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Abstract

Early procedures for the analysis of multivariate panea d- a
do not rest on well-specified statistical models. Recent

approaches based on path analysis suffer from the defects of

variable standardization and lack of attention to measurement

error. The paper formulates a measurement model for quanti-

tativeLy scaled multivariate panel data. The model is applied

to a data set indexing two constructs measured at three time

points. Nultiple measurement of each construct in conjunction

with the measurement model allows estimation of a true variance-

covariance matrix. Analysis of this matrix produces substantial-

ly different interpretations of variable influence than similar
analyses of the original data.
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I. Proble. ms in the Interertation of Pa cl Dz.

Sociological and social-psychologi-al research -rkers have

long been concerned with the attribution of causality to

variables representing basic sociological or psychological

concepts. Given the difficulty of variable manipulation in

many real social settings, scientists have turned to statisti7-

al methodology rather than to experimental techniques of

investigation for help.

Fro_- Lazarsfeld's (1948) early dis assion and exposition of

the sixteen-fold table technique for qualitative data to

Campbell's (1963) and Pelz and Aadrews' (1 64) simultaneous

conception of cross-lagged panel correlation procedures for

quantitative data, practicable data-analytic techniques have

been available for --ausal attribution. Th-se t- hniques, how-

ever, have been heavily criticized by statistical nethodo-

logists g. Goldberger, 1971) and are consequeatly clouded

with aMbiguities of interpretatiom. One reason for the persis

ence of ambiguity is the lack of well-defined mathematical

models to serve as foci for discussion and bases for critique.

Our int-ntion in this paper is to specify such models as well

as to exposite technique.

In this paper we are focussing solely on quantitative variables.

Consequently, tile sixteen-fold table te_ nique is not directly
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1)relevant. Comparison of cross-lag panel corrolatior-

the first widely advocated non-experimental technique for the

attribution of causality to quantitatively scaled variables

in social-psychological research. In addition to the lack

of a clearly stated statistical model, one universally re-
.

cog_ized weakness of this tech-ique is its serious distortion

by commonly occurring measurement errors. One especially

distorting event is systematic change in the reliability of

variables over time. 2)
Such events occur, for example, when

a true variable's variance cha ges, although the quality of

the measurement remains the same. This is nearly always the

case when any change in a true variable takes place (Wiley

and Wiley, 1970). Therefore, it is difficult t- justify the

use -f technique in typical social research settings.

Path analysis is gro i_cgly accepted as a powerful framework

for disecting social data. It originated in genetic studies

early in this century and has been systematically gaining

favor among social scientists as a useful devise for stripping

data to bare their (in)consistencies with complex theoretical

as.u_ptions and hypotheses. Path analysis has the advantage

of being completely specified in mathematical form. It is,

therefore,, easy to criticize on both substantive and metho-

dological grounds. Path analysts has the advantage of being

multivariate and capable of variable aug- entation while main-

taini the basic asymmetries which are required in the

simula-ion of causal as opp_sed to simply rel tional networks.



The application of path analysis to quantitatively scaled

panel data has been systematically devel-pd by Duncan (1969).

However, the p th-analytic frame ork, as it is _.:ually imple-

mented and specified in applied research wo-k, suff--- from

at least two defects, especially, when ori nted towards longi-

tudinal data: standardization and measurement error. Standardiz-

ation means rescaling of variables so that their Ptandard

deviations in the sample are in every case equal to one. This

practice has been generally criticized as wasting valuable

information even in cross-sectional data (Tukey, 1954; Blalock,

1967a and b)'. In the context of longitudinal data, these

difficulties become even greater, since most such analyses are

oriented toward the assessment of and the distinction between

stability and change. Such standardization complicates the

detection of change or stability in the st-ucture of the effects

of causal factors, because invar ance in the structure of the

causal ne -ork, which appears in the fon_ of constant values

for causal coefficients when the variables are not standardized,

will result in non-constant values for those coefficients when

they are standardized.

This problem becomes even more difficult when errors contaminate

the measurement of variables because there is no longer a

simply specifiable relation between the two kinds of co-

3) ___ ,

-fficients.-- These measure ent errors also have serious con-
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sequences for the estirnation of coefficients. Wil,y and Wiley

(1970) and Wiley (1973) have dis. ssed some of these distort-

ing influences within the context of univariate longitudinal

and multiva:iate data, respectively. A general discussion of

the complex consequences in a generalized regression frame-

work has been given by Cochran (1968; 1972) . Ignoring measure

m-nt error in regression analysis complicates the regression

coefficient "attenuation" problem, commonly encountered in

a simpler bi-variate-cohtext, when measurement errors con-

taminate variable assesSment. Thin coiplexification implies

increases in the sizes of some coefficients as well as decreases

(attenuations) in those of others. The complexity of distortions

in these key-indices, uSed to make causal attributions, effect-

ively distroys any hope of a simple rank-order relation b

tween observed and r al coefficients. This implies, that it

is necessary to explici ly incorporate measurement errors in

the formulation and specification of the mod l that serves as

a basis for data-analytic procedures. When a single psycho-

logical variable is errorfully measured this has been known

as the problem of "the measurement of ch nge" in the psycho-

metric literature (see Cronbach and Furby, 1970) . This paper

is one in a series which has the intent of exposi ing models

for the general analysis of quan itatively scaled data with

measurement errors.

A basic statement of the fundamentals of such a mødel was

given by Wiley and Wiley (1970) i- a critique of a standardized

10



path analysis specification for univariate longitudInal data

(Heise, 1969) . Wiley (1973) subsequently formulated a class

of such models for an econometrically sophisticated audi nce.

Keesling (1972 ) ap lied this basic model to multivariate cross-

sectional data and incorporated the notion of correlations

am ng e-rors. This was the first conjunction of Cronbach's

multivariate generalizability theor Cronbach et al., 1972)

with complex multi-relational models, common In econometrics.

This paper presents procedures a d techniques b -ed upon

statistical models which incorporate more than one theoretical

ncept measured at more than one point in time. The model

includes measurement errors in the bserved variables which

may be correlated over time. The exposition and discussion

is oriented toward empirical resea ch workers ir social and

psychological science. We hope to make the models and procedures

both comprehensible and practicable to research workers who

have not received extensive advaneed trainIng in statistics.

2. A Basic Measurement Mod3l f o- iv Variahles

In a data set representing two constructs, each measured at

two points in time, there are several relativ ly simple pieces

of information which might be desired in attributing causal

impacts. In the absence of measurement e ror, there are three

quantities which describe simple distributional characteristics

1 1
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of t e constructs at the first ti e point: the two variances

and the covariance. There are four more characteristics

which represent the produ- ive relations between the constructs

at the first time point and at the second: the two regression

coefficients relating Construct 1 at time two to the two

Constructs at time one and the two regression coefficients

relating Construct 2 at time two to those at tine one. Finally,

there are three quantities a.ininq: the t140 var ances and

the covariance of the residual parts of Constructs 1 and 2 at

time tw- which are not accounted for by their time one versions.

These ten quantities are equivalent to, i.e. contain the same

information as and only constitute a reorganization of,the

ten original quantities: four variances and six covariances.

They constit te the summary of the distributional character-

istics of the four measurements: two variables at each of two

time points. Thus, in the absence of measurement er:or, we

seek ten new quantities from ten old quantities, a possible

task. Whet' we add measurement error, we must add new quantities

to account for the characteristics of those errors. Clearly,

when we do this, we increase the number of desired quantities

beyond ten and thus exceed the number of available pieces of

information.

Researchers have made a variety of assumptions so that the

number of values they wish to estimate is no larger than the

number they possess. The simplest such assumption is that

12





there

are zer
measiirrnerth. II all tile errox rarianccs

then we c ly need e -tirraate and rarrng e t-he ori5in-
al values: the four- variances and the six covariaxces. There
is a direct coax spowdence between the ari9i al values calculat-
ed and the N.Talzues desired. Cinfort-unately, such an as su_niption

is rarely legitimate in sc1aL science and analyses based on
it are often misie dizig

A second appro ch has been to Lnc2es t e nun'ber of items of
information available beyo.nd the urnher cf quantities one
wishes to assess. A31 example of ttis approach is Heise °s
pansioz o f tmotime point model= s for anaaysis o± threetime
poi t panel data (169) - lie assmmes that a3-1 the relationships
arriong the vaxiables may be e,cplained by postulating that a
simple Mazkov model holds. I.e. that variables at a specific
time are determined only by those at tile precedjag point- He
also assures stable reliabilities for the variables. Wi_theut
gointg Into detail , this expansion gi-ves Heise enough addition
al values (variances and covarian=es 1 to identify a roodeL which

includes neasur anent err or . While an improvement over one with.°
out measurement error, tbis model is still iluite restri tAve.
A discussion of the m ea's utility can be found in I-lei-se (1.96 9),

and criticism of some of its assumptions in Wiley arid Wiley (1 970) .

We believe that there is a mare ef feotive way to? Drier ease t
mount of informattan leyo -d the n-umber of quantit.es one needs

to estimate. Instead ol expanding the nurribex of tine Todnts,.



we suggest ecpandirig the number of measures of each variable

at each point. Two measures of each variable at each time

point produce enough additional information to allow the

calculation of all the quantities in a quite general two-ti-e

point model. We can even calculate all of the important charactc

istics of the true variables at a eLnals point in time. This

will be illustrated in the next section. In fact, we have more

information ( bserved variances and covarianc s) than we need.

This extra information also permits us to assess the adequacy

of the model. Increasing the number of measur_s of each variable

beyond two, permits further loosening of assurnptiors. For an

extensive treatment of the multiple measurement of psycho-

logical constructs see Cronbach et al. (1972).

In order to specify the model, it is necessary to make some

assumptions about tle structure of the measured variables.

Specifying these guides us in designing our measurement oper-

ations and variable definitions so that they more closely con-

form to these assumptions.

A tradi- onal way of -eking these specifications is, that each

measurement be a linear function of the underlying (true) value

and an error, and the errors be uncorrelated with the true

values for every neasure and erors it other neasures. This

means that a covariance between two different measures of the

same trait should result entirely from the conmon true variable.

A covariance between a neasure of one trait and a meas :e of

1 1



another should only result from the true relation between

4)
the traits.

describi g the measurenent characteristics of our model,

we will begin with two constructs neasured in two versions

at a single point in time. Denoting this time point by t and

the version by "1", the model for a datum resulting from the

first opera tonal definition of the first construct s:

(2.1) xit =
it

whereltrepres_stheobservedneasurenent,the true

value, and Eit the error of measurement. We assume that the

error is uncorrelated with the true values of its own and

other variables as well as -ith other errors at the same

time point. Similarly, the model for such a datum of the

second construct i=

(2.2) yit = 6

where represen
-t

the observed measurement, nt the true

value, and 151t the error of measurement. Exami_ing the vari-

atio al and covariational structure of the observed variables

this simple model, we obtain:

(2.3) Var(x

(2.4) Var(y1

(2.5) Co

o2_
E

t,

, and

15



for t_e variances and covar n e of the observed variables.

These three observables axe composed of five basic elements.

The fact that three observables are composed of five elements

implies the imposs1b1lity of the evaluation of those ele

without additional informati

rf we, however, taXe am actIve role in designing the data

collection process, -e may generate additiunal information

which will allow us -to evaluate these unobservable variances

and covariances. Wiley (1973) has suggested that so-ial measure-

ments be designed according to strategies similar to those used

in psychological urement that is, by generating more than

one operational version of each construct. In addition to (2.1)

and (2.2) above, we might -_ssume that each of the constructs,

at time t, and Tit, has a secDnd operatiDnal definition:

(2.6)

(2.7)

8 C Ezt't t

a t 42

, and

where and a represent the possibilities of differences in-t

the s-ales of measurement bet-weem the first and second versions

of each co struot at time t. 'These adil Mai observable

ariables generate two uore observable v& ices and five

more observable covariamces:

(2.8) Var(x2 2 .1. cr2

C

(2 Var(y2t)
t 2t

1- 6



(2.10) Cov

(2.11) Cov()(2

(2.12) Cov(y2t,

(2.13) Co

.14) Cov =

, and

Inspecting the right-ha a side of these ten compositional

equations, we find nine un bservable components:

it P I

lt at

quantities a and
t t'

2
0- p and 1
E21: the

hich are coefficients characterizing

the measurement scales of the variables, axe not zero (a zero

value implies that the new measures do not really relate to

the appropriate constructs) and as long as the two constructs

are related (: ii not equal to zero), this sy_ tem of ten

equations with nine unknowns may be solved and the unobservable

components become caloulatahle from the ob-ervable 0

This change in measurement design has allowed us to separate

the interrelations among the observed constructs into those

three aspects specifically due to the underlying constructs

and those six due to the distortions of measurement errors.

17
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2.1 Er1.121-.

In this section we w11 present an example which will illustrate

procedure for estirnatn the variances and covariances of

true and error variables. The data ccne rom a study of

conmnication processes conducted in Central inerjca. The two

constructs, we have chosen for illustr tion,are television

;y_atching by children and television posse sion by their families.

Each construct was measured twice at each of three points in

time. The sane four questionnaire items were used at each tine

point.5) Coding of the responses to each iten at each point

in time resulted in twelve variables. The covariance matrix

for these variables is displayed in Table 1.

Insert Table 1 about here

We TAU demonstrate the estamatiori procedure based on the m del

for a single time point, presented above, using the data for

Time Point 1. Since the number of quantities t_ be estimated,

nine, is fewer than the number of observed quantities te,

there are several possible procedures. Two commonly chosen

methods of "optimal" estimation are atnerali

and maximu- likelihood (see e.g. Goldberger and Joreskog 1972).

We have chosen a simpler method, for illustrative purposes,

whi h consists of eliminating one of the equations ard solving

those remaining. This metbod produces a relatively but mot

fully efficient estimate according to the above criteria.6)

18



The renaining equation can be used for the pu. _ose of test

the adequacy of the model and we 'will illustrate this use

also.

9

Since Time Point I was chosen for illustration, t e first four

by four submatri in Table 1 is the basis for cur calculations.

In all that follows, x will characterize observed television

possession while y will denote observed television watching.

Recalling from above that the first subscript specifies the

version of the construct while the second represents the tine

point at which it is measured, the variables, in order, are

synbolized: , x2I, yli, and y21, which represent ossession

version one (time one ), possession version two (time one),

atchja version one (time one), and tohinI version tIOD

(time one), respectively-

According to equation (2-5 ), acoli cav(x1L, yil ) whi h from

Table 1 is equal to 0.479. 7)
Prom Equation (2.1)1 31crE4T11

= cav(xal, yil)/8 which is equal to (0.443/0.479)
,n1

0.924 which is the netric-coefficient for the second index

f televisi n possession in the scale of measurement of the

first- Since both of the indices were based on dichotom u

items, where the natural i terpretation of the positive

alternative for both items wus no_session, the scales cf

measure ent should be almost the same. If this were in fact

the case, h would be equal to 1.000. The value which ve have

obtained is therefore quite reasonable. Similarly, frmm Equation

13
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1;11

(2.12), = ealv(172ti xil )/8 which is

equal to (0.312/0.479=) 0.651, the analogous coefficient

for tel-vision watching. The fact that the estimate is less

than one is also re Somable since the range of variAtt -f

the second watch.nj item is less that of th- first. tinu-

ing in Like fashion, from Equation (2.10 ), = 1310 /81,

c8v( / equals (0.227/0.924=) 0.246, the true score

variance of television possession. For television watching,
PN,

from Equation (2.13), e2 = /al= cav(Y21, yilnl 12

(1.225/0.651=) 1.882.

equals

For tele ision possession the variances of the errors of

measurem nt may be estxmated using Equations (2.3) and (2.8)

as follows: a2 (a- 4 U2 - 2 = vAr(x/I) equals

0.247 - 0.246.) 0.(Doir and a o24 2
) 2C2I

= VaX(X22) ($1)2a4 equals 0.248 minus (0.853) (0.246) which,

in turn, equals 0.038 These small values indicate that tele-

vision possession is quite reliably reported by the children.

The variances of the errors of measurement for television

watching may be estimated in a si ilar fashion using Equations

(2.4) and (2.9) as follows:

a2 = (02 ,
u-61i ni 611)

equals (2.313 - 1.02=

= Var(yi

431, and

)

62 ) U7 Var(y22)6 Ezi

equals 2.264 minus (0.423)(1882) which, in turn, equals 1.468.

These values imply that the measures of television watching

are conside- tay more errorful than those of television possession

20
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even considering the differences ir measurement metr

also clear that the second indeN of watching, which is based

upon long term frequencies of watching particular television

programs, is much more errorful than the first, which asks

about general nLolial in the preceding week.

Recalling that we have not used Equation (2.14), cov(x21, Y2I)

= alolar , for estimation purposes, we may employ it tocirni

assess the adequacy of the modal. This may be accomplished

by comparing the tabulated value with a prediction based on

our estimates of its components. The value for this covariance

from Table is 0.288. Predicting it from the estimates az,

we obtain (0.651)(0.924)(0.475) or O.286 since the two

quantities are almost equal., we axe pleased with our assess-

ment of the adequacy _f the model. Table 2 reports, for Time

Point 1, all of the estimates aad the ratios of the observed

ver us predicted covariances.

Insert Table 2 about here

We may, in the same way, -stimate Ole corresponding quantities

characterizing each of the other times of measurement. These

are based on the central and final four b four subcova-iance

matrices of Table 1. The results for Time Point 2 and 3 are

also summarized in Table 2. In each case the covariance ratio

indicates that the model ip quite adequate for our data.

21



It s _uld be noted that the model, as specified, assumes con-

stancy over time in the metric of the first version of each

variable. Since we do not include parameters such as a and 0

in these versions, we make no allowance for scale changes in

them_ We do, however, allow such changes in metric for the

second version of each variable. Accordingly, we have sub-

s ripted the a and 0 values separately for each time point.

This provides for a different discrepancy between version one

and version two to obtain at each time point. Consequently,

general metric inconsistencies for the second version of each

variable are possible.

This is logically necessary for the watching variable. The

first version of the watching variable has precisely the same

operational definition for each time point. goweveri the tele-

vision programs, used to specify the Second version, Change

from time to time. Because of these changes, the metric co-

efficients should vary On the other hand, the ossession

variable has constancy of definition f- or both of its versions

at each point in time. As a consequence, we would -ot expect

the true values of these metric coeffiCients to vary over-tine.

If ye inspect the estimates in Table in fact, find

slightly less, variation ln the coefficients for sesion.

We can also assess the precisions of -he measurementv and the

ways in which these precisions change over time. The reliability

coefficient of a measure is usually defined as the proportion



of variance attributable to the true variable. Table 2 conveyed

the variances of the errors for each measurement operation at

each time point, We may use these to assess the reliability

of each measure since we also have estimates of the variances

_f the true variables and of the scale parameters.

Wiley and Wiley (1970) have strongly argued that this ordinary

coefficient is misleading. The standard error of measurement

(square root'of the error variance) defines gore adequately

the aicuracy of a measurement since it indicates, in an average

sense, how far an observed measu-ement is Likely to be from

the true one. Since the standard error of measurement is not

the only charactistic which influences the reliability, the

traditional coefficient can vary because of changes in the true

status of the-va:lable as well as changes in the characteristics

of the measurement operation. Concretely, as the variance of

the true variable increases, other things being equal, the

reliability inc eases.

Table 3 displays the reliabilities for each measurement at each

point in time. The measurement properties of the variables, as

indexed in this traditional way, vary widely. Since the true

variances of the possession andwatchiqg constructs change over

time, especially the latter, we find fluctuations in reli-bilities

which are not only due to changes in the average sizes of the

errors but also to changes in the distributions of true watching

behavior on the part of the children.

23
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Insert Table 3 about here

A S eci '-ation of th re ent Model, Allowin

Correlated Errors for Re seated easuremmts

Just as we developed representations of each of he observed

variances and covariances for each time point, we can construct

similar representations for the cross-covariances between time

points. Before, we were interested in defining for example,

the covariance of x12 and y22, both measured at ime Point 2.

Now, are interested in defining, for example, the covariance

of xii and y22, the first measured at Time Point 1 and the

second at Time Point 2.

We specified that the errors were uncorrelated with t ue

values and wi h errors in other variables. We did n t specify

the relations among the errors in the same variab e at different

points in time. Since it is reasonable to expect that the error

in the me urement operation for a specific cons-ruot at one

point in time may be correlated with the e- or i that same

'operation at a later point, it would seem advantageous to

allow for this in the specification of the model.. More concret

it seems reasonable t- assume that a child who OVerstates his

general television wa ching at Time Point 1, may also overstate

2 4
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that at time two. It is possible to allow this additional

flexibility because there are many more oh e ved variances

and covariances than values which we desire to estimate.

Of course, the allowance of correlated errors over time for

specific measurement operations implies that the covariances

among the resulting measurements will not directly reflect

true score covariances as they do within time periods. For

example:

Cov(x ,x12)

= COV(1 Ci 1E2 +

= z) ± Cov(

=

2

622) COv (Ell,2) COV

0 + a
I,E12

2)

With this new specification in mind, we can turn to the general

task of detailing the forty-eight synlolic compositions of the

cros -covariances between time point sixteen for each time-

point pair). These are summarized tog ther with the thirty

previously specified within-time poin var ances ard covarian s

(ten for each time-point) in a syniboiic variance-covariance

matrix (Table 4).

Insert Table 4 about here

We have forty-eight new pieces of information, but desire only

twenty-four additional quantities: the twelve cross-covariances

of the true variables (4 for each o f 3 pairs of time points)
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ve er or cross covariances (also 4 for each of 3

of time points).

In Table 4 the symbolic rep--sentations of the cross-covariances

of the observable variables are located in the three off-diagon-

al blocks. The diagonal blocks symbolicallY represent the

variances arid covariances within the three time points. This

sexpartite structure parallels that of the empirical values

for the variances and covariances displayed in Table 1. With

the three-tine point data, the number of available pieces of

information exceeds, by more, the nuMber of desired quantities,

than in single-time point data. This implies that there are

many more ways of estimati-g these quantities. A statistically

more elaborated solution to the problem of estimation than

that given below would make more efficient use -f this large

amount of additional jnforination.8 )

3-1 Eam.E1-

This subsection illus es the computation of estimates of

the cross-covariances for both the true variables and errors.

We demonstrate these computations using the cross-covariances

between Time Point 1 and Time Point 2. We will refer to the

entries in Table 4 by the row (1 - 12) and column (I -7 XII)

numbers corresponding to the particular cross-covariance.

Since coftbinations of Time Points 1 and 2 are in the first

off-diagonal block, the row numbers (Time Point 2) will always.
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be between 5 and 8, while the column numbers (Ti- e Point 1)

will always be between I and IV.

Two off-diagonal cells (6, I and 5, 11) in the off-diagonal

block include the cross-time covariance of true poaaesaion,

a . Referring to these t_o cells in both Table 4 and

Table 1, we find that 82a, r corresponds to 0.201 and a
cAtrr.2

cot- esponds to 0.196. Since we can obtain the estimates of

52 and 8i from Table 2 (0.998 and 0.924), we may estimate a-

by 0.201/0.998 = 0.201, or by 0.196/0.924 = 0.212. For the

final estimate, we choose the mean of these values: _

equals 0.207.
11E2

The diagonal elements of the off-diagonal block contain com-

I

1 1 2

ponents representing both true and error cross-time covariances.

For example, e a + a 0.198 (5, I). Sub-x11,x12 1i2 C11,C12

tracting the covariance of the true variables, estimated above,

we obtain &
£11,c

= 0.198 - 0.207 = -0.009. Similarly,
X21,X22

- 81132c + a = 0.205 (6, II), therefore,
C2lrE22 2I22

= 0.205 (0.924)(0.998)(0.207) - 0.014. Applying the procedure

for estimating to the en ries in cells 7, IV and 8, III,1,2
= 1.602. Consequently, e

712 1 12
we obtain for watching

-0.143 and & - 0.617.
u211622

If we inspect the eight remaining cells in the,off-diagonal

block, we find that half of them can be used, in an analogous

fashion, to estimate
a

and the other half to estimate a,
g2 G- 1,fl2
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The lat._er is a component of the following cells:

Cell 7, I

Cell 7,

/-N
Cell 8, I : a2a

112

Cell 8, II: O1a20

n 2

n 2

- 0.402

- 0.375

- 0.212

0.185.

Dividing by the previous esti ates (81 = 0.924 and 612 0.571),

we obtain four distinct values for a

0.402 (= 0.402)

0.406 (= 0.375/0.924),

0.371 (- 0.212/0.571), and

0.351 (= 0.185/(0.924)(0.571)).

The average of these four values 0.383 . Following

the same procedure with the remaining cells we obtain 0.441

= a

W- have now es i_ated the four true cross-covariances relating

ossession and nLELLa% between Time Points 1 and 2. We have

also estimated the repeated- easures error-covariances for the

same two time points. The procedures we have, used to produce

these esti ates can be equally well applied to the cross-co-

variances of the other two pairs of time points The resulting

error covariances are displayed in Table 5. If we combine the

Insert Table 5 about here

estimates of the true cross-covariances for ,each pair of time

points with the estimates of the true variances and covariances

within each time point, we may compose the total variance-co-
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variance matrix of the six true measures of the two constructs

at the three points in time. This estimated six by six co-

variance matrix is displayed in Table 6.

Insert Table 6 about here

This matrix serves as a new basic data set for all subsequent

analyses of the true measures. When we compare the results of

analyses based on observed data with those based on true

measures, we -ill first analyze the observed values in Table 1

and then perfom a comparative analysis of the -stimated true

values in Table 6.

4. Mul '-relational Models for Lon itu inal Da

The Effects of Measurement Error

The variances and covariances of Table 6 allow the computation

of unstandardized regression analyses relating the true versions

of the possession and watching variables over time. We, in fact,

have all the information needed t_ perform multiple regressions

relating any variable to any selection of other variables. The

only difference between our regressions and ordinary ones which

are based upon individually observed values, is that we perform

our computations from summary characteristics (variances and

covariances) 9)
and that those summary characteristics are
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estimated only indirectly U-om the original data rather than

computed directly from the observations themselves.

Regression analyses, analogous to these interrelating the

true variables, will also be performed using the lkilible version

of those variables directly resulting from the original measure-

ments. In computing the regression analyses invol ing these

observed variables, we will use the variances and covariances

of Table 1. These values are also summary. They were computed

directly from the original individually observed values.

Another distinction between all of our regressions and those

usually performed with individual values is our omission of

a constant or intercept term from the specification of the

regression model. This omission has no important consequences

because the computation of regression coefficients from variances

and.covariances automatically elimlnates the effects of variationE

in the means of the variables. The regression coefficients

remain the same as they would have if the constant term had

been included. The analyses will relate both television

possession and television watching at adjacent time points.

We will relate television possession at Time Point 2 to possession

and watching of television at the first time point. Subst-Aively,

we would expect a close relation to exist between the two

measures of television possession, i.e. we do not expect families

to dispose of their television sets. We might expect a small

3 0
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relation to exist b tween prior watching and later possession

of television since those fa ilies who do not already o-n sets

but have ch ldren who watch television outside of the home, may

over time b_ influenced to acquire a set.

The additive regression model, in this case, may not be most

appropriate, because we do not expect a relation between watching

and subsequent possession for families who already possess tele-

vision s-ts. I.e. our illustration of the methodology is only

approximate with these data since the possession variable is

a true dichotomy.

If we examine our expectations for watching, we would expect,

with or without prior possession, a close relation between

television watching for adjacent time points. For two children'

who watch television equally long at the first tim- point, we

see several possibilities for the relation between possession

and subsequent watching. It is, perhaps, most likely that any

effect of television acquisition at Time Po nt I would have

immediate consequences for television watching. Therefore, all

effects on subsequent watching would be mediated through

watching at Time Point 1 and, once we have taken this into

account, we would expect no relation between television possession

at that time point and later watching. However, if we had some

speculation that the full effect of television acquisition on

watching behavior were not felt immediately, but only later,

3 1



we might expect an independent influence of possession on

subsequent television watching even when we allow for prior

watching.

We may test our expectations by first performing regression

analyses relating the Time Point 2 values t- the Time Point 1

values using the observed measurements. That is, we proceed

in a fashion that is usual when such regressions are carried

out without adjustment for unreliability. This implies that

we fit the models:

(4.1) x2 = 1 XI YII el2_
Y

(4.2) Yr2 = YJXI1 + Y1 + £12
Y-

in place of the models:

(4.3) 2 A + , and

, and

(4.4) n2 = ni (1)

and treat our estimates of ).1x, yix, and yiy as if they

were estimates of X X
,

y and y . Using the values inn

Table 1, we obtain the following esti-ates:

Possessiillx=0.730(Possession)11=0.046 (Watching

Watching:
x = 0.665 (Possession) , ? 0.494 (Watching).

If we compare these estimates with our prior expectations under

the assumption that these numbers represent the relations among

the true variables, then we see that our expectatiors for

possession are verified. There is a relatively large impact

on television possession at Time Point 2 of that at Time Point 1

3 2
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and there is almost no relation between watching and subsequent

possession of a television set.

The resul s, however, for television watching at Time Point 2

were less expected. Although we do find a moderate effect of

earli3r nIsnlm, we discover a close relation between initial

possession and subsequent watching of television. This seeming

"sleeper effect" of delayed influence was only speculated about

before, but seems quite apparent in the data.

Let us now compare the result- -f these fallible regressions with

some ba -d upon the estimated interrelations of the true variables.

The esti a_ed coefficients are:

PossesSion*r

HaL212Lal:

= 0.735 (Possession), 0.042 (Watching);

=-0.004 (Possession) , 'in - 0.841 (Watching).

Inspecting the pc1Raessrions regression, we find almost no

difference between our new esti ates and the old ones, which

indicated that watching had little or no effect on subsequent

possession of a television set. However, when we look at the

determinants of watching, we find a striking disparity. There

is no relation at all of possession t_ subsequent television

watching -apparent in our new estimates, and the size of the

coefficient relating initial and later television watching

has almost doubled. The natural interpretation of these equations

is, in fact, that there are no causal interconnections between
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television watching and po- assion. There i- no sui:prisi_

"sleeper effect".

If we examine the discrepancies between observed and true

relations carefully, we may divine the cause. The accuracy

of measurement of the pf_e_!pion variable at Time Point 1 is

quite high. This may be seen from the reliabilities in Table 3

or the variances of the measurement errors in Table 2. This is

not true, however, of the watching variable. The variances of

the err rs of measurement are substantively larger than those

of the ossession measurements. Even taking differences in

metric into account, the reliabilities are substantially lower.

The effects of these errors, on our assessment of the deter Anant

of possession at Time Point 2, are small. The large effect is

that of the most reliable variabie : initial possession. The

small effect is that of the unreliable variab-e. initial waI.5h1pg,

As a consequence, the larger errors in the initial wAtgLhing

measureff.ent have little impact on the regression because the

true watching_ variable, in fact, influences possession very

little.

The case is considerably different, however, when we look at

the regression coefficients for the determination of watching.

Here, the most precisely measured determinant has no influence,

while the least accurate explanatory variable has a very large

impact. Since the true explanatory variables are positively

related, error of measurement in the most powerful determinant

3 4



(watching) not only attenuates the estimate of its effect but

also weakens the "control" exerted on the relation between

initial poss.:ssion and subsequent watching of television. The

con equence is what _ight be called "under ontrol" A true

effect of prior watching on subsequent television watching

is spuriously attributed to possession of a set, because of

the high reliability of the prior po!_essi.n measure, the high

relation between true prior Eqssession and true prior 1.2Ishlaa,

and the lower reliability of the prior .2i2I2ni.na measur

It should also be noted that in this case the interrelations

among the errors in particular variables at the two points in

time did not have a dramatic influence. Thes- relations were

small enough so that they had no _aterial effect. If, on the

other hand, they had been strong and positive, they would have

partially compensated for some of the distortions in our

estimated effects. However, this is only true, when ther_ is

no influence across variables. In the case of true cross-variable

influence, large positive correlations among the errors in

repeated measurements would result in too little attribution

of influence to the other variable.

We may replicate these analyses for Time Point 2 and Time

Point 3 measurements. Again, we initially examine the observed

regression using the first version of each construct:

Posseasion: _ = 0.792 (Possession), %y = 0.011 (Watching);

Watchin-: = 0.794 (Possession), = 0.467 (Watching).
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The pattern of results is obviously similar to that of the

earlier observed regression. Turning to the true regression,

weobtain:

Possession:

Watching:

0.917 (Possession) , = -0.025 Wa ching);

0.087 (Possession), 0.857 (Watching).

The pattern of change and the resulting implications for the

interpretation of influence are the same as those we found

above. It is interesting to note that not only do the true

effects have the same pattern for each pair of adjacent time

points, but also, that the biasing effects of the measurement

errors are the same. The replication did not help us see

through the fog _f er. or. Only an explicit assessment and

accounting for those errors in our model and in our analyses

helped us blow away the fog.

. Summary Co: ents

We have rev ewed some earlier attempts to deal with the

analysis of panel dat.a which have treated the problem of

causality attribution to quantitatively scaled variables.

Until recently, most such discussions of panel data have

focussed on procedures comparing cross-lagged correlations.

These practices suff--- from many defects, whose severities

have been difficult to assess in actual cases, because the

procedures do not rest on wel -specified mathe atical or

.statistical models.



Recent concern for more mathematically explicit statement of

the bases for such procedures, arising out of genetics and

economics, has led to the increasing use of multi-relational

models for the analysis of panel data. Also, the longstanding

emphasis in individual psychology on error of measurement

has gradually become more sophisticated. A combination of these

concerns seems to be in order. The conjunction of measurement

models, relating true variables to their measured manifestations,

with multi-relational models, relating multiple _easure_ents

of many true variables, is greatly needed. Measurement errors,

have large distorting effects on the assessment of variable

influences when they are not explicitly taken into account

within a multi-relational setting.

This paper has formulated an explicit measurement model for use

with the analysis of quantitatively scaled panel data. The

model incorporates more than one measurement of each construct

under investigation. This multiple measurement allows the

assessment of the interrelations among true variables at a

particular point in time. The addition of interrelations among

the errors of measurem_nt over time allows assess ent of the

true cross-time relations of the underlying constrUcts as well

as assessment of the accuracy of the measurement procedures.

Once the intra- and inter-time point relations among the

const ucts have been assessed, multi-relational models in-

corporating them may be implemented. The resulting estimates
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serve to assess the relative degrees of inter-construct impact

through time. This precipitation of true from observable,

this purification from error, allows us to eliminate the dis-

tortions which these errors cause when they are not taken

into account.

We illustrated the e models and their implementation as practic-

al data-analytic procedures by analyzing a three-time point data

set with double measurement of each of two constructs. Our

initial example allowed us to estimate the variances and co-

variances of the constructs separately at each time point with

no contaminating effects of error. Our additional specifications

of time dependencies in the e- ors allowed us to estimate the

cross-time relations among those constructs, as well. The full

set of derived interrelations among the constructs at the various

ti e points allowed us to fit multiple regression models to

assess the true impacts of the underlying constructs on one

another between adjacent time points. We demonstrated that

there were large effects which had severely dist- -ting influences

on substantive interpretations. These distortions were effectivelI

removed, however, by the procedures.

Although we illustrated the models and procedures with data

involving only two constructs and three time points, the

general strategy is valid for any number of constructs and

any number of time points. It should serve as a valuable tool

for eliminating the distorting effects of measurement error in the

analysis of quantitatively scaled panel data of much greater

complexity. 38
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Footnos

A discussion of the issues basic to our thesis in the
context of qualitative data may be found in Murray (1971).

2)
Campbell (1963, p. 240) has stated this problem clearly: "A
variable which increases in reliability from Time 1 to Time
2 will, ceteris paribus, show up as an 'effect' rather than
a 'cause'.'

3)

4)

5)

As stated in Wiley and Wiley (1970, p. 116): "Each stan-
dardized parameter is a function of more than one unstan-
dardized parameter. In general, if two or more of the un-
standardized -arameters of a model are e ual, the cor- es ond-
j-n-stancYqUeine-ualbqeausethe
are not related to the unstandardized parameters_by_n
e uivalent transformation."

While covariances between distinct measures are not affected
by errors of measurement, under these assumptions, correl-
ations are attenuated, since they are defined by dividing
the covariance by the product of the standard deviations.
These standard deviations are inflated by the measurement
error, and therefore, the correlations are deflated.

Following are the questionnaire items, translated from
Spanish with the coding of responses for each variable.

Television Watch-Li:12

A. How many times did you see television in the last week?

none
one or two times
three or four times
five or six times
every day

Codin2

0
1

2



37

B. With what frequency did you see each of the following
programs?

A. Tom Jones
B. Tarzan
C. The Office
D. Bonanza
C. Land of

Giants

Every Once or twice
week per month Rarel Never

2 1 0

Codes for each program were summed and the total was re-
coded as followe:

Sum Recode

0 0
1,2,3 1

4,5,6 2
7,8,9 3

10,11,12 4
13,14 5
16 6

At each time point, program names were changed to corres-
pond to common preferences. This resulted in substantial
differences in means and variances among the time points.

Television Possession

A. Of the following information media, which do you have
in your home?

newspapers
magazines
radio
television
books

Children who answered "television" received a score of
others received "0".

B. In what.places do you see television programs?

in your house
in a friend's house
in a relative's house
elsewhere



Children who answered "in your house" received a score of
"1", other6 received "0".

6)
Within the context of data from a single point in time,the
model may be "optimally" estimated by either generalized least
squares or maximum likelihood, within the frameworks of Wiley,
Schmidt, and Bramble (1973) or nreskog (1970). A computer
program for carrying out the analysis is also available
(nreskog, van Thillo, and Gruvaeus, 1971). The main consequenc
of such "optimal" estimates is that they are generally more
precise (have smaller standard errors) than the more easily
computed ones proposed here. As the models become more complex,
current "state-of-the-art" methods become inadequate. The ex-
tensions discussed below, for example, cannot be "optimally"
estimated using existing computer programs.

7)
The symbol "^" refers to the estimate of the quantity over
which it appears. When one such symbol appears over more
than one quantity, the result refers to a single estimate
of the composite quantity. When more than one of these
symbols appear in a single expression, the result refers
to the composite of the estimates of the individual quantities.

8) See Footnote 6).

All of our regression computations were performed either by
hand or using standard regression analysis computer programs.
Many such programs accept summary as well as individual data
as input. The summary input may take the form of variances
and covariances or of correlations and standard deviations,
each of which is easily convertible to the otherPrograms
which require means as well may be given arbitrary values
in place of them and the resulting constant terms may be
ignored.



Table I. Covariance Matfix for Two Versions of Television Pos5ession and Watching at Each of Three The Points

Consbut Version Time

11)

Symbol x1

(11) A
Y

(00 (NJ

y x

(11) (Y11)

y
2

(1x)

Y

()11A

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

1

1

2

2

1

1

2

2

1

1

2

2

1

2

1

2

1

2

1

2

1

2

1

2

1

1

1

1

2

2

2

2

3

3

3

3,

X11

X
21

Y1 1

Y21

1

Y22

13

23

yo

y23

.247

.227

.479

. 12

.248

.443

.288

2.313

1.225 2,264

.198

201

.402

.212

.196

,205

.375

.185

432

.437

1459

.906

,283

,299

1.053

L212

.250

.232

468

167

.250

.467

.271

2453

1.028 1.749

.185

.175

376

,231

.176

.172

330

104

:375

.351

1.348

.907

154

147

1.020

L186

:20

.196

418

274

:202

.199

419

.273

397

:381

1.517

1004

.221

110

.906

1.107

150

.233

.502

319

.250

.491

312

2476

1326 1281
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Table 2. Estimates of Parameters for the Three Time Points

Time Point

.001.1

observed coy

predicted cov(x Y2

COV(X y z)

.924 .998 .978

.651 .571 .635

.246 .232 .238

1.882 1.800 2.088

.479 .476 .502

.001 .018 .012

.038 .019 .022

.431 .653 .387

1.468 1 163 1.439

1.01 1.00 1.00

Table 3. The Reliabilities of the Variables for the Thiee Time Points

Time Point

onstruc Version b- 2 3

1 x .996 .928 .952

1 2 X
2

.847 .924 .912

2 yi .814 .734 .844

2 2 Y2 .352 .335 .369
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Table 4, Symbolic Covariance Structure for Two Versions of Two Constructs

at Each of itee Time Points

Construct Version Time S yinbol

(1) 1 1 1 x11

(2) 1 1 X21

(3) 1 1
Y11

(4) 1
Y21

(5) 1 2 X 12

(6) 1 2

(7)
2

1
Y12

(8) 2 Y22

(9)

(10) 1 2

(11) 2 1 Y13

(12) Y23
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Talk 4 continued
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Table 4 continued

a
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;3 )112
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Table 5, Estimated Variance-covariance Matrices of the Measureincni Errors

(Correlations in Parentheses)

C ngtruct

1

lieNon

1

S mbol

xl

Time Pain

.001

Time Point

2 .1)09 () 1)18

3 .000 (00) .002 14) .012

1 .038

2 .014 (52) .019

3 .005 (14) 1)03 (15) .022

7
yl 1 .431

2 -.143 -.27) .653

3 -.190 (A7) -.068 (14) 387

2 2 ya 1 1468

2 .617 (47) 1.163

3 .567 (39) .552 (43) 1439

The value for the correlation is greater than one because sampling variation

has produced an abnormally anal value for the Time Point 1 error variance.
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Table 6. Estimated Val-in-ice-covariance Matrix of True Televisioli

Possession and Watching at Each of Three Time Points

ti

112

Fl

246

.479 L882

.207

.383

.441

1.602

.132

.476 1.800

.185

.364

.379

1498

.20

.425

387

1.585

.238

.502 2.088
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