRD (JUNCTION CIRCUIT OF) T
(TO JUNC/JUNC))

(JUMP JUNC/OF T)))

144

(JUNC/OF
(GROUP

(CAT TRANSISTOR T
(SETR TRAN *)
(TO JUNC/END))

(JUMP JUNC/END (NULLR NOPRO)
(SETR TRAN (LIST (QUOTE PREF)

(QUOTE (TRANSISTOR)))))))

(JUNC/END
(POP (BUILDQ (+ +)

JUNCTION TRAN)
T))

145.

