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ASSTRAC .

The report provides a suMmary of the rationale for questiffoning

the applicability of classical reliability measures to criterion-

referenced tests. an extension of the classical thory of trim and

error scores to incorporate a theory ofwilthotomaus decisions: a pike-

sentation of the mean split-half coefficient of agreement, a singte-

administration test :ndex designed to measure the internal consistency

of dichotomous classifications; and information concerning the proper-

ties, under varying conditions, of this new CoeffiCient and several

othezr single-administration test Andices, as well as their interrela-

tionships.

Simulated data were used to provide answers to questions about the

behavior of coefficient beta relative to variations in score diitribu-

tion, criterion level, number of examinees, number of items, and certain .

basic test statistics.. It was determined that ceefficient beta in-

.

creases as the number of items increases, but in a manner different

from that predicted by the :lpearman-rown prophecy fOrmula. It was

alsO shown that the value of the cofficient increaser as the bulk of

scores departs from the criterion cutoff.

'Relatfonships between ceefficient beta and other test indices 4re'.

presented. Most proMinent among these is the indication that for uni-

modal.cOre distributions, coefficient beta and Livingston's k
2

TX

have siwilar ranges of value and fluctuations aver criterion level,

whereas thi relationship does not hold for bimodal distributions,

13



e.

since coeff cient beta is.sensitiye'to. the Models/ of the score

distribution while k'
T

is sensitive po thetest mean.
X

dr*

410

14
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CHAPTER, Y.

INTRODUCTION

Behavioral Objectivest ndividualized Instruction, and Mae*ery Learning

In the past decade, educators have given WA increasing amount of
y

attehtion tO the related ideas of behaVioral objectives; individualized

instruction, and mastery learning,- These ideas' may:he nothing more

than what good teacherS have been using or working toWard for centuries,

but it cannot be denied that formaliziag and.labelIng the, has had and

will cbntinue to have a great Impact on education.

The'notIon that a curriculum, or at least ifortant. parts of i

can succensfully be broken doWn into sets of behavioral objectives

has beeu advanced'by several authors (e.g., Gagnd,:196S),, and within

the past few years there has been a progression from the theoretical to

the practical, from scholarly articles to the commercial educational

marketplace. Such commercially available programs as the Wisconsin De-

sign for Reading Skill Development (Otto 8 Askov, 1474)i Developing

Mathematical Processes (Developing.Mathematical Processes Staff, 1974),

and Science--A Process Approach (American Association for the Advance;

ment of Science Comission on Science Education, 196S)11ft: represents- ---'

tive of this move frot-theory into.practice.

Butiducational reform has not stopped with the development e

curricula based at least in part on behavioral objectives. Along with

the shift toward objectives has come an increased empilimis on flexibility,

15



ia instruction, tO give each pupil '(at least in theory) a better chance

A

of receiving the kind of instruction,that best meets his needs. One

reason for such a system of;individualized instruction (klausmeier,

Quilling, Sorenson, Way, 6 Glasrud, 1971) is that.individudIs in

given group do not all learm a given set'ofmaterials,at the same rate

or by the;same methods, a fact which has been'all too paiqully at-

.vious to generations.of teachers fa ed with pupil! 0 one end ef,the

ability speCtrum who exhibited boredom and pupilS on the other end

who felt frustrated when they have used a pace and form of presentatiOn

appropriate for some pupils in the middle.

A system of behavioral objectives and individualized instruction,

however, offers hope: the objectives allow the teacher to concentrate

on a dicrete:blóck of material, and individualization improves the

,,

chances that a.giVen student 1.,'1 spendsneitber more 4ot less time on

tl material than is needed. .',s,of course, raises the qUestion,
\,

"How-much time/is 'enough'?" Although,this question is so open-ended

as to have frustrated many theoreticians and researchers, a godd bit

has'been written on the topic, which has come to be known as the

"Mastery:learning" issue. While much-of the'current interest in
,

tery learning was given impetus by an article by limn (1968),,the

underlying philosophy has profited from contributions of many Writers

(e.g., Carroll, 1963).

One can easily discuss mastery learning in a theoretical way, but

to make the concept operatiO4a1in a classroom means defining mastery

for a 'givenjvhavioral objective, and this in;turn necessitates describ-'
f

ing the method, by which mastery is to be assessed. This description

Ive



does not usually prlsent toO.great a difficulty; if..a behavioral ob-

jective is xpllcitly stated, it is generally Possible"te eiplicate

how mastery can be assessed. Evans (1968) claimes, however, that the

,

behavioral objectives are less important operatidnaily-thanIheaSsess-

ment instrument; .He maintains that tte posttest, not the list of be=

havioral objec'T'ves, is the ultimate operational. measure of what a

teacher is trying to teach. While mastery may sometimes have to be

aSsessed.bY somewhat uncomon methods, this report will only concern

itself witth the familiar paper-and-penCil test format.

Criterion-Referenced Tests
4

TheTe are several kinds of instruments whoSe stated purpose.is to

,;assess mastery. .They differ in the number of objictiyes involved, the

number of items per objective, nomenclature, ihe meaning of criterion,

and the interpretation given to the test: results.

Some Jests measure only one objective (DMP Staff, 1974); others

encompassiseveral objectiv'es. Of.these, 'some teat each objective with
,

a single test item (Gessel, 1972) whpe others require more than one.

'there are several names given byVarious writers to these assess-
,

ment instruments: mastery test, 2objeCtives-based test, objective-
'

referenced measure, domain-referenCed test, and criterion-referenced

test. Tlis last term; introduced over:a4ecade ago (Glaser, k9.63) has

gained-pilrhaps the Widest curienck.. Such widespread use has also re-

..

. suited in widespread abuse; .since this Single term Is eMployed to
_ .

cover a r ge of test types and,interpretations- Recognizig this
.

.

. .-

problem, nlon (1974) and Millman (1974) -halite offered schemata for
. .



labeling.variOus kindS_of Criterion-,4ferent0 tests.

, I

In addition, nine authora disagree on the meaniwof ihe word

criterion.. Some writers e.g., Nitko, 1971) maintain that criterion
.

,-,

means some Observable'st7dardef pert ruance;, others (e.l. Harr1ii

Stewart, 1971) define it as aspecified4ercentage of:Correct responses-.

on test items. .Some writers:indicate t1at Antefiretation Of the test

H
.

results_should take into ;iccount how a4,,its were relOonded.to tor:-

rectly-or how far from the criterion theleXaminee'S score lies, whereas

:

others maintainAhei thesole matter.v6aPeriancejs whether maitery

, was attained. At an even; mort"basic;livei, there are:writers (Siron

1969) who argue that thera 1$ no suCh,thAng:as a,-criterion-referencild

test separate from a more traditional nar*-reforenced test;
/
rather,.

%, -) 7

the interpretatiOn one:pUts,on the sCore,(absolute number rather than

relatiie ranking) is the.basii fer-the distinction:

Any ofthese viewpoints,may. have Meri6 however, for the purpose
.

of this regpet, a criperion-referenced test (CRT) is' defined as a test

that Measures performanc on-a Single behavioral objective, that has

,

seViral items drawn fro: wellidefine&univese, and whose-,results.
..

yiel4 a dichotomous maste /nonmhtery deciiion with reference to a.

_ .

.
predeteriined criterion level expressed as a percentage ofltems

,

.

.

answered correctly. As such, it comes closest to Roudabush's (1974)

category of a pseudo...continuous' mdaiure Of i,dichotomous true score.

It also seems to fall inte' Millman's (1974) Category of.4(ADAD, or
,

-criterion-referenced differential assessmentdeviCe; aLAigh this,writer

does not agree with all the nuance's Of implication of the CRDAD classifi-

cation. Some of these anis of .disagrecmeit,wi1I b discussed in the



next Chapter.

It will also be shown in the next chapter that a CRT, as.defined

. /'
abo've, differs from the mord familiar norm-referenced test in several

fundamental aspects: purpoii, test specifications, desired score

distributions, method of reporting scores, and meaning of reliability,

among ahers. Thu_s the tio -kinds of testspare quite different and,

although they share some properties, one.kind is not, for example; a

special. instance or a generalization bf the other.
_,

'ft

Overview

This report deals with.CRTi as:previously defined; and7its mayor

. focus rs-on the notion ot i:RT reliability. Because the,purpOses, con-
-, -

- . .
.

. _ .

struction; application, and psychometric theory of CRTs.areconsidered.

Esj, iany to differ. from.thoie of norm-refereaced.tests (NRTs), serious.
.

questionslhave been:raised in recent years as.to viether classical

reliability measure's ough't to be applied:to CRTs.

In Chapter II, several of these -ques.tions e raised and-inv
liP

tigated, and an attempt is made to.show that ctsical reliability

indices are not meaningful for it least ofie important aspect of.CRTs.
;

An extension of the Classical Mathematical model that incorporatesehis

-n`

aspect of CRTs is suggested and adifinition of CRT reliability is -pre-
,

sented, Also SUggested is a set of.criteria for.a CRT reliabil4ty index

Chapter III is an expesition of coefficient beta; t,,e mean Split-half

coefficient of agreement (Marshall 4 Haertel, 1975), a zecently de-

vefoped single-administration CRT reliability coefficient. TM' new

coefficient is based on the theory preserted in Chapter 11 and meets the

crit.tria suggested therein.

),e
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in Chapter IV, a few other CRT\indices that have 6een presented

in the recent literature, incl4ding those of Livingston (1972a) and

Harris (1972a), are discussed with emphasis on how wellthey meet the

criteria-suggested in Chapter II.. In additioni% other indiceg Used

in this study are defined.

Chapter V preyents the questions investgated in this study con-,

corning properties of coeffiiient beta and its relations to other test

indices. The statistilal methodology utilized in answering these

questions is described, as is the Computer progileipimilfte7^ generate

the simulated data for the_rtudy.

,

.Chapter VI presents tht resuIvt. :.!: nese investigationl auku draws

a number clf conclusions, and Ci- T1 cffers a summary and suggests

areas for future research, ,

4

The purpose of this report'is to provide the educational measu-e-

.

Tient Community with:

1. a'brief summary of-the rationale for questioning the apOlica-

- .bility of classical reliability measures to CRTs.

2. .an extension of the classical theory of true and error &cores

to incorporate a theory of die4ptomous decisions.

3. a lptaiied presentation of the mealsplit-half coefficient

of agreement, a new singleradministration test:index de-

signed to measure the internal consistency of dichotomous

classifications.

4. systematic data concerning the properties, under varying con-

ditions, of this new coefficiAt and several other Amgle-

adminiStration test indices, as.well as their interrelationships.

20



7

In summary, this report offers the rationale, the exposition, the

characteristics, and the relationship to other test,indices of it new

coefficient dAigned to measure the dichotomous decision-Fcaking

liability of CRTs. .

t

21.



CHAPTER 11

RELATED TEST THEORY

It is appropriate to examine how a criterion-referenced.test (CRT)

(as defined in Chapter 1) differs from a nom-referericed test (NRT), A .

number of authors have discussed aspects of the subject using various

definitions of a CRT (Brennan, 1974; Glliser, 1963; Glaser 4.Cok, 1968;

Hambleton & Novick, 1973; 'Millman, 1974; Popham Husek, 1969): In

this chapter, tertain parts of classic0 test theory will 11e. discussed

briefly and extended to incorporate a proposed theory for CRTs. The

discussion will include thy interrelated topics ofthe pOrpose of a

test, sCorhaistributions, test-specifications and item selection, the

underlyin-mathe.;Matical model and erilers,of .A.:asurement, an extension

of the mathematical model, and the meaning of reliability. Sincethis

chapter is not a treatise on measurement theory as such the'-discVssion

will not cover all.areas-in detail but will instead focus on those

points that bear on the arguments developed here,

Purpose of a- Test

The- fundamental purpose of an NRT is to differentiate among ia.-..

-dividuaIs by assigning to each examinee a number, or estimated true

score, in reference to the norms of the population for 'eallich the teSt

is dosigned. One's score on an NRT-,indicates a level of achievement

. 1

that is given meaning by comparison with the group at-large; it is a

2 2



measUre"of relative standing within the group that can be. communicated

-via grade equivalents, standardjdeviations above.and below the mean,

stanines-, centiles, "grading *n a curve," etc. (It is true that NRTs

can be used far dichotomous decisions--a person may be selected for

admission to.a training program, for examPle, according to whether he

scores above a certain cutOff pointbut- this cutdff score is chosen

in reference to the performance:of tithercandidateS and thus is dif-

ferent from the criterion,cutoff scorf on a CRT.)

Not too many years ago,a commissioner of education, in a public

policy address, indicated his'hope that within a.certain period of'

time everyone would be reading "up to or above grade level.' *en-One

considers that trade level iS another term for.mtan, this comment re-

duces to a proposal that everyone should be.at or above average. Al":.

though.the statement is humaniSticaliy generous, it is statistically

self-contradictory.

Given a wp1I-defined behavioral objective., however, one,could

correctly make a Statement about everyone's performing at or above a

certain criterion leVel. One co/ Id measure. this performance with a

CRT as defined in Chapter I. The purpose of such a CRT is not to rank

individuals or to report scoros in-reference to norm, but rather to

enable one'to wake a. dichotomous decision based on whether a given

pupil is performing on,a given behavioral objective at'or above a cer-

tain predetermined level (as defined by a certain scote for percent

cermet on the CRT.) Thii.,the purpose of a CRT is different from.that

of. an NRT:_ a CRT provid s data from-which to make a deeision on:an:
.

absollite, not a relative, standard (See also Caaser, 1963.)

.0"
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Score Distritutions

'Since, as stated earlielr, the !ILI-1-m- ..),f am NRT is to dwriminate

among examinees, wit: would naturally hope for a fairly even score di -

tribution with a wide spreae of scores, ,n as to allow efficient dis-
t.

crimination. Thus, in theor./, the optimum total score distribution

for an NRT would have -some shape within the range of normal (with large

standa d deviation), platykurtic, reAangular, or slightly bimodal

(4ith mdes at the etremes); TOta1 score'distributionS of this sort

usuAlytenhance test reliabilities since they produce moderately high

,rotal-score variance, .1n ppoctice, and cmsistent with most theories

of traits.within a,population, a large-Vari.ance normpok or a symmetri-

'cal, somewhat platykurtic, distribution often obtains.

However, thc assumption of a normal or a platykurtic diStribution

for competence on. a given behavioral objective)" is clearly-contradic-
-

tory to the reason for and purpose of instruction. The-reason for

giving instruction toward am objective is that studentS have not mas-

ter,/ it; one:assumes that before instruction, student proficiencies

are massed for tbe most part at.the lower end of the spectrum.-tIn

teaching, one hopes. that all stiidents will master the objective.

With individualized instruction some studenta may take a good deal .

longerthan others, but ultimately the piirpoSe of this instruction is

to ensure that the mass of student proficiencies shifts to the upper

end bf.tht scale. In neither case is a normal distribution implied.

Here, and eisewher in this paper, attention is restricted to a
ertainlimited type of behavioral objectiveone that is quite
specific and narrow in'scope, usually from.the cognitive domain,
and Measurable by a test of several ifems.
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To quOte-Bloom (1968),_

If we are'effectivesivotu instrudViaii, the distribUt4on

of achievement should be'very different froS-the normal-

curve. In fact,Ave may even insist that our educational

efforts have been unsuccessful to the extent to which our

distribution of achievement approximates the normal dis-

tribution [p. 3].

With a CRT, moreover, usedto =Ice a dichotomomS decisionwith

resOect to a predetermined criterion, the desired discrimination is

not'among individuals but rather between two mastery 'groupsthose-

students who have met the objective and those ihiho have not (Glaser 4

Cox, 1968.) Hence the desired score distribution is one that-is rather

sharply bimodal, with one mode well belowand the other' mdde rather..

above the cutoff point (Roudabush, 19724). Research byJilatchford

(1970) shows that these bimodal diittibutions,do indeed occur in class-

room testing. He comments, "In a diagnostic test, as fan example of]

a Criterion-referenced test, there is no evidence of a normardistribu-

tion [p. 43]."

For a given administration of a CRT, particularly before or im-

mediately after instruction, it is even plausible (and quite.accept---

Ible) for,the set of scores for one of,these masterygreups to bp

empty or very nearly so, producing Small variance and hence distorted

estimates'Of retiabilityby traditional means (Stanley, 1971). Much

has been made of this point in the literature. (e.g., Popham 6 Husek,_

1969). Jhus the need arises for a new definition of'CRT reliability,

-se-that a test's reliability estiiate is not adversely affected by,a

score distribution with small variance. It-will also .beceme evident,

in the next few sections that there are 'additional difficulties in

applying a traditional reliability estimate to a CR1.4

25



13

Test Spesifications and Item Selection

Although 6 detai1ed distussion.oethe mechanics of'test specifics-

tlonS and item.selection is not within the scope of this report, cer-

tain facets Of tUs practicaL topic shoi.A be mentioned.

_In the constructionof traditional tests, the domain of,the tpst

-

is-often.defined'in'relativelY IooSe termS

or reading_comuthension..oi--mathematical vtitude. 'First aite-st

,. ,

blueprint is prepared indica;.ing in'broad-but/t4a2tha4itOcesieS'in-C-7-
. r

topics to be coVered: Then items XIV selected; if they , ,the te;tn

.;blueprin 7. and if thel fa1 n the pOrview of the sUbject matter,

n-
they. are fair game for_inclusn n the initial.versiOn the.te=..

whether_they are included in tht final- VersionndepemdS.on:performance

on them irc,the test tryouOland vhethar'tht:itets'taken as &*bole
.

.

still fit the bluilprint). Decisionsiv,rding atOtem's suitabiliwA

for the final version art usually made in-terms of'its difficultyand

either the item-test correlation (Cavi 1952) or an. analogous $ta-

tistic (e g., Baker, 1965).

A CRT, on-the othf hand, has i_decidedly narrower focus, de-

lineated by the behaviorai.objective, and thus the items4dmissible

for inclitn in a test tryout must meet far more restricttl speci-

fications. Some writers have claimed that -traditional methods of.

Atm selection are therefore inappropriate and have offered alter-

native methods based on from rIne to three * administrations

(Brennan., I97a; Brennan 6 Stolurow, 1971; Cox 6 Vargas, 1966;

Darlington 6Bishop, 19661 Ivens, 1970; Kosecoff 6 Klein, 1974;

Millman, 1974; Popham, -1971;,Popham Husek, 1969; Wedman, 1973),
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DefifiltiVe answers to the questiOa'of gait best to choose items for

CRTs.ere still being sought, but the work of these'authors implies

that traditienal methods probably are-pot the.sollion.

The Nnthematical Model and &TOTS of-Nnasurenent

La classical test theory, the usual mathematical model defines

au exeminee's observed score on g test as comprisil two components: .

true score and error. This model is usually expressed by an equition

equivalent to Xp * * Ep, where p is the suhLript for persons.

Here E is the error of measurement', the amount by t4,..ch a person's

Obtained score (X0) differs from his true ,score (Tp), which la turn

is the score that would have been pinained with a (purely theoretical)

per/net measuring instrument or'Wmuld have,been derived from an in-

finite number'oradministrations of the test Or parallel uersions of

it. This kind of model has,been thoroughly discussed in the livers-
.

ture (e.g., Lord 6.Novick, 1968) and will not be detailed here.
;

It is important to note that severaIasSumptions are associated

with this mathematical model ami: hence with-it's derived results. Three

of these assumptions (Lord "!, Novick, 1968, p. 56) are basic to the-

definition of classical reliability and are/mentioned here, since the,'

are ttcrutinized later. These assumptiens are that (1) true score and

error have zero covariance, (2) the expected vIlue of error over per-
.,

sons is zero, and (3) errors on parallel measurements have zero co-

, variance.

In classical theory, the basic quention-asked is, What is the

examinee's true score? True score is considered a continuous variable

.and is expressed on a scale that is usually consiaered.to be interval,

2 7
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0
if not ratio. Observed seo\ile, expressed on the same scale, is usually

lete-
....1 .

a polytomous ratper than a continuolkvariab , but only because of

the nature and limits of the measuring instrument,,which ordinarily

produces scores with integral valuet. Hence erpor, like true Score,

is continuous; in absolute value, it is expressed on a scale that is

ratio. IO

This continuous true-score model serves nicely wiien.the purpose

of the test is to determine as.precisely as pob.ible what one's true.

score is and .o report that estimated true score on a polytomotis,scale.

But that is not the fundamental purpose of a CRT as defined in thii

paper. Rather, the basic question.asked by a CRT is, "Is the examinee''S

true score great enough to allow him to be placed in the 'mastery,' ,

classification?" Although the continuous true score is used as

step in answering this question, the final answer, or decision,

is dichotomous and is reported on a scale that is ordinal but not

interval.

These facts suggest an altornative modelone of dichotomous

true and observed scores, with score in this sense aning decision.

)7
...

Th is model has been labeled Platonic (54tcliffe, 1 5) and is well

summarized by bord and Novick (1968, pp. 39-44). Although the egua-
/-

tion X * T t is unchanged elsewhere this model differs markedly

froi the cranslcal model presented above. First, true Score and ob-

served score, being dichotomous variables, are expressed not on an

terval scale but .on an ordinal scele, as is error, which is a tri-

chotoeous 7ariable (or dichotomous in absolute value). Second, Klein

and Cleary (1967) have shown, among other things, that with the Pla-

tonic true-score model, the coVariance of true and_error scores is

29
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generally negative and-is z
°
only wider extraordinary citcumstancesIt.,

tr
They also have shown thai t "expected Value of Platonic error scores

.is.not likely.to be zero, and that errors on parallel testa cannot be

ixpected to hive zero covariance. All three of these findings violate'

the assumptions'upon which the derivation, of classiCal test reliability

rests. (Since covariance is a statistic designed for iiterval data,

one could qUestion'why ii been computed for imodel Whose data are

measured on an ordinal scale. One could similarly question the compu-

tation of a variance or a correlation and' thus the applicability of a

classical reliability coefficient for dichOtomenpr data.) ,
;

The meaning of measurement error is also different for,the two

models. In classical theory, it is the'examinee's true Store and.

hence the size ef the error present in the obtained soore are the

psychometrician's subject's of intetest. TheAbtain score, if th

is error, can vary frma the true score by a-Ict Or by a little, and

it makes4a difference te tl'Ipsifchomottician which of.these cases"

holds. In the Platonic model, however, there is only,one kind of

meaiureient.errer--incorrect categorization: ,Thire eat or
,

small associated with it; the psychometrician'is conderned with the

existent*, mot the size, of error. This view has been'stated succinctly

5 4,,

by'Gronbaa and Gleser (1965) as'follows: "a test designed to be
,

maximally efficient for,a particular decision will freely allow errors

to enter If they are irrelevant to that decision (p. 137) ." Others

(Hambleton f. Novick, 1973) have recognized, even without accepting

the Platollic model, that there is only one kind of measurement error

for a CRT.

29



TAB 1 400

ERRORS OF MEASUREMENT JDER TWO'TRUE-SCORE MODELS

17

Student

. -Classical

X

Theory

T. E
.

,

Platonic

X

Theory

T E

. 15. 9.4 5.6 o

Is . 20.0 -4.0 .
1 1 1

sC , 5 -4:5 0 , -1--

16, 10.8 5.2 . 1 ,

16.2

r

-1.2 0 1

F 16 15.2 .8 a

Mbreover, classical and Platonic measurement error need not cor-

respond for a given set of data. Consider the hypothetical data _a

Table 1 for a 20-aii.:M CRT with a mastery criterion of 80%,

yielding 16fas the cutoff score. Of students A through F, all- of lohoi

have an obtained score of IS or 16, students A, 8, C, and 0 have the

largest classical measurement error and students C, 0, E, and F have the-

_

largest (only) Platonic measurement erTor. Likewise, the student* with

the smallest classical measurement error are not necessarily those wlth

a Platonic measurement error of O.

The table'shows that, given the distributions-of observed and true

scores under the two models, there need not be a high correlation.be-

tween cldssical and Platonic measurement error,,particularly when ob-'



served scores are very near the cutoff score. These data, of course,

have been chosen tolliustrate a point, and ai observed 'scores begin to

move away from the cutoff, the correlation between the twe-kinds of

measurement error will increase. However,- if the stores move farther

from the cutoff, the correlatilwill decrease. In any case, classical

and !ilatonic measurement errors are different things, and the theory

developed for one kind of error need-not apply to the other. V6--NI

This &act raises the-question of'which theoretical model is appro-

priate, or preferable, for CliTs.- There are arguients for both models.

those suppotting the classical model argue that even if a CRT is designed

to make i dichotomous decision, its initial results.(observed score) are

reported on a polytomous scale. ,It is also felt that a dichotomous de-
.

cision "often hides tiie true level of student perforiance

Kosecoff, 1973, p.9)," Supporters of this model believe that it is

just not, realistic to claim that a person's true score on a behavioral

objer,tive is an all-or-nothing entity.

Primary among the arguments supporting the Platonic model is the

3.

_belief that when a test is used to make a dichot decision--"go.on"

-or "don't go on" to the next behavieratObjeetive--the iie of-the ob.-

tained score is immaterial excikt as it results in a tory or non-

mastery classification. It is felt that this Alchotomoub score is the

only one that need be reported;-further subdivisions of the obtained

Score have no practical value. "Such gradations in reporting [scores]

are only a function of the alternative courses of action available ,to

the.individual after the measurements have been made tPopham & Huiek,

1969, p.8)." 31
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It appears that one must choose between the model that is con-sis-

.

tent with continuous true and error scores-and-the model that incor-.

Tarates dichotomous decision and error'scores. The need ose

bevaen these twa Models can be avOided (and, it is,claimed-here, s )ould

be avoided) by broadening one's view of the Meaning of true and observed

,scores. The contention here is thmt classical true-score theory is

,
appropriate when the basic purpese Of a tesr is to estimate ihe.true

score. But when the test has a different basic purpose; such'as to de-
.

termine a dichotomous classification, then the examinee has not one

true score but two, existtng skmultaneoUsly: a true score that is in-

volVed with the primal ineasuring procesi and another that has to do'

with the decision or basic ques1 to be answered concerning the:in-

dividual and thus with the practical.results of that measurement. It

can even be saia that .thee are as many different sets ot "true scores"
. ,

as th re.are alternate score.reporting.schemes.

e assertion in this report.is that a'CRT as defined here,in-

volves two different facets Of true score-13ositional and operational.

The first'facet deals with the position of one'S test score in relation

to the test scores of others; the,second facet deals with the opera-

,

tional effects of the test score on the examinee alone. Classical NRT

theory concerna'Jtself.only with the forter and for good reason. When:

,
the end reiult of the testing process is to associate the examinee with

a number (when the test's basic'question is what his true score is),

then the,Positional and-operational'faCts are indistinguishable. But

when the end result of the testing proc4ss is to make dichotomous

decisg cwhen the basic question is éether ihe examinee merits a cer-

tain classification) and'the outcome of that decision has an immediate



and differentiating effect on the student's next educational activity,

then the differencelletween thest.positional and operational facets
. .

emerges.

1.1115The dual true-score- 3d 17for CRTs is summarized in Table 2
,"7.41.

TABLE 2

SCHENA .FOROUAL TRUE-SCORE PKIIDEL

Facet Basic Question to be Answered
,

&tuition Scalli :1

ftsitional What-is the truimcore?
.,,,.

X 1! 4..E 'Continuous

Operational

.

la,the true score high enough.

to merit "mastere.classifi-
cation?.

,.

D im C.4.41' Dichotomous

*
D observed classification (Decision)* C

M Hitclasaification (error)

,
, .

true Classifications

Neanin$ of Reliability

'ClAssiial reliabilitk can be defined as the squared correlation

between observed and true scores (Lord 4 Novick, 1964, p. 61). This

statistre is equal to the ratio of true-score variance to observed-

score variance.if the conditions noted at the beginning of the pre-

vious section are assumed. The classical true-score model, presented

here as the positional facet of the dual true-score model, is consis-

teni.with thcise assumptions and thereforew th these definitions of
,

reliability. However, the Platonic aodbZ or operational facet of a

/
CRT, is not nsistent.with those assumpticins (Klein 4 Cleary, 1967),

and hence he classital notion of reliability cannot apply whenever the

Aph,

33. \
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reliability of a test has to do with the consistency of decision making,

i.e., whenever the basic Measurement question is to be answered di--

chotomously.

What then should be the meaning of the operational reliability of

a OT? For phe positional facet, a test is_reliable insofar as an
Ape

examinee receives the same relative ranking on two sets of data (and

in the case of parallel teits, the-same score); for the operational

facet, a CRT should be reliable insofar as an examinee receives the same

classification on both sets of data. Put differently positional reli-

ability is concerned with the accuracy of assignibg (polytomous) num-

bers to examinees; operatienal reliability (henceforth Called CRT reli-

ability) must necessarily be concerned with the accuracy of placement

in one of two Categories.

Consider the theoretiCal fourfold contingency table given in

Table 3, ClasSical reliability is defined in terms-of'a mathematical

relationship 8etween true and observed scores. It would be natural

to begin to investigate CRT reliability in the same terms. With

reference taTable 3, (me approach would be to'Constlier the squared

correlation between true and observed classifications; n2(C,D). Since

the variables are dichotomous, this would imply the use of the scoared

TABLE 3

A FOURFOLD TABLE FOR TRUE AND OBSERVED CLASSIFICAMONS

True

Classification
(C)

,Obame'ved Classification (D) .
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, -

phi coefficient if the dichotomy is a.true one. However, the dual true-

,

%cilre model presented prbvibusly and the arbitrariness of the mastery

cutoff score of a CRT suggest-that true classificatibn is'an artificial

.

rather than a real dichotomy; and hence that,the p14,4ffieient.is

not the appropriate statistic. (Nonetheless, the phi coefficient is

calculated from a different fourfold table in the investigation pre-
.

sented in Chipters V and 14.)

If the dichotOmY ii artificial, then the tetracheric cOrrelation

coefficient is the appropriate statistic and would_yield a fOrmulaiV.

--

a, b, c, and d. (See Tabre 3). The-objection to fie cosine-pi-estimate

of this statistic-is %at if either a or d is 0, th n the correlation iS

71 even though it.may be-near 1 when's oi d is merely Close to 0.

(Nonetheless, the cosine-pi estimite of the4trachoric correlation

coefficient is also calculated from a differentlurfold table in the'

study presented later.)

Another approzA to the mathematical.relationship between C and

p is the variance-ratio approach. As pointed out earlier, one 'cannot

assume zero covariance between true classification and misclassifica-

tion (error). When this assumption is rejected, a true-classification

variance/obtained-c lassific4p n variance ratio of

b)(c + d) w(1 - a)

(a + c)(b + ay p1 - p)

is obtained., where r is the true proportion of mastery classification and,

p is the attained proportion of .7=.1t.ftry clasOlications. But this sta-

tistic is unsatisfactory foc at least two reasons. First, if a = d or

h = c, then r = 1 no Matter what ;Yumbers ate in the other two cells;

35
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second, 4sfs:,...! < r < p or p <.n < .5, r .'which is clearly nOt accept-

able. 4

So it appears that for' the true (C) an observed (D) classifica-

tions in Table.3, neither the correlation approach nor.the ratio of

variances approach yields a satisfactory\coefficient. Thus there must

be some other mathematical relationship 'be44eert C and D that affords a

meaningful CRT reliabilityindex. One such relationship, which.follows

directly'from the notion of CRT reliabijity as'cbnsistency of classifi-

cation, is the proportfon ef classifications that are correct classifi-

cations,
a 4. d : Since a and d are unknown, it would seem that a

meaningful 'CRT reliability coefficient would be a statistic ihat esti-

mates, or perhaps is a lower bound for, this quantity. Furthermore,

any'such CRT reliabilitycoefficient should have, so far as possible,

the following characteristics:

1. It should be associated with the notion of consistency or

accuracy of (dichotomous) classification; hence the more the

Scores depart from the cutoff point, the higher tle CRT re-

liability i\dex should be, since such a departure most clearly

\,.

represents a si1:paration between the mastery and aonmastery

categories.

_-

It should be, at leav in some respects, xariance-free, so-

that it will not vanish when total score.variance approaches 0.

3, It should avoid any reliance on classicl measurement error

concepts, since they are not 'necessarily relevant to a test

whose purpose is lo make a dichotomous decision.
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It should be a function of the criterion -level, since the

criterion level is an integTal.part of the CRT as defined in

this report:

S. it should if possible have a familiar range of values, most

probably [OM, for ease of interpretation.

A coefficient that incorporates these features will ba presented

in the ilcxt chapter.



CHAPTER III

COEFFICIENT BETA: THE MEAN SPLIT-HALF COEFFICIENT OF AGMEMENT

History and Rationale

Some decades ago, the single-administration reliability, or inte

nal consistency, of a test was estimated by calculating-the Pearson

product-moment Correlation between'two halves of a test, adjusted by the'

SPearman-Brown prophecy formula. Later, other split-half foriulas were

introduced (Flanagan, !237; Rix.lon, 1939). But there were objections to

the split-half.method:, since th\particular test split chosen (usuarly

odd-numbered itemS versus oven-numbered items) was not neCessarily

rep:eltitive, and kmisleading reliabi/ity estimate could result.

Other methods were proposed and proved Useful (Hoyt, 1941; Kuder &

Richardso'n, 1937). Then Cronbach (1951) showed that hii coefficient alpha

was not only a generalization of the Kuder-Richardson formula 20 and

equal to Hoyt's internal consistency measure-, but was also.equal to the

mean of all possible split-halr reliability coefficients (but not equal

tothe mean of all possible stepped-up split-half correlation coeffi-

.

cients, see Novick 6 Lewis, 1967). Thus was established the basis for

estimating internal consistency for a test designed-to rank-order the
:

examinees.

However, when tlOpurpose of a test is to dichotomize J,.-,ner than

rank-order, the procedure to follow is not so glear=tut "(Popham &

Husek, 1969). 5leveral authors (Berger, 1970; Carver,..1970; Goodman &

Kruskal, 1954; Hambleton & Novick, 1973; MirlIman,'1974) have suggested

/
/

25
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r

using a simple coefficient for such test.reliability, but only in the

dual-admnistration sense. This index, givan various names and symbolic

labels by various authors, will here be called the coefficient of agree-

ment and, for the sake of simplicity,,labeled P. According to Goodman

and Kruskal (1959), this measure of association was reported as early

as 1884, although it was not used fo 7:. test reliability. The suggestsd

index i simpl/ the proportion of individuals who are classified;the

same way (mastery/mastery or nonmastery/nonmastery) by two.sets of data

--test-retest or parallel forms. The coefficient has not been adapted

to the split-half single-administration case, perhaps for the same reasons

as those cited previoully for the classical split-half coefficients.

However, Cronbach's (1951) finding suggests a lead: one can con-

sider an index that would be equal to the mean,of all possible split-

half coefficients-of agreement. To extend the analogue 'with Cronbach's

coefficient alpha, this index will be liholed coefficient beta'(3).

Definitions

Let

Qi N = the number of people taking the test

n = the number of items in the test 1

X the pth person's total score, p . I, ..., N
P

c the criterion level, expressed as a fraction (0 < c < I)

cn --
k . the smallest integer > , and hence the minimum number

f items in a half-test2 that must be answered correctly

2 For now, only tests with an even number of-items are considered.

Tests with an odd number of items are dealt with later in the chapter.

3 9
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to recerve a "mastery" classification on that half-test

X
1p'

X2g. v the gth person's scores for the two half-tests,

and hence X .,- m X
IP 2P P

There are
(
n/2
n

v possible test splits for an n-item test if

one considers each half to he Labeled for a two-item test t e

split 1 / 2 is different from the split 2 /.I.) For each pair of

halves, construct a fourfold mastery (1) / nonmastery (-) contingency t b

and define

A + D
P

Then is the mean Of P taken over all possible sglit-halves ();

=

S=1

/V*. D
s1

But As Ds is the numb-er of consistent classifications (among the

persons) on test split s, and hence can be written

A
s

S. 6

1)1
PS

4 0 .
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where 6 or 0 as the pth perTen's classifications are consistent
Ps

or inconsisttnt, respectively, on test spiit s. Thus a can be wrftten

1 11 (pil 611

N

113

Thus 8 is also the mean (over persons) proportion (over test splits) of

consistent-classifications.

Analysis of the Coefficient

For.any given test, the set of posible scores for an individual

is (0, 1, ..., n). For 6-mutational purposes this is partitioned into

five sublets, one or more of which say be emptY.for a particular n

and k:

S
1
0 (0,

S2 * (k, 2k-2)

S3 0 (2k-1)

$4 w (2k, .... k-1).2

Ss (i+ k, n).

(Note that k 1 Implies S2 0 ) and k it $ 0 (

Then consider scores in eacp of the five subsets:
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1. for X c S
'

X' < kr thus mastery on a half-test -Cannot be

obtained no matter how the test is split, since both X
lp

and X musi

necessarily be less than k. Hence all persolls with X
p

c 5
1
will contribute

to D, as defined,in the contingency sable above, for all v test splits.

2. For X c S
2'

'k < 1 < 2k-2. Here some splits will contribute

to
P P

B or C (for example, Xp m 1(4,1; Xip m k, X2p m 1) and some will con-

tribute to D (for example) X m 2k-2; X a k-V. The obvious ques=
IP 2P

tion "Which splits?" becomes a problem of comeinatorics. Since Only

A and .0 enter into Equation 1, one need not be concerned with contri-

L-onsto B and C. (These oontributions will be equally divided among

b amd C because of tne symmetry implied_in "labeling" the halves of

the test.)

The question then reduces to "Per A score.of Xp c S2,,how many 0-

categorizations will result?" A.D-categorization will happen -then

neither half-test is mastered and thus both X X < k-1.
1p! 2p

4
Define it and X

2p
as vectors( of O's and indicating in-

lp

correct and correct responses, respectively,to itemi on each half-test,

If one vector has k-1 l's, the other.has Xp (k-1) l's. Moreover,

since X t S
2

and hence X < 2k-2, it follows that X - ck-1).< k-1.
P P

. . .

Thus one is interested only in those pairs of vectors in which the number

of l's in each is between these two limits, namely X -(k-I) < both
, P

X1p, X2p j, k-1. Moreover, since in the total.score there are Xp l's,

there are n-1 O's. In the half-score, if there are j l's, there are

l r . j Irs. Thus, for Xp c S
2
, we can pick pairs of vectors that will

- X
yield D-cate

k1 -

,-4

iorizations in
I 2-

ways,

jmX-(k-1) j

4 2



3. For Xp c 53, Xp 2k4 . Thus the most "balanced" split will

yield k I's in cis vector and k-1 l's -in'the other, indicating mas-

tery in thA first case

Tnd

nonmastery in the second. Other], less."bal-

\moinced" splits will yield re extreme allotations of l's resulting

in the same mastery/n=1"story classifications. Thus, for all'
'

i_ e 53,
l

no sp t cbntributes to A or, D.

. For Xp $4, 2k < )ro < 3:4 k-I. This case is similar to that

. Some splits will contribute to or C (far example, Xp 2k;

X
lp

k+1, X,_ k-1) and some will contribute to A (for example,
zp

Xp 2k; = X2p k). knee Xp 2k, it,cannot he that both Xlp,

< k, and hence there are no contributions to D. Again we ignore
cp

the contributions to 11 and C, but should focus attention instead on

the contributions to A.

In this case, one-needs to count those vectors where.hoth half-

tests are,mastered, i.e., where,both X11, X2p > k. eirgrehalf-test

vector contains k l's.the other,contains Xp-k I's. tut .Xve 54 ii-

plies X 2k, which implies k < X -k. lbw Gan is interested onlyp

in those half-test vectors such that k <both he X2p:4:Xlp -k.- ay using

reasoning identical to that-for 52, the totaintaiber,of splits that

will contribute to .A for Xp e 54 is
sk

-Li-.

S. For Xpc $s Xp > 8/2 *A. This sais that half.the items plus

at leXst another k items** answered ctirroctlyssOLthns both Xip,

X t. no matter how the tilt is split. Nene* all v splits con-
2P

tribute to A.

43
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The coefficient

The above analysis yields an equation for a, the mean aplit-half

if
JD-

coefficient of agreement. For X in each of the five subsets, define

the following functions'ei(X), i n 1, ..4, S:

1. for 0 4'X 4 k-I 41") if I

2. k < X < 2k-2
n

42(X) nJ.X1-(k-1)
2

X . 2k - 1.. 3(X) aQ

X-k

4. 2k X < n/2 k-1 04(X)

S. n/2 4. k < X < n 5(X)

Here, 1(X) is the proportion of spIxts that contribute to A or D

for a given score X.
-

Then Equation 1 can be rewritten

1
13 i,-1

(2)

where the index i depends on the value of Xp. Hence 0. has.range

(OM; it is 0 when allX cS and 1. when allX ciUS
p .1 S.

Although Equation 2 iums up the analysis rather simply, it is in-

efficient-for computing purposes. A more efficient method involves gener-

ating a frequency distribution of total scores.and computing Oi(X) nly

once for each possible value. In general, let.fx be the frequency of

n
score xe x 0, ...n, 1 f N5 ,IThen

X.10 4 &-

4 4
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n

N x
xmo

vhereagain the index i depen6 or th' yalue of X.

Nbre explicitly, since for sottl '.'131Jes of X- .i(X) * 0 or 1,

r

k-I 2k-2',
/ f 1 fx #2(X)

X+12k
fx 44m. * xkx.0 x kik

131

*

k:1 21c-2 n

f, -+ f, #, (X-[k-1
1- ,

k-l) + fx #x(k, X-k) + 1 c
" X*0 . Xak leak fl

where (iX) 7 x),

.(a,b) ja

Adjustment for odd n

For an odd number of items a test split is defined as resulting

when one item is deleted and the remaining itema* are.divided into two

n-I
sets, each containing --2-! items. In this case, k is the smallest

integer greater than or equai to c(3-1) The item to be deleted

45



.may be chostik;in., n ways, each yielding a distinct:setof

to besplit., licence there are n ( (1) possibli4p/it halvet:I

iCone again cpCsiders each half to'.belaboleC

For person lp, with total score XpOheresponte vector Xi

taiRs X_ l's and (n-XJ Ws.: ThUS,r for persOn;p.:Iii:of the- n..,

possible choices oUthe itemto be'dCleted,will rosigi.:in4,aot tIfii...k,_ _ , . -. , .

.items containing (Xi,71) .11s :and n40 ChoiCes Will-reSult in.'a set

containinig , X0 711s. ThUs,the,contributien P0.--43 int persoi
1...ILH..-,.:

p, rather thin 40i(Xp Will be 1 14,711. 47:,,i(Xp and

n-1 items

hence, taking the

)4

Cr persons,

[XPiP
PR

n-Xp) (Xit) .

As before, it is.necessary to cdmpute i(() only once for each pos-

ic

sible v ue of X.

Al o as before, the Computation is more efficient if we utifize

the.frequency distributign'of total scores. Recall that for a score

of X on n (odd) items, for n-X choices of the item to be deleted

the'tbtal score on n-1 iteMs will remiin at Xp- and for Xp choices the,

,
total score on n-I items will;be redeieed tO Xp .-I. The effect:1i that

of a transformation, 4 on the sot of total scores. In syibols,

4 6



n
X ----

-X
+ X in ---- of.the cases;

-X
X

X-1 in of the caseS and hence
n

X+1
X+1.---a-, X in of the.cases.

, n

Thus a total score of X is arrived at with freguency.k.

gx
nn -X X+1

that
x ft -

e
x41- (Note

n-ngn
n

n+1
n

.

Since f

an4 therefore
X-0.

Furthermore it is-easily shown (see Appendix A) that / t = / f.)
X*0 ^ X=0 ^

Thus taking the mean over the transformed frequency distribution of

total scores coefficient beta is

s.
Xsio

4
[I

1 Tin -fx X:1 fx+1 -4i(X)*
11-1 X

1=0.

where once agaih the index i depends on the value of X. Thus, in

practice the computation of 0 is identical for the.cases of eVen and

,Idd n, except that in the latter case one first performs an additional

siap, replacing f by" (n-X)fx'+ (X-.°)fx+1 for X .. 0, 1, ..., n-1

x . n . = ,, -

and tken using n-1 in place. of _n in the computations of k and

$1 (X) .

4i(X)



35-

Technical Characteristics of Coefficient 'Beta

Although coefficient beta is defined solely on the baSis of .

fourfold contingency tables, itscomputational formula (Equation 3)

is a function of the score distribution as well as of the.number of

items and the criterion level. Since'these latter two parameters are

(or should be) known before a test is administer.A, the value of

for a particular tryout results from the frequency distribution of

total scores-. ,The same is true of values of Harris's p
2

and the

criterion-referenced index of separation (S ), which are discussed in the

2
next chapter.. Like Sc but unlike pc, 8 is the mean of its additive

parts. That is, given 13' for a set of scores of. N-I examinees, if the

score of an Nth examinee ;iere to be added to the set, a new 8 could

be calculated from

1
0 = 174 [(N-1) 0' Oi(XN)i,

since from Equation 2,
N-1

(N-1) of oi(xp).
p=1

A similar argument holds for the addition of a set of scores.

Since this additivity is a property of coefficient beta, one can

inYestigate the relatiye contribution of the' pth person's score to the

value of the coefficient, given the number of items and the criterion

level, mprely be determining Oi(Xp).. For illustration, Figure 1 show-s

these relative contributions for a 20-item test with criterion levels of

70% and 80%. Additional graphs, covering a range of numbers of items

and criterion Ievels,can be found in AppendiX B.
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It is apparent from Figure 1 (as well as from the analysis of the

coefficient presented eailier.in this ch.apter) that as scores approach

the Fnteer immediately below the cutoff, they contribute successively

less to the value of 0; at the'score 2k-1 (with k is defined earlier),

the contribution is zero. This is to be expected since the score .1k71

composes the subset 53 as defined earlier 'and f3(X) O.

Figure,1 might be misleading in the sensethat, in these two

examples, the point 2k-1 is one lelythan cn, the product of.the cri-

terion level and the number of items,. and hence is one less than the

,

test's cutoff score. One might therefore ask why 2k-I, and not 2k, is,

the score with a zero contribution to coefficient beta. It should be

pointed out, however, that this relation does not always hold. On a

12-item test with criterion level of 75%, forexample, the points 2k-1

and en are boih 9. In general, if cn- is an odd integer, 2k-1 = en;

if cn is even, 2k-1 = cn-1. If cn is not an integer, 2k-1 can 1,4a

greater than cu (e.g. if n = 16 and c = 80%, then cn = 12.8 -and

2k-I = 13.).

falls somew e inthe half-Open interval [cn-1, cn+1).

In general, depending on the values of c and n, 2k-1

Evev though 2k might at first glance seem to be a more appro-

priate c ndidate than 2k-1 for the score with zero contribution to coef-

ficient beta, 2k falls in the interval [cn, cn+2), andthe6fore, in a

mathemat expectation sense, is not as good an approximation to cn

as 2k-1.

5 0



Discussion

T-t)AJthough attention in thi esertation has been given to criteri6-

referenced tests, it should be pointed out that coefficient beta is ap-

plicable whenever reliability is viewed as coniistency of classification

or consistency of decision-making ba d on scores from a measuiing instru-

ment, provided that the claSsification decision is based on some sort of

cutoff point expressib c as a percemt of items responded to in a certain

manner.

Second, and consistent with the notion of acmcacy of categoriza-

tion from the results of a limited number of items, it should be noted

that coefficient beta increases as the number.of items on a test in-

creases, as shOwn in a later chapter. -The degree to which this increase

follows the Spearman-Brawn prophecy formula is discussed in Chapter

.

4
-

Third, one should also note that if examinees-respond randomly to

the items oh a test, the resulting coefficient beta is not zero, as

ydght be expected with a traditional reiiabiliO4) measure. In fact, de-

pending on the values of c, n, and N and on the number,of options per
.,

item (assuming a multiple-choice test), coefficient beta would probably "

.
e.

take On a rather high value,:possibly even l. From the itandpoini of

.\ traditional test theory, this is disconcerting. Yet it is understandable,

.

_

romtheMstmlpoint,ifonerecallsthatcoefficieiltbetaisdesigned_
_

to measure the operatioyai reliability of a CRT: if all examinees respond

randomly to a test, tt is a clear indication that they are about as far

from mastery as is.possible. The high value of coefficient beta would

indicate that the test is classifying most Of them as such, and reliably

51
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so, Nonetheless, a test constructor might want additional test tryout in-

formaion before passing judgment on the instrument's reliability, as ih

the construction of an NRT.

Fourth, it is appropriate to see how coefficient beta vitasures up to

the criteria for a CRT relicbily coefficient that were set forth at the

ehi of tht last chapter.

1. Coefficient beta is based on the notion of accurate placement in

categories. It turns out that beta does attain its highest values when

the test scores depart from the cutoff; however, these scores need not be

at the extremes for beta to take on its highest values. For example, on

a 20-item test with a criterion level of 70% (yielding a cutoff.score

of 14), B = 1 if all scores are in (0, ..%051 U (17, ...,20). As the

total scores pile Up near the cutoff, the value of 6 decreases.

2. Coefficient beta is variance-free in the respect deemed most impor-
.

tant by cr tics of a variance-dependent CRT reliabilitY coefficient: it

can take on any value from 0 to I even though the tOtal score variances.

is 0, depending on the relative values af the cutoff score and the (single-

meMbered) set of test scores. The coefficient is, however, variance-de-

pendent in other respects. As the variance approaches its maximum, B ap-

proaches 1. This relation is reassuring since maximum variance on an n-

item test occurs only when scores are equally divided 5etween 0 and n, which

scores indicate the clearest possible separation of examinees into two class-

ifications. Furthermore, if B = 0, then the variance is zero.. These rela-

tions are easily summarized: if the variance is high, coefficient beta is

high; if the variance is low, there is no restriction (within its range)

on coefficient beta:

. 5 2
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3. Coefficiemi beta is not based on traditional meiSurement error

concepts. Since it is built around the theory of dichotomous categoriza-

tions and Platonic true scores, the Platonic notion of misclassification

is the only measurement error involved.

4. Coefficient beta-is an algebraic function of the criterion

level (and other parameters).

S. Coefficient beta has a range of J0,13, although values near 0

occur only under highly improbable conditions.

Coefficient beta and trichotomous data

The authors of some commercial instructional programs, such as

Developing Mathematical Processes (DMP Re;ource Manual, Topics 1-40,

1974), contend that,mastery/nonmastery alone is not a sufficient categor-

ization of test results, and that more.valuable information and more ap-
.

propriate teacher options become available if the iist result data are

trichotomized into classifications such as "mastery," "Progress,"

and "nonmastery." Coefficient beta, as outlined ab!;ve, it clearly not

sensitive to suchma trichotomization scheme.

The trichotomous coefficient of agreement in such a situation would

be equal to

A+E+I
a

N

based on the following table, in which +, *, and - Stand for the three

categorizations:

53
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A coefficient analogous to B and applicable to this situation sh uld

v A Es .* I
s

be equal to 1. 1 s , or t-he cean split-half tricho-

v sml*

tomous coefficient of,agreement.

Such a Coefficient can be derived, although the derivation is not

presented here. The analysis of this coefficient, althei:gh more complex

in places, is essentially parallel to th 4.. analysis of-coefficient beta

presented earlier. Instead of partitioning the set (0, ...,n) into five

one partitions if into seven. Recall that for coefficient. beta,

k is the minimum number of items on a half-test that must' be answered

correctly for a .masterY_ classification. lf, for trichotomited data, one

in addition lets 2. be the minimum number of itemS on the half-test that

must be answered correctly for the middle classification, then ,the seven

subsets of (0,

i 1, ....

n ),

7, are

together with their corresponJinvvalues of

liCX) I

L-1)

S2 . (t, 2t-2)
0
2
(X)

jx2.(X.)'a..(-l)
Y. 1.-

:XV()
7

53 . (2/-11 03(x) . 0

51
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* t2L,
)/

... 2k-2) , 44(X) *

U2

(O

S. * f2k-1) s(X)

s6 .
k-t) (1:1t4 121 XJ)1(i)

j 2

where 0 < L < k
van,

max(t, X-fk-11),

and u * min(k-1, X-t).

Nott..that.
-2

4,7 (X) * 1

n4 k implies S6 f 1.
'

As before, the computation is made Mine efficient by utilizing the

frequency distribution of total scores, and hence a formuli foT 03, the

mean split-half trichotomous coefficient of agreement, is

1 r
0 L f (X).

3

Since 04(X) s 0 or 1 in four of the seven cases, this can be more

ext>icit/y rewritten as

I 1

kr0 4

2f0.2
11 f

Xt x

2k-2
tt-11. t- ) * y f

X*21 4 \Z

344-1
1 f # (k, X-k)

Xm2k

5 5
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where

IX\ - X\

x(atb) a jta

43

and u
1

And u
2

are as above.

The Aichotomous coefficient requires the same adjustments for

an odd number of items -as does the dichotomous coefficient,,except that

n-I is used in calculating ,t as well as k and

Note that if the test is multiple choice, the lower of the two

criterion levels should not he set near the-percent of items that should

be answerecicorrectly dueJo chance, as-this would result in unreliable

,
,iassification decisions between the lower two tategories. In this case,

)f :,lere are a significant number of nonmasters in the population, the

valJe of would tend to be rather low, as would be expected.
-3



CHAPTER IV

07;iN SINGLE-ADMINITRATI N COEFFICIENTS,.

Several authors have recently devised or risurrected indices deal-

ing either 'directly or peripherally with CRT reliability. Some indices

are based on one administrati-n of a. test (Harris, I972a; Livingston,

1972a; 'marshall, 1973), some on two administrations (Berger, 1970; Carver,

:970; Hambleton & Novick, 1973; Iversk 1970; Millmari, 1974; Ozenne; 1971;

Swaminathan, Hambleton, & Algina, 1974), and Some ori three administra-

tions'(Brennan, 1974). This report iS concerned solely with single-

idministration

The two single-administratiOn coefficients-that have received the

2 2
"Widest attendtion a re kTx (Livingston, 1972a) and uc (iarris, 1972a). A

third measuTe is the index of separation of test Acores (Marshall,.1973).

,

These and three other coefficients art presented in this chapter. Since .thi

relation of each of these indices TO coefficient beta is detailed in a

subsequent chapter,'their, rationale is discussed briefly here, as is-

their degree of adherence to the criteria given at the close of Chapter II.

Livingston's Criterion-Referenced Reliability Coefficient

Livingston's coefficient, k
2

is widely known and the most dis-

cussed coefficient in the recent literature. It stemsfrom an interest-

ing application of classical reliability theory, and departs therefrom

only in the notion of mean square dPviation. Instead of using 'ariance
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as the mean square deviation from the mean of .scoresv Livingston stibsti-

tutes for it a quantity equal to the mean square deviation from the cut-
4

off point. The assumption is that the deviation of a person's score from

the Cutoff, not the deviation from the mean, is.of interest.in a CRT.

The rest of Livingston'i careful algebraic development parallels,that of

2
classical theory, iand the resulting k

TX
s related algebraically to

classical quantities:

v2 ra
2

'TX
a2 4.'(R-C)2.

where

r = classical internal consistency reliability

a
2 =.variance of total scores

= -mean of total scores

C = criterion cutoff point (not necessarily an integer).

As can be seen from Equation 4 (and as pointed out by Livingston),

2 2
kTx >.r, and kTx appibacnes r as I approaches C.

[4]

This coefficient has been the subject of much criticism, comment,

and rebuttal (Hambleton 4 Novidk, 1973; Harris, 1972b; Hsu, 1971; Living-

ston, 1972b, I972c; Marshall, 1973; Ozenne, 1971; Raju, 1973; Shavelson,

Biock, Ravitch, 1972). Summaries of the arguments can be

found in the refrences by Erennan -(1974), Rim (1974), and Wedman (1973),

and arc nct presented here. In this sectionr k
2

is analyzed with re-
TX

spec!. to te criteri:t for a CRT re1iabj1ity index sect forth at the end

H.



. It is not the distances of the scores'themselves,from the cri-

2
terion.cutoff that contribute to high values of kTx, but rather the

distance of the mean of scores from the cutoff, as.Equaiion 4 shoWss.

This fact is of lio consequence *hen the score distribution is unimodal
Y'

and generally smmetric, 'since under these conditions the node and mean
-

J

,

will tend to coincide. But when the distribution is bimodal, which is

desirable for a CRT, then this fact becomes important in interpreting

2
k it is particularly impo ant when the mean falls about halfway

TX' -

between the two modes. Considei the earlier exaMple of a 20-item test

,
witfi a cutoff of 14. Suppose tfie data from two samples, A and B, form

"inverted triangular" distributions with,different means,:as shown in

Figure 2. If the classical test reliability is .80,in both cases, k
2

=
,

.91 for sample A and .80 for sample B, even though sample B seeniS 'to show

, a clearer separation.between nonmasters and'mastera; since there-are

fewer scores atAr near the. cutoff: (Coefficient beta would have v es-'

of .72 and .88 for samples A and BL respectively.)

Cc*
eis14.

Figure 2. Twohypothetical score distributions.
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2
2. The coefficient k is not variance-free At is evident from

TX,

'Equation 4; it is dependent en total-score variance, 'as are claspital

coefficients, although in a differeht way.

is zerp, k 1 (see Equation 4) , unless X
TX

does not vanish when the.variance approaches zero, but initead it tends

. ThUS the CoeffiCient

towaid a unique value. When the variance approaches its maximum
.

'again approaches 1 because the traditional reliability coefficient also

2
.approaches 1 under these conditions and lc. > r. Under less extreme

1,4

2
conditions total score variance has varying effects on kTx .

3. The coefficient 4x is based on classical.erior of measurement,.

In factas Harris (1973 points out in criticizing the co*fficient,

the standard error of measurement is the same in Livingston's framewoik

as it is in the classical framework, even though the value of Livingston's

reliability coefficieht is normally higher than that of a classical

coeffic

4.
2

As Equation 4 eiows, kTx is an algebraic

terion level (and other parameters').

frnction of the cri-,

2
S. The coefficient tr has`the familiar range (0,11'under most t

conditions, although it is theoreticolly possible for it to take on nega-
,.

tive-values, when the classical internal consistency estimate is negattire

Lnd the test mean is at or very neary at the cutoff.

Harris's Index of Efficiency

iinc index of efficinncy,
2

propo4oe ti Harris (1972a) is intend-
,

ed "to examine how well the test sorts defined samples f students into

categories*and possibly to measum kts efficiency in this sense (p. 4.1".

6 0
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It has been interpreted as the squiired correlation between test score

, and a 0 / 1 dummy variable representing the nonMastery/mastery classi-

fications. Harris also points out that u2 can, be conceived of as the

ratio of true-score vaiiance to observed-score variance if true sPore is

defined for the subjects in each of the two groups as the group mean.
,

The computational formula is

11

2 0

c SS
b

+ SS
w

[5]

where the terms inApe ratio represent the between-group and within-group

suns of squares for the groups resulting from the dichotomous classifica-

tion.

Ilhe index is analyzed as follows with respect to the CRT reliability

criteria.

1. The index of efficiency has'highest values when the total score

is sharply bimodal with a mode on either side of the cutoff',

--------

but these modes.need not be fqr from the iiiiiiff:--For-illustration,_given__

the 20-item test with C = 14, p
2
= 1 if all scores arp either 0 or' 20,

c

2
which is reassuring. Sut p

c
. is also 1 if all scores are 13 or 14; a per-

,

2
fect p

c
occurs even though all mastery/nonmastery clissifications could be

reversed with a change of only one'point in each person's total score.

(COeffitient beta would have a very low value under these conditions--

less than 0.20 if the scores are more sir less evenly divided--and Liv-

2
ingstim's lcrx would be no._greater than .Sr + .5, where r is a clasi.7

cal reliability coefficient.)
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2. The indeftf efficiency is variance-dependent but in a some-

J different way than a classical coefficient is. As Equation 5 in-

dicates, p2 is.undefined when total-score variance is zero; and when
.

total-séore vaihnce is at its maximum, p2 = 1. But p
2
can also be

high even though the variance is small (but not zero). Givcn a 20-item

test with a cutoff of 14, p
2
= 0, if all examinees score 14 or 15; if

k 2
one examinee scores 13 and the-rest score 14, p m I. -

c

3. Except for the true-variance/totalvariance ratio 'interpreta,

tion mentioned earlie he index of efficiency, is not based on tradi-

'tional measurement error concepts. '(An example of the index's depaiture

from traditional measurement error concepts wai given under point 1.)

4. Although not exPlicitly part of the computing formula, the

2
criterion leVel is nonetheless implicit in the calculation 'of p

c
:since

it is the basis for defining the two groups into which Ole examinees

are sorted and.for, which the sums of squares are calculated. .

5. The index of efficiency has the faiiliar [0,1] range. -It ia 0

when all'examineesare classified the same way (provided variance is not
.. _ _ _ _ _

.

.

0); it is 1 when there are two groups and each within-group variance

is 0 (see Equation 5):

The Index of Separation

ihe index of separation of total scores:(5) is designed to measure

the degreesto which the set of total scores on an n-item test approaches

the set (0.n). It i based on the'assiniption that the population

taking a CRT is in fact the union of two 5uhpopulations1 either of
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which may be empty: one knowledgeable, and hence with expected test

4

score E(X) =-n; the other not knowledgeable, with E(X) = 0, either

when the test is free-response or when the scores are corrected for guess-

ing. The formula for this index is

S = 1 - (X - X2 ),
p n p

(6]

where n and N are the numbers of items and persons, respectively,

and X is the pth person's total score.

An.alternative formulation for S is

S =
4 1 n

n2N p 2 p

If this is rewritten as

1- 1 (X - n)
2

Np p"2"
s

n
2

4

it follows that S can be interpreted as the ratio of A B, where.

A is the mean square deviation of the X from n/2 and B is the max-

imum possible mean square deviation from n/2 (and hence the maximum pos-

sible variance for _a_.test of n items.)
_ .

The index can be analyzed according to the CRT reliability cri- -

teria as follows:

1. The index of separation has maximum values insofar as scores

depart from n/2 rather than from the cutoff. Thus S is a score distri,

bution index and is not criterion-dependent; this is also clear from

Equatidn 6.
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2. The index of separation is algebraically 'related to total score

variance'by the formula

o2
S = 1 - - )

'where p is the mean item difficulty (i.e.
'

) and q = 1 - p. None-
nN

theless, S is variance-free in the same important respect as coefficient

beta is: it can take on its full range of values even thought the total

.

score variance ig,zero. Also fike coefficient beta, S = 1 when variance

is at its maximum, and S = 0 impi o 'variance (when the set of total

scores is (71/2}j.

3. The'index of separation is indepndentjbf classical measurement

error concepts. .

4. The index of separation=is not a function of the cri erion

leyel; it is a function of the frequency distribution of total scores

alone. -Its value for a given score distribution.is therefore invariant

under changes in the criterion level. Thus it is a score distribution in-

dex and not a CRT index.

S. The indextof separation has range [0,1]. It is 0 when all

scores are n/2, and i when all scores arc 0 or n.

Since iheindef 6-f-separation----fails-to__satisfy criteria 1 and 4,

it may he helpful to introduce a related index that satisfies these

criteria. Such an index, the criteri6n-referenced index of separation

(Se), is formulated us follows:

1 tr. 1:1
2

1(

[ f 1C-12
c N L xt C

ksC x>c

6 1
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where f
x
is the frequency of score X in the score distribution.

Appeddix A demonstrates tha.,Sc = S if C = n/2, and thus Sc is

a generalization of S. The criterion-referenced index of separatiol meets

all five CRT index criteria. ,Thus.coefficient beta will be compared

with it as well as with the Livingston and Harris coefficients in

Chapter VI.

Other Fourfold Table Test Indices

In the analyses reported in Chapter VI, reference is made to two

other indices besides those CRT coefficients discusSed thus far. In

this section, these other indices are described.

First, consider again the definition of the elements of the mas-

tery (+) / nonmastery (-) contingency table:

4 A

N

and recall that coefficient beta is equal to the mean of all possotible

split-half coefficients of agreement, where the coefficient of agree-

ment, P, is

A + D
P =

The cosine-pi estimate A correlation statistic, appropriate

when the two (inherently continuous) underIying-variables have een

artificially'clichotomized, is the cosine-pi estimate (r .) of thes--7
cospi

tetrachoric correlation coefficient (rtet). A computing f9rmula



r . cos
cospi VAWC (8]

where the angle is expressed in radians and the symbols A, B, C and D

refer to the entries in the contingency table above. This formula

yields a good estimate of r
tet

only when the marginal frequencies of

1
the contingency table do not depart markedly from N (Guilford, 1965).

The phi coefficient Another index is the phi coefficient (r0).

Its formula is

AD - BC

0 V (A+B)(A+C)(B+D)(C+D)

[9]

where A, B, C, and D are defined as before.. The phi coe .icient is a

special case of the Pearson product-moment correlation that is calcu-

lated on two inherently dichotomous variables.

Normally, the computation of tiu coefficients requires two sets

--of data (resulting from two administr&A.ms of a test). However, in

the course of the cemputer calculation of coefficient beta, a "grand"

fourfold table ith e7.tries equal to the means of the results of all

possible split-oalf categorizations is easily constructed. It follows

from the analysis of the derivation of coefficient beta given in Chap-

ter III, and from Equation 3 in particulari.that the entries in the

cells of this "grand" fourfold table are:

6 6
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A

+ k-1
2

= f

X=2k x

I 3 2. 3

j=k

\

I fx

k
2

kt- 1

D = E f

x=o x

2k-2

1-
X=iC

f
x

kl

j=X-(k-1

X n - X

3)(
n

11)
2

In this study, the cosine-pi estimate and the phi coef4cient are cal-

culated from.this '.gand" table, and under these conditions they can be,

construed as single4dministration indices. Note, for example, that the

1.0 thus calculated not equal to the mean of all possible split-half

phi coefficientsthe computer Program was not designed to.do the

calCulations requiredbut rather is a single coefficient calculated

from a table resulting from all possible split-half nonmastery/mastery

categorizations.

Coefficient kappa Millman (1974) and Swaminathan et al. f1974)

have proposed that coefficient kappa (Cohen, 1960), an index originally

developed for nominal data, rather than the coefficient of agreement, As

the appropriate index to use for dual-administration CRT reliability.

The computing formula for K iS

PO Pc
=

6 7
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where, in the case of dichotomous categorization for each ad.nistra=

tion,

A DD =
'o N N '

the observed proportion of like categorizations (i.e., the coefficient

of agreement), and

(Ar4.41(A1+41C) (BN+DXCNI2+

the "expected" (by.chance) proportion of like categorizations.(i.e., the

-sun of products of marginal proportions, as in a cAi-square fast of as-
S'

sociation).

The advantage claimed -for coefficient kappa is that.it reMoves-

from the final coefficient that proportion ofagreement due to chance,

that is,the expected proportions in the population. It seems unclear.

however, what interpretation should be given to the notion of popula-

tion proportion.. In the case of an, attribute with truly nOminal values,

say eye color, it makes sense to talk- f the proportion of.the popuTa-

tion with hazel eyes (given, of course, a suitable measurement process--

for identifying "hazel:). But for such an ephemeral attribute as degree

of mastery of a given behavioral objective, where fifteen minutes of

instruction may well change a person from the non-mastery category to

the mastery category, the "expected proportion" of the population-in

one category is not so clear.

Since coefficient kappa is a dual-administration index, it is not

14ithin the scope of this study. It would be interesiing, however, to
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consider a single-admini tration coefficient equAl to the mean of all

poS'sible split-half kappa coefficients. Unfortunately, the algebra in-

volved.is

However ,. rather than take the mean of all possible split-half

kappa coefficients, one can treat coefficient kappa in the size way as

1.- t craffiCI en tr.ir
late the kappa coefficient from the."grand7 fourfolc table, which gives"

the means of all possible sPlie-half -categoritations. Recall. from the

(kri vatitm of co.gfficient bet7,, thatcellS B arid-C' in .the "grand" four-
.. .

.fold table are.iqual becaUse of thesymmetry:implied in labeling the

halves Of zhe test. To indicate this, let -

,A e C. E,

.
.and letOE...superscript (*) denote a coefficient calculatd from the

"grand"- table. Then

Po 7 Pc
w

I-pc

D
N

IrEMA.E) (D4E D+El

NZ

[(0,++El (A4E) (D.E )(D+E

ilifth a. littl.e algebra ( ee Appendii A) this- can be simplified to

-

AD -

:No;e. howeiter, 'That Under these same conditions of 8 C the ph

%. 40,fficItnt -(from Egyation 9) 'Is



AD - E2

. a
sr(A*E)(A4-E)(D4-E)r.D-E}

AD - E
2

(A4E) (DtE)

Therefore, C, the ka coefficient
th thP 7,h1 wer.iret-i.(er f one tr6se.

-
half r :rppa cffier.t f r, r seesks to be a I,wer t+741:14, r

hypet'r.cs resul from sone trid r I -

starch by

t4d,

s author, a.t.4 is. b.a.s4k or. a :Z.121:rite:Itt tre ti

calcd1 too' fro* a few ma.ri..ila.c-ti.ized C4frit ritr.7t lone

response =trice: asso.ciated -witb

421 ex2.zples s i re.s 4-.:r 1 ter , ero-rit

between the two crpres.,slons i if 1:i t':t , rai1, AS,'t ncor

. GS For .7-, Ltrc le, hipc4thretica I 4- i tes t.ett wi.tt. 4 nal tt.'rf !A-7'

3 a.n..-2 ter. exiaat.zre . witr. a total score ,erotor of

r. r .282.

Four different itcz-by-pzzpii response matrices yield Yal!..:0-* of. c rang-

ing from 287 to .3.62. Thus, in interpreting the resdlts conrs.-.7-ning

the phl, coefficient presented in aapttr VI, one should b-ear ira mind

that r appears to be a (generally close lower bounot r

It is also of interest to note that I - Or I ?.

with I calculated from a fourfold table. *ith equal off ,dl.agon.al cells,

where I is the estimate of the index of inconsistency usi-1 for 1..roomia1

data by the 8k.cre..7-1 of the Census, as.' reported by Cochran (1968, p.

7 0
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":44.7.1fe.

ft'lt Mal "%tot

' 4s/

t :tor:

WIttt t7t

St i_t,,e1.111x.eit_

t

f 4., 1,11'1:4 re: I tet

ts ra-r:at.1 :,ssre nAm-

torr sf r;Lmber itema, a;r,d basic ,

ttvtisti-.s?

2. 11r4At ift CIt.C. of tht three fither r:Titt7iSTA-

deptn4Amt telt i5d1CeS df:fint'd .4.r, Chapter IV?

3. Art there predictable relationships between coefficient'

beta and any or all of these three indices'

4. Are there predictable relationships hetweea coefficient

beta and, other fourfold cont:inge-tcy table indices?

Large amounts of systematic data are needed V3 obtain satisfac-

tory answers to these questlbns. Prohibitive expenditures of resources

and inordinate coope:ration from schools would be required to collect .

such data empirically, and hence the data we're simulated by computer.

71
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ccompJLtr prnorts wAS deliZA44 by the investigetor atid wricLen

Ivy a oolleape to pee-rate the data for the study, Ihe puxpose and

desix.r. of the program were threefold: (1) v3 simulate the results of

thn tett-taiin2.Frocess by generating item-by-person response metTices

of O's and l's; (2) to allow for systematic control of tht generation

of these matrices by providing great flexibility in the definition of

paraxeteTs, to be discussed later;- tad (3) to create graphic aids

and to calculate yarious statistics, including those used in this study,

from each simulated responselmatrix.

The aasic Equation

The first step in using the computer program is to define the in-

put parameters, discussed in the next section. .-Then the progral gener-

ates a response matrix of O's and l's according to the equation

ript
12

[(cp e'pt) (1 di)] (/ g12 )(41"ip eipt)
1111

where

r
ipt

is,the response to the ith item by the pth person on the

tth trial (or replicatio0 of the test;

gi is the "goodness" of an item. akin to item-test correlation,

with range [OM;

c is the "competence" of the person on the behavioral objective

being measured, with range 10.11;

d
i
is the "facility" and therefore I-d is the intrinsic difficulty

of an item, with range 10,1);
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and the e's are normally distributed random components each with an ex.!.

pected value of 0, but whose variance may be specified. The'first is

a persons-by-trials component: persons feel differt t from day to day ,

and would react ta tests differently as a result. The second is a

(generally larger) items-by-persons component: it is not realistic to
, .

assume that a given item will hive the.same difficulty, ielative to

other items, for each person. The third is a catch-all, undefined

component that varies over items, persons, and trial's, and may be

thought of as related to errors of measurement.

Thecresponse ii.counted as correct or incorrect, and thus the ele-

ment in the response matrix:is 1 or 0 as ript.> 0 or r
ip

< 0 res-
t

pectively.

Note that when an item is perfectly,"good,v gi l, and when the

persons-by-trials error component is ignored, tquation 1/.reduces to

r c
p.

(1 - d
i
)

ipt .

implying that the response is recorded as correct when the'person is at

least as cpetent as the item is difficult. Purther, a perfectly "bad",

item would be one with gi 0; in this case the basic equation (11] re-

ducos to

ript eL eipt
'

implying that the correctness of the response Is due completely to ran-

dom-factors. Note further thl,t for a perfectly good item the effect

orthe item-by-person error vanishes; this effect does appear When the

item is not perfectly good. These values of item goodness are limits
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rather than r*alities, of -44rse, and thus the vale % of gi actually

usecl'in the ivvvItlgafton were between thre extreues.

in er to clarify how tht _basic 'equation functions ains

tho cathode-ray tube analogy showa in Figure 3. Thhak of the value

of c
P

t' as an -Iitission point on a cathode,' and consider the value
Pt

of I - oi as a hole An a rid. Then cp e'pt - (1 - di) could be

1

Figure 3. A cnthodo-ray tube analogy for tho.computer program.
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termed "initial direction." The particle is emitted With initial

velocity gi ind Passes through an electromagnetic field of strength

e"
ip

e
ipt

toward the anode, r. As Equation 11 indicates, the

greater theLvelocitY g the less the effect of the interference field-

e"pt
# e

ipte

In the example shout in Figure 3, c w .62 and 1 d .54,
pt

resulting in:an initial direction of (c Opt) - (I - di) w .08. If

the velocity of the particle were great enough in comparison to the

strength of the interference field, the particle would continue *AI

the upper, greater-than-zero half of the anode and the entry in the re-

sponse matrix woul4 be 1. In this example, however, the error componel,ts

are large enough with respect to gi to'f,nd the path of' the particle

downward to the less-than-zero half of ti anode, and the entry in the

matrix is 0.

It should be further noted that since the computer program i

designed to simulate the results of the test-taking process rather than

the prOtess i'tself, the relationships in the computer model among such

thingS, ai item facility, examinee ability, and test mean are not neces-

'sailly'those one might expect. Jar example, test mean is not an

algebraic funbtitin of item facility alone (as it is in the usual test

models), bbt rather is only influenced by it, and then only in conjunc-

tion with person competence (combined with it to produce "initial direc-

tion") ancPsubject to the effects'of both item goodness and the error

components.

4
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Ibe differences'between the usual model and-the computer model

used in this research are due to practical.rather than theoretical

consiSerations: the usual model does not readily lend itself to com-

.puter simulation since its inner relationships are necessarily bound

up with the unpredictability of human behivier. The computer-model

was evolved over a period of time as the best procedure that the author

and his computer-programmer colleague could devise in order,to simulate

the results of the usual tesf-taking process.

In Figure 4, the usual relationships (A) and those of the cook-

puter model (B) are compared. Arrows indicate directions of relation-

ships, solid lines indicate direct relationships, and dotted lines.ift,

dicate indirect relationships.

ottorianv

MAltty

Ai clannicA/ innar,

Os computer mollel

ether item-
examinees

charactoriattcs

item
facilty

error

item
noodneak

test

mean

actor
componenta

Figure 4. Relationships between item, examinee, and test characteristics;

a comparison of the classical (A) and computer (B) models.
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,r7.) inplit Parameters

'The computer prai offers a'uide range of options for defining

thethreemajorvectors(er-raridg,)(see Appendix C for more de-1,

tail). However, for the purposes of this study, only a. limited variety

of options was used.

The competence ,,ector was restYicted to two typer One is a nor-

mal distribution (Figure with p m .5 and a
2 such that all c values

$enerated lie between 0 and I (explained fully in Appendix C).

This competence distribution was chosen to reflect the classical assi

tions about ability within a population.

0
* I Ias 4 15

a S 4
s

0 k *
* * *
a ta* a a is a *

* a 5 1 *

I S * * a 1 I I
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* I I * S * *******
II ***********
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1-

Figure 5. Histogram of components of a normally distributed
competence vector (c )
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The second type is a bimodal, "inveise normal" distribution

6), which is essentially what woUld be obtained if a normal dls

tri.ur.ion were cut in half at the center, the left-half translated .5

to the right, and:the right half translated .5 to the 1 t. This com-

etence diStribution was chosen to reflect the notion that, for a given

behavioral objective, a'student generally either has or has not mastered

the objective.
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Figure 6. Histogram of componlv.s of a bimodal
competence vector (c )

The item facility and goodness vectors emplkyed in the study were'

all uniformly distributed, but their uppei and lower bounds varied ac-

ts
cording to preset conctitions.
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Eight sets of parameters were used, rTsulting in eight families

of response matrices, score distributions, and test_indices. Particu-

lar combinations of parameters were chosen " simulate responses to

three types of tests.

The first type of tesr has a moderate number of items, relatively

low item goodness, 3nd a wide range of item facilities. It is perhaps

best exemplified by a poorly-Written teacher-constructed test. Parameter

sets 1 and 2, which use the normal and bimodal competence vectors,

respectively, are of this type. Examples of the resulting distributions,

sone he accompanying basic test statistics, are given in Figures

l'and-8. -Those iivtsic test statistics are TT. the test,mean expressed as

average item difficulty; iV, the variance expressed as a percent of maxi-

mum possible variance for an n-item test; S. the index of separation

(Equation 6); and r, a classical internal consistency reliability estimate.

.62

%V 6
S .12

r .27 *

* *
*

a *
*

* ****** I**
r.4 f. «7 un 4D r, 00 C CD f...4 T4 tel yr wl siD r oo cnOM ** ... 1.4 l4

Figure 7: Score distribution resulting from
parameter set 1.
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Figure 8: Score distribution resulting from
parameter set 2.

The second type of test is short, with relatively high item good-

npss and a minlmal range of item difficulty. It is perhaps best ex-
1

emplifled by a well-constructed criterion-referenced test for a narrow,

specific behavioral objective, such as would be found in mathematics.

Parameter sets 3 and 4, which use the normal and bimodal competence

vectors, respectively, are of this type. (see Figures 9 and 10)

The third type of test is long, with interthediate ranges of item

faCility and goodness, simulating. a more traditional,-standardized test,

such as would be found in a field like science. ParaMeter sets 5, 6, 7,

and 8 arc all of thii type. Sets 5 and 6 (see Figures 11 and 12) utilize

the normal and bimodal competence vectors, respectively.
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Figure : Score distribution
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parameter set 3
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p = .62
%V = 72
S = .78
r = .97
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Figure 10: Score distribution
resulting from
parameter set 4
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For set 7.

fact?r:
Scores and

all parameters are tiig-swit'e as for set S' except fi5r

,elt is ax)re-,:-Aiffi'..-41t, and heiica .11s generally 'oyez' -

_
I

a Inciei test Mean (fie Figu're'13).
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Parameter set 8 is the saw., ,c.N.-?; let 6 except.that the standard deviations

of the error components are smaller. This set was chosen because the

resu/ting score distribution FiguL.J 14) closely approximates that

of empirital score distribut n tests being developed at thyis-

cOnsin Research and bevelopmek, _ater for Cognitive Learning, where this

sttiy conducted.

.
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Figure : Score distributio resulting from pareter set 8.
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Table 4 gives he numerial values used fr..4r these eitht parameter

sets. In all cases, c is Aiither rormal or biziodal (inverse normal) as

described previawAy, wIth .5, CI * 0, 1174 cm * 1; di and 2iare

uniformly distributed within the intemil!, thown in the taUe.

teet
type

pox& -

Metet
get

Tll 4

rovuT PAkAY=7.51:. Te0,2. re.T. 1.:T7UY

1

2

ttre.o7

.04

2

3

.7 .r. .171

. 02

red r.if IV..
1110.411Cii 1.1eAte 1 tmlitit,

".4
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The rA410:t1MA 414 kgtg Herh4dt

1. What 0Jor, .-..:haracteTiltic,t Of cOtftiatnt beta? ctn fit
.

diade4 thg f!#11,0.44tt vaestionl

a, Whet art the ;ralux4 of 4(1), 411.4eflned 0 Chapter 111, Nr,

f, TIM for varyint ritaabe.rt of items and oriterion

%iho.At ti46 44';-0/fia,; det4n3ti,on of 4(t) it rather complex, to answer-/this

Twettion traphi.cal displait AtIM Made V:0 that the contributions to

Oeta of-4(f, for each 1 cou/d bt,yisually compi;.-ed- Figure 1

T..erfoed kt "Mt troph *re tlYen in APpenti%x- t.

ta,;h pisrsznitX:er how does t:oeffi:..ent beta var:,-

0.A"ittfiein f.li.griZet'l To antAft-r this question, reapopte Aatr.

were tenerated frit of the ei.4fit parameter zts, aod reaphs f+6--re

dtk.," These traphs ts.Ld uht,wtrt; to all uetfon whih follow.

ttven Vi .

the behavior of ocAlicient 6,VtU 44 t i',t ;TIT

aminees inrease0'.--To answer this, four matr;cos were gene'z,:ed for

each p:2/4.4.tttr .4tt, ULin2 2, 49, 'z.rid 400 elur !nees.

d. What is the behavior of coefficent beta as the number 7Jf. items

e

inctttt:5?

tiotr thtse

the Spearman-brown prophecy formua an-

f:lestions, four matrIccz; were neratA for each parixeter

usinz 16, 20, 46, ;nd 80 items, gafhs were dravp, and variols

mgres._ion an.lip$f.:s were carried out.

e. Are there predictable.relationships betweeN coeffic,./.:.nt beta r!nd

th following basic test statistics: (1) test mean, exprelsi as a ...cf-

cent (i.e., mean item difficulty), (2) score variance expressed as a

8 G

Pk,
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pernt of n?/4, the maximum p,vMe variance for a te3t of n items,

(3) index of separa'ion, (4) cocAlAcient )lia (KR-20), (5) KR-21, and,

(6) percent mastery?

To answer these questions, various analyses, inc1udf7'g stepwise analyWis

of regression, often non-linear, were carried out on the data generated'

in answer to Question lb.

2. What are the characteri ics of three other-criterion-dependent

single-administration indices? Harris's index of efficiency, Livingston's

criterion-referenced reliability coefficient, and the criterion-referenced

index of separation, all disc .ssed in Chapter IV, were-computed for the

same parameter sets as.those for which coefficient beta had been calcu-

lated. The analyses were similar to those mentioned under Question 1.

3. Aie there predictable ielatiOnship .tween coefficien beta and'

any or all of these three indices? This question was answcrad throug

graphs and analyses of regression.

4. Are there predictable-relationshipg-between eoefficient-briuni-

other fourfold table indices? The cosine:pi estimate and the phi co-

efEcient (and hence coefficient kappa with equal off-diagonal cells),

were calculated for the parameter sets from the table resulting from all

possible split-halves. Data were analyzed through graphs and regression

analyses.
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c.
The 'Regression Analyses e

The iegression analysis routim chosen'for the study, STEPREG1 (1973),

.is part of the University of Wisconsin computer center's standard

statistical analysis package. The basic purposes of this stepwibe anali-
.

sis of regression program are to analyze the manner (and degree) to

"which the variaL'e of the dependent variable is explained by variation

in the independent variables, and.to\calculate regression equations.

The stepwise feature of this statistical technique allows one_to intro-

duce independent variables into:the regression equation in any number

andin any,order, either singly or in groups. If some or all of the

variable- are allowed to enter as-a group, the program determineethe

magnitude-of the contributions of each-of these variables toward explain- '

ing the variance of the dependent variable and_allows these variables

to enter the regress)on equation in order.of the magnitude of their con-
.

tributions. Thus one can analyze not only which independent variable

help explain the behavior of the dependent variable, but also which nes

are most important.-"The result can be interpreted as represerting
4

quantified "sotiogram" of the.indices in the analysis.

Stepwise anilyses ofrcjgression were Use._d____t_a_ther_._e_xt_en_siv_e_ly_

this sfildy because the procedule mhde it possible to analyze the manner

in whiCH ..:pefficient beta and other indices are reated to various iest
I' I

statistics and to each other.
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CHAPTER VI

RESULTS AND CONCLUSIONS

This chapter is in several sections, roughly corresponding to the

questiohs set forth in the previous chapter. The first section deals
si

with the characteristics of Coefficient beta, which was developed in

Chapter III, and its relationships to various test parameters and basic

test statistics (inclUding classical reliability). The following three

sections deal similarly with the three other recently-suggested test,

indices that were defined and briefly discussed in Chapter IV. The

last section discusses the relationships of these four indices among

tiwmselves and to the cosine-pi estimate and the phi coefficient de-

fined in Chapter IV.'

Characteristics of Coefficient Beta
.1

Values of O( Ia

As mentioned earlier, one approach to.the anarysis of coefficient

--beta 1S-to investigate,its component parts. Recall from Equation 2

that

1

N
p=l

p

Aere N is the number of examinee ,
Xp is the pth person's total score,

cl)i,
is as defined in Chapter III. Since X is a member of the set

(0,1,...,n), it is useful to in,pect the valuei of (X) for each X in

(0,1,...,.) Table : shows these values of 4(X) to two decimal places

77
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fur a 20-item test with a criterion level of 0.7.

TABLES

Values of 0(X) for n = 20, c = .7

X 0 - 6 7 9 10 11 12 13 14 15 16 17 - 20

0(X) 1.00 .994..98 .93 .82 .63 .35 .00 .37 .70 .91 1.00

As can be seen, 4)(X) de..reases as a person's score nears 13, which is

the' integer 2k-1 as defined in Chapter III. In general, the farther

a person's score is from the cutoff, Ole greater is' 0(X).

As noted earlier, Figure 1 gives a.graph of these values of X

and (X). Other graphs of,0(X), for selected numbers of items and cri-

,

terion levels, can be fcunC in Appendix B (Figures B1 throwTh B7).

Coefficient beta and criterion level

As described in Lkyipter-V, the eight different sets of input pare-

meters selected ,r the computer program generated eight families of

.simulated test seOre'distributions. Since the ritei..ion level ic an

intxgra; part of the iormuia for coefficient beta, the vapie of the co-.

efficient will tend to vary 4s the criterion level changeS. Recall ti

the formula fer.coefficient beta (see Equation 3) contains. k'1 the mirl-

mum scor7 requir.:1 terve a mastery Olssificdtion on a half-tesT

of necesity t s in the st;. 1cl- an )-0.em test,

9 0
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there are n/2 possible criterion levels and hence n/2 meaningful cut-

of scores. Thus, as far as the computation of a is concerned, there

are only half as many meaningful criterion levels, and hence half as

many values of a, as there are items on the test.

In an actual test situation, the mastery criterion level is un-

likely to be less than 0.5, and is perhaps most likely to be in the

- range [.6,.9]. Nonetheless, for the sake of thoroughness, the values

of coefficient beta for all possible criterion levels from. 2/n.to 1 are

shown in Figures 15 through 22 for parameter sets 1 through 8. On each

graph, the abscissa Is the criterion level and-the ordinate is the value

of S. For reasons to be-discussed shortly, a bar graph of the relative

frequency distribution of total 'scores (see Figures 7 through 14), on

the same scale as the criterion level, is also given along the abscissa

of each graph Also irrquded with ea_h graph are certain basic test

statistics (defined in the last chapter): F, the test.mean; %V, the

percent variance; S, the index of eparation; and r, a classical relia-

bility estimwte. For the.graphs of S, as well as of p
2

and S
c

(to

be given later), the classical reliabi1ity_estimateAsAR-21,_since_

this statistic is computed frolg tha frequency distributionof 'total

2

scores as are the three CRT indices. For the graphs of k
X

(to be
.T

given later), the classical reliability estimate-is KR-20, or co-

effycient alpha, since these statistics are computed from the item-by-

person T'sponse matri',
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The graphs show that as c approaches 0, 0 approaches 1. This

limiting-value is reasonable since a criterion level of 0 "separates"

those examinees With a score of 0 or, more from those examinees with a

score of le3s than 0, an impossibility, Hence the "dichotomization" is

perect, although in a degenerate sense. Also, in-general,'as c ap-

proachcs 1, B again approaches 1. The exceptions seem to be in Figures

17 and 22, 'both of which show a relatively large number of scores slie -

ly less than , the number of items. If one could set a criterion level

greater than 1, 0 would take the value 1 at that criterion level since,

like the case c . 0, c > 1 implies"separation" of those examinees with

......///

scores greater than n (another impossibility) from those examinees with

scores less than or equal to n.

Coefficient beta and the score distribution

Coefficient beta does not approach 1 as c approaches 1 in the graphs

of Figures 17 and 22 becaUse of the interaction between 0 and the dis-
r"-

tribution of total scores. .Recall that one property deemed desirable

for a CRT reliability index was that such 'a coefficient should increase

as scores depart from the cutoff. With the exception of Figure 18,

Figures 15 through 27 show that this is indeed the c-,se with coefficient

beta, although these graphs show this relitionship in another way; in

these figures, the ,,>fficient increases not as 'le scores depart from

the cutoff, J:sut as the'cutoff departs from the mode(s) of the score dis-

tribution. Perhaps the iest exampies of this phenomenon are .0.!fr,rn in

Figures 19 threugh 22, where there are more items on the test =J. thus

smoother curves of B values.

94
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Note, however, that the curve of 0 values "lags behind" the bar

graPh representing the frequency C'stribution of scores. This lag is

most easily discerned on the graphs with clearly defined score distri-

bution modes: Fig res 15, 19, 21, and 22. In these instances the cri-

terion level corres nding to a cutoff score immediately above the mode(s)

'Yields the minimum-value(s) of the coefficient. The lag is due to the

fact tha the score that coOtributes zero to 0 is 2k-1, one less than

the cutofL' This explains why a does not have its minimum valueat

the mode in Figure 18, and why it does not dtop as sharply as one might

expect at the mode.in F gure 17. -

At any rate, it is clear that the shape and modes of the score dis-

tribution in relation to the cUtoff have an impOrtant effect on the

value of

Coefficient beta and basic test statistics

The basic test statistics considered in this section are those

given in Figures 15 through 22 and describe earlier. They are invariant

'for a given item-by-person response matrii; they do not-change as the

criterion level varies. Flle data availablz for this and later sta'i--

tical analyses include values of B. at all' possible criterion levels

for 24 score distributions: 3 representatives of each of the.eight dis-

tribution types. Since 0, unlike the basic. test statistics, yari.es as

criterion level varies, it is not meaningful to include all data points

in an analysis comparing a to these basic test statistics. One'can, how2

ever, investigate the relationship ifthe variance in 8, due to the

95
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changing criterion level is removed. This can be done in one of (ar

least) two ways: by taking either 'the minimum or the mean value of

.

over all criteri6ert6els for a given score distr bution. Table 6 shows

the rank order of the eight distributions 1)11 each basic.test statistic,

as well as on miA(8) and B.

TABLE 6

ORDINAL RANK OF EACH DISTR:BUTION ON7THE VAP7A8LE,
INDICATED AT. TOP OF COLUMN

Distribution
from Fig. No.

1

"IS

= LOW,

%V

8 = HIGH-

S KR-21 min

15 1 2 1 1

16 1
3 3 2 2 2

8 5 7 5 7 6

. 18 4 8 8 7

19 7 .2 3 3 4

20 5 6 6 6 5

21 1 4 1 4 4 3

22 6 7 8 7

From the data in Table 6, Spearmai's rank-order correratian

was computed flat-1)6th min.(t3) and Tf 'against eacn of the four bw;i: teS

statistics. Table 7 presents these computed_ ;41ucs of The cornput-od

.(0, is at least-as high for as forTain(R),in, each case.

9 6
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TABLE 7

VALVES OF SFEARMAN'S RHO (RANK-ORDER'CORRELATION)
BETWEEN MIN 6, 1, AND BASIC TEST STATISTICS

tV S 'XR-21

Min 8 f.43 .86 .63, .83

.55 .90 .90. .93

BS

Nar

Test mean appears td have tittlt, 6 do with coefficient beta.

The best correspondence seem to-be that cf KR-2I with _However, it

,shoUld be pointed out that other test indices, which are analyzed later,

correspond about equally well with some of the same basic test s.tatistics;

Coefficient beta and the number of examinees

4
For a given sei of te4warameters and a given criterion level,

variation in-the number of examinees does not seem to have any systema-

tic ef.teet on the value of B. Figure 23 is a scatterplot of. S for 2N.

(oe,i in some cases, 4N) examinees against SN The pairs of numbers used"'

were (25,49), (49:100), and (100,400). The correlation Of EN and a
2N

(or S
N

and 54N ) warhigh, .94. The btained linear,regression equation

was 1r c -.001154 +.999BN which is s
2N ,

In fact, the fit is close enough to all

ose to the model

to assume without qualm

that the model obtains in the population. This esult was.expected,

I
since B f 0.(X), and hence doubling the number of examinees

A X I

should merely tend to double each fx (as well as double N), resulting'

in altebraic.Cancellatioa.

3
The number 49 was chosen in place of the perhaps r3tri,obvious 50, ogithe

chance that there $as 1 connec.tion between w/R and S. Results showed !ere
was no such Innection.-
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Coefficient Beta &odd tittAh.of

For a given sOS, ko/,(\ tAt r A rs and-i given criterion level,

variation in the nun14 vf verl° .cts the value' Of 8: in.keneral,
h .

tricreasels,
Figut.e 24-'is a

8 increases as the -vt 14i scatter-

plot of $ 'for 2n itelo (POT ooparison purpos,es,
t

the stars-in the filAs4 -4.eft qUes of P)efficieot alpha: a
2n

against

an)"
epOk

For this figtd\. value5 of (l04) (20,40) and
n, t ,s,

(40,80). ; The scatetiNkt ifileoorCr ss all data caltuiated for all cri-
/

on eiA k,cc As"kk) fp:17,:, each of the eightarjon levels kaions, one

patameter sets. Thtilit\A'av" ,,cofillklion of this 'set of poin-ts .(considered

as a set of ordered VO 4 high,

Figure 24 show A\co Akr,/°s1 lower ), is ;tile line 82n on,

th,
i.e., what would be ei)Nctel 't.vutiber .9f items had no effect on

the value of 0 (liert r\\th r..011'e4, `.'11 'N-8 line). 'The ,figure shows fairly

87

4 ION the N-E line rathqr thanclearly that most 0 i \A PO kilV 4bove
IA Alt, Tho

evenly distributed 4, v-la ),k, 4i.e5on equation was 1 '211 m .1999 4

.8.1518n, consistent i.','\, trl, Ofislz\-t'iOrrthat most of the scatterplot: Ii& tk

i $ \

points lie above th) Ikne, tv . s ease the coeffiOent of determina
c , arlci

tion (the squared c, V statp, thus the percent of varianc*'of. B
. 2n

accounted for by vs (IVIV 00) .881 , varianceA% That is, sg% of the

exhibited

82n 8n

in the va w/ of De explained by the modelhd
2f/

20T1

i VA
24.

The upper curv\5,- rigv 4 02p s' -141 ' .. the graph tha,t would
40) h n ,

be exfrOcted if the ikeirtiaA,0c- "ophecy tosm.,ia held (henceforth calledl,

L..
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(r"

the S-B curve). At/first glance this wouleappear to be.a better

model than the.lower Iine. Yet the points are not evenly distributed

around the upper curve: more points are below it.than above it. The
2$

regresSion iquation for this model was 1r
A

-.301S + 1.307 n
2n le

n

consistent with the o6servation that more points are belowthe curve

than above itl The coefficient of determination for th's model was

.887, only minimally hIgner than that far the linear no-effect model.

Hence the Spearman-Brown model does not appear to)explain the behavior

of 0 better than tile no-effect model. Nonetheless, using the evidence

presented here, one could claim that the former model does at least as

well as the latier.'

It is ilruminating to put aside the computer-generated data for

the moment.and briefly investigate the behavior of B for some theoreti-

cal score distributions: normal, unifOrm, and symmetric ("inverse

normal") bimodal distributions. If for-each distribution 0 is plotted
2n .

against Sn, there appears to be a pattern...Figures 25, 26, and 27 are

scatterplots for the normal, uniform, and bimod4distributions re-

spectively.

Notice that for a,hOrmal distrOution (Figure 25), the points.

°T;' 82n) are,
approximately evenly distributed'about the SpearmanArown

xurve 8

+

4

28
n and none falls below ehe no-eff6ct 'line 8 1. 8

, 2n Tr,

- n

fi

1

r.



,

Tigure 2. Scartnrplcit or.B fat, 2n items against 6 for n 1tpis, for a normal
distribqpion.
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in fact, to fall below an imagined curire halfway between

the .S-B curve/ and the N-E line. ;Such a half-way 'cucan be gener-

ated by /

1,12n 0 Bit

28n I
n

"5 *miry
[12j

In the case of the uniform distribution-(figure 26)v all'points lie
,4

between the.;St-B Curve and Om curve. just ..described. .And,

although this figure does not show it, the data from Which. the figure

was drawn. indicate that- the points. lie 'atvor neer,the half-way Curve

when the criterion teArt` is "'near, anA approach the S-4,11 curve when

the criterion level is I.
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Figure 26. Scatterplot of 8 for 2n items against 0 for n items, for a uniform
distribution.
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For the bimodal distribution (Figure 27), aIl points appear to lie

on or between the S-B curve and the N-E line, Therefore, the value of

coefficient beta. is Apparently affected by the number of items on the

test: the more the items, the higher the value of 8 for a,given cri-

rerion level and test type.

The shape of the score distribution seeps t,) h e some bearing

'on whether the no-effect model (62n m 8n) or the Spearman-Brown model

ug
(62n s 14,11

holds: for a sharply bimodal distribution, both models

n .

Seem to,account for theyariance equally well; for a low-variance nor-

mal distribution, the Spearman-Brown model appears toAccount for the

variance better than does tte no-effect model.

interestingly, the computer-generated data follow very 'closely the

half-way curve modelsdescribed previously. An analy4is of regression (of

813+8)
8 for 2n items against for n items) yielled a coefficient of

-2(1411)

determination of .884, ibout the same as far the earlier two, and a,

0(3+11)
regression equation of 4(2n) = .00633 4- 1.005 0

H(n) '

where 0
H TOW)

Unlike the earlier two, this regression equation is so nen-, to 8(2n)

thkone is tempted to hypothesize that-the half-way curve is the appro-

.%
priate model tor the population, and that it should replace both the

Spearman-Brown prophewy formula and-the no-effect model 4s far as a is-

concerned. (It mer also hc!, of course, that any appropriate prophecy

formula must come from a tiitally.different framework. This possibilit;

is discussed briefly in Chapter VII.)
I.



q.11

Figure 27.. Scatt*rplot of 8 for 2n itqms agoinst 8 for n items,-for a birloal

distribution.
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Cha $3f Liqihgsten*s k

Livingston' ',4,-.dnlike Coefficiett beta .is notadditive. and
, 4

11'.
. - -/ . . . . ,

'd

thus there. i,s- o par-11410 With tho 0(X) analysis presented ler S..-There

.. ----
, v

arOweverotherparalIels between the ,two inditesyks these comport

sonsare diSeussed in the list settion of:this chapter, "tii s sectiOn will

.

iie-coaeerned onty with the characteristics of k'
.TXY..

.c,.

k2 anZ criterion level ,.

TX ,

2-
TTle computing fortfula for k.,,rx, which shrdwa its'relationship tp

. ,

other test statistics, was given ear ier (Equation,4) as

T

,

'Thus k2 has (USually) 4. differentValitt.for eiah ValgeOft',-,thetp.toffi
T1

.

;

-point. In fact, unlike coefficient.beta,,the-number'-of v,tilues:Of

a-c)

fora, given item-by-puplI response matei,x iS limitlesS6inteC n04.1n6t

be an integer (Livingstqn, I9'.72a) For thia illVestigatiOn,"hoWer,-,
. , .

values of C were restricted to th set t..0.5n,

where n is the nualher test item's, the same.(wherc meaningful) as fur

coefficient beta.
/.,

The graphs io figures.-28-to 3& show the valueof.r. at-the silec,

) _
"X- -

ted criterion levelsfor therepresentatives cif the eightTscei-cAistrbu-,.'

:

tiong. As before, the relative frequency skistribui- of tOtti- Sores

on Ole same iale as the'criterion leVel,- is included with each graph,

4iong with thebasic.; -t:est statistics.
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(The graphs indicate that, as would be expected from Equation 13,

k
2

IX
has a minimum at the criterion level nearest the test mean (expressed

as a percent), and increases as C departs from the mean. Tn earlier re-
-

seareh on k
2

TX
(Marshall, 1973) it was report d that "when the mean de-

parts from the criterion,%the coefficient accelerates .rapidly towaq

-1
unity," and that ",the coefficient generally has values, above

and rarely drops below .90 fp. 14]." These statementi !gere'llased-on

-score distributioris like those represanteci by Figures 30, 31,, and 35.

As figure 28 shows, however, these, statements do pot hold for all kinds

of test score distributiops, particularly when classical reliability

is low.

k
2

TX
.

and the seore distribution

Unlike coefficient beta Livingston's coef'icient does not reflect

the modes-of the score distribution. Instead, its behavior over changing

criterion levels seems to be a function of only .the test mean and the

lclassical reliability (and thus indirectly, of score var i nce). Again,

formula 13 indicates that this must be the case.
...

'2
k and basdic test statiStics

IX

.noo relationshipS, both of which f ow directly from formula 1,3,

hold true for k the minimum value of k
2

TX
(if the curve were .iade

. TX* , .

2

_

continuous) is the same as KR-20, and this minimum value always occurs

at the test mean. It follows that the rank-order correlation of the

minimum value (over sriterion levels) of k
2

with KR-20 it unity.

4 4 4
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Figure 36, Scatterplot of k2Tx fq 2N (or 4N)

2
k for N examinees, ;
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k2
TX

and the number
.., 4

. For a giVen seit 4' te.t fiti1 fkt4er5 and a 'given orite,tion level,

variationLIn the nutf 1 0 f ,leiri!N did'net seem to afiect the value

of k yx. This resu;) ef4\5 Ow's- i-..nee the numl,,er of !examinees should'2 j t A tiCI )

not liter the Value1\9 ;110.1lallhte, and classio"iil reliability, to-
u ,

di
which 4c2Tx is relate/ 'AA PIO' ., `',. Figura 36 is 3 scatterplot -of

.. values of k2. ,calcvii,tA etl 04 Ccl' 40,1) eXaminees aisi' nst k2.rie,talcUlated-
TX ,

Ai s ion N examinees. ThS \Nint.4 0 0 (ti
, NtS1) or (N, 4N)

the' analysis of coi\c'An0 re,4° CS , 49), (49, 10y, and,(10e0,4s fo00)r. ..

t

;Ilie linear coAlk,ti4A oi ft\pairs ef numbers oat, very high, .978.. 0 ,
Th

h
..

e obtained regresS.
Ifl evAti07" **N 0Txf2N) s,--.10si, 4 1.106 k2Tx(N),

let too different
IN

,

k rind the number kter$,A

N : 9

.Livingston tI410 11;A 0 %at, .1". tkleast neeratiCallY. k2Tx

-adheres to the SpeaN\firelv proPh ,
@Cy for Thmula. e-theory is supported.,. ,

by the 'results ..of te \.tq, !.F..1,1N,e. 3, is a seatttrplot of 1(2
TX

for 2n items plotteiff\lkinA'Ic°11 tlk,, o items, with ,11 0 lO, 20, and 40,
, 7

and for Criterion 14 V"k of
,

,4' 4 .8, .9, and 1.0. The uppet Curve

on the' graph is f(x1 \f,./2.2%-1 ' th.* spearman-Brown prophny formula;

13the' lower line is- f ti \ "-x:/ 00 N of values to be .expA74:...;.4 if the

number of i tems has %, cfieif' tin_ ),ic. Figure 37 shows that the.speartoan-,

Brown prophecy formill\4:s i.t1,00d r°,Ito,;,ed. Rogress,i0 and),,yska (of

k2 for 2n items 'a4A flt ; 6,;011"44tp k2rx fo' -11 ite05) yiqded a rather.

hid' coefficient' of 1\'roliplr041).'t o4 .and a regression equat'kon,of
'.,
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Figure 37. Scatterplot of k
2

for in iteas against

k
2

TX
for n itels.
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.--.2 2
TX

S-5
k
TX

(2n ) m.095 .90 k (n)
'

where the variable with the superscript

,
.

, --

is the stepped-up coefficient for n items:. The above regression equa-
2k2 0).

2 TX
tion is close enough to the,model,e_Lripni_

c-
5, to give

-
TX

/'-- moderate empirical suisport for Livingstanalgebraicderivition. AI-

.
though linear regression analysesflere not carried out for'the no-effect

-
model, Figure 37 suggests that the Spearman-Brown model produces.a much

,
.

better fit than would a linear no-ef1e5t model.

Characteristics of Harris's u2
c

2.v
c

criterion Level, and lint masteni

...1.1=
4.

N011.-

In the graphs for each parameter set given earlier in tnis chapter

for 5 and k
2 criterion level was the.independent variable. . Criterion
TX'

level was net used for the independent,variable in the:graphs for-v

since ,e results bT this study -dan eatiter one /Marshall, 97

showed that v
2 is more clearly a function*of percent mastery than of
-c

criterion level. This result follows from an analysis of the formula fo?

u
2 given earlier as Equation S:
c'

2
SS

b
'

.

.uc SS +SS
b w

where the terms in the ratio represent the between-group and within-greup

sums of squares for the groups resulting from the dichotomous classifica-

tien of a CRT. If two or more criterion levels yield the saNe percent

2
scastery, there is no change in uc. !io matter what the criterion level,

if there.ig only one classification (i.e.., if one of the groups has no

; 117
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.2
_members), SSb 0 and hence pc a 0, provided there is some score vari7

ance witain the non-ettiPty group. Hence p
2

c
always approachet 0 as the,

percent laastery approaches O.. or 1.

Thus in Figures 38 through 45, 'percent mastery rather than-criterion

-

level is the inaependent variable. .As Harris (l072a) poitits out, there

are as many sortings into groups, and.hence values of percent maste*Y,

.

as there are,test scores with a frequency of one or more in ihe scbre

4istributim,
.

,

..
.4_/

, 2

-

(figures 38 through 45 show that Che curve for p c
as-a function of

. .' ,.
.

-percent mistery.is quite smooth and.cleirly monotonic on either side of
. .

2 ..

. .

the.maximum value of p
c

. In fact, it appears tnat one could concoct

a non-linear algebraic function of percent mastery (perhaps with some

additional variables) that would fit the points preciaely. Some attempts,
,

--were_made.during thil_study to construct such a\function.- Althcugh

-----semefunctions_yieided a close fit, an exact fit was not achieved.

These findings wilj shortly be discussed further.

p
2
and,the score distribution

2
There appeared:to be no relationship between pc

and the:score dis-

.tribution, it least not in the way that the value of B reflects the score

distribution mode(s),.although the maximum value of oc :often occurred

near the point,where there.was SO% masteiy.
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2
c

and basic. test statistics
-

'The relationsi)lip of p_ jtoi the basic teststitisti.ci was investi-

'.

gated by removing the.variance in p2 due to Changing percent mastery.
c -

This can be done by takiitig either the maximum'or the mean value of

. for each parameter set, as'in the analysis doie,wip -coefficient beta.
:-

CFor coefficient beta, min(8),Naschosen ass-variatile to studY

it corresponds to the modes oft-and viries over) scorlOistributios,

whereas max (8) always approaches l as tritirionhltv4 approachel'.10

2 2 -..;

see Figures IS. through 22. For p
c

, max(p )-wai chosen =stead because
i

c
,

'it varies'over score distributions-rwhereas, except far the truncated

2
distributions shoien in Figures 40 41, min(,pc) 41whys approaches or

. 1

reaches 0 as percent mastery approarles its extremes.) 'The eight score

distribution types were rinked on eixIp!YandTil and-on 00 of the

basic test statistics, and Spearman's rho (rank-order. correlation) iias

comuted (see Table 8).

4.

TABLE 8

NALUES'OF SPEARMAN'S RHO (RANK-ORDER.CORRELATION

'BETWEEN MAX(p2), p2
'

-AND BASIC TEST STATISTICS
c c

S .6:1%21

sax(%) .48, '.86 .79 '.88

111071101,

.29 .98

14 2
The results sgUir that test mean had little refation to pc

Cexcept

-

as is discussed 1ater)-,4whereas the mean p
c
;was very.bighly correlated

. (



With. bJth .pertent viance and ilt=21. -Thfire was als6 a -strong -_postive,..
- 2

correlation between mai(u ) and-both KR-211 and: percent variance. "That is,

,

the greater the variance' (dr Kk4-2l or in40: dE separation), the greater

the maximum aid ,average:valuei Of u2 . foAe relationships .ate siilar

,

to those between basic test statistics and mintf3), as reportek

earlier.

BecaUse of the- smodthness of the curvei.,:of Figures 18 throdgh

attempts were made 'tó'find ftinctiOi to desCribe the, relation

ship between v. and the test staiistIcs.. etveral -regression aqVationsr ,

--
involving:qUadratic-terms were trted, with the independent varlables dJ0f

t-

test .mean pereetir mastery at the test mean, index of seParation, per-

cent mastery which ?roduces the maximum valu of and ...both linear

and-binomial comlirinations- 6-f these. For more than two,-thirds ok.thes0

models, coeffiCfents of determinatiln were high, ranging from '84 tP .95,;
_

bUt ther.3.: was nOt enough consistency amOng ,regressioncoefficients tp wsr-

rant an)i' strong generalization. In iUmiary, viSual IhipeotiOn-of the-

famfly of Curves provided just about as much inforoation is:those not-

linear analyses of revession: there is i non7linear_relattonahip between'

pereent mastery and (and other variables): but an algebraic expression

of this relationship remains uniiscoverech

In the earlier research cited above (MarriaIl, l973),:it was stated

2 '
that fOr bimodal distributions,- u -seemed, tO be very highly correlated

with pehent mastery, and was related to test nitan and percent masteTy

via a bivariate linear regression equation. Figures 43 aid 4$
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help explain the inconsistency between that conclusion and the con-

clusion presented here. Tbe earlier research used criterion levels of

.6 and higher only, corresponding roughly to the'left halves of these

graphs.. It is now evident that the erroneous conclusion of linearity

was reached using such incomplete and unrepresentative data. The earl3er'

reporCalso asseriseU that the linear relationShip Was less strong for

.umimodal distributions, such as that represented b rigurm 44. The reIa-

tionship is clearly non-i4kear in the left half of that gr

2
u and the number of examinees

t't

For a given'sit of test parameters and a given Criterion level,

variation in the number of examinees did not seem to affect the value of

2
p
2

'This was expected since. p
c

is the ratio of SUMS of squares, and

hence increasing the number of examinees should affect both terms of

the ratio equally..

Figure 46 shows a scatterplot of values of p
2

calculated on 2N

(or, as before, 4N) examinees against u
2
calculated on N examinees.

Regression analysis-showed the linelr.correlatión of the pairs of

. values to be very high, .981. The obtained regression equation was

7 2
0;(2N) -.004781 + .9931 uc(N), close enough to the modet

2
,/s) Ii2,(N) to varrant its acceptance as. the Model that obtains

the population,
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Figure 46. Scatterplot of
2

for 2N (or 4N)
c 9

examinees igainst pl\for N examinees.
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2
u
c
and the number of items

\
Harris (1972E4 indicates that his index 'Is for "fixe4length mastery

tests," presumably because there is theoretically no interaFtion between

p
2

and the number of items. Harris's index is unlike the Classical reili-
c 7

aiAiity meaiures and the two criterion-referenc'ed indices di ussed thus

far in this regard. Figure 47 Shows a scatterp1ot or-pc forn items .
\

.:- 2

2
,

against pc for n items, with n = 10, 20, and 40; and for crite'ion levels

of :6, i..7, .8, .9,,and 1.0;

. The linear correlation of this scatterplot was very high, . 7 . The

obtained regression equation was 112(2n) -.0721 4. l',975 p2(n). i'hi
.. C C

v

'appears different enough from the expected no-effect model ,of p ( )
, .fl C

p2 (n) to suggest that another, model might be iiivre appropriate, butex-

2 \

perience with the(simulated) empirical properties of u inu, icatc; another,
-

explanation. The data points were generated at five criterion level's,

enumerated above, rather than for a number of values of percent mastery;-

2-
yet pc is more closely related to percent mastery than to criterion \

. .
\

level. Depending on the score distribution, the percent mastery can Rum-
\

I

ate greatly for a given criterion level. For example, in the data discussed

here, a criterion level of .8 produced percent mastery values ranging from**

2 2
0 to .81. The model pc(2n) = p(n) would mOre likely be appropriate if

the data had bevi generated for a set of valueS of.percent mastery rather

than fer a set of vaIues of criterion level.
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Characteristict of S
. c

.

The criterion-referenced index of separation-is additive, i.e.,

it is the mean of its component parts. The formula was given earlier

(Equation 7) as

S
c
is not a reliabiiity coefficient, but rather islin indicant of how

diitant the bulk of the scores are fro% thecutoff score.

S
c

and criterion level

[14]

As Equation 14 shows, there are aimanY values of Sc as there are-

values of criterion level. ,Figures 48 through SS show the behavior of Sc

. .

..for each distribution as the criterion level-varies froM%0S-to 1. The

relative frequency distribution of total 'scores also appears on each

graph.

The curves of S appeer quite smooth-except for those of Figures

SO and SI, to be,discussed shortly.. TIn general, the index takes on

lower values than do the other indices reported herein. There appears
-

to be no tehdency for & to appioaCh tither 0 or 1 as criterion level

approaches 0 or I.
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and the score distribution

.115

S
e
seems to reflect the mode(s) of the score distribution, as does

coefficient beta, but not,always in the same way. This is partimaarly

evident for extiemely skewed or .P.shaped distributions, such as are re-

presented by Figures SO and 51. On those graphs, the value of Sc drops

sharply to correspond with thi equally sharp mode at X * n.

Aind basic 'test-statistics--

,The size of (but not the variance in) the index appears to depend.9n

the loestion of the test mean: the, farther Aly the test mean (expressed

as a percent) is from ,S, the'higher the overall value of the index until
,

,

,

(as in Figures SO and SI) the criterion corresponds to the mode. This

appears to be the only consistent relationship between Sc and basic test

Statistics.

S
c
'and the nuMbeeof examinees

,

For a given set,of teit parameters and a given zriterion.level,

variation in the number Owcaminees did not seem to affect the value of

S. This is reasonable in light of Equation 14, in which the effects -,

of increasing the number of examinees should cancel out algebraically.

Figure 56'shows a scatterplot of values'ef S calculated- for-2N -or- 4N .

-

examinees against Sc calculated for N eiaminees, as was done for the

other indices.

Regression analysis showed the linear correlation of thisfratter-

plot to be unusually high, .997. The obtained regression equation was
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1r (2N) = - .006453 + 1.009 S
c
(N) , quite tlose.to the model

S (2N) = S
c
(N),. Thus:S

c
is not affected by variation in the number of

eiaminees.

S
c
and the mumber of items

Figure 57 is a, scatterplot of Sc for 2n items plotted again Sc

for n items, with n and criterion levels as before.

Figure 57 shows that the points hew to-the linear model.

gression analysis yielded a very high correlation of :997, and a

regression equation dfTc(2n) = - .01669 + 1.003 Sc(n), very close

tothemodelS(2n)=S(n).Hence S. unlike certain other indices,

is apparently not affectea by variation in the number of items.

NI/
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Figure 57: Scatterplot of Sc for 2n items against S for

n items.
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Relations Among Criterion-Dependent Indices

Two other indices enter into the analysis at this point: The

cosine-pi estimate Cr
ospi

') of the tetrachoric Correlation coefficient
c

and the phi coefficient (r0). These-indices are calculated from the

gran4" fourfold tahte resulting from all,possible split-half categorize-

tioms described near the end of Chapter IV, under which conditions 1.0

is identical to &efficient kappa. All three indices were defined and

briefly discussed-in thapter IV.

One-way to summarize Oich of the data is to superimpose, for each

parameter set, the 'individual graphs of the four indices presented

earlier plus two more (but note.that u2c is now plotted against criterion

level rather th..n percent mastery),.. Figures SB through,65 show values

of $ k2 u2 S
'

r
cospi

,and r al well as the relative frequency
4

distributions of totll scores, for tach r the eight parameter sets, using

criterion level as the independent variable. In many of the graphs, It

appears *at these six indices areroughly grouped into three families:

$, k2 and S
'c

in one r
coSpi

and r in another,.and ('with'some exception'q)

p2 by 1%,04f. More will be saitl about these apparent interrelat,,nships

later.

Notice that r
cospi

runs off t.c lower edge of most graphs at the

extreme criterion levels. Th s is,due tc the occurrence of an emp4

cell in one of the,diagonals of the fourfold table used in computing

by the formula giver evlier as Equatii:n1 8. -*Al one of theser
cospi

diagonal ceUs is elipty, is is often the case at extremely low or high

criterion levels, r
ospi

is -1, even though the coefficient may have
c

13 7
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.1
criterion level I

.5 .6 ,7 .8 .9 1.0

rigure Tndices V3, cri,'prion 1evels parameter set 1.
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Pigure 62. Indic('s V5. crLterion level; parameter set S.
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quite a different value when the cell-kt-mearly--empt-r.-- For--example.,

Table 9 shows for the score distribution corresponding to Fi.gure 64,

the proportions within the four cells and the value of r , for cri-
%Amps

terion level's of :90 and .95.

TABLE 9

EXTREME FLUCTUATIONS IN r
cospi

Criterion
Level

. Proportion

B

inlet:al,

C 0

xco api

.90

.95

.0020

..0000

.0145

.0047

..0145

.0047

.9690

.9907

-.7097

-'1.0000

Becausicof this property of rcospi'
Some of the analyses that follow might

have been substantially altered if these extreme and unrepresentative

values had been rescored or excluded from the dita. -

'-Coefficient beta and other indices

Figures 58 through 65 suggest that coefficient beta measures much
.

2
the same thing as does Livingston's k at least for unimodal distribu-

tions. The two indices appear to have similar fluctuations as the

criterion level varies, am4 they are generally close in value at each

criterion level. The major difference is that B is sensitive to (has

minima near) the mode(s) of the distribution, whereas k2
TX

is sensitive

6

to,(has minimuM at) the Mean of scores. Where the mean and mode more



. .

or less'coincide, as in Figures _Wand 64, the coefiliferiti-iirs-TiffitiisT---z.

equal in value. For a bimodal,distribution such as.in Figures 63 or 65,

-hoirver the difference between them is'clear. Since,a true CRT could

.well be expected.to have a bimodal distribution, this difference between

the two coefficients is important.

Stepwise-regression analyses bear out these intuitive ar nts

(see Appendix D for tables of data). In the regrestion model with S as

-the dependent varfable (Table D-l) and with test mean, percent variance,

KR-21, criterion level k and Sc t's the independent variables,.k.2.

was always first to eftter.the regression equation (and'Ilence would be

closest and most influential ih.a "StatistiCal sociograiin) fOr each Of

the five Unimodal distributions', and accounted for between 71% and 92%

of the variance'in B Also consistent !ith,the intuitive argum

the amount' of variance'accounted for was 71% and 83%'for the two distribu

tions in which the mean and modewere some distance apart, and was higher

for the distributions in which they more nearly coihcided. The regression

coefficient was always positive and with but one exception lay between .64

and .90. For each bimodal distribution, k2TX a
lways entered the regression

equatidn also but was never the tirst variable to do so, and it accounted
Oh.

for verylittle variance in S.

When all unimodal distributions were tiken as a group, 07,x was

again the first variable in the equation and accounted for all but 64; of

the variance explained by that modet; it did not even enter tNe equation

when all bimodal distribution's were taken as a gro4.
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Froethe above data, which:ate rather censiStent fotnteOwise re-

gressión analyses, it seMA 4:41.sonable to conclude the following: for

2 ,

a unimodal test and t measure much the same thing !ind result in
TX

similar values but this.relationship is weaker when the mean and the mode

are not proximate; for bimodal tests, the two indices are sensitive to

different properties of the score distribution.

Coefficient betvalso has a moilerately strong relationship with Sc-.

In the regression analysis discussed above, S also always entered the

regression equation. For eath unimodal distribution it was always the'

second variable to enter; for two of the three bimodal distributions

(Figurei 63 and 6$), it was the first variable to enter, but accounted

for only 29% and 52% of the variance of 8. Figures 58 through 65 show

that the curve of S over criterion levels did not generally fluctuate

as much as.did the curve of 8, and S general* bss a much lower value

than does 8. Nonetheless they seem to measure somewhat-similar things.

When r"
ospi

and r
0
were allowed to enter the reiression equation,

c

the results were clot consistent. In one instance' (Figure 61), 2.0 was

the first varzable to enter and accounted for 95% of the variance, but

this was a unique situation. Likewise, when all bimodal distiibutions

were taken as a group, both ro'and re;241 entered theequation and to-

tether atcounted for about half of the explained variance. Ho Weyer, this

."

same pattern did not hold fel' indlvidual bimodil distributions.

8



-and other indices

131

When Livingston's k2Tx was the dependent variable in the.stepwise

regression analysis (see Table D-2 in Appendix V), the results were less

consistent than When B was the dependent variable. For. instance, 0

did not always: enter the equation when all variables were allowed to do

so, even for unimodal distributions. However, it was the first variable

to enter for:four of the five unimodal distributions when-the independent

variables were restricted to the criterion-dependent test indices. Also,

as in the analysis of 0, when all unimodal distributions were taken as

a group, 0 was the first to enter and accounted for 83% of tht variance

of k
2
1 no matter which variables were allowed to enter the equation.

A similar result'occurred when all distributions were taken as a groUp.

When all bimodal distributions were taken as a group, 8 did not enter the

regression equation. Thus it is clear that k
2

IA
measures much the same

thing as does 0, particularly for unimodal_distributions.
-

For most of-the distributions, p
2

also entered the regression equa;--
c

tion, but the regression coefficients and the amount of variance accounted

2 -
for were inconsistent. For the three distributions for which uc

was the

first to enter the equation, (Figures 61, 62 and 65), between 69% and 92%

of the variance in k
2 was accounted for by 11,, and the regressiOn coef-2

-TX

ficlents were all negative. MSc, when all bimodal distributions were

taken as,a group, 4nd all criterion-dependent indices were allowed to enter

. 2
the .equation, u c

( with a negative regression coefficient) accounted for

4TX"
25% of the variance:in k Nonetheless there does not seem to be suf-

ficient evidence to generalize.

149



132

2
p and other indices

2
In the stepwise analysis of regression with pc as the dependent

variable and the other criterion-dependent test indices as the'independent

variables (Table 0-3),:;r0 was the fitst to enter the equation,for three

of the distributions (Figures 60, 63 and 6$.). For the other five dis-

tributions, either 8 or k was, the first variable to enter, and the

regression coefficients Mere always negative. This is an indicaLion that'

p
2 measures-something opposite to what 8 (or k

2

TX
) measures. For each

diitribution r 6 was always either the first or second variable to enter

the equation, and the regression coefficient was always positive.

When unimodal, bimodal, and all distributions were token

as iroups, was also the first entering variable accounting for 611,

94%, and 79% of the variance, respectively.' Hones it seems clear that,

particularly for bimodal distributions, u: and ros measure similar things.

S
c
and other indices

.Althen-a11' variables (basic test Statistics and-parameterS, cri-

terion level, percent mastery, and-the criterion-dependent test indices)

were the free variables in.the analysis the results for Sc ware not,

consistent. However, when this set was rest icted to the criterion-

dependent test indices (see Table D-4), coefficient beta was the pre-

dominant variable for all but two distributions (Figures,S9 and'61),.

suggesting that Sc is in some way associated.with,.0 (and therefore with,

k2 ).
. TX

However, the percent of variance in.Sc accounted for tof 4, was
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not alWays high. Moreover, vhen unimodal, bimodal and all distribu.

tions were taken as groups, the reiults were inconclusive. :

--
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CHAPTER VII

ls

SUWARY.AND SUGGESTION'S FOR FUTORE RESEARCH

Summary
r

In Chapter I it was stated that an increased acceptanee of the

interrelated nations of'behaviorar objectives, individualized instruc-

tion, and mastery learning has given rise to,new kinds of educational tests.

One of these new kinds,of tests has as its pUrpose the efficient separation,

of the simple of examinees into.two groups, often-labeled' "nonmastery"

and "mastery." When an examinee has only two courses of action avail-

abTe after taking this kind of test--stay in the instrUctional medule

clvered by-the test or go on to siudying the next modUle--his "seore"

need only be reported in terms of this dichotomy. Further subdivision

the test SCOTe scale serves no prpose; the dichotomy is sufficient

to allow a decision leading to action to be made A test of this type,

which uses several itemsdrawn from a well-defined universe to meature

a single, narrow behavieral objective, and whose results yield a dicho-

tomous categorization with reference to a predetermined criterion level,

has herein been called a criterion-referenced test (CRT).

In Chapter.11, some of the psychometric implications of the dif-

Ierences between c CRT and the more familiar norm-referenced test (NRT)

were given It was Shown that the.purpose, desired score.distributions,

test specirications, construction, and use in decision,making of CRTs

are not generally the same as for. NRTs. It was also shosn that.



the classical and generally accepted mathematical model and assump-

tions that underlie the definitions of rad.-.tional-mmasuvament-

error and NRT test reliability do not apOly to the dichotombus derision-

making facet of a CR,. Thus a new, dual mathematical true-score Model for

CRTs was proposed: a CRT L.s both a positional facet, concerned with the

primal measuring process and consistent with the classical assumptions and

the continuous true-score model of an NRT, and an oPerationil facet, con-

cerned with the dichotomous decision-making,process and consistent with a

Platonic (dichotomous) true-score model but not-with,the classical model.

It was further argued that the meanings of reliability should be different

for the two favAs of a CRT. Whereas in NRT (or the positional facet of

a CRT) is reliable insofar as an examinee receives the same score on two

paraltel sets of data, the operational facet of a CRT demands that the

test must also be reliable in .ofar as the examinee receivesIthe same di-

chotoMous categorization from the two sets of data. Butisince a classical

reliability estimate,is inappropriate for this second facet of a CRT,

what should take its place? 4.`

_In Chapter III, an answer to this question is offered. An appro-

priate CRT reliability index ought to be founded on the notion of consis-

tent'categorizations. A single-administration coefficient that reflects

this notion is the mean of all oeisible split-half:coefficients of agree-

metnt, where the coefficient of agreement is the proportion of consistent

kategorizations, he., the proportion of entries in the main diagonal of

a fourfold ma5tery/nonmaster contingency table. Such an index, labeled

coefficient beta (P) because of the mean split-half analogy with
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Cronbach's alpha, was derived, and theoretical and computational for-

mulas were given. The computational/adjustments required when the

test has an odd number of items were noted. Certain technical charac-

teristics of Coefficient beta were mentioned, and B was shown to satisfy

a list of CRT index criteria that were proposed in Chapter II. Finally,

coeffitient beta was extended to trichotomous data, and a formula for the

modified coefficient was given.

In Chapter IV, three other recent criterion-dependent test indices

were defined--k2 a (Livingston, 1972a), p2 (Harris, I972a), and S
. c .

.

traduced in the chapter) -- and their ratienales were briefly discussed.

Each index was tested against the CRT reliability index criteria pr:poeed

earlier. In addition, the cosine-pi estimate of the tetrachoric correla-

tion coefficient and the phi coefficient were defined, and it was shown

that either coefficient can be construed as a single-administration index

if it is calculated from a fourfold table whose cells contain numbers

resulting from all possible split-half mastery categorizations. It was

shown that, under these conditions, the phi coefficient and Cohen's kappa

coefficient-are identical.

In Chapter V the questions investigated in.the study were posed and

the analytical methodology used to seekanswers to them was discussed.

The questions dcalt. with certain aspects of coefficient beta and the three

other criterion-dependent indices: their characteristics, their inter-

relationships, their relationships to basic test statiitics, and their

behavior as criterion level changes and as the number of examinees and

the number of items increases (and in the latter case, the degree to which
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the Spearman-Brówn prophecy formula applies).' The enlyleasible way

to carry out this kind of stUdy is with siOulated data,..atid hence the

computer.program that generated the data for this stu4 was described_

in this chapter. Included ih 'this discussion.were the equation uied by

the program to gener/ate item-by-Opilresponse matrices, the available

input parameters and output options- and theeightjnput parameter sets

(and hence kinds of score distributions) that were selected for this

study. The parameter .4!ftS were Chosento simulate threetipis-of tests,

discussed in the chapter.

. In Chapter VI the results of,the data generation were given in
-

graphs and the data were analyied through stepwise analyses of regression

both linear and non-linear. Characteristics of each of the four C>iteriOn-

dependent test indices were given. For example, for all thb score dis-
-

tribution types studied, consistently moderate to high coirelations

existed befween_the mein (3ver"criterion level) of each cf three of these

indices and classical reliability (and in the case Of P2, percent of-maXi-

mum varianCe). Nene of the four criterion-dependent indices,was affected

by the number of examinees, which is reassuring. However, the indices

varied in the cligree to which they were affected by changes in the number

of items. The criterion-referenced index of separation, S , and Harris's

2
index of efficiency, p

c'
were not affeqed by the number of'items, but

k
2

TX
were:--The Spearman-Brown prophecy formula explained the be-

havior of k
2

but the behavior of 0 was explained equally well by the.

Spearman-Brown prophecy model and the (linear) no-effect model. The.

empirical evidence showed that the variation in 0 as the number of items

15-5



---intreasea, was-best explained-by'vmodel-that-is an,-algebraic Compromise

between the Spearman-Brown and the rq effect Models.

.

Other relationships kere revealed« Perhaps most important and

clear-cut among timin vias 014 for unimcdal score distributions, coeffi-

dent beta seems'to measure much the same thing as Livingston 's k2TX

their'fluctuations over criterion level and their rariges of values'-were

generallfifiite iiiilar-:but for bimodal distributiong7this relation-

ship does not hold. The reason is that 0 is sensitive to (has minima

near) the mode(s) of the score disSribiAion, consistent with .the proposal

.that a CRT reliability. index.should /lave -higher values as the bUlk'ef
4 r '

scoreS depart from the cutoff itbre,, whereasic
2

T
is sensitiveto (has

X

minimum at) the test mean;

There were Mederately,consistent correlations (over score distri,

2
bUtion types) between -0 and Sc, between,k2 bcand 0, and. between

Pc

and r
0

Put differently, coefficielits 0, k
2

and S
c

seem to measure

similar test result attributes, as du p
2

and 1.0 (and therefore K ).
C,

2
However, there is a taAc difference between'the first group (0,

2

and S
c
) and the second group (p and r ): the indioes'in the former

0
2

group tend to have higher values (1, in the case'ef 0 and k TX
) at the

extremes of criterion-level,'whereas the latter group tend toward a at

these_same_extremes.

choose-a "best" reliability coefficient for the operational facet

of a CRI. end most take into account its nrmises, rationale, and charac-

terisiics. Of coefficients 0, .k2Tx, and p:, only. 0 is-sensitive to

the test mode(s) as distinct from the mean. Thus if it is desired that a
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CRT operational reliability index

from the cutoff, coefficient beta

be used.

have higher values as scores depart

is the reliability index that should '

SUGGESTIONS FOR FURTHER RESEARCH.

The following research suggestions are based on the results of

this study:

1. Coefficient beta increases as the number of items increases, and
. .

a
it is the meanecoefficient of agreement calculaeed on all possible halves

4(

.of a.test. Thes.e two facts may suggest that B is really'a half-test index,

and that its.value Shouldksomehow be stepped.up if it is to be applied to a

whole test,

At least three basie)approaches could be.made to the steppihg-up

procedure. One approach would be to provide a formula that produces a

whole-test coefficient as a function of the half-test coefficient, similar

to the Spearman-Brown prophecy formula or to Equation 12 in Chapter VI.

Another approach would be.to calculate coefficient beta on a test of

-

twice as many items as are ultimately intended to be used and then drop,

selectively or randomly, half the items. A third approach would be to

estimate, based on the obtained score distribution, what the score distri-

butien-woul-d-he-on-a-testtwi - and--then-calculate-ffrom the

score distribution so estimated. This last approach seems to hold

promise, and.further research results using either a regression, a

Baycsian, or a binomial model to estimate the double-length score distribu-

tion could prove fruitful. (See Appendix E for binomial model approach.)
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pter II it was argued thaf operational reliability of a CRT

-mUsr:'ne'cbncerned with accuracy of placement to;categories, and that

one usefUl definition of such reliability would be the proportion of

classificatiOns which arecorrect classifications (see Tabfe 3). It

'wasfurther suggested that a meaningful CRT reliability coefficient would

be a statistic which estimates or is a lower bound to this proportion:

,

Although it is intuitively reasonable to suppose that coefficient

beta is related to this proportion of Classifications that are correct

classifications, iuch a conclusion has not yet been proved mathematically

and affords a topic for future research.

3. Coefficient alpha is equal to the mean split-half classical eli-

ability
:

coefficient. Coefficient beta is equal to the mean split-half

coefficient of agreement. For a given total score distribution takes

on different values for different item-by-examinee response matrices,

and a tikes on different values for different criterion levels. Pre-

liminary research indicates that, for a given response matrix, the mean _

value of 0 (over criterion level) is often close to the computed coeffi-
,

cient alpha. Ii'may be that, for a given distribution of total scores,

there is some relation (upper or lower bound? algebraic function? 1,

equality?) between the mean value of d (over response matrices) and the

mean value of 0 (over criterion levels). This possibility would-be n.7.

teresting to investigate.

4. It was pointed out at the end of Chapter FV (see-also Appendix A)

that Oen the off-diagonal cells in the fourfold,table are equal, the phi

AL

coefficient (rs ) and coe fichent kappa (K ) are identical. It was then
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hypothesized, based on a small sample Of score distributions, that K

(and thus r ) is a generally close los* bound to K, the mean split-

hafckapa coefficient. If this conjecture cansbe proved, one could-use

1.0 (Equation 10) to obtain a close lower bound to Z.

5. At the end pf Chapter III:coefficient beta was extended ,incor-

porate trichotomous data. It may be that the coefficient Can be further

extended to incorporate data utilizing four, classifications; or possibly

generalized to any number of classifications. Extrapolation from an

analysis of-the formulas for 0 and 03 suggests, however, that for an

n-item test, the maximum number of classifications is 3. + 1.
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A-2 Relation between the two indices of separation

In Chapter IV. the index of separation of total scorer, S, is

given (Equation 6) as:

rs z
4- L(x - v2

,nN p n

n . the number of items

N number of persons; and

X . pth person's total score.

where

In addition, the criterion-rpferenced index of separation of total scores,

Sc, is given (Equation 7) as:

n,

1

°c

N, and X aYe

)
2

X{ C-X-C)2

, where
X X

X<C X>C

as above, f
x

is the frequency of score X in.the distri-

bution of scores, and C is the criterion cut-off score. S can be

shown to be a special case of Sc . If we start with the formulation of

,Sc and substitute for C , we obtain

X 7

f
X -n

211-

)

n -
2
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A-3 Equivalence of the phi coefficient (r.*) and coefficient kappa K*)

when off-diagonal c44, are equal (13a,CiE)

A
(A+E) (A+E (D+E)(D+E)

+ N - le
K

(A+E) (A+E) (D+E)?+E)

AN + DN (A+E)
2

- (D+E.1
2

.

N2 - (A+E)
2

- (D+E)
2

A(A+D+2E) + D(A+D+2E) - (A+E)2 - (D+E )2

(A+D+2E)
2

- (A+E)
2

- (D+E)2

A2 + AD 2AE +` AD + D2+2DE- - A2 - 2AE E
2

D
2

A2 + D
2-
+:4E

2
+ 2AD + 4AE... 4DE - A 2AE E D - - E

2AD - 2E2

2AD + 2AE + 2DE + 2E2

2(AD-E2)
i(A+E)(D+E)

AD-E
2

(A+E) (D+E)
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Graphs.of RX) for ear;h Score X. for Selected

Criterion Levels and Number of Items

B-I. 0(X) for each X on a 4-Item test for all meaningful

criterion ievels.

R-2 0(X) for each X on an 8-item test for three selected

criterion levels.

8-3 0(X) for each Xen a 16-item test for four selected
'criterion levels.

8-4 0(X) for each. X on a 32-item test for seven selected

criterion levels.

8-S 0(X) for each X on a 10-item tost for three selected

criterion levels.

8-6 0(X) for each X on a 20-item test, for'fi'Pe selectd
criterion levels.

8-7 0(X) for each X on a 40-item test for five seleLted

Lriterion



0 (X)

Criterion level:

Figure 8.1, 0(10or each X on a' 4*.iteri test for all leaningful crItirlon levels,
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-

L 0
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tyre W. 0(X) for each X on an 8.ites test for three selected criterfon levels.
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Figure B-3. #(X) for each X on a 16-item test for four selected criterion levels,
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.6875 , .8125 .9375

.625 .75 . 875 1.0Criterion level:'

Figure 3-4, 0(X) for each X on a 32-item test for seven s91;cted criterion levels,
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APPENDIX C

CoMputer Program Input-Parameter Distr!!)ions.and Subroutines,
.

With Notes on Calculation of Vector Components

Person Competence

c * (c-
2

...= c c
N
)'

'

where N = number of persons
p'

1. Chi-square. Calculated from

-Y
-1 p

[2 r ] 1 JY-2)/ ?e-t/2 dt
N

v/2 =

.0

, 1

where v -=.a parameter selected to control the shape

(degrees
I

Of freedom)
.

and c
P

= y
P 1

. AI
,
where A is a scaling factor chosen

;

so that the.maximuurvalue of c coincides with
P

.a porameter selected to control cie range. ,-

2. Mirror-image quasi-chi-square. This .is calculated as above,

with each c being rPrItaced by 1 - c

The calculation ofthe chi-square vector components iS similar to diat o:

normal distribution vector .:,omponents (q.v. for a less technical explanation4

The chi-square distrihw.ion was included as an option because empiri-

cal data frem criterion-r,-ferewced tests suggest that post-instruL Ion

t-)tal f;core dist ibutions often approximate the distribution of.the mirror-

imagv chi ( la Urttmr, it ee* reasonable to asSume that a populati,on

this T t'.no%41edgcab1 e mi .ht havQ, pre-instructAon total scorc distr.

skek.;ed chi-square

411
caico447, fro
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(21t) -1/2 fYPe-t2/2 dt = P
0.5

and-c = y B + p, where B is a scaling factor to make tile
P components fit within the predetermined

range, which is itself a parameter selected
to control dispersion

and p= c(c ) is a parameter selected to control location.

The vector components are'not determined by,generating random values,

thereby neceSsitating truncation to make them fit within a range, but

rather by apportioning the area under the curve according to the distribu-

tion function, and assigning as Values the "weighted midpoints" of.the

. Ptue_segments within ew.:h of N regions. The operation can be thought

of as having three steps: first, the Al and standard deviation of the

normaldistribution are defitied; second, the "midpoint" of each segment is

found (in the case of the two extreme chunks, by finding the points beyond

which in each direction l/2N of the area lies) and thire, a linear

transformation is applied so that the t.wo extreme val coincide witl the

limit: of the predefine-i range. (Actuarly, theyangei rather than the

s'Otridard'deviation, is defined, but the computer program merely works

1/ backwards.)

4. Bimodal "inverse nor:14i14" First a nw-paal distribution vector is

Ati'defined abo4e. Then a transformation is app!ied and adju-

The r.,ftect of flie transformatio 4nd the adjustments is "that of cutti

the normal ta.417 at the middle, trwtslatinw.the lef!.

.5 tO tte right, :4n,!! thi. right If *,o tte. left, (See Figure 4.S:' far 40

t )

S. A gtAY- f ,1e inOudtd t;',t eftac
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.one to approximate unusual shapes in the compet,.2nce distribution. Given a

distribution,transcribed into graph form, with x and y coordinates of up

t

to twelve points on the curve such that 0 < xl < x2....< xn < 1, one inputs

these ordered pairs as parameters. The subroutine calculates the areas

of the trapezoids under the curve arid assigns elements of the competence

vector accordingly.

6. List. With his option, one can specify the vector components

by supplying a list of the component values.

7. Call. Additional diStribution subroutines, such as binomial,

can be called into play and used as tht need arises. Only options.3 and 4

were used in this study.

,/Item Difficulty

d = (d1, d21..., di,..., dn), where n = number of iLems

1. "House." This s,so named because the region under the curve

looks like a child's drawing of a house--an isosceles triangle atop a rec-

tangle. Input parameters define thc "corners" and "peak" of the "roof."

This distribion includes the degenerate subcases of uniform (rectangular),

ald'constant.

Empirical data suggest that the distribution of item difficulties ft

? '

approxinates sore t.:Tie of "house" distribution. Uniform distributions were

2. .Thi is the 5ame .1-r; jescrihed for the veCtor of irson

npoi(::.

ti This the 'cant 4S tor c.

1.

for
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Item GoodnesS

g (gl, g2"'" gi''''' gn)

Distributions and other options for the vector g are the same as for d.

-A
However., since the-vector components for d and g are generated in as-

cending numerical order, a subroutine is employed,which randomly_permutes

the vector components by reassigning th*ir subscripts. This is done in

order to avoid interaction between di and gi.

In this study, only uniform distributions were used.

Error Terms

All e.,..7or terms are randomly generated from an internal normal distri-

bution subroutine, the standard deviati,A of which can be specified. The

starting point (within the computer's subroutine) for any of the error

terms can be 'specified, so that identical error components can be generated

on successive trials if this is wanted. ris wou.151,1,_by desirable, for ex-'
.0,

ample, if one wanted to investigate the effect on reliability indices when

only the item goodness vector is changed.



APPENDIX

Summaries of Stepwise Analyskes ot Regression

1)-1. Summary of step.kise analysis of r4ression, with fi as

dependent variab .

D-2. Summary of stepwis analysis of regression, with k
2

as dependent variable,

D-Z. Summary of stepwise analysis of regression, with u2c

as dependent variable.

D-4. Summary of stepwise analysis otregression, withrSc

as dependent variable.

Li
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Parameter

Se:(s)

Coefficient

of

Determination

Constant

.1=111

.91 .29,

494 .16 4)

3 .74 .03

6

7

-.68

.93

.80 11

,97

.65 -5,1

unimodal

(1,2,3,5,7)

bimodal

(4618)

all

(1-8)

Nelft 1101.8wOWII

.20

,S1

,85

.23

4) -.57

Coefficients of regression equation

Criterion

iv KR.2I Level (a)

(b)

-1,4

5) .16.4

1

1) .11

3) .58

2) 1.7 18

3) -.05

2) .15

-.098 4 -.36 2) -.14

2) -,19

S) -.14
-.099 2)

(a) percent of variance in t'accounted for by the variable, if 10?o

(b) number set off to ihe left indicates variable's order of entry into regression equation

190

2

TX
(3)

(bi

.74 88 2) .40

..64 99 2) .95

.90 71
2.)

.05

3) .044,

.29 83 2) 1.6

5,4 31 1) 6,1

.88 92 2) A

.55 10 1) .95

,90 83 3) .20

1) .28

,91 72 3)

Table '0-1; Summiry of stei .se analysis of
regression, with 3 as dependent variable.

(a)

IS

191





Faraketer

Set(s)

Coefficient

of

Deterlination

Coefficients of regression equatiOn

Constant 0 (a) (a)
(a)

4

I.

6

7

unimodal

(112,3,5 7)

bimo'dal

(4,6,8)

an

(14)

.87

, 92

".81

.95

.95

,83

0,04

.31

40

1.0

.95

99

074

.99

1) ..044 69 2) .,012

(c) 1) .27 92 2) ..14

1) .24 92

.86 .17 83

;97'

t41 t 7..

3) ..24

1) 4018 83

) .,10

1) .1072 25

4) ..23.

2) .037 3

6) 055

-1047 93

2) 14

,q 0044

3) .24.

4,114011.1.MOM1 M

mwwwWww.mm

2) ,034

2) .,24 11

3) .019

2,-5) (d)

2;.5) (d)

4

(,a) Arvin of variance in 11 aeon* for by ,this variable, if 10$

TX

num set off to the left tes vaiiable's order of entry into regression equation

,444144100

is the only whiodal distribkion Where 0
c

rath4 Or 8,is thefirst entering variablqhoweverlthe

. corre don between p and 8,for this diStribution is. ..90 .

(d) r 1 ias the second variable to enter, but left at th'
/

e'fifth step 193.
cospi ...

\

4

Table 04, ary of s p(wise analysis of regression with k

44 .

as,dependent va,riablo,



4.

4..

a.

194

Coefficient
Piraseter .

Sit (s) Constant (a) 2 'f(a)of

Detolination

(b)

1.3 1) -.98' 85 3)

2 1.5n '1) -4.96 88 3) .59

.8p 1.5

4 8 12.9 3) -8 '2 /11 1) -6,1 69

:96' .2,3 1) 42,0 92

.,99 24 3) .85 5) -2,0

.99 2,1 -1,4 ,, 98 4) -.79

.99 4,7 -1,1 5). -4.3

Coefficients of regression equation ."*.

(a) (a) rcospi (a)

31 .36

3) ..33

2) ',76

2) !.32

1) 1 9 71 2) -2.5

2c4,3' 4) -.2.1

02) .53

1) 1.07 97 41 053

2) .49

1)41.1 96 4) .412

,joissodal

.(1#41,S,7)

. 8)

all

.96

';93

1,4 2) 1 2 25

4.9 ) -.48

1.4 ) -,81

5) -.33

2) -.47

,71 12

4 1) .95 61

)

) Is

1) 996 94

(a) peicent f Mince in 02 'accounted for.,by this variable, if 10%

c

(b), number ie off to the left indicates variable's order of ,entry into.regression equation.

2

- Table 0-3. Sumary of stepwise analysis of regression with p as depandent.variable.



Coefficients,of regression equation

(a) perceni of variance in SciacCounted for.by this variable, if

(b) numbei. set 'off 0 ihe left ihdicates variable's ordeiof entry Into regression equation

(c) this was the firsevariable to,enter, but leit at the forth.step

(d) no variables dritered into this equition,,an4 thus there is no coefficient of determination

Table D.:I ,Summary of stepwist analysis of regression with S
C
as dependent variab4-..

'
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:APPE$DXX E

A Binomial'Model ferf,Scepping Up COefficient Beta

noted din Chaitillfti-that since $ is eqUal to the mean pro-.

-.portion of, agreement on all pbssible iplit hnIVes of a,tist, it

can he. considered to'be a -half-test coefficient and thus 'should

somehow be stepied up in order to represent the operational reliability

of a ti! Ie test. The formula presented.in Chapter 6 was based on

purely empirical evidence Ind thus is unsatisfying mathematically.

One mathematical approach to the solution to_ this problem 'is,

to use the binomial Probability model. Briefly, the method is to

calculate $ from an estimated frequency distribution of total

,..,scoreafor a double-length'(Zn items): teSt; based on

frequency distribution of scores frr the test Of n items,..and

ttili*ing, the *binomial Probability Model te.eStimate:Iikellhoods

conderning each poIrson'iideuble-length test -score

More specifiCally, supposeperson P: reC'eives a ,sedre of x _

on an h-item.test; '.11nder theHbinemial model, is:the, bqst eStimate

of the proportion of it:ems in the universe thit he mould answer

,

.,..correctly !Ind :also:the best_ estimate a the.. piopOition of

items he, would anstter correctly on a test'cif 2n items. 'Let y be

the examinee s scare.on this teit; Y .
40.0 1. ... Then the

. ,

probability that parson P reCeives a score of

p.



(Note-here that

2n

PkYD y
y=0 .

2n

yk0V N.

But theke are f persons with seore k, and hence the
x

-oontribution to y from all thOss with thie-score is

tioiever, i number of different -scores x :will' Contribute.
_ .

.

freqUency of y Thus;* summing, dyer. aAl :scores x, t1e friviency,

of icóre y in the distributiOn:k

.Ne_heve thus arriv.ed nt a method Of .calcuiating 'expected

frequencies, ,of: each cemponent of. !he' vector Fy= .(Fe, Fi ...1 F ),
2n

the expected Ifregeency distribOtion of scores on the (hypothetical)

double-length test. Wean. now compute 0 on the;40.ible-length

teat:-

where (al: be fore

number of eXamineee;

n = number of items4on the single-length test)";
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a score.-on theThypoth4tical test' pf 20t4iS.; :

21:thecutoffseore:on the -n-item tese,:and Zne.e tbe ssiallPst

integer > cn;'
,

(a,b).0
y

. 4(7-
, 2Txx

Where f
. X

freq0ency of:score k_on.de ii-iteM test.

When x-

Note that.

1. 0 is generally not an integOr;

w,.

s the obta ned
_

0 or x u n, thefl quantity 0 appears in the formulation

of F
'

and must be defined as equal to 1;
Y

the.second term tn the_brackets vanishes when C

third term vanishes when C n;

4. the adjustment for odd n is no longer necessary;

an analogous formula holds for $3, tfie stepped-up coefficient

c,

the

for trichotomous date,
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