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ARSTRACT

One of the major stumbling blocks to more effect.ive educational uses
of computers 1is the lack of natural means of communication between the
student and the computer. This thesis addresses the problem of developing
a system which can understand natural language (English) within an
educational problem-solving environment. The nature of the environment
imposes the following requirements on a natural language understandin
system: (1) efficienci, (2) habitability, (3) self-teachabllity, and
awareness of ambiguity. The major leverage points that allow these
requirements to be met are: é1g limited domaln, (2) 1limited activities
within that domain, and 3) known conceptualizations of the domain. In
other words, we know the problem area, the type of problem the student is
trying to solve and the way he should be thinking about the problem in
order to solve it. ‘

The notion of semantic grammar 1is introduced as a paradigm for
organizing the knowledge required to understand 1an%uage which permits
efficient Earsing. In semantic grammar, non-terminal categories are formed
on conceptual rather than syntactic bases. This allows semantic knowledge
to be integrated into the parsing process whenever it is beneficial to o]
so. The semantic grammar also lends itself to a simple yet powerful method
of handling pronominalizations, ellipses and other sentence fragments which
arise naturally in a dialogue situation.

The need for a succinct formalism for expressinﬁ semantic grammars led
to the use of the Au%mented Transition Networks (ATN). This, in turn, led
to the design and implementation of a general ATN compiling system which
dramatically increases the speed of executing an ATN by translating it into
a program in a runnable computer language (LISP). The ATN compiler is also
capable of producin% pro%rams which have been optimized to the features
used by a particular ATN. he ability of ATN-based semantic grammars to
perform satisfactorily in an educational environment is demonstrated in the
natural language front-end for the SOPHIE system.
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Ghapter |

KEQULIREMENTS FOR A NATURAL
. LANGUAGE 1RTERFACE

Since the inCepLién of comput.ing machines, a major problem has been
facilitating wman’s communicat ion with the machine. Nuch of the work which
has beenldone in the areas ot proeramming languages, natural language
processing and automatic programming has been directed towards developing
more natural man-machine int.eraction, This report discusses a paradiem for
construct.ing efficient and friendly man-machine interface systems involving
subsets of natural language for limited domains of discourse, As_such this
work falls somewhere between highly constrained formal language query
system and unrestricted natural language understanding systems. The
primary purpose of tLhis rescarch is nol to advance our theorelical
understanding of natural language but rather Lo put forth a set of
Lechniques for embedding both semantic/conceptual and pragmatic informat.ion
into a useful natural language interface module. Our intent is to produce
a tront end system which enables the user to concentrate on his problem or
task rather than making him worry about how to communicate his ideas or

quest.ions to the machine.

‘Although there are many application areas for which our techniques
apply, the principal mot.ivation for this research arose from the pressine
need for natural language intertaces (o complex instructional svstems
underiying reactive . educational environments. The term "educational
environment" as wused here refers t.o flexible problem solving,
laboratory-like situations which have been implemented on a computer. The
environment is reactive in tne sense that the computer can>(in addition to
- implement ing  the laboratory) monitor the student ‘s activities and provide
tutorial feedback at critical times during the solution of problems. Such
systems have the characteristic that the computer naive users (students)
are involved in a problem sclving situation in which the computer is merely
the medium. iost. certainly these students (users) are not interested in

state-of-art man-machine communication; they are interested in solvine

tneir problems and learning from their sclut ion paths and ~rrors.



I cdueat tonal environment places const.ralnts on a natural lanpuaee
understamitne system which exceed the capabllitles of all exlsting ayst.ems,
Thnese  constraints  Ineluded (1) effliclency (2) habltabllity (3)
self-teachability and (4) the abillty to exlst with amblguity. 1In the
remainder of this chﬁpter we will explore why these are ilmportant and tLhen

provide an overview ot the remalnder of this report.

kequirement s

A primary requirement tor a natural language processor in a problem
solwvinr situation is speed. Imagine the following sett.ing: the student is
al his terminal aectively working on a problem. He decides that he needs
another plece of intormation to advance his solulion so he formulates a
query. From the time he finishes typing his question, he has nothing to do
until the system rives him an answer SO that he can continue working. The
{ime the system spends parsing his query, the student is apt to spend
torgetting pert inent.  information and losing interest. Psychological
experiment 5 have Shown that response delays lonéer than two seconds have
serious el'tects on lhe performance of complex tasks via ‘termlnals (Miller
63). In these two scconds, the sysiem must understand the query; deduce,

inter, lookup or caleulate the answer; and generate a response.

lhe secenu requirement  for a natural languarge front-end - is
habitability. Any natural languagé system written in t.he forseeable future
is nol going to be able to understand all of natural language. " What it
must. do is ‘o characterize and understand a useable subset of the language.
watl defines a "nabitable" sub-language as "oné in which its users can

express themselves without. straying over the lanfuage boundaries into

Another effect of pcor response time which is, critical to intelligent
monitoring systems is that more of the .student s searching for the answer
is done internally (i.e. without. using the system). This decreases the
amount of information the system receives and increases the amount. of
induct ion tnat must be pertormed, making the problem of figuring out what
{te student is doing much harder (e.z. the student won t "show his work"

when solving a problem; he will just give you the answer).
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unallowed sentences® (1Jod pe 338).  Very intultlvely, for a system to be
habitable it must, amony other things, allow the user to make local or
minor modifieat kuns o an accepted sentence and pget another accepted
sentence., Exactly how much modification consitutes a minor change has
never been specit'led. Some examples may provide more insight into the

[

notion.2

1) Is anything wrong?
2) Is there anything wrong?
R Is there something wrong?
Is there anything wrong with section 37
(5) Does it look to you like section 3 could have a problem?

If é problem solving system accepts sentence 1, it should also accept. the
modifications given in sentence 2 and 3. Sentence 4 presents a minor
syntactic extension which may have major repercussions in the semantics but
which should also be Accepted. Sentence 5 is an example of a possible
paraphrase of sentence U which is beyond the intended notion of
habitability. Based on the acceptance of sentences 1-U, the user has no

reason to expect. that sentence 5 will be handled.

Any sub=language which does not maintain a high degree of habitabiiit}
is apt to be worse than no-nathral language capability at all because the
student will be forced to expend problem solving energies diécovering how
to formulate his question. That is, in addition tc the problem he is
seeking information about, the student is faced, sporadically, with the
problem of getting the system to understand his query. This second problen

can be disastrous both because it occurs seemingly randomly and because it

Similar examples are given in (Coles 1972) p. 262.

In an informal experiment to test the habitability of a system the
author asked a group of four students to write down as many ways as
possible of asking a particular question. The original idea was to
determine. how many of the various paraphrasing would be accepted. The
students each came up with one phrasing very quickly but had tremendous
difficulty thinking of any others, even though three of the first phrasings
were different! This experience demonstrates the lack of student s abilit¥
to do M"linguistic" ,problem solving and points out the importance o

accepting the student’ s first phrasing.



s oan Lll=detined prohlum.3

At equally lmportant (and more challenging) aspect of the habitabllity
problem Ls the problem of multl-sentence (or dialogue) phenomena. When
student.s use a system whlch exhibits "intelligence" through its Inference
capabllities, they qulckly start “to assume Lhat the system must also bhe
intellligent in its conversatlonal abilities as well, For example, they
will frequently delete parts of their statements which they felt would be
obvious given the context of the preceding statements. Often they are
totally unaware of such deletlons and shew surprlise and/or anger when the
syst.em tails tc¢ utilize contextual information as clearly as they
(;ubconsciously) do. The use of context manifests ltself in Lhe use of

such linguistic phenonena as pronominalizations, anaphoric deletions and

ellipsis. The fullowing sequence of questions exemplifies these problems:

) g 1 e pematien o igg e
what about. San Diego?

The third reouiremént for a natural lansuage processor is that it be
self-teaching (not learning, teaching). As the student uses the system, he
should begin to feel the range and limitations of the sub-language. When
the student does use a sentence that the system can’t understand, he should
receive insightful feedback which will énable him t.o figure out why. There
are at least two kinds of feedback, The simplest (and most often seen)
merely provides some indication of what parts of the sentence caused the
problem (e.g. unknown word or phrase), A more useful kind of feedback
goes on to provide a response based on those part.s of the sentence that did
make sense and then indicate (or give examples of) possibly related,
ac.eptable sentences. It may even be advantageous to have the system
recognize common sentences whicn would otherwise have been outside the

sub-language and in response to them, explain why. they are not in the

sub-languafge . 9



The Tourt h requiremenm tor a natural laneuage syatem fa that it be
awiare ol oamboeuity.  hatural language pains a good deal of flexibillty and
power by not foreing every meaning into a dlifferent surface Structure,
This means Lhat the program which interprets natural language sentences
must be aware that its interpretation may not be the only one. For
example, when asked:

(9) Was John believed Lo have been shot by Fred?
one of tﬁe most. potentially disastrous responses is "Yes", The user may
not. be sure whether Fred did the shooting or the believing or both. More
likely, the user, being unaware of any ambiguity, assumes one
interpretation which may be different than the system’s. If the system’s
interpretation is different, the user thinks he has the answer to his auery
when in tact he has the answer to a completely independent query. Either

of the following is a much better response:

2103 Yes, it is believed that Fred shot John.
11) Yes, Fred believes that John was shot.

Notice that the requirement 1is not that the system necessarily have
tremendous disambipuation skills, but at least that it be aware that
mis-interpretations are possible and inform the user of its interpretation,
In Lhose cases where the system makes a mistake the results may be annoying

but should not be catastrophic,

This report presents the development of a technique, that we have
named "semaniic crammars", for building natural language processors which
satisfy the above constraints., Chapter 2 discusses other systems which
attack some of these problems. Chapter 3 presents a dialogue from the
"inLelligen(" CAI system SOPHIE, which we used to refine and demonstrate
this technique. This dialogue provides concrete examples of the kinds of
1iﬁguistic capabilities that can be achieved using semantic grammars.
Chapter 4 describes semantic pgrammars as they appear in SOPHIE, uand acznﬁs
out how it allows semantic information to be wused to handle dialogue
constructs. and to allow the directed ignoring of words in the input.
Chapter 5 disct. 35 the limitations which were encountered in the
implementation of semantic grammars in the SOPHIE natural language

10
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procvstor and how These mieht be overcome by ustnp a different formallsm ==

aurmented tpansition networks,  Chapter 6 descrlbes a compiling syatem
developed Lo improve the eff'lelency of the aupmented transitlon network
grammars by compiling  them into runnable programs. Chapter 7 reports on
t.he conversion ol lhé SOPHIE semant le grammar to an ATN and the extensions
to the AIN tormalism whleh were necessary Lo maintain the solutions
presented in chapter 4, Chapter 7 also Lnoludes comparison timing belween
the two versiona of the natural language processor, Chapter 8 presents Lhe

coneluslons ot this research and supgests directions for further work.

11



Chanter 2
RELATED SYSTEMS

Much work has been done Ln the area of natural language underatanding,
and a number of different techniques have evolved from this research, For
the purposes of this report, we shall limit the disoussion of these syatemas
to ones attempting to do question answering, and choose several aystems
that are moat relevant to the problems with which we will be ooncerned.
This chapter is not an attempt. to review the entire field of natural
- language question answering systems (which has been done fi‘om many‘ points
of view (Simmons 1965,1969), (Wilks 1974), (Bates 1975), (Bruce 1975)),
but, instead, to provide examples of practlical systems throughout -a ranre

of complexity,

KEYWORD SCHEMES

Perhaps the oldest and simplest method of dealing with unrestricted
natural lanpuage was through keyword parsing. The technique was introduced
by Weizenbaum (1u66a) and has been used and extended by others (see for
example (Weizenbaum 196665. (Brown et al 1973), (Shapiro et al 1975) (Colby
et al 1974)). Using this parsing scheme, an input sentence is searched for
"key" words. With each keyword is associated a collection of patterns
which are tested against the complete input. If a pattern matches, an‘
action associated with that pattern (typically a reassembly rulé which
constructs an output sentence by reassembling pieces of input) is executed.
This action represents the "meaning" of the sentence to the syétem (L.e.

the sentence’s semantics).

Keyword analysis schemes have the advantage of being fasy and of
allowing the user great. freedom of expression since any number of
extraneous words can be included as long as the keywords appear. A
particular parser can also be changed eauily (by adding new rules) until
such time as the rules begin interacting, at which point it is unclear
which rule to use. When interactions do begin to occur, keywords can be
assigned an "importance" number and the rule with the highest number can be

12
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used. However, conflicts may still arise when different keywords of the

“same importance appear in the same sentence.

Keyword techniques work well in situations where the actions that the
system wishes to take in response to a sentence correspond in a simple way
to the words (i.e. the concepts are not typically expressed as multiple
word phrases, and words do not have multiple interpretations). ,However,
they are weak in <ituations in which concepts are complex enough to require
embedding or in which quant.if‘ication1 is required, since their semantic
interpretation is essentially one level. In these cases, keyword patterns
become more cumbersome and inefficient to use than more structural

techniques. For example, consider the sentence:

(1) I think Q5 has an open emitter and a shorted base collector junction.

To recognize this sentence requires a very detailed keyword pattern which
could be "keyed" equally well ‘(equally poorly) off any of the words: .
think, Q5, open, emitter, shorted, base or collector. The main failing of

the keyword techniaue is not being able to capture any of the structure of

the lanpuage it is trying to characterize.

PARRY

PARRY is a ongoing project to develop a dialogue system that simulates
paranoid behavior (Colby 1973), (Colby et al 1974). The system responds to
any possible question and "understands" the questions well enough to
exhibit paranoid behavior. To theée ends, Colby has extended the keyword
parsing techniques introduced by Weizenbaum by adding of a second level of
matching, After a preprocessing phase collapses compound words,

canonicalizes similar words, performs minor spelling correction and deletes

Quantification refers to the problem of having a noun phrase which can
range over a set of values, e.g. "some cars have engines", "all cars have
engines". One of the problems with quantification is determining the scoEe
of ~ the quiantification with respect to the rest of the sentence, especially
when the rest of the sentence contains another quantifier.

i3



unrecognized words, the input is seﬂmenréd at. certain keyword
boundaries.eEach segment is then matched against a collection of segment .
patterns. The resulting list of recoqniZedvsegments is then matched to a“
"collection of complex patterns. Patterns have reassembly Eules associated

with them which construct the response.

Two important restrictions that should be placed’on the application of
keyword schemes to avoid 'mis—understandings (i.e. - to avoid patterns
applying when they shouldn’t) have arisen from Colby’s work. One is that
at most one element should be ignored at each level of matching. Segment
matches should account for all but one word. Complex patterns . should
account for all but one segment. The other reétriction is that patterns
should require that their elements occur in a particular order. The
following example (from (Colby et al 1974)) demonstrates the usefulness of
ignoring words (e.g. "well" in sentence 3), and the importance of word
order (e.g. without word order restrictions, any pattern which matched 2

would also match 3).

EZg Are you well?’
3) Well, are you?

PARRY has demonstrated the capability of dealing with a relatively
large number of concepts at a shallow level. The power in PARRY s approach
lies in its ability to tolerate unknown words. As mentioned, this
fuzziness is implemented by allowiug the deletion of single elements from
both levels of matching. Unfortunately the underlying semantics of PARRY s
task, indeed the goals of the task itself, are vague, which makes
attributes such as scope and habitability hard to evaluate. In addition,
the two-level pattern matching technigue lacks the precisionlfequired in a
problem solving situation in which many regularities cannot be captured by

one-level embedding.

- D " - ) - —— - o - -

The fragmentation technique was develoged by Wilks working in _machine
translation (1973a) (1973b). The 1list of segmentation words includes
punctuation marks, subjunctives, conjunctions and prepositions.

14



NLPQ

Heidorn (teidorn 1972,197U,1975) developed an automatic programming
system called KLPO which allows users to describe simulation problems in
English. The system takes an English partial description of a problem and
fits it into an internal description language, building pieces of the
problem. From the partial internal description, aquestions are generated
which reauest missing pieces of information. “ When the description is
complete, the system can generate a GPSS program oOr an English description
of the model it has built from the user’s description. The user can also
ask questions about the present model, and make changes and additions to
it. The English processing is done using augmented phrase structure rules
(discussed later). The phrase structure component is s&ntax-based (i.e.
looks for things 1like noun phrases) With semantic restrictions being
carried along in features which arqigested in conditions on the phrase
strucfure rules. The  structure ~building augmentations create
semantic/conceptual network structures, called segments, which represent
the semantics of the phfase. Much of the system’s success appears to be
its close match between the structure of segments and the way English 1is
used to describe modelling problems. No information on the use of NLPQ by

naive users has been published, so it is difficult to evaluate the system’s

habitability.

CONSTRUCT

CONSTRUCT is a general system to do natural language processing
developed at the Inst itute for Mathematical Studies in the Social Sciences
(Smith et al 1974). Its major application is in a text-based, question
answering system for elementary mathematics (Smith, N.W. 1974). The

system answers guestions such as:

(4) Are there any even prime numbers that are greater than 27

(5) Is the sum of 5 and 2 less than the product of 5 and 2 but greater
than the difference of 5 and 27

The semantic basis of the system is a collection of procedures for
=~
15
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generat.ing and manipulatine sets and numbers. The semantics of question 4
would be "are there any elements in the set created by intersecting the set
of even . numbers, the set of prime numbers and the set of numbers greater
than 27" As all of the sets in the example are infinite, the procedures
know about dealing with intensicnal as well as extensional descriptions of

sets.

The meaning of a sentence is determined by the following process.,
First a prep}ocess phase occurs during which (1) aLbreviations are
expanded, (2) synonyms are canonicalized, (3) compound word and common
phrases are collapsed to a single word representation, (4) noise words are
eliminated and (5) each word is replaced by its 1lexical category. The
input. is then parsed with a context free grammar with the semantic .
interpretation occurring in parallel via semantic construction functions
associated with each grammar rule; Whereas this procedure is clearly
inadequate if a traditional'syntactic gramhar is used, (e.g. no reasonable
semantic function could be associated with the rule S := NP VP) the
CONSTRUCT grammar is built around the semantic rules using categories whi*
capture concepts in the application domain. for example, the grammar
contains the egrammatical category SUBST which corresponds to the semantic
concept. of a constructive set. This cuts across traditional category

boundaries as seen in the sentences (from (Smith et al 1974)):

i

The underlined portions would all be parsed into the SUBST category,

Is 2. a factor of 47
How many factors of 12 are gven?
Give me the factors of 12 that are between 1 and 6.

although their traditional categories would be noun phrase, adjective, ‘and

prepositional phrase.

RENDEZVOUS

Codd is designing a natural language system, called RENDEZVOUS, to
support ‘he needs of casual users of data bases (Codd 1974)., One problem

that Codd has addressed, which has been neglected in previous systems, is
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what action to take if a user’s query is beyond the-restricted language
understood by the system. A central notion to Codd’s proposed solution to
this problem is that of a "clarification dialogue" -- a system initiated
dialogue that includes oueries about an unacceptable utterance which
attempts to arrive at the user’ s meaning. Codd points out that a
clarification dialogue must be embarked upon very carefully. For exahple,
if the system encounters the unknown word "concerning", one of the worst
possible responses is "What do you mean by the word ‘concerning“?" Almost
any response to such a question would be beyond the capabilities of the
system, Any clarifiqation dialogue must be cf "bounded scop2" and guided

by those parts of the query which the system can understand. RENDEZVOUS

‘also «mploys re-statement of a user’s query to confirm the intent of the

query and to point out ambiguities. The range ofilanguage accepted by
RENDEZVOUS, indeed even the method used to extend the range, is unclear.
The aspect of RENDEZVOUS which is of interest here is the extent to which

it has been designed as a "friendly" system.

LUNAR

The LUNAR system (Woods 1973a) (Woods et al 1972) is a natural
language understanding implemehtation which combines a general semantic
interpretation mechanism (Woods 1967,1968) with a large scale grammar of
English (Woods‘ 1970) (Woods et al 1972). LUNAR was designed to allow a
lunar geologist to use English to query the chemical analysis data
collected from the moon missions, Typical questions the system answers

are:

(9) Whaﬁ %s the average concentration of aluminium in high alkali
rocks?

(10) Which samples have greater than 20% modal Plagioclase?

The processing of a query occurs in three major phases. During the

first, the syntactic component. derives the '"deep structure®™ of the

3 This is the linguistic deep structure hypothesized by Chomsky (Chomsky
1965) which has a central role in the theory of transformational grammar.
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sentence.3 The syntactic component uses a general transformational gr.mmar
of Eneglish syntax expressed as an augmented transition network (see Chapter
6). In the second phase a general, rule-driven semantic interpretation
procedure produces the representation of the meaning of the sentencé as a
program in a formal retrieval language.u The semantic interpretation rules
are tree-structured pattern matching rules which are used in groups to
extract the meahing of different pieces of the syntax tree. The third
phase is the execution of the form:l expression to produce the answer to
the request. The formal query language is a generalization of the
predicate calculus which has been carefully designed to allow natural
translation from English. The strength of the LUNAR system lies in its
mechanisms -to deal with guantification, conjunction, and relative clauses,
and these are direct results of the carefully designed formal query

language.

Discussion

The notion of an augmented phrase structure grammar provides a useful
‘base for comparison between these systems.5 An augmented phrase structure
. grammar contains two comporewuts, One is a set of contéxt free phrase
structure rules. The other is a corresponding set of functions (sometimes
arbitrary, sometimes restricted) augmenting each of the rules which can be
used to block the application of‘the context free rules and to maintain
structures. While the paradigm of augmenting phrase structure grammars is
followed by a large number of natural language systems, important
differences exist with respect to what type of information is encoded in

the grammar. For example, the LUNAR system uses a purely syntactic grammaﬁ

The notion that the meening of a sentence is a program is generally
called "procedural szmantics™. Procedural semantics is in general use for
question answering applications. It does not, however, constitute a
complete theory of meaning. In particular it does not account -for such
phenomena as declaratives, uses .of temporal references, and belief

structures.

5 The idea of associating additional information with a_  phrase structure
grammar has appeared in various forms since early compiling systems (Irons

1).
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and uses the augments to perform syntactic operations such as
subject-verb amreement and to maintain the structure of the syntactic tree.
HLPQ uses a syntactic grammar restricted by (usually semantié) features and
uses the augments to perform parallel semantic interpreta;ion. CONSTRUCT
performs the semantic interpretation in parallel with a set of context free
rules which are semanfically oriented. PARRY s patterns, if viewed aé

limited phrase structure grammar rules, are directly 1linked to the

semantics of the system. The decision about how much semantic information'n'

to encode in the grammar is a trade-off between efficiency and generality.
Each of the systems presented here represents a defensible position along

this spectrum.

when we began developing ‘the SOPHIE system,7 we explored the
possibility of using intact the syntactic component of the LUNAR system.
Since the LUNAR syntactic component was building a linguistically mot.ivated
description as opposed to.the task oriented descriptiohs being built hy the
other svstems, we felt:its transferability to other domaiﬁs would be high.
we found the grammar to be very adequate Dparsing many of the most
complicated scitences we felt SOPHIE would ever need to understand.
Unfortunately, on simple sentences it provided more information about the
sentence than we needed. For example, tense information was not needed or
could be extracted from the relationships between concepts. The
quant ification and relative clause mechanisms were oriented towards Woods”
formal query language which was ‘not natural for our use. The use of
conjunction in our domain is straightforward and relatively predictable,
uhlike its use in the LUNAR domain. All in all we had the.feeling of using

a microscope where we only needed a magnifying glass! The underlying.

The augmented transition network is an extension of a recursive
transit ion network which has the power of a phrase structure grammar. For
this reason we can classify it here as using an augmented phrase structure
grammar . We will argue later that the transition network has conceptual
advantages over phrase structure rules but this does not affect this
discussion whic points out the difference in the kind of information

captured in the grammar.

7 A SOPHisticated Instructional Environment for teaching , electronic
t roubleshooting, Chapter 3 provides examples of SOPHIE s language

requirements.
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semantic structure of our system jus{ could not _take advantare of such
.detail. Added detail is acceptable (it can always bg ignored) except that
the perception of such detail takes time which is a scarce commodity. At
the time when we considered the LUNAR system, it was taking 2 ér 3 seconds
to syntactically parse a sentence and another 5 to semantically interpret
it.8 This experience led us to explore ways in which the semantics of the

system could be used to speed the understanding process.

The technique we developed (described in Chapter 4) has much in common
with both NLPQ and CONSTRUCT. However, significant differences arise from
the emphasis we have placed on dealing with dialbgues and on the
construction of a friendly system. This has caused us to exploit two uses
of semantics during parsing not found in these other systems. One 1is the
insight provided into the nature of ellipsis and deletion in dialogues.
The other is the basis provided for-characterizing a habitable languaxe.
In Chapter 4, we shall discuss our concept of a semantic grammar and how it
allows exploitation of these two advantages. Before we get into the

details of how this :s accomplished, we present in the next chapter an

example of what has been accomplished.

In Chapter 6 we will describe a technique which reduces the parse time
by an order of magnitude making this .approach more viable.
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Chapter 3
SAMPLE DIALOGUE

Before delving into the structural aspects and technical details of

the semantic grammar technique, we would first like to provide a concrete

example of the dialogues it has supported. This chapter presents an

annotated dialcgue of a student using the "Intelligent" CAIL system SOPHIE.1

The dialogue is intended to demonstrate SOPHIE’s linguistic capabilities
‘and, while it touches upon the major features of SOPHIE, it is not meant to
exhibit the logical or deductive capabilities the system.2 In the dialogue,
the student’s typing is underlined.  Even though the dialogue necessarily
deals with electronic jargon, the linguistic issues it exemplifies occur in
all domains. The annotations (lower case, indented) attempt to point out
these problems and should be understandable to the non-electronics oriented

reader.

WELCOME TO SOPHIE - A SIMULATED ELECTRONICS LABORATORY .

The circuit (Figure 3.1) is based on the Heathkit IP-28 power supply.
The IP-28 is a reasonabl soghisticated power supply with both current
limiting and voltage imitirg behavior. These two interrelated

feedback loops make troubleshueting this circuit non-trivial.

>>INSERT A FAULT

The student tells SOPHIE to give him a fault which he can
troubleshoot. SOPHIE randomly selects a fault, inserts it into a

SOPHIE was developed to explore the use of artificial intelligence
techniques to provide tutorial feedback to students engaged in problem
solving activities. The particular problem solving activity involved is
that of troubleshooting a malfunctioning piece of electronic equipment.
SOPHIE models the piece of equipment and. answers the student s requests for
measurements and other information to aid him in debugging. More
important, throughout the problem solving session, SOPHIE has evaluate the
logical consistency of a student s hygothesis or generate hypotheses which
are consistent with the behavior the s udent has thus far observed. -

The reader is encouraged to see (3rown__and Burton 1975) for further
exampl es and descriptions of SOPHIE s tutorial and inferential

capabilit.ies.
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Circuit Schematic of Heathkit Ip-28 Power Supply
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model of the instrument and tells the student how the front panel
controls are presently set., -

THE INSTRUMENT HAS A FAULT AND ITS PRESENT CONTROL SETTINGS ARE:

. 1,0 CURRENT CONTROL-FROM 0.0 (MIN CURRENT) TO .0
‘CR HIGH CURRENT RANGE SWITCH HIGH 1 AMP, LOW=.1 AMP
LOAD 1000 LOAD RESISTANCE- IN OHMS
VC 1.0 VOLTAGE CONTROL~FROM 0.0 (MIN VOLTAGE; TO 1.0
VR HIGH VOLTAGE RANGE SWITCH, HIGH 30, LOW=10 VOLTS

>>WHAT IS THE OUTPT?
OUTPT => OUTPUT
THE OUTPUT VOLTAGE IS 1.2 VOLTS.

SOPHIE corrects the student’s typing mistake.
Notice that "the output" was disambiguated as the output voltage.

IF YOU ARE NOT SURE WHETHER A VALUE IS CORRECT, YOU CAN ASK "IS THAT
VALUE CORRECT?"

The system P01nts out a feature that the student may not otherwise be
aware of. "Correct" here means what it is in a working instrument,

>>IS THAT RIGHT
IN X WORKING CIRCUIT THE OUTPUT VOLTAGE IS 30.1 VOLTS.
THAT VALUE IS INCORRECT.

"That" here refers to the value of the previous measurement. SOPHIE,
in addition to the faulted instrument, has a working circuit which can
re used to take reference measurements.,

>>WHAT IS THE VOLTAGE BETWEEN THE CURRENT LIMITING TRANSISTOR
... AND THE CONSTANT COURRENT SOURCE?
THE VOLTAGE AT NG§ IS 2.48 VOLTS.

In addition to specific part names, SOPHIE recognizes references to
Parts by their section. Notice that even though the sentence says
'voltage between x and y", and it really me;ns "yoltage at 2z with
respect to ground". The output routines ghrase the input in a
simpler form (i.e. between x and y reduces to Nu

>>WHAT IS IT BETWEEN THERE AND THE BASE OF QA
THE VOLTAGE BETWEEN NI AND W5 IS 1.28 VOLTS.

Here "it" refers to "the voltage" and "there" refers to N4,
Also notice that "between" has to be treated differently,
i.e, two nodes are explicit now.

>IS THERE ANY RIPPLE IN THE VOLTAGE AT THE BASE OF Qu?
H‘ ORRY, I DO NOT HANDLE AC CHARACTERISTICS.
SOPHIE recognizes that the student is moving into an area which it |is
unable to handle, This is currently done bg keyword recognition (e.g.
o

ﬁple) but. points out a technique which uld be incorporated 1in
er aspects of the system as well.
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>>WHAT IS THE BASE CURRENT OF

THE BASE CORRENT OF Q3 IS 12 MICROAMPS.
SOPHTE can answer juestions about current, resistance, and power
dissipation as well as voltage. The output and input routines know
about unat prefixes.

>>THRU THE EMITTER?
THE EMITTER CURRENT OF Q3 IS ~-.26 MILLIAMPS.

This is a type of sentence fragment which occurs freguently in
dialogues which we will refer to as an ellipsis., ather than
sgeci ging a complete thought., an ellipsis only gives that -piece of
the thought which contrasts an earlier thought, Notice that the
refercnt cannct be fiﬁured out on syntactic grounds (as is possible
with the ellipsis the emitter current"; yet this is the sort of
statement a student might make if the last answer had caused a slight

shifting of his thinking. .

>>COULD THE PROBLEM BE THAT IS BAD?
PLEASE BE MORE SPECIFIC ABOUT HOW Q5 IS FAULTED.

The student develops an idea about what is wrong and asks to have it
evaluated.

>>COULD IT BE SHORTED?

THE SHORTED MODES OF A TRANSISTOR CURRENTLY IMPLEMENTED ARE: ALL
JUNCTIONS SHORTED OR ONE JUNCTION SHORTED WITH THE OPPOSITE
TERMINAL MODELLED OPEN.

A hypothesis must be completelE (or non-ambiguously) specified before
evaluation can take place. ven though the last statement generated
anferroi condition, it is still used to determine possible pronoun
referents.

§H38LD Q5 HAVE ALL JUNCTIONS SHORTED?

WHICH TERMINAL SHOULD BE MODELLED OPEN?

> THE BASE
T°CL LET Q5 HAVE ITS EMITTER COLLECTOR JUNCTION SHORTED AND ITS BASE

oK
OPEN.

At this point, SOPHIE looks back over the student’s measurements to
determine if he should have "known better". See (Brown and Burton
1975) or (Brown et al 1975) for further description.

HMMM, LET ME COMPUTE ON THAT FOR A MINUTE.

When the system knows theremay bea long wait, a "delaying" message is
printed to let the student know something is happening.

WHEN THE SETTINGS WERE:
CC=1.0. CR=HIGH, LOAD=1000, VC=1.0, VR=HIGH,
THAT FAULT CONELICTS WITH THE FOLLOWING MEASUREMENT.
YOU OBSERVED THAT THE VOLTAGE BETWEEN N4 AND N5 WAS 1.28 VOLTS,
IF Q5 EAD ITS EC SHORTED AND ITS BASE OPEN IT WOULD BE 1.1 MILLIVOLTS.
IN A WORKING CIRCUIT IT IS 1,43 VOLTS.

)
N
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BUT THAT FAULT DOES EXPLAIN THE VALUES YOU OBSERVED FOR
THE OUTPUT VOLTAGE, THE VOLTAGE AT NU4, THE VOLTAGE BETWEEN H4 AND N10,
THE EMITTER CURRENT OF Q3 AND THE BASE CURRENT OF Q3.

>>WHAT CQULD BE WRONG

The student becomes stuck and asks for assistance. SOPHIE proposes
some possiile hypotheses for the student to explore. T

THERE ARE LOTS OF FAULTS WHICH WOULD EXPLAIN THE MEASUREMENTS YOU
HAVE TAKEN. HERE ARE SOME POSSIBILITIES:

THE RESISTANCE OF R8 CHANGES

THE LEAKAGE RESISTANCE OF C4 CHANGES

THE BETA OF Q3 CHANGES .

R15 1S OPEN

Q6 IS FAULTED

~ >>IF R8 WERE 30K, WHAT WOULD THE OUTPUT VOLTAGE BE?
IF THE VALUE 8 WERE. 30000
UNDER THE PRESENT SETTINGS, THE OUTPUT VOLTAGE WOULD BE .904 VOLTS.

IN A WORKING CIRCUIT IT IS 30.1 VOLTS.

The student doesn’t believe one of the gossiblities so he. checks it
usin% a hypothetical statement. Even hough the voltage in this case
and that in the case of a faulted circuit are not the same, they
qualitatively agree. , :

>>REPLACE Q6

The student %uesses maybe Q6 is bad and tries to replace it. When the
student replaces a part SOPHIE queries him to insist that he know how

it is faulted.

I AM GOING TO ASK YOU SOME QUESTIONS ABOUT HOW Q6 IS FAULTED.
ARE ANY JUNCTIONS SHORTED?

> YES
WHICH JUNCTIONS ARE SHORTED?
> ALL

If the response to a query is not understood, further specification of
the expected response is given.

PLEASE SPECIFY THE JUNCTIONS AS EC EB AND CB (SEPARATED BY SPACES).
WHICH JUNCTIONS ARE SHORTED?

> EC EB AND CB

Q6 IS NOT FAULTED IN THAT MANNER.

The part would be replaced if any of the junctions had been shorted.
SOPHIE would normally have critiqued the student “s hypothesized fault.
This was not included in the dialogue to save space. :

Q6 NOT REPLACED.

>>VOLTAGE DROP ACROSS %g
THE VOLTAGE ACROSS R5 -.028 MILLIVOLTS.

Some noun phrase utterances are recognized as questions.
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>>WHAT ABQUT R3? .
TWW_VULTKUELAC&USS B3 1S 71,6 VOLTS.

Another ellipsis. The context of the previous question is used to
determine "what" about R3.
>>REPLACE R
IS R3 OPEN

> IT IS OPEN
R3 REPLACED

R SHORTED OR DOES IT HAVE THE WRONG VALUE?

ARl it m—— . e | c———

After fixing the fault, the student uses SOPHIE to explore other
aspects of the circuit s bghavior. :

>>IF C2 WERE LEAKY, WHAT WOULD THE VOLTAGE ACROSS IT BE?

The referent to "it" in this case occurs earlier in the same sentence.
%Sygg OKAY IF I USE 10000 FOR THE LEAKAGE RESISTANCE OF C27
IF-THE LEAKAGE RESISTANCE OF C2 WERE 10000

UNDER THE PRESENT SETTINGS, THE VOLTAGE ACROSS C2 WOULD BE 26.3 VOLTS.
IN A WORKING CIRCUIT IT IS 28.9 VOLTS.

>>WHAT HAPPENS IF C1 SHORTS?
HE SETTING:

UNDER T gs: :
"Cc=1.0, CR=HIGH, LOAD=1000, VC=1.0, VR=HIGH,
IF C1 WERE SHOATED, D3 WOULD BECOME OVERLOADED.

In the case where nothing more interesting happens, "what happens"
questions default to the output voltage. .

N

>>IF %% HAS AN OPEN EMITTER AND A SHORTED BAE COLLECTOR JUN
vos HAPPENS TO THE VOLTACE BETWEEN ITS BASE AND THE %Hh

... THE VOLTAGE LIMITING SECTION ARD THE VOLTGEA REFERENC
BAE =» BASE
VOLTGEA => VOLTAGE

Several examples of the use of conjunction. Imagine the student ’s
frustration if he is forced to type this query over because of
spelling mistakes. -

IF Q6 HAD ITS BASE COLLECTOR JUNCTION SHORTED AND ITS EMITTER OPEN,
UNDER THE PRESENT SETTINGS: i

CC=1.0. CR=HIGH, LOAD=1000, VC=1.0, VR=HIGH
THE VOLTAGE BETWEEN N5 AND N13 WOULD BE THE SAME, I.E. 28.9 VOLTS. .

oF
S d

—R N
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A hypothetical question is first tried under the present settings, If
no difference is noted, other settings are tried.
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LET ME TRY ANOTHER CASE WHICH USUALLY POINTS OUT PROBLEMS IN THAT
SECTION OF THE CIRCUIT.
UNDER THE SETTINGS: :
¢C=.9, CR=LOW, LOAD=10, VC=1.0 VR=LOW
THE VOLTAGE BETWEEN N5 AND N13 WOULD BE 8.94 VOLTS.
IN A WORKING CIRCUIT IT IS 9.57 VOLTS. ‘

SSWHAT IS THE QUTPUT VOLTAGE WHEN THE VOLTAGE CONTROL IS SET T0 .57
CWITH T OLTACE CONTROL NOW SET AT
THE OUTPUT VOLTAGE IS 15.6 VOLTS. ‘

A hypothetical question can involve the changin%. of a control. If
Ehig happens the control is 1eft at the new setting and the student is
old so.

>>IF IT IS SET TO ,7?
WITH THE VOLTAGE | ROL NOW SET AT .7
THE OUTPUT VOLTAGE IS 21.4 VOLTS.

Context determines which measurement should be taken and which control
should be set.

>>.a?
W THE VOLTAGE CONTROL NOW SET AT .9
THE OUTPUT VOLTAGE IS 27.2 VOLTS.

SSWHAT IS THE CURRENT THRU THE CC WHEN THE VC IS SET TO 1.07?
WITH THE VOLTAGE CONTROL NOW SET AT 1.0
THE CURRENT THRU THE CURRENT CONTROL IS 30 MILLIAMPS.

CC and VC are abbreviations. Notice that controls are also ‘"parts"
which can be used in measurements.

>SWHAT IS IT WITH IT SET TQ .82
WITH THE VOLTAGE CONTROIL NOW SET AT .8
THE CURRENT THRU THE CURRENT CONTROL I5 24 MILLIAMPS.

Here the system must correctly instantiate two occurrences of "itw,
The referent to the second 'it" could be either CC or VC since these
are both controls.

>>GOODBYE
GOODBYE
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Chapter 4
SEMANTIC GRAMMAR

INTRODUCTION

In Chapter 1 we described the requirements for a natural language
processor in a learning environment. Briefly, fhey are efficiency and
friendliness over the class of sentences. which arise in a dialogue
situation. The major leverage points we have that allow us to satisfy
these requirements are (1) limited domain, (2) 1limited activities within
that domain, and (3) known conceptualizations of the domain. In other
words, we know the problem area, the type of problem the student is trying
to solve, and the way he should be thinking about the problem in order to
solve it, What we are then faced with is taking advantage of these

constraints in order to provide an effective communication channel.

Notice that all of these cdnstraints relate to concepts underlying the
student’s activities. In SOPHIE, the concepts include voltage, current,
parts, transistors, terminals, faults, particular parts (e.g. R9, Q5,
etec.), hypotheses, controls, settings of controls, and so on. The
(dependency) relationships between concepts include things like voltage can
bé measured at terminals, parts can be faulted, controls can be set, etc.
The'student, in formulating a query or statement, is requesting information
or stating & belief about one of these relationships, e.g. "What is the
voltage at the collector of Q5" or "I think R9 is open". It occurred to us
that the best way to characterize the statements used for this task was in
terms of the concepts themselves as opposed to the traditional syntactic
structures. The language can be described by a set of grammar rules which
characterize, for each concept or relationship, all of the ways of
expressing it in terms of other constituent concepts. For example, the
concept of a measurement requires a quantity to be measured and something
to measure it with respect to. A measurement is typically expressed by
giving the quantity followed by a preposition followed by the thing that
specifies where to'heasure, e.g. "voltage across C2", "current thru D1",
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"power dissipation of R9", etc. These phrasings are captured in the
1
grammar rule:
<MEASUREMENT> := <MEASUREABLE/OUANTITY> <PREP> <PART>

The concept of a measurement can, in turn, be used as part. of other
noncepts, e.g. to request a measurement "What is the voltage across C2?";
or to check a measurement "Is.thelcurrent thru D1 correct?". We will call
this type of grammar a n"gemantic grammar" because the relationships it

tries to characterize are semantic/conceptual as well as syntactic.

Semantic grammars have two advantages over traditional syntactic
grammars. They allow semantic constraints to be used to make predictions
during the parsing process, and they provide a useful characterization of
those sentencés which the system should try to handle. The predictive
aspect is important for . four reasons. (1) It reduces the number of
alternatives which must be checked at a given time; (2) it reduces the
amount of syntactic (grammatical)‘ambiguity; (3) it allows recognition of
ellipsed or deleted phrases; ahd (4) it permits the parser to skip words
at controlled places in the input (i.e. it enables a reasonable

specification of control). These noints will be discussed in.detail in a

later section.

The characterizapion aspect is important for two reasons. (1) Ith
provides a handle on the problem of constructing a habitable sub-language.
The system knows how to deal with a particular set of tasks over a
particular set of objects. The sub-language can be partitioned by tasks to
accept all straightforward ways of expressing those tasks, but does not
need to worry about others. (2) It allows a reduct.ion in the number of
sentences which must be- accepted by the language while still maintaining
habitability. Thefe may be syntactic constructs which are used frequently
with one concept (task) but seldom with another. For example, relative
clauses may be useful in explaining the reasons for performing an

experimental test but are an awkward (though possible) way of requesting a

! This is not actually a rule from the grammar but is merely intended to
be suggestive. 3
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“measurement . By separating the processing along semantic grounds, one may

Fain eftirirney by not having Lo accept the awkward phrasing.

Representation of Meaning

Since natural language communication is the transmission of concepts
vie phrases, the "meaning” of a phrase is its correspondent in the
conceptual space. The entities in SOPHIE s conceptual space are objects,
relationships between objects, and procedures for dealing with objects.
The meaning of a phrase can be a simple data object (e.g. "current
limiting transistor") or a complex data object (e.z. "C5 open", "Voltage
at node 1"). The meaning of a Qquestion is a call to a procedural
specialist which knows how to determine the answer. The ‘'meaning of a
command is a call to a procedure which performs the specified action.2 For
example, the procedural specialist DOFAULT knows how to fault the circuit
and is used tc represent the meaning of commands to fault the circuit (e.g.
"Omen R9", "Suppose C2 shorts and R9 opens"). The concept (argument) that
DOFAULT needs in order to perform its task is an instance of the concept of
faults which specifies the particular changes to be made, e.g. "R9 beins
open". These same concepts of particular faults also serve aS arguments to
two other specialists: HYPTEST which determines the consistency of a fault
with“rggpgct to the present context, e.g. "Could R9 be Opeh"; and
SEEFAULT which checks the actual status of the circuit, e.z. "Is R9

open?",

Result of the Parsing

Basing the grammar on conceptual entities allows the semantic
interpretation (determination of the concept. underlying a phrase) to
proceed in parallel with the parsing. Since each of the non-terminal

categories in the grammar is based on a semantic unit, each grammar rule

Declarat.ive statements are treated as reduests because the pragmatics of
the situation imply that the student is asking for verification of his
statement. For example, "I think C2 is shorted" is taken to be a reouest
to have the hypothesis "C2 is shorted" critiqued.
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can specify the semantic description of a phrase that it recognizes in much
the same way that a syntactic grammar specifies a syntactic description,
The construction portion of the rules is procedural so that each rule has
the freedom to decide how the semantic descriptions, returned by the
constituent items of that rule, are to be put together to form the correct

"meaning".

For example, the meaning of the phrase "5t is the data base object
Q5. The meaning of the phrase "the collector of Q5" is (COLLECTOR Q5)
where COLLECTOR is a function which returns the data base item which is the
colléctor of the given transistor. For a more complicated example,
consider fhe non-terminal <MEASUREMENT> shown in Figure 4,1. The goal for
this non-terminal is to capture all of the ways that a student can specify
a measurement (voltage across D3, output current, etc.). To specify .;
measurement., there must be a quantity to be measured {MEAS/QUANT> (voltage,
current., resistance, power diss{gg&ion), and something to measure with

respect to (e.g. a part, <PART/SPEC>; a transistor junction, <JUNCTION>;

i k]
Figure 4.1
A Semantic Grammar Rule

¢MEASUREMENT> ::= output <MEAS/QUANT> [of <TRANSFORMER>] !

<TRANSFORMER> <MEAS/QUANT> !
{MEAS/QUANT> between <NODE> and <NODE> !
¢MEAS/QUANT> <PREP> <PART> !
¢MEAS/QUANT> between output terminals !
¢MEAS/QUANT> <PREP> <JUNCTION> !
(MEAS/QUANT> <PREP> <NODE> !
¢JUNCTION/TYPE> <MEAS/QUANT>

of <TRANSISTOR/SPEC> !
¢TRANSISTOR/TERM/TYPE> <MEAS/QUANT>

of <TRANSISTOR>

3 The rule is expressed in a BNF-like notation which is an abstraction of
the actual rule (see next section). Non-terminals are in capital letters
and enclosed in angle brackets. Terminal are in lower case. Brackets
en9lose optional elements. Alternative right hand sides are separated by a
myn
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or possibly a point in the circuit, <NODE>)., The rule for {MEASUREMENT>
expreasen all  of the ways that the student can give a measurable quant ity
and also supply its reguired arguments, The structure which results from
<MEASUREMENT> is a function call te¢ the function MEASURE which supplies the
quantitybbeing méasured and other arguments specifying where to measure it.
Thus the meaning of the phrase "the voltage at the collector of Q5" is

(MEASURE VOLTAGE (COLLECTOR Q5)) which was generated from the control

structure:
measurement
/" N\
meas/quant node
voltage terminal
terminal/type part
collector Q5

A careful examination of Figure 4.1 reveals that <MEASUREMENT> also
accepts "meaningless" phrases such as "the power dissipation of Nocde 4." In
addition, it accepts some meaningful phrases such as "the resistance
between Node 3 and Node 14" which SOPHIE does not calculate. This results
from generalizing together concepts which are not treated identically in
the surface structure., In this case voltage, current, resistance and power
dissipation were generalized to the concept of a measurable quantity.
Allowing the grammar to accept more statements and having the argument
checking done by the procedural specialists has thc advantage of allowing
the semantic routines to provide the feedback as to why a sentence cannot
be interpreted or "understood". It also keeps the grammar from being
cluttered with'special rules for blocking meaningless phrases. Carried to
the limit, the generalization strategy would return the grammar to being
"syntactic" again (e.g. all data objects are "noun phrases"). The trick
is to leave semantics in the grammar when it is beneficial to do so (i.e.

to stop.extraneous parsings early or tighten the range of a referent for an
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ellipsis or deletion). This Ls obviously a tas:-apecific trade-of‘f‘.u

The relationship between a phrase and its meaning is usually
straight forward. However, it is not limited to simple embedding. Consider
the phrases "the base emitter of Q5 shorted" and "the base of Q5 shorted to
the emitter®., The thing which is "shorted" in both of these phrases is the
"base emitter junction of Q5." The rule which recognlzes both of these
phrases, <PART/FAULT/SPEC>, can handle the first phrase by invoking its
constituent concepts of <JUNCTION> (base emitter of Q5) and <FAULT/TYPE>
(shorted) and combining their results, In the second phrase, however, it
must construct the proper junction from the separate occurrences of the two
terminals involved. Figure 4.2 gives the rules used to recognize these two
situations. The situations are distinguished by the occurrence of the
optional constituent in the second phrase. (As will be discussed later,
the rules are procedurally encoded which provides a natural way of building
separate semantic forms for the two cases.) Notice that the parser does

some paraphrasine, as the "meaning" of the two phrases is the same.

The discussion has been presented as if the concepts Qere defined a
priori by the capabilities of the system. Actually, for the system to
remain at all habitable, the concepts are discovered in the interplay
between the statements that are made in the domain and the capabilities of
the system. When a particular English construct is difficult to handle, it

is probably an indication that the concept it is trying to express has not

Figure 4,2
Grammar Rules

<FAULTABLE/THING> is <FAULT/TYPE>
[to <TRANSISTOR/TERMINAL/TYPE>]

<PART/FAULT/SPEC>

¢FAULTABLE/THING> := <JUNCTION> ! <TERMINAL> ! <PART>

<FAULT/TYPE> := open ! shorted
¢TRANSISTOR/TERMINAL/TYPE> := base ! emitter ! collector

4 Rahrow and Brown (1975) describe an interesting paradigm from which to
consider this trade-off.

(S "i:

o
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been recornized properly Ly the system. In our example "the base of Q5 s
shorted to the emitter", the relationship between the phrase and its
meaning is awkward because the present concept of shorting requires a part
orr a Junction. The example is getting at a concept of shorting in which
any two terminals can be shorted together (e.g., "the positive terminal of
RQ is shorted to the anode of D6"). This is a viable conceptual view of
"shorting", but its implementation requires allowing arbitrary changes in
the topology of the circuit which is beyond the efficiency limitations of
SOPHIE s simulator. Thus, the system we were working with led us to define

t he conéept in too limited a way.

USE OF SEMANTIC INFORMATION DURING PARSING

Prediction

Having described the notion of a semantic grammar, W€ nowW describe the
ways it allows semantic information to be used in the understanding
process., One use of semantic grammars is to predict the possible
alternatives that must be checked at‘a given point, Consider for example
the phrase "the voltage at xxx" (e.g. "the voltage at the junction of the
current limiting section and .the voltage reference source"), After the
word "at"' is reached in the top-down, left-to-right parse, the grammar rule
corresponding to the concept "measurement" can predict very specifically:
the conceptual nature of "xxx", i.e. it must be a phrase which directly or
indirectly (e .z, the Jjunction of the current limiting section and the
voltage reference source) specifies a location (e.g. node, terminal, etc.)

in the circuit.

Semantic grammars also have the effect of reducing the amount of
grammatical ambiguity. In the phrase "the voltage at xxx", the
prepositional phrase nat xxx" will be associated with the noun "voltage"
without considering the potentially ambiguous parse which associates it

someplace higher in the tree.
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Predict ive information is also used to aid in the determination of
referents for pronouns. If the above phrase were "the voltage at it", the
grammar would he nb;e to restrict the class of possible referents to
locat ions, By taking advantage of the avallable sentence context to
predict the semantic class of possible referents, the referent
determination process is greatly simplified. For example:

1b) What is the current thru R9?

§1a§ Set the voltage control to .87
1c) What is it with it set tc .97

In (1c), the grammar is able to recognize that the first "it" refers to  a
measurement (that the student would like re-taken under slightly different
conditions). The grammar can also decide that the second "it" refers to
either a potentiometer or to the load resistance (i.e. one of those things
which can be set). The referent for the first "it" is the measurement
taken in (1b), "the current thru R9". The referent for the second "it" is
"the voltage control" which is an instance of a potentiometer. The context

mechanism which selects the referents will be discussed later,

Simple Deletion

The semantic grammar is also used to recognize simple deletions. The
grammar rule for each conceptual entity knows the nature of that entity’s
const ituent ‘concepts. When a rule cannot find a constituent concept, it
can either

i) fail (if the missing concept is considered to be obligatory in the
surface structure representation) or

ii) hypothesize that a deletion has occurred and continue.

For example, the concept of a TERMINAL has (as one of its realizations) the
constituent concepts of a TERMINAL-TYPE and a PART. When its grammar rule
only finds the phrase "the collector”, it uses this information to posit
that a part has been deleted (i.e. TERMINAL-TYPE gets instantiated to "the
collector" but nothing gets instantiated to PART). The natural language
processor then uses the dependencies between the constituent concepts to

determine that the deleted PART must be a TRANSISTOR, The "meaning" of
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this phrase 1s then "the collector of some transistor®", Which transistor
is determined when the meaning is evaluated in the present dialopue
context , In particular, the semantlc form returned is the funct.ion PREF
and the classes of possible referents; 4in our example the form would be
(COLLECTOR (PREF '(TRANSISTOR))).S The operation of PREF will be disoussed

later.

Ellipsis

Another use of the semantic grammar allows the processor to recognize
elliptic wutterances. These are utterances which do not express complete
thoughts (i.e. a completely specified question or command) but only give
differences between the intended thought and an earlier One.6 For example,

2b, 2c and 2d are elliptic utterances.

$2a what is the voltage at Node 57
2b) At Node 1?
520 and Node 2?7
2d) What about between nodes 7 and 8?

Ellipses can begin with introductory phrases such as "and" in 2¢ or "what

about" in 2d; however this is not required as can be seen in 2b., Part of

Figure 4.3
Ellipsis Rule

¢ELLIPSIS> := [<ELLIPSIS/INTRODUCER>] <REQUEST/PIECE> !
[ <ELLIPSIS/INTRODUCER>] if <PART/FAULT/SPEC>

¢<REQUEST/PIECE> := [<PREP>]_<NODE> !
PREP>] <PART> !
tween <NODE> and <NODE> !
PREP>] <JUNCTION> !
c.

OO
~AMD N

5 The language LISP will be used in examples thpoughout‘this thesis. In
LISP, a function call is expressed in Cambrldge7Pollsh notation: as a
parenthesized list of the function name followed by its arguments,

6 Tﬁe standard use of the word "elliEsis" refers to any deletion., Rather
than invent a new word, we shall use the restricted meaning here.
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the ellipsis rule is given in Figure 4.3, The grammar rule ldentifies
which concept or class of concepts are possible from the context available

in the elliptic utterance.

While the parser is usually able to determine the Jintended concepts
from the context available in an elliptic utterance, this is not always the

case., Consider the following two sequences of statements.

égag wWhat is the voltage at Node 57
b) 10?

(Nag what is the output voltage if the load is 1007
(4b) 107 :

In (3b), "10" refers to node 10, while in (Ub) it refers to a load of 10.
The problem this presents to the parser is that the concepts underlying
these two elliptic utterances have nothing in common except their surface
realizations. The parser, which operates from conceptual entitlies, does
not have a concept which includes both of these interpretations. One
héolution would be to have the parser find all parses (concepts) and then
choose between them on the basis of context. Unfortunately, this has the
unacceptable property that time is spent looking for more than one parse
for the large percentage of sentences in which it is unnecessary. A better
solution would be to allow structure among the concepts so thap the parser
would recognize "10" as a member of the concept number, and then the
routines which find the referent would know that numbers can be either node
numbers or values. This type of recognition could profitably be performed
by a bottom-up approach to parsing. However, its advantages over‘thé
present scheme are not enough to justify the expense incurred by a
bottom-up parse findinez all possible well-formed constituents. At present,
the parser assumes one interpretation and a message is printed to the
student indicating the assumed interpretation. If it is wrong, the student
must supply more context in his request. In fact, "10?" is taken as a load
specification and if the student meant the node he would have to use "at
10", "N10" or "Node 10", Later we will discuss the mechanism that

jetermines to which complete thought an ellipsis refers.,
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USING CONTEYT TO DETERMINE BEFERENTS

Pronouns and Deletjiong

Once the parser has determined the existence and class (or set of
classes) of a pronoun or deleted object, the context mechanism is invoked
to determine the proper referent, This mechanism has a history of student
interactions during the current session which contains, for each
interaction, the .parse (meaning) of the student’s statement and the
response calculated by the system. This history list provides the range of
possible referents and is searched in reverse order to find an object of
the proper semantic class (or one of the proper classes). To aid in tﬁe
search of the history 1list, the context mechanism knows how each of the
procedural specialists appearing in a parse uses its arguments. For
example,\the specialist MEASURE has a first argument which must be a
quantity and a second .argument which must be a part, a junction, a section,
a terminal or a node.lﬁ}ﬁhs when the context mechanism is 1looking for a
referent which can -either be a PART or a JUNCTION, it will look at the
second argument of a céll to MEASURE but not the first. Using the
information about the specialists, the context mechanism looks in the
present parse and then in the next most recent parse, etc. until an object

from one of the specified classes is found.

The significance of using the specialist to filter the search instead
of just keeping a list of previously mentioned objects is that it avoids
mis-interpretations due to object-concept ambiguity. As an example,

consider the following sequence from the sample dialogue in Chapter 3:

55; What is the current thru the CC when the VC is 1.0?
6) What is it when it is .8?

Sentence (5) will be recognized by the following rules from the semantic
grammar:

1) <REQUEST> := <SIMPLE/REQUEST> when <SETTING/CHANGE>

2) <SIMPLE/REQUEST> := what is <MEASUREMENT>

E <MEASUREMENT> := <MEAS/QUANT> <PREP> <PART>
¢SETTING/CHANGE> := <CONTROL> is <CONTROL/VALUE>

5) <CONTROL> := VC
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with a reaulting semantic form of':
(RESETCONTROL éSTO Ve 1

SeasURe anent cc))

RESETCONTROL is a function whose first argument specifies a change to one
of the controls and whose second argument consists of a form to be
evaluated in the resulting instrument context. STQ is used to change the
setting of the one of controls, The first argument to MEASURE gives the
quantity to be measured, The second specifies where it is to be measured,
To recomnize sentence (6), the application of rules $2 and $5 are changed.
There is an alternative rule for <SIMPLE/REQUEST> which looks for those
anaphora which refer to a measurement. These phrases, such as "it", "that
result" or "the value", are recognized by the non-terminal
¢MEASUREMENT/PRONOUN>. The alternative to $2 which would be used to parse
(6) is:

¢SIMPLE/REQUEST> := what is <MEASUREMENT/PRONGUN>
The semant ics of <MEASUREMENT/PRONOUN> indicate that an entire measurement
has beenideleted. The alternative to rule $5:

{CONTROL> := it
recognizes "it" as an acceptable way to specify a control. The resulting
semantic form for sentence (6) is:

(RESETCONTROL éSTQ (BREF '(CONTROL;; .8)
PREF ~(MEASUREMENT)

The funct ion PREF searches back through the context of previous semantic
forms to find the most recent mention of a member one of the classes. 1In
the above example, it will find the control VC ‘but not CC because the

character imposed on the érguments of MEASURE is that of a "part" not a

T The character imposition as described is too strong. For example:
31; What are the sgecs of Q57
$2) What is the voltage at its emitter? .
The character imposed on Q5 in $1 is that of a part which means that .the
context mechanism invoked bz $2 which is looking for a transistor won t
find it. This example is andled by relaxin% the restrictions the
rocedural specialist in $1.puts on its argument (i.e. it can be either a
ART or a TRANSISTOR)., In spite of this weakness in the argument
limitation approach, we have found it to be a useful means of reducing the
search time and avoiding some obvious mis-interpretations.
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"control".7 The presently recognized classes for deletions are PART, -
TRANSISTOR, FAULT, ..CONTROL, POT, SWITCH, DIODE, MEASUREMENT and QUANTITY.
(The members of the classes are derived from the semantic network

associated with a circuit.)

Referents for - Ellipses

If the problem of pronoun resolution is looked upon as finding a
previously mentioned object for a currently specified use, the problem of
ellipsis can be thought of as finding a previously mentioned use for a

currently specified object. For example,

2%; What is the base current of QU?
In Q5?

The given object is "Q5" and the earlier function is "base current". For a
given elliptic phrase, the‘ semantic grammar identifies the concept. (or
class of concepts) involved. In (7), since Q5 1is recognized by the
non-terminal <TRANSISTOR/SPEC>, the class would be TRANSISTOR. The context
mechanism then searches the history list for a specialist in a previous
parse which accepted the given class as an argument. When one is found,

the new phrase is substituted into the proper argument position and the

substituted meaning is used as the meaning of the ellipsis.

Limitations to the Context Mechanism

The method of semantic classification to determine reference is ' very
efficient and works well over our domain. It definitely does n&t soive éll
the problems of reference. Chafniak has pointed out the substantial
problems of reference over a domain as seemingly simpie as children’s

stories (1972). One of his exémples demonstrates how much world knowledge

-may be required to determine a referent (1972 p. T).

Janet and Penny went to the store tg get presents for Jack. Janet
said "I  will get Jack a top" "Don't get Jack a top" said Penny. "He
has a top. He will make you take.ig back."

Charniak argues that to understand to which of the two tops "it" vrefers,
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requires knowing about presents, stores and what they will take back, etc. =
Even in domains where it may be possible to capture all - of the necessary
knowledge, classification may still lead to ambiguities. For example,

consider the following:

In (11) the user means Node 7. In (10), he has reinforced the use of
ellipsis as referring to node number. (For example, leaving out (10),
sentence (11) is much more awkward.) On the other hand if (11) had been
"1000" or if (10) had been "10?", things would be more problematic. When
(11) is "1000", we can infer that he means a load of 1000 because there 1is
no node 1000. If (10) had been "16?5; there would be genuine ambiguity
slightly favoring the interpretation as a load because that was the last
number mentioned. The major limitation of the current technique, which
must be overcome to tackle significantly more complicated domains, 1is its
inability to return more than one possible referent. That is, it considers
each one at a time until it fihds one which 1is satisfactory. It cannot
hold off on one to see if there are any better. At present it has no
metric to measure "better". The work involved in developing such a

technique has not been justified by our experience.

RELATIONSHIP TO OTHER SEMANTIC SYSTEMS

The relationship between semantic grammars. and purely semantic systems
(Quillian 1969) (Schank et al 1975) and to some extent Wilks (1973a, 1973b)
parallels the distinction between procedurél and declarative knowledge.
The relationship that exists between nodes in the semantic network
structure contains little or no information about how these relationships
might be expressed in language. An interpretation mechanism must decide
where the information is usefu%. While this 1is, 1in some sense, more
general (the same information can be used for several purposes given the
proper interpreters). it is necessarily less efficient, (Wilks has

extracted some expressive information, primarily concept order, into his
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templates.) A semantic grammar, on the other hand, is written for the
process of recognizing concepts as they are ‘expressed in the surface

structures.

FUZZINESS

Having the grammar centered around semantic categories allows the
parser to be slbppy about the actual words it finds in the statement. This
sense of having a concept in mind, and being willing to ignore words -to
find it, is the essence of keyword parsing schemes. It is effective in
those cases where the words that have been skipped are either redundant or
specify gradations of an idea:which are not distinguished by the system.
For example, in the sentence "Insert a very hard fault", "yery" would be
ignored which 1is effective because the system does not have any further
structure over the.class of hard faults., In the sentence,l "What 1is the
voltage across resistor R8?" resistor can be ignored because it is implied

by nRBn.B

One advantage that a procedural encoding of the grammar (discussed
iater) has over pattern matching schemes in thé implementation of fuzziness
is its ability to control exactly where words can be ignored. This
provides the ability to blend pattern matching parsing of those concepts
which ‘are amenable to it with the structural parsing required’ by more
complex concepts. The amount of fuzziness (i.e. how many (if any) words
in a row can be ignored) is controlled in two ways. First, whenever a
grammar rule is invoked, the calling rule has the option of limiting the
number of words that can be skipped. Second, each rule can decide yhich of
its constituent pieces or words are required and how tightly controlled the
search for fhem should be. In SOPHIE, the normal mode of operation of the

parser is tight in the beginning of a sentence but more fuzzy after it has

-

8 The first of these examples could be handled by making "very" a noise
word (i.e. deleting it from all sentences). Resistor however is not a
noise word in all cases (e.g. "What is the current through the current

sensing resistor?") and hence ‘cannot be deleted.
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made sense out of something.

Fuzziness has two other advantages worth mentioning briefly. It
reduces the size of the dictionary because a11 known noise words don’t have
to be included. In those cases where the skipped words are meaningful, the
mis-understanding may provide some clues to the user which allow him to

restate his query.

PREPROCESSING

Before a statement is parsed, three operétions are performed on the
statement by a pre-processor. The first expands abbreviations, deletes
known noise words, and canonicalizes similar words to a common form. The
second operation is a cursory spelling correction. The third operation is

a reduction of compound words.

Spelling correction is attempted on any word of the input string which

9

the system doe; not recognize; The spelling correction algorithm takes
the (possibly) misspelled word and a list of correctly spelled words and
determines which (if any) of the correct words ié close to the -misspelled
Qord (using a metric determined by number of transpositions, doubled
letters, dropped letters, ete.). During the initial preprocessing, the
1ist of correct words is very small (approximately a dozen) and is limited
to very commonly misspelled words and/or words w?ich are critical to the
understanding of a sentence. The list is kept small so that the time spent
attempting spelling correction, prior to attempting a parse, is kept to a
minimum. Remember that the parser has the ability to ignore words in the
input string so we do not want to spend a lot of time correcting a word
which won't be needed in understanding the statement. But notice that
certain words can be critical to the correct understanding of a statement.
For example, suppose that the phrase "the base emitter current of Q3" ‘was

incorrectly typed as "thé'bse emitter current of Q3". If "bse" were not

_ The spelling correction routines are provided b{ INTERLISP and were
developed by Teitelman for use in the DWIM facility Teitelman 1969, 1974).
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recopnized as being "base" the parser would ignore it and (mis-)understand
the phrase as "the emitter current of Q3", a perfectly acceptable but much
different concept..10 Because of this problem, words like "base", which if
ignored have been found to lead to misunderstandings, are considered
critical and their spelling is corrected before any parse 1is attempted.
Note that there are a lot of words (e.g. "capacitor",‘"replace", "open",
etc.) which if misspeiled would prevent the parser from making sense of the
statemept but would not lead to any mis-understandings. These words are
therefore not considered to be critical and would be corrected in the
second attempt at spelling correction which is done after a statement fails

to parse. o .

Compound words are single concepts which appeaf in the surface
structure as a fixed series of more than one word. Their reduction is very
important to the efficient operation of the parser. For example, in the
question "what is the voltage range switch setting?", "voltage range
switch" is rewritten as the single item "VR". If not rewritten, "voltage"
would be mistaken as the beginning of a measurement (as in "what is the
voltage at N4") and an attempt would have to be made to parse "range switch
setting" as a place to measure voltage. Of course after this failed, the
correct parse can still be found, but reducing compound words helps to

avoid backtracking. In addition, reduction of compound words simplifies

_the grammar rules by allowing them to work with larger conceptual units.

In this sense, the preprocessing can be viewed as a preliminary bottom-up

parse that recognizes local, multi-word concepts.

IMPLEMENTATION

Once the dependencies betﬁéen semantic concepts have been expressed in
the BNF form, each rule in the grammar is encoded (by hand) as a LISP

procedure. This eﬁcoding process imparts to the grammar a top-down control

To minimize the consequences of such mis-interpretation, the system
always responds with an answer which indicates what question it 1s
answering, rather than just giving the numeric answer.
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structure, specifies the order of application of'the various alternatives
of each rqle, and defines the process of pattern matching each rule. The
resulting collection of LISP functions constitutes a goal-oriented pérser
in a fashion similar to SHRDLU (Winograd 1973) (but without the

backtracking ability of PROGRAMMAR).

As has been argued elsewhere (Woods 1970) (Winograd 1973), encoding
the grammars as procedures (i.e. including the notion of process in the
grammar) has advantages over using traditional phrase structure grammar

representations. Four of these advantages are:

i) thé‘abilit% to collapse common parts of a grammar rule while still
maintaining the perspicuity of the grammar.

éé&Dﬁ?e ability to collapse similar rules by passing arguments (as with

iii) the ease of interfacing other types of knowledge (in SOPHIE,
primarily the semantic network) into the parsing process,

iv) the ability to build and save arbitrary structures during the

parsing process.

In addition to the advantages it shares with other procedural
representations, the LISP encoding has the computational advantage of being
compilable directly into efficient machine code. The LISP_ implementation
is efficient because the notion of process it contains (one process doing
recursive descent) is close to that supported by physical machines, while
those of ATNs and PROGRAMMAR are non-deterministic and hence not directly
translatable into present architecture. (In Chapter 6 we shall see how it
is possible to minimize this mismatcht) Appendix B describes the details of

the LISP implementation and provides an example of a rule from the grammar.

In terms of efficiency, the LISP implementation of the semantic
grammar succeeds admirably. The grammar written in INTERLISP (Teitelman
74) can be block compiled. Using this technigque, the complete parser takes
about 6K of storage and parses a typical student statement consisting of 8
to 12 words in around 150 milliseconds! Appendix C preSents parses and

timings of some of the sentences used in the dialogue.

structure rules.
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Chapter 5
LIMITATIONS OF THE LISP IMPLEMENTATION

Using the techhiques described in Chapter 4, a natural language
front-end was constructed capable of supporting the dialogue presented in
Chapter 3 and requiring less than 200 milliseconds €pu time per question.
In addipion, these same techniques were used to build a front-end for
NLS-SCHOLAR (Grignetti et al 1974) (Grignetti et al 1975) (built by C.
Hausmann), and an interface to an experimental'laborétory for expiobing
mathematics using attribute blocks (Brown et al 1975). In the construction
of these varying systems, the notion ofvsemantic grammar was found‘to be
useful. The LISP implementation, however, was found to be a bit wunwieldy.
While expressing the grammar as programs has benefits in the area of
efficiency and allows complete freedom to explore new extensions, the
technique is 1lacking in perspicuity. The lack of perspicuity has three
majof drawbacks. (1) One is the difficulty encountered when trying to
modify or extend the grammar, (2) The second is the problem of trying to
communicate the extent of the grammar to either a user or a colleague. (3)
The third is the problem of trying to re-implement the grammar on a machine
which does not support LISP. These difficulties have been partially
overcome “By using a second, parallel representation of the grammar in a
BNF-like specification language. -(This is the representation which we have
been presenting throughout this report.) This, however, requires support ing
two different representations of the same information and does not really
solve problems (1) or (3). The solution to this problem is a better

formalism for expressing (and thinking about) semantic grammars.

The ATN formalism was seriously considered at the beginning of the
SOFPHIE project, but rejected as being too slow. In the course of
developing the LISP grammar, it became clear that the primary reason for a
significant different in speed between an ATN grammar and e‘LISP one is due

to the fact that processing the ATN is an interpreted process whereas LISP

‘is cempilable. The next chapter describes an ATN compiling system which

was developed to speed up the ATN appreachu In this chapter we will
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discuss the advantages we hoped to gain by using the ATN formalism.

The advantages of using the ATN formalism ‘fall into three general
areas: (1) conciseness, (2) conceptual effectiveness and (3) available
facilities. By conciseness we mean that writing a grammar as an ATN takes
less characters yhan LISP. The ATN formaligm gains conciseness by not
requiring the ‘specification of details in the parsing process at the same
level required in LISP. Most of these differences stem from the fact that
the ATN assumes it has a machine wﬁose operations are designed for parsing,
while LISP assumes it has a lambda calculus machine. For example, a lambda
calculus machine assumes a function has one value. A function call to look
for an occurﬁence at a non-terminal while parsing (in ATN formalism a PUSH)
must return at least two values: the structure of the constituent found
and the place in the input where the parsing stopped. A good deal of
complexity is added to the LISP rules to maintain the free .variable which
has to be introduced to return the structure of the constituent. Other
examples of unnecessary details include the binding of local variables and

the specification of control structure as ANDs, ORs and CONDs.

The conciseness of the ATN results in a grammar which 1is easier to
change, easier to write and debug, and easier to understand (and hence to
communicate). We realize that conciseness does not necessarily lead to
these results (APL being a prime example in computer languages, mathematics
in general being another), however this is not a problem. The
correspondence between the grammar rules in LISP and ATN ié very close.,
The concepts which were expressed as LISP code can be expressed in nearly

the same way as ATNs but in fewer symbols.

The second area of improvement deals with conceptual effectiveness.
Conceptual effectiveness is, intormally. the degree to which a language
encourages one to think about problems in the right ‘way. One example of

conceptual effectiveness can be seen by considering the implementation of

See (Bruce 1975) for a discussion of case systems).
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case structured r‘ules.1 In a typical case structure rule, the verb
expresses the function or relation name and the subject, object and
pﬁepositional phrases express the arguments of the function or relation.
Let us assume for the purpose of this discussion that we are looking at
four different cases (agent, location, means, and time) of the verb GO
(e.g. John went to the store by car at 10 o’clock). In a phrase structure
rule oriented formalism one would be encouraged to write:

<statement> := <actor> <action/verb> <location> <means> <time>

Since the last three cases can appear in any order, one must also write 5
other rules:

(statement> := <actor> <action/verb> <location> <time> <means>

In an ATN one is inclined towards: PUSH location

PUSH OCfor

PUSH OCf/Ve,.b

PUSH time

PUSH means

which expresses more clearly the case structure of the rule. There' is no
reason why in the LISP version of the grammar one couldn’t write loops
which are exactly analogous to the ATN {(the ATN compiler after all produces
such code!) but a rule oriented formaliém does not. encourage one to think

this way. “An alternative rule implementation is:

Cactiond:= <actord><action/verb><actioni>
Cactioni>:= <actioni1><{temporald
<actioni1>:= <actioni><location>
<actioni1):= <actioni1><means>

this is easier (shorter) to write but has the disadvantage of being
left-recursive. To implement it, one is forced to write the LISP
equivalent of the ATN which creates a difference between the rule

representation and the actual implementation. This method also has the
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disadvantage of introducing an unmotivated non-terminal,

Another conceptual advantage of the ATN framework is that it
encourages the postponing of decisions about a sentence until a
differential point is reached, thereby a}lowing potentially different paths
to stay together. In the rule oriented SOPHIE grammar there are top level
rules for <set>, a command to change one of the control settings and
<modify>, a command to fault the instrument in some way. Sentence (1) is a

{set> and sentence (2) is a <modify>.

(1; Suppose the current control is high.
(2) Suppose the current control is shorted.

The two parse paths for these sentences should be the same for the first
five words, but they are separated immediately by the rules <set> and
<modif‘y>.2 An ATN encourages structuring the grammaf so that the decision
between <set> and <modify> is postponed so that the paths remain together.
It could be argued that the fact that this example occurred in SOPHIE's
grammar is a complaint against top-down parsing or semantic grammars or
just our particular instantiation of a semantic grammar, We suspect the
latter but argue that rule representations encourages this type of

behavior.

Another conceptual aid provided by ATNs is their method of handling
ambiguity. OQur LISP implementation uses a recursive descent technique
(which can alternatively be viewed as allowing only one process). This

requires that any decision between two choices be made correctly because

there is no way to come back and try out the other choice after the

decision is made. At choice points, a rule can, of course, "look ahead"
and gain information on which to base the decision (similar to the

nyait-and-see" strategy used in (Marcus 1975)) but there is no way to back

2The degree to which the separation of paths is a problem can be greatl
reduced usin% a preprocessing "compilation" stage <Klovstad 1977> whic
(among other things) collapses rules with the same initial parts. In our
example, however this may not work since the phrase "the current control"
may be parsed as the non-terminal <CONTROL> in (1) and as the non-terminal
¢PART> in (2). Of course this would be a poor choice of grammar rules, and
no one aware of sentences (1) and (2) would handle it this way. The
problem is recognizing where situations such as this occur.
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up and remake a decision once it has returned.

The effects of this can be most easily seen by considering the lexical
aspects of the parsing. A prepass collapses compound words, expands
abbreviations, etc. This allows the grammar to be much simpler because it
can look for wunits 1like "voitage/control"'instead of have to decode the
noun phrase "voltage control". Unfortunately without the ability to handle
ambiguity, this rewriting can only be done on words which have no other

possible meaning. So for example, when the grammar is extended to handle:
(3) Does the voltage control the current limiting section?

the compound "voltage/céntrol" would have to be removed from the prepass
rules and included in the grammar. This reduces the amount of bottom-up
-processing which can be done and results in a slower parse. It also makes
compound rules difficult to write because all bossible uses of the
individual words must be considered to avoid errors. Another example 1is
the use of the 1letter "C" as an abbreviation. Depending on context, 'it
could possibly mean either current, collector or capacitor. Without
allowing ambiguity in the input, it could not be allowed as an abbreviation

unless recognized explicitly by the grammar.

The third general area in which ATNs have an advantage is in the
available facilities to deal with complex linguistic phenomena. While our
grammar has not exparded to the point of requiring any of the facilities
yet, the availability of such facilities cannot be ignored as an argument
favoring one approach over another. A primary example is the general

mechanism for dealing with coordination in English described in (Woods

1973a).
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Chapter 6

A COMPILING SYSTEM FOR AUGMENTED TRANSITION NETWORKS*

INTRODUCTION

The augmented transition network (ATN) formalism was developed as a
conceptually and computationally efficient representation for natural
language grammars, and ias peen used successfully -in several natural
language processifg systems (Woods et al 1972), (Simmons 1973), and (Bz'es
1975). Its advintages over other formalisms have -been argued elseunere
(Woods 1969, 1970) and can bDe characterized as (1) perspicuity (2)
generative power, (3) efficiency of representation, (4) flexibility for

experimentation and (5) efficiency of operation.

In all of the above natural language systems, the ATN grammar has been
viewed as a data structure which is interpreted by a program (called a
parser). The LUNAR parser (Woods 1973a) provides a good example of such an
interpretive program. This paper describes a system which views the
augmented transition network as a virtual machine description and compiies

.+ into a program executable on a physical machine, thereby eliminating the

¥

1
"parser".

The major significance of compiling an ATN is the dramatic reduction
in the amount of time required to process a sentence. The reduétion is
sufficient to challenge the view that a general scheme for natural language
processing 1is too impractical to be seriously considered in the design. of
information management, CAIL, and numerous other kinds of computer systems.
Results indicéte that the programs produced by the compiler parse senteqces
about 10 times faster than the LUNAR parser (using the LUNAR grammar, (Woods
et al 1972)). Also significant]is that the ATN compiling System provides a
testbed to explore the trade-of f between the benefits of features 1in the

abstract ATN machine and their implementation on a particular physical

machine.

! This is also the viewpoint taken by Kaplan (1973) and Ka{ (1973), who
have developed a somewhat different ATN compiler and wi h whom we have
shared ideas in the course of this work, ‘

#This chapter is a revised version of an earlier paper written with William

Woods and presented at the International Conferences on Computational
Linguistics, Ottawa, canada, 1976. 52



AUGMENTED TRANSITION NETWORKS

Some years ago, Chomsky (1957) introduced the notion that the
processes of language generation and language recognition could be viewed
in terms of a machine. One of the simplest of such modeis {machines) is
the finite state machine, This machine starts off in its initial state
looking at the first symbol (or word) of its input sentence and then moves
from state to state as it gobbles up the remaining input symbols. The
sentence is accepted if the machine stops in one of its final states after
having processed the entire input string; it is rejected otherwise. A
convenient way of representing a finite state machine is as a transition
graph, in which the states correspond to the nodes of the graph and the
transitions between states correspond to its arcs. Each arc 1is labelled

with a symbol whose appearance in the input can cause the given transition.

In an augmented transition network the notion of a transition graph

has been modified in three ways. Oné is the add;tion of a recursion
mechanism which allows the labels on the arecs to beu;non-terminal symbols
which themselves correspond to networks. The second is the addition of
arbitrary conditions on the arcs which must be satisfied in order for an
arc to be followed. The third is the inclusio; of a set of structure
building actions on the arcs, together with a set of registers for holding
partially built str‘uctur‘es.2 Figure 6.1 is a specification of a language
for representing augmented transition networks. The specification is given
in the form of an extended context free grammar in which alternative ways
of forming a constituent are represented on separate lines and . the symbol

"yt is used. to indicate arbitrarily repeatable constituents.3 The

non-terminal symbols are lower case English descriptions enclosed in angle

This discussion follows closely a similar discussion in Woods (1970) to

which the reader is referred.” If the reader is familiar with the ATN

gorma%;sm"he/she may wish to skip to the section "Developments to the ATN
ormalism", '

3 "e" ig used to mean O or more occurrences. While the accepted usage of
ny" is 1 or more, the accepted symbol for 0 or more "#n  has not been used
to avoid confusion with the use of the symbol * in the ATN formalism.

e
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brackets. All other symbols except "+" are terminals. Non-terminals not

given in Figure 6.1 have names which should be self—eXplanatory;

FIGURE 6.1
A Language for Representing ATNs
<transition network> := (<arc setd> <arc set>+)
<arc set> := (<state> <arcd+)

<arc> := (CAT <cate§or¥ name> <testd> <actiond>+ <term act>)
WRD <word> <test> <action>+ <term act>)
PUSH <state> <test> <action>+ <term act>)
TST <arbitrary label> <test> <action>+ <term act>)
POP <form)> <test>)
VIR <constituent name> <test> <action>+ <term act>)
(JUMP <state> <test> <action>+)
<action> := (SETR <register> <form>)
SENDR <register> <form>
LIFTR <register> <form>
HOLD <constituent named> <form>)
SETF <feature> <form>)
<term act)> := (TO <state>)
<form> := (GETR <register>)

LEX
#

GETF <form> <feature>)

BUILDQ <fragment> <register>+)
LIST <form>+)

APPEND <form> <form>)

QUOTE <arbitrary structure>)

The first element of each arc is a word indicatingwthe type of arc.
For CAT, WRD and PUSH arcs, the arc type together with the second element
correspond to the label on an arc of a state transition graph. The tbird
element is an additional test. A CAT arc can be followed if the current
input symbol is a member of thellexical category named on the arc (and if
the test on the arc is satisfied). A. PUSH arc causes a recursive
invocation of a lower level network beginning at the state indicated (if
the test is satisfied). The WRD arc can be followed if the current input
symbol is the word named on the arc (and if the test is satisfied). The
_TST arc can be followed if the test is satisfied (the label is ignored).
The VIR arc (virtual arc) can be followed if a constituent of the named
type has been placed on the hold list by a previous'HOLD action (and the
constituent satisfies the test). In all of these arcs, the actions are
structure building actions and the terminal aétion specifies the sfate to

which control is passed as a result of the transition., After CAT, WRD and
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1ST arcs, the input is advanced; after VIR and PUSH arcs it is not. The
JUMP arc can be followed whenever its test is satisfied; control being
passed to the state specified in the second element of the arc without
advancing the input. The POP arc indicates the conditions under which the
state is to be considered a final state and the form of the constituent to

be returned.

The actions, forms and tests on an arc may be arbitrary functions of
the register contents. Figure 6.1 presents a useful set which illustrates
major features of the ATN. The first three actions specified in Figure 6.1
cause the contents of the indicated register to be set to the value of the
indicated form. SETR causes this to be done at the current level of
computation, SENDR at the next lower level of embedding (so that
information can be sent down during a PUSH) and LIFTR at the next higher
level of computation (so that additional information can be returned to
higher levels). The HOLD action places a form on the HOLD list to be used
at a latér place in the computation By a VIR érc. SETF provides a means of

setting a feature of the constituent being built.

GETR is a function whose value is the contents of the named register.
LEX is a form whose value is ghe current input symbol. * is a form whose
value depends on the context of its use: (1) in the actions of a CAT arc,
the value of * is the root form of the current input word; (2) in the
actions of a PUSH arc, it is the value of the lower computation; and (3)
in the actions following a VIR afc, the value of it is the constituent
removed from the HOLD list. GETF is a function which determines the Qalue
of a specified feature of the indicated form (which is usually *), BUILDQ
is a general structure building form which places the values of the given
registers into a specified tree fragment. Specifically, it replaces each
occurrence of + in the tree fragment .with the contents of one of the
registers (the first register replacing the first occurrence of +, the
second register the second, etc.). In addition, BUILDQ replaces

occurrences of * by the value of the form ¥, The remaining three forms

Amake a list out of the specified arguments (LIST), append two lists
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together to make a single list (APPEND) and produce as a value the
(unevaluated) argument form (QUOTE). A sample augmented transition network

is given in Appendix D.

Developments to the ATN Formalism

A new version of any system affords an opportunity for redesign,
allowing one both to overcome noticed 'shortcomings and to build in handles
for possible future developments. In this section we will describe the

differences which have evolved between the ATN formalism described in

hWoods' original paper (1970) and that used by the compiling sSystem.

Several of the conventions were developed before work on the compiler was
begﬁn'and we shall note the first occurrence of each. This discussion is

intended to bring these modifications together in one place.

The modifications were relatively minor and indicate the strength of

the ATN formalism as a language for expressing grammars. . The changes made

were with the intention of afding the grammar writer in building more
structuzeg grammars. One change was the addition of "feature" registers.
Many éests of grammaticality rely on feature information associated with
structured constituents: for example, the test of person-number agreement
réquires feature information from both the subject noun phrase and the
verb., In the original formalism, features were only recognized as being
associafed with words, the structure associated with constituents had to
have feature information built into it. This caused two undesirable
results: tests which used the featureé had to look inside structures to
find information and the job of changing structures was made fairly
difficult. Feature registers provide the means to separate the
information-saving role from the structure-saving role, resulting in

cleaner, more efficient grammars.

Another difference is the inclusion of the JUMP arc type and the

removal of the JUMP termination action.u The JUMP termination action in the

4 The JUMP arc was originally included in the LUNAR system (Woods et al

1972).
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original formalism allowed an arc to be taken without advancing the input.
Since- POP, PUSH and VIR arcs never advance the input, to decide whether or
not an arc advanced the input required knowledge of both the arc type and
termination action. The introduction of the JUMP arc (which is equivaleﬁt
to a TST arc with a JUMP termination action in the old format) means that
the input advancement is a function of the arc type alone. This is a minor
conceptual improvement which simplifies programs which use the grammar to

create, for example, cross references or "grammar indexes" (Bates 1975).

The third difference comes from extending WRD arcs 5 to check for
either: (1) a given single word; (2) an explicit list of words, thereby
subsuming the MEM Arc; or (3) a list of words which is the value of a
given variable., The latter featurc¢ is mainly useful as a simple method of

exploring new categories without modifying the dictionary.

THE GENERAL NOTION OF ATN COMPILATION

The "compilingh of an augmented transition network grammar refers to
the - proéesg?—bf translating the ATN into machine runnable language
instructions. The ATN is a description of "what sentences the machine
should accept" while the compiled ATN must additionally be a description of
"how the m;chine should accept them". The compiling process requires
decisions about characteristics of the parsing process which are left
uhspecified by the ATN formalism. The additionél decisions needed by the
ATN compiler fall roughly into two classes. The first‘is what‘constitutes

a configuration of the ATN machine. A configuration is the amount of -

information needed tb completely characterize the status of the machine at

the moment in time on one of its computation paths during the processing of

One of the characteristics of the ATN is that the machines specified can
be non-deterministic. This means that from a given configuration, there
may be more than one possible next configuration (more than one of the arcs
leaving a state can be followed). Since any implementation of an ATN
machine on a serial computer will not be able to follow these paths
simultaneously, it must have a mechanism for remembering alternat.ive
possible configurations.

5]
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a sentence.6 For example, a c¢onfiguration of a simple finite-state network

consists of only the name of the state of the machine and input string

remaining to be parsed. A configuratioﬁ for the ATN used in the LUNAR

system (Woods et al 1972) needs a state, a string pointer, a recursion
stack, registers, a hold list and a path. The second kind of decision
unspecified by the ATN formalism is the control structure that the ATN
machine is to have. That is, in what order should the alternative paths
through the grammar be tried, e.g. should the search strategy be
depth-first or breadth-first. These details must be added to the details
specified in the ATN in order to define a machine (program) in a runnable

computer language.

Once the details about the structure of the configuration have been
decided upon, 7 the compiler can translate each arc in the ATN grammar into
statements in the object language which (when executed) test the conditions
on that arc and if successful will carry out the desired changes to the
configuration in the compiled machine. Once a control structure has been
specified, the compiler can put the code from the arcs together in a way
wnich manifests that control structure. By changing the details of these
decisions the compiler can generate, from a single ATN, mény different
machines all of which will give the same parses for the same sentences but

whose internal structure and efficiency are quite different.8

Areas of Optimization

Since the primary reason for compiling an otherwise interpreted
process is speed, care has been taken to isolate those areas of the process
which can be optimized. There are three general areas in which the ATN

machines can be optimized independent of the particular computer

7 Decisions about internal details are made either explicitly as. a
declaration to the compiler or implicitly by technical license of the
designer of the compiler. This will be discussed further later.

Those readers familiar with LISP may find it useful to refer to Appendix
D which contains a simple ATN grammar together with annotated examples of
the programs which were compiled from it under different specifications.
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implementation. One concerns the amount of information which must be saved
in a configuration (an active state of the processing of a Sentence by the
ATN).gThe information required in a configuration to implement the ATN as
described ‘earlier in this chapter includes (1) the state, (2) the input,
(3) the 1ist of untrled arcs, (4) the stack of higher level arcs which are
waiting for completion of this level of the computation, (5) a list of
registers and their contents, (6) a list of features and their contents and
(7) a hold 1list. If, for example, a particular ATN grammar does not use
the hold list (i.e. contains no VIR ares), or if this facility is not
needed for a particular application of the grammar, the hold list need not
be included in the configuration. Other possible bATN> mechanisms 1like
"weight" information (see Woods (1973a) or Bates (1975)) require additional
information to be associated with a configuration, If most configurations
have the same weight, it is possible to implement this feature so that it
is not part of every configuration (e.g. via hash 1links (Bobrow 1975)).
The less information a configuration requires, the less storage it uses and

the less time it takes to create.

The ATN machine can also be optimized with respect to the number of
configurations which must be created. If the view that making an arc
transition creates a new configuration is taken literally, then each arc
would be compiled into code which if taken creates two new configurations,
One would be created to continue at the state at the other end of the arc,
and another one would be needed to remember thé remaining arcs of the
present state. In most cases, however, the current configuration does not
need to be saved, allowing one or the other of these two new configurations
to be made by destructively modifying the old one. In a depth-first
strategy, the arc can be compiled so that it changes the current
configuration after creating a new alternative one to examine the other
arcs. In a breadth-first strategy, the arc can be translated to create a
new configuration to continue processing at its tail, and the current

configuration can be changed to examine the other arcs leaving the current

9 In this discussion, we will mean by configuration the data structure
which contains the information necessary to represent a state in the
virtual machine. Thus the creation and modification of configurations are

data structure operations, 52)
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state.

The third ﬁajor area of optimization deals with taking advantage of
features of the target language to produce code which runs efficiently on a
physical machine (assuming the target language runs efficiently on a
physical machine). For example, in most object languages, an arc can be
represented by a sequence of statements in a program associated with a
label identifying it. If the arc succeeds, it can GO to the first arc of
the next state. if it fails, if can "fall through" to the next arc leaving
the state. In languages which allow the direct use of accumulators, it may
be possible to set aside accumulators for those parts of the configuration
which are accessed most often and thereby reduce the time spent accessing

the configuration.

A GRAMMAR COMPILING SYSTEM

Having described the general notion ~of ATN compilation, we now
consider the construction cf a system to perform such compilations. We
will describe a general compiling system which will take an ATN grammar
plus user specifications of desired features, and produce an optimal
compiled ATN machine. The ieneral structure of the compiling éystem is

shown in Figure 6.2. Tt consists of the following pleces:

1) An ATN grammar - provided by the user.

2) A set of user arc actions - the function definitions for arc actions
which are not part of the basic ATN formalism.

3) Grammar declarations = a set of declarstions to the grammar compiler
which specify the control structure and features of the ATN formalism
that this grammar uscc and tell the compiler how to comEile the user
arc actions in the gramnar. These declarations allow the grammar
compiler to optinize the program crocduced from the user s grammar.

4) Tre grammar compiler - a program which takes the user’s ATN grammar
and grammar declarations ana produces a LISP program. This LISP
program will be referred to as the "object™ code of the grammar.

5) The lexical routines - includes the dictionavy}‘-dictionarz_ retrieval
routines, t3n lexiczl anaiysis _routines ar:i the substitution and

compound word testing routines. It may also include routines to
correct spelling mistakes or recognize domain dependent words such as

50014,
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6) The runtime-ATN functions - the functions which erform the actions
and tests described in the ATN formalism (e.g. SETR, GETF, etc.) and
which maintain the configurations.,

7) The debugging package - a set of functions useful for tracing and
debugging the grammar object code.

These pieces are used in the following manner: The ATN grammar (1) and the
grammar declarations (3) are input to the grammar compiler (4) which
produces the ATN grammar object code. The user’'s arc actions (2), the
lexical routines A(S), the runtime ATN functions (6), and the debugging
package (7) are loaded together to create a runtime environment for the
grammar object code. The grammar object code is then loaded into the
runtime environment, which results in an ATN machine (i.e. a program which

takes sentences as inputs and produces parses as outputs).

The céntral issue in the compiling system is the form of the object
code produced by the grammar compiler. Once the form of the object code
has been decided, the task; of generating it and developing a runtime
environment for it become straightfofward. For this reason we will

describe the ATN object code in some detail.

A VERSION QF THE GRAMMAR COMPILING SYSTEM

As a first step in building the general compiling system, a version
was written which produced ATN machines with a particular set of features.
Since then, the first version has been extended to allow choices in a
number of areas, but the general implementation has not yet been completed.
In this section we éhall describe this first version of the ATN compiling
system and the class of machines it builds. The first version will provide

a concrete basis from which we can consider changes and extensions.

Features of the ATN machines

The first ATN compiler was designed to produce machines in INTERLISPlO

which had all of the facilities of the LUNAR parser except the

- - - G - an G 4 - an G - n an e

written in INTERLISP and many of the lexical routines and arc actions could

This object language was chosen partially because the LUNAR parser 1is
be borrowed. (52
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well-formed substring table and SYSCONJ facility (Woods et al 1972), In
addition to the standard arc types (CAT, WRD, TST, JUMP, PUSH, POP, and
VIR) and arc nections, these facilities include RESUME, SUSPEND and ABORT
actions; lexiral alternatives and the accessing gf refgisters from higher
levels. The control strategy compiled into the ATN machine is the same as
that normally used by {hé LUNAR parser, searching the paths tﬂrough t.he
grammar in a depth-first manner, As will be seen, the actual task of
compiling an ATN is fairly straigﬁtforward once one knows the form the
compiled ATN will have and the run-time environment in which it resides.
For this reason, i larger portion f this section will con' #ntruate on the
result of the ATN compiler rather than on the compiler itself. Before we
describe the structure of resulting ATN machines, we shall describe in some
detail, decisions in three areas which determine aspects of the ATN machine

and its run-time environment. These areas are: lexical analysis,

configuration make-up and control structure.

Lexical Preprocessing

In most implementations of ATN parsers, some amount of processing is
done before the input is passed through the grammar. This processing
includes the operations of dictionary look-up, morphological analysis, and
substitution and compound word checks.11 in the LUNAR parser, this analysis
is done as the parser "needs" the next worq in the input and the
ambiguities which arise from any or all of these operations are handled by
allowing the lexical processor to éreate alternative configurations. In
the compiled implementation, the lexical operations are done during a
prepaés. To capture some of the ambiguities, the input is converted into a
chart répresentation (Kay 1964). For example the phrase "United States Air
Force" would result in the chart structure given in Figure 6.3 (assuming
there were compound rules for United States and United States Air Force).

In Figure 6.3, the circles represent nodes of the chart and the arrows

Substitutions allow a word to be replaced by another word or series of
word:, (e.g. "ecan t" replaced by 'Yecan not"). Compound rules allow a
series of words to be replaced by a single word (e.g. "United Stated Air
Force" replaced by "United/States/Air/Force").

¢3
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represent gdges between them. Ambiguities, which are represented in the
chart as more than one edgze leaving a node, result only from possible
sﬁbstitutions and compound words, Alternative interpretations of a word as
different categories are all stored on the same edge, which preseryes the
ordering of arcs coming out of a state with respect to alternative
categories of a word. (Multiple interpretations of a word under the same

category will be discussed later.)

Figure 6.3 '
Example of an input chart

UNITED/STATES/AIR/FORCE

UNITED/STATES

UNITED et STATES
TN

There are two motivations for changing the input string into a chart.
One is that it recognizes the ambiguities before parsing begins, This
removes the hurden of lexical processing from the machine and allows the
machine to be independent of any _particular lexical analysis scheme.
Creating the chart also means that anv unknown words are identified before
any time is spent processing the sentence. The other motivation for using
the chart is that it may later be extended to include well-formed
constituents as well as terminals (i.e., it could subsume the role of the
well-formed substring table). This would allow bottom-up parsing keyed off
lexical items and permit experimentation with combinations of bottom-up and
top-down parsing. In fact the substitution and compound word mechanisms
presently allow bottom-up parsing, but it is not very interesting because

the resultirig constituents must be terminal symbols.

Since the distinction between terminals and non-terminals is maintained
in the %rammar by distinguishing between CAT and PUSH arcs, one way to
overcome fhis limitation is to combine CAT arcs with PUSH arcs, This new
arc type would be defined as "look for an x and if one isn’t found, PUSH

for one",
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Confifrurations
v .
‘? An mentioned earlier, the information required to completely

LIYR

characterize a state of the syntactic processing is called a configuration.

A configuration for the class of machines generated by the initial

implementation has the following parts:

CONFIGURATION number: a number unique to a configuration which is
used to identify it, e.g. on alternative configuration lists, in
traces or in paths,

STATE: the state of the grammar currentl being examined, In a
compiled grammar this is the label (index¥ of the code compiled from
some particular arc of a state, That is, in addition to specifying
the state in the ATN, it also indicates which arc of that state is
under consideration. .

NODE: a pointer into the input. The input is viewed as a set of
edges because the lexica prepass can create alternative word
substitutions or compound-words.

STACK: a pointer to higher 1levels of ATN’s which PUSHed to the
current. level.

REGS: a pointer to the 1list of registers available to this
-conficuration. The registers are stored in a "forked stack" format
which allows maximal sharing between configurations (Woods 1973a).

FEATS: a pointer to allist of feature registers.

HOLD: the hold list of as yet unassigned constituents.

A good deal of efficiency can be gained or lost creating and accessing
cohfinurations. To allow experimentation with different implementations,
the code produced by the ATN compiler is written in terms of data accessing
functions. In one of the possible implementations, a configuration is
represented as a 3 word block out of an array (see Figure 6.U4).

Figure 6.4
A Configuration

! arc/state node ¥
e

i stack registers]|
| features hold list
N
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Control Structure

One of the reasons that the compiled srammar is more efflcient‘than an
interpreted one s that the decision about what arc and edge to try next
can be fixed at compile time and inteprated into the grammar code. For our
tirst ‘version of the compiler, we chose a depth=first control structure,
The reasons for this are: (1) depth first search takes advantape of the
natural way provided by the ATN to order the arcs (i.e. the order in which
they are given on the state) and for some applications of a natural
language front-end, the first parse may be all that is required; (é) by
using a well-formed substring table, a lot of the work done during an
unsuccessful depth-first attempt can be used by later attempts; (3) a
erth-first strateey is conceptually simpie and easy to produce code for;
and (4) while many svstems have allowed a g&reat variety of control

struciures, none has been shown to work consistently better than others.

Using a depth-first control structure, the arcs are tried one at a
time in the order specified in the grammar. The first arc which succeeds
from each state is taken and an alternative confiruration which will try
the remaining arcs in the state is pushed onto the alternatives stack. If
a conficuration blocks (none of the arcs leaving its state succeed), the
top confieuration on the alternatives stack is started. If there is any
ambicuity in the input chart, the first lexical edese is applied to all of
the arcs comine out of the state before any of the other lexical edges is
tr.ed. Mote tnat the edres of the input chart are ggg‘ ised to represent
alternative lexical interpretations of 2 word but are used to represent
compound words and substitution expansions. The different lexical
~aterories of a word are grouped together on the same edre and the desired
categorv is chosen by a CAT arc. This method has the advantare that a WRD
arc succeeds onlv once instead of once for each interpretation. It also
provides a natural way for the grammar to order the interpretations of a

word 25 say an Hdor a V., If theN interpretation is more likely at this

13 If the user really does' want the word itself to favor one
interpretation over another, the substifution mechanism can be used to
create an alternative edze in the chart.
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state the CAT N arc is ordered ahead of the CAT V aro.13

It in pousible that a word has more than one Iinterpretation ln the
same category. For example "saw" can be either present tense as in "saw
of f the right corner" or past tense as in "I saw the man in the park".
This type of ambiguity is handled by allowing the CAT arc to create an
alternative configuration (called a CATALT) which will try the other
possible interpretations of the word within the same category. This CATALT
will be attempted before the alternative which tries the other arcs in the

st.at.e.

Ap Overview of an ATN Machine

The task of the grammar compiler is to transform an ATN grammar into a
runnable Pprogram. This program realizes one of the machines specified by
the grammar, parsing sentences in a way dictated by the grammar under a
particular control structure. Some of the basic operations of this machine
are choosing an alternative configuration from the list of those pending,
activating the configuration, and explo;ing arcs which leave the state of
the active configuration. This sectioﬂ is meant to familiarize the reader

with the form of a compiled ATN, by analyzing it in terms of these basic

operations.

Figure 6.5 presents a flow chart of the logical operations of the ATN
machine. The abstraction does not directly reflect the program structure
of the compiled ATN /a2 will become apparent in the next section which
examines ‘an actual machine); however, it shoula act as a "useful myth"
toward understanding the operations required of the object code. When
called, the machine combines its input (a chart created by the lexical
prepass described earlier) with a STATE which is the starting state of the
grammar (e.g. S/) to create the initial configuration. (The other parts
of the configuration are empty.) The next step is to set up the
configuration (i.e. put the machine into the configuration). This
operation may be viewed as getting a configuration "ready to run." When the
configuration is started, it tests the arc condition on the first arc. If
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the condition fails, the next arc is tried. 1If there are no other ares,
the next lexieal interpretation (i.e. next edge of the input chart) is
tried, 1! there are no other edres, an alternative configuration mﬁst be
selected. In the depth-first scheme, the 1list. of 'alternatives i=
maintained as a stack and the top configuration®' is used. If the

alternatives list is empty, the input failed to parse.

If the condition on the arc succeeds, an alternative configuration is
created which will try the remaining arcs of the present. state, and special
act.ions are performed dependent upon the arc type. For PUSH ércs, the
current level of processing is saved in a configuration and stored on the
stack. A configuration is then created beginning at the state being pushed"
fqr. For POP arcs, the confiruration on the top of Fhe stack is restored.
If the stack is empty and the input chart is empty, thé sentence hés
successfully parsed, If the input is not empty, this path has failed and
an alternative is tried. For CATﬂarcs,'if,the chart edge currently under’
consideration ' has an alternative interpretation under the same category, a
confiruration is saved which will try the other interpretation. Regardless
of the arc type, the actions on the arc being taken are performed and the
next configuration is created by changing the state and/or >advancing the
chart., We realize that this description leaves many critical details

unspecified. These details are addressed in the next section.

Anatomy of an ATN machine

A - compiled ATN has the following form:1u

(LAMBDA (ACF) . ,
(PROG (special variable, etc.)
SPREAD-ACF (code to set up ACF, the current configuration)
GO EVAL-ARC) .
NEXTLEX if Eanother lex?g t.hen éadvance NODE) (GO EVAL-ARC))
DETOUR ~(if (another alt?) then (ACFealt) (GO SPREAD-ACF))
else (RETURN failure))
EVAL-ARC (BRANCH STATE arclabelil arclabel? ... arclabeln)
arclabell arci1 code :
arclabel?2 arc?2 code

arclabeln arclabeln code))

For this implementation, INTERLISP is used as the object language for
the compiler. All of the examples given here will be -in CLISP (Teitelman
1975), an ALGOL-like dialect of INTERLISP. In LISP, a function call is

expressed in Cambridge-Polish notation: as a parenthesized list of the
function name followed by its arguments.
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It is a LISP function of one argument, ACF, which is the Active
: . 1

ConFiguration, > The code by the label SPREAD-ACF sets the proper variables

(by variable assignments from the fields of ACF) to establish an active

configuration, ending with a jump to EVAL-ARC. Fdr this implementation,

the parts of the active configuration are stored in the variables STATE,

NODE, STACK, REGS, FEATS and HOLD. The BRANCH statement associated with

EVAL-ARC will cause the code associated with the STATE of the active~
configuration to be executed (i.e. by passing control to the label
indicated by the value of STATE). The arc code portion of the machihe will
be described in the next section. The code by the label NEXTLEX checks to
see if there is another lexical alternative in the current configuration
(i.e. another edge on NODE).¢ If there 1is, it changes the NODE of
configuration po the next interpretation and jumps to EVAL-ARC. The code
by the label DETOUR picks an alternative from the list of alternatives and
jumps to SPREAD-ACF to establish it as the active configuration. If there
are no more alternatives, the machine returns féilure. The pieces of the
ATN which we have described so far are independent of the particular ATN
grammar being compiled. The bulk of the ATN machine consists of thq
separate pieces'of code which have been compiled, one piece from each arc

in the grammar. The following section describes this code.

CODE FOR THE ARCS

"An arc in the grammar has three parts: (1) conditions which must " be
satisfied in order for -the arc to be taken; (2) actions which are to be

performed if the arc is taken; and (3) a termination action which moves to

a new state 1in the grammar. 17+ code compiled from each arc 1 first
“checks the conditiong required by :: =t arc., If the conditions are met, an

alternative configuration is created to try the remaining arcs in the state

and the code corresponding to the actions on the Erc is executed. The last

5 The initial configuration (which has a STATE which is the startinz
state of the grammar (e.g. S/) and a NODE which is the first node of the

input chart) is created before this function is invoked.

This code is similar in many ways to General Syntactic Processor code
of Ronald Kaplan (1973) and Martin Kay (1973).
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act.ion of the arc will be the termination action which jumps to the first

arc of the next state.

If the tests for an arc are not met, the next arc needs to be tried
(or if there are no more arcs, an alternative needs to be chosen). This is
implemented by allowing control to "fall through" to the next arc. At the
end of the code for all of the arcs in a state, control is sent to the

"
label DETOUR which starts an alter‘native.17

The form of code produced from each arc in the grammar is determined
by its arce type. In this imblementation we have allowed for seven
different types: WRD, CAT, JUMP, VIR,1TST, PUSH, and POP, (As mentioned
earlier, the MEM arc type used in the LUNAR grammar has been subsumed under
a more comprehensive WRD arc.) In the following sections, we will describe
briefly the code produced from WRD arcs, CAT arcs, PUSH arcs, and POP arcs.
The code produced for the TST arcs, JUMP arcs and VIR arcs‘ is similar to
WRD arcs (differing only in the test which is implied by the arc type and
whether or not the terminating action advances the input). Each section is
prefaced with the given arc type as it appears in an uncompil%géATN

grammér, 50 that its relationship to the resulting compiled code 1is made

18

clear.
WRD arcs

(WRD <word> <tst> <action>+ (TO <state>))

The WRD arc provides a means of testing for a particular word. <&ord> .
can be (1) a word, (2) a list of words (in which case this is similar to
the LUNAR MEM arc), or (3) a variable whose value is a list of words (in
the current implementation, a variable :is dist.inguished from a word by

requiring that it begins with a "/", e.g. /MONTH/) . Depending on the

- - - A AR e AY A - an - A an

17 If there are lexical alternatives, control will be sent to the 1label
NEXTLEX which will advance to the next lexical alternative.

- - - - - - - A - -

The examples have been taken from the ATN grammar in Appendix- D.
Appendix D “-also presents the complete program which results from its
compilation.

Tl
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instant iation of <word>, the test conditioh of the WRD arc compiles into
either (1) ARCWRD, (2) ARCMEM or (3) ARCMEME, all of which check the word
on the current edge of the input chart. This implied test is then embedded
within the explicit test <tst> and made the test condition of a conditional
statement. The consequence clause of the conditional statement is made up
of the compiled versions of <action>+ ahd (TO <state>). For example, the
first arc of the grammar state QY/ in the sample grammar frpm Appendix D:

fQu/
(WRD BY (GETR AGFLAG) (SETR AGFLAG NIL) (TO Q7/))]

compiles into: _
Qu/ (if (ARCWRD BY) and (GETR AGFLAG)
then (ALTARC QU/-=2)
SETR AGFLAG NIL)
DOTO Q7/)

GO Q7/))
QU/-2 ... -

If the word test (ARCWRD BY) and the arc test (GETR AGFLAG) are both
successful, the function ALTARC sets up an zlternative configuration to try

19 and the actions on the

the other arcs of this state (beginning at Qu/-2)
arc are executed. After the setting of the AGFLAG register, the function
DOTO changes the state ‘to the next state Q7/ and advances the input, The
function GO jumps to the label Q7/ which begins applying the first arc of
the state Q7/. If either of the tests on this arc fail, control "falls

through" to the code for the second arc Qu/-2.

CAT Arcs

(CAT <category> <test> <actions>+ (TO <state>))

19 ALTARC is the primary means of creating alternative configurations. It
creates, and saves on the alternatives 1list, a copy of the current
configuration which has had its arc/state changed. The new arc/state 1is
the argument passed to ALTARC. The two functions, ALTCAT and NEXTLEXALT,
which also create configurations will be discussed later.
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The CAT arc type provides a means of:restricting an arc to words of a-:
particular syntactic category. <Category> is the syntactic category being
tested for., In this implementation, the set of syntactic classes fo‘ which
a word belongs is stored with its dictionary entry and is included in the
chart by the prepaés. In addition the dictionary includes an ASSOC list of

lexical features of the input word under this interpretation.zo

»

The code produced for a CAT arc is complicated by the need to generate
CATALTs (alternative interpretations of a word in the same category). In
particular, CATALTs require creating a second arc/state (label) for each
CAT arc which‘will process all but the fifst interpretation. This second
arc/state is the same as the first CAT arc without the action which creates
the next. arc alternative (so thét the next arcs will not be tried again for
each of the other interpretations). For example the first arc from state

VP/ in the Appendix D grammar:

VP/
[ (CAT V (GETF * UNTENSED) (SETR V *) (TO Q3/)]

i
i

compiles as:

vp/ if (NOT (ARCCAT V)) then (GO VP/-2))
ALTARC VP/-2)

VP/-1-CONT ALTCAT VP/=1-CAT)
if (NOT (GETF * "UNTENSED)) then (GO DETOUR))
SETR V ¥
DOTO Q?/
GO Q3/
vVp/-2 e
VP/-1-CAT ( ARCCAT V)

(GO VP/-1-CONT)

“The interpretation of the code is as follows. If the current word is not a
V, immediately try (the code compiled from) the next arc (VP/-2).
Otherwise create an alternative configuration which will try the next arc

{ALTARC). ALTCAT checks for other interpretationé of the input word as a V

The LUNAR grammar also supports a different notion called features
which is a 1list of atoms contained in the dictionary entry for each word
under the property FEATURES and which is global to all interpretations.
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and if there are any, creates an alternative with an arc/state which redoes
only this arc (VP/-1-CAT).2' If the test cn the arc (GETF * "UNTENSFD) is
not true, DETOUR wili starp the next alternative which will be either the
next interpretation (the conliguration created by AL1CAT) if there is onc
or the next arc (the one created by ALTARC).If the test on the arc is true,
the arc actions are executed, the input js advanced (DOTO), and the next

state is processed (GO Q3/).

The code beginning at the label VP/-1-CAT performs an ARCCAT test
(which sets up *) and rejoins the first arc immediately after the ALTARZ
(label VP/-1-CONT). By rejoining here, the alternative which tries the
next arc in this state does not get created a second time; however, the
alternative to try the third (or more) alternative interpretations does get

created (as it should).
PUSH Arcs

(PUSH <state> <test> <action>+ (TO ¢stated))

The PUSH arc provides a way of recursively invoking the grammar to
find a complex constituent. The <test> condition-is checked before the
PUSH; The PUSH arc gets compiled into two arc/states:  one which performs
the pre-actions 22 and doeé the PUSH; and one which is returned to after
the POP by the lower network, which does the arc aétions and movesv to the

next state. For example the third arc of state Q3/3

The phenomenon of multiple interpretations within the same categorg is
rare and has only occurred in applications for verbs (e.g, "put" which can

be either present tense as in "put the book on the -table", or a past

particigle "the book was put on the table"). (In much more general

applications it may arise in noun plurals such as "axes" or "bases." Since

its implementation so greatlg complicates the code generated for a CAT arc -
(without it, a CAT arc would be similar to the WRD arc described earlier),

the compiler allows the user to specify which categories can have multiple

interpretations. For example, a CAT ADJ arc may be compiled to execute

more efficiently than a CAT V arc.

22 SENDRs, SUSPENDs and an{ actions which are embedded in "!" as in (!
(FOO)) will be done before the push. _
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(Q3/ ..
(PUSH NP/ (TRANS (GETR V))
SETR OBJ %)
TO Qu/))]

compiles into:

Q3/-3 (if (TRANS (GETR v)ﬁ
then (ALTARC Q3/-4)
DOPUSH NP/ Q3/-3-PUSH)
GO NP/))
Q3/-Ll LI
Q3/-3-PUSH (SETR “OBJ *)
DOPTO Qu/)
GO Qu/)

If the test (TRANS (GETR V)) is not true, the next arc is tried
immediately. If the test is true, ALTARC creates and saves an alternative
configuration to try the other arcs beginning at Q3/-4. The function
DOPUSH performs the operations necessary to recursively call the lower
level. These consist of saving the currently active configuration on thé
stack (after chahging its state to restart at the return arc/state
Q3/-3-PUSH), and then changing the state to the lower level (NP/) and
chaneing the registers and features to those being sent down. Following
the DOPUSH, the lower state is started immediately (GO NP/). The code by
N3/-3-PUSH is the return arc/state which will be executed wheﬁ.(if) the
lower network (NP/) finishes. The structure returned by the lower network,
* is saved in the OBJ register. The function DOPTO changes the state but

does not advance the input. The GO begins processing at the state Qu/.

POP Arcs

(POP <form> <test>)

The POP arc identifies a final state in a network and specifies the

structure that is to be returned. The state NP/3:

[NP/3
(POP (BUILDQ (NP (NPR +)) NPR) T)]

compiles into:

NP/3 (NEXTLEXALT NP/?)
(DOPOP (BUILDQ (NP (NPR +)) NPR))

(GO EVAL-ARC)
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The function DOPQP re-establishes the next higher level by restoring t.he
state and the registers from the configuration on the top of the stack.
DOPOP also sets * to the proper structure. After DOPOP has established the

higher level configuration, EVAL-ARC will activate it.

There are two other points exemplified by the code for NP/3. One 1is
that since the test on the arc is always true, there is no need for a
conditional statement. The other is that since the arc is the last arc in
the state, it does not need to create an alternative to examine the
remaining arcs. What the last arc does need to do héwever, is to check - to
see if there is an alternative lexical ingerpretatign (e.g. try "united
states" as two words after the compound "United/States" fails as in the
sentence "He united states to create a smaller grammar”). This is done by
the function NEXTLEXALT. If there is another lexical alternative (another
edge on the input chart) NEXTLEXALT creates an alternative configuration

which has the next lexical alternative as an input ‘and has an arc/state

which restarts it at the first arc of the current grammar state (NP/3).

Special Actions

Certain of the actioﬁs allowed by the ATN formalism affect the form of
ttie compiled code. These are the actions RESUME and SUSPEND which change
the standard control flow. SUSPEND provides a means of setting the weight
(likelihood of success) of a configuration. When the weight of a
configuration is changed, it temporarily stops in favor of other
configurations which have a better weight. This is done by putting ﬁhe
current configuration and its weight on a list of(suspended configurations
and then aborting. The alternative configuration with the best weight
(possibly this one again) will then be chosen. RESUME allows a lower level
network which has a;ready popped to resume processing input words from a
later place in the input (for conveniently handling certain extraposition
phenoména in natural English). This is implemented by allowing RESUME to
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simulate a PUSH. Both SUSPEND and RESUME require the creation of a new

state (label) in the object program.

Compiling the Compiled ATN

The pesult of compiling an ATN is a program in a computer language;
in our examples, a LISP program. This program één Se‘executed by a LISP
interpreter or, more likely (since the primary reason to compile the ATN is
efficiency), compiled by a LISP compiler to produce machine level code.
Major gains in efficiency‘can be made through judicious use of compiler
~~cros and hand coding of:ofh used f‘unctions.23 For examble, the arc action
BUILDQ which fills a f;xed template with specified register contents can be
expanded via macros at compile time to be direct calls on the primitive
functions CONS, LIST, etc. Another good example is the use of machine
language macros for the functions which access the parts of a configuration
(sée Figure 6.4), The indexing address mode of the hardware can then be
used to access any part. of a configuration in a single machine instruction,
Implement.ing the machine language definitions as macros does not effect the
debugging facilities which can use the normal LISP definitions. While
techniques at this‘level are machine dependent (and therefore interfere
with the transferability of the program), the functional nature of the

object code delimits the range of this dependence.

Results

For purposes of comparing the ATN compiling system with the LUNAR
parser, the ATN grammar from LUNAR was com . using the compiling system.
The control structure of the LUNAR parser and the compiled version are the
same (deﬁth-first) so that traces could be compared to ensure that both
systems were performing- the same task. The ATN machine was then -block
compiled (Teitelman 1975) and used to parse some of the example sentences

t;kéh from Woods (1973b) and the appendix of Woods et al (1972). (In this

23 The examples presented deal with the INTERLISP compiler, however,
similar compiling features are available in many other versions of LISP.
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initial version of the. ATN compiler, the LUNAR conjunction-handling
facility SYSCONJ is not supported. However, we plan to include it, or some
modified version of it, in future implementations.) All of the parses were
run on a PDP KA10 which has a cycle time of approximétely two microseponds.
The times listed for the compiled version are "lexical prepass" +
"parsing". As can be seen, the compiled version required less t han
one-tenth the time of the LUNAR version.

1) Give me all analyses of S10046

LUNAR --3.05 seconds
Compiled - .0U5 + ,200 = .245 seconds

2) How many breccias contain olivine?

LUNAR - 1.65 seconds
Compiled - .050 + .125 = .175 seconds

3) What are they?

LUNAR - 2.25 seconds
Compiled - .030 + .150

. 180 seconds

4) List modal plag analysis for lunar samples that contain olivine.
LUNAR - 2.9 seconds
Compiled - -065 + .200 = .265 seconds

5) What is the average composition of olivine

LUNAR - 3.1 seconds
Compiled - .040 + .235 = .275 seconds

6) References on tritium production

LUNAR - 1.6 seconds
Compiled - .030 + .095 = .125 seconds

7) How many breccias do not contain Europium

LUNAR - 2.5 seconds
Compiled - .075 + .165 = ,2U0 seconds

EXTENSIONS TO THE INITIAL VERSION

Since the initial implementation of the ATN compiler, many of the
features of the ATN have been made optional. That is, the user can specify

the features he needs and the compiler will produce programs optimized to
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those features. This allows a user to build a natural language front-end
incrementally, addineg new features as his subset of the lanruage becomes
sophisticated enough to use them. If the user wants to start with a
finite-state, keyword ATN, the compiler will produce a very fast finite
state machine. If his ATN develops to the point that he needs recursive
networks, alternative lexical interpretations and a mechanism for
remembering well-formed constituents, the compiler will produce a machine
which has these capabilities. The point is that the user can wérk t.hrough
the entire development in the same formalism using "upward compatible"
grarmars and has thg opportunity to evaluate the benefits and the costs of
éaéh new addition. This also provides a metric when trying to decide

between two different methods of handling the same construct. -In the next

‘section, we will . describe one of the major' options which has been

implemented, and in the subsequent section describe optional control
structures which have not been implemented. Appendix E provides a complete
specification of the options which are available in the present

implementation.

The Well-Formed Substring Table

The Well-Formed Substring Table (WFST) allows some of the work
performed by the first attempt to parse a sentence to be re-used by the
later attempts. It does this by keeping track of the complex constituents
which are found as a result of PUSH arcs. Care must be taken to ensure
that a PUSH which uses the result of an earlier PUSH has the same context.
for this reason, the entries (called buckets) in the WFST are keyed on the
following information: (1) the state that is pushed for; (2) the  lexical

edee that is being considered;zu (3) the list of SENDR registers; and (4)

If the state and edze were the only keys necessary, the WFST would be
equivalent to the chart as used by Kay (1964). Kaplan has extended the
chart in GSP to include SENDRs and hold lists (1975). The LUNAR parser
WFST (Woods 1973a) used all of these keys (except that the input string was
used instead of the edge as the LUNAR parser did not use a chart.).

2
25 More collapsing of processing is possible but only with considerably

greater complexitg. Note that the sending of features is not permitted.
It could be supported by making the list of sent features another key in
t he well-formed substring table. .
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the hold list..25 Each bucket in the WFST cbntains two pieces of
"y

information: the open configurations (OPENCFs) which have pushed and are
waiting for a constituent to be popped, and the well-formed substrings

(WFSs) resulting from POPs.

A bucket is created by the first push arcbwhose configuration keys to
it. when this occurs, a new configuration is set up to start processing at
the lower level. Whenever another configuration keys to the same bucket,
(i.e.r"fﬁushes for the same constituent at the same place in the input with
the same hold list and SENDR registe;s), it attaches itself to the list of
OPENCFs in the bucket and creates POPped configurations for each WFS
already stored there. Whenever a configuration POPs to a bucket (this will
be discussed further later), it creates a well-formed substring (WFS),
attaches it to the list of WFSs and creates configurations which start each
of the OPENCFS using the found WFSs. In this way each configuration which
is waiting for a POP gets started once and only once for each alternative
POP. In a strictly depth-first situation, the configurations which arrive
after the first one would not need to attach themselves because all
possible alternatives at the lower level will have been exhau;ted.
However, SUSPEND actions can result in later POPs which must know all of

the configurations to continue.

An QPENCF has the following pertinent information: the configuration
st;te which is the label of (the code compiled from) the arc actions and
termination action of the PUSH arc, a stack, a list of registers, a list of
features, and a HOLD list. A WFS has: the structure being POPped together
with its features, a node which indicates how much of the input was
accepted during the PUSH, a list of lifted registers, a li;t of lifted
features and a hold list. An OPENCF and a WFS are joined together to get a
continuation configuration in the following manner. The state of the new
configuration is the state specified py the OPENCF which continues the
parse at the higher level. The node is taken from the WFS which indicates
where in the input parsing it is to continue. The stack is taken from the
OPENCF. The register and feature 1lists are the result of merging the
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lifted rerfisters and features in the WFS with the registers and features
" from the OPENCF. The hold list is the result of removing from the HOLD
list of the OPENCF, all of the elements which are not on the HOLD 1list of
the WFS (i.e. all of the elements which were removed by VIR arcs in the

lower level).

The well-formed substring table determines the structure of the stack.
Without a WFST, the stack is a list of configurations the first of which is
waiting to be continued as soon this level pops. With a WFST, the stack is
a pointer to a bucket in the WFST which contains all of the configurations
which are waiting for this leQel. Ndiice that a bucket in the WFST is a
refinement of a "state set" in the Earley parsing algorithm (1970). 1In
particular, it utilizes the same . collapsing of the stack which allows

parsing of left recursive grammars.

The accessing of information in registers aﬁ a higher 1level (to
determine, for example, "the top-level verb during the recognition of a
relative clause) is not alloyed ‘using this scheme of a wéllfformed
substring table because thére may be multiple higher levels (OPENCFs), some
of which haven’t been created yet. Equivalent effects in the grammaﬁ can
be generated by using SENDR's which will create different buckets for

differing information in the sent registers.

It is useful to examine the differences which result in the ATN
machine as a result of the well-formed substring table. The only
difference in the object code is a change in where control .is. transferred
after a PUSH arc. Without the WFST, control is passed directly to the
first’arc of the lower state (see the section on code for PUSH arcs). With
the WFST, an earlier PUSH m# have already started a configuration at the
lower level so control is rassed to the place which stapt§ the next
configuration. The major difference between the WFST and the non-WFST

versions is in the runtime functions DOPUSH and DOPOP which actually

maintain the WFST and perform the operations described above.
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Alternative Control Strategles

Some of the most exciting developments‘ in the study of syntactic
processihg have been in the area of alternative control stratégies. Kaplan
(1974) has done an excellent job of factoring out the scheduling aspecﬁs of
the control component of a syntactic processor from its analytic aspects
while Marcus (1975) is exploring general heuristics to guide the scheduling
process, While the present implementation only produces programs which do
depth-first search, the compilation process in no way requires this
particular control strategy and‘alternatiVe strategies are planned. One
control strategy which looks very interesting has been named "burst" mode.
To process a particular state, all of its ares are applied and the ones
which could be taken generate configurations. This list of configurations
is then passed to a (possibly user provided) selection function which picks
one or more to be continued thle the rest are placed- on‘ the alternative
list., This would provide the user with dynamic contrcl over the selection
of configurations and permit explorations of various strategies for

semantically and pragmatically guided parsing.
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Chapter 7

SEMANTIC ATN

For the reasons discussed in Chapter 5, the SOPHIE semantic grammar
was re-written in the ATN formalism. We wish to stress here that the
re-writing was a process of changing form only. The content of the grammar
remained the same. Since a “large part of the knowledge encoded by the
grammar continues to be semantic in nature, we‘call the rasulting grammar a
"semantic ATN". Figure 7.1 presents the graphic ATN representation of a
semant.ic grammar non-terminal. This is the same rule‘bresented in Figure
I,1 which recognizes the phrases for specifying measurements in a circuit.
The actions and structure building operations on the ares (which are not
shown in Figure T.1) save the recognized constituents and construct the
proper interpretation when sufficient information has been collected.

Apoendix G provides more examples of the semantic ATN used in SOPHIE.

Figure 7;2 presents a simple example of how the recognition of
_anaphoric deletions can be captured in ATN formalism. The network in
Figure 7.2 encodes the straightforward way of expressing a terminal- of a
part in the circuit (e.e. the base of Q5, the anode of it, the collector.)
By ﬂhe state TERMINAL/TYPE, both the determiner and the terminal type (e.g.
hase, anode) nave been found. The,first arc leaving TERMINAL/TYPE accepts
the preposition which begins the specification of the part.. The second arc
{JUMP arc) corresponds to hypothesizing that the specification of the part
has been deleted (as in "The base is open"). The action on the arc builds
a place holding form identifying the deletion and specifying (from
information associated with the terminal type which was found) the classes
cf objects which can fill the deletion. The method for determining tﬁe

referent of the deletion remains the same one described in Chapter 4,
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Figure T.72

An ATN which recognizes deletlor
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The SOPHIE semantic ATN is then compiled using the general N
compiling system described in Chapter 6. The SOPHIE grammar provides tie
compiling system with a good contrast to th» [U¥8R grammar as it does not.
use many of the potehtial features. In a's . a bench mark, of sorts,
was available from the LISP implementation cf .¢+ Zrammar which could be

used to determine the computational cost of using the ATN formalism.

There wer® two modifications made to the compiling system to improve
its efficiency for the SOFHIE application. In the SOPHIE grammar, a large
number of the arcs check [or the occurrence of particular words. When
there is more than one arc leaving a state, the ATN formalism requires that
all of these arcs be tried, even if more than one_of these is a WRD arc and
an earlier WRD arc has succeeded. This ‘is especially costly since the
taking of an arc requires the creation of a configuration to try the
remaining Aarcs. In those cases when it is known that none of the other
arcs can succeed, this should be avoided. As a solution to this problem,
the GROUP arc 'type was added. The GROUP arc allows a set of contiguous
arcs to be'déSipnated as mutually exclusive. The form of the GROUP arc is
(GROUP arci arec2 ... arcn). ‘The arcs are tried one at a time until the
conditions on one of the arcs are mét. This arc is then taken and the
remaining arcs in the GROUP are forgotten (not tried). If a PUSH arc ié
included in the GROUP, ittwill be taken if its test is true and the
remaining arcs will not be tried even if the PUSHed for constituent is not
found. For example, consider the following grammar state:

{(8/1 .
(GROUP {CAT A T (TO S/2))

GZ
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At most one of the three arcs will be followed. Without GROUPing them
together, it is possible that all three might be followed (i.e. if the

word ¥ had interpretations as both category A and category B).

The GROUP arc also provides an efficient means of cncoding optionsal
constituents. The nofmal me thod oflallowing options in ATN is to provide
an arc which accepts the optional constituent and a second arc which Jjumps
to the next state without accepting anything. For example, if in state 8/2
the word "very" is optional, the foliowing'two arcs would be created:

(s/2
%WRD VERY T (TO REST-OF-5/2))
JUMP REST-OF-S/2 T))
The inefficiency arises here when the word "very" does occur. The first
arc is taken but an alternative configuration must be created (and possibly
later explored) which will try the second arc. By embedding these arcs in
a GROUP, the alternative will not be created (thus saving time and space)
and hence won't have to be explored (possibly saving more time). A warning
should be included here that the GROUP arc can cause scntences which mieht
otherwise be acceptea to be rejected, In our example, viewing "yery" as a
member of a category may be the only way out of the state REST-0F-S/2. In
this respect the GROUP arc is a departure from the original ATN philosophy
that arcz s oule "™z independent and for this we apologize. However, for

some applicatio:s, {12 increased efficiency can be critical.

The other «h-nge to the compiling system for the semantic grammar
lapp;ication deai: wi'. the preprocessing operatiors. The preprocessing
facilities described in the a3 chapter included lexical analysis to
evtract word endines, a substitution mechanism te expand abbreviations,
gala’e prise words, and canonicalize synonyms, dictionary retrieval
rout ines aird a rompcund word mechanism to collapse multi-word phrases. For
. the SOPHIE applicatién we added the ability to use the INTERLISP spelling
correction routines and the ability to derive word definitions from
&
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SOPHIE ‘s semantic net. The extraction of definitions from the semantic

network for part names and node names reduces the size of the dictionary

and simplifies t*« ~nperatlons of changing circuits, In addition, a
mechanism (¢ - MULTIPLES) was developed which permits string
substituticn v .-.in the input. This is similar to the notion of
comp:inding ~ . differs in that a compound rule creates an alternative
lexical item while multiple rule creates a different lexical item. After

the application of a compound rule, there is an additional edge in the
input chart while after a multiple rule, the effect is the same as if the

user had typed in a different string.

Fuzziness :

-

The one aspect of the LISP implementation which has not been
incorporated into the ATN framework is fuzziness, the ability to ignore
words in the input. While we have not worked out the details, the
non;deterhinism provided by ATNs 1ends itself to an interesting approach.
In a one-process (recursive descent) implementation, the rule which checks
for a word must decide (with information passed down from higher rulgs)
whether to try skipping a word or give up. The critical information which
is not available when this decision has to be made is whether or not there
is another parse which woﬁld use that word. In the ATN, it is possible to
suspend a parée and come back to it after all other paths have been tried.
Fuzziness could be implemented so that rather than skip ~a word and
continue, it can skip a word and.suspend, waiting for the other parses to

'

faii or suspend. The end effect may well be that sentences are allowed to

get furzier because there fs not the danger of migsing tre correct parse,

Comparison of Results

The original motivation for‘changing to the ATN was its perspicuity.
Appendices A and B which show the BNF/LISP version can be compared with
Appendix G which shows the ATN version, We suspect that the reader finds

neither of the two particularly readable, but then there is no reason to
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expect -thal toae ghou;d be the ecane. As Winoerad has pointed out (1973%),
simple  grammars are perspicuous in almost any formalism; complex grammars
are still complex in any formalism. 1In our own experience, we found the
Al,, formalism much easier to think in, to write in and to debur. The
examples of redundant processing which were presented in chapter & were
discovered while converting to ATN, For a gross comparison on conciseness,
the ATN rrammar reauirés 70% less characters to express fthan the LISP

version.

The efficiency results were surprising. Table 7.1 gives comparison
{imings between the LISP version and the ATN compiled version. As can be
seen, the LISP version is less than twice as fast, This was pleasantly
counter-intuitive as we expected the LISP version to be much faster due to
the amount of hand optimization which had been done while encoding the
grammar rules. In presenting the comparison timing, it should be mentioned
that there are three differences between the two systems which tended to
favor the ATN ver‘sion.1 One difference was the lack of fuzziness in the ATN
version. The LISP version spent time testing words other than the current
word (looking ahwad to ree if it were possible to skip this word) which was
not done in the 4N ve-sicn. The second is the creation of catesories for
words durins the (rescocessing in the ATN version which reduced the amount
of time spent = = .assing the semantic net and hence reduced the time
required to perform a categorvy membershipvtest in the ATN system. The
tihie® 5 the simplification of the grammar and increase in the amount of
bottom-up processing which could be done bc -ause of the ambiguity allowed
in the input chart. In our estimation, the lack of fuzziness is the only
difference which may have had a significant effect and this can be included
extlicztly in the ATN in places where it is critical (using TST arcs and
susnend  actions) without notiéeable increase in processineg time. In

conclu~ion we are very pleased the results of the compiled semantic ATN and

The exact extent to which each of these differences contributed is
difficult. to gather statisties on due to tnc block compiler which gains
efficiencg by hiding internal workings. The exact contribution of each
could certainly be determined but was not deemed worth the effort..
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2)

3)

4)

5)

Table (.1t
Comparison of ATN vs LISP Implementation

Times (in seconds) are "prepass" + "parsing"

What is the output voltage?

LISP - .02” + 0018 = .0”2
ATN - .0”8 + 0033 = 0081

What is the voltage between there and the base of Q67

LISP - 0038 + 0029 = .027
ATN - 0090 + .0” = 013

Q57

LISP - .010 + .QU6 = .056
ATN - .013 + .060 = .073

What is the output voltage when the voltage control is set to .5?

LISP - .0”5 + .0 8 = 0083
ATN - .096 + .0uU8 = .1ud

If Q6 has an open emitter and a shorted base collector Jjunction what
happens to the voltage between its base and the %unction of the voltage
limiting section and the voltage reference source

LISP - .206 + .188 = .39”
ATN - .259 + .090 = .349
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feel that the ATN compiler makes the ATN formalism cnmputationally

efticient enourh to be used in real systems,

91

83




Chapter 8
CONCLUDING DISCUSSION

When we began developing a natural language processor for an
educational euvironment, we knew it had to be (1) fast, (2) habitable, and
(3) self-teaching, The basic conclusion that has arisen from the work
presented here 1s that it is possible to satisfy these constraints., The
notion of semantic grammar (presented in Chapter U) provides a paradigm for
organiv ng the &nowledge required in the understanding process which
permits ef'ficient parsing. In addition, sSemantic grammar alds the
habitability by providing insights into a wuseful class of dialogue
constructs and permits efficient handling of such phenomena as
pronominalizations and ellipsis. The need for a better formalism for
expressing semantic grammars led tO the use of Augmented Transition
Networks (presented in Chapter 6), This, in tur:, led to the design and
implementation of a general ATN compiler which drastically increaséd t.he
speed of executing an ATN by translating it into an optim;zed object
program. The increased efficiency makes practical the use of the ATN
formalism for writing semantic grammars. The ability of the ATN-expressed
semant.ic grammar to satisfy the ahove stated requirements is demonstrated

in the natural language front-end for the SOPHIE system.

A point which needs to be stressed is that the SOPHIE system Has been
(and is being) used by uninitiated students in experiments to determine the
pedagogical effectiveness of the SOPHIE environments. While much has béen
learned about the problems of usiné a natural language interface, these
experiments were not "debugging" sessions for the natural language
component., The natural language component has unguestionably reached a
state at which it can be conveniently used to facilitate learning about
electronics. In the remainder of the chapter, we will describe experiences
of students using the natural language component and present research areas

in which further work is necessary.
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lupresgjionn

Prior to any exposure to SOPHIE, a proup of four students were asked
to write down  all of the ways‘(they could think of) of requesting the
voltage at a particular node. Althoupgh the intent of the experiment was to
determine 1 he ranpe of paraphrases which students might be inclined to use
before they were aware of the system’s linpuistic limitations, a more
interestine result emerged. Each student wrote down one phrasine very
quickly but had a difficult time thinking of a second, even though the
initial phrasing by three of the students were in fact different! One
student cven gave up exclaiming "But there is only one way to ask that!"
This same inability to perform linguistic paraphrase carried over to the
actual interaction with SOPHIE via terminal. Whenever the system did not
accept a Auery, there was a marked delay before the student tried again.
Sometimes the student would abandon his line of questioning completely. At
t he ;ame time, data collected over many sessions indicated that there was
nothine 1ike a_standqrd {canonical) way to phrase a question. Table 8.1
provides some -examples of the range of phrasings used by students to ask

ror the voltage at a node.

Table 8.1
Sample Student Inputs

The following are some of the input lines typed by students with the intent
of discovering the voltage at a node in the circuit, -

What is the voltare at node 1?

wWhat is the voltage at. the base of Q5?
How much voltapge at N107?

And what is the voltage at N1?

"NQ?

V at the ner side of C67?

V11 is?

what is the voltape from the base of transistor Q5 to ground?
What V at N1587

Coll. of Q57

Node 15 Voltage?

What i. the voltage at pin 1?

Out put ?

As Tabls 8.1 shows, students are likely to conceive of their questions in
many wWavs and to express each of these conceptions in any of several
phrasines. VYet other experiences indicate that they lack the ability to

easily convert to another conceptualization or phrasing. Since the
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non-acceptance of questions creates a major interruption in the student s

thought process, the acceptance of many different paraphrases is critical

to maintaining flow In the student’s problem solving,

Another interesting phenomenon which occurred during sessions was the
change in the linguistic behavior of the students as they used the system,
Initially, queries were stated as complete English questions, generally
stated in templates created by the .iudents from the written examples of
sessions which we had Riven them. If they needed to ask something which
did not exactly fit one of their templates, they would try a minor variant.
As they became more familiar with the mode of interactinn, they began to
use abbreviations, to leave out parts of their guestions and, in general,
to assume that the system was following their interaction, After five
hours of xperience with the system, almost all of one student’s queries
contained abbreviations and one in six depended on the context established

hy previous statements.

RESEARCH AREAS IN SEMANTIC GRAMMAR

The SOPHIE semantic grammar system is designed for a particular
context (trouble shooting) within a particular domain (electronies). It
represents the compilation of those pieces of knowledge which are general
(i.e. linguistic) together with specific domain dependent knowledge. In
its present form, it is unclear which knowledge belongs to which area. The
development of semantic grammars for other applications and extensions to
the semantic grammar mechanism to include other understood 1linguistic

phenomena will clarify this distinction,

While the we . - sented in this report has dealt mostly on one area
of application, the notion of semantic grammar as a method of integrating
knowledge into the parsing process has wider applicability. Two
alternative applications of the technique have been completed. One deals
with simple sentences in the domain of attritute blocks (Brown et al 1975).
While the sublanguage accepted in the attribute blocks environment is very

simple, 't is noteworthy that within the semantic grammar paradigm a simple
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prammar was quickly develonped which pgreatly improved the flexibility of the
input lanpuare.  The other completed application deals with questicns about
the editine system NLS (Grignetti et al 1975). In this application most
quest ions dealt with editing commands and their arguments, and it nicely
into the case frame notion ment ioned in Chapter 5. The case frame use of
semant ic erammar is being'considered for (and may tnave its greatest lmpact
on) command languarges. Command languages are typleally case centered
around the command name which reaquires additional arguments (its cases).
The combination of the semantic classification provided by the semantic
grammar and the representation of case rules permitted by ATNs should go a
long way towards reducing the rigidity of complex command languuses such as
‘hose required for message processing systems. The combination should also
be a pood representation for naturz! anguage systems in domains where is
it possible to develop a strong underlying conceptual space, such as

management information systems (Malhotra 1975).

The extension of the semantic erammar to incorporate existing
linguistic processing techniques is another potentially fruitful research
area. One of the ways semantic prammar erains efficiency is to separate
processinz of syntactically similar sentences on semantic g ads when
useful to do so. However, this prevents the uniform incorporat.on of, «for
example, Woods ™ (1973b) solution to the problems of relative clause
modificaticn, quantifiers and conjunction. One means of integrating these
techniques would be to develop an intermediate target language which
maintains the advant ages of the semantic grammarr approach while allowing
uniform gsolutions to other problems. It may even be possible to adopt
Woods’ query language, allowing the semantic grammar to dictate the
functions within the "propositions" and "commands®. An alternative attack
would be to use a "syntact'ic" procersing phase, incorporating the desired
tecrniques which canonicalizes the input before it is péocessed by the
semantic grammar. In this method, the semantic grammar would be viewed as
an interpretaticn phase of the understanding process, but which works on a

much less structured syntactic parse than, for example, the LUNAR system.



FEEDBACK - When the Grammar Ealls

A much neglected research area in natural language Systems is the
problem of providing feedback to unacceptable inputs (i.e. what to do when
the system doesn’t understand an input). While it may appear that in a
completely habitable system all inputs would be understood, no system has
ever attained this goal and nhone will in the foreseeable future. To be
natural to a naive ucer, an intelligent system should act intelligent when
it fails tco. The first sten towards having a system fail intelligently is
the identification of possible areas of error. In student.’s use of the

SOPHIE system, we have found the following types of error common:

(1) Spelling errors and mis-typings - "Shértt the CE og Q3 and opwn its
base"; "What isthe VBE Qgg" .

(2) Inadvertent omissions - "What is the BE of Q5?" (The user left out the
quant.ity to measure. Note that in other contexts this is a well formed

question.

(3) Slight misconceptions which are predi>table - "What is the ou.put of
transistor Q3%?" (The outpyt of a tr. -istor is not defined); "What is
the current thru node 1?" (Nodes =t .. -es where voltage 1S measured
and may have numerous wires assc . with them); "What is R92" (R9
is a resistor); "Is Q5 conducting ., .. laboratory ‘section of SOPHIE
gives information which is direc! ..ailable from a real lab such as

current.s and voltages.)

(4) Gross misconceptions whose underlying meaning is well beyond designed
system capabilities - "Make the outpul vultage 30 volts"; "Turn on the
powerr supply and tell me how the tnit functions®; "What time is it?".

The best technigue for dealing wit® +ach type of error is an open problem.

In the remainder of this section, we will describe the solutions used in

the SOPHIE system and present t heir shortcomings.

The use of spelling correction algorithm (borrowed from INTERLISP) has
proven to be a satisfactory solution to errors of type 1. During one
student.'s session, spelling correction was required on (and resulted in
proper understanding of) 10% of the questions. The major failings of the
INTERLISP algorithm are the restriction on the size of the target set of
correct words (time increases linearly with the number of words) and its
failure to correct run-on words. {The timc required to determige if a word
may be two (possibly misspelled) words run together increases very quickly

with the length of the word ard the number of possibly correct words. With
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no context to restrict the possihle list of words, the computation inQolveg
is prohibitive.) A potential solution to both shortcomings would be to use
the  context of the parser when it reaches the unknown word to reduce the
possibilities. Because of the nature of the grammar, fhis would allow

semant.ic context as well as synLactic"context to be used.

Of course, the use of any spelling correction procedure has some
déngers. A word which is‘correctly spelled but which the system doesn’t
" know ﬁay gét spelling corrected to a word the system does Know. For
example if the system doesn’t know the wbrd "top“ but does know "stop", a
user’s command to "top everything" cin be disastrously misunderstood. For

this reason, words like "stop" are not spelling corrected.

Our solution to predictable misconceptions (type 3 errors) is to
recognize them and‘give error messages whidh are directed at correcting the
miaconception, We are currently using two differqnt meéhods of
recognition. One is to loosen up the grammar so that it accepts plausible
but meaningless sentences. This technique provides the procedural
specialists called by the plausible parse enough context to make relevant
comments. For example, the concept of current. through a node is accepted
‘by the grammar even thpugh it is meaningless. The specialist which
performs measurement§ must then check its arguments and provide feedback if
‘necessary:

_>> WHAT IS THE CURRENT THRU NODE 4?

“"THe current thru a node is not meaningful since by Kirchoff’s law
the sum of the currents thru anE node is zero. Currents can be
measured thru parts (e.g. CURRENT THRU C6) or terminals
(e.g. CURRENT THRU THE COLLECTOR OF 32).
Notice that the response to the question presents some examples of how to
measure the currents along wires which lead into the mentioned node.

Examples of ~ue~tions which will be accepted and are relevant to the

student 's nee iz are among the best possible feedback.

9T
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The second method of recognizing common misconceptions 4is to ‘"key"
feedback off single words or groups of 'words. 1In the following examples,
the "keys"™ are "or" and "turned on", Notice that the responsé presents a
general characterization of the violated limitations as well as suggestions

‘for alternative lines of attack.

>> COULD Q1 OR Q2 BE SHORTED?

I can only handleg one question, h{gothesis, etc. at a time. The fact
that ou sag OR indicates at you may be trying to express two
concepts in the same sentence. "Maybe you can break your statement in
two or more simple ones. .

>> IS THE CURRENT LIMITING TRANSISTOR TURNED ON?

The laboratory section of SOPHIE is designed to provide the same
elementary measurements that would be available in a real lab. If you
want to determine the state of a transistor, measure the pertinent

currents and voltages.
These methods of handling type 3 errors has proven to be very helpful.
However, they have the major drawback that all of the misconceptions must
be predicted and programmed for in advance. This limitation makes them

inapplicable to novel situations.

The most severe problems a user has stem from type 2 (omissions) and
type ‘4 errors (major misconceptions). (Type 3 errors which haven’t been
predicted are considered type 4 errors.) After a simple omission, the wuser
may not see that he has left aﬁything out and may conclude that the system
doesn’t know that concept or phrasing of that concept. For example when the
~user types "What is the BE of Qé" instead of "What is the VBE of Q57?", he
may decide that it is unacceptable because the system doesn’t allow "VBE"
as an abbreviation of "base emitter voltage". For type Y4 errors, the user
may waste a lot of time and energv attempting several rephrasings of his
query, none of which can be understood because the syétem doesn’t know the
concept the user is trying to express. For example, no matter how it is
phrased the system won;t understand "Make the output voltage 30 volts"
because measurements aren’t things which can be directly changed, only

controls and specifications of parts can be changed.
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The feedback necessary to correct.both of these cia3593wqf erroré must.
ident ity any concepts in the statement which are underst.ood aAd suggest the
range of things which can be done to/with these concepts. For type 2
errors, this will help the user see his omission. For type 4 errors, it
may sufrest alternative conceptualizations which allow the'use; td’ get at
the same information (for example, to change the output voltage indirectly

by changing one of the controls) or at least provide him with-  enough

information to decide when to give up.

The notion of semantic grammar may be useful in developing a general
solution along the following lines: A bottom~-up or island parsing scheme
could be used to identify well-f‘or‘med.constituents.1 Since the grammar is
semantically based the constituents which are found represent "islands" of
meaningful phrases. The ATN representation of the semantic grammar can
then be inspected to discover possible ways of combining these islands, If
a goond match is found, the grammar can be used to generate a response which
indicates what other semantic parts are required for that rule. Even if no
gcod matches are found, a positive statemént may be made WhicH'explains the
set. of possible ways the recognized structures couid be understood. Much
more work is required in the area of unacceptable inputs before natural

language systems will feelureally natural to naive users.

FUTURE RESEARCH AREAS IN ATN COMPILATION

There are several directions in which the ATN compilation system could
be extended. One which was mentioned in Chapter 6 is the implementation of
~alternative controi strategies, Oné eiample is the burst mode strategy.
The burst mode strategy creates all possible configuratidns which could
follqw the curren£ one and orovides for user selection of which alternative
to process next. This ailows the user to discover thé selection function

which best serves his usage. The implémentation of burst mode within the

! William Woods and Geoff Brown are presently refining such a bottom-up
$8$§%ng t.echniaue for ATN grammars for use in the BBN peech project (Woods
0 . N
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éompiling system framework should not be very difficult. The c&%e from ‘a

state would create a 1ist of the possible configurations which résult from

!‘S

that state, That is, for all arcs ‘in a state, if the arc condifion is
satisfied, a new configuration is made by copying the present one, and the

code compiled from the arc actions is executed. The arc action cer

changes the new configuration and the code from the arc termination action -

adds the chaqged configuration to the possible-next configurations list.
After all of the arcs have been tested, control is passed to a (possibly
state dependent) selection function which chooses one or more
ponfigurations to continue and piaces the remainder on the 1list of
alternatives. When compéred to depth-first, this strategy has the
disadvantage that configurations cannot be cannabilized. However, it has
the advantage that configurations are only created for possibly successful
paths. (In depth-first, a configuration is needed to remember the
alternative arcs from a state even if none of them will succeed. ) ﬁurst

mode also allows dynamic selection of search strategy.'

At present, the ATN compiler produces only LISP object code, however,
the ATN object code does not place heavy restrictions on the choice of
object language. The necessary constrhcts are: conditional statements, a
function calling mechanism and list processing routines. The generation of
ALGOL; BCPL or even machine language code would present no major technical
difficulties. A large effort would have to be expended, however,
implementing the necessary runtime environment (lexical routines,
configuration management routines, arc actions, etc.) for the resulting ATN
machine. ‘For production environments or situations where more speed was
essential, this effort may prove worthwhile, An advantage of this method
of implementing, say, a command scanner is that the development and
debugging can be done in the INTERLISP programming environment at very
little cost to the efficiency of the final product. This technique could
also be used to develop parsing programs for mini-computers or

"intelligent" terminals.
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CONCLUSIONS

In the course of this report, we have described the evolution of a

natural ‘1anguage front-end from keyword beginnings to a system capable of

using complex linguistic knowledge. The guiding strand has been the
utilization of semantic information to produce efficient natural language
processors. During the evolution of the system, there are several
highlights which represent noteworthy points in the spectrum of useful
natural language systems, Toward the keyword end of the scale, the
uprocedural encoding technique with fuzziness (Chapter 4 and Appendix B)
alloﬁé’simple natural language input to be accepted without introducing the
complexify*.pf a new formalism. Encoding the rules as procedures allows
flexible con€f01 of the fuzziness and the semgntic nature of the rules
provides the cdf?ect places to take advantagé of fhe flexibility. As the
language covered by thé“system become more complex, the additiénal burden

of a grammar formalism wfll‘more than pay for itself in terms of ease of

-

development. and reduction in comﬁlex}ty. The ATN compiling system allows
the consideration of the ATN formalisﬁ“by.reducing”its runtime cost making
it comparable to a direct procedural encodinél“wlpe naturai language front

end now used by SOPHIE is constructed by compiling éHSemaptic ATN. As the

.

linguistic complexity of the language accepted by the systemyiﬁcnggses, the
need for more syntactic knowledge in the grammar becomes ;;éagfr.
Unfortunately, this often works at cross purposes with the semanéic\
character of the grammar. It would be nice.to have a general grammar for \
English syntax which could be used to bfépfocess sentences, however one is
not forthcoming. A general solution to the problem of incorporating
semantics with the current state of incomplete knowledge .of syntax remains
an open researqh problem. In the foreseeable future, any system will have
to be an engineering trade-off between complexity and generality on one
hand and efficiency and habitability on the other. We have presented

" several techniques which are viable bargains in this trade-off.

101

93



References
{
"Syntactic Aualysis in a Speech Understanding System." "BBN

M.
ﬁeport No. 3116, Bolt Beranek and Newman Inc., Cambridge,
Massachusetts, 1975. :

M. and  W. Woods, "The Syntactic Component." in "Speech
ﬁnderstanding Research at BBN." BBN Report No. 2976. Bolt Beranek
and Newman Inc., Cambridge, MassachusSetts, December 197A4.

Bates
Bates

"A Note on Hash Linking." Communicationz of the ACM.

Bobrow, D.G.
18(1975), 413-415.

Bobrow, D.G. and A. Collins, Eds. Representation and Understanding:
studies in Cognitive Science. New York: Academic Press, 1975,

Bobrow, R.J. and J.S. ; Brown, "sttematic Understanding: Synthesis,
Analysis& and Contingent Knowledge in Specialized Understanding

Systems. Representaticn and Understanding: Studies in Cegnitive
Science. Eds. . obrow and A. Collins. ew York: Academic Press,

Brown, J.S. and R.R. Burton, "Multiple Representations of Knowledge for
tutorial Reasoning." Representation and Understanding: Studies in
Cognitive Science. Eds. D. Bobrow and A. Coilins. New York:

Rcademic Press, 1975.

Brown, J.S.,  R.R. Burton, and A.G. Bell "SOPHIE: A Soghisticated
instructional Environment for Teaching Electronic Troubleshooting (An
Example of AI in CAI)." BBN Report No. 2790, Bolt Beranek and Newman
Inc., Cambridge, Massachusetts, March 197L.

Brown, J.S., R.R. Burton, and A.G. Bell, "30PHIE: A Step Towards a
Reactive Learning Environment." International Journal of l!Man Machine
Studies. 7(1975), 675-696. '

Brown, J.S., R.R. Burton, M. Miller J. DeKleer, S. Purcell, C.
ausmann and R.J. Bobrow, "Steps toward a Theoretical Foundation for
Complex Knowledge-Based cAl.n Final Report, Bolt, Beranek and Newman
Inc., Cambridge, Massachusetts, 1975.

Brown, J.S. R.R. Burton, and F. Zdybel, "A Model-driven Question
Answer ng System for Mixed-initiative Computer Assisted Instruction.™
IEEE Transactions on Systems, Man and Cyberneties. 3(1973).

Brown, J.S., . R. Rubinstein, and R.R. Burton "Reactive Learning
Environment for Computer Assisted Electronics tnstruction." BBN Regort
No. 3314, Bolt Beranek and Newman Inc., Cambridge, Massachusetts,

October 1976.

B.C "Case Systems for Natural Language." Artificial Intelligence.
Pecember 1975. ~327-360.

Charniak, E. "Toward a Model of Children’s Story Comprehension."
MIT--TR-266 Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, Massachusetts, 1972.

Bruce

Chomsky, N. Syntactic Structures. The Hague: Mouton and Co., 1957.

Chomsk N. Aspects of the Theory of Syntax. Cambridge, Massachusetts:
The MIT ?FEEET‘1665. ' b

Codd, E.F. "Seven Stegs to Rendezvous With the Casual User." Proceedings
o) the IFIP TC-2 Working Conference on Data Base Management Systems.

Amsterdam, 197k.

102

9L



Colby, K.M., "Simulation of Belief Systems." Computer Models gﬁ.Thought énq
Language.  Eds. R.C. Schank and K.M. ColIby.  San. FrancIsco: W.FW. -
Freeman and Company, 1973. :

Colby, K.M., R.C. Parkinson, and B.  Fraught, "Pattern Matching Rules for
the Recognition of Natural Language Dialo ue Expressions." American
Journal of Computational Linguistics. Microfiche 5, 1974,

Coles L.S. "Syntax Directed Interpretation of Natural Language ."
Representation and Meaning: Experiments With InforfWabion Processing
Systems. Eds. H.R. ~Simon and L. 0SsY. EEEIEEQEE T1ITTs,” New
Jersey: Prentice-Hall, 1972.

Earley, J. "An Efficient Context-Free Parsing Algorithm.” Communications
of the ACM. 13(1970), 9i-102. =

Goldberg, A. "Computer-assisted Instruction: The Application of Theorem
Proving to Adaptive Response Analysis." Technical Report No. 203
Institute for Mathematical Studies in the Social Sciences, Stanford.
University, 1973. :

Goldstein, I.P. "Understanding Simple Picture Programs” MIT-AI-TR-294
Artificial Intelligence Laboratory, Massachusetts Institute o
Technology, Cambridge, Massachusetts, 1974.

Grignetti, M.C., L. Gould, C.L. Hausmann, A.G. Bell, G. Harris and J.
Passafiume. "Mixed-Initiative Tutorial System to Aid Users of the
On-Line System (NLS)." BBN Report No. 2969, Bolt Beranek and Newman
Inc., Cambridge, Massachusetts, November 197.4.

Grignetti, M.C., C. Hausmann, and L. Gould, "An ‘Intelligent’® On-line
egg%staggs 33? Tutor -~ NLS~SCHOL-AR." National Computer Conference.

Heidorn, G.E. "Hatural Language Inputs to a Simulation. Programming
System." Technical Report NPS~55HD72101A, Naval Postgraduate School,
Monterey, California. 1472. .

Heidorn, G.g. "Eng%is?has g Very High LevelH.LgnEuagilLfor Prograg?égﬁA;
Proceedings o e ymposium gn Very Hig eve anguages.
Notices 9, 1974, O1-100.

Heidorn, G.E. "Augmeritéd Phrase Structure Grammars." Proceedings of a
Workshop on Theoretical Issues in Natural Language Processing. " Eds.
R. Schank and B.L. Nash-Webber.” 1975.  1-5.

Irons, E.T. " A Syntax Directed Compiler for ALGOL 60." Communications of

the ACM. H4(1961), 51-55.
Kaplan, R.M. "A General Syntactic Processor." Natural Language Processing.
P Ed. Randall}Rustin. New York: Algorithmics Press, 1573. 2

Kaplan, R.M. "Transient Processing Load in Relative Clauses."” Doctoral
Iissertation, Psychology Department, Harvard University, 197U4.

Kaplan, R.M. Personal communication. 1975.

Kay, M. "Experiments With a Powerful Parser." RM-5U452-PR. The Rand
Corporation, Santa Monica, California. 1967.

Kay, M. Personal communication. 1973.

103 —

95



Klovstad, J.W. CASPERS, Computer Automated Speech Peroeption System,
Doctoral Dissertation, M.I.T., 1977. C

Malhotra, A. "Design Criteria for a Knowledge-Based English Language
stﬁem for Management: An Experimental Analysis" Doctoral
Dissertation, Sloan School of Management,:Massachusetts Institute of
Technology, éambridge, Massaohusetts, February, 1975.

Marcus, M. "Diagnosis as a Notion of Grammar." broceedings of a MWorkshop
on Theoretlcal Issues in Natural Language Prooessing. S. .
Schank and B.L. WNash-Webbér.™ 1975. b&-10 :

Miller, R.B. "Response Time in Man-oomputer Conversational Transaotions."
"TTARIPS Conference Proceedings. Fall Joint Computer Conference.

WasﬁIngton: Thompson Book Company, 1968, 267-278.

Quillian, M.R. "The Teachable Language Comprehender: a simulation program
3;8 u;geory of language." Communications of the ACM. 12(1969),,

Rustin, R. Ed. Natural Language Processing. New York: Algorithmics
Press, 1973.

Schank, R.C. and K.M. Colby, Eds. Computer . Models of Thought and
Lénguage. San Francisco: W.H. Freeman and Company, 1373. - T

Schank, R.C;, M.N. Goldman, c.J. Reiger, and C.K. Riesbeck, "Inference
and Paraphrase by Computer." Journal of the ACM. 3(1975), 309-328..

Shapiro, S.C. and S.C. Kwasny, "Interactive Consultin% via Natural
Language." Communications of the aCM. 18(1975), 459-163.

Simmons, R.F. "Natural Langua%e Questiod-Anéwering Systems: 1969."
Communications of the ACM. 3(1970), 15-30.

Simmons R.F. "Semantic Networks: Their Computation- and Uée for
Understanding English." in Computer Models of Thought and Language.
o

Eds. R.C. chank and K.M. Y. an Franclisco: W.H. Freeman and
Company. 1973. .

Simon H.A. and L. SikloSsy, Eds. Representation and Meaning:
‘ with Information Processing Systems. Englewood CIifTs,

Experiments Wit
New Jersey: Prentice-Hall, 1972

Smith, N.W. "A Question-answerin% Sistem for Elementar Mathematics."
technical Report No. 227, Institute for Mathematical Studies in the
Social Sciences, 3tanford University. 1974.

R.L., N.W. Smith, and F.L. Rawson, "CONSTRUCT: In Search of a
Theory of Meaning." Conference of the Association for Computational
Linguistics. Amherst, Massachusetts. 1974.

Smith

Teitelman, W. "Towards a Programming Laboratory." International Joint
Conference on Artificial Intelligence. Ed. . Walker. May T1969.

Teitelman, W. "putomated Programming - The Programmer’s Assistant."
Proceedings of the Fall Joint Computer Conference. December 1972.
Teitelman, W. "CLISP-Conversational LISP." Third International Joint

Conference on Artificial Intelligence. August 1973.

Teitelman, W. INTERLISP Reference Manual. Xerox Palo Alto Researeh
Center, Palo Alto, CaliforniIa, 19770. )

104

96



Watt, W.C. "Habitability." American Documentation. 19(1968), 338-351.

Weizenbaum, J. "ELIZA -- A Computer Program for 'the Study of Natural
Language Communication Between Man and Machine." Communications of the
ACM. 9(1966), 36-u3. L

Welizenbaum, J. "Contextual Understanding by Computers." Communications of
the AlM.  10(1967), 47u-u8o0.

Wilks

Y. "The Stanford Machine Tranglation Project."™ Natural Language
ﬁrocequqg. Ed. Randall Rustin. New York: Algorithmics Press,
a. .

Wilks, Y. ™"An Artificial Intelligence Approach to Machine Translation."
—Lomputer Models of Thought and Language. Eds. R.C. Schank and K.M.
Colby. San Francisco: W.H. Freeman and Company, 1973b.

Wilks, Y. "Natural Languaze S¥stems Within the AI Paradigm: A Survey and
Some Comparisons." Stanford Artificial Intelligence Luboratory Memo
AIM-237, Computer Science Department, Stanford. 1974.

Ninogqad, T. Understanding Natural Language. New York: Academic Press,

.

Woods, W.A. "Semantics for a Question-Answering System." Doctoral
Dissertation, Harvard University, Cambridge, Massachusetts, 1967.

Woods, W.A. "Procedural Semantics for a Question-Answering Machine." AFIPS
Conference Proceedings. 33(1968).

Woods, W.A. "Augmented Transition Networks for Natural Languape Analysis."
Harvard Computation Laboratory Report No. CS-=1, Harvard University,
Cambridge, Massachusetts. 1963.

Woods, W.A. "Transition Network Grammars for Natural Language Analysis."
Communications of the ACM. 13(1970), 591-606.
Woods W.Aa. "An Experimental Parsing System for Transition Network

Grammars." Natural gqqgg%ég Processing. Ed. Randall Rustin. New
York: Algorithmics Press, 3a.

Woods, W.A. "Progress in Natural Language Understandin% ~ An Application
to Lunar Geo§ogy." National Computer Conference. 1973b. H4U41-450.

Woods, W.A. "What's In a Link: Foundations for Semantic Networks." in

ﬁegresent tion and Understanding: Studies in Cognitive Science. Eds.
. obrow and A. Collins. New York: Academic¢ Press, 1 .

Woods, W.A., R.M. Kaplan, and B. Nash-Webber, "The Lunar_ Sciences Natural
Languaée Information System: Final Report." BBN Report 2378, Bolt
Beranek and Newman Inc., Cambridge, Massachusetts,.1972. :

Wocds, W. Personal communication. 1976.

Ny

105

971



Appendix A

BENF Descripticn of Part of the
SOPHIE Semanitic Grammar

This appendix EiVes a BNF-1like description of ~part of the language
accepted by SOPHIE. Included are all of the rules necessary Lo parse a
"measuremenl"., Examples of "measurements" are "voltage at N1" "hase
emitter current of Q5", and "output voltage". The grammar is impiemented
as LISP. functions and an example is listed In Appendix 8.

In the description, alternatives on the right-hand s}de are separated
b{ ! or are 1listed on separate 1lines, rackets enclose optional
elements, An asterisk * is.used to mark notes about a particuiar rule,
Non-terminals are designated by names enclosed in angle brackets <>,
The Grammar
<circuit/place>:= <terminal> ! <node>

<diode/spec> := <diode> ! <zener/diode>
+ <section) diode ! <sectiond> zener/diode

LY

<junction> := <Euhction/ty€e> [of] <transistor/spec>
transistor/term/type> and <transistor/term/type> [of]
[<transistor/spec>]
> ¢transistor/term/type> to <transistor/term/type> [of]
[(<transistor/spec>]

<junction/type> := eb ! be ! ec ! ce ! cb ! be

<meas/quant> :z voltage ! current ! resistance* ! power
v, *means measured resistance

<measurement> := <section>[output*][<meas/quant>]

output* <meas/quant> Sof] <section>

output* [<meas/quant>] [of <transformer>]

<transformer> <meas/9uant> .

<meas/quant> between** <circuit/place> and¥
{circuit/place?

<meas/quant> of *** <(part/spec>

<meas/quant> between output terminals

<meas/quant.> of < junction>

<meas/quant> of <circuit/place>

<meas/quant> from <junction>

<meas/quant) of <section>

<meas/quant> of <pronoun>

<€unction/type> <{meas/quant> [of <transistor/spec>]

<transistor/term/type> <meas/quant> of
[<transistor/spec>]

*input also

*#from-to. also works

%#%at . thru, in, into, across and through also work

<node> := junction of <part/spec> and <part/spec>
node between <section> and <section> .
[point] between <part/spec> and <part/spec>
<node/name> ! [node] <node/number>
<{pronoun>

<num/spec> := "any positive number" [k] ! one

<part/spec> := <part/name> ! <load/spec> ! <section> <{part/type>
<pronoun>
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;<pot/5peo> itz co !l ve !l oot .
<pronoun>:z it ! [that] "type"
<terminald iz output [terminall | <transistor/term> | center/lap

positive terminal <part/spec>j | positive one

negative terminal [<part/spec>] | negat.ive ope

anode t(diode/spe >] ! cathode”(<diode/spec>

wiper [<pot/spec> »
<tranaistor/spec> := <transistor> | <section> transistor ! <pronound
ransistor/term> := <transistor/term/type> [(transistor/spec)]
{transistor/term/type> := base | collector | emitter
<Lrans£stor>; <{capaoitor>, <{diode>, <resistor>, {transformer> and
<zener/giodg> all check the semantic network and parse correct part names,
e.®, r9, qb.

<section> uses the semantic network to determine if a word is a section of
the unit, e.g. current/limiter,

<{part/name> uses the semantic network to see if a word is the name of a
part_e.g. rb, ch, t2,

<node/name> checks semantic network t'or node names,
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Appendix B
A LISP Rule from the Semantic Grammar
. This appendix describes the methud of encoding the grammar as 'LISP
‘‘procedures. The ways of expressing a nonsterminal - are embodied in a .
rammar funotion. Each grammar funotion tares at least two arguments;:
TR, +he list of words to be recognized, and N, the degree of fuzziness
allowed, The grammar funoction, in effeot, must determine whether the
beginning of "the, string STR contains an ocourrence of the corresponding
non-terminal. There are generallg two tyEca of - cheocks . that a @ grammar
function performs. One 13 a cheu he ocourrence of a word or words:
which satisfies ocertain predicates, This checking is done with two
funotions == CHECKLST and CHECKSTK, CHECKLST looks for a word in the
‘string matching any of a list of words, CHECKSTK lonks for a word . .in the
string satisfying” an arbitrary predicate., It is through these funotions
“that the parser implements its fuzziness, For . example CHECKSTR {is
‘called with the string "resistor R9" and a gredioate whioh determines if a
word is the name of a part (e.%. "R9"), CHECKSTR will suooeed by skipping.
the word "resistor', which in this phrase, is a noise word.

The other usu. 1 type of operation Eerformed by the grammar functions .
is to check for the occurrence of other non-terminals, This is“done b{”
calling the.eroper function (grammar rule) and passing it the correol.
position in the input string. : o

+f a grammar rule is successful, the function passes back two pieces-

of information. First, it returns some indication of how much of the input
string is accepted (i.e. where it spopped{. The convention adopted is
that the grammar rule returns as its value a pointer to t.he last word in
the string accepted by the rule. Second, the function passes back a
structural description of the thase that was parsed, = This, structure is
passed back in the free variable RESULT (analogous to an ATN s "#®  upon
return from a PUSH. ‘ '

Listed below is the grammar rule for the concept of a . unction of a
transistor. This rule accepts phrases such as "base cmitter junction of

Q5", "BE of the current limiting transistor", or "collector emitter
Junction”. ‘
(<JUNCTION>
w=. [LAMBDA (STﬁ,Ng
e (PROG (TS1 R1
SRETURN
AND

(* COMMENT A)

[OF (AND (SETQ TS1 (<JUNCTION/TYPE> STR N))
‘ SETQ R1 RESULT))
(AND (SETQ TS1 (<TRANSISTOR/TERM/TYPE> STR N))
SETQ R1 RESULT)
SETQ TS1
(<TRANSISTOR/TERM/TYPE>
(CDR (CHECKLST (CDR TS1)
-(QUOTE (AND TO]
(SETQ R1 (JUNCTION-OF-TERMS R* RESULT]

(* COMMENT B)

(COND
([SETQ STR §<TRANSISTOR/SPEC>
(CDR {GOBBLE éGOBBLE TS1 (QUOTE (JUNCTION)))

1 UOTE (OF))
(SETQ RESULT (LIST R1 RESULT))
STR) ‘
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([SETQ RESULT (LIST K1 (LIST (QUOTE PREF) .
Ls1i) -~ (QUOTE (TRANS1S8TuR]

"CUMMENT A:

The first thing that is looked for 'is either a {junction/type> (BE, emitter
collector etc.) or two <transistor/terminal/typed>s -(base, emitter or
collector) separated by the words "and" or "to".,” If two terminals are
found, the_ function JUNCITION-OF-TERMS is called to determine the proper
junction, In either case, the place where the successful subsidiary rule
R?ft off is saved in TS1 and the meaning of the accepted phrase is saved in

COHMENT B:

The next thing needed for a junction  is a . transistor <TRANSISTOR/SPEC>.
<TRANSISTOK/SPEC> - looks for an occurrence of a transistor, e.g. "Q5" or
"current limitine transistor", GOBBLE is a function for skipEin%
relational words when they are not used to restrict the remaining part o

the phrase. If a transistor is not found, a deletion is hypothesized and a
call to PREF is constructed. If the transistor has been pronominalized as
in "the base emitter of it", <TRANSISTOR/SPEC> would . recognize "it". In
either case the semantics of the recognized phrase (something like (EB Q5))
is put into RESULT and a pointer-to the last recognized word is returned as
the value of <JUNCTION>,

There are approximately 80 grammar rules in SOPHIE s grammar.
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(RESETCONTROL é

, Appendix C :
Sample Parses and Parse T1mes for ‘the LISP Implementatlon“

This appenalx presents some examples of sentences handled by Lhe

- natural ‘language K processor together with their parse times. Under each
"statement, the semantic 1nterpre ation returnrad by the 'parser - is given.

The semantic interpretation 'is a funection c¢all which when evaluated

;'gerforms the processing required by the statement, . Parse times are given
niin mllliseconds. o

‘ Insert a. faul

INSERTFAULT NIL)
5m0~
What is the output voltage?
ggEASURE VOLTAGE NIL OUTPUT)
ms.

What is the voltage between the current. limiting transistor
and the constant current source?
(MEASURE VOLTAGE (NODE/BETWEEN
(FINDPART CURRENT/LIMITER TRANSISTOR)
CURRENT/SOURCE))
335 ms

What is the voltage between there and the base of Q6?
gEASURE VOLTAGE PREF (NODE TERMINAL)) (BASE Q6))
ms

57 ‘
ZgEFERENCE ((TRANSISTOR) Q5))
ms

Could the problem be that Q5 is bad?
(TESTFAULT P05 BAD)
100.ms

Could it be shorted?
%EESTFAULT (PREF (PART JUNCTION TERMINAL)) SHORT)
ms

If R8 were 30k what would the output voltage be?
(IFTHEN ERB 30000.0 VALUE)
220 - (MEASURE VOLTAGE NIL OUTPUT))

ms

If C2 were leaky what would the voltage across it be?.
(IFTHEN §C2 LEAKY)
120 MEASURE VOLTAGE (PREF (PART JUNCTION)))

ms

What is the outggs G%Ita e when the voltage control is set to .57
= MEASURE.VOLTAGE NIL OUTPUT))
85 ms

What is it with it set at .67

(RESETCONTROL §STQ (PREF (POT LOAD SWITCH)) .6)

REFERENCE NIL))
110 ms

If it is set to ,9? '
(RESETCONTROL éSTQ (PREF (POT LOAD SWITCH)) .9)
-135 REFERENCE NIL))

ms
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what is

.....

: s the current thru the cc when the ve is set 'to 1.07
"~ (RESETCONTROL (STQ vC 1.0)
(MEASURE CURRENT CC))
190 ms

If Q6 has-an open emitter and a shorted base collector

..Jjunction, what hagpens to the voltage between its base and
the junction of t

‘reference source?
(IFTHEN

e voltage limiting section and the voltage

(MULT ééEMITTER Q6) OPEN) ‘
BC (PREF (TRANSISTOR))) SHORT))
(MEASURE VOLTAGE
gBASE (PREF (TRANSISTOR)))
400 ‘ NODE/BETWEEN VOLTAGE/LIMITER REFERENCE/VOLTAGE)))
ms. ‘. .
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Appendix D
Examples of ATN Compilation

This appendix presents .a simple augmented transition network grammar =~

along with two different programs compiled from it and a trace of the first
program parsing a sentence. The ATN grammar was taken from (Woods 1970).
Both conpiled versions of the grammar assume a depth-first search strategy
and use configurations which include the state, node, stack, registers,

features and hold list.

The first program does not support 1lexical ambiguity (neither that
caused by compound rules nor that caused'by multiple interpretations under

the same category). 1In addition, it neither keeps a well-formed substring

"table, tests for input before pushing nor returns features with popped

asonstituents. The second program, on the other hand, has all of these

capabilit =s,. The 1listing of the second program also includes tracing

~ functions the compiler includes in the program to allow the user to follow

its operation. Both programs are given in CLISP (Teitelman 1974),

The final section of the appendix contains a trace of the first
program {(using a version which did include tracing functions) discoverins
all bossible parses of the sentence "John was believed to have been shot by

Fred". Shown in the trace are all of the arc transitions taken by the

parser together with all register setting operations. " (The reader may

compare this with the analysis of this sentence given in (Woods 1970).)
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“ The grammar

S/
(CAT AUX T
éSETR vV )
SETR TNS (LIST (GETF * TENSE)))
SETRQ TYPE Q)

(PUSH NP/ T
SETR SUBJ *)
SETRQ TYPE DCL)
VT

Q1/
(PUSH NP/ T
ngg3 *)
(Qa2/
(CAT

SETR TNS (LIST (GETF * TENSE)))
(Q3/ TO Q3/)))

(CAT V (AND EGEIF # PPRT)
EQ EGETR V)
QUOTE BE)))
HOLD (GETR SUBJ))
SETR SUBJ (BUILDQ (NP (PRO SOMEONE))J)
§g$g AGFLAG T)

TO Q3/))
(CAT V (AND éGETF * PPRT)
EQ (GETR V)
QUOTE HAVE)))
(SETR TNS (APPEND éGETR S)
QUOTE (PERFECT))))
SETR v *)

(PUSH NP/ %TRANS (GETR V))
SETR *)
u/))
(VIR Ng (TRSNS (GETR v))

*)
S
(PoP (BUILDQ (S + + (TN
TYPE SUBJ
(INTRANS (GETR V))

ESET vV #)

S +) (VP (V +)))
)§ S V)
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(Q4/
(WRD BY “GETR AGFLAG)
SETR AGFLAG NIL)

TO Q7/))
(WRD T00‘8§$“§NS (GETR V))
(PoP (BUILDQ (S + + (TNS +) (VP (V +) +))
. ™ TYPE SUBJ TNS V OBJ)
Q5/

(PUSH vp/ !
SENDR SUBJ (GETR OBJ))
SENDR TNS (GETR TINS))
SENDRQ TYPE DCL)

SE’I‘R O?v)l)

Q6/
(WRD BY {GXTR AGFLAG)
{SETR® AGFLAG NIL)
éTO Q7/))
(poP (BUILDQ (S + + (TNS +) (VP (v +) +))
™ TYPE SUBJ TNS V OBJ

/
(PUSH NP/ T

SETR SUBJ *)
TO Q6/)))

(ve/ .
(CAT V (GETF * UNTENSEL)
: ‘ iSETR vV # :
(TO Q3/))
(NP/
(CAT DET T
§SETR DET #)
TO NP/1))
(CAT NPR T
SSETR NPR *)
TO NP/3)))
(NP/1
(CAT ADJ T
%ADDL ADJS *)
TO NP/1))
(CAT N T
§SETR N *)
TO NP.2)))
(NP/2

(POP (BUILDPQ (NP (DET +g (ADJ +) (N +))
DET ADJS N
(NP/3
(POP (BUILDQ (NP (NPR +))
) NPR)




Version I

(PARSER
(LAMBDA éALF)
(PROG (STATE NODE STACK "REGS HOLD * LEX)

The current status ~f the machine is kept in five globa
variables; (1) STATE, the state/arc in the grammar (c
NODE, the pointer into’ the ingut REGS, the 1isf
register name- -value pairs éTACK the return stack, an
(5) HOLD, the hold list. éuttin the machine into a give
confi Tratlon involves assigning values of these fiv
variables.

SPREAD-ACF
STATE«(CF,STATE ACF))
REGS«(CF.REGS ACF))

éSTACK«(CF .STACK ACF))
HOLD«(CF.HOLD ACF))

ENODE«(CF .NODE ACF))

LEX<(EDGE.WORD (FIRST.EDGE NODE)))

BRANCH dispatches control to the label specified by STATE
This is the method of executing an arc.

EVALARC
(BRANCH STATE SUCCESS DETOUR S/ S/-
Q1/-1-PUSH Q2/ 83; 2 Q3

3 S/
2/ 3-PUSH Qu/ QU/ 3 95
)

-2-PUS
3 Q3/
/ Q5/

1/

P
- H.Q6/

USH Q
4 Q3/-5
-2 1-PUS

/-2 QT7/ QT/-1-PUSH VP/ NP
NP/ 2 NP/1 NP/1-2 NP/2 NP/3

SUCCESS checks to make sure all -of the input has bee
processed. If not it detours.

SUCCESS
(if (EMPTYP.NODE NODE)
then (RETURN #*)
else (GO DETOUR))

DETOUR decides which alternative to try next. 1In this cas
the alternatives list is a stack.

DETOUR
(if ALTS
then APF+(ALTS FIRST)
ALTS,BUTFIRST
0 SPREAD-ACF
else (RETURN (FAILURE)))

This is the beginning of the code which is compiled from th

arcs, The first arc of each state has a label which is th
same_as the state name in the ATN. The other ares have
label which 1is the state name followed by "-" and the ar«

number., Labels which end in "-PUSH" indicate the action:
and termination action of PUSH arcs.

S/ (if (ARCCAT AUX)
then EALTARQ S{< 2)
SETR

SETR TNS <(GETF * “TENSE)>)
SETRQ TYPE Q)

DOTO Q1/)

GO Q1/))
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S/-2(DOPUSH NP/ S/-2-PUSH)
(GO.NP/)

S/- 2 PUSH
(SETR °SUBJ *)
SETRQ TYPE DCL)
DOPTO Q2/) .
GO Q2/)

Q1/ (DOPUSH NP/ Q1/-1-PUSH)
GO NP')

Q1/=1=

a-

USH,
SETR ‘SUBJ *)
DOPTO 03/)

Qa/ (if ?ARCCAT V)
then 2SETR v #)
SETR ‘TNS <(GETF * °TENSE)>)

DOTO Q3/)
GO Q3/))
EGO.DETO R)
Q3/ (while (ARCCAT V) and éGETF * PPRT)
and (GETR V)='BE
do (ALTARC Q3/-2)

HOLD (GETR SUBJ) )
SETR ,SUBJ (BUILDQ (NP (PRO SOMEONE))))
SETR AGFLAG T)
SETR ‘V #
DOTO Q3/)
Q3/-2

(if (ARCCAT V) and gGETF * ‘PPRT)
and GETR V)= HAVE
then (ALTARG Q3/-3) , ,
SETR TNS <1'(GETR TNS) ! “(PERFECT)>)
SETR ‘V #)

DOTO Q3/)
GO Q3/))

Q
3 %1f (TRANS (GETR v))
then (ALTARC Q3/-4)
DOPUSH NP/ Q3/-3-PUSH)
GO NP/))

(if (HOLDSCAN HOLD ‘NP “(TRANS (GETR V)))
then (ALTARC Q3/-5)
PREVIBACTS)
SETR "OBJ *
DOVIRTO Qu/
GO Q4/)) .

(if (INTRANS (GETR V))
then (DOPOP (BUILDQ %§P+ +(TNS + -gg (v +)))

)
E SUBJ TNS V
(GO EVALARC))
(GO DETOUR)
Q3/-3-PUSH,
SETR ‘OBJ %)
DOPTO Qu/)

Qu/ 1f ?ARCWRD BY) and (GETR AGFLAG)
then (ALTARG Q4/-2)
SETR AGFLAG NIL)
DOTO Q;
GO Q7/))

Q3/-4

Q3/-5
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Qh/=2 '
(it (ARCWHL TO) and (S-TRANS (GETR V))
then (ALTARC Q4/-3)
DOTO Q5/)
GO Q5/))

?DOPOP (BUILDQ (S + +(TNS +) (VP (V +)+))
TYPE SUBJ TNS V OBJ))
GO EVALARC)

Q5/ (SENDR  SUBJ (GETR OBJg)
SENDR “INS (GETR TNS)
SENDRQ TYPE DCL)

DOPUSH VP/ Q5/-1-PUSH)
SREGS NIL)
GO VP/)
Q5/-1-PUSH,
SETR ‘OBJ *)
DUOP  N6/)

_ (GO ...
Q6/ éif (ARCWRD BY) and (GETR AGFLAG)
. then (ALTARG Q6/-2)
SETR AGFLAG NIL)

DOTO Q
/oo (GO 07/1)
(DOPOP (BUILDQ (S + +(TNS +)
(VP (V +)+))

TYPE SUBJ TNS V 0BJ))
GO EVALARC)
Q7/ Dgpgsg)Np/ Q7/-1-PUSH)

Q7/-1-PUSH,
SETR ‘SUBJ *).
DOPTO 06/)

vp/ (if %ARCCAT V) and, (GETF * “UNTENSED)
then (SETR 'V *)
DOTO Q /)
GO Q3/))
§GO DETOUR)
NP/ (if (ARCCAT DET)
then EALTARQ NP /=2)
SETR 'DET ¥)
gooro NP/1)
GO NP/1))

(lf (ARCCAT NPR)
then (SETR 'NPR %)
DOTO NP/?)
GO NP/3)
DETO

GO UR)
NP/1§wh11e (ARCCAT ADJ) do éALTARQ NP/1=2)
ADDL “ADJS *)
(DOTO NP/1))

NP /-2

NP/1=2
(lf (ARCCAT N)
then (SETR °N *g
DOTO NP/2
0 NP/2))
(GO DETOUR)

NP /2 (DOPOP (BUILDQ (NP (DET +)
ADJ +)

N +))
DET ADJS N))
(GO EVALARC)
NP/3(DOPOP (BUILDQ (NP (NPR +))
(GO BVALARC))))




Version II

(PARSER  sorvoes " oo
(LAMBDA gAc ) S
(PROG (STATE NODE 'STACK REGS FEATS HOLD * LEX SREGS
SFEATS FEATURES TEMP)
If the function is called with an argument of ‘GO, -it 1looks
for another parse. This - allows the user to get out more
than the first parse. .
(if ACF="GO
then (GO DETOUR))
The current status of the machine is  kept in i lobal
variables: ?1? STATE, the state/arc pin the g%ggmag (2)
NODE, the pointer into the input, (3) REGS, the 1list of
re§ister name-value pairs, (4) STACK, the return stack, and
(5) HOLD, the hold list. ﬁuttini the machine into a given
configuration involves assigning values to these five
variables. : .
SPREAD-ACF
CHANGESTATE (CF.STATE ACF))
REGS«(CF.REGS ACY))
FEAT§+ECF.FEATS ACF;;
STACK«+(CF.STACK ACF
HOLD&(CF.HOLD ACF))
LEX«(EDGE.WORD (FIRST.EDGE NODE4(CF.NODE ACF))))
TRACEALTSTART i3 one of the tracing ' functions provided to
allow the user to follow the operations of the parser. The
others are TRACEARC and ABORT. None of these result in any
code when a fast version of the parser is produced.
gTRACEALTSTART)
GO EVALARC)
NEXTLEX
If the current node has more than one lexical interpretation
(BUTFIRST.EDGE), the code sets NODE to try the next one.
(if (BUTFIRST.EDGE NODE)
then LEX«(EDGE.WORD (FIRST.EDGE
NODE«(BUTFIRST.EDGE
. NODE)))
(GO EVALARC))
BRANCH dispatches control to the label specified by STATE.
EVALARC :
(BRANCH STATE SUCCESS DETQUR S/ S/=-1-CONT S/-2
S/-1-CAT S/-2-PUSH Q1/ Q1/-1-PUSH Q2/
Q2/-1-CONT Q2/-1~-CAT Q3/ Q3/-1-CONT
Q3/-2 Q3/~2-CONT Q3/-3 Q3/-4 Q3/-5 .
Q3/-1-CAT Q3/-2-CAT 83/-3-PUSH Q4/ Ql/-2 QU/-3
. Q5/ Q5/~1-PUSH Q6/ Q6/-2 Q7/ Q7/-1-PUSH
VP/ VP/~-1-CONT VP/-1-CAT NP/ NP/-1-CONT
NP/~2 NP/=2-CONT NP/-1-CAT NP/-2-CAT
NP/1 NP/1-1-CONT NP/1-2 NP/1-2-CONT
NP/1-1-CAT NP/1-2-CAT NP/2 NP/3)
SUCCESS

(RETURN NODE)

Sasesh.
Pt
Co
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DETOUR chooses an alternative from the ALTS list. In this

version the ALTS list is a stack. The detouring mechanism

could be changed by redefining ALTS.FIRST and ALTS.BUTFIRST.

If there are no more alternatives, the first alternative

from the list of SUSPENDED alts is faken, . The suspended
- alternatives are maintained in order by weight.

ORT
(ABORT) - ABORT is a tracing function.

TOUR
(if ALTS : .
then ACFe(ALTS.FIRST) . -
ALTS ‘BUTFIRST; ' S
GO SPREAD-ACF
elseif SUSPENDEDALTS
then ACF«(SUSPEND.PQP)
(GO SPREAD-ACF)
else (RETURN (FAILURE)))
(if (ARCCAT AUX
else (GO S/-2))
gALTARC S/-2)
TRACEARC CAT AUX S/-1)
1 S/-1-CCNT
ALTCAI S/ 1-CAT)
SETR
SETR TNS <(GETF * ‘TENSE)>)
SETRQ TYPE Q)
DOTO 01/)

S/=2 1P ?STRINGLEFTP)
then ;NEXTLEXALT S/)

-

S/

TRACEARC PUSH NIL S/-2)
DOPUSH NP/ S/-2-PUSH)
(GO DETQUR))
( CHANGESTATEQ S/)
(GO NEXTLEX)
S/-1-CAT
: EARCLAT AUX)
TRACEARC ALTCAT AUX S/-1)
(GO S/-1-CONT)
S/-2-PUSH
SPREAD/WFS)
SETR "SUBJ *)
SETRQ TYPE DCL)
DOPTO 02/)

Q1/ 1f ?STRINGLEFTP)
then (NEXTLEXALT Q1/)

TRACEARC PUSH N
DOPUSH NP/ Q1/-
GO DETQUR))

ECHANGESTATEQ Q1/)

GO NEXTLEX)

1-PUSH

éspasAQ/WFs)

IL Q1/-7,
1-PUSH)

Q1/-

SETR "SUBJ *)
DOPTO Q3/)

if ?ARCCAT V)
else éCHANGESTATEQ Q2/)
GO NEXTLEX))
SNEXTLEXALT Q2/)
TRACEARC CAT V Q2/-1)

Q2/
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Q2/-1-CONT
ALTCAT Q2/-1-CAT)
SETR * )
SETR TNS <(GETF * “TENSE)>)
DOTO Q?/
Go Q3/
Q2/-1-
ARCCAT )
TRACEARC ALTCAT V Q2/-1)
2/-1-CONT)

Q3/ if ARCCAT V)
else (GO Q3/-2))
iALTARC Q3/-2)
TRACEARC CAT vV Q3/-1)
Q3/-1-C
(ALTCAT Q3/-1-GAT) .
(if “((GETF * PPRTg and (GETR V)='BE)
then (GO ABORT)
HOLD (GETR SUBJ))
SETR _SUBJ (BUILDQ (NP (PRO SOMEONb))))
SETR AGELAG T)

Q3/-2
(if (ARCCAT v)
else (GO Q3/-3))
éALTAPC Q3/-3)
TRACEARC CAT V Q3/-2)
Q3/-2-C0
éALTCAT Q3/-2-GAT) ,
if “((GETF ¥ PPRTg and (GETR V)= "HAVE)
then (GO ABORT)
(SETR “INS <! (GETR TNS% !
, . (PERFECT)>
SETR 'V #)~
DOTO Q?/)
GO Q3/

1f‘ (STRINGLEFTP) and (TRANS (GETR V))
then (ALTARC Q3/-l4)
TRACEARC PUSH NIL Q3/-3)
DOPUSH NP/ Q3/-3-PUSH)
GO DETOUR))
Q3/-4

(if TEMP (HOLDSCAN HOLD ‘NP “(TRANS (GETR V)))
then (ALTARC Q3/-5)
TRACEARC VIR NP Q3/-U)
PREVIBACTS)
SETR "OBJ ¥
DOVIRTO Qu/
GO Qu/))

3/-5 .
_ (if (INTRANS (GETR V))
then (NEXTLEXALT Q3/)
TRACEARC POP NIL Q3/-5)
DOPOP (BUILDQ (S + +(T$S ;g)
TYPE SUBJ TNS V)
(GETR POPFEATS))
(GO DETOUR))
§CHANGESTATEQ Q3/)
GO NEXTLEX)

120

o 113




Q3/-1-CAT
- ARCCAT V)
éTRACEARC ALTCAT vV Q3/-1)
GO Q3/-1-CONT)
Q3/-2-CAT
ARCCAT V)
TRACEARC ALTCAT V Q3/-2)
GO Q3/-2-CONT)
Q3/-3-PUSH ’
SPREAD/WFS)
SETR "OBJ %)
DOPTO Qu/)

Q4/ 1f %ARCWRD BY) and (GETR AGFLAG)
hen (ALTARC Q4/-2)
TRACEJRC WRD BY Qu/-1)
SETR "AGFLAG NIL)
DOTO Q7/)
GO Q7/))
QU4/-2

then (ALTARC Qd4/-3
TRACEA?C WRD TO Q4/-2)
DOTO Q;
GO Q5/))

Q4/-
NEXTLEXALT Qu/)
TRACEARC POP NIL Qu4/-3)
DOPOP (BUILDQ (S fv;(%NS +)

V +)+))
TYPE SUBJ TNS V OBJ)
(GETR POPFEATS))
(GO DETOUR)
Q5/ (if (STRINGLEFTP)
then (NEXTLEXALT Q5/) i
TRACEABC PUSH NIL Q5/-17
SENDR  SUBJ (GETR OBJg)
SENDR “TNS (GETR TNS)
SENDRQ TYPE DCL
DOPUSH VP/ 05/ 1 PUSH)
SREGS¢NIL
SFEATSeNIL
(GO DETQUR,)
éCHANGESTATEQ Q5/)
GO NEXTLEX)
Q5/-1-PU
SPREA /WFS)
SETR “0OBJ *)
DOPTO Q6/)

Q6/ 1f ?ARCWRD BY) and (G§TR AGFLAG)
then (ALTARC Q
: TRACEARC WRD BY Q6/-1)
SETR “AGFLAG NIL)
DOTO Q74)
GO Q7/ )
Q6/-2

NEXTLEXALT Q6/)
TRACEARC POP NIL Q6/-2)
DOPOP (BUILDQ (S + +(TNS +)
(VP (V +)+))
TYPE SUBJ TNS V OBJ)
(GETR POPFEATS))
(GO DETOUR)
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Q7/ (if (STRINGLEFTP)
then (NEXTLEXALT Q7/)
TRACEARC PUSH NIL Q7/=1)
DOPUSH NP/ Q7/-1-PUSH)
DETOUR))
ECHANGESTATEQ 07/)
GO NEXTLEX)
Q7/-1-PUSH
SPREAD/WFS)
SETR 'SUBJ *)
DOPTG 06/)

Vp/ ?ARCCAT V)
else $CHANGESTATEQ VP/)
GO NEXTLEX))
éNEXTLEXALT VP/)

TRACEARC CAT V' VP/-1)
VP/-1-CONT
éALTCAT VP/<1-CAT)

if “(GETE * "UNTENSED)
Lhen (GO ABORT))

SETR

DOTO /)

1 03/

ARCCAT V)

TRACEARC ALTCAT V VP/-1)
GO VP/-1-CONT)

if (ARCCAT DET)

else (GO NP/-2))
éALTARC NP/=2)

TRACEARC CAT DET NP/-1)
NP/=-1-CONT
%ALTCAT NP/~ ; -CAT)

Vp/-

NP/

SETR "DET *
DOTO NP/1)
GO NP/1)
NP /=2
(if (ARCCAT NPR)
else (CHANGESTATEQ NP/)
GO NEXTLEX))
ENEXTLEXALT NP/)
TRACEARC CAT NPR NP/-2)
NP/-2-CONT
ALTCAT NP/-2-CAT)
SETR 'NPR %)
DOTO NP/3)
GO NP/3)
NP/-1-CAT
EARCCAT DET).

TRACEARC ALTCAT DET NP/-1)
GO NP/-1-CONT)
NP/-2-C
ARCCAT NPR)
TRACEARC ALTCAT NPR NP/-2)
- (GO NP/-2-CONT)
NP/1(if (ARCCAT ADJ)
else (GO NP/1 2))
éALTARC NP/1-
TRACEARC CAT ADJ NP/1-1)
NP/1-1-CONT
ALTCAT NP/1-*-CAT)
ADDL "ADJS *
DOTO NP/1)
GO NP/1)

Pt
| W
0o

115

——pm



else (CHANGESTATEQ NP/1)
GO NEXTLEX))
?NEXTLEXALT NP/1)
TRACEARC CAT N NP/1=2)
NP/1-2-CONT
_ ,héALTCATNNg/1e2-CAT)

/1=2
(if (AR%CAT N)

SETR
DOTO NP/2
- (GO Np/2)
NP/1-1=-CAT
ARCCAT ADJ)
TRACEARC ALTCAT ADJ NP/1-1)
. (GO NP/1-1=CONT)
NP/1-2-CAT :
ARCCAT N)
TRACEARC ALTCAT N NP/1-2)
GO. NP/1-2=CONT)
NP/2(NEXTLEXALT NP/2)
TRACEARC POP NIL NP/2-1)
DOPOP (BUILDQ (NP (DET +;
ADJ +
- (N +))
DET ADJS N)
(GETR POPFEATS))
GO DETOUR)
NP/3(NEXTLEXALT NP/3)
TRACEARC POP NIL NP/3-1)
DOPOP (BUILDQ égg)(NPR +))

¢ (GETR_POPFEATS))
(GO DETOUR))))
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Trace of Version I Parsing a Sentence
PARSE((JOHN WAS BELIEVED TO HAVE BEEN SHOT BY FRED))

Etartln alternative O
Node = (((JOHN NPR (&)) ((WAS V & AUX &) (& &))))

The sentence is ' .converted 1nto a chart format, ~The chart
contains information about the possible parts of speech of each
word. Notice that "was" can be either. a verb (V) or an auxiliary
verb (AUX). (An "&" is used to indicate a further structure.)

Taking PUSH arc S§/-2

The trace indicates the arc tgpe and its location in the grammar,
No alternative 1is stored ecause S/~2 is the last arc in the
state S/ and there are no lexical alternatives. ‘

PUSHing for NP/ en e
Takin% CAT NPR arc NP/=-2 ; -
ting NPR to JOHN .

_The trace also indicates where registers get set. .

Entering state NP/
Node = (((WAS V (&) AUX (&)) ((BELIEVED V &) (& &))))
Taking POP arc NP/3-1
Trying to POP
(Continuing arc S/-2 H)
Setting SUBJ to (NP (NPR JOHN))
Setting TYPE to DCL

Entering state
" Node = [ ((WAS V (&) AUX (&)) .((BELIEVED V &) (& &)))) N
Iakln% CAT V arc Q2/-
ting V to BE
Setting TNS to (PAST)

Entering state
Node = %((BELIEVED Vv (&)) ((TO PREP &) (& &))))

?he alternative configuration to try the second arc leaving Q3/
Q3/2) is created and saved after the test has succeeded on the
first arc but before the arc is taken., This 1is alt 2 because
configuration 1 was created during the varlier PUSH arc (i1.e.
the number is a configuration number), ’

Storlng alt 2 for arc Q3/-2
Taking CAT V arc Q3/-
HOLDin% (NP _(NPR JOHN))
Setting SUBJ to (NP (PRO SOMEONE))
Setting AGFLAG to T
Setting V to BELIEVE

Enterin% state
Node = { ((TO PREP (&)) ((HAVE V &) (& &))))
Storing alt 3 for arc Q3/-4

Taking PUSH arc Q3/-3

PUSHing for NP/

BLOCKED

Starting alternative 3
At arc %3
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“ 'Node

Node = (((TO PREP (&)) ((HAVE V &) (% &))))
Storing alt 5 for arc Q3/-5
Taking VIR NE arc QB/-
(NP (NPR JOHN)) removed from HOLD list
Setting OBJ to (NP (NPR JOHN))

Enterin state

%((TO PREP &)) ((HAVE V &) (& &))))"
“Storin alt for arc QU/=3
Taking WRD TO arc Qu/-2

Entering state Q
Node = {((HAVE v (&)) ((BEEN V &) (& &))))
Takinﬁ PUSH arc Q5/-
Ding SUBJ value of (NP (NPR JOHN))
SENDing TNS value of (PAST)
SENDing TYPE value of DCL
- PUSHing for VP/
Takin% CAT V arc VP/-1
ting V to HAVE

Entering sta
Node = (((BEEN (&)) ((SHOT V &) (& &))))
Storing alt 8 for arc Q3/-3
Taking CAT V arc Q?
Setting TNS to (PAST PERFECT)
Setting V to BE Co e

Entering state Q
Node = ( ((SHOT V (&)) ((BY PREP &) (& NIL))))
Storlng alt 9 for arc Q3/-2
Taking CAT V arc Q3/-1 :
HOLDing (NP (NPR JOHN))
Setting SUBJ to (NP (PRO SOMEONE))
Setting AGFLAG to
Setting V to SHOOT

Entering state Q3/
Node = (((BY PREP (&)) ((FRED NPR &) NIL)))
Storing alt 10 for arc Q3/-4
‘'Taking PUSH arc Q3/-3
PUSHing for NP/
BLOCKED

Starting alternative 10
At arc §%/-H
Node = (BY PREP (&)) ((FRED NPR &) NIL)))

Storing alt 12 for arc Q3/-5
Taklnﬁ VIR NP arc Q3/-l
(NP (NPR JOHN)) removed from HOLD list
Setting 0BJ to (NP (NPR JOHN))

Entering state Qu/

Node = (((BY PREP (&)) ((FRED NPR &) NIL)))
Storing alt 13 for arc QU/=2

Takin% WRD BY arc /=1
ting AGFLAG to NIL

Entering state Q7/
Node = ( ((FRED NPR (&)) NIL))
Taking PUSH arc Q7/-1
PUSHing for NP/
Taking CAT NPR arc NP/-2
Setting NPR to FRED
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Entering state NP/3
Node = (NIL)
Taking POP _arc NP/3-1
Trying to POP
(Continuing arc Q7/=-1-PUSH)
Setting SUBJ to (NP (NPR FRED))

Entering state Q6/ .
Node = (NIL)
Taking POP arc Q6/-2
Trying to POP
(Zontinuing arc Q5/-1-PUSH)
Setting OBJ to (S DCL (NP (NPR FRED))
TNS (PAST PERFECT))

(V SHOOT) (NP (NPR JOHN))))

Enterin% state Q6/
Node =
Taking POP arc Q6/=2
Trying to PQP
- Trying to SUCCEED

S DCL '
NP PRO SOMEONE
TNS PAST
VP V BELIEVE
S DCL .
NP NPR FRED One successful parse. Parser continues
TNS PAST PERFECT because it was being run in a mode which

vP xPssggTJOHN returns all possible parses.

Startin alternative 13
At arc
Node = (((BY PREP (&)) ((FRED NPR &) NIL)))
Taking POP arc Q4/-
Trying to PQP
(Continuing arc Q5/-1-PUSH)
Setting OBJ to (S DCL (NP (PRO SOMEONE))
TNS (PAST PERFECT))

(V SHOOT) (NP (NPR JOHN))))

Enterln% state
Node = (((BY PREP (&)) ((FRED NPR &) NIL)))
Storing alt 15 for arc Q6/-2
Takln% WRD BY arc Q6/-
ting AGFLAG to NIL

Enterln% state Q
Node = (((FRED NPR (&)) NIL))
Taking PUSH arc Q7/-1
PUSHing for NP/
Taking CAT NPR arc NP/-2
Setting NPR to FRED

Entering state NP/3

Node = (NIL)

Taking POP arc NP/3-1

Trying to POP

(Continuing arc Q7/-1-PUSH)
Setting SUBJ to (NP (NPR FRED))
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: Enterin% state Q6/
- Node NIL

Taking POP arc Q6/-2

.Trying to PQOP

Trying to SUCCEED

S DCL .
‘NP-NPR-FRED
“TNS PAST
VP V BELIEVE
S DCL
NP PRO SOMEONE
TNS PAST PERFECT

VP V¥ SHOOT
NP NPR JOHN
Startin§ alternative 15

At arc /=2

Node = (((BY PREP (&)) ((FRED NPR &) NIL)))
Taking POP arc Q6/-2

Tryin to POP

%ing to SUCCEED

Startin alternative 12

At arc %?/-5 .

Node = ({(BY PREP (&)) ((FRED NPR &) NIL)))
BLOCKED

Starting alternative 9
At arc §?/-2
(SHOT V (&)) ((BY PREP &) (& NIL))))

Node =
BLOCKED

Starting alternative 8
At arc %%/-3
(BEEN V (&)) ((SHOT V &) (& &))))

Node =
BLOCKED

Start1n§ alternatlve 6

-3
((TO PREP (&)) ((HAVE V &) (& &))))
Taking POP arc QU/-3
Trying to POP
Tryin to SUCCEED
BLOCK

Starting alternative 5

At arc §? -5

Node = ({(TO PREP (&)) ((HAVE V &) (& &))))
BLOCKED

Startin alternathe 2

At arc %%

Node = (U(BELIEVED V (&)) ((TO PREP &) (& &))))

BLOCKED
NIL
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Appendix k

Grammar Compiler Declarations

Specification of Fealures

Some features of the geheral ATN barser require a good bdeal of.
bookkeeping. .For example, SYSCONJ requires a parser to .save the path that
it takes through the grammar. This more than doubles the amount. of storage
overhead. To relieve the burden of those features, such as SYSCONJ, which

increase the overhead, and which a particular application may not require,

the user can specify which features hisigrammar uses. The compiler will

then Lailor the object code to those needs. The wuser specifications
consist of a collection of flags which are set at compile time. A

description of each flag togelher with its default setting is given below.

HOLDFLG: If the grammar does not use the HOLD facility, setting this flag
to NIL will eliminate one field in a configuration. Default is T.

FEATURESFLG: If the grammar doesn’t use the feature facility, setting this
{lag to NIL will eliminate one field in a configuration. Default is T.

WFSTFLG: If the grammar uses the well-formed substring feature, WFSTFLG
should be non-NIL. Default is NIL.

ALTCATSFLG: If this flag is HIL, the compiler will not compile the abilit

- to handle multiple interpretations of a word within a single category. I

ALTCATSFLG is a list, it will compile this abiIit into those arcs
whose categories are members of the 1list. If T, it will compile this
ability into all CAT arcs. Default is T.

SYSCONJFLG: If the grammar uses the LUNAR SYSCONJ conjunction-handling
facility SYSCONJFLG should be non-NIL. Default is NIL. (SYSCONJ has no
been implemented yet.) :

,,,,,

STAR;STATE: This should be the start state of the grammar. Default value
is S/.

NULLPUSHFLG: If NULLPUSHFLG is non-NIL, a PUSH arc will never be taken if
there is no input left.' Default setting is T. ’

UNAMBIGUOUS-CHART: If the input chart is never ambiguous, seLLin%' this
flag to a non-NIL value will avoid the checking for an alternative lexical
interpretation. Default is NIL.

This begins to legislate out PUSHes which do not use any of the
inputs. In practical terms, this means that a PUSHed to network has to do
more than just take constituents off the hold list, In theoretical terms,
it closes one. ot the holes which may allow an ATN grammar to be

undecidable.
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Declarations for érg Tests eand Actions

The tests and actions on an arc can be arbitrary LISP expressions. To
compile these function calls, the: grammar compiler must know which
arguments get evaluated. In general the grammar compiler gets this
information from the same declarations abodt functions that the LISP
compiler uses (NLAMA, NLAML, FNTYPE, etc.). In addition a facility is
provided which allows the user to tell the grammar compiler how to compile
the individual arguments to particular functions. Using this ifacility it
is possible to write function calls'in.the grammar which implicitly QUOTE
some of their arguments and evaluate others or- even which call another
function to decode their arguments. The compiler is told how to compile
the arguments to a function by putting a specification as the value of the
property GHAMMARARGiNFO on the property list of the function name. The

value of GRAMMARARGINFQ property should be one of the following:

1) LAMBDA: the function evaluates all of its arguments. (This is the
default case.)

'2) NLAMBDA: tne function doesn’t evaluate any of its arguments. This
can also be done bK gutting the function on either of the lists NLAMA
or NLAML (see INTERLISP compiler).

3) A list which specif'ies how each argument should be treated. Each
element of the list can be:

1) E or NIL - This argument position will be evaluated. This is the
usual case where the action expects its argument to be evaluated and
tells the grammar compiler to scan the argument for embedded calls.

2) QUOTE - This argument is embedded in QUOTE., - This provides a
convenient way of automatically quoting certain argument positions
in a function call. .

3) *# - The argument is not comgiled'b the grammar compiler but 1is
merely copied. Note: Arguments which occur in this position should
not beve any embedded functions as these will not be scanned by the
compiler,

4) Any other atom - The atom is the name of a Tunction which when
APPLYed to the argument returns the compiled form.

Examples: The grammar function SETR which sets the value of a register
could be compiled by having a GRAMMARARGINFO property of (QUOTE E).a The
arc action (SETR ANAPHORFLG T) would compile into (SETR (QUOTE ANAPHORFLG)

1), SETR is defined as a LAMBDA function (i.e. the interpreter evaluates

2 SETKk is, in fact, recognized specially by the grammar compiler so
that it can keep track of the registers which are used in the grammar.
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its arguments) which avoids the explicit call to EVAL which resuits {rom
having SETR be a NLAMBDA function (i.e. the interpreter doesn’t quluaLe

its arguments),

In the LUNAR grammar, many of the arc functions use EVALLOC to
evaluate one or more of their arguments. ‘EVALLOC has three opﬁions: (1"
if its argument is "#" or NIL, it gets the value of the current thing - #;

(2) if the argument is atomic, it is a register whose value is retrieved;

and (3) if the argument is a list, it 1is evaluated. This allows the

grammar to be clearer and less cluttered with predictable function calls.
To accomplish the same results using the compiler, a version of EVALLOC
(CEVALLOC) 1is provided which returns the form for the decoded argument.
The fﬁnctions which use it are then given GRAMMARARGINFO ‘property of
CEVALLOC for }hose argument positions which need decoding. This means that
the decodiné process takes place once at compile time instead of each time
the arec 1is tried. For example, in the LUNAR grammar the function MARKER
has a GRAMMARARGINFO property of (CEVALLOC QUOTE). This allows the grammar
to have (MARKER N MASS) as an ‘action which compiles into
(MARKER (GETR N) (QUOTE MASS)) and avoids an explicit call to EVAL by
MARKER. Notice that by using this technique; the grammar writer can easily
specify default arguments to actions in his grammar (at very little

o

computaﬁioqal cost) and greatly improve the readability of the grammar.
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Appendix F
Debugging Features

Since the compiler transforms the grammar into a program, the grammar
writer can use the debugging features of the object language to aid in
debugging his grammar. These should, of course, be augmented by some
features particular to grammars, but these are best integrated into an
existing framework. The following section describes a collection of
grammar debugging tools that have been integrated into the INTERLISP

system,

The debugging facilities can be grouped into two major categories;
tracing and breaking. The trace will show all grammar transitions and
register-changing operations. In debugging mode, the system will even keep
a cohplete history of the parse so that the user can back up. In addition,
the user has the ability to stop the parser at the end of each line of the

trace in ~rder to look around in and/or change the current environment.

Tracing

The trace package causes the functions in the object language program
to print . out what they are doing. There are three types of actions which
may be incvluded in the trace: (1) arc transitions, storing of alternatives
and hold 1list operations; (2) setting of registers; and (3) sending of
reg.:ters to a PUSH configuration. The latter two of these can be turned
off independently. In addition, tﬁe debugging system allows the usér to
trace to a disk file and not to TTY. (If the user wants both TTY and disk
copies, he can use the INTERLISP DRIBBLE facility.)

' Breaks

The break package allows the user to stop the parser at any time;
check the states of the current configuration, or any of the alternative or
previously blocked configurations; or backup to previous points 1in the

parse to examine wnmore closely the path taken. The break package exec is
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BREAK1 (Lhe LISP Break executive) augmented with some speéial functlions and
‘bHEAKMACRUS. Since the wuser is talking to BREAK1, he can use any of Lhe
LISP break commands or execule any LISP functions as well as the special
‘commands described below. He can also use the special éommands while
-inside of a break céuéed by having broken one of his functions or typing

Control-H or Control-B.

How to Get into a Break

Whenever the trace package prints a line of tracing information, and
the variable PAUSEFLAG has a non-NIL value, the trace package will wait for
the user to indicate whether to continue or break. A break is caused by
typing PAUSECHAR (initially ","). Continuation 1is .céused by typidg
CONTINUECHAR (initially ",")., All other characters are ignored. If
PAUSECHAR is typed, BREAK1 is entered. The parsing is resumed by using one
of the Break exiting commands, or by using one of the spécial commahds

described below. Note: "." is equivalent to the Break command "QK",
Grammar Break Commands

Printing Qut Parsing Information:

The following commands and functions are provided to print out

information associated with a configuration,

1) CF - a Break command which prints out the present status of the
currently active configuration.

2) PPCF(n) ~ prints out the status of configuration number n,

Note: Both CF and PPCF onl print - non-NIL information about a
configuration. Also PRINTLEVE is set to U4 when debugging. It can be
reset to a higher (or lower) number if the user wants more (or less)
information printed, . ,

3) PT - a Break command which tree prints (PPTT - see below) the ‘current
.structure (%), This is most wuseful after a POP to examine the
structure which was POPped.

‘U) PPTT(X) - prints the structure x in a tree format without parentheses.
5) CFARRAYDUMP(ST END) - dumps the contents of the configuration array

from configuration number ST to configuration number END. If ST is
NIL, O is used. If END is NIL, the largest configuration FREECF#, is

usea.
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Commands to Back up the Parser

The following commands are used to change the flow of control of the
parser while debugging., In order to use AGAIN or BACKUP, the parser must
be run in PATH mode, which saves a new configuration each time an arc 1is

taken.

1) AGAIN - a break command which restarts the current confi%uration,
i.e. goes back to the most recent arc transition and starts again,
The effect is to redo the current arc, If the user discovers that.
this did not back up far enough, he can use the command BACKUP,

2) BACKUP - a break command which restarts the configuration which led
to the current one, BACKUP may be invoked successively to back up
more than one arc transition. ‘ o

3) ABORT - a break command which ABORTs the current configuration., The
next active configuration will be taken from the ALTS list,

Note: AGAIN and BACKUP are useful if an érc is taken (or not taken) when

it should not have been (or should have been). The predicates or functions
involved in the offending arc test can be broken (us n% the LISP function
BREAK) and then AGAIN or BACKUP can be called to redo the arc.

4) FIRE(n) - aborts the current  configuration and starts the
configuration n, If n is on the ALTS Iist, the ALTS list is POPped
to the configuration before n.

5) PARSER(n) - recursively invokes the parser on configuration n. This
Erovides a way of exploring one of the configurations on the ALTS
ist or returning to a (much) earlier configuration, Note: After
PARSER returns, the user is still in the same place with respect to
the current parse (except that he -may have fewer configurations
left, his alternative lists may have been altered and his WFST may
contain more entries.)
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Appendix G
AIN Descrliption of Part. of the SOPHIE Semantic Grammar

This appendix pives an ATN description of the same subset of the~
language as presented in Appendix A. Of the 2U rules listed in Appendix A,

' 15 became "syntactic" categories, 3 were incorporated into othér networks

and 6 remained non-terminals. The first section presents the ATN in its
graphic form. The second section presents the ATN as it is input to phe

compiler.
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CAT PART

WRD LOAD
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Input Form of Semantic ATN

(MEASUREMENT/
(GROUP
(CAT SECTION T
SETR WHERE %)
TO MEAS/SECTION))
(WRD (INPUT QUTPUT) T
~ (SETR I/0 LEX
"TO MEAS/I/O)
(CAT MEAS/QUANT T
SETR QUANT #)
TO MEAS/QUANT))
(CAT JUNCTION T
SETR TERM *)
TO MEAS/TERM))
(CAT TERM/TYPE T
éSETR TERM *)
TO MEAS/TERM))
(CAT TRANSFORMER T
ESETR WHERE *)
TO MEAS/SECTION))))

(MEAS/SECTION
(GROUP

WRD_EINPUT OUTPUT) T
SETR I/0 #)

(1O MEAS/SECT/I/Ogg
(JUMP MEAS/SECT/I/O T)

(MEAS/SECT/I/0
(GROUP
(CAT MEAS/QUANT T
. (SETR QUANT *
TO MEAS/END)
(JUMP MEAS/END (GETR I/0))))

(MEAS/I/0
(GROUP '
(CAT MEAS/QUANT T
SETR QUANT *)
TO MEAS/I/O/QUANng
(JUMP MEAS/I/O0/QUANT T)

(ME@S/I/O/QUANT
\

(CAT PREP T
(TO MEAS/I/O/QUANT))
(CAT TRANSFORMER T
SETR WHERE g
TO MEAS/END)
(CAT SECTION T
§SETR WHERE *
TO MEAS/ENDg
. (JUMP MEAS/END T)

(MEAS/TERM
(CAT MEAS/QUANT T,
éSET QUANT #)
TO MEAS/TERM/Q)))

(MEAS/TERM/Q
(GROUP
(CAT PREP T
(TO MEAS/TERM/PREP;g
(JUMP MEAS/TERM/PREP T)
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(MEAS/TERM/PREP
(GROUP
(CAT PART T
T(SET§ WHERE (BUILDQ (+ *)
(TO MEAS/END))
(JUMP MEAS/END
. (SETR WHERE (BUILDQ (+ (PREF ))

TERM
"(PART/RANGE TERM))))))

(MEAS/QUANT
(GROUP
(WRD go
SETRQ CLASSES (PART TERMINAL JUNCTION NODE SECTION))
(TO MEAS/PREP))
(WRD AT
SETRQ CLASSES (NODE TERMINAL))
TO MEAS/PREP))
(WRD (BETWEEN FROM) T
TO MEAS/BETWEEN))
(WRD ACRO
ESETRQ CLASSES (PART JUNCTION))
(WRD } TO MEAS/PREP))
SETRQ CLASSES (PART TERMINAL JUNCTION SECTION))
SETRQ I/0 INPUT)
e TO MEAS/PREP))

(WRD THROU
SETRQ CLASSES (PART TERMINAL JUNCTION SECTION))
TO MEAS/PREP))

(WRD (OUT FROM) T : e

'SETRQ CLASSES (SECTION))
SETRQ I/0 OUTPUT)
TO MEAS/PREP))

(JUMP MEAS/PREP T)
(POP g?UILDQ (REFERENCE ((QUANT)
QUANT)
T))

(MEAS/PREP
(PUSH CIRCUIT/PLACE/ T
SENDRQ NOPRO T)
SETR WHERE *g
TO MEAS/END)
(PUSH JUNCTION/ T
SENDRQ -NOPRO T)
SETR WHERE *g
TO MEAS/END)
(PUSH PART/
SENDRQ NOPRO T)
SETR WHERE *g
TO MEAS/END)
(CAT SECTION T
SENDRQ NOPRO T)
SETR WHERE *
TO MEAS/END)
(PUSH PRONOUN/ (GETR CLASSES)
SENDR TYPES (GETR CLASSES))
SETR WHERE *
TO MEAS/END)))

(MEAS/END
(POP (BUILDQ (MEASURE + + +)

R VY §
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QUANT WHERE I/0)
: T))

(MEAS/BETWEEN

(PUSH PRONOUN/ T
(SENDRQ TYPES (NODE TERMINAL))
SETR NODE1 *)
TO MEAS/BET/N1))

(PUSH CIRCUIT/PLACE/ T e
SETR NODE1 #)
TO MEAS/BET/N1))

(PUSH NODE/BET T
SETR HHERE ;
TO MEAS/END)

(WRD QUTPUT T
(TO MEAS/BET/O0UT)))

(MEAS/BET/N1
(WRD ETO AND) T
TO MEAS/BET/AND)))

(MEAS/BET/AND
(PUSH CIRCUIT/PLACE/ T
. (SETR NODE2 *
TO MEAS/BET/END)))

(MEAS/BET/END
(POP (BUILDQ (MEASURE + + +)
QUANTT§9DE1 NODE2)

(CIRCUIT/PLACE/
§JUMP TERMINAL/ T)
JUMP NODE/ T
(WRD THERE T
éSETR POPVAL (BUILDQ (PREF (NODE TERMINAL))))
TO POP/VAL/)))

. (NODE
?GROUP
.(WRD éNODE N) T
TO NODE/1§§
(JUMP-NODE/1 T)

(NODE/1
- (GROUP
-(WRD éBETWEEN JUNCTION) T
TO 'NODE/BET) )
(CAT NOD

éSETR NODE #
TO NODE/END))
 (CAT INTEGER (AND (IGREATERP * -1)
(ILESSP * 27
(SETR NODE (PACK (LIST (QUOTE N)

(TO NODE/END))))

(NODE/BET
(GROUP

(WRD OF T
' (TO NODE/BET) )
(CAT SECTION T :
SETR P ®)
TO NODE/BET/P1)))
(PUSH PART/ T
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ESETR PART1 %)
TO NODE/BET/P1)))

(NODE/BET/P1
(WRD AND T
(TO NODE/BET/AND)))

(NODE/BET/AND
(PUSH PART/ T
PA§S$§§ NODE (BUILDQ (NODE/BETWEEN + *)
(TO NODE/END))
(CAT SECTION T
PA(SETR NODE (BUILDQ (NODE/BETWEEN + ¥)

T1
(TO NODE/END)))

- (NODE/END

(POP (GETR NODE)
T))

(TERMINAL/
(GROUP
(CAT TERM/TYPE T
§SETR TERM/TYPE *)
TO TERM/TYPE))

(WRD ITS T

(TO TERM/ITS))
- (WRD QUTPUT T

(TO TERM/OP))))

(TERM/TYPE
(GRouP
(WRD TERMINAL T

(TO TERM/TYPE/Z)%
(JUMP TERM/TYPE/2 T))

(TERM/PREP
(PUSH PART/ T
éSETR PART *)
TO TERM/TERM))
(WRD ONE T ,
(SETR PART (BUILDQ (PREF )
. (PART/RANGE TERM/TYPE)))
(TO TERM/TERM))
(JUMP TERM/TERM T
© (SETR PART (BUILDQ (
(PART/RANGE TERM/TYPE)

(TERM/ TERM
(POP (BUILDQ (+ +)
MWmIERM/%§§E PART)

PREF )
))))

(TERM/ITS
(CAT TERM/TYPE T
§SETR TERM/TYPE *3
TO TERM/ITS/END)))

(TERM/ ITS/END
(POP (BUILDQ (+ (PREF ))
TERM/TYPE .
(PART4§§NGE TERM/TYPE))
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(PART/
(GRoUP

(CAT PART T
SETR PART *3 oo
TO PART/END))

(WRD (QRDC) T
SETR TYPE %)
TO PART/ABBEV))

(WRD LOAD T
ﬁSETRQ PART LOAD)
TO PART/END))

(CAT SECTION T o
£SETR SECTION #) "=
SETRQ CLASSES (CAPACITOR DIODE RESISTOR TRANSISTOR

ZENER/DIODE TRANSFORMER))

(TO PART/SECTION))

(JUMP PRONOUN/ T
(SETRQ TYPES (PART)))))

(PART/ABBEV
(CAT INTEGER T
(SETR PART (PACK (LIST (GETR TYPE)

(TO PART/END)))

(PART/SECTION
(TST RIGHT/TYPE EMEMB LEX (GETR CLASSES))
(SETR PART (BUILDQ (FINDPART +
SECTION LEX))
(TO PART/END)))

(PART/END
(POPngETR PART)

(PRONOUN/
(GROUP
(WRD I

TT
(TO PRO/END))
(WRD THAT T

HA
(TO PRO/THAT))))

(PRO/THAT :
(TST TYPE/CHECK (MEMB LEX (GETR TYPES)) °
ESETR TYPES (LIST LEX))
TO PRO/END))) -

(PRO/END
(POP (BUILDQ (PREF +)
TYPES)

T))
(JUNCTION/
(GROUP
(CAT JUNCTION T
SETR JUNCTION *)
TO JUNC/JUNC))
(WRD ITS (NULLR NOPRog
(TO JUNCTION/)))
(JUNC/JUNC
(GROUP
~ (WRD gJUNCTION C

IR
TO JUNC/JU??

g?IT OF) T
(JUMP JUNC/OF T)
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. (JUNC/OF
- (GROUP
(CAT TRANSISTOR T
(SETR .TRAN *;
“(TO JUNC/END)) -
(JUMP JUNC/END (NULLR NOPRO)
(SETR TRAN (LIST (QUOTE PREF)
“(QUOTE ( TRANSISTOR)))))))

(JUNC/END o
(POP (BUILDQ (+ +)
JUNCT%())I;I TRAN)
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