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Analysis of covariance -- Angel of salvation, or temptress and deluder?

Lee J. Cronbach, David R. Rogosa, Robert E. Floden and Gary G. Price

Stanford Evaluation Consortium, Stanford University

In comparing social and educational programs, treatment effects

are confounded with effects of subject characteristics when self-

selection or a nonrandom assignment rule determines who enters (or

who completes) a treatment.

In an attempt to remove confounding, the investigator might con-

fine his comparison to subsets of cases whose distributions on one

or more initial measures are the same within all treatmentE. It

was established long ago (Rulon, 1941; Thorndike, 1942) that such

post hoc matching of cases produces a biased conclusion. Analysis

of covariance (ancova), the usual current method of coping with non-

equivalence, uses the within-groups regression of outcome on a char

acteristic measured prior to treatment to adjust the outcome measure.

This purports to estimate the treatment difference for persons who

were alike at the outset. It is in effect a matching procedure;

but few users of ancova have been aware that it too is biased.

Two decades ago Cochran (1953, esp. p. 689) drew attention

to the bias, but he was almost unique among statisticians in making

this point. If the covariate does not fully reflect the difference

between experimental and control grnups, he suggested, analysis

of cc 'ance underadjusts. More forcefully, Campbell and Erlebacher

(1970) charged tnat statistical bias may have produced the negative
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conclusion in the WestjnghousE evaluation of Head Start. They asserted that

whenever the treatment groups differ initially, ancova will not adjust ade-

quately for the initial group differences. The adjusted outco:.e mean of

the "more a'01?" group will be unduly high, relative to the adjusted out-

come mean of tho "less able" group. Much the same argument appears in

Campbell and Boruch (1975).

Their assertion is rapidly becoming part of the conventional wisdom

of social scientists. A recent authoritative statement on policy research

(Riecken and Boruch, 1974, p. 109) not only asserts that ancova and

similar methods "underadjust for the latent group differences" but

recommends that the person analyzing posttests "should live with such

pretest differences rather than try to adjust them away . . ." As other

examples of this pessimism in social science, we note Lord's statement

(1967, p. 305; see also Lord, 1969) " . . that with the data usually

available for such studies there simply is no logical or statistical

procedure that can be counted on to make proper allowances for uncontrolled

preexisting differences between groups," and of Meehl's statement (1970,

p. 402) that a comparison made in an ex post facto experiment

is "in most instances so radically defective in its logical structure

that it is in principle incapable of answering the kinds of theoretical

questions which typically give rise to its use."

When cases are not assigned at random tc treatments, the samples

receiving the treatments are best thought of as coming from separate

populations (Thorndike, 1942). These multi-population studies,are
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Lee J. Cronbach, David R. Rogosa, Robert E. Floden and Gary G. Price

Stanford Evaluation Consortium, Stanford Univel tty*

Abstract

The estinate of a "treatment effect" reached by analysis of

covariance in a nonrandomized experiment depends on the covariate chosen.

An unbiased estimate of the treatment effect would often require that a different

covariate be used in each treatment. A sufficient but unlikely condition

for an unbiased estimate is that the covariate for eact -eatment is (a) the

complete covariate that predicts the outcome in that treatment as fully as

possible from initial characteristics of the case, or (b) the complete

discriminant that fully represents differences between the group means

on the initial characteristics. When the covariate for a treatment is a

weighted composite of (a) and (b), the adjusted outcome mean for a treat:

ment may have positive or negative basis, the bias being a nonlinear

function of the weights. To the extent that (a) and (b) do not wholly

account for the covariate, the adjustmut to the outcome mean is reduced

in absolute magnitude. A procedure is offered to correct for error of

measurement when rl,ere are two or more fallible covariables. Specification

errors as well as errors of measurement have an attenuating effect, however.

Since the parameters of the specification errors are unknown, no correction

procedures can be counted on to provide an unbiased estimate of the

treatment effezt.

The Stanford Evaluation Consortium is supported by a grant from the

Russell Sage Foundation.
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called quasiexperiments in the social-science literature, observational

studies in the statistical literature. For a recent review of the statis-

tical literature on such studies, see McKinlay (1975). Because of selection

or self-selection, the populations have different distributions of initial

characteristics.

The most direct problem of inference is to describe the relation of

outcome to initial characteristics in one population at a time. As Cronbach

and Furby (1970, p. 78) suggested, the within-treatment regression equation

relating outcome to true initial status
1
on relevant covariates describes

the effect in a suitable way. This inference, made separately in cach popu-

lSeion, seems to present no insuperable difficulties. It is the comparison

of treatments that encounters serious difficulties.

This paper concentrates on the estimate of the intercept clA within

Population A. The bias in the estimate is described as a function of the

underlying parameters of a linear model for quasiexperiments. Once the

bias arising from a particular covariate is characterized within each treat-

ment, it is a simple matter to characterize the bias in the estimated dif-

ference &
A - &B , arising from applying that covariate in each treatment

as in ancova. It is also possible to evaluate &
A

and a
B

each with a differ-

ent (optimal) covariate; the bias in this difference is another function of

the same parameters. The conditions affecting bias also affect statistical

efficiency, not necessarily in the same way; we do not purstte questions of

efficiency here.

1"
True score" is an ambiguous concept. For present purposes the reader

can think in terms of classical test theory (Lord & Novick, 1968), or of
theory for congeric tests (Joreskog, 1971).



As Cochran and Rubin (1973) implied, ancova does not always

underadjust. The conditions under which the treatment given the

less able grrwp will be underrated or overrated can be specified;

some of these conditions are indicated by Weisberg and Bryk (1974).

We shall show that an adequate adjustment or evaluation of bias

requires information that is unlikely to be obtainable.

Our thinking grows out of exchanges with other investigators, and

is influenced by their published papers and drafts and by their reactions

to preliminary versions of our oWn thinking. Tn particular,

we have received help from conversations with Robert Boruch, Donald T.

Campbell, Albert Erlebacher, and their associates, with David E. Wiley

and Ward Keesling, and with Janet D. Elashoff, Arthur S. Goldberger,

Frederic M. Lord, and Donald B. Rubin. We have benefited also from inter-

changes with James W. Bush and his group studying the methodological

problems as seen in research on delivery of health services. Rosedith

Sitgreaves and other colleagues in the Technical Seminar of the Stanford

Evaluation Consortium have made helpful ccmments. We hope that responses

to this preliminary report will extend our list of creditors.

Definitions, notation and model

Assume that an investigatic0 is intended to appraise effects of

Treatments A and B on outcomP Y. To consider here more than two treat-

ments, more than one outcome, etc., would obsc, re what is novel in our

argument. To appraise the treatmer% is *..o determine the expected value

of Y in that treatment, for cases whose initial characteristics are known.
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Notation a d sampling assumptions

We speak of Populations A and B, and of their union Population G,

Ihe grand population. This two-population model reduces to the one-

population model, the true experiment, when corresponding parameters of

the two populations are equal.

Population membe,ship reflects eligibility rules, readiness to

volunteer, etc. In any subgroup of G having uniform initial

characteristics, one can specify the probability of belonging to

Pow:lotion A conditional on initial characteristics, and its complement

the probability of belonging to B. Integrating these over the density

distribution of initial characteristics in Population G, we arrive at

unconditional probabilities: A member of Population G fall.: into Popula-

tion A with probability ITA It is convenient to write K for

7
A
/7

B
= 7

A
/(1-7

A
). When an after-school science program attracts only

a select group of students, 7TA is perhaps 0.05 and K iS 0.05/0.95=0.053.

As Weisberg and Bryk emphasized, variables may correlate differently

in Populations A, B, and G. Score composites that are uncorrelated in

A (or B, or G) may be correlated in the other two populations.

Geometric intuitions about dimensions, angular separations, etc. cannot

be trusted, unless one is careful to specify and keep in mind one

particular population.

Formally, it is assumed here that cases have been drawn at random

from Population A to receive Treatment A, etc. Cases may usually be

thought of as persons. An investigator who applies a treatment

to groups (e.g., to schools, classes, or communities) should take this

larger aggregation as the case, unless he is prepared to assume that

persons or other units within an aggregation are treated independently.
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Every case p is described at the outset of the experiment by a

vector of true scores E .(i = 1, 2, ...). A Ei may be combined with
pi

anerrorvariableCtogenerateaX..Values of X are random, not

fixed. W will represent any variable (any X or E or combination of

them) cliosen as a covariate. To distinguish van.ables we write W1 and W
2

or E. ,and E , etc. E will refer to the truf score corresponding to W
1,

etc.

We use subscripts where necessary to identify the distribution con-

sidered. E.g., and il(A) are the means of X1 in Population A

and in a sample from Population A, respectively. The code is as follows:

(A), (B) Calculated within Treatments A and B, respectively.

(T) Calculated within Treatment T, where T may be A or B.

(A,B) Calculated from the ponled distribution of scores
expressed as deviatio , from the respective treat-
ment means. Population A,B is an artificial, but
statistically valid, population. In Sample A,B
the numbers of cases in A must be K times the numr
ber in B or else weighting must be used.

(G) Calculated on the grand population or on a pooled
sample with A and B cases in the ratio, K:l.

We make an important scaling assumption, without loss of generality:

= 0, hence = 0.fur any Ei, = 0. Also,

Consequently, px(B)

For any and T, it is assumed that pc(T) = 0. This denies that fal-

libleinformation(Xasdistinctfromthecorresponding.)influencesEi

which treatment a person gets. (But see Note 4, p. 17). It will not be

assumed that , in general, a
Ei(A) °Ei(B) or °E E,(A) °E

i
E
j
(B)

i

Indeed, all homogeneity assumptions will be avoided.

10



or observable in practice) are included in the set of Ei; any combination

of theE.is itself a E.. The set is to be thought of as indefinitely

large. An investigator would have exhaustive information on case p if

he had a set of scores for p on all the E
i

.

A formal restriction is needed if the matrix of p
E.E.(T)

j

full rank. Components of the Ei, orthogonal within T, can be identified,

and any Ei can be expressed as a weighted sum of these components, the

weights possibly differing with the treatment. If any linear combination

of Ej has a vector of weights in T that are proportional to the weights

of Ei, we assume it to have the same absolute coefficient of variation

(101.) as E.. (If the ratio of the vectors is negative then the coef-
i

ficients of variation are opposite in sign.) This requirement is imposed

in Population A and Population B, separately. Although hypothe ical cases

can be constructed in which the assumption is violated, it appears impos-

sible for a violation to arise in practice.

is not of

*

isdefinedastheE.that best accounts for the pooled within-
].

treatmentsvariance,andcisdefinedastheE.that best predicts Y

within Population T. When the chosen covariate W is the best predictor

of Y in Population A,B--that is, when is chosen as the covariate--

11

19

The investigator cannot be sure of the direction of bias in his am/ .

Even if (hypothetically) he knows that his covariate lies in
2 , the

investigator who selects a single arbitrary W, has no knowledze of th



the residual variance a
2

Y-W(A,B)

8

is minimized. To complete the defini-

tions: p
Y&

*
(A,B)

0 and pvr*om >._ 0. Unless and C
T

are the same,''
P *, > P *,Yar ) YC kT)

It should be noted that pyv,(T) can be negative in
'T

one tn'atment. p * *
A (T)

may be negative also (for example, if one treat-

ment capitAlizes on extroversion and one on introversion).

Arbitrarily
2
we designate the treatment for which pe(T)> 0 as

Treatment A. Defining A on the basis of makes A "the more able group,"

insofar as that label can be given a priori meaning The investigator

who has less than exhaustive information on his sample is not able to iden-

tify
*

, hence he cannot directly identify which treatment is A.

He will presumably think of the group whose sample mean on W is

higher as "the more able group", if the sign of p
YW(T)

is positive in

both treatments. Where
PYW(T)

does have the same sign in both treatments,

we polarize W to make the sign positive. Where tAe pyw(T) are opposite

in sign, we polarize W to make the sign positive in A. The treatment for

which p
W(T)

> 0 is designated Tw.

Model accounting for

C is the error yf observing Y. U is a disturbance taking into

account any unpredictable event that affects the true score on Y; it

includes variatIons in the delivery of the treatment, and events such as

illness that could not be predicted from initial status. Pu(T) PC(T)

We assume C
T' T'

and C linearly independent. For case p in

Population T,

(I) Y = a + a - uTp T Y-(T) Tp TP P

2
If = 0, the assignment of the label A is a matter of In-

differencZE*R4re will be other statements where at a boundary a descrip-

tion or polarization is equivocal. We do not comment on other special

cases of this kind.
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Having set py(G) at zero, we can identify aT as the expected

value of Y for cases in Population T whose = po(G) When

= = 1 and f3YY(A) Y*(B)'
= 6 aA - aB describPsP*(A) (.,A

the treatment effect at every value of

Interest in the a is diminished when the regressions of Y on

any are heterogeneous (as will occur when any of the three conditions

just stated is violated). That parameter is emphasized in this paper,

however, because it has been the focus in previous uses of ancova. Even

with heterogeneous regressions, aT is relevant for decisions where one

proposes to apply the same treatment to all cases in the future. Suppose

an investigator comparing Textbooks A and B believes that p * * = 1,
A B

A disordinal interaction of this kind
6 * > 6

Y"
* and(A) (Br aA

>
aB

might suggest assigning students above a certain level of
*

to A, and

the others to B. The investigator may, however, recommend uniform adop-

tion of Textbook A hereafter. Such a policy would be reasonable whenever

the costs of keeping two treatments in place outweigh the benefits from

differentiated assignment.

The complete discriminant e

In general, Populations A and B will be differentiated in several

respects. We introduce the construct of a "complete discriminant" (which

will coincide with the linear discriminant function under restrictive

assumptions). Consider a set of orthogonal components Z1, Zz . .

derived from the matrix of p
E.E. (G)

j

The complete discriminant e is defined so that in either T, for all

pairs, : pz co(G) = pzk(T) :

to make p = -p 0 > 0.Eo(A) (B)

o .

is polarized
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Group membership depends on the characteristics of the case that

influence the decision to enter and remain in a treatment and/or the char-

acteristics considered in assignment to treatments. (An error e can func-

tion as a discriminant; e.g., a student who by chance earns a higher SAT

score than his true score may as a consequence apply to and be accepted

by a more selective college. To make our argument as direct as possible

we have ruled this out by specifying lic(T) = 0, hence PuE(G) = 0 for

all E. But see Note 4, p. 17.)

Aeiusted outcome

By "adjusted outcome" we mean Y - ayw
(T)

W. If
T

is the chosen

covariate, we have the ideally adjusted outcome:

(2)
-.-e:

.Tp Tp Tp W(T) Tp aT -Tp
+

p

Since the expected values of V and over persons within T are

zero, the mean of this adjusted outcome within Sample T is an

unbiased estimate of aT. The central question in this papr- has to do

with the bias in a
T

when the chosen covariate W is not c.

Traditional formulations and procedures in the light of this vodel

The constructs represented by C:1, and
o

do not appear explicitly

in the literature on ancova. The usual model is expressed in terms of a

single covariate, more or less as follows:

(3)
IfTp °IT BYWA,B)/4/Tp uTp p

Homogeneity of regressions for the particular W ayw
(A) a (B)

is explicitly assumed. To apply ancova, an investigatorBYW(A,B)

4
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collects data on one or more X. that he considers relevant. If he

observes more than one X he forms the composite W that maximizes

r
W(AB)' Ottlerwise,hisarbitrarilychosenX.becoms W.Y,

Using a sample estimate of B
'YWA,B)' the inves'_ligator can estimate

a
A

and a
B

or he can estimate aA aB in one sl,ep. He usually tests

the null hypothesis aA aB = 0, assuming that values of W are

fixed. laking W as random is appropriate in a two-population

experiment; but statistical theory for random covariates is limited.

The traditional assumption of homogeneous regressions can be

weakened by adding a term in W
Tp

x T to (3), T being a dummy

variable. The analysis proceeds much as before (Atiqullah, 1964;

Cramer, 1972; Goldberger, 1972b),,ae treatment effect being described

as the difference between the adjusted
treatment means evaluated at

the grand mean on X .

Since the 1950s, statisticians have been conscious that error,of

measurement makes the usual estimate of aA aB inadequate. T...rd

(1960) developed a procedure for use in a two-population experiment

when two fallible, equivalent measures W ad W' have been made,

the corresponding being fixed. Lord estimates what aA aB

would be if were known and chosen asV

15
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the covariate. Lord's formulation and the work of Porter (1967) and

DeGracie (1968) seem implicitly to assume that one variable is the best

predictor of Y in Populations A, B, and A,B, and that this variable

has been chosen as the covariate. Unpublished notes by various authors

have touched on the problem of correcting for error of measurement when

the X.
1

represent two or more . At best, a solution along the

lines of those notes must assume that these F. can be combined into.1

a variable such that
(A)

k =
(B

n .,. = 1. Some theoreticians
CB W

W P '' )A W
have been aware that an error-free but incomplete covariate adjusts the

treatment effect inadequately, the most complete discussions being those

of Cochran and Rubin (1973) and Weisberg and Bryk (1974).

-*
Although we have not seen any formal use of the construct t, ,

the concept of
*

appears in considerations of model 4fication

(e.g., DeGracie and Fuller, 1972, p. 930). The literaturc; on structural

models of social and economic processes refers to a model as being

completely specified if all causal influences are included. That

is, model specification is complete if a set of included in

the model can be combined to evaluate
T

A person who (hypothetically) had ideal information

in a two-population or a one-population experiment should compute

Y(A) and f3

YE
*
(B)

. Entering these in (2) and averaging over cases
6

A
would lead to unbiased estimates of aA and otD. This procedure makes

no assumption of homogeneity, and it does not require using the same

covariate in each treatment.

16
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Notes on heterogeneity of regression

Before turning to the analysis of bias, we comment on aspects of

the homogeneity assumption.

(1) The investigator whose data fail to reject the null hypothesis

BYW(A)
f3yw(B) = 0 cannot confidently conclude that the regressions

are homogeneous. With samples of the usual size, the test on regression

slopes is not powerful enough to detect important differences (Cronbach

and Snow, in press, Chapter 4). Having regarded the regressions onto

W as homogeneous, the investigator usually interprets aA at as

describing the expected effect in Population G for any value of

other initial characteristicsbut this may not be valid even when

/8194(A) 13YW(B).

(2) It does not appear likely that the same variable will be the

best predictor of outcome in both populations, as different treatments

can be expected to call upon aptitudes in different proportions. Unless

both the pr*r.k(T) are 1, the regressions of Y onto not more than one
AB

linear combination of E* and E* are homogeneous. If both p * * =1,A EAEB (T)

the regressions may or may not be homogeneous. A similar statement can be

made about observed scores. Hence it is a priori unlikely that whatever W

the investigator chooses will yield homogeneous regressions.

(3) Procedures suggested for taking error of measurement into

account have assumed that W has the same reliability in each treatment.

This seems not to be an appropriate assumption in a twopopulation

2 2experiment, since a
E (A) usually will not equal a

E (B) .
Unless one

does assume equal reliabilities, homogeneous regressions onto W imply

nonhomogeneous regressions onto E

17
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T estimated with an arbitrary, wholly relevant covariate

Assum tions and dimensionalization

In this section we confine attention to relationships in Population A

(not the sample), and to a covariate that within A is a linear function of

0 and E . The initial argument will be developed under the followingA

assumptions:

1. 0 < p
o

*
E
A (A)

< 1 .

E

2. Dimensions I and II define the plane QA, in which EA and

e lie. p 1 = 0 , andI(A) =
-(A)

p
I II(A)A

R
2

°
'I II(A)

= 1 .

3. p
II(A)

> 0 . (From Assumption 1, p
I(A)

> 0 .)

2 9
4. G = G = 1 .DX) II(A)

5. The covariate W
QA is an arbitrary linear combination of E

A

and e ; i.e. 2 W lies in Q
A

.Q
A

Consistent with a polarization rule made earlier, p * > 0 .

E
A
W
S1A

(A)

We now set out to relate the bias in a
A

to the following set of

2 2 2parameters (all within Population A):
PI ' PYe ' GY ' PI +

A
and . Note that PI = or*/or* . Figure 1 displays the variables.p

r
*

,1 -
A 'A 'A

Because I is at the top center of Figure 1 to conform to the scheme of



II

Figure 1. A configuration of variables in plane 0A .
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later figures, we measure angles in the clockwise direction (contrary to

convention). The coordinates of the centroid are [1.1

I(A)

Assumptions 1 and 3 locate the centroid in Quadrant 1 of the plane. We denote

the angle from to o by A 0° < A < 90° . (The earlier assump-

tion that p* > 0 will restrict A within this range when 0
(A) E * E* (A)A B

<< 0 a..d TrA << 713. ) The angle 0 between 142 and q may range
A

between -90° and + 900 ; cos 0 = p * Hereafter
E
A
W
2A

(A)

we omit subscripts (A), as all parameters are defined within Populm-

tion A. We write (3

A
for (3

yE*(A)
and we simplify 2

A
to 2 . Tiw,t CcNat-

A
iances of the variables with Dimensions I and II are given in Tabl::- 1.

E-A

El)

TABLE I

Covariances of Variableswith the Dimensions

a,*
A

E0

PI

p2

11

II a2

0

P II
aro C 2

2
14

I
+ P

II

o

= cvocos A = c o sin AE

w
a a cos4 a

w
sin 0

W2
2
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Analysis

(4) W = (cos 0) aw I + (sin 0) a
w

II

From (1),

(5) y =a
A

+
A
ci*I+u A+

A

(6) 1.114 = (cos 0) aW pI + (sin 0)a p
W II

and

(7) 4Y aA 13A ae
A

The regression equation for predicting Y can be written as

(8) E(YIWQ) = (COS 0) $A041 (142 4w0)/awo

Except when cos 0 = 1, the regression slope in (8) is small/.ir than

the slope in (5).

Equation (8) is not biased, as a description of the relation of

A

outcome to WQ . Bias enters when a
AW

, estimated by entering

WQ = 0 in (8), is taken as a measure of aA .

Bias as a function of 0

The choice of covariate has a critical influence on the estimate

of the treatment effect. Inserting Wc2= 0 into (8),

A

(9) aAw = (COS 0) f3Aar*/.114 / aw
"'A s2

21
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The last term in (9) is the "adjustment" that would be made to U(A) with

W as the covariate in ancova. According to (7)
'

B
A
0 *p

I
is the ideal

A
adjustment that changes pY(A) to aA .

Substituting from (6),

(10) aAWQ = pY (cos 0) e a * ijcos 0) pi + (sin 4))
/IIIA

A
L

The bias A
AW

= "
AW

a
A

. Because the centroid lies on ,

PI:PII
cos X : sin X . Using this fact we can reach

2 2 11
A
AW

= f3tia * [cos A - cos 0 cosa-0)] + PH]A

This equation is one of the three main results in this paper.

A = 0 when 0 = 0 or 0 = X . I.e., if c: is used as the

covariate, bias in a
AW

is eliminated. Also if the complete discriminant

o
s used as the covariate, bias in a

AW
is eliminated.

3
i So far as we

know, this latter observation has not been made previously.
4

Figure 2 plots cos 0 and pw as a function of 0 and shows how the

3
Indeed, f an incomplete discriminant that ,,satisfies p *

14,1*

0
(T)

= 0
is used as the covarlae, there is zero bias in a

AW
. A

In our mathematical development such instances do not appear explicitly;
they enter as instances where an attenuation effect exactly offsets an
overestimate.

4
Weisberg and Bryk, who formulate the problem differently and have no

variable in their model that maps into V , nonetheless arrive at a
somewhat similar finding. Likewise, Arthur Goldberger (1972a,b and personal
communication) has established that if one forms the groups by explicitly
dividing Population G on a certain variable -- which then becomes C° --
taking that variable as a covariate estimates the treatment effect without
bias. In the literature on educational and psychological field studies,
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adjustment and the bias vary. In the region 00 < (I) < X , the bias is

negative; that is to say, ancova overadjusts and Py(A) and Treatment A is made to

look less effective for persons at the grand mean than it is. In the

regions -900 < (I) < 00 and X < (I) < 90°, the bias makes Treatment A look

better than it is. If -900 < (I) < X -90 the estimate of u
A is greater

(more seriously biased in favor of A) than when no covariance adjustment

A
is made; that is, aA > py . Conclusions about the net bias in a

A
-a

B
(A)

will be derived from this information in a later section.

The shape of Figure 2 changes with X . When X = 00 the

adjustment is always nonnegative and the adjustment curve is symmetric

about (I) = 0 . When X = 900 the ideal adjustment is zero and

the adjustment curve encloses equal areas above and below the zero

adjustment axis. For any X the maximum of the adjustment occurs

at (I) = A/2 and is proportional to 1 + cos X . The Tinimum occurs

at (I) = (X/2) -90° and is proportional to -1 + cos A Figure 2 is

coded at the top to show where 4w > 0 and hence where A is T
W

Also, it is coded to show where the bias makes T look better

than it should.

4 (continued)
explicit assignment to one treatment of persons in a certain range of
the intended covariate is known as a "regression discontinuity" design.
Explicit assignment is almost invariably based on a fallible X rather
than a E , as Goldberger comments. Goldberger's proof implicitly
assumes thgt any loss of subjects subsequent to assignment depends
only on E and/or random events.

Goldberger has pointed out (personal communication) that our argument
becomes more inclusive if we allow a fallible measure to enter into the
complete discriminant. We have ruled this out for ease of exposition.
So long as all variables lying in S2 are free of measurement error,
any measurement error can be identified with a variable III or IV
(below). This permits comparison of our results with those of previous
papers on disattenuat3ion in ancova. It would be possible to restate our
argument, writing X for the complete discriminant, bearing in mind that
the mean of the measurement error in Population A is not zero. Then S2

would be defined by 0 and X
o

, and various W would replace the E.A S2of our argument. (Paradoxically, if W is a variable lying in the
plane defined by E.t; and the fallible C2X°, using the true Ew as
covariate would have an attenuating effect because

.)R2
Ew .E'AX°

<
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The investigator cannot be sure of the direction of bias in his

Even if (hypothetically) he knows that his covariate lies io
ç2 , the

investigator who selects a single arbitrary W
Q

has no knotqledge of 0

beyond the fact that 0 < 1 cos 0 1 < 1 pyw 1 . Nor does he !Lave knowledge

of A . With two covariates known to lie in Q , he would De in an ideal

position. If W
I

and W
2

lie in Q , the multiple-regression equation

for predicting Y within A yields

(See pages 27-30.)

It takes some imagination to construct a plausible substantive

example of a covariate where _900 900

For the sake of example, let Treatment A be training in assertiveness

and let the dependent variable be some kind of verbal perfor4ance. Assume

which produces a bias-free a
A

.

that verbal aptitude E is the best predictor of the dependent variable

in Populations A and B as well as A,B. For purposes of the example,

the discriminant E
o

is a measure of gentleness; persons above a certain

level of gentleness (opposite of assertiveness) tend to opt into the

experimental treatment. Suppose also that on the average gentler persons

,*have superior scores. Say, A = 600 . Now let the investigator

choose as covariate a role-playing pretest in which the person is to

assert justifiable counter-arguments in response to some comMunication.

Assume that this W lies in QA . Role playing may well correlate

substantially but negatively with e , and have a small positive

correlation with E* . Say, (1) = -80° . If so, the

covariance adjustment would make
.

aA > PY(A) > aA
. That is to say,

the attempt at adjustment worsens the bias.
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With regard to the bias in Treatment B, one important change

is required. We can dkstinguish 0A and OB , JA and AB, RA and QB .

-1 -1
(OB = cos Pr*w , AB = cos pr*ro(B) , f313 = y(B)

"13
B

'B' "13'

(lot) aBW = liy(s) (cos 0 ) f3 a * [(cos 013) PI(B)4.
B B

B
B

(sin °B)

Changes here are in notation only. In (11) , however, the fact that

p
I(B)

and p
II(B)

are negative requires a change cf sign:

1/2

A
BW =

B sB
ae* [cos A

B
- cos0

B
oos(A

B B
)] [I(B) II(B)1.1

2
P2 ]

QB

All preceding statements about the bias in aA can be suitably

modified to apply to aB .

2 6
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Alternative assumptions

We now consider the alternative assumption -1 < proric(A) < 0,

A
hence p

I(A)
< 0 . (To keep p

II(A)
> 0 is an arbitrary polarization

that does not lose generality.) Under this assumption 900 < X < 180°.

Equations (9) to (11) remain valid. We proceed without subscripts

(A).

The figure tracing the adjustment as a function of 0 would be a

transformation of Figure 2. Since pi < 0, the ideal adjustment is

negative. If X = 1200 instead of 600 as in Figure 2, the new curve

can be obtained by inverting the mirror image of the old one. The scale

for the adjustment is inverted, with 13
A
a ,,p now below zero. There is
E. I
A

a small hump above zero where 900 900,
and a larger half-

cycle swinging below zero to the left of X - 900. Again, &A is

unbiased when either V or e is used as the covariate. (If 0 isA

plotted over the range -900 to 900 , -E0 is located at 0 = A - 1800.)

The discussion on pages 17-19 is valid under the A.ternative

assumption considered here, save that certain statements about

ranges of 0 and X must be reworded.

2 7



Estimate of a
A
-a

B
with wholly relevant covariates

This section uses the results within treatments to

examine the bias in the difference aA- aB . In analysis cf covariance,

the same covariate is applied to each treatment. The following discussion

considers first the bias resulting when a covariate is chosen separately

in each treatment. This section is limited to wholly relevant covariates;

2
thatsis, the covariate chosen in A satisfies R ,* 0

(A)
= 1 and

w*;AC

2
the covariate chosen in B satisfies "w.F*Fo(B) = 1 .

Separate covariates

Figure 2 depicted the bias in aA with covariate W
A

Precisely the same function applies to B, with el; , WQ , etc. replacing

their counterparts in A. In general, ¢A ¢B and AA 0 AB;

the ideal adjustment in A equals that in B ozly in special cases.

The bias in aA aB equals
( aA aA) ( aB aB)

or A
AW

- A
BW -- hereafter, A

A
- A

B
. If W

OA
Si
A

Q
B

* *
is

A
or V _Eal w

Q
is

B
or C

o
, A

A
= A

B
-- 0 , and consequently

B

the estimated difference has zero bias. With certain choices of covariates,

AA > AB so that the net bias makes A appear more advantageous then

it is. The reverse occurs wi:h other choices of covariates. We proceed to

examine how the net bias relates to the parameters of our model.
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Holding ;t.

A
and X

B
fixed, the net bias (or the net adjustment)

can be representad by a function of (tA and (1)B . The contour map in

Figure 3 is generated with X
A

600 ,

B
= 300 , K = 1 , and

Aa * (A)
= B

a
B
(B)

* . Since p

A
(A)

* = 0.5V(A)p and p

B
(B)
* = 0.866 11 o

(B)
=

A

-0.866 1.1
(A) '

these parameters cause the ideal adjustment for B

to be larger ir absolute value than that for A. The curves in Figure 3

are contours of the net bias
'

A
A

- A
B

. Where "Bias favors A" appears,

there is a hill representing a positive bias; and where "Bias favors B"

appears, there is a depression representing negative bias. If the range

were extended in any direction the contour map would repeat. (The net

bias differs from the net adjustment by a change of signs and by addition

of a constant. Note the curve labelled "zero adjustment".)

The configuration would be much the same for other values of

AA and AB . In general, the bias favors A over most of the joint

range of the 4)A and 4)

B
. As the investigator does not know the 4)

T

however, it is impossible for him to specify the direction of

A (A)

the net bias arising from a particular covariate.

A single arbitrary covariate

Ordinarily the user of ancova chooses a single covariate or forms a

single composite covariate. Suppose that the chosen covariate W is wholly

2 2
relevant in-both treatments, i.e., Rw.qe(A) = Rw.qco(B) = 1 . We can

simplify the results of the preceding section by placing a restriction on

the relation of QB to QA .

2 9
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2One such restriction is to specify R
2W* Rwr*ro(B) = 1

Then OB can be mappA into OA , and for any WQ 0A - AB = OB - AB .

We align the two planes to make e a common reference line. In Figure 3

a straight line identifies all points such that 0A AA = OB

When a single WQ is used in both treatments, the bias indicated at

the point on the line that corresponds to 4)A and OB results.

In general, the bias favors A over most of the length cf the line.

The investigator who tries to pick a relevant covariate will try

to pick one close to E* or E
o

or both; this will locate his

study in the center of the chart. For the parameters in Figure 3

the resulting net bias is moderate, but may favor either A or B.

31



24

Attenuating effect of irrelevant information

and error of measurement

An arbitrary covariate

2
Now consider a general covariate W such that R..

w-I II(A)

Assumptions 1-4 of page 14 are retained. We define a variable III
w

2
that is uncorrelated with I and II within A, and set a

IIIw(A)
. 1.

It is convenient to keep 0 > 0. In this section we again drop'qW(A)

most subscripts (A).

The covariate W is a combination of a W and a residual

identified with (Ordinarily, each W is associated with a

different IILw , and any given W may be associated with one
III

in A and another in B .) This residual may represent error of

measurement, or it may represent true information that neither predicts

Y within A nor discriminates between groups. In place of (4)

we have

(12) W = (cos 14)) I + (sin Oaw0II + h IIIw = Wo + h III .

Thus a
2

> G
2

Since III is a residual, p
III (A)W

and 1-1w

Now

(13)

= 11
nast

is the same as in (6).

P (sin 0)c11.7 PH
pw = (cos Oawo

is zero,

2 2 2 2
We write

PW(A) for RW-I II(A) aWQ/aW
It should be noted that

3'



p w2 (A)
is not a reliability coefficient unless R

2

.1 TT = 1; that is,
E LL

2 2

PWunless the true score Si lies in
A

. We do not assume
A) PW(B)

From (5) and (12), C = cos (I) aAar* aw . Then i3 = a / a
2

=
YW YW YW W

"'A 0

;cos oa a *a
A W

/ a2
'

and the adjustment term aywilw is
WEA R

2
(cos (1)) a

A
* [(cos OP, + (sin ) 1-1II ] AW

. Comparing this with the adjust-

ment term in-(10), we see that including irrelevant information in the

covariate reduces the adjustment. The adjustment to the outcome mean

2
in A , given by W , is 0w(A) times that given by WQ . This

A

is our second main result.

Figure 4 plots the adjustment, tracing the attenuating effect

for specified values of 0
2

W(A)
Ordinarily, however, when one changes

the balance of I and II within W , a change in 0
2

(A)
results, as

'W

will be seen below. Unless 0
2

(A)
is high, ancova with any W

'W

will underadjust (aA > aA) provided that p * is positive.
EAE (A)

But when this correlation is negative, the opposite is true (a
A

< a
A

)

The adjustment described above generalizes a result in classical

2
test theory: If E

X
is the true score corresponding to X, R

-YX PE
X
AE

X

equation describes the attenuating effect of error of measurement on a

regression coefficient, the multiplier on the right being the reliability

coefficient. Several w_iters, starting with Lord (1960), set out to

correct the covariance adjustment for error of measurement, retaining

the assumption
13YW(B).

They applied in various ways the
'417W(A)

principle that dividing Ryw(A,B) by P2
CwW(A,B)

gives the slope of

pooled within-groups regression of Y on Cw . This is true

This
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only if within-group reliabilities are equal, which is not necessarily

the case with nonrandom assignment.

We now find that irrelevant information (i.e., reflecting

dimensions other than I and II) has the same effect as measurement

error. Since 2
Pw

2
dividing (3 by the reliability

YW

coefficient is not an adequate correction when irrelevant information

enters W.
5

Bias in cc

A
-

B
. To consider the net adjustment a new figure

similar to

p
2

W(A)
and

Figure 3

2

W(B)

2
K = 1 and p

W(A)
=

retains that label.

bias is

could be produced for any specified values of

Figure 3 itself can be reinterpreted when

2
pw(B) . The curve labelled "zero adjustment"

In the region enclosed by that curve the net

reduced in absolute value.

are reduced, and if

a region where bias

2

PW(T)
is

favors B.

making the Campbell-Erlebacher

The large positive adjustments

sufficiently low there is no longer

This indicates a set of conditions

generalization valid (if A , not

Tw is considered to be the treatment given the "abler group").

5
Campbell and Erlebacher suggested using p

2
as a divisor.

YW

A memorandum circulated privately by Campbell in 1972 withdrew the

proposal, but a similar idea appears with a new rationale in Campbell

2 2 2 2

PYUKT)- P Pw(T) ' using PYW

divisor overcorrects. As can be seen by considering the possibility

and Boruch (1975). Since as

that is the chosen covariate, such a correction would sometimes

make matters worse.

3 5
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Two arbitrary pretest measures

We noted earlier that when two W
O

have been observed, it is
T

possible to combine them into a covariate proportional to
T

which

provides a bias-free adjustment of p
Y(T)

. With measures that lie out-

side 0
T'

the relationships are less simple.

Mlentwoormore/Chave been observed, the usual procedure in

analysis of covariance is to form the composite that best predicts Y

within treatments pooled. To analyze within treatments, an analog would

be to form the composites W
Y(A)

and W
Y(B)

that best predict Y within

the respective treatments. Even if were to lie in al, however,
'1f(T)

it would be unlikely that =
(T)

1 or that pe
(T)

r =

T Wy(T)

1 .

'INTY(T)

Thus the true score on whatever combination of observed scores

best predicts Y gives an aT with an unknown bias. Disattenuation of

the regression coefficient in T by the reliability coefficient

2 2
or by ow

Y(T)=14
Y(T)

WY(T) would not correct adequately.

The ideal adjustment could be determined if certain quantities were

known. Assume that W
1

and W
2

have been observed, and write III and

IV to replace the IIIw . Again, consider relations within A only.

(14) W1 = (cos 01) aw I + (sin 0,) a, II + hiIII
10

"12

Here

W2 = (cos 02) crw I + (sin 02) aw II + h2III + g2IV .

20 20

-1 -1
= cos pw r*, (1)2 = cos pw r* ,

ItTiA zrA

2
0

2
= 0

IV
= 1 and p

III
= p

IV
= 0.

If errors are independent, h2 = 0. But errors of observation

3 6
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can be correlated. (See Cronbach et al., 1972, Chapter 9.) The covariance

matrix for certain variables of interest takes the form of Table 2, which

reflects the basic logic of Cronbach et al. on disattenuation when errors

are correlated. In the covariance matrix we have substituted

ul = (cos yaw , vi= (sin yaw , u2 = (cos 02) aw , v2 = (sin 02)aw
1Q 1S2 2Q 20

and q = u1u2 + v1v2 . The quantities whose sample values are directly

observable are underlined in the table.

We note that

2 2

2

aw
1 Q

u
1

2
+ v

1

2

2

a
2Q

u
2

2
+ v

2

2

PI/ =
2

and =
2

1 a

1

w
u

1

2
+ v

1

2
+ h

1

2 '

oll u22+ v22+ h22+ g22
2

2
If p

2

W ' 1014

2

,

1

Y from

and h
1

h
2

were known, the investigator could eStimate

(15) Y =
6YW .W

2Q

W
1Q + 61114

2Q
.14

1Q

w
2Q

Call this regression estima...e W . Since W
A correlates perfectly

A

with , the composite serves as a complete covariate.

From Table 2, 8

17410

2 2
(u

2
+ v

2
) (u

1
8Aa (u

2
a *)q

A
A

A

(u
2
+ v

2
)(u

2
+ v

22
) - q

1 1 2 2

and a similar formula holds for 8yw
2Q'W12

3 7
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TABLE 2

Covariance Matrix

W
2

W
2S-21

W

M MIIIIIMMMMOOMMMMOOMMIII.

WI uI2+v
1

2
+h

I

2
q + h

1

h
2

u
2+17

1

2.

A A

2 2
W
2

u2
2
+v2

2
+h2

2
+g2

2
q u2 +v2 u

2
G
YE-(A)

/G
E-(A)

A A

2 2
WI

C2
u1 +v1 q

A A

2.i. 2W
u2 ./r2 u2GYC*(A)/(A.
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The ideal adjustment (see p.17 ) is Ryp*Pec = 1,E*Picfr*
'A 'A A 'A

p
III

=
IV

= 0 ,

Since

(16) *P* anl
1g/

W
2S1

PW
1

aYW
2Q

UW
2

=
WA 1 WA

Thus,

(17) p * = p * G *kr * .
EA WA EA WQ

Since P * = P * , * =YWA YEA YE
A

YW ar*
'A

a
1,7

A

Then from (17) II4* pw* = (3yr*Pr*,
A A

and the ideal adjustment can be

expressed in terms of the parameters in (14).

This procedure for disattenuation is our third main result.

If III and IV consist of uncorrelated measurement errors only, the

procedure is equivalent to that of Keesling and Wiley (1975). They

assumed h
2
= 0 and interpreted III and IV in this way; in general

we find it necessary to allow for specification errors and for

2
correlated errors. pw p

2
, and h

1
h
2

are unobservable. IfW
21

reliability coefficients are used and an assumption is made about

111 h2 , a partial disattenuation is achieved.

3 9
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Conclusions and implications

for one- and two-population experiments

In the two-population exper'ment three variables are critical:

the complete covariates e and C and the complete discriminant o
.A

In principle, analysis of covariance procedures give a less satisfactory

descripcion of treatment effects than determination of the regression equation

within each treatment separately. Ideally one could regress the outcome

in Treatment T onto q , getting an unbiased estimate of aT ,

the expected outcome averaged over all persons in the grand population.

aT is also unbiased when e is used as a predictor.

Calculation of a single adjustment in the usual manner is warranted only

under much stronger homogeneity assumptions than are usually recognized.

An arbitrarily chosen covariate will in general lead to a biased

estimate of aT (or ccA aB). Bias also results from the usual

practice of combining two or more predictors with the weights that best

predict the outcome within treatments pooled, and using the composite as

a covariate. The adjustment for initial differences made in analysis

of cova/iance may overadjust or it may underadjust. With some configura-

tions of data the covariance adjustment gives an estimate more biased

than the unadjusted difference in outcome means. This is "underadjustment"

carried to an extreme.

As has often been noted, error in measuring the covariate reduces

the absolute magnitude of the adjustments for A and B.

Disattenuation on the basis of a reliability coefficient is inadequate

to remove the bias. Two kinds of specification error also produce

bias. When the covw-iate W is perfectly predicted by c, and
o

4 0
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2
together (1. o

(T)
= I), but not by either of them alone, the biasW.EE

is a sinusoidal function of cos
-I

o * . When the true score E contains
E
T
W(T)

a component that is not perfectly predicted by E
T

and/or E
o

, that

specifieation error has the same adjustment-reducing effect as an error

of measurement.

In the one-population ("true") experiment, adjustment is needed only

to overcome differences between the A and B 5amples. The argument of

this paper regarding the bi.as resulting from using a covariate other than

* 0cr or E could be restated to apply to sample data in the one-

population experiment. E
o

would be replaced by an X
o

(see footnote 4 ,

p. 17), and a wave function similar to Figure 2 would be found. The ideal

adjustment will ordinarily be smaller than the ideal adjustment in a

two-population experiment, since V
T)

arising only from sampling
( '

error, is likely to be sAall and therefore the E
T

are also small.

Disattenuation in the one-population study changes the slope of

the regression line, but does not change the estimated intercept.

This distinctive aspect of the one-population experiment has not

been explicit in previous warnings about the consequences of using

a fallible covariate.

The investigator working with actual data from a two-population

experiment does not know how his chosen covariate relates to P
*

and E
o

.,r
Therefore, in interpreting an adjusted treatment mean or a within-

treatm.nt regression equation , he cannot assert that he has taken

initial characteristics of the treatment population fully into account.

4 1
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Nor can he state that whatever treatment difference he finds, after

adjustment by analysis of covariance with or without correcting for

unreliability, is biased in a known direqtion.

The sufficient conditions for an accurate description of the

treatment effect are these: The investigator has observed at least

two initial characteristics of the cases, W
1

and W
2'

and an out-

come Y. He also knows the proportion of variance in W
1

and in W
2

not predicted by a linear combination of the complete covariate and

complete discriminant. And he knows the covariance between the un-

predicted portions of the two measures.

These conditions wiL nor be met in practice. Perhaps it will

be possible to set plausible upper and lower bounds on the

unobservable parameters, and from them to derive bounds on the

estimated treatment effect or, better, on the regression equation

relating outcome to the ideal covariate. An alternative is simply

to describe the function relating outcome within a treatment to a

particular set of covariates. , , and the true score
Y(A) Y(B)

on the sample discriminant function would be a good choice.) Such

a function for Treatment A could be interpreted as describing

relations in Population A, with no implication that the result

generalizes to Populations B and G. If functions for the two

treatments are compared, it must be realized that acification

errors have not been allowed for.
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conditions. Moreover, what is planned as a one-population experiment is

subject in some degree o the same difficulties of interpretation as a

two-population experiment, once subjects in the initial sample

withdraw or fail to provide data. Even the one-population experiment

is subject to serious problems of external validity (Rubin, 1974;

Cronbach, 1975), so that the inferences made from it are not

necessarily more dependable than those from a two-population

experiment covering a wider range of conditions.

Our final position is not so pessimistic as those of Riecken

and Boruch, Lord, and Meehl. We do favor pinning down results within

populations separately rather than trying to adjust initial differences

away. Regression onto covariates is needed in that process,

and the fact thaft covariates are incomplete or imprecise

does not argue against their use. Comparison of populations is

certain to be wanted, and the problems encount2red in ancova are no

more than one instance of the ubiquitous problem in social science of

incomplete specification. The solution is not to abandon realistic

social science but to make less presumptious claims regarding the

result.
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