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Abstract

Early procedures for the analysis of multivariate panel data

do not rest on well-specified statistical models. Recent
approaches based on path analysis suffer from the defects of
variable standardization and lack of attention to measurement
error. The paper formulates a measurement model for quanti-
tatively scaled multivariate panel data. The model is applied

to a data set indexing two constructs measured at three time
points. Multiple measurement of each construct in conjunction
with the measurement model allows estimation of a true variance-
covariance matrix. Analysis of this matrix produces substantial-—
ly different interpretations of variable influence than similar

analyses of the original data,
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1. Problems in the Interpretation of Panel Data

Sociological and social-psychological research workers have
long been concerned with the attribution of causality to
variables representing basic sociological or psychological
concepts. Given the difficulty of variable manipulation in

many real social settings, scientists have turned to statistic-=
al methodology rather than to experimental techniques of

investigation for help.

From Lazarsfeld's (1948) early discussion and exposition of
the sixteen-fold table technique for gualitative data to
Campbell's (1963) and Pelz and Andrews' (1964) simultaneous
conception of cross-lagged panel correlation procedures for
quantitative data, practicable data-analytic technigques have
been available for causal attribution. These technigques, how-
ever, have been heavily criticized by statistical methodo-
logists (e.g. Goldberger, 1971) and are consequently clouded
with ambiguities of interpretation. One reason for the persist-
ence of ambiguity is the lack of well-defined mathematical
models to serve as foci for discussion and bases for critique.
Our intention in this paper is to specify such models as well

as to exposite technique.

In this paper we are focussing solely on gquantitative variables.

Consequently, the sixteen-fold table technique is not directly

7




felevantil) Comparison of cross-lagged panel correlations was
the first widely advocated non-experimental technique for the
attribution of causality to quantitatively scaled variables
in social-psychological research. In addition to the lack

of a clearly stated statistical model , one universally re-
cognized weakness of this technique is its serious distortion
by commonly occurring measurement errors. One especially
distorting event is systematic change in the reliability of
2)

variables over time. Such events occur, for example, when

a true variable's variance changes, although the quality o

i1

the measurement remains the same. This is nearly always the
case when any change in a true variable takes place (Wiley
and Wiley, 1970)., Therefore, it is difficult to justify the

use of technique in typical social research settings.

Path analysis is growingly accepted as a powerful framework
for disecting social data. Tt originated in genetic studies
early in this century and has been systematically gaining
favor among social scientists as a useful devise for stripping
data to bare their (in)consistencies with complex theoretical
assumptions and hypotheses. Path analysis has the advantage

of being completely specified in mathematical form. It is,
therefore, easy to criticize on both substantive and metho-
dological grounds. Path analysis has the advantage of being
multivariate and cépable of variable augmentation while main-
taining the basic asymmetries which are required in the
simulation of causal as opposed to simply relational networks.

8




The application of path analysis to guantitatively scaled

panel data has been systematically developed by Duncan (1969).

However, the path-analytic framework, as it is usually imple-
mented and specified in applied research work, suffers from

at least two defects, especially, when oriented towards longi-
tudinal data: standardization and measurement error. Standardiz-
ation means rescaling of variables so that their standard
deviations in the sample are in every case equal to one. This
practice has been generally criticized as wasting valuable
information even in cross-sectional data (Tukey, 1954, Blalock,
1967a and b) . In the context of longitudinal data, these
difficulties become even greater, since most such analyses are
oriented toward the assessment of and the distinction between
stability and change. Such standardization complicates the
detection of change or stability in the structure of the effects
of causal factors, because invariance in the structure of the
causal network, which appears in the form of constant values

for causal coefficients when the variables are not standardized,
will result in non—-constant values for those Qgeff;ciénﬁs when

they are standardized.

This problem becomes even more difficult when errors contaminate

the measurement of variables because there is no longer a
simply specifiable relation between the two kinds of co-
3)

efficients.” These measurement errors also have serious con-

9



sequences for the estimation of coefficients. Wiley and Wiley
(1970) and Wiley (1973) have discussed some of these distort-
ing influences within the context of univariate longiltudinal
and multivariate data, respectively. A general discussion of
the complex consequences in a generalized regression frame-
work has been given by Cochran (1968; 1972). Ignoring measure-
ment error in regression analysis complicates the regression
coefficient "attenuation" problem, commonly encountered in

a simpler biﬁvariateic@ntext, when measurement eryrors con-
taminate variable assessment. This complexification implies
increases in the sizes of some coefficients as well as decreases
(attenuations) in those of others. The complexity of distortions
in these key-indices, used to make causal attributions, effect-
ively distroys any hope of a simple rank-order relation be-
tween observed and real coefficients. This implies that it

is necessary to explicitly incorporate measurement errors in
the formulation and specification of the model that serves as

a basis for data-analytic procadures. When a single psycho-
logical variable is errorfully measured this has been known

as the problem of "the measurement of change" in the psycho-
metric literature (see Cronbach and Furby, 1970). This paper

is one in a series which has the intent of expositing models
for the general analysis of quantitatively scaled data with

measurement errors.

A basic statement of the fundamentals of such a model was

given by Wiley and Wiley (1970) in a critique of a standardized

10
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path analysis specification for univariate longitudinal data
(Heise, 1969). Wiley (1973) subseguently formulated a class

of such models for an econometrically sophisticated audience.
Keesling (1972) applied this basi¢ model to multivariate cross-
sectional data and incorporated the nqt;@n Sf correlations
among errors, This was the first ¢onjunction of Cronbach's
multivariate generalizability theory {(Cronbach et al., 1972)

with complex multi-~relational models,; common in econometrics.

This paper presents procedures and techniques based upon
statistical models which incorporate more than one theoretical
concept measured at more than one point in time. The model
includes measurement errors in the observed variables which

may be correlated over time. The exposition and discussion

is oriented toward empirical research workers in social and
psychological science. We hope to make the models and procedures
both comprehensible and practicable to research workers who

have not received extensive advancged training in statistics.

2. A Basic Measurement Mod>l for Quantitative Variahles

In a data set representing two constructs, each measured at

two points in time, there are several relatively simple pieces
of information which might be desired in attributing causal
impacts. In the absence of measurement error, there are three
quantities which describe simple distributional characteristics

11




of the constructs at the first time point: the two variances
and the covariance. There are four more characteristics

which represent the productive relations between the constructs
at the first time point and at the second: the two regression
coefficients relating Construct 1 at time two to the two
Construcits at time one and the two regression coefficients
relating Construct 2 at time two to those at time one. Finally,
there are three quantities remaining: the two variances and

the covariance of the residual parts of Constructs 1 and 2 at
time two which are not accounted for by their time one versions.
These ten quantities are equivalent to, i.e. contain the same
information as and only constitute a reorganization of, the

ten griginal duantities: four variances and six covariances.
They :ﬂnstigte the summary of the distributional character-
istics of the four measurements: two variables at each of two
time points. Thus, in the absence of measuremgnt error, we
seek ten new quantities from ten old quantitie%, a possible
task. Whenh we add measurement error, we must add new quantiﬁies
to account for the characteristics of those errarg; Clearly,
when we do this,ewe increase the number of desired quantities
beyond ten and thus exceed the number of available pieces of

information.

number of values they wish to estimate is no larger than the
number they possess. The simplest such assumption is that

12






thexe is no erroxr of measurement. If all the error var lances
are zero, then we only need estimate and rearrange the origin-
al values: the four variarces and the six covariances. There

is a direct correspondence between the original values caleul at-
ed and the values desired. EnEc::rtunatgly; Such an assumption

is rarely legitimate in social sclence and amalyses based on

it are often misleading.

A second approach has beerr to increase the nunber of items of
information available beyond the smumber of quantitles one
wishes to assess. Am example of this approach is Heise®s ex-
pansion of tvwo-time point nodels for analysis of three—tine
point panel data (1969). He assumes that all the relationships
among the variables may be explained by postulating that a
sinple Marxkov model holds. I.e. that variables at a spexcific
time are determined only by those at the preceding poiret. He
also aséuﬂes stable reliabilities for the varilables. Without
gc::in;g into detail, this expansion gives Heise eriowdh addition—
al values (variances and covariances) to identify a rmmodel which
includes measurement error . while an improvement over onhe with-
out measurement exror, this model is still quite restrictive.

A discussion of the model's utility can be found in Hei se (196 9),

and criticism of some of its assumptdons in Wiley and wiley (1 970).

We believe that there is a nore ef fective way to imcrease the
amount of information beyorad thes number of quantities ome needs

to estimate. Instead of expandiray the number of tirme Points, .

i3




we suggest expanding the number of measures of each variable

at each point. Two measures of each variable at each time

point produce enough additional information to allow the
calculation of all the quantities in a quite general two-time
point model. We can even calculate all of the important characte
istics of the true variables at a single point in time. This
will be illustrated in the next section. In fact, we have more
information (observed variances and covariances) than we need.
This extra information also permits us to assess the adequacy
of the model. Increasing the number of measures of each variable
beyond two, permits Ffurther loosening of assumptions. For an
extensive treatment of the multiple measurement of psycho-

logical constructs see Cronbach et al. (1972).

In order to specify the model, it is necessary to make some
assumptions about the structure of the measured variables,
Specifying these guides us in designing our measurement oper -
ations and variable definitions so that they more closely con-

form to these assumptions.

A traditional way of making these specifications is, that each
measurement be a linear function of the underlying (true) value
and an error, and the erxors be uncorrelated with the true
values for every measure and errors in other measures. This
means that a covariance between two different measures of the
same trait should result entirely from the common true variable.

A covariance between a measure of one trait and a measure of

14



another should only result from the true relation between

the traitsg4)

In describing the measurement characteristics of our model,
we will begin with two constructs measured in two versions
at a single point in time. Denoting this time point by t and
the version by "1", the model for a datum resulting from the
first operational definition of the first construct is:
(2.1) Kiy = & + eay '

wvhere X1, represents the observed measurenent, Et the true
value, and E1, the error of meésurément- We assume that the
error is uncorrelated with the true values of its own and
other variables as well as with other errors at the same
time point. Similarly, the model for such a datum of the
second construct is:

(2.2) Yig = Ng + 61t :

where Y1, represents the observed measurement, Ne the true
value, and S;t the error of measurement. Examining the vari-
ational and covariational structure of the observed variables
in this simple model, we obtain:

+ g?

(2.3) Var(xy,) =0 - g
t t €1y

2
£
(2.4) Var(y;t) = g°

+ §6 , and

(2.5) cév(x;t: Ylt) = Gg

15



for the variances and covariance of the observed variables.
These three observables are composed of five basic elenents.
The fact that three observables are composed of FEive elements,
impiies the impossibility of the evaluation of those elements

without additional information.

If we, however, take am active role in designing the data
collection process, we may generate aﬂditiunal information

which will allow us to evaluate these unobservable variances

and covariances. Wiley (1973) has suggested that social measure—
ments be designed according to strategies similar to those used
in psychological measurement, that is, by generating more than
one operational version of each construct. In addition to (2.1)
and (2.2) above, we might assume that each of the constructs,

at time t, €. and U has a second operational definition:

and

(2.6) X2, = B_E

t ebe t otz

£ 1

(2.7) Yo, = Q.ng + 6gt '

where Bt and ¢y reépresent the possibilities of diffexences in
the scales of measurement between the first and second versions
of each construct at time t. These addi nal observable
variables generate tyo more obsexrvable v wces and five

more observable covariamces:

(2.8) VaE(xé,) = Blg?l + gt R
o t Et E;t

W
ﬂ\
Q,
_’r
(o]

(2.9) Var(ggt)



(2.10) Cev(xgt,

(2.11) Cov (X2, ; y;t) = B ¢ '

(2.12) Cév(ygt, X1

(2.13) Cgv(ygt, y;t) = 0, g

(2.14) C@V(Hztl Yit) = atatgé‘,p?}t b

Inspecting the right-hand side of these ten compositional

equations, we find nine unobservable components: Gé'i o .
' &

"« As long as the

2 2
g Oe
OS24

fy » and
Elt

- 2 o 2
r O3 ¢ O s B, y O
51,; t E;t

quantities Oy and ﬂt’ which are coefficients characterizing
the measurement scales of the variables, are not zero (a zero
value implies that the new measures do not really relate to
the appropriate comstructs) and as long as the two constructs

are related (o is not equal to zero), this system of ten

Ser Ny
equations with nine unknowns may be solved and the unobservable

conmponents become calculatable from the observable ones,

This change in measurement design has allowed us to separate
the interrelations among the observed constructs into those
three aspects specifically due to the underlying constructs
and those six due to the distortions of measurement errors.

PO ‘1 7



2.1 Example

In this section we will present an example which will illustrate
a procedure for estimating the variances and .covariances of

true and error variabkles. The data come from a study of
communication processes conducted im Central America. The two
constructs, we have chosen for illustration, are televigion

watching by children and television possession by their families.

Each construct was measured twice at each of three points in
time. The same four questionnaire itens were user at each time
pDLntiS) Coding of the responses to each item at each point
in time resulted in twelve variabiesi The covariance matrix

for these variables is displayed in Table 1.

We will demonstrate the estimation procedure based on the model
for a single time point, presented above, using the iaza fox
Time Point 1. Since the number of quantities to be estimated,
nine, is fewer than the number of observed guantities, ten,
there are several possible procedures. Two commonly chosen

methods of "optimal" estimation are gaggrg;;zei?;east_ggyarés

and maximum likelihood (see e.g. Goldbergexr and J¥reskog, 1972).

We have chosen a simpler method, for illustrative purposes,
which consists of eliminating one of the eguations and solving
those remaining. This method produces a relatively but nct
fully efficient estimate according to the above E:iteria.§3

i8
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The remaining equation can be used for the purpose of testing
the adequacy of the model and we will illustrate this use

also.

Since Time Point 1 was chosen for illustration, the first four
by four submatrix in Table 1 is the basis for our calculations.
I all that follows, x will characterize observed television
possession while y will denote observed television watching.
Recalling from above that the first subscript specifies the
'wer%ion of the construct while the second represemts the time
point at which it is measured, the variables, in order, are

symbolized: Xy1, X21, Y11, and y,z, which represent possession

version one (time one), ossession version two (time one),

watching version one (time one), and watching versiom two

(time one), respectively.

According to Equation (2.5), aérﬁz = ¢bv(xi1, y11) which from

) ] ) ) - =
Table 1 is equal to 0.479.7 From Equation (2.L), B; = Blai;ﬁz/
. | ,
“Eam E1,M
0.924 which is the metric-coefficient for the second index

= cbv (%21, Y11)/6 which is equal to (0.443/0.479=)
of television possession in the scale of measurement of the
first. Since both of the indices were based on dichotomous
items, where the natural interpretation of the positive

alternative for both items was possession, the scales of

measurement should be almost the same. If this were in fact
the case, B3 would be egual to 1.000. The value which we have

obtained is therefore quite reasonable. Similarly, from Equation

19
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" & = cBY (v ) /8 hich is
ay §131g'€§m1 = coviyz1, x11)/ £1m which is

equal to (0.312/0.479=) 0,651, the analogous coefficient

(2.12), 4, =

for television watching. The fact that the estimate is less
than one is also reasonable since the range of varid*isn of
the second watching item is less that of the first. Lirneinu-

C s e i 4 2 Ny o
ing in like fashion, from Egquation (2.10), 351 = Biog /B1

= cBv (K21, x;;)/é; equals (0.227/0.924=) 0.246, the true score
variance of television possession. For television watching,

= V ; 3 ﬁ ;- - s

from Equation (2.13), ail = aiailfa1= cdv(yz1, y11)/8; equals

(1.225/0.651=) 1.882.

=

For television possession the variances of the errors of

measurement may be estimated using Equations (2.3) and (2.8)"

1e fe <. A2 - L .2 A2 oA\ ap L
as follows: 851; : Cégi + dgli) O, 7v§;§;1;) ggi equals
247 = - = ) g =2 = (R2m2 L ~2 - (A.y2m2

(0.247 Q.zéﬁ;) 0.001, and &2 (B:U;fEl + Gizi) (B1) S,
= vAr(x,1) - (51)282I equals (©.248 minus (0.853) (0.246) which,

L

€21

in turn, equals 0.038. These small values indicate that tele-
vision possession is quite reliably reported by the children.
The variances of the errors of measurement for television
watching may be estimated in a similar fashion using Equations

(2.4) and (2.9) as follows:

22 = ] + 2 - 22
T621 (ﬁﬂi ﬁﬁzi) In1
equals (2.313 - 1,882=) 0,431, and

??*?ﬂgf:§§3‘~~

P 2 Y 249 _ s o o - DA
, = , 2 - ' = virxr(y. = (&
a1 (E¥Gﬂz €21) (1) Gﬂ; ar(ya1) (d1) ﬁEi

equals 2.264 minus (0.423) (1.882) which, in turn, equals 1.468.

= var ) - §2
(y11) LA

kS

L'l

These values imply that the measures of television watching
are considerably more errorful than those of television possession

o 20




even considering the differences in measurement metric. It is

also clear that the second index of watching, which is based

upon long term frequencies of watcching particular television

programs, is much more errorful than the first, which asks

3

about’' general watching in the preceding week.

Rééélling that we have not used Equation (2.14), cov(xai, V1)
= a1516£1iﬂl, for estimation purposes, we may employ it to
assess the adequacy of the model. This may be accomplished

by comparing the tabulated value with a prediction based on
our estimates of its components. The value for this covariance

from Table 1 is 0.288. Predicting it from the estimates E;,”E;,

%giml, we obtain (0.651) (0.924)(0.475) or 0.286. since the two

quantities are almost equal, we are pleased with our assess-
ment of the adequacy of the model. Table 2 reports, for Time
Point 1, all of the estimates and the ratios of the observed

versus predicted covariances.

We may, in the same way, estimate the correspond ing quantities
characterizing each of the other times of measurement. These
are based on the central and final four by four subcovariance
matrices of Table 1. The results for Time Point 2 and 3 are
also summarized in Table 2. In each case, the covariance ratio

indicates that the model is quite adequate for our data.

21



It should be noted that the model, as specified, assumes QDQ%
stancy over time in the metric of the first version of each
variable. Since we do not include paramétéfs such as o and B
in these versions, we make no allowance for scale changes in
then. We do, however, allow such changes in metric for the
second version of each variable. Accordingly, we have sub-
scripted the o and B values separately for each time point,

. _This provides for a different discrepancy between version one
and version two to obtain at each time point. Consequently,
general metric inconsistencies for the second version of each

variable are possible.

variable. The

This is logically necessary for the watching
first version of the watching variable has precisely the same
operational definition for each time point. However, the tele-
vision programs, used to specify the second version, change
from time to time. Because of these changes, the metric co-=

efficients should vary. On the other hand, the possession

variable has constancy of definition for bgth of its versions
at each point in time. As a consequence, we would not expect
the true values of these metric coefficients to vary over- time.
If we ins;éet the estimates in Table 2, we, in fact, find

slightly less variation in the coefficients for

possession.
We can also assess the precisions of the measurements and the
ways in which these precisions change over time. The reliability

coefficient of a measure is usually defined as the proportion




of variance attributable to the true variable. Table 2 conveyed
the variances of the errors for each measurement operation at
each time point. We may use these to assess the reliability

of each ﬁeasu:e since we also have estimates of the variances

of the true variables and of the scale parameters.

Wiley and Wiley (1970) have strongly argued that this ordinary
coefficient is misleading. The standard error of measurement
(square root of the error variance) defines more adequately

the aBguracy of a measurement since it indicates, in an average
sense, how far an observed mgésuremént is likely to be from

the true one. Since the standard error of measurement is not
the only characteristic which influences the reliability, the
traditional coefficient can vary because of changes in the true
status of the variable as well as changes in the characteristics
of the measurement operation. Concretely, as the variance of
the true variable increases, other things being equal, the

reliability increases.

Table 3 displays the reliabilities for each measurement at each
point in time., The measurement properties of the variables, as
indexed in this traditional way, vary widely. Since the true

J constructs change over

time, espegiélly the latter, we find fluctuations in reliabilities

which are not only due to changes in the average sizes of the

errors but also to changes in the distributions of true watching

behavior on the part of the children.

.23




3. A Specification of the Measurement Model, allawing

Correlated E?;@rs,fa;,BepeatgﬂwMeasurémings

Just as we developed representations of each of the observed
variances and covariances for each time point, we can construct
similar representations for the cross-covariances bhetween time
points. Before, we were interested in defining, for example,
the covariance of x,, andrygg, both measured at Time Point 2.
Now, we are interested in defining, for example, the covariance
of x;; and y,,, the first measuredbat Time Point 1 and the

second at Time Point 2.

We specified that the errors were uncorrelated with true

values and with errors in other variables. We did not specify
the relations among the errors in the same variahle atxdifferent
points in time. Since it is reasonable to expect that the error

in the measurement operation for a specific construct at one

point in time may be correlated with the error in that same

‘operation at a later point, it would seem advantageous to

allow for this in the spevlification of the model. More concretely,
it seems reasonable to assume that a child who overstates his
general television watching at Time Point 1, may also overstate
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that at time two. It is possible to allow this additional

flexibility because there are many more observed variances

Of course, the allowance of correlated errors over time for
specific measurement operations implies that the covariances
among the resulting measurements will not directly reflect
true score covariances as they do within time periods. For
example:
(3.1) Cov (x11,X12)

= Cov(gr + e11,82 + €12)

Cov(f1,E2) + Cov(Er,e12) * Cow(eq1,E2) + Covi(ery.e12)

7]

0 +* 0 o] i
E11,€E12

ey, E,

With this new specification in mind, we ¢an turn to the general
task of detailing the forty-eight symholic compositions Sf the
cross—covariances between time points (sixteen for each time-
point pair). These are summarized together with the thirty
previously specified within-time point variances and covariances
(ten for each time-point) in a symbolic¢ variance-covariance
matrix (Table 4).

Insert Table 4 abou% here
We have forty-eight new pieces of information, but desire only
twentygfgur additional quantities: the twelve cross-covariances

of the true variables (4 for each of 3 pairs of time points)
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and twelve error cross-covariances (also 4 for each of 3 pairs

of time points).

In Table 4 the symbolic representations of the cross—-covariances
of the observable variables are located in the three off-diagon-
al blocks. The diagonal blocks symbolically represent the

variances and covariances within the three time points. This

for the variances and covariances displayed in Table 1. With
the three-time point data, the number of available pieces of
information exceeds, by more, the number of desired quantities,
than in single-time point data. This implies that there are
many more ways of estimating these quantities. A statistically
more elaborated solution to the problem of estimation than
that given below would make more efficient use of this large

amount of additional information.

3.1 Example

This subsection illustrates the computation of estimates of
the créssscavariances for both the true variables and errors.
We demonstrate these computations using the cross=covariances
between Time Point 1 and Time Point 2. We will refer to the
entries in Table 4 by the row (1 - 12) and column (I - XI1)
numbers corresponding to the pafticular cross—-covariance.
Since combinations of Time Points 1 and 2 are in the firs£

off-diagonal block, the row numbers (Time Point 2) will always
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be between 5 and 8, while the column numbers (Time Point 1)

will always be between I and IV.

Two off-diagonal cells (6, I and 5, II) in the off-diagonal

block include the cross—-time covariance of true bossession,

651 £, Referring to these two cells in both Table 4 and
=24 F 22

Takle 1, we f£find that B:0 . corresponds to 0.201 and B0, ,
) E1:82 E1.,82
corresponds to 0.196. Since we can obtain the estimates cf
Bz and By from Table 2 (0.998 and 0.924), we may estimate 651 £,
£ 1 = £
by 0.201/0.998 = 0.201, or by 0.196/0.924 = 0.212. For the

final estimate, we choose the mean of these values: 651 £,
= & F 3

equals 0.207.

The diagonal elements of the off-diagonal block contain com-

ponents representing both true and error cross-time covariances.

For example, § . = g, . 0.198 (5, I). Sub-
Or examp-er Uyii1,x12 961,E, ' (5, 1) 4

tracting the covariance of the true variables, estimated above,

0 .. e
E11,€12

we obtain 8 ... = 0.198 - 0.207 = -0.009. Similarly, &  _
€11,E12 Xa1,Xz22

= 0.205 (6, II), therefore, & _ o
E21,E22

a (7, . + f
Bigggézlgz " Yea1,822
0.205 - (0.924) (0.998) (0.207) = 0.014. Applying the procedure

for estimating GEI £, to the entries in cells 7, IV and 8, III,
E 14 2

we obtain for watchinc %ﬂl Ny = 1.602. Consequently, &
il 20g On i ns, ,

= 0.617.

6111§12

= =0.143 and & :
"621,022

block, we find that half of them can be used, in an analogous

fashion, to estimate o, and the other half to estimate o, .
E2,N1 E1/N2
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The latter is a component of the following cells:

Cell 7, I : ﬁglrﬂé = 0.402

- ) o -

Cell 7, I1I: Bi0 = 0.375
ﬁgl Tz

Cell 8, I : a0 = 0,212
EI N2

7 e
Cell B, II: Bi0,0

0.185.

gltﬂ? .
Dividing by the previous estimates (f; = 0.924 and &, = 0.571),

we obtain four distinct values for GEI n
7 2

0.402 (= 0.402)

0.406 (= 0.375/0.924),

0.371 (= 0.212/0.571), and

0.351 (= 0.185/(0.924) (0.571)).

The average of these four values 0.383 = 5€1'ﬂ7. Following
the same procedure with the remaining cells we obtain 0.441
- agzrﬁzi

We have now estimated the four true cross-covariances relating

ossession and watching between Time Points 1 and 2. We have

also estimated the repeated-measures errcr-covariances for the
same two time points. The procedures we have used to produce
these estimates can be equally well applied to the cross-co-
variances of the other two pairs of time points. The resulting

error covariances are displayed in Table 5. If we combine the

estimates of the true cross-covariances for each pair of time
points with the estimates of the true variances and covariances

within each time point, we may compose the total variance-co-
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variance matrix of the six true measures of the two constructs
at the three points in time. This estimated six by six co-
variance matrix is displayed in Table 6.

This matrix serves as a new basic data set for all subsequent
analyses of the true measures. When we compare the results of
analyses based on observed data with those based on true

measures, we will first analyze the observed values in Table 1
and then perform a comparative analysis of the estimated true

values in Table 6.

4. Multi-velational Modeis for Longitudinal Data:

The Effects of Measurement Error

g variables over time. We, in fact,

have all the information needed to perform multiple regressions

relating any variable to any selection of other variables. The
only difference between our regressions and ordinary ones which
are based upon individually observed values, is that we perform
our computations from summary characteristics (variances and

cavaziances)g) and that those summary characteristics are
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estimated only indirectly from the original data rather than

computed directly from the observations themselves.

Regression analyses, analogous to those interrelating the

true variables, will also be performed using the fallible version

of those variables directly resulting from the original measure-
ments. In computing the regression analyses involving these
observed variables, we will use the variances and covariances

of Table 1. These values are also summary. They were computed

directly from the original individually observed values.

Another distinction between all of our regressions and those

usually performed with individual values is our omission of

a constant or intercept term from the specification of the
regre sion model. This omission has no important consequences

from variances

i3]

because the computation of regression coefficient
and covariances automatically eliminates the effects of variations
in the means of the variables. The regression coefficients

remain the same as they would have if the constant term had

w

been included. The analyses will relate both television

possession and television watching at adjacent time points.

We will relate television possession at Time Point 2 to possession
and watching of television at the first time point. Substantively,
we would expect a close relation to exist between the two

measures of television possession, i.e. we do not expect families

to dispose of their television sets. We might expect a small

30



of television since those families who do not already own sets
but have children who watch television outside of the home, may
over t%me be influenced to acquire a set.

The additive regression model, in this case, may not be most
appropriate, because we do not expect a relation between watching
and subsequent possession for families who already possess tele-
vision sets. I.e. our illustration of the methodology is only

approximate with these data since the possession variable is

a true dichotomy.

If we examine our expectations for watching, we would expect,

Wwith or without prior possession, a close relation between

television watching for adjacent time points. For two children’

who watch television equally long at the first time point, we

see several possibilities for the relation between

and subsequent watching. It is, perhaps, most likely that any

effect of television acquisition at Time Point 1 would have
immediate consequences for television watching. Therefore, all
effects on subseguent watching would be mediated through

watching at Time Point 1 and, once we have taken this into
account, we would expect no relation between television possession
at that time point and later watching. However, if we had some
speculation that the full effect of television acquisition on

watching behavior were not felt immediately, but only later,
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we might expect an independent influence of possession on
subsequent television watching even when we allow for prior

watching.

We may test our expectations by first performing regression
analyses relating the Time Point 2 values to the Time Point 1
values using the observed measurements. That is, we proceed
in a fashion that is usual when such regressions are carried
out without adjustmgnt for unreliability. This implies that

we fit the model

i)

(4.1) %12 = A xy11 + 31¥Y11 + €12, » and

(4.2) yi12 = Y;xxil + TLXYII + €12

(4.3)  £2 = A81 + ANy + 8, and
(4.4) Nz = YEEI + Yﬁﬂl + 9

and treat our estimates of 113, liy, Y1, and Yly as if they
were estimates of )., lﬂ, Yoo and Yﬂ' Using the values in

Table 1, we obtain the following estimates:

Possession: Xig = 0.730 (Possession), X;Y = 0.046 (Watching);
Watching: $1x = 0.665 (Possession), Y1 = 0.494 (Watching).

Y

If we compare these estimates with our prior expectations under
the assumption that these numbers represent the relations among

the true variables, then we see that our exXpectations for

possessi

on are verified. There is a relatively large impact

on television possession at Time Point 2 of that at Time Point 1
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and there is almost no relation between watching and subsegquent

m\

ossession of a television set.

w

The results, however, for television watching at Time Point 2

were less expected. Although we do find a moderate effect of

J, we discover a close relation between initial

earliz2r watchin
poussession and subsequent watching of television. This seeming
"sleeper effect" of delayed influence was only speculated about

before, but seems quite apparent in the data.

Let us now compare the results of these fallible regressions with
some based upon the estimated interrela ns of the true variables.

The estimated coefficients are:

Possession: ig = 0.735 (Possession), Xn = 0.042 (Watching);
Watching: ?E =-0.004 (Possession), ?ﬂ = 0,841 (Watching).
Inspecting the possessions regression, we find almost no
difference between our new estimates and the old ones, which

indicated that watching had little or no effect on subsequent

pD542551gn of a television set. However, when we look at the
determinants of watching, we find a striking disparity. There

is no relation at all of possession to subsequent television

watching apparent in our new estimates, and the size of the

coefficient relating initial and later television watching

has almost doubled. The natural interpretation of these equations

is, in fact, that there are no causal interconnections between
33
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"sleeper effect".

If we examine the discrepancies between observed and true
relations carefully, we may divine the cause. The accuracy

f measurement of the

Q

ossession variable at Time Point 1 is

quite high. This may be seen from the reliabilities in Table 3
or the variances of the measurement errors in Table 2. This is
not true,; however; of the watching variable. The variances of
the errors of measurement are substantively larger than those

of the possession measurements. Even taking differences in

metric into account, the reliabilities are substantially lower.
The effects of these errors, on our assessment of the determinant

1 at Time Point 2, are small. The large effect is

that of the most reliable variable: initial possession. The

small effect is that of the unreliable variable:

As a consequence, the larger errors in the initial watchinc

measurerent have little impact on the regression because the

variable, in fact, influences possession very

1]

true watching

little.

The case is considerably different, however, when we look at
the regression coefficients for the determination of watching.
Here, the most precisely measured determinant has no influence,
ﬁhilé the least accurate explanatory variable has a very large

impact. Since the true explanatory variables are positively

related, error of measurement in the most powerful determinant

34



(watching) not only attenuates the estimate of its effect but
also weakens the "control" exerted on the relation between
initial poss<ssion and subsequent watching of television. The
consequence is what might be called "undercontrol". A true

ffect of prior watching on subsequent television watching

)

S spuriously attributed to possession of a set, because of

o

the hich reliability of the prior possession measure, the high

possession and true prior watchin

relation between true prior

and the lower reliability of the prior watching measure,

among the errors in particular variables at the two points in
time did not have a dramatic influence. These relations were
small enough so that they had no material effect. If, on the
other hand, they had been strong and positive, they would have
partially compensated for some of the distortions in our
estimated effects. However, this is only true, when there is

no influence across variables. In the case of true cr@ssfvariablé
influence, large positive correlations among the errors in
repeated measurements would result in too little attribution

of influence to the other variable.

We may replicate these analyses for Time Point 2 and Time
Point 3 measurements. Again, we initially examine the observed

regression using the first version of each construct:

o
0
L]
]
1]
w
T
i le
[
o
]
[ ]
i

= 0.792 (Possession), Iiy = 0.011 (Watching);

0.467 (Watching) .

i

= 0.794 (Possession), ¥i

‘85

=
it
Tt
'y
o
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e
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o
il
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The pattern of results is obviously similar to that of the

earlier observed regression. Turning to the true regression,

we obtain:

il
1
o]
]
[
w

Possession: XE = 0.917 (Possession), X (Watching) ;

i
o
L)
w
~1

0.087 (Possession), ¥ (Watching) .

-
oy
I

n

The pattern of change and the resulting implications for the
interpretation of influence are the same as those we found
above. It is interesting to note that not only do the true
effects have the same pattern for each pair of adjacent time
points, but also, that the biasing effects of the measurement
errors are the same. The replication did not help us see
through the fog of error. Only an explicit assessment and
accounting for those errors in our model and in our analyses

helped us blow away the fog.

5, Summary Comments

We have reviewed some earlier attempts to deal with the

analysis of panel data which have treated the problem of

=

ntil recently, m@strsuch discussions of panel data have
focussed on procedures comparing cr@ss—laggéd correlations.
These practices suffer from many defects, whose severities
have been difficult to assess in actual cases, because the
procedures do not rest on well-specified mathematical or

~statistical models. 36



Recent concern for more mathematically explicit statement of
the bases for such procedures, arising out of genetics and
economics, has led to the increasing use of multi-relational
models for the analysis of panel data. Also, the longstanding
emphasis in individual psychology on error of measurement

has gradually become more sophisticated. A combination of these
concerns seems to be in order. The conjunction of measurement
models, relating truve variables to their measured manifestations,
with multi-relational models, relating multiple measurements
of many true variables, is greatly needed. Measurement errors,
have large distorting effects on the assessment of variable
influences when they are not explicitly taken into account

within a multi-relational setting.

This paper has formulated an explicit measurement model for use
with the analysis of quantitatively scaled panel data. The
model incorporates more than one measurement of each construct
under investigation. This multiple measurement allows the
assessment of the interrelations among true variables at a
particular point in time. The addition of interrelations among
the errors of measurement over time allows assessment of the
true cross-time relations of the underlying constructs as well
as assessment of the accuracy of the measurement procedures.
Once the intra- and inter-time point relations am@ﬁg the
constructs have been assessed, multi-relational models in-

corporating them may be implemented. The resulting estimates
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serve to assess the relative degrees of inter-construct impact
through time. This precipitation of true from observable,
this purification from error, allows us to eliminate the dis-
tortions which these errors cause when they are not taken

into account.

We illustrated these models and their implementation as practic-
al data-analytic procedures by analyzing a three-time point data
set with double measurement of each of two constructs. Our
initial example allowed us to estimate the variances and co-
variances of the constructs separately at each time point with

no contaminating effects of error. Our additional specifications
of time dependencies in the errors allowed us to estimate the
cross-time relations among those constructs, as well. The full
set of derived interrelations among the constructs at the various
time points allowed us to fit multiple regression models to

he true impacts of the underlying constructs on one

\rﬁ"‘

L]

ess
another between adjacent time points. We demonstrated that

there were large effects which had severely distorting influences
on substantive interpretations. These distortions were effeétivel;

removed, however, by the procedures.

Although we illustrated the models and procedures with data
involving only two constructs and three time points, the

general strategy is valid for any number of constructs and

any number of time points. It should serve as a valuable tool

for eliminating the distorting effects of measurement error in the
analysis of quantitatively scaled pPanel data of much greater

complexity. 38
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Footnotes

1)

2)

3)

4)

5)

A discussion of the issues basic to our thesis in the
context of qualitative data may be found in Murray (1971).

Campbell (1963, p. 240) has stated this problem clearly: "A
variable which increases in reliability from Time 1 to Time
2 will, ceteris paribus, show up as an 'effect' rather than
a 'cause'."”

As stated in Wiley and Wiley (1970, p- 116): "Each stan-
dardized parameter is a function of more than one unstan-
dardized parameter. In general, if two or more of the un-
standardized parameters of a model are equal, the correspond-
ing standardized parameters will be unequal because they
are not related to the unstandardized parameters by an

equivalent tfénsférmgticg,"'i

While covariances between distinct measures are not affected
by errors of measurement, under these assumptions, correl-
ations are attenuated, since they are defined by dividing
the covariance by the product of the standard deviations.
These standard deviations are inflated by the measurement
error, and therefore, the correlations are deflated.

Following are the questionnaire items, translated from
Spanish with the coding of responses for each variable.

Television Watching

A. How many times did you see television in the last week?

Coding

none 0
one or two times 1
three or four times 2
five or six times 3
every day 4
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B. With what fréquency did you see each of the following

programs?

Every Once or twice 7
per month Rarely  Never

A. Tom Jones
B. Tarzan

C. The Office
D

C

D. Bonanza
Land of
Giants

|

Codes for each program were summed and the total was re-
coded as follows:

Sum Recode

o

12

N s

=
b D™ w o~
~ w O LT

el sl T

At each time point, program names were changed to corres-
pond to common preferences. This resulted in substantial
differences in means and variances among the time points.

Television Possession

A. Of the following information media, which do you have
in your home?

newspapers
magazines
radio
television
books

1]

Children who answered "television" received a score of "1",
others received "0".

B. In what places do you see television programs?

in your house

in a friend's house

in a relative's house 43
elsewhere y



6)

7)

9)

Children who answered "in your house" received a score of
"1", others received "O".

Within the context of data from a single point in time, the
model may be "aptimally“ estimated by either generalized least
squares or maximum likelihood, within the frameworks of Wiley,
Schmidt, and Bramble (1973) or J®éreskog (1970). A computer
program for carrying out the analysis is also available
(jéreskcg, ‘van Ihillo, and Gruvaeus, 1971) The méin canseqU?nﬁ
preclse (have smaller standard errgrs) than the more easily
computed ones proposed here. As the models become more complex,
current "state-of-the-art" methods become inadequate. The ex-
tensions discussed below, for example, cannot be "optimally"
estimated using existing computer programs.

The symbol """ refers to the estimate of the quantity over
which it appears. When one such symbol appears over more

than one quantity, the result refers to a single estimate

of the composite quantity. When more than one of these

symbols appear in a single expression, the result refers

to the composite of the estimates of the individual quantities.

See Footnote 6).

All of our regression computations were performed either by
hand or using standard regression analysis computer programs.
Many such programs accept summary as well as individual data
as input. The summary input may take the form of variances
and covariances or of correlations and standard deviations,
each of which is easily convertible to the other. Programs
which require means as well may be given arbitrary values

in place of them and the resulting constant terms may be
ignored.

44




Table 1, Covariance Matrix for Two Versions of Television Possession and Walching at Each of Three Time Poiats
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Table 2. Estimates of Parameters for the Three Time Points
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Table 3. The Reliabilities of the Variables for the Three Time Points

Construct

_Version

_Symbol

[

Time Point
2

978

535

238

2.088

502

012

022

.387

1.439

1.00
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Table 4, Synbolic Covariance Structure for Two Versions of Two Constructs

at Fach of Three Time Points
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TableS. Estimated Varfance-covariance Matrices of the Measurement Exrars

(Correlations in Parentheses)

Time Point
Congtruet Veion  Symbol  TimePaint | - 1 I

! ! X 1 i

) A0 () o8

3 000 (00) 00214 an
I ) 1 l 03

) 014 (5) 0

3 005(24) 003 (19) 0

2 I Y, 1 431 :
} | 190(:-47) - 068 (-14) 37

2 2 ) 1 1468
817(4) 1163

3$109) 35(4) 149

L [

* Thevalue for the correlation is greater than one because sampling variation

has produced an abnormally small value for the Time Point 1 error variane.
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Table 6. Estimated Variance-covariance Matrix of True Television

Passession and Watching at Each of Three Time Points

238
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