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verified. Part VII introduces the general concepts of
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electric-analog techniques. (Ht)
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PREFACE

The series of manuals on techniques de-
scribes procedures for planning and executing
specialized work in water-resources investi-
gations. The material is grouped under major
subject headings called books and further
subdivided into sections and chapters; Sec-
tion B of Book 3 is on ground-water tech-
niques.

This chapter is an introduction to the
hydraulics of ground-water flow. With the
exception of a few discussions in standard
text format, the material is presented in pro-
gramed form. In this form, a short section
involving one or two concepts is followed by
a question dealing with these concepts. If the
correct answer to this question is chosen, the
reader is directed to a new section, in which
the theory is further developed or extended.
If a wrong answer is chosen, the reader is
directed ;to a section in which the earlier ma-
terial is reviewed, and the reasons why the
answer is wrong are discussed; the reader is
then redirected to the earlier section, to
choose another answer to the question. This
approach allows stydents who are either
partially familiar with the subject, or well
prepared for its study, to proceed. rapidly
through the material, while those who require
more explanation are provided it within the
Sections that deal with erroneous answers.

In the preparation of any text, difficult
choices arise asto the material to be included.
Because this text is an introduction to the
subject, the discussion has been restricted,
for the most part, to the flow of homogeneous
fluid through an isotropic and homogeneous
porous mediumLthat is, through a medium
whose properties do not change from place to
place or with direction. tmphasis has been
placed upon theory rather than application.
Basic principles of ground-water hydraulics
are outlined, their uses in developing equa-
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tions of flow are demonstrated, representative
formal solutions are considered, and methods
of approximate solution are described. At
some points, rigorous mathematical deriva-
tion is employed ; elsewhere, the development
relies upon physical reasoning and plausibil-
ity argument.

The text ha :;. been prepared on the assump-
tion that the reader has completed standard
courses in calculus and -college physics.
Readers familiar with differential equations
wili find the material easier to follow than
will readers who lack this advantage ;. and
readers familiar with vector theory will
notice that the materal could have been pre-
sented with greater economy using vector
notation.

The material is presented in eight parts.
Part I introduces some fundamental hydro-
logic concepts and definitions, such as poros-
ity. Specific discharge, head, and pressure.
Part II discusses Darcy's law for unidirec-
tional flow; a text-format discussion at the
end of Part II deals with some generalizations
of Darcy's law. Part III considers the applica-
tion of Darcy's law to some simple field prob-
lems. The concept of ground-water storage is
introduced in Part IV. A text-format discus-
sion at the beginning of Part V deals with
partial derivatives and their use in ground-
water equations; the basic partial differential
equation for unidirectional nonequilibrium
flow is developed in the programed material
of Part V. In Part VI, the partial differential
equation for radial confined flow is derived
and the "slug-test" solution, describing the
effects of an thstantaneous injection of fluid
into a well, is presented and verified. A text-
format discussion at the end of Part VI out-
lines the syntheisis of additional solutions, in-
cluding the Theis equation, from the "slug-
test" solution. Part VII introduces the gen-
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IV PREFACE

eral concepts of finite-difference analysis, and
a text format discussion_ at the end of Part
VII outlines some widely used finite-difference
techniques. Part VIII is concerned with elec-
tric-analog techniques. The material in Part
VI is not prerequisite to that in Parts VII and
VIII; readers who prefer may proceed di-
rectly from Part V to Part VII.

A program outline is presented in the table
of contents of this report. This outline indi-
cates the correct-answer sequence through
each of the eight parts and describes briefly
the material presented in each correct-answer
section. Reader may find the outline useful
in review or in locating discussions of par-
ticular topics, or may wish to consult it for
an overview of the order of presentation:

It is impossible, in this or any other form
of instruction; to cover every facet of each
development, or to anticipate every difficulty
which a reader may experience, particularly
in a field Such as ground water, where readers
may vary widely in exper1ence and inathe-
matical background. Ah anitional difficulty
inherent in the programed text approach is
that some continuity may be lost in the proc-
ess of dividing the material into sections. For
all these/ reasons, it is suggested that the
programed instruction presented here be used
in conjunction with one or more of the stand-
ard references on ground-water hydraulics.

This text is based on a set of notes used by
the author in presenting the subject of
ground-water hydraulics to engineers /and
university students in Lahore, West Paki-
stan, while on assignment with' the U.S.
Agency for InternatiOnal Development. /The

,

material has been drawn from a number of
sources. The chapter by Ferris (1959) in the
text by Wisler and Brater and that by Jacob
(1950) in "Engineering Hydraulics" were
both used extensively. Water-Supply Paper
1536E (1962) by Ferris, Knowles, Brown,
and Stallman was an important source, as was
the paper by Hubbert (1940), "The Theory of
Ground Water Motion." The text "The Flow
of Homogeneous Fluids through Porous
Media" by Muskat (1937) and lithe paper
"Theoretical Investigation of the Motion of
Ground Waters" by Slichter (1899) were
both used as basic references. The develop-
ment of the Theis equation from the "slug-
test" solution follows the derivation given in
the original reference by Theis (1935). The
material on analog models is drawn largely
from the book, "Analog Simulation," by
Karplus (1958). In preparing the material on
numerical methods, use was made of the hook,-
"Finite-Difference Equations and Simula-
tions," by Hildebrand (1968), and the paper
"Selected Digital Computer 'Techniques for.
Groundwater Resource Evaluation," by
Prickett and Lonnquist (1971). A number of
additional references are ntioned in the
text.

The author is indebted io Messrs.. David W.
Greenman and Maurice J. Mundorff, both
formerly Project Advisors, U.S. Geological
SurveyU.S.A.I.D.,, Lahore, for their support
and encouragement during preparation of the
original notes from whiCh this text was de-
veloped. The author is grateful to Patricia
Bennett for her careful reading and typing
of the manuscript.
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cross-sectional area of flow

node spacing in finite-
_ difference grid
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f I MLT*2
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LT-

h,

Dimensions
(M. mass:

L. distance;
T. time)

Explanation
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gravitational force
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force parallel to conduit
component of gravitational

force normal to conduit
gravitational acceleration
head; static head
pressure head
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LT specific dischargedischarge
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1? ohms electrical resistance
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SYMBOLS

S. L''
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specific yield
transmissivity (transmissi-

bility)

English

ft (foot)
gal (gallon)
fe/s (cubic foot per

second)

S.gmbol Dime-nsions

IL

coulomb
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UNIT CONVERSION

Factor for converting
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international ayatain
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Explanation

r=.91 4Ttargurnent of the
well function
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PROGRAM OUTLINE

This program outline is provided to assist the reader in review, and to
facilitate the location of particular topics or discussions in the text Hope-
fully, it may also provide some feeling for the organization of the material
and the order of presentation, both of Which tend to be obscured by the
programed format.

The section numbers in the left margin correspond to correct answers in
the programed instruction ; they give the sequence of sections which will
be followed if no errors are made in answering the questions. An outline
of the content of each of the correct-answer sections is giVen to the right
of the section number. Two numbers are listed beneath each of,these section
outlines. These numbers identify the wrong-answer sections for the ques-

, tion presented in tg'e outlined correct-answer section. The correct answer-
to this question is indicated by the next entry in the left margin.

The discussions written in standar text format are also outlined. For
these discussions, page numbers correspOnding to the listed material are
given in parentheses in the left margin.
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PROGRAM OUTLINE VII

Part I. Definitions and general concepts:
section: .;

1 porosity
13; 18

9 effective porosity; saturation
12; 29

6 porosit, esaturation (review) ; point -velocity
variations; tortuous path effects
4; 21

3 tortuous flow path effects (review.); problems
in determining a.:tual cross-sectional flow area;
relation of discharge per unit face area to flow
velocity
28; 10

14 relation of discharge per unit face area to flow
velocity .(review) ; definition of specific dis-
charge or specific aux; definition of head
11; 17

94 omission oi velocity head in ground water; rela-
tion between pressure and height of fluid col-
umn (Pascci's law)
25; 19

16 Pascarb law (review) ; head as potential energY
per unit weight; elevation head as potential per
unit weight, due to elevation; dimensions of
pressure
7; 15

26 pressure as a component of potential energy per
'unit volume; pressure head as a component of
potential energy per unit weight; total poten-
tial energy per unit weight (question)
20; 23

22 head as potential energy per unit weight (re-
view) ; total potential energy per unit volume
5; 27

8 total potential energy per unit volume (review)

Part II. Darcy's law:
Sect zon:

1 outhne of approachmethod of balancing forces;
friction force proportional to velocity; pressure
force on face of a fluid element in a sand-
packed pipe (question)
25; 16

8 relation between pressure and force; net pressure
force on a fluid element (question)
23; 12

31 net pressure force on a fluid element (review) ;
pressure gradient; net pressure force in terms

Z. of pressure gradient (question)
6; 14

26 net pressure force in terms of pressure gradient;
gravitational force: mass of fluid element in
terms of density, porosity, and dimes -ions
(question)
3; 17

15 gravitational force in terms of density, porosity,
and dimensions; component of gravitational

33

35

11

19

20

28

7

21

force ccintributing to the flow (question)
22; 18

resolution of gravitational force into components
parallel and normal to the conduit; expression
for magnitude of component parallel to the
conduit (question)
6; 37

expression for component of gravitational force
parallel to conduit (review) ; substitution of
az/.1/ for cosine in this expression (question)
32; 4

substitution of AzIal for cosine in expression for
gravity component along conduit (review) ; ex-
pression for total driving force on fluid ele-
ment attributable to pressure and gravity
(question)
24; 10

assumptions regarding frictional retarding force;
expression for frictional retarding force con-
sistent with assumptions (question)
2; 34

balancing of driving forces and frictional force,,
to obtain preliminary form of Darcy's law
36; 27

Darcy's law in terms of hydraulic conductivity;
replacement of

1 dp dz_
pg dl dt

by dh/dl (question)
9; 30

discussion of hydraulic conductivity and intrinsic
permeability; flow of ground water in rela-
tion to differences in ekvation, pressure, and
head (question)
29; 13

Darcy's law as a differential equation; analogies
with other physical systems; 'ground-water
velocity potential

Text-format discussionGeneralizations of Daro's
law:

(p. 31) specific discharge vector in three dimen-
sions; definition of components of spe-
cific-discharge vector

(p. 31) Darcy's law for components of the spe-
cific-discharge vector; Darcy's law us-
ing the resultant specific-discharge vector

(p. 31) velocity potential; flownet analysis; Darcy's
law for components of the 13ecific-dis-
charge vector in anisotropic Media

(p. 32) flowlines and surfaces of equal head in the
anisotropic case; solution by transfor-
nnation of coordinates

anisotropy of stratified sedimentary ma-
tarial

(P. 32)



VIII PROGRAM OUTLINE

(p. 33) use of components of pressure gradient
and components of gravitational force
in each of the three major permeability
directions; hydraulic conductNity tensor

(P. 33) aquifer heterogeneity
(p. 33) fluid heterogeneity; Darcy's law for a

heterogeneous fluid in an anisotropic
aquifer, using intrinsic permeability

Part III. Application of Darcy's law to field problems:
Section:

1 differential equations and solutions
15; 23

7 infinite number of solutions to a differential equa-
° tion

29; 14
8 slope-intercept concept applied to solutions of dif-

ferential equations
6; 20

10 application of Darcy's law to one-dimensional
equilibrium stream seepage problem; selection
of particular solution to satisfy the differential
equation and to yield correct head at the stream
(question)
22; 36

24 boundary conditions in differential eqtrations; ).n-
terpretation of head data observed in it field

. situation (question)
42; 21

25 application of Darcy's law to a problem of one-
dimensional steady-state unconfined flow, using
Dupuit assumptions
26; 43

9 substitution of
1 d(F)
2 dx

for
dh

h
dx

in the unconfined flow problem; lesting for
solution by differentiation and substitution of
boundary conditions (question)
16; 4

41 parabolic steepening of head plot in the Dupuit
solution; problem'of radial flow to a well; cross-
sectional area-of flow at a distance r from the
well (question)
12; 6

27 decrease in area along path of radial flow; relation
between decreasing area and hydraulic gradient
(question)
11; 32

40 signs in" radial flow problem; application of
Darcy's law to the flow problem (question)"
33.; 17

35 expression of radial flow differential equation in
terms of

39; 13
2 interpretation of radial flow differential equation

expressed in terms of
dh

dh

d (In r)

ci (lnr)
18; 31

38 interpretation of radial flow differential equation
(review) ; solution equation as taken' from a
plot of h versus lily ; conversion to common
logs; characteristics of the semilog plot
34; 37'

19 logarithmic" cone of depression; equation for-
drawdown at the well (question)
28; 30,

3 applications of the drawdorn equation ;, general
characteristics of well-flow problems

Pas6,IV. Ground-water storage:
Section:

1 relation between volume' of water stored in a
tank and water level in the tank
10; 9

11 relation between volume of water stored in
sand-packed tank and water level in the tank
31; 12

19 slope of V versus h graPh for sand-packed tank
17; 22

26 capillary effects; assumption that a constant
amount of water is permanently retained; re-
lation between volume of water in recoverable
storage and water level, under these conditions
(question)
18; 2

16 slope of V versus it graph for sand-packed tank
with permanent capillary retention
4; 29

33 slope of V versus ii graph for prism of uncon-
fined aquifer
28; 19

32 dependence of V, h relationship on surface area,
A; definition of specific yield (question)
7; 27 /

6 confined or compressive i;torage; V, h relationsbjp
for a prism in a conlinci aquifer
23; 30

21 dependence of V, h plot for a prism of confined
aquifer on base area
3; 34

20 definition of confined or compressive storage co-
efficient; specific storage
5; 16



PROGRAM

25 stora-re-eqt..iationrelation between time rate of
change of volume of water in storage and time
rate of change of head
8; 24

13 relation between 'time rate of change of volume
in storage and time rate of change of head (re-
view)

Part V:
Text-format discussionPartial -Derivatives iv

Ground-Water-Flow Analysis:
(P. 69) Partial derivatives; topographic map ex-

ample
(P. 70) Calculation of partial (space) derivatives
(p. 70) Partial derivative with respect to time
(1). 70) Space derivatives as components of_slope

of the potentiometric surface; depend-
ence on position and time; time deriva-
tive as sloyie of hydrograph; dependence
on position and time

(p. 72) Vector formulation of the specific dis-
charge;' Darcy's law for components of
the specific discharge vector

Unidirectional nonequilibrium flow:
Sectzon:

1 relation tween inflow and outflow for a tank
29; 17

21 equation of continuity; ,relation of ahlZt for a'
prism of aquifer to difference between inflow
add outflow (question)

.6; 5
30 combination of continuity and storage equation to

obtain relation between alt/at and inflow minus
outflow (review); expression for inflow
through one face of a prism of aquifer (ques-,
tion)
8; 3

22 implications of difference between inflow and out-
flow in a prism of aquifer (question)
14; 26

33 expression for inflow minus outflow, for one di-
mension0 flow, in terms of difference in head
gradients (question)
18; 15

9 change in a dependent variable Ocpressed as a
product of derivative and change in independent
variable (question)
25; 20

19 change in a dependent varisble- as product of
derivative and change in independent variable
(review) ;. change in derivative as product of
second derivative and change in independent
variable (question)
31; 13

7 'second derivatives and second partial derivatives;
expression for change in ah/ax in terms of
second derivative (question)
4; 23

OUTLINE IX

32 expression for change' in ah/ax in terms of second
derivative (review) ; expression for inflow
Minus outflow using second derivative (ques-
tion)
27; 2

34 definition of tralsmissivity; expression for inflow
minus outflow for one dimensional flow through-
a prism of aquifer, in terms of T and B2h13e;
eeuating of this inflow minus outflow to rate
of accumulation; exnressicifi for rate of accu-
mulation in terms of storage coefficient (ques-
tion)
28; 12

10 equating of rate of accumulation, expressed in
terms of storage coefficient, to the expression
for inflow minus outflow, to obtain the partial
differential equation for one-dimensional non-
equil ibrium flow (question)
11; 24

19 partial differtntial equation for two-dimensional
nonequilibrium flow; partial differential equa-
tions and their solutions; review of method of
deriving partial differential equations of ground
water flow

Pait VI. Nonequilibrium flow 'to a well:
Section:

expression or flow through inner face of cylindri-
cal elem nt (question)
34; 36

15 combinatio of r and altlar into a single variable;
expressi n for inflow minus outflow for cylin-
drical el ment
30; 25

7 use of r
Dr

ar

in place of
ah\ I ltr ---);\ ar

expression for

?(r

26; 8
28 final expression for inflow minus outflow, for

cylindrical element; exression for rate of ac-
cumulation in storage in the element (duestion)
12; 16

37 combination of inflovi minus outflow term with
rate of accumulation.; term to obtain partial
differential equation
22; 32

27 procedure a testing a function to determine
-whether it is a solution to the partial differen-
tial ecluation; calculation of first radial derive-
tion of test function
4; 2
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5 calculation of second radial derivation of test
function
23; 9

35 calculation of time derivation of test function
3; 31

20 expressions for

and

S

T

1 Dit
4-

Dr' Dr

for test function
17; 24

21 verification that test function is a solution; in-
stantaneous injection (slug test) problem; de-
velopment of boundary conditions reqiiired at
t 0

10; 19

18 verification that test function satisfies the bound-
ary conditions for t 0; graphical demonstra-
tion of its behaviour as t -> 0; development of
boundary condition for r ce
29; 6

33 relation between condition that (B11/?,r)40 as
r co and condition that h 0 as r co;
demonstration that test function also satisfies
h .+0 as t -> po ; development of condition

JO
-2"-rdr

r 0

11; 14
13 demonstration that the test function satisfies

f co
S .-217rdr ;

0
discussion of significance of slug test solution

Text...format discussionDevelopment of additional
solutions by superposition:

(p. 112) Linearity of radial equation; superposi-
tion; equation for head at t due to in-
jection at t'=-0

(p. 112) superposition trObtain effect of two in-
jections .e

(p. 112) expression for head change due to In-
stantaneous withdrawal; supeiposition
to obtain- effect of repeated bailing

113) variable rate of continuous pumping as a
sequence of infinitesimal withdrawals;
effect of withdrawal during an infinitesi-
mal time dt'; use of superposition to ob-
tain head change due to pumping dur-
ing a finite time interval

(P.

1 I

(P.

(P.

(P.

(P.

(P.

(p.

114) implementation of superposition by in-
tegration of the expression for head
change due to instantaneous withdrawal,
for case of variable-pumping rate

115) transformation of integral into exponen-
tial integral, for case of constant pump-,
ing rate

116) definition of u; evaluation of the exponen-
tial integral by means of series

116) definition of well function; equation for
case where h 0 prior to pumping;
equation in terms of drawdown; Theis
equation

117)development of the modified .nonequili-
brium (semilog approximation) formula

117) review of assumptions involved in de-
rivation of the partial differential equa-
tion for radial fiow

117) review of assumption involved in the in-
stantaneous injeceon solution and in
the continuous ptnnpage (constant rate)
solution

118) review of assumptions involved in the
semilog approximation; citations of
literature on extensions of well-flow
theory for more complex systems

Part
Section:

1 finite-differenEe expression
vative (quesiion)
.7; 26

Finite-difference methods:

for first space deri-
.

12 finite-difference expression for second space deri-
vative (question)
27; 22

15 finite-difference expression for

._ 4. _
Be 'ay'

(question)
28; 24

3 finite-difference expression for

_
Zx'

(review);
notation convention for head at a node
14;_ 5

2 expression for



using subscript notation convention
20; 18

4 third subscript convention for time axis
9; 23

10 expression for

Bt'h

PROGRAM OUTLINE

(p. 147)

at a particular point and time using the Sub-
script notation; approximations to Zh/Bt; finite
forward-difference approximation to the ground
water flow equation, using the subscript ncta-
tion (question)
8; 19

16 application of forward-difference equation in pre-
dicting head values; iterative (relaxation) tech-
niques (definition) ; finite=difference equation
for steady-state two-dimensional flow (ques-
tion)
11; 13

25 solution of the steady-state equation by iteration
21; 6

17 general discussion of numerical methods

Text-format discussionFinite difference methods:

(p. 136) Forward-difference and backward differ-
ence approximations to thne derivative

(p. 137) ForWard-difference simulation of the
ground-water flow equation; explicit
method of solution

(p. 137) Errors; stable and unstable techniques

(p. 138) Backward-difference simulation of the
ground-water flow equation; simul-
taneous equation sets

(p. 139) Solution by iteration or relaxation tech-
niques \

(p. 139) Solution of the steady-state equation by
iteration

(p. 139) Solution of the nonequilibrium equation,
backward-difference simulation, by itera-
tion

(p. 140) Iteration levels; superscript notation;
iteration parameter

(p. 140) Successive overrelaxation; alternating di-
, rection techniques

(p. 141) Forward-difference and backward-differ-
ence simulations , of the ground-water
flow equation uaing A notation

(p. 141) Alternating direction implicit procedure

(p. 144) Thomas algorithm for solution of equa-
tion sets along rows or columns

XI

Iteration ef the Steitdy-state equation us-
ing alternating directiOn method of
calculation

(p. 149) Iterative solution using the backward-
difference simulation arid the alternat-
ing direction technique C.6inThtap don

Part VIII. Analog techniques:
Sectwn:

1 Ohm's law; definitions of current and resistance
19; 8

6 definitiOns of resistivity and conductivity; Ohm's
law in terms of resistivity
24; 3

28 Ohm's law in terms of conductivity; analogy be-
tween Ohm's law and Darcy's law for one-di-
mensional flow
12; 7 -

26 analogy between Darcy's law and Ohm's law
for one liniensional flow; extension to three
dimensions; current density; flow of charge
in a conducting sheet
25; 23

analogy between flow of charge in a conducting
sheet and flow of water through a horizontal
aquifer; method of setting up a steady-state
analog: parallel between line of cong.ant volt./
age and line of constant head (question)
16; 17

21 nonequilibrium modeling; storage of charge in p
capacitor, and analogy to storage of ground
water; capacitor equations
13; 10

9 relation between time rate of change of voltage
and time rate of ac cumulation of 'charge for a
capacitor; relation \between current toward a
capacitor plate and time rate of change of volt-
age
20; 18

4 relation between time rate of change of voltage
and time rate of accumulation of charge fdr, a

racitor (review); electriCal continuity relic
tion; relation between currents and time rate\
of change of capacitor voltar, \for a system of
four resistors connected to a capacitor; trans-
formption of this relation to an equation in
terms of voltages and dse../dt (question)
15; 27

22 analogy between equation for capacitorfour re-
sistor system with finite-difference form of
two-dintrisional ground-water flow equation;
Method of nonequilibrium modeling
2; 14

6 'general discussion . of the analog technique;
heterogeneity; cross-sectional analogs; radial
flow analogs

12



INTRODUCTION TO GROUND-WATER HYDRAUW7S-A pROGRAMED
TEXT FOR SELF-1W-

Instructionsto/the Reader

This programed text is designed to help
you learn, the theory of_ ground-water hy-;

draulics through self-sti4r. Programed in-
struction is an approach to a subject, a
method of learning; it does not eliminate
mental effort from the learning process.
SoMe sections of ,tbis program need only be
read; others must be worked through with
pencil 'and 'paper. Some of the questions can
be answered directly; others require some

'form of calculationc7pYou may have 'frequent
occasion, as you wk through the text, to
consult standard texts or references *in

mathematics, fluid mechanics, and hydrology.
In eaeh of the eight parts of the text, begin

the proiramed instruction bv reading Section
1. Choose an answer to thee question at the
end of the section, and turh to the new sec-

tion indicated bpside theianswer you 'have
chosen. If your answer was correct, you will
turn to a section containing new laterial
and another question, and you may roceed.
again as in Section 1. If your answer was not
correet, you will turn to a section which con-
tains Acme further explanation, of the earfier.
material, and which directs yOu to go' back
for another try at the que:stiln. Usuall, in:-
this event, it will be worthwhile to rere4 the
material of the earlier s tion.. Conant' in

.this way throngh the p gramuntil you
reach a seCtion indicating e end of the part.
Note that althmigh the sec ions are arranged
in numerical\ order within each of the eight
parts, yon would i'Lot normally: proceed 'in
numerical sequence (Sectithi 1 to Section 2
and -so on) through the instruction. \

13

1.



Part Pefinitions an General Concepts

I ntrodqction

In Part I, certain concepts which are fre-
quently used in ground-water hydraulics are
introduced. Among these are porosity, spe-
cific discharge, hydraulic head, and fluid
pressure. Rigoious development of theorems

relating to these terms ip not attempted. The
material is intended only to introduce and
define the terrn,
tion of their physie4. significance.

"o provide an indica-

The-To wity of a specimen of pOrous,maz; ,

terial is daned as the ratio of the voldrne/of 0.5 cubic feet
open pore space in the specimen to the(bulk , ,9.2 cublc feet
volume, of the specimen. 9.8 cubic feet

/ QUESTION

What volume of solid material is present
in 1 cubic foot of sandstone, if the pprosity
of the sandstone is 0.20?

Turn to Section: I

13;
13

9

Nowhere in Part I is there an instruction to the question, and tuni to the section indi-
to turn to Section 2. Perhaps you have just/1 cated opposite the answer you select.
read Section 1 and have turned to Section 2 1

without considering the question -in Section
1. If so, return to Section 1, chpose an answer 2.

'Your answer in Section 6 is correct. Any
flow path between A and B will be longer
than the linear .distance AB; it is generally
impossible to know the actual distance that
a particle of fluid travela in moving through
a section of :porous material.

In the same way, it is difficult, to know the-
actual cross-sectional area of the .flpw, when

darirg-WithftriirlirrIRTMTeriMditiny Any.;-----4
cross-sectional area selected win be occupied
'partly by grains of solid Material and partly
by pores containing the fluid. For tfliS reason,

aieblem may arise if we aaempt to define
average fluid velocity as a ratio of discharge
to cross-sectional area; aS is customarily done
in open-flow hydraulics.

1 I

Con. 3.



4 TECHNIQUES OF WATER,RESOURCES INVESTIGATIONS

Con.

Your answer in Section 6 i it cc
The Particle would move a distal.
the linear interval AB if the two polliL

QUESTION

In the block of saturated porous material in
the figure, a fluid discharge, Q, is crossing
the area, A, at right angles. A represents the
gross area of the block face, including both
solid particles and fluid-filled pore space. The
quotient Q/A would be:

Turn to Section:
less than 14
equal to 28
greater than 10

\ the average velocity of the fluid particles

ere

:-
Your answer in Section 22 is not correct.

Pressure does represent potential energy per. .
unit vol4le due.. to the forces transmitted

connected by a straight capillary tube, but
the probability of such a connection is essen-
tially zero in a' normal porous medium. In'
general, the possible paths of flow between
any two points will be tortuous in character.

Return to Section 6 and select another
answer.

through the surrounding fluid, but z
sents potential energy per unit-weVfit due
to elevation. Th,e questicii asked for total
potential-eriergy per unit voluine.

Return to Sectior; 22, and select another
answer.

7,4

Your aniwer in Section 9 iS correct. Thirty
percent of thefl interconnected-pore space.in
a porous medium whose effective porosity is
0.20 is 6 percent of the bulk volume, or 0.06
cubic feet. In the remainder of this program,
fv.11y saturated conditions will be assumed
thiless unsaturated flomi is specifically men-

_ tioned.
Variation in the floW velocity of an indi-

vidual fluid partiCle-is inherent in the nature
of-flow,through,por-otitInedia,Within

dividual pore, boundaresistance causes the
velocity to decrease from' a maximum along

6. 'Con.

15

the centerline to essentially zero at the pore
Wall. Another,form ot velocity variation is .

imposed by the torUious character of t,4-
flow7---that is, the repeated branching and
reconnecting of floW paths, as the particles.
of fluid make their way around theindividual
grains of salid. This anastomizing or braided .

pattern causes the velocity of a fluid particle
;to vary from point to point in both 'Magnitude
and.direction, eyen if its motion occurs along .

--the-eenterline-ef-the-pore-sparerifoweverrit77
we view a small segment of the medium but
one 'which is stlll large enough to contain a

Agreat number of 'pores, we find that the
miCroscopic components of motion cancel in
all except one resnitant direction of floW:
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QUESTION

In the porous block in the figure, a particle'
of fluid moving from point A to point B
would travel a distance:

Turn to Section:

greater than the linear distance AB 3
equal to the linear distance AB 4
less than the linear distance AB 21

\Your 'answer in Section 16 is not cor-
rect. If we were considering the height of
a static column of water above a point;
which as we have seen is given by p/pg,
we would be dealing with dimen-;ons of
potential energy per unif ' ques-
tion in Section 16, i. the
units of pressure alone. 1 11 est.: units are force
per unit areafor example, pounds of force

___per_square_footoLarea,_which can be written

in the form pounds/ft2. Now we may "multi-
ply" these units-by the term ft/ft to obtain
an equivalent set of units applicable to pres-
sure.

Return to Section 16 and choose another
answer.

. :-.Your answer, p 1, pgz, iii' Section 22 is cor-
,rect. We haye seen that pressure is equivalent

' to potential energy per unit volume attrib-
utable to forces transmitted through the surL
'rounding fluid. Potential energy per unit vol-
ume due to elevation .is-Obtained by multiply-
ing the potential energy per unit weight due
to elevationthat is, zby the weight per
unit volume, pg. The total potential energy
per unit volume is then ILI% sum of these two
terms, that is, p+ pgz_

1, No discusSion of -::lovr energy would be
complete without meni of kinetic energy.
In the mechanics of so:Ha particles, the kinetic
energy, KE, of a ma...-s, ?n, moving with a
velocity v. is given by

KE --- ntv2/2.
Now suppose we are dealing with a fldid

of. maSs density p. We wish to know the
kinetic, energy of .a volume V of this fluid
which is moving at a velocity v. The maSs of
the volume is p V, and _the kirietid energy is

as the kinetic energy per unit volume of fluid;
and dividing this in turn by the weight per
unit volume, pg, 'gives v2/2g as the kinetic
energy per unit weight.of fluid. Each of these
kinetic energy expressions is proportional to.
the square of the velocity. The velocities of
flow in 'ground-water rgovqment .are almost
always extremely loy. Ad therefore the
kinetic energy terms extremely small
compared to the poteriti-,, iergy terms. Con-
sequently, in dealing .th ground-Water
problems we can generath, neglect the kinetic
energy altogether and ttak, tr ;to account only
the potential energy of e system and the
losses in potential energy ie to friction. This
is an iinportant respect in Which ground-
water hydraulics differs from the hydraulics
of open flow.

This discusSion concludes Part I. In 'Part II
we will consider Darcy's law, which relates
the specific \lischarge, 4, to the gradient of
hydraulic head, in flow *rough porous media:

thus

If we divide by the vol-ririe, V, we obtain 8.
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Your answer in Section 1 is correct; if 0.20

1

of the cube is occupied by pore space, 0.80 of
its volume must be solid matter. In ground-
water studies we are normally interested in
the interconnected, or effective, porosity,
which is the ratio of the volume of intercon-

I nected pore spaceexcludIng completely iso-
lated Toresto the bulk volume. As used in
this text the term "porosity" will always
refer to the interconnected or effective poros-
ity. Ground water is said to occur under sat-
urated conditions when all interconnected
pore space is completely filled with -water,

9.

and it occurs under unsaturated conditions
when part of the pores contain water and
part contain air. In problems of unsaturated
flow, the degree of saturation is often ex-
pressed as a percentage of the interconnected
pore space.

QUESTION

What volume of water is contained in 1
cubic foot of porous iaterial, if the effective
porosity is 0.20 and saturation expressed as
a percentage of the interconnected pore space
is 30 per-tent?

0.30 cubic feet
0.06 cubic feet
0'.20 cubic feet

Turn to Section:

12
6

29

Your answer in Section 3 is not correct.
The area A represents the gross cross-sec-
tional area of the/porous block, normal to the
direction of flaw. A part of this area is occu-
pied by grains of solid, and a part by open
pore space. Let us say that 20 percent of the
area A represents po ;pace; 1:17, 3 actual

10.

'cross-gectional area available for the flow is
thus 0.2 A. .If we were milling to take the
ratio of dischargeto flow area aS equal to the
average velocity, without considering any
other factor, we woUld- have to use the ratio
Q/0.2A. The actual average particle velocity
would presumably exceed even this figure,
because of the excess distance traveled in
tortuous flow.

Return to Section 3 and choose anotaer
answer.

Your answer in Section. IA 1, not correct.
The column of water in ittre pl,ezameter is
static, but hj, is the elera.-tion of the top of
thds column above the poirat of measurement,

11.

0 (h, is sometimes referred to as the pressure
head at iPoint 0). We liave defined head as the
elevation above datum of the top of a static
column of water that tan be supported at
the point.

Return to Section 14 and choose another
answer.

Your answer in Section .9 12s .7.-apt correct.
Saturation is expressed itw2-- Percentage
of the interconnected potw space. not as a

arth-e- So-74k

12.

30 percent of. the irterconnected pore space
is occupied by water. Since the effective
porosity was givez1 as 0.20 and the sa_j_nple_

-77-6117nes rclibiCITot, the volume of inter-
connected pore space is 0.20 cubic feet.

Return to Secticm 9 and choose another
answer.

17
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Your answer in Section 1 is not correct.
Porosity is defined by the equation

n-
V8+ V9

where V is he volume of pore space in the
specimen, V the gross volume of the speci-
men, and3jth the volume of solid material
in the sp imen (note that V9= V.+ V9). The

question in Section 1 asked for the. volume of
solid material, V,, in a specimen for which
the gross volume, V9, is 1 cubic foot and the
porosity, n, is 0.20.

Return to Section 1 and choose -another
answer.

Your answer, in Sectib 3 is correct. Q/A
will be less than the average velocity of fluid
motion since the gross cross-sectional area,
A, will be greater than the actual cross-
sectional area of flow. In\many porous media,
the ratio of actual area of Qow to gross cross-
sectional area 'can be take'n as equal to the
interconnected porosity of the material.

We 'have seen that it is generally difficult
or impossible th know or msure the actuaL
velocity of fluid motion or the actual cross-
sectional -area of flow in a porous medium.
For this reason, we usually work in-terms of
discharge and gross cross-sectional area.
That is, we use the quantity Q/A, where Q
is the discharge through' a segment of porous
Material, and A is the gross cross-sectional
area of the segment:This quantity is referred
to as the specific disCharge, or specific fluIc,
and is designated by the symbol q.

Another quantity we will2 use frequently
is tlie static head, or simplY the head. In
ground-water problems, the head at a point
is taken as thee elevation, above an arbitrary
datum, of the top of a static column of water
that can be supported above the point. .In
Aging this definition, we assume that the
density of the water'in the meaoring column
is equal to that of the ground water, and that

---the-density-of---the.groun4-water-is-uniform-

13.

QUESTION

The diagram represents an eiiclO'sed porous
filter bed; the plane AB is taken as the datum
and a piezometer is Inserted to the point 0.
What is the head at Point 0?

Turn to Ssction:

The distance hi, 11
The distance z 17
.571mAjAtamej4_+ z 24
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Your answer in Sectiozt-161s .not correct.
Pressure is usualpressed as force per
unit.areaTample, as pounds per square
fopwhith may be written pounds/fV. A

*m having units of work or energy per ur-iit
area, suth as ft-pounds,/ft2, woUld represent

15.

the product of pressure and a term having
units of distance, feet. We are interested here
in an equivalent set of units for pressure
alone. Now note that if a pressure term were
multiplied by a dimensionless fattor hAving
"units" of ft/ft, we would obtain a result still
having the units of pressure.

lieturn to Section 16 and select another
answer.

Your,answer, p,/pg, in Section 24 is correct.
The column of water inside the pipe is sta ic
and must obey the laws of hydrostttics. Th s
the pressure at the bottom of the pipe is
related to the height of the column of water
in the pipe by Pascal's law, which here takes
the form

p=Pghp,
or

hp= p/Pg
lip thus actually serves as a measure of the
pressure at the point occupied by the end of
the pipe and, for-this reason, is termed the
pressure head at that point. It is added to the
elevation of the point to yield the head at
the point.

Head in ground water is ,actually a meas-
ure of the potential energy per unit weight
of water. This is an important concept.

The elevation term, z, in the diagram rep-
resents the potential energy of a unit weight
of water at point 0 that accrues from the
position of the point above the datum. For
example, if zis 10 feet, 10 pounds of water
in -the vicinity of point 0 could accomplish
100 foot-pounds of work in falling to the
datum; the potential energy per unit weight
of water at point 0 due to the elevation of
the point alone would thus be 10 feet. Sim-
ilarly,thé.pressure term, bp, represents the
potential energy of a unit weight of water at
point 0 originating from the forces exerted
on the point through the surrounding fluid. \
This concept is considered further in the

G11.1.10-111;121112gCSSeCtiQn&a.iall....W.M.,1"...113,07CAMI.

16.

Piezometer

Water level
in piezometer

Datum

(Point 0 represents a general point
in a fluid' system)

QUEST!

Pressure is normally thought of as force
per unit area. Dimensionilly this is equiva-
lent to:

*".°"amorre,licr-Seetionr.
eriergY per unit weight 7
energy per unit volume 26
work per unit area s 15
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,Your answer in Section 14 is not correct.
z is the elevation of the point above the
datum; we defined head as the elevation,
above datum, of the top of a static column of
water that can be supported at the point. The
column of water in the piezometer is static

when conditions in the porous medium are
at equilibrium.

Return to section 14 and choose another
answer.

17.

Your answer in- Section 1 is not correct
If the porosity is 9.20, there will be 0.20 cubic'
foot of. pore Space in a specimen of 1-cubic.-
1ut volumu... The unestiion .asked for the vol-
ume of solid material in the specimen.

11=7

Return to Section 1 and choose another
answer.

18.

Your answer ha Section 24 is not correct_
The column of water inside the pipe-is static
and must obey the laws of hydrostatics. The
pressure at a depth d beneath the water sur-
face, in a body of static water, is given by
Pascal's law as

p==Pgd
where again p is the mass density of, the
water, g is the acceleration due to-gravit-,
and the pressure at the water surface is
taken as zero. This relation may be applied

to the water inside the pipe in the question
of Section 24. If you are not familiar with
Pascal's law it would be useful to read
through a discussion of hydrostatics, as given
in any standard physics text, before pro-
ceeding further in the program.

Return to Section 24 and choose another
answer.

19.

Your answer in Section 26 is not correct.
Potential energy is a scalar term; when if
consists of contributions frain different
sonrces, these ard Simply added to obiain the
total potential energy. The potential energy
of the,unit weight of water due to its eleva-

tion is z, while that due to the forces exerted
on it through the Surrounding water is 11.

Return to Section 26 and chooSe another
answer.

20.

Your answer in ection 6 is not correct. Return to Section 6 and select another
kqswer. ,

"Mem

- tance between the two points, and no flow
math could be any shoterthan this. 1

.20
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Your answer in Section 26 is correct. The
unit weight of'water has hydraulic potential
energy due to its elevation and due to the
forces exerted on it by the surrounding fluid.
The potential energy due to its elevation is
z, and the potential energy due to the forces
exerted on it through the surrounding fluid
is p/pg or hp. The sum of z and hp is of course
the head, 11, (as used in ground-water hy-
tAraulics) at the point in question. The two
terms making upl the-head at a pointthe
elevation of the point itself above datum and
the elevation of the top of a static column of
water that can be; supported above the
pointmeasure resPectively the two forms
of hydraulic potential energy per unit
wefght.. Their sum indicates /the total hy-
draulic potential energy per' unit weight of
fluid at the point.

QUESTION

Which of the following expressions wotild
indicate total hydraulic potential energy- of
a unit :volume of fluid in the vicinity of point /
A in the diagram?

22.

nometer
P/pg

Water level
in piezometer

Datum
4

Turd to Section:
p + pgz 8
p+z 5
p/pg +z 27

Your answer in Section 26 is not correct.
z represents the potential energy/of a unit
'weight of water in the vicinity a Point 0, due
to its elevation above the datum. A 'unit

23.

weight of water in this vicinity will also
possess potential energy because of the forces
exerted upon it through' the surrounding
water. The queStion asked for total hydraulic
potential energy.

Return to Section 26- and- select another
answer.

Your answer in Section 14 is correct. ilead
consists of two terms in ground-water sys-
tems: the elevation of the point itself above

- SZWIMMWZMY1772MbrearliS9127,l

datum, and,the height of a static column of

24. Con.

21

water that can be supported above the point;
In this case, the column of water in the ,

Riezometer_ist 12,e_slatic column al.)oAe_
point.

The height of the 5o1urrin :of water above
the point is a Measure of themreSsure at the
point and is sometimes termed the:pressure
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head. Readers familiar with open flow hy-
draulics may recognize that the head we have
defined here differs fromthe total hP

in open flow hydraulics in th i)

term, t),/2g, Is missing. Velocitic.
usually small in ground7water syste
the term 7i272g is almost always negligible in
comparison to the. elevation and pressure
terms.

QUESTION

Suppose a pipe, open only at the top and
bottom, is driven into the ground. The bottom
of the pipe cornes to rest at a point below the
water table where the preisure is p. Water
rises inside the pipe to a height '11, above the

lower end of the pipe.
water surfaco within

tually the atmo:-
taken as zero. The
water inside the pi'

will be given Ly :

The pressure on the
the pipe. (which is
ic pressure) ;s here
++ of thp ,Lumi of

the bottom of tb e

Torn to Section:

hp= p pg 16
hn--g/pp g5
hp-ppg 19

where p is the water density, or mass per unit
volume, and g is the gravitational constant.

Con. 24.

Yeur answer in Section 24 is not correct.
Pressure within a body of static water varies
in accordance with Pascal's law, which may
be stated

p-pgd
where is the mass density of water, g is the
acceleration due to gravity, and d is the depth
below the surface at which the pressure is
measured. The pressure on the upPer surface
of 'the water (so'metimes denoted pa in text-
books of hydraulics) is here considered to be
zero. If you are not familiar with this rela-
tion, it would be a good idea to read thfough

a discussion of hydrostatics, aS presented in
any standard physics text, before, proceeding
further with the program.

In the problem of Section 24, the column
of water in the pipe is Static, and Pascal's
law may be used to give the pressure at any
point within this columneven at its base,
where it joins'the groundrwater system.

Return to Section 24 and choose another
answer.

6v* 25.

Your answer in Section 16 is correct, Pres-
sure may in fact be thought, of as potential
energy-per unit -volume of liquid. Physically,
this concept is perhaPS most easily appre-
ciated using the example of a simple hy-\ cylindq-, or hydraulic press, shovirn Liquid under

schematically in the diagram. Liquid under Presaure P
.a pressure p is fed in through the port at 0.
As the liquid enters, the pistonfis displaced

----terthe-right-r-P-ressure-44-a-rnea*ure-of
per unit area, and it folloWs that the total .

force on the piston 5s given by the product
of the pressure, p, and the face area of the

22

Con.
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piston, which we designate A. Thus, Fp><A,
where F is the force on the piston.

The work accomplished in moving the
piston is given as the Product of the force
and the distance through Which it acts. If the
piston mol;tes a distance d, the work done is
given by

W=Fxd.-----pXAxd .

where W is the work accomplished in moving
the piston_ The product A xd is the volume
of fluid in the cylinder at the completion of
the work7,,and we could say that this volume
of liquid is capable of doing the work IV,
provided the liquid is at -the pressure p.

Potential energy is often termed the ability
to do work. That is, if a system is capable of
doing 10 foot-pounds of work, We Say that it
possesses a potential energy of 10 foot-
pounds. In_the case of dur cYlinder, the poten-
tial energy we assign depends upon how far.
we are willing to let the piston travel. If the
piston is allowed to travel a distance d=5,
the work that can be done isVx5A; if the
piston is allowed to travel a distance d=10,
the work that can be. done is p x 10A. Thtis ,
the assignment 'of a potential energy in this
case is not altogether straightforward, since
the distance which the piston will travel----4)r,
.equivalently, the volums,of fluid which will
be admitted to the cylinder under Qie pres-
sure pmust be specified before the potential
energy can la* assigned. In this case, there-
fore, it is more convenient to talk about a
potential energy per unit volume of liquid.
For example, if we are told that the potentidl
energy is LO foot-pounds per cubic foot of
water in the Cylinder, we 'can calculate the
particular potential energy assoCiated with
the admission of any specified'volunie of fluid
to the cylinder. The work which can 'be done

-if avolume A-x-dofliquid_is admitted is
pxA xd; dividing this by the volume AX-d---T
gives the work which can be done per unit
volume 'of liquidthat is, the'potential en-
ergy per unit volume of liquid. This poten-

energy per unit volume' turns. out to be

the presiure, p, under which the fluid is ad-
mitted to the cylinder.

This concept of pressure as potential en-
ergy per unit volume can be extended to gen-
eral systems of flow, provided that we under-
stand this potential 'energy to be only that
due-to forces exerted on a fluid element by the
surrounding fluid. To obtain total potential
energy, we would have to add the potential
energy due to the force of gravity acting
directly on the fluid element.

If pressure, representing potential energy
per unit volume, is in turn divided by pg,
weight per unit volume, we obtain p/pgor
simply 11, the height of a static coltfinn. of
water above the pointas the potential en-
ergy per unit weight that is due to the forces
transmitted through :the surrounding fluid.

. QUESTION

Referring to the diagram,, which of the
following expressions will give the total hy-

,
,4

Flezorneter

7 0

Water:level
prezorneter

"7., .

draulic potential energy of a unit Weight of
water located in the.vicinity °of point 0 ?

Turn to %Ilion:
23
22

_20 ,

0N"11.10*....
hp 4.

I hp Z

23
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1

:13

Your answer in Section 22 is not correct.
t We have already seen that p/pg+z was equal

to the total potential energy per unit weight
of AiT'Ater. To obtain potential energy per unit
voliime, we must multiply by weight per unit
v ol Ufne:

Return to Section 22 and choose another
answer.

27.

Your answer in Section 3 is not correct.
The quotient, Q/A, would yield an average
velocity if we were dealing with an open
flow. Here, however, A is not the cross-
sectional area of floW ; it is, rather, the cross-
sectional area of the porous block normal to
the flow. Only that fraction of this area which
consists of open pore space can be considered
the cross-sectional area of flow. Suppose, for

example, that this pore area represents 20
percent of the total face area, A. The flow
area would then be 0.2 A.

Return to Section 3 and choose another
answer.

28.

Your answer in Section 9 is not correct.
The -volume of interconnected poie space is
0.20 cubic feet, but since saturation is less
than 100 percent, the volume of water in the
specimen cannot equal the volume of inter-
connected pore- space. Keep in mind that we
are expressing saturation as a-percentage of
the interconnected pore space.

Return to Section 9 and chpos6 another
answer.

1

1,..yalantite.f

2 4



Part II. Darcy's Law

I ntroduction

Part II gives a development of Darcy's
law. This law relates specific discharge, or
discharge per unit area, to the gradient of
hydraulic head. It is the fundamental relation
governing steady-state flow in porous media.
The development given here should not be
taken as a rigorous derivation ; it is no more

(1)
In mathanics, when considering the steady

motion of a particle, it is customary to equate
the forces producing, the motion to the fric-
tional forces opposing it. The same approach
may be followed in considering, the steady
movement Of fluid through a porous medium.
In studying the motion of a solid particle
through a fluid, we find that the force of
friction opposing the motion is proportional
to the velocity of the particle. Similarly, in
flow through a porous medium, we will
assume that the frictional forces opposing the
flow are proportional to tht; fluid velocity: Our
approach, then, will be to obtain expressions
for the forces driving a flow, and to equate
these to the, frictional force opposing the
flow, which, will be assumed proportionarto

_

the velocity. More exactly, we will take the
vectorstim of the forces driving and opposing
the flow\ and set this equal to zero. What we
are saying is that because the fluid motion is
steadythat is, because no acceleratjon is
observedthe forces on the flukl must be in
balance, and therefore that their vector Sum
is /zero, at all points. The equation that we

nifrOffilliirfronir6T15Manclbrfejectr"

than a plausibility argument, and is pre-
sented in order to give the reader some
appreciation for the physical significance of
the relation..

Following the program section of Part II
a short discussion on generalization of
Darcy's law is given in text format.

2 5

will be a:ferm of -Darcy's law. We begin by
considering the forces which drive the flow.

QUESTION

$uppose we have a pipe packed with sand,
as in the diagram. The porosity of the and is
n. Liquid of density p is circulated through
the pipe by means of a pump. The dotted
lines mark out a small cylindrical segment
in the pipe, of, length l, ahd of cross-sec-
anfai---area---Arequaltcr-thatofthispipe

14



PART II. DARCY'S LAW 15

small volume, or element, of the moving
fluid occupies this segment. The fluid pres-
sure at point 1, at the upstream side of the
segment, is p,.

Which of the ilowing expressions would
best represent the force exerted on the up-

,-----

(1)Con.
stream face of the fluid element by the ad-
jacent fluid element?

p,A
p 171A

p1pg

Your answer in Section 19,

k.
is not correct. Our assumptions were that the
frictional retarding force would be propor-
tional in some way to the dynamic viscosity
CO, to-- the volume of fluid in the element

n .A), and to the specific discharge, or
flow per unit area (Q / A) . While the answer

(2)

Turn to Section:
25
8

16

which you have chosen is not incompatible
with these assumptions, it does not,fit them
as well as one of the other answers. Your
answer assumes the retai-cling force to be
proPortional more particularly to the full .

dischareji, than to the specific discharge,
Q 1 A.

Return to Secilon 19 and choose another
answer.

Your 'answer in Section 26 is not-correct.
The term a:nA gives the volume of fluid in
the element ; the question asked for the mass
of fluid in the element. Keep in mind that p,

(3)
the density of the .fluid, repiesents its mass
per unit volume.

Retulrn to Section 26 and choose another
answer.

YOur answer in Section, 35 is not correct
The term V (az)2+ (Ax),z is obviously equal
to ',6/,, so that the answer you selected is
equivalent to the term p n A g Al. But as we
saw in Section 15, this term.giveothe magni-
tude of the total gravitational force on our

(4)

pression tor the componek of this total force
in the direction of flow. We have seen that
this component is giyen by the expftssion
p'n-A-g. cOS y ; the idea of. the quadion
is to find a term equivalent to cos y and to
substitute it into the above expression:.

Return to Section -35 and choose another
----flufthelementrwhat-we-iyant-here-is-an-ex,-._ans3ter,;

I.
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(5)

A

-Your,answer in Section 31,
dp

nA,
dl

is not correct. Theexpression obtained pre-
viously for the net force was (p1-73,)nA, 'or
-ApnA. You have substituted the p.ressure
gradrent, or rate of pressure change per foot,
for the small pressure clzange, 6.p. To ob-
tain a net change, or increment, froiti a gradi-
ent, or rate of change_per-nni cf-iiitance, we
must multiply the rate per unit distance by
the distance over which this change takes
place. For example, dp/dl in the figure repre-
sents the slope of a graph of pressure, p,
versus distance, 1. To obtain the pressure
change. p.,-p we must multiply this slope
by the length of the interval, Al; and since
we actually require the quantity p, -732, we
must insert a negative sign. (In the situation,
shown at left, p, is greater than Ththat is,
pressure- is decreasing in the direction of
flow, (. The derivative dp/dl is therefore an

(6)

Distance, 1 2

-elpp2 Rressure changetilp= x At

intrinsically negative quantity itselfthe
graph has a negative slope. By inserting an-
other negative sign, we will obtain a Positive
result for the term pi-p)

Return to Section 31 and choose another
answer.,'

Your answer in Section 33 is not correct.
The term p-;1-Al-A-g gives the magniftude df
the total gravitational force vector, F,. How-.
ever, we require the component of this force
vector in the direction 1 since only this com-
ponent is effective in producing flow along
the pipe. In the vector diagram, the length
of the arrow representing the gravitational
force, F9, is proportional to the magnitude of
that force, and the length of the arrows rep-
resenting the two components, f/ and f, are
proportional to the magnitudes of those com-
ponents. Using a diagram to show the resolu-
tion of a vector into its componentS makes it
easy to visualize the following general rule:
the magnitude of the component of a vector
in a given direction is obtained by multiply-,
ing the magnitude of the vector by the cosine
of the' 'angle between the direction of the
vector and the direction in .which the corn-.ponent is taken.

Return to Section 33 and choose another.
answer.

2 7



PART II. DARCY'S LAW 17

Your answer in Section 28,
dh

K
A dl

is correct. This relation between specific dis-
charge and head gradient, or hydraulic gradi-
ent. dh/d1, was obtained *experimentally by
Henri Darcy (1856) and is known as Darcy's
law for flow through porous media..The con-
stant K, in the current usage of the U.S.
Geological Survey, is termed the hydraulic
conductivity and has the dimensions of a
velocity. The constant k, again in the cur-
rent usage of the Geological Survey, is
termed the intrinsic permeability; it's dimen:
sions are .(length)2, and its units depend
upon the units of density and viscosity em-
ployed. In the current usage of the Geologi-
cal Survey: where p is measured in kg/m3, g
in m/s2, and in kg/ (m s), k would have
the units of m2.

As noted in Section 28, hydraulic conduc-
tivity, K, is related to intrinsic permeability,
k, by the equation

K=k Pg

where p is the fluid density, 11. the dynamic
viscosity of the fluid, and g the gravidtional
constant. Hydraulic conductivity thus in-
corporates two properties of the fluid and'
cannot be considered ,a property of the porous
medium alone. Intrinsic permeabilitY, on the
other hand, is normally considered to be only
a property of the porous medium. In ground-
water systems, variations in density are
normally associated with variations in dis-

7)
solved-mineraf catent of the water, while
variations in viscosity are usually due to
temperature changes. Thus in problems in-
volving significant variations in mineral con-
tent or in water temperature, it is preferable
to utilize intrinsic permeability.

The entire theory of steady-state flow
through porous media depends upon Darcy's
law. There are certain more general forms
in which it may be expressed to deal with
three-dimensional motion; some of these are
considered in the text-format discussion at
the end of this chapter. The development
presented- in this chapter involves numerous
arbitrary assmptions, and thus should not
be considered a theoretical derivation of
Darcy's law. It has been prese&d here to
illustrate, in a general waY, the physical
significance of the terms appearing in the
law.

QUESTION

Consider the following statements:
(a) ground water flows from higher eleva-

tions to lower elevations.
(b) ground water flows in the direction of

decreasing pressure.
(c) ground water moves in the direction

of decreasing head.
Based on Darcy's law as given in this chap-

ter, which of these statements should always
be considered true?

Turn to Section:

all three 29
(b) and (c) but not (a) 13
only (c) 21

Your answer, p,nA, in Section 1 is cor-
rect. The overall cross-sectional area of the
upstream face of the segment is A. The
area of fluid in the upstream face is nA, if
we assume the ratio between fluid area and
overall area to be equal to the porosity. The
pressure, or force per unit area, multiplied

2 8

by the fluid area then gives the total force
on the fluid element through the upstream
face. Similarly, if p2 is the fluid pressure
at the downstream face, p,nA, gives/ the
magnitude of the force exerted on the down-
stream face of the fluid element by the ad-
jacent downstream element.
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(8)--con.
QUESTION

Let us assume that the pressure Pi is
greater than the pressure 232. Which of the
following expressions would best represent
the net pressure-force on the element in
the direction of flow?

(9)

p1nA+pgiA.
p1nA+23nA

2
pinAp2nA

Turn 'to Section:

23

12

31

Your answer in Section 28 is not correct-
We saw in Part I that head, h, was given by

h
pg

It follows that

(10)

dh d(p/pg) dz
+ .

di di di
Use this result in selecting a new answer

to the question of Section 28.

Your answer in Section 11 is not correct.
We have obtained exPressions for two forces
acting in the direction of flowthe net
pressure force, which was calculated as the
difference between forces exerted on the up-
stream and downstream faces of the element
by adjacent elements of fluid (see Section
26) ; and the component of the gravitational
force in the direction of flow (see Section
11). The question asks for the combined net
force due 'to both pressure and gravity.

Your answer,

Forces are combined by means of vector ad-
dition. In this case, however, the net pressure
force and the component of gravity we are
considering are oriented in the same direc-
tionin the direction of flow. Vector addi-
tion in this instance therefore becomes a
simple addition of the magnitudes of the two
terms.

Return to Section 11 and choose another
answer.

AZ

A/

in Section 35, is coirect. AziA/ is the equi a-
lent of cos 7; it simply 'gives the change in
elevation per unit distance along the path of
flow. (It thus differs from slop.e which by
defi ition kthe change in elevation per unit
orizontal distance.) In the notation of cal-

culus, Az/Al would be represented by the
derivative, dz/dl, implying the limiting value

a the ratio ba/ Al as smaller and smaller
values of A/ are taken. The force component
along the pipe must be positive, or oriented
in the direction of flow, if z decreases in the
direction of flowthat is, if -dz/d1 is nega-
tive. It must be negative, or oriented against
the flow, if z increases in the direction of
flowthat is if dz/dl is positive. We there-
fore introduce a negative sign, so- that we
have finally

ft= pn.A.Al.gdz/di
where fi is the component of the gravitational

2 9



PART II. DARCY'S LAW 19

(11) con.

force maralleI tc t ipe, as in Sectn 33.
The total force- -the flow is the sum
of this gravity zoponi±nt and the pressure
force.

Which of ---v.pressions
give the net fc ce cth f cl in the directic
,)f. flow, due to ore: ant . gravity together ?

dp

nj d7

--cos 7 +

1-.11-A

22

n.lA.
dz -dp
dl dl

. Turn to Section.

1 '9,

24

10

Your answer in ei
The expression (1,:I4

.approxiinately equal
rection of flow agains
taken at the midpoim
it does not give the ii(
itself in the direction of flow.

The fluid element extends along the pipe
a short distance. Over this distance, pressure
decreases from P, at the upstrea. m face to P2
at the downstream face. The force on the
element at the upstream face is the force
acting in the direction of flow; the force on

,n 8 is not correct.
-pgiA)/2 would be
the force in the di-
I cross-sectiona area
,f our flyid element;
force oil the element

4-,

the element at the- d,..,wi-.!trelam is a
force actin:: agaisnt the .iirection of dow.
That is, it is a."back pu from the adjz:xent
fluid element, against _e el...ment we are
considering. Its magnitude is again given as
a product of pressure, poroity, and -face
area,. AAA, but we now insert a negative sign
to describe the fact that it acts in opposition
to the force preViously ccinsidered. The net
force in thedirection of flow is obtained by
algebraic addition of the two force terms.

Return to Section 8 and choose another
answer..

Your answer in Section 7 is not correct.
Ground water frequently percolates down-
ward from the water table; the pressure is
greater at depth than at the water table, so
in these cases water is moving in the direc-
tion of increasing pressure. Keep in mind

(13)
that Darcy's law relates flow
the gradient of head, not to
pressure,

Return to section 7 and
answer.

Your answer in. Section 31 is not'correct.
We have seen that the net pressure force was
equal to --ApnA. It cannot be equal to this
and to Ap(dp/dOnA (unless dp/dI happens
to equal 1, in a particular case).

- We wish to substitute an expression in-
volving the derivative, dp/dl, in place of the.

(14)

per uriit area to
the gradient of

choose another

pressure change term, Ap. To obtain an
expression for a change, or an increment,
from a derivative, it is necessarr to multiply
the derivativethat is, the ra4 of change
per unit distanceby the distance over
which the increment or change occurs. For
example, the diagram shows a graph of pres-

.

2 0

.
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(1 4) CLCJA.

1, Distar

p, p, == Pressure chan;

(15)-

:J.:ire versus distan' --(11..e slope of this graph
is. the derivative, If we wish to sin-
ta.in the change im P2p1 occurring
over the interval. AL 77e must multiply the
rate of change .per it distance, dp/c11,
the distance Al. Since r,:e actually reqnire the
negative_ of this qua=ity, we must
insert a negative sigz. (As shown _on tik
graph, p, exceeds p:--oressure is decreasii
_in tEne direction of flov-, 1. The derivative -of
inrsure with reSpect to distance, .dp/dl, is
therefore a negative quantity itselfthat is,
the graph has a neg:L:ive slope. By inserting
another negative we will obtain a posi-
tive result for the term p1P2.)

Return to Section 31 and choose another
answer..

Your answer, m=p' .11n ,i. n ,Stion 26
is correct; mass density, p. trmles 1.olume of
fluid, nAl:A.,--where n is porstty. 7ives the
mass of -fluid., -The magnitude the total
force .of gravity on our fluid -Aena-mt will,
therefore, be p-A1-n:Ag. This -'.ra\-ritational
force acts vertically downward. As a force,
howeVer, it iS a vector quantity; iii1i;731iie any
other vecteir quantity it can be into
components acting in other dir=a;

QUESTION

The diagram again shows the flow system
we have postulated. Which of the following
statements is correct?

Turn to Section:

The entire gravitational force is effect-
. tive in causing flow along the pipe. 22

Only the component of the gravitational
force parallel to the axis of the pipe
contributes to flow along die pipe. 33

Only the horizontal component of the
gravitational force contributes to flow
along the .pipe. 18

31
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Your.,answer. in 3ection 1 is not cor7ect.
The force -On the .1.-iernent will be given by
the pressure, 3r fcrrce per unit area, .

(16
plied by the area of fluie which ±.4-L-
pressure acts.

Return to Section 1 ann ch4wse another
answer.

Your answer in :Section 26 is not correct.
The term p-.11.A wrould give the mass of a
fluid element havhig a volume Al- A. In our
problem, however, only a part of the volume

(1 7)
_ALA is occupied by fluid; _Ilk
cupied by solid sand grains.s4o
volume of fluid is less than

Retuin to Section 26 awl' c
answer.

Your answer in Section 15 is not correct.
Gravity, as we are considering it, has no
horizontal component. No vector can have a
component perpendicular to its own direc-
tion. For our purposes we consider the grhi-
tational force vector, Fy, to be always di-
rected vertically downward; there can be
no horizontal component of this force.

The diagram shgws the gravitational force
vector resolved into two .componentsone
parallel to the direction of flow, fr, and one
perpendicular to the direction of flow, f.
Fluid velocity itself may be considered a vec-
tor, in the direction 1. As such, it has no com-
ponent in the direction of f, normal to the
pipeand a force component normal to the

(18)

nnce is
the aormal

:90ese another

pipe could not contribute
fluid velocity.

Return to Section 15 and choose another
answer.

in any way to the .

Your answer in Section 11,
dp

pg-- n A
dl di

is crrect. The net force per unit volume of
Alia- due to Pressure and gravity would thus
be

t dp dz\

dl dl
since ,s/-n.A gives the volume of the fluid
element.

(19)
Our approach in this developizerat is to

equate the net force driving the taw to tie
frictional force opposing it; more exactly, -we
will obtain the vector sum of these apposing
forces and set the iresult equal ttc zero. The
resulting equation will be a statement of
Darcy's law. We have obtained an' expression
for the net force driving the flow_ We Plow
consider the force opposing thenaction. This
force is due primarily to friction between the
moving fluid and the porous meditam2In same

f19.
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19)Con.
other sy-zi, rnecharicsfor examp:e in
the case of :2,a:7:id::: mos .-ing through a vis-
cous fluid a-: rnu...era steed--the frict onal
retarding ft:Tee observl to be preportional
to the velocity ::nevernt. By anaio- we
assume a simf rela-H-Tri to hold for our
element of rduk. How-,-er, as indizated in
Pant I, the actua.. nor.- welocity variesfrom
point to point dificult or impossible to
determine. For --7:ractfal purposes therefore,
we consider the fricLonal force on our f-luid
element to be prorth:rial to the specific dis-
charge; or flow T. er urt cross-sectional area,
through the porous material. (See Section
14, Part I,.) The ,pecifit.: discharge, which, has
the dimensions a velocity (and is in fact a
sort of apparent velocty), is determined by
the statistical distribution of pore velocities
within the fluid element; and we are, in ef-
fect, assuming that the total frictiona7 re-
tarding, force on the element is likewise, de,
termined by thi statistical ejl..Fqr.ribution of
pore velocities. n addition, assume the
total frictional :retarding -force on the fluid
elennent to be prDportiona to the volume of

in the element, on the theory 'that the
tOtaLi area of fluid-solid contact within: the
element, and therefore the total frictional
dram; on the element, increases, in propcorticin
to the volume of the element. Finally, we as-
sume thafthe retar,ding force is proportional
to the dynamic viscosity c f the fluid, since
we would expect a fluid of low viscoity to
move through a porous mee.;um more readily
than a highly viscous Houk:.

(20

pactict-,d
with san-
Pormity

2

QUESTION

Following the various assumptions out-
lined above, which of the foLlow:::=4,7 1:.k--1res-
sions would you choose as best reirrii.4.rting
the frictional retarding furce on the fluaL.:ele-
ment of .Section 1. (Shown again in the ilia-
gram.)

Turn to Saction:

2

34
k A1,71- A

:" 1
20

Ic .4
where i k indicates a constant cf propor-
tionality, is\the dynamic viscoStty of the
fluid, and (7 is the fluid discharge through the
pipe.

Your answer in section 19,

n A )-9-,
A

is correct: The ne,,tive sign is errpOloyed to
indicate that the :triennial retarding -.force
will be opposite in-dim-724.ml° the fluid move-
ment. We assume- that ,lur fluid motion is
Steadythat is, tt the:fluid velocity is not

changing with time, or 5n other words; that
there is no fluid acceleration. In this condi-
tion, the forces producing the motimi must
.'.)e in baranace with die frictianal :retarding
force. Th vector surti of these forces must?
therefore he zero; and because :the force.
componen: contributing to -the motion are
all directed'. along the pipe, skis veertor sum
is Simply my.algebraie sum.

33
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We h.:. e seen tit A driving force
the fluiO . the net force.. in
the' dire 7-.:o pressure and
gimvity

it A:

Suppose we take eraic sum of .this
force and cur ret. Thrce, and set th,:
rasult equ: 1 to the following

( 0) Con.

93

c,iu..,tions may :hen be derived from the re- :

Turn to Section:

dp dz ir, Q
---'-- pg---4- --- -----= Al n .4
dl dl k A

lc __+ pg__ ___
1, .d1 dl A

( dp dz \ .1' ii Q
cll-F Pgfil) k A

Your answer :!n 7 is correct.
Darcy's law, as equazion cnntaining a
derivative, is actually a differentLal equation.
It a-elates flow -pez- -.mit area. or :flux, to the

_energy consumed per omit cidstance bY fric-
tion. , Analogies can real:Hy- be recognized
between Darcy's law an the differential
equatiOns governirrz the s:zeady flow of .heat
or elec2ricity. Th,.; hy:Irnulic '7011ductivity,
K, is analogous to ---therrti r electriml con-.
ductivity; whili= h, is .a po-

(21)

36

28

27

ntial analogoLs to temperature or voltage.
To be more correct, the term ICII constitutes
qround-water velocity potentialthat is, a

fanction whose derivative yields the flow
velocityprovided both the fluid and the
pm-ous medium are homogeneous and the
rredium is isotroPic.)

This concludes the privrameei instruction
,»i" Part II. A discussion in text format deal-
.ng with generalizations of Darcy's law be-
;ins on-thepage following Section 37.

Your answ in Section 15 is not cor.:::F-7,
The diagrarr .1,-,hows the gravir.-...1zional
vector, F... res.,-..yed int-) two conizTnnenu.. CAlt,
parallel 1:,., (diree.-..tion of flow .f,, ame, ne
perpenaiictLar If the trov- were -,:er-
tically .doz-rn is, colEnear wz F
the ,.,-f,,ntir-2e p:r..--.....1-71.4..2±nraial forc& wau ef-
fecti-v:e prnii1r--i:7-7; flow. In ate kituatiom
shown, .7me: tomperientt,rff the or-art-
tatirmal en-. that p .erpe-ndi=1,2447 to
the lowis bait by static iffctrces e-
ertI the cOir.the mipe. _To 771.0 this
in another way. gweinmy note that the fluid
velocity .itseld in.:.:a-vector, in :fte- direction .Z.
No vector can- tmwa:componerrt perpendicu-
larto its,owmtlirection; so the yekcity vectoT

(22)

has no component in the direction of fn. The
force component f can therefore contribute
nothing to the fluid velocity.

Return to Section 15 and choose another
answer.

3,1
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(23
--lour answer in Section 8. is not correct.

Th--3 pressure at a point in a fluid is a scaaar
quantity; it is not directional in character,
and we say that it "acts in all directior
Humever, if we choose any small cross- 2c-
tional area within the fluid, we can measTire
a force against this area attributable to .:he
pressure, rega_rdless of the orientation of .he
area. This force a rector, or directed cuan-
tity; it acts in a eurection normal to the mall
area and has a magnitude equal to the nrod-
uzt of the pressute and the area. In the ex-
ample of Section:, 1 and S. we consider the
pressure at two 7.:Kiints, -the upstream and
downstream face:, of our fluid element. At
tize- upstream fac -we write an expres.-.1n

(24,

for the =magnitude c.f the force in the
dition of the flow. At the_ downstream face
wE .Lre intereeted in a force opposing the
-flo---that is, acting in a direction opposite
to flow. The magnitude of -this -Icirce is

given as5 a re.T.ro&act of prt-,ssure, poros-
i..zaid face .u_rea. p; but because we are

inzenested in the force acting againrt the
rioiw or in a directiom opposite to that prig-

taken, we mow introduce a negative
im The net force on the fluiek- element 'along

axis of the DiPe can now obtained by
algebraic addition of the twc force exures-
sions.

Return to SecOort 8 and choose another'
amswer.

Your answer in Section 11 is not cc=ect.
The idea here is simply.. to corr-anMe ex-
pressions obtained fozr ae rt nressure-. force
(see Section 26) ,icomponc,n7 rEf
.the gravitational force parallel to thE
(see Section 11) . Forr.. are always corr.- .red
by means of vector. addition. In 'this
however, the two vectors we are consiti----ric7;
are- oriented in the same directkm Tins:,[, 'is,

Your answer in Sectinn 1 is not correct. If
we were dealing with open-flow hi the pipe,
the force on the fluid elemmt would indeed
be given'by the term pal. Here, however, a
part of the area A is occupied by solid sand
grains and the remainder the upstredin

the net pr...ossure force and our com-
vnent of the, gravitaticmal force are oriented
it the direction of the flnw. In this case,
t---Laerefore, vector ;additior . amounts to no
more than the simple scalar addition of the
magnitudes of tibe two components.

Rinturn to Sectisar 11 mail-. choose another
ansImmer.

face of the fluid element. For our purposes
here, we may assume that the ratio of fluid
area to total area. equal to t32.f.- porosit;

Return to Section 1 And Atomism Annther
answer.

35
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Your answer in Section 31,
dp

(11
.

is correct. The aradient or derivative of pres-
sure, d) Idl, multiplied by the length inter-
val, :11, gives the change -in pressure, p, p
occuarring in that interval. Since we require
the term pr n we use a negative sign.

. Multiplication by the fluid area, n4, then
gives the net pressure force on the element.

Our purpose in this chapter is to develop
DarcY's law by equating the forces drivir.:7
a flow to the frictional force retarding it..
We have considered the pressure force, whicth
is one of the forces driving the flow. In add::-
tion to this pressure force, the element
fluid is acted upon directly by the force
gravity. The total gravitational force on
element is given by the acceleration due to
gravity, multiplied by the mass, m, of fluid
in the element.

(26)

25

Pipe packed
with sand
Porosity = n

-.atiESTION

Which of the fe....lowing equazions for the
:Ttass of fluiid in oi. r eleincurt, which is shown
14;a:n in the diagm..an, is corteCt7

p _11- A

fl p 71

Your answer,
dz Q+ pg A

di dl I: A
in Section 20 is not correct. Each of the force
termSthe net driving force and the retard-
ing forcecontains the expression al-n-A

27)

Turr

--.!e.nre.sentimg tie voIume of rnziE in r.fie ele-
Whem theeinrce :terms aiirNed and

:-.Ltrati". sum- init tO ZtTO, the' tea In .1./ -n A
riy be dide ut of the eq_It12111.

-Return to St.t-ctiertz 20 and choose -Another
aswer.

Your answer in Section 20,
k Q

pf
dl dl A

iis correct. For the case of a fluid of uniform
density and viscosity, the terms IL and p are
cohstants and may be combined with tire
other constants in the problem to form a new
constant, K, defined as

36

(28)
kpg

Ushr,;: tiffs iew J.:onstant we risr rewrite
our equation-rim the form.

dp dz\ C

dl di
(continued on ITVirr page)
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Con.

QUESTION

Keeping in mind that the term 1/pg is a_
constant, so that

cl(1
1 dp ,pg)

Q

A
Q

=
A
Q

A

dh
K

dl

K
dl

c 1 dp

pg cll

dz)

dl
h±di

di

Turn to Section:

'7

9

30
pg dl dl

h represents the head as defined in Part I
that is,-

..which of the equations given below consti-
tutes a valid exmression ofrthe equation we
have just obtained? ,

vT.

(29)

P

pg

.Level of saturation

packed with sand

Outflow

(30)

Your ansWer in Section 7 is not correct.
Ground water frequently discharges upward
into stream valleys; and in the figure; upward
flow occurs in the shorter arm of the U-tube.
Thus statement (a) of Section 7 cannot
always be true.

Return to Section 7 and choose another
answer.

Your arswer in Section 28 is riot correct.
We saw in Part I that hydraulic head, h, was
given by

d{P+z
dh pg

dl dl

pg 404.

The derivative of kyvith respect to distance, Using this relation, return to Section 28
I, is therefore given' by and choose another answer.

3 7



PART II. DARCY'S LAW

Your answer in Section 8 is correct. The
net force in the direction of flow is given by
the difference between the two opposing
forces exerted upon the opposite faces of the
element by the adjacent elements of fluid.
We may,now factor out the common term
nA and obtain as our expression for net pres-

' sure force (p,--p:)nA, or ApnA, where
Ap indicates the small pressure difference,

, 1)--P1, between the downstream face of the
fluid element and the upstream face.

Since pressure is varying from point to
point within our system, we may speak of a
pressure gradient; that is, a rate of change
of pressure with distance, 1, along the flow
path. This gradient might be expressed; for
example, in pounds per square inch (of pres-
sure) per.foot (of distance) ; it is represented
by the symbol dp/ dl, and is referred to as the
derivative of pressure with respect to dis-

_

tance in the direction 1. If we were to plot a
graph of pressure versus distance, dp/ dl
would represent the slope of the graph.

QUESTION

Which Ortle following expressions is ap-
proximately equivalent to -the net pressure

(31)

27

P2 P1 --=--- AP

force, ApnA, on our element of fluid
(shown again in the diagram) ?

Your answer, p-Ti AlAg sin y, in Section
35 is not correct. We have already seen that
the magnitude of our force component is
given by p nAl-A g cos y. In the answer
you have chosen, sin 7 has been substituted

_ for cos y in our original expressionand this
can be true only for a particular value of the

dp
AlnA
dl
dpnA
dl

dp
tip nA

dl

(32)

7-, Turn to Section:

26

5

14

angle 7. It is true, however, that the idea of
this question is to find an equivalent term for
cos y and substitute it in our previous expres-
sion for the force component.

Return to Section 35 and choose
answer.

38

another



98 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

(33)

Your answer. in Section 15 is correet ; we
may resolve the gravitational force, F into
two_orthogonal components, f1 and f, parallel
to and perpendicular to the axis of the pipe
as shown in the figure. There is no movement
perpendicular to the \pipe; the component of
the gravitational foree, in this direction is

(34)

ri

balanced Br static forces exerted against the
fluid elem t by the wall of the pipe. The
component arallel to the pipe does contrilinte
to the ion and must be taken into account-
in equations describing the flow.

QUESTION

The magnitude of the total gravitational
force upon the element is given by the mass
of the element multiplied by the acceleration
due to gravity; that is, FDmg, where m is
the mass of the fluid element. Referring to
the diagram shown, which of the following
expressions, gives the magnitude of the com-
ponent of the gravitational -force parallel to
the axis of the pipe?

Turn to Section:

6
35
37

71 A g
f,rp 1? Al A g cos y

--.1/ A g tan y

Your answer in Section 19,
1 Q2p.

k Al - ii
is not correct. Our assumptions were that the
retarding force would be proportional in
some way to the dynamic viscosity (s), to the
volume of fluid in the element (Al-n- A), and
to the specific discharge, or flow per unit area
(Q/A). Your answer represents the retard-

ing force as proportional to the square of
fluid discharge, which might be compatible
with- the assumptions, but as inversely pro-
portional to the volume of fluid in the ele-
ment, which is not compatible with the
assumptions.

Return to Section 19 and choose another
answer.

C-



PART II. :DARCY'S LAW

Your answer, n- -gcos in Section
33 is correct. T1 . mass of the ,finf:S3 elemeirt,
as we have seen is p- n ..1/ -A ; tiplication
by the accelerat in, g, gives tine zDtal gravi-
tational force on the element. Tlhe component:
of this foxce parallel to the pipe, as icicated
by the vector.diagram, will be f',.ound multi-
plying the total_ iforce by the coeine of -..

(35)

99

ax

QUESTION

Suppose we I-low draw a small right tri-
angle, taking the hypotenuse as l, the length
of our fluid element, and constructing the
two sides Az and ax as in the diagram. Which
of the following expressions may then be
used, for the magnitude (without regard to
sign ) of the component of gravitational force
parallel to the flow?

Turn to section:

n A - g - sin y 32
p -n-A-g-V(Ax)2+ (.102; 4-

AZ
p 71 - - A - g _...... 11

Your answer in Section 20 in mot correct.
If the sum of the two force. e2qmsssions is set
equal to zero, we have

dp .dz
_Al n A)

dl di2

meoliN

1

ic A

(36)

We may divide through by the term Al-n-A,
representing the volume of fluid in the ele-
ment, and rearrange the resulting equation
to obtain the required result

le urn to Section 20 and choose another
answ r.

40%
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(3 7)

Your answer in Section 33 is not correct.
The total gravitational force on the elenient
isgiven by mg, where m is the mass of fluid
in th.e element,and g is the acceleration due
to gravity. The mass of fluid in the element
is in turn given by the volume of fluid in the

element multiplied by the mass per unit vol-
ume; or mass density, of the fluid, which we
haveodesignated p. The volume of fluid in the
element, as we have seen is nAl-A, where
n is the porosity. The mass is therefore
p n..1/.A; and the total force of gravity on
the fluid element is given by

Fy=pnAl-Ag.
We require the component of this gravita-

tional force parallel to the axis of the pipe.
The sketch shows a vector diagram in which
the length of each arrow is proportional to
the force or component it represents. The
gravitational force is represented by the
arrow F, and the components are represented
by the arrows f, and fu. The rule for the res-
olution of a vector into components can be
visualized from geometric considerations.
The magnitude of the component of a vectqr
in a given direction is the product of the mag-
nitude of the vector and the Cosine of the
angle between the direction of the vector and
the given direction.

Return to Section 33 and choose another
answer.

4 1



PART IL DARCY'S LAW 31

Generalizations of Darcy's Law

The form of Darcy's law considered in the
preceding program is useful only for one-
dimensional. flow. The discussion in this sec-
tion indicates, in general outline, the manner
in which Darcy's law is extended to cover
more complex situations. Vector notation is
used for economy of presentation, and this
discussiOn is intended primarily for readers
familiar, with this notation. Those concepts
which are essential to material covered lathr
in the program are treated again as they are
required in the developmentwithout the use
-of vector notation. The material presented
here not difficult, and readers not familiar
with vector notation may find it possible.to
follow the mathematics by reference to a
standard text on vector analysis. However,
those who prefer may simply read through
this section for familiarity with qualitative
aspects of the material and may then proceed
Airectly to Part III.

For three-dimensional flow, we may con-
sider the specific discharge, q or QIA, to be
a vector quantity, with components iq,, jq,
and kg, in the three coordinate directions.
i , j , and k represent the standarth.unit
vectors of the Cartesian system. We consider
a small area, Az, oriented at right angles to
the x axis at a point 0, and observe the fluid

. discharge through this area to be Qz; the
'limiting value of the ratio Qz./A, as A, is
made to shrink toward the point 0, gives the
value of q applicable at point 0. qy and q,
are similarly defined for the y and z direc-
tions. The specific discharge at point 0 is
given by the vector sum

q==iqx+ jqy+kq,
A

q is thus a vector 13oint function; its magni-

tude and direction may vary with location in
steady flow and with location and time in
unsteady floNyi

If.the pon6us medium is homogeneous and
isotropic and if the fluid is of uniform density
and viscosity, the components of the specific-
discharge vector are each given by a form of
Darcy's law, utilizing the partial derivative
of head with-respect to distance in the direc-
tion in question. That is, the components ar
given by

3hqz= K-
3x

qy=K-

3h

where K is the hydraulic conductivity.
It follows that the specific-discharge vectpr

in this case will be given by

q=K
3h 3h 11

3x 3y 3z
or

q= v h

where v h denotes the head7gradient vector.
Thus, if the medium is isotropic and homo-

geneous, Kh constitutes a Vehicity poten-
tial; and the various methods of potential
theory, as applied in studying heat flow and
electricity, mak be utilized in studying the
ground-water motion. Since the0 specific-
discharge vector is colinear with v h, it will
be oriented at right anglaS \to the surfaces of
equal head, and flownet analysis immediately
suggests itself as a useful method of solving
field problems.
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In practice, one does/hot usually find homo-
geneous and isotropic aquifers with which to
work ; frequently, however, simply for lack
of more detailed data, aquifers are assumed
to behomogeneous and isotropic in obtaining
initial or approximate solutions to ground-
water problems.

The situation in many aquifers can be rep-
resented more successfully by a slightly more
general form of Darcy's law, in which a dif-
ferent hydraulic conductivity is assigned to
each of the coordinate directions. Darcy's law
then takes the form

where Ka,, Ky, and K, represent the hydraulic
conductivities in the x, y, and z directions,
respectively, and again

q=iqz-f-jqy +kg,.
This form of Darcy's law can be applied

only to those anisotropic aquifers which are
characterized by three principal axes of hy-
draulic conductivity (or permeability) which
are mutually orthogonal, so that the direction
of maximum hydraulic conductivity is at
right angles to the direction of minimum hy-
draulic/conductivity. These axes must corres-
pond with the x, y, and z axes used in the
analysis.
principal
tical; fo
vertical
used to

he implication is that one of the
axes of conductivity must be ver-
unless the z axis is taken in the

irection, the term 3h/3z cannot be
represent the sum of the vertical

pressure gradient and the gravitational force
term.

It is easily demonstrated that the specific-
discharge vector and the lines of flow are no
longer orthogonal to the surfaces of equal
head in this anistropic case, and that the
conditions for the existence of a velocity
potential are no longer satisfied. Formal
mathematical solutions to field problems are
essentially as easy to obtain as in the iso-
tropic case, however, since a relatively simple

4 3
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transformation of scales can be introduced
which-converts the anisotropic system to an
equivalent isotropic systeni (Muskat, 1937).
The problem may then be solved in the
equivalent isotropic system, and the solution
retransformed to the original anisotropic
system.

Probably the most common form of aniso-
tropy encountered in the field is that exhib-
ited by' stratified sedimentary material, in
whidh the permeability or hydraulic conduc-
tivitY normal to the bedding is less than that
parallel to the bedding. If the bedding is hori-
zontal, the form of Darcy's law given above
may be applied, using Kr=K. The anisotropy
in this case is two-dimensional,-With the axis
of minhpum permeability normal to the bed-
ding, and the axis of maximum permeability
parallel to it. In many cases, aquifers, are

, assumed to exhibit simple two-dimensional
anisotropy of this sori when in fact they are
characterized by heterogeneous stratificlaion
and discrete alternations of permeability.
This type of simplifying assumption fre-
quently enables one to obtain an approximate
solution; where otherwise ino solution at all
would be possible.

For many problems, however, this gen-
eralized form of Darcy's law is itself inade-
quate. As an example,' one may consider a
stratified aquifer, exhibiting simple two-
dimensional anisotropy, which is not hori-
zontal, but rather is dipping at an appreciable
angle. The direction of minimum permeabil-
ity, normal to the bedding, does not in this
case coincide with the vertical. One may
choose new coordinate axes to conform to the
new principal directions of conductiVitY. If
this is done, the component of the specific dis-
charge in each of thwe new.coordinate direc-
tions must be expressed in terMs of the pres-
sure gradient in the ditection/concerned, and
the component of the gravitational force:in
that direction. Reduction of the equations to
the simple form already given, using the prin%
cipal directional .derivitiveS of h, is not pos-
sible. Alternatively, one niay retain the hori-

- zontal-vertical coordinate system, in which
case the principal axes of conductivity do not
coincide with The Coordinate axes. In this
case, hydraulic conductivity must be ex-

9



PART II. DARCY'S LAW

pressed as a tensor; the component of the
specific discharge in one coordinate direction
will not depend solely on the head gradient in
that direction, but upon the head gradients in
the other coordinate directitIns as well.

In addition to these considerations regard-
ing aquifer anisotropy, practical problems
require that attention be paid to heterogen-

. eity, both of the aquifer and of the fluid. If
the aquifer is heterogeneous, hydraulic con-
ductivitk must be treated as a function of the
space coordinates; in this case, hydraulic
conductivity (or in some cases intrinsic
permeability) is usually defined as a tensor
which varies with position in the aquifer.

If 'the fluid is heterogeneous, its viscosity
and density cannot be treated as cons-Cants,
as was done\in the program section of Part
II. Equations cannot be 'r'educed to terms of
the hydraulic conductivity and head gradi-
ents, but must rather be retained in terms of

/ specific permeability, viscosity, pressure
gradients, and components of the gravita-
tional force (which depend upon fluid den-
sity, and will vary with position, and possibly
with lime, as fluid density varies)..A special
case of some importance is that in which the\
aquifer is horizontal, with principal axes of
permeability in the x, y, and z directions, but

7
the fluid varies in both\density and viscosity.
Darcy's law \for this Cage may be written

3P

/Lx.y..:

3'3

and again

kJ, 31)

P.r.v.z. 3Y

Jp
qf -+ pzg

kz

ttz,v.z 3z

q= ig,+ jqy +
In these equations, kz., kv and./kr are the

intrinsic p&meabilities in the*, y, and z
directions ;Ipr,,,,. is the dynamie yiscosity func-
tion ; p./: is the density funaion ; and the
other terms are as previosly defined. Since
gravify is assumed to have no components in
the horizontal plane, density does not enter
.int6 the expressions for q and (b. In natural
a uifers, variations/in density are related

rimarily to variatiOns in dissolved-solid con-
tent of the water, while variations in vis-
cosity are related primarily to variations of
ground-water temperature. The equations
given above thus have utility in situations
where water -quality and water temperature
are known to vary in an aquifer.

4 4
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Darcy's law, as mentioned in the discussion
at the close of Part II, may be generalized
to deal with three-dimensional flows; and it
may be combined with other laws or concepts
to develop equations for relatively complex
problems of ground-water hydraulics. Even
in the simple form developed in the program

of Part II, however, Darcy's law has direct
application to many field problems. In Part
III we shall consider a few examples of such
direct application. Later, in Par.t V and VI,
we will consider the combination of Darcy's
law with other concepts to yield equations
for more complex problems.

In Part II we pointed out that Darcy's law
is a differential equation--that is, an equa-
tion containing a derivative. It gives us some
information about the rate at which head
changes with distance, under given Condi-
tions of flow. In general, in dealing with
ground-water problems, we 'will require ex-
pressions that relate values of head, rather
than the rate of,change of head, to flow con-
ditions. To proceed. from a differential equa-
tion, describing the rate of change of head,
to an algebraic equation giving values of
head, is to obtain a solution to the differential
equation. There are various techniques for
doing this. We need not go into these tech-
niques of solution here. For our purposes, it
will-be sufficient if we can recognize a
tion when we are given onethat is, if we
can test an algebraic equation to determine
whether it is a Solution to a given differential
equation. This is just a matter of differentia-
tion. When we wish to know whether an
algebraic equation is a solution to a differ-

IMMN

ential equation, we may simply differentiate .

the algebraic equation. If we obtain a result
which is equivalent to the given differential
equation, then the algebraic equation is a
solution to the differential equation. Should
we fail to obtain an equivalent result, the

- algebraic equation is not a solution. Thus., for
our p'
sider
be an
entiat
equati

ent purposes at least, we may con-
solution to a differential equation to

ebraic equation which, when differ-
will yield the given differential

r: QUESTION

Which of the following algebraic equations
is a solution to the.differential equation

dy=K ?
dx

Turn 10 Suction:

y=Kx2 15
x= 2y +K 23
y=Kx+5 7.

34

45
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Your answer in Section 35,

dh Q

(ln r) 2irKb

is correct. This equation is equivalent to the
original differential equation for the problem
and states that the rate of change of hy-
draulic head, with reSpect to change in the
natural logarithm of radial distance, is con-
stant and equal to

2irKb

E 2
QUESTION

Suppose we were to plot a graph of hy-
draulic head versus the natural log of radial
distance from the- well, in our discharging
well problem. Which of the fallowing state-
ments would apply to this graph?

Turn to Section:
(a) The plot would become progres-

sively steeper with decreasing
values of In rthat is, as the
well is approached. 18

(b) Equal changes in head would be
observed over intervals repre-
senting equal changes in r. 31

(c) The plot would be a straight line. 38

_Your answer in Section:19 is correct. If
the head in the well (anE throughout the
aquifer) prior to pumping is equal to he, the
term hehie is actually- theArawdown in the

. pumping well (assuming :that there are no
additional losses in head associated with flow
through the well screen, or within the *ell.
itself). Thus the equation in your answer
alloWs us to predict the-drawdown associated
with any discharge, Q. Alternatively, the
equation can be viewed as a method of cal-
culating the hydraulic conductivity, K, of th-1"-
.aquifer on the basis of field measurements of
(2 and hehie, or .on the basis of head meas-
urements at any arbitrary radii\,..ri and r2t
using observationwells. The theory Of steady-
state flow to a well as developed here is often
referred to as the Thiem theory, after C.
Thiem, who contributed to its development
(Thiem, 1906).

Whileit would not be common, in Practice,
to find a well conveniently located at the cen-
ter of a circular island, the exaMple is a
very .useful one. The hydraulic operation of
any well is siMilar, in many important' re-
spects, to that of the well on the island.. In

3
particular, the decrease in crossosectionad
area of flow as the well is approached, lead-
ing to the logarithrnic "cone of dews:Ns-fon"
in the potentiometric surface, is a festance of
every discharging well problem. It is-m-..fact
the dominant feature of Such problems, aince
the head losses close to the well, within this
"cone of depreSsion" are normally the largest
head losses associated with the *operation of
a well. The -radial symmetry assumed in the
Thiem analysis usually prevailS, at least in
the area close to the well, in:most discharging
well problems.

Readers familiar with differential eqUa-
tia-ns will note that the equations of radial
flow developed here can be obtained more
directly by separating variables in the differ-
ential equation

dh
K---,

27rbr dr. .

and integrating between the linfits ri and r2f
or 'no and rc. That is, these radial-flow equa-
tions, which state that head will vary with
the logarithm of radial distance, are ac-
tually solutions to this differential equa-

.
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3E Con.
tion ; if' they are differentiated with respect
to r, the differential equatiOn is obtained.
Again readers familiar with the general con-
cepts of potential theork will recognize the
pattern of head loss arbund the well as an
example of the "logarithmic potential" asso-

40

ciated with potential-flow problems involving
cylindrical symmetry in other branches of
physics.

You have completed Part III. You may go
on to Part IV.

Your answer. in Section 9,
2Q

Ii =
Kw

is not correct. If we differentiate this equa-
tion, treating ho as a constant, we- obtain the
result

dh 2Q

cx Kw
which is rim -the differential equation

50
de-

veloped for the problem. Keep in mind that in
order to find a solution to the differential
equation

d(h2) 2Q

dx Kw
we must find an expression which will yield
this equation upon diffArentiation.

Return to Section 9 and choose another
answer.

Your answer in Section 8 is not correct. The
differential equation tells us that any solution
we obtain, giving it as a function of x, must
be such that the derivative of it with respect
to x, dit/dx is a constant, (Q/KA). Thus
we know that (1) since the derivative is a
constant (does not involve x), the plot of
it versus x'for any solution must have a con-
stant slopethat is, the plot must be a
straight line; and (2) since the constant has

60

the same value for any solution, the graphs
of different or distinct solutions must all have
the same slopethat is, these plots must be,
parallel straight lines. A family of curves all
intersecting the x axis at a comMon point, as
in the answer which you chose, could not
have these characteristics.

Return to Section 8 and chonse another
answer.

Your answer in Section 41 is not .correct.
The direction of flow in this problem is
radial, toward the well as an axis. The crOSS-
sectional area of flow must be taken at right
angles to this radial flow direction ; that is, it
must be a cylindrical surface within the aqui-
fer having the centerline of the well as its,

axis. At a radial distance r from the well, the
cross-sectional area of flow will be the area
of a cylindrical surface of radius r and .of
height equal to the thickness of the aquifer.

Return to SectiOn 41 and select another
answer.

47
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Your answer, yKx+5, in Section 1 is cor-
rect; of the three expressions given, it is the
only one which yields dy/dx--.K upon differ-
entiation. However, y=Kx +5 is obviously
not the only equation which will give this
result upon differentiation. For example, dif-
ferentiation of the equations y=Kx+7,
yr--Kx3, or yKx will also yield dy/dx=K.
The constant term which is added or sub-
tracted on the right does not affect the d:ffer-
entiation 2tagard1es:. of the value of the con-
stant, the derivative of y with respect to x
always turns oLt to be K. Since we have an
infinite choice Df constants to add or sub-
tract, there are: ar infinite number of alge-
braic equations which qualify as solutions to
our differential efration. This is a general
characteristic of Lfferentiat equat onsthe
solutions to a diffential equation e always
infinite in number.

(a) h=
KA

(b) h=ho--Qx
KA

Q
(c) h=h0----x2+7

KA

ID 7

where ho, Q, K, and A are constants; which
of the equations are solutions to the differ;
ential equation

dh= K ?
A dx

all three
Given the following -three alge raic equa- only (a)

tions relating head, h, to distanc , x. (a) and (b) but not ( )

Turn to Sutton:
29
14
8

Your answer in Section 7 is correct. Either
(a) or (b), when differentiated and re-
arranged, will yield the equation

dh--K.
A dx

Differentiation of (c) leads to an entirely
different equation.

In the preceding example, the algebraic
equations deal with values of hydraulic head,
h, at various distances from some reference
point; while the differential equation deals
with the rate of change of head with distance.
The differential equation is, of course,
Darcy's law and States that if head is plotted
versus distance, the slope Gf the plot will be
constantthat is, the graph will be a straight

8

(e2)

4
Q Slope

KA

X =. 0

4 8

Slope =_.
KA
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Con.
line. The graphs of equations (a) and (b) of
Section 7 are shown in the diagram. Each is
a straight line having a slope equal to

KA
the intercept of equation (a) on the h axis
is h.= 0, while the intercept of equation (b)
on the h axis is h=1i0. These intercepts give
the values of 11 at x=0; they provide the
reference points from which changes in h
are measured.

QUESTION ,

If we were to graph all possible solutions
to the differential equation

dh Q

dx KA
the. result would be:

9

Turn to Section:

A family of curves, infinite in number,
each intersecting the x axis at

x=
KA

An infinite number of parallel straight
lines, all having a slope

KA'
and distinguished by different inter-
cepts on the x=0 axis

A finite number of parallel straight
lines, all having a slope

KA
which intersect the x=0 axis a
various positive values of it.

5

10

20

Your answer in Section 25,
dhKwh,
dx

is correct. From the rules of cUfferentiation,
the derivative of k with respect to x is
given by

d (h2) dit

dx dx
Therefore, substituting

1 d(P)
2 dx

for h(dh/dx) in the equation

Q = Kwhdh
dx

and rearranging, we have
d(h2) 2Q

dx Kw
I.

49

In this rearranged form, the differential
equation states that the derivative of h2 with
respect to x must equal the constant term

2Q

Kw

QUESTION

WhiCh of the following expressions, when
differentiated, yields the above form of /the
differential equation=that is, which of the
following expressions constitutes a solution
to the differential equation ? (ho is a constant,
representing the value of h at x=0.)

Turn to Se.cfion:

2Q
h2=1/02--x2

Kw
2Qh2=h02--x
Kw
2Q

Kw

16

41
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Your an-Swer in Section 8 is correct. Any
straight line having the slope

KA
will be the graph of a'solution to the differ-
entia/. equation

,dh

dx KA
There are an infinite number of lines which
may have this slope, corresponding to the
infinite number of solutions to the differential
equation.

The figure Ishows a confined aquifer of
thickness b. The aquifer is completely cut by
a stream, and seepage occurs from the stream
into the aquifer. The stream level stands at
an elevation/h0 above the head datum, which
is an arbitrarily chosen level surface. The
direction at right anglos to the stream is de-
noted the x direction, and we take x as 0 at
the edge of the stream. We assume that the
system is in steady state, so that no changes
occur with time. Along a reach of the stream
having length w, the total rate of seepage
loss from the stream (in, say, cubic feet per
second) is denoted 2Q. We assume that half
of this seepage occurs through the right bank
of the stream, and thus enters the part of the
aquifer shown in our sketch. This seepage
then moves away from the stream in a steady
flow along the x direction. The resulting dis-
tribUtion of hydraulic head within the
aquifer is indicated by the dashed line
marked "potentiometric surface" in the
sketch. This surface, sometimes referred to
as the "piezómetrie suiface," actually traces
the static water levels in wells or pipes tap-
ping the aquifer at various points. The dif-
erential equation applicable tO this problem
is obtained by applying.barcy's law to the

39

flow, Q, across the cross-sectional area, bw,
and may be written

dh

dx Kbw
where K is the hydraulic corductivilw a the
aquifer. The head diAributionthat is, the
potentiometric surfaceis described. by one
of the solutions to -this differential equation.
In addition to satisfying the differential, equa-
tion, the required sollition -must yield the
correct value of h atthe edge of the skream
that is, at x=0.

QUESTION

Which of the following expressions gives
the Particular solution ,(to the above differ-
ential equation) which applies to the mrob-
lem, described in.this section? -

Turn to Section:

X
Kbw

h=2Q x
Kbw

Kwb

22

36
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11 0
Your answer in Section 27 is not correct.

The decrease in radius does not compensate
for the decrease in cross-sectional area; it is,
rather, the calse of this decrease in cross-
sectional area. "he decreasing cross-sectional
area, along the 1, th of flow, is a fundamental

12 0

characteristic of the problem we are con-
sidering. It has a majorin fact, dominant
effect upon the solution to the problem.

Return to Section 27 and choose another
answer.

Your answer in Section 41 is not correct.
The flow of water is,directed radially inward
toward the well. Any cross-sectional area of
flow, taken normal to this radial direction of
movement, would be a cylindrical surface in
the aquifer, having the centerline of,the well

13 0

as its axis. The area of flow at a radial dis-
tance r from the well would thus be the area
of a cylindrical surface of radius r, having a
height equal to the thickness of the aquifer.

Return to Section 41 and choose another
answer.

Your answer in Section 35,
dh Q

(ln r)
dr 2.,rKb

is not correct. The differential equation
given in Section 35 was

dh Q
r
dr 271-Kb

In your answer, ln r bas simply been sub-

14 .
stituted for r. This is obviously not what we
want; In r is not equal to r. The relations
given in Section 35 can be used to obtain an
expression which is equivalent to dh/dr. This
-expression can then be substituted for dh/dr
in the above differential equation -to obtain
the required result.

Return to Section 35 and choose another
answer.

Your answer in Section 7 is not correct.
It is true that expression (a),

h= x,
KA

yields the result
dh Q
I

dx KA

upon differentiation and is thus a solution to
the given equation. However, it is not the
only o e of the given expressions which
yields 1ie requiied result upon differentia-
tion.

Return to Section 7 and test the remaining
expressions; by differentiation, in order to
find the correct answer.
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Your answer, y in Section 1 is not
correct. If we differentiate the equation
y---Kx2, we obtain

dy

dx

W.M.M1L: 0 15
dy

K,
dx

and we are looking for a solution to this
differential equationthat is, we are looking
for an algebraic expression which, when dif-
ferentiated, will produce the differential
equation (dy /dx) = K.

which is not the differential equation with Return to Section 1 and test the remaining
which we started. Our differential equation choices, by differentia.Vng them, to seewhich
was will yield the given differential equation.

Your answer in Section 9,
2Q

Kw --
is not correct. If we differentiate this an-
swer, treating h02 as a constant, we obtain

d (h2) 2Q I
2x,

dx Kw
since the derivative of x2 with respect to x

is 2X. This result is not the differential equa-
tion with which we started, so the equation
of your answer is not the solution we require.:

Return to Section 9 and choose another
answer. Keep in mind that the equation you
select must yield the result

d (h2) . 2Q_
dx Kw

when it is differentiated.

Your answer in Section 40,
d (h2)

K
271-rb dr

is not correct. Darcy's law states that flow,
divided by cross-sectional area, must be pro-
portional to the head gradient. Your answer

states that flow, divided by cross-sectional
area, is proportional to the gradient of the
square of head. Thus it cannot be a valid
application of Darcy's law to the problem.

Return to Section 40 and choose another
answer.

Your answer in Section 2 is not Eórrect.
The equation in Section 2 states that the de-
rivative of head with respect to In r is a con-

stant This derivative is simply the slope of
a plot of h versus ln r. If such a plot changes

0 18
slope, as in the answer you-chose, the deriva-
tiVe cannot be constant.

Return to Section 2 and_choose another
answer.
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19 Iii

Your answer in Section 38 is correct; inas-
much as log r changes by the same amount
between 10 and 1 as it does between 1,000
and 100, the head changes by the same
amount in these two intervals. If we were to
replot head directly versus radius, r, rather
than versus log r, we would no longer have a
straight line, but rather a "logarithmic"
curve, as shown in the sketch. The gradient
becomes progressively steeper as we ap-
proach the well, to compensate for the de-
creasing cross-sectional area of flow. This
logarithmic pattern of head decline is some-
times referred to as the "cone of depression"
in the potentiometric surface around the well.

QUESTION

The equation obtained in Section 38 can be
applied between the radius of the island, re,
and the radius of the well, no to obtain an
expression for the head difference between
the well and edge of the island. If It repre-
sents the head at the edge of the island (that
is, the level of the open water surrounding
the island) and hi, representh the head in the

20

100
Arithmetic scale

A

1,000 r

well which of the following expressions
would result from this procedure?

Turn to Section:

2.3Q rec.,hw= log-
240 r,
.2.3Q rehe hie= log-
27110) r,
2.3Q

he h,e --------(log rwlog re)
27rKb

28

30

Your answer in Section 8 iS not correct. If \
we were to write the solution to the equation

A dx
in the most general form, we would write

Q
It=

"KA
where c could represent any constant term
we wish. No matter what value .we assign c,
so long as it is constant (not dependent on
x) its derivative with respect to x will, be
zero. Thus regardless of the value of c, differ-
entiation will yield the result

dh Q.
dx KA

which is equivalent to our given differential
equation. Clearly we can assign an infinite
number of values to the term c, and obtain
an infinite number of distinct equations
(solutions) which we can differentiate to
obtain our differential equation. Each , of
these solutions is the equation of a straight
line; that is, each has a slope, dh/dx, eqUal
to (Q/KA), arid each has a distinct inter-
cept on the h axis, where x--= 0. This inter-
cept is simply the value of the constant- c,
since if we set x=-'0 in the solution we obtain
7.1= c.

Return to SectiOn 8 anti choose another
answer.
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Your answer in Section 24 is not correct.
According to Darcy's law, the specific dis-

. charge, Q/A, is given by
dhK.

A dx
If the specific-` discharge increases as the
stream is approached, the hea41 gradient
dh/ dx must also increasethat is, become

0 21
steepera.s the stream is approached. A. plot
of h versus distance would thus be some sort

f curve. In the statement ,cpf the broblem in
ection 24, however, head was described as

Increasing linearly with distance away from
the stream. Since head increases in a linear
fashion, dh/dx is constant.

Return to Section 24 and choose another
answer.

Your answer in Section 10,

h-4---x,
Kbw

is it correct. It is true that differentiation
of till equation yields the result

dh

dx Kb w
which is ou given differential equation; but
this in itsel s not enough to make it /the
answer to our roblem. If ive set x equal to
zero in the exPression

= p

Kwb
we obtain the result h=0. That is, this equa-
tion says that where x is zero, at the edge of
the stream, hydraulic head is also zero. Ac-

22
-s,

cording to the statement of our problem,
however, head is equal to ho, the elevation of
the streani surface above datum, at x=0. The

, solution which we require must not only have ..
the property of yielding the, given differen-
tial equation

dh Q

dx Kbw
when it is differentiated; it must also have
the property that When x is set equal to zero
in the solution, hydraulic head will be ho.
This is an example of what is meant by a
boundary condition; the solution must satisfy
a certain condithin (h=h0) along a certain
boundary (x=0) of the problem.

Return to Section 10 and choose another
answer..

Your answer, x 2y +K, in Section 1 is not
correct. We can rearrange the equation you
selected as folloWs

y
, 2

Now if we differentiate this equation, we
obtain

dy

dx
which is not the differential equ4ion with

0 23
which we. started. We were asked to find a
solution to the differential equation

c-zy /' .

dx '

that is, we wereasked to find an algebraic
equation which, when differentiated, would
yield the result dy/dxK.

Return to Section 1 and test, the remaining
answers by differentiation, to see which one
satisfies this condition.
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24Li
Your answer in Section 10,

h =12
Kbw

is correct. The differential equation tells us
that a plot of h versus x will be a straight
line with slope

Kbw
bile from the other information given, we

know that aktr =0, h is equal to h. Thus, to
describe h asa function of x we require the
equation of a straight line, with ho as the,
intercept and (Q/Kbw) as the slope. We
can make two tests to verify that we have
obtained the correct solution; first, wae'may,
differentiate the solution with respect to x,
to see whether we obtain the differential
equation ; second, we may let x equal 0 in the
solutidn to see whether the condition that h
is ho at x=0 is satisfied. Only if our equation
meets both of these tests is it the solution we
require. The condition that h must be ho at
x=0 is an example of what is commonly
termed a 'boundary condition; it is a condi-
tion which states that h must have a certain .

value along one or another of the boundaries
of our problem. The differential equation,

dh Q

dx Kbw
is in itself insufficient to define head as a
function of x. It establishes that the graph of
h versus x will be a straight line with slope

250
Kbw

.....m.7

but there are an infinite number of such
straight lines which we might draw: The
additional information given by the boundary
conditionthat h must be ho at x=0--per-
pits us to pick out the particular straight
line we require, by giving us its intercept. A
boundary condition is thus a bit of informa-
tion on the value of head at a known point;
it provides a reference from which the .

changes in head indicated by a differential
equation may.be measured. The processes of
(1) differentiation to establish that- a given
equation is a solution to a differential equa-
tion and (2) application of boundary condi-
tions to establish that it is the particular
solution that we require may be applied to
problems- much more complex than the one
we have considered here.

QUESTION

Suppose that, in measuring observation
wells tapping a cOnfined aquifer, we observe
a linear inC'rease in head with distance away I

from a stream or channel which cuts com-
pletely through the aquifer; and suppose
this pattern remains unchanged through a
considerable period of. time. Which of the
following conclusions could we logically draw
on the basis of this evidence?.

Turn to Section:

There is no flow within the aquifer. 42
There is a steady flow through the

aquifer into the stream. 25
A flow which increasesin specific dis-

charge as one approaches the
stream occurs in the aquifer. 21

Your answer in Section 24 is correct. This
serves to illustrate the dual utility of flow
equations In ground-water hydraulicsthey
enable us to predict the head distributions
associated with various conditions of flow
and they enable us to draw conclusions re7
garding. ground-water flow on the basis of
head distributions observed in the field.

5 5

Suppose we now consider an aquifer in
which the flow is unconfined, so that the
upper limit of the flow system at any point
is the water surface, or water table, itself.
Again we consider uniform flow away from
a stream, as shown in the diagram. It is con-
venient in this case to take the base of the
unconfined aquifer as our head datum. We
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.I.Kaler taw
. .
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Datuin/
Impervious material

assume that vertical components of flow are
negligible. This assumption is never wholly
satisfied, as movement cannot be entirely
lateral in and near the free surface, owing to
the slope of the surface itself. Frequently,
however, the vertical velocity component is
slight compared to the lateral and therefore
can be neglected, as we are doing here. An
important difference between this problem
and the confined-flow problem is that here the
cross-sectional area .of flow diminishes along
the path c,f flow, as h decreases, whereas in
the confined problem it remains constant.

con. 025
Along a reach of the stream having a length
iv, seepage into the aquifer occurs at a rate
2Q; and we assume that half of this seepage
moves to the right, into the reirt of the
aquifer shown in the sketch.

QUESTION

According to the assumptions outlined
above, which of the following relations is
obtained by applying Darcy's law to this
problem?

Q= Kxw
dx

dh= K--
bw dx

dh
Q = Kwh

Vx

Your answer in SectiGn 25,
dh

Q=
dx

is not correct. Darcy's law states that the
flow is the product of the hydraulic conduc-
tivity, the cross-sectional area of flow, and
the (negative) -head gradient. Referring to

Turn to Section:

26

43

9

026
the diagram of Section 25, the cross-sectional
area of the flowthat is, the cross-sectional
area taken at right angles to the direction of
movementcan be seen to be equal to wh.
In the answer which you chose, the term xw
appears as the area of flow.

Return to Section 25 and choose another
answer.

I

r, r,

Your answer, arrb, in Section 41 is correct.
The flow is radially inward in the (negative)
r directionthat is, parallel to the .axis of

5 6

027
polar coordinates. The cross-sectional area of
flow is a surface which is everywhere normal
to this direction of, flow; hence it is a cylin-
drical surface, and its area is given by the
expression for the area of a cylinder.

As we proceed inward along the path of
flow in this problem, the cylindrical area of
flow becomes smaller and smaller, as illus-
trated in the sketch. This is also evident from
our expression for the cross-sectional area,
which tells us that as r decreases, the area
must decrease.
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27 Con.
QUJN

lithich of the following statements is cor-
rect?

Turn to Section:

(a) Although cross-sectional area is
decreasing, radiuf, is also de-
creasing. These factors com-
bine in such a way that the
hydraulic gradient remains
constant. 11

28

(b) Cross-sectional area decreases
along the path of flow, while
discharge remains constant;
therefore, the hydraulic gradi-
ent must increase along the
path of flow. 40

Cross-sectional area of flow de-
creases along the path of flow,
but this is offset -by conver-
gence of the 'flowlines toward
the well, and no increase in the
hydraulic gradient occurs.

Your answer in Section 19,
2.3Q r1r-11. log,
271-Kb r, .

is not correct. If weilet he and r, be repre-
sented by h, and r2,.'and if we let h, and r
be represented by h,nd r your answer can
be restated in the for.a

29

2.3Q ri
log .

27:Kb r,
Comparison with the equations in Section 38
will show that this is not the form which we
require.

Return to Section 19 and choose another
answer.

Your answer in Section 7 is not correct.
The given differential equation

dh= K--
A dx

can be rearranged to
dh

dx KA
In order for all three of the given expres-
sions to be solutions to this equation, all
three would have to yield (Q/KA) as the
derivative of 17 with respect to x. But if we
differentiate expression (c), for example,
which was

MOI111==4

we obtain

. Q
h

NKA

\dh 2Q
dx KA

Which is not the giveh\lifferential equation.
Thus we can see that at sleast expression (c)
does not satisfy the givelequatipn.

Return to Section 7 and test thb remaining
expressions, by differentiatiOn, in order to
find the correct answer.

57

'Immallemamo,
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Your answer in Section 19,
2.3Qhh.--(log r log r,) ,
2rKb

is not correct. The term log re will obviously
be greater than log r-, since a-, is much
greater than r.. Thus the expression on the

30
right in your answer will be negative, imply-
ing that h. is greater than h,. This does not
make sense; the head in a discharging well
cannot be greater than the hea.d at the radius
of influence of the well.

Return to Section 19 and choose another
answer.

Your answer in Section 2 is not correct.
If equal changes in head were observed over
intervals representing equal changes in r,
we could write

ah
--constant

where Ah. is the change in head which is
always observed over any interval of radial
width r. In derivative form this would-be

31
dh
--constant,
dr

and this is IDA the condition which has been
shown to apply to this problem. The condition
our plot must satisfy, rather, is

dli
constant.

d (ln r)
Rettirn to Section 2 and choOse another

answer.

Your answer in Section 27
The convergence of flowlines
does not compensate for the d
area ; it is, rather, caused by this
flow area. The decrease in flow area as the
well is approached is a fundamental charac-

s it correct
rd the we

OW

ecrease in

32
teristic of the discharging well problem; in
effect the decreasing flow area has a dominant
influence on the form of the head distribution
around the well.

Return to Section 27 and select another
answer.

Your answer in Section 40,
Q dh=K,
A .dx

is not correct. The x coordinate was not used
in our analysis of this problem; we did not

33
set up an x axis along which head could vary.
The 'answer which you selected involves a
derivative of head with respect to x and thus
cannot apply to our problem.

Return to Section 40 and choose another
answer.

5 8
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340
Your answer in Section 38 is not correct.

The equation

2.3Qh,h, log-
2:-Kb rt

indicates that if the ratio rir,that is, the
ratio of the outer radius to the inner radius

350

is the same for two different intervals, then
the head drops across those intervals must be
equal. For the two intervals mentioned in the
answer which you chose, these ratios are
10/1 and 1000/100.

Return to Section 38 and choose another
answer.

Your answer in Section 40 is correct. The
hydraulic gradient here is dh/dr, since flow
is hi the r direction. We assume radial sym-
metry around the well, so that the angular
polar coordinate, 0, need not appear at all.
We now rewrite the equation which you se-
lected in the form :

dh Q
r
dr 2rKb

and we focus our attention for a moment on
the left-hand member. According to the rules
of differentiation we may write:

dh dh d(ln r)

dr d (In r) dr
where In r denotes the natural logarithm of
r; anti we may recall from introductory cal-

. culuss that the derivative of In r with respect
to r iS given by

36E--

d(lnr) 1

dr r

QUESTION

Using these expressions, which of the fol-
lowing may be obtained as a correct restate-
ment of the differential equation for the
problem?

.
Your answer in Section 10,

2Q
Koh

is not correct. This answer is indeed a solu-
tiOn to our differential equation, for when we
differentiate it we obtain the differential
equation

dh Q

dx Kbw
However, if we set x equal to zero in the

answer which you chose, we find that hy-
draulic head, h, is equal to 2Q at the point
where x is zerothat is, at the edge of the

401.-

dh Q (ln r)
dr 277Kb

dh Q

d (In r) 2rKb

dh Q
(In r)

dr 2rKb

Turn to SectiOnt

39

2

13

stream. In the discussion of Section 10, how-
ever, it was stated that hydraulic head was
equal to ho at the edge of the streamhe
being the elevation of the stream surface
above datum. This problem illustrates what
is meant by the term boundary condition;
the solution must satisfy a condition along
one boundary (h=h0 at x--,--- 0) in addition to
satisfying the given differential equation.
There are an infinite number of possible solu-
tions to the above differential equation,, but
only orie which satisfies this required bound--
ary condition.

Return to Section 10 and choose 'another
answer.

5 9

1
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Your answer in Section 38 is not
If the equation

h h 1 log2.3Q

27rKb r,
is applied to the two intervals in question,
we have

correct.

2.3Q 2.3Q
1

274:b 1 27:Kb

an

hioohio

Return to
answer.

37
2.3Q 100 2.3Q

2r/Kb 10 2711Cb
log( ) 1.

Section 38 and choose another

Your answer in Section 2 is correct. The
equation states that the derivative of h, with
respect to In r is a constant. Thus a graph of
h versus In r will 'be a straight line, which
will have a slope equal to

2irKb.

The sketch shows such a graph. As In r
changes from In r to In ri, head decreases
froni h, to h ; and as with any straight line
function, the change in head can be obtained
by multiplying the change in the independent
variable by the slope of the line; that is,

hi

112 h (In r, In ri).
277Kb

Slope
27:Kb

38

0 1 1 10 10
Logarithmic scale

This can be written in the equivalent form
Q

log
27rKb

inasmuch as the difference between In r, and
In 7.1 is simply the log of the quotient
In (r2/r1). At this point it is convenient to
change from natural logs to common logs.
This involves only. . multiplication by a con-
stantthat is In r =2.3 log r, where log r
denotes the common logarithm, or lOg to the
base 10. Making this change, our equation
takes the form

Or

2.3Qh, log
21rKb r,

2.3Q
h = ------ (log log

2irKb

In r Again a graph can be plotted of& Vends
log ror, to do the same thing more con-r2

6 0



50 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

380 Con.

veniently, a graph can be plotted of h vsrsus
r on semilog paper, as shown in the sketch.
Since we have only multiplied by a constant,
the graph remains a straight line.

QUESTION

On the basis of the graph shown in the
figure and the equations given above, which
of the following statements is correct?

390

Turn to Section:
The head drop between r 10 and

r 1 is equal to that between
r =1,000 and r= 100. 19

The head drop between r =10 and
r =1 is less than that between
r =1,000 and r----100. 34

The head drop between r 10 and
r =1 is much greater than that
between r =100 and r =10. 37

Your answer in Section 35,
dh Q (In r)

dr 27rKb
is not correct. The following relations were
given in Section 35:

dh dh d(ln r)

and
dr d (ln r) dr

d (1n r) 1_
dr r

Combining these,

40

dh 1 dh

dr- r d(ln r)
In the question of Section 35, the idea is

to substitute the term
1 dh

r d(ln r)
for the term

dh

dr
in the differential equation for our problem.

Return to Section 35 and choose another
answer.

L

Your answer in Section 27 is correct. The
decrease in cross-sectional area must, accord-
ing to Darcy's law, be accompanied by a
steepening of the hydraulic gradient. When
we apply Darcy's law tO this problem, we`will
omit the customary negative sign. This is
done because Q, the well discharge, must
itself carrY a negative sign in this problem,
since it is oriented toward the well, in the
direction of decreasing values of r. The nega-
tive sign on Q combines with the negative
sign used by convention in Darcy's law to
yield an equation in positive terms.

QUESTION

Which of the following expressions is a
valid application of Darcy's law to this- prob-
lern, and hence a valid differential equation
for the problem?

61

Q dh= K
A dx

Q dli

an-rb
d(V)

271-rb N dr

Turn to Sectinn:

33 _

35

17
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Your answer in Section 9,
2Q

h"--

Kv,
is correct. The solution indicates that h will
have the form of a parabola when plotted
versus x in this case. The parabolic steepen-
ing of the hydradlic gradient compensates
for the progressive decrease iri flow area, in
such a way that Darcy's law is always satis-
fied. This approximate theory of unconfined
flow wa-, introduced by Dupuit (1863) and
the assumptions involved in it are frequently
referred to as the Dupuit assumptions. If
the method is used in cases where these
assumptions do not apply, serious errors can
be introduced.

Open wat.e

r=0

51

D 41
We next consider another problem in

which the cross-sectional area of flow dimin-
ishes along the path of flow, leading to a
progressive steepening of the hydraulic
gradient. In this case, however, the decrease
in area is generated by cylindrical geometry
rather than by the slope of a free surface.

The figure shows a well located at the cen-
ter of a circular island. The well taps a con-.
fined aquifer which is recharged by the open
water around the perimeter of the island.
During pumping, water flows radially inward
toward the well: We assume that the open
water around the island maintains the head
at a constant level along the periphery of the
aquifer and that the recharge along this
periphery equals the well discharge. Since
the well is at the center of the island and the
island is circular, we can assume that cylin-
drical symmetry will prevail; we can there-
fore introduce polar coordinates to simplify
the problem.

QUESTION

If b represents the thickness of the aquifer,
which of the following expressions repre-
sents the cross-sectional area of flow at a
radial distance r from the axis of the well?

Turn to Section:

27
12

27.-rb

7T-r2b

arrr2

Your answer in Section 24 is not correct.
The statement that there is a linear increase
in head with distance away from the stream
implies that there is a nen-zero slope, dh/dx,
in the potentiometric surface, and this in
turn implies that flow exists in the' aquifer.
Darcy's law states that

dh
KA----.

dx
Hydraulic conductivity, K, may be very low,

D 42
but cannot be considered equal to zero as long
as we are dealing with an aquifer in the
normal sense of the word. Thus in order for
Q to be zero, through a given area A, the head
gradient dh/dx normal to A must be zero. In
this case we have observed a head gradient
which is not zero in the aquifer, so we know
that flow of some magnitude must exist in
the aquifer.

ReCurn to Section 24 and choose another
answer.
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43
Your answer in Section 25,

dhK,
bw dx

is not correct. You have taken the cross-
sectional area of flow to be bwthat is, the
product of aquifer thickness and width of
section. An examination of the figure in Sec-

tion 25 will show that this does not represent
the actual area of flav. The aquifer is not
saturated through its full thickness, but
rather to a distance h above the base of the
aquifer. Thus, the cross-sectional area of flow
is wh, rather than bw.

Return to Section 25 arid choose another
answer.
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Part IV. Ground-Water Storage

I ntroduction

In Parts II and III we dealt with aquifArs
and porous media only as conduitsthat is,
we discussed only their properties relating
to the transmission of water in steady flow.
Aquifers have another very important hy-
draulic propertythat of water storage. In
Part IV we will examine' this property of
ground-water storage and develop an equa-
tion to describe it. In Part V we will develop

The picture shows an open tank, having a
square base of area A. If a volume of water,
AY, is poured into this tank, the water level
will rise by an increment, ah, such that

the differential equations for a simple case
of nonequilibrium flow by combining the
storage equation with Darcy's law, by means
of the equation of continuity, which is simply
a statement of the principle of conservation
of mass. In Part VI, we will repeat this
process for the case of nonequilibrium radial
flow to a well and will obtain an important
solution to the resulting differential equation.

AV=A-M. The total volume, V. of water in
storage in the tank at any time can be deter-
mined by measuring the depth, h, of water
in the tank and multiplying this depth by A.

QUESTION

Suppose the total volume of water in stor-
age is plotted as a function of the level of
water in the tank, so that the volume asso-
ciated with any water level can be read
directly from the plot. The graph will be:

Turn to Section;

AV
(a) a with 3.0parabola slope

(b) a straight line A 11with slope =

(c) a logarithmic curve 9
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Your answer in Section 26 is not. correct.
The volume of water present in the sand
initially was hAn. A certain fraction, p, of
this fluid volume was drained off by gravity,
leaving the fraction 1ft still occupied by
fluid. p thus represents the fraction of the
total pore space, below the level h, which does
does not already contain water, and which

Your answer in Section 21 is not correct.
In the imaginary experiment described in
Section 21, it was stated that doubling the
base area of the prism had the effect of
doubling the slope of the V,h plotthat is,
of doubling the term dV/dh. Thus, dV/dh

11

Your answer in Section 16,
AV dV

71, ft,

dh
is not correct. It neglects the effect of the
base area, A, of the tank.

We have seen that when the tank is drained
by gravity and then resaturated to the level
h, the relation between V and h is

VhAnp
where n is the porosity of the sand and ft the
fraction of the water in the sand that can be
drained out by gravity. Now if, instead of

must be refilled in order to resaturate the
sand to the level h. That is, in order to re-
saturate the sand to the level h, a volume of
water equal to this unoccupied pore volume
must be pumped into the tank.

Return to Section 26 and choose another
answ er.

depends upon the size of the prism consid-
ered, as well as upon the type of aqUifer
material; it cannot be considered a constant
representative of the aquifer materiaL

Return to Section 21 and choose Another,
answer.

draining the sand to the bottom of the tank,
we simply remove a small volume of wate1,3
AV, so that the water level in the tank fall
by a small amount Ah, we should expect AV
and Ah to be related in the same way as V
and h in our previous experiment. If we are
resaturating the sand by increments, when

has previously been saturated and then
d ined by gravity, the same relation should
hol

Retu to Section 16 and choose another
answer.

0.1
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Your answer in Section 20 is not correct.
If each well penetrated both aquifers, there
would be no reason for the responses of the
.:wo wells to differ. The form of the response
might be difficult to predict, but at len_qt it
should be roughly the same for each well.

.M..1-

Your answer in Section 32 is correct. Spe-
cific yield figures for normal aquifer ma-
terials may range from 0.01 to 0.35. It is
common to speak of the specific yield of an
unconfined aquifer as a whole; but it should
be noted that the process of relea`Se from un-
confined storage really occurs at the water
table. If the water table falls or rises within
an aquifer, into layers or strata having dif-
ferent hydraulic properties, specific yield
must change. In addition, of course, specific
yield can vary with map location, in response
to local geologic conditions.

;
Piezometer
-Water level

hi

Confining
material

Pump
c==J

.
-*----Water input

Datum

Aquifer
material

Sides of prism
hydraulically seated

Confining
material
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Keep in mind that the storage coefficient ot
the artesian zone will probably be smaller
than the specific yield of the water-table
aquifer by at least two orders of magnitude.

Return to Section 20 and choose another
answer.

Unconfined storage is probably the most
important mechanism of ground-water stor-
age from an economic point of view, but it
is not the only such mechanism. Storage
effects have also been observed in confined
or artesian aquifers. The mechanism of con-,
fined storage depends, at least in part, upon
compression and expansion of the water it-.
self and of the porous framework of the
aquifer; for this reason confined storage is
sometimes referred to as compressive stor-
age. In this outline we will not attempt an
analysis of the mechanism of confined stor-
age, but will concentrate instead on develop-
ing a mathematical description of its effects,
suitable for hydrologic calculations. A dis-
cussion of the mechanism of confined storage
is given by Jacob (1950, p. 328-334), and by
Cooper (1966).

The diagram shows a vertical prism -ex-
tending through a uniform confined aquifer.
The base area of the prism is A. Although the
prism remains structurally a part of the con-
fined aquifer, we suppose it to be isolated
hydraulically from the rest of the aquifer by
imaginary hydraulic barriers, so that water
added to the prism remains within it. We
further imagine that we have some_method
of pumping water into the prism in measured
increments, and that we have a piezometer,
as shown in the diagr1=, through which we
can measure the head nithin the prism.

6 6

(continued on next page)
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OWN!. =11 6
QUESTION

Suppose that head is initially at the level
h1, which is above the top of the aquifer, in-
dicating that the prism is not only saturated,
but under confined hydrostatic pressure. We

hi
Hydraulic head, h

Your answer in Section 32 is not correct.
One important c6ncept which is missing from
the definition you selected is :that specific
yield refers to a unit base area of the aqui-
fer. The definition you selected talks about
the volume of water which can be drained
from the aquiferthis would vary with ex-
tent of the aquifer and would mormally be a

Your answer in Section 25 is not correct.
The relation given in Section 25 for the rate
of release of water from storage was

dV dh

dt dt
where S is the storage coefficient, A the area
of aquifer under study, and dh/dt the rate

Con.

designate the volume of water in storage in
this initial condition -as V,. Now suppose
more water is .pumped into the prism by
increments; and that the head is measured
after each addition, and a graph of the vol-
ume of water in storage versus the bydraulic
head in the prism is plotted. If the resulting
plot had the form shown in the figure, which
of the following statements would you accept
as valid?

Turn to Section:

(a) The rate of change of volume of
water in confined storage, with
respect to hydraulic head, 1/, is

dV
constant; that is --constant 21

dh
(b) The rate of change of. hydraulic

head with respect to volvme in
storage, depends upon the vol-
ume in storage. 23

(c) The rate of change of volume in
storage, with respect to the base
area of the prism, is equal to Ah. 30

very large quantity. As we wish specific
yield to represent a property of the aquifer
material, we define it in terms of the volume
that can be drained per unit map area of
aquifer.

Return to Section 32 and choose another
answer.

of change of head with time within that area
of aquifer. In the question of Section 25, the
the specific yield of the water-table aquifer
was given as 0.20, and the rate of decline of
water level in the shallow, well was gi n as,
0:5 fOot per day. The surface area of a tion
of the aquifer within a 10 fOot radiu of the
well would he 1r x102, or 314 square feet. The
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rate of release from storage in this section
would therefore be
dV dh--SA 0.2 x 314 x 0.5
dt dt

=31.4 cubic feet per day.

Your answer in Serf:ion 1 is not correm_
Whenever we add a :fixed volume of water
say 10 cubic feetto the tank, the water level
must rise by a corresponding fixed amount.
If the base area of-the tank is 5 square feet,
the addition of 10 cubic feet of water must
always produce an increase cf 2 feet in h;
the addition of 15 cubic feet of water must
Aduce an increase of 3 feet in h; and so on.
The ratio AV/ Ah, in this case must always

Con.
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Return to Section 25 and choose another
-

answer.

be 5. In other words, the ratio AV/Ah is con-
stant and is equal to the base area, A, of the
tank.

Now if we plot V versus_ h, the slope of
this plot will be AV/Alt, by definition. This
slope, as we.have seen above, must be a con-
stant. A logarithmic curve does not exhibit
a constant slope.

Return to Section 1 and choose another
answer. -

10
Your answer in Section 1 is not correct.

The increment in the volume of water within
the tank, resulting from an increase in water
level of Ah, is given by AV-- AAh. Thus,

A
A ".

Ah
where A, the base area of the tank, is a con-
stant. If we construct a plot of V, the vol-

ume of water in the tank, versus h, the level
in the tank, the slope of the plot will by defi-
nition be AV/Ap; but since AV/Alt is a con-
stant, the plot cannot be a parabola. The
slope of a parabola changes continuously
along the graph.

Return to Section 1 and choose another
answer.

AINMIMMIM...,..10.ENCINIEne

Your answer in Section 1 is correct. The
slope of the graph, tiV/Alt or dV/dh, is con-
stant and equal to A. \Thus the volume of
water in storage per foot of head 1(water
level) in the tank is A.

Now consider the tank shown in the
sketch. It is similar to the.one we just .dealt
with, exc.ept that it is packed with dry sand
having an interconnected (effective) poros-
ity denoted by n. The tank is open at the top
and has a base of area A. Water can be

6 8
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pumped into the tank through a pipe con-
nected at its base, and the water level within
the tankthat is, the level of saturation in
the sandcan be measured by means of a
piezometer, also connected at the base of the
tank.

QUESTION

Slippose we pump a small volume of water,
V, into the tank and observe the level, h, to

which water rises in the pieZometer. Neglect-
ing all capillary effects, which of the follov,v-
ing expressions- would constitute a valid re-
lation between the volume of water pumped
into the tank and the rise in water 11,xel above
the base of the tank?

12
Your answer in Section 11 is not correct.

If the water rises to a level h above the base
of the tank, the bulk volume of saturated
sand (negleeting capillary effects) will be
hA. This bulk volume must be multiplied by
the pomsity to obtain the total volume of sat-

.-

Your answer in Section 25 is correct: The
release from utoresTe in a given area in the
watet-tabk aquifer is given by

dV
x0.5=0.1A.

dt dt
The release from.storage in an equal area in
the artesian: aquifer would be

dV dh
10-4 xA x5-0,001A.

dt / dt

Turn to Section:
V= Alt' 31.

h = VAn 12
V =hAn 14

,urated pore space. A
of porosity as given
clarify this.

Return to Section
answer.

111111411

review of the definition
in Part I may help to

11 and choose another

Thus the water-table contribution exceeds
the artesian release -by a factor of 100.

This completes our introductory discussion
of aquifer storage. You may go on to Part V,
in which we /will combine \ the concept of-
aquifer storage withiDarcy's law, using the
equation of continuity, to develop the differ-
ential equation for a simple problem in non-
equilibrium ground-water flow.

14
Your answer, V =hAn, in Section 11 is cor-

rect. Now suppose water is added to the tank
in increments, and h is measured after the
addition of each increment; and suppose a
graph of V versus Ii is plotted, where V is the
total or cumulative volume which has been
added, and h is the water level in the tank.

QUESTION

Again neglecting all capillary effects, the
resulting graph would be:

.1.1...1M11,..11

Turn to Section:

AV 1
(a) a straight line with slope=

An
AV

a straight Ene with slope = An

a logarithmic curve with slope_
depending on h 22

(b)

(c)

17

26

....11
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15
Your answer in Section 20 is not correct.

The specific yield of the water-table aquifer
would normally be greater than the storage
coefficient of the artesian zone by at least two
ordors of magnitude. A seasonal fluctuation
in pumpage would usually involve a brief
withdrawal from storage, or a brief period of
accumulation in storage. The two aquifers
are pumped at about the same rate, so pre-
sumably seasonal adjustments in the pump-

- amwill be of the same order of magnitude
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for each. However, the response of the two
aquifers to withdrawal (or accumulation) of
a similar volume of water wbuld be com-
pletely different, and would be governed by
their storage coefficients. The aquifer with
the higher stbrageco-efficient--could -sustain
the withdrawal with less drawdown of wafer
level than could the aquifer with the lower
storage coefficient.

Return to Section 20 and choose
answer.

16

Your answer, V=ItAn,(3, in Section 26 is
correct. This expression gives the volume of
water withdrawn in draining the tank by
gravity, and the volume which must be added
to resaturate the sand to the original level,
under our assumption that the fraction held
by capillary forces is constant.

QUESTION

Suppose, subject to the same assumption,
that the tank is drained by removing incre-
ments of water (or resaturated by adding
increments of water) and a graph of the vol-
ume_ of water in storage, V, versus the levelI .

another.
,,

of saturation, h, is plotted from the results
of the experiment. Which of the following
expressions wouldidescribe the-slope of the
resulting graph?

17
Yoiir answer in Section 14 is not correct.

We have seen that if a volume of water, V,
'ispumpedinto the tank when it is ,initially
(1./the equation

V.h-An
describes the relation between V and, h, the
level of water in the sand. If the sand is

AV dV
dh

AV dV

dh
, dV

dh

Turn to Sectio

/ 3

29

already saturated to some level, d an addi-
tional volume of water; eV, i pumped* in,
the water level will rise by an increment Ah,
such that `.

AV=Ah - A n.
Return to Section 14 and use this relation

in choosing another answer.

7 0
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\18 ..11=MIIN

Your answer in Section 26 is not .correct. does not already contain water. The total
hAn would represent the volume of water .Qvolume of pore space below the level h is
required to raise the water level to a distance hAn; when the sand was ..initially sat-
h above the base of the tank, if the sand were urated, thiS entire volume contained water.
initially dry. In this case, however, the sand When the sand was drained, a certain frac-

_is notinitially_ary Some_of -wh-ich wedesignate
already occupied by water at the beginning was rernoved. The remaining fraction, 1 13,\
of the experiment, since after drainage by was held by capillary retention in the sand.
gravity, capillary effects cause some water Thus 13 represents the fraction of the pore
to be held in permanent retention. The vol- space which is empty when we begin to refill
urne of water which must be added to resat- the tank.
urate the sand to the level It is equal to the Return to Section 26 and choo6e another
volume of pore space below the level It which answer.

19
Your answer in Section 33 is not correct.

Because the aquifer material is identical to
the sand of our tank experiments and because
the base area. of our prism of aquifer is equal
to the base area of our tank, we should expect
the relation between volume released from
storage and decline in water level within the
prism to be identical to that obtained for the
tank. In the answer which you selected, how-

ever, there is 'no description of the effect of
capillary retention. Remember that the fac-
tor /3, which was used in the tank experiment
to describe the fraction of the water `\,vhich
could be drained by gravity, as opposed. to
that held in capillary retention, must ,appear
in your answer.

Return to Section 33 and choose another
answer.

20
Your answer in Section 21 is correct. The

results of the imaginary experiment suggest
that the term

1 dV
A dh

is a constant for the aquifer material.
In practice, in dealing with the confined or

compressive storage of an aquifer, it is usually
asswined that the quantity (1/A) (dV /dh)
is a constant for the aquifer, or is at least a
constant for any given location in the aquifer.
This quantity, (1/A) (dV/dh), is denoted S
and is called the confined or compressive stor-
age coefficient, or simply the storage coeffi-
cient, of the aquifer.

7 1

1.

lt would of course be difficult or impossible
to perform the experiment described ,in Sec-
tion 6. However, if Storage coefficient is de-
fined by the equation

dVr _
A cllt

a nonequilibrium theory can be developed
from this definition which exPlains many of
the observed phenomena of confined flow.

The following points should be noted re-
garding confined storage coefficient:
(1) The 'storage coefficient is the volunie of /

water released from storage in a
prism of unit area, extending through
the full thicknesS bf the aquifer, in
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20Con.

to a unit decline in head.
This :,.,.:itement can be appreciated by
a review of the hypothetical experi-
ment described earlier, or by letting
Al n the finite-difference form of
the definition, S = (1/A) (AV/Ah ).

(2) The definition of storage coefficient is
similar to that of specific yield, in the
sense that each is defined as the term
(1/A) (dV dh) , for a prism extend-

, ing through an aquifer. Thus in many
applications, the two terms occupy the
the sameposition in the theory. In the
case of an unconfin4:,1 aquifer the spe-
cific yield is often ieferred to as the
storage coefficient.

It should be noted, however, that the
processes involved in the two types of
storage are completely different. With-
drawal from or addition to unconfined
storage takes place at the water table;
it is spoken of as occurring in a prism
of aquifer because it is usually the
only significant form of storage within
such a prism in most water-table situ-
ations. Confined storage effects, on the
other hand, are distributed through-
out the vertical thickness of an
aquifer.

(4) Confined storage coefficient /values are
generally several orders.of magnitude
loss than specific yield valines. Specific
yields range typically from 0.01 to
0.35, whereas confined storage values
usually range from 10-5 to 10-3.

The definition of confined storage in terms
of a prism extending through the aquifer is
adequate where the flow is entirely horizon-.
talthat is, where no differences in head or
in lithology occur along a vertical within the

(3)
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aquifer. Where vertical differences do occur,
one must allow for the possibility of different
patterns of storage release at different poind
along the vertical, and a storage definition
based on a prism is no onger a equa .

is therefore made of the specific storage, S (
which is defined as the volume of water r
leased from confined storage in a unit
ume of aquifer, per unit decline in hea ( In
a homogeneous aquifer, S, would be eq al to
S divided by the thickness of the aqu. er.

)

QUESTION

Consider a small ground-wate basin that
has both an artesian aquifer a./ d a water-
table aquifer. Regional withdrawal frorn-t
artesian aquifer is about equal
the water-table aquifer, and seasonal fluc-
tuations in pumpage are similar. Records are
kept on two observation wells, neither of
which is in the immediate vicinity Of a dis-
charging well. One well shows very little
fluctuation in water level in response to sea-
sonal variations in pumpage, while the other
shows great fluctuation. Which of the follow-
ing statenients would more probably be true?

rom

Turn to Section:

(a) The well showing little fluc tion
taps the water-table aquifer,
while that showing great fluc-
tuation taps the artesian zone. 25.\

(b) Each well penetrates both aquifers. 5

(a) The well showing great fluctuation
taps the water-table aquifer,
while that showing little fluc-
tuation taps the artesian zone. 15

7 2
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21
Your answer in Section 6 is correct. The

plot is a straight line, so the slope, dV/dh,
a consta ,it.lk/ftw suppose the prism is ex-

panded to twice its original base area, and
()Ur imaginary experiment is rePeated; and

- suppose-we-obser-ve-that,-as--a-result of-the
increase in base area, the slope of our V, h
plot is twice its original value.

(a)

QUESTION

Let A now represent the base area of any
general (vertical) prism through the aqui-
fer; or in general, let A-represent the surfce
area of the section of the aquifer we are iso-
lating for discussion. On the basis of the evi-
dence described, which of the following
statements would you be inclined to accept?

Turn to Section:

clV

dh
is a constant for the aquifer
material

(b) The term
1 dV

A dh
is a constifit for the -aquifer
material

(c) The term

22
Your answer in Section 14 is not correct.

We have seen that, neglecting capillary
effects, there is a linear relationship between
the volUme of water, V, pumped into the tank
when it is initially dry, and the (level of
water, h, above the base of the tank, That is,
a constant coefficient, An, relates these two
quantities : V=h.A.n. This linearity holds

20

dVA
dh

is a constant for the aquifer
material 34i

11

as well if the water is added to the tank in
increments. Each incremental volume of
water, AV, pumped into the tank produces an
increment in head, Ah, such that

Return to Section 14 and choose another
answer.

23
Your answer in Section 6 is not correct.

The ratio of the change of volume of water
in storage, to tbe change in hydraulic head
is by definition the slope, AV/ilh or dV/dh,
of a plot of V versus h. If this rate of change
of V with h were to depencrupon V, the plot
of V versus h would show a different slope

at different values of V. The plot, in other
wOrds, would be some sort of curve. The plot
shown in S-ction 6, however, is a straight
lineit ha a constant slope, the same for
any value of V. ,

Return to Section 6 and choose another
answer.

7 3 \
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24
Your answer in Section 25 is not correct.

The relation given in Section 25 for the rate
of release of water from storage was

dV dliSA
dt dt

--Where-S-is-the-storage-caefficient, A the-area
of aquifer under study, and dh/dt the rate
of change of head with time within that area
of aquifer. In the question of Section 25, S
was given as 2 x10-4 for the artesian aqui-
fer, and dh/dt, as measured in the deep well,
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was 5 feet per day. A section of the aquifer
within a 10 foot radius of the observation
well would have a surface area of irx1.02, or.
314 square feet. The rate of release of water
from storage in this section would therefore
be

dV dh

dt dt

. Return to.
answer.

25
Your answer in Section 20 is correct. Be-

cause af tVie higher storage coefficient of the
water-table aquifer, release or accumulation
of a comparable volume oft- water will cause
a much smaller fluctuation of water level in
the water-table aquifer than in the artesian
aquifer. In effect, we have introduced time
variation into the problem here, since we are
discussing changes in head with time. To
bring time into the equations, we may pro-
ceed as follows.
, Vet S represent either, specific yield or
storage coefficient. Then according to our
definitions we may write, using the finite-
difference form,

1 AV

A Ah
The relation between the volume of water
taken into or released from aquifer storage
in a prism of base area A and the accom-
panying change in head, is therefore:

AV=SAAIL.

Now let us divide both sides of thiS equa-
tion by At, the time interval over which t.he
/decline in head wai observed. We then have:

AV Ah
= SA

At At

2x1,0-4x314x5

=0.314 cubic feet per day.
Section 25 and choose another'.

,m1Wsib,

or, if we are talking about a vanishingly
small time interval,

dV dh

dt dt
Here dV/dt is the time rate of accumula-

tion of water in storage, expressed, for ex-
ample, in cubic feet per day; and dh/dt is
the rate of increase in head, expressed, for
example, in feet per day. If we are dealing
with release from storage, head will decline,
and both dV /dt and dh/dt will be negative.
The partial derivative notation, Zhtat, is
usually tiSed instead, of dh/dt, beCause.head
mai vary with distance in the aquifer as well
as with time. This equation is frequently reL
ferred to as the storage equation.

The equation can also be obtained using
the rules of differentiation. For the case we
are considering we have

dV dV dh

dt dh dt
but from the definition of storage coefficient,
dV/dh= SA, so fhat by substitution

, 7 4

dV dh= SA --.
dt dt

I(continued on-neit page)
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25con.

QUESTION

Suppose we record the water levels in a
deep observation well, penetrating a confined
aquifer which has a storage coefficient of
2 x10-4, and a shallow observation well, tap-
ping a water-table aquifer which has a spe-
cific yield of 0.20. The water level in the deep
well falls at a rate of 5 feet per day, while
that in the shallow well falls at a rate of 0.5
foot per day. Considering the release of
water from storage in each aquifer within
a radius of 10 feet of the observation well,
which of the following statements would be
most accurate?

Turn to Section:

) within a radius of 10 feet of the
shallow well, water is being re-
leased from storage in the
water-table aquifer at a rate Of
5 cubic feet per day.

(b) the rate of release of water from
storage in the water-taMe aqui-

. fer, within 10 feet ofthe shallow
well, is 100 times as great as
that in the artesian aquifer,
within 10 feet of the deep well. 13

(c) within a radius of 10 feet of the
deep well, water is being re-
leased from .storage in the arte-
sian aquifer at a rate of 1 cubic
fcot per day. 24

9 6

Your answer in Section 14 is/correct. If
there were no capillary effects,/the result of
filling the tank with sand would simply be to
take up some of the voluije available for
storage of water. Thus, th slope of the plot-
of V versus h for the sa d-filled tank would
differ from that for the open tank (Section
1)- only by the factor n, which is the ratio
of the storage volume available in the sand-
filled tank to that available in the open tank.

In practice, of course, capillary effects
cannot be neglected. In this .development we
will take a simplified view of these effects,
as a detailed examination of capillary phe-
nomena is beyond 1:= e scoPe of our discussion.
Let us assume that due to capillary forces, a
certain constant fraction of the water'in the
sand is permanently retained. That is, we
assume that following the initial saturation
of the sand, we can never drain off by gravibr
the full volume of 'water which was added
during the initial saturation. A part of this
initially added water remains perma:'
held fri the pore spaces by capillary zAtrac-

JF

tion; thus the amount of water which can bp
alternately stored and recovered is redUced.

1

Suppose the tank is initially saturated to,.
a level h and is then drained by gravity. Sup-
pose further that the ratio of/the volume
water drained to that initially added is 9-
served to be /3; that is, the fraction of the
added-water which can be drained- is 13, while
the fraction retained in the/sand by capillary
forces is (1 13). Subject to our assumption
that the fraction ,retained is a constant,
which of the 'following expressions giveS/the
volume of water which ould have tO be
restored to the'tenk, after draining, in oikler
to resaturate the sand to the Barrie level, h,
as before ?,'

Turn to Section:
V --hAn 18

QUESTION

V= hAnfl

2

16
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27
Your answer in Section 32 is not correct.

Your answer defines specific yield as the
quantity (presumably the total quantity) of
water Which can be drained by gravity from
a unit area of the aquifer. In the preceding
analysis, we developed the concept of specific
yield in terms of the quantity of water which
can be drained per unit decline in water level.

A verbal definition of specific yield must
therefore include this latter concept in some
mannerthat is, it must indicate that we
are referring to the quantity released from
storage per unit decline in head.

Return to Section 32 and choose another
answer.

28
Your ansWer in Section 33 is not correct.

The aquifer material was given as identical
to the sand,of the tank experiments described
previously, Sand the base area of the prism
was taken as equal to the base area of the
tank. We are considering only storage within
the prism itself, in relation to water level in
the prism, and are not concerned with what
goes on in the aquifer beyond the boundaries

of the prism. At this rate, we should expect
the relation between the volume of water
drained from storage and the accompanying
decline in water level to be the same for our
prism of aquifer as for the tank of the earlier
experiments.

Return to Section 33 and choose
answer.

90 --.
Your answer in Section 16,

a V dV

ii
hA7L/3

dli
is not correct. This answer waild indicate
that the relation between V and hthat is,
the slope of a plot of V versus his a func-
tion of h. However, we have already seen
that if we refill the tank after it has been
drained by gravity, we will find V and lt to
be related by a constant An13. That is, we

another

win find that V =h44.n13 or that the ratio of V
to 4 is the constant Ang. If the tank is
drained by increments, or refilled -by incre-
ments after draining, we would expect the
same relationship to hold between the incre-
ments of fluid volume, aV, and the incre-
ments_of head, oh, as .Wasobserved between
V and h in the initiahp"roblem. That is, we
would expect to find that

Return to SectionS 16 and choose another
answer.

Your answer in Sectkn 6 is \not-correct.
oh represents a sirriple change in, :the hy-
draulic head, h. It does not repr\esent any
form of rate of change; when we describe a
rate of change, we always require two vari-
ables, since we always consider' the ratio of
change of one variable to that of. another. / answer.
At this point of our discussion, morepver,1-

we are considaring the relation between the
volume of water in storage and the hY.draulic
head. We have not yet-taken into considera-
tion the effect of varying the base area of
our prism of aquifer.

Return to Section 6 and choose another

'76
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ANNI! ellia=001 31

Your answer in Section 11 is not correct. effects). If the water level in the sancl is a
The sand-filled tank of Section 11 differs distance h above the base of the tank, the
from the open tank ,of Sectior. 1, in that any bulk volume of the saturated part of the sand
quantity of water pumped into die sand- will be hA, where A is the base area of the
filled tank can utilize only the interconnected tank. However:the volume of injected water
po re-vol u m e-- a s-its -storage-space-;--iii--the-open --willnotequalthis bulk saturatedvolume,
tank of Section 1 the full capacity of the tank but rather the interconnected pore volume
was available. If the sand-filled tank is initi- within the saturated region. A review of the
ally empty and a volume of water, V, is
pumped in, this water will occupy the total
volume of interconnected space between the
base of the tank and the height to which the
sand is saturated (neglecting capillary

definition-6f porosity as given in Part I may
help to clarify, this.

Return to Section 11 and choose another
an'swer.

32

Your answer in Section 33,
dV

dh
is correct. The aquifer maserial is assumed
to ly?. identical to the sand in the tank experi-

, ments; if the area of the prism is equal to
that of the tank, the two plots of storage
versus water level should be identical. Note,
however, that area is a factor in the expres-
sion for dv/dh; if we were to choose a pris-
matic section of larger area, it would pro-
vide more storage, per foot of head change,
than one of smaller area, just as a tank of
larger base area -would provide more stor-
age, per foot of water-level change, than a
tank of smaller area. If tne base of our prism
of aquifer were unity, the expression for
dV/dh would be simply nig; and in general,
an expreSsion could be written/for the change
in storage Volume per unit head change, per
unit area of aquifer, as

1 dV

A dh

The term np is referred to as the specific
yield of an aquifer, and is usually designated
S,,. Because we have assumed (1i3), the
fraction of water retained by capillary forces,
to be constant, we obtain the result that S,
is a constant; and for Many engineering
applications, this is a satisfactory approxi-
mation, It should be noted, hOwever, that it
is only an approximation; the fraction of

'water held in capillry retention may change
with time, for various reasons, leading to
aPparent variations in S with-time.

Specific yield describes the properties of an
aquifer to store and release water (through
unconfined storage) just as permeability de-
scribes its properties of transmittingwater.
Mathematically, specific yield is equivalent to
the term (1/A) (47/dh) for an unconfined
aquifer.

(continued on next page)
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32con.
QUESTION

On the basis of the above discussion, which
of the following statements would you select ,

as the best verbal definitkm of specific yield?

Turn to Section:

(a--) The-specific yield of an unconfined
aquifer is the volume of water
which can be drained by gravity
from the aquifer in response to
a unit decline in head.

ame001.

(b) The specific yield of a horizontal
unconfined aquifer is the volume
of water which, is drained by
gravity from a vertical prism of
unit base area extending
through the aquifer, in re-
sponse to a unit lowering of the
saturated-lava

Your answer in Section 16,
LIV dV

Anfl,
dh

is correct. The slope of the graph of volume
of water in storage versus water levelor
in other words, the derivative of V with re-.
spect to 1iwou1d lze constant and equal to
An /3.

Now suppose that we are dealing with a
prismatic section ,taken vertically through a

(c) The specific yield of an unconfined
aquifer is the quantity of water

7 which can be drained from a
unit area of the aquifer.

r
° 1°

c, tt

a a

.*

0

°

.

uniform unconfined aquifer as shown in the
figure. The base area of the prism is again
denoted A. Suppose the aquifer material is
identical in its hydraulic properties to the
sand of our tank experiments. We wish to
construct a graph of the water in recoverable
storage within the prism Versus the level of
saturation, or Water-table level, in the aqui-
fer in the vicinity of the prisni:We are inter-
ested only in water which can be drained by
gravity; Water in permanent capillary reten7
tion will not be considered part of the stor-
age.

QUESTION

Which of the following expressions would
describe the slope of this graph?'

Turn to Section:

dV
AhniI

dh
dV= An
dh
dV

Anp
dh

28

19

32

7 8



68 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

34
Your answer in Section 21 is not correct.

In the imaginary experiment described in
Section 21, it was stated that doubling the
base area, A, of the prism had the effect of
doubling the slope, dV/dh, of the V. h plot.
Thus the term A (dV / dh) would be Ifour
times as great for the prism of doubled area,
as for the original prism. That is, the term

A (dV / dh) would depend upon the size of the
prism considered, as well as upon the type of
aquifer Material, and could not be considered
a constant representative of the aquifer ma-
terial.

Return to Section 21 and choose another
answer.

7 9



Part V. Unidirectional Nonequilibrium Flow

Introduction

In Part V, our purpose is to develop the
differential equation for a problem of non-
equilibrium flow. To do this, we utilize the
storage equation,

dV dh

dt dt
developed in Part IV, and we utilize Darcy's
law. These two relations are linked by -,ans
of a relation called the equation of conth.::ty,
which is a statement of the principle of con-
servation of mass.

In Part VI we win develop the same type
of equation in polar coordinates and will dis-
cuss a solution to this equation for a particu-
lar flow problem. In the course of working
through Parts V and VI, the reader may
realize that the relations describing the stor-
age and transmission. of ground water can
be combined to develop the differential equa-_

Partial derivatives in gr--o

When a dependent variable varies with
more than one independent variable, the
partial derivative notation is used. A topo-
graphic map, for example, may be considered
a representation of a dependent variable
(elevation) which is a function of two in-
dependent variablesthe two map direc-
tions, which we will call x and y, as shown in
figure i. If elevation is denoted E, each
contour on the map represents a curve in the
x-y plane along which E has some constant
value. In general, if we move in the x direc-
tion, we will cross elevation contoursthat
is, E will change. Let us say that if we move
a distance Ax parallel to the x axis, E is ob-
served to change by an amount AE,. We may

tions for many other types of flow; and that
solutions to these equations can be developed
for a variety of field problemS.

Before the start of the program of Part V,
there-is a-brief-discussion,-in_text form, of
the significance of partial derivatives, their
use in ground-water equations, and in par-
ticular their use in a more general form of
Darcy's law. This form of Darck's law-was
introduced in the text-format discussion at
LA. end of Part II. The discussion here is in-
tended primarily forzeaders who may not be
accustomed to using partial derivatives and
vector notation. It may be omitted by riiaders
conversant withthese topics. This discussion
is not intended as a rigorous treatment of
partial differentiation. Readers who are not
familiar with the subject may wish to review
such a treatment in any standard text of
calculus.

und-water flow analysis

form a ratio, AE.,./Ax, of this change in eleva-
tion to the lene,h of the x interval in which
it occurs. If the interval Ax becomes vanish---7---::
ingly small, this ratio is designated DE/Dx
and is termed the partial derivative of E with
respect to x. DE/Dx is actually the slope of
a plot of E versus x, at .the point-under con-
sideration, or the slope of a tangent to this
plot, as shown in figure i. Note that in obtain-
ing DErax we move parallel to the x axis
that is, we hold y constant, considering only,
the variation in E due to the change in x.

SimlTh,rly, if we move a small distance, Ay:
parallel ti., the y axis, E will again change by
some small amount, AE,. We again form a
ratio, AE,/Ay; if the- distance taken along

R n _
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4

the y axis is vanishingly small, this ratio is
designated 3E/3y and is termed the partial
derivative of E with respect to y.. Note that
this time we have moved parallel to the y
axis; in effect we have held x constant and
isolated the variation in E due to the change
in y alone.

If it happened that land surface varied so
regularly over the map area that we could
actually write a mathematical expression
giving elevation, E, as a function of x and y,
then we could compute 3E/3x simply by dif-
ferentiating this expression with respect to
x, treating- y as-a-constant._SirnilarIywe
could compute 3E/3y by differentiating .the
expression with respect to y, treating x as R.
constant. For example, suppose that after
studying the contour map, we decide that ele-
vation can be expressed approximately as a
function of x and y by-the equation

E---.5x2+10y+20.

Differentiating this equation with resp
to x, treating y as a constant, gives

We could, therefore, compute 3E/3x.at any
point by substituting the x-coordinate of that
point into the above equation. Differentiating
the equation with respect to y, treating x as
a constant, gives

3' =10,
a y

indicating that 3E/3y has the same value,
10, at all points of the map. In this example,
3E/3x turned out to be independent of y
and 3E/3y timed out to be independent of
both x and y. In general, however, 3E/3x
may depend on both x and y, and 3E/3y may
also depend on both x and y. For ,ixample, if
E were described by the equation

E= 5x2-1- 5y2+ 8xy i- 20,

differentiation with respect to x would give

3E
10x + 8y

while differentiation with respect to y would
give

3E
- ----=10y+ 8x.
3Y

In the topographic-map example, 3E/3x
and 3E/3y are space derivativesthat is,
each describes the variation of E in a par-
ticular direction in space. In the discussion
given in this chapter; We will use the space
derivative of,head,-Dhlax, giving the change
in hydraulic head with respect to distance in
the x direction. In addition, however, frTe will
use the time derivative of head, 3h 'at, giv-
ing the change in head with respec,t to time,
if position is held fixed. 3h/3t if a partial
derivative, just as is 3h/3x, an4 it iS corn-

-puted according to the same r les, by "con-
sidering all independent vari -les except t
to be con Akant. We could i fact me a
"map" of the variation of h_ ad with respect
to distance and time by laying out coordinate
axes marked x and t, and drawing contours
of equal h in this x, t plane.; The discussion
given for directional derivatives in the topo-
graphic-map example could then be applied
to 3h/3t in this example.

The partial derivative of head with respea
to distance, 3h/3x, gives the slope of the
potentiometric surface in the x direction at
a given point, x, and time, t. This is illus-
trated in figure ii. If x or t are,varied, then
in general 3h/3x will vary; since the sl-;pe of
thecpotentiometric surface changes, in gen-
eral, both with position and with time.

The partial derivative of head with res5ect
to time, 3h/3t, gives the time rate at which
water level is rising or fallingthat is, the
slope of a hydrographat a given point, x,
and tirne, t. This is shown in figure iii. Again,
if x or t are varied, then in general 3hrat
will vary.- In other words, 3hfax is a func-
tion of both x and t, and 3h/at iS also a func-
tion of both x and t, in the general case.

Physically, 3htax may be thought of as
the slope of the potentiometric stirface which
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Plot of E versus x
for y y, ;Slope of
tongentis at

Y2
yi

Contour map in x, y Plane, showing
lines along which E. is constant

xi \ X2 X

the point x, y2

fig.

will be observed if time is suddenly frozen at
some value. If an expression.ls given for h,
as a function of x and t, ah/Dx can be cal-

, culated by differentiating this expression
with respect te x, treating t as a constant. In
the same way, ah/W may be visualized as the
slope 'of a hydrograph recorded at a particu-

Potentiometric Observation wells
surfale

Slope of tangent
h

== At

3x
the point x x,

xl

qUi.fer
. .

Distance, x

Plot of E-versus v
for x x2;Slnpe of

. 3E
y tangent Is at

ad I

the pant x2, y,

Slope of tangent

at
at the time t = t,

11

Hydrograph of
observation well

$

---- / , s
..-----> /

-----

_

Time, t

lar locatim (x value). If h is giverkas a;func-
tiOn of x and t, an expression for 3h/3t may
be obtained by differentiating with reapect .

to t, treating x as if it were a constant.
In the discussion in Part V the problem is

restri&ed to only one space derivative,
31/113x, and_the time derivative. In the gen-
eral case, we would have to consider al!
three space derivatives-3h/3x, 3h/3y, and

8 2
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Qz

Qr

tt'
q.

A

Q '--- A 4.qv

A

fig. iv

addition to the time derivatiye. In
such a case, as noted in the discussion at the
close of Part II, we would utilize Darcy's law
in a somewhat more general form. When
flow may occur in more than one direction,
We consider the specific discharge, q=Q/ A
fo, be a vector, having the three components

q, and q,. If the medium is isotroPic, each
of these coMponents is given by a form of

Darcy's law, in which the partial derivative
of head in the direction concerned is em-
ployed. The expressions for the 'apparent
velocity components are

q,=
3.1*

ah
qv=

31/
ailK
az

where K is the hydraulic conductivity.
actually represents the fluid discharge

per unit area in the x directionthat is, the
discharge crossing a unit area oriented at
..ght angles to the x axis. Similarlyq, and
q, represent the discharges crossing unit
areas normal to the y and z axes, respec-
tively. The three 'components are calculated
individually ia.nd added vectorially to obtain
the resultanl apparent velocity of the flow.--
(See fiiure iv.)

We now proceed to the programed material
of Part V.

If

The picture shows.an open tank with an
inflow at the top and an outlet pipe at the
base. Water is flowing in at the top at a rate
Q, and is flowing out at the base at a rate Q2.

QUESTION

Suppose we observe ,that the volume of
water in the tank is increasing at a rate of 5
cubic feet per minute. Which of the following
equations could we consider correct?

Turn to Section:

Qi =5 cubic feet per minute 29-

2

(11-17(22
2.5 Cubic feet 'per minute 17

Q2=5 cubic feet per minute 21

8 3
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Your answer in Section 32,

Q, Q2 =K,

is not correct. The inflow through facr; 1 of
the prism is given, according to Darcy's law,
as a product of- the hydraulic conductivity,
the head gradient at face 1, and the cross-
sectional area, bay, of face 1 ; that is,

K ) bay.
a:-, 1

Similarly, the outflow through face 2 is given
as a product of hydraulic conductivity, head
gradient at face 2, and the cross-sectional
area of face 2, which is again bay; that is

ista,..=

Q2 bAy.
Dft7 2

"

.1111

Inflow minus outflow is thus given by

Q1 Q2 KbAy/(a. ) () 1.
D 2

In the preceeding sections, we have seen that
the term

w_ah\ ah

Rax.),
(

)
can be written in an equivalent form using
the second derivative.

Return to Section 32 and use this second
derivative form in the above equation to
obtain the correct answer.

Your answer in Section 30,

Q,
bay ) ,

is not correct. DarcY's law states that the
flow through a given plare- --in this case, face
1 of the prismis given as the product of
hydraulic conductivity, area, and 1.a.dgradi-

Your answer in Section 7,

a2h

ax2

is not correct. We wish to find the-change in
the qiiantity ahlax over a small interval, Ax,
of the x-axis. We have seen in the preceding
sections of Part V that the change in a vari-
able over such an interval is given-by the
derivative of the variable times the length

.

ent. Your answer gives the flow as the prod-
uct of hydrhillic conductivity and head gradi-
ent, divided by area.

Return to Section 30 and- choose mwther
answer.!
of the interval. Here, the variable is ph/Dx
and the interval is ax; thus we require the
derivative of ah/ax with respect to x and
must multiply-this by the interval ax.

Return to, Secticn 7 and choose another
answer.

8 4
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5
Your answer in Section 21 is not correct.

A falling water level in the piezometer would
indicate that water was being released from
storage in the prism of aquifer. The slope of
a plot of piezometer level versus time would
in this case be negative; that is, Dh/at would
be negative, since h would decrease as t in-
creased. According to the storage equation,

dV ah-- SA
dt at

arid therefore the rate of accumulation in
storage, dV jdt, would also have to be neg-
ative. That is, we would have depletion from
storage, rather than accumulation in stor-
age. The question in Section 22, however,
states that inflow to the prism exceeds Out-
flow ; thus, according to the equation of con-
tinulty, accumulation i storage should be
occurri3g.

Return to Section 21 and choose another
answer.

Your answer in Section 21 is not correct.
If the water level in the piezometer Were
constant With time, a plot of the piezometer
readings versus time would simply be a hori-
zontal line.Th slope of such a plot, ailiat,
would be zero. rom the storage equation,
then, the rate o accumulation of water in
storage iii-the prijn would have to be zero,
for we would have

dV all
SA 0=0.

dt at
The question states, however, that inflow to
the prism exceeds outflow ; according to ,the
equation of continuity, then, the rate of
accumulation of water in storage cannot be
zero. Rather, it must equal the difference
between inflow and outflow.

Return to Section 21 and choose tanother
answer.

Your answer in Section 16,
( dy

dx ) (x, x1)
(dy dy

\ dx 2 dX )1
dx 1 - 2

is correct. In this case, the derivative itself is
the variable Whose change is required, and
for this we must use the derivative of the
derivative,

dy

dx

dx

NZ

8 5

evaluated at an appropriate point within the
interval. This term is called the second de-
rivative of y with respect to x, and the nota-
tion d2y/dx2 is used for it. That is,

dy
r)

dx

dx2 dx

411
slope of a plot of versus x.

dx

The terms and notations used irfCthe case
of partial derivative§ are entirely
The notation 212h/3x2 is, used to represent thp
second partial derivative of h with resped-
to x, which in turn is simply the partial de-
rivative of ah/ax with respect to x. That is,
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3/i
=slope of a plot of versus x.

3:6
Again, the partial derivative notation in--

dicates that we can expect 3h/3x to vary
with t (or some other variable) as well as
With x; 32h/3x= measures only it change
due to a change in x, all pther independent
variables being held constant.

QUESTION

In Section 9, we saw that inflow minus
outflow for our prism of aquifer could be
expressed in the form

Q1o2----Kbay{( 3h )
3x 2 3x

and that the term

K 31" 7 ()2

75

Con.

represented the change in the hydraulic
gradient occurring across the prism. If the
width of the prism in the x direction (that
is, parallel to the x-axis) is Ax, which of the
following expressions could most reasonably
be substituted for

1

( 3h 3/E, \

DX /2\ 3x )/
Turn to Section:

32h 3h

3x2 3x
3h3(
3x

4

23
3x

32h,
ax 3',1;

3x2

Your answer in Section 30,
3h

KbAmy(-z ) ,
a

is not correct. According to Darcy's law, the
flow through face 1 should equal the product
of the hydraulic condUctivity, the cross-
sectional area of the face, and the head gradi-

I/

ent at face 1. The cress-sectional area of fa
1 is simply bay. '

Return to- Section 30 and choose another
answer.

Your answer in Section 33,

= Kkcly{(-- )Qi Q2
2

is correct. We may change the term in brams
\. to (1/,/3x)2.(3h/ax), and drep the mega-

tive sign to obtain the form

1.
3x 2 3x 1

MINNS

9
The term (3h/3x), (3h/3x)1 .presents

the change in hydraulic gradieir i. from one
side of the prism of aquifer to the other. We
wish now to express this change in hydraulic

/ gradient in a slightly different form.
(continued on next_page)
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9

212

2I1

Con.
QUESTION

In the figure, variable y is plotted as a
function of an independent variable, x. As x
changes from x, to x y changes from y, to
y, ; (dy/dx),_, represents the slope of the
plot at a point between x1 and x2. If the
change in x is small, which of the following
expressions would you use to obtain an
approximate value for the change in y?

Turn LI Section:

(dy (x2 2.1) 16

____ i + (x2-xi) 25
dx /1-2

AY
ji2 yi-m(x2-xi)+ 20

Ax.

10"

Your am:Wer in Section
dV ah

SAXAY-
dt at

is correct. (We should note that for a finite
prism, ah/at may vary from point to point
between the two faces; and we require an
average value, which will yield ;he correct
value of dy/dt for the prism. In fact there is
always at least one point within the prism at
which the value of Ditiat is such kill average,
and we sasume that we can measure and use
Dh/Dt at such a point. If we allow the prism
to become infinitesimal in size, (;nly one value
of Dh/Dt can be specified within it, and this

value will yield an exact result for dy /cit.)
Using the-equation-of-continuity we may-
/LCVAr set this expression which we have ob-
tained for rate of accumulation equal to our
expression for inflow minus outflow.

QUESTION

Which of the following equations' is ob-.
tained by equating the above expression for
dV/dt to that obtained in Section 34 for

D7-it S

ax2 ..T Dt
D2h Dh

T--Amy=S
Dx2 Dt

Dh ah
nyAx--sts,my

X Dt

Turn to Section: /

19

24

8 7
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Your answer in Section 10 is not correct.
We used Darcy's law to obtain expressions
for inflow and outflow from the prism of
aquifer, -and we used the second derivative
notation to express the difference between
inflow and outflow. This led, in Section 34,
to the equation

a2h
Q, Q,=

for inflow minus outflow. According to the
equation of continuity, inflow minus ou' ow
must equal rate of accumulation in storage;
that is

dVQ, =
dt

11
We obtained an expression for dV/dt
through the storage equation, which states
that rate of accumulation in storage must
eaual the product of storage coefficient, sur-
face (or base) area, and time rate of change
Of head; that is

dV
= SA:TAY-.

dt
Substitution of the first and third equa-

tions into the second will yield the correct
result.

Return to Section 10 and chooz;e another
answer.

Your answer in Section 34,

dV S

dt K

is not correct. The storage equation tells us
that th3 rate of accumulation of water in
storage within the prism of aquifer must
equal the produst of storage coeffidient, rate
of change of head with time, and base area
of the prism. Hydraulic conductivity, K, is

Your answer in Section 16,

(dy dy ( dy

is not correct. In this case, the dependeit,,
variable, plotted on the vertical axis, is
dy/dx. As we have seen in preceding sections,
the change in the dependent variable is given
by the slope of the graph, or derivative of
the dependent variable with respect to x,

(x2

not involved in the storage equation. In the
answer which you selected, there is no term
describing the base area of the prism, and
hydraulic conductivity appears on the right
side of the equation.

Return to Section 34 and choose another
answer.

13
multiplied by the change in x. Thus we re-
quire the derivative of dy/dx with respect
to our answer. In the answer shown
above, however, we have only the square of
the derivative of y with respect to x.

Return to Section 16 and choose another
answer.

saeme.11,...x. A .0:10
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14
Your answer in Section 22 is not correct.

It is true that if inflow differs from outflow

=====0.

15

the water level in the prism of aquifer must
change with time. However, it need not rise;
if inflow is less than outflow, it will fall.

Return to Section 22 and choose another
answer.

Your answer in Section 33,

S

ax)2
is not correct. This answer associates storage
-coefficient, S, with a space derivative of head,
(3hfax),; this in itself should be sufficient

16
,

to indicate that it is incorrect. In the storage
equation, S is associated with the time derivil-
tive of head, 3h/at. Again, the answer
chosen involves only the head gradient at the
outflow face. Since we are seeking an expres-
sion for inflow minus outflow, we would ex-
pect head gradients at both faces to be in-
volved in the answer.

Return to Section 33 and choose another
answer.

Your answer in Section 9,

(
dy

Y2 yi ------ (x2x,),
dx

is correct. The change in the dependent vari-
able, y, is found by multiplying the change in
the independent variable, x, by the slope of
the piot, dy /dx. Note-that dy/dx must be the
slope in the vicinity of the interval xi to x2;

(cfn

dy)
\dx

dy

dx

dh

dx ,

frequently, it .s considered to be the slope at
the midpoint of this interval. The approxi-
mation becomes more and more accurate as
the size of the interval, xi, x decreases. The
above equation is often written in the form

dy

dx
(In a more formal sense, it can be ItAnon-

strated that if y is a continuous funclon of
x and if dy/dx exists throughout the interva2
from x, to x2, then there is at least one point
somewhere in this interval at which the de-
rivative, dy/dx, has a value such that

dy 112

dx x2x,
or

dy

dx
This is known as the iayf ot the mean of

differential calchlus. It guarantees that the
approximation can alWays be\ used; provided
we are careful about the point within the
interval at which we take dy/dx. Further,
since this law must hold lo materhow small-

. (contv.retted on rext page)
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the interval (x2-x1) is taken, the approxi-
mation must become exact as the interval is
allowed to become infinitesimal.)

QUESTION

Now suppose we measure the slope of our
curve, dy/dx, at various points, and construct
a plot of dy/dx versus x, as shown in the
figure. Again, suppose we wish to know the
change in dy/dx which occurs as x changes
from x, to x2. The subsCript 1-2 is again
used to denote evaluation at a point between
x, and x2. Which of the follOwing expressions
would give an approximate value for this
change?

( dy ( dy

\dx \clx

Con. 16
Turn to Section:

= (CLdx),
31

dy- (x2-x1) 13
\ dx

(d(-4

dx
1-2

7

Your answer in Section 1 is not correct.
The rate of accumulation in the tank does
depend upon both Q, and Q, but not in the
way that your answer implies. The inflow to
the tank must be balanced by outflow, by ac-

17
cumulation of water in/the tank, or by a com-
bination of these fl.c.tors.

Return to Section/1 and choose another
answer.

Your answer in Section 33,

Dlt D
Q,-Q2

X
K(it

D 1 DX )2
is not correct. The answer treats both inflow
and outflow as products of hydraulic con-
ductivity and head gradient; but we have
seen, in our application of Darcy's law to the

18
problem, that each should be a product of
hydraulic conductivity, head gradient, and
flow area.

Return to Section-33 and choose another
answer.

Your answer in Section 10,
D2h S Dh

Dx2 T ?It
is correct. This equation describes ground-
water movement uncle shnple conditions
which we have as 'hat is, where the
aquifer is confined, ,; -0 !AI, homogeneous,
and isotropic, and tL f:flovement is in one
direction (taken here as the x direction) 1 If
horizontal components of motion normal to

' A rigorous azoi more general development of .the ground
water equation is given by Cooper (1960.

-the x-axis were present, we-would have to
consider inflow and outflow through the other
two faces of the prism; that is, the two faces
normal to the y-axis. We would find this in-
flow minus outflow to be

Qy; Qy2=KbAxAy-.ay2

, The total inflow minus outflow for the
prism would St-, be (Q,1-Q:2)+

. 90
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Con.

where (2,.,Q-,,, represents the term we ob-
tained previously, KbaxAy(32h/3x2). Final-
ly, equating 'his total i7.kflow minus outflow to
the rate of accumulation, we would have

32h 32h, 3h
KbAx.ly+ Kb Amy--S.IxAy-

3x2 3Y2 3t
or, using the notation T=Kb, and dividing
through by TAxAy,

32h 32h S 3h
3x2 3y2 T at

These equations are partial differential
\ equations; that is, they are equations contain-

ing partial derivatives. The relatiOn given
above for two-dimensional flow is a partial
differential equation in three independent
variables x, y, and t. For simplicity, we con-
tinue the discussion in terms of the equation
for unidirectional flow,

32h S 3h
3x2 T .at

This is a partial differential equation in two
independent variables, x and t. It relates the
rate of change of head with time, to the 1 ite
at which the slope of the potentiometric sur-
face, 3h/3x, changes with distance. When
we say that we require a solution to this
partial differential equation, we mean that
we are looking for an expression giving head,

h, as a. function of position, x, an.3. time, t,
such that when this expression is diferen-
tiated twice with respect to x (th obtain
321//3x2) and once with respect to t (to ob-
tain 3h/30, the results will satisfy the con-
dition

32h S 3h

3x2 T t
As with ordinary differential equations,

there will always be an h-:.nite number of
expressions which will satisfy a partial dif-
ferential equation ; the particular solution re-
quired for a given problem must satisfy, in
additionertain conditions peculiar to that
problem. As in ordinary differential equa-
tions, these additional conditions, termed
boundary conditions; establish the starting
points from which the changes in h described
by the differential equation are measured.

This concludes Part V. In Part VI, we will
make a development similar to the one
made in Part V, but using polar coordi-
nates, and dealing with the problem of non-
equilibrium flow to a Well. Our approach will
be the same: we will express inflow and out-
flow in terms of Darcy's law and rate of
accumulation in terms of the storage equa-
tion; we will then rglate these flow and stor-
age terms through the equation of coqinuity.
We will go on to discuss a partimilar solution
of the resulting partial differential equation
and will show hów this solution can be used
to build up other solutions, including the
well-known Theis eq'uation.

20
Your answer in Section 9,

Ay
7/2y1=m(x2x,)

Ax

is not correct. If y is plotted as a function of

x, the change-in y corresponding to a small
change in x is given by the relation
Change in y= (Slope of curve)

(Change in x),
where the slope of the curve is measured in
the vicinity in which the change is sought.
This follows directly from the definition of
the slope of the curve.

Return to Section 9 and choose another
answer.
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10.1 begNelOarior

81

Your amswer ii Section 1 is correct. If
water is accumWl ting in the tank at a rate
of 5 cubic feet per minute, inflow must exceed
outflow by this amount. This is essentially a
statement of the principle of conservation of
mass. Since matter cannot be destroyei (ex-
cept by conversion into energy, which we
need not consider here). the difference be-.
tween the rate at which mass enters the tank
and that at which it leaves the tank must
equal the rate at which it accumulates in the
tank. Further, because compression of the
water is not significant here, we may use vol-
ume in place of mass. In general terms, the
relation with which we are dealing may be
stated as:

Inflow Outflow L-- riate of accumulation.
This relation is often termed the equation of
continuity.

Note that if outflow exceeds inflow, the

Confining
material

Aquifer
material

21
rate of accumulation will be negativethat
is, we ?ill have depletion rather than accu-
mulation. An important special case of this
equation is that in which inflow and outflow
are ir. balance, so that the rate of accumula-
tion is zero. As an example, consider a tank
in which the inflow is just equal to the out-
flow. Rate of accumulation in the tank is zero,
and the water level does not change with
time. The flow is said to be in equilibrium,
or in the etk.erly state. The problems which
we conside in Part III were of this sort;
no changes of head with time were postu-
lated, so the assumption that inflow and out-
flow were in balance was implicit. The flow
pattern could be expected to remain the same
frorn one mrarent to the next.

Forms of the equation of continuity occur
in all branches of physics. In electricity, for
example, if the flow of charge toward a ca-
pacitor exceeds that away from it, charge
must accumulate on the capacitor plate, and
voltage must increase. In heat conduction,
if the flow of heat into a region excei. :s that
leaving it, heat must accumulate within the
region, ancl the temperature within the re-
gion must rise.

QUESTION

The sketch shows a prismatic section
through a confined aquifer. Water is flowing
in the x direction, that is, into the prism
through face 1 and out of the Ttrisni through
face 2. A piezometer or obw_irvation well
measures the hydraulic head within the
prism. Let us suppose that the volumetric
rate at which water is entering through face
1 exceeds that at which it is leaving through
face 2. The water level in the piezorrieter will
then :

Turn to Soction:

remain constant with time 6

fall steadily 5

30

9 2
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22

e,

-Piezometkl

Confining
maierial

Aquifer.
material

liss.ra AlmIlm21....5.- 17//aewm

Your answer in Section 30,

Q, KbAy(---) ,
Bx

is correct. (3h/z.x)1 is the hydraulic gradi-
ent at the particular point and time in which
we are interested..We simply insert it in
Darcy's law to obtain the required flow rate.

We are dealing with nonequilibrium flow
here; that is, in general, inflow and outflow
will not be equal. Flow occurs only in the x
d:rection; thus the outflow from our prism
of aquifer must take place entirely ',7zough
face 2, as shown in the sketch.

QUESTION

Assuming that outflow differs from inflow
and that the hydraulic conductivity and
thickness of the aquifer are constant, which
of the following statements is correct?

. Turn to Section:

The water level in the prism must rise 14
The hydraulic gradient at face 2 of

the prism must differ from that at
face 1 of the prism 33

The rate of withdrawal from storage
must be given by Darcy's law.

23
Your answer in Section 7,

ah)ox

is not correct. As; we have seen in earlier
sections of this:chapter,- the change in a

26

dependrnt variable, over a small interval of
the x-axis, Ax, is given by the derivative of
the variable times the length of the interval.
Here, the variable is ak/ax and the term
a (7-, /ax)/ax of your answer is certainly its
d. Tye. However, this derivative is not

by the interval along the x-axis;
thus the answer gives only the rate of change
of ah/ax with distancenot its actual
change across the interval Az.

Returb, to Section 7 and choose another
answer.

.,

.24 .,
Sbab.y--,

Dh

at
.,

Your answer in Section 10 is not correct. as in the answer which you chose. However,.
The rate of accumulation in storage is given the expression for inflow-minas outfloW re-
by iquires a second derivative, ast deals /with

\

9 3
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the difference between two flow terms, each
of which incorporates a first derivative. In
the answer which you chose, inflow minus
outflow is expressed in terms of a first de-
rivative.

Con. 24
Review Sections 9, 32, and 34 and then

return to Section 15 and choose another
answer.

Your answer idSection 9,
dy

2 =()7./ + (x2 -xl)
dx

is not correct. From the definition of slope,
the change in y can be foand by multiplying
the change in x by the slope of the curve,
measured in the interval x, to x2. In tl.e an-

=1MI
25

swer which you chose, the slope of the cr <

is acIONI to the change in x.
Rei.urn to Section 9 and choose another

answer.

Your answer in Section 22 is not correct.
Darcy's law describes the transmission of
ground water, not its withdrawal from stor
age. The storage equation, developed in Part
IV, deals with changes in the quantity of
water in storage.

26
Return to Section 22 and choose another

answer.

Your answer in Section 32,

Q1 Q,
a±2

is not correct. Your aniwer includes the
hydraulic conductivity, K, and the term

as2h

'which, as we have seen, is equal to

K 33: )2 .( :kJ

Thus if we were to expand your answer,
expressing it in the original head gradient
terms, we would have

Q2 Q2 =
asx 2

27
ash \ _Kt 'alit)

ax /2

)1.

This states that inflow is a product of hy-
draulic conductivity and head gradipt, and
that outflow is 'imilarly a product of hy-
draulic conductivity and head gradient. We
`..now from Darcy's law, however, that both
inflow and outflow must be given as products
of hydraulic conductivity, head gradient, and
flow area. Your answer thus fails to incor-
porate flow area into the expression for in-
flow minus outflow.

Ritirrn to Section 32 and choose another
answ er.

I

9 4
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28
ImallwINNIME

Your answer in Section 34,
dV

dt 3t
is not correct.. The storage equation states
that the rate of accumulation of water in

"

storage in the prism of aquifer is equal to
the product of storage onefficient, rate of
^hange of head with ti .nd base area of
the prism_ In your ar . er the rate c ac-
cumulation is equated to the product of _he
storage coefficient,the rate of change of head
with time, and the area, b.lx, of one of the
vertical faces of the prism.

Return to Section 34 and choose another
answer.

Your answer in Section 1 is not correct.
Some of the inflow to the tank is balanced
by outflow at the base. In order for your an-

swer to be correct, the\ outflow, Q2, would
have to be zero. Only hilhat case would the
rate of accumulation in \the tank equal the
inflow.

Return to Section 1 and choose another
answer,

30
Your answer in Section 21 is correct. Ac-

cording to the eqnation of coAtinuity, if in-
flow to the prism uf ,.nuifer c!xceeds outflow,
water Must be ac(....;,-iniating in storage with-

tin the rism. According to the ston".e equa-
tion, i, water is accumulating in storage
within the prism, hydraulic head in the
prism must be increasing with time. Speci-
fically, we have .

Inflow Outflow'= Rate of accumulation,'
..---

dV / dt
and

dV 3h= SA--
dE

where Axis the base area of the prism. There-
fore,

'Here again we use volume in place of mass in the equation
of continuity, even though slight compression and expansuen of
the water can be a factor contributing to confined storage. The
changes in fluid density from point to point in a normal ground-
water situation are sufficiently small to permit this approxi-
mation. In fact, U this wire not the case, it would not he
possible to use the simple formulation of storage coefficient, de-

\ fined in terms of fluid volume, which we have adopted.

Inflow Oui flow = A.
\ 3h

3t
If the term (Inflow-Outfl w) is positive

that is, if inflow exceeds outflowthen
3h/3t must be positive, anI water levels
must be increasing with thn In the above
equations, we have used the artial deriva-

-tive of head with respect to tirre, 3h/3t; and
in the equations that follow, W will use the
partial derivative of head wi h respect to
distance, 3h/3x. These notatl:.;ns are used
because, in this problem, head Al vary both

\with time and with distance.

9 5

QUESTION

The sketch again shows the pr sm of Sec-
tion 21. We assume this prism o be tak,en
in a homogenecus and isotro c aquifer
which is horizontal and of unif rrn thick-
ness. Suppose we, let (3h/3x), re resent the
hydraulic gradient (in the x *diree 'on, which
is the direction of the flaw) at fa e 1 of the
prism. We wish to write an exprssion for
the inflow through face 1 of the rism. Let
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-I Piezorneter

,

; Confining
material

4

lalC.i.MMINK

1

' Aquifer
r material

2 Qz

Con. 30
us denote this inflow Q nd let us further
denote the height of the prism (thickne..,3 of
the wfaifer) by Q. The width of the prism
normal to the x-!4xis-is denoted Ay, the length
of the prism-ilong the x axis is denoted Llx,
and the hydraulic conductivity of the aquifer
is denoted K. Which of the following equa-
tions gives the required expression for the
inflow at fa.e. 1?

Q, = -KbAy(--
h--D,

Dxi,.

-Q.-- KbAxAy(_____
Dh

N aX )1

D
Q.=

-K
:LA?' Dx

Your answer in Section 16,

dy \ dy \
(X2

dx dx I , dx
is not correct. In the preceding sections we
saw that the change hi the dependent vari-
able is even -by the change, :r,-x1, in the
independent variable, times the derivative of
the dependent variable with respect to x.
Here the dependent variable is dy/ bUt

Turn to Secfion:

22

8

31
in your answer/we do not have the derivative
jf this dependent variable with respect to x.

have, rather, only the derivative of
with respect to x.

Return to Section 16 and choosedanother
answer.

-.........M,11.1.1.: 1. .1211., CMINI=01.111111^

Your answer in Section 7 ,
D2h

Ax,
De-

is correct. This term ii equivalent tO thn term

) ) 1

. {( ax
--

prbvided that we chOose a suitable point .
within the inierval xi at which to evalu-

=1..M11.111Ml

11

32
ate D2h,P6x2_ The product (o2h/Dx2) Ax rep-
resents the slope of a plot of ahtax versus
x, multiplied by the intervial along the x
laxis,./lx, and thus gives the change in -3h/ax
over this interval.

(continved on next page)
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Con.

QUESTION-
Using this expression for-

1(3n ph) 1,

(\
which of the following forms is the correct
exPre-vion for inftelw minus outflow, Q, Q2,
for our prisin of aquifer, which is shown
agaih ih the diagram?

'Qi-R2=K-Ax
3x2

,3211

191 Q2 =1CbAyAx- 34
3x2

furn to Section:

-Piezorneter

Confining
material

Aquifer
material

Q,
27

3h
Qi Q2= Ktx

Your answer in Section 22 is correct. If we
apply Darcy's law at face 2, we have

311,

Q2-=
0 3x 2

where at face 1 we had
3h

3x
K, b, and 'Ay .do not-change: Thu's' if the' out-
ifew,/Q2, is to.differ irom\the inflow, Q1, the
hydraulic grndients\ at-the inflow and outflow

faceS must diffe'rthat is, (3h/3x)2 must
differ from (31i/x),.

/.
QUESTION

_Using the expressions we have developed .
for infloyv.'and outflow, which of the follow-
ing terms/ would describe inflow minus mit.:

- flow for ,the prism?-1,
Turn to Section:

Q1 7. Q2

QiQ2

QI Q2

K K
_,

(
h
)

3x; 2

2

311

), (

3
K 3X
/

3x

18

3; 2

15
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Your answer in Section 32,
32h

Q,
ax2

is correct, The term Eb, representing the
hydraulic conductivity of the aquifer times
its thickness, is called the transmisSivity or
tramsmissibility Of the aquifer, and is desig-
nated by the' letter T. Using this -notation,
thern expression for inflow minus outflow be-
conies

am
Q,--Q2=TAyAx--.

x2

Now according to the equation of cohtinu-
ity, this inflow minus outflow must equal the
rate of accurnulation of water in s rage
within the prism of aquifer, which is sh wn
in the figure.

QUESTION

We represent the average time rate of
change of head in the prism of aquifer by
ah/at and note that the base area of the
prism is A Using the storage equa-
tion, which of the following exPressions
gives the rate of accumulation in storage
within the prism?

Turn to Section:

417 ah
28

dt Dt
dV S -3h

12
dt K at
dV Dh.

10
cit at

Q,

-Piezometer
Water level changing

at rate ah

Ax
51-

Confining
-

material

Aquifer
material

Q,

9 8



Part VI. Nonequilibrium Flow to a Well

( I ntrodOction

In Part V-we developed the equation
a2h s ah
a;..! T at ,

tor one-dimensional nonequilibrium flow in
a homogeneous and ,Aotropic confined
aquifer. We indicated, in addition, that ex-
fension to two-dimenaional flow would yield
the equation

h S ah
ax. ay2 T

In Part VI we consider a problem involv-
ing floW away..from (or toward) a well in
such an aquifer. As in the steady-state prob-

_
lem of flow to a well, which we considered in
Part III, we will find it Convenient here to
use polar coordinatev.The two-dimensional
differential equation,

a21i a2h S ah
Dx2_y2T at

r atbe transformed readily into polar coordi-
es by Using standard methods. However,

it is both easy and instructive to derive the
I

equation again ,froin hydraulic principles in
the form in which we are_ going to use it.
After we have developed the differential
equation in this way, we will consider one of
its solutions, corresponding to.an instantane-
ous disturbance to the aquifer. In tbe ter-
minology of systems analysis, this solution
will give the "impulse response" of the well-
aquifer system. In considering this. solution,
we will Arst show by differentiation that it
satisfies the given differential equation ; we
will then develop the boundary conditions ap-

-7b1icab1e to the problem and show that the
solution satiefies these conditions: Following
the .program4 section of Part VI, a discui-
sion in text format has been added showing
how the aimptilse response" solution tnay be
used to synthesize solutions correspondinglo
'more complex disturbances to the aquifer. In
particular, solutions are synthesized for the
case of repeated withdrawal, or bailing, of
a well and for the case of continuous pump-
ing of a well. The latter solution, for the par-/'
ticular ca* ingvhich the pumping rate is
constant, isthe Theis equation, which is corn-

' monly uaed in aquifer test analysis.

,

The figure shows ft well penetrating a con- the inner surface of the element is at a
/ fined aquifer. A cylindrical shell or prism, radius ri from the axis of the well, which is

coaicial with the well and extending through ,taken as the origin of [the polar coordinate
the full thickness, b, of the aquifer has been system; and ,the outer surface of the element
outlined in the diagram. The radial width of --is at a radius r2 from this axis. We assume ..-

this cylindrical element is designated Ar ;-- all flow to be in the radial direction, so that
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/ Well

ft 1 + Con.

we need not consider variation in the,vertical
oi angular directions. We further assume
that we a e dealing with injection of water
into the a ifer through the well, so that flow
is ouivrd, away from the well, in the posi-
ti r direction. The hydraulic conductivity
of the aquifer is denoted K, the d-ansmissiv-
ity T, and the storage coefficient S.

QUESTION

"4 If (avar)i represents the hydriaulic
gradient at the inner face of the cylindrical
element, which of the following expressions

- will be obtained for the flow through this
face, by an application of Darcy's law?

4
I I

I I

I I

Tum f o Sectioni

Qi K7,7 _____ 34( .

r 1

.

Cat= 1i2m-rib .--- ' 15'
3r 1'.,,

31t
Kb

Dr )1
Q1 36

2irr,

Your answer in Section 27
ah V

______e (S14/4Tt)
Dr 4.7rTt

is not correct.
are correct in your intention to mul-

tiply the derivative of e(s,-v4re) by the "con-
*-:nt" coefficient V/ (47rTt) to obtain the
derivative of the product

V
(Sr2/4Tt),

47Tt
with respeet to r. HoWever, your differentia-
tion of e7(14re) is not correct. The derive-

,

2
tive of e raised to some Power is not sim-
-ply e raised to the same power, as you have
written, but the product of e raised to ,that
power times the derivative of the exponent.
That is,

de" du
=

dr dr
Thus, iiithis case, we must obtain the derive/
tive of the exponnt, (Sr1/4Tt), and multi-
ply e (S/4/4rt) by this derivative th obtain the
'derivative of e(sr'1471) with respect to r.

Return to Section 27 and choose another
answer.

1 Qo
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3 +
Your answer in Section 35,

Bh V
(sr-'/ATt)(Sr=

Bt 4Tt2)
is not correct. hi your answer, the term;
e (Sr '7 4Tt) is differentiated correctly with-re-
spect to time. However, your answer gives
only the derivative of this factor times the
first factor itself, V/ (47rTt). According to
the rule for differentiation of a product, we
must add to this the second factor, e (Sr2/4Tt),

times 'the derivative of the first factor.
The tirst factor, V/ (47rTt) was treated as a-
constant coefficient when w were differen-
tiating with respect to r, since- it does not
contain y. It does, however, contain t and
cannot be treated as a constant when we are
differentiating with respect to t. It.S deriva-
tive with respect to t is given in the discus-
sion of Section 35.

Return to Section 35 and choose another
answer.

Your answer in Section 27,

4Tt

is not correct.
When an expression is Multiplied by a con-.

stant coefficient, the derivative of, the product
is siMply the constant coefficient times the
derivative of ;the expression. For eXample,
the derivatiVe of the expression x2,- with re-
sPect to xi- is 2x; but if -x2 is-rmiltiPlied 15-y
the constant c/?efficient e; the deriyative of
the Product, ea,T, is c2x.

In the question of Section 27, the term
(Sr2/4 Tt ). is actually the expression iñ which

_

we must differentiate with respect to r. The
term V/ (4,rTt), represents a constant coeffi-
cientconstant with respect to this differen-
tiation, because it does:not contain r. Thus
whatever We _obtaiii- as the ',derivative of
e (Sr,/ 4Tt). must be multiplied ':by this coeffi-
cient; V/ (47,-Tt) , to obtain thd derivative of
the prodUct

V
t,

(s47/4Tt):

4/rTt i.

i- --di er`entiation of e--:(ir5/47t) iS coi--
<

rect, but ur answer does not contain the
factor V/ (47rTt) and thus caMiOt be 'correct.

Return to Section 27 and chooseanother
I.

answer. ---
..

e
.,

----t---,

Your answer in Section 27,
I ;

Bh V. 2Sr
i ...e. (sr./4 Tt) . ---L.:-

Br .i ;r211 -i .4Tt

is correct.
We now wish-to differentiate this expres-

sion for Bhftsr, in order to obta3n B2h/Br2.
To do this, we treat the elifiression as the
product of two factors. The first is the func-
tion we just differentiEted,

e (S1-2141i)..
9

'4.-Tt

1-2Sr\
4Tt )

Once again we are differentiating with re-
spect to r, so that t is treated as a constant.
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QUESTION

If we follow the rifle for differentiation
of a product (first factur times derivative
of second, plus .second factor times deriva-
tive of first), which of the following results
do we obtain for 32hiar2?

+ Con.

32h V -2S e- (Sr2/4Tt)

(SrV4Tt)

}-. (Sr2/ITt)

-2Sr
Turn to'Section:

35

23 '

e-(Sr2/4Tt)
37-2 47rTt 4Tt

. a.h V -2S \
(5,2/471)

4Tt

(-2Sr\
4Tt )

4 Tt

4Tt

2.3r

4Tt
___,_-_.____
ar2 47rTt

32h V

e-
4Tt )

e-(S*2/4Tt) +
4Tt

------
3r2 47rTt

our answer-it-Section 18 is not correct.
The answer which you chose states that
head becomes infinite as radial distance be-
comes small. The behavior which we are try-
ing to describe is that in which head dies

6
out, or approaches zero, as radial distance
becomes very.,large.

Return to Section 18 and choose- another
answer.

. Slope of
tangent to curve

ar 4

Yenr answer in Section 15,

Q1-Q2=27rTf(r)
'ar 2 ar

is correct. The term

1( )
3r 2 3r

actually represents the change in the vari-
able, r(ahrar) between the radial limits, r,
and r2, of our element If we imagine a plot
of r(Bh/Dr) versus r, as in the figure, we
can readily see that this change will )3e given,

/ approximately by the slope Of theplot times
(continued on next page)
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Con.

the radial increment, er. That is, approxi-
mately

(7.3 h r3h

3r )2 3r )1
where the derivative

_3h
3 (r=

3r

Zr

3r
represents the -slope of our plot, at an ap-
propriate point within the element. This
slope, or derivative, is negative in our illus-
tration, so that

3h 3h

zir 3r
The approximation inherent in the above
equation becomes progressively more accur-
ate as /sr decreases in size.

QUEiTION

Recalling that the rule for differentiation
of a product is "&rst factor.times derivative
of second plus second factor times derivative,
Cif first," which oi the following equations
gives-the derivative of r(31.t/3r) with re-
spect tor?

3 (r-3 h

zr
3r , .-

3(r-
3r, 3,..h 3h-r !

3r 3r2 3r

3
3r

3h

(
3h,

zir ) 32h
3 r

-2r
zir 3rs

Turn to Section:

+- r' 26'
zir

Your answer in Section 7,
h )

3(rL. 2h3
3r =2r ,

3r2
3r

is not correct. We are required to take the
derivative of the product r (3h/3r). The rule
for differentiation of a product is easy to
remember: first factor times derivative of
second, plus second factor times derivative
of first; that is

28

"Ma IaI

d (uv) dv du

dx dx dx
A deriVation of this forinula can be found

in any standard text of calculus. Our first
factor is r; and our secondlfactor is 3h/3r.
Thus we must form the expression; r times-
the derivative of 3h/3r vdlith respect to r,
plus zh/3r times the derivative of r with re-
spect to r. I A

Return to Section 7 and choose- another
answer.
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Your answer in Section 5,

aqt V -2S -2Sr
- C .5--(,..,,srn . e-cs,:=/trt)______ ,

3r2 417-Tt 4T t. ' 4T t .
,

, is not correct. -If we remove the braces and
, separate your. . answer into two terms, we

have . /

32h V

ar= 47Tt

92

. e- f Srz/4Tt). /
. e- ( s, ,4 Tt 1 1-1--2S

V-2Sr( )
4Tt 4Tt I 4Tt

The first term, according to the rule for dif-
ferentiation of a product, is correet,- since it
represents the first factor,

-V
. e- (.97,-74rt)

4rTt
multiplied by the derivative of the second
(with respect to r) which is simply

-2S
4Tt

The second term of your answer, however,

is not correct.
-2Sr
4Tt

is the second factor of the product we wish
to differentiate but

V

4 Tt
. e- (SrViTt).

does not represent the derivative of the first
factor. This first factor is itself

e,(sr2/471)

47Tt;
and its derivative with respect to r was ob-
tained in answer to the question of Section

a

Return to SectrOn ' 5 atid oose inother
:

answer.-
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10
-

--- --Your answer in Section 21 is not correct.
We est:ablished in the discussion of Section
21 that the rise in head within the well at

due to injection of the voiume V, would
be given by V / Aw, where A. is the cross-sec-

tional area of the well bore. If the Well radius
- approaches zero, A. must approacti-zero. The

smaller A, becomes, the larger the quotient
V / A, must become; f.ei example, 1/0.001 is

certainly much greater than 1/1. Your an-
swer, that the head change is zero, could only
be true if the area of the well were immea-
surably,large, so that the addition of a finite
volume of watkr would produce no measur-_

able effedt.
-

Return th Section 21 and choose another
answer.

Your answer in Section 33 is not correct.
The integration in the equatipn

r=r_co

S. haz-rdr
r=--0

1cannot be carried out until we subsittute
some clearly 'defined- funetiori -of, r for the
term hr,i. Until this is done, we do not even
know what function 'we are trying to inte-
grate. But even if the integration could be
carried out and the result were found to be

/

12
Your answer in Section 28,

e- (rW4Te)
4-gTt

then we would be left with the result
V

e--(es/4rt)
4=Tt

which clearly can never, be satisfied except ,

perhaps 'at isolated values of r and t.
Return to Section 33 and choose another

answer.

dV zh
/

dt tt
is not correct. The stdrage equation states
that the rate of accumulation in storage is
equal to the product of storage coefficient,
rate-of, 'cluaige of head with time, and base

-area of the4ement (prism) of aquifer under
consideration:1 Your answer contains :the

'stökage coefficient, .4_ and the tine rate of
Change, Zh/pt.\ However, the base area of
the prism which we are considering itnot
given by /14. \

\
Thieterin gives the area of a circle extending
from the origin to the radials r ; our prism is
actually a cylindrical \shell, extending from

the radius r, to the radius r.,Its 'base area
is the area of the shadediregiOn in the-figure.
This regiOn has a radial width of 47 and a
Mean perimeter of 2%-r.

Return, to Section 28 and choose' another
answer.
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13 +

95

.11111

Your answer in Section 33 is correct. Our Substituting these terms in the above
proposed solution, giving h as a function of equation, we obtain:

r and t is I
.

r 2=00
V= aTI.J e-ardz. .-

:_.--e,- ( r2S/-4Tt )
rz--0

417Tt ---"----,: The indefinite integral of e-az is simply
.. -.

To test this solution for conformitY with the 1
required condition we substitute a

V that is,

41:Tt
-

for hr.,in the equation = fe-azdz

1
---- - --e- az -.1-..c

a

where c is a constant of integration. The in-

1r - j S hr,t 27:rdr finite upper limit in our problem is handled?
/ r..-=o -, by the standard method; the steps are as

and evaluate the integral to see whether the fol ovis

nation is satisfied. The substitution gives

V

b-

.1 e-azdz= limf!' e-a:dz
i -

V= fn.": ce S --- -e- (?29/
zr...0 b>co u

Irrti 27Trdr.
r:.-..-0 47rTt \.1

1 z=..-b

--Ern{ ___._____
1 1

=I m ---e-°'
'

Constant terms may be taken outside. the in- 64c0 a z=0 b-)00 a e a b

tegral; in this case, we are integrating with
respect to r, so t may be treated as a constant ...( 1 1-_.......

and taken outside the integral as 'well. We
a e°

leave the factor g under the integral for the 1-

mo t and take the remaining constants = --( 1 0-4-lim {
a b-300 e°°

outsid to give /
but

SV
V

00
(7.'2s/411).2i-dr.

4Tt

To etraluate the integral in this form, we
make use of a simple algebraic substitution.
Let -

r2 ;

then
V.

and let -

. dz 2rdr;

' S
. a

4Tt

lim 1 0,
b+cot eat'

so that

-ardz=---.
. 2=0 a

Ther ore .

,
(2=--c0 1

_ aV I e-azdx ---- aV . -L---- V. --

0=0 - a .

This verifies thatrmir function

47r Tt \ \\

(coVinued on next page)
\
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13 + Con .

actually satisfies the required condition
that is, that when we substitute thiS term
for h.t in the expression

Sllr.t '277rdr
r=0

and perform the integration, the result is
actually equal to V, the Volume of injected
water, as required by the condition.

We have shown, then, that the expression

h _e-- (r2S14Tt)
; 4z-Tt

satisfies the differential equation for- radial
flow in an aquifer and Satisfies aNwell the
boundary conditions associated will the in-
stantanvuS injection of a volume of water
through a well at the .origin, at t=0. It is,
therefore, the particular solutiOn required
for this problem. It is an important solu-
tion. for two reasons. First, it describes ap-
proximately what happens when a charge of
water is Suddenly added to a well in the

'standard "slug test" (Ferris and Knowles,
1963) and provides a means of estimating
transmissivity through such a test.' Second,
and more importantly, it gives the "impulse
response" of the well-aquifer systemthe
solution corresponding to an instantaneous
disturbance.iSolutions for more complicated
forms of diskurbance, such as repeated in-
jections or wrthdrawals. or continuous with-
drawal, can be -synthesized from this ele-
mentary solution. Following Section 37, a
discussion is given in text format outlining
the manner in which solutions correspond-
ing to repeated bailing and continuous pump-
ing of a well may be built up from the im-
pulse response solution. -

This concludes the programed instruction
of Part VI. You May 'proceed to the text-
format discuSsion following Section 37.
Readers whO prefer may proceed to Part VII.

i 1 N

1 A subsequent 'publication (Cooper. ftre4ehoeft. and Papa-
opulos.. 1967) has provided a more accurate description of the
ctual effect of ,adding a charge of water to a well, by con-
Iming the inertia of the column of water in the well. This

tor was neglected in the original analysis.

Your answer in Section, 33 is not correct.
The condition to be satisfied was

- ,
V jr=°° S h;,(,2:7rdr.

r=t0

A solution to our differential equation is by
definition an expression giving the head, h,
at any radius, r, and time, 6 in a form that
satisfies the differential equation. Here, the
idea is to teAsuch a solution to see if it also
satisfies the andition phrased in the above

15 ±
Your answer in Section 1,

_
._

equation. The solution actual represents
\the head, hr,t ; if we substitute it jf or the quan-
tity \ZIT, as your answer suge4t, there will
be tWo terms, hr., and our solution, both rep-
iesenLing head in the resulting equation.
Morebyer if the result of thle integration
were 2,rS we would be left with the result
V 2,-.3, which does not satisfy the required
condition. I

.,,

Return to Section 33 and choose another
answer.

h\
al. pi

is correct. The terms 2r, K, and .1) are all
constanis; we will denote the product Kb by

T, as before. The variable terms, r and 311,/
ar, may be c mbined and treated as a singld
variable, r(3 Yar). The value of this vari-
able at the in er face of the cylindrical ele-
ment will be esignated (rah/ar),. Using
these notation our expression for inflow

107
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through the inner face of the cylindrical
element is now

. / 2111
. r--) .

QUESTION

Suppose we continue to treat the-produet
,r(ah/ar) as a single variable, and let (rah/
ar)z denote the value of:this 'variab1e at the
'outer facepf the cVindrical element. The ex-
pression fdr the c:fitflow, .Q2, through the
outer cylindrical surface can then be written
in terms of (rah/ar);2, in a form similar to

II

.4-

1.5
'97

that for the inflow. Which of-the following
,equatiens Aveuld_ we then obtain for the in--
flow minus outflo2-,--=722, for our cylindri-
cal element?

Turn to Sodion:

g,-:.-(2,,=2;rTE(r-3h) (r-3h 1
ar

42,-ZQ,=27:-T(r3h - rah, Dr 2

Qy-Q771(21 ar 2,

Your answer in Section 28,
ah

S---
dV ,
dt 27,-rAr

is not correct. The stZrage equation tells us
- that rate of accumulation in stOrage should
equal the product of storage coefficient, rafe
of change of head with time, and base area

16

7

30

25

of the-dement (pris ) of aquifer with idiich
we are dealing. ur element, or-prism, of
aquifer is a cylindrical shell- extending from
the radius r, to the radius 7'2. Its base area is
given by the:term, 27rrAr. lioWever, in your
answer, this area term is divided into the
term S(3h/t).

Return to Section 28 and choose another
answer. ,

. Your answer in SectiOn 20, N

zr2 r .Dr -471-Tt 4Tt 16T2t2 '
(Sr2/47I)

2S iS2r2a.h 1 v

. .

is.riot correct The mistake in this answer re-.
sults from 'an algebraic error in sithplifying
the second term of/ the expression for a2hi &turn to

The product: answer.

4Tt)
iss not equal to

2s2e

\
2Sr
4Tt

167'42
Section 20 and choose another :3

108
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18
Your answer in Section 21 is correct; head_l_

is immeasurably great, or infinite, at the well
at t O Taking this result together with our
reqif ement that head must be zero else-
whe e in th aquifer at tO, we may phras,
the' bounda condition for t= 0 as follows

+co, for r
It'L-A for r> 0 and t O.

We now Itest our solution to -see if it satis-
fies this requirement. Probablythe-leasiest

y to do this is -12_2_44/and the term
(Sr2/4Tt) in a Maelaurin series. The theory

ÔJf. this type of series expansion is treated in
Standard texts of calculus; the result, as ap-
plied to our exponential function, has the
form

xf x3

2! 3!
or for a negative enxponent;

1±x±±±***
2! 3!

n our case, x is the term r2S/4Tt, and

(r2S/4Tt)
1 ,

( r2S \ 2 ( S \ 3

1 1 + + el- a + *
\

r2S 4Tt ) 4Tt 1(
4Tt 2! 3!

so that
V

(r2S/4Tt)

47rTt

V

r4S 2 r r°,337r
.47rTt+r2S7 + f +***

4Tt 2 ! 16T2t2 .3 !

No* as t approaches zero, the first term in
the denominator approaches,zero ; the second /
remain's constant;: and the third and all/
higher termS become infinite, proVided_r-:does

09
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,

rdenoininator is infinite, the :fraction as
whole becomes Zere. Thud the expression ,

V
e (r2S/47t) /

47Tt
is zero /for t=0 and and satisfies :the
first part of our condition.

If r and t are both allowed to approac
zere, the first two terms in the denominjitor
of our fraction will be zero. The third will
behave in the 'same manner as t/h
csx4/kx, behaves as x approaOhes zero, since
r and t'are both approaching z in the same
way. The limit of cx4/kx s x aPproaches
zero is 0, since

cx4 .c

Therefore the third thrm in the denominator
must alio approach the limit zero as r and t
approach zero. By fi similar analysis it can
be shown that the limit of\every succeeding
term in the denominator is zero as r 'and t
approach zero. ThuS the entire- denbminator'
is zero, and the fraction o.s '-1,,vhole is infinite,

-so that theterm

18 + C.on.
vestigate the behavior of thefunction

V '
47rTte

(r2S/71)

is\ to construct plots of this function versus
r,,fOr dect-,4asing of time. The figures
show the form flu such a series, of plots
will take. It nrv be noted that as time aPr-
proaches zero the function approaches'Ahe

/shape of a sharp "spike," or imp-Ilse,, at r=
,O.' Theshape of these cnrves suggests a head
distrihntion which we might sketch! intutive-
ly, if we were)tsked to describe the response

\ of an, aquifer to the injection of 1:14,. small
voluMe \of water. It is spggested ihat,4the
reader Construct a`few of these !_p,lotsP in

order to \acquire a feeling for, the behavior
of the function.

GUESTI6N

The aquifer is assumed to be infinite in
extent; and the volume Of water injeeted is
assumed to he thnall. We would therefore ex-
pect the effecti.of the injection to die out at
great:radial distances from the well. Which
of the following expressions is a mathema-
tidal formulation of this behaVior and ,ruld
be used -as a boUndary condition for our__
problem?

V
e (r2S/4TO

47Tt

is infinite when r and t are both zero, sat:Neg-.

- the second part of our condition.
Another and very instructive way to in-

. ..

,
h+0 as r4 co
h- co as t+ co
h->co as r*0

,Itour answer in Section=21 is not correct.
We established lnythe discnssion of section
21 that the (rfse-in water level in the well at
t=0 shoulipbe given by---the expressio
V/A.,,,,,where49.0414Cross-sectional are of

-the well bca4(and V is the volume of water
injected.. In order for h to have,.the instan-
taneous value of .1 foot, V, in cubic' 'feet,
w4ld-hi-ve jo-re- numerically equal to A.,
in square 'feet. However, we are assuming

Turn to Sectionr

29
6

19
the w ll to have an Infinitesimally small
radius so that A., its cross-Sectional area,
appr aches zero. If smaller Sand ...smaller
vaIu4s are assigned to the denomipator,
whil the numerator, V, is held constant,
the fraction V /A, ;must take en larger and
larger valuesi°

.

Return -to Section 21 and choose another
answer. ,
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20
Your answer in Section 35,

is correct. If pe term
V

3h. V .

2 7 (Sr2/4Tt)

3 t. 4.7rTt. 4Tt2

e., (Sr2/4Tt)

471-Tt

is factored from this expression,we have

_1 ph V
(sr,v471) I

3t 4rTt 4Tt2 It

and if .we multiply this equation by S/T, we
obtain -

S-3h,----V-- S27.2 S .

4 4r.t2 Tti
= --e ICS7',/4Tt)

/
Our expression for 3///34., obtained in an-

swer to the question of Section 27-:was___L
-..

s ' ah : v 2S -
?

k Dr 47rTt 4 Tt

The term (1 /r) (3h13r) is therefore given
do

by -

G-*
1 .3h V .

r ar 471Tt -&t
- - e (Sr2/ 4 Tt I- . -.-

2S

__.

In :answering the question of Section 5,
we saw that the expression for 321i/3r2 was -r.

i
2

2S
2Sr 2

+
\ 3h, V

. e- (Sr2/4Tt)
: ,-Sr I

3r2 ,4rTt . 4Tt .. 4Tt , 4Tt ) j

.021,111.11141.
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QUESTION

Which 'of the following expreissions is ob-

\ tained for

by

32h 1 3h+
3r2 r 3r ---

Combining the two expressions
e and factoring out the term

V
e

47rTt

/ .

given

3271 1 V
(se-van)

3r2 r r 47,,Tt

212h i 31i. V

Bri r 3r 4rTt
D2h -1 3h V

(.9r2/4Tt)

3r2 :r 3r 4rTt..

20

S S2r2

4T2 t2

2S 2.32?-2

4Tt 16T3t2
--

4S S2r2

Tt 871}

Con.

101

Turn to Section:

Your answer in Section 20,,

32h 1 3h V

3r2 r ar 4;rYtt

is correct. Now note that ,this expression is
. identical to that given r (SIT) (3h/3t) in

Section 20. Thus we hasze shown that if head
is given by

(S7.2/42%)

frM-7
then it is true --that

32h 1

r ar .T 3t

S S2r2+
Tt 4T2t2

21

17

24
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a

In other words, the expression
V e (sr2/4Tr)

47rTt

satisfies the partial differential equation, or
constitutes one particular .plution to it. In
fact, this expression is the solution which
describes the hydraulic head in an infinite,
horizontal, homogeneous, and isotropic arte-

'1 sian aquifer, after'a finite volume Of water,
17, is injected suddenly at t=0 into fully
penetrating well of infinitesimal rauius lo-
cated at r=0, assuming that head was every-
where at the datum prior to the injection
that is, assUming h was everywhere zero
prior to t= 0.

Proof that our function is the solution
coriesponding to this problem requires, in
addition to the demonstrationi that, it satis-
fies the differential- equsqn 1, prole that it
satisfies the various bovitiary conditions
peculiar to the problem. We novar-wish to
formulate these conditions.

The charge of fluid is adtind-ii-dnm- well at
the instant t=0. At this nonnnz, there has
-been n6 time available for lipid to move
away from the well, into them:paler. There-
forer_at all points in the arateer except at
the...well (that is, except st r=0),- the head
at=0 must still be zercr. Ita,the well, on the
other hand, the addition eof the volume of

22

water Vroduces an instantaneous riae in
head. For a well of measurable radius, this
instantaneous head buildup, Ah, /would be
given by

V V

A,
where Au, ;s the cross-sectional area ofs the --

well bore, and r, is the well radius. For ex-
ample, if A, is 1 square foot and we inject
1 cubic foot of water, we should observe an
instantaneous rise in head of 1. foot in the
'well; and because head was originally .at 0-
(datum level), we can say that the head, in
the well at t =0 should be 11 foot. If A were
-9.5 square-foot, the head in the well at' t=0
should be2 feet; and so on.

QUESTION

For purposes of developing the boundary
conditions, we have aSsumed, the radius of
,our well to be infinitesimally smallthat is, ,

to approach , zero. Which of the' following
statementa describeTthe behavior of head at
the well at t= 0, subject to this.assumption?

Torn to Soction:

head at the well will be 0 feet at 0 10

-head)at the well will be 1 foot at r= 0,. 19 .

head at the well will be immeasurablY large _

that is, infiniteat t= 0 18

-.5 Your answer in Section :17 is met correct.
The expression obtained nos, :FY:Adrift 28 for in-
flow minus outflow wis

Q1Q2 27rT ra,*
ar

Our expression for dV/dt was.

dV= 327ert,r.
. dt Dt

The expression for inflow minus Outflow may
be equated to that -for dV/dt, and the result
Aimplified to yield-the correct answer.

Return to Secti9ri37 and choose another
answer.
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Your answer in Section 5,

vh V 2S 2Sr
= e(Sr2/4Tt) e (SO/ 4Tt)

(-2Sr

ar2 4ir Tt 4Tt 4Tt 4Tt

is not correct. The rule for differentiation of
a product is: first factof tiMes derivative of
second plus second factor times derivative of
first. The two factors, in this case, are

23

(ST214TO

471-Tt

(which.we hav -already differentiated in the
question of Sect n 27) and

\-2Sr
\4Tt ,

The first .term of your answer is correct; the
first factor,

e(S0/4Tt)
47rTt

is multiplied by the derivative of the. second,
which is.

2S
4Tt

(t is simply treated as part of the constant
coefficient of r, since we are differentiating
with .respect to r). The second term of your
answer,,- however, is not correct; you have
written the derivative of the first factor a

(S0/4TO- . ---Sr(
4Tt

Compare this with the correct answer to the
questioh of Section 27 and you will see-that
it does not represent the derivative of

-

V .

e (Sra/4Tt).

rAirTt-

Return to Section 5 and choose another
answer.,
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24
Your answer in Section 20,

32h 1 3h V -; 4S r2' 1 1

and in the multiplication of the two terms
-2Sr3r2 r 3r 4rTt

is not correct. 'This answer
braic errors, both in the addition
terms

-2S \

T
con

8Tt
j

ins alge-
f the two 4Tt).

Return to Section 20 and choose another
answer.

4Tt

25
Your answer in Section 15,

it 3h
(21-Q2=27rT{(-3 ). -(--) } ,

3r 2 3r 1

is not. co:rrect. The expression for, inflow
through the inner cylindrical face was, shown
to be /

Q t (== 27rT r
h

3r ,

Applying parcy's law in a similar
the outer cylindrical face, at rad

ashian to
us r:, the

,J

26
Your answer in Section 7,

3 r 337/ h3

3r 3r zik-r + r,
ar 3r 3r

is not correct. The deriyative of a product is
given by the first factor multiplied by the /
derivative of the second, plus the second
factor multeplbah by the derivative of . the
first. Your fir1rxi, ab-ove is correct; the
first factor, rm-ultiplied by the derivative
of 3h/3r, altimagiLit would be more conven-
tional to usAhetsecond derivative notatibn,

expressiOn for outflow through this face is
finind to be

3h
Q2= -22rT r

.37' 2

These two equations may be subtracted to
obtain an expression for inflow minus out-
flow. ',The radius, r, does not disappear in
this subtraction. Your answer, which does;
not include radius, must therefore be wrong.

Return-to Section 15 'and choose another
aniwer.

a2h

3r2
rather than -14

13(3h).
3r

. ,
I

Your second terrihowever, is .rrt corree:t.
The derivative of r'With !respect to is' -not- .

equal to .

- Return to' Section 7 alid choose.anOther
,

answer: . ,

I

NNW

\
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/

Your answer,in Section 37 is correct. The
basic differential equation for the Problem is.

321/ 1 ah S 3h
3r2 r 3r T 3t

In seeking a solution to this equation, we
are seeking an expression giving h as a func-
tion of r and t, such that when 3h/ar, 32h/
??4, and 'Walt are obtained by differentia-
tion arid substituted hlto this equation, thefl
equation is. found to be .satisfied. For ex-
ample, Consider the function

h- C--(si-g/471)

zleirTt

:in which V (as well,as.S and T) is constant
and e is the base of natural logarithms.. This
:happens to be an important function in the
theory of well ;hydraulics, as we shall see;
and we wish now to test it, to see whether
it Satisfies the abovedifferential equation. To
do this we must -differentiate the expr4sion
once with respect to t 'and twice with respe&
to r these operations are not diffiCult if the
ruleS of differentiation are applied carefully.
:FirSt we will differentiate with respect to

\

27
r; in doing so, we treat t as a constant, so
that the factor V/ (47rTt) beComes simply a
constant 'coefficient. In the exponent, as well,
the' term (S/4Tt) may be considered a
constant coefficient of r2 ; and the problem is
essentially one of -finding the derivative of
e- (shirt)), and multiplyinr, the
constant factor (47;: t). ative of
a function eu with respect to a variable r is
given simOly by eu. (du/dr). Here, u is the
term - (S/4Tt)r2.

QUESTION

Following the procedure outlined above,
which a the following expressions is found
for 3h/3r?

-7

Your answer in Section 7,

3hr) 32h 3h
--r + ,

3r Dr

is-correct. =expression for

3
--: ,(rL. r--,

3r ar-

maY therefore he written

Turn to Section:

=e-cS1-2/4TO
4Tt

3h V --2Sr

4rTt 4Tt)
= '4Tt)

3h V.

Tt'

32h 3h,
Ar7- r7/, pr

Our expression for/ inflow min
'therefore becomes /

/ (continued on

/.

1 /7 /

s outflow

next page)



106 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS1 28 + Con.

Q Q {(rZ,
2

,(rZI ) I
Zr Zr 1

aqt all
= 2rT{

ar2
As Wore, we wish to equate this expres-

nion for inflow minus outflow to the rate of
accumulation of water in storage in our ele-
ment. The surface area of the cylindrical ele-
ment is given approximately by

A=27hr./The term 2irr is)he perimeter of a circle
taken along the midradius a the elemenil;
multiplication by the radial width, M- giy/es
the Surface area, or base area, of the cylin-
drical shell.

QUESTION

Using this expression for th? ,,urface arer
of the r:viindrical element, 4L., letting a;
at denote the time Tate of heau ouildup in
the element, which of the following expres-
sionS is obtained for the rate of accumula-
tion of wate*in stowage in the element?

,dV h.

dt al
dV .

. dt at

dV at

dt 2;rktr

Turn to Seution:

37

12

16

Your answer in Section 18 is/not correct.
The- behavior We :are trying t6 describe is
the disappearance of the eftt of injection,
at great radial distances fro/ the well. The
answer whiclr you 'chose d scribeChead, h,

as going to infinity, rather than disappear-
ing; and it describes a restriction on lt with
time, rather than with distance. ,

Return to Section 18 and.choose another
answer-

Your answer in Section 15,

Zh)
Q = r

ar ar 2

\is not correct. We established in Sections 1
and 15 that inflow through the inner cylin-
drical face of the element . is given by
Darcy's laws as

Q,= 2,irT(r) .

ah

Zr

Usingxa, similar -approabh, we can show that
outflow:through the outer cylindrical face is
given by

.

ah
92 = 27r T .

.

These, two equations can be-subtracted toob
tain in expression for inflowi,minus.outdow
for the cylindrical element-

Return to Section 15 aniechoorie another
answer.

/=1.0-
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-
Your answer in Section 35, .

3h V Sr2 -V
e- (Sr2/4Tt) .

3t 4rTt 4Tt2 47rTt2

is not correct. Application of the product
rulefirst factor times derivative of sec-
ond plus second fader times derivative of
first-Lis cOxtect ; but your expression for the
time derivative of e- (:sr2/ 4,1) is not correct.

Recall that the der alive of an exponential,
eu, with respect to t is given byeudu/dt. Let-
ting u represent - (5r2/4Tt), your answer
gives only au/at in the place where itshould
'give _

32t
et'

at
Return to Section 35 and choose another

answer.

Your answer in Section 3'7 is not correct.
In Section 28, we saw that the expression
for inflow minus outflow could be written

32h
(21- Q2 = 2rT1 +

3r2 ar
while the expression we obtained for dV /
dt was

dV/ 3h;

3t
,

If we equate the terms

and

32
7.1'{21 + h tr

D7.2

3h
S2rrAr-z-

3t
and then divide through the resulting equa-
tion by

2rTrAr,
.we,olStain the. cd.rrect answer to the ques-
tith Of Section 37.

Return to Section 37 and choose another.
answer.

Youranswer in Section,18, h-00 as r403 is
correct-From a miithematical point of view,
we should perhap's have used, instead, the
condition that (3h/3r)40 as r->co. This con-,
dition is required as r increases toward in-
finity, because the cross sectional area of low
within the aquifera cylindrical area co-
axial with the wellexpands toward in-

, finity. Thus if we were to apply Darcy's law
th determine the flow of theAnjected water
away from the well, we would obtain the re-
sult that this flow increases- toward an in-
finite yahmwith increasing distance from the
well, unless we Postulated that the head

33
gradient; 3h/3r, decreased toward zero with
increasing r. HoWever, theixondition that h
approaches a constant, 0, as r4co implies
that 3h/Br' most also approach zoo as r in-
creases; and *is-at somewhat- easier condi-
tionto establish.

Our task, then, is to show that the lune-
tion

7
e- (r2S/411)

satisfies this condition--that is, we nnettest
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Con.

this' function to see whether its value am.
proaches \zero as r approaches_ infinity. It is
easy to show that for any finite value of

-time the condition is satisfied. However, we
are also intmested in what happens as t ap-

_

proaChes infinity along With rthat is, we
fiould like our condition to be satisfied for

7 all 'times, even those immeasurably large.
,For this reason, -it is convenient to use the
the series expansion form given in Section
187-that is we use

.

e-ws/421)
4irTt

r4S2r r68371-

\ 4/rTt-Fr2Sir+ *
4Tt2!,. 16T2t2.3!

In order/ that the'fraCtion on the right ap-
1--proach zero, it is sufficient that any one of

the indiOdUal terms in the denominator be-
comes infinite. If r and t both approach in-
finitY, the first two terms.clearly become in .
finite; r'n. fact, tile remaining, terms become
infinite as well, although we 'need not show
thii. I one term is infinite, the. entire de-
nominator is Infinite, and the fraction is
zero. For a finite value of t, all terms except
the- first clearly become infinite as r400; and.. _ .

again) the expression' as a whole tends to
zero. Thus the expression

V
e- (r2S/471)

47rTt

satisfies the condition of tending to zero as-
tf->co, for any value' of time. Again, this .can
lie demonstrated by extending the plots de-

ribed in Section 18 to large values of r.
We could _also add the condition that. h

..mu\st approach zero as'iime becomes infinite,
eve here isiAhe aquiferthat is, that the .

-effet of -the injection must eVentually die
ith tin: everywhere throughout the

aquif, siiice -we ore injectini, a, finite vol-

ume of water into an aquifer which is as-
sumed to be infinite in 'extent. We 'have just e
shoWn that h approaches zero at infinite
time,!as r also becomes infinite; we need only
show that this behavior holds when r is
finite. We will show this through direct use
of the function, although it is also evident
using the series expansion form. As t be-.
comes infinitely large the factor .

V

47rTt

must approach zero ; the factor

'

which is equivalent to

1

e(r2S/47't)

mug approach the value

Or

eP2s.i

I

1

'e°,

if .is finite. But"e° is simply. 1, so,that the
product

(r7S/4Tt)

4irTt

must approach zero as nietomes-Linfinitely
larg'e, at any finite value of r.

We now consider the last condition vi;hich
our function should satisfy. In the sketch,
the aquifer has been divided into cylindrical/
'elements of radial width Ar, coaxial with the'
well. At any given time t after injection, the
injected volume of 'fluid, V, is.distributed in
some way among these cylindrical elements.
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We assumed liad to be at the datum, or zero,
prior to injection, so that h actually repre-

tsents only the head increase due to the in-
jection. Froth the definition of storage co-;
effieient, the quantity of the injected flUid
contained within a given, cylindrical element
will be given by

6.V =--S141,,27rr4r

where r is the median radins of the element,
s6 that 27,-rAr is the base area of theTelernent ;
kt gives the average head in the element
(Wilt is,.;at the radiUar): at thelime in ques7
tion ; and S is the storage coefficient. (Recall
the definition of storage cbefficient--Lthe
Volume in Storage is the product of storage
coeffiCient, head, and base area.) Now if we
sum the; volumes In storage in every cylin-
drical_ element in the aquifer, the total must
equal the injected vOlume, V. at any time
after injection. That is,

- V= Y.,AV=.1.9 hx,i?,ZerAr
where the summation is carried mit over all
of the cylindrical elements in the aquifer.
Again, it should be kept in mind that hf,t

represents-only-the-head-increase -associate
with the injection, so that its use in the stor-
age equation leads only to the 'volume of
water injected, not to the total volume in
storage. Now since, we are dealing with a
continuous system,iwe replace the summa-
tion in the above equation by, an integration.

33 Cori.

109

/-
I e - /

That is, we let the width of -each -element /
become infinitesirhally small, den6ting it. dr,
so that the number of elements becomes in-
finitely ,great; and we rewrite our, equation
as

r=0.
v jr=0

The limits of integration extend-from-r- 0
to r indicaiing that ithe -cylindrical ele-
ments extend over the entire aquifer. This
equation then is the final condition. which
our ..functionc,should satisfy if it is fact
the solution we are seeking.

QUESTION

How do you think our. Proposed solution
should .be teited to See if it satisfies this
boundary condition?

Turn to SocVion,t

The integratron indicated in the- equation
should be Carried out. The result should
equal,

_e-- ir2s74rt).

'1"he expression

V e- 04440
, 47rTt

should be substituted for
/ 27rr

in the uation, and the'integrationshonld
- be car led out; the result should be

11

'The eçfréssion
V

14

e- (os/421)
4rTt

hould be substituted for
qtr,t

in the equation, and the integration should
be carried out; the result should equal,
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34
4our answer in Section 1,
t.

Qi= Kirre
9*

is not correct. Darcy's law states that flow is
given ',by the product' of hydraulic conduc-
tivity,,head giadient, in ilthe direction of flow,
and cross-sectional area normal to the di-
rection of flow. In thi problein asT in the
steaci flow' to a well tr ated in Part III, the

35 +

Yenr answer in Seaion

4VMM

direction of flow is the radial, or r, direction.
An area which is everywhere normal to the
radial coordinate would be a cylindrical
area, coaxial with the\ well. That is, the flow
area that we require here is a cylindrical
areain particular, the inner face- of the
cylindrical prism shown in SectiOn 1. The
area of a cylinder is given by the product
of its height and its perimeter.
_Return Ito Sectio'n 1 and chocise another

answer.

2It V

47iTt

28\
e (sr3/4Tt)

( 2Sr 1
.ar2 4Tt

---
4Tt

is correct. We now wish to diiferentiae the To differentiate

V
e--jSr2/4Tt)

47rTt -

with respect to time, to obtain an expression
for bh/at..In doing this, _vie consider /\to be
a constant, and treat oiir expression as the
product of the two functions of t,

V J

and
(S14/ 4Tt)

. ,

The derivative of
V V, or t---2

47rTt 47rT

e7(.sr3/471)

. we again apply, the rule

de" du
=,eu

dt dt

1Where
u is

Sr2 z--Sr2

4Tt

and its derivative with respectato t -is

Sr2 Sr2
e t=2, or

4T 4Tt2

with respect to t is
V. Vor .

471.7' 47,-Tt2

QUESTION

Applying the rule .for differentiation of a
product, together with the- above results,
which of. the following expressions,, is ob-
tained for ah/at?
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35 + con.

7r

ah V . Sr=
,(sr'/ 4.7t) .

at 4Tt 4Tt2

e-(r21471) e- Sr2/ 4 T1
2, it V Sr2

pt 477-Tt 4Tt2

ph V Sr2 -V
Dt 47rTt 4Tt2 477.Tt2

Your answer in Section 1,

(ah)
-Kb

.ar

27rri

is nift correct. Darcy's law tells us that flow
is given by. the product of hydraulic conduc-
tivity, head gradient in the direction of flow,
ind cross-sectional area normal to the diiec-
tion of flow. In- this 'case, as in the steady
state flow to a well in Part III, the direction

Tore to ection:

20

:

of flow is the radial direction and the cross-
sectional ariea normal,to the how is a cylin-
d,ritalp surfacethe inner surface of the cy-
lindrieal Shell shown in SectionA. In iour
answer, however, there f s ,no fa-ctoF repre-
senting the area Of this surface. The height
of the cylinder, which is b, apRears in the

'numerator of your answer; its perimeter, -
whiCh is 27rr,, appears in the dendninator of
the answer which you chose.

Return to Section 1 and choose anOther
answer.

our answer in Section-20

dV ph

dt at
is correct. As before, we will next use the
equation of continUity to link the stoTage
and flow equations.

QUESTION

If the exprex.sion obtained for inflow
minus outflow isequated to that given above

for rate of accumulation
of the .folloWing

r+,-....-------S
De*

1

a2h: .1

.in
equations

° .

27,rr-ar r-

am. ah

storage,:
May be Obtained?'

,---- Tutt to

which-

Section:

22

32

at
.., ph,

at
ah

ar2 ai
,.ah :s

.17-----
.ar.2 r 'ar, T pt

12 2 .:71
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Development of Additional Solutions by
___i. Superposition

The differential equation
D2h 1 Dh Dh

Dr2 r Dr T at.
is linear in h; _that is, h and the various deri-
vatives of h Occur only in the first power
they are not squared, cubed, or raised to any
pOWer except 1, in any, term of the equation:
°Equations of this type have the property
that solutions corresponding to two individ-
ual disturbances may be added to obtain a
new solution/ describing the effect of the two
disturbances in combination. This is termed
superposition of solutions ; it is a technjque
which is often used intuitively by hydrolo-
gistsfor, example *hen rcalculating the
drawdown produced by several wells, by add-
ing drawdowns calculated for indiVidual
operation.- .

The solution obtained in the preceding

programed instruction was developed for an
injection 'of fluid at t=0. If the injection
does not occur at t= 0, the term t in the solu-
tion is simply replaced by a, the time inter-
val between the injection and the instant of
head measurement.. For example, if the in-
jection occurs at time t', and the head change .
due fo this- injection is measureA at some.
later time t, the interval t t' used in the
solution in place of t, giving

r'S

V 4T (tt')e
4 T(tt')

Now suppose ,two injections occur, one at
t,' and one at t2', and the' head Measured
at some time t following both' injections. 'Us-
ing superposition, the head change due to
the combined disturbances is

;

V

r'S

4T(tt1')) V2

(
4T(tW) 1

e
(t 41rT(tt2')

Sfr

',where V, is the volume injected at t,' and'
Ti2 is the volume injected at ta''.

If we consider remoRal of a volume of
:waterfiom the well, rathei than injection,
.tive need only introduce a change of sign,
taking V ae, negative. For example, if A
bailerfull of water is removed at t=t1', the
head change at time t, due to this removal is

_( r'S

4T(ttil /
hr.:= e ,

47rT (tt,')
where V, is the volume remoied by the
bailer. :If the well is -bailed repeatedly, as
md h-appen during completiOn, the head
change due to bailing is obOined by super-

123
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posing the disturbances due to each individ-
ual withdrawal :

ha
47T (t t1')

rIS

V3 ..;e1.". (tt3')

47T (tt')

where t is thpime at which it is measured;
* * * t.' are the times at whieh the

individual withdraWals are made; and V
172, 173, * * * V. are the volumes removed by
the bailer in the successive withdrawals. The
"bailer'inetbod" of determining transmiSsiv-
ity from the residualc,drawdown of a well
that has been bailed was developed froth this
equation ()Skibitzke, -1963).

Pumping
rate, Q

Q(V)

Time

Now suppose a well is pumped continuous-
ly during tbe time interval from zero to t,
and we wish to know the head change at

V:,

,trT (t t2')

V
* * _ -e

47T (t--t.9

4T (tt21

.r!S

-4T (tW)

time t due to this continuous withdrawal.
The rate-of pumping, in volume Of-water per
unit time; may vjAyqrom one instant to the
next. The figure shows a plot of pump-,
ing rate verus time for a hypothetical ease.
Pumping starts at tithe = 0 and exterkds
to time = t, the instant at which we wish to
know the head change. We consider firet the
head change at t due to the action of the
pump at one particular instant, t', during
the course Of pumping. We co Sider an in-
finitesimal time interval, dt',: extending to
either, side of the instant t' ; the.average rate.,
of pumping during this interval is denoted
Q (t'). The volume of water withdrawn froth
the well during the interval is the product of
the.pumping rate, Q (V), and the time inter-
Ival, dt' ; that is,

.

V, - --Q(V)dt'.
Again , negative sikns are used "to indicate
withdrawal as opposed 'to : injection. The
product Q (tidt' is equal to the area of the
shaded element in the graph shown in the
preceding figure; the height of this element
is (21(t9, and its width is dt'. The time in-
terval betwen the instant of withdrawal and
the inStant of head meaeurement is tt'. Us-
ing the solutiOn obtained in the programed
instruction for the head, change due to in-
stantaneous withdrawal of a.. volume., Of
water, the.head change at time t dkie to the
withdrawal at t' is given by

,:! i



1141 TECHNIQUES OF, WATER-RESOURCES INVESTIGATIONS

r'S r'S

4T )
e

47:71(tt') 47rT (t t')

The total head change at t, due to the con-
tinuous withdrawal from zero to t, is ob-
tained through superposition, by adding the
head changes due to the instantaneous with-
drawals throughout the interval from zero
to t.

- (t.) rIS
e 4T(te)

T(t t')

Time, t'
't

The figure shows a graph in which, instead
of plotting only discharge versus tinie, we
plot the entire function

Q (t' )
e

4rT (tt')

versui time. Thearta of the element at t'
is now

(v) 4T (tt') )
-e dtp

47rT (t t')

thus it is just equal in magnitude to the
head change at t, caiised by the withdrawal
at t'. If elements of the type shown in the
figure are constructed all along the time-
axis, from zero to t, the area of each ele-
ment will give the head change at t due to
operation of the pump -during the time inter-
val represented by the element; the total
head change at t due to all of the instan-
taneous withdrawals throughout the inter-
val from zero to t will therefore be equal to
the sum of these areas, or the total area un-
der the curve from zero to t. This total area
is the integral of the function

r'S
(V) 4T (tt') )

e471.T (t t')

over the interval from zero to t, that is, the
total head change is given by

t=t Q (t') 4T (t-t')
h = e dt'.

It=0 471.T (t t'

It should be noted that we are now using t'
to denote the time variable or variable of in-
tegration, rather than to specify one par-
ticular instant. The function being inte-
grated involves the difference, tt', between
the upper limit of integration and the Vari-
able of integration. Evaluation of the inte--
gral will yield a function of the upper limit,
t, and of r; that is, the head change due to
the pumping will be specified as 'a function
of r and of t (the time of head measure-.
ment.)

For the particular case when the rate of
discharge is a constant, Q, the integral equa-
rtion can be transformed directly into a form
suitable for computation. We have
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h=

t=0
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(
rS \ The value of correq3onding to the upper

4T (tC) ) limit of integration; t' is
dt'.

The terrn Q '477 is rk. o.,nstant and
taken outsi6. th- giving

rS
Q r t'h =-

42,T, L=o E

(t-t.)
?it'.

We introduce th ebraic change of
variable, We now return to our i Itegral equation

substitute st, for

r

4T (tt

the -alue of 2p cc41Tespondinglw the'
'1'. limit otintegratior_ = is .

r2S -2s

00
4T (t 0, ",,Tt

4T(f

We differentiate this expression with respect
to t', treating t, at this stage, as a constant;
this gives

4 r2S-4T r2S 1

de (4T (t t'))2 4T (te) tt'

4T (te)

Therefore

and

r2S

4T (t t') 4,2

r2S r2S

4T 4T

d dt'
r2S

4T

r2S dst,
de

4T 02

for

r2S

4T (t t')
r2S

4T

.dt'";

and the values obtained above fo the limits
of integration. This gives

Q f 00 r2S

4,rT Jes tt' 4T 02

4 Tt

But since

r2S

,

the above integral becomes

1261

lQ tcce
4.

st,riS

4Tt
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e-0

ThiS integral is called th- empera in-
tegral. It is a Pi-notion of llowtr 7.L:nit, as
'suggested by the figure, whi, dowsa. graph
of the function e-/ty versw- >. lilt area un-..
der this graph is', equal to 7:: railue of the
integral. The upPer limit is auliolre,, and- the,
function e-*/11,/approaches:zero. as L.' b e co m es
infinite-I-the/area under the ::eurve, or the

--value of the/integral, deperui ,:nply upon .the
point where the lower limit s takenthat .
is, upon ,the value of r2S/ 4Tt. 'This -term is
often denoted uyin the.literature, so that the
equation for head change is (often written

-Q e--,h=
471-T A 0

r2Su=.
4Tt

Values of the integral for variou values
of- time lower limit :110tr;,1)een computed, usingg
this series, and ta1. In the hydrologlic
literature, the value the integral is com-
monly referred to as 77,- (u) or "well function.
of it." Tables of Wt versus u are= avail-
able in the referenc- by Ferris, Knowles,
Brown, and StalLmar .1962) and in numer-
ous other references. In the forms presentee
above, the equations yield the held change,
or simply the head, assuming lz was zero
-prior to pumping. If head was at some other
constant level, k, prior to pumping, the ex-
pressions are still alid for head change,
h-ho. That is, we h:_ie

where

Q e Q

4T-T
W (u)

r2S

4Tt

or in terms of drawdOwn, ho-h, we have

Q Q
s=ho--.-h= .(u)

47rT u 4x-T

The result we have, obtained here is
known as the Theis equation, after C. V.
Theis who first applied it in hydrology
(Theis, 1935). An excellent discussion of the
significance of this equation in hydrology is
given in another Paper by Theis (193S).___

It was recognized by Cooper and Jacob
It can be shown that the ailoomeintegral is (1946) that at small values Of u, (that is,

equal to an infinite series invcolvturthelower at large values of t), the terms following
limit. Specifically, ln (u) in the series expansion for

fon e-*

Ju

u2 u3 u4
0.5772 -ln (u) +u

22! 3.31 4.41

127
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become negligibly mall. In this condition
the value of the integral is given simply by

or

-0.5772-ln(u),

r2S
- 0.5772

4Tt

The sign of the logarithmic term may be
changed by inverting the expression in
brackets, by assuming that:

1. The aquifer was, confined;/
2

2. There was no vertical flow;
lni ----

/ 4Tt 3. All flow was directed radially toward (orrS
4Tt ) .\ ,r2S I away from) the origin;

4. S and T were constant-that is, /the
aquifer was homogeneous and iso-

and the c&Istant, 0.5772, may be expressed tropic ;
as the natural logarithm of another con- 5. The're was no. areal recharge applied to
stant, the aquifer

In _writing _the _solution corresponding to
instantaneous discharge or input of a vol.

0.57727=14
2.25
-4 )

that:
tone of water, V. we added the assumptions

This is the modified mdc:miiiitrium fikr-
mula, which.forms the bas:,-s fe "semag
-old" techniques often used hy ydroogf
in the analysis of 'pumping .:7-test data. These
techniques are generally smrpliffi for values
of u less than 0.01.

The Theis equation and tia mmdified non-
equilibrium formula are e:.:tr.ely useful
hydrologic tools, provided ,t1t-e-- are used
-within the limits of applicaikpattablished
by the assumptions made in tfhi,n. :derivation.
Before leaving this subject --wf- brieily
review the- assumptions thEL been ac-
cumulated during the- course -Li T±iie deriva-
tion. We first developed theerson

32h 1 h S
+

ar2 r T

so that

4Tt\ _In(
-

\
0/.5772-4 94S

4Tt \r2S ) \ 2.25)

.kg,0(
r25 r2S

Thus when pumping has continued for a
sufficient -length of time so that 4t, or .r2S/
4Tt, is small We May write

Q 13Q 2.25. Tt
s--= dor, log. .

471-T u tp 471-T r2S

6. The aquifer was infinite in extent;
7. There was no lateral discharge or re-

charge except at the well
8. The.head was uniform and unchanging

throughout' -:he aquifer prior In t
9. All of the injected water wasAakim into

storage (or conversely, all discharged
water was derived from storage).

10. The well Was of infinitesimal xadiins.
Finally, when We integrated the:dame saln-

tion to obtain the continuous discitarge solo-
tion

.si.--h07 _4 do
e-*

. r's
4TA

/
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we adde14.) .the ce3ndition that
11. The (L-schar-ze, (1-, -was constant through-

out zk nuration of pumping.
These assummions should foe kept in rninc

whenever theis equation is applied. The
assumption th.- all flow; is lateral implies
that the well mast fuEr Tenetrate the.aqui-
fer and that horizontal.

If the semilog apoinaiulation is fused, we
add the assurion znazt the time is great
enough and rardins =all enough that the
term r2S/4Tt iF: less than 0 01,-and the later
terms in the series expression for the inte:
gral can there:7re 13F-. neglected.

The Theis eq:uatioi.: was the first equation
to describe' flor-- of water to a well under
nonequilib-rium conditions. In snbsequent
work, Papadopulos and Cooper (1967
have accounted for the effects of a finite well
radius; Jacob (1963) and several other writ-

ers hrlwe -._yratnined the problem of dis::,:harge
from liaTia117-:penetrating wells.. .Suillinan
(1961a), Lang :(1963), and nurnerou ..-. other
invest:mater7s have utilized' imag=.._ -:.7'ArireKry to
account lateral aquifer &Daum:Aries;
Jacob .arqi I...,ohman (1952), ha7.7e dis-
charg,± at_ -..mastant ,drawdown, irrr than
at cotanL ra:te; numerous, writers- .:.,.1-4ud-
ing im prxticalar Jaccib (1946,.V 7agntush
(195E. 1960 1967a -1967b) and Hiantush
and av.E.:9,b (1955) have treated :the nnnblem
of discbargie froin an aquifer repleatisbYl by
verticaa rectharge through overlying- and un-
derlyina: strata; and several.writers, includ7
ing Roulton (1954), have attacked the gen-
eral problem of three-dimensional flow to a
well. Weeks (1969) has applied ,,ariats as-
pects of the theory of flow toward wells to
the problem of determining vertical perrne-
ability from pumping test analySis.



'or4 I I Finite-DifffEirence Methods

ntror; rthon

In preceding chattel'. "AvEn have considered_
formai mataematicza...; to the differ-
ential quations e g-r-_-_-aund-water . flow. In
practice, however, e rnnd that such formai
solutions ...are availanle cfn.17,7 for a small mi-
nority of field pranlenis. Tepreseelting rela-
tively simple bounIdary :mditiom ;. In most

earsertwznion

..-z.wies, we are forced to seek approximate
olutions, using methods other than direct

-lormal solution. In Part VII, we consider one
Methodthe simulation of the differen-

-iial ewlations by finite difference equations,
rmich in turn can be solved algebraically or

1 -D

\ tentiamer
surface

Coufinirar
be4 3.thr.; \\I

;-

1

quifer

-

Three observation wells tap a 'confined
-- aquifer. The wells are arranged in a straight

line in the x direction at a uniform spacing,
.1x. The water levels in `the three wellS are
designated hi, ho, and. It2 as indicated in the
figure.

QUESTION

Which of the following equations gives a
neasonable approximation ihr the derivative,
ah/za, at point d, midway between well 1
and well 0?

( _h1h2
\3x h ax
(

?ix Ai 22Nx

\ hoh1

X. AX

Turn to Section:

26

12

1,19

ISO
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Your answer, kf, in Section 3 is' correct.

QUESTION

Following the s'arne conventions, whic;.-, of
the following .extiressions would serve
finite-difference approximation to the term

yh 32.h

3y2

the point

Your answer in Section 115,.

a=it D=11 h-i-12,-E-h+h4-41/0±
2 y2 ,

is correct. These approximations to :--h.l3X2
and 732h/al2 can be obtained_more forinally
through the use of Taylor series exparisions.
-A -Certain error is involved in -appro)thrnating
the derivatives by funite differetYcot, And we
can see intuitively 'that thil;:, error gen-
erally decrease a a s giiven smalV!-.?.- and
smaller values.

Now let us place.a iectimgular grit -in-
tersecting lines, as shown in the clia,i.r,,acn

a2

AP

8

7

4

2

1

Column

-
yode 2,4

2 7

Tom to stoic,:
z 37h, h i

311' 02
20

32.1i hi

air .
a2

321 4- hi,j_ h i.i4 I 4h

a7,2 a2
4

over the x, i -pIlane. The lines are drawn at
_a u-nifOrni sigadim, a. ared are numbered. suc-
zessively front the origin. Lines parallel to
the x-4axis are termed rows, while lines .
parallel to- tiie- y-axis =e termed columns.
The intersections of the grid lines are,
termed nodes .and are identified y lhe num-
brers associated with the- intersecting lines.
for example, the node-3, 4- is thatlorrned by
the intersection of tine third column to the
Tight of the y-axis-_with the -fourth row
above the x-axisi. -The apacim-_- a, may be
thought -of as a unit of measurement; the
node- numbers then.givetiirnunnber of =its
(of :distance of a .gitven nuke- frtalt-the x :lend
p Mats . The heali-:arz givmunoteeieindicated
illy using-the todie nurntErs for a. :subscript
notation ; for example, the- head: at mOde . 3, 4
'would be.indicated by

QUESTION

Following this conventim, now would we
indicate the head at a none, located i units

,Rov, 4 to the right of the y axis and j units above
the x axis (that is,,at the point x=i-a,

in the conventional Cartesian not&-
tiori)?

1111:t

134
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4Do
Your answer in Section 2 is correct. We

next consider the time axis and divide i2t a.s
shown in the sketch-into segments of lenuth
At, again numbering the division marks snc-
cessively from We also introduce a
third subscript, indicating-the time at whick
a given head value is observed; for example.

Time nod 2

r
14.Ai

1 L

3 -4 5 6 7

.

121

refers. tc -the :head :at the. node j of the
x, .1y plane at the, time 'indicated 'by the nth
division mark OM -the time axis.

QUESTION

Again assinaftzg 41X--=-Ay --a, which cd the
following woadd, give the actual coordinate
,distances amf tnne of measurement asso-
ciated with theerm /21,5,? /

Turn to Section:

hi.i..=head at x a , i timen
9

head atx----

h,= head at x a,

500
/. Your:answer, 1z, in Sectim 3 is not con-

, reet. Youa have used the dist=ces from the
two coordinate axes ai subsmipts. That is,

;",

tinv_!----n -a
- 23

ja.,
10

3ram haw,' 'firx, which is -ll:Ally the x
courdins*e,of titte node, air itaedizarnce-from
the y axis, ni,; the fitst subscbitand you
iiaie used -Which -is atctunatiy7thft. coor-
diatate at the-itude, or its dkcizente=groru-.the

azris; the: offlond ccmven-
tion insindumd :in' Section 2. Ttowover, does-
mot have this tarn. If the thrithJaifference
grid-is superimposed on the..y. pratue,. as in
the sketch; thea. ;the- sascript a:lg.-iodated
with the 'point z--2d, y3a is aici:,.43117 2, 3;
the headLat tthispanint is designh. If
we -number 'the limes of 'the grid :in succes--
sion along each:Inds, starting- vitt, the axis
as 0, we tan Isittaion the.sathsttript rf a given
oode,:jor :-.,,rrid.travorsection., by-loan:tag at the
rfurribers assingme&-to the txcoo .=id. lines
whith intet there; -mint': 2..,N is at the
intemiectinn of vertical ne -to:Ember 2 and
horijzontid3in.ernantiber 3.

atturn -to Snetion7.3..and -.disuse another
answer.

_ 3,2
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1.

6 0
Your answ,er in Section 25 is not correct.

Your formulation for the calculation of the
new value of 11 in the first step is incorect.
The finite-diffeTence equation- which Nt e de-

-- veloped stated that the value of h,,,.should
be the average of the values of h at the four
suirounding nodes, that is

1
)

4

The idea in the relaxation process is to com-
pute a new value of hi:, as the average of the
previous ,-,alues of h at the four surrounding
nodes. That is

h,..f(New
4

+11 --t+hi.JI) (Previous Values).

Yowr answer in Section 1,

is not correct. In introducing the notion of a
derivative, it is customary to begin with the
finite-difference- formthat is, to consider
the finite change in h, Ah, occurring over a
finite interval, ,A,x, along the x axis. The de-
rivative notation, dh/dx, is then introduced -
to represent the value of the ratio Ah/ax, as
Ax becomes infinitesimal in size. Here, the
idea is to move in the opposite direction. We
started with the derivative, ?ilt/Zix, and we'
wish to approximate it by a ratio of finite
differences: Moreover, we want an expres-
siOn which applies at point d, midway be-
tween well 0 and. well 1. The finite change

in- h occurring between these two wells is.
hoh,. The finite distance separating them is
Ax.

Return to Section.,1 and choose another,
answer.

117When this calculation has been made, -the
; idea is to compare the new value of hij with

thLpreiious value of h; If these two are
veryTaose, everywhere in the grid, there is
no point in -continuing the process further,.
since a'Tdditional iterations will produce little
additidnal change. The solution, 'in other
words,! has converged to iralues of h which
satisfi the difference equation. In the second
step, therefore, rather than setting kw equal
to the/ average of the new and previous
values( of hij as in the answer you selected,
R.1 should be set equal to the difference be-
tween kJ (New Value) and -hci (Previous
Value). This difference may then be tested
throughout the grid, and if it is sufficiently
small at all points, the iteration process can
be te\rminated.

Return to Section 25 and choose another
answ7.

DO

Observation
wells

,
\ Confining

PotentiOmetrie
surface

1 d 0 2
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8 00
Your answer in Section 10 isnot correct.

You have used the correct formulation for
the forward-difference approximation to
3h/3tthat is,'

3h

3t

32h

123

but your approximation for (32h/32:2) +
(32h/3y2) is not correct. To obtain an ap-
proximation for 32h/3x2, we move along the
x axis, holding y constant. In this process
i, the subscript denoting node position on the
x axis will change, whereas j, the subscript
denoting node position in the y direction,
will remain unchanged. Our 'result will be

11CLIC."

3x2

Similarly, in obtaining an approximation
for 32h/3y2, we move along -the y axis, so
that i remains fixed, while the v-subscript,
j, varies. The result is

32h < a

BY=

hi:LA

a

Addition of these two expressions will
give the correct . approximation for (32h/
Dx') + (B2h/BY2)

Return to Section 10 and choose another
answer.

900
Your anSwer in Section 4 is not correct.

The subscOpts 1, j, n tell us that head
occurs at a, certain node, i, j of the finite-
difference ;grid on the x, y plane and at a cer;
tain point, n, of the finite-difference scale
along the; time axis. The coordinate values
are -found by multiplying the number of
nodes along, a given axis by the node spac-
ing. Along the x axis the node i, j lieS a dis-
\tance i.a from the origin (i nodes, eath with

+Li., 4- 2hi,jos

a2

,, + h,,,_

spacing a). Along the time axis, -the point
n dceurs at a time it-At (it time marks, each
at a spacing GO . The same procedure should
be applied in determining the y coordinate,
keeping in mind that there arel nodes along
the y axis between the origin and point i, j,
and that these nodes fall at a spacinz a.

Return to Section 4 and choose another
answer. .
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10
Your answer in.,Sectien 4 is correct. On

each axis, x, y, and t, the value of the inde-
pendent variable is found by multiplying the
subscript, or node number, by the node spac-
ing along the axis. Using the conventions we
have adopted, therefore, the approximation

to
aqz. a2h

ax2 ay2
at the time t=nat, and at the point
y-----ja would be given by

ia.qt+ a2h\

toY2 Lae

Now in order to simulate the differential
equation

a2h 3.2h S

ay2 T

In practical methods of computation, how-
ever, the approximations

at the instant t--nat we require in addition Or

an approximation to ah/at at this instant.

The sketch shows a graph of h versus t in
the vicinity of this time. A reasonable ap-
proximation to avat in the vicinity of the
nth time mark would obviously be

h(n..}.%)-11; %)

at

135

(ah -g1.

IgAt at

VeS

t , at'

are often found preferable. Here, we are
simulating the derivative at t=nat by, re-
spectively, a "fc.rward difference" taken be-
tween the times n At and (n+ 1) -at, and a:
"backward difference," taken between (n-
1) -At and nat. The error involved will de-
pend largely upon our choice of at, and 'can
be reduced to tolerable limits by choosing At
sufficiently small.

QUESTION

Using the forward-difference approxima-
tion to awat given above, which of the fol-
lowing results is obtained as a finite-differ-
ence simulation of the equation

a2h 2h S
\\

aX2 ay2 T t
at the pint x=ia, y= ja, and at the time
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10 E Con.

Turn. to Soction:

hi- ,j,n htu+ 1,n 4h4,1,n S

a- at
hi_ 1; S higLis_ .

o2 T at
14,n thi.j inn + S hi,i.n+ JA.

Your answer iin Section 16 is net tforrect..
For the steady-state condition, D/L/at =0; so,
our equurtiot,

becomes

Bai a 2h S Bk-;

ar2 ay` T
simply

32h ti211,
.- = 0

Bx= By=

To obtain a finite-difference tappmximatiom
to this equation, -we need ondy take our fi-
nite-difference approximatiom tcn t(B2h/Bx9

Observation
was

at

16

8

19

(D2litay2) and set it equaltto zero. Our ap-
'proximation tol this sum, using the subscript
notation associ ted with the finite-difference
grid, was'

Itti_1.5+hi1J+ hid + hi J4.1 4hij

/a2

This expression can be set equal to zero,
and the resulting equation multiplied
through by tale constant a2 to obtain the
finite-difference equation whicliwe _require.

Return! to Section 16 and choose another
answer.

12 0-

Your amswer in Section 1,

ah \, h.-hi
az id Az

is correct. Similarly the derivative at point
e, midway hitween well 0 and well 2 is ap-
proximated by

(continued on next page)
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h\ h2ho
Sx

QUESTION

Which of the follewing expressions gives
a reasonable approximation for the second
derivative, a=h/z,e, at point 0that is, at
the location of the center well?

12

,

Your.ansWer in Section 16 is not correct.
The finite-difference expression' aPproximat-
ing

a.h, 32h

:ax2 ay2

was
hi_id+hi+i,j+haj_i+hid+i-4hu

a2

Pon.

aqi 1/2h,

ax. 2Ax

age h1-F1n2-21/0

ax2 (6,x)2-

112hc, h0h1

32h Ax AX

aX2 26.x

VINI

Turn to Section:

27

15

22

To approximate the equation'

a'h 32h,

ax2 By2.

thiS finite-difference expressionneed only be
equated to zero. The resulting equation can
be 7.-tultiplied thiough by the'constant

Return to Section 16 and -choose another
answer.

Your answer,'Ithi, in Section 3 is not cor-
rect. The sketch shows a diagram of the X,
y plane, with the finite-difference grid,super-
imposed upon it.'Node 2, 3 is at a distance
2a from the y axis (x=2a) and 'a distance
3a from the x axis (y=3a). That is, the
node having the coordinaies x y=3a is
the node 2, 3; and the head at this node is
designated h2,3* The same rules apply for the
node 'in the question of Section 3 which was
at a distance i.a from the y axis and a dis-
tance ja from the x axis..The coordinates of
this node are .x=i.a,

Return to Section 3 and choose another
answer. . ,

13ri)
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15 D

Observation
wells

0 g 4_k
Cross section along r axis,

Your answer in Section 12,
D2h h1+

x2 (Ax) 2

is correct. kIf We were to consider, in addi-
tion, the wells 3 and 4 along a line paralleI
to the y ax.js (see figure), we woulsi simi ar-
ly have as an approxiination for D2h/3y2 at
point 0,

p2h h3+114-2h0

Dy2 (Ay) 2

QUESTION

If the spacing of the wells in the diagram
is .uniformrthat is, if AX = Ay awhich of
the following expressions may be obtained
for .

D2h D2h

Dy2
Turn to Section:

D2h D2h h,+ 112+ h34M4-4h0,

zx2 Dy2 a )32

+
p2h D2h h1+h2+113+h4

Your answer in Section 10 is correct. Note
that the equation which we have obtained IS
actually an algebraic equation, involving_the
terms hi_.,,i,n, hi,j+ hi,j,n, and
hoi; that is, we have simulated a differ-
ential equation by an algebraic equation. If
the values of head are known at all nodes

.

at+1,1,o±_hi,1-1,0+.h61,0-4hcho

Dx2 Dy2 a2

D2h (h1+h2h3+h4)

Dx2 Dy2 a2

28

' 24

of the i', y plane for some initial timet=0,
then, the .head value at each internal nOde,
for the succeeding time,. t=1.4.t, can b\ ob-
tained by applYing the equation we have just
obiained at the two times 0 and 1.At (n,a--\ 0
and n=1). This Ivould give , \

/,

138
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This equation is applied in turn at each
internal node of the plane and solved for

at each point, using the appropriate
values of h from the t=0 distribution. Ad-
ditional conditions must be given from
which head values at nOdes along the bound-
aries of .the x, v plane at the new time can
be determined. When the head values are de;
termined throughout the plane for the new
time (n=1), the procedure mar be repeated
to determine head values at the next point
on.the time ixis (n=2) ; and so on.

This is termed the explicit procedure of
solution. It suffers from the shortcoming
that if At is chosen too large, errors may be
introduced which grow in size as the step-
wise calculation proceeds, so that for large
values of time the" solution bears no relation
to realitSr, even as an approximation. To cir-
cumvent this .difficulty, other. schemes of
.cothputation are often used, some involving
the backward-difference approximation to
ahiat, and others involving entirely differ-.
ent simulations of the differential equation.

Many of these schemes 6f solution'involve
iterative techniques, in which the differences
between Members of an equation are" suc-
cessively reduced by numerical adjustment.
These techniqueS are sometimes termed re-

17
Your answer. in Section 25 is correct. If

we were to "flow chart" the relaxation pro-
cedure for solution on a digital computer,
we would have to incorporate these steps
in some way: ,

Numerous other techniques exist for the
numerical solution of the differential equa-
tions of flow. The efficiency of various meth-
ods, in terms of computational labor, Or ma-
chine time, varies widely depending upon
the problem under. study. Care must be ex-
ercised in selecting a method that is \well
suited to the problem, or unreasonable in-
veAments' of time and effort may, be re-
quired to obtain a solution.

139

Con.

laxation methods; they are of sufficient irri7.
Portance that it will be, worthwhile to see
how they operate, through a simple example.

Suppose we are dealing with a problem of
two-dimensional steady-state ground-water
flow. For a steady state situation, the term
3h/zit of our differential equation, and
therefore the term

hi /tido,

At

of our hnite-differince equation, is zero.- The
differential.equation is simply

agh 32h
+=o.

ax2 ay2

QUESTION

Using the notation developed above, but
dropping thit third subscript since time is
not involved, which of the follewing would
represent a valid/ finite-difference anprOxi-
mation to ihis steady-state equation?

Turn to Section:

7 hi+ 1,i+ kJ-1+ hi34-1- Ow =0 25
+ kJ+, +414,5=--a2 .11.

ili+1,54- 1143_1+ hi,j+1
ce

13

0 0
In this discussion we have given only .a

brief indication of the way in which nrimeri-'
cal-methods may be applied in -ground-water
hydrology. Numerical analysis is .broad
and complex field in itself. Interested
readers will find, an extensive literature deal-
ing both With theery and with a wide range
of applications. Examples of the use of nu-
merical techniques in ground water may be
found in the worlc of Prickett and Lonriquist
(1971), Stallman (1956), Remson, Appel,
and Webster (1965), Pinder and Bredehoeft
(1968), Rubin (1968), Bredehoeft and
Pinder (1970), Freeze' (1971); Priekett and;
Lonnquist (1973), Trescott, Pinder, and 4
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17 Con.
Jones (1970), Trescott, (1973), and many
others. An excellent summary of numerical
methods as aPplied in ground-water hydrolo-
gy is given by Remson, Hornberger, and Molz
.(1970).

18
Your answer in Section 2 is not correct.

Tle sketch shows the five-well array which
we used earlier to develop an approxiroatio
for (a2W13x2) + (away), but with pie
w,ells now redesignated ticcording to tthe
scheme of subscripts associated wit our

129/

ou have completed the prog med in-
st uction of Part VII. A discus ion giving

it
irther details of some of the tandard fin-

-difference techniques is presented in
stindar,d text format follo ing Sectipn 28.

Ell 0
ii

/'finite-difference grid. The head at the_central
well is designat9d hu rather than 12,0; the,
heads at 'the t 1 o wells along the x axis re

lbhi_.1.1 and hi_i. ,j, rather. than , and h,
the heads a/ the two wells, along the
are .desig7ated hi,j_i and lb,,1+.1, rather th
h, and hi. Our previous expression for

ii,j i+1,j
was

a2h a2h

Dy2

12,14-h2+h3+h4-4h0

a2

The question only requires that this be
translated into the notation associated with
the finite-difference grid.

Return to Section 2 and choose another
ansv; or.

/
Your answer in Section 10 is not correct.

Your approximation for (a2,VDx2) + (D2h/
Dy2) is correct, but/You have not used the ,

forward-difference/fOrmulation to approxi-
mate rah/at, as/required by the question.
-The approximation which you have used,

Du -
pt ,At

is/normally a more accurate approximation
/to Dh/pt at i, 1, n, than is the forward-dif-

./ ference formulation, since the difference is

taken symmetrically about the point at
which Dh/Dt is to be approximated. Un-
fortunately, however, it is not atways as
useful in the calculation of actual numerical
solutioni as is 'the forward-difference or
backward-difference formulation. These for-
mulations are unsymmetrical in the. sense
the difference is measured entirely to..one
side or the other of the time t--=--nAt, which
is the instt-at--which ahtat is to be ap-
proximated; but they arebetter suited to
many-techniques for Computing sOlutiOns.

Return to Section 10 and choose anOther.-
answer.
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FIGURE A

ANI 200

i 1, je 1;

j 1

Your answer in. Section 2 is not correct.
The upper part of the figure shows the ar-
ray which ,we used..in developing our. finite-
difference approximation for (D2h/De) +
(D2h/Dy2). The well' at the center of the ar-
ray was labeled 0;; the surrounding'. wells
were labeled 'as indicated. The expression

.
we obtained for

was

Dzh D2h+
ax2 Dy2

111+ h., 4ho ,

a2

Using the notation introduced for our finite-
difference grid, shown in the lower part of
the figure, the well at the center of the ar-
ray would be denoted i, j ; the remaining,
wells would be designated : i-1, 1 ; i+1, j ;
j 1.; and i, c+1, as shown. It is simply a
matter of substituting these designations
for the designations, 0, 1,12, 3, and 4 used in
our earlier development.

Return to Section. 2 and choose another
\answer.

Your answer in Section 25 is not Correct.
Your initial step, giving the formulation for
computing the new value of fl using the
previous values of 14_, .5, 11/45_1, and
11/45+1, is correct. However, your; second step
is not correct: The idea is to continue the
process until the difference between the pre-
vious value of hi,j and the new value of hi j

becomes very small everywhere in the grid.
Thus Rid should represent the difference be-
tween, hij (New Value) and ki. (Previous
Value) ; and the process should be continued
until IRLII is negligible throughout the grid.

Return to Section 25 and choose another
ansivek:

141
t
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Your answer in Section 12,

ho 1107- it,

D2!), Ath Ath

/3X- 2Ath

2200

is not correct. The numerator in your an-
-wer gives the difference between two
terms : (h, ho) lAx, which approximates h/
Dx at point e; and (it, 14) / Ax, which ap-
proximates Dh/ax at point d.

Observation
wells

Potentiometric
..fsurface

d 0 e
Ax

The numerator thus represents the differ-
ence

zh,

-zix \ Zx /d

that is, it approXimates the change in h/3x
between point d and e. Thus if it were \di-'
vided by Ath, the interval between points d
and e, we would have an approximation to

that is, to22.h/Dx2 at the midpoira, 0, ottine
interval between d and e. In the amwer
which you selected, however, the quamatity

ho ha
Ath Ath

is divided by 2Ax, rather than by Ath.
Return to S_ection12 and choose another

answer.

230
Your answer in Section 4 is not correct.

The coordinate of a point, in space or time,
is found by multiplying the number of nodes
between I& origin and the point in question,'
along, t e t\Ippropriate axis, by the node
spacin along that axis. Thus the x coordi-
nate o node i, 5, n, is x=ia,Isince there
are i nodes- along the x axis from the origin

to i; , and the node spacing a. The same
procedure may be applied along the y and t
axes, keeping in mind that the node spacing
along the y axis is a, while that along the
time axis is At.

Return to- Section 4 and choose another.
answer.

1 2
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-24°0
Your answer in Section 15,

"eh/D2h. (//1+h2Y- (h3-F h%)
F

Dx2 Dy2 a2

is not correct; The approximate expression
which we obtained for D21,t/Dx2 was

h1+ 2ho

(a) 2
or, since we have taken Ax=a;_

h1+ ho-2ho

a2

The expression given in Sectildn 15 for D2h/
Dy2 was

113+ h4- 240

(ay) 2

or again, since we have taken ay = a,

ho+h,-2h,
a2

These two expressions need ()illy be added
algebraically to obtain' an approximation for

D2h B211.

Dx2 3y2

Return to Section 15 and choose another
answer.

250°
Your zrtswer in Section 16

+ 411.4.; -

is correer.. To solve this by an iteration tech:
pique We:rewrite the equation in the form .

1
+ 6+ hid-1+ /1/45+1)

4
and we diVide the x, y plane into a grid
as shown in the sketch, with the grid inter-
sections forming the nodes at which we will
compute values of h. In the form in which

-1 i

- we have written it, it is easy to see that
what our" equation adtually says is that, the
head at each node 'must be the average of
The heads at the -four adjacent nodes. We
begin by entering known values of head
along the boundaries of the grid--.--that
by applying the boundary conditions. We
then 'insert assumed values df h at each in-
terior grid ,point., These initial values of h
may be anything we wish,.although a great
deal of werk can be saved _if we can choose,
them in/a way that roughly approximates
the final head distribution. We/then moVe
through the grid, in 'any order or 'direction,
and it each interior node cross out the value
of bead; writing in its ,plice the average of
the,head values at the four adjacent xtodes.
At each node we note.not only the new value
,of h, but the change in h, froin the initial

/ value, resulting from the,icalculation. When
welbave completely traversed the grid% we
start again, and proceed -through the:grid in
the same way, replacing each h value.by the
average of the heads at the four adjacent
nodes; 'and noting-the change in h that this
causes. After a number of repetitions we

/ will find that the change in k caused by each
new calculation becomes very smallin
other-words; that the value- of-head-at each--
point is already.essentially equal to the aver-

,

143
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2500
age of those at the four neighboring points,
so that inserting this average in place of h
produces little or no additional change. At ,
this point our head distribution represents
an,approximate "solution to our difference
equation and thus to the differential equa-
tion which the difference equation simulates.

The ,ibrocess just described, as noted ear-
lier, is an example of a relaxation technique_

QUESTION

Which-:of the:+2ol1owing would you chooseas a ."shorthand" description of
calculation described' a ove?

Con.

,general, since the head at each node is,7
used in calculating the head at each of the
four surrounding nodes, several complete
traverses of the grid may be required be-
fore the chanies in head are everywhere
sufficiently small. This method can readily
be used in hand calculation; it is also well
adapted to solution by digital computer.

the method of

Turn to Section:

1
hid (New Value)i = (hi_id ++ LI+ ki + hu,) (Previous Values)

Ri ,i(New Value) -hi (Previous Value)
Continue calculati n until Iki,jHO for all points in grid:

1
Value) --(hi_u+hi+i,i+hij--1+11/4j+i) (Previous Values)

4
Ro=hij (New Value)

COntimie calculation uUtil IR01,-(1 for all points in grid.
' 1 ..

143 (New Value) ----(1i+1,1-hi-i,j+hi,j+i-k3-1) (Previous Values.)
4

(New Value+hij)(Previous Value)

2

Continue calculation until for all points in grid.

Your answer in Section 1,

21

is not correct. This answer would be a rea-
sonable approximation for the derivative.at
point 0, \in the center of the array, because
it gives the ratio of a change in h, h2-h1, to
the correSponding change in _distance, 2Ax,
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Observe
wells

ion

Potentiometric
--- surface

-,

., Your answer in Section 12,
p2h h2h1

Con.

over an interval which is centered at 0. For
the derivative at point d, however, midway
between well 1 and well 0, we can do a little
better. The change in h over an interval
centered at d is simply ho hi; and the cor-- ,
responding_ interval of distance is simply
AZ.

Return to Section 1 and choose another
answer. \

27:3°

2Ax

is \not correct. h., hi gives the change in h
between points 1 and 2, and 2Ax gives the
distance between these points. Thus the term
(12 -10 /26a is an approximation to the
first derivative, zh/Dx, at the Midpoint of
the distante intervalthat is, at point 0.
The question\howeVer, asked for a term ap-
prOXimating tke second derivative, Z2h./?02,
at this point. The second derivative is ac-
tually the derivative of the first-derivative;
that is

To obtain a finite-difference expression for
thisZterm, we must consider th change in
the first derivative, zh/Dx, betWeen, two
points, and must divide this change in zh/
Zx by the distance separating these two
points. We have seen that zh/zx at point d,
midway_ between wells 1 and 0, can be ap-
proximated by the expression (ho hi) bix;
and that zh/zx at point e, midway between

/'
Observation .

wells ,

Potentiometric
'surface

quifer....:1

ci 0 . e. 2
14-- Ax ---41

-

wells 0 and 2 can i)e approXimated by the
term (h2 ho)/Ax. Points d and e are them-
selves separated by, a distance Ax, and .point
0 is at the midpoint of this interval. Thus if
we subtract our approximate expression for
zh/zx at d, from that for Zh/Zx at e, and
divide the result by the interval between d
and e, Ax, we should obtain an,expression
for 2h/Dx2 at point 0.

Return to Section 12 and choose another.
answer.

_ _ _ _ _ - -
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Your answer in Section 15,

z2h z=h h, + h,+ h,

3x2 ay= ct=

28 0

/is not correct. The term 2h0 appeared in
the numerator of both of our approximate

135

,

expressiGns --
32h/3y2. When
pre.gsions to ob
(32h/3x2) ± (32h
do not drop out

Return TO Section
answer.

at for 32h/3x2 anc=hat for
we add these -.Iwo ex-
n an approximmtion for

ZY'), these tentas in 110

5 and chohse, another

146
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Techniques of Finite-Difference Solution of the
Ground-Water-Flow Equation

Certain techniques of numerical solution
. which are doMinonly used in ground-water

modeling are described in the following dis-
cussion. No attempt has been made to dis-
cuss such topics as. stability or rate of con-
1Tergence in theoretical terms; the reader is
referred to the paper by Peaceman and
Rachford (1955) for discussion of these sub-,
jects. Siinilarly, no "attempt has_ been made
to give the details of the programing pro-
cedure. The paperby Prickett and 1.Ionnquist
.(1971) analyzes some typical programs and
in addition provides an excellent suminary
of the,hydrologic and mathematical feunda-
tions of digital modeling; the paper by Tres-
colt (1973) describes a versatile; program
for areal aquifer simulation. The discussion
presented here is limited to a description of-

- some of the common techniques :of approxi-
mation and calculation.

'In Section 10 of Part, vg we introduced
tWo methods of approximating the time de-
rivative in finite-difference siimilations of
the ground-water equation. One of these was
termed the forward-difference approxima-

.;_tion, and one the backward-difference ap-
proximation. Figure A shows a plot of head
versus time which we may use' to ,review
these approximations. The time 'axis is di-.
vided info intervals of length At. The heads'
at-.the end of the nth interval, is! termed Itn; ,

tliat at the end of .the preceding interval is'
termed and that at the end; of the sub-
sequent interval is termed h1. We wish tos

apriroximate aft/at at the end of the nth in-
terval, that is, at the time nat. If We utilize
the head difference over the subsequent time
interval, we employ the forward-difference
approximation to the time derivative; if We
utilize the head difference over the preced-

, .

,

ing interval, we employ the backward-dif-
ference approXimation. The forward-differ-
ence approximation is given by

ah .11,,tih
at n'At: at\

(1)

Where (3h/at) At represents the derivative
at time nAt. The backward-difference ap-
proximation is given by

Head

Ito

,

at Li; at

FIGURE A

(2)

\, Backward Forward
difference: difference:

ahN h.,h
at. At

-r
at ), Ptt-'. flAt

.

tj.j n
Time °

nAti

Time
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Forward-difference simulation: Explicit solution

The ground-water-flow equation, as it was
given in Part V for two-dimensional flow, is

32h, . 32h S 3it
(3)

3x2 By= T Bit
where S represents storage coefficient and T
trz,nsmissivity. In order to simulate this
equation using either the forward-difference
or backward-difference formulation, .we
would first write an approximate expressioh
for the term

32h 32h

3x2 3y?

at the time.nat that is, at point n on the
f time axis of figure A. Thus the forward-dif-
fererice simulation is characterized by the
fact that we approximate 3h/...3t over a time
interval which follows the time at which we
approximate (32/t/3x2) + (321t/312),
whereas the backward-difference simulation
is characterized by the fact that we approxi-
mate 3h/3t over the time interval which
precedes the time 'at which we approximate
(3Fh/3x2) + (321t/3y2). In the question of
Section 10, Part VII, we obtained the follow-
ing forward-difference simulation to equa-
tion 3 :

h4...1.5,11+ hi+ 1,1,n 4- hid 1./t h+1 4h1,1,n S

a2

where a is the node spacing, S is the Stor-
age- coefficient, and T is the transmissivity.
We wish to know the new value of head at
the time- (n+1)At for the point i, j. Figure
B shows the computation stencil for this
simulation; the head at node i, 5 at the time
`(n+ 1)a-depends on the head in a five-node
array at the preceding time, nAt. The five
values of at the time ?tat are all known.
We n'eed only to rearrange-the equation, solv,
ing for It,,b, and to insert the known

,
FIGURE B

Time
1)4t

Time
n4t

t
.

(4)

values of hi,j--1,n, 1144+1, and
There is no need to use simultaneous

equations; the head at each node is com-
puted explicitly, using the head at that node
and the four neighboring nodes from the
preceding time. The sequence in which we-
move through the x, y plane, calculating new
values of head, is immaterial. TheSolutionat
one point does not require information on
the surrounding points for the same time
only for the preceding time. For all these
reasons, the forward-difference technique is
computationally simpler than the backward-
difference technique.

However, as we noted- earlier, the ',for!.
ward-difference method does suffer from a
serious drawback. Unless the ratio At/a2 is
kept sufficiently small, eriOrs which grow, in
magnitufle with each step of the calculation
may appear in the result.,More exactly, let
us suppose that an error of some sort does
arise, for whatever reason, at a certain node
at a particular time step. Unless the/ratio
At/a2 is sufficiently small, this error will in--
crease in magnitude Jat each succeeding time

148
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step in the calculation until eventually tle e-
error completely dominateS the solution. 'Ile

a ,
term "error," as used here, refers to any, cll
ference between the computed head at
node i, j and time nat, and the actual value
of headthat is, the value which would be
giwin by the exact solution to the differential
equation at that point and time. Such errors
are inevitable in the /normal application of
finite-difference methods; they generally ap-

pear thrOukhout the,meali in the Cist step's
of thecalculatkni. if the restriction on.At/a2
is satisfiethese errors will tend to die Out
as the computation sequence continnei ; the
solution is then said to be stable. If the 're-
striction is not satisfied, the errors. will groW
with each succeeding time step and Will
eventually destroy any sipificance which
the solution might have ; in this:. caSe, the
solution is said to be unstable:-

Backward-difference simulation: Solution by iteration

Becituse of this limitation in the forward-
difference approach, attention has heen
given _to a variety of alternative methods.
One of these is simulation of the differential

equation 3 through use of the backward-
difference approximation, to the time deriva-
tive as given in equation 2. The resulting
finite-difference equation is

IN 1,1,n ± S_
a2

Figure C shows a diagram of the compu-
tation Stencil for equation. 5. The time de-
rivative is simulated over an interval which
precedes the time at which (*/?x2) +
(32h/3y2) is simulated ; the equation incor-
porates five unknown values of head, cor-
responding tO the time nAt, and only one
known value of head, correSponding to the
time \;(n-1)At. Clearlyi we cannot obtain an

hi_ 4r.

"FIGURE C

hci+2.

Time =
net

Time
(n

At
(5)

11

explicit solution to a single equation of the
form of equation 5,°the way we could to a
single equation of the -form of, equati9n 4.
We can, however, write, an equation of the
form of equation 5 for each node in the x, y
plane; then since there is one unknown value
of head (for time t----.nAt) -at each node in
the plane, we will haveja syétem in which the
total number of equal:Ions i equal to the total'
number of unknowns. We shonld therefore I-

be able to.solve the entire set as a system Of
simultaneous equations, obtaining the new
value of itch, at each node. The only draw-
back to this approach is that a great deai of /
work may be involved in solving the set of'
simultaneous equations; offsetting this
drawback is 'the advantage that the tech-
nique is stable regardless of the size of ,the
One step-L.-that is, 'that errors tend to' di-
minish rather than to increase .as the gom-
putation proceeds, regardless of the size Of
et relativ to a2.

The work required in' utilizing thefl back-
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ward-difference technique depends upon the
size of the problemthat is, upon the num-
ber of equations in the simultaneous set. If
this number becomes large, as it does inmost
ground-water problems, the work entailed
becOmes very great, particularly when the
standard direct methods of soliang :sinitil-
taneous equations are used. APT this missis6n

it iS worthwhile tolook for efficientineitTsodS
of solving these,sets of equations; End it
turns out that iteration or relaxationthe
process described in Section 25 of Paid VII,
in connection with solution of the steady-
state equationprovides us with a roaSon-
ably effiCient approach.

- The equation that we were trying to solve
by -iteration in Section 25 of Part VII re-
written here using the i, j subscript nota-
tion, is .

1
(11_1 J+ hi+1,14.1/1,j_i + Itri+i),--ki,J. (6)
4

This equation .states that the . head at the
node i, 5 should be the average of the heads
at the four surrounding nodes. No time sub-
-scripts are involved, 'Since We are dealing
with a steady-state situation. Our method is
simply to move through the x,. y plane, re-.
placing 'the head at each node by the average
of the heads. at the four surrounding nodes.
This process is contimied until the 'head
changes become neglikiblethat is, until the,
head at each node remains essentially un-
changed after each traverse through_ the
plane, indicating 'that equattim 6 is satis-
fied throughout the plane.

In applying iteration tO our nonequilib-
rium probleni, the idea is to carry Out a
similar aeries a -traverses of the x., y plane
at every time step, using equationi.6- rather
than equation 6 as the basis of the calcula-.
tion at each-cnode. "Thus to cOMpute heads .
for the time nb,t we would .rearrange eqtia-
tion 5 as follows

1 .; hi- ii.n + hi+1.i,n ht,j--'1.8 + hij+ Ln . S
+

Tat4

a2 Tat

We can envision an x, y plane for_the time
nat, initially containing specified values of
km, at a lew nodes, corresponding to the

. boundary conditions, and trial values of
at the reMaining nodes.. We write an

equation of the form of equation 7 for every
node pot controlled-by a .boundanrcondition; ,
and we write equations expnesSing the
boundary conditions for the nodes at which
-these conditions applY..Ip equation 7, the
value of ha,,, isf expressed in terms of the
head at the four surrounding nodes for thel
same time, and the head at the" mune node
for the preceding time. In solving the set of
equations for values 4f hi,j, the values of .

actually coiistitite known or constant

,

2

terms, determined in the preceding step of
the operation. Thui equation 7 relates the
head at ,each node to the head at the four
surroUnding nodes, in terms of ,a set of con:-
stants or known quantities. The eqUalion is'
a little more/cumbersome than equation 6
in that 'instead of multiplying -the sum of
the heads at the surrounding nodeS by 1,4,
we must noW multiply by the term-

-1

(2,2 Y'At

4

and NVe Must addtheAknowei term

re
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S

TAt

4 S+a2 nt
on the right side. These changes, however,

not make the, equation appreciably more
di cult to solve. We san still use the process
of iteration ; that is, we can move 'through
the x, y plane, replacing each original trial
value of hrj, by a new valFAcalculated from
the four ,surrounding values by equation 7.
At each node we note the difference between
the' new value of hid, which we have calcu-
lated, and the trial value with which we
started. If this difference turns out to be
negligible at every node, we may conclude
that our starting values already satisfied\
equation 7 and that, further.computation of
riew values is pointless. More commonly,
however, we will note a measurable cllange
in the value of It at each node, indicating
that .the initial values did not satisfy. equa-
tion 7, and that the -iteration procedure is
producing an adjustment toward new values
which Will satisfy the equation. In this case
we traverse the x, y plane again, repeating
.the procedure; each value of ki, which we
calculated in the first step (or 'iteration) is
replaced by a new value calculated from' the
heads at the four surrounding nodes by
equation 7. Again the difference between
the new,valtie and the preeeding value at
each node is recorded ; and a test is made
to "see whether, this difference is small
enough to indicate that 'the new array of
head values approximately satisfies equation
7. The proceSs is continued until the differ-
ence between newly computed and preceding
'values IS negligible throughout the array,
indicating that equation 7 is essentially sat-

fied at all pbints.
Thefl technique deScribed above is often

:-refezed tolaS the. Gauss-Seidel method ; it
is basically/ the Same procedure that was ap-
plied in Se-6ton 25 of Part yn to the fteady-
state problem. It is/an example of a relaxa-
tion techniquea Method of computation in
which therdifferendes between the two sides

of an equation are successively reduced by,
numerical adjustment, until eventUally the
equation is satisfied. There are a number of
varieties of relaxation techniques in use, dif
fering from one another in the order or se-
quence in which the x, y plane is traversed
in the calculation and in certain other re-
spects.

It has been found that the number of cal-
culations required to solve the set of, finite-
difference equations can frequently be re-
duced by the inclusion of certain "artificial"
terms in these equations. These terms norm-
ally take the form

+1

The superscripts m and m+ 1 indicate levels
of iteration; that is, I'LL." represents the
value of /tun after m traverses of the x, y

'plane in the iteration process, and h; j,"i +
represents the value of hi .j, obtained in the
next following calculation, after //V+ 1 tra-
verses. A is termed an "iteration parameter";
it is a coefficient which, either on the basis
of Practical experience or theoretical analy-
sis, has been shown tO produce faster 'rates
of solution. As the iteration process ap-vproaches its go- al at each time step ,the dif-
ferencé between the value of hum' obtained in
one iteration and that obtained in the next

. iteration becomes negligiblethat is, the
term ( h hi.j.'n) approaches zero, sO
that the difference equation appears essen-
tially in its original form, without the itera-
tion parameter.term; and the solution which
is obtained thus applies to tlie-original equa-:
tion. In' some cases, x is given a Sequence of
different values in successive iterations,
rather than a single constant value. Again,
the particular sequence of valties is chosen,
either through theoretical analysis or
through practical experience, in such a way
as to preduce,the most-rapid solution. When
an iteration parameter or sequence of itera-
tion parameters is utilized, the refaxation
process is termed "successive overrelaXa-
tion" and is frequently deSignated by the ini-
tials SOR. Discussions of .this technique are
given by Forsythe and Wasow (1960) and

- .many others.
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-Alternating-direction implicit procedu -se

The work required to obtain a solution by
relaxation techniques is frequently tedious,
particularly for a problem of large dimen-
sions. For this reason, a great deal of effort
has gone into the development of alternative
approaches. Peacernan and Rachford (1955)
proposed a technique of computation which
has received wide use in a variety of forms.
The name "alternating direction" has been
applied to the general procedures of calcula-
tion which they proposed.

To simplify our discussion of their, tech-
niqués we will introduce some new notation.
We saw in Sections 12 and 15 of Part VII
that an approximation to 32h/3x2 is given by
the lerm

-4, +h, --2110

(AX) 2

, or, in terms of our subscript notation,

hi_+

In the discussion which follows, we will let
the symbol a,:h represent this approxima-
tion to 32h/3x2. Tbat is, we say

a2h hi_ + hi+ 2hid

(AX)2
(8)

In addition, we will use a subscript to indi-
cate the time at which the approximation is
taken. For example, (Axxh will indicate an
approximation to the second derivative at
the time nit, or specifically

- ,bn hi+ -2111,1,
(A.h)-

.6a) 2
(9)
-

(ArXh ) n-1 will'represent an approximation to
the second derivative at time (n-1)it, and
so on.. Similarly, we will use the notation

to represent our approximation to a211,/

3y2,.that is, /

CJ- ik32/1 /I
(10)

B'112 (-171)

and again )n will iepreSent our ap-
proxithation to 32h/y2 at the time nit,
that is

i.+ 1144+1,u -2h i .1,

(Ayyh) (11)
(111)2

and so on.
Using this notation, our forward-differ-

ence approximation to the equation

.32h 31t S 3h.

3x2 3y2 T at
(3)

as given in equation 4, would be rewritten

S h 0. + 1 hi,j,r1

+ (AVIA) -
,

(12)

In this formulation, 32h/3x2 and 32h/3y2
are simulated at the beginning of the time
interval over which ph/at is simulated.

Again using the notation introduced
above, our backward-difference approxima.-

, tion to equation 3, as given in equation 5,

would be rewritten

S j.thi,f,
T At

(13)

(In this formulation, 321q3X2 and 32h/3y2
are simulated at the time nit, while 3h/3t
is simulated .over the time interval between
(n:.-1)i,t and /tat; thus both 32h/3x2 and
3211/3Y2 are approximated:at-the end Of the
time interval over which ah/at is- aPproxi-
mated.

In the form in which if was originally
proposed, Peaceman and Rachford's \tech-
nique is usually termed the alternating,di-.
rection implicit procedure. In this form,\ the

152



142 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

simulation utilizes two equations, applicabte
. over two successive time intervals. In the

first equation, z2h/3x2 'is simulated at the
beginning of a time interval, and 32h/3y2 at
the end of that interval; ah/at is simulated
using the change in head occurring over the
interval. The second equation -0-plies over
the immediately. following time interval;
here the order is reversed 32h/3y2. is
simulated at the beginning of the time in-
terval, 32h/za is simulated at the end, and
again ah/at is simulated using the head dif-
ference occurring over the interval.

Using the notation introduced above, this
simulation may be represented by the follow-
ing equation pair

S
(=1h).-1+ (Apyh)

T .

S
/ (AI 1h) (a.r.,h),i+1=

T

(14)

(15)

For tile first time interval, 32h/3x2 is simu-
lated/at (n.-1) at; ath/Dy2.is simulated at
nat;/and ah/at is simulated by the change
in hci between (n-1-) at and nat. For the
second time interval 32h/3y2 is simulated at
?tat; 32h/3x2 is simulated at (n+ 1) at; and
3h/zot is simulated by the change in 4, j be-
tween nat and (n+ 1) at.

Figure D illustrates the form of this simu-
lation. It may be recalled from Section 3
that lines parallel-to the x-axi8 in the finite-
difference grid are terMed rows and that
lines parallel to the y-axis are termed col-
umns. As shown in figure D, then; three
values of h are taken along row 7j at time
(n-1)at to simulate 32h/3x2, while at the
time .nat three values of h are taken along
column i to simulate 32h/3y2. ,The , time
derivativv is simulated using .the difference
between the central h values at these two
times. For \the succeeding time interval, the

. three values of h along column i 'are taken
first to simulate 32h/3y2 at time nat; while
at the time. (n+1)at, three.values of 4 are
taken along row j to simulate 32h/x2. Again
the time deriVitii.-76i-ism-ialated usifig the

difference between the central h values.
The forward-difference and backward-

-difference techniques are characterized by
symmetry in their simulation of the expres-
sion (34/3x2) + (311/3y2). Both terms of
this expression are simulated at the same
time, using a five-node array centeredi about
a single value of head, h. However, the

FIGURE

15-3
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simulation of ah/at in these formulations is
asymmetrical, in the/ sense that it is not
centered in time about h but extends for-
ward or backward from the time nAt .
In either case, hOwever, if we allow
at to become very small; the effects
of this asymmetry die out; the ap-

- proximation then approaches more and
more closely the value of ..Wz./pt at the time

---nAt.-Inthe alternating-di recti onlirgplicitpro-
cedure, by contrast, 32h/Dx2 and 32h/Zre'are
not siMulated at the same time, and in thia
se.12se the simulation a (3.2h/Dx2) + (D2/2/
3y2) cannot be termed symmetrical: It is
again helpful, however, to visualize what
wRhapiien if At is allowed to become very
small, so that the timos (n-1) At and nAt

/ at which the individual simulations occur,
*fall more and more closely together. In this
case, (A,..rh), should begin to approximate
the 'value of D!h/3x2 at (n7-14) At, while
(Ah) should begin to approximate the
value of 32h/Dy2 at (n-1/2) Atiin this sense,
then ;the expression

n-171-/(Ayvh),,

can be considered an approximation to

32h 3211+
3x2 3y2

at the time (n-1/2) At. The simulation of
3h/Dt is symmetrical with respect to this
time, eince it utilizes the yiedd difference

Thus eyen though a certain asym-,
metry exists in the expression by -which
(32h/Dx2) (32h/30) is approximated in
the alternating-direction technique, it can be
argued that there is symmetry with respect
tO time in the simulation of 3h/Dt. More-
over, we may expect intuitively that if an
error is generated by the fact that we simu-
late D2h/De2 prior to Vh/Dyn during one
time interval, some sort of compeneating
error ,should be generated during the follow-
ing time intervalrwhen we simulate 32h/3y2
prior:to D2h/a.x2; and in fact it turns ont
that this alternation in the order of simula-
tion is essential to the stability of the meth-
od. If the order of siinulation is reversed in

this way, then regardless of the size of the
time step, the calculation will not be affected
by errors which grow at each step of the
calculation. A further condition for stability
is that the time intervals represented in the
two stepe of the simulaSm (equations 14
and 15) must be equal. The length of the
time interval may differ from one pair of
time steps to the next, but within a given
pair, as used in equations 14 and 15, the two
values of At must be kept the same. Finally,
there must be an even number of total time
steps; D2h/Dy2 must be simulated prior to
32h/Dx2 as often as 32h/ae is simulated
prior to a2h/3y2.

If equations 14 a:nd 15 are written out us-
. ing the earlier notation we have

+ hi+ 1,5,n 1 2h0.11 1

(Ax)2
hi,1 -211i.j; S

(Ay)2 T At
(16Y

and

hi+ + 14+1, Lri.-f- 1

(Ax)2
hi,j 1,n + kj4.1.n 7-* 2110. S

(Ay) 2 T At
(17)

Equatien 16 involves three values of head
along row j at time (n At and three
values of head along column i at time nAt.
I.et us assume that the head values for the

/earlier time, (n-1) At, have been calculated
throughout the x, y plane and that we are
concerned with calculation of head values for

/' the time nAt. Equation 16 then contains
. three known values of head, for the time

(n -1) At and three unknown, for the time
nAt. Since we have three urdchowns in one
equation, we will again need to use simulta-
neous equations. In this case the three un-
knowns occur along a single column; and by
considering other equations which apply
along this column we can derelori a con-
venient method o'f solution.

/
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Let us suppose that there "are m nodes
along column i and that the head is specified
at the two end nodes by boundary condi-
tions, but must be determined for all of the
interior nodes. The first node is zdentified by
the subscript j=1 (we asstime that the x-
axis, -where fj=0, lies outside the problem
area) ; the final node is identified by the
subscript j-m. Thus 14,1, and hi,,, are spe-
cified by boundary conditions, while hi.2.n
through must be determined.

We can Write an equation of the form of
equation 16 for each interior node along col-
umn i. As we set up the equation af each
node, we pick up three known values of head
from the (n-1)et "time plane"; these
known -values fall along a three-column band,
as shown in figure E. Each equation alio in-
corporates three values of head for the new
time, net, all lying along column i; and when
we have set up an equation of the form of
equation 16 for each interior node along the
column, we have a system of m-2 equations
in m- 2 unknowns, which can be solved
simultaneously. The solution of this set of
equations is undertaken independently .from
the solutions for adjacent columns in the
mesh; thus, instead of dealing with a set of,
say, 2,500 simultaneous equations in a 50 by
50 array, we deal in turn with separate sets
of only 50 equations. Each of these sets cor-
-responds to a column within the mesh; and

col

FIGURE E
Time

nAt

Time

W76111CO
C 01/111V

Roh,

4,
d4,tp(

each is much easier to sOlve than the 2,500
equation set, not only because of the smaller
number of equations; but also because a
convenient order of computation is possible.
We are able to utilize.this order of computa-
tion through- a technique developed bir H. L.
Thomas (1949) that is known as the Thomas
algorithm.

To illustrate this method, we rearrange
- equation 16, putting the unknown values of

head, corresponding to-time net, on one side,
as follows:

kJ-1.n 'S 2
\ini, .

h.hi..i+ 1.n S 2

(y)2 nt (11y) 2 (411)2 (ta) 2 Tat (a) 2 ).

The right-hand side consists entirely of
known terms, and it is convenient to replace
this side of the equation by a single symbol,
Di, that is

Di- -
S 2 \

(AX).2 \ TM (x) 2 )
hi+1,M1-1

, (19)
(ha) 2

hi+ 1.),n -1

(ex)2
. (18)

The single subscript, j, is sufficient to desig-
nate D for our purposes. As suggested in
figure E, the sequence of calculation is along
the column i. At each nodethat is, for each
value of Vthere is only one value of D,
taken from the three-column . band in the
preceding time plane. We are limiting con-
sideration here to one set of equation's, cor- .

responding to one column, and aimed at cal-
culating the heads for one *value of time;

. the subscripts designating the column and
,
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time are therefore not required. Thus we can
omit thy/subscripts i and n from the values
of h on the left side of the equation. With
these changes, equation 18 takes the form

(20)

where, in the problem which we have set up

and

1
,

(Ay)3

S .2
By (

TAt

1

Cy
(Ay) 2

The coefficients A, B, and C are constant for
the problem which we have postulated. In

-some Problems, however, where variation in
T, S, or the node spacing is involved, they
may-vary from one node to another. To keep
the discussion sufficiently general to cover
such cases, the coefficients have been desig-
nated with the subscript j.

If we solve equation 20 for hy, the central
value of the three-node set represented in
the equation, we obtain

hy= (21)
B,

h, the head at the initfal node of the column,
is specified by the boundarST condition. We
apply equation 21 to find an expression for
ha ; this gives

D,A,h,C,h,h, (22)
B,

We rewrite this equation in the form

where

and

112 7g2,- b2h3

132A,hi

B2

(23) .

(24)

k consists of known terms, and since h,
is known, ,g,.; can be calculated; equation 23
thus gives us an equation .for 112 in terms of
the next succeedinr value of head, h,. If we
can continue along the column, forming
equations which give the head at each-node

, in terms of that at the .succeeding node
that is, which give hy in terms of hj4.1---we
will eventually reach the next to last node in
the column, where we will have an equation
for hm_, in terms of hn., the head at the last
node. Then since h, is known, from the
boundary condition, we will be able to cal-.
culate h,_,; using this value of hm_, we can
calculate h,_2, and so on back down the col-
umn, until finally we can calculate ha in
terms. bf h, using equation 23. This is the
basic idea of the Thomas algorithm. We now
have to see whether, we can in fact obtain
expressions for each head, hy, in terms of
the succeeding head, -hi+, alOng the column.

We first apply equation 21 to find an ex-
pression for ha obtaining

D;,Ah,Ch,
(26)

B
To eliminate h, from this equation, we sub-
stitute from equation 23, obtaining

D,A,(g37-b2h)C3h,h, . (27)
B.

Equation 27 iS noW solved for h, as fellows

Ab, D Aag, C3h4
ha

B3 B,

D3 A,g,Ch,

. or

/1,3-

\ B )3

h,. (28)
B3 A31h

Now again we have an:Rquittion of the form

113 ---g37-b3h4

(25) where here

(29)
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and

D3A3g,
9.:

B1A3b,'

b3
BiA3b,

the value of using equation 32, until
(30) finally a value for h, has been calculated and

heads have been determined throughout the
column.

(31)

Since gz and b2 are known from the preced-
ing step of the calculation (equation. 24 and
25), q3 and b3 can be calculated, and equa-
tion 29 then gives us an expression for h3 in
terms of h.,. In effect ,we have eliminated It,
from equation 26, so that h3 is expressed in
terms of the succeeding value of head alone.

If we continue this process, we find that
at each step we can obtain an equation of
the form

Itigibihi+, (32)
---

relatini the head at each node to that at the
sOcceeding node; and we find that gj and bj
can always be determined from the preced-
ing values of g and b by equations of
form of equations 30 and 31. That is, We find
that

Bj A,b,_,

and '

(33)

C,b, . (34)
BjAjb1_,

These general formulas apply even to the
calculation of gz and b, if we specify the
starting conditions g1=Ii1 and b, 0.

In summary, then, we may start at node 1
and move up the column calculating values
of gj and bj. At each node, these values are
calculated by equations 33 and 34, using the
preceding values, gi_, and bj_i, and using
the coefficients 4f, and Cj and the term
Dj.

Ultimately, at the next to last node of the
column, g,_, and b,_, are calculated; then
since h, is known from the boundary condi-
tion, -h,_, can be calculated from eqption
32. We then proceed back 'down the column,
calculating the value of hi at each node from

The whole process is actually one Of
Gaussian elimination, taking advantage of
a convenient order, of calculation. The solu-
tion of the difference equation 16 is obtained
directly for points along the column through
this process; we are not dealing with an
iterative technique which solves the set of
algebraic equations by successive approxima-
tion. When the head has been calculated at
all nodes along column i, the process is re-
peated for column i+ 1, and so on until the
entire plane has been traversed.

In a sense, this process of calculation
stands somewhere between the forward-dif-
ference technique and the backward-differ-
ence technique. In the forward-difference
technique the head at every node,, for a
given time level, /is computed independently
from the heads id the four adjacent nodes
for that time level; the technique of compu-
tation is said to be explicit. In the backward-
difference technique, the calculation of the
head at each node incorporates the heads it
the four adjacent nodes for the same time
level; the method of calculation is termed
implicit. In the alternating-direction tech-
nique the calculation of the head at a given
node, as we moye along a column, incor-
porates the heads for that time level at the
two adjacent nodes along the column, but
nct at the two adjacent nodes in the adjoin-
ing columns. The method of calculation, for
this step, is said to be implicit along the col-
umns, but explicit in the transverse direc-
tion, along the rows.

When the heads have been calculated
everywhere_ throughout_ the plane .by the
process of traversing the cohiihns-,--ealcula,_
tions for the following time, (n+1)at are
initiated using equation 17. The procedure
followed is the same as that described above,
except that the calculation now moves along
rows, rather than along columns. This alter-
nation odirection again, is necessary in
order to insure the stability of the method of
calculation.

157
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Solution of the steady-state equation by iteration using the
alternating-direction method of cdlculation

In their initial paper proposing the alter-
nating-direction implicit procedure, Peace-.
man and Rachford point out that the tech-
nique of solving alternately along rows and
columns can be used effectively to iterate the
steady-state 'equation. That is, suppose we
must deal with the problem considered in
Section 16 and 25 of Part VII, and reviewed
earIer in the present discussion, in which
the steady-state equation

D2h+= 0
ax2 3y2

(35)

is to be solved. In Section 25, we considered
a technique of iteration, or relaxation, to
solve this equation. In this technique we
wrote the finite-difference approximation
given in equation 6 as a simulation of equa-
tion 35; this gave

1
hij------(hi-i.i+hi+i,f+hci-i+hi,i+i) (6)

To apply equation 6, we would move through
the x, V plane replacing values of had at each
interior node by the average of the heads at
the four surrounding nodes. At the end of
one complete traverse of the plane we would
have a set of values of hij which would be
somewhat closer to satisfying equation 6
than were the values with which we started;
and "after several traverses, we /would have
a set of head values Which would essentially
satisfy equation 36 throughout the plane.
This would be iridicated by the fact that the
values of 14,5 obtained in each step would dif-
fer very little from those obtained in the
preceding step.

Our objective here is to outline a more
efficient technique of carrying out this itera-

tion process, based upon Peaceman and
Rachford's method and the Thomas algor-
ithm. We begin by introducing some nomen-
clature and notation. In our discussion of
nonequilibrium problems, we spoke of "time
planes"that is, representations of the x, y
plane in which-the-heads-calculated --for- a
gi'ven time were displayed. In discussing the
solution of steady-state problems by itera-
tion we can similarly speak of "iteration
planes"that is, representations of the x, y
plane in which the values of head obtained
after a certain number of 'terations are dis-
played. Again, in our discussion of nonequili-
brium problems we used the subscript n to
designate the time level of a given head
valuehu, referred to a head value at the
time na. In a similar way, we will use a
superscript m to denote the iteration level in
the steady-state problem. hu° will be used
to designate the starting values of head,
prior to any iterations; hut will indicate
head values after one iterationthat is, the
head values in the first iteration plane; and
in general, hip will indicate head values
after m iterations, or in the mth iteration
plane.

Next we rewrite our' approximation to
equation 35 in a slightlY different .form. We
rearrange equation 6 to give

11.1_,,1+h1.4.,,j-2hi,1= h&j+, + 2hin5 (36)

This can be obtained also by rewriting equa-
tion 35 in the form

D2h D2h

ax2 ay2

/
and then using the approximations given in
equation 8 and 10 ter a2h/3x2 and 32h/a2.

We are interested in applying equation 36
to calculate head values for a new iteration
level, using head values from the preceding
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iteration level. In the procedure which we
will employ it is necessary to consider two
successive interation steps. Ijsing the super-
script notation described above, and using

and Aoh to represent our approxima-
tions to D'-'h/x2 andZ2h/Zy= as in equations
8 and 10, the method of calculation =Sr be
summarized as follows

and

(37)

A2)01+1= Ahm (38) .

or, in the notation.of equation 36,

+2k/a

and

(39)

FIGURE F'

Iteration_ level \
m + 1

co106111

Ai these équations indicate, the idea here
./ is first to simulate a2h/3x2 at one iteration

level and 32h/3y2 at the next; in the succeed-
ing iteration, the order is reversed; 32h/3y2
is simulated at the earlier iteration level, and
32h/Dx= at the next. Figure D,- which illu-
strated the simulation technique for the non-
eqilibrium problem, is reproduced as figure
F, but with the time planes now relabeled as

\ iteration planes. Equation 39 relates three
values of head at iteration level m to three
values, at iteration level m-1; and, following
the ,technique described above for the non-
equilibriuth Case, we may move along col-
umn in iteration plane m, at each node
picking up three known values of from
a three column, band in the preceding itera-
tion plane, and thus generating a set of
equations in which the unkr.dwns are all
values of hm along column i.

As in the nonequilibrium case, the set of
equations along a given column is solved.di-
rectly by the Thomas algorithm-that is, by

Roil.

Iteration level
in

IteratiOn level
1



PART VII. FINITE-DIFFERENCE. METHODS 149

the procesS of Gaussian elimination outlived
in equation 20 through 34. When this has
been done for every column in the x, y plane,
we have a ne* set of head values throughout
the plane. These values, however do not nec-
essarily constitute a solution to equation 35.
The process we have described, of replacing
the earlier head values with new values cal-
culated through equation 39, accomplishes
the same thing as the relaxation process of
Section 25it produces a new set of values
which is closer to satisfying equation ,-35 than
was the earlier set. This does not guarantee
that the- new set will constitute an accept-
able solution. The test as to whether or not
a solution has been found is carried out as
in the relaxation technique of Section 25,

the values of head in iteration plane m are
compared to those in iteration plane m -1.
If the difference is everywhere negligible,
equation 35 must be satisfied throughout the
x, y plane; otherwise a new iteration must be
initiated. In this new iteration we would
utilize equation 40, moving along a row of
the model to set up a system of equations for
the head values along that row. As in the
nonequilibrium problem this alteration of di-
rection is necessary for stability. Ir: sum-
mary then, we are utilizing an indirect
;iterative procedure of solution; but we use
a direct method, Gaussian elimination, along
each individual column or row, to move
from one set of approximate head values to
the next during the iterative process .

Backward-difference simulation: Solution by iteration using the
alternating-direction method of calculation (iteratiye

alternating-direction irnplicit procedure)

Peaceman and Rachford found that itera-
tion of the steady-state equation by the al-
ternating-direction procedure was consider-
ably more efficient than the most rapid re-
laxation techniques that had been used prior
to the time of their work. The use of the al-
ternating-direction technique in this sense,
as a method of iteration , has accordingly
gained great popularity in recent years. As
a method of -solving the nonequilibrium
equation 3, however, the alternating-direc-
tion implicit procedure, as embodied in equa-
tions 14 and 15 or 16 and 17, has not always
proved advantageous. Although stability is
assured, that is, the calculation will not be
affected by errors which necessarily increase
in magnitude at each step, there is still a
possibility for large error at any one time
step and, at anY given node; and in many

- problems these errors have' proved uncon-
trollable and unacceptable. This undesirable
feature has inevitably led to renewed inter-
est in the backward-difference formulation.
of equations 5 and 13. As we have noted,

solution by this method must generally be
accomplished, through iteration, for example
using equation 7; the systems of simultane-
ous equations involved' are usually too large
to admit of an easy solution by direct meth-
ods. We have seen that the alternating-di-
rection procedure of Peaceman and Rack-
ford provides an effective method of iterat-
in'g the steady7state equation; this suggests
that the same technique may be used.-to
iterate the backward=difference
or 13: Equation 13, which utilized the ab-
breveted notation, is reproduced below

'S
(A.r.vh),s+ (13)

T At

(A,h) is an approxiniation to 32hfax2 at
the time nat, while (,,h) is an-approxima-
tion 3.211lay2 at the time nAt. We again in-
troduce the superscript m-to indicate the
level of iteration; using this notation we re-
write ecplition 13 as it will be used in two
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.1 \
successive steps of the iteration process un- which is here m+ I. No iteration superscript
der consideration, is attached to hi.J.n--1 the head at the preced-

ing time level, in either equation. The itera-
tion process is designed to compute heads for
the new time level, n..1t, and in this process
the head at the preceding time level is sim-

(41) . ply a constant; it retains the same value
throughout the series of iterations.

Rewriting equation 41 using the expanded
notation for azsh and ih (as given in equa-
tions 8 and 10), we have

nr1+1-1-- (Ah)

S ii.n

S.

at

at
(42)

Several points about equations 41 and 42
should be noted carefully. The simulations
of both D2h/Dx= and D2h/By2, in both equa-
tions, are made at time nit; and again, in
both equations, Dhipt is simulated by the
change in head at node i, j from time (n-
1)at to time nat. In equation 41, (D=1//
ax2)at is simulated at the ( m -1)th itera-
tion level, whereas (2.1L/By2).At is sinitilated
at the mth iteration level; h, in the simu-
lation of the time derivative, is represented
at the mth iteration level. In equation 42,
(D2A/3y2);tht is simulated at the mth itera-
tiOillevel, while (D2h/Dx2).At is simulated at
the (m+ 1)th iteration level; in the
simulation of the time derivative, is again
represented at the higher iteration level,

hi.1+ ..n

(Av ) 2 (Ay)2

2
=

( Tat. (iy)2

.(.1x)2

j_Lin+hi,n-,.."1- 2h
+

(AY)
/ S (hi ;Jim- h4,1.n_1)

We wish to calculate head values at the
new iteration level, m, on the basis of values
which -we already have for the preceding
iteration level, rrt--71. We therefore rearrange
equation 43, placing unknown terms on the
left and known terms on the right. This gives

1zi+1,1m-1 2
(44)

Tat'Oar (Ax)2

The unknown terms are the head values
for iteration level m; the known , erms are
the-head values for the preceding \i\eration
level, tm-1, and ope head value frhi the
preceding time level, n-1. We may t re-
fore proceed as in equation 19, -replacing

(az) 2

. A1hj_1m+ +13ihr+Cfh,.4.1m----Di, (45)
which can be solved by the Thomas algor-
ithm, as outlined in equations 21-34. In the
next step we utilize equation 42; here the
unknown terms consist of three v lilies of A
for time nit and iteration level m+1, while

entire right side by a single symbol, D1 rep-\ the known terms consist of three values of A
resepting the known terms of the equation. \ for time nat and iteration level m, and again
We will/then have an equation of the form one value of. h for the time level (n-1) At.
of equation 20, After this step, the heads which we obtain
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are compared with those obtained in the pre-
ceding step. If the difference is everywhere
negligible, the values of 117.4-1 are taken as a
sufficiently close approximation to the heads
for time nat.

It's important to note that while at each
step we solve directly, (by Gaussian elimina-
tion, along columns or rows) to obtain a new
set of head values, these new values do not
generally constitute a solution teour differ-
ential equation. Rather, they form a new ap-
proximation to a solution, in a series of
iterations which will ultimately produce an
approximation close enough for our pur-
poses. We may review the sequence of com-
putation by referring to figure G, which il-
lustrates the process of calculation schemati-
cally. The lowermost plane in the figure is a
time plane, 'containing the final .values of
head for the preceding time level, (nnat.
The plane immediately above this contains
the initial assumed values of head for the
new time, nAt; we use three values of head,

and h ,,,,,° from this plane,
together with one valUe of head ki,11 from
the n-1 time plane, on the right side of
equation 44. On the left side of equation 4i
we have three' unknown values of head in
the first iteration plane, hi,j_,.'e hi.i.ni, and

We set up equations of the form of
equation 44 along the entire column i and_

solve by the Thomas algorithm (equations
21-34). We then repeat the procedure along
ail other columns, thus determining head
values throughout the first iteration plane;
these new head values constitute a somewhat
closer approximation to the heads at time
nAt than did the initial values. Next we
set up a system of equations of the form of
equation 42, arranged so that in each equa-
tion three head values from the first itera-
tion plane and one from the n-1 time plane
form the known terms, while three head
values from the second iteration plane from
the unknown terms. If we rewrite-equation -,
42 in the expanded notation and rearrange
it so that the unknown terms appear on the
left and the known terms on the right we
have
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S 2

(Nr)2 Tat (ax)2
,"

(Lly)2

Applying equation 46 between the first
and second iteration planes, m would be
taken as 1 and (in + 1) as 2. The four knoWn
termS on the right side of the equation would
cOnsist of three head values from the first
iteration plane h1.1., and hi.), and
again One head yalue from the n-1 time
plane, 1114m-1. It is important to note that
we return to the n-1 time planethe lower-
most plane in figure Gat each iteration
level in the series, to pick up the constant
values of that are used in simulating
the time derivative. On the left side of equa-
tion 46 we would have the three unknown
values of head corresponding to the new
iteration level(that is, the second itera-
tion plane). Again we would use the Thomas
algorithm (equations 21-34) to solve for
these neW values: of head throughout the
plane. At the end of this solution procedure
the head values in the second iteration plane
are compared with those in the first itera
tion plane. If the difference is sufficiently
small at all points,. there is nothing to be
gained by continuing to adjust the head
values through further calculationequa-
tion 3 is already approximately satisfied
throughout the plane. if significant differ-
encec are, noted, the procedure is continued
Until the differences between the head values
obtained in successive iteration levels be-. comes negligible. At this point the heads for
time nAt have been determined, and work is
started on the next time step, computing
heads for the time (n+ i)at. Thus while di-
rect solution and an alternating=direetion
feature both play a part in this 'procedure of
calculation, the techniqueià basically one of
iteration, in which;,using the backward-dif7
ference formulation of equations 5 or 13, we
progreasiVely adjust head values for each
time level until we arriveat a set of, values
which satisfies the equation. The method
combines the advantages of the backward-

hi.j4-1.00 2 S
.(46)

(AO' .(Ay)2 TAt
IV

difference technique with the ease of com-
putation of the althrnating-direction proce-
dure; it is the basis of mow of the digital
models presently used by the U.S. Geol. Sur-
vey. It is sometimes referred twas the itera-
tive alternating-direction implicit procedure.

Prickett and Lonnquist (1971) further
modify this method of calculation by rep-
resenting the central head value, hid only at
the advanced iteration level; and by repre-
senting the head in the adjacent, previously
processed column also at the advanced itera-
tion level. That is, they do not simulate D2h/
Da-2 and a2h/ay, in two distinct iteration
planes, but raticer set up the calculation as
a relaxation technique, so.that the new yalue
of head at a given node is calculated on the
basis of ,the most recently coMPuted values
of head in the surrounding nodes. They do,
however, perform the calculatior alternate-
ly along rows and columns-using the Thomas
algorithm. .

In the discussions presented here we haye
treated transmissivity, storage 'coefficient;
and the node spacings Ax and ay, as con-
stant terms -in the x, y plane. In fact these
terms can be varied threugh the mesh to ac-
count for heterogeneity or anisotropy in the
aquifer *r to provide a node spacing which
is- everywhere suited to the needs of the
pr.,blem. Additional terms can be iri,serted
into _the equations to' account for such things
as pumpage from wells at specified nodes,
retrieval of eVapotrans.piration losseeepage
into streams, and so on. ---Some programs
have been developed which simulate three-
dimensional flew *(Freeze, 1971.; Bredehoeff
and Pinder, 1970; Prickett and Lo4nquist,
1971, p. 46) ; however, the oPerational prob-
lems encountered, in three-dimensional digi-
tal modeling are sometimes troublesoMe.

The reader may now proceed to the pro-
gramed instrUction of Part VIII.



Part VIII. Analog Techniques

Introduction

In 'Part VIII we consider -another tech-
nique of obtaining solutions to the differen-
tial equation of trround-water flo..W: This is
the method of the-electric analog.cit is al pow-
erful technique ivniirIt.has been widely usied.
The technique demitals upon the matinernalti-
cal similarity between Darcy's law, dcrib-,
ing flow in a porous medium, and Ohm's law,-
describing flow of charge in a conductor. In

the case of nonequilibrium modeling, it de-
pends also upon the similarity between the
groUnd-water storage-head relation and the .
equation describing storage of' charge- in a
capacitor; and upon the similarity between
the electrical Continuity principle, involving
the conservation of electric charge, and the
equation of continuiti dcribing the con-
servation of matter.

Ohm's law ,tates that the electrical cur-
rent through a conducting element is direct-
ly proportional to the voltage 'difference, or
potential difference across its terminals. The
sketch represents a conducting element, or
resistor, across' which the voltage difference
is qs, - 02. That is, the voltage at one terMinal
of the resistor is csi, while that at the other
end is 02. The 'current through the resistor
is defined a's the ne:: rate of movement of'
positive charge across a cross-sectional plane
within the resistor, taken normal to the di-
rection ,of charge flow. The 'standard unit of
charge is the coulomb, and current is nor-
mally measured as the number of coulombs
per second crossing the plane under consid-
eration. A charte flow of I coulomb /per
second is designated 1 ampere. The symbol
-1 is frequently used to represent current.

0

Symbol representing a conducting element,
or resistor, i

,

- I

/ current n

561, - 09S 2
R

R represents value of resistance (ohms)

1
For the resistor shown in the diagram,

Ohm's law ma7 be stated as follows
1

l=(01-02)

;where I is the current through the resistor,
and 9s, 'as noted above; is the voltage
difference across its terminals. The term 1/
R is the constant -of proPortionality relating

,,-.current to voltage; R is termed the-resist-
ance df the eleinent..It depends both upon
the dimensions of the element and the elec-
trical properties of the conductive material
used. The unit of resistante is the ohm. A
resistance of 1 ohm- Will carry 1. ampere of
current under a potential difference of 1

'volt.

QUESTION

Suppose the voltage at ,one terminal of a
50C-ohm resistor is 17 volts, and the voltage
at the othetterminar is 12 volts. What would
the current through the resistor be? -

10 ampere' s
0.10 ampere, or 100 milliampeies 8
0.01 -ampere, or 10 milliampereS 6

'3'utn Viection:
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Your answer in Section 22 is not correct.
The finite-difference form -Of the eqriation
for two-dimensional nonequilibrium ground-,.
water flow is

Ah,,,
111+113-i-h,+h4-4h0-

T Atv ,
while the equation for our resistance- capa-
citance network is

. y61+02+03+ 4 400 = RC .

dt

Comparison of these equations illustr tes
that resistance, R, may be considered to be
analogous to the 'term 1/T; voltage, 0,1 is
analogous to head, h; and capacitance, \ C,
may be considered analogous to the term
Sa2:

_In-the-answer-Whia you-selected, voltage
is treated as analogous to trarismissivity; in
that the procedure calli for increasing volt-
age in areas of high transmissivity.

Return to Section 22 and'-choose another
answer.

Your answer !ri SeCtion 6,

RL
is not correct. The idea here is to,obtain an
expresSion for the current which involves
the.resistivity, pe, of the material composing
the. resistance. Your answer involves the re-
sistance, R, rather than the resistivity. It is

not a valid statement of Ohm's law in any
case, for Ohm's law in terms of resistance
was given in Section 1 as

1

R

Return to Section 6 and choose
answer.

another

Your answer in Section 9,
1

0c)
dt

is córrect. The quantity C, as we have seen,
is actually the derivative dc/d00; thus C(d0c/
dt) is equiValent to (dc/d00) (d0c/dt), or
simply. &Mt.

Without referring to it ekplicitly, we
maderise in ,Section 9 of an electrical equiva-

.. lent to _the, hydraulic equation of. continuity.
In an electric circuit, charge is conserved in-
the 'dame way that ,fluid. mass is conserved in
a hydraulic system. Kirchoff's current law,
which is familiar to students, of elementary
physics, is a statement of this principle. In
the circuit of 8ection 9, we required that the

/ rate of accumulation of charge in the capa-'

citor be equal to the time rate at which
charge was transported to the capacitor
plate through the resistorthat is, to the
current through the

3

resistor. In the circuit

ft'z

4, .

shown in the figure, in which four resistors
are connected to a single capacitor, the net
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inflow minus outflow of charge, 'through all
four resistors, must equal the rate of ac-
cumulatior. of charge on the capacitor. Let
and 13 represent currents toward the capac-
itor, Lhrough resistors R, and .R2; and let
12 and /, represent ',currents away from the
capacitor, through resistors R2 and R,. Then
the time rate of inflow of charge, toward the
capacitor, will be /,+ /3; the rate of 'outflow

---.4arge, away from the capacitor, will be 12+
/,. The net inflow minus outflow of charge
will be ,/, 12+ /3.1,; and this must equal
the rate of accumulation of charge on the
capacitor. That is, we must have

de.
, "7 12+ 3 14

dt

QUESTION

The diagram again shows the circuit de-
scribed above, but we now assume that the

155

Com-4

four resistances are eqUalthat .is, we as-
sume

R,=R=R3=R4=R.
f

/
Let 0,, represent the volthge On the capac-

itor platethis is eSsentially equal to the
voltage at the junction point \ f the four re-
sistors (the ,resistance of the wire connect-
ing the capacitor to the resi ter 'junction .
point is assumed negligible). Th voltages at
the extremities of the four r sistors are
designated cibi, 02, OR, and 01, as s own in the
diagram. If Ohm's laW is appli d to obtain
an expression .for the current t1irough each

hreisstor and the capacitor equ tion is ap=".
plied.;to obtain an expression :53 the rate of
accuulation of Charge on t capaciter,
which of the following equatio s will be ob-
tained froin our circuit equati n

432+ On 01 C
Turn to Section:

1
024%563

C

doo
F sbo) R

dt
doo

660= RCL-- 22
dt

15

Your answer in Section 22 is correct:.
This is Of course one i,hdication of the power
of the analog ,method, in that problems in-
volving heterogeneous aquifers are handled
as easily as those / involving a 'uniform

- aquifer. Complex boundary conditions can
also be accoMmodated, and three-dimensbnal
problems may be approached py construct-
ing networks of several layers. The method
is applicable to water-table aquifers 'as well
as to confined aquifers, provided dewatering

is small in relation to total saturated thick-,
ness. Some successful simulation has been
done even for cases in which this condition
is not satisfied, using special electrical com-
ponents which vary, in resistance as voltag0
changes.

SteadY-state problems are sometimes
handled by network ModelS constructed
solely of resistorsthat is,. not invoIving
.Capacitorsrather than by: analogs con-
structed of a continuous conductive mate-
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5 Con.
rial. Such steady-state networks are par-

.
ticularly useful when heterogeneity is in-
yolvbd.

In some cases, the symmetry of a ground-
water System may be such that a two-di-
mensional analog in a vertical planethat
is, representing a vertical cross section
through an aquifer, or series of aquifers
may be map useful than a two-dimensional
analog representing a map view. In this
type of mpdel, anisotropy is frequently a
factor \that iS, permeability, in the vertical
tree ton is requen y muc sma er an

that in .the lateral direction. This is easily
,,accOmmodated in a netWork by tIsing higher

resistances in the .vertical -direction ;
equivalently, by using a uniform resistance
value but distorting the scales of the model,
so that this resistance value is used to simu-
late different distances and crosSLsectiOnal

. areas of flow in the two directions. *.

. Arts important special type of network
analeg is that used to simulate conditions in
a vertical Plane around a single discharging
well. The cylindrical symmetry of the dis-
charging. well problem is in effect built into
the network; the resistances and scales of

the model are chosen in such a '-Way as to
simulate the increasing, cross-sectional areas-
of floiv, both vertically and 'radially,, which
occur in the aquifer with increasing radial
distance from the well.

This concludes our discussion of the elec-
tric-analog approach. We have given here
,only a briet outline of some 9,-; the more im-
portant principles that' are .nvolved. The
technique is capable of Providing insight
into the operation of highly complex ground-
water systems. Further discussion of the
princip es o simu a ton may e ounct in the
t-....dct by Karplus (1958). The book "Concepts
and Models in Ground-Water Hydrology" by
Domenico (1972) contains a discussion of
the, application_ of analog techniques' to
ground water, as does the text "Ground-
Water Resource Evaluation" by Walton
(1970). Additional discussions may be
found in papers by Skibitzke (1960), Brown .
(1962) Stallman (1963b) Patten (1965),
Bedinger, Reed, and Swafford- (1970), and-
many others.

This concludes the studies presented in
this text.

Your answer in Section 1 is correct.
The resistance of an electrical elemgit is

_given. by the formula

R..--ope
A

where L is the length of the element in the
direction of the current/A is its cross-see-
tional, area normal to that direction, and pc
is the' electrical resistivity of the material of
which the resistor is composed. The inverse
of the resistivity is termed the conducti ity
of the material; it is often designated a; that
is, a=1/ pc. Resistivity and conductivit are

normally taken as constants characteristic
of a particular materil,; however, these
properties vary with teMperature, and the °
linear relationships usually break down at
extremes of voltage. Moreover, a small
change in the composition Of some materials
can produce a large change in electrical
properties. Resistivity is commonly ex-
\ pressed in units of ohm.metre2/metre, .or.
ohm-metres. With this unit of resistivity, the
ferinula, t.
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Con,
/

will yield resistance- in ohms if length is
expressed in metres and area in square
metres.

QUESTION

The sketch shows a resistor of cross-sec-
tional area A and length L, composed of a

-;

material of resistivity .pe. The pot tial dif-
ference across the resistor is cbi 432. Which
of the following expressions a valid ex- ,
pression or Ohm's law, givii the current
through the resistor?

A
# 2)

Turn to Section:

28

-*------Material of
resistivity p,

a
I

Your answer in Section 28,
K L,Q.
A, hi-112

is mit, correct. Darcy's law states that flow is
directly proportional to cross-sectional area
and to the (negat (ve) gradient of head. In

7
'<

the answer which you chose, flow is given as
inversely proportional to cross-sectional
area,- and proportional to the term 4/11,
which isactually the inverse Of the negative
head gradient!

Return to 28'and choose another
answer.1

Your answer in Section 1 is not correct.
Ohm's law was given as

. 1 .

R.
, and the discussion pointed,out that a resist-
;, \ ance of 1 ohm would carry a current of 1
: ampere under a potential differetice of 1
/ volt

7
Thus when the voltage differe ce is ex-

*

pressed in volts and the resistance ohms,
the quotient

will give the correct current in amperes.
'Return to Section 1 and c.hoose another

answer.

168
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Your answer in Section 21 is correct.
If we monitor the vdtage on a capacitor

plate in a given circuit and observe that it
is changing with time, -we know from the
relations given in Section 21 that Charge is
/accumulating on the capacitor plate with
time. An expression for the rate at which
charge is accumulating can be obtained:by
dividing the capacitor equationby a time
increment, At. This 'gives

A
C

O

At At

or, in terms of derivatives,

de do

dt dt

The figure shows a hydraulic system and
an analogous electrical system. The rate of

Tank

- pipe --,-

accumulation of, fluid in the tank is equal to
the rate of flow of water through the pipe
supplying it. Similarly, the rate of accumu-
lation of -charge on the capacitor plate is
equal to the rate of flow of charge through
the resistor connected to the plate. This rate
Of flow Of charge is by definition the current
thrtiugk the resistor. (Recall that the units
of current. are Charge/timefor example,
coulombs/second.) We thus- have

dt

where I is the current through the resistor,
.and de/dt is4the rate at which charge ac-
cumulates on the capacitor.

QUESTION

Suppose the voltage at the left terminal
of the resistor is 43,, while the voltage at the
right terminal, which is esseritially,the volt-
age- on the capacitor nlate, is 0,. If we use
Ohm's law to obtain an expression for I, in
terms of the voltages, and the capacitor.equa-
tion to obtain an expression fer de/cit, which
of the following relations will we obtain. (R
deuotes -the resistance of the resiitOr, and C
the ,capacitance of.the capacitor.)

1 dOc(oios)
R dt

dsbo
R(4F-01)=C

dt
doe -

RC(Oe-01)=
dt

Turn to Section:

20

1E

169
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Your answer in Section 21 is not correct.
The equation which we developed for the
capacitor, was

. C=
where C was the capacitance, A th4 quan-
tity. of charge placed in storage in the capa-
Citor, and..4 the increase in the- voltage dif-
ference acroSs the capacitor plates, observed
as the charge Ac is accumulated.. For the
prism of aquifer used in develeoping the
ground-water equations in Part V, we/had

10
where AV was the volume of water taken in-
to storage in the prism; Ah the increase in
head associated with this accumulation in
storage, S the storage coefficient, and A the
base area of the prism. Thic equation can be
rewritten

Ah

to faciliate compArison with the capacitor
equation.

AV=SAAh
Return to Section 21 and choose another.

armnier.:.
174ur answer in Section 26 is correct. Note

that this equation,

is analogous to the equation we would write
for the component of specific discharge in
the x direction, through:a section- of aquifer
of width w and thickness' b ; that is,

/
Q .

w -

In practice, steady-state 'electric-analog
work may be carried out by constructing a
scale model of an aquifer from a conductive
material and applying electrical boundary
conditions similar to the hydraulic boundary
conditions prevailing in the ground-water
system. The Voltage is controlled-at certain
points or along certain boundaries of the
model, in proportion tb-known value§ of head
at corresponding points 'in the aquifer; and\

...13sINNIW,

/

Current may be introdu ed orrwithdrawn in
proportion to known v ues 16finflow .and
outflow for the aquifer.,When the boundary
conditions are appli6d in this manner, volt-
age's at varibus points of the model Pare pro-
portional/ to heads at Corresponding points
in the aquifer, and the current density vectOr
in- various sections of the model is 'propor-

--tional to the specifid-discharge vector in the
corresp'onding sections of the aquifer.

QUESTION

St

Y. Suppose an analog experiment of t
is set up, and the experimenter traces a line
in the modPl along which voltage' has some'

NI'constant value. To which of -Um following
hydrologic features would this line corres-
pond?

a flowline
a line of constant-head
a line of uniform recharge

Tutr: to Section:

16 \
17
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Your answer in Section 28,

D`h
Q=

Dx2

is not correet. Darcy's law states that flow
is equ'al to the product of hydraulic con-
ductivity, cross-sectional area, and (nega-
tive) head gradient. The gradient of head is

13 e

by definition a first derivativethe deriva-
tive of head with respect to distance. The
answer which you chose involves a second
derivative. The correct answer must either
include a first derivative, Or an expression
equivalent to or approximating a first de-
rivative.

Return to Section 28 and choose another
answer:

Your answer in Section 41 is riot correct.
We have seen in dealing with the analogy

,betweensteady-state electrical flow and
steady-state ground water flow that volt-
age is analogous t ydraulic head, whereas
current, or rate flow of charge, is analog-
ous to the vol etric' rate Of flow of fluid.
In the analo between the capacitor equa-
tion and th . storagehead relation, voltage
must still be analogous to head, or capacitors

could not be used to represent storage in A
Model incorporating the flow/analogy be-
tween Darcy's law and Ohmi'a law. Similar;
ly; charge must represent/fluid: volume, so
that rate of flow of charge (current)" can
represent volumetric fliá. discharge. Other- :

wise the storage-capacitance analogy would
be incompatible witythe flow analogy:.

Return to Sectien 21 and choose another
answer.

Your anSWel in Section 22 is not correct.
Increasing both R an(1 C, as suggested in
the answer which you 'chose, has the effect
of increasing the factor RC i,n the equation

ch+432+03+434-400=Rp'
. dt /

On the other hand, an increase th "P/in the
aquifer causes the factor Sce/T ..tcrease,
in the equation

,/'/
IMMENELBMOr1=1,

I

SA2 Ah
. ,/ h1+h,.+h3+114-4110----,

T At
' Thus the -proporied technique fails to simu-

late the hydrologic system
Notice that head and voltage are analog-

ous and that increases hi T can be simulated
by decreases in R.

Retu-:-A to Section 22 and choose another
answer.

alwar.m
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Your answer in Section 4 is not correct.
The rate of accuMulation of charge on the
capacitor plate must equal the net rate at
which charge is being transported to the
capacitor throtigh the- four resistors. To set
up the problem, we assume that the current
is toward the capacitor in resistors 1 and 3,
and away from the capacitor in resistors 2
and 4 in the diagram. The current toward
the capacitor in resistor 1 is given by Ohm's
law as

1

while that in resistor 3 is. given by
- 1 /
/3=-43-0o)-

The current away -from the carmcitor in re-
sistor 2 is given by

1
/..2=(4)0-402),

0;1 13

=.01
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while that .411 resistor 4 is given by

1
14.------(00-44)

/?
If it turns out that any of these currents

are not actually in the direction- initially
assumed, the current value as computed
above will be negative; thus the use of these
expressions remains algebraically correct
whether or not the assumptfons regarding
current direction are correct. ..

The net rate of- transport of charge to-
ward the capacitor will be the sum of the
inflow-currents minus-the-surn-of--the-out---
flow currents, or Arte

/2+/3.-42-L.
This term must equal the rate of .acdumula-
tion of charge on the capacitor plate, de/ dt,

de &froC.
dt dt

-

That is wegrust have

dt
. The correct answer to the question of Sec-
tion 4 can be obtained by substituting our
expressions for /3,12, /3,, and 14 into this equa-
tion and rearranging the result.

Return to Section 4 and choose another .
ansiver,

Your answer in ection 11 'is not- correct.
In steady-state twacdirnpnsional flowe, one
can specify p. function Which is constant
along a flowline. However, this function
which is termed a- stream functionis not
analogous to voltage (potential) in electrical
ibeory; thus a flowline, or linvlong which
stream function- is constant, cannot cor-
respond to an equipotential,. or line along

MEW 16
which Voltage is constant. In developing the

:analogy between flow of electricity and flow'
Of fluid throUgh- a porous inediuin,: we
stressed 'that voltage is analogous to head;

. current is analogous to fluid discharge; and .

ectrical 'conductivity is analogous to hy-
aulic conduetivity.
Return to -Section 11 and choose another

answer.

172 \
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Your answer in Section 11 is not correct.
The forms of 'Darcy's law and Ohm's law
which we have used for comparison are re-
peated below:

Darcy's law :

Q

w -6
where Q is the volumetric fluid discharge
through a cross-sectional area of width w
and thickness b, taken at right angles to the
x direction; K is the hydraulic conductivity;
and DI)./..ax is the derivative of
x direction.

Ohm's law :

.18

/ DO

SO b Dx

I

where 1 is the current through a,cross-sec-
tional area of width w and thickness b,
taken at right angles to the \direction ; a is
the electrical conductivity; and DO/Dx is the
derivative of voltage, or potential, in the x
direction.

A comparison ot-these equations shows
that voltage, or potential, 0, occupies a posi-
tion in electrical theory exactly parallel-to
head, h, in the theory of ground-water flow.
Current, I, is analogous to discharge, Q;
while 0., the electrical conductivity, is analo-
gous to the hydraulic conductivity, K. These
para e s s on e ep in mm in answer-
ing the question of Section 11.

Return to Section 11 aud choose another
answer.

Your answer in Section 9 is not correct.
The_question concerns a capacitor Which is
connected_to a resistor. The idea is to equate
the rate orasomulation of charge on the

. capacitor plate. to the rate at which charge
is carried to the capacitor through the re-
sistorthat is,.,to the current through the
redistor. The rate at which charge accumu-
lates on-the capacitor plate is given by the
capacitor equation as

19

cle doe

dt
The current through the resistor, or rate

at which charge flows through the resistor,
is given by Ohni's law as \

1

Return to Section 9 and choose another
answer.

_-

Your bmswer in Section 1- is not correct.
Ohm's law was given in the form

1

If R is. in ohms and the, difference. 02.. is

in volts, Current; I will'be in amperes. In the
example given, 4,1-02 was 5 volis and R was
500 ohms. Substitute theSe values in -the

t equation, to obthin the amount of curreat
through the Nsistor.

Return to Sie,ction i and Aoose another
answer.
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Your answer, in Section 9,

dck,
le 40- C

dt

is not correct. The rate of accumulation of
charge on the capacitof, de/ dt, is equal to C
(40/dt) , and this part of your answer is
correct. However, the idea is to Pquate this
rafe of accumulation of charge on the ca-
pacitor to the rate of transport of the charge

N
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toward the capacitor, through the resistor--
that is, to the current through the resistor.
This current is to be expressed in terms of
resistance and voltage, using' Ohm's law;
and this has not been done correctly in the

° answer which you chose: Ohm's law states
that the current through a resistance is equal,
to the voltage drop across the resistance di.7.--
vided by the value of the resistance in Ohms.

Return to Section 9 and choose another
answer:

-YOur answer in Section 11 is correct, The
line ofreonstarit Voltage, or equipotential line,
is analogous to the line of constant head in
ground-water hydraulics.

The analogy between Darcy's law and
Ohm's law forms the basis of steady-state
electric-analog Modeling. In recent years, the.
modeling of nonequilibrium flow has become
increasingly important; and just as Dar9r's'
law alone is inadequate to describe nen-
equilibrium ground-water flow, its analo
with Ohm's law is in itself inadequa
basis for nonequilibrium modelirle-The'
theory of nonequilibrium flow is ased upon
a combination of Darcy's la ith the stor-
age equation; throuih t equation of con-
tinuitY. To extend anatog .modeling to non-
-equilibrium flow, wi require electrical equa-
tions analogou $:-the storage and continuity
equations,

Theailo e of ground-Water storage is
pryded by an electrical element known as

capacitor. The capacitor is essentially a
storage tank for electric charge; in, circuit
diagrams it is denoted by the symbol shOwn
in figure A. As the symbol itself sUggests,
.capacitors can be constructed by inserting
4-WO parallel plates offeonductive material
1nt4;,,a circuit, as shoWn in figure B. When
the switch is closed, positive chatige flows
from the battery to:the upper plate and'ae-

cumulates on the plate in a manner analo-
gous to the accumulation of water in a
tank. At the same time, positive charge is
drawn from the lOwer plate, leaVing it with_
a net negative /charge. Figure C shows a
hydraulic circiiit analogeus-'to thiS simple
capacitor circuit;_wirefithe valve is opened,
the pumpdeiiVers water to the left-hand
tank, drdinirig the right-hand tank. If the
righChand tank is connected in ttith to an

-effectively limitless water supply, as shown \\
in figure D, both the volume of water and \N

the water level in the right-liand tank will
remain essentially Censtant, while water will

- still accumulate in the left-hand 'tank-as the
pump operates. The analogous :electrical ar- =:

rangement is. shown in figure E; here the
additional symbol shown adjacent *t.o the
lower Plate indicates that this plate,has been
groundedthat is, connected tO alaFg-e mass
of metal bu "ied in the earth; which in-effect
constittne a limitless resirve of charge, In
this Situation, the quantity of charge on the
lower, plate remains easentially constant, as
does the voltage on this' plate, hut the bat-
tery still causes positive cbarge to accurnu-

-/ ,late on the Upper plate. 'pie voltage on the
lower plate is analogauS to the- inter level

the might-hand tank, whieh is held con---=--
stant by connection to the unlimited water

1 4
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In a circuit such as that shown in figure
E, it is customary to designate the constant
voltage df the ground plate as zero. This is
done arbitrarilyit is equivalent for ex-
ample, to setting head equal to zero at the
constant water level of the right-hand tanK
of figure D. With the vo4age of the grounded
plate taken as zero, the voltage difference
between the plates becoMes simply the volt-
age, sb,, measured on the upper plate. In the
circuit of figure E, this voltage is equal to
the voltage produced by the battery.

Now suppose an experiment is run in which
--th
placed in- turn by batteries of successively
.higher voltagey--At. each step the charge oil
the positive plate is measured in some Way,
after the circuit has yeached equilibrium.
The 'results will show that as the applied
voltage is increased, the charge which ac-
cumulates oir the positiYe plate increases
direct proportion. If a graph is constructed
from the experimental results in which the
charge, c, which has accumulated on the
positive plate is plotted versus the voltage
in eaCh step, the re'ghlt will be a straight
line, as shown in the figure. The slope of
this line, Ac/i1s6, is termed the capacitance of
the capacitor, and is aesignated C; that is,

Ac dec c = d.Asb

or simply

c.k

Capaditance is measure& in farads, or more
commonly in thicrofarads ; a farad is equal
to-I. coulomb per Volt.

These equations serye to define the opera-
tion of a capacitor -and proVide the analog
we require for the equation of ground-water
storage. It will be recalled that the rele.-!.
tion betWeen volume in storage and head
can be written
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Voltage on capacitor, plate

Con. 21
QUESTION

Which of the following statements cor-
rectly .describes the analogy between the
capacitor equation and the ground-water-
storage----head relation?

Turn to Section:

Charge is analogous to head, voltage
is analogous tO volume of water,
and capacitance, Cis analogous to
the factor SA. 13

Charge is analogous to volume of
water, voltage is analogous to head,
and capacitance, C. is analogous to
the-factor-5217-----

Where AV is the volume of water taken into
or released from storage in a prism of aqui-
fer of base area A, as the head changes by
an amount ph.

Charge is analogous to volume of
water; voltage is analogous to head,
and capacitance, C, is analogous to-.
the factor

1
10

SA

Your answer in Section 4, 7
(1950

01-1-02+ cf,3+ ciS4 4cko ,
dt

is correct. in Part VII, we obtained a finite-
difference approximation to the differential
equation for tWo-dimensional non-steady-
state ground-water flow,

Z2h Dqx S

x2 Dy2 T 'at
This approximation ,can be written

k+14+1/a+h4-440 S Aho

a.2 T At
or

tiho
hi T At
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22 Con:
4

where ho, h,, h2, 1.1,8, and h, represent the head
values at the nodes of an array such aS that
shown in the sketch; a is the node spacing;
S is storage coefficient; T is transmissivity;
and Aho/At represents the rate of change of
head at the central node. The circuit eqUa*
tion which we have just obtained is directly
analogous to this finite-difference form of
the ground-water eqUation, except for the
uSe of the time derivative notation do/dt as
OPPosed to the finite-difference form, Ako/
At. In other mords, the circuit element com-
posed of the four resistors =aid the capacitor
behaves in approximately the same way as
the prisu
posfulated in developing the grounthwater
equations.. It .follows that a network, com-
posed of circuit elements of this type, such
as that shown in the figure, should behave

in the aquifer. The time scale of model. ejt-
periments is of course much different from
that of the hydrologic regime. A common
practice is to use a very short time scale, in
which milliseconds of model time May rep-
resent months in the hydrologic system.
When time scales in this range are,employed,
the electrical exbitations, or boundary condi-
tions, are applied repeatedly at a given Ire-
quency, and the response of the System is
monitored using oscilloscopes. The sweep
frequency of each recording oscilloscaPe is
synchronized with the frequency of repe-
tition of the boundary-condition inputs, so

e osci oscope race represen sa curve
of voltage, or head, ver s time, at the net-
work point to which t e instrument is con-
nected.

V V

G.

+N.
G

.ti.t t
G

G indicates grounded terminal

m the same way as a two-dimensional con-
fined aquifer of similar geometry. The, non-
equilibrium behavior Of such an aquifer rnaY
be studied by constructing a model of the
aquifer, consisting of a network of this type;
electrical boundary conditions similar, to the
observed hydraulic boundary conditions are
impoSed on the model, and voltage is moni-
tored at various points in. the network as a
function of time. The voltage readings con-
stitute, in.. effect, a finite-difference solution
to the differential equation describing head

ttESTION

Suppose We wi la to model an aquifer in'
\ which transmis. vitY varies from one area

to, another, whi e storage coefficient remains
egsentially constant throughout the aquifr.
Which of the following Ptocednres woidd
you consider an tacceptable methd of simu-
lating this condition in a resistancecapacit-
ance network analog?

Turn to Sectioth

Construct a network using uniform
values Of resistance "and capaci-
tance, but apply pronertionally
higher voltages in areas having a
high transmissity. /2

Construct a network in which resist-
ance and capacitance arenr,both in-
creased in proportion to local in-
creases in transmissivity,

Construct a network in which resist-
ance is varied, inversely with the
transinissivity" to be simulated,
while capacitance is maintained at
a uniform value throughout the
network. -
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Your answer in Section 26,
I.

W1
is notsorrect.':The answer which you chose
aCtually expresses the component of current
density in the z direction. w1 fs an area
taken normal to the z direction. If I rePre-
sents the current through this area, 112v 1
will give the component: of current density
in the z direction; and this should equal 0-

PART VIII. ANALOG TECHNIQUES 167

0111(.' 23
times the directional derivative of voltage in

\ the z direction, Do/Dz. However, the questjon
asked for the current idensity-component n
\the x direction; and in fact, the problem
stated that the current flow was two dimen-
sional confined to the x, y plane. This im-
plies that the current component in the yen.--
tical direction is zero, and thus that Dotaz is
zero as well.

Return to Section 26 and choose another
answer.

Your answer in Se tion 6 is not correct
Ohm's law was give in Section 1 as--

I.

R
where (fri---02 is the voltage difference across
a resistance, R, and I is the current through
the resistance. la Section 6 the expression

.

iMNIIM

A

was given for the resistance, Where pe is the
electrical resistivity of the material Of w
the resistance is composed; L. is th ength
of the resistance, and A is its c .s-sectional
area. This expression for sistanceishould
be substituted inth t lie form \of ghm's law
given above to ..aul the correct answer.

Return to tion-6 _an& choose another
answer::

Your answer in Section 26;

1

25. .

-ton. In your answer, the area is w/i.which
is normal to the z diiection: Again, the corn-
ponent of current density.in a given dire&
tion is proportional to the directional deri-
vative of yoltagein that direction'. Since we

is not correct. The component of ctirfent are dealing With the component of current
- density in a given direction is defined as the density in the x direction, we require the

charge crowing a unit area taken normal/to derivative of voltage in the x direction. The
that direCtion, in a unit thne: Here we are _answer which you chose, hàever, uses the
concerned with the current density compo- derivative of voltage with respect to'y.
nent in the x direction ; vdmiat accordingly\ 'Return to 'Section 26 and° choose -another, _use an area -at right angles to the a; direc- \ answer.-

.

17
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26
Yotir answer in Section 28 is correct. The

0. term .

h1h.
Lp

is equivalent to the negative of the head
gradient, 3h/3x, so that this formulation
of Darcy's law is equivalent to those we have
studied previously. Now let us' compare this
form of Darcy's..law with Ohm's law.

Our expression for Darcy's law was

h,h.
QK- A. p

Our expression for Ohm's law in terms of
electrical conductivity was

01 412
a A.

.,L
In terms of electrical resistivity, we ob-
tained

1 01-02I A.
p L

In these farms, the °analogous quantities I

are easily identfied. Voltage takes the place
of head, current takes the place of fluid dis-
charge and as noted in the preceding sec-
tion CT, or l/p, takes the pluce of hydraulic
conductivity. We note further that since cur-
rent is defined .as the rate of movement of
electric charge across a given plane, while
fluid discharge is the rate of transport of
fluid volume across a "given plane,- 'electric
charge'may,be considered analogous to fluid
volume. 0

Lin Part II, we nott,d that Darcy's law
could be written in slightly more general
form as

'and
3h

K
A az

where qz..,is the, component of the specific-
discharge vecto-rlif the x direction, or the
discharge through a unit area at zight angles
to ihe x axis; qp is the component of the spe-
cific-discharge vector in the y direction, and
q, is the component in the z direction. The
three components are added veCtorially to
obtain the resultant specific disc
3x, 3h/3y, and 3hZ3; are the
derivatives of head in the x, y, a
tions; and K is the hydraulic c

arge, 3h/
directional
d z direc-

nductivity,
which is here assumed to he' the same in any
directioh. We may similarly 5ite a more
general ;OM of Ohm's law, -replacing the
term 01.7,2/L by derivatives of voltage with
'respect to distance, and considering coMpo-
nents of the current densitY, or .current per. .
unit 'cross-sectional area, in the three space
directions. This gives

1 ack

° \ A ) ax Pe 3X
( \ act, 1 .30

\74 pa BY
BO 1 BOr

=
\A), 30 Pe aZ

Here (I/A) is the current through a unit
area oriented at right angles to the x a5ds,
(I/A), is current through a unit area per-
pendicular to the y axis, and_ (VA) is the
current through a unit area perpendicular to
the z axis. These terms :forrii the cc,1po7
nents of the: current density Vector. 347/3z,
3c6/3Y, and ac6/3z are the voltage gradients,\
in units of volts/distance, in the three direc;?
tioas. These three expressions simply repre-
sent a generalization to three dimensions :

a
of the equation given in Seetion 1 as Ohm's
law.

a
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QUEST:ON

T- he pict e shows a rectangle in a con-
ductive sheet, in-which there is a two-dimen-
sional flow of 1etricity. The. flow is in the
plane of the sheet, that is, the. x, y plane;
the thickness of the sheet is b, and the di-

. mensions ol the rectangle are land w. Which-
of the following expressions gives the mag-
nitude of the cotnponent of current density
in the x direction?

Turn to. Section:

Cr----

I to
cr-- 25

w BY -

I ack

(I represents the current through the area
utilized in the equation, w-b or w-1.)

23

Con. 6..

k..

Your at1swer in Section 4 is not. correct.
The essential idea here is that the 'rate of
accumulation of charge on the capacitor
must equal the net inflow Minus outflow of
charge through the four resistors. The in-
flow of charge -through resistor 1 is the cur-
rent through that resistor, and is given by
Ohm's law as

1.

,The outflow through resistor 2 is similariy
given by

4,

1 ---
. = (Oa 02)

/The inflow through resistor 3 is /
1

/ R
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27 Con.
while the outflow through resistor 4 is

1
14=-:(00-04.) -

R

The net inflow minus outflow of charge to
the capacitor is

11+ 13 12 14,

and this must equal the rate of -accumula-
tithi of charge on the capacitor, dc, dt, that

i+ 13-12 14= .
dt

According to the 'capacitor equation, dil
dt is given by,

dc dcPo

dt dt
The answer to the question of Section 4

can be obtained by substituting the -appro-
priate expressions for ./1, 12, 13,14 and chi/ dt
into the relation

(it
114- '13 .12

dt
-

and rearranging the result.
Return to, Section 4 and choose another

\ answer.

ur answer. in Section 6 is correct.
Electrical conductivity, or 1/resiLtivity, is

the electrical equivalent of hydrauiic con-
ductivity.. In terms of electrical conductivity,
*Ohm's law for the problem of Section 6 be-
comes

r,
where a is electrical condu ivity.

The analogy betwTen Darcy's law and
Ohm's law is easily visualized ifve consider
the flow of water thro4h a sand=filled pipe,
of length L., and cross-sectional ar..ta Ap, as
sho.wn in the diagram. The head at the in-
flow end of the, pipe is h while that at the
outflow end iS h2. The hydraulic conductivity. .
of the sand is K.

QUESTION

Which of the following expressions is ob-
tained by applying Darcy's law to- this flow?
-(Q represents the discharge through the
pipe.)

Dzh
Q=-- K

a02
h1 h2

Q =-K ---- Ap

TGrn fa, 5rction:

12

26
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