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AN EVALUATION OF SOME MODELS FOR TEST BIAS

by

Nancv S. Petersen and Melvin R. Novick+
The University of Iowa

Abstract

In this paper, we shall survey models proposed by Cleary,
Thorndike, Cole, Einhorn and Bass, and Darlington for analyzing bias
in the use of itests in a selection strategy. $Six additional models
for test bias will also te introduccd. Our purpose will be to des-
cribe, compare, contrast, and evaluate these models while, at the
same time, extracting such useful ideas as may be found in these
approacnes. Several of these models will be judged to contain
logical contradictions because of their use of the wrong conditional
probability within the context of the probabilistic structure. In
the final section of the paper, these models are shown to have
highly objectionable practical implications. Two of the models studied
are based on the correct conditional probability, und these are

noted to be special cases of a2 more general and more useful model.

+This paper derives from material contained in a thesis submitted
by Nancy S. Petersen in partial fulfillment of the requirements for
the degree of Doctor of Philosophy at the University of Iowa, July,
1974. We are grateful to William Coffman, Leonard Feldt, George
Woodworth, Douglas Whitney, and Ming-mei Wang who served on Dr.
Petersen's dissertation committee for their contributions to this

paper.
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Introduction

Tests are being used extensively by businesses and educational
institutions for the screening of applicants for jobs or training
programs. A major problem facing these institutions is how to avoid
bias (unfair cultural or racial discrimination) in tests used in
this process. There are many different definitions of what consti-
tutes test bias, each involving a particular set of value judgments
and with different implications for how selection should be

accomplished.

Description of the Selection Process

The selection process can be characterized in the same manne>~ for
all test bias models. First, there is an individual about whom a
decision is required. The decision to be made is based on inforz - »n
about the individual. The information is processed by some strateg,
which leads to a final decision. The final decision ends the decision
making process by assigning the individual to either a selected or an
outselected group. The outcome is the individual's performance after
the assignment or, in other words, the consequences resulting from the
decision. (Crombach and Gleser, 1965, p. 18.)

A strategy is a rule for making decisions. Each test bias model
represents a strategy, the inteny of which is to eliminate bias
ir ‘ts used in selection procedures. The term test is used here to
refer to all information-gathering procedures including interviews and
physical measurements. The over-riding problem is the lack of agree-

ment as to the meaning of the term "test bias".



Each test bias model or strategy can be characterized in the
same manner. It is assumed that the applicants to an ducational
institution, to a training program, or for employment can be separated
into subpopulations because of a priori belief that the regressions
within subpopulations are different, that is, the test (or predictor)
may be more valid for some subpopulations than for others (different
slopes), and/or for a fixed value of the predictor, the level of
criterion parformances may differ (different intercepts), or that
some differential selection criterion is appropriate for various sub-
populations. Alternatively, these subpopulations may be differentiabie
primarily because of public concern with what is going on in these
subpopulations and a public need, therefore, to verify that all
subpopulations are being handled "fairly". Further, it is assumed
that initially a criterion score (Y), as well as a predictor or test
score (X), is available for all members of each subpopulation implying
that in the past all applicants have been admitted or employed
regardless of their score on the test. A minimum level of satis-
factory criterion performance (y*) is determined. The number of
applicants that can be selected is determined. If there is no
constraint on the number of applicants that can be accepted, then

the selection situation is referred to as quota-free selection; if

only a fixed proportion of the applicants can be accepted, then the

selection situation is referred to as restricted selection. A cut

* -
score (x ) on the predictor or test needs then to be calculated :or
each subpopulation such that the definition of test fairness as

specified by a par..cular model is satisfied. In the case of multiple

|



predictors or tests (Xl’ X ce Xm), the cut score will be deter-

23
mined on the variable formed by the usual least squares linear
combination of the predictor wvariables. In the future, 'pp icants
with a test score above the predictor cut score for their subpopulation
will be selected, and applicants with a test score below t:ie predictor
cut score for their subpopulation will be rejected.

This selection strategy presupposes that an acceptable crit. -ion
variable is available. The inappropriateness ~f the criterion
variable will not be treated in this paper, although this may be t.ic
most important problem. Thus, the following discussion of test bias,
or, conversely, test fairness, will be based on the premise that the

available criterion scure is a perfectly relevant, reliable, and

unb?ised measure of performance for applicants in each subpopulation.

The Regression Model

Since the most frequently used procedure for predicting criterion
performance is linear regression, the question of test bias, or
differential predictive meaning in each subpopulation, is usually
operationalized by a comparison of the regression equations for each
subpopulation. The Regression Model for test bias has been well

stated by Cleary (1968):

A test is biased for members of a subgroup of the population
if, in the prediction of a criterion for which the test was
designed, consistent non-zero errors of prediction are made
for members of the subgroup. 1In other words, the test is
biased if the criterion score predicted from the common
regression line is consistently too high or too low for
members of the subgroup. With this definition of bias,
there may be a connotation of '"unfair," particularly if

the use of the test produces a prediction that is too low.
[p. 115.]



This definition of test bias assumes fairness is achieved if :he
applicants with the highest predicted criterion scores, using separate
regression equations within subpopulations, are selected. From this
point of view, selection is fair if and only if it is based on the
best prediction available. Thus, optimal prediction and fairness are
taken to be strictly equivalent.

*
At the minimum level of satisfactory criterion performance (y ),
*
, ey

where ai, Bi, and x: represent the intercept, slope, and predictor cut
score for subpopulation ni(i =1, ..., 8), respectively. If the
regression lines are identical in each subpopulation, then the use of
the common regression equation to select applicants with the highest
predicted criterion scores is considered fair.

Using the Regression Model, and assuming that the parameters

(al, Bl), (az, 82), eeey (o, Bg) are known precisely, a decision

24
maker can be assured that the average predicted criterion score,
given the available predictor variables, will be a maximum for the
applicants selected and, incidentally, a minimum for the applicants
rejected. Using the Regression Model, the applicants can be assuraed
that the selection procedure is "fair" to individual members of each
subpopulation in that criterion performance is not systematically
under or overpredicted for members of any subpopulation. Or to put
it another way, the Regression Model says that if two applicants are
being considered for one post, then that applicant having the highest

predicted performance would be selected with prediction being made

on the basils of subpopulation regression.

ft



To fllustrate, suppose the appiicants ¢ an institurion
can be divided ini. two subpcpuliaticns referred to 25 Subpopu-
lation *l and subpopulaticon T2. now, refer to rigure 1., In
Figure 1fa), the rezression lines for the two subpopulations have
the same siopw but different intercepts. In Fizure 1(b), the
regression lines for the two subpopulations have differsnt slepes
and different intercepts with the point of intersection cutside the
range of possible test scores. In each of these situaticns, suppose
the common regression line (ﬁc) for the total applicant population
were used for predicting criterion scores for all applicants rather
than the separate within subpopulation regression lines, then for any
given test score, criterion scores for subpopulaticn "2 would be
consistently underpredicted, and, therefore, this subpopulation would
be discriminated against by the test. In Figure 1(c), the
regression lines for the two subpopulations again have different
slopes and different intercepts, but the point of intersection is
inside the range of possible test scores. If the common regression
line were used for predicting criterion scores, then some individuals
from both subpopulations would be discriminated against. At point
X, on the test, the critz2rion score for a member i subpopulation ™
would be underpredi ted, and, at point x, on the test, the criterion
score for a member of subpopulation Ty would be underpredicted. In
Figure 1(d), the regressic®: linus for the two subpopulations
colnecide. Thus, the common regression line is identical to each
within subpopulation regression line. Hence, for any given test score,

an applicant's predicted criterion score is the same regardless of

group mer’ rship. The test is "fair" to all applicants.

S

ERIC

Aruitoxt provided by Eic:



Figure 1
Illustration of Test Bias as Defined
by the Regression Model

Criterion (Y)

- 2
</‘ "C
~ X "1

Test (X)

Figure 1(a). Supopulations with parallel regression
lines but different intercepts.

Criterion (Y)

%/’A

Figure 1(b). Subpopulations with different regression
lines. Point of intersection outside range
of possible test scores.

Test (X)



Figure 1 (cont'd.)

Criterion (Y¥)

! m
et —— - ( -
~ C
et
e / L/ Trl
B [
[

: Test (X)
*1 *2
Figure l(c). Subpopulations with different regression

lines. Point of intersection inside
range of possible test scores.

Criterion (Y)

Test (X)

Figure 1(d). Subpopulations with common regression line.
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The Regression Model is the most widely used model of test bias
within the predictive context. It has been used in a number of
empirical studies (e.g., Cleary, 1968; Bowers, 1970; Temp, 1971) and
it has been basic in the conceptualizations and discussions of test
bias that may be found in Anastasi (1968), Guion (1966), Bartlett
and 0'Leary (1969), Einhorn and Bass (1971), Linn and Werts (1971),

Linn (1973), and Schmidt and Hunter (1974).

The Constant Ratio Model

Thorndike (1971) suggests that in a study of test bias we should
consider the implications for the proportions of applicants admitted
from each subpopulation as well as the implications of the within
subpopulation regression lines as was suggested by the Regression
Model. He demonstrated that, if a test has equal regression lines
for each subpopulation, but the discrepancy between subpopulations on
the test differs from the discrepancy between subpopulations on the .
criterion, then using the selection strategy implied by the Regression
Model,

which is "fair" to individual members of the group scoring

lower on the test, is "unfair" to the lower [scoring] group

as a whole in the sense that the proportion qualified on

the test will be smaller, relative to the higher-scoring

group, than the proportion that will reach. any specified

level of criterion performance. [p. 63.]

Thorndike proposes' that in a fair selection nrccedure,

the qualifying scores on a test should be set at levels that

will qualify applicants in the two groups in proportion to

the fraction of the two groups reaching a specified level

of criterion performance. [p. 63.]

This definition assumes that the selection procedure is fair if

applicants are selected so that the ratio of the proportion selected

11



to the proportion successful is the same in all subpopulations; hence,
the reference to it as the Constant Ratio Model. Thercfore, given a

3 I . *
minimum level of satisfautory criterion performance (y ), a selection

procedure is considered fair when

*
- Prob (X xllwl) i ] Prob (X xglng) -
* * a e H
Prob(Y > y [wl) Prob(Y > y Iﬂg)

[v
v

Y
v

where R is a fixed constant for all subpopulations "i and x: repre-
sents the pred’ctor cut score for subpopulation wi(i =1, ..., g).
It should be aotad that Tiiorndike did not give a formal statement of
a model, only a general prescription. The explication of the model,
as given above, is due to Cole (1973).

To illustrate, refer to Figure 2.+ (Adaptred f{rom Thorndike,
1971, p. 66.) Assume the applicants to the institution were divided
_into two subpopulations, " and Moo Figure 2(a) depicts the
situation which Thorndike refers to as being "fair" to individual
members of the minority population 4 but "unfair" to the minority

population as a whole. The regression is identical in each subpopu-

lation, thus, the test would be considered fair according to the

1~To simplify the diagrams in Figure 2 and Figure 4, it is

assumed that (1) the variables X and Y have a bivariate normal distri-
bution in each subpopulation, (2) the correlation between X and Y

(r ) is positive, and (3) the standard deviaticn of the test (sx),
the standard deviation of the criterion (s ), and rxy are constant

for each suhpopulation. Furthermore, the predictor cut score (xz)

for the majority population is chosen to be on the regression line
(i.¢., for subpopulation "2’ given X = x;, then Y = y*) The predictor

cut score (x ) for the minority population is then adjusted

accordingly.
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Figure 2
Illustration of Test Bias as Defined

by the Conscant Ratio Model

Criterion (Y)

Test (X)

Figure 2(a). Subpopulations with common regression
line. Mean difference on test is not
equal to mean difference on criterion.
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Figure 2 (cont'd.)

Criterion (Y)

Test (X)

Figure 2(b). Subpopulations with parallel regression
lines. Mean difference on tast equals
mean difference on criterion.

Criterion (Y)‘

2

Test (X)

Figure 2(c). Subpopulations with parallel regression
lines. Identical criterion score
distributions.

14
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Regression Model if all individuals, regardless of group membership,
*
who have test scores greater than or equal to X, are selected. Note

that the mean of X in subpopulation @, is less than in subpopulation

1

"2 and that this difference is greater than the coiresponding

difference on the criterion measure. If only those applicants with
*

Predicted criterion scores equal to or greaster than y were selected,

then approximately 507% of subpopulation w, would be accepted and

2
approximately 50% would be successful, but essentially no members of
subpopulation ™ would be accepted, yet approximately 10% of the
members of subpopulation 7, would have been successful. Thus, :f

1
* k3
x2 is used as the predictor cut score for each subpopulation, the
test discriminates against subpcpulation ™ according to the Constant
Ratio Model. in this situ.:cion, to make the selection procedure fair
according to the Constant Ratio Model, the members of subpopulation
*
"2 with test scores greater than or equal to X, would be accepted,

and members of subpopulation T with test scores greater than or

*
equal to x, would be accepted.

1
In Figure 2(b), the regression lines are parallel and the
difference between means on the tes* 1s the same as the difference
between means on the criterion. The ratio of the proportion qualified
on the test to the proportion successful is the same for each sub-
population. This strategy is fair according to the Constant Ratio
Model. If the validity (correlation between test and criteriom) is
perfect and the regression lines are the same for ecch subpopulation,
then the strategy is fair according to both the Cunstant Ratio Model

and the Regression Model. In Figure 2(c), the regression lines are

parallel and the distribution of criterion scores is the same for

1

i
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* .
both subpopulations. If y represents the minimum level of satis-
factory criterion performance, then the same selection strategy
would be considered fair by both the Regression Model and the Constant
Ratio Model. The institution would accept members of subpopulation

*
T who had test scores greater than or equal to X5 and it would
accept members of subpopulation Ty who had test scores greater than

*
or equal to x In many applications, the mean criterion score

2
of the minority population "1 will be less than in the majority

population ﬂz, in which case, an acceptance procedure based on the
Constant Ratio Model will almost always accept applicants from the

minority population ™ who do less well on the criterion, on the

average, than applicants from the majority population ﬂ2.

The Conditional Probability Model

Cole (1973) proposed a fully explicated crite .- for test
fairness based on the conditional probability of being selected given
satisfactory criterion performance; hence, the reference to it as
the Conditional Probability Model. Cole argues that all applicants,
regardless of group membership, who, if selected, are capable of
being successful should be guaranteed an equal, or fair, opportunity
to be selected.

The basic principle of the conditional probability selection

model is that for both minority and majority groups whose,

members can achieve a satisfactory criterion score [Y>y]
there should be the same probability of selection regardless

of group membership. [p. 240.]

Therefore, given a minimum level of satisfactory criterion performance

*
(y ), a selection procedure is considered fair when

16
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K = Prob(X > xI Y > y*, T.) = ... " Prob(X > x* Y > y*, T ),
1 -8 = g
(3)
where K is a fixed constanc for all subpopulations L and xz repre-
sents the predictor cut score for subpopulation wi(i =1, veey 8)e
Figure 3 is an illustration of a hypothetical bivariate
distribution of test and criterion scores. Individuals falling in
region II have test scores less than the predictor cut score (they
would be rejected), yet, if selected, they would have satisfactory

criterion performance. Such individuals are referred to as false

negatives. False positives are those individuals with test scores

greater than the predictor cut score (they would be accepted) but
with unsatisfactory criterion performance. Such individuals fall in
region IV. The assignment of an individual to either region II or IV

is an incorrect decision (error). Correct decisions are made for

those individuals assigned to regions I and III. (Linn, 1973,
pp. 152-153.)

The emphasis in the Conditional Probability Model is on the
number of applicants in region I in relation to the number of
applicants in regions I and II combined, whereas, the emphasis in the
Constant Ratio Model is on the number of applicants in region- I and
IV combined in relation to the number of applicants in regions I and

II combined.+

+Linn (1973, p. 153) stated that a test was fair according to

Thorndike's definition of test fairness (the Constant Ratio Model) if
the number of individuals in region II equals the number of individuals
in region IV. (See Figure 3.) Strictly speaking, the Constant Ratio
Model does not require equality of regions II and IV, however, the
model will be satisfied and equality of regions II and IV will occur

1%
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Figure 3

A Hypothetical Bivariate Distribution

Criterien (Y)

Success Region Region
II I
*
y
Region Region
Failure (\\\\\\\iii—’/ IV

* Test (X)
Reject X Accept

18
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Figure 4 contrasts the Regression Model, the Constant Ratio
Model, and the Conditional Probability Modef for the situation in
which the regression is identical for each subpopulation, but the
mean test score and the mean criterion performance is less for

members of subpopulation 7, than for members of subpopulation

1

T (S8ee comment in reference to Figure 2.) In Figure 4(a),

2°
all applicants, regardless of group membership, who have test

scores greater than x*, are accepted. Using this selection strategy,
the selection procedure would be considered fair according to

the Regression Model. In Figure 4(b), appiicants from subpopu-
lation "l are accepted if they have test scores greater than xj, and
applicants from subpopulation "2 are accepted if they have test

scores greater than x The ratio (I + IV)/(I + II) is constant

2
for each subpopulation. (P ‘er to Figure 3.) Thus, using this
selection strategy, the test is ccrnsidered fair according to the

Constant Ratio Model. In Figure 4(c), the predictor cut score for

*
subpopulation ™ is Xy and for subpopulation Tys the predictor cut

*
score is x2. Here the ratio I/(I + II) is constant for each subpopu-
lation (refer to Figure 3), and using this selection strategy, the
test is considered fair according to the Conditional Probability Model.

Note that as with the, Constant Ratio Model, a selection strategy

based on the Conditional Probability Model will almost always accept

only if the selection-success ratio R [Equation (2)] equals 1

* *
implying Prob(X > xilni) = Prob(Y > y lni) for each subpopulation ﬂi.
For purposes of heuristic comparison among models, we shall assume

that this assumption holds.

19
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Figure 4
4 Constrast of the Regression, the Constant Ratio, and

the Concditicnal Frchbability Models

Criterion (Y)

7N

Test %)

Figure 4(a). Subpopulations with common re_ression
line. Selection strategy fair according
to Regression Model.

AV
QO




18

Figure 4 (cont'd.)

Criterion (Y)

N
N

r Test (X)
i )

Figure 4(b). Subpopulations with common regression line.
Selection strategy fair according to
Constant Ratio Model.

Criterion (Y)

™
. 7
y - I/ I
L
N
I Test (X)
b )

Figure 4(c).’ Subpopulations with common regression line.
Selection strategy fair according to
Conditional Probability Model.

21
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applicants from subpopulation “l who do less well on the criterion,
on the average, than applicants from subpopulation "2' Also note
that if an applicant from subpopulation “l is predicted to do just
as well on the criterion as an applicant from subpopulation Tos then
a selection strategy which is fair according to the Regression Model
will consider the two applicants equally desirable candidates for
admission. However, a selectign strategy which is fair according

to the Constant Ratio Model will consider the applicant from subpopu-
.lation m preferable to the applicant from subpopulation T and a
selection strategy which is fair according to the Conditional
Probability Model will give even greater preference to the applicant
from subpopulation T Note also that this is true even if the

minority population happens to be subpopulation Tys as will be

discussed later.

The Equal Probability Model

In the usual selection situation the "given" information for
each applicant is not his future state of being (success or failure)
in relation to the criterion variable but rather his present observed
standing on the predictor variable. Thus, from one point of view, it
would seem reasonable to propose a definition of test bias based on
the conditional probability of success given selection. One could
argue that all applicants, regardless of group membership, who are

selected should be guaranteed an equal, or fair, chance of being
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successful. Such a model for test bias was described by Linn (1973,

P. 153) and shall now be referred to as the Equal Probability Model.+
According to the Equal Probability Model, people, as a group,

who are selected [that is, who achieve a satisfactory predictor

score (X > x*)] should have the same probability of being successful

whether minority or majority population members. Therefore, given

a minimum level of satisfactorx criterion performance (y*), a

selection procedure is considered fair when

* * * *
Q = Prob(Y >y |X > x ) = ... =Prob(Y >y |X > X ng) ,

"M
(4)
where Q is a fixed constant for all subpopulations ™ and xz repre-
sents the predictor cut score for subpopulation ni(i =1, ..., g).
In reference to Figure 3, the emphasis in the Equal Probability
Model is on the number of applicants in region I in relation to the
number of npplicants in regions I and IV combined. In reference to
Figure 4, the selection strategy depicted in Figure 4(a) is fair

according to the Equal Probability Model, and members of subpopulation

"l and members of subpopulation HZ’ who are predicted to do equally

+Linn (1973, p. 153) described the Equal Probability Model but
referenced it as the traditional psychometric approach suggested by
Einhorn and Bass (1971). The definition of test bias suggested by
Einhorn and Bass, to be called the Equal Risk Model, will be discussed
later in the paper. At this point, it is enough to note that in
the Equal Probability Model the conditioning is 02 > x: while in
the Equal Risk Model the conditioning is on X = X, - It should also
be emphasized that the Equal Probability Model was not proposed by
Linn, it was only discussed by him.

R3
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well on the criterion, are considered equally desirable candidates

for admission. Clearly, a selection strategy dictated by the Equal
Probability Model will not typically coincide with one derived from
either of the three preceding models. Thus, the practitioner is faced

with the task of choosing from among four equally "attractive" models.

The Converse Constant Ratio Model

The last three models described, the Constant Ratio Model, the
Conditional Probability Model, and the Equal Probability Model,
presented definitions of test bias stated in terms of success and/or
selection. Conceptually, it seems just as reasonable to explicate
the fundamental concept of each approach by exhibiting concern for
the rejected and/or unsuccessful applicant. Thus, the following three
models for test bias will be restatements of the previous three models
in terms of failure and/or rejection.

Recall that the Constant Ratio Model compares selection rate wifh
success rate in each subpopulation. The emphasis is on the proportion
of applicants who are selected in relation to the proportion of appli-
cants who are successful. However, one could conceivably consider it
just as important or necessary to consider the implications for the
proportion of applicants rejected in each subpopulation. One could
propose that the cut scores on a test should be set at levels that will
reject applicants in each subpopulation in proportion to the fraction
of each subpopulation failing to reach a specified minimum level of
criterion performance. Such a selection strategy will be referred to

as the Converse Constant Ratio Model.

R4



22

This definition assumes that a selection procedure is fair if
applicants are rejected so that the proportion rejected to the
proportion unsuccessful is the same in all subpopulations. Therefore,
given a minimum level of satisfactory criterion performance (y*), a

selection procedure is considered fair when

v )

Prob(Y < y ,ng)

_ Prob(X < x*ln ) Prob(X < x
- LA L

00 %

Prob(Y < y*lnl)

where R is a fixed constant for all subpopulations 7. and x*

1 4 repre-

sents the predictor cut score for subpopulation ni(i =1, voay g)o

The above relationship can be rewritten as

1 - Prob(X > xilni)

=

1 - Prob(Y z_y*(ni)

[Prob (Y 3_y*|1ri)]_l - Prob(X > x:lni)[Prob(Y_i y*lwi)]_l

[Prob(Y > y*,ni)]_l -1

[Prob (Y > y*,ni)]_l - R

[Prob (Y 3.y*|ni)]_l -1

where R = Prob (X > x:,ni) [Prob (Y Z.Y*,“i)]_l is the wvalue to be
equated among subpopulations for test fairness as specified by the
Constant Ratio Model. Now, suppose we have specified a minimum level
of satisfactory criterion performance (y*) and a selection-success
ratio (R), then a predictor cut score x: can be determined for each
subpopulation wi(i =1, v.ey 8). Given the values y*, R, and x:,

the rejection-failure ratio (R) will be constant for each subpopulation

29
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Ty if the following condition_is satisfied:

[Prob(Y > y*lni)]'l -R [Prob(Y > y*l'rrj)]_l - R

[Prob(Y > y*]ni)]_l -1 [Prob(Y > y*lnj)]_l -1

fori, j =1, ..., g.
The above condition will be satisfied if either (1) R = 1
implying Prob(X > X:,ni) = Prob (Y Z_y*lni) fori =1, ..., g, or
(2) Prob(Y > y*lni) = Prob(Yz_y*l-nj) fori, j =1, ..., g, but not
generally., If either case (1) or case (2) obtains, the same set of
predictor cut scores x: {(i1=1, ..., g) is considered fair according
to both the Constant Ratio Model and its converse, but, otherwise,
the strategies will differ. In Thorndike's illustration (1971, p. 66),
he set R = 1, though he did not indicate that this was required by
his model. Only by reference to various real applications might
we be convinced that R = 1 will be a commonly acceptable value.
However, with restricted selection, it s not generally possible to
simultaneously satisfy this condition and the selection constraint.
Consider carefully the nature of this argument. If fairness
to subpopulation 7, demands that the selection-success ratio (R)

i
be the same for any other subpopulation "j’ then, with identical

logic, fairnmess to subpopulation T demands that the rejection-
failure ratio (i) be the same for any other subpopulation "j’ and

the two specifications are not consistent.
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The Converse Conditional Probsbility Medel

The Conditional Probability Model is bas:d on the conditional
probability of being selected given satisfactory criterion perfor-
mance. The emphasis is on the proportion of potentially successful
applicants who are selected. However, one could argue instead that
all applicants who are potential failures should have the same
chance of being rejected, regardless of 8roup membership. W- shall
label this selection strategy the Converse Conditional Probability
Model.

The Converse Conditional Probability Model is based on the
conditional probability of being rejected given unsatisfactory
criterion performance. Therefore, given a minimum level of satis-
factory criterion performance (y*), a selection procedure is

considered fair when

. * * %* %*
K = Prob(X < xllY <y, nl) = ... = Prob(X < xle <y, ng),

(6)
—_ *
where K is a fixed constant for all subpopulations T and X, repre-
sents the predictor cut score for subpopula‘! ion ni(i =1, cecy 8.

The above relationship can be rewritten us

* * * -
Prob(X < x;, ¥ <y [n,)[Prob(¥ <y [m)] 1

i)

=y
it

* * * * * *
{[Prob(xzxi, Y>y |ﬂi) + Prob(X<xi, Y<y Iﬂi)]-Prob(xzxi, Y>y |ﬂi)}

* -
[1 - Prob(¥ > y"[n))] L
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* * * * * -
{[Prob(Xixi, Y>y lni) + Prob(X<xi, Y<y ]ni)][Prob(Xiy ]ni)] 1

* * -1. * - -
- Prob(X>x_, Xiy*lﬂi)[Prob(Yzy Iwi)] 1;{[Prob(x3y lni)] Lyt

{[Prob (x>x}, Yzy*lni) + Prob (x<x}, Y<y*[ni)][Prob(xzy*lni)]'l- K}

1

{[Prob (Y y*lwi)]_l -1t

v

* * * -1
where K = Prob(X Z_Xi, Y >y lni)[Prob(Y_i y lni)] is the value to
be equated among subpopulations for test fairness as specified by
the Condi-ional Probatility Model. Now, suppose the decision maker
has specified a minimum level of satisfactory criterion performance

*
(y ) and a constant conditional probability of selection given success
*
(K), then a predictor cut score xi can be determined for each subpopu~-
* *

lation ni(i =1, ..., g). Given the values y , K, and X/ the
conditional probability of rejection given failure (K) will be
constant for each subpopulation ﬂi if the following condition is

satisfied:
* * *
{[Prob(xX > x,, Y > y*," ) + Prob(X < x., 7 <y |m)]
—- 71 - i i i
- * - -
[Prob(Y > y*lwi)] oy {{Prob(Y >y lﬂi)] Loyt

Y > y*lﬂj) + Prob(X < x*, Y < y*]nj)]

*
= {[Prob(x > x :

j’

[Prob(Y > y*lnj)]_l - KM [Prob(Y > y*lﬂj)]-l -1t

for i, j =1, ..., g.
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This condition will be satisfied if Prob(Yzy*lni)=Prob(¥3y*|nj)
and Prob(X < x:, Y < y*lni) = Prob(X < x;, Y < y*]nj) for i,
j=1, ..., g, but not generally. In that case, the same selection
strategy, the same set of predictor cut scores x: 1=1, «co, 8)y
is condsidered fair according to both the Conditional Probability
Model and the Converse Conditional Probability Model, but, otherwise,

the :izlection strategies will diffe..

The Converse Equal Probability Model

The Equal Probability Model is based on the conditional proba-
bility of success given selection. The emphasis is on the proportion
of the selected applicants who are successful. However, one could
propose that all applicants who are rejected should have the same
probability of being a failure, regardless of group membership. Such
a selection strategy will be labeled as the Converse Equal Probability
Model.

The Converse Equal Probability Model is based on the conditional
probability of failure given rejection. Therefore, given a minimum
level of satisfactory criterion performance (y*), a selection

procedure is considered fair when
—_ * * _ * *
Q = Prob(Y <y IX < x5 nl) = ,.. = Prob(Y < y IX < xg, ng) ,
(7

- *
where Q is a fixed constant for all subpoptlations LA and X, repre-

sents the predictor cut score for subpopulation ni(i =1, 140y 8)
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The above relationship can be rewritten as

ol

* * * -1
= Prob(X < X, Y<y Iwi)[Prob(X < xilwi)]

* * * * * *
{[Prob(ngi, Y>y |n1)+Prob(X<xi, Y<y Ini)]—Prob(X3xi, Y>y ]ni)}

* -
[1 - Prob(X - x,|n)] 1

* * * * * -
{[Prob(X>x,, Yoy |n;) + Prob(X<x;, Y<y lni)][Prob(xgxilni)] !

* * - - -
-Prob (X>x,. Y>y I“i)[PrOb(XKXII“i)] l}{[Prob(sz:]ni)] . 1} 1

* * * * -
{[Prob(X>x , Y2y |m) + Prob (X<x;, Y<y lni>][Prob(X3x:|ni>] Lo

([Prob(x 2 x;[v )17t - 1371,

where Q = Prob(X > x:, Y > y*lni)[Prob(X_g x:'“i)]_l is the value to

be equated among subpopulations for test fairness as specified by

the Equal Probability Model. Again, suppose we have specified a
minimum level of satisfactory criterion performance (y*) and a constant
conditional probability of success given selection (Q), then a
predictor cut score x: can be determined for sach subpopulation

LA (i=1, ..., g). Given the values y*, Q, and x:, the conditional
probability of failure given rejection (6) will be constant for each

subpopulation T if the following condition is satisfied:
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{[Prob(X > x*

* *
i Y>>y Ini) + Prob(X < Xi»

Y < y*lni)]

[Prob (X Z_leni)]—l ~ Q}{[Prob(X Z_XIlﬂi)]—l - 1}-1

= {[Prob(X > x,

* *
5’ Y>>y I"j) + Prob(X < x

*
j’ Y <Yy I"j)]

[Prob(X‘Z_x;|nj)]‘l - Q}{[Prob(X > x;IWj)]_l - 1}—1

for i, j = 1, .e., B.

This condition will be satisfied if Prob(xzxilﬂi) = Prob(xzxglﬂj)
and Prob(X < x:, Y < y*lﬂi) = Prob(X < x;, Y < y*lﬂj) for i,
j=1, «.., B, but not gemerally. In that case, the same selection
strategy, the same set of predictor cut scores x: A =1, «ecs 8)>
is considered fair according to both the Equal Probability Model
and the Converse Equal Probability Model, but, othe.wise, the selection
strategies will differ.

Figure 5 summarizes or compares the Constant Ratio Model, the
Conditional Probability ‘Model, the Equal Probability Model, dnd the

three "converse'" models for test bias.

The Equal Risk Model

Ednhorn and Bass (1971) proposed a model for test bias, which
takes into account, for each subpopulation, the probability of
success associated with an applicant's test score rather than just
the applicant's predicted criterion 8core as suggested by the
Regression Model. Their model is based on a definition of test bias

given by Guion (1966). Guion stated that
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Figure 5

A Comparison of Six Models for Test Bias

Criterion (Y)

//,///;;/ I
*
Yy

by

*
X

Test (X)

*
The cut score on the test (x ) is determined so that the
ratio (as specified by a particular model) is the game

for all subpopulations.

Model Ratio
Constant Ratio (I + Iv)/(I + II)
Conditional Probability I/(I + 1II)
Equal Probability I/(I + IV)
Converse Constant Ratio (II1 + II)/(III + IV)
Converse Conditional Probability III/(III + IV)
Converse Equal Probability III/(II1I + II)
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Figure 6
I1lustration of Test Bias as Defined

by the Equal Risk Model

Criterion (Y)

- Test (X)

Figure 6(a). Conditional distribution of criterion
on test showing risk level.
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Figure £ "-.nt'd.)
Criterion (¥)
2 c
{ 1
|
*
y =
— Test (X)
*
1%

Figure 6(b,. Subpopulaticns with common regression'
line but different standard errors of
estimate.

Criterion (Y)

Test (X)

Figure 6(c). Subpopulations with the same standard
error of estimate and the same slope
but different intercepts.
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variable and a criterion variable for one subpopulation. The condi-
tional distribution of Y (criterion) given X (predictor) is assumed
to be normal. The shaded portion of the distribution represents the
risk level for a particular value x on the test. In Figure 6(b),
the regression lines for the two subpopulations coincide, however,
the standard error of estimate is smaller for subpopulation "1 than
for ﬂz. Provided, as in the figure, y* < y. (the sample mean), then
for any test score x, the level of risk is less for members of
subpopulation ﬂl than for members :f subpopulation nz. Thus, if

all applicants with predicted criterion scores greater than or equal
to y* (x > xi? were selected, the test would discriminate against
subpopulation nl according to the Equal Risk Model. In this situation,
to make the selection procedure fair (according to the Equal Risk
Model) members of subpopulation vl with test scores greater than or
equal to x; would be accepted, and members of subpopulation "2 with
test scores greater than or equal to x; would be accepted. However,
if the standard error of estimate had been the same in each subpopu-
lation or if y* = y., then the use of a single cut score would be
considered fair to members of both subpopulations. In Figure 6(c),
the two subpopulations have the same standard error of estimate and
the same slope but different intercepts. For any test score x, the
level of risk is less for a person from subpopulation ﬂz than for a
person from subpopulation "1' If a single cut score is used, then the
test discriminates against members of subpopulation "2 according to

the Equal Risk Model. The selection procedure would be considered fair

(according to the Equal Risk Model) if members of subpopulation "1
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*x %
(ﬂz) with test scores greater than or equal to x (x2) are accepted.

1
Note that if each subpopulation has the same standard error of cstimate
and the same slope, then the selection strategies proposed by the
Regression Model and the Equal Risk Model are the same.

The converse of the Equal Risk Model would require, given a
minimum level of satisfactory criterion performance (y*) that the

predictor cut scores x, (1 = 1, ..., g) be determined so that

i

Z=Prob(Y <y |X=x, 1.) = = Prob(Y <y |X = x5 1)
= Pro y =%, M) = ... = Pro <y |X= Xgr o) s
9)

where Z is a fixed constant degree of risk for all subpopulations M.

This relationship can be rewritten as

z

1 Prob (Y * X = * )
- Prob(Y > y = X, My

=1-12Z,

where Z = Prob(Y 3.y*[X = x:, ni) is the value to be equated among
subpopulations for test fairness as specified by the Equal Risk Model.
Thus, the criterion of the Converse Equal Risk Model is a linear
function of that of the Equal Risk Model. Hence, unlike the Constant
Ratio Model, the Conditional Probability Model, and the Equal
Probability Model, the Equal Risk Model and its converse will always

specify the same selection strategy.

3"




A Criticue «f *he Constant Fatic, the Conditionzl Prcbability,

and the Equal Probability Models

One protler with the Conditional Probability Mccel and the
Converse Conditional Probability Mode: is that each mccel treats cnly
one aspect (selection-success) of the rest bias isstz. Recall theat
K = Prob(X > x*!Y > y*, 7,) 2and K = Prob(X < x*?Y < ¥, 7.,) are the

s 1 i i
values to be equated among subpopulativne for test fzirrecs as
specified by the Conditional Probability Model and Converse Conditional
Probability Model, respectively. 1In practice, we mus:t consider
equating both K and E'among subpopuleations. Since it can be shown
that only u..der certain special condéis:ions equating ¥ among subpopu-
lations leads to equating K among subpopulations, and ice versa
(refer to the section entitled The Converse Conditionzi Probability
Modelj), it might be suggested that in order to take both aspects of
the test bias issue [the conditionzl probability of selection given
success (K) and the conditional probability of rejection given failure
(E)] into consideration, we should at least contemplate equating some
combination of K and K instead of trying to equate, independently,
either K or E.among subpopulations. However, it will be difficult to
decide what function of K and K should be equated among subpopulations
for fair test use.

Similar comments can be made regarding the Constant Ratio andé the
Converse Constant Ratio models, and regarding the Equal Probability
and the Converse Equal Probability models. Each model deals with only

one aspect of the test bias issue. In contrast, tihe definition of

w
0.0}
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test bias proposed by the Equal Risk Model deals with both sides of
the issue, because if one equates Z [Equation (8)] among subpopu-
lations, then one also equates the converse [Equation (9)]
Z=1-2 among subpopulations.

To see why one should consider both aspects of the issue of
fairness, note that if one tries to increase the conditional proba-
bility of selection given success (K), then one will decrease the
conditional probability of rejection given failure (E). Rewrite K

and E'as follows:

* *
Prob(X > x,, Y>y |n,)
K = - i - 4
*
Prob(Y > y |ni)
and * *
P <
= rob (X X Y <y !ni)

*
Prob(Y < y lﬂi)

Now, for a specified minimum level of criterion performance (y*),
Prob (Y 3_y*[ni) and Prob(Y < y*[ni) are fixed values. Thus, for K to
increase, Prob(X > x:, Y > y*lni) must increase implying that the
predictor cut score (x:) must decrease. (See Figure 3.) It is

*
then clear that if xi

decrease implying that K must decrease. Hence, although, both large

* *
decreases, then Prob(X < xi, Y <y Ini) must

K and large K seem desirable for a given subpopulation Tys any

*
predictor cut score x, which leads to an increment in K will result
in a decrement of K. This is similar to the situation in hypothesis

testing where one tries to avoid two types of errors, and, therefore,

has to reach a compromise in selecting a critical region. Thus, 1if

39
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one is inclined to build a model around Cole's conception of test
fairness, then one must try to equate a function of X and E'among
subpopulations rather than to equate X or K alone. To do this
would require a value specification for the relative size of K and K.
One can also show that in the case of the Constant Ratio Model
and the Converse Constant Ratio Model, R [EqQuation (5)] will
decrease as R [Equation (2)) increase¢s. This indicates the same
dilemma of trying to compromise between equating R or equating R
among subpopulationz. Thus, a definition of test fairness can only
be satisfactory_if one considers both R and R. Thus, among the
Constant Ratio, the Conditional Probability, the Equal Probability,
and the Equal Risk medels, only the Equal Risk Model is satisfactory
in the sense that it takes both sides (selection~success and rejection-
failure) of the test bias issue into account.
Furthermore, the Conditional Probability Model is incomplete
in the sense that it does not provide a unique solution for the

*
predictor cut scores x; (1 =1, ..., g). To be explicit, if one is

i
in a quota-free selection situation, then for any fixed subpopulation
"2 one can find a value x: such that K = Prob(X > xi'Y Z_y*, "k) is
equal to some designated value. The resulting cut scores x:

(1=1, ..., g) do not have to fall on the regression lines for the
respective subpopulations. In fact, one can arbitrarily select a
subpopulation T and decide that the predictor cut score x: for L
will fall on its regression line. Thus, x* is unique and the value

L

of K tc be equated among subpopulations is fixed. Then for all other

40



38

subpopulations ™ (1#2=1, ..., g, one can readily find predictor
cut scores xz such that Prob (X 3.XI|Y Z,Y*, Wi) = K (the conditional
probability fixed by choosing x: to be on the regression line for "2)'
Hence, the requirement given by Equation (3) does not, by itself
provide a model which results in unique selections of the predictor cut
scores x:. Therefore, the requirement given by Equation (3) cannot
be considered as a model which leads to a selection strategy unless
one more condition (e.g., in a quota-free selection situation choose
xZ to be on the regression line for ”g) is imposed. On the other
hand, 1f one is in a restricted selection situation, that one extra
condition is

g *
p,= I pi[Prob(Xlz xi]ni)] >

i=1

where P, is the proportion of the combined population that can be
accepted and Py is the proportion of the combiied population who are
members of subpopulation ™ This same indeterminancy of solution

occurs also in the Constant Ratio Model, the Equal Probability Model,

the Fqual Risk Model, and the three "converse" models for test bias.

The Culture-Modified Criterion Model

Ir addition to the crtterion variable Y and the ¢ edictor
variable X, Darlington (1971) defines a third variable C, which
denotes an applicant's group membership. The variable C may be
either dichotomous or continuous (e.g., sex; race; socio-economic

status). Darlington then gives (and discards) four definitions of

41
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test bias or cultural fairness in terms of the correlations among the
three variables X, Y, and C.

In order to state the four definitions in common correlational
termin.logy, simplifying assumptions are introduced: the variables
X and Y have a bivariate normal distribution in each subpopulation;
the correlation between X and Y (rxy) is positive, and; the standard
deviation on the test (sx), the standard deviation on the criterion
(sy), and rxy are constant for each subpopulation. Darlington's

four definitions of test fairness are:

1) T = rcy/rﬁ ,

@) Tex © rcy’

(3 r_=r r , and
cx cy Xy

4 r = 0,

cX

where the r's represent the correlations between the subscripted
variables. In each case, a test is considered culturally fair if

it satisfies the appropriate equation. (Darlington, 1971, p. 73.)

Definition (1) is equivalent to the Regression Model which

requires a common regression line. Definition (2) is the same as
Thorndike's Constant Ratio Model. Definition (3) is a special case
of Cole's Conditional Probability Model. Definition (4) is the same
as the requirement that subpopulations have equal means on the test.

(Darlington, 1971, pp. 73-75; Linn, 1973, pp. 156-157.)

4z
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The four definitions yield contradictory results except in the
case of perfect validity (rxy = 1) or in the case of equal subpopu~-
lation means on the criterion (rCy = 0). Darlington also claims that
the four definitions are

all based on the false view that optiﬁum treatment of

cultural factors in test construction or test selection can

be reduced to completely mechanical procedures. If a

conflict arises between the two goals of maximizing a test's

validity and minimizing the test's discrimination against

certain cultural groups, then a subjective, policy-level
decision must be made concerning the relative importance of

the two goals. [p. 71.]

Darlington then suggests that instead of predicting the criterion
variable Y that a variable (Y - kC) be defined where k is determined
by a subjective value judgment on the part of the decision maker
(test user). Darlington urges that

the term "cultural fairness" be replaced in public discussions

by the concept of "cultural optimality." The question of

whether a test is culturally optimum can be divided in two:

a subjective, policy-level question concerning the optimum

balance between criterion performance and cultural factors

(operationalized ... as the optimum value of k), and a purely

empirical question concerning the test's correlation with

the culture-modified variable (Y - kC) and whether that

correlation can be raised. [pp. 79-80.]

According to this formulation, each institution must first choose a
value of k, indicating whether there is special value in the selection
of members from some subpopulation. That is, the decision maker must
answer the question, "How many units on Y are considered equivalent

in value to one unit on C?" Then, the psychometrician's job is to
contruct a test to predict the variable (Y - kC). Note that when k

is set equal to zero (when there is no reason to favor one cultural

group) this procedure reduces to that of the Regression Model. Also
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note that where the other models for test bias would set different
predictor cut scores for each subpopulation, Darlington would add a
specified number of points to the scores of one subpopulation, and
then use the same predictor cut score.

Darlington's formulation of test fairness recognizes, explicitly,
that the variable which is traditionally considered to be the criterion
(e.g., college grade point average), is not the only criterion. Group
membership or culture is also part of the criterion. Darlington,
then, argues that the traditionally accepted criterion must be
modified for culture; hence, the reference to Darlington's formulation

of test fairness as the Culture-Modified Criterion Model.

The Unequal Probability Model

In our description of the decision pProcess, we noted that an
outcome (success or failure) is associated with each final decision
(selection or rejection). The four possible outcomes are:

(1) select a potential success, (2) reject a potential success,

(3) reject a potential failure, and (4) select a potential failure.
Outcomes 1 and 3 represent correct decisions, whereas, outcomes 2
and 4 represent incorrect decisions. It is possible to rate each
outcome on a scale of desirability. The particular value, or rating,
associated with each outcome will be referred to as the utility of
that outcome.

For the moment, let us focus our attention on outcome 1. The
probability that outcome 1 occurs is simply the joint probability

of success and selection. The utility of outcome 1 for subpopulation

44




42

™ (1 =1, ..., g) will be denoted by a,. Since outcome 1 represents
a correct decision, the value ay will be positive. The >t of values
a; (1 =1, ..., g) is determined by the test user z; 2 r aul: of a
subjective, policy-level decision. One could then [ ropose “.at a
selection strategy is fair if, given a minimum level of satisfactory

* *
criterinn performance (y ), the predictor cut scores x; 1=1, ..., g)

are determined so that

[Prob(¥ > y*|x > x*
a, [Pro (Y >y Ix 2 X nl)]

* *
= L. = Prob (Y > X > . 10
a, [Prob(Y > y'| 2% )] (10)

This definition of test fairness will be referred to as the Unequal
Probability Model. Note that if the values ay i1=1, ..., g) are

the same for each subpopulation ni, then the Unequal Probability

Model reduces to the Equal Probability Model. The Unequal Probability
Model explicitly takes group membership, as well as test validity, into
consideration in its requirement for a "fair" selection strategy,
however, it too has a converse statement which contradicts the direct

statement.

An Incoherent Expected Utility Model

Figure 7 diagrams the seiection situation and lists the four
possible outcomes of the decision process. The utilities associated
with correct decisions (outcomes 1 and 3) are positive, whereas, the
utilities assoclated with incorrect decisions (outcomes 2 and 4§)

are negative (i.e., in reference to Figure 7, ai, ci_z 0 and

45



Figure 7

Outcomes of the Decision Process

Criterion (Y)

Success
I
*

. *
Reject X Accept

Outcome
(1) Select a potential

success

(2) Reject a potential
success

(3) Reject a potential
failure

(4) Select a potential
failure

Probabilitz

* *
Prob (Y>y ]xixi, m,)

i
*
[Prob(xzxi]ni)]
Prob(Yzy*]X<x:, ni)
[Prob(X<x:lni)]
Prob(Y<y*|X<x:, ni)
*
[Prob(X<xi,ni)]

* *
Prob (Y<y lxixi, "i)

[Prob(xeI]ni)]
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A selection decision should be dependent only on the applicant's
particular test score and the utilities associated with the subpopu-
lation of which he is a member. In other words, a coherent model
for selection will depend only on the utility structure and the
conditional distribution of Y given X = x; it will not depend on

the marginal distribution of X.

Specifically, it can be noted then that the Regression and the
Equal Risk models are both Special cases of a coherent expected
utility model obtained when specific assumptions are made about the
utility structure for each subpopulation. In particular, with the
Equal Risk Model, the conditions are the equality of (ai - bi) for
all subpopulations 7, and the equality of (ci - di) for all subpopu-
lations ™

The point to be made here is that the only models that survive
are models that do, at least impliéitly, involve utility specifi-
cations. The search for a purely psychometric criterion for fairness
in test use has not been successful, and Darlington's view that such
a criterion is not possible appears valid. It would seem that there
can be no distinction between maximizing expected utility and strategy
fairness. The second concept is strictly subsumed under the first.
Our task, then, is to explicate the expected utility model, and to
distinguish between fairness to individuals and fairness to groups.

The task will not be a simple one.
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An Appraisal of the Test Blag Models

The Regression, the Constant Ratio, the Conditional Probability,
the Equal Probability, the Equal Risk, and the Culture~Modified
Criterion models are each explications of general concepts of what
constitutes the fair use of tests in a selection situation. There
seem8 to be nothing in the literature that clearly indicates when,
if ever, one of the models is clearly preferable to the other five
models. Thus, the practitioner has no clear guidance in the choice
of a test bias model. Further, three of these models, the Constant
Ratio, the Ccaditional Probability, and the Equal Probability models

have been shown to be internally contradictory and clearly based on

the wrong conditional probability.

There has been considerable interest in the Constant Ratio Model
and the Conditional Probability Model based on the fact that these
models yield a popular result, in that they give apparently lower cut
scores for minority populations. The appeal of these models,
then, is that they produce a desirable result. One could contend that
it is gen<rally not appropriate to evaluyate the correctness of a
model solely on the basis of the pleasantness or unpleasantness of its
implications, but, rather, that one must look carefully at the logical
structure of the model. One must be sure that the model is getting
the right results for the right reasons. If the models are giving
the right results for the wrong reasons, it may well be possible that,

in some other circumstances, wrong answers will be forthcoming.
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To see that this may happen; consider a situation in which the
regresgion lines in the minority and the majority populations are
identical, but in which the mean values of X and Y are higher in the
minority (disfavored) population and lower in the majority (favored)
population. (Refer to Figure 4.) This situation is not typical but,
in fact, can be found if one compares, for instance, a Japanese or
Chinese-American minority population with a white American majority
population. In this situation, both the Constant Ratio and the
Conditional Probability models will give lower predictor cut scores
and, hence, easier entry to the majority population. The Regression
Model and the Equal Risk Model will give identical predictor cut
gscores. If, as well may be the case, the Japanese or Chinese-
American subpopulation has been discriminated against in some
situation, then our desire might be to provide easier access for that
subpopulation, but, in fact, the two models being considered make
access more difficult.

From this example, it can be seen that the two models being
discussed make a correction that is usually in the desirable direction,
but that they make that correction for the wrong reason. They make
the correction simply because of differences in the mean values of
X and Y in the two populations, and they do not take into account any
public desire or social necessity to rectify unfair treatment to a
minority population. On the other hand, if, following the general
ideas laid down here, one allows that differential treatment should be

given to some heretofore disfavored group, then a lower predictor cut
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score will be obtained for that group, and, in this case, the lower
score is obtained for the right reason, because of their disfavored
status (different utility structure), and not simply because of a
difference in mean values. We judge that for these reasons the use of
these models is contraindicated. In stating this, it is not suggested
that any ill effects will necessarily result from their use. Only by
more detailed study would it be possible to document more completely
situations in which these models break down. However, any logical
system which contains a contradiction must break down somewhere and
one example has been given in which this occurs. One might also remark
that with the Conditional Probability Model at least one other very
unsatisfactory specification will occur. Suppose the minority group
is, say, two standard deviations below the majority group both on
predictor and criterion scores, and suppose the correlation is low ia
the minority group and high in the majority group. Then, this model
will result in an exceptionally high percentage of failures among the
minority group members who are accepted. Perhaps, this may at times
be acceptable. However, instead of working with a model in which this
is the standard 1mplication, one should have a model in which the
question of whether or not this is acceptable is posed directly by
the model.

There exists a body of quantitative reasoning, whose origins
are ancient and remote, that has received codification in this century

in the work of Von Neumann and Morgenstern (1947), Wald (1950), and
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others. In the theory of the rational-economic man, developed in
these writirs s, when all probabilities of outcomes are assumed known
(an assuviption made explicitly here and implicity in previous state-
ments of the models under consideration) there is a simple paradigm
‘eauirzd for rational decision. In that paradigm the desl:ability or
utility of each possible outcome is stated quantitatively. Then,
given all available information concerning the person in question,
the probability of each possible outcome is stated for each decision
under consideration. Next, for each possible decision, the utility
of each outcome is multiplied by the probability of each outcome and

the products are summed to provide an expected utility. Finally,

that decision is then made for which the expected utility is highest.
Most statisticians interested in decision problems accept the
correctness of the Von Neumann and Morgenstern-Wald model and the
incorrectness of any statistical decision procedure that does not
conform to that model. It seems clear that the Constant Ratio Model,
the Conditional Probability Model, and the Equal Probability Model,
do not conform to tuat model, though the ideas that are at their bases
may well be reformulated in a coherent manner.

The fundamental fallacy in each of these models is that they are

based on the wrong conditional probability. Statistical decision

theory demands that the probability used in the statistical analysis

be

Prob(Y|X = x) .

(97|
<
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That is, the conditioning must be on the specific value x observed
on the person and not on X|y or X > x. The three models mentioned
above do not use the correct probability: The Regression Model and
the Equal Risk Model do, and it is for this reason that no logical
contradictions have arisen with these models. This is not to say
that these latter models are entirely satisfactory; indeed, one could
judge them to be generally unsatisfactory. While these models are
both special cases of the general decision-theoretic formulation they
are, it would seem, much too special. They each involve assumptions
about utilities of outcomes which should not be concealed, but rather
should be subject to public debate, Some individuals (e.g., Humphreys,
1972) have indicated a basic dislike of differential treatment of
groups while possibly accepting its short-term desirability. That
position has merit, though in the current climate of opinion, it may
represent a minority view. One coherent expected utility model will
incorporate such a specification (the Equal Risk Model) as a special
case. But, it is suggested that if this criteriop were preferable,
it would be better to arrive at it on the basis of careful analysis
and debate in the area of public policy rather than because of some
notion regarding the universal applicability of the Equel Risk Model.
Thorndike has argued forcefully that the marginal distributions
of both X and Y are important in culture fair testing, whereas, the
decision-theoretic formulation concentrates only on the conditional
distribution of Y given x. Thorndike's view that some consideration

must be given in the setting of cutting scores to their effect on
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the percentage of successful persons that will thereby obtain in

the respective subpopulations can easily be accommodated within

the threshold utility model. It would seem to us that it might be
appropriate in assessing utilities in the two subpopulations to take
into consideration the implications with respect to these marginal
distributions. We would expect, however, this consideratica of
marginal distributions to also take into account the effect on the
percentage of failures in the two subpopulations. Such investigation
could result in our utilities being related to the location para-
meters of the marginal distributions, but this would not affect the
probability aspect of the decision-theoretic formulation which would
still deﬁend only on the distribution of le. A similar remark might
be made with respect to Cole's conception of test fairness which
might be reformulated in terms of utiiities rather than probabilities.

Darlington's Culture-Modified Criterion Model is the only model
surveyed that addresses itself to the utility question. It also has
ﬁhe desirable feature of focusing on the correct conditional proba-
bility. Unfortunately, this formulation is still not entirely
consistent with the decision-theoretic approach (i.e., it does not
incorporate a formal utility functioh), and, hence, is unlikely to
be acceptable, though at present arguments have not been formulated
with which to confront it.

In an unpublished paper, Gross and Su (1973) investigated one
decision-theoretic approach to the test bias problem but did not take
that discussion very far. In a subsequent paper a rather detailed
investigation of this decision-~theoretic approach will be explored more
fully. Other formulations within the decision-theoretic framework are

possible ard should be investigated,
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