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1.1

cy
Co
ON Introduction

r.e.\ This cours is a course about programming: that is about how to

r-4 get a computer to do what you want it to do. To get a computer to per-
C7.5

LIJ form a specified task, you must give it a set of instructions which

constitute a description of the method by which the task can be performed

(this description is technically known as an algorithm). The instructions

have to be written in a programming language, in our case LISP. Each

programming language specifies in its description a number of prindtive

oFerations which the oamputer already knows how to perform and also speci-

fies what you must write so as to make it perform these primitive opera-

tions. Your description must be built up entirely of primitive operations

- you cannot assume that the computer itself will be able to break down

a complicated task into the primitive operations which make it up, even

though to you the resolution may seem obvious.*

An analogy

In order to clarify this point, let us forget about LISP for a moment

and imagine a human-like robot, which only knows how to perform the follow-

411 ing simple tasks:

1. It can read a line of writing and distinguish between items

on a line, i.e. it assumes that one or more spaces appearing

after a sequence of characters delimits an item. Thus a line

THIS IS A LINE OF PRINT

contains six items.

* Exactly what primitive operations are available varies from one computer
language to another. You will begin to become acquainted with LISP's
repertoire as we procede with the course.



1.2.

2. It can count.

3. It can maintain a number of lists, and can manipulate lists

to the extent of adding or deleting an item.

4. It knows what 'if' means, and can transfer its attention from

one task to another when commanded to do so.

5. When told to stop work it will do so.

Now let us assume that, for some obscure reason, we want to discover how

many people in a specific collection of people have only one foreilme,

and we want our robot to perform the machanical task of collecting into

a list the names of all such people.

First we must get our initial information (our data) into a form

which can be manipulated by the robot. So, in this case, we might write

each person's full name on a separate line:

e.g. JOHN HIGGINBOTTOM SMITH

MARY JONES

DIETMAR HANS KRIEGER

COLLETTE MEUNIER

-etc-

Now we must specify an algorithm for the robot:

0. Set up a list to contain the names which have only one fore-

name. This list will initially be empty (k.e. will contain

no names).

1. Check if there are lines to 5e read. If there are not, give

back the list of names which have only one forename and stop

work. (Note that if there are no lines at all to be read,

this means give back a list with nothing in it).

2. Count how many items there are on the next line of data.

3. If there are only two items, add this line of writing to the

list f names with only one forename. If there are more than

two, go on to the next instruction.

3



1.3.

4. Delete this line of data and return to instruction 1.

There are several points worth noticing in this. First, the robot does

not know, and does not need to know, that he is dealing with the names of

people, or even names at all. We have arranged the data in a form where-

by it conforms to a construct ("a line of writing") which the robot knows

about. What this line represents is irrelevant to the robot. The same

situation obtains with the computer. Via a programming language it

knows about certain sorts of constructs, and what these constructs relate

to in the world outside is irrelevant to it.

Secondly, deciding on the set of instructions is an arduous task.

It is difficult to be sure of the logic, to be sure that everything which

has to be done is done, that nothing which should not be done is done,

that the robot knows when to stop. This is true also of programming.

Finding a correct algorithm is the most difficult part of the job, and

the part that merits most attention. Once an algorithm is found, des-

cribing it in the correct syntactic form for a particular language is a

secondary, although sometimes frustrating, task.

A LISP program

Just so that you can see what LISP looks like, what follows is a

translation into LISP of the steps detailed above. Although you Ob-

viously cannot, and should not try, to understand in detail how this

program works, some parts of it are intuitively clear. It consists of

the definition in LISP of a function called NAMES, hich will return as

its value the list of people with only one forename. This list is built

up in the next to the last line of the function.

(DE NAMES (NAMESLIST)

(COND ((NULL NAMESLIST) NIL)

((EQUAL (LENGTH (CAR NAMESLIST)) 2)

(CONS (CAR NAMESLIST) (NAMES (CDR NAMESLIST))))

(T (NAMES (CDR NAMESLIST)))))

4



1.4

To try out this program a specific list of names must be set up and

the computer instructed to apply to that list the function, NAMES, as de-

fined above. (We shall return to this notion of a function and its

application later in the course). This is done by using the function

name to call the function, and giving it a specific list as its argument:

e.g. (NAMES (QUOTE ((JAMS SMITH)

(MARY ANN ROGERS)

function name (PETER WILLIAMS)

(JOHN ALBERT GOOD))))

argument

We shall return to this example in later lectures to illustrate

various points.

Lists

One point is worth mentioning now. Earlier it was said that infor-

mation had to be put into a form which the machine could deal with. One

of LISP's primitive constructs is the list. LISP lists have to be given

in a linear form. So the LISP version of the original.list, when it

appears in the argument of the function call above, is one long list en-

closing a number of shorter lists, where each of the shorter lists is the

name of one person.

The structure of a list is shown by bracketing. A list is always

enclosed in brackets, so all the following are lists:

is a list of three elements

is a list of one element

is a list of no elements (the empty list). It

can also be written as NIL.

((A B) (C D)) is a list of two elements, each of which is also
a list.

You should distinguish carefully between the list (A) which is a

list containing just one element A, and A (without brackets) which is

an atom, discussed in the following section.

5



1.5

Atoms

The other chief primitive of LISP is the atom, which may be either

a literal atom or a numeric atom.

A literal atom is a string of capital letters and decimal digits.

e.g. A

APPLE

A2

are all atoms. Literal atoms are used as names: in our example program

one, NAMESLIST, was used as the name of a list, and another, NAMES, as

the name of a function. Sometimes the value assigned to a particular

name is changed during the course of execution of the program, as happens

with NAMESLIST in the example program. Names whose value changes are

technically known as variables.

When a literal atom is evaluated, the result is the value asts4Uned

to that atom.

A numeric atom is simply a number, and means what it intuitively

ought to mean. In this course we shall restrict ourselves entirely to

integer numbers.

e.g. 2

-10

-357

are all numeric atoms. When a numeric atom is evaluated the result is

the number itself.

Some LISP functions

With these two primitives defined we can make a start in learning

LISP.

LISP is often said to be a functional language, in that its instruc-

tions consist of instructions to apply some function to some argument(s).

Mbst people are familiar with the function notation of mathematics,

where, for example, f(x) means that f (not here specifically defined) is

a function which-is to be applied to some argument x. LISP works the

6



same way, the functions being defined either within the system itself or

by the user. We shall first consider some system defined functions and

return to user defined functions in part 2.

The arithmetic functions

The arithmetic functions are intuitively obvious.

1. (rImEs 2 3)

fairly obviously requires the computer to multiply 2 and 3 together to

get the answer 6. The result of typing this expression into the system

will be that 6 is printed out as the result of the function.

One thing that may seem a little odd to some people is that the

function name TIMES appears before the arguments rather than between

them. This follows the function notation of mathematics and is modelled

on it, except that the function name appears inside rather than outside

the opening bracket.

Before we continue with the arithmetic functions it is worth

pointing out that when the user is communicating with the LISP system,

the system always expects him to type in an expression to be evaluated.

This expression may be a list or an atom. As we not.,,..ed earlier, the

result of evaluating a literal atom is the value assigned to that atom,

and the result of evaluating a numeric atom is the nuMber itself.

When the expression typed in is a list, the system expects that list to

consist of the name of the function to be applied, TIMES in example (1)

above, followed by the arguments to which the function is to be applied,

2 3 in example (1). Sometimes the arguments themselves are calls on

functions so tba* " too consist of a list structured in the same way

(<function name> <argument(s)).

In this way quite complicated instructions can be built up.

To return to the arithmetic functions:

TIMES has already been mentioned. It may have any number of argu-

ments and will return theiz product.
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1.7

2. (TIMES 3 3 3) will return 3x3x3 i.e. 27.

PLUS also may have any number of arguments and will return their sum.

3. (PLUS 3 3 3) will return 3+3+3 i.e. 9.

To illustrate the point about arguments sometimes being function

calls themselves, consider what happens if the expression

4. (TImEs (PLUS 2 2) 3)

is given to the LISP system for evaluation. The first element of the

list which forms the expression is the name of the function to be applied,

TIMES. The second element is itself a list, so the system expects to

find an instruction to evaluate a function here, and then use the result

as an argument to the first function. So it will evaluate

(PLrS 2 2)

PLUS, which is a call of the function which pe:forms addition, together

with its arguments, 2 2, to which the function is to be applied. This

intermediate result, of course, is 4, although, since it is an interme-

diate result, the 4 will not be printed out by the system. This result

can now be used as an argument of TIMES, so TIMES has the arguments 4 3.

The result of evaluating TIMES then is 12, and this final value of the

expression will be printed out. The process of including function calls

as arguments may go on as far as the user wishes: the following is valid

LISP, and the reader may find it instructive to evaluate it himself:

5. (TIMES (PLUS (rIMES (PLUS 2 2) 3) (rIMES 2 (PLUS 3 4)) 5)

CrIMES (PLUS (rIMES 2 4) (CIMES 3 6) 6) (PLUS 2 3)))

Here, briefly is a list of some other arithmetic functions and what

they do:

(ADD1 arg) adds 1 to the argument, which may be either
a number or an expression which evaluates to
a number.

(SUB1 arg) subtracts 1 from the argument, with the same

constraints on the argument as in ADDl.
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(DIFFERENCE argl arg2) subtracts the second argument from the first.

(Same constraints on arguments as above)

(QUOTIENT argl arg2) divides the first argument by the second,

giving as its result the integer part of

the actual answer, i.e. (QU(YTIENT 6 2) is

3, but (QUOTIENT 6 4) is 1, since the frac-

tional part of the answer is discarded.
(Same constraints on arguments as above)

9



1.9

PART ONE EXERCISES

Use the computer as a calculating machine to calculate the following:

1.

2.

3 + 7

7 - 3

3. 8/3

4. 82

5. 10 + 1

6. 10 - 1

7. (3 + 7) x 10

8. (5- + 1)/2

9. ((3 -I- 7)/5) x 10

10. + 1)/(4 - 1)) x ((7 + 3)/(7 - 2))

11. 37

12. The remainder when 538 is divided by 3.

10



1.10

PART ONE SOLUTIONS TO EXERCISES

(PLUS 7 3)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

(PLUS 3 7)

(DIFFERENCE 7 3)

(guarIENT 8 3)

(TIMES 8 8)

(ADD1 10)

(SUB1 10)

(TIMES (PLUS 3 7) 10)

(QUOTIENT (ADD1 5) 2)

(TIMES (QUOTIENT (PLUS 3 7) 5) 10)

(TIMES (QUCYTIENT (1WD1 5) (SUB1 4)) (OUOTIENT
(DIFFERENCE 7 2)))

(TIMES 3 3 3 3 3 3 3)

(DIFFERENCE 538 (TIMES (QUOTIENT 538 3) 3))
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PART 2

Introduction

2.1

In Part 1 we introduced the idea of LISP as a functional language,

saying that all instructions in LISP, except when an atom is being

evaluated, were instructions to apply a function to one or more arguments.

We then looked briefly at the arithmetic functions as an illustration of

this. But LISP is not designed as a programming language in which to do

arithmetic: it is designed as a language to do symbol manipulation.

Hence its prevalence in AI work. In this lecture then we shall begin

to investigate LISP's symbol manipulation facilities by considering first

its ability to manipulate lists.

The reader should remember that a list may have other lists among

its elements, and that these other lists may themselves have sublists,

and that this sort of nesting may go to any depth.

Primitive list manipulating functions

1. CAR

CAR is a function which takes one argument. This argument is

always evaluated and should evaluate to a list. (An attempt to

find CAR of an atom will cause a failure). The value CAR returns

will be the first, i.e. leftmost, element of the list to which its

argument evaluates. Thus

(i) (CAR (QUOTE (A B C D)))

will return A as its value.

A further function QUOTE has crept into example (i). It is

needed because, as we said in the paragraph introducing CAR, the

argument of CAR is always evaluated. Now, the reader will remem-

ber from Part 1 that when the system evaluates a list, it expects

to find a function name as the first element of the list and to be

able to interpret the remaining elements of the list as arguments

12



2.2

of that function.. Thus the value of (A B C D) is not (A B C D).

In fact, unless a function called A has been defined, it hasn't got

a value, and an attempt to evaluate it will cause an error message

to be printed out. If what we want to do is-to find the first

element of (A B C D) we must therefore find some way of suppressing

evaluation of the list. This is precisely what the function OUOTE

does. Its value is simoly its argument, unevaluated.

(ii) (QUOTE (A B C D))

has the value (A B C D), and example (i) will work correctly.

If the list (A B C D) was to be used frequently, it would soon

become tiresome to have to write (OUOTE B C D)) every time we

wanted to perform an operation on the list. It would be easier to

assign the value (A B C D) to a variable, and use the variable in-

stead. This can be done by using the SETO function. SW! takes

two arguments: the first is the variable to which the value is to

be assigned, the second the value itself. Only the second argument

is evaluated, i.e. SETQ quotes its first argument - the Q is there

to remind you of this. Thus

(iii) (SETQ D1 (QUOTE (A B C D)))

gives the value (A B C D) to the variable Dl,

call

(iv) (CAR D1)

and a later function

will have the value A, since the result of evalUation of a literal

atom is the value which has been assigned to that atom.

QUOTE need not be used with numeric atoms, since they evaluate

to the number itself.

(v) (SETQ Bl 4)

will assign the value 4 to the literal atom (variable) Bl.

Calls to other functions can of course appear in the second

argument of SETQ.

(vi) (SETQ NUMBER (PLUS 2 3))

13



2.3

assigns the value 5 to the literal atom (variable) NUMBER.

To recapitulate: CAR returns as its value the first element

of the list to which its argument evaluates. This first element

may of course be either an atom or a list.

2. CDR

CDR also takes one argument,, which again should evaluate to a

list. It returns as its value a list of the items remaining when

the first element of the list has been deleted. Thus

(vii) (CDR (QUOTE (A B C D)))

returns as its value (B C D) and

(viii) ((CDR (QUOTE ((A B) C D)))

returns as its value (C D).

The relationship between CAR and CDR should be quite clear.

3. Combining CAR and CDR

CAR's and CDR's may be combined, as you would expect. For

example, say we have a list (THIS IS A LIST) and we want to get at

the A. In order to achieve this we can evaluate

(ix) (CAR (CDR (CDR (QUOTE (THIS IS A LIST))))).

One of LISP's chief characteristics is function composition

(i.e. allowing function calls to appear as arguments to functions,

as in the examples of Part 1 and as in example (ix) here). Since

the composition of CAR's and CDR's is very frequent in most LISP

programs, special functions have been defined which serve as a

shorthand. C always begins the function name, R always ends it.

In between the C and the R may come UP to 8 (in this system) A's

and/or D's: each A stands for a CAR, each D for a CDR. The order

of A's or D's follows the order in which the expressions would come

if written out in full. Thus the expressions in example (ix) may

be re-written:

14



2.4

(x) (CADDR (QUOTE (THIS IS A LIST)))

4. CONS

CAR and CDR take lists apart. CONS provides a way of building

lists up. CONS is a function which takes two arguments; the

first may be any expression (i.e. a literal atom, a numeric atom, or

a list), but the second must evaluate to a list. Both arguments

are evaluated. The value of CONS is the new list formed by adding

the value of first argument on to the beginning of the value of the,

second. Thus

(xi) (CONS (QUOTE THE) (QUOTE (GIRL IS GERMAN)))

will return as its value (THE GIRL IS GERMAN).

If the first argument of CONS is a list, the new list formed will

have the first argument as its first element - the lists will not

be joined together. Thus

(xii) ,(CONS (QUOTE (THE PRETTY)) (QUOTE (GIRL IS GERMAN)))

will return as its value ((THE PRETTY) GTRL IS GERMAN).

Using CONS with an atom as its first argument and the empty

list, NIL, as its second will, as you would expect, form a new list

which has the atom as its only metber. Thus

(xiii) (CONS (QUOTE THE) NIL)

will return (THE).

If the first argument is a list and the second the empty list the

new list will, similarly, be a list of only one member, but that

one member will itself be a list.- Thus

(xiv) (CONS (OU(YTE (A LIST)) NIL)

will return ((A LIST)).

CAR, CONS and CDR are logically related. The reader should convince

himself of the relationship by working out the values of the following,

assuming that A has the value (FIRST PART) and B has the value

(SECOND PART).

15



2.5

a.

b.

C.

(CAR (CONS A B))

(CDR (CONS A B))

(CONS (CAR A) (CDR A))

CAR, CDR.and CONS are the three primitive list manipulation

functions.

5. The COND function

A program rarely consists of instructions which must all be

obeyed under all circumstances. An instruction is needed which

allows some instructions sometimes not to be obeyed (as in the

example in Part 1 where we didn't want the robot to add the new

name to the list of names with only one forename if in fact that

name had more than one forename). LISP provides this facility

in the COND function:

Its general form is this:

(COND ((if this expression is true) (evaluate these expressions))

((otherwise, if this expression is true) (evaluate these

expressions))

((otherwise, if this expression is true) (evaluate these
expressions)) )

As you can see, COND may have any number of arguments, each

argument consisting of a list, the first element of which is a test

condition the result of whose evaluation is either true or false,

the second a list of one or more expressions which are to be evaluated

if the value.of the test condition is true. procedes through

its argument list until it finds a test condition which is true.: Then

it evaluates the instructions associated with that test condition

and stops.

The most

It does not carry on through the remaining arguments.

obvious

a test condition

act specifically

true or false.

sions follows:

question raised by this account of CONES is how

can be formulated. z1 number of LISP functions
1

as predicate functions, i.e. they return th4 values

IA list of some of the most useful predicate expres-

16



2.6

Predicate Expressions

1. Functions which compare atoms or expressions.

a. (EQUAL argl arg2) compares two expressions. It returns the

value true (*T* on our system) if they evaluate to the same

expression, false (NIL) otherwise.

2. Functions associated with arithmetic predicates

a. (NUMBERP arg) returns true if its argument is a number, false

otherwise.

b. (ZEROP arg) returns true if its argument is zero, false other-

wise.

c. (LESSP argl arg2) returns true if its first argument is greater

than the second, false otherwise.

d. (GREATERP argl arg2) returns true if its first argument is

greater than the second, false otherwise.

3. Functions associated with logical predicates

a. (AND argl arg2 arg3 argn) AND evaluates each of its argu-

ments in turn starting with the first. If it finds an argument

which evaluates to false, it returns false as its own value and does

not evaluate the remaining arguments. If all its arguments evaluate

to true it returns true.

b. (OR argl arg2 arg3 argn) OR evaluates each of its arguments

in turn. If it finds an argument which evaluates to true, it re-

turns true as its own value and does not evaluate the remaining

argyments. If all its arguments evaluate to false it returns false

as its own value.

c. (NULL argl)

(NOT argl). These e equivalent ways of writing the same

function. It returns true if its argument is false, i.e. NIL.

Otherwise if its argument is true it returns false. It is the

logical negation operator. (Remember that an empty list is re-

17



2.7

presented by NIL - this makes this particular predicate very useful).

Example program

If we now look again at the example program from lecture one, we

find that it has become a great deal more comprehensible. It is re-

produced for convenience here.

(DE NAMES (NAMESLIST)

(COND ((NULL NAMESLIST) NIL)

((EQUAL (LENGTH (CAR NAMESLIST)) 2)

(CONS (CAR NAMESLIST) (NAMES (CDR NAMESLIST))))

(T (NAMES (CDR NAMESLIST)))))

A function LENGTH is used which has not so far been mentioned. It

takes one argument, a list, and returns the number of items in the list.

The last argument of the COND looks a little odd, since the test condition

iS simply T. This is an atom which always evaluates to true and so is

used, usually in the last argument of a COND, to make certain that if all

the other tests have failed, this one won't and the instructions associ-

ated with it will be executed.

Defining functions

To understand this program completely now, it is only necessary to

undetstand the DE function which starts it off, and which is indeed.the

function of which all the rest are arguments. It is the function which

allows the user to define functions for himself, in addition to the pre-

defined system functions. Its first argument is the name by which the

function being defined is to be known - in the example NAMES. Its

second argument is a list of variable names. These variables are

essentially dummies. When the function is actually used,'the arguments

given it in the call are evaluated. Their (quoted) values are then

substituted for the dummy variables in the remaining argument. This

remaining argument is the expression (which may be quite complicated)

which is to be evaluated when the function is called.

18



2.8

An example

To elucidate this a little further let us define a function ATOMIC

which will return the message (ATOMS ONLY) if the list which is its

argument contains only atoms, and the message (NOT ALL ATOMS) if any of

the elements in the list are not atoms. Thus if LISTA has the value

(A B C D) then (ATOMIC LISTA) should produce the message (ATOMS ONLY),

whilst if LISTB has the value ((A B) C D) (ATOMIC LISTB) should produce

the message (NOT ALL ATOMS).

First we must define an algorithm for the task, that is we must

find a general recipe by which it can always be decided whether a list

contains only atoms.

This is relatively easy, since it is clear that we must look at

each element in turn and test to see whethr it is an atom or not, and

LISP provides a predicate function (ATOM arg) which returns true if its

argument is an atom (literal or numeric) and false otherwise. But how

do we look at each member of a list? CAR will get us the first element

of the list, CDR will get what re-ains of it when the first element has been

deleted. So if wa test CAR of the list to see if it is an atom, we

can stop with the appropriate message if it is not (there is no point

in continuing to look at the remaining elements of the list) and, if it

is an atom, we can replace the list by CDR of the list and repeat this

operation. We can summarize the decisions taken so far thus:.

(1)

19

No

(3)

Give message
NOT ALL ATOMS



This looks satisfactorily tidy, except that there is no way of

getting out of the loop which results from answering 'yes' to the question

in box (1), .e. we have no way of knowing when every element of the list

has been checked. But successive CDR's of the list will eventually,

after all the elements have been eliminated, produce the empty list.

If we get to the empty list without having found a non-atomic element,

then obviously all the elements are atoms and we should produce the mes-

sage 'ATOMS ONLY'. SO'a test for the empty list must be included some-

where in the loop. It would be sensible to put it before the test to

see if CAR of the list is an atom for two reasons: first, someone may

call the function with an,empty list as its argument so this should be

tested first. Secondly the empty list is simply the atom NIL, and an

attempt to find CAR of an atom will cause a failure, aS we noted earlier.

With these modifications in mind the algorithm can be Completed.

(4 )

(1)

Is the list empty?

No Yes

(2)

Is CAR of the
list an ATOM?

Replace list by
CDR of the list

No

\ (5)

(3)

Return message
'ATOMS ONLY'

Return message
'NOT ALL ATOMS'

Note that both these diagrams are only an approximation of the process

involved. The process described as 'replace list by CDR of list' in box (4)

could more accurately be described as 're-enter the whole process which

this diagram defines with the list used this time through the process
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replaced by its CDR. When this is translated into LISP terms, since

the process will be defined as a function and will therefore have a name

by which it can be called, it comes out as 'call this same function with

CDR of the list as argument'. Any reader who is interested in a fuller

account of this technique of calling a function from within its own defi-

nition (technically known as recursion) will find such an account in

Hayes' notes for the advanced programming course.

The function ATOMIC can now be defined as follows:

(DE ATOMIC (L)

(COND ((NULL L) (QUOTE (ATOMS ONLY)))

((ATOM (CAR L)) (ATOMIC (CDR L)))

Cr (OUOTE War ALL ATOMS)))))

Once the prograffimer knows howto define functions himself it becomes

possible to produce quite complicated programs.
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EXERCISES PART 2

2.11

1. Use the machine to find the result of the following sequences of
instructions.

a. (CAR (QUOTE (FIND THE FIRST CHARACTER)))

b. (SETO A (QUOTE A B C D))

(CAR A)

(CDR A)

(CADR P)

(CDDR A)

c. (SETO. B (QUOTE ((A B C) C. 2 3))))

(CAR B)

(CDR B)

(CAAR B)

(CADR B)

(CDDR B)

(CADDR B)

2. Write instructions which will pick out the word 'THE' in each of
the following lists:

a. (THE CAR WAS RED)

b. (TT WAS IN THE GARAGE)

c. (ON THE ROAD WAS A CAT)

d. (TT HAD DRUNK ALL THE WHISKY)

3. Write a COND expression which will set a variable B to the list
(VALUE IS ZERO) if another variable A is equal to zero, and to the
list (VALUE IS NOT ZERO) if it is not. Give A a value before
typing in the CCVD expression. (You will be able to tell whether
your COND expression has worked correctly by the value it prints
out. CORM always returns as its value the value of the last ex-
pression evaluated within the COND).

4. For each of the following conditions define a function of one
argument L which has value true if the condition is satisfied and
NIL otherwise.
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2.12

a. The first element of L is a literal atom.

b. The first element of L is 12.

C. L.has at most four elements (either atoms or lists).

d. The second element of L is greater than the fourth.
(Assume that L is a four element list where each element is
a numeric atom).

5. The function factorial (n) can be defined bv:

factorial (0) = 1

factorial (n) = nx(n- 1)

Define a correSponding LISP function and test it with various
values of n.

6. Define a function of two arguments (the first may be any expression,
the second a list) called MEM which will return a value true if-
the first of its arguments is identical with any top level metber
of its second argument, NIL otherwise.

e.g. (MEM (QU(YTE A) (OUOTE (BED IS A WORD))

should return true.

(MEM (QUOTE A) (QUOTE ((BED IS A) WORD)))

should return NIL.
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2.13

SOLUTIONS TO EXERCISES PART 2

2. a. (CAR (OU(YTE (THE CAR WAS RED)))

b. (CADDDR (QUOTTJ (IT WAS IN THE GARAGE)))

c. (CADR (QUOTE (ON THE ROA) WAS A CAT)))

d. (CADDDDR (OUOTE (IT HAD DRUNK ALL THE WHISKY)))

3. (SETO A

(COND ((ZEROP A) (SETO B (QUOTE (VALUE IS ZERO))))

Cr (SETQ B (QUOTE (VALUE IS NOT ZERO)))))

4. a. (DE Fl (L)

(AND (ATOM (CAR L)) (NOT (NUMBERP (CAR L)))))

b. (DE F2 (L)

(AND (NUMBERP (CAR L)) (EQUAL (CAR L) 12)))

c. (DE F3 (L)

(NCT (GREATERP 4 (LENGTH L))))

d. (DE F4 (L)

(GREATERP (CADR L) (CADDDR L)))

5. (DE FACTORIAL (N)

(COND ((ZEROP N) 1)

(T CrIMES N (FACTORIAL (SUBI N))))))

6. (DE MEM (S L)

(COND ((NULL L) NIL)

((EQUAL S (CAR L)) T)

Cr (MEM S (CDR L)))))
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PART 3

Introduction

3.1

At the end of the last lecture we discussed how to define a function.

The basic pattern of the functIon defined there was: 'If the list is not

empty, do something to the first element of the list. Substitute the

remaining elements of the list for the original list and repeat the whole

operation on the list thus obtained. It was convenient to be able to

define ATOMIC as a function and then to be able to re-call the same func-

tion from within the function definition. Many operations upon lists

follow the same basic pattern, so the recursion technique is very useful.

But some operations are not recursive in character, and it sometimes

happens that for efficiency's sake it is preferable to write even in-

herently recursive functions non-recursively. In this part we shall

discuss how that can be done.

Iteration

If we want to be able to write non-recursive functions we need to

be able to execute.instructions sequentially, so that we can write loops.

Many of you will have written a factorial function recursively in doing

the exercises attached to part 2. A non-recursive version needs a loop,

as in the diagram below.

(1)

(5)

j
Set ANS equal to 1

(2) Is N equal to zero? Yes Return the value
of ANS

(3) Multiply ANS by N

(4) Reduce N by 1
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3.2

(Actually this could be made slightly more efficient by testing to see

if N is 1 rather than zero. But we will leave it like this so that

it matches the earlier definition of factorial).

An inspection of the diagram should convince the reader that he

knows how to deal with boxes (1) to (4): their LISP equivalents can

easily be stated in terms of SETr?, COND, TIMES and SUB1. But as yet we

have no way of dealing with (5) or of constructing a LISP equivalent of

the line which shows what must be executed after the instruction equiva-

lent to box (4) has been executed.

Both these difficulties an2 overcome by use of the function PROG.

A call of PROG has a general form thus:

(PROG (list of variables)

(1st instruction)

(2nd instruction)

(nth instruction)

It allows iteration ('jumping back') because the sequence of instruc-

tions may contain GO and/or RETURN inqtructions.

7', GO instruction has the form

(GO label) where the.label is a literal atom which must appear

before some instruction within the PROG sequence. When the GO is exe-

cuted, control is transferred to the instruction preceded by the label

specified. This can be shown by altering our earlier di,agram slightly:

Ll

I Set ANS equal to 1
I

Is N equal to zero? 1 Yes

4, No

Multipiy ANS by N I

L.

Reduce N bY 1

(GO 1',1)

2 6
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3.3

The RETURN instruction allows execution to leave the PROG sequence

at any point. It has the form

(RETURN expression).

When the RETURN instruction is reached, the expression which forms its

argument is evaluated and becomes the value of the whole PROG. So we

can incorporate it into our diagram:

ISet ANS equal to 1

Ll Is N equal to zero?
Yes

(RETURN ANS)

No

Multiply ANS by N

Reduce N by 1

(GO Ll)

If the last instruction in a PROG sequence is executed and it is not a

call on either of the functions GO or RETURN, PROG returns NIL. Exe-

cution has "dropped out of the bottom" as it were.

The only other new feature of the PROG is the list of variables

which appears as its'first argument. These variables serve as temporary

variables within the FROG. They are initially set to NIL and cannot be

accessed from outside the PROG. Even if no temporary variables are used,

this list must still apnear. In the case where there are no temporary

variables it will be the empty list, ( ). In the factorial example ANS

is a variable which is only used within the PROG: it can therefore be a

temPorary variable. N is different, since it carries a value into the

PROG sequence. It must therefore be a dummy variable (an argument) in

the function definition of which the PROG sequence forms the body.
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3.4

We can now translate the whole of this sequence into LISP.

(DE FACTORIAL (N)

(PROG (ANS)

(SETQ ANS 1)

Ll (COND ((ZEROP N) (RETURN ANS)))

(SETQ ANS (rIMES ANS N))

(SETQ N (SUB1 N))

(GO L1)))

It is worth comparing this with the recursive definition of the same

function:

(DE FACTORIAL (N)

(COND ((ZEROP N) 1)

er erIMES (FACTORIAL (ST711 N)) N))))

In this case it is clear that the recursive version is simpler and easier

to follow. Although the exercises attached to this lecture ask that the

same function should be defined hoth.iteratively and recursively, the

programmer shoulu in real life take some care about which version he

chooses, using clarity and simplicity as guides in making his choice.

In these three lectures we have by no means covered the whole of

the LISP language. You will probably hear other features referred to

in other courses. All I have attempted to do is to show you what LISP

is like and to give enough of a foothold to allow anyone interested to

continue on their own.

Margaret King
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3.5

PART 3 EXERCISES

Define each of the following functions first recursively and then

iteratively:

1. A function LONG which counts how many top level elements there

are in a list.

e.g. (LONG (QUOTE ((A B) C))) is 2

(LONG (QUOTE (A B C))) is 3

This is the function LENGTH which was used in the example program

in the first lecture. But don't use that name for it or you will

re-define the system function.

2. A function ZEROES which returns the number of zeroes in a list.

3. A function LAST which returns the last element in a list.
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3.6

PART 3 soLurIoNs TO EXERCISES

1. a) (DE LONG (L)

(owl) ((NULL L) 0)

(T (1DD1 (LONG (CDR L))))))

b) (DE LONG (L)

(PROG (X)

(SETO X 0)

BACK (CORD ((NULL L) (RETURN X)))

(3E2Q x (ADD1 X))

(SETO L (CDR L))

(GO BACK)))

2. a) (DE ZEROS (L)

(COND ((NULL L) 0)

((AND (NIMBERP (CAR L)) (ZEROP (CAR L)))

(ADD1 (ZEROS (CDR L))))

cr (ZEROS (CDR L)))))

b) (DE ZEROES (L)

(PROG (SUM)

(SETO SUM 0)

BACK (COND ((NULL L) (RETURN SUM))

((AND (NUMBERP (CAR L) (ZEROP (CAR L)))

(SETQ SUM (ADD1 SUM))))

(SETO L (CDR L))

(GO BACK)

) )



3.7

3. a) (DE LAST (L)

(OOND ((NULL (CDR L)) (CAR L))

Cr (LAST (CDR L)))))

b) (DE LAST (L)

(PROG.( )

BACK (COND ((NULL (CDR L)) (RETURN (CAR L))))

(SETQ L (CDR L))

(GO BACK)))

n.b. This solution will not work if LAST is called
with the empty list as its argument. Why not?
Can you alter it so that it will work even under
this condition?
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