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AN EVALUATION OF SOME MODELS FOR TEST BIAS

by

Nancy S. Petersen and Melvin R. Novickt

The University of Iowa

Abstract

In this paper, we shall survey models proposed by Cleary,

Thorndike, Cole, Einhorn and Bass, and Darlington for analyzing bias

in the use of tests in a selection strategy. Six additional models

for test bias will also he introduccd. Our purpose will be to des-

cribe, compare, contrast, and evaluate these models while, at the

same time, extracting such useful ideas as may be found in these

approaches. Several of these models will be judged to contain

logical contradfctions because of their use of the wrong conditional

probability within the context of the probabilistic structure. In

the final section of the paper, these models are shown to have

highly objectionable practical implications. Two of the models studied

are based on the correct conditional probability, and these are

noted to be sk;ecial cases of a more general and more useful model.

t
This paper derives from material contained in a thesis submitted

by Nancy S. Petersen in partial fulfillment of the requirements for
the degree of Doctor of Philosophy at the University of Iowa, July,
1974. We are grateful to William Coffman, Leonard Feldt, George
Woodworth, Douglas Whitney, and Ming-mei Wang who served on Dr.
Petersen's dissertation committee for their contributions to this
paper.
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Introduction

Tests are being used extensively by businesses and educational

institutions for the screening of applicants for jobs or training

programs.. A major problem facing these institutions is how to avoid

bias (unfair cultural or racial discrimination) in tests used in

this process. There are many different definitions of what consti-

tutes test bias, each involving a particular set of value judgments

and with different implications for how select:i.on should be

accomplished.

Description of the Selection Process

The selection process can be characterized in the Same maane- for

all test bias models. First, there is an individual about whom a

decision is required. The decision to be made is based on inform

about the individual. The information is processed by some strategj

which leads to a final decision. The final decision ends the decision

making process by assigning the individual to either a selected or an

outselected group. The outcome is the individual's performance after

the assignment or, in other words, the consequences resulting from the

decision. (Cronbach and Gleser, 1965, p. 18.)

A strategy is a rule for making decisions. Each test bias model

represents a strategy, the intent of which is to eliminate bias

ir ts used in selection procedures. The term test is used here to

reier to all information-gathering procedures including interviews and

physical measurements. The over-riding problem is the lack of agree-

ment as to the meaning of the term "test bias".
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Each test bias model or strategy can be characterized in the

same manner. It is assumed that the applicants to an ducational

institution, to a training program, or for employment can be separated

into subpopulations because of a priori belief that the regressions

within subpopulations are different, that is, the test (or predictor)

may be more valid for some subpopulations than for others (different

slopes), and/or for a fixed value of the predictor, the level of

criterion prformances may differ (different intercepts), or that

some differential selection criterion is appropriate for various sub-

populations. Alternatively, these subpopulations may be differentiable

primarily because of public concern with what is going on in these

subpopulations and a public need, therefore, to verify that all

subpopulations are being handled "fairly". Further, it is assumed

that initially a criterion score (Y), as well as a predictor or test

score (X), is available for all members of each subpopulation implying

that in the past all applicants have been admitted or employed

regardless of their score on the test. A minimum level of satis-

factory criterion performance (y ) is determined. The number of

applicants that can be selected is determined. If there is no

constraint on Lhe number of applicants that can be accepted, then

the selection situation is referred to as quota-free selection; if

only a fixed proportion of the applicants can be accepted, then the

selection situation is referred to as restricted selection. A cut

score (x ) on the predictor or test needs then to be calculated :or

each subpopulation such that the definition of test fairness as

specified by a parcular model is satisfied. In the case of multiple
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predictors or tests (X
1'

X
2'

..., X
m
), the cut score will be deter-

mined on the variable formed by the usual least squares linear

combination of the predictor variabl,?s. In the future, Tp icants

with a test score above the predictor cut score for their subpopulation

will be selected, and applicants with a test score below te predictor

cut score for their subpopulation will be rejected.

This selection strategy presupposes that an acceptable crit. -ion

variable is available. The inappropriateness 'F the criterion

variable will not be treated in this paper, although this may be t,lo

most important problem. Thus, the following discussion of test bias,

or, conversely, test fairness, will be based on the premise that the

available criterion score is a perfectly relevant, reliable, and

unbilsed measure of performance for applicants in each subpopulation.

The Regression Model

Since the most frequently used procedure for predicting criterion

performance is linear regression, the question of test bias, or

differential predictive meaning in each subpopulation, is usually

operationalized by a comparison of the regression equations for each

subpopulation. The Regression Model for test bias has been well

stated by Cleary (1968):

A test is biased for members of a subgroup of the population
if, in the prediction of a criterion for which the test was
designed, consistent non-zero errors of prediction are made
for members of the subgroup. In other words, the test is
biased if the criterion score predicted from the common
regression line is consistently too high or too low for
members of the subgroup. With this definition of bias,
there may be a connotation of "unfair," particularly if
the use of the test produces a prediction that is too low.
[p. 115.]

6
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This definition of test bias assumes fairness is achieved if _he

applicants with the highest predicted criterion scores, using separate

regression equations within subpopulations, are selected. From this

point of view, selection is fair if and only if it is based on the

best prediction available. Thus, optimal prediction and fairness are

taken to be strictly equivalent.

At the minimum level of satisfactory criterion performance (y ),

Y = a 1
+ t=2,

1
x
1

= = a + x ,

g g
(1)

UAIEMN2 Cy (3i, and x. represent the intercept, slope, and predictor cut

score for subpopulation ni(i = 1, ..., g), respectively. If the

regression lines are identical in each subpopulation, then the use of

the common regression equation to select applicants with the highest

predicted criterion scores is considered fair.

Using the Regression Model, and assuming that the parameters

(al, y, (a2, f32), (g, ag) are known precisely, a decision

maker can be assured that the average predicted criterion score,

given the available predictor variables, will be a maximum for the

applicants selected and, incidentally, a minimum for the applicants

rejected. Using the Regression Model, the applicants can be assured

that the selection procedure is "fair" to individual members of each

subpopulation in that criterion performance is not systematically

under or overpredicted for members of any subpopulation. Or to put

it another way, the Regression Model says that if two applicants are

being considered for one post, then that applicant having the highest

predicted performance would be selected with prediction being made

on the basis of subpopulation regression.

7
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lo Illustrate, ,:uppose the applicants to an institutin

can he d:vided int two subpcpulaticns referred to as subpcpu-

lation -1 and subpopulation 72 Now, refer to Figure 1. In

Figure 1(a), re:,:ression lines for the two subpopulations have

the same slop but different intercepts. In Figure 1(b), the

regression lines for the two subpopulations have different slopes

and different intercepts ,/th the point of intersection outside the

range of possible test scores. In each of these situatic'r.s, suppose

the common regression line (7c) for the total applicant population

were used for predicting criterion scores for all applicants rather

than the separate within subpopulation re2ression lines, then for any

given test score, criterion scores for subpopulation
2
would be

consistently underpredicted, and, therefore, this subpopulation would

be discriminated against by the test. In Figure 1(c), the

regression lines for the Ywo subpopulations again have different

slopes and different intercepts, but the point of intersection is

inside the range of possible test scores. If the common regression

line were used for predicting criterion scores, then some individuals

from both subpopulations would be discriminated against. At point

x
1 on the test, the cri'z2rion score for a member of subpopulation n

1

would be underpredi ted, and, at point x
2
on the test, the criterion

score for a member of subpopulation
72

mwould be derpredicted. In

Figure 1(d), the regressicl 1int2s for the two subpopulations

coincide. Thus, the common regression line is identical to each

within subpopulation regression line. Hence, for any given test score,

an applicant's predicted criterion score is the same regardless of

group mer' rship. The test is "fair" to all applicants.



Figure 1

Illustration of Test Bias as Defined

by the Regression Model

Criterion (Y)

.

6

Test (X)

Figure 1(a). Supopulations with parallel regression
lines but different intercepts.

Criterion (Y)

Figure 1(b). Subpopulations with different regression

lines. Point of intersection outside range
of possible test scores.



Figure 1 (cont'd.)

Criterion CO

x
1

x
2

Test (X)

7

Figure 1(c). Subpopulations with different regression
lines. Point of intersection inside
range of possible test scores.

Criterion (Y)

Test (X)

Figure 1(d). Subpopulations with common regression line.

1 0
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The Regression Model is the most widely used model of test bias

within the predictive context. It has been used in a number of

empirical studies (e.g., Cleary, 1968; Bowers, 1970; Temp, 1971) and

it has been basic in the conceptualizations and discussions of test

bias that may be found in Anastasi (1968), Guion (1966), Bartlett

and O'Leary (1969), Einhorn and Bass (1971), Linn and Werts (1971),

Linn (1973), and Schmidt and Hunter (1974).

The Constant Ratio Model

Thorndike (1971) suggests that in a study of test bias we should

consider the implications for the proportions of applicants admitted

from each subpopulation as well as the implications of the within

subpopulation regression lines as was suggested by the Regression

Model. He demonstrated that, if a test has equal regression lines

for each subpopulation, but the discrepancy between subpopulations on

the test differs from the discrepancy between subpopulations on the

criterion, then using the selection strategy implied by the Regression

Model,

which is "fair" to individual members of the group scoring
lower on the test, is "unfair" to the lower [scoring] group
as a whole in the sense that the proportion qualified on
the test will be smaller, relative to the higher-scoring
group, than the proportion that will reach.any specified
level of criterion performance. [p. 63.]

Thorndike proposes that in a fair selection Procedure,

the qualifying scores on a test should be set at levels that
will qualify applicants in the two groups in proportion to
the fraction of the two groups reaching a specified level
of criterion performance. [p. 63.]

This definition assumes that the selection procedure is fair if

applicants are selected so that the ratio of the proportion selected

11
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to the proportion successful is the same in all subpopulations; hence,

the reference to it as the Constant Ratio Model. Therefore, given a

minimum level of satisfal:tory criterion performance (y ), a selection

procedure is considered fair when

*,
Prob(X > x

1 I

n1)

J.

*,
Prob(X > x 17 )

g g
, (2)

Prob(Y > y 171) Prob(Y > y 17 )

where R is a fixed constant for all subpopulations Tri and 2.c. repre-

sents the pred:ctor cLt score for suhpopulation (i = 1, ..., g).

It should be noted that Thorndike did not give a formal statement of

a model, only a general prescription. The explication of the model,

as given above, is due to Cole (1973).

To illustrate, refer to Figure 2! (Adapf-ed from Thorndike,

1971, p. 66.) Assume the applicants to the institution were divided

into two subpopulations, 71 and 72. Figure 2(a) depicts the

situation which Thorndike refers to as being "fair" to individual

members of the minority population n
1
but "unfair" to the minority

population as a whole. The regression is identical in each subpopu-

lation, thus, the test would be considered fair accordinb to the

tTo simplify the diagrams in Figure 2 and Figure 4, it is

assumed that (1) the variables X and Y have a bivariate normal distri-

bution in each subpopulation, (2) the correlation between X and Y

(r
xy

) is positive, and

the standard deviation

for each suhpopulation.

(3) the standard deviation of the test (s
x
),

of the criterion (s ), and r are constant
xy

Furthermore, the predictor cut score (x2)

for the majority population is chosen to be on the regression line

(i.e., for subpopulation 7
2

given X = x
2

, then Y = y ). The predictor

cut score (x
1
) for the minority population is then adjusted

accordingly.



10

Figure 2

Illustration of Test Bias as Defined

by the Constant Ratio Model

Criterion (Y)

Figure 2(a). Subpopulations with common regression
line. Mean difference on test is not
equal to mean difference on criterion.



Figure 2 (cont'd.)

Criterion (Y)

Test (X)

11

Figure 2(b). Subpopulations with parallel regression
lines. Mean difference on test equals
mean difference on criterion.

Criterion (Y)

Test (X)

Figure 2(c). Subpopulations with parallel regression
lines. Identical criterion score
distributions.

14
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Regression Model if all individuals, regardless of group membership,

who have test scores greater than or equal to x
2

are selected. Note

that the mean of X in subpopulation 7
1

is less than in subpopulation

7
2

and that this difference is greater than the col.responding

difference on the criterion measure. If only those applicants with

predicted criterion scores equal to or greater than y were selected,

then approximately 50% of subpopulation n
2
would be accepted and

approximately 50% would be successful, but essentially no members of

subpopulation 71 would be accepted, yet approximately 10% of the

members of subpopulation n
1
would have been successful. Thus, If

x
2

is used as the predictor cut score for each subpopulation, the

test discriminates against subpcpulation 7
1

according to the Constant

Ratio Model. in tlis situ,Aon, to make the selection procedure fair

according to the Constant Ratio Model, the members of subpopulation

7
2
with test scores greater than or equal to x

2
would be accepted,

and members of subpopulation 7
1
with test scores greater than or

equal to x
1
would be accepted.

In Figure 2(b), the regression lines are parallel and the

difference between means on the tes iq the same as the difference

between means on the criterion. The ratio of the proportion qualified

on the test to the proportion successful is the same for each sub-

population. This strategy is fair according to the Constant Ratio

Model. If the validity (correlation between test and criterion) is

perfect and the regression lines are the same for e.:ch subpopulation,

then the strategy is fair according to both the Constant Ratio Model

and the Regression Model. In Figure 2(c), the regression lines are

parallel and the distribution of criterion scores is the same for

15
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both subpopulations. If y represents the minimum level of satis-

factory criterion performance, then the same selection strategy

would be considered fair by both the Regression Model and the Constant

Ratio Model. The institution would accept members of subpopulation

w
1
who had test scores greater than or equal to x

i'
and it would

accept members of subpopulation 72 who had test scores greater than

or equal to x2. In many applications, the mean criterion score

of the minority population 7
1
will be less than in the majority

population 72, in which case, an acceptance procedure based on the

Constant Ratio Model will almost always accept applicants from the

minority population 71 who do less well on the criterion, on the

average, than applicants from the majority population 72.

The Conditional Probability Model

Cole (1973) proposed a fully explicated crite -- for test

fairness based on the conditional probability of being selected given

satisfactory criterion performance; hence, the reference to it as

the Conditional Probability Model. Cole argues that all applicants,

regardless of group membership, who, if selected, are capable of

being successful should be guaranteed an equal, or fair, opportunity

to be selected.

The basic principle of the conditional probability selection
model is that for both minority and majority groups whose*
members can achieve a satisfactory criterion score [Y > y ]
there should be the same probability of selection regardless
of group membership. [p. 240.]

Therefore, given a minimum level of satisfactory criterion performance

(y ), a selection procedure is considered fair when

16
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K = Prob(X > x 1Y > y ) = Prob(X > x
*,
IY >

(3)

where K is a fixed constant for all subpopulations
i

and x
i

repre-

sents the predictor cut score for subpopulation
i
(i = 1, ..., g).

Figure 3 is an illustration of a hypothetical bivariate

distribution of test and criterion scores. Individuals falling in

region II have test scores less than the predictor cut score (they

would be rejected), yet, if selected, they would have satisfactory

criterion performance. Such individuals are referred to as false

negatives. False positives are those individuals with test scores

greater than the predictor cut score (they would be accepted) but

with unsatisfactory criterion performance. Such individuals fall in

region IV. The assignment of an individual to either region II or IV

is an incorrect decision (error). Correct decisions are made for

those individuals assigned to regions I and III. (Linn, 1973,

pp. 152-153.)

The emphasis in the Conditional Probability Model is on the

number of applicants in region I in relation to the number of

applicants in regions I and II combined, whereas, the emphasis in the

Constant Ratio Model is on the number of applicants in region- I and

IV combined in relation to the number of applicants in regions I and

II combined.
t

t
Linn (1973, p. 153) stated that a test was fair according to

Thorndike's definition of test fairness (the Constant Ratio Model) if

the number of individuals in region II equals the number of individuals

in region IV. (See Figure 3.) Strictly speaking, the Constant Ratio

Model does not require equality of regions II and IV, however, the

model will be satisfied and equality of regions II and IV will occur

17



Figure 3

A Hypothetical Bivariate Distribution

Criteritm (Y)

Success Region Region

Failure Region Region
IV

Reject x Accept

16

15

Test (X)
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Figure 4 contrasts the Regression Model, the Constant Ratio

Model, and the Conditional Probability Model for the situation in

which the regression is identical for each subpopulation, but the

mean test score and the mean criterion performance is less for

members of subpopulation 7
1

than for members of subpopulation

7
2.

(See comment in reference to Figure 2.) In Figure 4(d),

all applicants, regardless of group membership, who have test

scares greater than x , are accepted. Using this selection strategy,

the selection procedure would be considered fair according to

the Regression Model. In Figure 4(b), applicants from subpopu-

lation 71 are accepted if they have test scores greater than xi, and

applicants from subpopulation 72 are accepted if they have test

scores greater than x2. The ratio (I + IV)/(I + II) is constant

for each subpopulation. (P 'el- to Figure 3.) Thus, using this

selection strategy, the test is corsidered fair according to the

Constant Ratio Model. In Figure 4(c), the predictor cut score for

subpopulation 71 is xi, and for subpopulation 72, the predictor cut

score is x2. Here the ratio I/(I + II) is constant for each subpopu-

lation (refer to Figure 3), and using this selection strategy, the

test is considered fair according to the Conditional Probability Model.

Note that as with the.Constant Ratio Model, a selection strategy

based on the Conditional Probability Model will almost always accept

only if the selection-success ratio R (Equation (2)1 equals 1
*, ,

implying Prob(X.> x 17 ) = Prob(Y > y
*
17 ) for each subpopulation 7

For purposes of heuristic comparison among models, we shall assume

that this assumption holds.

19
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Figure 4

A Constrast of the Regression, the Constant Ratio, and

the Conditicna1 ?rcbability Models

Criterion (Y)

:est ';.Y.)

Figure 4(a). Subpopulations with common ret:ression
line. Selection strategy fair according
to Regression Model.

2 0



Figure 4 (cont'd.)

Criterion (Y)

Test (X)

18

Figure 4(b). Subpopulations with common regression line.
Selection strategy fair according to
Constant Ratio Model.

Criterion (Y)

Test (X)

Figure 4(c). Subpopulations with common regression line.
Selection strategy fair according to
Conditional Probability Model.

21
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applicants from subpopulation wl who do less well on the criterion,

on the average, than applicants from subpopulation w2. Also note

that if an applicant from subpopulation 71 is predicted to do just

as well on the criterion as an applicant from subpopulation w2, then

a selection strategy which is fair according to the Regression Model

will consider the two applicants equally desirable candidates for

admission. However, a selection strategy which is fair accOrding

to the Constant Ratio Model will consider the applicant from subpopu-

lation w
1 preferable to the applicant from subpopulation n

2'
and a

selection strategy which is fair according to the Conditional

Probability Model will give even greater preference to the applicant

from subpopulation Trl. Note also that this is true even if the

minority population happens to be subpopulation 712, as will be

discussed later.

The Equal Probability Model

In the usual selection situation the "given" information for

each applicant is not his future state of being (success or failure)

in relation to the criterion variable but rather his present observed

standing on the predictor variable. Thus, from one point of view, it

would seem reasonable to propose a definition of test bias based on

the conditional probability of success given selection. One could

argue that all applirants, regardless of group membership, who are

selected should be guaranteed an equal, or fair, chance of being
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successful. Such a model for test bias was described by Linn (1973,

p. 153) and shall now be referred to as the Equal Probability Model.t

According to the Equal Probability Model, people, as a group,

who are selected [that is, who achieve a satisfactory predictor

score (X > x )] should have the same probability of being successful

whether minority or majority population members. Therefore, given

a minimum level of satisfactory criterion performance (y ), a
1

selection procedure is considered fair when

Q = Prob(Y > y*IX = . = Prob(Y > y*IX > x
*

) ,g,

(4)

where (1 is a fixed constant for all subpopUlations Tr. and :x. repre-
i

sents the predictor cut score for subpopulation Tri(i = 1, ..., g).

In reference to Figure 3, the emphasis in the Equal Probability

Model is on the number of applicants in region I in relation to the

number of inplicants in regions I and IV combined. In reference to

Figure 4, the selection strategy depicted in Figure 4(a) is fair

according to the Equal Probability Model, and members of subpopulation

Tri and members of subpopulation Tr2, who are predicted to do equally

tLinn (1973, p. 153) described the Equal Probability Model but

referenced it as the traditional psychometric approach suggested by

Einhorn and Bass (1971). The definition of test bias suggested by

Einhorn and Bass, to be called the Equal Risk Model, will be discussed

later in the paper. At this point, it is enough to note that in

the Equal Probability Model the conditioning is on X > x, while in
*

the Equal Risk Model the conditioning is on X = xi. It should also

be emphasized that the Equal Probability Model was not proposed by

Linn, it was only discussed by him.

2
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well on the criterion, are considered equally desirable candidates

for admission. Clearly, a selection strategy dictated by the Equal

Probability Model will not typically coincide with one derived from

either of the three preceding models. Thus, the practitioner is faced

with the task of choosing from among four equally "attractive" models.

The Converse Constant Ratio Model

The last three models described, the Constant Ratio Model, the

Conditional Probability Model, and the Equal Probability Model,

presented definitions of test bias stated in terms of success and/or

selection. Conceptually, it seems just as reasonable to explicate

the fundamental concept of each approach by exhibiting concern for

the rejected and/or unsuccessful applicant. TAUS, the following three

models for test bias will be restatements of the previous three models

in terms of failure and/or rejection.

Recall that the Constant Ratio Model compares selection rate with

success rate in each subpopulation. The emphasis is on the proportion

of applicants who are selected in relation to the proportion of appli

cants who are successful. However, one could conceivably consider it

just as important or necessary to consider the implications for the

proportion of applicants rejected in each subpopulation. One could

propose that the cut scores on a test should be set at levels that will

reject applicants in each subpopulation in proportion to the fraction

of each subpopulation failing to reach a specified minimum level of

criterion performance. Such a selection strategy will be referred to

as the Converse Constant Ratio Model.

24
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This definition assumes that a selection procedure is fair if

applicants are rejected so that the proportion rejected to the

proportion unsuccessful is the same in all subpopulations. Therefore,

given a minimum level of satisfactory criterion performance (y ), a

selection procedure is considered fair when

*
*,

Prob(X < xIlr ) Prob(X < x 17 )

- 1 1 g g

Prob(Y < y*In1) Prob(Y < y*lir )

where R is a fixed constant for all subpopulations 7 and x
i

repre-

sents the predictor cut score for subpopulation ni(i = 1, ..., g).

The above relationship can be rewritten as

1 - Prob(X >

*
1 Prob(Y > y

,

[Prob(Y > ylcki)]-1 Prob(X > xlcillri)(Prob(Y > Y*Ini)]-1

[Prob(Y > y*nIi)]-1 - 1

[Prob(Y > y*Ini)]-1 - R

[Prob(Y > y*17 )]
-1

- 1

where R = Prob(X > xilni) [Prob(Y > y * lir)]
-1

is the value to be

equated among subpopulations for test fairness as specified by the

Constant Ratio Model. Now, suppose we have specified a minimum level

*,
of satisfactory criterion performance (y ) and a selection-success

ratio (R), then a predictor cut score x
i
can be determined for each

subpopulation
i
(i = 1, ..., g). Given the.values y , R, and x

*

the rejection-failure ratio (i) will be constant for each subpopulation

2 5
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n
i

if the following condition_is satisfied:

[Prolo(Y > y*Ini)]-1 - R

[Prob(Y > y*Ini)]-1 - 1

for i, j = 1, g.

[Prob(Y > y*Ini)]-1 - R

[Prob(Y > y*nIj)]-1 - 1

The above condition will be satisfied if either (1) R = 1

implying Prob(X > x:Ini) = Prob(Y > y In) for i = 1, g, or

(2) Prob(Y > y Ini) = Proh(Y > y (nj) for i, j = 1, g, but not

generally. If either case (1) or case (2) obtains, the same set of

predictor cut scores x
i

(i = 1, g) is considered fair according

to both the Constant Ratio Model and its converse, but, otherwise,

the strategies will differ. In Thorndike's illustration (1971, p. 66),

he set R = 1, though he did not indicate that this was required by

his model. Only by reference to various real applications might

we be convinced that R = 1 will be a commonly acceptable value.

However, with restricted selection, it :L.; not generally possible to

simultaneously satisfy this condition and the selection constraint.

Consider carefully the nature of this argument. If fairness

to subpopulation ni demands that the selection-success ratio (R)

be the same for any other subpopulation nj, then, with identical

logic, fairness to subpopulation n
i

demands that the rejection-

-
failure ratio (R) be the same for any other subpopulation andnj,

the two specifications are not consistent.
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The Converse Conditional Probtbility Model

The Conditional Probability Model is baLld on the conditional

probability of being selected given satisfactory criterion perfor-

mance. The emphasis is on the proportion of potentially successful

applicants who are selected. However, one could argue instead that

all applicants who are potential failures should have the same

chance of being rejected, regardless of group membership. W- shall

label this selection strategy the Converse Conditional Probability

Model.

The Converse Conditional Probability Model is based on the

conditional probability of being rejected given unsatisfactory

criterion performance. Therefore, given a minimum level of satis-

factory criterion performance (y ), a selection procedure is

considered fair when

Prob(X < 41Y < y*, 71
* *

. = Prob(X < x IY <

(6)

where K is a fixed constant for all subpopulations 7
1
and 4 repre-

sents the predictor cut score for subpopula'Ion = 1, ..., g).

The above relationship can be rewritten as

i = Prob(X < x:, Y < y*17i)(Prob(Y < y*17i)]-1

* * ,= {[Prob(X>xi, Y>y*Ini) + Prob(X<xi, '41<y* inifl-Prob(X>* Y2y
*
171)1

(1 - Prob(Y > y*171.)]-1

27
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= {[Prob(X>xi, + Prob(X<xi, Y<y*I7i)][Prob(Y_ty*I7i)]-1

={[Prob(X>1c.YD,*IT)+ProbOY[Prob(y>y*I7i)]-1-K}

{[Prob(Y > y*171)1-1 - 1J-1 ,

where K = Prob(X > Yi, Y > y*1
T) [Prob(Y > y* I7i)]-1 is the value to

be equated among subpopulations for test fairness as specified by

the Conditional Probability Model. Now, suppose the decision maker

has specified a minimum level of satisfactory criterion performance

(y ) and a constant conditional probability of selection given success

(K),thenapredictorcutscorex.can be determined for each subpopu-i

lation 71(i = 1, ..., g). Given the values y , K, and xi, the

conditional probability of rejection given failure (R) will be

constant for each subpopulation
Tn if the following condition is

satisfied:

*,
{[Prob(X > x Y > y*i17 ) + Prob(X < x < y 17 )]

prob(Y > y*I7i)l-1 - KJ {[Prob(Y > y*17i)]-1 - 11-1

, *,= {[Prob(X >x Y>
*1

y7 ) + Prob(X <x Y'<y17)}.

J

[Prob(Y > y*17j)] -1 K}f[Prob(Y > y*17j)]-1 - 1:11

for i, = 1, g.

28
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This condition will be satisfied if Prob(yly *1 7ri)=Prob(Y>y *17rj)

* , *
and Prob(X < x

i'
Y < y

*
171.

i
) = Prob(X < Y < y*III.j) for i,

3

j = 1, ..., g, but not generally. In that case, the same selection

strategy, the same set of predictor cut scores x
i

(i = 1, ..., g),

is condsidered fair according to both the Conditional Probability

Model and the Converse Conditional Probability Model, but, otherwise,

the :.,:lection strategies will diffe,..

The Converse Equal Probability Model

The Equal Probability Model is based on the conditional proba-

bility of success given selection. The emphasis is on the proportion

of the selected applicants who are successful. However, one could

propose that all applicants who are rejected should have the same

probability of being a failure, regardless of group membership. Such

a selection strategy will be labeled as the Converse Equal Probability

Model.

The Converse Equal Probability Model is based on the conditional

probability of failure given rejection. Therefore, given a minimum

level of satisfactory criterion performance (y ), a selection

procedure is considered fair when

, *
= Prob(Y < y*1X < x

1
, 7r1) = = Prob(Y < y

*
IX < xg, 71.g) ,

(7)

where Zi is a fixed constant for all subpopulations 7ri and xi repre-

sents the predictor cut score for subpopulation = 1, g).

20
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The above relationship can be rewritten as

.1-1= Prob(X < x:, Y < y*ITri)(Prob(X <

= {[Prob(X>4, Y2y*kri)+Prob(X<x:, Y<y*kri)]*Prob(X4, Y>Y*17i)}

[1 - Prob(X. x:Iy]-1

* * *
*1 .1-1= {[Prob(X>xi, Y*2y kri) + Prob(X<xi, Y<y kri))[Prob(X>xilTri,J

* * * -1-Prob(X=7x Y2y Ini)[Prob(X>xikri)) ){[Prob(X>x:kri))-1 - 1)-1

* * * * * -1= {[Prob(X>xi, Y2y kri) + Prob(X<xi, Y<y Ini)J[Prob(X>xilTri)] Ql

* 1 1{[Prob (X
21

xi) 1) ,

where Q = Prob (X > xi , Y y *I
Tri) [P rob (X xi I Tri) ]

-1
is the value to

be equated among subpopulations for test fairness as specified by

the Equal Probability Model. Again, suppose we have specified a

minimum level of satisfactory criterion performance (y ) and a constant

conditional probability of success given selection (Q), then a

predictor cut score x
i

can be determined for each subpopulation

(i = 1, ..., g). Given the values y , Q, and x
i'

the conditional

probability of failure given rejection (5) will be constant for each

subpopulation Tri if the following condition is satisfied:
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{[Prob(X > xi, Y > y*lni) + Prob(X < xi, Y < Y*Ini)]

[Prob(X > xljni)]-1 Q}{[Prob(X > xlIni)]-1 - 1/-1

= {[Prob(X > x , Y > y*n I ) + Prob(X < x
*

Y < y*In )]

*1 .,-1 *1 -1
[Prob(X > xjlnjil A4[Prob(X > xjini)] -

for i, j = 1, g.

This condition will be satisfied if Prob(X>x:Jni) = Prob(X.>_x7ijni)

and Prob(X < x:, Y < y*Ini) = Prob(X < x*.j, y < Y*Inj) for i,

j = 1, g, but not generally. In that case, the same selection

strategy, the same set of predictor cut scores x i (i = 1, g),

is considered fair according to both the Equal Probability Model

and the Converse Equal Probability Model, but, othe_wise, the selection

strategies will differ.

Figure 5 summarizes or compares the Constant Ratio Model, the

Conditional Probability Model, the Equal Probability Model, and the

three "converse" models for test bias.

The Equal Risk Mbdel

Einhorn and Bass (1971) proposed a model for test bias, which

takes into account, for each subpopulation, the probability of

success associated with an applicant's test score rather than just

the applicant's predicted criterion score as suggested by the

Regression Model. Their model is based on a definition of test bias

given by Guion (1966). Guion stated that

31



Figure 5

A Comparison of Six Models for Test Bias

Criterion (Y)

Test (X)

29

The cut score on the test (x ) is determined so that fhe

ratio (as specified by a particular model) is the same

for all subpopulations.

Model Ratio

Constant Ratio (1 + IV)/(I + II)

Conditional Probability I/(I + II)

Equal Probability I/(I + IV)

Converse Constant Ratio (III + II)/(III + IV)

Converse Conditional Probability III/(III + IV)

Converse Equal Probability III/(III + II)



unfair [test] dis
probabilities of
of being hifed to

The objective of

who are predicted, in

crj xists

e job
SUçt1Ofl e

r the job.
IP

30

711t persol nth equal
hav enequa rrNbilities
.) e

this oot s4 accePtmodel i5 -411ply to those Persons

sensn of pest point estime"' te be above

_iterio_on the f
q but rather to deeept those

persons for
Prediction c5f1 be mads with a sPecItied degree

of confidence. The probleti comes finding 4then be score

on the predictor variable , e critetion scre fot
that .11

o , persons

greater than oov soore above

the

a specified minimura P oint

whom this

with test scores

minimum acceptable

to some

at le0-th ProhshilitY qst equal
criterion

core

specified value.

probability (or,

lations;

Ilrther-O°e' this del ep
ecifi

'% that thisIto

conversel, ,05t e 1,
j, risk)

b
I."

n snbpopu-

hence, the reference Bs the t
Rua

1 RI5K Model

lly, tisfa
tory criterionytab at moliPum levTherefore, solics f sa

te Equal 001 teRuttes theperformance (y*), h
14 Atedictor

cut scores x* (i 0 1, '"' a) bs deV- so that

-Z = Prob(y > y IA "1, 71. )
1

* o X*0 Pro,

(8)

where Z is a fixed constant for all
''` subpopu-probahil itY ef atioces5

lations ni.

To illustrate, again
Ole aDp1 icent5

can be subdivided int° two subpopolstiolls,

Einhorn
and f3as'

1
A from 265Figure 6. (Adapte-

1971, PP. '

Figure 6(a) show the relat

andt:271
::tuttoinn

ionsbip be"Qen a predict0r (tst)

3 5



31

Figure 6

Illustration of Test Bias as Defined

by the Equal Risk Model

Criterion (Y)

Test (X)

Figure 6(a). Conditional distribution of criterion
on test showing risk level.

3 4



Figure 4

Criteric,n (1)

Test (X)

32

Figure 6(b). Subpopulations with common regression'
line but different standard errors of
estimate.

Criterion (Y)

x
2

x
1

Test (X)

Figure 6(c). Subpopulations with the same standard
error of estimate and the same slope
but different intercepts.
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variable and a criterion variable for one subpopulation. The condi-

tional distribution of Y (criterion) given X (predictor) is assumed

to be normal. The shaded portion of the distribution represents the

risk level for a particular value x on the test. In Figure 6(b),

the regression lines for the 040 subpopulations coincide, however,

the standard error of estimate is smaller for subpopulation w
1

than

for w2. Provided, as in the figure, y < y. (the sample mean), then

for any test score x, the level of risk is less for members of

subpopulation wi than for members 1 subnopulation n2. Thus, if

all applicants with predicted criterion scores greater than or equal

to y (X > xi) were selected, the test would discriminate against

subpopulation 7
1
according to the Equal Risk Model. In this situation,

to make the selection procedure fair (according to the Equal Risk

Model) members of subpopulation 7
1
with test scores greater than or

equal to x
I would be accepted, and members of subpopulation w

2
with

test scores greater than or equal to x
2
would be accepted. However,

if the standard error of estimate had been the same in each subpopu-

lstion or if y = y., then the use of a single cut score would be

considered fair to members of both subpopulations. In Figure 6(c),

the two subpopulations have the same standard error of estimate and

the same slope but different intercepts. For any test score x, the

level of risk is less for a person from subpopulation 712 than for a

person from subpopulation IT
I

. If a single cut score is used, then the

test discriminates against members of subpopulation 712 according to

the Equal Risk Model. The selection procedure would be considered fair

(according to the Equal Risk Model) if members of subpopulation
1

3 6)
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(7
2
) with test scores greater than or equal to x

I
(x ) are accepted.

Note that if each subpopulation has the same standard error of estimate

and thc same slope, then the selection strategies proposed by the

Regression Model and the Equal Risk Model are the same.

The converse of the Equal Risk Model would require, given a

minimum level of satisfactory criterion performance (y ) that the

predictor cut scores x
i

(i = 1, g) be determined so that

= Prob(Y ( 57IX = x
1,

n
1
) = = Prob(Y <yIX =x n)g' g

(9)

where Z is a fixed constant degree of risk for all subpopulations ni.

This relationship can be rewritten as

= 1 - Prob(Y > y IX = xi, ni)

= 1- Z ,

where Z = Prob(Y > y
*
Ix = x n ) is the value to be equated among

subpopulations for test fairness as specified by the Equal Risk Model.

Thus, the criterion of the Converse Equal Risk Model is a linear

function of that of the Equal Risk Model. Hence, unlike the Constant

Ratio Model, the Conditional Probability Model, and the Equal

Probability Mbdel, the Equal Risk Model and its converse will always

specify the same selection strategy.
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A Criticue o! the Constant Latio, the Conditional Probability,

and the Equal Probability Models

One problem with the Conditional Probability Mel and the

Converse Conditional Probability Mode: is that each model treats only

one aspect (selection-success) of the test bias issl_e. Recall that

7K = Prob(X > x
*
!Y > y

*
, 7r ) and K = Prob(X < x

*
!Y v 7 ) are the

values to be equated among subpopulations for test fairness as

specified by the Conditional Probability Model and Con-.7erse Conditional

Probability Model, respectively. In practice, we mus: consider

equating both K and IC: among subpopulations. Since it can be shown

that only u-der certain special conditions equating K among subpopu-

lations leads to equating K among subpopulations, and versa

(refer to the section entitled The Converse Conditional Probability

Model), it might be suggested that in order to take both aspects of

the test bias issue (the conditional probability of selection given

success (K) and the conditional probability of rejection given failure

(K)] into consideration, we should at least contemplate equating some

combination of K and IC instead of trying to equate, independently,

either K or k among subpopulations. However, it will be difficult to

decide what function of K and IC should be equated among subpopulations

for fair test use.

Similar comments can be made regarding the Constant Ratio and the

Converse Constant Ratio models, and regarding the Equal Probability

and the Converse Equal Probability models. Each model deals with only

one aspect of the test bias issue. In contrast, tbe definition of
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test bias proposed by the Equal Risk Model deals with both sides of

the issue, because if one equates Z [Equation (8)] among subpopu-

lations, then one also equates the converse [Equation (9)]

Z = 1 - Z among subpopulations.

To see why one should consider both aspects of the issue of

fairness, note that if one tries to increase the conditional proba-

bility of selection given success (K), then one will decrease the

conditional probability of rejection given failure (K). Rewrite K

and K as follows:

and

K -
Prob(X > xi, Y > Y*Ini)

Prob(Y

Prob(X < Y < y*Ini)
-

*Prob(Y < yIni)

Now, for a specified minimum level of criterion performance (y ),

, *
Prob(Y > y

*
In) and Prob(Y < y In) are fixed values. Thus, for K to

* *
increase, Prob(X.> x

i'
Y.> y Ini ) must increase implying that the

*
predictor cut score (x

i
) must decrease. (See Figure 3.) It is

* *
then clear that if xi decreases, then Prob(X < xi, Y < y must

decrease implying that k must decrease. Hence, although, both large

K and large K seem desirable for a given subpopulation i, any

predictor cut score x
i
which leads to an increment in K will result

in a decrement of K. This is similar to the situation in hypothesis

testing where one tries to avoid two types of errors, and, therefore,

has to reach a compromise in selecting a critical region. Thus, if

3 9
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one is inclined to build a model around Cole's conception of test

fairness, then one must try to equate a function of K and k among

subpopulations rather than to equate K or i alone. To do this

would require a value specification for the relative size of K and K.

One can also show that in the case of the Constant Ratio Model

and the Converse Constant Ratio Model, -FT [Equation (5)] will

decrease as R [Equation (2)] increase-;. This indicates the same

dilemma of trying to compromise between equating R or equating

among subpopulation. Thus, a definition of test fairness can only

be satisfactory.if one considers both R and R. Thus, among the

Constant Ratio, the Conditional Probability, the Equal Probability,

and the Equal Risk models, only the Equal Risk Model is satisfactory

in the sense that it takes both sides (selection-success and rejection-

failure) of the test bias issue into account.

Furthermore, the Conditional Probability Model is incomplete

in the sense that it does not provide a unique solution for the

predictor cut scores x
i

(i = 1, ..., g). To be explicit, if one is

in a quota-free selection situation, then for any fixed subpopulation

n one can find a value x
*

such that K = Prob(X > x
*
1Y > y

*
, 7 ) iS

k k

equal to some designated value. The resulting cut scores x
i

(i = 1, g) do not have to fall on the regression lines for the

respective subpopulations. In fact, one can arbitrarily select a

subpopulation n
k

and decide that the predictor cut score x
k

for 7

will fall on its regression line. Thus, x is unique and the value

of K to be equated among subpopulations is fixed. Then for all other

4
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subpopulations ir (i 0 = 1, g), one can readily find predictor

*,
cut scores x

i
such that Prob(X 2:x

i
'Y.> y , ) = K (the conditional

probability fixed by choosing xt to be on the regression line for Tre).

Hence, the requirement given by Equation (3) does not, by itself

provide a model which results in unique selections of the predictor cut

scores xi. Therefore, the requirement given by Equation (3) cannot

be considered as a model which leads to a selection strategy unless

one more condition (e.g,, in a quota-free selection situation choose

x to be on the regression line for Tr ) is imposed. On the other

hand, if one is in a restricted selection situation, that one extra

condition is

*po = E p [Prob(X > xi iTr
i
)]

i=1

where po is the proportion of the combined population that can be

accepted and pi is the proportion of the combined population who are

members of subpopulation Tri. This same indeterminancy of solution

occurs also in the Constant Ratio Model, the Equal Probability Model,

the Fqual Risk Model, and the three "converse" models for test bias.

The Culture-Modified Criterion Model

In addition to the criterion variable Y and the p edictor

variable X, Darlington (1971) defines a third variable C, which

denotes an applicant's group membership. The variable C may be

either dichotomous or continuous (e.g., sex; race; socio-economic

status). Darlington then gives (and discards) four definitions of

41
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test bias or cultural fairness in terms of the correlations among the

three variables X, Y, and C.

In order to state the four definitions in common correlational

terminJlogy, simplifying assumptions are introduced: the variables

X and Y have a bivariate normal distribution in each subpopulation;

the correlation between X and Y (r ) is positive, and; the standard
xY

deviation on the test (s
x), the standard deviation on the criterion

(s ), and r are constant for each subpopulation. Darlington'sxy

four definitions of test fairness are:

(1) r
cx

= r /r ,

cy

(2) r = r
cx cy

,

(3) r = r r , andcx cy xy

(4) r
cx

= 0,

where the r's represent the correlations between the subscripted

variables. In each case, a test is considered culturally fair if

it satisfies the appropriate equation. (Darlington, 1971, p. 73.)

Definition (1) is equivalent to the Regression Model which

requires a common regression line. Definition (2) is the same as

Thorndike's Constant Ratio Model. Definition (3) is a special case

of Cole's Conditional Probability Model. Definition (4) is the same

as the requirement that subpopulations have equal means on the test.

(Darlington, 1971, pp. 73-75; Linn, 1973, pp. 156-157.)

4 2
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The four definitions yield contradictory results except in the

case of perfect validity (rxy = 1) or in the case of equal subpopu-

lation means on the criterion (r = 0). Darlington also claims thatcy

the four definitions are

all based on the false view that optimum treatment of
cultural factors in test construction or test selection can
be reduced to completely mechanical procedures. If a
conflict arises between the two goals of maximizing a test's
validity and minimizing the test's discrimination against
certain cultural groups, then a subjective, policy-level
decision must be made concerning the relative importance of
the two goals. [p. 71.]

Darlington then suggests that instead of predicting the criterion

variable Y that a variable (Y - kC) be defined where k is determined

by a subjective value judgment on the part of the decision maker

(test user). Darlington urges that

the term "cultural fairness" be replaced in public discussions
by the concept of "cultural optimality." The question of
whether a test is culturally optimum can be divided in two:
a subjective, policy-level question concerning the optimum
balance between criterion performance and cultural factors
(operationalized ... as the optimum value of k), and a purely
empirical question concerning the test's correlation with
the culture-modified variable (Y - kC) and whether that
correlation can be raised. [pp. 79-80.]

According to thiE formulation, each institution must first choose a

value of k, indicating whether there is special value in the 9e1ection

of members from some subpopulation. That is, the decision maker must

answer the question, "How many units on Y are considered equivalent

in value to one unit on C?" Then, the psychometrician's job is to

contruct a test to predict the variable (Y - kC). Note that when k

is set equal to zero (when there is no reason to favor one cultural

group) this procedure reduces to that of the Regression Model. Also

4
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note that where the other models for test bias would set different

predictor cut scores for each subpopulation, Darlington would add a

specified number of points to the scores of one subpopulation, and

then use the same predictor cut score.

Darlington's formulation of test fairness recognizes, explicitly,

that the variable which is traditionally considered to be the criterion

(e.g., college grade point average), is not the only criterion. Group

membership or culture is also part of the criterion. Darlington,

then, argues that the traditionally
accepted criterion must be

modified for culture; hence, the reference to Darlington's formulation

of test fairness as the Culture-Modified Criterion Model.

The Unequal Probability Model

In our description of the decision process, we noted that an

outcome (success or failure) is associated with each final decision

(selection or rejection). The four possible outcomes are:

(1) select a potential success, (2) reject a potential success,

(3) reject a potential failure, and (4) select a potential failure.

Outcomes 1 and 3 represent correct decisions, whereas, outcomes 2

and 4 represent incorrect decisions. It is possible to rate each

outcome on a scale of desirability. The particular value, or rating,

associated with each outcome will be referred to as the utility of

that outcome.

For the moment, let us focus our attention on outcome 1. The

probability that outcome 1 occurs is simply the joint probability

of success and selection. The utility of outcome 1 for subpopulation
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(i =1,...,g)willbedenotedbya..Since outcome 1 represents

a correct decision, the value ai will be positive. Thp of values

a
i

(i = 1, g) is determined by the test user L.3 n r ,A11: of a

subjective, policy-level decision. One could then p-opose 'Aat a

selection strategy is fair if, given a minimum level of satisfactory

criterion performance (y ), the predictor cut scores x
i

(i = 1, g)

are determined so that

al(Prob(Y > y*Ix > x*
1

, 7T

1
))

= . . = a [Prob(Y > y*1X > x
*

, )] . (10)

This definition of test fairness will be referred to as the Unequal

Probability Model. Note that if the values a
i

(i = 1, g) are

the same for each subpopulation 7i, then the Unequal Probability

Model reduces to the Equal Probability Model. The Unequal Probability

Model explicitly takes group membership, as well as test validity, into

consideration in its requirement for a "fair" selection strategy,

however, it too has a converse statement which contradicts the direct

statement.

An Incoherent Expected Utility Model

Figure 7 diagrams the selection situation and lists the four

possible outcomes of the decision process. The utilities associated

with correct decisions (outcomes 1 and 3) are positive, whereas, the

utilities associated with incorrect decisions (outcomes 2 and 4)

are negative (i.e., in reference to Figure 7, ai, ci 2.0 and

4 5



Figure 7

Outcomes of the Decision Process

Criterion (Y)

Success

Failure

Reject Accept

Outcome Probability

(1) Select a potential Prob(yly*IX>x:,
success

[Prob(X>xlciIffi)]

, *(2) Reject a potential Prob(Y>y
*

ffi)
success

*,
prob(X<xilly]

*, *
(3) Reject a potential Prob(Yry 1X<xi,

failure

*,
(Prob(X<xilirin

* *
(4) Select a potential Prob(YKy )X/xi, vi)

failure

[Prob(X,41ffi]

4 6

Test (X)

Utility

a
i

bi

c
i

d
i
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A selection decision should be dependent only on the applicant's

particular test score and the utilities associated with the subpopu-

lation of which he is a member. In other words, a coherent model

for selection will depend only on the utility structure and the

conditional distribution of Y given X = x; it will not depend on

the marginal distribution of X.

Specifically, it can be noted then that the Regression and the

Equal Risk models are both special cases of a coherent expected

utility model obtained when specific assumptions are made about the

utility structure for each subpopulation. In particular, with the

Equal Risk Model, the conditions are the equality of (ai - bi) for

all subpopulations 7i and the equality of (ci - di) for all subpopu-

lations

The point to be made here is that the only models that survive

are models that do, at least implicitly, involve utility specifi-

cations. The search for a purely psychometric criterion for fairness

in test use has not been successful, and Darlington's view that such

a criterion is not possible appears valid. It would seem that there

can be no distinction between maximizing expected utility and strategy

fairness. The second concept is strictly subsumed under the first.

Our task, then, is to explicate the expected utility model, and to

distinguish between fairness to individuals and fairness to groups.

The task will not be a simple one.
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An Appraisal of the Test Bias Models

The Regression, the Constant Ratio, the Conditional Probability,

the Equal Probability, the Equal Risk, and the CultureModified

Criterion models are each explications of general concepts of what

constitutes the fair use of tests in a selection situation. There

seems to be nothing in the literature that clearly indicates when,

if ever, one of the models is clearly preferable to the other five

models. Thus, the practitioner has no clear guidance in the choice

of a test bias model. Further, three of these models, the Constant

Ratio, the Ccaditional Probability, and the Equal Probability models

have been shown to be internally contradictorY and clearly based on

the wrong conditional probability.

There has been considerable interest in the Constant Ratio Model

and the Conditional Probability Model based on the fact that these

models yield a popular result, in that they give apparently lower cut

scores for minority populations. The appeal of these models,

then, is that they produce a desirable result. One could contend that

it is generally not appropriate to evaluate the correctness of a

model solely on the basis of the pleasantness or unpleasantness of its

implications, but, rather, that one must look carefully at the logical

structure of the model. One must be sure that the model is getting

the right results for the right reasons. If the models are giving

the right results for the wrong reasons, it may well be possible that,

in some other circumstances, wrong answers will be forthcoming.
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To see that this may happen, consider a situation in which the

regression lines in the minority and the majority populations are

identical, but in which the mean values of X and Y are higher in the

minority (disfavored) population and lower in the majority (favored)

population. (Refer to Figure 4.) This situation is not typical but,

in fact, can be found if one compares, for instance, a Japanese or

Chinese-American minority population with a white American majority

population. In this situation, both the Constant Ratio and the

Conditional Probability models will give lower predictor cut scores

and, hence, easier entry to the majority population. The Regression

Model and the Equal Risk Model will give identical predictor cut

scores. If, as well may be the case, the Japanese or Chinese-

American subpopulation has been discriminated against in some

situation, then our desire might be to provide easier access for that

subpopulation, but, in fact, the two models being considered make

access more difficult.

From this example, it can be seen that the two models being

discussed make a correction that is usually in the desirable direction,

but that they make that correction for the wrong reason. They make

the correction simply because of differences in the mean values of

X and Y in the two populations, and they do not take into account any

public desire or social necessity to rectify unfair treatment to a

minority population. On the other hand, if, following the general

ideas laid down here, one allows that differential treatment should be

given to some heretofore disfavored group, then a lower predictor cut

5 0
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score will be obtained for that group, and, in this case, the lower

score is obtained for the right reason, because of their disfavored

status (different utility structure), and not simply because of a

difference in mean values. We judge that for these reasons the use of

these models is contraindicated. In stating this, it is not suggested

that any ill effects will necessarily result from their use. Only by

more detailed study would it be possible to document more completely

situations in which these models break down. However, any logical

system which contains a contradiction must break down somewhere and

one example has been given in which this occurs. One might also remark

that with the Conditional Probability Model at least one other very

unsatisfactory specification will occur. Suppose the minority group

is, say, two standard deviations below the majority group both on

predictor and criterion scores, and suppose the correlation is low in

the minority group and high in the majority group. Then, this model

will result in an exceptionally high percentage of failures among the

minority group members who are accepted. Perhaps, this may at times

be acceptable. However, instead of working with a model in which this

is the standard implication, one should have a model in which the

question of whether or not this is acceptable is posed directly by

the model.

There exists a body of quantitative reasoning, whose origins

are ancient and remote, that has received codification in this century

in the work of Von Neumann and Morgenstern (1947), Wald (1950), and
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others. In the theory of the rational-economic man, developed in

these writir;., , when all probabilities of outcomes are assumed known

(an assw_Iption made explicitly here and implicity in previous state-

merts of the models under consideration) there is a simplp rnradigm

'e..11.:ad for rational decision. In that paradigm the 6dFil:ability or

utility of each possible outcome is stated quantitativdly. Then,

given all available information concerning the person in question,

the probability of each possible outcome is stated for each decision

under consideration. Next, for each possible decision, the utility

of each outcome is multiplied by the probability of each outcome and

the products are summed to provide an expected utility. Finally,

that decision is then made for which the expected utility is highest.

Most statisticians interested in decision problems accept the

correctness of the Von Neumann and Morgenstern-Wald model and the

incorrectness of any statistical decision procedure that does not

conform to that model. It seems clear that the Constant Ratio Model,

the Conditional Probability Model, and the Equal Probability Model,

do not conform to taat model, though the ideas that are at their bases

may well be reformulated in a coherent manner.

The fundamental fallacy in each of these models is that they are

based on the wrong conditional probability. Statistical decision

theory demands that the probability used in the statistical analysis

be

Prob(Y1X = x) .
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That is, the conditioning must be on the specific value x observed

on the person and not on Xly or X > x. The three models mentioned

above do not use the correct probability: The Regression Model and

the Equal Risk Model do, and it is for this reason that no logical

contradictions have arisen with these models. This is not to say

that these latter models are entirely satisfactory; indeed, one could

judge them to be generally unsatisfactory. While these models are

both special cases of the general decision-theoretic formulation they

are, it would seem, much too special. They each involve assumptions

about utilities of outcomes which should not be concealed, but rather

should be subject to public debate. Some individuals (e.g., Humphreys,

1972) have indicated a basic dislike of differential treatment of

groups while possibly accepting its short-term desirability. That

position has merit, though in the current climate of opinion, it may

represent a minority view. One coherent expected utility model will

incorporate such a specification (the Equal Risk Model) as a special

case. But, it is suggested that if this criterion were preferable,

it would be better to arrive at it on the basis of careful analysis

and debate in the area of public policy rather than because of some

notion regarding the universal applicability of the Equal Risk Model.

Thorndike has argued forcefully that the marginal distributions

of both X and Y are important in culture fair testing, whereon, the

decision-theoretic formulation concentrates only on the conditional

distribution of Y given x. Thorndike's view that some consideration

must be given in the setting of cutting scores to their effect on
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the percentage of successful persons that will thereby obtain in

the respective subpopulations can easily be accommodated within

the threshold utility model. It would seem to us that it might be

appropriate in assessing utilities in the Ywo subpopulations to take

into consideration the implications with respect to these marginal

distributions. We would expect, however, this consideration cf

marginal distributions to also take into account the effect on the

percentage of failures in the two subpopulations. Such investigation

could result in our utilities being related to the location para-

meters of the marginal distributions, but this would not affect the

probability aspect of the decision-theoretic formulation which would

still depend only on the distribution of Ylx. A similar remark might

be made with respect to Cole's conception of test fairness which

might be reformulated in terms of utilLties rather than probabilities.

Darlington's Culture-Modified Criterion Model is the only model

surveyed that addresses itself to the utility question. It also has

the desirable feature of focusing on the correct conditional proba-

bility. Unfortunately, this formulation is still not entirely

consistent with the decision-theoretic approach (i.e., it does not

incorporate a formal utility function), and, hence, is unlikely to

be acceptable, though at present arguments have not been formulated

with which to confront it.

In an unpublished paper, Gross and Su (1973) investigated one

decision-theoretic approach to the test bias problem but did not take

that discussion very far. In a subsequent paper a rather detailed

investigation of this decision-theoretic approach will be explored mora

fully. Other formulations within the decision-theoretic framework are

possible and should be investigated.

5 4



52

References

Anastasi, A. Psychological Testing. (3rd Ed.) New York: Macmillan,
1968.

tlett, C. J., and O'Leary, B. S. A differential p'tediction model
to moderate the effects of heterogeneous groups tA personnel
selection and classification. Personnel Psychj11., 1969, 22,
1-17.

Bowers, J. The comparison of GPA regression equations for regularly
admitted and disadvantaged freshmen at the Univetity of Illinois.
Journal of Educational Measurement, 1970, 7, 219-225.

Cleary, T. A. Test Bias: Prediction of grades of NeAro and white
students in integrated colleges. Journal of EdwcAtional
Measureme_t, 1968, 5, 115-124.

Cole, N. S. Bias in selection. Journal of Educational Measurement,
1973, 10, 237-255.

Cronbach, L. J., and Gleser, G. C. _psycholoicaldPersonnel
Decisions. (2nd Ed.) Urbana: University of Ill3nois Press,
1965.

Darlington, R. B. Another look at "cultural fairness", Journal of
Educational Measurement, 1971, 8, 71-82.

Einhorn, N. J., and Bass, A. R. Methodological considvrations
relevant to discrimination in employment testing.- Psychological
Bulletin, 1971, 75, 261-269.

Gross, A. ., and Su, Wen-Huey. A decision theory appeoach to test
bias. Unpublished manuscript, 1973.

Guion, R. Employmont tests and discriminatory hiring. Industrial
Relations, 1966, 5, 20-37.

Humphreys, L. G. Implications of group differences foot test inter-
pretation. From the Proceedings of the 1972 Invi..ationa1
Conference on Testig Problems--Assessment in a Tturalistic
Society. N.J.: Educational Testing Service, 197.

Linn, R. L. Fair test use in selection. Review of E4.4cationa1
Research, 1973, 43, 139-161.

Linn, R. L., and Werts, C. E. Considerations for studtes of test
bias. Journal of Educational Measurement, 1971, 8, 1-4.

Schmidt, F. L., and Hunter, J. E. Racial and ethnic btaa in
psychological tests. American Psychologist, 1974, 1-8.

Temp, G. Validity of the SAT for blacks and whites in thirteen
integrated institutions. Journal of Educational 4easurement,
1971, 8, 245-251.

5 5



53

Thorndike, R. L. Concepts of culture-fairness. Journal of Educational
Measurement, 1971, 8, 63-70.

Von Neumann, J., and Morgenstern, 0. Theory of Games and Economic
Behavior. (2nd Ed.) Princeton: Princeton University Press,
1947.

Wald, A. Statistical Decision Functions. New York: Wiley, 1950.


