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PREFACE

\

The series of manuals on techniques de-

scribes procedures for planning and executing
" specialized work in water-resources investi-

gations. The material is grouped under major .

subject headings called books and further
subdivided into sections and chapters; Sec-
_tion B of Book 3 is on ground-water tech-
niques. .

This chapter is an introduction to the
hydraulies of ground-water flow. With the
exception of a few discussions in standard
text format, the material is presented in pro-
gramed form. In this form, a short section
.involving one or two concepts is followed by
a question dealing with these concepts. If the

correct answer to this question is chosen, the -

reader is directed to a new section, in which
the theory is further developed or extended.
"If a wrong answer is chosen, the reader is
directed to a section’in which the earlier ma-
terial is reviewed, and the reasons why the
. answer is wrong are discussed; the reader is
then redirected to the earlier section, to
choose another answer to the question. T}us
- approach allows students who are either

partially familiar with the subject, or well '

prepared for its study, to proceed rapidly

through the material, ‘while those who require '

_ more explanation are provided it within the
seciiong that deal with erroneous answers.
In the preparation of any text, difficult
choices arise as to'the material to be included.
Because this text 'is an introduction to the
subject, the discussion has been restricted,
for the most part, to the flow of homogeneous
fluid through an isotropic and homogeneous
porous mediumi—~that is, through a medium
whose properties do not change from place to
place or with direztion. Emphasis has been
. placed upon theory rather than application.
" Basic principles of ground-water hydraulics
are outlined, their uses in developing equa-

tions of flow are demonstrated, representative
formal sclutions are considered, and methods
of approximate solution are described. At
some points, rigorous mathematical deriva-
tion is employed; elsewhere, the development
relies upon physical reasoning and plausibil-
ity argument.

The text has been pr epared on the assump-
tion that the reader has completed standard
courses in calculus and college physics.
Readers familiar with differential equations
will find the material easier to follow than
will readers who lack this advantage; and
readers familiar with vector theory’ Wlll'
notice that the materal could have been pre-
sented with greater economy ‘using vector -
notation.

The matérial is presented in eight parts.
Part I introduces some fundamental hydro-
logic concepts and definitions, such as poros-
ity. gpecific discharge, head, and pressure.
Part II discusses Darcy’s law for unidirec-

- 'tional flow; a text-format discussion at the

end of Part II deals with some generalizations
of Darcy’s law. Part IIT considers the applica-
tion of Darey’s law to some simple field prob-

‘lems. The concept of giround-water storage is

introduced in Part IV. A text-format discus-
sion at the beginning of Part V deals with
partial derivatives and their use in ground-

-‘water equations; the basic partial differential

equation -for unidirectional nonequilibrium.
flow is developed in the programed materiai:
of Part V. In Part VI, the partial differential
equation for radial confined flow is derived
and the “slug-test” solution, desecribing the
effects of an instantaneous injection of fluid
into a well, is presented and verified. A text-

" format dlscusm(}n at the end of Part VI out-

lines.the synthesis of additional solutions, in-
cluding the Theis equation, from the “slug-
test” solution. Part VII introduces the gen-
1
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eral concepts of finite-difference analysis, and
a text format discussion at the end of Part
VII outlines some widely used finite-difference
techniques. Part VIII is concerned with elec-
tric-analog techniques. The material in Part
V1is not prerequisite to that in Parts VII and

VIII; readers who prefer may proceed di- -

rectly from Part V to Part VII.

A program outline is presented in the table
of cpntenf:s of this report. This outline indi-
cates the correct-answer sequence through
each of the eight parts and describes briefly
the material presented in each correct-answer
section. Readers may find the cutline useful
in review or in locating discussions of par-
ticular topics, or may wish to consult it for
an overview of the order of presentation:

It is impossible, in this or any other form
of instruction, to ccver every facet of each
development, or to anticipate every difficulty
which a reader may experience, particularly
in a field such as ground water, where readers
may vary widely in expegience and mathe-
matical background. An additional difficulty
inherent in the programed text approach is
that some continuity may be lost in the proc-
ess of dividing the material into sections. For
all these_/ reasons, it is suggested that the
programed instruction presented here be used
in conjunction with cne or more of the stand-
ard references on ground-water hydraulics.

- This text is based on a set of notes used by

the -author in presenting the subject of

ground-water hydraulics- to engineers and
university students in Lahore, West Paki-
stan, while on assignment with the U.S,
Agency for International Development. fThe
A !

o
, A
|

-
£a
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material has been drawn from a number of
sources. The chapter by Ferris (1959) in_the
text by Wisler and Brater and that by Jacob
(1950) in “Engineering Hydraulies” were
both used extensively. Water-Supply Paper

-1536-E (1962) by Ferris, Knowles, Brown,

and Stallman was an important source, as was
the paper by Hubbert (1940), “The Theory of
Ground Water Motion.” The text “The Flow
of  Homogeneous Fluids through Porous
Media” by Muskat (1937) and Whe paper

"“Theoretical Investigation of the Motion of

Groynd Waters” by Sljchter (1899) were
both used as basic references. The develop-
ment of the Theis equation from the *slug-
test"” solution follows the derivation given in
the original reference by Theis (1935). The
material on analog models is drawn largely
from the book, ‘““Analog Simuiation,” by
Karplus (1958). In preparing the material on
numerical methods, use was made of the book,
“Finite-Difference Equations and Simula-
tions,” by Hildebrand (1968), and the paper
“Selected Digital Computer 'Techniques for.
Groundwater Resource Evaluation,” - by
Prickett and Lonnquist (1971). A number of

-additional references Mnfioned in the

text.

The author is indebted to Messrs. David W.
Greenman and Maurice J. Mundorff, both
formerly Project Advisors, U.S. Geological
Survey-U.S.A.1.D., Lahore, for their support
and encouragement during preparation of the
original notes from which this text was de-
veloped. The author is grateful to Patricia

“Bennett for her careful reading and typing

of the manuseript.
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'SYMBOLS

Dimensgions Erplanation Symbol Dimensions Erplanation
amperes electrical current 1 1°S/4Tt—argument of the
{coulombs/ . ) : well function|
second) - v L fluid volume
LT hydraulic conductivity v LT velocity
L intrinsic permeability W) well funetion
L length ' w L width
porosity = L elevation above datum

MLT= pressure B fraction of the total water in
T volumetric fluid discharge . storage that can be drained
LT specific discharge—discharge by gravity .

per unit face area of YV SRR A finite-djfference apploﬁuma—

aquifer, Q/4 ) tion to 9°h/ox*
ohms electrical resistance R L finite-difference approxima-
(volts/ - tion to .0°h/0y
_ampere) : € " coculomb electrical charge

storage coefficient u . MLT dynamic viscosity /
L specific storage : p ML Ruid density
: specific yield Pe ohm-metres elentrical resistivity

LzT“‘ transmissivity (transmissi- 4 mhos/metre electrical conductivity

bility) ' ¢ volts ~ voltage or elecirical potential

UNIT CONVERSION

Factor for converting
English units to .
international aystem

English ! of units Metric S1 ,
ft (foot) - 3.048 X107 m (metre)
gal (gallon) o 3.785 - © 1 (litye)
ft*/s (cubic foot per 2.832X10* m*/s (cubic metre per
second) " second)

PROGRAM OUTLINE

. This program outline is provided to assist the reader in review, and to
facilitate the location of particular topics or discussions in the text. Hope-
fully, it may also provide some feeling for the organization of the material
and the order of presentatlon, both of which tend to be obscured by the
programed format.
The section numbers in the left margin correspond to correct answers in
the programed instruction; they give the sequence of sections which will
be followed if no errors are made in answering the questlons An outline
of the content of each of the correct-answer sections is given to the right
of the section number. Two numbers are listed beneath each of these section
outlines. These numbers identify the wrong-answer sections for the ques-
tion presented in the outlined correct-answer section. The correct answer. -
to this question is indicated by the next entry in the left margin. I
The discussions written in standard text format are also outlined. For /
these discussions, page numbers corresponding to the llsted matenal are
given in parentheses in the left margin.
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PROGRAM QUTLINE

Part 1. Definitions and generai concepts:

Section:
1 porosity
13; 18
9 effective porosity; saturatlon
12; 29
6 porositj, oSaturation  (review); point

14

16

26

22

Part II.

“velocity

variations; tortuous path effects Co
4; 21

tortuous flow path effects (reviews; problems
in determining a<tual cross-sectional flow area;
relation of discharge per unit face area to flow
velocity ’

- 28;10

relation of discharge per unit face area to flow
velocity (review) ; definition of specific dis-
charge or specific Jux; deﬁnmon of head
11; 17

omission or velocity head in ground water; rela-
tion between pressure and helght of fluid col-
umn (Pascel’s law)
25; 19 N

Pascal’s law (review); head as poteniisl energy

per unit weight; clevation head as potential per
unit weight. due to elevation; dimensions of
pressure "
7; 15

pressure as a component of potential energy ‘per
"unit volume; pressure head as a component of

potential energy per unit weight; total poten-

tial energy per unit weight ( question)
20; 23
head as potentlal energy per unit weight (re-
view) ; total potential energy per unit volume
5; 27 '
total potential energy per unit volume (review)

Darcy’s law:

Section: ’ T

1

8

31

26

16

outline of approach~—method of balancing forces;
friction force proportional to velocity; pressure
force on face of a fluid element in a sand-
packed pipe (question) .
25; 16

relatlon between pressure and force; net pressure
force on a fluid element (questlon)
23; 12 .

net pressure force on ‘a fluid element (review);

pressure gradient; net pressure force in terms
of pressure gradient (questlon)
b; 14 :

net pressure force in terms of pressure gradient;
.gravitationzl force; mass of fluid element in
terms of densrty, porosity, and dimer -ions
. (question)
3; 17

gravitational force in terms of densﬂ:y, porosity,
and . dimensions; component of gravitational
4.

I3

35

11

19

20

28

‘21

force cqntributing to the flow (quesiion)
22; 18 ’

resolution of gravitational force into components
parallel and normal to the conduit; expressicn
for magnitude of component parallel to the
conduit (question)
6; 37

expression for component of gravitational force
parallel to conduit {review); substitution of
Az/Al for cosine in this expression (ques’uon)
32; 4

substitution of 3z/3l for cosine in expression for
gravity component along conduit (review) ; ‘ex-
pression for total driving force on fluid- ele-
ment_ attributable to pressure and gravity
(question) -
24; 10

dssumptions regarding frictional retarding force;

expression for frictional retarding force con-
sistent with assumptlons ‘{question)
2; 34 ’

balancing of driving forces and frictional force
to obtain preliminary form of Darcy’s law
36; 27 o

Darcy’s law in terms of hydrsuhc conductunty.
replacement of

1 db z
—_—— —
*pgdl dl
by dh/dl (question) . :

9; 30

discussion of hydraulic conductivity and intrinsic
permeability; flow- of ground water in rela-
tion to differences in elevation, pressure,.and
head (question)
29; 13

Darcy’s law as a differential equatlon analogies
with other physical systems
velocity potential

Text-format dlscusswn—-Generahzatlons of Darcy's

laW' .

(p. 31) specific discharge vector in three dimen-
sions; definition of components of 'spe--
cific-discharge vector

(p. 31) Darcy’s law for components of the spe-
cific-discharge’ vector; Darcy’s law us-
ing the resultant specific-discharge vector

(p. 31) velocity potential; flownet analysm Darcys
law for -components of the specific-dis-

_ charge vector in anisotropic media

(p. 32) flowlines and surfaces of equal head in the -

: anisotropic case; solution - by tram:for-

_ mation of coordinates

(p. 32)

4erial

. g

“ground-water

BN

amsotropy of stratified sedlmentary ma- |



VIII

(p- 33) use of components of pressure gradient

.- and components of gravitational force
in each of the three major permeability
directions; hydraulic conductivity teﬁsor

(p- 33) aquifer heterogeneity

(p- 33) fluid heterogeneity; Darcy’s law for a

heterogeneous fluid in an anisotropic
aquifer, using intrinsic permeability

& - ' Vi

" Part ITI. Application of Darcy’s law to field problems:
Se'ctlon:

1 differential equations and solutions
15; 23 .
7 infinite humber of solutions to a d:ﬁ'erentnal equa-
° tion
&+ 29:14
8 slope-intercept concept applied to solutions of dif-
ferential equations .
b; 20

10 application of Darcy’s law to one-dimensional

equilibrium stream seepage probleﬁl: selection
. of particular solution to satisfy the differential
equation and to yield correct head at the stream
(question)
22; 36
24 boundary conditions in differential equ‘atwns n-
" terpretation of head data observed in a field
. situation (question)
42; 21 _
25 " application of Darcy’s law to a problem of one-
© 777 dimensional steady-state unconfined flow, using
Dupuit assumptions
26; 43
9 substitution of

for

in the unconfined flow problem; .testing for
solution by differentiation and substitution of
boundary conditions (question) -

16; 4

41 parabolic steepemng of head plot in the Dupuit

solution ; ‘problem of radial flow to a well; cross-

sectional area™of ﬂow at a distance r from the
well (question) ! ; ;
12; 6 b ' -

27 decrease in area along path of radial flow; relation
between decreasmg area and hydraulic gradlent
(question)

11; 32~

40 signs in’ radiai flow problem, application of
Darcy s law to the flow problem (questwn)

33; 17

ERIC

Aruitoxt provided by Eic:
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35 expression of radial flow differential equation m
.terms of T
’ dh

d(Inr)

-

39;13
2 interpretation of radial flow differential equation
expressed in terms of
dh

é(Inr)

18; 31

38 interpretation of radial flow differential equation
(review) ; solution equation as taken’ from a
plot of h versus In'r ; conversion to common
logs; characteristics of the semilog plot
34; 37

19 logarithmic cone of depressxon.
drawdown at the well (question)
28; 30

3 apphcatwns of the drawdo% equation ;, general

characteristics of well-flow problems

equation

Pag_IV Ground-water storage:

Sectton

1 relation between volume’ of water stpred in a
tank and water level in the tank
16; 9 ’

11 relation between volume of water storéd in a
sand-packed tank and water level in the tank
31; 12 -

14 slope of V versus h graph for sand- packed tank
17,22

26 -capillary effects; assumption that a- consmnt
amount of water is permanently retained; re-
lation between volume of water in recoverable
storage and water level, under these conditions
(question) . .
18; 2 : ’ -

16 slope of V versus h graph for sand-packed tank

. with permanent caplllary retention. -

4;29 °

33 slope of V versus k graph for pnsm of uncon-
fined aqujfer
28; 19

‘32 dependence of V, A relatlonshxp on surface area,

A ; definition of specxﬁc yield (question)
T 27 /
6 confined or compressive stomge V,.k relations}up

fora prismina conﬁned aquifer
23; 30

21 dependence of V, R plot for a prlsm of conﬂned
aquifer on base area - ;
3; 34. :

20 definition of confined or cumpressive storage co-

efficient; specific atorag'e , ~
5; 16 i o, .

for

A
i
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25 stoFage equation—relation between time rate of

change of volume of water in storage and time
rate of change of head
8; 24

13 relation between time rate of change of vo]ume

in storage and time rate of change of head (re-

view)

-

PartV: <
fI'e‘:t -format dxscussxon~l’artla] Den‘ atn es ip
. Ground-Water-Flow Analysis:

(p. 69) Partial. derivatives; topographic map ex-
ample )

(p. 70) -Calculation of partial (space) derivatives

(p. 70) Partial derivative with respect to time

(p. 70) Space derivatives as components of_slope
of the potentiometric surface; depend-
ence on position and time; time deriva-
tive as slope of hydrograph; dependence
on position and time

{p. 72) Vector formulatlon of the speclﬁc dis-

charge; Darcy’s law for components of

- : the specific discharge vector

Unidirectional nonequilibrium flow:

" Section:
1 relation bgtween inflow and outflow for a tank
29; 17 ’

:21' equation of continuity; -relation of 9h/2t for a

prism of aquifer to difference between infiow
and outflow (question)
.6;5 . )
30 combination of continuity and storage equation to
obtain relation between 2h/9t and inflow minus

- outflow (review); expression for inflow
- through one face of a prism of aquifer (ques- :
tion)
8;3

22. lmpllcatlons of difference between mﬂow and out-
flow in a prism of aquifer (question)
14; 26 -

33 expression for inflow minus outflow; for one di-
mensiongl flow, in terms of difference in head
gradients (question)

18; 15 g

9 change in a dependent variable e¢xpressed as a
product of derivative and chang‘e in independent
variable (question) T,
25; 20 -

18 change in a ‘dependent variablg” as product of

derivative and change in independent variable

(review) ; change in derivative as product of

second derivative and change in independent
# variable (question)

31; 18

-7 .second derivatives and second partlal derivatives;

expression for change in 2k/2z in terms of
second derivative (question)
4; 23

32 expression for change in ?k/2z in terms of second -

derivative (review); expression for inflow

“minus outfiow using second derivative (ques-
tion) ‘ :

27,2 . 3

34 definition of transmissivity; expression for inflow
minus outflow for one dimensional flow through
a prism of aquifer, in terms of T and 2%h/2z%;
eduating of this inflow minus outflow to rate
of accumulation; expressiofi for rate of accu-
mulation in terms of storage coefficient (ques-
tion)
. 28; 12 -
10 equating of rate of accumulation, expressed in
terms of storage coefficient, to the expression
for inflow minus outflow, to obtain the partial -
differential equation -for one-dimensional non-
equilibrium flow (question)
11; 24
19 partial differential equation for two-dlmensxonal
: nonequilibriura flow; partial differential equa-
tions and their solutions; review of method of
deriving partial dlfferentlal equations of ground
water flow

\,
Part VI
Secetion:

z expresswn or flow through inner face of cylindri-

" ~cal'elemgnt (question) . : -

34; 36 :

15 combination of » and ahlar into a single variable;
expressipn for inflow minus outflow for cylm-
drical elpment

Nonecjui]ibriﬁm ﬂow-‘to a well:

30; 25+ ]
7 use of o '
o oh
)
’ or
—_——— Ay
N o ]
in place of

(21— (2

expression for

(3)

ol r —

or/

oor
26; 8 . -

28 final expression for mﬂow minus - outflow. for
cylindrical elemént; expression for rate of ac-
cumulation in storage in the element (question)
12; 16 - : /

(37 combination of inflow minus outflow term thh
rate of accumulation' term to obtain partml
differential equation

. 22;32 -

27 procedure of testing a- functwn to determme
~-whether it is a solution to the partial differesn-
7 tial equation; calculation of first radial deriva-
tion of test fnnctlon
4 2

10 R
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5 caiculation of second radial derivation of test

function
23;9
35 calculation of time derivation of test function
3; 31
20 expressions for .
S 2 T
— — ——
T ¢t
and
oh 1 ok
or ¥ or
for test functicn
17; 24

21 verification that test function is a solution; in-
stantaneous injection (slug test) problem; de-

velopment of boundary conditions required at

t=0
10; 19 : It

18 verification that test function satisfies the bound-

ary conditions for ¢ = 0; graphical demonstra-
tion of its behaviour as ¢ > 0; development of
boundary condition for r > oo C-e

29; 6 ]

33 relation between condition that (2h/2r)>0 as
r>« and condition that Ah->0asr > =;
-demonstration that test function also satisfies
h>0ast - 203 development of condition

V= /°° S-hos2mrar |
r=

11; 14

A13 demopstration that the test function satisfies

V= / o S-hev2mrdr;

L=
~ discussion of s:gmﬁcance of slug test so]utxon

Text- format dxscussxon—-Development of additional

solutions by superposition: |

Linearity of radial equation; superposi-
tion; equation for head at t due to in-
jection at t'=0

superposition ‘f,’obtam effect of two in-
jections .~ .

expression for head change due to ‘in-
stantaneous withdrawal; superposition
to obtain-effect of repeated bailing

variable rate of continuous pumping as a
sequence of infinitesimal withdrawals;
effect of withdrawal during an ipfinitesi-
mal time dt’; use of superposition to ob-
tain head change due to pumping dur-
ing a finite time interval

(p. 113)

11

(.

(p.

(p-

(p.

(p.

(p.

(p.

(p.

114)

115)

116)

116)

117)

117)

117)

118)

s

Part VI

Section: '

implementation of superposition by in-
tegration of the expression for head
change due to instantaneous withdrawal,
for case of variable- pumping rate

transformation of integral into exponen-

tial integral, for case of constant pump-,

ing rate

definition of u; evaluation of the exponen- »

tial integral by means of series
definition of well function; equation for
case where h %0 prior to pumping;
equation in terms of drawdown; Theis
‘equation .
development of the medified nonequxh-
brium (semilog approximation) formula

review of assumptions involved in de-
rivation of the partial differential equa-
tion for radjal flow

review of assumption involved in the in-
stantaneous injection solution and in
the continuous pumpage (constant rate)
solution T

review of assumptions involved in the
semilog approximation; citations of
literature on extensions. of well-flow
theory for more complex systems

Finite-difference methods:

e

1 ﬁmte-dxfferenée expression for first space deri-
vative (questxon) . ;
7; 26 : :

12

15

fini

ifference expression for second space deri-

vative (question) {
27; 22

finite-difference expression for

, ok o*h
ox? oy*
(question)
28; 24

finite-d:fference expression for

(review) ;

oh 2k
— + —
az’ ay'

i

notation conventlon for head ata node
14; 6

t

expression for

oh | o
o | oy

’a
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using subscript notation.convention
20; 18

4 third subscript conventlon for time axis

10

9; 23 R

expression for

. ) 1,
at a particular point and time using the sub-

_seript notation; approximations to 9h/2t; finite

forward-difference approximation to the ground
water flow equation, using the subscrlpt ncta-
tion (question)

8; 19 i

N R !
16 application of forward-difference equativn in pre-

dicting head values; iterative (relaxation} tech-
niques (deﬁmtwn), finite-difference equatlon
for steady—sta:e t“o-dlmenswnal flow (ques~

tion) . \
11;13 \
25 salution of the steady-state equation by iteration
21; 6 - ) I
\

17 general discussion of numerical methods

Text-format discussion—Finite difference methods:

(p.
“(p-
(p-
(p-
(p-
(p-
(-
{p.
(p-
(p.

(p-
{p.

136)

137)

137)

138)

139)
139)

139)

140)
140)

141)

141)

144)

Forward-difference and backward differ-

ence approximations to time derivative
of - the
explicit

simulation
‘equation;

Fofvaard-difference
ground-water flow
method of solution

Errors; stable and unstable techiniques

" of the

Backward-diﬂ'erénce simulation

ground-water -flow equation; simul-

taneous equation sets
Solution by iteration or relaxation tech-

niques \
Solution of the steady- state equatmn by
iteration

Solution of the nonequlhbrlum equatwn
backwa.rd—dlﬂ'erence simulation, by itera-
tion +

Iteration levels; superscript '~ notation;
iteration parameter

Successive overrelaxation; alternating di-
, rection techniques

Forward-difference and backward-differ-

ence simulations ‘of the ground-water .

ﬂow equation uiing A notation
A]ternatmg direction implicit procedure

Thomas algonthm for solution of equa-
tion sets along rows or columns

.
(p. 147)

(p. 149)

Iteration of the steady-state equation us-
ing alternating  direction method of
calculation . S

Iterative solution using the backward-
difference simulation and_the alternat-
ing direction tethmique -of- compiyf tion

" Part VIII. Analog techniques:

Section:

1

6

28

26

\

11

21

22

6

12

Ohms law; deﬁmtwns of current and resistance
19; 8 d

definitions of resistivity and conductivity; Ohm’s
law in terms of resxsth.y
24; 3

Ohm's law in terms of "onductxvxty, analogy be-
tween Ohm’s law and Darecy’s law for one-di- -
mensional flow
12; 7

aralogy between Darcys law and Ohms law
for one- imensional flow; extension to three
dimensions; current density; ﬂow of charge
in a conducting sheet -
25; 23 | )

analogy between flow of charge in a conductmg
sheet and flow of water thmugh a horizontal
aquifer; method of settmg up a steady-st,ate
analog: parallel between line of ccngtant volt-’
age and line of constant head (questwn)
16; 17 5

nonequxhbnum modeling; storage of charge in ,u
capacitor, and analogy to storage of ground
water; capacitor equations
13; 16 -

- relation between timie rate of change of voltage

and time rate of d¢ccumulation of ‘charge for a
capacitor; relation \between current toward a
capacitor plate and tlme rate of change of volt-
age
20; 18

relation between time rate of change of VOltage
and time rate of accumu]ation of charge foi a

ﬂ:a\pacxtor (review); electrical continuity relb\
tion; relation between currents and time rate™
of change of capacitor voltage, ‘\for a system of
four resistors connected to a cnpac:tor, trans-
formrtxon of thiz relation to an equation in
terms of voltages and d9./dt (questwn)
15; 27 )

analogy between equation for capacltor-—-four Te-
sistor system with finite-difference form of
two-di sional ground-water flow eéquationi ~
method of nonequilibrium modeling
2;14 .

‘general discussior . of the analog technique;
heterogenexty, cross-sectlonal analogw; radial
flow analogs

/
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INTRODUCTION TO GROUND-WATER HYDRAUU"S—-A PROGRAME"
, TEXT FOR SELF- INF B

By Gordon .

..\ - D ,.‘_\.

. This programed text is designed .to help

'v-"..l-?you learn. the theory of ground-water. hy-

' draulies through self-stiidy. Programed in-
struction is -an approach to a subject, a

method of learning; it does not eliminate

Kmental effort from the learning proc&es'
"Some sections of this program need only be

‘read; others must be worked through w1th )

penc11 and'paper. Some of the questions can
be answered directly; others require some

form of calculation;pYou may have frequent -

occasion, as you. work through the text, o
consult standard texts or references ‘in

mathematics, fluid mechanics, and hydrology.
. In each of the eight parts of the text, begin

the programed instruction by reading Section
1. Choose an’ answer -to the. question at the
end of the sectlon, and turh to the new sec--

Instrucfiohs/to”the _Reade‘r,

. this way through the p
_reach a section indicating’ _
- Note that althoug-h the sections are arranged

<
\

tion 1nd1cated beside the /answer you have

- chosen. If your answer was correct, you will
‘turn to a section containing new

terial
and another question, and you may roceed
again as in Section 1. If your answer was not
correct, you will turn to a section which con-

u‘to go back

for ‘another try at the questi UsualL in-

/

-tains some further explanation. of the earlier. ,
" material, and which directs '

this event, it will bé worthwhile to reres’ 'the .

material of the’ earlier segtion.. Continue_in

in numerlcal order within each of the eight
parts, you would “not. normally proceed in
numerical sequence (Section 1 to. Sectlon 2

‘and‘so on) through the. instruction. A

2 . 4 i

J

3

H




Part 1.

: ",.
!

In Part I, certain concepts which are fre-

I n’rroduchon

quently used in ground-water hydraulics are

Definitions ant General Concepts ..

.
i

l.re‘lhtmg to these terms is not attempted. The

material is intended only to introduce and

volume of the specxmen

\e

/ QUESTION .

9.8 cubic feet

What volume of solid méterlal is present.

in 1 cubic foot of sandstone, if the ppr051ty

'of the sandstone is 0. 20'7 '

-introduced. Among these are porosity, spe- “define the . terms ' 19 provide an 1nd1ca-
- cific discharge, hydraulic head, and fluid tion of their physic:. sxgnlﬁcance ’
pressure. Rigorous development of theorems ° . :
- — \ .
The-po osity of a specxmen of porous: ma—._ . - ] Turn to Section:|
terial is deéfined as the ratio of the vold 0.5 -cubic feet / o180
‘open pore space in the specimen to th, bulk 0.2 cubic feet - / .

4

1.

. Nowhere in Part I is there an instruction
to turn to Section 2. Perhaps you have Just

. read Sectlon 1 ahd have turned to Sectlon 2
*without considering the question -in Seetion

1. If so, return to Section 1, choose an answer

LIRS

.

to the questlon, and turn to the sectlon indi-
cated opposute the answer you select. -

l
|

Your answer in Section 6 is correct. Any

ﬂow path between A and B will be longer -

than the linear distance AB; it is generally

. “impossible to know the actual distance that
" a particle of fluid travels in moving through

a section of ‘porous material. -
In the sa,me way, it is difficult, to know the-
actual cross-sectional area of the’ flow, when

a-problem may arise 1f we attempt to deﬁne
average fluid velomty as.a ratio of discharge

" to cross-sectional area; as is customarlly done .

AT R WitH oW T & poroas tiedfonr=Any==

cross-sectional area selected -will be occupied

‘partly by grains of solid'r_ﬁaterial_aﬁnd- partly

' by pores containing the fluid. For this reasoxn,

L . ./

.425; .
-/

in open-flow hydrauhcs

9 .




4 ' _ TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

o

i ) QUESTION :

In the block of saturated porous material in
the figure, a fluid discharge, Q, is crossing
the area, A, at right angles. A represents the

. gross area .of the block face, inciuding both

solid particles and fluid-filled pore space. The
quotient @/A4 would be:

. . . Turn to Section:
less than 14
equal to . BN ‘ » 28
greater than oo 10

| the average velocity of the fluid partic]os _

i

connected by a stralght caplllary tube, but
the probability. of such a connection is essen- .
tially zero .in .a' normal porous medium. In’
general, the possible paths of flow between -

' any two points will be tortuous in character

Return to Section 6 and select another
amwer .

e

‘=

\
. g \
. {
. |
!
3o —Con. 5
Your answer in Section 6 i+ .t co
- The particle-would move a distar.  ~r :
", thelinear interval AB if the two poiu. were -
. - : -? ) ’ -‘ = - 15
4 ° , "
= Your answer in Section 22 is not correct.

Pressure does vepresént potential ener gy per.

.unit vo]u;;ne due. to the forces transmitted

-“.. [
/50

E

through the surrounamg fluid, but z repre-.
sents potent1a1 energy per umt/wétqht due
to elevatlon The qu&stlon asked for total
Return fo Sectxon 22 . and select another ‘
answer. i

<

-

Your, answer in Section 9 is correct. Thirty
. Dpercent of the-intérconnected”pore space in

-a porous medium whose effective porosity is -
- 0.20 is 6 percent of the bulk volume, or 0.06

/ cubic feet. In the remainder of this program,
. fylly saturated conditions will be assumed

filess unsaturated flow is specifically men- -

. tioned.
Variation in the flow" velocity of an indi-
~vidual fluid partlcle -is 1nherent in the nature

., dividual pore, boundary resnstance causes the
veloc1ty to decr(?ase from a maximum along

: 1

" the center]me to essentlally zero a,t the pore :
wall. Another-form of velocify variation is .
imposed by the tortuous. character of the
flow—that is, the repeated branchmg and
reconnectmg of flow paths, as the partlcles
of fluid make their way around the individual -
grains of sglid. This anastomlzmg or-braided .
pattern causes the velocity of a fluid particle .
:to'vary from pomt to point in both ‘magritude
and direction, even if its motion occurs along -

0L flow.th. roughvporous«med m-«thh m-annmw-»—-»theventerhnefoﬁhe-pore*space**ﬁuwever' £9 S

we view a small segment of the medium but
one which is still large enough to contain a
agreat number of pores, we find -that the
mlcroscoplc components of motion cancel in
all. except one resu]ta.nt d1rect10n of flow”
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l PART L

JUESTION
In the porous block in the figure, a particle-
of fluid moving from point 4 to point B

would travel a distance:

Turn. to Section:

greater than the linear distance AB - 3
equal to the linear distance AB 4
less than the linear distance AB- 21

DEFINITIONS AND GENERAL CONCEPTS

‘Your answer in Section 16 is not cor-
‘rect. If we were considering .the height of
a static column of water above a point;
which as we have seen is given by p/pg,
we would be dealing with dimencions of
potential energy per unit » = V' yues- .-
tion in Section 16, I the
_-umts of pressure alone. iucse units are force "«
-.per unit area—for example, pounds of force
_.per._squerefootof_a.rea, which can be wrl_tten‘

,/‘//<’l . ’ \

. in the form pounds/ft:. Now we may “multi-

piy” these units by the term ft/ft to obtaln
an eqmvalent set of units apphcable to pres—
sure.

Return to Section 16. and choose another

answer.

-

: . o ®

72

‘"* Your answer, P+ pgz, in“Section 22 is cor-
‘rect. We have seen that pressure is equivalent
. to potential energy per unit volume attrib-
- utable to forces transmitted through the sur-

Trounding fluid. Potential energy per unit vol-
ume due to elevation Bt} obtamed by multiply- .
ing the potential energy per unit weight due
to elevation—that is, z—by the weight per
unit volume; pg. The total potential energv

\ per unit volume is then-iTe sum of these two

terms, that is, p+pgz-

) No discussion of -lovr energy. would be
‘complete without metrziza of kinetic energy.
In the mechanics of so& particles, the kinetic
energy, KE, of a ma:s, m, meving. with a
veloc1ty v. is 'given by

R " KE=mv*/2.

" Now suppose we are dealing with a.fluid
of. mass denslty p. We wish to know the
kinetic. energy of ‘'a volume V of this fluid
which is movmg at a velocity v. The mass of
the volume 1s pV and Lhe kmetlc energy is

"a,s the klrktlc energy per unit volume of fluid;

.and dividing this in turn by the weight per
unit volume, pg, ‘gives-v*/2g9 as the kinetic
_energy per unit welght of fluid. Each of these
“‘kinetic energy expressions is proportional to.

-the square of the velocity. The velocities of
flow in ‘ground-water meovement are almost
always extremely low # ad therefore the
kinetic energy terms extremely small
compared to the potent' ~ 1ergy terms. Con-
sequently, in dealing th g'round-w:ater

problems we can generaxil, neglect the kinetic ~
energy altogether and tak: tnto account only. -

the potential energy of + e mystem and the
losses in potential energy 1eto frietion. This
is an 1mportant respéct in which ground-
water hydraulics dlffers from the hydrauhcs
of open flow. :

This discussion concludes Part 1. In Part IT
we will consider Darcy’s law, which relates
the specific \dlscharge q, to the gradient of
hydraullc head, in flow th*oug'h porous media.

N

thus

‘V’vvr Rl

If we d1v1de by the v&hﬂne v, we obtam

ok

‘;.

G



e )
= —

1
N

I

TTTpercentage ol the sampi:

|

6 ' TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

- v /
v

[ ra

)‘ Your answer in Section 1 is correct; if 0.20
of the cube is occupied by pore space, 0.80 of
its volume must be solid matier. In ground-
water studies we are normally interested in
f the interconnected, or effective, porosity,
il which is the ratio of the volume of intercon-
{ nected pore space—excluding completely iso-
lated ‘pores—to the bulk volume. As used in

‘this text the term “porosity” will always -

refer to the interconnected or effective poros-
ity. Ground water is said to occur under sat-
urated conditions. when all interconnected
‘pore space is completely filled with -water,

9.

i

and 1t occurs under unsaturated cond1t10ns
when part of the pores contain water and
part contain ajr. In problems of unsaturated
flow, the degree of saturation is often ex-

‘Pressed as a percentage of the mterconnected :

pore space.
QUESTION

What volume of water is contained in 1
cubic foot of porous faterial, if the effective

porosity is 0.20 and saturation expressed as

a percentage of the 1nterconnected pore space
is 30 perrcent? : '
Turn to Section:

0.30 cubic feet - - 12
0,06 cubic feet = ' 6
020 cubjc feet - 29

3

Your answer in Section 3 is not correct.
The area A represents the gross cross-sec-

direction of flow. A part of this arez is occu-
'p1ed. b.y_vgrarns of solid, and ‘a part by open
. pore space. Let us say that 20 percent of the

‘tional area of the’porous block, normal to the -

‘cross-Sectional area available for- the flow is

thus 0.2 A. If we were w1111ng to take the
ratio of dischargeto flow area as dqual to the
average velocity, *without eonsidering any
other actor, we would have to use the ratio
Q/0.2A. The actual average particle velocity -
would presumably exceed even this figure,
because of" the excess distance traveled in
tortuous flow.

Return ‘to Sectlon 3. and choose anctiter
answer. &

3

13

l:.“a_rea "A represents po~~ space: tha actual
1 0.
- Your answer in Section I4 :: not correct.

The column of water in “fze plezometer is
statie, but k, is the elevagion of the top of
tixis column above the point of measurement,

0 (h,is sometlmes referred to as the pressure
head at point 0). We {have defined head. as the
elevation above datum of ‘the top of 2 static
column of water that can -be supported at:
the point. e

Return to Sectlon 14 and choose another
answer. :

Your answer in Section 9 is mot correct.

‘Saturation is expressed s

as & dercentage®
of the interconnected poste space. not as a

/ n

) .30 percent of the ;nterconnected pore space

is' occupied by wmater. Slnce the effective

porosity was giver: as 0.20, and the sample_ »

"mem# ’

2.

that 1s,

volume as 1 cubic zoof, the volume. of 1nter-
connected pore spage is 0.20 cubic feet. .
Return to Section 9 and choose another

8

——

17

anSWer L. .
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“PART L

@ - ' : S .
DEFINITIONS AND GENERAL CONCEPTS T

Your answer in Section 1 is not correct.
Porosity is defined by the equation"

the volume of solid material

the gross volume of the specl-.

" question in Sectlon 1 asked for the volmne of

solid material, V,, in a specimen for which
the gross volume, Vg, is1 cublc foot and the
porosity, n, is 0.20.

Return to Sectlon 1 and choose “another

13.

.answi er

" Your answer in Section 3 is correct. Q/A

will be less than the average veloclty of fluid .

motlon since the gross cross-sectional area,
A, will be greater than the aetual cross-

- sectional area, of flow. In\many porous media,

the ratio of actual area of flow to gross cross-
sectional area 'can be taken ‘as equal to the
interconnected porosity of e material.

. We ‘have -seen that it is generally difficult
or impossible to know or measure the actuay
velocity of fluid motion or the actual cross-
sectional .area of flow in a porous medium.
For this reason, we usually work in- terms of
discharge and gross cross-sectional area.
That is, we use the quantity Q/A, where Q

is the discharge through a segment of porous = °

material, 'and A is the gross cross-sectional

area of the segment. This quantity is referred

to as the specific discharge, or. speclﬁc flux,
d.ﬂd is designated by the symbol ¢.

Another quantity we will: use frequently
is the static head, or simply the head. In

ground-water problems, the head at a point
is taken as the.elevation, above an arbitrary .

datum, of the top of a static column of water

‘that can be. supported above the point. In
.ufing this definition, we assume that the

What is the head at point 0?

=

Piezometer — Watér level

A { _ Datum—— B

" QUESTION

The dlagra.m represents an enclosed porous
filter bed; the plane AB is taken as the datum-
and a piezometer is ‘inserted to _the point 0.

" Tura to Section:

density of the water’ in the measuring column  The distance &, | oo -1
“is equal to that of the ground water, and that  The distance z " ¢ ; 17
“’"the*denmty—ofﬁhergmund.nmterds-umﬁomwm.dlﬁiﬁme hotz } 24

_.18_.
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P

Your answer in Sectjpr—i%
Pressure is LlSLlag'/enfpressecl as force per
unit-area—fsr'example, as pounds per square
foot, ich may be written pounds/ft:. A

/tefm having units of work or erergy per tnit
- area, such as ft-pounds/ft?, would represent | “

5.

the product of pressure and a term having

units of distance, feet. We are interested here

in an equivalent set of units for pressure
alone. Now note that if a pressure term were
multiplied by & dimensionless factor having
units” of ft/ft, we would obtain a result still
having the units of pressure.

~ Return to Sectjon 16 and select another
answer. :

 Your answer, p/pg, in Section 24 is corréct
- The column of water inside the pipe is sta ic
‘and must obey the laws of hydrost ies. Thus
the pressure at the bottom of the pipe |is
related to the height of the column of water
in the pipe by Pascal’s law, which here takes
the form .
[ . : p=rgh,

_or . . =

h,=p/eg
I, thus actually serves as a measure of the
pressure at the point occupied by the end of
the pipe and. for this reason, is termed the
pressure head at that point. It is added to the
elevation- of the point to yield the head at
the point.

Head in ground water is actually a meas-
ure of the potential energy per unit welght

"of water. This is an important concept.

The elevation term, z, in the diagram rep-
resents the potential energy of a unit weight
of water at point 0 tHat accrues from Uﬁe

" position of the point above the datum. For
example, if z7is 10 feet 10 pounds of water
in"the viecinity of pomt 0 could accomplish:
100 foot-pounds of work in falling to the
datum; the potential energy per unit weight

-of water at point 0 due’to the elevation of
the point alone would thus be 10 feet. Sim-
ilarly, theé pressure term, h,, represents the
potentla] energy of a ynit ‘weight of water at

point 0 originating from the forces exerted -

~ on the point through the surrounding fluid. *

Water level
. 1 in piezometer

Piezometer —|

AN

P~

I,

- Datum

(Point 0 represents a general paint
' Ein a fluid system)

: QUESTION
Pressure is normally thought of as force

per unit area. Dlmensmn:ully this is equiva- .

This concept is considered further in the. Jgnt to:
following. sections N Jorn-fo=Sectionr
! Y . . )

energy per unit weight - 7

1 60 epergy per unit volume 26
®. work per unit area - . ‘ 15 .
0 . >

L= N

19



PART L.

DEFINITIONS AND GENERAL CONCEPTS 9

Your answer in SeLtlon 14 is not correct.
zis the elevation ‘of the point above the
datum; we defined head as. the elevation,
above datum, of the top of a static column of

' water that can be supported at the point. The
column of water in the piezometer is static

when condltlons in the- porous -medium are
at equilibrium. ‘ .
Return to section 14 and choose another

answer. .
17.

Your answer in- Section 1 is not correct.
If the porosity is 0.20, there will be 0.20 cubic’

foot of pore space in a specimen of l-cuhic-
7 ot volunie. The auestion asked for the vol-
ame of solid mraterial in the specimen.

Return to Section 1 and choose another

answer.
- 18.

. Your answer in Section 24 is not correct.
The column of water inside the pipe’is static
and must obey the laws of hydrostatlcs The
pressure at a depth d beneath the water sur-
face, in a body of static water, is given by
Pascal's law as

p=rgd
where again p is the mass density of, the
_water, ¢ is the acceleration due to"gravitr,
and the pressure at the water surface is
taken as zero. This relatlon ‘may be applled

i

to the water inside the pipe in the. question
of Section 24. If you are not familiar with
Pascal’s law it would be useful to read -
'through a discussion of hydrostatlcs, as given
in any standard physics text, before pro—
ceeding further in the program.

Return to Sectlon 24 and choose another
answer _ ) .

.19,

14

Your answer in Section 26 is not correct,
Potentlal energy is a scalar term; when it
consists of cor\1tr1butxons from different
SOUl‘CeS, these ard simply added to obfaln the
total potentlal er\lergy The potential energy
of the unit weight of water due to its eleva-

tlon is z, while that due to the forces exerted
on it through the surrounding water is k.

Return to Section 26 and choose another
answer.

{
M

Your answer in Section 6 is not correct.
weeshetineedr Bt ~of~oounsetha~shortest.dis:
. tance between the two points, and no flow
math could be any sho r .than this.

i,

“Return to Section 6 and select another

answer, .
i i
21 .0/
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Your answer in Section 26 is correct. The -
unit weight of water has hydraulic potential
energy due to its elevation and due to the-
forces exerted on it by the surrounding fluid.
The potential energy due to its elevation is

z, and the potential energy due to the forces -

exerted on it through the surrounding’ fluid
is p/pg or k,. The sum of z and A, is of course
the head h, (as used in ground-water hy-
uraulies) at the point in question. The two
terms making up’ the-head at a point—the.
elevation of the point itself above datum and
the elevation: of the top of a static column of
water that can be;- supported above the
point—measure respectlvely the two forms
of hydraulic potential energy - per unit

wefght. Their sum indicates ‘the total hy-

drdulic potential energy pef umt welght of
fluid at the pomt :

. QUESTION _
Which of the following expressions would

indicate total hydraulic potential energy of '
a unit wolume of fluid i in the v1cm1ty of pomt

A in the dmg’ram"

-

/

- Water level
in piezometer

~zometer -

t Plog
AL J
,,/ I
//
I -~ Datum
’ at <

’ ' Turr to Section:
P+pgz . - o 8
p+z ' B

» //[‘g +2z ) 27

. ‘-
Your answer in Section 26 is not/correct
z represents the potential energy ﬂ)f a unit.
;Welght of water in the vicinity of pomt 0, due
“to its e]evatlon above the datum A ‘unit

2.

. welght of water 1n thls V1C1n1ty will also
"'possess potential energy because of the forces
" exerted upon it through the surrounding
. water. The question asked for total hydraulic .
: potentlal energy. '

Return to Section 26- and select another-‘ ‘
'answer

. Your answer'in Section 14 is correct. Head -
consists of two terms in ground-water sys- .
tems: the_elevation of the point itself sbove

water that can be supported above ﬁhe point.
In this case, the column of . water in the,
plezometer 1s s _the sbatlc column above ther

datum, and.the height of a static column of

24.—con.

point.

The height of the column.of water above -
the point is & neeasure of therpressure at the
pomt and is sometlmes termed the pressure

.
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PART L

head. Readers familiar with open flow hy-

DEFINITIONS AND GENERAL CONCEPTS

draulics may recognize that the head we have '

deﬁned here differs from-the total he ' neen
in open flow hydraulics'in thz !
term, v*/2g, is missing. Velocitic:
usually small in ground-water syste .;, .ad
the term v*/2g is almost always negligible in
comparison to the. elevation and pressure
terms. :

[H

_ - QUESTION
Suppose a plpe, open only at the: top and
_bottom, is driven into the ground. The bottom
of the pipe comes to rest at a point below the
water table where the preasure is p. Water
‘'rises inside the pipe to a height %, above the
7 . . I

© !
b

A [

»

lower end of the pipe. The pressure on the
water surface within the pipe (which is
atually the  atmos ‘ic pressure) s here
taken as zero. The ht of the ¢ -lumr of
water inside the pi’ < the bottom of tiie .
sipa, will be given Ly .

Turn to Section:

hy=p/pg 18
lp=9/pD 25
hy=Dpg9 19

- where p is é‘.he water density, or mass per unit
volume, and ¢ is the gravitational constant.

Co_n.—-—- 24. |

/

.
A

Your answer in Section 24 is not correct.:

Pressure within a body of static water varies
. in accordance with Pascal’s law, whlch may
~ be stated

p=rgd

where  is the mass density of water, g is the
-acceleration due to gravity, and d is the depth

below the surface at which the pressure is

measured. The pressure on the upper surface

of ‘the water (sométimes dehoted p, in text-

books of hydraulics) is here considered to be

zero. If you are not familiar with this rela-

tion, it \vould be a ‘good 1dea to read through

a discussion of hydrostatics, as presented in
any standard physics text, before‘proceeding
further with the: program. .

In the problem of Section 24, the column
of water in the pipe is static, and Pascal’s
law may be used to give the pressure at any
point within this column—even at its base,
where it joins’the ground-water system.

Return to Section 24 and choose another
‘answer.

Your answer in Section 16 is correct, Pres-
sure may in fact be thought. of as potent1al
energy-per unit volume of hqmd Physically,
this c(mcept is perhaps most easily appre-
‘¢iated using. the example of a simple hy-

\draullc cyhnder;, or hydraulic press, shown
' schematlcally in the diagram. Liquid under
.a pressure p is fed in through the port at 0.
As the liquid enters, the pistonsis displaced
uke-of-force

~
~

Liquid under
pressure

~

- per unit area, and it follows that the total
force on the piston is given by the product
of the pressure, p, and the face area of the

N"‘. .
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piston, which we designate A. Thus, F= p><A
. Where F is-the force on the piston.

The work accomplished in- moving the
plston is given as the product of the force
and the distance through which it acts. If the
piston movies a distance d, the work done is
given by

W=Fxd~ =pXA ><d ,
where ‘W is the work accomplished in moving
the piston. The product 4 xd. is the volume
of fluid in the cylinder at the completion of
the work:.and we could say that this volume
of liquid is capable of doing the work W,
provided the liquid is at the pressure p.

Potential energy is often termed the ability
to do work. That is, if a system is capable of
doing 10 foot-pounds of work we. 8ay that it
possesses -a potential energy of 10 foot- -
pounds. In the case of our cylinder, the poten-

© tial energy we assign depends upon how far.
we are W1Ihng to let the piston travel. If the
piston is allowed to travel a distance d=5,
the work that can be done isspX5A4; if the
. plston is allowed to travel a distance d= 10, -
~the work that can be-.done is pX10A. Thus,
.the assignment of a.potential energy in this -

case is not altogether straightforward, since -

the distance which the piston will travel—or,
equivalently, the volume:of fluid which will

be admitted to the cylinder under the pres- .

sure p—must be specified before the poténtial
energy can bg assigned. In this-case, there-

fore, it is more convenient to talk about a -

potential ezergy per unit volume of liquid.
For example if we are told that the potentid]
o energy is 10 foot-pounds per cubic foot of
water in the cylinder, we ‘can calculate the
./,partlcular potential energy associated with.'
., the admission of any specified volume of fluid
' to the cylinder. The work which can be done
‘if "a~volume—-4-% d~ofv11quxd_18“9£"£§tLd_IS

'PXAXd; dividing this by the volume AXd ™~ v
gives the work which can be done per unit '

volume of liquid—that is, the potential en-
- ergy per.unit volume of liqiid. This: poten-

. —tial energy per unit volume’ turns out to be .

."transmltted through the surroundmg fluid.

the pressure, p, under which the fluid is ad-
mitted to the cylinder.

This concept of pressure as potential en-
ergy per unit volume can be extended to gen-
eral systems of flow, provided that we under-
stand this potential energy to be only that
dueto forces exerted on a fluid element by the

surrounding fluid. To obtain total potential

energy, we would have to add the potential
energy due-to the force of grawty acting

~directly on the fluid element. -

If pressure, representing potential energy
per unit volume, is in turn divided by pg,
weight per unit volume, we obtain p/pg—or.
simply h,, the height of a static columin.of

- water above the point—as the potential en-

ergy per unit weight that is due to the forces -

QUESTION

Referring to the- dlagram, whlch of the
following expressions- w111 gwe the total hy--

[

Waté’rl'lev_el

in piezometer

Piezome?er - S . -

o -~

,I T f - D'étixm”‘"“" =2

draulic potential energy of a unit weight of
water located in the-. \ncmlty of point 07

Turn to Section:

z L . 28

| 260 ~~Con. e

-

(hy—z 20,

23
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. / )

\

Your answer in Sectiofl 22 is not correct. - Return to Sectlon 22 and choose a‘lother
|~ We have already seen that p/pg+2 was equal - answer. .
to the total potential energy per unit weight
of Water To obtain potential ehergy per unit - - A . - o
volime, we must multiply by weight per unit =~ = - - o 27
volurre; '®

\
~

v
1

 Your answer in Section 3 is not correct. example, that this pore area represents 20
The quotlent Q/A, would yield an average percent of the total face area,. A The ﬂow
velocity if we were dealing with an open- area would then be 0.2 A. o
- flow. Here, however, A is not the.cross- Return to Section 3 and choose another -
sectiondl area of flow; it is, rather, the cross-  answer. '
- gectional area of the porous block normal to '

the flow. Only that fraction of this area which

congists of open pore. space can be consxdered e ~ S 28
"‘the cross- sectlona.l area of flow. Suppose, for ‘ S ' o
'Your answer in Section 9 is- not correct. Return to Sectlon 9 and chpose another

The “volume of mterconnected pore space is  answer.
020 cubic feet, but since saturation is less
than 100 percent, the volume of water in ‘the

", specimen cannot equal the volume of inter--
connected pore space. Keep in mind that we v . .
are expressing saturation as a-percentage of ' v 29 o
the interconnected pore space. - : - o




Part II.

" Part 11 gives a development of Darcy’s
law. This law relates specific dlscharge, or
-discharge per unit area, to thé gradient of

hydraulic head. It is the fundamental relation
-governing steady-state flow in porous media.

The development given here should not be
taken as a rigorous derivation; it-is no more

i

i .

Darcy’s Law

lntrod‘uc_tion |

than a plaus1b1hty ‘argument, and is pre- .
sented in order to give the reader some .’
appreciation for the physical 51gn1ﬁca.nce -of
the relation.. o
Following the program section of Part II
a ‘short discussion on generalization "of.
Darcy’s law is given in text format. ) \\< :

-

In mechanics, when considering the steady
motion of a particle, it is customary to equate
the forces producmg the motion to the fric-
tional forces opposing it. The same approach
may be followed in consi idering the steady
movement of fluid through a porous medium.
In_studylng the motion of a solid particle
through a fluid, we find that the force of
friction opposing the motion is proportlonal
to the velocity of the partlcle Slmllarly, in

.flow through a porous medium, we will .

_assume that the frictional forces opposing the

flow are proportional to the fluid velocity. Our
approach, then, will be to obtain expressiong” -

-for the forces driving a flow. and to equate
these to the, frictional force opposlng the

flow, which will be assumed proportional to

the ‘velocity, More exactly, we will take the
" vector sum of the forces driving and opposing
the ﬂow\ and set thls equal to zero. What we
" are saymg is that because the ﬁUId motion is

‘steady—that is, because no acceleration is’

observed—the forces on the ﬁuid must be in

ba}a.nc'e and therefore that their vector sum -

is /zero, at all points. The equation that we

(D

" will be. a’ form of Darey’s law We begln by
- conslderlng the forces which .drive the flow.

QUESTION

Suppose we have a pipe packed with sand,
as in the diagram. The porosity of the sand is
n. Liquid of density , is circulated through
the pipe by means of a pump. The dotted
lines mark out a small cylindrical segment
in ‘the pipe, of length al, and of cross-sec-

obtain Tromi tHis procesﬂf‘kﬁiﬁ“"‘iﬁ@r*fow“makareaﬁimeqmMosthatvofe%emmpo«A«m
. . |

25
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DARCY’S LAW . : 15
. -

small volume, or element, of the moving -

fluid occupies this segment. The fluid pres-
sure 2t point 1, atgthe upstream side of the
segment, is p,. f! '

, Which of the fbilowing expressions would
- best represent.the force exerted on the up-

— '

(1)—Con.

stream face of the ﬂUId element by the ad-
jacent fluid element?

Turn to Section:

p.A _ 25

pnA . ‘ 8

Dipg . 16

Your answer 1n Sect1on 19

" is not correct. Our assumptlons were that the
frictional retarding force would be propor-
tional in some way to the dynamic viscosity
" (n), to the.volume of fluid in the element
(al-n-A), and to .the specific discharge, or
flow per unit aréa" (Q/A). Whi]e the answer

—(@-

which you have chosen is mot 1ncompatlble

;

~ with these assumptlons, it does'not fit them

as well as one of the othet answers Your
answer assumes the retarding. force to be

proportional more particularly to the full

dlecharge’"(), ‘than to the specific dlscharge,
Q/A. :

Return to Sec\ion 19 and choose anotherr»

R

o
J .

Your|answer in Section 26 is not-correct.
The term al-n-A gives the volume of fluid in

the element; the question asked for the mass .
of fluid in the element. Keep in mind that p, -

o

3)

the density of the ﬂUId repr&sents 1i,s mass
per unit volume.

Retutn to Sectlon 26 and choose anothet
answer.

>

e

Your answer in Section 35 is'not correct.
The term \/m is obviously equal
to Al,.s0 that the answer you selected is
" equivalent to the term p-n: :A-g-Al. But as we

saw in Section 15, this term- gives the magni- -

tude of the total g'rav1tat10nal force on our

, (4)_

v

pression for the component of thxs total force" =
_in the direction of flow. We have seen that
“this. component is ‘given by the. expression -\
- p'n-A-g-Al-cos y; the idea of the question

is to find a term equivalent to cos y a.nd to
substitute. it into the ahove expression. - " .
Return to Section 35 and choose another

"m’ﬁurd*elmthwhat«weewanb-m-aner
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‘ -Your,answer in Section 31,
- _pnA
‘dl

is not correct. The expression obtamed pre—
viously for the net force was (p,—p.)n4, or
—apnd. You have substituted the i)ressure
gradient, or rate of pressure change per foot,
for the small pressure change, —ap. To ob-
- tain a net change, or increment, froth  a gradi-
ent, or rate of change_per—unﬁ?tance, we
must multiply the rate per unit distance by
the distance over which this change takes
place. For example, dp/dl in the figure repre-
sénts the slope of a graph of pressure, p,
versus distance, I. To obtain the pressure
change. p,—p,, we must multiply this slope
by the length of the interval, Al; and since
we actually require the quantity p,—p., we
- must insert a negative sign. (In the situation_
shown at left, p, is greater than p:—that is,
pressure: is decreasing in the direction of
flow, I. The derivative dp/dl is therefore an

5

Pressure,p

L Distance, [~ 12

. N ‘ ) 4
. P> — p, = Pressure change,_'Ap = EI’Z X al

intrinsically negative quantity itself—the
graph has a negative slope. By inserting an-
other negative sign, we will obtain a positive
result for the term p,—7..) ,

Retu"n to Sectlon 31 and choose another
answer./

/
/

7

(6)

Your answer in Section 33 is not correct.
The term p-n-al-A-g gives the magm'tude of”
the total gravitational force vector, F,. How-
ever, we require the component of thlS force
vector in the direction I since only this com-
" ponent is effective in producing flow along

the pipe. In the vector diagram, the length ~
of the arrow representing the gravitational"

force, F,, is proportional to the magnitude of
that force, and the length of the arrows rep--
resenting the two components, f, and f,, are
- proportional to the magnitudes of those com-
ponents. Using a diagram to show the resolu-
tion of a vector into its component§ makes it
" easy to visualize the following general rule:
the magnitude of the component of a vector
in a given direction is obtained by multiply—
"ing the magnxtude of the vector by the cosine
of the angle between the direction of the
vector and the direction in wmch the com-
ponent is taken. ‘ /.

ST

.Return to Sectlon 33 and choose a.nother

answer

27

7
/7

/
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Your answer in Section 28,
T Q dh

A dl
" is correct. This relation between specific dis-
charge and head gradient, or hydraulic gradi-
“ent; dh/dl, was obtained experimentally by
Fenri Darcy (1856) and is known as Darcey’s
law for flow through porous media. The con-
stant K, in the current usage of the U.S.
Geological Survey, is termed the hydraulic
~ conductivity and has the dimensions of a

velocity. The constant %, again in the cur-
rent usage of the Geological Survey, is
termed the intrinsic permeability; it’s dimen-
sions are (length): and its units depend
upon the units of density and viscosity em-
ployed. In the current usage of the Geologi-
cal Survey. where p is measured in kg/m? g
in m/s* and p in kg/(m s) k would have
the units of m®. i

As noted in Section 28 hydraulic conduc-
tivity, K, is related to intrinsic permeability,
k, by the equatlon

- K=k-2_
.
where p is the fluid density, p the dynamic
viscosity of the fluid, and g the gravitational
constant. Hydraulic conductivity thus in-
- corporates two properties of the fluid and’
cannot be considered a property of the porous’
medium alone. Intrinsic permeability, on the
other hand, is normally considered to be only
a property of the porous medium. In ground-
water systems, variations in *density are
normally associated with variations in dis-

8

‘ law.

(7)

solved-mineral cotitent of the water, while
variations in viscosity are usually due to -
temperature changes. Thus in problems in-
volving significant variations in mineral con- .
tent or in water temperature, it is preferable
to utilize intrinsic permeability.

The entire theory of steady-state flow
through porous media depends upon Darey’s -
law. There are certain more general forms
in which it may be expressed to deal with

_three-dimensional motion; some of these are

considered. in the text-format discussion at
the end of this chapter. The development
presented in this chapter involves numerous
arbitrary assumptions, and thus should not
be con51dered a theoretical derivation’ of
Darcy’s law. It has been presented here to
illustrate, in a general wa’:{", the physical
significance of the terms appearing in the

QUESTION

Consider the following statements
(a) ground water flows from higher eleva-
tions to lower elevations.

.(b) ground water flows in the direction of

decreasing pressure.
(¢) ground water moves in the direction
of decreasing head.

Based on Darey’s law as glven in this chap—
ter, which of these statements should alvays

be considered true?
Turn to Settion:

all three 29
(b) and (c) but not (a) 13
‘ : 21

only (c)

\

Your answer, pnd, in Section 1 is cor-
rect. The overall cross-sectional area of the
upstream face of the segment is A. The
area of fluid in the upstream face is IlA, if
we assume the ratio between fluid area and
overall area to be equal to the porosity. The
pressure, or force per unit area, multiplied

23

(8—

by the fluid area then gives the total force
on the fluid element through the upstream
face. Similarly, if p. is the fluid pressure

" at the downstream face, p.nA, gives, the

magnitude of the force exerted on the down-
stream face of the fluid element by the ad-
jg.cent downstream element.
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A (8)—Con.

QUESTION

S

Let us assume that the pressure p, is
greater than the pressure p.. Which of the
following expressions would best represent
the net pressure-force on the element in
the direction of flow?

Turn to Section:

prA+p.nd

23
p,nA;p._.nA- 12
pnA—~p.nA 31

( 9\
\-7/
Yoﬁr answer in Section 28 is not correct.

We saw in Part I that head, &, was given by

h=

+ 2.
Pg )
It follows that

dh d(p/pg) dz
@ a

v Use this result in selecting a new answer

to the question of Section 28.

(10)

Your answer in Section 11 is not correct.
We have obtained expressions for two forces
acting in the direction of flow—the net
_ pressure force, which was calculated as the
difference between forces exerted on the up-
stream and downstream faces of the element
by adjacent elements of fluid (see Section

26) ; and the component of the gravitational

force in the direction of flow (see Section
11). The question asks for the combined net
‘force due ‘to both pressure and gravity.

-Forces are combined by means of vector ad-

dition. In this case, however, the net pressure
force and the component of gravity we are
considering are oriented in the same-direc-
tion—in the direction of flow. Vector addi-
tion in this instance therefore becomes a
simple addition of the: mag'xutudes of the two
terms. -

Return to Section i1 and choose another
answer.

(11)-

. Your answer,
AZ

pon-Al-A-g

A
in Section 35, is correct. az/Al is the equix'a-
lent of cos y; it simply ‘gives the change ‘in
elevation per unit distance along the path of
flow. (It thus differs from slope which by

&g%gﬁ)utlon ig the change in elevation per-unit v

orizontal distance.) In-the notation of cal-
culus, - Az/Al would be represented by the
derivative, dz/dl, impl}'ing the limiting value

-

4

29

of the ratio Az/Al as smaller and smaller
values of Al are taken. The force component
along the pipe must be positive, or oriented
in the direction of flow, if z decreases in the
direction of flow—that is, if ‘dz/dl is nega-
tive. It must be negative, or oriented against’
the flow, if 2z increases in the direction of
flow—that is if dz/dl is positive. We there-
fore introduce a negative sign, so- that we
have finally .
fi=. —pn-A:Al-g- dz/dl

where f; is the component.of the gravitational

v
Bt
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force parallel tc tic2 ripe, as in Sectizn 33.
The total force dr:-izwr the flow is the sum
of this gravity cormpone:nt and the pressure
force. :
SLUESTICOr
Which of tr= fo —
sive the net fcrce o the &
nf flow, due to pre:  ~“¢an .

- -vpiessions °
din the directic 1
rravity together?

(11)—Cen.

. Yurn to Section:

Your answer in ~ec 'n 8 is not correct.
The expression (p.:4 -p.nAd)/2 would be
approximately equal - the force in tne di-
‘rection of flow agains . cross-sectiona: area
taken at the midpoin: f our flyid element;
it does not give the 7« force or the element
‘itself in the direction of flow. =
~ The fluid element extends along the pipe
a short distance. Over this distance, préssure
‘decreases from p, at the upstream face to p.
at the downstream face. The force on the
element at the upstream face is the force
-act#ng in the direction of flow; the force on

<

dp d=
———pg— al-n-: ' 19,
al d’
syt wAlA — 24
dz -dp
‘l'_\l'.’l gr——— e 10
dl dl
e A
- j ( .

Tream “-ace 1S a
iirection of dow.

the elemen: at the dow:-
‘orce actin: agaisnt the
That is, it is a “back pu  ~from the adjzcent
fiuid element, against .e el=ment we are
considering. Its magnitude is again given as .
a product of pressure, porosity, and face
area, p-nA, but we now insert a negative sign
to describe the fact that it acts in opposition
to the force previously considered. The net
force in the direction of flow is obtained by
algebraic addition of the two force terms.
Returii to Section 8 and choose amother

Your answer in Section 7 is not correct.
Ground water frequently percolates down-
ward from the water table; the pressure is
greater at depth than at the water table, so

in these cases water is moving in the direc-.

tion of increasing pressure. Keep .in mind

/

answer.
i (13) : oot /'

that Darey’s law relates flow per unit area to

the gradient of head, not to the gradient of

pressure, .
Return to section 7 and choose another

answer. RN
. - .\

AN >

Your answer in Section 31 is not' correct.
~ We have seen that the net pressure force was
equal to —apnA. It cannot be equa] ‘to this
and to ap(dp/dl)nA (unless dp/dl happens
“to equal —1, in a particular case)

We wish to substitute an expression in—_
volving ‘the derlvatlve, dp/dl, in place of the.

(1 4) g

pressure change term, —ap. To obtam an
expression for a change, or an increment,
from a derivative, it is necessary to multiply
the derivative—that is, the raftie of change -

per unit distance—by the distance over
which the increment or change occurs. For =
example, the'diagram shows a graph of pres- -

20
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<.

sare versus distarn - ““he slope of this grapin

is tke derivative, [P /d. If we wish to ab-

tain the change in pi--~-sure, p.—p, occurring

\ over tre interval AL we must multiply the
““““ o rate o7 change 'per . .it distance, dp/dl, by
\\ woovE  the distance Al Since v-e actually require the

5 negative of this quzzity, »,—p., we must
~ ‘ inseyt a negative sigr. (As shown on the
) ) ‘ graph, p, exceeds p.—pressure is decreasirmy
""""""""""" - - in tfwe direction of flov-, . The derivative -of
’ aressure with respect to distapce, dp/dl, is
therefore a negative quantity itself—that is,
- the graph has a neg:=ive slope. By inserting

D,

Pressure, p
N

L

istaroe
, Disare another negative sig::. we will obtain a po:x-
Ps — Py = Pressure chan; ' . N tive result for the tzrm p,—n..) ;
Return to Section 31 and choose anotlner
answer.

(I5)-

/
/

Your answer, m=p-al-n-:.. —=n Rection 26
is correct; mass density, p. tirees s oiume of
fluid, n-Al-A, where n is porsity. =ives the
mass of fluid. The magnitods i che total
force .of gravity on our fluid -elems=nt will,
.therefore, be p-Al'n:A-g. This ~ravitational
force acts vertically downward. As a forece,
however, it is a vector quantit; snd Like any
‘other vector quantity it can be ==swi’ into -
components acting in other dirsrcorzs

QUESTION Turn to Section:

The diagram again shows the flow system Th? en.t re gr?.wtatlonal force is 'effect-
we have postulated. Which of the following . °Ve IR causing flow along the pipe. 22
statements is correct? Only the component of the gravitational
oy : ’ force parallel to the axis of the pipe
contributes to flow along tHe pipe. 83

©Cnly the horizontal compoment of the
gravitational force contnbutes to flow .
along the -pipe. _ 18
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e

Your. answer in 3Section 1 is not cor-ect.
The force on the cismment will be give— by

the pressure, >r ferrce per unit area, multi- .

(16 —

plied by the area of fluic =rmim«t which Zhe
pressure acts.

Return to Section 1 ant chawsSe anotleer

Your answer in :3ection 26 i$ not correct.
The term p-20-A would give the mass of a
fluid element having a volume Al-A. In our
problem, however. orly a part of the volume

(17)

Al‘A is occupied by fluid; -in iiance is oe-
cupied by solid sand grains. s« it the acrual
volume of fluid is less thar Al .. )

Return to Section 26 ard!' ¢ =mesé another
answer. -

Your answer in Section 15 is not correct.
‘Gravity, as we are considering it, has no
horizontal component. No vector can have a
component perpendicular to its own dirce-
tion. For our purposes we consider the grivi-
tational force vector, F, to be always di-
rected vertically downward; there can be
no horizontal component of this force.

The diagram shgws the gravitatjonal force
vector resolved into two .components-—one
parallel to the direction of flow, f;, and one
perpendicular to the direction of flow, f,.
Fluid velocity itself may be considered a vec-
tor, in the direction I. As such, it has no com-
ponent in the direction of f,, normal to the

pipe—and a force component normal to the

~

pipe could not contribute in any way to the:
fluid velocity. =
Return to Seciion 15 and choose another

Your answer in Section 11, °

< dp & dz , »
———pg— );\. - -

\ @@ “a

is correct. The net force per unit volume of
" fluié due to pressure and gravity would thus
be ;

ép dz
- "_+Pg_ ’
dl dl

since al-n-A gives the volume of the fluid '

element. .

a9

Our approach in this developmemt is to
equate the net force driving the: fiew to the
frictional force opposing it; more exactly, we
will obtain the vector sum of.these .opposing
forces and set the iresult equal f z=ro. The
resulting equation will be a siztement of
Darcy’s law. We have obtained an expression
for the net force driving the flow. We mow
consider the force opposing the'meogion. This
force is due primarily to friction ketween the
movi/_ng fluid and the porous medizm. In smme
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other syszer::. 4. mecharics—for examp e ir
the case of : pazticl: mo -ing through a vis-
cous fluid a~ muzerzie sueed—the frictiona:
retarding foree = observed to be preportional
to the velocity v mcivement. By anuior~ we
assume 2 simi’ - relz” m to hola for our
element of Hui.. Howswver, as indirated in
-Part ], the actua: por: welocity varies from
point to point ar. ‘s difSicult or impossible to
determine. For —rzetizz] purposes therefore,
we consider the [rictional force on our Suid
element to be pr=porti:nzl to the speeific dis-
charge; or flow 1 2r un’t cross-sectional area,
through the porous material. (See Section
14, Part I.) The =pecific cischarga, which has
the dimensions o= a velocity (anc is in fact &

_sort of apparent velocity), is derermined by
the statistical distribuzion of pore velocities
within the fluid element; and we are, in ef-
fect, assuming that the total frictional re-
tarding force on the element is likewise de-
termined by thi statistical ¢istribution of
pore velocities. *n additicn, w+: assume the
total frictional ~starding force on the fluid
elerment to be proportiona. to the volume of
fluic. in the elems=nt, on the theory that the
totz. area of fluid-solid contact withir: the
element, and therefore the total frictional
draiz on the element, increases in propwrtion
to ttre volume of the element. Finally, we as-
sume that the retarding force is proportional
to the dynamic viscosity ¢ f the fluid, since
we would expect a fluid or low viscosity to
move through a porous mec ium more raadily
than a highly wiseous liguic.

—%-7  Pipe packea
\\vg wlth san~

Porosity ===

09—

QUESTION

Following the various assumptions out-
lined above, which of the followimy exmres-
sions would you choose as best rewressesing
the frictional retarding force on tee flun: =le-
ment of Section 1. (Shown again in the dia-
gram.) .

Turn to Smction:

1

——uQ (al-n-4) 2
1 Q:

R s 34
Eoal-n-4

o1 Q

——p(Al-m-4)— 20
k A

where 1 /- indicates a constant cf propor-

. tionality, s isMhe dynamic viscosity of the

fluid, and (" is the fluid discharge through the
pipe.

(20)-

. Your answer in Section 19,

1 Q
———u(Al-n1-4)—,
3 ( )A

is correct. The nezative sign is emplosed to
indicate that ‘the friczwnal retarding force
will be opposite inrdirecsmn to the fluid move-
ment. We assume that -sur fluid motion is
steady—that is, iat the fluid velocity is not

T

changing with time, or im othar woxds, that
there is mo fluid acceleration. In this comdi-
tion, the Forces producing the motion must
e in bakence with the frictiomal retarding
farce. Th= vector sum of these forres must .
therefore: be zero; and becmmse the foree,
componentis: contributing to the metion are
all direct=¥ along the pipe, fris vertor sum
is simply mn:algebraic sum.

4
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JUESTION
We h. "2 s2en t..xthe v 2t qriving force o=
the fluic zlemeni——thas . | the nei force iz
the' dire :iom of ..ow ¢: o pressure and
eravity cerher—ix ¢oam b
L3 Az
- “‘_f_‘—‘?lf“‘“"T’\Al"n'.‘li

CE e

Suppose we take nim Lombraic sum of this
force and rur rerms - iforee, and set the
result equ: i to » . Tn.oh the

following

(2 ()—Con.——

e~{U.tions may :hen be derived from the re- -

S

2oade

‘Turn to Section:

) d,.
T A 36
dl a & A
dp  dz\ Q 8
g— |=— 2
(dl : dz) 1
’d dz Q
ﬁfpg—- Al-n- a=LZ o
a = dl E A

Your aznswer n Serion 7 is correct.
Darcy’s law, as @ equation containing a
derivative, is actuuliz a differ=ntiul equation.
It relates flow "pex it ar=a. or flux, to the

_energy consimed per anit distance by frie-

tion. . Analogies carn readily be recognized
between Darey’s law and the differential
equations governinz the s:zeady flow of heat
or eloeoricity. The hydrmulie -conducrivity,
K, is analogous to ~herr::l or electrica] con-
ductivity; while h—~drauiic

head, %, is a po- -

21

1 ntizl analogous to temperature or voltage.
.70 be more correct, the tern K7 constitutes
¢ ground-water velocity potential—that is, a
=nction whose derivative yields the flow
velocity—provided both the fluid and the
porous medium are homogenecus and the
medium is isotropic.)

This concludes the programed instruction
of Part II. A discussion in text FYormat deal-
.ag with generalizations of Darcy’s law be-
~ins on-the’page fol]owmg Section 37.

Your angw=— in Section 15 is zot coir =~
The diagranr hows the gravizional fow -
vector, F.. res:ived int» rwo commmnemts ¢
parallel i the divection of flow, i, and one
perpengicrdar v it .. If the flow were ver-
tically dosmwrmt—inat is, calinsar witn: F
—the =ntire groxThainmmal fores wouid b= ef-
fertive - prdurfog flow. In the situstion
showm, howevse, "me tompemenst ot the grovi-
tatirmal fores— or that perpemdiccdss to
the flow—is bawwmn by stettic fmrres ez-
ertesl by the wzii: «ithe pipe. T'o vizw this
in znother way. we =y note firat the finid
velecity itseld is:a-vector, in $ive direciion £.
No vector carr have a:component perpendicu-
lar to itssown-directiion ; 30 the vehocity vector

(22)

has no component in the directicr of f.. The
force component f, can therefors contnbute

nothing to the fluid velocity.

Retum to Qectlon 15 and choose another

‘answer.

34 .
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(23

~our answer in Sectior. 8 is not correct.
Th 2 pressure at a point i a ﬂula is a scalar
quontity; it is not directional in character,
and we say that i* “acts in all directior =.”
Ho-wvever, i we choose any small cross-s 2c-
tional area ‘within the fluid, we can meas ve
a force against this area aftributable to e
pressire, rega.rdless of the crientation of - he
area. This force i a vector, or directed guan-
Titw; it acts im a dzrection normal to the =mall
area and has a magnitude equal to the nrod-
uct of the pressuze and the area. In the =x-
ample of Section: 1 and 8, we consider the
pressure at two pemts, the upstream znd
downstream faces of our fluid element. At
tize upstream: facs we write an expres: M

p.A for the magmitude ¢~ the force in the
dizeciion of the flow. At the downstream face -
we ire interested im a force opposing the
fle~—that is, acting in a direction opposit:
to =2 flow. The mzgnitude o this intce is
ap=ir given as a product of préssure, poros-
0 ,.and fince zvez. pacA; but bacause we are
inzerssted in the forre acting against the
dow or.im a directiom opposite to thar orig-
mall- taken, we mow introduce a negative
sign. The net foree on the fluic element along
. axis of the pipe can now :'= obtained by
zlgebraic addition of the twc force expres-
sions.

Return to Secfion 8 and choose another
SMSWeT.

Your answer in Section 11 is not corrsct.
The idea here is qmnply te cominine mie ex-
pressions obtained for $he nes Eressure-. [ores
(see Section 26) z=d S tme component of

" the gravitational fcrrce parallel to the pir-=

(see Section 11). Forces are always conr red
by means of vector addition. In this ~yeee.
however, the two vectors we are congiderir—
are oriented in the samre direction Thsi ‘s,

4
V

st

“«ih the net pressure force and our com-
penent of the gravitaticmal force are oriented
i. the direction of #he flow. In this case,
therefore, vector additior. amoumts to no
more than the simple scalar addition of the
magnitudes of tie two comrnonerts.

Rmm'n to Sectisay: 11 azz: cheese anotizer
amswane,

(25)

Your answer in Sectinn 1 is not correct. If
we were dealing with apen-flow ini the pipe,

the force on the fluid elememt would indeed’

be given by the term p,A. Here, however, a
part of the area 4 is sccupied by solid sand
grains and the remazinder oy the upstream

face of the fluid element. For our purposes’
here, we may assume that the ratio of fluid
area to total area i: equal to the porosity, n.

Retum to Seetion } .and ﬂvme -another
answer.
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Your answer in Section 31,

dp
—-——aln4, . -

} dl
is correct. The zradient or derivative of pres-
sure, dp’dl, maltiplied by the length inter-
val, Al, gives the change in pressure, p.—2.,
occurring in that interval. Since we require
" the term p,—p. we use a negative sign.
Multiplication by the fluid area, n4, then
gives the net pressure force on the element.

Our purpose ir this chapter is to develop
Darcy’s law by equating the forces drivizs
a flow to the frictional force retarding it
We have considered the pressure force, which
is one of the forces driving the flow. In adu -
tion to this pressure force, the element <7
fluid is acted upon directly by the force »f
gravity. The total gravitatiomal force on e
element is given by the acceleration due to
gravity, ¢. multiplied by the mass, m, of fluid
in the elersent. :

\’\ \A\ -
AL
s Pipe packed
i v~ . with sand
1 : Porosity = n

[§%)

ZUESTION

Which of the fclowing equations for the
-nass of Awid in ou.- element, which is shown
wrain in the diagr=m, is cornect”

Ture: v Section:

wo=Al-n-A 3
m =IJ'AZ‘A u
m :p‘Al‘ﬂ‘.:E. it

Your answer,

<dp dz) — a Q
~—+pg— A A=—
— a a SR A
in Section 20 is not correct. Each of the force
terms——the net driving force and the retard-
ing force—contains the expression al-n-4

27)

-vopresentimy trie wolume of fimid in izhe ele-
mart. When these “orce tterms ure adétied and
nE= sum 2t sy to zero, the mrm Alm-A
may be di-—det¢ sar of the emuaiizm.

Raoturn to Seetient 20 and cheese -snother
amswer.

Your answer in Section 20,

k <dp dz) Q
— | —+pg— |=—

~p\dl dl/ A
iis correct. For the case of a fluid of uniform
density and viscosity, the terms p and p are
constants and may be combined with tie
other constants in the problem to form a new
constant, K, defined as

3

(28)

kpg

73
Usimy this aew constant we mmy rewrite
our equation-iz the form

vodp dz\ C
R T\ =
LlZ‘dl dl 2

(eontinued «=n nexT page)
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(28)—Con.

QUESTION

Keeping in mind that the ferm 1/p9 is a

constant, so that
»
d —
1 dp . \Pg .-

12 dl dl

-which of the eguations given below consti-

tutes a valid expression of the equation we

have just obtained?

Turn to Section:

o 7

[
P

i
b
=
!

dl
dp dz)
- K{——+—-i 9.
dl dl
1dp dh .
- K{-——-——+-—} 30
g dl dl
I represents the head as defined in Part I—

»lonlon|o,
i

. thatis,

h=—+2z.
g

(29)-

N ~i Level of saturation

g
-4

U—tube packed with sand

Outflow -

Your answer in Section 7 is not correct.

_Ground water frequently discharges upward

into stream valleys; and in the figure, upward
flow occurs in the shorter arm of the U-tube.
Thus stztement (a) of Section 7 cannot
always be true.

‘Return to Section 7 and choose another
answer.

(30)

Your arswer in Section 28 is niot correct.
We saw in Part I that hydrauhc head, h, was
: glven by .

D
h==—~+z.
r

| S |
d _'"—7'*:2
dh rg :

al dl

Using this relation, retum to Section 28

The denvatlve of h, W1th respect to dlstance,

l ig therefore g1ven by and choose another answer.-

37
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Your answer in Section 8 is correct. The

" net force in the direction of flow is given by
the difference between the two opposing
forces exerted upon the opposite faces of the
element by the adjacent elements of fluid.
We may .now factor out the common term
nA and obtain as our expression for net pres-

! _ Pipe packed
!
1
sure force (p,—p-)nA, or —ApnA, where 4
D

with sand

Porosity ==1n
~ Ap indicates the small pressure difference, Pressure=p, 3
.. P:—p;, between the downstream face of the ~ Pressure—=p,

fluid element and the upstream face.
Since pressure is varying from point to
. point within our system, we may speak of a
pressure gradient; that is, a rate of change
of pressure with 'distance, !, along the flow
path. This gradient might be expressed; for
example, in pounds per square inch (of pres-
sure) per foot (of distance) ; it is represented .
by the symbol dp/dl, and is referred to as the - - i “. Yurn 1o Section:

. derivative of pressure with respect to dis- . o d - '

' -
force, —ApnA, on our element of fluid
(shown again in the diagram) ?

" P
tance in the direction l. If we were to plot a i —AlnA 26
graph of pressure versus distance, dp/dl o dl
would represent the slope of the graph. . ‘_i_lin A 5
QUESTION - N T dl . .
Which of-the following expressions is  ap- Apiz-’n A 14
proximately equivalent to -the net pressure dl - :

— 32—

i

"Your answer, p-n;-Al-A-g-sin v, in Section  angle y. It is true, however, that the idea of
35 is not correct. We have already seen that  this question is to find an equivalent term for
the magnitude of :our force component is - cosyand substitute it in our previous expres-

given by p-n-Al-A-g-cos y. In the .answer sion for the force component. . - *
you have chosen, sin y has been substituted ] : S
- _ - for cos y in our original expression—and this Return to Section 35 and choose another

" can be true only for a particular value of the - answer.. _ , -

38
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(33)

Your answer. in Section 15 is correct; we
may resolve the gravitational force, F, into
two.orthogonal components, f; and f,, parallel
to and perpendicular to the axis of the pipe
- as shown in the figure. There is no movement
perpendicular to the \pipe; the component of
the gravitational force.in this direction is

Y

. to the

{3

balanced static forces exerted against the
fluid elemdnt by the wall .of the pipe. The
component/parallel to the pipe does contribute
ion and must be taken into account-

in equations describing the flow. ‘

QUESTION

The magnitude of the total gravitational
force upon the element is given by the mass
of the element multiplied by the acceleration
due to grav1ty that is, F,=mg, where m is
the mass of the fluid element. Referring to
the diagram shown, which of the following

- expressions gives the magnitude of the com-

ponent of the gravitational force parallel to
the axis of the pipe?

Turn to Section:

fi=p-n-al-A-g 6
fi=p -Al A -g-cosy 35
f,=n --.\I‘A -g-tany 37

——(34)

Your answer in Section 19,
1 Q%
kal-n A
is not correct. Our assumptions were that the

retarding force. would be proportional in

some way to the dynamic viscosity (p), to the

volume 'of fluid in the element (al-n-A), and -

. to the specific discharge, or flow per unit area
(Q/A4). Your answer represents the retard-

3

“ing force as proportional to the square of

fluid discharge, which might be compatible
with’ the assumptions, but as inversely pro-
portional to the volume of fluid in the ele-
ment, which is not compatible with the
assumptlons

Return to Section 19 and choose anather
answer. - ‘ : :

a
BN
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N S~

n-Al-A-g-cos +, in Section
33 is correct. T = mass of the fimid element,
as we have seen s p-n-al-4; mutiplication
by the accelerat:m, g, gives the wotal gravie
tational force on the element. Thhe componeni
of this ferce parallel to the pipe, as imdicated
by the vector dizgram, will bef: ound o :nultn-
plying the total :forca by the cosine cf -

- Your answer,

fi= F, cos .

’Y\g
i‘ .

35)

QUESTION

Suppose we how draw a small right tri-
angle, taking the hypotenuse as al, the length
of our fluid element, and constructing the
two sides az and Ax as in the diagram. Which
of the following expressions -may then be
used: for the magnitude (without regard to
sign) of the component of grav:tatlonal force

parallel to the flow? A
. - Turn to Section:
prn-al-A-g-siny. 32
Cpen- A g V(AT)TF ()% 4
Az -
pen-Al-A-g-— - 11

al . LT

Your answer in Section .20 im mot correct.
If -the sum of the two force: exgr=ssions is set
* equal to zero, we have

dp dz
—tpg— (Al -n - A)
dl dr.

1 Q
— (Al A)—=
Je A

(36)

. We may divide through by the term al-n-4,

representing the volume of fluid in the ele-
ment, and rearrange the resultmg equatlon

. to obtain the reqmred result.. .

Ré urn to Section 20 and choossl another
answér. - :
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(37)

Your answer in Section 33 is not correct.

. The total gravitatiénal force on the element
is_given by mg, where m is the mass of fluid

in" the element and g is the acceleration due

to grav1ty The mass of fluid in the element

is in turn given by the volume of fluid in the

Ly\f,; F, cos y

a
‘.

element multiplied by the mass’ per unit vol-
ume; or mass density, of the fluid, which we
have designated p. The volume of fluid in the
element, as we have seen is n-Al-4, where
n is the porosity. The mass is therefore
p-n-Al-A; and the total force of gravity on
the fluid element is given by
F =pn: -Al-A- °g.

We require the component of this g'rav1ta-

tional force parallel to the axis of the pipe.

. The sketch shows a vector diagram in which

the length of each arrow is proportional to -
the force or component it represents. The
gravitational force is represented by the
arrow F, and the components are represented

‘by the arrows f; and f,. The rule for the res- -

olution of a vector into components can be .
visualized " from - geometric considerations.

The magnitude of the component of a vectqr
- in a given direction is the product of the mag-

nitude of the vector and the cosine of the
angle between the direction of the vector and

the given direction.

Return to Sectlon 33 and choose another
answer.’

41
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Generalizations of Darcy’s Law :

‘The form of Darcy’s law considered in the
preceding program is useful only for one-
- dimensional flow. The discussion in this sec-
tion indicates, in general outline, the manner
in which Darcy’s law is extended to cover
more complex situations. Vector notation is
used for economy of presentation, and this
discussion is intended primarily for readers
familiar with this notation. Those concepts

“which are essential to material covered later -

in the program are treated again as they are
required in the development—without the use
.of Vector notation. The material presented

here i not difficult, and readers not familiar -

with vector notation may find it possible.to
follow the mathematics by reference to a
. standard text on vector analysis. However,

"those who-prefer may simply read through -

this section for familiarity with qualitative

aspects of the material and may then proceed - .

~directly to Part II1.

For three-dimensional flésw, we may con-

sider the specific discharge, q or Q/A, to be
a vector quantity, with' components iq., jq,,
. and kgq. in the three coordinate directions.
i, j, and k reptresent the standard#unit
vectors of the Cartesian system. We consider
a small area, A., oriented at right anglés to
the z axis at a point 0, and observe the fluid

. discharge through this area to be Q., the

“limiting value of the ratio Q./4., as A, is

‘made to shrink toward the.point 0, gives the

value of g applicable at point 0. gy and ¢,
are similarly defined for the ¥ and z direc-
tions. The specific discharge at pomt 0 is
given-by the vector sum

‘ Q.
: : g=—=iq.+jq,+kq..

. g is thus a vector point function; its magni- -

I

™~

tude and direction may vary with location in
steady flow and with location and time in
unsteddy flow; i

If the porbus medlum is homogeneous and
isotropic and if the fluid is-of uniform density
and viscosity, the components of the specific- -
discharge vector are each given by a form of
Darcy’s law, utilizing the partial derivative
of head with respect to distance in the direc-
tion in questlon That is, the components are: ‘\
given by ‘

ok
q_r:_—.-—-K?_.
or
oh
qy=—K—
- oY
2h
q:=—K—
02

where K is the hydraulic conductivity.
It follows that the specific-discharge vectpr
in this case will be given by A
‘ oh 2h. ok
1og= —K[i——+j—+k— }
°or oV o2

or ‘ -

.
q=—-Kvh

" where v & denotes the head-gradient vector.

Thus, if the medium is 1sotrop1c and homo-
vgeneous, —Kh constitutes a velocity poten-
tial; and the warious methods of potential -

" theory, as applied in studying heat flow and.

electricity, may be utlllzed in studying the
ground-water motion. .Since ‘the specific-
discharge vector is colmear with v &, it will

" . be oriented af right angles to the surfaces of

‘equal head, and flownet analysxs immediately
suggests itself as a uqeful method of solving
field problems :

\
A\
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In practizce, one does tlot usually find homo-
geneous and isotropic aquifers with which to
work; frequently, however, simply for lack
of more detailed data, aquifers are assumed
to be’homogeneous and isotropic in obtaining
initial or approximate solutions to ground-
water problems

The situation in many aqguifers can be rep-
resented more successfully by a slightly more

- general form of Darcy’s law, in which a dif-

ferent hydraulic conductivity is assxgned to
each of the coordinate directions. Darey’s law
then takes the form
oh
q.l' = _'K.l'—"'
or
oh
Q= "Kv—
oY

2h

. . qz= — I\ ] - R

J o% 7
where K., K,, and K. represent the hydraulic
conduectivities in the x, y, and z "directions,

'"respectlvely, and again

g=iq.+jq,+kq..
This form of Darcy’s law can be applied

only to those anisotropic aquifers which are

characterized by three principal axes of hy-

draulic conductivity (or permeability) which

vertical

are mutually orthogonal, so that the direction -

of maximum hydraulic conductivity is at
right angles to the direction of minimum hy-
draulic,conductivity. These axes must corres-
pond witl
analysis.

principal|axes of conductivity must be ver-
tical; foy unless the 2 axis is taken in-the
irection, the term 9h/22 cannot be
used to {represent the sum cof the vertical
pressure’ gradlent and the gravitational force

. term.

It is easily demonstrated that the specxﬁc-
discharge vector and the lines of flow are no

- longer orthogonal to the surfaces of equal

head in this anistropic case, and that the
conditions’ for the existence of a velocity
potential are no longer satisfied. Formal
mathematical solutions to field problems are
essentially as easy to obtain as in the iso-

tropic case, however, since a relatively simple

43

the z, ¥, and 2 axes used.in the
he implication is that one of the’
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transformatlon of scales can be 1ntroduced'

_which converts the anisotropic system to an

equlvalent isotropic systemi (Muskat, 1937).
The problem may then be solved in the
equivalent isotropic system, and the solution

" retransformed to the original anisotropic

system.

Probably the r;.ost common form of ani_so-
tropy encountered in the field is that exhib-

‘ited by'stratified sedimentary material, in

which the permeability or hydraulic conduc-
tivity normal to the bedding is less than that
parallel to the bedding. If the bedding is hori-
zontal, the form of Darcy’s law given above
may be applied, using K, =K,. The anisotropy
in this case is two-dimensional, With the axis -
of minimmum permeability normal to the bed-
ding, and the axis of maximum permeability
parallel to it. In many cases, aquifers, are

. assumed to exhibit simple tWo-dlmensmnal'
- anisotropy of this sort when in fact they are

characterized by heterogeneous stratlﬁcactlon
and discrete alternations of ,permea.blllty
This type of simplifying assumption fre-

" quently enables one to obfain an approximate

solution, where otherwise no solution at all
would be possible. . '

For many problems, however, thls gen-
eralized form of Darcy’s law is itself inade-
quate. As an example,” one may consider a
stratified aquifer, exhibiting simple two-
dimensional anisotropy, which is not hori-

* zontal, but rather is dipping at an appreciable
- angle. The direction of minimum permeabil-

ity, normal to the bedding, does not in this

case coincide with the vertical. One may
choose new coordinate axes to conform to the
new principal directions of conductivity. If
this is done, the component of the specific dis-

_charge in each of these new'coordinate direc-.

tions must be expressed in terms of the pres-
sure gradient in the difection’concerned, and

_ the component of .the gravitational force:in
‘that direction. Reduction of the equatlons to :
~ the sxmple form already given, using the pr1n-

cipal directional derivatives of h, is not pos-

sible. Alternatlvely, one may retain the hori-

zontal-vertical coordinate system, in which-

case the principal axes of conduct1v1ty do not

coincide with the coordinate axes. In this

case, hydraulic conductivity must be ex- -
/ . : :

2
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pressed as a tensor; the component of the
specific discharge in one coordinate direction
will not depend solely on the head gradient in
that direction, but upon the head gradients in
the other coordinate directi8ns as well.

In addition to these considerations regard-
ing aquifer anisotropy, practical problems
require that attention be paid to heterogen-
eity, both of the aquifer and of the fluid. If
the aquifer is heterogeneous, hydraulic con-
ductivity must be treated as a function of the
space coordinates; in this case, hydraulic
conductivity (or in some cases intrinsic

permeability) is usually defined as a tensor .

which varies‘ with position in the aquifer.
If'the fluid is heterogeneous, its viscosity
and density cannot be treated as constants,

as was done in the p}‘ogranl section of Part -
II. Equations cannot be Feduced to terms of
- the hydraulic conductivity and heaq gradi-

ents, but must rather be retained in terms of
specific ‘permeability, viscosity, pressure

gradients, and components of the gravita- .

tional force (which depend upon fluid den-
sity, and will vary with position, and possibly
with time, as fluid density varies).-A special
case of some importance is that in which the:
aquifer is horizontal, with principal axes of
permeability in the %, ¥, and z directiong, but

-~ 3

\

o 33
4\

the fluid varies in both\\density and viscosity.'

Darcy’s law for this case may be written

| kJ: . ap ’
. Hzp: OX
f k, op
Qi/= - -
He,p,z ay
k. (op
q:=— _+P.r,u,:.q

14

\l 'l‘:,v.i oz
and again | . :
o ,‘ “(1=i(1x+j(1u'+k(1.--

In these équations, k., &, and k. are the
intrinsiqu’e&'meabilities in the /:{, Y, and 2
directions yu..y.- is the dynamic viscosity func-
tion; p., «/ is the density fu/néti,on“;’ and the-
other térms are as previo%ly defined. Since
gravity is assumed to have no components in
the Horizontal plane, density does not enter

intg the expressions}of q- and ¢q,. In natural
i

aguifers, variations/in density are related
£‘imari1y to varia/ti/ons in dissolved-solid con~
tent of the waf,ei', while variations in.vis-
cosity are related primarily to variations of
ground~wate;%’/ temperature. The equations
given above thus have utility in situations
where water quality and water temperature
are kann to vary in an aquifer. ‘
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Darey’s law, as mentioned in the discussion

at the close of Part II, may be generalized’

" to deal with three-dimensional flows; and it
may be combined with other laws or concepts
to develop equations for relatively complex
- problems of ground-water hydraulics. Even
in the simple form developed in the program

Application of Darcy’s Law to Field Problems

of Part II, however, Darcy’s law has direct
application to many field problems. In Part
III we shall consider a few examples of such
direct application. Later, in Part V and VI,
we will consider the combination of Darey’s
law with other concepts .to yield equatlon

for more complex problems.

113"-1’ —

In Part II we pointed out that Darcy’s law
is a differential equation—that is, an equa-
tion containing-a derivative. It gives us some
information about the rate at which head
changes with distance, under given condi-
tions of flow. In general, in dealing with

ground-water problems, we will require ex- ..

pressions that relate values of head, rather
. than the rate of change of head, to flow con-
ditions. To proceed from a differential equa-

tion, describing the rate of change of head,

" to an algebraic equation giving values of

head, is to obtain a solution to the differential v

equation. ‘There are various techniques for
- doing this. We need not go into these tech-

niques of solution here. For our purposes, it .

will be sufficient if we can recognize & solu-
-tion when we are given one—that is, if we
can test an algebraic equation to determine
whether it is a solution to a given differential
. equation. This is just a matter of differentia-
tion. When we wish to know whether an
algebraic eqyation is a solution to a diff_er—

ential equation, we may.simply differentiate.
the algebraic equation. If we obtain a result
which is equivalent to-the given differential -
equation, then the algebraic equation is a
solution to the differential equation. ‘Should

. we fail to obtain an-equivalent result, the

algebraic equation is not a solution. Thus, for :
resent purposes at least, we may. con-
.solution to a differential equation to

\ ' r oussnou

Whlch of the followmg algebraxc equ ations
1s a solution to the’ dlﬁ‘erentlal equatmn ’

W _gs

de _ .

. Turn fo Section:
y=Kax* ; 15
z=2y+K : 23

y=Kz+b : T

45

34

ebralc equatlon whlch when dlffer- o
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Your answer in Section 35,

dh'Q
d(In7)

27Kb

is correct. This equation is equivalent to the l

original differential equation for the problem
and states that the rate of change of hy-
draulic head, with reépect to change in the
natural logarithm of radial distdnce, is con-
-stant and equal to

2rKb

C2
: QUESTION
Suppose we were to plot a graph of hy-
draulic head versus the natural log of radial
‘distance from the well, in our discharging
well problem. Which of the following state-
ments would apply to t‘ms graph"

‘Turn to Saction: .

(a) The plot would become progres-
sively steeper with decreasing
values of In r—that.is, as the .
well is approached. ' 18
(b) Equal changes in head would be
observed over intervals repre-
senting equal changes in 7. 81
(¢) The plot Would be a straight line. 38

=

__Your answer in Section. 19 is correct. If
the head in the well (and throughout the

aquifer) prior to pumping:is equal to k., the '

term h.—h, is actualls thezdrawdown in the
.pumping well (assurming -that there are no
additional losses in head associated with flow

through the well scirees, or within the well:

itself). Thus the equation in your answer
allows us to predlct the drawdown associated

with any dlscharge, Q. Alternatively, the -

equation can be viewed as a method: of cal-
culating the hydraulic conductivity, K, of the
-aquifer on the basis of field measurements of
Q and h.— hw, or on the basis of head meas-
urements at any arbitrary radii; 11 and 7,
using observatlon wells. The theory of steady-
»state flow to a well as developed here is often
referred to as the Thiem theory, after G.
Thiem, who contributed to ‘its development
(Thiem; 1906). '

While'it would not be common, in practlce,
to find a well conveniently located-at the cen-

‘ter of a circular island, the examiple is a -

very -useful one. The hydraulic operation of
any well is' similar, in many important re-

" spects, to that of the well on the 1sland In

03

particular, the decrease in cross«gectionail
area of flow as the well is approacied, Jead-
ing to the logarithmic ‘“cone of depression”
in the potentiometric surface, is a fesxaze of
every discharging well problem. It iswmmr fact
-the dominant feature of such problems, since
-the head losses close to the well, within this
“cone of depression” are normally the largest
head losses associated with the operation of
a well. The radial symmetry assumed . in the
‘Thiem analysis usually prevails, at least in
the area close to the well in-most discharging

" well problems.

Readers familiar with - dlfferentlal equa-

. tions will note that the equatlons of radial

flow’ developed here can be obtained more

 directly by separating varxables in the differ-

ential equation i .
' Q dh

2nbr  dr-

“and integrating between the limits 7, and re,

or 7, and 7. That is, these radial-flow equa-
tions, Wthh state that head will vary with

"~ the logarlthm_ of radial distance, are ac-.

tually solutions to this differential equa-

48
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tion; if they are differentiated with respect
to r, the differential equation is obtained.
Again readers familiar with the general con-
cepts of potential theor
pattern of head loss around the well as an
example of the “logarithmic potential” asso-

will recognize the -

ciated with potential-flow probiems involving
cylindrical symmetry in other branches of
physms

- You have completed Part III You may go
on to Part IV.

¢

Your answ@er. in Section 9,

h=}l(>“‘_——-x
. Kw _

- is not correct. If we differentiate this equa-
tion, treating h, as a constant we obtain the
result .

ch 2Q

éx Kw
which is no: the cifferential equation v » de-

veloped for the broblem Keep in mind that in
order to find a solution to the dlﬂ'erentlal
equatlon

d(h?) 2Q

dx N Kw

we must find an expr_ession which will yield
this equation upon differentiztion.

Return to Section 9 and choose another

' answer.

50 /

Your answer in Section 8 is not correct. The
differential equation tells us that any solution
we obtain, giving % as a function of z, must
be such that the derivative of & with respect
to x, di/dx is a constant, — (Q@/KA). Thus
we know that (1) since the derivative is a
constant (does not involve x), the plot of

. versus & for any solution must have a con-
stant slope—that is, the plot must be a
straight line; and (2) since the constant has

, .
the same value for any solution, the graphs
of different or distinct solutions must all have

the same slope—that is, these plots must be,

parallel straight lines.-A family of curves all.

" intersecting the r axis at a common point, as

in the answer which you chose, could not
have these characteristics.

Return to Section 8 and choose another -
answer.

Your answer in Section 41 is not cerrect.
The direction of flow in this problem is
radial,-toward the well as an axis. The cross-
. sectional area of flow must be.taken at right
angles to this radial flow direction; that is, it
must bea cylindrical surface within. the aqui-
fer having the centerline of the well as its

[

axis. At a radial distance r from the well, the
cross-sectional area of flow will be the area
of a cylindrical surface of radius r and .of
height equal to the thickness of the aquifer.

Return to Sectid_ri 41 and select another
answer. '

¢ -
e

\ .

©oar
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Your answer, y=Kz+35, in Section 1 is cor-
rect; of the three expressions given, it is the

only one which yields dy/dx= K upon differ-.
entiation. However, y=Kxz+5 is obviously .

not the only equation which will give this
result upon differentiation. For example, dif-
ferentiation of the. equations y=Kz+T7,
y=Kz =3, or y=Kz will also yield dy/dz=K.
The constant term which is added or sub-
tracted on the right does not affect the differ-
entiation :egardless of the value of the con-
stant, the derivative of y with respect i0o x
‘always turns out to be K. Since we have an
infinite choice >f constants fo add or sub-
tract, there are ar infinite number of alge-
braic equations which qualify as solutions to
our differential eqmation. This-is a general
characteristic of cifferential equations—the
solutions to a differ=ntial equation are always
infinite in number. :

. SUESTION
Given the following three algebraic equa-
tions relating head, %, to distan;é, x

- B
~

(a) h=——2

)

' Q
(b) h=ho——x
KA
@

(¢) h=he——x*+7
KA

where ., @, K, and A are constanté which
of the equations are solutions to the differ-
ential equatxon

Q dh

Your answer in Section 7 is correct. Either

(a) or (b), when differentiated and re-
arranged, will yield the 'equgtion
Q ‘dh

A dx

Differentiation of (c) leads to an entlrely-

different equation. .

In the preceding example, the algebraxc.
equations deal with values of hydraulic head,
h, at various distances from some reference

_point; while the differential equation deals
‘with the rate of change of head with distance.
" The differential equatlon is, of course,

Darcy’s law and states that if head is plotted .

versus distance; the slope of the plot will be
constant—that is, the graph will be a straight

A dz
. : Turn to Section:
all three _
only (a) 14
(a) and (b) but not (c) ' 8
08
“h
/
) ho . (é)
é\é
’~ 9.
\‘e
0 x
‘e
% Q
~ Q S]Opﬁ = em——
> KA -
b
z=0 . - Q
' Slope = — —
: KA

48
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\

line. The graphs of equations {a) and (b) of

Section 7 are shown in the diagram. Each is

a straight line having a sloype equal to

Q

KA
the intercept of equation (a) on the h axis
is =0, while the intercept of equation (b)
on the I axis is =/, These intercepts give
the values of % at x=0; they provide the

reference points from which changes in k-

are measured.
QUESTION
If we were to graph all possible solutions

" to the differential equation

N = e,

N © dx KA
the. result would be:

N - dh Q@

Yurn to Section:

A fa,mlly of curves, 1nﬁmte in number,

each intersecting: the x axis at

x= ——i 5
An infinite number of parallel straight
lines, all having a slope’
' Q
KA’
and distinguished by dlfferent inter- _ .
cepts on the z=0 axis. 10
A finite number of parallel straight ‘
lines, all having a slope

Q ‘
. KA .
which intersect the x=0 axis at -~
various positive values of k.- . 20

9 .
Your answer in Section 25,

dh

= — Kwh—,

is correct. From the rules of differentiation,
the derivative of k>

given by
d(h?) dh
=2h—.
v dx dz
Therefore, substituting RN
1 d(k)

.2 dx ™
for h(dh/dx) in the equation ‘
' . dh
Q@=—Kwh—
‘ ' . dx
and rearranging, we have
d(h?) -2Q o

= s 7/ - /

da; Kw

with respect to « is

In this -rearranged form, the differential-
equation states that the derivative of h? with
respect to z must equal the constant term

-2Q

Kw

QUESTION

Whlch of the following expressions, when -

differentiated,. yields the above form of the -

differential equation—<that is, which of the -

following expressions constitutes a solution

to the differential equation? (A, is a constant,
representing the value of h'at 2=0.). '

. Turn to Section:

. 9 e
hz—"ho ——gxz . . o 16
Kw :
e 2Q 0 - o
h*=hy2———zx 41 .
Kw : o
C 2 ,
h=he—- ° .4

z
Kw -
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equation. ‘
The figure lshows a confined aquifer of

thickness b. The aquifer is completely cut by -

a stream, and seepage occurs from the stream
into  the aquifer. The stream level stands at
" an elevation k, above the head datum, which
is an arbitrarily chosen level surface. The
direction at right angloes to the stream is de-
noted the = direction, and we take z as ¢ at
the edge of the stream. We assume that. the
system is in steady state, so that no changes
‘occur with time. Along a reach of the stream
having length w, the total rate of seepage

loss from the stream (in, say, cubic feet per

second) is denoted 2Q. We assume that half
" of this seepage occurs through the right bank
of the stream, and thus enters the part of the
aquifer shown in our sketch. This seepage
~then moves away from the stream in a steady
-flow along the x direction. The resulting dis-

tribution of  hydraulic. head within the

aquifer is indicated by the dashed line
marked “potentiometric surface” in the
sketch. This surfa.ce, sometimes referred to

as the “piezometric surface,” actually traces

the static water levels in wells or pipes tap-
~ ping the aquifer at various points.. The dif-
erential equation applicable to this problem
- is obtamed by applying Darcy’s law to the

_ o o A\ :
" PART III. APPLIGATION OF DARCY’S LAW TO FIEC\LD PROBLEMS ‘39
010
\
Your answer in Section 8 is correct. Any
straight lme havmg the slope
: Q
— s :a\'{e’"‘\ . .
KA Z s
will be the graph of a’solution to the differ- -y A Ris
ential eqnation . . —— N -
a Q o:ﬁ", N S
dz KA : o Tk /
There are an infinite number of lines which !
may have this slope, corresponding to the D
' infinite number of solutions to the differential I atum——2

flow, Q, across.the cross-sectional area, bw,
and may be written
o ‘ dh —Q

, dr  Kbw
where K is the hydramlic comductivity of the
aquifer. The head @istribution—that is, the
potentiometric surfare—is described by ove
of the solutions to ‘this differential eauation.
In addition to satisfying the differentiai.equa-
tion, the required solu.'tion ‘must yield the
correct value of h at:the edge of the siream—
thatis, at =0.

QUESTION
Whlch of the following expressions gives
the partlcular solution (to the above differ-
ential equation) which applies to therprob-
lem described in’'this section? .
’ Turn to Section:

Q l
= —— 22
Kbw
.h=2Q——9—x ' 36
' "Kbw - :
Q :
ch=hy——2 i 24
- Kwb

50
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11

Your answer in Section 27 is not correct.
The decrease in radius does not compensate
for the decrease in cross-sectional area; it is,
rather, the cause of this decrease in cross-
. sectional area.

area, along the |. th of flow, is a fundamental

"he decreasing cross-sectional-

characteristic of the problem we are con-
' sidering. It has a major—in fact, dominant—

effect upon the solution to the problem.

Return to Section 27 and choose another

answer. '

120

Your answer in Section 41 is not correct.

The flow of water is directed radially inward -

toward the well. Any cross-sectional area of
flow, taken normal to this radial direction of
movement, would be a cylindrical surface in
the aquifer, having the centerline of ‘the well

" as its axis. The area of flow at a radial dis-

tance 7 from the well would thus be the area
of a cylindrical surface of radius r, having a
height equal to the thickness of the aquifer.

" Return to Section 41 and choose another

answer..

13c

Your answer in Section 35,

is not correct. The dlﬂ"erentlal equatlon ]
given in Section 35 was

dh Q
e
dr 2K b

In your answer, In » has simply been sub-

stituted for 7. This is obviously not what we

want; In r is not equal to r." The relations-

given in Section 35 can be used to-obtain an

expression which is equivalent to dh/dr. This -

‘eéxpression can then be substituted for dh/dr

in the -above differential equation ‘to obtain

the required r%ult

Return to Sectlon 36 and choose another_,

answer.

140

Your answer in Section 7 is not correct.
It is true that expression (a),

. h= - z, .
_ KA
. yields the result _
) dh Q

dx KA

tion.

upon differentiation and is thus a solution to
the given equation. However, it is not the
only ohe of the given expressions which
vields g\le requifed result upon differentia-

. Return to Section 7 and test the remammg'

expressions, by differentiation, in order to -

find the correct answer.
; —

Ty
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ols

Your answer, y=K2?, in Section 1 is not : ! dy v
correct. If we differentiate the equation . ' - —=K,
y=Kz*, we obtain v , dx

-and we. are looking for & solution to this
_ differential equation—that is, we are looking

iiz_/_sz’ for an algebrai¢ expression which, when dif-
dx ferentiated, will produce. the dlfferentlal
. equation (dy/dz) =K. . —
-which is not the differential equation with Return to Section.1 and test the remammg
which we started. Our differential equation choices, by differentiating them, to see.which B
was . "~ will yield the given differential equatlon LT
O 16
-Your answer in Section 9, ' " is 2z. This result is not the differential equa--
2Q ya tion with which we started, so the equatloh
=he———r, of your answer is not the solution-wé require..
) Kw Return-to Section 9 and chocse another -
is not correct. If we differentiate this an-  angwer. Keep in mind that the equation you
swer, treating h,® as a constant, we obtain select must yield the result
rd) - 2Q | - A . 2Q ,
/ - =——- 2z, = — e - o
dz Kw - ’ ‘dx  Kw T

since the derivative of 2* with respect to +  when it is differentiated. : —

Your answer in Section 40, : states that 'ﬂow, "divided by cross—sectional.
Q d (h2) L area, is proportional to the gradient of the

/

/

= y - square of head. Thus it cannot be a valid -
27rd dr application of Darcy’s law to the problem.
is not correct. Darcy’s law states tha.t ﬂow, Return to Section 40 and ch008e another .
“divided by cross-sectional area, must be pro- ‘answer.

portional to the head gradient. Your answer . -

1:118"

Your .answer in Section 2 is not correct. slope, as in the answer yowchose, the denva-
‘The equatlon in Section 2 states that the de- tive cannot be constant. - .
rivative of head with respect to In r is a con- Return to Sectlon 2 and- choose another .
stant. This derivative .is sxmply the slope of answer. _ . -
"a plot of k versus In . If such a plot changes '

A
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. Your answer in Section 38 is correct; inas- ¢

" much as log 7 changes by the same amount h -
between 10 and 1 as it does between 1,000
und 100, the head changes by the same
amount in these two intervals. If we were to .
replot head directly versus radius, », rather
than versus log r, we would no longer have a
straight line, but rather .a ‘“logarithmic”
curve, as shown in the sketch. The gradient -
becomes progressively steeper as we ap- _
proach the well, to compensate for the de- h 55 . 1',500 r
creasing cross-sectional area of flow. This . * Arithmetic scale
logarithmic pattern of head decline is some-

times referred to as the “cone of depression”

. in the potentiometric surface around the well. ~ well which of the following _expressioris
' ' ' : would result from this procedure?

o QUESTION o . . Turn to Section: . '
The equation obtained in Section 88 can be - 23Q 71e , ‘
tapplied between the radius of the island, 7., he—hy= blog——— . ) 28
and the radius of the well, 7., to obtain an _ ,2” Te T
. - expression for the head difference between ho—h ___2'391082_ 3
- the well and edge of the island. If k, repre- Y o Kb ro '
sents the head at the edge of the island (that 230 :
is, the level of the open Water surroundmg : © he—hy= (log 7,~log 75) + 80
the island) and A, repre%ents the head in the ~ 2zKb

1

\

200- - S .'

1
\

. -Your answer in Section 8 is not correct. If \ which is equivalent to our given diﬂ"erent;ia.l‘
we were to write the solution to the equation = equation. Clearly we can assign an infinite

.. - Q dh’’ : number of values to the term ¢, and obtain'
k. - —=-K— * an infinite number of distinet equations
, A dx . (solutions) which we can differentiate to
in the most general form, we would write obtain our differential equation.” Each. of .
S Q" ' ~ these solutions is the equation of & stralght _
h= -‘*_}{—zﬁﬁ'c ' : lme that is, each has a slope, dh/dz, equal .

re ' : ~(Q/KA), and each has & distinct inter- -
Wher? ¢ cou}d represent _amlr °9“m’1?.term ' cept on the k axis, where x=0. This mter- .
e i No matte hat alue e S o apt o simply the valuo of the contant- .

ng as 1t 18 o if w set 0 the solution we obl:am :
‘z) its derivative with respect to z will be ;m(;e e set 2=0 in the 0

zero. Thus regardless of the value of ¢, dlﬁ'er- : Yo ' N ~£’
entiation will yield the result -  Return to Sectlon § and choose another
dh Q- o © ~ answer. .

dc KA
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’

Your answer in Section 24 is not correct.
According to Darcy’s law, the specific dis-
.charge, Q/A, is given by

A dxz

" If the specific discharge increases as the-
stream is approached, the head gradient
dh/dxz must also increase—that i3, become

i ) EJ2;1'

steeper—as the stream.is approached. A. plot
of h versus distance would thus be some sort
pf curve. In the statement of the problem in
ection 24, however, head was described as
Increasing linearly with: dxsf;ance away from
the stream. Since head mcreages in a lmear
fashion, dh/dx is constant. '
Return to Section 24 and choose another
answer.

Your answer in Section 10,

\ t correct. If is true that differentiation
~ of thig equation yields the result

dh = Q

—

dxz  Kbw
whlch is oux given differential equation; but
this in itself\is not enough to make it the-

answer to our-problem. If ‘we set z equal to

zero in the expression

we obtain the result k=0. That is, this equa-
tion says that wﬁere x is zero, at the edge of
the stream, hydraulic head is also zero. Ac-

\

022
cording to the statement of our problem,
however, head is equal to k,, the elevation of

-the streani surface above datum, at x=0. The’
. solution which we require must not only have ..

the property of yleldmg the given differen-
tial equation - -
dh Q’

. dx’ Kbw
when it is differentiated; it must also have .
the property that when z is set equal to zero .
in the solution, hydraulic head will be h,.
This is an example of what is meant by a -
boundary condition,; the solution must satisfy '
a certain condition (h=h,) along a certain
boundary (z=0) of the problem.

Return to Section 10 and choose another -
0 ;

answer. . \ 3 "
023

1.

Your answer, x=2y+K, in Section 1 is not
correct. We can rearrange the equation you
selected as fol]oWs : '

K o
. ~ow——. S

Now if we dlﬁ’erentlate thls equatlon,
obtam ; .
L g%,
der
: Whlch is not the dlfferentlal equ]atlon w1rbh

) whxch we. sw.rted We were asked to fmd a

solution ‘to the dlfferentlal equation

d -

LK

dx 4 :
that is, we were -asked to find an algebraic
equation which, when dlﬁ‘erentlated, would
yield the result dy/dz=K. ' :

Return to Section-1 and test the remammg. 7
answers by differentiation, to see whlch one
satlsﬁes this condltlon : :

- .
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Your answer in Section 10,

h=h,— X
" Kbw
is correct. The differential equation tells us
that a plot of %4 versus z will be a straight
line with slope

Q
Kbw

- hile from the other information given, we

know that at-x=0, & is equal to k.. Thus, to
describe & as s function of 2 we require the
equation of a straight line, with k, as the,
intercept and — (Q/Kbw) as the slope. We
can make two tests to verify that we have

" obtained the correct solution; first, wé& may

differentiate the solution with respect to =z,
to see whether we obtain the differential
equation ; second, we may let z equal 0 in the
solution to see whether the condition that &
is ho at =0 is satisfied. Only if our equation
meets both of these tests is it the solution we
require. The condition that 2 must be h, at
=0 is an example: of what is commonly
termed a boundary condition; it is a condi-

tion which states that 2 must have a certain-

value along one or another of the boundaries
of our problem. The differential equation, .

dh Q

dxr  Kbw
i in itself insufficient to define head as a
function of x. It establishes that the graph of
h versus r will be a straight line with slope
Q
Kbw -

<

—

but there are an infinite number of such
straight lines which we might draw. The
additional information given by the boundary
condition—that & must be k, at z=0—per-
pits us to pick out the particular straight
line we require, by giving us its intercept. A

- boundary condition is thus a bit of informa-

tion on the value of head at a known point;

" it provides' a reference from which the

changes in head indicated by a differential
equation may be measured. The processes of
(1) differentiation to establish that a given
equation is a solution to a differential equa-

‘tion and (2) application of boundary condi-

tions to establish that it is the particular
solution that we require may be applied to
problems’ ‘much more complex than the one
we have considered here. -

QUESTION

Suppose that, in measuring observation
wells tapping a confined aquifer, we observe
a linear increase in head with distance away -
from a stream or channel which cuts com-

pletely through the aquifer; and suppose .

this pattern remains unchanged through a
considerable ‘period of. time. Which of the

following conclusions could we logically draw.

on the basis of this evidence?
) ‘ . Turn to Section:
There is no flow within the aquifer. 42

_ There is a steady flow through the

aquifer into the stream. 25
A flow which increases-in specific dis-

charge as one approaches the

stream occurs in the aquifer. . . 21

250

Your answer in Section 24 is correct. This
serves to illustrate the dual utility of flow
equations in ground-water hydraulics—they
enable us to . predict the head distributions
" associated. with various conditions of flow
and they enable us to draw conclusions re-
garding- ground-water - flow on the basis of
head distributions observed in the field.

50

Suppose we now considsr an aquifer in
which the flow is unconfined, so that the
upper limit of the flow system at any point
is the water surface, or water table, itself.

" Again we consider uniform flow away from

a stream, as shown in the diagram. It is con-

© venient in this case to take the base of the

unconfined aquifer. as our head datum. We
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Impervio;; material

assume that vertical components of flow are
negligible. This assumption is never wholly
satisfied, as movement cannot be entirely
lateral in and near the free surface, owing to
the slope of the surface itself. Frequently,
however, the vertical velocity component is
slight compared to the lateral and therefore
can be neglected, as we 4re doing here. An
important difference between this problem
and the confined-flow problem is that here the
cross-sectioral area .of flow diminishes along
the path of flow, as h decreases, whereas in
the confined problem it remains constant.

Con—525

Along a reach of the stream having a length
w, seepage into the aquifer occurs at a rate
2@Q; and we assume that half of this seepage
moves to the right, into the Art of the
aquifer shown in the sketch.

QUESTION

According to the assumptions outlined
above, wh;ch of the following relations is

" obtained by applying Darcy’s law to this

problem?
Turn to Section:
dh
= —Kxw— 26
dx
Q dh _
~=—-K— 43
bw dx
dh
Q=—Kwh—" 9
‘dx

026

Your answer in Sectidﬁ 25,

dh

=+~ Kxrw—,

) dx
is not correct. Darcy’s law states that the
flow is the product of the hydraulic conduc-
tivity, the cross-sectional area of flow, and
the (negative) ‘head gradient. Referring to

the diagram of Section 25, the cross-sectional
area of the flow—that is, the cross-sectional.
area taken at right angles to the direction of
movement—can be seen to be equal to wh.
In the answer which you chose, the term zw
appears as the area of flow.

Return to Section 25 and choose another

Your answer, 2-rb, in Section 41 is correct.
The flow is radially inward in the' (negative)
7 direction—that is, parallel to the MNaxis of

\  ' _ _. 56

027

polar coordinates. The cross-sectional area of
flow is a surface which is everywhere normal
to this direction of flow; hence it is a cylin-
drical surface, and its area is given by the
expression for the area of a cylinder.

As we proceed inward along the path of
flow in this problem, the cylindrical area of

- flow becomes smaller and smaller, as illus-

trated in the sketch. This is also evident from

our expression for the cross-sectional area, - -

which_tells us that as r decreases, the area

must decrease.
i
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Vthgh of the following statements is cor-
rect?

Turn to Sec'ion
(a) Although cross-sectional area is
decreasing, radius is also de-
creasing. Threse factors com-
bine in such a way that the

{b) Cross-sectional area decreases
along the path of flow, while
discharge remains constant;
therefore, the hydraulic gradi-
ent must increase along the
path of flow. , 40
~={c) Cross~sec’aona1 area of ﬂow de-
" creases along the path of flow,
but this is offset by conver-
gence of the flowlines. toward

hydraulic gradient remains tne well, and no increase in the
constant. 11 hydraulic gradient occurs. . 82
280
Your answer in Section 19, 23Q 7
2.30 r ho—h,= log—.
. w .
he—h,.= log—, ) ] 2=Kb ) 72. o
2:Kb 7, Comparison with the equations in Section 38

is not correct. If we/let &, and », be repre-
sented by k. and 7., and if we let &, and 7,
be represented by 7, nd 7,, your answer can
be restated in the fo7'1;:1

i

/

will show that this is not the form which we

require. :
Return to Section 19 and choose another

answer.

Your answer in Section 7 is not correct.
The given differential equation

Q dh
A dx
can be rearranged to
, ko9
dx KA

In order for all three of the given expres-
sions to be solutions to this equation, all
three would have to yield — (Q/KA) as the
derivative of 7 with respect to x. But if we

differentiate u{presswn (¢), for example,

~ which was

o - \
.

~ Q
ho= iy =2 4T,
KA

we obtain v
dh -2Q
&Ly

dx\ KA

which is not the giver\l\ differential equation.‘.
Thus we can see that at'least expression (c)
does not satisfy the given\equation

Return to Section 7 and test the remaining
expressions, by differentiation, in order to
find the correct answer. N, '
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/

Your answer in Section 19,

2.3Q

h,—h,.=
2=zKb
is not correct. The term log 7. will obviously
be greater than log »,, since 7. is much
greater than 7. Thus the expression on the

(log r..—log r.j,

0130

right in vour answer will be negative, imply-
ing that %, is greater than k.. This does not

make sense; the head in a discharging well
cannot be greater than the head at the radius

" of influence of the well.

Return to
answer.

Section 19 and choose another

Your answer in Section 2 is not correct.
If equal changes in head were observed over
intervals representing equal changes in 7,
we could write '

Al
—=constant

/ Ar

where Al is the change in head which is
always observed over any interval of radial
width ar. In derivative form this would-be

/ \*‘d

031

dh
=constant,
dr

and this is not the condition which has been
shown to apply to this problem. The condition
our plot must satisfy, rather, is -

dh

v d(In)
Retdrn to Section 2 and choose another
answer.

=constant.

032

- area; it is, rather, caused by thisTdecrease in
flow area. The decrease in flow area as the
well is approached is a fundamental charac-

teristic of the discharging well problem; in
effect the decreasing flow area has a dominant
influence on the form of the head distribution
around the well.

Return to Section 27 and select another
answer. '

033

Your answer in Section 40,
.Q dh -

Az |
is not correct. The z coordinate was not used
in our analysis of this problem; we did not

;

set up an z axis along which head could vary.
The"answer which you selected involves 2
derlvatlve of head with respect to = and thus
cannet apply to our preblem. -

Return to Section 40 and choose another
answer.

58
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Your answ.ver in Section 38 is not correct.

The equation

2.3Q r.
- * leg—

_ 27K b T .
indicates that if the ratio r./r,—that is, the
ratio of the outer radius to the inner radivus—

l.~h, =

is the same for two different intervals, then
the head drops across those intervals must be
equal. For the.two intervals mentioned in the
answer which you chose, these ratios are
10/1 and 1000/100. - )

Return to Section 38 and choose another
answer.

330

Your answer in Section 40 is correct. The
hydraulic gradient here is dh/dr, since flow
is in the r direction. We assume radial sym-
metry around the well, so that the angular
polar coordinate, 6, need not appear at all.

We now rewrite the equation which you se-

lected in the form: |

and ‘we focus our attention for a moment on
the left-hand member. According to the rules
of differentiation we may write:

| dh ~ dh d(In7r)

dr d(lnr) dr -
where In 7 denotes the natural logarithm of
r; ankl we may recall from introductory cal-
; culusithat the derivative of In » with respect
to r is given by

d(lnr) 1
dr r
QUESTION

Using these expressions, which of the fol-
lowing may be obtained as a correct restate-
ment of the differential equation for the
problem?

B 4
Turn to Section:

dh QUn») ,
—_—— 39
dr 27er
dh Q

= . h 2

d(lnr) 2zKb
“dh
(nr)—=e———o 13
dr 2:Kb

36 O
Your answer in Section 10,

1=2@Q ———1,

, Kb
is not correct. This answer is indeed a solg-
tion to our differential equation, for whan we
differentiate it we obtain the differential
' equation .
‘ dh - Q

| dr  Kbw
‘However, if we set z equal to zero in the
answer which you chose, we find that hy-
draulic head, k, is equal to 2Q at the point
. where z is zero—that is, at the edge of the

stream. In the discussion of Section 10, how-
ever, it was stated. that hydraulic head was
equal to /i, at the edge of the stream—=k,
being' the elevation of the stream surface
above datum. This problem illustrates what
is meant by the term boundary condition;
the solution must satisfy a condition along
one boundary (h=h, at £=0) in addition to
satisfying the given differential equation.
There are an infinite number of possible solu-~
tions to the above differential equation, but
only one which satisfies this reqmred bound-
ary condition.

Return to Sectlon 10 a.nd choose another
answer. :

59
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Your answer in Section 38 is not correct.

If the equation
2.3Q <r._.
log —)

2=Kb
is applied to the two intervals in question,
we have

2.3Q 10 2. 3Q
hio—h,= logl — |=——
2Fb 1 2:.-Kb

h.—h,=

\": /

037

2.3Q <ioo>_ 23Q

log { —
2=Kb 10 2=Kb
Return to Section 38 and choose another

answer.

-hm

Your answer in Section 2 is correct. The-

equation states that the derivative of h with
respect to In 7 is a constant. Thus a graph of
h versus In r will be a straight line, which
will have a slope equal to

Q

——

2.Kb

The sketch shows such a graph. As In r
changes from In 7,.to In 7, head decreases

from h. to h,; and as with any straight line .

- function, the change in head can be obtained
by multiplying the change in the independent
variable by the slope of the line; that is,

he—hy = (Inr:—Inn).

2zKb

o

e e e —

-
=
-

T . _ In 7

] | | |
0.1 1 10 100 1,000

Logarithmic scale

This can be written in the equivalent form

T2
log —
27I’K b r,

ho—hy =

inasmuch as the difference hetween In 7, and
In », is simply the log of the quotient
In (r./r). At this point it is convenient to
change from natural logs to common logs.
This involves only multiplication by a con-
stant—that is In r=2.3 log r, where log 7
denotes the common logarlthm, or lég to the
base 10. Making this change, our equation

takes the form
. 2-3Q ,r. '
ho—h,= log (—3-) _
| -_ ZTer A\ , .- €
or ‘ .
A 3Q S
h.—h,= (log r,—log 79).
) 21er

Again a graph can be plotted ofwh versis
log 7—or, to do the same thing more con-

<

6o - .
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veniently, a graph can be plotted of  versus
r on semilog paper, as shown in the sketch.
Since we have only multiplied by a constant,
the graph remains a straight line.

QUESTION

On the basis of the graph shown in the
figure and the equations given above, which

390

Turn to Section:

(a) The head drop between = 10 and

r=1 iz equal to that between
r=1,000 and »=100. i 19

(b) The head drop between r=10 and

r=1 is less than that between
7=1,000 and r=100. . 34

(¢) The head drop between =10 and

r=1 is much greater than that

of the following statements is correct? between =100 and r=10. : 37
Your answer in Section 35, dh 1 . dh
h - QUnn) - dlnn)

dr - 2zKb
is not correct. The following relations were
given in Section 35:

'dh_ dh d(Inr)

dr d(ln7) dr

and ‘
dilnr) 1

dr r .
'Combining these,

40°

In the question of Section 85, the 1dea is

‘to substitute the term

1 dr
_ # d{lnr) *
for the term '
dh
dr

. in the dlﬂ'erentlal equation for our problem.

Return to Section 85 and choose another
answer.

Your answer in Section 27 is correct. The
decrease in cross-sectional area must, accord-
ing to Darcy’s law, be accompanied by a
steepening of the hydraulic. gradient. When
we apply Darcy’s law to this problem, we 'will

omit the customary negative sign. This is

done because @, the well discharge, must
itself carry'a negative sign in this problem,
since it is oriented toward the well, in the
direction of decreasing values of r. The mega-
tive sign on @ combines with the negative
sign used by convention in Darcy’s law to
yield an equaticn in positive terms.

61

QUESTION
Which of the following expressions is a

- valid application of Darcy’s law to this: prob-

lem, and hence a valid differential equation
for the problem? :

Turn to Section:

dh :
4 dz :
dh .
271rb dr
Q d{h?
‘ (h?) e
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Your answer in Section 9,

he=hgt—~——x,

Kw

is correct. The solution indicates that k wﬂl
have the form of a parabola when plotted

versus z-in this case. The parabolic steepen-

ing of the hydradlic gradient compensates

for the progressive decrease in flow area, in
such a way that Darcy’s law is always satis-
fied. This approximate theory of unconfined
flow was introduced by Dupuit (1863) and
the assumptions involved in it are frequently
referred to as the Dupuit assumptions. If
the method is used in. cases where these
assumptions do not apply, serious errors can
be introduced.

041

We next consider another problem in
which the cross-sectional area of flow dimin-
ishes along the path of flow, leading to a
progressive steepening of the hydraulic
gradient. In this case, however, the decrease
in area is generated by cylindrical geometry
rather than by the slope of a free surface.

The figure shows a well located at the cen-
ter of a circular island. The well taps a con-
fined aquifer which is recharged by the open
water around the perimeter of the island.
During pumping, water flows radially inward
toward the well." We assume that the open
water around the island maintains the head

at a constant level along the periphery of the

aquifer and that the recharge along this
periphery equals the well discharge. Since
the well is at the center of the island and the
island is circular, we can assume that cylin-
drical symmetry will prevail; we can there-
fore introduce polar coordinates to sumphfy
the problem

QUESTION

If b represents the thickness of the aquifer,
which of the following expressions repre-
sents the cross-sectional area of flow at a
radial distance r from the axis of the well?

Turn to Section:

2=rb - 27
x1?h 12

27r? 6

Your answer in Section 24 is not correct.

The statement that there is a linear increase,

in head with distance away from the stream
implies that there is a non-zerg slope, dh/dz,
in -the potentiometric surface, and this in
‘turn implies that flow exists in the aqu1fe1‘
Darcy’s law states. that
: dh
Q=—KA—,
Codx ,
Hydrauhc conductivity, K, may be very low,

/

042

_ but cannot be considered equal to zero as long

as we are dealing with an aquifer- in the
normal sense of the word. Thus in order for
Q to be zero, through a given area A, the head
gradient dh/dx normal to A must be zero. In
this case we have observed 2 head gradient
which is not.zero.in the aquiifer, so we know -
that flow of some magnitude must exist in
the aquifer. ,
Return to Section 24 and choose another

- answer.
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43 o

Your answer in Section 25,
Q dh

bw dx
is not correct. You have taken the cross-
sectional area of flow to be bw—that is, the
product of aquifer thickness and width of
section. An examination of the figure in Sec-

tion 25 will show that this does not represent
the actual area of flow. The aquifer is not
saturated through its full thickness, but

-rather to a distance h above the base of the

aquifer. Thus, the cross-sectional area of flow
is wh, rather than bw.. .

Return to Section 25 and choose another
answer. '
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Part 1IV. Ground-Water Sto'rage

Introduction

In Parts II and III we dealt with aquifers
and porous media only as conduits—that is,
. we discussed only their properties relating
to the transmission of water in steady flow.
Aquifers have another very important hy-
draulic property—that of water storage. In
Part IV we will examine this property of
ground-water storage and develop an equa-
tion to describe it. In Part V we will develop

the differential equations for a simple case
of nonequilibrium flow by combining the
storage equation with Darcy’s law, by means
of the equation of continuity, which is simply
a statement of the principle of conservation
of mass. In Part VI, we will repeat this
process for the case of nonequilibrium radial
flow to a well and will obtain an important
solution to the resulting differential equation.

P e Rk kil .

¥ AR

N
N S S h

The picture shows an open tank, having a .

square base of area A. If a volume of water,

AV, is poured into this tank, the water level -

- will rise by an ‘increment, Ah, such that

!

AV =A4-ah. The total volume, V, of water in
storage in the tank at any time can be deter-
mined by measuring the ‘depth, k, of water
in the tank and multiplying this depth by A.

QUESTION

Suppose ‘the totél volume of water in stor-
age is plotted as a function of the level of-

water in the tank, so that the volume asso-. .

ciated with any water level can be read
directly from the plot. The graph will be:

Yurn fo Section:

- N4 _
(a) a parabola with slope 7 10
A

e IN
(b) a straight line with slope -—’;—=A 11
. . A :

(¢) a logarithmic curve o9

53
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2

Your answer in Section 26 is not.correct.
The volume of water present in the sand
initially was kAn. A certain fraction, 8, of
this fluid volume was drained off by gravity,
leaving the fraction 1-g still occupied by
fluid. B thus represents the fraction of the
total pore space, below the level k&, which does
does not already contain water, and which

3

must be refilled In order to resaturate the
sand to the level k. That is, in order to re-
saturate the sand to the level %, a volume of
water equal to this unoccupied pore volume
must be pumped into the tank.

Return to Section 26 and choose another
answer.

-

Your answer in Section 21 is not correct.
In the imaginary experiment deseribed in
Section 21, it was stated that doubling the
base area of the prism had the effect of
doubling the slope of the V,h plot—that is,-
of doubling the term dV/dh. Thus, dV/dh

|
i
i
i

depends upon the size of the prism consid-
ered, as well as upon the type of aquifer

~material; it cannot be considered a constant

representative of the aquifer material. ..
Return to Section 21 and choose dnother,
answer.

Your answer in Section 16,

AV dv
__.":_-_._.:‘nﬁ’
Ak dh

is not correct. It neglects the effect of the
base area, A, of the tank. '
We have seen that when the tank is drained
by gravity and then resaturated to the level
h, the relation between V and & is :
: V=hAng

where 7 is the porosity of the sand and g the
. fraction of the water in the sand that can be
drained out by graTrity. Now if, instead of

draining the sand to the bottom of the tank,
we simply remove a small volume of water,
AV, so that the water level in the tank fall

by a small amount Ak, we should expect aV
and Ak to be related in the same way as V
and & in our previous experiment. If we are

\resaturating the sand by increments, when

has previously been saturated and them
iined by gravity, the same relation should
hol

Ret}n‘ to Section 16 and choose another

' answer.
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Your answer in Section 20 is not correct.
If each well penetrated both aquifers, there
would be no reason for the responses of the
iwo wells to differ. The form of the response
might be difficult to predict, but at least it
should be roughly the same for each well.

Your answer in Section 32 is correct. Spe-
cific vield figures for normal aquifer ma-
terials may range from 0.01 to 0.35. It is
common to speak of the specific yield-of an
unconfined aquifer as a whole; but it should
b€ noted that the process of release from: un-
confined storage really occurs at the water
table. If the water table falls or rises within
an aquxfer, into layers or strata having dif-
ferent hydraulic properties, specific yield
must change. In addition, of course, specific
vield can vary with map location, in response
to local geologic conditions. .
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Keep in mind that the storage coefficient o

the artesian zone will probably be smaller = -

than the specific yield of the water-table
aquifer by at least two orders of magnitude.

Return to Section -20 and choose another
answer.

Unconfined storage is probably the most
important mechanism of ground-water stor-
age from an economic point of view, but it
is not the only such mechanism. Storage

.effects have also been observed in-confined

or artesian aquifers. The mechanism of con-.
fined storage depends, at least in part, upon
compression and expansion of the water it-
self and of the porous framework of the

-aquifer; for this reason confined storage is

sometimes referred to as compressive stor-

_age. In this outline we will not attempt an

analysis of the mechanism of corfined stor-
age, but will concentrate instead on develop-
ing a mathematical description of its effects,
suitable for hydrologic calculations. A dis-
cussion of the mechanism of confined storage
is given by Jacob (1950, p. 328-334), and by
Cooper (1966).

The diagram shows a vertical prism-ex-
tending through a uniform confined aquifer.
The base area of the prism iz A. Although the
prism remains structurally & part of the con-
fined aquifer, we suppose it to be isclated
hydraulically from the rest of the aquifer by
imaginary hydraulic barriers, so that water
added to the prism remains within it. We
further imaginé that we have some method
of pumping water into the prism in measured
increments, and that we have a piezometer,
as shown in the diagram, through which we
can measure the head within the prism. '

(continued on next page)
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/
QUESTION
Suppose that head is initially at the level
h,, which is above the top of the aquifer, in-
dicating that the prism is not only saturated,
but under confined hydrostatic pressure. We

Volume of water in storage, V

1

Hydraulic head, A

6—Con.

designate the volume of water in storage in
this initial condition as V,. Now suppose
more water is pumped into the prism by
increments; and that the head is measured
after each addition, and a graph of the vol-
ume of water in storage versus the hydraulic
head in the prism is plotted. If the resulting
plot had the form shown in the figure, which
of the following statements would you accept
as-valid?

Turn to Section:
(a) The rate of change of velume of
water in confined storage, with
respect to hydraulic head, %, is
av

constant; that is =constant 21
dh
(b) The rate of change of hydraulic
head with respect to volvme in .
storage depends upon the vol-

ume in storage. 23
(¢) The rate of change of volume in

storage, with respect to the base -

area of the prism, is equal to ah. 30

/

Your answer in Section 32 is not correct.
One important concept which is missing from
the definition you selected is.that specific
yield refers to a unit base area of the aqui-
fer. The definition you selected talks about
the volume of water which can be drained
from the aquifer—this would vary with ex-

tent of the aquifer and would -normally be a -

7

very large quantity. As we wish specific
vield to represent a property of the aquifer
material, we define it in terms of the volume
that can be drained per unit map area of
aquifer. ’

Return to Section 32 and choose another
answer.

Your answer in Section 25 is not correct.
The relation given in Section 25 for the rate
of release of water from storage was

dv dh
— =SA—
“dt dt

* where S is the storage coefficient, A the area
of aquifer under study. and dh/dt the rate

of change of head with time within that area
of aquifer. In the question of Section 25, the
the specific yield of the water-table aquifer
was given as 0.20, and the rate of decline of
water level in the shallow well was given as,
0:5 foot per day. The surface area of a?ttion
of the aquifer within a 10 foot radiuf of the
well would be »X10? or 314 square feet. The
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rate of release from storage in this section
would therefore be
dv dh
—=SA—=0.2X314%05
dt dt
' =31.4 cubic feet per day.

Return to Section 25 and choose another .
answer. -

Your answer in Seetion 1 is not correct..
Whenever we add a fixed volume of water —

say 10 cubic feet—to the tank, the water level
must rise by a corresponding fixed amount.
If the base area of-the tank is 5 square feet,

" the additior of 10 cubic feet of water must

always produce an increase cf 2 feet in h;
the addition of 15 cubic feet of water must
pPeduce an increase of 3 feet in k; and so on.
The ratio .\V/Ah in this‘icase must always

Your answer in Section 1 is not correct..

The increment in the volume of water within
the tank, resulting from an increase in water
level of Ah, is given by AV=AAh. Thus,

Ay’

b
where A, the base area of the tank, is a con-
stant. If we construct a plot of V, the vol-

~

Piezometer—

-

10

be 5. In other words, the ratio AV/Ah is con-
stant and is equal to the base area, A, of the
tank.

Now if we plot V versus h, the slope of
this plot will be AV/Ah, by definition. This
slope, as we have seen above, must be a con-
stant. A logarithmic curve does not exhlblt
a constant slope.

Return to Section 1 and choose another
answer. -

ume of water in the tank, versus h, the level
in the tank, the slope of the plot will by defi-
nition be AV/ah; but since AV/ah is a con-
stant, the plot cannot be a parabola. The
slope of a parzabola changes continuously
along the graph. ’

Return to Sectiorn 1 and choose another
answer.

Your answer in Section 1 is correct. The
slope of the graph, AV/AR or dV/dh, is cor-
stant and equal to A. \Thus the volume of
water in storage per foot of head (water
level) in the tank is A. /

Now consider the tank shown in tl‘e-'

sketch. It is similar to the one we just dealt .

with, except that it is packed with dry sand
having an interconnected (effective) poros-
ity denoted by #. The tank is open at the top
and has a base of area A. Water can be

[l :6 8
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pumped into the tank through a pipe con-
nected at its base, and the water level within
the tank—that is, the level of saturation in
the sand—can be measured by means of a
piezometer, also connected at the base of the
“tank.

-

QUESTION ’ Y,

Suppose we pump a small volume of water,"
V, into the tank and observe the level h, to

‘.

Your answer in Section 11 is not correct.
If the water rises to a level . above the base
~ of the tank, the bulk volume. of saturated
sand (neglecting -capillary effects) will be
hA. This bulk volume must be multiplied by v
“the porceity to obtain the total volume of sat-

R

Your answer in Section 25 is correct: The-
release from atorage in a given area in the
water-table aquifer is given by

dV., <odh 4
=S, A—=0.2XxAX0.5=0.1A4.
dt dt
The release from:storage in an equal area in
the artesian, aqulfer would be

v an
=SA—=2x10-'xA x5~ 0001A
dt Cdt |

PO

—

Your answer, V=hAn, in Section 11 is cor- .
rect. Now suppose water is added to the tank
in increments, ‘and k is measured after the
addition of each increment; and suppose a
graph of V versus k is plotted, where V is the
- total or cumulative volume which has. been
- added, and & is the water level in the tank._ '

QUESTION

Agam neglecting all caplllary effects, the
. resulting graph would be

13—
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which water rises in the pieZometer. Neglect-
ing all capillary effécts, which of the follow-
ing expressions-would constitute a valid re-
lation between the volume of water pumped

"into the tank and the rise in water Ievel above

the base of the tank?

Turn fo Section:

V=Ah 31
hé VAn 12
! V=hAan 14

;

.urated pore space. A review of the definition
. of porosity as given in Part 1 may help to-
clarify this. '

Return to Sectlon 11 and choose anotner
answer.

Thus the water-table .contribution exceeds
the artesian release by a factor of 100.

This completes our mtroductory discussion -

. of aquifer storage. You may go on to Part V,

in which we “will -.combine 'the concept of-
aquifer storage with, Darcy’s law, using the

equation of continuity, to develop the differ- .
ential equation for a simple problem in non-

equilibrium ground-water flow.

u

Turn to Section:

' AV 1 .
(a) a straight 11ne w1th slope —=—  17.
" Ah An '
g AV c
(b) a straight line with slope ————An 26
Ah -

(c) a loganthmlc curve with slope -

depending on & 22

R
A
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Your answer in Section 20 is not correct.

The specific yield of the water-table aqulfer.',-

would normally be greater than the storage
coefficient of the artesian zone by at least two
__orders_of magnitude. A seasonal fluctuation
_in pumpage would usually involve a brief
" withdrawal from storage, or 4 brief period of
accumulation in storage. The two aquifers
dre pumped at about the same rate, so pre-
sumably seasonal acjustments in the pump-

-age _will be of the same order of magnitude

correct. This expression gives the volume of
water withdrawn in drammg the tank by
gravity, and the volume whiéh must be added

to resaturate the sand to the original level,

under our assumption that the fraction held
by capillary forces is constant.

QUESTION | _
Suppose, subject to the same assumption,

that the tank is drained by removing incre-

. ments-of water (or resaturated by adding

increments of water) and a graph of the vol--

" ume_of water in storage, V, versus the level

/

Your answer in Section 14 is not correct.

~ We have seen that if a volume of water, V,

“is" pumped -into the tank when it is ‘initially

", dry, the equation ,/
o V=h- -4 n

describes the relation between V and. k, the

Jevel of water in the sand. If the sand is.

I5-

16

Your answer, V=Ang, in Section 26 is

for each. However, the response of the two
aquifers to withdrawal (or accumulation) of
a similar volume of water would be com-
pletely different, and would be governed by
their storage coefficients. The aquifer with
~the higher storage coefiicientcould—sustain——
the withdrawal with less drawdown of water
level than could the aquifer with the lower
storage coefficient.

Return to Section 20 and choose another

answer. o B
Fl f ‘ - \

of saturation, h, is plott'ed'from the . results
of the experlment Which of the following
expressions would\describe the slope of the

' resulting graph?

" Turn to Saction:

._....~=..__.=nﬁ . ’ 4
aAh dh
AV - dV L
——=——=Anp 33
Al dh . .
AV dvV
=l <hAng . 29
, Ah. dh ‘
17—
already saturated to some levei, d an addi- .
tional volume of water; AV, ig pumped in,

the water level will rise by an increment Ah,

such that i _
AV=ah-A - n.

Return to Section 14 and use-this relation

in choosing a.nother answer.

:

/,

R
\ -

70



60

; Your answer in Section 26 is noi .correet.
h+A-n would represent the volume of water
required to raise the water level to a distance
I above the base of the tank, if the sand were -
z'nitz'ally dry. In this case, however, the sand

TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

18

-

does not already contain‘water. The total
-volume of pore space below the level 7 is
h-A-n;

when the sand was .initially sat-
urated, this entire volume contained water.
When the sand was drained, a certain frac-

—__is not initially dry Some of. i:h&pore_spa,ce-ls-~t49n—ofa4:h45»wat'ep——whleh—we des;gﬂa%e-ﬁ———

already occupied by water at the beginning
of the experiment, since after drainage by °
gravity, capillary effects cause some water
to be held in permanent retention. The vol-
ume of water which must be added to resat-
urate the sand to the level ‘. is equal to the
volume of pore space below the level 2 which "

Your answer in Section 83 is not correct.
Because the aquifer material is identical to
the sand of our tank /expellments and because’
the base area-of our prism of aquifer is equal
to the base area of our tank, we should expect
the relation Letween volume released from
storage and decline in water level within the
prism to be identical to that obtained for the
tank. In the answer which you selected, how-

/ . -
Your answer in Section 21 is correct. The
results of the 1magmary experiment suggest
that the term

1 dv
A dh .
is a constant for the aquifer material.
In practice, in dealing with the ‘confined or
. compressive storage of an aquifer, it is usually
assuined that the quantity (l/A) (dv/dh)
is a constant for the aquifer, or is at least a
constant for any given location in the aquifer.
This quantity, (1/A4) (dV/dh), is denoted S
" and is called the confined or compressive stor-
age coefficient, or simply the storage coeffi-
. cient, of the aquifer.

71
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‘was 1e\m_oved The remaining fraction, 1-5,"

was held by capillary retention in the sand.

‘Thus B represents the fraction of the pore '

spdce which is empty when we begm to refill
the tank. :

Return to Sectlon 26 and chuoue another
answer. .

ever, there is.no description of the effect of

‘capillary retention. Remember that the fac-
‘tor B, which was used in the tank expemment

to describe the fraction of the water Which
could be dlamed by gravity, as opposed. to ..
that held in capillary retention, must appear )
in your answer. ' -
Return to Section 33 and choose another

. answer,

20

\

I

[ .
1t would of course be difficult or impossible
to perform the experiment described in Sec-,

tion 6. However, if stcrage coefficient is de-

fined by the equation

-

a nohequilibrium théory can be developed
from this definition which explains many of

_ the observed phenomena- of confined flow.

‘The following points should be noted re- .
garding confined storage coefficient:
(1) The storage coefficient is the volunie of
water released from storage in a
- prism of unit area, extending through
the full thlckness of the aqulfer, in,
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.+ to a uni* decline in head.
{ o ‘*ement can be appreciated by

respn’
- This «

a review of the hypothetical experi- ..

ment described earlier, or by letting

- 2(—Con. — —

aquifer. Where vertical differences do occur,
one must allow for the possibility of different
patterns of storage release at different poin
along the vertical, and a storage definition

A=1 in the finite-difference form of

the definition, S=(1/4) (aV/ah).
(2) The definition of storage coefficient is
similar to that of specific yield, in the
sense that each is defined as the term
(1/4) (dV/dh), for a prism extend-
ing through an aquifer. Thus in many

applications, the two terms occupy the

the same'position in the theory. In the
_case of an unconfin:1 aquifer the spe-
cific yield is often 1eferred to as the
storage coefficient.

(3 1t should be noted, however, that the
processes involved in the two types of

‘storage are completely different. With-

drawal from or addition to unconfined
storage takes place at the water table;
it is spoken of as occurring in a prism

of aquifer because it is usually the

only significant form of storage within
such a prism in most water-table situ-
ations. Confined storage effects, on the
other hand, are distributed through-

-out - the vertxcal thickness of an
aquifer.

(4) Confined storage’ coefficient values are
generally several orders ot/ magnitude
less than speclﬁc yield va}lues Specific
yields range typically from 0.01 to

0.35, whereas confined storage values
usually range from 10~3 to 103,
. The definition of confined storagze in terms

f a prism extending through the aquifer is

. adequate where the flow is entlrely horizon-

tal—that is, where no differences in head or
in lithology occur along a vertical within the

3

based on a prism is no longer adequate. UES
is therefore made of the specific storage, S
which is defined as the volume of water .
leased from confined storage in a unit ol

/
ume of aquifer, per unit decline in hea/ In
a homogeneous aquifer, S, would be eq al to
S dlvu]ed by the thlckness of the aqu' fer.

QUESTION

Consider a small ground-watey basin that
has both an artesian aquifer & d a water-
table aquifer. Regional wx\thdra al from-4 -
artesian aquifer is about equal , 'rom\\—'w
the water-table aquifer, and seasonal fluc-
tuations in pumpage are similar. Records are
kept on two observation wells, neither of
which is in .the immediate vicinity of a dis-
charging well. One well shows very little
fluctuation in water level in response to sea-
sonal variations in pumpage, while the other -
shows great fluctyation. Which of the follow--
ing statemients would more probably be true?

Turn to- Section:

(a) The well showing little ﬂucth\atlon _
taps the ~water-table aquifer,
while that showing great fluc- -
tuation taps the artesian zone. 25\
(b) Each well penetrates both aquifers. 5
(¢) The well showing great fluctuation ‘
taps the water-table aquifer,

while that showing little flue- .
tuation taps the artesian zone. 15

72



........ suppose-we-observe that, as-a-resuit-of-the

"Your answer in Section 6 is correct. The

plot is a straight line, so the slope, dV/dh,

is'a consta.ut™Néw suppose the prism is ex-
- panded to twice its original base area, and
olir imaginary experimem. is repeated; and
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Turn fo Section: '

increase in base area, the slope of our V, k
plot is twice its original value.

! . QUESTION

Let A now represent the base area of any
: general (vertical) prism through the aqui-

fer; or in general, let A-represent the surface

area of the section of the aquifer we are iso-
lating for discussion. On the basis of the evi-
dence described, which of the following
* statements would you be inclined to accept?

Your answer in Section 14 is not correct.
We have seen that, neglecting capillary
: effects, there is a linear relationship between
the volume of water, V, pumped into the tank

when it is initially dry, and the Jlevel of

water, i, above the base of the tankm That is,
. a constant woefficient, An, relates these two
quantities:

22

V=h-A-n. This linearity holds .

as well if the water is added to the tank in
increments. Each incremental
water, AV, pumped into the tank produces an
increment in head, Ak, such that '

AV=Ah-A-n.

Return to Section i4 and choose another
answer. = | :

23

Your answer in Section 6 is not correct.
The ratio of the change of volume of water
in storage, to the change in hydraulic head
is by definition the -slope, AV /Ah or dV/dh,
of a plot of V versus k. If this rate of change
of V with & were to depend®upon V, the plot
of V versus h would show a different slope

at different values of V. The plot, in other
words, would be some sort of curve. The plot
shown in Section 6, however, s a straight
line—it has a constant slope, the same for
any value of V.

Return to Section 6 and choose another
answer.

73
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(2) ,
A%
» dk
is a constant for the aquifer _
material B N
(b). The term
' ' 1lav
<+ A dh
is a constant for the aquer
material ‘ v 20
(¢) Theterm - .
- dv :
A
: dh
- is a constant for the aqulfer i
materlal . 84"

1

volume of .
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" Your answer in Sectien 25 is not correct.
The relation given in Section 25 for the rate
of release of water from storage was
dV dh
=SA—
dt dt

24

was 5 feet per day. A section of the aquifer
within a 10 foot radius of the observation

~ well would have a surface area of =X10? or.

314 square feet. The rate of release of water
from storage in thls section would therefore
be

heres—rs—the—storagefcoeﬂiment—z&{he—&rew :
of aquifer under study, and dh/dt the rate

of change of head with time within that area
of aquifer. In the question of Section 25, S

"was given as 2Xx10~* for the artesian aqui-

fer, and dh/dt, as measured in the deep well,

Your answer in Section 20 is correct. Be-
cause. of the higher storage coefficient of the
water-table aquifer, release or accumulation
of a comparable volume oft water will cause
a much smaller fluctuation of water level in
the water-table aquifer than in the artesian

"aquifer. In effect, we have introduced time
. variation into the problem here, since we are
discussing changes in head with time. To -

bring time into the equations, we may pro-
ceed as follows.

, Let S represent elther _speciflc yield or
storage coefficient. Then accordmg to our
definitions. we may wrlte, usmg the finite-

- difference form,

1 AV

‘A Ak

The re]atxon between the volume of Water
taken into or released from aquifer storage
in a prism of base area A and the accom-
panying changé in head, is therefore:

AV=SAAh

Now let us divide both sides of this equa- |
tion by at, the tlme interval over which the .

/dec]me in ht,ad was " observed. We then have:.

/

{

_-—-=SA——_
at At

1

aV
—L= S4——2x10 *x314><5
dt dt ,
=0.314 cubic feet per day.
Return to Section 25 and choose another’.
answer. o '

. g-'-

or, if we are ta]kmg about a vamshmg]y
small time mterva] .

dv dn

Here dV/dt is the time rate of accumula-
tion of water in storzge, expressed, for ex-
ample, in cubic feet per day;
the rate of increase in head, expressed, for
example, in feet per day.. If we are dealing
with release from storage, head will decline,
and both 2V /dt and dh/dt will be negative.

-The partial derivative notation, dh/9t, is.

usually used instead of dh/dt, because head
may vary with distance in the aquifer as well .

. as with time. This equation is frequent]y re-
¢ ferred to as the storage equatlon

/- The eguation can also be obtained using
" the rules of differentiation. ¥or the case we

are considering we have

av_dv. dh

dt dh dt

but from the definiiion of storage éoeﬁicient,
dV/dh=SA, so that by substitution

av dh

(cont'inued ém"ne:it ‘page)

.

and dh/dt is ¢
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QUESTION

‘Suppose we record the water levels in a
deep observation well, penetrating a confined
aquifer which has a storage coefficient of
2x10~*, and a shallow observation well, tap-
ping a water-table aquifer which has a spe-

cific yield of 0.20. The water level in the deep .
well falls at a rate of 5 feet per day, while

that in the shallow well falis at a rate of 0.5
foot per day. Considering the release of
water from storage in each aquifer within
a radius of 10 feet of the observation well,
which. of the following statements would be
- most accurate? :

~ Your answer in Sechon 14 is correct. If
there were no capillary effects, tﬁe result of
filling the tank with sand would/ 31mp1y be to

take up some of the volume available for
storage of water. Thus_the/slope of the piot-

of V versus h for the sand-filled tank would
differ from that for the open tanis (Section
1)" only by the factor », which is the ratio
of the storage volume available in the sand-
filled tank to that available in the open tank.

In practice, of course, .capillary effects
cannot be neglected. In this development we
will take a simplified view of these effects,

as a detailed. examination of capillary phe-

nomena is beyond 1{t.e scope of our discussion.
Let us assume that due to capillary forces, a
certain constant fraction of the water'in the

sand is permanently retained. That is, we

- assume that following the initial saturation
of the sand, we can never drain off by gravity
the full' volume of ‘water which was added
during the initial saturation. A part.of this
initially added water remains permsa:: :ily
held #h the pore spaces by capillary uttrac—

96

Turn to Sechon
(a) W1th1n a radius of 10 feet of the
shallow well, water is being re-
leased from storage in the
-water-table aquifer at a rate of

'5 cubic feet per day. 8

(b) the rate of release of water from
storage in the water-table aqui-
fer, within 10 feet of the shallow
well, is 100 times as great as
that in the artesian aquifer,
within 10 feet of the deep well. 13

(c) within a radius of 10 feet of the
deep well, water is being re-
leased from storage in the arte-
sian aquifer at a rate of 1 cubic

/

fcot per day. _ 24 .

. tion; thus the amount of water which can bp
alternately stored.and ;ecovered is reduce?

* QUESTION Ve 1

Suppose the tank is initially saturated to..

a level k'and is then drained by g‘ra\nty Sup-

. pose further that the ratio of, the volume of
water drained to that mltlally added is oo- .
served to be g; that is, the fraction of fhe'

added water which can be ‘drained is g, whlle

the fraction retained in-the'sand by caplllary-
- forces is (1—5). SubJect to onr assumptlon

that the : ractlon rebamed is a (,onst?mt

which of the fol]owmg expressions glvu/the' :
volume of water which .would have to be.

restored to. the/tenk, after draining, in order
to rmaturate ‘the sand to the same Ievel h,
as before" / ]

V=hAn : |18

——

75

V=hA— - . | 2

R ' L

V=hdng - 18
A

. j
Turn to Section: -

-
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Your answer in Section 32 is not correct.
Your answer defines specific yield as the
quantity (presumably the total quantity) of
water which can be drained by gravity from
a unit area of the aquifer. In the preceding
analysis, we developed the concept of specific
yield in terms of the guantity of water which

can be drained per unit decline in water level. ~

28

Your answer in Section 33 is not correct.
- The aquifer material was given as identical
to the sand-of the tank experiments described
previously, and the base area of the prism
was taken as equal to the base area of the
tank. We are considering only storage within
the prism itself, in-relation to water level in
the prism, and.are not concerned with what
.goes on in the aquifer beyond the boundaries

Your answer in Section 16,

A
= hAn,B
Ah  dh

is not correct. This answer would indicate
that the relation between V and h—that is,
- the slope of a plot of V versus h—is a func-
tion_of h. However, we have already seen
that if we refill the tank after it has been
drained by gravity, we will find V and % to
be related by_a constant Anp. That is, we

Your answer in Sectmn § is \lot correct
ah represents a simple cnange 1'1 the hy-
draulic head, k. It does not" represent any
form of rate of change; when we describe a
rate of change, we always require two vari-
ables, since we always consider  the ratio of
change of one variable to that of another.

At this point of our discussion, more/over,l

27

920
- 7

30 -

A verbal definition of specific yield must
therefore include this latter concept in sorne
manner—that is, it must indicate that we
are referring to the quantity released from
storage per unit decline in head. :

Return to Section 32 and choose another
answer. '

of the prism. At this rate, we should expect
the relation between the volume of water.
drained from storage and the accompanying
decline in water level to be the same for our

-prism of aquifer as for the tank of the earlier ‘

Axperiments.
Return to Section 33 and choose another
answer. X

wiil find that V=ILA1£/3 or that the ratio of ¥V

to I is the constant Ang. If the tank is

drained by increments, or refilled -by incre-
ments after draining, we would expect the
same relationship to hold between the incre-
ments of fluid volume, AV, and the incre-
ments of head, Ah, as was observed between
V and h in the initial. problem That- is, we
would expect to find that AV =Ah-Anp.

Return to Sectlon 16 and choose another' _
answer. b

4
]
!
{

we are considering the relation between the
volume of water in storage and the hydraulic
head. We have not yet-taken into considera-
tion the effect of varying the base area. of

‘our prisri of aquifer.

Return to SPCtlon 6 and choose another
answei‘
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Your answer in Section 11 is not correct.
The sand-filled tank of Section 11 differs
from the open tank of Sectior. 1, in that any
quantity of water pumped into t¢he sand--
filled tank can utilize only the interconnected

tank of Section 1 the full capacity of the tank

' was available. If the sand-filled tank is initi- .

ally empty and a volume of water, V, is
pumped in, this water will occupy the total
volume of interconnected space between the
base of the tank and the height to which the
sand is saturated (neglecting capillary

Your answer in Section 33,
) av ’
—=Ang,

‘ T o
is correct. The aquifer material is assumed
to be identical to the sand in the tank experi-
'ments, if the area of the prism is equal to
that of the tank, the two plots of storage
versus water level should be identical. Note,
"however, that area is a factor in the expres-
sion for dv/dh; if we were to choose a pris-
matic-section of larger area, it would pro- -
vide more storage. per foot of head change,
than one .of smaller area, just as a tank of
larger base ares would- provide more stor-
_age, per foot of water-level change, than a
tank of smaller area. If the bass of our prism
of aquifer were unity, the expression for
dV/dh would be simply nB; and in general,
an expression could be written for the change
in storage volumg per unit head change, per
unit area of aquzfe'r as

-Sy. Because we Have assumed (1-—
. fractlon of water retained by capillary forces,

- TECHNIQUES OF WATER—RElSOURCES INVESTIGATIONS

31 . B |

/

effects). If the water level in the sand\i\s a
distance 1 above the base of the tank, the
bulk volume of the saturated part of the sand
will be k-A, where A4 is the base area of the
tank. However, the volume of injected water

pore-volume- as—1ts~storage~space~~1n—theﬂpenmwﬂl—notvequakt-h*s—bu}k—sawpatedwe}ume,

but rather the 1nterconnec_ted pore volume
within the saturated region. A review of the
definition0f porosity as given in Part T may
help: to clarify. this.

Return to Section 11 and choose another
answer

\
v
~

* ——=ng.
A dh . .
The term ng is referred to as the specific
vield of ‘an aquifer, and is usually designated
B), the s

to be.constant, we obtain the result that S,
is a constant; and for many engineering
applications, this is a satisfactory approxi-
mation. It should be noted, however, that it
is only an approximation; the fraction of

*water held in caplllary retention may change

w1th time, for various reasons, leading to
apparent variations in S, with time.

Specific yield describes the properties of an
aquifer to store and release water (through
unconfined storage) just as permeability de- .
scribes its properties of transmitting water.
Mathematically, specific yield is equivalent to
the term (1/4) ((ZV/dh) for an unconﬁned

. aqu1fer

(contmued on next page)

0
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QUESTION (b) The specific yield of a horizontal

~ On the basis of the above discussion, which unconfined aquifer is the volume
" of the following statements would you select . of water which is drained by

as the best verbal definition of specific yield? gravity from a vertical prism of
N : o ; unit base area  extending
through the aquifer, in re-

Turn m Section:
sponse to.a unit lowering of the

w(aljhejpwﬁc vield of an unconfined

_aquifer is the volume of water saturated-level— = 6
‘which can be drained by gravity (c) The specific yield of an unconfined
from the aquifer in response to " aquifer is the quantity of water
a unit decline in head. 7 .- which can be drained from a
o o a ' unit area of thé aquifer. 27
Your answer in Section 16, ‘uniform unconfined a((‘imfe'r as shown in the
AV dV figure. The base area of the prism is again
—_—=——=Anp, denoted A. Suppose the aquifer material is
A dh identical in its hydraulic properties to the

is correct. The slope of the graph of volume sand of our tank experiments. We wish to
‘of water in storage versus water level—or  constructa graph of the water in recoverable
in other words, the derivative of V with re-  storage within the prism versus the level of
spect to i—would be constant and equal to saturation, or water-table level, in the aqui-
“AnB. " fer in the vicinity of the prism. ' We are inter- -
Now suppose that we are dealing witha - ested only in water which can be drained by

prismatic section taken vertically through a gravity; water in permanent capillary reien:
tion will not be considered part of the stor-

age.
_ > QUESTION -
IO 7 : Whlch of the following expressions Would

A I . : describe the slope of this graph‘7

. :_ e f ° o . / Turn to Section:
.:" gv,‘,- { ° ".. : s ° -: o -_—’:-411/”3 28
o’ °°|r“.°.‘-.°-, : . . dh :

RN R ' . ‘ av '

aao :;’;Ju“:-‘ean | .___:=An ) c 19 .
o.:e'-"':.,ﬂo:aeoc" . . dh ' |

IO S R av e
© ;;’(-;:A: ,"Qa / ) E;L—-:A,zﬁ ‘ 32
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Your answer in Section 21 is noi correct.
In the imaginary experiment described in

Section 21, it was stated that doubling the .

base area, A, of the prism had the effect of
doubling the slope, dV/dh, of the V, h plot.
Thus the term A(dV/dh) would be ifour
times as great for the prism of doubled area,
as for the original prism. That is, the .term

¢

A (dV/dh) would depend upon the size of the,
prism considered, as well as upon the type of
aquifer material, and could not be considered
a constant representative of the aquifer ma-~
terial. ' ,

Return to Section 21 and choose anothor
answer. o : l

-3
5



Part V. Unidirectional None.quilibrium' Flow

Introduction

In Part V, our purpose is to develop the
differential equation for a problem of non-
equilibrium flow. To do this, we utilize the

tions for m‘any other types of ﬁow; and that

solutions to these equations can be developed

for a variety of field problems. ~
Before the start of the program of Part V,

storage equation,

' dv dh
—=8SA—,
dt dt

.

developed in Part IV, and we utilize Darcy’s »

law. These two relations are linked by . =ans
of a relation called the equation of contin
which is a statement of the principle of con-
servation of mass.

‘In Part VI we will develop the. same type

of equation in polar coordinates and will dis-
cuss a solution to this equation for a particu-
Jar flow problem. In the course of working
through Parts V and VI, the reader may
reajize that the relations describing the stor-
age and transmission of ground water can
be combined to develop the differential equa-

Portlal derlvatlves in ground water flow analysis

When a dependent variable varies W1th
more than one independent variable, the
"partial derivative notation is used. A topo-
graphic map, for example, may be. consxdered
a repre.,entatlon of a dependent variablé

(elevation) which is a function of two in-

‘dependent varlables——the two map direc-
tions, which we will call « and ¥, as shown in
figure i. If elevatlon is denoted E, each
contour on the map represents a curve in the
-z—y plane along which E has some constant
value. In general, if we move in the x direc-

tion, we will cross elevation contours—that -

is, E will change Let us say.that if we move
a distance Az parallel to the x axis, E is ob-
.served to change by an amount. AE,. We may

‘ty,

there-is-a-brief-discussion,—in-text form, of

the significance of partial derivatives, their
use in gronnd-water equations, and in par-
ticular their use in a more general form of
Darcy’s law. This form of Darcy’s law-was
introduced in the text-format discussion at
v end of Part II. The discussion here is in-
tended primarily for-readers who may not be

accustomed to using partlal derivatives and—— ~

~ vector notation. It may be omitted by readers

conversant with these topics. This discussion

" is not intended as a rigorous treatment of

partial differentiation. Readers who are not
familiar with the subject may wish to review
such a treatment in any standard text of
calculus.

e

form a ratlo AE',/A:r, of this change in eleva-
tion to the lengih of the x interval in which

. it occurs. If the interval Az becomes vanish---

ingly small, this ratio is designated 9E/9x ~

“and is termed the partial derivative of E with
_ respect to x. 9F/9z is actually the slope -of —
" a plot of £ versus z, at the point-under con-

sideration, or the slope of a tangent to this
plot, as shown in figure ¢. Note that in obtain-

.ing 9E/?2x we move parallel to the x axis—

that is, we hold ¥ constant, considering only
the variation in E due to the change in . )
Simi‘avly, if we move a small distance, Ay:
parallei i the ¥ axis, £ will again change by
some small amount, AE,. We again form a
ratio, AE,/Ay; if the- distance taken along

QN .



70

the y axis is vanishingly small, this ratio is
designated pE/Qy and is termed the partial
derivative of E with respect to .. Note that
“this time we have moved parallel to the y
axis; in effect we have held x-constant and
isolated the variation in E due to the change
in y alone.

“If it happened that land surface varied so
regularly over the map area that we could
actually write a mathematical expression
giving elevation, E, as a funetion of z and y,
then we could compute 9E/2x simply by dif-
ferentiating this expression with respect to

-x, treating- y»»as.fa_const&_mt._SimilarIy,'__W(\
could compute E/2y by differentiating the
expression with respect to y, treating = as a
constant. For example, suppose that after
studying the contour map, we decide that ele-
vation can be expressed approximately as a
function of # and ¥ by the equation

E =5x*+10y+20.

Differentiating this equaticn with re-sp t
to x, treating ¥ as a constant, gives £

E
' —a————li)m

o

We could, therefore, compute 9F/2x.at any
point by substituting the x-coordinate of that
point into the abuve equation. Differentiating
the equation with respect to v, treating z as
a constant, gives

E’.
|27 1o,
oY

indicating that 9E/2y has the same value,
10, at all points of the map. in this example,
aE/ax tur\ned out to be independent of ¥
and 2FE/3y turned out to.be independent of
both 2 and . In general however, 9E/ox
may depend on both x and y, and 9E/2y may
~ also depend on both x and y. For mample, if
E were descrlbed bv the equation

E=5x+ 5y2+ 8z + 20,

differentiation with respect to z would give

-

/ S .
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4
oF
—=102+8y
dux

wlhile Jifferentiation with respect to ¥ would
oive

'aE'
10J+8’(
a./

In the topographie-map éxample, aE/ax
and JF/Qy are space derivatives—that is,
each describes the variation of F in a par-

_ticular di di“rection in space. In the discussion .

given in thls chapter. we will use the space
derivative of head; oh/2x, giving the change
ir hydraulic head with respect to distance in
the-z direction. In addition, however, sve will
uge the time derivative of head, 9k /2t, giv-
ing the change in head with respect to time,
if position is held fixed. oh/2t if a partial
derivative, just as is 9k/9x, and. it is com-

'puted according ‘to the same r les, by ‘con-

sidering all mdependent varigbles except ¢
to be conét(ant. We could iy

“map” of the variation of hddd with respect

‘fact moke a -

to distance and time by layixig out coordinate
axes marked x and £, and drawing contours ‘

of equal % in this x, ¢ plane.. The discussion
given for-directional derivatives in the topo-

graphic-map example could then be applled
te 9h/dt in this example.

The partial derivative of head with respe\,t
to distance, 9h/2x, gives the slope of the
potentiometric surface in the x direction at
s given point, z, and time, ¢. This ig illus-
trated in figure 7. If x or ¢ areﬁvarled then
in general ph/2x will vary; since the sl pe of
the<potentiometric surface changes, in gen-
eral, both with position and with time. -~

The partial derivative of head with resject
to time, 9h/9t, gives the time rate at which -

water level is rising or falling—that is, the
slope of a hydrograph—at a given point, =,
and time, ¢. This is shown in figure . Again,
if @ or t are varied, then in general d/2t

-will vary. In other words, 9h/0x is a fune-
“tion of both z and ¢, and /9t is also a func-

tion of both z and ¢, in the general case.

Physically, 2h/9x may be thought of as
the slope of the potentiometsic surface which

/

[
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/ ] Contour map in a:,’y plane, showing
lines along which E _is constant
' ~ = \Zl,_\ < 2 x
. S .
Y2 —\7‘—\—::2———— N
Y2 /ﬂ ‘(2:2, \yl)
’ z)' yz) T B

N

Plot of E versus ¥
for z=uz,;Slope of
FE

w2
\
R

Plot of E versus z _| , tangent is —— l'at ) . oo
for y —1y,;Sl f y . oy ’ .
for y=y,;Slope o /,gy) the point z,, y,

[ ;4angent is E at.
0z
the point z,, ¥,

7 .
- 7

/ .
/ |
will be observed il time. is sud/den]y frozen at. : L. ' ) .
some value. If an expression’is given for k, ‘ . O‘:ﬁxﬁ"sh of R
as a function of z and &, 9h/2x can be cal- °/“/'e“ RS
culated by differentiating this expression : 7 S
with respect tc z, treating ¢ as a constant. In ~\ 7 o
: . . . . ) Slope of tangent |. AR —_
the same way, 3h/9t may be visualized as the a’k _— . \
" . slope of a hydrograph recorded at a particu- = — /j - EAt
~ - g N
/ . at the time £ =¢, : s
Potentiometric " Observation wells 3 .
surface \ s Time, t
| < / ]
) \\\\\J N M /
' o o fig. iii :
Slopé of tangent S R | B : o S
T on I \ o
= . at lar location (x value). If h is giverras a.fune-

tion of # and ¢, an expression for 9h/2t may

be obtained by differentiating with reapect

to ¢, treating = as if it were a constant. _
In the discussion in Part V the problem is - -

restricied to only one space derivative,-

' oh/?x, and _the time derivative. In the gen-

L o eral case, we would have to consider all

z : Distance, z  three space derivatives—ah/9x, dk/3y, and

- .0z
the point z = 2z,

—————rt

T

fig. i

O

ERIC

Aruitoxt provided by Eic:
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Q.
T
LN
q:= Q: Ti_‘
A a7
Q L, AT
qQy ¥ 3/ - = B
A Qyj//ée,__}/
.9 '
A
2 .
a
‘ Iy «
/ C1Gs
Pl x
/// g: q’ .
;
o
fig. iv

' 2ft/9z—in addition to the time derivative. In
such a case, as noted in. the discussion at the
close of Part II, we would utlhze Darcy’s law
in a somewhat more general form. When
flow may occur in more than one direction,

ve consider the specific discharge, q=Q/A

" {0, be a vector, having the three components -
-, 4y, and q.. If the medium is isotropic, each -
of these components is given by a form of

2 )

lTECHNIQUES OF WATER-RESOURCES iNVESTIGATIONS

Darcy’s law, in which the pa1t1a1 derivative
of head in the direction concerned is em-
ployed. The expressions for the ‘apparent
velocity ‘components are

. 4:= -k« ™

<7 X

g oh
qQy= —K—
oy

oh

Q.= —K—o-
oz

where K is the hydraulic conductivity.

q- actually represents the fluid discharge
per unit area in the x direction—that is, the
discharge crossing a unit area oriented at
..ght angles to the x axis. Similarly,.q, and
q. represent the discharges crossing unit.
areas normal to the y and z axes, respec-
tively. The three components are calculated
individually «nd added vectorially to 'obtain
the resultan! apparent veloc1ty of the flow.”

(See figure iv.) )

We now proceed to the programed material

of Part V. .

o —

Qz'_‘o‘

The picture shows.an open tank with an
inflow at the top and an outlet pipe at the
base. Water is flowing in'at the top at a rate
Q. and is flowing out at the base at a rate Q..

QUESTION

Suppose we observe that the volume of
water in the tank is in¢reasing at a rate of 5
cubic feet per minute. Which of the following
equatlons could we consider correct"

l'urn “to Section:

Q=5 cubic feet per minute 29.

Q +Q: o
- =2.5 cublc feet 'per mmute 17

{Ql Q»—5 cubic feet per mmute 21

i
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Your answer in Seciion 32,
ok

Ql_Q2=K—‘

_ . 2z

is not correct The inflow through facz 1 of

_the prism is given, according to Darcy’s law,

_ as a product of-the hydraulic conductivity,
the head gradient at face 1, and the cross-
sectional area, baAy, of face 1; that i_s,

oh
Q1= _K —_— bAy.
’ Qe /

Similarly, the outflow. through face 2 is given
as a product of hydraulic conductivity, head
gradient at face 2, and the cross-sectional
area of face 2, which isagain bay; that is

. ah .
\ ox /- . .

- " 2
Inflow minus outﬂow is thus given by

wemsl(2)-(2) )

In the preceedmg sections, we have seen that

the term
@)-2)
BT) o

can be written in an equivalent form using
the second derlvatlve

Return to Sectlon 32 and use this second
derivative form in the above equation to /

obtain the correct answer. ,
“ s

i

Your answer in Section 30,

=K /2h
Qx=‘<
bay \ o

is not correct. Darcy’s law states that the
. flow through a given plane--in this case, face
~ 1 of the prism—is given as the product of

. hydraulic conductivity, area, and d_gradi-

- ent, d1v1ded by area.

) .on
4 3

~ ent. Your answer gives the flow as the prod-

uct of hydrauhc conductivity and head gradl-

I
Return to Sectlon 30 and" choose another
answer.

Your answer in Section 7,

oth 2R

?

0% 2w
is not correct. We wish to find the change in

the quantity oh/9x over a small interval, Az, .

of the z-axis. We have seen in the preceding
sections of Part V that the change in a vari-

able over such an interval is giver"by the

~derivative of the variable times the length

“

/

\

of the interval. Here, the variable is dh/22
and the interval is Az; thus we require the
derivative of 9h/2x with respect to z-and
must multlply this by the interval Az.

‘Return to Secticn 7 and choose another ‘

‘answer.
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5,/

Your answer in Section 21 is not correct.
A falling water level in the piezometer would
indicate that water was being released from
storage in the prism of aquifer. The slope of
a plot of piezometer level versus time would
in this case be negative; that is, 9k/3t would
be negative, since i would decrease as t in-
creased. According to the storage equation,

dVv oh

dat- ot

and therefcre the rate of accumulation in
storage, dV/dt, would also have to be neg-
ative. That is, we would have depletion from
storage, rather than accumulation in stor-
age. The question in Section 22, however,
states that inflow to the prism exceeds out-
flow; thus, aceording to the equation of con-
tinuity, accumulation 1 storage vshould be
oceurring.

Return to Sectlon 21 and choose anotner
answer.

6

Your answer in Section 21 is not correct.
If the water level in the piezometer were
constant "With iime, a plot of the piezometer
readings versus time would simply be a hori-
zontal line. The slors of such a plot, 9#/9¢,
would be zerok\{rom the storage equation,
-then, the rate of
storage in°the pri: 30} would have to be zero,
for we would have

°~

ccumulation of water in-

dv 2h ’

——=S4-—=84 - 0=0.

dt - ot :
The question states, however,- that inflow to.
the prism exceeds outflow; according to the
equation of continuity, then, the rate of
accumulation of water in storage cannqgt be
zero. Rather, it must equal the dlﬂ'erence
between inflow and outflow. 4

Return tc Section 21 and choose ?nother

answer.

1

\

Your answer in Section 16, /

d _> -
dx (x: -, ) ’

dx )t \dw /i \——=) .

dx 1—2

‘i correct. In this case, the derivative itgelf is '

the variable whose change is required, and
. for this we must use the derivative of _the
derivative,

dy | : :
(2).
dx : S

S —

dx

8

\ .

evaluated at an appropriate point within the
interval. This term is called the second de-
rivative of ¥ with respect to z, and the nota-
tion d’y/dx* is used for it. That is,

dy
/ \ dal —
dzy dx
:i: B dx

dy
= slope of a plot of — versus x.

. dz
The terms and notations- used m(the case.
of partial derivatives are entlrely parallel.
The notation 92k /9% ia used to represent the
second partial derivative of h with respeci.
to z, which in turn is s;mply the partial de-
rivative of‘ oh/2x with_ respect to x. That is,

-~
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, <ah
&)
oh ald

Bt or .
ol

ot
=slope of a plot of — versus x.
or

Again, the partial derivative notation in-.
"dicates that we can expect ph/ox to vary-

with ¢ (or some other variable) as well ag
with z; 9°h/9x* measures only its change

due to a change in z, all other independent

variables being held ccnstant.

- QUESTION
In Section 9, we saw that inflow minus

outflow for our prism of aquifer couid be

e*cpreqsed in the form

oh oh
o-amaf(Z)-(3) ]
\ 0T 0% /1

and that the term

{<~;>' <Z—z>}

75
Con.— 7

represented the change in the hydraulic
gradient occurring across the prism. If the
width of the prism in the x direction (that

- is, parallei to the z-axis) is Az, which of the

following expressions could most reasonably

.be substituted for

(G- )

Turn to Section:

o 2h
- —_— 4
) or* oz ’
1 oy
(5)
. ox
‘ 23
) .oz
o
— A 32
ox*

L
. v

Ycur answer in Section 80,

on
Q.= —KbAazAy ——> )
. or /1

is not correct. According to Darey’s law, the
flow through face 1 should equal the product
of the hydraulic conduetivity, the cross-
sectional area of the face, and the head gradi-

‘ent at face‘ 1. The cross-sectional area of face
1 is simply bay. ’ /
Return to Section 30 and choose another

answer.

- Your answer in Section 33,

: l oh oh
e mm(2)(2) )
. . ox ox /2

* is correct. We may changé the term in braces

to (Qh/2x):— (Dh/2x), and drop the nega-

.. tive sign to obtain the form

P : ah oh :
ax ox /1 s~

" The term - (2k/3z) .~

side of the prism of aquifer to the other. We

wish now to express this change in hydraulic-
/ gradlenf in a slightly different form.

. (continued on.next vage)

(oh/2), vapresents
the change in hydraulic gradieni from one .
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" QUESTION (
9 COH. . In the figure, .. variable ¥ is plotted as a
function of an independent variable, x. As z
changes from z. to z., ¥ changes from ¥, to
¥ : 9.:(dy/dx),-. represents the slope of the
/ ~ plot at a point between x, and z.. If the
change in z is small, which of the following
expressions would you use to obtain an

approximate value for the change in y?

Turn to Section:

dy .
Y=Y = — (r2—x,) 16
dr 12 .
dy \ .
= — + {Z.—x,) 25
dr / : .
x
Ay
Yo = m(o'n—:rl)-i-—- 20

Axi - .

‘ value will yield an exact result for dV/dt.)
~ ... . —.—Using the -equation-of-continuity-we -may- -
--now set this expression which we have ob-
tained for rate of accumulation equal to our

o o expression for inflow minus outflow.
Your anzwer in Section &4,

av 4n ' QUESTION.
—=SArAy— Which of the following equations' is ob-
dt ot tained by equating the above expression for
is correct. (We should note that for a finite dV/dt to that obtained in Section 34 for
priem, dh/?t may vary from point to point  Q.--Q- " o /
between the two faces; and we require an . o Turn to Section: |
average value, which will yield ihe correct | . on S ak\\/_— 9 ‘/
value of dV/dt for the prism. In fact there is. A "a_'—',IT_a? ! 19.
always at least one point within thé prism at . ; a
. Wwhich the value of 9k/at is such an average, T-a—{b ATAY= Sif— , 1
and we assume that we can measure and use oz ot ‘ ,
2h/at at such a point. If we allow the prism Sh ah LU
. to become infinitesimal in size, ¢nly one value . TAYAsT— = SATAY— 24 |
/ of 9h/dt can be specified withir it, and this . 2z ot S
o | ‘ L \
P 9

co™
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Your answer in Section 10 is not correct.
We used Darcy's law to obtain expressions
for inflow and outflow from the prism of
aquifer, and we used the second derivative
notation to express the difference between
inflow and outflow. This led, in Section 34,
to the equation

o
Q.- Q: = TAIA?/*
ox®

for inflow minus outflow. According to the
equation of contmmtv, inflow minus ou* “ow
must’ equal rate of accumulation in storage;
that is

av
-0, =—,
di

s Q.-

11

We obtained an expression for dV/dt
through the storage equation, which states
that rate of accumulation in storage must
equal thie product of storage coefficient, sur-
face (or base) area, and time rate of change
of head; that is
dv . oh
=SAray—-.
dt ot
Substitaution of the first and third equa-
tions into the qecond will yield the correct
result.
Return to Section 10 and choos2 another
answer.

Your answer in Section 34,

v s ah

dt K at

is not correct. The storage equation tells us
that th2 rate of accumulation of water in
storage within the prism of aquifer must
equal the produzt of storage coefficient, rate
of change of head with time, and base area
of the prism. Hydraulic conductivity, K, is

12

not involved in the storage equation. In the
answer which you selected, there is no term
describing the base area of the prism, and
" hydraulic conductivity appears on the right
side of the equation.

Return to Section 34 and choose another

- answer.

Your answer in Section 16,

@) () (&)

) ~{— )= (22—x,3,
dzx > <dx >, dx /, _, .
is not correct. In this case, the dependeiii
variable, plotted on the vertical axis, is
dy/dx. As we have seen in preceding sections,
the change in the dependent variable is given

by the slope of the graph, or derivative of

‘the dependent variable with respect to z, .

/

13

multiplied by the change in z. Thus we re-
quire the derivative of dy/dzr with respect
to z—in our answer. In the answer shown
above, however, we have only the square of
the derivative of % with respect to z.

Return to Section 16 and choose another
answer. ,
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14
Your answer in Section 22 is not correct.
It is true that if inflow differs from outflow

the water level in the prism of aquifer must
change with time. However, it need not rise;
if inflow is less than outfiow, it will fzall.

Return to Section 22 and choose another
answer.

&

i5 .

Your answer in Section 33,

‘ S/ah .
Qx~Q:=~—~<—->
K\dxr /.

is not correct. This answer associates storage
-coefficient, S, with a space derivative of head,
(oh/?x):; this in itself should be sufficient

to indicate that it is incorrect. In the storage
equation, S is associated with the time derive-
tive of head, Dh/Dt. Again, the answer
chosen invelves only the hesd gradient at the
outflow face. Since we are seeking an expres-

. sion for inflow minus outflow, we would ex-

pect head gradients at both faces to be in-
volved in the answer.

Return to Section 33 and choose another -

answer.

1 (; ”
Your answer in Section 9,

dy
yz"’?/x‘(“‘_“"> (v:—u.),
dxr /-2

is correct. The change in the dependent vari-
able, ¥, is found by multiplying the change in
the independent variable, x, by the slope of
the plot, dy/dz. Note-that dy/dx must be the
slope in the vicinity of the interval z, to =.;

—

~ dy
dzx

N
f

B

~—

[

. {

{

{

{

{

{

{

{

{

{

{

{

{

{

b

8

H—————-—
N -

~x

89 / SN

frequently, it .s considered to be the slope at
the midpoint of this interval. The approxi-
mation becomes more.and more accurate as
the size of the interval, x.—x,, decreases. The
above equation is often written in the form
dy
| Ay=——-Az.
dx
(In a more formal sense, it can be - ‘vmon-
strated that if ¥ is a continuous funciion of
z and if dy/dx exists throughout the inierva!
from z, to x,, then there is at least one point
somewhere in this interval at which the de-
rivative, dy/dz, has a value such that
dy Y=~ %

dx xz-xl .

or

d
'y2—y1=l(x:*xt)-
dx
This is known as the laW of the mean of
differential calculus. It guarantees that the
approximation can always be\used provided
we -are careful about the pomt within the

. _mterval at which we take dy/d:{: Further,

since this law must hold 7o mater*now small-
. (continued on nea:t page)
N

\
\

.‘\I//‘
4 \\
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the interval (x.—x,) is taken, the approxi-

mation must become exact as the interval is
allowed to become infinitesimal.)

QUESTION

Now suppose we measure the slope of our

curve, dy/dz, at various points, and construct

a plot of dy/dx versus z, as shown in the
figure. Again, suppose we wish to know the
change in dy/dx which occurs as x changes
from z, to x.. The subscript 1—-2 is again
used to denote evaluation at a point between
x, and.x.. Which of the following expressions
would give an approximate value for this
change?

Con— 16

Turn to Saction:

Your answer in Section 1-is not correct.
The rate of accumulation in the tank does
depend upon both Q. and Q., but not in the
way that your answer implies. The inflow to
the tank must be balanced by outflow, by ac-

17

cumulation of water iny the tank, or by a com-
bination of these frcetors.

Return to Sectioq/ 1 and choose ansther
answer. :

Your answer in Secticn 33,

<ah oh
QI—'Q2=K > _K< )
oxr /. 0% /-

is not correct. The answer treats both inflow
and outflow as products of hydraulic con-
ductivity and head gradient; but we have

seen, in our application of Darcy’s law to the

18

problem, that each should be a product of
hydraulic conductivity, head gradient, and
flow area.

Return to Section 33 and choosé another
answer.

.

Your answer in Section 10,
oth S ok

ox* T at’
is correct. This equation describes ground-
water movement under “:ie simple conditions
which we have 2s8:*.:i ‘hat is, where the
- aquifer is confined, 5 r: %> 1al, homogeneous,
and isotropic, and ti
dirertion (taken here @s the x direction).* If
horizontal components of motion ncrmal to

. 1A rigorous an? more general development of the ground
water eguation is given by Cooper (1966).

siovement is in one

n 19
the x-axis were present, we.would have to
consider inflow and outflow through the other

two faces of the prism; that is, the two faces -
normal to the y-axis..We would find this in~

“flow minus outflow to be.

. a!h
Qy — Q.= KbAxAY—.
. oY -
The total inflow minus outflow for the
prism would th > be (Q., —Q:z,) + (Qy, —Qu,),»

h

90
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19 " —Con.

where Q,,—Q:, represents the term we ob-
tained previously, Kbazay (2*h/222). Final-
ly, equating *4is total inflow minus outflow to
the rate of accumulation, we would have
. 2h o°h oh
Kbazay—+ Kbaray—=Saxay—
orx® o ot
or, using the notation T=Kb, and dividing
through by Tazay,
ok O°h S Oh

oxr* oU
These equations are partial differential
equations; that is, they are equations contain-~
ing partial derivatives. The relation. given
. above for two-dimensional flow is a partial
differential equation in three independent

variables z, ¥, and ¢. For simplicity, we con-

tinue the discussion in terms of the equation
for unidirectional flow,
o*h S ok

oz T ot \
This is.a partial differential equation in two
independent variables,  and ¢. It relates the
rate of change of head with time, to the : ite
at which- the slope of the potentiometric sur-
face, 9h/pz, changes with distance. When
we say that we require a solution to this
partial differential equation, we mean that

we are looking for an expression giving head,

I, as a.function of position, z, and time, ¢,
such that when this expression is diferen-
tiated twice with respect to z (tb6 obtain
2*h/22%) and once with respect to ¢ (to ob-
tain h/dt), the results will satisfy the con-
dition '

2*h S oh

2z T at

As with ordinary differential equations,
there will always be an iv:inite number of
expressions which will satisfy a partial dif-
ferential equation ; the particular solution re-
quired for a given problem must satisfy, in
additicnecertain conditions peculiar to that
problem. As in ordinsry differential equa-
tions, these additional conditions, termed
boundary conditions; establish the starting
points from which the changes in i described
by the differential equation are measured.

This concludes Part V. In Part VI, we will
make a development similar to the one

made in Part V, but using polar coordi-

nates, and dealing with the problem of non-
equilibrium flow to a well. Our approach will
be the same: we will express inflow and out-

"flow in terms of Darcy’s law and rate of

accumulation in terms of the storage equa-
tion; we will then rg_late these flow and stor-
age terms through the equation of confinuity.
We will go on to discuss a partizular solution ~
of the resulting partial differential equation
and will show how this solution can be used
to build up other solutions, including the
well-known Theis equation.

20

Your answer in Section 9,

P Ay ib
Yo—Yr=m (T~ 2.} +—, .
AT

is not correct. If y is plotted as a function of

z, the change-in y corresponding to a small

change in z is given by the relation

Change in y = (Slope of curve) _
_ - (Change in z),

where the slope of the curve is measured in

the vicinity in which the change is sought.

- This follows directly from the definition of
"the slope of the curve.

Return to Section 9 and choose another
answer. , ' :

91



PART V. UNIDIRECTIONAL NONEZEQUILIBRIUM FLOW 81

Your answer i1 Section 1 is correct. If
water is accumul: ting in the tank at a rate
of 5 cubic feet per minute, inflow must exceed
outflow by this amount. This is essentially a
statement of the principle of conservation of
mass. Since matter cannot be cestroyel (ex-
cept by conversion into energy, which we
need not consider here), tie difference be-
tween the rate at which mass enters the tank
and that at which it leaves the tank must
equal the rate at whuch it accumulates in the
tank. Further, because compression of the
water is not significant here, we may use vol-
ume in place of mass. In general terms, the
- relation with which we are dealing may be

stated as: )
Inflow — Qutflow == Rate of accumulation.
This relation is often termed the equation of
. continuity.
Note that if outdow exceeds inflow, the

Piczometer

VConfming
material

e 0. Aquifer
st b o 0. - Imaterial

-

21

rate of accumulation will be negative—that
is, we -sil! have depletion rather than accu-
mulation. An important special case of this
equation is that in which inflow and outflow
are ir balance, so that the rate of accumula-
tion is zero. As an example, consider a tank’
in which the inflow is just equal to the out-
flow. Rate of accumulation in the tank is zero,
and the water level does not change with
time. The flow is said to be in equilibrium,
or in the ste=dy state. The problems which
we conside . in Part III were of this sort;
no changes of head with time were postu-
lated; so the assumption that inflow and out-

- flow were in kalance was implicit. The flow

pattern cculd be expected to remain the same
from one mement to the next. -

‘Forms of the equation of continuity occur
in all branches of physies. In electricity, for
exaniple, if the flow of charge toward a ca-
pacitor exceeds that away from it, charge
must accumulate on the eapacitor vlate, and
voltage must increase. In heat conduction,
if the flow of heat into a region exce: s that
leaving it, heat must accumulate within the
region, and the temperature within the re-
gion must.rise.

QUESTION

The sketch shows a prismatic section
through a confined aquifer. Water is flowing
in the z direction, that is, into the prism
through face 1 and out of the nrism through
face 2. A piezometer or obsucvation well
measures the hydraulic head within the
prism. Let us suppose that the volumetric
rate at which water is entering through face
1 exceeds that at which it is leaving through
face 2. The water level in the piezometer will

" then:

o . . Turn to Section:
remain constant with time - -6
fall steadily ' 5

rige ' ‘ 30
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Your answer in Section 30,

on
Q= _KbAy<_“> ’
0 /1
is correct. {ph/2x), is the hydraulic gradi-

ent at the narticular point and time in which

~ we are interested. ‘We simply insert it in

Darcy’s law to obtain the required flow rate.
We are dealing with nonequilibrium flow

here; that is, in general, inflow and outflow

will not be equal. Flow occurs only in the x
direction; thus tlie. outflow from our prism
of aquifer must take place entirely *:rough
face 2, as shown in the sketch.

QUESTION

Assuming that outflow differs from inflow

and that the hydraulic conductivity and

thickness of the aquifer-are constant, which
of the following statements is correct?

. Turn to Section:

The water level in the prism must rise 14
The hydraulic gradient at face 2 of
the prism must differ from that at

face 1 of the prism 33
The rate of withdrawal from stdrage
must be given by Darcy’s law. 26

2 3 ' |
“ .
’ ~ . - * - '

Your answer in Section 7,

dh

o —
oA
os

is not correct. As; we have seen in earlier
sections of this - chapter, the change in a

dependernt variable, over a small interval of
the z-axis, Az, is given by the derivative of
the variable times the length of the interval.
Here, the variable is ph/ox and the term
2(27" /dx) /% of your answer is certainly its
d- ive. However, this derivative is not
W ~d by the interval along the z-axis;
thus the answer gives only the rate of change
of 9h/Px with distance—not its actual
change across the interyal Az. o

Returis to-Section 7 and choose another -

answer.

H

24

AV

Your answer in Section 10 is not correct.

. The rate of accumulation in storage is given

by 4 i :

;

. ok
SAZAY—,
‘ ot

- * . : ‘\~
as in the answer which you chose. However, "

the expression for inflow minus outflow re-

-quires a second derivative, as~it deals /with

!
g
/
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ES

the difference between two flow terms; each
of which incorporates a first derivative. In
the answer which you chose, inflow minus
outflow is expressed in terms of a first de-
rivative.

Con— 24

Review Sections 9, 32, and 34 and then
return to Section 16 and ckoose another
answer. "

Your answer in Section 9,

dy
Yo=Y =| — + (2.—2.), —-
dx /.-

is not correct. From the definition of slope,
the change in y can be found by multiplying
the change in z by the slope .of the curve,
measured in the interval z, to z.. In th.e an-

25

swer which you chose, the slope of the cv¢»
is added to the change in =.

Reiurn to Section 9 and choose another
answer. '

Your answer in Section 22 is not correct.
Darcy’s law describes the transmission of
ground water, not its withdrawal from stor-
age. The storage equation, developed in Part
1V, deals with changes in the quantity of
water in storage.

‘26
Return to Section 22 and choose another
answer.

Your answer in Sectionl 32,

) >h
Q.- Q: = K:‘j“‘Axy
ox?

is not correct. Your answer includes the
hydraulic conductivity, K, and the term

o°h

—AZzZ,

ax‘.’ 5

‘which, as we have seen, is equal to

) (2]
ax:)z ‘ ax 1 .
Thus if Wé were to expand your answer,

expressing it in the original head gradient
terms, we would have

i

27

/ah\

oh - / ok
o) (2
. ox /2 o/ ox /2
: LAY
)
D

This states that inflow is a product of hy-
draulic conductivity and head gradlent and
that outflow is “imilarly a product of hy-
drauhc conductivity and head gradient. We

‘'now from Darcy’s law, however, that both
inflow and outflow must be given as products
of hydraulic conductivity, head gradient, and
flow area. Your answer thus fails to incor-
porate flow area into the expressxon for in-
flow minus outflow. :

'Return to Section 32 and choose another
answer. g '
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PYS

Your answer in Section 34,

av h
=Shar—,
dt ot
iz not correct. The storage equatxon states
» t1at the rate of accumulation of water in

storage in the prism of.aguifer is equal to
the product of storage cnefficient, rate of
~hange of head with ti nd basé area of
the prism. In your ar .er the rate ¢ ac-
cumulation is equated to the product of :he
storage coefficient, the rate of change of head
with time, and the area, b_\.:r, of one of the

vertical faces of the prism. .
Return to Section 34 and choose another .
answer. :
\

|

v

‘) ”
Your answer in Section 1 is not correct.

Some of the inflow to the tank is balarced
by outflow at the base. In order for your an-

|
\

swer to be correct,- the\ outflow, @., would
have to be zero. Oniy ftrthat case would the
rate of accumulation in ithe tark equal the

- inflow.

Return to Sectxon 1 and choose another
answer. y

|

30

Your answer in Section 21 i3 correct. Ac-
cording to the eqnation of coatinuity, if in-~
flow to the prism of aauifer exceeds outflow,
water must be ac..-iuweating in storage with-
in the prismn. According to the stor>ze equa-
tion, if water is accumulating in storage
within the prism, hydraulic head in the
prism must be increasing with time. Specl-
fically, we have

Inflow — Qutﬁow= Rate of accumulation,!

dv/dt
and '
av 2h-
¢ —=SA-—
di al
where A'is the base area of the prism. There-
fore, -

! Here again we use volume in place -of mass in the equation
of continuity, even though alight compression and expansion of
the water can be a factor contributing to confined storage. The
changes in fluid density from. point to point in & normal ground-
water situation are sufficiently small to permit this approxi-

.\ mation. In fact, if this were not the ecree, it would not ha2

\ possibla to use the simple formulation of siorage cuefficient, de-
\fined in terms of fluld volume, which we have adopted.

- Inflow—Outflow=SA—.

. ot
If the term (Inflow-Outflow) is positive
—that is, if inflow exceeds| outflow-—then
h/dt must be positive, and water levels
must be increasing with time. In the above
equations, we have used the partial deriva-
~tive of head with respect to time, 9k/t; and
in the equations that follow, we will use the
partial derivative of head with respect to
distance, 3h/dx. These notaiti:ns are used
because, in this problem, head .,lill vary both

with time and with distance. :

QUESTION \ ,

The sketeh again shows the prism of Sec-
tion 21. We assume this prism
in a homogenequs and isotropic am
which is horjzontal and of uniform thick-
ness. Suppose we, let (ph/9z), re resent the
hydraulic gradient (in the x directj on, which
is the direction of the flow) at fade 1 of the
prism. We wish to write an expression for
the inflow through face 1 of the nrism. Let
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T
i i- Piezometer

=
o
i 3
.
i b
LT T
P -
e L~ : Confining
R - 1 material
' Agquifer
. I material
' :
' ‘ B
i o
Q, —=-=~1 ! 2 e,

Con.—:;; ' 30

us denote this inflow @., and let us further
denote the heignt of the prisin (thickne.:s of
the acuifer) by o. The width of the prism
norma! to the a:axjs is denoted Ay, the length
of the prism'z slong the z axis is denoted Az,
and the hydraulic conductivity of the aquifer —
is denoted X. Which of the foilowing equa- ™
tions gives the required e‘{pressmn for the
inflow at face 17

/.

Turn to Section:

ah ’

Q1 = "Kb.ﬁy —_— 22

T /-
ol .
“Q,= —KbAxAy —> 8
\Aax /.'/"

—-K/oh e

1= "——> ,v,’r/ . 3
JAy\dx /.~ :

Your ariswer in Section 185,

—) = ] = (2 ———) ,
dx /. dx /, 1 7

is not correct. In the preceding sections we
saw that the change in the dependent vari-
able is given by the change, w.—z, in the
independent variable, times the derivative of
tire dependent variable with respect to z.
Here the dependent variable is dy/ix; bul

/,'"’
- :/
in your answa;j/;/\?ve do not have the derivative
of this dependent variable with respect to z,
—we have, rather, only the derivative of ¥y, e
with respect to . <
Return to Sectlon 16 and choosefanecther
answer.

T
Your answer in Section 7, -

D%h .

—_— Ax,
is correct. This term is equivzlent to the term

1))

provided that we choose- a suitable peint’

within the inierval z,—~z, at which to evalu-

32
ate 9*h/dx% The product (h/9x*) AZ rep-
resents the slope of a plot of dh/az versus
x, multlplxed by the mfervé.l along the =z
axis, Az, and thus gives the change in ah/a:c
over this mterva] .

{continved on rext page)

<
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Your answer in Section 22 is. correct: If we .

'apply Darcy’s law at face 2, we have iy

86 TECHNIQUES OF WATER-RESQURCES INVESTIGATIONS ¥
32 —Con ‘ L- -Piezometer .
_ *QUESTION ; o
Usmg thls expression for’ ' . y // 7 -
oh ak, ) 75 2 /), Confining
{( > _ ( . }’ . /'V . ‘ “material
a@ or, : L
\whxch of the following forms is the correct 7, /: /: / . N
expresglon for inflew minus outflow, Q,—Q, — -l LAl " ) Aquiter
for our prism of aquifer, which is shown . e [ material
agaln in the dlagram" -t v Ena
?;arn_io Section: . -, ,:\o “‘L° N
‘ h e
'Q—Q.=K—az| = . 27 Bh L e
/ - ot - o
) ,’ S raZh ) : ::‘.
AN QzabeAyAx——— . 34 .
. _-,',' ax . T
o ok L,
o Q;"Q'."_’:K — o 2
: Caor - - .
i - o G
\ T~ - A
. RN T
) — -
/ -

.faces must dlffer—-—that is, (ah/ax) must
" differ from (ah/a:z:)1

It '
P .lQuesTioN

Usmg the expresslons we have developed. .
- for infloy ‘and outﬂow which of the follow-

ing terms; would describe inflow minus out-

: ’ ah - ﬁow for tfhe prism? ' o
Q - —KbAy< > r’y\ ' . S Section: -
_ o oz AN A A AN
' Whereatfacelvvehad Q- Q.-K(—) -K|—) = - 18
. ; ah L \ or/Li .. -axi 2 : o )
¢ '———KbA ' NSk CLL
K, b,and Ay do not change. Thus if the'out- - | 0%/ éh' -a,'L N
. flow, Q., is to- dlffer from the mﬂow, Q,, the Q Qz— -Kb Ay{ (= } 9
5 hydrauhc gradlents ‘at- f.he mﬂow and outﬂow : . or oz /2
. . . : i ‘ N ./
J
- N o N .
B \
97 . \
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<+ - 5

Your answer in Section 32, ‘ L S R " 3 4
‘ a ) , L ’ . B ~
Q- Q.-—-KbA'yAz-— : ‘ : - ‘
: - 0% / , : e
s eorrect “The term “Eb, representmg the . . -
" hydraulic. conductivity of the aquifer times o
its thickness, is called the transmissivity or .
' : Water level ch A
transmlss1b1hty of the aquifer, and is desig- - . ’ ai rivt: ;hangmz
‘nated by the letter T. Using this.notution, - S

-—Piezometer

" the expression for inflow minus outflow be- N
comes - , -
’ ’ , | Confinirig
o '-—-'Q.,.=TA;/AI?——-. | " matérial
) - X
NMow according to the equation of continu-
ity, this inflow minus outflow must equal the F
" rate of accumulatxon of ‘Water in s rage _ b
within the prism of aqulfer, which ig shpwn Lo o
in bhe ﬁgure . : A o ”‘(,t |
A - . .. Q, cmi1pl
* QUESTION ' a : e[ _‘-’_':,'..
- We represent ‘the average time rate of .. —f ", .::'-':
. change of heud in the prism of aquifer by . /,L— -
. oh/ot and note that the base area of the *, .

prism is A=Azay. Using tne storage equa- .

- tion, which of the following expressions . ' ///
gives the rate of accumulatlon in" storage
within the prism?

. Turn to Section:

: dV o Y ‘ '
S ~Sbaz—— . 28 .
~dt 7 ot , y
dv. S oh , S
——— -1z -
_ . dt K ot . - ) . b
S dv oh ' .
esamy— 10 e
@ ot o . | L
- ' - )
. ) . "/i’_
\ 98 : ‘ !
’ ./' \ . /
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© Pait VI
N

In Part V-we developed the equation .'
‘ h. S 2h -

. . aI' T at ’ -
for one-dimensional nonequlhbnum flow in
a homogeneous and otropie confined

. aquifer. We indicated, in ‘addition, that ex-

fension to two-dlmensxonal ﬁow would "yield
the equatlo :

) 3% a=h S ah

ox* ay

In Part VI we consider a problem involy-
“ing. flow-away.from (or toward) a well in
such an aquifer. As in the steady-state prob-
" 1em of flow to a well, which we considered in
. Part III, we will find it convenient here to
use polar coordinates: The two-dimensional
differential equatlon :

- 2%h a’h S ah
F—=—

- o%* oy
can be transformed readlly into polar coordi-

ates by using standard methods. However, -
it is both easy and instructive to derive the

t

Introduction

AN

.Noh'equilibrium Filow to a Well

L

-
—

equation again.from hydradhc principles in
the form in: which we are going to use it.
After we have developed the differential -

_equation in this way, we will consider one of '

its solutions, corresponding toan .insfaptane—
ous disturbance to the aquifer. In the ter-
minology of systems analysis, this solution
will give the “impulse response” of the well-~
aquifer system In consxdermg this solution,
we will first show by differentiation that it -
satisfies the given differential equatlon we
will then develop the boundary conditions ap-

““Plicable to the problem and ‘show that the
“solution satisfies these conditions. Following
v th‘e~program,‘3d
‘'sion in text format has been added showing
how the “impulse response’ solution may be

.section of Part VI, a discus- -

used to synthesize solutions corresponding to

‘more complex disturbances to the aquifer. In-
‘particular, solutions are synthesxzed for the
_case of repeated withdrawal, or baxlmg, of

a well and for the case of continuous pump-

" . ing of a well. The latter solution, for the par-/’

ticular ca:ae "inGwhich the pumping rate is

constant, is the Theis. equatlon, which is com- -
_monly used in aqulfer test analysxs

ey

7 fined aquifer. A cylmdrxcal shell or prism,

| coaxial with the well and extending through -

the full thxckn%s, b, of the aquifer has been

‘outlined in the diagram. The radial width of

The figure shows & well penetrating a con- -

H
o
s
{
)

<

the inner surface of the element is &t a

radius 7; from the axis ’of the well, which is
.taken as the origin of the polar coordinate
’ -qystem ‘and the outer surface of the element
.-is at a radius 7, from this axis. We assume -

thxs cylmdncal element is demgnatea ary——all ﬁow to be in the radxal dlrectxon, 80 that‘ .

N

[ . L
. -I s -
;o i 88
. . [ i -0



(  PART VL

NONEQUILIBRIUM FLOW TO A WELL

r

- 1 + 'j—C_On;

_.we need not consider variation in the, vertical
or angular directions. We further assume
that we aye dealing with injection of water .

r- direction. . The hydraulic conductivity ‘

. of the aquifer is denoted K, the iransmissiv-

ity T, and the storage coefﬁc1ent S.

N QUESTION

1 (oh/ ) - represents .the hydraulic -
gradient at the inner face of the cylindrical -
element, which of the following expressions
will be obtained fer the flow through this
face, by an appllcatlon of Darcy s law?

L3

Tu(n 1o Secticn: .

‘ -{ ok
Qi-v‘—’,'-K?rT, <——> ’ 34'
or .
' ' oh .
Q= -K21rr,b< > 15
’ C f Dh\ ;
o)
SNOT/h v .
Q= . - 36
277, '

Your answer in Section 27, .
P K ah

e (Sr’/‘T!)

or 47th .

- is nbt correct.

ou are correct in your intention to. mul—, .

, tlply the derivative of e—(S*/4Tt) by the “con-
) .fnt” coefficient V/ (4-Tt) bo obtam ‘the
: rivative of the product ‘ _ ,

__g— (SP/ATE) N
47th o
. with respeét to 7. However vm_-r dlﬁ'erentxa-

tion of e (Sr/ATY) ig not correct. The deriva-

tive of e raised to. some power. 1s not sim-
ply e raised to the same power, as you have
written, but the product of e raised to that .

power times the derivative of the »expox‘lent L

Thatis, L
. ' - =e"_i.‘\ . L .
o e a

. Thas, in 1 this case, v'e must obtain the denva/-/ y
tive of the expor:nt, — (Sr’/4Tt), and multi-

ply e— (SP/ATt) by this derivative to obtam the

-, ‘derivative of e— (Sr/4Tt) with respect to .

Return to Sectlon 27 and choose another

- NSWer.

," . A . N
\ : : Y




" spect to x;-is-

_ A\
90

. TECHNIQUES OF \VAT$R~11ESOURCES INVESTIGATIONS

3t
- Your answer in Section 35.,'

oh V A LA
—_ . e—(5FaTO| , .
ot 4xTt <4Tt=)-p -
is not correct. In your answer, -the term
e—(Se/aTt) ig differentiated correctly with re--
spect to time. However, your answer gives
. only the derivative of this factor times the
first factor itself, V/(4=Tt). According to
the rule for differentiation of a. product, we

must add to this the seccnd factor, e~ (57/4T,

. times “the derivative of the first ‘factor.

The tirst factor, V/(4~Tt) was treated as a-

" constant . coefficient when wo were differen-
‘tiating with respect to r, since it does not

contain 7. It does, however, contain f and
cannot be treated as a constant when we are -
differentiating with- respect to t. 1t$ deriva-

_tive with respect to t is given in the dlscus- :
_sion of Section 35.

Return to Section 35 and choose. another

" answer. - - .

) Your answer in Section 27,

3h '<—2Sr> :
— == — (Sr/4TV)
or ¢ . ] 4Tt

1s not correct.

. When an express1on is multlplzed by a "on- s

i stant coefficient, the derivative of.the product
is simply the constant coefficient times the
derivative of .the expression. For example,
the derivative; ,of the expression z2,"with re-
2x; but if 2?"is"multiplied by -
the constant’ cEef’ﬁcmnt ¢, the derwatlve of
the produet, ca?, is ¢ 2z. : .
In the question of Section 27, the term
e- (Sr2/4T0) is. actually the expression in, Wthh

"Your d1 'erentlatlon of e—(S**/“'”

we must dlﬁ'erentlate w1th respect to 7. The
term V/ (41th), represents a constant coeffi--
cient—constant with respect to tliis differen-

. tiation, because it' does . not contain r. Thus
" whatever we ,obta’ln/ as the derlvatlve of

g (57*/aTt). must be multiplied 'by this coeffi- . .
cient, V/ (41th) to obtam the! derlvatlve of
the product R =

4=Tt .-
is .cor-
ur answer does not contain the

: factor V/(4=Tt) and thus cannot be correct.

- Return to Sectlon 27 and choose another

ansWer . . *f
b e e
1
~ =

t

Your answer \n Sectlon 27

. oh- LV ’ "‘] < ZST> S
___._..___.‘._ —(Sr’/4Tt) R
~ {scorrect.’ - :

We now W1sh to. dltferentxate this expres- . ‘, o

~ gion for ah,éar, in: order to- obtain a"‘h/’ar2 -
" To do thls, ‘we treat the expression as the

- product of two factors. The first is the func- .

tlon we Just dlfferent‘s,ted

the second ig -

_ o— (SP74Th) .
4Tt

<_—2S_r o
\dre '~ L
Once again we are dlfferentlatmg W1th re- :
spect to r, 80 that ¢ is treated as a. constant
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_ ouzshon - ‘
12 ‘we follow the rule for differentiation

of a product (first facior times derivative
~. of second, plus segond factor times deriva- : }

tive of first), which of the’ followmg results /
'do we obtaln for. a”h/ar"’
- . . : . e _‘ oo _Turn to"Section:
oth- V { (—,28) (—231') . (—2Sr>] ' ' o
= e— (Sr/4Tt) . )+ . g— (ST .| < : 85 i
ort 4Tt = = Tt aTt ) o "\ 4Tt s
. 9h VL L ( —28) (_—281') ;. (_—ZSr> o
_= < g— (STt .| - + . g (ST | e ) .7 23
or: 4xTt o\ 4Tt /. 4Tt ' ATt B
*h ¥V { o <.«—ZS> (—2Sr> ] t L
o —_— e— (St3/4T1) . + e— (Sr2/4Tt) 9
R or: 4x=Tt\ ' ATt 4Tt —

. ~ Your answer~1ﬁ Section 18 is not: correct. — T ) A _
The &nswer- which you chose states. that out, or approaches zero,-as radial distance
" head becomes infinite as radial distance be- - becomes very,large.

- comes ‘small. The behavior which we are try-- Return to Section 18 and choose another
1ng to descrlbe is that in Whlch head dies answer. - o :
T L * Your answer i Section 16, .
o "+ . Slope of o Q. -_Q2 2-,,-T{< ) A ('r?—> },
! : : o A tangent to curve . a,'. ar J.) 7/

is correct The term

: »actually represents the change in the .vari-

- of- r(ah/ar) versus 7, as in the figure, we

' approxlmately by the slope df the ‘plot times

. able.r(@h/or) between the radial limits, r,-
- and 74, of our element: If we imagine a plot

can readily see that this change will be given . A

(contmued on next page) L
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- . : z

- the radial increment, ar. That is, approxi- . ~ uetioN

-~ mately e ©+ 7 - Recalling that the rule for dxfferentlatlon

: - \ ) of a product is “first factor.times derivative 7

< ”  of second plus second factor times derivative - -
[ oh .oh or / © of first,” which of the following eguations
"‘5‘;' 2‘ 'T'a‘;‘ 1= T'A" glves~theqder1vat1ve of r(oh/2r) with re-
TR spect to 73
where the derivative - . : _ . .
. . ah . o . " Turn to Section:
) g Y e R '
. a<7'—-"-) e oh _ oh
. - or : . o| r— ol —
- _ . - - \Nor/ \or/ . oh ,

' represents the -slope of our plot, at an ap-- - - - °o7- [ - Oo". o7 .
propriate point within the element. This . dh\ -
slope, or derivative, is negative in our 1llus- _ ’a<r——- -

: tratlorx so that : or 2:h oh
S o SR G A K 28
- <ah).<ah) L . or or* . or. .
_ g r— ) > {r—1). . Do
. - Nar i \er N
, - The approximation inherent in the above _ 9 'Tg;’ a._,' _
equation becomes progressively more accur- . Y Y ' -8
.ate as 47 decreases in size. © =+ 7 oL ar or ' -
- o Lo _ e e .
/ -~ .A ’ - -
| e 8 +
\\ ) ,
Your answer in Section 7, Ay 2 d(uw) dv du
N _ = Yt —
f 3’? e ah /. R ' ©dy | dr  dex '
o Tg,.— 4 2,._3__’ ‘ A derivation of this formula can be found
. ar= ' ., in'any standard text of calculus. Our first
o or. _ ) ' factor is r, and our. secondyfactor is 9h/or.

o is not correct We are requlred fo take the ~ Thus we must form the expr&sxon r times”
> 'derivative of the product r(dh/9r). ‘The rule the derivative of ah/ar with respect to. 7,

e _,for differentiation of a: product- is easy to . plus 9h/or times the denvahve of r W1th re-

+“7 . remember: first factor times derivative of . spect to 7. o o

_ : B
second, plus second factor txmes derlvatlve : Return to Sectxon 7. and chooge another -
- of ﬁrst thatls S . _ _ answer R e :
! '~ AN " ”/‘M"
/ N \ / L
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A . ' : -
?Your answer in Section 5, B ;7- e
. oh. V { <*2s> ( 23r> ' S o
s R— Lt - 2 YT S
ey or 4=Te( art) Nare ) oy oo e
. is not correct. -If we remove the braces and .' T V R - '
, separate your.answer mto two terms, we . S o S
haVe : » ) , o . ) - . _';_-,',
.z 174 . - . 4 o
.?if_ e~ {(Sr2s AT . <~2.§_> +< 2ST\ . e—-{ﬁrHTl)_ / '
arﬁ 4,-.Tt ATt 4Tt / 4—Tt o o
The first term, according to the rule for dif- ' S —

" ferentiation of a product, is correct, since it
. represents the first factor,

o : . g~ (57/4TO : - , ‘
. 4=Tt - .
multiplied by the derlvatlve of the seccnd e .
(Wlth respectto r) whlch is 51mply T T oL . =
—~2S ! o v Y L

!

4Tt
“The s"cond term of your answer, hoWever, - R o . / -
’1s not correct. / : _ - - - ,
- 4Tt . Y ,
is the second factor of the product we wish : L S
to differentiate but ' L

. e'—(Sr”/4Tt). . R C ,’
. 47Tt ' o o , E . L —
does not represent the der ivative of the ﬁrst ' o '
* - factor. This ﬁrst_facto; is itself

. |-.-' e';— (swpaTo ‘ Y
47th o ' !
4 :
and 1ts derivative thh rwpect to  was ob- ’
tained in answer to the quesiion of Section Return o Section’ 5 and c/_oose another .

o ——— R . . F

27 . L S answer : L
. ' EE
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Your answer in Sectlon 21 is not correct.
- We establlshed in the discussion of Section
‘21 that’ the rise in head within the well at

t=0, due to injection of the voiume V, would

~be glven by V/A,c, where A, is the cross-sec-
tiomal area of the well bore. If the well radius

- -=approaches zero, 4, must appz:each~zero The

smaller A, becomes, the larger the quotient
' V/A. must become; for example, 1/0.001 is

certainly much greater than 1/1. Your an-
swer, that the head change is zero, could only

‘be true if the area of the well were immea-

surably large, so that the addition of a finite
volume of wat%r Would produce-no- measur="

---able-effect.

Return to Sectlon 21 and choose another :
answer.

~

R — ‘.;l;l."b'”

', " Your answer in Sectlon 33 is not correct.
The mtegratlon in the equatron

cannot be carrled out untxl we: substltute
- some clearly defined- function -of 7. for the

S h,-; 2"Td7’

term h,.. Until this is done, we do not even-

know what functx_on we are trying to inte-
" -grate. But even if the integration could .be

~carried out and the 'result were found to be

Vo

N i .
e— (¥"S/4T0)
’ﬂ

4=Tt¢

then we would be left w1th the result .. ..

’
F]

4Tt

Wthh ctearly can never be satlsﬁed except
perhaps ‘at isolated values of r and t. i
.Return to Sectlon 33 and choose another

e— (r3S/ATt)

‘answer, . o v L

,

. Your answer in Section 28,

“ _ av " oh
ot ~—=8rr——,/ .
— dt ot

"is not correct. The stérage -equation state

that the rate of accumulation in storage is

equal to the" product of storage coefficient,
- rate-of change of head with time, and base
--area of the element (prism) of aquifer under

‘S|

- consuderatlon

. change, ’ah/at However, the base area of

Your answer contams “the
“storage coefficient, $§ and the time rate of

-the prism- whlch we are conmdermg mGnot

given by 7. \\ : ,'

. This'term gives the area a3 of 2 c1rcle extendmg :

from the origin to the radius r; our prism is

actually a cyl,ndrlcal\shell extendmg' fromf

o

“the radius. 7, to the radins 7;.-Its ‘base area
is the area of the shaded region'in the figure,
'Thls region has a rad1a1 width of ar. and 3

fean perimeter of 2rr. |.
Return to Sectlon 28 and choose another
answer. : .

-

i

. -P‘."
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Your answer in Section 33 is correct. Our

proposed solution, giving h as a function of -

r.andtis
By ¢ =g (PS/ATY)
. 4=Tt 7
To test this solution for- conforrruty w1th the
. required condition We substltute

g— (FS/ATH ™" '

| 4Tt

for h,.in the equatxon .

— |- =

; - V=[-' *s: h,,2~4dr
/=0 .~

*"\a{d evaluate the integral to see whether the

4

uation is satisfied. The substitution gives

B ('r'-YS/lRTl) .. ZWdT-
\j o
. Constant terms may be taken outside the in-
tegral; in this case, we are integrating with
respect to 7, so t may be treated as a constant
"and taken outsnde the integral as-well. We:-
leave the factor 2 under the mtegral for the

;‘,: fr:oo

r=0

© 4Tt

.. mo t and- take the remammg constants
outsidd\to g1ve o a .
. ’ ~ . 4
| SV .
= e (r*S/4Tt) - Qprdy,
4Tt =t :

To eiraluate the integral in thls form, we

make use of a simple algebralc substitution. -

Thergfore. g o : f' }
o z:oo
- oV [ o e—“'dz aV ——-~—V

Let . ' . - s _
S | = o
Cthen . |
- LT o .
R dz=2rdr;
© ‘andlet ) : - Lo e
. ) ‘ls' l. .
o=——
4Tt

-13+

- Substituting these terms in the above
equation, we obtain: .

T fz=o .
V= ~exdz.
. | _aV»;(z o © A 2
The indefinite integral of e—* is simply

1 ‘

— e %
a i

.. thatis, SRR

S 1 .
/e—-a:,-}z: —_ e—-d:_hc
- a ) :

where ¢ is a constant of 1ntegratlon The in-
finite upper 11m1t in our problem is handleds -
by the standard method; the steps are as
follows . '

. \ oy
. fz=o
[ e~%dz llmf e’ "dz
z=0 T P 0 .
. 1 =ty (1 1.
.-=,lm‘—'—-e"‘= }~hm S
¥\ @ z=0) b>w0 a e

a—_<--z-_-so—>1

T/ (10N 1
~—{ lim{—¢ }+—"
e \peole}/) a
but ‘ ' ‘

wm{ 1 g
b.~>w eﬂb

so that N

a
This verifies thatrour functxon

™ <r=sm'¢)

4Tt \ A
(contmued on fnea:t page) .
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actually satisfies the requlred condltnon-—-—
that is, that wheh we substitute th;s term
for k. in the expression . : ;

Fd

. re= o
[ S Rpy-2zrdr
T =0 :
and perform the integration, -the result is
actudlly equal to V, the volume of injected

water, as required by the condition.

We have shown, then, that the expression

’ h= e—-(r"S..HTl)
: 41'th\ - -
satisfies the differential equation for radial

boundary conditions associated with the in-
stantangous injection of a.volume of water

’through a well at the’origin, at t=0. It is,

therefore, the particular solution -required

for this problem. It is an important solu- .
_tion for two reasons. First, it describes ap-

proximately what happens when a charge of

.water is -‘suddenly added to a well in the

well the.

‘stanc_lard"‘_slug test” (Ferris and Knowles,

1963) and provides a means of estimating
transmissivity through such a test.! Second,
and more importantly, it gives the “impulse
response” of the well-aquifer system—the
solution corresponding to an instantaneous
disturbance. ;Solutions for more.complicated’
forms of disturbance, such as repeated in-
jections or withdrawals. of continuous with- .
drawal, can be .synthesized from this ele-
mentary solution. Following Section 37, a
discussion is given in text format outlining
the manner in which solutions correspond-
ing to repeated bailing'and continuous pump-
ing of a well may be built up from the im-
pulse response solution. = - -
This concludes the programed instruction’
of Part VI. You may proceed to the text-
format discussion following Section 87.
Readers Who‘p\'refer majr proceed to Part VII.

YA subsequen! "publication (Cooper, Bredehoeﬂ and Papa- .
6pulos.” 1567) has provided a more accurate description of the
ctual effect of adding a charge of water to & well, by con-
sidering _the inertin of the column of water in the well This
tor was nexlected m the original :nnlyus/ .

74 -+ /

Your answer in Sectlonl 33 is not correct.
'I‘he condltlon to be satlsﬁed Was

V [

S h,, 2—7d;
r=0 ) -

A

A solutlon fo,our differentizl equation is by
definition an expression giving the head, h,

at any radius, r, and time, t\in a form that.

_satlsﬁ% the differential equation. Here, the
idea is to testgsuch a solution to see if it also

satisfies the cdndition phrased in the above

'equatxon The solution actual ‘

“represents

he head K, .; if we substltute it for the quan- -
tlty 21r1‘, as your answer suggests, there will
be two terms, k., and our solution, both rep-
resemmg head in the r%ult}ng equation.
Moreover if the result of the 1ntegratlon
were’ 21rS we would be left with the result
V= 27rS which does not satxsfslr the- requlred

" condltlon

Return to Sectlon 33. and choose another
answer.’ . -

15+
" Your answer in Secfion 1, .
. ' ah : )
O = "KZﬂ/rl N R
' 37 /1
is. correct. The terms 2r, 'K, and .b are all

LU constants We will denote the product Kb by

A

107

T, as. befor': The va'rioble 'terms,‘r'andlvah/

’ or, may be combined and treated as'a singlé .
- variable, 7.(2k/2r). The value of this vari-’

able at the inner face of the.cylindrical ele-
ment will be emgnated (rah/ar), Using -
these" ‘notation ~our expressxon for inflow

i
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'through the inner face of the cylmdrxcal
_ element is now

.

'
T

- .Q __Z-T\ [ oh > |

GUESTION

N Suppose we continue to treat the product
" (dh/2r) as a single variable, and let (rok/
' 9r) ; denote the walue of‘this ‘variable at the
‘outer face of the ¢ lmdrical element. The ex-

pression for the outflow, .Q., through the |
outer cylindrical surface can then be written
1n terms of (rah/ar) 2 In & form similar to -

- X _' \ R

\

—15 '—Con

that for the mﬂow Whlch of.thé followmg :
~ equatiens “would we then obtain for the in-
flow minus outflow, @; U». for our cyhndrl-,
.c..lelement" S . ‘

! 'I’urn ‘to Section:

oY N AL oh\ )
¢ Q. <Q.=2xT r—_-,-) -\ — 7
S s or /- or /., ' oy,
‘ Qt"Qz":z’{T )} "\ . 25
. . L i . . —Or - ar ;- : v

Your answer in Section 28,

re)))
" dv' - ot
= -dt 2~n'A1

.is not correct. The storage equation tells us
“that rate of accumulatipn in storage should.
equal the product of storage coefficient, rate :

" of change of head thh tlme, and base area

'-Orz

of the eIement (prxs ) of aquxfer W1th whrch -/
we arg dealing. ur element, or-prism, of -

E aquxfer isa cyhndrxca.l shel} extending from
> the radius 7, to the radius 7. Its base area is

j’ given by theterm 2=raAr. ‘However, in your
answer. this. area “ferm is dxvxded into-the -
. _term S(ah/at) : .

Retum to Sectlon 28 and choose another
7~ answer. ,

" the second term of the expressxon for azh/ o
ar- The producﬂ:

I 3 T ‘ s <«

— 17

- . \“ N . . ) .
. . . *\ ) T . . ‘ I . . - - \»H ~. .
Your answer in Sectxon 20, L (-25'1'> 231') o
oh 10k -V, - zs g ) 4Tt dre |
=T e— Sr2/4TE). - - T RS
‘o or "4sTt. aTt. 167 ) isnot eq“alt" _\,- RS ERE
L e ) L ‘ 2S’r2 T~ - A o S
isriot correct C[’he mistake in thxs answer re-. o R Ve
sults from ‘an algebraic error in sxmphfylng' - 16T’t’ P

H‘!etum to Sectlon 20 and choose another'/ 3 "
' answer.

. e — oo -8

i,
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- Yonr anawerin Section 21 is correct hegg_ - ' e
.is immeasurably great, or infinite, at the well ‘ N T
-at t=0. Taking this result together w1th our ’ o ‘ B
¢ . requirement. that head must be. zefo else-
 where in the aquifer at t=0, we may phras-

. the boundany condition fort 0. a’s follows .
".‘ S, for r= o«andt 0 o
; B0, for r>0 and ¢=0.

L We now' test our solution: to\see if 1t satis- * ' K — T
- o/ feg this requ1rement "Probably_the” easiest. SENEEL : L —-r
w;y to--do . this' is- to._expand the .term’ B Lo T

- et (Se/aT) i a Maclaurm series The theory - ‘ R

this type ‘of series expansion is treated in N T ST o S
tandard texts of calculus; the result, as ap- A I S

3 ,phed to: our exponentlal function, has the = | e T

: «.form o s - ‘ T B ‘

‘o

2

3 IR
e=~1+x+—+ R
,'.:'/-.'-"-' Lo ,

$ T or for a negatlve exponent, .

N 'i. 1+x+—x-+ +***
E ‘v."' ' 7

In our case, zis the term 'rZS/4Tt and

TN e— (r-S/ATt) =

o / L pg '<4T¢>_,"\<'4Tt’.> L
el ,,1_.;_.< >+ : Yoo pwkx
Do 4Tt ‘2! \3! .

-

-'_""‘s'o that :

e——(r surc) = o

' 4th

. LAV
S ,,.e'Sa . N
41.-Tt+r=S7 + -t o HHx

- 4TE-2) 16T=t2 31
Now as t approaches zero, the first term in .
the denominator approa.ches zero; the second /
remains “constant, and the thlrd ‘and all/
-y hlgher terms become infinite, provided.»does

Mwmnanh_zmmmmtemnn the

;
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SR S
4 \vestlgate the behavxor of the functxon o

|, ] .
’

- denomxnator is 1nﬁn1te, /the fractxop as

whole becomes Z€ro0. Thug' the expresslon S Ty s L
AEETE R A ) R T ' e~(ras/4rh o .
.. e= (iSATH SN s ' 47th . o e
: , 4aTt - - A 1s\to construct plots of thxs functlon versus .
is zero /for t=0 and r;éo and satlsﬁes the . r, for deciansing * '»~n of time. The ﬁgurw
first pa.rt of our condition. - . B show the form thu. such a senes' of . plots*

If» 7 and ¢t are both allowed to approachﬂI take. It mav be noted that as time ap-i
zero, the ﬁrst two terms in_the denominator proaches zero the funcbior%)roaches thef _—
. of our fractxon will ‘be- zero.. "The third" will /shape of a sharp “spike,” or impiulse, at 'r—-__ "
. behave in. the same manner as. th fractxon L0 Thé shape of these curves suggests a head .
‘_: ca:‘/k:o behaves ‘as x- approag:he,s zero, since. i:,"dlstrxbutnon 'whxch we mxght sketch intutive- ' .
r “and are both approachmg zefo in the same - - ly, if we Were ; sked to desombe th ‘ response'_‘ G
way The' limit of cx‘/ka: 8 x'appr_%ach'es_,__\. of "an, aquxfer to: -the injection” of small-'-'— .
zero 1s0 smce I Co - _volume \of water. It is s,uggested I%at sthe
- *- reader construct a few of these ,pjotSft in

’ N cxt =€

_ vy : | _ 5 order 1o \acquire a- feehng for» the behavmr._ ;
ks e . : . ofthe functlon N e
Therefore the third’ term in- ‘the denomxnator : G Qu'g"oN \?-\.\-’ N

must also approach the: hmlt zeroag rand t

approach Zero. By a‘/ sxmxlar analysxs it can extent, and’ the volume ‘of water injected i
: be shown: that the limit of\every succeeding” " “fogumed to be small. We would therefore ex-
;- térm in the denominator is. zero as r‘and ¢ pect the effects of ‘the injection to dieout 8t -
: approach zero. Thus the entire denéminator” great radial distances from .the well. Which - .
is zéro, and the fraction as a whole is infinite, - of thé followxng ‘expressions. is a ‘mathema- ..

'l‘he aquxfer is assumed to . be 1nﬁn1te in

“so that theterm R T . tical formulation of. this ‘behaVior and could

R4 o "'V' . be used as. a: boundary condxtxon for ourr
Lo D . e— (riS/4Tt), | L R problem" . _ ‘ . .

oo : f 4"Tt S ' . S .,. \\‘_\ ‘ SR Turn ™ Somon »

' is mﬁmte whenrandt a.reboth zero, sat’lbf.x R Tyl h>0 as ,-,r_co' o 33\.,‘. :

__ the second part.of our condition. - .- S o hdwastPe 29 .
" 3+ Another: and very lnstructwe way to in- . \ . kP as 1—>0 TS 6

.: “ . ] P . / ,. . \ )_ - ) .- '

Your answer in Sectxof 21 is not correct : the well -to have an inﬂnxtes:mally small

We established: In the; dxscuss:on of Section ‘radlus 50" that Aw, ity cross-sectional -ares,
- 21 that the <r1se4n Water level in “the well at .approaches zero. 'If -smaller. and . -smaller - .

‘are assigned to the denomxpator, Av,

t=0- should be given: 'by/the expressio: 7 valu o
- V/A,, where A, is he/cross-sectlonal a;\eﬁﬁ of " :whil _the numerator, 'V, is held constant, ;
- -the well bore! and V is the volume: of water . the fractxon V/Ay must take cn. la.rger and,_ !
/ mJected In order for h to-have the instan- larger valuesi* - . 7. g SRR '
taneous: value of .1 foot, .V, in ‘cubic- feet, - [ Sl ' o AN
wouldf}ﬁv;/t(yb? numerically equal to A,.,, oo Return to Sectxon 21 and choose a.not.her'-
in. square eet. H

owever,. we: are assummg answer R RN \;_ e
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Your answar in Sectxon 35

T
i

-

— ) —_— 27 (Sr2/4Tt) ( +e— 74T¢t) . \

is correct. If the term 4

i
g~ (Sr3/4Tt)

4aTt

* isfactored frdm this expression;we have ,
F oo v o N | .
Dot 14;;T{ L {4Tt” /t'} ‘ o

_and if we multlply this equatlon by S/T, we‘. :

. obtain

Y Seh—V T {sw s"»};_,.' e

____.___o—(Sr AL} (RENRENEESI S
_ T\ ot AxTl - 4T Tt
Our expression for 9h/9r, obtained in an-

. swer to the questlon of Sectﬁ27jwasjk_ i gi‘.—%--/ -

s Pk Vo 3 < 287) o i _
_=___e—(sr/4m % — o
\ o 4Tt 4Tt R

' . The te1m (1/7) (’ah/’ar) is therefore glveﬁ,

v o

+ or —47th o\art/)
In .answering the question of- Section’ 5 s
we.saw that the expressmn for ’azh/’ao * was -

._?_

o \ h V(. <,—zs'z < s
S e—(Sr_.'-‘_/4Tf)- — )+
Lo arel 4Tt> 4Tt

e 4 .
. . ,
v /. ; I
l’: / A /
h o !
111 o
: S i
; - 4
]

1 ah V T .\_ '_ < 2S) . . : .‘ . -
= o—(Sre/aTey: | o o :\/.

>=' ' < <287
eF (Sr/4Tt)
.\ 4Tt

"
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QUESTION

' Wthh of the followmg e-xpresswns is ob- ‘
\ tamed for -
’ .oh 1~ ah _ L
wtree—
art 7 or — '
. by dombining the two expressions glven :
" abfveand factoring out the term . Sy
o oo ¢ ' . R N . ‘ S Tdrn_ 10 ;;cii;n: _.

ok 1 ah 174 (-8 Szr" \
-I-—_-—.______‘.o—- (Sr2/4T%) + .
4Tet

—ZS_ 282,

Y + - A-

ot r or - 4sTt 4Tt 1673t

: . o*h 1.2k o8 {;45 8
T : —_—t e — = (ST/4T) ! et —

‘ ort o or 4Tt Tt 8Tt

) ) . B N ) .
s
C . ‘ .o ¢ e 1k
A ’ . Lo ~.. o

S0 _._-"ar2 r 9r 4-Tt
oL otk 1 9h

— =

w o

= (Sr'—'/tTt){

- o4

Your answer in Section 20,

"azh"'i oh

L —t——=

' —S Sy

g— (SP/4T) + , 4
A.\ { Tt ‘4T=t=-t - - /

- is COrrect Now note that thlS expressxon is -~ Lo . g : S

" identical to that given Tor (8/T) (9h/2t) in o o RN N

Section 20. Thus we hzwe:shown that if head = . ' . N

is given by . T . N

B — (STH/ATY) - o L

ar2 r ar 41th

. then itis true that

, “ 5
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_er expreasnon for dv/dt was -

]
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— 21 + —Con

In other words, the expressmn
v
~e— (Sr3/4Tt)

Ah'A:
' 4th ,

satisfies the part1a1 dlfferentlal equatlon or
. constitutes one particular solutlon to it In
‘fact, this. expression is the solutlon wh1ch o . :
- where Aw s the cross-.aectlonal area of the
. well bore, and 7y is the well’ radius. For ex-
. ample, if’ A,is1 square ‘foot and we inject -

. descrlbes the hydraulic head in an infinite,
M horlzontal homogeneous, and lsotroplc arte-

- "sian ‘aquifer, aftera finite volume of water,

-V, is 1nJected suddenly at t=0into » fully

penetratlng well  of infinitesimal radius - Jo-
cated-at »=0, assuming that - head was’ every- -

- where at the datum prior to the injection—
that is, assumlng h was everywhere zero
prlor tot 0. L

"Proof- that our timctmn is' the. solut;on-

_corresponding to this problem requires, in

‘addition to the demonstratiow that it satis- -

- fies the" dlfferentlal equa’in:, proef that it
" 'satisfies the various bowsiary cemditions

peculiar to. the problem. ¥i> mwr wish to

formulate these condltlons

The charge of fluid is addmd Bokre well at "

the lnstant t=0. At this Zwsaarz, there has
been no time avallable For tlnid to move
" away from the well, into the agwifer. There-

~fore, at. all pomts in the ammifer: except at

" the=well (that i, except ak r=0), the head

. at#=0 must still be zero. In,the well, on the .

" offrer hand, the addition ¢f the - wiume ,of

. given by

“head at the well will he 0 feet at £=0
.~head>at the vzell will be 1 foot at t= 0,

1 4

/oo,

water produces an 1nstantaneous rlse in __
_'head. For a well of measurable. radlus, this -

instantaneous head bulldup, Ah, /would be
vV ',
Ah——-— ., ;

Ay ‘ﬂ"'w ) :

1-cubic foot of water, we should observe an

‘instantaneous rise in head of 1 foot in the -

‘well; and because head was orlglnally at 0 -
®(datum’ level); wé'can say \that the head in . -
the well at t=0 should be 1 -foot. If A were -

".0.5 square'foot, the head in the well at't=0" .
should be’ 2 feet and so om. :

/ ) T
o . ) ussuon

For purposes of developlng the boundary .

conditions, we have.assumed: the radius of - -~
our well to be 1nﬁn1te51mally small—that s, -+

to. approax:h zero. Which- of the’ following: |

statements describes: the- behav1or of head'at . -
the well at: t= 0, subject to thxs a.ssumptmn" -

Tom to Snchon

10

" head at the well will be lmmeasurably large L
' ——that is, mﬁnlte-——att 0 - .18

2

L

/

> ‘Your answer in Sectiox %7 is mot correct.
The expression obtalned it Foeedin 28 for in- -

ﬂow minus. outﬂow was

' ' [a‘h ahi)
Q Q, P ) P
ort Br

. answer.’

Soav ok -
——"=§27rrA'r-—— o
dt ot -

L The expressmn fordmflow minus cutflow may
- ‘be equated to that for dV/dt, and the result

1mp11ﬁed to yleld the correct answer.’ .
~ Return to Sect?n’ '37 and choose another

19
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* Your answer in Section 5, ~ I

[
i

a’h V ' —28\ /~2S8r — 287 .
= e—-(Sr’/th) 4 e—-(Sr’/th)

ar’ 41th ' <4Tt>~<-'4'T't> <4Tt>\_

is not correct The rule for dlfferentlatlon of '

" a product is: first factor times derivative of .

‘second plus second factor times derivative of -

ﬁrst The fwo factors, in thls case, are - o o h o )

T \ E ', ;. . -’ } . ' . T

v — / e . ot : - N . . . \ . ‘\
e (s#/n'z) S , S : s i \

e e e D
(whlch we have-already dlfferentlated in the L o o . o R o
questlon of Sect n27) and - S AN

. ] \4Tt - ] ' ‘ ' _' * ‘ . ,’ o 3 "" E ) “ * ;“ -0

o The ﬁrst term of your answer is correct the o, C S . T '

ﬁrstfactor, g L . o ' e

—'is#/he) o L : . o
47th o o

is multlplled by the derlvatlve of the second ' p

Whlch is.

'4Tt,

(t is. sxmply treated as; part of the consta.nt .
coeﬁiclent of r, since we.are d.lfferentlatlng
" with. respect to ). The second term. of your
. answer;s however, is not- correct; you have
& wrltten the derlvatlve of the ﬁrst factor as

SUR e—(s#nn» o . o o R E
' 4Tt I o . Y

_ Compare this with the correct answer to the .
.~ questioh of Section. 27 and you will .see- that |, " o R
1t does not represent the denvatlve of e S _' ~

N

e_(s,a/41'¢) - _Return to Sectlon 5 and _choose another '
4,th : v Lanswer s oL L W v
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\

[Y

aTz‘aT a’l‘ 41'th ‘

. /

terms -

/24 *

Your anéwvr in Section 20

a%,d/ah v { =48 srn_
—h g —(SF/ATY)

/—2s> ./ '
4Tt '

1
.

and i the multiplication ‘of the two terms _

<— 2Sr>
4Tt

-«

.

P
PR

25 *
Your answer in Sectxon 15, R

o) -<z':->'1i

or

». . is not. co*rect The expression for, ‘nflow

‘through the inner cylindrical face wa /

s ishown.

" first. Your first:term, above is correct; the

. o ah
s Q= —2¢T{r— )
I -or.
Applymg Darcys law ina sumllar

: /ashmn ‘to
: the outer cyhndrlcal face, at rad us 7., the-

_ expressxon for outﬂow through thls face 1s ,
faund tobe : .

".,‘ Q ——21rT ?——
- . o
These tw0 equations may" be subtracted to. |

obtam an expression for inflow minus out- | N
flow. “The radius; -, does not" disappear. in ;. ;_'_

- Return to Section 20 and choose another :
- answer . - :

‘this subtraction. _Your answer, which does,i :

not.include radiiis, must therefore be wrong. . .
" Return.- to- Sectlon 15. and ‘choose . another; o

given by the first factor multiplied by the
derivative of the second, plus the second

factor multxph&ni by the’ derivative” of . the

- first factor, 'r,mmultxphed by the denv"itlve

- of dh/or, althmﬁhnt would be more conven="
. :txonal t6 usefhasecond denvatlve notatlon, N

I

_Your second terrn,LhOWewer, is L
The derlvatwe of
equal to 7.,

answer ‘.,\\" ‘, o

-~ Retermn td Sectlon 7 and choose g,nother

leth Tespect to ris Jnot

answer R
\_. - i i
26 +- ———
Your answer in Sectlon T, . ;
o YA h\ _
ol r—) — o . !
a or 9 r 3};, rather than i
o LS : .
Y- -_'a_r.“'ar
-is not correct. The deriyative of a'prodqct is :
Ny R
N

ot correct..

B L
i
S P
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Your answer, in Section 37 is correct. The

: ..bas_ic differential equation for the problem is,

“2%h 1 2oh

orr ror T at. ST
In seeking a solution to this equation, we

are seeklng an expression giving k as a func-.

_tion of r and t, such that when h/2r, Oh/

272, and pf/ot are obtained by differentia- -
tion and substituted ‘into this equation, the '
" gquation .is: found_to be satisfied. For ex-
i ample, consxder the functx.on

VA ' 4 o
i . h= e——¢(51—"/4'm' :

4xTt

Hn Whlch V (as well:as. S and T) is constant
and e is'the base of natural logarithms.’ This
‘happens to be an important function in the
theory of well ‘hydraulics, as we shall see;
" and we wish now .to test it, to see whether

it Satlsﬁes the abovedifferential equation. To .

do thxs we.must differentiate. the expression

once with respect to & and twice with respe-:m v

"to r" these operations are not difficult if the
: -'rules of dlfferentxatlon are applled carefully.
: ‘Fxrst we Wlll dlfferentlate w1th respect to

“term -~ (S/4Tt)r=. -

— 27

r; in: domg S0, we treat tasa constant s6 -
that the factor V/(4-th) becomes simply a’
constant coefficient. In the exponent as well,
the' term -~ (S/4Tt) may. be -considered a
constant coefficient of r?; and. the problem is-

‘essentially one of “finding: the- derivative of -

¢~ (5/470+*  and -multiplyine  this bv th_e

constant factor +, {47 ¢). Tue Ge. .. ative of .
a function e* with respect to a variable r is. |
given simply by e*- (du/dr). Here, u is the -

J o e oussnon
Followmg “the prOCedure outlmed aBove,.

-which of the followmg expressmrs is found

: for ah/’ar" R
o . : o Turen to Socnon .
: ah 5 < 28r> : .

: _e—(Sr-/lTl) - 4 .
or” N 4Tt o

* ah v oy _ < 281') L

-2 e—(ssrm) . , 5
ar 47th ’ ' 4Tt
_________e—(smu't) T 20

S or 4Tt ’ ' '

' AR
s o

L iz

.' : oh. o
or 2*h 2k

= b,
or or T or

. Escorrect. Our-expression for

ah‘_)y < oh >
) —| r—

_ or or
may thelefore be w,rltten

: . i
A . o o
. > N\ . o ks

] .
’ - :

/ . P
i R4

< a}L/> /
o\™— )/
)/

Ar—

1 . C T e e ——

aﬁh ah} w2
: : Ar.

Oui' expressmn fpr/ xnﬂow ‘min utﬁow

/ B A SR o "‘“_'.’"" PR _

' ah ah f . v
Clr—) ={r—)
. N Jar a,r "1 >‘,)
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. The behavior ée ‘are trying
" the dlsappearance of the effe

s

'answer whlch ‘you chose/e&scrlbes head h

S
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‘/

As before, we wish to_equate this expres-

- sion for inflow minus outflow to the rate of

; oh oh\ )
@ Q:.-—Z:rT{( ) : 7'-) } W v
. 37 or/ i .
L oth Dh
=2wT{r—+—}-Ar.

accumulation of water in .storage in our ele- o

ment. The surface area of the cyhndncal ele-
ment is glven approx1mately by .-

e perimeter, of a c1rcle
‘taken along the midradius of. the element/.
znultlphcatlon by the radial ‘width, Ar gl}/%

. g A}Z-rﬂrA'r o / :
Theterm21ﬂrls .

the surface.area, or:-base area,. of the cylm-

drlcal shell

e
) / . '_ouzsnon . S
Using this expression for the surface arer

of the rylindrical element, unc: letting %
9t denot:z the time rate of heau Luildup in
the element, which of the following expres-
sioné is obtained for the rate of accumula-
tion of waterlin starage ,in the element?

o

Turn to Section:

12 .

_16' y

av ok 3
— —"VﬂAT-———- 37 .
-av Joh

T dt B jat,

N . ok,

av. ot
-g;~27f'i'AT o

“ Ty

29+

Your answer in Sectlon 18 is

r/not correct
describe is
of 1nJectlon,
the well. The

at great radial:digtances fro

R

" time, rather-than with' distance. .

_ answer=

-

os gorng to mﬁmty,'.réther‘than disappear-'-"
ing; and it describes a restrlctlon onh w1th
.
Return to Sechon 18 and: choose another s

P !

30

Your answer in Sectlon 15

D,arcy 8 laws as

- '/" ok ah' :
27T r—) (r—).
or- or/eq,

e ~0.=

. is not correct. ‘We estabhshed in Sectxons 1

-and. 15 that /1nﬁow through the inner cylin--
~drical -face' of the element 1s gwen by

i
iRl

. : : ‘ah !
_ R 4 X -——2qu r—]).
’ ""l . . B ar 1 .

-

Using-a- sumllar approach we can show that_-

. .outflow through the outer cyhndncal face 1s_ .

" given by - .

o AA- ,,“ - . ‘ - ‘ah
K Lo Q 21‘rT r—) .
T . Sor7:

- Thesg two equatlons can besubtracted to ob:

‘tain an expression for inflowéminus- outﬁow' )

for the cylindrical element. = - o
Return to Section 15 an&cchoose another

answer

‘:h"

=3




[

. . oh VS ~ STty 4 ting u represent — (Sr?/4Tt), your answer .
' _8754th- 4T1t2 4'_-6‘ ) ‘ 47th gives only 9w/t in the place where 1tshould
- ; i v glve : A '
~ ’is not .correct. Appllcatlon of the product : au' T
rule~ﬁrst factor times derivative of sec- e .
. /plus second factor times- derivative of - : .ot co T
' ~'_ﬁrst——18 cdrrect; but your expression for the Return to Section 35 and choose another
o time derlvatlve of e-(s"“ " is not correct . answer.’ o
32—
= Your answer in- Sectlon 37 is not correct R oh ah o . / o
: VIn Section 28, we saw that the expression 2WT{T-~+—-} r T
' -for inflow minus. outﬂow ‘could be written L Aot - o1 P
.t / - Ty N and ( o : .'_. o : ~ ) [
- (2R oh) N PR :
Q Qz 21!’T 7‘———:+—~— AT SZWAT——- ST
87‘ or _ ot . o -
whlle the expresslon we obtaxned for AV / ** and then d1v1de through the resultxng equa-s
dtwas . : tlon by :
SR o ~ Zn-TrAr, _‘ f
ﬂ'_: §%r M’ff_ R tain the. edrrect answer to thc ques-
= dt - Ny at' T e t1 Iiof Section 87.. . S /- _
R - Return to Sectlon 37 and choose another,',
1f we equate the terms =~ -~ . o answer o . '
. . . . . . ) ¥ -
SN 33+

Your-answer in Section 35, .
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s
/

y

[

P

??+

Recall that'the der:vutive of an exponential,

¢v, with respect to t is given byevdu/dt. Let- -~

Youranswer in Sectlon 18, h->0 as r->oo is

.. -correct_From a mathematlcal point of V1ew, E
* . we -should . perhaps have used instead, .the .

" condition that (h/2r)~0.as m>c. This con-

- dition is- required.as 7 increases toward in-

T ﬁnlty, because the cross. sectional area of flow
" 'within the aquifer—a cylindrical . area co-

-axial -with the well—expands toward ‘in--
finity. Thus’ if we were to apply Darcy’s law -

R ‘to determine the flow ‘of thenmected water

o away from the well we would obtain the re-
" sult that this flow increases toward an:in- .-
., finite value':w1th increasing distance from- the
i Well unless we postulated that he head

gradxent ah/ar, decreased’ toward zZero W1th T
increasing.r. However, the/. condition that &
approaches a constant ‘0, -as 7> 1mphes1 -
that 9h/or must also. approach Zemo-as 7 ine -
creases; and & s somewhat easmr cond1- S

tion‘to estabhsh o
Our task, then, is to show that the runc-_ o
" tion L

\

e— (ST

- 4Tt - .
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thlSI functlon to. see whether its value - ap- ume of water into an aquifer whlch is as-
proacheS\zero as r approaches_ mﬁmty Itis sumed to be infinite in ‘extent. We have just o
_easy .to show that for any finite value of shown that & .approaches zero. at infinite -~
- "—t»imé the condition is satisfied. However, we  time,as r» also becomes infinite; we need only '
- - are also interested in what happens as t ap-- show -that this behavior .holds"when r s
" proaches infinity along With r—that is, we - finite. We will show this through direct use’
would like our condition to be satisfied for  of the function, although it is also evident -
=_all “times, even thosa 1mmeasurably large using the series expansion form. As ¢ be-
. For this reason, it 1s convenient to use the comes mﬁmtely large the factor .

~

- " the series expansion form given in Sectlon.' o . v R BT
' r8"'thatlsweuse : o : R o :
. S » 41th .
s ) o _-must approach zero; the factor
'4,1_th. ) ‘ I A Y 1)
R v __  which s equivalent to : L
S \ : ,,.AS,r ,rsS:! o ooy T e T
S \ 47th+72S1r - R 1 o .
4Tt 2' 16T2t2 3' CEN o .
K L e(r’*‘SMTt) . : i . !
In order/ that the fractlpn on ‘the rlght ap~ C TN ST
) '-proach zero, it is sufficient that any one of - .must approach the value. - . o . q
the mdﬁndual terms in the denominator be- - - : I ;0
-~ comes infinite. If » and ¢ both approach in-- J O
— ﬁmty, t e first two terms clearly become inc A T She T
finite; in fact, the remammg terms become ‘ e

infinite|as well, although we'need not show .~~~ = . e
‘this. If] one ‘term is infinite, the. entire de- - R ' )
nommator is infinite, and the fraction is '
., Z€r0. For a finite value of ¢, all’ terms except . R
“the first clearly become infinite as >0, and. ..~ - e

' .again/.the expressmn‘ as a whole tends to G
T-./_ zero Thus the expresslon S I 4 r 1s finite. But e° ls snmply 1, so. that the

_ product . .
: _e—(,cS/u'z) T . AP ' v '
_&Tt R .

‘atlsﬁes the:condition- of- tending to.zero as~j— — : o

#>e0, for any value'of time. Again, this can must approach zero as t'becomes~mﬁmtely_\

‘Ae demonstr:ated by extendmg the" plots de- ' - largk, at any finite valueofr. .~~~ ¢

S ribed in Section 18 to large values.of 7. we now consider the last condition which

We could .alse -add_ the condltlon that. h our function should satisfy. In the sketch,

m st approachzero as‘time becomes infinite,: . the aquifer has been divided into cylmdrlcal/
here im:the: aqulfer-—that is, that the . elemerits of radial width ar, coaxial with the*:
= —éffedt of ~the Injectlon must eventua] y. die  well. At any- given time t-after injection, the »
~—out-with ‘time everywhere . throughout the ' injected volume of fluid, V, is*distributed in .+ ‘

' aquif smce we.zAre mJectmg a, ﬁmte vol— . some way among these cylindrical elements. '

.‘.e-f ("r’S/(Tt)I .

42Tt

t

e / .'.': .
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~ ,sents only the head increase due to the in--

jection. From the definition of  storage -co-
efficient, the- quantlty of the injected. fluid

- eontained within a glven cylmdrlcal element
. will be given by -

AV = 4S hey Zerr

1.

where » is the medlan radius of the element, . .

so'that 2nTAT is the base area of the. “element;

- hy. gives the average head in the element
‘ (that is,.at the radius 7) at the time in-ques--,
" tion; and S is the storage coefficient. (Recall

" .the  definition  of storage coefficient-—the
- "volume in . storage is. the product of- storage
, - coefficient, head, and ‘base area.) Now if we

" after injection. That is,"
F— V—VAV QS hrt 21r’l‘AT

o where the summation is carried out over all

of the 'cyllndncal elements in the aquifer.

.Agaxn, it should be kept in mind that k. o

o represents*mﬂﬁhe-head-mcyease*Assoclate

~ with the injection, so that its use'in the stor-

age equation leads only to the ‘volume of

" water injected, not to the total volume in '
.gtorage. Now since: we are dealing with a.
" continuous system,?we replace the summa-/ .

. -tlon in the above equatlon by.an 1ntegratlon

: N _the solutlon we are seeklng
We assumed head to be at the datum, or zero,
" prior to 1nJect10n, S0 that ‘h actually repre-

sum the;volumes in storage in every. cylin- o
(- drical], element in the aquifer, the total must .
. ‘equal the injected- -yolume, V, at any’ t1me_

33 + —CO“- T ) //

That is, we let the W1dth of each .- element S
become infinitesirhally small, denotlng it dar;
so that the number of elements becomes in-.
finjtely great; and we rewrite our equation
as ' . ’ ’ S
r_w . c‘l .
V=f S: h,, 2wrdr.
o =0 b .
The limits of 1ntegrat10n extend~from r=0
to r=.0, 1nd1cat1ng that, the -cylindrical ele- " [: .
‘ments.extend over the entlre aquifer. This. 7. .
equation :then is the final condition. which - ¢
_out.fupction_should satisfy if it is in’ fact R

_ OUEsnou oo T ‘
.. How do you think our. proposed solutlon«f i,
;should -be tested to see if it satisfies this O
‘boundary condxtlon'? - e Y

* Tum to’ Sechon" EPO R

The. 1ntegrat10n ‘indicated in the equation .

" ghould be carried out. The :esult should’ o

equal X ) X 4
s

4Tt

e = ) . ) . . - ‘ L
The expression® T

A . R .

e~ (r-S/(Tl)

-

1

e'-,msﬂ'rb -
. 4-rth .
should be substltuted for

L 2

efiuation, and the'integratlon-should e

o. 4- .14 oL ";

’ i Y, i ., .- !‘b. i .
" The expression T

-

‘e (r’S/(Tc)

- T 47Tt
. hould be substltuted for

. ) " h,-, ‘ . . . o
in the equatlon, and the 1ntegrat10n should .
be carned out; the result should equal

3
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a
g ‘L
‘ léour answer in Sectlon 1, '
R . [k
oo @ ~—K1rr,< >
I v . 37

’

is not\correct Darcy’s law. states that ﬂow is

given'by the product of hydraulic conduc-'.
“tivity, head gradient in the dxrectxon of flow,

and cross-sectional area normal to the di-

%

' ~ direction of flow is the radial, or 7, directlon

An area which is everywhere normal to the -

- radial coordinate would be a cylmdncal'

area, coaxial with the\well. That is, the flow
area that. we require here is a’ cylindrical -
area—in . particular, the inner face:" of the
cyhndrlcal prism shown in Section 1. The-
area of a cylinder is given by the product'

- of its height and its perimeter.. o

i

rection of flow. In this problem as in- themjetm to Sectwn 1 an{1 cho&e another; '

g qteady flow. to a well trjated in Part III the

.answer. | : -

. - ; T K
S S 351+ . '
e : S ; o

P - 1‘ ;
Yopra ST Seétlon 5; '
S azh v { - <—2s\
T — e e—(.?r?/u'z) . : +
S o 4,,Tt ' \l4T¢

4

© i correct We now. Wlsh to dnferentxa the

- To differentiate

e )« e (ST/ATY)
gTt’) . -

e

'('—2ST>'} h

equatxon S _ e_(w/m) ’ .
L TL ﬁ= v =TSRt - wWe agam apply the rule R R
' AT L de du. |
‘with_ respect to time, to obtam an expressmn . — . A
-for h/atsIn doing this, we consider ntobe . Loodt - dt /
oA constant, and treat our expression as the -¥vhere % is B :
;o product of the two functxons of £, - P : : - .
L V] ST o =8r2 —SW
R T ';/F’*"*‘Hwtorﬂ,tf’
_\-.— and” 7 . - L and 1ts derlvatrve w1th respect"co £ 1s
N . e—(s;aum AP S ¢ 2 srz' v
) The derlvatlve o‘f’ Ly " ‘ aT "t—zf or- 4Tt= S
. 41th'Or 45T e - oussnou
' ' N Applymg the rule for differéntiation of -2’
wit .
W hrespectto t;’s : v ' : product together with - the--above results,-
R 't-z'orA - " which of. the followmg expreSsuons is- ob-
Lo . 4 1rT 4”,th ' tained for ah/at" . «
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NONEQULLIBRIUM
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FLOW TO A WEL& \

3 5 + -—Con
A

. r o . : o S Turn .':10 ‘Section:
oh -V . ; V<Sf=' S B -
sz g ST [ : . , R e
U at 4Tt 4Tt> o N
R L — o~ tserarn | 4 g—(srnamy L _ 20
' - ot {int . 4_T_t==> Co\deTr )
A < VN, e
et @ (SPP/ATE) S 81
at 47th 4Tt2 ¢ '47}Tt2> ST
‘ . /./. . . E ’_: . . \\\_ v
f S 36‘&_/ s o
b v\
S -\

Your answer m Sectlon 1
L .

s 1=“ - y

‘ co. 2,,.1-1_'
'-~-1s not correct Darcy 8 law tells us that ﬁow

of ﬂow is the radxal d1rect10n and the cross-' \\"'*__
"sectional area normal to the ﬁow is a cyhn- Vo
- . drical surface—-the 1nner surface of the cy-- 8

11-1 )

lindrical, shell shown in’ Sectlon.rl In your'.v ~'-;»‘

e A
anSWer, however, there is:no facfof" repre- ,

_senting the area of. this. surface The height

: " of the cylinder, _wh1ch is b, appears in' the.
. is given by. the- product of hydraulic conduc- L
%ivity, head gradlent in the direction of flow,
. and cross-sectional area normal fo the direc-.
7. tion -of flow. In this ‘case, as in- the. steady .~

numerator of your- answer; its. perxmeter,,
whlch i8 21y, appears in the denoY'mnator of
_the answer which you chose..

o ,state ﬁow to a well in Part IH the d1rectlon'_j-~‘_"? answer. S
R SO e
A Co SRR oo
T v Your answer m Sect10n~28l T for rate of accumulatxon in storage, whxch“
S . ’-"'dV , ah - of the fo]}lowmg equatlons may be’ obtamed"
’\M : - —:—-———SZMT——— Bl ’ : ,- o’ /l 'l’urn !o Section:”
K Cdt .ot oth 1 Bk ah L
R £ correct As before, we: will next use the o s B2
' | a'r2 27rr or* at MR TR

equation of contmuxty to lmk the sto:rage
K ....d ﬂow equatxons )

'a/'

: '_**‘* a=h k)t Bk

RO N T : A
o \ oussnou oy or ’h 3’; ot . &{;1.

r ¢
L If the expreé sion ‘obtained - for mﬂow o ?_+_.a__=_a_h R
L ,?mmus outﬂow is equated to that given above AL ..-a,-z r 37' T dt

. N TN R : ,,\'-._ A

-

. -'.

Return to Sectlon 1 and choOse another._ "

B
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Development of Addmonal Solutlons by

3 T

: The dlﬂ'erentlal equation.
: 1 ah -S ah

a'r'2 r or

. is linear in h; that is, k and the various deri-
" vatives of k' occur only in the first power—

they are not squared, cubed, or raised to-any

' power except 1, in any, term of the equation: .

*Equations of this type have the property

- - that solutions corresponding to two individ-’

ual disturbances. may be added to obtain a

new solutior’ describing the effect of the two/

disturbances in combination. This is termed
superp051t10n of solutions; it'is a technique .
. which is ‘often used intunitively by hydrolo-

gists—for. example when calculatmg the.

- drawdown produced by’ several wells, by add-

/.

ing drawdowns calculated for 1nd1v1dual
operation.. . . -

The solutlon obtamed in the precedmg

S
4P (- 1)

[

where V. is the volume 1nJected at t,’ and' -

V2 is the volume injected at t,". '

If we con31der removal of a. volume of' _
: water from the well, rather than 1nJect10n,_

“we meed only introduce a change of sign,
taking ¥V ag’ negative. For example,- if a
bailezfull of water is removed at t=t,’, the
head change at tlme t, due to this removal is

¢" '

).

- S A ~(4T(t—tx)
| _e ¢

Superposmon !

i

programed instruction was developed for an
injection ‘of fluid at ¢=0. If the mJectlon"
does not occur at £=0, the term ¢t in the solu-
tion is simply replaced by at, the time inter-
val between the injection and the instant of
head measurement.. For example, if the in-

‘jection cccurs‘at time #’, and the head change o

due *o this mJectlon is measured at some.
later time ¢, the interval {—¢’ is; .used .in the
olutlon in place of t, g’lvmg

. < S )
T\4T (1)

Now suppose .two mJectlons occur, one at
ty’ and one at ¢.’, and- the head is ‘measured

5 S
s Rpy=m=———-e
4T (¢~ t)

" at some time ¢ followmg both' injections. Us-

“ing superposntlon, the ‘head change due to
the combined disturbances is

“\are—w)/

V.

4 —e . , L
41I'T (t - tg") " ’ '
- o . -‘< 'r's,--‘.)./-‘//‘
=V, ATt/
'hr.t B . . . . .

42T (t— ty) e

_ where V., is the volume removed by the

bailer.. If the well is "bailed repeatedly, as

‘may: h};,ppen durmg completlon, the. head
_change due to- ballmg is obtamed by super-.

» . . Sa




PART VI

posing the dlsturbances due to each individ-
| ual withdrawal : » -

rS

"

. V, (t—t)
}1{,,=,—_____- /
- v ] 4.T (t t,’) ’
. St S >
B Vs, / —<4T(t-‘-h’) :
—_—.-e ‘ *
4«T (t—t.')

3

where t is the time at which & is meaeured
T, R *'t.’ are the times at which the
individual withdrawals are made; and V.,

V., Vs, * * * V, are the volumes removed by -

the baller in the successive withdrawals. The
“bailer method” of determining’ transmlssw-
- ity from the remdual drawdown .of a well

that has been bailed was developed from this

,equiatmn (Sk1b1tzke, -1963).

A

i’umpinz :
rate, Q@ '

Q)

c. /i - B
Now suppose a well is pumped continuous-
ly durlng the time interval from zero to i,
' and we w1sh to know the head change at

Time '

NONEQUILIBRIUM FLOW TO A WELL"
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* %
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o~
. ! ,
Ve  \4r(-t)
_—.—'6 . »
GT(E-t)
: _ ( ) )
V. \ar@-tn)
*_—_ce <

>
;\‘>' ) N ‘» IA
e

N

‘timé ¢ due to this continuous withdrawal. )
. The rate of pumping, in volume-of water per -

 Pumping’ starts at time -

.. finitesimal time interval, dt’,

unit time, may va rom one instant to the
next. The figure shows a plot of pump-
ing rate verus time for a hypothetlcal case. .
0 and extends
to time = t, the instant at which we wish to -
know the head change. We consider first the
head change at t due to the action of the
pump at one particular instant,.t’, during |
the course of pumping. We cc74s1der an in-
extending to -

_either side of the instant ¢’; the.average rate .-

of pumping during this interval is denoted
Q(t’). The volume of water withdrawn from
the well during the interval is the product of -
the pumping rate, Q(¢'), and the tlme 1nter-

fval dt’; that is, . .
\to indicate

—V= —Q(t)dt’.
Again negative- sxgns are used *
withdrawal as opposed to. injection. The
product Q(t’)dt’ is equal fo the area of the

~ shaded element in the graph shown in the
‘preceding figure; the height of this element .

is Q(t'), and its width is dt’. The time in- -
terval betwen the instant of withdrawal and *

" the instant of head measurement is t—t’. Us-
_ing the solution obtained in the programed

instruction for the head change due to in- ‘
stantaneous . withdrawal of a. volume_ of -
water, the:-head change at time ¢ dlie to the E

'""thdrawal at t 1s g'lven by’
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, AR ]

.-V ' -< AT (t—t)
, e

4T (t—1t")

The total head change at ¢, due to the con-
_ tinuous withdrawal from zero to ¢, is ob-
- tained through superposition, by adding the
head changes due to the instantaneous with-
drawals throughout the 1nterval frorr zero
to t. °

A

—Q(t)
Gr T —t)

. ( _ ri8
ce u'(z—t'))

oo

The figure shows a graph in lwhlch 1nstead
of plotting ‘only discharge versus tlme, we
plot the entire function

. -Q() '( 4T (tt) )
. S — -e .
41rT(t—t')' _

versus tlme The,ma of the element at t'

is now o o
[ S ) e
Q) 4\4T(t—t’)- | .

Lo-dtr

I
AT (t=t")

-

TECHNIQUES OF: WATER-RESOURCES INVESTIGATIONS -

).

4-T(t—t)

i

r’S)

—-Q(t)dt’ ,-<4>T(t—t')

-e

——thus it is Jjust. equal in magmtude to the -

- head charnge at t, caused by the withdrawal

at t’. If elements of the type shown in the
ﬁgure are constructed all along the time
axis, from zero to t, the area of each ele-
ment will give the head change at ¢ due to
operation of the pump during the time inter-
val represented by the element; the total -

‘head change at.t due to all of the instan-

taneous withdrawals throughout the inter-
val from zero to ¢ will therefore be equal to
the sum of these.areas, or the total area un-

. der the curve from zero to t. This total area

is the integral of the function .

_‘(-_.fs )

AT (t—t)

a2

-Q(t)

— _-e
41rT(t t')

'over the interval from zero to t -that is, the

total head change is given by

o ( S )
“\ar—t)/
e - dt’

, /t'—t —Q(t)
"o 4T (t—t')

It should be noted that we are now using ¢’
to denote the time variable or variable of in-
tegration, rather than to specify one par-
ticular instant. The function being inte- -
grated involves the difference, t—t’, between
the upper limit of integration and the vari-
able of- 1ntegrat10n Evaluation of the inte-

e g|ral will yicld ‘a function of the upper limit,

t,’and of r; that is, the head change due to

~ the pumping will be speclﬁed as 'a function

of r and of t (the time of head measure-

- ment.)

For the partlcular case when the’ rate N

'dlscharge is a constant, Q, the integral equa-

“fion can be transformed directly. into a form
sultable for computation. We have

o
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: S
=t —Q ‘( 4T(t-z‘)‘)
h=/ P dt’.
t'—=0 4=T (Z—")

The term —Q’4-7 ds =« ¢nstant and-':v‘«ﬂ‘
= taken outside th--mteuwal giving

()
-Q C\aT =)
2 . dt

'—41rTr_lt'=() &= - .' ’ ’

rtr—p

I

"We introduce th: z..: zbraic éhange of

variable,

.

AT -t')

e

‘ We differentiate this expression with respect

‘to t, treating ¢, at this stage, as a constant;
this gives
dy - 7°S-4T

7_~=S : 1
dt (AT (t—t))): AT(t—t)) t—t'

_ RN
j 28

AT (-t | ¢
AT (t—-t) |

7"-'S -
pry

r:8S
4T

2 ) ’
Cdy=——di’ X
: . 7-2S i

4T
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The value of ¢ corresponding to the upper
limit of integration, t'--¢, is |

AT (t—1»

% hile the -alue of y cewZesponding wo the
~x v limit oiintegratior.. 77=0,.1s

T~ s 5
o=~ L —
- 4T (t-0; @It

We now rsturn to our i -tegral equartion
-.nd substitute y for

S

4T (t~t')
S dy
4T ¢
for
r’J ‘ '
_ dt’; v’(/'
and the values obtained above 'fo%he limits
. of integration. This gives - . 7
-Q (= 1 S .dy
h= : eV - . —
4xT J g tht( aT ¢
o

But since

1 <,rzs>"'
t—t' \ 4T —%_'

‘the above integral beco:n’ies

~Q foe"v
4l Jag v

ATt ™

N.
oy’
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This integral is called tt - exporaez=ial in-
tegral. It is a function of i: llower ‘ifmit, as
‘suggested by the figure, whi: s?k:msa graph
of the function e=%/y versus ;. Wke area un-
der this ‘graph is equal to = waifue of the

integral. The upper limit is. ‘f__iknite,u and the-

“function e~*/y-approaches zero. as «. becomes
ihﬁg_i_te;/the/area under the :curve, or the
--value of the integral, depends con!y upon the

point where the lower limii is taken—tnat.

is, upon fhe value of 7:S/4Tt. Tkis term is
often denoted u.in’ the literatur=, so that the
equation for head change is:aften written

& //
”.'/ o — Q [s o] e~ :
L‘,’/‘ . : h = //‘ —
47T Ju '

where §

r:S
Uu== .

4Tt

.1t can be shown that ‘the abowe: intepral is

"equal to an infinite semes invcolvimig-the: IOWer
limit. Spec1ﬁcally,

oy . @ g—v
LJu ¢

N 3

12

- of u.” Tables of W(

-0. 5772 ~In (u) +u—

TECHINIQU!ES OF FFATER-RESGIURCES INVESTIGATIONS

Values of the integral for various values
-of” thee lower limit 'ﬂ““"’ 1een computed, usingg

- this series, and ta. at i zatd. In the hydrologicc

literature, the vaige -
monly referred tc as-

" the integral is com-
% (u) or “well function
; versus % are: avail-
able in the referenc: by Ferris, Knowles,
Brown, and Stallmar. :1962) and in numer-
ous other references. In the forms presented
above, the equations ‘yield the head change,
or simply the head, assuming A was zero
Drior to pumping. If head was at some other
comstant level, k., prlor “to pumping, the ex-
pressions are still ~.alid for head change,
h—h,. That is, we h::ve

_Q o e— —Q
« h=hy= —-d-,u— W (w)
I 4T
where
;"\
r*§
n=
4Tt
or in terms of drawdown, ho—h, we have
. Q [me - Q -
s=hy—h=—- =—W.(u)
. - 4T Ju ¢ x 41:T

-

The result we. have obtained here is
known as the Theis. equation, after C. V.
Theis who first' applied it in hydrology
(Theis,.1935). An excellent discussion of the
significance of this equation in hydrolagy is

given in another paper by Thels (1938).

It was recogmzed by Cooper and Jacob
(1946) that at small values of %, (that is,:
at large values of t), the terms following
In (u) in the series expanmon for -

v

. u2 E 'uS u(

+ R T
- 2 2'

3.31 44! -

L

(
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- - .
dy
b vy

become negligibly small. In this condition
~ the value of the integral is given simply by

—0.5772~1In(%),

or

: .ZS
-0. 57"2 ln ( >
4Tt

The sign of the logarithmic term -may ‘be

~ changed by mvertmg the expressmn in

brackets,

"

: 728 \ 4Tt
o\ 4Tt ,-\, =S

_and the constant, 0.5772, may be expressed

" as the natural logarlthm of another con-

> |
2-25

-0.57725= In(

W)

AN
so that

2.26Tt 2._25Tt
=1In > =2.3log:o .
728 S

Thus when pumpmg has contmued for a

sufficient Iength of time so that u, or r-S/

4Tt is small we may wnte

Q ooew-'

z3Q /295 Tt
= .—-—d¢ log,o< — )
41rT v 4xT 8

/

S ATt [ 4 \
~G)5772 In( > }=In _
, “\2.26 /"

i

NONEQUILIBRIGM FLOW TO A WELL ST

This is the modified neresuiiterium -
mula, which forms the basis of vihe “semitvg
nloé” techmques often us=c¢ by Zrydrologiz=is

in the analysis of ‘pumping eusi data. These .

techniques are generally. agrplied for values

+ of u less than 0. 01.

The Theis equatlon and tme medified nom-

equilibrium formula are e. treemely  usefmul

hydrologic tools, provided the are used

within the limits of applicativin=sitablished

by the assumptions made in tiiur derivation.
Before leaving this subject, -w¢- wwill brleﬁy
review the assumptions thsft k.= been ac-

cumulated during the- course =i ~e deriva~

tion. We first developed thes=muzion

by assuming that: -

1. The aquifer was, confined;

2. There was no vertical flow;

8. "All flow was directed radially toward (or
Away from) the origin;

4. S and T _were constant—that 1s, the

. aquifer was homogeneous and Tso-

tropic; N

- 5. Thére was no. areal recharge applled to

the aquifer -
In_writing the solution correspondmg to
instantaneous dxscharge or input .of a vol-
ume of water, V, we added -the assumptxons

“'that:

6. The aqulfer was infinite in. extent;

7. There was no lateral discharge or re-
charge .except at the well

8. The.head was uniform and unchanging
throughout the aquifer prior m t=0

9. All of the injected water was: takien into
storage (or conversely, all discharged
water was derived from stirage).

10. The well was of. infinitesimml radiins.

Finally, when we infegrated theatbowe salu-

tion to obtam the contmuous discharge solu-

tlon
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we addet! vhe ce:ndition vhat

_11. The &ischarre, @, was constant through-

out @ha Guration of pumping.

These assumuzions should be kept in minc
whenever the Toeis equation is applied. The
assumption the— all flow is lateral implies
that the wéll m:zst fully jpenetrate he . aqui-
fer and that th= uguifer is horizontal.

If the semiloyr mppromgimation is wseg, we
add the assummzion tamt the time is great
enough and rarciims smazill enough that the
term 12S7/4Tt i= less than 0.01,-and the Iater
terms in the series expression for the inte-

. gral can theref-re be neglected.

The Theis eqaatior: was the first equation
to describe! flor- of wazer to a well under
nonequilibrium conditions. Ir subsequent
work, Papadopulos and Cooper - (1967
have accounted for the effects of a finite well
radius; Jacob (1963) and several other writ-

o It

St

(3

T ECHENIQUES OF WATER-wARXDURCES UNVESTIGATIONS

ers hawve -warmined the problem of dis~harge
irom gi’iimi’ali?*?-; penetrating wells Stsllman
(1963a), Lang (1963), and numerot.:. other
investiiratm—s have utilized Imagpe mesry to
accourt Fzr lateral aquifer fmauniaries;
Jacob ari l.ohman (1952) have amgitzed dis-
charg= at werstant drawdowzn, nmizzr than

_at comstuli rate; numemcus writers. saclud-

ing in wecticular Jacmb (19463, Hantush
(195%. 1960 1967a 1W67b) amd FHzmtush .
and Jizmgb (11955) have treatied the prmblem
of dizcharg= from an aquifer replenisized by
verticul rechirrge through overlying ard un-
derlyinz strata; and several writers, includ-
ing Boulton (1954), have attacked the gen-
eral problem of three-dimensional flow to a
well. Weeks (1969) has applied varicis as-
pects of the theory of flow towzxd wells to
the problem of determining vertical perme-
ability from pumping test analysis.

Sl ln
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Finite—ﬁifﬁméhce Methods

N

Introaizstion

In preceding chzmtt. ~we have considered
formal matnematiceu =5 iitions to the differ-
ential equations of g—mund-water flow. I
practice, however, == :fnd that such formai
solutions are availuble anir for a small mi-
nority of field proslems. represemting rela-
tively simple boundary :gnditiorss. In most

amues, we are forced to seek approximate
.molutions, using methods other than direct
—~formal solution. In Part VII, we consider one
=57h method—the simulation of the differen-
-iizl egmations by finite difference equations,
~mich in turn can be solved algebraically or
wmerically.

Three observation wells tap a ‘confined

- aquifer. The wells are arranged in a straight

m"".‘.‘"‘: ion -7 line in the x direction at a uniform spacing,
) | Az. The water leveis in the three wells are
. / ~ . designated h,, ho, and h. as mdlcated in the
# ‘ \. Tutentiometri figure.
SN SN surface . QUESTION
E\\\f}onﬁmﬁ?* oo >\h\} § Which of the following equmions gives a
b ‘hed §§},l/ r - %N ‘ -=asonable approximation for the derivative,
T \ oh/dx, at pomt d, mldway between well 1
3 and well 07 - ,
. Turn to Section:
ah hl_hz ro
—_— )= 7
i oz /e AT -
oh h.—h, . ' o
- - 26
ax d 2Ax )
oh ho—h, - : E
N— | =—— 12
or /a4 A% o
e : 119

130
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Your answer, h;; in Section 3 is correct.

QUESTIOz: :

Following the zame contventions, whic™ of
tkie following expressions would serve :-s 2
finite-difference approximation to the term

Oth Btk
—_—t —_—
ox* ¥t

zt the point h,._:,-‘.'

Your znswer im Section 15, A
eh 2*h  hi+h.+h.+h,—4h,

y
o

2z v* . a?
is carrect. These approxirmations to =*h/gux*
and 3%h/2y* can be obtaimed _more formally
through the use of Taylor series expamsions.
A certain error is involved in approximating
the derivatives hy finite differenvces, amd we
can see intuitively thit thes srrer witll gem-
erally d;ecrease zz a 8 given smali- amd
smaller values.

Now let us place.a zectangular grid - in-
tersecting lines, as shewn in the druyzpsamm

v ‘ Col;mn' :
N T T
7 , -
6 = ~
; | A
L /N0d813;4 ,. .
4 Row 4
-8
N 0 ‘ ‘
1 ¥ T
¢ L .
-5 D
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“Tur to Section:.

h ,:_,‘lf i.—l','+‘lfzi‘&!.;'+hi+:,]'-_4hi,‘v:

C 2°h
z o a?

a0
2k 2h heyata Ak a4 -
w Y a* '

18
Z"} a"'h.‘ 5.}[,,..1_,"‘»—}1: LT hi_j_; ks h‘i,i+,u~4}_lt;}>
e | )/ a’

4

over the x, » plame. The iines are drawn at
.2 uniform spmefng., e. ard are mumbered sue-
cessively frum the origin. Lines parallel to
the x-axis mre termed rows, .while lifies -
parallel to. tfe” y-axis zre termed columns.
The intersections of tthe grid lines are,
termed nodes and are identified By the nume~
twrs associated with the intersectimg lines.
For example, the node 3, & is that formed by
zhe intersectiom of the tmird column to the
tight of the m-axis with the Tourth row
above the z-axis. The spacing: ¢, nmeay be
thought of as a umit of measurement; the
mode numbers then give tite number of units
of Aistance of a wdiven nmge from: the x:and
# aawes. The head: ar 2 giveminotse isindiczted
by using the nodie mumbers for a subseript
motation; for example, the head at mode 3, 4
‘would be.indicated by k..

- QUESTION o
Following this conventiwm, now would we

“indicate the head at a nom: located 7 units

to the right of the y axis amd j units above

.the x axis (thai 'ig, _at the:point z=i-a, y=
j-a, in the canventional Cartesian nots-

tion) 7
. _ s Tuen -te Secilion:
. .k'ﬂ.i 14
h-q,t o 2

hfm.ia . ] - " 5




T

Your answer in Section 2 is correct. We
next consider the time axis and-divide it as
shown in the sketch.into segment:. of length
Af, again numbermg the division marks sme-
cessively from ¢=0. We also introduce 2
third subscript, indicating: the time at whick
a igiven head value is dbserved; for example,

1
B hiads
L1 i 1 1 1 1 1 t
4 5 6 7

Time hode,--—l ¢ 2 . 8
. i ' :

/Youranswer, Riaja, in Sectiom 3 is not con-
teet. Yow have used the distances from time
twio coordinate axes as sub;nrzipfs. Thkat is,

¥y o
8
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war have uses’ o, which is -amtmully ‘JEhe x

h,. . refers tc the head :at the mode i. j ¢ the
z, % plane at the time indicated by the nth
division mark: o ‘the time axis.

QUESTION
Again assuming Ar=Ay=a, whick of the
foliowing would give the actual -coordinate

distances anc¢ ‘tmme of measurementt asso-

ciated with the:zerm 72 ;.7 /

/‘ ‘&Tur;u to Section:
hii.=head at r=i-a,7=1-at, time=n AZ
h;,.=head at.a= i-Ax, yTz‘-Ay, time=n-a .
4 /. - .23
hi.j.m=}2ead atx=+a, y‘#i-a,. thtere = 'At_ B

10

coordinaze of Tive node, o ity disuence from

the y axis, == the first subserte:: -and you

‘hawe used jo; which i3 actuaily tme 3 coor-

dizate o the mmde, or its disispes: ffrom the
& axis, sas the smeond subscript. Tire conven- -
tion inrroduesd in’ Sectiem £. howewer, does

mot hawe this figrm. If the fmibedifference -

wprid.is supezimmmed on the z,y Pisne,. as in
the sketch, :them the subsecript =ssociated
with .the pomnt =24, y=3a is swply 2,3;

the headl:at tthis point is designzaad k... If |

we numhazr ‘the Iimes of the :@rid in succes-
sion alomy emch waxis, starting widsi: the axis
as 0, we ccan shgtuim the smbscmipt of a given

wodes, /0T ; *riﬁ‘mmsectinn, br - locsarmg at the

-gumibers assgmed'to the towo zxid lines
which intersset there; point: 2.5 is at the

intermectior. of wertical Fine rmmber 2 and =

Yorizontal Yime rmmber 3.

‘Return to Ssetion 3 and - «hﬁm&e another

answer.

o
N
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" Your answer in Section 25 is not correct.
Your. formukation for the calculation of the
new value of I, in the first step is mco;rrect
The finite-diiference equation- which we de-

be ‘the average .of the values_of h at the four
surrounding naodes, that is

-

<

1 .
hi.j=~(h.i_."j+h.‘.q‘,f;"'*'lli‘)'_l-*'lli_)’_:_]).
.

The idea in the relaxation process-is to com-
pute a-new value of h;; as the average of the
previous salues of h at the four surroundmg
riodes. That is

hij(New Valuey = — (ki j+hisyj
4

+h, .‘l+h(,,-+'.) (Previous Values).

" Your answer in Section 1,

hx"'h:

— R ™NAT , .
is not correct. In introducing the notion of a

-derivative, it is customary to begin with the

finite-difference. form—that is, to consider
the finite change in h, AR, occurring over a

finite interval, Az, along the z axis. The de--
rivative notation, dh/dzx, is then introduced -

to represent the value of the ratio Ah/Ax, as
Az beco_mes mﬁmtemmal in size. Here, the
idea is to move in the opposite direction. We

started with the derivative, 9h/ox, and we’

wish to approximate it by a ratio of finite

differences. Moreover, we want an expres- -

‘sion which applies at point d, midway be-

tween well 0 and well 1. The finite change

—in h _occurring between these two wells is
" ho—h,. The finite distance separating them is
- AZ. s .

‘Return to Section.l and choose an'other;

answe"r

- - - ' |
:
i

"valueq of hy;
R.; should be set equal to the difference be-

Py

Laa N
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l When this calculatlon has been made, the

: 1cfea is to compare the new value of h,; with
. thé_previous value of h;; If these two are

very: Nélose, everywhere in the grid, there is
no point in ‘continuing the process further,
since additional iterations will produce little
additxoﬁnal change. The solution, in other
words, has converged to values of . which
satlsf\j the difference equation. In the second |
step, tﬁerefore rather than setting R;; equal
to th(7 average of the new and previous

as in the answer you selected,

tween h;; (New Value) and hi; (Previous -

" Value). This difference may then be tested

throughout the grid, and if it is sufficiently
small at all points, the 1terat10n process can
be termmated )

Return to Sectlon 25 and choose another
answer

700—

Observation
wells

1

\ Pot,entwmetnc f
_.» surface

4
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Your answer in Section 10 is-not correct.
You have used the correct formulation for

the - forward difterence approximation to
oh/dt—that is,’

ok higmir—hij
ot

123

—~but your approximation for (2°h/22%) +
(2°h/2¥?) is not correct. To obtain an ap-
proximation for 9h/9«:, we move along the
z axis, holding y constant. In this process
1, the subscript denoting node position on the

- z axis will change, whereas j, the subscript -
denoting node position in the % direction,
will remain unchanged. Qur result will be

~

hi.+i.!.n‘:ht.i.n ht;i.n‘“ht-x.l.- '
A \ - n — .
.a: i a . a hi-(»-l.l.n'!'h(«l.i.ﬂ'-Zh‘-i:ﬂ
' - 'axz az
Slmxlgrly, in obtaining an approxxmatlon
for 2°h/2y?, we move along -the y axis, so
that 7 remains fixed, while the #-subscript,
7, varies. The result is -
h{,,'-:,- 1n h(.‘l.n hi.].n - hl.]-—'l.ﬂ !
. 32]L < a ‘ a ) h;‘,i4 i,n+-hhi~1.n>'_ 2h(.i.n
oY* _ a a? .

'hddltlon of these two expressions will

give the correct. approx1mat10n for (2 h/
°92%) + (2°h/2¥°).

Return to Section 10 and choose another

.answer. A

0

" Your answer in Section 4 is not correct.
The subscripts ¢, 7, # tell us that head ki;a
occurs at a certain node, 7, j of the . ﬁnlte-

dlﬁ'erence'grxd on the z, y plane and at a cer- .
tain point, n, of the finite-difference scale - -
along the time axis. The coordinate values

are found by multiplying the number of
- nodes along.a given axis by the node spac-
.ing. Aloqg the z axis the node 7, 7 lies a dis-
tance i- e from the origin (z nodes,’ each with

\ .

00O~

spacing a). Along the time axis, the point
n oceurs at-a.time n-At (n time marks, each
at a spacing At). The same procedure should .
be applxed in determining the y coordinate,

keeping: in mind that there are j nodes along

the y axis between the origin and point i, 7, -~

- and.that these nodes fall at a spacing a.

Return to Sectlon 4 and choose another B '

answer. o
/-
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Your answer in Sectlon 4 is correct. On
each axis, x, ¥, and t, the value of the inde-

pendent variable is found by multiplying the -
subseript, or node number, by the node spac- .

‘ing along the axis. Using the conventions we
have adopted, therefore, the approximation

—

Py

Biosgmt it t Bussnt Rigain—4H

!
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.

-to _ .
2:h. o*h

—_— ——

- 2T vt
at the time t=nat, and at the point z =i a,
y=j-a would be given by

&

=

(a”h a”h

).

, Now in order to simulate the differential
equation .

2z oY

- ‘ 2k 2°h S ok ~

A e T e —

2z oy* T ot

at the instant t=nat we requu'e in.addition

an appro:slmstlon 1;0 oh/2t at’ this instant.

}{._‘,1 (ﬂ_'r.l)-At . /

k| 1Al = K Py {‘hn-%)
ha—if— (n — 1yat
Time node~ n—1 n n1 - :

- ) L

The sketch shows a -graph of k versus ¢ in

the vicinity of this time. A reasonable ap--

“proximation-to 9h/9t in the vicinity of the
" nth time mark would obviously be

ot

oh - h(n-}-%) -h(n—w U

N

&t

185

-

a2

-

In practical methods of computation, how-
ever, the approximations

2
\-gt— nAt

h,; 4+ 1—‘—' hu

==

“at .

or

3 <a‘h\ S PN
) at /]|Atl At/ .

" “are often found preferable. Here, we are

simulating the derivative at t=nat by, re--

spectively, a “ferward difference” taken be-

tween the times n-at and (n+1)-at, and & |

. “backward difference,” taken between (n—
1) -At and n-at. The error involved will de-

pend largely upon our choice of at, and‘can

be reduced to tolerable limits by choosmg At
suﬂimently small.

QUESTION
Usmg the forward-difference approxima-
) tlon to 9h/2t given above, which of the fol-
lowm\g results is obtained as a finjte-differ-
- ence simulation of the equation

A\ oh ok S ok

\_\

—te e

\axzay’Tat' : -
"~ at the pomt z=ia, y=ja, and at the time.
- t=nat? \
\\
©y \‘
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» .
 Turn fo Section:

S hijme1— hi,:-'.n

RIS TSRS PR P TN 4-114, n -
R Y
— - - . E——— 16
'\ @ T at
h-—-u-—x n+h£+l F4+1n” ’h‘vl F—1n "”v-l.i+l.n“4hi.!n S h”i-"‘l‘]—h‘n’»"‘ 8
: - a? ' T =~ at ok
h"-ol.l.u + h;"‘;. 13n f%i.i— 1yt hi.l%-.ﬂ -—4714,,,,. S hi RET I hi Jm— 1 - ' 19

\ @*

N | ] p—

Your answer iin Section 16 is nott morrect..
For the steady—state condltlon, ok/Dt=0; 80,
our equuiion,

%h 2°h .S ok
. ____‘.{._,_______ —_—
oY
becomes sintply T
Sth 'a=_h
——r =
or: Y |
To obtzin a finite-difference. .apmnxxmatlmn
to this =equation, we need ontly t=ie our fi-
nite-difference approximation tw (9%h/9z%)

_ Observation

wedlls
NG
/ ! \ Potamtiametric
o <murface
SR

l

| ﬂ _— \j;;

T - at

’

=~

+ (9:h/2y*) =nd set it equal-to zero. Our ap-
‘proximation :;Lthis sum, using the.suoscript
notation associated with the ﬁmte-dlfference
grid, was’ . .
B h¢-1.1+hc+u+}li.i—x+7lt,;+i"‘4h¢,;
_ a, .

This expression can be set equal to- zero,
and the resulting equation multiplied
through by the constant a? to obtain the
finite-difference equation whxch We require..

Return: to Section 16 and choose another
s answer. v . -

Yo ur amswer in Section 1, -

BT
. v /4 Az o

" is correct. Similarly the derivative at point

e, midway between well 0 and well 2is: ap— ‘
proxlmated by o 5
_ (continued on'n’ext page) ..
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' /<‘Bh > il«;‘—'ho'

T g
QUESTION

Whlch of the followmg expressxons glves
a reasonable approximation for the second
.- derivative, 9*h/22°, at pomt 0—that is, at
~ the location of the center well? -

Your answer in Sectxon 16 is. not correct.
: .The ﬁmte-dlfference expressxon approxxmat-
ing

. — 1

©D%h azh B
+—
ox* ¥

- h¢—1.1+_ht+1,1+h:,;‘—x"'h.;;jfl—4h;,;
PR
1
Y
8
IRENER
6 S
.5
4
i 2;3)
3 ~
'. - 2a >
2r i
“, ’ ) 18a
1 N :
e~ QL > a ¢
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- 12[] E]_—l.—{Co'n." - -

' answer. . ,

1455

.(-‘ .

STIGATIONS

Turn to S_eciion:'

" o%h . ha—h,

. . _—_% Tw - 3 27 . .
: D% 2Ax '; ' -
 h' By +Hha—2h, :

; - : — 15
.Y (az)?- . ’
- \'hz—ho' ho"hl .
"azh A% A% E
— . 22
Yor % 2A:v' :

To approx1mate the equatlon

a’h *h
——t =

. o%*  oY* _
this ﬁmte-dlﬂ'erence expressnon need only be

" equated to zero. The resultmg equatlon can

be: \ult‘phed through by the’ constant ats
Return -to Sectlon 16 and “choose another'

e

Your. answer,‘h; b in Sectlon 3is not cor-

g-/’i‘?ct. The sketch shows: a diagram of the 2,
S LY plane, ‘with the finite-difference ‘grid super-' :
. 1mposed upori-it.’Node 2, 3'is at a’ dxstance -

2a from the y axis (z=2a) and'a dlstance
3a from the z axis (y=3a). That 1s, ‘the

. - node having the coordmates z= Za,, y=3a is ?,,".

the node 2, 3; and the. head at this node is -

" designated h,.. The same’ rules apply for the:
'+ 'mnode-in the questlon of Sectioni 3 which was
. ata dlstance i-a from the y axis and a dis-. -

tance ja’'from the z axls. The coordmates of
‘this node are z=1-a, y= ja.
Return to Sectxon 3 and choose another’ ,

~'-'~'answer R

fa W i
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by
NSl
B

AY|f

_— T _ ‘__--___'_-;.,3 AxéA?=a

Obgervation-

wells i :
\ Potentiometric-
. : ‘ /surfsce
M s/

¥

f
— ay —f.

: “Cross section along % ‘axia, -

e

Your answer in bectlon 10 is correct Note.
that the equation which we have obtained is.

actually an algebraic équation, mvolvmg the

. terms h,_ SEEY Risr g Big—ame Rgpn, mhumand :

 Riyns1; that is, we have simulated a differ- .
. “ential equation by an algebraic equation. If .
" the values of head are known at all nodes

~ "

FINITE,-DIFFERI;‘.NCE METHODS®

0 g 4.
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Your answer in Sectxon 12,
a2h h’l + h:_.—-Zho

———

ox? (az)2

" is correct. \If we were to consider, in addl-

tion, the wells 3 and 4 along a line parallel
to the y axjs (see ﬁgure), we would similar- \
ly have as an approx1matlon for 2° h/ay- '
pomt 0, .

a‘h h3+h4 2k,

oy (ap)?
QUESTION - -
If the spacmg of the wellq in the dlagram
is uniform—-that is, if Ar=Ay=a—which of

the following expresglons may be obtained-
for -

a’h a’h
—_ 27
ox* oYt -
& Turn 'o Section: ‘ .
2*h 2*h h, +hn+ha+9h.-4ho -
—_—t— "8 /s
.axz . ayz , az . o ’ : ‘
2h h hy+ha+hath, »
—t : - 28
_ oz* oy’ a*
. 12;: az;_b‘;:,(h,'fhz—hﬁh.)_ ) _._24‘
0" R

: ay!\ . qz .

T

3
'\

of the a:, ¥ plane for some mltlal tlme t 0,
" then the head value at each internal node. . | -
* for the aucceedmg time,. t=1- At, can: be\\ob- :
tained by applymg the equation we have just.
obtamed at the\two times 0 and 1-at ('n 0. -
and n= 1) Thls would glve L \\ E

S\

Bizsgot Pagaysot Regor0tRygpno—4hige _ ht.l.x,x\hc.l.o




128

TECH};IQUES OF WATER-RESOURCES INVESTIGATI’Q_NS

6 0'0—Con. -

This e(iuation is applied‘ in turn at each .

“internal node of the. plane and solved for
;. at each point, usmg the -appropriate.
" values of h from the t=0 distribution. Ad-

ditional conditions must be given from |

which head valnes at nbdes along the bound-
‘aries of .the z, 7 plane at the new time can

- be determined. When the head values are de: -

" termined throughout the plane for the new
time (n=1), thé procedure may be repeated
to detérmine head values at the next point
on-the time axis (n=2);and so on.

~ This is termed the explicit procedure of
solution. It suffers from the shortcoming
that if af is chosen too large, errors may be

introduced which grow in size as the step-

¢ | wise calculation proceeds, so that for large

values of time the’ solution bears no relation

to reality, even as an approximation. To cir- -

. cumvent . this difficulty, other ..schemes -of
'computatlon are often. used, some involving
the backward-differénce approx1matlon to

9h/ot, and others 1nvol\(mg entirely differ-.

ent 51mulatlons of the differential equation.

Many of .these schemes of solution‘involve
iterative techniques, in which the differences
between members of an: equatlon are’ suc-
cessively reduced by numerical adjustment.

" These techmques are sometlmes termed re-

1755 ; ._nhfﬁ §

* . Your answ.er: in Section 25 is correct. _If

-we were to “flow chart” the relaxation pro-- .

~ .cedure for solution on a digital computer, )
we would have to 1ncorporate these steps.-

.in some way.

Numerous other.techmques exxst for* the_'.

numerical solution "of the dlfferentxal equa-

'txons of flow. The efficiency of various meth- -
‘ods, in “terms of computational labor or ma-

chine time, varies widely . dependmg upon

the problem under.study. Care must be ex- .

“.ercised .in selecting a method that is \Well
suited to the problem, or unreasonable in-
: -vestments-of time -and’ effort may be re-
'qu1red to obtam a solutlon ' . )

13

" (1968),

A3

1

laxatlon methods they are of sufficient - im-
portance “that it will be worthwhile to see .
“ how they operate, through a simple example -
*_Suppose we are deallng with a prcblem of
two-dimensional -steady-state ground-water

flow. For.a steady state situation, the term
oh/dt of our dxfferentlal equatxon, and

t}ferefore the term

hijnir= Bijm

———

At

“of our ﬁmte-dlfference equation, is zero. "The .-~
_differential.equation is sxmply

ah oth

- +—=
ox* 9Y°
ouasnon

_ Using the’ notatlon developed above, but !
dropping . th‘h third subscript since time is
not involved, which of. the following would . -

represent a valld finite-difference approxi-
matlon to thls steady—state equatlon‘7

Turn to Section:

’L; lj+’l,§+1;+h” ‘+hu+1—4hu—0 ] 25
h:_1;+h1+1;+h” ,+h;,+,+4h“-—a,2' 11,
' 4h(,' S
}L(_1'1+h¢+1'1+h(, 1+h“+1 T
: ] a

In this dlscussmn we have given, only a

/..‘

brief 1nd1cat10n of the way in. which numeri-". -

_cal 'methods may be applied in ‘ground- water - .
‘hydrology. Numer1ca1 analysxs is .a ‘broad - .

and . complex field 'in -itself. Interested

readers will find-an.extensive lxterature deal-
~ ing both with theory and with a wide range
of appllcatxons Examples of the use of nu- -
merxcal techniques. in .ground water may be .
found'in the work of Prickett and Lonnquist -
~(1971Y," Stallman- (1956), ‘Remson, -Appel,

and Webster (1965), Pinder and Bredehoeft .

Rubin (1968) ,

Lonnquxst (1973),‘Trescott Pmder, and

‘Bredehoeft and - -

. Pinder .(1970), Freeze’ (1971), Prickett and " - L
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(1970).

Your answer in Section 2 is not correct..
.Thie_sketch shows the five-well array which
we used earljer to develop an approximatio
for (2° h/aa:) + (9°h/o¥*), but with the
wplls now rede31gnated according to {he
scheme of subscrlpts associated wit

¥

%

wivy o

|

i,j—1

1900
/

/.
Your answer in Sectlon 10 is not correct.

" Your approximation for (9*%/2%) + (%h/

. 9¥*) is correct, but/you have not used the

forward-difference’ formulatnon to’ approxi- :

‘mate 9h/3t, as/ required by the questlon
- (The approxm}aglon which you have used

-

e
R ok han-i-‘n _h'Jﬂ—’/‘z
o ot At ’4

normally a more accurate 'approximation
to dh/ot at 4, 7, n, than is the forward-dif--
/ ference formulatlon since the dlﬂ'erence 1s

FINIT,E-DIFFERENCE‘ -METHODS

17DD—-—Con ,— 4

_ Jones (1970), Trescott, (1973), and ‘many
‘others.” An excellent summary of numerical
-methods as applied in ground¥water hydrolo- -
gy is given by Remson;, Hornberger, and Molz

our -

ou have completed the progy med in-

st) uction of Part VII. A discusgion giving
£ irther details of some of the tandard fin-
ite-differende - techniques " is presented in

'stlandard text format following Sectlon 28.

‘ 18[]

’ﬁnlte-dlﬂ'erence grld The head at the central
well -is demgnat;d Iy; rather than h; the”

the heads at’the two wells along the
are desi
h1 and k(. Our previous expresslon for - *

‘a/ oh 32h
S L
) .. axz ayz
_/was ' : -
ST it Rt hat hy—4dho.
a* .

The question only requires. that this be
translated into the notation assoc1ated w1th
the: ﬁnlte-dlﬂ'eren(;e grid. .

-~ Return to Section 2 and choose another
answar. :

1

.taken symmetrlcally about the pomt at
which ph/2t is to be approx1mated Un- -
fortunately, however, it 'is not 'always as

- useful in the calculation of actual numerical
) _solutions: as is 'the forward-difference or |-
‘backward-tifference formulation. These: for- -

mulations are unsymmetrical - in "the: sense
the difference’ is. _measured ent1re1y to.one .

~-side or the other of the time.f= nAt which Y

is the instant" at*WhIQ\ oh/2t is to be ap-
prox1mated -but they are-better suited to -

_many-techniques for ¢omputing soluhons
Return' to Sectlon 10 and choose another .
. answer. o E

" heads at'the two wells along the z axis gfe
hi_.; and h?yz rather. than .k, and h, T

ated hlj—-l and hg,+,, rather than "
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" Your answer in Section 23 is not correct.

Your initial step, giving the formulation for

computing the new value of h., ; using -the

-previous values of Ay, Biys, ” he;_y; and

‘hij41y is currect.. However, your second stép
-is not correct.: The 1dea is to continue the

" process until the difference between the pre- -

~ vious value of h; and the new value of Ky

21 m

) becomes very small everywhere m the grid. -
‘Thus Ry, should.represent the, differerice be- .

answer o W

Your answer in, Section 2 is not correct, ' .
The upper part of the figure shows the ar-
ray which we used.in developing our. finite-

" difference approximation. for (2?h/2z%) +

(2%h/2u* ). The well at the center of the ar-
ray was labeled 0; the surroundlng Wells

- were labeled ‘as indicated. Tue expresgion
~ we obtained for o )

/. o*h ?°h
9% QU
was .

h1+ il;_- '*."hg +h‘ - 4h0 \

a?

[

Using the notation introduced' for our finite- -

- difference grid, shown in.the lower part of -

the figure, the well at the center of. the ar- K
ray would be. denoted 4, 7;- the remalnrng’

. wells would be deslgnated i~1,7;4i+1, 44, -
I-1 and i, j+1,.as shown. It is simply a

matter of subst1tut1ng these de81gn’at10ns

for the de51gnat10ns, 0,1, 2, 3, and 4 used in .

our earlier development ‘ o
Return to Sectlon 2 and choose another ‘

~ 'ansWer

tween hi; (New Value) and h” (Previous
Value) and.the process should ‘be: continued :
is negligible throughout the grid.
Return to Section- 25 and choose another

~
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Your answer in Section 12,

| _.hz—-hoh ha=hs

Q'):.
-

AZ AT

N
[t}

15

2a7

8

d
is not correct. The numerator tn your an-
swer gives the difference between - two
terims: (ha-— Io) /A, which approximates 9h/

. 9z .at point e; and (ho—I,) /Ax whlch ap-
proxxmates ’ah/’ax at pomt d.
i

OBservation : S

. wells

Conﬁmng\
bed

\

«~surface

13

I

Your answer in Sectlon 4is not correct. )

“The coordinate of a point, in space or time,

" . is found by multiplying the number of nodes B
_between ghe origin and the point in question,”

.along’ the pproprxate axis, by the node
spacingfalonig that.axis. Thus the x coordi-
‘nate ofa'node %, §, », is z=1i-a, smce there
are z nodes along the x axxs from the orxgm

. 7 '
1 ’.:
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¥

The numerator thus - represents the differ-

. ence

-

that is, it appro:&xmates the change in 3h/ oz
between point d. and”e. Thus if it were\dl- .
vided by Az, the interval-between points d

and e, we would have an approxxmatxon to

" : ’a}L '
y ol-=)
) ox/ -

o ‘ o .

that:is, to:ph/Px* at ithe midpoin, 0, of tine
interval between d and e. In thke @aswex

-~ which you selected, however, the quantity

ho—ho ho—hy
Az AT

& -

Y1

is dxvxded by 2Ax, rather than by AT.
" Return’ to S,ectxonbr°12 and choose another
answer.

-/f.

- to % 4, and the node spacmg is a. The same - .

'.procedure ‘may be applied along the ¥ and ¢
axes, keeping in mmd that the node spacing
along the y axis is- a, while ‘that along the

. time axis is-At.

Return, to. Section 4 and. choose another-'

" answer..
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"+ Your answer in Section 15, _
oh / o%h  (huth )—(h1+h4)
92 ¥ @ '

is not correct. The aoprox1mate expression
'vhlch we obtalned for 92h/9x* was

hy+h,— 2ho

(Ax)z e
or, since we have taken aAx ='a\,\, i
“h,+ h2 2ho )

e
a? : :
‘The expresslon given in Sectnon 15 for ‘a h/
‘ay- was

Your smswer in Section 16 _
Ries st Ripr g+ iy Zithigp —4hi ;=0 -
1s correcy.. To solve this by an iteration tech-

e mque wer rewrlte the equation 1n the form .

1 )
hi}=-z(h}-1 it h¢+1}+h‘ !—1+h‘!+‘)"

and we divide the =z, ¥ plane into a grid

_ as shown in the sléetch with the grid inter- -
_ sections. forming. the nodes at which we will
compute values of h. In the form in wh1ch

j .

TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS.

LN, 7 ¥ Y s —

: h;;._'*‘ h4 - Zho

)
. 1

(ay)*
or again, since we have taken Ay=a,
' R+ K —2h,

az

. ‘These two exoresslons need only be added .~

-
»

algebralcally to obtain’ an approxlmatlon for
: : otk oth o
2z oY

answer.

— 25 00—

- we have wrltten 1it, 1t is easy to see. that

-/

: —.‘.'-, n M /’
T. . . ;o

/

what ‘our” equation: aétually says is that the
‘head -at each node /must be the: average of
.the heads at the: four adjacemt nodes;  We
begln by entering known values of ‘head
along the boundarles of the grid—that is,

by applying the boundary conditions. We -
" then’insert assumed values of h at each in--
-terior grid p01nt These initial values of b -
may be anythlng ‘We w1sh although a great °

Return to. Sechon 15 and cho08e another .

ulli

" deal of work can be saved if we can choose:, ‘
* them in/ ‘a way that. roughly ap rox1mates-
_the. ﬁnal head. d1str1butlon We then move -

through the grid, in’ any ‘ordet or “direction,

and at each interior node cross out the value: .
of head writing in its pldace the-average. of

the ’head values at the four adjacent modes.

At each node we.note not. only the new value
,0f 'h, but the change in -k, from the: 1n1t1a1
value, resulting from the:calculation. When D
we have completely traversed the grid,. we
start again, and proceed: ﬁlrough ‘thegrid in - .

.the same way, replac1ng each h valuetby the

average of the heads at the four adjacent

nodes; and. noting:the change in h that this

causes. After a number of repetitions we .

will find that the change in h caused by each

new : calculation becomes. very. small--mi
~other -words,- that the value.of- head at- each— -
pomt is already essentlally equal to the aver- L




o

/

25 0 0—Con.

Jage of those at the four nelghbormg pomts, Iﬁ general since the head at each node ‘is /

so that inserting ‘this average in place of h used in calculating the head at each of the
produces little or no. additional change. At.. four surrounding nodes, several complete
this point our head distribution represents_ traverses. of the grld may be required be-
-an.approximate ‘solution to our difference - fore the changes_in head are .everywhere
‘equation and thus to the -differential equa- - sufficiently small. This method can readlly
tion which the difference equation simulates. ~ be used in hand calculation; it is also well
The process just described, as noted ear- adapted to solution by dlgltal computer
lier, is an example of a relaxation technique.

.

GUESTION

Which-of the:ollowmg would you choose as a “shorthand” descriptioh of  the méthod of .

calculation described a ove? __ N
' ) " Torn 'Io_ Section:
1
h, (New Value),——-—(h; 1,+m+”+h,, ,+h4,,+1) (Prev1ous Valnes)

4 .

R;,——h,,(NeW Valu.e) —-h;, (Prev1ous Value)

PART VI FINITE-DIFFERENCE METHODS I 133 -

/5

Contlnue calculath unt11 IR‘ ,|~0 for all pomts in grld : o A I’ZA-. e
o 1 .
hu(N7 Value) =—(hi—, ,+h¢+, ,+h;, ,+h; 1) (Prev1ous Values)
4 ‘ :
\ ) Riy=Hh (New Value) - . _ o o o
f‘ontmue calculatmn ll[ltll |R;, J|~0 for all pomts in grld R -2

¥

" Ry (New Value) —-—-—-(hc+1;—’/lz /1,+h”+1—h,,_1) \Prev1ous Valuw)
. 4

hyy (New Value+ h, ,)(Prewous Value)
j=—
2

Continue calculation until |R, ;=0 forall'points in érid. A o S 6

-~

Your answer in 'Section' ,- : L 'ls not- correct ThlS answer WOllld be a rea-

sonable approximatior for the derivative at'.'._ E

Lo k'_ - - point 0,\in the center of the array, because
S ) <‘a ) 2 o it glVeS the ratio of a change in h, h,—h,, to

—

"\ 2z : AL e e _the_ correspondmg change in dlstance, 2Ax,
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wells

. -
: Obser&&ion

-//, | J .

=

IO

b nfining
' bed \,;
"'i‘?\&\ N

‘Pewentiometric
_-~ surface

e -

l

‘0

Your answer in Sectlon 12
ok ha~ s

—

\ - axz

248z -

betWeen points 1 and 2, and 2aAz gives the
. distahce between these points. Thus the term

(h,— k) /2az is an approximation to the. .
first der1vat1ve, oh/?x, at the midpoint of

the dlstank:e interval-—that is; at point O.
- The questlon\howaver, asked for a term ap-
proximating the second derivative, afh/aa:2

at this point. The second derivative is ac--

tually . the derlva;tlve of the first” derlvatlve,
that is :

. 0% . oz

"To obtaln a ﬁnlte—dlﬂ'erence expresswn for

" this“term, we must consider th\e\change in

" the ﬁrst derlvatlve, oh/dx; between, .two -
. points, and must divide this change in 9h/

2z by the dlstance _separating - these ‘two
points. We have seen that ph/dz at point d,

midway-between wells 1.and 0, can be ap-
hy) /az; -
) and that ah/a:c at pomt e mldway between" B

_proximated by the expresswn (ho—

.TECHNIQUES OF WATER-RESOURCES. INVESTIGATIONS- - - . \\

h, gives the ehange in h',

[

over an 1nterval which is centered at 0 For.

the derivative at point d, however, midway

between well 1 and well 0, we can'do a little

better. The change in k over an interval
centered at d is simply ho—h,, and the cor-

'respondlng interval of distance is sumply

AZ.
: Return to Sectlon 1 and choose another

\ £hoox

. Observation - « -
" wells

.~surface

el

wells 0 and 2 -can be approxxmated by the
term. (h.— h.) /Az. Points d and e are them-

_ selves separated by a dxstance Az, and point
.0 is at the midpoint of this interval. Thus if .-
we subtract our approximate expression for -
'9h/dz at d, from that for:9h/?z at é, and
* divide the result by the lnterval between d
- and e, Az, we. should obtain an expressmn._

for 22h/92? at point 0.

. Return to Sectlon 12 and 'choose another." v
,answer Ll T e

Potentiometric ;|
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Your answe’r_in Section 15,

ah D*h

—

L o o o

'

h, 5 h\fg'*' ha+hy

_is not correct. The term —-2h., appeared in
" the numerator of both of our approx1mate

o

ra

FINITEZ:DIFFERENGE METHOLS = 135"

2:3[1'[:] . —

o°h/ ay
pregsions to ob

(2*h/27*) + (*R2¥*), these fe*ms in ho
do not drop out.’

answer.
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N {
; .

Techmques of Finite-Difference Solutlon of the
R Ground Water-Flow Equatlon |

{
.

,"~ Certain techmques of numerical solutlon ~ -ing .interval, ‘we employ the backward-dif-
. which are commonly used in ground-water .ference approx1matlon The forward-dlffer- o

modeling are-described in the following dis- 'ence approx1mat10n ig given by :

_cussion.” No attempt has been made, to dis-

“cuss such topics -as. stability or rate of con- ) 7ok -,;‘ ~h, - ' .

vérgence in theotetical terms ‘the. reader is . (....) %___:_.__. (1)
. referred to the paper by Peaceman and ot

A\
“ Rachford (1955) for discussion of these sub= - : :
" Jects. Similarly, no attempt has been made 'Where (ah/at) nAt repreSents the derlvatlve o
to give the details of the programln’g pro- '-at time nat. The backward- difference ap-' '
- cedure. The pmeﬂby Prickett and Lonnqu.st prox1matlon 13 ‘given by L ,
- (1971) analyzes some typical programs and - _ o o
- /in addition provides an excellent summary . oh Ch—n
. “of the hydrologic and mathematical founda- 2 <____> ~ ot (@)
- tions.of digital modellng the paper by Tres- nAt At . I
-cott (1973) describes a versatxle{ ‘program
" for areal aqu1fer simulation. The dlscusslon
presented here is limited to a descrlptlon of
--gome :of the common techmques nf approxi--' ) . : ,
matxon and calculation. ‘ S ¢ Head FIGURE A

ot
Rz

"“In Section 10 of Part. VLI we mtroduced _ .
" two methods of approximating the time de- : S
‘rivative in finite-difference sxmulatlons of ' Backward . Forward |
" the ground-water equation. One of these was - difference: difference : _
‘termed the forward-difference approx1ma- _ < 3h)' hy—hny DR\ hypr—hy
.-tion, and one the backward-difference ap- ‘| (|7 ) (-—-— = —
. "proximation. Figure A showsa plot of head “at'nAt‘fiﬂ' at _ 1 ot A Ai At .
T versus time.which we may use to review - T o T e
‘these approx1mat10ns The time axis is di- 2as: —— '._:..‘_..'__j_?]/ , -
'vided into intervals of length At. The head; By h» R ,_(41 ’ :
at the end of the nth mterval 1sftermed hus | L ! s
T that at the end of. the precedmg interval is’ a ’ ! !
, . termed h,_,; and that at the end| of the sub- \ L + :L g A Pime
sequent interval is termed h, .. We wish to F‘—At—-“—At—*-' '
" “approximate 9/t at the end of the nth in-
terval, that is, at the time nat. If we utilize : . -1 Tm{:__"»z'f'i"l
I . the head difference over the subsequent time . - T pad
" interval, we employ the forward-difference - o ‘ A
~ ~approximation-to the-time derxvatlve if we o — T T e e
utlhze the head dxfference over 1the preced- RN o o -
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Forward-difference si'mulotioh: .Explieit solution

_ The ground-water—ﬂow equatlon as it was
- given in Part V for two-dimensional flow, is

ah 2th S ?h :
= "(3)
T ox* ov: T ot

where S represents storage coefficient and T
trensmissivity. In order to simulate this

- . equation using either the forward-difference .

or backward-difference formulation, .we
would first write an approximate’ expression
for the term
' a”h azh
— e
ax2 ay2 i

he_ 1.!.7_‘*‘ hl+ Vit h‘x.:; 1_.—n_+ hu+ L '"_4}’4.1:.»

N
at the time.nat— that is, at point n on the
! time axis of figure A. Thus the forward-dif-
ference simulation is characterizéd by the
fact that we anproxlmate 2h/Dt over a time

. interval which follows the time at which we .

approximate (2%h/2%%) + (2°R/2%%),
whereas the backward-difference simulation
is characterized by the fact that we approxi-

mate Ph/3t over the time irterval which
" precedes the time at ‘which we approximate
(22h/22?) + (2°h/2%?). In the .question of
Section 10, Part V1I, we obtained the follow-’
ing forward-dlfference mmulatlon to equa-
tion 3 :

S higmer~Rijn !

(@)

n

&

.where ¢ is the node spacing, S is the stor-
age- coefficient, and T is the transmissivity.
We wish.to know the new value of head at
the time (n+1)at for the point %, 7. Figure
B shows the computation stencll for this
mmulatlon the head at node i, 7 at the time
(n+1)At depends on the head'in a ﬁve—node

‘array at the precedmg time, nat. The ﬁvej
values of i at the time nat-are all known.

. We need only to "earrange the equation, solv-
mg for ]L;,,.,H, -and to- lnsert the. lmown

FIGURE B
. 'ht.]n-id Time = :
o : b (n+ 1)At
' e L
P . ,
o
| R
§ ; . .
: : b
iy, Mn/ R
1,5, g a 1 H-l,]n
Ryj_im Time =
_ nAt
.” e

T at g ‘

values of 7_1.4.n h¢+1,.., hl]~1 ny th., as and
hij»- There is no need to use sxmultaneous
equatlons the head.at each node is com-
puted explicitly, using the head at that node
and the four n/elghbormg nodes from - the
_ preceding, time. The sequence in which we-
move through the z, y plane, calculating new
‘values of head, is 1mmater1al The solutlon at .
one point does not require information on
. the surrounding points for the same time—
“only for the preceding time. For all these

. yeasons, the forward-difference technique is
- computationally simpler than the backward-

difference-technique. ®
However -as’ we noted- earller, the for—_

ward-dlfference method does suffer from a-:

serious drawback. Unless the ratio at/a? is -
kept sufficiently small, exrors which grow in
magmtu;ie with each step of the calculation
may appear in the result., More- exactly, let

us suppose that an error of some sort does -
arise, for whatever reason, at a certain node -

"at a partxcular time step. Unless. the/ ratio, " ©
At/a? is’ sufficiently small, thig-error will-in~.. - <

crease in mag'mtude at each succeedmg t1me .
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.step in the calculation until eventually tﬂe- pear throughout the,mesh in the first steps _
error completely dominates the solution.  Th of the calculatiofi. If the restriction on at/a?
“term “error,” as used here, refers to any, dif- . is satisfied, these errors will tend to die out
. ference between the computed head at la .. as the computatlon sequence contmues the
node 4, j and time nAt, and the actual value solution is then said to be stable. If the re- .
of head--that is, the .value which would be  striction is not satisfied, the errors. will grow
glvdn by the exact solution to the differential _ with -each succeedmg time step and will
“equation at that point and time. Such errors - eventually destroy any slgnlﬁcance whlch._'
are inevitable in the ,normal appllcatlon of . the solution might have; in this;case, the
' ﬁmte-dlﬁerence methods they generally ap- solution is said to be unstablé: ™

e

- Backward-difference simulation: Solution by iteration .~ , .\
-:‘-' 1 ..' ' “.' t Lo é’.
Because of this limitation in the forward-  equation 3 through use of the backward-
difference approach, -attention ~has :been. ' difference approximation,to’ the time deriva-
© given to a variéty of - 'alternative methods.  tive as given in equation 2. The resultmg '
One of these i 1s slmulatlon of the dlfferentlal ;ﬁmte-dlfference equatlon is

\

S hl,l_,ﬂ~hl,l,n—l . - o ._‘ L
o T At ' :

; » ) . - o : ] '
e .- . . : : . SR I . »

_ h..-x jn+hl+1 In+hlj—1 n+hl[+1n"'4hn'ln

Figure C shows a diagram of the compu-  explicit solution to a single equation of the-
tation stencil for equation. 5. rl\‘he time de- form of equation 5,°the way we could to a
rivative.is simulated over an interval which - smgle equatlon of the-form of equatlon 4.7
precedes the time "at which (‘a‘ﬁh/ax*) + We can, however, write, an equation of the -

_ (‘a’h/‘ay’) is simulated; the equation incor-:. form of equation 5 for each node in' the z, y
porates five unknown values. of head, cor-  plane; then since there is one unknown value
responding to the time #at, .and only one -  of head (for time t=nat)-at each:-node in".
known' value of head, corresponding to the the plane, we will have a system in which the -
time| (n—1) At. Clearly/we cannot obtain an . total number of equat{ons is equal to the botal~ /

o . .. ..t 17 number of unknowns. We should therefore'* )
i S " . & - - beabletosolve the entire set as a system of -
‘FIGURE C . I simultaneous- equations, obtaining the new |

LoD — ' -;allll{e of Ry, at. each node, The only draw-

. s et ~ back to this approach is that a great deal of
hy -/ Biyign - work may be involved in solvmg the set’ of/

Cm T 1 o slmultaneous equatlons, : offsettmg thls

Cd~1a E S Time= . drawback- is \the advantage ‘that the tech-;

L e Lo _’,‘At -7~ nique is stable regardless of the size of; the.
- o o o time step—that ig, 'that errors tend to di-*

) < L mihish ‘rather than to increase :as the nom- S
4o \ " - "putation proceeds, regardless of, the size of,,“_,_,
e '-’.iu"-' ; © fTime =_ AL relatn;e‘bo [ o

e AT  (n -.-\1)At The work requrred m utlllzmg the back-. :

3

4 —
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.."

ward-dlﬁ'erence techmque depends upon the

size of the problem—that is, upon the num- :

ber of equaticns in the simultaneous set. If

. this number becomes large, as it does in.most

- ground-water problems, the work entailed
‘becomes very great, partlcularly when the
standard direct methods of -solving simul-
. taneous equatloms are used. For this son

it is worthwhile tolook for efficient Tetfiods -
- of -solving these.sets. of ‘equations; =md it

“turns out that iteration or. relaxatiom—the
process ‘described.in Section 25.0f 1 Pant VII,

in connection with- solution of the mady-'

" state equatmn——prov1des us with a reason- .

ably efficient approach..

. . The equation that we were trying to solve
by -iteration .in- Sectlon 25 ‘of Part VII re-

written here using the ¢, y subscrlpt nota-

tlon. is S

» 1 i L - o . . ,"_
' "»Z"(hl—l..j'l" h(+1,l+_h'/i,;'-1+hi.i+1);=ﬁji.j- (6)

'

§
\\
\
i

1A

-7
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This equatlon -gtates that the head at the
node i, j should be the average of the heads
- at the four surrounding nodes No time sub-
“scripts .are involved, since we are dealing
with a steady-state situation. Our method is

simply to move through the z, ¥ plane, re-,
placing ‘the head at each node by the average'y,-

of the heads at the four surrounding nodes.

Thls process is contlnu‘ed until the 'head -
changes become x*eglfgxble——that is, untll the -
head at each node remains es sentlally un- -

changed after each traverse ‘through the

plane, indicating 'that equatxon 6 is satis- " -
- fied throughout the plane. .
" In applying iteration to our nonequxlxb—

rium problem, the.idea is to carry out a
similar series of ‘traverses of the z, Y

plane R :
. at every time step, using equation’ 5 rather -
ithan equatxon 6:as the basis of the calcula-'

“tion at each’ “node. Thus to :compute heads._ T

for the ‘time nat we would rearrange equa--

‘\__
£

tron 5 as follows

o,

We can envision an z,Y plane for the tlme \

" nAt,: 1n1t1a11y contalnmg specified -values of .

_ hisn 8t a few nodes,’ correspondlng to the o
:y.'boundary condltlons, and trial  values of

ihi;n at the remaining nodes.: We write- an
. equation- -of the form of. equation 7 for- every
: node not controlled by a boundaryz:condltlon,

and we write equations expressing the -

*-'boundary conditions for themodes; at which .

* :tHese conditions apply In equa:tlon 7, the

-value of" hyj, is/ expressed in terms .of -the

. "'head at the four surrounding nodes for the,
. _“same time, and the head at the same node
~for the preceding time. In’ solv1ng the set of -

b ..equatlons for values £ hy . the values of .
e h, a1 actually constl te known or constant

hi—l,f.nf*'h¢+1.;,n+h(,/—':...+ht,;+1.u - 8

a - Tat

b
TR

terms, determined in the precedmg step of

the -operation. Thus equation 7 relates the

head at.each node’ to the head -at the four

" surrounding. nodes, in terms of a set, of con-

stants or known quantities. The equatlon is’

‘a little mor cumbersome than: equatlon 6

in" that’ 1nstead of multiplying -the sum of

AP SRR ¢ N

/

the heads at the surrounding nodes by %,.

- we must now mult1ply by the term

4 S\ . L
—+-————> a2 . S R
a¢ Tat/) . -

and we must add.the,knov?n term cL ".': o
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S
Tat Ie
———— i1
4 S
—

a* Tat

3

on the right side. These changes, however,

:_,g%ﬁnot make the, equation appreciably more
i ifficult to solve. We can still use the process"

of iteration; that is, we can move through
the z, ¥ plane, replacing each original trial

value of A, ;, by a new val% calculated from

the four surrounding valiés by equation 7.
At each node we note the difference between
the new value of h;;, which we have calcu-
lated, and the trial .value ‘with which we

- started. If this’ difference turns out fo be

~in the value of h at .each node,

a4

negligible at every node, we may conclude

that .our starting values already satisfied

equation 7 and that further computation of
new values is pointless. More commonly,
however, we will note a measurable c}%ange
indicating
that the initial values did not satisfy.equa-

tion 7, and that the-iteration procedure is
- producing an adJustment toward new values

which will satlsfy the equation. In this case
we traverse the 'z, ¥ plane again, repeating

‘the procedure; each value of I, which we .

calculated in the first step (or iteration).is
replaced by a new value calculated from the
heads at the fpur surrounding nodes by
equation 7. Again the difference between

" the new valie and the preceding value at

-each node is recorded; and a test is made’

to ‘see whether, this. difference is small

enough ‘to indicate that the new array of

- head values approximately satisfies equation

. ence between newly computed and preceding -
values ‘i§ riegligible throughout the array, -

7. The process is-continued until the differ-

" indicating that equation 7 is essentlally sat-
isfied at all pblnts :

The" technlque described above 1s often
erred to/as the: Gauss-Seidel method; it

'1s basically/ the same procedure that was ap-

plied in Section 25 of Part VII to the Steady-

state problem. It 1s/ an example of a relaxa-

tion techmque—a method. of computation in

\plane in the iteration process, and I;;
\ . represents the value of ;. obtained 1n | the ’
\-.\next following calculatlon after m'+l tra- :
- -verses. A is termed an “jteration par ameter”’
.it.is a coefficient which, either on the basus :

- process is termed

TECHNIQUES OF WATER-RESOU‘{CES INVESTIGATIONS .

of an equation are successwely reduced by,
numerical adjustment, until eventually the

equation is satisfied. There are a number of

varieties of relaxation techniques in use, dif--
fering from one another in the order or se-

quence in -which the z, ¥ plane is traversed

in the calculatlon and in certaln ‘other re-

speets. . \

It has been found that the number of cal-
culations required to solve the set of finite-
difference equations can frequently be re-
duced by the inclusion of certain “artificial”-
terms in these equatlons These terms norm-
ally take the form

.)\ ( hi,j,nm +1 h‘_.j‘"m).‘.

2

‘The supefécripts m and m+1 indicate levels

of iteration; that is, Rija™ represents the

“value of h;;, after m traverses of the z, ¥
m+l

of practlcal experience or theoretical analy-
sis, has been shown to produce faster rates
Qf solution. As' the iteration® process ap-
proaches its goal at each time step the dif-

 ference between the value of k., obtained in
‘one iteration and that obtained in the next
.iteration becomes- negligible~that ‘s, the

term (hy;.m+t'~hi;,) approaches zero, so
that the difference equation appears essen-
tially in its original form, without the itera-
tion parameter term; and the solution which

~ is obtained thus applies to the-original equa:

tion. In'some cases, A-is given a sequence of
different values in successive -iterations,

. rather than a single constant value. Again,

the particular sequence-of values is chosen,
either through theoretical. analysis or
through practical experience, in such 2 way -
as to produce. the most rapid solntlon When

-an iteration parameter or sequence of iitera-

tion parameters is utlhzed the relaxation
“successive overrelaxa-
tion” and is freqUently desngnated by the ini-

. tials SOR. Dlscussmns of .this technique are-

given by. Forsythe and Wasow (1960) and

Whlch the‘,dlfferenées between the two 51des . many others.
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Alternohng dlrec’rlon implicit procedU\ a

The work reqmred to obtain a solution by
re]axatlon techniques is frequently tedious,
partlcu]ar]y for a problem of large dimen-

. gions. For this reason, a great deal of effort .
has gone into the development of alternative’

approaches. Peaceman and Rachford (1955)
proposed &
has received wide use in a variety of forms.
The name “alternating direction” has been
applied to the general procedures of calcula-
tion which they proposed.

To simplify our discussion of the1r tech-
niques we will introduce some new notation.
We saw ‘in Sections 12 and 15 of Part VII
that an approximation to 9:h/9%* is given by
- thej;erm . :

T+ —2h,

(ax)*

or, in terms of our subseript notation,

}Ll_1,j+ ’L;+;,j;2h€,j

/ o ©(ar)d

"In the discussion which follows, we will let
the symbol A..t represent this approx1ma-
tion to a h/?x*. That is, we say

azh h,'_l,,"t‘h;.{,.l,,—th,] :
—=eA = . (B)
ox® ‘ (ax)* '

1In addition, we will use a subscript to indi-
cate the time at which the approximation is

- taken. For example, (A:lt). will indicate an

approximation to the second derivative at
the time nat, or speclﬁcally ‘

. hi— 1,§,n + h¢+ 1.J',n._2hi.j;n K
C(Azh) = — . . (9)
. - (Ax) 2 ' . )

-

: (A,,h),. » will’ represent an approx1matlon to '

the second ‘derivative at time (n—1)at, and
90 ‘on.. Similarly, we will use the notation
. Ay h to represent our approx1matlon to o*h/
v ay2 that is, - / .

technique of computation which

T g3+ B s — 20,
Aph=— b RET)

(ay)* i

GRS

GLAS

'and again (A,,,,h),. will represent our.ap-

proximation to 9h/9y* at the time nAt,
that is . .

A ht 1—1 n+h1 J+1, "
(A,,,,h,,) = - (11)
(ay)®

\

Y

}and 50 on.
Using this notation, our forward- d1ﬂ'er~ :
ence approximation to the equation

—t = — - 3)

as given in equation 4, would be rewritten
S hl]uf-l hi.j,n .

(Azh)at+ (_\,,,,h),,—— .
o T At

(12)

In this formulation, *h/2%* and °h/o¥*
are simulated at the beginning of the time
interval over which 9h/9t is simulated.
Again using -the notation introduced
above, our backward-difference approxima-

. tion. to equation 3, as given in equatlon 5,

would be rewritten
. . ’ S _hl,].n_%hl,j.n—l .
(A.r.rh)n'*‘ (Ayyh) n— — .

oo _ T - At - .
(13)

In this formuldtion, 9%h/ 9z* and. azh/a'y'2
are simulated at the time nat, while 9h/2t
is srmulated over .the time interval. between
(n— 1)At and nst; thus both a’h/ax2 ‘and-
-0*h/2¥* are approxxmated “at the end of the

time interval over which ah/at is: approxx-, :

‘mated.
In. the form in Whlch 1t was or1g1nally
.proposed Peaceman and Rachford's ‘tech-

-nique is usually termed “the a]ternatmg—dl- _
- rection 1mp]1c1t procedure. In this form,\the .

=2
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simulation utilizes two equations; applicable
. over two successive time intervals. In the
first equation, 9*h/dz® is simulated .at the
beginning of a time interval, and °h/9y* at

the end of that interval; h/2t is simulated

using the change in head occurring over the

interval. The second equation ﬁrpkes over

the immediately. following time lnterval
here the order is reversed— 3?h/9¥y" is

terval, 9°%/9x* is simulated at the end, and
again 9h/9t is simulated using the head dif-
ference occurring over the interval.

Using the notation- introduced above, this
simulation may be represented by the follow-
ing equation pair

S h‘ Jun }Ll'.j.,ll—l '
(A.r.rh')u 1 + (Ax/yh) y——"
T At
(14)
' ’ . S h: EEEST hv‘,j,u
/ (A Lh) +(Anh)n£1"—'— -
_ T At :
(15) .

For the first time interval, 9h/32* is sima-
" lated /at (n—1)At; 9*h/9y?.is simulated at
nAt;/and 9h/at is simulated by the -change
in h,; between (n— l)At and nat. For the
second time interval :h/Py? is simulated at
nat; 92h/dx* is simulated at (n+1)at; and
oh/ot is simulated by the change in h;; be-
tween nat and (n+1)at.

Flgure D illustrates the form of this simu-
lation. It may be recalled from Section 3
that lines parallel to the z-axi$ in the finite-
difference grid are termed rows and that
-lines parallel to the y-axis are termed col-
umns.. As shown-in figure D, then, three
values of h are taken along row ” at time
(n—1) At to simulate 2h/2x2, while at the

- time nat three values of k are taken along -

column i to simulate 2?h/9y% .The. time
derivative is simulated using.the difference
" between the central kb values at these two
times. For 'the succeeding time 1nterval the
.. three values of h along column ¢ ‘are taken

first to 31mulate 9*h/2y* at time nat;. while

at the time . (n+ 1) at, three values of h are -
taken along row j to simulate a2h/aac2 Again '

the tlme dermmed usmg the

1.
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difference between the central h values.

The forward-difference and backward-
~difference techniques are characterized by
_symmetry in their simulation of the expres-

sion (2:h/2x*) + (9°h/2¥°). Both terms of
this expression are simulated at the same
time, using a five-node array centered about

_ a single value of head, k.. However, the

simulated at the beginning of the time in- -

deum D

tmy, s e
/”/
/ \'L><
g

Time —

(n +1)at

- o (a—Dat
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_simulation of 9h/dt in these formulations is

asymmetrical, in the” sense that it is not
centered in time about h, ;. but extends for-

ward or backward from the time nat.
In either case, however, if we allow
At to become very small, the. effects
of this asymmetry die- out; "the ap-

t

proximation then approaches more and

more closely the value of 9h/2t at the time,
__nat. Inthe alternating-direction'implicit_pro-

. S ) o
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this way, then regardless of the size of the
‘time step, the calculation will not be affected
by errors which grow at. each step of the
calculation. A further condition for stability
is that the time intervals represented in the
two steps of the simulatjon (equations 14
and 15) must be equal. The length of the

time interval may differ from one pair of
time steps to .the next, but within a given
pair, as used in equations 14 and 15, the two

cedure, by contrast, 92h/@x* and 9°h/9y* are
not simulated at the same time, and in this

. _sense the simulation of (9*h/22*) + (2 h/

9¥?) .cannot be termed syrametrical: It is
again helpful, however, to visualize what
will_ happen if At is allowed to ‘become very

. smaall, so that the times (n—1)At and nAt .
" .at which the 1nd1v1dual 51mu1atlons occur,
fall more and more closely together In this .

case, (A.:h).._, should begin to approx1mate

" the. 'value of °h/9x® at (n— l/z)At while

(a,,h), should begin to apprommate the
value of 9h/2y? at (n—l/z)At ‘In this sense,
then the expression S

s

/ '
(Ar.rh.') n— l/:*‘l/( Avyh) '; .

IS

. . . / . .
. Sy .- . -
. can be considered an approximation to

%h
+—

oy*

o

.a.xl'

‘at the time (n—14)at. The simulation of

“hp—h, —,.-Thus even tnough a certain asym-
. metry exists in the expressmn by ‘which .
(2th/22%) % (2°h/0y?) is approximated in

oh/at is symmetrical with respect to this
time, since .it utilizes  the head difference

the alternating-direction technique, it can be

argued that there is symmetry with respect .

to time in the SImuIatlon of ah/’at Mpre-
over, we may. expect intuitively that’ if an~

érror is generated by the fact that we simu- .

late azh/ax prior " to ’azh/ay2 during one

‘time interval,

some .sort of ‘compensating
error should be generated during the follow-

_ing time interval,-when we simulate 3%h/2y*

-prior,‘to 9%*h/9x?;
that this alternation in the order of simula-’
~'tion is essential to the stability of the meth-

and in fact it turns out.

od If the order of sxmulatlon is reversed in

. /
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 values of At must be kept the same. Fmadly,

there must be an even number of total time
steps; 9°h/oy* must be: simulated prior to:
o*h/2x* as often as ?° h/ o2 is simulated

prior to 9°h/9Y". ‘

If equatlons 14 dnd 15 are wrltten out us-

- ing the earlier notation we have

hi—x.j.n—x +h$+1,i,n—1"‘ 27Li,j,n-1
_(az)? :
hu—y.n +hijyrn—2hi5m S ’_h.j,». ~Nijn—a
.|.. e
(ay):? At :
o\ (16’_
" and- _ . _ o i
. ) !
Ri_1jnia +hs+1.i.vf+x"2’%.1.'1:_:' ' J
(az)* ] o
h(,l—l,n+ht,j+l,n'."'2h(,j.n ) S hyjuia—lisn
R — , =
'(Ay)= At
amn

Equatlon 16 involves three values of head
along row j at time (n— 1)Aat and three -
values of head along column 14 at time nat.
Ilet us assume.that the head values for the -

/earlier time, (n—1)At, have been calculated

throughout the z, y plane and that we are
concerned with calculation-of head values for
~ the time nat. Equation 16 then. contains
three known vall?es of head, for the time-
- (n—1)at and three unknown, for the time
nat. Since we have three unkhowns in. one -
equation, we will again need to use simulta- -
neous equatlons. In this case the three un-
. knowns occur along a single column; and by
conmdermg other equations which apply
“along this column we can develop a con-
venient method of solut‘lon :

N I

[
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Let us suppose that there "are m nodes
along column-i and that the head is specified
at the two ‘end nodes by boundary condi-
tions, but must be determined f/or all of the
vinterio/r nodes. The first node is identified by
the subscript j=1 (we assume that the z-

~ axis, where =0, lies outside the problem
area) ; the final node is identified by the

subscript j=m. Thus k;,, and ki, , are spe- |

cified by boundary conditions, while k.,
~ through Ay m_,,, must be determined.

We can write an equation of the form of
equation 16 for each interior node along col-
umn i. 'As we set up the equation at each
node, we pick up three known values of head
from the (n—1)At “time plane”; these

known values fall along a three-column band, . -

as shown in figure E. Bach equation also in-
. corporates three values of head for the new
time, nat, all lying along column i; and when

we have set up an equation of the form of -

" equation 16 for each interior node along the
¢olumn, we have a system of m—2 equations

* in m~2 unknowns, which can be solved

“simultaneously. The solution of this set of
" equations is undertaken independently .from

" the solutions for adjacent columns in the

mesh; thus, instead of dealing with a set of,
" say, 2,500 simultaneous equations-in a 50 by
50 array, we deal in turn with separate sets

.
ey
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FIGURE F

each is much easier to solve than the 2,500

" equation set, not only because of the smaller

number of equations, but .also because a
convenient order of computation is:possible. -

We are able to utilize this order of computa-

tion through a-technique developed by H. L.

Thomas (1949) that is known "a_s the Thomas

algorithm. '

To illustrate this metﬁod, we rearrange

- equation 16, putting the unknown values of

of only 50 equations. Each of these sets cor-  head, corresponding to.time nat, on one side,
responds to a column within the mesh; and as follows: R
o ) y .
‘ Rijorn S 2 i J hicije i f S 2 Ridrgmey . -
R o "< + Pt ‘~J+l = ;” "“/ - >h¢.l.n--1'——““‘——l ‘1- - (18)
“(ay)? Tat (ay)z (ay)* (az)? \TAt (az)?/- (az)? -
| - / -

The right-hand side consists entirely of
known terms, and it is convenient to replace
this side of the equation by a single symbol,

Dy, thatis-
R ’ hl—-:,i,n-—l S y 2 - N
D[= - —_ - — h":’.""""
' (az)*  \Tat (az)?/ |
’ o Bigrjmer .
——— e, (19) -
(az)? _

I - . N .

".the subscripts designating the column and

The single subscript, j, is sufficient to desig-

-nate D for our purposes. As-suggested in

figure E, the sequence of calculation is along

the column i7.-At each node——that is, for each
-value of j—there is only.one value of .D,
- "taken from the three-column.band in. the

preceding time plane. We are limiting con-
sideration here to one set of equations, cor-.."

. responding to-one colump, and aimed-at cal- °

culatirig the heads for one ‘value. of time; -

4
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time are therefore not required. Thus we can
omit the/subscripts ¢ and n from the values

of I on the left side of the equation. With
these changes, equation 18 takes the form

Ajllj_1+BjIL]+Cj’lj+r=Dj (20)
where, in the problem which we have set up

1

Ai:_.‘ l.
o7
S 2

e
Tat

(Ay)®
and -

1

i=

(ay)®

The coefficients A4, B and C are constant for
. the problem which we have postulated. In
.-some problems, however, where variation in

T, S, or the node spacing is involved, they b

may-vary from one node to another. To keep
the . discussion sufficiently general to cover
such cases, the coefficients have been desug-
nated with the subscript j.

“If we solve equatxon 20 for k;, the central
value of the three-node set represented in
the equation, we obtain

Dj'—Aj}Lj_.,
" h, the head at the initial node of the column,
is specified by the boundary condition. We

apply equation 21 to ﬁnd an expresslon for
h.; this gives-

"Cihia-x
h;= . ’

i D‘_r—A'_'Ill—C'_-hJ
h.= ' (22) .
. ) .B'.-
We rewrite this e_quat_ion in theform
he=g.— b:h:r ; (.23) .
where i
D: —Aghl - :
9.= (24)
B.
and
b, = . (26) .
B, -

(21)
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b, consists of known terms, and since k, .
is known, g. can be calculated; equation 23
thus gives us an equation for h.. in terms of
the next succeeding: value of head, h,. If we
can continue along the column, forming

"equations which give the head at each node
in terms of that at the succeeding node— -

that is, which give k; in terms of h,+1——we

~ will eventually reach the next to last node in

the columnn, wheré we will have an equation
for h,_, in terms of h,, the head at the last
node. Then since h, is known, from the
boundary condltlon, we will be able to cal-

_ culate h,,_,; using this value of kn_, We can-

calculate h,._., and so on back down the col-
umn, until finally we can calculate k. in
terms of h, using equation 23. This is the
basic idea of the Thomas algorithm. We now
have to see whether we can in fact obtain
expressions for each head, h; in terms of
the succeeding head, h,+,, along the column.

We first apply equatxon 21 to find an-.ex- |

pressxon for h, obtaining

D — Al —
B."

C.h,

" To eliminate h, from this equation, we ‘sub-

stxtute from equatlon 23, obtammg
' — A (g-= Do) - Cm.

21

. h:1=
L B.;
Equation 27 is now solved for I, as féllows
A.b. D.—A.,9.—C.h,
Ii'l— 'h;;= —
B, , B,
D.- 1g.. CJL.
hy= - :
’ 3—A3b2
B;g - .
\ . B, /.
or .
- . Ds_Ang: C, / IR :
3.= ’ o~ - N h4-_ (28) ’
. By—Ab? BimAshs_
~ Now again we haye ani,equﬁtion of the form
. ha=gsrbihy - .. (29)°
wherehere - o o
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S D;—-A.g- .
; e —_— (30)
B,-Ab:
~and-
; ' C,
e (31)
L . . B;—Ajb.

Slnce g: and b. are known from the preced-
* ing step of the calcuiation (equation 24 and
25), g; and b, can be calculated, and equa-
- tion 29 then gives us an expression for k, in
terms of h,. In effect ,we have eliminated A.
rom equation 26, so that k; is expressed in
terms of the succeeding value of head alone.

If we continue-this process, we find that
at each step we can obtzin an equatlon of
the form :

- hy=g;— bl (32)
~relating the head at each node to that at the

succeeding node; and we find that g; and b;

can always be determined from the preced-
ing values of g ‘and b by equations of ive
form of equations 30 and 31. That is, we nnd
. that . :

. Dy—Aigis _
gi=——— (33)
" By—Ap,_,
and
bj=—o -~ (34)
B;—Ab;_,

"‘These general formulas apply even to the
calculation of g, and b, if we specify the
- starting conditions g, h; and -b,=0.

In summary, then, we may start at node 1

and move up the column calculating values
of g; and b,. At each node, these values are
.. calculated by equations 33 and 34, using the
* preceding values, 'g;,_, and b;_;, and using
the coefficients A;, By, and C; and the term
D, /

Ultlmately, at the next to last node of the
column, g,,_, and b,_, are calculated; then
since %, is known from the boundary condi-
.tion, -h,_, can be calculated from eq tion

/32, We then proceed back ‘down the column, .

calcuiatlng the value of k; at each node from

the value of k., using equation 32, ‘until
finally a value for h, has been calculated and

- heads have been determined throughout the

column.

The whole preccess is actually one. of
Gaussian -elimination, taking advantage of
a convenient order, of caleulation. The solu-
tion of the difference equation 16 is obtained
directly for points along the column through
this process; we are not dealing with an
iterative technique which solves the set of
algebraic equations by successive approxima-
tion. When the head has been calculated at
all nodes along column i, the process is re-
peated for column i+1, and. so on until the -

“entire plane has b°en traversed.

In a sense, this process of calculation
stands somewhere between the forward-dif-
ference technique and the backward-differ-
ence technique. In the forward-difference

_ technique the head 'at every node,. for a

given time level,/is computed independently

from the heads 4t the four adjacent nodes
for that time level; the technique of compu-
tation is said to be explicit. In the backward-
difference technlque. the calculationn of the .

" head at each node 1ncorporates the heads at.

the four adjacent nodes forthe same time
level; the method- of calculation is termed
implicit. In-the alternating-direction tech-

- nigue the calculation .of the head at a given '

node, as we move along a column, incor-

‘porates the heads for that time level at the

two adjacent nodes along the column, but
nct at the two adjacent nodes in the adjoin-

- ing columns. The method of calculation, for

this step, is said to be -implicit along the col-
umns, but explicit in the transverse direc-.
tion, along the rows. :

When the heads have been calculated
everywhere. throughout the plane by the

- process of traversing the columns-calcula__,\

tions for the.following time, (n+1)at are .

°_ initiated using-equation 17. The procedure

followed is the same as that descrlbed above,
except that the calculation now moves along
rows, rather than along columns. This alter.
nation ot\dlrectlon again, is necessary m."
order to i 1nsure the stability of the method of '

' calculatlo'x
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Solution of the steady-stote equation by iteration using the

-

In their initial paper proposing the alter-
nating-direction implicit procedure, Peace-
man and Rachford point out that the tech-
nique of solving alternately along rows and
columns can be used effective:y to iterate the
steady-state jequation. That is, suppose.we
must deal with the problem considered in
Section 16 and 25 of Part VII, and reviewed
earlier in the present discussion, in which
 the steady-state equation

Lok ?° *h
—t—=0

9% o

(35)

is to be solved. In ‘Section 25, we considefed _

" a technique of iteration, or relaxation, to
. solve thls equation.-In this technique we
wrote the finite-différence approx1mat10n

given in equatlon 6 as a simulation of equa-
tion 35; this gave

/

hf.ir'_’z(_hf—l.i—#hf-*-l.l—*' h(,,‘__l-{; h;,,'+1) . (6)

I

To apply equatlon 6 we would move through
the z, % plane replacing values of h;; at each
“interior node by the average of the heads at
the four: surroundmg nodes. At the end of
one complete traverse of the plane we would

have a set of values of h;; which would be

somewhat closer to satisfying equation 6
than were the values with which we started;
and "after several’ traverses, we ‘would have
.a set of head values which would essentially
‘satisfy equation 36 throughout the plane.
*This would be iridicated by the fact that the
values of hy; obtained. in each step would dif-
fer very little from those obtamed in the

. precedmg step.’

Our ObJeCtIVe here is to outline a more
. eﬂicxent techmque of carrymg out thls 1tera-

: _-equation 8 and 10 fer

alternating-direction method of colculctlon

~

tion process, based upon Peacéman and
Rachford’s method and the Thomas algor-
ithm. We begin by introducing some nomen-

~ clature and notation.- In our discussion ~of

nonethbrmm problems, we spoke of “tlme
planes”’—that is, representations of the z, ¥

plane-in~ which~the headscalculated ~for~a
given time were displayed. In discussing the

solution of steady-state problems by itera-

tion we can similarly speak of “iteration
planes”’—that is, representations of the z, ¥

plane in which the values of head obtained
after a certain number of ‘terations are dis-
played. Again, in our discussion of nonequili-
brium problems we used the subscript n to
designate the time level of a given head
value—*h, 4» referred to a head value at the
time nat. In a similar way, we will usé a

- superscript m to denote the iteration leve! in

the steady-state problem. h;;° will be used
to designate the starting values of head,

prior to any iterations; A will mdlc/ate.

. head values after one iteration—that is, the

head values in the first iteration plane; and
in general hy will indicate head values
after m jterations, or in the mth tnratlon
plane. :

Next we rewrlte our’ approxxmatlon to.

rearrange equation 6 to give-

hi_ ,;+h(+1]"2htj-’—hti ;_Iltj+1+2}ltj(36)

”Thls can be obtained also by rewrltmg equa-

tlon 85 in the form . e
; . :
oh

— T e

B ay? |

- %h:

=

/oo

. .equation 85 in a shghtly different -form. We .

and then using the approximations given in

o*h/ox* and /Y™
-We are interested in applying equat;on 36

to calculate head values for: a new iteration _

‘level usmg head values from the precedmg
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iteration level. In the procedure which: we . _
will employ it-is hecessary to consider two - i . 7
successive interation steps. Using the super- ' : ’
script notation described above, and using

A::h and Ayl to represent our approxima-

tions to °h/2x* andah/d¥* as in equat1ons
8 and 10, the method of calculation ma§y be " : . :
‘summarized as follows ) ' o \ N

=3k h -.\ Jm-r (87)

and

Ap i+ i=—5, hm - (38) Iteration level

m-1
or, in the notation of equation 36, :

=l =l H"‘+2IL,;
—-h( 1 } +h|+| M1 "‘2}1 j’"’" .
: (39)

) -/

and '

hl__'",_m-}-l + hi+1,j"‘+l __zhi.im»{- 1

TR

AS these equations indicate, the idea here
is first to simulate 32h/9x* at one iteration
level and 92h/2y* at the next; in the succeed-
ing iteration, the order is reversed; ph/dy*
is simulated at the earlier iteration level, and
. 9%h/2x* at the next. Figure D,  which illu-
strated the simulation technique for the non-
eqilibrium problem, is reproduced as figure
F, but with the time planes now.relabeled as
iteration. planes. Equation 39 relates three
- values of head at iteration level m to three
values at iteration level m—1; and, following
the .technique descrlbed above for the non-
equilibrium case, we may move ajong col-
“umn ¢ 'in jteration plane m, at each node :

picking up three known values of k-1 from - Iteratlon level *

a three column band in the preceding itera- ' ' a : ~1
“tion plane, and thus generating -a set of ' '

" equations in which the unkrowns are all oo -

values of. k™ along column <. : , , ' , .

. As in the nonequilibrium case, - the set of ' o \/ ' S
equations along a given column is solved di- : o i
rectly by the Thomas algorithm—that is, by ' '

Itersation leve]
) m

159
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the process of Gaussian elimination outliged

in equation 20 through 34. When this has

been done for every column in the x, ¥ plane,
we have a new set of head values throughout
the plane. These values, however do not nec-
essarily constitute a solution to equation 35.
The process we have described; of replacing

the earlier hedd values with new, values cal-

culated through equation 39, accomplishes
the same' thing as the relaxation process of
Section 25—t produces a new set of values
which is closer to satisfying equation 59 than
was *he earlier set. This does not guarantee
that the new set will constitute an accept-
able sclution. The test as to whether or not
a solution has been found is carried out as

in the relaxation technique of Section 25— ,
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the values of head in iteration plane m are
compared to those in jteration plane m—1.
If the difference is everywkere negligible,
equation 35 must be satisfied throughout the
z, y plane; otherwise a new iteration must be
initiated. In this new iteration we .would
utilize equation 40, moving along a row of
the model to set up a system of equations for
the head values along that row. As in the
nonequlllbrlum problem this alteration of di-
rection is necessary for stability. Iz sum-
mary then, we are utilizing an indirect

literative procedure of solution; but we use

a direct method, Gaussian elimination, along
each individual column or row, to move
from one set of approximate head values to
the next during the iterative process.

Backward-difference simulation: Solution by iteration using the
- alternating-direction method of calculation (iterative |

~ alternating-direction implicit procedure) .

i "Peaceman and Rachford found that itera-

tion of the steady-state equation by the al-
ternating-direction procedure was conSIder~

"~ ably more efficient than the most rapid re-

laxation techniques that had been used prior

" to the time of their work. The use of the al-

ternatmg-dlrectlon techmque in this sense,
as a method of
gained great popularlty in recent years. As

~a method ’ of solving the nonequlllbrlum

equation 3, however, the alternating-direc-'

tion implicit procedure, as ‘embodied in equa-

. tions 14 and 15 or 16 and 17, has not always

proved advantageous. Although stability is

“agsured, that is the calculation will not be

affected by errors which necessarily increase

in magnitude at each step, there is still-a -
- possibility for large error at any one time

step and, at any given node; and in many

- problems " these errors have proved uncon-

_ est in the bhackward-difference formulation, .

- trollable and unacceptable. This undesirable -

feature has inevitably led to ren_ewed inter-

of equations 5 and.18. As we have noted,

iteration, has accordingly

solution by this method must generally be
accomplished. through 1terat10n for example
using equation 7; the systems of simultane-
ous equations involved are usually too large
to admit of an easy solution by direct meth-
ods. We have seen that the alternating-di-
‘rection procedure of Peaceman and ‘Rach-
ford provides an effective method of iterat-
ing the steady-state equation ;. this suggests
that the same technique may.be used:-to
iterate the backward-difference equat10n~5——

- or 18: Equation 13, which utilized the ab-_

brevated notation, is reproduced ‘below

hz.j,n—l

(Auh) +(Ayyh)n"“'
. T

‘Ai

_ (A,,h,), is an approxxmatlon to a’h/'a:c2 at

the time nat, while (8,,1),'is an.approxmla-_ '
tion 22h/?Y* at’ the time nat. We again in-
troduce the superscript m~to.indicate the
level of iteration; using this- -notation we re=

- write eqtﬁ!hon 13 as it wﬂl be used in two_
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successive steps of the iteration process un-
der consideration,

) S’lljﬂl

Riins
(3ech) =1+ (3,50) m = —
T

At

(41) .

S hun +1 "'h:]n 1
(Aeh) m 24 (Aph) A= —
T

at
(42)

Several pomts about equations 41 and 42

"~ should be noted carefully. The simulations

-1)at to time nat. In equation 41,

of both 9h/2x* and *h/2y%, in both equa-
tions, are made at time nAf; and agam, in
both equations, 9k/9t is simulated by the
change in head at node %, j from time (n—
(o*h/
o ) na is simulated at the ( m—1)th itera-
tion level, whereas (93%/9%3).a is simulated

at the mth iteration level; h,,,, in the simu-. -

lation of the time derivative, is represented
at the mth iteration level. In equation 42,

(9*h/DY?) sar i8 simulated at the mth itera-

_ tioi level, while (2%h/922) .4 is simulated at

- preceding time level, n—1. We may t ere- .

___ entire right side by a single symbol, D, rep
' reSentmg the known terms of the equatxon

the (m+1)th iteration level;
simulation of the time derivative, is again
represented at the higher iteration level,

-

Bijme in thé
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which Jis here m+1. No iteration superscript
is attached to h;;n.—. the head at the preced-
ing time level, in either equation. The itera-
tion process is designed to compute heads for
the new time level, naAt, and in this process
the head at the preceding time level is sim-
ply a constant; it retains the same value .
throughout the series of itérations.
Rewriting equation 41 using the expanded ‘
notation for A,k and A,k (as ngen in equa-
tions & and 10), we have :

. hi-l,j.ﬂm—‘+h|‘+1.j,nm¢l"Zhi.j,n""‘
(a)®
Boj_yn™+hijern™— 200"
+ - L
(ay)* 'L .
2 S (hi'}n —ijn— 1)
T At

] (43)

‘We wish to calculate head values at the
new iteration level, m, on the basis of walues
which ‘we already have fotr the preceding
iteration level, m—1. We therefore rearrange
equation 43, placmg unknown terms on the
left and known terms on the right. This gives-

’

The, unknowﬁ térrhs are,'the head values

fore proceed as in equation 19, replacing

We will /then have an- equatxon of the form
of equatlon 20,

AN

Rijoaa™  Rijrra™ < S 2 > :
g + - + hu‘”m=
(ay)®  (am)®  \Tat (ay)® - _
: ' hicage™ ' Rt gam? 2 S . .
- L t By g =R jar. (44)
(ax)? (az):? (ax)? Tat | .
| B

- Ay + B+ Cily =D, (45)

‘whlch can be solved by the Thomas algor- -

ithm, as outlined in equations 21-—34 In .the
next step we utilize ‘equation. 42 here the
unknown ‘terms consist of three v=zlues of k.
for time mAt and iteration level m+1, while
the known terms consist of three values of 7

-for time nat and iteration level m, and again

- one value of .k for the time level {n—1;at.

After thxs step, the heads Wthh we obtain
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are compared with those cbtained in the pre-

Cth iteration of FIGURE G ) ceding step. If the difference is everywhere
iteration plane— . . s hm+t ar
containing final values \0&0\ negihglbl;z t};e values o}f u a : ta}l:enhasda
of head for time nAt S _ sufficiently close appro imation to the heads
/ = for time nAt. :
Row j oS T A It’s important to note that whlle at each
_ - / ' _step we solve directly, (by’ Gaussian elimina- -
T ) L I \ 7 ' tion, along columns or rows) to obtain a new
. . " get of head values, these new values do not\,

‘generally constitute a solution to”our differ-
ential equation. Rather, they form a new ap-
_proximation to a solution, in a series of
iterations which will ultimately preduce an
; "approximation close enough ‘for. our pur-
e . poses. We may review the sequence of com-
’ putation by referring to figure G, which il-
lustrates the process of calculation schemati-
cally. The lowermost plane in the figure is a
time - plane, ‘containing the final values of
~ head for the preceding time level, (n 1)at.
- The plane immediately above this contains
the initial assumed values of head for the
new- time, nat; we use three values of head,
Ricajn® hija®, and Rizajn® _from this plane, .
together with one value of head h;;,_, from
the n—1 time plane, on the right side of
equation 44. On the left side of equation 44
~we have three’ unknown values of head in -
the ﬁrst iteration plane, Rij_iu's Ry, and
tijs1a'. We set up equations of the form of
equation 44 along the entire column i-and
solve by the Thomas algorithm (equations
»\ o : 21-34). We then repeat ‘thé procedure along

(k—1)th
iteration
plane

Second
iteration
plane

Time = nAL

First
. iteration
plane

e . all other columns, . thus determining head
Plane contajning
starting vaJues values throughout the first iteration plane;

P
\\ S : these new head values constitute a somewhat

of head for .
time nA¢ P closer approximation to the heads at time
R""” -z nAt than did the initial values. Next we

= set'up a system of equations of the form of -
« ‘ - "equation 42, arranged so that in each equa-

tion three head values from the first itera- .

- - . tion plane and one from the n~1 time plane

- > form the known terms, while.three head

’ values from the second iteration plane from

the unknown terms. If we rewrite_equation -

" Plane contsining
head ‘,:311193 ’
for time (n — VAL .

Row J

v 42 in the expanded notation and rearrange -
' it so that the unknown terms appear on the
_ left and the known terms on the nght we'

P ) " have

162
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Riey; m+1

=15 Ry jn™? S 2 \ a
+ . - —t )hi,j,nm+==
(ax)* (a)® . Tat  (azx): ) -~ . ) .
hg,'—x,nm ]l,-,,-; 1.n¥ 2 i .
B - + Rijam——Mijn—1. (46)
(8y)* (ay)*  (ay):® Tat :

Applying equation 46 between the first
and second iteration planes, . m would be
taken as 1 and (m+1) as 2. The four known
terms on the right side of the equation would
consist of three head values from the first
itel‘atio‘n plane h; ;1. Bija and hiji1nm and
again one head value from the n—1 time
plane, hy;,_,. It is important to note that
we return.to the n—1 time plane—the lower-
most plane in figure G—at each iteration
level in the series, to pick up the constant
values of h;,;,._, that are used in simulating
the time derivative. On the left side of equa-
tion 46 we would have the three. ‘unknown
_ values of head corresponding to the new

“iteration level—(that is, the.second itera- -

tion plane). Again we would use the Thomas
algorithm (equations 21-34) to solve for
these new values’ of head throughout the

plane, At the end of this solution procedure

the head values' in the second iteration plane

are compared with those in the first itera-

tion plane. If the difference is sufﬁmentlv
small at all- points, -there is nothing to be
gained by continuing to adjust the head
valueg through further calculation—equa-
tion 8 is already approximately satisfied
throughout the plane. If significant differ-

enceg are noted, the procedure is contrnued
.until the differences between the head values -

~ obtained in successive iteration ‘levels be-
comes negligible. At this point the heads for

time nAt have been determined, and work is -
started -on the next time step, computing
heads for the time (n+1)At. Thus while di-

rect golution and an alternatmg-du ection
- feature both play a part in this" proc-edure of

caleylation, the technlque i8 basmally one of"
iteratijon, in Whlch ;using the backward- dif- .
ference formulatlon of equations 5 or 13, we-’

progressively adjust head values for each
time level until we arriveat a set of‘values

which satisfies the eguation. The method

.combines the advantag‘es of the backward-

163
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'diﬁ'erence technique with the ease of com-

putation of the alternating-direction proce-

- dure; it is the basis of mggy of the digital
‘models presently used by the U.S. Geol. Sur-

vey. It'is sometimes referred to-as the itera-
tive alternating-direction implicit procedure.

Prickett and Lonnquist - (1971) further
modify this method of calculation by rep-

resenting the centra} head value, k;; only at - -

the advanced iteration level; and by repre- v
senting the head in the adjacent, previously

processed column also at the advanced itera-
tion level. That is, they do not simulate 9h/
oz* and *h/py in two distinet iteration
planes, but ratiser set up the calculation as
a relaxation technique, so.that the new value

-of head at a gjven node is calculated on the

basis of .the most recently computed values
of head in the surrounding nodes. They do,
however, perform the calculations*alternate-
ly along rows and columns -using the Thomas
algorithm. N )
In the discussions presented here we hav

© treated transmissivity, storage fcoeﬁiment"

and the node spacings. Ar and Ay, as con-

‘stant terms .in the z, ¥ plane. In fact these

terms can be varied through the mesh to ac-
count for heterogeneity or anisotropy in the
aqujfer.or to provide a node spacing which-
is- everywhere suited to the needs of the

pr:blem. Additional terms can be msel’ted ’

_into the equations to account for such’ thmgSi

as pumpage from wells. at specified nodes,
retrieval of evapotrangpiration lossmseepage'
into streams, and so on. *Some programs
have been developed which: ‘simulate three.
dimensional flqw ‘(Freeze, '1971' Bredehoeft
and’ Pmder 1970; Prickett and- Lox}nqulst

1971, p. 46) ; however, the operational prob- '
lems. encountered, in three-dimensional digi- -
“tal madeling are so‘metimes troubl%o’me. o

‘The reader iy Now proce ced to the pro-
gramed lnstructxon of Part VIIL




" Part VIIL. Analogﬂ Techniques

Int roductlon

L}

. In *Part VIII we consider “another tech- the case of nonequﬂlbnum modeling, it de-
nique of obtalmng solutions to the differen- pends also upon the similarity between the
tial eQUatlon of ground-water flow: This is " ground-water storage-head relation and the.

" the method of the eleciric analog. It is @ paw- equation describing storage of' charge’in a
) erful technique \wiiich has been \Vldely used. , capacitor; and upon the similarity between
The technique depsrids upon thé mathemzzti- _ the electrical dontlnulty prmclple, involving
cal similarity between Darcys law, describ- " the conservation of electric charge, and the
ing flow in a porous medlum, and Ohm’ s law, -’ equation of contln_ult} describing the con- -’
descnbmg flow of charge in a conductor. In' servation of matter. _
, 1 .
] &+

N\
Ohm s law §tates that the electrlcal cur-. For the resistor sho\w_n in the diagram,
rent through a conducting element is direct- ~ Ohm’s law maz be stated as follows
ly proportional to the voltage difference, or _ 1 . H ye!
potential difference across its terminals. The e L

I=—(¢1 ¢2) o ~'&
~ sketch represcnts a conducting element, or . :
' resistor, across which the voltage difference - where I is the current through the resistor,
_iS ¢,— ¢ That is, the voltage at one terminal  and ¢,—¢-, "as noted above, is-the voltage -
of.the resistor is ¢,, while that at the other difference across its terminals. The term 1/~
end is ¢.. The current through the resistor R 4s the constant of proportionality relating
- is defined as the me: rate of movement of .current to voitage; R is termed the’ resist-
" - positive chargeacross a cross-sectionial plane  ance of the element. It deyends both upon

" within the resistor, taken normal to the di-  the dimensions of the élement and the elec-"
rection of charge flow. The‘standard unit of  trical properties of the conductive material -
charge is the coulomb, and current is nor- used. The unit of resistance is fhe ohm. -A
mally measured as the number of coulombs resistance of 1 ohm” will carry % ampere of
per second crossing the plane under consid-" - current- under a potential difference of 1:°

" eration. A charge flow of 1 coulomb /ger “volt. L S
second is designated 1 ampere. The symbol~ - ' A

I is frequently used to represent current. ‘ oussuon R
' - _ : -0 Suppose the voltage at one ‘terminal of &
: / E . 50C-ohm resistor s 17 volts and the voltage .
Symbol. representmg a conductmz element, . .at the other‘terminal is 12 volts. What would
or "w“” o -1 . ‘the current through the resm'wr be? |
.¢1 J_curre current ¢=rz ) . 4 . - o ’ ‘Iurn Qfmon’
B R -—__“"' : - 10 amperes: . - . o
R r_epreseute value of resistance, (ohms) o 0.10 ampere, or 100 mllllampereJ '8 v
- . : S # - 0. 01 ampere, or 10 mllllamperes S
’ . [ . Ad
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L —

Your answer in Section 22 is not correct. _Comparison of these equations.illustrites
The finite-difference form -of the- equation that resistance, R, may be considered to| be
for two-dimensional nonequlllbrxum ground-..- analogous ‘to the term 1/T; voltage, qf;,i is
~ water flow i is ’ . -, analogous to head, k; and capacitance,'C,
Sa? Ah,, - may be considered analogous to the term .
’ h,+h3+h,+h‘ ho=— Sa*:
. Y N ... Inthe- answer"“‘ich you selected voltage
: whlle the equatlon for our resistance- capa- s treated as analogous to transmissivity, in
cltance network is . - ~ that the procedure calls for increasing volt- :
: , ' oo Do o age in areas of high transmissivity. =~ .. -
. ‘¢;+¢2+¢;+¢4'—’4¢0=RC—'—'1 | . Return to Section 22 and choose another }
. ST ~oodt .. answer.,

\
1

Your answer in Séction 6, . not a valid statement of Ohm’s law in any

e e " case, for Ohm’s law in terms of reslstance
T (i a)s © — "was g1ven in Section 1 as . = .
. ‘ . . . »
is not correct. The idea here is to,obtain an . __1_ \ S
e . . . o I= (¢1 é2) : )
expression for the -current which' involves . : :
* the. resistivity, pe, ‘of the material’ composing ) : ' :
the.resistance. Your answer lnvolves the re- Return to Sectxon 6 and choose another :
51stance, R, rather than the res1st1v1ty It is  answer. . S - U
" Your answer in Section 9, o : © citor be equal to the time rate at whlch
‘ 1 . SR ds. L - charge vas transported “to the capacitor.
e o ._7'(4,-1..950):0__,. S ‘ plate through the resistor—that is, to the’
: . dt ' cuu'ent through the resistor. In the c1rcu1t
i is correct. The quantrty C .as we have seen, - v o '

|is actually the derlvatlve de/ dd;c, thus C (d¢./ o
dt) is equivalent to (de/dd)c) (d¢c/dt), or = %
srmply. de/dt. ' '
/ *Without' referring to 1t e!cplvcltlv, we
made.use in Section 9 of an electrical equiva- . v
" lent to the, }Lvdr_auhc equatlon of r'ontmulty o
In’ an electric circuit, charge is ‘conserved in~ ’
_ the: same way that fluid mass is conserved in
2 a hyorauhc system Kirchoff’s current law, = -

-k " which is familiar to students of clementary o : c 5

% physics, is a statement of th1s principle. In o . - : : :
h the circuit of Sectlon 9, we requrred that the shown in the figure, in' which four resistors
o ' rate of accumulatron of, charge in the capa-'- * dre connected ‘to a single 'capacitor,' the net

/ R \ o _ . / .

T L TP WP
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A

inflow minus out}low of charge, through all -

four resistors, must equal the rate of ac-

‘cumulatior: of charge on the capacitor. Let I,

and I, represent cufreénts toward the capac-
itor, vhrough resistors R, and R;; and let

"I, and I, represent ,’éurre‘nts away from the
. capacitor, through resistors R. and R,. Then

\'.

the time rate of inflow of charge, toward the

capac1tor, will be I,+1,; the rate of outﬂow ,

charge, away from the capziitor, will be I.+

~ I,. ‘The net inflow minus outflow of charge

Cwill be I,—I,+1I,—1I,; and this must equal

' lCdn‘—41 °

_four resistances are equal-—-that 1s we as-
. sume \ :

R =R;=R,= R‘—‘R
Let $o represen‘r the voltage on the capac-
itor plate—this is essenulallQ' equal to the
voltage at the junction point

the extrémities - of the four ‘resistors are

" designated 4., ¢z $1, and ¢,, as shown. in the
: dlazram If Ohm’s law is applied to obtain

f the four re-
- sistors (the re31stance of the wire connect-.
ing the - capac1tcr to the resistor -junction .
pomt 1s assumed negligible). The voltages-at -

\

the rate of accumulation of charge on the
capacitor. That is, we must have

. _ . de.

- " ) 11'7124'13—14:_———.

: dit

@UESTION o
The dlagram again shows the circuit de-

* seribed’ above, but we now assume _that the

--.aceecua

" an expression . for the current through each -

reélstor and the capac1tor equation is ap=
plied; to obtain an expression for the rate of -

d;}\mlation of “charge on th capacitor,
which' of the following equatlo S W1ll be ob-

- tained from our. cxrcmt equatipn -

IL-L+1,—1,=

Turn to Section:

—ﬁ+@*@

| : 15
01 d¢0 .

—(¢l ¢z+ 4’3 — 37

it ¢>z+¢a;«~¢4 o= RC—— . 22

Your -answer in

volving. heterogeneou{s aquifers are handled
as easily as. those

.ing networks of sev'eral layers. The method

is appllcable to wat r-table aquifers as well -

.as to confmed aqu1f rs, prov1ded dev'atermg

PR

1 Section ‘22_' is correct..
" This is of course one indication of the power
of the analog method, in that problems in-

_ mvolvmg a ‘uniform
e aqulfer Complex boundary conditions can.
"alsc be accommodated, and three-dlmensmnal‘ .
problems may be approached by construct-

e

is small in relation to total saturated thlck--
. ness. Some successful simulation has been
done even for cases in which this condition: -
“is not satisfied, using special- electrical com-
. ponents whlch vary in re51stance as voltage
..changes. .

» Steady-state problems are dometimes -

- ‘handled by network models  constructed
'solely of resistors—that’is,. not ‘involving .
-capacitors—rather . than. by analogs. con-
structed of a continuous conductlve mate— .

-

(U
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| 5 * —Con.

rxal Such steady-state networks are par—
ticularly useful . when heterogenelty ls in-

. “volved.
In some cases, the symmetry of a ground-
~ water system may be such that a two-di-
: mensmnal analog in a vertical plane—that

'

s, representlng a- vertical cross section . -
't_hrough an aqulfer or .series of aquifers—

 may be more useful than a two-dimensional
analog ;epxgeqentlng a ‘map view. In. this

" type of nlpdel anisotropy isfrequently a-

factor sthat is; permeablhty in the vertical

‘the model] are chosen in such a"way as to

simulate the in¢reasing cross-sectional areas”.
of flow, both vertically and radially,» which
occur in the aquifer with’ 1ncreasmg radlal

~ distance from the well.

‘This concludes our discussion of the elec-
tric-analog approach. We have. given here
only a brief, outllne of some o1 the more im-

. 'portant principles that’are -wvolved.” The -

‘technique is capable of prov1d1ng insight -

. into the operatlon of hlghly complex ground-
. water systems."

Further discussion- of the

direction is frequently much smaller than
that in-the lateral direction. This is"easily
. accommodated in a network by qsmg hlgher
re51stances in the ,vertical “direction; or,

equivalently, by using a umform resistance’

value but distorting the scales of ‘the model,
so-that fhis resistance value is used to simu-

late different distances and cross-sectional

\areas of flow in the two directions.

" Ansimportant special type of netWOrl( :
analog is that used to simulate conditions in

a vertical plane around a singlediacharging
‘well, The cylindrical symmetry of the dis-

charging: well problem is in effect built into - .
the network; the resistances -and scales of

principles of simulation may be found in the .

tzxt by Karplus (1958). The book “Concepts

and Models in Ground-Water Hydrology” by -

- Domenico- (1972); contains a discussion . of

the ~application cf analog technlques to
-ground water, as. does “the text “Ground-

 Water Resource Evaluatxon" by Walton
' (1970).

Addxtlonal dlscussuons may be
found in papers by Sklbltzke (1960), Brown .
(1962) Stallman (1963b) Patten (1965),
Bedinger, Reed, and Swaﬂ'ord (1970), and
many others. .| .
. This concludes the studles presented in -
this text. : : _ ‘

Y
N ®
N . . . . .
AN

Your answer in Section 1

givenby the formula

: Rﬁ e.°._'.‘
A

where L is thé length of the element in the

"direction of the current,’A is its cross-sec-

t,_ion_al_ area normal to that direction, and p
is the' electrical resistivity of the material of -

which' the resistor is compol,ed The inverse

- .of the resistivity is termed the conductivity .
.of the material; it is often desxgnated o; fhat

“is, 0=1/p, Resistivity and conductivity are

is -correct.
. The resistance of an. electrical elempnt is

\ ¢ L

R

_normally ‘takenas constants characteristic ™"

of a partxcular materlal,, however, these
properties vary with temperature, and the °

Jlinear relationships usually break down at

extremes  of ' voltage. Moreover, a small

" ‘change jn the composxtxon of some materials.
. can produce a large change in., electrlcal
‘properties.’

Resistivity is: commonly  ex-
\pressed in units of ohm- metre-/metre,.or
ohm-metres. Wlth hls umt of. resusthty, the
formula, . _ \ e
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-~ will yield :resistance in ohms if length is-
expressed in metres and area in square.

metres
. |
'QUESTION
- The sketch shows’ a resistor of cross-sec-
t10nal area A and length L, composed of a

e

material of resistivity .. The pots
ference across the resistor is ¢,

pressmn of Ohm’s law, giv /

.the current
~through the resistor? E

Turn to Sectioris

4 .
28

: - “=——Material of
$1 _ . resistivity p,

. Your answer in Section 28 »
s K L,,'. L

< is not correct. Darcy s law states that flow is

_ directly. proportional to cross-sectmnal area

'~and to .the (negat ve) gradlent of head.: In

-

: the answer which you chose, flow is glven as’
mversely proportmnal to cross-sectional.
. area, and proportmnal to the term L,/h,—h-,

- which is actually the mverse of the negatlve _'

: head gradlent

Peturn to Sectipn 28" and choose another' :
answer. ‘ K o g

Your answer in Section 1 is not correct.

Ohm’s law was 'given as

1
I———(qbl ¢»z),

'\ . and the d1scuss10n pomted jout that a ‘resist-’ ‘_
ance of 1 ohm would carry a curnent of 1
* . ampere under a potential ‘differeice of 1.

: volt Thus when the voltage dlffere ce is ex-

pressed. in volts and the res1stance ohms
the quotient ro

: l./}" . ‘ <k1‘f¢z

will give the correct current in amperes.
Retum to Sectlon 1. and choose another
answer.
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Your answer in Section 21 is correct
If we monitor the vditage on a capacitor

plate in a given circuit, and observe-that it

is changing.with timne,. -we know from the

"~ relations given in Section 21 that charge is

,accumulating on' the- capacitor plate with

time. An -expression for the rate at which

charge is accumulatmg can be obtained: by
_dividing the capacitor equatlon’by a time
increment, At. This glves

Ae - A
r'¢‘

-~

accum-uiation of fluid in the tank is equal to

- the rate of flow of water through the pipe

supplying it. Similarly, the rate of accumu-

. lation of .charge on the capacitor plate is

equal to the rate of flow of charge through
the resistor connected to the plate. This rate
bf ﬁow of charge is by definition the current
through the resistor. "(Recall that the units:

of current -are ‘charge/time—for example, .
' coulombs/second ) We thu¢ have

7

de

A

L. oAt At
" or,in terms of derivatives, -

\ de - d¢‘

at  dt

. The ﬁghre shows a' hydraulic system and
" an analogous electrical system. The rate of -

. . dt . B N
where I is the current through the resistor, -
.and de/dt is*the rate at which’ charge ac- .

cumulates on the capacltor

L

* QUESTION

Suppose the voltag'e at the. left terminal
of the resistor is ¢, wh11e the ‘voltage at the

" right terminal, which is essentially:the volt-

age on the capacitor plate; is ¢.. If we use
Ohm’s law to obtain an expression_for /, in
terms of the voltagﬂs and the capacxtor equa-
'tion to obtain.an expression for de/dt, which

- of the followmg relations. wili we obtain. (R

Tank . denotes the resistance of the resistor, and C
the capacitance of the capacxtor ) '
' — Pipe — S
i Turn™ Yo -Section: —~ -
’—"‘(4’1'—(#9) =C"_""‘ 4
R - . dt ‘ -
; ' “ - d¢c T
/ R(¢,~¢1) =C— , 20
R T :
) s . T ¢ - . - -
I CRCGe-s) = 1
SN . e _dt :
o )
Z ~ .
'/\ . .
_ ° \‘J ' 1 69 ‘H‘ s
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Your answer in Section 21 is not correct.

The equation whlch we developed for the

capacltor was . _
‘ ‘ A

c=— " -

A¢ ) . .

wiiere C ‘was the capacitance, Ac thé quan-

' tlty of charge placed in storage in the capa- "

citor, and.A¢ the increase in the voltage dif-
ference across the _capacltor plates, observed
as the charge Ac is accumulated. For the

prism of aquifer used in developmg the

ground-water equatlom in Part V, we “had

——10-
\ o "’l‘ :

- " B . . . q
‘where AV was the volume of water taken in-
to storage in the prism, Ak the increase in-
head associated with this accumulation in
storage, S the storage coefficient, and A .the

base area of the prlsm Thiz equatlon can be
rewritten - '

AV

S T —— N
. Y A _
to faciliate comr.a,rlson w1th the capdcltor

' equatxon ‘ e

Return to Sectwn 21 and choose another .

AV SAAh

"answer L Vo

;

Yéur answer in Sectlon 26 is correct. Note ;

that thls equatlon,

I 24
. IR

L w-b aa:‘

s analogous to the equation. we would wrxte
for the componen‘f of specific discharge m,

the z direction, f‘nrough a section- of aquifer
; of w1dtn w and thlckness b; that is,

.ﬁ . /<
' Q@ . - oh

B —K—-—
W b a.’v

"In practlce, steady-state electrlc-analog.

" work may be carried out by constructing a

. scale model of an aquifer from a. conductive -

- ‘material and applying electrical boundary
‘conditions similar to the hydrauhc boundary
conditions prevallmg in the ground-water

. system. The voltage is controlled-at ‘certain-

~ points or along. certain boundaries of the
model, in proportion to’known values of head

at coirespondlng points in the aquifer; and o

1

-

11 |

current may be-introduged or'w1thdrawn in’
proportion to- known V. unsfof\mﬂow .and

ouiflow for the. aquer ‘When the boundary. - "

~conditions are appliéd in this manner, volt- .

ages at various points of the model are pro- . -

portlonal,to heads at correspondmg points

in the aquer, and the current den81ty vector " '

'in.various sections of the model is propor-
'tlonal to the specific-discharge vector in.the
_correspondmg sectlons of the aqulfer

< . nuesﬂou

. .
Ag Suppoqe an analog experm/lent of f%yp
i set up, and the experimenter traces a line

_in the model along which voltage’ has some™ :
“eonstant “value. To which of th

follawmg C
~hydrologic features wou]d this ne corres- .
pond? - - S

[

Iuglo "Seclioh:. ) .

¥ ﬂowlme . ' ' 16,
a line of coﬁstant——head : 21\
a line of u{uform recharge 17 '

o

1170
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Your answer in S_ection 28,
2h ,
~—KZ A,
. axz

is ot correct. Darcy’s lasv states that flow

is equal to the. product of hydranlic con- .

ductivity, ' eross-sectional -area, and (nega-- .
- . tive) head gradient. The gradient of head is

/ S

by definition a first derivative—the deriva-

" tive of head with respect to distance. The -
- answer which: you chose involves a second
derivative. The correct answer must either

include a first derivative, or an expression

equivalent-to or approxxmatmg a first de— - ‘

rivative.”
Return to Sectlon 28 and chome another
answer.

_of 1ncreas1ng the factor RC in the equatly/

_age is analogous t

i
Ny

Your afiswer in Section 21 is riot correct.
-We have seen. ir. dealing with the analogy

between ady-state ‘electrical, flow and
steady-state ground water ﬂow that vo}t-

ydraulic head, whereas
flow of charge, is analog-
etric' rate of flow of fluid.

current, or rate

ous to the vol : :
"In the analof/f between the capacitor equa-
‘tion and th

storage—head relatlon’, voltage
must still b’e analogous to head or capaclcors

2II.SW9!'.

' could not be used to represent storage in a -

model mcornoratlng the: ﬁow/analogy be-.

‘tween Darcy’s law and Ohm’s law. Similar- '
ly, charge must represent ﬁuld volume, so
‘that rate of flow .of charge (current) can -

represent volumetric fl id: discharge. Other- :
wise the. storage-capa itance analogy would"

_' be incompatible with’the flow analogy.

Return to Sectlon 21 and choose- another '

\ . .
Your -answex in Section 22 is not correct

o Increaslng both R and C, as suggested ‘in-

the answer which you ‘chose, has the. effect

ey

¢1+¢2+¢3+¢4"‘4¢0 RC'_' . Ny

Lo dE /

_On the other hand an increase in T 4in the
“aquifer causes the factor Sa?/T #¢ ecrease,
‘in the equatlon o . / .
. , : : /

T .

. / h;+'h,»+h3'+h.:

‘ answer.

- Sa? 'Ah
dhy=—— ——
T at
Thus the propo';ed techmque falls to slmu-.
late the hydrologic system. '
Notice that head and voltage are analog—

‘ous.and. that increases inT can be mmulated o
- by decreases inR.

Retu:a to Sectmn 22 and choose arLother -
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Your answer in Section 4 is not correct.
. The rate of accumulation of charge on the

capacitor plate must equal the net rate at.

which charge is being transported to the

"capacitor through the four resistors..To set

up the problem, we assume that the current

is toward the capacitor in resistors 1 and 3,

and away from the capacitor in resistors 2

and 4 /in the diagram. The current toward -
the capacitor in resustor 1 is given by Ohm s

law’ as o
1
, ———(¢~1 ¢o), .
whlle that in res1stor 3 1is, glven by
._ 1 - /
———(¢a

The current away from the capncltor 1n re-

sigtor 2 is glven by

I.2=—§(¢0—¢2) ’

’

15
[
while that in resistor 4 is given by

I, .='—-(¢'o""¢4) .

If it turns out that any of these currents
are not actually in ‘the dlrectlol) initially
assumed, the current value as computed
above will be negative; thus the use of.these
expressions remains algebraically - correct

whether or not the assumptlons regarding. , .

current direction are correct. .

The net rate of- transport of charge to-
ward the ‘capacitor- will be the sum of the
mﬂowcurrents—mmus-the-sum of—the~out-~;

- ﬁow currents, or

11+Is I,—- 14 , _
ThlS term must equal the rate of acéumula—
tion of charge on the capacltor plate d(/dt

‘ d¢o i T
& dt |
, _+That is we#ust have !
1,+1a 1, 1= c_i ,
dt

The correct answer to the questlon of Sec-

' tlon ‘4 can be’ obtalned by substltutmg\ our

‘expressions for-I,, T, 1., and I, into this equa-
tion and rearranging fthe result RN

Return to Sectlon 4. and choose another “ .

Your answer m
In steady-state tw

ectlon 11 is not- correct

#heory; thus a flowline, or ling
‘stream function® is constant,” cannot. cor-
respond to an equlpotentlal or hne along

7

. drm,ensxonal flows, one "
" can specify a funcl:lon whlch is constant
along a flowline. However, this function— -
which is termed . a- strean function—is not ~.
analogous to voltage (potential) in electrical |
long which

answer.,

-1 6- .
-~ which voltage is constani. In developing the -
~analogy between ﬂow of electrlclty and flow’
of fluid ' threugh- a porous iedinm, we

stressed that voltage i3 analogous to heud;

current, is analoious to fluid discharge; and .
iectrical ‘conductivity is analogous to hy-
aulic conduct1v1tv o ,
Return to Sectlon 11 and choose another ;
answer.

L A
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Your answer in Section 11 is not correct.

" The forms of Darcy’s law and Chm’s law
_-which we have used for comparlson are re- .

peated below
Darcy slaw: - .
,,.. ‘ 'Q__ 'ah: Y,
Wb ow

. where Q is the volurhetrlc fluid dlscharge

" through' a cross-sectional area of width w

.and thickness b, takén at right angles to the

z direction; K is the hydraulic conductivity;

" that voltage, or potential, ¢,

/
where I is the current through a cross-secs -
tional area of W1dth w and thickness b,
taken at right angles to the 2. direction; o is
the electrical conductivity; and 2¢/2% is the -
derivative of voltage or potentxal in the z
direction. %1

A comparison of~these equatxons shows
occupies a posi-

‘tion in electrical theory exactly. parallel ‘o~
“head, &, in the theory of ground-water flow.

- Current, I, is analogous to dlscharge Q;

while o, the electrical conductivity, is "analo- -

gous to the hydraulic conduct1v1ty, K. These

18—

" the rate of

" and -ph/dz is the derivative of head in the

x dlrectlon
 Ohm’slaw:

" answer.

parallels Should be Kept in mind in answer-
mg the question of Section 11. -

‘Return to. Sectlon 11 and choose another _

-

/ - L ;o

Your answer in Section 9 is not correct.
The guestion concerns a capacitor which is

umulation of charge on the
. capacitor plate.to the rate at which charge

" is carried to the capac1tor through the re-
sistor—that is,. to the current through the
re51stor The rate at which charge accumu-

- lates -on-the’ capac1tor plate is gwen by the

_ capac1tor equatlon as

' connected&:ezemstor The idea is to equate -

—

& Ak

At dt
The current through the resistor, or rate

at which charge flows through the resistor, '

1s glven by O‘lm ] law as.

-(¢1 )

Return’ to Sectlon 9 and chome anothel
answer.

Your ‘answer in Sectlon 1~ is not correct
Ohm s law was givén in the form :

in volts, current; I will'be in amperes 1In the
example given, ¢:~g¢. was 5. volfs'and B was -
500 ohms. Substitute "these values -in--the .. -

. 7R __( - y., + equation. to obtdin the amount of eurreat -
‘ R P17 82)- : through the resistor. ., - . '
. oL ' Lo Return to se;:tlon 1 and eboose another
If R is.in ohms and the difference ¢:—¢. is  -amswer. -~ =
: " . _ FRyERSEN .
_._/ e ~ .o , _ , v;_;/.-"r- ,
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Your answer, in Section 9,

- d¢~
R(‘ibc i ~P1) C'—"
/ dt .

is notfcorrect. The rate of accumulation of *
charge on the capacitof, de/dt, is equal to C

- (d¢o/dt), and_ this part of your answer is
correct. However, the idea is to equate this

rate of accumulation of charge on the ca- -
pacitor to the rate of transport of the charge .

S

toward the capac1tor, through the remstor--
that is, to the current through the resistor.
This current is to be expressed in terms of
resistance: and ‘voltage, using Ohm’s - Jaw;
and this has not been done correctly in the
answer which .you chose. Ohm’s law states

‘that the current through a resgistance is equal .

to the voltage drop-across the reslstance di=—
vided by the value of the resistance in ohkms.
Return to Section 9 a.nd choose another

_ anSWer

B .~ -
. t=

Your answer in Section 11-is correct. The

‘line ofconstant voltage, or equipotential line,
_ is analogous to the line of constant head in

ground-water hydraullcs
- The analogy between Darcy’s law and
© Ohm’s law forms- the basis of steady-state

electric-analog modeling. In recent years, the.

modeling of nonequlhbrlum flow has becpme

- increasingly important; and just as Darcy s‘

law alone js inadequate to ‘describe non-

equilibrium ground-water flow, its analo%

with Ohms law ‘is in itself an. inadequa

basis for nonequilibrium modeli The"

theory of nonequilibrium flow is ased upon
.a. comblnatlon of Darcy s la
- age equatlon through th
tinuity. To extend a

" tions analogoug- {the storage and contlnulty
equations,

. The alog of ground~water storage is
.provi

“storage tank for electric charge; in. circuit
diagrams it is denoted by the symbol shown
in:figure A. As the symbol itself suggests,
capacitors can be constructed by inserting

- two parallel plates. offconductlve material -

" ‘ints.a circuit, as shown in figure B. When

_ tank, drain

“in figure D, both the volum

equation of con--
, og modeling to non- .
equilibrium flow, e/ require ‘electrical equa~ -

ed by an electrical element known as .
“‘capacitor. The capacitor is essentlallv a.

\ply ) . . B A i.

‘_1_."-3_'41 .

'/-' . ,.',/ ’ -\\\ .

i

_ \ : : .
cumulates on the- plate in-a manner. analo-
gous to the accumulatlon of water in a

* tank. At the same time, positive charge is
’drawn from the lower plate, leav1ng it with

a net negatlve scharge. Figure C shows a

- hydraulic circuit analogous~to this si\mple

capacitor c1rcu1t,,wlre/n/the valve is opeued
the pump_delivers water to the left-hand
ning the right-hand tank If the, :
rlght-hand tank.is connected in tiitn to an
~effectively: limitless water supply, as.shown
_of water and -
‘the water level.in the rlghbhand ‘tank will

~ remain essentially constant, while water will

"_still accumulate in the left~hand tank as the

pump operates. The analogous electrical ar-
.~ rangement is. shown.in figure E; here the

additional . symbol shown _ adJacent ‘to the.

. lower plate indicates that this plate, has been?-- o

grounded—-that is, connected to a Jarge mass"
of metal bu
constituies’ a limitless reserve of charge. I -
this situation, the guantity of charge on the - :
lower plate remains essentially constant as

. does the voltage on this’ plate, but the bat—' :

- tery stxll causes positive charge to accumy-
late on the upper plate. The voltage on the
lower plate is analogous to- the- -water level

\n the sright-hand tank, which. is  held con-— .
. the. SWItch is closed positive chaxfge ﬂows. . -
-from the battery to. the upper plate and ac---

stant by COnnectlon to the. unlimlted water

fied in the earth, which in-effect’
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21 ° -—Con _ ‘ : —
"FIGURE A- o ‘ 3 P

ST - o o - In a circuit such as-that shown in figure
' ' . B, it is customary to designate the constant
voltage of the ground plate as zero. Thls is
done arbitrarily—it is equivalent for ex-

. ~ample, to setting head equal to zero at the
~«~- 8 : _— constant water level of the .right-hand tank

" FIGUREB : ‘ . : of figure D. With the volfage of . the grounded -

T swith/ T “plate taken as zero, the voltage. difference
oy , -between ‘the plates becomes simpiy -the volt-
1 Capwtor - A7 " age, ¢, 'measured on the upper plate In the

o ) : — .- - plates -

circuit of figure E, this voltage is equal to
- the voltage produced by the battery :
- Now suppose an expenment is run‘in which .
ww-tlae-batte%ythe—mcmt—oﬁ-ﬁgum_w*
: o ; . placed .in. turn by batteries of successively
o o o ) . . . -higher voltage—~At.each step the charge -on.
g I co the positive plate is measured in some way, -
- after the -circuit has ,reache,d equ1hbr1um
" The ‘results will show that as the apphed '
‘ voltage is increased, the charge whlch ac-
. cu'nulates on" the posutlve plate increases in
~ direct proportion. If a graph is constructed
from the experimental results in which the .
charge, ¢, which has' accumulated on the >
positive plate is plotted versus the voltage
in each step, the reﬁlt will be a straight.
“line; as shown' in the figure. The slope of |
_ this line, Ae/Ag, is, termed the capacitance of -
the capac1tor, and is desugnated C; that is,

Ae de .

i C='_“"1

oo ap dg

s

or--‘sim_ply B
. . .
C=—.
¢

Capacitance is measured in farads, or more
“commonly in.microfarads; a farad is equal
to'1 coulomb per volt. '

"~ These equatlons serve *o define the opera—
tion of- a capacitor ‘and provide the analog "
we requu-e for the equation of ground-water
storage. It will be recalled- that the rela-
tion between volume in storage and head
“ean’ be written T

; AV::S-T'A'Ah; ' R ’ )
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P

Positive charge accumulated
on capacitor plate

AA Con_.—2_l e

‘QUESTION

Which of the following statements. cor-
rectly “describes the analogy between the |
capacitor . equation and the ground-water-
storage—-head relatlon"

- Turn to Secnon
Charge is analogous to head voltage

is  analogous to volume of water,

and capacitance, C, is analogous to -

" the factor SA. . 13
Charge is analogous to volume of

water, voltage is analogous to head

and capacltance, C is analogous to.

4

- Yoltage on capacitor plate

: where AV is the volume of water taken. into
. or released from storage in a prism of aqui-

fer of base area 4, 28 the head changes b
-~ an amount Ak

©

the-factor S4-

Charge 1s analogous to volume of . ,
water, voltage is analogous to head, ‘
and capacitance, C, is analogous to-. .

" the factor :

A.’— L — . . 10

Your answer in Sectlon 4 /o
do
¢1+¢z+ ¢3+ ¢4"'4¢0*RC—7-

s correct. In Part VII, we obtained a finite-
. difference apPI'OXImatmn to the differential

equatxon for two-dimensional non-steady-.

state ‘ground-Water flow, -
’ % 2h S ok

i e e e,
B o oV’
. T.his 'approximatlon .can be written

' hl + h. + ha + h4 4l‘¢n S Aho

—\_/—-—_____——_,__ —

¢ _TAt

or RS
I’ ) Saz Aho
hl+h2+h3+h4'—4ho--—-—__. .
-~ T At

- - ho A 'hz~
I_..;_a;_—— '

]
R}

Kk
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where ha, Iy, ko, by and R, represent the head

valueg at the nodes of an ar ray such as that
_shown in the sketch; a is the node spacing;
'S is storage coefficient; T is transmissivity;

and Aho/at represents the rate of change of
head at the central node. The circuit equae

. tion which we have just obtained is directly

analogous to this fihite-difference form of .

~the ground-water equation, except for the

useé of the time derivative notation d¢,/dt as
opposed to .the finite-difference form, "ah./
At. In other words, the circuit element com-
posed of the four resistors and the capacitor

. behayes in approximately the same way as

3

Dosfulated in.developin.g the ground-water
.-equations.. It -follows- that a network, com-
posed of c1rcu1t elements of this type, such

‘as that qhown in the figure, should behave

G indicates grounded terminal

f o
lnl the same way as a two~d1mensxona1 con-
fined aquifer of similar geometry. The non-
equilibrium behavior of. such an aquifer may

. _be studied by constructing a model of the X

aquifer, consisting of a nietwork of this type;

electrical boundary conditions similar.to the -

_ observed hydraulic boundary conditions are

imposed on the model, 2nd voltage is moni--
tored at varlous points in”the network. as a.
. function of time. The voltage readings con-,

stitute, in. effect, a finite-difference solution

to the dlﬂ'erentxal equatlon descrlbmg head v

_monitored using oscilloscopes. .
- frequency of each récording oscilloscope is

. nef‘ted

in the aquifer. The time scale of model. ex-
periments is of course much- different from

- that of the hydrologic regime. A common

practice is to use a very short time scale, in
which milliseconds of model time may rep-

. resent months in the hydrologic system.

When time scales in this range are-employed,
the electrical exditations, or boundary condi-
tions, are applied repeatedly at a given-fre-
quency, and the response of the system is
The sweep

synchronized with the frequency of repe- .
tition of the boundary-condition inputs, so

€ 0§cﬂlos‘cope frace, represents A curve
of voltage, or head, versiis time, at-the net-
" -work point- to which the mstrument is con-

Suppose we wi h to model .an aquifer m'*. a
\whlch transmiss ,v1ty varies from cne area

to, another, while storage coefficient remains
ssentlally constant’ throughout the aquler.
. Which of the following pnocedures wo{ﬂd
you consider an ‘acceptable method of simu-
lating this condition in a resxstance—capaclt.
ance network analog? o

Turn to Se:hon
Construct a network usmg umform :
values of resistance ‘and capaci--
tance, but apply propmtxonally
~ higher voltages m areas’ havmg a
high transmlssuwty ; 2

“Construct a network in which resxst- _
ance and capacitance arey/both in-
creased in proportion to local in- . . .
creases in transmlsswlty, oo 14

Construct a network in which resist-
‘ance is varied. mversely with the
transmlsmwty t0 be simulated,
while capacitance is maintained at
a umform value throughout the
network ) RS 1

177 |,
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-Your answer in }S/e_‘c,ti.o!h! 26,

——— T e

L wel. oz

" is not correct ‘The answer which you chose.
o actually expresses- the component of current

density in the z direction. w-l' is an area
taken normal to the z direction.. If I repre-
sents the current through this area, I/w-l

wrll give the’ component, of ‘current density -

in the 2z direction; and this should equal —o

o

23-

times the directional derivative of voltage in
the z direction, 9¢/92. However, the quest))n'
asked for the current. denmty_component in
the z direction; and in fact, the problem
stated that the current flow was twe dimen-
sional confined to the z, ¥ plane. This im-
"plies that the current component in the ver-.
tical direction is zero, and thus that a¢/az Is -
zero-as well, - . A
Return to Sectlon 26 and choose anothi _
answer. ’ o v S

" Your answer in Segtion 6 is not correct.
Ohm’s law was giver' in Section 1 as”
I5—($1~¢2)

Whel'e N al

a resistance, R, and I is the current through

— ¢ is the voltage difference across

/' :"-

. _o_f the resistance; and A is ;t:/ca'(s-vsectlonal

area. This expression for
_ be substituted -into t
given above-to

smtance/s}\ould :
form ‘of Ohm s law
tain the corrcjct answer

_.the resistance. In Section 6 the expression. .. ‘Return_to. Se tion- 6_and choose another »
' - L : _ <_\answer.- . L
Re vt ' -~ S
A / . T
il . / " : - @ ) ._ L
/ ,_/(:’ . . ‘.- s puey 0
D - ' .
“Your answer in Section:%;. ' _r.txon In your answer, the area is w- l whlch '
L . is normal to the z ditection. Again, the com-
TS B I _ o v . ponent of current density.in a given direc-
' } 'w-l 32! ’ S o+ tion is Droportlonal to the dlrectlonal deri- . .
\ \- * . vative of voltage in that directior Since we:

is not - correct.

that d1rect10n, in a unit time. Here we are

~ concerned with the current density compo--
" nent in the z. dlrectxon wid { miust accordlngly\

‘~use an area’ at right angles to the a d1rec-

_ The component of current |
. density in a given direction is-defined as the‘
- charge crossing a unit area taken normal to .

are dealing with the component. of current
density in the z direction, we require the
derivative of voltage in the z direction.. The . .
Kanswer which you, chose, however, use:: the -
derivative of voltage with respect to'y.- '
‘Return to’ Sectxon 26 and choose anotherr
_ answer.- . '
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26
Your answer in Section 28 is correct. The
»: term,. -

N ‘\-.‘ h1 - ho

Lp

is eomvalent to the 'negative of the head -

gradient, —@h/?z, so that this formulation
- of Darcy’s law is equivalent to those we have
studied previously. Now let us compare this
form of Darcy’s_law with Ohin’s law..
. Our expression for Darcy’s law was -
hz o
-A,.

Q I"
4p .
Our expression‘ for Ohm’s law in terms of
electrical conductivity was o

¢ 4’°- .
I=0- ..
L
® In terms of elecu'lcal res‘stlwty, we ob-
tained . ’
]_- b1
P L

In these forms, the analogous quantltles
are easily identified. Voltage takes the place .
of head, current takes the place of fluid dis-
charge and as noted in the plecedlng sec-

tien o, or 1/p, takes the pluce of hydraulic

conductivity. We note further that since cur-
" ‘rent-is defined .as the rate of movement of
"._-electrlc charge across a glven plane, whlle.
.~ fluid dlscharge is the rate of transport of
. fluid - volume across a glven plane, electric-
‘charge’ may, be consxdered analogous to ﬂuld.
-, volume. : _
A Pa.rt II ‘we no’red that Darcys law
“could be wntten in shghtly more general'
: 'form as - : s

' “ Qz
R L ge=—= K | )
. o I " > Qv; ok '
- ‘ , ' gt =
. i

‘ law

/
e
‘and /,/
~

where q:. is the component of the spec1ﬁc- I
dlscharge vector in the z dlrectlon, or the
discharge through a unit area at right angles
“to ihe x axis; g, is the component|of the spe- -
cific-discharge vector in the y direction, and .
g- is the component in the z dlrectlon The
three components Are added _vectorially to -
cbtain the resultant spec1ﬁc dlSC arge. 9h/
2z, oh/2w, and dh/9z are the directional
derivatives of head in the z, y, and z direc-
tions; and K is the hydraulic conductivity, -
which is here assumed to be the same in any
direction.- We may similarly wyrite a-more
general form of Ohm’s law, Feplacing. the

. term:. ¢:—&./L by derivatives of voltage with

. ‘respect to distance, and considering compo-
~ nents of the current density, or current per.

unit -cross-sectional area, in the three space
dlrectlons This gives - e

-,

2%

'. '(1-) 126~ - .
. L — = — —T T —— .
© : | L3 or Pe or
<I> ¢ -1 2¢
R— .—_0__._=—_____ . )
v Ay’ oy’ pe 0¥ T
<I> ¢ 1 2¢
— = o P————— T T e— ——,
| A/, 3z Pe az‘

~ -Here (I/A). is the current through a unit
" area oriented at right angles to the z akis,

" (I/A), is current through a unit area per-

pendlcular to the 3 axis, and (I/A); is the"

~ current through a unit area perpe'xdlcular to

the z axis. These terms 'form the cc po-
nents of . the: current density “vector. d¢/

a¢/ay, and p¢/z are the voltage gra(fientq,\ e
“’in units of volts/distance, in. the three direc-’

. tions. These three expressions simply repre-
" .sent a generalization to three dimensions::

. of the equatxon glven m Sec\,tlon 1 as Ohm s

o
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26
QUESTION ' |

' The pictufre shows a rectangle in a con- S
-ductive she\%,gﬁch there is a two-dimen-
sional flow of ricity. The flow is in the , - T
" plane of the sheet, that is, the z, ¥ plane; . N L.
the thickness of the sheet is b, and the di- . = -

. mensions oT the rectangle are I and w. Which N
of the following expressions gives the mag- o
nitude of the component of current densrty '
in'the 2 direction?

-t . - Turn to Sectian: Co. . .
S 1

I % |
LT T - 28 ) -
vowl Py '
I %% - .
. L ——=—c— - 23 i
o wl o 2z .
(I represents the current through the area .
utilized in the equatlon w-b or w- Ly - T o - LT

[/ . ) 1 . P ‘ . . 27 ® .
! é\ ' : \ ' : ' 5 .
[ » . . . . ) * .
 Your 'an\swer' in Section 4 is not.correct. - . S : o
The essential idea here is that the rate of '

accumulation of chaige on the capacitor
must equal the net inflow minus outflow of -

. \
charge through the four resistors. The in- - | o : :l o X
flow of charge through resistor 1 is the cur- - ‘\ - i J/\N\'I/’ _
rent through that resistor, and is glven by . — M/v\/\‘ 9"" Ff sl g
Onm s law as _ ST ; P e VVV.V,\M.__. 4
; . 1. o | o R ‘l: .
T : — C
.The outflow through re51stor 2 is sr'mlar. _ L _ N .
glvenby T L S : —
_"‘Ié‘((ﬁo ¢2) | ' o
//The inflow through resmtor 3 1s / _ -
. \{S—E(({)s. ¢o), - o ‘. . ' IR .—; R
d ‘...‘ : . . - -' . \ N . ’ . N ' ..’ ’ ’
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27 * —Con._

Whlle the outﬁow through resistor 4is

-1

I4=."—'(¢0_¢‘4.)-

. R ., .
The net inflow minus outflow of charge to
the capacitor is

L+1,~L—1,

and this must egual the rate of -accumula-
tlon of charge on the capac1tor, de/dt, that
is' - 4

-

I4=_“.

. I‘1+Ia_.12_
: dt

According to ‘the- capac1tor equatlon, de/
dt is given by '
de . d¢n .

| dat.dt
The answer to the question of Section 4
can’ be obtained by substituting -the ‘appro-
- priate expressions for I, Iz, I; I, and de/dt
into the re1at10n

/

de
I4“—"y
-dt -
and rearranging the result
. Return to Sectxon 4 and choose another
ianswer. ‘\ . .o

. Il+Ia In

[

Xour answer. in Section 6 is correct.

Electr1ca1 conductivity, or 1/resis tivity, is
the electrical equivalent of hydrauiic con-
-ductivity. In terms of electrical conductivity,

‘Ohm’s law for the problem of Secticn 6 be- )

' comes

o4 :
=_(¢‘1_¢2)

~ where.o is electrical condug

ivity.

b ' .
The analogy betw\ en Darcy’s law and
‘Ohm’s law is easily' vigualized if we congider
the flow of water through a sand>filled pipe, "
of length L, and cross-sectional area A,, as
shown in the dlagram The head at the in-
ﬁow end of the, pipe is ., while that at the
“outflow end is hu The hydrauhc conduct1v1ty-

* of the sand is K

QUESTION

Which of the following expressions-is ob-
tained by applying Darcy’s law t5 this ﬂox
Q- represents the dlscharge through t
plpe ) o L
\ . Tern k‘y S_udlolll_- )

A azh . - ’
Q= —K—4, 12
i o
ke
T - Q:K. . ‘A’ - 26
'K Q"'L,' .
= 7
'A,'h:""hz ’
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