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Introduction

This handbook is compiled, not as a definitive guide to success in teaching technical stu-

.dents, but as a series of questions and suggestions, which, combined with the Experiences

and insights of the reader, will pomt the way to improved teaching, both i m content and
teaching methﬂdalogy

Sugg&stmns as to course content and usable apphcatxgns can at best consist of a-large
body of material containing more mformatlon than can be absorbed into-any particular -

_coursé, thereby leaving each user the optlcm of selecting those topics that apply to s:pe:cifn:
- programs/ The underlying aseumpnon is that, while technology students are not a breed
‘apart, théir needs and oru:ntatlon are to the concrete, rather than the abstract. While there

are differ nces betwéen technology students and other students, the authgrs believe that in
today’s multi-media world, many techniques of imparting 1ﬁforrnatu:n must be developed;

‘i.e., the classical * ga hame and read the book" days are gone forever,

In order to*hslp the reader bmld a vlable teachmg plan based upon these Assumptmns
the authors have attempted to provide a frame of rf:ference by dls:ussmg the careers for
which technology students are being trained. The nature, Scopﬁ, and content of the tech-
nical curricula will be examined, with particular reference to the mathematical skills which
are important for the students, both in college and on the job. The staff of the training pro
gram have compiled a list of concrete applications of mathematics to technology, some
drawn from actual textbooks currently in use in technical courses, Additional materials
from the physics and mathematics areas are included. A section is devoted to the develop- .

. ment of reading and study skills, as well as general classroom management techniques.
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Development of the Technology Eurru‘:ulum
In the period from 1950 to 1960, engmeermg LOI]EgﬁS shlftéd froma practmal (laboratmy=
oriented) curriculum to a science (theory-oriented) one. ‘Thus the engineers graduated from

i

these programs gravita ted to industrial positions demanding a research and developmeént
background. This lef: a void in the engineering and scientific spectrum in the more practical
area. The scientist and the engineer were at one end of this spectrum, and the craftsman was
at the other end. There existed, then, a need for practical technical’ personnel in the area
- between these two ends, _ o i _
It is not surprising that the demands of industry engendered the advent of a new type cif /
, program for the academic training of these newly required technical personnhl The prolif--
L v . ::ratmn of assoclate dc:grec programs m éngméérmg tf:chnolggy sl:srtmg in 1960 was the
inevitable result.’ '
- The kinds of institutions offermg edux:atlonal programs in engmeermg tEchnology vary
: They belong prlmarlly in one of the following classﬁcanons :
(a) Monctechnical institutes—Single purpose msntutmns offering engmc:ermg tech-
— ' nolagy
- (b) Polytgchmcal Instltutlons=—1nstltut€s with a variety of programs related to bL.smEss
‘ health, or public service as well as to engineering.
/o : (c) C‘Qmprehenﬂve Commumty Collegeg B Community zmd/ar Jumor collcges whn:h
' ‘ ‘include in their offerings various occupgnonal-techmcal programs as wellas - .~
umverslty parallel” or “transfer” programs. o
. (d) Umversnneeremor institutions whmh include associate dsgree prﬂgrsms in engmm:r-
ing technology as part of their ﬂffermgd e ;
Engmeermg technology i$ ¢oncerned pnmanly with the apphcatlon of established ‘{j"
sclentlflc and enginecering knowledge and methods. Norrnally engineering technglogy is not /-
c:om:erned with the development of nemprmmples and methods. Techmcal skills suc:h as [/
draftmg, in one instance, are c‘:haractensnc of Engmecrmg technology. S !

The assamat& degrée grsduatz c:f' an engmeo:rmg tec:hnalogy pmgrarn is Callc:d an
‘15 l{ﬁDWﬁ as‘an engineering tﬂchnologlst Thc engmeermg technaloglst has academlc‘ trammg
_ Whll;‘h lies between that for the Engmecrmg teshmclaﬁ ard the engmeer '

i
=

The prlmary Ob_]ECthEZ of the asﬁocmte degree program therefor& is to turn outa market— -
able Ehglnéermg technician who wxll take his or her place in the industrial warld ’ '

+ The Engméer ’ Council for Prcfess;onal DEVEloment (ECPD) is the prof&:ssnl nal scu:lety-

- which accredits individual engmee:mg tcchﬁalogy programs and’ therefarg sets minimum
ool /

= o /
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- To rm:et mipimum criteria for ECPD accreditation, an associate degree program in engineer-
ing tEChnology should mcluds the follGng fcsur major curriculum subdivisions:

L i s

studxes and t&chmcal sciences, for about one yisar

(b) Basic Science Studies, which include mathematlcs applied. mathematlzs and the
- physical sciences, for about half.a year.*

(x:) Nen:[‘echmcal Sl:uches which mc:lude. commumcatlons humamtles social sciences,
and other life-oriented subject matter, for about a thll‘d of a year.*

(d) Instltutmnal Electives, which may include addltlon al technical, basic science, or |
non- tschmcal studies or other content consdqred necessary to maintain the, mtegnty
orachieve the special purpose of an institution of higher education, SufflClEﬁt to
make the total two years S _ : L

Asa prlme consideration, thgofy courses in the technical specxaltles should be accompa-
nied by coordinated laboratory experience which $tresses measuring physical phenomena
and collection, analysis, interpretation and presentation of data. Students should be reason- *

-

sbly familiar with modern types of apparatus that they ‘may enmunter in industry. v S

In the industrial world, the engmgermg tEChﬁlEngl 5 functn:m is not 51ngle _]Ob orlented
“heor shc may have to move into many dlfferent roles,” :

In general, the engmeermg technician works with the sc1ent15t engmeer and technolo-
ngt assisting them in n_the jractical aspects of their efforts, and directing the arts and skills

_ of the craftsman, He diffeis from thé craftsman in his | knowledge of engineering theory
and methods, and he differs from the engineer in his more specialized technical backgmund
o ‘and specialized technical skills. The engineering technician utilizes a combined variety of ' /
sk1115 and diversified practical and theoretical knowlédge to get things done. '

. Some of.the major technical and engineering areas in which an Engmeermg techmman
.. may work include the following: _ o \
(a) Maintenance—the continuation of a system or su‘:--systeni‘sé that it may meet the
_ specifications as originally Enwsmned and for which design criteria were'e established.
*(b) Production or Manufastur1ng==the techmcmn may provide technical supervlsmn in.
~ installation, start- up, ¢heckout of equipment and systems; trouble-shoot and diag- -
nose malfunctiony'in laboratory prototypes or production equipment, systemis.of - A
;oo processcs In addition, he or she may monitor prcxduct quahty and develop schedules', _
o I for work ﬂow mr:ludmg all operations from raw materials to finished products. - - S
(c) Testmg=—the testing of Eanment ‘materials, and pracesses to determme whether |
they meet speclflcatlcms and accepted engineering stgndards
(d) Technical Sales.aattempts are/ made to convert the needs (often vague) of potent;al b.

i

" * One ygar c:f aradgmm tine is z:unsrdered to bg a minimum of 30 semester srsdn:s From'thé above cric’
teria, the mzmmum number afsgmest;?r credits for an associute degree in engineering tesbnalagy would’

x

be 60. Hamever ‘most programs range in semester crgdxts bstween 64 ami :2 A
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] . oo : T
(e) Technical Wnter the technician works with: engmeers in compllmg tﬂc:hmcal
_minuals, reports, bulletins, Smeflcanons ill‘ld Cat1lugs '

s

(H) Estnmatmg*wurk w1th engmﬂermg fnrms unldmg supply con

anies, and others'in

(®) Dcslgn Concerned with lmplﬁrﬂél‘ltlng the specnf:catmns of the custgmér, then
combining materials, involving a vanety of processes into-a: fm;shed prodm:t or
system. . T . - = TUm
1 - (h) Development—provides the bndge between the design function and that of appl:ed
O P science. The development engineer or technician puts together a prototype system or
Subfsystém that may meet only a part of the specifitation for an engineering
endeavor. . . 3
_. : (i) Research—the technician works with scieritists .1nd Eﬂgmeers to dEvelop new equip-
: ’ : ©~ mentand to evolve new applications in manufacturing processes.
\ (j) Field—technicians are kc::mm:;zfna:d with placing the system in Qpe:fatlon under actual
\ - - operating conditions. : ;/'J : 3 _ ‘
(k) Supzw1§10n==§uperv151:3n of l@wa’gradg tethmcnans and sknlled craftsmen . ]
ocational/

\ : o Tue paramount distinction between an EnngEt‘lf’lg technology program and a vocatlonal/
or industrial technology program is the level and quality of the basic sciences—specifically
the mathsmatncs It is commonly stated that mathematics is one of the more critical deter;
' minants’ of both the level and qualn:y of an engineering technology program. The McGraw
Lo " Report in.1962 conductﬁd by the American Society for Engineering Education. (ASEE) and-
' titled “ﬁharattﬂnstlcs of Excellence in Engineering Technology Eduggstlgn contained the
‘ recor‘nrnex?datmn that an ESSGClatE degree in engineering t:chnolagy contain a mmnrnum Df?
e ‘semester credits In mathematics (algebra, trigonometry, calculus). The language of the "
L o rec:cmrnendatlon Encouraged institutions to exceed the stated rnmlrnum o

Ccntempﬁfar’y thmkmg is lafgcly unch"ingcd There, is, however, somE oppasmon to the
‘ ompulsory inclusion of calculus (an ECPD minimum. Cfltﬁrlofl required f for accreditation) in . :
' that some engmzermg ‘technology prggram5-='ipc¢:1flcally in the industrial major— cauld I
 better utilize a course in statistics instead of an exposure to calcul Is. The 1972 ASEE rgpurt :
tltlédi Engmeéﬂng Technology Education Study retained the spmt of thé McGraw Report - -
o : but attémpted to make quantltatwe mithematncs I'eq!JlemEﬂtS rnore adaptable to thf: needs

ofmdlvndua.l mstn‘:utmns o Lo z'

A ' T Edutatlonal phllosophy, in the case of a currn:ulum s mathematlcal t:ontEnt has been - \
- translated dlrectly into evaluative criteria for accreditation, The ECPD,’ rESpGnSlblE for the -
accreditation of engmeermg technal@gy programs, has pubhshcd the followmg statement:’

“An engineering teihnaicgy curriculum srreptahle to ECPD wnll ngrmally be.
characterized by at least the equivalent of oné-half academic year of basic’
sciences, about half of which is mathematics and of which. the mathematncs -
includes carefully selected topics suited to each curriculum from appropriate -

- areas of mathcmatics beyond algebra s.nd trlgonornetry, and mcludmg basu: S

toncepts of the calculus. o . ] Sty
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IR | |
Instltutmns vary consxderably in.the matter in whlch they implement mathematlcs
instruction in their programs. Some, for example, neither teach mathermnatics as a discipline
nor present it, separately in formal courses; rather, they attempt to introduce mathematical
. concepts as pg;rt of the technical specialty at the time such concepts become nceded, inte-
gratmg them completély with the technical specxalty Itis dlfflcult to refute arg’uments that

an 1rﬂmedlate applxcatlon aﬂd IElEvanCE ThlS method is not usad by the majorlty of institu-

tions.

e . In‘institutions where separate mathematlcs courses are gwen the faEulty whlch *each

EhESE courses fall into three separate categones : . &
R ' \
~ (a) A separate “lxberal arts’ mathamatlcs departmcnt whosg faf:ulty service the tech—

nology departments by teaching the math courses.

- (b) Engineering technology faculty (Engmeers) who teach the math courses to the tech-
mcal students. -

(c) Math teachers (wn:h dEgTEES in mathematlcs) who are members of|the Engmezrmg

technology division.

arts’ approach is best At bESt thexr motives are suspect because the proper teachmg of these
mathematlcs courses involves.additional work '

To insure proper handlmg of these courses, bc’:th in level and content a :ontmugus

.g,_

trlgonometry, and Elements of calculus Consdcrable variation in ncmsnclarure exists, hc!wf '

ever, and is to be expected In ‘most casés, r&rnedxal courses are offered ‘without credlt fcsr

the benefit of those students who lack preréqulsxtes
\

towards Opefatmns and applxcatl ons. rathgr than taward theory s.nd dern(anons

~ In an extensive survey Qf mathematlcs faculty members: teachmg at !DSL‘!ELIEIDDS with = i
~Techn ology curri E“lﬂ'mfnund that they- éave emphasxsia_thg_jgllmﬂﬂg _topics: '

" (a) Algebra — The topical areas recaxvmg substantxal emphasxs included fundamental - S
i operations, Spc:::ial products, factoring, fractions, exponents and radicals, linear and frac-

tional equations, systems of equations, elementary determinants and- lagar hms. Mﬂderate
EmphESIS was given to the nature of number systemis, functions and graphs, camplex num—
bers, equations of the third or hxghcr degree inequalities, ratio and proportmns and pro-
gressions. Little or no emphasis was usually given to such aspects of algebra as m\athcm%txcal
induction, binomijal thegrem, permutations and combmatmns probablllry, deter\ inants of "
higher order and parnal fractlons -

ol
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(b) Trigonometry — Almozt all the usual topics in plane trigonometry — those appearing
irstandard introductory textbooks — were given substantial emphasis, although work with
certain topics such as identities, c1rculsr functions, inverse functions and application of the

* law of tangents; were_ said to be theﬂ ‘curtailed because of the time restriction, ‘?Dlutu:ms Qt
nght and oblique trlangles were sald to be gwen special emphasis. ’

(©) Calculue=£mphaswid most strcngly are coordinate systems, lines, variables and

P o functions, limits, differentiation, applications of the derivative, integration of algébraic

: forms, and integration of simple transcendental forms. Receiving moderate emphasm are
topics such as applications of i integration, differentiation of special forms, dlfferentlatxon
“with respect td time curve tracing and equations of the second degree. Areas that are said to
receive little or no Emf;hams include parametric equations, polar coordinates, mdetzrmmaie
forms, infinite series, Expanslon of functions, hyperbolic functions, solid analytic gaometry,
multiple mtegrals vector analysis and differentjal equatmns However, it should be pmnted
out that many of these last topics are included when four courses rather than three consti-
tute the mathematics seque ~e. This more *‘advanced” calculus content is usually in the
electrical technology programs. The graduate of|this program is notmally more ‘‘sophisti-

cated” in the use of the mathematlgs because Df\the nature of; ,be desxrt:d electncal content ',

But the need to remedy éhE entering students! deficiericies shculd not blind us to'an
cqually important problem. Ev;ery entering student with deficiencies must be motjvated to,
- continue his or her studies in engineering technology. This motlvatlan, a teinforcement of
“ -~ the original choice of career, cannot begin t0o soon\: Taking remﬂdlal courses for 4 semester
or longer (without any techmcal specialty- r:ourse;s);lampens the student’s enthusiasm for his
: newly-chosen profﬁ:ssmn ‘The best incentive (dur\ing this penod) is for the stude:nj to take
e ...-x:nngur%ently a practlcally Drlentéd hands-on course in the technology area. This elps to
- sustain the EﬂglﬂEErln% technalagy student’s mtercst in hlS remﬂdlal work.

\
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The Queenshorough Ccsmmumfy College Program in Elecctrical l‘eihnulagy
Asan egample of a twcvyea, program in Elcctr;cal Technology, the f:crafSQSﬂHd course
descriptions for the technical specialty and mathematics at Qucensbcmugh C::mmumty
CDHEgE are described below. .~ = - : |
X /
. | : -
2, ELECTRICAL TECHNOLOGY (Electronic)—A.A.S. REQUIRED PROGRAM - -
(AN EGPD [ENGINEERS GOUNCIL #OR PROFESSIONAL DEVE’LDF‘MENT]"AGGHEDITED ENGI-
NEERING TECHNOLOGY GURRICULUM,)
UAPC Codo for Elemn{:al Ter:hm:mgy (Electronic Optien)=Day: 0923 Evsmng \.’3923 ’
. l —
A , .
Semester] -~ o o Cradits
*MA-14 .+ *Technical Mathematics A . - 4
55- or Hi- Elective in Social Science or Hls\ary ‘ 3
*EN-11 ! *English. Cﬁmpasmﬁml.....“,.i...-i..iii!'.,.,. 8
ET-11 . \ Electric Circuit Analysis |'............: o A
. HE-101 or 102 Health Education . .......oiciiiiiierensnana.. o, 122
- PE-300, 400, 500,10 _ oy P :
700 series (excluding v .
PE-711,712, 713,714, o - o / ,
760, 761) Physical Educationor Dance ............. ....&.. , 1
Sub-total” 16-17
AN /
-Semeslerli '
. MA-15 Sem——Tachnical-Mathematics:B .. 1o .vuuiir e aiene ins 3
PH-201 (f@rmerly ECI) General Physies | .. e . cess . 4
ET-12 | Electric Cireuit Analysis Il . ... ...l 4
ET-21- Electromies | c.ooouitin iiiiiiiiiiiisiiaaendon - 4
' ' : _ . Sub tmal 15
Semester Il ", . o
PH-202 (formerly 21) Géneral Physics Il 4 .
MA-18 Technical Mathematies C 2 . .
ET-13. o _Transnem Circuit Analysis cirareerans 3 e,
ET-22 \ Electronies 1 ¢ vevieir v i ers s 4 v
ET-31 \Eleclrmal Machinary Ceriseaaias 4 .
CET-41 Electronié. Project La!:mrah:ry e o1 \\ .
N ' . Sub -total ‘is DN
Semester IV : ' o : - . i\ -
58-or Hl- _ Elective in'Social Science of History , .41 . ... . .. 3 i
. ET-23 < Communications and Microwave Electronics . ...... . AN
e EF32 ' Feedback Control Systems . ATl Jy——
’ ET-51 . . Digital Computers ............ e C 4 7 '
EN-12. 7 . English Compos mqrjll..!..!i...igi.:,,... ’ 3— —l
_ JnTTTTTITITI I o g Subetotar” e
| . TrfAL ELECTRICAL TECHNDLC}GY 57-55
gv o Satislactory scar_é on ﬁIEEEfﬁEﬁE examinatians required. e . 3

ERIC,~ ~ . . et X2
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Tl Courses Taught in Electrical Technology T B
s - ~ ET-01. INTRODUCTION TO ELECTRICAL TECHNOLOGY "~
L : 1 class hour . 2 recitation hours 3 1laboratory hours® 0 credits ! -
: - . \F‘rereqms:re or c:argqu:s:le MA- 1(} Required. for all Elscrncal h lagy mamrs
B . . taking MA-10. o e C .
o Intmductm,, m ee::trr:\mc and’ camputer teahnalagy. s::enhflg ngtat elemncal

T A R " 'units, schematic electrical dnagrams fundamentals of camputers. Ohm's Iaw alec-
) . o -trical ggmpanéms and measurmg mstrurnems Labaratary hours cﬂmplemem ‘:lassb
- : / Sowprk, - L T o : =
S - ET-11. ELEGTRIC cmcurT ANALYSIE - B o L
! I S | class haurs 3 Iaboramry Imurs § L:ret:hrs ’ ; : :

rn tics placemem exammai‘mn Ccrequlsﬂe MA 14 . : :
Flesnstam:e Dhms law Klrchhaﬂs laws, natworks with. DC c.urrem and vnltagé

sﬂurces bram:h current anslysls g‘gesh anﬂ nn:dal analysxs superpﬂ
- meters, Labnratcry hours n:gmplamem class wark ‘ _ R L
. . - ET42. ELECTRIC GIRCUIT, ANALYSIS 0 . R
. - 3 class hours _3 laborétory hours 4, t:red ts ’ " S
/ Preraquisite; ET- 1. G‘araqurs:re MA- 15. : e s

'—.,:/ - Smusmdal wavefnrm,: phasar quantmes. |mpéﬂanca Rnrr:hhaffs Ia'

' vadur:tancé Labaramry haurs r:amplement u:lsss wark . .

U ET-13- TRANSIENT CIRCUIT ANALYSIS :
L o .*7class liour 2 recitation hours 2 labarah:ry Iwurs 3 u:redn‘s o ‘ .
- M .7 Prerequisite: ET-12: Corequisite: MA-16. " -, o R
e T *  The differential equation formu'ation of electric circuit behavmr ths forced solution;
' the saurce-Iree solution; ini jal’ conditions; the complete sgluuun , rﬁplsx fréquenqy, .
transfer fun on: pole-zero tt:nt:ept -Laplace transform. Labcratgry hours ::nmp!a/-

A rnent classwnrk R ) ) . \
L sty P soE * . = . -,
L 1 £2 K ELECTRDNCSI S Tt
- . . ‘ ) -+ 3 class hours” ‘3 laboratory- hours 4 c:redlrs Carsqutsn‘e ET-12 ar ET=14
s L i "' Basic theary and aperahan af sahd-sté?e snd vacuum lube devices mcludmg diodes,
L . . o _triodes, penlodes, transxstars fieid- effect transnstqrs. unijunction transistors, silicon-
T e -%* .7 " centrolled rectifiers, tunnel diodes, varactors and Zener diodes. Clipping and clamp- _
' , '/ "o % ing circuits.-Graphical and equnvalem circuit analysls of “active devices. Elaslng of =
g_/. _ . transistors. Fiechher.»hlter and pawer supply circuit- design. The’ majar emphas\s o
Ce ﬂ'irf:ughaut the course 15 on SEmnaaﬁdumar davn:es Labaratcry héurs t:amplernent
class work: . Lo T i
. . ET-22. ELECTRONICS I . : B o e
* N 3 class hours. Slabarstary hours sir:radn‘s Prerequts:ra ET- 21 . S \_;
H)I:nd parameters design of S(ﬁa” and Iarge signal mplifiers (transistor, FET smd
. o B -yacuum tube); decibe! x'frequen\;y fesponse of amp, nfiars D.C. amplifiers, npara-
. . “." 1 “ . tional amplifier circuits; integrated. circuit theory; regulated transistor power supplies; .
FER SCR and triac control circuits; Uﬂl‘UﬁGllDﬁ transistor circuits. Laboratory hours :@rﬂ-‘ o
plement class work and’ includ® a deslgn project. - - Cox :
L €T-23, GDMMUNIGAT"IDNS ‘AND MICEDWAVE ELECTEGNIGS
- 3class hours: 3 laboratory haura ‘4 credits-, Prerequisite: ET-22. . “
+ Generation and: pr@ges;mg of s;gnala. Includin msclllatinn. madglltiqn demodula-"
. . E tlen'ﬂrequeﬁ:y conversion; bandwidth and noise; 1ra ﬁsmlsslun linas: am? wavequides;
. T . . - use of the Smith chart; tuned clr;ung.transmisglan line-sections; mlcrovave cavities;
S Lo - mlurawave generators and amplifiers, in:ludlng klysirons; *magﬁetrans and t.rqvgllng
C- o ' ' ‘waye lubes. Lasers and masers. Laboratory hours.complementclags work.
SN . “ET-31, ELECTRICAL MACHINERY =~ -
P o ‘9 class hours 3 laboratory hours ' 4 credits’ Prareqylsh'e -ET-12 or 14. .
IR Characteristics and applications 61 DC motors and generators; transformers; AG
' "+ motors and. generators; motor starters and control; powet lat;tr:r fcarngtI;l power
systems Laboratory hours complement EIESS wark T EN e '
. ) @ P L ’ ’ : ' . . B . . . ]
\ } B ' ’ ™. Lo : 8 . s

Aruitoxt provided by Eic:
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ET-EE FEEDBACI{ CONTF(DL SYSTEMS ' e

| 3 class hours 3 Iabarah::ry hr::urs 4 credits Prarequlsne ET-13, 31..
Analog computation and simulation; the bloek_ dlagr m concept valtaga and gpeed.
control systems; sefvo components and. transducers; second nrder servomech-
anisms; prapartmnal control and tach feedback; frequency response analysis using
the Bode Plot; stability; instrument serves servos and computer control; pneu-

" matic and hydraun«: systéiﬂs. L’ab@rat@ry héuis, zamplement'class‘ work, |

' ET-41. ELECTRONIC PROJECT LAEDRATORY A

4 . g Iabararczry hours’ 1n:r§drf C.‘aréqu:sne ET 22. - S : T

0 = —

' ) ll

o : - 'ET-51 DIGITAL COMPUTERS - S
RO o ) ' 3class hours ¥ laboratory haurs 4cfedlrs Preraqu:s:té ET-22.
L Co = Number systems; Boolean aljebr memory elaments; logic elements; timing ala- ..

S ’ - ments; digital computer logic ejréuits—AND, OR, NAND, NOR multmbramr circuits= . o
flip-flop; clock, one-shot; comiputer organization-arithmetic, t:antml memary, input ' L
and outpiit units; Elemant}fpragrammmg Labaratgry hours camplemem class work.

)

i =

i)

Mathematics

. MA-1D EASIG MATHEMATICAL SI{ILLS 5;;:/555 hours O credils
ti F be{gmmng algabra (Nc:re a rrmdular ap-

pmae:h is used in day classes)

S . ‘MA-14. TEGHNICAL ATHEMATICS A d@lass hours 4 crad:ts :
' T Prerequisite: MA-10, ,lr salislactory score on mamemstms plac:ernam examination. T
A basic presentation aF' the fundamental \:am:epts of canaqe al‘gebra and irlgcﬁc{matry '
with scientific and angmeermg appllcanans Imesr equauans and systems; coordinate
geomatry and luncuans quadratlc eﬁuahans \
- . : A
) : . MA-15, TEGHNIGAL MATHEMATICS T/ - Lo
* L 3class hours. Jcredits  Prerequisite: MA-14, or the equivalent. . .
) . i % A continuation of Ten:hnu:al Mathematics A (MA-14): trigonomatric, Expanentlsl and =
o - iogarithmic functions and their graphs complex numbers with apphcatlans to-vector .
) t pmblams.,élements of analytic geametry. curve sketchmg Intmducﬂ@n fo dmérenlla!

. .and integral calculus. ) . oL . . [
'MA-16. TECHNICAL MATHEMATICS G . o
'E::Iass hours. 2 credils Frarequrs:ta MA-15, or the equival ’
A Grsntmustmn af Technical Mathernatics B (MA 15): basic ele ants of dlﬂarantlal T ) &
am‘:l Integral Ealculus and theu applmshan;. conie secnans : )

T

Jab titles.for gradu,ntés of an assoclate degree program in Electrical Technclogy in-
\ . 't:lude Electromc technician, computer technician, electrical designer, technical sales repre-
N sentatwes techmcal wrm:r ‘electrical estimator, glectrmal cantractcr, _research techmcmn.

electromcs tECthlan bmadcag’.t techmcmn held Engmer:rmg asslstant prgcess ccntral- :

techmclan and test equipment techmcmn. o




Intfﬂduct‘iqn to Ele&tfical »Téchnalagy

7 The Departrnent of Elecmcal T chnolcgy offers the remedial course “Introductlon to"
’ Electrical Technolagy (3 class hour$;'3 laboratory hours,no, credit) which must be'taken
c‘oncun‘ently with the remedial math course, MA-10, “‘Basic Mathernatlcal Skills.” This ~ ~
: EOUI‘SE (whuzh is 5 class hours; no credlt) mcltideg a review of arlthmstxc geometrlc -notions
and beginning algebra ‘The remedial ET course, “Introduction to Eleﬂrlcal Technalogy
has'a twa-fc:ld objective: (1) To complemernt and reinforce MA-10 through practlcal apphca-
tions in the field of electrical technolcgy, and- (2) to motwate the student in l'us orlgmal N
' '::hmc:e of a career in electrical technolagy ‘ '

TheET-01 remtatmn portion of the course inc ludeg a mathematlcal review (12 hmxrs) c::f

the fallowmg areas: positive and negative riumbers, fractmns decimals, ‘scientific notation,
squarés and'square roots, laws of exponents and solutmn of 51mple algebrau, equations The .
use of the shde rule for rnultlphcatlop and lelSlOi‘! is also mt:luded Thc remammg 3() hDurs

mat}cs in the techmcal area. The laboratory work (4-2 hr:nurs) camplements the rzcltatxan
theory and mclude:s films-on the slide rule.as well as on the various areas of electrical thﬂory

nge typlcal math&matlcal problems and derwatlons and theory include P R

~ . " Fractions: =~ = Ul v llieses

.;Changing Fractio’ﬁs to Decimals (found off to 3 df:cxmal places):

-%: B PO | P
P .'SClEn’ElfIC Notatmn : .
~ Write the followxng numbers in SClEntlflC natqtlon

: 8 00000316 9, 3 240, o()g s ' L
"Powersoflﬂ o (' I o ’ - o L/
Express the. followmg as powers of 10 ‘ I ) B

10. 10,000,000 11, 900001 -~ 12.1000% 1077 x 10*

. o .v; /"




EEN . T

: Express each of the factors asa power of 10 and find the praduct ' T
13, 1000000}{10000“ ' _ _ oo 14 100000x00001

Carry out the followmg divisions?

5 —3 : S Q0 ”n
1 X 10 . e -' ) 100 X 10=4
"EIFZ-A’ . 16, ——— i

Change}‘éﬂecimél’fqrmz o) S ~
17. 826x1076° . 18, 0003 x 104
Calculate the followmg o ' "

O 0000004 x 5, OOO ,000 x2, OOD
5 OOO x 0. 0002 X 20 OOO

g ‘é‘ “; 53,: i

y

0. 500 ooo X 0. oog% x0.02 x 0. 0000007 e

— o 0005 x 1,000 x 20 x 200,000,000

" Find thé answers to thc: following using the slide rule ;o

L 2aean? 2100 ? ' 21c.(0.000132

Find the answers to the followmg usmg the shde rule

- 22a. zzb\lo 00017 L g

. I

The use of the. prleES milli (10° 3) IT!l{:l'O (10 6) kﬂo (103) and rm:ga (106) is
of great 1mportance in technology in mnversmns I , .

Conversions usmg the aboye are a source of gréar. c:onf'usmn to the student,. They appear

o have no dlffxculty in converting dollars to clents or feet m inches since in “‘real” life they . -
have been exposed to these quantities. It is stressed to the student that conversion of a large

unittoa smaller unit w111 result’in a bigger number (example $3 75 = 375 cents and visa vcrsa)

5

1 ampere =1, OOO mllllampEFES = 1(')3 ma -

1 ‘milliampere = 0,001 ‘amperes =103a’ N
"1 volt = 109 microvolts = 1, OOO 000 ml:rovalts oy
"1 microvolt = 10 *6 yolts = 0. 000001 volt, -
1 kilovolt = 1,000 volts = 103 yolts

. 1volt = 0,001 Kilovolts £ 1073 kilovolts -
"1 megavolt = 1,000, ,000 volts = 105 volts| - . . T
1 volt = 0. 000001 ngivoltS = 10 megavolts '

lntuxtlvely then, if 250 milliamperes wrzrc to bc converted to, amperes, the result should
be a number smaller.than 250, Converscly, 1F 3 kllnvolts were to be: COnvertEd to volts, the

\.

resultant number should be greater than 3. Vo

. . : ) i 7}.‘\.

.{y“ . | | - . | 4




.
B CDﬁv&rsmns may be accomphéhed mathsmqtlcally as follows
; Convert 250 mllhampares (rna) to ‘amperes (a)

250 ma x ———— —=0.25a

b ' » o 13. 1350;(13 C ) P
/ - ~.-",1,000ma ~ 1,000 '

which simply means divisian»by 1,000.

T - ‘ ' 7 Ccmvgrt‘s'.z kilovolts to vélts. - S ‘ I :
" 1000V - A }
3 2 K‘(\' \Kﬁ;: ——————— = 3,200 volts

' : . | o o Convert 34 mllllthS (*mfé)tc‘) rmt:fo{:hrns (1-52)

1,000 o S oo
34m§’ X === er - = 34, OOO m;cm-ohrns ' J B

T T

v .

resultant answer in mlcro-ohn;ls should be larger than 34

Make tha follc:\wmg conversions :
A

b ' : 22 milliamperes .- = -zampﬁres'
; ' ' mllllarnp:res

" .'0,002_amperes-

microamperes - -

S~ . + -0.423 dmperes
. mlcfoamperes

426 milliampéres.
0.05 kilovolts . volts
78 volts . o - milli’vélts',;f L

0.5 volts _ =" microvolts e
-500 rmlll\folts

valts -

A farncms law of nature mdmates that effect is «:qual to, the cause dmded by the |

oppasmon Mathematlcally

2 7 o .
R cause o

T L _ © . opposition T

In an electrical circuit the effect is the current, 1, the ‘cause is the voltage, V, and the
‘ opposition is the resxstance R. Therefore for the EIE{:EI‘IC circuit, eq. 1 (knovm as Dhm s
* . -Law) can be xpressed by: a : ’

‘ (eq 2)I=I¥Qr Ra}for V=IR : '

In technology, umts are of grcat lmpartmce ‘there appears to be a deafth of this
principle in math courses where all cjpc'mtmm app:ar to be dlmensmnless (c:ertamly nnt v
the case in ”real' life), ' _ , . | ‘ : : R

U S et
12! & K




= ' In the various forrns of ﬁ:quatlgn 2, I must be in ampzres V m volts and R in ohrns
Examplés ' o B o
A r:arbon tllament lamp draWS a current of 0.5 amperes when a valtage of 120

: Vv \IEOV
R=—= =240 Gth (Q) :
I -~ 05a- ¥

will be delivered?
2 kllo ohins is equal to 2,000 ohms.

A 6 volt batter:s'mrinected to a resistance of 2 kilo-ohms. How much current is

E’v ( 6Valts ;3(16) 3‘ o 3 ;l
—— = 1Tiner 11}
q OOO T amperes 0}' ml

:)L\ . T g _%%T . L
oo =Ty TR creufe
e FTR—

Lot

) Fig 1 - Series

" In aseries circuit the total resistarice, R -, is the sum of the’individual resistors in series.
[ - Find the current that flows.in figure1.

v R‘Eéﬁl* Ry+Ry=1+3 Y4285

24 Volts, 3; eres
- = 3 ampere .
o - damperes

ol

mi<
,_m

N\ In the abovc circuit find thc elcctrlml pﬂwer, in watts, dlssxpated in fﬁc 4 ohm

\ ’ resistor. ; o ‘

Power (P). =12R

P = (3)24 = 9 x 4 = 36 watts

13




. In an electrn:al circuit, the pnwer cons.m‘led ina resmtor of 2 Dhrns 1s 72 watts.
S - Find thE current in ths resistor. ‘

-
—tt
i

T I="2 solve for t, solve for solve for L, solve for A
_ S : S Lo . v
SR R L12 ' . N
P =I“R solve for R, solve for I - W= =y solve far I, solve fc:r L _ SN

L = ————— solve for I*i,'Sulv: fc:)r 1

e a£=+-=salv&forRT,salvefﬂrRl S _ S

Ry 1R2

L S © K = solye for M, solve for Lq~
RPN {LLE : ~
L - 202, %2 THE e fon

‘2% =R*“+ ;‘{ sulve for X -y solve for Ry

PR A L
;‘ w

Flgure 2 - P'irallc:l CGDDEEUOD of
’ T2 Regxstors

.. E .. : - . - '
1) Rp=—— "~ . L 5) Ip=—+-—

"

e - 2) Ip=ly+ly | - ; ' 6) Rps e m e y v,-"";:.

R | T R Ry RI Mz Rah
R Ry RS




’ Wthh md;cates thiat the tatal rtsxstance of two resxstors in parallel is the pmduct over
the sum.

. Further,’ prov& that the valu«: of RT w1ll always come out less than the value of the
smaller of the two rE515tors '

 Re=1Ry
. RyrRy. . .
“Let R be the smaller of the two resmtors Dmdmg thE numgrator and denamn‘nator ce e

: of the rzght hand 51de of tha equanon for RT by Rl YIE].C]S

. ’R*’—  Ra :
a2z S rp—

Smce Ry and Rj are pc:smve anbers the denomlnator cnf the rlght sxde of the Equatmn is

greater than 1. Theref@re Rg divided by a number greatf:r than 1 gives a value for Ry whu:h is
less than Rz : :

: Ex’ample: '
A 3 ohm and 6 ohim resistor are in parallel. What is the value of the tota! resistance?

3x6 18 _ . ~ : o
RT*‘:,-*TE——EF'—%ZZO}]TDS. ' o N
1 x 3‘1?6 . 9 . : '! . ) .

i - .Note that this value is srnaller than the smaller resistor of 3 ohms, This will serve as a
P " check on the student’s work. If the answer were greater. than 3 ohrns then the Student
: w0uld know., that his or her calculation was mcorrccf

If more than 2 resmtcrs are in parallel, thEﬂ the total rggstance R, is gwen by

o1 /1

— e 4 .
Ry Ry

. fﬁ—*—s=0.5+ﬂ,2+0,120i8
oL k_}.AREr : . ' X .

"Ropy = —— = h o /
T =08 1 25 ohms |

Z
e

Note again that the'answer is lcqq than the, value of the smallest resistance nf 2 ohms

T he mathgmatic.;l 'md electrlcal thcory of resistors in series and in psrallel, as well as
Ohm's Law, are chcckcd expcnmentfllly in the labarntory
/ 15




- Elecmcal (ercmt Analy51s L o -7 :

N . The fll'St Cﬂllegg credit electrical course is Electrlc Clrcmt Analys;s I (ET 1 1) whlch
e consists of 3 class hours, 3 labnramry hiours; and carries fcsur credits. The course involves

' the solution of electrical ElI‘CUlfS with a constant (direct current) input. For a ¢onstant (dc)
“input, the mathematics-in the course is sxrnphflcd It must be remembered that the 7 ”
nc:n-remedlal math student takes this course in’ the first semester. Careqms;te with thls o
. course is Technical Math A (MA- 14). The MA—14 courée mc;ludes fundamentals of collcge _
algebra and tngcmc:metry, Imear equatmns and systems anrdmate géametry and fum;‘tlons E

-and quadratic equations. . :
The ET-11 course deals with the EerulE apphcatmns of the basic thrEE B

~electrical elements. They. are the resxstancg R the mductance L;and tﬁe capax:ltance C

The symbols are mdlcated below.. . //

; unit_?ahms (62 )’_- R 'unitfh:nry (H) | o umt {_farad (Fy .-

N\ ¥ The resistance is an glectrlcal energy dlsmpanng element whllg the , :
. “other two elements stm/E electrical éne:rgy ‘The resistance ‘“‘behaves” quite v we.ll mathe-

matmally (there isa lmcar relat;onshlp betwéen the voltage [v] across-it and the current. [1]
through it). The energy storing. elcments L and C, behave “abominably” in the mathe-

e e maﬂcal sense since the relatlonshlp between voltage and current in these elemcnts is .

: _ gcverned by differential and lntégral equations. - U a
)

) \ - The vglt-ampere (Eause and effect) relatmnshlps are gwen belﬂw

‘.f
*+ Note that the symbol “t” rcpresents time, -
e ; © "It is stressed to the students again, that, although in their math course
o the ubiquitous variables will be “x” and "y ",in the electrical world, these variables will_ be
/ " -noted by their absence, Their raplacemEntfa W1ll include v, i, t, b q, W, p and many c others, :

_16 . Ty




More than thrce=quarters of the course'is devoted to the behavior of , ,
~electrical cifcuits (using various theorems) fo the re&stance R, because of the 51mpler
mathematms involved. The latter portion /nf the course, -dealitig with L'and C elements, . -
/will resultin the introduction of the students to smple concepts of the derivative and the
integral. That the ET faculty | must integrate concepts of imathematics not yet cavered in
the cc)m:urrent mathematlcs course ‘is a fact of life that cannot be overcome. :

" As mdlcated before, ernph9.515 is again placed on conversmn of units, solution of

algebralc equations, scientific notation, slide rule (although thls mstrument may soon bé
rendered obsolete by the calculatop and dlmensmnal snalysm

Basic equatlons in the course include:

v .
R=- Izg’ P=VI P=12R p
I t !
- W= VIt eff = —2=x 100
o - EIln '
x - ' i
. L f 11 11 / |
i R=p% . o= e |
. Rt Ry Ry Ry _.
Rz T-FEZ 1 ) RT

In the laboratary, thE b-islc concepts of plotting a graph from data obtained is stressed.
The introduction of the independent variable as the abscissa and the tlepender{t variable as
%thi: ordipate is intréduced. A graph sheet, pmperly identified with un]lts on both axes and
‘with a proper.title, should be able to: “stand” by itself — that i is, if a person lm:iked Dﬁly at
that sheet, he need not refer to any other iriformation. S
- The'solution of two_(sometimes three) linear Slmultan:ous Equatmns using deter-

minants, is essential. It is pomted out to the student that, in- mdustry, two equatmns as .
\ndltated bf:lc)w will never be EnCDUhtEl‘Cd '

2t==y 6

i

o~ 4;\: + 3y 8 ' ’ v
In the math course, the student is taught 1o-solve the equations by multlplymg th: top ’
- one by 2 and then by adding, a solution fur “y”.is immeédiately Fﬂrthccmmg

[




L )

. ta each of twc: locps R . LT R b

B laboratory

_ 1_'1'
-

In real hfe the CQEfflCIEnES are never that smlple and in addltmn any selferf:sp:c:tmg

englneermg techmclan will always use détéfmmants o

Example

In the abcvs circuir, -:cilve for the current in each resistor. -
Assummg current dlrECtanS as mdu:atecl above, I{lrchhcff s law Df valtage is ap}.hed

=
B

1g=g_abgfa ='16=311+ 2y 41y |

lcu::p c b edc — 13 =112+ 2(1; + Ig) . -_15'; 511* 2l - ,13 = 2[14 3*12 o

16 zl S
13 34 15(3)=52(13) igi
5(3)—2() . 11

s

\l—-l
\INII
— _~"H
WM (7]

3!'_ C5U9-2(16) B3
— = e —3arﬂp S
A RV 11

£ e pammes T . : ER. ' R

| £

3 amperes and thﬂ current in- the ZC';’ resistance is S amperes

The mathematlcal sclutmn to this pmblem would be verified expenmentally in the;

T,

23"
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"

If an ‘electric circuit has three lcmps then a third order deterrnmant wculd result fmm

) Vthe electru‘:al prmmples

Example - . , C . o
, : ' S i

s e
i

Given the 3. résxstances RA, RB, and RC ina delta connectmn L
| and Rl, RZ* and Rji ina wye connection o o
,_(a) Solve for Ry sz R3 in terms csf RA, RB, RC

(b) Solve for RA, RE= RC in terms c:f Rl' sz, R3

'Usmg Electrlcal theary at pmnts A= C

1 . s o _ . R1+R = s
e o i 3 RA"'R+RC

o pmntsb cgive: pots a—b give: _

RpeRA+Rg)  © - R Ry +Rp)
. . Rl + Rz = — —

RB+RA+RC. - i R = RC+RA+RB

Solving the above 3 sxmultqnecus equatmns yxelds fcr RI, Rz, R3
R4 R .. RgRe
Ryt o Ryei B c —  Ry=-

. Solving féf Ras RE'-RC yields:
o RaRy+RyR3+RpRy o RyR
RAk - R—‘ri{ . RB__= —

R

. RiR; RR3+R2R3

it would f::llc:w that 2 S
R’A ": RQ
Ry= Rz Ry =Ry = *éﬁ ==

i b

In a similar ‘manner then: -
o ' 3Ry 2
RAERB RC_Rtﬁﬂ 7R_3RY

7/
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' Pmblems : A e
1) Cﬂnvert thegdelte system belaw to an equwalent wye system Rz el RS
' ;b S T 243 +4

2) Convert a balaneed wye system eeeh of ‘Whoee‘ioe}ie are Eesistore of 2 cxh;ms’; texthe
eequwalent balaneed delta - o = ' : ﬁ :

N0 - CoE . a TS |
} ) . . l

At tl"-e end of this first semester eleetrleal eeurse the elementary eoneepts of the
‘derivative and the integral are introduced even theugh the electrical student will niot cover -

thls material untll the second semester math ecurse (Teehmeel Math B — MA-15). -\ |
" The derivative concept is: introduced as the slope and theslmegfaias the ereg under
- ;the curve (with respeet to the honeontel exls) between two llrmts St }\;f,
‘Prnblem ' . o pop e - LT

If the eharge q, in coulombs and the current, i, in amperes are related threugh the _
equatmn i= dqldt where t is the time in seecnds sketeh the curve of the current, i, if the

| P
S

’ eharge eurve is given below:

| ” N
L\au.f\
*C,L,e.g\meeu 2
. , /7 . - t ._—_’F* "J“‘i"_‘.lg‘
S FfDFn 0'to-3 seconds the slope of the tanggn: to the q eurve is eonstant at
, 6 coulombs : L
i ‘ © 3 | seeond g T o B
\‘\!;‘ - F‘rom 3to 5 seeends the slepe is 0 and fmm 5t07 seeonds the slopeis.
: .6 3 coulombs ( ) o
.. === =3 ———————— (amperes _ '
N T . 2 second P w
\, " . From 7 seconds. on, the slope is agam zero! ’
The dg/dt or i curve is shewn below
o i T —
..(QMFEfESD 7 G I & + %jeeends ‘
. s . \ -13 ‘; = = e - E! x » '! -
o o, It-is pomted out to the students that the curves of two Varmbles will have the
1dent1eal shape enly if the v'imble'a are lmem'ly rdated ‘
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= Problem - et T
- The current i, curve is shown below de the tharge q,att= i0 seconds lfq jaldf.
B 5 4 —_ . CO
t - ; ,
& e t ~>Jeconds

. The value of the charge q,in’ coulombs at the encl of 10 s:c:onds represents the n m:t R

_ area of the current curve with: rEspﬂCt‘ to the horizontal axis (areas’ above the hcxrtzcnt;ﬂ axis |

~are pc\smve and" thggﬁﬁﬂw are negatlve) from tlme —o0 to 10 seconds.’ Frorn mmus 1nf1n1ry
(—=0) to =2 seccnds the curve-area is zero; fmmfﬁz to 0 seconds, the area. is.2 x 2or4:.

- ampere-seconds (Eoulombs) from O to 3 secands rhe: area is zero; from 3 to- 7' seccnds -
the area is —4 x 1 or ~4 ampere-seconds and from 8 to 10 SﬁCGl"ldS the,area i is2'x4/2. =
amperg-seccnds Therefore the net area from —2 to 10 seconds is 4 — 4 + 4'= 4. ampere-'

. seconds (::oulcxrnbs) and the’ chargc q; at 10 seconds is'4 Coulombs S
The second semester electrical course revolves. around the sine wave Electncal powcr
- is generated warld wide in a sinusoidal forrn In aresistor the voltage,v, 1R in the
“"' " inductor, v =L /gj; and in the czl.p:h:ltori Ve é—é’-fldt ‘Therefore, 1f' the current
generated is sinusoidal, then the voltage across each of the electrical elements will also be
s sinusoidal. This-allows the voltage across the three elaments to be a:ornpared as to phase

A

L since all have the same wave form, 51nusmdal
*The concept of rapeitmg or periodic waveforms i is mtruduced The alternatlng

waveform (as 4 spccml case of the perlcdm waveform) is mtroduced where the deﬁnltmn

of f (a) = —f (¢ +) holds. Then the concept of the sine wave (or cosme wave) asa spemal

shapc: of the alternating waveform is finally introduced and studied in detaﬂ ‘
The smc: wave is shown in the hgurc: below as the vnmble current

L
L:I;M rE res
Ty | - . vt Aot e
! . ol degrees / N e c
; - radians )\ gt
-fecamas o t y :
X : [ ) ’ i’! ’ i . . . T - i . L
The abscissa is'shown in degrees, radians and seconds. : —

The period, T, is the time in seconds to complete one cycle (a complete sine wave).
Since in the real warld the current varies with time, the plat versus time is-of con- .-

_ siderable 1mpormm:e,’ ’ : .
o . The freque:ncy. f in cycleq p;r sx_cond is by delnltan relatcd to the pErlﬂd T
as f = = : ,
» ' ' ' : ' L =§ . '
The amplitude or peak v'lluc and instantancous values are dmcussed R S
03 S S S

Aruitoxt provided by Eic:




Problem J L

_ “If i = 10 sine:377t = 10-sine @, find the period, the frequency. and sketch the sine wave
: ! j}éi’sus the angle 51 in dcgrees and radiarxs and also ver’sus t'hE time t, in’ sa:oﬁds
’ c:xprc:SsEd in a more convenient form as 277 (60). Eor 377t =ato be 2m Aradxins, then the value
of t = 1/60 second (the period, T). ' ‘
Therefore, the period, T, is 1/60 second and the frequency, f is the reclprccal of T and
is 60 cyclés per .5econd (cps or hertz) ThlS 15 thf; standard fre.quency in thc Umted ‘Etates b

. and is- called the angular veluclty (relatc;d to r«:volutlons pEl‘ second) C)bvxously the angular
a velomty, W= Z?Tf 27T/T :

(amperes) |/ A ,
o - 3bo é“; S dt‘ﬁr?r‘s
/l. ‘}TTS - EL —_— F@Alans’
. Co ,
Problem bo .t —= Jec ané’j

For the above wavcforrn 1f as= = 30 de rees, what is the correspondin mst'mtanﬁ:ous
/ p g

value of flmc:?

30 1 730 1
T

t
— = — X ——= second
T 360 ’ 60 360 720

1
. £

A very lmpartant concept is to compan: two sine waves of the same frequency as to phas&

Pmblem

‘What is the phase relation between the smusmdgl current ;md voltage wave (of the same

frequency) shcnwn below? - e .

B géséx— ci(‘j-ree:vv

. ¢ The phase relation is 1ndependent cxf the amplltudes and is Eﬂm‘iEI‘nEd with’ comparmg _
identical points of two sine waves (the two positive peaks, the points where both are zeroin *
rnagmtude: and i increasing positively). In the above figire, the elEctrlcal phraseolﬁgy is that _
the current whve, i, leads (starts out earlier in time) the voltage wave, v, by 50 degre:s It s
may also be stated that the valtagé wave lags the current wave by 50’ degrees o

Two wavaforrns that are in phase or 180 degrecs out of: phase are shawn bElﬂW

..., "\ Sketching of sine waves is important.

b
i

5 '!c;l?jffés.. ;‘u% s;;f'fahx‘;é_‘




Problem
Sketch the following waveforms: (1) 1 = 50 sin (o — 20) . (2) v =20 sin (o + 30)
WEVEfO!'m (1) starts 20 degrees to the right of the: origin. Wavefarm (2) starts 30 degrees -
to the left of the crlgm . S

Problems

What is the phase relation betweén the following waveforms?

o (1)i=10sin (@+50)  v=3sin (o + 30) .
. ileadsv hy 20 d;gcss or v lags i by 20 degrcis

/
/

- (2)i=—10sin (a+120)  v=538n(x—60) o
The minus sign indicate a phase shift of 180 degrees; therefore to remove
the minus sign, shift the wave +180 d::gn:es '
i=—10sin (&+120)—105m (o — 60) YESSin (o — 60)
!

The wave forms are in phase, .

(3) 1= 3 cosine (.~ 20) = 72 sine (a+ 30) - X :
To change a cosine wave to a sine wave, sxmply add 90 degrées thatis,
cos & = sin (o +.90). \ ‘
1f=3cas(cx==.20)235in (cx+70) v =72sin (:::HEG)

The current wave leads the voltage wave by 40 de:grees or the voltage wave

lags the current wave by 40 degrees.

Two important values of wave forms (permdxc) are the average and effectwe -

S : valu:s over a cornpletf: cycle.

* The average value is simply the net area dwxded by the length Df the cycle of
" the wa\(ﬁforms o S S ! P

23




Pmblt‘:ms -

F‘md the average value over the campler; cyclf: for the followmg

(1) .
) L.
@wFﬁQ
' o - + —> Jeconds
1 B ! 4’- 3 . o ﬁa’
, The net area is2 x ,;é%i» =8—4 = 4 amp-sec.
: I 4 amp-sec 05 =
ave 8 sec = dmperes
(2)
' li,;ng R »
i ) - §ine wave
, - Ql T A

The average value is zero by inspection, since the area of the positive alternation is equal
and opposite to that of the negative alternation, The average value of a sine wave is zero _
~ over the full cycle. In the laboratory, a dc ammeter, which reads the average value of a peri-
odic waveform over one cycle, is used to measure sinusoidal current It is therefore obwous
“ (and one is not “shocked”) that the reading will be zero. - ‘

(3) Of interest.to the technician is the average value of one alternatmn Refe rrmg to the
previous problém am:l using the lcalculus: '

: 17 0 10 o SR
le= — b 10sinada— [~cosea]T 1 . -
) 0. . 2. 20
Lave = — [1 + 1] ;e(lﬂ)s?amperes S o
v ‘ / . N -
Tl T /0

As a general rule the average value for one alternation is zlw(ar 0. 636) times the péak or -
maximum value of the sine wave. s '

24




~_ The student is also asked to graphlcally compute the above value by plotting the sine
wave on a graph sheet which is “boxed’” and obtaining the area ‘of the alternation by count-
ing the number of boxes included between it and the horizontal axis. The average value is
then obtained by dl\ndmg by the number of boxes along the abscxssa correspondmg to the
,length of the alternation.

- Of equal importance to the average value is the effectlvc or RMS (root-mean- square)
value of a repeating waveform since in electrical circuits this value is a measure of the
_amount cf électx;lc:ql power converted into heat.

ir

The Effﬂétivg value is defined ass

. { T
Leff i\gﬁg J D[l ()] ? do

EEEUE P
or legf = Tﬁim]? dr

course, th:; followmg stcps are Dutlmcd to hxm to obtam th& answer graphlcally : /
To obtain the effective value: ‘ ' : ' : o
'( ) Square each ordinate of the given wa\u:form 1nd plot thxs new ° “squared” wave-
form. : o ,
(2) Obtain the net area of the waveform gcnérated in (1) over the ton'l\plete r:yclé: 0
(3) Obtain an average value by dividing by the length of the period, KR

&

(4) Take the square root of the answer obtained in (3),

30
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‘Problems

V=

(1) Find the effective.value of the repeating voltage waveform shown below over one cycle.

——— ! éyi‘é ———

Step 1—Square each ordinate and sketch new wave,

Step 2
Obtain the net area over oné EYCIE ' > : L

Net area =16 x 4 volt2 - sec + 4 x 2 (note that all areas are dlways pamtwe due ta the
Squarmg of the ordinate). ' o o ) A
" Net area'= 72 volt?-sec -

Step 3

The-average value of Step 2 over 1 cy\:le i§ ——————=9 volt

Step 4 - o o \

The effective value of voltagé isnow: Eqge= Volt? =3 volts
PR B The practical significance of the 3 volts is that this constant value of voltage gives the
/?": o same heating effect as the original repeating waveform of voltage.

& : ’ - .
C: - 3




(2) Find the effective value of the sine wave, i = 10 sin «, over one cycle

The student is asked to do this problem graphically on boxed graph paper and obtain

the area under the square curve by counting boxes. Following steps 1-4 the answer will bc
approvmated 7.1 amperes.

2

Later in the semester as the student proceeds with mlculus in his mathematlcs course, a
general proof of the sine wave effective value is given

Le; i=10 sin,’r:wl, R |
then I g = —=5' 10sina]?2da
ﬂff T;ﬂ- lJ[ o ]
s but smz a=¥— 1/; CoS K

lgff %\}—=— (;(’/zdcx L4 nsacxdﬂf]

By inspection, the latter integral is zero, since the net area of a sinusoidal wave is zero over the
full cycle. S

Ieff_ IEFF:

Cegf = % = 0.707 (10) = 7.07 amperes
which approximates the anszar of 7.1 ampéréé in problem' (2)

In general, since 10 is the peak or maximum value, the effective value of a sine wave

over one cycle is the maximum value over the square root of two or 0.707 tlmes the
maximum, oo

In lay language when a toaster (or any other appliance) is rated 7 amperes, it means that
the effective value of the sine wave nf current through the toaster 15 7 amperes‘ The actual

sine wave of currentisi= 7‘|ésm a and if the fr:zqucncy is 60 cps then the Currcnt is .
= 7rsme 377 T in the time domain.

i
- R "




over one_ cycl::

oK > r“mc{;ans

The answer is 1mmedlately 10(0.707) = 7.07 amperes since it will be the same answer
as for the *“regular” sine wave (when the ordinate is squared, the new squared curve will be

v identical in both cases). o

. The student must become adept in the solution of electrical circuits with a sinusoidal

. input of voltage since this is the norm in *real” life. In linear circuits (those in which the
electrical p-rameters, R, L and C are constant and do not depend on the input-cause), the
effect (current) is always of the same shape as the cause (the input voltage). In non-linear
circuits, the values of some of the circuit parameters vary with magnimde of the input -
voltag: thus the mput (caus&) and the output (effect) will differ in waveforms. This area of
circuit theory is quite difficult and is treated in the mote advanced electrical courses.

. The solution of electrical linear circuits with sine wave inputs involves the addltlon,

-zubt'factlon multlphcanon and division of sine waves of the same frgquen:y If this were to

The el&ctrlcal énglneer thEi‘Efor(. developed a type of' “eléctrlcal shorthand "

This electrical shorthand converts sinusoidal time expressions into the phaser (complex
numbers) domain. Tlf\g mathematics is performed much more easily in EhE phaser domain
and then the answer is converted back, if necessary, into the time dor’miin However, elec-
trical parlance most often occurs in the phaser domain so that the time domain conversion

“is often nzt necesary -
"It can'be shown that sine waves can be COﬂVEI’tEd to an unreal” wcrld for expedlen:y

in mathematical solutlons For mstance

| . time domain - A | phaser domain
= cmn (377t+30° . T 10<30°
v=5 cos (377 t— 100°) = 5 sin (377t — 1@9) — 5 Z£10° )

Note that conversion to,the phasgr darnzun do&s not show the frf.'quency (60 cps in this
case) but always assumes that in any mathematical solution, the sine waves are of the same
-~ frequency. The phaser only shows the peak value and the phase angle of the sine wave. Thc
phase angle is referenced to the sine wave originating at the origin (sina). _
L - Since all “electrical talk” refers to effective values, the conversion to the phaser domain-
should always show effective values (unless otherwise stated); thﬂreforg in electrical shc:rt-
hand, the conversmn is actually done as follows: -

e

. ’ L time domain .

s U i=10sin@776430) 0 == 10(70)L30= 707[_30
o v= Scost(377t—100)-551n(377 t—1c»)-5(7o7)£»;10 354&10

R e 28
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Problems

‘where I'is the symbol for the phucL R Yy

Ni::;t: that the magnitude is expressed in éffective values.
(2)f=25¢ps, V= 10< 620

- Find the sinusoidal time CliprS’ilOn for the voltige V.

f =25 cps w = 27 (25) = 157 radians/sec ‘ .

V= o in (1578 — 62°) = 141451n(157t* 62°) ‘
- 0.707
Complex numbers are expressed in  the polar fort for case of multiplication or division

and in the rectangular or cartesian coordinate form for ease in addition and subtraction. The
student must be able to convert quickly from one form to the other. ‘

A slide rule session will show the ease of these conversions.. ’

_With the advent of the ubiquitous calculator, the ET Department is in the process of
shxftmg from ‘the slide rule to the calculator '

A phaser dlagnm with the abscissa as the real axis and the nrdmatc as the "j" axis
(“1” axis is not ussd in order to avmd confusion with the elex:tncal current, i) is used to 'show

the phasers.

(S

¢ Venolse

o7
e ec30) e o
. - &%22 1 . ~ Phaser Diagram -
5;_."‘%2;; ‘ : .
.

The above phascr diagram qhaws that the volt’ige V leads [ht: current, I, by 70 dégféés
or that 1 lags V by 70 degrcés ' : : .

thlem ' o : ;
Convert 3 sin 157t + 4 cos 157t into one smusmdal CXPI’(:SSIOQ - ' -

3sin 157t = 340'=3 +j0
S  4cos157t= 400 0+j4

Sum = 3+j4= 54
: 5,;’ 3=5sin (157t + 53) Ans. -
- Note, that the convarsmn to the phaser domain used peak values since a gonversmn back .

to the time was also necessary. . oL .
In the salutlon Df sinusoidal elf:ctntal circuits thf: Opposn:mn (ohms) af the f:lectrlcal

voltages and currents are smusmdal e\:pressxons of tlme) in grder to have cantmulty cf ,
mathematics. - R
The resistor, R, has an lmpe:dance (gppcsmcm) Of R(Q the coil, L has an 1mpe§3nce,

XL of X| 490 _]XL and the capacitor, C, has an impedance, X¢; of XEZL.QO =—j

N 1




Problem

Unless otherwise indicated, all phaser values of voltages and currents are effective values

» . é_,f,fi oo -
Solve the following series circuit for total impedance, total current, vr::ltage across the

; resistor and the voltage across thé coil. Draw the phaser dlagram
/ o

i‘ Yava : = ¥ _
Velolo o ENLT R
' The total impedance, £, =3 + j4 = 5.£5§
, v 100/0
[=—= .amzzaiéss
"z 5/53
, vaIR - 20/-53 3/0= 50453
Vp =X = 20553 4@0:8027 |
As a check {Jsing’ Kirchoff’s voltage law, V'=Vp + V| g.l
. vR 6(3,4/_53—36—348 - \
| : o VL =80/37 =64—i48

Sum =100+j0 =100/0
which' checks with the value of the input voltage, V, that was gw n above.

. ,_,m,.‘..-.,. e

1 AT

i
1

';Ehasexl Diagram =

' "}ma lo=V
. . / |
\, 30




Problem L — ’ o . :
(1) Calculate the total lmped.lnu: of the p1f111L1 ‘¢ircuit shown lmlc:xw ;‘md mdn:atc the nature " 

\ of this xmpadancé, i [ o o S g
oL Xt S R
, _ ‘ L te—> - : ‘ o
“ETEZ,' — - S ' X’C = I N
? 7= product of 1mped;‘1ncas‘ - - .
T , . sum of impedances - . S N
i 6/90 4 /=90 24 240 .
2pe 5-'L£ 2* = = = = 12490 /
= — )4 J ) 2/90 . - /
This rt:preiﬁe;ntg%-a capacitive reactance, ch, of 12 ohms ' /
. i - ”.-. . - . i . . /
(2) Find the current, Iy, in the circuit below using mesh analysis - - .- } / e =
Yo il
B /f _
- el
eyzlle
. 4 e /f.:"
loop abcfa (dpplymg KHCthff'S VDltagE faw) [
. By =1y (XL+R)=IZR 0 '_ N 1/1/ 
- eq. | N | (R+XL)+,IZR .
- loop edcfe ('1pply1ng Kirchhoff’s voltage law) _ -
By ~ 1y (X +R)~ IR = o S o
eq.2 - EqulR+I2(R+}i) _ I

substltutmg values into Equatmn 1 ylelds

€q. 1;1 R 2@= (4 +j2) 11 +412 Leq z/a - 6<’O :;4]’1 +(4§J1) 12 q
Solving for I, using determinants ylelds 7 o T

e . / 2@ 'ﬁ ,4 { . .fg{
T X AL -=_11 . 2(4—11)—=4(5) :
1 } 4+jz 4 , (4+12) (4—31)=-4(4) -
’ . A .
_ K "“J2 ’24 _ ;*; ;"*15_13 _1‘514_-!@ 173

Iy = —= = S s
1_: 16 +_]4+2515 _ Zxjd T 447 4537
=3.64-236 : or 3. 5(124 amperes ‘

An ac ammeter placed in the cm:unt would read 3.6 ampercs (effe::twe value) o
If the frequ:nﬁy were SD«cps then ccmversmh to the time damam wnuld yield: .

/

T i = 3 6 2 sin (377t+ 124). afnpéras :
Q = e 3 -t

ERIC oo e 86




‘Problem .
In thecircuit below find the value of R for maximum power transfer to it and then
compute the value of this maximum power,

E = 100 0 volts

y Rint, = 2.
{ ’
, P=I%R
The pe\wer P, dlsslpated in thefreslstor R, is equal to I2R watts but I1=E
’ R +R
E2R o |
TRERE L . _ =
dp R+ Ri )% E2 — RE2 (2) (R *Ring)
-_— = - ) - F
de (R + Rint)
AR - :?-, ) : To find the maximum value (slepe = (), set the denvetlve Equal to zeref
s d (R +R;, t)z E? - RE2 ' (2) R+ Ripy) - '
D = ; e ee——
—(R+R §)2=2R(R+Rmt) o .
0= R2+2RRmt+R —2R2 — 2R Ry,
: 7 ;o
2 2 )
0=R;,“—R _(R +R)(Rmt -R) 7
Ry +R=0 R=-Ry, (rejeet,: emeg;physi’eally there is no hegeti?éfésis;erj

* . 7 | B ] L

~ Ring=R=0 R=Rjy _‘ | |
Since physically the minimum power would bgeur in R when R = 0, the value shown -
indicates the value for maximum power: ' *
Therefore in a series.circuit the maximum power occurs in a load remstenwhen its

valye is equal to the internal resistance, Ry, of the sou\i‘l‘hls is an important- theorem

int.’

known as the “Maximum Power Transfer Theorem”. - \{
- In this problem therefore set R = =Rin¢ =2 ohms. N
For the condition for rnax;lrﬂu_l,fn power trensfer, _ \\
-, 1 CE. 100 ?5’ )
e = — ——= = 25 amperes
- _ Rht+Ra 2+2 /.
- Pmax = (25) (2) 1259 watts.

Although the. power transferred to R is a'maximum when R = Rint., the effleleney of
traqsmlssmn is only 50 per cent since an equal amount is bemg dlssq.:ateel in R int.
ThlS problem is eheeked e‘:perlrnentelly in the laberatery

. B "e

s .
37, ;.
Ty : ‘




- ELECTRONICS .

In electronics a problem frequently encountered is the graphical scrlutu:m ofa strzught '
line and a non-linear curve, The non-linear curve is usually one supplied by the manufacturer
and rnay refer to the volt-ampere relations in a vacuum diode (two-element device) or in a "‘\
semi-conductor diode. .

Refer below to a fundamental diode circuit. _ o/

where E and R are given
circuit values

Writing Klrc:hhoff’s voltage law around the series loop yields: E = VD + IDR

-V
D
+ R where the variables are ID (Qrdlnate) and Vp (ahsmsﬁ)

Solving for —Il? gives: eq. 1 ID =

Equation 1 is in the formy = mx + b where y=Ilp,m=- D and b is the: ordinate

_ 0 7 T{ |
(or y) intercept = T?, : . R
The abscissa (or x) i mtércept may L be: found by setting I (y) Equal to zero. This yields the .
T absmssa intercept-as Vp=E. v
Equation'1 has 2 variables (ID and VD) and, therefore a minimum- af 2 equatmns is
necessary for their Solutmﬁ ' ) ‘
The second equation is supplied in graphu:al form by the manufazturer and is shown

below for.the two types. of diode,
‘ '_s‘émn:andm;#inr diede

-
étﬁémé)'la' Q® aint 1 ' S
. lr g p \/a::uurﬁ'f*dbe mdé . - '
"
. — ey | 47
g Load )ine
) o W?,,, 30 de So
ﬁ Vg —> volts

If the given Cll‘CLIlt values are E = 50 volts and the load res:stor R, is 5 kilohms, then
equatmn (1) ofrf:rl called the lﬂad lme isa stralght line with the ardmate mtcrtept cqual to.

E 50v
| 'R 5k = 10wma A . o e
¢ . and the absmssa intercept equal to E = 50 volts. Havmg these two pmnts on the straxght line, T
S the straight line is plotted above. For the vacuum tube diode, the Q or operating point is

obtained as the intersection of this stralght line with the manufacmret 5 charactenstlcs
- The Q point yields approximate values of Vp = 27 volts and ID 4.9.ma. '
’ In a mmﬂar'fashmn for the semu‘:i:mductor diode, the Q pémt cnordmates are:

: 7 VD'—3VGltSEnd ID =9, S#na o
Q S S Sl V




P : .
.

> Va2 o
GS : .
- , find the transistor current, 1

|
~ Problem
(1) Using Shockley’s,ﬂduitiml? ' = Ipss (
_ . Vp

if Ipgs = 10ma and VP = —5v'(manufacturer’s data) and Vog = —2.5 v

& \2 (
, —2.5 , 7 .
Ip=10 1 ——} =10 (¥4)“ = 2,502
(2) l*(:\r the half wave . rectified sine wave Shown compute the averagf: value over thE:

’ Ew\ | . .
€ )
Wi VTN /N |
- . . T A0 ot %Fﬂ.dmnf
_ o

full cycle.

2T i T :
Eav ‘:: - 2’7{ fz(fi!) dix o JEM sina dcv /

=] <3 ) . ;

: E En /.

M ;
'M[ ( ] = -=0.318Ey
T ey

: o ;é

In geheral, the average valie of' a half wave i%ECtifiEd sine wave over the full cycle is-0.318

times the maximum value,

The decibel (db) had as its origin the fac:t that power and audio levels are relatcd ona
logarithmic basis. When referring to voltage levels, the decibel is defined by: o -

I:"g. ~
- o B v,
| . db=20logyg — .
- ) - Vl . A )

Problems o
1) If V2/V1 15 IDD, how rriany dec:ibe;ls does it represent?

L db =20 ngio 100 =20 (2) = 40 db.
(2) If the dt:tlbel; are t:qual to 6, what is the voltage ratia, VZ/VI:'
VZ _
6=20 loglo N when N =— : ' -
6 , '
. ’ l0510“‘ 30 —030 o .t
. C N=2.0=—2
, TV




In elEctncal terms, if tht: voltage gain, Vo/Vy, drops by 6 decibels, it means that the - -
ratio, VENI’ is down by a factor of 2 or the new gain is %2 of lthe: former voltage gain. If the
Voltage gain increases by 6 decibels, it signifies that the voltage gain has dﬂubled over the ',
previous value, :

The significance of 0 db mdlutes that the voltage ratio is unity,

V) | Voo o Vo
db=20log;g o= 0=20logyg=— = logjp ~—
V\l : . ! ( V1
\%
2
L2
A !

'Or if one remembers that the log'of a fiumber is the exponent to which the base must be
raised to equal the number, it follows that
10° = —'=1 since 10 to the zero exponent is unity. . ' .
Vy " '
The frequ«:ncy response of an amphﬁe:r is a plot of the va!zagg gain, V,/V, (as a dimension- -
less ratio) versus frequency. For convenience, since the range of frequencies is very large; this
plot is done on semi-log paper. It should be’ noted that no zero frequency can ever appear on

the abscissa (see the attached semi-log sheet  which is a 4- iycle paper with t_h_e frequency
varylng fmm 100 1o 1 ,000,000 cycles per sgcond ‘ !
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TRANSTENT CIRCUIT ANALYSIS - ! ;

Hlspon;:ally, the student in electrical te«:hnalogy s cxposed toa hlgher level Qf mathe—

. matics.than those in othc:r engineering technologies. The ET student may be requlred to ;-

take a math course beyond the apphed technical calculus course which, wguld involve an - -
mtraducnon to differential equations and the Laplacc transform. This addltlonal mathe-
marics is essential to solve problems mvolvmg the transient conditions in an electrical
circuit. . , - - . .

For example in turmng ona swm:h to light.a ﬂuaresccnt bulb it takes a finite amount |
of time for the bulb.to light after the switch is in the “on” position. The condmon after

the bulb is finally hghted is termed the steady state or final cgndltmn ‘What transpires
before thé steady state condition is reachéd would cc)rne under the area of tcchnology
known as the transient condition. - L . '

In some colleges, the course is ‘taught by the mathematics department At

o Queensborough the cz:mrse ET-13. Transient Circuit Analysis, is taught by | the techmtal
. depaﬁiment ‘This appears to be more logical since the practical appllcatmns of the mathe— :

Pl

matics aré of paramaunt interest tc: the technical student, = 7. .
Undaubtedly, one of the rnc)st 1mportam: mathematical functlcms in all of pur: and °

 applied science and engineering, including transients in electrical circuits, is that general”

function, AeSt, which duplicates its shape when differentiated or mtegratgd Let us'first EOﬂ' o

. sider the function when “s” is equaltoa negatwe real number.

«at‘

" a value much smaller thah its initial value)., After five time constants have’ clapsed the

As an e‘tample mnSxder thc functlon L =e” 2t whefé g’ is ewdently Equal to —2. It is .

A time equal to Tis defmed as the tlme canstant Thls time constant is defmed as the" -
value of “t”, which mak@s the :xponent of thE function,equal to one in magmtude From -
thls deflnlthsl the time cc:instant T is tqugl tc: ’/é se.r.'ond . o

of cme tlITlE constant

o .
T o i
0 1
CowmTT b | ,
1@n Péz = (0. 353)2 L=0135 .
26m - 7 =0 368) - = q,msrs o
24m) ¢+ e7h =0368)"  =00183
" ;i(JST) e

%(o.'réés)? | _oh00574

0 has decreach toa Value equal to D 674 per cent of the mmal value (t = Q) For Pfﬂcncal
purposes in engmcermg, it is said that the function has dropped to a “‘zero” value (that is, to-

i

** transient period is considered over or thé transient value is now zero. The;table also. mdlcatt:s o
that for cach time Ccnstint T, the fum:tlon dc:reascs by the factor 0. 368 T

. 4L
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The plot of i =¢ 72t for five time constants is shown below.

5

e T AT 3T T st

The course w1ll be concerned w1th the solutxan of differential equatlcns up to the
second order which are linear and have constant cgefflcusnts
Consuﬂer the circuit shcswn below.

,Ren ohms

T R ,Eakw - L4 T

Solve for i (), for t = 0, and plot the curve.
From electrlcal theory, the dlfferentlal equatlon (D.E. ) 15:

. di
E. =Ri+L— (1st ordez)
dt

v

|

i
-

X

[ di

| 10 21+Sed=f (eq 1)

The t:ornplete solution for the current, i, consists of two parts — - the fc‘::rc‘ed response; xf,
due to the'source (10 volts) and thie natural response, iy , due to the circuit configuration.

< The natural fESpDnSE is lndEp&ndt’:r‘t of the wav:fmm or nature of the soun‘:c

i= 1f +ig . .
. In mathematlcs the forced rgSansc is called thc partlcular sglutmn and the na:ural

response is familiarly known ds the complementary solution. : .
Since the forced response must have the same waveform as the mput (whlch is th:

. constant, 10) let i¢ = 1, a constant. Substituting into equation 1, yields. - -

10 = 21 + 5(0) since the derivative of a constant is zero - o
10 = 21 orI—lfeﬁamper:s ‘ ' -
The natural response is obtamed by scttmg the source equal to zero. Thereforc
equation 1 yields: di

n : S "
0=2i +5*ét~'” (Eq 2) , | o : P




Equation 2. indicates that the solution for i i (other than the trwml solution. of i = = 0)

must be such that a function and its derwatwe must add up to zero for all valut:s of t. This”
clearly indicates that the function and its derivative must have the same waveshape and one
must be the negatwe of the other T hEI‘E.‘fOl’E the solution for i, is assumed to be

= AeSt | WhEFE “s"" will be a neganve real number.
\ Substltutmg thxs solutlon into equatmn 2 yields:

: .2
D—EAg +SSAESt - 0=2+35s (eq.3) _ §_—;§§
; : -2t - 1. . . 7 :
. - Therefore i=Ae + 5 (eq. 4) , ' e o ]
7 i ) - and the complete solution for the current: is: - i= if +i, =5+ Ae s (eq' 4
/ L - Equatmn 3 is called the charactﬂnstlc equation and i is determmed salely hy the clrcult
| ' ‘El: ments and not by the waveform of the source.
[ .~ - There now remains the computation for the canstant A, to camplete the solutlon

Using electrical theory att=0 | i=0. Substl..utmg this boundarv Candltlon into
equation 4 ylelds -

2 —=2(0) : K
D S+Ae'5L--=5+A or A=-5

: : —2t ‘
i=5-5¢ 5 (fort>0,) .
. o - . _Ez t _
The flrst térm, 5, represents the forcéd response, and the second term, —5e R o

-represents the natural ( or transient ) response. It is to be noted that, in praeflcal problems,
~the transient response will approach zero as t approaches infinity. In engineering problems,
the natural (transxent) response will be zero in five tlrne constants as indicated prevmusly

The time constant for the e&ipanentlal term is: T = 5— = 2.5 seconds. >
Thet E.‘fOl'E the natural response will die out (approach EEI‘O) in 5T or 12, 5 seconds and the ~
forch response (steady state value) will be a constant of 5 amperes analggaus to the con-
stant input of 10 volts. co T St '

{The characteristic equation (eq. 3) can be qulckly obtained frcun ‘equation 2 by the di,
“mechanical” substitution of 1 for the variable, i, and s for the derivative of the variable, ~——.

If an lntegral term appears in equation 2, then the ‘mechanical”’ substltutlon can be ce

shdwn to be 1/s. ' ' ' §

s

. The plot of the solution for the tDt'ﬂ current, i, is shown below as the sum 1 of tha
=‘2t -

t:onstam 5, and T.hi.‘ cxponennal term

-
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Example1 ©.

* " For the circuit below, solve for the chargeﬂ q, for t=0, and sketch-the curve.,

R Llehm:

|

L Farasﬂ
3

W .

t 7 A
- 0=4s5+2(1) charaCteristic equation / :
0=4s+2

s=—% !

2

q=Q (constant).

q,=Ae =t T=2seconds 3 , o

10 = 4(0) + -% orQ=qg=5 coulombs
' ) q%qfiqn=5%;§§_‘g
att=0,, q=0
| . -0 S ;
S Q:5+AE?.25+A ; o -

A=-—5"

a=5—5 -t solution
=3 — 3¢ —— DIULILH
=2 2 o

‘(C;RU&MEED




_%Eﬁ_xamptez L e

. ! " A circuit is defmed by the equation shown below. How Iong ‘will it take for the circuitto
s -

e reach the steady state response? (Dr how long w111 it take for the natural [transxent] re-,
spopse to die out?) '

’ 351n5t=21+3f1dt

\

The equatmn for the, EOlTlplEmEl‘ltﬂ.ry solutlon is Dbtalned by settmg thr: source Equal to

. zero, N - 0= 21+3f1dt ’ ;'\_ ‘
" ., The charac:tenstlc equatmn is dE[El’mlnEd by making the approprlatg mEChanlgal sub= U
stitutions, : . 1 :
, o o P 3y _
032(1)+3(1—;)-a 3. 3 iAV_ZS._,E
Sl s —2=—=or s=—= i, =Ae
N ‘ s >

Thg tlmE constant is therefarg 2/3 seconds. ,
- The natural response will dle outin 5 tlmE constants ‘or 10/3 secands

4 i =

Example3 - K : Lo : R
‘A circuit is defmed by tht: Equatmn shgwn below. Find the forced rcsp@nse only.
d .
10051n10t=3=—+40v .
, dt -
The forced respor’xée, vfl, must be al-sine wave of 'thf: same form- as the input, 100 sin 10t.

vg = K sin (10t + 0), or'it may be expressed in the more convenient form,

==

| vg= A cos 10 t +B sin lDt\
Substitution into the differential equation
. 100 sin 10t.5.3 (— ID Asin lﬂt\-l- DB cos 10f)

' " +40A cos 10t + 40B 3in 10t

100 sin 10t = (—30A +.40 B) sm\\mt ~T

L ; +(0B440A)cos10t
o T - Equatmg the coefficients of the sine and cosine terms’ (:m both 51des of thE ﬁquatmn '
T _ y:elds , e ) o -
N N 1@&3;%'E30A+4DB or 1o£ 3A + 4B ‘,_o='4oA,+ 303 ér o='4A +3B.
o | Solvmg for A and B ylelds A= -%, . B= é
Therefere the sclutmn for the forc:ed response is: vf §— sin 10t -6 cos 1Qt |
The sme and cosine terms can be combined into one smusmdal term by using phasc:rs; R
8 ' 6 j
7 —sinlotm={0=— —~ = cos 10t & — =90 = — ‘
, 5 sin <O 5o 5.2051: Q?O _] ,'
) | 8 .6 10 |
L = =37 = 37
- 3 75 5
The conversion back from the phas\*:r domam into the time domain ylelds
\
‘ vg=2sin (10t — 370)
L 40
o .
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Example 4 ; :
Solve the following differential equation for i), for t=0,, and skgtch the curve.
The initial conditions are: i (0, )= 0 and di/dt (0,) =

dz Cdi

4_
di:2 dt v 3

iIHI\

270 (eq.5) -

Let iy =1and substituting into eq. 5
0+4(0) +31=270 if_r_go ,
Let the natural response be i, = = AeSt and obtalmhg the tharacterlstlc Equatlon by
— mechamcal subsytutlon (remember that the substltuuon for the second- déflvatlvﬁ—ls s =

s° +4s+3(1)=0 3 :
2 +45+3=0 ' : . L
, (5+3) (s+1)= D; . 51§=3, 52—*1' g in‘Alegt +1b&213§3t - T
E There are now two time constants One 15 equal to 1 second and’ %he second is equal to 1/3
sccond The first term dies out in 5 seconds and the second in 5/3 seconds. Therefore, using the
longer time constant, t the natural response will die out (approach zero) in 5 seconds. -
=i +ip =90+ At +Age’ Pt (eq. 6) L |
/ o att-_Of 150th§r§forﬁfrom:q.6 0= §O+A1 +Ay (e@?)’ . .
o : | Catt=0, ~—=0" o
b o de SUR R
;‘differéﬁtiating;equaﬁon 6'yiélds: g’ 0- Ale - 3A2e -3t (Eq S)
o substltutmg thc boundafy condltmn into eq. 8 ,‘ Lo STy LA
Solvmg equations 7 and 9 ﬂfnultam:cmsly ylelds :
Ay = 135 . Ay = - 45 . R 90 "135e -t +45e -3t (SOlUthﬂ)
’Theplctiof the curve is shbwn beiow -
- ,«; R | o Ag=zTe
7 4§!3t ‘ ;l . B . s i
(Q@F:res:) ,jf“' o0 3t
’ Coyg %—/3& + #fe '
€ —> sec onds
. "
T s , , )
The above plot for the total current,, is kriown as the nnn-cssmllatary or averdamped
case. This occurs in the second order system when the values of s are real, negatwe and ‘
K wnequal g




Sow .
- /

Examplei'- - : ?_ L

- N Salve: thc fc:llowmg cm:ult fDl’ i(t), fc:r t=0, and sketch the curve

Ty e Lty
j 'f R R Eﬁ"’ﬁ“, Q R j = T.l‘; 'Farad

_ i . ) N ] d! : B 1 -
T T UTTEERIYLo— 4—Jfidt |
. di C ) . o . \

- di
12= 21+1§t—- +17}1dt (Eq 10)

From glgctncal theory, the forced resPc*mse of the current, If, is zem The boundary
ccmdmcms att =0, are i = 0 and di/dt = 12 amperes per second. :
The charactsrlst)c equation from equatlon 101is -
0= 2(1)+ls+17( 1)

0=2s+s2417 . . .
0=s"+25+17 ° - §= —

The natural response, i, is of theform KeSt

ih=Ky e( 1*14)‘: + Ky e( 1315‘»

i

L=et (Klel4t +Kze 4ty (eq. 11)

re o -iséthe §inusaid%1 wave, cos X, then equation 11 may be written

" Recalling that "=
asidy = e7" (K3 cos 4t +0) ) o o " . o .

[ES

or in the more céﬁvanient form of:
i =et(Asin4t+Bcosdt) - .

n ) ’ o
i=ig+ 1n =0+et (A sin 4t + B cos 4t);,;b”’!‘ = et (A.sih 4t ; B cos 4t). (e

_ ‘ ©att=0,,i=0
: herefnre equatmn 12 yields: - _ 0=1 [P%-(O) + B (1)] "B=0

1fferentlat1ng Equatlon 12 ylglds N R

di
dytl’ = ’Et (4}} coS L= 4B sin 4t) |
+ (A sin 4t + - B cost 4t) (=1) (E—t)

ae=0,, G=12 e

12 = 1 [4A ) =48 @) + (A +'B()] (51)(1) "~ SinceB=0

v

12=4A A’s CURY
Thcrefc:r: the salutlgn for ‘the tatal ‘current, 1, is:”

-/ (Solutlon)




The above solution is called the damped sine wave. The time constant of the exponential
term is 1 second and it w111 die out in flve time constants or 5 seconds. The period (time for’
_ one cycle) of the sine wave is:

_Zﬁ

4

| E]

1.57 seconds.
L i E ‘ A s . .
Since the current will die out (approach zero) in 5 seconds, the sine wave will go through

.5
1 157 or3. 2 cyclcs before appmachmg zero.

L The plot-of-this. Dsclllatnry or- undsrdamped caseis. shc;nwn bglcw Thg51n¢ wave osc;lzv_.,___‘_
l lates between the Envelcpe determined by 3 and its mirror m:mgg —3e”

e
ce3e simut

" Damped Sinusoidal Wave

- The method previously outlined for solvirig electrical problems in the transient con-
_dition is known as the *“classical” method. Electrical engineering technology has develaped -
several other methods — easier and at tirnc;is: more sophisticated. These methods have as o
-their basis nothing more, than simple algebra. : , . o B -
. As mdlcatsd previously, the 51gn31 of probably gr:atcst 1mpnrtanr:e in slsctrlcal '
engmcﬁermg is the one indicatéd below:
. Ty= KeSt (eq. 1) :
The natun: af the .glgnal in equation 1 isa function Qf :hr: amplltude K, Wthh is 51mp1y
the valug of the function, y, at t = 0 and of the quantity, s, which is called the complex
o frequency. It will be shown that the function, y, will assume a vanety of waveforms
. depending upan the value of the quantity. s. In fact, by the superpcmtmn principles of -
summing expanentlal terms having different values of K and 5, almost any wave shap::
. of eny&crmg importance can be gcneratcd ' S

[ o "43.




\:\\ X B - ' . x ; . . ) 7 . ‘ "3
‘\; ' o .
If s=0is subst}[utéd into equatlon 1 the resultant furu:tlon becomes

| . y = K ot _ =K . (eq.2)
7 whlch is 51rnply9-

nstant (or direct current value of K. Since it is assumed thaty =0 for
t{D and y K for £>0, the resulting “step” is shown below

L If s Equals —“3" (when “a” is pcsxtwe and real)
\ .

hen. :quat on 1 becomes: T
o . y=Ke ™ (eq.3)
N :

1€5:

This is the waveform of the décreasing exponential : with a tlan constant, T, of 1/a sgcands
and which will decay to zero for practical engineering purposes in 5 time-constants. This

.- waveform is shown below and a thorough discussion of its plot was given previously

,: [RS— ',7: . t% i

If the value of s is posuwe and real and zqual tc';
o y=Kelt (eq. 4) .

This wa\feform Is an increasing Expnnentlal curve which increases to mfmlty w1th time, Thxs
function is of neghglble practical interest from an engineering pmnt of view. It is. shcwn
' 'below ,

; then equation 1 becomes: . . .-

\\ o o
oo .
' For the value of s pure 1mag1na1§f\gnd equal'to JW then equatl 1 becomes: ’
' Cy=KeWt C '

but since imaginary values occur in camplt:x conjugate pairs, :quatlcm 1 wauld yu:ld
’ y=K (e jwt . e=iWty o the sinusoid o ' o
y= A cosinewt (eq. 5) . C . o
The plot of this waveform is obvious

49
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For s equaltoa CGf‘nplE‘i number thh a negatlve rcal part, then e.quatlan 1 becomes:

' L y=K(™ 2 +jwt . .—a JWt)
‘ y = Ke —at (E___]wt +e _]Wt)
whlc:-h is the expangntlally damped sinusoid of the gem:ral f'nrm: !
y=Ae" sm& (wt +0) (eq. 6)

The plcst of this wav:farm was prevmusly dlscuss.&d and is sketched below.

If the vcltag& mput is of the form v = VESt or the current, i = Ie , the aperatiénéi _
values-of the opposition (lmp&dance) rnay be easﬂy derived fcr the three electrlcal
- ~ components, R, Land C. ~ : o o o
' ifi=1eSt
then v = Ri = RleSt

but Z = -\If ohms (Qppcisxtmn)

;‘hawe.vr:r V- =RI (the amplltude of e)

s0Z= = RI2Ror the Gppas.ltmn

| E (1mpedanr_‘e) ofa res:star R, is the value c:f t}‘le resistance and independent of the
Voo value Qf 5. ' : \ _ T s
' ’ . L . ; - ;!i _ - '
For théindui:tance; L, .

Jver-di o ’

.’,,,,_ 7'. _d! ) i
: 1f:is IESt.thén'dgL = sleSt

- and ve = Lsle® where the amplitude of v = Lsi
' ‘ v sLI

- =sL, or thc: nppasﬂ:mn (meedaﬂce) c:f a coil i 1§

'sL ohms and depends on the value of s. .

i=C—
dt

Lo dv
if v="VeSt then dt Vsest.

and i = CVseSt where the amplitude of i is sCV.-

. ’ - I s\C’IV’ . sC - g
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A The lmpedance of a capacitor is mversely pmpamonal to the value of s.

v _ - The above relationships are of i 1mportance in.obtaining the characte istic Equatmﬂ of
an electrical circuit without having to write the differential c:quatlon If the value of the
circuit impedante is set to zero, then the characteristic equation is easily obtained.

[}

| hen“j -

o

Q il— ‘F&Pad

In a series circuit, the toal impedance is the sum pf the individual impedances.

i

: , o 1 R |
. Therefore, Z(s) = R+sL + — =4+ 1s +— r
S sl
o ) L= 3
Setting Z (s) = 0 yields the chatacteristic equation of the circuit
Oz=d4+s+ 2
o T s e e s TR :5_“_7___‘"; =
025_3#-45-!-3 B — =
(s+3)(s+1)=0
, s=—1,—-3
A ‘ Therefore: the form of the natural (complﬂmcntary) solutlon is:
- : Ae t+Be 3t TN

The forced (steady state or partlcular) solutlr;m is Dbtamcd frorn electrical theory. The
complete solutlgn (needmg boundary condltlons) is obtained frorn knawmg the electrléal
- input. o v ‘
As’ the circuits becorhe more- EDmplltatEd su‘nultaneﬂus dlfﬁ:rﬁntlal equat_lp;\s would
have to be solved, The opcratlonal 1mpc:dance rpethod lS relatively }lfﬂplé ind rc:qul% (s ozﬂy
algebra, , ‘ \ T )
» . “The “transf'f;r functlon, WhlEh is clefmed asithe ratlo ‘of an ﬂutput (effe:t) amphtude
Vi to the i input (cause) amplitude for an expﬂnentlal input of the form eSt, provxdcs the .
o complete solutui/n to a transient problem. The transfer functmn will be denoted by T(s) and
fora partmular value uf 5, it rcpresents the gain - the ratio Df an ﬂutput to an mput

the forct-d (partlcular) solutlor: and scttmg thc dEnommamr Equal tD Zero. w1ll yleld the
characterlstxc equation and thus the form of the natural (complcmentar}?) solution,




Let v equal a dc (constant)

— *Lf‘l hg"':j*’*‘—’mpuraf 30-volts— ' e
5\ ~ From slmple electrical the:nfy, the transfer functmn T(s) is simply a ratio of the nutput (current)

R amphtude to the input (voltage) amplitude. i

T( )= L ! L ( 7) ; H
5 q. 7 : SR

. VT RwsLT EXSTEER S B /

.- . whereR + sL. is su'nply T-xe 1mpz:danc€: ar'tha—cxfcmtﬂnd by Ohm!s. law, N ) B
e , I I S } - j
S o IZ or = == = —

V= , —
- V. Z R +sL .
The input voltage has a magmtude of 30, and the value of s (fc»r the mput) is zero smc: v =130 e
and for dc,s = 0. : : ' S
Substituting these values of the input into equatmn 7 ylelds thg forced :asponse for the

currentasfgllaws oL S |
| o 1. o '

-'3'0 B 3+1(C)

30
i = I ? = 10 amperes (dc or constant)

L

naa |

{

I ' .
It is to be remembered that the forced response w1ll always have the same wavefcrrm '

““(shape)as the-input-(forcing- fum:tlgn orcause).
Setting the danammamr of equation 7 equal to zero w1ll yield: the Eﬂéractcnstlc

v Equatlon
‘ "3+ 1s=0
_ s = -3 \ : :
o Theref@re the fc»rm of the natural (campl\:mentary) 5ﬂlutlon is

= Ae St = Ae 3t : .

o ip= TR v
“The total solution is 1f, + ln»—' i e
i=10 + Ae 73t , _
A : ' ‘ / C
From 51mple electrical thegry at t =0,i=0" S L R I T
| | D=1OAE'3(O)—1O+A | | S : .
Lo ' The complete S(‘;ﬂuti(‘}ﬁ is therefore: i= 10 - 102’3t . ' o '
B
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_ Repeat example 2, if the mput v, is 4-0 sine4t. . o
v - Forthe forced response of a sine'wave s _|4~] and the am phtude of- the veltage is 20

) SEITES I |
VE R+5L 3+_]4(1) L

3 _ SR ___.1;,_ orl-=.40-- = ,,g,.» ,53,7:7*_ R, S S —— !
LT . 40 5/53° - 5/33 L v

The above repreﬁents the eurrent in, the phesor ferrn end rnust be eenverted beek into the

time domain.
f 8 sine (4t - 53) _ ;
Agam it must be remembered that the foreed fesporlse will have ;the eefhe'wav;.eform
o - The naturel response is mdependent of the mput and is therefore the same as before
(obtamed by setting the denommat  (R+sL or "3+1s) equal to zero, . : @
o /

T e AR o
o o i=ig+ i, = Ssine(4f*53) "’FAE-;F o o | - h

at t = D:,,,i = 0 as before _

=4 sin’ (-53) + A ‘ 3 , .
8(8)+AerA - 6.4 _

h total solution for i is therefore

. = 8sine (4t - 53) + 6.3t _

A ~ In the third method of the sqlution of dlfferentiel equetlo}'ls the'student is mtrodueed

‘to the Lapleee Transformation. (\‘T he first two methods are the classical and the transfer -

funeticm ) In exposing the studenrto three methods, there is a flexibility in the solution of
Che'classical method is

"
e

0
0
T

circuit problems. One method-may have- edvaﬁtages over another.
" the fundamental or basic one, and the other two have certain limitations..
The Laplace method converts (transforms) linear differential equations with- constant -
" coefficiénts into algebrale ones, thus greatly 51mphfymg the steps leadmg to the SDIUEIOD
' The idea of a transform is certamly not new to. the student. Logarithms transform
multlpheatlon into.addition. That is, one went from one type of mathematical eperatlen
" -into a sunpler oné. The transformat;on was from a number domain into an expenentlal
domain (logarithms). Work was then perforrned in this transferrned or new domain (uslng
log tables) and then the result or answer was obtained i in the erlgmal demam using an
inverse transformation (anti- -logs). . Y o
I - Another example of transfo matlon \mentlened prevmusly) involved the selutmn ef
S B electrical circuits to a sinusoidal input. The sinusoidal time function (time domain) was, :
' . transformed irto eemplex elgebra (phasor) domain where the matheématics involved is mueh
- simpler. The solution in the phasor domain was later trensformed baek into the Smusmdel

time function (tlme domam) : : _
The Laplace transform converts from the time (t) domain into the frequeney (s) domain .

where the mathematical manipulations.are much simpler and use can be made of Laplace
. . * tables. The mverse/l'_.aplaee trensferm involves returmng from the eemplex frequency
- S " domam into the tlme ciomam. : : SR : . [
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The Laplace method has dlstmct advantages over the Qlassxcal rnﬂthod in the complcte -

- 1. Reductmn of lmt:'lr dlfferentxal equatxons thh constant cocffmmnts to hncar !
algebralc equations. :

2. Method is mechanical and stralghtfanyard :

3 Inltlal (boundary) condltlons are imnjsdiately included i in the transformed ,
equations as a first rather than last step operation. , C

4. Time savmg tables are avallablf: to speed up the time of solution.

Itis potEd out, however, that the Laplace transform method. sc:lvcs no problem that
can’t be handled by the classical method. Although- it has the advantages indicated prevn- _
ously, this method may also have certain dlsadVantages compared to-the classxcal method. ';E
" .These include the time required to master the method, limitation to solution of certain 4
typ:s of differential equations (constant coefficients) and, in addition, Scertdin, loss cf
' ,mslght into the physical problem. L4 - I 7
' In the Laplace domain, the unknown quantxty to be solved for is in the general ratio of -,
two polynomials in s. A techmque the partial fraction expansxon will now be discussed.-
Nt breaks the aforementloned ratio, of polynomials into the sum of fractions. This mathe- A
\tlcal tool is covered now, rather than iater, so that the method of the Laplace transform :

discussed later w1ll not be lost in mathematlcal detalls

Consider the ratio of the followmg two pclynomlals
= (+1\(s+z s+ 3 |
1) ) (s + 3)

It is desiked to 6btam the partlal fraction expansxon of thE.‘l above. . e W
5 (s + 4) 1A - B cC | ; | i

- + - -+ — (eq 8) ' RN
\(s + 1)(5+2)(5+3) s+ s+2 s+ 3 e

The prablg m is to evaluate the constants A, B and C of the rlght hand side of - .

:”Equatxon 8,an equatxon whu:h is valid for all values of s,

In Grcic;; to evaluatg A, lets appn:ach ==1-(s=—1). The term %T WAlllrbECDmE Very large

e (approacﬁ mﬁmty) whlle the other two terms, BE nd % 3 are bounded (remain fmlte)
: s+2 s : ,
A

o herefore, these latter two terms can be. ncglected compared to the term T
5+ ]
the right hand side QE equation 8, T

y ONn

" The resultmg equation yleldsi . o ‘ | /_/
ss+4) AL o
= — (eq. 9)
(S+1)(S+2)(5+3) s+l S .
sl o |

Equatlon 9 results in thc: fc:llowmg since tbe (s + 1) term on each side of thg: equation

may be cancelled. :
s(s+ 4) . : )

(5+2)(%+3)J n
. =+ =1

Therefore A = o R e A (3) .3
- (~1e2(-143) 1@ 2 g
e

T VTS




In other words, to find the constant, A, of the fraction, A/s + 1, simply delete the factor
(s + 1) from the denominator of theleft-hand side of equation 8 and let s > —1. According

" tothisrule : A
Ao SGrH =@ 3 ,
) M(S+2)(ﬂ+37 12 2 ‘
s—+—1- o A -

In a similar fashion, to evaluate B, delete (s + 2) frer'ﬂ the left side and let s &> —2

| | ~2(2r

B s (5 +4) - -4
] @+ng$ﬁ@+n S R R
5 —* 32
el SGrH 3 3
. : g+1)@+z) S o=2(=1) 2
- g+ =3
Therefore the partial fraction solution is:
3 1 3
+4 -2 4 -7 : P
,,,,, s(s+4) S — ~Z_. (eq. 10)
s+1 s+2 . s+3 '

(s+1)(s+2)(s+3)

s Since eeuetmn 10 is valid for all values af s, let us pick some convenient value of s, such as
' zero, to check the value of the left side against the value of the flght side, I
3 -3
0 (4) 2 4 2 S
PPN TVIT st - - - .,
mee - o2 30 : @3
O0=— —+2-— —
2 '» 2
_ C) 0 es a eheek .
(Do not pick a value ef s equal to — 1 —2 or —3 fora eheck smee this results in a magmtude
_of infinity on both sides of equation. 10 and therefore w1ll not be a eheek on your deter- -~
" mined constants.) § o ' L
e o 55 |
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Ex_ample 1

/

652 + 105 +2

Obtain the partial fraction expansign for

§3 + 352 +2s

) 652 + 105 +2 6572 +10s + 2 7 652 + 10s + 2

$3+3s242s  s(s2435+42) s(s+1) (s+2)

652 + 10s + 2 !

s(s+ 1) (s +2)

— o —
s+ 1 s+ 2

.

A B C
-+
-

652 + 10s + 2 2

e DGed o

s=+0
, ész+105+2 ~ 6%104&2_‘
TsG6+2 D@
. .S

. - 5§+ —1

62 +10s+2 _ _24-20+2
C s(s+1) - =D

62+ 10s+2 . 1,
63 4352 + 25 : s+1  s+2

a check at s = 1 yields:

6+ 10+2 1 2 3
—_———— e = =
S143+2 1 2 3

1}
L)
LY

I

= 3 check



SO Develnpment of Laplace Transformation

~The L,aplace transformation from the time domain to the complex frequency, s, domain i is

defmed as

gé[f(:)] =F (s) = _f f(t) c:“-‘*t df- (Eq n

quatmn 1 appears qulte formldablt: th,e technalagy studcnt should not dt:spalr
The derivation of the Laplace transform for several common inputs will now be

¢onsidered.
(@) Letf(t)=Ka constant or dc input
G,C,f(t) = F(9) = fm: St gy
i . =K J _}{- *St
, : —s ’
’ - :3{[ s ;s(o)]
) 5 7 /
Lx="Tro-1 1
) -

the two constitute a umquf: transform pair.
Conversely, the mvers&transf@rmatlcm or the inverse Laplace transformation (symbol i~

of E‘ is K. That is, the time function whose Lapl‘};e transformation is 1>, is K. Lo
s . : b ~O . s . .
/ ’ o =1 K ' . n\z\\
Math"e;matic:ally, L Fee=K T
- 3

Note that the inverse Laplace transfﬂrmatmn Cixnverts\from the Eomplex frcqusm:y, 5,

domain to the time domain. '
C () Letf(y=eT . _

L et = R(s) =f WSty .“;:{ o
~(a+s) t e (st \
f dt L "= (s+a) AL\\ _
:_}g: [ —(s + a) e—(s+2)0 \
s+a | o 1 \\\

B (e T 5_:3 o \\
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The technology student is made familiar with some simple derivations and then a table

of useful transform pairs is presented.

" “Laplace Transform Pairs

Time Domain Laplace Transform
f(t) : F(s)

5.—3— ()] S F(s) = £(04)

Fs) | _ffode
s 3

(att=0,)

6. [f(t)

2 A
oo

" 53




Example 1 ! : ,
; .

S [’-;: g shms

T ‘l % L 3 }»Eﬁrwer'

0

/ “Find the complete solution for the current, i, using the Laplac:c transfc‘.rm method.
/ From electrical theory, there results
10=R;+ L AL 10=2;+3 4 5
. Ty
Takmg the Laplace transform of both sides -

- | -=1; =21(s)+ 3 [sI(s)—i(0,)] (eq.2)
! (_note that the variable is cix_rrent, i, and Lapls;cc transform is I(s) which reads ‘
as I of s, For simplicity the (s) — “of s” is dropped to avoid confusion with

“s" times “I1”").
: Therefore; equation 2 yields . A0 5143 [sI—-i(0)])
. : : s ,
i (0,) means the value of the currentatt = 0 + (immediately after the switch is closed) and

| from electrical theory this boundary condition is zero.

’ '_12:21+351=I(35+2)

) : TS L ,,,,1‘?,-,

; C T s(Bs%2) . 3554 2)
= . ) 3 »

The inverse Laplace traﬁsform’ yields the current as a function of time

2t ,
i(t)=5— Se. 3 (Eq 3)
Note that equation 3is the complete solution — where the constant term, 5,
T2t is the natural (complei

mentary) SDIUEIOI‘I ' ) ' —Se 3
' 54
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Example 2

- ¥ ohmS
- k- L= kem‘ﬁ

X .'fw: ) AN
: ;'_—}&—t:cs y 2 l
Aov| et KT\

Find the complete solutmn fnr the currEnt i, using the Laplace transform method.

C !L “gQ_,,T‘QEL

di . di
710 R+LE£=+—=ﬁdt o 10= 81+1—gt=+12j’1dt
Taking the Laplace transform of both sides:

10 L rid
_=ﬂ—81+1[sl—1(0‘_)]+12[§'r— — (t=0,) ]
s
- ’ from electrlcal thénry,1(0+) 0
andfu:lt is the charge, q,whlch is Equa,l tGDatt-—D, »
- 10 I
—— =8l +sl+12 —
\ : 7 § » _S~'
10 = 8sl + s21 +121
10 =1(s? + 85 + 12)
‘ ] 10 10
-' S 285412 (s+2)(s+6)
.10 A B
= e——— = ————
(s+2) (s +6) - s+2  s+6
\ 10 10 B
. A = =i =25 !
5+6 4 .
S;‘*-=2 \
‘10
B = =25
§+2 i L
§+—06
o2 25
T os+2 5+.6

L I”;l‘(s) :1 {tﬁ):: %SE“‘ZE — Ejeéét (saiution)
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The forced rés’j:anse is zero (which checks electrical theory) and the complete solution

' consists of the natural response. .

An area of importance in the study of the stability of automatically controlled (feed-
back) syst::ms is the analysis of Bode plots.

Bc::dz graphs are straight line plots,of a number, N (gain)-i in decibels (20 logmN) vsrqus
the log of the frequency (or angular velocity). Of particular i 1nter:st is the response of the
system to a sinusoidal input (s.= - jw). The Bode plots give a solution in both magnitude and
phase angle. Serm -log paper of the appropriate number of cycles is necessary.

(a) Consider the transfer function, G(s) =— for §=jw
K
G (jw) = -
. lG— \ a Z(smc;e the magnitude of j “’= )
. } RS K . . .
/ \G\c_:!b:EOIngzgologK=ZOlogm o
=—20log w+20log K (eq. 4y

“It is to be'remembered that the ardlnatc will be the gain, G, in dEClelS versus the
abscissa, the log of the frequency,w .

Equatlon 4 is the plot of a stralght line ( y=mx +b) witha ncg-&twﬂ slope (when
plotted on semi-log paper). ' 1 : _

To determine the slope in the proper units, let w =1 and then 10; thls change by a factm' _ 5
of 10 is called a decade. - \

A change by a factor of 2 is called an octave.

b ' T ',—llG|db 201log K ~20log1=20logK
w=10]G|qp, =20 log K — 20 log 10 =20 log K — 20 . -
Sibpc - Avert_ - 20db |
- AHoriz~ - decade

w= EIG\dbizOlogI{PZOlagZ 20 log K — 20 (.30)

. o = ZD log K—6
‘ : S édb »
- . Slope = = ————
-octave

In other words, a stope of —6db/octave is equivalent to a slope of mBOdb/dEcade .
. To plot the stralght line, the absmssa (x) mtercept is obtained. At this point ! the ordmatt:
(G in. dEClelS) would be zero. L » . T e

‘G\db 0= EDlag =20log 1 i .
. The ordmate in dembcls w111 be zem whén the numbf:r is umty or when w = K which is the 7 '
w intercept. ) : \‘ V

To obtain the phase anglﬁ plot — -

§0m)=;§—=—x€——— <90

which indicates that for all frequencies the phase angle is —90 degrzes (this mdlcates the
output }mll lag the mput by 90 d&grsas) _ S
56 ' C




Example 1
Given G(s)»S 30/s, plot the magnitude and phase angle for all frééuenciés (Bode plot).

The “‘e"" intercept is 30 (at 0 db for the ordinate, G), and

P C she slope is ~20db  —6db
/ .. theslope 15" ot " o

The phase angle is —90 degrees for all frequencies (sce below).
For a transfer function of G(s) = Ks, it is easily seen that l&@e straight line (Bode)

plot would have a positive slope of 20 db 6db ™ and the “w”

4

- = or
. decade octave _
< i intercept (0 db for G) would be at Tl{ . The phase angle would be constant

at plus 90 degrees.
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Example 2

G(s) = 100s2
Obtain Bode-magnitude and phase angl& plots.

The slope is positive (*‘s)) in the numerator of the transfer functlon) and the s w1ll

yield twice the slope for “s” or _40 db  12db

or -
decade octave
The “w” mter:ept w111 occur when the db = 0 or the magmtude of G is unlty

For thei mtEfEEpt therefore

i
W
e
it

100w?=1  @lso— wmoe:
100 "~ 10
The phase angle is constant at 180 degrees. The plot is shown on the éemislog
! paper. ' '

G(s) K(5+a) for s= jw then G(Jm) K(a+jw)

At low frequencies (w§a) then G (jw) = Ka, a constant (horizontal line) and the
vmagmtude of G (jw) in decibels in equal to 20 log Ka. The phase angle of (Jm) fﬂr
these frequencxes is zero since G(jw) is a real positive number. ' :

. At high frequencies (w )a) then G(Jm) K jw or G(s) = Ks which is a straight llnE of
pasmwc slope af 20.db/decade or 6 db/decade. The phase angle is positive 90.

- degrees;since! G(JQJ) is a purely i xrnagmary number (jKw with no real carnpcment)

g 'ru:y of @ (bEthEn a Iow *and “high” value) the line changes from.
0db_ o that of 4 straight line h tive slope of ~o

e —c—— L e e ———c—
a horlzontal lme ( decade ) to that of a straight line avmg a positive slope o Jecade

At som

The frequency at which this change in slope occurs is called the break frequency.
This frequency can be.obtained mathematically as the intersection of the two
stfalght lmesl G (_]m)l= Ka and‘ G(JQJ)I lJKm{ Kw.

Ka= Kw 'ar‘ wp =a (brc:ak frequency)

“The phase angle of G(JLH) at this break freguency is 45 degrees since G(jLQ) K(_]LAJ+:1)
= K(a +ja) and the real and imaginary. components of the complex number are equal.




Wy

" e T e [ 4 1'3,. ' 4o low ' . oob
L _E;?f j_ﬁﬁr.ériuf e . d _

Sy

‘Example 3 e
S ~ Obtain the magnitude (db) and phasr: anglﬁ plats of rhe transfer function,
J - G(s) = 25(s+4)
: G(jw) = 25(4 + Jm)

At low frequenc:les lG(Jm)\ = 100 (Lué’§4)

» and indb, G(jw) =20 log100 = 40 db
' N " The break frequency occurs at W = 4 radians N e oo
sec. © o .
when the line changes from a horizontal lme to one wrth a pasuwc slope of 20 !_)‘ The
octave °

plot is shown on semi-log paper. The phase angle at (o =4is45 de:grees and is zero at “low”
~ frequencies and 90 degrees at “high! ffequenClE§ For practlcal engmezrmg purpaszs the
~ angle is zero degrees a decade below “t =4 and 90 degrees a decade above () = 4.
From the basic fundamentals of BD‘de plots, more campléx trarxsft:r functions c:an be”
: 'dealt with, quu:kly and easily., . . . . .
In COﬂElUSlOn mathﬂmatrcs téat:hers in téchnology should eschew the abstract concepts o

1rnpc:rtance is the prmmple that thesr: mstructors should have some famlharrty w1th tech-
nology terms. : 7 ' ' '
" . For instance, ths terms, pales and ‘zeros'’ should not conjure up visions of. t’:lotheis-r
lines and grades on mathematics exams, but should bring to mind, respectively, values of .
-4g” which make the dencmlﬂamr of a transfer functlon zero and the values c:f “s” which-

make the numerator r_)f a transfer function zero.
60
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tion methods.

ENGINEERING TECHNOLOGIES—MECHANICAL AND DESIGN DRAFTING

Technicians play essentially a supporting role, often requiring close work with engineers,
scientistg ind other pr’ofzssion:ll persor:m:l ’They are doers in i’hE.' many' 'njlé:s of the engineer-
tlons=techmcmns apply these appllcitlons to actusl situations. SCIEHUSIS explcre 1deas—
techinicians perform specific details. Technicians, therefore, play an important part in
converting ideas into accomplishments, whether in a laboratory or drafting’room.

Mechamcal Technology (M.T.)

As part of the specialized engineering group thc mechanical techmclan takes apart new
ideas and tests them to see how they can be appllr:d to dcvclopmg new products and produc-

'

Industrial production technicians assist in developl new and imp’rovﬁd production

" methods and procedures in manufacturing plants. Their duties include designing automated

systems, conducting time-and-motion studies, planning work flow, quahty control, and
additional specialties such as industrial safety. v

Other mechanical tcchmclans who work in rnanufathturmg 1nclude air COﬂdlthl‘llng and
refrigeration technicians and: automotwe technicians. Air t;ondn‘.lomng technalogy involves

heating, humidity, cleanliness, and movement, as well as cooling.

R I'EITthE ElI'EE.S

Mechanical technicians mav work with engineers on the design, dﬁv&li)pment and pro-~
duction of aircraft, hEllEDptEfS, rockets, and spacecraft. For examplc a technician under the

,q‘~

-direction of an engineer might estimate wmght and other fagtors affe:tmg the load capaclty

of an airborne body. : 7
Technicians often work with engineers in the field of pow&r generatlon and transmis-
sion. ] hlS may mvc:lve assnstmg in, rnasgve powez: plants that serve the needs of large urban

Some mechanical tec:hmcxans help ,ngineers with the design and develapmégt of ma-

chinery and other equipment; spcgﬁhsts in this category are diesel technicians, machine

designers and tool designers. -
Mechanical technicians azd in research and development, dsmgn testing and pmductmn

They also can furiction i in. the mstalfat;on operation and maintenance of mechanical equip-
ment, supervision of tht ass&mbly of prototypes, se:llmg of mechanical compmnem‘.s and
machines, and téchmcal writing: o : : '

The Meehamtal Technology curriculim at Queensborcugh Eommu nity Ccllege is
broadly based in méchanical studies and is laboratory-priented. Sufflcu:n[ theory is given in
the lecture gessions to enable the student to understand the basics of d«:sagn Mathematics
and S(‘IlEﬂCE courses give a sound background to the technician in the sources cnf m:chamcal,
techn{;logy Prgctlcal and laboratory work are emphasized throughout the program. The

B me,hamt:al graduate is tbus prf:pared to quahfy for entry -level technician jobs 1mmed13tely _

F
r

A ‘after graduation.—

Many M T, graduatcs continue thﬂll‘ hlghér education in engmeenng schools towards a

66
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and adchtmnal mathématms

‘The mechanical courses are dESlgnEd to prov1dg the technician w1th the analytical tools
needed to pgtform the work in the many areas of the mechanical field. The M.T. curriculum
consists of three major lines of study: Manufacturing Processes and Systems, Thermo-Fluid . -
Mechanics and Machine Desi:gn. Supporting courses in Technical Drawing, Metallurgy and
Materials, Applied Mechanics, Strength of Materials, Computer Applications and Principles
of Electrical Technology fill out.the curriculum in the technical vein. One-and-a-half years
of technica-l mathematics and 1 year of physics supplement the technical studies. '

Design Draftmg (D.D) :

Closaly related to Engmeermg techmcxans and considered in the technician category, are
the draftsmen. Draftsmen translate the ideas, rough sketches, specifications and caicqlatlans o
- cof engineers into working plans for making a product or structure. Included in the many
catcganes of draftmg are product demgn draftmg, stylmg draftmg, archltecmral dESlgn

the. teg:hmcal ﬁeld It-is the sklll Wthh traﬂsfers deslgns into lmes and dlmEnSlDl‘lS on papcr
Mest draftmg prot&dures re:qmre translatmg every dEtall of' thé three-dlmensmnal Ob_]ECt
drawmg . T ]
) As an example of the gr&at need for draftsmen, more than 27 000 drawmgs are. requu'ed
to build an average passenger car which is made up of about 12,000 parts: These include
body drawings which picture sheet metal surfaces, mechanical drawmgs which show the size
and shape of each part and their assembly into an automobile, as well as drawmgs whlch
show the.tools nccessafy to make and assemble the various parts.
The D.D. curriculum at Queensborough CDmmumty Callegﬁ uses a less analytlc
- approach than the. M.T. curriculum. The program as such is oriented towards visualization
and the expression of ijects on-paper with some basu:s in introductory design. However,
many D.D. graduates may be called upon to do some work which will requiré an under-
standing and manipulation of mathematics. With experience, D.D. graduates can achieve . .
the role c:f a senior des1gner which will require further apphcatlons of. mathematmal skills -
as the design problems increase in compleuty S o I
There are opportunities for ‘the Design Drafting graduates trj’ continue theu’ hlgher o
education at four-year schaals and several graduates hav.: gone on to schogls af engmcEfs :
ing and architecture. : .
The D.D. curriculum is rnade up af 1 year of bas,u: graphics (Technu:al Dcscrxptwe
Geametry and Drawing), 1 year of analytlcal courses (Elements of Tzchnology and Statics
- and Strength of Mat&nals) and advanced drawing courses spanning'all the various areas that .
- requlre draftsmen to have a l{ngwledgg of the ﬁpECIEhZEd designations and speaficaﬂcms

';6"7




“as usedin those fields, Courg:s in Selectlon of Matgrlals and Manufacmrm;i Processes or
$urveying round out the technical offering in the currivulum, One-year of design mathe-
matics and % year of physics supplement the.design drafting courses. "

It ghcmld be noted tlut the D.D. :urriculum allciws the st‘udgnt to choos*i 3 courses

MELhEﬂlSIﬂS) or to thc: archltectural LOﬂSthCtlﬂﬂ area (Sur‘veymg, Constructmn Mtthcds
Architectural Design).

Mathematlcs For Mechanical Technology ';ll’ld Design Drafting Technology

Several courses in the M.T. and D.D. curricula will now be briefly déscribed as to their
content and dbjectwes each course to be followed by sample problems. These selected
; sample problerns are mainly to dlsplay the use and types of mathématxcs required in their

- solution.
In summary, the courses are arranged as follows:

Mechamcal Ttthnulug}r ‘
: (1) ' Applicd Mechanics
(2)  Strength of Materials
(3)" Fluid Mechanics
'(%) _ ,Thérmody’ﬂamitzs" ,
(5) . Machine Design

(6)  Manufacturing Systems - _ S

(7Y Introduction to Numerical Control

+Design Drafting : ,- |
L " (1) Elements of Technology
(2)  Statics and Strength of Materials -
(3) Surveying and Layout -
(4)  Technical Drawing .
- (5) Piping Systems .
(6) Duct Systems .
(7) Mechanisms . |
(8) “Architectural Fundamentals - N
(9 Cﬂnstrucnon Methods '
' (10) ArchltE:tura! Design ' )
- (11) Structural Drafting and Design = .o

S




O
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- Appljéd Mechamcs A
. Mechanics is the science of detérmmmg the Forf:cs in mechanical devices and structures

‘and the cffect of the forces upon the bodies that make up these devices and structures.
The study of mechanics leads to an understanding of the force felafionships and distri-"

'bution when objects are at rest or moving at a constant velocity (statics) and the f:hangmg

V(:lacxtlés of objects caused by forces acting upon them (dynamics). '

The analytlt;al nature of thc course requlres a rlgomus understandmg of;algebra and-tpi-——

similar trlangles and pr0portlons are amcmg thf; rnathernatlcal tt:plcs that are ne gssary to
‘solve many of the problems that occur in mechanics. ‘
‘The following illustrative problems will show the appllcatlon of mathematlcal skllls to

the various types of problems found in mechanics.

™
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Fnrcgs and Campnnent — Illustrative Problems

Arfﬂrﬁ.i;gf 200 1b isdire;téd as shawrn in Fig. 2 3. Deteriine the X and ¥

o . . -et:mpen'gmsi of the foree,, - o ®1Y .
o Solution: By projecting the force upen - o
the axes.”we discover that the sign of F,- ' S
is.minus and of F, pogitive. Applying Eq. e —————=———=—
g1 3 hal i . S . A - .
——_ (2-1). we obtain = | %f . , .
: T e o |Fe=Fasl)] Fy = =200 eos 30° = : ;é 5; ’ ‘ _
* —200 X 0.866 | SR .
. F. = —17321b Ans | i T
[Fy = F«in E,rl fp = 200 5in 30° = L‘; — S —
. 200:% 05 o ®
F, = +100ib Ans. : - Fie. 23

Determnm the :gmpgne,nts af the ECJD b l'arr.adnrm:led dawn to lhg right

at a slope of 2 ta 3 as shown in Fig. 2 4a.
Selution: The major difference between this problem am:}ég\e. preceding-one is
‘that thedirestion of the farce is dafined by its slope instead of its angle. We can
eompute 6, from its tangent and then substitute its sine and casine functions into

1

3.61

(& o _ : O

Eq. (2- 1}, but it issimpler and more direct ta compute the hypotenuse of theslo
triangle a8 V(2)2 + (3)2 - /T3 - 36l and then apply the definitions of sive ahd

cosine gs follows:
e . 7 o 3
T : IF = Feosi, | 30(3 x 36 ° 249 1b
e i~ = Fsing /"I - 300 2 = ~1661b
.»[um 5m,,j B = 351 s A3

: Ant even better pla:a‘ihle is lo nnlg!hgs'milarily bel ween !heélgpi.lria,nglgind
/ 1he force triangle in Fig, 2-4b whaﬂa corresponding Sideg ate pioportional te e:h

f uther, This gives
/ Fe F, 300
/ o 3 2 3sl
i wheneo _ :
/ P ; ‘; I, - 2491b and Fy- -—1661b
| | |
| T
/ \ % TN




o] . V . : Thp‘ggmpnngﬁis of a certain foree are defined by £, - 300 1b and F, =
AT : T =200 1b,  Determine the mabnllude. inclination th the X axis, and pointing of
; the foree.
Solution: The magmtudanﬂhe force is found by applym" the (ust al Eq. (2 20
E L VTRET G )] = V300 (00 - F= 361 A,
- o ' lhe inclination with the X axis is delermined b_y the see;and part of Eq (2.2).
P ‘ .
F 200 - ' [ -
= ¥ ;= - = 0.66 : = .337 “An
[ :, tan @ 300 - (.667 3 5
Note par llcula:ly that. by neglecting the’ given ggn,s of the componaits thean;;la
- found is the a:ulg angle between the force and the X axis’ Thedireetion of the
N foree is found by 5k’etchmg; a hpduit;ll
summafion of the companents asshown
» . in Fig,2-5. ar by visualizing it mentally.
\\ x HNote that themm@ggn of F, indicates
T it to be directed downward. Henr_'e_!ha :
force I paints, down to the nght AR _
This te\:hmqueaf'délermmméaft:rcg o
_ghmmstes the necessity of remembering,
cerfain. arbitrary conventions. For.ex- .
. _ ample.’a mathematical cohvention de- *
T ' fines an angle ds always rieasured in a
counterclock wise sense fromn the X axis.”
Aunr(llngl\ in the given anmplé 0 mlght b’EdEﬁﬁEd as —33.7° or as 4+326.3°, - -
\ -
\ /
£
= = \
|
\
‘ 66 , ;
o '
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Resultant of Parallel Forces — - Itlustrative Problems

- s L P

Determine the resultant of the psi'al!gl force i}’slgﬁi acting on the bar A8
shown in Fig. 2-19. The farcesand po- . ‘ .
- sitions are given in the figure. 20l *10lb 401b
Solutinn: The magmlude of the re-. -
esultam foree is first eb!amgd by applying ¥

[H ZH R = —20- m+39=—4ov5
P; :‘40“3 Ans.

P e . |
- Upifsrcj forces having been assymed to o ( a01b -
be positive. the negative sign of 'R indi-’ F 2;\,]9 ) L
cales it lo be directed dﬂWh\MEFd o 6. &8 /

Applymg the prlncnplg that the moment of the l@h;ﬁ' is equul to the ﬁ’,nmpnt
sumaf it pa.rts(VEngnans theorem. Art, 2-5), we h;VE !;kmgtla:kw;sgmumgms ;

" about A 3s positive. o : ] ) ,__?f_‘,‘;:;’*‘if.;»“‘;?l_'
. My =M CIMs=10%2=-80>%5+40X5 :
: , o ' L= IQleﬂC_" ) ot .
) ) [1"]; = Rd=ZMal - 4Dd; 180 ) da = 4.751t. Ans. -
-t " To determine the position of R relstive |, g ' ]
" ' to A, draw R acting downward (because ! e a .3 @5,‘7:
. ' of the minus sign) as shown in Fig. 2-20. O 1%“;4'75 7 *dﬂ:i"“ir i ,
7 Since the momen! sum ol the original. e 1 < B
" forces was found to be clockwise, R must S i
lie to the right of The mement cenier A in : : Y L
order also e produce a clockwise raoment, R Re401b: ' - e
_ By loeating K with respect to £.1t iseagily TE )
: : shown thet. the positien of the msnllanl T
is indepandent of tHe choice of moment center. Thus we have, - \
. Me= IM% '(@ZMV = 20 N 8- 10 ?’ﬁ-{-’}ﬂ}{?
: b —130 1b-it G, B :
Mu=1 4d= ZMQI "1@& - 130 . : tn = 3.25 ft _A!ﬁ, \

Reéferring to Fig, 2-20 and noting that thesign of ZM s is negative (thereby indi-
euting & counterelockwise moment), wasge that £ must lie (o the leflt of the mement
c;vnter B to create an equivalent counterclockwise moment. “Mereover,ds + dp =

75 + 3.25 = B it, which is the total distence fmm A to B, Hance the ﬁemh:;r
nf Kis mdqpindeut f the chaice of moment caiiter,

Itis usually eonvanient to choosa the moment center lamlwh!m near the middle
of the given system of forces in order to simplily ealeulations by h:.vmg smaller

J E moment grms, Alsn. it is wine to select the moment center at one of tha forees i in:;’
- i ) order te eliminate the momant alfect of th;t
\ ' . ferce from the d;nmpntihana '
I
&
\ ! !
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Ceen R ) . : ) _ A benm ol lenkth L HPPBTtS&!ﬂEd ;
s ’ : Eﬁr;! o 7ero El the- Igjt End Dgtenume
: : v the magnitude and paanmn of the lesultant
Op= e T —— load.
44 ~dx J ' Solution: The tgtsl-ﬁieight W of the
L1 triangular load ‘shown in Fig. 2-21 is the
o 5 ' resultant of sinaller parallel loads like 4V
' - each of whu:h is the preduet of an in-

- ) : . * ‘tensity of y |b per ft b_y' HIE snmll lén;,.th of ds H alfing whlch it may be asstined .

17 w

Ironi the prepertionality between smlﬂgf triangles, we have’ l = or
§ : e .

[ E

~ constant.
Iy 7 o g v = 7 Applying Eqy. (2-5) we obtain d
: : ' : N 2 Lo ’ ;

'f;-‘ o ' ' IR = EF] . W= fy ir = Zf rdr = 3;,: Ans. .

The position of this resultant weight:from O is obtained from Eq. (2-6): °

' N e L / D an 2
R d = EM) o ;1=f1-(g.d;)§',’f sde = UE
) f [T LJy R 3

whence

'E

d = §L Aﬂs.

¢ A system of cords knotted l(")EEthEr at, A and B suﬁp@rt the weights sim}vﬁ
in Fig. 3-4. Compute the tensions P, Q, F, ;md " acting in the various cords,
Solution: We begin by drawinga FBD of kiots A and B.  Of thesetwo coneurrent
, force gystems, we must first solve that at A. The force system at B is temporarily
: . . . mdetermml%e ilEiHSE it c;mtami three unkupwu f«:rce.; and hias available only two

i d 4.

imlwpndéut equations of equilibrium, Its solution must be peatponed ntil one
of the unknowns, P.in thisinstance, has bean detarmined fu;mIhg;anameutnyat:m
scting at A. where P, exerting an equiJ and oppesile eﬂ'e:l to its action on B, is

only one of two unknowis. \,\_
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‘ _ Several 1nethods are available for the solutian of the concurrent force system at

/ . A. Let us discuss each of these methods s0 that their individual advantages or

s digadvantages will enable us to select’ the most elhexgnt mld rapnd method to use
' ~in gimilar prublcmg :

Y

L A _ _ 300 1b
. o _ ’ ) Fig. 35—Mglhnﬂl

Mclhad I—Using Hun;nﬂlal and VErlu‘n[ A-r;s T hls isa routine mzlha-d reqilir-: /
ing'no imagination, Salr_atmg reference axes that are horizontal and:vertical as

"= shown in ng 3-5, we apply the cgudlllansufethbnum Eq. (.3 l), to obtain - .

CEX = s P cos 18° - Qeos30° = _ (1)
RY = 01 L Pain 15° 4+ Qsin 80° — 300 = 0 )
Sol Egs. (a nnd b) simultancously yields, o =
L, pvmg qs. (a) ( e e
) P =3671h A
: Q =410l A

Method IT — Using Rotated Azes. The dls"ld\ nntage of Metho
of solvingsimultaneous equations. Since the reference nxes are.arbitrarily. selected
in the first pluce, a better choice of the reference axes will eliminate simultaneous
equations; this sxmpllﬁrzs the numerical work and reduces the chunce for error.
For example, lot the X axis be selected to pass through onc of the unknn“ ns, say Q.
In this-case Q mll hive no ¥ component and will not appear m a }' 'summntmn .

3 . e

\ | 2001b 1
) li. . . : '- (a) ° . : . : ) L . - (b)
Fia. 3-6. =Mcthcnd 11: Using ;mmed'm: '

ence axes is shmx nin I“uq 3= (m thv finul \t}hl{‘h Df Lhe ang,,les are shawn in Flg .:i bb

When actually solving the prghlema, only the X axis need be drawn, as in Fig, 3-6a,

The ¥ axis ean be omitted; it is understood to be perpendicular to the X axis,
Since the X axis wns chosen to coincide with @, it is evident that Q@ has'mo ¥

component., Ilenu: hy applying the condition of equxhbnum, ZY = 0, we nuto-
matienlly eliminate’ ) from the equation. | Thus we have i L

[}3}’\;0] o Psmé —EDOEmED“sﬂ . P=30671b Ana

Huving dctermmed P, we readily find \Lhc second unknown Q by npplymg the
Schnd eauation of ethhrnnn

X = 0) 367 cos 45° + 30008 60° = @ = 0 'Q = 4101b_ Ans.

Note earefully-the technique used: When the X axis is chosen so that it minﬁidcs
with one of the unknowns, the ¥ summation determines the other unknow n. "Then
the X summation determines the remmmnh unknown.

J1is the necessity




, oy
Method 111 — Using Force Triangle. When three forces are in Equilibrmm the )
casiest solution is generally obtained by applying the sine law to the triangle rep- \
resenting the polygon of forces. - Since forces in equilibrium have a -zero resultant,
the tip of the last vector must touch the tail of the first vector. This tip-to-tail

- addition glves the clesed polygor: of fnfce‘s shown in Fig, 3-7. Applymg the law
of sines to this triangle, we abtmn‘ _ A
30 __ P __Q

sind45°  &in60°. fin 75°

whence as hefore

P = 3671 x'md Q= 41(_Hh~ Ana. 7 Fra, 31, _Methud III
. Co  Using force trinngle.

" We are now ready to determine -the fun:g Fand T helding thr: eoncurrent
system of forces nt B in equilibrium.
A C}nsed polygon of forces for this

- system forms a quadrilateral g0 that

" the sine law cannot be applied. Al-
though a diagenal of this quadrilateral .
.ciin be drawn. that w'lll subdivide it
into. two trigiigles to which the sine
Jdaw can be/applied, this procedure is

¢ cumbersome than the method of
usmg;fn ating 'axes- described above -

~ in.Method II.

' Applying the method ﬂf rotated 2 '
axes to the FBD of B, we draw the Omb :
3' glifis. tﬂrrﬂimﬁde wiﬂ\ T, agrin Fig. = !F'lr 3-8 — Mplhod of rﬁtatcd axes Epnhcd
3-8, thereby eliminating 7" from a ¥ _ ED of B.
summation. Hence we obtain F from - e ,
[E¥Y'=0. _ F 5in 45° = 3675in=45° % "ﬂﬂsm EU“ =0  F=612lb Ans.
3 _ . The remmmng unknm\n Ti is now determmed I'an N
: . \ IEX =01 T 4 200 cos G0° — 367 cos 45° — meag 45 =.0 |
: 5 SRS - | . 7 = 8931b  Ans.
. \ /.
Al
. s
o
" s
. ¥
70
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Concurrent Force System — lllustrative Problem

The bell erank shown in Fig. 3-12a is supported by a bearingzat 4. A 100-lb -
force is applied vertically at C. ratation being preveuted by the fg:n;g Pactinzat B.
C‘mnputg the vahue of F and the bearing reaction at A,

10016

69°45'

!00“3 (b

Fia, 3-12,

Solution: Since the bell crank is m equilibrium, the three forces which act upon it

must pass through a comimen peint. . Pralonging the lines of action of the forces to

. intersect-at [ makes'the duzs‘:lmn of B« such that it ingst pass through A and D,

W, From the jzeometry of the ligure, the distance 4 £ is found lo be 13,67 in., whence . )
' the distanee €D = 21.67 in. Thedirection of K4 isfound from . : .

I sy
3

[tm& .r .'qc] , tan 0. = 8 = 2.?! ng = (045" Ans .
Plotting the pslygon of inrcea that are acting on the bell crank as shown in Fig. ,
3-12b, we obtain by applying the law.of sines :
16 P R

\" sin24245’  sin20° 15" sin 135°
\ P = B?Blb and Ra = 1691b. -Ana

whetice ) .
1¢ desired. the. valuéof P may bg ehg.zk:d by tnkms motnents about sl Then we
] have .
N . [EMa = 0] '(Pain 75‘j) %10 = 100 X 8 = 0 P = 8281b Check

The mmnent aof P.about 4 was oblained by applying V:rlgnnni prineiple (se0
Fig. 2-15). By leaalvmgthn foreeP inta compenents parallel and per pandieular to
AB, the parallal component is made to pass through tha moment center, ‘wherce
the moment effect af P is due ouly te the per Felldjg:llll compouent,

i




_-Trusses — Method of Joints — Illustrative Problem
e --A-Fink trurss is loaded ds shown in Fig. 4-6. “Determine the' fame in each

) member of the truss assummg them-to be pin-connected.
.- A - o . A A IGOOIE

- S 350010 . 2000lb .. . 20001b © 35001b

) F1q. 4-6, — Fink truss. :

Solution: The given truss is symmnietricai and also symimetrica lly loaded so ‘hgt.
the forees nieed be found in only one-half of it.
L After determining the reactions from symmétr)’, consider jBlht A \vhlch has (mly
i two unmarked members (A8 and AC) acting upon it. As shown in Fig. 4-7, we

\ . - may use either the FBL) of the joint or the equwal:m FBD of the.pin. Of thetws, =
. the FBD of the pin is prefer red since it is simpler todraw. [n either d!ag,ram itis
B evident that A denotes éompression, i.e., is directed toward the pin, in grdg' that’

35001b
' y / .
(3) FBD BfJDlM A - (b) FED prm A N
Fig. 4 7. — Frz&bnd_y dlagf‘;mz gl joint and pin, . : e

its vertical compornent inay balance the upward reaction. Hence AC must bem ten-
sion and pull away fron the pin to balance the left ward component of AB. SEIE:I-
- mg the X axlslnﬂam;lde with theunknawn fgrf:e AC, we uhlam

ZY =) ’ 3500 ~ ABsn30° = () , A8 = 7000 bC- Am’
EX = n] : ;4(: - 7000 casaﬂﬂ =0 7 AC 6U62 1L T Ans

R

cerning the dlrezngn nf thm fan;es T he aehan al membera AE lﬂd AC ol lh*"r ,
~end pins, indicating respestively compression and tensien. miy new be drawn as"
.. shown in Fig.. 4-8. (In an acfual problem the arrows wmld be placed on the

10001b.
\ /
AT N N VAR NP
A \ e E a
0 , A -/ _
: -+ 35001b ©N 20001b 20001b ~ 35001b
B o ' ' Fia, 4-8, = Truss marked o show effect of members' AB and AC on their end pins,
\" . 72 f
{ f +

i

Q . . . ) \ . - v
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' w00 nngmn.l dl gram of the trusa, but. tﬂ mdlcute the _ o ' L,
‘the . ' T

mirrked and unmarked members more (‘lcg y,

" truss is here redrawn.)
- From Fig. 4-8, the next pin at whic ‘h no more. thxm )
_‘two unmarked members appear is seen to be ‘B. Re-.

. | peating the terhmque used at pin A4, equilibrium of - )
~.. AB= 7000‘1]3 BC " pin B eanbe .mhm\ ed by assuming BD and BC to be
" Fig. 4-9.— Free- body dia- in compression and therefore acting toward the pin
- gram of pin &, as shown in Fig. 4-9. Rotating the X axis to Eﬂm- :
_ : . ©eide with' the unknmm force BD, We. abtain coomenne v
["}’ 0] .. BC — lf)()() cos30° =0 BC' =866 1b C Ans. - L
[ZX = 0] : 7000*100021n3()°-=BD‘0 = 65001b C - Ans. . o

- The posltwe xalues obtained for’ BD and RC mnﬁrm the fact that these forces
.are compressions. The nction of BD and BC upon their end rrns may now be .
marked on the original truss diagram us in Fig, 4-10, .

w000l . o

. . ) i . '
oot e z000m “20000b - . 35001b

- . Fia. 4-10, -—Tmss marked tu show effect of membem\BD and BC on their end: pmg

) " The next pm at which txm lmmnrked members up}tﬂr is C. Assume hoth C’D
7 . and CE to be in tension. The FBD of pin € ean now'be dmwn a5 in Flg 4-11, .
Selecting the X axis to. mmclde \uth CE, we have . - . \

[Z2Y = 0] CDsin60° — 866sin 60° — - . : .

: ., C2000=0 CD=3175IhT Ans, BC=886W |Y ¢p
0] CE + 3175 cos 60° + 866 cos 60° — ’
6062 =0 CE = 40401bT - Ans.

As mentioned previously, the luixdmg and the
truss nrefaymmetrlwl so that the-forces in all- AC‘ 6062 1b .
the members are now determined, If the truss

. or londing were not symmetrical, however, the -~ =~ ¢
solution would be continued by prnreedmg to- . 20001b

. the .next unmarked pin.- This pin is D, but an-
other pin h{mng cmly two unmarked members Fm 11 é;fF;ff E‘Ddy dmgram .

_acting upon it is pin &, It is prgfr_r;ble to avoid pin D, start anew from pin G, nnd.
determine the forces in FG and ‘EC. After the’ aetion of FG and EG upon thmr
end pms is indicated in the original truss diagram, the next pin to be selected for’
analyris is pin F Frem the FBD of /', the forees D and EF ean be found. Next,

: thg FBD of pin"£ will enable us ts find the fan::s u»{ DE aml CK. Theforee in CE
will then have been determined from the FBD st € and, again independently, from S
the FBD at £. A check en the sceuracy of the werk is thus obtained if the force in E T

" CE as fuund fn:m pin C mgrees with that found friim pin E. I :

(X

I

x;f
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Fi6, 4-12, — Grder of taking free-body disgrams. . :All members ﬂllfkﬁl mdléitﬁ that
. . a.ll forces have been detormined. :

determmed is 5hgwn in Fig. 4-12, This ﬁéure alse indicates the order in wlut‘h the .
free-bady diagrams of the various pins wuuld be drawn lf the trusa or the loading
were not symmetrlc:l

£ - =

Fﬂctmn__ﬂlustratwe Prﬂblém I R ,f, -

A ?GQ lb black is al rs’f on a30° im:.hne, The coefficient Qf [riction Er_tween, '
'thE block and the incline is 0. ELlJ Compute the value of a horizontal force P that
* will cause motion to impend up theincline. i »
" Solution: The.FBD of.the block is shown in Fig. 5-9a.” Since motion is impend-
i“E up the incline. the maximum static friction /' is directed down the incline, A
point dligram of the forces is forined by first selecting X and Y axes_with the
X axis, pgrullel to and pesitive in the direction of impending motion, aﬁl then
imagining the block squeezed to a point coine “iddent with the origin of the axes. The
. forces on the body nre then applied to this pnmt‘. to form the coneurrent system
shown in Fig. 5-0b. (Note: The point (ha.;%rsm is sonietimes more convenient than
the I'ED f{)r cumputm&, Lmnpnn(!nts ) :

2001b

o 2001
(a) o '(b) o
: F1a, 5-9.
i The three unl\nm\n% N, F, und P are found from I’q (5- l) and the mg Equuhgns
of equilibrium for concurrent’ fm s, WL now have-
LY =0 N = 200 cos q00 Psin P =0 _
CoN=m2tesr (g
[F = fN] F = 02(178.2 + 0.5 1) W
2X'=0) P s 80° ~ 200 sin 30° ~ F = 0 _

Substituting the \uhlt} of I fmm (b) we obtain
P=1761h Ans,

,’; ) C '74 .

PAruntext provided oy enic [




E& ] ° . i N
Rgmlvs the pmblcm bElEW usmg the angle of frn:cmn [} and the total reacm:n uf .
the incline on the-block instead of its cnmpc}n:nts Fand N.

2001b

i‘ 41.3° \g
20016 : : :
® @ .
Fm 5-10: - . o ' Lo

Salutmn A\Y henevu the nDrmal pressure N myst be E\prcssed in terms of an un-"
- known forée, sucli'as P in the preceding example; it will generally be slmpler to use
the total reactmn Einstead of its Lupmnnents Fund N, :

gmcgmglu:n i lmpgndmg R mll makethginglvqb with N as ﬁ\ﬁwn inFi 1;, J’]()g

ERIC -
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" = The \mlueul & is h:und from Eq. (5 2) to be - wel e e
ltﬂ;“i’*"fl : ) ' _laﬂq&z() ’ﬂ : I qb::}].gg C
The block is subjectad 15 1 Hrée f¢ i
forces acting on the bloek is shown in Fla 5 lﬂb lhns sy;tan wlll bg r@ém.«vgd S .
as a concurrent force gystem in équ.hbrlum and may bg solved by the method . C :

developed in Art. 3 3. . ‘
If the X axis is taken through R. a Y summation (}" axis net shown) will de-
termine P.at once by eliminating R. We thereby obtain '

JEy=01 . Psindg?" < 20050418 =0 P=1761b Ans.

A preferred variation of thia solution when anl_y three fal;ﬁ:mmuvs\ved cosists /
of applying thesinelaw to the foree palygan shown in Fig, 5= 10¢. Sinceequilibrium .
exists. the foree pelygen wilk close. The 200-1b weight mxepizgmaﬂ by the vertical -~ ‘ -

* vecior showl, ‘Thraugh the tip of this vecier, & horizental line of indeterminate -

length isdrawn te r:p;e&nni ‘theknown direction of P. From Fig. 5-10a. theknown

_ direction of R is 30° +4'd - 41,3%with, the vertical. .A line representing R-may be:

drawn through the tail of the 200-1b vector o intersest F as showi. .
Values may now be obtained Siﬁgh\r_ally by scaling from the pnlyénn or an:lyt—
ically by ;pplymg!he slne.lnw Using the latter. we have ‘
sin41.3°  sin48.7° : -

whence as before .
P= 17616, Ams

i : Ce

80

75
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e,

=

e o IOD ft lugh at the sAme mstant thm‘. a-
- %ﬁ;=7== . second stone is thrown upward from the

|
5”
]

stone is 50 ft.per Sec‘and-t}‘m—ﬁ of the second
stone i% 75 ft. pczr -séc “'hen und w here w ill'

5z . grﬂund'?

I
|
|
I -
|
|
I
|
|
: vention established in Art. 10-2, we there-
v,,= 75 ft/sac fore tuke.the upward direction as positive
,xfur 5, .unl a. “Applying Eq. (10-2) and
noting th

Fue, 10—4 ft per sec? directed downward and therefore
. ’ . nek: m\E we obtain
;[’,gxz A ) ' For stone 11 & = 50( — 16,12 (@)

‘Forstone 2: " 8s = 7510 — 1G.1 2

From Fig. 10-4, 5, = 3, = 1()0 ~Hence subtructing Eq. (a) from Eq (b) gives .

. 35-1 — 8 = () = 251¢
L= 4sece

“Substituting ¢ m ]"q% (rz) and (h), we have - -
8 = gl) X4 =161 X (4)2 = 200 = 25 b
Bg=7d}<4 1(11}{(4)£

H‘J‘

]‘J‘

Hgme the stones pass each other 57.6 £t bélow the top of the tn\\cr or 424 t

fmm the ground. - Note that sithough we 'lkaumml that they would pass above the
tower, the negative sign of & indicuies other
- equationsare vector mmnm"ls‘ an.ieerrect assumption of direc tmn results mere!}'
ina neg.ltl\'e sign. . ) .

81
76,

Solution: The mltml dxrectmn of matmn
for ench stone is upward. Using the con- .

E thie acceleration iz g = 32.2

L =57.6 16
300 ~ 257,60 : sg=4‘?4ft. Ans.

Since the terms involved in the

a

g
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: erl-:fEnefgy Mc:thcnd - Illustranve Prﬁblem‘ \ o

“front which

“The 300-1b black in FngLugnjs_Lupal\ a-level planf- for. which_the

~ coefficient of kinetig frietien is 0. 20. Fiud the uélaglty af the block aftar it moves

80 ft, starting from r mg‘ " If the.100-1b force is then removed. how much. farthier
will it travel? ' h . -

Solution: The FBD of the bloek in its fnst phasg of- rﬁnhnn gshawn in Fig.

14-4b. Coemputing the normal and fn:tmna! forces in the ususl rnanngr we apply

the wurk-encrb) equatlun to phasc 1

T]n‘_‘ FRD of the block durm;, the second phase of. the m()tluu ig shown in rlg'.

14-4¢. To determine how much farther the blovk will travel ufter the 160=il forea -

is removed, we equate the resultant work flunt.‘ (Im|m=, both phases of the motion to
the total chunge in kinetic energy.  This elinnge in kinetic energy will Lu; Zero sinco -

“the final and initinl velocities ure zero. We obtain | -

\Ilh
o

E.‘i;‘fix; F EX e = o (u — 2)j (1()ﬂm'a‘ B(F — 50)(80) = 60 55 =

6o Ry = ‘18.?;& Ans,
VA
/ v},; i /

£}
N ka2 )
1
: N=250 N;sSDle )
_ (a) / ®Ph 1 (t:) Phasa 2 .
- o Fia. 144, o c o
[:Xl 8 = 5o ¢ =) (IQD cos 3()“ - 5“) (8“) = —‘-=4 ul’ o gf;f‘_; " / 1IN
from which - - o : e - 7 7 4o
o ' v = 251 ft per sm" Ans - :' -




Conscrvation of Momentum ~ Ilustrative Problem
L4 e
A ballistic pendulum ‘conwisis of @ sand bex weighing 59 |b rthat is sus-
pende,d from a cord 10§ long A 1-Ib shell is fired horizentally into the box and .
remains embedded in it. Because of impact, the sand box swings through a maxi-
mum angle of 30°. as shown in Fig. 15-9. Determine the velocity vith which the
shell strikes the box. °
Solution: lhe initial velacity of thesaud box with the 5hell embedded is found

c

\
—:ﬁlx\
10' \
\
\\
/&’f;\\
, GPI §
W =11 N D27 h*10-10cos 30°
P : | T, -—D FPOIEEY R ;:T L
e , © HWy=b91b :
K. 15.9. ' '

hy the work-energy method. The work done is negative becnuse the gr ity furcc

] acts npp()&lte to the up\vaul rise. 7
W
[—-;H'h = — (1'- — 1 ):| =0 — 10 cos 30°) = i1 (0 = n;7)
Pt = 644 X 1. 34 ve = 0.3 1t por see

/
" This value of veloe ity represents the common veloeity of the shell and hox directly
after impa~t. The volm ity of the shell hefore impact ean be fmmf! hy applying thr-

principle of conservation of momentum. - . ;
. . % 1450
[!.l'_‘_*_) 1‘_:_’_: = _”'i_‘_“ ,,:| . LR 40 = 145 % 0.3
9 q

g g g

v, = HH8 1t perzec  Ans.

E :_f.:f-;
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strength of Materials

" This branch of mechanics treats of the internal forces (stresses) in a physical body and of

the changes of shape and size (strains) of the body, as well as their relation to the external
forces (loads) that act on the body and the physical praperties of the material of the body,
Ilustrative problems are given below to show the application of algebra and gt:()mc:try
to the various types of problems ¢ncountered in the gtreng__,th of Materials course.
Centroids of Composite Arcas — Sample Problem ‘
Lo - SAMPLE PROBLEM Determine  the docation  of  the
' cenireid of the plane figure shown in Fig. 10-11. .
Y ¢ '
P Vi
N o ;
i : Figure 10:11 Diagram for Sample Prob-
5" : lem 4,
| L . ;
5 X
- 7 - . ‘

. . Sofution: Divide the composite figure into three \'impiv AL,
arcctangle 7 by 5. a quadrant with a 2-in. radius, and a cirele with a
3-in. diumeter. The rect: mgle is a positive arci. The quadrant

. and hole are treated as ne L,ahw areas. _
Ct , . COA b 7( 5 = 35.00 in. - ,
O - m/ —h)? e
" | B - = =314 ink )
. ' Aq 16 lh _ o :
.-_Illl ;:;W ‘3,"‘- F-'— oo i
Ay TR R ST
TA - 2179 int
COSAY (35)(3.50) = (3.LD(6.15) = (7.07)(2)
YUoFA T A
2Ax is the sum of the products of each area and the distance from the y axis tﬁl& the centroid
‘of that area, : o eV s i
- 122%*1‘)3—11]1 H‘H)h__,,}ﬂr
X = j; Tt) = ,’1 79 = 301 1L
’ o SAy  (35)(2.5) = (3. (L15) ~ (T07)(3)
TTEA T w9
' 875 = 13.05 = 21.21 53,24, 15
- 279 - a7y T
or N
Area Pimen 7 Ay
T T
2 r=2 1,15 .
3 i =3 3.0 !
i‘, XAy = 5324
N R
i

O
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Moment of [nertia of Composite Areas

SAMPLE PROBLEM Determine the moment of inertia
\ of the area shown in Fig: 10:25: ‘
. ' (@) About the vertical gri 1\1(\ axis YY
) L .(h) About a horizontal axis 1-1, 2 in, he Iuw the base
5"
T x
e
N ‘ B e 0 A
; Flgure 10-25 Diagram for Sample Problem 144,
7
\. - In caleulating the moment ui inertizof an aren that has, holes
: T or cutouts in it, treat the areas and moments of inertia of \these
S, holes and cutouts as negative values, )
' Solution a: From Sample Problem 4, £=3.59 in. . Al '
4 . : bl 5(1) . ﬂ
’ 1'271‘7 =15 = M3 in.'
. L, ==0.055r" = —0.055(2)" = =088 in*
o - _ ,
P A1 i AT Y Y1 N
: / 155 64 '
E I'+ Ad2 is the transfer theorem
e d is distance from centroid of the part to X 3.59
- Area Cent. (%) I A o ! Adt
e ‘ | 3.50 130 35.0 009 0.0 02 .
. 2 6.15 S~ lNH ~304 2,56 20,6
3 290 3498 STOT LAY 2.5 ~17.9 ;
T L . qu" H9.43 |||'
- say L= 100 in*

Q
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¥
Solution b From Fig, 10206,

v

\

—
e

duim =

- =

D S iw 1
Figure 10.26 Diagram fer Sample Problem

J j i =294
- I—III% - l%)—_ = 72,9 in.}

= (L0357 = —0,055(2)" = .58 in.'
mmd! w3

) : 61 64

—=3.95 in.'

Aren { : ) o Al :
—lLNS =31
R

F
-l
J_

20,35 -
A7.K0
25.00)

T W2

—_

7HL0
ERULR,
—176.8

]

- . sty ,V 2 in.!
\ v :

o0

© 81
o - |
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s : Power Transmission

SAMPLE PROBLEM A solid shaft 8 in. in diameter has
the same cross-sectional area as a hollow shalt of the same material,

with inside diameter of 6 in.
(@) Compare the horsepower transmission of these shigfts at
_ the same rpm.
AN (b) Compare the angle of twist in equal lengths of these shafts
\a{lwn stressed to the sane intensity.
" Selution: Find the outside dinmeter d, of the hollow shatt. .
Since the cross-sectional areas are equal, }’x’
Vondt n ‘
_— = | 3 _ a
‘ v'gj; )1 du t[' )
78 T,
—— == (]t~ G7) .
a1 ~
82 = (7 - ¥
! 4. =64+ 36 = 100
d, = 10in.
.. From equation for the solid shaft; o e
e 167 - _md's,
wd ~ 16 )
rli . EL( B‘T’Es‘ .
16
From Eq. (13:7) for thé solid shaft, R : o y
7 _ . _T”r’ N '#(H:‘),‘E;‘i"_ o s (51?) o : )
hpwine = 37000 ~ 63.000016) (6300011617777
e From Eq. (13-4) for the hollow shatft, ) . ‘
’ - . - - — e ,.,I
! , e l6Td, . p _md,=d s,
| | STHdE =AY TOI6d, |
T = ﬂtli’{_ 64’)\1
T I6(10) '
/-
. ;‘/
,f‘*; ‘:.,
|

RIC o 8T T e T
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Bending Stresses

SAMPLE l‘HQBLEM ‘A run of 4-in. schedule 40 seamless
steel pipe (4.50 i, OD. 0.237 in. wall thickness) is to carry o {-ton-
capacity chain hoist attached - midway between pipe suppoirt
]131%1 rs.  The ultimate tensile strength of the-steel pipe is 48,000
psi. A safety factor of 4 is specified. The pipe weighs 10 I per
ft. Assume no additional stress or load due to internal pressure.

“ Treat the length of pipe between hangers as a simply supported
beam.  Find the maximum safe spacing of pipe support hangers,

Solution:  Sketch the svstem as in Fig, 12-4,

O O )

B ,—,,-,::,vzr‘.

M‘

_— e N e

P |
|

w= IC) IE f'

—— s —4_F

R, - R, 0L --500 O

Find M .qx ai center of span.

' Ly WL Ly
\me.\ = ” (2) —:=2 (T;)

= (51, + 250) ’32%1_

L i - . 5[ ) 512
-Figure 12:4  Diagram for Sample Problain 2. o= i + 1251 — 5” = %I‘

2 4
, | = 15L% + 1.500L in.-Ih
_For« hollow ’ci’n:ular scction, '

- A )4y == 10 R ]
I h;“l“ d H(45(3 4,034

;:—‘ )y =2 = = d48Y) = 7T 96 in}
x| {41t h ) H (l_l‘,) 7.26 in,
' . 1,50 o "

' . C‘—-’“—l% 2. ") .

Allowable stress = 48,000/4 = 12,000 psi. *From Fq. (12:1),

=Mooyl

i
=z
M= »]!Q"_,’”f "“il—; = 38,600 in-1h

15L% 4 15001 = 38.600
L+ 1005 — 2570 = 0

This quadratic equation may be solved by quadrstic formula.

1o =100 % VI - 400) (=2. 570) _ —100 = VI( n"odﬁ 10,280
- ) "3 _

_ =002 VEDIRD _ 100 = 113
= > =

Selecting the positive result, wi- nhtuin

L= i&lﬁw} = 4’3 = 72].5 ft (m aximum safe spacing of suppurth)

27 h

\ﬂ.u

I R, R, 5L i 250 (dueto symmetry)

+-1251. ft-1h -

&
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Member Composed of Two Different Materials in Scries

SAMPLE PROBLIEM A steel bar, | in. square and H in.
long, is set end to end with a C.I. (cast iron) Class 40 bar, 2 in.
square and 4 in. long, between two immovable. supports, | What
stress will develop in cach material duc to a temperature rise of
50°F?

Solution:  From Appendin B, Tuable 1,

= 30 % 10% psi (for steel)
= 16 x 10% psi tfor C.1. Class 40)

From Tuble 8:2,

a, = 6.5 X5l07% in, per in. per °F (for steel)
e = 6.3 X107 inL per in per °IF (for C.1.)

/
If the member were not re s{mun'rl each material would elon-
gate by amounts of

5% = o,y At = 6.5 105 (8)(50) = 0.00260 in,
= ool Al = 6.3 1075 (1) (50) = 0.00126 in.

The total elongation, &, Hmt waould occur would equal 6 = 5 +/
8, = 0.00260 + 0.00126 = () ()()35(1 i,

Since the member is not fru to rlunr'nh the nmterials are
placed in Unnpr("ﬁmn h\ a force I, : '

",

8 0.00386
] = e——m— = — e = —
L+ 2 . 8 o 4
— 5 Y . + —
AGE ALE (1)(30\111 by ©(4) (16 x 10%)
7 0.00386 : 0.00386 o
F=- g ——— = ————— = 11,600 lb
027 x107% + 0,06 x 10 0.33x 10" € N
F 11,600 . - . , N\
5,= — = ———— = 11,600 psi (compression in steel)
L F 11600 Co N
5,=——= ———— = 2,900 psi (compression in cast iron)
N . ; !
[ § %,
x “’»\\‘Gy.
AN
. N\

89
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Combined Stresses

SAMI'LE PROBLEM A simply supported. 12 W 65 heam,
16 ft long. carries concentrated loads of 6,000 Ih at each quarter
point and is subjected to an axial tensile force of 25,000 Ib applied -
at (he end sections. '

ig) Find maximum f;umbmt—:-cl tensile stress and maximum
combined compressive stress.

(hy 1t it were necessary to make a I+in. hole in the web of this
beam at the center cross section so that a water pipe can be accom-
modated. where on this cross section would you recommend that

; ! .
the hole center be located?

Solutiona: The weight of the beam is 65(16) = 1,040 1b.  The
total vertical load an the bean is 6,000 + 6,000 + 6,000 = 18.000 1b.
Sinee the weight of the beam is only (1.040/18,0000100 = 5.8 pereent
of the total vertical load. it may he neglected without excessive
error 13]1}1?‘().‘:1”!3!&1)’ 4 ]‘)EH:EH( error \!lf."r'i hErE

Figure 14:6 shows the beam with its shear-force and bending-
moment diagrams. Note that the 25,000 1b axial force does not
affect these diagrains. For the 12 W 65, A - lg,yl in? Z =480
ind and d=12.12 in. (Appendix B, Table 1).

Direct stress: P ‘

F_25.0000 . o
Si=R = TT 15310.?55 {tenaion)
Bem!'ing srreés:
|  Mc M
s z

The shear dlagram mdu::tes that the center cross section is the

: . EDDGII:*EDDDIE 6,0001b o /
[ LR . SN RN S L 4 ﬁ_l )
o y o
. '25,0001b _— 25,0001
] L 77{7 M L I i
B 771\
(a) "R, -9,0001b R,=9,0001b
' 48,000 ft.1b ’ : _ A

36,000 ft-ib - - 36,000 ft-ib

_= Moment diagram

9,0001b = -
L - 0
=3,Dc>om‘----’-é-1 A i
. 1
o (b) S : Shear dlagram fl,___g.l=g 0001b

Figure 146 («) Beam diagram for Sam:ﬂe Problem . (h) Shear-force and.

bending-moment diagrams.

I(]L.lh()n of tlw maximum mmnunt A frec lmclv dmgmm of the left

| 85, o Do -
ERIC - . . 80 e e
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Combined Stresses, continued

S M =0 about an axis through the center cross section gives

M = 9.000(8) = 6.00004) = 72.000 — 24,000
= 48,000 ft-1h "r‘
\I 48 48.0001 1
5. = = 6.550 psi

2T 7T 8K
tension‘at bottom fiber

g, = $.330 psi ; .
5 I compression at top fAber

6,000ib 6000ib

\,. . ; : B
25000161 : 25,0001b -
= R
\ o , Mua
‘ _ \
9,0001b

Figure 14:7 Free- I:mdy dlagrarﬁ of left half of beam for Sample Problem

Therefore, at center Lmss section,

Top fiber s =g, — 8, = E,.’iS() < 1.310 !
Top fiber s = 5.240 psi (maximum compression)
Rottom fiber's = 5, + 5, = 6.550 -+ 1.310
Bottom fiber s = 7860 ps: (imaximum tension)

Solution b: ”]E thstnl)utmn of combined Stress at the center
cross saction is slm\\n in Fig, 14-8.

S/
. _ N
~ . . 5,240 5,240 psi max compression
g e e
T ] = o
RN e
i il Sl
12.12" | ~ P
. [~
[ b e
‘ I ‘g“;‘“ : G
N

Y
5 240 7,860 psi max tension

Figure 14-8 LDEStIDﬂ of point of zero stress from dnstnbutlan of iﬂmblned stress
at center cross section. s

The location of zero combiied stress would he the must prefm=
able position for a_lmla intheweh, Thelevel ()fﬂ;rn stress can he
found from*Fig, 1 48 hy- similar tr‘ign;ﬁies :

_ ; 7.860 7.460 P
B ) P L L T T I T o 1D =T AT 5.
: _ h (1 H60 + 5. 11()) 12.12 (13 um) 1212 £°7.27 in.
' The eenter of the 14-in. hole should be ]t:(.ated 7.27 in. above
llwdlmttnmv:tr)f the lower flange II R
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Fluid Mechanics

The course in fluid mechanics covers the study ng behavior . fluids (liquids and gases) in
industrial systems, particularly pipeline and duct systems, and fluid machinery such as
pumps and fans. v : /

Applying the basic conservation equations.(mass, energy and momentum), hydraulic
principles and fluid properties to industrial systems enables one to predict their perform-
ance and establish design parameters.

The laboratory experiments reinforce the theory and proVide the practical ex; -ience
in measuring fluid properties related to the design and operatjon of industrial systems.

Problems in fluid mechanics involve the use of certain basic equations, the mampula—
tion of them to solve for certain unknowns (literal equations), and the conversion of units,
The latter can often be accomplished by manipulating units as if they were algebraic terms.

Important equations are:
_ Bernoulli’s Equatmn which is baglcally an energy equation:
: 2
: E‘ Pyvs
Sy Eg Y 2%

Continuity Equation: The quantity of liquid that flows past any point per unit time
remains constant, ‘ _ :

CQ=AVI=A2 Y
" Both equatlon-; assume %nc@mprﬁssablllty (i.e. dEI‘lSlty 15 (Qnstant) In these equatlons
Z is height, P is pressure, v 15 velocity, v is density in - 1bs , P isdensity in’ gL%gs___ ‘
is . .
g P Y 3 YT

-

' , T fe
.Conversion from 7 to p is obtained by div1ding 32 —5—, e,
. sec”
32 ft  lbs . ft . Ib- sec? _ slugs
PEYTINNET W e R
FDr e:xampla:
' ' |
1. What is the wmght of 25 gallons ot gasoline: 7.480 gal = 1 ft, ' . ‘ |
slugs ’ : ' :
R=132—%
ft
. ft 1.32 Ib-sec? ' 1 ft3 ,
W=V =32 - X e % 25 gal X ————————— = 142 lbs. -
v Tsed T it YOO 7.480 gal .
e e pliquid |y liquid
2, Specific gravity of a liquid, 5.G.= Lo R £’ i
: : | ~ p water 5y water

972
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7/ ;
x/ .'
How far will a block sink into a ﬂmd?‘ A block will sink until it displaces its own wexght
of water. If a block has length 50 ft. and width 20 ft., it will sink a depth of D ft. If the
block we1ghs 75 tons or 150,000 Ibs., it will dlspl'u:t: a block of water of dimensions 20 ft.
by 50 ft. by D ft., weighing 62.4 %b ‘;—' ' '
‘ - 1b L Co -
Hence 150,000 lbs. = 62 4 I x20ftx50ftxDft
. e ; % A
oo 150,000 lbs ft? e eh40t
" 7(62.4 1bs)(20 £t)(50 [
Fluid Properties
\ One gailon ofa f:ertam fuel 011 weighs 7.50 pound:. Determine its ‘;pElelE weight (7),
\ its densﬁy (p) and its SpEleﬁ;‘ gr:mty (5G)."
V=1 Gal | : ‘W=7.5lbs
Fts 3
V=1galx —=.134ft
748 gal
W75 . : —
Y === ’ 56 11bs
YTV T T34 2 S
Ly 560 . ’ . 1.74slugs
| Vg 22 : T
if’/f: ) ) N : 7\777777’7777 =
S sGe =L ,
e 62.4 - 1.94
56/ 1.74 —
2 e = SG = 0.90
62.4 1.94 -
% \ //
/ / !

88
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23.0 NI SN —

Pressure

An oil storage tank is open to the atmosphere as shown. Some water was accidentally
pumped into the tank and settled to the bottom. If a pressure gage at the bottom reads
23.0 psig, determine the depths of the oil and water.

" P bottom = 0 + ﬁyohD +Ygh
. . orEN - . 2
SR Ibs o
R | | 2.0 5 x 144 = 86X 6240y + 624 hy,
@7 » . f —
, hy =60 = hy; |

o1k ho - 23x 144 86x624 (60 —hy)+624hy
l

w

bo' S = ,
- 624 624

85G=0.§,
53.1 =51.6— .86h, + h,

WATEL (.

"_i

1.5=.14h,,

e s B
weoae ) hy, = 10.7 ft

hy=60-107 | hy=493ft

\ Manometers

]

| sesimes 2

| A manometer, open on one end, is connected to a pipe in which kerosene is flowing. If the
difference in the fluid levels i in the tube is as shgwn determlné the gage pressure in the pipe

. at pgmt A,

?
/ .

/| : :
; > PA O+“Y h +‘Ykhk ‘ , ) - /
L/

&

B lbs . | ff_g \_Zi
=13.55 5 62,4 ——y— x 8.7 in x ~ AL —r— 1 82 x 62.4 x 223
>3 % 02,4 g X8I X e ind TN e 908

” C 1179 - 205
o S 624 ALY, S
MEE‘:‘QE"‘I' | 1738 (1355%87  B2x25
K EDEENE | P _ 624 ¢ 138.4
- : | A= G728 T

. s6=0%2. |- Sy

Il
"




Buoyant Forces

A buoy is a solid cyli,ﬁdar’, 1.0 f ot in diameter and 4 fect long. It is made of a material
with a specific weight of __50 lbs . If it floats upright, how much of its length is above the

- water? cubic ft

50 1bs

fr?

fwn TN

D=10ft L=4ft «

ZF=0: Fp=W

' 7 7‘r+127 o
W = ygVp = 50 X === 4= 157 Ibs.

. S o T+ 1 )
Fp = 9w Vpigpl = 624 x ~—— x h = 49h

49h = 157
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Bemaulli Equation + Idcal Flow - -

Gasoline: SG:72

FgrsL 7 \\ e Zy=23=0, Py=39 P8I

J I 8 % Dy =3 in

+
!
-
£
N
I
+
-y
M
8]
+
~

Bernoulli: Z{+vy

B ) lﬂ . ; a
)20 9"“ x 14472 2 7 vy?

Py = 0 PSI
Ay=.0491 ft?

“A, =.01227 ft?

N Y S 72%24% : /. 644

644;59‘{144 e
- 72x624

<
[ %]
|
<
it
i}
I
e
5
-
]
[

Continuity:

A1v1 0491 X v1

— = vy
A T 01227 B

(av? ~ v 2= 12180 s

16v,2 ~v;2 = 12180 = 15,2
' 12180 v

|| | T

=0491 fi? x 28.5 —— x —
QA = 0L 28S o X T T

\* Q= 491 x 2.85 x .449 x 107

~Ja =628 GPM {.
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Pump Performance

The diameter of the discharge pipe of a pump. is 6 inches and thar of the intake pipe is
8 inches. A gage at discharge indicates a pressure of 30 PSI and a vacuum gage at intake

efficiency. Assume AZ = 0.

Solution:

g
)
1]

Aq =.3491 fi?

Ay = .1964 fr2

b
=i
Pndi
1]
el
(]
]
[Fp]

2 2
P, — Py vt vy l
hp = —=—— S S
y

: .2 |
s 144 in* 35x1
———— = in - 7in?m ) n ,,,‘{

X ey —_\ = 808 ft
P (T S A 62.4!
ft: ‘ !

32862 234—-74 . 1
e = i = e = 2. 49 .,
2 64.4 64.4 - |

hp = 80.8 +2.49 = 83.3 ft \|

' 24x 3x83. . :

FHP = - QH _ 624x 3}: 83,8 . 28.4
550 - 550 »

I,

{
} i
FHP 284 . \
e = e =811 i '
BHP ~ 35.0 : g
!

e=

e=81.1%




Pump Performance

A centrifugal pump discharged 300 gpm against a head of 55 feet when the rotative speed
was 1500 rpm. The diameter of the impeller was 12.5 inches and the brake horsepower
"+ required was 6. 0. A similar pump, 15.0 inches in diameter, is to run at 1750 rpm, Assuming
equal efficiencies, determine:
(a) the head developed by the 15-inch pump;
(b) the rate of flow through the 15-inch pump;
(c) the brake horsepower required to drive the 15-inch pump.

Pump No. 1 Pump No. 2

Q=300 GPM H =55 ft Q=? H=?

N =1500 RPM D=12.5in. N=1750 RPM D =15.0in
BHP = 6.0 ' BHP =?

Ny' 1y 5 1750 15

= x| ———— e

i
oy
]
|
)
|
o
|
|
I

)

D, 1500 125

——

) N Na P2\, . 1750 /15 3.
—x{——==}=300x ———=x(—-==
2541 % Nl Dy 1500 1’15}

Q, = 605 GPM

”YQ; Hg

‘177 EHP; 55(5&?1?1 €27 7550 BHP,

¥ Qq Hy T Qy Hy
550 EHPi 550 BHP,,

| Q, H, 605 108
BHP, = BHP, X ——— X ——— = 6 X —

2 1 Q,

1

Hy © 7 300755
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Foreces Due to Fluid in Motion
A 2-inch diameter jet of water strikes a vane making an angle of 120°  with the direction of
the jet. The jet strikes the vane with an initial velocity of 100 ft/sec but the velocity leaving
the vane is reduced to 80 ft/scc. Determine the magnitude of the resultant force required to

hold the vane in place.

11\ o
D=2in A=.0218 ft*
ft

A
: : - fr - f
! ‘_ 7 vy =100 —— v, = 80 ——-—
N ) sec sec

il

D

Vo, = +80 x cos 60°'= +40

F.o=pQivs, = Vi, -
y o 2y 1y}=!{y 24

|
1,94 x 2.18 (+40 +100 ) = 592 Ibs

r
=1.94x2.18x (69 —0)=2921bs

- 2.5 2,7
R=(Ry*+Ry%)

R = 660 lbs

14

R = (5922 +2922)
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Drag Forces

Calculate the required diameter of a parachute supporting a man weighing 180 pounds if the
terminal velocity in air at 100° F isto be 15 ft/sec.

ft
\rT, =15 =——

Air Temp = 100° F
sec '

p=220x1073 slugs
Hemispherical cup  Cpy = 1.35
: At rerminal velocity, ZF =0
ﬂ W= Fpy = % Cpy pA,2
t D D Py -

12
D 5
W= 1o lbs. 180 =Y x 1.35 x 2.20 x 1073 x et (15)%.

, ,%‘r 180 = 262 D2 p2 - 180
. Ne,léé " a . v262
o —and Wepoke

D =26.2-feet

/ : -~ 100

95




Energy Equation: Losses + Additions

Turpentine at 77° F is flowing in the system shown. The total length of 2-inch Type K
.copper tubing is 100 feet. The 90° bends have a radius of 12 inches. Determine the rate of
flow into Tank “B” in gpm if a pressure of 30 psig is maintained above the turpentine
in Tank “A”."

o — — —_— ==

4 - — % —

‘! Turpentine @ 77°F

u=2.87x 1077 Ib - sec/fr?
e f y=s421 p=1.69 slugs/f

s : Jq. ) B ' Type K Copper Tubing: L = 100 f:
. L ) ' D = 27in.nominal
I5 S ominal S

' o D=0.1633ft A =.02093 ft~
D=1.96in &/D =.00003

Gate valug B ,
8*' (llg; Q':Erﬂ v Py v

A —hp =75+
;T

— ,_ , I vy
—— 190 bend 30lbs 144in

in2 - f?

i
|
J

= . = 80 ft of turpentit
54.2 Ibs

\ ft3

hL:h1+h24'h3+114

hy=f—-— ~ Friction -

hy =K — ' Entrance - K=0.50

hy=f—" — Gate Valve
D 2g Y2 open

2 — 90° Bends

1633 ft
L B _
= = 613+160+36 = 809 ZTK=.5 : : *
- =+ ZK) =
D

hy (£
. o o - % 401

(809 x f +.5)




)

. v
Energy Equation: v (B09xt+15)=65

g
,  65x6fi4
809t + 1.5 )
[ 4186 - £ 5
- L_?iiiTJTT§] = 00003

Trial No. 1: f= 0165 809f+1.5=13.3+1.5=148

. - v - %] B
4186 , , ft
Y =|————| =283 =16.8 ——
14.8 ) sec
‘ v D 16.8 x .1633 x 1.69 T
Ry =——SDxp_ MOBNAOBXLR o 62x10°
u 2.87-x 1077
N = 0165

f unchanged .. v =16.8 ft/sec

|Q = 160 GPM

Thermodynamics

This course is a presentation of the fundamental concepts of thermodynamics, application
of the various laws of thermodynamics, calculations based on the various ideal cycles and
pragtical experience in detcrmining the operating characteristics of many thermodynamic

dE\nCES A
" The presentation of the fundamental concepts 1ncludes length, area, volume and time;

velocity, acc.:leration, mass, force and weight; dEnSlty, specific volume, presstire and
temperature; potential, kinetic, internal energy, heat and work; specific heat, enthalpy
and entropy; molecular weight and the gas constants.

_ In addition, the laws of thermodynamics which are cans:dired include the Zeroth
Law, the First Law, the Perfect Gas Law, the Law of Cons&wntmn of Mass, the Second,

Law, Ideal Gas Process Equations.
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cxample

Solution.

Example

A 9-inch diameter piston-cylinder contains 3 gas winch, under canstant
pressure, extends the pistan 3 inches Determine the work al this process
i the gas pressure 15 85 Ib1/in? absolute.

In this case the pressure is constant so that the equation can be written

.
Wkes © p / dv
. o By

VY = V)
]!.U“!

The pressure is given as 85 psia gnid the change in volume can be cal-

culated from

AV = % Yin

= w2 % 3in

| 304X 458 3ind
which gives us ,
, Wk,, = 856T7in2 X 190.8 in’
= 16214.2/0n-1bf < 1351.2 ft-1bf Answer

steam at 200 psia and exhausts it at 14 psia. Assuming the steam has a
specific volume of 4.0 ft*1bm at the inlet and the pressure-volume rela-
tion is )

p = 22848 — 7120 _
where pis in psia units and v is in {t?/1bm units, determine the work done
per Ibm of steam flowing through the turbine. Neglect kinetic and
potential energy changes of the steam. '

228.48

200

pressure p

psia

0 4 29.98

specific valume v ftallbm

p-v diagram for process of example

98 ¥
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Solution

We niay also caleulate this answer by using equation wk

If we construct the p-¢ diagram for the expanding steam, we have the
curve shown in the graph, = The work done per unit mass is_
the shaded area of the figure, or wk,, = —[vdp. This area is a rectangle
and a triangle, i.e. :
whk,, = (200 — 15) 1bf/in2 X 144 in2 112 X 4 ft3/lbm
+ (200 — 15)(144) 1bf-ft X ; % (29.983 — 4.00) fi}/lbm
= 106,560 ft-1bf/Ibm + 346,054 ft-1bf/1bm

or
wka, 452,614 fr-1bf 1bm
or

wk,, ~ SB1.% Btu Ibm Answer

= —vdp

B #)

We have from-the_given pressure-volume relation that

v (p - Fakasy, DM
P 2284200 in? x 1bm

If we substitute this inta equation ~—— we get "

T P 1 R
wk /r. (p - 528;4.8)7.12 dp e

1 /1 )
7x'lz(_2p2 - 225.45p)

) /p

o,
U (Nasz o 2002 — 2284815 ~ 200)
7.12\2

]
7.12

P

"

1y

(z 19887.5 + 422&8,8)

144 in? N2 L

) St (223813 1bf2 1nt
712 1bf tbm 1n? 3223813 ) :
452.656 ti-Ibf tbm - S81.8 Bty lbm . Answer

T

i

This answer agrees with the geometric one within an accuracy of 197,
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Example Determine the change in enthalpy per Ibin for carban monoxide (C03) as
the gas 1s cooled from 1500°F 1o SOO°F, assuming the gas does not have
a constant specilic heat.

Solution We will assuiie the gas, CO, 1s a perfect gasso that

N : ‘ : Ah = /fpfj]

and we must find the relation ¢, has o temperature.
can see that there 15 a choice of relations for CO), numely

1200103 | LOTUOO o
(9 46 — 7& vl + 7%_» —)) Btu, Ibm mole®R

i

ar
¢p = la 4 b(10-HT + (10~ d(10-9)T? cal, g-mole°K

where a, b, ¢, and d can take on two different sets of values. Let us use
the second equation with the following set of constants:

\ : . a = 6.480
L : b =-1.566
‘\ . ¢o= "‘02357
1\ d =10
\\ ' . Then
Vo . - ¢p = (648 4 1.566 ' X 1073 — 0.2387 72 X 10-°) cal, g-mole®K
L \7 and the initial and final temperatures are
e Ti = 1500°F + 160° = 1960°R
| - g X 1960°R = 1089°K
| .
! : and )
/ T3 = 500°F -+ 460 = 960°R
- §’ X 960 = 533°K
respectively. We now integrate equation
*511°K ‘ :
Ak z/ (648 + 1.566 T X 107 — 0.2387 T2 X 10~0)dT
10BYEK
o . ©ONSITK
= (6487 + 078372 X 10-7 — 0.0796 T} X 10_“)
'/ fogesk
= (6.48(533-— 1089) + 0.783 X 10- (5332 — 10892) "~ 0.0796
X 10~ (5333 — 1089%)| cal. g-miole
= {—23603 — 706 + 91| L-,.ii, g-mole
= =4218 cal/g-mole
Per gram, th; change in enthalpy is found by using the molecular weight
of CO, 28 g/g-mole,
Ah = —4218 cal/g-mole }{ L g, gzmgle CO
= —150.6 cal/g Answer
This answer could now casily be converted to Btu/lbm if it is desired.
\)‘ HEE T 10()
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Example

Solution

During the compression of 0.01 Ibm of air in a cylinder (see figure 6-5),
heat is transferred through the cylinder walls to keep the air at a constant
temperature. The air pressure increases from 15 psia to 150 psia after the

energy and in enthalpy, the work done, and the heat transferred during
this process.

This is an isothermal process and we will dssume it to be reversible as
well, If the air is behaving as a perfect gas, which we assume, then the
operating temperature can be found from

detaNEEE " \

: \3 o

Wk

e

Isothermal process|of a piston-cylinder device.
Q '

or, iually

/g _piws (ST in2K7.4 3 IhmK 144 in fi2)
. {y = == = — = - el

R~ 7T TS330Ibf Ibm°R
so that
» " Ty = 300°R
and thgn-' '
77 - I0°R
The change in internal enerpy is
| AU = riiérAT = {}
and for the s:ﬁt}1alpy change we have
i BH = mephT = 0 . N
The work done is reversible and lhis we obtain f'_fmn}fequatiun (6-17),

. o Vs
Wiy = Cln (Vl)

or, more conveniently, from equation (6~18)
. Cin (’f“)
M\ pz

C = piVi = piowy “ .

= (15 Ibf in2}0.01 Ibm)7.4 ft2 Ibm) 144 in2 f12) \

= 159.8 ft-Ibf | | S
o1 -

Wk

The constant is determined first:

i
3

1006
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Example 7.5

Solution

! : 1()‘7 | )

Then
15.

(1598&1,,)1;1 %

(159, a)(f In 15;)

159.8 (~In 10) |
= “:568 ﬁ. lbf fi"l\’wsr

Wk

[

1

1l

Thé heat Lranstérrgd is equal to the work done so that
Q = — 368 ft-lbf ‘ Answer

and Q is, as the sign indicates, removed from the system. For the irrevers-
ible isothermal process, the internal energy change can still be zero; but -
the work and heat increase in absolute v2lues; that is, more work is re--
quired and more heat transfer is demanded to retain constant temperature,

Air expands polytropically lhmugh a nozele such that the exponent i is
to be 1.45. The exhaust pn_ssutL of the air i3 15 psia and the temperature
is "0°F. If the inlet pressure is 60 psig, determine the change in specific
en: v of the air as it passes through the nozzle.

For any polytropic process we can use equation
. T .
As = ¢, In i = Rin P2

N mno .

ep = 024 Bt Ibm®R

and
R = 53113 {t-Ihf lb(n R = 0.06%6 By 1bm°R !

Also, the prgs%urc riatio pa ‘pris 15 psia /(60 + 15) psia or §, assummg an
atmospheric pressure of 15 psia. Then,

T:  (p2\rin I
(o (Pl) i

\ This gives us

I, [\D3500.45 1\0.3 I
u. (5) ) (5) T Ledd i

Consequently the specific entropy change can easily be determined:

0

|
As = (0.24 Bty 1bm°R) In 1%7 — (00686 By, Ibm°R) In 3

= ~0.120 By, 1bm°R + 0.111 Elu,\lbmaR

= —0.009 By, Ibni*R~~____ \a Answer
The entropy 15 décreasmb in lhlﬁ process, due m 4 dmp in the air temper-
ature.
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Machine Design ,
The knowledge gained in applied mechanics on external forces acting on machine clements,
the stress calculations from strength of materials, the uﬂdtrstundlng of the nature and
mechanical properties of materials (Metallurgy and Materials), and the methods of pro-
ducing machine parts (Manufacturing Processes) are all brought together in machire design
to determine the dimensions of mechanical components acting as parts of a machine.
Information from fluid mechanics and thermal considerations arz also used in particular
topics encompassed by this course in Machine Design.

The ability to apply mathematics to the machine design field is rrlost emphaSlZEd by the
need for mathematics in the supportmg courses as previously demonstrated.

Complicated problems lpd te interesting mathematical equations which will be listed—
as fO“tjgvs

Design Example of a Compression Spring (Decimal Exponent)
111.‘3 006 . RF D

S,.=.324 (N alsd § =)k ———M (7)
ds 166 S 3
Dy 100 * Dy |
Equating (1) and (2): 324 02000 13xBx1500x 5.5
Lquating (1) and (2): .32 - )
D, 166 3.14D3
W
s
166 o 3
Dw Dy,
27 ST U1 J— 3
27,400 Dw = 54,500 Dw
o 2.83 27,400 7
DWZ}SH = —— = 502
54.500
\\ .
N L |
Dy, =..502283% _ 784 - \\\
\

108
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Elastic AﬂalySIS of a Bolted _]mm;
(The following pmblem indicates the use of scientific notation and demmals)

Kps+ K¢ : _
. (118 x W0
= 15,000 + = Jif‘{ ) 5000
| (116+2.18) x307 |

15,000 + 17250( = 16,760 psi = 1.6760 x 10% psi

ThE values of Ky, and K have alrr:ady been evaluatéd from

*‘%bE' 785\.30\106 ,'735;{10“1;(30;:107
I{b :i:i — . . T = = —_—— =
b~ LT 2 2
=118x100=1.i8x 107 =
CAE 7/
. E 412'x1.06 x 107 - »
~and K= ~ S X e -2.18x107
D .
Fe o1, 5750 10
also Sh: oo h’* —1 = i;' 13 x 104 p§1
Ap - 7. 35 x 10
ThEﬁEbZEE———-z 71‘{10 —71&10 \
- 3.0x107
and 8p=142x10% - Sy

Now A8p,= .00142 — 00127 = 00015 ='1.5 x 10—+

and 8, =(.00069 —,00015) = .00054 = 5.4 x 10~

£}

00027 =27 % 10" —4 L

2.8 x10~%x1.06 x 107 =2.970 x 10°

/S, = ECE - 281075 x 10,6 x 106 -
. L . KTb-FI{C r
Opening load: F = F; ———
.

=

(118x107+213x107)
= 15,000 ————

; .18 x 107
(118+218) s
2,18 e

(3.36)

]S 000 -

=15,000 =51
/
- 1o |
= 1.5 x 10% (1.54) ,
=231x10% |
: ‘ / _ T
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then: - - = — e o e e ———

4
!
\ .y

q 752,000 gsoo, ESOOY(25+‘;§h)x6
2 Sbh T pp2

52,000 _ 2500h + 37,000 +7500h _ | , N

LA LI\ L e buth=3b
2 - bh? |

30,000b + 37,000

b3 : ,

then: 26,000 =

4 234,00067 — 30,0000 = 37,000

, b3 - 12813 —158=0
, .
Tryb = 1/’: 125== 064 — .158 = —

1]

1
LN
ok
&

et d412= 096 = 1 ,5@%;_ 5
: by interpolation _
246 — .079 —.158 =0 —-0OK

o
[}
!

then h = 3 x .625 = 1.875 Ans.

Fractional equations

Ty
11

i

A 3 09(3 5 000 I

= &+ = —
1.4 53 000 36 975

solving for A: -:-1—;=091 +.135 =226

~ A=l4x.226=.316
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Introduction to Numerical Control

Principles of numerically tape- and computer-controlled (N/C) machine tools, in particular
- the M. T. Department’s Burgmaster machining center, are the subject matter of this course.
In programming the tape to command the m;lthlnt: tool, dimensions have to be spemfled
to fit the operation of the machine. - - ) :
The conversion of angular to rectaﬂgular dimensions reqmres a basic knowledge of

right-angle trigonometry as illustrated i m the example below.

FQINT:Q-FQJNT PRQc:T’RAMMING

-

. s
v

Y
\
12°51'26 |
+yl
i Eam e G 0.7500" L
VAN I Y ’/ diom-drili— ——
1.51925'43" )
/ 4 . KT | 25°42'5)"
) 4 . ~ - . '3
-y — L - - +x
b E xpedient
origin Radius =1.125"
x=4" Ny \ 7
y=4 5 % |
i E _y!
i |
|
Fived - —X
origin
x=0 ] v
yzo ) - \

Fia. 3-10. The r and y coordinate dimr nsions of points 1 through 7 are enleulnted
hy firdl referring to a set of X and 7 oaxes Ihu have bieen established as an expe-
dient. Assuming that the noted "figed ovipin” refers to o fixed point, on the machine
table, lt would be necessary that the eenter of the part be laented af the “expediont
(mgm " which is 4 inches in the 42 direction and 4+inches in the 4y direction from

/ , the fixed ¥ uml X nixes, respectively,

106
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Step 1 .
Determine the angulsrs PESIHDFIS ol the hole centers mth respect to
the X and Y axes:

360°
E.J; 517 257 437 angu‘sn dxstan(‘e between holes und the ang-
7 holes
ular dnztange of holes 3 and 5 from the hori-
zontal.
; The swrula[ position of hole No. 1 with r‘gpecl to the horizontal
5 o  axis is: . . . VA
L180° — 3 (51°25743") — 25° 4251”7
The auguiar position of hole No. 2 with respect to the vertical axis is:
90 — 51225743 - 25° 42517 - 129517 267
, “fsp #2 :
LT T “Determine the x aud y coordinates of e Imle céntera Thix is ac-
“complished by first determining the r’ and i’ distances from the X’
» and Y’ axes which have been established as un expahgnt for caleu-
—— ' lation.
- Point 3
y' T e
\ T
S
i - ., ’ _ Point 5
g y - Rsin 51°25 43"
N Y = 1.125” % 7818 ~ +.880"
t' = Reos51°25 43" ,"-
FE 1026 X 6235 = — 21"
The z’ and 3’ distances for Point 5 would be:
x = —=70" _
y} = — 880"
and for Point #3:
/- . b r==701"
‘= 48807 |
107

[RIC S 112

Aruitoxt provided by Eic:



- . §
t - :
i i
| . ; . ) ) E \ 7
oL I' Next the r’ and y distances for Points #2 and 6 are found:
: \ I ¥
IR I %Pomr 2 ) : P
i _ =105 26" o
-0 f y ’ \
;» R ‘Ah;: Vs
; _ . X \
. . ’ =v‘ »
‘ : . LAf2esr 26" - ]
‘ ‘ —-4 Paint 6 . \
! o : ©or’ = Rsin12° 51’ 26" o
v = 1125 X 2225 = +.250" \
' |
y' = R cos 12° 517 26" l‘
iy = 1125 X 0740 = +1.097" ‘ :
v L Point #6 would he at: V . l

¢ = 4.250"

y = =1.007"
and Point #2 would he at;

o= 250"

g o= LT

Next the distances for Points #1 and-47.are found: -~

-'f’ = E’ggggﬁﬂ4g'élii :
2 = 1125 X 9010 = 1.014"
yl = REiI! g&a 421 5]”

- y = 11125 X 4339 = 488"
/ \ Point #7 would be at:

/ ) . : . {t;_; +I_Qli‘|“_

. ) g
| Y

= - 488" /
/ and Point #! v;'(:uld be al: '
2 e 101
y - +.43§” 
108
O
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Step ;i-a |

|

: The dj 5tame,5 of the points (hole rentersi myst next be caleul: m\d /

a0 with Epet‘t to the Fired Origin which is 4 inches in the r and v /

- Qirertjlaxls from the center of the hole pattern which has been selected i
as the expedlem urigin,  This is accomplished by Eithi—‘l .u‘ldm;, 4]
mrh?s t the #" and ¢ dnnensumz or .subtracting the ¢ and ¥ di-;

rf

jmensions from 4 inches. depending on the point, thus: ‘/
) E,':'ninl I x4+ 1014 = 50147 /
| y =4+ AN8 = 4.488" ’
\ / /'Pginl-’i‘ r 4+ 250 = 4.250" §
\ ( / g'= 4+ 1.097 = 5097
| | [ Point3 g =+4 — .70l = 3,209"
S i y=4+ 880 = 4880" /
/‘/- /; Point 4 r=+4— 1125 = 2875"
_ I,/x‘”‘ b=440 =000 3
- / Point 5 2\4 — 701 = 3.209" ' /
- W= 4= 880 = 3.120" ' _/
o Point 6 7 =1+ 270 = 4,250" ’
Y 1/ ) g =4 = 1097 = 2903 = t
!/ L Point7 o= 4 L0IE = 50147 |

y=41— .88 = 3.512"

114
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CONTQUR PROGRAMMING -

S Desired
profile

- Segmented -
profile

Fia. 4-7. The arc is broken into straight-line segmentsa as shown. Calculation of the
segment length is necessary in order to determine the component Az and Ay'move-
ments which must be described on the tape. The lengths of the segmenta have been
exaggerated in order to more clearly demonstrate the caleulations.

o Referring to Fig. 4-7 which describes an exaggerated segment of the
are: ‘ ' oL
, Mean outside diameter of groove (use) = 4,730 »
Mean outside radius of groove ’ = 2.365”
: , Mean width of groove = /
. cutter d;ameter (u&e) = 200"
cutter :é,dms o= 1007 T

o

qumé of the cutter path / = 2.365” — cutter radius

—_— — A = 2.365" — 100
- T e 9 ag5 —
+.0035” R

Tolerance on radius = 0015"

/ " Use i %ﬁ for calculamuna since allowance for machine error must
be considered. e .

‘ éf i;hé ehciri:l e;.g;;
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CONTOUR PROGRAMMING

' 7'—,‘ Cutter
\! \fravel -

The cutter will travel along the chord line B-C although tape instructions
denote the distances Ar and Ay, therefore again referring to Fig. 4-7:

’

. 2.265
Cos 8 = —— = 9991
050 = oogr = IO

= 2417% 4*1’; = 74.55 equal angles

~ se 90 angles of 2° -each; or 45 angles of 4° each to determine the total

:length of the straight line segment. :
1/2 the segment length = Sin 8 X 2.267" !

’ =, Sin 2° X 2.267"

0349 x 2.267"

1 _ 7
‘ = .07912"
=2 % .07912"

Full segment length
. ] — 158” .

" Assuming that the line A-B is vertical and therefore parallel to the Y

: axis the tape instructions would be Az = 0, since there is no 2 movement,

—_— ____and Ay = {158 which is the length of y travel between A and B iu Fig.
' 4-7. When calculating the-movement. of the cutter from B to C both the

& q

=.158 Cos 86° o
=158 x .0698 S
=.0110"

,158 Sin 86°
158 x 9976
.1580"

S | § 111
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Desigﬂ Drafting

Elements of Technology is a r;medx,ﬂ course taken concurrently with elémentary algebra,
The following are 1llustratlons of l;teralfquatxons encountered.

“
LI

F= mé. Salve for a r?\E. = 377ih Soive for i

Solve for d F =P (1+rt) = Solve for P

<
o
e el =W

d | o _ )
Solve for F . . I= oL (PA +, pa)
33,000

5 - = m(t -14) Salve for m =HLP E . Solve forr

.
I

/ Solve for L

]
™

: : vV S

E \ve for . COkMV .

———  SolveforE - K o e

R+2b ooon U = ~ Sélve for x
CL ~ : , ]

D=— Solve for L . g = §I-f .

. Solve for C -
Solve for R _ - a= AN Solve for ni

n
\ _ ' A = 2mrh Solve for r c\3z3 = " Solve for p
‘ W n2 2

Solve for W ‘ E=- Solve for 1

o TGS o | B

Solve for T

\\ ‘ Ye A =FL Solve fore -

Solve for p -

Solve for V

Solve for 0 R -

.,
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The statics part of the Statics and Strength of Matenals course prowdes a basic understand- -

Statics and Strength of Materials

ing of balanced fDI‘CE systems applied to structures and linkages in order to determine the

- magnitudes of the forces acting on the individual mﬁmbers and supports of a structure and-.

. , linkage. ' o

. 7 The “stren'g’th of materials’ part of the course analyzes the individual members as to

A ~ their internal resistance to deformation under the influence of the externally applied forces.

:% - - This course for design drafting students, represents a Jess i mtense study of a combined

‘ .version of appllﬁd mechanics and strength of rnatenals that is given in the Mechanical

Technology cumculurn " ’ .

1. E’}f calculation, dete&miné the MAGNITUDE

and DIRECTION of thé RESULTANT of two

_ concurrent forces of 700:1b and 400 Ib acting on _ /.
".' —  abody at anangle of 900 with each other as shown.. yoc -
Draw a sketch of the resultant. A - ' , e A
' Basic equations are: ' _ e S ' '
~ x=Rcosf R =(x%+y2)"% : \\xfji‘ép |
| “Rsin0 0= l¥ ~%6,,
Y = Slﬁn L [/ = tan ’, . ) : %"'E._ ‘é . L
oL Re= (40024 7002)% = (16 x 104 +49'x 104)f’* o S \%é% I
. L, 5 _ BV RV : . » o < _____ e ___ ST )
| Ceoti Sl
' ‘R=8061b :
“tan 0 = ~200- ¢ 573
700
- . 0 =29.8° N :
This problem can also be solved gr.lphlc‘ally by drawmg the vectors carefully and :v' ;

measuring R and 0.

by




2. Find the MAGNITUDE and DIRECTION of
- .the RESULTANT of the concurrent forces shown.
I Show a sketch of the resultant, '

cos 30° = 866 7 ﬁ_
sin 45° =.,707
cos 459 = .707

e

w380 !%**,Lu,.

Force 0 Fx Fy

150 Ib 90° 0lb —1501b-
200 1b 30° —173  1001b
2121b 459 " ~150 —-1501b

=3231b T Fy=-200Ib

¥ F
ZF,

R = (3232 + 200%)% | tan 0

= (104 x 104 + 4 x 10H%

= (14.4 x 10H"

",

0

.




as shcmm Fmd the foCES in RS and SI mcl mdmatc 1f thc mtn‘lbér is in TENSIGN or -
CDMPRE‘?SIC)N

,é,.%,_,_,..;x, T ,;. ) © Fy=Fcosf Fy:FsinE
fvfrwfrﬂ -

\,\ _ Force 7] : Fx 'F}’ .

, BN - 28301b 45° 20001b  ~2000 b

| Fpg 0 —Fpg 0 |
A . —) _ -  mn - VI

N ; ‘ For equilibrium, the sum of forces in fmy
diréction must be zero

AT T Fy = 0=2000 - Fpg ~ 707Fgy
Free body of
joint S

I Fy, =0 = ~2000 — .707Fgyp

| : Fam = ——tmr = —2830 Ib-
% - SST " 707

(The diréction is opposite the
assumed direction.) - /

| Fpg = 2000 — 707 x (—2830) °
I'rg = 2000 + 2000 = +40001b :

FP\S & - 1\_5{ & ;\ B R X » F5 r= 2330 Ib Cdmpr&ssan )
: ’ < S -8 ) PTIT
A AR HE ; : F RS = 4000 lb Ttnsmn

i
_ . K
/
7




. 4, Determine the MAGNITUDE and DIRECTION of the reactions, R1 and Rg, for the beam
loaded as shown..

. Yoooll
|

A Y
“oa
| < .
|- i . } Ly
r—>l— o' - et

B R, - i\
o : / pl
N The diitributed load will wéigh 2000 Ibs (i.c., 500 Ibs x 4 fr) and can be

considered to be concentrated at the mid-point, 2 ft from the rlght side
(1 ft'from R:Z)

" EF=0-= 1{1+R2f31’)00 4oooezooo-
Ry + Ry = 3000 + 4000 + 2000 S -
Ry +R,=90001b
Z-MRZ:O—:SOOOx12+4000‘ﬁ59200011=121}{10 :

‘ A moment is a force times the distance to the point considerﬁd
R 3ooo~c12 400635 2 00\1

—_ - - - _ )

1 10 10 } 10

R} = 3600 + 2000 — 200 = 5400 Ib
- Ry + Ry = 2000 ~ 4000 ~ 3000 0

Ry =9000 ~ Ry = 9000 - 5400 = 3600 Ib

" Ry =54001b UP, Ry=36001b UP .

.1 121
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5. Determine the ‘KQd-size required to support 2:49000 1b tension load % the stress in the rod
must not exceed 14000 Ib/in? and the rods are available only in the diameters listed below.

Diameters Available

Yinch 1 1% 1% 1% 2 24 2% 3

F = 49000 Ib | S = 14000 Ib/in2
S=-—

A 2
- F ‘49000 1b e - -
AZ = mT = 3.5 inz . .
-;/.,%l‘& 14000 Ib/in® . —

Use a 21{& inch dmm:ter rod, the smallest s;se = 2.111in.

1

6. A 2- inch dlame[cr aluminum rod. 20 feet lang, is ggmrj to br: used to Suppgrt a tensmn
load The toal elongation of the rod must not exceed 0.30 inch, and the stress in the rod _

must not exceed 15 ,000 psi. What is the MAXIMUM LOAD that the rod can support 50 that .

. each of these mndltmﬁs is satlsfxcd?‘

D=2 mghci ® Eyfuminum = 10 4 x 109 psi
. D - _ i ) n B
o M0 T2 2231402 €= 20 ft:«lz”aifz‘}()mcfhés
4 4 fr -
_ 'Sr'nax = 0.30 inch ' Smﬁ = 15,000 p‘il
STRESS - - " ELONGATION |
F . o y FQ ’
S=_ - e ’ E = A
S o EAS 104x10° x rx .30
"F=8§xA=15000x7 F=mer =2 ———— .
FeSxA-IS00xr | FeSm = ,
T o L0dxmx 3 o
F'= 47,000 b | r.= i x10%= 41,000 b

2.4

. MAXIMUM LOAD = 41,000 |b




7. Find the moment of inertia, I, about the horizontal centroidal axis of the section shown.
This requires use of the transfer theorem; i.e., I, = [cg + md2, where I, is the desired moment
of inertia, F ., is the moment of inertia about the center of gravity, m is the mass, and d is the
distance from center of gravity to the desired point.

] .
11=12=~15x6x23=4in4 , : —

1 : .
I..:__‘ 2 23=2 . 4 v !
3T x2x1 ‘ 288 in” o - R VA

4

Area Dimen: A I d d2 Ad2
1 6x2 12 4 5 25 . 300 /
2 6x2 127 4 5 25 300
3 12x2 24 288 0 0 0
— S,1 =296 >Ad? = 600

I, = £1+ TAd2 22964600

_gog it |
[x—896m ]

| ' ‘118
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For the section made of 4 planks as shown, determine the distance of the centroid above
the base. Use dimensions on sketch. The basic assumption is that the entire mass can be

considered to be acting at the geometric centroid of the rectangle.

T 3"
;_:g‘i, o T ax,_,_,_\L
Ll B Bl i}
P LY b ' \
S
. ”_7_'—:~ ,_T_ — . = — - -
{ 1) :
Y ]
N _m,_\"f o
(
Area Dimen. A Y AxY
1 x14. 14 93
; 2x10 20 20

96
3 208
LAy = 422

[ T .
il
Do T '
—
L]
f— T e ]

|
b=

I
o
B

]

—_ I’ff\y 422 e
y = —o === y = 6.80 inches

Surv: <1 Layout - ‘

The —aterial in this course consists of an introduction to the fundamental aspects of prac-
tical urveying, including both indoor (office) and outdoor (field) work.
The field work consists of the measurement of (1) horizontal distances, using a steel tape

and rel~red equipment; (2) angles, using an engineer’s transit; and (3) vertical distances (eleva-

tions), ing an engineer’s level and rod.
T————__Th office work consists of the computation and mappin
quires mathematical skills as.employed below.

g of closed traverses, and re-




Bearings
1809 — 00’
+ 9 =15

1899 — 15’
188° — 75’
- 1099 — 45’

N 79°-30" W

Check + Adjustment of Interior Angles
1 5-sided polygon, N = 3

g

Z Interior angles = (N — 2) x 180° Fora

% Interior angles = (5 — 2) x 180°
Allowable error = Least count of vernier x IN

For a 1 minute vernier, least count = 1’

For a 5-sided polygon, N=5
Allowable error=1" x [N=1' x\l 5 =|2.24 minutes

Latitudes and Departures
Dep = Length x sine (bearing)

Lat = Length x cosine (bearing)
If length = 426.05 ft., bearing = N 79° — 30" W
Lat = + if north Dep = + if east
— if west

— if south
, Dep = 426.05 xsin (799 —=30)
—418.91 ft

426.05 x cos (79° —
=426.05 x.18224 = | +

Lat

—0.25ft ZDep=—0.13ft

- = i
2, ¥ Dep? If: T lat=

- Error of cl_@sure ;.[z Lat
z\l<;5)2+<,13>3 - [o794
1 1 _
')' 3749.46
.28

Precision = ——————- —
( Length of survey
Error of closure

|




Technical Drawing
The following are typical plates which the drafting student must complete.
Can you do them?
VIEW
— ' T ¥ L rentacor
INSCRIBE PENTAGON L FENTAGON
IN 1z CIRCLE
(wiTHIN HExAGON)
GEOMETRIC CONSTRUCTIONS.
Draw Indicoted Constructions
DRAW ELLIPSE BY
, CONCENTRIC CIRCLE METHOD
ELLIPTICAL CAM /
=
!
i
— — FMARINE . 3
ENGINE ot
i
(\— R B — 7-"] Usa reeguiar ceniv
I i - ! Fo Fegw Pl curee
121
) ( O 0
PR 26
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DRAW 3BLIA HOLE
AT INTERSECTION OF
PERPENDICULAR BISECTORS

BISECT ANGLE ‘A" AND TRANSFER
HALF OF ANGLE TO RIGHT SIDE.

Lraw cambrushin
fimas fgfithe an 3t
prabiami gng of

Ff pFORA FARM

OF AB AND CD.

Oraw horizaetal ad
verreal 83 only
through The RON.

DRAW. ARC_TANGENT
TO LINE AB AT B, AND

THROUGH POINT C.

INTO FIVE EQUAL_PARTS
: PER INCH STARTING AT
' BOINT A
Flrgw tha S0° %
EoEripde e Fha Aaie s
THREADED ROD
Léise prargiip!
iqe methng .
BRACKET
r FOR PACKAGING
MACHINE
N I . c
— L i | .
;’ [:] 5
— a‘; -F
f = .y
127
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SHORTEST DISTANCE FROM
A POINT TO A LINE

RN .

DP is a drain pipe making an angle of 25" with the floor (P is above floor level). What is the shortest length

of pipe for a second drain connecting the first pipe to point €, and where is the point of connection?
Scale: +in. = 1 ft-0in.

d;
Length = .
J — 1 =
P \ c) 2
777
PARALLEL LINES o 'ROTATION
Are the lines AR and XY parallel?___ . If not, MN represents a control shaft, What is the largest diameter of
construct a line XZ equal in length to XY and parallel 4 handwhecl that can be attached perpendicular to the shaft at
to AB. - - M 50 that the handwheel will clear the wall and floor when it
o is rotated? Seale; 1in. = 1 ft-0 in.
a, 4
Yx‘
m;_ :
b] L1
1
— Eap_— — - o o 1
2 ——— e ——
EEN : . = .
Yz -
Xz , - , L i
. ’ A .
bg . B 5
Diameter = I
.
123
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. From point 4, a tunnel bears 545°W on a rising grade of 20% for a distance of
TRUE LENGTH, GRADE, 150 ft. A second tunnel, starting from point C, is to connect lo the first tunnel at a
AND BEARING OF A LINE ~ point 50 ft from A. For the second tunnel, determine its top and [ront projections,
, its length, bearing, and grade. Scale: 1 in. = 100 ft-0 in.

o,

T .

il

Length =

Bearing = ___
Grade= _______
i . +,

Mechanisms

This course deals with the relative motions and velocities of machine parts and with their
accelerations. The application of the principles of motion geometry (kinematics) to the
‘analysis and design of useful mechanisms is mainly graphical in nature, but some use of
mathematics is shown in the sample problems given below. B

Ball Bearings

At-a given lo;d. the rpm is inversely proportional to the life; in other words, doubling the
rpm means halving the life, and so on.

Changc:s in load, on the other hand, have fat greater influence on bearing life, since
for ball bearings, the life varies inversely as the third power of the load (load3). For roller
bearings, the power is 3.3 (load3’3).

This relationship may be expressed in the following formula:

(Rated §qad)3

~ Actual life, revolutions
(Actual l'oad)3 109 (i.e., rated life, rev.)

The following example will clarify the use of this formula:
A radial bearing has a rated'load capacity of 130 Ibs for a life of 106 rev.
What will the life be if the load is increased from 130 to 150 lbs, all other
factors remaining the same:

. . (130)3 Act. life, rev.
Solution: — e

o (150)% 100

Act, life == 650,000 rev.
124
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Speed Ratio of a Gear Train (Tooth Ratio — t.r.)

Combining speed ratios into a single overall speed ratio for an entire gear train:

MF; -’TE

wg Tp

But wp = wg, $0, substituting w for wg,
“r_'n
T

we T .
. ‘C_'B ] ,
S]ncggzﬁ then @C:MBK:_

Substituting this for w:

wp Tg  wp Tp Tg

—= —— O —— = ——X—

mgx?ﬁ Tg wp Tc¢ TF

wp Tg Tg o w@p Tp b
Butwp=wp , 501 ==X e Next, ——=—— 0f Wp = Wp X—
) wa T T wp Ta = 7 Ta

Substituting again: — — =——X
. - (’,:,JD X _ X T

LA.J[, TD X TB X TE

And the overall speed ratio: —= = =

Gears D, B, and E are all drivers, and A, C, and F are all followers of their respective pairs.
The right-hand side of the above equation could therefore be described as the product of
the tooth numbers of all driver gears divided by the product of the tooth numbers of all

follower gears. For simplicity this expression may be called the tooth ratio (symbol t.r.).

TRAIHS OF DIFFERENT TYFES OF GEARS

-y
m
‘c; .




Velcu:ity

Solution: First find the magnitude and _dll’ECtan of two vcloczty vectors on lmk BD (at
B and D) by effective eDmponentsi Vg =r=3x2.63 =789 inches per second. Let us

. select a'scale such that Vy is represented by a vector of 1.5 inches long. After construc-
tion of Vy, we find it has a scale length of 1.93. The actual linear velocity of Vy is then:

1.93
71 3 x 7.89 = 10.15 inches per secorxd . N

By extending cranks AB and CD downwards, we find the instant center of rotation O.
Draw OE and erect a perpendicular to it at E in the direction of motion. We can now
find the scale value of Vi from: '

EOxVp 3.2x1.5
YE-YB o vy 22XV 22X10 444

EO OB OB 4.125

The actual value of V; is again found from

1.16 x 7.89 ’
S IrE—— 5.1 mchés per second (Ans.)
(—@%Ef -
\ B
o
' . E
h \
, AB = 2.63 CD =225
= 60°




In the design of linkages, it may be necessary to determine the dimensions of a crank,

connecting rod, or follower arm, when any two of the three are given. This is often possible

by construction. The following example shows how a typical construction may be performed.

Given: Center distance and locations of center of crank r and follower crank rpy extreme posi-
tions AD and BD of follower crank, and its length. 3 , /

Required: Length of driver crank re and of connecting rod R. x ;

Solution: Draw the two extreme positions of driver crank rC and connecting rod R, in which
they are aligned and in Wthh their centerlines both pass through the center of rotation of
rc. Draw BC flrst then AC. BC now equals R + r¢, while AC equals R —re. Since |

(R+r1e) — (R —1¢) = 2rc, graphically subtracting AC from BC yields 2r¢. The crank circle
can now be drawn and R found as the distance from the mterqcctxon E of the crank circle of
rc with BC, to B. S : N

;

/
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Ilustrative Uses of Mathematics Nnt Previously Covered

The moment of a force about a point is the force multiplied by the parpendlé{ular distance
from the point to the force, or'the moment varies jointly as the force and distance. Note
that if a door knob were placed in the middle of a door, it would require double the force
that a knob placed at the edge of the door would quuire to obtain the same moment.
Levers, claw hammers, pliers, etc., use this principle. '

If we had a solid object with dlstnbuted /WElght we could calculate the moments crcated
by each little piece of the solid, and, by summing them, obtain the moment of the entire
object. As usual, we would in the limit go from a sum to an integral. If the density dnd
thickness of the solid are constant, the moment is basically determined by the shape. If the
figure is symmetric, we can sée that the méments on both sides of a line of symmetry will
cancel each other out. Non-symmetric bodies will have at least two lines about which-the
moments sum to zero. The intersection of these lines is the center of gravity, or, in the case
of constant density and thickness, the center of area of the body. Note that the cg may not
divide the total area in half, or in some cases eyen be on the body.

The concept of center of gravity is of crucial importance in analyzing the mortion of an
object, since the object can be replaced by a point at the cg with all forces acting at that
point. If we have a body made up by composition of several parts, we can find the total
moment by taking moments of each part, by taking weight or area times distance to the
cg and summing. We can also use the moments and the weight or area to find the cg. In the

“case of constant density and thlLl{nEf}S the cg will be at the geometric center.

Exam le:Eind the cg of an I;Bearn- , T |
Xamp v g )r CGy: (“ZL,E‘;?A%QIT]'
' L : L 12
(N 1 DS CGy: (Ty + =5 —) A=
S N I ™ | 7o
_ Q'l - Trg- - -
My = =T +7 520 ) = y (4 Ty + BT
e o m 2 -
e e R 1S )
y = — —
2 (R4 T E,T,) .
T, e 2, -
My = 3(9111) + (T + 57) (8yTy) = X (2 Tl + Qs;,Tg)
_ QITI—' + zszz"r T, * EE Ty e
X = e :
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For the special case when the beam is symmetric, t; =ty and £, =%, — 14

2 2 2 0+ . 2
o Loty + QI,, 0t € +E1t1 - "
T2 -ty 228 —y)
( oy oy
WhEﬁt <<€y, we can approximate XandVY, X = —, ¥=—
I 4 4

Problem: ch find the inital angle, 0, of a trajectory which will hit a target at a specific height, H

and distance, D, from the initial point. Initial velocity, Vs given.

//f/ff///!ff/f//// ‘

The standard equations of motion, neglecting air resistance are:

}i’::vO cos 0 t; Y:x!fzgt2+vo'sin0 t
D
D;——V cosOtandt = ———eu—.
V. cosf
[s]
o 5
_ D i
I»I:z!égtzakvcsina [:=‘x’zg 2* seczt? + Dtan 6
. 2 r
- 2 —_ . 2 i - - I- LI ng ,2 T DZ a
Since sec“ @ = tan“ 4 + 1, we obtain - tan“ 8 —Dtan @ - + H=0
2V, 2v,2
2 2
9 2gD gD
D% — —— (= + H)
_ \Y4 2V
Tanf = Dt - L —
S = g2
¥ N : . z
P vQ

100 ft/sec, g=32.2 f_t/s&czi D = 100 ft.
1.H=20ft, 0=76.6° \.
2.H=80ft, §=773° or 295°

3.H =150 ft. No solution,

_ .C;werl:'_; VD

We see that if the target is too high (3), there will be no solution, while under cer-
tain conditions (2), there will be two solutions — this means that the projectile
strikes the target going up or commg down.

inant is negatlve there will be no solution. If the discriminant is
: w1ll be two solutions. If tlﬂ._ discriminant is zcro, there is o€

4 ’ 129

positive, the
solution, i
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Problem: Maximum and minimum without calculus.

1. Find the maximum range of a projectile fired with initial velocity V..

Vo

777 7 7 777 7

/ The range depends upon ¢, If 0 is O or 7, the range will be zero,
~ s s . 2 o
X=V,cosbt Y=gt + Vosinft

At the end of the flight, Y =0 and t#0, or

Vo sin?

72V0 sinf cos§ - ,Vﬂ, sngE

H

Then X = —m———————— »
. ) v .
This will be a maximum when sin 20 =1 or 0 by and X = —9—

g
If the projectile is fired up a plane inclined « to the horizontal with initial
velocity V,, what is the maximum distance up the plane? Call the distance D.

X=V cos0t and Y = - gt'2 +Vgsinft. Alsoat landing,
X=Dcosa, ‘E:ﬁsilla

2
Z'XH
£ — + Xtant

Sy 2.2
2V cos 0

D sin o - —D?sin« B
— - + Dcosatan @

Yo Y0 Y, “Yo

c:ész 7]

" cos o sin O — sin & cos 0 2V, cos O sin (f —a) _V_ sin asin (26-0)°

24 _ X s'n? & sin?

——— - sin «

This is the maximum when sin (20 —a) = 1 or 20 —« :3 or O0=—+

MR
N




. : / a ’
Problem: Consider the problem of the path of a point on a ladder, whose base }é being

pulled out while the rop is sliding down a vertical wall. Find the path of a point
on the ladder. Let rhe point be distance A from the base, and B fl’D/ﬁ‘l the top,
making the total length A + B,

/.
f N
71 &
i :
ST ST
Let 0 be the angle between the ladder and the floor. Then
Y=Asin0:  X=(A+B)cos —Acosf =Bcosf - :

This the cquﬂtiah of an ellipse in Cartesian Conrdinates, i.e.,

— 4 — =
§ A2

‘Problem: Suppose instead of a vertical wall, the wall is slanted at an angle .

X=D-Bcosf - Y=Bsinl

A+RB D
By the Law of‘%mr:s ———— = _—

5in & “sin ((:) - &)

D:(A+}%)51n(0;a)

sin &

' (A+B a—m ,
K . X = )Sm( — Bcos@
SlnCX

(A +B)

sm (43

X= (sinf cos&—sina cosB) —Bcosf

YZ

 (A+B) |
X=——=8-—- — cosa = ﬁ sma)
Slfl o
- B { b

N L : . _

This is a conic section, whose form wil] depend upon the values of A, Band &, -
o 131 .
#
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/ o ' .
Problem: Given a solid figure (1) whose sides are fairly regular and whose top, bottom and

— ’ _ . mid-section are parallel (they can be points), and whose height is H, the volure is
R " approximately T '

H < .
V=E(Ab+4Am+At)

Ekamplé: gind the volume of the interseéfion of two equal éylinders (2), whose
‘ ' T radii are R. ' ' ' '

. . N » ] }'Xb = At -o. Am = (2R) (ZR) = 4R2

-

TTH=2R 0 e
g ZRAGRY) 1683 - T




i
Problem Consider the problem of an object thrown into the air with initial velocity V ,
neglecting air resistance.

" The h;lght at any time is: H = =‘fzgt2 +Vt
and the velocity is: V=—gt+V,

If one wishes to fmd the velocity at any height, the Height equation is solved far t,
and this value 1 is then substituted into the velocity equation.

The time required to reach any height is:

s
Vo. \ Vo™ —2gH
t=——t
] g

~ Note: If the discriminant is negative, the height will never be reached;i.e., the
' initial velocity is not sufficient to overcome the pull of gravity. A
- If the discriminant is positive, it'indicates that the projectile will achigve this
" height tw1cc — once going up and once going down.
e | thc dlscrlmmant is zero, the helght will be reached just once; thls is the
maximum height achieved. (V at this pointwill be-zero.) .~ .

" The time will be t= 2 and the height willbe H = _Y.L
| g . g
In general, the relation between height and velocity will be:

2gH—v2ﬁv2

mvz—v%
mH = —
2

Physically, this means that the change in potential energy is equal to the change
" in kinetic energy. '

‘Problem: Consider the motion of a slider mechanism as shown.

, R

1711 /i;ﬂ/y/?//

By the Law of Cosines, L2=x2+4 F{2 — 2RX cos 0, where L and R are given.
Differentiating implicitly with respect to time, we obtain:

5 S ~dX dX . do
i : O0=2X— — 2Rcos00 — + 2RX sinf — .
o , T dr : dr de : .

Y _ dx 2RX sin 0 d 0

dt 2R cos 8 — 2}{ dt

I

Smcc X =R cos 6 ij cos g— R}+ L‘g'2 7— R cos 0 +jl - R2 sm2 6 ,
dx RsmE(R cosG . AL2=F2 qm D) do- A ‘ !
) 2y dt

v dt

7 dx . ,
Note: Even if — = Const.,, — will vary with 0
 drt dt

dX
e = ) when 0 = 0, m, 2m, the extremal points of motion;

Q | ~ 'dt
‘ 133 4 et
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Problem: An often overlooked area of mathematics is that of parametric equations, They -
are useful under the following conditions: (1) The parameter has physical mean-
ing, time slope, angle. (2) The use of a parameter is more convenient than a direct
relation between variables. (3) The range of the vanablcs can be limited by th: use
of a parameter. '

~The flight of a projectile with only the effect of gravitational forces can best
P ' be described by considering the horizontal and vertical motions separately and as
functions of time. -

N(

,tfl Y

s

v - The equations of motion based upon F = ma are: ’
w o d2x L wdly
O=— 7x and -W=—- Ieadlng to
g dr? g dt2
|
- 2
X=V,t+S  and Y—fg 4V S,
i } If we eliminate the parameter t, we obtain :
] —g (X ~S2) V(X -S,) | i
oy =B ’ZX e e X Sy, a parabola,
2V, 5 Vy ' '

Problem: Consider the accurate point-by-point plotting of an ellipse. In Cartesian
Coordinates, this would lead to solving the equation: ‘

which involves a combination of multlplymg and subtrac‘tlng If we Chocse ,
parametric equations, we obtain: )

/ 5,
| 3
i

! X= AcnsD Y Bsin 0

with A and B the hDrizontil and vertical semi‘axes
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One can gléo draw a quarter ellipse by drawing a rectangle of sides A and B, and
dividing two adjacent sides into the same number of equally divided parts. Con-
riect the points and one obtains a family of tangents to the ellipse.

" The ellipse can also be drawn by usmg the basic déflnltlon that it is the locus of
_points the sum of whose distances from two fxxe‘:d points is constant. Find the —
points (focl) at l A% - Bi , and measure a str}ng at length 2A. Tacking the ends of
the strlng at the foci, hold the string taut wu:h a pencil and swing the ellipse.

i

- Finally, one can draw two concentric circles with radii B and A. At any point on
the inner circle, draw a horizontal line and a line from the origin. Where the

* origin line meets the outer circle; drop a vertical. The intersection of the hori-
zontal and vertical lines is on the ellipse. '

Translation by h & k gives, x = h + A ;os‘ﬂ andy =K+ Bsinf.
\ * Note: The hyperbolas would be expressed as:
L " X=Asec0, Y=Btan0 or X=Atanf, Y =Bscco,
depending on their opening horizontally or vertlcally
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Problem: The Hypocycloid. : ‘ ‘

Consider the problem of one gear rolling without slivppiﬁg about the-inside of a

fixed gear. The large gear has radius A, the small one radius B.
T '

Since there is no slipping, A6 = B¢

(A - B)§

X=(A—B)cosf + Bcos(p—0) (A = B) cos 0 +B cos ~

-Y =(A ~ B)Smf}‘ Bsm(qbﬁé) (A B)smésgsin&é?iﬁ)@

‘! i

If welet A =3B, we obtain; ;

; X=2Bcos0+Bcos20 - Y= . 2B sin 0 — B sin 20

A parncularly interesting case arises when A = 4B:

X=3BcosO +B cos 390 = 4B CDS 9 A COS‘; 0 - = e
Y =3B sin0 — B sin 30 = 4B sin> 0 = f}\siﬁ3 g

. 1 , : :
Since cos 0 = (X fé and-sin 6 ;{ r\d s Q::e cos? 9 + sin? 2 = 1, we obtain:

2 Vy 4;.(;

o

_Problem: Polar Cobrdinates are useful for circles flttmg the following condltlons

(1) Center at the origin, radius A; (2) Through the orlgln (3) Thrqugh the origin

with radius A and center at (A/2,0); (4) Through the origin with radius A and
-7 center at (O,A/2)

2. , 3.

p A¢659+Bsm0

RAD = ———-4;

. A B,
CEn[‘QT;‘(E,%)

e | o 136
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- In Polar Coordinates, all conic sections ¢ ;rﬁnﬁe written in the- forme—
) eA eA
- R S e or :*;7
1 +ecos(f +a) 1+esin (0 +p)

Ife==z 1 it is a parabola;if e < 1, it is an ellipse; if e > 1, a hyperbola.
—_ —aa —[3' are the angl&;g between the principal axes and the X or Y axes.

Problem: Polar coordinates can be used in the following problem:

Given: two gears of equal size — one fixed and the other moving arﬂund it with
" no slipping. Trace the path of a point whose initial posmon is the point of con-
tact at the horizontal axis.

e _—
0S:PS. 0S=Aa SP=AB
.= 0Q = RP = A, hence we have an Eqmlat&ral trapezmd and OP //QR
— LO=a=p
_ i‘ge X coordinaté 6fP = prcos 0-==00Q + QR €O5. Eip,i L
,,pcasf)z~—A+2}igosﬂﬂ+Acos¢L . . -
Butf +¢+0=mand ¢=m— 20. cosi::’cos(ﬁ=26)'::i—=ca520 _ _
pcosf=—A+2Acos — A cos 20 = 2A cos 0 = A(1 + cos 20) = A cos 0 — 2A2 cos? 0
p=2A — 2A cos 0, The Cardioid. . '
Problem: Theorem Df Guldinius 7
The volume generated by rcvolvmg an area A ahaut an axis at distance X from the
center of area is: - E _
v=2mX 2 A
Proof:'V = 21 (Y, — Y1) X dX
T N B _
My = JX(Yy =Y ) dX =X [(Y; - Y()dX = . XA, V=21rX A
Example: Find the volume of a torus, whose radius is r, and where the distance
from the center of rotation to the center of the circle is R. .
V= aniyrrz = 2712R 12
Examvpl(:f Find the centroid of a semi-circle. V= % R3
9 . s
TR . 2 _
G‘_h‘ ) 2 3 7 R 4

14217



o . Problemis (’3&3rrsidrt:r—th&-—si-mple,,pegd_ql'qgj,_:ﬂ;:_i o
e W 420 a0 g S
sinf = — —— or =5 ==>sin{(
g dt.‘z de £
03 93
sinf =0 ———+— etc., 0 in radians.
3! 5|
L . d‘?’[) g B -
For @ small,sin0 =0, and ——= — =20
di? ¢
Sclutigﬁs: _ .
(@) -0 =Asin{=t + B CDSEE
N )
(b) Letw=—- _ :dw d :VE‘_W
: dr > do dr - do
Then wdw = -

= =arcsin —+ C

(c) If the mglf: is large, the approximation of sin 0 = 0 cannot be used. One method
of solutmn wuuld be to usc a mmputer to solve the D.E. Another would be

0 g Lo 4 dw g
i) Q'im or B =W-——=— —-3sInt
do
C = —
dt
JD an also be sol ;d"l integrating gdg
Th‘c; 5€CONK L can l'in oJd sc,v«::, by m:agmrmg 2g cos + C
using Trapezoidal or Simpson’s Rule. . 7 ¢
138
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—-  Problem: Find the runway distance an airplanc requires in order to go from zero velocity

to a given velocity, V

N=W-—L
f=uN=u(W-L)
WIS the we1ght

Dis the aerodyn mic drag
N is thereaction.force of the

runway on wheels
f is the ground friction, and it is

a fraction of'N

~ Wdv
T-D—-f=———=V
g dt
e Ao ¥ - : ‘ \
. Vdv z ) o
Distance = /——— /L, T, D, and f are of the formA+ Bv Dis. = e
Dl%-l}mf J
: hO4 .
) g [ dv g [ _dv
Time = — F""':"/f.="“ —
WAT=D=t W E 4 py2 /

Problem: Compri:ssmn or E\t;nsmn of a sprmg
_ from thc;: :qulhbr;um position is proportlonal to tht: changc %&lgngth, or F k}i,
Since work done is force times distance, the work done is | kX dX. An integral
must be used as the force is variable. “
k(X% - Xlﬁ{

”””” 2
A typlcal problem would be to find the distance a bumper at the end of a train .
~ track would compress in stopping a moving train. Since the bumper is crxgmally in
- equilibrium, X; = 0. The work done in compressing the spring must equal the orig-

inal amount of kinetic energy possessed by the tram ie.,

2 2 2
mvVe mV kX ]
—~———, Therefore, —— = —-— and X =|V TE—]
2 2 , k

Note, one must be careful to select compatible units,
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Problem: Consider the problem of the vibration of a weight hanging from a spring. The
weight is displaced a distance X from the equilibrium position and released

By the usual methods of solving Linear Differential Equatlans we obtain:

4 X A sm?t +B cos'— t+ ( — ) for the héavy wexght and

X= A sin TN_ t+B cos ; =t for.the llght waght

If these tcch’niqixes 1rc -no:t irvail:i-ijlvé,: consider the following approach

If these techniques are not available, consider the following approach

1. As the body goes up or down, the spring force will increase slowing the
the body to rest.

2. Ar that point, the unbll'mu:d force will reverse the body untll it reat:ht:i; a-
———— e ..____TeStING pumt}it_th: other extreme.

-+ |

T . ’%’ T TR T s e
ERL: will then reverse again, etc. etc, ecc.

i

. 4. Functions which® hth'l\”[‘ this way are sines and.cosines.

5.7Try X = A cos.t. When this does not work, adjust it to X = a cos bt, fmd find
“a value for b. Similarly for sin b,

The: addition of a friction force p(gportloml to velocity leads to: -
- wd2x CdX , |
—IJ{ by + W, with solution

g clt:2

. ¢
X= E,\'p(— 5%)(1\ cosrt + B sin rt) whcre r=Y%

or X = a Exp (rt) b Exp (—rt) depending upon the nature of r. The solution is damped
oscillatory motion, or damped non-oscillatory motion.~
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Problem: Snell’s Law: Consider the following problem. \

Find the path from point Py to Py where the velocity from Py to P3 is V; and the

velocity from P3 to P, is V, and it is desired to find the path requiring the least time.
- This will not be a Stralght line. The time for each part of [hE rip will equal the

distance divided by the carrespondmg velocity.

Problem: Escape Velocity

In order for an objEf:t to escape from the earth,. it canhot stop at a finite dlstancc
. from the earth, since the grawtatmnal force' Gf the earth will pull the object back.
The rest position must be at an mflmte distance from the center of the earth. Let'

— _ the'mass of the earth be m_, and the mass of the Dbjf.‘l:t be m,, and the distance

P e (8]
: between their centers be s . Then: Y —— e S
kmémo gy dv / o _ km ds
—F=———"—=m_ ¥ = v dv = ——
§2 0 dt 0 ds : ’ §2
o oo ) h _
- Jvdv= j k m, s™2ds = Lim %0 s~2 ds
Yo ol vh=eo /R
- where v, is the velocity leaving the earth, and R is\the radius of the earth,
: 2. o )
Bl B -
e 2 'é . <
L0 i ke —kme - km
2 "0 h R R -
2km,,
Voo =
/ v =

141
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Problem: Parachute Problem.
n v : .
A body falls from rest (i.e.,v, = 0.) with gravity and drag force, d = kv? acting
upon it. The problem is to find the velocity and distance travelled at any time, t.

: here o = zgllk_, ' _
V= —— =—— —————— where 4 = == : ,
dee 2k e?t+ 1 W ' ,

- l! = :- \i]‘
~ Note: Ast—+ o9 x*ﬁ\Ek .

‘ / w , - , ) k :
e w = LN (P04 ¢7DY) 4 ¢, where b = £ —

e - 777 .

k% o W

If fort=0,x =0, thenC = 0.




~Problem: The Catenary

The catenary is a freely hanging chain or cable pérféc:tly' flexible and hanging on

its own weight. Because of the flexibility, theré are no side loads and all forces are.

tangential to the cable. Problem is to find the curve of the cable.

The cable will be symmetric and the Y—axis will go through the lﬂwest point. The:;
X—axis will be at a distance D below this point. We will select D later.

The lmear density of the cable is w Ib/ft and the cable is s ft long. nght is
assumed to act at the cg of a section.

From the conditions of eq"'llbnum we know:

TQ = T cos @ ws=Tsin @

Vg O 43 148



D ban.

P:Dblf:ﬁi: Bridge Hanging from a Flexible Cable A
In this problem, we assume that the bridge has a fixed weight per length and that
the bridge is much heavier than the cable, sq that.the cable weight can be ignored. -
We will select the origin at the lowest point of thé cable. :

£

w

wx =Tsin#




Problem: Deflection of Beams

o N ~ The deflection of a beam is governed-by the differential equation, Ely’
\ where 1 is the moment of inertia of a cross-section and could be variable, E is
AN ‘the modulus uf elasticity and is a L property of the rﬂaterlal used and w(x) is the
load. Note y'' is the moment at anv point, and will: be Zero at the ends, 1f they

\ " are free. . . \ : R 7
) ’ . ! I

Consider an unloaded beam, bending solely due to its own weight which is
dlstnbuted evenly with density w Ib/ft, and simply supported at the ends;
.., y and y"’ are zero at both ends. Assume E and 1 constant and length L.

" = w(x),

m
o [i—y
r5“‘<‘--‘
= T
I
I
\

1
=
I
Y
I
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Another beam deflection with some interesting mathematical aspects is that of a beam
under compressive forees at the ends, The weight of the beam is ignored and it is assumed

that the beam does not crusk

Moments about the left support gives:

' a P ,
Ely" = P(O) ~ P(y) or vy 4+ =—y = 0, with

]

X = (:)i y ::»9.’ and & = 1

For the second condition to be satisfied, either A = 0 and the beam does not
deflect at all, or:

and P n bl 4W2,},E,I n2r 2k

¥ = ¥F 5 % o3 %

02 ¢? 02

Notice that A is not determined, which means that when the beam buckles, the amount
of buckling cannot be determined, so that in all actuality it has failed. Furthermore, the
‘ beam will buckle only at the loads indicated; i.e., if it does not fail at  22E

;"';‘S . m@i
T S a2 -
it will not fail at higher loads less than P = ————

3 However, it 1s obvious that we
¢

Y

. o . - 7“ F L
- cannot assume the hbeam will survive aload of p= =" 1 which is therefore listed
as the critical load. ' ’ (2
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. o . . g sl . T T R
Problem: ka 15 d(mf: n c:%cp'mdmg a gf’!'% Wnrk 1% gener’*ﬂly Cc)ﬁr;ldert:d as Force times

Work = P A Ax. But A Ax = AV (Volume)
Work = EP AV W= [PdV

(("nnqmnt tc:mp;r lflll‘i_) wheu PV ( 1ﬂLi thc uthr;-r adnb.—;llc (Cﬂnstant héati
which can occur in rlpld changes thmg time for heat transfer), PV? =K

\%
Isothermal: W = /P dv ://L\’“_ld\f = CLny—

Vi
_— KV kvi by pyvo-py vy
Adiabatic: W jP dV = vadv = I —— = = 2
. 1= 1 -7

7
¥

i

Note; v usually takes on the value of 1.4 or 1.66 depending on the gas.




Problem: IForce of a liquid on a submerged vertical plate.

Foree in a liquid is equal to pressure times area. Since pressure varies with depth,
md then sum this from the top to

we must caleulate force at a fixed depth,
bottom of the plate; i.c., integrate,

(0,A) |

(0.8

£
F
i5 consrant.
A. Find the tot: 1l foree on a semi-circular plate of radius R, w

hcl(‘)lw the surface of an mu)mprgmhie fluid.
It + LA
s

hose top is |

| .
B=d/XYdY, X2+ (Y — 11 - ) = R

/ oo o ptle o P\
o= d/(l{z — (Y —~ - R)z)“’g; ydY \O'-H)
. rﬁi °
letY —H — R = Rogin d\" R cas 0d0
A Y=H+R+R '-,m() f'QOH*i-R)
L " N

IF = L%” + R+ 12 sin ())R, cos OR cos 0dn
% B
| o wl

= de ( (I +R) Lnx () + Rsin0 LD% {)) di
s . i
v 0/ sin20 R cos? i,
=dR% ( (H+R) ( =4 —e—e AN
2/ 4 3 o
/ B .‘a:
= dRr? ¢ (H+I{)(—J) - (ll+R) (= Tr)
4 +
MR A1+ R)
2 A
[, -
/’
/ 148
!’,'
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Problem: Center of pressure for a submerged vertical plate.

The Center of Pressure is that point where the total force can be considered to be
-acting and which would give the same moment as the distributed forces.

o Lf\\ d‘f’
/U‘Y dy /U{Y‘“d\” or Y= Jf ,
."j

y /’ dXY dY.

For a rectangular plate of width w and height H whose top is k feet below the

surface, assume incompressibility,

. i Ke '
dHY2dy  duv’l z<21\2+31\u+n )
S dHYdY o EHkred T 32k +H)
Ay

(“I(jl'\]i+ H )

The force g ——--

AU GK2H + 3kH2 4 113
The moment |5 —— ,,g —— —
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Problem: Derivation of Bernoulli’s Equation.

Consider the flow of a small picce of fluid along a stream-line (velocity tangent to
“ir). Using I = ma, we will'derive the equation for both incompressible and com-
pressible flow, ’

NO FRICTION

BASE LINE

mass = d A ds

X i ) du  duds du
If velocity = u, thena = —— = ———= =1 =
: . dt dsdt ds
. oode o ~du
Then, —A (P + — ds ) + AP — dAg sin « ds = dAu — ds
| - ds ' ds
pressure force: gravity force:
udu 1 dP dh . ) ~dh
— = —— =g = CosIm o = ——
ds d ds ds d‘;
1 dP du dh
——tUu=——+g——=0
d dé; ds ds
h
EF > ©
F udu+g /dh =0 iy
;:’%; ) “ SA/ ' :
if d is constant, mmmprcsslhl: we obtain:
F‘l ulz \ Py uzz h
— + ——+gh; = — + — + gh,
a2 TR Tt e

byz : 5.’/!;

9 _/,}{ - {(Pl—/{f' u

bain: SK p7dP ¢ LeghsC s agh=C
We obtain: [k’ p TytE 1—v 2 8
; , 2
; P =

7 Su=+g'h:(f

div=1) 2 °
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Prnhlgm Constder the problem of [hL flow of a fluid from a large eylinder through a small

hole. oy L U
e
Radius of ¢ylinder = R
Efs Radius ot orifice =71
d r <l
L-' e "= —7 u 1

X‘ﬁ-n
Bernoulli’'s E quition for mu)mpruglhk fluids,

2 B
p uy Py g~
——t o - — + rh = :; + *i—,a.,—b fh
d T TE T TR
hy =0, mJ]Rz = ﬁlizfz o Py =Py o= dgh

Since r << R,y is small enough to be ignored, therefore:

by Py uy? ~
: i = yh = ?%)g U5 ="2¢h
{ = -

This is theoretical. For actual cases with water and a circular orifice with sharp

edges:
u=0.62 ‘EE
; L : , C y linder Height H and Radius R
Vel.v=kh” Vol V=nR~h R
4V Ih
e oar2 2D [P~
de ©ode '
= 77"1’? V= --'ﬁrzl\h
7Tr“ le dt
R = e ——
k2
Fhe time required for the height to drop from Hj to H is
, M
—RZ [ w2 — -
t=—0 dh t;*’ﬁf(\”n =) [
ke 7, kr
Time to lower the height of fluid in a cone from H | to H. The height is H, | the
radius R.
r R mh o R3 h
-_= = Veeme— s —
hoHy 3 312
, dv Trl{‘= h dh
ijt - TT[‘I hkhl/g dt
" 2 %“‘ dh
at = — —=————yp——— -=—=
kH,"ry 2
ﬁzg; V(H & Hﬂ;)
= — — 1. —
5kH, " = o
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Problem: Consider the moment of inertia of o long thin rectangle about irs long side, weZ ¢,

(1

X

I 2

) 3!',\,i7,
Wl 7] |
L

5 .

{ . ( /ﬁ)j | miw/2)~ 111'\'\'2 mw”  mw"
=1, st miw/21= - ___“;",;‘.: - o= e — e

X g X 12 4 48 4

We can almost ignore [cg‘

Problem: Newton's Law of Cooling
Newton's Law of Cooling states that the rate of cooling is directly proportional to
the difference between the current temperature and the fixed temperature about
the body T, or: '
- -0 T.L

i

. B 4 s o L ‘
JdT K CF —T) dT %
——= K= S =kjdr .
de 7 ,D A [ -, £

Problem: Rotation
Newton's Law tells us that I¥ = ma, but in
rotational problems, we know that it is not o
force but moment that interests us. Also we Y
will be interested in angular acceleration «
rather than linear acceleration, a, The relations

between these variables are:

M=Franda

rey

We canrewrite F s maasr¥ = marorrl = mrew,

It would seem reasonable to consider the quan-—
5 !

tity mr as the rotational equivalent of linear

motion mass. We shall callit the moment of
inertia, usually symbolized by I. These moments of inertia can be taken with respect to t
X axis, the Y axis, or the origin, and are labelled I, Iy, 1, respectively. :

To find the moment of inertia of an entire body, we would sum up the moments of~
Jinertia of all the parts. If we proceed to the infinite sum in the usual way, we obtain the
usual integral. ' '

Moment of inertia is not only important in problems of rotation, but it is very impor
tant in beam deflection problems, where the shape, i:t., the distribution of the mass, is

very important.

Y

onsider the problem of finding the moment of inertia of a rectangular beam about

y
B
T Aax N

. But Mass m = p wl, and hence Iy, = —

one end.

ERIC- -




The center of ¢ gravity is obviously at the center. If we wish to obtain the moment
of inertia about the center fol‘l\/’lt\', I‘g’ we obtain

!%“ s pwX- / prls V Iii'lilj% Y

_ 2.
I..=) X*wdX =— . - -

cg - 2 7 S

& 7 3/@’ 12 12

I 59 =/ L

\U[ w
—_—— Y - X
5

Note that | | +ml" | I 4ml3\h' | is the
ote that Iy =1+ —— or Iy =1+ me ‘here d 1s the
Note that Iy o T or Iy o , where «

distance from the cg to the axis of interest.

This is the well known transfer theorem, which

is of great practical use. Consider the problem of
computing the moment of inertia of a wheel (circle)

about its point of contact.

i
i
I

\
d
=
!
=
i

Note: The transfer theorem can only be used when transferring from the cg. Also

since I = 0, ICg is the minimal value of L.
There are many applications where polar coordinates are useful. These usually \
arc prohl;m% involvi ing circles with center at the origin or gmmg through the
origin, and certain motion problems, '
i
| .
\
B F' = 5
153
153
f;
&) , ' -
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Problem: Find the moment of inertia of a circle about its center (polar moment). In

Cartesi: m C um‘dm ates, one obrains:

11? #}’”‘ 72 N ( \2 }/
" + Y ) Y dX = 4/(}\.2 f\z Y + { ——dX 'a\
. \

A ILIX Asln n, dX = A cos 0 do

3 A3 (033 {
4 (A 51n H cos. 0+ —»—fz;—m-—— ) A cos () di,  or
A ] 4
: K > ) 0 £ 20 1
; 4;‘\%511’12 f Lus.7 0+ S); —) df) = \LV m} b — ([ + 2 cos 20 + Eas‘ 20)) d
ol E ] 12 :
400 sind 1: o0 a0 T aat
AT (U (= — ) b = () 4+ 8IN 2 0 b=+ sin —)/ 0 =
2 8 12 2 4 2
y , 5, 1 MAZ?
It we equate mass to area, then M = Area = 1A=, and Iy = — -
In polar ¢ rdmitu) the element of area is pdpdd and the integral tor
polar moment is : ) . * ! v /
YL LT 7 4 L 4
) 2 o . A TA
pepdpdtl = dff = =0 [ = ——0
/ . 4 2
¢ ’ (3 < &
Fora hn low rmg nt inner radius B, and outer radius A, we obtain:
Lif 4 LT - ,
3 At —pt aAt-Bh  wA2-p2)A%+82)
p3dpdo = — clf} s e/ = — =
Y , 4 2 2
fx g ¢ , 3
AZ -2 M(AZ + B2)
But 7 =———— is the area ()f mass of the ring, thLL Iy = —
Y _ o . M(AZ+A> ,
if we consider a thin ring where B A, we obtain I = T MA< |
1. 3.
R
_ o 1 - _ -
T
3




\

We will use subscripts to indicate observed points, and omit them for points on

the line. We wish to minimize the sum of (y, —y)“, or minimize Z(y, — Ax ~B)2,
We will find the minimum by taking the partial derivatives with respect to A and

B, and setting them cqual to zero. E

7

-2 tym —Ax—=B)=0 or

AZx“+BXx =
AZx + Bn=2Xy

: }E:{y ;x( !‘“*{2 E\y/
A=lZv__ _n pelzx 3y

S Ex? sx ¥x? Ix

Ix n (S\ n
1
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TECHNICAL PHYSICS

I. Problems Involving Proportionality

A number of laws in physics can be stated in simple algebraic terms. It is important for the students

(a) The simplest casc is the purely lincar law such as
F=ma(Eq. D orV=IR (Eq. 2)

(Eq. 1) is the mathematical expression of Newton's second law,
namely that, if a force I acts on a body of mass, *“m", this mass accelerates with acceleration

“a”. 1t should be noted first that the law really states that the force I is proportional to
“a”, with the factor of proportionality being the number m, called the “inertial mass™ and

vhich clearly is different for cach object. '

What should be emphasized to the student is that doubling
the force results in doubling the acceleration; halving the force, halves the-acceleration. The same
procedure can be used with cquation (2), Ohm'’s law. It relates the voltage across a circuit to the
current (I). R is the resistance of the wire (or circuit). Again, the current is proportional to

the voltage, assuming no changes in the wire. For example if R is 10 ohms and V = 50 volts, then
50 = 10[. 1 = 5 amperes. . '

The heat developed in a wire in which a current “I'” exists is given by:

Heat = 12R (Eq. 3), where R is the resistance in the wire.

Here the emphasis should be on the fact that heat goes up as the square of the current| Hence
increasing the current is more “'effective’ than changing the resistance. One can point out that
physically (or practically), the reason why fuses can blow (a tuse is really only a thin wire
placed in the cireuit) when one starts the air conditioner is that initially the current is high,

so that the heat developed (12R) melts the fuse wire.
. N\ :
\
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(¢) Fourth power proportionality.

Most people nowadays are conscious of cholesterol problems. The reasorn cholesterol accumulation

in arteries and veins is important is because of the narrowness of passages that it provokes. Why

should this tact be so dungerous ro one’s health? The reason lies in the relationship between pressure,
speed of flow and tube radius.
If 2 liquid is flowing in a tube, the drop in pressure berween the ends of the tube
i» given by the following cquarion: gl
s E 3011,
LI ¥ T
IR o

or

ssure at point 1, Py pressure at point 2:n is the viscosity of the liquid; r is

Where Py is pr

the radius of the cube, Toits length and I s the flow velocity.

If one were to apply this to blood flow, one could reason as follows:

The flow T must stay the same, otherwise the nuerients carried by the blood would not reach the

organs in time.

L and n do not change since neither is affected much by cholesterol.

But r, the adius of the vein or arterv, is reduced by cholesterol. 1 v is halved in

such a case, the Py~ Py must inerease by a factor o 16 (2. 1his means that the heart would

have to work 16 times as muclvand ... ...
(d) Square roots _ )
If an object is dropped from rest, then assuming negligible air resistance, the velocity of
the object after having traveed a distance d is given by:

2. ) . . : o
ve = 2ad. where a1s the aceeleration )

Fmphasis should be placed on the fact that the velocity does not increase as fast as

the distance.

(e) Increase square law.
The two most famous examples are the law of gravitation and the law of electrostatic force.

is given by PR
b - 4 onym,

| DI R

: 2
d- .
R : ® - = = ; ’
where g is the universal constant of gravitarion.
(2) If two charges qq and q5 arc a distance “d” apart, the force on each of them (attraction
»if one is positive and the other charge negative, repulsion if the charges are of same polarity),
is given by -
‘ ’ 12
e —
N
Emphasis is to be placed op the fact that if| e.g., the distance is doubled, the force is 4
times smaller, etc, ™ '
157
z




O

ERIC

Aruitoxt provided by Eic:

I1. Graphs

At least for the case of simple proportionality (IF = ma or V = IR), it is possible and uscful

to show the student how graphing can be utilized cither to obrain the formula or represent it.
(1) The first illustration is the equation = ma. One chooses two perpendicular axes, measures

" along the verrical axis and “a” along the horizontal axis. For constant “‘'m”’, meaning if

one applies forces of varying size to the same mass, the resulting aceeleration should be

given by F = ma. The resulting graph is thea a straight line,

F S

? P

\

- AL

-
Of course this must be so since the equation represents a straight line. If one did not know the. -
law, a series of experiments with forces of varying size would produce, when plotted, the same grap
(2) A more complex example is the following: Consider the case of the period of a pendulum.
A pendulum is composed of a string (or rigid bar) with a bob (ball) at one end and suspended at the

other end. # point of suspension /;\
. 4
‘e : \ /
i
\
| f/ I
/ | .
S0
| \
I A
4 | .

It can be made to oscillate back dnd forth and the time it rakes to return to its original p@siti’ur’;
(from A to B and back to A) is called the period. The possible variables are, the length 1 of the

string, the mass of the bob, the angle « . [t is easy to show experimentally that 0
- T=2w —
g

where T is the period, ¢ is the length of the pendulum and g is the acceleration due to gravity

m .
(9.8 — or 32 ——) '
sec” " sec

"Since both 27 and g are constants, this expression can be rewritten as T = A L. Again, it
should be emphasized ro the student that if one plots T versuw@ a straight llm: will result.

Alternatively, onc could give the student a series of experimental results using one typc
‘of pendulum; first change the mass of the bob and the resulting periods with different ... . .
lengths. Here obviously the period changes. The students are thén'asked to plot period vs. ‘
length, period vs. Qz period vs.{¢; the correct dcpsndcnté is then the graph that producesa

straight line relationship. 158
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I, Trigonometry and Angles.

After a definition of angles (both in degrees and radians), one shﬂuld introduce the

trigonometric functions by pointing out thit these are intrinsic mthcr thar. arbitrary angular

Uﬁl[S

There are two main typu 'of applications of trigonometry in phyms. The first ones ar ' those |

would call direct application, the others are indirect applications occurring becaus ¢ they

involve vectors. An example of the first kind is Snell’s Law.

A. Snell’s Law,

It is well known that when a ray of light (.n;tuall} any clectromagnetic wave) is refracted,

meaning that it travels from one medium to another, it changes direction. Typically it looks as “
follow..: " g s -
medium I medium II
(air) '

I"ht.: ray travels from medium I into mt:dle I1. The angle thc incident ray makes with the normal to
thf: boundary between the two nmim isiand the angle made by the refracted ray with same normal is.
r Each medium i is characterized b\ its index of refractjon, defined as ratio tjf thc: speed of llght

in vacuum to the speed of llght in the delum and lﬁdlL‘ltELl by the letter
e . . _;\ —
The relation between tand Tis then given by Snell’s Law. .
u; sini = up Sin T ‘ . o - - : .
where u; is the index of the medium of the incident ray and u, is index of the medium of the
refract ed ray. L S
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B. Vectors

More general applications of trigonometry involve vectors. As is well known, a vector is a quantity

requlrmg bath size and dlrELtlon for its complcte speczﬁcatmn Itis assurned that the rﬁzi:lr:r

Examples of vectors in physms are: Forcc v&laglty SLLEICFEI[OH electric and magnetic fields, etc.

1. Applications involving only addition and subtractloﬁ of vectors.

It may be ecasier to introduce . .
the whole problem by using two practical examples as follows:

An object weighing 20 Ibs. is pushed to the right by Jdck exerting a force of 10 Ibs., and at the
same time pushed with a force of 15Ibs. in a direction of 60° north of right by John.

15 Ibs.

10lbs . . '

We wauld like to know in what dircction and with what strength an “equivalent force” would be
exerted. This is the same as asking in what direction the ho\ would move (and with how much

acceleration).

160
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A similar class of problems can be devised using velocities. Suppose a boart is heading north in a
river with speed of 4 knots/hour when the current is eastward with speed of 3 knots/hour. What is |

the speed of the boat and in which direction is it moving? : ,

(a) In'summing two vectors which are perpendicular to each other, one has to add two vectors.

The Pythagorean theorem tells us immediately that the total vdouty of thr: boat (its / \
velocity with respect to shore) is 5 knots. ' |
The angle with the north direction, as shown in figure (o), i given by

i

tan & = % = .75. llence, 615370 : :
. ) _ I

We have here the first application of trigonometry. Emphasis should be placed on the fact that, v

'although this result could have been obrained graphically, it is faster ﬂm\i much moré .u curate /
analytically, : f
. ' /
B / : v
(b) Addition of non-parallel vectors. ' /
Consider the problem of the two forces: , /
: /

l;lw of sines. lhls is a Lumbcrsnmc met hud .md not ;ldVH.lblL thn -;ummmg more th:m [WO vectors.
The casier method is to reduce this problem to the preceding one by using the “‘comporients”
method. '
One first explains that since the sum of i vectors is another vector, any vector can be made

to be the sum of 2 vectors, perpendiculgr to each other. By now taking 2 perpendicular axes,
we will decompose’the 2 vectors we met to add in sum of vectors always perpendicular to cach
other, ' . , : . Y.

Let one direction be east-west (x), the other north-south (y)

. , o ?1
* - ) — X
10

160
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The first vector {10) is already in the x direction. Vector 15 can be

2 perpendicular vectors as shown,

5

» o
i’li Zigg‘.
TR 7

where x js 15 cos 60y is 15 sin 60
and ﬁr;n,jﬁ we have 2 vectors (A and B)

Now we are back in case 1, the sum of

i

ERI!
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2 perpendicular vectors,

15 simbe

considered as the sum of

1o 15¢C

Annther simple appllutmn of trigonometry in physics is in the concept of work.

Work in physics is the product of the force by the displacement of thl‘i force, hut only the

displacement in-the direction of the force.

i

N

This is equivalent to saying that W = l xd = Fdcosw

or, in words, the work done is cqual to rhc displacement of the fc;ru: times the prﬂ_]ectlén of thq

force in the direction of the displacement.™

As an interesting illustration, one might pmm dut that lf the foree is perpendicular to the

displacement, no work (in physics sense) is 1}(rfm mu(l

162 .
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from one s system to h othcr and constants are of prime i mportance,

V. Units, Constants and Conversions

Clearly, since physics is basically an experimental sciehce, systems of 'units, conversions

1. Units
Two important points must be emphasized to students about units, The first is that all ff/‘}‘
formulas and equations must be dimensionally correct; and, se Dndly, that one can often dEI‘lVE
. missing terms of the equations by dimensional analysis. (‘,’f"

The basic units are length, mass and time. Although it is common to str ss the importance of the

Engllsh system of units, one must now take into account the fact that we probably \ylll “go
metric’’ pretty soon.

. o
English System Metric System o
Length: foot ' Length: meter {centimeter)
Time: second Time: second
Weight: pound Mass: kilogram (gram) v‘ '

i
1

The derived units must then comply dimensionally. This means, in some sense, thaf the unit

symbols can be used us algebraic symbols. Co
[

Y - s

) o dlstmu: fv . meter y

Example: Velocity = ————— = e OF ,;

T time see sel \

5

I'he units given in the table above are of course not the only basic units. For instance, temperature

~units can be given in cither Fahrenheit or Centigrade. In most physics formulas howdver,

ERIC
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absolute or Kelvin temperature scale is used. It starts at absolute zero but the dcgre’:¢:§ are
centigrade degrees. As an example, the gas law (perfect gases) states that:
(DPV=uRT |

where P is the pressure, V the volume, u the number of moles of gas, R the universal gas

3

constant and T is the absolute temperature,

&

(a) An application of the first rule about ynits is to check that equations are dimensionally
N

correct,

Letting I, denote length  and T denote time

one could, for instance cheek out the equation for distance when acceleration is constant,

163 |
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1 R T . . )
) M®eleration is constant.
' o K i

- d is distance

d=14 atz

-~ .
' a is acceleration
' t is time in segonds
Using L, T symbols as above we get :

. L .
L=(—) 12
2

b) Another application is to find units of constants appearing in equations.

L

I is the force and its unirs can be derived most casily from
MI ’
i -

F=ma— unitsof IF=
: T

where M is symbol for mass units.

: (o
Symbolically:
. 2
MIL M= o . o
Ez* = [G] == [¢i] 18 notation for units of G,
T .= . . ,
the universal gravitation constant .

For practical reasons it is easier to give units of G in terms of force units. [F],
henee (2 ' '

(Gl = (1) =

* N‘,

Another example would be to derive the units of R from eq. (1).

H
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.In many practical applications it may be necessary to convert from one set-of
units to another. This is the type of problem in which jt is very easy to make
mistakes by multiplying instead of dividing and vice-versa. One of the easiest
methods to get the correct result is to use the units as if they were algebraic units
and simply rewrite every unit in terms of the new unit. As examples see the
following:
(a) 50 ft/sec = ? miles/hour

1ft

ft , miles

(@) 50— = ? —

sec - hour

) 1 mile , 1 hour
5280 . 3600
, 1 mile

ft , 5280 50 x 3600

see '_ lwhxj;i;;r'_; B 5280 _hour
3600

miles

,milcs

meter
R _

(h) .50

hour sec

1 mile = 1609 meters 1 hour = 3600 sec
7 1509 ‘neters’ 50 x 1609 meters
3600 sec T 3600 ¢ sec

miles .
—— =50 x .
- hour

. .. mcters
=22 35 m——
seC

The purpose here is to avoid any-guessing. One should emphasize that.it is best
to “‘not skip steps”’ If the recipe is followed the results are always correct.
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LEARNING STRATEGIES — STUDY SI{ILL‘%

In many ways, the technical studEnt is not the usual college §tudent He is not in Collegc because

he thirsts for knowledge or wishes to become a scholar in his field. However, he does, in general,
know where he wants to go and what he wants to-do when he leaves college. He has set his goal for

a sp-cific job, a specific employment position. It is towards this goal that all his energies are .
geared. The technical student is most interested in employability. College courses, including

reading and study skills improvement, are secondary — they are a means to a goal. This student works
not for knowledge itself but for the job opportunities which knowledge will provide. He is often
hesitant to spend time on something if the immediate relevancy isn’t apparent, Although the amount of
theory known is often deficient, the amount of practical experiéniéis plentiful for the technical
student and this often makes him impatient with book or lecture lﬂém_ing; he might even consider it
a waste of time. His behavior in the classroom is often influenced by his peers; and the chemistry of

the cl:ﬁs, thé interac:tiori betw«zcn students md h«;twctn s’tudents‘nﬁd teachers bc‘;‘cc’)m&‘; very important

little ACZld“mlC b.n;l\ground, are gcnerally pumltlvs - he hai; no ldid HCJW to study or even WHERE to,
begin. He cannot organize his learning or his learning materials. "

In the classroom, it is important to recognize and understand the student who sits before you.
What kind of academic E,,‘CPEI’iCHCES have gone before? What is the level of his vocabulary? Is he
proficient or deficient in vocabulary? What is the level of his reading comprehension? s it adequate
or inadequate? Or, more specifically, is his rcﬂ-ding comprehension adequate or inadequate for YOUR
course? What is the éénéral readability level of the textbooks which you use? How do these levels
compare with the general rcadiﬁg ability levels of the class? If the readability levels are
inconsistent, it is possible tlmt these umquuLnLEs will follow: students don’t read the text; if
they do read it, they re 111» "don't understand it, they cannot absorh and subsequently apply the
mathematical concepts,’

How does reading influence the study of mathematics? First of all, the student must hC able to
recognize, comprehend and ultimately apply the technical vocabulary. Most authors of Math textbooks
introduce technical vocabulary in context through direct éx:pl:nmtinn or definition followed by
appropriate examples, problems or dLhmtlons While this'might be obvious to the mathematics
teacher, it is NOT obvious to the studEnt Point out this technique to him. Gather several examples
of this from the textbook and present them to him as a vocabulary exercise. For example:

”Thé grc‘at gcneralit’y of ;umlytic mcthnds :md furmulat; is due 'prir’nirily to the use of tlircctcd
ng

\What are dirceted lines?
“The intercepts of a llm, arc the distances from the m‘lgm to the points where the line cuts
the cocrdinate axes.’
“The intercepts of a lincare. .. ... .. ..
After demonstrating to the class, have students open texts and find at least 5 more examples
of this type of vocabulary aid. Point out to the student the type of clues which the author may -
provide, suchas, italics, boldface or underlining. Show how this method is consistent throughout .

* Longley, William, Smith, Pereev 19 and Wilson, Wallace A, Awalytiv Geometry and Caleulus,
Boston: Ginn & Co,, 1960, p, 9, /f/
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the book. Often the textbook definition is still bewildering to the student, Help him overcome this
problem by “pre-teaching” to overcome vocabulary obstacles. Anticipate the words which Wlll give
yDur students difficulty and present them at the end of the class in FTEP'H‘E{[IOH for the readmg
assignment. The presentation may follow this format:

1. “The first property we discuss is the Commurative Property of Addmon "t

2. Isolate the word on the chalkboard and divide it mro syllables:

com /mu’/ta/tive
3. Help students to pronounce the word part by part.
Encourage the students to find smaller familiar word parts in long, formidable words. In the
word “‘commutative,” a student might recognize the word “commute.” Follow up by askmg, “What
does commute mean? What does a commuter do?"’ By extending and expanding students’ responses, the
teacher can develop the correct technical meaning and will have helped the students in two ways: First,
by looking for word parts he has helped to change the habits of poor readers who often look at the
first few letters of a lengthy word and then dimiss it hv saying “‘too tough for me!” Secondly,
by associating the idea of a commuter '~ one who goes back and forth, one who interchanges a place
of abode for a place of business — with the idea of the commutative property, you have gwen

the students a helpful memory aid.

Anorher indisPénqable to ’l to ic:*irning difficu’lt ;vocabularv 13 thc: r’f:c:ognition and knaw[ed_gc:

‘convince you that th@ tgachmg of SPECIFH’_‘ word clemen;s whn:h occur over and over again wguld be
time well spent. Perhaps the first set of elements presented. could be the number prefixes mono-,

pent-, oct-, dec-, ete. Interchange these prefixes with tht: base gon and graphically show how

figure repr.sentations change with the substitution of various prehxcg Let THEM draw the Concluf.lons
about number of sides indicated, cte. Do the same type of thing with other frequently-used elenfents:

-hedron inter : numer
dihedron interpolate ’ enumerate
tetrahedron _ intersect denumerable
pentahedron intercept numerator
co or con -mut nomin = =«
coetficient permutation denominator
coordinate ' \- commutative binomial
collinear - \. polynomial
coplanar N '
4
v g

\ :
t0shorn, Roger et al, Extending Mathematics Understanding, Columbus: Charles K, Merrill Books,
Inc, 1963. p, 25.

;
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Prepare a chart such as the one pictured below.

LATIN OR GREEK WORD ELEMENT - ‘GENERAL MEANING

co. con, com, col N . with, together
inter . ’ * hetween
mono one, single -
polv . ' many : _ ' , \"-\
peri around
. mutur . meisure
. mut : te change, alter
nomin ' - . name
gon ) ;l,;lﬁglt
later side
eyu . equal
angul, angle sharp
rect ’ straight, right
lin : line, thread
sec, sect _ | to cut
Make a list of the terms derived from Latin and Greek which you wish the students to learn. -
Place each word element with its general meaning on the chart. Then make up a set of cards to
correspond with the list of words. Each card will contain the following information for one of the
words: . : i : -
definition
literal meaning : : -
combination of e¢lements
vocabulary word
The cards would be similar to the following sample:
| ) R
{ “the distance around the outer
' houndary of a surface or figure”
’ . perimeter
peri  +  meter
around to measure
“ Give one of these cards to cach of the students and have them challenge each other to make a word
" which fits the definition which they read by combining two or more of the word clements on the
chart. Completion exercises such as the following arc also helpful: '
“Asymptotes are lines which extend infinitely. Although they approach.nearer to a curve
than any other line, they never meet, “Never meet” comes from the two prefixes . . cand ., L
| ' o : . (a)  (sym)
*Davis, Naney B. Basic Vocabulary Skills. New York: MeGraw Hill Book Company. 1969,
i ‘ \‘_\ 168 / ‘
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“To lndltd[f;‘ the action of changing the sign in an cqu ation and puttmg it across to the Dth(‘:‘r!

side, one uses the term . . . . !".‘13056,”"?

Eﬁcaurage students to le1rn tf:chmml vocabulary as it appﬁars in their textbooks. If the
zu'hcr provides boldface or italics as a study aid, be sure the students are aware of the
sgmhcanc& of these terms. ‘auggs‘;t that they follow the procedure listed bElDW far learnmg
difficult terms: -

Tips for Learning Difficult Technical Terms** : _
1. ATTEND TO EACH TERM WHEN FIRST I' APPEARS. Read reflectively to grasp what the definition
is saying — not to memorize by rote but to gain a reul appreciation of the meaning.

2. TAKE THE NEW WORD APART IF YOU CAN. Do vou r’ung nize a familiar pare? If, for example,
you recognize the familiar prefix “poly-," mLanmg “many,” you already have a hold on
“pelynomial,” “polygon,” and “polyhedron.” If you recognize the word part “equi-,”
istant, Lqunngul iF, LquVilLﬂ[ and

meaning “equal,” it helps vou unlock “equi
“equation.” The familiar prefix “co-,” mc;mmg “with myxthu with,” can h::lp

.' you master “‘coordinate, collinear, cosine.” and “u;tmbLnt
3. READ AND REREAD AS OFTEN AS NECESSARY. Reading-once-straight-through patterns are not
appropriate. Complete stops are called for frequently. Thought time is essential in addition to
‘reading time.

4. The authors’ definition of a new term is almost always followed by examples. EXAMINE THESE
EXAMPLES CRITICALLY and figure out whether in fact they do follow the deﬁnltmn If L‘:amplu are

iven, try to credte some of your own. _ :
RY TO THINK OF COUNTER EXAMPLES, exaiuples which do not come under the definition, in arriving
ay'these, you may find it helpful to change a word or two in the definition.

not

6. READ THE DEFINITION, as you read all mathematics, ]u‘nql in band. Make jottings and create

“ your own examples.

7. Suppose; as you're reading the definition of the new term, you encounter a-technical termi you've

already met in the cotrse whose meaning now escapes vou, We all forget! You have the meaning right

at your fingertips through the index of your lmuk U%l THE INDEX for instant access to the original
prhmtmn of the forgotten term, :

i B, As you're working with the new terin, try 1o EXPRESS IT5 Mlif\N[N(i in actual words — your own words.

y 9. You may find a “List of Seme Important | erms to Learn™ toward the end of cach chaprer. You'll
- want to CHECK YOUR UNDERSTANDING of this list of terms. The terms the authors have selected for

this list are crueial. You nmy also.want to'MAKE YOUR OWN LIST of key terms and their mcaniﬁgi
10, Make an effort to USE YOUR NEW MATHEMATIC Al TERAMS,

e e e e e e e

N SUMMING UP
. Read reflectively,
. Look for familiar word parrs.

Tt Wodh e

. Reread.

+. Scrutinize the examples.
5. Make up counterexamples,
6. Be active with a pencil,

. Use your index.
~ 8. Self-recite, ‘
9, Review, /
10, APPLY YOUR NEW LEARNINGS.

t1bid.
**Thomas, Ellen Lamar and Robinson, Alan U, tnproving Reading in Foery
Cluss. Boston: Allyn and Bacon, 1972, p. 299,
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. !
- Another helpful study technique for remembering mathematics vocabulary is to have the studenit.
set aside a special section of the notebook as a Mathematics Glossary.” As each new term is learned,
it is added to the list with its definition of mcaning. The student divides the page in half in the

~ following manner:

' KEY TERM 7 . MEANING

TEST YOUR UNDERSTANDING
' BY COVERING THIS SIDE,

The student enters the new word on the left under key term and the precise meaning on the

right. When review time comes, the divided page will be handy ih learning to recite the meaning

of terms without looking at the definitions. The student should indicate the end of each unit.or
chapter, perhaps with a double line, so that if he or she wishes to check on the meaning of words ‘
in a particular unit, he or she will know just where to find them.* A similar study technique is to
place each new term on a scparate index card with the term on one side and the definition-on-the
other. Students quiz themselves by looking at the term and reciting aloud the definition. Later,
they reverse the procedure and quiz themselves by rcadmg the dthmtmn and re:c;ltmg the term
aloud. Be sure they frequently “‘shuffle the deck” so that a word is not given a faise association
through a consistent sequence. This technique can be done by two students or by several students
utilizing 2 round robin procedure. '

v A major complaint heard from teachers of mathematics is thar their students don’t read the
textbook. How can the math teacher help students to read the text and get something out of it?
How can students of math learn to become more independent of the teacher and rely on their own
3bi1ities; o g‘l[hé[‘ and learﬁ infor’mati(m préq’ented in thi: textbogk? To many fstudcnﬁ a»math‘

_ 1. Ability to read ;Ind understand thE technical vocabiulary. :
S : 2. Ability to recognize and understand algebraic symbols, and letters atandmg for unknawns,
. negative and positive signs and operational symbols used in number work.
3. Ability to understand mectnml concepts and g E,Lnemllatlonq including their cxplan.itnjm
: and application, understanding of axioms, postulates; theorems and corollaries,
4, Ablhty to comprehend and to work thh expressions of mathematical rc‘:latmnshlps - tnrmulas

equations and®graphs.

*Thamas, Ellen Lamar and Robinson, Alan L, Iproving Reading in Every Class.
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parts.
6. Ability roread and ml\t reasoning pr'\hlzms
7. Ability to find proofs of statements related to the solution of problems.

8. Following a plan for sclwng niath probl;ms

Just how well will your students handle thc textbook which you have selected for the course?
At the beginning of the term, try to assess the reading competencies of your students by assigning
a passage in the text which is typical of the indeperident reading that you expect they will do
during the course, Direct them to read and study the passage in class just as if they were studying
for or preparing for a test on what it says. Explain that in a short while they will be quizzed-on - - - - -
the contents'and indicate that they may use any scratch.sheets to take notes or mskepttmgs if
they wish. Students who do not finish reading the passage in the allotted time should indicate the
point to which they read. All notes and scratch sheets are h4nde Ain as well as answers to the quiz.
By studvmg these results and observing the students while at wurl\ several mmghts can be galnr:d
n the student handlf‘ the textbook, or does it appear to be beyond him? -
n.he or she master clearly explained technical terms mdgpgndcntly? grasp key concepts? get

Ilfu ot
ﬂ ‘L_'“

t,'h'e message of diagrams and figures? |
3. Does he or she usc a scratch sheet to study actively — to jot down important ideas, make his ‘Dr
her own sketches, fill in the inner steps of explanations? ' -

4. Does he or she appear 1o be an extremely slow reader?*

' Once you have some idea of the abilities of vour students, spend time on a ““meet your -
textbook session,”’ pointing out the most important features and study aids which can be found in
the book. The following items (taken from Lamar and Robinson, page 309) shoud be covered:

The f'lh‘i_' of cnntcnt%‘with its concise, ‘ii‘i]ut;n[iul listing of major topics covered

L;lrgt—Sh{L‘ or Imld!_;n:c hc:ulmg% that announce the content of a seerion

falics, boldfaee or color used tosignal “official ™ wrms o L

Italies, holdface. or color used to call attention to coneepts, rules, or pnnuplu that should

be learned and 1o ng these for casy reference :

Typographical danger ﬁlgn;rls of pitfalls v avoid

Aids for profwuncing and accenting Jifficult new terims GE these aids.are present)

Chapter summaries that wrap up big ideas

sclf-check tests at the clim.{gf chaprers

Table of squares and square roots '

Reference st of axioms

The glassary

The index

In addition, have a “how to read your textbook” session. Demonstrate the following

“helpful procedures which are outlined by Ellen Lamar Thomas and H. Alan Rolnn%on in their book,

Improving Reading In K very Class,

*Lamar and Robinson, p, 307,
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‘1. Pre-read to look over the material ’

"A. Read through the passage once at a moderate speed. If necessary, slow down to get the gist
of a paragﬁph but remember that this is not the in-depth reading. ' :
B. Read with a questioning mind set. Ask yourself: |
1. How does this relate to whﬂnjl ve h;en atudvmgi‘ T
2. What’s the ::(uthor dnvmfr at? Where is this all leadmg3 '7 !
3. What should I Iﬁok for when I go back and réally study this section?

II. In-depth Readmg I¢
A, Seta purpose for readmg by turnmg Eubh&admgs or tltlE'§ into qu&stlons

O

ERIC
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" B. Read to answer those questions.
C. Read to pull out thE meamng Qt each word ‘md phr'ﬂe and sentence. Show how even the smallést

:,iuthor poses a qur:stioni try to answer it; If he states ‘it is obvious,”” see if it j§ obvious
toyou. ' T ' B ,

F. Study carefully all dl.lérlrﬂﬁ and figures Jnd underst’md the relationship Dgtween them and
" the concepts which are-presented in the reading. ;

1. Shift your eyes from text to dmgrim as needed. -

" 2. Test your undcrsmndmg{ by mv;rmg the text and probldg an e\plananon by lGol\mg at the dlag
alone. ‘

3.1f you carinot provide an explanation s imtf-d in No.'2 above, then reread, referring back ;md
forth to the ﬁgure until you are sure you underamnd it. ‘

4. Try to-conceal both L\len ation lmd diagram and attempt to \ﬂsu:ﬂme the ﬁgur(: or sken:h it on

picce of paper. v _ . I

. Take Notés or Use a Scratch Shect tasyou Read —

]
-
o

. C‘IPSUII.«’E important ideas. F orce: yoursclf to rcp;at difficult passages in your own wards

>

. Fill in inner steps. : T _ L/
. Answer the author’s questions. '
. Sketch constantly as vou study..

o0

IV. Fina{ Reading ~ Reread the material quu:l\ly so that you will not lose the overall thought .
‘ Jmongat the details and specific ex planations. : _ s ]

After a class demonstration with active student participation, the reading of the textbook

. should no longer bé a problem and chore for the students. However, this method must be consistently

applled if it is to yield real results. If individual students still mmplam that they “just can’t N
s

",

get it,” suggest these final study aids: : x : - \




« 1. Reread — successtul math students read f:\phmtmns again and agmn A passage that blocked yDu

at first encounter may come clear with a fourth or fifth rcadj‘ng

|
1
i

2. Restate — Trying to re-express an idea-forces you to concentrate on what is being said — it may
clinch your understanding. '
3. Read on — If after repeated etforts the n’lcanmg still escapes you, read on in the aqslgnmﬁnt
and then return later. The difficulty may. v clear up in the light of the TEHE of the passage.-

[

v. Try again afrer time has passed = A difficult passage often hits us dlfferently later.
'5. Search out other books — ~The corresponding explanation in other mathematics textbooks is often
helpful You would mtumlly g\pLLt several L\pl;natmm t.; be clearer thana 5mgl:: explanation. L |

6. Conéult a ‘friend = Let a friend help you, not tell you.

7 Not a single question should remain unanswered — jot down quutmné to brin g -class or:conference.*

., The field of education is rich with theories, ruhmquc , and methods to the point of confusion.
) Let. us consider some basic prmuplLs. as re thui to the student popuhtlon under consideration.
Often the technical student i$ ﬁepamtgd from the one in engineering along a ‘nunibér of
dimensions. One such distinerion is relatéd to level of abstracti ion, another is responmbljncy
. " Yet, many of the two-year technical grdduates continue to a four-year dcgrcz or miore, and, - S
I dependmg on the individual person and position, te Jinical graduates may move 1o pgsmons of - _
_responsibility. Even within the acceptcd scheme of recponsibility hierarchy, the technician may g
ediator bridging between the gencral-abstract level and the spec cific- cgm:rgtfe

act as a translatorsm
one of the machinist. As such, the tec hnician needs to understand and be versed in both 'Evels

The tEc‘:hmmn must bewell-rooted in the fundamentals so that if \Vlllmg and able;” can dr‘:velop
_froma pmb]c.m -solver to a point of being able to evaluate, be creative 'md resourceful hEyond
the basic facrual mmrnmtmn gathered during his schooling.. = ..+

“Good teachers” are s varied as their personalities; they are not .111 the same. ‘*.:’ét,
thc:y do have a number of points in common: intellectual capacity, euriosity and k"@\vlsdge of the
material, and sincere interest in the students. '

Fred C. Morrist mmpllul a self critique list covering the planning, the class session and

- testing phases of the tmghmg activity = and it s r;pmdu;ul below. - x

Lesson Plan
1. Do vnu pl in your Jesson, or do you go to class with only ﬂ,,uu,r\l idea of what you are going

to do? .
. 15 the objective well de fmul and can it be uunnph\hul hv the prcs;nm[mn th at you pl.m tw

~y
[Ewet

© make? -
. Do you study cach particular mplL to {md (lu must :.Hul;vg way to present it?

. Noes your lesson plan inclyde all of the important points and éxclude the irrelevant?

. Is your lesson plan logicaldn order and does it make a clear connection with what has gone

LT R T

thurc:? -
N : 6. Does ynur lesson plan have !pph; 1tion to some specitic thing that the students m, to do? . :
7. Do yvou n;)lkc an intelligent and effective use of instruccional aids?

/ _ . ‘ : . : . .
*Lamir and Robinson, p. 291 .

tMorris, Fred C. Effective Teaching: A Mannal for Engineerving Litstructors,
" New York: &i\c(i!’:lwﬁliill BRook Co., 1950, .
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Conduct of Class Session

Lo Doovou Koow wlhat vonare irving 1o do i cless?

2o Do vonn el the stodenes whae von ave cadbang ahon am b -

3. Doyvou spend mest ot the tre jost Gilhoog? Ty o degshe chaneesare thar the studenis do
not learn much,

4o Do ven have the elass session organized so that there is o wiste of 1inie? .

5. Do vou cantrol the thinking o the students soas to wain amd hold thelr mtevese?

o Are vou preparved for the gaestions ashod, o do vou evade them?

7oAre you conrtcous and considerate manswering stident questions?
B D von use sone neipproprisie mstosetional id beeause vou do noc Kinow what else 1o do, or
bociuse 1015 casier tha preparing an eflectne preseitition?
D130 vou use an unrasomable enonnt of the snndents” thine in vopying notes from the board swhich
vou vottld give out inomimeogeaphesd form?
10, Are vou wellgroomaed, neat, amd cledn? The bandbos etieet is not desivable, but you shonld
b !11'(%4‘“!.!}»}(' Tis pulil&,‘ siac ey
TIL D0 ot ise annay g e i ol prerson spoeveh whieh disoracr the stidents®
12, Do von displav g sense of liimes ™ S oo b of conese, move alang with vouor ol of teaching, !
buat this van be done wathon aogiorme the atmosphere of aomorgae i
13 Do vou hide the blvckboard with vour bode, amd do vou Tace the elbass o tatk o the blackbonrd?
T Do vou stavd cmd emd v onr ol aesion on time®
RN

To Do thie stindents oo o =loen i el 10 rhion dos o ecrime for vou 1o wake ap,

T3 von reatle teach she stadenis sometbony, ormerel contose them on the siibject=

Testing

Cofisbiied goend

Do s ou go tocthe troublc s

2. Are vour etk reprosentative of the marernad siven or el clear o to meaning, mud of

reasonthie length

3oDo vou et yvour class o withen pemg tests hevause vou o not Tike to grnde the paperss

4. I grading tests, do von pive cach question o value m proporton to s importance?

508re vou alwavs fair cond nepareciad in geading®

1mbarmation on each stoudent to establish for teem grades?

0. Do vou haye sutt
7. Doovou il seme definie percentige of cvery cliss? This pracoee o unsound, unfair, and

hasa devastiating offect upon student morale,
8. Do voeu hide poor teschimr wath high grides?
9. Do vou give hick the wst papers it the tollowing class session, or do s ou wait until the
studente sk about them several timess
o, Do von eeadize that evers vime von e the stadonto g fosi, v are u-xluig vourself too?
IF vou fuve o Livpe umber o8 1 elures vou ond Better exanine vour teaching metlonds,

Students, as a group, exhibir various trats and have different expectations, changing somewhart

from campus to campus. and from vear to vear. However, most students in the technology field tend |

to be goaldirected and less floundering, and more Blkelv to have heen exposed to their area of

, vairy between specific

Tr

interest as compared with most otber e

individuals. Josenh Zimmerman”® condueted o survey at the Worcester Polytechnique Institute

identifying some of the irems t “turn students on and of £

Joseph I What Maor oo sendents? A Sseeond ook Jowrnal of Pugineering

: Fducarion, Octaber 1964 vl 33, 0o, 2, pp. 33

i




PARPE L TIPS TROM T STHOONN VIR

PERCENT

T

C(ratal Group)
: JURS 19007

[ATEY I TS
Praceical valine of the vourse oy earning o hving L L in 37
fstractor's hnowledire of subject and rebared Tields 30 37
Well-detined course objectives © o0 25 14
Frathusiasm of the mstrictor L o000 o ... LA 38

, fnstructor’s svimpathyv & Understumdng

of students & thow problems 0000000 oL 2 13
Instructor’s willingness to answer questions .., ., 24 0
Knowledge ot vour progress L0000 oL 23 20
1 6

Ciraede s

Ephoses on bandamentals raiher than et 22 14
Courteous tredtment of msirietor 14 3
Negatee

Tostrnetor s use of S 0e st L Hn 0}
Instrnetor s use ol feay L 35 53
Instrneror s e ob 5ol sppion gl . 43 10
Personal L,'I“i‘ﬁ'r;;.!lﬂlu\llIHH by the mstruvtor 26 KU

and to your campus. and wheye vou can mazimize the teaching process. Last but nort least, do not

hesitate to consulr vour colleagues and it necessary the counseling services on your campus.
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